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Abstract 

It is a common practice to retrieve code from an outside source, execute it and retum 

the result to the user. During execution secure data can enter the pro gram by user input or 

access of a data resource. It is important to track the secure data once it enters the program 

to identify possible information flows to unwanted regions of the code which would permit 

undesirable data output to a user. Most approaches to restrict information flow in programs 

have fallen short of providing a practical solution for mainstream programming languages. 

To address this issue, this thesis presents two context-sensitive inter-procedural analyses 

which analyze an intermediate representation of Java Bytecode for secure information flow. 

The first analysis assumes that there is only one instance of aIl class fields where as the 

second analysis uses points-to information to differentiate between instance fields which 

belong to different instances of the same c1ass. The analyses track secure information in 

the program by maintaining sets of secure data. The analyses resolve dynamic method 

resolution in Java statically by analyzing aU possible methods which may be invoked at a 

caU site and merging the secure data sets. We were able to define rules to analyze aIl the 

statements in the intermediate representation and also accounted for Java libraries. The 

analyses do not expect any security annotations in the pro gram. 

Type information is useful in debugging, gui ding optimizations, and specifying and 

providing safety proofs for programs. A type system for a subset of the Java Bytecode 

intermediate representation is also formulated in this thesis. An operational semantics is 

specified and a type preservation proof assures the soundness of the type system. 

Non-trivial benchmarks were analyzed and explicit and implicit information ftows were 

counted for both analyses. The empirical data collected suggests secure data is used in 

many statements of programs and output of data to a user at several places in a program 



can lead to information ftow if the user does not have the right permission to observe the 

data. 
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Résumé 

Il est commun d'obtenir du code d'une source externe, de l'exécuter et de retourner le 

résultat à l'utilisateur. Pendant l'exécution, des données sensibles peuvent êtres entrées le 

programme par l'utilisateur ou l'accès à une autre source de donnée. Il est important de faire 

un suivi des données sensibles lorsqu'elles entrent dans le programme pour garder la trace 

du flot de l'information et ainsi identifier la circulation possible de données sensibles vers 

des régions du code qui pourraient permettre à ces données d'êtres vues par des utilisateurs 

non concernés. Les approches communes pour restreindre le flot de l'information dans les 

programmes n'ont pas été a la hauteur pour ce qui est de fournir une solution pratique pour 

les langages de programmation les plus utilisés. 

Pour adresser ce problème, cette thèse présente deux analyses inter procédurales sen

sibles au contexte qui analysent une représentation intermédiaire du code compilé Java pour 

le flot sécuritaire de l'information. La première analyse assume qu'il n'y a qu'une instance 

de tous les champs des classes alors que la seconde utilisent une analyse des références a 

fin de différencier entre les champs d'instance qui appartiennent à différentes instances de 

la même classe. L'analyse conserve la trace de l'information sensible dans le programme 

en maintenant des groupes d'information sensible. L'analyse résout les appels de méthodes 

dynamique en Java de faon statique en analysant toutes les méthodes qui pourraient être in

voquées en un site d'appel et en combinant les groupes d'information sensible. Nous avons 

défini des règles pour analyser toutes les expressions dans la représentation intermédiaire 

et pris en compte les librairies Java. Les analyses n'ont pas besoin d'annotations de sécurité 

dans le programme. 

L'information sur les types est utile pour le débogage, pour guider les optimisations, et 

pour spécifier et fournir des preuves de la sécurité de programmes. Un système de type pour 
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un sous-ensemble du code compilé Java est aussi formulé dans cette thèse. Une sémantique 

opérationnelle est spécifiée et une preuve de préservation des types assure la consistance 

du système de type. 

Des tests non triviaux ont étés analysés et le flot implicite et explicite de l'information 

a été compté pour les deux analyses. Les données empiriques collectées suggèrent que les 

données sensibles sont utilisées dans plusieurs expressions des programmes et les sorties 

de données peuvent mener à des brèches de sécurité si l'utilisateur n'a pas les permissions 

correctes pour observer les données. 
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1.1 Motivation 

Chapter 1 

Introduction 

Data security is of utmost importance in todays global computing world. Programs which 

are executed on machines are obtained from various sources and mechanisms are employed 

to enforce specific security policies as per the need of the computing system. One security 

related issue is information flow of secure data to areas in the program source which give 

out information to users. The output given out to users has to be controlled in order to make 

sure that information regarding secure data is not given out to unwanted users. 

Information ftow leaks are present in code due to the fact that data resources (such 

as databases) only check for permission to access data from them. They perform access 

control by giving out data after making sure the user has the required permission to ob tain 

the data. Once the data has been retrieved from the resource by the program source, the 

data resource does not control the propagation of data in the pro gram which can result in 

data ftowing to insecure areas in the pro gram, which may be read by users without the right 

permissions. Secure information may leak to variables which do not have a security level 

equal to or more than that of the data by way of explicit or implicit ftows. 

Medical and military are two important areas where secrecy and privacy are very im

portant. Confidential medical data about a patient or military plans are restricted for use by 

relevant people. In such cases it is important that the ftow of information is tracked and the 
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Introduction 

leaks are identified and corrected. This ensures the integrity and correctness of the program 

using the secure data. 

Data, at different security levels, ftows through programs and we need mechanisms 

which enforce information ftow security in pro gram code. The Java programming lan

guage, in recent years, has gained in popularity and its Bytecode can be executed on any 

machine with a Java Virtual Machine. It is very common for users to obtain Bytecode from 

an outside source and execute it on their machine. The pro gram may access secure data on 

the machine and so the code must be analyzed to ascertain if it can leak any secure data. 

This thesis aims to address the problem of information ftow in Java. We investigate 

information ftow for single-threaded programs written in Java by defining context-sensitive 

inter-procedural data-flow analyses on a Java intermediate language called the JIMPLE 

Intermediate Representation (IR) of Java Bytecode in the Soot Bytecode analysis and opti

mization framework [VRGH+·OO, Soo]. AIl of the Java language features are considered in 

our analyses. The analyses examine aIl JIMPLE statements according to the defined rules 

which are designed to conservatively protect secure data. We present the data sets which 

are maintained by the each analysis and the algorithms which manipulate them. 

Recently there has been a lot of interest in formalizing intermediate languages to pre

serve types after compilation of high-level code to low-Ievel code. Typed intermediate 

languages also provide a platform to reason about the correctness of code transformations 

and optimizations. We formalize a small subset of the JIMPLE IR and formulate a type 

preservation proof for its type system. Thus we approach the problem from two directions: 

practical (data-ftow) and theoretical (type systems). 

In addition to the design and implementation of the data-ftow analyses on JIMPLE and 

formalization of a subset of JIMPLE, this thesis presents the results of the experiments 

that were carried out for the data-ftow analyses on moderate size, although non-trivial, 

benchmarks. The experimental data suggests that many pro gram statements use secure 

data due to the conservative assumptions of the analyses. We consider several practical 

issues in this respect, illustrating sorne major sources of conservative imprecision. 
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1.2. Contributions 

1.2 Contributions 

This thesis presents work that can be grouped into two categories: one in the area of infor

mation fiow and the other in the area of formalizing an intermediate representation of Java. 

The contributions for each part are reported in the following two subsections. 

1.2.1 Information Flow 

Zdancewic [Zda04] pointed out that "the real challenge in information fiow is to make use 

of aIl the work to apply to real applications and understand what are the real issues stopping 

us from achieving that goal". Keeping this goal in mind of having a practical solution for 

a widely used programming language we designed information fiow analyses (described in 

detai! in Chapter 5 and Chapter 6) for the Java programming language. The analyses have 

several noteworthy features. 

• Our design provides a practical solution. Unlike other approaches we do not neces

sarily require user annotations for security level of variables. 

• We provide a complete solution including aIl the statements in our program repre

sentation, as weIl as complex issues such as recursion and use of library code. 

• This is a fine-grained approach since security is enforced at the level of the fields in 

objects and not the objects themselves. 

• The roles for each statement are implemented in a modular fashion and allow for 

refinement easily. 

• We consider both explicit and implicit information fiows that occur due to conditional 

branching on secure data. 

• Information leaks due to explicit exceptions are also tracked. 

• As weIl as analyzing programs we provide a waming mechanism that alerts users to 

specifie sites where secure data may leak. 
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Introduction 

• Our design builds on a sophisticated program analysis framework. As far as we know 

this is the first time points-to analysis has been used in a practical information flow 

analysis. 

• We define and provide several metrics for measuring the quality of information flow 

results. 

1.2.2 Formalizing an Intermediate Representation of Java 

Type information is useful in debugging, gui ding optimizations and specifying and proving 

safety proofs for programs. In order to achieve these properties in an optimizing compiler 

we need a typed intermediate representation. This thesis work describes a small typed 

intermediate representation of Java (described in detail in Chapter 4). The following is 

presented: 

• formalization of a non-trivial subset of JIMPLE with if-statements, assignments state

ments and goto statements; 

• operational semantics and type system for the subset; and 

• a soundness pro of for the type system. 

1.3 Thesis Organization 

The rest of this thesis is organized as follows. The next chapter defines the problem of 

information flow clearly and also presents the JIMPLE IR. Chapter 3 is a survey of related 

work. Chapter 4 presents the formalization of a subset of JIMPLE. The data-flow anal

ysis design and details of implementation including data structures and algorithms used 

is presented in Chapter 5. Chapter 6 de scribes alternative approaches that improve upon 

type-based analysis, giving more precise information. The empirical results on the infor

mation leaks and metric calculations for several programs are given in Chapter 7. Finally, 

Chapter 8 concludes this work along with a description of ways to extend this work. 
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Chapter 2 

Information Flow 

It was pointed out in Chapter 1 that there are confidentiality issues with respect to 

information flow in programs. This chapter will explain the problem highlighting the core 

issue at hand in the first section. The second section presents the problem model and how 

security level of variables are considered in pro gram code where as the last section de fines 

the JIMPLE IR on which we carry out our investigations in this thesis. 

2.1 Problem Statement 

The problem occurs due to the execution of unverified code which is obtained from sorne 

outside source on a computer. Figure 2.1 captures this phenomenon in a diagram. The 

unverified program code is received by a user and then executed. During execution it is 

possible that there are inputs of secure data or accesses of secure data residing in sorne data 

resource. The program completes execution and then gives an output. It might be possible 

that partial information about secure data can be inferred by observing the program code 

and the output. 

Figure 2.2 presents an example method which retrieves a student's record from a database 

to find out the faculty in which the student is enrolled. The student's faculty information is 

likely not confidential data but the method also retrieves the gpa of the student and uses the 

value to decide on the font of the result. Clearly the font will give away partial informa

tion about a student's gpa to the one executing the method. If we consider the gpa to be a 
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Information Flow 

Outside World User Computer 

Code obtained Code is 
Unverified code by user executed 

Secure l 
data input 

Outputmay Output Secure data used give out 
given in program 

secure information 

Figure 2.1: Information Flow Problem 

confidential value which only approved people can see, there is a need to analyze code and 

check for possible information leaks. 

String getStudentFaculty(int StudentlD){ 
StudentRecord rec := database[StudentID]; 
String result := rec.faculty; 
if rec.gpa > 3.0 then result.font := "bold" 

} 

Figure 2.2: Example Method 

In Java, Bytecode is commonly obtained from an outside source and executed on the 

local machine. Secure data may be used in the program and the output can give away 

information about the secure data. 

2.2 The Model 

The previous section gives an overview of the information flow problem. In this section 

the problem model is explained in detail along with the security levels description and the 

different kinds of information flows. 
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2.2. The Model 

2.2.1 Security Levels Lattice 

In order to ensure security of data in programs the variables which store data are assigned 

security levels and variables can only be assigned data which has a security level equal or 

less than their own. However, first we need to define a policy with a set of security levels 

and indicate what is more secure than the other. The security 1evel policy used in most 

information ftow work over the years was specified by Denning [Den76]. Security policies 

are defined by a complete lattice of security 1evels and information is permitted to ftow 

from variables of a given security level to variables of the same or higher security levels 

only. 

The set of security levels could have a linear or hierarchical structure but in both cases 

it should satisfy the lattice properties. In this research we use a linear security level model 

consisting of two levels of security: one is a high H security level and the other is a low L 

security level as shown in Figure 2.3. The linear model conforms to the properties required 

of a lattice. Our model is a trivial one but even more complex models specify a do main of 

security levels which is finite and the security levels are partially ordered. The models also 

have a lower bound, an upper bound and defintions for the least upper bound (LUB) and 

greatest lower bound (GLB) operators. 

Lattice Properties for Our Model: 

• The do main of security levels D = {L,H}. 

• It is partially ordered - L is at a lower security level than H. 

• It is finite with only two security levels. 

• It has a lower bound L, where L ç A V A E D. 

• It has an upper bound which is H. 

• The LUB and GLB operators are defined easily for a linear lattice. 

- LUB{i,j} = max(i,j). In our case LUB{H,L} = max(H,L) = H. 

- GLB{i,j} = min(i,j). In our case GLB{H,L} = min(H,L) = L. 
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Information Flow 

H 

t 
L 

Figure 2.3: Lattice Model 

2.2.2 Explicit and Implicit Information Flows 

An explicit ftow occurs when a variable containing confidential data at a certain security is 

assigned to a variable whose security level is less than the security level of the data. In the 

example below we consider two security levels: restricted and unrestricted (corresponding 

to high and low respectively). The assignment of j to i is a c1ear leak of information since 

i's security level is lower then that of variable j. 

int i,j; Iii is unrestricted, j is a restricted variable 

Ilvariable j contains secure data and i is an 

Ilunrestricted variable 

i j; 

Implicit ftow arises from the control structure of a program like in the case of an if

statement. In the example below the pro gram branches depending upon the restricted data 

value stored in variable H. In the true branch variable L is assigned 1 whereas in the false 

branch variable L is assigned 2. Partial information about the value of variable H can be 

inferred by observing variable L. In this case it can be inferred whether or not H is equal to 

4. 

int L,H; IlL is unrestricted, H has restricted data 

if (H == 4) { 

L = 1; 
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2.2. The Model 

}else{ 

L = 2; 

In order to be certain that a pro gram do es not leak confidential data, the secure data 

must only ftow to variables in programs which are not publicly read. The property which 

we are trying to enforce is noninterference and it is formally described as follows: 

Definition of noninterference: One group of users, using a certain set of data, is non

interfering with another group of users if what the first group does with that data has no 

effect on what the second group of users can see [GM82]. 

2.2.3 Code and Data Visibility Model 

The model we use in our work is presented in Figure 2.4 1. The attacker has access to the 

pro gram source and is providing or can observe the insecure or publicly observable input 

which we caU Law in corresponding to L in in Figure 2.4. The attacker can also see the 

publicly observable output Law out produced by the program after execution corresponding 

to L out in the figure. The attacker does not read the secure data High in corresponding to H 

in in the figure which enters the program if the pro gram accesses sorne secure data resource. 

Hin 

Lin 
-

Program source 

Hout 
1--

Lout 

Figure 2.4: Code and Data Visibility Model 

The value of the secure data may be used by the program source in computations. The 

attacker can figure out the secure value if for the same L in changing the H in causes the 

IThe model is inspired by a talk given by Anindya Banerjee 
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Information Flow 

L out to change. In the following examples, in Figure 2.5 and Figure 2.6, we assume that 

variable h contains secure data where as variable 1 is publicly readable. 

Figure 2.5 shows two cases in which no information leaks to the attacker. In example 

(a), no matter which branch of the if-statement is executed depending on the conditional 

expression, the same value will be observed at L out. Similarly in example (b) the difference 

of the secure value "h - h" will always result in the same value observed at L out. 

H in Hout Hin Hout 

ifh> 0 
then 1:= 4 l :=h-h 

Lin else 1:= 4 Lout Lin L out 

(a) (b) 

Figure 2.5: Saie Examples 

Figure 2.6 consists of two examples which violate secure information flow. In example 

(a), the then and el se branches of the if-statement generate different results. Since the 

conditional expression is dependant on the value of the secure variable h, the attacker can 

make out partial information about the value of h by observing the L out. Consider a simple 

case in which L in is 3 and H in is O. Since variable h is 0, the else branch is executed and 

the statement 1 := 1 + 2 gives a L out result of 5. Suppose the H in changes to 1 now. In this 

case, the then branch statement 1 := 1 + 3 gets executed producing a L out result of 6. Clearly 

a change in the value of H in with L in remaining the same produces a different result which 

can be observed and partial information can be obtained about the secure value. This is a 

case of an implicit flow. 

In example (b), the result of an addition involving a secure data value is assigned to an 

insecure variable which can be viewed at L out. In this case consider L in fixed at 2. Now 

for two different values (3 and 4) of H in, the addition will pro duce different results (5 and 

6 respectively). This is a case of an explicit flow. 
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2.3. Jimple Intermediate Representation 

Hin Hout Hin H out 

ifh>O 

then 1:= 1 + 3 1 :=l+h 

Lin else 1:= 1 + 2 L out Lin Lout 

(a) (b) 

Figure 2.6: Unsafe Examples 

2.3 Jimple Intermediate Representation 

The problem model was presented in the previous section. In this section we de scribe the 

grammar of the JIMP LE IR that we base our investigations on in this research. We formalize 

a subset of JIMPLE (details in Chapter 4) and our information flow analyses based on the 

Code and Data Visibility Model given in Section 2.2.3 are defined for full JIMPLE (details 

in Chapter 5 and Chapter 6). 

2.3.1 Jimple in the Context of 500t 

Java is compiled into Bytecode which is executed by the Java Virtual Machine (JVM). The 

Bytecode generated can be optimized to achieve faster runtime efficiency. Sable Object

Oriented Toolkit (Soot) [VRGH+OO, Soü] is a framework which processes the Java Byte

code to improve the code output by performing transformations, run optimizations and 

now also generates high-quality decompiled code. The code optimizations and transfor

mations are carried out on intermediate representations of Java Bytecode. SOOT has four 

IRs namely: BAF, JIMPLE, SHIMPLE and GRIMP. In this research, we chose JIMPLE to 

formalize and write our flow analyses on. 

Figure 2.7 presents an overview of the Soot framework. It accepts Java c1ass files and 

translates the code into JIMPLE IR on which analyses, optimizations and code transforma

tions are carried out. The analyses make use of the cali graph and Spark points-to informa

tion available in Soot. After performing the analyses and optimizations the optimized code 
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is translated back into Bytecode which is executed by the NM. 

2.3.2 Advantages of Jimple 

JIMPLE is a 3-address IR of the Java Bytecode. It is a compact, stackless representation 

and provides considerable ease for writing compiler optimizations and analyses. Each 3-

address instruction can be described as a quadruple (operator, operandl, operand2, result) 

and each statement has the general form of: x := y op z. The key feature of three address 

code is that every instruction implements exactly one fundamental operation. The main 

advantages of JIMPLE over Bytecode and other Soot IRs are: 

• The expressions are directly available and there is no need to build an expression 

from the Bytecode instructions. 

• An expression's code may not be available in continuous Bytecodes and so the anal

yses become very complex. 

• In an IR with an operand stack, removing or changing the position of Bytecodes is 

cumbersome due to the fact that the stack height must be of a particular height across 

control flow boundaries. 

• JIMPLE has very few instructions (19 in aU) compared to the 200 different Bytecode 

instructions. 

• AU local variables (the declared as weU as the operand stack ones) are typed which 

aUows accurate and complex analyses to be written. 

2.3.3 Jimple Grammar 

We introduce the JIMPLE grammar [V RaO] in this section and give part of it to illustrate 

how JIMPLE code looks like. AdditionaUy the grammarfor sorne JIMPLE constructs which 

have have no affect on the security of variables and are not part of the information flow 

analyses is not given here. 
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Java 
source 

SOOT 

SML 
source 

Jimplify 

Class 
files 

Scheme 
source 

Jimplify 

Jimple 

Optimize 

Optimized 
Jim le 

Analyses 
performed 

Eiffel 
source 

Analyses 
performed 

Via Grimp or Baf 

Optimized Class files 

Run by JVM 

Figure 2.7: Overview of Soot 
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assignStmt local = rvalue; 1 

field = imm; 1 

local.field = imm; 1 

local[imm] = imm; 

Information Flow 

The most commonly occurring statements in JIMPLE are the assignment statements 

since JIMPLE is a 3-address code and a variable is never assigned to more than once. AlI 

declarations occur at the beginning of a class and at the beginning of each method in the 

class. The assignment statement (assignStmt) has four variations. The first one assigns an 

expression value to a local, the second assigns a local or constant value to a static field, 

the third assigns a local or a constant value to an instance field and the last assignment 

statement assigns a local or a constant value to an array location. Field references or array 

references never occur in the same statement. 

identityStmt ::= local:= @this.type;1 

local := @parametern: type; 1 

local := @exception; 

The first two identity statements occur at the beginning of each method and they are 

necessary because there is no array of local variables in JIMPLE which has the information 

for the this and the parameters. The first one assigns the instance of the current class to a 

local variable of the class type. This statement is the first statement in aIl instance methods 

and constructors. The next one assigns aIl the parameters to locals of the appropriate type. 

Each method has a number of these statements equal to the number of parameters. The 

last identity statement may occur anywhere in a method and it assigns a caught exception 

object to a local of the exact same type. 

gotoStmt 

ifStmt ",,-

goto label; 1 

if conditionExpr goto label; 

The above two statements are control-fiow statements in JIMPLE. The gotoStmt is an 

unconditional jump where as the ifStmt is a conditional jump on the conditionExpr. The 

switch statement is similar to the ifStmt but has several branches. 
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invokeStmt ::= invoke invokeExpr; 

The invoke staternent invokes a rnethod and the result of the invocation is not assigned 

to a local. In the case of a non-void rnethod, the result is lost as described by the Java 

sernantics. 

returnStmt ret urn imm; 1 

return; 

The two kinds of retum staternents correspond to the retum staternents in methods with 

sorne retum type and rnethods with void retum type. In the first retum staternent, a local or 

a constant specify the retum value. 

throwStmt ::= throw local; 

At a throw staternent an exception is thrown and a local specifies the class of the excep

tion that is thrown. 

imm locall 

constant 

The irnrnediates are the local variables in a rnethod or constant values. 

conditionalExpr ::= imml condop imm2 

The conditional expression occurs in the if-staternent and has two operators. There are 

six conditional operators in JIMPLE. 

rvalue 

concreteRef 

concreteReflimmlexpr 

fieldl 

local.fieldl 

local[imm] 

The rvalues are the right-hand side of an assignrnent staternent. They could be any 

of the concrete references which are the static fields, instance fields or array accesses, the 

irnrnediate values or the various expressions. 
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Information Flow 

specialinvoke local.m(imml, ... , immn) 1 

interfaceinvoke local.m(imml, ... , immn) 1 

virtualinvoke local.m(imml, ... , immn) 1 

staticinvoke m(immI, ... ,immn) 

There are four kinds of invoke expressions in JIMPLE. The specialinvoke expressions 

are specifie to init methods which are the constructor caUs in JIMPLE. The interfaceinvoke 

and virtualinvoke expressions are the method invocations of instance objects where as the 

staticinvoke expressions invoke static methods. Note that m is the method signature, local 

points to the instance of the object and immj are the method arguments. 

expr ::= imml binop imm21 

(type) imml 

imm instanceof typel 

invokeExprl 

new refTypel 

newarray (type) [immll 

newmultiarray (type) [immd··· [immnl [] * 1 

length imml 

neg imm 

The grammar for aU the expressions in JIMPLE is as above. They occur on the right 

hand side of the assignment statement and the result of the expressions is assigned to a 

local variable. 

Figure 2.8 presents the code of a Java program. The corresponding JIMPLE code is 

given in Figure 2.9. The static initializations (initialization of field i in the example) are in 

a c1init method in JIMPLE. The init method in JIMPLE corresponds to the c1ass constructor. 

The important differences to observe between the main method code in Java and JIMPLE 

are that the structured if-statement in Java corresponds to the if-statement with goto in 

JIMPLE and the statements in JIMPLE are simple with no field references in conditional 

expressions. In the Java code we have a field access in the conditional expression where 

as in the JIMPLE code the field is first assigned to a local variable which is then used in 
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the condition al expression. In JIMPLE aIl declarations are at the beginning of the method, 

followed by the identity statements assigning parameters to local variables and then the 

other statements. 

public c1ass Example{ 

private static int i = 10; 

} 

public static void main(String[] args){ 

int[] myArray = new int[12]; 

} 

int k=O; 

myArray[k] = 5; 

k = myArray.length; 

if(i < k) //field i used in conditional expression 

i = 1; 

else 

i=2; 

Figure 2.8: Example - Java 
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public c1ass Example extends java.lang.Object{ 

private static int i; 

} 

public void <init>O{ 

} 

ExamplerO; 

rO := @this: Example; 

specialinvoke rO.<java.lang.Object: void <init>O>O; 

return; 

public static void mainGava.lang.String[]){ 

java.lang.String[] rO; 

} 

int[] ri; 

int iO, il, $i2; 

rO := @parameterO: java.lang.String[]; 

ri = newarray (int)[12]; 

iO=O; 

rI [iO] = 5; 

il = lengthof ri ; 

$i2 = <Example: int i>; //field i assigned to a local variable 

if $i2 >= il goto labelO; 

<Example: int i> = 1; 

goto labell; 

labelO: 

<Example: int i> = 2; 

labell: 

return; 

static void <clinit>O{ 

<Example: int i> = 10; 

return; 

} 

Figure 2.9: Example - Jimple 
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Chapter 3 

Related Work 

This chapter presents work previously done on information ftow analysis. The first 

section is an overview of the early work leading to information ftow analysis. The second 

section covers the compile-time analyses and techniques to check ftow of information in 

a program. The third section explains several approaches that have been tried to enforce 

non-interference in Java related languages. The fourth section discusses prior work on 

typing low-Ievellanguages and formalizing the compilation process. An extensive survey 

of research on information ftow, highlighting aIl the open areas of research, is given by 

Sabelfeld and Myers [SM03]. 

3.1 Early Work on Information Flow 

The earliest work in the area of information ftow can be attributed to Denning and Den

ning [DD77] where they define a simple language in which a security class is attached to aIl 

user-defined variables in a pro gram. Denning also defined the concept of a set of security 

classes in the form of a lattice structure which defined the permissible and impermissible 

ftows in a program statement [Den76]. A compile time check analyzes the statements in 

the program and ensures that information does not ftow into objects whose security class 

will permit unauthorized data leaks. This was the first time that the actual program was 

analyzed for information ftow since previous work concentrated on the input/output of data 

into a program. The language they con si der is procedural with assignments, simple control 
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structures such as if-statements and while-statements, procedure caUs, and explicit excep

tions. In their work the exception handler has to be within the same procedure in which the 

exception may be generated. 

One area of work concentrated on limiting access rights for a program. This means 

that it cannot read outside data or write the data outside the pro gram unless the security 

classes of all the data read can be given out on any output in the program. The Case 

System [WSO+75] and the MITRE system [BL75, Mi176] are ex amples of such research 

attempts. 

The second area of work analyzes programs to determine fiows from the reads to the 

writes external to the program. The mechanism transforms the programs such that the 

fiows are checked at run time accurately. Fenton's data mark machine [Fen74] and the 

surveillance protection mechanism of Jones and Lipton [JL75] employ this technique. 

3.2 Analyses for Information Flow 

Denning and Denning's compiler [Den76, DDn] only produced a pass or fail message for 

the program code and they gave no formaI proofs of their approach. Volpano, Smith and 

Irvine's [VSI96] work centered around giving soundness proofs of Denning and Denning's 

language. They only took a subset of the language including assignments, if-statements, 

while-statements and the let -statement to better explain their proof technique of type sound

ness which they relate to noninterference. They leave out method caUs and exceptions. 

They define two rules, no read up and no write down, and their type system rejects pro

grams which do not observe the rules. 

Heintze and Riecke [HR98] enriched the Â-calculus for information flow security and 

prove a noninterference theorem. They enhanced the type system by adding security prop

erties to each type and they named it Secure Lambda Calculus (or SLam calculus). They 

cover the basic Â-calculus along with assignments and also include concurrency. While 

their work can be adapted for more high-levellanguages with complex type systems, there 

is a need to find a way to reduce the amount of type specifications that a user has to provide. 

Miyamoto and Igarashi [M104] proposed a typed lambda calculus ÂSD as a foundation 

for information flow analysis. Their type system corresponds to a proof system of an in-
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tuitionistic modallogic of validity by the Curry-Howard isomorphism. Their type system 

is designed for a functionallanguage with three new constructs in the grammar of a func

tionallanguage. They are: u corresponding to the modal variables, box[ M which envelopes 

a secure statement M and let box[ u = M in M which only permits reading a secure state

ment which is boxed at the right security level. 1 are the security levels which are partially 

ordered. The type system successfully types only those programs which will not leak infor

mation. The rules enforce that a modal variable is only used when the level of the variable 

is lower than or equal to the level in which it is type checked. This prevents confidential 

information from ftowing into insecure levels. 

Pottier and Simonet [PS02] gave a type-based information ftow analysis for a realistic 

sequential programming language. They calI it Core ML since it consists of À-calculus 

with references, exceptions and let-polymorphism. Their type system is based on type 

reconstruction and it is constraint-based since they allow for subtyping. 

The type systems for information ftow are normally conservative and sometimes even 

reject programs that would otherwise be safe to execute. In order to make sure that the 

type system correctly rejects a program Vnno, Kobayashi and Yonezawa [UKY06] sug

gest combining model checking with type based analysis to find counterexamples that the 

pro gram will indeed leak information. However, their method does not guarantee that a 

pro gram do es satisfy noninterference. 

Amtoft, Bandhakavi and Banerjee [ABB06] presented a ftow sensitive inter-procedural 

information ftow analysis in object-oriented programs using a Hoare-like logic. They de

scribe possible aliasing by region assertions and information ftow properties by indepen

dence assertions. Method summaries are used to specify the assertions that must hold 

before and after a method calI. 

Noticing that most type systems were ftow insensitive and that Denning and Denning's 

original analysis was also ftow insensitive, Hunt and Sands [HS06] proposed ftow sensitive 

security types; this increased the accuracy by it providing a snapshot of the security level of 

a variable at each pro gram point. They presented ftow sensitive typing for a simple While 

language which could be extended to more complex programming languages. 

Most of the approaches are rigorously proven and assure that there is no leak of secure 

data in well-typed programs but the languages are either very restrictive and writing mean-

21 



Related Work 

ingful programs of even moderate size is not easy like ÀsD, or require a lot of programming 

effort like the SLam calculus. 

3.3 Information Flow Work on Java Related Languages 

The work on information flow presented in the previous subsections were not on Java or 

Java related languages. Enforcing information flow security in Java is hard due to its object

oriented model. However, a lot of attempts have been made to enforce information flow 

security in Java related languages. 

Banerjee and Naumann [BN02] gave a noninterference proof for secure information 

flow in a sequential object-oriented language with pointers and mutable state, private fields 

and class-based visibility, dynamic binding and inheritance, casts and type tests, and mu

tually recursive classes and methods. They ensure pointers are safe by disallowing assign

ment of a high security object instance to a low security variable. They also present an 

access control mechanism [BN03] to enforce secure information flow for the same lan

guage whieh specifies that a system calI to retrieve classified data can only be made with 

the right permission. However, they do not consider exceptions. 

JFlow [Mye99] is an extension of Java and it supports the decentralized label model [ML98]. 

It allows security policy labels to be assigned to data values and the security policies can 

be changed to suit the pro gram needs. JFlow requires statie annotations in the Java code. 

The JFlow compiler certifies the programs and produces Java code whieh can be compiled 

by a Java compiler and then executed. Our work compares to the solution presented by 

Myers [Mye99]. However, JFlow focuses on Java source and it does not account for Java 

Bytecode that can be obtained from an outside source and then executed on the local ma

chine by a user. 

Avvenuti, Bamardeschi and Francesco [ABF03] presented an idea of performing infor

mation flow analysis on Java Bytecode. They only consider a very small subset of Java 

Bytecode with security levels assigned to classes, methods parameters and retum values. 

It is a very restricted language because data from a class with a high security level cannot 

be assigned to fields of a class with low security level. Genaim and Spoto [OSOS] gave 

information flow analysis for the full set of Java Bytecodes. They defined an abstract in-

22 



3.4. Typed Low-Level Languages and Formalization of the Compilation Process 

terpretation model of information flow which formally defines explicit and implicit flows 

possible at the Bytecode level. They do not assign any security levels and their analysis 

only informs the user if a value can affect sorne other value. They give experimental results 

which only mention the size of the pro gram and the time it took to analyze the program. We 

extend their concept in our experiments and design more meaningful metrics for measuring 

quality of information flow results. 

3.4 Typed Low-Level Languages and Formalization of 

the Compilation Process 

High-Ievellanguages are typed to enforce sorne desirable properties and they are checked 

by the compiler when the source is compiled. The resulting intermediate languages and 

low-Ievel languages usually lose all the type information, properties which hold at the 

source level may no longer be valid. Researchers have tried to associate types with the 

low-Ievel code in search of ways to ensure important properties hold after compilation. 

Barthe, Rezk and Naumann's [BRN06] proposed a type preserving compilation tech

nique for a subset of Java with exceptions. They show that the information flow security 

policy is observed by the high level source code as well as the Bytecode. 

Chen and Tarditi [CT05] formulated a typed intermediate language for object-oriented 

languages which supports translation of Featherweight Java (FJ) [IPWOl] with assignments 

and one dimensional arrays of objects added. They prove soundness for the intermediate 

language. League, Shao and Trifonov [LST02] also formalize a typed intermediate lan

guage which supports compilation of FJ and it also preserves types. 

Callahan [Q'C99] proposed a type system to formalize Java Bytecode and prove its 

safety since earlier attempts were only successful for subsets of Java Bytecode. Morrisett et 

al. [MCG+99] formulated a generic and realistic Typed Assembly Language (TAL) which 

can support several source languages. Our work on formalization of a subset of JIMPLE is 

similar to a subset of TAL which is called TAL-O [PieOS] 

Other work in this area includes a strongly typed intermediate language to compile 

richly typed source languages such as ML [SLM98] and a typed intermediate language to 
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represent Java classes [LST99]. 
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Chapter 4 

MINI-JIMPLE 

This chapter presents the formaI specification of a subset of JIMPLE IR with a sound

ness proof of type preservation for the type system. In the next section we highlight the 

importance of typed intermediate languages. Section 4.2 de scribes the grammar of the sub

set we picked to formalize. Section 4.3 and Section 4.4 give the operation al semantics and 

type system respectively. In Section 4.5 the type preservation proof is explained along with 

sorne lemmas. 

4.1 Typed Intermediate Languages 

Invariably aH compilers employ techniques to optimize the code written by a programmer. 

In order to maximize the runtime efficiency of the generated code the compilers use several 

mechanisms to improve the code. Analyses are performed and code is transformed at 

the source level, at several highly specific intermediate languages, at the Bytecode level 

or at the native code level in order to achieve speedups in execution time. Traditional 

analyses such as dead code elimination etcetera are common and can be performed on every 

representation of the code but other advanced analyses such as virtual method resolution in 

Java are easier to perform on specific representations such as the JIMPLE IR. In the case 

of Java, source code is compiled into Bytecode and various intermediate languages which 

are more suitable for pro gram understanding and to perform optimizations and analyses 
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on. The S OOT framework performs several analyses on the intermediate representations 

inc1uding JIMPLE. 

During compilation from source into Bytecode the type information is lost. A type 

inference algorithm [GHMOO] analyzes JIMPLE and generates static types for the vari

ables. The types are useful in debugging, guiding optimizations and specifying and proving 

safety proofs for programs. The following benefits are achieved as a result of having typed 

JIMPLE: 

• we get a refined cali graph built using the class hierarchy analysis [DGC95]; 

• it can be ascertained when an invokeinterface can be replaced by an invokevirtual 

calI (meaning that we can tell that the receiver of a c1ass even though the instruction 

is an invokeinterface); 

• a decision on method inlining can be made; 

• variable types are known and it simplifies the decompilation process; 

• variables can be grouped by type which can be useful for run-time type analyses. 

The correctness of Bytecode is verified by the Java Virtual Machine (JVM). The only 

correctness measure in SOOT for the optimizations and transformations is to generate Byte

code after transformations on the IRs and that should be verifiable by the NM. This ver

ified code executes safely but in order to be absolutely sure about the correctness of the 

code translations and each individual analysis and the portability of the model to different 

languages and platforms we need to be able to reason about the whole compilation strategy 

and procedure. 

Prior to this work, no property of the SOOT framework was carefully proven to be 

correct. It would be ideal to have a formaI specification of aIl the intermediate languages 

and aIl the translations in Soot. We formalized part of the JIMPLE IR and our work is 

explained in the following sections. Our type system is similar to the one for TAL-O [Pie05] 

given by Morrisett. 
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4.2. Abstract Syntax 

4.2 Abstract Syntax 

In this work we concentrate on the key elements of JIMPLE. The subset of JIMPLE (here 

after referred to as MINI -JIMPLE) we chose to formalize includes the if-statement, assign

ment statement and the goto statement. The subset grammar of JIMPLE is presented in a 

different format than in Section 2.3 which allows for the operational semantics and type 

system ta be defined in an elegant manner. The abstract syntax for MINI -JIMPLE is given 

in Figure 4.1. 

Program: 

p 

sJiec 

s--seq 

s 

exp 

Declared Types: 

.. -.. 

.. -.. 
-.. 

.. -.. 

sdec ; s--seq ; 

l' xl s_dec ; l' Y 

Ols; s--seq 

goto label 1 if (exp) goto label 1 x = exp 

exp! + exp2 1 exp! < eXP21 x 1 n 1 true 1 false 

l' .. - int 1 bool 

Figure 4.1: MINI -JIMPLE Abstract Syntax 

A program in MINI-JIMPLE is a sequence of dec1arations followed by no statements 

or a sequence of statements. AlI declarations are at the beginning of the program before 

any other statement. A dec1aration defines a local variable, ranged over by x, y and z, along 

with its type l' which may be int or bool in MINI -JIMPLE. There are three statements: 

if-statement, assignment statement, and the goto statement. An if-statement branches on 

the value of an expression. An assignment statement stores the value of an expression in a 

local variable and the goto statement is an unconditional jump to a sequence of statements 

pointed to by the label. 

Expressions occur in the if-statement and assignment statement. We keep the expres-
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sions limited to binary additions, binary less than comparisons and values v. The values 

v in MINI-JIMPLE are local variables (represented by x in the syntax), integer constants 

(represented by n in the syntax), and the boolean constants true and false. More ex

pressions may be added but they would add no special meaning to the language and its 

formaI reasoning. The running example for MINI-JIMPLE is given in the Figure 4.2. We 

often abbreviate the variable declarations int x; int y; as int x,y;. Line (1) in the running 

example uses the abbreviation. We give type proof trees for the example's statements in 

Section 4.4. 

int x,y; (1 ) 

label 1 : x = 2 + 2; (2 ) 

if (x < 4 ) goto label_2; (3) 

y = 3 + 3; (4 ) 

goto label3; (5) 

label - 2 : y = 2 + 3; (6) 

label - 3 : <continue executing the code> (7 ) 

Figure 4.2: Running Example of MINI -JIMPLE 

4.3 Operational Semantics 

The operational semantics of MINI -JIMPLE specifies the behaviour of the language. We 

define an abstract machine and its description is given in this section. 

4.3.1 The Abstract Machine 

The abstract machine (M) has three components which describe a state in the machine: 

1. a finite heap (H) which maps the labels to statement sequences; 

2. a sequence of instructions (s); and 
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3. a store (represented by metavariable f.l) which is a partial function which maps local 

variables to values. 

The syntax of the abstract machine is given in Figure 4.3. The evaluation of MINI -JIMPLE 

is defined by a transition function from one state to another: 

(H, s 1 f.l) ~ (H, s' 1 f.l') 

The transition function is defined for each statement except for 0 which is the final 

value returned at the end of evaluating a program. The machine has a small step opera

tional semantics. The heap (H) is initialized with the labels pointing to the corresponding 

statement sequences before the program is executed and it does not change during execu

tion. Explicitly carrying H during evaluation is not necessary since it doesn't change. We 

will however be explicit about it for clarity. The variable declarations are at the beginning 

of the program and so f.l is initialized by the tirst few statements of the program. The eval

uation mIe for variable declarations is presented in Figure 4.4 and the six evaluation mIes 

for statements are given in Figure 4.5. 

Abstract Machine: 

M .. - (H, s...seq, f.l) 

Heap: 

H "- {labell = s...seql,"" labelm = s...seqm} 

Store: 

f.l "- . 1 f.l,(x,v) 1 f.l,x 

Figure 4.3: Abstract Machine Syntax 
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Vi Yi rf:)l )l' = )l,Yi 
(E-Dec) 

(H, Ct'IYI, ... , 't'nYn); s..seq l)l) -> (H,s..seq 1 )l') 

Figure 4.4: Operational Semantics for Declarations 

In the case of a goto statement evaluation mIe (E-Goto) appHes. The evaluation 

continues with the sequence of statements the label points to is given by the heap H. 

We have three mIes for the evaluation of an if-statement. If the conditional expression 

is not a value it is evaluated by the machine according to the mIe (E- l fCond) . When the 

conditional value is known, the evaluation jumps to the sequence of statements S2 pointed 

to by the label according to mIe (E- l fTrue) . On the other hand if the condition al value 

is false the evaluation continues with the statement SI after the if-statement according to 

the mIe (E-IfFalse). 

H(label) = s..seq2 
(E-Goto) 

(H, (goto label);s..seql l)l) -> (H,s..seq21)l) 

exp -> v 
(E-IfCond) 

(H, (if (exp) goto label;s-.Seq) l)l) -> (H, (if v goto label;s-.Seq) 1 f.1) 

H(label) = s..seq2 
(E-IfTrue) 

(H,(if true goto label;s..seqt} l)l) -> (H,s..seq21)l) 

. (E-IfFalse) 
(H, (lf false goto label;s..seqI) 1 )l) -> (H,s..seql 1 )l) 

exp -> v 
(E-AssignExp) 

(H,(x = exp;s..seq) l)l) -> (H,(x = v;s..seq) l)l) 

(E-AssignV) 
(H, (x = v;s-.Seq) l)l) -> (H,s..seq 1 [x H v])l) 

Figure 4.5: Operational Semantics for MINI -JIMP LE 

The assignment statements has two evaluation mies. If the expression is not a value it is 

evaluated by the machine according to the mie (E-AssignExp). When the expression 
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is a value the local variable x is updated in the store by the rule (E - As s i gn V) . 

The evaluation for addition (+) and less than «) expressions (exp ---t v) is assumed to 

be provided by the machine and is correct. Store lookup is incorporated in the expressions 

since local variables are dereferenced in expressions. We do not inc1ude expressions in our 

soundness proof. 

The store behaviour to update the value stored in a local variable is presented in Fig

ure 4.6 by four rules. Rule (4.1) and (4.2) state that if a previously assigned local variable x 

is being assigned a value v it does not change the contents of variable y. According to rule 

(4.3) if variable x is assigned a value v, it replaces any previous value v' stored in x. The 

last rule (4.4) defines that a value may be assigned to a previously defined local variable 

which had not been assigned a value before. 

[x f--> v](,u, (y, v')) = [x f--> v],u, (y, v') 

[x f--> v](,u,y) = ([x f--> v],u),y 

[x f--> v](,u, (x, v')) = (,u, (x, v)) 

[x f--> v](,u,x) = (,u, (x, v)) 

Figure 4.6: Store Behaviour in the Abstract Machine 

4.4 Type System 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

In this section we present a type system for MINI-JIMPLE along with the environments, 

judgments, types and typing rules. The type system is a type checker and does not infer 

types for expressions. 

4.4.1 Environments 

We have variables in MINI-JIMPLE which need a typing environment and labels which 

require a general environment since the typing judgments will verify if the labels are valid. 
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In order to fulfil these requirements we define the following two environments: 

Local Variable Environment (D 

r is a typing environment for local variables in the store f.1 and is defined as follows: 

r::=.lr,x: 't" 

Labels Environment ('II) 

'II is an environment for labels. It is defined as follows: 

'II ::=. l'II, labeLi 

4.4.2 Typing Judgments 

The typing judgments in MINI-JIMPLE are defined for the store, the heap, the program, 

the statements in the program, the expressions and the values. An ok is assigned for the 

environments, program and statements if they are well-typed. 

The store has to be well-typed and the type of the variables in the store and the value 

mapped to the variable should match. 

rI- f.1 : ok 

The heap (H) has to be well formed by the environment 'II for valid labels. In order to 

type check H in 'II we erase alliabeis in the program and type check the erased pro gram. 

'II 1- H: ok 

The program p is well-typed under 'II if it retums an ok. 
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'P 1- p : ok 

The statement sequences are well-typed if the type checker retums an ok under the 

environments 'P and r. 

'P;r 1- s...seq : ok 

The expressions are well-typed if they have a type 't' under 'P and r. 

'P;r 1- exp: 't' 

4.4.3 Types in MINI -JIMPLE 

There are two program types INT and BOOL corresponding ta the declared types int and 

booi in MINI-JIMPLE. 't' is defined as follow: 

't' ::= INT 1 BOOL 

4.4.4 Typing Rules 

The typing mIes which assign types ta terms for MINI-JIMPLE are presented in Figure 4.7. 

The typing mIe for declarations (T-program) states that alliocai variables are added 

ta the r environment and the pro gram statements are type checked under the 'P and r 

environments. 

There are two typing mIes for sequence of statements: the first one (T-NoStmt) 

assigns an ok for no statement where as (T - S tmt s) assigns an ok based on the fact that 

bath the first statement and the remaining sequence of statements type check ta ok. 

The typing mIe (T-GotoStmt) assigns an ok ta a goto statement if the label is in 

environment 'P. (T- l fStmt) mIe assigns an ok ta the if-statement after checking that 

the expression type checks ta BOOL and the label is in environment 'P. 

33 



MINI-JIMPLE 

Typing rule (T-AssignStmt) for the assignment statement assigns an ok based on 

the types of the variable x and the expression in the premise. x and the expression must 

evaluate to the same type. 

According to the type rules for the conditional expression (rule (T-Condexp) and 

the addition expression (rule (T-AddExp) they are assigned type BOOL and type INT 

respectively based on types of the operands. In both cases the operands exp! and exp2 

must have type INT. 

The typing rule (T - Va r) assigns a type 't' to variable x if the variable along with its 

type 't' is present in the local variable typing environment r. The constant n (representing 

integer values) is given type INT by the rule (T-Int) where as the constants true and 

false are assigned type BOOL by rules (T-True) and (T-False) respectively. 

While we present typing rules for expressions, we will assume that evaluation of ex

pressions preserves types. This lemma will be heavily used in the overall type preservation 

proof given later. There is no typing rule for labels since labellookup is incorporated in the 

rules (T-GotoStmt) and (T-IfStmt) for typing the goto statement and if-statement 

respectiveIy. 

The environment r describes the store and gives the store typing for each location ac

cording to the rules in Figure 4.8. An empty is assigned ok by the rule (T-StoreEmpty) . 

Rule (T-StoreVar) states that (f.1,y) is well-typed un der r if f.1 is weU-typed under r 
and the declared but unassigned variable y has a type 't' in r. In the case when a store loca

tion has been assigned a value (for example (f.1, (y, v))) rule (T-StoreVarVal) assigns 

the store an ok if f.1 is weU-typed under r, variable y has type 't'and the value v assigned to 

y also type checks to 't' under r. 
We give the type proof trees for our running examp1e in Figure 4.9 presented earlier 

in Figure 4.2 to illustrate how our type system would check MINI-JIMPLE programs. AU 

labels are added to 'li at the beginning of execution before a statement is actually executed 

and the environment is available while type checking the rest of the program. Proof trees 

of statements (2),(3) and (5) are given. Proof trees for statements (4) and (6) will be the 

same as the one for statement (2). 
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4.4. Type System 

'l';YI : 't'l,··· ,Yn f- s: ok 
'l' f- 't'IYI; ... ; 't'nYn : 't'n;S: ok 

(T-program) 

(T-NoStmt) 
'l';r f- 0 : ok 

'l';r f- s: ok 'l';r f- s....seq: ok 
(T-Stmts) 

'l';rf- s;s....seq: ok 

label E'P (T-GotoStmt) 
'l';rf- goto label: ok 

'P;r f- exp: BOOL label E 'P 
(T-IfStmt) 

'l';rf- if (exp) goto label: ok 

'l';rf-x:'t' 'l';rf-exp:'t' . 
lTi r L k (T-AsslgnStmt) r; ,x = exp: 0 

'l';rf- eXPI: INT 'l';rf- exp2: INT 
(T-Condexp) 

'l';r f- eXPI < exp2: BOOL 

'l';r f- exp! : INT 'l';r f- exp2 : INT 
(T-AddExp) 

'P;r f- exp! + exp2 : INT 

x: 't'E r (T-Var) 
'l';r f- x: 'r 

'l' rf- (T-Int) ; n: INT 

(T-True) 
'P;r f- true : BOOL 

(T-False) 
'l'X f- false : BOOL 

Figure 4.7: Typing Rulesfor MINI-JIMPLE 
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r f- . : ok (T-StoreEmpty) 

rf-,u r(y) = 't' 
rf- (,u,y): ok (T-StoreVar) 

rf-,u r(y)='t' rf-v:'t' 
(T-StoreVarVal) r f- (,11, (y, v)) : ok 

MINI-JIMPLE 

Figure 4.8: Typing Rulesfor MINI -JIMPLE Local Variable Store 

'JI = {labeLl,labeL2,labeL3} 

Proof tree for statement (2) : 
(T-Int) (T-Int) 

x:INTE ... (T-Var) 'JI; ... f-2:INT 'JI; ... f-2:INT 
'JI; ... f- x : INT 'JI; ... f- 2 + 2 : INT . 

(T-Assl.gnStmt) 
'JI;x: INT;y: INT;f- x = 2+2: ok 

,TI L • 2 2 k (T-program) 
T r l.nt x,y; x = + : 0 

Proof tree for statement (3) : 
labeL3 E 'JI 

'JI;x: INT;y: INT;f- goto labeL3 : ok 

'JI f- int x,y; goto labeL3 : ok 

Proof tree for statement (5) : 

. . 

(T-GotoStmt) 
(T-Program) 

'JI; ... f- x: INT 'JI; ... f- 4: INT 
(T-Condexp) . 

'JI; ... f- (x < 4): BOOL 'JI; ... f- goto labeL2: ok 
(T-IfStmt) 

'P;x: INT;y: INT;f- if(x < 4) goto labeL2 : ok 
(T-Program) 

'JI f- int x,y; if(x < 4) goto labeL2 : ok 

Figure 4.9: Type Proof Trees for the Runnning Example 
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4.5 Type Preservation 

The type preservation proof gives an assurance that the program will be well-typed after 

each step of the abstract machine. It is important to prove the soundness of the type system 

in order to be sure that well-typed statements will not get stuck during evaluation until aIl 

statements have been evaluated and we reach the no statement marker. We present the proof 

and the required lemmas in this section. 

Lemma 4.5.1 Updating a store preserves store typing. 

This lemma states that if a store J1 is well-typed under r, local variable x has type rand 

value v also having type ris assigned to x, the store still remains well-typed. 

If 

.01:r f- J1:ok 

0":r(x) = r 
§:'l';r f- v:r 

then 

ç§:r f- [x ~ v] J1:ok. 

Proof: By induction on the derivation .01. In the proof Lh. stands for induction hypoth

esis. 

Case: x i- y 

.01= 
.011 

rf-J1 r(y)=r rf-v':r 
(T-StoreVarVal) r f- (J1, (y, Vi)) : ok 

by i.h. on .011 r f- [x ~ vlJ1 : ok 

by rule (T-StoreVarVal) 

by definition of update 

~1 

r f- ([x ~ v]J1, (y, Vi)) : ok 

r f- [x ~ v](J1, (y, Vi)) : ok 

rf- J1 r(y) = r 
(T-StoreVar) 

rf- (J1,y): ok 
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Case: x=y 

~= 

by i.h. on ~1 

by rule (T-StoreVar) 

by definition of update 

~1 

r f- [x H v],u : ok 

r f- ([x H v],u),y: ok 

r f- [x H v](,u,y) : ok 

r f-,u r(x) = l' r f- v' : l' 
(T-StoreVarVal) r f- (,u, (x, v')) : ok 

byassumption 'l';rf-v:1' 

r f- (,u, (x, v)) : ok 

MINI-JIMPLE 

by rule (T-StoreVarVal) 

by definition of update r f- [x H v](,u, (x, v')) : ok 

~= 

~1 
rf-,u r(x) = l' 

(T-StoreVar) r f- (,u,x) : ok 

byassumption 

by rule (T-StoreVarVal) 

by definition of update 

'l';rf-v:1' 

r f- (,u, (x, v)) : ok 

r f- [x H v](,u,x) : ok 

Lemma 4.5.2 Statements are well-typed if the store typing environment (1) is extended. 

This lemma states that a statement which is well-typed under the local variable typing 

environment rand is assigned ok will also be well-typed in r' which types aIl variables in 

rand possibly more. s will be assigned ok in l' as weIl. 

If 

ÇJ : 'l';r f- s:ok 

6":r/ ;2r 
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then 

~ : \!';r' f-- s:ok. 

Proof: By structural induction on the derivation ÇJ. Only two cases are given here. 

Case: ÇJ = 
ÇJ1 

\!';r f-- exp: BOOL label E \!' 
(T-IfStmt) 

\!';rf-- if (exp) goto label: ok 

by i.h on ÇJ1 \!';r' f-- exp: BOOL 

byrule (T-IfStmt) \!';r' f-- if (exp) goto label: ok 

Case: ÇJ = 
ÇJ1 ÇJ2 

\!';rf--x:'t' \!';rf--exp:'t' 
(T-AssignStmt) 

\!';r f-- x = exp: ok 

by i.h on ÇJ1 \!';r'f--x:'t' 

by rule (T-AssignStmt) \!';r' f-- x = exp: ok 

Theorem 4.5.3 A well-typed sequence of statements (if it is not the end of statements 

marker) will take a step according to the evaluation rules and the resulting sequence of 

statements will also be well-typed. 

The theorem states that if a sequence of statements is well-typed, the store is well-typed, 

and the machine can take a step as specified by one of the evaluation rules, then the resulting 

sequence of statements will be well-typed and the resulting store will be well-typed. For 

this proof we consider the heap as weIl formed under \!'. 

If 

rf-- Il:ok 

\!' f-- H:ok 

!»:'P;r f-- s-seq:ok 

g:(H,s) 1 Il -+ (H,s') 1 Il' 
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then 

§:'l';r 1- s...seq':ok 

rI- f.l':ok. 

MINI-JIMPLE 

Proof: By following the evaluation mIes for all possible sequences of statement. 

Case: çg = 
çgl çg2 

'l';r 1- goto label: ok 'l';r 1- s...seq: ok 
(T-Stmts) 

'l';r 1- goto label;s...seq : ok 

0"1 
H(label) = s...seq2 

(E-Goto) 
(H, (goto label);s...seq 1 Il) -+ (H,s...seq21 Il) 

by inversion on çgl label E '1' 

by 0"1 H(label) = s...seq2 

by'l' 1- H : ok, heap is weil formed 'l';r 1- s...seq2 : ok 

byassumption rI- Il : ok 

Case: çg = 
çgl çg2 

'l';r 1- if (exp) goto label: ok 'l';r 1- s...seq: ok 
(T-Stmts) 

'l';rl- if (exp) goto label;s...seq: ok 

Subcase 1: 0" = 

0"1 
exp -+ v 

(E-IfCond) 
(H, (if (exp) goto label;s...seq) 1 Il) -+ (H, (if v goto label;s...seq) 1 Il) 

by inversion on çgl 

by type preservation Zemma for expressions: 

if 'l';r 1- exp: 't'and exp -+ v, then 'l';r 1- v: 't' 

therefore 

byruZe (T-IfStmt) 

by ruZe (T-Stmts) 

byassumption 
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'l';r 1- exp: BOOL and label E '1' 

'l';r 1- v: BOOL 

'l';r 1- if v goto label: ok 

'l';r 1- (if v goto label;s...seq) : ok 

rI- Il: ok 
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Subcase 2: g = 
gl 

H(label) = s....seq2 
(E-IfTrue) 

(H,(if true goto label;s....seq) 1 J..L) ---* (H,s....seq21 J..L) 

by inversion on g&l 

bytCl 

'l';rf- true: BOOLand label E '1' 

H(label) = s....seq2 

by'l' f- H : ok, heap is weil formed 

byassumption 

'l'; r f- s....seq2 : ok 

r f- J..L : ok 

Subcase 3: g = 
(E-IfFalse) 

(H, (if false goto label;s....seq) 1 J..L) ---* (H,s....seq 1 J..L) 

Case: g& = 

Subcase 1: g = 

by g&2 'l';r f- s....seq : ok 

byassumption r f- J..L : ok 

g&l g&2 
r f- x = exp: ok 'l';r f- s....seq : ok 

(T-Stmts) 
'l';rf-rf-x = exp;s....seq:ok 

gl 
exp ---* v 

(E-AssignExp) 
(H,(x = exp;s....seq) 1 J..L) ---* (H,(x = v;s....seq) 1 J..L) 

by inversion on g&l 

by type preservation lemma for expressions: 

if 'l';r f- exp: '! and exp ---* v, then 'l';r f- v: '! 

by rule (T-AssignStmt) 

by rule (T-Stmts) 

byassumption 

Subcase 2: g = 

'l';r f- x: '! and 'l'; rI- exp: '! 

'II; r f- x = v: ok 

'l';r f- (x = v;s....seq) : ok 

r f- J..L : ok 

(E-AssignV) 
(H, (x = v;s....seq) 1 J..L) ---* (H,s....seq 1 [x H v]J..L) 

byPz 

by lemma 4.5.1 

'P;r 1-- s...seq: ok 

store update is vaUd 
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4.6 Summary 

We explained the type system for MINI-JIMPLE in this chpater. The type system has 

two types, INT and BOOL, which do not carry any security information for the data in 

MINI-JIMPLE programs. In order to represent the security level of data we need a richer 

type system with security types. The security types consist of the type of the data and a se

curity label indicating the security level at which the data may be used. Secure information 

ftow can only be proven for programs with security types and such a type system can be 

built by extending the type system given in this chapter. 
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Chapter 5 

Data-Flow Analysis for Secure Information 

Flow 

This chapter describes a context-sensitive inter-procedural data-ftow analysis which 

tracks information ftow. The context-sensitive analysis was chosen even though it is very 

expensive because it is the most accurate of the inter-procedural analyses. This analysis 

demonstrates the best results we can possibly get from a data-ftow analysis for informa

tion ftow. It was implemented in Soot by extending the ftow-analysis framework which 

facilitates the implementation of code analyses and optimizations. 

A data-ftow analysis analyzes each statement in a program and ascertains how data is 

being used by the statement [Muc97]. The mIes for analyzing each statement depends on 

the kind of analysis and they vary from analysis to analysis. Data-ftow analyses provide 

meaningful information regarding the code to the programmers and the information is also 

helpful in guiding optimizations. The details of the data-ftow anlaysis work in this research 

are presented in this chapter and the next chapter (Chapter 6). 

5.1 The Analysis 

The information ftow analysis has been implemented at the level of the JIMPLE IR (gram

mar given in Section 2.3). JIMPLE has fewer statements than actual Java and we specify 

mIes to analyze each one. Our analysis successfuUy analyzes aU statements in JIMPLE 
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including the ones that are in the clinit methods (which initialize the static fields). The 

flow analysis framework in Soot simplified the implementation of the analysis a great deal. 

The information flow analysis makes use of the control-flow information and the points-to 

information which is available in Soot. We designed and implemented two analyses: the 

first one is class-based explained in this chapter and the second one considers instances of 

classes (explained in Chapter 6). 

The context-sensitive inter-procedural analysis starts at the main method of the appli

cation that is being analyzed. It analyzes the statements one after the other and being a 

context-sensitive analysis it considers the affect a method caB would have on the data that 

is coBected in the analysis. At a method-invocation the analysis foBows the caB and com

pletely analyzes the invoked method statements before continuing to analyze the callee's 

remaining statements. In order to staticaBy approximate the target methods of a caU site 

the caB graph has to be constructed by analyzing the receiver variable at each caB site. 

Figure 5.1 gives an example of a caB site in which variable 0 is the receiver whose type 

suggests the possible methods that could be invoked. 

oJoo(arg_l, ... ,arg-Il) //Example call site 

Figure 5.1: Call Site 

Soot computes a caU graph which the analysis uses in determining the invoked methods 

staticaBy. A precise caU graph reduces the number of possible target methods and reduces 

the cost of the analysis. Therefore we use the most precise caU graph available in Soot 

which is constructed by the class hierarchy analysis [DGC95] and is refined by the points

to information computed by Spark [LH03, Lho02]. The points-to analysis retums a set 

of objects to which a variable may point to which is useful in accurately determining the 

possibly types of the receiver variable. 

The analysis makes use of the control-ftow graph information available in Soot in or

der to know the continuous blocks of statements without any jumps or jump targets. The 
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mechanism for merging information at the beginning or end of a basie block of statements 

together with the mIes for analyzing each statement defines a data-ftow analysis. 

5.1.1 General Rules for Jimple Constructs 

The analysis is a data-ftow analysis and its specification is presented by the following six 

mIes. 

1. Collects sets of secure (high) data. The high data may be local variables, statie or 

instance fields, array variables or class names of exceptions in Soot. 

2. A variable (local variables or fields) is considered high at a program point p if it is 

assigned a value whieh was computed using at least one secure variable or it was 

assigned any value in a high context on any path before p. An exception is high if 

the variable in the throw statement is high or the throw statement happens to be in a 

high context. In the case of local variable another condition is that it is not assigned 

a low value in between the assignment statement and point p and in the case of an 

exception is that it is not caught before the statement. 

3. It is a forward analysis 

4. The confluence operator is union which means that at a control-flow join the variables 

in the two joining paths are merged together by the union operator. This means that 

variables belonging to either path become part of the set after the join. 

5. The following affect the high information set: 

• assignment statements with method invocation expressions, field references, 

array references and local variables; 

• throw statements for exceptions; 

• identity statements whieh assign parameter values to local variables at the be

ginning of methods and those whieh catch exceptions; 

• control ftow statements: if and switch; and 
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• method invocation statements. 

The data-flow equation for JIMPLE statements is as follows: 

out(s) = gen(s) U (in(s) - kill(s» 

• out(s) is the set of highs after the statement 

• gen(s) contains the data to be made high in the current statement 

• in(s) is the set of highs before the statement 

• kill(s) contains the data which is no longer high after the statement 

We explain the mIes for computing the gen and kill sets for JIMPLE statements and 

details of the algorithms which have been implemented to enforce the mIes in Sec

tion 5.2. 

6. Starting approximations are as follows: 

• out(start) = n. This is a safe approximation because at start no secure data has 

entered the application program. 

• out(all other statements) = n. This is an unsafe approximation because it 

would have been safe to say that an variables, fields, arrays and exceptions are 

at a high security level. 

We are computing a least fixed point in this analysis. 

5.1.2 Secure Information in the program 

Programming languages have different mechanisms for specifying secure data in programs. 

In this work we con si der two security levels: a high H security level and a low L security 

level as given in Section 2.2.1. We have to make a choice to specify the source of secure 

data for our analysis. This will affect the output (that is the information flows and wamings) 

but it does not affect the basic mnning of the analysis. 
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We consider the main argument array as high. The retum value of library calls is also 

considered high. The library call can be thought of as a possible high user input or a 

database access whieh retums a high data value. 

5.2 Analysis Rules for Each Statement 

In this section we present how the constructs are analyzed. The analysis takes into con

sideration the uses and definitions in each statement. Depending on the type of statement, 

variables, fields or classes in the case of exceptions are added to the set of highs, and local 

variables and classes of exceptions are removed from the set of highs. The fields of aIl 

application (user-defined) classes are considered globals. Even though the instance fields 

whieh belong to different instances of the same class are independent, this analysis makes 

no differentiation between them. A field is analyzed based on its name and class in which 

it is defined. Therefore statie and instance fields are handled in the same manner. 

The inSet is the set of high data before a statement. When a statement is analyzed 

according to the rule specified for the kind of statement the data that is to be added to the 

set of highs are added to the gen set and the data to be removed from the set of highs are 

added to the kill set. Once the statement has been analyzed the general ftow equation: 

out(s) = gen(s) U (in(s) - kill(s» 

is applied to compute the outSet whieh is the set of highs after analyzing the statement. 

All the sets in the implementations are ftow sets whieh store Java objects just as Lists. Flow 

sets provide useful operations such as add, remove, union of two sets and intersections of 

two sets which are used in the analysis. 

5.2.1 Analyzing an Assignment Statement 

The analysis of the assignment statement can be broken down into three parts depending 

on what occurs on the left hand side and right hand side of the assignment statement. 

The three parts are dependent on the occurrence or lack of of invocation expressions on 

the right-hancl sicle of the assignment statement ancl array lookups on either sicle of the 

assignment statement. The general rule applies to majority of the assignment statements. 

47 



Data-Flow Analysis for Secure Information Flow 

Simple Assignment Statement 

The simple assignment statement has neither an invoke expression nor an array expres

sion. Sorne examples are given in Figure 5.2. 

The gen set of an assignment statement consists of the variable (local or a instance or 

static field) which is assigned the value which is computed using a high variable. The kill 

set of an assignment statement is the variable (local or static field) which is assigned a value 

computed from variables which are not high before the statement. 

The general mIe to analyze the assignment statement is as follows: 

a=b 

In this case, if b is a secure variable, then a will be added to the gen set or if b is an 

insecure variable or constant value, then a will be added to the kill set. 

a=b+c 

In this case, if b or c or both are secure variables, then a will be in the gen set. If bath 

band c are insecure variables, then a will be in the kill set. 

i2 = <Test: intj>; 

iO=O; 

il = lengthofrl; 

Figure 5.2: Simple Assignment Statement 

In the analysis, at each such assignment statement the variables used (they can be local 

variables or fields) are checked if they are present in the set of highs before the statement. 

Depending on the security level of the used variables, it is decided whether ta add the 

defined variable (local variable or field) to the set of the high variables or not. Aigorithm 1 

presents the pseudocode of the algorithm employed in the implementation of the analysis. 

A flag is set if any of the uses in the statement is high and depending on that the variable 

being assigned is added ta the gen or kill set. Only local variables or static fields can be 
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added to the kill set since we are not sure if there is only one instance of a class. 

Aigorithm 1: Analyzing an Assignment Statement Not in a High Context 
input : AssignStatement, Gen Set, Kill Set 

output: Changed Gen and Kill Sets 

1 Uses +- AssignStatement.GetUses ; 

2 if any use is high then 

3 set a ftag; 

4 end 

5 Defs +- AssignStatement.GetDefs ; 

6 iffiag is set then 

7 GenSet.Add (Defs); 

8 else 

9 KillSet.Add (Defs); 

10 end 

Assignment Statement with Invocation on the Right Hand Side 

The details of how an invocation is handled are presented in Section 5.2.6. An example 

of such a statement is given in Figure 5.3. The only difference between a simple assignment 

statement and this statement is that the right hand side is high if the retum value of a non

void method is high or the receiver variable (variable $r5 in Figure 5.3) is high. 

virtualinvoke $r5.<my: int setKK(int[],int»(r3, $i10); 

Figure 5.3: Simple Assignment Statement with Invocation on RHS 
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Assignment Statement with an Array Expression 

According to the JIMPLE grammar, the array expression can be on the left hand side 

of an assignment statement in which an array location is being assigned a value of a local 

or a constant or it can be on the right-hand side of an assignment statement in which the 

value of an array location is assigned to local variable. In the case of arrays in JIMPLE, we 

use the base variable information of the array. The security level is enforced on the whole 

array because the index values in array reads and writes can not be ascertained statically if 

they are not constants. The use of any high value to initialize the array or assignment of a 

high value to any of the array's locations makes the array high. The array can never return 

to a low security value since assignment of a low value to one of the array locations can not 

be generalized to make the whole array low. In the code snippet in Figure 5.4, wh en a new 

array is initialized, the local variable r1 that tirst references it becomes the base variable. 

Further on when r2 also references the same array (after statement r2 = rI), any use of r2 

will have the base variable as r2. r2 will be added to the set of high variables if rI was high 

by the analysis of the simple assignment statement. 

rI = newarray (int)[8]; 

r2=rI; 

i3 = r2[0); 

r2[5) = i5; 

Figure 5.4: Array Declaration and Use 

If an array expression occurs on the right-hand side (i3 = r2[0]; in Figure 5.4), the 

security level of the array index variable or the base variable is ascertained. If either of 

them is high, then a fiag is set. Aigorithm 2 presents the pseudocode of the analysis. On 

the other hand if an array expression occurs on the !eft-hand side (r2[5] = i5; in Figure 5.4), 

the security level of the uses are checked. If the uses are high or the array index variable 

of the array is high, then the base variable is added to the gen set. The pseudocode for the 
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analysis is presented in Algorithm 3. 

Algorithm 2: Assignment Statement with Array Expression on RHS 

input : AssignStatement, Gen Set, Kill Set 

output: Changed Gen and Kill Sets 

1 Uses +- AssignStatement.GetArrayExp ; 

2 if array index is high or array base variable is high then 

3 set a flag; 

4 end 

5 Defs +- AssignStatement. Ge t 0 e f s ; 

6 if fiag is set then 

7 GenSet.Add (Defs); 

8 else 

9 KillSet.Add (Defs); 

10 end 

Algorithm 3: Assignment Statement with Array Expression on LHS 
input : AssignStatement, Gen Set, Kill Set 

output: Changed Gen and Kill Sets 

1 Uses +- AssignStatement.GetUses ; 

2 if any use is high then 

3 set a flag; 

4 end 

5 Defs +- AssignStatement.GetArrayExp ; 

6 ifflag is set or array index is high then 

7 GenSet.Add (ArrayBaseVar); 

8 else 

9 DoNothing ; 

10 end 
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5.2.2 Conditional Statements 

Statements which have branch conditions and affect the control-flow are potential places 

where an implicit flow might occur. In order to successfuIly identify an information leak 

that might occur in the branch of conditionals we need to point out which statements are 

in the branch. The conditional expression is analyzed and it is ascertained as to whether a 

variable used in the conditional expression is high. If it is found that the conditional ex

pression uses a secure variable, then aIl the statements in the branches need to be analyzed 

in a high context. In a high context any variable that is assigned to will be added to the set 

of highs even if a low value is being assigned to it in order to prevent implicit flows. The 

conditional statements encountered at the JIMPLE level are if-statements and switch-case 

statements. We explain in detail about how the analysis works for the if-statement and 

the switch-case statement is exactly the same except for the fact that it may have several 

branches depending on the number of cases. 

Consider the pro gram segment: 

if (a > b) 

then 

(1) x = 1; 

el se 

(2) x = 2; 

In order to analyze the if-statement given above we require information that both state

ments (1) and (2) belong to the branches of the if-statement. The control-flow graph used 

in the analysis does not give this information directly. Therefore another analysis was 

used for the information. The relationship between branch-dependant statements and the 

conditional statement can be defined in terms of a postdominance relationship 1. AlI the 

statements which do not post-dominate the conditional statement are branch-dependant 

excluding the statements in the program before the conditional statement and the state

ments which are in the program after the merge. We used the Backward Control Flow 

1 Statement SI postdominates statement S2 if every possible execution path from S2 to exit includes SI. 
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Analysis [PV04] which gives exactly the information required. It gives a set of aIl branch

dependant statements of a conditional statement. 

Figure 5.5 presents a control-ftow graph with 10 nodes each representing a statement. 

Node 1 is a conditional-statement. Statements 6 and 9 are the only statements which post

dominate statement 1 since aIl paths through node 1 will detinitely pass through nodes 6 

and 9. The control-ftow may or may not execute statements in nodes 2 thru 5 or 7 and 8. 

The statements 2 thru 5 are branch-dependant on node 1 but 7 and 8 are not since they are 

after the merge node 6 and node s is not branch-dependent since it is before the conditional 

statement. 

O 
6/r;v/ 

4 ~-V 

Figure 5.5: Control-fiow Graph 

Algorithm 4 gives the pseudocode of the analysis at a conditional statement of the kind 

if (a > b). The analysis will tirst check if any of the used variables is in the set of high 

variables. If any one of them is, then the Backward Control Flow Analysis gives a set of 

aIl the branch-dependant statements which is stored in a global Hashtable. The statements 

in the set will be analyzed in a high context. 

5.2.3 Tracking the Return Value of Non-void Methods 

Non-void methods retum sorne value which could also be at a high or low security level. 

Therefore the retum statements (ex ample in Figure 5.6) in JIMPLE are also analyzed. AI

gorithm 5 gives the pseudocode of how a retum statement is analyzed in a non-void method. 

A ftag is set if the retum expression (i0 in Figure 5.6) in a retum statement is found to be 
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Algorithm 4: Analyzing an If-statement in Jimple 
input : IfStatement, Gen Set, Kill Set 

output: Changed Gen and Kill Sets 

1 Uses +- IfStatement.GetUses ; 

2 if any use is high then 

3 Stmts +- IfStatement.GetBranchDependantStmts ; 

4 Store Stmts set in a global Hashtable; 

5 end 

at a high security level or the statement is analyzed in a high context. The information set 

in the flag is used by the callee method if the result of a non-void method is assigned to a 

local variable. 

return iD; 

Figure 5.6: Return Statement Example 

Algorithm 5: Analyzing a Retum Statement 
input : RetumStatement, Gen Set, Kill Set 

output: Gen and Kill Sets 

1 Uses +- AssignStatement.GetUses ; 

2 if use is high or statement in high context then 

3 set a flag indicating retumed value is high; 

4 end 
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5.2.4 Exceptions 

In Java there are two kinds of exceptions: explicit and implicit. The implicit ones are 

generated by the JVM when there is sorne specific runtime problem in the execution of the 

code. Class Cast Exception is an ex ample of an implicit exception. Implicit exceptions are 

potential places where an information leak might occur. Such exceptions are not handled 

in our analysis due to the resulting excessive conservativeness in the call graph. Every 

Bytecode instruction has the potential ofthrowing implicit exceptions and this would imply 

exception edges from pretty much every Bytecode. 

There are two constructs in JIMPLE which are specific to explicit exceptions. The 

first is the throw statement which throws exceptions where as the second one is the catch 

statement. A catch statement is a kind of identity statement and they are the first statement 

in an exception handler code block. 

Throw statement 

In JIMPLE, exceptions are generated and then thrown by the statements as shown in 

Figure 5.7. The third statement in the figure, throw $r10, actually throws the exception. At 

such a statement, the analysis checks if the variable used (in this case $r10) is in the set 

of high variables, or the statement is being analyzed in a high context. If any of the two 

conditions is true, then the class of the exception is added to the set of highs. 

$rlO = new java.lang.NumberFormatException; 

specialinvoke $rlO.<java.lang.NumberFormatException: 

void <init>(»(); 

throw $rlO; 

Figure 5.7: Throw statement 
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Catch Statement 

The catch statement is the first statement of a block of code that han dies the exception. 

The statement before the caught exception identity statement is a label since aH statements 

in the try statement that the catch covers jump to the label if an exception is generated. In 

Figure 5.8, an example of an identity statement with a caught exception is presented. At 

such a statement, the analysis finds out what is the class of the exception being caught. If 

the set of highs contains an exception that is the same or a subclass of the exception being 

caught at the identity statement, then the class of the exception is added to the kill set of 

the statement. 

The merge operator of the analysis is union so if an exception is not caught along aH 

branches of a control-ftow with several branches, then it stays in the set after the join of 

aH the branches. Sorne exceptions may be thrown in a method but not caught in the same 

method. They go beyond the boundary of the method and can be caught in the callee 

method and so they remain in the set of highs that are passed back to the caHee method. 

labe12: 

$r12 := @caughtexception; 

Figure 5.8: Catch statement 

5.2.5 Assignment Statement in a High Context 

It is possible for an assignment statement to be in the branch of a high-conditional and so 

it will be analyzed in a high context. The analysis mIe of an assignment statement needs to 

be amended to take this into consideration. The statements which are branch-dependant on 

a high conditional expression will be analyzed in a high context as follows: 

Case: a = b 

In this case, a will be added to the gen set even if b is not in the set of highs. 

Case: a = b + c 

In this case, a will be added to the gen set even if both band c are not in the set of highs. 
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Variable a could be a local variable, field (instance or static) or an array write ex

pression. The right hand side of the assignment statement could be a local variable, field 

(instance or static), an array read expression, an invoke expression or any other expression. 

The pseudocode of the improved analysis which takes a high context into consideration is 

presented in Algorithm 6. The only change required is that it is also now checked if the 

statement belongs to a set of statements which need to be analyzed in a high context. 

Aigorithm 6: Analyzing an Assignment Statement in a High Context 
input : AssignStatement, Gen Set, Kill Set 

output: Changed Gen and Kill Sets 

1 Uses f- AssignStatement.GetUses ; 

2 if any use is high or statement is in a high context then 

3 set a flag; 

4 end 

5 Defs f- AssignStatement.GetDef s ; 

6 if flag is set then 

7 GenSet.Add (Defs); 

8 else 

9 KillSet.Add (Defs); 

10 end 

5.2.6 Method Invocations 

The analysis foIlows the calI graph at a method invocation. At each calI site, the receiver 

suggests the type of the object and the method name identifies the method invoked. It 

is possible that the receiver can be of more than one type. The calI graph provides this 

information and in the case where more than one type is possible at runtime both methods 

are staticaIly analyzed. The sets of highs after analyzing each method are merged. An 

example invocation statement is given in Figure 5.3. 

Algorithm 7 presents the pseudocode to analyze method caIls. The possible methods 

which could be calIed at a calI site are obtained from the calI graph. It is possible for 
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information passed through parameters of a caU to be at a high security level. Therefore 

security level information for parameters is passed when the analysis is called on the in

voked method. This information is utilized at the identity statements which are present at 

the beginning of each method in JIMPLE. These statements assign the value of the param

eters to the locals. One identity statement is present for each parameter of a method. At 

each such statement, the security level information of the parameters is used to decide if 

the local should be added to the set of high variables. An example identity statement is 

given in Figure 5.9 which assigns the value of parameter 1 to local variable i. 

Algorithm 7: Analyzing an Invoke Statement 
input : InvokeStatement, Gen Set, Kill Set 

output: Changed Gen and Kill Sets 

1 Methodslnvoked <- InvokeStatement.GetMethodsInvoked from caU graph; 

2 Set security level of parameters; 

3 Pass set of high fields as initial set of highs; 

4 Analyze aU Methodslnvoked ; 

5 Merge Results of all methods possibly calIed; 

6 GenSet.Add (AU high fields and exception classes returned); 

7 KillSet.Add (AlI high fields before caU); 

iD := @parameterl: int; 

Figure 5.9: Identity Assignment 

In the analysis the fields are considered globals and so the high fields before the caU 

are present in the initial set of highs for the analysis of the invoked method. The returned 

set of highs contains the fields which are high after the method has been analyzed and any 

uncaught high exception classes. The retumed set of high fields is merged with the locals 

variables which were high before the caU. 
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5.2.7 Method Cali in a High Context 

Invoke statements or assignment statements containing an invoke expression may occur 

in the branch of a conditional statement which branches on a high variable value or they 

might be in a high context. In such a case the invoked method is analyzed in a high context 

ta prevent any implicit leak of information. In our analysis the receiver variable (variable 

$rS in Figure 5.3) being present in the set of highs is not a reason ta analyze the invoked 

method in a high context. 

5.2.8 Limitations of the Analysis 

Instance fields cannot be removed from the set of highs because we are not certain that we 

only have a single instance of a class. An instance field represents the field in aIl instances 

of the class in which it is defined and aIl the subclasses of that class. Therefore the first 

assignment of a high data ta the field makes the field high for the rest of the analysis. In 

the analysis explained in the next chapter we make a distinction between fields of different 

instances of a class. 

Arrays, once in the set of high information, are not removed from the set of highs 

because we cannot statically determine the index values in array references if they are not 

constant values. We consider each array as a single entity with regards to information f1.ow. 

In the current implementation of the analysis we handle recursion by pushing aU the 

globals (fields of aIl application classes) ta high when the analysis encounters recursion. A 

better approximation would be to compute a fixed point. 

Library methods are not analyzed since the analysis did not ron ta completion when 

very small applications with library caIls were analyzed. We include the libraries in our 

analysis by considering the return values from libraries as high and the high arguments to 

library methods are counted as warnings since library methods can possibly output high 

data ta a user. 
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5.3 Proof of Monotonicity 

The statement rules update the set of data collected monotonically in order to make sure that 

the data-fiow analysis terminates. We get monotonicity because the rules deterministically 

analyze the statement depending on the inSet values. If we have sets of highs SI and S2 

where SI is a subset of S2 and we analyze the same statement (for example a = b + c) with 

SI as inSet and then S2 as inSet we end up with outSets SI' and S2' respectively. According 

to the analysis rule variable a will be added to the set of highs if either variable b or variable 

c is high. SI' will still be a subset of S2' after analyzing the statement because if variable a 

is added to SI it will also be added to S2 but not necessarily the other way round. This is 

accurate because if variable b or c are in SI they will also be in S2. However, it is possible 

that either b or c are in S2 but not in SI. In this case set a will be added to S2 but not to SI 

when the statement is analyzed. 

5.4 Summary 

We have presented the details of the information fiow analysis which considers ail fields 

as globals in this chapter and the security level of fields belonging to different instances of 

an object is merged together. The next chapter de scribes the analysis which uses points

to information to differentiate between fields belonging to different instances of the same 

class. 
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Chapter 6 

Data-Flow Analysis Using Spark Information 

Spark [LH03, Lho02] is a package in Soot whieh measures the context-insensitive ) 

points-to information for variables in a JIMPLE program. If a local variable used anywhere 

in JIMPLE code points to an object Spark gives the allocation site (one or many) whose 

instance the variable may be pointing to. This way we can differentiate between data 

for two different instances of the same class. In the code snippet given below the two 

statements instantiate two instances of the Object class in Java and are assigned to variables 

01 and 02. The instance fields in 01 and 02 will be independent. Spark will provide 

information that 01 and 02 have different allocation sites. 

Object 01 = new ObjectO; 

Object 02 = new ObjectO; 

The analysis described in Chapter 5 considered a single instance for all fields of a class. 

Essentially we made no differentiation between a statie field and an instance field; we 

considered different instances of a field for the same class or its subclasses as the same. 

In this chapter we present the second analysis whieh uses Spark points-to information in 

order to differentiate between instance fields of different objects and between different 

array objects. 

1 In a context-insensitive analysis the analysis approximates the side-effects of the method invoked at a 
cali site [Muc97] 
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6.1 Spark Points-to Information 

The alias information from Spark is used to make a distinction between data of different 

instances of objects. This will impact the information ftow analysis because now the first 

assignment of a high data to an instance field of a c1ass will not make it high for the 

rest of the analysis. In fact now we only need to make the instance field of particular 

instance(s) high depending upon the information obtained from Spark. The code presented 

in Figure 6.1 has two allocation sites (labelled Allocation Site 1 and Allocation Site 2) for 

initializing instances of c1ass '!\vo. The instance field i for the c1ass '!\vo will be independent 

for object instances obj 1 and obj2 and so the security level of field i in obj 1 does not affect 

the security level of field i in obj2. In the previous analysis at statement SI (obj l.i = x), 

if x is high then field i also becomes high. When the statement S2 is analyzed, field i 

remains high even though it is assigned a constant value 4. At statement S3, even though 

myInt is assigned the value of instance obj2's field i, it will still become high because the 

analysis cannot tell the difference between instance field i of obj 1 and obj2. Spark can 

differentiate between the two instances obj 1 and obj2. The Spark points-to analysis is used 

in the analysis to obtain the allocation sites of the objects pointed-to by variables obj 1 and 

obj2. At statement S3 (myInt = obj2.i), Spark will give information that obj2's allocation 

site is Allocation Site 2 and since field i of obj2 is low, myInt will remain low. This helps in 

reducing the number of statements in the program where secure data is used. Assignment of 

field i of obj2 is actually safe but due to the conservative approximation of the first analysis 

it was considered unsafe. 

Spark cannot always deterministically tell that a local points to a specifie allocation 

site. In the code given in Figure 6.2, at statement SI (obj l.i = x), obj 1 may point to the 

Allocation Site 1 before the if-statement or the Allocation Site 2 in the branch of the if

statement. It cannot be confirmed which allocation site obj 1 points to if boolean value of 

the condition al expression of the if-statement cannot be ascertained statically. In this case, 

the instance field i for both allocation sites would be made high if x is high. 

Similar to the analysis in Chapter 5 a high field cannot be made low since we have a 

may points-to analysis and not a must points-to analysis in Spark. Amay points-to analysis 

cannot tell that a local definitely points-to only one instance of a c1ass. Such information 
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public c1ass FirstTest { 

public static int x ;::: 100; 

} 

public static void main (String[] args){ 

int mylnt, mylnt2; 

} 

mylnt2;::: Two.j; 

1\vo obj 1, obj2; 

objl ;::: new 1\voO; IIAllocation Site 1 

obj2 ;::: new 1\vo(); IIAllocation Site 2 

objl.i;::: x;IISI 

obj2.i ;::: 4; IIS2 

mylnt;::: obj2.i; IIS3 

c1ass 1\vo{ 

public int i; 

} 

public static int j ;::: 50; 

public Two(){ 

} 

Figure 6.1: Example Highlighting Usefulness of Spark 

cornes from a must points-to analysis. Consider the example in Figure 6.3 in which we 

have Allocation Site 1 which is the only allocation site for initializing objects of class Two. 

Assume statement SI assigns a high data value x to field i of obj 1. At statement S2 field 

i is assigned a constant value which is at a low security level. Even though a low value is 

assigned to field i we cannot change the security level of the field to low. The points-to 

analysis will retum just one allocation site (Allocation Site 1) for obj 1 but we can observe 

that the allocation site is in a while loop and we do not have the information that it will be 

executed only once. 
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public class SecondTest { 

public static iut x = 100; 

public static void main (String[] args){ 

int myInt, mylnt2; 

mylnt2 = Two.j; 

Two objl; 

objl = new TwoO; IIAllocation Site 1 

if(mylnt2 > 100) 

Data-Flow Analysis Using Spark Information 

objl = new TwoO; IIAllocation Site 2 

objl.i = x; IIS1 

} 

} 

class Two{ 

public int i; 

} 

public static int j = 50; 

public TwoO{ 

} 

Figure 6.2: More Than One Allocation Site 

6.2 Incorporating Points-to Information 

In order to incorporate points-to information into the basic analysis described in Chapter 5 

a number of changes had to be made to both the initial data structures and to the analysis 

rules. 

6.2.1 Changes in the Data Structures Used 

Changes to the dornain of high data collected in the analysis necessitates sorne changes 

to initial data structures used. The ftow sets from the previous analysis now contain high 
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public class SecondTest { 

public statie int x = 100; 

} 

public statie void main (String[] args){ 

int myInt, myInt2; 

} 

myInt2 = 120;; 

Two obj1; 

while(myInt2> 100){ 

} 

obj 1 = new TwoO; IIAllocation Site 1 

myInt2--; 

obj Li = x; IIS1 

obj Li = 5; IIS2 

class Two{ 

public TwoO{} 

} 

Figure 6.3: Allocation Site in a While Loop 

statie fields, local variables and classes of high exceptions. 

In order to track high instance fields we added a global Hashtable into the analysis. 

In our case since we need to differentiate between instance fields of abjects instantiated at 

different allocation sites, the fields are the natural choice for the key and a List of allocation 

nodes (corresponding ta allocation sites) for which the key (field) is high are the values. 

We had to introduce another global data structure to keep a record of high instances of 

arrays. A List data structure was sufficient. Arrays are objects and they have allocation 

nodes for the statement where they were initialized. An array initialization statement in 

Java code (labelled "Array initialization") is presented in Figure 6.4. We only need to keep 

track of the allocation sites for the high arrays which can be stored in a List. 
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public class FirstTest{ 

public static void main (String[] args){ 

int[] myArray = new int[lO]; //Array initialization 

myArray[l] = 5; 

} 

} 

Figure 6.4: Array Initialization 

6.2.2 Analysis Rules For Expressions 

The analysis mIes for statements that have fields and arrays had to be adjusted to make 

use of the points-to information from Spark. We explain how each of the expressions is 

handled by our analysis in the following sections with the aid of example code snippets 

and algorithm descriptions. 

Instance Field Read 

Field accesses in JIMPLE occur on the right hand side of an assignment statement (ex ample 

in Figure 6.5). In order to ascertain the security level of the field that is being accessed 

the we have to find out which allocation site r1 points-to. Once we have obtained the 

information about the allocation site(s) that r1 points to, we matched it with the allocation 

sites (instances of class Two) for which field i is high. If any of the allocation sites that rI 

points-to has field i high, then a flag is set. If the flag is set, the local variable (in this case 

i2) is added to the gen set, otherwise, i2 is added to the kill set. The algorithm for analyzing 

instance field read is presented in Aigorithm 8. 

Instance Field Write 

Instance field writes occur on the left hand side of the assignment statement in JIMPLE. 

The right hand side of the same assignment statement will have a local variable (as shown 
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i2 = r1.<Two: int i>; 

Figure 6.5: Example of Instance Field Read in Jimple 

Algorithm 8: Analyzing Instance Field Read 

input : AssignStatement, Gen Set, Kill Set 

output: Changed Gen and Kill Sets 

1 InstanceField f- AssignStatement.GetInstanceField; 

2 LocalVariable f- AssignStatement.GetLocal Variable; 

3 AliocationNodes f- PointsToAnalysis.GetAlloCNodes (LocaIVariable); 

4 if InstanceField is highfor any AliocationNode that LocalVariable points-to 

then 

5 set a fiag; 

6 end 

7 Defs f- AssignStatement.GetDefs ; 

8 ifflag is set then 

9 GenSet.Add (Defs); 

10 else 

11 KillSet.Add (Defs); 

12 end 

in Figure 6.6) or a constant. The decision to mark field j high will depend on the security 

level of variable i3. If i3 is high then field j will be marked high for all the instances of class 

Two which the variable rI points-ta. In the analysis the allocation sites of the instances are 

ascertained and they are added ta the global Hashtable which records the high instance 

fields. The procedure is presented in Aigorithm 9. If variable i3 is not in the set of highs 

nothing is done since we cannat move a field to low due to the fact that we are working 

with a may points-ta analysis. 
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rl.<1\vo: intj> = i3; 

Figure 6.6: Example of Instance Field Write in Jimple 

Algorithm 9: Analyzing Instance Field Write 
input : AssignStatement, Gen Set, Kill Set 

output: Changed Global High Instance Field Hashtable 

1 Uses +- AssignStatement.GetUses ; 

2 if any use is high then 

3 set a ftag; 

4 end 

5 InstanceField +- AssignStatement.Get InstanceF ield ; 

6 LocalVariable +- AssignStatement.GetLocal Variable; 

7 AliocationNodes +- PointsToAnalysis.GetAllocNodes (LocaIVariable); 

8 if flag is set then 

9 mark InstanceField high for aU AliocationNodes LocalVariable may 

point-to in global Hashtable; 

10 end 

Array Initialization 

Arrays are just like objects and are treated as such by the points-to analysis. AU variables 

which reference an array point to one or more allocation sites where the array being ref

erenced was initialized. Array initialization expressions are present on the right hand side 

of assignment statements. The expressions use a local in the case of a single dimensional 

array or severallocals in the case of multi-dimensional array initializations. In the example 

in Figure 6.7, a single dimensional array is initialized and the length is specified by the 

local variable i5. If i5 is found to be high then the allocation node for the array pointed to 

by local variable rI is added to the List which contains the allocation sites of all the arrays 
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which are high. The left hand side of an array initialization expression is always assigned 

to a local. The functioning of the analysis for array initialization expressions is presented 

as pseudocode in Aigorithm 10. 

rI = newarray (int)[i5]; 

Figure 6.7: Example of Array Initialization in Jimple 

Algorithm 10: Analyzing Array Initialization 
input : AssignStatement, Gen Set, Kill Set 

output: Changed High Array Instances' List 

1 Uses f- AssignStatement.GetUses ; 

2 if any use is high then 

3 set a ftag; 

4 end 

5 LocalVariable f- AssignStatement.GetOef ; 

6 if flag is set then 

7 AliocationNode f- PointsToAnalysis.GetAllocNode (LocaIVariable); 

8 Add AliocationNode to List of High Array Instances; 

9 end 

Array Length Operation 

This case is similar to the array initialization. The length expression occurs on the right 

hand side of an assignment statement and the result is assigned to a local variable. An 

example statement is presented in Figure 6.8. In order to ascertain the security level of the 

array referenced by variable r2 the allocation nodes which r2 may point-to are obtained by 

using the points-to analysis. If any of the allocation nodes are present in the List of high 
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array instances a ftag is set and using the information from the ftag the local variable (i5 in 

the example) is added to the gen set (if ftag is true) or to the kill set (if ftag is false). The 

procedure is described in Aigorithm Il. 

r2 = newarray (int)[i3]; 

i5 = lengthof r2; 

Figure 6.8: Example of Array Length Expression in Jimple 

Aigorithm 11: Analyzing Array Length Expression 
input : AssignStatement, Gen Set, Kill Set 

output: Changed Gen and Kill Sets 

1 Use f- AssignStatement.GetUse ; 

2 if Use instanceof LengthExpr then 

3 LocalVariable f- LengthExpr.GetLocal Variable; 

4 AliocationNodes f- PointsToAnalysis.GetAllocNodes (LocaIVariable); 

5 end 

6 if any AliocationNode is in List for high Arrays then 

7 set a ftag; 

8 end 

9 Defs f- AssignStatement.GetDefs ; 

10 ifjlag is set then 

11 GenSet.Add (Defs); 

12 else 

13 KillSet.Add (Defs); 

14 end 
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Array Read 

The array location access expression is always on the right hand si de of an assignment 

statement and the location value is assigned to a local variable as shown in Figure 6.9. 

In such an expression there is a base variable (r2 in Figure 6.9) which points-to the array 

object and an index variable (i8 in Figure 6.9) or constant which gives the index of the array 

location to access. The analysis has to check the security level of the array object as weIl 

as the index variable to decide whether to add i3 to the gen set or the kill set. If either the 

array object is high or the index variable is high then i3 will be added to the gen set. The 

security level of the array object is ascertained by using the points-to analysis to find out to 

which allocation node(s) r2 points-to. If any of the allocation node(s) is in the High List of 

arrays or the index variable is high before the statement the ftag is set to true. This method 

for analyzing the statement is presented in Aigorithm 12. 

i3 = r2[i8]; 

Figure 6.9: Example of Array Read in Jimple 

Array Write 

The array location write expression is on the left hand side of an assignment statement and 

it is assigned the value of a local variable or a constant. i4 is the local variable who se 

value is assigned to the array r2 at index iO in the example in Figure 6.10. The analysis 

decides to add the array allocation no de pointed to by the base variable to the High List 

of arrays if either the value on the right hand side (i4 in Figure 6.10) of the assignment 

statement is high or the index variable (iO in Figure 6.10) is high. If either or both of values 

is high a ftag is set and then the allocation node(s) pointed-to by the array base variable (r2 

in Figure 6.10) is added to the global List marking aIl high array instances. The analysis 

procedure is presented in Aigorithm 13. 
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Algorithm 12: Analyzing Array Location Read 
input : AssignStatement, Gen Set, Kill Set 

output: Changed Gen and Kill Sets 

1 ArrayExp f- AssignStatement.GetArrayExp ; 

2 BaseVariable f- ArrayExp.GetBaseVariable ; 

3 IndexVariable f- ArrayExp.GetIndexVariable ; 

4 AliocationNodes f- PointsToAnalysis.GetAllocNodes (BaseVariable); 

5 if Arraylnstance is highfor any AliocationNode that BaseVariable points-ta or 

IndexVariable is high then 

6 set a ftag; 

7 end 

8 Defs f- AssignStatement.GetDefs ; 

9 if flag is set then 

10 GenSet.Add (Defs); 

11 else 

12 KillSet.Add (Defs); 

13 end 

r2[iO] = i4; 

Figure 6.10: Example of Array Location Write in Jimple 
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Algoritbm 13: Analyzing Array Location Write 
input : AssignStatement, Gen Set, Kill Set 

output: Changed Global High Instance Array List 

1 Use f- AssignStatement.GetUse ; 

2 ArrayExp f- AssignStatement.GetArrayExp ; 

3 IndexVariable f- ArrayExp.GetIndexVariable ; 

4 if any use is high or IndexVariable is high tben 

5 set a flag; 

6 end 

7 BaseVariable f- ArrayExp.GetBaseVariable ; 

8 AliocationNodes f- PointsToAnalysis.GetAllocNodes (BaseVariable); 

9 if flag is set tben 

10 add aIl AliocationNodes BaseVariable may point-to in the global List; 

11 end 

Special Case for Main Method String Array Argument 

The command-line arguments to the main method are considered high security in our anal

ysis. We had to specify a special rule to analyze the identity statement which assigns the 

string array argument of the main method to a local variable. The only argument to a main 

method is the string array and so wh en the analysis encounters an identity statement with 

a parameter reference (example shown in Figure 6.11) while analyzing the main method it 

has to be the assignment of the string array argument to a local variable. The local variable 

on the left hand side of the identity statement (rO in Figure 6.11) points-to the allocation 

node of the string array. The points-to analysis gives the information about the allocation 

node which is added to the List of high array instances. The pseudocode is presented in 

Algorithm 14. The initialization statement for the string array is in a method which is 

executed before the main method. We did not have to analyze that method with the initial

ization statement because the local variable on the left hand side of the identity statement in 

the main method points-to the allocation site and the identity statement is analyzed before 

any other statement in JIMPLE code. 
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public static void mainUava.lang.String[]) 

{ 
java.lang.String[] rO; 

rO := @parameterO: java.lang.String[]; 

} 

Figure 6.11: Main Method String Array Argument 

Aigorithm 14: Analyzing Identity Statement of Main Method 
input : IdentityStatement, Gen Set, Kill Set 

output: Changed High Array Instances' List 

1 if main method is being analyzed and identity statement has a parameter 

reference then 

2 LocalVariable +- IdentityStatement.GetOef ; 

3 AllocationNode +- PointsToAnalysis.GetAllocNode (LocaIVariable); 

4 Add AllocationNode to List of High Array Instances; 

5 end 

6.2.3 Statements in High Contexts 

It is possible that assignment statements that have an instance field reference or an array 

reference occur in the branch of a high conditional or a method which is analyzed in a 

high context. The algorithms in Section 6.2.2 will adjust accordingly if the statements are 

analyzed in a high context since now even if the right hand side data is not high the left 

hand side data will be added to the set of highs. The local variable of a primitive type on 

left hand side will be added to the gen set. In the case when the local variable references 

an object, then: 

• for a field reference, the field is marked high for aIl the allocation node(s) that the 

local variable may point-to in the global Hashtable which tracks high instance fields; 
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and 

• for an array reference, aIl allocation node(s) that the local variable may point-to are 

added to the global List which tracks the high array instances. 

6.3 Summary 

We eXplained the analysis which uses information obtained from the Spark points-to anal

ysis in this chapter. First we gave the benefit of using points-to information in an informa

tion flow analysis and then we described the changes that we had to make in terms of the 

data structures used and the statement analysis rules to adapt the first analysis explained in 

Chapter 5. In the next chapter we present our experimental findings on the two analyses. 
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Chapter 7 

Experimental Results 

This chapter reports an empirical study on the information flow analyses. The first 

section describes the experimental model, the second section presents a view of the high 

data in a program in the Soot Eclipse Plug-in, the third section de scribes the metrics and 

the last section gives a brief overview of the benchmarks and the tabulated data with a 

discussion on the values calculated. A user guide is given in Appendix A where information 

on where to obtain Soot and the analysis code can be found. 

7.1 Experimental Model 

The goal of an information flow analysis is to track secure data in a program and identify 

places in the program where the data may leak to unwanted users. Figure 7.1 presents 

this idea. Before the assignment statement (a = b + c) variable b is high and it is used as 

an operand in the addition expression and the result is assigned to variable a. Since a is 

assigned the result of a computation which uses a secure data it is also added to the set of 

high data. The print statement after the assignment statement gives out the value stored in 

variable a to a user. a stores a high data value and it should only be given out to a user 

who has the right permission to observe secure data. Our analyses track the secure data and 

generate a waming if there is a possibility of giving out the data to a user. 

In Java data is given out to a user in many ways sorne of which are standard output, 

graphical user interface or database writes. These all invoke a Java library method which 
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CODE 

<snip> 
a = b + c; 
print (a); 

HIGHVARS. 

{b} 
{a,b} 

\ . 
Secure data glven out ta the user 
Warning must be generated 

Figure 7.1: Experimental Model 

Experimental Results 

caUs a native method on the machine in the caU chain to eventuaUy give out the data to a 

user. Pursuing our goal of providing a practical solution to the information ftow problem 

we tried to analyze aU of Java library code and generate a waming when an actual native 

method is caUed with an argument which is high. We ran the simplest benchmark on the 

library but our analysis could not to completion due ta lack of memory. Since the number 

of possible calling sequences are exponentiaUy big in the range of 1011 we had to mark 

out the library code in our tests. In our tests we analyze the Java application classes and 

generate wamings whenever a Java library method is invoked and it is passed a high data 

value as argument. The analyses also count the number of information ftows possible in a 

program either implicitly or explicitly at assignment statements. 

The analyses keep track of the set of high data at each statement in a program during 

the inter-procedural analysis. If a statement is encountered more than once in the analysis 

the merge (union) set of the high data is stored each time. Once the analysis completes 

analyzing the program we have a set ofhighs associated with each statement in the program. 

We use the high set of data ta ca1culate values for our metrics presented in Section 7.3. The 

metrics provide the following information about secure data: 

• in the case of assignment statements whether they read or write secure data; 

• in the case of catch statements for exceptions if they catch a high exception in a low 

context; and 
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• in the case of a library method invocations if high data is passed as argument. 

7.2 Sample Run and Viewing Results in Eclipse 

Eclipse [Bcl] is an open-source, extensible integrated development environ ment (IDE). 

Eclipse was designed as a plug-in framework where one can easily add new functional

ity. Soot has a plug-in [Lho05] for Eclipse and the result of the analysis can be viewed in it. 

Figure 7.2 presents a sample program. The code presented is Java and it only reftects how 

the analysis manages the set of high data at each statement. The set of secure variables is 

given after each statement in the code. The initial set is assumed to contain the private field 

i of the class Test. At each statement it can be seen that the set of high variables changes 

depending on the security level of the variables used and defined in the statement and the 

set of secure variables before the statement. The condition al expression in the if-statement 

is a high conditional since the variable y is high when it is evaluated. Therefore variable x 

in the assignment statement, which is in the branch of the if-statement, is added to the set 

of high data even though it is assigned a value of a constant which is at a low security level. 

The same program's JIMPLE code is analyzed using our analysis assuming field i as the 

initial secure data value. The analysis collected the high data sets for each statement and 

the variables which can store a high data value are tagged. The tagged variables are given 

a dark background in the JIMPLE output which is viewed in the Soot Eclipse plug-in. A 

sample screen shot is given for the tagged JIMPLE code in Figure 7.3. The variables which 

are high at each statement in the JIMPLE code can be identified clearly. 

7.3 Metries 

The two categories of the kinds of information ftows are: explicit ftows and implicit ftows. 

Besides the explicit and implicit ftows there are possible information ftows due to excep

tions and secure data being passed to libraries in our analyses. We define metrics which 

give numerical values for the kind of information ftows and warnings which can occur in a 

program. There are no well known metrics to evaluate information ftow in programs. 
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/nhe set of high data is given after each statement in curly brackets 

public c1ass Test { 

} 

private static int i; Initial set: {i} 

public static void main(String[] args){ {i} 

int x,y,z; {i} 

} 

x = i; {i,x} 

x= 1; {i} 

Y = i; {j,y} 
z = 8; {j,y} 

if(y == z){ {j,y} 

x = 5; {i,y,x} 

} 

Figure 7.2: Example Run of Analysis 

Experimental Results 

We specified eight metrics: six ofwhich are specifie to assignment statements in JIMPLE 

and one each counts an important aspect about exceptions and secure data leaking to library 

code. Numbers for the same metrics were counted for both our analyses, the first one ex

plained in Chapter 5 and the second one explained in Chapter 6, to find out the affect of 

using points-to information to differentiate between instance data of two instances of a 

c1ass has on the different kinds of information flows and wamings. Each of the defined 

metrics are now eXplained in tum. 

Explicit Flow froID a High to Low (H '---4 L) 

This metric gives the number of statements which assign secure data to variables in a 

program which previously did not store secure data. Such statements allow secure data to 

spread in the program. 
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Figure 7.3: Analysis Results in Eclipse 

Explicit Flow from a High to High (H '---t H) 

"i lint 

• <lnit>O 

• malnljava,lang,String()) 

This ftow occurs when the right hand side of an assignment statement has a high use 

but the left hand side is also high. A high numerical value for this ftow suggests that secure 

data is present in most of the statements in a program. 
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Explicit Flow from a Low to High (L '----t H) 

In the case when the right hand side of an assignment has no high use it is not required 

to push the left hand side to high. When it is found to be high even though the right hand 

side is Iowa ftow from a low to a high is added. This statement is safe and does not spread 

secure data in the program. 

Explicit Flow from a Low to Low (L '----t L) 

This metric is quite straight forward. A safe assignment is counted in this case when 

there is no secure data on the left hand side or the right hand side of the assignment. High 

number of these statements in a pro gram is a good sign as it suggests that most of the data 

in the program is not confidential. 

Implicit Flow from a High to Low (H"-t L) 

When an assignment statement is in the branch of a high conditional statement or the 

method is being analyzed in a high context an assignments are considered secure since 

partial information about a secure condition al expression can be possibly known by an 

unwanted user. Therefore the left hand side of an assignment is always marked secure. 

This metric counts the number of times the left hand side was low before the statement was 

analyzed and is pushed to high at the particular statement. A large number of these implicit 

ftows suggest many condition al statements in the program which use secure data. 

Implicit Flow from a High to High (H"-t H) 

This metric counts those instances when the left hand side of an assignment statement, 

which happens to occur in the branch of a high conditional or a high context, is already 

high. High numbers of this ftow in a program suggests that there is widespread use of 

secure data in the program. 
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Catch Exception in a Low Context 

Explicit exceptions are not used commonly used by programs in a program to define 

control flow. They are used at specific places when it is important to catch an exception or 

reason about a certain condition in the code. However, they do occur and in our analyses 

we handle exceptions by adding the class of the exception to the set of high variables when 

a high exception is thrown. When an exception is caught in a low context it is possible that 

information may leak implicitly. This metric counts the number of times a high exception 

is caught in a low context. 

Secure Data to Library Code 

Library code is executed by way of a method invocation. Since our analyses only 

analyze application methods and data can be given out to a user by sorne library methods 

we make a note of aIl high data values that are passed to a library method. Every time a 

library method is invoked this metric counts the number of arguments which are high. 

7.4 Experimental Results 

This section presents the benchmarks on which the analyses were run and the results. These 

experiments were performed to ascertain the kind of information which is present in pro

grams. They suggest how secure data flows through a pro gram and how widespread is 

secure data throughout the program. 

The different options which were tried on the analyses are as foIlows: library safe and 

unsafe, recursion taken into consideration or not and whether points-to information is used 

or not. In the remainder of this section we refer to the data-flow analysis which does not use 

points-to information (explained in Chapter 5) as the first analysis and the analysis which 

uses the points-to information provided by Spark (explained in Chapter 6) as the second 

analysis. 
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Library Safe and Unsafe Option 

When the library is considered safe the retum value of a library method caB is assumed 

at a low security level whereas when the library is assumed to be unsafe the retum value 

is considered high. If the retum of an invocation is assigned to a local in the case when 

the library is assumed unsafe, the local which is assigned to becomes secure and this is a 

source of secure data coming into the program. We count the number of high data values 

which are passed as argument to library methods only when the libraries are considered 

unsafe. 

Recursion Accounted for or Not 

When recursion is encountered and it is accounted for in the first analysis aB fields 

belonging to the application classes are made secure because we are not certain which 

fields might be touched in the recursive caB. When recursion is accounted for in the second 

analysis aB static and instance fields are pushed to high. In the case when it is not accounted 

for in both the analyses no fields are made high at a recursive caU. 

Points-To Information Used or Not 

The second analysis uses the points-to information provided by Spark and is tested with 

either library safe or unsafe options. For both cases, in one run recursion is not accounted 

for and in the second it is. When the points-to information is utilized we are able to differ

entiate between the data stored in the instance fields for different objects. 

7.4.1 Benchmarks 

The benchmarks used to test our analyses are from the Optimizing Compilers c1ass at 

McGill University. The benchmarks are moderate in size and the numbers generated for 

the metrics described in the previous section demonstrate the kind of data which is present 

in the programs. We ran our tests on six benchmarks which have varying properties. Sorne 

of them are intensive on object allocations while sorne have a lot of conditional statements. 

Three of them have recursive calls. The following are the benchmarks used: 

84 



7.4. Experimental Results 

• PointsToGraph: generates a points-to graph for sorne arbitrary variables and their 

allocation sites; 

• DFT: performs Discrete Fourier Transform on sequences; 

• Coefficients: is a library for matrix operations; 

• Froggy: is an interpreter for a language called Froggy, which is a small but useful 

subset of Scheme; 

• Puzzle: finds a solution to the sliding block puzzle problem by applying A-star 

search algorithm; and 

• Mersenne Prime: takes a number n as input and provides the nth Mersenne Prime 

in the Mersenne Prime List. 

7.4.2 Tabulated Results and Discussion 

We tested a total of eight combinations of the three options and the results are given in this 

section. The tables give the percentage for each kind of explicit and implicit flow and a total 

count of the number of information flows which corresponds to the number of assignment 

statements in the program. The wamings table is given for the experiments in which the 

library was considered unsafe. None of the benchmarks has a catch statement which catches 

a high exception in a low context. The information on the machine specifications on which 

the tests were carried out can be found in Appendix A. 

Library Safe without Recursion 

Table 7.1 lists the results for the case of testing the data-flow analysis with the library safe 

option and skipping recursion without doing anything. AlI ftows in all the benchmarks are 

explicit ones from low to low because there is no high data in the program other than the 

main string array which is not used in any benchmark other than Puzzle. In Puzzle the main 

argument introduces high data which is assigned to local variables and so it has 5% explicit 

ftows other than low to low. 
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H'-tL H'-tH L'-tH L'-tL H'VtL H'VtH Total 

Benchmarks Flows 

PointsToGraph 0% 0% 0% 100% 0% 0% 289 

DFT 0% 0% 0% 100% 0% 0% 1672 

Coefficients 0% 0% 0% 100% 0% 0% 410 

Froggy 0% 0% 0% 100% 0% 0% 272 

Puzzle 4% 0% 1% 95% 0% 0% 246 

MersennePrime 0% 0% 0% 100% 0% 0% 436 

Table 7.1: Library Saie without Recursion 

Library Safe with Recursion 

Table 7.2 gives the result for the option when we considered library safe but at recursion aIl 

the fields belonging to the application classes were added to the high set. Now that there is 

another source of secure data in the programs we have several more ftows in this case than 

the previous case in which we did not introduce any new high fields at a recursive method 

calI. The results for DFT, Puzzle and MersennePrime remain the same since they have no 

recursion. Froggy has a lot of implicit ftows (H 'Vt L) since it is an interpreter and has 

switch-case statements with several cases. This causes many statements to be in the branch 

of a conditional expression which branches on a high value. The presence of high data 

in the three benchmarks with recursion shows that there is a very large input of high data 

when we consider the conservative assumption that an fields become high at a recursive 

method cano This also highlights the need to deal with recursion in a better manner. 

Library Unsafe without Recursion 

The results for this option are presented in Table 7.3 and Table 7.4. In this case we consider 

the main string array as high and aIl retums from the library calIs as high. Compared 

to the case with Library safe without Recursion aIl benchmarks report that high data is 

present in sorne statements. Most of the programs written in Java access library code 
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H'---'>L H'---'>H L'---'>H L'---'>L H"-+L H"-+H Total 

Benchmarks Flows 

PointsToGraph 3% 4% 1% 61% 17% 14% 289 

DFT 0% 0% 0% 100% 0% 0% 1672 

Coefficients 9% 2% 4% 57% 22% 6% 410 

Froggy 9% 6% 1% 34% 42% 8% 272 

Puzzle 4% 0% 1% 95% 0% 0% 246 

MersennePrime 0% 0% 0% 100% 0% 0% 436 

Table 7.2: Library Safe with Recursion 

which introduces high data in this case. DFT reports the highest percent of implicit ftows. 

This is due to the fact that it has many method caUs in the branch statements of condition al 

expressions and the branch condition could have a high data value. Again Froggy has a high 

percentage of implicit ftows. It is not surprising because Froggy is a subset of Scheme and 

interpreters for functional languages have a large number of switch-case statements. We 

also report wamings for data leaks to libraries for this case since the libraries are considered 

unsafe. Explicit exceptions are scarcely used and no benchmark reports the catch of a high 

exception in a low context. 

H'---'>L H'---'>H L'---'>H L'---'>L H"-+L H"-+H Total 

Benchmarks Flows 

PointsToGraph 7% 8% 1% 37% 22% 25% 289 

DFT 11% 4% 0% 24% 21% 40% 1672 

Coefficients 10% 2% 1% 42% 23% 22% 410 

Froggy 5% 3% 0% 45% 42% 5% 272 

Puzzle 27% 7% 1% 42% 13% 10% 246 

MersennePrime 6% 0% 0% 79% 10% 5% 436 

Table 7.3: Library Unsafe without Recursion 
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Wamings Wamings 

Benchmarks Exceptions Data to Library 

PointsToGraph 0 24 

DFT 0 32 

Coefficients 0 4 

Froggy 0 8 

Puzzle 0 15 

MersennePrime 0 16 

Table 7.4: Library Unsafe without Recursion 

Library Unsafe with Recursion 

Table 7.5 and Table 7.6 give the results for the case where high data is introduced by library 

caUs as weU as recursive caUs. Compared to the previous case in which only library caUs 

retumed high data, the number of explicit ftows L <-t L values goes down or stays the 

same for aU benchmarks. In the case of PointsToGraph, Coefficients and Froggy it goes 

down by a big percent where as in the case of the other three benchmarks it stays the same 

since they have no recursive method caU. Since more high data is entering the program 

when recursion is encountered more statements process high data and so the explicit flows 

L <-t L count decreases. In the case of Froggy the count for the number of wamings for 

high data given out to library increases from 8 in the previous case to 17 since Froggy is 

an interpreter for a functional language and has a lot of recursive caUs to the evaluation 

function. 

Points-To Library Safe without Recursion 

The results for this option are presented in Table 7.7. As expected we find that most flows 

are explicit ones from low to low since there is no high data in the programs except the 

main string array argument. Puzzle has 4% explicit ftows H <-t L since it uses the main 
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H'---"L H'---"H L'---"H L'---"L H~L H~H Total 

Benchmarks Flows 

PointsToGraph 10% 8% 1% 22% 23% 36% 289 

DFf 11% 4% 0% 24% 21% 40% 1672 

Coefficients 13% 2% 3% 36% 23% 23% 410 

Froggy 10% 6% 1% 29% 44% 10% 272 

Puzzle 27% 7% 1% 42% 13% 10% 246 

MersennePrime 6% 0% 0% 78% 11% 5% 436 

Table 7.5: Library Unsafe with Recursion 

Wamings Wamings 

Benchmarks Exceptions Data to Library 

PointsToGraph 0 24 

DFT 0 32 

Coefficients 0 4 

Froggy 0 17 

Puzzle 0 15 

MersennePrime 0 16 

Table 7.6: Library Unsafe with Recursion 

string array argument at several places where as the other benchmarks have a 100% count 

for explicit ftows L '---" L. 

Points-To Library Safe with Recursion 

The results for this option are presented in Table 7.8. As expected the benchmarks with 

recursive method caUs PointsToGraph, Coefficients and Froggy now have a drop in the 

explicit fiows L '---" L since aU fields become high at a recursive method caU. An intersting 

thing to note in these results is that DFT also has ftows other than explicit ftows L '---" L. 
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H~L H~H L~H L~L H~L H~H Total 

Benchmarks Flows 

PointsToGraph 0% 0% 0% 100% 0% 0% 289 

DFT 0% 0% 0% 100% 0% 0% 1672 

Coefficients 0% 0% 0% 100% 0% 0% 410 

Froggy 0% 0% 0% 100% 0% 0% 272 

Puzzle 4% 0% 0% 96% 0% 0% 246 

MersennePrime 0% 0% 0% 100% 0% 0% 436 

Table 7.7: Paints-Ta Library Safe withaut Recursian 

This is due to the fact that recursion in the library caUs caused high data to enter into the 

program. 

H~L H~H L~H L~L H~L H~H Total 

Benchmarks Flows 

PointsToGraph 3% 4% 1% 61% 17% 14% 289 

DFT 10% 3% 2% 30% 19% 36% 1672 

Coefficients 9% 3% 4% 56% 12% 16% 410 

Froggy 9% 6% 1% 34% 42% 8% 272 

Puzzle 4% 0% 0% 96% 0% 0% 246 

MersennePrime 0% 0% 0% 100% 0% 0% 436 

Table 7.8: Paints-Ta Library Safe with Recursian 

Points-To Library Unsafe without Recursion 

Table 7.9 and Table 7.1 0 give the results for this case. The results have a variety of ftows 

but they are comparable to the results of the first analysis considering library unsafe and 

not accounting for recursion. We see a drop in the high data present in the program for 
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7.4. Experimental Results 

benchmarks which allocate many object instances. Froggy and DFf have a high percentage 

of implicit information ftows. Coefficients generates a lot of array instances and it has 6% 

more explicit ftows L "--> L than the first analysis. We also see that in the case of Coefficients 

the wamings for high data leaking to library have also go ne down from 4 to 3. Puzzle also 

generates a lot of objects in the Astar search and so we see 4% more explicit flows L "--> L 

than in the case of the first analysis. The results suggest that tracking data for different 

instances of fields and arrays helps in reducing high data in the pro gram and number of 

possible information leaks to library for specifie benchmarks. 

H"-->L H"-->H L"-->H L"-->L H"'-'tL H"'-'tH Total 

Benchmarks Flows 

PointsToGraph 7% 7% 0% 34% 23% 29% 289 

DFf 10% 3% 0% 27% 32% 28% 1672 

Coefficients 9% 2% 1% 48% 19% 21% 410 

Froggy 5% 4% 0% 44% 42% 5% 272 

Puzzle 24% 7% 1% 46% 13% 9% 246 

MersennePrime 6% 0% 0% 78% 11% 5% 436 

Table 7.9: Points-To Library Unsafe without Recursion 

Points-To Library Unsafe with Recursion 

Table 7.11 and Table 7.12 give the results for this case. As expected, the percentage for 

explicit flows L "--> L drops in aU cases compared to the previous case with points-to li

brary unsafe and not accounting for recursion since high data also enters the pro gram at a 

recursive method call. The results in this case have a variety of flows but they highlight 

an important point when compared with the results of the first analysis considering library 

unsafe and accounting for recursion. Two benchmarks Coefficients and Puzzle which have 

a lot of object instances have an increase in the percentage of explicit flows L "--> L. This 

also highlights the benefit of tracking data for different instances of fields and arrays. 
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Warnings Warnings 

Benchmarks Exceptions Data to Library 

PointsToGraph 0 24 

DFf 0 36 

Coefficients 0 3 

Froggy 0 8 

Puzzle 0 15 

MersennePrime 0 16 

Table 7.10: Points-To Library Unsafe without Recursion 

H~L H~H L~H L~L H-v.L H-v.H Total 

Benchmarks Flows 

PointsToGraph 10% 8% 1% 22% 23% 36% 289 

DFT 13% 3% 1% 22% 19% 42% 1672 

Coefficients 12% 3% 4% 41% 19% 21% 410 

Froggy 10% 6% 1% 29% 44% 10% 272 

Puzzle 24% 7% 1% 46% 13% 9% 246 

MersennePrime 6% 0% 0% 78% 11% 5% 436 

Table 7.11: Points-To Library Unsafe with Recursion 

7.5 Summary of Results 

We present a novel way of quantitatively evaluating information fiow in programs. We 

define metrics which are helpful in ascertaining the kind of data present in programs with 

respect to security. The only prior quantitative analysis for information fiow on Java Byte

code by Genaim and Spoto [GS05] only measured the time it took for their analysis to 

examine the benchmarks. 

In our study the numbers counted for the different kinds of information fiows in the 
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7.5. Summary of Results 

Wamings Wamings 

Benchmarks Exceptions Data to Library 

PointsToGraph 0 24 

DFT 0 40 

Coefficients 0 4 

Froggy 0 17 

Puzzle 0 15 

MersennePrime 0 16 

Table 7.12: Points-To Library Unsafe with Recursion 

benchmark programs indicate that high data is present in many statements of programs. 

Points-to analysis information does impact the kind of data that is present in programs. 

The results suggest that tracking data with respect to different instances of objects does 

reduce high data in benchmarks with lots of array and abject instances. 

93 



Experimental Results 

94 



8.1 Conclusions 

Chapter 8 

Conclusions and Future Work 

This thesis presented the ground work for a context-sensitive inter-procedural analysis for 

information ftow on JIMPLE intermediate representation (IR) of Java Bytecode. We cover 

aIl of the single-threaded Java language at the level of the JIMPLE IR and give rules to 

analyze every statement. Algorithm design to implement the respective rules and choice 

of data structures is described. We gave two analyses: the first one considers aIl instances 

of classes' fields as the same in the analysis whereas the second analysis differentiates 

between the instance fields that belong to different instances of a class using the points-to 

information provided by Spark. 

The implementation is modular and allows modifications to be easily introduced. The 

analyses require no programming overhead since no security annotations are required. The 

starting set of secure variables or the choice of secure data can be easily changed. 

The thesis also gave an operational semantics and type system for MINI-JIMPLE and 

a type preservation proof for the type system. This work can be extended to formulate 

type preserving compilation for Java into JIMPLE intermediate representation. This is an 

important step in developing more formaI but still practical models for information ftow. 

The primary aim of this work was to investigate the kind of information that can be 

obtained by practical, state-of-the-art techniques in program analysis. We measure success 

by counting the different kinds of possible information ftows in a program. Using points-to 
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information improves information flow results, reducing the effect of conservative approx

imations necessary in a practical design. 

We have demonstrated that information flow analysis on JIMPLE intermediate represen

tation can be refined and further research can be based on it using more features available 

in the Soot framework. Similarly the subset of JIMPLE that we formalized can be extended 

to include more constructs in the JIMPLE language. 

8.2 Future Work 

This thesis presented two ideas and both can be improved upon in various ways. We sug

gest sorne possible avenues to take in the next two sections: first for the information flow 

analysis on JIMPLE and then for formalizing JIMPLE. 

8.2.1 Information flow analysis 

The CUITent analysis includes rules to analyze aH statements in the Jimple IR. However, 

several improvements are possible and the way a statement is examined and the method for 

marking secure data can be refined. 

Context-sensitive points-to analysis 

Spark computes context-insensitive points-to analysis. More accurate points-to analysis 

can be used in our analyses to see how it affects the information flows. The Paddle [Lho06] 

framework provides context-sensitive points-to and caU graph analyses for Java. The re

fined caU graph will also improve the information we get for the receiver in a virtual caU. 

Impact of compiler optimization on informationflow counts 

In a practical sense a program may have many expressions depending on the stage of 

compilation. It is common to optimize programs using a variety of complex techniques and 

it would be interesting to see the effect that sorne of them have on infonnation flow. 
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Java Libraries 

In the analyses described in this thesis the Java libraries are not directly analyzed and 

we consider the effects of assuming the library calls to be either safe or unsafe. A deeper 

investigation of the use of library code, as well as other issues such as use of native methods 

would be useful. 

Programmer help 

We have provided a simple mechanism for waming the user of information leaks. A 

direct Java to JIMPLE translation [Lho05] is now available in Soot which keeps the original 

variable names in Java for variables in JIMPLE. This can be used to give user-friendly 

waming messages to the user. 

Recursion 

Recursion is only handled in the first analysis in a very crude manner. Analyzing re

cursion in the analysis would require an inter-procedural fixed point to be computed. This 

is not a conceptually complicated notion, but was not implemented in this thesis due to 

technical complexity. 

8.2.2 Formalizing Jimple 

The subset of the JIMPLE IR we have chosen to formalize consists of the very basic state

ments in JIMPLE. Extension to all the object-oriented features of Java is highly desirab1e. 

A fully developed and formally proven type system for JIMPLE would enable further in

vestigation from the perspective of security type systems. 
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Appendix A 

User guide 

• The benchmarks used to test the analyses can be found at: ht t P : / / www . cs. 

mcgill.ca/~cs621/621benchmarks-2002.jar 

• The Soot Framework code and documentation is available at: ht t P : / / www . s ab le. 

mcgill.ca/soot/ 

• The analysis package is availabe at: http://www.sable.mcgill.ca/~aahmed12 / 

analysis. taro Download the analysis code and untar it in a folder. If Soot is 

setup the following command will run the analysis: 

> java -Xmx400m informationflowanalysislMain -w -p cg.spark on -f jimple -inf 

sim -main-class <mainClass> -process-dir <directory name> 

There is one added option" -inf" to run the information flow analysis: 

- "-inf sim" mns the class based analysis. 

- "-inf spa" runs the instance object based analysis. 

• The machine on which the benchmarks were run had a dual processor. The complete 

specifications are as follows: 

> cat /proc/cpuinfo 
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processor : 0 

model name : AMD Athlon(tm) 64 X2 Dual Core Processor 3800+ 

cpu MHz: 2010.314 

cache size : 512 KB 

processor : 1 

model name : AMD Athlon(tm) 64 X2 Dual Core Processor 3800+ 

cpu MHz: 2010.314 

cache size : 512 KB 

• The memory in the system was: 

> grep MemTotal/proc/meminfo 

MemTotal: 4046572 kB 
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