
ABSTRACT 

This the sis is concerned with finite p-groups, in 

particular, ?-groups. Section 3 gives two definitions of 

a p-group; their equivalence is proved when the group in 

concern is of finite order. The existence of Sylow 

p-subgroups of a finite group is proved. Some consequences 

of this theorem are given. The properties of p~gràups 

are discussed. The Frattini subgroup of a p-group is 

studied; this subgroup is shovm to be ciosely related with 

the Burnside's basis theorem. Section 7 shows how the 

Burnside's basis theorem may be applied in obtaining a 

limitation for the order of automorphism group Aut(G) of 

a p-group G. More theorems regarding the limitation for 

the order of Aut(G) are obtained. The structure of 

2-groups is discussed. Immediately after this discussion, 

the groups in concern are classifip;d into Abelian and 

non-Abelian using a method suggested by Burnside [1 J • 

Other methods used for classification of 2-groups are 

described. The relation between the orders of 2-groups and 

their class numbers are discussed. In pal~ticular, the class 

numbers of the dihedral, generalized quaternion, and semi­

dihedral groups are obtained. The properties of elementary 

Abelian 2-groups are given. The dihedral and quaternion 

groups are compared. 
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p-GROUPS, IN PARTICULAR, 2-GROUPS 

1. Introduction. 

Lagrange's theorem states that in a fini te group G 

of order n, the order of every subgroup of G is a divisor 

of n. On the other hand, there need not be a subgroup of 

order m for every divisor m of n. For example, the alternating 

group A4 of degree 4 contains no subgroup of order 6 

although 6 divides 12 which is the order of A4. However it 

is true that when p is a prime divis or of n, then G contains 

a subgroup of order p. This theorem was first observed by 

Cauchy. It was extended later by the Norwegian mathematician 

L. Sylow to that Il G contains a subgroup H m of order p if 

m p 1s the highest power of a prime p dividing n". SUch a 

subgroup H is thus called a SylO\v p-subgroup. Sylow 

proved fUrther that the number of Sylow p-subgroups is 

= l (mod p), and that aIl Sylow p-subgroups are conjugate. 

Combining the Sylow theorems \':ith Lagrange 's theorem, 1t 

folloV1S that every group must arise from those groups whose 

orders are powers of prime numbers dividing the order of the 

group. The study of groups of arb1trary orders 1s thus 

shifted to those groups whose orders are powers of prime 

numbers, also called prime-power groups or simply p-groups. 
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The object of this thesis is to give an account OB 

p-groups with illustration on 2-groups. In studying these 

p-groups more closely, it will be shown that 2-groups possess 

more interesting properties than other classes of p-groups. 

2.. Notation. 

(x, y, .... 1 :t.> 

Z(G) - Z 

J 

J+ 

1 G 1 

~(G) 

[G:HJ 

[G,H J 

For elements 

[x,y] 

lx 1 

Cl(x) 

x 

• •••• 

• •••• 

· .... 
· .... 
· .... 
· .... 
••••• 

· .... 
· .... 

and y 

· .... 

the group generated by x, y, • •• 

operating under the relations *. 

the center of G • 

the set of all integers. 

the set of all integers j > G. 

the symmetric group of degree n. 

the alternating group of degree n. 

the number of elements in G , or the 

order of G. 

the Frattini subgroup of G. 

the index of H in G. 

the group generated by [a,b] such 

that a E. G and b € H. 

of a group G, 
-1 -1 x y ry. 

the order of x. 

the class of x. 
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the centra1izer of x • 

the norma1izer of x • 

Further notation is standard. (See Scott (1] ,. p 471-474) 

3. Definition. 

We start by giving two definitions of p-groups. 

Ear1y writers (Miller [lJ , P. Hall [1] , Burnside [1] ) 

defined p-groups as 

Definition 1. A p-group 1s a group whose order is a 

power of the prime p. 

Later Vlriters (M. Hall [1], Scott [1] ) defined p-groups as 

Definition 2. A p-group is a group a11 of whose 

e1ements have orders a power of the prime p. 

The main difference between these two definitions is 

that in definition (1), the group in concern is c1ear1y finite. 

Whereas in definition (2), the group in concern may be either 

finite or infinite. However, when the group is finite, the 

two definitions of p-groups are equiva1ent. We proceed to 

prove this. 

Definition (1) ~ Definition (2). 

Let G be a group of order pm, and let a be any 

e1ement of G. Then by Lagrange's theorem, 1 ail m 
p • Since 
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P is a prime, we must have lai = pr with r ~ m. Therefore 

G is a p-group in the sense of definition (2). 

Definition (2) ~ Definition (1). 

Let IG 1 ~ n, and suppose that q ~ p is a prime 

divisor of n. Then by Cauchy's theorem, G contains an element 

x of order q. But this is a contradiction. Therefore 

n = pm for some natural number m, and G is a p-group in the 

sense of definition (1). 

Q.E.D. 

In this thesis, we shall confine our attention to 

de fini tion (l). 

4. Sylow Theorems. 

As we noted in the introduction, the discovery of Sylow 

p-subgroUps results in the study of p-groups. It is to be 

expected then that many properties of p-groups are consequences 

of the Sylow theorems. In this section, we ahall prove these 

theorems, and from these we shall draw some consequences. 

Theorem 4 .. 1. (First Sylow theorem) If G is a group 

of order pra, p and s need not be relativeIy prime, then G 

contains a subgroup of order pre 

Proot. We prove by induction on 1 G 1. The theorem 
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ia trivial when a = 1. We May therefore asaume that a > 1. 

For a E G, we consider 1 m(a) 1 .. If 1 Cl(a) , = 1 for aIl 

a E G, then G is Abelian. Bence G contaiI!S an element x 

of order p (Ledermann [lJ ~ P 126), and the group G/<X) 

is of arder pr-ls. Therefore by inductive bypothesis, G/<x) 

contains a subgroup H/<x) r-l of arder p , and by the lattice 

theorem (Scott [1] , p 27), the corresponding subgroup H of 

G is of arder pr. We May therefore assume that 1 C1(a) 1 = ha> 1 

for at 1east one a of G. If (ha'~) = l, thdn since 

1 G 1 = 1 C1(a) 1 1 N(a) 1 , it follows that pr IIN(a) 1 .. Therefore 

by inducti~ hypothesis, N(a) contains a subgroup H of arder 

pr. In any other possibility for ha' we have p 1 ha for aIl 

a E G for vlhich 1 Cl (a) 1 = ha;::> 1. Then from the class 

equation of G, p/IZI. Therefore Z contains an element z of 

arder p., 'The group G/<z> ia of order pr-la; ao by the 

induction assumption, it contains a aubgroup K/<Z) of order 

r-l r p , and the corresponding subgroup K of G is of order p • 

This completes the proof. 

Q.E.D. 

Two consequences of this theorem are 

Corol1ary 4.2. m If p 1s the highest power of the 

prime p dividing the arder of G, then G contains a subgroup 

m of arder p • 

C'orol1ary 4.3. (Cauchy 's theorem), If G is a fin1te 
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group whose order i8 divisible by a prime p, then G contains 

a subgroup of order p. 

Theorem 4.4. (Second and third Sylow theorems) Let 

G be a group of order pms, (p,s) = 1. Then the number of 

sylow p-subgroups is = 1 (mod p) and i5 a divisor of s; 

aIl Sylow p-subgroups are conjugate. 

Proof. Let K and H he any Sylow p-subgroups of G. 

We define an equivalence relation on C1(K) as follows: 

For a subgroup A E Cl(K), a subgroup B E Cl(A) iff there 

exists h E H such that H = h-lAh. This is an equivalence 

relation. First, A E Cl(A) for aIl A E Cl(K). Next if 

B E Cl(A) so that BO = h-lAh, where h E H. -1 Then A = hBh , 

and so A E Cl(B). Pinally if B € Cl(A) and A E Cl(D), so 

that B = -1 hl Ahlt and A = -1 h2 Dh2 for some hl, h2 E H. Then 

-1 B = (h2hl) D(h2hl) which implies that B E Cl(D). The 

equivalence classes under this equivalence relation consist 

of subgroups which are conjugate under transformation by 

elements of H. If A 1- H, then ICl(A) 1 = [H:H () N(A>] ::> 1. 

Since H is a p-group, it follows that pIICl(A)1 if A # H, 

and obviously 1 Cl(H) 1 - 1 if H E Cl(K). Thus Vie have -
{O (mod pl if H , Cl(K), 

!Cl(K) 1 -
l (mod p) if li E Cl(K). 

The case where H 4 al(K) cannot arise, since H ~ K shows 

that ! Cl(K) 1 = 1 (mod p). Therefore H e Cl(K) and the 
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number of Sylow p-subgroups is of the form l + kp, k e J: . 
Now 1:.+ kp %pM; on the other hand, l + kp 1 pms, hence 

1+ kp Is. This completes the proof. 

Q.E.D. 

Corollary 4.5. Let Sp be a Sylow p-subgroup of a 

group G. Then Sp is the only Sylow p-subgroup of G iff it 

is normal in G. 

Proof. Let SI 
p be any Sylow p-subgroup of G. Then 

by the Sylow 

-1 

theorem, Si -p -
-1 x Spx :for some X E G. But since 

Sp = x SpX for all x E G, hence Sp = Si. 
p' i.e., Sp is unique. 

Conversely, suppose that Sp is not normal in G. Then 

-1 Sp = x Spx for some x E G. Now by the Sylow theorem, 

x-lspX = S; is a Sylow p-subgroup which is distinct from Sp. 

Therefore Sp is not unique, a contradiction. 

Q.E.D. 

Two interesting theorems regarding a Sylow p-subgroup 

and its normalizer are 

Theorem 4.6. Let Sp be a Sylow p-sub~roup of a group 

G, N(Sp) the normalizer of Sp' and let H be any subgroup of 

G such that N(Sp) S H. Then H = N(H). 

Proof. It suffices to show that N(H) ~ H. Suppose 

that n E N(H) so that n-1Hn = H. Since N(Sp) S H, and since 

-1 -1 all Sylow p-subgroups are conjugate, n Spn = h Sph for 

-1 -1 sorne h E H. Hence hn Sp = Sphn ,which implies that 



- 8 -

hn -1 E N(Sp) C H. Therefore n E H. 

Q..E.D. 

Theorem 4.7. Let G be a group of order pms, (p,s) = l, 
and let H be a p-subgroup but not a Sylow p-subgroup of G~ 

Then H is a proper subgroup of its normalizer. 

Proof. The theorem is obvious if p fICl(H)! , since 

then pm 1 IN(H) 1 , and so N(H) contains a Sylow p-subgroup Sp 

with 1 SI' 1 > 1 H!. Therefore there exists an element x e Sp !: 

N(H) with x-IHx = H and x, H; i.e., H C N(H). On the 

other hand, if 1 Cl(H) 1 - pk, k e J, then H transforms the 

pk subgroups conjugate to H in systems of transitivity whose 

degree are 1 or numbers divisible by p. Since H is conjugate 

to itself, there are at least p subgroups conjugate to H which 

are transformed into themselves by H. Therefore H C N(H). 

Q..E.D. 

As a consequence of this, we have 

Corollary 4.8. Let m G be a p-group of order p , 

and H a maximal subgroup of G. Then H is normal in G. 

Proof. Since H is not a Sylow p-subgroup, H c N(H) ~ G 

(Theorem 4.7l. But H is a maximal subgroup of G. Therefore 

\'le must have N(H) = Gand so H is normal in G. 

Q..E.D. 

Further properties of p-groups will be given in the 

following section. 
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5. Properties of p-Groups. 

Notation: In this section, G will always stand for 

a p-group. 

Theorem 5.1. G contains at least one self-conjugate 

element of arder p. 

Proof. Suppose that r G 1 pm. Then from the class 

equation of G, we have 

pm 1 Z 1 + L, {IC1(x) 1 1 x € S} , 

where S is some subset of G. Since p Il Cl(x) 1 for each x E. S, 

p 1 IZ 1. Therefore Z, and hence G contains a self-conjugate 

element of arder p. 

Q.E..D. 

This theorem does not apply ta infinite p-groups 

(in the sense of de fini ti.on (2),. See Scott [1 J , p 216). 

Theorem 5.2. Every proper normal subgroup li of G 

contains at least one self-conjugate element of G which 1s 

of arder p. 

Proof. S1nce H is a subgroup of G, there is a subset 

T of H such that the clasa equation of H 1a 

IHI = IZ"HI + L {1aJ.(x) 1 1 Je E T} • 

B,y assumption, H is normal in G. Hence ICl(x)1 = [G:G(x)] 

which 1s divisible by p; and since H is a p-group, it follows 
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that P Il Z f\ Hl.. Therefore H contains at 1east one se1f­

conjugate element of G which 1S of order p. 

Q.E.D. 

Theorem 5.3. If K is a normal subgroup of G, and 

1 KI = p, then K :LB contained in the center Z .. 

Proof. By Theorem 5.2, Z () K i- E, and Z (\ K f; K. 

But Bince 1 K 1 = p, which implies that K contains no proper 

BUbgrOUp. Therefore K = Z r. K ~ Z or K E Z. 

Q.E.D. 

Theorem 5.4. The commntator subgroup G' of G is 

contained in the Frattini subgroup ~(G) of G. 

Proof. The Fra tt:i.ni subgroup of a group K is the 

intersection of ail maximal subgroups of K. NOVI, let H be a 

maximal subgroup of G.. Then the group G,/M is of order p, 

and so it is cyclic. Since the commutator subgroup of a group 

is the smallest normal subgroup for which the factor group 

is Abe lian (Schenkman [1] , p 76), i t follows tha tG' ~ M 

for every maximal subgroup M of G. Therefore Gr C ~(G). 

Q.E.D. 

~eorem 5.5. The Frattini subgroup of G is the 

smallest normal subgroup for which the factor group is 

elementary Abelian. 

Proof. An Abelian group with prime exponent p is 
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called elementary Abelian (Zassenhaus [1] , p 142). G/~(G) 

is Abelian by Theorem 5.4. Now let M be any maximal subgroup 

of G. Then xP E H for aIl x E G. Since M is arbitrary, it 

follows that xP e ~(G). Therefore G/~(G) contains no 

element of order p2, and it must be of type (l,l, ••• ,l); i.e., 

G/~(G) is elementary Abelian. Next suppcse that N is a 

normal subgroup of G such that GjN ir- elementary Abelian. 

Then by a theorem of Dlab V. [1], ~(G;N) = () (GiN)p, where 

p ranges over the prime divisors of the order of GjN. But 

since GjN is elementary Ahelian, it follows that 

~(G/N) = n (G/rn P = N. Therefore ~(G) ~ N .. 

Q.E.D. 

An immediate consequence of this is 

aorollary 5.6. If Gis elementary Abelian, then ~(G) =E. 
Theorem 5.7. If G is non-cyclic, then the factor group 

G/G' cannot be cyclic. 

Proof. We assume the contrary and let G/G' = < G 'x) 

with x E G. Then G = G'(X). Since G' ~ ~(G) (Theorem 5. Ld, 

and since ~(G) i8 the set of non-generator8 of G, ( by this 

we mean that ~(G) has the property that whenever K i8 a subgroup 

of G such that G = ~(G)K, then G = ~ See M. Hall [1] , p 156) 

hence 
, 

G = G <x) = (X) ; thi8 implies that G i8 cyclic which 

is a contradiction. Therefore the theorem is true. 

Q.E.D. 
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If G is non-Abelian ot order pm, then 

Proof. SUppose that 1 G Il = pm-le Then the group 

GIGI is of order p, hence it is ayclic. But this is 

impossible (Theorem .5.7). Theretore IG" # pm-le 

Q.E.D. 

For the center Z of G, we have 

Theorem .5.9. If G is non-Abelian of order pm, then 

1 Z 1 ., pm-le 

Proot. Herc again we prove by the contrary and suppose 

that 1 Z 1 = pm-le Then G/Z is of order p, so it is c~clic. 

But then G = <Z, x) = Z<x} is Abelian, Vlhich i8 a 

contradiction. Therefore the theorem is true. 

Q.E.D. 

Theorem .5.10. If G is of order p2, then G is Abelia~. 

Proof. By Theorem .5.9, IZ 1 ~ p. But by Theorem 5.1, 

IZI ~ p. Hence the only possibility for tne order ot Z is 

that 1 Z 1 = p2 = 1 G 1. Theretore G is Abelian. 

Q.E.D. 

Theorem .5.11. It G is non-Abelian ot order p4, then 

G' is Abelian. 

Proot. T~iG follows directly trom Theorems .5.8 and 3.10. 

Q.E.D. 
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TheoreD'l 5.12. If G is non-Abelian of order p5, then 

G' is Abelian. 

In order to prove this theorem, Vie employ a lemma of 

c. Hobby [1] , which \'le st~te as 

Theorem 5.13. Let G be a p-group of order pm (m ~3), 

and H a non-Abelian subgroup of .order p3. Then H is not the 

Frattini subgroup pCG) of G. 

Proof. Suppose that H = ~(G). Then by the Sylow 

theorem, there is a subgroup N of G such that N <lH and 

INI = p2; moreover N is normal in G, hence [G:C(N)] ~ p 

(Blackburn [1]). Therefore C(N) is a maximal subgroup of 

G so that H E C(N). Now N c H S; C(N) implies that 

N ~Z(H). But the center of H is of order p (Theorem 5.9). 

This contradiction proves the theorem. 

Q.E.D. 

Proof of Theorem 5.12. The possible choice8 for the 

order of G' are p, p2, and p3. ( p4 i8 ruled out by Theorem 

5.8.) If G' i8 of order p or 2 p , then G' is Abelian (Theorem 

5.10) • There remains to show that G' i8 Abelian when 

1 G' 1 = Il. Suppose that G' is non-Abelian. Vie \Vant to 

shoVi that on this a8sumption we shall arive at a contradiction, 

and the theorem will be proved. Now the group G/t' is 

Abelian and of order p2. It cannot be cyclic sinee G i8 

non-cyc1ie (Theorem 5.7). Henee G/fi' must be elementary 
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Abelian, so that ~(G) ~ GI (Theorem 5.5). On the other 

hand, we always have GI ~ ~(G). Therefore GI s: ~(G) ~ GI 

implies that G f = ~(G). But a non-Abelian group of order 

If> cannot be the Frattini subgroup of any other p-group 

(Theorem 5.13). Therefore GI is Abelian. This completes 

the proof. 

Q. E.D. 

Theorem 5.14. If H is a DOrmal subgroup of G, and 

[G:H] = p2, then G 1 ~ H. 

Proof. This follows directly from Theorem 5.10 and 

from the minimality of the commutator subgroup of a group. 

Q.E.D • 

From the fact that every p-group G has a non-trivial 

center, and that its central quotient group G/Z has the 

sarne property, it follows that 9very p-group G possesses a 

sequence of normal subgroups. 

E = Ka S Il ~ ••• f Km-l ~ xm = G (1) 

such that ~i-l belongs to the center of G~_l, where 

i = l, 2, ••• , m. Series (1) is called a central series of G, 

and the number m is i ts length. (See P. Hall (1 ] ). 

We next define two important central series which result 

from the study of p-groups. These definitions arise from a 

paper of P. Hall [1 J • 

Definition 5.1. The upper central seriee of a p-group 
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G is a sequence of characteristic subgroups of G 

E -Z 'z Co c:z C.Z - G - a - l - ••• - c-l - c- (2) 

such that Z~i-l 16 the center of G/Zi_l, i = l, ••• , c. 

Definition 5.2. The lower central series of a p-group 

G is a sequence of characteristic subgroups 

E = He f + l ~ He f f ••• ~ H2 ~ Hl = G (3 ) 

such that Hi = [R:i-l,G], 1 = 2, ••• , c'+l. 

Series (1), (2), and (3) are related by the following 

theorem. 

Theorem 5.15. (i) K:ï. ~ Zi (1:: 0, l, ••• , c); and 

(11) Hi ~ ~~i+l (1 = l, 2, ••• , c'). 

Proof. (i) We prove by induction on i. The result 

is trivial when i = O. Suppose then that for some i, Ki ~ Zi. 

Since Ki+J.!Xi belongs ta the center of G;Ki, [K:i.+l,G) c 

Ki ~ Zi. Rence in the homomorphism of Ganta G/Zi' every 

element of Ki+l corresponds ta a self-conjugate element of 

G/Zii i.e., K:i.+1 E Zifl. 'l'herefore Kr ~ Zi for aIl i. 

~s proves (i). (ii) Here we again employ mathematical 

induction on i. The result is obvious when 1 = 1. Now, 

suppose that for some i, Hi ~ ~-i+l. Then by the definit10n, 

Hi+l = [Ht,G] ~ (Km-i+l,G J ~ R'm-i. Therefore B:ï. S; Kin-i+l 

for aIl i. 

Q.E.D. 
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This theorem shows that m ~ c and m ~ ct; hence c~ ~t. 

That is, the upper and lower central series of a p-group G 

have finite length, and both have the sarne length o. The 

number c is called the class of G. 

Definition 5.3. The class of a p-group G is the least 

number c such that Zc = G (P. Hall [lJ ). 

P. Hall [1] has shovm that if 2i > c, where c is the 

class of G, then Hi is Abelian. From this it is clear then 

that the commutator subgroup of a p-group of order pm (m ~3) 

and class 2 or 3 must be Abelian. But the commutator subgroup 

of.a p-group of order p5 and class 4 i6 also Abelian (Theorem 

5.12). (In tact we shall show later that the commutator subgroup 

of a 2-group of order 2m (m ~3), and class m-l is always 

Abelian.) Therefore the converse of this inequality is not true. 

Kurosh [1) defined a nilpotent group as a group which 

possesses at least one central series. He also defined a 

solvable group as a group K which satisfies one of the 

following conditions: 

(i) K has a finite solvable normal series. 

(ii) K has a finite solvable invariant series. 

(iii) The derived series of K terminates in the identity 

after a fini te number of steps. 

From these definitions, it follows that every p-group 

is nilpotent as weIl as solvable. 
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It is worthwhfle to note here that not every p-group 

(in the sense of definition (2» is nilpotent, for we have 

already mentioned that there exist infinite p-groups whose 

centers consist of the identity a10ne. 

Scott [1] has shown 

Theorem 5.16. The principal series of a p-group G 

has factors of order p. 

Proof. The principal (or chief) series of a group H 

is a chain of characteristic subgroups of H 

H = Ao 2 Al 2 •• • a An = E 

such that for each i, Ai is a maximal normal subgroup of 
, 

Ai-l. Now let E = Zo ~ Zl ~ ••• ~ Zc = G be the upper 

central series of G. By the definition, the factor groups 

Zi)Zi-l (i = l, ••• , c) are Abelianj hence for each it 

Zi!Zi-l has a composition series whose factors have order p. 

Then by the lattice theorem, G possesses a chain of subgroups 

G = Kr ::> - ... 
such that for each i, Ki/Ki-l is of order p, and refines 

the upper central series. There remains to show that Ki <3 G. 

By construction, there is some j such that Zj_l ~ li ~ Zj' 

so K~Zj-l ~ Zj/Zj-l which is the center of G/Zj_l. 

Hence Ki/Z j-l ~ G/Z j-l' and so Kï 4 G. Therefore the 

chain of subgroups which has been constructed is a principal 

series of G. 

Q.E.D. 
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We quote M. Hall (1] for the definition of supersolvable 

group. 

Definition 5.4. A group K is supersolvable if it 

possesses a finite series 

K = Ao i2 Al 2 A2 2 •• • 2 Ar = E 

such that each factor group Ai-UAi ( i = l, ••• , r ) is cyclic. 

Theorem 5.17. G ls supersolvable. 

Proof. This follows from Theorem 5.16 that in a 

principal series of G, each factor group has order p and ls 

therefore cyclic. 

6. The Frattini Subgroup of a p-Group. 

In section 3, we have given some properties of a p-group 

in connection with its Frattini subgroup. We shall extend 

their relation further. One of the most important theorems 

regarding the Frattini subgroup of a p-group is 

Theorem 6.1. (Burnsidets basis theorem) Let G be a 

p-group, ~(G) the Frattini subgroup of G, IG/~(G) 1 = pd. 

Then the following hold. 

(i) If G/~(G) <,(G)X1, ~(G)x2' ••• , ~(G)Xd) , then 

G = < xl, x2, ••• , Xd) ; 

(ii) If· G = (YI, Y2, ••• , 'Ys) , then there exists a aubset 
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G = (Yi1' Yi2' ••• , Yid,) • 

Proof. 
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then by the Sylow theorem, < xl' x2, ••• , xd> is contained 

in a maximal subgroup M of G. Since ~(G) ~ M, it follows that 

(~(G), xl' x2 ' ••• , xd> ~ M, and so <PCG)Xl' tCG)X2' ••• , ~(G)~> 

~ M/~CG) C G/~CG). Therefore G/~(G) #- <~(G)X1, ••• , q(G)Xd) 

which is a contradiction~ This pro,es (i). 

(li) Since the Frattini ~'1lbgroup of a group 1s the set of 

non-generators, it follows that G = (~(G), YI, Y2' ••• , ys). 

Now, in the homoJllorphism of G onto G!tCG),. let Yi ~ ~(G)Yi. 

Then G~(G) ~ (~(G)Yl' ~(G)Y2' ••• , ~(G)ys). But sinee 

G/~(G) is e1ementary Abelian, a minimal bas1s of G!p(G) containe 

d ~ s elements. If {Yil' Y12' ••• , Yid} ~ {YI' Y2' ••• , Ys} 

snch that G,1(G) = <~(G)Yil' ~(G)Yi2'H., ~(G)Yid> , then by 

(i), G = (Yil' Yi2' ••• ' Yid). This completes the proof. 

Q.E.D. 

This theorem shows that a minimal basis of a p-group G 

may be obtained from the representatives in G of any minimal 

basis of the group G/f(G). When we come to the group Ant(G) 

of automorphisms of G, we shall show how the burnside's basis 

tHeorem may be applied in obtaining a limitation for the order 

of Aut(G) .. 

From Theorem 5.13, we know that not every p-group can 
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f'Unation as F.rattini subgroup or some other p-groups. The 

folloWing tlieorem which was proved by cr. Hobby [1] is another 

instance or this case. 

Theorem 6.2. Let H be a non-Abelian subgroul:J or a 

p-group G, and suppose that the index or K' in H is p2. Then 

H -f. ~(G) .. 

Proof. Suppose that H = t{G). Then by Theorem 5.16, 

H' contains a normal subgroup N or G with r H'/N 1 = p.. Since 

N is normal and contained in P{G), hence by a theorem or 

Gaschutz [1 J ,. P{G,/N) = ~(G)/N = H/N. Also 1 H/N 1 = 
IH/H' IIH'/N 1 = p3; and H'/N'" E so that H/N is non-Abelian. 

We therefore obtain ~N as a non-Abelian grbup or order p3 

and HIN = P(G/N) contradicting Theorem 5.13. Therefore H 1 t(G)~ 
Q • .E.D. 

In determining whether a given group is nilpotent or 

not, it has been proved (M .. Hall [lJ , p 157) that in a 

nilpotent group, the Frattini subgroup always contains the derived 

group. On the other hand, Wielandt, H (M .. Hall [1] , p 157) 

proved that if the Frattini subgroup or a rinite group G 

contains the derived group, then G is nilpotent. The condition 

that G i& rinite is necessary for this theorem does not apply 

in general to infinite groups. Recently, besides Hobby who 

has dealt in particular the Frattini subgroup of a p-group 

( in the sense of definition (2», other writers such as 
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Dlab, V [11 and Karinek, V [1] have dealt w1th the Fratt1n1 

subgroup of a more general class of groups. 

7. Groups of Automorphisms of p-Groups. 

While it is true that every p-group G kas a non-trivial 

center, its group Aut(G) of automorphisms need not join the 

same property. For example, let G be the four-group. Then 

Aut(G) is isomorphic with the symmetric group 53 which 1s 

centerless. But note that 2 divides the arder of Aut(G) so 

that the order of Aut(G) is bounded below. In this section, 

we shall show the relation between a p-group and its group of 

automorphicms, and from this we shall ob tain some limitation 

for the order of Aut(G). 

When a non-Abelian p-group G i8 given, the order of 

Aut(G) is not readily found except for a few cases. But when 

G is elementary Abelian, we have 

Theorem 7.1. If G is an elementary Abelian p-group 

m whose order is p , then the order of Aut(G) ie of the form 

( m) _ ( m ) m ) m m-l) f p - P - 1 (p - P ••• (p - p • 

Proo!. 51nce G is elementary Abelian, a minimal bqsis 

of G canid.a1sa of m elements. Suppose that {Sl, s2, ••• , Sm} 

is a f1xed basis of G, and {si, s2' ••• , s~} 18 any other 
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basis of G. Then the mapping si --7 s:f., 1 = l, 2., ... t m, 

definea an auto~orphism of G ao that the order of Aut(G) ia 

equal to the number of ways in chooaing a basis for G. Now 

there are pm 

there are pm 

l possibilities for sl. After choosing Bl, 

p possibl1ities for s2.. Continuing this 

process until all m generators have been chosen. There are 

therefore (pm _ l)(pm _ p) ••• (pm _ pm-l) distinct ways in 

which a set of inde pendent generatora may be chosen. Bence 

1 Aut(G) 1 = f(pm). 

Q.E.D. 

From this theorem Vie may deduce that when a p-group G 

is cyclic of order p, then Aut(G) is cyclic of order p-l. 

In particular, when p = 2, then Aut(G) io the identical 

automorphism. m In general, when a p-group G of order p (p 

an odd prime) io cyclic, then Aut(G) is also cyclic and of 

order pm-l(p-l) (Burnside Cl J). But when p = 2., we have 

Theorem 7.2. m If G is a cyclic group of order 2 

(m ~ 2.), then Aut(G) is Abelian and of type (m-2,1). 

Proof. Let a be a fixed element of G such that 

G = t.. a ). Since G is cyclic, there 1s only one element of 

m-l m-l m order 2. in G; hence there are 2. elements of order 2 • 

If b ia any one of' these, then the mapping f(a) = b 

def'ines an automorphism of' G. Since the congruence 

:x2m- l = l (mod 2m) 
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has no primitive root, Aut(G) i8 non-cyclic. Now 

52m- 2 == 1 (mod 2m) but 52Dl- 3 ~ 1 (mod 2m), hence the 

automorphism h(a) = a5 generates the cyc1ic group (h) ot 

arder 2m-2; on the other hand, the automorphism g(a) = a-1 

is of order 2 and not contained in (~) • Therefore 

Aut (G) = (h) X (g) is Abelian and type (iü-2,1). 

Q.E.D. 

From this theorem, we deduce some special cases for the 

order of Aut(G). When the group G is cyclic of order 4, then 

Aut(G) is of order 2, and is therefore cyclic. When G 1s 

elementary Abelian of order 4, then Aut(G) has order 6 

(Theorem 7.1). Now there are only tv/o groups of order 6; 

one cyclic and one non-Abelian which is isomorphic with the 

symmetric group S:5 (Ledermann [1] , p 49). s:tnce Aut(G) is 

non-cyclic, it folloVis that Aut(G) ~ 8:;. Vie therefore see 

that the group of autpmorphisms of a p-group need not have a 

non-trivial center. However the order of Aut(G) is alw~s 

divisible by P if the p-group G is Abeli~. 

Theorem 7.3. If G is an Abelian group of order pm 

(m ~ 2), then p 1 IAut(G)1 • 

Proof. The theorem is obviously true when G is either 

cyclic or elementary Abelian. In any other possibility. for 

G, G is the direct product of cyclic groups rr1 , ••• , ct of 

orders pDll, ••• , pmt. respectively. ( This follows from the 
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tundamental theorem for finite Abelian groups. See M. Hall [1: ) .) 

W1thout lose ot generality, we may assume that ml~2 and 

t > 1. Since ~l 1s cyclic ot order pmI. Aut(~l) has an 

element. r ot order p. For x E G, x can be written 

uniquely as x = sls2 •• ...st w1th si E c::t, and the mapping 

f*(x) = f(sl)s2 •• .st detinea an automorphism ot G. But 

Ir*1 = J ~ 1 = p. Theretore plI Aut(G) 1. 

As a matter of fact, this theorem is a particular case 

of a theorem of Hilton [1]. Hilton proved that if the order 

of an Abelian group G 1s divisible by pm, then the order of 

Aut(G) is divisible by pm-l(p_l). Using this theorem, we see 

that Theorem 7.3pmay be replaced by 

Dt Theorem 7.3-. If G 1s an Abelian group of order p , 

then pm-l(p_l) Il Aut(G) 1.. In particular, whcn p - 2., then 

2m
- 1 Il Aut(G) 1 • 

We have mentioned in section 6 that the Burnside's basis 

theorem may be applied in obtaining a limitation for the order 

ot Aut (G). This tact was tirst considered by P. Hall [1] • 

The resul ts were s ta ted in M. Hall [1] as 

The orem 7.4. Let G be a p-group of order pm, P(G) 

the Frattini subgroup of G, IG~(G) 1 

1 Aut(G) 1 1 pd(m-d)t(pd), where t(pd) 

d p. Then 

d d d-l 
(p - l) ••• (p - p ). 

Proof. Since the group GIf(G) 1s elementary Abelian 
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(Theorem 5.5), its group of automorphisms is of order f(pd) 

(Theorem 7.1). Now by the Burnside's basis theorem, there is 

an ordered generating set X = (- xl' x2, ••• , xd ) of G. We 

assert that there are pd(m-d)f(pd) such ordered generating 

sets of G. Consider the mapping xi --7 ai, i = l, 2, ••• , d, 

of X onto a basis of G~(G), the basis of G~(G) may be 

h . ~(d) d f h of the pm-d c osen ~n ~ p ways, an or eac ai' any 

elements in the cosets of ~(G) mapped onto ai is a permissible 

choice for ~. Since there are d elements in an ordered 

generating set, there d(m-d) d) are therefore p f(p ordered 

generating sets of G. Now every automorphism of G induces a 

permutation on the X's. But since an automorphism fixing any 

set X fixes every product of the xi in X, and so the entire 

group G; hence it is the identical automotphism. Therefore 

the group Aut(G) may be regarded as a regular permutation 

group on the X's, so that the sets X are permuted among 

themse1ves in transitive constituents each of which contains 

the sarne number of sets equal to the order of Aut(G). 

Therefore IAut(G)I! pd(m-d)f(pd). 

Q.E.D. 

As a consequence of this theorem, we have 

Corollary 7.5. The order of the group Aut (G.!I G/~(G» 

of automorphisms of G which fixes the group 

is a divisor of pd(m-d). 

G/~(G) elementwise 
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Proof. This follows !rom the fact that an automorphism 

of G which fixes the group G~(G) elementwise induces a 

regular permutation on the pd(m-d) ordered generating sets 

x of G; and by repeating the same argument of Theorem 7.5, 

we have tha corollary. 

Q.E.D. 

Having dealt in some detail with the upper bound for 

the order of Aut(G), where G is a p-group, our next inquiry 

is the lower bound of 1 Aut (G) 1. When G is an Abelian 

p-group, we have Theorem 7.3*. For non-Abelian p-groups, 

the first resul t was obtained by Herstein and Aàney [1] in 

year 1952. They proved 

Theorem 7.6. Let G be a finite group of order pms, 

(p,s) = 1 and m ~ 2. Then the order of Aut(G) is divisible 

by p. 

Proof. Vie prove by the contrary. Suppose that 

p211G 1 but p {IAU·C(G) 1. Since G/Z ~ Inn(G), the group of 

inner automorphisms of G, which is a normal subgroup of 

Aut(G) (M. Hall [lJ, p 85), hence pfIAut(G)1 implies that 

p.r 1 G;Z l , and so pm Il Z l, where pm is the highest power of 

p dividing IG 1. Therefore every Sylow p-subgroup Sp of G 

is contained in Z and hence it is the center of its 

norma1izer. Then by a theorem of Burnside (Zassenhaus [lJ , 

P 139), G contains a normal subgroup H with [G:H] = 1 Spi. 
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Clearly H n Sp = E and HSp = G; i.e., G:: Sp X H. Now 

Sp is Abelian and of order pm (m'~2), hence Aut(Sp) cantains 

an element f of order p. For a € G, a can le wr1tten 

uniquely as a = sh = hs where s ~ Sp and h E H; and the 

mapping f*(a) = f(s)h defines an autamorphism of G which 

1s of order p. This implies that p 1 IAut(G) 1 contradicting 

our assumption. Therefore the theorem is true. 

Q.E.D. 

In this theorem, the group G need not be a p-group. 

But 1t certai..nly must be finite, for there are infinite groups 

whose groups of a~to~orphisms consist of 2 elements only. 

For example, in a p-quasicyclic group 

rrpfID :: {an. n € J+ 1 a~_l = an' ai - e} , (Schenkman [1 ] , 

p 86) the group Aut(Cp~) cantains no elem~nt of order p unless 

p = 2, in whic.h case the anly non-trivial automorphism maps 

each element of the group anta its inverse; and clearly 

pZ Irr~1 for any prime p. 

\V1th the result abtained by Herstein and Adney •. many 

writers have attempted to work on the same subject. After a 

deep investigation with the center and the Sylow p-subgraups 

of a finite group G, Scott [Z] in the year 1953, extended the 

theorem of Herstein and Adney. He praved that if the order 

of a finite group G is divisible by~, then the arder of 

Aut(G) is divisible by PZ. In his paper, Scott made a 
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conjecture that there is a function f(m) such that if the 

order of the group G is divisible by pf(m), then the order 

of Aut(G) is divisible by pm. A year later, Schenkman [2] 

published a paper suceeding Scott's conjecture. Schenkman 

proved that if G ±S a finite non-Abelian group whose 

commutator subgroup is contained in the center Z of G, then 

the order of G divides the order of Aut(G). 

In aIl these theorems, the group G in concern need 

not be a p-group. Applying the theorem of Schenkman to our 

p-groups, we see that if G is a p-group and class 2, then its 

order divides the order of Aut(G) since the commutator 

subgroup of a class 2 p-group is always contained in the 

center of the group. 

8. Structure Theorems of 2-Groups. 

Generally speaking, groups can be divided into Abelian 

and non-Abelian. For finite Abelian groups, their structure 

i5 completely determined (up to isomorphism) by a theorem 

which states that a finite Abelian group i5 the direct 

product of cyclic groups of prime power order (M. Hall [1] , 

p 41). Thus the number of distinct types of Abelian p-groups 
m of order p i5 equal to the number of partitions of m with 

regard to addition. For example, let m = 7. There are 14 
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ways of partitioning 7 with regard to addition, hence there 

are 14 isomorphisms classes of Abelian groups of order p7. 

These May be written as: (7); (6,1); (5,2); (5,1,1); (4,3); 

(4 ,2 ,1); (4 , 1 , 1 ,1 ); (3,3 , 1) j (3 , 2 , 1 , 1 ); (3 , 1 , 1 , 1 , 1 ); ( 2 li 2 , 2 , 1) ; 

(2,2,1,1,1); (2,1,1,1,1,1); (1,1,1,1,1,1,1). 

Vfuen G is a non-Abelian p-group, the case is not simple. 

It is more complicated when p = 2. This will be shawn in the 

following theorems. 

Theorem 8.1. Let G be a non-Abelian group of arder 

m 2 ,; and let it contain a cyclic subgraup of index 2. Then 

G belongs to one of the fallowing types: 

m ~3 

(1) Generalized quaternion group, 

a 2m- 1 =e, b2 =a2m- 2 , bab-1 =a-1• 

(2) Dihedral group, 

a 2m- l = e, b
2 = e, -1 -1 bab = a • 

m ~4 

Semi-dihedral group, 

2m- l 
a = e, b2 = e, -1 -1+2m- 2 

bab = a • 

2m-l a = e, b
2 = e, -1 1+2m- 2 

bab = a • 

Proof. If G contains an element a m-l of order 2 , 

then (a) as a maximal subgroup of G, is normal in G. For 

b ~ (a) , we have 
b2 __ s 

- a E (a) , and bab-l = ar Ylhere 
2 1 (mod 2m-l) but 4 m-l non-Abelian. r - r l (mod 2 ) since G is 
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It follows that there are three choices for r mod 2m- l 

namely: r = -1, -1 + m-2 2 , 1 + 2m-2. Since basb-l = aS, 

we have 
sr _ s 

a - a or rs :: s m-l) (mod 2 as a condition on 

s. Wb8n r = -l, then 

or 

-s = s (mod 2m-l) 

m-2 s = 0 (mod 2 ). 

implies that 

Therefore 

or aS = a2m- 2• Rence with r = ~l, we have the generalized 

quaternion group or the dihedral group. When m = 3, these 

are the only groups. Next suppose that m ~4, and 

r = -1 + 2m-2. Then (-1 + 2m-2)s :: s (mod 2m-l) implies 

that s(2 - 2m-2) = 0 (mod 2m-l) or s = 0 (mod 2m-2). 

Therefore or In the latter case, we 

have where Bence either a and b or 

a and bl satisfy the relations of type (3). Finally suppose 

m 2 (m 2) (2m- 1 ) that m ~ 4, and r = 1 + 2 -. Then l + 2 - s = s mod 

implies that m-2 2 s = 0 (mod 2m-l) or s = 281 (say). \Ve 

find i by the 1(1 + zn-3 )sl = m-2 congruence o (mod 2 ), 

set bl = a~. Then -1 blabl = a 1+am-2 
so that a and 

satisf,y the relations of type (4) in the theorem. This 

completes the proof. 

Q.E.D. 

There is only one type for a non-Abelian p-group G 

(p an odd prime) of order pm which contains an element of 

order pm-l. This group 1s defined by the relations 

...m-1 
&.1:' = e, 

·2 
bab-l = al+~ • (See 

M. Hall [1] , p 187). 

and 

bl 
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Theorem 8.2. Let G be a 2-group of order 2m (m ~ 3) 

and maximal class. Then G has the following properties: 

(1) Z c: G'. 

(2) G' is cyclic of type (m-2). 

(3) G cOutains cyclic subgroups of index 2. 

Proof. We prove by induction on m. When m = 3, the 

~l and quaternion grours of order 8 are of maximal 

class. Each group contains elements of order 4, and the 

subgroup Z = G' is of order 2. Suppose then that m) 3. 

Since G is of maximal class, 1 Z 1 = 2, and G/Z is of order 

2m- l and maximal class. Therefore by the induction assumption, 

G/Z contains a cyc!.ic subgroup A/Z = <Zx) of index 2 in 

G/Z. By the lattice theorem, A = {Z,x> 1s a subgroup of 

index 2 in G. Clearly A is Abelian. We assert that it is 

cyclic. Suppose i t is not. Then A = Z X (X), and 

(x2m- 3 > being characteristic in A, is normal in G. Since it 

is of arder 2, it is contained in Z which is a contradiction. 

Therefore A = (a) is cyclic, and G = (A,y). Since 

A is normal in G, the mapping f(a) [a,yJ is a 

homomorphism of A onto G t • Now a E Ker (f) iff 

t(a) = [a,y] = e; whîch is so iff a € Z. Hence Ker(f) = Z, 

and A/Z ~ G'. Since A/Z is cyclic of type (m-2), this 

implies that G' is cyclic of type (m-2). The proof is now 

complete:;. 

Q.E.D. 
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As a consequence of this theorem, we have 

C"orollary 8.3. If G is a 2-group of order 2m and 

contains an Abelian subgroup A of index 2, and if Z S G', 

then A/Z ~ G'. 

H. Hall and Senior [1 J have shown 

The orem 8.4. m Let G be a 2-group of order 2 and 

class 2 with center Z of order 2. Then G 1s the central 

product of dihedra1 and quaternion groups. 

Prooî. Here again we prove by induction on m. 

Vfuen m = 3, G is a non-Abelian group of order 8; hence it 

is either dihedral or quaternion. Suppose now that m > 3. 

Since G is non-Abelian, there are elements x, y with 

[x, y] = e. Then the cen tralizers C (x) and C (y ) are both 

of index 2 in G; and 50 C(x) n C(y) = H 1s of index 4 in G. 

Let K = (x,y). Then G = laI and K (\ H = Z. Since 

[K,H] = E, Z(H) = Z. Therefore G i8 the central product 

of K and H. By the induction assumption, H is the central 

product of dihedral and quaternion groups. On the other 

hand, since K,/k f"\ H ~ KH/H, 1 K 1 = 1 K n H IIG/H 1 = 8 so 

that K is either dihedral or quaternion. The theorem now 

follows. 

Theorem 8.5. If G is a 2-group of order 2m which 

contains only one subgroup of arder 2, then G is either 
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cyclic or generalized quaternion. 

Proof. We prove by induction on m that G ls cyclic 

or generalized quaternion. The result is obvious wh~ 

m = 1. We may therefore assume tha.t m ~ 1. If G contains 

a subgroup H of index 2, then by the induction assumption, 

H is cyclic. Hence G is either cyclic or one of types (1) 

through (4) of Theorem 8.1. But each of these groups 

contains more than one subgroup of order 2 except the generalized 

quaternion group. There remains to be considered the case where 

every subgroup of index 2 is generalized quaternion. We 

shall show that this situation can not happen. First let 

m = 4 and a subgroup Q of index 2 be the quaternion group~ 

Then Q = (a,. b 
_ 2 

a , 

and G = Q + Qx where x 4 Q but x2 1- Q. Now x must 

transform one of the subgroups of Q namely (a> , < b > , 

<. cb) into itself. Without lose of generality, we may suppose-' 

this to be <. a > • or The 

first case implies that < a,c) is an Abelian Group of 

index 2 contrary to our assumption. The latter case implics 

that (cb)-la(cb) - a so that <a, cb) is an Abelian 

group of index 2, aGain a contradiction. Next suppose m ~5, 

and a subgroup H of index 2 be a generalized quaternion 

group. Then H = (a, b 

and G = H + lh::. Since (a> is the only subgroup of order 

2m-2 in H and aIl elements of H not in <. a) are of order 4, 
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hence -1 x ax = ar and x2 == aib or x2 = ai. If' x2 = aib~ 

then -2 2 x. ax = a-1 = x-1ar x = ar2 sa that 2 
-1 (mod 2m-2) r -

which is impossible. If x2 = ai,. then < a,x. ) , as a 

subgroup of' index 2, is gene~alized quaternion. Bence 

c-1ac = a -1, (cb)-la(cb) = a sa that .( a,cb) is an Abelian 

group of index 2, a contradiction. This completes our proof' of' 

the theorem. 

Q.E.D. 

Theorem 8.5 can be extended in the f'olloVling sense. 

Theorem 8.6 •. If' G is a 2-group of' arder 2m which 

contains only one subgroup of arder 2r , l (r ~m, then G 

is cyclic. 

Proof'. Sere again we prove by induction on m. 

When m = 3 ( in which case r = 2 ), each of the f'ive groups 

of' arder 8 cantains more than one subgroup of order 4 except 

the cyclic group of arder 8. On the other hand, if a group 

G of order 2m contains only one subgraup H of order m-l 2 , 

then H must be the Frattini subgroup ~(G) of G. Suppose 

that x is an element of G which is not in ~(G) such that 

G ~ ~(G)<X) "then we have G = (X); i.e., G is cyclic. 

This proves the theorem for m = 3 and for aIl cases with 

r m-l. Vie May therefare assume that 1 < r '" m-l and 

m ) 3. Let H be the unique subgraup of order 2r , then 

H is contained in a maximal subgroup M of' G. Since 
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1 <r <m-1, hence by the induction assumption, Mis cyclic; 

and so H, as a subgroup of a cyclic group, is also cyclic. 

Now every element of order 2 or 4 is contained in a 

subgroup of order 2r , r ~ 2, and hence in H. But H, being 

cyclic, contains only. one subgroup of order 2 and one of 

order 4. Therefore by Theorem 8.5, G is cyclic or generalize1 

quaternion. Since a generalized quaternion group contains 

more than one subgroup of order 4, it follows that G is 

cyclic. This completes the proof. 

Q.E.D. 

This theorem applies also to any p-group, where p is 

an odd prime. In fact a p-group ( p an odd prime ) of order 

pm which contains only one subgroup of order ?r, 1 ~ r ~m, 

is necessarily cyclic. ( See Burnside (1), p 131.) 

9. Classification of 2-Groups. 

We shall now illustrate the forgoing theorem by 

classifying aIl groups of order 2m ( 1 ~m ~4 ). 

Since 2 is a prime number, there is only one group 

of this order and it is cyclic. 

A group of order 4 is by Theorem 5.10 an Abelian 

group. There are therefore two isomorphism classes: (2); (1,1). 
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For ~ups of order 8, there are three Abe1ian types: 

(3 ); (2 , 1) j ( 1 , 1 ~ 1 ) • 

In considering a non-Abe1ian group G of order 8, we 

first suppose that G contains an e1ement a of order 4. 

Then by Theorem 8.1, G must be10ng te one of the fo11owing: 

Dihedra1 group: 

b 2 -- e, 

Quaternion group: 

422 a = e, b = a , 

-1 a 

Next suppose that G contains no e1ement of order 

greater than 2. Then every e1ement of G is of order 2 

except the identity, so that G is Abe1ian the case which has 

already been considered. Thus these two groups exhaust a11 

the possibi1ities for non-Abe1ian groups of order 8. There 

are therefore 5 groups of order 8; three Abe1ian and two 

non-Abe1ian. 

We next consider groups of order 16. There are five 

Abe1ian types of this order: (4); (3,1); (2,2); (2,1,1); 

(1,1,1,1). 

A non-Abe1ian group G of order 16 which contains 

an e1ement of order 8, must by Theorem 8.1, belong to one 

of the f011owing: 

bab-1 



Dihedral group: 
2_ 

b - e, 

Generalized quaternion: 

B 2 4 -1-1 a = e, b = a, bab = a • 

Semi-dihedral: 

aB e, b2 = e, 

Next suppose that G contains an invariant cyclic 

group (a) of order 4 but contains no element of order B. 

\'le consider the follovling cases. 
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(i) Suppose that a E Z. Then we must have (a) = Z and 

G/<a) can only be of type (1,1) (Thearem 5.9). There ean 

be no element x E G ,'lith x4 E .( a) and x' 1 t.. a) 

for othervlise G = t..a,x) would be Abelian eontrary to our 

assmnption. Renee there must be elements b:- c 1 < a> 

and both are of order 2. Since b 4 Z, and sinee c-~~2 = b, 

it follows that c -~c = bar, where r E 0 (mod 2m- 3 ). 

Therefore there is a single type defined by the relations 

a4 _- e, b 2 -_ e, c2 - e c-1-c - ba2 -, ~ - , 
-1 b ab = a, = a. 

(ii) Suppose next that G cantains no self-conjugate 

element of order 4, and that (, a) is a self-conjugate 

eyelical subgroup of order 4. If G/(a) is eyelie, then 

x4 E (a) for aIl x € G. Suppose that b is any element 

of order 4 whieh is not contained in <a>. Since G is 
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non-Abelian and is normal, we have 
-,1 - a-l <a) b ab - . 

There is therefore a single type defined by the relations 

a4 = e, b4 = e, b-lab -1 = a .' 

Next if G/(a) ls non-cyelie, then x 2 
E (a> for all 

x E G. Suppose that Z 4- (a> • Then G must eontain an 

element b €Z (a) With b2 e. If e is any other 

element not in < a, b > , then (a,.c > is a normal subgroup of 

arder 8 and <a,e> () (b > = E. Renee G is the direct 

product of a group of order 8 and a group of arder 2. There 

are therefore two types corresponding to the two non-Abelian 

groups of order 8. 

a4 = e, bc" = e, 

-1 c bc = b. 

= a, 

a4 = e, b
2 = a 2

, 

-1 

-1 = a , 
2_ 

c - e, -1 c ac = a, 

c bc = b. 

Next suppose that G contains no e1ament of order 8 

and no self-conjugate eyclical subgroup of order 4. Clearly 

G contains elements of order 4. Let a be one of these, 

then < a> is normal in a non-eyc lical su bgroup (a, b ) 

of order 8. If c is any other element of G whieh is not 

in < a, b >, then sinee a 4 Z, -1 c ac = ab. There is 

again a single type defined by the relations 

a4 =e, b2 =e, c2 =e, b-lab=a, 

-1 c ac = ab. 

-1 c bc = b, 

Finally suppose that G contains no element of order 
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greater than 2. Then every element of G i8 of order 2 

except the identity. But this implies that G i8 B.n 

elementary Abelian group. Rence these groups exhau8t aIl 

the possib~ities for non-Abelian groups of order 16. There 

are therefore fourteen types of groups of order 16; rive 

Abelian and nine non-Abelian. 

This method of determining groups of prime power 

order was suggested by Burnside llJ. In bis text, Burnside 

classified aIl groups of order p4, p an odd prime, and he 

8howed that there are fifteen distinct types of groups of this 

order. 

The nine non-Abelian groups of order 16 which have 

jus t, !It~~t! determined can also be classified into two classes 

according as the group G is of class 2 or 3. 

If the group G is of class 2, then the commutatul" 

8ubgroup G' must have order 2, and so the center Z has order 

4. If G is of class 3, then G~ i8 of order 4, anè. so Z i8 

of order 2. Bince the automorphism group of a cyclic group 

of order 8 is non-cyclic (Theorem 7.2), it follows that there 

are three non-isomorphic: non-Abelian split extentions; one 

of these has de~ivc( group of order 2, and the other two have 

derived groups of order 4 (Bchenkman [1) , p 94). Since the 

generalized quaternion group of order 16 has derived group 

of order 4~ it follows that there are three groups of maximal 
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class with derived group of order 4 namely: the dihedral, 

generalized quaternion, and semi-dihedra1 groups of order 16, 

hence there ars six groups of class 2 with derived group of 

order 2. 

The above methods used in c1assifying groups of order 

16 are c1early not applicable in c1assifying groups of 

arder 32 or 64, for there is no apparent limit to the 

complication of a prime-power group. As we pass from the 

groups of order 8 to those of order 16, then to those of 

order 32, and so on, at each step new structural phenomena 

make their appearance. For this reason, those authors V/ho 

have constructed p-groups on an e~tensi_ve scale have found it 

necessary as a pre1iminary to split the problems up by 

introducing sorne system of classification. Thus Bagnera, who 

Vias the first to determine aIl the grou!?s of order p5, where 

p is an odd prime, made use of certain numerical invariants, 

notably the number of independent generators and the number 

of inner automorphisms, and also of the presence or absence 

of an Abelian subgroup of index p. Schreier, in his well-known 

paper on the same subject, employs the fact that the commutator 

subgroup G' of a group G of order p5 is necessarily Abelian, 

and classifies these groups according to the type invariants 

of the Abelian groups G' and G/G'. 

Thsse methods, admirable as they are for the purpose 
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for which they were devised, would need to be supp1emented, 

as we passed to groups of higher and higher orders, oWing to 

the gradually increasing complexity of the groups concerned. 

We therefore ask whether it would not be possible to introduce 

a system of classification which would apply without 

modification to aIl p-groups. The answer to this question 

has been giv.en by P. Hall [2] • 

Recently M. Hall and Senior [1] emp10yed the methods 

outlined by P. Hall and classified aIl the groups of order 

64. They showed that there are in fact 267 groups of this 

order which clarify the one determined by Miller [lJ who 

showed that there are 294 groups of order 64. 

10. Glass Numbers of 2~oups. 

From the results of section 9, it is clear that for 

each natural number n, there are only finitely many non­

isomorphic croups having n for their order. Similarly, 

thore are only finitely many non-isomorphic finite groups 

having a eiven number k of classes of conjugate elements. 

We calI the number k the class numbcr of the group. It 

is weIl known that Abelian groups have maximum class number. 

On the other hand, a p-group G of order pm and maximum 



- 42 -

class m-l has a minimum class number. In fact, Pol and [1 J 

has shown 

Theorem 10.1. The class number k of a quaternion 

group, dihedral group, or a semi-dihedral group is given 

by k = 2m
-

2 + 3. 

Proof. Suppose that G is quaternion < a, b 

a 2m-1 b2 2m-2 = e, = a , b-lab -1 = a >, or dihedral 

< a, b 1 a 2m- l = e, b2 = e, b-lab -1 = a >. Then in each of 

these tvlO G - {asbt 
1 = l, m-l t = l, 2 } cases, - s ... , 2 • 

and Z - <a2m- 2 > , 1 z 1 - 2. Now ar(asb)a-r -- - -

as+r(ba-rb-l)b = a s +2rb, and b(asb)b-l = (basb-l)b = a-sb. 

If aS E G - Z, then C(as ) (a) and so IC1(as ) 1 = 2, 

and there must be (2m- l - 2)/2 =2m-2 - 1 such conjugatc sets. 

Since for 1 ~ s !f 2m-l, C1(asb) = {a.%(s-2r) 1 r e J } 

hencEf ICl(asb) 1 = 2m-2. The 2m- 1 elements of the form 

aSb split into two classes. Therefore 

k = (2m-2 - 1) + 2 + 2 = 2m- 2 + 3. 

Next suppose that G is semi-dihedra1 <. a, b 1 

,- 2m-l 2 -1 _1+2m-2 ) 
à. = e, b = e, bab = a • Here again 

Z = (a2m- 2 >, 1 Z 1 = 2 so that the elements of the form 

s fa1l into two conjugate sets of one element each, and a 

2m- 2 _ 1 conjugnte sets of two elements each. NoVI 

ar(asb)a-r = as+r(ba-rb-l)b s+r r-r2m- 2 
= a (a )b, and 
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b(asb)b-1 = (basb-1 )b = a-S+S2m-2b. Hence Cl(asb) ~ 

{as- 4tb 1 t € J} U {aS+2+2m-2} so that 1 C1(asb) 1 > 

2m- 1j4 = 2mj8. Since 1 Z 1 = 2, the centra1izer of any 

element aSb must have order at 1east 4. Therefore 

IC1(asb) 1 = 2m-2, and again Vie have k = (2m- 2 - 1) + 2 + 2 

= 2m-2 .,. 3. 

Theorem 10.2. 

relations are given by 

...JD.-1 
aY-- = e, 

then the class number 

Q.E.D. 

If G is a p-group whose defining 

-1 1+...JD.-2 bab :!: a J:I. , 

k of G m-1 m-2 m-3 
is k = P + p - p • 

Proof. We first ob tain the conjugates of the e1ement 

of the form aSbt • (i) a-l(asbt)a = aS-l(btab-t)bt = 
a S - 1 (a[1+pm-

2
Jtbt) = as+tplll-2bt, and (ii) b(asbt)b-l = 

basb-1bt = as+spm-2bt~ Therefore C1(asbt ) -

{ar(s,t)pll1-2asbt 1 r lE J} .. Hence aSb t ~ Z iff 

t = 0 (mod p) by (i), or s = 0 (mod p) by (ii). Thus 

Z = {aP> and 1 Z 1 = pm-2. If aSb t E G - Z, then two 

r(s t)pm-2 q(s t)pm-2 
conjugates are equa1 iff a' = a' or 

r(s,t) ~ q(s,t) (mod p). It fo1lows that 1 C1(asbt ) 1 ~ p. 

s t ,J m m-2 Since a b ~ Z, the p - p elements of G split into 

(pm _ pm-2);lp = pm-1 _ pm-3 conjugate sets of p elements 

each. Therefore k = pm-2 + (pm-1 _ pm-3). 

Q.E.D. 
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aombining Theorems 10.1 and 10.2, Vie have the fOllowing 

theorem which gives the relation between the order of a 

2-group and the number of its conjugate sets. 

Theorem 10.3. If G is a non-Abelian 2-group of 

order 2m (m ~3) which contains a cyclic subgroup of index 2, 

then 2m L4(k(G) - 3), where k(G) is the class number of G. 

Proof. Let S be the set of non-Abelian 2-groups 

H such that H has a cyclic subgroup of index 2. Then 

G E St' and , G l = g = 2m• By Theorems 10.1 and 10.2, 

k(G) = 2m- 2 + 3 or 2m- l + 2m- 2 _ 2m-3; and 2m- 2 + 3 L 

zm-2 + 3(2m- 3 ) = 2m- l + 2m- 2 _ 2m- 3 • Define the mapping 

fs: {I H 1 1 H € S} ~ ~. by f s ( 1 HI) = 1 H lA - 3. 

Then fs (1 HI) L k(H) for aIl H E S.. Clearly t s is strictly 

monotonie increasing real valued function. Bence for any 

k in the range of te, t;l(k) is an upper bound for the 

order of any H E S such that k(H) ~ k. Therefore 

g = 2m ~ r;l(k(G» = 4(k(G) - 3). 

Q.E.D. 

Theorem 10.4. Let G be a 2-group of order 2m, 

k(G) the class number of G; and let r be any given natural 

number. Then k(G) ~ r only if m ~ (à - 1);3. 

Proof. Let m = 2n - i, where n € J6 , i = 0 or 

Then 
i . 

k(G) ~ 3n + 2 (Poland [lJ , P 91), and 3n + 2~ 

1. 
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is equa1 to 3m!2 + 1 or 3(m-1)/2 + 2. Now 3(m-1)/2 + 2 -

3m/2 + 1/2 < 3m/2 t 1. Therefore k(G) ~ 3 (m-1)/2 + 2. 

Wi th r = 1 or 2, and k (G) ~ r, 1 G 1 = 1 or 2 and the 

theorem is true. 

Q.E.D. 

The importance of 1east upper bound for the order of 

a group G, given k which is the class number of G, is 

reflected in the the ory of group representations. It has 

been knovrn that the number 0f irreducible representations of a 

group equa1s its class number (M. Hall L1] , p 267). Thus 

for example given a group G of order g, its class number 

must be greater than some minimum number t and so in 

searching for the irreducible representations of G one must 

have at 1east t. We now ask whether the result of 

Theorem 10.4 is a least upper bound for 2-groups. That is, 

given any number r, do there exist groups G with k(G) ~ r 

and IGI 2(2k(G) - 1)/3? Such groups, by Theorem 10.4, 

would have minimum class number k(G), and their orders would 

have odd exponent. First, suppose that 1 G 1 = 21 = 2. 

Then (2k(G) - 1)/3 = 1 implies that k = 2 and clearly 

the group G = (x x2 - e) has order 2 and class number 2. 

Second, if 1 G 1 = 23 = 8, then (2k(G) - 1)/3 = 3 implies 

that k = 5 and by Theorem 10.2, the quaternion and the 

dihedra1 groups satisfy this. Next suppose that 1 G 1 = 
25 = 32. Then (2k(G) - 1)/3 = 5 implies that k = 8. 
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But no group of arder 32 has c1ass number 1ess than Il 

(M. Hall and Senior [lj). Since no list of groups of arder 

27 = 128 exists, we cannat check further. But we have an 

indication that the result of Theorem 10.4 is not a 1east 

upper bound. 

P01and (11 had attempted ta establish a formula as 

a possible greatest lower bound for the class numbers of 

2-groups whose arder is greater than 16, and he had shawn 

that if 2n ... i .f-
I G 1 = 2 , where n E J, i = 0 or l, 

2n + i ~ 32, then k(G) ~ 3(n + 1) + 2i • Since there is no 

group of arder 28 = 256 and having class number 16 

(Poland [1] , p 114), sa that the result obtained is net a 

greatest lower bound. Thus the problem in finding a greatest 

10wer bound for the c1ass numbers of 2-groups still remains 

unso1ved. 

~le next prove a theorem of Hirsch [1 J restricted ta 

p-groups. 

Theorem 10.5. Let G be a p-group of order m p , 

and k the c1ass number of G. Then 

m k(mod 2 if is odd, and p - (p -1» p 

m k(mod 3) if p = 2. p -

Proof. For x, y € G, consider the equation 

-1 -1 x y xy = e. (1) 

Suppose that 1 Cl(x) 1 
r p • Then 1 C(x) 1 p m-r and 



- 47 -

hence the total number of solutions in G of the equation (1) 
k 

ls L.. pri(pm-rl) = kpm 
1 = 1 

Among the solutions there occur x = e, y =e. For aIl 

other solutions consider the Abelian group (x, y). 

Suppose that <x, y) 
r is cyclic of order p _ Then the 

number of ways in which the group can be generated by two 

of its elements is 

since either x or r y must be of order p , and of the 

possible p2r pairs \'le have to rule out only those in which 

the orders of both x and y are less than pr. Next 

suppose that <: x,y) is Abelian of type (prl ,pr2) _ Vie 

distinguish two cases_ 

(i) Suppose that rI = r2. Then x and y are independent 

generators of the group. This yields 

(p2rl _ p2r1-2) [(p2rl _ p2rl-2) _ (prl _ prl-l)] 

choices, and this number is clearly = 0 (mod (p2_l»_ 

(ii) Suppose that rI > r2- Then either x is of order prl 

and y of order pr2 relative to <x) or vice versa. 

Hence we ob tain 

(prl-l)(p_l)pr2~1)(p-l)(prl + prl-l) 

choices and again this number ia ~ O(mod (p2_l». Since in 

aIl cases, the number of solutions of equation (1) which 
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are d1fferent from x = e, y = e are :: 0 (mod (p2_1)~ 

hence we have 

kpm :: l (mod (p2 -1». 

Now, p2 = l (mod (p2_1» and so p2m _ l (mod (p2_1». 

Therefore pm = k (mod (p2_1». In part1cular, when 

p = 2, we have 2m = k (mod 3). This completes the proof. 

Q.E.D. 

Il. Some Special 2-Groups. 

In this section, we shall discuss some special types 

of 2-groups. 

For elementary Abelian 2-groups, we have 

Theorem Il.1. Let A be the elementary Abelian 

2-group of order 2m• Then every group G of order m 1s a 

subgroup of the group Aut(.~). 

Proof. We note that Aut(A) contains a subgroup 

which is 1somorphic with the symmtric group S. By Cayley's 
m 

theorem, every group G of order m 1s isomorphic with some 

subgroup of S. Therefore by law of transitivity, G 1s m 

isomorphic with some subgroup of Aut(A). 

Q.E.D. 

In section 7 we have determined the order of Aut(A); 



Burnside ( [1] ~ p 117) has shown that this group i6 

isomorphia with the 1eaear homogeneous group, which i6 of 

great importance in many branches of ana1ysis. 

Another interesting property of elementary Abe1ian 

2-groups ia 

Theorem 11.2. In an e1ementary Abe1ian 2-group of 

order 2m, every e1ement is of order 2 except the identity. 

Gonversely, a group of order 2m such that every e1ement 

is of order 2 except the identity, is necessari1y an 

elementary Abe1ian 2-group. 

Proof. First statement fo1lows direct1y from the 

definition of elementary Abelian group. Now suppose that 
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for aIl a, b E G, a2 = e, b2 = e. 
_ -1 -1 

Then a - a , b = b , 

-1 -1 -1 and ab = a b = (ba) - ba, so that G is Abe1ian. 

Glearly G is elementary Abelian since 2 is the 6mal1est 

prime number (with the exception of 1). 

Q .E •. D. 

This theorem does not apply to other classes of 

p-groups, where p is an odd prime, for there are non-Abelian 

p-groups a11 of whose elements, except the identity, have 

order p. For examp1e a group of order p4 with the defining 

relations 

= ca 

is a non-Abe1ian group aIl of whose elementa, except e, are 
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of order p (see Burnside [1] , p 143). 

Theorem 11 .. 3 .. Let G be an elementary Abe1ian group 

of order 2m and let it possess an automorphism f of order 2. 

Then there is a subgroup H of G such that IHI ~.J? 

and such that f(x) = x for aIl x E li .. 

Proof .. Le t H = {x E Gif (x ) = x }.. The n H is 

a subgroup of G. For if x, y E G 6uch that f(x) = x 
-1 -1-1 and f(y) = y, then f(xy ) = f(x)f(y ) = xy • Now let 

z E G - H. Then fez) E (z, li). For if fez) 
, = z , 

then since 1 f 1 2, f(zz') = z'z = zz' so that zz' E H 

or Hence for every e1ement x E G - H, 

f(x) = xy, where y E H .. Now if f(x) = xy and t(x') = x'y, 

then f(xx') = xyx'y = xx'y2= xx', so that x' E xH, and 

conversly. Therefore [G:H J ~ 1 H 1 j that i6 

(IHI>2~ 2m or IHI ~ J2fu. 
Q.E.D. 

We quote M. Hall and Senior [1] for the definition 

of capable groups .. 

Definition Il.1. A group is called capable if it 

can function as a group of inner automorphisms of sorne 

other group. 

Theorem Il .. 4. Let G be an e1ementary Abelian 

m 2-group of order 2 (m ~2). Then Gis capable. 
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The proof of this theorem follows from a lemma 

which was proved by M. Hall and Senior ( [1] ~ p 13). 

Lemma. Let li < Xl' .... , xr ) and suppose that 

Hi contains an element a i- e such that a ~ (xi) for 

each i, then thore exists no group G with G/Z ~H. 

Proof. We assume the contrary and suppose that f 

is an isomorphism of G/Z onto H such that f(a) = Zb, 

a = x~i for some mi e. J+-, and so f(a) = f(xi)Mï = ZYimi = 
-mi Zb, which implies that bYi € Z. Therefore bYi = Yib 

for each i. But G - <Z, YI' ••• , Yr > .. Rence b t Z 

BO that f(a) - Zb - Z implies that a = e, which is a 

contradiction. 

Q.E .• D. 

C'orollary 11.5. If G is a finite Abelian group, 

then G is cap~ble iff its two largest invariants are equal. 

Proof. For suppose tha t G = (Xl) X. •• X 

with Xi of order ni and that ni+llni (i -1, ••• , r-l). 

If nl;n2 ) 1, write YI = Xl and Yi = xlxi, i::> 1, and 

let u = yï2• Then G = {YI, ••• , Yr ) with u 'f. e and 

- n2 u - Yi for each i. Therefore G is incapable. Conversely, 

if G is capable, then its two largest invariants must 

be identical. 

Q.E.D. 
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Proof of Theorem II.4. This fol1ows direct1y from 

corollary II.5. 

Q..E.D. 

THe smal1est elementary Abelian 2-group is of course 

the cyclic group of order 2. This group is also the Sylow 

2-group of ~. The elementary Abe1ian 2-group of order 't 
is the four-group, also called the quadratic group, and is 

denoted by V4 • This group is a Sylow 2-subgroup of A4 

and A5. With regard to ~, V4 is the only Sylow 2-subgroup 

since it is invariant in A4. With regard to A5 , it has 

five conjugate subgroups. The four-group functions as the 

group of inner automorphisms of those class 2 groups which 

have at least one Abelian subgroup of index 2 and whose 

commutator subgroups are of order 2 (see M. Hall and Senior [11 ). 

We next discuss the dihedral and generalized quaternion 

groups. We recall the dihedral group of order 2m (m > 1) 

is generated by two elements a and b with defining relations 

m' a = e, 2 
b = e, bab-l = a-l 

• 

For each m ~ l, there is only one dihedral group of order 

2m. AlI dihedral groups, except the four-group, are non-Abelian. 

We also recall the generalized quaternion group of 

order 2m (m ~3) is generated by two elements a and b 

with defining relations 

2m- l 
a = e, -1 -1 bab = a • 
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When m =3, we have the quaternion group of order 8. 

The dihedral and quaternion groups of order 8 possess 

several properties in common as weIl as properties which are 

not~ When we consider their structure, we find 

(1) Both are non-Abelian groups aIl of whèse subgroups are 

Abelian. 

(2) Both contain at least one cyclic subgroup of order 4. 

(3) In each of these groups, the center and the commutator 

subgroup are identical. 

(4) Every sub6roup of the quaternion group is normal ( such 

a group is called Hamiltonian). On the other hand, not every 

subgroup of the dihedral group is normal. 

We quote Schenkman ( Cl], p 91) for the definition 

of split extension. 

Definition Il .. 1. A group is called a split extension 

of its subgroup H by its subgroup K if (i) H <IG, 

(ii) HK = G; (iii) H A K = E .. 

(5) The dihedral group contalns five elements of order 2, 

and is a split extension of a cy:lic group of order 4 by 

a cyclic group of order 2.. It is the Sylow suberoup of 84 , 

S5' A6' and A7. On the other hand, the quaternion group 

contains anly one element of orJer 2 (Thearem 8.2); this 

element is expressed a5 a power of some ather element of order 

4, hence the quaternion group is nat a split extension of any 
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ot 1ts subgroups. 

We proceed to give more properties of these tv/o groups. 

Theorem Il.6. The dihedral and quaternion groups 

cannot function as the Frattini subgroup of any p-group. 

Proof. This follows directly from Theorem 5.13. 

Q.E.D. 

Theorem Il.7. The quaternion group Q i8 incapable. 

Proof. Since Q contains element b2 -= a2 -d. e, 

hence by the lemma of Theorem Il.4, Q 1s incapable. 

Q.E.D. 

From this theorem, it follows that every Hamiltonian 

group is incapable, while every dihedral group is capable. 

For 2-groups of higher orders, the dihedral, generalized 

quaternion, and semi-dihedral groups are of special interest 

owing to their unusual properties which have already been 

discussed in various sections. In addition ta these, we 

finally note that the semi-dihedral group of arder 2m (m > 3) 

1s the Sylow subgroup of the automorphism group of the 

Abelian group of arder p2 and type (1,1), where 

m-2 m-l p = 2 - l (mod 2 ); moreover, every normal subgroup 

1s characteristic. 
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12. Summary • 

In year 1872, Sylow firet showed that for every natural 

prime p dividing the order of a finite group G, there is 

contained in G at least one Sylow J-subgroup; aIl Sylow 

p-subgroups are conjugate and the number of such subgroupa 

is = l (mod p). The study of groups of arbitrary order is 

thus focus to those groups whose orders are powers of prime 

numbers, also called p-groups. 

The most fundamental property of a p-group is that it 

has a non-trivial center and that its central quotient 

group possesses the same property. This is in contrast with 

the symmetric group Sn which is centerless. In studying 

the properties of p-groups more closely, two important 

central series possessed by a p-group were derived, namely: 

the upper and the lower central series. The relation 

between these tv/o series was shown by' Theorem 5.15. 

The importance of the Frattini subgroup of a p-group 

is reflected in determining the nilpotency of a group. It 

has been shown (Theorem 5.4) that the Frattini subgroup of 

a nilpotent group contains the commutator subgroup. Conversely, 

if the Frattini subgroup of a finite group contains the 

commutator subgroup, th en the group 1s nilpotent. 

The usefulness of the Burnside's basis theorem 1e 
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made clear by its application in obtaining a limitation for 

the order of the automorphism group of a· p-group. 

Of all classes of p-groups, the 2-groups are of 

special interest owing to their structure which is different 

from other classes of p-groups. These 2-groups are classified 

by a method suggested by Burnside Cl]. The class provides 

an excellent method in classifying groups of or der 16. As 

a result, there are just three groups of order 2m (m > 3) 

and maximal class with commutator subgroup of type (m-2), 

and contain cyclic subgroups of type (m-l); these are the 

dihedral, generalized quaternion, and semi-dihedral groups. 

The relation between the orders of 2-groups and their 

class numbers Viere discussed. In particular, the class 

numbers of the dihedral, generalized quaternion, and semi­

dihedra1 groups were obtained. 

The importance of the elementary Abe1ian 2-group of 

order 2m is reflected in its automorphism group. It has 

been shown (Burnside tl] , p 116) that this automorphism 

group is isomorphic Vlith the lenear homogeneous group which 

is of great importance in many branches of ana1ysis. The 

dihedral and quaternion groups of order 8 VIere discussed. 

A1though most of the theorems and styles of proofs 

come from the authors 1isted in the bib1iography, l note in 

particu1ar that the proofs of Theorems 5.7; 5.8; 5.9; 5.11; 

5.12; Il.1; Il.2; and Theorem 11.6 are my own work. 
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