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AB5TRACT

Topographie transects coming from four different Digital Elevation

Models (DEMs) which coHectively span different ranges of scales from 20000

km to 0.5 mare analyzed. Power spectra, trace moments and structure

functions are used to show that continents and oceans have the same moment

scaling function K(q) but different (scale by scale) nonconservation H and also

that the Earth's topography is multiscaling from planetary scales down to a few

meters. The results also suggest that topography can be described statistically

at aH scales by a global K(q). The form of K(q) shows that the statistics of

topography are close to those predicted by universal multifractals. It seems that

the multiscaling of topography is broken because of the presence of trees on the

DEM: they indroduce a characteristic length in the vertical that is approximately

9m.
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RÉSUMÉ

Plusieurs profils topographiques provenant de quatre Models de Terrain

Digitaux (MTD) ayant des gammes d'échelles allant de 20000 km à 0.5 m sont

analysés. Spectres de puissance, trace moments et fonctions de structures sont

utilisés pour montrer que les continents et les océans ont la même fonction de

"scaling" des moments K(q), mais des paramètres de non-conservation échelle

par échelle H différents et que le relief terrestre est "multiscaling" sur une

gamme d'échelle allant de l'échelle planétaire jusqu'à quelques mètres. Les

résultats suggèrent aussi que la topographie peut être décrite statistiquement à

toutes les échelles par une fonction K(q) global. Le multiscaling est brisé en

raison de la présence d'arbres sur le MTD: ces derniers introduisent une échelle

caractéristique verticale approximativement égale à 9 m.
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CONTRIBUTION TO ORIGINAL KNOWLEDGE

Although multifractal analyses of topography have been done before,

this thesis greatly extends the range of scales analyzed (planetary scales down

to 0.5 m), which is larger then the previous studies by approximately 4 orders of

magnitude. It is the first time that multiscaling is tested on so large a range of

scales. AIso, the quantity of data analyzed (in terms of number of pixels) ranges

from 2xl06 to 2xl0s, which is far larger than previous analyses.

An explicit comparison between continents and oceans is done for the

first time, showing that they are similar at a certain statisticallevel but different

at another level. AIso, this thesis explicitly shows that the statistics of

topography fluctuations are well described by a cascade process starting at

planetary scales. The effect of trees on multiscaling is also studied for the first

time.
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1. INTRODUCTION

1.1 Scaling in topography

In general, geologieal and geophysieal fields are highly nonlinear and are

extremely variable (in space and in time) over wide ranges of scales. More

particularly, the field analyzed in this study, the Earth's topography, strongly

varies from one place to another (i.e. there are large fluctuations) and from one

scale to another, making them very elusive and hard to tackle.

One major breaktrough in the study of topography is the use of scaling

ideas. Scaling is an interesting symmetry associated with power laws. If a

system is described by a power law P(x), then the system is invariant under the

change of scale x ---* )..-IX:

(1.1)

This symmetry has a profound meaning. It means that analyzing a system at a

particular scale is not so interesting: it is more useful to analyze how it changes

with scales. Put it differently, it is the scale invariant exponent S that contains

the important information in equ. (1.1) (the notion of scale invariance will be

further discussed in section 2.2.1).

The study of power laws in topography has been and is still an active

area of research. Half a century ago, Vening Meinesz (1951)1 studied the

spherieal harmonies expansion of the Earth's topography of Prey (1922) and

showed that the power spectrum of topography follows a power law with a

1 The original results are in Vening Meinesz (1951), but the essential points that are quoted
here can be found in Heiskanen and Vening Meinesz (1958).
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spectral exponent p~2. After his pioneering work, others, like Balmino et al.

(1973), made the same kind of study and confirmed his results. Bell (1975) used

the spectra of his predecessors and added them to his own studies of abyssal

hills to produce a composite power spectrum that is scaling over approximately

4 orders of magnitude with also a spectral exponent p~2. Other more recent

spectral studies (ofbathymetry) with varying values of pin ranges going from

1000 km to 0.1 km can be found in Berkson and Matthews (1983) (P~1.6-1.8),

Fox and Hayes (1985) (P~2.5) and Gibert and Courtillot (1987) (P~2.1-2.3).

There is also Sayles and Thomas (1978) who argued that many man made and

natural surfaces (inc1uding the Earth's topography) exhibit scaling over 8 orders

of magnitude with p~2, but their results must be taken with care (Berry and

Hannay (1978» and will be discussed in section 5.1.

On the other hand, Herzfeld et al. (1995) and Herzfeld and Overbeck

(1999) argue that the ocean floor (and topography in general) cannot be scaling

over a wide range of scales, because of their conviction that geomorphologic

processes are scale dependent (i.e. have characteristic lengths), meaning that

they consider a priori that the scaling is necessarily broken. They show this by

doing power spectra and variograms on single (short) transects and show that

they are broken. But these results are not convincing, because scale invariance

is a statistical symmetry (see section 2.2.1) that is almost surely broken on a

single realization, so it is really important to have a lot of statistics to

approximate the theoretically predicted ensemble scaling.

1.2 Simple scaling and monofractals

Richardson (1961) found that the length of a coastline varies with the

length of the rulers used to measure it, and the form of this dependence is a
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power law (see section 2.1.1). Mandelbrot (1967), in his famous article "How

long is the coast of Britain", interpreted the scaling exponents of Richardson

(1961) as being fractal dimensions. Later, with the avent of fractional Brownian

motion (fBm) models of terrain (Mandelbrot (1975), Goodchild (1980», many

fractal studies on topography were made and sorne realistic simulations of

topography were done. But as pointed out by Mark and Aronson (1984),

because fBm is purely statistical in nature and is not based on geomorphic

processes, this can only be an advance in computer graphics if it does not

represent adequately "real" topography.

Since then, there has been many estimates of (supposedly unique) fractal

dimensions on topographie transectss and surfaces using various methods to see

if topography respects "fractal" statistics. Two commonly used methods are the

power spectrum (see for example Gilbert (1989), Huang and Turcotte (1989,

1990» and the variogram (see for example Burrough (1981), Mark and Aronson

(1984», where the fractal dimension Dfis related in a simple way to the spectral

exponent (3=1+2H=5-2Df (for transects) and to the variogram exponent

~=2H=4-2Df(for transects). Another method, more commonly used in the

study of interfaces, was also used by Dietler and Zhang (1992) to infer Dffrom

the roughening exponent Xvia the relation X=3-Df (the roughnening exponent

being equivalent to the Hurst exponent H only for strietly self-affine data). See

Klinkenberg and Goodchild (1992), Xu et al. (1993) and Gallant et al. (1994) for

reviews and discussions on the various methods used to infer the fractal

dimension. But in general, neither spectra nor variograms can be used to infer

fractal dimensions in this way, except by making very ad hoc monofractal

hypotheses (for a discussion, see Lovejoy and Schertzer (1991».
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Direct estimates of the fractal dimension of topography and bathymetry

(with the dividers method for example) are surprisingly rare (see for example

Barenblatt et al. (1984), Aviles et al. (1987), Okubo and Aki (1987), Turcotte

(1989». Another direct procedure is to define sets of points (like iso-contours at

a certain altitude threshold) and then compute Df with a box-counting

algorithm. For monofractal fields (like fBm), Df is independent of the threshold

(Falconer (1990» but there is no reason that it should be the case in real

topography (Lovejoy and Schertzer (1990». An example of this is the case of a

mountainous region with a really high mountain (singularity) in the middle.

Calculating the box-counting dimension of the iso-contours at an altitude of

100 m will give a certain value, but the dimension of the iso-contours at an

altitude near the summit of the highest mountain will certainly give a lower

value. Lovejoy and Schertzer (1990) have shown with functional box-counting

that Df is indeed decreasing with increasing threshold, so it means that

monofractals are at best an approximation of topography near the mean. The

fractal geometry of sets seems to be insufficient to deal with aIl the variability

(the extreme events like mountains) of the Earth's topography, so new tools are

needed.

1.3 One step further: multiscaling and multifractals

There is only one fractal dimension (scaling exponent) associated with

monofractals., But, as pointed out in section 1.2, one fractal dimension is not

enough to describe topography: in fact, an infinity of fractal dimensions (one for

each threshold) are needed to characterize a surface completely (Grassberger

(1983), Hentschel and Procaccia (1983), Schertzer and Lovejoy (1983». It is more

appropriate to treat topography as a scale invariant field, which leads to the

concepts of mathematical measures and multifractal fields (Parisi and Frisch

(1985), Halsey et al. (1986), Schertzer and Lovejoy (1987), Meneveau and



5

5treenivasan (1987». In multifractals, the unique scaling exponent (simple

scaling) is replaced by a scaling function (multiscaling), wruch is infinitely more

rich (each type of "singularity" has its own scaling exponent). Multifractal

studies of topography that show that it is multiscaling in various regions of the

world and over various ranges in scales can be found in Lovejoy and 5chertzer

(1990), Lavallée et al. (1993), Weissel et al. (1994), Lovejoy et al. (1995), Pecknold

et al. (1997) and Tchiguirinskaia et al. (2000).

A recent article by Veneziano and Iacobellis (1999) points out that one of

the methods used to demonstrate multiscaling in Lavallée et al. (1993), Lovejoy

et al. (1995) and Pecknold et al. (1997) (Le. taking the absolute value of the

gradients before doing the trace moments analysis, see section 4.1.2) may

produce spurious multiscaling. But as was already known, the break only

occurs at the smallest scales and the method works weIl if this is taken into

account. 50, in the case of real topography with a large scale range, the problem

is really small, if not totally inexistant. In any case, functional box-counting

(Lovejoy and 5chertzer (1990» and generalized structure functions (Lavallé et

al. (1993), Weissel et al. (1994» also indicate multiscaling.

1.4 Physical models of topography

The natural topography of the Earth is very complex and its shape results

from different processes, like tectonic forces (faulting, folding, flexure) and

erosion, under the influence of gravity and other factors (Turcotte (1992),

Lambeck (1988) and the references therein). The "equations" describing all

topography are not known, but sorne models exist to explain certain features of

topography. For example, the large swell around seamount chains can be

explained by thermal expansion of the lithosphere caused by a heat source in
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the mantle (hotspot, plume) (see Lambeck (1988». Another important feature of

topography is the bathymetry around mid-ocean ridges. Those ridges are sources of

hot material coming from the mantle that create new oceanic crust (see for

example Lambeck (1988». The material injected at the ridge crest cools off,

contracts and moves away as part of the plate, creating the characteristic

topography that can be seen around those structures. In the framework of plate

tectonics, two models were proposed to calculate the height of the terrain a

certain distance away from the ridge: the thermal boundary layer model of

Turcotte and Oxburgh (1967) and the plate model of McKenzie (1967) (see

Parker and Oldenburg (1973) for a variant). The two models are similar (they

rely on the equation of heat transport and isostatic equilibrium), but differ in

their boundary conditions (Parsons and Sclater (1977». AIso, the thermal

boundary layer model prescribes a mechanism that relates the surface

observations to the flow in the mantle (Le. convective cells that inject material at

the ridge crest), which is not the case for the plate model. Both models predict

that the height Lili of the topography after a certain time t, that can be converted

into a distance l under the assumption of constant plate velocity, follows a

power law of the form2

(1.2)

with H=1/2 and <1> is a dimensional factor different for the two models. Those

factors are

(1.3)

2 In fact, this power law is not so clear in the plate model, but Parsons and 5clater (1977) have
shown that it is the case for times lesser than 70 M. years.
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for the thermal boundary layer model and the plate model, respectively. The

quantities are the velocity of the plate vo, the thermal diffusivity K, the

coefficient of thermal expansion a, the temperature difference between the

bottom and top plates ~T, the acceleration of gravity g, the density of the mantle

pm and the density difference between mantle and seawater ~p. Sc1ater et al.

(1971) have shown that the temporal dependence of equ. (1.2) is roughly

respected in various oceans up to approximately 70 M. years3
•

The previous models of mid-ocean ridges are deterministic and are

based on geomorphological equations. As can be seen from Turcotte and

Oxburgh (1967) and McKenzie (1967), the general approach is to start with a set

of highly nonlinear partial differential equations and simplify them (by making

various assumptions and approximations) so that they can be solved. Those

models are deterministic and do not predict the rugged aspect of sea-floor, Le.

they do not explain all the variability (Mareschal (1989». They make important

homogeneity hypotheses that reduce the problem to a few number of degrees of

freedom. For example, in the thermal boundary layer model, under the length

scale of a convective cell, everything in the mantle is considered to be "smooth".

To take into account the variability at aH scales, there exists other

approaches that are stochastic in nature. For example, Bell (1975) uses hills with

random sizes that are uniformly distributed over the bottom of the ocean to

model bathymetry (exc1uding mid-ocean ridges). The stochastic Kardar Parisi

Zhang (KPZ) equation, introduced to study growing and eroding surfaces, is

also used to model topography (see Dodds and Rothman (2000) for a

pedagogical introduction). The latter approach uses scaling as a basic principle

in addition to stochasticity. In fact, because the geomorphological equations

3 For times greater than 70 M. years, the relation becomes an exponential (Parsons and Sclater
(1977»).
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considered here are highly nonlinear, it is fruitful to consider one of the

symmetries of the problem (i.e. scale invariance), which has been shown to hold

in topography over various ranges (see section 1.1). Another stochastic

approach based on scale invariance is the fractional Brownian motion model of

topography of Mandelbrot (1975), that treats the height increments Lili as a

random field rather than a deterministic quantity. The basic equation of this

model can be written as

(1.4)

where Lilil=h(x+l~)-h(x),x is a vector, I~xl =1, <1> is a gaussian white noise with

no scale dependence and O<H<1. If H=1/2, equ. (1.2) and (1.4) are similar,

meaning that the latter can be thought as a stochastic version of the former

(Lovejoy et al. (1995)). The fBm model gives realistic simulations of topography

that reproduces its rugged aspect, but the problem is that it is a monofractal,

which makes it less suitable to model a highly variable field like topography

(see section 1.3).

A multifractal version of equ. (1.4) is simply obtained by replacing the

scale independent noise with a scale dependent multifractal noise <1>1 (Lovejoy et

al. (1995)). This multifractal noise, called a (topographie) flux, is the result of a

cascade process (see sections 2.2.1 and 2.3.3), which is a scale invariant random

multiplicative mechanism. In the spirit of Turcotte and Oxburgh (1967) and

their convective cells (with a characteristic size), the cascade means that there

are aIl sorts of cells with different sizes, giving rise to altitude power laws at aIl

scales. 50, the highly nonlinear but scaling dynamics of the mantle lead to

spatial fluctuations in the heat flux, and those fluctuations are converted into

altitude fluctuations via thermal expansion. With dimensional analysis, it is
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possible to find an expression for the topographie flux which is in agreement

with the simple physics above and the value H=1/2 (Lovejoy et al. (1995)):

(1.5)

where p is the mean density, QI is the multifractal heat flux and K is the mean

thermal diffusivity4. Equations (1.3) and (1.5) are not the same because they do

not incorporate exactly the same physics. Although strictly speaking equ. (1.5)

is for oceans, an analogous flux has been proposed for continents by Lovejoy et

al. (1995). Considering that the standard orographie models assume plate

collisions and isostatic equilibrium coupled with continental erosion, the most

basic dimensional quantities responsible for the altitude fluctuations are

(1.6)

where ~VI is the horizontal velocity field of the tectonic plates and gis the

acceleration of gravity (here again His assumed to be 1/2). Of course, those

dimensional analyses (equ. (1.5) and (1.6)) are very simple, but they give an

idea of the physics of the problem. The advantage is that they do not make

homogeneity hypotheses, i.e. they take aIl the variability into account.

4 Other combinations can be obtained by adding other dimensional quantities, but none are
more justified than the other. More knowlegde about the system would be necessary to
make a choice.
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1.5 Objectives of the present study

As pointed out in the previous sections, topography seems to be scaling

over various ranges of scales. Monofractals are not appropriate for studying

topography because of its high variability, and the neglect of variability at

smaller scales is also a fundamental weakness in the deterministic models of

Turcotte and Oxburgh (1967) and McKenzie (1967). 50 the framework that is

used in this study (described in chapter 2) is the multifractal framework based

on cascades of 5chertzer and Lovejoy (1987, 1991).

Because scale invariance (scaling) is fundamental in the cascade model,

one of the important point of this study is to verify if topography is (multi)

scaling over a wide range of scales by using different methods, following

Lavallée et al. (1993), Lovejoy et al. (1995) and Pecknold et al. (1997). In fact, the

range covered in this study goes from planetary scales down to 0.5 m, which is

4 orders of magnitude greater than the ones used in the previous studies. AIso,

the quantity of data (in terms of number of pixels) analyzed in this study is

between 2x106 and 2x108 (depending on the data set), which is far larger than

the previous multifractal analyses (where the number of pixels used is less than

106
).

This huge range of scales and this vast amount of data allow the

verification of three hypotheses. The first one concems the difference between

continents and oceans. Continents and oceans do not have the same geological

history, meaning that their topography are probably the result of different

processes. For example, the erosion on continents has been due to water (under

the influence of gravity), wind and glaciers, whether in the oceans it has

probably been due to marine currents. This means that there is probably a
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difference in the statistical parameters describing the topography of continents

and oceans. In the case of c10uds observed over continents and oceans, it is

mentioned in Lovejoy et al. (2001) that the only statistical parameter (describing

the texture of the c1ouds) different in the two groups is H; the universal

parameters ex and Cl are similar (see section 2.3.3 for details about those

parameters). 50, in the spirit of Lovejoy et al. (2001), it is expected that the only

difference between topography of continents and oceans is in their H parameter.

The second hypothesis is about the multiscaling and the "global"

properties of topography. More precisely, the large range of scales of this study

allows to verify if topography is multiscaling and if there is an underlying

mechanism that can describe topography at aIl scales. The specifie mechanism

discussed in this study is the cascade (see sections 1.4 and 2.2.1 for more

details). This is the simplest hypothesis that can be made about the Earth's

topography. It is important to point out that different geomorphological

processes (like crust generation and erosion) generate anisotropies, but these

anisotropies are not taken into account in this study. The analyses are defined

isotropically, which means that anisotropies are largely washed out and do not

enter in the present discussion of the global underlying mechanism of

topography.

An analysis of the multiscaling of topography to such a high resolution

(i.e. 0.5 m) can lead to problems. At this resolution, small structures like trees

are resolved and enter the analysis. Because they are not part of the "natural"

topography, those structures are expected to affect the statistics of topography

in sorne way. 50, the third hypothesis is that the presence of trees on a DEM can

break the (multi) scaling of topography at small scales.
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2. THEORY

2.1 Basic definitions

2.1.1 Intuitive idea of fractal dimension

The notion of fractal dimension (more usefully the codimension) is

important in the theory of multifractals. To clarify this concept, consider the

measurement of the length of a coastline with a ruler of length 1(Richardson

(1961». It takes a certain number of rulers N(l) to cover all the coastline. If the

length of the ruler is decreased, then N(l) increases, because with smaller rulers,

it is possible to catch more details. Richardson empirically found that the

number of rulers needed to cover the coastline follows a power law of the form

(2.1)

where Df is an exponent that does not vary with 1. Of course, this exponent is

invariant only over a certain range of 1: for llarger than the coastline, it will take

only a "fraction" of a ruler to cover it and for 1smaller than the smallest

structure of the coastline (say a grain of sand, which is sorne sort of characterisic

length), than no more details will be added by taking smaller rulers.

Mandelbrot (1967) interpreted this exponent as the fractal dimension of the

coastline. Except for smooth curves, Df is usually fractional, hence the name

"fractal". AIso, because equ. (2.1) is a power law, the length of the coastline is

scaling, where the fractal dimension Df is a scale invariant exponent. In fact, the

fractal dimension is just a special case of the more general class of scale

invariant exponents.
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2.1.2 The statistical codimension as a scaling exponent

The definition of the geometrical codimension of a set A is Cg(A) = D­

Df(A) where Df(A) is the fractal dimension of the set A and D is the dimension

of the embedding space E. By definition O<Cg(A)<D, so Cg(A) is in fact bounded

because it is defined on compact sets. In the multifractal formalism used in fuis

study, one deaIs with statistics rather than geometry, so it is important to extend

the definition of geometrical codimension and give it in statistical terms.

To see how to define the statisitical codimension, let's start with the

probability that a set A is intersected by balls of diameter 1. Because a

probability can be interpreted as a frequency, then it is equal to the number of

balls intersecting A divided by the number of balls intersecting E:

Because this equation is just like counting a certain number of events with a

certain "ruler" (ball) of size l, then it is similar to equ. (2.1), so we can write:

-D (A)
Pr(B nA)~_l_f_={.(A)

1 rD

(2.2)

(2.3)

The geometrical codimension is recovered in fuis way. But it is even more

useful to define the statistical codimension with equ. (2.3) (removing the

subscript g), or by saying that it is the scaling exponent of the measure of the

fraction of the space occupied by the set A. Define in fuis way, it can be applied

to random sets. Also, it doesn't have to be define on compact sets: E can be an

infinite probability space. In practice, for example, when studying a two
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dimensional topographie image, each pixel can be considered as the result of

sorne random process, and by adding images, we add more pixels and we

increase the portion of probability space that is explored. This allows the

possibility of studying extreme events (such as very high mountains) that are

almost surely not present on one sample, but will almost surely be present

given enough samples.

2.2 Multiplicative processes and multifractals

2.2.1 Cascades and scale invariance

The phenomenologieal model behind the multifractal formalism used in

this study cornes from turbulence and his represented by a cascade. It was

introduced to "explain" the intermittency of turbulence, i.e. the possibly large

statistical fluctuations (in space and time) of the energy flux on each realization.

The cascade model is motivated by the following properties that can be derived

from the Navier-Stokes equations:

1) There is a conserved quantity, the energy flux f:, that is conserved by the

nonlinear terms of the Navier-Stokes equations.

2) The Navier-Stokes equations are invariant under the change x ---t x/À, v---t

v /Às, t ---t t/À1-s, v ---t v /À1
+S, F ---t F/À2S-t, where À=L/I is the ratio of the largest

seale L of the system and the seale of observation land S is an arbitrary sealing

exponent, i.e. the equations are scale invariant. This means that, in principle,

the solutions can be also scale invariant. Note: In this change of variable, the

viscosity at one scale is different from the viscosity at another scale. Because the

viscosity is fixed in a fluid, there is a problem in the application of the result to
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real systems. It is one of the reason why this model is on1y expected to be

exactly valid in the limit where the Reynold number is infinite (or the viscosity

tends to zero). 50 the scaling should be respected in a certain range, called the

inertial range: between the inner scale linner (under which viscosity becomes

important) and the outer scale Louter (where the energy enters the system).

3) The Navier-Stokes equations are local in Fourier space, meaning that

structures (in turbulence, eddies) of a certain size interact most strongly with

structures of similar sizes. It can be proved that a system having a spectrum

that is a power law is local if the spectral exponent is 1<~<3.

The multiplicative cascade model is based on these three ingredients. In

our atrnosphere, the solar forcing injects energy at the planetary scale and

creates large eddies. Because of nonlinear interactions, those eddies break

down into smaller eddies (but with size not too different from the original

ones), and so on to the inner scale where the eddies are dissipated (typieally 1

mm). At each scale, the ensemble average of the energy flux is conserved and it

must be transmitted in a scale invariant way. In other words, it means that the

energy at the largest scale is modulated by nonlinear interactions as it goes

down the scales, giving a signal that looks very spiky at the smallest scale. In

this model, all the non1inear interactions are degrees of freedom (there are an

infinite number of them) represented by random variables with a certain

distribution and the problem is dealt with statistically. See Lovejoy et al. (2001)

for a direct confirmation of the cascade model in c1ouds.

As it will be shown in section 2.2.3, multifractals are the generic result of

cascades. The motivation behind cascades cornes from turbulence, but like

thermodynamics, which holds independently of its microscopie counterpart (i.e.

statistical mechanics), it can be applied to other systems (inc1uding topography)
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if the fundamental assumption of scale invariance is respected5• This is why

scale invariance is an important symmetry and is at the base of this study:

highly nonlinear problems with a very large number of degrees of freedom are

very hard to tackle, so if this symmetry is respected, then it is possible to exploit

it so that the problem becomes manageable. A word about "respected" is

important here. Because cascades are stochastic processes, the quantities

studied are statistical in nature and one must look at their statistical properties

(like their average for example). Scale invariance is a statistical symmetry

defined on an infinite ensemble, so that it is almost surely broken on a single

realization. It is important to look at the average of many realizations of a

process to observe good scaling.

2.2.2 The p-model

According to the previous section, the nonlinear interactions modulate

the flux from one scale to another. This modulation of the flux is modeled by

random multiplicative increments that multiply the flux. To visualize the

cascade (in 2-D, so that it is easy to compare it to a topographie surface), lef's

consider a surface of size L and an elementary scale ratio À(that is usually taken

to be 2 in the case of discrete cascades). After one step, the surface is divided

into squares of size Il =L/À1, and the flux <l> in each square is multiplied by a

different random multiplicative increments Jl. After n steps, the flux in each

square of size ln =L/Àn is the result of a multiplication of many random

increments. An important question here is to know what is the probability

distribution of the increments (i.e. how they modulate the flux). The simplest

5 From now on, the "flux" ~ will mean any conserved quantity that is cascaded down the
scales, which is the energy per unit mass E in the case of turbulence but can be different for
other systems. Also, "eddies" in turbulence will be replaced by the more general term
"structures".
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multiplicative process imaginable is the ~-model (see Monin and Yaglom (1975)

and the original references therein), which is a simple binary (dead or alive)

process defined as

Pr(p=?l.C)=?I.-c

Pr(p =0)=1-p-c (2.4)

where Pr(x) denotes the probability associated with a certain event x, J.l is a

multiplicative increment, c is the codimension of the space occupied by the

nonzero flux set and À =Lii is the ratio of scales. The multiplicative increments

are chosen so that the flux is conserved on average, i.e. <<1» = 1 or equivalently

<J.l> = 1. In words, equ. (2.4) means that the probability that a structure of scale

1remains "alive" depends on the fraction of the space (see section 2.1.2)

occupied by the "alive" structures. After n steps, the probabilities become

Pr( <Pn=(?l.nn=(?l.nrc

Pr( <Pn=0)= 1-(?I.nrc (2.5)

where <1>0 is taken to be 1 (without loss of generality). The resulting set of

nonzero flux is a random fractal with a unique fractal dimension. This model

gives sorne intuition about cascades but is too simplistic to completely

characterize topography, because it is characterized by only one fractal

dimension (see section 1.2 for more details).
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2.2.3 The a-mode}

The {X-model (Schertzer and Lovejoy (1983» was introduced to show that

the p-model was highly singular with respect to the generic cascade process. In

fact, it is the simplest perturbation of the latter: instead of having a dead / alive

binary process, it is a decrease/increase binary process where the probability

distribution of the multiplicative increments is

Pr(c/J=?l.l'l)=?1.-C

Pr(c/J=?l.l'2)= 1_?l.-c (2.6)

where YI >0 and Y2<0 are pure orders of singularity and, as before, the ensemble

average is conserved. It is easy to understand that after n steps, the succession

of decreases/increases leads to a complexification of the flux. In fact, it leads to

a whole hierarchy of singularities Yi having different values (it gives shades of

grey instead of a black and white flux as in the p-model). The cascade just

described is discrete, but it is possible to let the scale ratio tend to a continuous

limit (there are no a priori quantification rules, like in quantum mechanics),

giving rise to a continuum of singularities y. With this hypothesis and by taking

the limit À ---+00 (the small scale limit), the cascade defined by equ. (2.6) implies

(Schertzer and Lovejoy (1987, 1991»

(2.7)

where <!>Â. is the flux at scale L/À, À'Y is the threshold corresponding to the

singularity y and c(y) is a nonlinear convex function called the codimension

function. The proportionality sign inc1udes factors that vary slowly with À.
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Refering to equ. (2.3), equ. (2.7) means that the set defined by the condition <!>Â. ~

').,} has a (fractal) codimension given by c(y) (see Fig. 2.1). 50 the flux is

composed of a hierarchy of interwoven sets, one for each threshold, which have

different fractal codimensions: a multifracta1.

.4~

Set 2

/
- - - - - - -

- - -

\
--.: ~ Set 1

(LA)
x

FIG. 2.1. Illustration of the a-mode!. For different thresholds T1=Â.yl and T2=Â.r2 (with ''(2)''(1,

implying T2>T1), the corresponding sets (defined by ~À.>T) have different fractal dimensions
(with D f("(2)<Df("(I» or fractal codimensions (C("(2»C("(I»'
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2.3 Universal multifractals

2.3.1 The moment scaling function K(q)

In section 2.2.3, it was shown that c(y) is the scaling exponent of the

probability distribution of the flux values. In statistics, in it known that a

random variable can be specified by its probability distribution or by all its

statistical moments. 50, it can be shown (5chertzer and Lovejoy (1987, 1991))

that the flux (which is a random variable) can also be described (in the small

scale limit) by

(2.8)

where q is the order of the moment and K(q) is a nonlinear convex function

called the moment scaling function. If the flux is conserved (i.e. <<1>",>=1), then it

implies that K(1)=0 (K(O) is also equal to zero, trivially). Equations (2.7) and

(2.8) are completely equivalent, and c(y) and K(q) are related via a Legendre

transform:

K( q )=max (q y-c(y))
y

(2.9)

K(q) is the function that characterizes the scaling of the moments of the flux,

hence its name. There is a one-to-one correspondence between the ys and the

q's and this can be seen in the following way. The l.h.s of equ. (2.9) means that

we take the qth power of the flux (degraded at a certain resolution À) and then

average over all the flux. If we take a low q «0), all the large singularities (high

y) are smashed down, so the average is dominated by the small singularities
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(low y), which are more numerous (due to the convexity of c(y)). If we take a

large q (>0), then the difference between the low singularities and the high

singularities will be even more pronounced, so the few high singularities will

dominate the average. It means that the use of a certain value of q allows the

analysis of a certain type of singularity y.

2.3.2 Universality

The notion of universality is basic in physics. It is the property that says

that the parameters of the theoretical model of a certain phenomenon are not all

relevant: no matter what are the details of the model, the behavior of the system

will be the same. In physics, universality is mostly known in the context of the

renormalization group (see for example Wilson (1979)). Other examples of

universality are the Feigenbaum constants of period doubling (see Strogatz

(1994) for an intuitive introduction). He showed that those constants (which are

related to the rate of convergence at which there is period doubling in unimodal

maps) are universal, meaning that they don't depend on what is the exact form

of the map: the only important "detail" to consider is that the map must have a

quadratic maximum.

Other important examples of universality arise in the asymptotic

description of sums of random variables: the centrallimit theorem (see for

example Feller (1971)). In its most familiar form, it says that the sum of many

independent random variables having (possibly) different distributions with a

finite variance gives a random variable having a gaussian distribution. The

gaussian distribution is sorne sort of stable attractor: no matter what are the

"details", it necessarily gives a gaussian. More generally, if the finite variance

restriction is relaxed, then the resulting attractor is called a stable distribution
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(see for example 5amorodnitsky and Taqqu (1994) or Uchaikin and Zolotarev

(1999) for good treatments), which has the gaussian distribution as a special

case.

Returning to the problem of multifractals and the moment scaling

function K(q) needed to characterize them, the only constraint on this function is

that it must be convex. 50 it means that an infinite number of parameters could

be used to describe it, which is not really useful. But universality tells us that

there is a possibility that on1y a few of these parameters are relevant. 5chertzer

and Lovejoy (1987, 1991) showed that there is universality in multifractal

processes (see 5chertzer and Lovejoy (1997» for the debate about this issue).

The point is that multifractals are the generic result of multiplicative cascade

processes: each section of the flux is the result of a multiplication of many

random increments. This process can be turned into an additive process by

taking the logarithm of the random increments: this gives a sum of random

variables, and all the question is about the stability of this sumo 5chertzer and

Lovejoy (1987, 1991) showed that if the process is continuous in scales and if the

probability distribution of the multiplicative increments is logstable (with

maximum asymmetry), then the universal functional form for K(q) is given by

Cl
K(q)=-(q"'-q)

oc-l
(2.10)

where a is the index of stability related to the distribution (0::::;;a::::;;2» and Cl is

the codimension of the singularity that contributes the most to the mean of the

process. The case a=O corresponds to the ~-model of section 2.2.2 and the case

a=2 corresponds to the lognormal model (see Monin and Yaglom (1975) and the

original references therein), so a can be seen as a degree of deviation from
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monofractality. AIso, when C1=O, it means that the set corresponding to q=1 is

space filling, so it can be interpreted as a deviation from homogeneity.

2.3.3 Fractionally Integrated Flux model

In turbulence, the energy flux E is not directly observable, it is the

velocity shear that is measured. If we consider an eddy (structure) of size I=L/À

and suppose that there is no intermittency (there are no fluctuations in the

energy flux), then the difference in velocity (shear) between opposite ends of the

eddy follows Kolmogorov's law

(2.11)

where H=1/3 and a=1/3 (by dimensional analysis). To take intermittency into

account (possible scale dependent large fluctuations in E), then the constant Ein

equ. (2.11) must be replaced by a multifractal energy flux that allows large

fluctuations. Then, the À-H term fractionally integrates the multifractal noise, i.e.

makes some sort of smoothing. This fractional integration can be seen as a

power law filter of order H in Fourier space.

In section 2.2.1, it was mentioned that cascades are used to model

turbulence, but that if scale invariance is respected, then the model can be

applied to other systems as weIl. So the model used in this study to characterize

topography is based on an equation similar to equ. (2.11):

(2.12)

where LlliÀ=h(x+À-l~X)-h(x)(with L=I~xl) are the height fluctuations a distance
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I=L/À apart, <I>Â. is a multifractal "topographie" flux (resulting from a

multiplicative cascade process) and H is the Hurst exponent. This model is

called the Fractionally Integrated Flux (FIF) model. See section 1.4 for the

physics of the problem and for a discussion of H=1/2 in topography.

We can look at the moments of equ. (2.12) by taking the qth power on

both sides and then taking the ensemble average, which leads to

<1.1 hl)=l\-qH l\ K(q) (2.13)

where <<I>Â.q>=ÀK
(q) (see equation (2.8)) and K(q) is given by equ. (2.10). H can be

seen as the degree of non-conservation of the mean of the process with scale. If,

in equ. (2.12), <I>Â. is a scale independent noise (like gaussian white noise in the

case of fBm) instead of a scale dependent multifractal noise, then no ÀK(q) would

appear in equ. (2.13). This means that in the case of simple scaling K(q)=O, or

that multiscaling implies a nonzero K(q).
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3. DATA SETS

In this study, different Digital Elevation Models (DEMs) that span

various ranges of scales are analyzed. DEMs are gridded representations of

topography. They are constructed via various techniques like stereo­

photography and in situ measurements of altitude, put together (often using

interpolation schemes) and then gridded so as to obtain a height pixel field.

They are essentially characterized by two numbers: their horizontal resolution

and their vertical resolution.

Because of their method of construction and the gridding, DEMs can

have sorne problems (see Weissel et al. (1994) for an example), one of them

being the insufficient dynamical range. The dynamical range is related to the

number of different values the height measures can take (it is related to the

vertical quantization). For example, measuring the height of a mountain with a

ruler of 1 km does not give many different values (maybe 2 or 3, depending on

the mountain): there are much more variations if it is a 1 m ruler. 50 an

insufficient dynamical range means that there is frequently not much pixel to

pixel variability in the height measurements, the surface is not well represented

and looks too smooth. Another problem can be the oversampling, i.e.

measurements of altitude in sorne regions are probably more distant than the

resolution of the DEM, but to have a regular grid of constant resolution, they

interpolate between them, an operation that artificially smooths the DEM.
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Four different DEMs are analyzed in this study (see table 3.1 for their

individual characteristics):

1) ETOP05: Global topography and bathymetry (see Fig. 3.1) (Data

Announcement 88-MGG-02, Digital relief of the Surface of the Earth.

NOAA, National Geophysical Data Center, Boulder, Colorado, 1988)

2) GTOP030: Global continental topography (see Fig. 3.2 for the U.S.

part) (http://edcdaac.usgs.gov/ gtopo30/README.html).

3) United States: DEM of the United States (U. S. Geological Survey)

4) Lower Saxony: DEM of a 3 km x 3 km section of Lower Saxony (see

Fig. 3.3) that was constructed with the help of the HRSC-A (High

Resolution Stereo Camera Airborn) (Wewel et al. (2000)).

Data sets Horizontal Vertical Numberof Length of
resolution quantization transects transects (km)

analyzed

ETOP05 5' (Rl10 km) lm 500 40000

GTOP030 30" (Rl1 km) lm 1225 4096

US. 90m lm 2500 5898

Lower Saxony 50 cm 10 cm 3000 (or 500*) 3 (or 0.512*)
* Treeless part

TABLE 3.1. Table showing the different characteristics of the DEMs studied. Also shown are
the number of transects (with their length) analyzed in each DEM (see sections 4.2.2 and 4.2.3).
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FIG. 3.1. ETOP05 data set. The white and black squares indicate the areas studied in section
4.2.1. The white rectangle indicates the area studied in section 4.2.2 (500 transects of 40000 km).

FIG. 3.2. U.S. part of the GTOP030 data set. The black rectangle indicates the area studied on
GTOP030 (1225 transects of 4096 km) and the white rectangle indicates the area studied on the
U.S. DEM (2500 transects of 5898 km).
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FIG. 3.3. Lower Saxony DEM. The large white rectangle that covers half of the DEM indicates
the area studied for the global analysis (3000 transects of 3000 m). The small white rectangle is
the treeless section analyzed with spectra, trace moments and structure functions. The white
lines represent the 6 individual transects studied with structure functions.
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4.METHOD

4.1 Analysis tools

4.1.1 Power spectra

The power spectrum is a tool widely used to verify if a given

phenomenon is scaling. It is the modulus squared of the usual Fourier

transform, integrated over all angles in Fourier space and ensemble averaged.

As mentioned in section 1.1, a certain phenomenon is said to be scaling if it can

be represented by power laws in real space. With the help of the tauberian

theorem (Feller (1971), Uchaikin and Zolotarev (1999», it can be shown that

power laws in real space give rise to power laws in Fourier space (and vice­

versa). So, the (isotropie) power spectrum of a scaling process is given by

(4.1)

where k is the wavenumber and B=1+2H+K(2) is the spectral exponent. It can

be seen that the monofractal (simple scaling) result is recovered if K(q)=O. The

power spectrum being a second order moment analysis, it does not give

information about the other moments, so this method cannot be used to

distinguish between simple and multiscaling.

4.1.2 Trace moments

The trace moments analysis technique is based on equ. (2.8), i.e. on the

analysis of the moments of the flux at resolution À. The procedure is simple and

goes as follows. First, the flux </>'" is normalized with the ensemble average <</>",>
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of all the samples available. Then spatial averaging is done over sets (lines or

squares) of size I=L/À, the qth power is taken and the average over all datas

available is taken: this gives the moments of the normalized flux for a given

value of q. This procedure is done for different values of q, and multiscaling is

verified if it follows equ. (2.8). The simple scaling case is when K(q)=O,

implying that the moments of the normalized flux are equal to 1 for all q.

Contrary to the methods described in sections 4.1.1 and 4.1.3, which

work directly on the altitude h, trace moments work on the flux <1>, which is not

directlyobservable. To obtain <1> from the height increments, a fractional

differentiation of order H or greater must be done (Schertzer and Lovejoy (1987,

1991»: this has the effect of removing the À-H term in equ. (2.12). A good

numerical approximation to this fractional differentiation is to take the modulus

of the finite difference gradient (Lavallée et al. (1993», which corresponds to a

differentiation of order H=l (which is sufficient, because, according to

dimensional analysis, H=1/2 in topography).

A technical point here: because of the insufficient dynamical range of the

DEMs (see chapter 3), many spurious zero gradients are present in the analyzed

transects. Those zero gradients particularly affect the low q statistics, so they

are eliminated by doing a fractional integration of order H=O.l (a filtering in

Fourier space with a power law), which is a scale invariant smoothing (the

result is a 64 fit field).
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4.1.3 Structure functions

The qth order structure function (called the variogram when q=2) is

defined as

(4.2)

where ç(q)=qH-K(q). It is designed to study the absolute finite difference

gradients of the altitude h and is in fact just equ. (2.13). This method could in

principle be used to detect multiscaling behaviour because q can be varied (see

Lavallée et al. (1993) and Weissel et al. (1994», but it is not used extensively in

this study. In fact it is used only to see more clearly what happens to the scaling

when there are trees on the surface and to have a better interpretation of the

results (see section 5.3).

4.2 Regions analyzed on each DEM

4.2.1 Continents vs oceans analysis

The comparison between continents and oceans is done via power

spectra and trace moments on ETOP05. Three squares of 5120x5120 km are

analyzed in the case of continents and five in the case of oceans (shown on Fig.

3.1). The ensemble average is done over the three (five) squares of continents

(oceans) for the two methods of analysis and the results are compared.
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4.2.2 Global topography analysis

One dimensional topographie transects are taken from the four DEMs

and analyzed with power spectra and trace moments. The transects are chosen

so as to maximize the range of scales analyzed. The regions analyzed are shown

on Fig. 3.1 (for ETOPOS), 3.2 (for GTOP030 and the u.s. DEM) and 3.3 (for the

Lower 5axony DEM). See table 3.1 for details. In the case of ETOPOS, only

transects that are in a narrow strip around the equator are used. This is to have

an approximately constant resolution at each latitude. To overcome this

problem, the analyses on ETOPOS could have been done with spherieal

harmonies, but it would not have been possible to compare with the results of

otherDEMs.

An important point here: scale invariance is a statistical symmetry (see

section 2.2.1). The theory asks that the averages should be on an infinity of

independent samples (ensemble average). But all the transects analyzed in this

study are correlated because they come from the same region and from the

same Earth: in theory, in would take many independent planet Earth and study

the same region on each one, something that is of course not possible! 50 it is

important to keep in mind the the averages in this study are only

approximations of the required ensemble averages.

4.2.3 Trees analysis

For the power spectra and trace moments analysis methods, two regions

of the Lower 5axony DEM are analyzed. The first one is the same as the one in

section 4.2.2 and contains trees. The second one is chosen so as to contain no

trees and is composed of SOO transects that are S12 m long (shown on Fig. 3.3).

The criterion for choosing this particular region is that it must not contain



irregular white patches (that are believed to be trees). For the structure

functions analysis, the same 500 treeless transects above and 6 individual

transects that are 3 km long (shown in Fig. 3.3) are used. The criterion for

choosing the 6 individual transects is that they must contain sorne irregular

white patches.

33
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5. RESULTS AND DISCUSSION

5.1 Continents vs oceans results

A comparison between the spectra from continents and oceans is shown

on Fig. 5.1. According to equ. (4.1), a log/log plot of the spectral energy E(k)

versus the wavenumber k should give a straight line if the process is scaling.

Those spectra are straight over 2 orders of magnitude, implying that they are

scaling over that range. There is a break in the scaling at approximately 50 km

5

9

Continents
Oceans

-6.5 -6 -5.5 -5 -4.5 -4

loglQk (cycles/m)

FIG. 5.1. Log/log plot of the spectral energy versus the wavenumber for continents and oceans.
The slopes are 2.09 for continents and 1.63 for oceans.
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that is probably due to oversampling, because oversampling tends to artificially

smooth the datas, which results in a faster spectral fall-off. An important thing

to note is that there is a systematic difference in the slope of the spectra:

~continents=2.09 (in agreement with the value ~~2 of Vening-Meinesz (1951)) and

~oceans=1.63 (in agreement with ~~1.6-1.8of Berkson and Matthews, but less

than the values of Bell (1975) (~~2), Fox and Hayes (1985) (~~2.5) and Gibert

and Courtillot (1987) (~~2.1-2.3)). The differences between the values of ~ can

probably be explained by the fact that the slope of the spectra depends critically

on the amount of data and the range of scales analyzed. In the studies

mentioned above, the analyses are on single short transects, meaning that the

spectral exponents are not necessarily well estimated and probably explains

sorne of the variability between the results.

The trace moments of the continents and the oceans are shown in Fig.5.2

a,b. According to equ. (2.8), a log/log plot of the normalized moments of the

flux (at a certain resolution À) versus À should give straight lines if the process is

multiscaling. As can be seen on Fig.5.2, the trace moments are straight but seem

to have the same problem as the spectra: because of oversampling, the trace

moments become flat at large À. But they are nonetheless an indication that

topography is multiscaling (the multiscaling will be showed with more

precision in section 5.2).

With the slopes of the trace moments, it is possible to find the K(q)

functions for continents and oceans and estimate their universal parameters a

and Ct. Figure 5.3 shows the resulting K(q)'s. Equation (2.10) is used to fit

those curves, which gives a continents=1.77 (±O.03), Clcontinents=O.12 (±O.OOl) and

aoceans=1.83 (±O.03), Cloceans=O.15 (±O.OOl). The errors in parenthesis are solely

due to the fitting algorithm used and should be taken only as an indication
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FIG. 5.2. Log/log plot of the normalize trace moments versus the scale ratio Â=L/I for
continents and oceans (with L=5120 km). The values of q of each trace moments are, from top
to bottom, 2.18,1.77,1.44,1.17,0.04,0.12 and 0.51. a) Continents b) Oceans.
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FIG. 5.3. Plot of the moment scaling function K(q) as a function of the moment q (circ1es
correspond to continents and squares to oceans).

(they are only lower bounds). In fact the errors are probably larger than that

because each of the point of the K(q) function depends on the slope of the

corresponding trace moment: the value of this slope depends on the range of

fitting and has also an error due to the fitting algorithm. There is also the error

attached to the ca1culation of the trace moments that must be taken into account,

but there are no satisfying errer analysis in this formalism yet, so it is difficult to

ca1culate a precise value for the error. With this in mind, it is possible to say

that ex and Cl are probably similar for continents and oceans.
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With those values of ex and Cl, the values of H for continents and oceans

can be ca1culated (see equ. (4.1) and following discussion), which gives

Hc=0.66±0.01 and Ho=0.46±0.01 (here the errors are due to the fitting algorithm

when evaluating ~). The H value for oceans is quite near the theoretical value

of H=1/2 (see section 1.4), but the H value for continents is systematically

larger. 50, those results show that the statistics of the flux <1> are the same for

continents and oceans, but the height statistics (see equ. (2.12) and (2.13» are

different because H is different. In fact, a higher value of H for continents

means that continental topography is smoother than the sea-floor. It also

means that the simple dimensional analysis (with H=1/2) proposed by Lovejoy

et al. (1995) for continents does not seem to hold.

There is also another possibility regarding the interpretation of the

spectra in Fig. 5.1. The difference in slope between continents and oceans may

be due to the fact that the multifractal is conditioned in the case of the

continents analysis. If the topography can be thought as a unique multifractal

process, then the singularities of continental topography are larger than the ones

of the sea-floor (if the reference is the center of the Earth for example). 50 it

means that an analysis on continents is "conditioned" in the sense that the

statistics of only the "rare" (large) singularities are taken into account. It is

shown in Lovejoy et al. (2000) (in a particular case) that this type of conditioning

can lead to a change in the value of ~, but this result is hard to obtain and not

easily generalizable.

5.2 Global topography results

Figure 5.4 shows the results of the power spectrum analysis over the four

DEMs. The log/log plots on Fig. 5.4 gives straight lines over 6 orders of



39

magnitude, meaning that the scaling is weIl respected from planetary scales

down ta a few meters. In fact, at 40 m, there is a little bump that breaks the

scaling in the Lower Saxony spectrum, which can probably be explained by the

presence of trees on the DEM. See section 5.3 for more details.
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Fig. 5.4. Log/log plot of the spectral energy versus the wavenumber for the four DEMs. From

right to left: Lower Saxony (with trees, top), Lower Saxony (without trees, bottom), V.S. (in

grey), GTOP030 and ETOPOS. A reference line of slope -2.10 is on the graph to show the

overall slope of the spectra. The little arrows show the frequency at which the spectra are not

well estimated, according to equ. (5.1) (for ETOPOS and GTOP030, it is well estimated on the

whole range).
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It is not clear what happens to the scaling of the spectra at high

wavenumbers because of the insufficient dynamical range of the transects,

which leads to a poor estimate of the spectrum for high wavenumbers. It is

possible to find the wavenumber kbreak at which the spectrum starts to be badly

estimated with the following argument. Let Lllimax=hmaChmin be the maximum

range of altitude on the data set and Lllimin the smallest possible difference on the

data set (which is equal to the height of one unit of vertical quantization). The

ratio Lllimax / Lllimin gives the dynamical range of the data set. Because the

spectrum of a scaling process is a decreasing power law, the amplitude of the

kmin=l sinusoid is proportional to Lllimax (or E(kmin)&R:lLllima/) and the lowest

possible amplitude (which is proportional to Lllimin) corresponds to the kbreak

sinusoid (or E(kbreak)&R:lLllimin2), hence

2

k R:l(h -h )Jl
break max min

(5.1)

where ~ is the spectral exponent and hmax/min are the maximum/minimum

heights on the transects (expressed in digital counts). The wavenumbers at

which the spectra start to be badly estimated are shown with arrows on Fig. 5.4

(there are no arrow for ETOP05 and GTOP030 because its spectrum is weIl

estimated for aIl k values). This approximation works particularly weIl for the

U.s. spectrum, where it explains the drop in the high frequencies. In fact, this

problem of insufficient dynamical range, which is related to the problem of

insufficient statistics and the statistical nature of scale invariancé, can probably

explain

6 If more and more realizations are analyzed, the probability of having higher /lower altitudes
increases, so it increases the dynamical range and the chance to observe good scaling over
that range.
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sorne scale breaks seen in the litterature that are interpreted as characteristic

scales of the process. There is also the problem of oversampling (see section 5.1)

that can lead to a faU-off of the spectra at high wavenumber.

Another point worth mentioning is the fact that aU the spectra faU "on the

same line" (it is important to note that they are aU in the same units and are not

shifted in the vertical), their range of scaling is at least 3 orders of magnitude

each and their ranges overlap. The overlap is important, because it shows that

the high wavenumber faU-offs or flattening are artefacts of the particular data

set. This result is quite different from that of Sayles and Thomas (1978) who

argued that surfaces (natural and man made) exhibit scaling over 8 orders of

magnitude. In their case, the range of scaling of their individual data sets was

very limited (they used 23 data sets to coyer their 8 orders of magnitude) and

the shifts in spectral amplitude were more or less arbitrary (Berry and Hannay

(1978)). On Fig. 5.4, only the Lower Saxony spectrum does not foUow the

overaUline, but this is probably due to trees (see section 5.3 for details).

The spectra of Fig. 5.4 come from continents (except the one of ETOP05,

which is a continents/oceans mix). To calculate the theoretical spectral

exponent predicted by universal multifractals, one must use the H value of the

continents (Hcontinents=0.66) and the multifractal correction K(2) (calculated with

the global values of a and Cl found with the trace moments (see below)), which

gives P=1+2Hc-K(2)=2.10. A reference line of slope -2.10 is shown on Fig. 5.4 to

show that the overall slope is close to -2 (in agreement with Vening Meinesz

(1951)), but is also close to the one predicted by universal multifractals.
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The trace moments analysis was done on the four DEMs with 7 values of

q. Log/log plots of the normalized moments versus À are shown on Fig. 5.5 a­

d. Straight lines are obained on aH the DEMs, meaning that equ. (2.8) is obeyed.

The slopes of the straight lines are equal to K(q), and the fact that the slopes are

different for different values of q implies that K(q):;éO, so topography is not

simple scaling. The point at which aH the trace moments converge corresponds

to the "effective" outer scale of the cascade. It corresponds to the only non

random value, i.e. «l>lq>=l for aH q at I=Leffective, which is where the constant

input flux enters the cascade. Concretely, this means that in the study of a

particular DEM with a certain limited range of scales, the variability that is

observed can be the result of a larger cascade that starts at Leffective' This effective

outer scale can only be estimated by using an infinite ensemble of realizations of

the process. But given only one realization (which is the case in this study,

because there is only one Earth), Leffective corresponds generaHy to the outer scale

of the DEM studied or it can be at smaHer. It is interesting to note that the

effective outer scale of ETOP05 is R:l20000 km (see Fig. 5.5 a) and not 40000 km

(which is the outer scale of the DEM). This means that there is a cascade

starting at approximately 20000 km, which is the size of a great circle (the

maximum possible size on Earth). In the case of GTOP030 and the D.S. DEM,

the effective outer scale is larger than the DEM outer scale, which is surprising

because there is only one realization. This may be due to the fact that the

variability is very high (almost half of the region covered in the analyses

contains mountains, see Fig. 4.2) or that the fitted lines on Fig. 5.5 b,c are not

good because of the flattening of the trace moments at high Â (which can be the

result of oversampling, as discussed in section 5.5).
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DEMs. The values of q of each trace moments are, from top to bottom, 2.18, 1.77, 1.44, 1.17,
0.04,0.12 and 0.51. a) ETOP05, LETOPos=40000 km b) GTOP030, LcrOP030=4096 km.
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To see more clearly the exact form of K(q), plots of the slopes of the trace

moments for each DEM as a function of q are shown on Fig. 5.6 and 5.7. Those

curves are nonlinear, showing that topography is not simple scaling but

multiscaling. Another interesting point is the linear behaviour of the K(q)

curves. This linear behaviour is the signature of a second order multifractal

phase transition (Schertzer and Lovejoy (1992)). This phase transition is caused

by the fact that, on a given realization, there is an maximum singularity Ys

(larger singularities are almost surely not present on the realization). This

implies that for q>qs, K(q) becomes linear:

K(q)=ys(q-q)+ K(q) forq>qs (5.2)

The estimated values of qs (obtained from Fig. 5.6 by measuring at which q the

function K(q) becomes linear) are approximately 3.5 for all the data sets. This

means that, for q>qs, the function K(q) becomes less interesting, because the

slope is given by 'Ys, which is a random variable that depends on the realization

of the process.

The K(q) curves of Fig. 5.6 and 5.7 are fitted with equ. (2.10) in the range

Ü.:::;q.:::;l (to be sure to avoid any pollution from the linear behaviour). The

values obtained for the parameters can be seen in Table 5.1. These results can

be compared to other studies on topography (see Table 5.1). Even if those

analyses are on different parts of the world and are on different ranges of scales,

the parameters obtained are not too different from the ones of this study. Of

course, it is important to consider that ex and Cl are statistical in nature, and that

there are a lot less statistics (in terms of number of pixels studied) in the

previous studies then in the present one, so it is normal that there is sorne

variability between them.
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FIG. 5.7. Zoom of Fig.S.6. The dotted Une corresponds ta the "mean" K(q) with parameters
a=1.79 and C=O.12.
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Data sets Horizontal Regions ex. Cl References
resolution analyzed

(in pixels)

ETOP05 R:ll0 km 500x4000 1.72 0.14 ---

GTOP030 R:llkm 1225x4096 1.77 0.08 ---

V.S. 90m 2500x65536 1.51 0.09 ---

Lower 50 cm 3000x6000 2.00 0.17 ---
Saxony

Deadman's SOm 512x512 1.9 0.045 Lavallée et
Butte al. (1993)

French lkm 512x512 1.7 0.075 Lavallée et
topography al. (1993)

V.s. 90m 20x 1.70 0.07 Pecknold et
512x512 al. (1997)

TABLE 5.1. Universal parameters obtained for the four datasets analyzed. Also shown are the
parameters obtained in other studies.

The similarity between the ex. and Cl parameters between aIl these studies

suggests the introduction of a "global" K(q) function that would describe the

statistics of the Earth's topography at aIl scales. Even if the trace moments are

on continents and oceans (in the case of ETOP05), it is reasonable to make the

hypothesis that continents and oceans are described by the same K(q), because

the statistics of their fluxes <1> are similar (Le. they have the same ex. and Cl

parameters, see section 5.1). An approximation of this global K(q) would be to

take the average of the parameters obtained in this study (ex.=1.79±0.18 and

CI =0.12±0.04, where the uncertainties are equal to one standard deviation) and

plot the corresponding K(q) (dotted line on Fig. 5.7). One way to test if the
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hypothesis of the global K(q) is plausible is by checking if there is a cascade

going "uninterrupted" from planetary scales down to a certain smaIler scale.

This can be done with the help of the trace moments of the four DEMs (Fig. 5.5

a-d) and the global K(q). The goal of this test is to show that aIl the trace

moments of the four DEMs can be though as a single trace moment representing

the cascade at aIl scales. Concretely this means that, if there is indeed a global

cascade, then the trace moments of the four DEMs could be shifted

appropriately (with the global K(q) as the only "tuning device") so that they aIl

"align themselves" for a specifie value of q, and should do so for aIl the different

values of q. Those shifts represent the missing variability due to the fact that

there is only one realization of the Earth, so it is necessary to statisticaIly take it

into account.

50 the question here is "What are the horizontal and vertical shifts and

how can they be calculated7" For the horizontal shifts, the first thing to consider

is the outer scale Lauter of the process. If the process is a cascade, then the scale at

which the cascade starts may be as large as the size of a great circle, which is

approximately 20000 km. This is justified because the effective outer scale on

Fig. 5.5 a (i.e. the converging point of aIl the trace moments) is approximately

20000 km. By fixing this outer scale, it is possible to calculate aIl the Â=Louter/l of

the DEMs (this corresponds to a shift on the horizontal axis). To justify the

vertical shifts, one must use the factorization property of cascades. If <<!>Àlq> is

the result of large scale variability from planetary scales to a scale Il that is Âl

times smaller (equal to the data set largest scale, 11=LDEM=Louter/Âl) and b is the

scale we are stuying on the data set (e.g. h=LoEM/ÂQ), then factorization implies

(5.2)



49

where <<!>uq> is the variability calculated from the DEM only (which is limited

because there is only one single realization) and <<!>;uuq> is the "true" variability

that takes into account the variability coming from the larger scales. On a

log/log plot, the multiplicative factor <<!>Âlq> (Le. the variability due to the larger

scales) of equ. (5.2) becomes a linear shift in the trace moments, corresponding

to a linear vertical shift on Fig.5.5 a-d7
• So the shifts S=IOglO<<!>;Uq> can be

estimated with

S=K(q)lOglO( Louter)
L DEM

(5.3)

where K(q) is the global moment scaling function, Louter=20000 km and

LDEM=LETOPOS, LGTOP030, Lus and LLowerSaxonyare the outer scales of each DEM.

Figure 5.8 shows the trace moments of three DEMs8 shifted according to equ.

(5.3). The vertical shifts are quite accurate if we take into account the fact they

depend only on one global K(q) (which itself depends on only two parameters).

This is an indication that the hypothesis of the global K(q) may be justified. The

lines obtained are not exactly straight, but are more like a small oscillation

around a straight line (this is more apparent for large values of q). Those

oscillations are probably due to anisotropies. In fact, the trace moment analysis

is defined isotropically in this study, Le. the resolution À is defined isotropically

by coarse graining over squares at aIl scales. For "weak" anisotropies, this

method is insensible (most of the anisotropies are washed out), but when they

are "stronger", their effect can be seen. It can be shown (Lovejoy, S. (2001),

7 This factor represents the variability of the samples analyzed. If, for example, an the 3 km x
3 km sections of the world (with a resolution of 50 cm) would have been analyzed, then the
variability would have been higher, so the vertical shift would have been larger and the
converging point would have been at a lower value of À.

8 The trace moments of GTOP030 are not on Fig. 5.8 because its scaling range is already
contained in the U.S. range, so it is unnecessary to overcrowd the graph.
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bottom, q=2.18, 1.77, 1.44, 1.17,0.04,0.12 and 0.51). The trace moments of the Lower Saxony
DEM with trees for q=1.77 and q=2.18 are on the graph (indicated by arrows).

personal communication) that on a multifractal simulation that is rotation

dominant (Le. the scaling is anisotropie and "rotates" as the scale is changed)

that the trace moments are oscillating around a straight line. This means that, as

a first approximation, isotropie methods are justified but a complete analysis of

anisotropies (that are generated by the different geomorphological processes

like crust generation and erosion) would require the use of Generalized 5cale

Invariance (5chertzer and Lovejoy (1987, 1991)). 50, by taking that into account,

it is possible to say that the trace moments obtained on Fig. 5.8 are oscillating
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around a straight line over 6 orders of magnitude (there is a break at 1":::140 m that

is discussed in section 5.3), meaning that the Earth's topography is multiscaling

over that range.

5.3 Trees results

When a DEM (like the Lower Saxony DEM) has a very high resolution,

small structures are resolved. Those structures can be natural (like trees) or

man made (like buildings, highways). Indeed, those structures pose non

trivial problems. For example, in the case of stereophotography, their

measurement is uncertain (it depends on what are the angles between the

cameras, and how the algorithm deals with this problem). AIso, if one wants to

remove ("smooth") them from the DEM, what are the hypothesis that must be

used. Those are important points that must be investigated before going further

in the analysis of multiscaling in the presence of structures like trees. The

irregular white patches that can be seen on Fig. 4.3 are believed to be trees.

A comparison between the spectra of a "normal" region (containing trees)

and a treeless region of the Lower Saxony DEM is on Fig. 5.4. There is a little

bump at approximately 40 m in the top spectrum that is not present in the lower

one, meaning that the trees are probably causing this bump. AIso, the top

spectrum does not follow the "overall" spectrum (it is shifted vertically with

respect to the others), which is not the case with the treeless spectrum. This can

be explained by the fact that trees are not a part of natural topography, they are

an addition to the relief, so they add spectral energy to the spectrum, which

results in a vertical shift. With this new treeless spectrum, one could also be

tempted to say that the scaling is respected down to 1 m, but this result should

not be taken too literally: it could be an artefact of the particular area chosen for
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the analysis. In fact, it is shown with structure functions (see below) that the

treeless region is too smooth, it is almost not a fractal at all.

The same two regions are analyzed with trace moments. Figure 5.9 (see

also Fig. 5.8) shows the comparison between the trace moments of the "normal"

and the treeless regions (the vertical shifts are ca1culated in the same manner as

in section 5.2). It is c1ear from this graph that multiscaling is broken at around

40 m (dotted line). For low q values, the break is less apparent, but for larger q

values, the break is evident. This means that, for "small" singularities, the
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FIG. 5.9. Log/log plot of the normalize trace moments versus the scale ratio À=L/I for the
Lower Saxony DEM (L=3 km). Circ1es correspond to the treeless part and X to the part
containing trees. The values of q of each trace moments are, from top to bottom, 2.18, 1.77,
1.44, 1.17,0.04,0.12 and 0.51.
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multiscaling is not so bad, but for "large" singularities (like trees), something is

spoiling the statistics. This scale break disappears in the treeless trace moments,

an indication that the trees can affect the scaling in sorne way, but it is not really

clear if this difference is really due to the trees or only an artefact of the

particular area chosen for the analysis (same situation as for the spectrum).

To see if the treeless region is "pathological", the structure function (with

q=l) of the region is taken and the results are shown on Fig. 5.10. A reference

line of slope 1 is also on the graph. The structure function is not too far from the

reference line, meaning that S(l)=H+K(1)~l,implying that H~l. This is a limit
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FIG. 5.10. Log/log plot of the height increments versus horizontal increments for the treeless
part of the Lower Saxony DEM. The dotted line has a slope of 1.
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case because < 1Ah 1>""dx, which means that the surface may not be a fractal at

aIl, it is really smooth compared to the rest of the DEM. So the spectrum and

trace moments results obtained on the treeless region should not be taken as an

dear demonstration that the multiscaling goes down to the smallest scale

available (i.e. 0.5 m), because the treeless region is very smooth and may not be

a fractal (perhaps the region was deared and landscaped).

The structure functions (with q=2) of the 6 individual transects of the

Lower Saxony DEM indicated on Fig. 4.3 (those transects indude trees) are

shown on Fig. 5.11. There seems to be a break in the structure functions at

varying horizontal increments Llx (between approximately 30 m and 160 m),

depending on the transect studied. This suggest that it is not the characteristic

length in the horizontal that is fundamental. A doser look at Fig. 5.11 shows

that the breaks in the scaling seem to occur when < 1Ah 1>R:l9 m (dotted line on

Fig. 5.11). Of course this is not absolutely dear eut, but the two "regimes" seem

to be separated by a characteristic length in the vertical. This makes sense when

one looks at a typical transect of Lower Saxony (Fig. 5.12). The spikes on this

transect have a height of about 10 m (except the large one on the right), which

can be the typical height of a tree and is quite dose to the vertical characteristic

length found with the structure functions.

It is this characteristic length AhR:l9 in the vertical that imposes a

characteristic length Llx R:l40 in the horizontal and breaks the scaling in the

spectrum and the trace moments analyses. This can be readily understood with

the following argument. From Fig. 5.11, it is possible to find ç(2)=2H-K(2)R:l0.9

(for < 1Ah 1> > 9), which gives HR:l0.55 for the Lower Saxony DEM. With this

value of H, one finds that < 1Ahbreak 1> R:l (LlXbreak)H R:l 40H= 7.6 m, which is

approximately the typical height of a tree. This means that one must study
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horizontal increments~ that are large enough (in this case,~ > 40 m) so that

the height of the terrain (around the tree) his larger than the typical height of a

tree, which has the effect of drowning the statistics of the trees in those of

topography.

AH this leads to the conclusion that the presence of trees on the Lower

Saxony DEM explains the break in the multiscaling. This is in contradiction

with Dietler and Zhang (1992) who argue, without any supporting analysis, that

the statistics of aH sorts of natural and man-made structures (like trees,

buildings, highways, etc) are probably negligible. According to the above

results, this is not the case. These results can have important consequences for

future studies on multiscaling. In the cases where there are no such structures,

then the results can be an artefact of the particular area chosen for the analysis

(e.g. it is too smooth, because it is a region cleared or landscaped by humans). It

can also mean that, because a large part of the continents are covered with smaH

structures, the multiscaling at very smaH scales is masked by the statistics of

those structures and will be difficult to probe.



57

6. CONCLUSION

Beeause of the great spatial variability of topography over wide ranges of

seales, scaling is an indispensable tool for taekling the problem compared to the

conventional models that operate over a limited range of scales. By analyzing 4

large datasets over a wide range of seales, this study shows that the fluxes of

continents and oceans have the same statistical properties (i.e. the same

universal parameters a and Ct) but are different in their height statistics

(Hcontinents=0.66 and Hoceans=0.46). It also shows that the Earth's topography is

multiscaling from planetary scales down to (at least) 40 m. This multiscaling

implies that fractal geometry can at best be an acceptable approximation around

the mean (Fig. 5.6 and 5.7 show that the K(q) curves are nearly flat at q=l), but

becomes less and less precise for the extremes. In other words, topography is

not fractal but multifractal.

The trace moments of Fig. 5.8 show that topography can be the result of a

cascade going from 20000 km to (at least) 40 m. This can be infered by the fact

that, to within a good approximation, aU the statistics for weak and strong

gradients (low and high q's) over this scale range can be weU represented by a

unique K(q) function. This last assumption is supported by the fact that the

fluxes of continents and oceans have the same statistical properties. The

universal multifractal parametrization (equ. (2.10» seems to represent weU the

form of this global K(q) function with a=1.79 and C1=0.12. Together with H,

those three fundamental parameters gives a statistical characterization of

topography over (at least) 6 orders of magnitude.
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The break in the multiscaling at approximately 40 m is probably due to

trees. This can be explained by the fact that they indroduce a characteristic

length in the vertical that is approximately the height of a normal tree (R:i9 m)

which imposes a scale break in the horizontal at approximately 40 m.

It is important to point out that the analyses of topography in this study

are isotropie, meaning that anisotropies are largely washed out. But, at a certain

statisticallevel, a11 types of relief are more or less the same: it is the different

geomorphological processes (like crust generation and erosion) that generate the

anisotropy. This anisotropy can be quantified with the help of Generalized

Scale Invariance (Schertzer and Lovejoy (1987, 1991». So the method outlined

in this study, combined with Generalized Scale Invariance to take into account

anisotropy, opens promising new avenues toward a complete statistical

description of topography, and maybe surfaces elsewhere (where Schmittbuhl

et al. (1995), for example, has found evidences of multifractality in laboratory

crack surfaces).
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