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Abstract 

Often in neurosurgical planning a dual echo acquisition is performed that yields 

proton density (PD) and T2-weighted images to evaluate edema near a tumor or 

lesion. The development of vessel segmentation algorithms for PD images is of 

general interest since this type of acquisition is widespread and is entirely non

invasive. Whereas vessels are signaled by black blood contrast in such images, 

extracting them is a challenge because other anatomieal structures also yield simi

lar contrasts at their boundaries. 

In this thesis we present a novel multi-scale geometrie flow for segmenting vas

culature from PD images whieh can also be applied to the easier cases of MR 

angiography data or Gadolinium enhanced MRl. The key idea is to first apply 

Frangi's vesselness measure [Frangi et al. (1998)] to find putative centerlines of 

tubular structures along with their estimated radii. This multi-scale measure is 

then distributed to create a vector field which is orthogonal to vessel boundaries 

so that the flux maximizing flow algorithm of Vasilevskiy and Siddiqi (2002) can 

be applied to recover them. We carry out a qualitative validation of the approach 

on PD, MR angiography and Gadolinium enhanced MRl volumes and suggest a 

new way to visualize the segmentations in 2D with masked projections. We also 

validate the approach quantitatively on a data set consisting of PD, phase contrast 

(PC) angiography and time of flight (TOF) angiography volumes, all obtained for 

the same subject. A significant finding is that over 80% of the vasculature recovered 

in the angiographie data sets is also recovered from the PD volume. Furthermore, 

over 25% of the vasculature recovered from the PD volume is not detectable in the 

TOF angiographie data. 

Thus, the technique can be used not only to improve upon results obtained from 

angiographie data but also as an alternative when such data is not available. 



Résumé 
Il est souvent nécessaire, pour une bonne planification neurochirurgicale, d'obte

nir une imagerie par résonnance magnétique standard (IRM) de type densité pro

tonique (PD) pour tenter d'évaluer l'oedème au pourtour d'une tumeur ou d'une 

lésion. Comme le sang qui circule dans les vaisseaux donne une absence de sig

nal (noir) et que d'autres structures anatomiques voisines du cerveau ont un signal 

semblable, l'extraction des vaisseaux représente un défi de taille qui demande une 

contrainte de forme tubulaire précise. Le développement d'algorithmes de seg

mentation des vaisseaux sanguins pour l'imagerie par résonnance magnétique de 

type PD est donc d'un très grand intérêt puisque ce type d'imagerie médicale non 

invasive est couramment utilisée. 

Dans cette thèse, nous présentons un flot géométrique multi-échelle pour seg

menter les vaisseaux sanguins automatiquement à partir des images acquises en 

PD. L'algorithme peut également être appliqué aux données angio IRM où il y 

a rehaussement par un produit de contraste (gadolinium). L'idée principale est 

d'appliquer la mesure de vaisseaux proposée par Frangi afin de trouver les lignes 

centrales principales des structures tubulaires et d'en estimer leur diamètre. Par la 

suite, cette mesure est distribuée pour créer un champ vectoriel qui est perpendicu

laire aux parois des vaisseaux de sorte que le débit par flux maximal de Vasilevskyi 

et Siddiqi 2002 puisse être appliqué. Nous avons effectué une validation qualita

tive de cette approche sur des résonances magnétiques de type PD, des données 

angiographiques et des volumes IRM rehaussés par gadolinium. De plus, nous 

suggérons une nouvelle façon de visualiser les segmentations en 2D en utilisant 

des projections masquées par les segmentations 3D obtenues à l'aide de notre tech

nique. Nous avons également validé l'approche quantitativement sur une IRM de 

type PD, une angiographie par contraste de phase (PC) et une angiographie par 

temps de vol (TOF), toutes obtenues chez le même sujet. Les résultats démontrent 

que 80% des vaisseaux mis en évidence par angiographie le sont également par 



l'IRM de type PD. De plus, 25% des vaisseaux mis en évidence à partir du volume 

PD ne l'étaient pas à partir des données angiographiques par temps de vol (TOF). 

Ainsi, la technique développée peut être employée non seulement pour améliorer 

les résultats obtenus à partir de l'angio IRM mais également comme alternative 

quand de telles données ne sont pas disponibles. 
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The visualization and quantification of cerebral vasculature can be extremely 

important in pre-surgical planning, image-guided neurosurgery and clinical anal

ysis. A common approach is to use a maximum intensity projection (MIP) where 

three-dimensional (3D) data is projected onto a 2D plane by choosing the maximal 

intensity value along that projection direction. A major drawback of this method 

is that background artifacts and other tissues may occlude vascular structures of 

low contrast and small width. Thus, it is desirable to extract the vasculature tree 

before it is visualized. In this thesis, we define segmentation as the process of label

ing 3D voxels as "vessel" or "non-vessel" points. Once the data is segmented and 

we have a 3D volumetrie representation , the visualization and further analysis of 

the complex human vasculature is greatly simplified. 

It is unfortunately often the case that in order to obtain such representations 

from a medical data set, an expert has to interact with the data manually, in a 

slice-by-slice fashion, while coloring regions of interest and connecting them using 

image processing operations. This process is extremely laborious and is prone to 

human error. Since a technician preparing data for surgical planning has a limited 

amount of time, there is a trade-off between the number of manually segmented 

structures and the quality of the segmentations. In addition, the significant amount 

of time required to properly segment the vasculature (e.g. from a single brain MRI) 

makes large sc ale clinical studies of vasculature infeasible. Another simplistic ap

proach to vessel extraction is thresholding the original data set. Here, depending 

on the image modality, all voxels with intensity ab ove or below a threshold are 

labeled as vesseZ and the others as non-vesseZ. However, due to non-homogeneous 

intensity distribution in medical data sets, a conservative threshold typieally do es 

not capture small and low contra st vessels and an aggressive threshold selection 

incorrectly labels many non-vessel or background voxels. As a consequence, the 

computer vision and image analysis community has paid significant attention to 

automating the extraction of vessels or vessel centerlines. 
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1.1 Imaging Modalities 

Several methods in the computer vision literature have been shown to give promis

ing results on 2D projection angiography, 3D Computed Tomography and Mag

netic Resonance Angiography (CTA and MRA). These image modalities are cur

rently the most widely used acquisition techniques when one seeks to extract the 

brain vasculature. While these imaging approaches acquire high-contrast and high 

resolution volumes and are designed to image blood vessels, each has its own lim

itations and can be invasive due to contrast agent injection and radiation. 

In CTA, X-ray contrast material is injected directly into the blood stream through 

a catheter. Tomographie images are then generated by collecting ID X-ray signaIs 

of an object at many angles. Then, a cross-sectional image is reconstructed rep

resenting the attenuation coefficient of the X-ray beam in that slice. This process 

is repeated over many planes to construct 3D volumetrie data. A similar method 

is Computed Rotational Angiography (CRA) which pro duces 3D data sets by ac

quiring projection radiographs from many angles around the patient, followed by 

a reconstruction procedure using CT algorithms. These angiograms are generally 

more accurate than standard MRA acquisition. However, the contrast agent injec

tion and radiation dose given to the patient are major drawbacks. 

Magnetic Resonance Imaging (MRI) of the blood vessels is referred to as Mag

netic Resonance Angiography (MRA). MRI is a largely noninvasive technique which 

utilizes the properties of magnetism of the hydrogen atoms in our body to cre

ate nondestructive, three-dimensional, internaI images of the soft tissues of the 

body, including the brain. In the context of blood vessel acquisition, there are three 

widely used methods. The first is Phase Contrast (PC) angiography, in which con

trast is determined by tissue motion. Static tissue yields no signal, and is therefore 

black, as in Figure 1.1(c). The second is Time Of Flight (TOF) angiography, where 

vessel brightness is proportional to blood flow velocity. However, complex flow 

or turbulence can cause signalloss in the vessels in such data, as seen in 1.1(b). In 
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(a) PD (b) TOF 

(c) PC (d) Gado 

FIGURE 1.1: A mid-sagittal slice of a proton density (PD) weighted MRI volume (a), a 
time of flight (TOF) MR angiogram (b) and a phase contrast (PC) MR angiogram (c) of 
the same subject acquired at the Montreal Neurological Institute. A Gadolinium enhanced 
MRI acquired on a patient with a brain tumor is shown in (d). 

these data sets, the vessel/ non-vessel contra$t is sharp only at vessel boundaries. 

Hence, a simple thresholding of these volumes typically yield a crude estimate of 

the vascular structure. This makes the segmentation problem easier. The third 

angiographic-like image acquisition used to highlight vessels is Gadolinium en

hanced MRI, seen in Figure 1.1(d). It is the most invasive angiographie technique 

and is the method currently used in almost all neurosurgical cases involving brain 

tumors. Gadolinium is a contrast agent injected into patients to alter the signal in

tensity of soft tissues as well as the blood pooL Hence, Gadolinium enhances blood 

vessels but is also absorbed by non-vessel surrounding tissues resulting in several 

bright/ dark contrast changes in the data. This makes the segmentation problem 

a significant challenge. Standard algorithms designed to work on MRA and CTA 
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typically fail on such volumes. 

Very few techniques currently exist for the automatic extraction of vessel bound

aries in more standard anatomical MRI volumes such as the proton-density (PD) 

weighted data set in Figure 1.1(a) and the Gadolinium enhanced MRI. In PD, it 

is clear that a signal decrease is present in the vascular regions (the spaghetti-like 

structures), but there are several other bright/ dark contrast change at boundaries 

of non-vessel structures (between gray and white matter, cerebellum area). AIso, 

the contrast between blood vessel and surrounding tissue is not as great when 

compared to the angiographie sequences (1.1(b) and 1.1(c)). Hence, the problem of 

recovering vessels from image intensity contrast alone is a challenge and requires 

shape information to constrain the segmentation. 

1.2 Problem Statement 

The goal of this thesis is to solve the segmentation problem on common clinieal 

MRI. In particular, our aim is to automatically classify as much of the vascular 

structure as possible. The vessel extraction must be accurate and competitive (sim

ilar or better) to vessel segmentation achieved from the easier cases of MRA and 

CTA and the algorithm must be able to extract vessels of variable widths and con

trast. 

If successful, such a procedure could be used in surgie al planning while elim

inating the need for an additional scan. This would save time during image ac

quisition and would ease the burden on the patient as well as reduce the amount 

of time required to segment and prepare data for use in planning. The 3D vessel 

structure from our approach could be used as the basis for registration between 

different non-angiographie modalities. One such application is the registration be

tween intra-operative ultrasound and pre-operative Gadolinium enhanced MRI or 

PD weighted MRI, to estimate brain shift during brain tumor surgery [Reinertsen 

et al. (2004)]. Finally, the method could be useful for visualization of the vas cu-
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lar networks of different organs su ch as the brain, the liver and the lungs. With a 

true three-dimensional representation, the complex spatial relationships between 

the vasculature and surrounding anatomie al structures could be made explicit. A 

user could interact with the derived model, depending upon the task at hand, and 

could visualize it from arbitrary viewing directions. This is very important in min

ima11y invasive neurologie al surgery. Typiea11y, a needle is inserted in the scalp of 

the patient to access the region that is operated on, such as a tumor. However, the 

neurosurgeon does not see the tip of the needle and a11 navigation is guided by im

ages. It is thus of utmost importance to have a precise visualization of the location 

of blood vessels in order to avoid puncturing them. 

1.3 Method Overview 

We introduce a novel algorithm for vessel segmentation whieh is designed for the 

case of PD images, but can be applied as we11 to angiographie data or Gadolinium 

enhanced MRI volumes. The algorithm is motivated in part by the approach of 

Ostergaard et al. (2000) where Frangi's vesselness measure [Frangi et al. (1998)] is 

thresholded to find centerlines. In this technique, tubular fits to vessel boundaries 

are then obtained using a form of connected component analysis and a generalized 

cylinder model. This latter step typica11y yields results that are disconnected. In 

our approach, rather than threshold the vesselness measure, we extend it to yield 

a vector field which is 10ca11y normal to putative vessel boundaries. This in turn 

a110ws the flux maximizing geometrie flow of Vasilevskiy and Siddiqi (2002) to be 

applied to recover vessel boundaries. This flow has a formaI motivation, is topo

logically adaptive due to its implementation using level set methods, and finally is 

computationa11yefficient. We show qualitative results on magnetic resonance an

giography (MRA) data, as we11 as on the more challenging cases of Gadolinium en

hanced MRI and proton density (PD) weighted MRI volumes. We also validate the 

approach quantitatively by comparing the segmentations from PD, PC angiogra-
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phy and TOF angiography volumes, aU obtained for the same subject (Figure 1.1). 

1.4 Contributions 

In this thesis, we propose a three step algorithm for blood vessel segmentation. We 

first introduce a tubular structure model incorporating local vessel centerline ori

entation and width. Then, we extend this measure to the implied vessel contours 

to finaUy apply a flux maximizing geometric flow. The main contributions can be 

summarized as foUows: 

1. We describe a new multi-scale geometric flow which can extract vasculature 

from standard MRI. The approach is able to segment blood vessels on sev

eral image modalities, including MRA, Gadolinium enhanced MRI, and PD 

weighted MRI. 

2. We propose a 2D visualization of the vasculature by intensity projections 

(MIPs) of the original volume masked by the binary segmentation obtained 

by our algorithm. 

3. We carry out a qualitative comparison of the vessel extraction on PD, PC 

and TOF volumes obtained from the same subject. This suggests that the PD 

segmentation improves upon results obtained from TOF angiography and is 

very similar to that obtained from PC angiography. 

4. We perform a careful quantitative validation confirming our qualitative ob

servations. In particular, we note that 80% and 89% of the PC and TOF data 

respectively, is accounted for by the PD segmentation. Moreover, 26% of the 

PD reconstruction is not present in the TOF vessel extraction. 
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1.5 Organization 

The thesis is outlined as follows. In Chapter 2 we review relevant background 

literature on the modeling of tubular structures, vessel segmentation and center

line extraction. We then develop our multi-scale geometric flow by incorporating 

Frangi's vesselness measure [Frangi et aL (1998)] in the flux maximizing flow algo

rithm of Vasilevskiy and Siddiqi (2002) in Chapter 3. We present qualitative and 

quantitative validation results in Chapter 4. We then conclude with a discussion of 

the results and present directions for future work in Chapter 5. 



Chapter 2 

Background 
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We now review the use of the Hessian as a descriptor for modeling tubular 

structures and then provide an overview of vessel segmentation and centerline ex

traction methods in the literature. This overview is necessarily not exhaustive; it 

is based on a selection of representative techniques. For a more thorough discus

sion of the relative strengths and weaknesses of such approaches we encourage 

the reader to refer to the recent article of Aylward and Bullitt (2002). Also, we refer 

to relatively standard differential geometry definitions, propositions and theorems 

that are described in greater detail in any standard differential geometry text such 

as DoCarmo (1976). 

2.1 Modeling Vasculature using the Hessian 

Several multi-scale approaches to modeling tubular structures in intensity images 

have been based on properties of the Eigen values of the Hessian matrix H [Lorenz 

et aL (1997); Sato et aL (1998); Frangi et aL (1998); Aylward and Bullitt (2002); Koller 

et aL (1995); Krissian et aL (2000); Ostergaard et aL (2000); Wink et aL (2004)]. For 

a function f(Xl, X2, ... , xn ), the Hessian is given by the Jacobian of the derivatives 

ih,~, ···if· This matrix encodes important local shape information. To under

stand why this is so, we must review sorne basic concepts in differential geometry 

of surfaces. Referring to Figure 2.1, we look at how rapidly a surface S pulls away 

from the tangent plane 7p in a neighborhood of a point p ES. This is the same as 

measuring the rate of change, dNp, of the unit normal vector field Np on a neigh

borhood of p. It can be shown that this differential dNp is a self-adjoint linear map 

[DoCarmo (1976)] giving rise to the second fundamental form Hp of a surface S at a 

point p. To see how the Hessian operator appears in this shape analysis of surfaces, 

we consider surfaces given as the graph of a differentiable function z = h(x, y). 

Such graphs are common in the computer vision and in the active contour litera

ture. For example, the intensity values of a 2D image are often regarded as a height 

surface z = I(x, y). Most importantly, it is known that locally, any surface is the 
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FIGURE 2.1: Basic differential geometry of surfaces. Local surface representation of a regu
lar surface S. Tp is the tangent plane of the surface at a point p ES, 7rN is the plane of the 
normal vector Np to the surface at point p. 

graph of a differentiable function [DoCarmo (1976) (cf. Prop 3, Sec. 2-2)]. That is, 

given a point p E S, one can choose the coordinate axis of R3 so that the z-axis 

is along the normal of the surface (Np) and the xy plane agrees with Tp. Thus, a 

neighborhood of p E Scan be represented in the form z = h(x, y). If the surface 

is parametrized as (x, y, h(x, y)), a simple computation [DoCarmo (1976) (Sec. 3-3 

ex.5)] shows that the unit normal field is given by 
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Thus, the second fundamental form of such a surface at a point p applied to a 

vector (x, y) E Tp becomes, 

- \ dNp (( x, y)), (x, y) ) 

hxxx2 + 2hxyxy + hyyy2 

(x y) (h
xx 

h
XY

) (x) 
hxy hyy y 

In this case, the Hessian of h is the second fundamental form of S at p. 

(2.1) 

In general, the second fundamental form IIp has sorne very important geomet

ric properties in the tangent plane Tp for any surface. In particular, the value of 

IIp for a unit vector v E Tp is equal to the normal curvature of a regular curve 

passing through p and tangent to v. In fact, we can show that aIl curves lying on a 

surface Sand having the sa me tangent line along v at point p E S have the same 

normal curvature. This allows one to speak of the normal curvature in a partic

ular direction v at p. We are usually interested in the extreme values, maximum 

(KI) and minimum (K2), of the normal curvature. These are called principal curva

tures. A nice theorem states that there exists an orthonormal basis {el, e2} of Tp 

such that dNp(el) = -KIel and dNp(e2) = -K2e2, [DoCarmo (1976)]. Thus, the 

normal curvature can always be expressed as a linear combination of the mini

mum and maximum curvatures. In our context, this means that the Eigen values 

of the Hessian matrix give the principal curvatures (KI, K2), and the corresponding 

Eigen vectors (el, e2) span the tangent plane Tp (Figure 2.2). Hence, the Eigen value 

decomposition of the second fundamental form (or the Hessian matrix) is aIl one 

needs to locally describe the shape of a 2D surface. 

In computer vision, one often works with three-dimensional (3D) images. Hence, 

we must extend the 2D differential geometry to 3D iso-intensity surfaces present 

in the image data, I(x, y,z). In this thesis, we model blood vessels as closed tubu

lar iso-surfaces as is popular in the medical imaging literature [Koller et al. (1995); 
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maximum 
curvature 

N 

13 

FIGURE 2.2: Illustration of the direction of the gradient or normal N, the direction of the 
minimum and maximum curvatures of a surface S at a point p. 

Frangi et al. (1998); Krissian et al. (2000)]. In particular, at any given voxel in a 3D 

image I, we wish to know if we are inside, on or outside a tubular structure implied 

by the data. To do so, we must explore the variations of intensity in small regions. 

A common approach to analyzing local shape behavior in the neighborhood 6x 

of a voxel x of an image l is to consider its Taylor expansion. Neglecting terms of 

degree higher than two we obtain 

where 

( 

Ixx Ixy I
xz l ( Ix l 

H = Iyx Iyy Iyz and VI = Iy 

Izx Izy Izz Iz 

The vector of first derivatives of the image is the gradient vector VI and it gives 

the normal vector (N in Figure 2.2) to the implied iso-intensity surface. The Hessian 
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FIGURE 2.3: At locations centered within tubular structures the Eigen vector (el) corre
sponding to the smallest Eigen value (À I ) of the Hessian matrix is along the vessel direction 
and the other Eigen vectors {el, e2} span the cross-sectional plane. 

matrix H looks at how this normal vector varies in aIl three directions. Intuitively, 

when on a tubular iso-surface, the normal vector variation along the tube is small 

due to low curvature whereas the variation is important in the other two orthogo

nal directions due to high curvature of the cross-section. Hence, in the tubular case, 

one expects a row of H to be composed of zero or close to zero entries (low curva

ture in that direction) and have the other two rows equal or almost equal (high 

curvature of circular or almost circular cross-section). In this case, the Eigen de

composition of the Hessian matrix H, which seeks for vectors 7' E R3 and scalars 

À such that 

gives a zero or close to zero Eigen value and two other equal or almost equal Eigen 

values with high magnitude. The associated Eigen vectors form a coordinate frame 

giving the minimum and maximum curvature directions in the tangent plane to the 

iso-surface at that point i'lnd the direction of the normal vector. This is illustrated 

in Figure 2.3. 

The Eigen value analysis can be extended to differentiate tube-like, blob-like, 

sheet-like, and noise-like structures from one another as summarized in Table 2.l. 

Sheet-like or plate-like structures are encountered in data sets with fiat bones, skin 
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Eigen value conditions 
JI} ~ 0 , À2 ~ À3 > > 0 
À1 ~ À2 ~ 0 , À3 > > 0 
À1 ~ À2 ~ À3 > > 0 
À1 ~ À2 ~ À3 ~ 0 

local structure 
tube-like 
sheet-like 
blob-like 
noise-like 

examples 
vessel, bronchus 
cortex, skin 
nodule 
noise 
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TABLE 2.1: A classification of local structures based on the Eigen values of the Hessian 
matrix. Here, we assume that IÀ11 ~ IÀ21 ~ IÀ31. The sign of the highest Eigen values 
generally indicate whether the local structure is dark on a bright background or bright on 
a dark background. A positive sign corresponds to a dark structure on a bright background 
which is the case for PD weighted MRI volumes. 

or cortex, where two of the Eigen values are close to zero due to small normal 

changes in the plane corresponding to the flattened shape. For sphere-like or blob

like structures, it is expected that aIl three Eigen values are high and almost equal 

because of the isotropy of the data in aIl three directions. This local structure is 

often detected at branch points and at very high curvature sections of blood ves

sels, as pointed out later in Figure 3.2. Finally, close to zero Eigen values represent 

locations with the absence of structure. This is often the case for points in the 

background or in noisy parts of the data. In this thesis, we are interested in tube

like structures for the task of segmenting vasculature. Two prominent approaches 

for capturing vessel-like or tube-like structures based on the Hessian are the tech

niques proposed in Krissian et al. (2000) and Frangi et al. (1998). 

First, Krissian et al. (2000) propose a model-based approach to detecting tubu

lar structures. An Eigen value decomposition of the Hessian matrix is carried out 

analytically for each assumed model that is fit to the image data. They report that 

whereas this analysis provides a good descriptor at the center of a vessel, its qual

ity decreases at locations close to vessel boundaries. Hence, they define a vessel 

detector which combines the highest two Eigen values of the Hessian matrix and 

a gradient term which is known to play a significant role at vessel boundaries. 

They have recently demonstrated the robustness of this operator in the context of 

segmenting the aorta in low contra st 3D ultrasound images [Krissian et al. (2003)]. 
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Second, Frangi et al. (1998) propose a vesselness measure which incorporates 

information from aIl three Eigen values and has an intuitive geometric interpreta

tion. This method is close in spirit to previous work by Lorenz et al. (1997) and 

Sato et al. (1998). Three quantities are defined to differentiate blood vessels from 

other structures: 

From Table 2.1, it can be seen that RB is non zero only for blob-like structures. 

The RA ratio differentiates sheet-like from other structures because it is zero only 

for sheet points. Finally, S, the Frobenius norm, is used to ensure that random 

noise effects are suppressed from the response. For aIl non noise-like structures, 

this measure is high because at least one of the Eigen values is significant. For a 

particular scale (J the intensity image is first convolved by a Gaussian at that sc ale, 

G ( (J), and the following vesselness response function, V ( (J), is computed: 1 

{ 

0 iL\2 < 0 or ~3 < 0 
V ( (J) = R2 R2 2 

(1 - exp ( - 2a1 ) )exp ( - 2;2) (1 - exp ( - iC2))' 
(2.2) 

This measure is designed to be maximum along the centerlines of tubular struc

tures and close to zero outside vessel-like regions. The scale (J associated with the 

maximum vesselness response provides an estimate of the width of the tubular 

structure centered at a particular location and the Eigen vector associated with the 

smallest Eigen value of the Hessian gives its local orientation. This is illustrated in 

Figure 3.2 and will be further explained later when we develop our approach. 

IThe vesselness expression is given for the case of a dark tubular structure on a brighter back
ground (as in a PD volume). In the case of angiographie data, the signs in condition 1 must be 
changed, i.e., V(CT) = 0 if À2 > 0 or À3 > o. 
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2.2 Vessel Segmentation and Centerline Extraction 

In this section, we review three classes of vessel segmentation algorithms relevant 

in the context of this thesis. We first look at a statistical approach and then in

vestigate ridge traversaI and centerline extraction methods. Finally, we provide a 

discussion on other geometric flows existing for blood vessel segmentation from 

angiographie data sets. 

2.2.1 Statistical Methods 

Wilson and Noble (1997) propose a statistical approach for segmenting blood ves

sels from TOF angiography data, such as that shown in Figure 1.1(b). They intro

duce a mixture of three probability distributions which is based on physical prop

erties of blood and brain tissues. Vessellabels are assumed to arise from a uniform 

distribution and two Gaussian distributions are used to model other structures, one 

for tissue outside the head and another for eyes, skin, bone and brain tissue. The 

parameters of these models are estimated using a classical expectation maximiza

tion (EM) algorithm. The vasculature tree is then obtained following a thresholding 

procedure that is sensitive to signal to noise ratio and intensity contra st between 

vessel and non-vessel structure in the data. It is important to point out that this 

method does not employa multi-scale analysis and also has no explicit model for 

tubular structures. Hence, it cannot be applied to non-angiographie data sets such 

as the PD volume or to Gadolinium enhanced MR volumes of Figure 1.1(a) and 

Figure 1.1(d). 

2.2.2 Centerline Extraction 

Another class of methods attempts to find centerlines of tubular structures as they 

are manifest directly in intensity (MR or CT) images, such as those in Figure 1.1(c). 

Aylward and Bullitt (2002) present a centerline tracking approach which is based 
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on a characterization of intensity ridges in 3D data sets. The Eigen vectors of the 

Hessian matrix are used to estimate the local orientation of vessels and a normal 

plane is iteratively updated to follow the vessel's cross-section, as illustrated locally 

in Figure 2.3. This idea is also the basis of work by Koller et aL (1995) for the multi

scale detection and traversaI of curvilinear structures in intensity images. Aylward 

and Bullitt pay particular attention to the validation of their method, demonstrat

ing its robustness under parameter changes, changes in scale and simulated image 

acquisition noise. The method is an iterative one, where the centerline is continu

ously extended in the estimated direction of its local orientation. As we shalliater 

see, this local Hessian analysis is similar to the one used in our geometric flow 

based approach. However, rather than traverse the ridge at a single scale and com

pute vessel widths using a multi-scale analysis, we use multi-scale orientation and 

scale estimates directly to propagate information from centerlines to vessel bound

aries. 

Deschamps and Cohen (2001) relate the problem of finding centerline paths 

to that of finding paths of least action in 3D intensity images. This leads to a 

form of the well-known Eikonal equation where a front is propagated in the im

age with a speed determined by a scalar potential that depends upon location in 

the medium. The minimal path is extracted using a simple steepest gradient de

scent. The framework aims to infer the boundaries of tubular structures in a first 

stage, using a standard surface evolution method. The potential function is then 

designed to take into account a Euclidean distance function from the boundary, so 

that the minimal paths are centered. The flow is implemented using fast marching 

schemes and is hence computationally efficient. The algorithm requires little user 

interaction but the user must specify the starting and end points of a particular 

path. As a consequence, the method is only applicable to small portions of blood 

vessels since it extracts only a single path at a time. The major drawback is that the 

technique cannot, its current form, handle bifurcations and multiple trajectories 
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naturally, making global segmentation of vasculature quite difficult. 

Wink et al. (2004) have recently presented an approach to centerline extraction, 

applied in the context of vessel tracking, which combines features of the above 

two approaches. More specifically, they use Frangi's vesselness measure (Eq. 2.2) 

to characterize putative vessel centerline locations [Frangi et al. (1998)]. They then 

formulate the problem of finding paths between user selected points as a minimum 

cost path problem which they solve computationally using wavefront propagation. 

The interesting feature of their approach is that they do a 3D search for a minimum 

path in the space of multi-scale responses. Standard methods usually take a max

imum projection of the multi-scale responses to perform a 2D search. To achieve 

this 3D search across scales, they incorporate a term that controls how easily the 

scale of the vessel can be changed in the path tracking. Their method has been val

idated qualitatively in the presence of stenoses, vessel crossings, several proximal 

vessels and imaging artifacts. However, the technique is again a local one and it 

does not handle the branching of vessels naturally. 

2.2.3 Geometrie Flows 

There is a long history on the use of deformable models for segmentation in the 

computer vision literature, motivated in large part by the classical parametric snakes 

introduced by Kass et al. (1987). These models have also been extended to handle 

changes in topology due to the splitting and merging of contours [McInerneyand 

Terzopoulos (2000)]. In the context of geometric flows for shape modeling, the 

first curve and surface evolution models were developed independently by Mal

ladi et al. (1993, 1994, 1995) and Caselles et al. (1993). This work lead to two recent 

vasculature segmentation approaches which are relevant to the development here. 

First, Lorigo et al. (2001) propose a regularization of a geometric flow in 3D using 

the curvature of a 3D curve. This approach is grounded in the recent level set the

ory developed for mean curvature flows in arbitrary co-dimension based on work 



20 CHAPTER 2. BACKGROUND 

--- "'.--. --- "'.--. 

\ ~r i r 
--. --. 

/ \ \ \ / le--- t 1 f'e 1 / 1 
l "- 1 l "- Il 1 

FIGURE 2.4: Illustration of the flux maximizing flow of Vasilevskiy and Siddiqi (2002) for a 
2D curve placed in a vector field. The curve evolves as to increase the inward flux thraugh 
its boundary as fast as possible. The resting flux maximizing configuration is one where 
the inward normals to the curve are everywhere aligned with the direction of the vector 
field. The figure is adapted fram Vasilevskiy and Siddiqi (2002). 

by Ambrosio~and Soner (1996). It yields the flow 

1 

2 g VI 
l/Jt = J..(Vl/J, V l/J) + p (Vl/J, VI) g Vl/J.H IVII· 

Here l/J is an embedding surface whose zero level set is the evolving 3D curve, 

J.. is the smaller nonzero Eigen value of a particular matrix [Ambrosio and Soner 

(1996)], g is an image-dependent weighting factor, I is the intensity image and H 

is the determinant of its Hessian matrix. For numerical simulations the evolution 

of the curve is depicted by the evolution of an ê-Ievel set. Without the multiplica

tive factor p (Vl/J, VI) the evolution equation is a gradient flow which minimizes a 

weighted curvature functional. The multiplicative factor is a heuristic which mod

ifies the flow so that normals to the ê-Ievel set align themselves (locally) to the 

direction of image intensity gradients (the inner product of Vl/J and I~il is then 

maximized). The flow is designed to recover vessel boundaries signaled by the gra

dient in angiography data, while under the influence of a smoothing term driven 

by the mean curvature of an implied centerline. 

Second, Vasilevskiy and Siddiqi (2002) derive the gradient flow which evolves 

a curve (2D) or a surface (3D) so as to increase the inward flux of a fixed (static) 

vector field through its boundary as fast as possible (Figure 2.4). With S an evolving 
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-Jo 

surface and V the vector field, this flow is given by 

-Jo --+ 
St = div( V)N (2.3) 

-Jo 

where N is the unit inward normal (for inward motion) or outward normal (for 

outward motion) to each point on S. The motivation behind this flow is that it 

evolves a curve (in 2D) or surface (in 3D) to a configuration where its normals are 

aligned with the vector field, as seen in Figure 2.4 for the 2D case. In the context of 
-Jo 

segmenting vasculature in angiographie images, V can be selected to be the gradi-

ent of the intensity image which is expected to be orthogonal to vessel boundaries 

[Vasilevskiy and Siddiqi (2002)]. 

It is important to point out that both of the above approaches are designed 

specifically for angiographie data and hence require restrictive assumptions to hold. 

In particular: 1) both methods are initialized essentially by thresholding such data, 

and thus would fail when vessel boundaries cannot be identified from contrast 

alone; 2) neither approach has an explicit term to model tubular structures, but 

instead relies on the assumption that the gradient of the intensity image yields a 

quantity that is significant only at vessel boundaries; and 3) neither of these meth

ods takes into account explicitly the multi-scale nature of vessel boundaries as they 

appear in aIl modalities. In the following chapter we argue that several of the above 

limitations can be overcome by incorporating a measure of "vesselness". The result 

is a modified flow which can be applied to a wide range of modalities, and which 

also offers computational advantages over other vessel segmentation algorithms 

due to its implementation using level set techniques [Osher and Sethian (1988)]. 
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Chapter 3 

A Multi-Seale Geometrie Flow for 

Segmenting Vaseulature 
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The approach we develop proceeds in two steps. First, we apply Frangi' s ves

selness measure to find putative centerlines of tubular structures along with their 

estimated radii. Second, this multi-scale measure is distributed to create a vector 

field which is orthogonal to vessel boundaries so that the flux maximizing flow 

algorithm of Vasilevskiy and Siddiqi (2002) can be applied to recover them. 

3.1 Introducing a Tubular Model 

Returning to Frangi's vesselness measure (Eq. 2.2), a subtlety arises when a multi

scale analysis is employed. The difficulty is that one has to compare the results of 

the response function at different scales, while the intensity and its derivatives are 

decreasing functions of scale. Hence, each individual response function must be 

suitably normalized before the comparison can be done. Fortunately, this can be 

done quite efficiently by directly computing the entries which comprise the Hes

sian matrix by convolving the image, T, with second order derivatives of Linde

berg's y-parametrized normalized Gaussian kernels [Lindeberg (1998)]. This is a 

general heuristic principle stating that local maxima over scales of combinations of 

y-normalized derivatives, 

serve as useful indicators reflecting the spatial extent of corresponding image struc

tures. In this expression, the scale parameter used is the evolving time, t, in the 

classical Heat Equation, 

Tt = 6T = div("VT) 

This cornes from the fact that convolving an image T with a Gaussian kemel at 

scale (J is equivalent to evolving every point of T according to the Heat equation 
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FIGURE 3.1: A mid-sagittal slice of the original PD weighted MRI volume with its corre
sponding vesselness map. Note how the vesselness measure is now an angiographic-like 
volume similar to the PC data set of 1.1(c). 

for t = cr2 iterations [Hummel (1986)]. Thus, 

dx;y-norm t~dx 

(cr2)~dx 

cr'Vdx . 

It is standard to choose y = 1 when gamma is a fixed value. Otherwise, it is 

adaptively changed to maximize sorne quantity as in Lindeberg (1998) and Krissian 

et al. (2000) for automatic detection of edges or special features. Hence, anytime 

we compute a derivative, we scale its value by cr. We compute every entry of the 

Hessian matrix using 

_ ) _ 2 d2G(X, cr) _) 
Iuv(x, cr = cr dUdV * I(x 

1 -<xi> 
where G(x, cr) = exp 2CJ 

J(2?Tcr2 ) 

In our implementation of the vesselness measure, we set the parameters IX, f3 

and c to 0.5, 0.5 and half the maximum Frobenius norm respectively, as suggested 

in Frangi et al. (1998). In practice we have found these parameter settings to yield 

stable results over a wide range of image modalities. Figure 3.1 shows a mid

sagittal slice of the original PD weighted MRI volume with its corresponding ves-
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selness map. Note how the vesselness measure is an "angiographic-like" volume 

with strong intensity in vessel regions and almost null values outside vasculature, 

similar to the phase contrast angiography of Figure 1.1(c). At each voxel we com

pute vesselness responses using ten log scale increments between cr = 0.2 and 

cr = 2.5 (in our data the maximum radius of a vessel is 2.5 voxels) and select the 

maximum vesselness response along with its scale. The chosen scale gives the esti

mated radius of the vessel and the Eigen vector associated with the smallest Eigen 

value its local orientation. 

This process is illustrated in Figure 3.2 for a synthetic branching structure, a 

synthetic helix and cropped portions of a PD weighted MRI and MRA. The gray 

surface coincides with a particular level set of the vesselness measure, which quickly 

drops to zero away from centerline locations. Within this surface locations of high 

vesselness are indicated by overlaying the Eigen vectors associated with the low

est Eigen values, which correspond to the estimated vessel orientation. Note that 

sorne vessel regions do not have vectors overlaid. This is because they have a low 

vesselness value at these locations. This is evident at the branch point of Figure 

3.2(a) and the high curvature part of Figure 3.2(b), where at these voxels, the local 

shape is more blob-like. However, neighboring points have high vesselness mea

sures with correct associated vessel orientations. Furthermore, it is apparent that 

locations of high vesselness are close to the expected centerlines, and that the esti

mated vessel orientation at these locations is accurate. This information along with 

the estimated radius of associated vessels can be used to construct an appropriate 

vector field to drive the flux maximizing geometric flow, as we shall now see. The 

use of a geometric flow is a simple and natural way to handle branching structures 

while integrating the vesselness information with sorne amount of local control. 

This allows us to lift many of the restrictions on the flow pointed out in Section 

2.2.3, because an explicit model of a tubular structure is now incorporated along 

with an appropria te notion of scale. 
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(a) Branch structure (h) Helix (c) Cropped PD 

(d) Cropped MRA 

FIGURE 3.2: A synthetic branching structure, a synthetic helix, a cropped region of an MRA 
and a cropped vessel of a PD weighted MRI. For each structure the red vectors indicate 
the estimated vessel orientation at locations where the multi-scale vesselness measure (Eq. 
2.2) is high. Note that at the branch point of 3.2(a) and the high curvature part of 3.2(b), 
there are no vectors overlaid. At these locations the local shape is blob-like and hence the 
vesselnes measure is low. 
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3.2 Extending the Vesselness Measure to Boundaries 

As described in Section 2.2.3, in order for an initial surface to evolve so as to align 

itself to vessel boundaries using the flux maximizing flow equation of 2.3, we need 

to construct a vector field large in magnitude and orthogonal to vessel contours. 

Since the vesselness measure is concentrated at centerlines, we need to distribute 

it to the vessel boundaries which are implied by the local orientation and scale. We 

consider an ellipsoid with its major axis aligned with the estimated orientation and 

its two semi-minor axes equal to the estimated radius. In our implementation the 

semi-major axis length is chosen to be twice that of the semi-minor axes. The ves

selness measure is then distributed over every voxel (xe, Ye, ze) on the boundary of 

the ellipsoid by scaling it by the projection of the vector from (x, y, z) to (xe, Ye, ze) 

onto the cross-sectional plane passing through the semi-minor axes, as illustrated 

in Figure 3.3(a) and Figure 3.3(b). If (x, y, z) is taken to be the origin (0, 0, 0) and the 

xY plane is taken to coincide with the cross-sectional plane this scale factor works 

out to be 

(3.1) 

This distribution cannot be blindly done at aU voxels in the vesselness volume 

because we are only confident in scale and orientation estimates for voxels on ves

sel centerlines. For instance, it is often the case that tube-like points off the center

line get a significant vesselness measure with an associated scale that is incorrect 

because the Gaussian kemel responds to the opposite boundary, which is further 

away. Hence, the estimated scale does not reflect the true vessel width. To resolve 

this subtlety, we must distribute the measure only from voxels at centerline loca

tions. To find such locations, we adopt a very simple local maximum detection pro

cedure. At each voxel (x, y, z) where the vesselness measure is a local maximum 

in a 3x3x3 neighborhood, we perform the vesselness distribution over aU voxels on 

the surface of the associated ellipsoid. This construction is explained in more detail 
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(a) Projection (b) cp-distribution 

(c) Tube (d) Slice ofvesselness map 

• , ,~"" II! 

li iiII!, ,,' m 
JIll .. 

(e) Slice of cp map (f) Slice of div(V) map 

FIGURE 3.3: Distributing the vesselness measure to the implied boundaries. 3.3(a) The vec
tor from the center of the ellipsoid to the surface voxel (xe, Ye, ze), as we11 as its projection 
onto the cross-sectional plane, taken to be the xY plane. 3.3(b) We distribute the vesselness 
measure to a11 (xe, Ye, ze) on the ellipsoid by scaling it by the magnitude of this projection. 
The color bar indicates the association between brightness and magnitude. 3.3(c) A syn
thetic tube of radius 2. 3.3(d) A view of the vesselness measure in a slice, with brighter 
regions indicate stronger intensity. 3.3(e) A view of the cp distribution in the same slice. 
3.3(f) The divergence of the vector field in Eq. 3.2, with transitions between dark and bright 
indicating zero-crossings. As expected, we have local maxima of the vesselness measure 
on the centerline in 3.3(d), local maxima of the cp distribution at the boundaries of the tube 
in 3.3(e) and zero-crossings of the divergence at the boundaries of the tube in 3.3(f). 
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in Section 3.4. This process of distributing the vesselness measure to the implied 

boundaries clearly favors voxels in the cross-sectional plane and gradually fades 

to the ends of the ellipsoid. This is illustrated in 3.3(b), where the surface of the 

ellipsoid is colored according to the projection value. We define the addition of the 

extensions carried out independently at all voxels to be the cP distribution. 

The extended vector field is now defined as the product of the normalized gra

dient of the original image with the above cP distribution 

---+ VI 
V = cP IVII· (3.2) 

This vector field embodies two important constraints. First, the magnitude of cP is 

maximum on vessel boundaries and the ellipsoidal extension performs a type of 

local integration. This follows because the local maximum vesselness criterion en

forces the condition that the extension is carried out only from locations as close as 

possible to vessel centerlines. Hence, the maximum value previously on the cen

terline is translated to the vessel contour. This is demonstrated in Figure 3.3 on a 

synthetic tubular structure. The vesselness map is maximum along the centerline 

(3.3(d» and the cP map has maxima distributed to vessel boundaries (3.3(e». Sec

ond, I~il captures the direction of the gradient, which is expected to be high at 

boundaries of vessels as well as orthogonal to them. It is important to normalize 

the gradient of the image so that its magnitude does not dominate the measure in 

regions of very low vesselness. For example, structures such as white and gray 

matter boundaries could then get significant unwanted contributions. Figure 3.3(f) 

shows the divergence of this new vector field of Eq. 3.2. 

We have performed a careful numerical validation of the cP distribution proce

dure on synthetic tubes of varying central axis curvature and radius. The vessel

ness measure, cP extension and divergence map were computed as previously ex

plained (illustrated in the example of Figure 3.3). We then found the average and 

maximum distance error between ground truth surface points and corresponding 
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extension surface points. The extension surface points are the zero-crossings in 

the divergence map, which are computed with a simple linear interpolation. We 

obtained an average distance error of 0.35 voxels and a maximum error of approxi

mately 1 vox el over aIl the examples. This shows the accuracy of the vessel bound

ary estimations using the proposed extension. 

3.3 The Multi-Seale Geometrie Flow 

The extended vector field explicitly models the scale at which vessel boundaries 

occur, due to the multi-scale nature of the vesselness measure V (0-) (Eq. 2.2) as 

weIl as the expected gradient in the direction normal to vessel boundaries. Thus 

it is an ideal candidate for the static vector field in the flux maximizing geometric 

flow (Eq. 2.3). The surface evolution equation then works out to be 

---> ----> 
div( V)N 

[ (V cp, I~il) + cpdiv C~il) ] N 
[(Vcp, I~il) +CPKI] N. 

(3.3) 

Here KI is the Euclidean mean curvature of the iso-intensity level set of the image. 

Note that this is a hyperbolic partial differential equation since aIl terms depend 

solely on the vector field and not on the evolving surface. We now enumerate 

several properties of this geometric flow. 

1. The first term (V cp, I~il) acts like a doublet. To see this, we observe the in

tensity profiles of l, V l, cp and V cp in Figure 3.4. cp has a maximum at vessel 

boundaries which implies that V cp has a zero-crossing at such locations. Fur

thermore, l behaves like a smoothed step function at vessel contours which 

implies that VI does not change sign there. Therefore, the first term of the 

evolution Eq. 3.3 is a doublet. Such doublet terms have also shown to be 

beneficial in earlier geometric flows for segmentation [Kichenassamy et al. 
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(1995); Caselles et al. (1995); Siddiqi et al. (1998)]. When the evolving surface 

overshoots the boundary slightly, this term acts to push it back toward the 

boundary. 

l (x) cp x) 

x x 

vessel boundaries vessel boundaries 

(a) l (h) 4J 

grad(I(x)) 

grad(cp(x) ) 

x 
x 

vessel boundaries vessel boundaries 

(c) 'V l (d) 'V 4J 

FIGURE 3.4: An approximate sketch of the l, V' l, cp, and V' cp intensity profiles. 

2. The second term is a regularization term since it behaves like the geometric 

heat equation. Here, 

KI = div C~~I) 
is the mean curvature of the iso-intensity level set of the original intensity 

image. Evolutions driven by such term have been extensively studied in the 

mathematies literature and have been shown to have remarkable anisotropie 
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smoothing properties [Gage and Hamilton (1986);Grayson (1987)]. Such terms 

are also the basis for several nonlinear geometric scale-spaces such as those 

studied in Alvarez et al. (1992b,a) and Kimia et al. (1990, 1995). 

3. Combining both terms, it is dear that the flow cannot leak in regions outside 

vessels since both cp and "V cp are zero there. Hence, when seeds are placed at 

locations where the vesselness measure V ( CT) is high the flow given by Bq. 3.3 

will evolve toward the dosest zero level set of the divergence of the vector 
----+ 

field V. This will make the evolving surface ding to vessel boundaries. 

3.4 Algorithms and Implementation Details 

The entire process for extracting vasculature can now be described via three algo

rithms. First, the vesselness measure is computed using Aigorithm 3.1. Second, 

this measure is used to construct the extended vector field via Aigorithm 3.2. Fi

nally, this extended vector field drives the flux maximizing geometric flow for seg

mentation described in Aigorithm 3.3. 

Below we review sorne of the details of the implementation of these algorithms: 

1. Typically, a few iterations of mean curvature type smoothing on the original 

At vessel boundaries inside vessels outside vessels 
l contrast change (bright to dark roughly constant large for PD and 

for PD and dark to bright for an- (step function or small for angiogra-
giography) Gaussian-like) phy 

"VI local min at one boundary and zero or small small except at tissue 
local max at the other change (ex: between 

gray and white mat-
ter) 

cp local max camel back zero 
"V cp zero-crossing positive and negative zero 

TABLE 3.1: Behavior of l, \1 l, cp, \1 cp intensity profiles at vessel contours and inside and 
outside vessel regions. 
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Algorithm 3.1: Vesselness computation 

Data : T: 3D input medical data set 

Result : Vess: maximum vesselness measure volume 
Scale: smallest Eigen value À1 

Ex: volume containing first component of Eigen vector el 
Ey: volume containing second component of Eigen vedor el 
Ez: volume containing third component of Eigen vedor el 

for cr = crmin to crmax do 
for (every voxel x ET) do 

Compute the derivatives of the Hessian matrix as described in Sec
tion 3.1; 
Use Jacobi's method to extrad the Eigen values À1' À2, À3 and the as
sociated Eigen vectors el, e2, e3; 
Sortthem such that IÀ11 ::; IÀ21 ::; IÀ31; 
Compute Ra, Rb, 5 and the corresponding vesselness value V (cr) of 
Eq.2.2; 
1* keeping maximal response * / 
if (V( cr) > Vess(x)) then 

Vess(x) = V(cr); 
Scale(x) = À1; 

Ex = el (x); 
Ey = el (y); 
Ez = el (z); 

image is used as a pre-processing step before segmentation. This is a stan

dard method to remove artifads such as speckle noise since it smooths along 

iso-intensity level sets but not across them. However, we have noticed that 

this process is unnecessary in our implementation as we compute derivatives 

of the Hessian matrix by convolution with derivatives of Gaussian kernels, 

which takes care of preliminary smoothing. If a curvature flow is used on top 

of that, we loose many smaller vessels. 

2. In order to favor smaller scales, we use log scale increments when comput

ing derivative entries of the Hessian operator. We then select the maximum 
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Algorithm 3.2: Construction of the extended vector field 

Data : I: 3D input medical data set 
Vess: maximum vesselness volume 
Scale: smallest Eigen value ÀI 

Ex: volume containing first component of Eigen vector el 

Ey: volume containing second component of Eigen vector el 

Ez: volume containing third component of Eigen vector el 

cp: cp-extension volume 
---t 

Result : F: speed volume driving the flux maximizing flow, div( V ) 
Compute Vess, Sc ale, Ex, Ey, Ez with Aigorithm 3.1; 
for (every voxel XE I) do 

1 Initialize CP(x) = 0; 

for (every voxel x E I) do 
1* vesselness extension to vessel boundaries * / 
Compute 10caCmax variable by finding local maximum of Vess volume 
in a 3x3x3 neighborhood of x; 
if (Vess(x) > threshold) and (1:~I~~lx > percentile) then 

for each Xe on the ellipsoid surface of semi-minor length Scale(x), semi
major length 2*Scale(x) and orientation given by (Ex(x), Ey(x), Ez(x)) 
do 

1 cp(xe) = Distribute(Vess(x)) as detailed in Section 3.2; 

for (every voxel x E I) do 

Compute I~~~~ll; 
Compute KY(X) given by Eq. 3.4; 
Compute \7 cp; 

F(x) = (\7 CP(x), I~il (x) ) + KYCP(X); 

return F; 
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vesselness response as described in Section 2.1. We use Jacobi's method for 

symmetric matrices to find the Eigen values of the Hessian. For a faster multi

scale vesselness volume computation, we have computed this measure over 

5 scales without noticeable differences in the vessel extractions. 

3. The cp distribution in Section 3.2 is carried out from voxels at vessel center

lines since at such locations one has strong confidence in the scale and ori-
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Aigorithm 3.3: Level set based geometric flow 

Data : F: speed volume driving the flux maximizing geometric flow 
'-1': volume with the evolving surface embedded as its zero level 
set 
N: data structure containing points in the narrow band 

Result : S: surface representation of the vasculature extracted from l 

Compute vesselness measure and resulting volumes with Aigorithm 3.1; 
Compute speed function F using Aigorithm 3.2; 
/* Surface initialization * / 
for (every voxel x E F) do 

if (Vess(x) > initiaCthreshold) then 
1 S(x) = 1; 

else 
1 S(x) = 0; 

'-1' = dt(S) (dt is the signed Euclidean Distance Transform of Borgefors (1984); 
Compute points in the narrow band to the surface and store them in N; 
/* Level set surface evolution equation * / 
for (t = 0 to stop_time) do 

for (every voxel x E F) do 
if (x E N) then 

Update'-1' according to the discrete surface evolution Eq. 3.5; 
if narrow band boundary N is hit then 

for every x E l do 
if ('i' = 0) then 

1 S(x) = 1; 

else 
1 S(x) = 0; 

'-1' =dt(S); 

return S = '-1'(0); 

entation estimate from Frangi's vesselness measure [Frangi et al. (1998)]. A 

global thresholding approach is not appropria te as it either misses the smaller 

structures or allows a lot of non-vessel structures. Hence, we adopt a more 
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local procedure which is sensitive to both small and large vessels: 

if (V(cr) > threshold && lo~f~~ax > percentile) 

Distribute vesselness over ellipsoid 
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The threshold condition is to ensure that we only consider voxels with a signif

ieant vesselness measure. The variable locaCmax is the maximum vesselness 

response in a small neighborhood of a particular voxel. We chose a 3x3x3 

neighborhood because we know that if a point has a significant vesselness 

value, there must be a vessel centerline within at least 3 voxels (the maxi

mum vessel radius is 2.5 voxels in our data). If lo~t~x > percentile, then 

we have detected a vessel voxel on or very near the center of the vessel. Oth

erwise, we are either off the centerline or at part of another local structure. 

For most examples we use a conservative vesselness threshold of 0.01 and a 

percentile of 0.75. These parameters give good and stable vessel extractions 

over aIl the image modalities tested. In practice, one can choose the threshold 

more aggressively for angiographie data as the difference between vessel and 

non-vessel regions is then much sharper. 

4. The derivatives in the doublet term (V cp, ,~i,) are computed using cen

tral differences for V cp and a second-order essentially non-oscillatory (ENO) 

scheme for the normalized gradient of the input image, I~il [Osher and Shu 

(1991)]. We choose a central difference scheme when we want a smoother 

approximation of the derivatives and an ENO scheme for a more precise ap

proximation able to capture sharp changes in intensity. ENO is also compu

tationally more expensive. 

5. We have two options to compute this quantity. First, we can use numeri

cal approximations to first compute VI and obtain a new volume I~il = 

A. Then, we can compute the divergence of this new data set with another 
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derivative approximation, i.e., div(A) = Ax + Ay + Az. This approach is 

less appealing because we need at least three data structures to save the par

tial volumes and also, it uses numerical approximations at two levels. Our 

second option is to use the analytic level set expression for the me an curva

ture of an iso-intensity level set [Osher and Sethian (1988)]. We compute aU 

derivatives using a 3-neighbor central difference scheme, 

KI = 1,--(I_y_y_+_I_zz_)I_x_2 _+_(_I_xx_+_I_zz_)_I_~-.,,-+_(I_x_x_+_I_y_y_)I_}_l 
-2(IxI yI xy - IxIzIxz - IyIzIyz) 

3 
(I; +I~ +Ii):! 

(3.4) 

6. A first-order in time discretized form of the level-set version of the evolution 

equation is given by 

(3.5) 

where F = (\7 cp, I~il ) + cpdiv (,~i,), '!' is the embedding hypersurface and 

L1t is the step size. The evolving surface S is obtained as the zero level set of 

this '!' function. The numerical derivatives used to estimate Il \7'!'11 must be 

computed with up-winding in the proper direction as described in Osher and 

Sethian (1988). This is now a standard numerical approach for solving partial 

differential equations of this type since it aUows topological changes to occur 

without any additional computational complexity and can be made efficient 

using a narrow band implementation. It could be made even more efficient 

by using a second order in time discretization of the surface evolution equa

tion, since the time step 6t could then be reduced. 

7. The narrow band width has an underlying subtlety. There is a trade-off be

tween memory and speed. The smaUer the narrow band, the less voxels we 

have to update at every iteration of the evolution equation. However, when 
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the narrow band is hit by the evolving surface, we need to reinitialize the bi

nary surface and recompute a new embedding distance function, '!J. This is 

computationally expensive and very slow for large data sets because we use 

the Euclidean Distance Transform of Borgefors (1984) to implement '!J. This uses 

four float measures for every voxel in the data set. Memory allocation quiekly 

becomes a problem when segmenting volumes in the order of 300x300x300 

voxels. Hence, we do not want to be hitting the narrow band too often. In 

our Implementation, we have found that a narrow band width of 20 voxels is 

an effective and computationally efficient choiee. 

8. Flow algorithms are always challenged by the initialization step. Depending 

on the way the algorithm is used, one can initialize the flow manually or auto

matically. In this work, we have focused on segmenting as much vasculature 

as possible automatically. As mentioned in Chapter 2, most existing flows 

are applied on angiographie data and can be initialized by thresholding the 

original data set. In the more general case of PD or Gadolinium enhanced 

MRI, we use the vesselness volume to initialize the surface. We threshold it 

using 0.1 for standard MRI data sets and use a more aggressive threshold of 

0.05 when segmenting angiography data sets. These values give good initial 

surfaces capturing most of the important vessels. This allows the flow to con

verge fast to the final segmentation without the need of a constant inflation 

term to speed up the evolution as necessary in the Implementation of Mal

ladi et al. (1993, 1994, 1995) and Caselles et al. (1993). Optimally, we believe 

a semi-automatie algorithm gives the best results. A user would typically 

segment automatically as mu ch vasculature as possible in a first step. Then, 

regions of interest could be selected and seeds could be placed manually to 

further segment smaller or lower contrast vasculature. 

9. The stopping criteria is specified by the user. However, if the narrow band 

has not been hit in a very long time (5000 iterations), the process is stopped 
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automatically. In most examples, depending on the initialization used, 15000 

iterations is enough to extract most of the vasculature. The algorithm reg

ularly saves intermediate surfaces during the evolution so that a user can 

restart the segmentation process from a previously saved iteration. In prac

tice, when the original data set is in the order of 300x300x300, we can compute 

10000 iterations per hour on a Pentium IV, 1.5Ghz, 1G RAM machine. The 

initial computation of the vesselness measure and the vector field needed to 

drive the flow can be computed in roughly 15 minutes. 



Chapter4 

Validation 
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We now validate our multi-scale geometrie flow for extracting vasculature. We 

first present qualitative segmentation results and masked maximum intensity pro

jections (MIPs) on a variety of modalities. We then carry out a quantitative compar

ison of the segmentations on a data set consisting of Proton Density (PD) weighted 

MRI, Time Of Flight (TOF) angiography and Phase Contrast (PC) angiography vol

umes, aIl obtained for the same subject. 

4.1 Image Acquisition 

We acquired four different volumes from the same subject (the author) on a Siemens 

1.5 Tesla system at the Montreal Neurologieal Institute (MNI). We first used a 

PD /T2-weighted dual turbo spin-echo acquisition with sagittal excitation (2mm 

thick slices, 50% overlap 1mm3 isotropie voxels, TE = 0.015s TR = 3.3s). Fol

lowing this, a 3D axial phase-contrast (PC) volume (0.47mm x 0.47mm x 1.5mm 

resolution, TE = 0.0082s TR = 0.071s) and a 3D axial time-of-flight (TOF) vol

ume (0.43mm x 0.43mm x 1.2 mm resolution, TE = 0.0069s TR = 0.042s) were 

acquired. Each data set was registered to a standardized coordinate system and 

re-sampled onto a 0.5mm3 isotropie voxel grid to facilitate processing and compar

isons. A mid-sagittal slice of the PD, PC and TOF volumes is depicted in Figure 1.1. 

We supplemented these three data sets with an MRA volume (Figure 4.1) and a 

Gadolinium enhanced MRI volume (Figure 4.3), both obtained from the MN!. 

In the PC data, contrast is determined by tissue motion. Static tissue yields no 

signal, and is therefore black. In the TOF data, vessel brightness is proportional to 

blood flow velo city. However complex flow or turbulence can cause some signal 

loss in the vessels in such images. In the data presented here, vessel/non-vessel 

contrast is greatest for the PC data (white on black tissue), intermediate for the PD 

data (black on gray) and slightly less for the TOF (white on gray). Resolution also 

affects vessel detectability. In principle the angiographie volumes should be able 

to show smaller vessels, since they have a higher resolution. 
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4.2 Qualitative Results 

We illustrate our multi-scale geometrie flow for segmenting vasculature on a vari

et y of modalities. The same parameters were used throughout, as described in Sec

tion 3.4. We should point out that whereas the prior geometric flow based methods 

of Lorigo et al. (2001) and Vasilevskiy and Siddiqi (2002) could be applied to the 

angiographie volumes, they would fail entirely on both the Gadolinium enhanced 

MRI volume and the PD data set. This is because high contrast regions are not 

limited to vessel boundaries and these techniques do not have an explicit tubular 

model. Hence, these flows would leak in the gray matter and other non-vessel 

regions. 

Figure 4.1 shows iterations of the flow using three single voxel seeds on an 

MRA data set obtained from the MNI, as weIl as an MIP of the data set masked 

by the final segmentation. In preliminary work we demonstrated that the flow is 

able to piek up the main vessels automatieally when the original 1mm3 isotropie 

data is used [Descoteaux et al. (2004a)]. In the current experiment the original data 

is super-sampled to a 0.5mm3 resolution. This preprocessing strategy allows us to 

recover several of the finer vessels whieh are less than one vox el wide and have 

low contrast at their boundaries. This is illustrated in Figure 4.2. 

Figure 4.3 depicts a 40mm x 53mm x 91mm region centered on the corpus cal

losum from a Gadolinium enhanced MRI volume obtained at the MN!. The 1mm3 

isotropie data was super-sampled to a resolution of 0.33mm3 using a tricubic inter

polation kemel, because several vessels in the original data set were less than one 

voxel wide. In the image one can see the callosai and supra-callosai arteries (the 

long arching vessels running from left to right). We show an MIP of a sagittal and 

a transverse view in the left column. A segmentation obtained by thresholding is 

shown in the middle column. This results in many disconnected vessels as weIl as 

artifacts. Our segmentation is shown in the third column and results in the recon

struction of weIl connected tubular structures. Observe how the local ellipsoidal 
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MIP t=O 

t = 100 t = 200 

t = 500 t = 1000 

t = 5000 MIP segmentation 

FIGURE 4.1: An illustration of the multi-scale geometric flow on a 68 x 256 x 256 MRA 
image. An MIP of the data is shown at the top left and the other images depict different 
stages of the evolution from three seeds. The bottom right figure depicts an MIP of the 
input MRA data masked by the binary segmentation. 
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(a) 1mm3 grid (b) 0.5mm3 grid 

FIGURE 4.2: An illustration of the automatic blood vessel segmentation when re-sampling 
the original data set. Results of column (a) were presented in Descoteaux et al. (2004a) 
where we worked with the originallmm3 resolution data. In column (b), we demonstrate 
the benefits of re-sampling the original data to a 0.5mm3 grid. Although it is computa
tionally more expensive and requires more computer memory, re-sampling allows one to 
recover smaller vessels automatically. 

integration scheme is able to conne ct a section of the supra-callosal arteries which 

has very low contrast in the original Gadolinium data set. Other methods that 

do not have an explicit tubular constraint fail miserably on this modality source 

as they leak into regions where the the Gadolinium contrast agent is absorbed by 

non-vessel tissues. 

Finally, Figure 4.4 depicts the transverse views of intensity projections of the 

input data, the vesselness measures and the segmentations of the PC angiography, 

TOF angiography and PD volumes shown in Figure 1.1. Owing to the large num

ber of short vessels near the surface of the full brain, the 2D visualization of the 

3D segmentations poses a challenge since most of the vasculature inside the head 

is occ1uded when projecting the data in a certain direction. Hence, we choose to 

work with a common 259 x 217 x 170 voxel region cropped from the center of each 

volume, which has vessels of different widths and contrasts in the three modali-
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(1) (2) 

(4) 

(5) (6) 

FIGURE 4.3: An illustration of the flow on a 40 mm x 53 mm x 91 mm cropped region of 
a Gadolinium enhanced MRI. An MIP of the sagittal and transverse views of the data is 
shown in (1) and (2). Reconstructions obtained by simple thresholding for the same views 
are shown in (3) and (4). These are clearly sensitive to noise and result in disconnected 
or missing vessels. The results obtained by our multi-scale geometric flow are shown in 
(5) and (6). Observe that the flow has connected a section of the callosal arteries which is 
barely visible in the MIP (see (1),(3),(5)). 

ties. In the third colurnn we mask the original volumes with the corresponding 

binary segmentations obtained by our algorithm, and show a maximum intensity 

projection (rows 1 and 2) or a minimum intensity projection (row 3). This last result 

is shown in "reversed" contra st so that it is comparable to the other two. Observe 

that along each row, the segmentations, vesselness maps and maximum/ minimum 
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PC 

TOF 

PD 

vesselness of PC 

vesselness of TOF 

vesselness of PD 
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PC masked by segmentation 

TOF masked by segmentation 

PD masked by segmentation 
(reversed contrast) 

FIGURE 4.4: Transverse views of intensity projections (IP) of the PC, TOF (maximum IP) 
and PD data sets (minimum IP), the associated vesselness measures and the segmentations 
obtained by the multi-scale geometric flow. Observe that along each row, the segmenta
tions, vesselness maps and maximum/minimum intensity projections agree closely. 

intensity projections agree c1osely, up to sorne very small vessels. We also note 

the resemblance between the PC and PD views, where a majority of the vas cu

lature agrees. We carry out a quantitative study of these segmentation results in 
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the following section. To our knowledge, this is the first segmentation in the lit

erature of a PD weighted MRI obtained using a geometric flow. Movies of the 

geometric flow on the PC and PD data sets can be found on the author's web page, 

http://www.cim.mcgill.ca/rvmdesco. 

4.3 Quantitative Results 

Figure 4.5 compares the segmentations obtained on the PC, TOF and PD volumes 

(Figure 4.4) with transverse views in the left column and sagittal views in the right 

column. To allow for small alignment errors due to geometric distortions between 

the different acquisitions, we consider two locations to be in common if the Eu

clidean distance between them is no greater than 3 voxels (1.5 mm). In each figure 

red labels indicate locations common to the two data sets, green labels indicate lo

cations present in the ground truth data set but not in the test data set and blue 

labels locations in the test data set which are not in the ground truth data set. It is 

clear from the first row that most of reconstructed vessels in the PD and PC data 

agree. The PC reconstruction has sorne finer vessels apparent in the transverse 

view where small collaterais branch off the posterior aspects of the middle cerebral 

artery in the lateral fissure. On the other hand, the PD reconstruction has more 

vasculature visible in the sagittal view with vessels branching off the callosai and 

supra-callosai arteries. FinaIly, the second and third rows of Figure 4.5 indicate that 

the TOF reconstruction is missing a large number of vessellabels when compared 

to the PC and PD reconstructions. 

We now present a quantitative analysis of these segmentation results, which 

were presented in preliminary form in Descoteaux et al. (2004b). We compute a 

number of statistics between each pair of modalities, treating one as the" ground 

truth" data set and the other as the "test" data set. These comparisons are shown 

in Table 4.1 and include the following measures: 
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PC (truth) vs PD (test) 

TOF (truth) vs PD (test) 

PC (truth) vs TOF (test) 

FIGURE 4.5: We consider the angiograms as the "ground truth". Each row shows a pair
wise comparison of reconstructions obtained on different modalities, with transverse views 
in the left column and sagittal views in the right column. White labels correspond to the 
background, red labels to locations common to the ground truth and test data, green labels 
to locations in the ground truth only and blue labels to locations in the test data only. 

1. The kappa coefficient defined by 

2a 

2a + b + c 
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Data Sets Validation Measures 

Ground Truth Test Data kappa ratio alignment 
(voxels) (mm) 

PC PD 0.84 0.80 0.95 0.48 
TOF PD 0.81 0.89 0.66 0.33 
PD PC 0.84 0.89 0.56 0.28 
PD TOF 0.81 0.74 0.60 0.30 
PC TOF 0.81 0.72 0.82 0.41 

TOF PC 0.81 0.94 0.88 0.44 

TABLE 4.1: A pair-wise comparison between the different modalities, treating one as the 
ground truth and the other as the test data. 

where a is the number of red voxels, b is the number of green voxels and c the 

number of blue voxels. This measure tests the degree to which the agreement 

exceeds chance levels [Dice (1945)]. This measure is commonly used in the 

medical image analysis community. A kappa coefficient above 60% to 70% is 

considered as a strong correlations. 

2. The ratio 
a 

a+b 

where a and b are as before. This measure indicates the degree to which the 

ground truth data is accounted for by the test data. 

3. The alignment error, defined by taking the average of the Euclidean distance 

between each voxel in the ground truth data set and its closest voxel in the 

test data set. This is done by computing the Euclidean distance transform on 

the test data and then, at every vessel voxel in the ground truth, ad ding the 

corresponding distance value. Recall that this value is the closest Euclidean 

distance to a vessel structure in the test data. This measure also indicates the 

degree to which the test data explains the ground truth data, but in terms 

of an average distance error. In order to avoid measurement bias when an 

extracted vessel is longer in one segmentation when compared to another, we 
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do not include voxels whose closest distance is greater than 3 voxels (1.5mm). 

This is essentially the set of red voxels in Figure 4.5. 

It is clear from Table 4.1 that the vaseulature obtained from the PD volume 

aeeounts for 80% and 89% of that obtained from the PC and TOF angiographie 

sequences, respeetively. Furthermore, whereas 89% of the PD vessel voxels are 

also found in the PC data, a signifieant proportion (26%) of PD vessel voxels are 

not seen in the TOF data. The results also indicate very high alignments between 

vessellabels in aU pair-wise eomparisons, whieh indieates that when segmented, 

vaseulature extracted from the different data sets is indeed similar. 
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This la st and final chapter addresses potential questions concerning presented 

in this thesis. We also summarize the main contributions and propose a number of 

directions for future work. 

5.1 Discussion 

, 5.1.1 Why use a Geometrie Flow? 

This question is important and needs to be addressed since one may wonder if 

the result obtained using our algorithm is almost equivalent to surface obtained 

by sweeping elliptical disks, whose radii and orientation are determined by multi

scale vesselness responses. This proposition is in fact a direct extension to vessel 

boundaries of Aylward and Bullitt's ridge traversaI using properties of the Hessian 

matrix. The theory behind this centerline approach and our method is essentially 

the same but the geometric flow framework has several important advantages. A 

flow acts as a local" glue", i.e., when propagating the surface front it is able collect 

evidence from neighboring voxels to crea te a connected surface. Hence, branch 

points of vascular trees, which locally behave like blobs (Section 3.1, Figure 3.2), 

are handled naturaIly. Ridge traversaI and centerline techniques need an explicit 

bifurcation model or a back-tracking method to capture vessel junctions. A flow 

also allows significantly more controL An expert can interact with the data and 

segmentation process by stopping it, manually placing seeds and restarting the 

evolution. This is possible because the flow can adapt to merging surfaces as weIl 

as changes in topology. In the end, if one seeks for the 3D centerlines of the blood 

vessel surfaces, one can use centerline extraction methods such as those in Bouix 

et aL (2004a,b). 

Another question one might ask is why did we chose the flux maximizing flow 

of Vasilevskiy and Siddiqi (2002) over the flow of Lorigo et al. (2001)? Although 

the latter has very nice mathematical motivation and an underlying regularization 
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term involving the Hessian matrix, the flow must be forced to stop at vessel con

tours by adding a heuristic image gradient term in the surface evolution equation. 

This is less appealing than the flux maximizing gradient flow of Vasilevskiy and 

Siddiqi (2002), which is significantly easier to implement. 

5.1.2 Quantitative Validation and Ground Truth Data 

Although we have carried out a careful qualitative and quantitative cross vali

dation of our method, this falls short of a true quantitative validation. This is 

because we do not have the ground truth segmentation to compare our PD seg

mentation to. Colleagues have suggested the use of a high quality CT acquisition 

of a phantom brain to ob tain a ground truth 3D representation of the blood ves

sels. However, this is not useful in our analysis because it is impossible to ob

tain test data from a phantom brain with similar complexity as a PD weighted 

MRI of a human brain. Another possibility is to use the virtual brain simulator 

(http://www.bic.mni.mcgilLca/brainweb/) [Collins et aL (1998)] to generate a vir

tuaI angiogram and its corresponding anatomical MRI. However, at this point, the 

tool can generate Tl, T2, and PD MRI composed of only cerebral spinal fluid, gray 

and white matter tissues but not blood vessels. Hence, the cross validation per

formed in this thesis is currently the best type of validation we can perform. Our 

statistical measures suggest that most of the vascular structures in a high quality 

PC angiography data set can be extracted from a standard clinical PD weighted 

MRI. One might have doubts on the quality of the angiogram but in fact, the PC 

MRA used in this comparison was shown to an expert in image acquisition and 

brain analysis who was impressed by its quality and ability to show the vascula

ture. 
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5.2 Contributions and Summary 

We have presented what to our knowledge is the first multi-scale geometrie flow 

for segmenting vasculature in standard MRI volumes. Whereas the flow is de

signed for PD weighted data sets, it can also be applied to a variety of other modal

ities. We have demonstrated its applicability with both qualitative and quantita

tive cross validation studies. First, the qualitative results indieate that a significant 

amount of vasculature can be recovered by initializing the flow using a few isolated 

seeds. We have also found that a number of finer vessels can also be recovered by 

super-sampling the data and by placing seeds manually along with an adaptive 

lowering of the vesselness threshold used in the construction of the extended vec-
---+ 

tor field V (Eq. 3.2). 

We have proposed a method to visualize vasculature by creating maximum or 

minimum intensity projections of the original data, but masked by the binary seg

mentations. These projections are particularly useful for visualizing vasculature in 

non-angiographie volumes since artifacts due to the brain surface as weIl as back

ground structures are removed. These are quick to compute over any projection 

direction and neurosurgeons and radiologists are familiar with them. The results 

in Figure 4.4 show that the MIPs of the original PC data and the segmented PC data 

are very similar, indicating that our geometrie flow is successful in segmenting aIl 

but the very finest vessels. The MIPs of the original TOF and the segmented TOF 

data are even more similar, although the TOF data contains fewer vessels when 

compared with the PC volume. Surprisingly, the minimum intensity projection 

of the PD data also shows a significant number of vessels. This information is 

greatly enhanced in the vesselness of PD image in the bottom row of Fig. 4.4. The 

reversed contrast MIP of the masked PD data demonstrates that our vessel seg

mentation procedure is successful and yields a 2D image which is comparable to 

the MIP of the segmented PC image and which is almost as informative as the MIP 

of the original Pc. More importantly, the complex spatial relationships between 
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the vasculature and surrounding anatomie al structures can be made explicit since 

the segmented PD is a true three-dimensional structure. A user can interact with 

the derived model, depending upon the task at hand, and can visualize it from 

arbitrary viewing directions. 

Second, an important contribution of our work is the quantitative cross val

idation of the algorithm using a data set comprised of PD, PC and TOF volumes 

obtained for the same subject. The quantitative results indieate that the vessels seg

mented from the PD data alone account for over 80% of the vasculature segmented 

from either of the angiographie data sets, with a very small alignment error. We ob

serve also that 26% of the vasculature obtained from the PD data are not recovered 

from the angiographie TOF volume. This suggests that our algorithm can be used 

to improve upon the results obtained from angiographic data but also as a promis

ing alternative when such data is not available, since PD-weighted MRI data are 

routinely acquired when planning brain tumor surgery. 

It is important to point out that aIl the segmentations were obtained auto mat

ically by initializing the flow with a threshold of the vesselness measure and by 

stopping the surface evolution after a fixed number of iterations, or when the flow 

had not hit the narrow band for several iterations. In the case of the PD volume, 

the threshold must be conservative to guarantee that seeds are placed on1y within 

vessel regions. It is possible to place seeds less conservatively in the angiographie 

volumes in which vessels can be identified primarily by contrast. Ideally the algo

rithm could be semi-automatic to improve the segmentation results. For example, 

in the event that the automatic reconstruction does not recover sorne of the finer 

vessels, these could be later obtained using a finer manual placement of seeds along 

with an adaptive lowering of the vesselness threshold at su ch locations. 

Finally, it is important to note that the method does depend crucially on the 

choice of a partieular vesselness measure to identify centerlines along with their 

orientations and associated vessel widths. Whereas our results indicate that Frangi's 
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vesselness measure is a very promising candidate, other choices have also been 

proposed in the literature [Aylward and Bullitt (2002); Krissian et al. (2003)] and 

these would be worth exploring in the context of driving a geometric flow. One 

issue that must be faced is the normalization of the responses for such operators 

so that both thin and thick vessels yield quantitatively similar values at expected 

centerline locations. 

5.3 Future Work 

It is our hope that our implementation will become a basic image analysis tool for 

segmenting vasculature in clinical studies. In fa ct, we have already started using 

it for vesseZ driven brain shift correction at the Montreal Neurological Institute [Rein

ertsen et al. (2004)]. Our segmentation algorithm is the basis for the registration of 

pre-operative MR images and intra-operative Doppler ultrasound data. The vas cu

lar tree present in the Gadolinium enhanced MRl is segmented with our algorithm 

and then the 3D centerline curves are found using the automatic centerline extrac

tion proposed by Bouix et al. (2004a,b). These curves are used as landmarks for 

registering vessels from the intra-operative ultrasound. It is then possible to find a 

brain shift estima te. 

An accurate segmentation of vasculature from brain MR images is also critical 

in many other clinical applications. Once segmented, various measures can be 

used to characterize the vascular tree, such as tortuosity, size and branching, with 

direct applications in the diagnosis, treatment and follow-up of arterial veinous 

malformations and assessment tumor malignancy. Due to the automatic nature 

of our vessel segmentation algorithm, one could also analyze large databases of 

PD /T2 weighted MRls of healthy subjects and patients with particular diseases. 

Finally, there are many other ways one could exploit local shape properties in 

images. In this thesis, we have only discussed tube-like structures but one can 

easily define different measures to enhance and detect other structures such as bZobs 
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or sheets. In particular, we have recently designed a "sheetness" measure to detect 

sheet-like structures in astrophysics galaxy simulation data using a geometric flow, 

with promising results. 
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