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Abstract

The motion control of mechanical systems with flexible links is investigated. Issues
addressed are the modelling anc¢ simulation of such systems, the design of a feedback
contro! scheme and its implementation on an actual system. The modelling method
used is a combination of a spline-based spatial discretization technique, which allows
a definition of the state-variable vector as the set of curvature values at the supporting
points of the spline and their time-rates of change, and the natural orthogonal comple-
ment of the kinematic constraints that eliminates the constraint forces and moments
from the mathematical model. The control algorithm consists of two parts, namely,
the decoupling of nonlinear equations of motion and the filtering of non-working con-
straint forces. The former is achieved using the unconstrained equations of motion,
expressed in terms of extended generalized coordinates with which the motion of each
separate link is defined. The latter is accomplisbed using the fact that the constraint
forces thus introduced indeed lie in the nullspace of the transpose of the NOC. This
control scheme is implemented on a prototype four-bar flexible mechanism. Strain
gauges are used to measure link curvature at the supporting points of the spline, while
the time-rate of change of curvature is estimated with a Kalman filter. Moreover,
the angle of rotation of the input link and its time-rate of change are measured and
then used to infer the rest of the rigid-body motions. Results show that the proposed
control scheme provides successful trajectory tracking while suppressing the vibration
triggered by a doublet-type of disturbance. This disturbance is induced by the sin-
gularities of the mechanism coupled with the rapid inertia changes. While the main



motivation of this study is the control of robotic manipulators with long and slender
links, typically found in space applications, the results presented are applicable to the
control of 2 much broader class of mechanical systems such as high-speed machinery

at large.



Résumé

La présente thése a pour sujet 1’étude de la commande du mouvement des systemes
mécanique 2 maillons flexibles. Plus specifiquement, nous abordons les problemes de
modélisation et simulation de ces systémes, la conception d’une commande par asser-
vissement et son application aux systémes physiques. La meéthode de modélisation
utilisée est une combinaison d’une technique de discrétisation spatiale a I'aide de fonc-
tions spline, ce qui permet une définition du vecteur des variables d’état en tant que
valeurs de courbure aux points d’appui de la spline ainsi que leurs dérivées tempo-
raires, et le complément orthogonal naturel des contraintes cinématiques, qui élimine
les forces et les couples de contrainte du modele mathématique. L'’algorithme de com-
mande se compose de deux parties, soit le découplage des équations non-linéaires
de mouvement et le filtrage des forces de contraintes inactives. Le premier est ob-
tenu en se servant des équations de mouvement non-contraint comme coordonnées
généralisées avec lesquelles le mouvement de chague maillon est défini. Le second est
réalisé en utilisant le fait que les forces de contrainte ainsi introduites se trouvent
dans le noyau de la matrice transposée dudit complément orthogonal. Cette stratégie
de commande est implantée dans un prototype de mécanisme flexible a quatre barres.
Des jauges extensométriques sont utilisés pour mesurer la courbure du maillon aux
points d’appui de la spline, tandis que ’estimation de la dérivée temporaire de la cour-
bure est obtenue a ’aide d™un filtre de Kalman. En outre, 1’angle de rotation du maillon
d’entrainement et sa vitesse angulaire sont mesurés et servent ensuite pour estimer

les variables restantes des mouvements de corps rigide. Les résultats démontrent que

xii



la stratégie de commande proposée permet un dépistage de trajectoire fructueux tout
en supprimant la vibration provoquée par une perturbation de type doublet. Cette
perturbation est produite par les singularités du mécanisme couplées aux changements
rapides d’inertie. Bien que le but principal de la recherche soit a2 commande de robots
manipulateurs a maillons longs et minces, un cas typique en application spatiale, les
résultats peuvent s’appliquer & la commande d’une plus grande catégorie de systémes

mécaniques, tels que les machines a hante vitesse en général.



Claim of Originality

The author claims the originality of the basic ideas and research results presented in

this thesis, the following being the most significant:

1. Robustness analysis of linear-quadratic-Gaussian (LQG) compensators designed
with two different spatial discretization methods, i.e., the normal-mode and the
cubic spline methods, in terms of the observation spillover due to estimation

errors and the control spillover due to modelling errors.

2. Integration of the two techniques to obtain the governing equations for a planar
mechanism with a chain of flexible elements, namely, the natural orthogonal
complement (NOC) coupled with Lagrange’s equations and the cubic-spline dis-
cretization of the flexible elements, modelled as linearly elastic beams.

3. Use of the NOC to filter out the nonworking constraint forces while producing
the applied torques, and the design of a linear-quadratic Gaussian compensator
based on the unconstrained equations of motion with which the motion of each
separate link is defined.

4. Quantitative measure of the allowable bound in nonlinear perturbations to assess
the robustness of the discrete-time LQ state feedback using two different discrete
representations, i.e., the shift and the Euler operators.

These contributions have been partly reported in a preliminary form in (Cho, Angeles
and Hori 1991) and (Cho, Angeles and Hori 1994).
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Chapter 1

Introduction

1.1 Definition of the Flexible-Body System

In dealing with a mechanical system consisting of bodies, springs and dashpots, a
certain classification of the system is needed, depending on the purposes and design
consideration of the problem at hand. Such classifications will greatly simplify the
problem and reduce efforts in forming the governing equations. For example, a mass-
less spring and a dashpot and mass without compliance are common expressions in
engineering terminology as far as a rigid-body system is concerned. In the rigid-body
system, the small deformations associated with body flexibility are ignored so that
the distance between any two of its particles remains constant for all time and for all
configurations (D'Souza and Garg, 1984).

While all mechanical systems are intended to be as rigid as possible in order to
achieve the required order of precision, however, such a property is not conceivable
when it conflicts with other design considerations such as cost and weight. For ex-
ample, weight takes a first priority in designing a robotic manipulator that finds its
application in space to perform such specialized tasks as space-structure construc-
tion and satellite manoeuvring. Apart from the fact that the use of heavy and bulky
conventional robots requires a high driving power, the cost required to put extra
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weight in orbit is tremendous. The use of lightweight robotic manipulators seems to
be conclusive due to the advantages they offer, i.e., higher speed performance, higher
payload-to-weight ratio, smaller actuators and lower energy consumption, as long as
the performance of the corresponding rigid-body robot can be achieved.

On the other hand, a demand for faster and more precise mechanical systems has
arisen as higher productivity becomes crucial in contemporary industry. However,
the higher operating speeds inevitably bring forth the rapid change of inertial forces,
thereby resulting in considerable deformations in the structural members, along with
non-negligible vibrations. As a common solution, to increase the operating speeds
while reducing the inertial forces, lightweight materials are preferred in building the
structural members of the said mechanical system. This may, however, worsen the
oscillatory behaviour to the point that the rigid-body model is no longer valid.

The structural members of the lightweight robotic manipulator and mechanical
system at large undergo considerable link deflection, thereby inducing vibration. The
former is due to the lack of stiffness, while the latter is due to the lack of structural
damping. The vibration thus introduced would cause disastrous results in connection
with a conventional control scheme based on the corresponding rigid-body model. It
is, therefore, necessary to introduce another classification to cooperate with a system
that undergoes elastic deformation. Under this classification, every material portion of
the system may possess both mass and elasticity in contrast to the rigid-body system
(Meirovithch, 1967). Hence, distributions of the inertia and stiffness are common.
Such a system is herewith termed a flezible-body system.

1.2 Background and Literature Survey

1.2.1 Spatial Discretization of Continuous Systems

Incorporating the bending vibration of a continuous beam into the equations of motion
requires the integration of a partial differential equation (PDE) that satisfies boundary
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. conditions. The PDE is constructed using the Euler-Bernoulli beam theory, which is
valid under the following conditions (Timoshenko 1955):

¢ the beam undergoes small deformation of less than 10% of its length, and does

not suffer from axial extension

o the cross-sectional dimensions are small compared with the length of the beam,

i.e., the thickness-to-length ratio of the beam is less than ten
e the rotary inertia effects and shear deformation can be neglected.

These conditions establish a relationship between bending moment and bending de-
formation, so that the kinetic and potential energies for the given structure can be
uniquely determined. Applying the extended Hamilton principle gives rise to the
PDE and all the necessary boundary conditions. The integral of the PDE is separable
in time and space, so that the displacement function u(z,t) along the beam can be

expressed as

u(z,1) = Y()q(t) (1.1)

where Y(z) is a function of the spatial variable, while g(t) is a function of time. This
representation converts the PDE into two ordinary differential equations in space
and time domains, respectively. The nontrivial solutions satisfying the fourth-order
ordinary differential equation in the spatial domain are called the eigenfunciions or
natural modes. These solutions can be used as basis functions to determine the elastic
displacement at all points in the structure.

Due to the intrinsic nature of the distributed-parameter system, there are infinitely
many nontrivial eigenfunctions. Consequently, a large number of the generalized
coordinates are required to represent the elastic deformation along the beam. In
theory, the elastic displacement function lies in the space that is spanned by an infinite
number of modes (Hughes, 1987). Such displacement functions are often referred
. to as the exact solution for the given PDE. It is noteworthy that the said space is
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hypothetical, and thus, may not exist in practice. If a finite number of modes were
chosen, how many modes would be necessary to describe the vibrational behaviour of
the beam with sufficient fidelity? To answer this question, we may need an engineering
compromise between the required accuracy and the practical standpoint. Furthermore,
determining these eigenfunctions becomes considerably complicated by the boundary
conditions and particular configuration of the continuous body (Meirovitch, 1967).

Such difficulties can be avoided using an approximated solution of the PDE;
however, the approximated solution 1) must be given in finite-dimensional form, while
assuring the required accuracy; and 2) must be assessable through a physically mean-
ingful quantity such as strain. The first condition allows an accurate yet computation-
ally manageable solution. Computational efficiency is critical for the approximation
to be implemented in real-time. The second condition becomes more relevant when
the said approximations are linked directly to the feedback control scheme. A fast
and precise measurement of such a quantity ensures that the controller has accurate
information on the system behaviour.

Previous approaches to modelling of the structural member of flexible manipulators
can be classified into the following two groups.

Normal-Mode Approach

The first approach is the normal-mode analysis, which determines the solution of the
PDE in the form of a finite sum composed of a linear combination of eigenfunctions,
which satisfy all the boundary conditions and the differential equation of the underly-
ing eigenvalue problem, multiplied by time-depend._: generalized coordinates (Book
and Majette, 1983; Cannon and Schmitz, 1984; Sakawa, Matsuno and Fukushima,
1987). This approach treats a continuous system as a finite-dimensional system by
eliminating higher modes. Moreover, coupling terms between each mode in form-
ing equations of motion must vanish and diagonal terms become unity due to the
generalized orthogonality and normality conditions (Meirovitch, 1967), respectively,
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that are imposed on these eigenfunctions. This will reduce substantially the required
computational effort.

Despite its computational efficiency, this method has certain limitations. First,
obtaining eigenfunctions can be difficult in practice. Cases for which exact solutions
have been found generally relate to uniform systems with relatively simple boundary
conditions. Second, the measure of certain state variables (particularly, the end-point
transverse displacement and its first time-rate of change associated with bending vibra-
tion) often requires the use of a vision system (Chen and Zhenrg, 1992) which, although
suitable for end point-tracking control, is too slow for the transverse-vibration control

of the entire beam.

Finite Elements Method

The second approach is the finite element method (Bahgat and Willmert, 1976; Bayo,
1987; Giovagnoni and Rossi, 1989), which discretizes the continucus system into a
finite set of elements on which the displacement field is assumed to take on a simple
form, usually 2 multivariate polynomial of a low degree (up to three). It divides com-
plicated structures into small elements, so that each of the elements can be analyzed
and numerical data of the required accuracy can be extracted with relative ease. This
method allows the modelling of links that have nonhomogeneous material properties,
nonuniform cross-sections, and a variety of boundary conditions. However, the use
of finite element methods generally requires a large system of ordinary differential
equations to model the system with sufficient fidelity, and thus may not be suitable

for real-time closed-loop control.

Cubic Splines

In an effort to accommodate the real-time control requirement, cubic splines are em-
ployed as trial functions to approximate the elastica of the continuous beam at a given
set of supporting points (Dancose, Angeles and Hori, 1989). Although cubic splines
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. can be regarded as a special class of finite elements, the proposed approach possesses

certain properties that distinguish it from the finite element method, namely,

e This approach provides an exact interpolation of the original physical data—
measured at the supporting points—by a cubic spline passing through the sup-
porting points, whereby the displacement field is given as a polynomial of low

degree.

e The first-derivative continuity condition of cubic splines eliminates the need of
considering additional coordinates such as slopes at the supporting points. This,

in turn, reduces the computational burden significantly.

e The cubic-spline spatial discretization gives rise to a linear relationship between
displacement and curvature values at the supporting points. This relationship
allows the displacement function to be inferred from the set of curvature values
at the supporting points of the spline. It is noteworthy that these curvatures can
be directly measured from fast and accurate strain gauges, whereas the meas-
urement of displacement along the beam requires a computationally-expensive

vision system.

Considering that the selection of a sampling rate plays a key role in the successful
digital control of a system possessing multi-rate resonances, the use of cubic splines
can provide more flexibility in designing the control system and thus make the real-
time control more practical.

In summary, cubic splines consist of piecewise cubic polynomials between every two
supporting points, where not only the displacement and the slopes, but also the second
derivative is continuous (Strang, 1986). Cubic splines allow direct measurements
through strain gauges. Hence, beam deformation is not assumed, but measured at
the supporting points and then interpolated using cubic splines with time-varying
coefficients.
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1.2.2 Dynamics Formulation with the NOC

In the dynamic analysis of a mechanical system with chains of flexible elements, the
mutual dependence between rigid-body motion and elastic motion has received a great
amount of attention. This dependence becomes an essential criterion in classifying
most previous works done to date (Bayo and Serna, 1989; Nagarajan and Turcic,
1990), which is due to the growing demand for increased operating speed. The higher
the operating speeds required, the larger the inertial forces induced. In addition.
the rapid change of inertial forces produces impact-type loadings, so that structural
members undergo a substantial amount of link deflections. Hence, link deflections are
attributed to both rigid and elastic motions. In this context, neglecting those coupling
terms between the former and the latter, and separating the rigid-body motion from
the elastic motion—the rigid-body motion is defined as a nominal motion and then
used as an input to synthesize the resulting elastic deformations (Sadler and Sandor,
1973; Midha, Erdman and Frobrib, 1977)—would give rise to erroneous results. As
was verified experimentally by Turcic and Midha {1984), the assumption made on the
independence of the rigid-body and the elastic motions is only valid for a certain class
of system such as an elastic four-bar crank-rocker mechanism with a large flywheel
at the crank. The large inertia thus created by locating the fiywheel at the crank
reduces the variation of inertial forces in such a way that the mechanism considered
can achieve its force balance. This force balancing eliminates rapid irertia changes
that often cause impact loadings. The flywheel is thus used to prevent exciting the
elastic motion so that the rigid motion is maintained independent of the elastic motion.
It must, however, be taken into account that impact loadings are developed by not
only the higher operating speed, but also the intrinsic singularities of the mechanisms
at hand. These singularities often introduce substantial link deflections, and thus
make the aforementioned assumption on the independence of the rigid-body motion
and the elastic motion difficult to accept.

It is of practical importance to consider that the nominal motion must account for
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the rigid-body motion and the elastic motion as well. This becomes apparent when
the feedback control is used to suppress link oscillations while attaining its desired
rigid-body motion. The corrective measure provided by the aforementioned controller
takes into account both the rigid-body and elastic motions. Moreover, the coupling
terms between the two motions must be considered in the kinematic and dynamic
formulations. The coupling terms are a kind of messenger that transmits external
forces into the internal system so that its internal behaviour comes into effect. Without
considering these factors, it is very difficult to secure the proper dynamic responses.
A comprehensive discussion on this topic can be found (Naganathan and Soni, 1987).

Even if the nominal motion is properly defined so that the mutual dependence
between the rigid body and the elastic motion is taken into consideration, the task
of incorporating the constraints due to kinematic loops becomes more challenging in
the dynamic analysis of the mechanism at hand. Most studies undertaken to date use
Lagrange multipliers to incorporate these constraints into the equations of motion.
First, the equations of motions are developed by employing the maximal set of the
generalized coordinates to locate and orient bodies in space. The constraints due to the
coupling of each intermediate link with its neighbours and the loop closures are then
imposed to represent the kinematics of the system. This approach yields a system of
nonlinear differential equations, as well as algebraic equations (Song and Haug, 1980;
Shabana and Wehage, 1983). In contrast to the concise and systematic formulation
thus provided, the solution of the mixed set of differential and algebraic equations is
not trivial and even far more complex than the integration of the differential equations
alope. In addition, the number of equations to be solved is larger than actually needed.
This is so because a number of dependent generalized coordinated is employed in the
dynamic formulation.

It is, therefore, desirable to find the equations of motion with the minimum number
of generalized coordinates, while considering the constraints within the model. Along
these lines, the penalty method is worth mentioning. In this method, the constraints
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are directly inserted into Lagrange’s formulation instead of adjoining them with the
aid of Lagrange multipliers. This can be achieved by introducing fictitious penalty
functions. These functions are then penalized by increasing weighting factors to force
the verification of the constraints within a prescribed tolerance. This method has
certain drawbacks: 1) the insertion of the constraints into Lagrange’s formulation
only holds if the weighting factors approach infinity, and thus, bring forth the problem
of choosing the right penalty factors; 2) although large weighting factors guarantee
the convergence to the constraint, they may lead to numerical ill-conditioning and
develop very large roundoff errors (Bayo and Serna, 1989); 3) a moderate choice
of the weighting factors requires an iteration process, which in turn increases the
computational burden.

In this thesis, the spatial discretization technique based on cubic splines is incor-
porated into a2 methodology consisting of the use of the natural orthogonal complement
of kinematic constraints (Angeles and Lee, 1988), that eliminates the constraint forces
and moments from the mathematical model. With the foregoing approach, the coup-
ling between the rigid-body and the elastic motions is fully considered in the equations
of motion. Moreover, the governing equations thus derived can be expressed in terms
of 2 minimal set of generalized coordinates, while taking into account the constraints
arising from the couplings between consecutive links and the loop closures. The con-
straint forces thus introduced are =fectively eliminated by virtue of the natural or-
thogonal complement (NOC), obtained from a suitable kinematic formulation of the
linear velocity constraints.

A number of approaches to obtaining the orthogonal complement of the kinematic
constraints have been proposed for a muitibody system, which leads to an elimination
of the said constraint forces ana morments. For example, a singular-value decomposi-
tion method is used to extract independent generalized coordinates from the dependent
ones, while producing the said orthogonal complement (Singh and Likins, 1985). In
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the same vein, the orthogonal complement is obtained on the basis of successive mul-
tiplications of Householder transformations, while exploiting its enhanced numerical
properties { Amirouche, Jia and Ider, 1988; Ider and Amirouche, 1988). In the present
study, the orthogonal complement matrix is extracted from the reciprocity relations
between the independent generalized speeds and the constraint forces (Angeles and
Lee, 1988; Cyril, Angeles and Misra, 1991; Darcovich, Angeles and Misra, 1992).
With this approach, the solution of differential and algebraic equations is not needed,
in contrast with the dynamic formulation using Lagrange multipliers. Neither is the
cumbersome pepalty function required.

1.2.3 Robustness Issues

The objective of the control scheme is to suppress the vibration and bending of all
the bodies of the system, while attempting to produce the required rigid-body motion
of one of the elements, e.g., the end-effector in a robotic manipulator. To attain this
goal, precise information concerning link deflection is needed so that the controller
can determine the source of link oscillation. However, this measurement results in a
noncollocated control problermn; i.e., the sensors and actuators are placed at different
locations on the flexible structure. This introduces unstable zeros, which impose an
upper limit on the bandwidth that can be achieved and increase the overall sensitivity
to disturbances in the passband of the system. Hence, the presence of unstable zeros
turns out to be a fundamental limitation induced by the system characteristics on the
performance of the controller.

It has been reported that an accurate model is essential to successful noncollocated
control due to the limited bandwidth capabilities of noncollocated controllers (Cannon
and Schmitz, 1984). However, the mathematical model is only an approximation
of a nonlirear and infinite-dimensional system, so that the accuracy of the model
required to accommodate noncollocated sensing is often questionable. Considering
that unstable zeros are imposed by the system characteristics, 2 model that reduces
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the effects of noncollocated sensing has to be sought without sacrificing accuracy.

In dealing with distributed-parameter systems, it is common engineering practice
to assume that the first few modes are dominant and the higher modes are taken care
of by the structural damping of the system itself. The infinite-dimensional system is
then controlled by a finite-dimensional compensator.

It has been pointed out that the unmodelled higher modes may reduce the stability
margin of the closed-loop system, and thus cause instability associated with the linear-
quadratic-Gaussian compensator design (Gibson and Adamian, 1991). This is, in fact,
the well-known spillover effect (Balas, 1982). Since the controller and observer gains
lie predominantly within the span of the finite number of modes to be considered,
the unmodelled higher mcdes are practically orthogonal to these gains, and thus, the
LQG compensater mostly ignores them. The high-frequency residual vibrations are
thus fed back to the control system by noise-sensitive sensors. Therefore, the model
raust be such that the controller designed based on it is robust to those unmodelled
higher modes that may contain a wide range of frequency spectrum.

Previous studies in the literature have focused on the modelling and control of a
rather simple structure, such as a rotating flexible beam. Moreover, they do not always
take the effect of noncollocated sensing and robustness to unmodelled higher-order dy-
namics into account. However, the growing demand to expand the existing modelling
and control methodologies to more complex systems having several structurally fiex-
ible links requires a control scheme that is robust against variations in their open-loop
dynamics. Furthermore, this control scheme must provide an improved signal-to-noise
ratio, thereby enhancing the capability of the c.ntroller against the chronic spillover
effects associated with the noncollocated sensing.

One way of seeking for the desired robustness is to synthesize the coptroller while
simplifying the dypamics of the system model as much as possible. It is rather tra-
ditional for a control engineer to seek the achievable bandwidth in which the said
controller is not sensitive to the system dynamics. In this approach, the negiected
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higher-order dynamics is not a concern as long as the controller does not excite the
high-frequency modes, i.e., the closed-loop bandwidth is chosen to be sufficiently low.
Therefore, the model is simplified at the expense of a low achievable bandwidth.

Another way is to find a2 model that allows a design of the robust control scheme,
while considering the higher-order dynamics as much as required. In this case, the
controller can be designed using one of the many methods available. Since the dy-
namics of the system impose an upper limit on the obtainable bandwidth, inclusion of
higher-order dynamics in the model would increase the achievable closed-loop band-
width.

The latter approach is taken to assess the robustness of linear-quadratic-Gaussian
(LQG) compensators designed with two different spatial discretization methods, in
terms of the observation spillover due to estimation errors and the control spillover
due to modelling errors. The two discretization methods used are the normal-mode
and the cubic-spline methods. In order to investigate observation spillover effects, the
sensitivity function of the LQG compensator is introduced. Moreover, the quantitative
measure of the robustness of the LQ state feedback is used to provide tolerable levels
of control spillover, so that the closed-loop system remains stable. An analysis based
on Nyquist plots shows a substantial improvement in robustness using cubic splines

over normal modes.

1.2.4 Design and Implementation of Control Schemes
Design of a Nonlinear Controller

The governing equations for the planar four-bar linkage with structurally flexible ele-
ments are, in general, highly coupled and nonlinear. Moreover, the mechanism is
often subject to rapid changes of environment and so are its variables, such as the
joint angles and their time-rates of change. Furthermore, such a mechanism may
possess kinematic singularities, also known as dead points. These singularities are
intrinsic and thus unavoidable if the mechanism undergoes its full motion cycle.
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The control objective is to suppress the vibration of the flexible elements and to
attain asymptotic trajectory tracking at all times. In addition, the controller thus
employed must ensure the boundedness of all internal signals so that the closed-loop
control system provides global convergence for all desired trajectories. The con-
trol scheme that achieves such objectives is difficult to obtain due to the nonlinear
characteristics of the mechanism, compounded by the rapid parameter variation and
existence of singularities. Therefore, a controller based on an approximate model is
not expected to work well.

For example, it is well known that gain scheduling may not guarantee global con-
vergence, unless the following two facts are secured: 1) the scheduling parameter
should capture the nonlinearities of the plant; and 2) the scheduling parameter should
vary slowly (Shamma and Atbans, 1992). Since the gain scheduling is based on a col-
lection of linear time-invariant approximations to a nonlinear plant at fixed operating
points, a reliable control performance is expected for the fixed operating condition
from which the gain is taken. Hence, the rapid parameter variation throughout the
range of operating conditions may significantly deteriorate the overall performance of
the control system. However, gain scheduling becomes a reliable alternative if the
rigidity of the system can be compromised in such a way that a little link flexibil-
ity is allowed. In other words, tolerating a little link flexibility gives rise to better
tradeoff in the rigid-body motion control, such as position and orientation control of
the end-effectors (Carusone and D’Eleuterio, 1993; Carusone and D’Eleuterio, 1993).

A computed-torque approach is a good candidate to deal with such difficulties and
to achieve the control objectives. The computed-torque method is a model-based con-
trol algorithm relying on the inverse dynamics of the system. The inverse dynamics is
then used for feedback linearization of a nonlinear system provided that the paramet-
ers needed for control are known. The latter is seldom the case because the dynamic
model is at most a refiection of a nonlinear plant onto the mathematically realiz-
able subspace, which often turns out to be too abstract. To bridge this discrepancy,
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various adaptive routines have been added to the framework of the computed-torque
approach (Craig, Hsu and Sastry, 1986; Spong and Ortega, 1988; Middleton and
Goodwin, 1988).

Adaptive schemes have been evolving in such a way that less and less restrictions
are necessary in implementing the computed-torque method. However, the transient
performance of these control algorithms depends heavily on the initial condition of
a system and is not yet fully practical. Moreover, since the asymptotic stability has
not been proven to be uniform, a small change in the dynamics may result in loss of
stability (Ortega and Spong, 1989).

The state of the art of the computed-torque approach, which is used in the con-
trol of robotic manipulators, is still based on the assumption that all joint variables
are available. This assumption may be sufficient for the motion control of rigid-body
robotic manipulators, although the experimental verification of such cases is seldom
found in the open literature to date. This assumption may not allow the direct ap-
plication of the computed-torque approach for the control of the mechanism with a
chain of structurally flexible elements. Not only joint variables but also information
on the link deformation is needed for the successful control of a flexible mechanism.
However, some of the variables associated with the link deformation may not be avail-
able through direct measurement.

A nonlinear control scheme proposed in this thesis estimates the variables not
available from the measured output, while taking care of the associated nonlinear-
ities in the control scheme. The basic framework is similar to the computed-torque
approach in the sepse that feedback linearization is used (Fig. 1.1). The proposed
controller consists of two blocks: the inner loop block is a nonlinear state feedback
control law and the outer loop is typically a linear compensator driven by the tracking
error between the estimated and the nominal states (Fig. 1.2). To obtain the estimated
state, a Kalman filter based on the dynamic model is used.

The key idea lies in the fact that the dynamic formulation based on the NOC
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Figure 1.1: A general structure of the computed-torque approach in nonlinear control
form

provides the decoupled and coupled equations of motion simultaneously. The former
is constructed in terms of the extended generalized speeds, while the latter is expressed
in terms of the independent generalized speeds. The connection between these two
equations of motion can be obtained as a form of the NOC.

The Kalman filter can then be obtained by using the linearized decoupled equa-
tions of motion. It should be realized that the nonlinear terms in the decoupled
equations of motion are not associated with rigid-bedy coordinates but rather with
the link deflections, namely, flexible coordinates. Moreover, the coupling terms are
not neglected in the foregoing equations of motion. Hence, the admissible control
law can also be constructed based on the linearized decoupled equations of motion.
This linear compensator constitutes the outer loop (Fig. 1.2). However, the use of
the decoupled equations of motion gives rise to the control inputs in terms of the
extended generalized forces that contain nonworking constraint forces, instead of the
applied torque. When the nonworking constraint forces are eliminated by virtue of the
NOC, the applied torque can be obtained by filtering the generalized forces through
the NOC. Since the NOC is configuration-dependent, the inner loop is required for the
NOC to assess those state variables and used as a nonlinear state feedback (Fig. 1.2).
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Figure 1.2: A proposed nonlinear control algorithm

This model-based control algorithm can be implemented safely on industrial ro-
bots, where each joint is controlled individually. Moreover, it avoids the use of compu-
tationally expensive adaptive control schemes as well as curnbersome gain-scheduling
techniques that are usually needed for the control of such highly nonlinear systems.

Implementation of the Control Scheme Using the Euler Operator

If the proposed control algorithm is implemented on a digital computer, the NOC
has to be updated quickly enough so that discretization effects do not degrade its
performance relative to the ideal continuous-time case. This is true if the NOC filter
can be executed with no computational delay. Moreover, a rapid sampling may tend
to increase observation spillover by feeding back the control signal biased by high-
frequency residual vibrations, even when an approximate finite-dimensional mode! is
used in the digital control but based on the shift operator (Balas, 1982). This is
contrary to the commonly made assumption that a higher sampling rate allows the
continuous-time system to be better approximated by the discrete-time system.
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In this thesis, the Euler operator is used for a discrete representation of the pro-
posed control scheme and its computation. The numerical superiority over the usual
shift operator of digital control laws using the Euler operator has been examined
extensively (Li and Gevers, 1993; Comeau and Hori, 1992; Middleton and Good-
win, 1986). These studies show that the Euler operator formulation offers better
finite-word-length coefficient representation and less finite-word length rounding er-
ror performance in many cases. Moreover, the use of the Euler-operator formulation
provides a close correspondence between continuous- and discrete-time results (Hori,
Nikiforuk and Kanai, 1989; Middleton and Goodwin, 1990). Unlike the shift oper-
ator, the discrete-time theory based on the Euler operator converges to the appropriate
continuous-time results as the sampling rate increases. Such connections provide more
flexibility in specifying performance requirements, thereby allowing the digital control-

lers to be evaluated in a continuous-time context.

Robustness Analysis of the Digital Control Laws

The discrete realization of a continuous-time system is often subject to parameter
variations due to finite-word-length effects. Such variations are often very large and
therefore deteriorate the stabilizing property obtainable with the continuous-time LQ
state feedback. This phenomenon becomes more worrisome when the system to be
controlled possesses multiple, high-frequency resonances. It is well known that high-
frequency resonances in the plant may canse unacceptable sensitivities to disturbances
in conjunction with the discretization (Franklin, Powell and Workman 1990). Hence,
it is important to examine the robustness of the discrete LQ state feedback in the
presence of system uncertainty.

In this regard, an allowable bound in nonlinear perturbations for continuous-time
LQ state feedback is extended to the discrete-time LQ state feedback case for easy
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assessment of its robustness. A quantitative measure of the robustness of the discrete-
time LQ state feedback is then used to study the effect of the two different representa-
tions: the Euler and the shift operator formulations. It is shown that the discrete-time
LQ state feedback using the Euler operator is more robust against nonlinear perturb-
ations than that using the shift operator. Moreover, the resulting response becomes
much closer to that of the continuous LQ state feedback as the sampling rate increases,

than the shift-operator case.

1.3 Simulation and Experiments

Simulations are performed to assess the on-line capability of the proposed control
scheme. The mechanism under consideration is a planar four-bar linkage of the crank-
rocker type, where some or all moving links are flexible. In designing a prototype
mechanism, the links are made to be slender and long wherever possible, so that they
may be modelled using the Euler-Bernoulli beam theory. Moreover, the joints are care-
fully designed to achieve accurate kinematic couplings, while minimizing their weights.
The prototype mechanism is manufactured and integrated into a data-acquisition sys-
tem comprising two digital signal processors, along with analog-to-digital and digital-
to-analog converters. The experimental verification of the proposed control scheme is
carried out using the prototype mechanism.

The angle of rotation of the input link and its time-rate of change are measured
and used to infer the rest of the rigid-body motions. The vibrational behaviour of
the mechanism is then measured using two sets of full-bridge strain gauges that are
installed at the midspan of the coupler and output links. When this output and the
input joint torques are sampled, the model-based Kalman filter reconstructs the state
variables, The joint torque can then be obtained from the admissible control law in
conjunction with the NOC filter. This torque is in turn applied to the system via 2
precision DC motor and to the said Kalman filter.

One aspect of this study is to assess the viability of calculating the NOC on-line,
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which is essential for the successful implementation of the proposed control algorithm.
The experimental study is thus focused on the numerical performance of the NOC fil-
ter. In this regard, the Euler-operator formulation that closely approximates the cor-
responding continuous-time system is used for the discrete-time system representation.
The filter is executed on a 33M-flops digital signal processor {DSP). The experimental
results show that the desired performance of the control system can be achieved with
sampling rates as high as 200 Hz.

Knowing that this type of mechanism possesses singularities intrinsically, both
simulation and experimental results are compared in order to investigate the effect
of those singularities on the applied torque. This is significant in analyzing the sys-
tem response, because a rapid inertia change, which may affect the system dynamics
greatly, occurs in the neighbourhood of 2 singular configuration. Experimental stud-
ies show that the rapid inertia change at the singular configurations appears in the
form of disturbances. Hence, the capability of attenuating the disturbances has been
considered in designing the LQG compensator. Moreover, an open-loop simulation
using the inverse dynamics of the corresponding rigid-body model is conducted to
show a difficulty of the simulation study under the influence of rapid inertia changes
that occur near the singular configuration.

An experimental study on the control of a rotating flexible bearn is also conducted.
As discussed earlier, the use of cubic splines allows a definition of the state-variable
vector as the set of curvature values at the nodal points of the spline and their time-
rates of change. The former are measured directly with strain gauges, while the
latter are estimated with a Kalman filter. The objective of this experiment is to
address the observability and controllability of the rotating flexible beam with a torque
applied at the hub of the beam using the smallest possible number of measurements.
The experimental results indicate that the estimation of the state variables can be
accomplished if at Jeast two measurements are taken, these being the curvature at the
root of the beam and the hub rotational angle. Moreover, the vibration of the flexible
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beam can be successfully suppressed by means of the applied torque obtained with

the admissible control law in conjunction with the Xzlman filter.

1.4 Thesis Overview

This thesis consists of eight chapters, which are outlined below:
Chapter 1 is devoted to the background and motivation of the research to be presen-
ted in this thesis. It includes the definitions of some basic concepts, literature survey

and description of the problems that are covered throughout the thesis.

Chapter 2 deals with the spatial discretization of the continuous beam. Two spatial
discretization methods are presented, i.e., 2 normal-mode method and a cubic-spline
technique. Cases for two different boundary conditions—pinned-pinned and clamped-
free—are discussed for each of the two spatial discretization methods.

Chapter 3 presents a kinematic formulation for a mechanism having a closed kin-
ematic chain. An equivalent rigid-link system (ERLS) is used to resolve the overall
motion of the mechanism into the sum of a rigid-body motion and a flexible-body
motion. The kinematic constraint equations are then formulated and the independ-
ent and dependent geperalized speeds are defined Lased on the said equations. The
orthogonal complement of the foregoing constraints equations is extracted from the
reciprocity relations between the independent generalized speeds and the constraint
forces, and is defined as the underlying natural orthogonal complement {(NOC).

Chapter 4 is devoted to the formulation of the governing equations exploiting the
properties provided by the NOC, namely, those naturally incorporating the constraints
into the equations of motion and eliminating the constraint forces thus introduced. The
equations of motion for each separate link are constructed using Lagrange’s equations
and then assembled to give the unconstrained equations of motion for the entire system.
The latter are called the uncoupled equations of motion. The coupled equations of
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motion are then obtained by multiplying both sides of the uncoupled equations of
motion by the transpose of the NOC. Finally, the dynamic formulation of a rotating

flexible beam is presented in detail at the end of this chapter.

Chapter 5 provides the robustness analysis of the dynamic models of the rotat-
ing flexible beam obtained using both spatial discretization methods, namely, the
pormal-mode approach and the cubic-spline technique. A sensitivity analysis of the
linear-quadratic-Gaussian (LQG) compensator is performed to assess the capability
of attenuating estimation errors due to unmodelled higher-order dynamics. The al-
lowable bound for nozlinear perturbations is also sought in conjunction with LQ state
feedback. For the said dynamic models, the sensitivity analysis is used to investigate
the effect of the observation spillover, whereas the allowable bound is exploited to test

the robustness against the control spillover.

Chapter 6 is concerned with the design of a model-based control scheme and its
on-line implementation. The control scheme consists of two blocks: the first bock is
devoted to the linearization of the highly coupled nonlinear system, while the second
block is assigned to obtain the required applied torques from the generalized forces.
This partitioning of the control scheme is feasible on the basis of using the NOC as
a filter. This control system is then discretized and expressed in the Euler operator,
which provides close connections between the continuous- and the discrate-time res-
ults. Two theorems are developed to quantitatively measure the robustness bound
of the discrete-time linear-quadratic (LQ) state feedback in the presence of nonlinear
perturbations. These theorems allow the robustness measure of the discrete-time LQ
state feedback associated with the use of different operators; i.e., as the shift and Euler
operators.

Chapter 7 presents the numerical and experimental results for the proposed control
scheme designed for the planar four-bar mecharism of the crank-rocker type. The
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control algorithm is numerically implemented on the simulator based on the nonlinear
equations of motion. Based on these results, the prototype mechanism is manufactured
and then integrated into a data-acquisition system. The experimental verification
of the proposed control scheme is carried out using the setup thus made. Several
issues are addressed concerning the experimental results such as the effects of the
singularities and rapid inertia changes. Moreover, the experimental results for the

contro! of the rotating flexible beam are included in this chapter.

Chapter 8 is devoted to the conclusions derived from this research work. The results

thus obtained are summarized and then, some suggestions are made for further work.



Chapter 2

Spatial Discretization of Continuous

Systems

2.1 TIntroduction

The governing PDE of a uniform beam that is subject to only bending is obtained
using the extended Hamilton principle, along with necessary boundary conditions.
The method of separation of variables enables us to convert the PDE into two sets of
ODEs in the time and space domains. Two spatial discretization methods, one based
on normal modes, the other one cubic splines, are used to find a proper approxim-
ate solution of the fourth-order ODE associated with the spatial variable. Cases for
two different boundary conditions—pinned-pinned and clamped-free—are discussed
in conjunction with both spatial discretization methods.

In the normal-mode approach, the displacement is approximated as a finite sum
consisting of the normal modes and the corresponding time-dependent coordinates,
commonly known as the normal coordinates. For tbhe uniform beam, the natural modes
are solved by finding a general solution of the fourth-order ODE in space and applying
appropriate boundary conditions therein. The natural modes are normalized for the
sake of convenience. The normal modes thus produced then satisfy the orthogonality

23
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conditions.

In the cubic-spline technique, the displacement functions between the supporting
points are given in the form of piecewise third-order polynomials having continuous
second derivatives (Rogers and Adams, 1976). The overall displacement is then con-
structed by an interpolation of the set of physical data taken at the supporting points.
Boundary conditions are then imposed to eliminate the need of finding the extra coef-
ficients that result from the use of the cubic splines. A linear relation between the

displacement and the curvature values is given at the end.

|

Y

Figure 2.1: Bending deformation in a uniform beam

2.2 The Euler-Bernoulli Beam

The relation between bending moment and deformation in a flexible beam is given by

M(z,t) = Er(x)iz-:,‘,l:;—” 2.1)

where El(z) is the flexural rigidity, consisting of Young’s modulus E and the cross-
sectional area moment of inertia I(z) about an axis normal to the XY plane and
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passing through the centre of the cross-section. Moreover, u(z,t) denotes the trans-

verse displacement along the beam at any point z and time ¢, as given in Fig. 2.1.
The potential energy associated with the deformation of the beam has the form:

=% El(z )[‘5'2"‘(z ”] dz (2.2)

In addition, the kinetic energy caa be expressed as

T m(z) [au(z, t)] dr (23)

where m(z) is the mass per unit length.
Applying the Hamilton principle, the governing PDE is found by minimizing the

following function

,
I= f, :(T —V)dt (2.4)
= % : jo ‘ (m(:r:) [%r — El(z) [g_:;]’) dr dt (2.5)

This can be achieved with the aid of the calculus of variations, namely, as
§I =8I —I)=0 (2.6)

where

5h= :’ j m(z )a"a(‘s“)dz dt @7
§I = f‘ ‘ [o El(z )gz‘; a;(‘sf)d dt (2.8)

Performing the standard integration by parts for 81 gives
§I = j m(z)— Sul? dz — j j m(z)—Judx dt (2.9)
Since the variation éu must vanish at ¢, and #; by definition, one obtains

o, = - f f m(z)——é'ud:c dt (2-10)
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Applying the same procedures to &> produces
5L = [ EX)Es 28| dr — [" 2 (El(2)Es) 6u, ¢t
4

+ j j (El{(z)2%) sudz dt
Now, combining egs.(2.10) and (2.11) and collecting the integrands that contain

(2.11)

du, one obtains the three equations below:

/:::f( (51(3)3 )+ (=) )5ud:cdt =0 (2.12)

*2 (Er ot =0 2.13)
.[! . a (:L') a o - ( .
32u 3(&:)
ﬁ BNy | & =0 (2.14)
From the foregoing equations, the governing PDE can be obtained as
2
36 (Ef(z) ) +m (:c)— =0 (2.15)
along with all possible boundary conditions:
& u 3(611)
El(z )a R =0 (2.16)
3 :
(EI ()= P ) =0 (2.17)

The latter can be translated into the boundary oonditions given below:
¢ clamped end: u =0, -g-; =0

¢ pinned end: u—O,g:—:‘;‘—-O

Ofreeend:%i'-=0,g%'§-=0

The method of separation of variables, on the other hand, enables us to write the
foregoing PDE as two sets of ODEs in the space and time domains, namely,

::2 (EI (2)— ) - w*m(z % =0 (2.18)
d’;&” +wlg(t)=0 (2.19)

where w? is a positive quantity representing the square of the natural frequency w.



Chapter 2. Spatial Discretization of Continuous Systems

2.3 Normal-Mode Approach

L 2]
-3

In the normal-mode approach, the transverse vibration of the flexible link can be
approximated by a finite number of the normal modes obtained by determining the
eigenfunctions of the system, while satisfying the boundary conditions. The displace-
ment function is then given by
n=1
u(z,t) =3 Ye(z) ¢ () (2:20)
r=1
where Y,(z) denotes the rth eigenfunction, also known as the rth mode, and {q.{t)}7=}
are the time-dependent generalized coordinates. Since these coordinates are not at-
tached to any physical quantity, they are not measurable.
In the two subsections below, the normal modes satisfying eq.(2.18) are derived in

conjunction with two sets of boundary conditions: pinned-pinned and clamped-free.

2.3.1 Pinned-Pinned Beam

In this case, the geometric and natural boundary conditions are given, respectively,
by

u(0,t) = u(L,t) =0 (2.21)
u"(0,t) = u"(L,t) =0 (2.22)

which means that the deflection and the bending moment at both ends vanish.
While imposing the aforementioned boundary conditions, the nontrivial solution
of eq.(2.18) reduces to

Y, =C,sink,z, r=1,---,n-1 (2.23)
where C, is any constant that satisfies the normality conditions

m jo " Y2(z)dz =1 (2.24)
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In addition, &, in eq.(2.23) is obtained from the characteristic equation
sink,L =0 (2.25)
The sclution of the characteristic equation can be readily obtained as
KL=rx, r=1,---,n-1 (2.26)
Moreover, the natural frequencies, for r = 1,---,n — 1, are

o = () ,fff‘ (2.27)

Furthermore, the normal modes thus obtained must satisfy the orthogonality con-

ditions given below:

i (@Y aYoar = brey s =12, (2.28)
joLEI( )“’;’?W};gﬂd = w2y, mys=1,2,-e (2.29)

where &, is the Kronecker delt; These relations mean that 2ll the modes are ortho-
gonal to one another {Meirovitch 1967). Such orthogonality conditions will greatly
reduce the complexity in forming the equations of motion, especially whenever elastic
motions are induced by the rigid body motion. However, these relations will bring
forth some difficulties in connection with the controller, as discussed in Chapter 5.

2.3.2 Clamped-Free Beam

In the presence of clamped-free boundary conditions, the solutions of eq.(2.18), which
are known as eigenfunctions, leadtor=1,...,n -1,

Y:(z) = A.((sin k. L — sinh &, L)(sin 5,z — sinh x,2)
+(cos k. L + cosh k. L)(cos k.z — cosh x,z}), r=1,---,n—1 (2.30)

where

A.=C,/(sinx.L —sinhx,.L) (2.31)
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with C, defined as a normalizing constant and &, denoting the rth eigenvalue defined

as the rth root of the characteristic equation, namely,

coskrLcoshk, L = —1 (2.32)

2.4 Cubic-Spline Technique

The link deformation u{z,t) in the interval z, < z < z,4, is approximated by a cubic
spline function as

u(z,t) = A(z — 2. )* + B{(z — 2.)* + Ce(z — 2.) + D, (2.33)

where z. is the abscissa of the rth supporting point of the spline (Dierckx, 1993}.
Deriving the coefficients as functions of the displacement u and the curvature u" at
the rth supporting point yields

1

Ar= oz~ A:r(u;'ﬂ —uM, (2.34)

B.= %uf (2.35)
Au, 1

C. = A:, - SAz(uly, +2u), (2.36)

D, =u, (2.37)

where Az, = 2,43 — 2, and Au, = u,y; — u,. Furthermore, the requirement of

continuity in the first derivative is imposed, namely,
up(Tr41) = gy (i) forr=1,.,n—-2 (2.38)

After substituting eqs. (2.34), (2.35), (2.36) and (2.37) into eq. (2.33), one obtains a
linear system of (n — 2) sirultaneous equations, i.e.,

oty + 2(er + @ra Urgy + Qrerticgs = 6 [Beur — (Br + Bra1)trss + Braatirsa] (2:39)

where ar = Az, and 8, = 1/Az, for r = 1,...,n — 2. Notice that we have (n — 2)
equations here for the given n-dimensional curvature vector. It is, therefore, required
to find two more equations that are obtained by considering the boundary conditions.
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2.4.1 Pinned-Pinned Beam

The geometric and natural boundary conditions associated with the pinned-pinned
bearn can be expressed in terms of the corresponding values at the the discretized
supporting points, namely, as

Uy = Uy = (2.40)
uy =ul = (2.41)
Imposing the foregoing boundary conditions to eq.(2.39) eliminates two unknowns

in the foregoing system, and hence, gives the (n — 2) linear relationships between

curvature and displacement, namely,

A, u"=6C,u (2.42)
where
[ 2y az 0 ... 0 ]
2a .. 0
A= 2> ) (2.43)
1
| 0 .. 0 Qn-3 2&:._3 i
8 B 0 ... 0
-5; ee- 0
oo| B BB . ”
L 0 can 0 ﬁn_s —ﬂ;_s |
with

a; = or + ary1,y ﬁ; =8+ ey forr=1,..,n-3

In eq. (2.42), u is the vector of time-varying displacements and u” is the vector of
time-varying curvatures at the supporting points, i.e.,

T
u= [‘Uz:n-aun-x ] € R~ (2.45)

" ) " T
u = [ UgyernyUp_y ] € R"-? (2.46)
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Thus, eq. {2.42) leads to

u= T,,u" (2.47)
where
T, = 1(3‘1A
p= E p 4ip

with C, being nonsingular.

2.4.2 Clamped-Free Beam

The boundary conditions for this beam have been found to be very useful in the
analysis of a simple structural element. It has been reported that such boundary
conditions possesses better numerical properties than the pinned-pinned boundary
conditions in predicting the closed-loop system dynamics where feedback control is
necessary (Cetinkunt and Yu, 1992).

The corresponding geometric boundary conditions at the clamped end, z = 0, are

given as
Ou
t)=0, —(0,t)= 2,
u(0,1) =0, ==(0,t)=0 (2.48)
The foregoing boundary conditions add one more equation, namely,
2oquf + ayuy = 661 (u2 —~ uy) (2.49)

Moreover, at the free end, z = L, both the moment and the shear force exerted on the
link vanish, so that

%u Pu

—(L,t)=0, —=(L,t)= 2.50
LY =0, Z(L,H=0 (2:50)
Applying the zero shear force at the free end produces

u" = 6An_y (2.51)
=y =0 (2.52)
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' Hence,

u" = u_, (2.53)

Finally, the (n—1) linear relationships between curvature and displacement, including

eqs.(2.49) and (2.53), can be written in vector form as

Acu"=6C.u (2.54)
where
i 201 s 0 “ee 0 ]
o 20y a2 ... 0
Ac=10 .. "0 e : (2.55)
0 ver  Qn-3 20:,_3 Qp_2
c ... © Qnoz2 20l _,
[ ﬁ1 0 0 - 0 ]
-p; B2 O
Ce=| B, B B 0 (2:56)
0 ... 0 Baz =B, Bu

In eq.(2.54), u is the vector of time-varying displacements and u” is the vector of
time-varying curvatures at the supporting points, i.e.,

" P Y (2.57)
v = [ ul,..ut ]T e RV (2.58)
Thus, eq.(2.54) leads to
u="T." (2.59)
where
T. = -I-C;lAc

6
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with C. being nonsingular.

The displacement function u.-(z, t) given in eq.(2.33) can be written also in vector

form, namely,

oS
u,.(:l:,t) = [ (.‘." - zr)s (:C - zr)z (.‘.." - 1',-) 1 ] g:ti; (260)
| D (2} |
Defining s.(z) as
se@)=[(z-2) @-2) (z-z.) 1] (2.61)

and substituting the time varying coefficients given in terms of displacements and
curvatures at the supporting points into eq.(2.60) produces

ur(z,1) = sTU"w" +sTU u (2.62)

in which U”, and U, are given by

0 ... 0 -B/6 /6 0 ...0
0 ... 0 1/2 0 0 ..0
U, = / (2.63)
0 ... 0 —/3 —af6 0 ... 0
(0 ... 0 0 0 0 ...0
(0 ...0 0 00 ... 0]
U, = (2.64)

0
0
.0 -5 B 0 ... 0
.0 1 00...0

0
0...0 ¢ OO0 ...
0

| 0

Note that U”, is a 4 X (n—1) matrix whose only nonzero entries appear in its (r+1)st
and rth columns, when clamped-free boundary conditions are imposed, while U”, is
a 4 X (n — 2) matrix whose only nonzero entries appear in its (r + 1)st and rth

columns, when pinned-pinned boundary conditions are imposed. Moreover, U, is a



Chapter 2. Spatial Discretization of Continuous Systems 34
4 x (n—1) matrix whose only nonzero entries appear in its rth and (r — 1)st columns,
when clamped-free boundary conditions are imposed, while U, is 2 4 x {n — 2) matrix
whose only nonzero entries appear in its (r + 1)st and rth columns, when pinned-
pinned boundary conditions are imposed.

Furthermore, using the linear relationship between displacement and curvature

given in eq.(2.59), the displacement function u.(z,t) becomes
u.(z,t) = s7(z) A, u” () (2.65)
where

A.=U. +U,T. (2.66)



Chapter 3

Kinematics of a Flexible Mechanism

3.1 Introduction

Unlike systems with open kinematic chains where the terminal link has a free end, the
kinematic formulation of closed-chain systems requires considering that the terminal
link is constrained at both ends. The kinematic constraint equations of a flexible mech-
anism simultaneously involve rigid-body and flexible-body motions. Furthermore, the
axial shortening effect, also known as geometric shortening, cannot be neglected if
the angular rates of the bodies are comparable to their first natural frequency (Cyril,
1988). This effect significantly increases the complexity of the kinematic formulation.

An equivalent rigid-link system (ERLS) has been introduced to resolve the overall
motion of a serial-type flexible system into the sum of a rigid-body motion and a
fiexible-body motion (Giovagponi, 1994; Chang and Hamilton, 1991). This ERLS
is then extended to incorporate a flexible mechanism with closed kinematic chains,
which greatly facilitates the kinematic formulation, because the equivalent rigid-body
motion can be extracted from the overall motion of the flexible system by applying
the ERLS. It is noteworthy that a priori knowledge of the rigid-body motion is not
necessary in this formulation, since the nominal motion of the chain of rigid bodies

is simultaneously constituted from the motion of the ERLS. Consequently, the said

35
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ERLS considers the couplings between the rigid-body and the flexible-body motions.

The generalized speeds thus obtained from the kinematic velocity constraints in-
clude both independent and dependent geperalized speeds. The dependent geperalized
speeds arise from the coupling of each intermediate link with its neighbours and con-
straints due to loop closures. The use of the ERLS enables us to write the vector
of generalized speeds in terms of the vector of independent generalized speeds. This
establishes a transformation that is an explicit function of the configuration of the
mechanism and is called the natural orthogonal complement (NOC) (Angeles and
Lee, 1989). The NOC will be used to form the system of dynamic equations in terms

of the generalized coordinates, by eliminating the need to solve for constraint forces.

3.2 An Equivalent Rigid-Link System (ERLS)

An equivalent rigid-link system (ERLS) has been found to be very useful and efficient
in describing the overall motion of a serial-type flexible manipulator (Chang and
Hamilton, 1991). With the ERLS, the motion izvolved in such a system can be
readily expressed as the sum of a large motion and a small motion. The large motion
is attributed to the motion of the equivalent rigid-body system, while the small motion
accounts for deviations of the flexible system with respect to its equivalent rigid-body
motion. The small motion is mainly due to the structural flexibilities and partly due to
the rigid-body motion. Consequently, the use of the ERLS allows the closure form of
the kinematic constraint equations in terms of rigid-body meotions and associated link
deflections. However, it is noteworthy that the ERLS is only a hypothetical system,
which is the closest rigid system to the corresponding flexible system.

Here, the ERLS is extended to incorporate a flexible mechanism with a closed
kinematic chain. Unlike the serial-type flexible system, where the line between joints
i and 7 + 1 is drawn parallel to the tangent at the distal end of link ¢ (Fig. 3.1), in 2
flexible mechanism the line is drawn between joint ¢ and joint i + 1 (Fig. 3.2). The
extended ERLS approximates the said flexible mechanism, while serving to separate
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Y‘

ith segment

Yid

Jointi+7

X

Figure 3.1: Equivalent rigid-link system for a serial flexible manipulator

———— ERLS

Figure 3.2: Equivalent rigid-link syscem for a fiexible mechanism with a closed kin-
ematic loop
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the overall motion into the rigid-body and the elastic motions. Moreover, the linear
relation between curvature and displacement derived in the previous chapter can be
employed if displacements measured from the moving rigid-body configuration are
small.

3.3 Kinematic Constraint Equations

The mechanical system considered bere is a planar four-bar linkage where some or
all links are flexible (Fig. 3.3). It is driven by an actuator at point Oz. The coupler
and output links length of {a3) and (a4), respectively, are constrained tc follow the
motion of the input link length of (a2), while the base link length of (a;) is fixed and
acts as a reference frame. The actuated link is modelled as a beam with clamped-
free end conditions and undergoes axial deflection due to geometric shortening. The
unactuated links are modelled as pinned-pinned beams. As a result, the endpoints of
these links are fixed relative to the link axes.

The architecture of the linkage is simply defined by the undeformed length of
link i—denoted as a;—where i = 1,...,4, as shown in Fig. 3.3. The configuration of
the linkage is described by a set of independent rotational and flexible coordinates.
These consist of the angle of rotation of the input link, ,, along with the elastic
coordinates of flexible links, each of which is represented by an [-dimensional vector
u";. Moreover, u"; is the vector of curvature values meusured along link 7, from which

the supporting points are taken.

3.3.1 Axial Shortening Effect

Since the aforementioned mechanism should accommodate faster operating speeds
with a high degree of accuracy, axial shortening has to be included in the kinematic
formulation. However, consideration of the axial shortening may require additional
generalized coordinates (Kane, Ryan and Banerjee, 1987). Hence, a method must
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Figure 3.3: Architecture of 2 four-bar linkage

38
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be sought to eflectively model this eflect without introducing additional generalized
coordinates.

Figure 3.4 shows a schematic diagram of the axial shortening effect due to the
elastic deformation. The assumption of the constant link length under the clamped-free
boundary condition is no longer valid when the structural members of the mechanism

undergo relatively large elastic deformation.

Figure 3.4: Schematic diagram of the axial shortening

The shortening over the length of the beam can be obtained as

s(ai,t) = j:i(ds —dz) (3.1)

where ds denotes the length of a small section of the deflected beam, while dz denotes
the that of the undeformed beam. The length of a small section of the deflected beam

is given by ;
du\?
ds = [1 + (Ez-) } dz (3.2)



Chapter 3. Kinematics of a Flexible Mechanism 41

where du is the deflection associated with a small section dz along the neutral axis
attached to the undeformed position of link i. Taking a truncated series expansion of
the foregoing equation gives

du\® : 1 {du\?
[l + (E) ] ~1+ > (2;) (3.3)
Substituting the approximation into eq.(3.2), one obtains

1 {du\?
ds—d:zzvz- z-x- dz (3.4)

Equation (3.1) then becomes

. 2
s(a.-,t):% f: (j—:) dz (3.5)

By virtue of the cubic-spline technique, eq.(3.5) can be expressed in a discretized

form, namely,

s(ait) = li ( f wT ATF(z)A 0" do ) (3.6)
2 j=1 5
where A; = Uj + U;T. and
oy 0si(z) 387 (x)
Fi(z)= oz Oz (3.7)
If we define .
;= ( j B A}"F;(z)a,-dz) (3.8)
=1 \Y%
then eq.(3.6) becomes
3(a‘-, t) = %u"? p ¥ (3.9)

As shown in the foregoing equation, the axial shortening effect can be systematically
considered without introducing additional generalized coordinates.

Towards this end, several kinematic parameters are introduced. Using the dis-
placement function obtained in eq.(2.65), the deformation at the end of the input link
is defined as

u¥(a;, 1) = u"T B’ (3.10)
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where

©; = ATF(a:))A; (3.11)

and where
F(a;) = si(ai)s] (i) (3.12)

The length of the equivalent rigid-link can be expressed as

a} = \/(ai — s(a:,1))? + u(a:, )2 (3.13)

Substituting eqs.{3.9) and (3.10) into the above equation, we obtain

i = \/ a? — w7y [&'T; - %’f? wiuwl Y- 9:'] uy (3.14)

In addition, the angle ¢; defined between the undeformed position of link i and the
line extending from the origin to the end-point is given by:

o = m-1(1‘i‘;?_t)) (3.15)
It should be noted that the link lengths remain constant for unactuated links due

to pinned-pinned boundary conditions, i.e., a} = a;.

3.3.2 Joint Angles

Given the independent coordinates as input, it is desired to find the values of the
unactuated joint angles, i.e, 85 and #,. This can be readily achieved by virtue of the
ERLS and the constraint equation imposed on it, namely,

B, +8;=84+2; (3.16)

It is recognized that some of the quantities that are constant in the rigid case become
variables if the linkage is flexible. Specifically, the link lengths a; should be replaced
with those of equivalent rigid-links a!.
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Equation {3.16) provides the following two relationships, one in terms of the input

and output angles and the other in terms of the input and coupler angles:

fl(!,bz, 94, kl,kz) = k1 + kg CcOs 94 - ka cOos 7,’)2 — 008(04 - '!1)2) =0 (317)
S22, 03, k1, k) = k) — K} cos 03 — ki cos vz + cos(ip2 — 62) =0 (3.18)

where
a? +a'? — a? + a?
ko= 3 2 3T G4 ]
1 aras (3.19)
ay
= -1 9
ks 2 (3.20)
_a
= o (3.21)
2 r2 2 2
r_ @i tay +a3—a;
ky = alas (3.22)
a
K, = ;,l (3.23)
2
K= e .
3= o (3.24)

It should be noted that the kinematic variables containing the term a3, such as ky, k2,

k| and k), vary with time, as the length of the actuated link varies due to the axial

shortening.

Introducing ar intermediate variable T', eqs.(3.17) and (3.18) take on the quadratic

form given below:

AT*+2BT+C=0 (3.25)
where
T= ta.n(%-'—) (3.26)
and
A=k, = ky+ (1 — k3) cos 9z (3.27)
B = —siny, (3.28)

C=k +k —(1+ks)cosy

(3.29)
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From eq.(3.25), the output angle is derived as

e — 2 tag-! (-B + KVB — A_C)
=
A

(3.30)

where K is the branch index of the linkage configuratior and is either —1 or 1.

Similarly, the coupler angle can be obtained as

' / 2 et
83 = 2tan™? (—B+K B —Ac) (3.31)

e
where
A =K + k- (k +1)costh, (3.32)
B' =sin, (3.33)
C' =k —ky— (ks —1)cos (3.34)

with an appropriate selection of T = tan(%‘-).

3.3.3 Joint Velocity Constraints

As a first step towards finding the unactuated joint velocities, the time derivative of
the input-output relation, given in eq.(3.17), needs to be taken, namely,

dfl of ; 3f194+3f1 of:;

=3 ‘bz!,bz + 36, 3k, =k + 6k,k2 0 (3.35)
from which it is possible to solve for 6, by rearranging the terms as follows
; 1 dfi 8fi; | 8h; )
0= — =k, + =k 3.36
4 3f1/394 (w’2¢2+ 1 ak 2 ( )

In order to express the time-rate of change of the output angle as a function of the
independent velocities, partial derivatives are taken with respect to the independent
generalized coordinates. Differentiating eqs.(3.19) and (3.20) with respect to time
gives

ky = t,¢Ta, (3.37)
ky = t2¢T 0, (3.38)
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where

19k, _ (a}+a}) - (a; +ad)

= =——% . 3.39
' a; Oa; 2a4a23 (3.39)
1 akg ay
B=E—-—a= -3 3.40)
2 a;0a;  a;° (3.40
' aa2 1 w ol T
C = —az—a-uT = ((a;Tz - 92) - ETgu 20, Tz) Uz (3.41)
2
Moreover, the input angle defined in the ERLS can also be expressed as
![)z(t) = Bg(t) + tpg(dz,t) (342)

where 8, is the angle of rotation of the input link and (a2, ?) is the angle between its
undeformed neutral axis and the line extending from the origin to the end-point, i.e.,
input link of the corresponding ERLS. Care must be taken in considering the latter,

because it is not a joint angle, but an angle due to the link deflection, namely,
. ulaz,t
o = tant (2021 (3.43)
2

Upon differentiation of eq.(3.42), we obtain

Pa(t) = 82() + p2(az, 1) (3.44)
where
falany 1) = G2= o t))ilant) + ulan ey 1) (3.45)

a;
In the above equations, the terms containing the time-rate of either the transverse or

axial displacement can be expressed as functions of the curvature vector using cubic

splines, namely,

(a2, t) = €3 (az2)d"2 (3.46)
$(az, ) = w3 Yo", (3.47)

where €;(a;) = si(a;) AY. Substituting eqs.(3.46) and (3.47) into eq.(3.45) leads to

@ofast) = nTi" (3.48)



Chapter 3. Kinematics of a Flexible Mechanism 46

where

I T
0= (a2 — Lu"] You")e; + YTu', v €
a - ung- az"rz — :l‘_‘rz Hz uu;. ‘r2 — 62] ur:2

(3.49)

Moreover, the partial derivatives in eq.(3.35) are computed as follows:

N1 = —-a-i- = kz sin 94 —_ sm(94 -— ?1[)2) (350)
06,

N2 = % = ka, sir !!Jg - sin(94 - 1,[’2) (3.51)

N= 2oy (3.52)

Ny= = =cosb, (3.53)
Now eq.(3.36) can be rewritten as:
94 Mlﬂg -+ m1 (3.54)

where

Ne

M
1

m; = w;((t; +1t2¢0584)¢ + Nam) (3.56)

M, = (3.55)

Similarly, the time-rate of change of the coupler angle can be obtained from the
following equation:

dfz 8fa:  8f2; , Ofz2; , 3f2
where the kinematic variables are given by
kK, = t3¢T0" (3.58)
K, = 1T (3.59)
and
2
ty= e (e 4 ) (3.60)

2a3a;
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In addition, the partial derivatives in eq.(3.57) are computed as follows:

! a !
N = _of = —k,sinf3 — sin(y2 — 83) (3.61)
00,
N, = 9% _ k, sin ¥, — sin(th; — 0s) (3.62)
b2
o _ Ofs
Ny= 3% = (3.63)
. 0
N,= 3_;:2 = ~cost (3.64)
Hence, the final form of the time-rate of change of the coupler angle is given by
a.3 = Mgég + mgl:l."z (3.65)
where
Nl‘
M, =3 .
2= X (3.66)
1 '
m; = ﬁ:((ia —t2¢0583)C + Nym) (3.67)
1

3.3.4 Velocity Constraints on Body-Fixed Frames

Let r; be the position vector of any point P on link i, with respect to the moving
frame F; attached to the corresponding neutral axis, as shown in Fig. 3.5. Moreover,
let us define x; and y; as the unit vectors parallel to axes X; and Y;, respectively, and
let z and y be the coordinates of any point in the said frame. The position vector r;

of an arbitrary point of the ith link is then defined as
ri = (z — s{z,2))xi + u(z, t)yi (3.68)

The position vector of any point P in the inertial frame, p;, can be expressed, in
turn, as

pi=pi+ri 1=2,3,4 (3.69)
whose time-derivative is given by

p; = pi +wiEr; + ri, i=2,3,4 (3.70)



Chapter 3. Kinematics of a Flexible Mechanism 48

'Y
Y
7
%
e u(z,t)
0: X
Py P
-
X
Figure 3.5: Position vector of a point on the link
with matrix E defined as

E= [0 - ] (3.71)
1 0

In eq.(3.70), the scalars s, for i = 3,4, are obtained in eqs.(3.54) and (3.65), and (-)
represents the time-derivative of (-) in frame F; when regarding this frame fixed. In
addition, E is an orthogonal matrix that rotates 2-dimensional vectors counterclock-
wise through an angle of 90°, and bence, E7 = —E and ETE = 1 with 1 denoting the
2 % 2 identity matrix.

Having considered that the transverse and axial displacements are due to the
link flexibility and the geometric shortening, respectively, and that their time-rates
of change are explicitly expressed in terms of curvatures along the link, the m-
dimensional vector of generalized coordinates and speeds for the ¢th link can be defined

as

q= [p';r 0; u"',-r]T (3.72)
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q=[pl wi wy]” (3.73)

where p; denotes the position vector of the origin O; for link {, while 6, and w; denote
the angle measured from the ipertial frame and its time-derivative. Moreover, u”;
denotes the [-dimensional curvature vector, where ! depends on the imposed boundary
condition and the number of nodal points. The vector of generalized speeds of the

mechanism is then defined as
a=[q; & &) (3-74)

The forgoing vector can be expressed as a function of the r-dimensional independ-

ent generalized speeds, namelr,

q=N(q)v (3.75)

where N(q) is an N x r sparse matrix with N = 3m. Moreover, for the given

mechanism, the r-dimensional vector of independent generalized speeds is defined as

v = [0.2 ﬁug‘ ﬁ"g- ﬁuI]T (3.76)

3.3.5 Introduction of the Natural Orthogonal Complement

On the other hand, the kinematic velocity constraints produced by eqgs.(3.54), (3.65)
and (3.70) can be written in terms of the generalized speeds as

Aq=0, (3.77)

where A = A(q,?) is an s X N matrix with s < N, and 0, is the s-dimensional zero
vector. Moreover, let g be the rank of matrix A. Then, the degree of freedom of the
system, denoted by r, is

r=N-g (3.78)
Substitution of eq.(3.75) into eq.(3.77) leads to

ANv=0, (3.79)
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Since v is r-dimensional and its components are linearly independent, eq.(3.79) holds

if and only if
AN=0,, (3.80)

This shows that N is an N x r orthogonal complement of A, where O, is the s X r zero
matrix. Because of the form in which N is defined, it is termed the natural orthogonal

complement of A.



Chapter 4

Dynamics Formulation with the NOC

4.1 Introduction

In order to derive the dynamic equations of a mechanism modelled as a chain of
flexibie elements, two methods are systematically integrated: the natural orthogonal
complement (NOC) and cubic splines. The former allows the dynamic cquations of the
mechanical system to be formulated without using Lagrange multipliers, whereas the
latter allows the elastic motions associated with structural members to be described
with a finite number of generalized coordinates. ‘The proposed approach takes into
account mutual couplings between the rigid-body and elastic motions in its formula-
tion. Furthermore, the equations of motion are expressed in terms of the minimum
number of generzlized coordinates, i.e., the degree of freedom of the given system.

The approach taken in this section can be summarized as follows:

1. Expressions for the kinetic and potential energies, as well as the Rayleigh
dissipation function are constructed for each link, which is considered as

an unconstrained body.

2. These expressions are then spatially discretized along the link using the
cubic spline technique, so that the set of elastic coordinates is finite.

3. The rigid-body motions are expressed using a set of dependent generalized

51



Chapter 4. Dynamics Formulation with the NOC 52

coordinates, as needed to locate and orient each unconstrained body in

space.

4. The equations of motion for each individual uncornstrained link are formu-
lated using Lagrange’s equations. It should be recognized that the cor-
responding coordinate system includes both independent and dependent
generalized coordinates. The dependent coordinates arise from the coup-
ling of each intermediate link with its neighbours and the constraints due
to the loop-closure.

5. The resulting equations are assembled for the entire system to constitute the
decoupled equations of motion. This formulation inevitably brings forth the
nonworking constraint forces in conjunction with the dependent generalized

coordinates.

6. By virtue of the natural orthogonal complement, the nonworking constraint
forces are eliminated and the coupled equations of motion expressed in

terms of a minimum number ¢f generalized coordinates are derived.

The dynamic formulation of a rotating flexible beam will be presented in detail
at the end of this chapter. To describe the vibrational behaviour arising due to link
flexibility, two spatial discretization methods are considered: the normal-mode method
and the cubic-spline technique. The corresponding couplings between the rigid-body
and the elastic motions are then examined in terms of their physical significance.
Figally, the resulting dynamic models are then used to discuss the robustness of the
difierent spatial discretization methods.

4.2 Dyramic Modelling of the Mechanism

The mechanical system considered throughout the first half of this chapter is a planar
four-bar linkage of the crank-rocker type. It is driven by a constant angular velocity
input that produces a high acceleration of the output link during a part of its motion
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cycle. Since the mechanism performs its motion in the horizontal plane, gravity is
not considered in the formulation. It should be pointed out that transverse vibration
results not only from link flexibility but also from the singularities of the mechanism
at hand. The effect of singularities will be extensively discussed with the experimental
results in a later chapter.

The kinetic and potential energies for link {, denoted by T; and V; respectively,
and the Rayleigh dissipation function due to the structural damping of link 1, denoted
by D;, are given by

Ti= 3 [ mia)elbde (4.1)
1 e X

=3/, .EI;(z)[u:x(x,t)] dz (4.2)

Di= % [ alualz )z (4.3)

where m;(z) and EI{z) denote the mass per urit length and the flexural rigidity
of link i, respectively. In addition, ¢; is the structural damping coefficient of link i,
uzz(z,t) denotes §%u/dz? and u-(z,t) denotes 3*u/dzdH.

The term 7 p; in eq.(4.1) can be determined using the velocity constraints, given
in eq.(3.70), namely,

p? = Pp?+2u;pTEr; + 297 r,

. (4.4)
~2urTEr; +w?r? 4 12

where r; denotes the time-derivative of the position vector r; in its own frame, re-
garding this frame as fixed.

Upon substituting eq.(4.4) into eq.{4.1) and performing an integration over the
link, one obtains the resulting kinetic energy. This task is difficult to implement due
to the intrinsic nature of the distributed-parameter system and the fact that the link
undergoes axial displacement due to the geometric stiffening.
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4.2.1 Kinetic and Potential Energies for a Clamped-Free Beam

When considering 2 link with clamped-free boundary conditions, it is no longer valid
to assume that the link length remains constant, especially at higher operating speeds.
Consequently, the kinetic energy must account for both the axial displacement due to
geometric stiffening and the transverse translation due to bending. Since the clamped-
free boundary conditions are applied to the input link of the mechanism, the kinetic
energy of the input link is constructed taking centrifugal stiffening into account.
Considering the time-rate of change of the position vector p,, given in eq.{3.70),

the square of its magnitude, ||2,]|* = T p,, in the case of the input link, becomes
p? = wir? — %unrTEr, + £} (4.5)
= (2% — 225 + s? + u¥)wd + 2(us + 28 — st)w, + (§? + 47) (4-6)
Upon substitution of eq.(4.6) into the kinetic energy expression, given in eq.(4.1), we
obtain

To = %j; ’ ma(z) ((z? — 225 + 5% + u*)wid

+2(us + it — st)wy + (82 + 42)) dz

(4.7)

The foregoing equation is then spatially discretized along the link by using the cubic
spline technique to describe the displacement function in terms of the curvatures at
the supporting points, namely,

n=1 T
T, = ‘I:EZ /Jmmg(z) ((2? — 2zs + s* + u?)w?

="

(4.8)
+2(us + 7t — stt)wp + (82 + 62))dz

In this way, the axial displacement due to the centrifugal stiffening can be efficiently
determined in the framework of the cubic spline technique.

The axial displacement function can be written in the following form:

szt =3 [ (-g—;‘)zda: 4.9)
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le.,

1 j-1 Iaey z |,
s(z,t) = §u,,'2r (Z (Af jﬂ * F.(z)dz Ak) + Af./; F;(z)dz A,-) u’y (4.10)

k=1 )

where z lies in the interval z; € z < z;41. To reduce the computational complexity, the
axial displacement between two adjacent supporting points is assumed to be constant.
Such an assumption, however, does not affect the evaluation of the axial displacement
at the proximal end with which the kinematic properties are obtained, as discussed
in the previous chapter. This is so because the end tip is located exactly on the

supporting point. Hence,

j=1
s{z,t) = %u'{ (Z 'rk) u”; {4.11)
k=1
where
T Thel ¢
Y, = AT j: F.(z)dz Ay (4.12)
and
T
Fi(z) = -——asgi’) a—-s;iz) (4.13)

Furthermore, the isoparametric beam element enables the kinetic energy to have

the form given below:

1 i b Y
Tp = 5(0 =12+ 7 + )] + 2n(7] + 47 — 93)d"2 + (T + Ta)i"2(4.14)

The coeflicients of the foregoing equation are given in Table 4.1, where the first column
shows the expression for the kinetic epergy segment in terms of continuous spatial
variables, whereas the second column shows the spatially discretized kinetic energy
expression for a segment excluding spatial coordinates.

Finally, the kinetic energy of the input link can be written as

1. .
Ty =5 M2 & (4.15)
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Table 4.1: Evaluation of the kinetic energy under the clamped-free boundary conditions

Continuous Discretized

% 2 1., .3
T ./o ma(z)z’ds | 3maay

n=1 .2
7 |2 fou ? malz)zsdz mgu"T (Z 2 S | (2'1'1:))

=1

n—1 i-1
3 -/(:2 mz(x)szdx mzu"g. (zJ+1 (Zrk) n ng. (z.rk) ) u
] k=1

= k=1

n=1
1 j: : ma(z)uldz | mau'T (ZA'{ / ,J+ F;(z)dz A )
i=1 =,

L1 n-1 34 -1 T
- fo mo(zusdz | myY (( / + ?'(z)d:c) Ay u'T (E‘rk))
k=1

i=1

" f:z ma(z)zidz 'mznz-:lA‘JI_' (f’.n-’ zs;(x)dz )

i=1 %

- E? mg(:c)si;d:z: —mgnil ((:V‘_“rk) 1] j T(z)da: AJ)T u’;

| _/: ’ ma(z)$%dz mgnz—:l ((:::,+1 - z;) (E'I'k) u’z U, (ZTk))

i=1

-1

I jf' ‘ma(z)itdz | my ("Z:Ag‘ j "R ()dz A,)

j=1
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where
T
M; = T {4.16)
v~ T
and
TEN-—Tt+rn+mn (4.17)
YT=EN4T2-Ts (4.18)
r=r;+r; (4.19)

In eq.(4.16) M; is an m X m symmetric positive-definite matrix, where m denotes the
number of generalized coordinates with which both rigid-body and elastic motions are
defined. The number m varies with the number of supporting points, as well as the

oumber of rigid-body coordinates.

The potential energy, in turn, is given by

v, = % jo " Bl(z) (u"(z,1)) dz (4.20)

After spatially disretizing the foregoing equation and substituting the spatial variables

by the cubic spline forms, one obtains

1 n-l 2 "
Vé = -5 "‘{ (kz A;rj * EI(:B)FJ (a:)d:c AJ) u"g (4.21)
=1 L]

where

" 9%s;(z) 325?(:)

F. 4.22
d or*  0z° (4.22)
The potential energy can also be written as
1
V=3q; K: @z (4.23)

where

e
I

OT
0 (4.24)
0 Q.
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and 0 is the (n — 1)-dimensional zero vector. In addition, the (n—1) x (n — 1) stiffness
matrix associated with the elastic coordinates §2; is defined as

Q, = Z Al ( f El(z)F’(z)dz ) (4.25)

k=1

Likewise, the Rayleigh dissipation function due to structural damping can be writ-

ten as

D, = -c,u".{ (ﬂf aT f " (2)dz A_,-) A (4.26)
i=1

where
F(z) = BSJS.':) 382:&2) (4.27)

Then,
D, = %q’;” D& (4.28)

where
p,=|% % ] (4.29)

0 A

In the above equation, the (n —1) x (n —1) damping matrix arising form the structural
cdamping of the flexible element is defined as

n-1 1
Ar=c S AT f ™ F(z)dr A; (4.30)

j=1
4.2.2 Kinetic and Potential Energies for a Pinned-Pinned Beam

The kinetic energy of a link with pinned-pinned boundary conditions takes a rather
simple form because the link length remains constant. Since the coupler and follower
links of the four-bar mechanism are modelled with the pinned-pinned boundary con-
ditions, the kinetic energies of these two links are derived with the same formulation.

The kinetic energies, for ¢ = 3,4, are given by

T:= % fo" "miz) (97 + 2ipT Er: + 267 £ — 2irTEF; +wir? + 11} dz (4.31)
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Using the cubic-spline technique, the foregoing equations can be expressed as

Ti= i(m pl1pi +2 plygwi +2 pIT 0
. T (4.32)
=2 w; 10" 4y w? + 07 Toi")
where the coefficients are given in Table 4.2.
The kinetic energy expression can then be put in the form
)
Ti= 2% M q; (4.33)
where
mt 7 I
Mi= |~ % (4.34)
in which

v, € JRIx! 5 € lR(n-'z)xl

1'\1 € R2x(n-2) | = m(u—z)x(n—z)
In addition, 1 is the 2 x 2 identity matrix. Hence, the foregoing mass matrix is of
m X m and is symmetric and positive-definite. As shown in the foregoing formulation,
the couplings between the rigid-body and the elastic motions are fully considered.

The potential energy and the Rayleigh dissipation function are readily obtained as

' %q}” K; q (4.35)
Di= 247 Di & (4.36)

where

[0 Obx(n-
Ki={ e | e g (4.37)
L O(n-2)x S

o Ob(n-
D;i=| 0D | e mrxm (4.38)
| Om-2xp  As

(4.39)
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Table 4.2: Evaluation of the kinetic energy under the pinned-pinned boundary condi-
tions

Continuous Discretized

- N
f ./; my (:c)d:z mia;

a, 3 n~2 T,
T2 / mi(z)(2? + u¥)dz | my i u? P / " F;(z)dz A; | v’
0 3 j=1 ! T,

Ti+1
a2 | - j sTA;dz u";

2 j: .m;(z)[_zu]dz S|

J=1 x}'l-l — I?
2
o . 2 T T
ot mi(z)zuds ™ zst (z)Adz
z 0 z J 1
=t 3

T, [‘1’] jo mi(z)idz m[‘l’]"z_f( [ s;-."(z)c,-da:)

J=1 3

Gy n=2 Tyl
I'; /0 m.-(z)izzdx m.-z: ( * AfF_.;(z)A,-da:)

=1 z;
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where b denotes the number of rigid-body coordinates. The stifiness and damping

sub-matrices associated with the elastic motion are defined as

n—2 Ty41 " "
%= aT [ Ele)F](z)dz AT € R0 (1.40)
=1 *
n=-2 -
Ai=aY AT j ™ Fi(2)dz A; € BRI (4.41)
i=1 o

4.2.3 Dynamic Formulation for an Unconstrained Link

The dynamics equations are then derived for link f using Lagrange’s equation, as

shown below:

d (0T\ 9T, . o OV oD,

where w® and w¥ represent the vectors of ezxternal and kinematic constraint forces,

respectively. The equations of motion for each separate link then become
Mg+ Ciqgi+Kigq=w; (:=2,3,4) (4.43)

where the vector of generalized forces is defined as w; = w¥ + w¢, and

C, = M,’ + D; — &, (4.44)
1 [ava)”
D, = 3 [ e (4.45)

4.2.4 Decoupled Equations of Motion

After assembling the foregoing equations for the entire mechanism, the decoupled

equations of motion take the form

Mi+Ca+Kq=w (4.46)

where

M = diag(Ma, Ms, MJ) (4.47)
K = diag(Ks, K3, K4) (4.48)
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C = diag(C,, C3,Ca) (4.49)
w=[ws wi wil’ (4.50)
Let us now define the state-variable vector x as

x=[a" §7}7 (4.51)

and the state-variable vector associated with only the elastic motion u” as
wT= [u"g‘ u"g uT (4.52)

The equations of motion then take the state-space representation below:

x(t) = A(u",0")x(t) + B(u")w(t) (4.53)

with A(u",¢) and B(u",t) defined as

[ on In

A= N ¥ (4.54)
| -M-'K -M-'C
e

B=| 7 (4.55)
| M-'P

It should be noted that P is a N x p permutation matrix whose nonzero element in
each column designates the presence of either an associated constraint force or an
external force. Moreover, p denotes the number of generalized coordinates associated
with the rigid-body motion, while Iy and Oy are the N x N identity and zero matrices,
respectively. In addition, Ony, is the N x p zero matrix.

4.2.5 Coupled Equations of Motion

Let us define the state-variable vector z in terms of the independent generalized co-
ordinates and their first time-derivatives, namely,

REEC I
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The coupled equations of motion in terms of the minimum number of generalized

coordinates are obtained by first differentiating eq.(3.75). namely.
g=Nv+ Nv (4.57)
and then substituting the above equation into eq.(4.46), thus obtaining
MNV + (MN+CN)v +Kq=w (4.58)

Note that K, as defined in eq.(4.48), consists of the stiffness matrices associated with
the flexible coordinates of each link and the zero matrices associated with the rigid-
body coordinates.

Moreover, the power II developed by the constraint forces w© must vanish by

definition, i.e.,
=g wl=vINTwC =0 (4.59)
and, since all the components of v are linearly independent, we must have
NTw® =0, (4.60)
Pre-multiplying by N7 both sides of eq.(4.58) now gives
MV+Cv+K'¢o=7 (4.61)
where
r=NTwf (4.62)
with 7 being the vector of generalized applied torques and

M" = NTMN {4.63)
C" = NT(MN +CN) (4.64)
K'=NTKN=9Q (4.65)
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where
Q= diag[Kz 93 Q,‘] (4.66)

It should be recognized that the constraint forces are eliminated by virtue of eq.(4.60).

The foregoing coupled equations of motion can be expressed in state-space form

as
z(t) = $(z,1)z(t) + p(z,t)r(1) (4.67)
where
[ o, I
d =
i MK M-I ]
- o 1
p=

with p being the permutation vector whose nonzero component designates the presence
of the generalized applied force, while I, and O, are the rx r identity and zero matrices,

respectively. Moreover, O, is the r-dimensional zero vector.

4.3 Dynamic Formulation of a. Rotating Beam

4.3.1 Problem Formulation

In this section, the dynamic model of a rotating beam is obtained using the two
different spatial discretization metheds introduced above, namely, the normal-mode
and the cubic-spline methods. Then the robustpess of the control scheme, based on
each of the aforementioned discretization methods, will be assessed in the subsequent
chapters. To ease the robustness analysis, the models are sought in the form of a
single-input-single-output system. The objective of the control scheme is to suppress

the transverse vibration at the tip of the beam, while keeping the desired rigid-body
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motion. This can be achieved by varying the torque applied at the hub while measuring
the tip displacement due to both rigid-body and flexible motions.

The mechanical system under study consists of a clamped-free beam of length L,
rotating horizontally about its fixed end, as shown in Fig. 4.1. In this study, the rotary

inertia and shear deformation effects can be neglected in order to use Euler-Bernoulli

beam theory.

Y A
Y;

frt)K' X

Figure 4.1: Schematic diagram of 2 rotating fiexible beam

The control system to be used must require only a single measurement, which must
allov: the system to infer both the rigid-body and elastic motions at the same time.
Therefore, it is crucial for the output to be expressed in terms of the state-variable
vector, which includes the rigid-body and the elastic coordinates.

The kinematic description of the output to be measured, as shown in Fig. 4.1, is

given by

W(L,t) = 8(t) + (L, 1) (4.68)

Moreover, the angular deviation from the neutral axis, (L, 1), is assumed to be small,
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so that it can be approximated using the linear term of its series expansion, namely,

— -1 U(L,t) NU(L,f)
@(L,t) = tan ( i ).-., I

It should be noted that the output can be expressed as a sum of the rigid-body and

(4.69)

the elastic motions, and these can be selected as tue generalized coordinates, whatever
spatial discretization method is used.
The kinetic energy and the potential energy, denoted by T and V, respectively, are

given as
1 L . .
T= E.[o m(z)iTkdz + %Ihﬂz (4.70)
1 L 2
V=s; jo EI(z) [uss(z, ) dz (4.71)

where [} is the moment of inertia of the hub. In the foregoing equation, the magnitude
of the velocity of an arbitrary point along the link is given by

I#] = Vu26? + 2267 + 5 + 2264 (4.72)
Finally, the Lagrangian is calculated as

L . . .
L= %.[o m(z) (u292 + 2202 + a2 + 2::0&) dz

. L (4.73)
+106° -1 /0 El(z) (u"(z, 1)) dz
The Rayleigh dissipation function is omitted in the foregoing formulation to simplify
the dyna.rqic formulation.

Due to the intrinsic nature of the distributed parameter system, a very large num-
ber of generalized coordinates is required to describe the vibrational bekaviour prop-
e-lv. It is, however, of practical importance to use a manageable and finite set of
coordinates. The two spatial discretization methods discussed in Chapter 2 are em-

ployed to derive finite-dimensional models.

4.3.2 Normal-Mode Spatial Discretization Method

In this approach, the displacement function is given as a finite sum composed of a

linear combination of modes and their normal coordinates, as given in eq.(2.20). The
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spatial variables appearing in eq.(4.73) can then be replaced with the said displacement
function to rewrite the Lagrargian in the framework of the normal-mode analysis.
The higher-order terms associated with the elastic motions are then eliminated in the
foregoing procedure, so that a linearized model can be constructed. It is, however,
noteworthy that the linearization is performed cnly for the elastic motions and the
rigid-body motion is not simplified.

The resulting Lagrangian is given by

. n—] R n-=1
L= %(1,02 + @423 JbG - 3 i) (4.74)
r=1 r=1
in which
L=L+1 (4.75)
L
J. = ]o m(z)zY,(z)dz (4.76)

= (el oy p=1m - (4.77)

and [, is the moment of inertia of the rigid beam about the centre of the hub. In
addition, J, indicates the coupling between the rigid-body motion and the rth vibra-
tional mode. These coupling terms are also known as the modal anguler momentum
coefficients, and have been found to be useful in determining the dominant modes
(Hughes 1980). In fact, the values of these coefficients decrease monotonically toward
zero as the number of modes increases. One consequence is that the mutual influence
between the rigid-body and the elastic motions becomes weaker for higher modes, to
the extent that the higher modes are virtually decoupled from the rigid-body motion.
This illustrates the common engineering practice in considering the vibrational beba-
viour of the structure: the first few modes are significant, while the higher modes may
be neglected. A study of the resulting equations of motion illustrates the idea behind
such reasoning.
The equations of motion take the form

M. g+K.q=7 (4.78)
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where M, and K, are the n x n mass and stifiness matrices, respectively, while q and
T are the n-dimensional vectors of generalized coordinates and generalized applied

force. These quantities are given below:

M= 7:] (4.79)
| 7
K. = 2 ::} (4.80)
L
g={0 a - gu|’ (4.81)
r=[r#) 0 --- 0 (4.82)

where 1 is the (n — 1) x (n — 1) identity matrix and 0 is the (r — 1)-dimensional zero

vector. Moreover,

Y= Iz (4.83)
y=h Jo oo Jaal” (4.84)
Q = diag(w? w? --- W2)) (4.85)

The off-diagonal terms of the mass and stiffness matrices associated with the elastic
coordinates are zero and their only connections to the rigid-body motion take place
through the coupling vector 4. As this vector becomes closer to zero, the corresponding
mode is virtually decoupled from the rigid-body motion. Consequently, that specific
mode becomes uncontrollable from the rigid-body motion provided at the hub. This
will be further investigated in conjunction with the several control issues in Chapter
5. Moreover, the generalized coordinates used to describe the elastic motions do not
represent any measurable physical quantity.

Finally, the output to be measured can be expressed in terms of the generalized

coordinates, namely,

w(L,t) =& q (4.86)
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where

Yl Yo (D17 -
T 3 (4.87)

Since the elastic coordinates are not directly measurable, the output needs to be

£ =1

measured through an indirect method, such as a vision system.

4.3.3 Cubic-Spline Spatial Discretization

Applying the cubic-spline discretization in the same manner used in the previous sec-

tion, the Lagrangian becomes
L = %(7 6.2 + ﬁuT Nu +2 779‘&:- __uuT nun) (4.88)

The coefficients in the above equation are readily obtained fre:z Table 4.2, namely,

N= Ig (4.89)
n—-1l .r
T =m3 j ™ zs] (z)A;dz {4.90)
3=1v%
n=1 ,.»
L=mY. j ™ ATF;(z)Adz (4.91)
§=1v T2
n=1 T "
Q=3 a7 j ™ El(z)F)(z)dz AT (4.92)
i=1 =J

the equations of motion thus becoming
Mca + ch =T (4-93)

where the n X n mass and stifiness matrices, as well as the n-dimensional vectors of

generalized coordinates and generalized applied force are given below:

[ T

M.=|" ';] (4.94)
“
- 0T

K.=|° (4.95)
|_0 Q

q=1[0 o} --- v I (4.96)

r=[rt) 0 --- OF (4.97)
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The mass and stiffness matrices associated with the elastic coordinates I' and 2
are symmetric, positive-definite and their off-diagonal elements are not necessarily
zero, as in the normal-mode approach. Moreover, the coupling vector + does not
monotonically approach zero, as the number of the elastic modes increases. The
coupling terms are simply 2 relation between the rigid-body motion and the curvature
at the supporting points. Remember that the elastic coordinates used in this method
are physical variables that can be directly measured using accurate, yet fast strain
gauges.

The output to be measured can be expressed in terms of the generalized coordin-

ates, namely,
w(L,t)=¢£1q {4.98)
where
1
§=T7 | 0n (4.99)
1
L

From the above equation, the end-tip displacement can be inferred from the curvature

vector u”, which is measured from a set of strain gauges.



Chapter 5

A Robust Model for the
Discretization of Flexible Links

Based on Cubic Splines

5.1 Introduction

Upon constructing the dynamic model of the rotating flexible beam in state-sp~ce form
using the two different spatial discretization methods, the robustness of the control
system to be designed based on this model is examined in terms of observation and
control spillovers. Both spillovers reduce the stability margin and degrade the system
response associated with the noncollocated coﬁtrol problem. A robustness analysis
based on such considerations is thus essential before proceeding to a real-time imple-
mentation.

A sensitivity analysis of the LQG compensators is performed to assess the capabil-
ity of attenuating estirnation errors due to unmodelled higher-order dynamics. In this
regard, the sensitivity function and its complement are formulated. These functions
give insight not only into the observation spillover, but also into the reason why the
accuracy of the model becomes so important in noncollocated control.

7l
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In order to deal with the control spillover, the allowable bound for nonlinear per-
turbations is sought in conjunction with the LQ state feedback. This bound allows
us to quantify the upper level of nonlinear perturbations for which the closed-loop
system remains stable. Moreover, such a quantitative measure is used in the selection
of the weighting matrices in a quadratic performance index, so that the resulting LQ
state feedback becomes robust against nonlinear perturbations.

Simulation studies are undertaken to address the robustness of the control scheme
obtained using two spatial discretization techniques: normal modes and cubic splines.
Finally, the Nyquist plots of the closed-loop systems are presented to show the fre-

quency response at the cross-over frequency.

5.2 Control Strategy

Considering the tip angle given in eq.(4.68) as the output to be measured, the govern-
ing equations of motion obtained by either of the preceding two spatial discretization

techniques—eqs.(4.78) or (4.93)—can be cast in state-variable form, namzly,

x(t) = Ax(t) + bu(z) (5.1)
y(t) = cTx(t) (5.2)
where

A= o 1 € IR(2nx2ﬂ) (5.3)
i -M-1K O
i 0

b= e IR*™ (5.4)
| M~%p

e = e“],~~.c=[€°]ezza’“ (535)
i 0 0

with O and 1 denoting the r X n zero and identity matrices, respectively. Moreover,

0 is the n-dimensional zero vector and the permutation vector p is given by

p=[l Oyl (5.6)
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The state vector and scalar input are thus defined as
T
x(t)= [ a"(t) 47Q) | » wl) = () (5.7

Assuming that this model is perfect, the state-variable feedback is then obtained
by the substitution

u(t) = v(t) = kTx(2) (5.8)

where v(t) is an external input and the feedback gain k is sought to minimize the
quadratic performance index J defined below:

J= [B "(xTQx + ru(t)?)dt (5.9)

with Q being positive-semidefinite and r > 0. How Q and r should be selected will
be discussed in 5.6.2. The overall system is shown in Fig. 5.1. In the next section,
it is assumed that the actual plant is the same as the model, to simplify the study
of observation spillover. In section 5.4, it is assumed that all the state variables are

directly available but the actual plant has unmodelled dynamics.

5.3 Sensitivity of the LQG Compensator

Observation spillover depends mainly on the capavility of the LQG compensator to
attenuate estimation errors due to unmodelled higher-order dynamics. These signals
are usually characterized by their frequency spectra. To obtain insight into the ob-
servation spillover, the sensitivity function of the LQG compensator is formulated as
shown in Fig. 5.1 assuming that the actual plant is equal to the linear model given by
egs.(5.1) and (5.2), and the observation noise signals are the only source of disturbance

in the system.

Since all state variables are available, the state feedback signal z(t) takes the form

2(t) = —kTx(t) (5.10)
= —kTx(t) + w(t) (5.11)
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where % = x — %, w(t) = k"x(t). Moreover, %(t) and x(t) denote the estimated state

and estimation error, respectively.

v U ACTUAL PLANT T

j T %xp=f(xp,u) | Cr

ESTIMATOR BASED
—— ON THE MODEL

k=Ax+bu | — w7l
X

Figure 5.1: LQG compensator for the actual plant, where x, € IR" with the model
x € IR™, where N > 2n

The LQG compensator shown in Fig. 5.1 is known to be equivalent to the unity
feedback form shown in Fig. 5.2 (Anderson and Moore, 1971), where e(s) = u(s). It
should be noted that, for the arguments which follow in this section, the loop gain,
kT(sI — A)b, is considered as a virtual plant to be controlled with unity feedback

and that the disturbance w(s) is due to estimation errors. In this formulation, let the

w
et 1 = KT(sI-A) "D Lo”i-—--

4

Figure 5.2: Closed-loop optimal control scheme as a unity feedback system
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signal z(t) be an output to be controlled, which is defined as

z(s) = k¥(sI = A)"tbu(s) + w(s) (5.12)
= %%u(s) + w(s) (5.13)
Since
u(s) = v(s) — z(s) (5.14)
we obtain
2(s) = T(s)v(s) + S(s)w(s) (5.15)
u(s) = S(s)v(s) — u(s)) (5.16)
where S(s) and its complement T'(s) are given by
_ KT(s5I-A)b  n(s)
1) = T - A ~ n() + 45) (5:17)
S(s) = ! - d6) (5.18)

14+ k7(sI— A)tb ~ n(s)+ d(s)
and satisfy S(s) + T(s) = 1. It is known that the transfer function S(s) from the
external input v to the plant input u represents the sensitivity to parameter variations

of an optimal state feedback with respect to an equivalent state feedforward, namely,
AH.(s) = S(s)AH, . (5.19)

where AH.(s) and AH, denote changes in the closed-loop system and changes in
a pominally equivalent open-loop system, respectively (Doyle and Stein, 1981). It
turns out that state feedback reduces sensitivity to plant parameter variations if the
magnitude of the return difference, defined as |1 4+ kT(sI — A)~'b, is larger than
or equal to unity over a sufficiently wide band of frequencies (Perkins and Cruz,
1971). Moreover, if the pair (A,b) is completely controllable and the pair (k,A)
is completely observable, the following two facts hold: 1) all state variables can be
affected by a suitable choice of control input u(2) and 2) the control input given in
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eq.{5.14) can be identically zero only if the state is identically zero {Kalman, 1964).
This can be illustrated using unity feedback, i.e., eq.(5.16), where v(s) = u(s). Ideally,
the error remains small and bounded in the passband if the sensitivity function S(s)
approaches zero there, and thus makes its complement T'(s) close to one. This will
provide successful tracking of () to v(t). However, this is not usually possible in the
presence of the upstable zeros of the plant. Therefore, 2 compromise has to be made

to meet as closely as possible the desired specifications.

5.4 Robustness of the LQ State Feedback

In practice, the actual system is nonlinear and often subjected to parameter and
structural variations, thereby making its accurate mathematical representation difficult
to obtain. It is therefore necessary to measure the robustness of the linear-quadratic
controller in the presence of nonlinear perturbations (Patel, Toda and Shidhar, 1977).
In this section, the allowable bound for nonlinear perturbations is sought, in order to
deal with the control spillover resulting from modelling errors. This bound helps to
quantify the effects of unmodelled residuals on the closed-loop system.

The nonlinear perturbations associated with parameter variations and modelling

errors are taken into account by the addition of a vector g to eq.(5.1), as
x(t) = Ax(t) + bu(t) + g(x(t), u(t)) (5.20)

Since the exact expression of the nonlinear perturbations is not available, the control
input is generated based on the linear model given in eq.{5.1). Under the state feedback
law u(t) = —kTx(t), the resulting closed-loop system is given by

X = AX + g(x) (5.21)
7= [7xTENQ+ (e (5.22)

where

A.=A-bk’ (5.23)
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T
To minimize J, the stabilizing gain k must satisfy the necessary condition (Bélanger.

1990)
1
k= ;Sb (5.24)
where S satisfies the matrix Riccati equation
O=ATS+SA - }SbbTS +Q (5.25)

Then there exists a sufficient condition for an allowable level of nonlinear perturbation

such that the stability of the closed-loop system is not disturbed. We now recall

Theorem 5.1 (Patel, Toda and Skidhar, 1977) Let D = Q + 1SbbTS. The closed-

loop system, given in eq.(5.21), remains asymptotically stable if the nonlinear vector

function g satisfies the following condition:

lig(x)ll 1 Imin(D)
<C= = 5.26
bl < ¢~ BT ~ 2omectS) (520
where || - || and || - ||, denote the Euclidean and the spectrel norms, respectively.

Moreover, omo=(S) denotes the largest singular value of S, while omin(D) denotes
the smallest singular value of D. For completeness, the proof of this theorem is given

in Appendiz A.

5.5 Non-Zero Set-Point Tracking

If the goal of the control scheme is to force the plant output to follow a non-zero set

point, then we need
y(t) =c'x — w (5.27)
This can be achieved by using 2 constant command input r4 such that

x =0 = (A —bkT)x + bry (5.28)
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and thus
yi=c'xa=c (—A +bkT) by = Hi(0)ry (5.29)
where Hi(s) is the closed-loop transfer function given by
Hi(s) = cT(sI- A+ bkT)"'b (5.30)
When Hi(0) # 0, a constant command input can be uniquely determined by
ra = Hy ' (0)ya (5.31)

and the closed-loop transfer function (to the constant command input) can be nor-

malized as

y(s) = H(s)ya(s) = H(s)H; ' (O)rq (5.32)

5.6 Simulation Results

Simulations are performed in order to study the robustness of the models obtained
using cubic splines and normal modes. These studies include a sensitivity analysis
to investigate the effects of observation spillover and permit a quantitative measure
of the robustness bound to prevent control spillover. The number of generalized
coordinates and material parameters described in Table 5.1 are used in the simulations.
In addition, the same weighting matrices are used for the cubic-spline and normal-

mode methods to obtain the linear-quadratic regulator gain k, namely,

, =1

(100) 1, O,
Q=
O, (0.1)1,
It should be recognized that the models obtained using the aforementioned spatial
discretization methods describe a vibrational behaviour of the same system and the

state-space system representations thus obtained are expected to possess more or less

the same input-output characteristics such as the frequency response. Figure 5.3 shows
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Table 5.1: Material properties of tie beam

number of nodal points (cubic-spline model) 5
number of modes to be considered (normal-mode model) 4
mass per unit length (m) 0.6697 [kg/m]
flexural rigidity (EI) 14.8535 (kg m3/s?]
moment of inertia of the hub (1,) 2.0927x107* [kg-m?
moment of inertia of the unflexed rigid beam (/;) 0.2232 [kg-m?
length (L) 1 fm]
cross-section 0.0762 x 0.0032 [m?
100 , , —
————— Cubic-gpline lechnique
= = = Normalmode mathod

Magnitude in dB

150 - . . A
10 1° 10' 10° 1o’ 10
Freguency in rads

Figure 5.3: Magnitude plot of the open-loop transfer functions with the different
spatial discretization
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the frequency responses for the two discretization methods. A small difference can be
seen between the two at a high-frequency range.

The frequency responses for the closed-loop transfer functions. on the other hand.
may differ between the two methods, depending on the description of the internal beha-
viour of the system. The robustness analysis of the two modelling methods determines

which method is r:ore amenable to state feedback control.

5.6.1 Observation Spillover

To investigate the observation spillover due to the neglected higher-order modes, the
sensitivity functions, that are a measure of the response to the observation noise
signals, are obtained using the controllers based on the two discretization methods. 1f
a control system results in |S(jw)| < 1, the sensitivity at w is reduced by the control
system. The magnitudes of the sensitivity functions are plotted in Fig. 5.4, and
those of complementary sensitivity functions in Fig. 5.5. It can be seen that |S(jw)]
approaches 0 and |T(jw)| approaches 1, where w is close to the natural frequencies of
the open-loop system, which are equivalent to the open-loop poles. This phenomenon
can be readily illustrated using eqs.(5.17) and (5.18), namely,

oy — U)o
S(iw) = nGan) + o) 0, i=1,---, 1 (5.33)
Tw)=1-SGw)=1 (5.34)

in which w; is the ith natural frequency of the open-loop system; that is, d(jw;) = 0.
When using the normal-mode method, the insensitive regions are concentrated in a
narrow band of frequencies around w; (i = 1,---,n — 1). Furthermore, no sensitivity
reduction is achieved at natural frequencies higher than 10*[rad/s). In contrast, the
sensitivity with the cubic-spline description are lower over all frequency ranges and the
insensitive regions are wider. Consequently, the compensator based on the cubic spline
technique is less sensitive to observation noise signals and has smaller observation

spillover effects.
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Figure 5.4: Magnitude plot of the sensitivity S(jw)
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Figure 5.5: Magnitude plot of the complement of the sensitivity T(jw)
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Since the actual system is subjected to modelling errors and nonlinear perturba-
. tions, the natural frequencies of the system undergo small deviations from those of the
model. Hence, it is desirable for a control law to have a distribution of the insensitive
region around the patural frequencies of the system. For this reason, the accuracy of
the model becomes more critical when the normal-mode approach is used.

With the sepsitivity functions obtained with the same weighting matrices, the state
variables in the two different spatial discretizations are different since they are defined
in terms of different generalized coordinates: curvatures along the beam and normal
coordinates as defined in eq.(5.7). Another useful comparison is based on the pole
locations of the closed-loop system, since the control objectives do not vary with
different modelling approaches. It turns out that the sensitivity obtained using the
normal-mode method can be reduced to match that obtained using the cubic-spline
technique, but at the expense of a higher state feedback gain. For example, the control

gain k, that produces the sensitivity function, shown in Fig. 5.4 for the cubic-spline

model, is given by

[ 0.0011 | [ 10.0000 |
—0.0062 —57.3803
~0.1621 120.8451
~1.7032 —97.4219
—7.842 64.4285

k, = 1.0 x 10° i (5.35)
0.0003 2.5610
0.0000 ~0.1325
—0.0015 0.1771
—0.0041 0.1215
| —0.0013 | | —0.0237 |

while k. is the corresponding control gain for the cubic-spline technique. In the gain
vector k,, the magnitude becomes larger as the number of modes increases. This
means that larger weighting factors are necessary to penalize the deviations of the
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state variables associated with the higher modes. Considering that these gain vectors
produce the same control input when multiplied by the corresponding state variables,
the higher gain may give rise to numerical ill-conditioning and degrade the performance
of the control system.

The compensator based on the cubic-spline technique not only provides significant
advantages in terms of sensitivity reduction, but also places less severe requirements
on the accuracy of the model. Moreover, this is achieved without introducing a higher

gain, which may reduce the stability margins.

5.6.2 Control Spillover

By varying the weighting matrices of the LQ state feedback, bounds on the stability
margin can be quantitatively measured in the presence of nonlinear perturbalions
for both spatial discretization methods. Such bounds help to establish the relation
between allowable perturbations and the choice of weighting matrices in the quadratic
performance index. Moreover, these bounds indicate tolerable levels of spillover due
to modelling errors for a stable operation.

The weighting factors are chosen as

ln Oﬂ
Q=" . or=1 (5.36)
0, 1,

where p is the weighting factor for q (in this simulation, p = 100) and v is the
weighting factor for q, which varies from 0 to 1. Moreover, 1, is the n-dimensional
identity matrix.

The difference between the two discretization methods becomes apparent in Fig. 5.6.
It can be seen that the LQ state feedback based on the cubic-spline description can
accommodate nonlinear perturbations with an approximate order of magnitude three
times greater than that based on the normai-mode approach. The LQ state feedback
based on the cubic-spline approximation is thus robust against modelling errors and
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Figure 5.6: Measure of robustness { with varying weighting factor v

nonlinear perturbations. Moreover, it may be difficult to determire the proper weigh-
ing factors that will make the system robust against nonlinear perturbations when
using the normal-mode method.

A Nyquist plot of the open-loop transfer function can be used to determine whether
the closed-loop system is stable by examining its behaviour near the crossover fre-
quency. However, since high-order stiff systems have a large peak in the plot, the
Nyquist plot of the closed-loop transfer function with a constant reference signal is
used to observe the effect of varying the weighting factors as given in egs.(5.36).

In the Nyquist plot of the closed-loop system obtained using the normal-mode
method, the relatively higher peaks can be seen across the natural frequencies (Fig. 5.7).
This Nyquist locus consists of sets of peaks that result from the dynamics of the cor-
responding modes including the rigid-body motion. The said locus closely resembles
that obtained from a higher-order oscillatory system.

In contrast to the normal-mode method, the Nyquist plot of the closed-loop system
obtained using the cubic-spline technique is very smooth over the entire frequency
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Figure 5.7: Nyquist plots with different weightings for a constant input using the
normal-mode method

Frq. in rad/s (logarithmic scale)
YA

Figure 5.8: Nyquist plots with different weightings for a constant input using the
cubic-spline technique
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range and relatively smaller peaks are observed associated with the higher modes
(Fig. 5.8). This locus is similar to a family of third-order systems.

Despite the almost identical open-loop frequency responses, the closed-loop sys-
tems under the same unity-feedback and the same input-output configuration behave
differently, especially at higher frequencies, depending on how the vibrational beha-
viour is described. The effects of the higher modes are obvious in the closed-loop
system based on the normal-mode method, whereas such effects are not significant in
the <losed-loop system based on the cubic-spline model.

The above differences stem from the way in which the model incorporates the
correlations among the modes. When using the normal modes, such correlations do
not exist, due to the orthogonality conditions. Hence, increasing the number of modes
to be considered directly results in an increase in the order of the system model, as
observed in the closed-loop Nyquist plot. However, since the cubic-spline model relies
on the distribution of strains along the beam, its interpretation of the mode is more
physical rather than mathematical. Hence, no such a restriction as the orthogonality
of the modes is applied and, thus, mutual influences between the modes can be readily
incorporated into the model. In fact, these mutual influences are well observed using
the cubic-spline model, namely, the magnitude of the sensitivity function monotonically
decreases as the frequencies increase and the effect of the higher modes becomes
negligible in the closed-loop Nyquist locus.

From the control standpoint, the model based on cubic splines seems to be much
more attractive than the model based on normal modes, due to its better sensitivity
characteristic and the robustness of the closed-loop control system to the higher modes.
However, there remains one contradiction to be explained: how the approximated
model can give rise to a better response than the exact model. This contradiction
arises from the fact that cubic splines are used as trial functions to approximate the
modes.

It should be recognized that the time-varying coefficients of the cubic splines, which
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are required to determine the shape function of the beam, are expressed in terms of
curvatures. These variables can be readily obtained using strain gauges and thus allow
the on-line construction of the shape function that is, in turn, used to describe the
vibrational behaviour cf the flexible beam. However, in the normal-mode approach,
the modes are calculated off-line once and for all and the time-varying quantities, the
so called normal coordinates, are used to determine the contribution of each mode to
the shape function. Moreover, such variables by themselves do not have any physical
interpretation. Simply, they are not measurable.

Therefore, the cubic-spline model is more amenable to real-time control due to its

on-line capability of updating the shape function.



Chapter 6

Design and Implementation of the

Control Scheme

6.1 Introduction

A model-based control algorithm is presented for a structurally flexible planar mech-
anism to achieve the performance of its rigid-link counterpart as closely as possible.
The control objective is to suppress the vibrations of the flexible elements, while pro-
ducing the required rigid-body motion. The controller consists of two Elocks: the first
block is dedicated to the linearization of the highly coupled nonlinear system, while
the second block is used to obtain the joint torques required to drive the system.
The latter is achieved using a natural orthogonal complement (NOC) filter, which is a
transformation applied to the generalized force inputs. The NOC filter produces the
applied joint torque as their outputs with all non-working constraint forces eliminated.
This model-based control algorithm virtually amounts to those used in industrial ro-
bots, where each joint is controlled individually.

Regarding the digital implementation of the proposed control scheme, we resort
to a discrete-time system representation using the Euler operator. The advantages
thus obtained over the usual shift operator are: 1) improved numerical properties, 2)

88
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case in specifying performance requirements and 3) facilitated evaluation of the digital
controller in the continuous-time context.

To quantitatively measure the robustness bound of the discrete-time LQ state feed-
back in the presence of nonlinear perturbations, two theorems are proposed. The
robustness bound obtained using the Euler operator converges to the corresponding
continuous-time result both algebraically and numerically. This analysis will help a
designer understand the performance of the discrete-time LQ state feedback in the pres-
ence of nonlipear perturbations, and select an appropriate sampling interval, whick

ensures the proper system response.

6.2 Design of the Nonlinear Control Scheme Using
the NOC

The coupled equations of motion, for the four-bar linkage with structurally flexible
elements as given in eq.(4.61), reveals that the mass, Coriolis and stiffness matrices are
coupled with the kinematic constraint equations in quadratic form. The kinematic con-
straint equations are expressed in terms of the NOC, which is configuration-dependent.
Hence, the equations of motion are highly coupled and nonlinear.

It is, however, noteworthy that the rigid-body components of the mass matrix in the
decoupled equations of motion, given in eq.(4.46), become constant in the planar case
and the nonlinearities are only associated with flexible coordinates. This is attributed
to the following two facts: 1) each individual link is considered as an unconstrained
body; 2) the equations of motion for each individual link are obtained using Lagrange’s
eqnations in a local frame. The decoupled equations of motion are indeed a collection
of the equations of motion for each individual link. The couplings between links are
achieved through the NOC. It is, therefore, natural for the decoupled equations of
motion to bave constant components associated with rigid-body coordinates.

Considering that both eqs.(4.46) and (4.61) describe the same dynamic system, a
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linear compensator can be obtained by linearizing the decoupled equations of motion.
Moreover, such a linearization naturally eliminates the Coriolis term by virtue of
eq.(4.44), thereby obtaining

x(t) = Ax(t) + Bw(t) (6.1)

y = Cx(t) (6.2)

where w is the vector of generalized forces.

w Model based X
X Admizaible Kalman filter
Xx=Ax+Bw
x
y
T Flexible
— NOC filter four—bar
mechanism

")

Figure 6.1: Block diagram of the model-based control algorithm using the NOC

One consequence of using the decoupled equations as the governing equations
would be the introduction of the generalized forces instead of the applied joint torques.
Although the generalized forces are readily obtained by an admissible control law
combined with a Kalman filter, there remains the problem of how to extract the applied
torques from the generalized forces while filtering out the nonworking constrained

forces. Towards this end, the generalized forces are filtered using the NOC as
Nlw=r=17p (6.3)

thereby providing the applied generalized torque as shown in Fig. 6.1.
Since the NOC is configuration-dependent, another loop is necessary for the NOC
to assess the state variables. It should be realized that the NOC is a sparse matrix
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whose nonzero elements can be obtained through the relations between the extended
and independent generalized speeds. The proposed control scheme, even with an
online calculation of the NOC, is implemented with the use of a digital signal processor
(DSP).

6.3 LQG Compensator Using the Euler Operator

The LQG compensator constists of the state observer, also known as the Kalman filter,
and the feedback of the resultant state estimates. The controller is driven by the
estimated deviations of the state variables from their desired values and generates the
control signals in such a way that the said deviations remain as small as possible at
all times (Athans, 1971). This approach has a particular importance when some of
the state variables are not obtainable through direct measurement.

To implement the proposed control algorithm, we resort to a discrete-time system
representation using the Euler operator, which is defined as

z=1

T

€ (6.4)

where z is the shift operator and T the sampling interval (Hori, Mori and Nikiforuk,
1994).
Assuming that a digital control signal is applied via a zero-order hold, the discrete

Kalman state observer in shift form can be obtained as
x(k + 1) = Agx(k) + Bw(k) + H, (y(k) — C.x(k)) (6.5)

where

Aq=eAT
B, = jTeA"dn B
¢ 0
C,=C

q
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where the process noise v(k) and the measurement noise e(k) are random, uncorrelated

processes with zero mean value and covariance matrices given by
E{v(kv(k)T} = Q, (6.6)
E{e(k)e(k)"} = R,. (6.7)

1t is well known that eq.(6.5) is optimal in the least-square sense if the gain matrix H,
is chosen as (Franklin, Powell and Workman, 1990; Astrém and Wittenmark, 1990)

-1
H,(k) = A,S,CT (R, + C,S,CT) (6.8)
where S, satisfies the steady-state discrete algebraic Riccati equation
S, = Q; + A;S,AT — A,S,CT (R, + C,S,CT) ™ C,S,AT (6.9)

Using eq.(6.4), the discrete-time Kalman filter given in eq.(6.5) can be expressed

in the Euler domain as

ex(k) = Ax(k) + Bw(k) + H, (y(k) - Cx(k)) (6.10)
where
A, -1
A = . T (6.11)
B, = -T—f (6.12)
C.= Cq (6.13)

Moreover, the covariance matrices in the Euler form of the discrete-time Kalman filter,

eq.(6.8), are defined as
= &

Q== (6.14)

R.=TR, (6.15)
We thus obtain

g = (6.16)

T
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It has been shown that the foregoing quantity converges to its counterpart in the
continuous-time domain as T approaches zero, i.e., {Salgado Middleton and Goodwin,

1988),

limH . =H (6.17)
where
H=SCTR™ (6.18)

and where S satisfie the continuous-time Riccati differential equation, namely,
S =SAT + AS—SCTR"!CS+Q (6.19)

Furthermore, the discrete covariance matrices converge to the corresponding continu-

ous matrices as T approaches zero, i.e.,

11_1_1'510 R.=R (6.20)
}i_l}lo Q. =Q (6.21)

In conclusion, the discrete-time Kalman filter in Euler form can be evaluated in the
continuous-time domain using the aforementioned relations between the discrete and
continuous cases. What follows is that the performance specified in the continuous-
time domain can be readily transformed into the discrete-time domain using the Euler
operator.

The LQG compensator in Euler form is 2lso given by

w(k) = —L(x(k) — x-(k)) (6-22)

where x,(-) is the reference state and L is chosen to minimize the following cost

function:
T & 10 T/ LAR®
J= 3 ;[x (R)Q™x(k) + w’ (k)R w(k)] (6.23)
while subject to the following constraint:
ex(k) = Ax(k) + B, w(k) (6.24)

The matrix Q* is symmetric and positive-semidefinite, while R* is positive-definite.
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6.4 Robustness of the Digital Control Laws

The bound that quantitatively measures the allow?.ble level of nonlinear perturbations
in the continuous LQ state feedback is extended to consider discrete time realizations
of the continuous time state feedback in the presence of nonlinear perturbations. For
simplicity, we conduct the robustness analysis for a single-input-single-output system.

Such an analysis provides a way to express the robustness property of the discrete-time

LQ state feedback in terms of bounds on the perturbations.

6.4.1 The Shift Operator
The discrete-time system representation using the shift form can be written as
x(k+1) = Agx(k) + byu(k) + g(x(k), u(k)) (6.25)

where the vector g(z(k), u(k)) aenotes the nonlinear perturbations associated with the
discrete-time realizations due to finite-word-length effects such as roundoff errors.

The control input is then assumed to be generated by the linear model
x(k +1) = Ax(k) + byu(k) (6.26)

such that

u(k) = —kjx(k) (6.27)

Here, k, is the steady-state, discrete-time controller gain, which minimizes the continuous-
time cost function given by

1 [Nh

I=3 Jeo

(XT(OQex(2) + qe’(t)) dr (6.28)

in which Q. is symmetric and positive-semidefinite, while ¢. is a positive real number.
In an effort to attain the performance of the LQ state feedback in continuous-time,

the discrete equivalent of the continuous cost function is used, namely,

18z Qu a2 x(k)
== k I 6.29
I L E) ) [qg chu(k)] (629)
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An algorithm for obtaining the solution of eq.(6.30) is well established (Van Loan,
1978) and is readily available in commercial software packages. It should be noted that

where

A, b,

dr .
o 1jl (6.30)

the resulting discrete weighting matrices include cross terms, containing the product
of x and u. Such cross terms can be eliminated by defining a fictitious control input

(Bryson and Ho, 1969) such that
_ T
uy=0'x+u (6.31)

where o = &qlg. Then, eq.(6.29) becomes

1 N1 ¥, 0 x(k)
== x(k) u T .
J=3 L) w2 %HW(H] (6.32)
where
'I’q = Qu -_— q;lo'T (6.33)

The desired gain is then obtained by virtue of eq.(6.31), namely,
k,=k;+o (6.34)
where
k; = (5, +bTS;b,)  ATSTb, (6.35)
while S, satisfies the following discrete algebraic Riccati equation
O=S,— ATSA,+ (¢, +bIScb,) " ATSb,bTSTA, - ¥,  (6.36)
The closed-loop system is thus obtained by

x(k + 1) = ®.x(k) + g(x(k)) (6.37)
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where
P, =A; - bqu' (6.38)

In eq.(6.37), g becomes a function of only x after applying the adinissible control law.
The following theorem provides a sufficient condition on the nonlinear vector func-

tion g such that the resulting closed-loop system remains stable.

Theorem 6.1 Let D, be the solution of the following discrete time elgebraic Lya-

punov equation:
®TS.®, - S, = -D, {6.39)

The discrete time, closed-loop system given in eq.(6.37) remains esymptotically stable

if the nonlinear vecior function g setisfies

___._”5”(:")“ <(=-14+V1+x, VxR (6.40)
where
. 1 _ Omin(Dg) >0 (6.41)

" 2[D;ILIISHL T 20mas(Se)
in which ||-|| and ||-||, denote the Euclidean and spectral norms, respectively. Moreover,
Omaz(Sq) is the largest singular value of S, while Omin(Dy) is the smallest singular
value of Dy (See Appendiz B for a proof).

6.4.2 The Euler Operator

When expressed in terms of the Euler operator, the discrete-time, closed-loop system
given in eq.(6.37) has the form

ex(k) = Bx(k) + g(x(k)) (6.42)

where

® =A. -bk’l (6.43)
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The desired gain is then obtained by
k: = kj + o (6.44)

where o = ::Chz- To use the same cost function as obtained in the shift operator

formulation, the fictitious gain k; is chosen to minimize the cost function given below:

T Ne- 'Pc 0 X(k)
=3 Z [x(k) up(R)]T r (6.45)
k=0 0 Se Uy (k)
where
¥, = T (6.46)
c = % (6.47)
Finally,
kT = (s + T7S;b.) ™ bTS. (1+TA,) (6.48)

where S, satisfies the following discrete-time Riccati equation (Middleton and Good-
win, 1990)

O =W +SA +ATS +TATS A, — (¢ + TbTS.b) " kk?  (6.49)

The same sufficient condition as given in Theorem 6.1 can also be written in the
Euler form:

Theorem 6.2 Let D, be the solution of the following discrete algebraic Lyepunov

equation:
&7s, + 83T + T®TS.$, = —D, (6.50)

The discrete time, closed-loop system given in eq.(6.42) remains asymptotically stable
if the nonlinear vector function g satisfies

llg)li
B <= T( 1+\/(1+ch)) (6.51)



Chapter 6. Design and Implementation of the Control Scheme 9%
where

. = 1 — afm'n(Df.)
T2 I[Dcuanscus T2 amc:(st)

in whick ||-|| end ||-[|s denote the Euclidean and spectral norms, respectively. Moreover,

>0 {6.52)

Oma=(S¢) 15 the marimum singular value of S., while Omin(D.) is the minimum sin-

guler value of D, (See Appendiz C for a proof).

A key aspect of the Euler operator is that all discrete-time quantities converge to
the corresponding continuous-time quantities as the sampling rate increases, whereas
these convergences are not obvious when using the shift operator. To prove the con-
vergence of the discrete-time solution to the corresponding solution for the underlying
continuous-time problem, the limit of the partial derivative of eq.(6.51) with respect
to T, as the sampling interval approaches zero, is taken, namely,

. i we_ 1 Omin(De)
'}'l-ra% 5T (1+Te)"" = 5% =3 (S (6.53)

Moreover, the following relations are known to hold (Middleton and Goodwin, 1990):

:ll:l_lpoamin(Dc) = a'min(D) (6.54)
%‘x_r’no Omaz(Se) = Ome=(S) (6.55)

Then,
lim ¢ =¢ (6.56)

where ( is defined in Theorem 5.1.
The preceding result shows that the results obtained using the Euler operator

are close representations of the corresponding continuous-time results when a high

sampling rate is used.

6.4.3 Simulation Results

Simulation studies bave been performed to assess the allowable level of nonlinear
perturbations arising from the use of discrete-time LQ state feedback. In these studies,
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the rotating flexible beam whose material properties are given in Table 5.1 is used as
. a model to be controlled. The vibrational behaviour of the beam is described using
cubic splines.

The discrete-time LQ state feedback control law is then formulated using both
the Euler and the shift operators. The tolerable bounds for nonlinear perturbations,
given in Theorems 6.1 and 6.2, are evaluated in terms of the sampling interval and the
penalizing factors in their weighting matrices. It should be noted that the discrete cost
functions, for both the Euler and the shift operator formulations, are obtained in such
a way that they are equivalent to an analog cost function in continuous time. This
will provide a fair basis for comparison of the aforementioned discrete-time systems

relative to the continuous-time system.

x10*

05
0 : i : L
0 0.2 04 0.6 0.8 1

Weighting fackor v x10?

Figure 6.2: Measure of robustness { for the continuous time LQ state feedback

To facilitate the comparison, the robustness bound for the continuous-time LQ state
. feedback, given in Theorem 5.1, is calculated with the cost function given in eq.(5.9),
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whose weighting matrices are given in eq.(5.36). In general, if the state variables
associated with position are only penalized by Q, then the response becomes more
oscillatory and larger overshoots occur (Athans, 1971). To avoid these drawbacks, the
time-rate of change of such variables are also penalized by varying the weighting factor
v in Q (Fig. 6.2). This implies that the robustness bound increases as the weighting
factor v increases.

Identical conditions are used for discrete-time LQ state feedback based on both
the Euler and the shift operators. The robustness bounds can then be evaluated in
terms of the sampling interval T and the weighting factor v. The robustness envelop
obtained using the shift operator shows that the robustness bound increases as the
penalizing factor v is increased, whereas the bound decreases as the sampling rate is
increased (Fig. 6.3). In fact, when using the shift operator, the obtainable bound is
reduced by as much as about 2 orders of magnitude, compared to the continuous case.
Consequently, the said digital control system may become more sensitive to parameter
variations and more vulnerable to disturbances as the sampling rate increases. This is
contrary to the commonly made assumption that the performance of a digital controller
improves as the sampling rate is increased.

On the other hand, the bound envelops obtained using the Euler operator shows
that the robustness bound increases as both the penalizing factor and sampling rate
are increased (Fig. 6.4). Moreover, the overall magnitude tends to converge to that of
the continuous-time case as the sampling rate increases. This suggests that a higher
sampling rate allows the continuous-time system to be better approximated by the
discrete-time system based on the Euler operator.

It should be mentioned that unacceptable regions exist for nonlinear perturbations
in both the shift and the Euler operators, and they occur at the same sampling rate
(Figs. 6.3 and 6.4). This implies that such regions are independent of the choice
of operator, but rather dependent on the selection of the sampling interval. Such
phenomenon, explained by Frapklin, Powell and Workman (1990) and Powell and
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Figure 6.3: Measure of robustness (; using the shift operator
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Figure 6.4: Measure of robustness {, using the Euler operator
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Katz (1973), is induced by the discrete-time state feedback for a plant possessing
multiple bending modes with a sampling rate which is slower than twice the selected
open-loop plant resonance. Under this situation, the controller has no information
about the resonance, thereby producing an uncontrollable system.

Considering that the plant to be controlled possesses higher-frequency bending
modes, the sampling rate has to be chosen in such a way that the unacceptable re-
gions for the nonlinear perturbations are avoided. Hence, the preceding analysis not
only provides tke robustness bound, but also gives us a guideline to choose a proper
sampling rate.



Chapter 7

Numerical and Experimental Results

7.1 Desired Trajectory of the Mechanism

The desired trajectory of the mechanism is chosen such that the coupler and output
links underge doublet-type of excitations in their acceleration profiles, when the input
link rotates at a constant angular speed (Fig. 7.1). This is to show clearly the higher
modes of the fiexible members that may not be apparent otherwise. In this way, the
control scheme can be tested even in the presence of high-frequency residual vibrations.
Such tests are of practical importance to ensure the performance of the control scheme
in real-time without using low-pass filters.

It is known that the use of low-pass filters may be essential for the successful
control of a system with multiple high-frequency modes due to observation and control
spillovers. High-frequency residual vibrations are sensed and fed back to the control
system, thereby losing stability due to the lack of control action to cope with those high-
frequency residual vibrations (Gibson and Adamian, 1991; Balas, 1982). Although
low-pass filters are effective in dealing with residual vibrations, they can cause a phase
shift in the control system and may degrade the system responses.

103
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Angular speed of ihe input link
25 — . : e

15}
62
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Figure 7.1: Desired angular speed of the input link [rad/s] & consequent angular
accelerations of the coupler and input links {rad/s?|
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It is also well known that some four-bar mechanism possess intrinsic singular
configurations known as dead points. These configurations represent mathematically
the vanishing of a denominator. In anticipation of the distorted system response due
to the presence of the singular configurations, the dynamic behaviour of the mechanism
in the neighbourhood of these dead points should be observed carefully. Moreover,
such observations allow us to determine the performance of the control system in terms
not only of suppression of the vibration, but also of trajectory tracking.

In summary, the way we choose the desired trajectory is to examine two aspects
of the performance of the proposed control scheme: orne is a reliability of the control
scheme in the presence of high-frequency residual vibrations; the other is a capability
of the control scheme to attain the desired rigid-body motion in the presence of singular

configurations.

7.2 OQOutline of the Simulation Algorithm

The algorithm used for simulation of the flexible four-bar mechanism is summarized

as follows:
e Linearize the decoupled equations of motion given in eq.(4.53).
e Construct an LQG compensator based on the linearized equations of motion.
e Provide an initial value of x;.
o for k=1,---,4/T do

— Compute the NOC filter given in eq.(3.75).
— Compute the reference state x,.

~ Compute the generalized forces w from the admissible control law as de-
scribed in eq.(6.22).

— Compute the applied torque 7 using eq.(6.3).
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- Regard the torque obtained as a step function during the interval (0 <t <
T).

— fort<Tdo

* Integrate the nonlinear coupled equations of motion, given in eq.(4.67),

using Gear’s method.
— enddo
— Set x to the value obtained after the integration, x; = x;

— Obtain the estimated state using the Kalman filter.

e enddo

It is noteworthy that the underlying equations of motion consist of highly coupled
ponlinear ordinary differential equations. They are also stiff in the sense that the ratio
between the largest and smallest eigenvalues is large (Gear, 1971). Considering that
eigenvalues indicate the speed of response of the system, a large eigenvalue implies a
rapidly changing solution and a small eigenvalue corresponds to the slowly changing
part of the solution. For the flexible four-bar mechanism, the former reflects the elastic
motions while the latter pertains to the rigid-body motion. Since Gear’s method is
known to be suitable for stiff systems, the numerical integration of the nonlinear system

of equations is carried out using Gear’s method. The whole scheme is implemented in
MATLAB.

7.3 Experimental Setup

To test the validity of the theoretical works discussed in the preceding chapters,
the proposed control scheme has been applied to the prototype mechanism (Fig. 7.2).
The mechanism is a planar four-bar linkage of the crank-rocker type, baving a chain of
structurally flexible links. The links are made of aluminum beams with a cross section
of 3mm x 30mm. The large thickness-to-width ratio is used to prevent unwanted
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Figure 7.2: The prototype four-bar mechanism
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vertical vibrations. The mechanism is thus subject to only transverse vibrations.
In addition, the kinematic couplings are achieved using single-row angular contact
bearings at each joint. Special care is taken in designing joints in order to make
their weights as light as possible, while obtaining accurate couplings. The mechanical
specification and material properties are given in Table 7.1.

In the prototype mechanism, the coupler and output links are considered flexible
and their elastic motions are modelled using cubic splines. The input link is then
considered as a rigid body because of its short length relative to its cross-section.
Each flexible link contains five equally spaced nodal points.

It should be recognized that the desired angular speed of the input link is a step
type of input. Hence, the acceleration of the input link would vanish unless disturbed.

This implies that the input link will undergo considerably less vibration compared to
the rest of the links.

Excitation voltages for strain gauges

t 4

Four—bar
DC Motor Mechanism

Stroin gauge signals

Y

Encoder
I Strain gauge
Conditioner &
Amplifier

Figure 7.3: Schematic diagram of the experimental setup

A VME board comprising two 33M-flops digital signal processors (DSP) is used
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to execute the control algorithm and to perform the necessary data acquisition. The
board is housed in a VME chassis that includes an 8-channel, 16-bit analog-to-digital
(A/D) converter as well as a parallel port. A dual channel incremental encoder inter-
face board from Whedco Inc. is also included in the VME chassis in order to acquire
position feedback pulses from encoders. Two sets of full-bridge strain gauges are in-
stalled at the midspan of the coupler and output links, respectively. The strain gauge
signals are then conditioned and amplified through a 2120A strain gauge conditioner
with an adjustable bridge balance (Intertechnology Inc.). The digital control signal
generated passes through a 16-bit digital-to-analog converter (D/A) and is applied
to 2 servo amplifier from Copley Controls Corp. The mechanism is then actuated by
a brush-type DC servo motor {model name NH2130-138C) from Cleveland Machine
Controls Inc. The whole system is interfaced to a bost SPARC station through an
SBUS-to-VME bus adapter (Fig. 7.3).

Table 7.1: Material properties of the mechanism

Link {/ length [m] mass[kg] flexural boundary
link | joint | rigidity [Nm?]| conditions

0.4 . . -
0.2321 | 0.0567 (0.0613 |  4.7925 -
0.7169 | 0.1750 | 0.0613 |  4.7925 | pinned-pinned
0.6867 | 0.1676 | 0.0613 | 47925 | pinned-pinned

B b

7.4 Numerical and Experimental Results
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7.4.1 Planar Four-Bar Mechanism
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Figure 7.4: Optimum torque profiles of the four-bar mechanism {N-m]
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Figure 7.5: Apgular speed of the input link [rad/s]
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7.4.2 Rotating Flexible Beam
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Figure 7.8: Optimum torque profiles for the rotating flexible beam
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7.5 Discussion

7.5.1 Effects of the Singularities

The mechanism is supposed to provide a constant input angular speed after a certain
settling-time period, if the controller works properly. However, the angular speed
undergoes a doublet-type of disturbance periodically where the input torque exhibits
the same type of fluctuations (Fig. 7.4 and Fig. 7.5). Furthermore, those fluctuations
occur in the neighbourhood of the singular configurations of the mechanism. It is
thus of practical importance to investigate how the singularities influence the system
response coupled with a rapid inertia change.

In order to simplify the singularity analysis, a rigid-body four-bar linkage is con-
sidered. It should be noted that the overall motion of the flexible four-bar mech-
anism is expressed as the superposition of the rigid-body and elastic motions using
the equivalent rigid-link system (ERLS). The singularity configurations of the flexible
mechanism are then perturbed from those of the corresponding rigid-body mechanism.
Hence, the singularity configurations of the flexible mechanism can be inferred from
the rigid-body case.

The relation between the input and output speeds of the corresponding rigid-body

mechanism is then written as
hé,+30=0 (7.1)

where 8 = [6; 8,)7. Moreover h is a 2-dimensional vector and J is a 2 x 2 Jacobian
matrix. A detailed description of the foregoing vector and matrix can be found in
(Saha and Angeles, 1991). The singularity of the mechanism occurs when

det(J) = 0 (7.2)

This corresponds to corfigurations in which the input link is at a dead point. Since
in this case the nullspace of J is not trivial, there exist nonzero output vectors 8

(Gosselin and Angeles, 1990). Then, eq.(7.1) holds if and only if the angular speed of
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the input link becomes zero. Consequently, the angular speed of the input link tends
to approach zero at dead points.

When the said mechanism undergoes its full motion cycle. it attains two configura-
tions in which the input link is at dead points (Fig. 7.12). For the sake of convenience,
these configurations are further classified dep:nding on how the input link is aligned
with the coupler link, namely, type A and B, as shown in Figs. 7.12 and 7.13, respect-
ively.

To illustrate the effects of these singularities in detail, simulations are undertaken
using the inverse dynamics of the corresponding rigid-body mechanism, but not using
the proposed control scheme. The simulation procedure is given as follows: 1) a
desired trajectory at the actuated joints is specified; 2) the torque required to drive
the rigid mechanism through the trajectory is computed using inverse dynamics; 3)
the torque is then applied to the flexible mechanism. The desired trajectory for the
experiment is also used in this case.

It can be seen that the angular speed of the input link closely matches the desired
one until the input link approaches the singular configuration of type A from the initial
configuration, and then undergoes a steep rising in its response in the neighbourhood
of the singularity. This results in a large overshoot in the transient period. Moreover,
the signal becomes oscillatory after passing the singular configuration. This behaviour
is coupled with an inertia change which was observed in the torque profile obtained
using the corresponding rigid-body model.

In contrast to the first singular configuration, the angular speed decreases drastic-
ally toward zero until the corresponding input torque begins to increase near the
configuration of type B. This corresponds to the anticipated result based on the sin-
gularity analysis. But it should be recognized that there is no inertia change observed
in the neighbourhood of the singular configuration of type B. This implies that the
input angular speed tends to approach zero, if there is no external excitation, across
the neighbourhood of the singular configurations.
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Torque profile of the corresponding rigid-body mechanism [N-m]
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Figure 7.11: Simulated angular speed of the input link with the torque obtained for
the corresponding rigid-body mechanism (the dashed lines indicate the places where
the input link is at the singular configuration)
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Figure 7.12: Singular configuration of type A
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Figure 7.13: Singular configuration of type B
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What can be concluded from the foregoing discussion is that care must be taken in
the simulation of a flexible mechanical system containing singularities. The open-loop
simulation using the inverse dynamics of the corresponding rigid-body model may give
rise to results that are quite different from those expected from the rigid-body system.
It is thus very dangerous to anticipate the system response of the flexible mechanical
system based on the response of the rigid-body system.

7.5.2 Rigid-body Motion Control with a PID Controller

Is it really worth considering link flexibilities in modelling and designing a control
scheme for 2 mechanical system with structurally flexible members? Does the per-
formance of such a control scheme justify the cost required to include the said link
flexibilities? To answer these fundamental questions, we resort to a simple PID control
scheme. The objective of the control scheme is to achieve trajectory tracking asso-
ciated with the rigid-body motion. This control scheme is applied to the prototype
four-bar flexible mechanism. Control parameters are chosen using the Ziegler-Nichols
rule in which the desired rigid-body motion of the input-link is used as a reference.

A key observation made in this experiment is that the performance of the PID
controller is proportional to the sampling rate, namnely, the performance improves
as the sampling rate increases. Comparable results can then be obtained using a
relatively higher sampling rate of 1000 Hz.

As for the rigid-body motion, the angular speed of the input link is obtained as
shown in Fig. 7.14. It can be seen that the raw signal itself is heavily contamin-
ated with higher-frequency noise arising from an indirect measurement of the angular
speed; a finite-difference method is used to estimate the angular velocity instead of
a tachometer. Unlike results obtained using the proposed control scheme where the
Kalman filter does in some way the role of a low-pass filter, the PID control scheme is
very sensitive to such a measurement noise. Moreover, the signal undergoes periodic

disturbances resulting from a backlash in the DC motor. Such disturbances are much
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greater than in the case when the proposed control scheme is used. It should be noted
that these disturbances must be distinguished from the doublet-type of disturbance
that occurs due to the rapid inertia change coupled with the singularity of the mech-
anism. This can be readily recognized due to the differences in period. To see the
case of using a low-pass filter combined with the PID control scheme, a fourth-order
Butterworth digital filter with a cut-off frequency of 0.01 [rad/s] is used to take off
the noise.

The result after filtering shows that the notches appearing in the response are much
smaller than those obtained using the proposed control scheme (Fig. 7.14). However,
the link deflection of the coupler and output links are almost ten times larger than
those obtained using the proposed control scheme (Fig. 7.15). Since the PID control
scheme is only concerned with the rigid-body motion, such results for the elastic motion
are not difficult to anticipate. After all, the suppression of the link vibrations can be
achieved after compromising the performance of the rigid-body motion. The proposed
control scheme is indeed a compromise between rigid-body trajectory tracking and
the suppression of the link vibration. This can further be verified by testing the
proposed control scheme under various ranges of operating speeds, while maintaining
the same control variables. This can be achieved by simply adjusting the amplitude of
the desired angular speed of the input link. Examining the experimental results show
that the magnitudes of the notches appearing in the rigid-body response become larger
as the operating speed increases (Fig. 7.16). Since higher operating speeds inevitably
give rise to larger inertial forces, the controller requires the more adjustment in the
rigid-body motion to prevent from degrading the elastic motion. In other words, the
proposed contro! scheme is able to optimize the rigid-body motion and the elastic
motion in the manner that is described in the quadratic cost function.
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Figure 7.14: Angular speed of the input link when using the PID controller without
considering link flexibilities [rad/s]
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Figure 7.15: Comparison between the results obtained using the proposed and the PID
controllers (Sub-plots in the left-hand side column are the link deflections obtained
using the proposed control scheme, while sub-plots in the right-hand side column are
those obtained using the PID controller)
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Figure 7.16: Angular speeds of the input link under different operating speeds

7.5.3 Discussions of the Experimental Results

Flexible Four-Bar Mechanism

The singular configurations coupled with the rapid inertia changes affect the system
dynamics greatly. It is thus necessary to consider the consequences at the design stage
of the control scheme. This can be achieved through an interactive study connecting
the simulation and experimental results. For example, the angular speed of the input
link, in the neighbourhood of the singular configuration and consecutive rapid inertia
change, can be ameliorated by virtue of simulation and experiment.

Since the effects of the singular configurations and inertia changes appear in the
form of doublet-type disturbances, we focus onr the capability of attenuating these
disturbance in designing the LQG compensator. In simulation, the disturbances that
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appear on the angular speed of the input link can be reduced by varying the associ-
ated penalizing factors in the weighting matrices. These simulation results are then
compared with the experimental results. This interaction continues until satisfactory
results are achieved.

However, such disturbances cannot be reduced as much as those anticipated in
the simulation (Fig. 7.5). The experimental results reveal that these disturbances
are always accompanied by sudden changes in the actual torque profile (Fig. 7.4).
It should be recognized that such regions are vulnerable to the hysteresis of the DC
motor becaunse the direction of the torque changes rapidly. Moreover, the friction that
acts on the gear-train of the DC motor becomes most active during these transients.

Although exact matches between the simulation and the experiment are not achieved,
the proposed control scheme in fact does trajectory tracking while rejecting the dis-
turbances. Moreover, the transverse vibrations of the flexible members are success-
fully suppressed by virtue of the proposed control scheme. It can be observed that the
presence of periodic disturbance not only distorts rigid-body responses such as joint
variables, but also excites the higher modes of the flexible links (Figs. 7.6 and 7.7).
Hence, the resulting vibration signals—curvatures measured at the midspan of the
coupler and output links—are much noisier than the simulation results. Yet they are
not visible due to their small amplitudes. Given the desired angular speed of the
input link (2.4166 {rad/s]), the mechanism behaves like a rigid-body system. Almost
no vibrations can be seen.

The proposed controller is very successful in dealing with these noisy signals even
without low-pass filters. This implies that the couplings between the rigid-body and
elastic motions are well considered in the model. Furthermore, the nonlinearity arising
from the kinematic coupling between the consecutive links and constraint due to loop
closing can be effectively managed by the use of the NOC filter in real-time.

Taken as a whole, the two control objectives, i.e., trajectory tracking and suppres-
sion of vibrations, are successfully achieved using the proposed control scheme, which
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Table 7.2: Material specification of the beam used in experiments

number of nodal points(n) 5
material Aluminum
mass density (kg/m?®) 2712
Young’s modulus (GPa) 71.0
length (m) 1
thickness of the beam (m) 0.003
cross-sectional area (m?) 0.0762 x 0.0032
moment of inertia of the hub I; (kg-m?)

moment of inertia of the unflexed rigid beam [, (kg-m?) 0.2232
structural damping coefficient 0.0095

is thus shown to be suitable for real-time control.

Rotating Flexible Beam

The experimental validation for the control of the rotating flexible beam whose ma-
terial specifications are given in Table 7.2, has been completed by the application
of a cubic spline modelling technique and an optimal control strategy (Figs. 7.8, 7.9
and 7.10). Using the Kalman filter, an investigation has also been conducted to assess
the feasibility of using a reduced nummber of measurements at selected nodal points.
The experimental results show that by taking only one strain measurement and a hub
rotational angle measurement, the transverse vibrations can be suppressed and the
end-tip can be made to follow a prescribed trajectory. In other words, the dynamic
model based on cubic splines is completely observable and controllable (Cho, Angeles
and Hori, 1991).



Chapter 8

Conclusions and Suggestions for

Further Research

8.1 Conclusions

Two techniques have been integrated to obtain the equations of motion for a planar
mechanism with a chain of flexible elements, namely, the natural orthogonal comple-
ment (NOC) coupled with Lagrange’s equations and the cubic-spline discretization of
the flexible elements, modelled as linearly elastic beams. The former allows the dy-
namic equations of the mechanical system to be formulated free of constraint forces,
while the latter allows the elastic motions associated with structural members to be
described with a finite number of generalized coordinates. The advantages thus offered

can be summarized as follows:

o the mutual influence between the rigid-body motion and the elastic motion is
considered in the kinematic and dynamic formulations.

¢ the minimal set of generalized coordinates, whose number is identical to the
degree of freedom of the mechanism, is used in the dynamic formulation.

o the constraints are naturally incorporated into the equations of motion.

129
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¢ the nonworking constraint forces thus introduced are eliminated by virtue of the
NOC.
o the use of cubic splines allows a definition of the state-variable vector as the set

of curvature values at the supporting points of the spline and their time-rates of
change.

Taking a rotating flexible beam as an example, the mathematical models obtained
using two different spatial discretization methods have been compared in terms of
the robustness associated with the LQG compensator. The sensitivity to observation
noise signals has beer derived to study the observation spillover due to unmodelled
residuals. Employing the stabilizing property of the LQ state feedback, the admissible
bound on the stability margin due to modelling errors has been measured by varying
the weighting matrices in the quadratic performance index. The compensator based
on the cubic-spline model provided the following advantages over the normal-mode

model in terms of sensitivity reduction and the robustness to nonlinear perturbations:

o lower sensitivity in a region around natural frequencies, when the same weighting
matrices are selected
e use of a relatively lower feedback gain to obtain the same sensitivity

e better robustness in the presence of nonlinear perturbations.

In addition, Nyquist plots of the closed-loop transfer functions have been used to show
that the cubic-spline model gives rise to the frequency response similar to a family
of third-order systems, while that obtained using the normal-mode approach more
closely resembles a higher-order oscillatory system. This implies that the closed-loop
system for the cubic-spline case is in fact more robust with respect to higher-frequency
uncertainties. It has been verified that the model obtained using the cubic-spline
technique provides good stability properties against observation and control spillovers
and is thus more amenable to an optimal control scheme, compared to the one using
the normal-mode approach.
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For the control of the four-bar flexible mechanism, a model-based control algorithm
was proposed. This control algorithm consists of two parts, namely, the decoupling
of the nonlinear equations of motion and the filtering of nonworking constraint forces.
The former was achieved using the decoupled equations of motion, expressed in terms
of extended generalized coordinates with which the motion of each separate link is
defined. The latter was accomplished using the fact that the constraint forces thus
introduced indeed lie in the nullspace of the transpose of the NOC. It should be noted
that the NOC can be readily extracted from the reciprocity relationship between the
independent generalized speeds and the constraint forces. This model-based control
algorithm corresponds to those used in industrial robots, where each joint is controlled
individually.

The discrete-time realization of the control scheme was achieved using the Euler
operator, which is known to be numerically more robust than the shift operator. When
using the Euler operator, the close connections between the continuous- and discrete-
time results were established, i.e., the discrete-time results converge to the continuous-
time counterparts as the sampling rate increases. Such connections found to be signi-
ficant in the digital implementation of the NOC filter that rejects the constraint forces
and, hence, obtains the applied torques. This is so because the performance of the
continuous-time control system, i.e., prerequisite for the use of the NOC as a filter,
can be ensured while using the discrete-time control system, which is unlikely the
case when using the shift operator. Experimental studies were focused on the on-line
capability of the NOC filter and showed a good performance with a relatively high
sampling rate of 200 Hz. Moreover, bounds for the nonlinear perturbations were for-
mulated in an effort to quantitatively measure the robustness of the discrete-time LQ
state feedback associated with both the Euler and the shift operators. Simulations for
the rotating flexible beam showed that the feedback obtained using the Euler operator
is more robust against nonlinear perturbations.
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The proposed control algorithm has been implemented on the prototype mechan-
ism using strain gauges to identify the elastic motions of its flexible members, and
the joint angle and its time-rate of change to infer the rigid-body motion. The con-
trol signal was then applied through the DC motor attached to the base joint. These
studies have focused on the capability of two aspects of the control scheme: trajectory
tracking and suppression of the vibration. Moreover, the effects of the singularit-
ies and the rapid inertia changes have been investigated in anticipation of exciting
higher modes in flexible structures. Results showed that the proposed control scheme
provides successful trajectory tracking while suppressing the vibration triggered by
the doublet-type of disturbance. This disturbance is induced by the singularities of
the mechanism coupled with the rapid inertia changes. It should be emphasised that
the underlying control objectives were achieved even without using low-pass filters.
This indicates that the proposed control scheme is robust against the control and

observation spillovers.

8.2 Future Work

An imminent future work may be the design of a collocated control unit, consisting
of an actuator and 2 sensor, both located at the same place, to achieve an active
suppression of the structural vibration. The term “active” implies the structural
vibration can be suppressed not by the external forces applied through the rigid-body
motion, but by the forces supplied by a set of actuators distributed along the span
of the structural member. For instance, piezoceramic strain actuators can be used
in such a design, while the vibration can be directly measured with strain gauges at
which control forces are applied (Fig. 8.1).

From this standpoint, cubic splines are a good candidate for a discrete model of
the flexible structure. When using cubic splines, the set of state variables associated
with the elastic motion is defined in terms of curvatures which are directly taken from
the supporting points of the cubic splines. In fact, these quantities can be measured
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Figure 8.1: Conceptual design of a collocated control unit

with strain gauges and then used to obtain the counteracting forces, which are, in
turn, proportional to the said strains. The practical gains thus obtained are not only
the active suppression of the structural vibration, but also the increased bandwidth
of the control system, which would be significantly lirrited when using noncollocated
control.

Moreover, the proposed control scheme needs to be expanded to cover a general
flexible spatial mechanical syst~m possessing possibly several kinematic loops. This
is because the decoupling of the nonlinear equations of motion is not so obvious as
in the case of a planar mechanism. The Coriolis terms in the unconstrained equation
of motion do not vanish in the spatial case, as they do in the planar case. The most
promising results are expected using the computed-torque approach in conjunction
with the NOC, so that the adaptation algorithm can be concentrated on the unknown
terms associated with the said Coriolis terms.

Similarly, a hybrid coatrol scheme can be used to substitute a computationally
expensive computed-torque approach for spatial mechanical systems. As the name
implies, this control system comprises two controllers, namely, position feedback for
required rigid-body motions, and collocated control for active suppression of the struc-
tural vibrations. Since the latter provides self-suppression of the structural vibrations,
trajectory tracking can be obtained using position feedback with, for instance, PD

and PID controllers.
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Appendix A
Proof of Theorem 5.1

The bound for the nonlinear perturbations that guarantees stability of the closed-loop
system can be obtained by considering a suitable Lyapunov function, namely,

V(x) = xTSx (A.1)

where S is the solution of eq.(5.25).
The time-rate of change is then given by

V(x) = xTSx + xTSx (A.2)
Using eq.(5.21), the above expression becomes
V(x) =x7 (ATS + SA.) +2g7Sx (A3)
=T (ATS +SA - %Sbb"'s + Q) x (A4)
—xT (Q + %SbbTS) x +2g7Sx

Since the first quadratic form becomes zero by virtue of eq.(5.25), we obtain the
following Lyapunov equation

ATS+SA . =-D (A.5)
where
D =Q+-SbbTS (A6)
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It should be noted that D is positive-definite due to the stabilizing characteristic of
the LQ state feedback. Moreover, S is symmetric and positive-definite when D is
symmetric and positive-definite, provided that A. is asymptotically stable (Brogan,
1991). Then, the time derivative of eq.(A.1) becomes

V(x) = —xTDx + 2gTSx (A.T)
If the closed-loop system is stable, V must be negative definite, which requires that
V=-x"Dx+2g7Sx <0, Vx#0 (A.8)
For the preceding inequality to hold, the following condition has to be met,
T 1 . 7
. lg’Sx| < 3 ,?ﬁznn(x Dx) (A.9)

The left hand side of eq.(A.9) leads to

_max_g7Sx| < [g] ISx| (A10)
< lgl ISTlix! = oSNl x|

where || - ||, denotes the matrix spectral norm. defined as
ISl = omax(S) (A.11)
and o ma(S) is the largest singular value of S. Consequently, eq.(A.10) becomes
Tox| <
S |87 Sx| < omax(S)ligll Ixl (A.12)
Moreover, the right-hand-side of eq.(A.9) satisfies
ot T . 2
i3, 67Dx) 2 oua(D) x| (a13)

since D is symmetric positive definite (Chen, 1984), namely,

Tain( D)|[x}f* < x"Dx < oumax(D)x| (A.14)
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where Omin(-) and Omax(-) denote the smallest and the largest singular values of D,
respectively.

Summing eqs.(A.10) and (A.13) leads to the bound for the nonlinear perturbation
function g(x) such that the closed-loop system of eq. (5.21) remains stable in the

presence of nonlinear perturbations, namely,

gl

——= (=

llxl

OominD _ 1
20mae(S)  2I|D-LIISII.

(A.15)



Appendix B

Proof of Theorem 6.1

The theorem can be proved by defining
V(x(k)) = X" Sex (B.1)

where S, is the solution of eq.(6.36). Taking the difference of the foregoing Lyapunov

function produces
AV = V(x(k + 1)) — V(x(k)) (B.2)

Substitution of eq.(6.25) into eq.(B.2) leads to

AV = xT (87S,®, - S;) x” + 287 8.x + g7Seg; (B.3)
= —x"Dgx + 287, ®.x + 87S:8
where
¥7S,®, - S, =-D, (B.4)

Moreover, D, is positive-definite due to the stabilizing characteristic of the LQ state
feedback. It should be realized that eq.(B.4), for the given positive-definite Dy, has
a unique solution for S, and this S, is positive definite, provided that the closed-loop
system is asymptotically stable (Vidyasagar, 1993).
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The stability condition of the closed-loop system requires
AV = —x"Dx + 2275, @2, x + g7S,2 < 0, (Vx#0) (B.5)
To satisfy the foregoing inequality, the following condition has to be met:

T T s (T
Jmax |28 S, P.x + g Segl < i, (x D,,x) (B.6)

From the left-hand side of eq.(B.6),

8;%%"‘ 1287S,®ex + g7Sgl < 2"8T|| ISqll [1Bex]l + STSQS (B.7)
< 2ligT|| ISqllall®ellulixli + ome=(So)llg*
< 2°'mc:(sq)“3TH %l + omez(SeHlgll?

The preceding derivation requires that all the eigenvalues of ®, have a magnitude less
than 1. This is true if the closed-loop system given in eq.(6.37) is stable. Hence, the

largest eigenvalue of ®,, which is also the spectral norm of ||®,]|,, has magnitude less
than 1.

In light of eq.(A.14), the right hand side of eq.(B.6) must hold, namely,
min (x"Dgx) 2 omin(Do)lx|* (B:8)
Assembling eq.(B.8) and eq.(B.8) leads to

maz(Do)I8]I* + 20maz(Sq) g7 || Il — omin(Se)lIx|[* < 0 (B.9)

Since || - || is always greater than zero by definition, there is only one solution that
satisfies eq.(B.9), namely,

llﬁgl)ll <_1+Vitx (B.10)
where

— a'miﬂ(Dv)

K= m (B.ll)



Appendix C

Proof of Theorem 6.2

A Lyapunov function candidate is selected as
V = xT(k)Sx(k) (C.1)

where S, is the solution of eq.(6.49). The difference rate of the Lyapunov function is
performed using the Euler operator, i.e.,

eV = exTSx(k) + xT{k)S.ex(k) + T (ex(k))” (ex(k)) (C.2)
Upon substituting eq.(6.42) into the foregoing equation, we obtain
eV = —xT (D )x +287S. (1 + T®)x + Tg’S.g (C-3)
where
- D, = ®7S, + S 87 + T3S D, (C4)

Notice that D, is positive-definite due to the stabilizing characteristic of the LQ state
feedback. Moreover, there exists a unique solution for S, which satisfies eq.(C.4).
Furthermore, S, is positive-definite if the closed-loop system given in eq.(6.42) is
stable (Middleton and Goodwin, 1390).

ror the nonlinear vector function g, the bound that keeps the closed-loop system
asymptotically stable, can then be obtained from the relation given below

eV =-x"D.,x+2gS (1 +T®.)x+Tg'S.g <0 (C.5)
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Since &, =1+ TP, it follows that
2gS. ®.x + Tg'S.g < xTDx (C.6)
In order to satisfy the preceding equality, the following relation should be satisfied

T T . T -
gﬁaﬁc’nmg S.®.x+Tg S.gl < Jmin, (x D,x) (C.7)

Considering that eigenvalues of $, have magnitude less than unity, the left hand side
of eq.(C.7) satisfies
g max 12g7S.®.x + Tg"S.g| < 2|ISc(l {lgll IIx|| + Tg"S.8 (C.8)
< 20maz(Sc)llgll Xl + Tome=(S.) g’
Since D, is symmetric and positive-definite, the right band side of eq.(C.7) satisfies
s T . 2
Jmip (x D,x) 2 Tmin{D) x| (C.9)

Summing eq.(C.9) and eq.(C.9), we obtain

Il + Zlixl gl ~ el < 0 (C.10)
where
- o'mt'u(D:)
K= m >0 (C.]l)

Since ||g|| > 0 if g # O, the bound on ||g|| that satisfies eq.(C.10) is obtained as

lglx)ll _ 1 Iy
—W < T (—1 -+ (1 + TN)) (C.12)





