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Abstract

Exposure to childhood abuse is a persisting global public health concern. In developed
countries, 44% of children have been subjected to adverse experiences, while the
percentage rises to 59% in developing countries. In both children and adults, a history
of childhood abuse has consistently been associated with structural, functional, and
molecular alterations to fronto-limbic areas of the brain, yet the effects of childhood
abuse on neurosupportive systems, such as the neurovascular unit, remain poorly
characterized in comparison. Compelling evidence supports abuse-induced vascular
endothelial dysfunction that primes for the development of cardiovascular disease later
in life. Yet, despite the importance of the neurovasculature in maintaining normal brain

physiology, human neurovascular cells remain poorly characterized, particularly with
regard to their contributory role in abuse-induced pathologies. In this thesis, | describe a

novel standardized protocol to enrich and isolate microvessels from archived snap-
frozen human cerebral cortex that preserves the structural integrity and multicellular
composition of microvessel fragments. For the first time, using this protocol,
microvessels were isolated from postmortem brain samples and comprehensively
characterized as a structural unit using both RNA sequencing and Liquid
Chromatography-Tandem Mass Spectrometry (LC-MS/MS). | then present a study

achieving the first transcriptomic analysis of intact human microvessels isolated from
postmortem ventromedial prefrontal cortex from controls and matched depressed
suicides with a history of childhood abuse. Among brain regions implicated, the
prefrontal cortex is particularly vulnerable as it mediates stress-evoked changes in
cardiovascular activity. In this work, we combined differential gene expression analysis
and network-based approaches to provide an integrative and unbiased characterization
of male and female transcriptional profiles of the neurovascular unit in depressed
suicides with histories of severe childhood abuse. Our findings point to significant
differences between men and women, with the latter exhibiting widespread gene
expression changes, including key vascular nodal regulators KLF2 and KLF4, alongside
a broad downregulation of immune-related pathways. These results suggest that the
neurovascular unit may play a larger role in mediating the neurobiological

consequences of childhood abuse in women.



Résumé

L'exposition a la maltraitance infantile est un probléme persistant de santé publique a
I'échelle mondiale. Dans les pays développés, 44 % des enfants ont été soumis a des
expériences défavorables, tandis que ce pourcentage atteint 59 % dans les pays en
développement. Chez les enfants comme chez les adultes, les antécédents d'adversité
au début de la vie ont toujours été associés a des altérations structurelles,
fonctionnelles et moléculaires dans les zones fronto-limbiques du cerveau, mais les
effets de I'adversité au début de la vie sur les systémes cérébraux de soutien, tels que
l'unité neurovasculaire, demeurent mal caractérisés. En effet, malgré I'importance de la
neurovasculature dans le maintien d'une physiologie cérébrale normale, les cellules
neurovasculaires humaines restent mal caractérisées, notamment en ce qui concerne
leur réle dans les pathologies associées a la maltraitance infantile. Dans le cadre de
cette thése, je décris un nouveau protocole standardisé pour I'enrichissement et
l'isolation de microvaisseaux du cortex cérébral humain archivé et congelé. Cette
méthode combine une homogénéisation mécanique et une centrifugation-séparation, ce
qui permet de préserver lintégrité structurelle et la composition multicellulaire des
fragments de microvaisseaux ainsi isolés. A laide de cette méthode, des
microvaisseaux ont été isolés pour la premiére fois a partir d'échantillons de cerveau
postmortem avant d’étre caractérisés de maniere exhaustive en tant qu'unité
structurelle a l'aide du séquencage de I'ARN et de la chromatographie liquide avec
spectrométrie de masse en tandem (LC-MS/MS). Je présente ensuite une étude
rapportant la premiére analyse transcriptomique de microvaisseaux intacts isolés a
partir d'échantillons post-mortem du cortex préfrontal ventromédian provenant de sujets
sains et de dépressifs suicidés appariés ayant un historique de maltraitance infantile
sévere. Parmi les régions du cerveau impliquées dans les pathologies associées au
stress chronique, le cortex préfrontal est particulierement vulnérable car il est le
meédiateur des changements de I'activité cardiovasculaire provoqués par le stress. Dans
ce travail, nous avons combiné I'analyse différentielle de I'expression génique et des
approches basées sur les réseaux pour fournir une caractérisation intégrée et impartiale
des profils transcriptionnels masculins et féminins de l'unité neurovasculaire chez au

sein d’échantillons cérébraux de personnes avec un historique de maltraitance infantile.



Nos résultats mettent en évidence des difféerences majeures entre les hommes et les
femmes, ces derniéres présentant des changements généralisés dans I'expression des
genes, y compris les régulateurs clés des noeuds vasculaires KLF2 et KLF4, ainsi
qu'une large régulation a la baisse des voies liées a lI'immunité. Ces résultats suggerent
que l'unité neurovasculaire pourrait jouer un réle plus important comme intermédiaire

des conséquences neurobiologiques de la maltraitance infantile chez les femmes.



Contributions to Original Knowledge

This dissertation is presented in the manuscript-based format for Doctoral Theses, as
described in the Thesis Preparation Guidelines by the Department of Graduate and
Postdoctoral Studies at McGill University. The work described here was performed by
Marina Wakid under the supervision of Dr. Naguib Mechawar. The thesis contains four
chapters: chapter | is a comprehensive review of the current background literature
relevant to this thesis; chapter Il is a methodological manuscript that was published
in Brain, Behaviour, & Immunity— Health; chapter lll is an empirical manuscript that
has been submitted for publication; chapter IV is a discussion of the findings from

chapters Il and Ill and also includes concluding remarks and future directions.

Chapter ll: Universal method for the isolation of microvessels from frozen brain tissue:
A proof-of-concept multiomic investigation of the neurovasculature.

In our first study, we developed a method to enrich and isolate microvessels from
archived snap-frozen human brain using mechanical homogenization and
centrifugation-separation that is gentle enough to dissociate brain tissue while
preserving the structural integrity and multicellular composition of microvessel
fragments. Our understanding of neurovascular development and function has been
advanced largely by mouse models. While past mouse data have provided precious
insight into defining core neurovascular gene expression and function, recent
breakthroughs demonstrate that there are numerous species-specific differences
between the mouse and human neurovasculature, revealing the partial utility of animal
models for studying disease of the human CNS. Moreover, single-cell and single-
nucleus sequencing appear to deplete populations of neurovascular cell types from
human cortex samples, impeding analysis of human neurovascular transcriptomes. We
amply demonstrate that microvessels isolated using our method are in high yield,
possess all major neurovascular-associated cell types, and maintain their in situ cellular
structure. To demonstrate the utility of microvessels isolated from postmortem
ventromedial prefrontal cortex (vmPFC) tissue, we processed samples of extracted total
RNA and total protein using RNA sequencing and LC-MS/MS, respectively.

Bioinformatic processing and analysis of human transcriptomic and proteomic data



indicated that isolated samples showed major enrichment for brain microvascular
endothelial cells (BMECs), pericytes, smooth muscle cells (SMCs), and astrocytic
endfeet components at both the mRNA and protein level, generating the first multiomic

datasets from human brain microvessels.

Chapter lll: Neurovascular dysfunction in the ventromedial prefrontal cortex of female
depressed suicides with a history of childhood abuse.

For our next study, we sought to examine the relationship between childhood abuse and
neurovascular dysfunction in the vmPFC using unbiased data driven approaches. Given
that disturbances in gene expression vary across cell type, the variability implicit to
tissue homogenates can mask cell-type-specific transcriptomic changes associated with
a history of childhood abuse. Strategies that either enrich for dissociated neurovascular
cells or intact neurovascular structure are, therefore, crucial for tackling the downstream
effects of tissue heterogeneity in molecular analyses. We, therefore, utilized the method
developed in study | to isolate blood vessels, coupled with bulk RNA sequencing to
investigate how a history of childhood abuse alters the transcriptomic landscape of the
neurovascular unit. This approach allowed us to objectively identify candidate genes
pertinent to human neurovascular dysfunction as opposed to relying on existing
literature based on animal proxy-models or more limited human postmortem studies. In
this study, we present the first comprehensive transcriptomic analysis of the
neurovascular unit in depressed suicides with histories of childhood abuse, allowing us
to speculate how childhood abuse induced alterations at the neurovascular unit lead to

functional impacts on cortical function.
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| have a friend who'’s an artist and has sometimes taken a view which | don’t agree with
very well. He’ll hold up a flower and say, '‘Look how beautiful it is," and I'll agree. Then
he says, 'l as an artist can see how beautiful this is, but you as a scientist take this all
apart and it becomes a dull thing,' and | think that he’s kind of nutty. First of all, the
beauty that he sees is available to other people and to me too, | believe. Although | may
not be quite as refined aesthetically as he is, | can appreciate the beauty of a flower. At
the same time, | see much more about the flower than he sees. | could imagine the cells
in there, the complicated actions inside which also have a beauty. | mean it’s not just

beauty at this dimension of one centimetre; there is also beauty at a smaller dimension.

Richard Feynman
Nobel Prize Laureate in Physics, 1965

Discoverer of path integral formulation and Feynman diagrams
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Chapter I: Comprehensive Review of the Literature

Early-life adversity and suicide
Physical, sexual, and/or emotional abuse or neglect experienced in early life can lead to

profound disturbances in psychological and physical trajectories such that its pernicious
effects linger as psychopathology and disease in adulthood. It is estimated that one in
four children will experience childhood abuse at some point in their lifetime, and that
one in seven children have experienced abuse in the past year (U.S. Department of
Health and Human Services, Administration for Children and Families). Globally, an
approximate 1 billion children and young adolescents (aged between 2-17 years) are
exposed to violent behaviour (data in 2015; Hillis et al., 2016), where 44% of children in
developed countries and 59% in developing countries have been victims of physical,
emotional, or sexual violence or have been exposed to domestic or community violence
in the year prior (Hillis et al., 2016). The statistics on these reports are a significant
underestimate of just how prevalent childhood abuse remains, as most abuse remains
unreported. Here, we define childhood abuse as negative early-life experiences
associated with significantly increased lifetime risk for poorer health and social
outcomes; and we will specifically explore the effects of psychosocial adversity
surrounding relationships (with parents, caregivers, extended family, peers, community)
and other social exposures that affect neurobiological processes (Martikainen et al.,
2002). Examples of such adversities include, but are not limited to, exposure to and
being the target of violence, caregiver psychopathology, unstable or deprived raising
environments (e.g., inadequate foster or institutional care), hostile societal exposures
such as crime and discrimination, as well as other causes of psychological stress. For
brevity, we refer to these experiences as the aggregative “early life adversity” (ELA) to
conceptualize the oftentimes complex combination of different types of abuse that

individuals experience.

ELA constitutes a chronic form of stress, which is defined as a change in
homeodynamic balance that requires a physiological and psychological response from
the organism (Agorastos et al., 2019). Excessive and chronic stress exposure,
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especially during developmentally sensitive stages of life (early childhood) may lead to
an altered homeodynamic state and impact many physiological and psychological
processes. Critically, ELA is associated with 44.6% of all psychiatric childhood-onset
disorders and with 25.9-32.0% of adult-onset disorders (Green et al., 2010; Afifi et al.,
2008; Bernet and Stein, 1999; Brown et al., 2009; Danese et al., 2009; Dube et al.,
2003; Felitti et al., 1998; Gilbert et al., 2009; Mullen et al., 1996; Springer et al., 2007,
Ahn et al., 2024), and further predicts a more severe clinical course of illness, including
earlier age of onset, longer duration, increased comorbidity, and reduced
responsiveness to treatment (Bernet and Stein, 1999; Du Rocher Schudlich et al., 2015;
Gilbert et al., 2009; Klein et al., 2009; Lansford et al., 2002; Tunnard et al., 2014,
Widom et al., 2007). Several lines of evidence also support a strong relationship
between ELA and the onset and persistence of suicidality into adulthood (Bruffaerts et
al., 2010; Enns et al., 2006; Gartland et al., 2022; Bahk et al., 2017; Angelakis et al.,
2019; Dube et al., 2001; Afifi et al., 2008; Brezo et al., 2007; Brezo et al., 2008; Dube et
al., 2001; Fergusson et al., 2000; Molnar et al., 2001). Indeed, it is estimated that ELA
predicts up to 64% of suicidal behaviour in adulthood, and up to 80% in childhood
and/or adolescence (Afifi et al., 2008; Dube et al., 2001; Molnar et al., 2001).
Unsurprisingly, ELA confers a younger age of first suicide attempt (Lopez-Castroman et
al., 2012).

What mediates the relationship between ELA and suicidality? It has been proposed that
developmental dysregulations of cognitive, emotional, and behavioural traits are
implicated (Turecki, 2014; Turecki and Brent, 2016). Changes in the early-life
environment correlate with conserved behavioural phenotypes in both humans and
other species; for instance, early social deprivation in non-human primates results in
short- to long-term changes in affect, cognition, and social behaviour (French and Carp,
2016; Nelson et al., 2009; Pryce et al., 2004; Zhang et al., 2016), while individuals with
a history of ELA typically exhibit consistent patterns of high impulsivity and aggression,
high anxiousness trajectories, interpersonal difficulties, and impaired executive function
(Brodsky et al., 2001; Hostinar et al., 2012; Johnson et al., 2002; Sinclair et al., 2007;

Wanner et al., 2012; Yang and Clum, 2000), which have all been shown to contribute to
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suicidality (Turecki, 2014; Turecki and Brent, 2016). There is, most certainly, a large
body of existing literature establishing a strong association between ELA and suicidality.
While the exact neurobiological processes underlying this heightened vulnerability
remain unclear, there is compelling evidence pointing to aberrant brain-development

trajectories.

In the following sections, several basic principles of neurodevelopment are reviewed in
order to provide a context, and to understand patterns of atypical neurodevelopment

among those with ELA.

Postnatal development of the brain parenchyma
The human postnatal brain follows a protracted course of development that extends into

the third decade of life (Petanjek et al., 2011). Remarkable growth in gray and white
matter occurs during the first two years, where 80-90% of the developing brain’s adult
volume is rapidly built and then followed by continued growth at an attenuated rate
(Berens et al., 2017; Knickmeyer et al., 2008). These remarkable changes occur in an
anatomical wave from “the bottom up”, where the brain matures starting with brainstem
structures and progresses upwards to the anterior-posterior and inferior-superior
directions, finally ending with the prefrontal cortex (PFC; Gogtay et al., 2006). In a way
that is complementary, functional development and maturation also display a “bottom
up” trajectory, starting with basic sensory and motor functioning followed by language
and executive functioning (e.g., working memory and cognitive control), and finally

higher cognition (Fox et al., 2010).

Synaptogenesis and synaptic pruning are critical processes responsible for these
developmental changes. The rapid expansion of the brain's volume during the early
postnatal period is primarily driven by a surge in synaptogenesis, where an
overproduction of synapses, dendrites, dendritic spines, and axons (Huttenlocher et al.,
1982; LaMantia and Rakic, 1994; Petanjek et al., 2008) occurs under genetic control.
The postnatal age at which there is a surge in synapse formation, and therefore high
synaptic density, varies across brain regions (Huttenlocher, 1990; Huttenlocher and
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Dabholkar, 1997; Michel and Garey, 1984; Travis et al., 2005); beginning with the visual
cortex and other base structures, for which synaptogenesis peaks within the first 8
months of life, whereas more complex structures in the PFC reach their synaptogenic
peak by the 15th postnatal month (Bourgeois et al., 1994; Huttenlocher and Dabholkar,
1997).

Once peak synaptogenesis is achieved, uncommitted synapses undergo pruning, which
underpins the subsequent, attenuated growth phase. Pruning is influenced by
experience, allowing neuronal networks to first generate and then fine-tune, becoming
more organized, efficient, and optimized for maximal adaptation to the surrounding
environment (Guido, 2008; Hong and Chen, 2011; Katz and Shatz, 1996). As with
synaptogenesis, different regions similarly vary in their respective onset of synaptic
pruning. Importantly, these timing differences dictate which regions remain sensitive to
environmental input, as regions with delayed time periods of peak synaptogenesis also
undergo experience-based pruning at a later point in development, with sensory and
motor regions undergoing early dynamic reorganization, followed by association areas
and the corpus callosum, and finally cortical structures involved in higher cognitive
functions (Elston et al., 2009; Levitt, 2003; Tau and Peterson, 2010). During childhood,
synaptic density within the PFC exceeds adult values by two to threefold (Huttenlocher,
1979; Petanjek et al., 2011). Interestingly, the PFC is characterized by a particularly
high number of supernumerary synapses and undergoes experience-dependent pruning
that extends up until the third decade of life (Huttenlocher, 1979; Petanjek et al., 2011).
The final stage of brain development involves myelination, which also begins with
sensory pathways myelinating first, followed by motor pathways and, finally, association
areas (Barkovich et al., 1988; Girard et al., 1991; Kinney et al., 1988; Paus et al., 2001).
The PFC, for instance, does not become fully myelinated until early adulthood (Arain et
al., 2013; Miller et al., 2012). As is true for synaptic pruning, myelination programs seem
to be, at least in part, experience-dependent (Fields, 2015; Hrvatin et al., 2018).
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Postnatal development of the neurovasculature

One of the most salient features of human evolution is the significant increase in brain
size from early hominins. This increase marks the basis of the higher cognitive function
uniquely attributed to humans, facilitated by observed higher white matter volume,
denser neuronal connectivity and, consequently, a greater ability to process information
within the PFC (Schoenemann et al., 2005; Zhang et al., 2000). Neuronal metabolism is
almost entirely aerobic and, therefore, relies on a constant supply of external glucose
and oxygen for metabolic activity (Shulman et al., 2003). Like all cells and tissues of the
body, the brain is supplied with blood by an intricate network of vasculature as its
delivery system. Greater information processing capability, however, comes at a
significant metabolic cost—the modern human brain consumes almost one quarter
of the glucose and oxygen supply in the human body (Shulman et al., 2003;
Bloom and Kupfer, 1995). Three compensatory mechanisms ensure that brain
regulated appropriately: neurovascular coupling, in which increased neuronal activity
(and therefore metabolic demand) is matched by increased blood flow (ladecola et al.,
1997; Erinjeri et al., 2002); cerebral vasoreactivity, in which there is high sensitivity to
changes in arterial CO2 and oxygen levels (Nordstrom et al., 1998; Johnston et al.,
2003); and cerebral autoregulation, which counteracts the fluctuations in systemic

arterial pressure that occur in everyday activities (Rapela et al., 1964).

There is still much to be learned about how the neurovasculature develops to become
an efficient delivery system for blood supply. Regardless, research over the past
decade has shown that the neurovascular and central nervous systems share common
guidance cues for embryonic development and patterning (Eichmann and Thomas,
2013; Quaegebeur et al., 2011; Tam and Watts, 2010; Walchli et al., 2015; Carmeliet
and Tessier-Lavigne, 2005), affirming that neurovascular and neuronal structures
develop, grow, and mature simultaneously. The brain's vasculature itself is dramatically
different both morphologically and functionally at the prenatal versus postnatal period.
Simultaneously to the neurogenic process, forebrain vascularization starts ventrally and
progressively extends towards the dorsal forebrain (Lange et al., 2016; Karakatsani et
al., 2019; Puelles et al., 2019), forming the embryonic vascular plexus. The embryonic
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vascular plexus of the brain, a haphazard plexus of vessels with no true distinction
between arteries, veins, and capillaries, is used as a scaffold for growth and refinement
into the different vascular zones of the eventual adult brain (Herken et al., 1989; Wang
et al., 1996; Fehér et al., 1996; Letourneur et al., 2014; Wang et al., 1992). Remarkably,
arteries and veins only begin to take on their unique characteristics postnatally, while
the deeper, intracortical microvascular network that lies beneath the surface of the brain

parenchyma elaborates (Rowan and Maxwell, 1981).

At birth, the intracortical microvascular network begins as sparse and incomplete—a
contrast to the marked density and stability of microvascular networks of the adult brain
(Figure 1; Cudmore et al., 2017; Drew et al., 2010; Harb et al., 2013). The pattern of
changes observed in this network echo that of neuronal synapse formation and
elimination: for the first few months of human postnatal development and first postnatal
month in mice, the capillary bed dramatically expands via angiogenesis (Figure 2; Harb
et al., 2013, Keep and Jones, 1990; Norman and O'Kusky, 1986; Risser et al., 2009),
and the process of neurovascular remodeling occurs through rounds of sprout formation
followed by either maintenance or pruning of these sprouts (Harb et al., 2013; Rowan
and Maxwell, 1981).

Figure 1: The adult brain exhibits marked density
and stability of neurovascular networks. (a) 3D
rendering of the whole mouse-brain vasculature
acquired using light-sheet fluorescence microscopy
and gel-BSA-FITC vascular staining. (b) Single frame
showing details at the capillary level. (Figure sourced
from Di Giovanna et al., 2018).
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Figure 2: The neurovasculature experiences dramatic remodelling during the postnatal period. (Left)
Schematic representation of the development of individual cell types and of the maturing neurovascular unit during
embryonic and postnatal brain development in humans and rodents. Physiological neuronal apoptosis is high in the
newborn brain and rapidly declines during perinatal period. The neurovascular network is established by birth but
continues to change in the postnatal and juvenile brain. Astrocyte and pericyte coverage continue to increase in the
postnatal and juvenile brain. (Right) Schematic summarizing the developmental time courses of changes in neuronal
information processing mechanisms (top) and of components of the signalling pathways regulating blood flow and
thus controlling the BOLD response (bottom). Changes shown in blue are from human data; green is from macaque;
lilac from rat or mouse; red from cat; pink from pig; light orange from rabbit. (Left schematic adapted from Martino et
al., 2023; Right schematic sourced from Harris et al., 2011).

Additionally, rodent studies have revealed that postnatal neurovascular remodelling
occurs in an inside-to-outside fashion, in which the capillary beds of deeper cortical
layers mature earlier (Norman and O'Kusky, 1986; Rowan and Maxwell, 1981), akin to
the radial development of the neuronal architecture. By P15-P25 (a proxy for 5-15
years of age; Figure 3), capillary angiogenesis begins to subside, and capillary density
stabilizes (Harb et al., 2013; Walchli et al., 2015; Zeller et al., 1996) by virtue of pericyte
and endothelial cell proliferation decline (Harb et al., 2013). This pattern is reflected in
cortical cerebral blood flow, a metric that is highly correlated with vascular density,
which is lowest during early postnatal ages, then gradually increases until the age of 7,
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and subsequently declines to reach adult levels during the late teen years (Chiron et al.,
1992, Takahashi et al., 1999). Grey and white matter tissues differ significantly in their
metabolic demands, with white matter, rich in energy-efficient myelinated axons,
consuming approximately 1/4 to 1/3 of the energy consumed by grey matter. Because

of this, capillary networks within adult grey matter are significantly more elaborate, in
fact, capillary density in grey matter doubles between birth to P20 (Figure 3), while

the rise in capillary density in white matter is modest (Zeller et al., 1996).
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Postnatal development of the neurovascular unit

BMECs play a central role in the neurovascular structure, yet blood vessels in the brain
comprise several other neurovascular cell types, including pericytes, perivascular
fibroblasts, vascular SMCs, and astrocytic endfeet (Walchli et al., 2015a; Walchli et
al., 2015b; Ghajar et al.,, 2013). Together, these neurovascular cell types form
the neurovascular unit (NVU; Figure 4), which is the functional correlate of the
neurovasculature (Walchli et al., 2015b; Muoio et al., 2014; Eichmann and Thomas,
2013). The recruitment and crosstalk between neurovascular cells are of absolute
importance for the refinement and maturation of the blood-brain barrier (BBB), which

consists of a set of highly regulated properties that will be thoroughly discussed later.
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Intriguingly, barriergenesis extends into the postnatal period: Endothelial expression of
efflux transporters (Daneman et al., 2010) and ABC-transporters (Ek et al., 2010)

increases and major changes in the regional pattern of GLUT1 distribution occur (Harik
et al., 1993; Zeller et al., 1996). Moreover, perivascular fibroblasts emerge on blood

vessels between P5 and P14 (Jones et al., 2023), and endothelial tight junction
structures increase in their density and complexity until adulthood (Daneman et
al., 2010; Kniesel et al., 1996), resulting in the gradual sealing of the BBB until P33 or
15 years of age (Zeiss et al., 2021). This sealing is evidenced by in situ measurements
of transendothelial electrical resistance (Butt et al., 1990) as well as vascular
impermeability, which further benefits from the increasing coverage of the capillary wall
by astrocytic endfeet at P14—P50. The establishment of a mature astrocytic-basement
membrane interface (J. Xu & Ling, 1994; Seregi et al., 1987, Stichel et al., 1991) is
marked by endfeet that carry out dynamic mRNA localization and local translation
to sustain astrocytic regulatory functions at the neurovascular interface (Avila-Gutierrez
et al., 2024).

Figure 4: The organization of the

neurovascular unit. The NVU is
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The anatomy and physiological function of the vmPFC
Investigations into the mechanisms underlying stress-induced pathologies have

identified dysfunction in a number of cortical and subcortical brain areas, among which,
significant changes in the vmPFC are widely reported (Drevets et al., 2008; Price et al.,
2010; Fredericks et al., 2006). An inclusive definition of the human vmPFC zone refers
to the whole area of PFC that is both ventral and medial (i.e., superior and inferior
medial gyri, anterior cingulate gyrus, gyrus rectus, medial orbital gyrus, and the adjacent
sulci), corresponding to areas 24, 25, 32, 11, and 10 of the Brodmann map (Figure 5;
Delgado et al., 2016). Within the vmPFC, cell distribution exhibits distinct spatial
patterns; the anterior area shows a higher density of layer IV granule cells compared to
posterior regions, while the medial areas of the vmPFC display higher densities of layer
Va pyramidal cells compared to the more lateral areas along the orbital surface
(Delgado et al., 2016; Mackey et al., 2010; Bhaniji et al., 2019).

The structural connectivity of the vmPFC shows distinct patterning from other areas of
PFC. Notably, unlike the lateral parts of the orbitofrontal cortex, the vmPFC has few
direct inputs from sensory regions. Similarly, unlike the lateral prefrontal regions, it has
few direct inputs from the motor cortex (Ongur et al., 2003; Ongur et al., 2000). There
are prominent outputs from vmPFC to the hypothalamus, periaqueductal gray,
amygdala, hippocampus, nucleus accumbens, and superior temporal cortex (Wallis et
al., 2011; Price and Drevets, 2010), as well as long-range connections to the posterior
cingulate cortex (Greicius et al., 2009). Patterns of connectivity differ between sub-
areas within the vmPFC: there are more prominent projections from the amygdala to
posterior areas of vmPFC (areas 24 and 25; Price and Drevets, 2010), but more
prominent connections between the ventral areas of vmPFC and the ventral and medial
areas of the striatum (i.e., nucleus accumbens), whereas more dorsal areas of vmPFC
connect with anterior and dorsal areas of striatum (Haber and Knutson, 2010; Lehericy
et al., 2004). Finally, vmPFC projections to hypothalamus are mostly from posterior
areas of vmPFC (i.e., area 25; Price and Drevets, 2010).
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Figure 5: Anatomical location of the vmPFC in the human brain. (Schematic sourced from Baars and Gage,
2013).

Together, generated rodent, monkey, and human data converge to characterize the
vmPFC as a key node in the neuronal circuitry underlying reward processing, value-
based decision making, and regulation of negative emotion. Numerous human
functional imaging studies have linked vmPFC activity with value and reward processing
in an array of decision-making contexts (Liu et al., 2011; Levy and Glimcher, 2012;
Hiser and Koenigs, 2018), while electrophysiological recordings in primates and rats
have demonstrated that the vmPFC encodes the reward properties of stimuli (Tremblay
and Schultz, 1999; Lopatina et al., 2016; Hiser and Koenigs, 2018), and targeted
vmPFC lesions in monkeys disrupt reward-guided decision making (Izquierdo et al.,
2004; Noonan et al.,, 2010). A second domain of function in which the vmPFC is
understood to play a major role is the regulation of negative emotion. Indeed, damage
to the vmPFC impairs the recall of extinction learning (Morgan et al., 1993; Quirk et al.,
2000; Hiser and Koenigs, 2018). This is supported by evidence showing that vmPFC
neurons fire during extinction recall, and that stimulation of these neurons reduces
conditioned fear responses during the extinction phase (Milad and Quirk, 2002). These
findings, coupled with studies demonstrating that vmPFC stimulation suppresses
amygdala activity (Quirk et al., 2003; Rosenkranz et al., 2003, Likhtik et al., 2005),
suggest a mechanism by which vmPFC regulates the expression of fear responses

through inhibition of the amygdala. Notably, sex differences in the anatomy and function
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of the vmPFC, at baseline and following chronic stress, remain understudied. To date,
one study has observed heightened behavioural inhibition sensitivity and increased
functional connectivity between the vmPFC and posterior parietal areas in females

compared to males (Jung et al., 2002).

The relationship between the vmPFC and the broader vascular system

The vmPFC is also involved in mediating autonomic responses to emotional stimuli. On
the cardiovascular system, this modulation is characterized by an influence on arterial
blood pressure, regional blood flow, cardiac sympathetic and parasympathetic
responses, as well as heart rate and peripheral vascular resistance (Shah et al., 2019;
Verberne and Owens, 1998; Critchley et al., 2000; Damasio et al., 2000; Phillips et al.,
2003). Seminal anatomical studies (van der Kooy et al., 1982; Neafsey et al.,
1986; Hurley et al., 1991; Takagishi and Chiba, 1991) have described widespread
vmPFC efferences to brain nuclei involved in cardiovascular control, including the
amygdala, the lateral hypothalamus, the periaqueductal gray, the nucleus of the solitary
tract, and the caudal and the rostral ventrolateral medulla. When the vmPFC is
stimulated, mean arterial pressure decreases, sympathetic tone is inhibited, and
glutamatergic synapses in the vmPFC modulate the parasympathetic component of the
baroreflex (Owens and Verberne, 2001). Inactivation of the vmPFC, however, withdraws
parasympathetic input to the baroreflex while sympathetic input is maintained (Resstel
et al., 2004), suggesting that the vmPFC modulates the vagal efferent outflow to the
heart (Wong et al.,, 2007). Relevant to this discussion, the vmPFC is essential for
sympathetic cardiovascular activation to stressful stimuli (Frysztak RJ, Neafsey, 1994;
Schaeuble et al., 2019).

The distinction between the blood vessel, the neurovascular unit, and the blood-
brain barrier

Insofar as this body of writing has discussed the neurovasculature and the

neurovascular unit as separate entities, on the contrary, the two are intertwined. The
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neurovasculature, or blood vessels, specifically refers to the anatomical structures that
transport blood throughout the brain and can be divided into the anatomical zones of the
arteriovenous axis: arteries, veins, and capillaries. In contrast, the NVU encompasses a
more complex concept that includes not only endothelial cells of the blood vessels
themselves but also integrates cross-talking perivascular cell types, such as astrocytic
endfeet, mural cells (pericytes and SMCs), and can extend to the perivascular subtype
of T cells, fibroblasts, and microglia (Figure 4; McConnell et al., 2017). In essence, the
NVU is the functional correlate of the blood vessel, with its various cell types working in
concert to i) establish the BBB properties and ii) interact with neuronal processes to
modulate the overall function of the NVU and coordinate neurovascular responses to

both central and peripheral signals.

In this section, how the blood vessel, the NVU, and the BBB are intertwined is
described. Biological barriers provide a functional boundary between circulating blood
and interstitial fluid to establish two distinct physiological compartments essential for
mammalian life. Of the numerous biological barriers present within the body, the BBB
situated along the neurovasculature, is the most tightly regulated. The neurovasculature
originates with a dense network of large extracranial and intracranial cerebral arteries
that spread across the entire pial surface, from which penetrating arteries extend deep
into the cortex, giving rise to the capillaries where the BBB property emerge. Along this
pathway, blood vessels undergo numerous structural changes, adapting from large
arteries to smaller arterioles and capillaries (which are also considered the
microvasculature), which facilitate the selective permeability and protective functions of
the BBB. Arteries descending into the brain from the subarachnoid space are structured
with  SMCs positioned between endothelial cells and a basement membrane,
surrounded by the perivascular (Virchow-Robin) space, and then by astrocytic endfeet
(Figure 6; McConnell et al., 2017). As vessels penetrate deeper into the brain and reach
the level of the capillaries, the ultrastructure comprises continuous non-fenestrated
BMECs. At this level, microvessels lose their SMC coverage in replacement of another
mural cell type, pericytes, which are positioned between the BMECs and astrocytic

endfeet (Figure 7).
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The long list of functions critical to brain health that are performed by NVU relies heavily
on three key biological processes: (i) establishment of a barrier preventing paracellular
diffusion of blood-borne polar substances (Tsukita et al., 2001), (ii) establishment of a
barrier preventing lateral diffusion of integral membrane proteins and lipids between the
apical and basolateral compartments of BMECs (van Meer and Simons, 1986) in order
to maintain cell polarization (Schneeberger and Lynch, 1992; Cereijido et al., 1998), and
(iii) an intracellular signalling platform. These three processes are made possible by the
unique morphology presented by BMECs (Figure 8). Tight junctions, which are enriched

in BMECs, are composed of integral membrane proteins known as occludins, claudins
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and junctional adhesion molecules; and establish intercellular contacts between
adjacent BMECs via recruitment of membrane-associated cytoplasmic scaffolding
proteins such as zonula occludens proteins which, in turn, tether to the actin
cytoskeleton via small GTPases and heterotrimeric G-proteins (Figure 8; Vorbrodt and
Dobrogowska, 2003; Luissint et al., 2012). The resulting effect is anastomosing
networks of tight junction strands that form “kissing points” to eliminate the paracellular
space between adjacent endothelial cells (Tsukita et al., 2001). Because tight junctions
impede the flow of polar solutes and ions (save for the smallest) from the blood to the
brain and vice-versa, tight junction proteins confer a high transepithelial electrical
resistance (TEER) in vivo of approximately ~1800 Q.cm? (Butt et al., 1990; Lo et al.,
1999), which is considered a measure of barrier integrity. These BMECs precisely
regulate the movement of substances between the blood and brain parenchyma
through the expression of membrane-bound efflux transporters and highly specific
nutrient transporters (Betz et al., 1980; Cordon-Cardo et al., 1989; Mittapalli et al., 2010;
Thiebaut et al., 1989). When barrier dysfunction occurs, it leads to hyperpermeable
microvessels and contributes to disease progression by allowing entry of immune cells

and other foreign molecules into the brain parenchyma.

paracellular
space
Plasma
Membrane
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junction

Figure 8: Structure of tight junctions at the NVU, needed for the blood-brain barrier property. (Left) Electron
micrograph of the junctional complex in mouse. (Right) Schematic showing protein components of several tight
junctions between two BMECs. Tight junctions are composed of several proteins, including transmembrane proteins
that are connected to the actin cytoskeleton by scaffold proteins. Among these transmembrane proteins, claudins are
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the main structural determinants of paracellular permeability. (EM image sourced from Tsukita, 2004; schematic
sourced and modified from Mitchell & Koval, 2010).

With an estimated length of approximately 640 kilometers (Begley and Brightman,
2003), the combined surface area of microvessels in the brain is 150—-200 cm?/g of
tissue, equating to ~15-20 m? per adult human brain. This elaborate meshwork of
microvessels provides blood flow to all brain regions, where every neuron is ~8—-20 ym
from a blood vessel (Schlageter et al., 1999), and delivers continuous supplies of

oxygen, glucose and amino acids to neurons.

Postnatal brain development and subsequent function is shaped by experience

What is the purpose of protracted brain development? Namely that it provides the
opportunity for development to be organized by early-life experiences and to fine-tune
brain circuitry accordingly (Johnson, 2001). Genetic mechanisms predominate the
prenatal period yet, by contrast, the postnatal period relies heavily on environmental

input. The timing of environmental input heavily shapes the brain’s potential for
normative development. The brain is ‘experience-expectant—it assumes that certain
signals from the environment will be available at certain points in development, and
experiences that take place during highly plastic time windows, also known as sensitive
periods, are particularly critical. These sensitive periods are regarded as evolutionarily
advantageous because they allow the brain to capitalize on environmental signals (Bick
and Nelson, 2016), to shape to the demands of the surrounding environment and
propagate survival (Magill et al., 2013), and to facilitate progressively complex cognition,
rather than exclusively relying on genetic signalling. However, it also leaves the brain

susceptible to negative exposures, such as ELA.

Biological embedding of ELA during sensitive periods

Stress signals a perceived threat, prompting immediate changes in behaviour as well as
possible modification of future behaviours. More precisely, exposure to stress activates
a physiological response aimed at restoring homeostasis (Lupien et al., 2009), involving
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multiple levels of the central nervous system that regulate decision-making, learning
and memory, as well as hormonal, autonomic, and emotional responses. Specific types
of stressors elicit distinct neuronal populations to perceive threat and mount an adaptive
response. For example, physical stressors such as bodily trauma, extreme
temperatures, and blood loss activate hypothalamic regions and the brainstem
(Fenoglio et al., 2006), whereas psychological stressors engage brain regions that are
involved in emotional regulation (the amygdala and the PFC; Salzman and Fusi, 2010),
learning and memory (the hippocampus; Battaglia et al., 2011), and decision-making
(the PFC; Fellows and Farah, 2007). These systems, however, are interconnected, as
physical stress typically elicits a psychological response, and psychological stress can
have physical effects. The duration (or chronicity) of stress greatly impacts the
physiological response: acute stress prompts a rapid surge in neurotransmission and
stimulation of the hypothalamic-pituitary-adrenal (HPA) axis, resulting in glucocorticoid
production, which is then followed by a rapid return to baseline levels (Charmandari et
al., 2005; Herman et al.,, 2016). While these transient responses are evolutionarily
adaptive, chronic stress complicates this dynamic. Prolonged exposure to stress can
lead to a dual outcome where the physiological mechanisms that initially protect the
body begin to cause harm, affecting normal functioning in response to daily events. In
the face of chronic stress, protection and self-damage emerge as two opposing faces of

the body’s physiological response against everyday events.

Experience-dependent programming, also known as “biological embedding” (Danese et
al., 2011; Miller et al., 2011), is the process by which experiences during the postnatal
period instigate a biological response that induce persistent, stable changes in the
function of a biological system, with latent consequences for development, behaviour,
and health—even into adulthood (Shenhar-Tsarfaty et al., 2015; Chen et al., 2011;
Hertzman and Boyce, 2010). The *“allostatic overload” paradigm (McEwen, 1998)
proposes that adverse exposures during sensitive periods alter emergent neuronal
systems (Fox et al., 2010; Nelson and Gabard-Durnam, 2020), giving way to “trajectory
effects” where subsequent developmental trajectories are changed; and “cumulative

effects”, whereby repeated exposure to many adversities in early life elevates the risk of
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negative outcome in late life (Felitti et al., 1998; Danese et al., 2009; Flaherty et al.,
2013) in a dose-response relationship (McEwen and Gianaros, 2011). Because the
brain is not privileged from allostatic load, chronic stress triggers sustained and
progressive changes in gene expression, cytoarchitecture, and neuronal firing patterns
throughout the brain (Lupien et al., 2009, McEwen et al., 2007) that can be regarded as
chronic “wear and tear” to brain health, gradually impairing its function and resilience
(Figure 9). There is robust evidence supporting allostatic load conceptualization of the
impact that ELA has on health and behavioural outcomes (Rogosch et al., 2011;
Piotrowski et al., 2020; Danese and McEwen, 2012; Barboza Solis et al., 2015;
Tomasdottir et al., 2015; Widom et al., 2015; Berg et al., 2017; Thayer et al., 2016;
Danese et al., 2009; Flaherty et al., 2013; Liu et al., 2013; De Bellis et al., 2014; Nelson
et al.,, 2020; Bellis et al., 2019; Nelles-McGee et al. 2021). As mentioned earlier,
children are rarely exposed to a single event or simply one type of adverse experience,
which lends to the concept of “cumulative risk”. Importantly, it is the nature and number
of adverse life events one is exposed to (Felitti et al., 1998, Gershon et al., 2013), the
precise timing of exposure (Kaplow and Widom, 2007), severity of ELA, sex of the
individual, and presence of predisposing genetic polymorphisms associated with a
stress-induced pathology (for e.g., major depressive disorder; MDD; Buchmann et al.,
2013; Caspi et al., 2003) that can profoundly disturb biological systems.
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When trying to understand the etiopathological mechanisms that underlie ELA,
neurotoxicity remains at the forefront of possibilities. The “neurotoxicity hypothesis”
posits that early and repeated elevation of stress mediators, such as glucocorticoids,
hinders growth in stress-sensitive brain regions via mechanisms like oxidative damage
(Uno et al., 1994). Stress mediators that may be at work in this context include cortisol,
pro-inflammatory cytokines, steroids, excitatory amino acids (e.g., glutamate),
neuropeptides and various other molecules (for e.g., brain-derived neurotrophic
factor (BDNF)) and endogenous opioids (Joels and Baram, 2009). Each stress
operates within its specific spatial and temporal domains and, when triggered by stress,
these mediators contribute to allostasis through a complex, interconnected regulatory
network. For example, stress-induced glucocorticoids can suppress (Sapolsky et al.,
2000) the production of pro-inflammatory cytokines, while catecholamines may enhance
it. Similarly, pro- and anti-inflammatory cytokines, produced by various cell types,
mutually regulate each other. Furthermore, the sympathetic nervous system plays a
critical role in this nonlinear network by influencing all associated systems (Borovikova
et al., 2000), while the parasympathetic nervous system generally acts to
counterbalance the sympathetic system's effects. Critically, each one of these mediators
is understood to impact the function of the neurovasculature (Brezzo et al., 2020;
Longden et al., 2014; Krause et al., 2006; Jackson et al., 2022).

The structural and functional consequences of early life adversity on the brain

The consequences of ELA on the structural properties of brain development, as well as
regional functionality, have been investigated in a number of studies. It has been
consistently found that abused children exhibit reduced brain volumes, with alterations
observed in temporal, frontal, parietal, and occipital regions, and in overall cortical gray
and white matter volume (De Bellis et al., 1999; De Bellis et al., 2002; Carrion et al.,
2001; Hanson et al., 2010; De Brito et al., 2013). Notably, smaller amygdala volumes
have been observed in abused children (Hanson et al., 2015), along with an inverse

relationship between abuse and amygdala volumes (Edmiston et al., 2011). Similarly,
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hippocampal volume shows an inverse relationship with abuse (Edmiston et al., 2011),
with decreased hippocampal volumes also observed (Tupler and De Bellis,
2006; Carrion et al., 2007; Rao et al., 2010; Edmiston et al., 2011; Hanson et al., 2015).

Additionally, studies have reported smaller total volumes and lower white matter in the
PFC of abused children (De Bellis et al., 2002), although larger volumes have been
observed in specific regions such as the middle inferior and ventral regions (Richert et
al., 2006; Carrion et al., 2009) and superior/dorsal regions (Carrion et al., 2009). Recent
studies have observed changes in PFC regions implicated in cognitive and emotional
control, where higher levels of abuse were associated with greater decreases in volume
(Edmiston et al., 2011). Notably, reductions were found in the orbitofrontal cortex, a
region known for its role in reinforcement-based decision making and emotional
regulation (Schoenbaum et al., 2007; Hanson et al., 2010; De Brito et al., 2013; Kelly et
al., 2013), and in the dorsolateral prefrontal cortex, which is involved in working
memory, cognitive regulation of emotion, and planning (Hanson et al., 2010; Levy and
Goldman-Rakic, 2000; Miller and Cohen, 2001; Ochsner et al., 2002).

With regard to structural connectivity of the brain, one group used multimodal
neuroimaging to model neurodevelopmental trajectories over childhood with structure—
function coupling (SC-FC) and found that a typically general linear decrease in SC-FC
with age was replaced by a unique, curvilinear trajectory in the high-adversity group,
indicative of accelerated neurodevelopment starting at 4.5 years (Chan et al., 2024).
Reductions in total corpus callosum volumes and its anterior and posterior mid-body
and splenium subregions have been observed (De Bellis et al., 2002; Teicher et al.,
2004; Carrion et al., 2009). An even greater number of studies have described
functional alterations in circuitries that support higher-level emotional and cognitive
functioning, as demonstrated by cognitive task completion (Pechtel and Pizzagalli,
2011; De Bellis and Hooper, 2012; Carrion et al., 2008; Bruce et al., 2013; Van Veen
and Carter, 2002; Roger et al., 2010; Hughes and Yeung, 2011), as well as response to
social and emotional input (da Silva Ferreira et al.,, 2014, Grahamet al.,, 2013,
McCrory et al., 2011; Bogdan et al., 2012; White et al., 2012, Cicchetti and Curtis,
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2005; Curtis and Cicchetti, 2011; Pollak et al., 1997; Pollak et al., 2001; Shackman and
Pollak, 2014).

The macroscopic effects of early life adversity are accompanied by alterations in circuits
integral to stress responses (Rodrigues et al., 2009; Bolton et al., 2018; Oomen et
al., 2010; Pefa et al., 2014), with ever-increasing evidence that these alterations extend
to the cellular and molecular levels. For example, ELA is associated with
numbers of mature myelinating oligodendrocytes, accompanied by decreased numbers
of more immature oligodendrocyte-lineage cells (Tanti et al., 2018) and significant
reduction in the thickness of myelin sheaths around small-diameter axons (Lutz et al.,
2017). Moreover, a 3-fold increase in the proportion of unmyelinated parvalbumin+
interneurons with a perineuronal net is observed in those with ELA (Théberge et al.,
2024), as well as increased densities and morphological complexity of perineuronal net
(Tanti et al., 2022). As suggested by these observations, ELA-induced changes are not
explained by a single gene, but by hundreds of genes dysregulated over multiple cell
types (Kos et al., 2023). Exposure to ELA results in pervasive transcriptional changes in
GABAergic and glutamatergic neurons, along with altered neurophysiological responses
to subsequent stressors (Kos et al., 2023). Other changes observed are increased
expression of OXTR in the anterior cingulate cortex (ACC; Almeida et al., 2022), altered
microglial phagocytic capacity (Reemst et al., 2022), increased expression of genes
involved in cytokine activity (Schwaiger et al., 2016), altered voltage gated sodium (Nav)
channels properties in NG2+ glia (Treccani et al., 2021), as well as enriched plasticity
signatures in females but decreased plasticity enrichment in males (Pefa et al., 2019).
These widespread molecular consequences of ELA may manifest as temporally-specific

transcriptional changes across the life-span (Suri et al., 2014).

The neurovasculature matches pathological brain alterations

Supplied by the neurovasculature, the brain is entirely dependent upon the delivery of
oxygen and nutrients provided by circulation (Attwell and Laughlin, 2001; Peters et al.,

2004). Because of this dependency, neurons and neurovascular cells form a
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functionally integrated network, whereby neuronal activity and cerebral blood flow are
tightly coupled, and the metabolic demands of neurons are proportionally matched by
blood supply. In the adult brain, the functional coupling between neuronal activity and
cerebral blood flow, referred to as “neurovascular coupling”, has been recorded for over
a century (Roy and Sherrington, 1890), and has broad implications in health and
disease (Cauli and Hamel, 2010; Drake and ladecola, 2007; Zlokovic, 2010). At birth,
remarkably, neurovascular coupling is not functional, with many studies in both humans
and rodent models reporting differences in hemodynamic responses in the early
postnatal brain compared to adults (Anderson et al., 2001; Born et al., 1996; Kozberg et
al., 2013; Meek et al., 1998). At approximately P15, small, localized hemodynamic
responses are initially detected within the capillary bed. These responses gradually
expand, leading to the dilation of larger arteries that supply the active region. This
process continues until it reaches adult-like levels of evoked hyperemia by P23
(corresponding to pre-teen years in humans). These findings clearly demonstrate that
the mechanisms required to fully actuate hemodynamic responses still develops and
matures postnatally, a conclusion that is highly consistent with the extensive neuronal
and neurovascular development in the postnatal brain summarized earlier. After birth,
sensory-related neuronal activity refines neurovascular networks into their mature form
(Argandona and Lafuente, 2000; Black et al., 1987; Sirevaag et al., 1988), as it does for
neuronal circuits (Katz and Shatz, 1996; Zhang and Poo, 2001). Indeed, diminished
sensory input—whether through complete deafferentation, genetic impairment at
thalamocortical synapses, or reduced sensory-related neuronal activity—leads to
decreased endothelial cell proliferation and vascular density in layer IV of the primary
somatosensory cortex (Lacoste et al.,, 2014). Conversely, increased sensory inputs
enhance vascular density and branching, demonstrating that neuronal activity can
shape the developing vasculature. This suggests that postnatal vascular maturation is
driven not only by angiogenic transcriptional programs but also by environmental stimuli
(Lacoste et al., 2014).

In light of such observations, one speculates that the neurovasculature may be

differentially regulated under pathological conditions in which neuronal activity is
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affected, particularly when these conditions occur during sensitive periods.
Neurovascular changes in the vmPFC or other brain regions have not yet been explored
in adults with histories of ELA or in children with recent adverse experiences. However,
based on animal studies, it is plausible that excessive neuronal activation as a result of
ELA may similarly trigger long-term deficits in microvascular networks. With regard to
neurovascular coupling, mice subjected to chronic stress presented reduced neuronal
and hemodynamic responses to forelimb stimuli due to reduced dilation of parenchymal
arterioles and decreased smooth musclekir current density (Han et al., 2019; Longden
et al., 2014). Additionally, mice displayed an inability to increase arterial contractility,
which could be attributed to a lower hyperpolarizing contribution from Kv7.4 channels
(Staehr et al., 2022). These observations suggest a potential parallel in humans where
ELA might similarly impact neurovascular dynamics and resultant brain health. Mice
susceptible to chronic stress also show a significant reduction in claudin5 (CLDNS)
expression in the nucleus accumbens of males (Menard et al., 2017a) and in the PFC of
females (Dion-Albert et al., 2022), regions critical for mood regulation. Other studies
have additionally observed malformations of tight junctions in the PFC, hippocampus,
and amygdala of rats (Xu et al., 2019; Santha et al., 2015). Other iterations of chronic
stress have led to vascular leakage, termed microbleeds, scattered stochastically in the
brains of stress-susceptible, but not resilient or non-stressed control mice (Lehmann et
al.,, 2018; Lehmann et al.,, 2020, Lehmann et al.,, 2022). At the sites of these
microbleeds, fibrinogen deposition and angiogenic markers were detected (Lehmann et
al., 2020; Lehmann et al., 2022). Transcriptomic profiling of isolated BMECs showed
enrichment for pathways involved in neurovascular response to injury that suggest a
temporal sequence of inflammation, oxidative stress, growth factor signalling, and
wound healing (i.e., platelet aggregation, hemostasis, fibrinogen deposition, and
angiogenesis); however, insufficient numbers of microbleeds repair following cessation

of stress (Lehmann et al., 2022).
Cerebral microbleeds in humans strongly correlate with peripheral inflammation

(Shoamanesh et al. 2015). In fact, where there is vascular and endothelial dysfunction,

there is inflammation. Studies consistently report a pro-inflammatory state following
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chronic stress, suggesting a closely intertwined pathophysiology between neurovascular
function and inflammatory immune pathways. Stress-susceptible mice show cytokine-
dependent recruitment of peripheral monocytes into the perivascular space (Menard et
al.,, 2017b; Wohleb et al., 2013; Lehmann et al.,, 2022) and leakage of the pro-
inflammatory cytokine interleukin 6 (IL6) into the brain parenchyma through increased
vascular transcytosis (facilitated by downregulated CLDN5; Menard et al., 2017b).
Several other rodent studies report complementary iterations of BBB compromise with
increased extravasation in several areas of the brain after stress (Sharma and Dey,
1986; Skultetyova et al., 1998; Gomez-Gonzalez and Escobar, 2009; Xu et al., 2019;
Solarz et al., 2021). Based on these observations, one might speculate that recruited
leukocytes act on BMECs, contributing to the disruption of BBB integrity. However,
strictly following the cessation of chronic stress, one study reported the recruitment of
anti-inflammatory CCR2+ monocytes to microbleed sites, where they engaged in
phagocytosis of fibrinogen, aiding in neurovascular repair (Lehmann et al., 2022). This
suggests that the temporal sequelae of immune responses may vary over time, with
distinct functions observed during the active phase of chronic stress and after its
cessation. Recruitment of these pro-inflammatory mediators from the periphery to the
brain are accompanied by a similar activation of the resident immune cells of the brain,
microglia, which undergo morphological and functional changes to become active
participants in the inflammatory response to chronic stress. Microglia proximal to
microbleeds possess transcriptomes enriched for pathways associated with
inflammation, phagocytosis, oxidative stress, and extracellular matrix remodeling
(Lehmann et al., 2018). Taken together, these findings support a key role for the NVU in

etiopathological mechanisms prompted by chronic stress.

Observations made in clinical populations with histories of ELA

Assessing NVU dysfunction in living individuals with histories of ELA is particularly
difficult due to the constraints of non-invasive techniques. More invasive techniques that
allow for direct characterization of the NVU are not feasible in living subjects; thus,

proxy markers suggestive of NVU dysfunction, such as the presence of certain serum
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proteins, are used to infer the state of the NVU. Histories of ELA are associated with
significantly increased levels of soluble fibrinogen (Zeugmann et al., 2013), an
inflammatory marker indicative of cardiovascular and neurovascular disorders, as well
as elevated levels of astrocytic S100B (Falcone et al., 2015), a marker of BBB
dysfunction. Numerous studies have reported an association between ELA and
elevated levels of circulating pro-inflammatory markers, namely acute phase protein C-
reactive protein (CRP), and cytokines IL6 and tumor necrosis factor alpha (TNFa;
Danese et al., 2009; Baumeister et al., 2016; Matthews et al., 2014; Coelho et al., 2014;
Renna et al., 2021). Highly reproducible in vitro and in vivo evidence has shown that
administration of pro-inflammatory cytokines, such as TNFa, IL13 and interferon gamma
(IFNy), results in a dose-dependent increase in BBB permeability via increased
expression of ICAM1 and VCAM1 on the luminal surface of BMECs (Zameer and
Hoffman, 2003; Henninger et al., 1997; Haraldsen et al., 1996; Becker et al., 1991).
However, the robustness of this association is undermined by other studies reporting
non-significant results, substantial heterogeneity in experimental design, differences in
the definitions and assessment of ELA, the populations studied, and the statistical
methods employed (Slopen et al., 2013, Coelho et al., 2014; Carpenter et al., 2012;
Kuhlman et al., 2023; Counotte et al., 2019; de Mendonca Filho et al., 2023). A
definitive meta-analysis by Baumeister et al. (2016) established a significant association
between ELA and certain inflammatory markers, with the largest effect sizes observed
for TNFa, followed by IL6, and then CRP, the latter of which has been linked to changes
in cortical thickness and subcortical volumes (Orellana et al., 2024). This finding
supports the groundbreaking life-course study by Danese et al. (2007), which linked
traumatic exposures in the first decade of life to significantly elevated circulating pro-
inflammatory markers in adulthood, with the same group later validating this association
in ELA-exposed participants of the Dunedin Multidisciplinary Health and Development
Study (Danese et al., 2009, Danese et al., 2009). Indeed, elevated TNFa, IL6 and CRP
seem to be repeat offenders in their ability to linger into adulthood (Miller and Cole,
2012; Archer et al., 2012; Bertone-Johnson et al., 2012; Carpenter et al., 2010; Carroll
et al., 2013; Danese et al., 2009; Danese et al., 2009; Baumeister et al., 2016;
Matthews et al., 2014, Coelho et al., 2014; Dennison et al., 2012; Di Nicola et al., 2013;
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Frodl et al., 2012; Gouin et al., 2012; Hartwell et al., 2013; Hepgul et al., 2012; Kiecolt-
Glaser et al., 2011; Lacey et al., 2013; Lu et al., 2013; Rooks et al., 2012; Slopen et al.,
2010; Pedrotti Moreira et al., 2018; Bertone-Johnson et al., 2012; Hartwell et a., 2013).
Other elevated pro-inflammatory markers emerge in ELA-exposed populations,
including IL1B (Hartwell et al., 2013; Lu et al., 2013), TGFB1 (Tietjen et al., 2012), b-
FGF, IL1, TGFB3, VEGF (Lu et al., 2013), fibrinogen (Coelho et al., 2014).

Another clinical observation that is telling of vascular and endothelial dysfunction in
those with ELA is the dose-dependent association between exposure to adverse
childhood experiences (ACEs) and the incidence of cardiovascular disease (CVD; Zou
et al.,, 2024), such as ischemic heart disease and stroke (Chen et al., 2023; Fuller-
Thomson et al., 2010; Loucks et al., 2014; Thurston et al., 2017; Thurston et al., 2014;
Riley et al., 2010; Su et al., 2015; Dong et al.,, 2004). This association was first
highlighted in the landmark CDC-Kaiser Permanente ACE study (Felitti et al., 1998),
and has been consistently supported by subsequent research, including a 2017
systematic review where 92% of studies confirmed the association between ACEs and
CVD (Basu et al., 2017). This is, perhaps, unsurprising for the reason that corticotropin-
releasing hormone, released during HPA activation, leads to increases in heart rate,

cardiac output, and mean arterial pressure by norepinephrine and epinephrine
secretion (Nijsen et al., 2000), as well as direct regulatory actions on nitric oxide-

dependent vasodilation and vascular permeability (Hillhouse et al., 2006). With
pathophysiological mechanisms by which ELA promotes CVD largely identified from
pre-clinical mouse models of chronic stress (Ho et al., 2016), these mechanisms are
now being translated to human adults (Jenkins et al., 2021). Specifically, young adults
moderate-to-severe ELA demonstrate multiple indicators of vascular dysfunction in the
medial prefrontal cortex (MPFC): endothelial dysfunction (as measured by flow-
mediated dilation; Jenkins et al., 2021; Rodriguez-Miguelez et al., 2022), arterial
stiffening (Kellum et al., 2023; Rafiq et al., 2020), increased vascular resistance across
small, conduit, and large blood vessels, as well as reduced blood flow of the mPFC
region (Rodriguez-Miguelez et al., 2022). Higher systolic and diastolic blood pressure

may underlie these changes in the mPFC vasculature. As described in previous
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sections, decreased vmPFC activity is observed in individuals with ELA, and decreased
vmPFC activity contributes to elevated blood pressure. Critically, the described
relationship between ELA and vascular dysfunction remains robust, even in the
absence of group differences for circulating lipids, glucose, or physical activity (Jenkins
et al., 2021); and persists even after adjusting for smoking, and illicit drug use (Su et al.,
2015).

Factors moderating the impacts of early-life adversity

A key insight from both human and animal studies is that the effects of ELA on
epigenomic, transcriptomic, and behavioural outcomes are influenced by individual
differences. These differences include factors such as sex, age, and the specific
characteristics of the abuse, including its type, duration, and severity (Barnett Burns et
al., 2018). One possible explanation is that various factors may influence where an
individual's tolerance threshold to stress lies. Indeed, theoretical frameworks such as
the two-hit and three-hit models of stress vulnerability suggest that the adverse effects
of stress exposure are contingent upon a threshold that differs from one person to
another. These models postulate that multiple "hits" or adverse events across different
stages of life or simultaneously can cumulatively affect an individual's resilience to
stress, ultimately impacting their vulnerability to physiological or psychological disorders
(Calabrese et al., 2007; Daskalakis et al., 2013; De Kloet et al., 1998; Danielsdottir et
al., 2014; Ahn et al., 2024; Alon et al., 2024).

Significant sex differences exist in the incidence, manifestation, and treatment outcome
and side effects of many neurological, psychiatric, and stress-induced disorders
(Altemus et al., 2014; Bale and Epperson, 2017; Parekh et al., 2011). Furthermore, the
majority of research into the neurobiological bases of disorders, development of new
treatments, and identification of risk factors has predominantly focused on male
subjects or has not adequately considered sex differences. Across various species,
there are notable sex differences in the amount of biological and behavioural investment

in reproduction, as well as differences in gestation and/or postnatal care, with females
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making considerably greater investment in rearing offspring. These differences likely
influence the evolution of sex-specific traits in the brain and body, supporting roles in
resource acquisition, bonding, protection, and mate selection through signals like visual,
chemical, auditory, motor, and tactile cues. For instance, in certain bird species, brain
regions are specifically adapted for song learning, production, and reception (Gontard-
Danek and Mgller). These adaptations are driven by different pressures on males and
females; males use song to attract mates, while females assess song quality to select
suitable partners (Gontard-Danek and Mgller). In environments marked by adversity,
such as resource scarcity or predation, these signalling systems might adapt differently.
For example, males in resource-poor settings might decrease their song vigor, while
females could alter their standards for song quality. Consequently, ELA could differently
influence brain development in males and females, leading to region-specific brain
changes geared towards survival and reproductive behaviours. Thus far, chromosomal
and epigenetic drivers of neurodevelopment in the male and female brain have been
identified. These drivers differentially affect parental genetic imprinting, epigenetic
programming of gene expression, hormonal effects, and sex differences in immune
function and activation (Bordt et al., 2020; VanRyzin et al., 2020) and, in turn, affect
neurogenesis, circuit assembly, pruning, plasticity, timing of neurodevelopmental
events, and downstream gene expression (McCarthy et al., 2012) in a constellation of
cells within the brain (neuronal, glial, vascular, and immune) as well as their sensitivity
to both internal signals (hormonal, neuronal, and immune) and external ones (pre- and
postnatal environment). Sex-specific differences in the adult pro-inflammatory state
have only recently been underscored by systematic comparisons between males and
females, indicating more severe implications for females who experience ELA. One
study established that the correlation between ELA and CRP levels is primarily driven
by adult females, regardless of the type or multiplicity of abuse encountered (Baldwin et
al., 2018). These factors make it challenging to address sex differences in response to
ELA; despite this, some rodent studies have shown that males appear to be more prone
to anxiety-like and cognitive outcomes following ELA (Llorente et al., 2009; Loi et al.,
2014; Sutanto et al., 1996), whereas other studies have found that female rodents are

more sensitive to ELA in other behavioural domains (Fuentes et al., 2014; Gracia-Rubio
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et al., 2016; Sasagawa et al., 2017). Neurobiological sex differences have also been
described, such that ELA hinders neurogenesis in pre-pubertal females, but promotes
neurogenesis in pre-pubertal males (Loi et al., 2014; Oomen et al., 2009). It is
reasonable to suggest that baseline differences in epigenetic and transcriptional
programs may underlie sex-specific vulnerabilities (Jessen and Auger, 2011; Labonte et
al., 2017), yet studies must simultaneously examine the impact of ELA on brain
development in both sexes, analyzing changes across implicated brain regions to fully

understand these differences.

The timing and duration of early life adversity (ELA) significantly influence the nature
and extent of its effects. Specifically, the developmental period during which ELA occurs
can critically affect the type, direction, and magnitude of behavioral, epigenetic, and
transcriptomic changes (Bai et al., 2012; Molet et al., 2014; Pefa et al., 2013). This is
partly because different brain regions have distinct neurodevelopmental timelines and
periods of plasticity, which can affect how and when they are impacted by ELA.
Additionally, the cumulative effects of ELA can manifest over an individual's lifespan.
For example, evidence suggests that while males exposed to ELA may exhibit
resilience during adolescence, they typically display deficits later in adulthood (Blaze et
al., 2013; Loi et al., 2014; Suri et al., 2014; Suri et al., 2013). These findings highlight
the complexity of the impacts of ELA and underscore the importance of considering the

timing of adversity in developmental studies.

Although ELA is strongly associated with an increased risk of adult psychopathology,
research into how specific adversities impact epigenomic and transcriptomic patterns
has yielded inconsistent results (Barnett Burns et al., 2018). While some studies
suggest that particular types of ELA are linked to specific outcomes (Houtepen et al.,
2016; Kang et al., 2013; Melas et al., 2013; Perroud et al., 2011), larger international
studies indicate that the cumulative effect of multiple adversities may better explain the
connection between ELA and psychopathological outcomes than any single type of
stressor (Green et al., 2010; Kessler et al., 2010; MacMillan et al., 2001). For example,

Teicher and colleagues demonstrated that exposure to multiple forms of ELA leads to
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significantly more deleterious effects than merely the sum of its parts (Teicher et al.,
2006) and, as reported by Perroud and colleagues, the severity of childhood sexual
abuse and the number of different types of abuse positively correlated with
glucocorticoid receptor (NR3C1) methylation (Perroud et al., 2011). These findings echo

the allostatic load conceptualization of ELA, as previously discussed.

From tissue homogenates to cell-type specific approaches

Gene expression is fundamental to understanding disease manifestation and
progression. Differential gene expression, which is ubiquitously regarded as a
quantifiable proxy for variances in gene activity, reveals how genes are expressed
differently between pathologic and healthy states, allowing inferences to be made as to
which molecular mechanisms underlie disease. These genes often regulate essential
neurobiological functions such as cell signalling or immune responses. Bulk-tissue RNA
sequencing yields an average gene expression profile from a mixed group of
heterogeneous cell types, but it does not distinguish the specific expression patterns of
individual cell populations. Because not all cell types contribute equally to disease
progression (Skene et al., 2018), bulk tissue analyses may mask the roles of specific
cells crucial to the development of disease. Consequently, it is essential to analyze
gene expression specifically in implicated cell types to gain more precise biological
insights—a notion that also applies to the neurobiological consequences of ELA. For
instance, findings in Alzheimer's disease (Mathys et al., 2023), autism spectrum
disorders (Velmeshev et al., 2019), and schizophrenia (Skene et al., 2018; Torshizi et
al., 2020a; Torshizi et al., 2020b) have all demonstrated how specific cell types are
most relevant to respective pathologies. It is conceivable that ELA may
disproportionately impact specific cell populations (Habib et al., 2016; Lake et al., 2016,
2018; Nagy et al., 2020). However, many studies on the molecular changes associated
with  ELA have relied on analyses of bulk-tissue homogenates, obscuring finer
distinctions, and making it difficult to determine whether observed differences are due to
the disease state, variations in cellular composition, or technical artifacts. As a result,
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employing targeted enrichment strategies is essential to effectively parse tissue

heterogeneity in transcriptomic analyses.

An integrative model of the long-term consequences of early-life adversity

Thus far, this introduction has laid down a theoretical framework for how ELA might alter
trajectories of neurodevelopment, postulating potential effects at the NVU. Given that
neurovascular function is highly responsive to environmental signals, and its regulatory
properties are ubiquitous throughout brain health and functionality, the NVU poses as
an interesting avenue for exploring the long-term impacts of ELA. But other significant
advances have already been made in understanding the pervasive effects of ELA,
particularly the molecular mechanisms that are involved within the brain. Seminal
findings of molecular pathways that are altered by ELA have been investigated on a
system-by-system basis, and, altogether, ELA is associated with dysregulation of the
HPA-axis, neurotrophins and plasticity, myelination, as well as GABAergic,
glutamatergic, serotonergic and neuropeptidergic signalling (Schar et al., 2022; Maniam
et al., 2014; Birnie et al., 2020; Lutz et al., 2017; Tanti et al., 2018; Karst et al., 2023;
Haikonen et al., 2023; Ramkumar et al., 2024; Ellis et al., 2021). Disturbances in these
molecular pathways have been shown to explain, at least in part, ELA-associated
structural and functional differences in circuits involved in threat detection, emotional
regulation, stress-reactivity, reward anticipation and social cognition (Bick and Nelson,
2016; Kim et al., 2013; Teicher et al., 2016; Tottenham et al., 2010). Consequently, they
impact the observed macroscopic cytoarchitectural aspects such as cortical thinning
and other structural alterations in regions that regulate mood and emotions (Bick and
Nelson, 2016; Edmiston et al., 2011; Teicher and Samson, 2016; Teicher et al., 2016).
Functionally, these structural changes are likely to translate into stable behavioural
phenotypes, where humans with a history of ELA typically show high levels of
impulsivity and aggressive behaviours, high anxiousness trajectories, interpersonal
difficulties, and impaired executive function (Brodsky et al., 2001; Hostinar et al., 2012;
Johnson et al., 2002; Sinclair et al., 2007; Wanner et al., 2012; Yang and Clum, 2000).

Critically, these behavioural phenotypes have all been shown to associate with suicidal
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behaviour (Turecki, 2014; Turecki and Brent, 2016). Future research, however, is
needed to better understand how ELA-induced neurovascular dysfunction contributes

to behavioural changes associated with psychopathology.

From a mechanistic standpoint, it remains unclear how ELA may elicit neurovascular
dysfunction in humans, or how neurovascular dysfunction integrates with other system
disturbances. Although the BBB is functionally distinct from the peripheral vasculature
and possesses a highly specialized NVU to precisely regulate the influx and efflux
between the blood and brain parenchyma (Daneman and Prat, 2015; Kadry et al., 2020;
Luissint et al., 2012), the entire blood supply of the brain relies on the dorsal aorta
(Purves et al., 2001). This reliance therefore raises the question of whether the NVU
might also be susceptible to the systemic vascular effects of ELA, if the vasculature of
the body is vulnerable to the effects of ELA, then why not vasculature of the brain as

well?
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Hypotheses and aims

As reviewed in previous sections, ELA leads to long-lasting adaptations in
transcriptomic programs within the brain, pointing to potentially profound implications for
neurovascular function and BBB integrity. While these studies have been crucial to our
understanding of ELA, those conducted using human postmortem brain samples have
primarily focused on non-vascular components, such as neurons and myelin. Although
a rich body of animal studies underscores the perturbations induced by ELA on the
NVU, the translation of these findings to human pathology is entirely absent due to the
scarcity of studies leveraging direct and invasive techniques in postmortem brain
samples. The complexity of the NVU, and its critical role in mediating responses
between the brain parenchyma and peripheral circulation, establishes it as a pivotal but
underexplored target in understanding the pathogenic sequelae of ELA. The
overarching goal of this dissertation is to, therefore, expand our understanding of the
NVU-specific molecular changes associated with a history of childhood abuse in the
human brain. Our general hypothesis was that a history of ELA would be
associated with transcriptomic changes indicating NVU-specific dysfunction in
the vmPFC of depressed suicides with a history of ELA. A secondary hypothesis
was that a signature of a pro-inflammatory state, as evidenced by specific gene

expression profiles, would be observed alongside NVU dysfunction.

Aim 1: Develop a method for the effective enrichment and isolation of
microvessels from frozen brain tissue that is compatible with high throughput
techniques.

Given our overarching goal, the necessity to develop a method that enabled the
compressive characterization of postmortem brain vessels ex situ became evident.
Here, we share our methodology that seeks to bridge this gap by introducing a
standardized protocol for the isolation of microvessels from postmortem human brain
tissues. The development of this simple method was not only critical and foundational to
our subsequent work investigating NVU changes in ELA, but also serves as a valuable
tool for anyone studying the NVU in any disease context who wishes to perform

translational work using postmortem brain tissue. This aim is explored in Chapter II.
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Aim 2: Isolate microvessels from the postmortem vmPFC of healthy controls and
depressed suicides with a history of ELA, and process samples for bulk RNA
sequencing.

Prior to Aim 2, direct evidence implicating NVU dysfunction in the pathophysiology of
ELA has relied primarily on rodent models of chronic stress. Leveraging the isolation
method outlined in our previous study (Aim 1), we set out to generate the first
transcriptomic dataset derived from intact microvessels isolated from human vmPFC
samples from healthy controls and matched depressed suicides with a history of ELA.

This aim is explored in Chapter IlI.

Aim 3: Perform differential gene expression and network-based analyses to
identify gene candidates implicated in ELA, after which differential expression of
gene candidates are validated in situ using fluorescence in situ hybridization
(FISH) on vmPFC tissue sections.

In Aim 3, we combined differential gene expression analysis and network-based
approaches to provide an integrative and unbiased characterization of NVU specific
transcriptional profiles in humans with histories of ELA. After identifying key differentially
expressed genes in ELA, differential expression of two gene candidates was validated
using FISH on vmPFC tissue sections from healthy controls and depressed suicides
with a history of ELA.

We anticipate that these experiments will add to our understanding of the neurovascular
dysfunction through which ELA contributes to stress-induced pathologies in the adult
brain by identifying key differentially expressed genes that belong to impacted

neurovascular pathways.
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Simplicity is the ultimate sophistication.

Attributed to Leonardo da Vinci

Renaissance man in art, science, and engineering
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Abstract

The neurovascular unit, comprised of vascular cell types that collectively regulate
cerebral blood flow to meet the needs of coupled neurons, is paramount for the proper
function of the central nervous system. The neurovascular unit gatekeeps blood-brain
barrier properties, which experiences impairment in several central nervous system
diseases associated with neuroinflammation and contributes to pathogenesis. To better
understand function and dysfunction at the neurovascular unit and how it may confer
inflammatory processes within the brain, isolation and characterization of the
neurovascular unit is needed. Here, we describe a singular, standardized protocol to
enrich and isolate microvessels from archived snap-frozen human and frozen mouse
cerebral cortex using mechanical homogenization and centrifugation-separation that
preserves the structural integrity and multicellular composition of microvessel
fragments. For the first time, microvessels are isolated from postmortem ventromedial
prefrontal cortex tissue and are comprehensively investigated as a structural unit using
both RNA sequencing and Liquid Chromatography with tandem mass spectrometry (LC-
MS/MS). Both the transcriptome and proteome are obtained and compared,
demonstrating that the isolated brain microvessel is a robust model for the NVU and can
be used to generate highly informative datasets in both physiological and disease

contexts.

Keywords: Neurovascular unit, Blood-Brain Barrier, Microvessels, Postmortem, RNA
sequencing, LC-MS/MS
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Highlights

Method presents singular protocol to isolate microvessels from postmortem and

frozen mouse cortex.

e High yield of microvessels with preserved integrity were isolated, and compatible
with high-throughput techniques.

e The transcriptome and proteome of isolated microvessels from human vmPFC
tissue were characterized.

e Limitations of past isolation methods are overcome, and standardized cross-species

comparisons are made possible.

1. Introduction

To meet the metabolic needs of the 86 billion neurons in the human brain, an elaborate
400 mile-long microvascular network (ladecola, 2017; Kisler et al., 2017) supplies blood
flow to the deep structures of the cerebral hemispheres and gatekeeps blood-brain
barrier (BBB) properties. Extensive research efforts have underscored the BBB as a
highly selective cellular system. Ultrastructurally, the BBB consists of continuous non-
fenestrated brain microvascular endothelial cells (BMECs) that precisely regulate
movement between the blood and brain interface through the expression of specialized
solute carriers and efflux transporters (Daneman, 2012; Betz and Goldstein, 1978; Betz
et al., 1980; Cordon-Cardo et al., 1989; Thiebaut et al., 1989; Loscher and Potschka,
2005a; Mittapalli et al., 2010; Zlokovic, 2008). BMECs, along with astrocytic endfeet and
mural cells (pericytes or smooth muscle cells), positioned at the vascular basement
membrane, are the cell types that comprise the neurovascular unit (NVU) (McConnell et
al., 2017) and work in concert to implement coordinated vascular responses to central
and peripheral signals. Such responses include the continuous delivery of oxygen and
glucose to neurons (Mintun et al., 2001; Hoge et al., 1999; Fox et al., 1988; De Vivo et
al., 1991; Farrell and Pardridge, 1991; Gerhart et al., 1989), homeostatic maintenance
of the brain (Jeong et al., 2006; Gendelman et al., 2009; Wilhelm et al.,
2007; Mokgokong et al., 2014; Smith and Rapoport, 1986), the regulation of cerebral
blood flow (Mathiesen et al., 1998; Caesar et al., 2003; ladecola, 1993; Roy and

51


https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10562768/#bib111
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10562768/#bib127
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10562768/#bib49
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10562768/#bib25
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10562768/#bib26
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10562768/#bib26
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10562768/#bib46
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10562768/#bib212
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10562768/#bib140
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10562768/#bib140
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10562768/#bib154
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10562768/#bib242
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10562768/#bib148
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10562768/#bib148
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10562768/#bib152
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10562768/#bib109
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10562768/#bib78
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10562768/#bib52
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10562768/#bib52
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10562768/#bib74
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10562768/#bib87
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10562768/#bib117
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10562768/#bib85
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10562768/#bib232
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10562768/#bib232
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10562768/#bib156
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10562768/#bib197
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10562768/#bib145
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10562768/#bib36
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10562768/#bib110
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10562768/#bib188

Sherrington, 1890; Fergus and Lee, 1997) and clearance of interstitial fluid (Verheggen
et al., 2018; Deane et al., 2009; lliff et al., 2012; lliff et al.). An underappreciated lens
through which to investigate disease, NVU dysfunction contributes to cognitive decline
in AB and tau pathology (lturria-Medina et al., 2016; Montagne et al., 2015; Sweeney et
al., 2015; Arvanitakis et al., 2016; Toledo et al., 2013; Rosenberg, 2014), traumatic
brain injury (Stein et al., 2002; Schwarzmaier et al., 2010; Dietrich et al., 1994; del
Zoppo and Mabuchi, 2003; Schroder et al., 1998; von Oettingen et al., 2002; Shapira et
al., 1993; Baldwin et al., 1996; Hicks et al., 1997; Baskaya et al., 1997), perivenous
myelin lesions presented in multiple sclerosis (Gaitan et al., 2013; Buch et al.,
2021; Geraldes et al., 2020; Al-Louzi et al., 2022; Khan et al., 2010; Doepp et al., 2011),
as well as multiphasic changes in BBB permeability after stroke (Liu et al., 2018; Lin et
al., 2008; Strbian et al., 2008; Durukan and Tatlisumak, 2009; Pillai et al., 2009).
Disease states may arise when BBB function can no longer match the needs of the
central nervous system (CNS), which confers dire consequences for the ability of the
BBB to communicate both with cells within the brain parenchyma and with cells in the
periphery. Indeed, the BBB acts as the interface between the brain and peripheral
systems through which neuroimmune interactions occur (Quan and Banks, 2007)and is
highly responsive to immune activity encroaching the brain. Such interactions include,
but are not limited to: regulation of major efflux transporter P-glycoprotein 1 (ABCB1),
endothelial Toll-like receptor and NOD-like receptor activation by TNFa signalling
(Erickson and Banks, 2018; Nagyoszi et al., 2010, 2015), as well as modulation of Na—
K—CI cotransporter, which is critical for cerebral ionic homeostasis, by IL6 secretion
from astrocytes (Sun et al., 1997). The BBB itself secretes substances that interact with
the neuroimmune system, including cytokines, prostaglandins, and nitric oxide (Fabry et
al.,, 1993; Mandi et al.,, 1998; McGuire et al., 2003; Reyes et al., 1999). These
substances may be constitutively expressed or pathologically induced, as shown by IL8
in HIV infection (Hofman et al., 1999), invasion of autoreactive CD4* T cells in multiple
sclerosis (Traugott et al., 1983), microglial release of TNFa with cocaine exposure
(Lewitus et al., 2016), and nitric oxide release in Alzheimer's disease (Dorheim et al.,
1994). Because of its bipolar nature, dysfunction of the BBB can arise from, and be

further aggravated by, either the CNS or peripheral compartments. Evidence of
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neurovascular dysfunction has similarly been observed in bipolar disorder (Kamintsky et
al., 2020), schizophrenia (Kirkpatrick and Miller, 2013; Axelsson et al., 1982; Campana
et al., 2023; Goldwaser et al., 2022), major depressive disorder (Torres-Platas et al.,
2014; Gal et al., 2023; Najjar et al., 2013), and Parkinson's disease (Al-Bachari et al.,
2020; Fowler et al., 2021).

Our understanding of neurovascular development and function has been advanced
largely by mouse models. Functional characteristics of the BBB are regulated at the
transcriptomic level and, in recent years, different methodologies have been employed
to investigate the neurovascular transcriptome. Single-cell sequencing studies have
leveraged transgenic-reporter claudin-5-GFP (Vanlandewijck et al., 2018; He et al.,
2018), Tie2—eGFP (Zhang et al., 2014), and Pdgfrb-eGFP (He et al., 2016a) mouse
lines in conjunction with fluorescence-activated cell sorting (FACS) to generate highly
informative transcriptomic datasets of mouse BMECs and other vascular cell types,
whereas other studies have carried out RNA sequencing of BMECs isolated from Rosa-
tdTomato; VE-Cadherin-CreERT2 mouse models of stroke, multiple sclerosis, traumatic
brain injury and seizure (Munji et al., 2019). While past mouse data have provided
precious insight into defining core NVU gene expression and underscores the relevance
of transcriptomic profiling for better understanding neurovascular function (and
dysfunction), recent breakthroughs demonstrate that there are numerous species-
specific differences between mouse and human neurovasculature, including solute
carrier and efflux transporter expression (Muniji et al., 2019; Garcia et al., 2022; Yang et
al., 2022). Such findings reveal the partial utility of animal models for studying disease
of the human CNS. Due to the scarcity of well-preserved human brain tissue available
for research, transcriptomic profiling in human brain samples has been considerably
more limited, leaving the investigation of vascular cells neglected in favour of non-
vascular cell types, such as neurons and oligodendrocytes. In addition, single-cell or
single-nucleus sequencing used to profile expression in all cell populations yield very
low populations of endothelial cells and pericytes from human adult and embryonic
cortex samples despite vessel density ranging between 361 and 811
vessels/mm? (Klein et al., 1986; Wu et al., 2004; Weber et al., 2008) at an overall
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endothelial cell density of 4504 + 2666 cells/mm? (Ventura-Antunes et al., 2022). Such
techniques seem to deplete vascular cells/nuclei for reasons that are not understood
and have impeded analysis of human neurovascular transcriptomes (Nagy et al.,
2020; Velmeshev et al., 2019; Mathys et al., 2019; Grubman et al., 2019; Jakel et al.,
2019). Recently, detailed transcriptome-wide atlases of human and mouse brain
vascular nuclei were generated by two independent groups (Garcia et al., 2022; Yang et
al.,, 2022), both addressing the underrepresentation of vascular cell types and
elaborating on species-specific differences in NVU gene expression. Such progress and
tools deepen our understanding of human NVU function, yet certain limitations that
persist challenge further progress in the field: single-cell and single-nucleus sequencing
remains inaccessible to many due to high costs and lack of bioinformatic expertise.
Moreover, there is heavy reliance on brain banks for well-characterized frozen human
brain tissue, which also requires considerable adaptation of techniques initially
optimized for fresh tissue and creates even further disparity in how mouse and human
brain tissue are utilized, even with the same experimental question in mind. The
biological and bioinformatic biases these experimental decisions create and their extent
are unknown. Understanding the molecular mechanisms of NVU dysfunction can be
achieved by examining gene expression changes in brain microvessels in different
disease contexts; and the limited number of existing human neurovascular datasets
motivates transcriptomic characterization of more human samples. While it is
understood that BMECs perform the BBB function and that other vascular-associated
cell types critically regulate that function, the study of microvessels as a preserved unit
provides greater insight into the neurovasculature in a manner that dissociated cell
types cannot. To this aim, we use a singular, standardized protocol to enrich and isolate
microvessels from archived snap-frozen human and frozen mouse cerebral cortex using
mechanical homogenization and centrifugation-separation that is gentle enough to
dissociate brain tissue while preserving the structural integrity and multicellular

composition of microvessel fragments.

The common issue of multiple or contaminating cell types in samples used for tissue-

derived RNA sequencing has been largely eliminated by single-cell workflows.
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However, single-cell and single-nucleus workflows introduce other significant
challenges: measurements typically suffer from large fractions of observed zeros,
possibly due to technical limitations or randomness (Hicks et al., 2018; Bacher and
Kendziorski, 2016). Moreover, tissue dissociation and storage biases can induce
unwanted transcriptomic alterations and cell type composition differences (Denisenko et
al., 2020). Because of this, bulk and single-cell sequencing are complementary
strategies in which the former approach warrants a versatile and effective method for
isolating the NVU from human brain. Several approaches attempting to investigate the
isolated NVU have been developed in the past, albeit with major drawbacks: FACS-
sorting with antibodies against PECAM1/CD31 and CD13 (targeting the endothelial cell
membrane and pericyte cell membrane, respectively) require fresh brain tissue (Yang et
al., 2022), as do other iterations of microvessel isolation for cell culture expansion
(Navone et al., 2013; van Beijnum et al., 2008). Opting instead for selective capture of
endothelial and other vascular-associated cells from frozen human brain by laser
capture microdissection (LCM) (Kinnecom and Pachter, 2005; Mojsilovic-Petrovic et al.,
2004; Harris et al., 2008; Song et al.,, 2020a) demands considerable optimization if
microvessels are to be used for high-throughput applications downstream (Almeida and
Turecki, 2022). Finally, past attempts at microvessel isolation from frozen brain
homogenates have only yielded samples suitable for gPCR and Western blot (Bourassa
et al.,, 2019), and more comprehensive knowledge obtained from high-throughput
techniques is currently lacking from such studies. Critically, microvessels isolated using
the described method are in high yield, possess all major vascular-associated cell
types, and maintain theirin situ cellular structure, making them suitable for
characterization using high-throughput techniques. The advantages of this simple
protocol are manifold: it does not require the experimental setup needed by single-
nucleus sorting, nor does it require transgenic mice (Lee et al., 2019), enzymatic
dissociation (Crouch and Doetsch, 2018; Lee et al., 2019; Spitzer et al., 2023), or fresh
brain tissue (Crouch and Doetsch, 2018; Lee et al., 2019; Spitzer et al., 2023).
Importantly, this is the first standardized microvessel isolation method demonstrated to

work with snap-frozen brain tissue and that is compatible across high-throughput
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downstream applications, removing unknown biases introduced by the use of varied

isolation methods.

We have successfully applied the described protocol to postmortem ventromedial
prefrontal cortex (vmPFC) tissue from individuals having died suddenly with no
neurological or psychiatric disorder as well as mouse forebrain tissue, as proof of
concept that the same procedure can be used in both species. To demonstrate the
utility of microvessels isolated from postmortem vmPFC tissue, we processed 5
samples of extracted total RNA and 3 samples of extracted total protein using RNA
sequencing and liquid chromatography with tandem mass spectrometry (LC-MS/MS),
respectively. Moreover, we sorted endothelial nuclei from isolated microvessels using
fluorescence-activated nuclei sorting (FANS) as proof of concept that specific
neurovascular cell types may be further purified if needed. Bioinformatic processing and
analysis of human transcriptomic and proteomic data indicated that isolated samples
showed major enrichment for BMEC, pericyte, SMC, and astrocytic endfeet components
at both the mRNA and protein level, generating the first multiomic datasets from human

brain microvessels.

2. Materials

2.1. Biological materials

2.1.1. Human cortex This study was approved by the Douglas Hospital Research
Ethics Board and written informed consent from next of kin was obtained for each
individual included in this study. For each individual, the cause of death was determined
by the Quebec Coroner's Office and medical records were obtained. Samples were
obtained from Caucasian individuals having died suddenly with no neurological or
psychiatric disorder (Table 1). Postmortem brain tissues were provided by the Douglas—

Bell Canada Brain Bank (www.douglasbrainbank.ca). Frozen grey matter samples were

dissected from the vmPFC (Brodmann area 11) by expert brain bank staff stored at
-80 °C. The postmortem interval (PMI) is a metric for the delay between an individual's
death, the collection and processing of the brain. To assess RNA quality, RNA integrity

number (RIN) was measured for brain samples using tissue homogenates, with an
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average value of 5.34. A total of 5 subjects were subjected to RNA sequencing and 3
subjects were subjected to Liquid Chromatography with tandem mass spectrometry
(LC-MS/MS).

Note: All experiments involving the use of human brain samples must be performed in
accordance with the relevant institutional and national regulations. Use of postmortem

tissues was approved by the Institutional Review Board of the Douglas Hospital.

2.1.2. Mouse cortex Male C57BL/6J mice (n = 2) aged between 120 and 126 days of
age were bred, housed, and cared for in accordance with the Canadian Council on

Animal Care guidelines (CCAC; http://ccac.ca/en_/standards/quidelines), and all

methods were approved by the Animal Care Committee from the Douglas Institute
Research Center under protocol number 5570. Mice were housed in standard
conditions at 22 + 1 °C with 60% relative humidity, and a 12-h light-dark cycle with food
and water available ad libitum (lsingrini et al., 2017). Following pertinent guidelines and
regulations, the mice were anesthetized via intraperitoneal injection of ketamine (10
mg/ml)/xylazine (1 mg/ml) and transcardially perfused with cold PBS 1X. The frontal
cortices were removed and immediately frozen in liquid nitrogen and then stored at
-80 °C.

2.2. Reagents

e Sucrose (Fisher Scientific, cat. no. S5-500)

« Bovine serum albumin (Sigma-Aldrich, cat. no. A3912)

o DEPC-treated water (Invitrogen™, cat. no. 46—-2224)

« SIGMAFAST™ BCIP®/NBT tablets (Sigma-Aldrich, cat. no. B5655-25TAB)

« Ethanol 70% (vol/vol) and 100% (Sigma-Aldrich)

e Methanol 100% (Sigma-Aldrich)

o 1X Phosphate buffered saline (Wisent Bioproducts, D-PBS, cat. no. 311-425-CL)

« Single Cell RNA Purification Kit (Norgen Biotek Corp., cat. no. 51800)

o TapeStation RNA ScreenTape (Agilent, cat. no. 5067-5576) or TapeStation High
Sensitivity RNA ScreenTape (Agilent, cat. no. 5067-5579)

« TapeStation RNA ScreenTape sample buffer (Agilent, cat. no. 5067-5577) or
TapeStation High Sensitivity RNA ScreenTape sample buffer (Agilent, cat. no.
5067-5580)
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SMARTer Stranded Total RNA-Seq Kit v3 - Pico Input Mammalian (Takara Bio
Inc., cat. no. 634485)

NucleoMag NGS Clean-up and Size Select beads (Takara Bio Inc., cat. no.
744970.50)

0.5% Triton X dissolved in PBS (Triton X-100 from Thermo Fisher Scientific, cat.
no. AAA16046AE)

Normal donkey serum (Jackson ImmunoResearch Laboratories Inc., cat. no.
017-000-121)

Recombinant Alexa Fluor® 647 Anti-ERG antibody [EPR3864] (Abcam, cat. no.
ab196149)

Anti-Aquaporin 4 antibody [4/18] (Abcam, cat. no. ab9512)

Anti-Claudin 5 antibody (Abcam, cat. no. ab15106)

Anti-Laminin antibody (Sigma-Aldrich, cat. no. L9393)

Anti-Myelin Basic Protein antibody (BioLegend, cat. no. SMI-99P)

Anti-NeuN antibody, clone A60 (Sigma-Aldrich, cat. no. MAB377)
Anti-PDGFRB monoclonal antibody (G.290.3) (Thermo Fisher Scientific, cat. no.
PIMA515143)

Anti- PECAM-1 antibody (JC70) (Santa Cruz Biotechnology Inc., cat. no. sc-
53411)

Anti-Vimentin antibody [RV202] (Abcam, cat. no. ab8978)

VECTASHIELD® Antifade Mounting Medium with DAPI (Vector Laboratories,
cat. no. H-1200-10)

VECTASHIELD® Vibrance Antifade Mounting Media (Vector Laboratories, cat.
no. H-1700-10)

Single Cell RNA Purification Kit (Norgen Biotek Corp., cat. no. 51800)

Hoechst 33342 (Invitrogen™, cat. no. H3570)

cOmplete™ EDTA-free Protease Inhibitor Cocktail (Roche, cat. no.
04693132001)

Phosphatase Inhibitor Cocktail 2 (Sigma-Aldrich, cat. no. P5726)

Pierce™ BCA Protein Assay Kit (Pierce Biotechnology Inc., cat. no. 23225)
Sodium dodecyl sulfate (SDS; Sigma-Aldrich)

100 mM TRIS (pH 7.8; Sigma-Aldrich)

2.3. Equipment

Vortex mixer

Lite High Speed Centrifuge Tubes, 15 mL (FroggaBio, cat. no. TL15-500B)
Lite High Speed Centrifuge Tubes, 50 mL (FroggaBio, cat. no. TL50-500B)
Costar® Stripette® serological pipettes (10 ml capacity, Corning Inc., cat. no.
CLS4488)

GentleMACS™ C Tubes (Miltenyi Biotec, cat. no. 130-093-237)
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GentleMACS™ Dissociator (Miltenyi Biotec, cat. no. 130-093-235)

Point-tip forceps

Razor blades

Flat-ended spatula

Weighing boats

Analytical Weighing scale

Low Protein Binding Microcentrifuge Tubes, 1.5 ml (Thermo Fisher Scientific, cat.
no. 90410)

Fisherbrand™ Sure One™ Low Retention Non-Filtered Pipette Tips, 1000 uL
(Fisher Scientific, cat. no. 02-707-026)

Dry ice

Wet ice

Refrigerated benchtop centrifuge for 15 mL tubes (Beckman Coulter, model
Allegra X—14R)

Refrigerated benchtop centrifuge for 1.5 mL tubes (Eppendorf, model 5430)
Vacuum-aspiration system

FlowTubes™ with strainer cap (Canada Peptide, cat. no. FCT-9005)

Oven (37 °C) (Fisher Scientific, model Fisherbrand™ Isotemp™)
Multipurpose Digital Shaker (Mandel Scientific Inc., model Labnet Orbit 1000)
Nunc™ Lab-Tek™ || Chamber Slide™ System (Thermo Fisher Scientific, cat. no.
154453)

Fisherbrand™ Premium Cover Glasses (Fisher Scientific, cat. no. 12-548-5P)
Agilent TapeStation (Agilent Technologies, model 2200 TapeStation)

Flow Cytometer (BD Biosciences, model BD FACSAria™ Fusion)
Thermocycler (Applied Biosystems Corporation, model ProFlex PCR)
Probe-based sonicator (Fisher Scientific, model Thermo Sonic Dismembrator)
Heat block with tube rack

2.4. Reagent setup

2.4.1. Homogenization Buffer preparation Prepare fresh Homogenization Buffer (1M

sucrose + 1% BSA dissolved in DEPC-treated water) and keep at 4 °C until thoroughly

chilled. If transcriptomic techniques are to be used downstream to microvessel isolation,

it is recommended to use DEPC-treated water as opposed to Millipore water, as early

work done by our group has demonstrated that DEPC treatment preserves an

approximate 10% of transcripts that are otherwise lost when processing samples for

RNA sequencing (Supplementary Table 1). DEPC treatment functions as a cost-

effective RNAse inhibitor when homogenizing brain tissue in large volumes of buffer.
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2.4.2. BCIP/NBT substrate preparation If microvessel detection parallel to isolation is
desired, BCIP/NBT (5-bromo-4-chloro-3'-indolyphosphate and nitro-blue tetrazolium)
can be used as a chromogenic substrate for endothelial enzyme alkaline phosphatase.
SIGMAFAST™ BCIP®/NBT tablet (Sigma-Aldrich, Missouri, United States) should be
crushed and then dissolved in the fresh Homogenization Buffer according to the
manufacturer's instructions (1 tablet per 10 ml of solution). Crushing the tablet first
encourages faster dissolution in the highly viscous buffer. Within the brain, alkaline
phosphatase is localized to cerebral blood vessels (Shimizu, 1950; Leduc and Wislocki,
1952; Bourne, 1958; Becker et al., 1960; Bannister and Romanul, 1963; Romanul and
Bannister, 1962; Ball et al., 2002). BCIP is hydrolyzed by the alkaline phosphatase
expressed exclusively in endothelial cells to form a blue intermediate that is then

oxidized by NBT to produce a dimer, leaving an intense insoluble purple dye.

2.4.3. Protein extraction buffer Prepare 100 mM TRIS at pH 7.8 with 5% final volume
of sodium dodecyl sulfate (SDS).

3. Method

By virtue of a preserved basement membrane, the structures isolated using the
described method contain all neurovascular-associated cell types and, therefore, are
referred to as “microvessels”. The following protocol describes the specific steps used
to isolate and enrich microvessels with retained in situ morphology, which is achieved
by using semi-automated dissociation of microdissected brain tissue into a homogenate
followed by low-speed centrifugation (schematic overview in Fig. 1). These steps have
been optimized to isolate microvessels from 100 mg of frozen brain tissue, processing a

maximum of 4 samples at a time.

3.1. Tissue microdissection

Timing ~5 mins per sample

1. Set up dissection station adjacent to an analytical balance needed to weigh

microdissected brain tissue. Wash all dissection tools (point-tip forceps, razor
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blades, flat-ended spatula), bench, and any surface used in 70% (vol/vol) ethanol
prior to microdissection. Sufficiently chill a fresh weigh boat, 1.5 ml Eppendorf tubes,
and point-tip forceps on dry ice while leaving razor blades at room temperature.

2. Cut tissue using a razor blade and weigh 100 mg of frozen tissue per sample using
an analytical scale. Keep tissue on dry ice while microdissecting to minimize
degradation and transfer to a chilled 1.5 ml Eppendorf tube. Clean razor, forceps,

and spatula with 70% ethanol (vol/vol) and use a fresh weigh boat between samples.

Note: Postmortem human tissue can contain transmissible pathogens. Take
appropriate precautions, including wearing PPE, and seek medical attention if the

scalpel breaks skin.

3.2. Tissue homogenization and cellular fractionation

Timing 45 mins—1h

3. Set up homogenization station adjacent to benchtop gentleMACS™ Dissociator.
Place gentleMACS™ C Tubes, 15 ml falcon tubes, and Homogenization Buffer on

ice while keeping microdissected brain tissue samples on dry ice.

Note: Experimental objective must be decided at this step. If either transcriptomic,
proteomic investigation, or immunofluorescent visualization is desired, then prepare
Homogenization Buffer without BCIP/NBT tablet. If detection of microvessels is to be
performed using BCIP/NBT substrate, BCIP/NBT must be prepared in the

Homogenization Buffer, as described above.

4. Using a serological pipette, transfer 2 ml of cold Homogenization Buffer to a
gentleMACS™ C Tube and then transfer 100 mg brain tissue from 1.5 ml
Eppendorf tube to gentleMACS™ C Tube. Ensure that tissue is fully submerged
in Homogenization Buffer while gently agitating the tube for 30 seconds to
encourage thawing and osmotic equilibrium (Fig. 2a). See Troubleshooting Step

1 in Supplementary Table 3.
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. Snap gentleMACS™ C Tube into the Dissociator and run the rotating paddle on
program Lung 02.01 (Fig. 1). For the first half of the Lung 02.01 program, the
speed of the rotating paddle is gradually increased to its maximum in a clockwise
direction, and then in an anti-clockwise direction for the second half of the
program. The duration of the program is 37 seconds.

. After tissue homogenization is complete, return gentleMACS™ C Tube to ice and
pipette an additional 8 ml of cold Homogenization Buffer into the tube, topping up
the homogenate to 10 ml. Gently invert to mix and collect homogenate (Fig. 2b—
C).

. Using a serological pipette, transfer the 10 ml of homogenate to a chilled 15 ml
falcon tube, including any foam produced during paddle rotation (Fig. 2d).

. Gently invert to mix homogenate one more time before centrifugation in order to
prevent the formation of a foamy seal atop the homogenate when left sitting.
Centrifuge homogenates at 3200 g for 30 mins at 4 °C. Once centrifugation is
complete, a microvessel-enriched pellet will form at the bottom of the falcon tube
(Fig. 2e). See Troubleshooting Step 2 in Supplementary Table 3.

. Carefully vacuum-aspirate the supernatant (which may include an upper layer of
clumped dissociated myelin, similar to milk skin on top of boiled milk) without

disturbing the microvessel-enriched pellet (Fig. 2e—f).

10.Gently resuspend the pellet in 400ul of cold PBS and pipette 50 ul of

resuspended pellet into each well of an 8-well chamber slide (Nunc™ Lab-Tek™
[l Chamber Slide™ System, Thermo Scientific™, Massachusetts, United States)
(Fig. 2g). Leave the chamber slide open-faced in a 37 °C oven overnight. Once

the PBS has evaporated, microvessels will dry flush to the surface of the slide.

3.3. Detection of microvessels from the enriched pellet using BCIP/NBT substrate
Timing 35—40 mins
Yield and stability of microvessel isolation can be assessed using chromogenic

substrate BCIP/NBT to visualize endothelial enzyme alkaline phosphatase. When

detecting microvessels with BCIP/NBT, the process of staining microvessels occurs

throughout homogenization and centrifugation steps (steps 5-11) (Fig. 2h).
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11. After resuspension of the pellet (section 3.2, step 10), fix microvessels by covering
them to a depth of 2-3 cm with ice-cold 100% methanol. Cover chamber slide with
lid and allow cells to fix for 15 min on ice or at 4 °C.

12. Aspirate 100% methanol and wash wells in 1X PBS three times for 5 min.

13.Remove the media chamber carefully with the provided chamber removal tool,
according to the manufacturer's instructions.

14.Mount the microvessels using VECTASHIELD Vibrance Antifade Mounting Media

(California, United States) and place coverslip.

3.4. Detection of microvessels from the enriched pellet using
immunohistochemistry

Timing 4—4.5 hours, spread across 3 days (2 overnight incubations)

Greater immunophenotypic characterization of isolated microvessels can be carried out
following the resuspension of additional microvessel-enriched pellets. Primary
antibodies raised against canonical expression markers for BMECs (Laminin and
PECAM1), tight junctions (CLDNS), pericytes (PDGFRpB), smooth muscle cells
(Vimentin), and astrocytic endfeet (AQP4) are utilized, along with appropriate
fluorophore-conjugated secondary antibodies to characterize collected microvessels

thoroughly.

15. After resuspension of the pellet (section 3.2, step 10), fix microvessels by covering
them to a depth of 2-3 cm with ice-cold 100% methanol. Cover chamber slide with

lid and allow cells to fix for 15 min on ice or at 4 °C.

Note: Immunofluorescent visualization must omit any steps in which the microvessel-
enriched pellet is filtered through a cellular strainer because microvessels cannot be

released from the strainer and, therefore, cannot be mounted onto a microscope slide.
16. Aspirate 100% methanol and wash wells in 1X PBS three times for 5 min.

17.Incubate microvessels in blocking buffer (1% BSA + 0.5% Triton X dissolved in PBS)

under agitation for 60 min at 4 °C.

63


https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10562768/#sec3.2
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10562768/#sec3.2

18. Aspirate blocking solution and pipette into each well 500 ul of primary antibody
dilution (1:500 in 1% BSA + 2% normal donkey serum + 0.5% Triton X dissolved in
PBS) and incubate under agitation overnight at 4 °C.

19. Aspirate primary antibody dilution and wash wells in 1X PBS three times for 5 min.

20. Incubate microvessels in fluorophore-conjugated secondary antibody dilution
(1:500-1:1000 in 1% BSA + 2% normal donkey serum + 0.5% Triton X dissolved
in PBS) and incubate under agitation for 2 hours at room temperature, protected
from all light.

21. Aspirate secondary antibody dilution and wash wells in 1X PBS three times for 5
min.

22. Remove the media chamber carefully with the provided chamber removal tool,
according to the manufacturer's instructions.

23. Mount the microvessels using VECTASHIELD Antifade Mounting Medium with DAPI

(California, United States) and place coverslip.

To expand upon experimental applications possible with isolated human brain
microvessels, we adapted several downstream techniques including: total RNA
extraction, RNA library construction for downstream RNA sequencing, fluorescence-
activated nuclei sorting (FANS) of endothelial nuclei, and total protein extraction for

downstream Liquid Chromatography with tandem mass spectrometry (LC-MS/MS).

3.5. RNA extraction from isolated microvessels

Timing 30—40 mins

Total RNA extraction from isolated microvessels begins with resuspension of the
microvessel-enriched pellet (section 3.2, step 10), followed by filtration through a 35 pm
cellular strainer in which microvessels become trapped. From these entrapped
microvessels, total RNA is immediately extracted using the Single Cell RNA Purification
Kit (Norgen Biotek Corp., Ontario, Canada). After total RNA is successfully extracted, a

stopping point is possible during which extracted RNA is frozen and stored at —80 °C.
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24 .Gently resuspend the pellet (section 3.2, step 10) in 500 pl of cold PBS and
gradually pipette through a 35 ym Strainer Cap for FlowTubes™ (Canada Peptide,
Quebec, Canada) using vacuum-aspiration underneath to encourage filtration. The
result is intact microvessels trapped within the strainer mesh, where smaller cellular
debris and free-floating nuclei have passed through. See Troubleshooting Step 3
in Supplementary Table 3.

25.Using a flat-ended spatula and point-tip forceps, swiftly push and pull out the strainer
mesh, removing it from its plastic frame (Fig. 2i).

26.Immediately submerge the mesh into 100 pl of RL buffer in a 1.5 ml Eppendorf tube,
according to step 1A of the manufacturer's protocol.

27.Transfer 100 pl of fresh 70% ETOH, pipette 10 times to wash through the mesh (you
may briefly vortex for good measure).

28.Discard the mesh and follow steps according to the manufacturer's instructions,
including on-column DNase digestion.

29.Quantify RNA using the Agilent TapeStation 2200 or other quantification system of
choice (for total RNA concentration and RIN, see Supplementary Table 2). Freeze
and store RNA sample at -80 °C.

STOPPING POINT: tubes of total RNA should be frozen and stored at —80 °C.

3.6. Protein extraction from microvessel-enriched pellet or strained microvessels
Timing 1 hour 10 mins—1 hour 15 mins

Total protein has been successfully extracted from either the microvessel-enriched
pellet or microvessels stained through a cellular sieve, with one modification to
Homogenization Buffer preparation required in which cOmplete™ EDTA-free
Protease Inhibitor Cocktail (Roche, Basel, Switzerland) and Phosphatase Inhibitor
Cocktail 2 (Sigma-Aldrich, Missouri, United States) are added according to the
manufacturer's instructions and based on final volume prepared. With the procedure
identical to when using strained microvessels (kept on a strainer), we elaborate protein
extraction from frozen microvessel-enriched pellets (pellets stored at —-80 °C after
section 3.2, step 10). After total protein is successfully extracted, a stopping point is

possible during which extracted protein is frozen and stored at —80 °C.
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30.Resuspend frozen pellet in 5% sodium dodecy! sulfate (SDS), 100 mM TRIS (pH
7.8), transfer to a 1.5 ml Eppendorf tube and extract protein by heating to 99 °C for
10 minutes on a heat block with tube rack.

31.Subject resuspended pellets to probe-based sonication using a Thermo Sonic
Dismembrator at 25% amplitude for 3 cycles for 5 seconds.

32.Clarify lysates by centrifugation at 20,000 g for 5 minutes.

33.For estimation of protein concentration, aliquot approximately 10% of the sample
and dilute to <1% SDS and use for estimation of protein concentration by Pierce ™
bicinchoninic acid assay (BCA) Protein Assay Kit (Pierce Biotechnology Inc.,
Massachusetts, United States).

STOPPING POINT: tubes of total protein should be frozen and stored at —80 °C

Note: Total protein and total RNA extraction from the same microvessel-enriched pellet
has not been validated. Two microvessel-enriched pellets per sample should be

prepared, one for RNA and one for protein extraction.

3.7. FANS-sorting of endothelial nuclei from microvessel-enriched pellet

Timing 2 hours 5 mins preparation, ~1-2 hours sorting

If further isolation of BMECs from the microvessel-enriched pellet is desired, FANS-
sorting of ETS-related gene (ERG)* BMECs from the obtained microvessel-enriched
pellet can be performed. ERG is a transcription factor whose expression in normal
physiological conditions is found exclusively in endothelial nuclei, making it a highly
specific pan-endothelial nuclear marker (Nikolova-Krstevski et al., 2009; Miettinen et al.,
2011; He et al., 2018; Garcia et al., 2022; Yang et al., 2022). FANS of BMECs can be
carried out following the resuspension of the microvessel-enriched pellet (section 3.2,
step 10).

34.Resuspend the microvessel-enriched pellet in 500 ul of cold PBS and centrifuge a

second time at 500 g for 3 min at 4 °C. Aspirate supernatant, removing any

remaining sucrose.
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35.

36.

37.

38.

For a second time, resuspend the washed pellet in 250 pul of the following antibody
solution: recombinant Alexa Fluor® 647 anti-ERG (1:100 dilution; ab196149, Abcam,
Massachusetts, United States) in 0.5% BSA + 0.1% Triton in PBS. Transfer to a 1.5
ml Eppendorf tube and incubate under gentle agitation for 2 hours at 4 °C.

In the last 10 minutes of the 2 h incubation, add 1 pl of Hoechst 33342 dye
(Invitrogen, Massachusetts, United States) to stain nuclear DNA.

Filterthe suspensionthrougha35 pum FlowTubes™ with strainer cap and transfer
flow-through into a FACS tube.

The BD FACSAria™ Fusion Flow Cytometer (BD Biosciences, California, United
States) was used to sort our ERG* population. The gating strategy used for sorting
was as follows: doublet discrimination was achieved by gating Hoechst 33342
stained singlets in a FSC-A versus Hoechst-A plot using a 350 nm UV laser and a
450/50 filter. The subsequent ERG™ population was gated in an Alexa Fluor 647-A
vs. FSC-A plot using a 640 nm laser in combination with a 730/45 filter. Gating was
applied to filter singlets using physical parameters and violet fluorescence (405-nm
laser, 525/50 filter). Nonoverlapping gates were adjusted to collect endothelial nuclei
based on Alexa Fluor® 647 anti-ERG immunoreactivity (640-nm laser, 730/45 filter).
This approach was chosen due to the well-known observation that forward scatter is

proportional to size.

4. High-throughput applications of isolated microvessels
4.1. Library construction and RNA sequencing

Microvessel-enriched pellets yielded an average of 8.54 ug/ul of total RNA per sample

(Supplementary Table 2). Libraries were then constructed using the SMARTer Stranded

Total RNA-Seq Kit v3 - Pico Input Mammalian (Takara Bio Inc., Shiga, Japan), which

features integration of unique molecular identifiers (UMIs). Libraries were constructed

using 10 ng of RNA as input, 2 minutes of fragmentation at 94 °C (Applied Biosystems

Corporation, model ProFlex PCR), 5 cycles of amplification at PCR1 (addition of

lllumina adapters and indexes), 12 cycles of amplification at PCR2 (final RNA-seq

library amplification) and clean-up of final library using NucleoMag NGS Clean-up and

Size Select beads (Takara Bio Inc., Shiga, Japan). Libraries were then quantified at the
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Genome Quebec Innovation Centre (Montreal, Quebec) using a KAPA Library
Quantification kit (Kapa Biosystems, USA), and average fragment size was determined
using a LabChip GX (PerkinElmer, USA) instrument. Libraries were sequenced on the
NovaSeq 6000 system (/llumina, Inc., California, United States) using S4 flow cells with

100bp PE sequencing kits.

4.2. Bioinformatic pipeline and analyses of RNA sequencing data

4.2.1. UMI extraction, alignment, de-duplication, metrics and gene counting RNA
sequencing of microvessel libraries yielded an average of ~72 million reads per library,
which were then processed following our in-house bioinformatic pipeline. Briefly, UMI
extraction based on fastq files was performed using the module extract of umi_tools
(v.1.1.2) (Smith et al., 2017). Reads were then aligned to the Human Reference
Genome (GRCh38) using the STAR software v2.5.4b (Dobin et al., 2013) with Ensembl
vo0 as the annotation file and using the parameters: -twopassMode Basic --
outSAMprimaryFlag AllBestScore --outFilterintronMotifs RemoveNoncanonical --
outSAMtype BAM SortedByCoordinate --quantMode TranscriptomeSAM
GeneCounts. Resultant bam files were then sorted and indexed using SAMtools
(v.1.3.1) (Li et al., 2009), and duplicate reads with the same UMI were removed using
the dedup module of umi_tools (v.1.1.2) (Smith et al., 2017). Different metrics, including
the fraction of the exonic, intronic, and intergenic reads were calculated using the
CollectRnaSeqMetrics module of Picard (version 1.129; Picard2019toolkit, Broad
Institute, GitHub repository). The expected counts and the transcripts per million (TPMs)
were generated using RSEM (v1.3.3; reverse strand mode) (Li and Dewey, 2011). The
number of reads, alignment percentages, genomic contamination, and duplication rate

for each sample are shown in the Supplementary data.

4.2.2. Computational deconvolution of RNA sequencing data Two approaches were
used for computational deconvolution of RNA sequencing data. The first approach was
performed using the web tool BrainDeconvShiny
(https://voineagulab.shinyapps.io/BrainDeconvShiny/), which implements the best-

performing algorithms and all cell type signatures for brain, as well as goodness-of-fit
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calculations based on benchmark work conducted by Sutton et al. (2022). UMI counts
for each gene were converted to transcripts per million (TPMs) to account for the
varying length of gene and sequencing depth of each sample, facilitating comparisons
across samples. Genes with zero TPMs were removed; 34370 genes from the original
58303 passed this QC criteria and were then used as input into the BrainDeconvShiny
tool. Deconvolution was performed twice: the first approach used average expression in
control samples from the Velmeshev et al. (2019) single nuclei dataset (raw data
available through the Sequence Read Archive, accession number PRJNA434002;

analyzed data available at https://autism.cells.ucsc.edu) as the reference signature for

annotated cell types and CIBERSORT v1.04 algorithm to deconvolute sample profiles
and estimate cell type composition. The second approach used the MultiBrain (MB)
composite signature (Sutton et al., 2022) generated by averaging the expression
signatures of five datasets for five cell types (neurons, astrocytes, oligodendrocytes,
microglia, and endothelia). MB was used as cell type signatures for deconvolution of our
dataset using CIBERSORT v1.04.

The second approach to deconvolution was performed in-house. Postmortem NVU
single-nucleus data generated on the 10X Genomics Chromium system was accessed
from Yang et al. (2022; raw sequencing data are accessible on GEO using the
accession code GSE163577) and used as the reference signature. Seurat (Stuart et al.,
2019) was used to pre-process raw count expression data, removing genes with less
than 3 cells or cells with less than 200 expressed genes. 23054 genes from a total of
23537 and 141468 nuclei from a total of 143793 passed these QC criteria. Counts per
million (CPM) values were averaged across nuclei of each cell type to generate the
Yang signature input for the CIBERSORTX tool (Newman et al., 2019).

4.3. Gas Chromatography—Mass spectrometry (LC-MS) with tandem mass tag
fractionation

4.3.1. Protein digestion and TMT labelling Extracted proteins were reduced with 20
mM tris(2-carboxyethyl)phosphine (TCEP) at 60 °C prior to alkylation with 25 mM

iodoacetamide at room temperature for 30 minutes in the dark. An equivalent of 10
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Mg of total protein was used for proteolytic digestion using suspension trapping (S-
TRAP). Briefly, samples were acidified with phosphoric (1.3% final concentration) and
then diluted 6-fold in STRAP loading buffer (9:1 methanol:water in 100 mM TEAB, pH
8.5). Samples were loaded onto S-TRAP Micro cartridges (Protifi LLC, Huntington, NY)
prior to centrifugation at 2000g for 2 minutes and washed three times with 50 pl of
STRAP loading buffer. Proteins were digested with trypsin (Sigma Corporation,
Kanagawa, Japan) at a 1:10 enzyme to substrate enzyme-to-substrate ratio for 2 hours
at 47 °C. Peptides were sequentially eluted in 100 mM TEAB, 0.1% formic acid in water,
and 50% acetonitrile and lyophilized to dryness prior to labelling with TMT 10plex
reagents according to the vendor's specifications (Thermo Fisher Scientific,

Massachusetts, United States).

4.3.2. Offline high-pH reversed-phase fractionation Labelled peptides were pooled
and again lyophilized to dryness, and then reconstituted in 5 mM ammonium formate
and fractionated offline by high pH reversed-phase separation using a Waters Xbridge
Peptide BEH C18 column (2.1 x 150mm, 2.5 um) (Waters Corp., Massachusetts, United
States) and an Agilent 1290 LC system (Agilent Technologies, California, United
States). Binary gradient elution was performed at a flow rate of 400 uL/minute using
mobile phase A) 5 mM ammonium formate adjusted with ammonium hydroxide to pH
10, and B) 100% acetonitrile using the following program: 0 min, 0% B; 2min, 0% B;
2.1min, 5% B; 25min, 30% B; 30min, 80% B; 32min, 80% B; 2 min post-run, 0% B.
Fractions were collected every 30 seconds and the first and last 7 fractions were
concatenated such that even and odd samples were pooled separately, resulting in 20

fractions in total.

4.3.3. LC-MS/MS Samples were analyzed by data- dependent acquisition (DDA) using
an Easy-nLC 1200 online coupled to a Q Exactive Plus (both Thermo Fisher Scientific,
Massachusetts, United States). Samples were first loaded onto a pre-column (Acclaim
PepMap 100 C18, 3 ym particle size, 75 uym inner diameter x 2 cm length) in 0.1%
formic acid (buffer A). Peptides were then separated using a 60-min binary gradient

ranging from 3 to 40% B (84% acetonitrile, 0.1% formic acid) on the analytical column
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(Acclaim PepMap 100 C18, 2 um particle size, 75 pm inner diameter x 25 cm length) at
300 nL/min. MS spectra were acquired from m/z 350-1500 at a resolution of 70,000,
with an automatic gain control (AGC) target of 1 x 108 ions and a maximum injection
time of 50 ms. The 15 most intense ions (charge states +2 to +4) were isolated with a
window of m/z 1.2, an AGC target of 2 x 104, and a maximum injection time of 64 ms
and fragmented using a normalized higher-energy collisional dissociation (HCD) energy
of 28. MS/MS spectra were acquired at a resolution of 17,500 and the dynamic

exclusion was set to 30 s.

4.3.4. Bioinformatic pipeline and analyses of MS data DDA MS raw data was
processed with Proteome Discoverer 2.5 (Thermo Scientific, Massachusetts, United
States) and searched using Sequest HT against a FASTA file containing all reviewed
protein sequences of the canonical human proteome without isoforms downloaded from

Uniprot (https://www.uniprot.org). The enzyme specificity was set to trypsin with a

maximum of 2 missed cleavages. Carbamidomethylation of cysteine was set as static
modification and methionine oxidation as variable modification. The precursor ion mass
tolerance was set to 10 ppm, and the product ion mass tolerance was set to 0.02 Da.
The percolator node was used, and the data was filtered using a false discovery rate
(FDR) cut-off of 1% at both the peptide and protein level. The Minora feature detector

node of Proteome Discoverer was used for precursor-based label-free quantitation.

5. Results
5.1. Immunophenotypic characterization reveals isolated brain microvessels have

preserved morphology and expression integrity

Human brain microvessels were isolated from 5 frozen vmPFC grey matter samples
microdissected from healthy individuals who died from peripheral diseases or natural
events (Table 1). Because the same basement membrane that maintains the integrity of
the endothelium also ensheaths astrocytic endfeet as well as pericytes or smooth
muscle cells, it is impossible to isolate solely BMECs and, therefore, isolated
microvessels also contain microvessel-associated cell types. Notably, the described

method allows for isolation of microvessels from other brain regions (data not shown)
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and has additionally been performed using the dorsolateral prefrontal cortex (dIPFC,
Brodmann area 8/9), the primary visual cortex (Brodmann area 17), as well as the

hippocampus (Brodmann area 28).

Following isolation of human brain microvessels, chromogenic staining of resuspended
pellets using BCIP/NBT (5-bromo-4-chloro-3'-indolyphosphate and nitro-blue
tetrazolium), a substrate for endothelial enzyme alkaline phosphatase, demonstrated
isolation and enrichment of predominantly microvessels from vmPFC tissue samples
(Fig. 3a—b), with similar success when isolating microvessels from mouse cortex (Fig.
3c). The cytoarchitecture of brain microvessels is both complex and comprised of
several cell types; thus, following the isolation of brain microvessels, we aimed to
characterize the structure and morphological integrity of isolated microvessels.
Immunophenotypic characterization of several NVU markers revealed expression of
vimentin (VIM; anti-Vimentin antibody RV202, Abcam), laminins (LAM; anti-Laminin
antibody L9393, Sigma-Aldrich), claudin 5 (CLDN5, anti-Claudin 5 antibody ab15106,
Abcam), platelet-derived growth factor receptor beta (PDGFRpB, anti-PDGFRf
monoclonal antibody G.290.3, Thermo Fisher Scientific) and aquaporin 4 (AQP4, anti-
Aquaporin 4 antibody [4/18], Abcam). More precisely, vimentin (Fig. 4a—b), a regulator
of actin cytoskeleton primarily in smooth muscle (Chang and Goldman, 2004) and to a
lesser extent endothelial cells (Boraas and Ahsan, 2016) and pericytes (Bandopadhyay
et al., 2001), as well as laminins (Fig. 4c), the major basement membrane component
responsible for signal transduction via interaction with cell surface receptors (Aumailley
and Smyth, 1998), are expressed continuously and homogeneously across the entire
length of the endothelial surface. CLDN5, a major functional constituent of tight
junctions (Greene et al., 2019), was also stained with no apparent discontinuity,
suggesting that endothelial tight junctions were preserved (Fig. 4d). Pericyte coverage
of BMECs, immunolabeled by regulator of angiogenesis and vascular stability PDGFRA
(Winkler et al., 2010), was detected adhering to the surface of microvessels (Fig. 4e).
These results suggest that the overall in situ brain microvessel structure is conserved

after isolation.
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Astrocytes serve multiple essential functions in supporting normal brain physiology
(Kimelberg and Nedergaard, 2010). This is, in part, due to the extension of astrocytic
endfeet that surround approximately 99% of the cerebrovascular surface (Mathiisen et
al., 2010) which, in conjunction with pericytes (Winkler et al., 2011), regulate expression
of molecules that form the BBB including: tight junction, enzymatic, and transporter
proteins (Abbott et al., 2006, 2010; Wolburg et al., 2009). Although astrocytes were not
co-isolated with microvessels, their perivascular endfeet are ensheathed within the
same vascular basement membrane as endothelial cells and pericytes, making it
possible that astrocytic endfeet remained attached after tissue homogenization.
Because of this, we further observed astrocyte vascular coverage of isolated
microvessels. AQP4, a water channel protein essential for the maintenance of osmotic
composition and volume within the interstitial, glial, and neuronal compartments
(Nagelhus and Ottersen, 2013; Papadopoulos and Verkman, 2013), is expressed at the
vessel-facing astrocytic membrane and superimposes the walls of isolated microvessels
(Fig. 4f).

Finally, we examined possible contamination of our microvessel preparations by other
cell types found within the brain. Immunolabelling for myelin basic protein (MBP; anti-
Myelin Basic Protein antibody, BioLegend) was not detected (Fig. 4g), nor did
immunolabelling for neuronal nuclear protein (NeuN; anti-NeuN antibody clone AG60,
Sigma-Aldrich) reveal the presence of neuronal elements (Fig. 4h). Thus, neurons and
oligodendrocytes were consistently not observed to be co-isolated with microvessels.
Together, these results indicate that the described protocol allows for the isolation and
enrichment of structurally preserved brain microvessel fragments that are comprised of

BMECs, astrocytic endfeet, pericytes, and tight junction proteins.

5.2. Computational deconvolution and characterization of transcriptomic data
indicates high microvessel yield after isolation

To estimate the enrichment of our microvessel preparations, we performed
computational deconvolution using the BrainDeconvShiny tool

(https://voineagulab.shinyapps.io/BrainDeconvShiny/) and calculated TPMs as input
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(Fig. 5a—b). To demonstrate stability of outcome regardless of resources used, different
iterations of deconvolution were performed using the CIBERSORT v1.04 algorithm to
estimate cell type composition and either the single-nucleus dataset from Velmeshev et
al. (2019; VL) (Velmeshev et al., 2019) or the MultiBrain (MB) dataset from Sutton et al.
(2022) (Sutton et al., 2022) as the reference signature. Regardless of the approach
used, majority endothelial gene expression was estimated, with an average of 94.92%
using the VL dataset (Fig. 5a) and an impressive 86.91% using the MB dataset (Fig.
5b), which is a composite signature generated by quantile-normalising and averaging
five previously published datasets. Some contamination from neurons (1.29% and
4.66%, respectively), as well as negligible contamination from oligodendrocytes, was
observed. When using either dataset as the reference signature, a limited presence of
astrocytic genes was observed (1.16% and 6.11%, respectively), which may represent
the contribution of astrocytic endfeet that cover the length of the neurovasculature. To
estimate the multicellular composition of our microvessels at a finer resolution,
computational deconvolution was performed a third time using the reference single-
nucleus data generated by Yang et al. (2022), in which the different neurovascular cell
type signatures were determined (Fig. 5c). Averaged CPMs across nuclei of each cell
type were used as input for the CIBERSORTX tool (Newman et al.,, 2019), which
estimated an average composition of 44.02% capillary and 37.62% SMC, along with
much lower estimations for pericyte, arterial, venous, astrocyte and perivascular
fibroblast genes (Fig. 5c). Although differentially distributed along the arteriovenous
axis, both SMCs and pericytes are embedded within the vascular basement membrane
(McConnell et al., 2017) and, therefore, it is unlikely that our isolated method
preferentially selects one cell type over the other. Because of this, and the known
similarity in molecular signature between SMCs and pericytes (Chasseigneaux et al.,
2018; Muhl et al., 2020), as well as the high percentage of captured capillary segments
(in which pericytes are predominantly observed) (Sweeney et al., 2016; Gonzales et al.,
2020; Hartmann et al., 2021; Alarcon-Martinez et al., 2018), the surprisingly low
estimation of pericyte genes may represent a limitation in comparing single-nucleus and
bulk tissue datasets to one another. Critically, an average of 90.4% of the total TPMs

across samples were assigned to NVU-constituent cell types.
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To explore our transcriptomic data, TPMs were averaged across the 5 subjects, and the
top 10% of most highly expressed genes were designated (a total of 3437 genes) and
used as input for over-representation analysis (ORA) using the enrichR package in R,
selecting the “Descartes Cell Types and Tissue 2021” database to identify gene sets
that are statistically over-represented (Fig. 6a—b and Supplementary Table 4). The
threshold value of enrichment was selected by a p-value <0.05 and, as shown, over-
represented genes were dramatically enriched for vascular-related terms, such as
“Vascular endothelial cells in Cerebellum” and “Vascular endothelial cells in Cerebrum”.
Genes behind enriched terms were extracted and the expression of a subset of known
brain endothelial, pericyte, astrocytic, and smooth muscle genes in isolated
microvessels were examined (Fig. 6¢c—i). As expected, microvessels had increased
expression of canonical endothelial genes such as CLDN5, CDH5, SLC2A1, ABCBH1,
VWEF, and MFSD2A, with the highest expression in endothelial genes ACTG1, B2M,
BSG, EEF1A1, HLA-B, HLA-E, SPARCL1, TMSB10, and VIM (Fig. 6a).

Additionally, there was enrichment for other neurovascular cell types, as suggested by
canonical pericyte genes PDGFRB, MCAM, RGS5, AGRN, and NOTCH3 (Fig. 6b), as
well as canonical smooth muscle genes ACTA2, MYL6, MYL9, TAGLN, and LGALS1
(Fig. 6¢). Highest expression was detected in pericyte genes CALD1, FN1, IFGBP7,
RGS5, SPARC, and SPARCL1 (Fig. 6b); as well as smooth muscle genes ACTG1,
ACTN4, CALD1, MYL6, and PTMA (Fig. 6¢). Complimentary to immunophenotypic
characterization of isolated microvessels, several genes whose products are involved in
junctional complex maintenance and organization (tight junctions, Fig. 6f; adherens
junctions, Fig. 6g) are found in the top 10% of most highly expressed genes, for e.g.,
CLDN5, CTNNB1, CTNND1, ITGB1, JAM1, OCLN, TJP1, and TJP2; with additional
vascular makers expressed at lower transcripts per million present throughout the entire
dataset. Expression of astrocytic genes was observed to a lesser extent, several which
have been previously validated as markers of astrocytic processes or endfeet (Boulay et
al., 2017; Derouiche and Geiger, 2019; Sakers et al., 2017), namely EZR, GJA1, RDX,
SLC1A2, and SLC1A3 (Fig. 6h). To better visualize the proportion of expression
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contributed by these genes, TPMs were summarized by cell type over the total number
of TPMs (Fig. 6i), demonstrating an overrepresentation of endothelial, smooth muscle

cell, and pericyte genes in samples.

Intriguingly, results from ORA reveal genes that are of interest in numerous disease
contexts. Enriched in the described dataset is gene CLDNS, an indispensable junctional
protein for the correct organization of tight junctions and maintenance of BMEC integrity
(Greene et al., 2019), which was previously reported to be downregulated in the nucleus
accumbens of depressed suicides (Menard et al., 2017) by altered epigenetic regulation
via histone deacetylase 1 (HDAC1) (Dudek et al., 2020). Enriched pericyte genes
TXNIP, RUNX1T1, ITGA1 and, DOCK9 are also reported to be differentially expressed
in Schizophrenia (Puvogel et al., 2022). Similarly enriched in this dataset are angiogenic
growth factors EGFL7, FLT1, VWF, and antigen-presentation machinery B2M and HLA-
E, all of which are upregulated in a subpopulation of angiogenic BMECs from subjects
with Alzheimer's disease (Lau et al., 2020), suggesting a compensatory angiogenic and
immune response in AD pathogenesis. Likewise, endothelial genes PICALM, INPP5D,
ADAMTS1, and PLCG2 that are found in the top 10% of the microvessel dataset are
differentially expressed in Alzheimer's disease (Yang et al.,, 2022). Recent
breakthroughs in deciphering the underlying etiology of Huntington's disease reveal
aberrant downregulation of endothelial ABCB1, ABCG2, SLC2A1, and MFSD2A as well
as mural PDGFRB, SLC20A2 and FTH1 (Garcia et al., 2022) — mutations in which are
known to cause HD-like syndromes with primary pathology localized in the basal
ganglia (Chinnery et al., 2007; Tadic et al., 2015). Indeed, human brain microvessel
datasets integrated with others, like those from experimental models, will expedite our
understanding of neurovascular contributions to mood disorders and neurodegenerative
disease, and even further propagate hypothesis generation for established vascular
diseases, such as white matter vascular dementia in which each cell type of the NVU
exhibits a specific disease-associated expression signature (Mitroi et al., 2022).
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During neuroinflammation, the BBB endothelium reconfigures its landscape of adhesion
molecules, cytokines, chemokines, and reactive oxygen species, combined with
reduced expression of junctional molecules. These changes prime for bidirectional
interaction between the neuroimmune and peripheral immune compartments and
enable increased recruitment of circulating leukocytes across the BBB. The top 10% of
most highly expressed genes were also assessed for overlap with a curated immune-

related gene list (Immunome Database accessed

at https://www.innatedb.com/redirect.do?go=resourcesGeneLists, data originally

provided by http://structure.bmc.lu.se/idbase/immunome/) (Breuer et al., 2013; Ortutay

et al., 2007), sharing 145 out of 824 validated genes involved in immunological
processes (Fig. 6j), including notable immune factors CX3CL1, IFNGR1, CD74, IL4R,
CXCL2, CXCL12, CD81, IRF1, MIF, as well as HLAs (HLA-A, HLA-B, HLA-C, HLA-E,
HLA-F, HLA-DRA, HLA-DPA1, HLA-DPB1). Moreover, adhesion molecules known to
mediate cell-cell adhesion at the BBB are also present, including: CD44, previously
implicated in monocyte transmigration (He et al., 2016b) and T-cell-endothelial cell
interaction (Flynn et al., 2013), MCAM, which mediates recruitment of pathogenic
CD4* T lymphocytes (Charabati et al., 2023) as well as T helper (TH) 1 cells (Breuer et
al.,, 2018), and ICAM2, which is also critical for T helper (TH) 1 cell diapedesis
(Laschinger et al., 2002). Other well-characterized immune, adhesion, and trafficking

molecules in our data are listed in the Supplementary data.

5.3. High correspondence between generated transcriptomic data and published
neurovascular dataset

As a means to assess our isolation method, our top 10% of most highly expressed
genes were juxtaposed to validated neurovascular cell type-defining markers, as
designated by Garcia et al. (2022) based on sequencing of 4992 and 11,689 vascular
nuclei from ex vivoand postmortem brain tissue, respectively. Results indicated
substantial overlap between the three datasets for all NVU-constituent cell types (Fig.
7), including arteriole-defining genes (Fig. 7a), capillary-defining genes (Fig. 7b),
venule-defining genes (Fig. 7c), arteriolar SMC-defining genes (Fig. 7d), pericyte-

defining genes (Fig. 7e), venular SMC-defining genes (Fig. 7f), and perivascular
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fibroblast-defining genes (Fig. 79g). Interestingly, overlap was consistently greater

between the two postmortem datasets.

5.4. Proteomic characterization of isolated brain microvessels

While transcript level may show positive correlations with protein level, protein
abundance should not necessarily be inferred from RNA sequencing counts (Nie et al.,
2006; Vogel and Marcotte, 2012); hence, interrogation of the highly dynamic proteome
is needed to speculate the functional consequences of changes in protein expression.
We sought to interrogate NVU-specific proteomic signatures using total protein
extracted from isolated microvessels. Microvessel-enriched pellets were prepared from
3 frozen vmPFC grey matter samples microdissected from healthy individuals who died
of peripheral diseases or natural events (Table 1). Although resuspended and strained
pellets yield sufficient protein needed to perform LC-MS/MS (validated, data not shown),
straining was omitted in favour of protein extraction directly from pellets to maximize
microvessel material input for proteomic interrogation. Using Tandem Mass Tag (TMT)
isobaric labeling and sample fractionation of peptides, global, relative quantitation of a
total of 1638 individual proteins were detected from microvessel-enriched pellets
(quality parametres shown in Supplementary Fig. 2). Importantly, there was significant
overlap between transcriptomic and proteomic output, with 1635/1638 (99.8%) of
detected proteins likewise identified in the transcriptomics data (albeit no corresponding
transcripts were detected for proteins F9, DCD, and SERPINB12); and with 961/1638
(58.7%) proteins found in the top 10% of most highly expressed transcripts, resulting in

an overall 23% overlap between high expressors in both datasets (Fig. 8a).

Proteins known to be expressed by vascular-associated cell types and perivascular
extracellular matrix were positively identified in all 3 samples. Several canonical
endothelial markers were detected with high peptide abundance, including vimentin,
several protein subunits of laminin (LAMA3, LAMAS5, LAMB2, LAMC1, LAMC3), OCLN,
TJP1, TJP2, VWF, VWA1, BSG, PECAM1, Monocarboxylate transporter 1 (SLC16A1),
broad substrate specificity ATP-binding cassette transporter (ABCG2), ESAM, CLDNS5,
CDH5, ATP-binding cassette sub-family B member 1 (ABCB1), ATP-binding cassette
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sub-family D member 3 (ABCD3), and Protocadherin-1 (PCDH1) (normalized average
abundance for these proteins are listed in Fig. 8b). As expected, enrichment terms
returned by ORA (using corresponding gene names as input) were predominantly
vascular-associated (Fig. 8c and Supplementary Table 5), and normalized abundance
of known brain endothelial, pericyte, astrocytic and smooth muscle cell proteins were
high (Fig. 8d-i).

The BBB poses a major pharmacological barrier as BMECs express a vast array of
enzymes and transport systems that facilitate brain uptake processes of essential
nutrients and neuroactive agents across the BBB (Hediger et al., 2004), controlling the
rate and extent to which drugs are able to reach the brain parenchyma via the
transcellular pathway (Ballabh et al., 2004). There is a pressing need for improved
knowledge surrounding the expression and functionality of these systems at the human
BBB as the majority of data comes from either in vitro cell culture or animal studies,
making in vitro to in vivo or interspecies scaling less reliable. Analyses revealed high
abundance of SLC2A1/GLUT1, a transmembrane protein responsible for the facilitated
diffusion of glucose (Mueckler and Thorens, 2013), and the two glutamate transporters
SLC1A2/EAAT2 and SLC1A3/EAAT1 in brain microvessels. Transporters
SLC7A5/LAT1 and SLC3A2/4F2hc, which supply the brain with large neutral amino
acids (Yanagida et al., 2001; Nakamura et al.,, 1999; Nicklin et al., 2009), and
SLC16A1/MCT1 and SLC16A2/MCT8, which are involved in the transport of
monocarboxylates (Vijay and Morris, 2014) and T3 thyroid hormone (Trajkovic et al.,
2007) at the BBB, respectively, are also found in the described proteomic dataset. Also
found are ABCB1/P-glycoprotein and breast cancer-related protein ABCG2/BCRP, the
principal ABC efflux transporters (Begley, 2004; Loscher and Potschka, 2005b; Sun et
al., 2003) that limit entry of drug candidates, toxic compounds, as well as xenobiotics
from the central nervous system (Agarwal et al., 2010, 2011a, 2011b; Chen et al.,
2009; de Vries et al., 2007a; Polli et al., 2009). Due to major species-specific
differences in transporter expression profiles, there is utility in obtaining absolute protein
amounts as they may elucidate the contribution of each transporter in facilitating the

entry of endogenous substances and nutrients like glucose, glutamate, and amino and
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fatty acids into the brain, in addition to drugs and other xenobiotics that exploit these

mechanisms (Hindle et al., 2017).

5.5. Further deconstruction of isolated brain microvessels using FANS

The use of frozen brain tissue demands sorting of target nuclei as opposed to intact
cells and, therefore, requires the use of nuclear fluorescent tags to facilitate the isolation
of endothelial nuclei. Expression of transcription factor ETS-related gene (ERG) has
been previously validated as an endothelial-specific nuclear marker (Miettinen et al.,
2011; Haber et al., 2015; Kim et al., 2013; Birdsey et al., 2015) and is found in the top
10% most highly expressed genes from isolated microvessels (TPM shown in Fig. 9a).
As an additional testament to the versatility in downstream use of the described method,
resuspended microvessels subjected to a 2-h incubation with anti-ERG antibody under
rotation is sufficient for vascular disassembly and to expose the ERG epitope for
endothelial nuclei immunolabelling (Fig. 9b) without the need for enzymatic digestion as
previously described (Crouch and Doetsch, 2018; Pastrana et al., 2009; Codega et al.,
2014). Critically, a 2-h incubation in combination with the appropriate gating strategy
adjusted to collect endothelial nuclei, is sufficient for the purification of endothelial nuclei
from frozen postmortem brain tissue (data not shown). The potential to isolate
ERG* endothelial nuclei from postmortem microvessels under different physiological
conditions (Plane et al., 2010; Ohab et al., 2006; Yamashita et al., 2006; Kojima et al.,
2010; Bardehle et al., 2013; Greenberg, 2014; Paul et al., 2012) is an advantage of our
approach and addresses a growing interest in the use of primary BMECs, circumventing
phenotypical or gene expression changes induced in primary BMEC cultures by
prolonged adherence steps used in other isolation protocols (Durafourt et al., 2013; De
Groot et al., 2000; Goldeman et al., 2020; Lyck et al., 2009).

6. Discussion

We describe a singular, standardized protocol to enrich and isolate microvessels from
archived snap-frozen human brain tissue with the ability to apply the same protocol to
frozen mouse cerebral cortex. Integral to this method are three factors that confer
gentility and simplicity: 1) the correct molarity of the sucrose-based buffer separates
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and cushions microvessels during centrifugation-separation, 2) centrifugation-
separation of microvessels from the rest of the tissue homogenate occurs in a 10 ml
volume, which facilitates the formation of a microvessel-enriched pellet as heavier
structures reach the bottom of the 15 ml falcon tube, and 3) the limited number of wash
steps minimizes eventual damage done to the integrity of microvessel
fragments. Microvessel enrichment and stability were assessed by chromogenic
staining of microvessels using BCIP/NBT substrate and, through immunophenotypic
characterization, we show that isolated microvessel fragments are comprised of
NVU cellular components including BMECs, astrocytic endfeet, pericytes, as well as
tight junction protein complexes. The demonstrated genteness and simplicity of the
approach, in turn, confer versatility in the high-throughput techniques that can be
utilized downstream to microvessel isolation, as demonstrated here with RNA
sequencing and LC-MS/MS.

This protocol should have excellent reproducibility in isolating intact microvessels from
any region of the adult human brain. It should be noted, however, that the current
version of the protocol may need adjustments if myelin content of brain samples used is
high, as dissociated myelin (which travels to the top of the homogenate; section 2.2,
step 10) may interfere with the formation of a microvessel-enriched pellet (which travels
to the bottom of the homogenate; section 2.2, step 10). As reported, microvessels
isolated using the described method are in high yield without other contaminating cell
types. However, the protocol enriches for but does not purify microvessels, so a limited
proportion of contamination from non-vascular cell types might be found in collected
pellets. Limited expression of neuronal markers is observed during computational
deconvolution of RNA sequencing data; however, whether a minority of neurons are
indeed co-enriched with microvessels remains unclear, as co-enrichment of neurons
was not observed during immunophenotypic characterization of isolated microvessels.
While some co-enrichment is consistent with the technically unavoidable capture of
some parenchymal cells when utilizing a method suitable for frozen postmortem brain
tissue (which necessitates as few and as gentle steps as possible), the human BBB
atlases generated by Yang et al. (2022) and Garcia et al. (2022) reveal that “canonically

neuronal” genes are also expressed in vascular-associated cell types. Therefore, it is
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possible that counts for such genes indeed originate from vascular-associated cells and
not neurons. Additionally, representation of all vascular-associated cell types might not
be uniform, as different cell types may vary across brain regions and even brain
subregions, and different cell types may be differentially susceptible to steps taken
during RNA or protein extraction. Nonetheless, in the absence of harsh experimental
steps, it is reasonable to assume that the proportions of vascular-associated cell types
found within isolated microvessels represent the natural multicellular composition of
vasculature within the brain. During the development of this protocol, several brain
tissue samples were used possessing a range of values for PMI, RIN, pH, and other
metrics, including age at death, manner of death, freezer storage time, and prior
medication exposure. Although not systematically assessed, success in isolating and
enriching microvessels from different tissue samples was consistent and robust across
variations in such quality metrics (as demonstrated here by the wide range of age and
PMI across subjects shown in Table 1). We attribute such reproducibility to the
protective nature of the vascular basement membrane that may protect the vessel
structure and its contents against changes experienced by the brain parenchyma during
the postmortem interval. Despite this, it is recommended to utilize postmortem samples
with quality metrics PMI, RIN, and pH that indicate moderate to good quality, which is a
fundamental prerequisite to investigating complex brain disorders using molecular
profiling techniques. Inevitably, studies that make use of isolated human microvessels
will encounter high inter-subject variation in both RNA and protein yield as well as
experimental read-out. Large cohorts with matched subjects (if studying disease and/or
sex differences) would be required to power a study investigating how brain vascular
gene or proteomic expression varies with factors such as brain region, age, or disease.
Although sensitivity of mass spectrometers has been greatly improved over the years
(Hahne et al., 2013; Hebert et al., 2018; Shishkova et al., 2016, 2018; Timp and Timp,
2020), as well as peptide separation for untargeted proteome analysis (Shishkova et al.,
2016, 2018; Toth et al., 2019), the literature consistently shows that high output from
mass spectrometry relies on a balance between sample quantity as well as sample
complexity. Because protein extracted from microvessels, as opposed to bulk tissue,

could be considered a sample lacking complexity, it is reasonable to assume that this
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relays to lower output, which may be further impacted by several low signal-to-noise
events that result in unidentified peptides (Griss et al.,, 2016) and a more limited

dynamic range of peptide detection (Timp and Timp, 2020).

Our successfully generated datasets promise a more complete approach to
investigating BBB function and disease, where one arm of a study may leverage
experimental animal or cell culture models to identify pertinent biological mechanisms,
and the other arm may utilize microvessels isolated from human brain to provide insight
into species-specific differences and other limitations of experimental models. Species
differences in disease-affected neuronal and myeloid gene expression have been
characterized by single-cell or single-nucleus sequencing (Cosacak et al.,
2022; Friedman et al., 2018; Kamath et al., 2022), but such differences in neurovascular
gene expression have only just begun to be comprehensively analyzed, and solely in
Huntington's disease and Alzheimer's disease (Garcia et al., 2022; Yang et al., 2022).
Despite limited data, it has become evident there are striking differences, with one study
reporting 142 mouse-enriched genes, including Vin, Slco1c1, Sic6a20a, Atp13a5,
Slc22a8, and 211 human-enriched genes, including SLCO2A1, GIMAP7, and A2M
(Song et al., 2020b). Yang et al. (2022) further reported hundreds of species-enriched
genes in BMECs and pericytes, finding that BMECs and pericytes exhibit the greatest
transcriptional divergence in several vascular solute transporters (for e.g., GABA
transporter SLC6A12) and genes of disease and pharmacological importance. This
observation was corroborated by Garcia et al. (2022), who further detailed that species-
specific differentially expressed genes (DEGs) were strongly enriched for marker genes
of vascular-associated cell types, indicating that cell type identity markers were among
those that vary the most between species. Breakthroughs can similarly be made using
the described method, with the added benefit that microvessels kept as a structurally
intact unit provide insight into the neurovasculature in a manner that nuclei or
dissociated cells cannot: not only is unwanted technical-related depletion of vascular-
associated cells avoided, but cytoplasm, which carries much higher amounts of mRNA
and protein, as well as interstitium are also preserved. This is not trivial, as work done

by others comparing microglia single cells versus single nuclei from postmortem tissue
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reveals that certain populations of genes are depleted in nuclei compared to whole
cells. Those depleted were previously implicated in microglial activation, such as APOE,
SPP1, CST3, and CD74, totaling 18% of previously identified microglial-disease-
associated genes (Thrupp et al.,, 2020). While there is undeniable benefit in
characterizing disease-related changes at the cell type level, the neurovasculature is so
interconnected that dysfunction is typically observed in all vascular-associated cells,
conferring whole-unit dysfunction that becomes difficult to parse when looking at its
individual nuclei. We put forward the ATP-binding cassette (ABC) transporter family as
an interesting candidate that can be further explored using microvessels isolated from
postmortem brain. The human genome carries 48 different ABC transporters (Gil-
Martins et al.,, 2020; Morris et al., 2017; Robey et al., 2018), several of which are
expressed in the CNS, primarily at the BBB (Gil-Martins et al., 2020). Dysfunction of
ABC transporters, at expression and/or activity level, has been repeatedly associated
with neurological disease (Gil-Martins et al., 2020); and of note are the functionally
important yet redundant ABCB1 and ABCG2, both of which have been observed in our
transcriptomic and proteomic datasets. For example, ABCB1 is culpable in the
neuroinflammatory mechanisms of multiple sclerosis, where ABCB1 expression and
activity are significantly decreased by mechanisms involving CD4* T cells (Kooij et al.,
2010), which is just one aspect of the broad barrier impairment that permits
lymphocytes activated in the periphery to infiltrate the CNS (Cashion et al., 2023; Ortiz
et al., 2014). Moreover, numerous drug candidates show potential anticancer effects
against different brain cancer cell lines in vitro and yet, their efficacy in vivo and in
clinical trials has been considerably more modest, in large part due to ABCB1/ABCG2-
mediated efflux at the BBB. Both ABCB1 and ABCG2, which are expressed on the
luminal membrane of BMECs (Biegel et al., 1995; Cooray et al., 2002; Eisenblatter and
Galla, 2002; Zhang et al., 2003), present a double-edged sword at the blood-brain
barrier: on the one hand, ABCB1/ABCG2-mediated efflux is vital for protecting the brain;
on the other hand, several anticancer drugs have been identified as substrates of
ABCB1 and/or ABCG2 (de Vries et al., 2007b; Agarwal and EImquist, 2012; Traxl et al.,
2019), and their function restricts brain uptake of anticancer drugs, significantly limiting

their efficacy in the treatment of primary and metastatic brain tumors (de Vries et al.,
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2007b; Agarwal and Elmquist, 2012; Juliano and Ling, 1976;Doyle et al,
1998; Marchetti et al., 2008; Agarwal et al., 2011c; de Gooijer et al., 2018; Sorf et al.,
2018; Schinkel et al., 1994). Efforts to better understand ABCB1/ABCG2 expression
and circumvent the restriction of drug uptake have been considerable. Previous studies
point to a lower ABCB1/ABCG2 ratio (Dehouck et al., 2022; Uchida et al., 2011),
whereas our findings exhibit a higher ABCB1/ABCG2 ratio. This discrepancy may be an
insight into the interindividual differences that give rise to variable drug responses, a
common clinical challenge. Several synonymous single nucleotide polymorphisms
(SNPs) that affect function and substrate binding have been identified in both
transporters (Kimchi-Sarfaty et al., 2007; Fung and Gottesman, 2009; Dickens et al.,
2013; Furukawa et al., 2009; Delord et al., 2013; El Biali et al., 2021). The individuals
studied here were all of French-Canadian origin, a group with a distinct genotype, and
so certain SNPs that affect mRNA stability or transporter activity may, in turn, modulate
translational output of ABCB1 relative to ABCG2, as has been observed with ABCB1
SNPs (Wang et al., 2005). It should be noted, however, that these studies (including
ours) comprised of small cohorts and warrant further investigations with larger sample

sizes.

In sum, the isolated brain microvessel is a robust model for the NVU and can be used to
generate a variety of highly dimensional datasets. The availability of characterized
human neurovascular transcriptomes and proteomes can aid in identifying potential
roles for BMECs and pericytes in the pathogenesis of neurological and psychiatric
disorders and additionally aid in assessing the expression of molecules with potential
relevance to drug delivery and novel therapies (e.g., SLCs, ABCs, and large molecule

receptors) across the human brain vasculature.
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8. Tables and Figures

Experiment type Brain ID Sex Age (years) Cause of death PMI (hours) Tissue pH
RNA seq 1 Female 76 Polytrauma (accident) 26.5 6.5
RNA seq 2 Female 51 Pulmonary embolism 111.3 6.5
RNA seq 3 Male 26 Polytrauma (car accident) 12.0 6.8
RNA seq 4 Female 28 Undetermined 80.0 6.5
RNA seq 5 Female 45 Pulmonary embolism 39.5 5.7
Mass spec 6 Male 45 Gun wound 20.5 6.6
Mass spec 7 Male 54 Cardiac arrest 253 6.6
Mass spec 8 Male 63 Fall from several metres  13.0 6.8

Table 1: Background information on human subjects whose vmPFC tissue was studied.
Information includes sex, age, cause of death, postmortem interval (PMI), and tissue
pH.
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Figure 1: Stage 1: After the vmPFC is dissected from a coronal slice containing the
frontal lobe, 100 mg of vmPFC tissue is more precisely microdissected using a sterile
blade or scalpel. Afterwards, the vmPFC tissue sample is dissociated in
Homogenization Buffer using the GentleMACS™ Dissociator. Stage 2: Following
dissociation, the sample is centrifuged at 3200 g for 30 mins in order to pellet
dissociated microvessels. Additional downstream applications can be applied using
microvessel-enriched pellets as shown in stages 3-6 by BCIP/NBT detection,
immunofluorescent visualization, total RNA extraction, and total protein extraction,

respectively. Image generated using BioRender.
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Figure 2: a-g) Overview of experimental steps taken to collect and resuspend pelleted
microvessels (BCIP/NBT staining is omitted). a) 100 mg of vmPFC tissue submerged in
2 ml of Homogenization Buffer. b) 100 mg of vmPFC tissue after homogenization. c)
Lysate topped-up to 10 ml with Homogenization Buffer. d) Lysate transferred to 15 ml
falcon tube. e-f) After centrifugation at 3200g for 30 min, a microvessel-enriched pellet
forms at the bottom of the tube. g) microvessel-enriched pellet is resuspended in 500 pl
of PBS. h-i) Output of experimental steps when BCIP/NBT staining is used. h) Example
of BCIP/NBT-stained microvessel pellet, which lends a purple colour to the pellet. i)

BCIP/NBT-stained microvessels trapped within the meshwork of a cellular strainer.
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Figure 3: a-c) Isolated microvessels are enriched from brain tissue following the
described protocol. a-c) Brightfield images of chromogenically stained microvessels
using BCIP/NBT substrate demonstrated isolation and enrichment of predominantly
microvessels from postmortem vmPFC tissue samples. b) example of preserved
microvessel morphology and integrity isolated from postmortem vmPFC tissue. c)
Similar microvessel enrichment was observed when the same protocol was carried out

using mouse cortex.
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Figure 4: a-b) Endothelial and smooth muscle cells immunolabelled for vimentin
(green). c) Extracellular matrix laminins expressed by vascular-related cell types are
immunolabelled (red). d) Endothelial cell tight junctions immunolabelled for CLDN5
(red). e) Pericytes immunolabelled for PDGFRB (green). f) AQP4 expressed by the
vessel-facing astrocyte membrane is immunolabelled (magenta) and laminins (green).
g) Oligodendrocyte marker MBP (red) shows an absence of immunoreactivity in
microvessel preparations; similarly, h) neuronal marker NeuN (red) shows an absence
of immunoreactivity in microvessel preparations. Nuclei were stained with DAPI (blue) in

all micrographs.
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Deconvolution against VL dataset using CIBERSORT v1.04 Deconvolution against MB dataset using CIBERSORT v1.04
Cell Type Cell Type
Subject  Neurons Astrocytes Oligodendrocytes Microglia Endothelia Subject Neurons Astrocytes Oligodendrocytes Microglia Endothelia
1 4.00 4.92 2.15 0.00 88.93 1 12.35 11.82 0 0.00 75.83
2 0.00 0.62 1.51 0.00 97.86 2 0.00 5.78 0 0.00 94.22
3 0.00 0.51 2.37 0.78 96.34 3 0.00 3.30 0 3.97 92.73
4 5.81 0.25 0.97 0.00 92.96 4 16.52 5.53 0 0.00 77.95
5 0.00 0.99 0.50 0.00 98.52 5 0.00 6.19 0 0.00 93.81
Average 1.29 1.16 1.85 0.16 94.92 Average 4.66 6.11 0 1.06 86.91
Dataset provided by Velmeshev et al. 36 and performed using BrainDeconvShiny tool Multibrain composite signature generated by Sutton et al. 202213 and performed using BrainDeconvShiny

Deconvolution against Yang dataset using CIBERSORTX
Cell Type
Subject Neuron Oligo OPC Ependymal M. Fibro Microglia T cell P.Fibro Astrocyte Venous Arterial Capillary SMC Pericyte Total Vascular

1 6.40 0.00 0 0 3.63 0.00 5.31 2.84 1.87 0 0.00 33.17 0.00
2 0.00 0.00 0 0 1.36 0.00 1.49  0.00 1.76 0 0.00 28.58 0.00
3 0.60 0.00 0 0 0.81 0.69 579 3.18 0.00 0 844 36.11 0.00
4 8.41 0.00 0 0 2.58 0.00 6.49 4.35 0.00 0 6.74 26.55 0.00
5 0.00 0.00 0 0 1.1 0.00 3.25 1.03 0.37 0 0.00 25.73 2.77
Average  4.01 0.14 0 0 2.01 0.24 5.64 2.33 0.98 0 253 37.62 0.46

Figure 5: a-b) Using the BrainDeconvShiny tool, different iterations of computational
deconvolution were performed to demonstrate stability of outcome when using our
microvessel isolation preparations. a) The average expression from every control
sample from the VL dataset was calculated and used as cell type signatures for
deconvolution of our dataset using CIBERSORT v1.04. b) The MB (MultiBrain) is a
composite signature generated by Sutton et al. (2022) by averaging the expression
signatures of five datasets for five cell types (neurons, astrocytes, oligodendrocytes,
microglia, and endothelia). MB was used as cell type signatures for deconvolution of our
dataset using CIBERSORT v1.04. c¢) In-house analysis where the average expression
from every control sample from the Yang dataset was calculated and used as cell type
signatures for deconvolution of our dataset using CIBERSORTX. Heattables were

generated using the gt package in R.
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Enrichment analysis using Descartes Call Types and Tissue 2021 library Enrichment analysis using Descartes Cell Types and Tissue 2021 library. Expression of genes enriched in endothelial cells
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Figure 6: a-b) Enrichment analysis of averaged 10% of most highly expressed genes
(3437 genes) returns predominantly vascular-related terms. Over-representation
analysis (ORA) using the enrichR package in R and the “Descartes Cell Types and
Tissue 2021” database was used to identify gene sets that are statistically over-
represented. The threshold value of enrichment was selected by a p-value <0.05,
indicating that over-represented genes were significantly enriched for vascular-related
terms. a) Count for genes in our dataset that are present in returned gene sets. b) Ratio
for genes in our dataset that are present in returned gene sets, determined by the total
number of genes in each set. c-i) Isolated microvessels have increased expression of
canonical neurovascular-related genes. c) Bar plots showing TPMs for endothelial-
defining genes, displayed according to general expression range. Highest expression
found in endothelial genes B2M, BSG, FLT1, IFITM3, MT2A, SLC2A1, VIM, and VWF.
d) Bar plot showing TPMs for pericyte-defining genes. Highest expression was detected
in pericyte genes CALD1, FN1, IGFBP7, RGS5, and SPARCL1. e) Bar plot showing
TPMs for smooth muscle cell-defining genes. Highest expression was detected in
smooth muscle genes ACTG1, ACTN4, MYL6, PTMA, and TAGLN. f) Bar plot showing
TPMs for tight junction-defining genes and g) Bar plot showing TPMs for adherens
junction-defining genes. Several genes encoding for junctional proteins are found in the
top 10% of most highly expressed genes, including CLDN5, CTNNB1, CTNND1, OCLN,
JAM1, TJP1, and TJP2. h) Bar plot showing TPMs for astrocyte-defining genes.
Astrocytic gene expression was predominantly limited to markers of astrocytic
processes or endfeet, namely CLU, GFAP, and GLUL. i) TPMs from neurovascular-
related genes were summarized according to cell type expression, demonstrating an
overrepresentation of endothelial, smooth muscle cell, and pericyte genes. j) Overlap
between top 10% of most highly expressed genes from our RNA sequencing data and
immune genes found within the Immunome Database. Bar plots were generated using
the ggplot package and Venn diagram was generated using the ggVennDiagram
package in R.
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Overlap between Garcia et al. arteriole markers and top 10% of RNAseq highly expressed genes
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Figure 7: a-g) Overlap between the top 10% of most highly expressed genes from our
RNA sequencing data and published NVU dataset. Validated neurovascular cell type
markers were obtained from Garcia et al. (2022) postmortem and human ex vivo single-
nucleus sequencing datasets (found under Supplementary Table 2) and compared for
potential overlap with the top 10% of most highly expressed genes from our data.
Results indicate a significant overlap between the three datasets for all NVU-related cell
types. a) Arteriole-defining genes. b) Capillary-defining genes. c¢) Venule-defining
genes. d) Arteriolar SMC-defining genes. e) Pericyte-defining genes. f) Venular SMC-
defining genes. g) Fibroblast-defining genes. Venn diagrams were generated using the

ggVennDiagram package in R.
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Figure 8: a-i) There is substantial overlap between transcriptomic and proteomic data
output. a) 1635/1637 (99.9%) of proteins likewise identified in the transcriptomics data,
and with 1024/1637 (62.6%) proteins found in the top 10% of most highly expressed
genes. b) Several canonical BMEC markers were detected with high normalized
average abundance. c) Over-representation analysis using the enrichR package in R
and the “Descartes Cell Types and Tissue 2021” database was used to identify
statistically over-represented sets. Genes corresponding to proteins detected during LC-
MS/MS were used as input and the threshold value of enrichment was selected by a p-
value <0.05. Output indicated that over-represented proteins were significantly enriched
for vascular-related terms. a) Count for peptides in our dataset that are present in
returned sets. b) Ratio for peptides in our dataset that are present in returned sets,
determined by the total number in each set. d) Bar plot showing normalized abundance
for endothelial cell-defining proteins. e) Bar plot showing normalized abundance for
pericyte-defining proteins. f) Bar plot showing normalized abundance for smooth muscle
cell defining-proteins. g) Bar plot showing normalized abundance for tight junction
defining-proteins. h) Bar plot showing normalized abundance for adherens junction-
defining proteins. i) Bar plot showing normalized abundance for astrocyte and astrocytic
endfeet-defining proteins. Bar plots generated using the ggplot package and Venn

diagram generated using the ggVennDiagram package in R.
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Figure 9: Isolated microvessels can be used to further sort endothelial nuclei. a) ERG is
a top 10% most highly expressed gene in isolated microvessels. b) Dissociated
endothelial nuclei immunolabelled with ERG conjugated to Alexa-647 antibody prior to
FANS protocol. Resuspended microvessels subjected to a 2-h incubation with anti-ERG
antibody under rotation is sufficient for immunolabelling of endothelial nuclei prior to

FANS sorting.
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Transition from Study 1 to Study 2

In our first study, we developed an effective method for the enrichment and isolation of
microvessels from human postmortem brain tissue that is compatible with downstream
high throughput techniques. For our next study, we aimed to utilize the microvessel
enrichment and isolation method to obtain microvessel samples from postmortem brain
tissue belonging to those with histories of ELA. By ensuring that isolated microvessels
are of sufficient yield and integrity for downstream high-throughput techniques, our next
goal was to conduct an unbiased, data-driven analysis that would allow us to
characterize long-term impacts at the NVU associated with ELA. The rationale behind
this was manifold: first and foremost, the impact of ELA on cellular and
molecular components and BBB permeability still is largely unexplored in the
literature, including limited knowledge of region- and sex-dependent differences in NVU
integrity and function, and their potential modulation by ELA. Before this body of work,
the literature consisted entirely of reports focused on the impact of stress on CLDNS
expression and the formation of stochastic stress-induced microbleeds in rodents.
Because of this, there were very few single gene candidates relevant to the
human neurovasculature to investigate by a hypothesis-driven approach for study 2.
Secondly, we had the unique opportunity to generate the first NVU-specific whole
transcriptome dataset from ELA-affected individuals. Generating a whole transcriptome
dataset would enable us to conduct comprehensive analyses that were not
previously feasible, including identifying all differentially expressed genes, as
well as pathways and networks affected by ELA—a rich resource for the
research community trying to validate findings from animal models, and for
comparisons with neuropsychiatric or neurodegenerative disorders. Other critical
the nature of the data generated. Namely, we opted to obtain whole transcriptome data
to, therefore, understand changes in gene regulation that persist after ELA, instead of
generating proteomic data from isolated microvessels. Although proteins are the
functional units of the cell, longstanding issues with dynamic range and limitations in
sensitivity associated with current LC-MS/MS technologies would hinder the depth with
which we could detect and quantify the proteome, especially with lower input samples

(isolated microvessels) versus bulk tissue. Regardless of this choice, our microvessel
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isolation method remains compatible with, and ready to use for when these
technologies improve. Secondly, we chose to sequence samples of intact isolated
microvessels, rather than further sorting them into their constituent cell type nuclei using
FANS for sequencing. This decision was made to preserve cytosolic transcripts, which
would be lost during the nuclei sorting process. By maintaining the integrity of the
microvessels, we aimed to capture a more complete and accurate representation of the
transcriptomic profile, reflecting the native cellular condition within the NVU. To the best
of our knowledge, this study represents the first comprehensive characterization of the
long-term impacts on NVU associated with ELA in either animal or postmortem human

brain samples.
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The brain stands on the top of the organs, and is the work of a refined artist.

Paul Ehrlich
Nobel Prize Laureate in Physiology or Medicine, 1908
Intentional discoverer of the first treatment for syphilis

Accidental discoverer of the blood-brain barrier
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Abstract
Exposure to early life adversity (ELA) poses a significant global public health concern,

with profound pathophysiological implications for affected individuals. Studies suggest
that ELA contributes to endothelial dysfunction, bringing into question the functional
integrity of the neurovascular unit in brain regions vulnerable to chronic stress. Despite
the importance of the neurovasculature in maintaining normal brain physiology, human
neurovascular cells remain poorly characterized, particularly with regard to their
contributory role in ELA-associated pathophysiologies. In this study, we present the first
comprehensive transcriptomic analysis of intact microvessels isolated from postmortem
ventromedial prefrontal cortex samples from adult healthy controls and matched
depressed suicides with histories of ELA. Our findings point to substantive differences
between men and women, with the latter exhibiting widespread gene expression
changes at the neurovascular unit, including the key vascular nodal regulators KLF2
and KLF4, alongside a broad downregulation of immune-related pathways. These
results suggest that the neurovascular unit plays a larger role in the neurobiological

consequences of ELA in human females.
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1. Introduction

Exposure to adverse childhood experiences (ACEs), defined as physical, sexual, and/or
emotional abuse or neglect, is a persisting global public health concern. In developed
countries, 44% of children have been subjected to ACEs, while the percentage rises to
59% in developing countries (Hillis et al., 2016). ELA can lead to profound disturbances
in psychological and physical trajectories that, in turn, strongly correlate with increased
lifetime risk of negative health outcomes. Notably, compelling evidence supports ACE-
induced vascular endothelial dysfunction, characterized by increased arterial stiffness,
higher peripheral vascular resistance, and reduced endothelial function (Su et al., 2014;
Jenkins et al., 2021). Such dysfunction primes for the development of cardiovascular
disease later in life (Chen et al., 2023; Fuller-Thomson et al., 2010; Loucks et al., 2014;
Thurston et al., 2017; Thurston et al., 2014; Riley et al., 2010; Su et al., 2015; Dong et
al., 2004; Felitti et al., 1998). The observed correlation between ELA and cardiovascular
disease is physiologically sound. Indeed, the prefrontal cortex, an emotion-modulating
(Pessoa, 2008) core component of a broader network of forebrain systems, mediates
stress-evoked changes in cardiovascular activity (Ginty et al., 2017; Thayer et al.,
2012); and there is ample evidence demonstrating sustained and pervasive molecular
(Blaze et al., 2013; Lutz, Tanti et al., 2017; Usui et al., 2021; Oldham Green et al., 2021;
Pena et al., 2019), cellular (Monroy et al., 2010; Tanti et al., 2018; Tanti et al., 2022;
Gildawie et al., 2020) and functional abnormalities (van Harmelen et al., 2010; van
Harmelen et al., 2014a; van Harmelen et al., 2014b; Hostinar et al., 2012; Kim et al.,
2013; Ansell et al., 2012) of the prefrontal cortex following ELA. Although the blood-
brain barrier (BBB) is functionally distinct from the peripheral vasculature and
possesses a highly specialized neurovascular unit (NVU) to precisely regulate the influx
and efflux between the blood and brain parenchyma (Luissint et al., 2012), the entire
blood supply of the brain relies on the dorsal aorta (Purves et al., 2001). This reliance
therefore maintains a structural connection to the peripheral vasculature, raising the

question as to whether the NVU is similarly affected by ELA. Critically, ELA is

associated with 44.6% of all psychiatric childhood-onset disorders and with 25.9% to
32.0% of adult-onset disorders (Green et al., 2010), such as major depressive disorder
(MDD) (LeMoult et al., 2020; Nomura et al., 2002; Raposo et al., 2014; Cabrera et al.,
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2007; Hayashi et al., 2015; Alon et al., 2024). Despite this, direct evidence implicating
NVU dysfunction in the pathophysiology of ELA relies primarily on rodent models of
chronic stress, which have focused on downregulated tight junction protein Claudin5
(CLDNS5) (Dion-Albert et al., 2022; Dudek et al., 2020; Menard et al., 2017) or on the
formation of cerebral microbleeds (Lehmann et al., 2018; Lehmann et al., 2020;
Samuels et al., 2023; Lehmann et al., 2022). In contrast, studies investigating NVU
dysfunction in adult humans with histories of ELA are limited to non-invasive techniques
that characterize markers of plasma inflammation (Danese et al., 2007; Baumeister et
al., 2016; Coelho et al., 2014; Takizawa et al., 2015; Danese et al., 2011; Slopen et al.,
2013), using these markers to infer the state of the NVU. Critically, the use of animal
proxy models cannot completely recapitulate human experience and its effects on
human neurobiology (van der Worp et al., 2010), and recent breakthroughs have
demonstrated that there are numerous species-specific differences between mouse and
human neurovasculature (Munji et al., 2019; Garcia et al., 2022; Yang et al., 2022). For
this reason, we set out to generate the first transcriptomic dataset derived from intact
microvessels isolated from postmortem ventromedial prefrontal cortex (vmPFC)
samples from controls and matched depressed suicides with a history of ELA. Isolated
microvessels effectively capture the NVU, comprising brain microvascular endothelial
cells (BMECs) sealed by tight junction proteins, astrocytic endfeet, and mural cells
(McConnell et al., 2017). Here, we combined differential gene expression analysis and
network-based approaches to provide an integrative and unbiased characterization of

male and female transcriptional profiles of the NVU in humans with histories of ELA.

2. Methods

2.1. Human postmortem brain samples
This study was approved by the Douglas Hospital Research Ethics Board. Brains were

donated to the Douglas-Bell Canada Brain Bank (www.douglasbrainbank.ca; Montreal,

Canada) following written informed consent from next of kin, in the context of
collaboration with the Quebec Coroner’s Office. Phenotypic information was retrieved
through standardized psychological autopsies (Dumais et al., 2005). In brief, proxy-

based interviews with one or more informants best acquainted with the deceased were
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supplemented with information from archival material obtained from hospitals, Coroner’s
office, and social services. Clinical vignettes were then produced and assessed by a
panel of clinicians to generate a diagnosis based on the DSM-IV. Toxicological
assessments and medication prescription are also obtained. As described previously
(Lutz, Tanti et al., 2017), characterization of early-life histories was based on adapted
Childhood Experience of Care and Abuse interviews assessing experiences of sexual
and physical abuse, as well as neglect (Bifulco et al., 1994), and for which scores from
siblings are highly concordant (Bifulco et al., 1997). The severity of ELA was assessed
based on reports of non-random major physical and/or sexual abuse during childhood
(up to 15 years). Only cases with the maximum severity ratings of 1 and 2 were
included in this study. Because of this narrow selection criterion, it was not possible to
stratify different types of abuse within the sample. Presence of any or suspected
neurological/neurodegenerative disorder reported in clinical files constituted an
exclusion criterion. Individuals were all Caucasians of French-Canadian descent.
Samples from 21 healthy controls (CTRLs; 13 males, 8 females) and 24 depressed
suicides with a history of severe childhood abuse (ELA; 17 males, 7 females) were

analyzed in this study. Group characteristics are described in Table 1.

2.2. Tissue dissections

Grey matter samples were dissected from the vmPFC by expert brain bank staff on
fresh-frozen 0.5 cm-thick coronal sections with the guidance of a human brain atlas
(Majtanik and Paxinos, 2016). vmPFC samples were dissected in sections equivalent to
plate 3 (approximately —48 mm from the center of the anterior commissure) of this atlas,
corresponding to Brodmann areas 11 and 12. Samples in every form, whether extracted
total RNA, RNA sequencing library, or mounted tissue sections, were stored frozen at -
80° C until further use.

2.3. Microvessel isolation from tissue microdissection
To capture the complete, multicellular composition of the NVU, microvessels were
enriched and isolated using our recently developed protocol (Wakid et al., 2023), which

is a method that is gentle enough to dissociate brain tissue while preserving the
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structural integrity and multicellular composition of microvessels. In brief, 100 mg of
microdissected vmPFC grey matter was homogenized in 2 ml of cold homogenization
buffer (1M sucrose + 1% BSA dissolved in DEPC-treated water) using the benchtop
gentleMACS™ Dissociator (Miltenyi Biotec, Germany) with the rotating paddle set to the
Lung 02.01 program. After tissue homogenization, an additional 8 ml of cold
homogenization buffer was pipetted into the tube, topping up the homogenate to 10 ml.
The homogenate was gently inverted to mix, and then centrifuged at 3200 g for 30 min
at 4° C. Following centrifugation, a microvessel-enriched pellet formed at the bottom of
the falcon tube, after which the supernatant was carefully vacuum-aspirated (which may
include an upper layer of clumped dissociated myelin) without disturbing the
microvessel-enriched pellet. To assess RNA quality, RNA integrity number (RIN) was

measured for microvessel isolation samples, with an average value of 4.

24. \Visualization of microvessels from the enriched pellet using
immunofluorescence

Immunophenotypic characterization of isolated microvessels was carried out following
the resuspension of microvessel-enriched pellets, as per Wakid et al., 2023. Pellets
were gently resuspended in 400 ul of cold PBS and 50 ul of the resuspension was
pipetted into each well of an 8-well chamber slide (Nunc™ Lab-Tek™ Il Chamber
Slide™ System; Thermo Scientific™, United States). The chamber slide was left open-
faced to incubate in a 37°C oven overnight, allowing microvessels to dry flush to the
surface of the slide after the PBS evaporated. After drying, microvessels were fixed by
covering them to a depth of 2—3 cm with ice-cold 100% methanol for 15 min on ice or at
4°C. Subsequently, the methanol was aspirated, and the wells were washed with 1X
PBS three times for 5 min each. Microvessels were then incubated in blocking buffer
(1% BSA + 0.5% Triton X dissolved in PBS) under gentle agitation for 60 min at 4°C.
Afterwards, blocking solution was replaced with 500 pl of primary antibody dilution
(1:500 in 1% BSA + 2% normal donkey serum + 0.5% Triton X dissolved in PBS) and
incubated under gentle agitation overnight at 4°C. Primary antibody dilution was then
aspirated and wells were washed in 1X PBS three times for 5 min each. Microvessels

were finally incubated in fluorophore-conjugated secondary antibody dilution (1:500 in
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1% BSA + 2% normal donkey serum + 0.5% Triton X dissolved in PBS) under gentle
agitation for 2 hours at room temperature, protected from all light. Following washes, the
media chamber was removed, and the microscope slide carrying microvessels was
coverslipped using VECTASHIELD Antifade Mounting Medium with DAPI (Vector
Laboratories, Inc., United States). To visualize the expression of canonical NVU
markers, primary antibodies targeting key expression markers were used: for BMECs,
Laminin (anti-Laminin antibody L9393; Sigma-Aldrich, United States) and PECAM1
(Anti-PECAM-1 antibody (JC70); Santa Cruz Biotechnology Inc., United States); for tight
junctions, CLDN5 (anti-Claudin 5 antibody ab15106; Abcam, United Kingdom); for
pericytes, PDGFRB (anti-PDGFRB monoclonal antibody G.290.3; Thermo Fisher
Scientific, United States); for smooth muscle cells, Vimentin (anti-Vimentin antibody
RV202; Abcam, United Kingdom); and for astrocytic endfeet, AQP4 (anti-Aquaporin 4
antibody [4/18]; Abcam, United Kingdom). We also employed appropriate fluorophore-

conjugated secondary antibodies to thoroughly characterize the collected microvessels.

2.5. Extraction of total RNA from isolated microvessels

For RNA extraction experiments, the microvessel-enriched pellet was gently
resuspended in 500 pl of cold PBS and gradually pipetted through a 35 um Strainer Cap
for FlowTubes™ (Canada Peptide, Canada) using vacuum-aspiration underneath to
encourage filtration. The result is intact microvessels trapped within the strainer mesh,
where smaller cellular debris and free-floating nuclei have passed through. Using a flat-
ended spatula and point-tip forceps, the strainer mesh was removed from its plastic
frame and immediately submerged into 100 ul of RL buffer from the Single Cell RNA
Purification Kit (Norgen Biotek Corp., Canada), according to step 1A of the
manufacturer’s protocol. The mesh was discarded after transferring 100 ul of fresh 70%
ETOH and pipetting 10 times. Total RNA extraction, including on-column DNase
digestion, were followed through according to the manufacturer’s instructions. RNA
concentration and RIN were quantified using the Agilent TapeStation 2200. RNA

samples were then frozen and stored at -80° C until further use.
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2.6. Library construction and bulk RNA sequencing

Microvessel-enriched pellets yielded an average of 10.7 ng/ul of total RNA per sample.
Libraries were constructed using the SMARTer Stranded Total RNA-Seq Kit v3 - Pico
Input Mammalian (Takara Bio Inc., Japan), which features integration of unique
molecular identifiers (UMIs) to allow for the distinction between true biological duplicates
and PCR duplicates. Libraries were constructed using 10 ng of RNA as input, 2 minutes
of fragmentation at 94°C (ProFlex PCR; Applied Biosystems Corporation, United
States), 5 cycles of amplification at PCR1 (the addition of Illumina adapters and
indexes), 12 cycles of amplification at PCR2 (the final RNA-seq library amplification)
and clean-up of final library using NucleoMag NGS Clean-up and Size Select beads
(Takara Bio Inc., Japan). Libraries were then quantified at the Genome Quebec
Innovation Centre (Montreal, Quebec) using a KAPA Library Quantification kit (Kapa
Biosystems, United States), and average fragment size was determined using a
LabChip GX (PerkinElmer, United States) instrument. Libraries were sequenced on the
NovaSeq 6000 system (/llumina, Inc., United States) using S4 flow cells with 100bp PE

sequencing kits.

2.7. Bioinformatic pipeline and analyses of RNA sequencing data

2.7.1. UMI extraction, alignment, de-duplication, metrics and generation of count
matrix

Bulk RNA sequencing of microvessel libraries yielded an average of ~64 million reads
per library, which were then processed following our in-house bioinformatic pipeline to
generate a count matrix with contributions of phenotype (53.3% ELA) and sex (33.3%
female). UMI extraction based on fastq files was performed using the module extract
from umi_tools (v.1.1.2; Smith et al., 2017). Reads were then aligned to the Human
Reference Genome (GRCh38) using STAR software (v2.5.4b; Dobin et al., 2013), with
Ensembl v90 as the annotation file and using the parameters: --twopassMode Basic --
outSAMprimaryFlag AllIBestScore --outFilterintronMotifs RemoveNoncanonical --
outSAMtype BAM SortedByCoordinate --quantMode TranscriptomeSAM
GeneCounts. Resulting bam files were sorted and indexed using SAMtools (v.1.3.1; Li

et al., 2009). Duplicate reads with the same UMI were removed using the dedup module
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of umi_tools (v.1.1.2; Smith et al., 2017). Different metrics, including the fraction of
exonic, intronic and intergenic reads were calculated using the CollectRnaSegMetrics
module of Picard (v.1.129; Broad Institute), and the expected counts were generated
using RSEM (v1.3.3; reverse strand mode; Li and Dewey, 2011). RNA sequencing

metrics are shown in Supplementary Table 1.

2.7.2. RNA sequencing deconvolution

10X Chromium for single-nucleus data from human brain vasculature were accessed
from Yang et. al (2022) and used as a reference to perform bioinformatic deconvolution
of our bulk RNA sequencing data. Seurat (Stuart et al., 2019) was used to pre-process
raw count expression data, removing genes with less than 3 cells or cells with less than
200 expressed genes. 23054 genes from a total of 23537 and 141468 nuclei from a
total of 143793 passed these QC criteria. To generate the Yang signature input for the
CIBERSORTx deconvolution tool (Newman et al., 2019), CPM values were averaged

across nuclei of each cell type.

2.7.3. Differential gene expression analysis and normalization

All subsequent analyses were performed in R (v 2023.06.0+421). Differential gene
expression (DGE) was performed using DESeq2 (1.42.0; Love et al.,, 2014), an R
package for differential analysis of sequencing data to estimate fold-change and
significance testing using a negative binomial distribution. Male and female count data
were separated, but the same pre-filtering step was applied to both, removing genes
with raw counts <25 in 85% of subjects. Data for both males and females were each
processed and analysed as follows: Preprocessing: key metadata variables Age, pH,
PMI, and RIN scaled using the scale function, and Group was converted to a categorical
variable using the factor function. Normalization and PCA Implementation: Using
DESeq2, the count data was normalized via the median of ratios method and stabilized
via the vst function, followed by Principal Component Analysis (PCA) to assess potential
outliers and the influence of potential covariates on gene expression profiles
(Supplementary Fig. 1). Correlation and Regression Analysis: Linear regression was

employed by the Im function to establish correlations between principal components and
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covariates, quantifying the relationships between transcriptional variations and
covariates. Covariates with correlations p.adj < 0.05 were deemed significant and were
added to the design formula required by DEseq2. For males, age (PC3: p.adj = 0.007; r?
= 0.23) and pH (PC2: p.adj = 0.00043; r? = 0.36) were identified as covariates and, for
females, age (PC2: p.adj = 0.036; r? = 0.30) was identified as a covariate. Differential
Expression Model Setup: An initial DE model is constructed using DESeq2, with
relevant covariates included in the design formula. Normalization and Surrogate
Variable Analysis (SVA): counts are normalized using the median of ratios method.
The SVA package is then incorporated to identify and include surrogate variables (SVs)
in the model to account for potential unobserved confounders or unmodeled artifacts. A
revised DE model is created, integrating the computed SVs alongside the original
covariates (Supplementary Fig. 1). Differential gene expression (DGE): DGE analysis
is conducted using the revised model, and p-values were adjusted for multiple testing
using the procedure of Benjamini and Hochberg (Benjamini and Hochberg, 1995). An
adjusted p-value (p.adj) < 0.05 and fold change 210% (llog2(fold change)|=log2(1.1))

were used to designate significant differentially expressed genes (DEGSs).

2.7.4. PsyGeNET analysis

The list of ELA-associated DEGs from males and females was separately queried in the
PsyGeNET database (Gutierrez-Sacristan et al., 2017) using the psygenet2r R
package. The psygenetGene function was used with database = “ALL” and other
parameters set to default to retrieve information about associations between our specific
genes and psychiatric diseases. To concisely visualize the output, we generated an
evidence index barplot showing, for each psychiatric disorder, the number of gene-

disease associations.

2.7.5. Functional enrichment analysis

Metascape (Zhou et al., 2019) was used to perform an in-depth enrichment analysis of
identified DEGs, with the aim of elucidating the functional pathways and cell-type
signature significantly associated with identified DEGs. Metascape utilizes Fisher’s

exact test to compute p-values and enrichment factors for each ontology category. The
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input species was set to Homo Sapiens, and a tailored selection of databases was used
for annotation, membership, and enrichment analysis (FDR < 0.05) was used. The
background gene set used for the enrichment analysis comprised genes that passed
the filtering threshold during DGE analysis (i.e. those input into DGE analysis). Only
pathway terms with a p.adj < 0.05, a minimum count of three, and an enrichment factor

> 1.5 were considered significant.

2.7.6. Gene set enrichment analysis (GSEA)

For differential expression results, GSEA (Subramanian et al., 2005) was performed
using the fgsea package (Korotkevich et al., 2019). A log2 fold change-ranked list of
genes was generated, a combined list of gene sets from Reactome pathways, Gene
Ontology Molecular Functions (GOMF), KEGG pathways, and WikiPathways
was compiled from MSigDB (Subramanian et al., 2005), and the following parameters
were used for the fgsea function: minSize = 15, maxSize = 500; and any pathways with
Benjamini-Hochberg p.adj < 0.05 were considered to be significantly enriched. Finally,
we ran collapsedPathways with pval.threshold = 0.05 to get the main pathways for each
cluster. An additional GSEA was performed for the female data using Brain.GMT

(Hagenauer et al., 2024), which consists of curated brain-related gene sets.

2.7.7. Rank-rank hypergeometric overlap

A threshold free, rank-rank hypergeometric overlap (RRHO) analysis was performed
using the RRHO2 R package (Cahill et al., 2018). Genes were scored using the product
of the logFC and the negative log base 10 uncorrected p-value taken from DGE
analysis in the male and female datasets separately. The scored gene lists were input
to RRHOZ_initialize function (with method “hyper” and log10.ind “TRUE”) and the

results were plotted using the RRHO2_heatmap function.

2.7.8. Weighted Correlation Network Analysis
Weighted correlation network analysis (WGCNA) (Langfelder and Horvath, 2008) was
performed to explore the relationship between co-expressed gene modules and

exposure to ELA using data specifically from females. This focus on females was
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chosen based on the results from DGE analysis, which indicated that the female NVU is
more greatly affected by ELA compared to males. A pre-filtering step was first applied,
removing genes with raw counts <20, followed by normalization via DESeq2's
normalizeCounts function and variance stabilizing transformation. Transformed counts
were corrected for the effect of age using limma (Ritchie et al., 2015), because it was
previously identified as a covariate for females CTRL vs ELA groups. A network was
constructed wusing the following parametres: soft power threshold = 14,
networkType="signed", minimum module size =100, mergeCutHeight=0.2,
maxBlockSize = 30000, and deepSplit = 3. For each identified module, the eigengene
was calculated alongside its correlation with ELA status. Finally, gene significance and
module membership were calculated. For modules turquoise and black, the topmost
hub gene was identified using the chooseTopHublnEachModule function. Other hub
genes within these modules were identified based on their soft connectivity scores,
which were calculated using the function softConnectivity. Although the main network
was a signed type to preserve the directional information of gene correlations within our
dataset, soft connectivity scores were computed using the default unsigned method,
allowing us to identify highly central and connected genes regardless of whether they
are up- or down-regulated or whether they positively or negatively influence other
module genes. Genes with soft connectivity scores exceeding hub-defining threshold
were deemed hub genes. For the turquoise and black modules, a hub-defining
threshold was set using the histogram distribution of soft connectivity scores across all
module genes. An observed 'elbow' point, indicative of a significant change in the

distribution pattern, was identified and used as a natural cutoff to distinguish hub genes.

2.7.9. Identification of genes with KLF2 or KLF4 binding motifs

Identification of genes that are potentially regulated by KLF2/4 was performed using a
snATAC-seq dataset previously generated by our group (Chawla et al., 2023). This
dataset includes comprehensive profiling of open chromatin across all cell types of the
brain, including a vascular cluster. The Cisbp position weight matrix (PWM) was used to
find motif occurrences of KLF2/4 in any open chromatin peaks identified in the shnATAC-

seq dataset. To find target genes of KLF2/4 transcription factor binding sites, we used

139



Peak-to-gene (p2g) linkages, which were computed using Pearson correlation between
snATAC-seq open chromatin peak accessibility and paired shnRNA-seq gene expression
within 500Kbp windows. Moreover, KLF2/4 transcription factor motif containing p2g links
were further restricted to those with the highest enrichment for these binding sites. In
order to do this, we ran Homer findMotifsGenome.pl with -find <motif file> option
for our motifs of interest. As a result, Motif Score (log odds score of the motif matrix,
higher scores are better matches) were obtained, and KLF2/4 p2g links with motif
scores >= median motif score across all peaks were retained (Median value = 8.28).
Finally, among filtered p2g links with highest evidence for KLF2/4 transcription factor
motifs, only peaks which also showed differentially high accessibility (FDR < 0.05 &
LOGFC > 0.5) in the vascular cell type cluster compared to other brain cell types were

kept.

2.8. In situ quantification of DEGs

2.8.1. Validation of DEGs with fluorescence in situ hybridization

DEG candidates were validated using fluorescence in situ hybridization (FISH). Frozen
vmPFC blocks of (primarily) grey matter were prepared from the same CTRL and ELA
female subjects that were sequenced, cut into serial 10 pm-thick sections with a
cryostat, and mounted on Superfrost charged slides. FISH was performed using
Advanced Cell Diagnostics RNAscope® probes and reagents following the
manufacturer’s instructions. Sections were first fixed in cold 10% neutral buffered
formalin for 15 min, dehydrated by increasing gradient of ethanol baths, and then air
dried for 5 min. Hybridization with Hs-KLF2 (408711-C-1; Advanced Cell Diagnostics,
United States) and Hs-KLF4 (457461-C-2; Advanced Cell Diagnostics, United States)
probes was conducted for 2 hours at 40°C in a humidity-controlled oven. Amplifiers
were added using the proprietary AMP reagents and the signal was visualized through
probe-specific HRP-based detection by tyramide signal amplification (TSA) with Opal
dyes Opal 520 and Opal 570 (FP1487001KT and FP1488001KT; Akoya Biosciences,
United States) diluted to 1:700. Immunofluorescent blood vessels were observed in the
same sections, post-hybridization. Sections were washed in PBS and then incubated

overnight at 4 °C under constant agitation with anti-laminin antibody (anti-Laminin
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antibody L9393; Sigma-Aldrich, United States) diluted in blocking solution (1:500 in 2%
normal donkey serum + 0.2% Triton X dissolved in PBS). After washing in 1X PBS three
times for 5 min each, sections were incubated for 2h at room temperature in
fluorophore-conjugated secondary antibody (1:500; Alexa Fluor® 647 AffiniPure™
Donkey Anti-Rabbit 1IgG (H+L), 711-605-152; Jackson ImmunoResearch Laboratories,
United States). TrueBlack was used to remove endogenous autofluorescence from
lipofuscin and cellular debris. Slides were finally coverslipped in Vectashield mounting

medium with DAPI to enable nuclear staining (Vector Laboratories, Inc., United States).

2.8.2. Imaging and analysis of in situ mRNA expression of DEG candidates

Images were acquired with an Olympus VS120 slide scanner and, for each experiment
and subject, the whole section was scanned and imaged using a x20 objective.
Exposure parameters were kept consistent between subjects for each set of
experiment, where the TRITC channel was designated for a DEG candidate (either
KLF2 or KLF4) and the Cy5 channel was designated for laminin. As TSA amplification
with Opal dyes yields a high signal-to-noise ratio, parameters were optimized so that
autofluorescence from lipofuscin and cellular debris was filtered out. Microvessels were
defined by tubular structures with laminin signal (a validated marker that is exclusively
expressed by endothelial cells. Image analysis was performed in QuPath (v 0.5.1). Each
subject had one section stained with KLF2 or KLF4, as well as DAPI and laminin. To
recapitulate the non-discriminatory approach that was used during microvessel
isolation, where microvessels of all diameters from every spatial point within the tissue
sample is isolated, grey matter microvessels in stained tissue sections were randomly
sampled for analysis. This was conducted by carrying out the following steps: grey
matter area was outlined using the polygon annotation tool and computing intensity
features (namely mean and standard deviation) with a preferred pixel size of 1 uym for
the TRITC channel across the entire grey matter area. A grid with spacing of 1000x1000
Mm was overlaid onto the section, and each tile covering grey matter was numbered.
Using a random number generator, 5 grey matter tiles were selected and annotated
using the square annotation tool. Nuclei that did not display laminin staining but were in

direct contact with the vessel surface were classified as constituent cells of the NVU.
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Consequently, these nuclei were included in the analysis as integral components of the
NVU. To automate microvessel detection and include those with contacting nuclei, a
pixel thresholder for laminin was set, turning these areas into detections within the 5
selected tiles. Similarly, DAPI-stained nuclei were detected. Custom Groovy scripts
were used to merge detections of nuclei in contact with microvessels into singular
detections and convert these detection objects into annotations. A pixel thresholder was
established in the TRITC channel to identify puncta, using a calculated threshold value
of the mean + (5 x standard deviation). Using the pixel thresholder, the area of
annotated microvessels covered by target puncta in the TRITC channel was measured,
from which the percent area covered by target puncta within these annotated
microvessels was calculated. Percent area covered by target puncta was the preferred
measure to reflect RNA expression, as punctate labeling generated by FISH often

aggregates into clusters that cannot readily be dissociated into single dots or molecules.

2.8.3. Statistical analyses for FISH experiments

For each subject, mean percent area for KLF2/4 expression were calculated, and the
following statistical analyses were conducted in R using the stats and car packages: the
Shapiro-Wilk test was utilized to assess the normality of the data and Levene's Test was
conducted to compare the variances between groups. For KLF2, a student’s t-test was
applied to test the hypothesis that KLF2 expression was higher in the CTRL group than
in the ELA group. For KLF4, a Welch's Two Sample t-test was utilized to assess the

same hypothesis under the assumption of unequal variances.

3. Results
3.1. Immunophenotypic characterization of isolated brain microvessels:

preserved morphology and expression integrity

The angioarchitecture of brain microvessels is composed of several neurovascular cell
types. To characterize the composition and morphological integrity of microvessels
isolated by our method, we utilized immunostaining to visualize and assess a range of
NVU markers. We examined vimentin (VIM), primarily found in smooth muscle cells

(Chang and Goldman, 2004); laminin (LAM), a marker of endothelial cells (Yousif et al.,

142



2013); claudin5 (CLDNS), the primary constituent of endothelial tight junctions (Greene
et al.,, 2019); Platelet-derived growth factor receptor beta (PDGFRB), a marker of
pericytes (Winkler et al., 2010); and Aquaporind (AQP4), which is localized to astrocytic
endfeet (De Bellis et al., 2017).

We observed that LAM, the major basement membrane component responsible for
signal transduction (Aumailley and Smyth, 1998), and VIM, a regulator of the actin
cytoskeleton (Chang and Goldman, 2004), were continuously and homogeneously
expressed along the entire length of the vascular surface (Fig. 1b). Additionally, CLDN5
displayed consistent expression throughout microvessels, indicative of well-preserved
endothelial tight junctions (Greene et al., 2019) (Fig. 1c). PDGFRp, a regulator of
angiogenesis and vascular stability (Winkler et al., 2010), was also expressed on the
microvessel surface (Fig. 1d). Furthermore, AQP4, a water channel protein crucial for
maintaining osmotic balance in the interstitial, glial, and neuronal compartments
(Nagelhus and Ottersen, 2013), was superimposed along the microvessel walls (Fig.
1e), suggesting that astrocytic endfeet coverage on the microvessel surfaces is
preserved. Overall, our microvessel isolation methodology, as outlined in Wakid et al.,
2023, effectively enriches microvessels in high yield and maintains their structural

integrity ex vivo.

3.2. Profiling isolated microvessels of the human vmPFC by bulk sequencing
3.2.1. Computational estimation of cell type proportion from sequenced
microvessels shows enrichment for neurovascular cell types

To confirm the enrichment of microvessels and estimate the proportions of
neurovascular cell types that have been enriched, we used the CIBERSORTX algorithm
(Newman et al., 2019) to deconvolute our microvessel RNA sequencing data. To do so,
10X Chromium for single-nucleus data from human brain vasculature was accessed
from Yang et. al (2022) and used as the average reference signatures to deconvolute
our data against. The Yang dataset is particularly useful in this regard, as it contains
single nucleus information for all neurovascular cell types as well as non-vascular cell

types, and stratified information according to neurovascular tree zonation, distinguishing
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the differences between capillary, arterial and venous endothelial cell gene expression.
Deconvolution of our data revealed a significant enrichment for neurovascular cell types
across subjects (Fig. 2b), accounting for an average of 81.7% of the sequenced genes
(plots for representative NVU markers in Supplementary Fig. 2). This percentage was
calculated by summing together the percentages of each neurovascular cell type to
obtain a cumulative value representing the total percentage for each subject. The T cell
category was included as a neurovascular cell type, so that venous + capillary + arterial
+ mural cell + perivascular fibroblast + astrocyte + T cell estimates was taken as the
sum percentage. T cells were included because there is substantial evidence describing
resident memory T cells, a distinct memory T cell population disconnected from the
circulating memory T cell pool (Smolders et al., 2018, Wakim et al., 2012), that reside in
the perivascular Virchow-Robin space underneath astrocytic endfeet (2010; van
Horssen et al., 2005; Smolders et al., 2018; Smolders et al., 2013). The decision to
include cell types found within the perivascular space was bolstered by the presence of
validated perivascular T cell markers CD163 (Kim et al., 2006), LYVE1 (Siret et al.,
2022), and CD206/MRC1 (Koizumi et al., 2019), as well as astrocytic endfeet markers
AQP4, GJA1, and SLC1A2 (Boulay et al., 2017) within our dataset, indicating
successful isolation of the entire NVU, up to the glial limitans. A more detailed list of T
cell, perivascular macrophage, and astrocytic endfeet markers found within our data is

shown in Supplementary Table 2.

Importantly, a high representation of capillary (33.3%) and mural cell (32.6%) assigned
genes were estimated (Fig. 2c), as is typically observed in the microvessel zone (Hirschi
and D'Amore, 1996). In contrast, there was more limited representation of genes
assigned to arterial (1.3%) but no venous endothelial cells, which corroborates with the
intended objective of isolating the smallest of vessels from brain tissue, as well as lower
estimations for astrocyte, perivascular fibroblast, and T cell genes (Fig.2c). The
average percentage estimate of summed neurovascular genes did not differ between
groups (W = 295, p-value = 0.337; Supplementary Fig. 2), nor did the average
percentage estimate for capillary genes (W = 253, p-value = 0.991; Supplementary Fig.
2) or mural cell genes (t(43) = 0.91953, p = 0.3629; Supplementary Fig. 2). As

144



previously reported (Wakid et al., 2023), microvessels isolated using the described
method are obtained in high yield. Although the protocol enriches for microvessels, it
does not purify them; consequently, a limited proportion of non-vascular cell types are
co-enriched in the collected pellets, as estimated by computational deconvolution (Fig.
2b-c). This outcome is to be expected when using postmortem tissue, as reported by
others, a subset of “vasculature-coupled” neuronal and glial cells with distinct
expression signatures (from the corresponding canonical cell types) are physically
adhered to microvessels (Garcia et a., 2022). Taking this into consideration, we
compared deconvolution estimates per subject against two exclusion criteria: 1)
neuronal contamination exceeding two standard deviations from the mean, and/or 2)
oligodendrocyte contamination exceeding two standard deviations from the mean, as
both scenarios were shown to skew subsequent analyses. Adhering to these criteria, 4
subjects (2 CTRL and 2 ELA); the matching between the groups remained unaffected.
Transcript Per Million (TPM) values for cell type-defining genes in CTRLs and ELA
subjects illustrate that our data predominantly reflect transcripts from neurovascular
cells (Fig. 2d). This is evidenced by the high expression of endothelial markers such as
VWEF, EPAS1, SLC2A1, and A2M. In contrast, there is more limited expression of the
astrocytic endfeet marker AQP4, and minimal expression of the astrocytic nuclear
marker SOX9, neuronal markers TH and CALB2, oligodendrocytic markers OLIG2 and
SOX10, and microglial markers CX3CR1 and P2RY12. This pattern highlights the

successful capture of the NVU in our dataset.

3.2.2. Neurovascular changes in the vmPFC of cases

Our understanding of neurovascular-related changes in psychopathologies and ELA
remains limited in humans, and particularly with respect to NVU-specific sex
differences. To date, no studies have specifically investigated how these differences
may manifest. In this study, both male and female subjects were included in CTRL and
ELA groups but with no prior evidence of major sex differences nor a priori hypothesis
that sex differences manifest after ELA, we initially conducted DGE analysis with the
sexes pooled together. We identified a total of 463 DEGs, comprising 281 upregulated
and 182 downregulated genes (p.adj < 0.05, |log2(fold change)|=log2(1.1)), associated
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with a history of ELA irrespective of sex (select DEGs previously implicated in the
literature are highlighted in Supplementary Fig. 2; a comprehensive list of DEGs is
presented in Supplementary Table 3). Further examination, however, highlighted a
proportion of DEGs showing marked sex-driven expression differences, most notably

among females (representative plots provided in Supplementary Fig. 3).

The potential influence of sex on gene expression was thoroughly investigated through
several rigorous analytical avenues. A correlation analysis between principal
components and sex revealed significant, moderate associations for specific
components—namely PC1 (p = 0.0082, r> = 0.152), PC3 (p = 0.03, r2 = 0.104), and PC5
(p = 0.0067, r* = 0.159) — suggesting sex contributes to variance in our data.
Additionally, Welch Two Sample t-test was conducted to determine whether the mean
values of PC1 (which attributes to 35.4% of variation) are significantly different between
males (mean = 3.776618) and females (mean = -7.553237), yielding t(27.245) = 2.7398,
p-value = 0.01072, with 95% confidence interval [2.848402 19.811307], suggesting that
there are differences in the expression patterns captured by PC1 between the two
sexes. Similarly, the mean values of PC5 are significantly different between males
(mean = 1.293569) and females (mean = -2.587138), yielding t(22.219) = 2.5907, p-
value = 0.01661, with 95% confidence interval [0.7759907 6.9854226]. Further, Welch
Two Sample t-tests comparing the mean values of principal components between sexes
— particularly for PC1 and PC5 — indicated significant differences in expression patterns
between males and females. Specifically, PC1 (which accounts for 35.4% of variation)
showed a mean difference (mean in males = 3.776618; mean in females = -7.553237)
with a t-value of 2.7398 (p = 0.01072, 95% confidence interval [2.848402, 19.811307]),
and PC5 also demonstrated a significant mean difference (mean in males = 1.293569;
mean in females = -2.587138; t = 2.5907, p = 0.01661, 95% confidence interval
[0.7759907, 6.9854226])).

Finally, the DESeq function was used to explore the Sex:Group interaction, looking

specifically at the interaction between the factors "Sex" and "Group" as a means to

assess whether the effect of ELA is different between males and females. Intriguingly,
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many DEGs identified by the Sex:Group interaction exhibit sexual divergence in their
differential expression (representative DEGs are presented in Supplementary Fig. 3),
where 66.4% of DEGs demonstrate that the effect of ELA is more pronounced in
females compared to males (summary of Cook’s distances for female subjects in
Supplementary Fig. 3). The observation of sexual dimorphism, coupled with the
presence of approximately double the number of males compared to females in both
groups, prompted our decision to analyze male and female counts separately and, as a
result, characterize the sex-specific effects of ELA on gene expression, providing a

more nuanced understanding of the underlying biology.

3.2.3. Sex-driven differences in the vmPFC neurovascular transcriptome of cases

To identify sex-specific differences in gene expression patterns between CTRL and ELA
groups, we performed DGE analysis separately in males and females. In males, we
identified a total of 34 DEGs, with 19 upregulated and 15 downregulated genes in cases
vs controls (p.adj < 0.05, [log2(fold change)l=log2(1.1); Fig. 3a-c, Supplementary Table
4). This contrasted with females which displayed 774 DEGs, with 343 upregulated and
431 downregulated genes in cases vs controls (p.adj < 0.05, |log2(fold change)|zlog2
(1.1); Fig. 3e-g, Supplementary Table 5). The magnitude to which the female NVU was
affected was greater, with an average log2 fold change of 0.645 for females (equivalent
to a fold change of approximately 1.564, or a 56% change in expression), compared to
an average log2 fold change of 0.350 for males (equivalent to a fold change of
approximately 1.275, or a 28% expression change). This indicates that the female NVU
experiences substantially greater transcriptomic disturbances in depressed suicides
with a history of ELA compared to males. The robustness of these sex differences was
supported by a sub-sampling analysis: to ensure that the results output for male
subjects was not skewed by certain subjects that had not been previously detected as
outliers, 8 male CTRL subjects and 8 male ELA subjects were randomly selected (these
numbers are equal to the total number of females in the CTRL and ELA groups), and
DGE analysis was repeated as described above. DGE analysis of subset male subjects
was repeated 4 times and the output results demonstrated remarkable consistency
across each iteration, as well as with the main DGE analysis of the full male cohort,
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underscoring the reliability and stability of the observed sex differences in response to
ELA.

To assess whether critical genes at the NVU were impacted in cases, we cross-
referenced DEGs identified in males and females with neurovascular cell type defining
markers from recent studies by Yang et al. (2022) and Garcia et al. (2022)
(Supplementary Fig. 3). Male DEGs included PTGS2, a marker of BMECs, along with
TACC1, TIMP3, CDC42EP4, and DIO30S, all of which exhibit high expression levels in
pericytes. Conversely, the female NVU revealed a distinct signature, showcasing DEGs
that included several neurovascular cell type defining markers. Noteworthy among
these are CSF1 (log2 fold change = -0.77, p.adj = 0.0003, Fig. 3h), essential for
monocyte maintenance (35508166, 24890514) and proliferation (Pierce et al., 1990;
Zhou et al., 2022; Mossadegh-Keller et al., 2013); FGF1 (log2 fold change = -0.89, p.ad]
= 0.00023, Fig. 3h), a potent mitogen and angiogenic factor (Stokes et al., 1990); and its
receptor FGFR3 (log2 fold change = -0.70, p.adj = 0.038, Fig. 3h).

Binding partners KLF2 (log2 fold change = -1.44, p.adj = 0.00083, Fig. 3h-i) and KFL4
(log2 fold change = -1.50, p.adj = 0.0003, Fig. 3h-i) were both downregulated in female
cases (but not males with ELA, KLF2: p.adj = 0.92; KLF4: p.adj = 0.84). The Kruppel-
like family of transcription factors (KLFs) plays a pivotal role in regulating endothelial
biology, of which KLF2/4 are enriched in the endothelium and affect virtually all key
endothelial functions. More precisely, KLF2/4 confer endothelial barrier integrity by
inducing expression of multiple anti-inflammatory and anti-thrombotic factors, such as
eNOS (Hamik et al., 2007; Chiplunkar et al., 2013) and thrombomodulin (Hamik et al.,
2007), VEGFR2 (Chiplunkar et al., 2013), and by regulating endothelial expression of
CAMs, NF-kB, and tight junction proteins CLDN5 and occludin (Zhang et al., 2020; Shi
et al., 2013; Chiplunkar et al., 2013; Lin et al., 2010). Moreover, KLF2 orchestrates
vascular homeostasis and serves as a central transcriptional switch point between a
pro-inflammatory, atheroprone versus quiescent, atheroresistant endothelial phenotype,
in which KLF2 determines endothelial transcription programs (> 1000 genes, Dekker et

al., 2006) that control key functional pathways such as cell migration, vasomotor
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function, inflammation, and hemostasis (Dekker et al., 2006; Lin, Z et al., 2005; Lee et
al., 2006). Similarly downregulated in females is CLDNS (log2 fold change = -0.65, p.adj
= 0.012, Fig. 3h), a major determinant of BBB integrity that is downregulated by chronic
stress (Menard et al., 2017; Dudek et al., 2020; Dion-Albert et al., 2022). Other female
DEGs with well characterized functions at the NVU include VLDLR, HSPB1, HYAL1,
HYAL2, ST6GALNAC3, ADGRA2, BST2, VCAM1, IL32, SOX18, MT2A, CTSB, RGL3,
PAG1, and GJA4. Additionally, several ATP-binding cassette transporters (ABCs) and
solute carriers (SLCs) are also differentially expressed, namely ABCD3, ABCAS5,
SLC24A4, SLC36A4, SLC4A7, SLC25A36, SLCY9A3R2, SLC35A4, SLC6AG,
SLC39A14, SLC8B1, SLC22A3, SLC7A10.

A hypergeometric test revealed a statistically significant overlap between female DEGs
and neurovascular cell type defining markers (hypergeometric p-value = 2.48 x 10°7).
Focusing solely on DEGs that overlap with neurovascular cell type defining markers,
KLF2 emerged as the 6th most significant, and the foremost with a well-characterized
function. Both KLF2 and KLF4, known for their redundant and overlapping functions in
regulating endothelial cell properties and vascular integrity, exhibited a high mean
average expression and a large log2 fold change (KLF2: top 0.14% for log2 fold
change, KLF4: top 0.10% for log2 fold change). Thus, we chose to experimentally
validate the expression changes of KLF2/4 using FISH in the same female CTRL and
ELA subjects that were previously sequenced. Consistent with our RNA sequencing
findings, significant downregulation of KLF2 (t(12) = 8.7474, p = 7.45 x 107) and KLF4
(t(7.2153) = 2.3976, p = 0.023) expression was observed in the grey matter
microvessels of ELA vs CTRL females (Fig. 4a-b). Importantly, there was no statistically
significant difference in blood vessel density between the CTRL and ELA females (W =
38, p = 0.09732).

3.2.4. Females—but not males—display significant neurovascular dysfunction in
cases
The relevance of the DEGs we identified in relation to psychiatric disorders was

assessed using the PsyGeNET (Gutiérrez-Sacristan et al., 2017) text-mining database.
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Upon evaluating male DEGs, we found that depressive disorders exhibited the most
gene-disease associations (>9 DEGs; Fig. 5a; Supplementary Fig. 4). In the case of
female DEGs, schizophrenia had the highest number of gene-disease associations (60
DEGs; Fig. 5b; Supplementary Fig. 4), closely followed by depressive disorders (>50
DEGs; Fig. 5b). Therefore, our microvessel derived-DEG findings in both sexes,

especially in females, corroborate previously reported gene-disease associations.

Functional annotation and cell-type enrichment of DEGs were conducted using
Metascape (Zhou et al., 2019). In male cases, the "ATP-dependent protein folding
chaperone" functional cluster was as the most significantly enriched (Fig. 5c), pertaining
to DEGs HSPA4, HSPA5, HSPA9, HSP90AA1, and HSP90B1 (Fig. 3d). Additionally,
there was an endothelial cell type signature enrichment amongst male DEGs (Fig. 5c).
Functional enrichment of female DEGs revealed significantly enriched functional
clusters related to immune and vascular pathways, namely “Interferon alpha/beta
signalling” and “Regulation of response to cytokine stimulus” (Fig. 5d). Furthermore,
there was a pericyte and endothelial cell type signature enrichment amongst DEGs in
female. Further scrutiny of individual DEGs with known immune functions confirmed
“global immune suppression” where, irrespective of whether pro- or anti-inflammatory in
nature, immune-related DEGs were downregulated, some of which are presented in
Table 2. It is worth mentioning that major cytokines were inadvertently omitted from
DGE analysis after pre-filtering (e.g. TNFa, IL1B3, IFNy, CRP, IL6, IL8, IL10, CXCL10),
indicating very low expression in the vmPFC. To determine whether low-count cytokines
are differentially expressed in male and female cases, additional analyses on
normalized counts were performed post-hoc, revealing no significant differences in
cytokine expression between CTRL and ELA females. To further assess the functional
relevance of gene expression differences in microvessels from cases, we examined
whether the protein products of DEGs belonged to interacting networks (Supplementary
Fig. 12).

We used GSEA (Fig. 5e-f) to explore the biological pathways underlying transcriptomic

changes observed in male and female cases. For males, significant enrichment was
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found in pathways “Voltage-gated potassium channels” and “Muscle contraction” (Fig.
5e), suggesting potential alterations in Kv channel facilitated smooth muscle contraction
(Nieves-Cintron et al., 2018; Albarwani et al., 2003; Dabertrand et al., 2015). The
"Nuclear Steroid Receptor Activity” pathway was similarly enriched (Fig. 5e), featuring
DNA-binding transcription factors such as PGR, ESR2, and PPARA, which are
recognized for their neuroprotective and broad vascular functions (Kolodkin et al., 2013;
Wang et al., 2021). In contrast, chaperone binding protein pathways had significantly
lower normalized enrichment scores (Fig. 5e). Similar to males, most significant
pathways identified by GSEA in females were downregulated. Females exhibited
downregulation in immune-related pathways, akin to ORA findings, including "Interferon
signalling" and "Interleukin signalling” (Fig. 5f), indicating suppressed immune signalling
in ELA. Additionally, gene sets related to vascular functions, namely “Platelet activation
and aggregation” and “Hemostasis” were negatively enriched in females. Intriguingly,
exposure to chronic stress is associated with prolonged pro-inflammatory platelet
bioactivity (Koudouovoh-Tripp et al., 2021; Matsuhisa et al., 2014; Aschbacher et al.,
2008; Markovitz and Matthews, 1991) and platelet pathology in MDD (Musselman et al.,
1996; Pinto et al., 2012; Morel-Kopp et al., 2009; Ormonde do Carmo et al., 2015;
Gialluisi et al., 2020; Yu et al., 2021; Ward et al., 2023; Massardo et al., 2021; Canan et
al., 2012; Cai et al., 2017), with greater effects in depressed women (lzzi et al., 2020).
Intriguingly, analysis using the newly curated gene set list Brain.GMT (Hagenauer et al.,
2024) (Fig. 5f) shows upregulation in genes typically downregulated in “Susceptible
Phenotype to Social Defeat Stress" and in “Resilient Phenotype to Social Defeat
Stress". Thus, our GSEA of microvessels from cases revealed dysregulated pathway
gene sets that are functionally significant in both neurovascular cell types and the ELA
phenotype. Furthermore, these findings align with DEGs identified in males and

females.

3.2.5. Little overlap between male and female neurovascular dysfunction
We next used RRHO analysis to identify shared transcriptional changes between males
and female cases. RRHO, a threshold-free method for assessing statistical overlap

(Canhill et al., 2018), enabled us to delineate sex-specific transcriptional signatures and
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directly compare the transcriptional signatures observed in male versus female ELA
subjects. Consistent with previous studies showing distinct brain transcriptomic changes
in males and females with MDD (Labonté et al.,, 2017), we found remarkably little
overlap between male and female ELA transcriptional signatures (Fig. 6a). Thus, the
directionality of the changes observed in males and females with ELA are not
preserved. The limited overlap in transcriptional changes between male and female
depressed suicides with a history of ELA was further confirmed by focusing our analysis
exclusively on DEGs. By directly comparing male and female DEGs, we observed
minimal commonality by identifying only two shared DEGs: HOMER2 (ELA males: p.adj
= 0.013, log2 fold change = 0.34; ELA females: p.adj = 0.02, log2 fold change = 0.63)
and TACC1 (ELA males: p.adj = 0.048, log2 fold change = 0.22; ELA females: p.adj =
0.03, log2 fold change = 0.47), both of which are upregulated in both sexes (Fig. 6b-c).
While Homer proteins are best known for their interaction with group 1 metabotropic
glutamate receptors (mGIuR1/5) (Bockaert et al., 2021), HOMERZ2 is also expressed in
endothelial cells (Supplementary Fig. 4) and plays a crucial role in regulating Ca?*
signalling and activation of platelets by agonists such as thrombin (Dionisio et al., 2015;
Jardin et al., 2012). Meanwhile, TACC1, a member of the Transforming Acidic Coiled-
Coil family, acts as a coregulator of various nuclear receptors (Guyot et al., 2010) that
modulate transcription by binding to their target DNA response elements. Overall, these
findings highlight a strong sexual dimorphism in the transcriptional signatures exhibited

by the NVU in depressed suicides with a history of ELA.

3.2.6. WGCNA identifies specific gene networks in the NVU of female cases

Having characterized the broad pattern of transcriptome-wide changes at the female
NVU, we then sought to resolve specific gene coexpression networks that could be
critical in determining NVU dysfunction in cases. Using WGCNA, we constructed a gene
coexpression network that returned 73 modules. To gain insight into the biology of
implicated modules, we identified a subset of interesting modules for further analysis
based on two criteria: a significant association with cases (p-value < 0.05) and a
correlation coefficient greater than 0.7, ensuring a focus on modules strongly associated

with depressed suicides with ELA. A total of 5 modules exhibited a significant
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correlation coefficient greater than 0.7 (Fig. 7a-b), as well as biological processes
pertinent to ELA: membrane trafficking (Fig. 7c; turquoise: p = 1.46x1077, 1.74x),
interferon alpha/beta signalling (Fig. 7d; black: p = 8.95x1079, 6.95x), VEGFA/VEGFR2
signalling (green: p = 2.04x1078, 2.10x), response to lipopolysaccharide (greenyellow: p
= 2.88x107'2, 4.64x), and eukaryotic translation elongation (orange: p = 1.10x10734,
28.36x). Enrichment of cell-type associated genes in these modules identified microglial
genes in turquoise (Fig. 7c; p = 1x107', 2.3x), endothelial genes in black (Fig. 7d; p =
1x1071%, 3.4x), green (p = 1x10734, 3.7x), and greenyellow (p = 1x107'4, 5.2x), along
with T cells in orange (p = 1x1073, 17x). Modules were then handed over to the
GeneOverlap R package, where we assessed significant overlap of module genes with
female DEGs. Of the 73 generated modules, this subset of 5 modules were also
enriched for female DEGs (Fig. 7e; turquoise: p = 2.3x107""; green: p = 4.5x10730;
black: p = 1.4x107?7; greenyellow: p = 2.5%x1078; orange: p = 3.8x107°), in a way that
was consistent with regional RRHO patterns. Indeed, many of the co-downregulated
genes in the RRHO analysis were also found within these 5 modules (e.g. PDGFA,
TFRC, EPHAS, FN1, CX3CL1, ICAM1, PTGS2, PGF; Supplementary Fig. 5). Together,
these analyses suggest that the turquoise, green, black, greenyellow, and orange
modules may be particularly important in governing NVU dysfunction in female cases,
which is further substantiated by a markedly lower median for each module's

eigengenes (Fig. 7f).

3.2.7. KLF2 and KLF4 regulate endothelial activation transcriptional networks in
female cases

Interestingly, KLF2 and KLF4 (along with CLDN5) emerged in modules turquoise and
black, respectively (Supplementary Table 6). Recognizing that these modules may
represent genes for which KLF2/4 are nodal regulators, we assessed potential
correlation between the eigengenes of the turquoise and black modules. A strong
positive correlation (r = 0.51, Fig. 7g) was observed, suggesting some level of co-
regulation or functional overlap. Importantly, KLF2 not only exhibits a strong correlation
with the turquoise eigengene (MM = 0.76) and a strong association with ELA (GS =

0.83), but its closeness centrality (CC = 0.12) also indicates a functionally central
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position within the module. KLF4 similarly demonstrates a strong correlation with the
black eigengene (MM = 0.86), a strong association with ELA (GS = 0.86), and a
closeness centrality of 0.15, underscoring its central role within the module. We next
sought to explore the potential impact of KLF2/4 downregulation, as observed in female
cases, on genes identified within the turquoise and black modules. To this end, genes
within these modules were cross-referenced against human homologues of genes
experimentally validated to be affected by dual KLF2/4 knockout. This comparative
analysis revealed substantial overlap (Supplementary Fig. 5): 448 genes within the
turquoise module (p-value = 5.1x107°) and 193 genes within the black module (p-value
= 3.3x1078). Furthermore, additional KLFs are present in modules green (KLFs 8, 10,
and 16), greenyellow (KLF6), and turquoise (KLF13), and modules that possess KLFs
exhibit strong correlation with one another (Fig. 7g); thus, it is conceivable that these
KLFs may also play a regulatory role within their respective modules. Hub genes,
particularly the topmost hub genes (Fig. 7h), within the turquoise and black modules
exhibit decreased mean normalized count in depressed females with a history of ELA
(Fig. 7i).

Using a snATAC-seq dataset generated by our group (Chawla et al., 2023), we then
explored potential regulatory actions performed by KLF2/4 in the turquoise and black
modules, respectively. The Cisbp PWM was used to identify DNA sequences within the
open chromatin peaks that matched known motifs for KLF2 or KLF4. These motifs were
then analyzed in conjunction with corresponding open chromatin regions that were
highly accessible in the vascular cluster (Fig. 8a) compared to non-vascular cell types.
This approach allowed us to filter p2g associations for peaks covering DNA sequences
matching known motifs for KLF2 or KLF4 and combined with corresponding open
chromatin regions that were highly accessible in the vascular cluster (Fig. 8a) compared
to non-vascular cell types. By virtue of this approach, specific genes that are potentially
regulated by KLF2 or KLF4 in endothelial cells can be identified. Disregarding the
location of potential KLF2/4 binding sites, genes with motif scores = median score and
significant FDR (FDR < 0.05; indicating high confidence that the identified peak is a true

regulatory site where KLF2 or KLF4 is likely to bind) were then cross-referenced with
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turquoise and black module genes, respectively, demonstrating that 33% of turquoise
module genes are motif-linked to KLF2 (Fig. 8b; p-value = 1.8x107%) and that 30% of
black module genes are motif-linked to KLF4 (Fig. 8c; p-value = 1x107'4). Several hub
genes were identified amongst motif-linked genes in both the turquoise and black
modules, including several KLF2 binding sites in distal, promoter, exonic and intronic
regions of the topmost turquoise hub gene FKBP8 (further breakdown of gene regions
with potential KLF2/4 binding sites found in Supplementary Table 7). These findings
underscore the substantial influence of KLF2/4 on the transcriptional landscape of
endothelial cells, specifically within the promoter and distal regions, which are crucial for

gene regulation.

4. Discussion

The pernicious effects of adversity experienced during developmental periods of
heightened plasticity linger as psychopathology and disease into adulthood. The
complex neurobiological and stress-mediated mechanisms through which these
enduring impacts manifest, however, remain insufficiently characterized in individuals
with histories of ELA. One proposed mechanism is NVU dysfunction: chronic stress
leads to the production of blood-borne inflammatory cytokines and activation of
leukocytes, which then act on BMECs (Lopez-Ramirez et al., 2013). This interaction
instigates a temporal sequence of biological pathways that orchestrate the
neurovascular response, potentially impacting the properties of the BBB and,
consequently, affecting the brain parenchyma. As developmental windows of critical
plasticity close, the neurovascular response is redirected towards "off-trajectory”
pathways, which are then sustained throughout life. In this study, we used our recently
developed protocol (Wakid et al., 2023) to isolate intact microvessels from archived
snap-frozen vmPFC grey matter samples from healthy controls and depressed suicides
with histories of ELA, for which we demonstrate preserved morphological integrity as
well as expression of canonical neurovascular cell type markers. We isolated intact
microvessels in favour of investigating the whole NVU as opposed to dissociated, single

nuclei. Our decision to do so lies in the fact that a structurally preserved unit can provide
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insight into the neurovasculature in a manner that dissociated nuclei cannot: not only is
unwanted, technically-related depletion of neurovascular-associated cells avoided, but
cytoplasm — which carries much higher amounts of mRNA and protein — as well as
interstitium, are also preserved. This is not trivial, as work done by others comparing
microglia single cells versus single nuclei from postmortem tissue reveals that certain
populations of genes are depleted in nuclei (Thrupp et al., 2020). Ultimately, the NVU is
so interconnected that dysfunction is typically observed in all neurovascular-associated
cells, conferring whole-unit dysfunction that becomes difficult to parse when looking at

dissociated nuclei.

Total RNA extracted from isolated microvessels was subjected to RNA sequencing to
generate the first NVU-specific transcriptomic profile in individuals with a history of ELA.
Overall, our findings suggest that NVU function and integrity in these individuals if
impacted through widespread gene expression changes. Differential gene expression in
pooled ELA subjects (males and females together) revealed dysregulated pathways in
“chaperone-mediated protein folding” and antigen processing and presentation”, as well
as DEGs involved in interconnected biological processes of hormone signalling
(estrogen and progesterone), stress response mechanisms (heat shock proteins and
FK506 binding proteins), and epigenetic regulation of gene expression (DNMT1 and
HDACD9); corresponding to previous reports investigating chronic stress (Poulter et al.,
2008; Hartmann et al., 2012; Zannas et al., 2016; Lund et al., 2006; Walf et al., 2004;
Jochems et al., 2015), and warrant further investigation as potential ELA markers
irrespective of sex. Transcriptomic changes associated with ELA or chronic stress have
been the focus of several investigations, yet the maijority of these studies exclusively
characterize male ELA signatures (Short et al., 2023; Eck et al., 2022; Reemst et al.,
2022; Kos et al., 2023; Treccani et al., 2021; Rentscher et al., 2022; Wegner et al.,
2020). In contrast, fewer studies include females (Edelmann et al., 2023; Parel et al.,
2023; Barrett et al., 2021), thereby omitting the opportunity to integrate or make direct
comparisons between males and females and, as such, the extent to which the
transcriptional profiles defining ELA differs in males versus females remains unknown.

Our data-informed decision to perform DGE analysis on males and females separately
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allowed us to identify dramatic, fundamental differences in NVU dysfunction in males
versus females, providing a framework for better understanding the molecular basis of
the sexual dimorphism characterizing depression and ELA. The male NVU appears to
be relatively unaffected in male cases; in contrast, the female NVU experiences
widespread differential expression in a large number of genes. These findings are
further supported by outcomes from GSEA and RRHO analyses, revealing a lack of
overlap in both pathway dysregulation and the direction of gene expression changes

across all genes, not solely those that are significantly differentially expressed.

Male DEGs showed enrichment for pathways delineating voltage-gated potassium (Kv)
channels and vascular smooth muscle contractility, which together may indicate that
smooth muscle activity and vascular tone are modulated in adult male depressed
suicides with a history of ELA. Indeed, impaired neurovascular coupling has been
experimentally determined in chronically stressed rodents (Longden et al., 2014; Lee et
al., 2015; Han et al., 2019), in which decreased vasomodulator enzymes neuronal nitric
oxide synthase (nNOS) and heme oxygenase-2 (HO2) (Han et al., 2019; Lee et al.,
2015) as well as malfunction of inwardly rectifying potassium (Kir) channels in
parenchymal arteriolar myocytes were observed (Longden et al., 2014).
Complimentarily, psychosocial stress rapidly increases peak latency of the
hemodynamic response function in the human prefrontal cortex (Elbau et al., 2018),
suggesting shifted neurovascular coupling. Pathways pertaining to steroid hormone
receptor activity (“Nuclear receptor transcription pathway” and “HSP90 chaperone cycle
for steroid hormone receptors SHR in the presence of ligand”) are also modulated in
males, and correspond to abundant research demonstrating the role of NR3C1
(encoding glucocorticoid receptor; McGowan et al., 2009; Oberlander et al., 2008;
Weaver et al., 2004; Liu et al., 1997) in mediating the effects of chronic stress, and the
neuroprotective effects of progesterone and estrogen (Brann et al., 2007) (PGR and
ESR2 are upregulated in male ELA). In females, ORA and GSEA indicated
downregulation of numerous, complimentary immune-related pathways, particularly
those pertaining to cytokine signalling. Put succinctly, we report a global suppression of

gene expression related to immune functions, encompassing both genes with pro- and

157



anti-inflammatory roles. Our finding contradicts decades of correlative clinical evidence
suggesting that elevations in circulating pro-inflammatory cytokines reflect a similarly
pro-inflammatory state within the brain parenchyma in stress-related psychopathology
(Maes et al.,, 1992; Lieb et al., 1983; Calabrese et al., 1986; Howren et al., 2009;
Dowlati et al., 2010; Felger et al., 2016; Haroon et al., 2016; Haapakoski et al., 2015;
Udina et al., 2012; Ford and Erlinger, 2004; Pace et al., 2006; Miller et al., 2005; Osimo
et al., 2020; Danese et al., 2008; Danese et al., 2007; Baldwin et al., 2018; Rasmussen
et al., 2020; Danese et al., 2009; Danese et al., 2011). Importantly, suppressed immune
signalling suggests that ELA-associated dysregulation of gene expression is not as
straightforward as "peripheral inflammation equals brain inflammation". We reanalyzed
a previously published RNA sequencing dataset generated in the ACC brain
parenchyma (Lutz, Tanti et al., 2017), which is anatomically adjacent to the vmPFC,
from the same female subjects. A moderately strong positive correlation was found
between log2 fold changes of immune-related and neurovascular genes within the brain
parenchyma and NVU, indicating a similar pattern of downregulation for these genes

(Supplementary Fig. 5).

The accuracy of our findings is bolstered by the significant downregulation of CLDN5
expression in the female vmPFC, which corresponds to previous observations that
chronic social stress alters BBB integrity through loss of the tight junction protein
CLDNS5 in the female mouse PFC (Dion-Albert et al., 2022), possibly by circulating
cytokines (an experimentally validated mechanism: Camire et al., 2015; Khattab et al.,
2023; Arima et al., 2020). Hence, this apparent contradiction in immune state between
the blood and NVU may be reconciled by the following speculation: following ELA, the
adult NVU is chronically exposed to circulating cytokines, prompting a continuous
response or adaptation. Overtime, a new homeostatic point is set by the NVU. This
adaptation modulates the NVU transcriptome, including the suppression of the NVU’s
own immune response, which may function as a neuroprotective mechanism to shield
the brain parenchyma from the deleterious effects of a pro-inflammatory milieu in the
blood, as suggested by similarly downregulated immune-related genes in the ACC of

the same female subjects (Lutz, Tanti et al., 2017). Indeed, we see possible protective
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mechanisms at play in females, in the form of suppressed platelet activation signalling

and hemostasis pathways.

One such change in the transcriptome that demands further investigation is altered
Kruppel-like Factor signalling, namely downregulated KLF2/4 in the female NVU.
Expression of KLF2/4 acts as a central transcriptional switch point favouring a healthy,
quiescent state of adult endothelial cells, while also maintaining stable expression of
endothelial marker genes (Dekker et al., 2006) by opening chromatin and binding to
enhancer and promoter regions throughout the endothelial genome to regulate core
BMEC transcriptional programs (e.g., tight junctions, adhesion, guidance cues) (Sweet
et al., 2023). Interestingly, KLF2/4 impedes endothelial cell activation induced by
inhibiting TGFB (Boon et al., 2007) and VCAM1 (both of which are downregulated in our
female data, SenBanerjee et al., 2004) induced by diverse pro-inflammatory stimuli (Lin
et al., 2006; Hamik et al., 2007). However, chronic pro-inflammatory stimuli may, in turn,
inhibit KLF2/4 expression (Dekker et al., 2002; SenBanerjee et al., 2004; Kumar et al.,
2005). It is possible that the continuous need to compensate for peripheral inflammation
eventually leads to decreased KLF2/4 expression, reflecting an exhausted response
where the system is no longer able to maintain effective levels of protection, while
further losing BBB properties, as evidenced by downregulated CLDN5 expression,
which is regulated by KLF2/4 (Sangwung et al., 2017; Ma et al., 2014; Supplementary
Fig. 5). The highly significant differential expression of KLF2/4, coupled with their strong
association with the ELA trait, and their central position within the turquoise and black
modules underscores their regulatory significance in the context of ELA. Furthermore,
the significant proportion of genes within the turquoise and black modules harboring
KLF2 or KLF4 binding motifs in their distal or promoter regions (Supplementary Fig. 5)
highlights the pivotal role of KLF2/4 in modulating the BBB’s capacity to uphold brain

homeostasis and safeguard the neuronal environment against stress-induced disorders.
This study has limitations that should be considered. First and foremost, the number of

subjects investigated was small relative to the large number of genes tested for

associations with ELA, a typical constraint in postmortem studies as well-characterized
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brain tissue is a limited resource. While the relatively small number of subjects included
in this study limits our statistical power, we succeed in illustrating robust changes in
gene regulation in cases with robust sex differences, and further validated some of the
main results. It will be interesting for future studies to extend this work to additional
cohorts of ELA subjects and to assess the potential associations between brain, NVU
and blood gene networks, with the promise that establishing “holistic” blood to NVU to
brain transcriptomic profiles might better reveal diagnostic subtypes or treatment
responses. Lastly, with this study design, it is difficult to associate our findings
specifically to major depression or to ELA, and a contribution of both phenotypes is
likely. That ELA might drive many/most of the expression changes we identified,
however, is supported by recent studies having identified NVU or immune-related
contributions to ELA or chronic stress (Menard et al., 2017; Dudek et al., 2020; Dion-
Albert et al., 2022; Lehmann et al., 2018; Lehmann et al., 2020; Samuels et al., 2023;
Lehmann et al., 2022). Indeed, several gene targets identified in these investigations
are found within the top gene networks identified in the present study. In conclusion, our
results provide a comprehensive characterization of sex-specific transcriptional
signatures in the vmPFC of depressed suicides with a history of ELA, identifying
regulatory mechanisms of endothelial function that may act as potential new avenues
for the development of neurovascular-targeted therapeutic strategies for the treatment

of ELA-related psychopathology, particularly in women.
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6. Tables and Figures

CTRL (sexes ELA (sexes
pooled) pooled)
n 21 24
Sex (M/F) 13/8 1717
Age (years) 49.10 £ 18.71 42.54 £14.70
Axis 1 diagnosis 0 MDD (24)
History of abuse 0 24
PMI (h) 40.32 + 28.21 41.51 £22.24
Tissue pH 6.43 £ 0.31 6.58 £ 0.39
Male CTRL Male ELA Female Female ELA
CTRL
n 13 17 8 7
Age (years) 4;02; 37.88 £ 10.18 62.25 £ 19.00 53.86 + 18.48
Axis 1 diagnosis 0 MDD (17) 0 MDD (7)
History of abuse 0 17 7
PMI (h) 3118 % 36.18 + 20.97 55.18 + 30.42 54.46 +21.13
23.43
Tissue pH 6.51+0.24 6.53 £ 0.38 6.29 £ 0.37 6.71+0.39

Table 1: Demographic and sample characteristics of CTRL and ELA cohorts. Numeric

values in each cell

represent

the mean =+

SD. MDD: major

depressive

disorder, PMI: postmortem interval. The postmortem interval is a metric for the delay

between an individual’s death, the collection and processing of the brain.
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Immune-related gene expression in females with ELA

Gene baseMean log2FC pvalue padj
IFI6 808.29 -0.85  0.0003  0.0138
HLA-B 7025.47 -0.92  0.0011  0.0299
HLA-F 905.24 -0.62  0.0009 0.0262
IFI35 171.00 -0.88 0.0000 0.0002
IFIT3 701.97 -0.88 0.0000 0.0049
IRF1 488.35 -1.17 0.0004 0.0168
IRF7 162.96 -0.76  0.0014  0.0355
1SG20 153.28 -0.67  0.0022  0.0459
ISG15 291.38 -1.22  0.0000  0.0001
IRF9 726.61 -0.42 0.0003 0.0144
CD74 1945.60 -1.11 0.0001 0.0065
HLA-DMA 84.91 -1.12 0.0005 0.0198
HLA-DMB 151.62 -1.29 0.0014 0.0358
HLA-DPA1 344.01 -1.11 0.0000 0.0001
HLA-DPB1 233.66 -1.00  0.0001  0.0096
HLA-DRA 259.14 -1.33 0.0001 0.0097
TAP1 583.88 -0.86 0.0000 0.0001
TAP2 634.83 -0.53  0.0023  0.0460
CSF1 643.41 -0.77  0.0000  0.0003
IRAK1 408.95 -0.42  0.0021  0.0449
IKBKE 41.79 -1.08 0.0010 0.0284
IFNGR2 339.98 -0.51 0.0001 0.0068
TGFB1 510.19 -0.54  0.0000  0.0029
VCAM1 583.52 -1.61  0.0005  0.0189
CCRL2 41.08 -0.85  0.0021  0.0448

Table 2: A representative list of significantly downregulated genes with known immune
functions in females with ELA includes genes with both pro-inflammatory and anti-
inflammatory roles. This widespread downregulation of immune-related genes suggests

a 'global immune suppression'.

180



Tissue dissection and
homogenization

Ventromedial prefrontal cortex

y

Microdissect 100 mg of brain
tissue submerge in 2 ml of
Homogenization Buffer in C tube

Agitate C tube for 30 sec

Set to program
"Lung 02.01" and homogenize

Pelleting and resuspension of

dissociated microvessels

Top up homogenized tissue to
10 ml with Homogenization
Buffer and transfer to a 15 ml

1a|c(1!ube

——

Centrifuge at 3200 g in
4°C for 30 min

Aspirate myelin layer and
|& | supernatant, avoiding pellet

Resuspend pellet in 400 pl
old PBS

Immunofluorescent visualization

of isolated microvessels

23

Pipette 50 ul into wells of 8-well
chamber slide and dry in 37 °C oven
overnight

¥

Fix microvessels with cold 100%
methanol for 15 min

Perform IF

Visualize isolated
microvessels

100 pm

PDGFRP




Fig. 1: Effective isolation and enrichment of microvessels. a) Schematic overview of
experimental workflow for isolating microvessels from postmortem brain tissue and
processing for immunostaining of neurovascular markers. b) Representative micrograph
of isolated microvessels immunostained with LAM (red). c) Representative micrograph
of isolated microvessels immunostained with VIM (green). d) Representative
micrograph of isolated microvessels immunostained with CLDN5 (red). e)
Representative micrograph of isolated microvessels immunostained with PDGFRA
(green). f) Representative micrograph of isolated microvessels immunostained with
LAM (green) and AQP4 (magenta). Nuclei were stained with DAPI (blue). Scale bar =

100pm and applies to all micrographs in panels b)-f).
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Fig. 2: Bulk RNA sequencing and bioinformatic deconvolution of isolated microvessels.
a) Schematic overview of experimental workflow for isolating microvessels from
postmortem brain tissue and processing library construction and bulk RNA sequencing.
b) Deconvolution of sequenced microvessel samples was performed via CIBERSORTX
algorithm. Top: Bar plot showing cumulative percentage of neurovascular gene
expression across sequenced subjects. Bottom: Bar plot displaying the percentage of
neurovascular gene expression averaged across sequenced subjects, as well as
percentages of non-neurovascular cell types averaged across sequenced subjects.
These data highlight the significant enrichment of neurovascular cells within the
microvessel RNA sequencing data. c) Bar chart showing significant enrichment of
genes associated with capillary and mural cells, compared to those of arterial and
venous endothelial cells. This pattern underscores the selective enrichment of
microvessels, as opposed to larger diametre vessels along the arteriovenous axis. d)
Transcript Per Million (TPM) values for different cell type-defining genes, demonstrating
a predominance of neurovascular cell transcripts, particularly endothelial markers, in
contrast to minimal expression of non-vascular markers, underscoring the effective

capture of the neurovascular unit.
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Fig. 3: DGE of CTRL versus ELA for male and female microvessels, respectively. a)
Volcano plot showing the results from differential gene expression analysis between
male CTRL and ELA groups, performed using DESeq2. Data points represent individual
genes, with significance determined by adjusted p-value (padj) < 0.05 and absolute log2
fold change > log2(1.1). Genes above the threshold line are significantly differentially
expressed. b) Heatmap showing the results from differential gene expression analysis
between male CTRL and ELA groups, performed using DESeq2. Each row represents a
gene, and the color intensity corresponds to the magnitude of log2 fold change, with red
indicating upregulation and blue indicating downregulation. The heatmap is organized to
display genes meeting the significance criteria of adjusted p-value (padj) < 0.05 and
llog2(fold change)| > log2(1.1). The clustering tree alongside the heatmap categorizes
genes based on the similarities in their expression changes, effectively grouping genes
with similar expression patterns together. c) Tables displaying the top 5 upregulated
(top) and top 5 downregulated (bottom) DEGs for males, indicating their gene names,
log2 fold changes, and adjusted p-values. d) Bar plots showcasing selected DEGs in
males. Normalized counts for PTGS2, HSPA4, HSPA5, HSPA9, HSP90AA1, and
HSP90B1 show a downregulation in the male ELA group compared to the male CTRL
group. (*: p <0.05; **: p < 0.01; ***: p < 0.001; ****: p < 0.0001). e) Volcano plot showing
the results from differential gene expression analysis between female CTRL and ELA
groups, performed using DESeqg2. Data points represent individual genes, with
significance determined by adjusted p-value (padj) < 0.05 and absolute log2 fold change
> log2(1.1). Genes above the threshold line are significantly differentially expressed. f)
Heatmap showing the results from differential gene expression analysis between female
CTRL and ELA groups, performed using DESeq2. Each row represents a gene, and the
color intensity corresponds to the magnitude of log2 fold change, with red indicating
upregulation and blue indicating downregulation. The heatmap is organized to display
genes meeting the significance criteria of adjusted p-value (padj) < 0.05 and |log2(fold
change)| > log2(1.1). The clustering tree alongside the heatmap categorizes genes
based on the similarities in their expression changes, effectively grouping genes with
similar expression patterns together. g) Tables displaying the top 5 upregulated (top)

and top 5 downregulated (bottom) DEGs for females, indicating their gene names, log2
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fold changes, and adjusted p-values. h) Bar plots showcasing normalized counts for
selected DEGs in females, namely CLDN5, FGF1, FGFR3, SOX18, HYAL1, HYAL2,
KLF2, KLF4, VCAM1, EPHA2, VLDLR, and CSF1. (*: p < 0.05; *: p < 0.01; *™*: p <
0.001; ***: p < 0.0001). STRING analysis reveals DEGs shown in g) are involved in a
network of protein-protein interactions. i) STRING analysis for KLF2 and KLF4, both

identified as DEGs in females, demonstrates their interaction with other female DEGs.
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Fig. 4: In situ validation of decreased KLF2 and KLF4 expression in grey matter
microvessels of females with ELA compared to female CTRLs. a) Representative
images of FISH for KLF2 (red) expression in CTRL (left) and ELA (right) microvessels
(LAM+ cells, yellow). Nuclei were counterstained with DAPI (blue). Scale
bar =100 ym. Mean microvessel expression of KLF2 is significantly reduced in females
with ELA (p = 7.45 x 107). This is further demonstrated by the distribution of individual
data points for KLF2 expression across the two groups, with a higher percent of
microvessel area covered by KLF2 in the CTRL group compared to the ELA group. b)
Representative images of FISH for KLF4 (red) expression in CTRL (left) and ELA (right)
microvessels (LAM+ cells, yellow). Nuclei were counterstained with DAPI (blue). Scale
bar =100 ym. Mean microvessel expression of KLF4 is significantly reduced in females
with ELA (p = 0.023). This is further demonstrated by the distribution of individual data
points for KLF2 expression across the two groups, with a higher percent of microvessel

area covered by KLF4 in the CTRL group compared to the ELA group.
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Fig. 5: Functional annotation and enrichment in male and female DEGs. a-b) Bar plot
displaying the number of gene-disease associations for psychiatric disorders in a) male
DEGs and b) female DEGs, queried via the PsyGeNET database. c-d) Top results for
(top left) functional annotation and (bottom left) cell-type enrichment of ¢) male and d)
female DEGs were conducted using Metascape. (Bottom) The resultant clusters are
represented in a network plot where nodes represent enriched terms and edges
represent relationships between terms (right). Terms with a p-value < 0.05, a minimum
count of 3, and an enrichment factor > 1.5 were considered significant. e-f) Results from
fGSEA in e) males and f) females, referencing (left) merged data from Reactome, Gene
Ontology Molecular Function (GOMF), KEGG, and WikiPathways (WP) and (right)
curated gene lists from Brain.GMT. Upregulated pathways are indicated in red, while
downregulated pathways are shown in blue, each according to their Normalized
Enrichment Score (NES).
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Fig. 6: Comparative analysis of male and female DEGs. a) (Left) Hypergeometric
heatmap from RRHO analysis comparing transcriptional changes between males and
females with ELA. (Right) Corresponding Venn diagrams demonstrating the number of
genes with shared or distinct directional changes between the two sexes. b) Bar plots
showing the differential expression of HOMER2 and TACC1 between CTRL and ELA
groups for both males and females. (*: p < 0.05). c) Venn diagram showing that only two
genes (HOMER2 and TACC1) are shared DEGs between males and females with ELA.

195



a

MEgreenyellow

MEturquoise

MEgreen

MEblack

MEorange

cor=0.56, p=3.4e-145

cor=0.83, p=6.2e-182

Gene significance for group

T T T
04 06 08

4 CTRL Female

T T T T T
04 05 06 07 08 09

Age Module Membership in turquoise module Module Membership in black module
[
R-HSA-199991: Membrane Trafficking
R-HSA-2132295: MHC class Il antigen presentation
hsa04144: Endocytosis o
1 R-HSA-71387: Metabolism of carbohydrates Membrane trafficking )
] G0:0019208: phosphatase regulator activity . MHC class Il antigen presentation
T T T T T T Endocytosis
3_‘0 1000) ° Metabolism of carbohydrates
9 Phosphatase regulator activity
ZHONG PFC C3 MICROGLIA
FAN EMBRYONIC CTX BIG GROUPS CAJAL RETZIUS
FAN OVARY CL8 MATURE CUMULUS GRANULOSA CELL 2
0 2 4 6 8 10 12 14
“log10(P)
R-HSA-909733: Interferon alpha/beta signaling
G0:0071559: response to transforming growth factor beta
] WP4197: Immune response to tuberculosis )
| ——— G0:0002230: positive regulation of defense response to virus by host Interferon alpha/beta signalling
——— G0:0002831: regulation of response to biotic stimulus Response to transforming growth factor beta
ks T B " 5 Immune response to tuberculosis
“log10(P) Positive regulation of defense response to virus
Regulation of response to biotic stimulus
DESCARTES FETAL CEREBRUM VASCULAR ENDOTHELIAL CELLS
FAN EMBRYONIC CTX BIG GROUPS BRAIN ENDOTHELIAL
DESCARTES FETAL CEREBELLUM VASCULAR ENDOTHELIAL CELLS
4 2 4 6 8 10 12
-log10(P)
e f ' \ \ \
Turquoise Module Eigengenes Black Module Eigengenes Green Module Eigengenes
Green z . d
—log10(p-value)
i o |
Black 25 s s ° 5
20 2 v 2 2 o
) g g £ £ S
Turquoise 15 z z 5 | g
10 g £ ° * g
Greenyellow 7.6 s 3 ) &
£ o g £ s
2 & o & S
o ' | i
Orange | 5.42 E E H
38 ° 8 8
= = = o
$1 3 3
T T T T T T
CTRL ELA CTRL ELA CTRL ELA
Orange Module Eigengenes Greenyellow Module Eigengenes
L Weorange
< | ° 3
3
g Webtack
s 2 S
& 2
3 3
H g, Hegon
. . £ 21 .
& o7 &
[} w
e 2
3 3 9 Mewruoise
s o g <
T
-
| S MEgreenyeliow
T T T T
CTRL ELA CTRL ELA 5
i { i i ¢
FKBP8 i g 2
§oomn
E o
i &
Suo o | ©
o
od Fo
A CTRL Female
© ELAFemale o o &
KAZALD1 ]
100 s 0 o
)
£ 80 .
c 7
3 ®
Q
© 60 - -
L I soes e
N H §
= 40 2 i
H H
g . H ] uxst
2 % Fe Ce . &= RS
0
b
.

® ELAFemale



Fig. 7: Assessing networks of gene co-expression and ELA using data specifically from
females. a) (Left) Plot showing the five WGCNA modules (greenyellow, turquoise,
green, black, orange) with significant correlation (coefficients greater than 0.7) with ELA
in females. Modules with negative correlation values are shown in blue, indicating their
inverse relationship with ELA. b) Scatter plots for module membership versus gene
significance for turquoise (cor = 0.56, p = 3.4x10-145), black (cor = 0.83, p =
6.2x10-182), and greenyellow (cor = 0.72, p = 1.2x10-181) modules. c-d) Top results
for (Top left) functional annotation and (bottom left) cell-type enrichment of ¢) turquoise
and d) black modules were conducted using Metascape. (Right) The resultant clusters
are represented in a network plot where nodes represent enriched terms and edges
represent relationships between terms. Terms with a p-value < 0.05, a minimum count
of 3, and an enrichment factor > 1.5 were considered significant. e) Fisher's Exact Test
was performed via GeneOverlap to assess genes common between female DEGs and
the turquoise, black, green, greenyellow, and orange modules. f) Box and whisker plots
showing median eigengene values across turquoise, black, green, orange and
greenyellow modules between CTRL and ELA females. g) Correlation plot between the
eigengenes of the turquoise, black, green, orange and greenyellow modules. h) (Top)
Bar plots showing normalized counts for turquoise top hub gene FKBP8 and black top
hub gene KAZALD1 between CTRL and ELA females. i-j) (Left) scatter plot showing i)
turquoise and j) black hub genes between CTRL and ELA females. (Middle) Box and
whisker plots showing i) turquoise and j) black hub genes between CTRL and ELA

females. (Right) Network plots of i) turquoise and j) black hub genes.
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Fig. 8: Identification of turquoise and black module genes motif-linked to KLF2 and
KLF4, respectively. a) (Top) Promoter accessibility across key endothelial (PECAM1,
CDH5), pericyte (PDGFRB, RGS5) and smooth muscle cell (ACTA2, MCAM) markers in
the vascular cluster from ATACseq data (Chawla et al., 2024). Average expression
indicates the average chromatin accessibility score for the promoter region (where the
promoter region is defined as within 2kbp from gene transcription start site) of the listed
genes in the vascular cluster. Percent expressed indicates the percentage of cells within
the vascular cluster where the promoter region of these genes are accessible. (Bottom)
Imputed expression of key endothelial (PECAM1, CDH5), pericyte (PDGFRB, RGS5)
and smooth muscle cell (ACTA2, MCAM) markers in the vascular cluster from single
nuclei RNA sequencing data (Chawla et al., 2024). Average expression indicates the
average count for the gene and percent expressed indicates the percentage of cells
within the vascular cluster that expression the gene. These results show a high
expression across the cluster, indicating a mixed cell population with higher proportions
of endothelial cells and pericytes. Expression was imputed cell-type wise, so vascular
cluster snRNA data was integrated with vascular cluster shnATAC data. b) (Top) Venn
diagram showing overlap between KLF2 motif-linked genes and turquoise module
genes, (Bottom) Bar plot showing the cumulative number of KLF2 binding sites found at
distal, promoter, exonic, and intronic regions across the 577 turquoise genes with KLF2
binding sites. c) (Top) Venn diagram showing overlap between KLF4 motif-linked genes
and turquoise module genes, (Bottom) Bar plot showing the cumulative number of KLF4
binding sites found at distal, promoter, exonic, and intronic regions across the 216

turquoise genes with KLF4 binding sites.
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Chapter IV: Discussion & Concluding Remarks

Preface to the discussion

In this chapter, | summarize our findings from the two studies describing NVU-
specific gene expression differences observed in those with a history of ELA and
discuss them in the context of previous literature. Finally, | mention some of the
limitations of the research presented in this dissertation and indicate possible
future directions of research that could build upon these data and further close the
gaps that remain in our knowledge. | end with a brief conclusion connecting our work

back to the rationale and need for molecular studies of the NVU in ELA.

Summary of key findings

Clinical and epidemiological evidence suggests that a history of childhood abuse
significantly increases lifetime risk for stress-induced pathologies (Afifi et al., 2008;
Bernet and Stein, 1999; Brown et al., 2009; Danese et al., 2009; Dube et al., 2003;
Felitti et al., 1998; Gilbert et al., 2009; Mullen et al., 1996; Springer et al., 2007). Indeed,
there is a large body of literature establishing a strong link between childhood abuse,
psychiatric disorder, and suicidal behaviour (Afifi et al., 2008; Brezo et al., 2007; Brezo
et al., 2008; Dube et al., 2001; Fergusson et al., 2000; Molnar et al., 2001). During
childhood, postnatal brain development is characterized by the brain being 'experience-
expectant.' This phase is marked by sensitive periods that allow the brain to leverage
environmental cues to adapt to the demands of its surroundings and enhance survival
prospects (Bick and Nelson, 2016; Magill et al., 2013; Tau and Peterson, 2010). This
adaptability facilitates the development of increasingly complex cognitive functions, not
solely dependent on genetic factors. However, this heightened sensitivity also makes
the brain vulnerable to adverse experiences, such as ELA. While structural and
functional changes in several brain regions across species have been implicated in the
long-term effects of ELA, the proximal consequences and molecular disturbances
sustained into adulthood remain unclear. Importantly, it may not only be the brain

parenchyma that is affected; the neurosupportive systems, particularly the NVU, may
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also experience significant changes. Long-accumulating evidence of cardiovascular
abnormalities, indicative of broad vascular and endothelial dysfunction, in those with a
history of ELA raises the question of whether similar neurovascular dysfunction
may contribute to the phenotype presented by this clinical population. Dysfunction within
the NVU can be detrimental to long-term health outcomes, as the NVU plays a
fundamental role in maintaining cerebral blood flow, barrier integrity, and the
microenvironment that supports neuronal function (Daneman and Prat, 2015; Kadry et
al., 2020; Luissint et al., 2012). In addition, differences in NVU dysfunction due
to sex are critical to understanding the enduring effects of ELA (Solarz et al., 2021;
Dion-Albert et al.,, 2022), yet sex as a variable is often overlooked in studies

investigating either animal proxy models or postmortem brain tissue.

Over the years, the animal literature has played a fundamental role in identifying
molecular programs that are altered by ELA, as well as how dysregulation of these
programs might impact cognitive, emotional and behavioural traits. While these
investigations have advanced our understanding of ELA, they do not entirely
recapitulate the complex effects of childhood abuse on human biology. Postmortem
human brain research is, therefore, needed to further our understanding. The aim of this
dissertation was to, therefore, add to the postmortem literature by examining the long-
term impacts of childhood abuse on neurovascular transcriptomic programs in the
vmPFC, a region involved in the regulation of mood, emotion and decision making that
has been implicated in mediating the effects of chronic stress. In our first study, we
make an argument for how neurovascular changes are a feature of numerous
neurological diseases and psychiatric disorders, often linked to changes in BBB integrity
and neuroinflammatory responses, and how current research is hindered by the lack of
reliable methods to target brain microvessels, especially from frozen samples typically
available in biobanks. We put forth a standardized protocol that allows for the isolation
of microvessels in high yield from frozen brain tissues, preserving their structural
integrity and multicellular composition. We demonstrate effective microvessel isolation
from both frozen mouse and human brain tissue, which was tested on four different

regions of the human brain: the vmPFC, dIPFC (Brodmann area 8/9), hippocampus
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(Brodmann area 28) as well as the primary visual cortex (Brodmann area 17). In great
detail, we describe the steps required to prepare frozen vmPFC samples followed by
tissue dissociation, selective enrichment for microvessels and, finally, isolation. We also
describe how to prepare samples of isolated microvessels for bulk RNA sequencing and
LC-MS/MS and thoroughly characterize the transcriptomic and proteomic landscapes of
the NVU. We believe that this method will have a lasting impact on the research
community by facilitating, for the first time, comprehensive multiomic analyses of the

NVU's role in health and disease.

For our next study we leveraged the microvessel isolation method that we developed to
generate the first neurovascular-specific transcriptomic dataset derived from intact
microvessels isolated from vmPFC samples from depressed suicides with a history of
ELA. By sequencing the structurally preserved unit that not only consists of nuclei, but
also cell membranes, cytoplasm and the interstitium, our data synthesis provides a
holistic snapshot of the NVU, revealing cumulative expression changes in genes that
are often commonly expressed across neurovascular cell types. We reported that ELA
is indeed associated with major neurovascular changes in the vmPFC; our findings
highlight significant sex-specific differences, with females exhibiting more pronounced
neurovascular dysfunction compared to males. What was particularly striking was the
downregulation of key vascular regulatory genes, such as transcription factors KLF2
and KLF4, both of which are critical for maintaining vascular biology and endothelial
function. Based on gene expression correlations, KLF2 and KLF4 were identified in
respective modules strongly correlated with ELA. Both transcription factors showed a
strong presence of their respective binding motifs across genes found within these
modules. Specifically, 33% of the turquoise module was motif-linked to KLF2, and 30%
of the black module was motif-linked to KLF4, emphasizing their potential role in
regulating neurovascular transcriptional programs implicated in ELA. Downregulated
KLF2 and KLF4 were validated by in situ quantification of KLF2 and KLF4 expression
using FISH in female subjects affected by ELA. Additionally, our study found a
widespread downregulation of immune-related genes, both pro- and anti- inflammatory

in nature. This body of work advances our understanding of the molecular mechanisms
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underpinning the neurobiological consequences of ELA but also implicate significant
links between neurovascular changes and the development of psychiatric disorders,

particularly MDD, in individuals with ELA histories.

Integration of key findings

Sex-dependent differences in NVU integrity and function

Knowledge of sex-dependent (moreover, sex-by-region-dependent) differences in
normal NVU integrity and function, as well as their potential alteration by ELA is limited.
To date, the majority of studies exclusively characterize male ELA signatures (Short et
al., 2023; Eck et al., 2022; Reemst et al., 2022; Kos et al., 2023; Treccani et al., 2021;
Rentscher et al., 2022; Wegner et al., 2020; Savignac et al., 2011; Bath et al., 2016). In
contrast, fewer studies include females (Edelmann et al., 2023; Parel et al., 2023;
Barrett et al., 2021), although it is females who shoulder a disproportionate burden for
developing stress-induced pathologies (Goodwill et al., 2019). An elegant single-cell
RNA sequencing study (Brivio et al., 2023) demonstrated that while both male and
female mice displayed several DEGs in response to stress, only a small percentage of
these genes were common to both sexes, and that female mice displayed a higher
number of DEGs, indicating that the molecular mechanisms underlying the stress
response are largely sex-specific. The same sex difference was reflected specifically by
prefrontal BMECs from male and female mice subjected to chronic stress, showing not
only poor overlap in changes but pervasive changes in female mice alone (Dion-Albert
et al., 2022).

But what factors might contribute to—or at the very least influence—the pronounced sex
differences observed in our study, where the female NVU is significantly more affected?
One notable study (Solarz et al., 2021) revealed that, at baseline, adult females
displayed a less permeable blood-brain barrier (BBB) and higher expression of tight
junction proteins in the mPFC compared to males, a finding that aligns with our
observations in our data and is suggestive of inherent differences between the male and

female NVU. Several lines of evidence suggest that sex differences in vascular
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diseases as well as psychiatric disorders may arise, in part, by gonadal hormones.
Estrogen and androgens, the principal sex hormones, have profound effects on learning
(Singh et al., 1994; Lacreuse et al., 2000), memory (Phan et al., 2012; Jacome et al.,
2016) and mood (Luca et al., 2020, Maartens et al., 2002; Bekku et al., 2006; Gordon et
al., 2016; de Chaves et al., 2009; Li et al., 2014; Schoenrock et al., 2016). Estrogen
receptors are highly expressed on BMECs (Zuloaga et al., 2012) and promoter regions
of genes encoding tight junction proteins contain estrogen response elements (Burek et
al., 2014). Interestingly, ESR1, a receptor known to contribute to healthy vascular
functions (Miller and Duckles, 2008), was identified as the top upstream regulator in
genes differentially expressed after chronic stress and associated with a pro-resilient
behavioral signature (Lorsch et al., 2018). Estrogen evidently modulates the NVU, as
premenopausal women have a lower cardiovascular risk compared to men (Groban et
al., 2016); however, the prevalence of heart diseases and stroke nearly doubles in
women after menopause, when estradiol levels drop by approximately 60% (Rannevik
et al.,, 1995). Moreover, studies have shown that BBB function is impaired in
ovariectomized and reproductively senescent female rats, a condition that can be
reversed with 17B-estradiol treatment (Bake & Sohrabji, 2004; Kang et al., 2006; Saija
et al., 1990; Shi & Simpkins, 1997; Shi et al., 1997). These uniquely female traits, along
with other elements of sexual dimorphism at the NVU may be particularly vulnerable to
ELA and may result in changes in BBB transport efficiency, permeability and cell type
composition. Conversely, higher levels of androgens have been shown to increase the
prevalence of androgen receptor-positive cells in both male and female mice,
influencing sex-dependent DEGs across tissues (Li et al.,, 2024), suggesting that
androgens and their receptors may provide protective benefits for males with a history
of ELA. Given the profound implications these findings suggest about the differential
impacts of ELA on the NVU according to sex, continued research is crucial to better

understand and address the nuances of NVU modulation by ELA.
Mechanisms underlying latent ELA-induced impacts on the adult NVU

Although it is generally accepted that ELA experienced during sensitive periods disrupts

the normal developmental trajectories of multiple systems, it is not immediately clear
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why its effects would manifest in adulthood and impact health decades later. It is even
less clear why risk factors conferred by the early environment appear to remain latent
until adulthood. Within the framework of allostatic overload, the cost of responding to
early life stress is seen in compromised stress-related biological systems that potentially
lose their resilience (Taylor et al., 2004). As these systems continue to operate in a
stressful environment, the likelihood increases over time for these no longer resilient
systems to become dysregulated and functionally impaired. The impacted NVU is
further exacerbated by—and also interacts with—the aging process (Solarz et al., 2021;
Verheggen et al., 2020; Senatorov et al., 2019; Montagne et al., 2015). Put succinctly,
the allostatic effects of early life events act as initial hits to the neurovascular system,
with aging providing a subsequent hit that leads to dysfunction. When taking sex
differences into consideration, these impacts may be more pronounced in females. The
question remains, how is this possible? Epigenetics represents a collection of gene
regulatory processes through which early environmental influences can have sustained
effects in adulthood. Epigenetic mechanisms do not change the DNA sequence, but
together determine chromatin conformation and transcriptional accessibility via
modifications at multiple levels of the genome, from the residues themselves (DNA
methylation) to nucleosomes (posttranslational histone modifications), regulatory
transcripts (ncRNAs), and chromatin interactions (long range chromatin loops;
Lieberman-Aiden et al., 2009).1t is well established that these epigenetic
mechanisms are critical for the experience-dependent events that occur during
postnatal development, where the genome is particularly sensitive to environmental
cues (Teicher et al., 2016), allowing the environment to dynamically modulate gene
expression, even in postmitotic neurons (Duncan et al., 2014; Levenson et al., 2006).
Epigenetic processes such as DNA methylation, histone post-translational
modifications, and non-coding RNA expression have all been shown to be impacted by
ELA and may contribute to persistent NVU dysfunction in adults. Additionally, recent
findings emphasize the importance of Long-Lived RNAs in this regulatory landscape. In
vivo pulse-chase labeling with a modified uridine analog, ethynyl uridine, to track RNA
stability in the brain has identified certain RNAs that possess turnover rates in the

magnitude of years within the nuclei of neurons, radial glia-like adult neural stem cells,
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adult neural progenitor cells, and astrocytes (Zocher et al., 2024). Retention of these
specific RNA regulate and maintain heterochromatin structure and directly influence
long-term regulation of gene expression. Although neurovascular cell types were not
investigated, one may speculate that neurovascular cells similarly express Long-Lived
RNAs as. Under quiescent conditions, the net turnover rate of BMECs is approximately
0.04% h~' (Hobson B, Denekamp, 1984), an order of magnitude significantly lower than
endothelial cells in other tissues (Tannock and Hayashi, 1972), and Long-Lived RNAs
may play a role in sustaining the pervasive gene expression changes that we observe at
the female NVU. Indeed, these mechanisms could account for the observed changes
both canonical neurovascular genes but also the broad downregulation of pro- and anti-

inflammatory genes at the human female NVU.

Redefining the immune phenotype of ELA according to human data

Inflammation is a biological response that typically originates from the activation of
innate immune cells, including neutrophils, monocytes, macrophages, dendritic cells,
and natural kKiller cells. This state is characterized by several key features: the dilatation
of blood vessels, which leads to increased blood flow; the infiltration of immune cells
into tissues; and the production of pro-inflammatory markers. These changes contribute
to the classical signs of inflammation and facilitate the body's response to injury or

infection.

However, a corpus of clinical studies report chronic low-grade inflammation (as more
thoroughly described in the introduction) in those with histories of ELA, akin to the low
chronic low-grade inflammation typically associated with an unresolved or overactive
inflammatory response (Lawrence and Gilroy, 2007). One of the most consistent
observations regarding the long-term consequences of ELA is its association with
elevated levels of typical inflammation markers, namely circulating pro-inflammatory
cytokine levels and the acute phase molecule CRP (Tursich et al., 2014, Baumeister et
al., 2016). These observations are particularly intriguing given that the underlying
etiopathological mechanisms of ELA are not linked to any pathogenic infection or

peripheral disease. This suggests that the chronic low-grade inflammation observed
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may arise from internal dysregulation rather than external infectious agents or physical
ailments, underscoring the complexity of the inflammatory response in ELA. Immune
cells exhibiting aberrant activity may contribute to an elevated inflammatory status in
individuals, as ELA prematurely ages the innate and adaptive immune systems (Merz
and Turner, 2021). CD8+ cytotoxic T cells are the most strongly affected (Elwenspoek
et al., 2017) via disturbances in the CD4/CD8 subtype balance (Reid et al., 2019;
Esposito et al., 2016; Schmeer et al., 2019), increased stimulation (Elwenspoek et al.,
2017), and accelerated ageing and senescence (Elwenspoek et al., 2017, Reid et al.,
2019), while CD4+ Thelper17 similarly display increased senescence (Reid et al., 2019;
Elwenspoek et al., 2017). In the innate immune system, blood-borne monocytes
express stress-responsive transcripts enriched for genes involved in cytokine and
chemokine activity, steroid binding, hormone activity, and G-protein coupled receptor
binding (Schwaiger et al., 2016, Boeck et al., 2016).

Critically, these studies entirely rely on measures of inflammation in peripheral blood as
proxies to infer potential inflammatory states in the brain. Direct characterization of
central inflammation, naturally, requires invasive techniques that are not possible to use
on living individuals, making it challenging to establish a definitive link between
peripheral biomarkers and neuroinflammation. Until now, a major limitation in the field
has been this reliance on peripheral indicators as it presupposes, without direct
evidence, that such markers reflect neuroinflammatory states in individuals affected by
ELA. In animal studies, several lines of robust evidence purport compromised BBB
integrity and permeability, such as the downregulation of CLDNS (Menard et al., 2017;
Dudek et al., 2020; Dion-Albert et al., 2022), the formation of stochastic microbleeds
(Lehmann et al., 2018; Lehmann et al., 2020, Lehmann et al., 2022), and accompanying
neuroinflammation within the brain parenchyma. The permeability of the BBB,
compromised by alterations in CLDN5, suggests a pathway for peripheral cytokines and
other molecules to influence the brain parenchyma. Thus, the presence of inflammation
in the blood has been a logical indicator for concurrent neuroinflammation in ELA-

affected models.
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Contrary to what is inferred from these clinical studies and animal models, our findings
point to global immune expression suppression at the human NVU, where all genes—
either pro- or anti-inflammatory in function—had downregulated expression, whether
their expression change reached significance or not. These findings challenge the
prevailing hypothesis of ELA-induced pro-inflammatory states and instead suggest a
nuanced understanding of mechanisms at play. What does a neurovascular interface
characterized by an immune-suppressed environment mean against the backdrop of
existing knowledge? An immune-suppressed environment at the NVU might suggest a
protective adaptation, preventing the overactivation of immune signalling that could
otherwise lead to neuroinflammation and altered neuronal activity. By dampening
immune activity at the NVU, the CNS could minimize unnecessary immune responses
to peripheral inflammation. Conversely, an immune-suppressed environment at NVU
may indicate a pathological response to prolonged exposure to systemic inflammation.
Initially, in response to systemic inflammation close to ELA events, the NVU may exhibit
robust immune signalling. However, over time, this continuous activation could lead to
an exhausted or dysfunctional state at the NVU. Continuous suppression of immune
response could impair, at least in part, the NVU's ability to maintain barrier integrity and
function. Given these perspectives, it's crucial to consider that the immune-suppressed
state of the NVU in individuals with ELA might be a double-edged sword: a protective

adaptation that becomes maladaptive over time.

A shift in how the immune system is seen: from response to infection and injury to a
ubiquitous part of physiology

It is now recognized that the majority of neurodegenerative and psychiatric disorders
(Furman et al., 2019)—many of which are strongly predicted by ELA—possess an
inflammatory component that drives or, at least, perpetuates that phenotype. To better
understand how a chronic, stress-induced phenotype involves the NVU, we must shift
our perspective away from the perception that inflammation is only a specialized
defence mechanism against infection and injury. “Zooming out” from this focus allows
us to understand inflammation more accurately as an integral and ubiquitous part of

physiology. Accumulating evidence highlights that cellular and molecular mediators of
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inflammation play roles in an astonishingly wide array of biological functions (Meizlish et
al., 2021; Colaco and Moita, 2016; Kotas et al., 2015), including metabolism and
thermogenesis (Molofsky et al., 2013; Lee et al., 2015), and various aspects of nervous
system function and behaviour (Qing et al., 2020). This complex biological phenomenon
cannot be confined to a single definition or function. Instead, it can be conceptualized
within a framework that includes: i) an initial response to insult; ii) a multi-step defense
mechanism activated to eliminate the source of the insult; and iii) a modified state of the
system designed to be protective or adaptive (Medzhitov, 2021, Medzhitov, 2008). By
this conceptual framework, inflammatory processes span a functional spectrum: On one
end, there is "canonical inflammation," characterized by the well-documented
mechanisms of both innate and adaptive immune responses. On the opposite end, cells
and pathways commonly associated with acute inflammation are involved in routine
homeostatic activities. This raises the question: “what is global suppression of immune
mechanisms in ELA trying to do?” Perhaps such pathways are trying to re-establish
entirely new homeostatic setpoints. This concept is illustrated in the hypothalamus
during acute inflammation triggered by an infection, which induces a physiological
response known as "sickness behavior." This state alters the homeostatic setpoints for
body temperature, appetite, sleep, and other functions (Hart, 1988; Wang et al., 2019),
illustrating how inflammation can recalibrate the body’s regulatory systems under
certain conditions. One might hypothesize that alterations in setpoint values that persist

long-term under adverse conditions may drive consequences that are chronic.

Neurovascular KLF2/4 may be a target of stress-induced cortisol

Elevated cortisol levels during developmentally sensitive periods, such as those
experienced during ELA, result in long-term alterations in the expression and function of
glucocorticoid receptors (GR), a key modulator of the stress response across several
brain regions including the PFC, hippocampus, Amygdala, ACC, and paraventricular
nucleus. This alteration in GR function is partly due to epigenetic modifications of the
NR3C1 gene, which encodes GR. Specifically, increased DNA methylation at its
promoter region (Labonte et al., 2012; Kember et al., 2012) suppresses gene

expression (Labonte et al., 2012; Avishai-Eliner et al., 1999; McGowan et al., 2009),
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resulting in a decreased availability of GRs for cortisol binding. Before entering the brain
parenchyma, cortisol released by the adrenal glands and into the systemic circulation,
must first cross the BBB. GRs are highly expressed in the cytoplasm of endothelial cells
within the BBB and, to a lesser extent, in other neurovascular cells (Zielinska et al.,
2016; Campos-Rodriguez et al., 2009), allowing GRs to bind to cortisol as it diffuses
through the BBB. Highly relevant to the body of work described in chapter Ill, KLF2 has
been experimentally validated as a significant GR target gene, characterized by the
presence of glucocorticoid response elements (GREs). GR regulates a multitude of
genes by binding to these GREs, facilitating the formation of dense gene networks that
have transcription factors, such as members of the KLF family, as control nodes
(Chinenov et al., 2014).

In our study, KLF2, and its functionally redundant binding partner, KFL4, were both
downregulated in female cases (but not males with ELA). KLF2 and KLF4 are vital for
the integrity of the endothelial lining, which controls barrier function, blood fluidity, and
flow dynamics. KLF2/4 confer endothelial barrier integrity by inducing expression of
multiple anti-inflammatory and anti-thrombotic factors, such as eNOS (Hamik et al.,
2007; Chiplunkar et al., 2013) and thrombomodulin (Hamik et al., 2007), VEGFR2
(Chiplunkar et al., 2013), and by regulating endothelial expression of CAMs, NF-kB, and
tight junction proteins CLDN5 and occludin (Shi et al., 2013; Chiplunkar et al., 2013; Lin
et al., 2010). Moreover, KLF2 orchestrates vascular homeostasis and serves as a
central transcriptional switch point between a pro-inflammatory, atheroprone versus
quiescent, atheroresistant endothelial phenotype, in which KLF2 determines endothelial
transcription programs (> 1000 genes, Dekker et al., 2006) that control key functional
pathways such as cell migration, vasomotor function, inflammation, and hemostasis
(Dekker et al., 2006; Lin et al., 2005; Lee et al., 2006). Relevant to its function, KLF2
and GR interact as members of an incoherent feed forward loop, in which GR tightly
regulates KLF2 expression (Chinenov et al., 2014), suggesting a complex mechanism
at play in mediating the effects of chronic stress. If neurovascular GR is downregulated
due to increased NR3C1 methylation, this could result in reduced responsiveness to

glucocorticoids, which are crucial for maintaining homeostasis during stress responses.
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Such a scenario might lead to a diminished ability to induce KLF2 expression efficiently.
Given KLF2's role in endothelial identity and barrier maintenance (Sangwung, et al.,
2017; SenBanerjee et al., 2004), its reduced expression could exacerbate the vascular
and inflammatory dysfunctions typically observed in individuals with ELA.
Understanding the impact of altered GR and KLF2 interactions in the NVU could offer

new therapeutic targets or strategies for individuals with histories of ELA.

Conclusion

Despite this progress, many unanswered and emerging questions remain. It is essential
to further characterize the mechanisms and pathways that involve genes KLF2 and
KLF4 so that we may better understand how the NVU contributes to the phenotype
observed in ELA, including the observed sex-specific differences. To better understand
how downregulation in KLF2, KLF4, and immune functions progress over time, and their
relationship with concurrent parenchymal dysfunctions, multi-time point animal studies
that track these changes from early exposure through adulthood are needed. Exploring
these questions further will enable a more comprehensive understanding of the
profound impacts that early life adversity has on brain development and function.
Furthermore, establishing a causal role for KLF2 and KLF4 in the ELA phenotype is
crucial for effective drug target validation. Research demonstrates that drug
mechanisms supported by molecular evidence linked to known, causative genes are
estimated to be 2.6 times more likely to achieve clinical success (Minikel et al., 2024).
Finally, it will be crucial for future studies to extend this research to additional cohorts of
subjects with ELA, as well as individuals diagnosed with MDD without histories of ELA,
to better delineate the specific contributions of ELA and its distinct effects. Since our
investigation focused only on depressed suicides with a history of ELA, it is challenging
to attribute our findings specifically to MDD or to ELA alone, and it is likely that both
conditions contribute to the observed changes. That ELA might drive many/most of the
expression changes we identified, however, is supported by recent studies having
identified NVU or immune-related contributions to ELA or chronic stress (Menard et al.,
2017; Dudek et al., 2020; Dion-Albert et al., 2022; Lehmann et al., 2018; Lehmann et
al., 2020; Samuels et al., 2023; Lehmann et al., 2022).
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This study marks the first demonstration that Kruppel-like factors, specifically KLF2 and
KLF4, are associated with ELA, further implicating the NVU itself for the first time. An
additional layer of complexity, this work reveals that the impact on the NVU is sex-
specific; females exhibit significant NVU dysfunction characterized by the
downregulation of KLF2 and KLF4 and altered expression of numerous other key
vascular genes, whereas males do not exhibit similar changes. Given their fundamental
role in vascular homeostasis, KLF2 and KLF4 represent promising therapeutic targets to
mitigate the persistent neurobiological effects observed in ELA. Furthermore, our
observations of a global suppression of gene expression related to immune functions
specifically in the female NVU challenge decades of correlative clinical evidence
suggesting that elevations in circulating pro-inflammatory cytokines reflect a similarly
pro-inflammatory state within the brain parenchyma in stress-related psychopathology,
prompting re-evaluation of the traditional view that "peripheral inflammation equals brain
inflammation”, in favour of a more nuanced understanding of NVU contributions to

stress-related psychopathologies.
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Appendices

Appendix A: Selected supplementary material for chapter Il

Weight of wet RIN of
Weight of tissue
microvessel- RNA conc. microvessel
Subject  microdissection Macroscopic observations
(mg) enriched pellet (ng/ul) -enriched
'm
g (mg) pellet
1 106.8 Normal appearance 94.55 11.3 4.3
2 101.28 Normal appearance 84.07 9.58 29
3 103.07 Normal appearance 77.02 6.75 5.2
4 104.26 Normal appearance 77.53 4.65 4.3
5 103.88 Normal appearance 72.72 10.4 4.4
Average 103.86 81.18 8.54 4.22

Supplementary Table 2: Measurements of collected microvessel-enriched pellets

Information regarding microvessel samples subjected to RNA sequencing, including
weight of tissue microdissection, weight of collected microvessel-enriched pellet,
concentration of RNA extracted from pellets, as well as RIN of extracted RNA.

254



Overlap between Yang et al. overall BEC markers and top 10% of RNAseq highly e xpressed genes
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Supplementary Fig. 1: Overlap between top 10% of highly expressed genes from RNA
sequencing dataset and dataset from Yang et al. (2022)

a-h) Validated neurovascular cell-type markers were obtained from Yang et al. (2022)
postmortem single-nuclei sequencing dataset (found under supplementary table 2) and

compared for potential overlap with the top 10% of most highly expressed genes from
our sequencing data.
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Supplementary Fig. 3

a) Representative violin plots showing sex-driven expression differences in DEGs
identified in sex-pooled subjects with a history of ELA compared to sex-pooled controls.
Although the initial DGE analysis pooled sex together, in order to identity DEGs
irrespective of sex, further examination of the DGE analysis results revealed marked
differences, particularly among females, in the expression of the 463 DEGs identified,
highlighting the importance of considering sex-specific neurovascular changes in ELA.
b) Representative plots of gene differential expression by sex in ELA, identified by DGE
analysis including the Sex:Group interaction. This figure highlights sexual dimorphism in
gene expression specific to ELA, illustrating distinct patterns with notable changes
primarily observed in females. c) Boxplots representing the distribution of Cook's
distances for each female subject across genes. The DESeq function calculates, for
every gene and for every subject, a diagnostic test for outliers named Cook’s distance.
Cook’s distance is a measure of how a subject is influencing the fitted coefficients for a
gene. In addition to constructing PCA plots to find potential subject outliers (as
performed above), boxplots of Cook’s distances can also be used to identify subjects
with median values very different from other subjects. No female subjects deviate
significantly from one another, suggesting there are no outlier subjects driving the
expression differences observed. DEGs identified in the male CTRL vs. male ELA
comparison, and DEGs identified in female CTRL vs. female ELA comparison were
respectively cross-referenced with vascular cell type defining markers from recent
studies. e) Matrix displaying the overlap of male and female DEGs from our study with
vascular cell-type markers defined by Garcia et al. (2022).
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c)

-log10(p-value) for Overlap between Module and KLF2/4 KO Affected Genes

8
4

10
. turquoise_KO I H
black_KO 2
0

Cytokine, chemokine, MHC, and immune cell genes Vascular, haematopoiesis, and platelet Genes
- e
(<] ® . - L]
Spearmanrho: 0.29 © Spearman rho: 0.37

% o p-value: 1..109—10 ) p-value: 9.03e-08 o oo o
& 5
s 5
k=] ° o

° h=]
g - e g
2 ° ° e 9% 2
‘@ @ © e @
E o L] ° ] ) 3
g ! e © %
g 5
« o
a
FE . e =
< £
& &

s °
T T T T T T
15 -1.0 -05 -15 -1.0 -05
NVU log2fold change NVU log2fold change

Supplementary Fig. 5

c) Overlap of genes within the turquoise and black modules with human homologues of
genes affected by dual KLF2/4 knockout. This figure indicates substantial overlap, with
448 genes in the turquoise module (p-value = 5.1x107°) and 193 genes in the black
module (p-value = 3.3x107%), indicating that the turquoise and black modules possessed
a significantly large proportion of genes whose expression is impacted or regulated by

KLF2 and KLF4, respectively. d) Raw sequencing counts from Lutz & Tanti et al. (2017)
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were re-analyzed using the same bioinformatic pipeline presented in this study,
including pipelines for low count filtering, covariate identification, and DGE analysis to
obtain log2 fold changes for genes known to have immune or vascular functions. A
correlation analysis was conducted to assess the relationship between the log2 fold
change values for these genes from both datasets. A moderately strong positive
correlation was found between log2 fold changes of immune-related and vascular genes
within the brain parenchyma and NVU, indicating a similar pattern of downregulation for
these genes. f) Venn diagrams demonstrating (left) overlap between female DEGs
(identified from differential gene analysis), turquoise module genes (identified from
WGCNA), and KLF2 motif-linked genes (identified from snATAC-seq data); and (right)
overlap between female DEGs (identified from differential gene analysis), black module
genes (identified from WGCNA), and KLF4 motif-linked genes (identified from snATAC-
seq data). Below are the gene lists corresponding to the intersections of the respective

Venn diagrams.
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