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tific knowledge. Here is a brief summary of my original research:

The systematic study of magnetic field effects on quasiparticle transport in an
unconventional superconductor provides important information on the super-
conducting gap. In particular. the low temperature experiments probe the local
area areund a nede in the gan funetion, and provide a gu
the parameters which dictate quasiparticle properties. Furthermore. the study
of the role of impurities in a magnetic field has revealed that universal trans-
port is lost in the presence of a field. and that treatment of Zn impurities in
the strong scattering limit is indeed the right one. These results unambiguously
verifv the population of extended quasiparticle states predicted five vears ago.
This study was performed at the same time as the development of the d-wave
theory of quasiparticle transport in a magnetic field. with far-reaching mutual

benefits.

[n zero field. I have found that the low remperature anisotropy in the heat
conduction of YBa,CuyO0-_; is smaller than that in charge conduction. This
discovery has led to several theories of transport anisotopy between the planes

and the chains.
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order parameter candidates.
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Résumé

A basse température, nous avons utilisé la technique de la conductivité thermique
pour effectuer une étude de quasiparticules électroniques dans les supraconduc-
teurs non-conventionnels. centrée sur UPd,Aly (un fermion lourd) et YBa,CuzOs_g
(un cuprate a haute température critique). Nous présentons aussi une revue des
expériences qui peuvent sonder la densité d’états.

Nous avons réalisé des mesures de Uanisotropie entre les axes b et ¢ d'UPd»Alj.
Pour les deux cas. nous avons l'évidence des quasiparticules résiduelles. En comparant
nos résultats a des calculs. on trouve trois candidats possibles pour la symétrie du
gap. de symétrie 4,,. Ey, ou £y,

Le parametre d’ordre de symétrie d,2_,» est bien établi pour YBa,CuzO;_s. Une
étude de I'anisotropie entre les axes a et b & basse température démontre un terme de
nature électronique. prévie par ta théorie. en accord avec les mesures de la longeur de
pénétration. Le valeur de I'anisotropie. 1.3£0.3. est plus faible que 'anisotropie dans
I'état normal. Ceci indique que la conductivité a basse température est supprimeée
par la diffusion par des impuretés ou par les effets de localisation.

Nous avons effectué des mesures de conductivité thermique sur des monocristaux
dYBax(Zn,Cuy_.)30-_5 en fonction d'un champ magnétique. Pour les cas r = 0.
0.006 et 0.03. le terme électronique ~y/7T augmente avec le champ magnétique. ce
qui démontre Uexistence d'états étendus de quasiparticules a cause de vortex. En
comparant avec 'échantillon pur. 'augmentation de xo/T en fonction du champ
appliqué est supprimée pour les échantillons dopés avec Zn. L'ordre de grandeur de
la réduction est en accord avec la théorie. Nos résultats confirment la validité d'une
approche “diffusion résonnante par les impuretés”. Aussi. notre excellent accord avec
les mesures de la chaleur spécifique renforce la théorie de I'effect Doppler dans 1'état

de vortex.
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Abstract

At low temperature, we have used thermal conductivity as a directional probe of
the residual normal fluid in two superconductors. UPd»Alz (a heavy fermion) and
YBa,Cu3zO-_s(a high-T, cuprate). By extrapolating our measurements to zero tem-
perature. we can shed light on zero energy quasiparticles and the structure of the
superconducting gap.

For both superconductors. we review measurements pertaining to the density of
states. In the case of the heavy fermion superconductor UPd,Aly. we have found a
finite anisotropy between b axis and ¢ axis heat conduction. which excludes those gap
structures with only zeroes along ¢ or in the equatorial plane of a spherical Fermi
surface: however. our results are consistent for two line nodes equidistant from the
equatorial plane. as in the 4, gap. Comparisons to theory developed for UPt; show
qualitative agreement with two hvbrid gaps with strong spin-orbit coupling. of £,
and E, syvmmetry.

For YBa,CuzO;_;. because the gap symmetry has been established as d2_:.
we can go much further as regards a quantitative analyvsis. The anisotropy in the
thermal conductivity was measured along both high symmetry directions. A residual
T-linear term in ~(T) was observed in both directions. In the CuQ, planes (J}||a)
the magnitude of the residual normal fuid conduction is perfectly consistent with
the temperature dependence of the penetration depth. within the theory for a d-
wave superconductor. The value for J||b is slightly larger. vielding an anisotropy
ratio of 1.3£0.3. This is considerably weaker than that observed in the normal state
resistivity. pointing to a suppressed heat conduction by quasiparticles in the chains,
either due to strong defect scattering or a gapped excitation spectrum.

With the application of an external magnetic field (up to 8 T). we can study the
effect of vortices on quasiparticle transport. The residual linear term increases with
field. directly reflecting the occupation of extended quasiparticle states. A study for
different Zn impurity concentrations reveals a good agreement with recent calcula-
tiors for a d-wave gap. The magnitude of the suppression indicates that Zn impurity
scattering needs to be treated in the resonant impurity scattering limit. until now
an unverified assumption. Together with specific heat measurements, we obtain a

quantitative measure of the gap near the nodes.
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1 Introduction

The study of superconductivity involves a collective effort on the part of physi-
cists. chemists and materials engineers alike. The technological stalwarts of super-
conductivity are Onnes” (1911) discovery of zero electrical resistance in Hg below
some critical transition temperature 7, (Fig. 1.1) and Meissner and Ochsenfeld’s
(1933) observation of complete magnetic Held exclusion below some critical mag-
netic field H.. Then came the tyvpe-II superconductors. through which magnetic flux
can penetrate by means of flux tubes. from H,., up to an upper critical field Hg
above which there is no superconductivity (see Fig. 1.2). Furthermore. the flux tubes
each carry a quantum of flux ¢, = '_i—f and are arranged in a lattice predicted by
Abrikosoy (1957). Within each unit cell of the flux lattice. there is a vortex of super-
current which concentrates the flux at the centre. Since tvpe-Il superconductors can
carry high critical currents. several applications were realized after their discovery.,
such as superconducting magnets which can produce constant fields up to 23 tesla.
Another important application is the use of superconducting quantum interference
devices (SQUIDs) to measure small changes in magnetic fields (~ 10~%®;). SQUIDs
are actively emploved in a number of fields requiring extreme sensitivity. from brain
imaging to materials research. Although the search for room temperature supercon-
ductivity has somewhat given way to pure scientific interest in a complex problem,
higher values of the critical transition temperature 7, remain a tantalizing goal.

Within half a decade of its discovery. there was a coherent understanding of
superconductivity thanks to the successful microscopic theory of Bardeen, Cooper
and Schrieffer (1957) (BCS) based on electron pairs with zero net momentum (Cooper
pairs) which undergo condensation below some critical temperature 7. In the BCS
model (a specific form of the more general BCS theorv). the attractive interaction
between electrons is mediated by phonons: one electron interacts with the lattice
and deforms it. so when another electron comes along, it takes advantage of the
deformed lattice by adjusting itself and lowering its energy (see figlattice. This leads
to a ground state separated from the excited states by an energy gap A, where 2A

is the energy required to break a Cooper pair and create two quasiparticles.
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Figure 1.1: Resistivity of Hg as a function of temperature showing the transition to the supercon-

ducting state first measured by Onnes (1911).

expulsion, the vortex state in which flux can penetrate through flux tubes and the normal state in

Figure 1.2: Magnetic field phase diagram showing the Meissner state in which there exists flux
which magnetic flux can fully penetrate.



Figure 1.3: A cartoon of the e-ph interaction via the lattice that leads to the formation of a Cooper
pair.

A more phenomenological approach. the earlier theory of Ginzburg and Landau
(1950). was found to be a limiting case of BCS near T, bv Gor’'kov (1959). This macro-
scopic theory was more suitable for problems involving spatial inhomogeneities. For
a time it seemed as though superconductivity were well understood. until the discov-
erv of CeCuySia. a heavy fermion superconductor (Steglich et «l. 1979). Normally.
magnetic ions with f electrons act as pair breakers and hence destroy superconduc-
tivity. However. in this case. the itinerant f electrons are responsible for a linear
specific heat term orders of magnitude larger than in other metals. implying carriers
of enormous mass ~ 1000 m,..

Heavy fermions are particularly intriguing owing to their proximity to magnetic
instabilities. Superconductivity also exists in UBey3. UPt;. URu»Si>. UNipAly and
UPd,Aly. whose normal states can all be described by Fermi liquid theory. However.
other heavy fermions have been discovered which challenge our understanding of
metals. Celny. CePd,Siy and CeNiyGe, are all superconductors. although the first two
only undergo a superconducting transition under pressure. By tuning the magnetic
interactions with pressure, it is possible to suppress the antiferromagnetic transition
(or Néel) temperature Ty to 0 K. at which point a quantum critical transition occurs
and superconductivity can exist (Julian et al. 1998, Mathur et al. 1998. Grosche et
al. 1998). At this critical pressure. the temperature dependence of both resistivity
and specific heat display non-Fermi liquid characteristics. namely p is closer to linear
than quadratic and ¢ is logarithmically divergent rather than linear. These fascinating

metals will continue to play a major role in research in the vears to come.

That superconductivity is magneticallv mediated is highly suggestive, and in
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Compound maximum 7,

Lay_ Sr,CuQ, 38K

YBasCu3y0+_; 92 K not perfectly tetragonal —
oxvgen chains in CuO,_;
layvers

Bi:StoCan -1 CunOopanes 110K

TI-_:BugCan_lCunO-g,l,.\H,; 122 K

HgBa,Ca, - Cu, 0oy ooy 133 K highest 7. known so far —
up to 164 K under pressure

Ndy_ Ce, CuOy_y 5PN electron doped cuprate

superconductor

Table 1.1: Basic properties of several families of high-T, cuprate superconductors. In the bismuth.
thallium. and mercury compounds. the number n of CuQ. planes per unit cell can take on any
value between 1 and 4, where the highest T. is reached for n = 3 in all three cases. The data are
from Maple (1998). Waldram (1996. p. 223). and references therein.

fact this may well extend to other strongly correlated svstems as well. such as
the high temperature superconductors. which exploded onto the field with the dis-
covery of high-temperature oxide superconductors by Bednorz and Miiller (1986).
which increased the highest known T, by about 12 K. A vear later. the discovery
of YBayCusOs;_s5 (Wu et el 1987. Hikami et al. 1987, Zhao et al. 1987). with a T,
accessible by liquid nitrogen (77 K) cooling (rather than expensive *He at 4 K).
revolutionized the field. The Y (yttrium) can be substituted by other rare earths
such as La. Nd. Sm. Eu. Gd. Ho. Er and Lu: carrier concentration can be adjusted
by oxyvgen doping from 6.0 to 7.0. with YBa,Cu3O44 an insulator. Each unit cell
of YBayCuy0;_s contains two copper oxide (CuQ.) planes stacked along the c-axis.
with CuO chains running along the b-direction (see Fig. 4.1). The superconducting
properties are thought to be dominated by the planes. with the chains acting as
charge reservoirs to control the carrier density in the planes (Tinkham 1996). Table
1.1 lists some of the other high-T,. materials which are commonly studied.

Currently. the central question in both heavy fermion and high-T, superconduc-
tivity concerns the nature of the superconducting pairing mechanism. There are many
parallels. in fact. between these seemingly different materials. Considering that high-
T, research has been extremely intense, and that the order parameter symmetry in

the cuprates is believed to be known, the remainder of this introduction will focus



on the high-T, syvstems.

So far. we know high-T, superconductivity involves Cooper pairs since the usual
Hux quantum P, is observed (Gough et al. 1987). as well as the ac Josephson effect
frequency of iﬁ,—“— (Esteve et al 1987). During the first few vears of investigation,
it seemed as if s-wave pairing (gap has full symmetry of underlying crystal) could
describe high-7, in addition wo conventional (BCS) superconducting pivpetties. [Tow-
ever. as higher quality crystals emerged. the evidence for d-wave pairing (gap has
lower svmmetry than underlving crystal) has become more and more compelling.
For instance. measurements of the penetration depth A. which gives the superfluid
density p; via A\™% x p,. show that p, has a linear rather than exponential tempera-
ture dependence at low temperature (Hardy et al. 1993): such a strong dependence
on temperature indicates low energyv states consistent with a d-wave gap. Further
evidence comes from the nuclear magnetic resonance (NMR) relaxation rate 1/T,
(Pennington and Slichter 1990). Rather than having an exponential temperature
dependence at low temperature. a power law once again prevails. Both of these tech-
niques involve an indirect measurement of the symmetry of the pairing state by
measuring the density of states. which can easily be affected by sample quality. Per-
haps the strongest evidence to date for d-wave comes from measurements of trapped
flux in double Josephson junction de SQUID rings combining s- and d- wave su-
perconductors (e.g. Pb and YBCO) (Tsuei et «l. 1994, Mathai et al. 1995). These
experiments are sensitive to the phases of the superconductors. and the data have

been very impressive and will be described in Chapter 4.

In the last few vears. the technique of thermal conductivity has risen above its
reputation as a rather mundane measurement. Being highly directional, thermal
conductivity x is an extremely powerful bulk probe of quasiparticle excitations. At
low temperature. heat propagation along the direction of a node gives us a measure of
the low energy excitations. In conventional BCS superconductors. a finite excitation
gap A(k) exists over the entire Fermi surface so that x goes exponentially to zero
below 0.27, and is therefore not terribly illuminating at low temperature. However,
high-T. (and heavy fermion) superconductors have zeroes in the energy gap so that
quasiparticles in the neighbourhood of the nodes are easily excitable. In general, high-
T, superconductors are thought of as stacks of weakly coupled CuO, planes, so the
problem becomes two dimensional {2D). All low temperature transport properties are

dominated by the gap zeroes, and we can further simplify the problem if we assume a
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linearized gap at each node: the density of states also vanishes linearly at the Fermi
surface. The signature of a linear density of states is power law T-dependence in
charge and heat transport. specific heat. penetration depth and nuclear magnetic
relaxation. which is measurably different from the exponential behaviour in pure
s-wave states.

impurity can he rthonghr of as smearing
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out the node such that more than just a point on the Fermi surface becomes exposed.
This gapless region then behaves exactly like a normal fluid and we can use familiar
Fermi liquid {Landau 19538) language to describe the local quasiparticle excitations
within this region. As for a normal metal. one expects the quasiparticle term in » to be
linear. [t turns out that adding impurities (up to a certain level) has no effect on low
temperature transport. This is a consequence of the exact compensation between the
loss in mean free path due to the impurities and the gain in the residual normal fluid
density. Lee (1993) was the first to propose this universal behaviour in quasiparticle
charge transport for a d-wave superconductor.

Recently. universal heat conduction in YBa,Cu30-_; was observed by Taillefer
et al. (1997). By varving the impurity concentration using Zn doping. theyv found
that the residual linear term ~o/T (the value of x(T)/T as T — 0) stayed roughly
constant despite a 40-fold increase in the scattering rate. Furthermore, the value of

Ko/T was in quantitative agreement with calculations for a d-wave superconductor.

We note that calculations have only been made for a heat current applied along
the a-axis. Conduction along b can occur through another channel: the CuO chains.
For optimally-oxygenated crystals of high purity (6 ~ 0.1). the anisotropy in electri-
cal resistivity p,/p, can be as high as 2.3 (Gagnon et al. 1997). This is similar to the
anisotropy in the plasma frequency determined by far infrared reflectance and in the
DC conductivity. both quoted as 2.2+0.2 (Basov et al. 1993).

Previous attempts to measure the anisotropy of transport in the superconducting
state of YBa,Cu30;_; have been somewhat inconclusive. The real part of the charge
conductivity. o,. estimated from microwave measurements of the surface impedance
and of the London penetration depth combined with infrared measurements of the
plasma frequency. exhibits an anisotropy of 2.4 in the normal state which decreases
to approximately 1.6 as 7T — 0 (Zhang et al. 1994). The uncertainty is on the
order of 50%. Thermal conductivity measurements have also been unsuccessful be-

cause they have not been measured at low enough temperature in order to clearly
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identify the linear electronic term: in fact. above 200 mK, there is no indication of
any ab anisotropy (Gold et al 1994. Behnia et al. 1995. Wand et al. 1996). [t is
extremely puzzling that the anisotropy in £ does not appear to agree with that in
other transport measurements. We propose to measure several samples of both «
and b axis crystals to determine the anisotropy. if any. well below 200 K. This would
help us understand the role of the chains. and perhaps address the issue of whether
superconductivity exists in the chains.

Regardless of this question of anisotropyv. measurements of ~, (Taillefer et al.
1997) strongly validate current transport theory in a high-T, system. The observation
of universal heat conduction in YBa,Cu;0-_s has made a very strong impact on the
community, spawning several predictions and calculations of properties bevond zero
temperature. Since the electronic contribution to ~ in YBa,Cu3O-_; is dominated
by phonons. finite temperature studies are difficult. if not impossible. to interpret in
any reliable sense. Therefore. we use the application of an external magnetic field to
probe the quasiparticle states away from zero energy and to further test the d-wave
theory.

[n the presence of a magnetic field. the supercurrent flow around the vortices
introduces a Doppler shift to the quasiparticle energy spectrum. Thus certain quasi-
particle states fall below the Fermi level and extended quasiparticle states can be
populated. In conventional superconductors. the field leads to localization of quasi-
particles in the vortex cores which do not contribute to transport. [t was shown by
Volovik (1993) that extended states increase the d-wave density of states as vVH. Of
course the specific heat should reflect this field dependence. but it measures both
localized and extended states. and has a huge low temperature upturn due to nu-
clear moments. Furthermore. measurements of conventional superconductors have
also shown a v H-dependence for totally different reasons (Sonier et al. 1998). Thus
thermal conductivity is a more reliable diagnostic tool of extended quasiparticle

states in the presence of a magnetic field.

Calculations by Kiibert and Hirschfeld (1998b). which ignore vortex scattering,
show that the field dependence of the residual linear term in s follows a function
which roughly resembles v/H. but rises less steeply. However. in a magnetic field,
no(H)/T is dependent on the impurity concentration. The expected enhancement
of x is in direct opposition to s-wave behaviour in a field. In Nb, a conventional

superconductor, the thermal conductivity actually decreases with applied field be-
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cause vortex scattering is important. In a d-wave superconductor. impurity scattering
dominates vortex scattering at low temperature and field.

In this work. we wish to test the theory. in particular. the increase in xk with
applied field. Moreover. by studving Zn-doped samples. we can observe whether the
effect of the increase is actually suppressed by impurities. as predicted by the theory.
If thege affects are nhserved, togarher wirh all the arher evidence so far. there would
remain very little doubr about d-wave pairing in high-T,. We hope to shed light on
the nature of scattering. by impurities and by vortices and to obtain a quantitative
measure of the gap near the nodes. As regards the heavy fermions. we show that
we are still in the process of eliminating particular gap structures. and not uniquely
identifving the correct ones for various matericals.

This dissertation is organized as follows: Chapter 2 describes the theory of thermal
conductivity. covering transport in both zero and finite magnetic fields. comparing
metals. conventional and unconventional superconductors: Chapter 3 introduces the
normal and superconducting states of the heavy fermion superconductor UPd;Alj:
Chapter 4 discusses general properties of the high-T, superconductor YBa,CuzO;_;
including descriptions of several other measurement techniques in the normal. super-
conducting and vortex states: Chapter 5 covers the experimental details (crvogenics.
nieasurements. analyses): Chapter 6 deals with the thermal conductivity of UPd,Alj,
presenting sample details. results and comparison with theory: Chapter 7 reviews
the current status of heat transport in YBa,CuzO-_;. describes the samples, the
anisotropy and the magnetic field dependence: Chapter 8 concludes the dissertation

with a brief recapitulation of the main results.



2 Thermal Conductivity

Thermal conductivity is a directional probe of the bulk and as such. is ideal for
investigating the gap structure of unconventional superconductors. The existence of
nodes in the superconducting energy gap allows us to study excitations on very small
energy scales in the neighbourhood of these nodes. This means that heat propagates
more easily along a nodal direction where there is no gap in the excitation spectrum.
Several other techniques. such as microwave conductivity. suffer complications from
surface effects since electromagnetic fields can only penetrate as far as the London
penetration depth (order 1000 A). Unfortunately. besides the electronic carriers we
wish to study. phonons and magnons can also carry heat. as well as scatter the
electrons. Thus a complete interpretation of heat conduction must take into account

all the different carriers and their associated scattering mechanisms.

2.1 Heat Transport in Zero Magnetic Field
2.1.1 DMletals

Before tackling superconductors. it is worth while understanding basic heat transport
in metals. We start with a simple picture based on a metal rod which is heated at
one end. and we consider only the heat which is carried by electrons. Intuitively, we
expect the heat to flow toward the cold end. against the temperature gradient. The
magnitude of the thermal current density jo is the thermal energy per unit time
per unit area perpendicular to the flow. Then Fourier's law. applicable to a small
temperature gradient VT . gives:

jo = -~VT. (2.1)

where the positive proportionality constant « is the thermal conductivity, in general

a tensor. Following the derivation in Ashcroft and Mermin (1976) using the free
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electron model of Drude. the expression for the electronic thermal conductivity is

l ,
jo = EU-TCv(_VT) (2.2)
from which we see that
I . 1 ; 3 35
K= =U"TC, = —Cyl 3.
3" T3 \2-9)

where ¢ is the mean velocity. = the relaxation time (mean time between collisions).

¢, the specific heat and ¢ the mean free path.

For this simple kind of electron gas picture. the thermal and charge conductivities
are closely related. To show this. we would like to find a similar expression for charge
conductivity. An electric field E at a point in a metal induces a current density j. so

that
E = pj (2.4)

where the proportionality constant p is the resistivity of the metal. For n electrons
per unit volume moving with velocity v. in time d¢t they travel a distance of vdt
parallel to v. The number of electrons passing a cross-sectional area A in time dt is
n(vdt)A. so that the total charge is —nec.Adt. Hence the current is —nev.. vielding

a current density of

—nev. (2.5)

e
I

[mmediately after a collision. an electron emerges with velocity vq plus an additional

term —eE7/m due to the electric field. However. since we have assumed that the

electron is going in a random direction. vy averages to zero. leaving v,,, = —eE7/m,
or
ne’r
[]
j = E 2.6
J —) (2.6)

In terms of the conductivity ¢ = 1/p. we now have

ne*r

m
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a well-known resulr.

Thus far. we have used a classical treatment of the electrons which works amaz-
ingly well for & since it only depends on the kinetic properties of the conduction
electrons. which do behave as a gas of non-interacting particles. However. the free
electron model gives ¢, = %nkg. which is not material dependent. To calculate the
specific hear of a meral it is necessary ro incinde the Pauli exclusion principle and
use Fermi-Dirac statistics for the density of states. Now we can only have two elec-
trons. of opposite spin. in each energy level up to an energy called the Fermi energy
sr. Thus in k-space. all the ground state electrons lie within the Fermi surface.

Excitations out of the ground state will have a velocity vr. Using this model. we get
2
Cp = Tké.\’p'f (2.8}

where Vi is the DOS at the Fermi surface.

Now we can write down the Sommerfeld value of the Lorenz number. L. using the
Wiedemann-Franz law (WFL) relating heat and charge conductivities. This intimate
relationship between that two quantities we later wish to test in the superconducting
state. First we must first replace the mean electron velocity ¢ used above with the

Fermi velocity vp:

i—

)
K SURETC,

o

ol  ne*t/m
_ 7 kg (2.9)
= ?(_e—)
=245 x 1078 WOK™

which is accurate for many metals such as Au. Cd and Pb (Kittel 1986). Departure

from the WFL is usually due to e-ph scattering.

So far. we have only covered electronic heat conduction. Phonons also carry heat
so thev must be taken into consideration. We will concern ourselves with the low
temperature characteristics when 7T « ©Op. where ©p is the Debye temperature
within the Debve model of lattice vibrations. The basic assumption of the Debye
model is that there is a cut-off frequency to the phonon dispersion w = vk (we
reserve the more common v, for superflow velocity later on), so modes above some
Debyve wavevector kp are not allowed. This makes the density of states easy to
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calculate. and the well-known total phonon energy is given by

T . LD 3
= 9.\"k3T(@—D)“’ / d.rerl_ 1 (2.10)
0

where .V is the number of atoms in the specimen and rp = ©p/T. From this ex-

pression. the specific heat (at constant volume} is easily obtained:

t

T . [0 plet
Con :9‘\'1\-,31"(——)3] dr; —©
1]

_ 2
o pra Y (2.11)

. . ~t
At very low temperature. rp — > and the integral in Eq.(2.10) becomes 7z so that

15

the phonon specific heat becomes

2 T . T .
Cph = l—x"_\'kg(——)-‘ ~ 1944(— ) Jmol 'K (2.12)

D (_)D @D

This expression is usually valid up to at least 10 K in metals. and since we work well
below this temperature. we need not worry about higher energy phonon modes.

[f we consider the phonons as a gas diffusing through a material. our earlier
expression for electrons still holds. and so for phonons. the thermal conductivity is
given by

1
Kph = gcphvph-\ph x ’\phT3 (213)

where now the relevant parameters are the sound velocity v, and phonon mean free
path Apy. This 7% dependence occurs when phonons are limited by a temperature-

independent mean free path. such as grain size or sample size.

2.1.2 Conventional Superconductors

Before we start talking about unconventional superconductors. we had better define
what a conventional superconductor is. In fact. the basic assumptions of the BCS
theory are general and have been applied to heavy fermion and high-T, supercon-
ductors as well. At the heart of BCS theory lie the Cooper pairs—pairs of electrons
of opposite spin and momentum, k1 and -k!. The pairing of the electrons and their

condensation to the ground state occur simultaneously at T, with all pairs going into



2.1 Heat Transport in Zero Magnetic Field 13

a wavefunction of the same phase. ! As Cox and Maple (1993) put it. “rather than
performing a “tango’ in the superconducting state. the electron pairs participate in
a 'square dance’. exchanging partners on a time scale of order . = h/(kgT.)". The

coherence length & = vp7. is of order 1000 Ain Al and 15 A in YBayCuz05_;.

U(rysy.....rysy) = o(rysi.rasy) - - o(rv_1sy_y. 'yvsy). These electron pairs should
not be considered as independent particles. for the stability of the state depends on
their spatial interlocking. In order for the wavefunction ¥ to obey the Pauli exclu-
sion principle. i.e. ¥ changes sign under exchange of spin and orbital labels. it must
be explicitly antisvmmetrized. The superconducting gap function A (k) is related to
U(r) by a Fourier transform. Thus an isotropic ¥(r). as in s-wave pairing. gives an
isotropic gap (k).

Now the BCS model is a specific form of the theory. where the e-e correlation is
mediated by phonons and the pair wavefunctions are singlet states ). Furthermore.
the energy gap is assumed to be isotropic. Without getting into details, we write
down the famous BCS ground state wavefunction and then show the results for a

weak-coupling superconductor. We begin with the wavefunction:

) =T (e + viecfed,)10) (2.14)
k

where |ug|® + |vk|* = 1. The probability of a pair (k 1. -k |) being occupied is
|e|®. and unoccupied is |ugx|* = 1 — |vk]®. Thus the ground state. whose energy is
lowered if the states (k 7. —k |) are both occupied or both unoccupied. is completely
characterized by {uk. vx}.

Excitations out of the ground state behave as fermionic quasiparticles with energy
Eyx = m where =y is the kinetic energy above the Fermi energy = and

—_
| O]
—
(S]]

p—rg

Ak =— E Vi e e
kl

'The reason all pairs go into the same phase is that the phase ¢ and electron number .V, obey
an uncertainty relation just like the conjugate variables position and momentum. i.e. ApAN, > 1.
When the system undergoes a superconducting transition which requires that A¢ be small, forcing
AN, to be large, charge conservation is violated in the superconducting state (Tinkham 1996).
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where Vi is the interaction strength. When this term is negative (attractive inter-
action). it is energetically favourable for pairing to occur, so the BCS model sets

=17 if |zg| and |zp| < A,
Vi = B |si| < (2.16)

0 otherwise

where fiw. is a cut-off energyv. (Similarly. A = A is isotropic.) In the weak-coupling
limit. Vol < L. A & 2hwee” YoV where Ny is the DOS at the Fermi level. At

T = 0. the value of the gap is given by
Ay = L.764kgT,. (2.17)

The presence of a finite gap over the Fermi surface means that for £ < A, there are

1o states. or

.\'l,TE_ji__Tf (E> 1))

0 (E< Q).

N(E) = (2.18)

In Fig. 2.1. we see the effect of the DOS (left) on the specific heat (right). The specific
heat jump at T, is 1.-13 times the size of the normal state specific heat at T,. ¢(T) ex-
hibits activated low temperature behaviour, as e =>/*27) Since x ~ [ dE NV(E)7(E),
it also dies exponentially at temperatures much below 7.. As T — 0. the scattering
time diverges since there are fewer and fewer states into which to scatter. but since

the DOS is zero. x goes to zero.

The theory of Bardeen. Rickayzen and Tewordt (1959) describing thermal conduc-
tivity in conventional superconductors. based on the BCS model. very well describes
the interplav of electrons and phonons. We show in Fig. 2.2 aluminum data which
closely follow the calculation of Bardeen. Rickayzen and Tewordt (1959). demon-
strating the success of BCS theory. Since these superconductors are generally met-
als. the electronic contribution to ~ dominates near T.. By about 0.27, or 0.3T,
the phonon contribution dominates. Such are the qualitative features of a two-fluid
model. in which the normal electrons carry heat and scatter phonons but whose
numbers decrease exponentially with temperature {in the superconducting state).
With the reduction of normal electrons comes the growth in ;. For high quality

samples. phonons are mainly limited by electron scattering (at higher temperature)
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Figure 2.1: Density of states (left) and specific heat (right) of a classic BCS superconductor. The
presence of the gap leads to activated specific heat at low temperature.
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Figure 2.2: Normalized thermal conductivity of three samples of Al (after Satterthwaite (1962)).
Despite the differences in purity. where RRR goes from 26 to 3660, all three data sets lie close to
the A = 1.76AgT, curve.
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and boundary scattering (at lower temperature). [n impure samples, the data in
Fig. 2.2 show that the thermal conductivity is not sensitive to impurity concentra-
tion. even when pq is decreased by a factor of 100. This is because the presence of
a non-magnetic impurity in a conventional superconductor has no effect on the gap.
Such impurities do not break pairs. We will see in the following section that this is

not the case for unconventional superconductors.

2.1.3 Unconventional Superconductors

[n classic superconductors. the order parameter can be expressed as Ay = ®.e*
where ®; has the full ssmmetry of the lattice. When o is fixed. as when all the
electrons collapse into the same ground state with the same phase. symmetry is
broken. By unconventional. we mean that Ay = nge* where ;. has a lower symmetry
than the lattice, i.e. there are additional broken symmetries. We sketch various gaps
for UPty (in Fig. 2.3). from which we see the presence of nodes in all but the isotropic
s-wave gap in the top left. [n UPt;. the simplest candidate gap structures are based
on an ellipsoidal Fermi surface (Norman and Hirschfeld 1996a. Norman 1996b). A
polar gap has a line of nodes along the equator. an axial gap point nodes at the
poles. a tropical gap two line nodes equidistant from the equator and a hyvbrid gap
both line and point nodes with the gap approaching zero at the poles either with a
linear (tvpe ) or quadratic (type II) k-dependence.

When the superconducting gap has zeroes. there are important consequences
for quasiparticles with momentum in the vicinity of these nodes. The signature of
an order parameter having nodes is power law T-dependence in charge and heat
transport. specific heat. penetration depth and nuclear magnetic relaxation, which
is very different from the activated behaviour in pure s-wave states. In fact. the
observation of non-exponential behaviour first alerted researchers to unconventional
gap structures with reduced order parameter symmetry.

For a superconductor with an order parameter having a line of nodes on the
Fermi surface. the simplest example of which is the polar gap. the DOS is linear
in the excitation energy. i.e. states exist for £ < A—previously unallowed! Such is
believed to be the case for UPt;, with a line of nodes in the basal plane pr. = 0 and
also point nodes at the poles pr; = pr, = 0: point nodes which are linear in k give
a DOS N(E) x E? while point nodes which are quadratic in & give ¥(E) « E. For
UPd,Al;, there has not been much theoretical analysis. though NMR measurements
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Figure 2.3: A few gap candidates for UPt; (and UPdaAly). From the clockwise from the top left.
we have an isotropic gap. a polar gap. an axial gap. a hybrid (of polar and axial} gap and a tropical
gap (so-called since in UPt; the line nodes occur at =23 degrees, i.e. at the tropics instead of
the equator). There are two types of hybrid gaps under counsideration. whose difference lies in the
k-dependence of the polar nodes. The hybrid-I gap. of E;, symmetry. approaches the Fermi surface
with a linear k-dependence. whereas the hybrid-II. of E., syvmmetry. does so as k°.

suggest a line of nodes (Kvogaku et al. 1993): we will need to modifyv slightly the
UPty calculations. In the case of YBa,CuzO-_4. the gap is thought to vanish at four
points on the two-dimensional Fermi surface (see Fig. 2.4). Quasiparticle excitations
at these nodes should also have a linear dispersion: hence the DOS is linear in energy
near the Fermi surface.

[mpurities alter the low temperature DOS by introducing an impurity band whose
width ~ is a new energy scale relevant to all low-energy thermodynamic and transport
properties in superconductors with gap zeroes (Hirschfeld et al. 1986. Schmitt-Rink
et al. 1986. Graf et al. 1996). ~ grows with the impurity scattering rate . in a way
which depends strongly on whether impurities act as Born or resonant scatterers. It is
convenient to define the notion of “clean™ and “dirty”. because in the historical sense.
clean refers to £ > £ and dirty refers to € < &: thus extreme type-II superconductors
at low temperature are always in the clean limit (e.g. £ ~ 10000 A > & ~ 10 A
for YBasCu30+_5). A more relevant definition of the clean limit is when ~ < T <
A, where N(E) ~ E and calculations do not need to be done self-consistently.

This means that at very low temperature, we are in the dirty limit T < v where
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Figure 2.4: The two-dimensional tetragonal d-wave gap Jgcos(20). with zeroes at £7/4 and
=37/4. At low temperature. we effectively zoom in at a node where the gap is linear in k.

“dirt” breaks pairs and the DOS departs from linearity below ~ and remains roughly
constant as T — 0. as demonstrated in Fig. 2.5. This finite DOS at T = 0 produces
a residual normal fluid of zero-energv quasiparticles deep in the superconducting
state. The properties of this residual fluid are like those of a normal Fermi liquid.
in that the thermal conductivity of these quasiparticles is expected to be linear in

remperature.

From here. we take the 2D d-wave gap as our basis for the following development
of the theory. since our aim is to quantitatively explain YBa.Cu3O;_s data (a quan-
titative description of heavy fermions lags far behind). Quasiparticle relaxation time
7 has been calculated for different scattering strengths cot dg ~ 1/U" where dg is the
scattering phase shift and (" is the impurity interaction. For d¢ = 0. which is known

as Born scattering. we have

[w clean (2.19)
B ~ ~ Te==>/T  dirty -

|

where the very small impurity band in the dirty limit means that impurity effects
do not affect the DOS until very low energy scales (see Fig. 2.6). When kgT < 7,

we call this the “gapless” regime. For maximum scattering phase shift g = 7/2, also
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Figure 2.5: The density of states V(E)/Ny as a function of reduced energy £/ (see Sun and
Maki (1993)). For [ = 0 (solid line). we have the clean limit result. but when I is finite. the DOS
increases, up to 50% of the normal state value when [’ = 0.4T.. Although unmarked. ~ corresponds
to the energy scale below which the DOS curves away from linearity and remains finite down to

T=0.
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Figure 2.6: Normalized in-plane thermal conductivity », /T . after Graf et al. (1996), for (a) fixed
scattering rate a = 0.01 (I = 0.03T,) and varying scattering cross-section & = sindy. Born scatter-
ing corresponds to & = 0.0 and resonant to & = 1.0, for (b) fixed phase shift §o = 7/2 and varying
scattering rates, showing an increase in sy /T with scattering rate.



20 2 THERMAL CONDUCTIVITY

T T T

ACI/TC=3

r/Tc=O.O].C20 1

1/71Tc
0.00 0.05 0.10 0.15 0.20 0.25

00 Q0.1 02 03 Q04 0.5
w/bo

Figure 2.7: Impurity scattering rate 1/(rT.) vs reduced frequency ~/\q for F/T. = 0.01.0.001
and ¢ = 0 (09 = 7/2) (solid lines) and [/T. = 0.0L. ¢ = 0.02 (Jy = 7/6) (dashed line) (from
Hirschfeld. Putikka and Scalapino (1994)). For energy less than . /7 ~ . for weak scattering and
1/7 ~ 1/« for strong. resonant scattering,

called resonant or unitarity scattering. we have (IKiibert and Hirschfeld 1998b)

[/(«ln.) clean
~ (2.20)
~ > 061 diry

~ | —

where now gapless behaviour occurs over a larger temperature/energy range. In
Fig. 2.7. the solid lines represent the impurity relaxation rate in the unitarity limit
¢ = cotdp = 0 and the dashed line represents a weaker phase shift 49 = 7/6. Taking
g = 3kgT. simulates strong coupling (weak-coupling BCS gives Ng = 2.14kpT).

When the gap approaches zero with a linear A-dependence. we can concentrate
on the linear nodal region and forget about the structure of \; away from the
node. In other words. we linearize the gap. as depicted on the left-hand side of
Fig. 2.8. Quasiparticle excitations can then be described by the Dirac spectrum
E(k) = /22 + AL = hy/(vrk1)? + (vaka)? where (k.k») defines a coordinate system
whose origin is at the node. with &; a vector normal to the Fermi surface and k;
tangential: the slope of the energy gap S = d\/dk = hkpvy (Lee 1993). Thus the

quasiparticle energies are confined to a cone. as shown on the right-hand side of
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Figure 2.8: On the left. the linearized gap A ~ k. whose slope dA/dk ~ va2. On the right, the
quasiparticle energies lie on a cone. defined by E(k) = /=3 + A7 = hy/(vrk1)? + (v2ka)?.

Fig. 2.8.

In the clean limit. we have already mentioned that V(£) ~ E: the full expression
for V(E). in terms of vy and va. is
-) E

N(E) = — . (2.21)
Th Utpts

Since we want to describe the zero temperature regime in which impurity scattering
dominates. the quantity of interest is the residual density of states in the presence

of impurities. which is approximately constant for T < +:
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This finite DOS leads to universal (independent of impurity concentration) charge
transport in the basal plane at T = 0. since the growth in the residual normal fluid
density exactly compensates the decrease in mean free path as the scattering rate
increases (Lee 1993). Very roughly. we have

Jgp = .’\/.0(6'1,7[.‘)27' (223)

which is the just the number of residual carriers times the energy transported times

the lifetime. Putting the last two expressions together, we get the charge conductivity
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(V]
[ V]

per plane:

Note that universality in transport is a consequence of the d-wave gap being linear

at a node. and depends onlyv on the ratio vg/uvs.

Since the pioneering work of Lee. others have investigated universality in both
charge and heat transport (Sun and Maki 1995, Norman 1996b. Graf et «l. 1996). [n
the work of Graf and co-workers. they have used a combination of the microscopic
theory of superconductivity of Bardeen. Cooper and Schrieffer (1957) and the Fermi
liquid theory of Landau (1938). coined the quasiclassical theory of superconductivity
by Larkin and Ovchinnikov (1968). Then using linear response equations for x and
o (in the long wavelength limit ¢ — 0) at T — 0. it was found that the residual
normal fluid obevs the Wiedemann-Franz law. i.e. deep in the superconducting state
a simple relationship between » and o is recovered. Hence the thermal conductivity
as T — 0 in a d-wave superconductor should also be universal. and given by:

20,

-—T" = LoG’og = %i—i—n. (225)
where oy is the universal charge conductivity per conducting plane. Ly =
(72/3)(kp/e)? is the Sommerfeld value of the Lorenz number and n is the num-
ber of CuO, planes stacked along the c-axis per unit cell. Now we have another

handle on the ratio ve/vs.

While we have used d-wave language in our description, the theory is general.
and has been applied to both YBa;Cu3zO;_s and UPt;3 extensively: in fact, the the-
ory was originally developed to explain heavy fermion superconductors. It was only
later applied to the cuprates. and has since been going strong because the highly
two-dimensional nature of these materials make the calculations simpler. Moreover.
the gap structure of YBa,Cu3O;_; is known to be primarily d-wave (with possible
admixtures of s). whereas in UPt; for example. there is much less evidence for one
gap over another. Nevertheless, the so-called hybrid-II gap with a line of nodes on
the equator and quadratic point nodes at the poles of an ellipsoidal Fermi surface
(see Fig. 2.3) is the current front-runner (more on this in Chapter 3). In calculating
the in-plane thermal conductivity /7T for both UPt; and YBa;Cu3O7_; in the limit
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Figure 2.9: Normalized thermal conductivity vs reduced temperature for do = 7/2 (6 = sin®dy)
and [ = 0.03T. (« = ['/(aT,)) calculated by Graf et al. (1996). On the left. we have the in-plane
x. On the right. we have the in-plane xi,/T. showing that the 2D d,:_,: and the 3D hybrid-II
zaps give the same T-linear behaviour.

do = 7 /2. Graf et al. (1996) found the normalized ~/T to be essentially identical for
the 2D d,2_,: and 3D hybrid-II gaps. shown in Fig. 2.9. Although this result may
at first seem reasonable cousidering there are line nodes with a linear A-dependence
for both of these gaps. there are also line nodes in the other UPt3 candidates. the
hybrid-I and polar gaps.

More recently. others have reinvestigated localization due to disorder (Senthil et
al. 1998) using a non-linear sigma model. In this treatment. theyv specify spin conduc-
tivity o,. and not charge conductivity. as being related to the thermal conductivity by
the Wiedemann-Franz law. This is one major distinction between the quasiparticles
in a superconductor and those in a normal metal: in a superconductor, quasiparticle
charge is not a conserved quantity. therefore. it cannot be transported by diffusion.
However. quasiparticle spin is conserved. since the condensate does not carry spin in
a singlet superconductor. Moreover. quasiparticle energy is also a conserved quantity
due to the inability of the condensate to carry entropy. Thus in the field theory to
describe quasiparticle localization in a superconductor. Senthil et al. have adopted a
single dimensionless coupling constant. the spin conductance.

In two dimensions, they have found quasiparticle localization, robust in the pres-
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ence of either an orbital or Zeeman field but not both. In three-dimensions, i.e. by
the inclusion of interlayer coupling. a quantum phase transition from an extended
spin metal to a localized spin insulator becomes possible. The properties of the novel
spin metal include a non-zero spin diffusion constant. spin susceptibility and spin
conductivity all at zero temperature. Given enough interlaver coupling, it is possi-
ble ro suppress the effects of localization found in 2D. Then at zero temperature
there would be quasiparticle transport just as in the d-wave theory we have been
discussing.

As for the thermal conductivity within this field theory. a self-consistent treat-

ment gives

. Dy L2 2 2
L ) (2.26)
T 3 h L'pty
from the Wiedemann-Franz law:
. _2
A f'_'.. (2.27)
o, T 3

where the factor 4 difference from the usual form is due to the replacement of e
by (spin 3)*. Since the claim that microwave conductivity and thermal conductivity
are not related by the Wiedemann-Franz law is such a radical break from conven-
tional wisdom. it is worth examining the breakdown of the WFL in another way.
Consider scattering within (inter-) and between (intra-) nodes. According to Lee
(1998). only intra-node scattering would transport charge. as inter-node scattering
would not carry any momentum out of the node. Heat transport. however. could
be accomplished by either mechanism. Thus heat and charge transport would have
different scattering times and there would not be a cancellation leading to the simple

WFL. Calculations are currently underway.

2.2 Heat Transport in an Applied Magnetic Field

We are interested in quasiparticie transport by a tyvpe-II superconductor in a mag-
netic field, for we expect that the presence of vortices will have a profound effect
on both quasiparticle number and scattering behaviour. In fact, unconventional gaps
which contain nodes give rise to vastly different properties from BCS superconduc-
tors. Both will be described in this section.
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Figure 2.10: The spatial variation of the order parameter [¥(r)| and the field h(r) within a vortex
core (after {Tinkham 1996)). Thus the core size is of order 2§ and is less than the penetration depth

: S,

2R

Figure 2.11: Vortices arranged in a triangular lattice. with hexagonal unit cells (only one shown).
The intervortex distance is 2R.

2.2.1 Conventional Superconductors

For a type-II superconductor in an applied magnetic field. induced vortices are ar-
ranged in a vortex lattice. Magnetic flux penetrates the superconductor through the
cores. and the superconducting order parameter |W(r)| is zero at the centre of the
core and rises with distance r from the core. as in Fig. 2.10.

Using Fig. 2.11. which depicts a triangular arrangement of cores separated by a
distance of 2R. with R = 1/(a\/7) \/m where a is some vortex lattice parameter
2. we describe the vortex state of a type-II s-wave superconductor (Hirschfeld 1998b).

*a is introduced to account for the effective vortex unit cell whose area is a*7wR?, equal to ®o/H.
For a circular unit cell, a = 1, and for a hexagonal unit cell, Tinkham (1996, p.146) gives a = 1.05.



26 2 THERMAL CONDUCTIVITY

19 fo—o—o-—o—a—
K(H)
Ka
H
I
0.8 '
r- i
[
"
154K N
0.4
04
0.2 r—
H(xOe)

Figure 2.12: Normalized thermal conductivity x(T)/xy of Nb in field H up to 4 kOe (0.4 T)
obtained by Lowell and Sousa (1970).

Within the cores. the order parameter A(r) is suppressed. and quasiparticles can be
thought of as obeving Schrodinger’s equation in a potential A(r). The eigenstates are
bound states with spacing A*/z . contributing to the DOS Ny in the cores. Extended
states are fully gapped. so make no contribution to the DOS. Since the number of
excitations goes as the number of cores (~ H). the enhancement to the core DOS
can be expressed as

H
HCQ.

N(O: H) ~ NT (2.28)

Specific heat measurements can detect these states within the vortex cores. How-
ever, thermal conductivity is not sensitive to these bound states, only extended states,
which are gapped. So while ¢(7"; H) is expected to increase with magnetic field H,
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Figure 2.13: The effect of the Doppler shift due to a superfluid flow on the quasiparticle energy
spectrum. Now the vertex of the energy cone is below the Fermi energy by an amount AE.

x should not. In fact. at low fields. x(H) drops rapidly with H! This phenomenon is
generally attributed to vortex scattering, as the coherence length is much longer than
the intervortex spacing. At high fields, pair-breaking effects dominate ~(H) since the
order parameter is strongly suppressed as the field approaches H., (in other words.
the energy 2\ required to break a pair decreases). Thus x(H) grows rapidly up to its
normal state value as H — H.. A good example is Nb, shown in Fig. 2.12. where

nothing changes until vortices appear above H,.

2.2.2 Unconventional Superconductors

In the presence of an external magnetic field, quasiparticle states outside the vortex
cores are Doppler shifted due to the superfluid flow around the vortices. Certain states
will then have energy which is negative with respect to the Fermi energy, and so will
be accessible to quasiparticle excitations (see Fig. 2.13). For those quasiparticles
within the vortex cores. Volovik (1993) has shown that their contribution to the
density of states is much smaller than that due to the delocalized quasiparticles
occupving the extended states. by a factor of order lni“\,{—:z—”\}-. Since the extended
states dominate the DOS, we will concentrate on the quasiparticles outside the vortex

cores. The superfluid flow shifts the quasiparticle spectrum by £ — E — v, - k or

E(k.A) = E(k) - Evk A,

—
o
N
=)

g
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where v is rhe normal state velocity (Lee and Wen 1997) and A is the vector
potential satisfving ®; = ¢ A - d¢. with @, the flux quantum: thus, 4 = &/(27r).
The magnirude of the Doppler shift is characterized by its average. Ey. obtained
by integrating over a vortex-lattice unit cell of radius R. Within each vortex unit
cell. its area times the field should be equal to one flux quantum. The field induced

anorav chift ic aiven hv
Caitigl mAlaIt iE gevERL A

Ey = E(]Vk “Al)

€ jUR drr J;lﬁ do v - ,-l[coso!

4 JOR drr j:'-' do

e jOR drr j[)‘)T do vpdy/(27r)|coso] (2.30)
¢ R?/2 .2z

evpdy 4

¢ 27 7R
2 [ H
= \/;fl(lt';: a;

since afl = /Py/(7H) (from previous section) and ®y = hc/(2e). Note also that

el = /U + U3 = vp because vp ~ 10va. which we will later show.

Volovik (1993) was the first to calculate the DOS due to a Doppler shifted energy
spectrum. Ve expect. from inspecting the zero field expression for .V(0) (Equa-

tion (2.21)). that .N(0: H) averaged over a vortex cell should look something like

9
(N(0: H)) ~ :;i— E” .
I UEU

Substituting Equation (2.30) in the above. we get

(N(0: H)) ~ h‘; \/g‘o. (2.32)
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In fact. the correct calculation (Kiibert and Hirschfeld 1998b) gives

(N(0: H)) = \Ea
\/gam o\/E.'\"u

m hu g :
= da{ =) (=< \/% (2.33)
H
= ﬁanur(ftkpl,)) a
8 a |H
T TRV &

since Ey can also be expressed as aNgy/H/He. via the relations H., = ®o/(27 5’
and & = hvp/(73¢). We have also used 22y = hkprs. hhp = mep and Ny = S5
The latter is included in calculations because a probe of the nodes should also be

sensitive to the normal state DOS near the nodes.

For low field and temperature. quasiparticles in a d-wave superconductor are
predicted to have a thermal conductivity ~¢/T which increases with applied field.
reflecting the occupation of extended states. Recall that this is in contrast to con-
ventional type-II superconductors such as niobium. in which the quasiparticle mean
free path is set by the vortices (since impurities do not break pairs). However. in a d-
wave superconductor where impurity scattering is important. the impurity mean free
path is smaller than the intervortex spacing. Thus Kiibert and Hirschfeld (1998b)
assume that impurities remain the dominant scattering centres at low temperature.

Comparison to experiments will verifv whether this assumption is correct.

Because thermal conductivity involves the transport scattering time, it is compli-
cated to calculate. A simple way to view heat conduction parallel to the vortex cores
is as follows: since xo(H)/T x N(w)7(w) (where N ~ 1/% ~ 7 for d = 7/2), and
the superfluid velocity vs = h/(2m,r), we have, as (w,T) — 0 (and so the Doppler
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This “hand-waving™ approach already highlights two important results, namely that
the field is expected to contribute to the thermal conductiviy and that the increase
does not go as VH.

Putting in the full details for / L H and H L ¢ is more involved. Fortunately.
. the calculation has been done. by treating transport with the same semi-classical
approach as in zero-field. Kiibert and Hirschfeld (1998b) have found that at T=0.

the field dependence for H{| ¢ and J L c follows

R(OH)  wy °

= (2.35)
T T 1+ p? —sinh™' p

where p is essentially the ratio of the two relevant energy scales. »~ and Ey: in the

dirty limit where ~ > Ey.

_ N GOSN (2.36)
P T Ey (u'p\/ﬁ -

where xg/T is the universal value of /T at both T=0 and H=0. While this function
qualitatively resembles /H. the rise with H is not as steep and it does not saturate
so quickly.

Since vortex scattering is so important in conventional superconductors such as
\b (see Fig. 2.12). it is fair to ask how vortices would affect transport in d-wave
superconductors. Franz has shown that a disordered vortex lattice in a d-wave su-
perconductor can result in quasiparticles scattering off the superflow (Franz 1999).
The reduction in mean free path then compensates the increase in .V(F), produc-
ing a field-independent universal /T at fields large enough that vortices are the
dominant scattering process. The theory demonstrates a drop in x with field which

. then reaches a plateau. consistent with measurements in BSCCO and underdoped
YBCO (see Section 7.3). At low temperature, a decreasing x would be in contrast
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with calculations assuming impurity scattering to be the dominant scattering process
(Kiiberr and Hirschfeld 1998b).

Besides the Doppler shift in the quasiparticle spectrum. there are also contribu-
tions from the Zeeman effect. When a field is applied parallel to the CuO, planes,
spin up state energies are lowered by puH: spin down states are increased by the
same amount. Near the nodes. where the gap ¢ is small. arbitrarily small values of
an applied magnetic field can produce a Zeeman energy larger than the local gap,
creating spin polarized normal electrons. i.e. spin degeneracy is lifted.

Yang and Sondhi (1998) have shown that for a two-dimensional d-wave super-
conductor in a magnetic field. orbital effects are negligible for H L ¢. However, in
real superconductors. orbital effects become important in the presence of interplane
coupling. For YBa,CuzO;_;. the spin-orbit scattering time has been estimated to be
about 100 times shorter than impurity scattering times of about 107'? s, so orbital
effects can probably be safely ignored. We can estimate the order of magnitude of
the Zeeman contribution to the specific heat by

N(O:H) _ov(H) _ ppH

No N Ay

(2.37)

where d~(H) is the increase in the VH coefficient in the specific heat and ~y is
the normal state Sommerfeld T-linear coefficient. In a field of 8 T. ugH = 5.4 K.
Compared to the Doppler shift energy Ey = 45 K (using ¢ = 1 and taking the Fermi
velocity estimated by tight-binding band structure calculations (Lee and Wen 1997)

vp = 1.2x107 cmn/s). the Zeeman energy is much smaller.



3 The Heavy Fermion Superconductor
UPd,Al;

In this thesis. the heavy fermion we study is UPd,yAly. discovered by Geibel et al.
(1991). It exhibits co-existing antiferromagnetism and superconductivity at ambient
pressure. with the highest T, (2 K) and magnetic moment (0.85u5/U. Ty = 14 K)
of all the known heavy fermion superconductors. The ordered moments lie within
the basal plane. in which they are coupled ferromagnetically: along ¢. the planes are
coupled antiferromagnetically. The sheer size of the magnetic moment suggests that
the interplay between superconductivity and antiferromagnetism is stronger than
in the other heavy fermion superconductors. Comparisons will be made with UPty,
which has been the most actively studied heavy fermion to date. so we now outline
the salient features of UPty (for further details. see review by Taillefer et al. (1991)
and references therein).

There are a number of reasons why UPty has been an ideal system to study. [t
is relatively easy to grow high purity samples. and the low T, of 0.5 K. compared
to the Debve temperature ©p ~ 300 K. ensures the absence of phonons in the su-
perconducting state. In addition. it shares many properties with UPd,Al;z, such as
the coexistence of superconductivity and antiferromagnetism (Ty = 5 K with mo-
ment 0.02x5). However. like *He. it has multiple superconducting phases. shown in
Fig. 3.1. first discovered in the double transition of the specific heat (Fisher et al.
1989}. The two transitions merge under hydrostatic pressure of about 3-4 kbar (Hay-
den et al. 1992). Moreover. neutron scattering shows that the decreasing amplitude
of the magnetic moment with applied pressure also disappears at around 3-4 kbar.
suggesting that the magnetic moment is responsible for the splitting, i.e. no magnetic
order bevond 4 kbar. no phase multiplicity.

3.1 Phase Diagram

For UPd,Al;. there is only one superconducting phase. There are, however, several
magnetic phases: three with the applied field in the basal plane and one perpen-
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Figure 3.1: Magnetic Held and temperature phase diagram of UPt; determined from sound velocity
measurements of Adenwalla et al. (1990). 4. B and C refer to distinct superconducting phases, with
A and B accessible at ambient pressure and zero magnetic field.

dicular. We show the magnetic field and temperature phase diagram for an applied
magnetic field in the hexagonal plane Fig. 3.2. For H = 0. there are the antiferro-
magnetic (AF.T < Tv) and paramagnetic (PNM.T > Ty) phases. and it is possible
to cross the antiferromagnetic phase boundary into the paramagnetic phase by the
application of 18 T (de Visser et al. 1992).

3.2 Crystal Structure

UPd,Aly crystallizes in a hexagonal crystal structure (PrNi»Als, as in Fig. 3.3) and
has lattice parameters a = b = 5.365 A and ¢ = 4.186 A (Geibel et al. 1991). Thus
the volume of a unit cell is (v/3/2)a’c = 104.3 A% and the density is 8.464 g/cm?.

3.3 Normal State

The resistivity of UPd»yAl; is shown in Fig. 3.4. From room temperature down to
about 80 K, p increases much like in other heavy fermions and systems containing
isolated magnetic impurities. suggestive of a Kondo scattering mechanism. As we go
lower in temperature, the resistivity drops as many-body effects develop. At the Néel
transition (14 K), spin-disorder scattering drops rapidly as the spins order themselves
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Figure 3.2: Magnetic field (in plane) and temperature phase diagram of UPdzAly obtained by
Grauel et al. (1992), On the left is the low field region showing H.. (ov B..) as a solid line and on
the right. the field axis is expanded to show the metamagnetic transition (dashed line).
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Figure 3.3: Crystal structure of UPd.Al; (after Sato et al. (1992)). Large spheres at the corners
represent U atoms (with magnetic moments denoted by arrows). which are surrounded by Pd atoms
in the basal plane. The smallest spheres represent Al atoms between the planes.
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Figure 3.4: Temperature dependence of the electrical resistivity p of UPdyAlsy along the b axis
{after Hiroi et al. (1997)). Inset: Low temperature scale showing antiferromagnetic order at the Neél
temmperature (Tv) and superconductivity at T..

antiferromagnetically. and p falls roughly as T2, characteristic of the Fermi liquid
state. Moreover. the normal state specific heat follows ¢(T) = ~T + 3T°. with
the Sommerfeld coefficient ~¢ = 145 mJ K~%mol~! (Caspary et al. 1993). The T3
coefficient is attributed to phonons.

3.4 Superconducting State

In the superconducting state. there is evidence for both conventional and uncon-
ventional behaviour. The nuclear magnetic relaxation rate 1/7; shows a power law
temperature dependence suggestive of a gap with a line of zeroes on the Fermi surface,
as does the absence of a coherence peak (or Hebel-Slichter peak) below T, (Kvogaku
et al. 1993). However. the T-dependence of the penetration depth determined from
muon spin relaxation is quite close to that expected for an s-wave gap (Amato et al.
1992. Feverherm et al. 1994). There are further inconsistencies to come.

From de Haas-van Alphen (dHvA) measurements, we can determine quasiparticle
masses and scattering times. The observation of quantum oscillations in UPdy Al by
Inada et al. (1994) confirms the presence of a Fermi surface, and also the itinerant

nature of the 5f electrons. Five main branches were detected, giving a range of
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10mg-33my for the effective cyclotron masses. Using the Dingle temperature Tp =
h/(2zkg7) of 169%3 mK for the ~ branch. we find a scattering rate [’ = 1/(27) =
0.257..

As for the specific heat. ¢{T) has been a widely-used probe of heavy electron
nature: for instance. the huge jump at 7. in CeCu,Si, first demonstrated that the
heavy clectrons formed the Cocoper pairs. ¢!
multiple superconducting phases and the power laws observed at low temperature
pointed to order parameters with nodes on the Fermi surface.

In UPdsyAly. the specific heat measured by Caspary et al. (1993) shows a single
jump at T, of size A¢/(~T,) = 1.48. which is not far from the weak-coupling BCS
value of 1.43. suggesting that there is nothing verv unconventional going on. For
0.3 < T < 1 K. e(T) (shown in Fig. 3.53) fits o(T) = T + bT3. The first term.
also seen in CeCu,Sis. UPty and URu,Si,. is attributed to residual electrons since
the coefficient ~ increases with the T, transition width. indicating that defects are
responsible for pair-breaking. Below about 0.3 K. an upward curvature appears. The
T3 term is compatible with calculations for a linear point node. since in this case
the density of states N(E) ~ E? and ¢/T ~ T2. Thus the H = 0 temperature
dependence of the specific heat seems to favour a gap with linear point nodes.

With an applied field. we need to add a hyperfine term to the specific heat. due to
the Zeeman splitting of the local 5 f moments on 2" Al (see inset of Fig. 3.5). Moreover.,
the coefficients are field dependent. so that c¢{T: H) = a(H)/T? + ~(H)T + b(H)T?
(Caspary et al. 1993). Below H.. ~(H) ~ H. consistent with normal excitations in
the vortex cores. So far. our analysis has been mostly qualitative: indeed, quantitative
comparisons are premature since the Fermi surfaces are complicated. with several
sheets. so one uses the simplest spherical Fermi surfaces in calculations. Still, we can
conclude from specific heat measurements. both in field and in zero field. that there

is evidence for linear point nodes.

A recent study of the pairing state was performed by Jourdan. Huth and Adrian
(1999) using tunneling spectroscopy in a superconductor-insulator-superconductor
(SIS) tunneling junction. with UPd;Al3-AlO,-Pb. with aluminum oxide as the in-
sulating barrier. The differential conductivity. which depends on the bias voltage,
of an SIN (N=normal metal) junction gives a measure of the thermally smeared
density of states of the superconductor. Additional structures in the differential con-

ductivity outside of the gap region is a sign of strong-coupling superconductivity, for
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Figure 3.5: Specitic heat of UPdaAly showing the jump at T.. obtained by Caspary et al. (1993).
at ambient pressure and also at 10.8 kbar. The inset shows the field dependence and the growing
upturn at low temperature.

example e-ph coupling in Pb. By the application of a magnetic field strong enough
to drive Pb normal but below H. of UPd;yAl;. UPd;yAl;-AlO-Pb becomes an SIN
tunnel junction. In a field of 0.3 T. the standard Dynes fit yvields a zero temperature
gap \g = 235 peV. Bevond the gap energy. a modulation in the conductivity at
172 1.22 meV can be observed in Fig. 3.6. In this case. the energy scale is low com-
pared to a @p of roughly 150 K (13 meV'). so Jourdan and co-workers have ruled out
conventional e-ph coupling ®. However, we point out that long wavelength acoustic
phonons are ungapped. though the proximity of the modulation to the spin wave gap
of 1.3 meV" (17 K) (Metoki et al. 1998) does suggest that the order parameter may be
coupling to this particular magnon mode. Assuming e-mag coupling is responsible for
d-wave superconductivity, there is a critical energy w. below which spin fluctuations
are pair-breaking (Millis. Sachdev and Varma 1988). Note that this is in contrast
to e-ph coupling. where it is only below some energy wy that pair attraction takes

place. So above w,, e-e attraction causes an increase in the tunneling conductivity

3In Pb. Ag = 15 K and ©p = 88 K, compared to 2.7 K and 150 K, respectively, in UPdaAlj;.
Tunneling spectra of Pb show modulations at ©p/2 and ©p, in support of e-ph coupling.
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Figure 3.6: Differential conducitivity of a UPdsAly-AlO,-Pb tunnel junction, with the grev trace
the fit to the Dynes formula {after Jourdan. Huth and Adrian (1999)). Inset. modulations attributed
10 strong-coupling to spin Huctuations.

with respect to the Dvnes fit (see inset of Fig. 3.6). while below. pair-breaking causes
a decrease. Thus. spin-fluctuation mediated superconductivity can explain the tun-
neling data. from which an A, (Y3 spherical harmonic k2 + L;’ — 2k? with 2 lines
of nodes about the ¢ axis) order parameter emerges. Of course. this measurement
cannot rule out other mechanisms.

In brief. we have shown that a common belief in heavy fermion svstems is that
the superconductivity is mediated by antiferromagnetic spin fluctuations. Quantum
oscillation observations confirm the heaviness of the itinerant f electrons and give
us a measure of the scattering time in the superconducting state. From the NMR
relaxation rate. lines of nodes on the Fermi surface are inferred. supported by SIN
tunneling spectra. which in addition claim the absence of nodes on the ¢ axis. How-
ever. c(T') suggests point nodes with a linear A-dependence. Furthermore the specific
heat jump at T, and the temperature dependence of the penetration depth indicate
conventional weak-coupling BCS superconductivity. We need another probe of the
low energy excitations about the gap zeroes. and thermal conductivity is one such

way to elucidate the gap structure.



4 The High-7, Superconductor
YBagCU30~_5

Now that more than ten vears have passed since the discovery of
Y BasCu3O0-_; (Wu et al. 1987). most researchers agree on its singlet d-wave pairing
state (an example of triplet pairing is *He). but this only comes as a result of an in-
tense rivalry between the s-wave and d-wave camps. In fact. when YBayCu3O-_5 was
celebrating its third vear in the limelight. many believed that “the data as a whole...
suggest[ed| that ‘s-wave’ pairing [was| the most likely scenario” (Annett et al. 1990).
though thev did emphasize that it was still rather premature to draw any conclusions
based on the existing data. then lacking reproducibility and accuracy.

Before becoming entangled in the details of the nature of the pairing state. we
must first convince ourselves that electron or hole pairing. rather than some new
and exotic mechanism. is indeed what causes superconductivity in the cuprates.
Fortunately. there has been evidence for pairing ever since practically the beginning
of the YBayCuyO;_; story.

By disturbing the trapped flux in a superconducting ring, it is possible to measure
the change in magnetic flux of a system. In the case of a sintered YBa,Cu30-_; ring,
application of electromagnetic noise caused the flux to change in quantized steps of
¢ = (0.97 £ 0.04)hc/2e. indicating a unit charge of 2e (Gough et al. 1987, Koch
et al. 1987). Further evidence comes from point contact measurements. When an
electron is injected at a point contact into a normal metal. upon reaching a metal-
superconductor interface. it combines with an electron from the normal metal and
forms a Cooper pair in the superconductor. This process of Andreev reflection leaves
in the normal metal a hole of the opposite momentum and spin to that of the inci-
dent electron. Detection is in principle quite simple. Since the hole is of the opposite
momentum. it returns to the point contact and contributes to the current, thereby
reducing the contact resistance. If the incident energy is less than the superconduct-
ing gap energy A. every incident electron leaves behind a hole, resulting in a factor
of 2 reduction in the contact resistance: otherwise, i.e. if the incident energy exceeds

A. the electrons enter the superconductor as quasiparticles and no change occurs
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Figure 4.1: Structure of YBa,Cu;Q;_; depicting three unit cells along the b-axis.

in the resistance. Thus this technique can measure A, and moreover. the angular
dependence of A(k) can be resolved by placing the contacts on different crystalline
faces.

So very early on. it was established that Cooper pairs do indeed exist in d-
wave superconductors. although the exact pairing mechanism is not known. For this
reason. the BCS theory is applicable to the cuprates. since the same ingredients.
namely electron/hole pairing and the presence of an energy gap. are responsible for

superconducting state properties.

4.1 Crystal Structure

YBa,Cu30;_; has a lavered perovskite-like crystal structure (see Fig. 4.1) with lat-
tice parameters a = 3.8198(1) A. b = 3.8849(1) A and ¢ = 11.6762(3) A. giving a unit
cell volume 1~ = 173.27 A%. These give a molar volume V;, = 1"V, = 104.3 cm?/mol.
There are two roughly tetragonal CuQ, planes. spaced 8.3 A apart, per unit
cell (Akoh et al. 1990). In addition. there are one-dimensional CuQO chains running
along the b-axis. making conduction in the basal plane anisotropic. The presence
of these chains complicate band structure calculations, and it is only because high
quality. relatively large crystals can be grown that YBasCu3zO;_; has become the
high-T, representative.
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The carriers are holes. and are believed to reside primarily in the CuQO, planes,
with the CuQ chains acting as charge reservoirs to regulate the doping levels in
the planes. Currently. the chains are under investigation as to whether they are
superconducting intrinsically or due to their proximity to the superconducting CuQO,
planes. Positron annihilation experiments indicate that the effective mass in the
chain hand is much less rhan that in rhe plane hand (Pankaluoto et al. 1994). This
suggests that the electrons in the chains are not strongly correlated, and therefore
not superconducting on their own.

What we mean by the electrons in these materials being strongly correlated is that
the average interaction energy exceeds the average kinetic energy of the Cu d states.
Electrons move through these orbitals by hopping to weakly correlated orbitals on
neighbouring ions. such as the p orbital on oxygen ions. The 3d shell Cu** contains
one vacancy. which affects what happens when a cuprate is hole- or electron- doped.

To sum up. the CuQO, planes are not exactly tetragonal. but orthorhombic due to
the presence of the CuQO chains along b. We therefore expect anisotropy in transport

measurements due to this extra channel of conduction.

4.2 Phase Diagram

The strong correlations in these systems tend to drive them towards localized (in-
sulating) electronic states. For instance. in La,CuQ,. the Cu** Coulomb repulsion
leads to an insulating ground state. and superconductivity can only be achieved when
the oxvgen p bands are (hole) doped with Sr?~ or La’*.

[n Fig. 4.2. we show the phase diagram of YBa,Cu3Og..; as a function of oxygen
doping r. Between the antiferromagnetic and superconducting phases is a smeared
out region often referred to as a spin glass. As it is difficult to prepare samples with
r ~ 0.4. this area of the phase diagram has not been extensively studied. Above this
fuzzy boundary. the appearance of chains along b induces an orthorhombic crystal
structure. The plateau around r ~ 0.6 is due to ordering in the chains.

One key feature in Fig. 4.2 is the proximity of the superconducting and antifer-
romagnetic states. This observation led to the SO(3) theory of superconductivity of
Zhang (1997) which has a 5-component order parameter—3 for antiferromagnetism
and 2 for superconductivity. Could high-7, superconductivity be mediated by anti-

ferromagnetic spin fluctuations, as is assumed in the heavy fermions?
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Figure 4.2: Doping phase diagram of YBa:Cu304., showing Néel temperature Ty or T, (after
Rossat-Mignod et al. (1988)).

4.3 Normal State

Strongly correlated electrons lead to many interesting phenomena in the normal state.
For instance. ions with localized orbitals can have magnetic moments large enough
to lead to antiferromagnetic order. In the heavy fermions. antiferromagnetism can
co-exist with superconductivity (UPd;Al; and UNiyAly). but this has never been
found in any cuprate material.

In the normal state of YBasCu;0O5_s. there are several anomalous, non-Fermi
liquid properties. First of all. the question of whether a Fermi surface even exists
remains an open one. Secondly. the resistivity along a is perfectly linear; along b,
there is a slight upward curvature. as shown in Fig. 1.3. Recall that in Fermi liquids.
p ~ T?.s0 even in the normal state. YBa>Cu;30-_s violates our basic understanding
of metals.

In the absence of a well-defined metallic ground state. the challenge is to under-
stand the normal state. which is practically as complicated as the superconducting

state. One approach is to vary the level of oxygen doping to study the evolution
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Figure 4.3: Resistivity as a function of temperature in YBa;CuzO+_; for « and b axis samples.

of the metallic state from the insulating state. This has led to the discovery of a

pseudogap above T..

4.3.1 Pseudogap

In the normal state of underdoped cuprates, several physical probes have detected
a partial gap. called the pseudogap. at some temperature T~ well above T,. NMR
measurements of the Knight shift in an underdoped superconductor first detected a
decrease below a temperature 7. which normally (in an optimally doped material)
does not occur until T,. This led Warren et al. (1989) to conclude that spin pairing
was taking place in the normal state. thus producing a “spin gap”. Many other
measurements have since seen the pseudogap. such as the NMR relaxation rate 1/T)
(Takigawa et al. 1991). specific heat (Loram et al. 1993), c-axis conductivity (Homes
et al. 1993). photoemission (Ding et al. 1996) and ab-plane resistivity (Bucher et al.
1993). In the latter. this suggests that the linear resistivity is due to spin fluctuation
scattering of carriers. since below T* in underdoped materials this linearity is lost.
While the pseudogap does not exist in optimally doped or overdoped
YBasCuzO;_5, the fact that 7" and T, meet at optimal doping z on the phase

diagram is intriguing, and the nature of their relationship could be very important
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in understanding the mechanism for superconductivity in high-T, superconductors.

4.4 Superconducting State

"~

Conventional superconductors (e.g. Al. Hg) have s-wave pairing states which have
chie full sy munetry of thie crystallinie poiit group: unconventional pairi

to describe *He and UPty. for example. have a lower symmetry. Furthermore. the
phase of the order parameter can serve as another distinguishing factor: for instance.
the order parameter for the extended s-wave state does not change sign. whereas the
d-wave does. Accordingly. there are many experiments which can help determine the
svimmetry of the order parameter and we now review the principal methods.

An extremely powerful phase-sensitive technique uses the double Josephson junc-
tion de SQUID ring. A Josephson junction refers to the interface between two super-
conductors through which pairs can tunnel, even when there is zero voltage difference
(Josephson 1962). Due to a phase difference Ao between the superconductors. a zero
voltage supercurrent [, = [.sino. where [. is the maximum critical current sup-
ported by the junction. can fow from one superconductor to another through an
insulating barrier. Josephson also predicted that in the presence of a potential differ-
ence 17 across the barrier. the phase difference would change as d{\o)/dt = 2el/h.
This means that we would have an ac current with frequency v = 2el’/h. In the
following discussion. we use dc junctions and we refer to Fig. 4.4.

We start with a simple d,2_,» gap of cos(20). where o is the angle from the
r-axis. If two Josephson contacts to the YBCO are rotated by 5 in the ab-plane.
the cos(2¢) factor for the two junctions will differ by cos(z) = -1. From the rela-
tion Ao = %(mod?w) (from Tinkham (1996. p.215)). we see that a = phase shift
changes the enclosed flux ® by ®,/2. Thus the lowest energy state of the ring now
corresponds to one containing ®¢/2 of trapped flux. instead of zero flux. Conse-
quently. in an external magnetic field. allowed states will correspond to those with
half-integer fluxoid quantum numbers. Recent scanning SQUID microscope studies
which have observed half-integral flux quantization (Tsuei et al. 1994. Mathai et al.
1993). Mathai and co-workers used a junction similar to that described in Fig. 4.4
and found half quanta of trapped flux. In the work of Tsuei and co-workers on three-
Jjunction and two-junction rings on YBa;Cu3O;_; film (where twin boundaries give

the 7 phase shift), they found half integer quanta of trapped flux in the first case and
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Figure 4.4: Superconducting SQUID ring composed of Pb and YBa,Cu30+_s films. The two
Josephson junctions are located at the interfaces of the two materials. and are phase shifted by =.
Thus the ring traps half-integral quanta of flux.

integer quanta in the second. Such experiments undoubtedly provide the strongest

evidence to date for the d-wave picture.

Another indication of unconventional superconductivity came from nuclear mag-
netic resonance {(NMR) studies of the nuclear relaxation rate 1/7;. Experimental
1/T, results in YBa,CuzO;_; differ markedly from those in BCS superconductors.
namely in the low temperature power law behaviour (consistent with d-wave) and
in the absence of the Hebel-Slichter peak just below T,. The latter is very well un-
derstood within BCS theory to be due to the singular peak in the DOS just above
the gap and the BCS coherence factors. This suggests that radical changes to the
coherence factors would have to be made in order to use the framework of BCS to
explain the simple drop in 1/T; below T.. Moreover. in conventional superconduc-
tors. the Knight shift (which measures uniform spin susceptibility) is temperature
independent in the normal state. and drops below T, when the spins pair into singlet
Cooper pairs. In the cuprates. this drop also occurs. but much slower than the ex-
ponential behaviour seen in BCS superconductors: rather. the drop follows a power

law, consistent with d-wave pairing.

Several other experiments have also fortified the d-wave picture, such as turn.neling

conductance. angular resolved photo-emission and muon spin resonance. For a review,
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see that of Maple (1998). We believe there is little doubt that the order parameter
for YBayCu30;_; is d-wave. Below we examine in detail the experiments which have
a direct bearing on thermal conductivity. and with which we will compare our results
to see it a consistent quantitative description of the superconducting state properties

of YBa,Cuz0O+_; emerges.

4.4.1 Specific heat

The specific heat ¢(T) in the T — 0 limit provides a direct probe of the quasiparti-
cle DOS near the Fermi level . Unfortunately. it also probes all other excitations.
Phonons and ferromagnetic magnons may contribute T. T2 and T? terms, while anti-
ferromagnetic magnons may contribute 712, T and T3/? terms. Schottky anomalies
usually give a T~2 dependence. as does the nuclear moment. Amidst all these exci-
tations. one must isolate the electronic part of ¢/T. which is proportional to .V (z)
averaged over an interval ~ kgT around :zg. To further complicate matters. there
exists an additional linear term which is sample dependent. perhaps attributable to
BaCuQO, (Hux) (Alain Junod (1990). and references therein). This term decreases
when twins are removed or when oxygen is added (Moler et al. 1997).

In s-wave superconductors where the excitation spectrum is fully gapped. the
electronic specific heat is vanishingly small. For d-wave symmetry. the gap vanishes
linearly at the nodes on the Fermi surface. so the k-space average of the DOS goes
as .V(2) x |zf: hence for electrons. ¢/T = aT for gaps which vanish linearly at the
Fermi surface. which also occurs for s+d mixing. The coefficient of the T? term is
(Kopnin and Volovik 1996, Kiibert and Hirschfeld 1998a)

1.3
- 18C3)kp 1

= 1.1
T hTUply (41)

where g and v describe the quasiparticle excitations as described in Section 2.1.3,
and ¢(n) is the Riemann sum. with {(3) = 1+ 273+ 373 + .. ~ 1.3. In zero field.
one thus obtains the product vges.

Several measurements of ¢(T) claim to see the 72 term. so that fits are usually
of the form

o(T) = As/T?* + v(0)T + aT? + 373, (4.2)
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even when the data look linear. The data of Moler et al. (1997) are consistent with
both a small or zero value of «. Plotted vs T, the upturn would tend to cancel out the
T? term. so it was concluded that the latter was not resolvable. More recently, samples
with a reduced number of paramagnetic centres (and hence less of an upturn) were
measured to try to bring out the T2 term (Wright et al. 1999). Now a slope is apparent
in a plot of ¢/T vs T. and the fitted o is 0.064 mJ K=* moi~!. By further increasing
sample quality. the Geneva group has obtained specific heat data which requires no
ficting at all (Alain Junod 1999). Thus their measurement of o = 0.19 K™% mol~!
we consider the most reliable. though their crystal is fullv oxvgenated in order to
achieve such a low level of defects so we cannot make a direct comparison. Specific
heat is also a good diagnostic tool in the presence of a magnetic field. which will be

discussed in Section -1.3.2.

4.4.2 Microwave conductivity and the London penetration depth

This section describes the microwave experiments used to probe thermally excited
quasiparticles. In particular. the temperature dependence of the penetration depth
MT) and charge conductivity o(w. T) have both helped to establish the d-wave state
as being the appropriate state for YBa,Cu3O;_5. As we shall see. these two quan-
tities give direct measures of the quasiparticle parameters vr and vs. so any theory
describing A and ¢ had better apply to & as well.

In a surface impedance measurement at microwave frequencies. a planar sample
is placed in an axial field. say along b. so that a current develops along a (and
even along c. though for thin crystals this effect is negligible). The study of the
complex surface impedance has illuminated a number of electromagnetic properties
of YBayCu3zO:_;. Early measurements of a linear temperature dependence in the
penetration depth A(T) by Hardy et al. (1993). obtained from the imaginary part of
the surface impedance. were among the first evidence for nodes in the gap function.
From the real part of the surface impedance. R,. one obtains the real part of the
charge conductivity by thermally excited quasiparticles.

In weak coupling BCS theory. charge conductivity is activated at low temperature
due to the presence of an energy gap, as is the temperature dependence of the
London penetration depth. which provides information on the superfluid density
responsible for the screening of electromagnetic fields. Should the gap exhibit line
nodes on the Fermi surface. it is expected that the temperature dependence of the
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penetration depth is that of a power law. rather than exponential (Annett et al. 1991).
Thus conventional and unconventional pairing states lead to qualitatively different
T-dependences which experiments can easily differentiate.

For short coherence length superconductors like YBa,CuzO;_s. which guaran-
tees the local electrodynamic limit § < A. the low frequency (wr <« 1) complex
conductivity is given bv (Bonn and Hardv 1996)

A

O'(wT] :Ul(J.T) - m

(4.3)
At low temperature. a Drude-like peak in o,(). centred at w = 0. will have a width
which can be interpreted as the quasiparticle lifetime.

In the local limit. the conductivity is related to the surface impedance Z, =

R, +(X,. where R, is the surface resistance and .Y, is the surface reactance. bv

.\-.,‘(.4.'. T) = ﬂ()»‘.’r\(T) (44)
Ry(w. T) = B 2\(Thoy (. T, (4.3)
Thus X'y gives a measure of the superfluid density % = ;\x% responsible for

screening the microwave fields and R,. governed by the absorption by the normal
fluid within A of the surface. gives a measure of the normal fluid density. The surface
resistance is a bit complicated. but at low temperature. R, can be described as the
absorption of microwaves by quasiparticles (¢,(«. T)) within a shallow depth (w2A?).

Unfortunately. the absolute value of \(T') cannot be determined by the microwave
technique since precision measurements require that only shifts in the frequency can
be detected. By comparing with the penetration depth at some reference temper-
ature, one can measure the temperature dependence of dA(T) = A(T) — A(L.2 R).
Then by taking M(1.2 A’) from another measurement. usually far infrared reflectiv-
itv. one obtains the desired superfluid fraction in the previous paragraph. Ideally.
AM1.2 K) should be determined in similar conditions as dN(T).

\We can relate vg/vs to the temperature dependence of the London penetration
depth. Within a formulation based on well-defined quasiparticles (well-defined in the
sense that they are formed by the constructive interference of particle- and hole- like
excitations) in the superconducting state, Xu et al. (1993). Lee and Wen (1997) and
Millis et al. (1998) have found a simple expression for the temperature dependence
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Figure 4.5: The temperature dependence of the penetration depth of YBayCu30s_;, pure and

doped. after Bonn et al. (1993). Notice the linear behaviour in the pure sample (squares) evolves
with Ca and Ni doping and reaches T* behaviour with Zn.

of the superfluid density p,:

| | A2 g
/)a(T) - /).»(0) _ -ln:n(i]kBT (46)
2 U

me m Th

where m is the mass of the carriers. n is the number of CuO, planes per unit cell
and M(T) = A(0) + d\(T). where \(0) is the zero temperature value. Now since
p(T) & 1

m Ame2 AT (1)

we can relate the derivative of p(T) at T = 0 to d\T). which is the more direct
measurement:

kge®
N

- L |
v T = 2l (4.8)

Thus we have another way of measuring the ratio vg/va.
In high purity samples of YBayCu;0695, A(T) is indeed linear (Hardy et al.
1993). evident in Fig. 4.5. This is in contrast to previous measurements on thin films

and lower quality crystals which yielded T2. Hardy and co-workers also measured a
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Figure 4.6: The reai part of the charge conductivity o (. T) at five different frequencies (after
Hosseini et al. {1998b)). Note that the peak below T, is reminiscent of that in x(T) (Fig. 7.2).

sample of Pbyy;Stiges and found a very weak temperature dependence below about
0.47T., which is consistent with the s-wave scenario.

Another important property is the charge conductivity og. Moreover. the
Wiedemann-Franz law connects wngo/7 and oggo. which was already shown in Sec-
tion 2.1.3. Surface resistance measurements of undoped YBa,Cu30-_s show a linear
T dependence at low temperature (Zhang et al. 1994). The T = 0 extrapolations yield
010 = (0.45£0.15)x10° Q~'m~! along @ and oy, = (0.7 £0.2)x10% Q~'m~! along b,
at 34.8 GHz. For YBay(Zn Cuy_,)307_5 with 0.15% Zn, the real part of the conduc-
tivityas T — 0is 0y, = (0.64£0.20)x10° Q~'m~! and o = (1.8£0.5)x10% Q= 'm~!
at 22.9 GHz (Hosseini et al. 1998a). The errors are due to the A} appearing in o,
and also due to the fact that the numbers are nearing the resolution limit. Within
the generous error bars. the a-axis values do agree, suggesting universal transport,
though not convincingly. The true power of this technique comes to light at higher

temperature. where different scattering mechanisms may be studied.

Below T.. o, has a peak (just as ) attributed to the competing effects of the
collapsing quasiparticle DOS and inelastic scattering rate, where the latter “wins”.
At the peak, however, the scattering time reaches a limit set by (elastic) impurities,
so that down to zero temperature the decreasing DOS gives us the overall decrease,
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Figure 4.7: The real part of the charge conductivity o) vs microwave frequency . for fixed tem-
peratures hetween 4-20 K {(after Hosseini et al. {1998b)). While at low frequency the lineshape is
not exactly Drude-like. the fit is close enough that it is possible to extract a scattering time r from
the linewidth. Notice that ay is linear at low temperature.

though not to zero but a finite value. [t is actually possible to determine the elastic
scattering time in a spectroscopic study. By performing surface resistance measure-
ments at several frequencies. Hosseini. Bonn and co-workers have found that o(w)
at low temperature does have a Drude-like lineshape. Below 20 K. the width has a
nearly temperature independent value of 8 GHz (as seen in Fig. 4.7). which means
a very long quasiparticle scattering lifetime of 2x10~! s. evident in Fig. 4.8. For
vr =1 x 10" em/s (Lee and Wen 1997). this means a quasiparticle mean free path
of 2 um!

One main advantage charge conductivity has over thermal conductivity is that
the signal is purely electronic. so we can actually see the temperature dependence of
the quasiparticles. Measurements show that the surface resistance (or ;) below 30 K
is linear (Fig. 4.6). This indicates one serious flaw in the theory. for a T dependence
is the predicted behaviour for a pure crystal (Hirschfeld and Putikka 1996). In a
Zn-doped crystal. a T?-dependence does emerge. while Ni-doping induces an upward
curvature which is not quite 72. At low frequencies. the temperature dependence
actually becomes sub-linear for a pure crvstal. For these reasons, Hosseini and co-
workers have chosen to compare results obtained in high purity (better than 99.99%)
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Figure 4.8: 1/7 vs T extracted from the o)(<) data of Hosseini et al. (1998b) by interpreting
the linewidth as che lifetime of the quasiparticles. Notice that the elastic scattering rate is roughly
constant below about 20 K.

with calculations in the weak scattering or Born limit. * Qualitatively. Born scattering
causes o, (T) to rise rapidly from its universal value gy to some large value and to
remain roughly independent of temperature until inelastic scattering effects become
important. As for the frequency dependence. o,(T) in the Born limit does predict a
sub-linear to super-linear behaviour with increasing «. We do point out that while
this appears consistent with the measurements. there could be non-local effects at
high frequencies when \ develops a frequency dependence. which would then produce
some effective = which is not impurity dominated (Waldram et al. 1997).

We have shown in this section that the linear temperature dependence of the
penetration depth is a consequence of .V(E) ~ E. so that d\(T) is also described
by vg and t2. While the linear penetration depth supports d-wave theory, there
remains a problem with the predicted o, ~ T2. casting some doubt as to whether
the assumption of unitarity scattering is correct. The frequency dependence of 7|
indicates that below 20 K. elastic scattering has hit the impurity limit. with a mean

free path of 2 um. or a scattering time of 2x 107! s (scattering rate [ = 1/(27) =

1These are indeed the “second generation™ crystals grown in BaZrQ; (Liang, Bonn and Hardy
1998). To avoid clustering of oxygen vacancies. the crystals were oxygenated to 7 — § = 6.993 and
thus almost free of defects.
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[3V]

0.002T7,). From the anisotropy o;3/0,, = 1.5 — 2.8, we expect a similar anisotropy in

Ko/ Ka.

4.4.3 Infrared reflectivity

Optical properties of superconductors can provide a wealth of information, partic-
ularly concerning energyv gaps and scattering rates. Roughly speaking, the ap-piane
optical properties of high-7, superconductors follow those of a metal in which charge
carriers move coherently through the lattice. It is this coherent motion which ac-
counts for the zero frequency Drude peak in the conductivity. The width of the peak
has been interpreted as the inverse lifetime of the carriers.

Using infrared reflectivity, one can directly measure the reflectance R(w). ab-
sorption (1 — R(w)). surface impedance Z(«) and transmission T (w). These provide
information on microscopic properties such as the conductivity o(») = o'(w) +io”"(w)
and the dielectric function e¢(v) = €'(«) + i€’ (w). where €” = dxo’/x. However. ex-
tracting useful quantities from R(.) can be quite involved. and one often relies on
Kramers-Kronig analysis—when one quantity is known over a large frequency range,
the other can be obtained via an integration over all frequencies. » Alternatively. it

Ve=1

is possible to fit R(<) to (v?—l ) and use the assumption that

€(w) = €p + €, + €x (4.9)

where €p is from the Drude model. e is some known constant background term and

€. is given by

““': ' . "
€ = —F — =€, + I€, 4.10)
I(w) —w? —wl(w) ° (
which can be arranged to give
.;,"2 " w'_’
D(w)=22—f¢ __ _ Prm(1/e,). (4.11)
w (e +el?) W

Without getting into too many details. we show a “recipe” for extracting the fre-
quency dependent scattering rate ['(«), courtesy of Timusk (1995).

SFor example: r = VRe'?. 8(w) = 2 [[* dw' 2RI =K) Then ¢’ = f,(R,8) and e” = fo(R, 6).
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1. Obtain e(w) from R(«)

~4

2. Subtract €p and €

3. Get € = dnwo/e

1. Kramers-Kronig transtorm €/ to get €, and therefore e,
3. Calculate ['(2) from Eq.(4.11)

Experimental 1/7(«) measurements of optimally doped YBa,CuzO;_; with
T.=93.5 K at 95 K show a linear temperature dependence at high frequency
(Puchkov. Basov and Timusk 1996). By ftting the range 900-3000 cm™!. the zero
frequency extrapolation is [y = 1280 K or over 10T,. which is enormous compared
to other estimates. This large discrepancy can be explained given that I' = ['(w) as
soon as the energy departs from zero. Moreover. FIR experiments usually start at
30-50 em ™!, or about 43-72 K. This is a significant proportion of \y (about 200 K)!
Recall that for strong scattering in the unitarity limit the scattering rate is pre-
dicted to be temperature dependent (Gross ef al. 1986. Prohammer and Carbotte
1991. Hirschfeld. Putikka and Scalapino 1994) (Fig. 2.7). So for /g >~ 0.3. 1/7 is
10 times smaller than at zero energy. In this respect. we reallv should be comparing

with other measurements in the gapless regime. well below 10 K.

4.5 Vortex State

In the vortex state. there are two natural regions of interest: within the cores and
between the cores. In type-II BCS superconductors. Caroli. de Gennes and Matricon
(1964) showed that bound states within the cores have an energy level spacing Az =
A?/zr. comparable to the energy level spacing of a particle in a box of size &. Now
in YBa,Cu3O;_s where & is of order 10 A. A= can be comparable to A, so that there
may be only one bound state or so. However. in conventional superconductors. Az
can be as small as 107'\ so that the excited states are essentially gapless (Tinkham
1996). Far from the cores, Volovik (1993) has shown that the extended states become
populated. We now look closer at what experiments can tell us about bound vs
extended states in YBa;Cu3zO-_;.
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Figure 4.9: STM image of the vortex lattice of YBa:CuzO+_; taken at T=4.2 K and =6 T
by Maggio-Aprile et al. (1995). (a) 100x100 nm? scan-area. raw data. (b) 50x30 nm? scan-area.
filtered data.

4.5.1 Scanning tunneling spectroscopy (STS)

We introduce vortex state experiments with an STM image of the vortex lattice
in Fig. 4.9. produced at 4.2 K in 6 T applied along ¢ (Maggio-Aprile et al. 1993).
Although the vortex lattice had been previously seen using the Bitter decoration
technique (Dolan et al.. Vinnikov et al. 1989). it took another 8 vears before the
first STM image appeared. Part of the reason it took so long is related to the dead
insulating laver which tends to form on the surface of YBa,Cu3zO;_; crystals. In
1995. the so-called “second generation” YBa,CuzO;_s cryvstals were born in BaZrO;
crucibles (Erb. Walker and Fliikiger 1995). BaZrOj. a by-product of flux growth in
vttria-stabilized zirconate crucibles. is inert to the highly reactive solvents used to
grow YBa,CuzO;_s. so these new crystals are the purest to date. with improved
surface quality.

This technique also has the advantage of probing the quasiparticle local density
of states (LDQOS) by tunneling. Outside the vortex cores, the tunneling spectra are
essentially identical to those obtained in the Meissner state. As the tip approaches
the centre of a vortex core. the 20 meV conductance peak (associated with the
gap A) decreases in magnitude before disappearing altogether in the middle of the
core. What is remarkable in Fig. 4.10 is the appearance of low energy peaks in the

core: bound states! These peaks are separated by 11 meV, in agreement with the
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Figure 4.10: Tunneling spectra of YBaaCuy0s_; at 4.2 K in zero field (top) and in 6 T {bottom)
fafter Maggio-Aprile et al. (1995)). For H = 0. we see the main peaks corresponding to Jg =
(20=1.02) meV. [n Held. rhere are twa conductance peaks representing core states.

measured 9.5 me\’ from infrared absorption measurements. taken to be the lowest
quasiparticle pair creation energy. Since the first excited state energy =y = £5.5 meV’
and z» = £16.5 me\". there can be at most 4 bound states considering A = 20 meV
(obtained by their spectra and in good agreement with the weak-coupling result

Ay = 2.14kpT,. = 17 meV). although the z, states were not seen.

4.5.2 Specific Heat

In Section 2.2.2. we showed the effect of an applied magnetic field on the density of
states of a clean d-wave superconductor. This DOS enhancement can be probed by
specific heat measurements. However, specific heat in a field contains contributions
from many different excitations. Although phonons are not affected by the field.
various other paramagnetic centres are. so that again there is the problem of multi-
parameter fits as in zero field. Despite these complexities, measurements by Moler
et al. (1997). Fisher et al. (1995) and Wright et al. (1996) all report the presence of
this d-wave behaviour.

Before we get into the details of d-wave theory, we must point out that vH
behaviour has been seen in conventional s-wave superconductors. In Fig. 4.11, we



[]]
=~

4.5 Vortex State

’ M ) A ¥ v T v T v T M T
20 .« A
- NbSez . !
18 |- T=2.3K 2 -
L 4
< 16} -

K [ ]
2 I //{ 1
£ 14F /44’ 1
ig L 4
= 12k 4
S L
10 L- 7
o

s ¢ i

L 1 " I} b . H a1 L " 1 N 1

0C ©5 10 15 20 25 130

H (Tesla)

Figure 4.11: Field dependence of the specific heat of NbSes obtained by Sonier et al. (1998). A
fit to vH appears to follow the data.

can see this sublinear H-dependence. which was at first puzzling, since bound core
states are expected to give a linear H-dependence. Sonier et al. (1998) have explained
this etfect in terms of the changing core size with field.

Recall that in zero field. the clean limit quasiparticle specific heat is aT2. In field,
a v H dependence is predicted. From the DOS (Equation (2.33)). we can write down

the field dependent specific heat as
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In Fig. 4.12. we see that an application of field does cause an increase in the
specific heat of quasiparticles. Specific heat data are usually described by (Moler et
al. 1997)

o(T. H) = [1(0) + v (H)|T + bT3 + ncscnouy(gua H/ksT) (4.13)

where the Landé g factor is 2.0. The values of ¥(0) and b are constrained by zero
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Figure 4.12: The quasiparticle specific heat measurement of Wright et al. (1999) showing a growing
intercept with field. Furthermore. there is evidence of a crossover from T to T'? behaviour.

field fits. Here. the term of interest. which corresponds to the field enhancement of
the quasiparticle DOS. is ~_( ). By allowing a different value of v_(H) at each field,
Moler et al. (1997) have obtained ~_(H) = 3VH. with 3 = 0.9 mJ/(mol K* T?).
Wright et al. (1999) have found essentially the same value, 0.91 mJ/(mol K* T'/2).
Using this value of 3 in Equation (4.12). we get va = 2.2ax 108 cm/s. We show an
example of this v/ H-dependence in Fig. 4.13.

[f we examine the data of Wright et al. (1999). plotted as ¢/T vs T in Fig. 4.12. we
sce that for H = 0. there is the characteristic d-wave T-linear behaviour, i.e. ¢ = aT>.
With a magnetic field. ¢/T is flat. but then crosses over to a linear behaviour. with the
crossover temperature increasing with field. When kT < Ej. we have ¢/T ~ vH.
which crosses over to ¢/T ~ VHT when kgT > Ey. Thus we should be able to read
Ey off Fig. 4.12. At H =1 T. the crossover temperature is about 6.3 K. By setting
kgT(6.3K) = Eg(1T). we get avr equals 4.7x10° cm/s. We could take vg/va from
microwave measurements and determine a, but the error is large so we will put all

the pieces together in Chapter 7 when we have another measure of vg/va (from zero
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Figure 4.13: Field dependent T-linear coefficient plotted vs V' H. after Wright et al. (1999).

field no/T) and also avp (from in field xo/T).

Upon generalizing to finite temperature. Simon and Lee (1997) have predicted
that thermodynamic and transport properties should obey scaling relations with
respect to the variable T/v'H. Recent work by Kiibert and Hirschfeld (1998a) show
a breakdown of scaling when the impurity band width ~ becomes comparable to the
average quasiparticle energy shift £y due to a magnetic field. In the dirty limit. the
specific heat is predicted to have an H In H field dependence rather than a vH. The
low temperature data (Moler et al. 1997, Fisher et al. 1993) seem compatible with
both forms.

Already. we see how complementary specific heat measurements are to thermal
conductivity. Both are governed by the same parameters. so we are in a position to
make a direct comparison between theory and the two measurements. Moreover we
shall see whether the assumptions built into the current theory, namely that inelastic

and vortex scattering of quasiparticles are negligible. are indeed reasonable.



5 Experimental Details

[n this chapter we describe details of the experiments in a dilution refrigerator
which can be inserted into a homogeneous magnetic field. Together. they can produce
an environment of 15 mIK in 13 T. although tvpical operation limits are 50 mK and

3 T for the measurements we describe.

5.1 The Cryomagnetic System

To probe rhe residual quasiparticle behaviour. it is necessary to cool the samples
below 100 mK. so we use an Oxford Instruments Kelvinox 300 *He-*He dilution
refrigerator {fridge) whose base temperature is 7 mK unloaded. With all the wiring
and interference from a nearby radiofrequency (RF) antenna. experiments tend to
start at 30 mK or higher. In order to access the 20 mK range. we have recently
enclosed the system in a 100 dB shielded copper room: work on lower temperature
thermometry is currently underway.

Although the *He-*He mixture is in a closed system and therefore constantly
recveled. we do use roughly 25 litres of *He (LHe) per day. so in order to keep
the consumption of LHe at a minimum. there are two layers of insulation between
the main *He bath and the outside world. The Dewar consists of an outer vacuum
chamber. a liquid nitrogen (LN,) filled jacket and then the main bath. which holds
38 litres of LHe.

The principle of *He-*He dilution refrigeration was first proposed by H. London
(1951) but it was only in 1963 that a University of Leiden group first built one that
reached 220 mK. These days. commercial units are available which can easily go
down to 2 mK. To go any lower. most apparatus include dilution refrigerators as a
preparatory stage of cooling.

By pumping on *He whose boiling temperature is 4.2 K. it is possible to reach
1.2 K. whereas with *He. it is possible to reach 0.3 K due to its higher vapour
pressure. However, by creating a mixture of the two. the millikelvin range becomes
accessible. Below 0.86 K. phase separation occurs. with the lighter pure *He phase
fAoating on top of the dilute phase. so-called because the 6.4% *He is “diluted” in
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an inert superfluid bath consisting of the 93.6% *He. It is owing to this miscibility
that the whole process is possible. Why should *He want to be in the lower *He
rich phase? In this phase, the *He are closer together than the 3He atoms are in the
3He rich phase. due to the higher zero point motion of the lighter *He. So in other
words. the *He atoms are closer to each other. This means that for a 3He atom in
the dilute phase. it is closer to its *He neighbour and therefore its binding energy
is larger—this is the energy required to remove an atom from the liquid phase into
vacuum. Moreover. when *He crosses the phase boundary into the dilute phase. the
change in enthalpy is positive so that the temperature of the mixture decreases. By
removing *He from the dilute phase. more *He will cross the boundary and further
cooling results. This is accomplished by pumping on the still. in which the dilute
phase is heated to roughly 0.7 K. at which temperature the vapour pressure of *He

is about 1000 times higher than that of *He. so that 3He is distilled and circulated.

[n practice. the dilution refrigerator is extremely efficient. Let us trace the circula-
tion of *He from the two storage dumps maintained at room temperature. When first
cooling down. the gaseous mixture goes into two LNy-cooled traps at 77 K to remove
impurities like nitrogen and oxvgen before being further purified by the main bath,
which traps hyvdrogen and other light gases. From this point onward. a vacuum held
by the inner vacuum chamber (in which the samples are located) isolates everything
from the main bath. The gas now enters the condenser. which is in thermal contact
with the 1 K pot. fed by the main bath through a needle valve and maintained at
roughly 1 K. as the name suggests. The high impedance of the condenser causes the
mixture to liquify before passing through a series of heat exchangers into the mixing
chamber. in which phase separation occurs. At the same time, some of the dilute
phase is going up into the still via the same heat exchangers. thereby cooling the
incoming liquid. From the still. *He is pumped away by a roots pump backed by
a sealed rotary pump. Once the dynamical equilibrium is achieved. only the 3He is

circulated and one gets continuous cooling of the mixing chamber.

The entire fridge can be inserted into a commercial 15 T superconducting magnet.
At the temperature of the main bath of 4.2 K. the quench field of the magnet is 13 T.
In order to obtain 15 T, it is necessary to further cool the magnet. Of course one
could pump directly on the main bath. but in this case brute force is neither necessary
nor particularly desired! Instead, one can use a lambda-point refrigerator (A-fridge),
which is a toroidal coil that can be fed by the main bath via a needle valve. By
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pumping on this small volume of *He. the surrounding bath cools and the cooler
helium sinks to the bottom of the bath. This cooling process continues until the
helium reaches 2.17 K. the lambda-point at which *He becomes a superfluid. Further
cooling pushes the superfluid boundary up to the top of the A-fridge so that the
bath around the magnet is cool enough to sustain a current of 100 A. supplied by a
PS-120-10 power supply from Oxford [nstruments.

For sensors or experiments which are sensitive to a magnetic field. there is a
cancellation field which produces a zone of zero field about the mixing chamber. This
is where we keep our main thermonieter. a caiibrated Ge resistor from Lakeshore.

Before commencing with an experiment. we must filter all the wires going into
the fridge: otherwise. parasitic capacitance would heat up the sensors and give false
readings. To this end. we have constructed filter boxes for the three connectors. These
Al boxes hold capacitive-inductive filters from Spectrum Control with an attenuation
of 20 dB (70 dB) at 3 MHz (1 GHz) which rid the higher frequency RF noise. The
effect of the filters is most pronounced on the Ge sensor: for example. at 50 mk.
removing the filter causes the Ge to immediately heat up to at least 100 mKk. We

also use a low-pass filter on the current going into the heater.

5.2 Thermal Conductivity: The Technique

[n principle. the steadv-state one heater. two thermometer technique emploved to
measure thermal conductivity is very simple (refer to schematic diagram in Fig. 5.1);
however. complications arise from working at low temperature with samples of mod-
erate thermal resistance.

A typical sample mount is 30 mm by 30 mm. on which we fit (a) a copper sample
holder known as the “tongue”. (b) a heater. (c) two thermometers and (d) 2x14

contact pads for wires:

(a) the sample holder is a thin plate of copper of sides 8 mm (plus protrusion on
one side for the sample) and thickness 1 mm. with a 4 mm clear drilled in the
centre so that an M4 brass screw can be used to establish good thermal contact
with the mount. to which metallic samples are attached by solder and others

by silver epoxy:

(b) the heater is simply a resin-embedded strain gauge from Micro-Measurements—
prized for its lack of temperature and field dependence—which we heat resis-
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Figure 5.1: A schematic diagram of a thermal conductivity mount. adapted from Lambert (1998).
The coils on the heater are made of Nb-Ti superconducting wire.

tively (order 0.3 nW power at 100 mK) by passing a current from a current

source.

(c) each thermometer is a 1 k€ RuOs resistor available in bulk from Dale, which we

calibrate in situ against a calibrated Ge sensor for each measurement:

(d) the thermal conductivity measurement takes ten wires: two for the heater and
four for each thermometer: the remaining four wires are for the resistivity

measurement using the same contacts.

Before getting any further we must first construct miniature mounts for the heater
and thermometers. The heater, or strain gauge. is glued with GE varnish to a 2x3
mm? piece of Cu foil: underneath the foil. there is a non-superconducting contact to
which a 100 pm Ag wire from the sample is soldered. Mounting the thermometers
is a bit more involved since we have to heat-sink the wires to make sure we are
not heating the sample by measuring it. This is accomplished by constructing a
2x3x1.5 mm? rectangular base with a cylindrical extension 1.5 mm in diameter and
2.5 mm long around which to wrap wires: we apply a layer of Ecobond 286 epoxy and
tissue paper between the rectangular face and the RuO, chip, having first sanded the
wraparound contacts from the sides and bottom. Then one 40-gauge Cu wire from
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a twisted pair is soldered to each of the two contacts on the RuQ, chip. wrapped
around the cylindrical part and soldered to two contact pads on the side of the
rectangular base; the twisted pairs are brought into thermal contact with the Cu by
GE 7031 varnish. Additionally. there is a 100 gm Ag wire soldered to the bottom of
the rectangular base using non-superconducting solder to bring the thermometer and
uilibrium with the sample. Finally, there ic a thin Vespel post
(made by DuPont. chosen for its poor heat conductivity) to hold the thermometer
at sample height. Note that the wires were carefully selected to have high thermal

resistances compared to the sample so that all the heat will go through the sample.

Now that we have the components. we can assemble a sample mount. The ther-
mometer mounts are held in place by GE varnish on the sample mount and are
christened T+ and T- depending on proximity to the heater. To each of the two
contact pads on the thermometer mount are soldered two coiled 50 pm Manganin
wires. one for current and one for voltage. making four wires in total going to each
thermometer. Next we plant the heater mount in much the same fashion. only the
current to and from the heater is carried by two 50 pm superconducting NbTi wires
3 cm in length. There remains only to attach the Ag wires from the heater and ther-
monieters to the silver wires on the sample for the thermal conductivity part of the
measurement. As regards the resistivity. we attach a Ag wire to the wire between
sample and heater as [+: similarly. one to the wire from sample and thermometer
T+ as V'+ and one to the wire from sample to thermometer T- as V-. In this case.
[- is Earth.

Once the sample mount is ready. it can be attached to the “tail” of the fridge using
three M3 brass screws. The tail is machined from one solid rod of Cu. with an M6
screw on one end which screws into the bottom of the mixing chamber of the fridge
and a flat sample stage large enough to accommodate three thermal conductivity
mounts at the other end. The cylindrical part of the tail has two cross-sectional
slices along the length to reduce eddy current heating, which goes as (diameter)?.
For samples requiring zero magnetic field when the main magnet is on. there is a
separate sample stage which can be mounted on the bottom of the mixing chamber.

in the compensated zone.

To measure the thermal conductivity of a sample. we use a Stanford Research
Instruments SR-850 lock-in amplifier to measure each thermometer and a Keithley
224 current source for the heater. Temperature control is accomplished by a TS-530
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Figure 5.2: An example of RuO, calibration against the Ge (see text).

from R\-electronikka temperature controller and a Linear Research LR-700 resis-
tance bridge monitoring a calibrated Ge sensor from Lakeshore Cryogenics. At a
given temperature. we wait until the thermometers give a stable reading, which usu-
ally means that thermal fluctuations and electrical noise are less than 30 nV out of
a typical signal of 60 p\': often the noise is less than 10 nV. Once deemed stable,
we measure the thermometers with zero heat applied to the sample. This will even-
tually make up a calibration curve of each RuQ,. Next we apply a current to the
heater to set up a temperature gradient (AT/T = 5%, typically) across the sample.
After further waiting, we measure the thermometers again and then go to the next

temperature.

Data analysis consists of fitting the thermometers. First we plot voltage vs tem-
perature of one thermometer with no temperature gradient. Then from a polynomial
fit of the temperature, we can determine the temperature corresponding to the sig-
nal with the heat on (see Fig. 5.2). The gradient is the difference between the two



66 5 EXPERIMENTAL DETAILS

thermometers. AT. and the thermal conductivity x is simply ©

I’R -
N = m (D].)

where [ is the current supplied to the heater of resistance R (Q = I°’R) and o =
(cross — sectional area)/(length between contacts) = A/L is the geometric factor
of the sample.

With heat transport. one always worries about heat losses. Below 1 K. radiative
effects are irrelevant. but not so current “leaks™ via wiring on the mounts. To ensure
that all the heat from the heater goes through the sample. that heat path must have
the lowest thermal resistance of all possible paths. In the thesis of Lussier (1997). it
was shown that losses for these mounts are less than 1% below 1 K for samples with
a thermal resistance of roughly 11" = 10% W/mK. which corresponds to our least
conducting sample.

As a test of the set-up. we measured the thermal conducitivity of a piece of dirty
Au wire of thermal resistance 177 = 1040 W/mk. Since Au is a normal metal. both
» and p are constant at low temperature. giving a Lorenz number of 2.57x107®
WOQK™2. which is 5% larger than L, (see Fig. 3.3). Thus heat loss is at most 3% for
samples of comparable thermal resistance: in fact. it is much less considering the 5%
error includes that from fitting the thermometers.

In a magnetic field. there are additional factors to consider. First of all. our
RuQ» thermometers have a measurable magnetoresistance. Since we calibrate the
thermometers for each run against a known Ge resistor mounted in zero field. we al-
ways measure the true temperature. We have. however, made one modification to the
sample mounts due to the long equilibration constants associated with the specific
heat upturn due to the nuclear moment in Cu. By replacing the Cu thermometer
mounts by Ag ones, we have reduced the waiting times by 75%: the remaining limi-
tation comes from the Cu within the YBa,Cu30:_; samples themselves.

For our study of the magneiic field effect on xg/T of YBayCu3O7_;. we normally

measure the samples in zero field before applyving a field. We were concerned about

SFor low temperature, Q = 2 fnL drg=4 fo dTx(T) where A is the cross-sectional area and L
is the length between contacts. In the case of electrons. x, = KoT where xq is a constant. This means
that Q = 3 5(T3 - T]) = 22 (T2 - Th)(T2+Th) = £80TAT = 2k, (T)AT if the gradient is small.
This result is general, and works the same for phonons when x4 is assumed to be proportional to
T3,
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Figure 5.3: Lorenz number L = xgpo/T divided by Ly = 2.45x107% WQ/K*® vs temperature for
a picce of Au wire.

the homogeneity of the vortex lattice because pinning is known to be strong in
these materials. so we field-cooled a sample. This involved pre-cooling the magnet
to 4 K while the samples within the [V'C remained at room temperature. Then by
slowly lowering the insert into the He bath (and using a lot of He!) and introducing
some exchange gas into the [VC. we cooled the sample below the superconducting
transition in a field of 8 T. Upon measuring the thermal conductivity. we got the
same results as when the sample was cooled in zero field. so there is no need to field
cool our samples.



6 The Thermal Conductivity of UPdsAl;

A finite limiting value for ~./T is one of the major predictions of current theo-
ries of transport in unconventional superconducting states ({Norman and Hirschfeld
1996a. Graf et al. 1996) and references therein). A missing U-atom acts as a Kondo
impurity in a compensated lattice. causing multiple scattering and large phase shifts
gy = 7/2. Within such a resonant impuritv scattering model. a line of nodes in the
gap can give a finite intercept in x/T vs T.

Here we present our experimental data on UPdyAls. along with a review of similar
work performed by others. We also include the thermal conductivity of UPty since

we will use the theory developed for UPty to trv to explain the situation in UPd, Alj.

6.1 Review

To the best of our knowledge. there have been two measurements of the thermal
conductivity of UPd,Al;. The first one by Geibel et al. (1992). on a polyeryvstal of
similar quality to ours (based on 7). goes down to roughly 100 mK. We see in Fig. 6.1
that a smooth extrapolation of the low temperature zero field /T has an intercept

at T =0. In an applied field. /T increases. though there is no chance of seeing the

the lowest applied field is already H.,/2. where there is significant pair-breaking.

In the first measurement of a single b axis crystal, Hiroi et al. (1997) used a
‘He fridge presumably. since the lowest temperature is about 300 mK (see Fig. 6.2).
Below | K. they obtain x/T ~ T. so we can extrapolate to T = 0. There is also
a finite ng/T. though to determine the actual value it would be better to go below
100 mK. Indeed. our data go to lower temperature, and by measuring a c axis crystal
as well, we can determine whether there are nodes along ¢ (not seen by tunneling)
and get a measure of the anisotropy.
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Figure 6.1: Temperature dependence of the thermal conductivity divided by temperature x/T in
UPdaAly obtained by Geibel et al. (1992). A growth in /T appears with applied field. The curves
do nat appear to be corrected for magnetoresistance, which is positive and therefore brings & down.

6.2 Sample Properties

A total of three crvstals were measured—one polvcrystal and two single crystals.
The polverystalline sample was grown and annealed using RF induction heating in
ultrahigh vacuum. This sample has a T, of 1.86 K and a room temperature resistance
ratio (RRR. p(300 A)/pp) of 36 (pg = 3.8 uf2cm). The two unannealed single crystals,
cut from the same ingot. were grown by N. Sato et al. (1992) at Tohoku University,
Sendai. Japan. using the Czochralski pulling method in argon. From the resistivity
measurements in Fig. 6.3. the single crystals have lower T.’s, being 1.55 K for the
b-axis crystal (RRR = 21) and 1.25 K for ¢ (RRR = 7).

6.3 Experimental Results

We begin with the normal state (Fig. 6.4) attained in a field of 4.5 T, since it is
metallic and easier to understand. Magnetoresistance is positive and roughly 20%
in 4.3 T. In the polycrystalline sample, the Lorentz number L = kp/T at 100 mK
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Figure 6.2: Temperature dependence of thermal conductivity divided by temperature /T in a b
axis UPdaAly crystal obtained by (Hiroi et al. 1997). As in Fig. 6.1. /T increases with field.

is 2.32x107% WQK~2. which is 0.95Ly (Ly = 2.45x107% WQK™2). in agreement
with the Wiedemann-Franz law. For the single cryvstals. xy /T is extremely flat. and
L =096Ly along b and L = 1.1Ly along c¢. In all three cases. the agreement with
the Sommerfeld value Ly tells us that the linear term is purely electronic. As a
result. we take the electronic part of xy/T to be Ly/pp from 0 to 1 K. Regarding
the temperature dependent part. the roughly linear increase in xy /T seen in Fig. 6.4
must be due to phonons. since magnons have a gap of about 17 K, determined from
high resolution inelastic scattering (Metoki et af. 1998).

Next. using Kpn = Cpntpn-\pn/3. where the specific heat cpp = 8.0xT? Jm=3 K~
{(Caspary et al. 1993) and the average sound velocity tpn = 5.73x10% ms~! (from
elastic constants of Modler et al. (1993)), we estimate the phonon mean free path
Apr to be 50 um at 0.6 K. By 175 mK it has increased to 160 um. roughly 1/4 the

sample size. These are surprisingly long phonon mean free paths for a metal.

Let us now turn to the superconducting state data, shown in Fig. 6.5. We ob-

serve the existence of a substantial intercept in x/T in all three samples. A smooth
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Figure 6.3: Resistivity p vs temperature T for the three samples of UPd»Alz. The polycrystal has
the highest T. and sharpest transition. showing that it is of a higher purity than the single crystals.

extrapolation of the data for the polverystal to T = 0 gives a limiting x/T = 0.6-
0.8 mW K=2 cm~!. about 15% of the normal state value Ly/py. most likely due to
residual quasiparticle excitations. For the single crystals. we find x/T to be linear for
T < 0.5 K. from which fit x¢/T is (0.9240.06) mW K=2 em™! (0.29+0.02) along b
(¢). Here, the residual quasiparticles comprise about 25% of the normal state value.
We can compare all three quantitatively.

Since UPd,Al; is hexagonal. we can average x for the single crystals to see if
thev agree with the polverystal. by taking %rcb + %r{c. Indeed, when we compare this
average value with the polyerystal. we find agreement at low temperature. shown
in Fig. 6.6. At higher temperature. the phonons come into play. which are highly

sample dependent, so the agreement breaks down.

With respect to the previous low temperature measurement in a polycrystal,
Geibel et al. (1992) find a residual linear term of roughly 0.8 mW K~2 em™!, which
agrees verv well with our value. In the b axis measurement of Hiroi et al. (1997), at
300 mK (their lowest temperature), /7 is about 2 mW K~2 cm™!, which is what
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Figure 6.4: Normal state thermal conductivity divided by temperature ~y /7T in UPd,Alz for the
polyerystal (solid circles). b axis crystal (open circles) and ¢ axis crystal (open squares).

we obtain. All experimentally determined values of x/T that we know about agree

extremely well.

At this point. we see that the normal state behaves as a metal. obeving the WFL
at T = 0. A slope develops at finite temperature. which we attribute to phonons.
since the magnons are gapped. In the superconducting state. the main result is the
observation of a linear term in «. indicating the existence of a residual normal fluid.
We point out that in comparing different samples. xq/T does not appear to be much

affected by the impurity concentration.

6.4 Comparison with Theory

Assuming the dominant scattering of phonons to come from grain boundaries and

electrons. we can estimate the boundary scattering rate B and the e-ph coupling
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Figure 6.5: The thermal conductivity of UPd.Aly. divided by temperature. for the polycrystal
(solid circles). b-axis crystal {open circles) and e¢-axis crystal (open squares).

strength £ from Debye theory:

YT By ELT (6.1)

k;;T:} /'x | I.lex(e.r _ l)—-z
— dr
0

A fit to kv (T)-~y(0) using Eq.(6.1) vields B =1.5x108s™! and £ =5.9x10% K~'s7!,
which means that electron scattering dominates at all but the lowest temperatures.
This value of £ is somewhat less than in URu,Sis (1.5 x 107) (Behnia et al. 1992),
and much less than in Nb (2x10°) (Kes et al. 1974) and V(3x10%). This anomalously

weak e-ph coupling is the most unusual feature of the normal state x in UPd,Al.

Now. as seen in BCS superconductors such as Nb (Kes et al. 1974). the large
reduction in the number of quasiparticles available for scattering phonons at low
temperature should cause a major increase in .\,;. We focus our attentjon on the
polverystal since it is the purest sample: the other two may exhibit extrinsic effects.
If the rise in xy/7T is due to phonons scattering off electrons, one would expect the
slope of k/T in the superconducting state to increase dramatically. It does not. In
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Figure 6.6: Thermal conductivity divided by temperature »/T vs T for average of b and ¢ compared
with the polycrystal.

fact. it seems that the non-electronic contribution to xy /T is unaffected by supercon-
ductivity, evidenced by the similarity of slopes seen in Fig. 6.7 for the polverystal. (It
would have been informative to measure x through T.. except this was not possible
in a dilution refrigerator.) Whether other scattering mechanisms play a role requires
further study. At this stage. we adopt the following simple-minded procedure: the
electronic thermal conductivity x./7T in the superconducting state is obtained by
subtracting from the A = 0 data in Fig. 6.5 the slope of £y /T. The result is shown
in Fig. 6.8. normalized by Lg/po.

Calculations such as those performed for UPt3 using a spherical Fermi surface
" give the curves shown in Fig. 6.8 (Norman 1996b). The unitary limit is assumed.

inelastic scattering neglected and the impurity scattering rate taken to be [ =

“For a spherical Fermi surface we use spherical harmonics to represent the gaps: Yig ~ coso
corresponds to the polar gap. Y} ~ sin¢ the axial gap. Y59 ~ 3cos®0 — 1 the “tropical” gap,
Y5, ~ singcoso the hybrid-I gap and Y32 ~ sin®écoso the hybrid-II gap. Calculations were not
done for the axial and tropical gaps since the axial gap contradicts our measurements and the
tropical gap was only later considered.
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Figure 6.7: Thermal conductivity divided by temperature vs temperature in polycrystalline
UPd»Aly. showing similar low temperature T-dependence in superconducting and normal states.
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Figure 6.8: Normalized electronic thermal conductivity (see text). The data (points) are compared
with resonant impurity scattering calculations using spherical harmonics for 3 gaps with a line node:
polar (solid line). hybrid I (dashed line) and hybrid II (dotted line). By magnitude alone, it is not
possible to discriminate between the hybrid gaps.
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Figure 6.9: The ratio x./x, in UPdaAl;. which is finite down to T = 0. The theoretical curves
correspond to the polar gap (solid line). the hybrid-I gap (dashed line) and hybrid-II gap (dotted
line).

__,ir = 0.3T. (Norman 1996b). in agreement with the value determined from de Haas-
van Alphen measurements (Inada et al. 1994). The comparison in Fig. 6.8 shows
that the theory predicts the right magnitude for the residual linear term. which is
independent of the wav we treat the phonons. This is not true for the T-dependence,
thus the discrepancy seen in Fig. 6.8 must be taken with caution. We emphasize that
this treatment only makes any sense at T = 0.

Now as for the anisotropy. we see in Fig. 6.9 that the ratio x./~p remains finite
at T = 0. Right away we can discard the polar gap. which has no node along ¢, and
hence a ratio of identically zero. We can also rule out the axial gap which has only
nodes at the poles. Since the “tropical™ A, gap has two line nodes shifted off the
equator. there can be a quasiparticle momentum component along ¢ even though
there are no nodes in the ¢ direction: in fact. at T = 0. the ratio is expected to be
Ke/ky = 1. With only spherical Fermi surfaces in the calculations, it is difficult to
judge between the two hyvbrid gaps. Until further calculations are performed. we will
have to be content with having eliminated the polar and axial gaps.

It is interesting to compare with measurements in other heavy fermion supercon-
ductors. In high purity UPt; single crystals. the anisotropy x./ks drops as one enters
phase B below T (see Fig. 3.1). This immediately strikes out the axial gap. Of the
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Figure 6.10: Thermal conductivity of UPty of Lussier et al. (1996) along ¢ (open circles) and b
(solid circles). The curve marked lg is for the £, (or hybrid-I} gap. and 2u for £, (or hybrid-II).
with the solid (dashed) line corresponding to J along b ().

simple gaps which we consider. the polar and hybrid gaps are consistent with this
finding. As for the separate ~,/T and ~./T data. there is no evidence for a finite
intercept (Lussier et al. 1996). even in data taken down to 16 mK as Suderow et al.
(1997) have done. This may be due to a lower impurity scattering rate. in accordance
with the lower residual resistivities (0.23 and 0.61 uQcm). However, estimates show
that the scattering rates are not so different. with [(=0.1-0.27, (Lussier et al. 1996).
From theoretical fits of UPt; shown in Fig. 6.10. from which we observe that the
hybrid-II gap (E»,) provides a better fit. [(=0.05T, or less (Norman 1996b). Recent
measurements of Suderow et al. (1999) do see a linear term in electron-bombarded
samples of high purity UPts. up to 50% of the normal state value when py is increased
to 4 uQlcm. This contradicts the popular E5, gap. which predicts a universal linear
term. Several “new” gaps have been proposed. but we refrain from describing them in
detail as they may well be overthrown in light of more theoretical and experimental
work.

As for URu,Sis, a large residual x/7T —approximately 30% of the normal state
value—was observed for a crystal with py=9.5 uQlcm (Behnia et al. 1992). Roughly
speaking, this makes sense within the theory since pg is 3 times greater than in our
UPd,Al; sample. Finally, we point out that in URu,Sis, the phonon contribution
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is more easily explained. The slope in /T in the superconducting state at low
temperature is roughly - times steeper than in the normal state, consistent with the
idea that phonons conduct better due to the loss of electrons. their main scatterers.
Again. it is puzzling that in UPdyAly. with a comparable e-ph coupling. the loss of
electrons appears to have no affect on the phonons.

We have seen that all existing thermal conductivity data of UPd,Aly in the su-
perconducting state show a T = 0 linear term of comparable size. However. without
knowing the details of the samples measured by others. and with such a limited scope
so far. it is difficult to claim any universal behaviour. Compared with URu»Si,, the
e-ph coupling term in UPd,Aly seems anomalously low. With respect to the ob-
served linear terms. UPdyAly. (dirty) UPty and URu»,Siy all have order parameter
zeroes. While both the axial and polar gaps have been ruled out in UPd,Als. there
still remain several possibilities of varving degrees of exoticism to be examined more

closely.

6.5 Conclusion

Vartous probes show the existence of nodes in the gap of UPdsAl;. The power law
temperature dependences of the NMR 1/7T; and specific heat in UPd, Al were among
the first indications. From pSR and the specific heat jump. it appears that the be-
haviour follows that found within weak-coupling BCS theory. only with an uncon-
ventional gap. However. tunneling conductance data seem to favour strong-coupling
of the order parameter to spin wave fluctuations. While this is the prevalent opin-
ion. there has not vet been any unambigous evidence supporting spin-wave mediated
superconductivity.

By using thermal conductivity. we have observed a finite xg/7 in UPd,Als, of
comparable magnitude to measurements made by others. From this, we also conclude
there must be a line node along the & direction. Our observation of a finite residual
anisotropy k./r, indicates that either there are nodes along the c-axis or there are
line nodes about ¢ which are not in the equatorial plane. The latter would support
tunneling results favouring an 4, gap with two line nodes about ¢ but no nodes
along it. The structure of the superconducting gap remains unclear, with several
possibilities-either a combination of polar point nodes and one or more line nodes—

remaining open. More work. both experimental and theoretical, are necessary.
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In a sense. this work on UPd, Al serves as an introduction to the possibilities of a
directional probe such as thermal conductivity. We will see, in the next chapter. the
strength of this technique in revealing the character of residual quasiparticles when

the order parameter is better known.



7 The Thermal Conductivity of
YBa,Cu;0-_;

7.1 High temperature review

Counsidering the results reported in this thesis have been mainly performed in a
dilution refrigerator. anvthing above 1 K is deemed ~high temperature™! Of course.
3He people would call our temperature range “high”. So we hereby define “high
temperature” as being above 53 K within the confines of this thesis. In this section we
review ~ above 3 K. where we can already learn a lot about the dominant scattering
mechanisms in the cuprates. as well as the contribution to « from both electrons and
phonons.

The main feature of £(T) in YBa,Cu;O;_; at high temperature is the peak below
T.. displaved later in our discussion of Zn doping (Fig. 7.2). Whether this peak is due
to electrons or phonons was unclear for some time. In charge conductivity (Section
+.4.2). which only involves the electrons. the peak arises as a result of the falling
inelastic scattering rate beating out the decreasing number of electrons. The same
argument can be applied to ~. but we have also phonons to consider: given that the
electrons are condensing into the superconducting state. phononic heat conduction
will certainly increase when their main scatterers “disappear” from sight. Can we
somehow separate the charged from the neural carriers? Fortunately. there is a way:
thermal Hall conductivity. an energy analogue of the Hall effect.

The main advantage of thermal Hall conductivity x;,. also known as the Righi-
Leduc effect. is that it is possible to measure quasiparticle heat transport at all tem-
peratures. [n principle. in a field applied transverse to the current. the quasiparticle
scattering amplitude to the right is different from that to the left. This asymmetric
scattering produces a transverse current which changes sign with the applied mag-
netic field. By contrast. phonons are scattered symmetrically, and as long as the
vortices remain pinned, xp, can be subtracted. Moreover, it is possible to extract the

quasiparticle mean free path as a function of temperature, as in the inset of Fig. 7.1.
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Figure 7.1: The total in-plane thermal conductivity (solid curve) and the electronic portion x¢#!
(open circles) measured by Krishana et al. (1993). Inset: the extracted mean free path € (solid
circles) in YBaxCu30-_; from x;, compared to that determined from charge conductivity data of
Bonn et al. (1994) (open circles).

Due to the application of a magnetic field. however. the quasiparticle mean free path
determined from ~,, will be different from that in s in zero field if vortex scattering

is important.

In YBa,Cu30;_s. the measurement by Krishana et al. (1993) of x;, has been
instrumental in identifving the electronic contribution to the peak below T.. The
electron peak coincides with the total peak. rising from a small normal state value to
a peak of comparable size to the total peak (Fig. 7.1). Thus roughly half of the peak
is electronic in origin. with the other half coming from phonons. Below the peak,
the saturation in the inelastic scattering rate means that the decreasing number of
electrons dominates and so « drops rapidly as T — 0: phonons naturally drop out
with decreasing temperature. This leaves mainly elastic impurity scattering below
about 20 K, in agreement with Hosseini et al. (1998b). By comparing the extracted
scattering rate [ of order 0.087, with the mean free paths determined from microwave
conductivity (Bonn et al. 1994). one gets vp = 2x107 cm/s.

Now the effect of impurities can be profound. With Zn doping,. the peak is dramat-
ically reduced. as seen in Fig. 7.2, while the position of the peak shifts nonmonoton-

ically. Initially, the electronic peak dominates and moves to higher temperature with
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Figure 7.2: Thermal conductivity x of YBas(Zn,Cu;_,)307_; as a function of temperature, with
r = 0.0%. 0.6%. 2% and 3% (Pu 1997).

disorder. At some point. however. the phonon peak (at 20-25 K) gains importance as
the electronic conductivity is further suppressed by impurity scattering. Eventually.
the peak should stop moving when &, disappears. leaving only the phonon peak.
Thus from high temperature ~ in YBa,Cu;0;_5. we have learned that inelastic
scattering gives rise to a peak. after which it saturates and leaves only elastic scat-
tering below 20 K or so. Also. this peak comes from both phonons and electrons. so
we see there are indeed a lot of phonons in these systems. Furthermore. the peak
height is very sensitive to impurities such as Zn. [t remains to be seen if this impurity

dependence carries over to low temperature.

7.2 Low temperature review

While T, for YBa,Cu3zO;_; is 93 K. it is necessary to study thermal excitations
down to T./1000 for meaningful interpretations of electronic properties: in fact, for
all temperatures. phonons make a significant contribution to x, as mentioned above.
[n order to see the clear electronic signature (linear temperature dependence), it is
necessary to go low enough in temperature so that phonons and cuasiparticles can
be distinguished from one another. This occurs when the phonons have reached their

boundary-limited mean free path where the thermal conductivity has a well-known
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Figure 7.3: Residual linear term xo/T as a function of scattering rate [ (in units of T.) for
YBas(Zn,Cu;.-,)307 4. measured by Taillefer et al. (1997). Note that an increase in [ by a factor
of 40 hardly changes the residual linear term. The inset shows the same data when the geometric
factars are adjusted according to Section 7.3.

T3 dependence. Only in this limit can a reliable zero temperature extrapolation be
made.

There exist several measurements of the low temperature thermal conductivity
of YBa,Cuy0s_s. Since single crystals have become widely available. v:e will concen-
trate on reviewing measurements on single crystalline YBay;CuzO;_s. and we refer
interested readers to earlier reviews (Burns 1992. Cvrot and Pavuna 1992) for re-
sults on powders and films. We will see that even with single crystals there can be

inconsistencies between different measurements.

7.2.1 Universal Heat Conduction

Four vears after universal conductivity in d-wave superconductors was first predicted
by Lee (1993). it was observed in heat transport in YBa,CuzO+;_; (Taillefer et al.
1997). By varving the Zn concentration in YBas(Zn;Cu,_;)30;_s from 0.00 to 0.03
in four a-axis single crystals. it is possible to effectively increase the scattering rate
by a factor of 10. determined from the change in py. It was found that the finite
linear term kq/7T as T — 0 is virtually independent of the scattering rate I', as seen
in Fig. 7.3.



84 7 THE THERMAL CONDUCTIVITY OF YBA2CU3O;_;s

In addition. Taillefer and co-workers found that the magnitude of the residual lin-
car term bears quantitative agreement with theory based on the d;:_,» pairing state.
It we take the simplest d-wave gap A(0) = Agcos(20), with slope § = dA/do = 22,,
where we take the weak-coupling Ny = 2.14kgT¢ together with the experimental
value of iiwy equal to 1.3 e\ (Basov et al. 1995) and put these into Equation (2.23),

we get
roo/T =011 mW K2 em™ (7.1

which is within a factor of two of the measured value of 0.1940.03 mW K2 ecm L.
This confirmation of universal transport provides a strong validation of d-wave
transport theory. Having thus established the basic theory. there remain tests of the

various predictions of in-plane anisotropy and magnetic field effects.

7.2.2 Anisotropy

The crystal structure of YBa,CuyO;_; supports two channels of electronic conduc-
tion in the basal plane: the roughly tetragonal CuQO, planes. stacked in pairs along
the c-axis. and the one-dimensional CuO chains running along the b direction. po-
sitioned half-way between the CuQ, bilayvers. Charge conduction along the b-axis is
therefore higher than along the a-axis. by a factor which depends on the degree of
oxygenation. being maximum for = 0. and on the level of defects in the chains. In
optimallv-oxvgenated crystals of high purity (6 >~ 0.1). the anisotropy in the elec-
trical resistivity at 300 K can be as high as p,/p» = 2.3 (Gagnon et al. 1994). This
factor drops significantly (down to 1.2 or less) in the presence of impurities such as
gold. which tends to go preferentially into the chains. A satisfactory treatment of the
ab anisotropv in the electronic conduction of YBa;Cu3O+_s has not vet been reached.

At the gross level. it would appear that one can account for the anisotropy in both
the plasma frequency w, in the superconducting state {as measured by far infrared
reflectance) and the DC conductivity ¢ in the normal state simply in terms of an
anisotropy of 2.2+0.2 in n/m*. the ratio of carrier density to effective mass (Basov et
al. 1995). However, upon closer investigation. there are several indications that this
simple picture fails. First. the scattering rate is clearly not the same for electrons
in the chains as in the planes. i.e. it is not isotropic as the simple picture would

imply. From Fig. 7.4. the temperature dependence of the resistivity is linear along



7.2 Low temperature review 85

300 riev TPy e vy riP Ty vy v rrr o et

250 e
—~ 200 :
E .
Q ;
G 150 -
= .
< 100 -

50 3
o 1 j | l 1 L | & ,l 1 1 1 2 t 1 1 1 ' Ll'l 1 4 l 1 1 LAL:
0 50 100 150 200 250. 300

T (K)

Figure 7.4: The electrical resistivity of YBa,CuzO;_s for current along a and b obtained by
Gagnon et al. (1997). Along a. p is linear in T. whereas along b. there is noticeable curvature.

the a-axis but not along the b-axis. revealing that inelastic scattering is different
in the chains (Gagnon et al. 1994). The elastic scattering from defects will also in
general be different. either because of preferential impurity distributions {e.g. Au in
the chains. Zn in the planes) or because of the large density of oxvgen vacancies
found in the chains of most cryvstals (e.g. 10% in YBasCu3QOg9). A second indication
comes from the anisotropy in the thermal conductivity above 53 K (see Fig. 7.5),
which strongly suggests that the contributions of chains and planes are qualitatively
different (Gagnon et al. 1997). Note that the other extreme of a model which treats
the chains and the planes as being entirely uncoupled is equally simplistic, though
a straight subtraction (x, — K) may give a somewhat qualitative measure of chain
conductivity. One finds that this difference shows no feature at T,. and develops a
peak below about 35 K. Indeed. the reasonably good conduction along the c-axis
indicates a fair coupling between the two channels (for recent example see work of
Hosseini et al. (1998b)).

Previous attempts to measure the anisotropy of transport in the superconducting
state of YBay;Cu3z0s_s have been somewhat inconclusive. The real part of the charge
conductivity. gy, estimated from microwave measurements of the surface impedance

and of the London penetration depth combined with infrared measurements of the
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Figure 7.5: Plane and chain thermal conductivity. after Gagnon et al. (1997). where T" is T, for
the planes and about 53 K for the chains. (a} Comparison of plane (x,) and chain (xy — &) heat
conduction with normal state value subtracted. (b) Extracted electronic contribution of Kptane and
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plasma frequency. exhibits an anisotropy of 2.4 in the normal state which decreases
to approximately 1.6 as T — 0 (Zhang et al. 1994) in a pure crystal and roughly
stavs the same (~ 2.8) in 0.13% Zn-doped crystals (Hosseini et al. 1998b). However.
the experiments are difficult and the uncertainty is at least 30-40%.

Several attempts to measure the anisotropy in x do not go low enough in temper-
ature. Without entering the regime in which the phonons have reached the limit of
boundary scattering. it is impossible to extract the quasiparticle linear term. Further-
more. little information can be extracted at finite temperature because the phonon
contribution is sample dependent.

An early measurement of (7)) in single crystals makes no distinction between
a and b (Bredl et al. 1992). They appear to assume &, and K, to be equal at low
temperature and do not specify along which crystalline axis the heat is propagating;
in fact, they only distinguish between J || cand J L ¢. By extrapolating one set of data
(J L ¢) from 200 mK down to T=0, they obtain a linear term of 0.17 mW K~2 em™!,



7.2 Low temperature review 87

which is slightly larger than a previously measured 0.13 mW K=2 cm™! (Sparn et al.
1989).

Two vears later, another publication appeared. with x, measured down to 200 mK
and ~, to 100 mK (Gold et al. 1994). Where thev overlap. i.e. above 200 mK. &
appears to be isotropic in the basal plane. A similar conclusion was drawn by Behnia
et al. (1993). Oddly enough. another group tryving to measure the anisotropy also had
difficulty obtaining x~, below 200 mK though for x, there is data down to 100 mK
(Wand et al. 1996). Again. the two sets of data only overlapped above 200 mK. Thus,
their conclusion was to regard the question of anisotropy below 200 mK as remaining

opel.

7.2.3 Field Dependence

Existing measurements of /T with H L ¢ both support and contradict the theory.
Wand and co-workers report that a field of 6 T produces no effect on the electronic
linear term ~/T for both J |j a and J | b. while earlier observations by Bred! and
co-workers indicate an increase. attributed to pair breaking. for the same conditions
(Wand et al. 1996. Bredl et al. 1992).

Not only do impurities suppress the peak in high temperature thermal conduc-
tivity. so does an applied field. as in Fig. 7.6. By applyving 10 T. Palstra et al. (1990)
have shown the peak to be strongly suppressed. This indicates the importance of
vortex scattering at high temperature.

At high temperature (above 5 K). the thermal conductivity is always seen to
decrease with field. In both Bi;SryCaCuy,Qg (BSCCO) (Krishana et al. 1997), and
in underdoped YBCO Krishana et al. (1998). the decrease flattens to a plateau,
indicating that bevond a field H*. there is something happening (which is much
more pronounced in BSCCO). Based on their observation, shown in Fig. 7.7. of an
abrupt kink followed by a plateau in the field dependence of the thermal conductivity
of BSCCO. Krishana et al. (1997) have proposed a phase transition to a gapped state
for fields higher than some temperature dependent H*. Quasiparticles in such a state
would have an exponentially small density of states and so contribute nothing to the
thermal conductivity bevond H*. Of course the phonon conductivity would also
have to be independent of field in the plateau region. We now concentrate on the
quasiparticles and investigate how a phase transition to a new state can occur.

As previously stated. Krishana et al. have suggested that the order parameter
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Figure 7.6: High temperature thermal conductivity of YBa:CusO-_s in an applied field. after
Palstra et al. (1990). Inset: expansion of temperature scale.
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Figure 7.7: The stunning discovery of Krishana et al. (1997) in Bi2SroCaCu20g. With increasing
field. the thermal conductivity x(H) drops rapidly and then crosses over abruptly at a field H* to
a plateau region, which is shown to be temperature dependent.
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changes abruptly from a simple d-wave to a complex order parameter with an admix-
ture of d or s: in effect. the addition of a small. out of phase (by 7/2) order parameter
creates a finite gap everywhere since the nodes do not coincide. A field-induced phase
transition to a d2_,» + id;, (d+ id") symmetry state was first proposed by Laughlin
(1997). Mao and Balatsky (1999) have calculated the density of states for this state,
repeating the treatment of Volovik (1993) for the pure d 2_,2. The only difference is
in the gap function in the quasiparticle spectrum. namely A(k) = JNg(k) + (A, (k),
where \g(k) is the standard d,:_,» gap and A (k) the d;,. It turns out that the
Doppler shift due to the superfluid flow can be sufficient to boost the quasiparticles
above the finite gap |A]. so that the DOS remains gapless: in other words. for both
+ idgy,. V(0 H) x vVH. Considering this same field dependence.

the relative size of the coefficients become extremely important in distinguishing the

dpreyr and dpa_ o
two.

So there is a lot of interest in the field dependence of quasiparticles. Considering
the claim of a phase transition based on high temperature data. it may be possible to
set an upper bound on the size of a sub-dominant order parameter. if it should exist.
by inducing low energy excitations. For either pure d-wave or d + id’. the Volovik
effect is expected at low temperature. The question is whether the dependence is
V' H. as predicted in the clean limit. or something more slowly varyving. as predicted
in the dirty limit by Kibert and Hirschfeld (1998b).

7.3 Sample Characteristics

A tvpical sample is less than 2 mm in length, so we try to maximize the distance
between the voltage contacts. which are 50 um in size. in correspondance to the
size of the silver wires. In general, the largest source of error on the absolute value
of x stems from the geometric factor a. There are two ways to find «, either by
the physical geometry of the sample (cross-sectional area divided by the distance
between the contacts) or by comparing the sample resistance to a known resistivity
at a given temperature (@, = pref(300K)/ R ampie(300K)).

For the geometrically determined og.,, we use scanning electron microscopy
(SEM), with a typical error of order 10%. However, the relative uncertainty in com-
paring a-axis samples together or b-axis samples together, can be made negligible
by using geometric factors obtained from the resistivity measured using the same
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Crvstal | T, | length | width { thickness Qgeo a,
(K] | [um] | [pm] [wm] | [x1073 cm] | [x1073 cm]

Al 93.6 | 1310 740 86 1.940.2 1.9
A2 93.5 | 1360 500 61 2.24+0.09 1.89
A3 9331 IO 380 103 | 6.4=0.3 3.4
Bl 93.3 | 960 610 67 4.3£0.2 3.8
B2 93.5 | 340 443 108 8.9+0.4 7.0
0.6% 89.2 | 1200 630 93 4.9+0.3 4.5
3% 1.6 1 1300 20 | 69 4.3+0.1 3.8

Table 7.1: Sample characteristics of the five cryvstals used in the anisotropy study along with the
two additionai Zn-doped ones used in the field dependence study. Note that Ay, By and B, were
sanded.

contacts as for the measurement of x. This is done by forcing the resistivity curves of
all a-axis samples (or b-axis samples) to be parallel. under the reasonable assumption
that the only difference between samples is in the elastic. temperature-independent
term. In other words. we fit the a-axis resistivity curves (shown in Fig. 7.4) to po+ AT
and set all the values of 4 to be the same for the a-axis crystals. Then by setting
the room temperature value of p,/py to 2.3 (Gagnon et al. 1994). a number whose
uncertainty is at most 10%. we can determine geometric factors for the b-axis sam-
ples. given a fixed value for one reference a-axis sample Al. defined in Table 7.1 3.

In the data presented. we have used the resistive geometric factors.

For determining the anisotropy in the thermal conductivity x(T) of YBayCu3QOs.g.
we measured five high-purity untwinned single crvstals: three with the current along
the a-axis (Al. A2 and A3) and two along the b-axis (B1 and B2). For the field
dependence study. we used 43 as our pure sample and two Zn-doped a-axis samples.

called 0.6% and 3%. The sample characteristics are summarized in Table 7.1.

3Certain samples lack straight edges or are missing a corner, so an optically determined geometric
factor would be more prone to error than would a resistive geometric factor. Furthermore, some
sample surfaces were sanded in order to ensure diffuse rather than specular reflection of phonons;
in this case. only the resistive geometric factor is relevant since the sanded surface area creates an
uncertainty in the actual path length of the phonons.
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Figure 7.8: Thermal conductivity divided by temperature x/T vs T? of YBaiCu3zOsy and
YBasCuyQOs.0. For YBayCuzOg (triangles) we see that the intercept of x/T is zero, consistent
with the absence of electronic carriers. However. for the optimally doped sample where ¢ is 0.1
(circles), a finite intercept appears.

7.4 Results on In-plane Anisotropy

Before presenting data on the anisotropy of heat conduction. we must convince our-
selves that we are indeed probing the residual quasiparticles. By comparing a pure
sample of YBa,Cu3O;_4 of optimal oxygen doping (J = 0.1) with a deoxygenated
sample YBa,Cu3Og ¢ (measured bv Lussier (1997)). one sees that the linear term dis-
appears in the latter case. i.e. only the T3 phonon term remains, as seen in Fig. 7.8.
Thus one can systematically “turn on” the quasiparticles and study their evolution

with increasing doping concentration.

The data below 170 mK for the five crystals are shown in Fig. 7.9, plotted as
x/T vs T? in order to separate the quasiparticles from the phonons. The solid lines
are linear fits to the data below 130 mK (same fitting range for all samples). The
first point to stress is that the intercept of those lines. i.e. the residual linear term

in k(7). is entirely attributable to quasiparticles, since fully deoxvgenated samples
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Figure 7.9: Low temperature thermal conductivity of YBa.CuzQsy. divided by temperature vs
T* for sample .41 (solid circles). A2 (solid triangles). A3 (solid squares). B1 {(open squares) and B2
open circles). The dashed line represents x/T for a deoxygenated. insulating sample YBaaCuz Qg .
It is ciear that our measurements reach the asvmptotic T dependence of the phonons. with the
oxygenated samples gaining a linear term due to the addition of electronic carriers.

show no linear term (see data reproduced as dashed line in Fig. 7.9) (Taillefer et al.
1997).

As for the increase in x(T)/T with T. it is mostly (perhaps entirely) due to
phonons. This conclusion is supported by the fact that metallic and insulating crys-
tals show a very comparable increase with temperature (see Fig. 7.8). We now cal-
culate the phonon contribution to . starting with the phonon specific heat. since
the two are related by wp, = %cphz'ph.\, where .\ is the phonon mean free path. Since
we are assuming boundary scattering for the phonons. .\ is related to the mean ge-
ometric width @& = /w x t by .\ = 2&/\/7. We also need the mean sound velocity
tph. Which we now determine from experimental data.

Sound velocity measurements. usually a straightforward task, vield wildly varving
results. Reported values of longitudinal v fall in the range 4190-3165 m/s: transverse
tr, 2350-3061 m/s (Dominec 1993). Still, we need these values in order to estimate the
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phonon specific heat. By averaging over § different measurements from Dominec’s
review, we find (v;) = 4500 £ 400 m/s and (r;) = 2700 £ 200 m/s. Then the average

(vpn) can be found by

257 + 1

) =t

where s = v¢/ty = 1.7£0.2. This gives (r,s) = 2900 £ 200 m/s. Compared to just an
in-plane average of roughly 4000 m/s (Lussier 1997). this is small. but since we are
interested in calculating the maximum phonon specific heat, we will use the former

value. Thus we calculate the specific heat to be

.-)-l 2 k
Cph = kB( =

)3
R(ton) (7.3)

3
5.0 x 1073 mJK*em ™3,

I

At temperatures low enough that the mean free path of phonons reaches its maxi-
mum. temperature-independent value. governed by boundary scattering. and hence
given by the dimensions of the crystal. the Debye theory gives a T temperature
dependence of the correct magnitude. as seen in Table 7.2. Only in the case of 43 do
we find some discrepancy. which is not understood. It has the largest cross-sectional
area so we expect the phonon term to be the largest: instead. it is the smallest, sug-
gesting that the effective phonon mean free path is perhaps limited by some defect.
like a sandwich for instance. We chose this particular sample for the field study since
the T3 regime exists over a larger temperature range.

Note that it is only by going well below 200 mK that one can reliably extract a
meaningful residual linear term. x¢/T. from a linear fit to k/T vs T2. From Fig. 7.8,
if we try to extrapolate /T to zero temperature for YBa;Cu;3Og4 from about 150-
200 mK. we would have a linear term. even though there are no charge carriers in
the system! In previous studies of the anisotropy in x, measurements were limited to
temperatures above 200 mK (Gold et al. 1994. Behnia et al. 1995. Wand et al. 1996)
and the extrapolations were therefore overestimated.

The values of ~y/T obtained from the fits to the data in Fig. 7.9 are given in
Table 7.2. and are summarized as follows:

J|la :Koe/T =014£003 mW-K 2.cm™,

—~
|
o

N’
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Crystal ro/T Kpn /T3 Kpn/T? {cale)
mWK2em™!] | mWK™em™!] | [mWK*em ™)
Al 0.15x0.01 181 14
A2 0.14=0.04 1243 10
A3 0.12+0.01 6=1 I
Bl 0.17=0.03 1222 11
B2 0.18=0.01 131 12

Table 7.2: Fitting parameters of /T to a + bT? (for T < 130 mK) where a is the quasiparticle
linear term ~y/T and b is the phonon term ht,,;,/T:‘, In calculating the (maximum) phonon term.
we have used J = 5.0 mJ K=" em™ and (r,s) = 2900 m/s. determined from Equation (7.3).

Jib 1hos/T =0.18£0.03 mW-K™2-cm™": (7.3)

Anisotropy : wKgp/Koe = 1.3 £0.3. (7.6)

Along the a-axis. our value of 0.14=0.03 mW K2 em~!

is slightly lower than the
previously reported value of 0.194£0.03 mW K~2 em~! (Taillefer et al. 1997). though
still within the experimental uncertainty. We attribute this difference to a better fit
at low temperature due to an increased point density at the lowest temperatures.

The quoted uncertainty of about 20% on both r¢/T and Kg,/Ko.e is a combination
of the uncertainty on the geometric factors (roughly 10%) and the uncertainty on the
T =0 extrapolation. The scatter in the values obtained for the various crystals within
each set is consistent with the latter uncertainty. An additional 10% uncertainty
comes from the scatter in the values obtained for the two sets of cryvstals. Of course.
the value of 1.3 is directly dependent on our estimate of the resistivity ratio at room
temperature. taken to be 2.3.

Our results are comparable to the existing data on charge conductivity of Zhang
et al. (1994) (reviewed in Section 4.4.2): multipving their values for o, (T — 0) by the
Sommerfeld value of the Lorenz number give x9,/7 = (0.11 £0.04) mW K~2 cm™!
and kgp/T = (0.17 £ 0.05) mW K2 ¢cm~!. The (T — 0) data of (Hos-
seini et al. 1998a) for 0.15% Zn-doped samples correspond to kg./T = (0.16 =
0.03) mW K2 cm™! and kop/7 = (0.44 £0.13) mW K2 em~!. It appears that



7.4 Results on In-plane Anisotropy 95

the Wiedemann-Franz law is applicable along a. although we do note that the un-
certainty for o4 is almost 30%. [n order to fully test the Wiedemann-Franz law, it
is necessarv to await further o, measurements. As for the anisotropy, in the case of
pure YBa,CuzO-_s. the residual charge conductivity anisotropy is 1.5£0.7, but with
0.15% Zn-doping, 2.8£1.2 (the large uncertainty is not due to the surface resistance
measurement alone. but rather to the \j used to get the conductivity). Considering
that Zn preferentially goes into the planes. and that within the planes. a-axis heat
conduction is independent of impurities. it is surprising that such a low level of Zn
doping should produce such a change. However. the more recent data were taken
with improved accuracy. and so one wonders whether the problem has to with the
earlier set of data. This would leave us questioning (1) the validity of the Wiedemann-
Franz law and/or (2) the origin of the “disappearance” of chain thermal transport

compared to charge transport.

7.4.1 Comparison with Theory

We are now in a position to make a quantitative comparison with the theorv for a
superconductor with d;:_,» symmetry. As this is meant to apply only to the CuO,
planes. we focus at first on a-axis properties. As usual. the gap function is taken to
be Ajcos(20). Apart from the gap maximum g, the only other relevant energy scale
is the impurity bandwidth ~ (Graf et al. 1996. Xu et al. 1993). For temperatures less
than ~. .V(«x) is roughly constant. so impurity scattering dominates.
For the bi-layer structure of YBCO. n = 2/c¢ where ¢ = 11.7 A is the c-axis lattice
constant. Combining this with Equations (2.25) and (7.6) vields
LA Y (7.7)
ta
Recall that the temperature dependence of the penetration depth is also related to
the ratio vg/vs. by Eq. (4.8). However. when we set vp/vy = 14 and A(0) = 1600 A
Basov et al. (1993). dA/T comes out to be larger by a factor of 2 than the measured
a-axis value of 4.7 A /K Zhang et al. (1994). This factor of 2 discrepancy could be due
to Fermi liquid corrections from quasiparticle interactions (Wen and Lee 1998, Millis
et al. 1998, Xu et al. 1995). After all, there are quasiparticles, so it is fair to ask if
thev are interacting. In this case. Eq. (4.8) would have to be modified by the Fermi
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liquid parameter a*:

kge* ., UF -
= 4ln2— (—). 8
N0 T n PER noe-( L’z} (7.8)

Now measurements of x/T and d\/T agree if a® = 0.36. a sizeable correction to
the charge current. This supports a recent ARPES studv in BSCCO which finds a
correction of the same magnitude (Mesot et al. 1999). Note that heat currents are

expected to be unaffected by Fermi liquid corrections (Lee 1998).

Along b. our measurement of kyp/T = (0.18£0.03) mW K2 cm™' gives
vp/ry = 18£3. Again using Eq. (4.8). with A(0) = 10530 A Basov et al. (1993). one
obtains S\(T)/T = 3.2 £0.5 A/K. Experimentally. 0\y(T)/T = 3.6 A/K (Zhang et
al. 1994). Although the values agree without invoking any Fermi liquid corrections.
we note that along b there are chains. which have not been folded into the theory.
In other words. this direct comparison between x/T and JN(T)/T with theory may
not be meaningful.

[t is better to compare the measured anisotropy ratios. ny/ke = 1.3£0.3 and
dNZ/dA; = L.7 (no error bars provided). Though they seem to agree within error.
we allow that the anisotropy in ~/T may well be lower than that in d\/T. We also
note that the anisotropy in the plasma frequency «p = ¢/A(0). w’g.b/-*-';';,a = 2.4, is
supported by a similar anisotropy ratio o,4/0, = 2.8£1.2, although the samples
have 0.15% Zn. Considering that our x data is consistent with zero anisotropy, we

must trv to understand how this can be.

So let us look at conduction in the one-dimensional chains. It has been shown that
in a quasi-one-dimensional regime. dc conductivity is dependent on the scattering
rate [ so that there is no universality expected in chain transport (Balatsky et
al. 1994). Hence above some critical impurity concentration, it is possible that the
chains cease to conduct because the scattering time is too short. Furthermore, it
may be that within the chains. the nodes. if they exist. do not intersect the Fermi
surface: hence the quasiparticle excitation spectrum would be gapped. resulting in
the absence of zero-energy quasiparticles to conduct heat in the chains (O'Donovan
and Carbotte 1997). Finally. there is the possibility of localization effects in the
chains (Lee 1998. Senthil et al. 1998); it has been shown (Lee 1993) that disorder
can lead to a mobility gap for low energy quasiparticles in the d-wave state. This

last scenario is very likely because the chains are definitely more prone to disorder
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than the planes, so that even a low concentration of impurities can lead to activated
conduction along the chains. thereby reducing the anisotropy at low temperature.
Incidentally. our a-axis data are compatible with the calculation of Senthil et ol
(1998): putting £ = 14 into (2.26). the predicted value of xo/T is 0.14 mW K2
cm ™!, which agre;‘s with the measured value. This shows that the quasiparticles in

the planes are not localized.

Recently chain disorder has been specifically incorporated in band structure cal-
culations within a proximity model (Atkinson 1999). [n this treatment. oxygen vacan-
cies in the chains serve to break them into finite segments of length £.,. Thus an elec-
tron needs to tunnel into a neighbouring plane in order to contribute to conductivity.
The characteristic time for tunneling depends on the plane-chain coupling strength.
If that time is longer than (., /ve. the electron will not have tunneled out of the
chain by the time it has encountered an oxygen vacancy and will be back-scattered.
However. if the tunneling time is shorter than ¢.,/vg. the electron may be forward-
scattered since there is a probability that it is in the plane laver. Atkinson argues
that because of band structure effects. the tunneling time is strongly k-dependent.
and so some electrons are strongly coupled to both planes and chains while others
are mostlyv chain-like. These latter quasi-one-dimensional ones are susceptible to lo-
calization. By including disorder. he was able to fit ¢ and b axis penetration depth
data which was not possible with previous proximity models. which tended to diverge
at T=0. Moreover. he has also fit specific heat data. From the good agreement with
existing data which are highly anisotropic. he concludes that localization must not
be important. Although this model works well for A*(0)/\*(T). it cannot explain the
small anisotropy in .

We would also like to examine the case where one takes into account the
anisotropy of the gap due to the presence of an s-wave component. in addition to
an orthorhombic elliptical Fermi surface associated with the planes. i.e. the Fermi
surface is distorted from tetragonality due to the presence of the chains (Wu, Branch
and Carbotte 1998). Such a d,2_,: +s-wave superconductor would have nodes shifted
off the diagonals. which can perhaps account for the measured ab anisotropy without
even considering conduction along the chains. In fact. by including both band and
gap anisotropy. anisotropic universal features (in the impurity independent sense)
have been found. Unfortunately. existing data on the penetration depth and the

thermal conductivity are not mutually compatible with this theory, since to fit
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requires a large and negative s component which contradicts the A data.

Wu and Carbotte (1998) have since returned to the proverbial drawing board. and
come up with another explanation for the weak anisotropyv in thermal conductivity
that is compatible with a larger penetration depth anisotropy. Transport measure-
ments (o,. k) are sensitive to the nodes on the Fermi surface. whereas \(T) is not.
Thus if the gap nodes do not cross the chain Fermi surface. there would be a suppres-
sion in chain transport which would vield a weak ab-anisotropy. Based on this idea.
Wu and Carbotte have introduced a cut-off angle o, to the d-wave gap A = \gcos2o.
So o, > /4 (position of node) corresponds to the opening of a minimum gap on the

chain Fermi surface.

7.5 Results on Magnetic Field Dependence

Application of an external magnetic field parallel to the c-axis is predicted to in-
crease the linear term in (7). corresponding to the increased availability of extended
quasiparticle states. Thus there are two main issues to resolve: does an external field
increase the density of states. and if so. can the theory account for the magnitude of

the effect?

7.5.1 YBa,(Zn,Cu,_,);0-_;

Since we are looking at samples doped with Zn. we need to have an idea of the scat-
tering rates. These we can determine from the change in resistivity. which amounts
to a rigid off-set due to the increase in py. In other words, elastic scattering due
to impurities increases with doping while inelastic scattering is unaffected. Now the
impurity scattering rate [ = 1/(27) is related to py by py = m*/(ne®r) in Drude

theory. So as a function of doping r. the scattering rate can be written as

[(r) = («;/87)[po(x = 0) + Apo(x)] (7.9)

where g is the shift in the p vs T intercept seen in Fig. 7.10. equal to 8.3 uQcm for
the 0.6% Zn-doped sample and 37.2 uQcm for the 3%. From microwave conductivity.
the mean free path has been shown to increase one hundredfold between 100 K
to about 10 K (Bonn et al. 1994). so with p(100 K) =~ 75 uflcm, we estimate
po(x = 0) < 1 puQem. By taking w, = 1.3 eV (Basov et al. 1993). we get Ail'/kgT =
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Figure 7.10: Electrical resistivity of YBas(Zn,Cu,_,)305_5 for r = 0.0%. 0.6%. 1.0%. 2.0% and
3% measured by Pu (1997). The curves are all rigidly shifted by Apg from the undoped sample.

0.014. 0.13. and 0.54 for £ = 0. 0.006 and 0.03. respectively (Taillefer et al. 1997).

These values are not far from those predicted by the simplest theory for the sup-
pression of T,. from the value of Ty of 93.6 K in the pure sample. with impurity
concentration (Sun and Maki 1993). By assuming a uniform reduction of A with the
addition of impurities. Sun and Maki obtain Al /kgTo = 0.06 and 0.25. for £ = 0.006
and 0.03. If spatial variations in the order parameter are included. a self-consistent
calculation (within mean field theory) shows that the drop in 7, with [ is less steep,
giving values of [ roughly 3 times larger (Franz et al. 1997). This latter treatment
gives a critical impurity concentration n. = 0.10. which reflects the robustness of
T. seen experimentally (Ishida et al 1993). Our values determined above from a
combination of resistivity. microwave conductivity and infrared reflectivity lie some-
where in between the two calculations, which is reasonable for such a simple Drude
approach. Note also that the impurity bandwidth in the 3% Zn sample is a sizable
fraction of the gap maximum. so that corrections to the universal limit are expected.
Calculations by Sun and Maki (1995) give a 30% increase in xq/T for 20% T, sup-
pression (see Section 2.1.3). in good agreement with the observed slight increase (see

Fig. 7.12 or Fig. 7.11).

Fig. 7.11 shows the total thermal conductivity divided by temperature x/T of
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in an applied field. The bottom panel corresponds to r=0: middle. £=0.006: top, =0.03. Triangles
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YBay(Zn, Cu;_;)30-_s as a function of T2 in fields up to 8 T. The bottom panel
shows the data for the pure sample: the other two panels show data for Zn-doped
samples. 0.6% in the middle panel and 3% in the top panel. First we observe a
definite increase in wo/T (k/T as T — 0) as the field is increased. which indicates
the population of the extended quasiparticle states. Secondly. we have effectively
varied the scattering rate [ bv at least a factor of 20. and clearly the field effects are

suppressed rapidly with increasing I'. as predicted by theory.

7.5.2 Comparison with Theory

We can now compare directly with the calculated magnetic field response of the
residual normal fiuid. In Fig. 7.12. we display the calculated ~(0: H)/T by Kiibert
and Hirschfeld (1998b) (Equation (2.33)) as a function of field together with the data.
From fitting p. we can then extract [ since p = \/EE’” and % =~ 0.61/T . The first
point to note is that the sub-linear dependence on field is well reproduced. Perhaps

more important is the fact that the magnitude of the response in all three cases is
very much as expected. Indeed. the fits vield the following values for p. evaluated at
8 T:0.92. 1.63. and 4.32 for r = 0. 0.006. and 0.03. respectively. These correspond
to a ratio ~/Ey = 0.67. 1.18 and 3.12. which shows that none of the crvstals is
in the clean limit over the field range investigated. Treating impurity scattering in
the unitarity limit. the scattering rate becomes: hl'/kgT,y = 0.02. 0.07. and 0.5,
respectively (taking Ny = 2.14kgT,). given that Ey ~ 20 K at 8 T (assuming
vp = 1x10" em/s and e=1/2). In Table 7.3. we compare these scattering rates to
the independent estimates quoted above. as well as with those extracted from high
temperature fits to the theorv of Hirschfeld and Putikka (1996). We view our values
of a and v as reasonable. at least to within a factor of 2.

We would like to point out that while we do use the T = 0 extrapolation to
compare with the theorv. our “raw” data works just as well. For instance. if we take
the value of /T at a fixed temperature. we can obtain the feld-induced increase in
the electronic thermal conductivity by subtracting xo/7T. As long as this temperature
is within the T? region. this quantity will be purely electronic. We show in Fig. 7.13
that at 100 mK. xq(H)/T is very close to the extrapolated value. while at 200 mK,
phonon “contamination” is present. Again, this emphasizes the importance of making
measurements at temperatures low enough that we can separate the phonons from

the quasiparticles. The agreement gives us confidence in our 7 = 0 extrapolation
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Table 7.3: Values of independent estimates of T/T.. in units of [i/kgl: (1) obtained from a
combination of gy and microwave estimates: (2) calculated from the decrease in T, with doping
(Sun and Maki 1995): (3} fitted from theory of Kiibert and Hirschfeld (1998b): () fitted from high
temperature theory of Hirschfeld and Putikka (1996).
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Figure 7.12: Normalized residual linear term xg(H)/T as a function of applied field for pure
(squares) 0.6% Zn-doped (triangles) and 3% Zn-doped (circles) samples. Fits to (2.33) for each
. crystal vields the values of p shown.
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and we will continue to use the latter approach in analysing our data.

From our measurements of the field dependence of the thermal conductivity in
YBayCuyO;_;. we have strong evidence for the Volovik effect. i.e. of the quasiparti-
cle state Doppler shift being responsible for the occupation of the extended states.
Moreover. the size of the magnitude of the increase as a function of impurity con-
centration follows the theory using a scattering phase shift of d¢ = 7/2. showing
unambiguously that these Zn-doped samples must be treated in the limit of strong

unitarity scattering. This had always been assumed but not confirmed. until now.

7.5.3 Discussion

The same theoretical treatment applies to the specific heat as well. A numerical
evaluation of Equation (4.12) using 4 = 0.9 mJ K=2 T~'2 mol~' (Moler et al.
1997. Wright et al. 1999) gives vy = 2.2ax10% cm/s. From the previous section.
k(0: H)/T gave us avp = 3.0x10° cm/s. Moreover. the zero field xg/T value gave
the ratio vg/vy to be 14. The first two expressions together yvield vp/va = 2.27/a>.
If we set this ratio to be 14. we find a = 0.40. Thus v = 1.2x10" cm/s and v, =
0.9x10°% cm/s. Furthermore. witha = 0.4 and vr = 1.2x107 cm/s, Eg(1 T) = 6.4 K,

which is what Wright et al. (1996) observe in Fig. 4.12. We see that we are indeed
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getting a very consistent picture between experiments and d-wave theory.

Before further discussing other measurements. we would like to take a closer
look at the thermal conductivity data away from T =0. There is something very
interesting about the field dependence in the pure sample. In the lower panel of
Fig. 7.11. the increase in x/T is slightlyv less pronounced at high temperature than
at low temperature. [t is verv tempting to sav that we are seeing the intrinisic finite
temperature effects predicted by theorv (Graf et al. 1996). i.e. that the scattering time
(hence x) decreases rapidly with temperature (or energyv). However, according to the
theory. for this to be the case. the temperature must be comparable to the impurity
bandwidth. since the correction goes as (ﬁg)z. Given that our above estimates of ~
exceed 10 K in the purest sample. no temperature dependence should be seen below
1 K. Moreover. high temperature fits of x and o, would have [ an order of magnitude
sialler. We must therefore ask ourselves if we have overestimated [. i.e. if the theory
is correct.

First of all. the fitting parameter is really p and not I'. so with ¢ and vg buried in
p as well. [ can easily be off by a factor of 2. We really do not think that we should
speculate on the consistency of the rheory based on a sample-dependent phonon slope
which obscures any electronic contribution: rather. we believe in the zero temperature
analvsis. However. we suggest a few reasons why the field dependence of the pure

sample mayv differ from that of a sample with a larger scattering rate.
p A & g g

1. The theory does not take into account e-e inelastic scattering. This effect should
be m ..¢ pronounced in a high purity sample due to the longer mean free path,
so it is conceivable that there may be some inelastic scattering affecting the

pure crystal.

2. While vortex scattering of phonons at higher temperature appears to be unim-

portant due to the plateau. there may be an effect at low temperature.

3. Finally we mention the phase shift. Qur results show that there is no doubt
that Zn is a unitary scatterer. However. Hosseini, Hardy, Bonn and co-workers
seem to think Born scattering is more appropriate in pure crystals (Hosseini
et al. 1998b), given that they observe a lower power than T2 in o,(T) at low
temperature. Granted. their new crystals grown in barium zirconate crucibles
are roughly ten times purer than our crystals grown in vttria-stabilised zirconia,

so our nominally pure crystal could be somewhere between Born and resonant
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scattering, although it would have to be close to the resonant limit since the

dg = 7/2 seems to describe the data extremely well.

For the moment. we resist making comments about finite temperature corrections
until the effect can actually be seen in a careful study of samples of high puritv. In
any case. this does not affect our analysis at 7=0.

Let us now compare our resuits with other x measurements. Recall that previous
low temperatire measurements in YBa,Cu;O;_s were done with the field in the basal
plane where the Volovik effect is expected to be much smaller. since the quasiparticles
travel parallel to the vortex tubes. Furthermore. the two studies were in disagreement.
with a 30% increase in 8 T reported by Bredl et al. (1992). but no change detected
in 6 T by Wand et al. (1996). At higher temperatures. the fact that x decreases
with field (Krishana et al. 1998) could come from various scattering effects. Perhaps
the most natural is vortex scattering of quasiparticles. as invoked in the case of Nb
(Lowell and Sousa 1970). While this can apply to both quasiparticles and phonons.
the fact that the largely electronic peak below T, is almost completely suppressed in
10 T (Palstra et ul. 1990) suggests that the former suffer most of the impact.

Franz {1999) has shown that a disordered vortex lattice in a d-wave supercon-
ductor can result in quasiparticles scattering off the superflow. For high fields. the
density of vortices means that the quasiparticle mean free path ¢~! = ¢;! + f,‘,‘ is
dominated by €y. ie. fy = vprm ~ 0.25 pm in the pure sample (0.070 um with 0.6%
Zn and 0.012 pm with 3%) and the upper bound of ¢ ~ 2R ~ \/ZD_O/_H ~ 0.02 pm
at 8 T. The actual €. governed by the amount of disorder in the vortex lattice.
would be smaller than the intervortex distance. Since this mean free path goes as
1/VH, it cancels the VH in .V(0: H). producing a field-independent universal /T
at fields large enough that vortices are the dominant scattering process. The theory
can account qualitativelv for the observed field dependence of k, at temperatures
above 5 K. At low temperature. however. we find no indication of significant vortex
scattering, a conclusion based on the good agreement between calculations, which
neglect vortex scattering, and our data on crystals for which the relative strength of
impurity and vortex scattering must differ markedly from one crystal to the next.
Moreover. STM images of the vortex lattice at 6 T show a reasonably ordered vortex
lattice (see Fig. 4.9). To reconcile the two temperature regimes, Franz has suggested
that at low energies. the vortex scattering cross-section becomes sufficiently small

that vortices are rendered “transparent” to quasiparticle motion Franz (1999).
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Figure 7.14: Thermal conductivity divided by temperature /7T in BSCCO. obtained by Aubin et
al. (1999). Although there is no T2 region. the rigid shift of the curves is evidence for an increase
in linear electronic contribution.

[t is interesting to compare our results on YBCO with the corresponding results
on BSCCO. obtained recently by Aubin. Behnia and co-workers (1999) and displaved
in Fig. 7.14. At temperatures below 0.7 K. an increase in x/T with field is also found.
again with a sublinear (roughly vH) dependence. What is striking is the magnitude
of the response in Fig. 7.15. The application of only 2 T increases x/T by about
0.20 mW K~ em~!. Now from our own measurements on pure. optimally-doped
single crystals of BSCCQ. the (presumably universal) residual linear term is no/T
= 0.15£0.03 mW K2 cm~! (Lambert 1998). This means that in BSCCO a field of
2 T causes the quasiparticle conduction to double. whereas it produces only a 35%
increase in our pure YBCO crystal. So a similar fit as for YBCO shows v/ Ey to be 2.6
times smaller in BSCCO. or I to be 7 times smaller. In reality, the field dependence
in BSCCO is much more than 3 times stronger. since the impurity scattering rate in
the crystal used by Aubin and co-workers is probably about 100 times larger. Indeed,
its residual resistivity is 130 p€2 cm (Behnia 1998). compared with approximately
1 4€ cm in our pure YBCO crystals. These considerations compel us to conclude
that the nature of defect (or possibly vortex) scattering in these two (otherwise quite
similar) materials is strongly different. Either the kind of defect found in nominally

pure crystals is different. or the impact that a given scattering centre (e.g. impurity
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Figure 7.15: A comparison of the increase in x/7T with applied field between BSCCO and pure
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or vortex) has on the surrounding electron fluid is different.

7.6 Conclusion

In conclusion. low temperature thermal conductivity measurements along the a axis
of YBa,Cuz0;_; have vielded a Fermi velocity ratio vg/vs = 14 &£ 3. When com-
pared with penetration depth data. which also measures this ratio, one finds a size-
able Fermi liquid correction to the charge current as would arise from quasiparticle
interactions.

By measuring b axis crystals as well. we have found a weak anisotropy of 1.3+£0.3
in the in-plane heat conduction of YBa,Cu3069 as T — 0. This is consistent with the
low temperature anisotropy observed in the real part of the microwave conductivity
oy in a pure sample. though not in a Zn-doped sample, and is much weaker than
the oft-quoted anisotropy of 2.2 for transport in the normal state. We believe that
the weak anisotropy reflects the lack of conduction along the Cu-O chains along the
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b-axis. possibly due to a gapped excitation spectrum or quasiparticle localization in
the chains.

We have also measured the low temperature thermal conductivity of
Y Ba,CuyO-_; with three different levels of impurities as a function of magnetic field
applied along the c-axis. In all cases. the residnal linear term ~o/T increases with
field strength. reflecting the population of extended quasiparticle states. In addition.
the growth of xo/T follows very well the predicted d-wave behaviour: increased scat-
rering rates strongly suppress the ability of the residual normal fluid to carry heat
when there is an external field. The good agreement with calculations by Kiibert and
Hirschfeld for a d-wave superconductor allows us to draw the following conclusions:
1) the “Volovik effect”™ is fully verified. and it is the dominant mechanism behind
the field dependence of transport in YBCO as T — 0. for H || ¢: 2) vortex scat-
tering. invoked to explain the behaviour at intermediate temperatures. is weak at
low temperature (except perhaps in the pure sample): 3) the widespread assumption
that impurities (or defects) can be treated as unitary scatterers in correlated electron
svstems is verified in YBCO. not only in the special case of Zn-doped crystals, but
also more generally in nominally pure samples: 4) the nature of impurity scattering
appears to differ between BSCCO and YBCO.
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From a materials point of view. heavy fermion superconductors and hignh-71.
cuprates are extremely different. In the normal state., we have metals on the one
hand. and poor conductors on the other. In the superconducting state. with criti-
cal temperatures differing by roughly 2 orders of magnitude. it is not obvious that
there should be any similarities. This is where the phyvsics comes in. By virtue of
the existence of zeroes in the superconducting order parameter. all low temperature
properties arc dominated by the nodal regions. In particular, impurity scattering
leads to a finite density of states near the nodes. and there exists a novel. residual
normal fluid of quasiparticles even at zero temperature. This normal fluid deep in the
superconducting state behaves just like that in a normal metal. with quasiparticle
heat conductivity x varving as T. Using thermal conductivity. we can probe these
zero energy quasiparticle states along high svimmetry directions. Gap anisotropy can
he directly revealed with this technique.

Qur observation of a finite value of x/T in UPd,Al; further supports the evi-
dence for a residual normal fluid from other experiments such as specific heat. NMR
relaxation rate and differential tunneling conductivity. In addition. our directional
sensitivity showed a residual /T of roughly 10% of the normal state value both
within the basal plane and along ¢. This elimates those gap candidates with only
polar or equatorial nodes (assuming a spherical Fermi surface), though the tropical
gap has two line nodes displaced from the equator and at least two “popular” hy-
brid gaps have both a line of nodes in the basal plane and point nodes at the poles.
To determine which of these gaps (or perhaps a different gap altogether) describe
UPd,Alz will require further work in both theory and experiment. as will the whole
question surrounding the pairing mechanism. whether it is indeed strong coupling to
spin fluctuations or not.

Fortunately for YBa;Cu3zO;_s. there exists a vast amount of evidence for the
d;2_,2 pairing state. Moreover. the residual normal fluid is well established, and its
universal heat conduction already observed. We have also shown that along the a

axis. a comparison of x/T and the temperature dependence of the penetration depth
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d\ reveals that the latter mayv be affected by quasiparticle interactions leading to a
Fermi liquid correction in the charge current.

Our study continued with the anisotropy of thermal conductivity by the residual
quasiparticles. in an effort to understand the role of the CuO chains running along
the b axis. We found an anisotropy x,/x, of 1.3+£0.3 at T = 0. down from about 2.2
in the normal state. Compared with the anisotropy in the real part of the charge
conductivity o, (1.3-2.8). our ratio agrees is rather on the low side. Thus there are
two issues: (1) why do we see a weaker anisotropy than other experiments and (2)
where has the high remperature anisotropy gone? The answers are not clear. though
we suspect that there is either localization of chain quasiparticles due to impurities
causing short relaxation times or due to the opening of gap on the chain Fermi surface
at low temperature.

Our main investigation has been the magnetic field dependeunce of low energy
quasiparticles. According to theory. quasiparticle states are Doppler shifted due to
the superflow around the vortices. leading to the population of extended states. Ve
have found that ~/T does indeed increase with applied magnetic field. reflecting
the field-enhanced density of states. Furthermore. the growth in x/T can be sup-
pressed by the addition of impurities. in quantitative agreement with the d-wave
theory assuming resonant impurity scattering to dominate vortex scattering. Thus
we conclude that the Doppler shift description of quasiparticles in field is correct. the
oft-quoted assumption of impurity scattering in the unitarity limit has been verified
by our measurements and that vortex scattering at low temperature does not appear
to be important. From our analysis. combined with specific heat data (both in a
magnetic field). we have reasonable values for the parameters vp = 1.2x107 cm/s
and vy = 0.90x10° ecm/s. Thus we find that the existing d-wave theory, largely
untested until now. appears to give the proper quantitative description of low energy

quasiparticle properties in the superconducting state.
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