ABSTRACT

This thesis is concerned with finite p-groups, in
particular, R-groups. Section 3 gives two definitions of
a p-group; their equivalence is proved when the group in
concern 1s of finite order, The existence of Sylow
p-subgroups of a finite group is proved., Some consequences
of this theorem are given, The properties of p-groups
are discussed, The Frattini subgroup of a p=group is
studied; this subgroup is shown to be cilosely related with
the Burnside's basis theorem, Section 7 shows how the
Burnside's basis theorem may be applied in obtaining a
limitation for the order of automorphism group Aut(G) of
‘a p=-group G. More theorems regarding the limitation for
the order of Aut(G) are obtained. The structure of
2=-groups is discussed. Immedimtely after this discussion,
the groups in concern are classified into Abelian and
non-Abelian using a method suggested by Burnside [1].
Other methods used for classification of 2-groups are
described., The relation between the orders of 2-groups and
their class numbers are discussed., In particular, the class
numbers of the dihedral, generalized quaternion, and semi=-
dihedral groups are obtained. The properties of elementary
Abelian 2-groups are given. The dihedral and quaternion

groups are compared,
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P-GROUPS, IN PARTICULAR, 2-GROUPS

1. Introductidn,

Lagrange's theorem states that in a finite group G
of order n, the order of every subgroup of G is a divisor
of n, On the other hand, there need not be a subgroup of
order m for every divisor m of n, For example,_the alternating
group 4), of degree L4 contains no subgroup of order 6
although 6 divides 12 which is the order of A, . However it
is true that when p is a prime divisor of n, then G contains
a subgroup of order p. This theorem was first observed by
Cauchy, It was extended later by the Norwegian mathematiciam
L. Sylow to that " G contains a subgroup H of order pm if
pm is the highest power of a prime p dividing n'", Such a
subgroup H is thus called a Sylow p-subgroup. Sylow
proved further that the number of Sylow p-subgroups is
= 1 (mod p), and that all Sylow p-subgroups are conjugate.
Combining the Sylow theorems with Lagrange's theorem, it
follows that every group must arise from those groups whose
orders are powers of prime numbers dividing the order of the
group. The study of groups of arbitrary orders is thus
shifted to those groups whose orders are powers of prime

numbers, also called prime=power groups or simply p=-groups.



The object of this thesis is to give an account om

p-groups with illustration on 2-groups. In studying these

p-groups more closely, it will be shown that 2-groups possess

more interesting properties than other classes of p=groups.

2o Notation.

(x, Ysoeoo l *> L

2(G) = 2 eseee
J
Jt
Sn
Ay
|G| cesee
$(a)
[G:H] ceene
(G,H]

For elements x and Yy

the group generated by X, ¥, eeo
operating under the relations =+,
the center of G .

the set of all integers.

the set of all integers Jj > Q.

the symmetric group of degree n.
the alternating group of degree n.
the number of elements in G , or the
order of G,

the Frattini subgroup of G.

the index of H in G.

the group generated by [a,b] such
that a ¢ Gand b € H,

of a group G,

[x,¥ ] ceees x-ly—lxy.

'x| ® 0 0 00

C1(x) ceens

the order of x.

the class of x.




c(x) eesss the centralizer of x.
R(x) e.... the normalizer of x.

Further notation is standard, (See Scott [1], p 471-474)

S Definition.

We start by giving two definitions of p-groups.
Early writers (Miller [1], P, Ball [1] , Burnside [1] )

defined p=groups as

Definition 1. A p-group is a group whose order is a
power of the prime p.

later writers (M. Hall [1], Scott [1] ) defined p-groups as

Definition 2. A p-group is a group all of whose

elements have orders a power of the prime p.

The main difference between these two definitions is
that in definition (1), the group in concern is clearly finite.
Whereas in definition (2), the group in concern may be either
finite or infinite. However, when the group is finite, the
two definitions of p-groups are equivalent, We proceed to

prove this,

Definition (1) = Definition (2).
Let G be a group of order pm, and let a be any

element of G. Then by Lagrange's theorem, |a| ] pm. Since




P is a prime, we must have lal = pr with r € m, Therefore

G is a p-group in the sense of definition (2).

Definition (2) = Definition (1).

Let |G| = n, and suppose that q # p is a prime
divisor of n, Then by Cauchy's theorem, G contains an element
x of order q. But this is a contradiction. Therefore
n = pm for some natural number m, and G is a p-group in the
sense of definition (1).

Q’E.D.

In this thesis, we shall confine our attention to

definition (1).

L, Sylow Theorems,

As we noted in the introduction, the discovery of Sylow
p-subgroups results in the study of p-groups. It is to be
expected then that many properties of p-groups are consequences
of the Sylow theorems. In this section, we shall prove these

theorems, and from these we shall draw some consequences,

Theorem 4,1l. (First Sylow theorem) If G is a group
of order prs, P and 8 need not be relatively prime, then G

contains a subgroup of order pr.

Proof, We prove by induction on | G |. The theorem




is trivial when 8 = 1., We may therefore assume that s> 1,

For a € G, we consider |Cl(a)| . If |Cl(a)! = 1 for all
a € G, then G 1is Abelian, Hence G contairs an element x
of order p (Ledermann [1] , p 126), and the group G/Ax)

is of order pr-ls. Therefore by inductive hypothesis, G/{(x)
contains a subgroup HK/(x) of order pr-l’ and by the lattice
theorem (Scott [1] , p 27), the corresponding subgroup H of

G is of order p . We may therefore assume that [Cl(a)| = h> 1
for at least one a of G. If (hy,p) = 1, then since

G =([cx(a)| INC(a) |, it follows that prlln(a)l « Therefore
by inductiwe hypothesis, N(a) contains a subgroup H of order
p'. In any other possibility for h,, we have p | hy for all

a € G for which |Cl(a)| = hy > 1. Then from the class
equation of G, p|lZ|. Therefore Z contains an element z of
order p. The group G/{z) is of order pr'la; 80 by the
induction assumption, it contains a subgroup K/z) of order
prbl, and the corresponding subgroup K of G is of order pr.
This completes the proof,

QoD
Two consequences of this theorem are

Corellary 4.2, If p" is the highest power of the
prime p dividing the order of G, then G contains a subgroup

of order pm.

Corollary L4.3. (Cauchy's theorem) "If G is a finite




group whose order is divisible by a prime p, then G contains

a subgroup of order p.

Theorem 4.4. (Second and third Sylow theorems) Let
G be a group of order pms, (p,8) = 1. Then the number of
Sylow p-subgroups is =1 (mod p) and is a divisor of s;

all Sylow p-subgroups are conjugate,

Proof. Let K and H be any Sylow p-subgrouvns of G.
We define an equivalence relation on Cl(K) as follows:
For a subgroup A € Cl(K), a subgroup B € C1(A) iff there

1

exists h € H such that B = h”~Ah. This is an equivalence

relation, First, A € C1(A) for all A € C1(K). Next if

B € CL(A) so that B = h™YAh, where h € H, Then A = hBh T,
and so A € C1(B). Pinally if B € C1(A) and A € C1(D), so
that B = hi'Ah;, and A = h3'Dh, for some hy, h, € H, Then
B = (hphy) " D(hph)) which implies that B € C1(D). The
equivalence classes under this equivalence relation consist
of subgroups which are conjugate under transformation by

elements of H. If A # H, then |C1(A)] = [H:Hn NA)] > 1.

Since H is a p-group, it follows that p||C1(A)| if A # H,

and obviously |CL(H)| = 1 if H € C1(K). Thus we have
O (mod p) if H ¢ C1(K),
|CL(K)| =
1 (mod p) if H € C1(K).

The case where H ¢ C1(K) cannot arise, since H = K shows

that |C1(K)| = 1 (mod p). Therefore H € C1(K) and the



number of Sylow p-subgroups is of the form 1 + kp, k €J} .
Now 1-+ kp *pm; on the other hand, 1 + kp |p's, hence
1+ kp ls. This completes the proof.

Q.E.D.

Corollary L4.5. Let S, be a Sylow p-subgroup of a
group G. Then SP is the only Sylow p-subgroup of G iff it
is normal in G.

Proof, Let Sé be any Sylow p-subgroup of G, Then

by the Sylow theorem, Sé = x-l

pr for some x € G, But since
Sp = x-lspx for all x € G, hence Sp= 85; i.e., Sp is unique,
Conversely, suppose that Sp is not normal in G, Then

Sp = x'lspx for some x € G, Now by the Sylow theorem,
x'lspx = Sé is a Sylow p=subgroup which is distinct from Sp.
Therefore Sp is not unique, a contradiction.

Qe.E.De

Two interesting theorems regarding a Sylow p-subgroup

and its normalizer are

Theorem 4.6, let Sp be a Sylow p-subgroup of a group
G, N(Sp) the normalizer of Sp, and let H be any subgroup of

G such that N(Sp) € H, Then H = N(H).

Proof. It suffices to show that N(H) € H. Suppose

that n € N(H) so that n"lHn = H. Since N(Sp) € H, and since

all Sylow p-subgroups are conjugate, n-lspn =p~t

1s,= Syhn~t, which implies that

Sph for

some h € H, Hence hn~




-1

hn € N(Sp) S H, Therefore n € H,

QonDo

Theorem 4.7, let G bYe a group of order pms, (p,s) =1,
and let H be a p-subgroup but not a Sylow pesubgroup of G,

Then H 1is a proper subgroup of its normalizer.

Proof, The theorem is obvious if p *ICI(H)I y since
then pm IIN(H)l , and so N(H) contains a Sylow p-subgroup Sp
with 'SPl > |H| « Therefore there exists an element X € Sp c

N(H) with x %

Hx =H and x ¢ H; i.e., H ¢ N(H). On the
other hand, if |C1(H)| = pk, k €J, then H transforms the
pk subgroups conjugate to H in systems of transitivity whose
degree are 1 or numbers divisible by p. Since H is conjugate
to itself, there are at least p subgroups conjugate to H which

are transformed into themselves by H, Therefore H < N(H).

Q.E.D.
As a consequence of this, we have

Corollary 4.8. Let G be a p=group of order pm,

and H a maximal subgroup of G, Then H is normal in G,

Proof, Since H 1is not a Sylow p-subgroup, H < N(H) € G
(Theorem 4.7)s But H is a maximal subgroup of G, Therefore
we must have N(H) = G and so H is normal in G,

QOEOD.

Purther properties of p-groups will be given in the

following section,.



5. Properties of p-Groups.

Notation: In this section, G will always stand for

a p-group.

Theorem 5.1, G contains at least one self-conjugate

element of order p.

Proof, Suppose that (G| = pm. Then from the class

equation of G, we have
" = iz + Z{ciilx esy,
where S is some subset of G, Since p |lCl(x)| for each x € S,
p IIZI » Therefore Z, and hence G contains a self-conjugate
element of order p.
Q.E.D.
This theorem does not apply to infinite p=groups

(in the sense of definition (2), See Scott [1], p 216).

Theorem 5,2. Every proper normal subgroup H of G
contains at least one self-conjugate element of G which is

of order p.

Proof, Since H is a subgroup of G, there is a subset
T of H such that the class equation of H is
IE) = 1Z2nHE| + S{lcax)|xer}.
By assumption, H is normal in G. Hence |Cl(x)| = [G:C(x)]

which is divisible by p; and since H is a p-group, it follows
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that p IIZ N H| + Therefore H contains at least one self-
conjugate element of G which is of order p.
Q.EODO
Theorem 5.3. If K is a normal subgroup of G, and
|K| = p, then K is contained in the center 2,

Proof, By Theorem 5.2, Z NK #E, and 2 N K €K,

But since |K| = p, which implies that K contains no proper

subgroup, Therefore K=Z2 n K&2 or K €272,

Q.E.D.

Theorem S.4. The commutator subgroup @' of G is

contained in the Frattini subgroup (@) of G.

Proof, The Frattini subgroup of a group K is the
intersection of all maximal subgroups of K. Now, let M be a
maximal subgroup of G, Then the group G/M is of order p,
and so it is cyclic, Since the commutator subgroup of a group
is the smallest normal subgroup for which the factor group
is Abelian (Schenkman [1], p 76), it follows that G' S M

for every maximal subgroup M of G, Therefore ¢' ¢ (I)(G).

Theorem 5.5, The Frattini subgroup of G is the
smallest normal subgroup for which the factor group is

elementary Abelian,

Proof. An Abelian group with prime exponent p is




called elementary Abelian (Zassemhaus [11, p 142). G/d(a)
is Abelian by Theorem 5.4, Now let M be any maximal subgroup
of G, Then xP € M for all x €@, Since M is arbitrary, it
follows that xP € $(G). Therefore G/$(G) contains no
element of order pa, and it must be of type (1,1,...,1); i.e.,
G/0(G) is elementary Abelian. Next suppcse that N is a
normal subgroup of G such that G/N ir elementary Abelian.
Then by a theovem of Dlab V. [1]1, &(G/N) = N(G/N)P, where
p ranges over the prime divisors of the order of G/N, But
since G/N is elementary Ahelian, it follows that
demM) = NGMN)P =N, Therefore §(G) € N.

Q.E.D.

An immediate consequence of this is
Corollary 5.6. If G is elementary Abelian, then §(G) =E.

Theorem 5.7, If G is non-cyclic, then the factor group

G/G' cannot be eyclic.

Proof. We assume the contrary and let G/&' = <(G'x)>
with X € G, Then G = G'¢x> ., Since G' € §(G) (Theorem 5.4),
and since Q(G) is the set of non-generators of G, ( by this
we mean that @(G) has the property that whenever K is a subgroup
of G such that G = §(G)K, then G = K. See M, Hall [1], p 156)
hence G = G'¢x) = (x) ; this implies that G is cyclic which
is a contradiction. Therefore the theorem is true.

Qe.E.D.




Theorem 5.,8. If G is non-Abelian of order p°, then
le'l # P L,
Proof, Suppose that |G'| = pm'l. Then the group

G/G' is of order p, hence it is eyclic. But this is

impossible (Theorem 5,7)., Therefore |G'| # pm-l.

Q.E.D.
For the center Z of G, we have

Theoren 5.9. If G is non~Abelian of order pm, then
121 # oL,

Proof, Here again we prove by the contrary and suppose
that 12] = p® L. Then G/2 is of order p, so it is cyclic.
But then G = {Z, x) = Z{(x) is Abelian, which is a

contradiction., Therefore the theorem is true.

Q.E.D.
Theorem 5,10, If G is of order p>, then G is Abelian.

Proof, By Theorem 5.9, |2 | # p. But by Theorem 5.1,
{Z| = p. Hence the only possibility for the order of Z is
that 12| = p2 = |G|+ Therefore G is Abelian.

Q.E.D‘

Theorem 5,11, If G is non-Abelian of order p', then
G' is Abelian,

Proof, This follows directly from Theorems 5.8 and 3,10,

Q.E.D.
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Theorem 5,12, If G 1is non-Abelian of order p5, then

G' is Abelian.

In order to prove this theorem, we employ a lemma of

C. Hobby [1], which we state as

Theorem 5,13, Let G be a p=group of order pm (m >3),
and H a non=Abelian subgroup of order pB. Then H is mot the

Frattini subgroup @(G) of G.

Proof, Suppose that H = @(G). Then by the Sylow
theorem, there is a subgroup N of G such that N <9H and
IN| = pZ; moreover N is normal in G, hence [G:C(N)] <D
(Blackburn [1] ). Therefore C(N) is a maximal subgroup of
G so that H €C(N)., Now N € H £€C(N) implies that
N €Z(H). But the center of H is of order p (Theorem 5.9).
This contradiction proves the theorem.

Q.E.D.

Proof of Theorem 5,12, The possible choices for the
order of G' are P, p2, and p3. ( pq is ruled out by Theorem
5.8.) If G' is of order p or p°, then G' is Abelian (Theorem
5.10)., There remains to show that G' is Abelian when
1"l = p3. Suppose that G' is non-Abelian., We want to
show that on this assumption we shall arive at a contradiction,
and the theorem will be proved. Now the group G/&' is
Abelian and of order pa. It cannot be cyclic since G is

non=-cyeclic (Theorem 5.7). Hence Q/G' must be elementary



Abelian, so that Q(G) € G' (Theorem 5.5). On the other
hand, we always have G' € §(G). Therefore G' < §(6) < a'
implies that g'= @(G). But a non-Abelian group of order
p3 cannot be the Frattini subgroup of any other p-group
(Theorem 5.13). Therefore G' is Abelian. This completes
the proof.

Q. E.D;

Theorem 5,14, If H is a mormal subgroup of G, and

[G:H] = pa, then G' € H.

Proof, This follows directly from Theorem 5,10 and
from the minimality of the commutator subgroup of a group.

Q-EoDo

From the fact that every p—group\G has a non-trivial
center, and that its central quotient group G/Z has the
same property, it follows that every p-group G possesses a
sequence O0f normal subgroups.

E=Ky, €K} £ voe S Kp1 SK= G (L
such that Ki/ki-l belongs to the center of G/K;._;, where
i=1,2, ...y me Series (1) is called a central series of G,

and the number m is its length, (See P, Hall {11]).

We next define two important central series which result
from the study of p-groups. These definitions arise from a

paper of P, Hall [1] .

Definition 5.1. The upper central series of a p~grouyp
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@ is a sequence of characteristic subgroups of G
E=25%2] € ... € Zo1 £ %,= G (2)

such that 32;/Zj.; 4is the center of G/Zj_3, 1 =1, ..., C.

Definition 5.2, The lower central series of a p=group
G is a sequence of characteristic subgroups
E = Horyy € Her € 0es & Hp € H =G (3)

such that Hi = [Hi_l,s] ’ i-= 2, soeoy c’+lo

Series (1), (2), and (3) are related by the following

theoren,

Theorem 5,15, (i) K; € Z; (1L =o, 1, «s., ¢); and

(ii) Hi -‘-: %_i+1 (i = 1, 2, soey c').

Proof, (i) We prove by induction on 1. The result
is trivial when i1 = O, Suppose then that for some 1, Ky & Z4.
Since Kij41/K; belongs to the center of G/Ky, [Kis1,8] €
Ki € 24, Hence in the homomorphism of G onto G/Zi, every
element of Kj41 corresponds to a self-conjugate element of
G/Zi; 1eee, Kij4y € Z447. Therefore K; € 2; for all i.

This proves (i), (ii) Here we again employ mathematical
induction on i. The result is obvious when 1 = 1., Now,
suppose that for some i, Hj Q'Kﬁ-i+l‘ Then by the definition,
Bigy = [H1,6] € [Ky-141,8] € Kp-y. Therefore H; € Kp_j43
for all i.

Q.E.D.
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This theorem shows that m> ¢ and m @ ¢*; hence ¢ = ¢',
That is, the upper and lower central series of a p-group G
have finite length, and both have the same length c. The

number ¢ is called the class of G.

Definition 5.3. The class of a p=-group G is the least

number ¢ such that 2. = G (P, Hall [1]).

P, Hall [1] has shown that if 2i > c, where ¢ is the
class of G, then Hy is Abelian, From this it is clear then
that the commutator subgroup of a p-group of order pm (m =3)
and class 2 or 3 must be Abelian., But the commutator subgroup

5

of .a p-group of order p” and class 4 is also Abelian (Theorem
5.12)¢ ( In fact we shall show later that the commutator subgroup
of a 2=-group of order 2" (m >3), and class m-l is always

Abelian,) Therefore the converse of this inequality is not true.

Kurosh [1] defined a nilpotent group as a group which
possesses at least one central series. He also defined a
solvable group as a group K which satisfies one of the
following conditions:

(i) K has a finite solvable normal series.
(ii) K has a finite solvable invariant series,
(iii) The derived series of K terminates in the identity

after a finite number of steps,

From these definitions, it follows that every p-group

is nilpotent as well as solvable,




-17 -

It is worthwhile to note here that not every p-group
(in the sense of definition (2)) is nilpotent, for we have
already mentioned that there exist infinite p-groups whose

centers consist of the identity alone.
Scott [1] has shown

Theorem 5,16, The principal series of a p-group G

has factors of order p.

Proof. The principal (or chief) series of a group H
is a chain of characteristic subgroups of H
H=Ap 2 A1 2 .00 2 A, = B
such that for each i, Ay 1is a maximal normal subgroup of
Aj_1. Now let E=125 & 27 & oo & 2 = G be the upper
central series of G, By the definition, the factor groups
Z1/24-1 (i =1, ..., c) are Abelian; hence for each i,
Zi/Zi-l has a composition series whose factors have order p.
Then by the lattice theorem, G possesses a chain of subgroups
G=K. 2 o0 K 2 K5 = E
such that for each i, Ki/Ki-1 1is of order p, and refines
the upper central series., There remains to show that K; <G.
By construction, there is some j such that Zj-l =5 Zj,
80 Ki/Zj-1 € Zj/Zj-1 which is the center of G/Zj_3.
Hence KL/Zj-l. <]G/Zj_1, and so Kj < G, Therefore the
chain of subgroups which has been constructed is a principal

geries of G,

Q.E.DO
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We quote M, Hall [1] for the definition of supersolvable
group,
Definition S5.4. A group K is supersolvable if it
possesses a finite series
K= 2 A 2 A 2 .00 2 4, = E
such that each factor group Aj-3/A; (i =1, ..., r ) is cyclic,

Theorem 5,17, G is supersolvable,

Proof. This follows from Theorem 5,16 that in a
principal series of G, each factor group has order p and is

therefore cyclic.

Q.E.D.

6. The Frattini Subgroup of a p-Group,

In section 3, we have given some properties of a p=-group
in connection with its Frattinl subgroup. We shall extend
their relation further., One of the most important theorems

regarding the Frattini subgroup of a p-group is

Theorem 6,1, (Burnside's basis theorem) 1Let G be a
p-group, §(G) the Frattini subgroup of G, Iq/@(G)l = pd.
Then the following hold.

(1) 1 6/P(e) = <P(B)x1, §(8)x5, eer, $(G)xgD> , then
@ = (X1, X2y eeey Xd)
(11) If- G = (Y1, Y2y eesy Yg) » then there exists a subset



{ Yigs Yips eeesr Yig } & {¥1s Y2, eees ¥g} such that
G = (Yigs Yips eces Yig) o

Proof. (1) Suppose that & 7 (X1, X2, eees X3)
then by the Sylow theorem, {(Xj, X2, ..., X3) 18 céntained
in a maximal subgroup M of G, Since §(G) € M, it follows that
(B8, X1, X5, seey Xg> S M, and so {§(G)xy, §(G)xp, ..., $(GIxg)
< u/P(e) c 6/d(a). Therefore G/B(G) # (P(G)xX1, +ve, §(G)xg)
which is a contradiction, This proves (i).
(ii) Since the PFrattinl subgroup of a group is the set of
non-generators, it follows that G = {§(G), ¥1, Yo, eeesr Fg) o
Now, in the homomorphism of G onto G/P(@), let y; —> §(8)y4.
Then G/§(G) = (§(@)y1, P(G)¥y2yees, $(G)ys) » But since
¢/§(G) is elementary Abelian, a minimal basis of G/§(G) contains

d s elements. If {yil, yia,ooo’ yid} E {yl, ya’ooog YS}

such that G/(6) = (9(G)yiy, $(G)yi,,ere, $(G)yiy) , then by
(1), @ = {¥iqs Fipseees Yig )+ This completes the proof.
Q.E.DQ‘

This theorem shows that a minimal basis of a p-group G
may be obtained from the representatives in G of any minimal
basis of the group G/@(G). When we come to the group Aut(G)
of automorphisms of G, we shall show how the burnside's basis

theorem may be applied in obtaining a limitation for the order
of Aut(G).

From Theorem 5.13, we know that not every p-group can
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function as Frattini subgroup of some other p=-groups. The
following theorem which was proved by C. Hobby [1] is another

instance of this case.

Theorem 6,2, Let H be a non~Abelian subgroup of a
p-group G, and suppose that the index of H' in H is pz. Then
H # §Ca).

Proof, Suppose that H = @(G). Then by Theorem 5.16,
H' contains a normal subgroup N of G with IHU/N | = p. Since
N is normal and contained in Q(G), hence by a theorem of
Gaschutz [1], ¢(G/AN) = §(8)/N = B/N., Also [HN| =
|[H/B*| |EY/N| = pP; and HYN #E so that H/N is non-Abelian,
We therefore obtain H/N as a non-Abelian grbup of order p>
and H/N = §(G/N) contradicting Theorem 5.13. Therefore E # §(G),

Q.E.D'

In determining whether a given group 1s nilpotent or
not, it has been proved (M, Hall [1] , p 157) that in a
nilpotent group, the Frattini subgroup always contains the derived
group. On the other hand, Wielandt, H (M. Hall [1], p 157)
proved that if the Frattini subgroup of a finite group G
contains the derived group, then G is nilpotent, The condition
that G i1 finite 1s necessary for this theorem does not apply
in general to infinite groups. Recently, besides Hobby who
has dealt in particular the Frattini subgroup of a p-group

( in the sense of definition (2)), other writers such as

‘
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Dlab, V [1] and Korinek, V [1] have dealt with the Frattini

subgroup of a more general class of groups,

7e Groups of Automorphisms of p-Groups.

While it is true that every p-group G kas a non-trivial
center, its group Aut(G) of automorphisms need not join the
same property. For example, let G be the four-group. Then
Aut(G) is isomorphic with the symmetric group Sz which is
centerless, But note that 2 divides the order of Aut(G) so
that the order of Aut(G) is bounded below, In this section,
we shall show the relation between a p-group and its group of
automorphicms, and from this we shall obtain some limitation

for the order of Aut(G).

When a non-Abelian p~group G is given, the order of
Aut(G) is not readily found except for a few cases., But when

G is elementary Abelian, we have

Theorem 7.1. If G is an elementary Abelian p-group
whose order is pm, then the order of Aut(G) ic of the form

2(p™) = (P" = 1)(™ - p)eeo (D" = pm'l).

Proof, Since G is elementary Abelian, a minimal basis
of G consimsts of m elements, Suppose that {81y B2yeees By }

is a fixed basis of G, and {si, 835 eeey s;} is any other




basis of G, Then the mapping sy — 8f{, 1 = 1, 2, ..., m,
defines an automorphism of G so that the order of Aut(G@) is
equal to the number of ways in chooslng a basis for G, Now
there are pm - 1 possibilities for s;. After choosing sj,
there are p° - p possibilities for sp., Continuing this
process until all m generators have been chosen, There are
therefore (p° = 1)(p" = Plecs(p” - pm-l) distinct ways in
which a set of independent generators may be chosen. Hence

| aut(c) | = £(a™).

Q.E.D,

Prom this theorem we may deduce that when a p-~group G
is cyclic of order p, then Aut(G) is cyclic of order p=1.
In particular, when p = 2, then Aut(G) is the identical
automorphism. In general, when a p=group G of order pm (p
an odd prime) is cyclic, then Aut(G) is also cyclic and of

order p" “(p-1) (Burnside [1])., But when p =2, We have

Theorem 7.2. If G is a cyclic group of order 20

(m > 2), then Aut(G) is Abelian and of type (m-2,1).

Proof, Let a be a fixed element of G such that
G = {a)., Since G is cyclic, there is only one element of

m-1 olements of order 2n,

order 2%1 in G; hence there are 2
If b is any one of these, then the mapping f£(a) = b
defines an automorphism of G. Since the congruence

221 = 3 (poa 20)
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has no primitive root, Aut(G) is non-cyclic., Now
52572 = 1 (mod 2%) but 52®> # 1 (mod 2%), hence the
5

automorphism h(a) = a’ generates the cyclic group (h) of

m=2 -1

arder 2 ; on the other hand, the automorphism g(a) = a
is of order 2 and not contained in (k&) , Therefore
Aut(G) = (B) X (g) 1is Abelian and type (m-2,1).

Q.E.D.

From this theorem, we deduce some special cases for the
order of Aut(G), When the group G is cyclic of order 4, then
Aut(G) is of order 2, and is therefore cyclic., When G is
elementary Abelian of order 4, then Aut(G) has order 6
(Theorem 7.,1). Now there are only two groups of order 6;
one cyclic and one non-Abelian which is isomorphic with the
symmetric group Sz (Ledermann [1], p 49). Since Aut(G) is
non-cyclic, it follows that Aut(G) =2 53. We therefore see
that the group of autgmorphisms of a p-group need not have a
non-trivial center, However the order of Aut(G) is always

divisible by p if the p-group G is Abeliagn.

Theorem 7.3, If G is an Abelian group of order pm
(m »2), then p 'IAut(G)I .

Proof, The theorem is obviously true when G is either
cyclic or elementary Abelian., 1In any other possibility for
G, G is the direct product of cyclic groups Gy, ..., Gt of

orders p°%, ..., p°t, respectively. ( This follows from the



fundamental theorem for finite Abelian groups., See M, Hall [1 ],)
Wi'i:hout lose of generality, we may assume that mj =2 and
t > 1, &Since Cj is cyclic of order pml, Aut(Cy) has an
element £ of order p, For x € G, X can be written
uniquely as X = B18p...8; Wwith B8; € Cj, and the mapping
£*(x) = f(sl)aa...st defines an automorphism of G. But
|2*] = | £ | = p. Therefore p [lAut(G)l .
Q.E.D.

As a matter of fact, this theorem is a particular case
of a theorem of Hilton [1] ., Hilton proved that if the order
of an Abelian groupr G is divisible by pm, then the order of
Aut(G) is divisible by pm-l(p-l). Using this theorem, we see
that Theorem 7.3.may be replaced by

Theorem 7,3%. If G is an Abelian group of order pm,

m~1

then p ~“(p~l) llAut(G)I o In particular, when p ~— 2, then

221 aut(e) | .

We have mentioned in section 6 that the Burnside's basis
theorem may be applied in obtaining a limitation for the order
of Aut(G), This fact was first considered by P. Hall [1] .
The results were stated in M, Hall [1] as

Theorem 7.4, Let G be a p-group of order p", @(G)
the Frattini subgroup of G, IG/@(G)I = pd. Then

| Aut(G) ||pd(m'd)f(pd), where f(pd) = (pd - 1)...(pd - pd-l).

Proof, Since the group G/@(G) is elementary Abelian
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(Theorem 5.5), its group of automorphisms is of order £(p9d)
(Theorem 7.1)., Now by the Burnside's basis theorem, there is
an ordered generating set X = (*Xj, X2, .se, Xg ) Of G, We
assert that there are pd(m'd)f(pd) such ordered generating
sets of G, Consider the mapping x4 — a3, 1i:=1, 2, ..., 4,
of X onto a basis of G/(G), the basis of G/(G) may be
chosen in f£(pd) ways, and for each aj, any of the pm"d

elements in the cosets of Q(G) mapped onto a; 1is a permissible
choice for x;. Since there are d elements in an ordered

d(m"'d)i’(pd) ordered

generating set, there are therefore p
generating sets of G, Now every automorphism of G induces a
permutation on the X's, But since an automorphism fixing any
set X fixes every product of the x; in X, and so the entire
group G; hence it is the identical automotphism. Therefore
the group Aut(G) may be regarded as a regular permutation
group on the X's, so that the sets X are permuted among
themselves in transitive constituents each of which contains
the same number of sets equal to the order of Aut(G).
Therefore |Aut(G)| !pd(m-d)f(pd).

QeE.D,
As a consequence of this theorem, we have

Corollary 7.5. The order of the group Aut(G)lG/$(G))

of automorphisms of G which fixes the group G/@(G) elementwise

is a aivisor of pd(m=d),




Proof, This follows from the fact that an automorphism
of G which fixes the group q/@(e) elementwise induces a

d(m=d) ; gered generating sets

regular permutation on the p
X of G; and by repeating the same argument of Theorem 7.5,
we have tha corollary.

QOE.D.

Having dealt in some detail with the upper bound for
the order of Aut(G), where G is a p-group, our next inquiry
is the lower bound of | Aut(G) |. When G is an Abelian
p-group, we have Theorem 7.3*, For non-Abelian p-groups,
the first result was obtained by Herstein and Adney [1] in

year 1952, They proved

Theorem 7.6, Let G be a finite group of order pms,

(pys) = 1 and m> 2, Then the order of Aut(G) is divisible
by p.

Proof, We prove by the contrary. Suppose that
p2 ‘ 1G| but p *IAu't(G) | « Since G/Z & Inn(G), the group of
inner automorphisms of G, which is a normal subgroup of
Aut(G) (M. Hall [11, p 85), hence pJ |Aut(G)| implies that
p*IIG/Z| , and so p |IZ[, where p" is the highest power of
p dividing |G| ., Therefore every Sylow p=subgroup Sp of G
is contained in 2 and hence it is the center of its
normalizer, Then by a theorem of Burnside (Zassenhaus [1] ,

p 139), G contains a normal subgroup H with [G:H] = | Sp| e
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Clearly B NSp= E and HSp = G; i.e,, G=Sp X H, Now

Sp is Abelian and of order p" (m >2), hence Aut(S;) contains

L]

an element £ of order p. For a € G, a can Be written

uniquely as a = sh =hs where s € S_ and h € H; and the

b
mapping f£*(a) = £(s)h defines an automorphism of G which
is of order p. This implies that p ||Aut(G)l contradicting
our assumption, Therefore the theorem is true,

F.EeD.

In this theorem, the group G need not be a p=-group.
But it certainly must be finite, for there are infinite groups
whose groups of automorphisms consist of 2 elements only.
For example, in a p-quasicyclic group
cb, = {ag, n e a* l ag_l = a, a{ = e}, (Schenkman [17],
p 86) the group Aut(cpw) contains no element of order p unless
P = 2, in which case the only non-trivial automorphism maps
each element of the group onto its inverse; and clearly

p2 IICﬂnlfor any prime pe.

With the result obtained by Herstein and Adney, many
writers have attempted to work on the same subject, After a
deep investigation with the center and the Sylow p-subgroups
of a finite group G, Scott [2] in the year 1953, extended the
theorem of Herstein and Adney., He proved that if the order
of a finite group G is divisible by p°, then the order of

Aut(G) is divisible by pa. In his paper, Scott made a
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conjecture that there is a function £(m) such that if the

order of the group G is divisible by pf(m)

y then the order
of Aut(G) is divisible by p. A year later, Schenkman [2]
published a paper suceeding Scott's conjecture, Schenkman
proved that 1if G i a finite non-Abelian group whose

commutator subgroup is contained in the centcr 2 of G, then

the order of G divides the order of Aut(G).

In all these theorems, the group G in concern need
not be a p-group, Applying the theorem of Schenkman to our
p-groups, we see that if G is a p-group and class 2, then its
order divides the order of Aut(G) since the commutator
subgroup of a class 2 p=group is always contained in the

center of the group.

8. Structure Theorems of 2-Groups,.

Generally speaking, groups can be divided into Abelian
and non-Abelian., For finite Abelian groups, their structure
is completely determined (up to isomorphism) by a theorem
which states that a finite Abelian group is the direct
product of cyclic groups of prime power order (M, Hall [1] ,
p 41). Thus the number of distinct types of Abelian p-groups
of order pm is equal to the number of partitions of m with

regard to addition, For example, let m = 7. There are 14
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ways of partitioning 7 with regard to addition, hence there
are 1 isomorphisms classes of Abelian groups of order p7.
These may be written as: ( 7 ); (6,1); (5,2); (5,1,1); (4,3);
(4,2,1); (4,1,1,1); (3,3,1); (3,2,1,1); (3,1,1,1,1); (2,2,2,1);

(2,2,1,1,1); (2,1,1,1,1,1); (1,1,1,1,1,1,1).

When G is a non-Abelian p=group, the case is not simple.
It is more complicated when p =2, This will be shown in the
following theorenms,

Theorem 8,1, Let G ©be a non-Abelian group of order
Zm,;and let it contain a cyclic subgroup of index 2, Then
G belongs to one of the following types:

m =23

(1) Generalized quaternion group,

2281 _ e, b2 = aam-z’ pab~t = a~1,
(2) Dihedral group,

a2® Ll -e, pPze, babl=za"l,

m4

(3) Semi-dihedral group,

- - -]1420=2
aamlze, b2: e, ba’bl:al'"2

-2
) a2m-1 - 2 _ -1 a1+2m

Proof, If G contains an element a of order 2m-1;

then (a) as a maximal subgroup of G, is normal in G, For

b ¢ (a), we have b= a® e (a) , and bab L=

r2 = 1 (mod Zm-l) but r $ 1 (mod Zm-l) since G is non-Abelian,

ar vhere
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It follows that there are three choices for r mod 2m-1

namely: r = -1, =1+ 2m-2: 14 Zm-a. Since baSp~t = a®,

we have a°> = a° or rs = s (mod am'l) as a condition on
S, When r = -1, then =5 = s (mod 2m=1y implies that

26 = 0 (mod 2% 1) or s =0 (mod 2®"2), Therefore a° = e
or a®= a2™?2, Hence with r = -1, we have the generalized
quaternion group or the dihedral group, When m = 3, these
are the only groups., Next suppose that m =24, and

r = =14 2"2, Then (-1 4 28-2)s = 5 (mod 2B~1) implies
that &(2 - 2%°2) = 0 (mod 2™%) or & =0 (mod 2m-2),
Therefore a°= e or a° = a2®2, TIn the latter case, we
have bi = e Wwhere b1f= ab, Hence either a and b or

a and by, satisfy the relatioms of type (3)s Finally suppose

that m >4, and r =1 4 282, Then (1 + 2% 2)s =5 (mod 2°°%)

implies that 2% % = 0 (mod 2% %) or & = 2s, (say). Ve

find i by the congruence i(l 4 Zm-3)le 0 (mod 2m-2), and

-2
1 al+2m

set b, = a‘b. Then bjaby~ = so that a and by

1
satisfy the relations of type (4) in the theorem. This

completes the proof.

Q.E.D.

There is only one type for a non-Abelian p-group G

(p an odd prime) of order pm which contains an element of

Pm—l

order e This group is defined by the relatiomns

- - -2
ap™ L = e, bP = e, bab 1- al+ﬂ'. o (See

M. Hall (1], p 187).
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Theorem 8,2, Let G be a 2-group of order 2© (m >3)
and maximal class. Then G has the following properties:
(1) 2 & a°v.
(2) G' is cyclic of type (m-2).

(3) G contains cyclic subgroups of index 2.

Proof, We prove by induction on m. When m = 3, the
dthedral and quaternion grours of order 8 are of maximal
class, Each group contains elements of order 4, and the
subgroup % = G' is of order 2. Suppose then that m > 3.
Since G is of maximal class, 12| = 2, and G/Z is of order
2m=l and maximal class, Therefore by the induction assumption,
G/Z contains a cyclic subgroup A/Z = (Zx) of index 2 in
G/Z. By the lattice theorem, A = {Z,x) is a subgroup of
index 2 in G, Clearly A is Abelian, We assert that it is
cyclic. Suppose it is not, Them A =72 X (x), and
(x2®"2y being characteristic in A, is normal in G, Since it
is of order 2, it is contained in Z which is a contradiction,.
Therefore A = (a) is cyclic, and G = {A,y) . Since
A is normal in G, the mapring f(a) = [a,y] is a
homomorphism of A onto G'. Now a e Ker(f) iff
f(a) = [a,y] = e; which is so iff a € Z, Hence Ker(f) = 2,
and A/Z ®G'. Since A/Z is cyclic of type (m=2), this
implies that G' is cyclic of type (m-2)., The proof is now
complete:;,

Q.E.D.
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As a consequence of this theorem, we have

Corollary 8.3. If G is a 2=-group of order 2" and
contains an Abelian subgroup A of index 2, and if 2Z & G',

then A/Z ~ G'.
M. Hall and Senior [1] have shown

Theorem 8.4. Let G be a 2-group of order 2" and
class 2 with center Z of order 2. Then G is the central

product of dihedral and quaternion groups.

Proof, Here again we prove by induction on m,
When m =3, G is a non-Abelian group of order 8; hence it
is either dihedral or quaternion. Suppose now that m > 3,
Since G is non-Abelian, there are elements x, y with
[x,y]1 = e. Then the centralizers C(x) and C(y) are both
of index 2 in G; and so0 C(x) NC(y) = H 4is of index 4 in G.
Iet K = {(X,y>e¢ Then G=KH and K nNnH =2, Since
{(k,H] = E, 2(H) = Z, Therefore G is the central product
of K and H. By the induction assumption, H is the central
product of dihedral and quaternion groups, On the other
hand, since KX NH~KH/H, |K| = IKN H|IG/H|] = 8 so0
that K is either dihedral or quaternion., The theorem now
follows.

QeE.D.

Theorem 8,5, If G is a 2-group of order 2° which

contains only one subgroup of order 2, then G is either
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cyclic or generalized quaternion,

Proof, We prove by induction on m that G is cyclic
or generalized quaternion. The result is obvious whem
m =1, We may therefore assume that m > 1, If G contains
a subgroup H of index 2, then by the induction assumption,
H is cyclic. Hence G is either cyclic or one of types (1)
through (4) of Theorem 8.1. But each of these groups
contains more than one subgroup of order 2 except the generalized
quaternion group. There remains to be considered the case where
every subgroup of index 2 is generalized quaternion., We
shall show that this situation can not happen. First let
m = 4 and a subgroup @ of index 2 be the quaternion group,
Then Q = {(a, b att = e, b2 = aa, pab~l = 2™t )
and G = Q 4+ Qx where x ¢ Q but x° ¢ Q. Now x must
transform one of the subgroups of Q namely <a> , <b>,
{cb)y into itself, Without lose of generality, we may suppose I
this to be (a>. Then ¢ tac =a or ¢ lac = a~l, The
first case implies that <(a,c) is an Abelian group of
index 2 contrary to our assumption., The latter case implies
that (cb)-la(cb) = a so that <(a, cb> is an Abelian
group of index 2, again a contradiction, Iext suppose m =25,
and a subgroup H of index 2 be a generalized quaternion

2m=2 - o % = a2® 0, pap~t = a-l)

group. Then H = (a, b | a
and G = H 4 Hx, Since (a) is the only subgroup of order

21=2 in H and all elements of H not in {a) are of order 4,
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hence x Yax =a® and x2 = alb or x2 =al. Ir x2 = alv,

then x 2ax® = a~t = x tax = a’ g0 that ra = =1 (mod 2m-2)

which is impossible, If x2 = ai, then <a,x) , as a

r

subgroup of index 2, is genevralized quaternion. Hence
¢~Lac = a-l, (cb)~ta(cb) = a so that <(a,cb) is an Abelian
group of index 2, a contradiction., This completes our proof of
the theorem.
Q.E.D.
Theorem 8,5 can be extended in the following sense.
Theorem 8.6, If G is a 2-group of order 2" which

contains qnly one subgroup of order Zr, 1 <r «<m, then G

is cyclic.

Proof, Here again we prove by induction on m,
When m =3 ( in which case r =2 ), each of the five groups
of order 8 contains more than one subgroup of order 4 except
the cyclic group of order 8. On the other hand, if a group
G of order 2" contains only one subgroup H of order Zm'l,
then H must be the Frattini subgroup @(G) of G. Suppose
that x is an element of G which is not in §(G) such that
G = §(G)Xx> ,, then we have G = (x) ; i,8., G is cyclic,
This proves the theorem for m =3 and for all cases with
r = m-1l, We may therefore assume that 1 < r < m=-1 and

m >3, let H be the unique subgroup of order 2¥, then

H 1is contained in a maximal subgroup M of G. Since
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1 <r <m-1l, hence by the induction assumption, M is cyclic;
and so H, as a subgroup of a cyclic group, is also cyclic,.

Now every element of order 2 or 4 41is contained in a
subgroup of order 2°, r = 2, and hence in H, But H, being
cyclic, contains only one subgroup of order 2 and one of
order 4. Therefore by Theorem 8.5, G is cyclic or generalized
quaternion., Since a generalizZed quaternion group contains
more than one subgroup of order 4, it follows that G is

cyclic, This completes the proof,

Q.E'DQ

This theorem applies also to any p-group, where p is
an odd prime, In fact a p-group ( p an odd prime ) of order
Pm which contains only one subgroup of order pr, l=r <n,

is necessarily cyclic. ( See Burnside [1], p 131.)

9. Classification of 2=Groups.

We shall now illustrate the forgoing theorem by

classifying all groups of order 28 (1 €m <l ),

Since 2 1is a prime number, there is only one group

of this order and it is cyclic.

A group of order 4 is by Theorem 5,10 an Abelian

group, There are therefore two isomorphism elasses: (2); (1,1).
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For groups of order 8, there are three Abelian types:
3); (2,1); (1,1,1).

In considering a non-Abelian group G of order 8, we
first suppose that G contains an element a of order 4.
Then by Theorem 8,1, G must belong to one of the following:

Dihedral group:

a*=e, bP=e, babt=za"l,

Quaternion group:

a = e, b2 = aa, bab™t = a™L,

Next suppose that G contains no element of order
greater than 2, Then every element of G is of order 2
except the identity, so that G is Abelian the case which has
already been considered, Thus these two groups exhaust all
the possibilities for non-Abelian groups of order 8. There
are therefore 5 groups of order 8; three Abelian and two

non-Abelian,

We next consider groups of order 16, There are five
Abelian types of this order: (4); (3,1); (2,2); (2,1,1);
(1,1,1,1).

A non-Abelian group G of order 16 which contains
an element of order 8, must by Theorem 8,1, belong to one

of the following:
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Dihedral group:

a8 = e, b =e, bab T = a~t,
Generalized quaternion:

ad = e, v = au, bab~t = a”L,
Semi~dihedral:

a8 = e, ¥¥ze, babl=za’,

Next suppose that G contains an invariant cyclic
group <a) of order 4 but contains no elecment of order 8.
We consider the following cases,
(1) Suppose that a € Z, Then we must have <a) = 2 and
G/¢a> can only be of tyve (1,1) (Theorem 5.9). There can
be no element x €G with x* € <a) and = ¢ (a)
for otherwise G = (a,x) would be Abelian contrary to our
assumption, Hence there must be elements b, ¢ ¢ {a)
and both are of order 2, Since b ¢ Z, and since ¢~%be® = b,
it follows that ¢ ‘be =ba®, where r =0 (mod 2°7°),
Therefore there is a single type defined by the relations

at = e, b2 = e, ¢? = e, ¢ toe = baz,

b™lab = a, ¢ lac = a.

(ii) Suppose next that G contains no self-conjugate
element of order 4, and that (a) is a self-conjugate
cyclical subgroup of order 4, If G/a) 1is cyclic, then
xq € {(a) for all x € G, Suppose that b 1is any element

of order 4 which is not contained in <¢a) ., Since G is
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1 1

non-Abelian and <a) is normal, we have b ~ab =a .,

There is therefore a single type defined by the relations

lab = a” L.

a’ = e, o = e, b
Next if G/la) is non-cyclic, then x° e {a) for all
x € G, Suppose that 2 ¢ <¢a> ., Then G must contain an
element b €% -~ (ay with b° =e, If c is any other
element not in <a,b >, then (a,c> is a normal subgroup of
order 8 and <a,c> N (b)Y = E, Hence G is the direct
product of a group of order 8 and a group of order 2. There

are therefore two types corresponding to the two non-Abelian

groups of order 8,

a* = e, be = e, b~lab = a-l, ® = e, ¢ tac = a,
¢ toe = b,
a* = e, b2 = aa, b~ lap = a-l, ¢ = e, c~tac = a,
¢ toe = b

Next suppose that G contains no element of order 8
and no self-conjugate cyclical subgroup of order L4, Clearly
G contains elements of order 4., ILet a be one of these,
then <{a> 1is normal in a non-cyclical subgroup <(a,b>

of order 8., If ¢ is any other element of G which is not

in <a,b>, then since a ¢ 3, clac = ab, There is

again a single type defined by the relations

aL"“ 2 _ 2 1

=e, P =e, ¢c“=e, b adb = a, ¢t

bc = b,

¢~ lac = ab.

Finally suppose that G contains no element of order
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greater than 2, Then every element of G is of order 2
except the identity. But this implies that G is an
elementa;y Abelian group. Hence these groups exhaust all
the possibllities for non-Abelian groups of order 16. There
are therefore fourteen types of groups of order 16; five

Abelian and nine non-Abelian,

This method of determining groups of prime power
order was suggested by Burnside [1]. In his text, Burnside
classified all groups of order pu, p an odd prime, and he
showed that there are fifteen distinct types of groups of this

order.

The nine non-Abelian groups of order 16 which have
justi Yeen determined can also be classified into two classes

according as the group G is of class 2 or 3,

If the group G is of class 2, then the commutatur
subgroup G' must have order 2, and so the center Z has order
k., 1If G is of class 3, then ¢' is of order 4, and so Z is
of order 2. Since the automorphism group of a cyclic group
of order 8 is non=-cyclic (Theorem 7.2), it follows that there
are three non=-isomorphie: non=-Abelian split extentions; one
of these has dexrivec group of order 2, and the other two have
derived groups of order 4 (Schenkman {1}, p 94), Since the
generalized quaternion group of order 16 has derived group

of order L4, it follows that there are three groups of maximal
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class with derived group of order 4 namely: the dihedral,
generalized quaternion, and semi-dihedral groups of order 16,
hence there arz six groups of class 2 with derived group of

order 2.

The above methods used in classifying groups of order
16 are clearly not applieable in classifying groups of
arder 32 or 64, for there is no apparent limit to the
complication of a prime=-power group. As we pass from the
groups of order 8 to those of order 16, then to those of
order 32, and so on, at each step new structural phenomena
make their appearance. For this reason, those authors who
have constructed p-groups on an extensive scale have found it
necessary as a preliminary to split the problems up by
introducing some system of classification. Thus Bagnera, who

5

was the first to determine 2all the grouwns of order p”, where

P is an odd prime, made use of certain numerical invariants,
notably the numbBer of independent generators and the number

of inner automorphisms, and also of the presence or absence

of an Abelian subgroup of index p. Schreier, in his well-known
paper on the same subject, employs the fact that the commutator

subgroup G' of a group G of order p5

is necessarily Abelian,
and classifies these groups according to the type invariants

of the Abelian groups G' and G/G'.

These methods, admirable as they are for the purpose
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for which they were devised, would need to be supplemented,

as we passed to groups of higher and higher orders, owing to
the gradually increasing complexity of the groups concerned,
We therefore ask whether it would not be possible to introduce
a system of classification which would apply without
modification to all p-groups. The answer to this question

has been giwen by P, Hall [21].

Recently M. Hall and Senior [1] employed the methods
outlined by P, Hall and classified all the groups of order
6., They showed that there are in fact 267 groups of this
order which clarify the one determined by Miller [1] who

showed that there are 294 groups of order 64,

10, Class Numbers of 2«=Groups.

From the results of section 9, it is clear that for
each natural number n, there are only finitely many non-
isomorphic grours having n for their order. Similarly,
there are only finitely many non-isomorphic finite groups
having a given number k of classes of conjugate elements,
We call the number k the class number of the group., It
is well known that Abelian groups have maximum class number,

On the other hand, a p-group G of order pm and maximum
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class m-1 has a minimum class number, In fact, Poland [l ]

has shown

Theorem 10,1, The class number k of a quaternion
group, dihedral group, or a semi=-dihedral group is given

by k =257 4 3,

Proof, Suppose that G is quaternion <(a, b |

agm-l = e, b2 - aam-a’ b-lab = a'l >, or dihedral

<a, b | 2281 - e, b2 = e, b™lab =a~l>, Then in each of

these two cases, G = {asbt | s =1, ..., Em-l. t=1, 2}

om=2

and 2 = (a >y, 12| = 2. Now af(a°b)a™t =

aStT (b2 Tp™1b = a5*%Th, and bB@SHIL™T = (va5B"1)b = a~Sb.

If a° €G- 2, then C(a%) = ¢a> and so (CL(a°)] =2,
and there must be (Zm-l -2)/2 =22 _ 1 such conjugate sets,
Since for 1 <s éam'l, c1(a®b) = {a-‘k(s-ar) | red }
hence | Cl(a®b) | = Zm-a. The 2"1 elements of the form

a5b split into two classes, Therefore

k=@ -1) 4242 =2"2 43,

Next suppose that G is semi-dihedral <(a, b ,

a2l - o p2 = e, vab~! = a—l"'am-a) . Here again

zZ = (azm-2> , |1Z] =2 s0 that the elements of the form
a® fall into two conjugate sets of one element each, and
.2"’-2 - 1 conjugate sets of two elements each. Now

- - - —pom=2
a¥(a®b)a~T = as+r(ba Tv 1)b ::as+r(ar r2 )b, and




- L3 -

- - - m=2
b(a5b)b 1. (vap 1)b = a s+s2 b, Hence Cl(a°b) 2

(a5 |t ea} U {aF ) o that | 01(aD) | >
am=1/y = 2m/8, sSince |[Z| = 2, the centralizer of any
element a°b must have order at least 4, Therefore
lc1(apv) | = am-Z’ and again we have k = (2B=2 ~ 1) 4+ 2 4 2
= 2m=2 4 3,

QeE.D,

Theorem 10,2. If G is a p-group whose defining

relations are given by

- - -2
aP® e e, bY = e, bab 1. al+pm

’ ’

then the class number k of G is k = p™ * 4 P2 - o=

Proof, We first obtain the conjugates of the element

of the form asbt. (i) a'l(asbt)a = as'l(btab't)bt =

- m=2 -2 -
a® l(a[1+P ]tbt) = as+tpm ht, and (ii) b(asbt)b L

- M2
ba®b 1ot = a5+ b Tnerefore c1(aSvt) =

-2
{ aF (5, B)P17 5yt | r ¢ J}. Hence a%b® ez irff

t =0 (mod p) by (i), or s = 0 (mod p) by (ii). Thus
Z 2, 1¢ 2" € G - 7, then two
r(s,t)ph=2 - aq(s,t)pm‘z

= &af> ana 121 = p™”
conjugates are equal iff a or
r(s,t) = q(s,t) (mod p)., It follows that ICl(asbt)| < p.
Since ab® ¢ 7, the p° - Pm-Z elements of G split into

(p" - pm-az/b = pm-l - pm"3 conjugate sets of p elements
each, Therefore k = Pm-Z + (pm'l - pm~3)'

QoEoDO
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Combining Theorems 10,1 and 10,2, we have the following
theorem which gives the relation between the order of a

2=-group and the number of its conjugate sets,

Theorem 10,3, If G is a non-Abelian 2=-group of
order 20 (m © 3) which contains a cyclic subgroup of index 2,

then 2% <€ 4(k(G) - 3), where k(G) is the class number of G.

Proof, Iet S be the set of non-Abelian 2-groups
H such that H has a cyclic subgroup of index 2. Then
G €S,and |G| = g =2 By Theorems 10,1 and 10,2,

m=2

k(@ = 2"% 43 or 2L 4 2™ L 2™3; ang P45 £

282 4 3(280) = 281 4 2872 _ B3 porine the mapping  ,
te ¢ {1BIlE es}y —> ot by £ (1HI) = IHIA - 3.
Then f£g(IH|) €£k(H) for all H €S, Clearly £g ia strictly
monotonic increasing real valued function. Hence for any
k in the range of £, f£gr(k) is an upper bound for the
order of any H € S such that k(H) €k, Therefore
g = 2" £ 2371 (1(6) = (k@) - 3).
Q.E.D,

Theorem 10,4, Let G be a 2-group of order 2m,
k(G) the class number of G; and let r be any given natural
number, Then x(G) £r only if m £ (2r - 1)/5.

Proof, Let m =2n - i, where n edy , 1 =0 or 1.

Then k(G) > 3n 4 21 (Poland [17], p 91), and 3n + 2%
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is equal to 3m/2 + 1 or 3(m-1)/2 + 2. Now 3(m-1)/2 ¢ 2 =
3m/2 + 1/2 < 3m/2 + 1. Therefore k(G) =3(m-1)/2 4 2.

With r =1 or 2, and k(G)<r, |G|=1 or 2 and the
theorem is true.

Q.ED.

The importance of least upper bound for the order of
a group G, given k which is the class number of G, is
reflected in the theory of group representations, It has
been known that the number of irreducible representations of a
group equals its class number (M. Hall [1] , p 267). Thus
for example given a group G of order g, its class number
must be greater than some minimum number t and so in
searching for the irreducible representations of G one must
have at leaét t. We now ask whether the result of
Theorem 10,4 is a least upper bound for 2-groups. That is,
given any number r, do there exist groups G with k(G) 2 r

and ? Such groups, by Theorem 10.lk,

would have minimum class number k(G), and their orders would
have odd exponent, First, suppose that |G| = 21 = 2.

Then (2k(G) = 1)/3 =1 dimplies that k = 2 and clearly

the group G = (x | xa = e has order 2 and class number 2.
Second, if |G| = 22 = 8, then (2k(G) - 1)/3 =3 implies
that k = 5 and by Theorem 10,1, the quaternion and the
dihedral groups satisfy this, Next suppose that |G| =

27 = 32. Then (2k(G) - 1)/3 =5 implies that k = 8.
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But no group of order 32 has class number less than 11

(M. Hall and Semior [1] ). Since no list of groups of order
27 = 128 exists, we cannot check further, But we have an
indication that the result of Theorem 10,4 is not a least

upper bound,

Poland [1] had attempted to establish a formula as
a possible greatest lower bound for the class numbers of

2-groups whose order is greater than 16, and he had shown

2n + i

that if |G| = 2 , where n €J7, i =o0or 1,

2n 4+ i 232, then k(G) 23(n 4+ 1) + Zi. Since there is no
group of order 28 = 256 and having class number 16

(Poland [1], p 114), so that the result obtained is nct a
greatest lower bound., Thus the problem in finding a greatest

lower bound for the class numbers of 2-groups still remains

unsolved,

Wle next prove a theorem of Hirsch [1] restricted to

pP=groups.

Theorem 1C,5. Let G DbYe a p-group of order pm,

and k the class number of G, Then

p® = k(mod (p-1)) if p is odd, and

p" = k(mod 3) if p = 2.
Proof, For x, y € G, consider the equation

x Ly iy = e, (1)

Suppose that |Cl(x)| = p°. Then jc(x) | = p"" 7, and
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hence the total number of solutions in G of the equation (1)
k

is Z pFL(plTly = 0
i=1

Among the solutions there occur x = e, y —e., For all
other solutions consider the Abelian group <X, ¥J.
Suppose that (x, y> 1s cyclic of order pr. Then the
number of ways in which the group can be generated by two
of its elements is

par - p2r-2 = er-Z(pa - 1) =0 (mod (pa-l)),

since either x or y must be of order pr, and of the
possible par pairs we have to rule out only those in which
the orders of both x and y are less than pr. Next
suppose that (x,y)> is Abelian of type (pl,p'2). We
distinguish two cases,

(i) Suppose that r) = ro. Then x and y are independent

generators of the group. This yields
ar 2rq=2 2ri=2 =1
(3771 = p*F17%) [(p72 - p°F17%) = (1 - p17H]
choices, and this number is clearly = O (mod (pa-l)).
(ii) Suppose that ry > rp. Then either x 1is of order prl

and y of order pra relative to (x> or vice versa,

Hence we obtain
-1 - -
(p"1™ 1) (p-1)p7271) (p-1) (572 + P17
choices and again this number is = O(mod (pa-l)). Since in

all cases, the number of solutions of equation (1) which
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are different from x = e, —e are =0 (mod (pa-l),
hence we have
kp® = 1 (mod (p°-1)).

2em = 1 (mod (pa-l)).

Now, p2 = 1 (mod (pa-l)) and so p
Therefore p- = k (mod (pa—l)). In particular, when
p =2, we have 2" = x (mod 3)., This completes the proof,

Q.E.D.

11, Some Special 2-Groups,

In this section, we shall discuss some special types

of 2-groups.
For elementary Abelian 2-groups, we have

Theorem 11,1, Iet A Dbe the elementary Abelian
2-group of order Zm. Then every group G of order m is a

subgroup of the group Aut(r),

Proof., We note that Aut(A) contains a subgroup
which is isomorphic with the symmtric group Sm. By Cayley's
theorem, every group G of order m is isomorphic with some
subgroup of Sm. Therefore by law of transitivity, G is
isomorphic with some subgroup of Aut(A),

Q.E.D.

In section 7 we have determined the order of Aut(A);
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Burnside ( [11, p 117) has shown that this group is
isomorphie with the lemsar homogeneous group, which is of

great importance in many branches of analysis,

Another interesting property of elementary Abelian

2=groups is

Theorem 11,2, In an elementary Abelian 2-group of
order Zm, every element is of order 2 except the identity.
Conversely, a group of order 2" such that every element
is of order 2 except the identity, is necessarily an

elementary Abelian 2-group.

Proof, First statement follows directly from the

definition of elementary Abelian group, Now suppose that

2 -
for all a, b €G, a = e, b2 = e, Then a=a 1

and ab =a tb™! = (ba)”! = ba, so that G is Abelian.

, b=1b7%

Clearly G 1is elementary Abelian since 2 1is the smallest
prime number (with the exception of 1).

Q.E.D,

This theorem does not apply to other classes of
p-groups, where p is an odd prime, for there are non-Abelian
p-groups all of whose elements, except the identity, have
order p. For example a group of order pLF with the defining
relations

aP =P = ¢P = g? = e, d-lcd = ca

is a non~Abelian group all of whose elements, except e, are
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of order p (see Burnside [1] , p 143).

Theorem 1ll,3. Let G be an elementary Abelian group
of order 2" and let it possess an automorphism £ of order 2.
Then there is a subgroup H of G such that [H| > [2°

and such that £(x) = x for all x € H,

Proof, Let H = {x €G |f£(x) =x}., Then H is
a subgroup of G, For if x, ¥y € G such that f£(x) = x

_1)

and f£(y) = y, then £(xy = f(x)f(y—l) = xy-l. Now let

z € G- H, Then f£(z) € <z, B>, For if £(z) =z',

then since |f| = 2, £(zz") = 2'z = 22" so that zz' ¢ H

or z' ez lH =zH, Hence for every element x € G - H,

£(x) = xy, where y € H. Now if f£(x) = xy and £(x') =x'y,
then f(xx') = xyx'y = xx'ya = xx', so that x' e xH, and
conversly. Therefore [G:H ] € |H| ; that is

(DX 2% or |H| > J2P.

QoEoDo

We quote M., Hall and Senior [1] <for the definition

of capable groups.

Definition 11.1. A group is called capable if it
can function as a group of inner automorphisms of some

other group.

Theorem 1ll.L4. Let G be an elementary Abelian

2-group of order 2@ (m X 2). Then G is capable,
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The proof of this theorem follows from a lemma

which was proved by M, Hall and Senior ( [1], p 13).

Lemma, Let H = {Xj, ¢.., Xp) and suppose that
HE contains an element a # e such that a € (x;) for

each 1, then there exists no group G with G/Z ~H,

Proof, We assume the contrary and suppose that ¢£
is an isomorphism of G/Z onto H such that £(a) = Zb,
f(x3) =2%y3, 1 =1, ¢oe, ro Then since a € <x5> ,

a = x?i for some my € J+, and so f£(a) = f£(xg)™ = Zys™ =

Zb, which implies that byi L € Z., Therefore by; = yib
for each i. But G = <Z, Y3, eee, Ypo>+» Hence b €32
so that f£(a) = 2b = 2 implies that a = e, which is a
contradiction,

Q.E.D.

Corollary 1l.5. If G is a finite Abellian group,

then G is capable iff its two largest invariants are equal.

Proof, For suppose that G = (X7d) X .ee X {Xpd
with x; of order njy and that nji41 |ng (1 =1, ..., r=1).
If ny/Mmp >1, write y; = %7 and 75 = x3%3, 1 >1, and
let u=y12, Then G = {¥y1, +e., ¥p> With u #e and
u = yga for each i, Therefore G is incapable. Conversely,
if G 1s capable, then its two largest invariants must

be identical.

Q.E.D.
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Proof of Theorem 1l.4. This follows directly from
corollary 11.5.

QeE.D,

v

The smallest elementary Abelian 2-group is of course
the cyclic group of order 2, This group is also the Sylow
2=group of Sj. The elementary Abelian 2-group of order /
is the four-group, also called the quadratic group, and is
denoted by Vq. This group is a Sylow 2=-subgroup of A4
and A5. With regard to Ay, VA is the only Sylow 2-subgroup
since it is invariant in Ape. With regard to A5, it has
five conjugate subgroups, The four-group functions as the
group of inner automorphisms of those class 2 groups which
have at least one Abelian subgroup of index 2 and whose

commutator subgroups are of order 2 (see M, Hall and Senior [1] ).

We next discuss the dihedral and generalized quaternion
groups, We recall the dihedral group of order 2m (m > 1)

is generated by two elements a and b with defining relations

For each m > 1, there is only one dihedral group of order

2me. All dihedral groups, except the four-group, are non-Abelian,

We also recall the generalized quaternion group of
order 2% (m 3) is generated by two elements a and Db
with defining relations

m=-1 m=2
a2 = 2 G

— e, b = , badb " =—a ",



_53-

When m =3, we have the quaternion group of order 8.

The dihedral and quaternion grouwps of order 8 possess
several properties in common as well as properties which are
not, When we consider their structure, we find
(1) Both are non-Abelian groups all of wﬁbse subgroups are
Abelian.

(2) Both contain at least one cyclic subgroup of order 4.
(3) 1In each of these groups, the center and the commutator
subgroup are identical.,

(4) Every subgroup of the quaternion group is normal ( such
a group is called Hamiltonian), On the other hand, not every

subgroup of the dihedral group is normal,

We quote Schenkman ( [1], p 91) for the definition

of split extension,

Definition 11l.l. A group is called a split extension
of its subgroup H by its subgroup K if (i) H <G,
(ii) HK = G; (iii) HNK = E,
(5) The dihedral group contains five elements of order 2,
and is a split extension of a cyclic group of order 4 by
a cycliec group of order 2., It is the Sylow subgroup of Sk,
55, Ag, and A7. On the other hand, the quaternion group
contains only one element of order 2 (Theorem 8,2); this
element is expressed as a power of some other element of order

4, hence the quaternion group is not a split extension of any
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of its subgroups,
We proceed to give more properties of these two groups.

Theorem 11,.6. The dihedral and quaternion groups

cannot function as the Frattini subgroup of any p-group.

Proof, This follows directly from Theorem 5.13,

QoE oDo

Theorem 11.7. The quaternion group Q is incapable,

Proof. Since Q contains element b2 = a2 f# e,

hence by the lemma of Theorem 11,4, Q@ is incapable,

Q.E.D.

From this theorem, it follows that every Hamiltonian

group is incapable, while every dihedral group is capable,

For 2=-groups of higher orders, the dihedral, generalized
quaternion, and semi-dihedral groups are of special interest
owing to their unusual properties which have already been
discussed in various sections., In addition to these, we
finally note that the semi-dihedral group of order 2% (m > 3)
is the Sylow subgroup of the automorphism group of the
Abelian group of order p2 and type (1,1), where
P = 202 _ g (mod Zm-l); moreover, every normal subgroup

is characteristic.
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I2. Summary .

In year 1872, Sylow first showed that for every natural
prime p dividing the order of a finite group G, there is
contained in G at least one Sylow p-subgroup; all Sylow
p-subgroups are conjugate and the number of such subgroups
is =1 (mod p)e. The study of groups of arbitrary order is
thus focus to those groups whose orders are powers of prime

numbers, also called p=groups,

The most fundamental property of a p=-group is that it
has a non-trivial center and that its central quotient
group possesses the same property. This is in contrast with
the symmetric group S, which is centerless, In studying
the properties of p-groups more closely, two important
central series possessed by a p-group were derived, namely:
the upper and the lower central series., The relation

between these two series was shown by Theorem 5.15.

The importance of the Frattini subgroup of a p=group
is reflected in determining the nilpotency of a group, It
has been shown (Theorem 5,4) that the Frattini subgroup of
a nilpotent group contains the commutator subgroup. Conversely,
if the Frattini subgroup of a finite group contains the

commutator subgroup, then the group is nilpotent.

The usefulness of the Burnside's basis theorem is
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made clear by its application in obtaining a limitation for

the order of the automorphism group of a p-group.

Of all classes of p-groups, the 2-groups are of
special interest owing to their structure which is different
from other classes of p-groups, These 2-groups are classified
by a method suggested by Burnside [1] . The class provides
an excellent method in classifying groups of order 1l6. As
a result, there are just three groups of order 2" (m > 3)
and maximal class with commutator subgroup of type (m-2),
and contain cyclic subgroups of type (m-1); these are the

dihedral, generalized quaternion, and semi-dihedral groups.

The relation between the orders of 2-groups and their
class numbers were discussed, In particular, the class
numbers of the dihedral, generalized quaternion, and semi-

dihedral groups were obtained.

The importance of the elementary Abelian 2-group of
order 2" is reflected in its automorphism group. It has
been shown (Burnside [1] , p 116) that this automorphism
group is isomorphic with the lenear homogeneous group which
is of great importance in many branches of analysise. The

dihedral and quaternion groups of order 8 were discussed,

Although most of the theorems and styles of proofs
come from the authors listed in the bibliography, I note in
particular that the proofs of Theorems 5.7; 5.8; 5.9; 5.11;

5.12; 11.1; 11,2; and Theorem 11,6 are my own work,
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