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Abstract 

Sample size determination is one of the most important statistical issues in 

the early stages of any investigation that anticipates statistical analyses. 

In this thesis, we examine Bayesian sample size determination methodol­

ogy for interval estimation. Four major epidemiological study designs, cohort, 

case-control, cross-sectional and matched pair are the focus. We study three 

Bayesian sample size criteria: the a~erage length criterion (ALC), the 

average coverage criterion (ACC) and the worst outcome criterion 

(WOC) as well as various extensions of these criteria. In addition, a simple 

cost fundion is included as part of our sample size calculations for cohort 

and case-controis studies. We also examine the important design issue of 

the choice of the optimal ratio of controis per case in case-control settings or 

non-exposed to exposed in cohort settings. 

The main difficulties with Bayesian sample size calculation problems are 

often at the computation al level. Thus, this thesis is concerned, to a consid­

erable extent, with presenting sample size methods that are computationally 

efficient. 
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Résumé 

La détermination de la taille de l'échantillon est l'une des questions les plus 

importantes dans les phases premières de toute étude qui prévoit des analyses 

statistiques. 

Dans cette thèse, nous examinons des méthodologies bayésiennes de cal­

cul de taille d'échantillon pour estimation d'intervalles. Quatre études épi­

démiologiques majeures, à savoir les études de cohortes, les études de CaB­

témoins, les études de données transversales, et les études de données pairées 

forment le point d'intérêt principal. Nous étudions trois critères bayésiens 

de taille d'échantillon: le critère de longueur moyenne (ALC), le critère de 

recouvrement moyen (ACC), et le critère du plus mauvais scenario (WOC) 

aussi bien que divers prolongements de ces derniers. En outre, une fonction 

de coût simple est incluse en tant qu'élément intégrant dans nos calculs de 

taille d'échantillon pour les études de cohortes et les études de cas-témoins. 

Notre protocole d'étude addresse également l'importante question du choix 

du rapport optimal du nombre de sujets témoins pour chaque sujet cas dans 

les études de cas-témoins ou du nombre de sujets non-exposés pour chaque 

sujet exposé dans les études de cohortes. 

Les difficultés principales avec les méthodes bayésiennes de détermination 

Hl 



lV 

de taille d'échantillon réside essentiellement au niveau calculatoire. Ainsi, 

une bonne partie de cette thèse porte sur la présentation de méthodes de 

calcul de taille d'échantillon numériquement efficace. 
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Chapter 1 

Introduction 

Epidemiology has become an indispensable tool for both clinical research and 

the study of public health. Epidemiology contributes to the understanding 

of how disease transmission and pathogenesis relates to environmental or 

other agents. Epidemiological designs are also used to identify gene-drug 

interactions, unrecognized drug hazards in the fields of pharmacogenetics 

and pharmacovigilance (Weiss et al., 2001; Ashby et al., 1998), and many 

other areas. Case-control, cohort, cross-sectional and matched pairs studies 

are well-established epidemiological designs for investigating these and other 

diverse issues, hundreds of such epidemiological studies are carried out each 

year around the world. Rothman and Greenland, 1998, provide a modern 

overview of epidemiology. 

In order for epidemiological studies to best serve their purposes, they need 

to be carefully designed. One of the key components for a successful design 

is the determination of the appropriate sam pIe size, that is, the number of 

subjects that need to be observed in order to ensure sufficient precision in 
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the estimation of important parameters. Sample size estimation is almost 

always a difficult problem j not only for technical or computational reasons, 

but also because the choice often depends on the context of the proposed 

study, and could take into account both practical and ethical consideration, 

in addition to those of statistical precision. Lenth, 2001, discusses practical 

guidelines for effective sample size determination. Further, the solution can 

take several forms, depending on the specific criterion used. For example, one 

can consider Bayesian or frequentist criteria, and within each paradigm one 

must also choose the main out corne parameters, and whether the criterion 

is based on interval width, power, or sorne other criterion. In an cases, 

sample size determination requires a careful gathering of prior information 

from experts. 

In this thesis, we develop sample size methods for four of the most com­

monly used epidemiological designs, including case-control, cohort, matched 

pairs, and cross-sectional designs, in the context of 2 x 2 contingency tables. 

Traditionally, sample size problems have been presented in anticipation of a 

statistical analysis centred on hypothesis testing. In recent years, however, 

there has been a dramatic shift in philosophy towards interval estimation 

in the epidemiology literature (O'Neill, 1984, Gardner and Altman, 1986, 

Goodman and Berlin, 1994, Hoenig and Heisey, 2001, Cesana et al., 2001). 

Almost aIl statistical analyses now include interval estimates of the param­

eters of interest. Now, clearly, sample size calculations should be based on 

a criterion that, in spirit, matches the eventual analysis. Thus, for example, 

it is weIl known that sample sizes provided by power calculations are often 
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too small to guarantee that the parameter of interest is precisely estimated. 

In this thesis, we therefore develop sam pIe size methodology for interval es­

timation. The main idea underlying this methodology is that sam pIe sizes 

are determined on the basis of expected confidence-interval width in the fre­

quentist paradigm, and expected credible-intervai width or coverage, in the 

Bayesian framework. 

For reasons that we discuss fully in chapter 2, this thesis takes a Bayesian 

approach to sample size determination. From this viewpoint, a prior distri­

bution is formed about the unknown parameters, which summarizes the in­

formation available from past studies or expert opinion. Bayesian approaches 

are natural in epidemiology because information collected from past data is 

often available. Explicit Bayesian sample size calculations for cohort, case­

control, cross-sectional, and matched pairs studies have not been previously 

addressed in the literature, although various Bayesian analyses for the 2 x 2 

tables are presented in Aitchison and Bacon-Shone, 1981, Latorre, 1982, Nur­

minen and Mutanen, 1987, Zelen and Parker, 1986, Marshall, 1988, Franck 

et al., 1988, Carlin, 1992, Ashby et al., 1993, Walters, 1997, and Hashemi 

et aL, 1997. In this thesis, we find sample sizes for aH of the above designs 

under five different criteria. Although, sorne of these criteria have been pre­

viously defined, others are new, and aH are applied, for the first time in this 

thesis, to the estimation of risk ratios and odds ratios in above settings. 

As in much recent work on Bayesian analysis, the statement of the prob­

lem, i.e., the statement of how each criterion should be applied to each study 

design, is reiatively straightforward. On the other hand, the practical appli-
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cation, meaning the actual calculation of the sample sizes required for each 

combination of design and sample size criterion, is usually where the main 

challenges lie. While exact results are occasionally available and are derived 

in this thesis, we often resort to combinations of analytic and numerical 

approximations. 

Our principal contributions to sample size calculation methodology are 

found in Chapt ers 3 and 4. The focus of this thesis, presented in Chapter 4, 

is sample size determination for 2 x 2 tables arising in the context of the two 

sample problem (i.e., fin ding sample sizes for both exposed and unexposed 

subjects in cohort studies, or for both case and control groups in case-control 

studies). Nevertheless, in Chapter 3, we first consider sam pIe size methods 

for a simpler one sam pIe problem, where we assume sorne parameters are 

a priori exactly known. We begin with the one sample problem because 

the methods developed for the two sample problem are, for the most part, 

adaptations of those we develop for the one sample problem. 

In Chapter 2, we first review the definitions of cohort, case-control, cross­

sectional, and matched pairs studies. We then review frequentist and Bayesian 

analyses for the parameters of interest for these four designs. We next present 

a literature review of both frequentist and Bayesian sample size methodolo­

gies, accompanied by a critical discussion of the various choices of statistical 

criterion functions. Chapter 2 ends with a collection of other results useful 

for Chapters 3 and 4. 

In Chapter 3, we develop exact methods for Bayesian sample size determi-
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nation for exposure- and case-only studies for five different Bayesian interval 

based sam pIe size criteria. Exposure- and case-only studies are special cases 

of cohort and case-control studies, respectively, where one only needs to col­

lect information on exposed and diseased subjects, respectively. Sinee exact 

methods are not always feasible, and can often be accurately and efficiently 

replaced by third order approximations, we derive third order approxima­

tions to the criterion functions for each setting. We also provide explicit 

plug-in sample size formulae for these designs. Aside from exact and third 

order approximations, we also use Monte Carlo simulations to estimate the 

criterion functions. We compare these three methods, and show that they 

yield slightly different sample sizes. 

Chapter 4 is devoted to the two sample problem for cohort, case-control, 

cross-sectional and matched pairs designs. We derive sam pIe size formulae 

for these four epidemiological designs. Here, since exact methods are not 

possible, we mainly rely on Monte Carlo simulation approaches to sample size 

calculation. For this reason, the steps within each Monte Carlo simulation 

algorithm are described carefully. 

In summary, in this thesis we present, for the first time, methods for 

Bayesian sample size determination for the most common epidemiologic de­

signs. We consider a wide variety of criterion functions, and place emphasis 

on ease of implementation. At the same time we do not hide practical diffi­

culties, where they arise. 
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Chapter 2 

Literature review of the design 

and analysis of case-control and 

cohort studies 

Most studies in epidemiology can be classified into one of two types, experi­

mental or observational. 

® Almost aH experimental studies include randomization or other manip­

ulation of treatments or exposures by researchers. Clinical trials are 

examples where one randomly assigns treatments to subjects. Such 

trials are mainly carried out to quantify the effectiveness of new ap­

proaches to treatment and prevention. 

® In observational studies exposure to putative risk factors or treatments 

occurs "naturally", without direct manipulation by researchers. Cohort 

and case-control studies are usually examples of observational studies, 

7 
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although sorne clinical trials can a1so be cohort studies. 

Cohort and case-control studies can be further subdivided by their relation 

to time: 

® A prospective study is one in which exposure and a11 or most covariates 

are measured before disease manifests, with ascertainment of disease 

status occurring during a future follow-up period. 

® A retrospective investigation is one in which exposure is determined 

after the identification of disease status. 

Increasingly, studies are relying on a combination of both prospective and ret­

rospective elements to gather information. A third type of non-randomized 

design is the cross-sectional study, in which we view a snapshot of a well 

identified population at a certain point in time. Both diseases and exposure 

information (for example, drug use or chemical exposure) are collected simul­

taneously for each study subject, so that different exposure subpopulations 

may be compared with respect to their disease prevalence. It is, however 

difficult to ascertain a temporal relationship between the exposure and the 

onset of disease in cross-sectional studies. Randomized trials, while relatively 

free of bias compared to observational studies, are accompanied by problems 

of medical ethics, feasibility, cost, and logistical considerations. These lim­

itations have turned epidemiologists toward observational cohort and case­

control studies for the establishment of etiological relationships, despite their 

potential for producing biased results. Cohort and case-control studies are 

the two most well-established and documented observational epidemiologic 
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designs for studying exposure-disease relationships (Breslow and Day, 1980; 

Breslow and Day, 1988; Schlesselman, 1982; Rothman, 1986; Gordis, 1996; 

Rothman and Greenland, 1998; Rosenberg et al., 2000). We define these 

designs more formally in section 2.2, as they represent the main focus of the 

sample size methods developed for this thesis. 

In section 2.1, we set forth sorne quantitative measures of disease and 

exposure frequency, and association between disease and exposure. In section 

2.2, we briefly review cohort and case-control studies. Section 2.3 is devoted 

to an overview of frequentist analysis of risk ratios and odds ratios while 

section 2.4 describes a Bayesian counterpart. We finally come to the problem 

of sample size methodology in section 2.5. Section 2.6 contains a summary 

while section 2.7 presents a variety of preliminary results needed previously 

appearing in the literature which are essential to the rest of the thesis. 

2.1 Measures of disease occurrence and the 

association between disease and exposures 

Measures of disease frequency are the building blocks of any epidemiological 

investigation. They tell us how a disease is related to exposure in a given 

population. These measures, especially the comparative measures of the 

relative risk and the odds ratio, are the main parameters of interest in this 

thesis. Sample size derivation for case-control and cohort studies, the main 

topie of this thesis, will be based on these measures of association. 
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2.1.1 Incidence and prevalence 

Disease risk is principally expressed through the incidence proportion or 

simply the risk P(toh) (0 :::; P(toh) :::; 1), i.e., the fraction of new cases that 

occur during a specified period of time (to, td in a population at risk for 

developing a disease. More precisely, let T be the random variable describing 

the time at which an individu al develops a disease or a change in health 

status. Then 

Petah) == Pr(T E (to, tl)1 individual do es not die from any other cause in (to, tl))' 

(2.1.1) 

Assuming exchangeability of the subjects in the population (see Gelman 

et al., 1995), disease outcomes for individu aIs in the interval (to, t l ) could 

be thought of as i.i.d. random events condition al on P(toh)' When the time 

period is clear, we will denote the parameter P(toh) by p. 

The second measure of disease occurrence is the prevalence. The preva­

lence of a disease, which we denote by p', is the proportion of disease cases 

in a population at a given point in time or during a weIl defined time period, 

irrespective of the disease onset time. Prevalence is an important and useful 

measure of the burden of disease in a population, and is the most frequent 

measure obtained in cross-sectional studies. 

2.1.2 Relative measures of disease occurrence 

The question of whether or not a particular health condition is more likely 

under one set of exposures than another is very corn mon in epidemiology. For 
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example, Wilkins and Sinks, 1990 used a case-control study of parental oc-

cupation and intracranial neoplasms in childhood to investigate whether the 

case parents were more likely than the control parents to have a job before, 

during, or after pregnancy, that involved exposure to N-nitroso compounds. 

Such questions invariably involve two proportions, Pl and po, the probabili-

ties of the disease occurrence under exposure and non.,exposure, respectively, 

and are best approached using a relative measure of disease occurrence. 

We now define two measures that are central to this thesis. 

2.1.2.1 Relative Risk 

For simplicity, suppose we have two exposures, El and Eo, that are thought 

to be associated with the occurrence of disease D. Let E and D be bivariate 

random variables describing the marginal exposure and the marginal disease 

status, Le., 

{

l, 
E -

0, 

if individual is exposed to El, 
(2.1.2) 

if individual is exposed to Eo, 

{

l, 
D = 

0, 

if individual has the disease D, 
(2.1.3) 

otherwise. 

Let Pl = Pr(D = liE = 1) denote the disease risk among individuals exposed 

to El, and let po = Pr(D = liE = 0) denote the disease risk among the 

individu aIs exposed to Eo. We define the relative risk or risk ratio, R, of 

El relative to Eo as 

R = Pl = Pr(D = liE = 1) 
Po Pr(D = liE = 0)' 

(2.1.4) 
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This ratio indicates how manyfold the risk of disease in the group El is 

increased. If R > 1 we refer to a positive association while R < 1 indicates 

a negative association. Wh en R = 1 we say there is no association. 

Note also that there is no particular reason in equation (2.1.4) to choose 

Pl/Po over PO/Pl, (l-po)/(l-Pl), or (l-Pl)/ (l-po). Those four parameters 

aH carry the same information, although their interpretations are slightly 

different. The symmetry in these definitions imply a similar symmetry in 

the statistical properties of estimators of these quantities. 

2.1.2.2 Odds Ratio 

Another measure of importance is the odds ratio. The ratio 00 = ~ and 
1- Po 

01 = -1 Pl are called the odds of disease in Eo and El, respectively. 
- Pl 

The odds ratio of disease, 'l/Yd, is defined as the ratio of 01 to 00 

-
00 

Pl(1 - Po) 
po(1- Pl) 
Pr(D = liE = 1)[1 - Pr(D = liE = O)J 
Pr(D = liE = 0)[1 - Pr(D = liE = 1)]' 

(2.1.5) 

The interpretation of 'l/Yd is only qualitatively similar to R. Unfortunately, the 

odds ratio cannot be taken as a direct substitute for the risk ratio in general, 

although if Po and Pl are both small, say, less than 0.2 then 'l/Yd ~ R; this is 

known as the rare disease assumption. In general, as shown by Davies et al., 

1998, 'l/Yd < R -{=::=? R < 1, and 'l/Yd > R -{=::=? R > 1. The discrepancy between 

'l/Yd and R increases as the departure of Pl and R from unit y is increased. 

For instance, Pl = 0.95 and Po = 0.8 gives R = 1.1875 with 'l/Yd = 4.75. For 

Pl = .9 and Po = .1, however, we get R = 9 and 'l/Yd = 81. 
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As with the relative risk, there is no particular reason to choose Pl (1 -

Po)/Po(l - Pl) over its reciprocal po(1- PI)/Pl(1- Po). 

Corresponding to an odds ratio for disease, an odds ratio for exposure 1/Je 

can also be defined: Let p~ = Pr(E = 11D = 1) and p~ = Pr(E = IID = 0). 

Define 

1/Je = p~ (1- p~) = Pr(E = 11D = 1)[1 - Pr(E = 11D = 0)] 
p~(1- pD Pr(E = 11D = 0)[1 - Pr(E = 11D = 1)]' 

(2.1.6) 

Nowa simple application of Bayes' theorem shows that 'l/Jd = 'l/Je (Cornfield, 

1951). Since 1/Je is estimated directly from a case-control study, while 1/Jd is 

the parameter of real interest, the equality of 'l/Jd and 'l/Je means that a case-

control study may be used as a reasonable substitute for a cohort study. A 

time-dependent version of 1/Jd = 'l/Je, relating the instantaneous odds ratios of 

disease and exposure is given by Prentice and Breslow, 1978. 

An algebraic relationship binding the proportions Pl and Po is easily seen 

to be described by the pair of equations, 

Pl = R· Po and 
1 1 1 1 
-=1--+-·-. 
Pl 'l/Jd 'l/Jd Po 

(2.1.7) 

Other measures of association between exposure and diseases include the 

risk difference or attribut able risk 0 = Pl - Po, the preventive fraction 

P Fe = Po - Pl = 1 - R, and the attribut able proportion or fraction APe = 
po 

Pl - Po = 1- RI , where Pl and Po are defined as in the definition of the risk 
Pl 

ratio. These will not be extensively discussed in this thesis. See Miettinen, 

1976; Walker, 1976; Rothman, 1986; and Blackwelder, 1993; for descriptions 

and other properties of these parameters as weIl as estimation procedures for 

them. 
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The parameters P Fe and APe are both linear combinations of R, so sam­

pie size computations based on them will be similar to those based on R. We 

will discuss this further in chapter 4. 

2.2 Cohort and Case-Control Studies 

In this section, we will formally define both a cohort study and a case-control 

study. 

2.2.1 Cohort Studies 

There are essentially two types of cohort studies, namely prospective and 

retrospective cohort studies. The former, which is perhaps more common, 

proceeds as follows. One identifies a disease-free representative sample of the 

population of interest, with various levels or combinations of exposures. The 

cohort is then followed dynamically forward for a period of time and disease 

status is recorded, usually along with other suspected cofactors of interest, 

for each individual in the study. This experimental design can be very costly, 

time consuming and logistically complex. 

A retrospective cohart study is often less expensive to conduct. For ex­

ample one may have already gathered a large amount of data on individu aIs 

living in certain community, for example, through government registries or 

through in surance company data. Suppose one is interested in learning if 

drivers using a cell phone while driving are more likely to be involved in 

traffie accidents than those who do not. From the database of the SAAQ 
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(Société d'Assurance Automobile du Quebec) combined with ceIl phone data, 

one could independently sample two groups of drivers, those who have a cel­

lular and those who do not, recording whether each driver was involved in 

an accident or not. Other possible confounders such as driver's age and gen­

der, age of the car, number of accidents during the last 24 months could be 

included in an analysis. 

The cohort study facilitates the direct estimation of the effects of expo­

sures on disease incidence or death rates. Table 2.1 serves as a summary of 

a simple cohort study with two exposure groups. Sampling theory for Rand 

'l/Jd will be discussed in section 2.3 and 2.4. 

Now, since disease incidence is often low, very long follow-up times and 

large samples sizes are typically necessary in a prospective cohort study in 

order to observe a reasonable number of cases. Hence, time and funding con­

straints often dictate that another sampling approach is needed. Therefore 

in the next section we consider case-control studies. 

2.2.2 Case-Control Design 

Case-control designs are perhaps the most common designs used in epidemiol­

ogy. In their simplest forms, retrospective or traditional case-control studies 

use a sam pIe of cases of disease or of deaths that occur during an accrual 

time period, and a sample of control subjects alive and free of disease from 

the population. The investigator then "looks back" to record exposure sta­

tus. In the simplest form of case-control studies, the data collected may be 

summarized in a 2 x 2 table as in Table 2.1. If the condition al probability of 
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Table 2.1: Generic 2 x 2 table for exposure-disease outcomes 

E= 1 E=O Total 

D= l a b nl = a + b 

D=O c d no = c+ d 

Total ml = a + c mo=b+d N = a+b+c+d. 

exposure in the cases is larger than among the controIs, this indicates that 

exposure increases the probability of getting the disease. For example, the 

study described in the previous subsection can be adapted to fit the retro­

spective case-control scheme. Suppose that the SAAQ wishes to ascertain 

if drivers having a mobile phone are more likely to be involved in an acci­

dent than their counterparts who do not own a mobile phone. Using SAAQ 

records one could identify an the drivers involved in a collision and draw a 

sample from drivers who have never been involved in a collision. Retrospec­

tively, the researcher would record whether each driver was exposed (had a 

mobile phone) or was unexposed (did not have a mobile phone). 

In practice, case-control studies may be divided into three types depend­

ing on how cases are accumulated: cumulative incidence, prevalence, or inci­

dence density. Retrospective case-control studies are of the first type when 

incident cases are accumulated during a well defined study period, from the 

population of interest. After deciding to keep all or a random sam pIe of the 

cases, one draws the controls from the non-cases in the population. This is 

often the case for a localized out break of an infectious disease and or food 

poisoning in a restaurant or a social gathering. 
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The second type of a retrospective case-control design, the prevalence 

study, is rarely used, but has the benefit of yielding cases more quickly. A 

prevalence study is a study in which we ascertain aU members of a population 

in a given time period and record their disease and exposure status. A typical 

example is the case-control study of infants with malformations. 

Unlike the first two types, incidence-density case-control studies do not 

require any rare disease assumptions. These studies are based on the idea 

of matching each case on time, with one or more randomly selected controIs 

(with or without replacement) alive at the onset time of cases. Such stud­

ies are ordinarily termed nested case-control studies (Mantel, 1973; Thomas, 

1977; Liddell et al., 1977, Robins et al., 1989; Langholz and Clay ton , 1994). 

Sufficient conditions under which the odds ratio is a good estimate of the 

relative risk (often called the incidence-densities ratio) are given by Green­

land and Thomas, 1982. For instance, in addition to the constancy of the 

risk ratio in (to, tl), it may be necessary that the exposure proportion also 

remain constant over that study period. A more general design (Prentice 

and Breslow, 1978; Lubin and Gail, 1984, Eq. 3.4) assumes a proportional 

hazard model for the exposed and unexposed groups. 

Another matching strategy used in both case-control and cohort studies 

is the technique of matching on covariates other than time (Rothman and 

Greenland, 1998; Kupper et al., 1981). Matching refers to the pairing of 

one or more controIs to the cases in a case-control design or that of one or 

more unexposed to the exposed group in a cohort with regard to possible con­

founding factors. Matched studies do not require the st ab ility of the exposure 
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proportion over time in order to consistently estimate the relative risk. 

Other design strategies are described in Sato, 1992a, Sato, 1992b, Wein-

berg and Wacholder, 1990, Langholz and Thomas, 1990 and Langholz and 

Thomas, 1991, Rothman and Greenland, 1998. One of particular relevance 

to this thesis is the case-only design (Umbach and Weinberg, 1997, Green­

land, 1999) used quite often in genetic epidemiology. It is based on the ide a 

of sampling only cases and using prior information on exposure to replace 

the information provided by the controls en route ta estimating parameters 

of interest. A benefit of case-only designs is that more effort can be devoted 

to the gathering of accurate information on the cases, but of course, the 

prior information on the contraIs needs to be sound. We shaH address these 

designs in chapter 3. 

Having given a brief overview of cohort and case-control studies we move 

on ta their statistical analysis. We restrict ourselves to 2 x 2 tables, and, 

as usual, the analysis can be approached by frequentist or Bayesian meth­

ods. Frequentist methodology can be unconditional or conditional. We will 

present, briefly, the frequentist unconditional and Bayesian approaches. The 

conditional approaches are based on the ide a of ancillary statistics and make 

the assumption that aH the marginal totals no, nI, mo, ml (see Table 2.1) are 

fixed. They are described in Breslow and Day, 1980. 

2.3 Frequentist analysis of 2 X 2 tables 

In the sequel, we suppress the dependence of the analysis on the time interval 

over which cases are accrued, for notational convenience. We further restrict 
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our attention to the simple but important case of dichotomous exposure (E) 

and disease (D) variables, which can be represented by the 2 x 2 contingency 

table shown in Table 2.1. 

Following the notation of Marshall, 1988, the data from Table 2.1 will 

be notated as T = (a, b, c, d). N = a + b + c + d is called the total sample 

size of the 2 x 2 table. The premiere goal of the thesis is to present a 

Bayesian approach to the selection of N, under different scenarios and a 

variety of sam pIe size criteria. In case-control studies, we focus on N = nO+nl 

(respectively, the sample sizes for contraIs and cases), whereas in a cohort 

study, we consider N = mo + ml (sample sizes for unexposed and exposed). 

2.3.1 Cohort sampling 

Since subjects recruited in an unmatched cohort design are sampled according 

to their exposure status, Table 2.1 must be looked at coIumnwise. In their 

simplest form, the data from the exposed and unexposed samples will be 

assumed to be independently binomiaUy distributed. That is, 

ml 

L Di rv Bin(ml,Pl) 
i=l 
mo 

L Dj rv Bin(mo,po) 
j=l 

given E = 1, and 

given E = 0, 

(2.3.1) 

(2.3.2) 

where Po = Pr(D = liE = 0) and Pl = Pr(D = liE = 1) are the suc cess 

probabilities, while Di and Dj are the individu al disease outcomes for ex-

posed and unexposed, i = 1,··· ,ml, j = 1,··· ,mo. The usuaI summary 

parameter is the risk ratio R = Pl. The unconditional maximum likeli­
Po 

hood estimator (umle) of R is easily seen to be il = abmo, and the asymp­
ml 
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totic variance (Gart and Nam, 1988) Var(lnR) ~ ~ + ~, where 
mlPl mopo 

qi = 1 - Pi, i = 0, l. Similarly, the umle of RI = po, R2 = 1 - Pl, and 
PlI-po 

R I - Po bd' dl' h d' .. 3 = -1-- can e enve a ong Wlt correspon mg asymptotlc vanances. 
- Pl 

As expected, Var(lnR) ~ Var (ln RI) while Var(lnR2) ~ Var(lnR3 ). How-

ever Var (ln Rr) i:- Var (In R3 ), which suggests that sample size based on 

these parameters might be dissimilar. The Bayesian sample size calculations 

corresponding to RI, R2 and R3 will be described in chapter 4. 

2.3.2 Case-control sampling 

In the traditional case-control design, Table 2.1 must be looked at by row 

because subjects are sampled according ta their disease status. The data 

from the cases and the contraIs are usually assumed ta be independently 

binomially distributed. Formally: 

nI 

LEi rv Bin(nl,p~) for the cases, and (2.3.3) 
i=1 
no 

I: Ej rv Bin(no,p~) for the controIs, (2.3.4) 
j=1 

where p~ = PreE = IID = 0) and p~ = PreE = IID = 1) are success 

probabilities, and Ei and Ej the cases' and the controIs' respective exposure 

out cames i = l,' .. ,ni, j = 1, . .. ,no. The most often used summary par am­

p'(l _ p') 
eter lS the exposure odds ratio ?/Je = ; ( ? )' The umle is weIl known ta 

Po 1 - Pl 
---- ad ---- 1 1 

be ?/Je = -b ,and an approximate variance is Var (1n ( ?/Je)) ~ 1 1 + 1 l' 

C nopo% nlPI qi 
1 

where q~ = 1 - p~, i = 0,1. Fortunately here, the umle for ?/JI = ?/Je 

p~(l - p~) bc . .. . . 
1 ( ')' ?/JI = -, has the same hmltmg vanance, sa that the frequentlst 

Pl 1 - Po ad 
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sample sizes for both parameters are expected ta be the same. The corre-

sponding Bayesian sample size calculation will be described in chapter 4. 

2.3.3 Cross-sectional sampling 

In a cross-sectional study, disease and exposure outcomes are measured SÎ-

multaneously. The usual framework of a cross-sectional study is to regard the 

outcomes contained in Table 2.1 as governed by a multinomial distribution. 

Let PH = Pr(D = 1, E = 1), PlO = Pr(D = 1, E = 0), POl =. Pr(D = 

0, E = 1), and Poo = Pr(D = 0, E = 0) = 1-pn - PlO - POl. The probability 

function of the table T = (a, b, c, d) isgiven by 

f ( bd) Nl abc d 
T a, , C, = a! bl cl dl Pu PlO POl Poo' (2.3.5) 

Under this sampling scheme, the umle of the odds ratio or cross ratio e = 

pnpoo. . b ~e ad d . . . fi l' N V. (1 (()A)) -- 1S glVen y = -b ' an 1ts varIance satls es lm x ar og = 
PlOPOl c N---->oo 

1 1 1 1 A' h' ..... d h - + - + - + -. gaIn, t lS asymptotIc varIance 1S InvarIant un er t e 
Pu PlO POl Poo 

inverse relation. 

Note that the identities 

PlO Po=_::""':':""-
PlO + Poo 

, POl 
Po = 

POl + Poo 

pn 
Pl = --=--"'-----

Pa + POl 
(2.3.6) 

1 P11 
Pl = 

pn + PlO 
(2.3.7) 

gives the relationships between the parameters of a cross-section study and 

the parameter of a cohort study and a case-control study. 
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2.3.4 Pair-matched sampling 

The outcomes for pair-matched sampling can be represented as in Table 2.2, 

where a den otes the number of matched case and control pairs with the 

designation (+, + ), that is such that both members of the pair are exposed 

with similar definitions for b, c and d. Here N is the number of pairs and 

2N is the total sample size for this design. Let P~l' P~o, P~l' and P~o be 

the probabilities of the pairs (+, + ), (+, - ), (-, +) and ( -, - ), respectively. 

In pair-matched terminology, a and d are the numbers of concordant pairs 

whereas band c the numbers of discordant pairs and the sum n = b + c is 

the effective sam pIe size which is most often of interest. It has been shown 

by Ejigou and McHugh, 1977 that the odds ratio of exposure for a matched 

pair design is given by 

(2.3.8) 

under the assumption of homogeneity of the odds ratio across pairs i.e, there 

is no multiplicative interaction between exposure and the matching variable. 

A prospective study gives a 8imilar table except for ex ample that the out come 

a is the number of (disease, disease) pairs, with similar definitions for cells 

b, c, and d. A similar relation 1/J~ = PlO for prospective studies is described 
POl 

in Ejigou and McHugh, 1977. 

The table of data represented by T = (a, b, c, d) can again be modelled 

~ b 
by a multinomial distribution. The umle of the odds ratio is 1/J~ = - and its 

c 

1· ." " "1: N V (1 (oÎ/)) 1/J~ + 1 1 1 L"k " ImltIng vanance 18 lm x aI og '1-' e = , , = -,-+ -,-. l eWlse, 
N-->oo POl1/Je POl PlO 

~ b ~ 1/J' + 1 1 1 
1/J~ = - and hm N x Var(log(1/J~)) = d /' = - + -. Again, this 

c N --->00 POl 'lfJ d POl PlO 
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Table 2.2: Case-control matched-pair table where (+) represents ex-

posure and (-) represents non-exposure. 

ContraIs 

+ 

+ a b 

Cases 

c d 

lirniting variance is syrnrnetricai with respect to 1jJ~ and ~~. 

Note that these coefficients rnight not always be defined, since sorne cells 

rnight contain zero subjects. It has, therefore, been suggested to slightly rnod-

if y the counts by adding sorne nonnegative constant to aIl cells entries, to get 

a table T = (a + fa, b + Eb, C + Ec, d + Ed)' The three most popular adjust-

ments for unrnatched designs are T = (a, b + 1, C + 1, d), 

correspond to using a total effective sample size of N +2 or N +3. In general, 

the estimators from these adjusted table don't grossly distort the information 

contained in the data when the ceIl entries are balanced, say log( 1jJe) < 4.0. 

Comparative evaluations of the small bias properties of these estimators were 

given by Jewell, 1984, Jewell, 1986 and Walker and Cook, 1991. 

Coverage probabilities and lengths of the confidence intervals of the log-

odds parameter are investigated by Agresti, 1999, who also described two 

~ N (a) smoothing estimators for the Pij'S. For example, he suggests P11 = N + 4E N + 
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N ~ 4é (~) and PH = N ~4é (~) + N ~4é (n~n;l), é > 0 for a table 

T = (a + é, b + é, C + é, d + é). Adding the same constant é to each cell is 

perhaps the best compromise for the risk ratio because this conservatively 

biases all ratios, R, RI, R2' and R3, towards the null value of unity. This 

problem has led researchers to Bayesian methodology to analyze data of the 

type presented in Tables 2.1 and 2.2. Bayesian approaches require speci-

fication of a prior distribution across aU unknown parameters. In return, 

Bayesian analyses allow the computation of credible intervals as opposed 

to confidence intervals, or the calculation of the probability that, say, R is 

above sorne clinical or etiological meaningful threshold, giving therefore a 

better way to summarize the effectiveness of any intervention (Franck et al., 

1988). We now briefiy review Bayesian inference for 2 x 2 tables. 

2.4 Bayesian inferences for 2 x 2 tables 

For a Bayesian methodologist, the aim is to obtain the posterior density 

(probability function) 

(by Bayes' rule) (2.4.1) 

by updating the prior density (probability function) p( B) with evidence from 

the data as refiected through the likelihood p(yIB). Continuing in this spirit, 

Bayesian methods can be built in a complex hierarchical fashion which may 

require Markov chain Monte Carlo techniques (Brooks, 1998) to approximate 

joint and marginal posterior distributions. The book by Gelman et al., 1995 

gives a readable account of practical Bayesian methods. 
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At the present time, many papers concerned with inferences about the 

odds ratio and the risk ratio have taken a fully Bayesian approach. Lind-

ley, 1964, appears to be the pioneer of such methodology, with subsequent 

work by Leonard, 1972, Leonard, 1975, Leonard, 1977, Aitchison and Bacon-

Shone, 1981, Latoue, 1982, Nurminen and Mutanen, 1987, Zelen and Parker, 

1986, Marshall, 1988, Franck et al., 1988, Maritz, 1989, Carlin, 1992, Ashby 

et al., 1993, Walters, 1997, and Hashemi et al., 1997. 

In general, the parameters arising from cohort and case-control are sum-

marized using independent Beta prior distributions, while the cross-section al 

and the matching designs usually use Dirichlet prior distributions, giving rise 

to the weIl known Beta-Binomial and Dirichlet-Multinomial models. vVe now 

briefty describe these models. 

2.4.1 Cohort analysis 

Bayesian methods for the analysis of binomial data rely on the specification 

of suit able priors for success probabilities. As previously mentioned, inde-

pendent Beta (Be) priors are most commonly used for Pl and Po. That is, 

we assume that Pl and Po are independent with 

Pl rv Be( a' , c') and Po rv Be(b' , d'), 1 b' 1 d' 0 a, ,c, > . (2.4.2) 

This conjugate model for the joint prior distribution of (Po, Pl) can be re-

garded as equivalent to having observed an addition al dataset T' = (a', b', c', d'). 

If the data are as in Table 2.1, then we have an augmented data set over-

aIl of T" = T + T' = (ail b" Cil d") where ail = a + a" and so on There-, , , , ,. 
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fore, when independent Beta priors are used, elicitation of the priors for 

the binomial probabilities is equivalent to specifying a', br, cl, d' for a ficti-

tious sam pIe size of Nf = a' + b' + c' + d' often called the prior sarnple 

size. The parameters of these Beta prior distributions can be elicited, for 

example, by a quick pilot study or by matching Beta quantiles with elicited 

means, modes, percentiles, or interquartile ranges, as described in Chaloner 

and Duncan, 1983, Chaloner and Duncan, 1987, Maritz, 1989, McCulloch, 

1988, Franck et al., 1988, Spiegelhalter et al., 1994, and Bedrick et al., 1997. 

Non-informative (also caUed diffuse, vague, or reference) priors can take on 

various forms depending on how they are derived. The most common choices 

are: Be(O,O), Be(O, 1), Be(l,O), Be(l, 1) and Be(1/2, 1/2). See Jeffreys, 

1961; Bernardo, 1979; Kass and Wasserman, 1996; Bernardo and Ramon, 

1998. 

Historically, the parameter 0 < , = ~ = Pl < 1 was the first 
R+ 1 Pl + Po 

studied. Aitchison and Bacon-Shone, 1981 derived the exact posterior density 

ofT 

p.y( , 1 T") = 

~ ,a - r zall+b"-l(l _ Z)d"-l 1 __ ,_. Z dZ fi 1 1 [] c"-l 

K (1 - ,) ail + 1 Jo 1 - , ' 
1 

0<"\1<-1-2 

~ (1 - ,)bfl-l 11 za"+b"-l( _ Z)c"-l [1 _ 1 - , . Z] d"-l dZ 
K b"+l 1 '0 , 

1 ,>-2' 

(2.4.3) 

where K = B(a", Cff) X B(b", d") and where B(.,.) is the Beta function. Note 



2.4. BAYESIAN INFERENCES FOR 2 x 2 TABLES 27 

the symmetry property, 

( 1 
/1 b" "dl!) (1 1 /1 d" /1 b") P, ra) ) c ) = P, - r c, ,a, . (2.4.4) 

These authors suggest the use of r = ,( R) which is a monotonie function 

of R, in order to overcome the unbounded nature of R. The non-symmetric 

nature of R often makes credible intervals very wide and hard to interpret. 

From equation (2.4.3), it can be shown that the posterior distribution for 

h . k t' R Pli. t e fIS ra 10 = - = -- lS, 
Po 1- r 

al! -1 1 

R
K 

1 zall+blf -l(l - Z)dIJ-I [1- R· Z(-l dZ, 

O<R:::;l 

-(b"+l) 1 [] d"-l 
R K 1 za"+b"-I(l - Z)cl/-l 1 - ~ . Z dZ, 

R> 1. 

(2.4.5) 

When discussing sample size calculations for the risk ratio, equation (2.4.5) 

will be central. 

Sixteen years later, another form of the posterior density of R, equal to 

(2.4.5) up to a transformation, was independently derived by Hashemi et al., 

1997, along with a normal approximation to the posterior distribution. They 

also derived approximate highest posterior density (HPD) regions for Rand 

described the steps for the exact computation of HPD regions. These will be 

discussed fully in section 4.1.1.1. 

In the context of randomized trials, Franck et al., 1988 use the prior 

distributions Po f"V Be(ao, (30) and R f"V Be(al, (31), respectively on Po and R, 
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to fit the constraint 0 < Pl < Po < 1 or equivalently 0 < R < 1. \Vith data 

summarized by a table T = (ai, b ll Ci, di)' this modelleads a joint posterior 

density 

0< Po, R < 1. (2.4.6) 

Note that there are two errors in equation (7) by Franck et al., 1988. The 

factor (1 - R)f3-1 is missing and the power of (1 - Rpo) should be n - y in 

their notation. By integrating over Po, one gets 

PR(RIT) ex R"1+a1-1(1_ R)f31- I X 

11 

puo+a1+bl-l(1 - p))30+d1-l(1 - Rp)C! dp, 0 < R < 1. (2.4.7) 

Tt is obvious that the family of posterior distributions underlying equation 

(2.4.7) contain those from equation (2.4.5) when R < 1 as a proper subset 

when c'is an integer. More precisely, for equation (2.4.7) to be equal to the 

first row of equation (2.4.5), the following conditions must hold: 

Cl = C + C' -1, 

ao + al + bl = a + a' + b + b' , /30 + dl = d + d'. (2.4.8) 

One such match is obtained by choosing 

Cl = C + c' - 1, 

1 b' ao = a + , /30 = d', /31 = 1. (2.4.9) 

We discuss this distribution more formally in subsection 4.1.1.2 of chapter 4. 
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Now that we have given the distribution of R, let's examine the conditions 

under which the frequentist and Bayesian posterior point estimates are equal. 

Of course, even here interpretations of the inferences differ between the two 

paradigms. Following this, we will describe how to derive the distribution of 

the other relative risk parameters, RI, R2 and R3, from section 2.3.1. 

We have 

E(RI Til) = (a + a')(mo + b' + d' - 1) 
(ml +a'+c')(b+b'-l) 

(2.4.10) 

which yields the frequentist estimate R = abmo of R by choosing T' = (0, 1, 0, 0) . 
ml 

Similar estimates can be given for the other corrected estimates, which then 

also match the corresponding frequentist estimates. 

Finally, we note that to get the posterior distribution of RI, R2 and R3, 

one has only to replace the posterior augmented data Tif = (a", b") Cil, d") 

by Tf1 = (b" ail d" clf
) Til = (Cil d" ail b") and Til = (d" Cil blf a") respec-

1 ,)" 2 "" 3 '" 

tively, in equation (2.4.5). Obviously T f1 = T{' if and only if ail = b"and 

Cil = dl!, thus Rand its reciprocal RI have the same posterior distribution. 

Similar relations can be derived between the parameters R 2 and R3' 

2.4.2 Case-control and cross-sectional analysis 

In case-control studies the odds ratio, 7/Je, is the parameter that is directly 

estimable from the data. The posterior distribution function for the odds 

ratio 7/Je was obtained by Hora and Kelley, 1983, while the posterior density 

for the odds ratio was derived by Zelen and Parker, 1986, Marshall, 1988, 

and Hashemi et al., 1997. In what follows it is assumed that p~ and p~ are 
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independent Beta (Be): 

p~ rv Be( a', b') and p~ rv Be(c', d'), 'b' 'd' 0 a, ,c, > . (2.4.11) 

These authors show that the posterior density function is 

1j;all -l rI ya ll+c"-l(1 _ y)b"+d"-l 

--y- Jo (1 _ Y + 1j;y)a"+b" dy, 

P,pe ( 1j; 1 Tif) 
1j;-(b"+l) rl yb"+d"-l(l _ y)al/+dll-l 

K Jo ( y)all+b
ll 

dy, 
I-y+ -

1j; 

o < 1j; < 1, 

(2.4.12) 

1j; ? 1, 

where K = B( a", b") B( Cil, d") and where again B(., .) is the Beta function. 

Expression (2.4.12) can be rewritten using a hypergeometric function, as 

nl.a"-l 
_0/ __ F (a" + b" ail + Cff. Nif. I - ni.) C 2 I , ,,0/ , 

(2.4.13) 

1j;- - F b" + dl! 1/ + b"' Nil. 1-.!. b" 1 ( ) 
C 21 ,a" 1j;' 1j; > 1, 

B(a" bl!) B(cll dl!) 
where C = B( 'en ')' Here Nil = N + Nf is called the effective 

ail + , b" + dl! 

sample sÎze or the extended sample size (Adcock, 1992) and 

I t tb-I(1 _ t)c-b-l(l _ zt)-adt 
B(b,c-b)Jo ' 

(2.4.14) 

~ r(a + i) r(b + i) r(c) Zi 
Lt Izi < 1, 
i=O r(a) r(b) r(c + i) il' 

c> b > 0, a> O. 

2Fl(b, a; c; z) 

From (2.4.12), it can be shown that the posterior expected value of 1j;e is 

E( 1 If) _ (a+af)(d+d') 
1j;e T - (c+c'-l)(b+b'-l)' 

(2.4.15) 

matching again the umle ;j;e = ad wh en T' = (0,1,1,0) (Marshall, 1988). 
bc 

Corresponding results for other estimates similarly hold. 
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A useful property of the posterior density of 'l/Je is that it is invariant: 

P (n/, 1 Tf1
) = P (n/. 1 Til) where Til = (dl! c lf bl! ail) This follows from the ,pe 'f' ,pe 'f' l, 1 ",. 

invariance of k-th moment of the posterior density derived by Marshall, 1988, 

E ' k Tif _ f(a" + k)f(b" - k)f(cl/ - k)f(dl/ + k) 
(lj;el ) - f(a")f(b")f(c")r(d") , o ::;: k ::;: min(b", Cil). 

(2.4.16) 

lndeed, such a result is expected since the point estimate of the parameter 

'l/Je for such a table is equal to the estimate corresponding to the table Tif, so 

a natural symmetry exists. 

Again, equation (2.4.22) for the moments shows that inverting the param-

eter ni, is equivalent to using a table Tif = (Cil d" ail b") or Tf1 = (bl! ail d" Cil) 
'f'e 2 '" 3 "" 

i.e., using P,pe ('I/J 1 T~') as the density function for the odds ratio. 

A log norinal-based approximation for the posterior distribution of 'l/Ye is 

described by Zelen and Parker, 1986, Marshall, 1988, and Hashemi et al., 

1997. 

The following relations are always true, whether or not the rare disease 

assumption holds: 

R _ Pl _ p~ 1 - Pe 
- -- -1--'--' 

Po - Pl Pe 
(2.4.17) 

1 (' 1 ) Pe - Po = Pl - Po Pd, (2.4.18) 

where Pl = Pr(D = liE = 0), Po = Pr(D = liE = 0), p~ = Pr(E = 

11D = 1), p~ = Pr(E = 11D = 0), Pe = Pr(E = 1), and Pd = Pr(D = 1). 

Therefore, in particular, under the rare disease assumption Pe ~ p~, so that 

the probability of exposure in the control series in case-control sampling can 

be approximated by Pe. This idea formed the basis of the analysis by Marshall 
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who used equation (2.4.12) to carry out a posterior analysis for the risk ratio 

R, including the computation of posterior credible intervals. 

It is possible to carry out a case-only design if sufficient prior information 

on the non-case subjects is available. It is difficult to imagine how a fre-

quentist analysis would incorporate such prior information, except perhaps, 

in the trivial case where a perfect point estimate is assumed. 

In a cross-sectional study, by using a M ultinomial-Dirichlet model we 

again obtain equation (2.4.12) as the posterior distribution for the odds ratio 

(Latorre, 1982). Such a result is not surprising in light of the following 

proposition. 

Proposition 2.4.1. Let 

(Pu, PlO, POl, Poo) rv Dirichlet (an, alO, aOl, aoo). 

a) Define the mndom variables w = Poo + POl, p~ = PH 
PH + PlO 

(2.4.19) 

and p~ = 

POl Then w, p~ and p~ are independent mndom variables with 
POl + Poo 

W rv Be(al1 + alO, aOl + aoo) 

p~ rv Be(aOl, aoo). (2.4.20) 

Conversely, gwen equation (2.4.20) and Pu = wp~, PlO = w(1 -

pD, POl = (1 - w)p~, Poo = (1 - w)(1 - p~), equation (2.4.19) fol-

lows. 
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b) Similarly, define the random variables v = PH + POl, Pl = Pn and 
PH + POl 

PlO 
Po = Then v, Pl and Po are independent random variables 

PlO + Poo 

with 

V rv Be(a11 + aOl, alO + aoo) 

Po rv Be(alO, aoo). (2.4.21) 

Conversely, given equation (2.4.21) andpll = VPI, PlO = (l-v)po, POl = 

v(1- Pl)' Poo = (1 - v)(l - Po), equation (2.4.19) follows. 

Proof. We will only prove a), the proof for b is similar. The density of 

f( ) a11-1 alO-1 aOl-l aoo-l 
Pu, PlO, POl ex Pn PlO POl POO , (2.4.22) 

with Pu, PlO, POl,POO > 0 and PH +PlO+POI + Poo = 1. Using the definitions of 

the variables w, p~ and p~, one easily derives the relations: Pu = wp~, PlO = 

w(l - pD, POl = (1 - w)p~, and POO = (1 - w)(l - p~), yielding a Jacobian 

of J = w(l- w). Thus, 

(2.4.23) 

where W,Pl and Po are independent random variables and equation (2.4.20) 

follows. The proof of the converse goes through the same steps in reverse 

order. D 

Although its pro of is straightforward, Proposition 2.4.1 does not seem to 
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have been previously stated. In a cross-sectiona1 study, we have 

(P11 , PlO, POl , Poo) 1 TI! rv Dirichlet (a", b" , Cil, dlf
) . 

H I Pu d 1 POl '1 d l d' 'b d en ce Pl = an Po = are me epen ent y lstn ute as 
Pu + PlO POl + POO 

, B ( 1/ bl!) Pl rv e a, , 1 B ( If d") Po rv e c, , 

as given by equation (2.4,12). S· '1 l 1 Pu lml ar y, Pl = 
Pu + POl 

(2.4.24) 

rv Be( ail, c") is 

independent of p~ = PlO 
PlO + Poo 

rv Be(b", dl!) as given by equation (2.4.4). 

The result by Latorre, 1982 is therefore completed with the relation 'ljJ = 
pupoo p~ (1 - p~) Pl(1- Po) . , . -- = 1 ( ') = ( )' ProposItIOn 2.4.1 provldes an elegant and 
PlOPOl Po 1 - Pl po 1 - Pl 

powerful property linking case-control, cohort and the cross-section al studies, 

in that the invariance of the posterior distribution is shown across aU study 

types. Proposition 2.4.1 provides an elegant and effortless way to simulate 

data from the Dirichlet distribution with four parameters, In the general case 

of Dirichlet distributions with k > 3 parameters, the algorithm by Devroye, 

1986, based on the Gamma distribution is suitable. Another unexpected 

consequence of Proposition 2.4,1 is that the risk ratio from a cross-sectional 

d d fi d b R Pu (PlO + Poo) '11 1 C Il h d' 'b' . stu y, e ne y = ( )' Wl a SO 10 OW t e lstn ut IOn glven 
PlO Pll + Pm 

byequation (2.4.5), as does R = Pl, computed from a cohort design, These 
Po 

results do not seem to have been previously discussed. In fact, no one has 

attempted to derive the posterior distribution of R in a cross-sectional setting, 

perhaps because a straightforward pro of using transformations and Jacobians 

is very messy. 

Despite the equivalence shown in Proposition 2.4.1 it should be remem-

bered that the two situations arise from different sampling schemes. 
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2.4.3 Matched case-control and cohort analyses 

In a matched pair analysis, under again the Dirichlet-Multinomial model, the 

posterior density of the odds ratio 1/J~ and 1/Jd are the same, that is 

1 'ljJbll-l 

f,p~ (1/J) = B(b", Cil) (1 + 1/J t'+cll 
• 

(2.4.25) 

This density is that of a type-II scalar beta random variable. With sorne 
1/ 

algebra, it is easy to show that ~1I1/J "-J F2b" ,2c". Actually, this is also the 

density of the odds _P- of a proportion p (Lindley, 1964) obeying the Beta-
1-p 

Binomial setup with posterior distribution Be(a", b"). This distribution was 

also derived by Bernardo and Ramôn, 1998 in a more general set up as the 

ratio q; = Bi/Bj of two parameters of a multinomial distribution with k > 3 

parameters. 

Now that we have described our four main designs in terms of their mod-

elling and analyses, it is time to move to the subject of primary interest, 

which is sample size determination for estimating the risk ratio and the odds 

ratio. In a cohort design, sam pIe size investigation is equivalent to finding ml 

and ma while in case-control studies we are interested in ascertaining nI and 

na, although N = ma + ml = na + nl (refer to Table 2.1). In cross-section al 

and matched studies, the quantity of importance is N = a + b + c + d (re-

fer to Table 2.2). Occasionally, we might be concerned with n = b + c, the 

number of discordant pairs in a pair-matched design necessary to detect a 

predetermined association. 



36 

2.5 Review of sample size methodology 

One of the most important statistical questions in the early stages of virtually 

any study is the choice of sample size. Indeed, large sam pIe sizes cau be 

wasteful of resources whereas small sample sizes are often not large enough 

for accurate estimation of the parameters of interest. 

Both frequentist and Bayesian sample size determination methods can be 

partitioned into at least 3 broad types: prediction, hypothesis testing, and 

estimation, each approach usually resulting in different sample sizes. For 

example, it is weil acknowledged (O'Neill, 1984) that sample sizes arising 

from power considerations are often not sufficient for estimation purposes. 

In general, the formulation of a sample size criterion depends heavily on 

many quantities, including the specifies of the study design, the methodology 

used, the modelling of covariates, the main parameter under study, estimates 

of that parameter and its variance, the statistic employed, and the desired 

precision of estimation. It is worth noting that the majority of frequentist 

sam pIe size results in the literature to date are based on asymptotics. 

In sorne cases, it may be more important to ensure accurate prediction 

for future subjects, rather than ensuring accurate parameter estimates. Fre­

quentist and Bayesian designs for prediction are usually combined with opti­

mal designs for estimation and prediction (Silvey, 1980; Atkinson and Donev, 

1992) and covered extensively in the review by Chaloner and Verdinelli, 1995. 

Optimal experimental designs for binary data are described in Chaloner and 

Larntz, 1989 and Abdelbasit and Plackett, 1983, while optimal designs for 
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multinomiallogistic regression are given by Zocchi and Atkinson, 1999. These 

papers discuss the A-, C-, and D- optimality criteria as applied to problems 

of the selection of covariates in either a linear or a non-linear problem. These 

approaches are not discussed further in this thesis. Optimal allocation for 

Bayesian inference about an odds ratio based on the normal distribution was 

treated by Brooks, 1987. 

Frequentist power calculations (Schlesselman, 1982; and Breslow and Day, 

1988; Wickramaratne, 1995), currently the most commonly used procedures 

in practice, are based on the specification of an alternative hypothesis, and 

type l and II error probability levels Ct and (3. For example, sample size 

required in a cohort design assuming ml = mo for the hypothesis Ho : R = 1 

against HA: R > 1 satisfies the equation 

[Zay'2pq + z,8VPo[l + R - PoU + R2)lf 
[Po(R - 1)]2 

(2.5.1) 

1 
where p = "2po(l + R), if. = 1- p, and Za and z,8 are the usuai quantiles of the 

normal distribution. Schork and Williams, 1980, Parker and Bregman, 1986, 

Connett et al., 1987, Connor, 1987, Fieiss, 1988, Dupont, 1988, Royston, 

1993, Ejigou, 1996, Julious and Campbell, 1998 have aiso investigated power 

issues for matched studies. Power-based sample size requirements for case-

only designs to detect gene-environment interactions are the raison d'etre of 

the paper by Yang et al., 1997. Bayesian sample sizes derived from hypothesis 

testing for binomial experiments based on Bayes factors (Kass and Raftery, 

1995) is developed by Katsis and Tom an , 1999. A different philosophy was 

taken by Walker, 1977. Rather than searching for the smallest sample size, 
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Walker choose to specify the magnitude of the smallest detectable relative 

risk for given a, (3 and n. 

Although power-based sample size methods are very popular, they have 

often been criticized because they carry with thema11 of the drawbacks asso-

ciated with p-values. In addition, type I and II errors do not often refiect the 

true purpose of a study. For instance, most statistical analysts agree that 

confidence intervals are more informative than p-values, and the design of a 

study should match the eventual analysis. We are therefore 1eft with sample 

size calculation for interval estimation. 

2.5.1 Frequentist fixed width coverage-based sample 

size calculation 

In this section, we present the main frequentist results for sample size cal-

culation when estimating a parameter of interest to within a fixed distance 

l of the true parameter value, with fixed confidence coefficient 1 - a. In the 

sequel we shaH present alternative Bayesian methods. 

The following is a presentation of the work by O'Neill, 1984 on case­

control designs. Let g = no be the predetermined ratio of controIs to cases, 
nI 

P~ = Pr(E = IID = 1) and P~ = Pr(E = IID = 0) be the exposure 

probabilities among cases and controIs, respectively, q~ = 1 - P~, i = 0,1, 
, (1 1 ) 

and 1,Ue = P; (1 = P?) be the exposure odds ratio. An approximate 100(1-a)% 
Po Pl 

two-sided confidence interval (CI) for log( 1,Ue) is 

(2.5.2) 
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An alternative approach is to derive a CI for 'l/Je directly by 

~e ± Zl-a/2VVar(:J;e). (2.5.3) 

~ 1 1 ~ ~ 
Var(log('l/Je)) + 1 1 and Var('l/Je) c::: 'I/J;Var(log('l/Je)) may be 

nlP~ q~ nopoqo 

obtained by means of the delta method. One reasonable way to determine 

the sample sizes no and nI is to equate the length of the CIs derived from 

equations (2.5.2) and (2.5.3), respectively, with 2l. Using (2.5.2) given 'l/Je 

and p~ gives the following solution for nI: 

(2.5.4) 

Using equation (2.5.3) gives the following solution for nI: 

(2.5.5) 

Another approximate CI for 'l/Je, termed the logit CI, has better asymp-

totic coverage properties for moderate sample sizes. This interval is given by 

:J;e exp { ±ZI-a/2VVar(log( :J;e)) }, with a width W = 2'I/Je sinh(d) conditional 

on 'l/Je, where d = ZI-a/2VVar(log(:J;e)). The corresponding sample size for 

a fixed length 21, conditional on 'l/Je and p~, is 

(2.5.6) 

The ratio of the sample sizes given by equation (2.5.5) and (2.5.6) respec-

{ 
arCSinh(p)}2 l 

tively, is p , where p = 'l/Je. A simple analysis of the first deriva-

arcsinh(p) 
tive of the function p f---+ reveals that the curve associated with 

p 

this function is roughly cusp shaped and bounded by 0 and 1 as described by 
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Figure 2.5.1. This shows that although the logit CI for 'l/Je results in larger 

sample sizes, the CI used in equation (2.5.3) is known to have poor coverage 

properties for moderate sample sizes. Both equations (2.5.5) and (2.5.6) de-

pend on 1 only through p, which suggests that we can specify p rather than l. 

The derivation of these equations for cohort, cross-sectional and matched 

1 {(q' +p''I/J)2 l} designs requires -,-, 0 'I/J 0 e + - be replaced by the asymptotic 
Poqo e 9 

variances of either R, 'I/J, 'I/J~ or 'I/J~ as given in section 2.3, and 'l/Je in ( 'l/Jze) 
2 

by either R, 'I/J, 'I/J~ or 'I/J~, respectively. 

Despite the usefulness of these and other similar sample size formulae, 

they do not fully take into account the stochastic nature of CI's. This can 
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lead to severe underestimation of sample size required for a specified length 

or coverage (Satten and Kupper, 1990). Having exposed the problem, these 

authors proposed computing sam pIe sizes based on tolerance probabilities. 

For example, if the confidence interval that one is intending to use after the 

collection of data is the logit CI in a case-control design, then such a criteria 

is equivalent to finding the smallest nI such that 

(2.5.7) 

where A and C represent the random variables whose outcomes are 0 ::;; a ::;; 

nI and 0 ::;; c::;; knl, respectively (see Table 2.1). The 1eft hand-size of equa­

tion (2.5.7) can be solved explicitly or estimated by means of Monte Carlo 

simulation. This will not be discussed further here, as we prefer Bayesian 

approaches that will solve the same problem, while also fully incorporating 

prior information. 

In sam pIe size calculation problems for 2 x 2 tables, one can also consider 

the choice of the optimal ratio of controls per case, 9 = no in case-control 
nI 

studies or the ratio of non-exposed to exposed 9 = m o , in cohort studies. 
ml 

Traditionally, 9 is set to a convenient constant go chosen by the investigator 

before the collection of the data. The sample size of interest is then N(go) = 

nI + no = (go + 1 )no. In practice, 9 = 1 is often the choice, corresponding 

to a design with equal sample sizes between cases and con troIs or exposed 

and non-exposed. This choice for 9 is often not optimal, especially when 

cost is incorporated into the calculation of sample sizes. Indeed, it is well 

known that when the costs of the exposed, and the non-exposed groups in 
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cohort studies or of the case and the control groups in case-control studies, 

respectively Cl and Co, are very different, substantial savings can be made by 

using unequal sample sizes (Gail et al., 1976; Meydrech and Kupper, 1978). 

Moreover, even when Cl = Co, choosing the optimal ratio 9 leads to better 

designs in terms asymptotic variance (\iValker, 1977). Since the choice of gis 

an element of the design it is natural to incorporate the search for 9 into the 

sample size calculation problem. This idea has been considered by numerous 

authors who use a crude direct search method to approximately solve the 

optimality problem. First, choose a grid of values for 9 and then for each 

9 in that grid find the minimal N(g). At the end, choose the ratio 9 that 

leads to the overall minimal N(g). It is clear that the proposed solution is 

equivalent to finding, for example, the overall minimal sample size (nI, no) 

that minimize the objective function N = Cl nI + Cono in case-control studies. 

In the context of hypothesis testing, Gail et al., 1976 have demonstrated 

that the optimal ratio 9 follows what he called the square root rule, that is 

C p'q' ~ 
9 = vrrr, where r = -.2. and 'TI = ++ = (' e, ~ )2 for a case-control study 

Co Poqo % + Po e 

PIqO Rqo 
and 'TI = -- = ~d = 1 R for a cohort study. These results apply also 

poql - Po 

to equations (2.5.4), (2.5.5), and (2.5.6) (proof available from the author). 

Unequal sample sizes are also investigated by Blackwelder, 1993, Nam and 

Fears, 1992a,Nam and Fears, 1992b, Fleiss, 1973, and Fleiss et al., 1980. 

Most of the frequentist sam pIe size formulae rely on the adequacy (Leemis 

and Trivedi, 1996) of the normal approximation to the binomial distribution. 

Often, when the rare disease assumption is valid, sorne refinements need to 



2.5. R.EVIEW OF SAMPLE SIZE METHODOLOGY 43 

be made (Casagrande et aL, 1978; Lemeshow et al., 1981). These problems 

can be minimized by computing the exact powers, CIs, and coverages as re-

ported by Wickramaratne, 1995, or by Monte Carlo estimates of the power. 

Frequentist sample size estimation requires accurate point estimates of the 

parameters of interest, which are often unknown at the planning stage of the 

experiment. As discussed below, Bayesian sample size determination meth-

ods do not share many of these problems. They assume a prior distribution 

rather than a single point estimate. CI's are easily replaced by credible inter-

vals from the marginal posterior distribution of interest. Importantly, they 

fully take into account the stochastic nature of the dataset. 

2.5.2 Decision theoretic Bayesian sample size methods 

Ba.yesian decision-oriented sample size calculation methods, the only "fully" 

Bayesian approach according to sorne authors (Lindley, 1956; Berger, 1985; 

Lindley, 1997; Bernardo, 1997), rely on maximizing an expected utility func-

tion over the set of aIl possible designs of size n ;:: 0 and over a11 decisions 

dE V. The following notation is valid for this subsection. Let X be a ran-

dom variable with density p(xle) and assume that a priori e rv p(e), e E e. 

Let x = (Xl,' .. ,Xn ) E X represent n realizations of X. After observing x, 

we wish to make a decision d E V about (). Maximizing the expected utility 

approaches are based on finding the minimal n which maximizes 

r {max r u(n,x,d,())p(()lx,n)}p(x1n)d()dX, Jx dED Je (2.5.8) 
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where u(n, x, d, e) is the utility function reflecting the merit in choosing n, 

after having observed x and having taken the decision d about e, when e 

is the true value of the parameter. Here p(xln) = le p(xle, n)p(e)de is the 

pre-posterior predictive distribution, that is, the distribution of the not yet 

observed data x. A common form for u is 

u(n,x,d,B) = K8(n,x,d,e) - Lw(n,x,d) - en, (2.5.9) 

for an interval d, where 8(n, x, d, e) = 1 if e E D, 8(n, x, d, e) = 0 otherwise, 

and w(n, x, d) is the width ofthe interval d. The quantities K, L > 0 are two 

positive constants balancing high coverage against low width, and c 2:: 0 the 

common cost associated with observing each subject. Basically, the cost is 

balanced with precision. 

Shao, 1989, Müller, 1998 and Müller and Parmigiani, 1995 suggest that 

equation (2.5.8) can be approximately solved numerically using Monte Carlo 

simulations or MCMC methods, and by passing a smooth curve through 

the plot of the estimates. We will show how this idea can be used to help 

us solve the sample size problems posed in chapter 3 and 4, although full 

Bayesian decision theoretic sample size methods are not considered further 

in this thesis. 

2.5.3 Bayesian sample Slze calculation for estimation 

problems 

Various non-decision theoretic Bayesian criteria for sample size determination 

have appeared in the literature. The first three which we discuss, developed 
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by Pham-Gia and Turkkan, 1992, are closely related to the idea of minimizing 

the Bayes risk. They all find the smallest n such that each of the following 

criterion functions, 

PGT - (i) : 'l/Jl (n) = max Var(OI x, n) 
O:S;x:S;n 

PGT - (ii) : 'l/J2( n) = E [Var(OI x, n)] 

PGT - (iii) : 'l/J3(n) = 
1 

cVar [E(Olx, n)] 

is smaller than é > 0, a predetermined level of precision. 

(2.5.10) 

(2.5.11) 

(2.5.12) 

Other criteria of relevance to this thesis are based on the ide a of fixing the 

width or the coverage of credible intervals and searching for the minimum n 

for which the average coverage or the average length attains sorne specified 

probability level1- a or length l, respectively. The first of these criteria dates 

back to Adcock, 1987 and was further discussed in Adcock, 1988, Adcock, 

1992, Adcock, 1993, Adcock, 1995, Adcock, 1997. He proposed seeking the 

minimum n such that 

r {r p(Olx, n)dO} p(xln)dx 2: 1 - a, 
lx lR(x) 

(2.5.13) 

where R(x) = [E(OI x) - l/2, E(OI x) + l/2] is a central symmetric credible 

interval of length l, called the tolerance region. 

In the same spirit, Joseph et al., 1995 derived three criteria involving 

HPD credible regions. HPD regions of content 1 - a (see e.g. Box and Tiao, 

1992) have the properties that Pree E HPD(x, n) 1 x, n) = 1 - Ct and for 

01 E HPD(x, n), O2 (j. HPD(x, n), p(ell x, n) 2: p(021 x, n). HPD regions have the 

smallest volume for any fixed coverage level. Sample size criteria based on HPD 

regions are important to minimizing the sam pIe size wh en the distribution is 
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very skewed, and return similar samples sizes to symmetric regions for less 

skewed distributions, and so are optimal in this sense. Since the sample size 

determinations proposed in this thesis are based on these criteria we now 

review them. 

2.5.3.1 Average Coverage Criterion 

The average coverage criterion (ACC) finds the smallest integer n su ch that 

the average of aH posterior coverage probabilities of HPD(x, n) intervals of 

length l given x and n, over the predictive distribution p(xln), is at least 

1 - a: That is, the ACC seeks the minimum n such that 

r {1 p(el x, n)de} p(xln)dx ;:::: 1- oo. lx HPD(x,n) 
(2.5.14) 

2.5.3.2 Average Length Criterion 

The average length criterion (ALC), finds the smallest integer n such 

that the average of alliengths l(x, n) of HPD(x, n) intervals of coverage 1- a 

given x and n, over the predictive distribution p(xln), is at most l: That is, 

the ALC seeks the minimum n such that 

lx l(x, n)p(xln)dx ::::; l. (2.5.15) 

2.5.3.3 Worst Outcome Criterion 

Sometimes, we might not want to average the coverage probabilities over aH 

possible values of x as in equations (2.5.14) or (2.5.15), preferring a stricter 

criterion that finds the minimum n such that each coverage probability is 
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larger than 1 - 0: for aH x belonging to some pre-specified set S eX. This 

leads to the worst out come criterÎon (WOC), which seeks the smallest n 

such that 

inf r p(el x, n)de 2: 1 - 0:. 
xES JHPD(x,n) 

(2.5.16) 

Closed form formulae in the case of a normallikelihood, given by Joseph 

and Bélisle, 1997, have demonstrated that this criterion approximately agrees 

numerically with frequentist results under certain weak prior conditions, and 

when the variance is assumed known. AH seven criteria described respec-

tively by equations (2.5.10), (2.5.11), (2.5.12), (2.5.13), (2.5.14), (2.5.15), 

and (2.5.16) may be extended to multivariate densities usually involving nui-

sance parameters. For example, if a is a nuisance parameter, we can seek 

the n such that 

1 { r p(el x, a, n) de} p(x, al n) dxda > 1 - 0:, 
X,Œ JHPD(x,Œ,n) 

(2.5.17) 

or, equivalently, such that 

1 {1 r p(el x, a, n) p(al x) de da} p(xln)dx 2: 1 - 0:, (2.5.18) 
x Œ JHPD(x,a,n) 

where e rv p(Bla), a f'V p(a), so that pee, a) = p(ela)p(a). Essentially, we 

integrate over the nuisance parameter. 

Although criticized as not being a fully Bayesian decision theoretic ap-

proach (Lindley, 1997) because either the length or the coverage is fixed 

before the search for the minimal sample size, it is easily seen that both the 

ALC and the ACC are limiting cases of maximizing the expected utility 
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approaches (see section 2.5.2) as K or L tends to zero andc = O. Indeed, 

we may place the ACC criterion within a decision problem framework as 

follows. One seeks the minimal n that satisfies 

J {max r p(el x, n)de} p(xln)dx ;:::: 1 - Ct, 
C(x,I)EI(I) }C(X,l) 

(2.5.19) 

where T(l) is the set of ail posterior credible intervals of length 1. If we 

set L = 0 in equation (2.5.9), then we conjecture that (2.5.10) would often 

converge to zero when the posterior second moments are defined for aH n and 

x as n ----+ 00, although the proof does not seem straightforward. Maximizing 

(2.5.19) as in equation (2.5.13) creates an MEU criterion. Similarly for the 

ALC criterion. 

2.6 Conclusion 

We have just described practical Bayesian criteria for sample size determina-

tion. In the next chapter, we will show how sorne ofthese criteria, particularly 

ACC, ALC, WOC and formu1ae (2.5.17) or (2.5.18) can be implemented 

for sample size determination when estimating the risk and odds ratios. We 

will a1so consider the question of case-only designs. We will show how these 

criteria can be generalized to a much larger family of criteria, expose diffi-

culties arising in their implementation, and suggest ideas for circumventing 

them. We will consider Monte Carlo curve fitting to improve the accuracy of 

sample size estimates as weIL While developing our methodologies, we shan 

also consider transformations of the risk and the odds ratio. To close this 

chapter, we present sorne known results on HPD intervals and unimodality, 
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important background to the results presented in chapter 3 and 4. 

2.7 Useful definitions, results, and algorithms 

2.7.1 General definitions and results 

Given a scalar parameter B E 8, let X n = (Xl,'" ,Xn ) be n exchangeable 

realizations of a random variable X distributed as p(xi B), X E X. We assume 

that () is a continuous random variable distributed according to p( e) (prim 

distribution). Let (ernin , Ornax) , with possibly, Brnin = -00, and/or ernax = 00, 

be the support on which p(O) > O. The results presented here are mainly 

associated with the construction of credible intervals based on the posterior 

distribution p(el x n ), 

(2.7.1) 

which is by assumption absolutely continuous with respect to Lebesgue mea-

sure on an interval (()rnin, Ornax). The majority of posterior distributions em-

ployed in this thesis are unimodal as will be proved in chapt ers 3 and 4. 

Consequently, the HPD regions studied here are simple intervals. For this rea-

son, in the sequel we will refer to HPD intervals rather than the more general 

HPD regions. 

Sorne proofs about unimodality require the notion of strongly unimodal 

distributions. According to Dharmadhikari and Joag-dev, 1988, we have the 

following. 
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Definition 2.7.1. The randoIn variable B or its distribution p( (;II x n ) is strongly 

unimodalon (emin ) (;Imax) if and only if p(el xn ) is continuous and log-concave 

((;Imin, emax ) , that is if and only if log(p(8Ixn)) is concave. If log(p(Blxn )) 

has a second derivative on (êxn , (}mayJ, then this property is equivalent to 

Obviously, a strongly unimodal distribution is unimodal. The notion can 

be generalized to higher dimensions. The family of Be( a, b), a, b ;::: l distri-

butions is strongly unimodal. The family of distributions given by (2.4.25) 

with b", Cil 2': 1, the type-I Beta is not strongly unimodal but is unimodal 

with a unique mode at b" - 1. The following proposition will help us later 
c" + 1 

to show that the posterior distribution of the risk and the odds ratios are 

unimodal. 

Proposition 2.7.1 (Dharmadhikari and Joag-dev, 1988). 

@ AU the moments of a strongly unimodal distribution are finite. 

@ AU the marginal distributions of a strongly unimodal multivariate dis-

tribution are strongly unimodal. 

® The set of aU strongly unimodal distributions is closed under convo-

lutions. If Xl and X 2 are two independent strongly unimodal random 

variables, then so are aXl +b and X 2 -X1, where a, b are real constants. 

Let qa be the a-th percentile of p(BI xn), i.e. qa satisfies the equation 

Pr(Bmin < {} < qal x n ) = a. Before giving the basic properties of HPD inter-
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vals, we give a definition of an HPD interval, different from, but equivalent to, 

the definition given in subsection 2.5.3. 

Definition 2.7.2. A highest posterior density (HPD) interval [8L ,Bul is an 

interval containing aIl points satisfying the equation p( BI x n ) :2:: c, where c > 0 

is a constant chosen in a way that guarantees the interval [BL , eu] to have 

a desired length l or coverage 1 - 0:. That is eu - (h = l or Pr(8L :; e :; 

We will denote by HPD(xn , n, l) an HPD interval oflength land HPD(xn , n, 1-

0:) an HPD interval of coverage 1- 0:, given x and n. If a sufficient statistic lS 

available, it will also be designated by Xn- When a sufficient statistic exists, 

the posterior density depends on the data only through that statistic (Berger, 

1985). 

Before completing our general definitions, the following is a simple, but 

powerful property of HPD intervals. It will be used for case-only designs in 

chapter 3. The proof is straightforward. 

Theorem 2.7.2. Let Y, be a scalar random variable with density fy(y) and 

Z = a Y + b, a linear transformation of Y. Let Lgthy (HPD(1- 0:)) (resp. 

cvgy (HPD(l)) be the length (resp. the coverage) of the HPD interval or an 

equal-tailed of coverage 1 - 0: (resp. of length l) for Y. A similar definition 

holds for Lgthz (HPD(l- 0:)) (resp. cvgz (HPD(l)) associated with Z. Then 

cvgz (HPD(l)) - cvgy ( HPD C~I) ) , 
Lgthz (HPD(l- 0:)) lai x Lgthy (HPD(l- 0:)). 

(2.7.2) 

(2.7.3) 
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Remark 2.7.1. If Y rv Be( a, b), then 1-Y and Y have HPD intervals with the 

same length (coverage) given fixed values for coverage (length). Hence, the 

average length (coverage) for the Beta-Binomial model for a given coverage 

(length) are equal, irrespective of the choice of Be(a, b) or Be(b, a) as the 

prior distribution. This result will be proved in subsection 3.2.2. 

We shaH aIso consider the posterior equal-tailed interval, often called 

the central posterior interval. This is the most common type of interval 

encountered in practice, and is, in fact, preferred by Gelman et al., 1995. 

Equal-tailed [eu, eL] intervals are defined by the equation 

(2.7.4) 

in other words, eL = qa/2 and eu = Ql-a/2. These intervals do not have the 

same optimality property as HPD intervals, but are easier to compute. More 

importantly, for fixed coverage 1- Œ, [g( Qa/2) , g( Ql-a/2)] is the corresponding 

posterior equal-tailed intervals for the random variable Y = g(e), where 9 

is monotonie increasing, an invariance property not shared by HPD intervals. 

Asymptotically, under certain regularity conditions, HPD and central posterior 

intervals are equivalent. For sample size for purposes, HPD and equal-tailed 

intervals often provide similar answers. 

Now that we have provided definitions of HPD and equal-tailed intervals, 

we next give several omnibus algorithms useful for their computation. These 

derivative-free algorithms require that the posterior density be strictly in-

creasing and then decreasing. Although the omnibus algorithms are slower 

than derivative-based techniques, they are sometimes the only alternative, 
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for example, when derivative-based procedures fail to converge owing to un­

avoidably poor choices starting values. Derivative-based algorithms for three 

specifie parameters are discussed in section 3.2.3 along with their drawbacks 

and challenges. 

2.7.2 Omnibus algorithms for the computation of HPD 

and central posterior intervals 

2.7.2.1 Case where the length, l, is fixed 

The following bisectional search algorithm finds the two solutions of the 

equation felxn ( u) = felxn (u + l) for u, with l known and then compute the 

coverage of the interval determined by these two points. Let () be the mode 

of felxn . 

Aigorithm 1 

Initialisation step: Set fh = max(emin , (j -/) and eu = {j. 

Main step: 

1. Define medL = (eL + eu )/2 and medu = min(medL + l, emax). 

2. Compute iL = felxJmedL) and fu = felx n (medu). 

3. If fu 2:: iL then eL = medL - E. Otherwise set Bu = medL + E, where E 

is the machine precision. 

4. Repeat steps 1, 2, and 3 until liL - fui and leu - eLI reach the desired 

precision. 
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5. Finally compute cvg(l) = Pr(medL < p < medu ) as the desired cover­

age. 

For a posterior equal-tailed interval, the equation to. solve is Pr( B < u) = 

Pr(e > u + 1). The initial values of eL and Bu are set to eL = Bmin and 

eu = Bmax while iL = Pr(B < medd, and lu = Pr(e > Bmax). At the end, we 

compute the coverage as Pr(medL < p < medu ) = 1 - (iL + lu). 

The above HPD algorithm requires that the mode be known while the al­

gorithm for equal-tailed intervals requires that Bmin and Bmax be finite. When 

this is not the case and when there exists a monotonie one-to-one transfor­

mation g(B) with inverse g-l of the random variable of B that is bounded in 

both directions by gmin > -00 and gmax < 00, the ab ove algorithms can still 

be applied with the following minor adjustments. The initial values are set 

to be gL = gmin and gu = gmax· Step 1 is replaced by medL = (gL + gu )/2 

and medu = g(g-l(medL) + l) and step 2 by iL = Pr(e < medL ) and 

lu = Pr(e > medu ). 

2.7.2.2 Case where the coverage level is fixed at 1 - Cl:' 

This subsection is concerned with the determination of the two solutions fh 

and Bu such that felxn ( B L) = IOlxJ Bu) and Pr( B L < B < Bu) = 1 - ex for the 

HPD intervals. When Bmin and Bmax are finite, the following algorithm applies. 

Algorithm 2 

Initialisation step: Set lenL = 0.0 and lenu = emax - Brnin. 



2.7. USEFUL DEFINITIONS, RESULTS, AND ALGORITHMS 55 

Main step: 

1. Let l = (lenL + 1enu) /2. 

2. Apply Aigorithm 1 to obtain the coverage cvg(l) in step 5. 

3. If cvg(l) < 1 - 0: then lenL = 1 - E. Otherwise set lenu = l + E. 

4. Repeat the steps 2, 3, and 4 until IlenL - 1enul and Icvg(l) - (1 - 0:)1 

reach the desired precision. 

5. Compute length = 1enu. 

As might be expected, this algorithm converges very slowly, but is the only 

viable alternative in sorne instances. It can be refined to fit the case where 

the random variable is unbounded in both directions and where numerical 

computations of percentiles are unavailable. One starts with any possible 

value of l, and multiplies it by 2 if the coverage is not attained until we have 

one such bound, 1enu, and the main step can then proceed. 

Another alternative is to turn to simulation-based Monte Carlo algo­

rithms. These require being able to simulate variables from the distribution 

f(111 x n ) and rely on the posterior distribution's being strictly unimodal. 

2.7.2.3 Monte Carlo algorithms 

Simulation-based algorithms for HPD intervals, discussed in Tanner (1996), 

are rewritten here to give the following algorithms for fixed length and fixed 

coverage situations. Let 111 < ... < I1M be M random values from fOlxn. 

Let (h,· .. ,fM) where fi = fOlxn (Bi), i = 1,'" ,M, Cmax = max(fi) , and 

Cmin = min(fï). Algorithm 3 and 4 assume that fOlxn is unimodal. 
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Algorithm 3 (fixed length) 

1. Set C = (Cmin + Cmax)j2 and find the vectors le of indexes i = 1,' .. ,M 

for which fi 2: c. Let L = mini le and U = maxi le. Set 1ene = eu - eL. 

2. If 1ene < l then set Cmin = C - é. Otherwise set Cmax = C + E, 

3. Repeat 1 and 2 until Iiene - li and 1 Cmax - cminl reach the desired 

precision. Often this step can not be done exactly so one has to set an 

upper bound on the number of iterations. 

4. Compute (U - L + l)jlVI as an estimate of the coverage. 

Algorithm 4 (fixed coverage) 

1. Set c = (Cmin + Cmax)j2 and find the vectors le of indexes i = 1,' .. ,lVI 

for which fi 2: c. Let L = mini le and U = maxi le. 

2. Set cvge = (U - L + l)jM. 

3. If cvge < 1 - a then set Cmin = C - E. Otherwise set Cmax = C + E, 

4. Repeat 1, 2 and 3 until 1 cvge - (1 - a)1 and 1 Cmax - Cminl reach the 

desired precision. The same comments as in step 3 of Algorithm 3 

apply here. 

5. Compute eu - (h as an estimate of the length. 

We now turn to approximation ofHPD and equal-tailed 1eft and right tails. 

The approximations are important because they can reduce the burden of 

computation of the exact credible intervals. 
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2.7.3 Approximation of HPD and equal .. tailed left and 

right tails when the coverage is given 

First order approximations for both HPD and equal-tailed intervals are based 

on the asymptotic normality of the posterior distribution. Conditions under 

which such results holds are described in most books on Bayesian statistics. 

Thus, 

(2.7.5) 

where Zl-0I./2 is the 1-a/2-th percentile of the normal distribution. Although 

these first or der approximations are often sufficient, they have three funda­

mental limitations. First, they do not distinguish between the two credible 

intervals of interest, HPD and equal-tailed intervals. Since one goal of this 

thesis is to compare sample sizes from both types of credible interval, one 

needs two distinct approximations. Second, for unbounded random variables, 

this limiting result holds only for very large samp1e sizes, suggesting approx­

imations with higher order terms may be useful. Third, and possibly most 

critical, we have the fact that posterior variances are not always defined, and 

for those distributions we are simply 1eft with no approximations for these 

credible intervais. Fortunately, higher order of approximations have been 

derived by various authors (Welch and Peers, 1963; Peers, 1968; Mukerjee 

and Dey, 1993; Severini, 1991). 

The following large sam pIe approximations hold under certain regularity 

conditions (see Peers, 1968). Let ê be the posterior mode and z = Zl-0I./2 for 
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a given coverage level 1 - 0' and let 

. _ _~ {[fllOgp(xn1ê)} wJ-n ~ , 
aBj 

(j = 2,3,4). (2.7.6) 

Let [ei1) , eV)] and [oi3) , e~)] be the equal-tailed and HPD intervals. 

2.7.3.1 HPD intervals 

We have 

(2.7.7) 

2.7.3.2 Equal-tailed intervals 

We have 

(2.7.8) 

ei1) and er) are obtained by replacing z by -z in equation (2.7.7) and 

(2.7.8). 
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2.7.3.3 Approximate lengths 

As a consequence of the approximations (2.7.7) and (2.7.8), we have 

(2.7.9) 

and 

( )1 (e(l) 0(1)) 2 Z3 + 3z ( )-2 z d
2

1ogp(ê) 
-nw2 2 U - L ~ Z + W4 -W2 + -- A 

12 -nW2 d02 

3 A 

5z + 19z 2( )-3 z ( )_2 d1ogp(O) 
+ 36 W 3 -W2 + fo W 3 -W2 dé 

(2.7.10) 

Therefore, the positive difference between the lengths of posterior equal-tailed 

and HPD intervals is 

(2.7.11) 
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Chapter 3 

Bayesian interval-based sample 

size determination for 

estimating risk ratios for 

exposure-only designs and odds 

ratios for case-only designs 

In this chapter, we investigate Bayesian sample size determination for case­

only and exposure-only designs. Let Po = Pr(D = liE = 0) and Pl = Pr(D = 

liE = 1) be the "success" probabilities, condition al on exposure status, in 

a cohort study and p~ = Pr(E = 11D = 0) and p~ = Pr{E = 11D = 1) be 

the "success" probabilities, conditional on disease status, in a case-control 

study where D and E are the disease and exposure variables, as described 

61 



62 

in section 2.3. Let qi = 1 - Pi, i = 0,1 and q~ = 1 - P~, i = 0,1 represent 

the "failure" probabilities. For notational convenience, wh en the context is 

clear we drop the prime superscripts. We are particularly interested in three 

parameters, namely the risk ratio, R = Pl , in cohort settings, and the odds 
Po 

ratio, 7/Je = PIqO, and the log-odds ratio, log ( 7/Je), in case-control settings. For 
POQI 

both cohort and case-control settings, we assume that Po is known. Therefore, 

we do not need to sample observations from the non-exposed subjects or the 

control subjects. For these reasons, these designs will be referred to in a 

broad sense as exposure-only (often known as exposure-series) and case-only 

designs (often known as case-series), or case-exposure designs according to 

Hogue et al., 1986. This definition of case-only designs is different from the 

current terminology used in genetics; there case-only designs arise in the two 

sample problem. We discuss this matter in chapter 4. We denote by n the 

sample size of interest in both designs (n = ml in the cohort design and 

n = nI in the case-control design). 

Sample sizes for the parameters of interest are investigated in two particu-

lar contexts. In the first scenario, we do not impose any particular restrictions 

on Pl whereas in the second scenario, we anow additional information of the 

type Pl < Po or Pl > Po· These, in turn, imply that R < 1 and 7/Je < 1 or 

R > 1 and 7/Je > 1. The log-odds ratio will be studied only in the first sce-

nario, since on the log-scale differences between the cases R < 1 and R > 1 

essentially disappear. Bayesian sample size determination will be based on 

both HPD and equal-tailed credible intervals. 

This chapter starts with a presentation of several sample size criteria in 
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section 3.1. Section 3.2 discusses sample size calculations when Pl lS unre­

stricted, while section 3.3 deals with the case when Pl is restricted. Section 

3.2 is divided into 8 subsections. In subsection 3.2.1, it is pointed out that 

there lS a bridge between the sample size provided by an exposure or a case­

only designs and the sam pIe size provided by a one sample problem. In sub­

section 3.2.2, we briefly introduce preliminary results about the pre-posterior 

predictive distribution. In subsection 3.2.3, we discuss sorne derivative-based 

algorithms for the exact computation of HPD intervals for R, 'l/Je and log( 'l/Je), 

when the coverage lS given, for the determination of the exact sample sizes. 

In subsection 3.2.4, we present approximate methods to estimate the tails 

of the HPD and equal-tailed intervals for the calculation of approximate sam­

pIe sizes. This is followed by two subsections on Monte Carlo procedures 

for fin ding sample sizes. Finally, we use aIl of these preliminary results to 

derive methods for calculating sample sizes. In section 3.3, we first present 

the prior-likelihood models used for the case when Pl is restricted along with 

the resulting posterior distribution. We then present methods using Monte 

Carlo simulations. 

3.1 Bayesian criteria for sample size 

Every sam pIe size calculation problem begins with the definition of a crite­

rion. In the chapter, the following criteria will be used. 

The first criterion is the k-th average coverage criterion ACCk , (1 < k < 00 

integer). Here, the statistician fixes the desired length of the HPD or the 
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equal-tailed interval at l. The posterior coverage probabilities of these credi-

ble intervals are then averaged with respect to the pre-posterior distribution 

PXn (Xn) un der the Lk-norm. This leads to searching for the minimum n sueh 

that 

> 1-ct, (3.1.1) 

where Xn = {a, 1,' .. , n}. The second measure, the k-th average length 

criterion (ALCk ), fixes the eoverage level of each HPD or equal-tailed interval 

at 1- ct, and averages their lengths over the distribution pxJxn). This leads 

to seeking the minimum n such that 

< l. (3.1.2) 

These two measures are obvious generalizations of the ALC and ACC (k = 

1) by Joseph et al., 1995 as discussed in chapter 2, and serve to unify various 

isolated criteria. For instance, PGT-(i) and PGT-(ii) (defined in subsection 

2.5.3), are now related to the WOC and ALC. This link has not been 

previously recognized. At the risk of digressing briefly, we establish in the 

proposition below the link between ALC2 and PGT-(ii). 

Proposition 3.1.1. Under the regularity conditions for the asymptotic nor-

mality of the posterior distributions, the ALC2 for fixed length l is asymptot-

ically equivalent to the average posterior variance criterion, PGT-(ii), when 
Z'l. 

the target leveZ of precision, E, is taken ta be -"'-2--

4 Zl-o:/2 

Proof. Without loss of generality, we can assume that the ALC2 eonsists of 
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solving the equation 

(3.1.3) 

with n continuous rather than n discrete, as lU (3.1.2). Under the same 

regularity conditions which assure asymptotic normality of the posterior dis-

tribution, we have 

lx" {!.EHPDlx",n,l-n) dO r px" (x,,) dx '" 4zLa/2 ( Var(BI xn)px" (Xn) dXn IJ(n 
4zLa/2 EXn[Var(BI x n )]. 

Therefore, equation (3.1.3) is asymptotically equivalent to 

o 

Expected coverage and length, as given by the left sides of equations 

1 
(3.1.1) and (3.1.2) when k=l, change at roughly the rate of fo' and hence 

slowly for large n. An often applied technique under such circumstances 

when increasing the differences between consecutive values of n, especially 

for expected length, is to raise aU lengths to a power k before averaging 

them. This leads, not surprisingly, to a different solution, compared with 

that obtained when k = 1. lndeed, the content of Proposition 3.1.2 below 

is that the ALCk leads to a larger sample size as k increases, whereas the 

opposite trend occurs when working with the ACCk . 

Proposition 3.1.2. Let n(k, 1 - a, l) and m(k, l, 1 - a) denote the optimal 
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sample sizes under the ALCk and the ACCk , respectively. Then 

n(k + 1, 1 - (x, l) > n(k,l - a, l), and, (3.1.4) 

m(k + l,l, 1- a) < m(k,l, 1- (X). (3.1.5) 

Proof. The proof of this proposition is entirely based on the natural ordering 

of the Lk-norm. Let n = n(k + 1,1 - (x, l). Then 

< l. 

This implies also that n satisfies 

< l, (3.1.6) 

because the Lk-norm increases monotonically as k increases. Therefore n(k+ 

1, l, 1 - a) is larger than the smallest bound of aU n satisfying equation 

3.1.6, that is, n(k, l, 1 - a). Similarly for the ACCk , but with inequalities 

reversed. o 

In general, sample size criteria should match the inferential techniques 

used in the analysis. Therefore, ALC and ACC are more natural than 

ALCk and ACCk for k > 1. Nevertheless, as k-moments criteria, the ALCk 

and ACCk remain of interest since, as we have seen, they can be related to 

other sam pIe size criteria that have been proposed. 

The third criterion is the worst out come criterion, WOC, defined in 

subsection 2.5.3.3. vVe temporarily rename this criterion to be the worst 

coverage outcome criterion, WCOC, to emphasize its link with t~e ACC. 

In a similar spirit, define a worst length outcome criterion, WLOC, a close 
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relative of the ALC, defined as follows: The WLOC requires that we find 

the minimum n that satisfies the inequality 

X~~~n {lEHPD(xn,n'1-Œ) dB} ::; l, 
(3.1.7) 

where Sn C Xn, is a pre-specified 100(1-,)% pre-posterior predictive credible 

region for Xn. 

Proposition 3.1.3 shows that the WOC is not only a coverage criterion 

but also a length criterion. 

Proposition 3.1.3. When Sn = Xn, WCOC = WLOC = ALCoo . 

Proof. It is clear that WLOC = WCOC since both criteria lead to choosing 

the minimum value of S where 

Let Wb W2,'" ,Wm and al, a2," . ,am be a sequence of m non-negative real 

numbers with L:1 Wi = land sup ai < 00. Then, 

(3.1.8) 

let j be the index i such that aj = sup ai. Then, we have 

( 

m ) 1/k 
l/k '" k w j aj::; L..... Wi a i ::; aj, 

.=1 

and equation (3.1.8) follows as we take the limit on k ----t 00. A straightfor-

ward application of equation (3.1.8) to our problem where the pre-posterior 

predictive distribution is always a discrete mass function leads to 

( 
k) l/k 

sup de = lim dB PXn(Xn) dXn , xnEXn {lEHPD(xn,n,l-Œ) } k-->oo in {lEHPD(xn,n'l-a) } 

for any given n, and the proof is complete. o 
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Proposition 3.1.4, which complements Proposition 3.1.1, draws a link 

between the WOC and PGT-(i). 

Proposition 3.1.4. Under the regularity conditions for the asymptotic nor-

mality of the posterior distributions, the WOC for fixed length land coverage 

1 - a is asymptotically equivalent ta the maximum posterior variances crite­
[2 

rion} PGT-(i)} when the target leveZ of precision} E, is taken to be -4--:::-2-­

zl-a/2 

Proof. Under the regularity conditions which assure asymptotic normality 

of the posterior distribution, on a continuous scale, the WOC solves the 

equation 

( )

2 

12 = sup de 
xnEXn {lEHPD(xn,n,l-a) } x~~t {LHPD(Xo,n,lO) de} 

2 

~ 4ZÎ-a/2 sup Var(el Xn). 
XnEXn 

o 

In the same vein, we may define the median coverage out come criterion, 

MCOC, and the median length outcome criterion, MLOC, as respectively, 

the minimum n such that 

(3.1.9) 

and 

medXnEXn { f de} ::; l. 1 BEHPD(xn ,n,l-a) 
(3.1.10) 

Although we define aH sample size criteria in terms of HPD intervals, many 

practitioners prefer to use equal-tailed intervals in place of HPD intervals. In-

deed, equal-tailed intervals are easier to compute especially from a Monte 
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Carlo simulation viewpoint. In our experience, sample sizes based on equal-

tailed intervals are often much more computationally efficient than those 

using HPD intervals. Second, samples size based on equal-tailed intervals can 

often be used as good estimates of those based on HPD intervals. Thirdly, 

sample sizes based on equal-tailed intervals will always be equal to or over-

estimate sample sizes based on HPD intervals. 

Now that we have clearly stated our sample size criteria, we are ready 

to proceed with sample size determination. Although the sample size calcu-

lation now reduces to a purely computational problem as is often the case 

with modern Bayesian inference, there are many practical obstacles to over-

come. In section 3.2, we address the question of sample size determination 

from three perspectives: exact computation, approximate computation and 

Monte-Carlo estimates. These three approaches are described in subsections 

3.2.3, 3.2.4, 3.2.5, 3.2.6 and 3.2.7. Before heading to these subsections, we 

first establish a straightforward relation between sample size determination 

for estimating R in exposure-only settings and 1/Je or CPe = log( 1/Je) in case­

only settings and sample size calculation for estimating Pl, W = ~, and 
1-Pl 

cp = log(w) in the one sample problem (in subsection 3.2.1), respectively. 

Given the bridge between case-only or exposure-only problems and one sam-

ple problems, we may transfer attention to that of finding sam pIe sizes for 

estimating the parameters Pl, w, and cp in the one sample problem. In order 

to compute sample sizes, we first need to discuss the common pre-posterior 

distribution corresponding to R, 1/Je or CPe. We do this in subsection 3.2.2. 
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3.2 Sample size when Pl is unrestricted 

3.2.1 Bridge between exposure and case-only designs 

and the one sample problem 

The following important theorem tells us that from a theoretical point of 

view, within the one sample problem framework, the sample size problems 

for inference about the proportion, Pl, the odds w = ~, and the log-odds 
1- Pl 

cp = log(w) = log (~) are simply related to those of R,'l/Je and log('l/Je), 
1- Pl 

respectively. 

Theorem 3.2.1. Let Z be a scalar random variable, Z = eX + d be a linear 

transformation of X, and 1 < k < 00 an integer. Let nz(k, l, 1 - 0:) and 

nx(k, l, 1- 0:) be the sample sizes for estimating X and Z respectively, using 

the ACCk . Similarly, define mz(k, 1 - 0:, l) and mx(k, 1 - 0:,1) to be the 

sample sizes for estimating X and Z using the AL Ck . The credible intervals 

used are assumed either to be HPD or equal-tailed intervals. Then 

nz(k, l, 1 - 0:) 

mz(k,l - 0:,1) 

nx (k, I~I' 1 - 0: ) 

mx (k, 1- 0:, I~I) . 

Similar results hold for the criteria WOC, MCOC and MLOC. 

(3.2.1) 

(3.2.2) 

Proof. The pro of of these results is a straightforward application of Theorem 

2.7.2. We will only prove equation (3.2.2). According to equation (2.7.2), we 

have the following result for the length of the HPD interval: 

Lgthz (HPD(l - 0:) ) = Ici x Lgthx (HPD(l - 0:) ) . 
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Therefore 

E [Lgth~ (HPD(l- a))] = icl k 
X E [Lgth~ (HPD(l- a))] , 

and the result follows. o 

Corollary 3.2.2 below is the bridge between the exposure-only and case-

only designs and the one sample problem. 

Corollary 3.2.2. For case-only and exposure-only designs, with Po fixed, the 

sample sizes for estimating R, 1/Je, and log( 1/Je) may be obtained from the 

l qo 
single parameter problem by setting, d = 0 and c = ,c = ,c = l, 

Po Po 

respectively in (3.2.1) and (3.2.2). 

3.2.2 Pre-posterior predictive distribution 

Since an our sample size criteria require averaging over the pre-posterior 

predictive distribution we turn our attention to its computation. 

From now until the end of section 3.2, we assume the following prior-

likelihood model: Pl is distributed as Be(a, b), a, b > 0, and Xnl Pl is Bin(n,Pl). 

It is easily seen that the prior-likelihood model discussed above yields 

the Beta-Binomial pre-posterior predictive distribution irrespective of the 

parameter Pl, W = ~, or 4> = log( 1/J) under consideration. We use the 
1 - Pl 

notation X n rv BB(n, a, b). This distribution has probability mass function 

( 1 b) = (n)Be(a+xn,n+b-xn ) 
PXn X n n, a, B (b) , 

X n e a, 
xn = 0, 1, ... ,n. (3.2.3) 

Setting a = b = 1 results in the uniform distribution on {O, 1,"· ,n}. The 
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expected value and variance of X n , given a and b, are 

a 
nEpl (Pl) = n a + b' (3.2.4) 

n
2Varp1 (Pl) + nEp1 [Pl(1- pd] 

abn2 abn 

(a+b)2(a+b+1) + (a+b)(a+b+1)" 
(3.2.5) 

An important property of the Beta-Binomial family of distributions, which 

will be used later, is 

X n = 0,1,'" ,n. (3.2.6) 

Equation (3.2.6), combined with the fact that 1 - Pl rv Be(b, a), gives rise 

to the following symmetrical property given by Theorem 3.2.3. It is useful 

because we are sometimes not able to compute the sample size for a given 

pair (a, b) but are able to compute the corresponding sample size for the pair 

(b, a). 

Theorem 3.2.3. Let nk(a, b, l, 1-0:) and mk(a, b, 1-0:, l) be the optimal sam-

ple sizes for estimating the proportion Pl using the ALCk and ACCk (1 ::; 

k ::; 00) criteria. Then 

(3.2.7) 

(3.2.8) 

Equivalent results hold for the criteria WCDC) WLDC) MCDC and MLDC. 

Similar properties hold when estimation of the parameter cp = log (~) = 
1- Pl 

(
1- Pl) -log ~ ,is of interest. 
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To recap, sample size determination is primarily based on computing 

exactly, approximately, or using Monte Carlo simulations, the following cri-

terion functions associated with the various criteria of interest: 

aCCk(n, a, b) = (r { r p(el X n , a, b) de}k pxJxnl n, a, b) dX) Ijk, 

)XnEXn )BEHPD(Xn,n,l) 

a!Ck( n, a, b) (l.Ex. {J.EHPD(x.,n,l-a) de r p xJ Xn 1 n, G, b) dX) 1/' 

woc(n,a,b) inf {r p(Olxn,a,b)de} , 
xnEXn )BEHPD(xn,n,l) 

mcoc(n, a, b) - medXnEXn { r p(el X n ) de} , 
) BEHPD(xn,n,l) 

mloc(n, a, b) = medXnEXn { r de} , 
)BEHPD(Xn,n,l-a) 

where e is either Pl, w or <p and where p(el X n) is the posterior distribution of 

e. We use the simpler notation alc(n, a, b) and acc(n, a, b) when k = 1. Then, 

using a bisectional search strategy, we find n such that, for example, alck ( n-

1, a, b) > 1 and alck(n, a, b) :::; l. In order to compute these criterion functions 

exactly, we need to compute HPD intervals exactly in order to determine their 

coverage or length for a given length or coverage, respectively. 

3.2.3 Exact computation of HPD intervals 

When the coverage is fixed, the calculation of HPD intervals is very inten-

sive. It is therefore important to develop fast entirely derivative-based ap-

proaches to the exact computation of HPD intervals for Pl, w and <p. As far 

as equal-tailed intervals are concerned, we take advantage of the availability 

of derivative-based algorithms in most statistical and mathematical software 

packages to find the required quantiles. On the contrary, when the length 
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is fixed, the omnibus algorithm 1 for the calculation of HPD and equal-tailed 

intervals presented in subsection 2.7.2.1 is reasonably fast, so that there is no 

need to consider this case further. Below we show how fast derivative-based 

algorithms can be used to compute HPD intervals when the coverage is given. 

The posterior density of the parameter of inter est Pl is well-known by 

conjugacy, to be 

1 
where ( ) =B(a+xn,n+b-xn), Xn E{0,1,· .. ,n}, a,b>O, 

K xn,n,a,b 

and where again B(.,.) is the Beta function. The others follow by simple 

transformation of variables: 

wa+Xn - 1 

- K(xn, n, a, b) (1 + w)n+a+b' 0< w < 00, (3.2.10) 

e(a+xn)</J 
= K(xn,n,a,b) (1+e</J)n+a+b' -00 < </J < 00. (3.2.11) 

It is well known (Dharmadhikari and Joag-dev, 1988) that the variable Pl is 

strongly unimodal when a+Xn, n+b-xn ;:: 1 while the variable 0) is unimodal 

.' [p !</J(</J) (n + a + b)e<i> . 
Irrespechve of Xn· For <p, we have B(p = - (1 + e</J)2 . Therefore </J lS 

strongly unimodal and hence unimodal irrespective of Xn. Let Fp1 , Fw and 

F</J, denote the respective distribution functions of Pl, w, and <p. It has been 

suggested by Hashemi et aL, 1997, to compute HPD intervals by means of the 

derivative-free Nelder-Mead algorithm by forcing, for instance, the function 

(3.2.12) 

to equal zero. The two such subroutines DUVMGS and DUMPOL (Nelder 

and Murray, 1965) are available in the ISML library. Obvious starting 
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values for the numerical solution of an the equations given here, are qŒ/2 and 

Ql-Œ/2, the percentiles of i p !' Although slow, these subroutines are suit able 

if one has to compute only a few HPD intervals. When convergence is not 

reached due to poor starting values, the researcher is 1eft with the option 

of trying various initial values and eventually convergence will be reached. 

Such a suggestion however, is not efficient for large n, and an automatic 

derivative-based algorithm must, therefore, be found. 

In order to implement such an algorithm and avoid the non-differentiability 

of the absolute value function, we propose the following adjustments to 

the proposition by Hashemi et al., 1997. Instead of the objective function 

(3.2.12), use 

G(t,z) = 1][Fp!(z) - Fp!(t) - (1- a)]2 + [JPl(Z) - iPl(t)]2, (3.2.13) 

where 1] > O. Note that iPl can be replaced by log i Pl because the equalities 

iPl (z) = iPl (t) and log iPl (z) = log i p! (t) are equivalent. The modifica­

tion which introduces the square rather than the absolute value, includes 

another modification through the introduction of the multiplicative con­

stant, 1]. This constant is introduced to balance the large difference between 

jFpl(z)-Fpl(t)-(l-a)1 and lipl(Z)-ipl(t)1, which is amplified by the 

square. Various derivative-based subroutines are available from the ISML 

library but only three subroutines turned out to be satisfactory with the 

objective function on the right hand side of (3.2.13). The first two are the 

subroutines DUMINF and DBCONF (Gill and Murray, 1976; Denis and 

Schnabel, 1983) for which 1] was held fixed at 100. One should note that 

the choice of 1] is critical since we might reach convergence but towards the 
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wrong values. It is, therefore, also important to consider slow omnibus al-

gorithms to make sure that convergence is toward the proper values. The 

third subroutine is DNEQNF (More et al., 1980). Although DUMINF 

is easily the fastest subroutine, we pre fer DNEQNF sin ce it is more accu-

rate. Indeed, accuracy is important, for the reduction of computation errors 

when averaging over the pre-posterior distribution. We describe what each 

subroutine does in appendix H. 

To use (3.2.13) and to accommodate the computation of the exact HPD 

intervals for the parameters W and cp, we take advantage of the following ob-

servation. Let [wl,w21 (resp. [CPl,CP2]), denote an HPD interval for w (resp. CP), 

WI W2 and VI __ exp(CP1) ,V2 __ exp(CP2) . and set Ul = , U2 = --
l+Wl 1+w2 l+exp(CPI) 1 + exp (CP2) 

Then, UI, U2, VI, V2 satisfies the equations 

91(ud = (Ul)a+xn -l(l - Ul)n+b-xn+1 = (u2)a+xn -1(1_ U2t+b+xn +1 = 9l(U2), 
(3.2.14) 

92(V2) = (vl)a+X n(l- Vl)n+b+xn = (v2)a+xn(1- V2)n+b+X n = 92(V2), 

and we are 1eft with minimizing the following functions to zero: 

1} [Fp1 (z) - Fpl ( t) - (1 - 0:)] 2 + [91 (z) - 91 ( t) ] 2, 

(3.2.15) 

1}[Fp1 (z) - Fp1(t) - (1- 0:)]2 + [92(Z) - 92(t)J
2

, 

to get Ul, U2, VI, V2. We implemented these minimization techniques and oth-

ers in this thesis using Visual Fortran 6.1 (Compaq), which includes most 

ISML libraries (International Mathematical and Statistical Libraries, Inc, 

IMSL Library, Houston, TX, 1991). 

Although the use of (3.2.15) offers a big improvement over the omnibus 

algorithm 2 in computation time, the starting values are sometimes insuffi-
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dent to ensure rapid convergence, especially wh en n > 10000. One major 

obstacle with the ISML subroutines is that any non-progress in five iterative 

steps stops the program, leaving us therefore with no output. We discuss 

these practical matters further in subsections 3.2.6. 

AU of these inconveniences lead us to consider approximate methods. 

Approximate methods are techniques used frequently in traditional Bayesian 

sam pIe size calculation problems when covariates are of interest (see Chaloner 

and Verdinelli, 1995). These techniques turn the discrete problem of sample 

size derivation into a continuous one, often allowing the use of calculus. 

3.2.4 Approximate methods 

There are, broadly speaking, two ways to approximate a solution to the 

sample size problem. The first approach is based on an asymptotic result 

for the limiting distribution of the pre-posterior predictive distribution, and 

the second approach is based on the asymptotic expansion of the posterior 

distribution. We give these results in subsections 3.2.4.1 and 3.2.4.2, before 

describing in 3.2.4.3 how they can be applied to our problem. 

3.2.4.1 Asymptotic distribution of the pre-posterior predictive 

distribution 

Theorem 3.2.4 below, which is a straightforward application of Khintchin's 

weak law of large numbers, does not seem to have been formulated before. 

This is surprising in view of its sim pli city. 
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Theorem 3.2.4. Let Xl,' ., ,Xn be n exchangeable random variables sttch 

that Xii e rv fx(xl e), i = 1, ... , n) e rv f(e), E(IIXIII e) < 00) and let 

Z = E(XI e) except on a set of measure zero with respect to f(e). Let 

Sn = Xl + ... + Xn. Then 

(3.2.16) 

Pro of. We have 

(3.2.17) 

le l~~ Pr [II: -zll > é 1 e] f(e) de 

(3.2.18) 

0, 

by first using Lebesgue's dominated convergence theorem to interchange 

the limit and the integral in expression (3.2.17) to get (3.2.18), and then 

Khintchin's theorem to evaluate the limit inside the integral. o 

It is worth noting that Theorem 3.2.4 does not make any assumptions about 

the dimension of the random variables Xl, ... ,Xn and e. 

Srivastava and Wu, 1993 discuss a similar result for the Beta-Binomial 

model. They suggest that a moment generating function argument may be 

used to prave this special case. 

Theorem 3.2.4 combined with the fact that the random variable X n is 
n 

uniformly bounded by 1 yields 
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CoroUary 3.2.5. 

lim E (Xn
) 

n->oo n 

hm Var (Xn) 
n-+oo n 

a 

a+b 

ab 
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We will investigate the accuracy of this approximation in section 3.2.4.3. 

3.2.4.2 Approximate left and right tans of HPD and equal-tailed 

intervals for Pl, w, and <P 

Alternatively, we may approximate the lengths of the HPD intervals by using 

a third order asymptotic expansion of the posterior distribution. As we will 

see in subsection 3.2.7.2, the sample sizes based on these approximations are 

very close to those obtained using the exact method. 

We first approximate the 1eft and right tails of the HPD and equal-tailed 

intervals for the proportion, the odds, and the log-odds, and then compute 

their lengths. For any of these approximations to hold, it is crucial that 

the posterior distribution has a unique maximum in the interior of its set of 

definition. Therefore, when estimating the proportion Pl, we need a > 1 and 

b> 1 and when estimating the odds w, we need a > 1. 

Although one might contemplate using the expressions given in subsec-

tion 2.7.3 to obtain approximate lengths of the HPD and equal-tailed intervals 

for the parameters Pl, w, and <P, unfortunately this cannot be achieved di-

rectly. We therefore propose a modification of the procedure that overcomes 

these difficulties, which may be illustrated by considering, for example, the 
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proportion Pl. Consider the third arder Taylor expansion 

One of the troublesome terms when e = Pl is 

which is undefined for X n = 0 and X n = n. Similar difficulties occur when 

the odds and log-odds are un der considerations. This causes a problem since 

in computing alck(n, a, b) we must average these approximate lengths from 

x = 0 to x = n. We propose, below, a solution to this difficulty. 

Proportion 

Let Model1 be Pl rv Be(a, b) and XnlPl rv Bin(n,pl), and let Ll(Xn, n, a, b) 

be the length of the HPD interval given n, X n , a, b. Similarly, let Madel 2 be 

Pl rv Be(O,O) and YNlpl rv Bin(N,pl), and let L2 (YN,N,O,0) be the length 

of the HPD interval given N, YN, 0, 0, where N = n + a + b. Suppose for the 

moment that a and b are integers. 

Now notice that Ll(Xn, n, a, b) = L2(a+xn, N, 0, 0), Xn = 0, 1,'" ,n since 
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the posterior distributions under Model 1 and Model 2 are the same. Hence 

n 

Xn=O 

n 

Xn=O 

n k 

~ L {L~pprox(x" + a, N, 0, O)} pxJxn\ n, a, b), 
xn=o 

where L~pprox(YN, N, 0, 0) is the third order approximate HPD length using the 

expressions given in subsection 2.7.3. Since the sum ofthe terms L2 (YN, N, 0, 0) 

goes from y N = a + X n to y N = n + a which are well-defined, the difficul-

ties at x" = 0 and X n = n are avoided. Although, the idea behind using 

L~pprox (YN, N, 0, 0) is based on the assumption that a and b are integers, we 

found that the third order approximate HPD and equal-tailed lengths obtained 

apphes as weIl for any a, b > 1. We give below the third order approxima-

tions to the credible intervals lengths using equations (2.2.19) and (2.2.20). 

In Appendix A, we give aU the components involved in the computation 

of the approximate left and right tails of the HPD and equal-tailed inter-

vals (equations (2.7.7) and (2.7.8)). These components are also used for the 

computations in equations (2.7.9) and (2.7.10), which are essential to the 

derivation of approximate lengths. 

Using equation (2.7.9) together with the adjustment discussed above and 

the results in appendix A, one gets an approximate HPD of length 
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1 1 n + b - X n X n + a 
wherevl(xn) = + b ' V2(Xn ) = + b ' X n = xn+a n+ -Xn Xn+a n+ -Xn 
0,1, ... ,n, and z = Zl-a/2. 

For an equal-tailed interval from expression (2.7.10), one obtains 

(3.2.20) 

For completeness, we present approximate credible interval lengths for 

the odds and log-odds. 

Odds 

Using equations (2.7.9) and (2.7.10) together with the results in Appendix 

A, one gets an approximate HPD of length 

and an approximate equal-tailed interval of length 

(3.2.22) 

1 1 
where N = n + a + b, Vl(Xn ) = + b ' 

xn+a n+ -Xn 
xn+a N(xn+ a) 

N ' and V3(Xn ) = (n + b _ X
n

)3' X n = 0,1,'" ,n. 
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Log-odds 

Using equations (2.7.9) and (2.7.10) together with the results in Appendix 

A, one gets the approximate lengths 

and 

(3.2.24) 

Xn+ a 
b ' Xn = 0,1,'" ,n. n+ -Xn 

In subsection 3.2.7.2, we will examine how sample sizes derived using 

these approximations perform compared with those based on exact methods. 

We shaH, first, however, assess the effect of using the limiting distribution of 

the pre-posterior predictive distribution in place of its exact counterpart. By 

turning the discrete problem into a continuous sample size problem, we are 

able ta exploit the manageable form of the limiting pre-posterior predictive 

distribution, to obtain approximate sample sizes for the ALC and ALC2 . 

For the sake of readability, we relegate the approximate sam pIe size formu-

lae for the MLOC ta appendix D. In subsection 3.2.4.4 we discuss how a 

regression analysis might help to derive or improve sam pIe size calculations 

based on Monte Carlo estimates. 
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3.2.4.3 Approximate sample size formula for the ALCk for k = 1,2 

The proportion, Pl: We begin by painting out the similarity for large 

sample sizes between the approach suggested by Pham-Gia and Turkkan, 

1992 and the approach based on ALC2. For the ALC however, we must 

resort to a different and more sophisticated technique. 

The posterior variance of the parameter Pl, obtained by using the density 

. .. (a+xn)(n+b-xn). 
ln equatlOn 3.2.9, lS Var (Pl 1 X n , n, a, b) = ( b)2 ( b 1) , and lS 

n+a+ n+a+ + 

denoted by Varp1 (xn , n, a, b) for X n = 0,'" ,n. The pre-posterior average 

variance for Pl, derived by Pham-Gia and Turkkan, 1992, is 

(3.2.25) 

B(a+l,b+1) 
where cP1 (a, b) = Bea, b) 

ab 
- ( ) ( b )' and where N = n + a+b a+ +1 

a + b. This implies that 

imation of the length of the HPD or equal-tailed interval. Note that this first 

arder approximation is only valid for an X n = 0,1,' .. ,n when a > 1 and 

b > 1. Such an approximation was suggested by Pham-Gia and Turkkan, 

1992 as a substitute for the length of credible intervals. Application ta the 

ALC2 requires that we solve the equation [EX);l (Xn , n, a, b)] 1/2 = l, for n, 

giving an approximate sample size of 

a, b > 1. (3.2.26) 
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This approximate sample size corresponds to the exact sample size formula 

under PGT-(ii)(Pham-Gia and Turkkan, 1992) when the target level of ac­
[2 

curacy E is taken to be 4z2 (see subsection 2.5.3). 
1-a/2 

Although it is straightforward to obtain approximate sample size formula 

for the ALC2 and indeed this has essentially been obtained by Pham-Gia and 

Turkkan, 1992 in a different guise, it is very difficult to derive approximate 

sample size formula for the ALC using the exact pre-posterior predictive 

distribution. Fortunately, Theorems 3.2.6, 3.2.7 and Corollary 3.2.8 suggest 

a solution to this problem. 

Theorem 3.2.6. If X n ---+d X and the X n are uniformly integmble, then 

X is integmble and 

limE[Xn ] = E[X]. 
n 

Proof. See Billingsley, 1995. o 

Note that X n uniformly bounded implies X n uniformly integrable. 

Theorem 3.2.7. Suppose that X n ---+d X and hn and h are Borel functions. 

Let E be the set of x for which hn(xn) ---+ h(x) fails for some sequence X n ---+ 

x. Suppose that E is a Borel set and P[X E El = O. Then hn(Xn) ---+d 

h(X). 

Proof. See Billingsley, 1995, exercise 25.8, p.340. o 

It is obvious that this theorem can be generalized to a sequence with more 

than one argument, i.e., of the form hn(Xn, Yn,' .. , Zn). This generalization 
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is used in chapter 4 to find approximate sample size formulae for the two 

sample problem. 

We now use both Theorems 3.2.6 and 3.2.7 to establish an important 

corollary which will be used to derive approximate sample sizes for Pl under 

the ALe. 

Corollary 3.2.8. 

. B(a + 1/2, b + 1/2) 
h~ vn + a + bExJlpl (Xn , n, a, b)] = 2z1-0;/2 B(a, b) . 

Proof. Set Yn = X n , and let Fn = {O, l, 1,' .. , n-l, 1} be the set of points n n n n 

where the mass function of Yn is positive. According to Theorem 3.2.4, we 

d ./(a+ny)(n+b-ny) 
have Yr, ---- Pl· Let Vn = hn(Yn), hn(y) = V N2 and 

h(y) = ylY(l - y), Y E [0,1]. Theorem 3.2.7 suggests that Vn ____ d h(P1)' 

We have 

Since the sequence of random variables, Vn , are uniformly bounded, Theorem 

3.2.6 implies that, 

t ya-l(1- y)b-1 
li~ E[Vn ] Jo h(y) B(a, b) dy 

B(a + 1/2, b + 1/2) 
-

B(a, b) 

which completes the proof. o 

Corollary 3.2.8 suggests that an approximate sample size using the ALC 

may be obtained by solving EXn [lpl (Xn , n, a, b)] = l for n using the fact that 
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EXn [lpl (Xn, n, a, b)] ~ B(a + 1/2, b + 1/2) 0 b' 
_..:::.....:.~'---'---'----"-.:.. ~ . ne 0 tams 

2Z1-a/2 B(a, b) -Jn + a + b 

=4zLa/2 (B(a+l/2,b+1/2))2 _ -b 
np1 [2 B(a,b) a, a,b>1. (3.2.27) 

In general, for the ALCk , it is easy to establish 

Corollary 3.2.9. 

. {k }l/k {B(a + k/2, b + k/2) }l/k 
h,;n-Jn+a+b ExJlpl(Xn,n,a,b)] = 2z1- a/2 B(a,b) 

Pro of. The pro of is similar to that of Corollary 3.2.8 where h(y) = yk/2(1-

)k/2 d h ( ) = (a + ny)k/2(n + b - ny)k/2 [0 IJ 
Y an n Y Nk ' Y E , . 0 

As before, using Corollary 3.2.9 we obtain, 

=4 zLa/2 (B(a+k/2,b+k/2))2/k _ -b 
np1 [2 B(a, b) a (3.2.28) 

as an approximate sample size for the ALCk . These approximate sample 

sizes for the ALCk increase as k increases since 

JnPl + a+ b = 
2Z1-a/2 (B(a + k/2, b + k/2)) l/k 

l B(a, b) 

2Z1-a/2 {X1!2(I_x)1!2}kX l-x (1
1 a-l( )b_l)l/k 

l 0 B(a,b) 

and the last expression is essentially an Lk-norm. If we take the limit as k 

goes ta in finit y, we obtain an approximate sam pie size for the WOC of 

a,b> 1. (3.2.29) 

Adcock, 1987 derived a similar sample size formula using the quantile of a chi-

square distribution. In practice, this approximate formula gives an accurate 

estimate of the exact sample size with an overestimation or underestimation 
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Figure 3.2.1: Graph of the approximate sample size for the ALC (in black) 

and ALC2 (in bIue) as a function of 1.0 ::; a ::; 30.0, b = a, 1 = .1, 1 - 0: = 

.95 when Pl is of interest. 

of 1 or 2 when a, b ::2: 1. Note that unlike equation 3.2.27, the approximate 

sample sizes in equation (3.2.29) depend on a and b only through a + b. 

Consequently, the prior parameters a and b need not be known if a + b 

is known. Equation (3.2.29) shows that the Bayesian sample size is smaller 

than the corresponding frequentist sample size. This reduction in sample size 

cornes about because the incorporation of prior information through a + b 

permits a reduction of the sample size by this amount. 

Figure 3.2.1 displays the approximate sample sizes for the ALC and the 
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ALC2 as a function of 1.0 < a < 30.0, on a continuous sc ale for l = .1, l-a = 

.95, and b = a. 'vVe can see that the sample sizes for the ALC and ALC2 

are similar. As prior parameters increase, although it is expected that the 

sample size should decrease because of increase in prior information, this is 

not the case for a < 9.3. It should be remembered, however, that there are 

counteracting influences on the sample size: first, the larger a + b the more 

precise the prior information. On the other hand, the variance of these data 

increases with increasing a + b. In the beginning the influence of the variance 

prevails, while later the peakedness of the prior prevails. 

We retrace the steps followed for Pl in deriving sample size formulae for 

odds and log-odds. 

The Odds, w : When b > 2, the posterior variance of w, obtained by using 

the posterior density in equation 3.2.10, can be approximated by 

Var(wlxn,n,a,b) -

~ 

~ 

(n + b - X n - 1)2(n + b - X n - 2)' 
(a+xn)(n+a+b-2) 

(3.2.30) 

(n + b - Xn - l)(n + b - X n - 2)(n + b - X n - 3)' 
(a + xn)(N - 1) 
(n+b-xn -1)3' 

denoted here by Varw(xn , n, a, b) for X n = 0,'" ,n. The derivative of 

1 
log Var(wl X n , n, a, b) as a continuous function ofxn in [0, n] is b + 

n+ -xn -2 

2 + 1 > ° for b > 2. Hence these posterior variances in-
n+b-xn -1 a+xn 

crease and satisfy 

a(N - 1) (n + a)(N - 1) 
(n + b - 2)(n + b - 1)2 :::; Varw(xn , n, a, b):::; (b - 2)(b _ 1)2 ' 
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where N = n + a + b. Since the maximum value of the posterior variances 

increase with n, the criterion function wloc(n, a, b) diverges as n increases. 

Therefore, the WLOC is not useful in this context. 

With this background, we are now ready ta derive approximate sample 

size formulae for w un der the ALC2 , ALC, and finally under the ALCk for 

k 2:: 1. We begin with special cases of k = l, 2 for illustrative purposes only, 

recognizing that the general result covers these cases. 

The pre-posterior average variance for b > 3 is 

n 

EXn [Varw(Xn 1 n, a, b)] = L Varw(xn , n, a, b) PXn(xnln, a, b), 
xn=o 

< t (n)Be(a+1+xn,n+b-3-xn) 
~ xn=o X n (N - I)Be(a, b) , 

cw(a, b) 
= 

N-1 ' 
(3.2.31) 

B(a+l,b-3) 
where cw(a, b) = 

a(a+b-1)(a+b- 2) 
implying that 

B(a, b) (b - 3)(b - 2)(b - 1) , 

limn vn + a + b{ EXn [Varw (Xn , n, a, b)] f/2 = V cw(a, b). Again this can be 

proved using Theorem 3.2.6. 

Let 

be the first order of approximation of the Iength of the credible interval 

for w which is defined for aIl X n = 0,1,'" ,n only when a > 1. An ap-

proximate sam pIe size for the ALC2 is obtained by solving the equation 

EXn [l~(Xn, n, a, b)] = Z2, in n. This yields an approximate sample size 

2 
Zl-tY./2 

nw = 4-Z2- cw(a, b) - a - b, a>l. (3.2.32) 
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Figure 3.2.2: Graph of the approximate sample sizes for the ALC2 as a 

function of a for 4.0 ::; a ::; 30.0, b = a, 1 = .5 and 1 - a = .95 when w is of 

interest. 

Figure 3.2.2 displays the approximate sample sizes for the ALC2 as a 

function of a for 4.0 < a < 30.0 on a continuous scale for l = .5, 1- a = .95, 

and b = a. These sample sizes decrease as a = b increases. 

In order to obtain an approximate sample size formula for the ALC, we 

need another corollary to Theorem 3.2.6. 

CoroUary 3.2.10. For b ~ 2, 

. B(a + 1/2, b - 3/2) h;n vn + a + bExJlw(Xn , n, a, b)] = 2z1- a / 2 B(a, b) 

Proof. Let Yn = X
n

, Fn = {O,~, ... , n~l, 1}, and h(y) = Vy(l - y), y E 
n 
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[0 1] S h ( ) =V(a+ny)(n+b-2-ny) u~ h 
, . et n y N2' ne ave 

""' (N - 1)(a + ny) 
~. (n + b - ny - 1)2 (n + b _ ny _ 2) pyJyln, a, b) 

yE:Fn 

eN I: hn(y) Pyn(yln, a, b - 2). 
yE:Fn 

N 
where CN = and limn cNVN = 1. We have shown in the 

(N - 2)vN-1 

proof of Corollary, that 3.2.8 

li;n I: fn(Y) pyJyln, a, b - 2) 
yE:Fn 

rI ya-l(1 _ y)b-3 
Jo f(y) B(a,b) dy 

B(a + 1/2, b - 3/2) 
-

B(a,b) 

which completes the pro of. o 

In similar fashion to the result for Pl, we obtain 

= 4 ZLe>/2 (B(a + 1/2, b - 3/2))2 _ _ b 
nw [2 B(a, b) a, a > 1, b > 2. (3.2.33) 

Figure 3.2.3 displays the approximate sample size for the ALC as a func-

tion of a for 3.0 < a < 30.0 on a continuous scale for l = .5, 1- a = .95, and 

b = a. Comparing Figures 3.1.2 and 3.1.3 we see that the sample sizes from 

the ALC and ALC2 are quite different. 

In general, for k 2: 1, by applying Corollary B.0.7 in appendix B, we may 

show 

_4 zLe>/2 (B(a+k/2,b-3k/2))2/k _ -b 
nw - l2 B(a, b) a , a> 1, b> 3k/2, 

(3.2.34) 

to be an approximate sample size for the ALCk . The approximation in 

(3.2.34) improves as b increases. 
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Figure 3.2.3: Graph of the approximate sample sizes for ALe as a function 

of a for 3.0 :; a :; 30.0, b = a, 1 = .5 and 1 - a = .95 wh en w is of interest. 

The Log-odds, </J : For given n, a, b, it is weIl known (Johnson et al., 1994) 

that the posterior variance of </J is 

Var(</JI x n , n, a, b) w'(a + x n ) + w'(n + b - x n ), 

1 1 + b ,a, b > 1, (3.2.35) 
a+xn -l n+ -xn-l 

w(x) .. . dlogr(x) 
where w'(x) = ~ 1S the tngamma functlOn, w(x) = dx ' and X n = 

0, ... , n. Therefore a first order approximation to the credible intervals is 

given by 

V N-2 
l</>(xn , n, a, b) = 2z1- a / 2 (a + X

n 
_ 1)(n + b - X

n 
- 1)' a, b > 1. 
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8paring the reader the details which are essentially the same as those con-

tained in the derivation of Pl and w, an approximation to the sample size 

formula for estimating 1; using the ALCk is given by 

_ 4 ZÎ-a/2 (B(a - k/2, b - k/2)) 2/k 
n.p - [2 B ( a, b) - a - b, a, b > k/2, (3.2.36) 

sinee 

. V {k }l/k (B(a-k/2,b-k/2))1/k 
h;nn+a+b Exn[l.p(Xn,n,a,b)] =2Z1-a/2 B(a,b) 

Although Corollaries 3.2.8, 3.2.9, 3.2.10, and B.O.7 are enough to derive 

approximate sample sizes, it is often prudent to consider higher order exp an-

sions of the criterion function alck (n, a, b). These improved approximations 

are given in appendix C, and this matter is discussed further in subsection 

3.2.5. 

80 far we have mainly discussed exact and approximate HPD and equal-

tailed intervals computations en route to finding ALCk sam pIe sizes. For 

the ACC, results analogous to those for the ALCk are, unfortunately, not 

apparent. We turn briefty to a discussion of an exact and an approximate 

method for the ACCk • 

3.2.4.4 Approximate sample size for the ACCk 

We have potentially two methods to determine the coverage of an HPD in-

terval when the length is fixed. These coverages must then, of course, be 

averaged, and equated to our specified average coverage. The first method 

is to use the omnibus procedure described in subsection 2.7.2 to determine 
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the coverage of the HPD interval of length l in combinat ion with the pre-

posterior distribution. The second method, which we term the first order 

approximation, proposed in this thesis for the first time, is as follows. Con-

sider, for the moment the parameter Pl' The idea is to use the approximate 

length of the credible interval, lPI (xnl n, a, b) = 2Z1-o:/2vVarpl (xn, n, a, b) to 

recover an approximate value of the unknown coverage 1 - a, that led ta 

the quantile Zl-o:/2, given that we set {Pl (xnl n, a, b) ~ l. First, for example, 

solve the equation 2Z1-O:/2vVarpI(xn,n,a,b) = l in Zl-a/2 and, thereby re-

coyer a. The approximate coverage 1 - a is taken to be 1 - 2<P( -t) where 

1 
t = and where <P is the cumulative distribution of a 

2VVarpl (xn , n, a, b) 
standard normal distribution. 

Finally, approximate sample size formulae for the MCOC which are iden-

tical to those for the MLOC may be obtained and are given in appendix D. 

3.2.5 Monte Carlo procedures 

Since the Monte Carlo approaches to sample size calculation that we use are 

similar ta those described in Joseph et al., 1995, they will not be the abject 

of exhaustive discussion here. The main idea, described, for brevity, through 

the ALCk, is that one uses a bisectional search strategy to locate an integer n 

such that for given a coverage 1-a, alck(n, a, b) :::; land alck(n -1, a, b) > l, 

where alck(n, a, b) is a Monte Carlo estimate of alck(n, a, b). 

We sketch the algorithm when estimating Pl is of interest. The algorithms 

for w and <p are very similar. For each step in the bisectional search over n: 
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® Simulate Pli, i = 1,'" ,m from a Be(a, b). 

® For each Pli, simulate an observation Xi t'V Bin(n,Pli)' 

® For each i, compute the length li of the HPD interval given 1 - 0: using 

Aigorithm 4 in subsection 2.7.2.3. Let M be the size of the Monte 

Carlo simulation used in Algorithm 4. 

To reduce Monte Carlo errors, Joseph et al., 1997 used an average of 

10 estimated sam pIe sizes. A similar strategy can also be used for the 

ACCk , WOC, MLOC, and the MCOC. 

A general criticism about this bisectional search algorithm is that it tends 

to underestimate the sample size when m and Mare smaU, say m, M < 2000. 

There is an explanation for this phenomenon. For instance, if the range of 

the simulated values is less than the specified length, then that range is set to 

be the HPD interval length and is obviously an underestimate. This behavior 

is less prominent with proportions than it is with odds and log-odds because 

the former, unlike the others, are bounded. In the Monte Carlo simulation 

algorithm, it ifi not clear a priori what combinations of m and j'V! provides 

adequate accuracy in the final sam pIe size estimate as this depends on the 

particularities of the problem. Sorne preliminary mns are therefore suggested 

in order to obtain an idea of the variability. 

Table 3.1 presents a summary of sample means, (ft) , standard deviations 

(stdnJ, biases, mean square errors (VMSE), and approximate 95% confi-

dence intervais for n, based on 500 sample sizes nj, j = 1, ... ,500, generated 
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Table 3.1: Monte Carlo-based sample size calculation for various m 

and M for the ALC when the odds is under consideration. We set 

a = b = 3, 1 - 0: = .95, l = .5. The exact sample size is 816. 

m=M fi stdnj bias stdn v'MSE 95 % confidence interval for n 

500 783.20 66.63 -32.80 2.98 32.94 777.36-789.04 

1000 795.24 217.19 -20.76 9.71 22.92 776.20-814.28 

2000 817.16 125.30 1.16 5.60 5.72 806.17-828.14 

5000 817.18 92.88 1.18 4.15 4.31 809.04-825.32 

10000 818.18 72.96 2.18 3.26 3.92 811.78-824.57 

using the Monte Carlo approach for each of m = M = 500, 1000, 2000, 5000, 
1 500 

10000. For instance, fi = 500 L nj and std~j = Var(nj). The parameter 
j=1 

specification for the ALe for estimating w are: a = b = 3, 1-0: = .95, l = .5. 

Under these specifications, the exact sample size is 816, as determined by us-

ing the exact computation of the criterion function described in subsection 

3.2.3. One marked characteristic of the estimated standard deviations for aU 

independent and identically distributed random variable nj in Table 3.1 is 

that they are an large, although estimated sample means are excellent when 

m, M > 2000. There is a large bias when m = M = 500 and m = M = 1000, 

which indicates m, M ::; 1000 is insufficient. 

Another way to reduce potential biases induced by Monte Carlo proce-

dures and also to account for the uncertainty in Monte Carlo procedures 

is to adapt a version of the regression approach developed by Müller and 

Parmigiani, 1995 and Müller, 1998 to the present situation. 



98 

3.2.6 Regression approach 

Consider the proportion. Equation (C.1.5) in Appendix C suggests we fit a 

general regression equation of the type 

to the alc( n, a, b) function, where ei, i = 1, ... , h are the regression coeffi-

cients and lPI = 2Z1-a!2vVar(pllxn,n,a,b), a,b> 1. Since, for large n, 

HPD and equal-tailed intervals are close, we could set 

(3.2.37) 

The idea now is to equate the specified l to the right hand side of (3.2.37) 

and to solve for n once the estimated regression coefficients ê1 , ... , êh have 

been obtained, as follows. 

Compute 9 pairs of (n, alc( n, a, b)) and then using least squares fit equa-

(3 2 37) h d F · Il h . A 1 A 1 tion .. to t ese ata. ma y, t e equatlOn el n 1!2 + e2 n 3!2 + ... + 
1 

êh n(2h-l)!2 = l may be solved for n given h, the number of regression terms 

included, using a software package such as Maple. Table 3.2 presents the 

results for this approach when (a, b) = (1,1), 1 - Ct = .95, and l = .1 or 

l = .02, and h = 1, ... ,7. 

For various h, we obtain approximate sample sizes for both HPD and equal-

tailed intervals. For l = .1, h = 3 is sufficient to provide accurate solutions for 

both intervals. For l = .02, h = 4 is sufficient to provide an accurate solution 

for an equai-tailed interval while h = 6 for an HPD interval. Although we have 

not provided a formaI stopping rule for h which depends on l, 1 - Ct, and the 

parameter of interest, a simple monitoring of the increase in sample sizes as 
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Table 3.2: Approximate regression based sample sizes for estimating 

the parameter Pl using HPD and equal-tailed intervals for various h 

and l when (a, b) = (1,1). 

HPD equal-tailed 

h 1 = .1 1=.02 h l = .1 l = .02 

1 182 4400 1 189 4608 

2 221 5489 2 227 5649 

3 231 5792 3 234 5878 

4 233 5880 4 235 5917 

5 234 5906 5 235 5922 

6 234 5917 6 235 5922 

7 234 5917 7 235 5922 

exact 234 5921 exact 235 5922 

h increases reveals when to stop. For instance, we might want the change 

in consecutive approximate sample size estimates not to be greater than 5. 

Values of h larger than 7 are not probably justified in view of the marginal 

gain in accuracy at the expense of increasing computational burden. 

Remark 3.2.l. Although in the above example the equation (3.2.38) 

ê1 ê2 êh 
n1/2 + n 3/ 2 + ... + n(2h-I)/2 = l (3.2.38) 

has exactly one real solution in n, in general we may face the difficulty 

of having to choose the optimal solution from a set of several that satisfy 

equation (3.2.38). When there is more than one real solution to equation 
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(3.2.38), it is hard to ascertain which corresponds to the optimal sample size 

unless we know an interval in which the true solution lies. The 10 estimated 

Monte Carlo sample sizes, for instance (see section 3.2.5), might suggest 

which of the roots is the correct choice. 

In practice, we fit the regression equation (3.2.37) to 9 random pairs 

(n, alck(n, a, b)) where alck(n, a, b) is a Monte Carlo estimate of alck(n, a, b). 

We now illustrate this regression approach for the odds, with a = b = 3, 1 -

a = .95, 1 = .5. The exact sample size is 816 and the approximate sample 

size given byequation (3.2.32) is 828. Table 3.1 suggests that one generates 

9 random points ni, i = 1,2, ... ,g, in the set {700, 701, ... ,lOOO} and then 

compute ale(ni, 3, 3) for each point ni. With 9 = 2000 and M = m = 1000, 

we obtain an approximate sample size of 811 for h = 1,2,3. With 9 = 5000 

and m = !vI = 500, we obtain 806, 806, 807, and 808 for h = 1,2,3, and 

4, respectively. In both situations, we found that 9 2:: 500 is a reasonable 

choice if one wants an estimate accurate to within 15 units of 816. These 

two choices of 9 show that h = 1 is sufficient. This is not surprising as in 

subsection 3.2.7.1 we show empirically that there is often, but clearly not 

always, an approximate linear relationship between 2 1 and n. 
ale (n,a,b) 

The ab ove regression approach differs slightly from that given by Müller 

and Parmigiani, 1995 and Müller, 1998. These authors advocate a fit of a 

parametric curve to the pairs (ni, li), where l/s are Monte Carlo estimates 

of the HPD length (li are obtained third step of the algorithm sketched in 

subsection 3.2.5). This idea can be seen to correspond to the regression 

method proposed when m = 1. The motivation of these above authors for 
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Linear regression 
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Figure 3.2.4: Graphs of the Monte Carlo pairs (nl 2 1 ) . 
ale (n,3,3) 



102 

using a regression approach is different from ours. They advocate a regres-

sion approach when the evaluation of the expected 10ss for various designs 

may be difficult and costly. We propose a regression approach to reduce 

the "noise" inherent in Monte Carlo methods. When a parametric form 

for the regression equation is unknown, these authors suggest the use of a 

smoothing curve. As indicated by Chaloner and Verdinelli, 1995, this al-

ternative proposal is sometimes hard to implement efIectively sinee difIerent 

smoothers might yield difIerent curves. Moreover, Müller and Parmigiani, 

1995 recognize that their methods will carry more variability. Fortunately, 

however, the equation (3.2.37) suggests a parametric form for the regres-

sion function when the ALCk is used. We shaH exploit this observation 

to apply the idea by Müller and Parmigiani, 1995. Returning to our ex-

ample with (a, b) = (3,3) and M = 1000, 9 = 5000, we got the following 

first order, (h = 1), regression-based sample sizes of 832, 796, 781, 771, 

808, 788, 787, 777, 785, 781 when using the first 500, 1000, 1500, ... , 5000 

rows of the generated dataset composed of (ni, li), 700 :::; ni :::; 1000. With 

M = 10000, 9 = 20000 and an increment of 2500 instead of 500, we obtained 

765, 797, 777, 779, 781, 781, 798, 802 which shows that increasing the pa-

rameter !vI and 9 do es not result neeessarily in improvement in the final 

sample size. Using a second order expansion, h = 2, did not change the 

estimated sample sizes. 

Our major contribution in this subsection is that we provide the form of 

the regression equations, so that one can in addition check if the regression 

equation holds by plotting -2 1 against n. Figure 2.2.5 provides two 
ale (n, a, b) 
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plots of (n, ~2 l ) against n along with the simple regression linear 
ale (n, 3, 3) 

regression hne and the use of a supersmoother. In practice, any of the most 

popular smoothers in Splus, namely, linear fit, polynomial fit, natural splines, 

lowess, or supersmooth will do an adequate job. 

Remark 3.2.2. In practice, the regression equation 

(3.2.39) 

can be applied for any a, b > 0 wh en considering the proportion, for a > 0 

and b > 3k/2 when considering the odds, and a, b > k/2 when considering 

the log-odds. Empirical evidence suggest that equation (3.2.39) does not 

hold wh en k < b::; 3k/2, for the odds and when 0 < a :::; k/2 or 0 < b :::; k/2 

for the log-odds, because the leading term is no longer n;/2' Rather, there 

exists 0 < À < 1/2 (often unknown) such that 

k ?: 1. (3.2.40) 

Therefore, one should be careful near the boundaries 3k/2 and k/2. In 

general, equation (3.2.39) works rather weIl when b > 3(k + 1)/2 and a, b > 

(k + 1)/2. In general, À can be estimated using a bisection search strategy. 

For the case h = 1 and given a coverage of 1 - Œ and a length l , one can 

estimate À using the regression equation log (alek (n, a, b)) = f-l - À log(n). In 

h h 1 ·· °1 d . d ft - log(l) t at case, t e samp e size lS easl y enve as n = exp A • 

À 

Equation (3.2.39) also applies to the two sample problems discussed in 

chapter 4 for aIl the cases where we have derived sample size formulae. Note 

that in contrast to the one sample problem, regression-based sample size 
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calculations are the only reasonable alternative for the two sample problems. 

In aIl cases where equation (3.2.39) applies, often a simple plot of Monte 

1 
Carlo estimates -2 against n reveals a linear relationship, suggesting 

alck(n,a,b) 

rather a simpler regression model of the form 2 1 = el + e2n, and 
alck(n, a, b) 

hence a straightforward approach to sam pIe size calculations. 

3.2.7 Applications and Results 

This section is divided into two subsections. Subsection 3.2.7.1 is mainly 

concerned with graphical displays of the objective functions alck(n, a, b) and 

acck(n, a, b) with respect to n, using the HPD, the equal-tailed and the first 

order approximation to Bayesian credible intervals. In subsection 3.2.7.2, we 

compare sample sizes arising from the various sample size criteria, and the 

different approximations presented in subsection 3.2.4. 

3.2.7.1 Displays of the various sample size criteria functions as a 

function of n 

It is useful to plot the criterion functions used in the computation of sample 

sizes in order to observe their forms. The top halves of figures 3.2.5, 3.2.6 

and 3.2.7 display alc( n, a, b) as a function of n, while the bottom halves plot 

1 
?( versus n. The bottom halves were suggested by the expansion 

alc~ n, a, b) 
equations in appendix C. The prior parameters for the proportion, the odds 

and the log-odds parameters are a = b = 1 and a = b = 2, and a = b = 3, 

respectively. An immediate conclusion is that the three different ways of 

computing credible intervals give very similar sample sizes, at least for these 
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values for a and b. Similar behavior was observed by Joseph et al., 1995 for 

a single proportion. 

The linear relations observed across those plots is somewhat striking for 

the odds and log-odds parameters, and is extremely useful in practice. One 

use of these curves is that the sample size can be approximated by solving 

, 1 1 f the equatlOn 2 ) = [2 graphically, by recovering the coordinates 0 
alck(n, a, b 

the intersection of the linear curves (n, 2 ( 1 )) and (n, l~) , instead 
alck n, a, b 

of graphically solving the less convenient original problem alck(n, a, b) = 1. 

These linear plots also suggest approximating sample sizes using the inter-

cept and slope of these curves which might be estimated by least squares 

methodology. For instance, in the case of the proportion Pl, we have 

1 
2 ) = 1.5907273 + 0.422017 n, 

ale (n, 1, 1 

using the data composed of the pairs (n,alc(n,1,1)), n = 1,2,'" ,3000, 

3002,'" , 5000, 5005,'" ,10000. This leads to a sample size formula 

= -37 3386 2.3695693 
n . 69 + l2 ' 

1 1 
when solving the equation 2( ) = 1

2
' When using equal-tailed inter-

ale n, 1, 1 

vals, the sam pIe size formula becomes 

- -2 2672 2.3696086 n - .135 + [2 . 

Both slopes are only negligibly different from the asymptotic slope 2.3696920 

in equation (3.2.35). 

Consider the sample size for estimating the proportion Pl with (a, b) = 

(1,1), 1 - 0: = .95, and 1 = .05, the odds w with (a, b) = (3,3), 1 - 0: = .95, 



3.2. SAMPLE SIZE WHEN PlIS UNRESTRICTED 109 

Table 3.3: Comparison of the approximate sample sizes for various 

m. 

Proportion Pl : (a, b) = (1,1), 1- a = .95, 1 = .05 

m 200 500 1000 2000 10000 exact eq. (3.2.27) 

n 943 944 944 944 944 945 946 

Odds w: (a, b) = (3,3), 1 - 0: = .95, 1 = .4 

m 200 500 1000 2000 10000 exact eq. (3.2.33) 

n 1267 1279 1283 1284 1284 1284 1296 

Log-odds rjJ: (a, b) = (2,2), 1 - 0: = .95, 1 = .4 

m 200 500 1000 2000 10000 exact eq. (3.2.36) 

n 528 528 528 528 528 529 530 

and l =.4, and the log-odds rjJ with (a,b) = (2,2),1- 0: = .95, and l =.4, 

using the intercept and the slope of these linear curves based on the sequence 

( n, 2 1 ) ) for various m. Results based on HPD intervals are 
alck(n, a, b l::;n::;m 

presented in Table 3.3. Table 3.3 suggests that, in general, m 2: 500 provides 

sufficient accuracy when the true sam pIe size is about one thousand, but even 

values as low as m = 200 are reasonably close. 

Another important use of the linear plots discussed above is that they 

can serve for sensitivity analysis of the choice of prior distribution. The 

linear relation suggests that any qualitative statement on the comparison of 

two couples (al, bd and (a2, b2) for a given length and coverage will provide 

information for an lengths given that coverage. For instance, we can easily 
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ale (n, a, b) 

as specified in the legend. 

read from these curves which prior parameters lead to sm aller sample sizes 

for a given coverage. In Figures 3.2.8 and 3.2.9, we compare the linear plots 

for various values of a = b. The top half of Figure 3.2.8 suggests that the 

prior information contained in the Beta prior with parameter (a, b) = (5,5) 

is much closer to the "information", in a vague sense, contained in that of 

(a, b) = (10,10) than it is to the "information" conveyed by (a, b) = (1,1) 

when considering the proportion Pl. 

The ale ( n, a, b) function for the odds ratio does not converge to zero 

as n -> 00, but is rather is an increasing function of n for (a, b) = (2,1) 

and (1,1) as illustrated by Figure 3.2.10. We might be tempted ta explain 
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Figure 3.2.10: Graph of alc( n, a, b) for the odds w as a function of n for (a, b) 

as specified in the legend. 1 - a = .95 here. 

such anomalies with the fact that one or more posterior variances are not 

defined, but this argument is insufficient since sorne posterior variances are 

also undefined for the case (1,2) where there is convergence. In general, for 

the ALe, we find empirically that b > 1 is necessary to have convergence to 

zero of the criterion function for w. AH these anomalies point to the fact that 

the alck(n, a, b) criterion functions do not always converge to zero as n -+ 00, 

especially wh en the variance is not defined. Table 3.4 on page 115 presents 

several prior parameter values for which there is both convergence to zero 

1 
and a linear relationship between 2 and n. It seems that for the 

alck(n, a, b) 
odds there is convergence to zero of the criterion function alck(n, a, b) when 
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Figure 3.2.11: Graph of mloc(n, a, b) for the odds w as function of n for (a, b) 

as specified in the legend. 

b> k. We think that this phenomenon is related to the existence of the k-th 

moment of the parameter under consideration. 

Although the criterion alck does not converge for (a, b) = (2, 1) and (1, 1), 

similar behavior was not observed when considering the criterion MLOC (see 

Figure 3.2.11), which always converges. This means that the MLOC may 

be used to find the sample size regardless of the prior parameters used, and 

in particular, in the cases where the ALCk breaks down. 

Figure 3.2.12 displays the criterion functions alc(n, 1, 1), mloc(n, 1, 1), 

and woc(n, 1, 1) when Pl is under consideration. 

The following is a brief summary of the observed linearity relationships we 
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Figure 3.2.12: Graphs of alc(n, 1, 1), mloc(n, 1, 1), and mloc(n, 1, 1) for the 

proportion Pl as a functions of n. 

have observed. Although we show empirically that there is a linear relation 

between the criterion function 2 1 and n for limited values of (a, b), 
alc(n,a,b) 

this linear relation seems to be very common to the ALCk , k ~ 1 and the 

MLOC. For proportions, we can include the WOC. In the case of WOC 

and MLOC, the approximate sample size formulae derived in subsections 

3.2.4.3 and D.1 based on the posterior variances corroborates that conjec-

ture. These formulae go even further by showing that there is unique slope 

irrespective of (a, b). For the odds, there exists a linear relation between 

2 1 and n whenever b > 3k/2 while for the log-odds, it happens 
alck(n, a, b) 
when a, b > k/2. For other cases, empirical evidence not displayed here sug-
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1 
gest that there is a linear relation between \ and n for sorne À > 2 

alck(n,a,b) -
when the k-moment the parameter under consideration is defined. 

A linear relation was not observed with the log-odds parameter for (a, b) = 

(2,2) when using WOC although there is convergence. There is a more 

general pattern for the WOC when estimating the log-odds parameter sinee 

the existence of a linear relation implies that limn woc(n, a, b) = 0, which is 

not the case as maXXn Var(q'>lxn, n, a, b) > max(\}J'(a), \}J'(b)), where \}J'(x) is 

the trigamma function defined in section 3.2.4.3. 

Figure 3.2.13 is typical of the displays that one obtains for acc( n, a, b) 

versus n. We have not been able to find the sort of linear relations observed 

1 
before, for, say, 2( b) versus n. 

acck n,a, 

Table 3.4: Sorne prior pararneters that imply convergence to zero 

and linearity of the criterion function alck(n,a,b) with respect to n. 

proportion odds log-odds 

convergence a,b > 0 b>k a,b> 0 

linearity a,b > 0 b> 3k/2 a,b>k/2 
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Figure 3.2.13: Graph of acc(n, 1, 1) for the proportion Pl as a function of n. 
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3.2.7.2 Cornparison between the exact sarnple sizes and the vari-

DUS approxirnate sarnple sizes 

In this subsection, we compare sample sizes resulting from the approxima-

tions developed in subsections 3.2.4 and 3.2.5 to the corresponding exact 

values for 1 - a = .90, .95, and .99 and various lengths. The chosen prior 

parameters are (1,1), (5,5), and (10,10) for the proportion, (3,3), (5,5), 

and (10,10) for the odds, and (2,2), (5,5), and (10,10) for the log-odds. 

The sample size formulae in use in this subsection are given by equations 

(3.2.28), (3.2.34), (3.2.36), (D.l.1), (D.2.1), and (D.3.1). The sample sizes 

are displayed in column 4 of Tables J.I-J.18 in appendix J. When estimating 

<jJ, the column labelled "limiting" under ALCk use the criterion function 

1 k a-l(l _ X )b-l 
d<jJ X q.2.41) ( )

~ 

1 {lEHPD(n,x,l-a)} B(a, b) 

where HPD( n, x, 1 - a) represents the HPD interval of coverage 1 - a for esti-

mating <jJ from the posterior distribution 

1 e(a+nx)1> 

f 1> ( <jJ) = Be( nx + a, n( 1 - x) + b) (1 + e<l> r+a+b . 
(3.2.42) 

For this criterion, one uses the limiting distribution of the pre-posterior pre-

dictive distribution in place of the pre-posterior predictive distribution. This 

criterion function can be interpreted as an approximation or an alternative 

criterion function to alc(n, a, b). Similarly for limiting sizes for the ACCk 

and the parameters Pl and 'IjJ. One advantage of this criterion is that we can 

relax the requirement that n has to be an integer, thereby transforming the 

discrete problem of sample size computations into a continuous one. This 
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aHows the use of any minimization algorithms for smooth functions to be 

used. 

Empty ceUs in Tables J.I-J.18 in appendix J are cells for which we were 

not able to derive the required sample sizes, often because the sam pIe size 

is extremely large. We found empirieally that MLOC = MCOC for the 

proportion, the odds and the log-odds, but have not yet been able to prove 

this formally. 

For the parameter Pl (see Tables J.I-J.6), the approximate sample size 

formulae in equations (3.2.26), (3.2.29), and (D.2.1) perform excellently com­

pared to the exact solutions. The first and the more accurate third order 

approximation of HPD intervals turned out to be very good, although we did 

not find any large differences between HPD and equal-tailed intervals. 

For odds (see Tables J.7-J.12), as expeeted, the third order approxima­

tion captures the difference between HPD and equal-tailed intervals well when 

using the ALCk . Often, for large l, the first order approximation tends to 

overestimate the optimal sample size. The third order approximation does 

poorly with the MLOC. The limiting distribution seems to give a slightly 

different estimate although the diserepaney is reduced as the prior parame­

ters are increased. 

For the log-odds (see Tables J.13-J.18), <P, the approximate values are 

uniformly close to the true values. This might be due to the faet that the 

distribution of <p approaehes the normal distribution more rapidly than do the 

distributions of Pl and '!/J. The limiting distribution worked also performed 

weIL 
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As an expected general behavior, we found that the larger the prior pa­

rameters the closer these approximations were to the true sample size. 

Tables J.I-J.18 show that there are no large differences in the sample sizes 

based on HPD and equal-tailed intervals, when low information or symmetric 

priors are used, but this is not always the case, as illustrated by Table 3.5, 

where the first four rows support the necessity of a third order approximation. 

The discrepancy between the sample sizes provided by HPD and equal-tailed 

intervals can be substantial as is demonstrated by the last four rows for 

the odds. Unfortunately, in none of the remaining cases did the third order­

based and the limiting distribution approach rernain close to the exact values. 

Such behavior is somehow predictable in light of the requirement for the odds 

that a > 1 in order to make use of the third order approximation. Although, 

there is no such theoretical conditions on the log-odds parameter, in practice, 

we found that a, b 2': k/2 is necessary for the third or der approximation to 

perform weIl. 

As promised in the last paragraph of subsection 3.2.4.3, we now provide 

sorne general guidelines about which sarnpIe size approaches to use in prac­

tice. Since MCOC = MLOC, we only discuss the MLOC, but note that 

exact sarnple size computation for the MLOC should be replaced by exact 

computation for the MeOC, which is always faster. 

3.2.8 General guidelines 

® For proportions: When a, b 2': 1: 
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Table 3.5: Comparison of the exact and third order approximation 

sample sizes when estimating w and rp under ALC. 

Odds, w 

(a, b, 1 - ct, l) Exact 3rd order limiting 

HPD equal formula HPD equal HPD equal 

(15.0,3.0, .95, 5.0) 458 494 497 453 487 394 426 

(15.0,3.0, .95,4.0) 745 784 786 741 777 674 709 

(2.0,2.0, .95, 1.0) 652 716 764 633 683 559 602 

(1.0,2.0, .95,0.5) 529 572 604 516 551 466 496 

(3.5, 1.6, .95, 6.0) 408 638 2647 304 430 176 274 

(3.5,1.5, .95, 6.0) 1063 1787 NIA 748 1074 694 450 

(1.0,1.4, .95, 3.0) 292 646 NIA 154 271 73 154 

(1.0, 1.2, .95, 8.0) 218 2153 NIA 1 85 29 

(3.0,3.0, .95, 1.5) 688 832 NIA 654 769 439 509 

Log-odds, rp 

(0.5,0.5, .95, 1.0) 662 725 NIA 649 702 561 

(0.3,0.4, .95, 1.5) 1851 2366 NIA 1791 2214 1376 

(0.3,3.7, .95,3.5) 579 804 NIA 557 755 396 
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1. For the ALCk , WLOC and the MLOC, use the approximate 

sample size formulae in equations (3.2.28), (3.2.29), and (D.2.1), 

respectively. 

2. For the ACC k , use the limiting distribution approach in subsec-

tion 3.2.4.4. 

In other cases, for the ACCk and the MLOC, use the exact computa-

tion while for the ALCk , use either the exact computation in subsection 

3.2.3 or the Monte Carlo approach in subsections 3.2.5 and 3.2.6. 

e For the odds: 

3(k+1) . 
1. For the ALCk , when a, b 2:: 2 ,use the thlrd order ap-

proximation to the length of the credible intervals in equations 

(3.2.21) and (3.2.22). These provide better approximations to 

the sample sizes than the approximate sam pIe size formula given 

by equation (3.2.34). Equation (3.2.34) should only be used if 

3(k + 1) . 
a, b » 2 . Otherwlse, use the exact computation or the 

regression-based Monte Carlo approach. 

2. For the ACCk and the MLOC, use the exact computation. 

e For the log-odds: 

1. For the ALCk and the MLOC: when a, b 2:: k; 1, use either 

the approximate sample size formulae in equations (3.2.34) and 

(D.3.1), the limiting distribution approach described byequation 

(3.2.42), or the third order approximation described by equations 
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(3.2.23) and (3.2.24). AH three methods are equally efficient and 

accurate. Otherwise, use the exact computation or the regression­

based Monte Carlo approach. 

2. For the ACCk : when a, b 2: 1, use any approach: exact, first or der 

or limiting distribution. Elsewhere, use the exact computation. 

Note that the log-odds is the only parameter where the limiting distri­

bution approach often works well for aU criteria. 

In conclusion, the different approximations used to estimate the true sam­

pIe sizes generally work weIl, but it is important to remember the conditions 

under which they apply. 

3.3 Sample size when Pl is restricted 

In this subsection, we return to the problem of Bayesian sample size calcula­

tions, using the five criteria defined at the beginning of the chapter, namely 

ALCk1 ACCk (1 < k < (0), WOC, MLOC and MCOC, but consider the 

case where Po is exactly known and Pl is restricted to the interval Pl < Po 

or Pl > Po· It is widely acknowledged that cohort and case-control stud­

ies are rarely carried out in incomplete isolation. Therefore, as pointed by 

Marshall, 1988, "there may some sound biological or epidemiological factors 

which limits the size of the risk". Ignoring prior information leads to ap­

plying the same inference and sample size mechanism to both plausible and 

implausible exposures. We start in subsection 3.3.1 by suggesting types of 

prior distributions that could be used for the restricted unknown parameter 
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Pl, and explore the pre-posterior predictive distributions and posterior distri-

butions that results from these choices. The computation of the sam pIe sizes 

is Monte Carlo based, as exact or formulae based methods appear difficult. 

We discuss various examples in section 3.3.1.2. 

3.3.1 Choice of prior distributions, and the predictive 

and posterior distributions 

Contrary to section 3.2, we assume we know more than the usual 0 < Pl < 1 

bound. We assume, for instance, that the risk ratio R = Pl < 1 or R = 
Po 

Pl > l, although more generally, we might have bounds 0 < f < Pl < h < 1. 
Po 
Similarly for the odds ratio. Such assumptions are often made in sam pIe size 

computations that are based on power considerations (Blackwelder, 1993), 

but are relevant in the Bayesian context, where this information must be 

incorporated into our Beta prior distribution for the parameter Pl. Two 

prior developed to accommodate these constraints have been proposed in 

the literature. The first proposed prior is the generalized beta distribution 

with four parameters, also called the Pearson type l distribution (Carnahan, 

1989), while the second (Smith, 1975), perhaps more natural, is a truncated 

or incomplete Beta distribution on the interval (J, h) as the prior distribution. 

The latter maintains conjugacy with a binomial likelihood. 
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3.3.1.1 Generalized Beta Distribution 

The generalized Beta distribution has density 

0< J < P < h < 1, (3.3.1) 

where h and J are the endpoints of the interval of support, and a > 0 

and b > 0 are the shape parameters. This distribution will be denoted by 

Be(a, b, f, h). Note that ~ ~; is a Be(a, b) random variable. It is easily 

seen that 1 - p f'o.J Be(b, a, h, f). This prior distribution, combined with the 

likelihood function (;)pl(l - Pl)n-x gives a posterior distribution 

_ (n) pXn(1- pt-xn (p - f)a-l(h _ p)h-l 
X n PXn(xn) Be(a, b)(h - f)a+b-l' 

oc pXn(1 - pt-Xn(p - f)a-l(h - p)b-\ J < p < h, 

(3.3.2) 

where J, h > 0 and where PXn is the pre-posterior predictive distribution 

whose expression is given below. Although straightforward, this prior/likelihood 

model does not seem to have been previously discussed in detail. 
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Pre-posterior predictive distribution: The pre-posterior predictive dis-

tribution, Pxn , has mass function 

for X n = 0, 1, ... ,n. We also have the asymptotic result X n 
-,?d Beta(a, b, h, 1) 

n 
. X n - nf d () or eqmvalently nh -'? Beta a, b , as n ---j> 00. 

We now consider the two special cases, f = 0 and h = Po, and f = Po 

and h = 1, with respective corresponding posteriors 

f ( 1 b 0 ) ( )b-l a+Xn-l(1 )n-xn 
Pl P X n , n, a, , ,Po ex Po - P P - P , o <P < Po, 

(3.3.4) 

and 

f ( 1 b 1) ( )a-l Xn(1 )n+b-Xn-l 
Pl pXn,n,a, ,Po, ex P- Po P - P , Po<P<1. 

(3.3.5) 

These range restrictions correspond to the information that R = Pl < 1 and 
Po 

R > 1 in the cohort design, and 'lj;e = PlqO < 1 and 'lj;e > 1, in the case 
QlPO 

control design, respectively. 

(3.3.3) 
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Posterior distributions of Rand 1/Je: The posterior distribution of R is 

proportional to 

when f = 0 and h = Po, and 

when f = Po and h = 1. 

0< R < 1, 

1 
1 < R<-, 

Po 

Similarly, the posterior distribution of 1/Je is 

o < 1/J < 1, 

when f = 0 and h = Po) and 

f,pJ1/JIx.n,n,a,b,po, l) 
nl.Xn (ni. l)a-l 

a+xn n+a+b-Xn-l 'f/ 'f/ -

ex Po qo (qo + po1/J )n+a+b' 

1 < 1/J < 00, 

when f = Po and h = 1. 

(3.3.6) 

(3.3.7) 

(3.3.8) 

(3.3.9) 

As we will show below, aH four of the above posterior distributions are 

unimodal. Unimodality is a central property in this thesis since it is required 

by an the algorithms for the computation of HPD intervals. 

Unimodality of Rand 1/Je: The unimodality of Rand 1/Je will follow as 

a corollary to Theorem 3.3.2 below. This corollary does not appear to have 

been stated elsewhere. 
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Lemma 3.3.1. Let U be strongly unimodal mndom variable with an abso-

lutely continuous density Ju. Then V = exp ( U) is unimodal. 

Ju (log( v)) 
Proof. The density of V is easily seen to be Jv(v) = and con-

v 

sequently log (Jv ( v ) ) = log (Ju (log( v) )) - log( v ). The differentiation of 

log(Jv(v)) with respect to v gives 

81og(Jv(v)) = ~ {Ju(lOg(V)) -1} 
dv v Ju{log(v)) , 

(3.3.10) 

h J' () 8Ju(u) S' U . l' d l J& . d . w ere u u = du . mce lS strong y ummo a, Ju lS ecreasmg. 

Therefore the right hand si de of equation (3.3.10) can have at most one 

change in sign. If the sign does change, the change must be from positive to 

negative. This shows that exp(U) is unimodal. o 

Theorem 3.3.2. Let p rv Be(a, b, J, h) and xnlp rv Bin(n,p), with 0:::; J < 

g:::; 1, a, b ~ 1. Let w = -1 P and cp = log('I,b). Then 
-p 

(i) The posterior distributions oJ p and cp given X n are strongly unimodal 

(and thereJore unimodal). 

(ii) The posterior distribution oJ w given Xn is unimodal. 

PraoJ. The posterior density of p is given by equation (3.3.2). The strong 

unimodality of the posterior distribution of p given X n is a direct consequence 

of 

82 log (Jp(plxn, n, J, h, a, b)) 
dp2 

0,-1 
(p - f)2 

b-l 
(h - p)2 :::; O. 

The posterior density of cp given Xn is 

exp (xnCP ) {exp cp }a-l 
fq,( cplxn , n, J, h, a, b) ex (1 + exp ( cp) r+2 l + exp cp - J x 

h _ exp cp 
{ }

b-l 

1+ exp cp , 
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where log (1 ~ f ) < w < log (1 ~ h)' The result follows sinee 

(1 + e4»2 EPlog(J4>(<fJlxn , n, f, h, a, b)) 
e4> d<fJ2 

_ -(n+2)-(a-1) (1-f)e
2
4>+f

2 [J + (1 - l)e4>] 

(1 - h)e24> + h 
-(b - 1) [h + (h _ 1)e1f S; O. 

The unimodality of w is then a straightforward application of Lemma 3.3.1. 

o 

Corollary 3.3.3. Under the conditions of Theorem 3.3.2, Rand 1/Je are 

unimodal. 

Prao]. We have observed that Rand 1/Je are linear transformations of the 

random variables defined in Theorem 3.3.2 under the conditions of interest. 

Since linear transformations of unimodal random variables are also unimodal, 

the unimodality of Rand 1/Je follow. o 

Simulating observations from the posterior distributions of Rand 

1/Je: There is no trivial way to simulate observations from equations (3.3.7), 

(3.3.8), (3.3.9) and (3.3.10). One possibility is to employ the inverse cumula-

tive distribution technique on a grid of points lying in the interval (1, h), and 

another is the SIR-like algorithm proposed by Ross, 1996. A further idea, 

which is described below for the first time, is based on regarding the poste-

rior distribution of R as a finite mixture of independent Beta distributions. 

Indeed, the binomial expansion 
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implies 

!R(Rlxn, n, a, b, O,Po) oc p~+b+xn-l R a+Xn-1(1 - R?-l(1 - Rpor-Xn , 

n-xn p~+b+xn+j-l q;-Xn-j Ra+xn -l(1 _ R)b+j-l 

oc ~ (n - X n + 1) B (j + 1, n - X n - j + 1) , 

n-xn 

L: 0< R < 1, 
j=O 

Vj d _ Be(a + X n, b + j) a+b+xn+j-l n-xn-j 
wherewj = n-xn an Vj - B(' . ) Po qo· 

2::k=O Vk J + 1, n - X n - J + 1 
1 

For the case of the posterior distribution with 1 < R < -, that is 
Po 

first simulate observations from the random variable 0 < T = Po (R - 1) < 1 
qo 

and then compute R = qo T + 1. Now we describe how one can generate an 
po 

observation from the random variable T. We have 

f (tl b 1) PXon qon+a+b-xn-l ta- 1 (1- t)n+b-xn-l (1 + pqOot)xn , T X n , n, a, ,Po, oc 

h . _ Vj d _ B(a + j, n + b - x n) xn-j n+a+b+j-xn-1 
W ere wJ - ,,",Xn an vJ - B( . + 1 _. + 1) Po qo 

L<k=O Vk J, X n J 

To simulate random observations 'l/Jj from equations (3.3.9) and (3.3.10), 

we first simulate observations Rj from (3.3.7) and (3.3.8) as described above 

using the appropriate mixture of Beta distributions, and then set 'l/Jj = 

qoR 

I-poR 

The generation of random samples of Rand 'l/Je can be used to estimate 

sample sizes via Monte Carlo algorithms as we will see in subsection 3.3.2. 
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3.3.1.2 Incomplete Beta Family 

Smith (1975) proposed the probability density function 

0:::;; i < p < h :::;; 1, (3.3.11) 

where a, b > 0 are the shape parameters, 

kO,h(a, b) - ko,J(a, b), (3.3.12) 

and 

(3.3.13) 

This distribution will be denoted by IBeta(a, b, i, h). It is easily seen that 

1 - Pl '" IBeta(b, a, 1 - h, 1 - f). 

Posterior distribution of Pl: The incomplete Beta distribution combined 

with the Binomial(n,p) likelihood at X n (xn = 0,1, ... ,n) gives a posterior 

distribution which is IBeta(a + x.n , b + n - X n , i, h). Its comparatively sim-

pIe form will allow us to use the inverse cumulative distribution fun ct ion 

technique to simulate observations from this posterior distribution. 

Recall that the cases of interest to us are 0 < R < lorI < R < ~ in 
Po 

the case-control setting, and 0 < 1/Je < 1 or 1 < 1/Je < 00 in the case-control 

setting. 

Vnder these conditions, the posterior distributions of R 

cohort study is proportion al to 

Pl in the 
Po 

(3.3.14) 
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for both intervals 0 < R < 1 and 1 < R < ~. For the case-control study, 
Po 

b . th t th t' d' 'b' f' P~ qb . . l we 0 tam a e pos enor lstn utlOn 0 1/Je = -,-, 1S proportlOna to 
PoQ1 

To simulate random variables from equations (3.3.14) and (3.3.15), we 

will use the cumulative distribution technique. When b is an integer, then 

JR(RIXn , n, a, b, J, h), 0 < R < 1 can be regarded as a finite mixture of 

independent Beta distributions, 

o < R «3.3.16) 

. h Vj d B(a + xn,j + 1) a+xn+j-l b+n-xn-j-l 

wlt Wj = L':~~~-Xn-l Vk an Vj = B(b + n _ X
n 

_ j, j + 1) Po qo . 

For JR(Rlxn , n, a, b, J, h), 1 < R < ~, with a an integer we have 
Po 

a+Xn- l t n +b- xn (1 _ t)j+l 

fr(tlxn1 n, a, b, J, h) = I:: Wj B (b ')' 
. e n + - Xn,J + 1 
)=0 

(3.3.17) 

V· 
where Wj = a+x~-1 

d . _ B(b + n - xn,j + 1) a+xn-j-l b+n-xn+j 

an v) - B (a + Xn _ j, j + 1) Po Qo 
L':k=O Vk 

and T = Po (R - 1) 
qo 

If b is large, the ab ove decomposition can be regarded as a close approx-

imation to the posterior distribution of R. 

Pre-posterior predictive distribution: The pre-posterior predictive (marginal) 

distribution associated with the incomplete beta prior density is 

( l b J h) = (n) kf,h (a + X n 1 n + b - X n ) 
PXn X n n, a, , , k (b) . 

X n f,h a, 

Again X n 
-t

d IBeta(a, b, J, h). 
n 

(3.3.18) 
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Table 3.6: Monte Carlo-based sample size calculations for the ALC 

and ACC using an incomplete beta prior distribution. Po = 0.1. 

ALC --- 0< Pl < Po 

(a, b, l, 1 - s) odds ratio, 1j.; < 1 risk ratio, R < 1 

(3, 3, 0.5, .95) fi = 133 stdn = 0.543 fi = 107 stdn = 0.731 

ALC - -- Po < Pl < 1 

(a, b, l, 1 - s) odds ratio, 1j.; > 1 risk ratio, R > 1 

(3, 12, 1.0, .95) fi = 901 stdn = 1.875 fi = 324 stdn = 0.547 

(6,4,1.0, .95) fi = 580 stdn = 0.563 

ACC --- 0< Pl < Po 

(a, b, l, 1 - s) odds ratio, 1j.; < 1 risk ratio, R < 1 

(3,3,0.5, .95) fi = 187 stdn = 0.526 fi = 164 std,i'i = 0.651 

ACC --- Po < Pl < 1 

(a, b, l, 1 - s) odds ratio, 1j.; > 1 risk ratio, R > 1 

(3,12,1.0, .95) fi = 2068 stdn = 12.925 fi = 409 stdn = 0.737 

(6,4,1.0, .95) fi = 615 stdn = 0.943 
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Table 3.7: Monte Carlo-based sample size calculations for the ALC 

and ACC using the generalized beta prior distribution. Po = 0.1. 

ALC --- 0< Pl < Po 

(a, b, l, 1 - s) odds ratio, 'IjJ < 1 risk ratio, R < 1 

(3,3,0.5, .95) n = 131 stdn = 0.149 n = 131 stdn = 0.233 

ALC --- po < Pl < 1 

(a, b, l, 1 - s) odds ratio, 'IjJ > 1 risk ratio, R > 1 

(3,12,1.0, .95) n = 1012 stdn = 2.675 n = 265 stdn = 0.373 

(6,4,1.0, .95) n = 311 stdn = 0.359 

ACC --- 0< Pl < Po 

(a,b,l,l-s) odds ratio, 'IjJ < 1 risk ratio, R < 1 

(3,3,0.5, .95) n = 135 stdn = 0.249 n = 134 stdn = 0.233 

ACC --- Po < Pl < 1 

(a, b, l, 1- s) odds ratio, 'IjJ > 1 risk ratio, R> 1 

(3,12,1.0, .95) n = 1240 stdn = 5.707 n = 272 stdn = 0.359 

(6,4,1.0, .95) n = 315 stdn = 0.850 
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3.3.2 Results and applications 

To illustrate our methods, consider the problem of determining the sample 

sizes in the context of the restricted model for estimating the relative risk 

and odds ratio with the ALC and ACC. Let (a, b) represent the prior 

distribution parameters in the models in equations 3.3.1 and 3.3.11, Po = 0.1 

the probability of success among control (case-control study) or non-exposed 

(cohort study), and let l - 0: = 0.95 be the desired coverage level. As 

usual, in cohort settings, the parameter investigated is the risk ratio and in 

case-control settings, the parameter is the odds ratio. Let fi represent the 

average of 10 Monte Carlo estimated sam pIe sizes. For each of the two Monte 

Carlo steps involved in the computation of criteria functions, we simulated 

m=M=2000 observations, using the algorithm described in subsection 3.2.5. 

Tables 3.6 and 3.7 provides results. Three sets of prior parameters were 

chosen, namely, (3, 3), (3, 12), and (6, 4), representing typicai cases where 

Pl equally takes values near 0 and 1, where Pl more often takes values near 

1 than 0, and vice-versa, respectively. The mean and standard deviation 

of the 10 trials are provided in these tables along with their mean, which 

is highlighted in blue. The empty cells in Table 3.6 and 3.7 are cases for 

which the sample sizes are larger than 20,000. It is clear from Tables 3.6 

and 3.7 that the sample sizes based on case-control study for estimating the 

odds ratio are larger than the sam pIe sizes based on cohort for estimating 

the relative risk. This behavior is marked wh en (a, b) = (6, 4). The sample 

size based on the generalized beta prior distribution (see Table 3.7) under 

ALC and ACC are similar. For the incomplete Beta (see Table 3.6), there 
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is a marked gap between the sample sizes provided by ALC and ACe. 

3.4 Conclusion 

In this chapter, we addressed the sam pIe size problem for inference in exposure-

only and case-only settings under the Bayesian paradigm for each of the five 

criteria ALCk, ACCk , WOC, MLOC and MCOC. The three parameters 

f .. t . 'd . 1 . l d' 1 R Pl 0/' Pl(l - po) o mam mteres m epl emlO oglCa stu les, name y, = -, 'f'e = ( ) , 
Po Po 1 - Pl 

and cPe = log( 1/Je) are studied, where Po < 1 is known. We studied both 

HPD and equal-tailed intervals. HPD intervals are optimal in the sense that 

they lead to the smallest possible sam pIe sizes under any criterion. One ad-

vantage to using equal-tailed intervals is that they are simpler to compute 

and therefore computationally efficient. When there are no restrictions on 

Pl, we developed three approaches: exact, approximate, and Monte Carlo-

based. We derived sample size formulae for ALCk , WOC, and MLOC, 

and also discuss the approximate linear relationship between, for instance, 

2 1 and n. This linear relation is exploited to reduce Monte Carlo 
alck(n, a, b) 
errors by fitting a regression equation to the Monte Carlo sample. 

When imposing conditions of the type 0 < Pl < Po or Po < Pl < 1 on Pl, 

we investigate two families of prior distributions that can be used to model 

these restrictions. We derived the posterior distributions of R, 1/Je, and cPe 

arising from these prior and showed how one can simulate observations from 

these posteriors. Numerous tables of sample sizes are provided in appendix J. 

We have established a simple, but extremely important, relation between 
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the one sample problem and both exposure-only and case-only designs. As 

a consequence, not only have we solved the question of sample size determi-

nation for exposure-only and case-only designs, we have also presented an 

alternative solution to the sample size calculation problem for estimating a 

single proportion Pl extending the work by Joseph et al., 1995. Here we 

looked at the odds, w = ~, and the log-odds cp = log( w), parameters 
1 - Pl 

often of interest in areas such quality control (Berger, 1998). 

In the next chapter we derive Bayesian interval-based sample size methods 

for estimating risk and odds ratios for the two sam pIe problem, where Po is 

also unknown. Four major designs in epidemiologic are studied, namely, 

cohort, case-control, cross-sectional and matched designs. Most of the ideas 

developed in this chapter carry over again in the next chapter. 



Chapter 4 

Bayesian interval .... based sample 

size determination for 

estimating risk and odds ratios 

for two sample problems 

In this chapter, we investigate the problem of sample size determination 

in case-control, cohort, matched, and cross-sectional designs. Let D and 

E again represent the disease and exposure status, as described in section 

2.3. Define Po = Pr(D = liE = 0) and Pl = Pr(D = liE = 1), the 

conditional probabilities of disease among both exposed and non-exposed 

subjects in a cohort setting, and let p~ = Pr(E = 11D = 0) and p~ = Pr(E = 

11D = 1), the conditional exposure probabilities among diseased and non­

diseased subjects in a case-control setting. In cohort studies, we investigate 

137 
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the relative risk, R = Pl as weIl as log(R), while in case-control studies 
Po 

we investigate the exposure odds ratio, ?/Je = P~ ~1 - P~~ and loge ?/Je). Let 
Po 1 - Pl 

PH = Pr(D = 1, E = 1), PlO = Pr(D = 1, E = 0), POl = Pr(D = 0, E = 1), 

and POO = Pr(D = 0, E = 0) be the cell probabilities in the setting of a cross-

sectional study. In cross-section al studies, we investigate four parameters, 

. . PH (PlO + Poo) . P11POO . 
the nsk ratio, R = ( )' the odds ratio, ?/J = --, along wlth 

PlO Pu + Pm PIOPOl 

logeR) and 1> = log(?/J). Finally, let P~l' p~o, P~l' and p~o be the probabilities 

of the pairs (+,+), (+,-), (-,+) and (-,-), respectively (see Table 2.2) 

in a pair-matched setting. In a pair-matched analysis, we investigate the 

p' 
exposure odds ratio, ?/J~ = f and 1>~ = loge ?/J~). 

POl 

In contrast to the previous chapter, we do not assume that any of the 

proportions involved here are a priori exactly known. We consider the sample 

size problem in two different contexts. The first context, the unrestricted 

model, places no restrictions on any of the "success" probabilities defined 

above. In cohort and case-control studies, we define a second scenario, the 

restricted model, which deals with cases where we know a priori that 0 < 

PO < Pl < 1 or 0 < Pl < Po < 1 (cohort studies) and 0 < p~ < P~ < 1 

or 0 < p~ < p~ < 1 (case-control studies). In other words, we know a 

priori that R < 1 or R > 1 and ?/Je > 1 or ?/Je < 1. The restrictions on 

the pairs (Po, Pl) and (p~, pD can also be seen as a way to break the usuaI 

hypothesized independence between columns and rows of Table 2.1. To our 

knowledge, no one has previously considered sample size calculations for 

interval estimation from this viewpoint. This allowance for dependence allows 

for wider applicability of our results than currently available results in the 
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literature. 

Throughout this thesis, for aU the designs investigated, we find sample 

sizes for both HPD and equal-tailed intervals. Unfortunately, in the two sample 

problem, in contrast to the one sample prob1em, we do not deve10p exact or 

third order approximation approaches because of complications dues to the 

presence of a nuisance parameter. We are 1eft with only three options: a 

sample size formula approach, a "straight" Monte Carlo approach, and a 

regression-based Monte Carlo approach. We derive sam pIe size formulae for 

the unrestricted model where an explicit expression of posterior variances 

is possible. In practice, however, a Monte-Carlo approach is frequently the 

only option for the two-samp1e problem. Since Monte-Carlo approaches have 

been described extensively in chapter 3, we only give a short outline of the 

main steps in this chapter. 

We a1so consider the choice of the optimal ratio of controis per case, 9 = 

no , in case-control studies or the ratio of non-exposed to exposed, 9 = m o , 
nI ml 

in cohort studies, in the sense that the total sam pIe size, N = no + ni = 

(g + 1 )nl (g) or N = mû + ml = (g + 1 )ml (g), respectively, is minimized 

over 0 < 9 < 00, while still attaining the desired estimation precision. The 

optimal sample size N then corresponds to the overall minimal sample size 

over the set (nI, no) EN or (ml, mo) EN. The combined problem of sample 

size and optimality of gare easily addressed by minimizing the cost C = 

Clnl(g) + Conû(g) = (g + r)cOnl(g) in case-control studies, where Cl and Co 

Cl 
represent the cost per case and per control, and where r = is the cost 

Co 
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ratio of cases to controls. Similarly for cohort studies. 

This chapter can be divided into two parts, according to the sample size 

criteria used. Section 4.1 discusses the five criteria ALCk , ACCk , 

WOC, MLOC, and MCOC. Section 4.2 addresses a new set of Bayesian 

sample size criteria that average over nuisance parameters. Section 4.1 is di­

vided in four subsections: cohort studies, case-control studies, cross-sectional 

studies, and pair-matched studies. The subsections concerning cohort and 

case-control studies are also divided in two: the unrestricted model and the 

restricted model. In general, irrespective of the design, the main steps for 

the unrestricted cases are: 

® State the required posterior densities. 

® Prove the unimodality of the posterior density. 

® State the required predictive distribution. 

fil Using the unimodality of the posterior density, derive approximate sam­

pIe size formulae and discuss the optimality of g. 

® For cohort and case-control studies, extend the problem of sample size 

to the problem of reducing cost. We also derive approximate cost for­

mulae and again discuss the optimality of 9 in this context. 

® Give a sketch of the Monte Carlo approach to sample size calculation. 

For the restricted cases, the main steps are: 

fil State the model for the restrictions, and find the posterior density. 
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® Prove the unimodality of the posterior density. 

® State the required predictive distribution. 

@ Derive algorithms to simulate observations from the posterior distribu-

tion for the four prior-likelihood models under investigation. 

® Using the unimodality of the posterior density and the simulated ob-

servations from the posterior distribution, carry out a Monte Carlo 

approach to sam pIe size calculation. 

The first set of sample size criteria considered are the ALGk , AGGie, WOG 

MLOG, and MGOG. 

4.1 Sample size calculations based on the ALCk, 

ACCk , WOC, MLOC, and MCOC 

4.1.1 Cohort studies 

We again use the notation T = (a, b, c, d), first introduced in section 3.3 to 

represent the data in Table 2.1. Cohort studies are mainly concerned with 

estimating the risk ratio R = Pl. Let T = (a, b, ml - a, mo - b) den ote an 
Po 

observed table from a cohort study. In addition to independent sampling 

both between and within the exposed and non-exposed groups, we assume 

that Pl = Pr(D = liE = 1) and Po = Pr(D = liE = 0) are a priori 
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independent with 

given E = 1 and Pl, Pl rv Be(a', c'), and 

b rv Bin(mo, Po) given E = 0 and Po, Po rv Be(b', d'). 

Let T' = (a', b' , c' ,d') denote the table of prior parameters. Let 9 be the ra-

tio of non-exposed to exposed subjects such that mo = gml. The constant 

9 is an integral part of the design, and is selected either optimally, as will 

be discussed in the sequel, or by more practical considerations. The com-

bination of the prior-likelihood tables, T' and T, leads to a posterior table, 

Til = (ail bl! Cil d") where a" = a + a' bl! = b + b' Cil = m + c' - a d" = , , , "l, 

mo + dl - b. N = mo + ml is the total sample size. We investigate two 

models for the computation of sam pIe size. The first model do es not place 

any restrictions on the values of Pl and Po. The second model assumes that 

either 0 < Pl < Po or Po < Pl < 1, leading to R < 1 or R > 1, respectively. 

4.1.1.1 Case when Pl and Po are unrestricted 

Under this model, the posterior density of the relative risk, first derived in 

chapter 2 (see equation (2.4.5)), R, is 

Ra"-l rI 
-y Jo zal/+bl/-l(l_ Z)dll-l [1 - R· Z(-l dZ, 

0:::; R < 1 

-(bI/Hl l [] d"-l 
R K 1 za"+bI/-l(l - Z)cl/-l 1 - ~. Z dZ, 

R~l 

(4.1.1) 
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where K = B(a lf
, Cil) x B(b", d lf

), and the posterior density of the logarithm 

of the relative risk, log( R), is 

al! R 1 

e K 1 za"+b"-l(l - Z)d"-l [1 - eR . Z('-1 dZ, 

R<O 

Plog(R) (R 1 Til) = 
-b"R 1 

e K 1 za"+b"-l(l - Z)c"-l [1 - e-R . Z]d
ll

-l dZ, 

R? O. 

(4.1.2) 

Unimodality AIl of the Monte Carlo based algorithms used for the com-

putation of HPD intervals require unimodality of the posterior density. We 

prave below when Cil, dl! > 1 that the posterior density of R is unimodal and 

the posterior density of loge R) is strongly unimodal. It is clear that R is not 

strangly unimodal sinee strongly unimodal densities possess aH their k-th 

moments finite, for aH k, whereas the k-th moment of R 

E (R
kIT") = B(a + a' + k, ml - a + c') B(b + b' - k, mû - b + d') ( ) 

( ) ( ) 
4.1.3 

B a + a', ml - a + c' B b + b' , mû - b + d' 

is only defined for 0 ~ k < b + b' . 

Lemma4.1.1. Ifprv Be(a,fJ) witha > 0 andfJ ?1) thenlog(p) isstrongly 

unimodal. 

Proof. The density of log(p) is 

Z < 0, 

8log(!Io ( )(z)) 
sothatlog(Jlog(p)(z)) = az+(fJ-1)log(1-eZ )-logB(a,fJ) and e;P = 
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a-
({J - 1)eZ 

1- eZ 

({J - l)eZ 

-'------'-- is non-positive when 
(1- ez )2 

(J ~ 1. o 

Theorem 4.1.2. Let Pl rv Be(al,{JI) and Po rv Be(ao,{Jo) be two inde­

Pl pendent mndom variables with al, ao > 0 and {JI, (Jo 2: 1. Define 'P = -. 
Po 

Then 

(i) loge 'P) is strongly unimodal, and, therefore, unimodal. 

(ii) 'P is unimodal. 

Proof. (i) Lemma 4.1.1 combined with Proposition 2.7.1 implies that log( 'P) = 

log (~:) = lOg(PI) - log (Po ) is strongly unimodal, sinee it is the dif­

ferenee of two independent strongly unimodal random variables. 

(ii) Lemma 3.3.1 guarantees the unimodality of 'P = Pl = e1og(<p). 
Po 

o 

It is weIl known that the posterior distribution of Pl rv Be( ail, Cil) and 

the posterior distribution of Po rv Be(b", dU), are independent. Under the 

assumption that Cil, dl! 2: 1, a corollary to Theorem 4.1.2 is that logeR) is 

strongly unimodal and Ris unimodal. A similar statement holds for RI = Po. 
Pl 

1-Pl 1-po 
For the other variables R2 = -- and R3 = -- we have unimodality 

1- Po 1- Pl 

when ail, bl! 2: 1. A consequence of the unimodality of Ris that PR(R 1 T") is 

decreasing when ail :s: 1. 

The pre-posterior predictive distribution Also of primary importance 

in the computation of sample size, is the pre-posterior predictive distribution. 
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In the cohort setting, we have 

1 l " (ml) B(a",c") x (mo) B(b",d") 
p(a, blml, mo, a, b, e, d) = a B(al, Cl) b B(bl, d') , (4.1.4) 

for a = 0,'" ,ml, and b = 0,'" , mo which is the distribution of two 

independent Beta-Binomial random variables. 

Note 4.1.1. Binee mo = gml, ml tends to 00 as mo tends to 00. This 

together with the independence shown in equation (4.1.4) and Theorem 3.2.6 

a b (a b) applied to each -, -, implies that we have that Ym1 = -,-
ml mo ml mo 

(Pl,PO). This result is used implicitly in the pr'Oof of Corollary 4.1.3. 

We are ready to derive approximate sample size formulae for the ALC2 

and the ALC. 

Approximate sample size formulae for the ALC2 and ALC: Let 

be the first order approximation of the length of an HPD or equal-tailed in-

terval, where Var(R) = Var(RI Tf1
). We impose the condition bl > 2 to 

ensure the existence of all posterior variances for any a = 0, ... , ml and 

b = 0, ... ,gml. 

It is very difficult to directly derive approximate sample size formulae for 

the ALC using the exact pre-posterior predictive distribution. Fortunately, 

a corollary to Theorem 3.2.6 again suggests a solution to this problem. 
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Corollary 4.1.3. For al, Cl, d' > 0, and b' > max(2, 3k/2), 

{ }

l/k 

. Jml EXm1 [l~l 1111 [(1) ] k/2 
hm - 0 0 x ; y + (1 - x)y X 

ml ---+CXl 2zl - a / 2 

Xa'+k/2-l(1 _ Xy'-l yb'-3k/2-l(1 _ y)d'-l 

B(al,c') B(bl,dl) dxdy. 

(4.1.5) 

Proof. Suppose k is even. Define Ym1 = (~, _b_) and let FmI be the 
ml gml 

set of points (x, y) where the mass function of Yml is positive. After sorne 

algebraic manipulations of the posterior variance of R, Var ( R) (use equation 

(4.1.3) to derive Var(R», and setting a = mlX, c = ml(l - x), b = gmlY, 

and d = gml(1 - y) one cau show that 

Var(R) = (mlx + a') (gml + bl + d' - 1) 
~------~~~----~=-~--------~~--------~x 
(ml + al + c')2(ml + a' + c' + 1)(gmlY + b' - 1)2(gmlY + bl - 2) 

{(m1x + gmlY + a' + b' - 1)(gml + b' + d' - 2)(ml + al + c') -

(ml + gml + a' + b' + Cl + d' - l)(mlx + al)(gmlY + b' - 2)}. 

Taking the limit as ml --+ 00, we have 

. k/2{ }k/2 xk/2 [X(1- y) ]k/2 
hm ml Var(R) = 3k/2 + y(l - x) . 

~_oo y 9 

The limiting function is neither continuous nor bounded due to the term, 

y.'3kj2 in the denominator. To remove this indeterminacy, we need the decom-

position 

h - ( )3k/2 f (gm1 + b' + d' - 3k/2) B(b' - 3k/2, d') Th'd . 
w ere Cm] - gml f(gml + bl + d') B(b' , d') . e l ea 1S 

to obtain a term that contains the factor y3k/2 in its limit as ml --+ 00, SO 
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that this term cancels the factor y3k/2 in limml m~/2 Var(R) . Here this { }
k/2 

3k 2 (b l 

- i ) term is ni=i -- + y . Define 
gml 

where hml is a sequence of continuous and uniformly bounded functions by 

construction, and 

[
X(I- y) ]k/2 

hm hml (x, y) = xk/2 + y(1 - x) . 
ml-->oo 9 

If b' > 3k/2, we have 

{ }

l/k 

vrnï Ex", [l~l 
lim 1 

ml--+oo 2z1- a / 2 

where Zm! .-v Py=! (x, ylm1, gml, a', bl - 3k/2, c', d'). We have Zml --7
d 

(P1,PO), where Pl rv Be(a', b' - 3k/2) is independent of Po r-v Be(c', d'). 

Theorems 3.2.7 and 3.2.6 imply that 

r Il xal-l(1 - x)cl-l ybl-3k/2-1(1 _ y)dl-l 

l~~ E[hm1 (ZmJl - Jo 0 h(x, y) B(a' , ct) B(b' - 3k/2, d') , 

1111 

[X(I;Y) +X(I_X)y]k/2 X 

xa l+k/2-1(1 _ X)cl-l ybl-3k/2-1(1 _ y)dl-1 

B(al,e') B(b'-3k/2,d') dxdy, 

h· h l h f C k . 1· B(b' - 3k/2, d') w lC comp etes t e proo lor ,even smce lm Cm! = B(b ) . 
ml " d' 

Similarly, for k odd, we define 



148 

to obtain 

[
X(l- y ) ]k/2 

lim hml (x, y) = xk/2 yl/2 + y(l - x) . 
ml---->oo 9 

Next, defining Zml ""' PY
ml 

(x, ylml, gml, a', b' - 3k/2 - 1/2, c', d') we obtain 
xa l -1(1 _ X)cl-l ybl-3k/2-1/2-1(1 _ y)d'-l 

Zml --t
d and the result follows. 

B(a',e') B(b'-3k/2-1/2,d') ' 

o 

The idea behind obtaining an approximate sample size is to solve the 

equation { EX"'l [l~l } Ijk = 1 in ml using the limiting result in Corollary 4.1.3. 

Thus an approximate sample size for NR(g) = ml +mo = (g+ l)ml(g) given 

g, when estimating R un der the ALCk when b' > max(2, 3k/2), is 

4Z2 { t t [() ] k/2 
NR(g) = (g + 1) ll~a/2 Jo Jo Xl; Y + (1 - x)y X 

xa'+k/2-1(1 _ X)cl-l ybl -3k/2-1(1 _ y)dl-l }2/k 1 1 1 / 

B(a',e') B(b',d') dxdy -a -b -c -do 

( 4.1.6) 

Remark 4.1.1. Note that the term a' + b' + c' + d' which represents the extra 

samp1e size provided by the prior distribution, was adjusted for after solving 

for ml as indicated above. 

When b' - 3k /2 > 1, the integrand in the expression (4.1.6) is well-

behaved and its integral can be computed with most integral subroutines, 

for example, the ISML subroutine DTWODQ. To prevent overfiow, one 

first evaluates the logarithm of aU the terms in the integrand, adds them and 

exponentiates the final value. Alternatively, one could a1so use a Monte Carlo 

integration technique to compute NR(g) by generating n pairs (Xi, Yi), i = 
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1,' .. ,n from two independent Beta distributions: Xi cv Be(a' + k/2, c' - 1) 

and Yi rv Be(b' - 3k/2, d') and approximate the integral in (4.1.6) as 

NR(g) ~ ( 1) 4zLa/2 {B(a' + k/2, c') B(b' - 3k/2, d') x 
9 + [2 B(a', ct) B(b', d') 

n k/2 }2/k 
1 '" [Xi(1 - Yi) ( )] 1 1 1 , ;; ~ + 1 - Xi Yi - a - b - c - d . 

,=0 9 

Figure 4.1.3 was generated using the subroutine DTWODQ. The prior 

and pre-specified parameters were (a', b', c', dl, l-a, l) = (3.0,3.0,3.0,3.0, .95, .50). 

The overall minimal sample size was N = 590 and the corresponding optimal 

9 is seen to be gopt = 1.60. The common choice, 9 = 1, corresponding to an 

equal number of exposed and non-exposed, leads to N = 616, and therefore 

9 = 1 is nearly optimal. 

Approximate formula for the minimal cost problem: A natural 

extension of the sam pIe size estimation problem is that of minimizing cost 

for a given precision of estimation in case-control and cohort designs. Denote 

by Cl and Co, the unit cost, respectively, per case and per control in the case­

control design, and by r = Cl, the cost ratio of cases to controis. We seek 
Co 

the couple (g, ml(g)) that minimizes the total cost C = clml(g) + Como(g) = 

(g + r)Coml(g) , under the constraint that for each 9 the pair (mo(g), ml(g)) 

is the solution of the ALCk problem, for instance. More general and non-

traditionai approaches to incorporate costs into design issues are the object 

of the papers by Lindley, 1997, Bernardo, 1997, Stallard, 1998, Pezeshk and 

Gittins, 1999, Gittins and Pezeshk, 2000a, and Gittins and Pezeshk, 2000b. 

These approaches are based on eliciting a loss, a gain, or utility function, for 
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Figure 4.1.1: Graph of NR(g) against 9 = .10, .15,'" ,10.00 for the risk ratio 

with (a', b', d, d', l - a, l) = (3.0,3.0,3.0,3.0, .95, .50). The optimal ratio is 

gopt = 1.60 with a corresponding sample size of N R(gopt) = 590. 

example expressing financial costs of the treatment, potential profits from 

a marketing company, or a public health benefit. These methods are often 

called "fully Bayesian" or "decision theoretic" approaches. 

given 9 under the constraint that ml(g) satisfies the ALCk is, from (4.1.6) 

4Z2 {fI 1 [() ] k/2 
CR(g) - co(g + r) 11~Œ/2 Jo 1 Xl; Y + (1- x)y X 

xa'+k/2-1(1 _ X)c'-l ybl-3k/2-1(1 _ y)dl-l }2/k 
---:-'----:--.:-- =-----::-'----:....:::...:..-- dxdy 

B(~,d) B(~,&) 

cl(a' + c') - eo(b' + d'), (4.1.7) 
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Cl 
where r = -. Note that when Co = Cl = 1 we have GR(g) = NR(g). Thus 

Co 

the sample size problem is a subset of the cost problem. For k = 2 and 

a' , c' , d' > 0, b' > 3, the minimal cost is approximated by 

4zi /2 
eo(r + g) l~a x 

[
B(a l + 2, c') B(b' - 3, d' + 1) B(a' + 1, c' + 1) B(b' - 2, dl)] 

9 B(a', c') B(b', d') + B(a', c') B(b' , d') 

cl(a' + c') - eo(b' + dl). (4.1.8) 

A simple derivative of GR(g) in equation (4.1.8) with respect to 9 shows that 

the optimal ratio, g, is 

gR= 
B(a' + 2, Cl) B(b' - 3, dl + 1) 

r = 
B(a' + 1, c' + 1) B(bl 

- 2, d') 
(a' + l)dl 

r (b'- 3)c" 
( 4.1.9) 

In the context of frequentist hypothesis testing, Gail et al., 1976 demon-

strated that the optimal ratio 9 follows what he called the square root rule, 

. PlqO 
that lS 9 = Vo/, rt = - = for a cohort study. Here we also have a 

POql 
(a' + l)d' 

square root rule gR = Jr rtR when b' > 3 with rtR = (b
' 

_ 3)c' ' although in a 

Bayesian credibility interval context. 

Similarly, for logeR), the minimal cost G1og(R)(g) = eomo(g) + clml(g) = 

(g + r )cOml (g) given 9 under the constraint that ml (g) satisfies the ALCk 

4Z2 { t rI [(1) ] k/2 
Ctog(R)(g) = co(g+r) 11~a/2 Jo Jo x ;y +(l-x)y x 

xa'-k/2-1(1 _ X)c'-l ybl-k/2-1(1 _ y)dl-l }2/k 

B(a', ct) B(b' , d') dxdy 

Cl (a' + c') - co(b' + d'). (4.1.10) 

Equation (4.1.10) which is not formally proved here, is based on the fact that 

lim m1Var(log(R)1 Til) = ~ [XCI - y) + (1- x)y] , when one sets ail = 
ml ---+00 xy 9 
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rnlX, dl = rnl(l-x)+c, b = grnly+b', d" = grnl(l-y)+d' in the expression 

for Var(log(R)1 Til) (see appendix E for the derivation of Var(log(R)1 Tf1
)). 

. (a' - l)d' 
For 10g(R) wh en k = 2, we have [}logeR) = Jrr;log(R) wlth r;log(R) = (b' _ l)c" 

We observed empirically that the sample size formula obtained using equation 

(4.1.10) when Co = Cl is an excellent approximation of the exact ALCk 

sample size when a', b' > (k; 1) for both HPD and equal-tailed intervals. 

Therefore, we encourage the use of this formula, even if costs are not a 

factor. 

So far, we have only derived approximate sample size and minimum cost 

formulae for R when bl > 3k/2, and log(R) when a', b' > 3k/2, under the 

ALCk . For the other four sample size criteria, we must rely on both the 

"straight" and regression-based Monte Carlo approaches (fully described in 

chapter 3) to find the required sam pIe sizes. Below we sketch briefl.y the 

main steps of the "straight" Monte Carlo simulations for the sample size 

problem for R. A similar algorithm can be derived for log(R). Since the 

regression-based approach for the two sample problem is no different from 

that of the one sample problem, it will not be discussed. We implemented aH 

these approaches and algorithms and aH others in this chapter using Visual 

Fortran 6.1 (Compaq) that includes most ISML libraries. 

Sketch of the Monte Carlo simulation approach to determine sam-

pIe sizes when estimating R under ALCk : For each step in the bi-

sectional search over nI (g), one performs the following. 
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@ Simnlate pi '" Be(a' , c') and pt l'V Be(b', d'), i = 1,'" ,m. 

@ For each pair (pi, Po), simulate two independents observations ai rv 

@ For each i, simulate p{ rv Be(a' + ai, nl(g) - ai + c') and 

rlo rv Be(bi + b' , (g + l)nl(g) - di + d') and set Rj = Pi, j = 1,'" ,l'v!. 
Pb 

Use the observations Rj to estimate the length li of the HPD interval 

given 1-0, nsing Algorithm 4 in subsection 2.7.2.3. (below, we describe 

methods for evaluating PR(Rjl Til), an important step in Algorithm 4) . 

• Compute a!Ck (n,(g), a', Il, ,f, d') Re (~, ft l~) '/' 
One important step in the above straight Monte Carlo approach is the 

evaluation of the posterior density of R at the simulated Rj 's. We now 

present varions ways to compute PR(RI Til). Similar ideas may be applied for 

Plog(R) (RI Til). 

Computation of the approximate the posterior densities of Rand 

logeR): We have three options to evaluate PR(RI Til) given by equation 

(4.1.1). The first option is based on using the univariate integral subroutine 

DQDAG (Piessens et al., 1983) from the ISML library with the integrand 

{

fi fi Il Ra" [ ] c"-l 
* za +b -1(1 - z)d -1 K 1 - R· z , 0:::; R < 1 

9 (R, z) = -b" [ ] d
fl
-1 

a
fl+b"-l(l )c"-l R 1 1 R 1 z -z -- --·Z > KR' - , 

where K = B(a", Cil) X B(b", d"), rather than the natural integrand 

za
ll

+b
ll
-l(l _ z)dll-l R;l [1 _ R. z r"- 1 

, 0 :::; R < 1 

a
fl+bll -1(1 )é'-l R 1 1 -b"+l [ ] d"-l 

z -z K -R' z , R2::1. 
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The advantage of using g* is that 

hm t g*(R, z) dz = lim Plog(R)(log(R)1 Til) = 0 
R~OJo R~O 

lim t g*(R, z) dz = hm PIog(R) (log(R)1 Til) = 0, 
R~=h R~= 

which together with the unimodality of Plog(R) (RI T
f1

) ensures that 11 g*(R, z) dz 

is uniformly bounded. This would not be the case for g** when a < 1 as 

R ---+ O. 

Note that one can recover PR(RI Tf1
) when the integrand g* is used by using 

1 t 
the relationship PR(RI Til) = R Jo g*(R, z) dz. 

The second option relies on the use of Monte Carlo integration methods. 

Let Y rv Be(b", d") and Z rv Be(a", Cil). lndeed, when R :::; 1, 

m 

PR(RI Tif) ex Ey [(Ryr"-1(1- Ryr"-1] ~ 2:)Rli)a
ll

-l(l- Rli)Cfl-l, 
j=l 

where li, i = 1,··· ,m are m random observations. When R> 1, 

where Zi, i = 1,··· ,m are m random observations. 

The third option is based on Horner's algorithm (Press et al., 1990) to 

compute the sums in equation (4.1.11) wh en cl and d' are integers, 

" l Rall-l c - (1/ 1) '---K 2: c; B(a" + b" + j, Cil + dl! - l - j) (1 - R)j, 
j=O 

PR(R 1 Tif) = 
0< R:::; 1, 

R-:+1

) ~ (d"; 1) B(a" +b" + j,d' + d" -1- j) (1- ~r 
R>1. 

(4.1.11) 
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Equation (4.1.11) is easily derived by expanding the polynomial (l-Rz)C"-l = 
c"-l Z d"-l [ (1)] d"-l 

[1 - z + z(l - R)] and (1 - R) = 1 - z + z 1 - R in 

equation (4.1.1). A similar expansion for R R was given by Aitchison and 
+1 

Bacon-Shone, 1981. The implementation of Homer algorithm uses integer 

inputs for al, b' , c', d' although it is sufficient that b' , d' be integers. In prac-

tice, the use of Homer algorithm for our sample size calculations is by far the 

fastest of the methods. For this reason, we encourage researchers to round 

their prior parameters to the closest integers to take advantage of Homer's 

algorithm to determine the required sample size, as long as rounding results 

in minor changes to the prior moments of R. This is clearly the case for large 

input parameters a', b', c', d' where rounding results in minor loss of accuracy 

in the required sample size. 

4.1.1.2 Case when Pl and Po are restricted 

The discussion so far has been confined to the scenario where Pl and Po are 

unrestricted. We now retrace our steps and apply them to the restricted 

case. Wh en it is known a priori that Pl > Po or Pl < Po, two Bayesian prior 

distributions have been suggested in the literature. The first uses a family 

of conjugate priors, the bivariate incomplete Beta distribution (Smith, 1975; 

Tsutakawa and Lin, 1986) 

a'-l c'-l b'-l d'-l 
!(Pl,PO) ex Pl (1 - Pl) Po (1 - Po) (4.1.12) 
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where either 0 < Pl < PO < 1 or 0 < PO < Pl < 1. The prior-likelihood 

combination yields the following posterior distributions for R: 

PR(R 1 Til) oc Rail-Ill za"+b"-l(l_Z)d"-l [1 - R· Z(-l dZ, 0< R < 1, 

(4.1.13) 

when ° < Pl < Po < 1, and 

l d" 1 

PR(R 1 T") oc R-(b"+l) 1 za"+b"-I(I_zy"-1 [1- ~. z] - dZ, R> 1, 

(4.1.14) 

when ° < PO < Pl < 1. 

The second family of prior distributions is the Generalized Beta den-

sity family used by Franck et al., 1988 in the context of a randomized 

trial. Here one assumes the hierarchical model Po rv Be(b',d') and Pli Po rv 

Be(a',c',O,po) for 0 < Pl < Po < 1, or Pl rv Be(a',c/) and POIPI rv 

Be(b', d', 0, Pl) for 0 < Po < Pl < 1. The combinat ion of these prior-likelihood 

models yields the following posterior distributions: 

PR(rl Til) oc r a"-l(l_ rf'-l 11 p~+bll-I(I_ pol'-l(1- rpo)C dpOl 0 < r < 1, 

(4.1.15) 

when R < 1 and 

PI/R(rl Tif) oc rbll-l(l_r)d'-ll1 p~"+b-l(1-Pl)CI-l(l-rpl)d dpI, 0 < r < 1, 

(4.1.16) 

when R > 1. 
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Unimodality: 

Proposition 4.1.4. The distributions given by equation 4.1.15 and 4.1.16 

are unimodal when c', dl! 2: 1 and d', Cff 2: 1, respectively. 

Prao]. We first derive the posterior distribution of log(R) resulting from 

equation 4.1.15. We have 

We recognize that the posterior distribution of log(R) can be written as the 

product of two strongly unimodal distribution when c' 2: 1, and, therefore, 

is strongly unimodal. lndeed, 

where 

PI(r) oc e(a
J

-€)T(l - eTr
J

-\ -00 < r < 0, c' 2: 1, 0 < c < min (a', b") 

p2(r) oc e(aH)T 11 pg+b
JJ

-l(l - Po)d
ll

-l(l - eTpo)C dpo, -00 < r < 0, d" 2: 1. 

The strong unimodality of Pl (r) follows from Lemma 4.1.1, while the strong 

unimodality of p2(r) is a result of Theorem 4.1.2. Since p2(r) is proportional 

to the expression for the posterior distribution of Pl where Pl ,...., Be( a + 
Po 

c, c+ 1) and Po t'V Be(b"- c, d"), 0 < c < min(a',b") when 0 < r < 1, and 

the result follows. 

Again, a straight application of Lemma 3.3.1 confirms that the random 

variable R is unimodal. Similarly for equation 4.1.16. o 
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We now present various algorithms to simulate observations from the dis-

tribut ions in equations (4.1.13), (4.1.14), (4.1.15), and (4.1.16). These have 

not previously appeared in the literature. We saw in subsection 4.1.1.1 that 

the simulation of observations from the posterior distribution is an important 

step in the Monte Carlo-based sample size approach to the determination of 

sam pIe size. 

Generating observations from the distributions in equations (4.1.13), 

(4.1.14), (4.1.15) and (4.1.16): There are four cases to consider depending 

on the prior information that is used. 

Case 1: It is easily seen from equation (4.1.15) that 

PR(rl Til) oc ra"-l(1- r)CI-1 11 Pü+b"-l(1 - PO)d"-l(l- rpo)C dpo, 0 < r < 1, 

a"-I(l )cl-1 [1 a+b"-l( )d"-l ~ (1- PO)C-j zlo (1 - r)j d 
r - r Jo Po 1 - Po ka (c + l)B(j + 1, c + 1 _ j) Po, 

C B( b" . dl! ') 2: a + +), + c -) ra"-l (1 _ r)c'+j-1. 
j=O (c+ l)B(j + l,c+ 1- j) 

Thus the posterior density of Rean be written as a finite mixture of c + 1 

independent Beta distributions: 

C ra"-l (1 _ r)c'+j-l 
P (r 1 Tif) - ~ W 

R - ~ j B ( If c' + ') , 
j=O e a , ) 

(4,1.17) 

, Vj B(a + b" + j,dl! + c - j)B(a",c' + j) 
wlth Wj = I:c and Vj = B( '1 1 ') 

k=O Vk J + , c + -) 

Case 2: The case R > 1 in equation (4.1.16) is dealt with by consid-

, 1 
ermg R' We have 

PI/R(rl Til) oc rb"-l(l_r)d'-l 11 p(+b-l(l-Ply"-l(l-rpl)d dPI, 0 < r < 1. 
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1 
Thus the posterior density of Rean be written as a finite mixture of inde-

pendent Beta distribution: 

d b"-l (1 _ )d'+j-l 

Pl/R(rl T") = L Wj r Be(b" d~ + P , 
j=O ,) 

(4.1.18) 

, Vj B( ail + b + j, Cil + d - j) B(b", d' + j) 
wIth Wj = d and vJ = B(' 1 dl') 

Lk=O Vk J + , + - J 

Case 3: For the posterior distribution in equation (4.1,13), PR(r 1 Til) ex: 

( [Jell 

1 ra"-l Jo za"+b"-l(l - Z)d
ll
-l 1 - r· Z - dZ, R < l, when c' is an in-

teger, we have the decomposition: 

" 1 c - all-l(l_)j 

PR(r 1 Til) = ~ Wj ~e(afl, j +r1) ( 4.1.19) 

B(a" + b" + j, Cil + dl! - j - 1) B(a", j + 1) 
wl'th W - ---:,.,.-vJ=_' - and v· - ---''------------..,.-'-----'-----'-

j - L~:o Vk J - BU + l, c" - j) , 

When c'is not an integer, one technique is to generate a pair of observations 

(Pb, 'l/Jj) according to equation (4.1.41), where one first switches b" and Cil. 

Finally, set RJ = 'l/J) 
1- Pb + Pb'l/Jj 

Case 4: The case R > 1 in equation (4.1.14) is dealt with by consider-

1 b" 1 ( "+b" 1 " 1 d"-l ing R' We have Pl/R(r 1 Til) ex: r - Jo za - (1 - zy - [1 - r . Z] dZ, 

R > 1. Thus, we have the decomposition wh en d' is an integer: 

d"-l b"-l (1 _ )j 
Pl/R(r 1 Til) = I: Wj ~e(bll ,+r1) 

j=O ,J 
(4.1.20) 

Vj B(a" + b" + j, cl! + dl! - j - 1) B(b", j + 1) 
with Wj = x and Vj = ( ) . 

Lk:O Vk B j + l, d" - j 

When d' is not an integer, one technique is again to generate a pair (Pi, ~j) 
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according to equation (4.1.42), where one first switches bl! and Cil. Finally, 

Sample size calculations for the case wh en Pl and Po are restricted must 

be entirely Monte Carlo simulations-based. Below, we sketch very quickly 

the main steps of the straight Monte Carlo approach when using the prior 

model Pl rv Be(a', c') and Pol Pl rv Be(b', d', O,Pl)' The three techniques used 

to evaluate the posterior distribution of R when Pl and Po are unrestricted 

carry over to the distributions in equations (4.1.13), (4.1.14), (4.1.15) and 

(4.1.16). Unlike the unrestricted case, the Homer algorithm always applies, 

sinee the constant c, in the term (1 - PoRY, is always an integer. 

Sketch of the Monte Carlo simulation approach to determine sam-

pIe size when estimating R > 1 under MLOC: The following algo-

rit hm appHes when the model in equation is adopted. For each step in the 

bisectional search over nI (g), one performs the following. 

® Simulate pi rv Be(a', d) and pb rv Be(b', d'), i = 1, ... , m. 

® For each pair (pi, pt), simulate two independent observations ai rv 

1 
@ For each i, simulate -, j = 1,'" ,M from equation (4.1.18) with 

Rj 

a = ai, C = nl(g) - ai, b = hi, and d = (g + l)nl(g) - hi' Use the 

observations Rj to estimate the length li of the HPD interval given 1 - ex 

using Algorithm 4 in subsection 2.7.2.3. 
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@ Compute mloc(nl(g), a', b', c', d') ~ med1:Si:Sn li. 

Similar Monte Carlo algorithms can be constructed for all other criteria. 

To close this subsection on cohort studies, we would like to mention that 

aH the methods and results obtained apply directly to any design where the 

intention is to compare incidence proportions from two independent groups, 

including randomized controlled trials. In such studies, the parameters R-1, 

1 
1 - R, and l - Rare referred to as the risk attributable to the exposure, 

vaccine efficacy (preventive fraction), and the attribut able proportion irre-

spectively, depending on the context. We explain quickly how sample size 

computations for these functions of R can be obtained. Indeed, Theorem 

3.2.1 guarantees that the optimal sample sizes for estimating 0 < R < 1 

and 0 < 1 - R < 1 are equal when 0 < Pl < Po < 1. Similarly, a straight-

forward application of Theorem 3.2.1 implies that the optimal sample size 

computations for APe is equal to that of 0 < ~ < 1 when 0 < Po < Pl < 1. 

We derive the optimal sam pIe size for estimating ~ by permuting the prior 

parameters between exposures and disease. In other words, if (a', b' , é, d') 

are the prior parameters, one should input the prior parameters (c', d', a', b' ) 

in the program computing the optimal sample size for R. 

4.1.1.3 An example 

The following is an adaptation of Jolson et al., 1992. Bone marrow ablation is 

one of the few effective treatments for some type of cancers. The drug cytara-

bine, a potent bone marrow suppressant given by injection for chemotherapy, 
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is available in two forms: generic and innovator. Although the generic drug 

is good and less expensive, it was believed to be associated with a higher 

risk of cerebellar toxicity than the innovator drug. This drawback led to a 

momentary interruption in its use. To study the relation between cytarabine 

and cerebellar toxicity, a retrospective cohort study couId be undertaken. 

Two groups of patients would be selected: those that had taken the generic 

drug (generic+) and the those that had taken the original drug (generic-). 

Let mo and ml proposed respective sample sizes of these two groups. Each 

patient would be classified as having experienced some cerebellar toxicities 

(toxicity+) or not (toxicity-). Prior data collected from a pilot study on cy­

tarabine and cerebellar toxicity consisting of m~ = 25 generic drug user and 

m~ = 34 non-generic drug user are given in Table 4.1. Suppose, reasonably, 

Table 4.1: Table of prior information. 

generic+ generic-

toxicity+ 11 3 

toxicity- 14 31 

Total 25 34 

that we are to use the relative risk to determine whether the generic drug 

is associated with an increase in cerebellar toxicity. More informatively we 

would anticipate computing a credible interval for the relative risk. We are 

thus led to the design problem: 

What sample size is required to estimate R with a posterior credible 

interval of specified length when considering the ALC and ACC? 
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Table 4.2: Sample size calculations for the ALC and ACC when the 

unrestrided model is used. 1- ct = 0.95, 1 = 5.0, and m = NI = 2000. 

ALC ACC 
9 

equation (4.1.6) Monte Carlo Monte Carlo 

N = 1608 N = 1412 aN = 16.242 N = 2882 aN = 32.610 
1.0 

nI = 806 no = 797 rh = 706 no = 706 nl = 1441 no = 1441 

N = 1258 N = 1143 aN = 18.225 N = 2284 aN = 27.356 
2.0 

nI = 414 no = 844 nl = 381 no = 762 nl = 761 no = 1523 

N = 1177 N = 1116 aN = 16.049 N = 2146 aN = 38.317 
3.0 

nl = 284 no = 893 nl = 279 no = 837 nl = 537 no = 1609 

N = 1156 N = 1060 aN = 18.415 N = 2020 (YN = 27.250 
4.0 

nl = 218 no = 938 nl = 212 no = 848 nI = 404 no = 1616 

N = 1165 N = 1054 aN = 13.920 N = 2023 aN = 27.556 
5.0 

nl = 179 no = 986 nl = 176 no = 878 nI = 337 no = 1686 

Given a length and prior information based on the above information, 

the sample size formulae in equation (4.1.6) given in this thesis can be used 

to find the sample size. Column 2 of Table 4.2 recaps the values obtained 

when 1 - ct = 0.95 and l = 5.0 for 9 = 1.0, 2.0, 3.0, 4.0, and 5.0. The ALC 

optimal ratio of non-exposed to exposed is 9 = 4.0. An alternative approach 

to equation (4.1.6) is described in column 3 of Table 4.2. This Monte Carlo­

based approach suggests that equation (4.1.6) consistently overestimates the 

true sam pIe size. For the ACC, we also resort to the Monte Carlo approach. 

Column 3 of Table 4.2 gives a good summary of 10 estimated Monte Carlo 

sample sizes. N represents the average of the 10 estimated Monte Carlo 
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sample sizes and (YN the standard error associated with N. 
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Figure 4.1.2: Graphs ofthe Monte Carlo pairs (N, 2 1 ) 
ale (N,Il, 3,14,31, .95) 

when 9 = 4. 

We next discuss how a regression-based Monte Carlo approaeh can be 

used to improve our estimate of the ALC sam pIe size. The equation used in 

1 
the regression-based Monte Carlo approach is --;;2---------

ale (N,Il, 3,14,31,1 - 0:) 
el + e2N, where alc(N, 11,3,14,31,1 - 0:) is a Monte Carlo estimate of the 

criterion function for the ALC with the given parameter specifications. The 

regression-based Monte approach proceeds as follows . 

• First, choose J random integers, Nj , j = 1,'" ,J, ln a well-defined 



4.1. ALCK, ACCK, WOC, MLOq AND MCOC 165 

interval and compute alc(Nj , 11,3,14,31,1 - a) for each 1 ::; j ::; J. 

e Next, estimate el and e2 using a least squares procedure, and solve the 

equation ê1 + ê2N = l~ in N to determine the required sample size. 

Using J = 1000 and m = M = 500, the estimated regression-based 

Monte Carlo sample size are N = 1412,1119,1068,1050, and 1056 for 9 = 

1, 2, 3, 4, and 5, respectively. These a.djusted estimates suggest that the 

previous Monte Carlo approach is very stable. 

4.1. 2 Case-control studies 

We again use the notation T = (a, b, c, d) first introduced in section 3.3 to 

represent Table 2.1. Case-control studies are mainly concerned with the odds 

p~(l - p~) 
ratio 'l/Je = 1 (1 _ 1 r Let T = (a, ni - a, C, no - c) denote results from a 

Po Pl 
case-control study. Most Bayesian analyses of case-control studies assume 

an independent sampling both between and within disease and non-disease 

subjects, so that p~ = Pr(E = 11D = 1) and P~ = Pr(E = 11D = 0) are 

independent. We shall further assume that 

given D = 1, p~ rv Be(a' , b'), and 

Ccv Bin(no, p~) given D = 0, p~ rv Be( c', d'). 

Let T' = (a', b', c', d') denote the table of prior parameters. We also assume 

that there is a constant, g, possibly unknown such that no = gnl. The 

constant 9 is an integral part of the design, and is selected either optimally, 

as will be discussed in the sequel, or by more practical considerations. The 

combinat ion of the prior-likelihood Tables, T' and T, leads to a posterior 
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Table T" = (ail b" Cil d") where ail = a+a' bl! = n -a+b' Cil = c+c' d" = 
, '" . l 1 l , 

no + d' - c. N = no + nI is the total sample size. Again, two models are 

investigated here for the computation of sample sizes. The first model does 

Hot assume any restrictions on p~ and p~. The second model assumes that 

p~ < p~ or p~ > p~, leading to 'l/Je < 1 or 'l/Je > 1, respectively. 

We proceed in analogous fashion to our approach for cohort studies. The 

main steps for both the unrestricted cases are: 

® State the posterior density for 'l/Je and <Pe. 

® Show the unimodality of the posterior density of 'l/Je and <Pe. 

@ Using the unimodality of the posterior density, derive approximate sam-

pie size and approximate cost formulae, and discuss the optimality of g. 

@ Give a sketch of the Monte Carlo approach to sample size calculation. 

For the restricted cases, the main steps are: 

@ State the model for restrictions and find the posterior density for 'l/Je. 

@ Show the unimodality of the posterior density of 'l/Je' 

@ Derive algorithms to simulate observations from the posterior distribu-

tion of 'l/Je for the four prior-likelihood models un der study. 

® Using unimodality of the posterior density and the simulated observa-

tions from the posterior distribution, carry out a Monte Carlo approach 

to sample size calculation. 
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4.1.2.1 Case when Pl and Po are unrestricted 

Following equation (2.4.12) in chapter 2, the posterior density of the odds 
1 1 

ratio, 'ljJe = P; q~ , in the case-control design is 
POql 

'ljJa"-l rI ya"+c"-l(l _ y)b"+d"-l 

C- Jo (1 _ Y + y'IjJ)a"+b" dy, 0< 1/J < 1, 

1/J-(c"+l) rI ya"+c/l-l(l _ y)b"+dll-I 

C Jo ( y)C"+d/l dy, 
l-y+ -

1/J 

(4.1.21) 

1/J 2:: 1, 

where C = B( ail, b")B( Cil, d"). The posterior density of the log-odds ratio, 

cPe = log( 1/Je), is given by 

-00 < cP < 0 

P4>e (cP 1 Til) (4.1.22) 

We now prove the unimodality of the 1/Je and cPe using a straight applica-

tion of Theorem 4.1.5. Again here 1/Je cannot be a strongly unimodal sinee 

the k-th moments for 'ljJe, 

k Til _ B(a" + k, bit - k) B(c" - k, d" + k) 
E(1/Jel)- B(a",b")B(c",d") , o ::s: k ::s: min(b", Cff) 

(4.1.23) 

are not defined for all values of k (Marshall, 1988). 

UnirnodaHty of the posterior density of 'ljJe and log('ljJe): 

Theorern 4.1.5. Let p~ rv Be(al, f3d and p~ rv Be(a2' (32) be two indepen­

p~(l- p~) 
dent random variables with al, ao, f31, f30 > O. Define p = '( 1 ). Then 

Po 1 - Pl 
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(i) log(p) is strongly v,nimodal (and therefore unimodal). 

(ii) P is v,nimodal. 

Proof. (i) We have shown in subsection 3.2.3 that the random variables 

log (~) and log (~) are strongly unimodal. Consequently, 
1- Pl 1 - Po 

log(p) = log (1 pi 1) - log (~) is strongly unimodal as the 
- Pl ·1 - Po 

difference of two independent strongly unimodal random variables. 

(ii) Again Lemma 3.3.1 implies that p = e1og(p) is unimodal. 

o 

In similar fashion, the inverse of 'l/Je, namely 'l/Jl p~(1 - p~) 
is a1so 

p~(1- p~) 

unimodal. 

The pre-posterior predictive distribution: The other distribution of 

interest in Bayesian sample size criteria, the pre-posterior predictive distri-

bution can easily be shown to have mass function 

(n ) B( ail b") (n ) B( Cil d") 
p(a, clnl, no, a', b', c', d') = al B(a': b

'
) x CO B(c': d') (4.1.24) 

a = 0,' .. , ni and c = 0,'" ,no as the distribution of two independent 

Beta-Binomial random variables. 

Note 4.1.2. Sinee no = gnlJ nI tends to 00 as no tends to 00. This together 

with the independence shown in equation (4.1.4) and Theorem 3.2.6 applied 

a c (a c) to eaeh -, -, implies that we have that Yn1 = -, -
ni no nI no 

d (' 1 ) 
---t Pl' Po' 

This resv,lt is v,sed implieitly in the proof of Corollary 4.1.3. 

We now derive approximate sample sizes for the ALCk . 
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Approximate sample size formulae for '!/Je under the ALCk : Since 

the first arder approximation of the lengths of an HPD or of an equal-tailed 

interval are the same, we denote them by 

where Var('lj;e) = Var('!/Jel Tif). We impose the condition bl
, e' > 2 to en-

sure the existence of aIl posterior variances for any b = 0, ... ,ni and e = 

0, ... ,gni. 

It is very difficult to directly derive approximate sample size formulae for 

the ALC using the exact pre-posterior distribution. Fortunately, a corollary 

to Theorem 3.2.6 suggests a solution to this problem. 

Corollary 4.1.6. For a',d' > 0 and b',e' > max(2,3k/2), 

{ll [X(l; x) +Y(l-y)r x 

xa'+k/2-1(1 _ X)b'-3k/2-I 

B(al, bl) x 

yc'-3k/2-1(1 _ y)d'+k/2-1 }I/k 
B(c', d') dxdy (4.1.25) 

Proof. Define Yn1 = (~,~) and let Fnl be the set of points (x, y) where 
nI gni 

the mass function of Yn1 is positive. After sorne algebraic manipulations and 

setting a = nlX, b = nl(l- x), e = gnlY, and d = gnl(l - y), we have 

(n1x + al) (gn1(1 - y) + dl) 
------------~--~----~~--------~--~~----------x 

(n1(1 - x) + blr (n1 (1 - x) + b' - 2) (gn1Y + c' - Ir (gn1Y + c' - 2) 
{ (n1x + a' + 1) (gn1(1 - y) + d' + 1) (n1(1- x) + gnlY + b' + c' - 3) -



170 

It is easily seen that 

. k/2{ }k/2 _ xk/2(1 - y)k/2 [X(l - x) -, k/2 
hm nI Var(~) - ( )3k/2 3k/2 + y(l - y)J (4.1.26) 

nI-co 1 - x y 9 

The idea now is to decompose the distribution PX
n1 

(x, ylnl, gno, a', b' , c', d') in 

a way that eliminates the indeterminacy due to the denominator of equation 

4.1.26. For this, we decompose the gamma functions, r(nlX + a'), r( nl(l -

x) + bl
) , r (gnl Y + c') and r (gn 1 (1 - y) + bl

) to take care of the indeterminacy 

created by the terms x, (1 - x), y and (1 - y) in the denominator of equation 

4.1.26, respectively. The rest of the proof is similar to the one in Corollary 

4.1.3. o 

In or der to obtain an approximate sam pIe size formula, one needs to solve 

the approximate equation {EXm ! [l~l } l/k = l using the result in Corollary 

4.1.6. Thus an approximate sample size N'!jJe(g) for the ALCk given 9 when 

al, d' > 0 and b', cl > max(2,3k/2) after adjusting for the extra sample size 

a' + b' + c' + d' provided by our prior information, is 

4Z2 { t t [() ] k/2 
N'!jJJg) = (g + 1) 11~O:/2 Jo Jo Xl; x + y(l - y) X 

xa'+k/2-1(1 _ x)b'-3k/2-1 yc'-3k/2-1(1 _ y)d'+k/2-1 }2/k 

BCa', b') B(c' , d') dx dy 

_a' - b' - c' - d'. (4.1.27) 

To evaluate the integral in equation (4.1. 27), one would again either use the 

ISML subroutine, DTWODQ or a Monte Carlo integration technique. We do 

not discuss the subject further as the paragraph following equation (4.1.6) 

discusses the use of both techniques to compute the approximate optimal 

sample size in cohort studies, N R(g) in detail. 
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Figure 4.1.2 represents the computation of N ,pJg) for various values of 9 

en route to determining the optimal control to case ratio, gopt, and the overall 

minimal sample size, N,pJgopt). The prior and pre-specified parameters were 

(a', b' , c', d', 1 - a, l) = (3.0,3.0,3.0,3.0, .95,2.0). We obtained the following 

optimal ratios, gopt = 0.975,0.99, 1.0,1.015, 1.025 with a corresponding sam-

pIe size of N.,pJgopt) = 472. The disparate values for gopt are most likely an 

artifact of the discreteness of N,pe' 
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:; 
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OPTIMAL CONTROUCASE RATIO 9 

Figure 4.1.3: Graph of N.,pe(g) against 9 = .05, .10,' .. ,5.00 for the odds ratio 

with (a', b' , c', d', 1 - a, l) = (3.0,3.0,3.0,3.0, .95,2.0). The optimal ratios 

are gopt = 0.975,0.99, 1.0, 1.015, 1.025 with a corresponding sample size of 

Table 4.3 displays the required sample sizes with l 2.0 and various 
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control to case ratios, g, and various prior parameters values (a' , b' , c', d' , g) 

when considering ALC using equation (4.1. 27). The estimate ;J;e corresponds 

to the prior me an of 1};e. It appears that the prior mean of 1};e strongly 

influences the required sample size. The doser 'l/Je is to 1, the smaller the 

sample size. For an the prior parameters chosen, we note that 9 = 1 is an 

optimal solution for the choice of g. This is not an isolated observation. 

Indeed, it is easily seen that N,p.(g) = N,pe (~) when b' = c' and d' = 

b' - d' c' - a' 
a' or when k = -2- - -2-' which means that it does not matter 

whether exposure is beneficial or harmful, as far as sample size is concerned. 

Therefore, if there is a unique optimal ratio g, this unique solution is 9 = 1 

because lim N,pJg) = lim N,pe(g) = 00. 
9 -----> - 00 9 ---> 00 

Approximate formulae for the minimal cost problem: More gener-

ally, if Cl represents the cost per case and Co the cost per control, the minimal 

cost C,pJg) = cono(g) + clnl(g) = (g + r)eonl(g) under the constraint that 

nl(g) satisfies the ALCk when a', d' > 0 and b' , c' > max(2, 3k/2). Then it 

follows as before, that 

4Z2 { t t [(1) ] k/2 
eo(g + r) ll~Œ/2 Jo Jo x ; x + y(1 - y) X 

xa'+k/2-1(1 _ x)b'-3k/2-1 yc'-3k/2-1(1_ y)d'+k/2-1 }2/k 

B(a' , b' ) B(c', d') dxdy 

cl(a' + b' ) - COCCi + d') (4.1.28) 
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Table 4.3: Table of sample sizes for estimating 'IjJ with an interval of 

length 2.0 for various parameters values (a',b',c',d',g). 

alc(3, 3, 3, 3) alc(3, 4, 5, 6) 
..-. ----'ljJe = 2.25 'ljJe = 1.5 

g nI no N g nI no N 

2.00 175 356 531 2.00 57 117 174 

1.72 175 324 509 1.72 61 106 167 

1.54 193 303 496 1.54 64 99 163 

1.00 236 236 472 1.00 79 75 154 

alc( 4,3,3,4) alc(3, 4, 4, 3) 
..-. ..-. 

'ljJe = 4.00 'ljJe = 1.00 

g nI no N g nI no N 

2.00 627 1261 1888 2.00 22 51 71 

1.72 662 1144 1806 1.72 23 45 68 

1.54 692 1070 1762 1.54 25 43 68 

1.00 841 841 1682 1.00 31 31 62 
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Cl 
when a', d' > 0 and b', c' > max(2,3k/2) and where r = -. For k = 2 and 

Co 

al, d' > 0, b', c' > 3, the minimal cost C..pJg) is 

C"'e(g) = ( )4zî_a / 2 [B(a'+2,b'-2)B(C'-3,d
l
+1) 

'f/ Co r + 9 F 9 B(a', b') B(c', d') + 
B(a' + 1, b' - 3) B(ci 

- 2, dl + 2)] 
B(a', b') B(c', d') - cl(a' + b') - CO(C' + d'). 

(4.1.29) 

Differentiating G</JJg) in equation 4.1.29 with respect ta 9 shows that the 

optimal ratio g..pe is attained at 

B (a' + 2, b' - 2) B (c' - 3, d' + 1) 
r B(a' + 1, b' - 3) B(c' - 2, d' + 2) = yirTJ..pe, 

(4.1.30) 

f 1 (a' + 1)(b' - 3)(c' + d' - 2)(c' + d' - 1) 
when b ,c > 3 and where fJ..pe = (d' + l)(c' _ 3)(a' + b' _ 2)(a' + b' _ 1)' The 

optimal ratio g..pe again satisfies the square root rule by Gail et al. (1976). 

Similarly, the minimal cast Cq,Jg) given 9 for CPe = log('ljJe) under the 

constraint that nl(g) satisfies the ALCk is 

4Z2 { rl t [(1) ] k/2 
Cq,Jg) = Co(g + r) ll~a/2 Jo Jo x ; x + y(l - y) X 

xa'+k/2-1(1 _ x)b'-k/2-1 yc'-k/2-1(1 _ y)d'+k/2-1 }2/k 

B(a',b') B(c',d') dxdy 

- cl(a' + b') - Co(c' + d'), (4.1.31) 

when a',d' > 0 and b',c' > k/2. Equation (4.1.31) is based on an expression 

for Var(CPel Til)) derived by Maritz, 1989. One finds that 

1 1 1 1 - -+--+-+--
x 1-x y 1-y 

1 [X(l-X)+Y(1_Y)] 
x(l - x)y(1- y) 9 
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with ail = nlx + a', b" = nI(1 - x) + b', Cil = gnlY + Cl, dit = gnl(l - y) + d'. 

Again, the square root appHes for 4Ye when k = 2 and b', c' > 1, with 

B(a' + 2, b' ) B(c' - 1, d' + 1) 
'T/tjJe = B(a' + 1, b' - 1) B(c', d' + 2)' 

( 4.1.32) 

So far, we have derived approximate sam pIe size formulae under the 

ALCk for 1/Je when b' , c' > 3kj2 and for log(R) wh en a', b', c', d' > 3kj2. 

For the other four sample size criteria and the cases where there is no closed 

form expression for ALCk , we rely on both the straight and regression-based 

Monte Carlo approaches to find the required sam pIe sizes. Below, we briefly 

sketch the main steps of the Monte Carlo approach for estimating 1/Je. A 

similar algorithm can be derived for 4Ye. 

Sketch of the Monte Carlo simulation approach to determining the 

optimal sample size when estimating 1/Je under ALCk : For each 

step in the bisectional search over nI (g), one performs the following. 

@ Simulate pi "-'Be(a' , b') and pb "-' Be(é, d'), i = 1,'" ,m. 

@ For each pair (pi, pb), simulate two independent observations ai "-' 

@ For each i, simulate I4. "-' Be(a' + ai, nl(g) - ai + b') and rlo "-' Be(ci + 

b' , (g + l)nl(g) - Ci + d') and set 1/Jj = P~(1 - rlo), j = 1,'" ,!vI. Use 
Po{l- Pi) 

the observations 1/Jj to estimate the length li of the HPD interval given 

1 - Oô using Aigorithm 4 in subsection 2.7.2.3. (beIow, we describe 

methods for evaluating P"uJ1/Jjj Tf1
), an important step in Algorithm 4). 
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( 

m ) Ijk 

@ Compute alck (nl(g) , al, b' , c, d') ~ ! ~ l7 

Below we describe three techniques for the computation of the posterior 

distribution of 'ljJe and CPe, an essential step of the Monte Carlo approaches 

to finding sample sizes. As mentioned before, these are needed in the above 

algorithm. 

Computation of the approximate posterior density of 1/Je and CPe: 

We have three options to compute Pci>e(CPI T"). The first option for the com-

putation of Pci>e (cpl Tf1
) is to use the integral subroutine DQDAGS (Piessens 

et al., 1983) from the ISML library in combination with the integrand 

a"</> a" +c" -1 (1 )b" +d"-l e y - y 
d" 2:: ail cp < 0, 

C (1 - Y + ye</>V'+b" 
, 

ed"ci> yb"+d"-l(l _ y)a"+c"-l 
dl! < ail cp < 0, 

C (1 - Y + yeci>)d'+d" 
, 

g(cp, y) - ( 4.1.33) 

e-b"ci> yb"+d"-l (1 _ y )a"+c"-l 
Cff 2:: bl! cp 2:: 0, 

C (1 - y + ye-</»a"+b" 
, 

_Cff</> a"+c"-l(l )b"+d"-l e y - y 
Cil < bl! cp 2:: 0, 

C (1 - y + ye-ci>)d'+d" 
, 

where C = B(a", blf)B(c", dl/). This integrand was obtained using various 

identities on hypergeometric functions (Zhang, 1996). The reason for the 

above four part decomposition can be seen for instance by looking at the 

second row of equation (4.1.33). lndeed, 

. Yb"+d"-l(l _ y)a"+c"-l 
hm ( ci»" d" = yb"+d"-l(l - y)a"-d"-l 

</>---'>-00 1 - Y + Y e c + 
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if d" < ail. Therefore, y-values near 1 would inflate the integral if dl! < ail, 

increasing the computation time. Unfortunately, this technique does not 

deal explicitly with the case of dl! = ail, although in practice g(cp, y) works 

properly, possibly because hm p4>Jcpl Tf1
) = Rë"R. The main reason for 

R->-oo 

using aH four rows of g( cp, y) instead of only the first and fourth rows 1S 

computation efficiency. 

The second option is based on Monte Carlo integration methods. ln-

1 ~ ( y; e4> ) ail ( 1 _ y; ) b" 
deed, P4>e (cpl Til) OC m ~ 1 _ y;' + 1: e4> 1 _ y; + ~ e4> when cp < 

j=l ,t ,t 

o and p.J.pIT") ex ~ t, C -:':-;iC<P r C -~,~ i,e-. r when 

cp 2': 0, where Yi and Zi are m random observations from the Be(e", dll
) 

and Be( a", bl!), respectively_ 

The third option, discussed previously in chapter 2 (see equation (2.4.19)), 

is based on expanding the posterior density of CPe into hypergeometric series 

when d" 2': ail as follows: 

T" _ ea"4> 00 r(a" + bl! + j) qa" + Cil + j) r(N") (1 - e4»j 
P4>e(cpl ) - K ~ r(all+b") r(a"+e") r(N"+j) jl ,cP<ü, 

B(a", bl!) B(c", d") 
h K and Nil = ail + b" + Cil + d". It l'S eas-

W ere = B( ail + c", b" + dl!) 
r(a" + b" + j) r(a" + Cil + ') 

ily seen that r(j + 1) :::; (ail + bl! + j - 1) and r(N" + j/ < 
1 . 

( -)d"+b'" Therefore, the rate of convergence of the expanSlOn of 
ail + c" + J 

P4>.( cpIT") in series is j-(d" -ail +1) wh en d" 2': a" and cp < D. A similar rate was 

obtained by Hora and Kelley, 1983 for the cumulative distribution function 

of 'lj;e-

Similar approaches can be derived for p.pJ'lj; 1 Til). 

In our experience and for the problem of sample size, the Monte Carlo 
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approach was the overall most efficient. 

4.1.2.2 Case when P~ and P~ are restrided 

Here we use the same prior-likelihood models as in subsection 4.1.1.2. 

The first prior distribution for (p~,p~) when either 0 < p~ < P~ < 1 or 

(4.l.34) 

The resulting posterior distributions for 'lj;e are 

/1 al/ 1 Y - Y 1
1 a"+c"-l(1 )bl/+d"-l 

P,;;J'lj;' T ) ex: 'lj; - 0 (1- y + y'lj;)al/+b" dy, 0< 'lj; < 1, (4.l.35) 

when 0 '< p~ < p~ < 1 and 

1
1 al/+cl/-l(1 )b"+dl/-1 

(01,' Tf1) "I,-(cl/H) Y - Y d 
P';;e 'f/ ex: 'f/ 0 ( y) cl/+d" y, 

l-y+-
'lj; 

'IjJ > 1, (4.1.36) 

when 0 < p~ < p~ < l. 

The second family of prior distributions is the family of Generalized Beta 

density. We assume the hierarchical model p~ l'V Be( c', d') and p~, P~ 

Be(a',b',O,p~) for 0 < p~ < p~ < 1 and p~ l'V Be(a',b' ) and P~'P~ 

Be(b', d', O,pD for 0 < p~ < p~ < 1. These prior-likelihood combinations 

yield the posterior densities 

1 'a+cl/-1(1 _ 1 )b"+d"-l 
( 

'

fi) al/ -1 ( ) b' -1 r Po Po , 
P';;e 'lj; T ex: 'lj; 1 - 'lj; Jo (1- p~ + p~'IjJ)al/+b" dpo, 0< 'lj; < 1, 

(4.1.37) 
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when 1/Je < 1 and 

Il 1 c"-l d'-l Pl - Pl 1 1
1 lall+c-l(1 1 )bll+dll -1 

PINe(1/J1 T ) oc 1fJ (1 -1/J) 0 (1 _ p~ + p~1/J)d'+d" dPI' 0< 1/J < 1, 

( 4.1.38) 

when 1/Je > 1. 

Proposition 4.1.7. The distributions given by equations 4.1.37 and 4.1.38 

are unimodal when b' 2: 1, a' < c"+ d" and d' 2: 1, c' < ail + b", respectively. 

Pro of. Using equation (4.1.37), the posterior density oflog(1/Je) is given by 

We recognize again that the posterior density of log( 1/Je) can be written as 

the product of two strongly unimodal distributions, and therefore is strongly 

unimodal. lndeed, 

where 

-00 < r < 0, b' > 1, 

1
1 la+c"-l(l 1 )bll+d"-l 

(a+Sl)W Po - Po d 1 

oc oc e . (1 1 + 1 1/J)a"+bl/ Po, o - Po poe 
-00 < r < O. 

â2 1og(p3(r)) (b' - l)er 

P3 (r) is strongly unimodal as 2 = - ( )2 ::; 0 irrespective of 
âr 1 - er-

Cl. The strong unimodality of p4(r) is a result of Lemma 4.1.1, sin ce p4(r) is 

proportional to the expression of posterior density of 1/J = Pl ~ 1 
- Po ~ when 

Po 1 - Pl 

o < 1/J < 1, where Pl r-v Be(a + Cl, bl! + C2) and Po r-v Be(c" - Cl, dl! - C2) 
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anytime a' < Cil + d" = mû + b' + d'. A simple graph of regions delimited by 

the line Cl + C2 = a', cl + c2 < b" + Cil, 0 < Cl < d', 0 < C2 < d" confirms 

the existence of such pairs. 

A straightforward application of Lemma 3.3.1 confirms the corollary that 

the random variable '!/Je is unimodal. Similarly for equation (4.1.38). 0 

Although, we have not shown the unimodality of the posterior density in 

(4.1.37) for a' ~ mû + b' + d', in practice, often a' < mû + b' + d' is often the 

case. When the condition a' < mo + b' + d' is not met and when unimodality 

is a strongly desired property, we suggest to increase or decrease the ratio of 

controis per case, g, until one satisfies the constraint a' < mû + b' + d'. This 

imposition of unimodality for HPD intervals and its consequent computational 

advantage (for equal-tailed intervals, unimodality is not required) comes at 

the expense of a possibly suboptimal choice of g. Similarly for equation 

(4.1.38). 

We propose various algorithms for simulating observations from the pos­

terior distributions implied by the expressions (4.1.35), (4.1.36), (4.1.37), and 

(4.1.38). The process of simulating observations from the posterior distribu­

tions is an important step of Monte Carlo approaches. For the restricted 

case, Monte Carlo approaches are the only choice to sample size calculation. 

Generating observations from (4.1.35), (4.1.36), (4.1.37), and (4.1.38): 

There are four cases to consider, depending on the prior information that 

is used. 
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Case 1: To simulate an observation 1jJi from (4.1.37), we first simulate 

a pair of independent observations (pb, Rd using the mixture 

fpo,R(PO, RI Til) ex. p~+c"-1(1 - Po)dll-l Rall-l(l - R)b'-1(1 - Rpo)b, 

~ w. p~+ell+j-l(l - Pol'+b-j-l Rail-ICI - R)b'+j-l 

ka J B (a + Cil + j, dl! + b - j) B ( ail, bl + j) 

0< Po, R < 1, (4.1.39) 

v] B(a + cf! + j, dl! + b - j) B(a", b' + j) 
with Wj = b and Vj = B( . 1 b 1') Then, 

2:k=O Vk J + , + - J 
. f i p i pi (1 - pb) (1 - pb)R; 

solvmg or Pl = .J. LiPO' we are able to compute 1jJi = . ( ') = .. 
Po 1 - Pl 1 - PoR; 

Case 2: The case 1jJe > 1 in equation (4.l.38) is dealt with by consid-

1 
ering -. Similar to case l, the density implied by (4.1.38) uses the mixture 

1jJe 

I:
d p~"+e+j-l(l - PO)b"+d-j-1 Re"-l(l - R)d'+j-l 

i pl , -RI (Pl, RI Til) = Wj --:"-:---'-----=-..:-.--....,... ---:-'--,----:----c--
j=O B(a" + c + j, b" + d - j) B(c", d' + j) 

0< Po, r < 1, (4.l.40) 

Vj 
with Wj = d and Vj = 

2:k=O Vk 

B(a" + c + j, b" + d - j) B(c", d' + j). Fi­
B(j + 1, d + 1 - j) 

nally, for each simulated pair ( . 1) . 1. pL R; ,one computes Po = R; pi and 

Case 3: ( 1 
") ail l Y Y 1

1 ail +e"-l (1 _ )b" +d"-l 
For P7/;e 1jJ T ex. 1jJ - 0 (1 _ Y + 1jJy)all+bll dy, 0 < 

1jJ < 1, we have the infinite decomposition, 

all+cll-l(l )b"+d"-l a"-l Po - Po 
1jJ (1 - Po + 1jJpo)a/l+b/l dy , 0 < Po, 1jJ < 1, 

00 p~"+c/l+j-l(l _ po)bll+dll-l 1jJall -l(l _ 1/J)j 

~ Wj B(a" + Cil + j, b" + d") B(a", j + 1) 

(4.1.41) 
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V· r(a" + bl! + j) r(a" + Cil + j) 
with W j = J and v· = --'--------'-'-------'-

I:::'=o Vk J r(N" + j) r(a" + 1 + j) 

Case 4: The case 'ljJe > 1 in equation (4.1.36) is again dealt with by 

considering -. For p (01'1 Til) oc ol,-(C"+1) y - y dy 1/1 >_ 
1 11 a"+cll -l(l )b"+d"-l 

'ljJe 1/le 'f/ 'f/ 0 (1 _ Y + 'ljJy)c"+d" ,y 

1, we have the infinite decomposition 

al/+c" -1 (1 )bll+d"-l 
c"-lPl -Pl 

'IjJ (1 - Pl + 'ljJPI)c"+dll dy , 0 < Pl, 'IjJ < 1, 

00 p~"+cll+j-\l _ Pll'+d"-l 'ljJc"-l(l _ 'IjJ)j 

~ Wj B(a" + Cil + j, bl! + dU) B(c', j + 1) 

( 4.1.42) 

Vj r(c" + d" + j) r(a" + Cil + j) . 
where Wj = I:::'=o Vk and Vj = r(N" + j) r(c" + 1 + j) . These senes 

with leading terms Wj from (4.1.41) and (4.1.42) converge at the rate of 

j-(d"+1) and j-(b"+l), respectively. Thus, when d' 2:: 3 and c' 2:: 3, a mixture 

using the first 2000 terms, will provide an excellent approximation. 

The decompositions in equations (4.1.41) and (4.1.42) are used to simulate 

an observation from the posterior distribution of the relative risk, R, as 

discussed in subsection 4.1.1.2. 

Having described how to simulate observations from various joint pos-

terior distributions, we are ready to describe an algorithm that provides a 

Monte Carlo approach to sample size determination for 'ljJe. Below we sketch 

the main steps of a Monte Carlo approach when using the prior model pb rv 

Be(e', d') and p~ r-.J Be(a', b' , 0, pb) given pb first, followed by the algorithm for 

the model f(p~,p~)(p~, p~1 Til) ex p~a'-l(l_ pDb'-lp~'-I(l_ pb)d'-l, 0 < p~ < p~. 
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Sketch of the Monte Carlo simulation approach to determining the 

optimal sample size when estimating 'Ij; under ACC: For each step 

in the bisectional search over nI (g) based on the prior model pb rv Be( Cl, d') 

and p~ rv Be( a', b', 0, p~) given p~, one performs the following: 

@ Simulate pl rv Be(a', b') and pb rv Be(c' , dt), i = 1,' .. ,m. 

@ For each pair (pl, pb), simulate two independents observations ai 

@ For each i, simulate the pairs (R j , rio), j = 1,'" ,M from equation 

(4.1.39), where a = ai, b = nl(g) -ai, c = Ci, and d = (g+ l)nl(g) -Ci, 

(1 - zlc)R' 
respectively. Use the observations 'lj;j = 0 J to estimate the 

1- RjP6 
coverage ai of the HPD interval given l using Algorithm 3 in subsection 

2.7.2.3. 

@ Compute acc(nl(g) , a', b', c', d') ~ ~ t Œi' 

m i=l 

For the model f (p' pt 1 Tf1 ) ex: p,al-l(l - p' )bl
-lp

,
c
l
-l(1 - p' )d'-l 0 < (pi ,p~) 11 0 1 l 0 0, 

p~ < p~, we have the following steps: 

@ Simulate (pi, ~~) , i = 1," . ,m using (4.1.42), where ail = a', b" = 

b', Cil = c' and d" = d', 

@ For each pair (pi, 'Ij;!), simulate two independent observations ai rv 

Bin((9+1)nl(g),pDandcirvBin(nl(g), . (pi ')'Ij;')' 
Pl + 1- Pl ~ 

@ For each i, simulate ~, j = l,'" ,M using (4.1.42) where ail -
'Ij;~ 

ai + a', b" = nl(g) - ai + b', Cff = Ci + C' and dl! = (g + l)nl(g) - Ci + d', 
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Use the observations 1/J~ to estimate the length li of the HPD interval 

given 1 - Cl: using algorithm 4 in subsection 2.7.2.3. 

( 

m ) l/k 

® Compute alck {nl(g),a',b',c',d') ~ ~ ~l~ 

Subsection 4.1.2.3 provides an illustration of the regression-based Monte 

Carlo approach. 

4.1.2.3 An example 

Example : A case-control of thalidomide intake in regards with 

birth defeds After observing that many women with malformed children 

at birth had taken thalidomide tablets during their pregnancy, it was de-

cided to conduct a case-control study to determine whether there was an 

association between intake of thalidomide and the occurrence of birth de-

fects among the children of mothers who had taken this drug. A group of nI 

children with birth defects (cases) would be compared to a group of no chil-

dren without birth defects (controls). It would then be ascertained for each 

mother whether or not she had taken thalidomide during her pregnancy. Let 

p~ and p~ represents the proportion of mothers who took thalidomide during 

their pregnancy among the cases and the controls, respectively. Suppose a 

pilot study reveals that out of 10 children with birth defects and 50 without 

birth defects, the number of the mothers that took thalidomide during their 

pregnancy is 5 and 10 respectively. 

What should the sample sizes of the main study, nl and no be in order 

to ensure that a 95 per cent posterior credible interval of for the odds ratio 
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Figure 4.1.4: Graphs of the Monte Carlo pairs (N, 2 1 ) . 
ale (N, 5, 5,10,40, .95) 

P~ (1- p~) 
'l/Je = ( f) l' would have a length no larger than 5.0 on average? Thus 

1 - Pl Po 
the criteria to be used here is the ALe. For this study, the posterior credible 

intervals chosen is the equal-tailed interval. It was decided to take 2 contrals 

per case, i.e. 9 = 2. The total sample size provided by equation (4.1.27) 

is N = 420 with ni = 150 and no = 270. The smallest admissible sample 

size for this setting using, again, (4.1.27), was attained at 90pt = 1.25 with 

N = 393, nI = 191, and no = 202. Clearly 9 = 2.0 is nearly optimal. With 

the Monte Carlo approach based on taking m = M = 5000, we obtain N = 

437 with rh = 146 and no = 291 using the average of 10 estimated sample 
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sizes, with a standard error for N of 2.766. This suggests that the sample 

size provided by formulae (4.1.27) underestimates the true sample size. This 

behavior was confirmed by a regression-based Monte Carlo approach which 

resulted in a sample size of 436 using on m = M = 1000 and 1000 simulated 

values for the criterion function. The data are plotted in figure 4.1.3. 

If it were known a priori that thalidomide intake was associated with 

an increase in birth defects, the posterior density in equation (4.1.36) could 

be used for the analysis. In this situation, we resort to the Monte Carlo 

approach to determine the required sample size. The corresponding sam pIe 

size when g = 2.0 is N = 87 with rh = 29 and no = 58, with a standard error 

for N = 0.458. This example illustrates that using the prior information that 

1/Je > 1 can result in tremendous savings (about 80% here). 

4.1.3 Cross-sectional studies 

As discussed in chapter 2, the prior-likelihood model of interest for cross-

sedional studies is the Dirichlet-Multinomial. We again use the notation 

T = (a, b, c, d), first introduced in section 3.3 to represent the data in Ta­

ble 2.1. Let T = (a, b, c, d) again denote a realization of the multinomial 

distribution and let T' = (a', b' , c', d') denote the Dirichlet prior distribution 

parameters, respectively. The combination of these two prior-likelihood Ta-

bles T' and T leads to a posterior table Til = (ail bl! Cil d") where ail = " - , , , , 

a + a', b" = b + b', c" = c + c, and dlf = d + d'. We consider the problem of 

determining the required sample size N = a + b + c + d for estimating the risk 

t · R Pu (PlO + Poo) d h dd . "1. pnpoo d h . . ra 10 = an t e 0 s ratIo 'f/ = -- un er t e cntena 
PlO (pu + POl) PlOPOl 
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ALCk, ACCk , WOC, MLOC and MCOC. 

It was shown in subsection 2.4.2 that the posterior distributions of Rand 

1/J in the cross-sectional setting are the same as the posterior distributions 

of R in the cohort design and the posterior distribution of 1/Je in the case-

control designs, respectively. A similar remark applies to the parameters 

10g(R) and 10g(1/Je). Using these observations, we avoid repetitions in the 

following section. 

In the sequel, the following notation is used for convenience. 

Notation 4.1.1. Let 

N! 

be the multivariate binomial coefficient and let 

be the multivariate Beta junction. 

We give below the expression of the pre-posterior predictive distribution, 

which plays an important role in the computation of sam pIe sizes. This 

expression is used in subsection 4.1.3.1 to derive approximate sample size 

formulae. 
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4.1.3.1 The pre-posterior predictive distribution 

The pre-posterior predictive distribution, derived by Maritz, 1989, is 

PG(a, b, c, dl N, a', b', c', d') 
r(A)r(N + 1) r(a + a') r(b + b') 
~~~----~--~~~------~~X 

r(N + A) r(a + l)r(a') r(b + l)r(b') 
r(c + c') r(d + d') 

r(c + l)r(c') r(d + l)r(d')' 

= ( N )B(a+al
, b+b', c+c' , d+d') 

abc d B( a', b' ,c' , d') , 

a+b+c+d=N, (4.1.43) 

with A = a'+b'+c'+d'. It is clear that (;, ~, ~, ~) ---'rd (Pll,PlO,POl,POO) 

as N ---'r 00. 

If we reconsider the parameterization (a, c, nI) where the random variable 

nI is a + b, a straightforward change of variable in Equation 4.1.43 leads to 

( I
N 1 b

' 
1 d') _ (N) B(nl + a' + b' , N + c' + d' - nI) 

PG nI, a, C , a, ,c, - nI B( a' + b', c' + d') x 

(
nI) B(a + a', nI + b' - a) (no) B(c + c', no + d' - c) 
a B(a' , b') x c B(c', d') , 

nI = 0, 1, ... ,N, a = 0,1,· .. ,nI, and c = 0, 1, ... ,no, no = N - nI, 

(4.1.44) 

whose form is suit able for simulating (nl' a, c). This is discussed in the sequel. 

We can now clearly see that the cross-sectional design involves one more 

hierarchical step on (nI, no) compared to the case-control study where (nI, no) 

are instead fixed by design. 

For R, the decomposition based on (a, b, ml) with ml = a + c can be 
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used: 

( bl N a' b' c' d') = (N) B(ml + a' + d, N + br + d' - ml) x 
PCml,a, "" ml B(a'+c',b'+d') 

(
ml) B(a + a', ml + d - a) x (mû) B(b + b', mû + d' - b) 
a B(a', ci) b B(b', dl) , 

ml = 0,1,'" ,N, a = 0,1,'" ,ml, and b = 0,1,'" ,mo, mû = N -ml· 

(4.1.45) 

Again, we can clearly see that the cross-sectional study involves one more 

hierarchical step on (ml, mo) when compared to the cohort study, where 

(ml, mo) are fixed by design. 

The decompositions in equations (4.1.44) and (4.1.45) are especially useful 

for the simulation of observations from the pre-posterior predictive distribu-

tion. The pro cess of simulating observations from the pre-posterior predictive 

distribution is an integral· part of any Monte Carlo approach to sample size 

calculation. For example, to simulate an observation using equation 4.1.44, 

we have the following three step algorithm . 

1. simulate nI from BB(N, a' + b' , c' + d'). 

2. simulate a from BB(nl, a', b'). 

3. simulate c from BB(nû , d, d'), and so on. 

Now the calculation of the sample size itself is Monte-Carlo based, since 

averaging over three nested loops is not computationally efficient. Only a 

slight modification of the Monte Carlo algorithms in subsections 4.1.1.1 and 

4.1.2.1 are necessary. For example, when estimating R, the first two steps 

are replaced by 
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® simulate 1ri rv Be(a' + b', é + d') and ni '" Bin(N, 1rJ 

® simulate pi rv Be( a', Cf) and ai rv Bin( ni, pl). 

@ simulate pb rv Be(b' , d') and bi rv Bin(N - ni, pt). 

4.1.3.2 Approximate sample size formulae for the ALCk 

We are ready to derive approximate sample sizes for the risk ratio and the 

odds ratio for a cross-sectional study. 

Odds ratio 'Ij; and log-odds ratio 4> = log('Ij;): The corollary to Theorem 

3.2.6 below, will be used later to derive approximate ALCk sample sizes. 

Because the proof of corollary is similar to that of Corollary 4.1.3, we give 

only a quick outline. 

Corollary 4.1.8. For b' , c' > max(2, 3k/2), k ~ 1, 

{ }

l/k 

. v' N + Nf EG[l~l 
hm 

N -->00 2z1- a / 2 
{[[[[WX(~-X)+(l-W)Y(l-Y)r x 

Xa '+k/2-1(1 _ V)b'-3k/2-1 yC'-3k/2-1(1_ y)d'+k/2-1X 

w a'+b'-k/2-1(1 _ w)c'+d'-k/2-1 }l/k 

B(a' b' c' d') dx dy dw , , , , 

( 4.1.46) 

where EG in an expectation over the pre-posterior predictive distribution in 

equation (4.1.43), N = a + b + c+ d, and N = a' + b' + c' + d'. 

Praof. If one replaces a,b,c, and d by Npn,NPlO,NpOl, and Npoo in the 

expression for the posterior variance of 'lj;e derived from the k-th posterior 
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moments given by equation (4.1.23), and takes the limit as N go es to infinity, 

we have 

{ }
k/2 

hm N"Var('IjJ) 
N---l>OO {

PllPOO(PlOPOlPOO + PllPOlPOO + P11PlOPOl + PllPlOPOO) }k/2 

P3 p3 
10 01 

(4.1.47) 

where Nil = N + N'. The idea again is to decompose the form of Pc in the 

first row of equation (4.1.43) in order to eliminate the indeterminacy due to 

the denominator in the right hand side of equation (4.1.47), as done in the 

pro of for Corollary 4.1.3. One then obtains the existence of continuous and 

uniformly bounded sequence of functions hn such that 

where ZN ----rd Dirichlet(a', b' - 3k/2, c' - 3k/3, d'), limN CN = 1, and 

{ }
k/2 10/2 k/2 

PlOPOlPoO + P11PolPOO + PllPlOPOl + pnplOPOO Pu POO, 

h(P11 , PlO, POl, Poo). 

Consequently, 

J J 1 h(Pl1,PlO, POl, Poo) X 

a'-l b'-3k/2-1 c'-3k/2-1 d'-l 
PH PlO POl Poo d d d d 

B(a', b', cf, d') pn PlO POl POO, 

where S = {(pn,PlO, POl, Poo), Pu + PlO + POl + POO = 1}. Set w = POO + 

PlO, X = Pu and y = POl . This change of variables implies that 
Pll + PlO PlO + Poo 

Pu = wx, PlO = w(1 - x), POl = (1 - w)y, and POO = (1 - w)(1 - y) with a 
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Jacobian, J = w(l - w). We then have 

hm V N + N'Ea [Var ( 'ljJ )k/2] = 
N-->(X) 

111° 11 [wx(l- x) + (1- w)y(l- y)f/2 

xa'+k/2-1(1 _ x)bl-3k/2-1 yC'-3k/2(1 _ y)dl+k/2-1 X 

wal+bl-k/2-1(1 _ w)c'+dl-k/2-1 
B(a' b' C dl) dxdydw. , , , 

o 

In order to obtain an approximate sample size formula, one needs to solve 

{ }

l/k 
the approximate equation Ea[l~J = l using the result in Corollary 4.1.8. 

Thus an approximate sample size based on the ALCk for estimating 'ljJe when 

b', ri > max(2,3k/2) is 

N,p = 4zîl~a/2 {lI 1° 11 [wx(l- x) + (1- w)y(l - Y)r/
2 

x 

xal+k/2-1(1 _ xt'-3k/2-1 yd-3k/2(1 _ y)dl+k/2-1 X 

W W l , 1 1 
al+b'-k/2-1(1 _ )d+d'-k/2-1 }2/k 

B(al , b', c, d') dxdydw -a -b -c -do 

(4.1.48) 

Similarly, an approximate sample size based on the ALCk for estimating 

cP = log('ljJ) when a', b', c', d' > max(l, k/2) is 

Nc/J = 
4Z2 { rI { rI ( k/2 11~a/2 Jo Jo Jo [wX(l - x) + (1 - w)y(1- y)] 

xa'-k/2-1(1_ x)bl-k/2-1 yCI -k/2(1_ y)d'-k/2-1 dxdy} x 

wa'+b'-k/2-1(1_ W)cl+dl-k/2-1 

B(a' b' C dl) , , , 

2/k 
dw } - a' - b' - c' - d'. 

(4.1.49) 

Note that the sam pIe size formulae in equations (4.1.48) and (4.1.49) can 

be computed using integral subroutine DQAND from the ISML library 
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(which computes any hyper-rectangle integral up to 20 arguments) when 

b', c' > 3; + l . Again, Monte Carlo integration methods based on generating 

t independent Beta distributions x '" Be(a' + k/2, b' - 3k/2), Y rv Be(c' -

3k/2, d' + k/2), w '" Be(a' + b' - k/2, c' + d' - k/2) and x rv Be(a' -

k/2, b' - k/2), Y rv Be(e' - k/2, d' - k/2), w rv Be(a' +b' - k/2, d +d' - k/2), 

respectively, appear to be the best of both approaches to compute equations 

(4.1.48) and (4.1.49). Monte Carlo integration is faster, al ways feasible when 

b', c' > 3
2
k and can reach good accuracy when setting t = 50000. 

Risk ratio Rand log-risk ratio logeR): The corollary to Theorem 3.2.6 

below, will be used later to derive approximate ALCk sample sizes. Again, 

we provide only a sketch of the proof. 

Corollary 4.1.9. For al, d, d' > 0, a' + c' > k/2, and b' > 3k/2, 

. JN + NI{Ec[I~Jr/k {Ill [() ]k/2 
N~oo 2z

1
-

a
/

2 
= 111 vx 12- y + (1- v)(l - x)y X 

x a'+k/2-1(1_ X)C'-l yb'-3k/2-1(1 _ y)d'-lX 

va'+c'-k/2-1(1 _ v)b'+d'-k/2-1 }l/k 

B(a', b', d, d') dx dy dv , 

( 4.1.50) 

where Ec in an expectation over the pre-posterior predictive distribution in 

equation (4.1.43), N = a + b + c + d, and N = a' + b' + d + d'. 

Pro of. Suppose that k is even. We have shown that (~, ~, ~, ~) ----+d 

(Pu, PlO, POl, Poo). Define g(Pl1 , PlO, POl, Poo) = (PU + POl, P~l , P~O ) . 
pn POl PlO POO 

Then 

(
ml ab) (a b Cd) d N' ml' N - ml = 9 N' N' N' N ----+ g(PU,PlO,POl,POO). 
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An application of Proposition 2.4.1 shows that the random variables Pu + 

Pu d PlO . d d l d' 'b d 'tl POl, , an are ln epen ent y lstn ute Wl l Pu + POl rv 

PH + Pal PlO + Poo 
Pu PlO) Be(a' + c', b' + d'), rv Be(a' , c'), and rv Be(h', d' . Note 

Pu + POl PlO + Poo 
that the form of the posterior predictive distribution that is used here is 

pa(ml, a, bl N, a', h', Cl, d') in equation 4.1.45. Now set ml = Nv, mo = N(l-

v), a = Nvx, and b = N(l- v)y in the expression for the posterior variance 

of R derived from the k-th posterior moments given by equation (4.1.3), and 

take the limit as N goes to infinity. We have 

{ }
k/2 

lim (N + N')Var(R) = 
N---+oo 

Xk/2 [ ] k/2 
vk/2(1 _ v)k/2 y3k/2 y - yx - vy + vx 1 

xk/2 [ ] k/2 
- vk/2(1 _ V)k/2 y3k/2 vx(l - y) + (1 - v)(l - x) . 

The trick once again is to decompose the form of Pa (ml, a, bl N, a', h' , c', d') 

in a way similar to the pro of for Corollary 4.1.3. This de composition should 

contain pa(ml, a, bl N, a' - kIl bl 
- 3k/2, c' - k2, d'), where kl :s; a' and k2 :s; c' 

are two integers such that kl + k2 = k/2. Once this is done, one obtains 

B(a' - kl , b' - 3k/2, c' - k2 , d') f . 
where lim CN = B( ) , hN is a sequence 0 um-

N---+oo a', b', c, d' 

forrnly bounded functions with 

lim hN(x, y, v) 
N [ ] 

k/2 
xkl+k/2(1 - X)k2 vx(1- y) + (1 - v)(l - x)y 

- h(x, y,v), 

d Z d ( Pu PlO) h h 1 b' 1 an N ---+ PH + POl, , ,w ere t e parameters a, , C 
Pu + Pal PlO + Poo 

and d' are replaced by al - kl , b' - 3k/2, c' - k 2 and d', respectively. In other 

(4.1.51) 
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d h d . bl P11 d PlO . d wor s, t e ran om vana es Pu + Pal, , an are lU epen-
Pu + POl PlO + Poo 

dently distributed with Pu +POl rv Be(a' +c'-k/2, b' +d'-3k/2), PH rv 

pn + POl 
Be(a'-kI,c'-k2),and PlO rvBe(b' -3k/2,d'). An application of 3.2.7 

PlO + Poo 
and 3.2.6 leads to 

{ }
k/2 

lim Ec NVar(R) 
N--+oo 

1111 11 [VX(l- y) + (1- v)(1- x)Yr/
2 

x 

x a 'H/2-1(1 _ X)C'-lyb'-3k/2-1(1 _ y)d'-l X 

v a'+c'-k/2-1(1 _ vt'+d'-k/2-1 

B(a' b' ct d') dxdydv, , , , 

( 4.1.52) 

which completes the pro of when k is even. Similarly when k is odd. 0 

In order to obtain an approximate sam pIe size formula, one needs to solve 

{ }
l/k 

the approximate equation Ec[l~] = l using the result in Corollary 4.1.9. 

Thus an approximate sam pIe size based on the ALCk for estimating R when 

a',c',d' > 0, a' +c' > k/2, and b' > max(2,3k/2) is 

N R 4zîl~a/2 {lI 11 11 [vx(1 - y) + (1 - v)(l - x)r/
2 
x 

Xa'+k/2-1(1 _ X)c'-lyb'-3k/2-1(1 _ y)d'-l X 

V V'I" 
a'+c'-k/2-1(1 _ )b'+d'-k/2-1 }2/k 

B(a' , b'
, c', d') dxdydv - a - b - c - d. 

(4.1.53) 

Similarly, an approximate sample size based on the ALCk for estimating 
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log(R) when c',d' > 0, a',b' > max(1,k/2) is 

N1og(R) 
4Z2 { rI { t t k/2 ll~0i/2 Jo Jo Jo [vX(l - y) + (1- v)(l- x)y] X 

Xa'-k/2-1(1 _ xy'-l yb'-k/2-1(1 _ y)d'-1dx dY} X 

a' +c'-k/2-1(1 _ )b'+d'-k/2-1 }2/k 
V V,, 1 1 

B (a' b' c' d') dv - a - b - c - d . , , , 
(4.1.54) 

4.1.3.3 An example 

Recently, case-only designs have been used in the field of genetic epidemiol-

ogy to assess gene-environment interaction effects. We briefly discuss these 

designs below and place one of our sample size problems in the context of 

such designs. 

The case-only design as a two sample problem We first introduce 

the traditional 2 x 2 x 2 or 2 x 4 case-control design for inference on gene-

environment interaction. Let E be a dichotomous variable representing the 

presence or absence of exposure, let G be an inherited dichotomous vari-

able indicating susceptibility genotype, and let D be the status variable for 

the disease under investigation. The values E = 0 and E = 1 will denote 

absence or presence of exposure, respectively. Similarly for G. As in any 

case-control study, we start by collecting N cases and M controis. Suppose 

that appropriate controIs are available and that there are no confounding 

effects. Each case and each control selected is classified into one of the four 

combination groups of E and G. Table 4.4 serves as a summary of the col-

lected information on disease, exposure, and genotype susceptibility along 
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Table 4.4: Generic 2 x 4 table for gene-environment interaction anal-

ysis in case-control settings. 

Susceptibility 
Exposure Cases Control Odds ratios Estimates 

genotype 

0 0 Aoo Boo 1.0 

0 1 AOl BOl 'l/JG = POlqoo 
POOqOl 

;;;G = AOlBoo 
AooBOl 

1 0 AlO BlO 'l/JE = PlOqoo 
POOqlO 

;;;E = AlOBOO 
AooBlO 

1 1 Au Bn 'l/JEG = Pllqoo 
Pooqu 

;;; AlI Boo 
EG= 

AooBu 

N M 

with the parameters of interest. Cases and controis in the first row of Ta-

ble 4.4 form the reference group. Let Pij = P(G = i, E = jl D = 1), and 

qij = P(G = i, E = jl D = 0), i,j = 0,1 be the ceIl probabilities given 

disease status. Denote by 'l/JG, 'l/JE, and 'l/JGE, the ratio of the odds of disease 

for G = 1 and E = 0, G = ° and E = 1, and G = 1 and E = 1 relative to 

the reference group (G=O, E=O). By definition, 

'l/JG = P(D = 11 G = 1, E = 0) / P(D = 01 G = l, E = 0) 
P(D = 11 G = 0, E = 0) P(D = 01 G = 0, E = 0) 

'l/JE =P(D=lIG=O,E=l) /P(D=oIG=O,E=l) 
P(D = 11 G = 0, E = 0) P(D = 01 G = 0, E = 0) 

__ P(D = 11 G = 1, E = 1) / P(D = 01 G = 1, E = 1) 
'l/JGE P(D = 11 G = 0, E = 0) P(D = 01 G = 0, E = 0) 

= 
POl qoo 

Poo qOl 

PlO qoo 

Poo qlO 

PH qoo 

Poo qll 

One way to measure the influence of gene-environment interaction on 

disease in the population is to compute the synergy index IGE, 

IGE = 'l/JGE = Pu Poo / qll qoo. 
'l/JG 'l/JE POl PlO qOl qlO 
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More importantly, Piegorsch et al., 1994 shows that IGE is equivalent to 

the interaction parameter between genotype and environment under a 10-

gistic regression model. Now the estimation of IGE requires information on 

the controls, which would routinely be obtained in a traditional case-control 

study. However, under certain assumptions it is possible to avoid collecting 

information on controis when making inference about IGE. 

Suppose now that there is strong theoreticai or empirical justification for 

assuming that genotype and exposure occur independently in the population. 

Under this independence assumption and assuming that the disease is rare, 

Piegorsch et al., 1994 show that 

P(E = 11 G = 1, D = 1) P(E = 01 G = 0, D = 1) pn Poo 
IGE~ (1 ) 1 ) = . (4.1.55) P E = 0 G = 1, D = 1 P( E = 1 G = 0, D = 1 POl PlO 

Approximation (4.1.55) implies that we can estimate the IGE with a case­

series only as aH the parameters in the right hand side of (4.1.55) can be 

estimated without information on controls. Also shown by these authors and 

others (Yang et al., 1997, Umbach and Weinberg, 1997, Schmidt and Schaid, 

1999, Albert et al., 2001), is that the estimation of the gene-environment 

interaction with a case-series offers greater precision than that provided by 

the traditional approach. Moreover, the case-series study is more economical, 

and, more importantly, using case-series avoids the difficult problem of vali-

dation for the control group. These papers discuss the drawback of case-only 

studies, especially when the independence assumption is violated. 

Clearly, the above case-only design mimi cs that of the cross-sectional 

sampling design discussed in section 4.1.4 and, therefore our Bayesian sam pIe 

size approaches for estimating the odds and log-odds discussed there can 
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be used for sam pIe size problems wh en estimating IGE and log(IGE). This 

would, of course, also be case if qoo, QlO, qOI and qu were known exactly in 

the traditional approach. 

4.1.4 Matched analysis 

In matched analyses first introduced in subsection 2.3.4, the parameters of 

interest are the exposure odds ratio, 'ljJ~, in case-control setting, and the dis-

ease odds ratio, 'ljJ'a., in the cohort setting. Since both 'ljJ~ and 'ljJ'a. are the ratio 

of two proportions under the assumption that the relative risk is constant 

over the level of the covariates (see subsection 2.3.4), it is sufficient to study 

'ljJ~. We again use the notation T, first introduced in section 2.3 for Table 

2.2. For the matched pair analyses, the prior jlikelihood model that we use 

is the Dirichlet j multinomial model. Denote by T = (a, b, c, d) a realization 

of the Multinomial distribution and by T' = (a', b' , c', d') the parameters of 

the Dirichlet prior distribution underlying the matched analysis. The com-

bination of the prior-likelihood tables T and T' leads to a posterior table 

Tf1 = (ail b" clf d") where ail = a + al b" = b + b' Cil = c+ c and dl! = d + d' , , , '" " 

where N = a + b + c + d is the sample size. Under this model, the posterior 
1 

d . f 0// PlO· ensIty 0 'f/ e = -,- lS 
POl 

whereas the posterior density of rp~ = log (p~o) is 
POl 

1 eb"4> 
( '1 fi) P4>~ cp T = Be(b", Cil) (1 + e4>t"+cl · 

( 4.1.56) 

(4.1.57) 
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Since bl! and d' are the only parameters that play a role in the computation 

of the posterior distributions of 1/J~ and <p~, we can summarize the table T" 

further, simply as Til = (b + b', m - b + c', N - m + a' + d'), where m = b+ c. 

The densities in equations 4.1.56 and 4.1.57 have been studied in chapter 

3 as the densities of the odds parameter, w and the log-odds 4>. Therefore, aU 

techniques developed for w and <p apply here, and, in particular, the results 

for approximate lengths of HPD and equal-tailed intervals. 

We now derive the pre-posterior predictive distribution for matched stud-

ies. We use this form for the pre-posterior predictive distribution in our 

computation of Bayesian sample sizes for matched problems. 

4.1.4.1 The pre-posterior predictive distribution 

We begin with a proposition that allows us to derive a convenient form of 

the pre-posterior predictive distribution (see equation (4.1.61) below) 

The prior distribution 

implies the marginal prior distribution 

Proposition 4.1.10. Let 

(PlO, POl , Poo) l'V Dirichlet (b' , Cf, a' + d'), (4.1.58) 

where PlO, POl, Poo > 0 and PlO + POl + Poo = 1. Let 7r PlO + POl and 

() = PlO 
PlO + POl 

1/J~ 
1/J~ + 1 . 

Then 7r and e are independent random variables 
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with 

11 rv Be(b' + c', a' + d') 

8 rv Be(b' , Cl). (4.1.59) 

Prao]. We have PlO = 1Ie and POl = (1 - 8)11. This transformation has a 

Jacobian J = 11, 0 < 11 < 1, and 8 < 1. Thus, 

o 

It is well known (Royston, 1993) that (a, b, c, d) rv Multinomial(N,pll'PlO,POl,POO) 

a1so implies that 

m = b+c rv Bin(N, 1I) 

blm rv Bin(m, 8). ( 4.1.60) 

Equations (4.1.59) and (4.1.60) yield the following decomposition of the 

pre-posterior predictive distribution of the random variable (m, b) as the 

pro du ct of two Beta-Binomial distributions, 

p(m, blN, a', b' , c', d') = Pm(ml N, b' + c', a' + d') Pb(bl m, b', c') 

= (N) B(b' + c' + m, N + a' + d' - m) x 
m B(b' + c, a' + d') 

(
m) B( b' + b, m + c' - b) 
b B(b', ci) , 

(4.1.61) 

m = 0, ... ) N and b = 0, ... ,m. 

We use this form for the pre-posterior predictive distribution in our com-

putation of Bayesian sample sizes for matched problems. Equation (4.1.61) 
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also provides a simple two-step algorithm for generating observations from 

p(m, blN, a', b', c', d'): 

1. Simulate m from BB(N, b' + c', a' + d'). 

2. Simulate b from BB(m, b', c'). 

For the matched problem, the five main sample size criteria are related 

to the following criteria functions. 

(
N m {1 }k )l/k 

acck(N, a', b', c', d') L L p(el T f1
) de P(m,b)(m, bl N, a', b', c', d') 

m=O b=O OEHPD(l) 

alck(N, a', b', c', d') (t t { r de}k P(m,b) (m, bl N, a', b', c', dl)) l/k 

m=O b=O JOEHPD(l-Ol) 

woc(N, a', b', c', d') = sup {r de} , 
Os,bS.mSF JOEHPD(l-Ol) 

mcoc(N, a', b', c', d') medos.bs.mS.N { r p(el Til) de} , 
JOEHPD(l) 

mloc(N, a', b', c', d') medos.bs.mS.N { r de} , J 8EHPD(1-0l) 

where e is either 'ljJ~ or either rp~. In the sequel, we sim ply use the notation 

alc(N, a', b', c', d') and acc(N, a', b', c', d') for k = 1. 

Having derived the pre-posterior predictive distribution, we can now de-

rive the approximate sample size formulae for the ALCk , k = 1,2. Depend-

ing on the accuracy required, these estimates can either be used by them-

selves, or they can serve as the starting values for more accurate estimates 

based on Monte Carlo simulations. 
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4.1.4.2 Approximate sample sizes for the ALCk1 k = 1,2 

Approximate sample size formula for the ALC: The following corol-

lary to Theorem 3.2.4 on the limiting distribution of the pre-posterior pre-

dictive distribution, that is needed in the sequel, considerably simplifies the 

computational burden when assessing the approximate sample size. 

Corollary 4.1.11. 

( 
beN - b - e) d. . (1 1 l ') 
N' N' N --+ DZ'rlchlet b, e , a + d , as N --+ 00. 

Remark 4.1.2. Corollary 4.1.11 allows us to replace m by N'if, b by N'ife and 

c by N'if(l- e) when N is large. Thus, alck(N,a',b',e',d') may be replaced 

by 

( t t {1 }k eb'-1(1- eY'-l 
Jo Jo ..,uEHPD(N,7r,8,1-a) d'l/J B(b', d) 

'if 'if dB d'if 
b
l+C1-l(1 _ )a'+dl-l ) l/k 

B(b' + d, a' + d') , 

where HPD(N, 'if, e, 1- Œ) represents the HPD interval of coverage 1- Œ for 'l/J~ 

from the distribution 

1 'l/JN7r8+b'-1 

f..,u~('l/J) = Be(N'ifO + b', N'if(l - B) + d) (1 + 'l/J)N7r+b'+c
l

' 

The pre-posterior predictive distribution of X N = (b, c, N - b - c) can be 

rewritten as 

(b IN b
' 

c'a' d') = (N) B(b + b' , e + Cl, b + c + b' + d, N + a' + d' - b - e) 
PXN ,e , , ,+ bc B(b', d, a' + d') , 

(4.1.62) 

where 0 :::; b + e :::; N. 
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Let l,p~ (b, c) = 2z1- a /2\/Var( 1jJ~1 Til) be the first order approximation of 

the HPD interval for 1jJ~. Let N' = a' + b' + c' + d' be the prior sample size. 

The corollary to Theorem 3.2.6 below will be used later to derive approx-

imate sample size when considering the alck' 

Corollary 4.1.12. Far c' > 2, 

lim VN + NIExN[l,p~(b, c)] = B(b' + 1/2, Cf - 3/2) B(b' + c' - 1/2, a' + d'). 
N 2Z1-a/2 B(b' , ci, a' + d') 

(4.1.63) 

Praof. Let YN = (~, ~, N -~ - c) and F N be the set of pairs (b, c) where 

the mass of YN is positive. We have 

where the fun ct ions 

(x,Y)EFN 

(N x + N y + b' + c' - 1) (N x + b') 
~~--~--~~--~--~~ x 

(Ny + c' - 1)2(Ny + c' - 2) 

PYN(X, yiN, a', b' , c', d') 

B(b' c' - 2 a' + dl) , , ·/N N' x 
B(b' , c', a' + d') v + CN 

L hN(x, Y)PYN(X, yiN, b' , c' - 2, a' + d'), 
(x,y)EFN 

B(b' , c' - 2, a' + d') yiN N'C E[1/: 1 
B (b' , c', a' + d') + N n , 

(Nx + Ny + b' + c' - 1)(Nx + b')(Ny + c' - 2) 
(N + N')3 

(N + N,)3/2 
are uniformly bounded and continuous, CN = ( 1 1 )(N N )' 

N,N-l + -2 

limN yiN + N'CN = 1, and VN = hN(ZN) withpzN(x,y) = PYN(x,yIN,b',c' -

2, al + d'), (x, y) E FN and ZN --+d Dirichlet (b' , c' - 2, a' + d'). We also have 
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limN fN(X, y) = j(X + y)xy. Theorems 3.2.7 and 3.2.6 imply that 

Jr ( x b'-lyc'-3(1 - x - y)a'+d'-l 
l~ E[Vn ] = Js j(x + y)xy B(b', d _ 2, a' + dl) dx dy 

1 { t eb'+1/2-1(1 _ e)c'-3/2-1 de} x 
B(b', d - 2, a' + dl) Jo 

{il 7fb'+c'-l/2-1(1 _ 7f)a'+dl -l } ) 

B(bl + 1/2, c' - 3/2) B(bl + c' - 1/2, al + d') 

B(b', d - 2, a' + d') 

where S = {(x,y) : 0 < x + y < 1}. Thus 

lim yiN + N,ExN[l,p~ (b, c)] = B(b' + 1/2, Cl - 3/2) B(b' + c' - 1/2, a' + d'). 
N 2z1- a / 2 B(b' , d, a' + d') 

o 

Therefore, an approximate sample size for estimating 'ljJ: using the ALe 

is 

N 1 = 4zLa/2 (B(b
l + 1/2, c' - 3/2) B(b' + c' -1/2, a' + dl ))2 -a'-b'-c'-dl. 

,pe [2 B(b', d, a' + dl) 

(4.1.64) 

In g-eneral, Corollary 4.1.12 can be generalized to incorporate k = 2 as 

follows. 

Corollary 4.1.13. For c' > 3k/2, 

{ }

l/k 

lim yiN + NI EXN [l~~ (b, c)] = {B(b' + k/2, Cl - 3k/2) B(b' + c' - k/2, a' + d') }l/k 
N 2z1- a / 2 B(b' , d, a' + d') 

(4.1.65) 

Proof. Use the same decomposition and devices exploited in the proof of 

Corollary B.O. 7 to eliminate the indeterminacy due to the denominator (N y+ 

c' -l)k(Ny + c' - 2)k/2, and then proceed as in the proof of Corollary 4.1.12. 

o 
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\Vhen c' > 3k/2, Corollary 4.1.13 gives an approximate sample size for 

1j;~ under the ALCk , of 

,=4zî-a/2 (B(b'+k/2, cl -3k/2)B(b' +c' -k/2, al+dl))2/k_al_bl_cl_dl. 
N,pe l2 B(b', c, a' + dl) 

( 4.1.66) 

Similarly, define lcp~(b,c) = 2Z1-a/2JVar(1)~ITI/) be the first order ap-

proximation of the HPD interval for 1>:. Then 

Corollary 4.1.14. For b', c' > k/2, 

{ EXN[l;, (b, C)]}l/k {B(bl _ k/2 c' - k/2) B(b' + c' - k/2 a' + d') }l/k r y""'-N=-' +----=-N-' e =' , 
W 2z1- a / 2 B(b' , d, a' + d') 

(4.1.67) 

Therefore, an approximate sample size for log( 1>~) under the ALCk when 

b', c' > k/2 is 

N, = 4ZÎ-a/2 (B(b
l 
- k/2, c' - k/2) B(b' + Cl - k/2,a' + dl

))2/k -a'-b'-c'-d' . 
CPe [2 B(b', c', a' + d') 

(4.1.68) 

Remark 4.1.3 below is a digression pointing out two similarities and one 

difference between Bayesian and frequentist sam pIe size calculations as weIl 

as a natural linkage between the one sample problem and the two sample 

matched analysis. 

Remark 4.1.3. @ Royston, 1993 has shown that the exact unconditional 

power function is an average of the conditional power over the distribu-

tion of the number of discordant pairs m. In the sense that the criterion 

function for the ALCk and ACCk are also averages of the conditional 

criterion functions over m, there is an analogy between Royston, 1993 

frequentist albeit power-based approach and ours. 
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® Schlesselman, 1982, Parker and Bregman, 1986, Connett et al., 1987 

Royston, 1993, and Julious and Campbell, 1998 point out that the 

overall sample size, N , for estimating 'l/;~ can be approximated by N = 

NI, where M is the sample size for estimating the odds, 'l/;, from the 
Jr 

one sample problem (representing in matched studies, the number of 

discordant pairs, m) and Jr = p~o + P~l, the probability that a matched 

pairs is discordant. A similar relation applies to the Bayesian paradigm. 

lndeed, it is clear that equations (4.1.66) can be written as 

N 1 b' , d' _ (B(b
l + cl - k/2, a' + dl

))2Ik (M b' ') 
'lj;1 + a + + c + - B(b

' 
1 1 d') 'Ij; + + c , 

e +c,a+ 

(4.1.69) 

ZÎ-a:/2 (BCb l + k/2, c' - 3k/2))2I
k 1 1 . 

where M'Ij; = 4-[2- B(b
'
, c') - b - C 1S the sam-

pIe size of the odds. More specifically, when k = 2 and b' > 3, we 

JW'Ij; + bl + c' 1 ( 1) have N 'Ij;~ + al + b' + c' + dl = , where - = E - = 
JrD JrD Jr 

B(bl + Cl, al + d') bl + cl - 1 . h B (b' , 1 

B(b' + c' - 1, a' + d') a' + b' + c' + d' _ l' wlt Jr l'V e + c, a + 

dl). A similar relation holds for <P~ in the Bayesian context. As a con-

sequence, the table of ALC sample sizes for the one sample problem 

in appendix J can easily be used to construct tables of ALC sam pIe 

sizes for the two sample problem. We show in section 4.2 that sim-

ilar relations occur with Bayesian criteria that average over nuisance 

parameters. 

® In Bayesian approaches, since the ALCk approximate sample for esti-

mating 'l/;e and <Pe are not the same unless c'-b' = 2k, it matters whether 

exposure is beneficial or not. This contrast with the frequentist analy-
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sis (Connett et al., 1987, Royston, 1993, Jutious and Campbell, 1998) 

where it is irrelevant whether the exposure is beneficial or not. 

4.1.4.3 Computational challenges 

In addition to the computational challenges discussed in chapter 3 for com­

puting an HPD interval for the odds and log-odds, our algorithms in the 

matched pair settings require that HPD intervals be evaluated for an (N + 

l)(N + 2)/2 mass points (m, b), m = 0,· .. ,N and b = 0,"· ,m, given 

N. In evaluating the criterion function, we therefore need to store a vector 

of HPD lengths or coverages and another vector of pre-posterior predictive 

weights for the ALC or ACC, both of size (N + l)(N + 2)/2, at each 

intermediate step N. Since storage size increases with N, it is not compu­

tationally efficient to store the entire vectors. A natural alternative is to 

use a Ioop for m = 0,' .. ,N and, for each m, to create a vector of length 

m + 1 to store the lengths of the credible intervals of interest; that is, first 

average over the conditional distribution of b given m. U nfortunately, this 

ide a can be implemented only under the ALCk , ACCk , and WCOC since 

:L(m,b) = :Lm:Lb and sUP(m,b) = SUPm SUPb' respectively, but not under the 

MLDC and MCDe. For the latter two criteria, sample sizes are based on 

Monte-Carlo estimates, as shown below. 

Sketch of the Monte Carlo simulation approach to determine the 

optimal sample size when estimating 'IjJ~ using the MCDC: For 
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each step in the bisectional search over N, one performs the following, se-

quence of steps. 

@ Simulate ni rv Be(b' + c', a' + d') and Bi rv BeW, c'), i = 1,·" ,m. 

@ For each pair (ni, Bi), simulate two independent observations mi rv 

@ For each i, simulate Pj rv Be(bi + b' , mi - bi + c'), j = 1,'" ,M. Use 

the observations 1/Jj = ..--!!.L to estimate the coverage ai of the HPD 
1- Pj 

interval given its pre-specified lenght 1 using algorithm 3 in subsection 

2.7.2.3. 

@ Compute mcoc(N, a', b' , c', d') ~ med1::;i::;m ai. 

4.1.4.4 Additional results on linearity 

Although we have written a program to exactly compute the criterion func-

tions ALCk(N, a', b', c', d'), ACCk(N, a', b' , c', d'), and WOC(N, a', b' , c', d') 

for 1/J~ and <p~ for N = 1,'" ,M, we do not suggest using this algorithm 

unless M is less than 500. lndeed, it takes about 9 hours for M = 250 on a 

600Mhz machine. Figure 3.1.3, which is based on the approximation of the 

HPD intervals in subsection 3.2.4.2, valid when b' > 1, suggests that aH the 

observations made about the odds and log-odds in chapter 3 might be ap-

plicable here, especially the linear relation. It took about 15 hours to obtain 

the data used to plot Figure 3.1.3. 
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o 500 1000 1500 2000 

n 

Figure 4.1.5: Graph of 2 1 and 1 for the odds 
ale (n, 3, 3, 3, 3) alc2 (n, 2, 2,2,2) 

and the log-odds as a function of n, respectively. 

4.1.4.5 An example 

The following example is an adaption of an example in Royston, 1993. 

A certain drug to prevent or reduce nausea and vomiting is to be com-

pared with a placebo in the treatment of intestinal obstruction due to ter-

minaI malignancy. The allocation to active drug or placebo is randomized. 

To avoid possible confounding effects, each patient from the drug group is 

matched with a patient from the placebo group on age, diet, and gender. 

Denote by 0 and 1 the absence and presence of nausea and/or vomiting. Let 

PlO be the probability that the treated patient in a pair responds to drug 

and the other does not respond to the placebo, within 24 ho urs following 
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treatment and similarly, define Pm with the opposite results for the pair. Let 

'1jJ = PlO be the odds ratio. A previous informaI study suggests that the prior 
POl 

information available is equivalent to the data in Table 4.5. 

Table 4.5: Prior information 

Placebo Drug 

presence (1) absence (0) 

presence (1) 3 8 

absence (0) 3 6 

Assurning a researcher is interested in a sarnple size that guarantees an 

HPD interval of length l with a specified average coverage probability, the 

ACC would be chosen. Here the sarnple size is the total nurnber of rnatched 

pairs to be included in the study. When 1 - Ct = .90 and l = 2.0, the 

corresponding true sarnple size is N = 740. With the Monte Carlo approach 

with m = M = 2000, we obtain an estirnate N = 738 using the average of 

10 estimated sarnple sizes. The corresponding standard deviation for N is 

10.084. 

Up to now, we have been dealing with sarnple size criteria that do not 

explicitly involve nuisance pararneters. Below we present sorne Bayesian 
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sample size criteria that average explicitly over nuisance parameters and 

apply them to cohort and case-control designs. 

4.2 Bayesian sample size criteria that average 

over nuisance parameters 

It is clear that the posterior densities of Rand log( R) given in equations 

4.1.21 and 4.1.22 (resp. V;e and 1e = 10g(V;e) given by the equations 4.1.21 and 

4.1.22) depend on the nuisance parameter p = Po (resp. P = p~). Another way 

to explicitly account for the presence of a nuisance parameter p in Bayesian 

sample size determination problems is to integrate over the prior distribution 

for po. That is, to seek for the minimal n that satisfies, for instance, 

or 

for the ACCk and 

~ l, 

(4.2.3) 

or 

~ l, 

(4.2.4) 



4.2. BAYESIAN SAMPLE SIZE METHODS THAT AVERAGE OVER NUISANCE PARAMETERS2: 

for the ALCk . Equations (4.2.1) and (4.2.2) (resp. (4.2.3) and (4.2.4)) are 

equivalent when k = 1 and were suggested by Joseph et al., 1995. These two 

different ways of generalizing the ALCk and the ACC k add to the richness 

of Bayesian sample size calculation criteria where the same notion can be 

looked at from varions viewpoints. An equivalent worst out come criterion 

can be defined by seeking the minimal n such that 

inf {t r PR(R\Xn,P)Pp(P\Xn)dRdP} > 1-0:, (4.2.5) 
xnEXn Jo J REHPD(xn,n,l,p) 

or 

> 1 - 0:. 

(4.2.6) 

Notice that here the averaging is carried out over the nuisance parameter p 

only after the HPD lengths or coverages have been computed. Similar exten-

sions can be developed for the MCOC and MLOC. 

We discuss below how the sam pIe sizes based on the ALCk in equations 

4.2.1 and 4.2.2 can be applied to cohort and case-control studies, as well 

as how they are related to one sample problems that were solved exactly, 

approximately, or through Monte Carlo simulation in chapter 3. 

4.2.1 Cohort studies 

Here we use the prior-likelihood model from 4.1.1.1. Recall that we have 

shown that the pre-posterior predictive distribution in cohort studies is 

p(a, blml, mo, a', b', c', d') (
ml) B(a", Cil) x (mo) B(b", dl!) 
a B(a',c' ) b B(b', d') 

Pa(alml, a', Cf) x Pb(blmo, b', d'), 



214 

where a = 0,' .. ,ml and b = 0,' .. ,mo and mo = (g+ l)ml' as the product 

of two independent Beta-Binomial distributions denoted simply by Pa and Pb. 

4.2.1.1 Application of equation (4.2.1) 

Notation 4.2.1. @ By alck (ml, mo, a' , b' , c', d') or simply alck, we mean 

the criterion function associated with ALCk in the two sample prob-

lem while by alc~(PI, ml, a', c') or simply alc~, we mean the criterion 

function associated ALCk in the one sample problem for estimating 

the single proportion Pl (see chapter 3). 

@ The notation HPD( R, ail, Cil, ml, Po) represents the HPD intervals of cov­

erage 1-a for R = Pl given Po, i. e HPD intervals based on the posterior 
Po 

distribution 

Po" Ra"-l (1 - RpO)c"-1 
PR(R) = B(a", Cil) , 

1 
0< R<-. 

Po 

We have shown that the length of HPD(R, ail, cfl
, ml, Po) is equal to the 

length of HPD(PI, ail, Cil, ml) divided by Po, as a straightforward appli-

cation of Theorem 3.2.1. This result will be used in the derivation of 

equation (4.2.7) below. 

@ The posterior distributions of Pl and Po are: Pl rv Be(a", Cil) and Po rv 

Be(b", d"). 
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When b' > l, we have 

alc~ = 

(4.2.7) 

Thus 

[ 

mo {B(b" _ l dl!)}k ]l/k 
~ B(b", ~II) Pb x a1c~(ml, a', c'), 

which shows that the two sample problem is related to the one sample prob-

lem in a multiplicative manner. This relation seems to be the resuit of the 

assumed independence between exposure and non-exposure groups. Thus, 

the derivation of the sample sizes for the criterion in equation (4.2.1) re-

quires only a slight modification of the programs used in the one sam pIe 

problem for estimating Pl (see chapter 3). 

4.2.2 Application of equation (4.2.2) 

Using the same steps used to derive equation (4.2.7), one obtains 

l , ") {B(b' - k, d') }l/k 1 ( l ') b' > k. alck(ml,mo,a,b,c,d = B(b
'
, d') x alck ml,a,C , 

In other words, if ml (R, a' , b' , c', d') and np1 (, a', c') are the required sample 

sizes for the exposed group wh en estimating R in the two sam pIe problem 

and Pl in the one sample problem, then we have 

{ 
B(b' - k d') }2/k 

ml(R, a', b', c', d') = B(b
'
, ~I) np1 (a', c'), b' > k (4.2.8) 
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irrespective of 9 and mo = (g + 1 )ml. As a consequence, everything done 

in the one sam pIe problem applies again. One such application leads to the 

approximate sample size formula 

= {B(b'_k,d,)}2/k {4zLa/2 (B(a
l
+k/2,C'+k/2))2/k -al-CI} b'>k. 

n B(b', d') Z2 B(a' , c') , 

(4.2.9) 

4.2.3 Case-control studies 

4.2.3.1 Application of equation (4.2.1) 

It is easily seen that 

[

ma {B(CII-1,d"+1)}k ]l/k 
alck(nl, no, a', b', c', d') = ~ B(b", d") Pc x alc~(nb a', b'), 

for estimating the exposure odds ratio 'l/Je, and 

alCk(nl, no, a', b' , d, d') = alc~(nl, a', c'), 

for estimating <Pe = log('l/Je), irrespective of no, b' , d'. Sample size methods for 

'l/Je in case-control studies are therefore easily derived by a slight modification 

of those relating to ALC~. 

4.2.3.2 Application of equation (4.2.2) 

It is easily seen that 

( 
1 1 , ') {B(C' - k, d' + k) }2/k (' ') b

'
> k 

nI 'l/Je,a,b,c,d = B(c', d') n"lj; a,b , , (4.2.10) 

irrespective of g, where n"lj;(a', b') is the sample size based on the ALCk for 

estimating 'l/J = ~. For <Pe, 
1- Pl 

nl(<pe,a',b',c',d') = n</J(a',b' ), (4.2.11) 
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with cp = log(7/Y). As a consequence, everything done in the one sample 

problem applies here as well. 

There remains much work to do on the comparison between the methods 

used. 

4.3 Surnrnary 

In this chapter, we address the sample size problem for inference about the 

main parameters of cohort, case-control, cross-sectional and pair-matched 

studies. In addition, in cohort and case-control studies, we extend our re­

sults to the problem of minimizing cost. We consider sever al criteria con­

sisting of ALCk , ACCk , WLOC, MLOC and MCOC, and numerous 

prior jlikelihood models including the restricted model. We derive sample 

size formulae for the ALCk in all four designs when we make no specifie 

restrictions of the parameters under investigation. We present numerous al­

gorithms to simulate random variables from the posterior distributions. We 

also describe various ways to approximate posterior densities, an important 

step to estimate an HPD interval. Our algorithms for simulating observations 

from the posterior distribution of Rand 7/Ye are fast and efficient because 

they re1y on simulating observations from a finite mixture of beta densities. 

Finally we give numerous sketches of the Monte Carlo approach to sample 

size computation. User-friendly software is being developed for most of the 

sample size methods discussed in this thesis. 
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Chapter 5 

Conclusion 

In this conclu ding chapter, we summarize the contributions in this thesis to 

the Bayesian sample size problem and discuss sorne topics for future research. 

5.1 Contributions 

In this thesis, we examine the problem of Bayesian sample size determination 

for estimating key parameters in 2 x 2 tables arising from four major epi­

demiological designs: cohort, case-control, cross-sectional and matched pairs. 

Our Bayesian approach to these sample size problems, is, we believe, the first 

attempted. 

We mainly examine what we believe are practical Bayesian sample size 

criteria: ALCk , ACCk , WOC, MLOC, and MCOC 

We summarize below sorne key results for Bayesian sample size determÎ­

nation when estimating odds ratio using HPD intervals in case-control studies 

under the ALCk . This summary, we hope conveys the fiavour of this thesis. 

219 



220 

We begin with the single sample problem, point out that this leads to an 

analysis of sample size problems for case-series or case-only studies, and then 

extend the methods to more general two-sample problems. 

In the one sample problem, we present three solutions: an exact solution, 

a solution based on a third order approximation to HPD intervallengths, and 

a Monte Carlo-based solution. The methods lead to slightly different sample 

sizes, often undistinguishable wh en the prior parameters are large. Two sam-

pie size problems are mostly solved via a Monte Carlo simulation approach, 

sinee exact solutions are computationally inefficient while third order approx-

imations, when the posterior distribution depends on nuisance parameters, 

are yet to be obtained. In both the one sample and two sample problems, 

we also diseuss a regression-based approach used to reduce large variability 

very typical of Monte Carlo approaches to sample size computation. We 

show here that the criterion function of the ALCk often converges to zero 

1 
at the rate of yfii' We derive sample size formulae despite the absence of a 

closed form formula for HPD intervallengths. Since no tractable forms for the 

criterion functions càn be derived for the two sample problem, we base our 

analysis on an asymptotic form for the pre-posterior predictive distribution. 

We derive this asymptotic distribution in this thesis. 

We present novel results on sample size calculations where the odds ratio, 

1/Je, is restricted a priori, to 1/Je > 1 or 1/Je < 1. 

Although in the two sample problem we present sample size formulae for 

the ALCk , sorne caution should be exercised if one of the prior parameters 

is small, say less than 10. We suggest that Monte Carlo techniques be used 



5.1. CONTRIBUTIONS 221 

in this case. Using both the sample formula and Monte Carlo appraoches 

whenever possible is strongly advised sinee they are complementary. A large 

difference between these approaches indicates that we should employ the 

regression-based approach using various combinat ions of m 2:: 500 and M 2:: 

500. This approach, in turn, often requires sorne form of monitoring of the 

final sample size until there is rough agreement for different m and M values. 

We extend the sample size problem to that of rninimizing cost in the 

two sample problem for cohort and case-control studies. Although our cost 

function is rather simple, it is intuitive, and similar to the cost function used 

in many frequentist analyses. We also discuss the important question of the 

optimality of the ratio of controis per case. 

In the two sample problem, we address the computational challenges that 

occur in the computation of the posterior distribution when it depends on a 

nuisance parameter, and, we describe various algorithms to simulate observa­

tions from the posterior distribution. For aH designs and aIl prior jlikelihood 

models used here, we prove the unimodality of the posterior distribution, 

crucial to many of our algorithrns and derivations. 

We provide nurnerous illustrative sample size tables. 

Many of the diverse results obtained in this thesis apply to other set­

tings. For example, sorne sarnple size results for cohort studies apply to 

randomized trials which can be viewed as cohort studies. We show how our 

sample size derivation techniques for cross-sectional studies can be used to 

find sarnple size for the 2 x 2 x 2 tables arising from case-control studies for 

estimating gene-exposure interaction, under independence between genotype 
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and exposure. Such 2 x 2 x 2 designs are currently an active research area in 

pharmacogenetic and pharmacoepidemiology (Ashby et al., 1998 and 'Weiss 

et al., 2001). 

Although in many cases, Bayesian and frequentist approaches pro duce 

sample size formulae that are similar, Bayesian approaches have the advan­

tage of allowing one to incorporate restrictions on the parameters of interest 

through the prior distribution, and fully account for aIl uncertainty inherent 

in the problem. 

A user-friendly Windows-based Bayesian software program for sample size 

calculations that implements an the methods and criteria along the various 

designs discussed in chapters 3 and 4 is currently under construction. AH 

programs have been written in Visual Fortran 6.1 (Compaq). 

5.2 Future research projects 

There are several avenues of research that this thesis have opened up. Some 

of these are listed here, recognizing that some of these are projects rather 

than new research ideas. 

® Project 1: We propose to produce user-friendly software for Bayesian 

sample calculation for both the one sample problem (case-series and 

exposure-series) and two sample problems (cohort, case-control, cross­

sectional, and matched studies). Although in this thesis we do not 

discuss the cases where one knows that R > 1 or R < 1 in a cross­

sectional analysis, these cases will be covered by our software. Similarly 
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for 1/Je > land 1/Je < l in the matched and cross-sectionai studies. (See 

Appendix F for a description of the priorjlikelihood model used). 

® Project 2: We propose to develope results on S-optimal criteria (see 

Appendix H for a brief description of these criteria) and connect these 

results to certain of those obtained when using Bayesian criteria based 

on HPD regions. 

® Project 3: In Appendix C, we state a conjecture that is used to 

derive Bayesian sample size formulae in more general settings than 

those developed here. We plan to prove this conjecture. 

® Project 4: It would be important to derive optimal sample sizes 

for R * K tables in case-control and cohort settings including 2 x 4 

case-control studies for estimating gene-environment interactions when 

the independence assumption between susceptibility genotype and ex­

posure is violated. 

® Project 5: In practice, most case-control and cohort studies incor­

porate covariates in their analysis. Therefore, it is very important to 

extend our Bayesian sam pIe size methods to allow for covariate mod­

elling. 
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Appendix A 

Third Order Approximations 

In this appendix, we discuss third order approximations to the 1eft and right 

tails of HPD and equal-tailed intervals for Pl, w, and cp. 

Proportion 

The essence of Theorem A.O.l is that by introducing a vague prior /likelihood 

combination, we obtain the same posterior distribution as for the Be(a, b)/Bin(n, Pl) 

combination. 

Theorem A.O.l. Under the assumptions that Pl rv Be(O, 0) and Xn!Pl rv 

Bin(n + a + b, Pl), the posterior density of Pl is given by the expression in 

equation (3.2.9) when a :::; X n :::; a + n, respectively. 

The proof is straightforward. 

The important point here is that although this new prior-likelihood com­

bination yields the same posterior as obtained under the original model 

Pl rv Be(a, b) and Xn!Pl rv Bin(n,pl), the difficulties referred to before are 

alleviated since all troublesome terms are now well defined. 
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The Corollary below to Theorem A.O.l provides alternatives to the ex-

pressions in subsection 2.7.3 that are more amenable to our purposes. 

Corollary A.O.2. Under the prior/likelihood model, Pl ,...., Be(O, 0) and 

Odds 

Theorem A.O.3. Under the assumptions that Pl ,...., Be(O, 0) and Xn!Pl '" 

Bin(n + a + b, pd, the posterior density of w is given by the expression in 

equation (3.2.10) when a :::; X n :::; a + n, respectively. 

Corollary A.OA. Under the prior/likelihood model, Pl rv Be(O, 0) and 

(A.0.2) 
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lIN 
where N = n + a + b, Vl(:xn) = + band V2(Xn) = + 

xn+a n+ -Xn :xn+a 
X n +a 

N ,Xn = 0,1, ... ,n. 

Log=odds 

Theorem A.O.5. Under the assumptions that Pl rv Be(O, 0) and XnlPl rv 

Bin( n + a + b, Pl), the posterior density of w is given by the expression in 

equation (3.2.10) when a :::; X n :::; a + n. 

CoroHary A.O.6. 

{-NW2}-1/2 = VVl(Xn ) , 

W4( -W2)-2 = _ V2(X~ - 4, 
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Appendix 

Corollary to Theorems 3412416 

The corollary below which is a corollary to Theorem 3.2.6 is used in subsec-

tion 3.2.4.3 to deriveapproximate ALCk sample sizes for w. 

Corollary B.O.T. For b > 3k/2 and k 2:: 2, 

. {k }l/k {B(a + k/2, b - 3k/2) }l/k 
h,;nvn+a+b Exn[C(Xn,n,a,b)] =2Z1-a/2 B(a,b) 

X 
Proof. Let Yn = ~, Fn = {O, l, ... , n-l, 1}, kan even number, and h(y) = n n n 

yk/2. We have 

N k / 2(N - It/2(a + ny)k/2 
= I.: (n + b _ ny _ l)k(n + b _ ny _ 2)k/2 Pyn(yln, a, b) 

yEFn 

B(a, b - 3k/2) " 1 
en B(a, b) L.J hn(y)pyJyln, a, b - 3k, 2), 

yEFn 

B(a, b - 3k/2) E[h (Z )] 
en B(a,b) n n , 

(n + a + b - 1)k/2 Nk/2nk/2r(n + a + b - 3k/2) 
where nZn rv !3!3(n, a, b-3k/2), en = r(n + a + b) 

k/2 n~k/2 (b-i + 1 _ ) 
. h l' 1 h () ( a) t=l n Y N Wlt Imn en = , n Y = - + y k k/2' ote 

n (b~1+1_y) (b~2+1_y) 
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that the decomposition of pyjyjn, a, b) in terms of PYn (yin, a, b - 3k /2) is 

just a technique to handle the indeterminacy due to the denominator of 

the k/2-th power of the posterior variances. The fact that we need 3k/2 

{ } 
k/2 xk/2 

terms can be se en in limn n
k/2 Varw(Xn , n, a, b) = (1 _ x)3k/2' We have 

119n(y)11 ::; (a + 1)k/2, limn hn(y) = h(y), and Zn ---,?d Be(a, b - 3k/2). An 

application of Theorems 3.2.7 and 3.2.7 implies that 

t ya-1(1 - y)b-3k/2-1 

Jo h(y) B(a, b _ 3k/2) dy 

B(a + k/2, b - 3k/2) 
B(a, b - 3k/2) 

Thus 

B(a, b - 3k/2) B(a + k/2, b - 3k/2) 
B(a,b) B(a,b-3k/2) 

B(a + k/2, b - 3k/2) 
B(a, b) 

Similarly for k odds where 

3k/2+1/2 (b - i ) II -+l-y 

(
a )k/2 '-1 n 

h ( ) - - + ----=--'-..:=..---------,-
'n Y - n y (b~l + 1 _ y) k (b~2 + 1 _ y) k/2 

and h(y) = yk(l _ y)1/2. D 



Appendix C 

Higher Order Terms 

It is often important to include higher order terms in the expansion of the 

criterion function alck(n, a, b), k = 1,2. This can be done using the limiting 

result X n 
----)cl p, where p rv Be(a, b). 

n 

C.1 Proportions 

We have 

t pa-l(1- p)b-l 
Jo Varp(np, n, a, b) B(a, b) dp 

t (a + np)(n + b - np) pa-l(1- p)b-l 

Jo N2(N + 1) B(a, b) dp 

cp1 (a,b) nCp1(a,b) () 
N + N2(N + 1)" C.Ll 

The major difference between equations (3.2.25) and (C.L1) is that the dis-

crete points Xn are replaced by continuous points of the type np, where 

O<p<l. 
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We have 

rI (a + np)(b + n(l - p)) pa-l(1- p)b-l d 
2z1-o:/2 Jo N2(N + 1) Be(a, b) p 

. l ' v( a) ( b) pa-l(1- p)b-l 
Cn P + - 1 - p + - B (b) dp, 

o n n e a, 

(C.1.2) 

2nz1-o:/2 
where Cn = 17\T71" It is easilv seen that 

NyN + 1 J 

which, together with 

~ 1/2 1 -1/2 X 1 -3/2 x
2 

ya+x=a +-a ---a -+ ... 
2 Il 4 2! ' 

(C.1.3) 

yields 

(C.1.4) 

Using equation (C.1.4) together with the integral (C.1.2) gives 

B a + - b + - + -B a - - b + - + ( 1 1) a ( 1 1) 
2' 2 2n 2' 2 

-B a + - b - - + -B a - - b - -b ( 1 1) ab ( 1 1 ) 
2n 2 ' 2 2n2 2 ' 2 

--B a - - b + - - -B a + - b - - . a
2 

( 3 1) b
2 

( 1 3) 
8n2 2' 2 8n2 2' 2 

(C.1.5) 
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C.2 Odds 

We have 

( pa-l(l _ p)b-l 
EXn [Varw(Xn, n, a, b)] Jo Varw(np, n, a, b) Be(a, b) dp, 

a 
where an =-. 

n 

( (a + np) pa-l(1 _ p)b-l 
(N - 1) Jo (n + b _ 1 _ np)3 Be(a, b) dp, 

n(N - 1) (an + p pa-l(1- p)b-l 

(n + b - 1p Jo (1 - p)3 Be(a, b) dp, 

_ n(N-1) {anBe(a,b-3) Be(a+1,b-3)} 
(n + b - 1)3 Be(a, b) + Be(a, b) , 

cw{a, b) 2( ) cw(a, b) (C ) + a - 1 ( ) , .2.1 
n+b-l n+b-1 2 

As far as the ExJ1w(Xn, n, a, b)] is concerned, we have 

( V a + np pa-l (1 - p)b-l 
2Z1-o./2~ Jo (n + b - 1 - npp Be(a, b) dp, 

Jn(N - 1) (V p an pa-l (1 - p)b-l 
2z1-o./2 (n + b - 1)3/2 Jo (1 - pp + (1 - p)3 Be(a, b) dp. 

(C.2.2) 

Using equation (C.l.3), we have 

Therefore, 

n(N - 1) {Be(a + 1/2, b - 3/2) + 
(n+b-l)3 Be(a,b) 

Be(a - 1/2, b - 3/2) .!!:.- _ Be(a - 3/2, b - 3/2) ~} 
Be(a,b) 2n Be(a,b) 8n2 ' 

(G2.4) 
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C.3 Log-odds 

We have 

1 1 -,-----:- + -----
(a + np - 1) (n + b - np - 1) 

1 1 {a-l b-1 \ 
np(1 - p) - n2 --p2 + (1 - p)2 J . 

Therefore, 

11 N - 2 pa-l(1 - p)b-l 
= dp 

o (a+np-l)(n+b-np-l) Be(a,b) 
rv 1 Be(a - 1, b - 1) 1 Ca - l)Be(a - 2, b) 

n Be(a, b) n2 Be(a, b) 
1 (b - l)Be(a, b - 2) 

n2 Be(a, b) 
c<I> 1 (a + b - l)(a + b - 2)(a + b - 4) 

= - - - ()() (C.3.1) n n2 a - 2 b - 2 

As to ExJ1<l>(xn, n, a, b)], note that 

1 
nl/2pl/2(1 _ p)1/2 

_1_ [(a - 1)(1 - p)1/2 (b _ 1)pl/2] 
2n3/2 p3/2 + (1 _ p)3/2 . 

Hence, 

11 V N - 2 pa-l(1 - p)b-l 
= 2zl - a / 2 dx 

o (a+np-1)(n+b-np-1) Be(a,b) 

1 {BeCa -1/2, b -1/2) a -1 Be(a - 3/2, b + 1/2) 
,......, 2z1- Ot

/
2 nl / 2 Be(a, b) - -n- Be(a, b) 

_ b - 1 Be(a + 1/2, b - 3/2)} 
n Be(a, b) 

. (C.3.2) 



Appendix D 

The MLOC 

In this appendix, we derive approximate sample size formula for the MLOC. 

Define where z = Zl-a/2 and N = n + a + b. 

D.I The Odds, 1jJ 

We have shown in subsection 3.2.4.3 that the posterior variance of the odds 

(a + x)(N - 1) 
'1/;, Var,p(x) = (n + b _ x _ 1)2(n + b _ x _ 2)' is an increasing function of 

x. Therefore, the median of the posterior variances over x = 0, ... , n is 

. . (2a + n)(N - 1) 
attamed at x,p = n/2 wlth Var,p(x,p) = 4 (n + 2b _ 2)2(n + 2b _ 4)' The 

MLOC solve approximately the equation Var,p(x,p) = medosxsn Var,p(x) = 

Z: . Solving this system and expanding the solution as a Taylor series of 
z 

order 4 with Maples yields the approximate sample size 

Z2 (l2) n,p = 16[2 + 7 - 5b + 3a + 0 z2 . (D.l.l) 
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D.2 The Proportion, Pl 

The posterior variance of Pl is Varpl (x) = (a +:l(~:~) x). The median 

of these posterior variances over x = 0, ... ,n is attained approximately at 

n + 2(b - a) . (N + a + b)(N - a - b) 
xPI = 2 wIth Varpl (xpl ) = 16N2(N + 1) . We solve 

[2 
the system Varpl (xpJ = medo:Sx:Sn Varpl (x) = Z2 in n. An expansion of the 

solution np1 as a Taylor series yields the approximate sample size 

3 Z2 1 ([2) 
n = - - - 1 - - (a + b) + 0 -

Pl 4 [2 3 Z2 . 
(D.2.1) 

2 

Recall that in the frequentist context, np1 = 4ftl (1 - Pl) ;2' By setting 

~ 1 l rv 3 Z2. . . 
Pl = 4' one has npl + 3'(a + b) = 4[2' whlch shows agam a strong Imk 

between Bayesian and frequentist sam pIe size for proportions. 

D.3 The log-odds cP 

The posterior variance cp being 

u (N - 2) 
varq,(x) = (a + x _ l)(n + b _ x _ 1) implies that the median of these pos-

terior variances over x = 0, ... ,n is attained again approximately at xq, = 
n + 2(b - a) . 16(N - 2) 

2 wlth Varq,(xq,) = (N + a + b _ 4)(3N _ a _ b + 4)' This leads 

to the approximate sample size 

64 z2 10 5 ( [2 ) 
nA. = - - + - - - (a + b) + 0 -

'f' 3 [2 3 3 z2 . 
(D.3.1) 



Appendix E 

Variance of log(R) 

Derivation of the posterior variances oflog(R): We have log(B(a, c)) = 

log(r(a)) + log(r(c)) - log(r(a + c)). Therefore 

and 

B2 1og(B(a, c)) 
Ba2 

Blog(B(a, c)) 
Ba 

rI ua-l(l - U)c-l 
= Jo log(u) B(a, c) du 

- E[u] = \fI(a)-\fI(a+c) 

t 2ua- 1(1- U)c-I { t ua
-

I (1- U)c-l }2 
- Jo [log(u)] BCa, c) du - Jo log(u) BCa, c) du 

- Var[log(u)] = \fI'(a) - \fI'(a + c) 

r'(x) . . 
where u rv Be(a, c) and \fI(x) = r(x)' An expanSIOn for the tngamma 

function \fI'(x) is given in subsection 3.2.4.3. Thus 

Var(log(R)1 Til)) _ Var(log(Pl)1 a", Cil) + Var (log(po)1 b", d") 

\fi' (ail) - \fi' (ail + Cil) + \fi' (b") - \fi' (b" + d") 

= \fi' (a") + \fi' (b") - \fi' (ml + a' + c') - \fi' (mû + b' + d'). 
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Now set ail = mIx, Cil = ml(1 - x) + c, b = gmlY + b', dl! = gml(l -

y) + d'. Then hm m1Var(log(R)1 Tif) = ~ [X(l- y) + (1- x)y] since 
ml--+oo xy 9 

lim x'lJ'(x) = 1. 
X~OCl 

Since the trigamma function is a decreasing function, maX(a,b) 'lJ'(a") + 

'lJ'(b") = 'lJ'(a') + 'lJ'(b'). Therefore, it does not make sense to apply the 

WOC to log( R). 



Appendix F 

Restricted Models for R 

In this appendix, we first present a model that can be used to account for 

h h h . k . R PH (PlO + Poo). . t dt· h R 1 t e case w en t e ns ratlo, = ( )' lS restnc e 0 elt er < 
PlO Pu + POl 

or R > 1, in a cross-sectional analysis. A similar model can easily be derived 

when estimating the odds ratio 'IjJ = pnpoo in a cross-section al analysis. We 
PlOPOl 

then present two other models that can be used for a restricted matched pair 

analysis. 

F .1 Restricted model for estimating 1/Je in a 

cross-sectional analysis 

Let Pu, PlO, POl, and Poo be the cell probabilities of success in cross-section al 

analysis as defined in Chapter 3. Let 7r = P11 + POl, Pl = pn and Po = 
7r 

~. In A standard cross-section al analysis for estimating R, we assume a 
1-7r 

Dirichlet-M ultinomial prior jlikelihood mode!. Proposition 2.4.1 implies that 
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the Dirichlet-Multinomial model is equivalent to: 

'ir rv Be(a' + c', b' + d'), Pl rv Be(a', c'), Po rv Be(b', d'), 

ml rv Bin(N, 'ir), 

We modify this second form of the prior jlikelihood model to incorporate 

restrictions of the type R < 1 and R > l. Clearly, for the restriction R > 1, 

the model below can be used 

b rv Bin(N - ml, Po), 

or 

'ir rv Be(a' + c', b' + d'), Pl rv Be(a', c'), Po rv Be(b', d', 0, Pl), 

b rv Bin(N - ml, Po), 

h R Pn(PlO + Poo) Pl 
w ere = = -. The resulting posterior distribution of 'l/Je 

PIO(Pll + POl) Po 

is the one discussed in subsection 4.l.2.2. lndeed, aU the four prior models 

discussed in subsections 4.l.l.2 and 4.l.2.2 can be used. Similar models are 

used for the case 'l/Je < 1. 

F.2 Restricted model for estimating 1/;e in 

matched analysis 

Let P~l,P~O,P~I) and p~o be the ceIl probabilities of success in a matched case-
1 

control analysis and suppose that the odds ratio, 'l/J~ = P;o < 1, as defined 
Poo 
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in Chapter 3. For a matched analysis, the standard model is equivalent to 

, 1 B (' d' b' ') Pu + Poo rv e a + , + c , 

, 
PlO rv Be(b' c') 
fi' , 

Pu T Poo 

b rv Bin (nI, ,P~o 1 ). 

Pu + Poo 

Therefore, the following models are used when 'Ij;~ < 1: 

e Model1: 

l , B (' d' b' ') Pu + Poo cv e a + , + c , 

® Model2: 

, , B (' d' b' ') Pu + Poo rv e a + , + c , 

b + c rv Bin(N, P~l + P~o), 

Wh en 'Ij)~ > 1, one uses: 

e Model3: 

, , B (' d' b' ') Pu + Poo rv e a + , + c , 

b + c rv Bin(N, P~l + p~o), 

® Model4: 

, 1 B (' d' b' ') Pu + Poo cv e a + , + c , 

b + c cv Bin(N, P~l + p~o), 

, 
f PlO , rv Be(b', c', 0.0,0.5,) 

Pu + Poo 

and b rv Bin (nt, 1 P~o , ). 
Pu + Poo 

1 

, PlO f rv IBeta(b', c', 0.0, 0.5), 
Pu + Poo 

and b rv Bin (nl' ,P~o , ) . 
Pu + Poo 

1 

, PlO 1 rv Be(b', c', 0.5, 1.0), 
Pu + Poo 

and b rv Bin (nl' 1 p~o 1 ) . 

Pu + Poo 

, 
1 PlO 1 rv IBeta(b', c', 0.5, 1.0), 

Pu + Poo 

and b rv Bin (nt, ,P~o 1 ). 

Pu + Poo 





Appendix G 

A Conjecture on a Limiting 

esult 

The Corollaries 3.2.8, 3.2.9, 3.2.10, B.O.7, 4.1.3, 4.1.6, 4.1.11, 4.1.8, 4.1.9, 

4.1.12, and 4.1.13 suggest the following general result, 

Conjecture G.O.l. Let Xl," . ,Xn be n exchangeable random variables 

such that xiie rv fx(xle) i = 1,'" ,n, e rv f(8). Suppose that E(81 x) for aU 

1 
x exists. Then there exists two constants 0 < À :; "2 and Ck > 0 such that 

lim n À alck(n,1 - a:) = Ck. 
n---->oo 

Let Var(x) be the posterior variances of 8. Furthermore, if we assume that 

all posterior distributions can be approximated by a normal distribution then 

Ck ~ 2z1-<>/2 (l}!!!!oo {nVar(nenk/2 f(e)de) l/k 

1 
if the integral exists. In that case À = "2' This would lead ta an approximate 

(
Ck)1/À 

ALCk sample size of T . 
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Appendix H 

The S - ACC and S - ALC 

The S-average coverage criterion (ACCs ) and the S-average length 

criterion (ALCs ): This subsection describes a third family of measures 

that we are planning to investigate, that are S-average coverage criterion 

and S-average length criterion. As argued by Berger (1985, p.144), different 

measures of size other than interval length can be addressed. For instance, 

let s( e) be a non-negative function and C be a credible set, and define 

8(C) = la s(e) de, (H.O.1) 

a general measure of size. The problem of sample size determination then 

becomes to find the minimum n such that 

glven 

L(Xn,n,l-Œ) p(el X n ) de > 1 - a, 

245 
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or 

(H.O.3) 

( s(e)de :::; l. 
}C(Xn,n,l-a) 

Remark H.O.l. When s(B) ::::: 1, we are dealing with the regular length used 

for ALCk or ACCk . 

Although the notion of S-optimal sets is not new, it does not seem to 

have been explored in the context of sample size calculations. Under mild 

conditions, the set C(Xn , n, l) that maximizes the posterior coverage or this 

measure of length is an HPD type regions where p(ej x n ) is substituted for 

p(OI x n ) 
s(O) (Berger, 1985). 

Joseph and al. (1997) have used the likelihood-based intervals for the 

computation of sample size and their method is known under the name of 

mixed Bayesian/likelihood criteria. The reason for that is one wants to aver-

age over the predictive data, but not use Bayesian methods for inference. It 

is easily seen that mixed Bayesian/likelihood criteria are special case ALCs 

and ACCs corresponding to s(O) = p(e) where p(O) is equal to the prior 

distribution. 

Another interest for S-optimal arises as follows. The ALCk and ACCk 

have been criticized because HPD are not invariant un der parameterization. 

Let T(e) be a transformation on e. By setting s(e) to be equal to the jaco-

bian of the transformation 0 1---7 T( e), one obtains HPD regions that preserve 

"optimality" under parameterization. 



Appendix 

IMSL Subroutines 

• DUMINF: minimizes a function of N variables using a quasi-Newton 

method and a finite-difference gradient (Denis and Schnabel, 1983; Gill 

and Murray, 1976). 

• DBCONF: minimizes a function of N variables subjects to bounds 

using a quasi-Newton method and a finite-difference gradient (Denis 

and Schnabel, 1983; Gill and Murray, 1976). 

• DUMPOL: minimizes a function of N variables using a direct search 

polytope algorithm (Nelder and Murray, 1965; Gill and Wright, 1981). 

• DNEQNF: solves a system of nonlinear equations using a modified 

Powell hybrid algorithm and a finite-difference approximation to the 

Jacobian (More et al., 1980) 

• DQDAG: integrates a function using a globally adaptive scheme 

based on Gauss-Kronrod rules (Piessens et al., 1983). 
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o DQDAGS: integrates (which may have endpoint singularities) a func­

tion using a globally adaptive scheme based on Gauss-Kronrod ruies 

(Piessens et aL, 1983). 

@ DTWODQ: computes a two dimensional-interated integral. 

@ DQAND: computes any hyper-rectangle integral up to 20 arguments. 



Appendix J 

Sample Size Tables for Selected 

Cases 
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Table J.l: Table of sample sizes for Pl with (a, b) 

ALC 

coverage length Exact lst arder 3rd order limiting Exact 

1-0< 1 HPD equal exact formula HPD equal HPD equal HPD equal 

.50 4 5 5 5 5 5 6 5 6 

.40 8 9 9 9 8 9 10 9 10 

.30 16 17 18 17 16 17 18 18 19 

.25 24 25 26 25 24 25 27 27 28 

.20 39 40 41 39 39 40 42 44 45 
.90 

.15 71 73 73 73 71 73 73 74 80 81 

.10 164 166 166 165 164 166 166 167 183 184 

.05 665 666 667 666 665 666 666 668 739 740 

.02 4169 4171 4172 4171 4169 4171 4171 417:3 4631 4632 

.01 16686 16688 16889 16688 16686 16688 16688 18533 

.50 7 8 8 8 7 8 9 8 9 

.40 12 13 14 13 12 13 14 15 15 

.30 23 25 25 25 23 25 26 28 28 

.25 35 36 37 36 35 36 37 38 42 42 

.20 56 58 58 58 56 58 58 59 66 67 
.95 

.15 102 104 105 104 102 104 104 105 120 121 

.10 234 235 236 235 234 235 236 237 274 275 

.05 945 946 947 946 945 946 946 948 1105 1105 

.02 5921 5922 5923 5923 5921 5922 5923 5924 6921 6921 

.01 23693 23694 23696 23695 23693 23694 23695 23696 27691 

.50 13 14 15 15 12 13 15 17 17 

.40 22 23 25 24 21 23 24 28 29 

.30 42 43 45 44 41 43 43 44 53 54 

.25 62 63 65 64 61 63 63 64 79 79 

.20 98 100 102 101 98 100 100 101 125 125 
.99 

.15 178 179 181 180 178 179 180 181 225 225 

.10 405 407 409 408 405 407 407 409 512 512 

.05 163:l 1635 1637 1636 1633 1635 1635 1637 2058 2059 

.02 10228 10229 10231 10230 10228 1U229 1023U 10231 12885 12885 

.01 40923 40925 40927 40926 40923 40927 40925 40927 

(1,1) . 

ACC 

lst or der 

exact 

6 

10 

19 

28 

45 

81 

184 

740 

4632 

18534 

9 

15 

29 

42 

67 

121 

275 

1106 

6921 

27691 

18 

30 

55 

80 

127 

227 

513 

2060 

12887 

51554 

linliting 

HPD equal 

6 6 

10 10 

19 19 

28 28 

45 45 

81 81 

184 184 

740 740 

4632 4632 

18534 18534 

9 9 

15 15 

28 28 

42 42 1 

67 67 1 

121 121 1 

275 275 

1105 1106 1 

6921 6922 

27692 27692 

17 17 

29 29 

54 54 

79 79 
1 

i 

125 126 

226 226 1 

512 512 1 

2059 2059 

12885 1288!') 

51553 51553 

LV 
c.n 
o 



Table J.2: Table of sample sizes for Pl with (a, b) (1,1) . 

WLOC MLOC 

coverage length Exact lst order 31'd arder Exact lst order 

1-", 1 RPD equal exact formula HPD equal HPD equal exact formula 

.50 8 8 8 9 8 8 5 6 6 7 

.40 15 15 14 15 15 15 9 10 10 10 

.30 28 28 28 29 28 28 10 10 10 12 

.25 41 41 41 42 41 41 21 21 21 21 

.20 65 65 65 66 65 65 49 49 49 50 
.90 

.15 118 118 118 119 118 118 88 89 89 89 

.10 268 268 268 269 268 268 201 201 201 201 

.05 1080 1080 1080 1081 1080 1080 809 810 809 810 

.02 6762 6762 6762 6762 6762 6762 5070 5070 5070 5070 

.01 27053 2705'1 27053 27053 20290 20290 

.50 12 12 13 14 12 12 9 9 la 10 

.40 21 21 21 23 21 21 14 15 17 17 

.30 40 40 40 41 40 40 29 30 30 31 

.25 59 59 59 GO 59 59 42 44 45 45 

.20 93 93 94 95 93 93 69 70 70 71 
.95 

.15 168 168 168 169 168 168 125 126 126 127 

.10 381 381 382 383 381 381 285 285 286 287 

.05 1534 1534 1534 1535 1534 1534 1149 1149 1150 1151 

.02 9601 9601 9602 9601 9601 7200 7201 7201 7202 

.01 38412 38412 38413 38412 38412 28809 28810 

.50 22 22 24 25 22 23 15 17 18 19 

.40 37 37 39 40 37 37 26 27 29 30 

.30 69 69 71 72 69 69 50 52 53 54 

.25 102 102 104 105 102 102 75 77 78 78 

.20 162 162 163 164 162 162 121 121 121 123 
.99 

.15 291 291 292 293 291 291 217 217 219 220 

.10 659 659 661 662 659 659 493 494 496 496 

.05 2650 2650 2651 2652 2650 2650 1986 1986 1989 1989 

.02 16585 16585 16586 16583 16583 12438 12439 

.01 66346 66346 66347 66345 66345 49761 49761 
- - - ---

3rd order 

RPD equal 

6 6 

10 10 

10 la 

21 21 

49 49 

88 89 i 

201 201 

809 810 

5070 5070 1 

20289 20290 ! 

9 9 

14 15 

29 29 

42 44 

69 70 

125 126 

285 286 

1149 1150 

7200 7201 

28809 28809 

14 17 

26 27 

50 51 

75 77 

121 121 

217 217 

493 494 

1986 1986 

12437 12437 

49757 49758 

1 
(1) 

~ 
~ 
(1) 

~ s:: 
rn 
cY 
>-j 

en 
~ 
(1) 
(") 
c-t-

8. 
Q 
r:n 
rn 

t--.:l 
<:..rt 
t-' 



Table J.3: Table of sample sizes for Pl with (a, b) 

ALe 

coverage length Exact lst or der 3rd order lirnlting Exact 

1 - '" 1 HPD equal exact formula HPD equal HPD equal HPD equal 

.50 1 1 1 1 1 1 1 1 1 1 

.40 6 6 6 6 6 6 6 6 6 6 

.30 18 18 18 18 18 18 18 18 18 18 

.25 30 30 30 30 30 30 30 31 30 30 

.20 52 52 52 52 52 52 53 53 52 52 
.90 

.15 99 99 99 99 99 99 100 100 100 100 

.10 235 235 235 235 235 235 236 237 236 237 

.05 970 970 970 970 970 970 971 971 974 975 

.02 6112 6112 6112 6112 6112 6112 6113 6113 6140 6141 

.01 24475 24475 24475 24475 24475 24475 24476 24477 

.50 4 4 4 4 4 4 4 4 4 4 

.40 12 12 12 12 12 12 12 12 12 12 

.30 29 29 29 29 29 29 29 29 29 29 

.25 46 46 46 46 46 46 46 47 46 46 

.20 77 77 78 77 77 77 78 78 78 78 
.95 

.15 144 145 145 145 144 145 145 146 146 146 

.10 338 338 338 338 338 338 3:39 339 341 341 

.05 1381 1381 1381 1381 1381 1381 1382 1382 1394 1394 

.02 8681 8681 8682 8682 8681 8681 8682 8682 8764 8764 

.01 34755 34755 34755 34755 34755 34756 34756 

.50 13 13 15 15 12 13 13 13 13 13 

.40 26 26 28 28 26 26 27 27 27 27 

.30 55 55 57 57 55 55 56 56 56 56 

.25 85 85 87 87 85 85 86 86 86 86 

.20 139 139 141 141 139 139 140 140 141 141 
.99 

.15 255 256 257 257 255 256 257 257 260 260 

.10 589 589 591 591 589 589 590 590 600 600 

.05 2390 2391 2392 2392 2390 2391 2391 2392 2436 2436 

.02 15000 15000 15002 15002 15000 15000 15001 15001 

.01 60036 60035 60034 60034 60035 60035 

(5,5). 

ACC 

lst order 

exact 

1 

6 

18 

30 

52 

100 

236 

974 

6141 

24591 

4 

12 

29 

47 

78 

146 

341 

1394 

8785 

35088 

15 

28 

58 

88 

143 

262 

602 

2438 

15288 

61182 

limiting 

HPD equal 

1 1 

6 6 

18 19 

31 31 

53 53 

101 101 

237 237 

975 976 

6141 6142 

2<1592 24592 

4 4 

12 12 

29 30 

47 47 

78 78 

147 147 

342 342 

1395 1395 

8765 8765 

35088 35088 

13 13 

27 27 

57 57 

87 87 

142 142 

261 261 

601 601 

2437 24:J7 

15287 15287 

61181 61881 

l'-.;) 
en 
l'-.;) 



Table J.4: Table of sample sizes for Pl with (a, b) = (5, 5). 

WLOC MLOC 

coverage length Exact lst order 3rd arder Exact lst arder 

1-0< 1 HPD equal exact formula HPC equal HPD equal exact formula 

.50 1 1 1 1 1 1 1 1 1 4 

AO 7 7 6 7 7 7 6 6 fi 9 

.30 20 20 20 21 20 20 17 17 17 19 

.25 33 33 33 34 33 33 26 26 26 29 

.20 57 57 57 58 57 57 45 45 45 47 
.90 

.15 110 110 110 111 110 110 85 85 85 89 

.10 260 260 260 261 260 260 197 198 198 199 

,05 1072 1072 1072 1073 1072 1072 806 806 806 808 

.02 6754 6754 6753 6754 6754 6754 5068 5069 5069 5069 

.01 27045 27046 27045 27045 20286 20288 

.50 4 4 5 6 4 14 4 4 5 8 

AO 13 13 13 15 13 13 11 11 11 14 

.30 32 32 32 33 32 32 25 26 26 28 

.25 51 51 51 52 51 51 40 41 41 42 

.20 85 85 86 87 85 85 69 66 66 68 
.95 

.15 160 160 160 161 160 160 122 122 122 124 

.10 373 373 374 375 373 373 282 282 283 284 

.05 1526 1526 1526 1527 1526 1526 1146 1147 1149 1149 

.02 9593 9593 9593 9594 9593 9593 7197 7198 7198 7199 

.01 38404 38404 38404 38404 28806 28807 

.50 14 14 16 17 14 14 15 17 18 19 

AO 29 29 31 32 29 29 12 12 14 16 

.30 61 61 63 64 61 61 23 24 25 27 

.25 94 94 96 97 94 94 73 73 78 76 

.20 154 154 155 156 154 154 117 118 119 121 
.99 

.15 283 283 284 285 283 283 214 214 217 217 

.10 651 651 653 654 651 651 490 491 493 494 

.05 2642 2642 2643 2644 2642 2642 1984 1985 1986 1987 

.02 16577 16578 16575 16575 12434 12434 12437 12437 

.01 66338 66339 66337 66336 49757 49758 

3rd order 

HPD equal 

1 1 

6 6 

17 17 

26 26 

45 45 

85 8.0 

197 198 

806 806 

5068 5068 

20286 20286 

4 4 

11 11 

25 26 

40 41 

66 66 

122 122 

282 282 

1146 1147 

7197 7198 

28805 28806 

14 17 

11 12 

23 23 

73 73 

117 118 

214 214 

490 491 

1984 1985 

124:33 12434 

49754 49755 

( 
(1) 

en 
~. 

~ e: 
fÈ 
~ 
>-; 

~ 
(1) 
(J 
<:-!' 

a 
~ 
fÈ 

t.,;) 
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Table J.5: Table of sample sizes for Pl with (a, b) (10,10). 

ALe ACC 

CQverage length Exact lst' arder 3rd order limiting Exact lst order 

1-", 1 HPD equal exact formula HPD equal HPD equal HPD cqual exact 

.50 1 1 1 1 1 1 1 1 1 1 1 

.40 1 1 1 1 1 1 1 1 1 1 1 

.30 9 9 9 9 9 9 10 10 9 9 9 

.25 22 22 22 22 22 22 22 22 22 22 22 

.20 45 45 45 45 45 45 46 46 45 45 45 
.90 

.15 95 95 95 95 95 95 96 96 95 95 95 

.10 238 238 238 238 238 238 239 239 238 238 238 

.05 HllO 1010 1010 1010 1010 1010 10ll 1011 1011 10ll 1011 

.02 6415 6415 6415 6417 6415 6415 6416 6416 6421 6422 6422 

.01 25717 25717 25717 25717 25717 25717 25718 25718 25744 

.50 1 1 1 1 1 1 1 1 1 1 1 

.40 3 3 3 3 3 3 3 3 3 3 .3 

.30 21 21 21 21 21 21 21 21 21 21 21 

.25 38 39 39 39 38 39 39 39 39 39 39 

.20 71 71 72 72 71 71 72 72 72 72 72 
.95 

.15 142 142 143 143 142 142 143 143 143 143 143 

.10 345 346 346 346 345 346 346 346 346 346 347 

.05 1442 1442 1442 1442 1442 1442 1443 1443 1445 1445 1446 

.02 9115 9116 9116 9116 9115 9116 9117 9117 9137 9138 

.01 36522 36522 36522 36522 36522 36523 36523 :l66 10 

.50 4 4 6 6 4 4 4 4 4 4 fi 

.40 18 18 20 20 18 18 19 19 18 18 20 

.30 49 49 51 51 49 49 50 50 49 49 51 

.25 80 80 82 81 80 80 80 81 80 80 82 

.20 136 137 138 138 136 136 137 137 137 137 139 
.99 

.15 259 259 261 261 259 259 260 260 260 261 2G2 

.10 610 610 612 612 610 610 611 611 613 613 615 

.05 2503 2503 2505 2505 2503 2503 2504 2504 2516 2516 2518 

.02 15757 15757 15759 15759 15757 15757 15758 15758 15842 

.01 63095 63095 63093 63093 63094 63094 63429 

limiting 

HPD cqual 

1 1 

1 1 

10 10 

22 22 

46 46 

96 96 

239 239 

1012 1012 1 

6422 6423 1 

25745 25745 1 

1 1 

3 3 

21 21 

39 39 

72 72 

143 144 

347 347 1 

1446 1446 

9138 9138 

36610 36610 

4 4 

19 19 

50 50 

81 81 

138 138 

261 261 

614 614 

2517 2517 

15841 15841 
1 

63428 63428 1 

, 

IV 
Q1 
~ 



Table J.6: Table of sample sizes for Pl with (a, b) = (10,10). 

WLOC MLOC 

coverage length Exact lst order 3rd order Exact lst arder 

1-0-: 1 RPD equal exact formula HPD equal HPD equal exact fOl"mula 

,50 1 1 1 7 1 1 1 1 1 1 

040 1 1 1 1 1 1 1 1 1 6 

,30 10 10 10 11 10 10 9 9 9 15 

,25 23 23 23 24 23 23 20 20 20 25 

,20 47 47 47 48 47 47 39 39 39 44 
,90 

,15 100 100 100 101 100 100 80 80 81 83 

,10 250 250 250 251 250 250 193 194 194 196 

.05 1062 1062 1062 1063 1062 1062 802 803 804 804 

.02 6744 6744 6743 6744 6744 6744 5065 5065 5065 5066 

.01 27035 27036 27035 27035 20284 20284 

.50 1 1 1 1 1 1 1 1 1 4 

.40 3 3 3 5 3 3 3 3 3 11 

.30 22 22 22 23 22 22 19 19 19 25 

,25 41 41 41 42 41 41 34 34 34 32 

.20 75 75 76 77 75 75 61 61 61 65 
,95 

.15 150 150 150 151 150 150 118 118 118 121 

,10 363 363 364 365 363 363 278 278 279 281 

,05 1516 1516 1516 1517 1516 1516 1143 1144 1145 1145 

,02 9583 9583 9593 9584 9583 9583 7194 7194 7194 7196 

,01 383!J4 38395 38394 38394 28802 2884 

,50 4 4 6 7 4 4 4 4 6 13 

.40 19 19 21 22 19 19 17 17 18 24 

,30 51 51 53 54 51 51 42 42 45 48 

,25 84 84 86 87 84 84 67 68 69 72 

,20 144 144 145 146 144 144 113 114 114 117 
,99 

,15 273 273 274 275 273 273 210 210 213 214 

,10 641 641 643 644 641 641 486 487 489 490 

,05 2632 2632 2633 2634 2632 2632 1981 1981 1982 1983 

,02 16567 16568 16565 16565 12'130 12430 12433 12433 

,01 66328 66329 66327 66327 49754 49755 
___ L-... 

3rd order 

HPD equal 

1 1 

1 1 

9 9 

20 20 

39 39 

80 80 

193 194 

802 803 

5065 5065 

20282 20284 

1 1 

3 3 

19 19 

34 34 

61 61 

118 118 

278 278 

1143 1144 

7194 7194 

28802 28802 

4 4 

17 17 

42 42 

67 68 

113 113 

210 210 

486 487 

1981 1981 

12430 12430 

49751 49753 

{ 
CD 

en 
N' 
CD 

~ 
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Table J.7: Table of sample sizes for w with (a, b) 

ALC 

coverage length Exact lst order 3rd order limiting Exact 

1-", 1 HPD equal exa.ct formula HPD equal HPD equal HPD equal 

2.0 20 27 34 31 19 26 11 lB 24 30 

1.5 47 56 63 60 46 54 35 43 53 60 

1.0 127 1:17 144 141 126 136 112 121 137 144 

.8 209 219 227 224 208 218 192 202 222 229 

.6 386 397 405 402 385 396 367 378 406 413 
.90 

.5 565 576 584 581 564 576 545 556 591 597 

.4 894 906 915 91l 894 906 873 885 931 938 

.3 1607 1619 1628 1624 1606 1619 1584 1596 1666 1672 

.2 3643 3656 3665 3662 3643 3656 3619 3932 3765 3771 

.1 14643 14657 14666 14663 14M3 14657 14618 14631 15100 15107 

2.0 39 46 50 47 37 44 28 35 80 89 

1.5 78 87 90 87 77 85 64 73 156 165 

1.0 193 203 206 203 192 202 176 185 374 382 

.8 309 320 323 320 309 319 291 301 594 602 

.6 562 574 576 573 561 573 542 553 1069 1078 
,95 

.5 816 828 831 828 816 827 795 806 1547 1556 

.4 1284 1297 1299 1296 1284 1296 1262 1274 2428 2436 

.3 2296 2309 2312 2309 2296 2309 2273 2286 '1329 4338 

.2 5189 5202 5205 5201 5188 5202 5164 5177 9763 9771 

.1 20808 20822 20824 20821 20808 20822 20782 20796 

2.0 87 95 88 82 84 91 72 80 656 670 

1.5 157 166 158 154 154 163 140 148 1189 1204 

1.0 357 368 357 354 355 365 337 347 2714 2728 

.8 559 571 560 557 557 568 538 549 4257 4271 

.6 996 1009 997 994 995 1007 974 985 7591 7606 
.99 

.5 1436 1449 1437 1433 1435 1447 1413 1425 10994 10959 

.4 2245 2258 2246 2243 2244 2257 2221 2234 17118 

.3 3994 4007 3995 3991 3993 4006 3969 3982 30455 30455 

.2 8990 9004 8991 8987 8990 9003 8964 8978 

.1 35969 35966 35968 35982 35942 35956 
-

(3,3). 

ACC 

lst order 

exa.ct 

37 

67 

151 

236 

420 

604 

944 

1679 

3778 

15144 

97 

173 

390 

610 

1086 

1564 

2444 

4346 

9779 

39119 

683 

1217 

2741 

4284 

7618 

10972 

17145 

30482 

68587 

274357 

Iimiting 

HPD equal 

15 23 

45 52 

129 136 

214 221 

398 405 

583 589 

923 929 

1657 1664 

3757 3763 

15092 15099 

66 75 

143 152 

361 369 

581 589 

1056 1065 

1534 1543 

2415 2423 

4316 4325 

9750 9758 

39090 39098 

626 641 

1160 1175 

2685 2699 

4228 4243 

7562 7577 

10916 109:)0 

17089 17103 

30426 30440 

68531 68546 

274302 274357 

N 
C,Jl 
OJ 



Table J.8: Table of sample sizes for w with (a, b) 

MLOC 

cover;),gc lellgth Exact lst or der 3rd order 

1-", 1 HPD equal exact formula HPD equal 

2.0 fi 10 12 12 19 20 

1.5 15 18 20 21 30 32 

1.0 38 42 45 45 57 59 

.8 63 67 69 69 82 85 

.6 115 119 122 122 136 140 
.90 

.5 168 172 175 176 190 193 

.4 266 270 272 272 282 292 

.3 476 480 482 482 499 503 

.2 1077 1081 1084 1084 1101 n05 

.1 4324 4328 4330 4330 4348 4352 

2.0 12 16 16 17 26 27 

1.5 24 28 28 29 40 42 

1.0 58 62 63 63 77 80 

.8 93 97 97 97 113 116 

.6 168 171 172 172 189 192 
.95 

.5 243 247 247 247 265 268 

.4 381 385 386 386 404 407 

.3 680 684 684 684 703 707 

.2 1533 1537 1538 1538 1557 1561 

.1 6143 6147 6148 6148 6167 6171 

2.0 27 30 28 28 41 43 

1.5 48 51 51 49 64 67 

1.0 107 111 108 108 127 130 

.8 167 171 167 167 188 191 

.6 296 300 296 296 318 321 
.99 

.5 426 429 426 426 448 452 

.4 664 668 665 665 687 6g1 

.3 1180 1184 1181 1181 1204 1208 

.2 2655 2659 2655 2655 2679 2683 

.1 10617 10621 10617 10617 10641 10645 

(3,3). ( 
(1) 

V) 
~. 
(1) 

~ 
2: 
Vl 
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~ 
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(J 
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(1) 
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Table J.9: Table of sample sizes for w with (a, b) (5,5). 

ALC ACC 

coverage length Exact lst order 3rd order limiting Exact lst order 

1 - " 1 HPD equal exact formula HPD equal HPD equal HPD equal exact 

2.0 4 9 13 10 3 8 1 6 5 11 16 

1.5 19 25 28 26 19 24 14 19 24 29 34 

1.0 63 69 73 70 63 69 56 62 75 81 86 

.8 108 114 118 115 108 114 100 106 128 133 138 

.6 205 211 215 213 205 211 197 202 240 246 251 
.9() 

.5 303 309 313 310 303 309 294 300 354 359 363 

.4 483 489 492 490 483 489 474 480 563 568 573 

.:3 871 877 881 879 871 877 862 868 1014 1019 1024 

.2 1982 1988 1992 1989 1982 1988 1972 1978 2302 2308 2313 

.1 7978 7984 7988 7986 7976 7984 7969 7975 9261 9267 9272 

2.0 15 20 21 19 14 19 11 15 27 34 39 

1.5 :37 42 43 41 36 41 30 36 65 71 76 

1.0 99 105 106 104 99 105 92 97 171 178 183 

.8 163 169 170 168 163 169 155 161 279 285 290 

.6 301 307 308 306 301 307 292 298 512 518 523 
.95 

.5 440 446 447 445 440 446 431 437 746 752 757 

.4 695 701 702 700 695 701 686 692 1177 1183 1188 

.3 1247 1253 1254 1252 1247 1253 1238 1244 2108 2114 2119 

.2 2824 2830 2831 2828 2824 2830 2814 2820 4768 4775 4780 

.1 11328 11334 11344 11342 11337 11343 11328 11334 19134 19145 

2.0 41 46 42 10 40 45 35 40 168 177 182 

1.5 79 85 80 78 79 84 72 77 321 329 335 

1.0 188 194 189 187 188 193 180 185 757 766 771 

.8 299 304 299 297 298 304 290 295 1199 1208 1213 

.6 537 543 537 535 537 543 528 534 2153 2162 216.7 

.99 
.5 777 782 777 775 776 782 767 773 3113 3122 :1127 

.4 1218 1224 1218 1216 1218 1224 1208 1214 4880 4889 4894 

.3 2171 2177 2171 2169 2171 2177 2161 2167 8698 8707 8712 

.2 4894 4900 4894 4892 4894 4900 4884 4890 19606 19620 

.1 19599 19605 19599 19597 19599 19605 19589 19595 78522 
~ .. 

limiting 

HPD equal 

3 7 

17 23 

68 73 

120 126 

233 238 

346 352 

555 560 

1006 1011 

2295 2300 

9253 9259 

16 23 

5:3 60 

159 166 

267 274 

500 506 

734 740 

1165 1171 

2096 2103 

4757 4763 

19121 19129 

143 153 

297 306 

734 742 

1175 1184 . 

2130 2139 

3090 3099 

4857 4866 

8675 8684 

19583 19591 

78485 78,193 

tv 
c..n 
co 



Table J.lO: Table of sample sizes for w with (a, b) 

MLOC 

cO'verage lcugth Exact lst order 3rd arder 

1-<.< 1 HPD equal exact formula HPD equal 

2.0 l 6 8 8 15 16 

1.5 11 14 16 17 26 28 

1.0 34 38 41 41 53 55 

.8 59 63 65 65 78 81 

.6 111 115 118 118 132 136 
.90 

.5 164 168 171 171 186 189 

.4 262 266 268 268 284 288 

.3 472 476 478 478 495 499 

.2 1073 1077 1084 1080 1097 1101 

.1 4320 4324 4326 4326 4344 4348 

2.0 8 12 12 13 22 23 

1.5 20 24 24 25 36 38 

1.0 54 58 59 59 73 76 

.8 89 93 93 94 109 112 

.6 164 167 168 168 185 188 
.95 

.5 239 243 243 243 261 264 

.4 377 381 382 382 400 403 

.3 676 680 680 680 699 703 

.2 1528 1534 1534 1553 1557 

.1 6139 6143 6144 6144 6163 6167 

2.0 23 26 19 24 37 39 

1.5 44 47 44 45 60 63 

1.0 103 107 104 104 123 126 

.8 163 167 163 163 184 187 

.6 292 296 292 292 314 317 
.99 

.5 422 425 422 422 444 448 

.4 660 664 661 661 683 687 

.3 1176 1180 1167 1171 1200 1204 

.2 2651 2655 2651 2651 2675 2676 

.1 10613 10617 10613 10613 10637 10641 

(5,5). 
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Table J.11: Table of sample sizes for w with (a, b) (10,10). 

ALC ACC 

covcrage length Exact lst order 3rd order limiting Exact lat order 

1-", 1 HPD cqual exact formula HPD equal HPD equal HPD cqual exact 

2.0 1 1 1 1 1 1 1 1 1 1 1 

1.5 1 1 8 fi 1 5 1 4 1 6 9 

1.0 32 37 40 37 32 36 28 33 37 41 45 

.8 64 69 72 70 64 69 59 64 73 77 81 

.6 133 138 141 139 133 138 128 132 150 155 159 
.90 

.5 203 208 211 208 203 208 197 202 228 233 237 

.4 331 336 339 337 331 336 325 330 372 377 380 

.3 608 613 616 614 608 613 602 607 682 687 690 

.2 1400 1405 1407 1405 1400 1405 1396 1393 1568 1573 1577 

.1 5674 5679 5682 5680 5674 5679 5668 5673 6354 6359 6363 

2.0 1 2 3 1 l 1 1 1 1 1 1 

1.5 13 17 19 16 13 17 11 15 19 24 27 

1.0 58 63 63 61 58 62 54 58 81 86 89 

.8 104 108 109 107 103 108 103 108 143 148 151 

.6 202 206 207 205 202 206 196 201 278 283 285 
.95 

.5 301 305 306 304 301 305 295 299 413 418 421 

.4 483 487 488 586 483 487 477 481 662 667 669 

.3 876 881 882 880 876 881 870 875 1199 1204 1207 

.2 2000 2005 2006 2004 2000 2005 1996 1998 2735 2740 27'13 

.1 8069 8074 8075 8073 8069 8074 8063 8068 11028 11036 

2.0 17 21 17 15 16 20 15 15 3g 45 45 

1.5 44 48 45 43 44 48 40 41 98 104 105 

1.0 122 126 122 120 122 126 116 121 266 272 273 

.8 200 205 201 199 200 205 195 199 437 443 444 

.6 370 375 371 369 370 375 364 369 804 810 811 
.99 

.5 541 546 542 540 541 546 535 539 1174 1180 1181 

.4 856 860 856 854 856 860 849 854 1855 1861 1862 

.3 1535 1540 1536 1533 1535 1540 1529 1533 :l:l25 3331 .3333 

.2 3476 3481 3477 3475 3476 3481 3470 3474 7527 7533 7534 

.1 13952 13957 13959 13957 13959 13964 13952 13957 30224 
--

limiting 

HPD equal 

1 1 

1 4 

31 36 

71 71 

143 148 

221 225 

364 369 

674 679 

1560 1565 

6346 6351 

1 1 

13 17 

70 76 

132 137 

266 271 

401 406 

650 655 

1187 1192 

2723 2728 

11016 11021 

21 28 

77 84 

245 251 

415 422 

783 789 

1153 1159 

1834 1840 

3304 3310 

7506 7512 

30196 30202 

-

tV 
O"l 
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Table J.12: Table of sample sizes for w with (a, b) 

MLOC 

coverag'e length Exact lst order 3rd order 

1 - ex 1 HPD equal exact formula HPD equal 

2.0 1 1 1 1 5 6 

1.5 1 4 6 7 16 18 

1.0 24 28 31 31 43 47 

.8 49 53 55 55 68 71 

.6 101 105 108 108 122 126 
.90 

.5 154 158 161 161 176 179 

.4 252 256 258 258 274 278 

.3 462 466 468 468 485 489 

.2 1063 1067 1070 1070 lOB7 1091 

.1 4.310 4314 4316 4316 4334 4338 

2.0 1 1 1 1 12 13 

1.5 10 14 14 15 26 28 

1.0 44 48 49 49 63 66 

.8 79 83 83 84 99 102 

.6 154 157 158 158 175 178 
.95 

.5 229 233 233 231 251 254 

.4 367 371 372 372 390 393 

.3 666 670 670 670 689 693 

.2 1519 1523 1524 1524 1543 1547 

.1 6128 6133 6134 6134 6153 6157 

2.0 13 16 14 14 27 29 

1.5 34 37 3'1 35 50 53 

1.0 93 93 94 94 113 116 

.8 153 157 153 153 174 177 

.6 282 286 282 282 304 307 
.99 

.5 412 415 412 412 434 438 

.4 650 654 651 651 673 677 

.3 1166 1170 1167 1167 1190 1194 

.2 2645 2641 2641 2665 2669 

.1 10603 10607 10603 10603 10627 10631 
-

(10,10). ~ 
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Table J.13: Table of samp]e sizes for cp with (a, b) 

ALC 

covcrage length Exact lst order 3rd arder limiting Exact 

1-a 1 HPD equal exact formula HPD equnl HPD equal HPD equal 

2.0 11 11 11 12 11 11 10 10 11 Il 

1.5 22 22 23 23 22 22 21 21 22 22 

1.0 55 56 56 57 55 55 53 54 56 56 

0.8 89 89 90 90 89 89 87 87 89 89 

.6 162 162 163 163 162 162 159 160 162 162 
.90 

.5 235 235 236 237 235 236 233 233 236 236 

.4 371 371 371 372 371 371 367 368 371 371 

.3 663 663 663 664 663 663 660 660 663 663 

.2 1497 1497 1498 1499 1497 1497 1493 1494 1497 1497 

.1 6003 6003 6004 6005 6003 6003 5999 6000 6002 6002 

2.0 17 17 17 18 17 17 16 16 18 18 

1.5 34 34 34 34 34 34 32 32 35 35 

1.0 81 81 81 82 81 81 79 79 85 85 

0.8 129 129 129 130 129 129 126 127 135 135 

.6 232 233 233 233 232 233 230 230 244 244 
.95 

.5 337 337 337 338 337 337 334 334 354 354 

.4 529 529 529 530 529 529 525 526 555 555 

.3 943 944 943 944 943 944 940 940 991 991 

.2 2128 2128 2128 2129 2128 2128 2124 2125 2236 2236 

.1 8526 8526 8526 8527 8526 8526 8522 8522 8959 8959 

2.0 33 34 3:l 33 33 33 32 32 40 40 

1.5 62 62 61 62 62 62 60 60 76 76 

1.0 144 144 143 144 144 144 141 141 IBO 180 

0.8 227 227 226 227 227 227 224 224 286 286 

.6 406 406 405 406 406 406 402 403 516 516 
.99 

.5 586 586 585 586 586 586 582 583 746 746 

.4 917 918 916 917 917 918 914. 914 1171 1171 

.3 16.33 1634 1633 1634 1633 1634 1630 1630 2088 2088 

.2 3680 3680 3679 3680 3680 ~680 3676 3676 4709 4709 

.1 14730 13731 14729 14730 14730 14730 14726 14727 18862 18862 

(2,2). 

Ace 

lst arder 

exact 

12 

24 

58 

92 

166 

240 

375 

667 

1502 

6007 

19 

37 

88 

139 

248 

358 

560 

996 

2242 

8965 

42 

79 

IB6 

293 

524 

756 

1181 

2099 

4721 

18875 

limiting 

HPD equal 

10 10 

21 21 

54 54 

87 87 

160 160 

233 234 

368 369 

660 661 

1495 1495 

5999 6000 

16 16 

33 33 

82 82 

132 132 

241 241 

350 351 

552 552 

988 988 

2232 2233 

8955 8956 

35 36 

70 71 

173 174 

278 279 

507 508 

737 7.38 

1162 1163 

2079 2080 

4700 4701 

18852 18854, 

LV 
c;;:, 
LV 



Table J .14: Table of sample sizes for 4J with (a, b) 

MLOC 

covcrage length Exact lst order 3rd order 

1-a 1 RFD equal exact formula RFD equal 

2.0 11 11 11 12 11 11 

1.5 22 22 22 23 22 22 

1.0 54 54 55 55 54 54 

.8 87 87 87 87 87 87 

.6 156 156 156 157 156 156 
.90 

.5 227 227 227 228 227 227 

.4 356 356 356 358 356 356 

.3 637 637 637 638 637 637 

.2 1439 1439 1439 1440 1439 1439 

.1 5768 5768 5768 5769 5768 5768 

2.0 16 16 16 10 16 tG 

1.5 32 32 32 34 :J2 32 

1.0 79 79 79 79 79 79 

.8 124 124 124 125 124 124 

.6 224 224 224 225 224 224 
.95 

.5 324 324 324 325 324 324 

.4 508 508 508 509 508 508 

.3 907 907 907 908 907 907 

.2 2044 2044 2044 2046 2044 2044 

.1 8191 8191 8191 8192 8191 8191 

2.0 32 32 32 35 32 32 

1.5 60 60 59 60 60 60 

1.0 139 139 138 139 139 139 

.8 219 219 217 216 219 219 

.6 391 391 389 390 391 391 
.99 

.5 563 563 563 563 563 563 

.4 881 882 880 884 881 882 

.3 1570 1570 1568 1570 1570 1570 

.2 3535 3536 3535 3536 3535 3536 

.1 14151 14151 L 14152 14151 14151 

(2,2). f 
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N 
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CI:J 

CS' 
>-j 

Cr) 

~ 
(t) 
(") 
c-t­
(t) 

Cl... 

~ 
rn 

tv 
cr;, 
eN 



Table J.15: Table of sample sizes for cp with (a, b) 

ALC 

coveragc lCllgth Exact lst order 3rd order limiting Exact 

1-u 1 HPD equal exact formula HPD equal HPD cqual HPD equal 

2.0 2 2 1 1 2 2 2 2 1 1 

1.5 12 12 12 12 12 12 11 11 12 12 

1.0 39 39 39 39 39 39 38 38 39 39 

0.8 66 66 66 66 66 65 65 65 66 66 

.6 125 125 125 135 125 125 123 123 125 125 
.90 

.5 184 184 184 184 184 184 182 182 184 184 

.4 292 293 293 293 292 293 291 291 293 293 

.3 528 528 528 528 528 528 526 526 529 G29 

.2 1199 1199 1199 1200 1199 1199 1198 1198 1202 1202 

.1 4827 4827 4827 4827 4827 4827 4825 4825 4838 4838 

2.0 8 8 8 8 8 8 7 8 8 8 

1.5 21 21 21 21 21 21 20 20 21 21 

1.0 59 59 59 59 59 59 58 58 60 60 

0.8 98 98 98 98 98 98 97 97 99 99 

.6 181 181 181 181 181 181 180 180 183 183 
.95 

.5 265 265 265 265 265 265 264 264 267 267 

.4 420 420 420 420 420 420 418 418 423 423 

.3 75:3 754 753 754 753 754 752 752 760 760 

.2 1707 1707 1707 1707 1707 1707 1706 1706 1723 1723 

.1 6858 6858 6857 6858 6858 6858 6856 6856 6921 6921 

2.0 21 21 20 20 21 21 20 20 21 21 

1.5 44 44 43 43 44 44 43 43 45 45 

1.0 110 110 109 109 110 110 108 108 112 112 

0.8 176 176 176 176 176 176 175 175 181 181 

.6 320 321 320 320 320 321 319 319 330 330 
.99 

.5 465 465 465 465 465 465 464 464 479 479 

.4 732 732 732 732 732 732 731 731 754 754 

.3 1309 1309 1309 1308 1.309 1309 1307 1307 1349 1349 

.2 2956 2956 2956 2956 2956 2955 2955 2955 3047 3047 

.1 11852 11852 11851 11851 11852 11852 11850 11850 12219 12219 

(5,5). 

Ace 

lst order 

exact 

3 

13 

40 

68 

127 

186 

296 

531 

1205 

4841 

8 

22 

61 

100 

185 

270 

426 

763 

1725 

6924 

22 

46 

114 

183 

332 

481 

757 

1351 

3050 

12222 

limiting 

HPD equal 

1 1 

11 11 

38 38 

65 65 

124 124 

183 183 

292 292 

527 527 

1201 1201 

4837 4837 

7 7 

20 20 

58 58 

97 97 

181 181 

266 266 

422 422 

759 759 

1721 1721 

6919 6919 

20 20 

43 43 

111 111 

179 179 

328 328 

477 477 

752 752 

1347 1347 

3045 3045 

12217 12217 

l~ 
cr;, 
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Table J .16: Table of sample sizes for cp with (a, b) 

MLOC 

covcrage length Exact lst order 3rd order 

1 - ce 1 HPD equal exact formula HPD equal 

2.0 3 3 3 2 :l :3 

1.5 12 12 12 13 12 12 

1.0 44 44 44 45 44 44 

.8 76 76 76 77 76 76 

.6 147 147 147 147 147 147 
.90 

.5 216 216 216 218 216 216 

.4 347 347 347 348 347 347 

.3 627 627 628 628 627 627 

.2 1428 1428 1428 1430 1428 1428 

.1 5759 5759 5758 5759 5758 5759 

2.0 8 8 8 8 8 8 

1.5 23 23 23 24 23 23 

1.0 68 68 68 69 68 68 

.8 115 115 115 115 115 115 

.6 215 215 215 215 215 215 
.95 

.5 315 315 315 ,315 315 315 

.4 499 499 499 499 499 499 

.3 896 896 896 898 896 896 

.2 2035 2035 2035 2036 2035 2035 

.1 8181 8182 8181 8181 

2.0 23 23 23 23 23 2.3 

1.5 51 51 49 50 51 51 

1.0 128 128 128 129 128 128 

.8 208 208 207 208 208 208 

.6 380 380 379 380 380 380 
,99 

.5 552 553 562 553 552 553 

.4 871 872 871 872 871 872 

.3 1560 1560 1559 1560 1560 1560 

.2 3525 3526 3524 3526 3525 3526 

.1 14140 14142 14141 14141 

(5,5). 
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Table J.17: Table of sample sizes for cP with (a, b) = (10,10). 

ALC ACC 

coverage length Exact lst order 3rd order limiting Exact lst order 

1-a 1 HPD equal exact formula HPD equal HPD equal HPD equal exact 

2.0 1 1 1 1 1 1 1 1 1 1 1 

1.5 1 1 1 1 1 1 1 1 1 1 1 

1.0 26 26 26 26 26 26 25 25 26 26 27 

0.8 52 52 52 52 52 52 51 51 52 52 53 

.6 107 107 107 107 107 107 106 106 107 107 109 
.90 

.5 163 163 163 163 163 163 162 162 163 163 165 

.4 265 266 266 266 266 266 264 264 266 266 268 

.:l 487 487 487 487 487 48"7 486 486 488 488 490 

.2 1121 1121 1121 1121 1121 1121 1120 1120 1122 1122 1124 

.1 4543 4543 4543 4543 4543 4543 4542 4542 4546 4546 4549 

2.0 1 1 1 1 1 1 1 1 1 1 1 

1.5 9 9 9 9 9 9 9 9 9 9 10 

1.0 45 45 45 45 45 45 45 45 45 45 47 

0.8 82 82 82 82 82 82 81 81 82 82 84 

.6 161 161 160 160 161 161 159 160 161 161 163 
.95 

.5 240 240 240 240 240 2'10 239 239 240 240 242 

.4 385 385 385 385 385 385 384 384 386 386 388 

.3 700 700 700 700 700 700 699 699 702 702 704 

.2 1600 1600 1600 1600 1600 1600 1659 1659 1604 1604 1606 

.1 6459 6459 6459 6459 6459 6459 6458 6458 6474 6474 6476 

2.0 9 9 8 8 9 9 9 9 9 9 9 

1.5 31 31 30 30 31 31 30 30 31 31 32 

1.0 93 93 92 92 93 93 92 92 93 93 95 

0.8 156 156 155 155 156 156 155 155 157 157 158 

.6 292 292 291 291 292 292 291 291 294 294 295 
.99 

.5 429 429 428 428 429 429 428 428 431 431 433 

.4 680 680 680 680 680 680 679 679 685 685 686 

.3 1224 1224 1224 1224 1224 1224 1223 1223 1232 1232 1234 

.2 2778 2778 2778 2778 2778 2778 2777 2777 2797 2797 2799 

.1 11170 11170 11170 11170 11170 11170 11169 11169 11246 11246 11248 
-

limiting 

HPD equal 

1 1 

1 1 

25 25 

51 51 

106 106 

162 162 

265 265 

487 487 

1121 1121 

4545 4545 

1 1 

9 9 

45 45 

81 81 

160 160 

239 239 

385 385 

701 701 

1603 160:3 

6473 6473 

9 9 

30 30 

92 92 

156 156 

292 292 

430 430 

683 683 

1231 1231 

2796 2796 

11245 11245 

ty 
Û) 
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Table J.18: Table of sample sizes for cp with (a, b) 

MLOC 

coverage length Exact lst arder 3rd order 

1 - Cl< 1 HPD cqual exact fannula HPD equnl 

2.0 1 1 1 1 1 1 

1.5 1 1 1 1 1 1 

1.0 29 29 29 28 29 29 

.8 60 60 61 61 60 60 

.6 131 131 U1 131 131 131 
.90 

.5 200 200 200 201 200 200 

.4 331 331 331 331 331 331 

.3 611 611 611 612 611 611 

.2 1412 1412 1412 1413 1412 1412 

.1 5740 5741 5741 5742 5740 5741 

2.0 1 1 1 1 1 1 

1.5 10 10 10 10 10 10 

1.0 53 53 52 52 53 53 

.8 99 99 99 99 99 99 

.6 198 198 198 198 198 198 
.95 

.5 298 298 298 298 298 298 

.4 483 483 483 483 483 483 

.3 880 880 880 881 880 880 

.2 2019 2019 2019 2019 2019 2019 

.1 8164 8164 8164 8166 8164 8164 

2.0 9 9 9 6 9 9 

1.5 35 35 35 33 35 35 

1.0 112 112 112 112 112 112 

.8 192 192 191 192 192 192 

.6 364 364 363 364 364 364. 
.99 

.5 536 536 536 537 536 536 

.4 855 855 855 855 855 855 

.3 1543 1543 1543 1543 1543 1543 

.2 3508 3508 3508 3509 3508 3508 

.1 14124 14125 14124 14124 
-'--
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