
NOTE TO USERS

This reproduction is the best copy available.

®

UMI

Modeling and Evaluation
of a Hierarchical Ring Interconnect

for System-on-Chip Multiprocessing

Benjamin S. Kuo

Department of Electrical Engineering
McGill University, Montreal

A thesis submitted to McGill University
in partial fulfilment of the requirements of the degree of M.Eng

Copyright © Benjamin S. Kuo, 2004

1+1 Library and
Archives Canada

Bibliothèque et
Archives Canada

Published Heritage
Branch

Direction du
Patrimoine de l'édition

395 Wellington Street
Ottawa ON K1A ON4
Canada

395, rue Wellington
Ottawa ON K1A ON4
Canada

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell th es es
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

ln compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

• ••
Canada

AVIS:

Your file Votre référence
ISBN: 0-494-06560-5
Our file Notre référence
ISBN: 0-494-06560-5

L'auteur a accordé une licence non exclusive
permettant à la Bibliothèque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par l'Internet, prêter,
distribuer et vendre des thèses partout dans
le monde, à des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protège cette thèse.
Ni la thèse ni des extraits substantiels de
celle-ci ne doivent être imprimés ou autrement
reproduits sans son autorisation.

Conformément à la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thèse.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

1

Abstract

This thesis proposes a software model for a multiprocessor system, which is targeted for SoC

implementation. The proposed design is based on the two-Ievel ring architecture adopted in

the NUMAchine multiprocessor developed at University of Toronto. The proposed system re­

considers the interconnect design alternatives for smaller design area and energy consumption.

The system uses an alternative memory architecture to reduce logic complexity, as weIl as a

different deadlock prevention scheme to reflect changes in memory architecture. The software

model is implemented in the SystemC modeling language, which allows high-level behavior

modeling to reduce both the development time and the simulation time. The model is also

at a level of detail which reflects true communication characteristics on the interconnect net­

work. Burst length, memory access latency, PIFO depth, and the operating frequencies for the

rings are the four key SoC design parameters which have been identified and optimized for the

system.

2

Résumé

Ce mémoire propose un logiciel qui émule un système à multiple processeurs dédié à la création

de systèmes sur puce. La création proposée est basée sur une architecture en anneau à deux ni­

veaux adoptée sur le système à multiple processeurs NUMAchine développé à l'Université de

Toronto. Le système proposé réévalue les alternatives d'interconnexion pour une réduction de

la surface sur la puce et de la consommation d'énergie. Le système utilise une architecture

de mémoire alternative afin de réduire la complexité de la logique de même qu'un nouveau

mécanisme de prévention des impasses reflétant le changement dans l'architecture de mémoire.

Le modèle logiciel est implanté en utilisant le logiciel de modélisation SystemC, ce dernier of­

frant une modélisation à haut niveau permettant une réduction dans le temps de développement

ainsi qu'une exécution plus rapide des simulations. Le modèle est conçu à un niveau de détail

offrant les caractéristiques de communication réelles sur le réseau d'interconnexion. La lon­

gueur des fragments, le temps d'accès mémoire, la profondeur des mémoires tampons et les

fréquences d'opération des anneaux sont les quatre paramètres clés du système sur puce qui

furent identifiés et optimisés.

3

Acknowledgements

l would like to thank my supervisor Dr. Zeljko Zilic. He gave me the autonomy to pursue my

research interests while providing me with relevant references. His guidance has been greatly

appreciated since my undergraduate years and for my graduate studies in McGill.

l would like to thank Dr. Naraig Manjikian for graciously accepted to co-supervise my

research. His knowledge in parallel computing and simulation model has proved invaluable in

my research, l am especially grateful for his participation in the project.

Also a special thanks to Stephan Bourduas for supporting and participating in the project.

l have benefited from ideas and solutions from the discussions we had. Stephan also integrated

his power modeling framework into the project to allow optimization in the energy consump­

tion area.

l would also like to thank STMicroeletronics for funding the project and providing the

development tools which have became an integral part of the project.

For the years during my studies, l have always enjoyed the unconditional support from my

family, l am grateful for their sacrifice and endurance to ensure that l can receive the fine st

education.

Contents

1 Introduction

1.1 Motivations

1.2 Thesis Overview

1.3 Thesis Organization .

2 Background

2.1 On-chip Interconnect Properties and Design Considerations .

2.1.1 Interconnection Issues in Conventional SoC Designs

2.1.2 Network-on-Chip Design Approach

2.1.3 Physical Properties of On-chip Interconnect .

2.1.4 Network Topologies and On-chip Suitability

2.2 Congestion and Deadlock Handling in NoC

2.2.1

2.2.2

2.2.3

2.2.4

2.2.5

Congestion

Approaches to Congestion Control .

Deadlock

Types of Network-Ievel Deadlocks .

Deadlock Solutions

2.3 Types of Multiple Processor Architectures

2.4 NUMAchine Multiprocessor

2.5 Related Work

4

10

11

l3

14

15

15

16

17

18

20

24

24

25

26

26

28

31

32

33

CONTENTS 5

3 Architecture 35

3.1 Two Level Hierarchical Rings 35

3.2 Data Integrity 37

3.3 Natural Grouping of Components 38

3.4 Power Considerations . 38

3.5 Layout Considerations 39

3.6 Migration to On-chip Implementation 40

3.6.1 Distributed Memory Model 41

3.6.2 Congestion Handling 42

3.6.3 Flow Control 43

3.7 Deadlock Handling 44

3.7.1 General Store and Forward Deadlock 44

3.7.2 Indirect Store and Forward Deadlock 46

3.7.3 Acknowledgement Packet Related Deadlocks 46

3.7.4 Network-level Deadlock Prevention Measures . 47

3.7.5 Deadlocks Propagated From Software Layer 48

4 Simulation Model 50

4.1 Modeling Languages and Libraries . 50

4.1.1 SystemC 50

4.1.2 StepNP 53

4.1.3 Transaction-Level Communication and SOCP . 54

4.2 Components 55

4.2.1 Interconnect . 57

4.2.2 Inter-ring Interface 57

4.2.3 Station-ring Interface . 59

4.2.4 Station 63

4.2.5 Direct Memory Access Usage 63

CONTENTS 6

4.2.6 Transmitter Module. 64

4.2.7 Receiver Modules 67

4.2.8 Memory Map and Access Controller . 69

4.2.9 Partitioning of Software and Hardware 70

4.3 Embeded Software API . 71

4.4 Simulation Environment 74

5 Results 76

5.1 Parallel Programs 76

5.1.1 Matrix Transpose . 77

5.2 Design Space Exploration. 78

5.2.1 Testbenches 79

5.2.2 Data Burst Length 80

5.2.3 Memory Access Latency 81

5.2.4 PIFO Depth 84

5.3 Collaborative Work on Power Optimization 86

6 Conclusions and Future Work 89

6.1 Conclusions . 89

6.2 Future Work . 91

List of Figures

2.1 Network topologies. .. 21

3.1 Two-Ievel hierarchical ring interconnect 36

3.2 Station addressing with bit-masks 37

3.3 Hierarchical rings and layout . . . 40

3.4 General store and forward deadlock at network level 44

3.5 Indirect store and forward deadlock at network level . 45

3.6 Software caused deadlock propagated to network level 48

4.1 Transaction-Ievel communication 54

4.2 Simplified component integration with SOCP 56

4.3 Packet structure 57

4.4 Inter-Ring interface implementation 59

4.5 Station-Ring interface implementation 59

4.6 Station content 62

4.7 State diagram for the transmitter module 67

4.8 State diagram for the receiver module 68

4.9 Station memory map 69

4.10 Transactions-Ievel communications between the components 70

4.11 Software and hardware partitioning in transmitter 72

4.12 Software and hardware partitioning in receiver . 73

7

LIST OF FIGURES 8

4.13 Program synchronization . 74

5.1 Transpose algorithm

5.2 Burst length Vs. Execution time (Memory Access Latency = 1 cycles)

5.3 Burst length vs. Execution time (Memory Access Latency = 2 cycles)

5.4 Burst length vs. Execution time (Memory Access Latency = 3 cycles)

5.5 Memory access latency vs. Execution time (Burst length = 16 words)

77

81

82

83

83

List of Tables

2.1 On-Chip Network Architecture comparison 23

4.1 Operation descriptions 61

4.2 Transmitter control and monitoring registers 65

4.3 Receiver control and monitoring registers 67

4.4 message passing API for the embedded software . 71

5.1 Effect of memory access time on communication performance 84

5.2 Effect of FIFO depth on performance. 85

5.3 Interconnect performance for different burst lengths (128x128 matrix transpose 87

5.4 Effect of varying ring speeds for burst size of 16 words 88

9

Chapter 1

Introduction

To survive in the competitive environment today, profit-seeking organizations must be able to

deliver the most up-to-date products to the market in relatively short time; more importantly, the

cost for designing the products must be small to produce profit. Modem digital circuit designs

are commonly implemented on Application Specific Integrated Circuits (ASICs). ASIC imple­

mentations are fabricated on silicon and packaged; the packaged device can then be placed on

a board for system integration. A system is typically constructed with ASIC devices intercon­

nected with wires on a printed circuit board (PCB).

With modem microelectronic fabrication technology, more transistors can now be packed

into a given unit of area on silicon. A new trend in system design methodology emerges as a

result of the improved fabrication technology. System-on-Chip (SoC) is a design methodology

that places aIl system components on a single ASIC, and effectively moves system designs

from board-Ievel to chip-Ievel integration. The goal of the design approach is to reduce cost

and development time for system integration.

Deviees designed with the SoC methodology can be seen as ASICs themselves. The main

property that distinguishes SoC from ASIC is the more frequent reuse of existing designs [1].

The SoC methodology allows an IC design company to assemble a set of working components

into a complete solution efficiently and minimize time-to-market and time-to-profit [2].

10

CHAPTER 1. INTRODUCTION 11

1.1 Motivations

When a system is implemented on a single chip, considerable cost savings can be achieved due

to the smaller number of components that need to be packaged; as weIl, the physical dimensions

of the final product can be significantly smaller. Performance and power improvements can

also be achieved with the single-chip implementation. The SoC implementation is allowed to

operate at a higher frequency for the following two reasons: First, signaIs do not need to be

transmitted through high capacitance chip packaging. Second, the physical distance that the

signal must travel is significantly shorter. The lower load capacitance from eliminating chip

packaging also contributes to lower energy consumption.

Parallel computing systems are commonly known to supply computational throughput

which single-processor systems cannot achieve, or to achieve the same level of performance

of an expensive single-processor configuration at reasonable cost. Traditional parallel systems

are computers connected through a network, or multiple processing units assembled at board­

level. The concept of parallel computing can also be applied to SoC designs to improve the

computing capability of the system. In addition to performance improvement, multiprocessor

SoCs are believed to have numerous advantages over uniprocessor ones [1]. The following

paragraphs discuss sorne of those advantages.

In a single processor system, all tasks are processed by the same processor. Multithreaded

single-processor systems divide the computational resource to execute multiple tasks at the

same time. While in a multiprocessor implementation, the overall task is divided and dis­

tributed to individual processors in the system. The goal of multithreaded processor is to uti­

lize the computation al throughput to allow the system to continue processing while sorne tasks

waits for sorne resources to bec orne available. For applications with high processor utiliza­

tion, it is apparent that the processor in the single processor system must have more powerful

processing elements and mn at higher frequency to achieve the same processing throughput.

In multiprocessor systems, the processors are smaller and require shorter global interconnect,

which eliminates the effect of long latency on the global signaIs and allows the processors to

CHAPTER 1. INTRODUCTION 12

run at lower operating voltage.

Multiple instances of processors also contribute to better manufacturing yield. Manufactur-

ing defects in one processor in multiprocessor implementation do not render the whole system

useless. The embedded software can be redesigned to redistribute and execute tasks on the

remaining processors at minimal cost [1].

Multiprocessor designs enable energy savings by lowering the operating voltage and fre­

quency while maintaining the same processing throughput as single processor implementation.

For example, two processors running at half the frequency and half of the supply voltage can

save power by factor of four in dynamic power compared to a single processor running at

full speed and supply voltage [1]. The 4x power saving in the ex ample cornes from simple

calculation of the equation:

(1.1)

Development of hardware is often expensive and time consuming. The cost for modifica-

tions to a design grows at later stages of development. System modeling with software can

be performed quickly and inexpensively to simulate the behavior of the hardware. When the

system is modeled in software, developers can quickly modify the key aspects of the system

and be able to test the changes by modifying the software code and recompiling the model. The

system model is often used for exploration of different design parameters and allows the de-

signer to observe the trade-offs of different architectures in timely fashion. Different algorithm

implementations can be tested before the actual hardware development. The system model

can also be used as an executable specification which is essentially a program that exhibits

the behavior of the target system when executed [3]. The use of an executable specification

is especially useful for hardware and software co-design which allows both the hardware and

software of the system to be developed in parallel.

CHAPTER 1. INTRODUCTION 13

1.2 Thesis Overview

This thesis proposes a multiprocessor design targeted for on-chip implementation. The project

described in this thesis is based on the architecture adopted in the NUMAchine multiprocessor

system developed at the University of Toronto [4, 5]. The architecture is chosen for a list

of properties that we believe is beneficial for chip-Ievel implementation. This work has two

objectives .

• First, this thesis studies the issues in migrating the board-Ievel hierarchical ring multi­

processor organization to chip-Ievel organization. The migration process inc1udes iden­

tifying and modifying components in the original design to be better suited for on-chip

implementation. Any potential issues that may be introduced by the modifications should

be considered to implement necessary strategies to resolve the issues.

• Second, this thesis presents a software model of the proposed system. The goal of the

software model is to verify the functional correctness of the proposed design. The model

should be detailed enough to produce realistic traffic on the interconnection network,

which can then assist in perform design space exploration on the modeled system.

The proposed system was developed to minimize the design area. The memory architecture

of the NUMAchine multiprocessor is identified to have large design area requirements due to

complex controllogic and cache structure. The proposed design replaces the memory structure

with a simpler architecture, which reduces the design complexity and area requirements. A dif­

ferent approach of data communication is implemented to reflect the changes in memory access

method. Possibilities of deadlocks are re-examined for the new communication methodology,

and proper mechanisms together with an embedded programming methodology are introduced

to avoid deadlocks.

A SystemC [3,6] software model is developed to simulate the proposed system. SystemC

is a C/C++ library which provides constructs that can easily describe hardware behaviors. The

model can be refined and eventually be synthesized for production. Design tools which can

CHAPTER 1. INTRODUCTION 14

be used to synthesize SystemC models include: ConvergenSC from CoWare, CoCentric from

Synopsis, and Agility Compiler from Celoxica. The interconnection network in the model

is developed at a cycle-accurate level of detail such that realistic network behavior can be

observed. There are no standard testbenches for multiprocessor systems because applications

have different approach for implementation on different multiprocessor architectures. For the

proposed system, the types of traffic are categorized, a representative application and three

synthetic testbenches are developed to execute on the software model. The testbenches are

used for design space exploration and selection of optimal design parameters for the system.

The design parameters evaluated in the work include: FIFO depth, data burst length, memory

access latency, and relative operating frequency for the rings. Parameters for FIFO depth,

data burst length and memory access latency are evaluated to give the best performance versus

design area tradeoff, while the values for operating frequencies of the rings are evaluated to

give the optimal performance versus energy consumption tradeoff.

1.3 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 provides the background of

multiprocessor system architectures and SoC interconnection properties, as weIl as the de­

sign issues related to migrating designs to chip-Ievel. Chapter 3 presents the architecture and

optimization of the proposed multiprocessor. Chapter 4 presents the implementation of the

software model and simulation platform. Chapter 5 presents sorne parallel programs for the

simulation platform, as well as simulations results that are used for selection of optimal setting

for sorne design parameters. Finally, the conclusion and future research directions can be found

in Chapter 6.

Chapter 2

Background

Before describing details of the project, this chapter de scribes the issues in SoC designs. The

inefficiency of conventional SoC structure is presented together with the Network-on-chip

(NoC) design approach which aims to reduce the cost and complexity of SoC design. A range

of network architectures which could be implemented with the NoC design methodology are

reviewed to illustrate the co st-performance tradeoffs between different topologies. Design con­

siderations for on-chip network implementation are also described, and the types of network

topologies are examined again for on-chip appropriateness. Then, potential issues for NoC

designs which includes congestion handling and deadlocks are discussed. The approaches to

resolve these issues are also reviewed. Finally, the different classes of multiprocessor architec­

tures are reviewed.

2.1 On-chip Interconnect Properties and Design Considera­

tions

Implementation of interconnect on SoC can have a large impact on designs in silicon. Perfor­

mance, silicon area, and energy consumption of a design can vary significantly with different

types of interconnect design approaches.

15

CHAPTER 2. BACKGROUND 16

2.1.1 Interconnection Issues in Conventional SoC Designs

To reduce the component integration time, the interconnection used in SoC designs must have

a standard interface su ch that integration of IP cores can be done simply and in a timely fash­

ion [7]. Components or IP cores on the SoC must be able to communicate with each other at

any time. For large systems, components will communicate simultaneously. The interconnect

infrastructure must be able to support concurrent communication such that at any point in time,

more than one component can communicate with other components through the interconnect

[8].

Modem applications are becoming increasingly complex; SoC designs must incorporate

more components and manage communications between them. The interconnections must be

scalable to handle a large number of components, meaning that they must provide sufficient

bandwidth to ensure reliable communications while maintaining smaIl area. Conventional ap­

proaches in SoC design use buses or ad-hoc connections. A bus is a shared medium where

the bandwidth is shared. Because aIl components connected to a bus are independent entities,

initiation of traffic requires either synchronization for the components in addition to contention

handling capability, or a bus arbiter to schedule accesses to the bus. The shared medium also

has a higher power requirement due to its inherent broadcast-type communication. A message

sent from one component is observable by an other components on the bus, which means that

each component must drive the capacitive loads for aIl components connected to the bus, result­

ing in a higher power requirement. In ad-hoc connectivity, components can have an arbitrary

number of connections to any components that communicate to them (no connections if the

components do not communicate at aIl), from the source directly to the target. Without proper

organization, the number of connections can be large and routing of the connections in layout

can be complex and non-systematic. In addition, the components with ad-hoc connectivity

do not have standard interfaces, and require the designers to have a clear understanding of an

components so the connections can be made properly. Such an approach requires substantial

development time and can be disadvantageous for SoC implementation.

CHAPTER 2. BACKGROUND 17

In SoC implementations, the transmission of digital signaIs on wires is becoming increas­

ingly unreliable, and data corruption can occur due to cross-talk as the chip implementation

scales up in frequency while diminishing in die area [9]. To remedy this problem, it has been

suggested that the use of packet communication for transporting data is effective at correcting

communication errors [8].

2.1.2 Network-on-Chip Design Approach

NoC is the emerging design approach for SoC which satisfies the general requirements for

efficient SoC implementation. NoC architectures have standard communication data types,

therefore standard communication interfaces can be implemented on each component on the

network [9, 10, 8]. A station in computer networks is the processing element that initiates

data transmission as well as receives data from other stations through the network. Nodes in

a computer network are responsible for forwarding packets, anode can also include a station

which transmits and receives packets. A transmission of packets on a network typically passes

through more than one node. Because components communicate through different parts of

the network, the system can have communications between the components independently and

simultaneously.

NoC is similar to general computer networks in that the basic transmission units between

two stations are packets; data is formatted in packets before being transmitted through the

network. Paths between the stations are divided into link segments where a segment is the path

between two adjacent nodes. Most networks today are packet-switched networks where the

nodes are switches that route packets to appropriate links. Packets are passed from one node to

another node by switching the packet from a link segment to another, and a packet is switched

based on the destination information stored in the packet header.

In a network, link segments are joined together to form communication paths between the

stations; segments in one path can also be used to construct paths for other stations. Because

link segments are shared by different paths, while a packet from one station is moving along a

CHAPTER 2. BACKGROUND 18

path, only one segment in the path is active at a time. The segments that are not active can then

be used to switch packets for other paths to provide higher communication throughput. The

fact that link segments are shared between different paths also reduces the area requirement for

the implementation due to a smaller number of connections.

The NoC approach is more desirable than the conventional ad-hoc and bus connectivity

used in SoC designs. In general, the NoC approach is a more balanced approach in terms of

scalability, reliability, and power tradeoffs; the se qualities are not matched by the conventional

approaches. Sorne of the more important properties regarding NoC are summarized below [9].

• NoC facilitates the use of standard interfaces to allow rapid system integration.

• NoC network architectures in general, have high communication throughput.

• Many NoC implementations use packets as the basic communication units, which is

especially useful in guaranteeing reliable and efficient data transfer.

• Network traffic control and monitoring capabilities are common for networks, and can

potentially be used to manage power and computational resources.

2.1.3 Physical Properties of On-chip Interconnect

For SoC implementation, pre-designed IP cores are used as components in the system. The

primary consideration of the design then becomes the interconnect between the components.

Migration to on-chip implementation for interconnection networks requires knowledge ofboth

computer networks and the characteristics of digital circuit implementation. Certain properties

of SoC can allow simplification of implementation, while others add constraints which must

be followed to allow reliable operation.

Physical properties of the chip impose constraints on NoC implementations. Since SoC

designs pack the whole system in a single chip, chip area limits the amount of logic which can

be implemented. Complex logic typically requires larger area to implement, therefore it should

CHAPTER 2. BACKGROUND 19

be avoided or keep to minimal usage in the design. One example of such a consideration is

the implementation of retransmission protocol on the interconnect hardware. Retransmission

protocol would require a significant number of logic gates, as weIl as the addition al memory

required for buffering packets. For example, packet reassembly and a go-back N algorithm in

the retransmission protocol has large memory requirements. Implementation of such complex

protocols in software can limit the design area at the cost of lower performance.

In computer network, retransmission protocol is used to retransmit lost or corrupted pack­

ets. Error correction algorithms such as forward-error-correcting scheme can be used to correct

data corruptions which occurred during transmission, and would improve system performance

because the packet does not need to be retransmitted. Error correction algorithms, however, can

not replace packet retransmission protocol in the case of packet loss due to congestion. Mecha­

nisms such as fiow control can be implemented to eliminate packet loses due to congestion and

the need to have complex packet retransmission logic. In a switched network, simpler switch­

ing logic can provide higher bandwidth simply because switching of packets can be completed

in less time, which allows the network to switch packets at a higher frequency [11].

In addition to the area limitation, smaller buffers are desired for real-time applications.

While a large buffer space is desirable for handling congestion, it increases the average latency

for packets to go from one node to another. In congested locations, packets are buffered in a

queue and wait for their tum; a large buffer allows more packets to be stored, thus increasing

the average waiting time for a packet to get transmitted. In systems with large buffers, the time

a packet spends in the interconnect network can vary significantly, therefore is not suitable

for real-time applications. The latency variation can be reduced with smaller buffers in the

interconnect network. The smaller buffers reduce the number of packets in the network, which

also reduce the time that each packet needs to wait while in the network.

Computer networks have an inherently unreliable communication medium. Packets can be

corrupted or even lost in transmission. Computer network applications typically are not timing

critical, and do not necessarily require high performance communications; packet losses are

CHAPTER 2. BACKGROUND 20

resolved with retransmission protocols such as TCP. On-chip implementation of a communi­

cation network, however, can provide better performance, and have a fixed network topology.

For an on-chip implementation, a node in the network will not be randomly disconnected from

the network and lead to loss of packets. The elimination of such non-determinism also removes

the requirement of having a complex protocol to handle packet losses.

It is also important to note that NoC imposes energy constraints [9, 12, 13, 14]. Because

aU components of the system are implemented to fit on a single chip, the level of energy con­

sumption must normaUy be at a reasonable level such that the system will not overheat and

bec orne unreliable. The energy constraint is also one of the primary concerns of embedded

systems where SoC implementation is common. Based on the dynamic power equation in

Equation 1.1, it is apparent that a system that must drive more capacitive loads would consume

more power at a fixed dock rate.

Lastly, where the computer network aUows the topology to be determined at later time,

topology and architecture of NoC implementation must be specified and fixed at design time.

Evaluation of interconnect network alternatives must be do ne at early stages of the design.

2.1.4 Network Topologies and On-chip Suitability

The concept of Network-on-Chip originates from computer networks [13]. Most of the com­

puter network topologies can be used for on-chip implementation. As previously discussed,

evaluation and selection of the on-chip interconnect network suitable for the application must

be done in early stages of the design. The most common network topologies used in connecting

network components are summarized below.

• A linear topology connects anode to two neighboring nodes with the exception of the

end nodes which connect to only one neighbor.

• A ring topology can be considered as the linear topology with the two ends connected

through a link. An extension of the ring network is to have the nodes connected with two

CHAPTER 2. BACKGROUND

/,0\,
/ o 0
o

Ring

o

Fully Connected

o o o
Linear

Star

3D HyperCube

Figure 2.1: Network topologies

Tree

rings, each communicating in the opposite direction of the other.

21

• In a star topology, a central node is connected to aIl of the remaining nodes. In this

network, each node can communicate to only the central node, and the distance from one

node to another is fixed to two hops.

• Afully connected network connects each node to aIl of the remaining nodes in the station

with dedicated links. In such a network, each node can communicate to another directly

with minimallatency.

• A tree topology is an extension of the star network; it can be treated as a collection of

star networks connected together in hierarchical fashion.

• In a hypercube network, each node is connected to n other nodes. A I-n hypercube is

equivalent to a linear network, whereas a 2-n hypercube is equivalent to a ring network.

The hypercube network shown in Figure 2.1 is a 3-n hypercube.

CHAPTER 2. BACKGROUND 22

Similar to the tree topology, sorne of the networks described above can be implemented in a

hierarchical fashion. The switch-box network [15], the butterfly fat-tree network [16] and the

octagon network [17] are examples of hierarchical extensions of the basic network topologies

described above. The work described in this thesis is based on hierarchical ring topology.

Not aH networks are built equally; different network topologies have different performance

and cost characteristics. The linear topology is the simple st network. N stations are connected

with N-l links. The performance of communication between two nodes is, however, highly

dependent on the location in the network. For the two end stations to communicate, packets

must pass through aIl other nodes in the network. The problem becomes significant when

there are large numbers of nodes in the network. The ring network improves the performance

of a linear network by allowing the end nodes to communicate directly. For large networks,

however, a packet still must pass passed through many nodes to get to the destination. In the

star topology, packets only need to pass through the central node to reach the destination. The

topology is simple and provides good performance, but the central node must have a number

of interfaces equal to the number of leaf nodes in the network, therefore it is not physically

feasible for large network. In addition, a single point of failure at the central node would render

the whole system useless. The hypercube network is commonly used for parallei computing;

the topology is flexible and allows performance improvement for larger systems by increasing

the dimension of the hypercube. A higher dimension hypercube, however, faces issues of

connectivity and higher interface complexity as the number of connections per node increases.

The decision for selecting a suitable dimension for the hypercube that provides a good balance

between performance and interconnect complexity is left to the system designer. Lastly, the

fully connected network provides the best performance as there is only one dedicated path for

anode to each node in the network. The cost associated with this performance is the large

number of links and interfaces at each node, which are expensive to implement.

Previous discussions have indicated that N oC implementations offer a better balance be­

tween power requirements, interconnect complexity, and higher bandwidth. Of aIl the types

CHAPTER 2. BACKGROUND 23

of interconnect architectures, however, sorne architectures have characteristics that are better

suited for on-chip implementation.

Because NoC designs in general allow concurrent communications among the nodes, and

use standard interfaces for ease of integration, selecting a suitable type of network then is

based on the area requirements, implementation complexity, and performance goals of the

given project.

It was discussed previously that the ring and linear networks have below average perfor­

mance, but can be implemented easily and have low area requirement. The tree and star type of

networks have good performance due to small number of nodes a packet must pass to reach the

destination. Their implementation is simple, but the interface requirements at the forwarding

(central) nodes are complex and expensive for a large network. The central no de in the star net-

work must also have large buffers to handle packet contention. Crossbar and fully connected

networks have excellent performance because their links are dedicated, but the layout for these

architectures can be difficult due to the large number of links. The large number of links also

adds to a higher area requirement for the implementation. A hypercube network resembles the

linear or ring network for lower dimensions. For a hypercube with dimension 3 or greater, the

network bec ornes complex as the number of interfaces and links increase. Efficient routing

algorithm also becomes non-trivial for hypercube with dimension greater than 2. For compar-

ison purposes, the analysis on the relative performance and cost for the types of architectures

discussed here are summarized in Table 2.1.

LinearlRing Tree/Star CrossbarlFully connected Hypercube 3-n+
Performance belowavg above avg excellent avg

Area small avg large avg large
Complexity simple avg complex complex

Power belowavg belowavg above avg avg

Table 2.1: On-Chip Network Architecture comparison

Of the types of network described, alllinks have point-to-point connectivity. Assuming

equallength, the energy consumption per link is the same in the networks. Total energy con-

CHAPTER 2. BACKGROUND 24

sumption can then be assessed based on the number of links within the network. Linear, ring,

tree and star networks aIl have a number of links equal to (N - 1) for N-node networks. Cross­

bar and fully connected networks have a large power requirement due to their large number of

links. The number of links in hypercube networks grows with their dimension, but the upper

bound of the number of links is still below crossbar and fully connected networks.

Based on the studies and comparisons of the various network topologies, we believe that the

hierarchical ring network is suitable for on-chip implementation. The architecture preserves the

properties of small area requirement and simplicity offered by the ring network, but improves

the performance by dividing the nodes hierarchically into smaller rings connected through

a central ring. The hierarchical nature also reduces the average distance between the nodes

and improves the communication latency. More detailed descriptions on the characteristics of

hierarchical rings and their suitability for on-chip implementation is discussed in Section 2.4.

2.2 Congestion and Deadlock Handling in NoC

2.2.1 Congestion

Congestion of traffie in a network is the condition in which there are large amounts of data in

the network, while the network does not have sufficient bandwidth to han die a sustained level

of traffic. How the network handles congestion can have a large impact on the performance

and cost of the system.

Generally, congestion in a network is caused by having too many sources attempting to

send data at too high a rate [18]. In a multi-hop switched network, a packet must pass through

more than one switch to reach the destination. Each switch is responsible for routing the packet

to the path that leads to the destination. Because the physical connections in the network are

shared and used by different paths, collisions between packets can occur when two packets

arrive at a switch simultaneously, and both packets are expected to be switched to the same

output.

CRAPTER 2. BACKGROUND 25

In a packet-switched network, the ideal behavior of a switch buffer is to store packets

temporarily when they cannot be switched immediately. Implementation of such behavior,

however, requires the buffers to have infinite capacity, which cannot be realized on any physical

device. The size of buffers in NoC is limited. Problems then arise in a highly utilized network

when the buffers are filled up at a rate greater than the rate at which they are drained. When

the buffers are full, further incoming packets can cause the buffers to overflow, leading to loss

ofpackets.

2.2.2 Approaches to Congestion Control

Congestion can be handled with one oftwo approaches [19]. The first approach allows pack­

ets to be dropped during congested periods and to be retransmitted as needed. The second

approach requires the network to have lossless packet transmission, and congestion is handled

through a flow-control mechanism which throttles the transmission rate at the sending side of

the network. The first approach relies on the end-to-end protocol to recover the lost packets,

allowing simple network implementations. TCP is one example of congestion control used

commonly in computer networks. The drawback of packet retransmission is that the sending

and receiving ends must support the protocol, which may be complex. The required acknowl­

edgment packets add more strain to the network when it is congested. The retransmission of

packets also adds traffic to the network. The retransmission approach is not ideal for solving

the congestion issue because it adds more traffic to an already congested network where the

cause of retransmission originates from an excessive traffic level in the network.

The lossless packet transmission approach uses a technique whereby a switch at the re­

ceiving end can inform the sen ding end of the busy status. Depending on the busy status, the

sender can reduce the transmission rate or temporarily haIt data transmission when the receiv­

ing switch is busy. When the receiving switch gets out of the busy state, another signal is sent

to the sending switches to resume transmission. The mechanism for the congested switch to

inform the sending switch of the busy status is called backpressure feedback. While the back-

CHAPTER 2. BACKGROUND 26

pressure network guarantees lossless transmission of packet, it adds more complexity to the

network implementation and is susceptible to a condition known as deadlock [19].

2.2.3 Deadlock

Deadlock is a condition in which the throughput of a network or part of a network goes to

zero due to conflicts in resource acquisition [20]. Previous work has been done in identifying

different types of deadlocks, and solutions have been proposed to resolve deadlock issues in

computer networks [21,19,22]. This section summarizes the types ofpotential deadlocks in

a network and lists sorne of the solutions.

2.2.4 Types of Network-Ievel Deadlocks

Direct store and forward deadlock occurs when there are two stations each holding resources

required by the other station and each station is in the state of acquiring the desired resource

from the other station before it will release the resource it currently holds. The scenario is a

generic deadlock example. In a network, the resources in question are the transmit buffers and

receive buffers for the stations.

Indirect deadlock is a more general case than direct deadlock. The indirect deadlock sce­

nario involves more than two stations. Each station involved in the deadlock waits for a re­

source from another station which has dependency on a resource held by a third station. The

term indirect cornes from the fact that the source ofblockage in the network propagates through

a chain of stations which uItimately hait the data flow. Indirect deadlock can be detected by

finding the presence of circular dependencies on the resources in the network.

In sorne networks, data is transmitted through the network in units of packets, where data

is divided into smaller pieces embedded in packets. When the packets arrive at their destina­

tion, the data portion of each packet is extracted and reassembled with others into the original

data. Before data reassembly, all relevant packets are stored in a buffer waiting for all parts

of the data to arrive. When all parts have arrived, the contents of packets are extracted and

CHAPTER 2. BACKGROUND 27

reassembled. Once reassembly of data is complete, the relevant packets can then be removed

from the buffer. Normally, a station in the network can receive packets representing more than

one dissembled data items. If the reassembly of data on the receiving station are not properly

handled, reassembly deadlock can occur. When the receiving station fills up the receive buffer

with incomplete data, it will not be able to accept more data and throughput in this part of the

network is reduced to zero.

Piggyback of a transmit acknowledgment on a packet going to the original sender is an

approach to reduce the network traffic. Piggyback deadlock occurs when the packet that carries

the acknowledgement is blocked at sorne point in the network, and the station that causes

the blockage requires the acknowledgement to release the resource. The circular dependency

can be observed by noting that the station blocks the acknowledgement packet but needs the

acknowledgement to unblock the network.

In networks with virtual end-to-end links, reservation of resource for the link at each node

on the path must be performed. The resource reservation is achieved by sending a special

packet along the path that reserves resources on each node in the path. Because the reservation

packets move in the network in the same way as data packets, if the virtual link is established

dynamically, deadlock scenarios similar to the ones described before can occur regardless of

the type of packet (either they are data packets or virtual path setup packets).

With aIl the deadlock solutions implemented in a network, the network can still be suscep­

tible to deadlock. In networking terms, the interconnection between the stations is equivalent

to the physicallayer. A deadlock-free physicallayer does not guarantee a deadlock-free system

if there are deadlocks in the application layer. From the user's point of view, the network can

be viewed as a medium responsible for transmitting data from one place to another reliably. At

a higher abstraction level, the user does not need to understand how the network is constructed,

but only needs to know that data will be transmitted to the destination. However, if applica­

tions on the stations contend for resources at the application level, deadlock can still occur if

no precautions are taken. Deadlocks at the application level can leave unconsumed packets in

CRAPTER 2. BACKGROUND 28

the network. Because the interconnect network has fini te buffers, blockage of data flow can

occur which ultimately leads to a complete halt of the system.

2.2.5 Deadlock Solutions

Research has been carried out to find deadlock solutions over the past decades and many solu­

tions have been proposed for handling deadlocks in a network environment. However, solutions

for deadlock can have drawbacks such as degraded performance or expensive implementa­

tion. Applications with high bandwidth requirements must consider interconnect architectures

which provide higher bandwidth, as the lower bandwidth interconnects can be constantly over­

utilized in such applications.

A redundant network is used to provide an alternative path for data from one station to

another. Deadlock can be prevented by providing an alternative path for data transmission

when congestion is detected in the primary interconnect network. Designers are required to

explicitly choose the path by which the data is sent. A common use of such an implementation

for requestlresponse type of communication is to have request packets taking one path on

the primary interconnect network, and response packets using another path on the alternative

network. This method does not solve the problem, but rather it tries to defer the problem by

adding more system resources. With one redundant network, the system is effectively doubled

in bandwidth. When one network is blocked, the second network can continue to operate

and transmit data. However, the fundamental problem is still unresolved: the same cause of

deadlock on the first network can also cause deadlock on the second network. The second issue

of using redundant network to solve deadlocks is that the network is likely to be under-utilized,

and hence not cost efficient. As the network is not expected to be busy most of the time, the

second network is only implemented for occasional usage when deadlock occurs in the first

network.

The Disha deadlock recovery scheme [22] is a variation on using a redundant network

where the possibility of having deadlock at the second network is removed. In Disha, a special

CHAPTER 2. BACKGROUND 29

deadlock buffer is implemented at each switch in the network which forms a floating virtual

channel. The purpose of the virtual channel is to provide an alternative path for the packets to

by-pass the location of congestion. The virtual channel is predetermined and is made deadlock­

free through predetermined priority switching or use of a token to provide exclusive access to

the path to one source. The virtual channel is only used when network traffie congestion is

detected. Although congestion in the network does not necessarily represent deadlock, it is a

necessary condition for deadlock to occur at the network level.

For stations having only one type of buffer for both sending and receiving data, Store-and­

Forward deadlock can happen when two stations try to swap data with total data size greater

than the available buffers. In the described scenario, the shared buffers at both stations are

fiIled up by outgoing data. Both stations cannot receive more data as the buffers are full,

and no forward progression can happen as processes at both stations are waiting for the other

station to free up space in its PIFO by removing transmitted packets. However, transmissions

at both stations are blocked. Blocking of traffic continues as long as data cannot be drained

from the buffers. The simplest approach to resolve such deadlocks is to have separate transmit

and receive buffers for each station. With the separate buffers, transmission of data at a station

is not affected by the receive side of the same station and vice versa. The independent send

and receive buffer approach also has the advantage of simpler controllogic for maintaining the

packet information, i.e., monitoring of the incoming and outgoing packets.

A virtual path is a chain of switches with resources (buffers) reserved for the specific path

from a source station to the target station. When the virtual path is established, the path is

guaranteed to have aIl of the required resources reserved for the path. Once established, the

virtual path ensures that packets can move through the network without having to wait for the

resources used by other paths. Each switch on the virtual path has buffer space reserved for

just that path. Data transmitted from the sender to receiver through the virtual path use only

the reserved buffers on the switches. The connections between the switches are still shared

between different virtual paths with appropriate scheduling scheme. When one of the virtual

CHAPTER 2. BACKGROUND 30

paths is blocked, the scheduling scheme still allows other virtual paths to transmit data during

the time which is allocated to them. Thus there is no blockage of data which can potentially

cause deadlocks to occur.

A variation of the virtual path deadlock solution called resource ordering is to have different

classes of packets. When forwarding packets, priority is given to a class with higher priority

packets such that when lower priority packets are blocked in a deadlock, high priority packets

can still move through the network and hopefully provide sufficient conditions to resolve the

deadlock. With such an approach, packets which can potentially release resources are given

higher priority. Acknowledgment packets and read response packets are typically classified

for higher priority in such a deadlock resolution scheme. An alternative way to determine the

priorities of the packet is based on the distance a packet has traveled [19]; packets are given

higher priority when they have traveled a longer distance from the original sender. The resource

ordering approach, however, requires that the priority information be embedded in the packet

header, and thus requires more bandwidth to transmit a fixed amount of data.

Improvements to the resource ordering approach have been made in a solution proposed

by Karol, Golestani and Lee [19]. The proposed deadlock prevention scheme is to be adopted

in lossless back pressured networks where the backpressure mechanism is used to inform the

potential senders to a congested area. When the backpressure mechanism is activated at one

node due to congestion, nodes connecting to it will stop sending packets to the congested node.

The method proposed in their study uses the distance that the packets have traveled to determine

the packet priority. The backpressure mechanism is modified for the solution. Instead of

embedding the priority information in the packet header, a priority table is implemented in

each node of the network. Based on the level of congestion (e.g., the PIFO level), transmit

feedback is sent from the receiving node back to the sending node. The sending node compares

the transmit feedback with the priority table to determine which packet can be sent to the

receiver. When the receiving node receives the packet, the priority table is updated. Based

on the transmit feedback received from the third node, the sen ding node will send the lowest

CHAPTER 2. BACKGROUND 31

priority packet (which still has higher priority than the received feedback) to the next node.

With the use of transmission feedback and a priority table, the priority information is computed

in the switches, thus removing the need to include the priority information in the packet header.

2.3 Types of Multiple Processor Architectures

Multiple processor architectures can generaIly be categorized into two groups: shared memory

and distributed memory. In shared memory architectures, the system has one global memory

space shared by aIl the processors. AlI processors have access to the whole memory space

and writes performed by one processor are visible to aIl other processors. In shared memory

architectures, data is not transferred until a processor tries to access it. ParaUel programs in

shared-memory multiprocessor systems are, in general, easier to code if performance is not

the primary concem. Equipped with cache-coherent hardware [5], one can typically paraIlelize

a single-processor program with minimal modification. This flexibility, however, does not

guarantee good performance.

In distributed-memory systems, each processor has access to an independent memory space,

and data is shared through explicit message passing from one processor to another. Because

the message passing mechanism requires one receive operation to match each send operation,

program developers are required to understand concepts of paraIlel programming to code effi­

ciently.

There are also hybrid systems that combine both parallei programming models. The dis­

tributed shared-memory systems have locally-shared memory space for groups of processes,

but aIl processes have shared memory globaIly. In such cases, processes will access locally

shared memory with the shared-memory approach; when the processes try to access memory

located remotely, communication is performed by exchanging messages [20].

The boundary between shared memory and message-passing models becomes less clearly

defined as software and hardware advance. Message-passing operations can be supported on

CHAPTER 2. BACKGROUND 32

most shared memory machines through shared buffer storage. The global address space used

in the shared memory model can be constructed in software on a message passing architecture

by implementing remote memory accesses with a set of message exchanges between remote

stations [20].

2.4 NUMA chine Multiprocessor

The NUMAchine multiprocessor has been developed at the University of Toronto as a part

of research project on hardware and software for parallel computing. The platform is a non­

uniform-memory-access, distributed-shared-memory system that consists of 16 stations con­

nected by a hierarchical ring interconnect [4, 5]. The NUMAchine multiprocessor system was

implemented with commodity components; control logic was implemented in programmable

logic to allow modifications to hardware without any physical changes to the printed circuit

boards.

The work described in this the sis is based on the NUMAchine multiprocessor architec­

ture, with the primary focus placed on on-chip implementation. The architecture was chosen

because it has a planar topology with point-to-point connectivity, it offers the possibility of

supporting a flexible clocking scheme, and it satisfies previously discussed requirements for an

SoC interconnect including concurrent communication and can be implemented with standard

interface.

The topology is planar; the network connectivity can be drawn on paper with no lines

crossing other lines. This property simplifies layout, and the layout area can also be reduced

because the links can be routed efficiently.

The point-to-point connectivity between nodes simplifies routing and reduces layout area;

this property is also beneficial for lower energy consumption in the interconnection network.

Because each link only connects two nodes, the capacitive load for each link is small, which

can potentially reduce the power requirement or allow the interconnect network to operate at a

CHAPTER 2. BACKGROUND 33

higher frequency.

The hierarchical ring architecture is composed of rings connected together by a central

ring. Each ring can be clocked differently so IP cores can run at the frequency optimized for

them without any modification. Not only can the development time be reduced by efficient

component reuse, but different clock frequencies in the system can reduce energy consumption

because sorne components are allowed to run at a lower frequency.

The ring architecture is a packet-switched network that provides properties beneficial to

SoC designs. The architecture uses packets as the basic communication units to allow reli­

able data transmission, components within the network can communicate concurrently, and a

standard network interface is used to allow faster integration.

2.5 Related Work

There are various examples of research on multiprocessor implementation with an NoC design

methodology [23, 16,24]. STMicroelectronics has developed a multiprocessor system targeted

for network processing applications [23], but the primary focus has been placed on processor

utilization. Characteristics of the interconnect network are modeled with parametrical latency,

which may not reveal the true latency of the network introduced by various applications. The

butterfly fat-tree interconnect architecture proposed by the SoC Research Lab at the University

of British Columbia [16] is a hierarchical network consisting of tree networks connected with

a mesh at higher level. The network was designed to resolve global synchronization issues

caused by long global wire delays. Issues such as multicast and communication performance

with respect to silicon area are also addressed. The MicroNetwork proposed by Sonics Inc.

examines the latency and area advantage of a bus network and made improvements suitable

for SoC integration. An SoC design flow and a simulation platform are also proposed in the

paper [24]. A study on packetization and routing analysis of an on-chip multiprocessor net­

work [13] contains a comprehensive analysis of NoC implementation, congestion handling

CHAPTER 2. BACKGROUND 34

with a dynamic routing algorithm, and energy/performance analysis for a shared memory mul­

tiprocessor system implemented with a mesh interconnect network.

In this thesis, a design flow for a multiprocessor SoC design with a two-Ievel hierarchical

ring interconnect network is described. The system design inc1udes considerations for both

the interconnect network and the processor IP cores. System-Ievel issues such as flow-control

and deadlock resolutions are also considered. A simulation platform is also implemented at a

sufficient level of detail to illustrate functional correctness of the design. The platform is also

used to optimize some of the system design parameters.

Chapter 3

Architecture

The architecture adopted in this thesis is based on NUMAchine multiprocessor. The proposed

architecture is targeted for on-chip implementation, and the architecture differs from the NU­

MAchine multiprocessor to optimize for on-chip implementation.

3.1 Two Level Hierarchical Rings

The hierarchical ring architecture used in the NUMAchine multiprocessor consists of four local

rings connected by one central ring. Each local ring is composed of four stations, giving a total

of 16 stations in the system. Each station is made up of 4 generic processors, memory, and

control logic. The stations are connected to the local rings through station-ring interfaces,

while the rings are connected to the central ring through inter-ring interfaces. Figure 3.1

illustrates the interconnect interfaces of the architecture.

The hierarchical ring network uses packets to communicate between the stations. Unidirec­

tional rings are used such that there is only one unique path between each station. The unique

path preserves the ordering of packets on the receiving end of the network. The architecture

uses slotted ring approach for packet transmission. Each ring connection point (i.e. station­

ring interface or inter-ring interface) is a slot. A set of registers is used to hold a packet at

the transmitting end of a link during a clock cycle. At the beginning of each clock cycle, the

35

CHAPTER 3. ARCHITECTURE 36

Central Ring

Figure 3.1: Two-Ievel hierarchical ring interconnect

content of the register is replaced with the next packet to be transmitted.

Addressing of the stations is achieved through use of bit-masks. In the two-Ievel hierar­

chic al ring network, the addressing mode consists of two sets of masks: local-ring mask bits

and central-ring mask bits. Each local ring is assigned a bit in the central-ring mask, and each

station is assigned a bit in the local-ring mask. The mask bits have size equal to the number of

nodes in the rings, in the implementation, 4 local rings are matched by 4 bits in the central-ring

mask and 4 stations in each local ring are matched by 4 bits in the local-ring masks. The use of

bit-masks can uniquely identify each station in the network by specifying the location ofthe lo­

cal ring and the position of station in the local ring. Multicast of packets to multiple stations can

also be applied with the bit masks with minimal addition of routing logic. Figure 3.2 illustrates

the addressing bit-mask for the stations. Multicast packets differ from the regular packets in the

mask bits. Instead of using one bit to identify the location of the station on a local ring, multiple

bits can be used to identify multiple stations. Similarly, multicast to multiple local-rings can

be performed by setting multiple bits in the central-ring mask bits. In the multicast case, one

packet can be distributed to the destination without the need to transmit multiple copies at the

transmitting station; su ch approach can significantly reduce the bandwidth requirement.

Congestion of traffic is handled in the architecture with lossless data transmission. The

hierarchical ring architecture prevents packet loss due to PIFO overftow by implementation of

CHAPTER 3. ARCHITECTURE

[i"QQQ]
~

[OiOOl
~

[i"QQQ]
~

~
~

l1000l
~

~
[i"QQQ]

Central Ring

[OOo1J
~

~
[i"QQQ]

~
~

L-~-1

~
~

~
L-~-1~

~
~

Figure 3.2: Station addressing with bit-masks

37

backpressure mechanism which inform the potential senders when the FIFO is approaching its

capacity.

Based on the description of the hierarchical ring architecture from NUMAchine multipro-

cessor, it was determined to be suited for on-chip implementation for the reasons below which

are described in more detail in the following sections:

• Data integrity,

• Layout simplicity,

• Natural grouping of components for locality,

• Potential for lower energy consumption

3.2 Data Integrity

Data integrity is good for network type of interconnect that uses packets as the basic communi-

cation units. Error correction algorithms have been applied on modern computer networks and

have been observed to be quite reliable to ensure data integrity. The unique paths between the

CHAPTER 3. ARCHITECTURE 38

stations which ensure proper ordering of the packets arriving at the receiving end also relieve

the designer from having to implement complex algorithms to reassemble packet data.

3.3 Natural Grouping of Components

As clock-skew bec ornes more pronounced, synchronizing every component on a chip to a

global signal will bec orne impossible [9, 25]. The solution is to partition the system into

multiple clock domains resulting in locally synchronous clock domains which are globally

asynchronous with respect to each other. The two-Ievel hierarchical ring topology described

in Section 3.1 is weIl suited for such partitioning; each ring can be controlled by a local clock

signal. Synchronization between clock domains is achieved through the use of asynchronous

buffers between rings.

In a study by L. Benini and G. De Micheli [9], properties of hierarchical networks are

explored. The introduction of hierarchies in the design of interconnect network allows group­

ing of tightly coupled computational units so that local traffic is maximized while minimizing

global traffic. The overall effect is to reduce the total bandwidth required for the interconnec­

tion network [9, 25]. The grouping of components with different clock frequencies can also

reduce the development effort and time. Since sorne of the IP cores need to run at their native

frequency, local clock frequency can further reduce the effort for reuse of previously designed

components.

3.4 Power Considerations

The hierarchical clocking scheme is also beneficial for low-power devices which are common

in SoC implementations. Energy consumed by the interconnect network is directly attributed to

the operating frequency. Optimization can be performed by operating rings where components

have less communication activities at lower clock frequency. Real-time power optimization

can also be made possible by clocking non-utilized portion of the interconnect network at a

CHAPTER 3. ARCHITECTURE 39

slower rate.

3.5 Layont Considerations

The primary goal of system-on-a-chip implementation is to pack an components of the system

into a chip. SoC implementations have larger silicon area because more components need to be

placed on the IC, as well as larger number of connections required to connect the components.

SoC can potentially be expensive to fabricate because production yield decreases as the IC

silicon area increases. The hierarchical ring architecture is suited for SOC implementation as

interconnections do not have complex routing, and it optimizes both performance and layout

area.

An important consideration for chip fabrication is to minimize the area of the chip. ICs

with large silicon area are prone to fabrication defects and do not utilize the area on wafers due

to their larger geometry. Both fabrication defect and wafer area utilization contribute to lower

yield and increase cost per le.

Wire routing in VLSI layout can have a significant effect on performance and chip area

of the system, efforts have been made in researching efficient routing algorithms. Inefficient

routing can increase the wire length unnecessarily which not only increase the chip size, but

also decrease performance. Efficient routing is especially important for designs in SoC, al­

though advancement in chip fabrication allow designer to scale down the size of transistors for

smaller logic implementation, but interconnection wires cannot be scaled at the same level as

the transistors [1].

The hierarchical ring architecture described in the work has a planar structure such that

the interconnections are local to the rings, and the interconnections do not cross each other.

Layout is simplified as interconnects are mostly local and can be routed systematically. Figure

3.3 below is an example of layout of the hierarchical rings.

Figure 3.3 illustrated the simplicity of layout for the hierarchical ring architecture. Each

CHAPTER 3. ARCHITECTURE

~
Lr~~~~'-~~--~~'I g­

o::

Station

station

Figure 3.3: Hierarchical rings and layout

40

Station

Station

Station

Station

station is laid out and connected with others to form a local ring. The local ring can be placed

as a macro ceH, and local rings can be instantiated and connected together to form the central

ring. The complexity of layout is simplified as aH connections in the interconnect network are

point-to-point connection to their neighbor.

3.6 Migration to On-chip Implementation

Although previous discussions have indicated that the hierarchical ring architecture from NU­

MAchine is suited for on-chip implementation, further optimization can be made to migrate

the architecture to Soc. Moving from shared memory model to message passing model can

reduce the complexity and size of the interconnect implementation. As a result of using mes­

sage passing model instead of shared memory, the PIFO size on the inter-ring interfaces and

station-ring interfaces can be significantly reduced. The change in communication method also

requires modifications to handle deadlock differently.

CHAPTER 3. ARCHITECTURE 41

3.6.1 Distributed Memory Model

The NUMAchine multiprocessor took the shared memory approach in order to ease the burden

of migrating single processor applications to the platform. Local caches are used to reduce

bandwidth requirement. These caches introduce data coherence issues where copies of block

of data can exist at multiple locations, and modification to the data at any one of the copies

must be refiected to copies at alliocations. NUMAchine resolves the data coherence issue by

introducing a directory cache coherence protocol where the directories are maintained at both

the memory level and the network level.

The proposed system architecture uses distributed memory model for parallel processing.

In the proposed architecture, each individu al processor has an independent address space and

its own dedicated physical memory. Communication between processors relies on minimal

hardware support for message-passing send/receive operations that are explicitly initiated by

the embedded software running on each processor.

Distributed memory model implementation provides better performance for the following

reasons: embedded software has matched send and receive pair such that a sender only sends

data that are no more than required by the receiver. In the shared memory with local cache

approach, a cache miss would require a full cache block of data to be transmitted. A cache

coherence protocol also adds to the bandwidth usage on the network to resolve cache confiicts.

Since the embedded software designer needs to have a more detailed understanding of the

architecture, parallel programs that use message passing approach can be implemented more

efficiently. Lastly, it was discussed in Section 2.3 that the shared memory type of applications

can be implemented in software or OS level if desired. The design approach taken for the

proposed system is to have simple and effective framework which eases the effort necessary

for system integration and offioads the hardware complexity to software level.

CHAPTER 3. ARCHITECTURE 42

3.6.2 Congestion Handling

As described previously, the on-chip network does not exhibit the non-determinism of packet

losses due to disconnection of nodes. The retransmission protocol approach for flow-control

then becomes less attractive for the on-chip implementation since the only source of packet

drop in such approach is due to congestion. Retransmission of packets only adds more traffic

to the network which may cause further packets to be dropped. The order of packet arrivaI

can also be disrupted because sorne packets are dropped and retransmitted. In addition to the

issue of reduced performance due to retransmission and packets not arriving in-order, complex

logic for the retransmission protocol must be implemented at the station interfaces, and large

buffers are required for the protocol implementation. The approach taken in the NUMAchine

multiprocessor and the work described here implements lossless communications which uses

a simple backpressure mechanism for handling network congestion while avoid packets being

dropped.

Backpressure mechanisms in a two-level hierarchical ring structure are implemented at

each level. A backpressure signal is required to control traffic between the local rings, in the

local ring level, backpressure mechanisms are needed to control the rate of traffic into and out

from each local ring. The implementation differs from the conventional per-hop backpressure,

a backpressure signal is shared between the interfaces in each ring. AU interfaces in the ring

can take appropriate measure as soon as the status of backpressure is changed, in per-hop

backpressure approach, each interface must wait for the backpressure to propagate through the

network. At each hierarchicallevel, backpressure is triggered when one of the FIFO in the ring

is reaching capacity. The mechanism is necessary to prevent new packet from being placed

on the ring that can potential overflow the FIFO and cause packet loss, it is disabled when the

packets in the offending FIFO is drained to a specified level.

CHAPTER 3. ARCHITECTURE 43

3.6.3 Flow Control

The flow control mechanism implemented in the work is based on NUMAchine [4], and is

extended for distributed memory system architecture. Three levels of flow-control are imple­

mented: the Central-Ring level, Local-Ring level and Station level flow-control.

At the Central-Ring level, the ringS top backpressure is activated when the central ring is

congested and has risk of packet loss if more packets are moved from local-rings to the central

ring. The condition for such situation occurs when one of the downward FIFO at the inter­

ring interfaces is reaching capacity. Any new packets placed on the central ring have risk of

overflowing the FIFO. The solution is to stop packets from ascending from local rings on to

central ring by signaling aIl inter-ring interfaces with the ringStop backpressure. At the time

when the ringStop backpressure is triggered, packets already on the central ring is allowed to

continue to travel among the inter-ring interfaces until they are removed (i.e. descended to

local rings). The ringS top signal is de-asserted when the FIFO level drops to one forth of the

total capacity.

The Local-Ring level flow control is triggered when a local ring cannot send more packets

to central rings due to congestion in the central ring, or when the stations cannot receive more

packets because the stations cannot process the received packet fast enough. A stopUp signal

is triggered when the up-ward FIFO in the inter-ring interface reaches a specified level, a stop­

Down signal is asserted when receiving FIFOs on one of the ring interfaces has reached the

limit. The stations are prohibited to send new packets into the local ring when either stopUp

or stopDown signal is asserted. Both stopUp and stopDown signaIs are de-asserted when the

respective FIFO level drops to one forth of the total capacity.

The third level of flow control is triggered when the out-going buffer at the ring-interface

is full due to congestions in the rings. When this happens, any new data transmission from the

station will be blocked until there is room in the buffer.

CHAPTER 3. ARCHITECTURE

StationA expect packetC to arrive
belere packetB

BullerA

Packet
Forwarding ~
irectionOI

Packet Destination

PacketC StationA

PacketB StationA

Figure 3.4: General store and forward deadlock at network level

3.7 Deadlock Handling

44

Section 2.2.4 described a list of potential deadlocks in the network environment. The following

discussion will illustrate the scenario of the deadlocks in the hierarchical ring network, and the

measures taken to prevent them.

3.7.1 General Store and Forward Deadlock

The following scenario illustrates an example of general store and forward deadlock: Con-

sider in the ring network where three stations are exchanging data, the network arrangement is

illustrated in Figure 3.4.

Prerequisite: Station A blocks while waiting for packets from station B and station C, and

station A must process packets from station B (packet B) before packets from station C (packet

C). Packet B can go directly to station A, and packet C must go through station B to get to

station A.

Condition: Station A receives packet B tirst and tilled up the receive FIFO, and packet C

is being passed along to station A.

Result: Packet B will not be processed because station A has not received packet C. On

the other hand, packet C can not get to station A because there are no empty slots in the receive

CHAPTER 3. ARCHITECTURE

BulferA

BulferG BulferB

"ea,*etO
;'i5llçk~tï'l!J:

paèketè

~
ireCtiOnOf

Packet
Forwarding

IRI

Packet Destination

PacketA StationB

PacketB StationC

PacketG StationA

Figure 3.5: Indirect store and forward deadlock at network level

PIFO on station A. The circular dependency then leads to deadlock.

45

NUMAchine resolves the issue with the shared memory architecture where the data is

pulled from the remote station as required. In NUMAchine, the scenario described will be

different: packet Band packet C will be requested when station A tries to access the data and

experience a cache miss. In such a case, station A will request packet C first then request packet

B when it has finished processing packet C and sees another cache miss for packet B.

The proposed architecture confront the potential store and forward deadlock by providing

a non-blocking path which stores the data content directly into the desired memory location on

the stations as soon as the packets arrive. The approach is to use direct memory access (DMA)

mechanism, which handles incoming packets by removing them from the receive PIFOs and

place the packet data into appropriate memory locations regardless of the status of process on

the processor. With the DMA in the system, arrived packets are moved from the PIFO into

memory in the station even when the process is blocked. It then becomes clear that blockage

of packets imposed by the limited PIFO size on the station-ring interface can no longer exist,

so that new packets can always reach their destinations.

CHAPTER 3. ARCHITECTURE 46

3.7.2 Indirect Store and Forward Deadlock

Figure 3.5 illustrates a possible scenario for indirect store and forward deadlock. The scenario

is described as foHows:

Prerequisite: station A blocks while waiting for packet C, station B blocks while waiting

for packet A, and station C blocks while waiting for packet B.

Condition: AH stations have initiated transmission of packets and that aH receive FIFOs at

the stations are filled with packets from its direct neighboring station.

Result: Packet from station B cannot be moved to station A because buffers in station A are

full of packets that need to be transmitted to station C; the packets from station Amay not be

able to be moved to station C for the same reason, similarly, packets from station C cannot be

moved to station B because the packets from station B are still waiting to be moved to station

A. The loop of dependencies then causes indirect store and forward deadlock.

The potential of the described deadlock is identified to be caused by single buffer type and

is described in Section 2.2.5. The suggested solution is to use two independent PIFOs for

staging send and receive packets. The approach was adopted in NUMAchine multiprocessor

and was kept in the proposed architecture.

3.7.3 Acknowledgement Packet Related Deadlocks

Section 2.2.5 has identified potential deadlock caused by blockage of acknowledgement pack­

ets. The situation is sometimes referred to fetch deadlock [20] where a packet in the FIFO

which cannot be processed, and would cause total blockage of aIl the remaining packets in

the PIFO. The issue is resolved in NUMAchine by categorizing packets into sinkable which

do not require returning packets (such as write access packets) and non-sinkable which expect

the receiving station to send packets back to the sender (such as acknowledgement and read

data) packets, the two categories of packets are handled differently such that sinkable packets

cannot be blocked by non-sinkable packets while the station is generating the responses to the

non-sinkable packets. The acknowledgment packet related issues do not have much effect in

CHAPTER 3. ARCHITECTURE 47

message passing multiprocessors such as the proposed architecture. Messages are explicitly

initiated by the sender rather than having request-and-acknowledgement type of communica­

tion that must be processed differently while they are in the buffers.

3.7.4 Network-level Deadlock Prevention Measures

The mIes followed in the NUMAchine multiprocessor project to prevent deadlocks were dis­

cussed in Loveless's thesis [4] are:

• A non-blockable downward path in the hierarchy must always exist for sinkable transac­

tion, even if the upward path is stalled indefinitely.

• The number of outstanding non-sinkable requests that can exist in the ring hierarchy at

any given time is bounded, and the value of the upper bound can be deterrnined.

The first mIe is to ensure that stations can continue to receive while sends are blocked

due to congestion, which guarantees that the network can make forward progress. When no

new packets can appear on the network while the ones exist in the network can continue to be

removed, the source of congestion will eventually be resolved. The second mIe is related to

the size of buffer used to hold the non-sinkable packets, and is not relevant to the proposed

architecture.

In hierarchical rings, the non-blockable downward path is made possible by a special

switching scheme used in the backpressure mechanism. While the backpressure flow control

mechanism can prevent stations from adding more packets on the rings, packets already exist

on the network (not inc1uding the ones on FIFO) are still allowed to move on the rings until they

have reached their destinations. The assertion of backpressure signaIs does not immediately

stop network traffic, and must handle the packets already on the network.

Implementation of the non-blockable downward path in the two-Ievel hierarchical ring net­

work is described as follows: In the central-ring level, when ringS top signal is asserted by one

of the inter-ring interface, no new local-ring (located on the up PIFO) packets can be moved

CHAPTER 3. ARCHITECTURE

2. Up FIFO filled up and triggers

stopUp pressure

Central Ring

IRI3

3. StationA can is prevented tram
transmittîng packet due to stopUp.
4. Receive Buffer in StationA if filled
up and triggered stop Dawn
5. StationA is prevented trom
transmitting paeket due ta stopDown
even when stopUp is de-asserted

Figure 3.6: Software caused deadlock propagated to network level

48

to the central ring, but packets can descend from central ring to local rings. In the local-ring

level, stopUp signal which indicates that the central ring cannot take more packets prevents

the stations to place new packets on the local ring. However, packets already on the ring may

still move along the local-ring until they are removed at their destination. It is then apparent

that while congestion occurs in the upward traffic, downward traffic can continue to move and

drained at their destination which makes forward progress possible.

3.7.5 Deadlocks Propagated From Software Layer

While the potential for deadlock has been considered at the network interconnect level, dead-

lock can still occur in the software level and propagate down to the network level. Figure 3.6

illustrates one possible scenario of such deadlock.

The scenario first starts with a ringS top in the central ring due to congestion at another

local ring. The backpressure is propagated to the local ring and triggers assertion of the stopUp

signaIs which prevents new packets from appearing in the local ring. When station A tries

to send data, the transmission will be blocked waiting for the stopUp signal to clear. While

CHAPTER 3. ARCHITECTURE 49

the station waits for the packet transmission, packets from other stations are allowed to reach

station A as part of the non-blocking downward path implementation. When the transmission

in station A is in progress, the station is unable to process the arrived data, then the input

PIFO at station A starts to accumulate, and eventually causes stopDown backpressure. The

stopDown backpressure then prohibits station A from transmitting, even with absence of the

stopUp backpressure. Since station A is still trying to transmit and unable to transmit due

to stopDown backpressure, and station A is still unable to process the arrived packets, the

stopDown signal will not be c1eared, a circular dependency can then be observed which causes

deadlock in the local ring.

The source of the deadlock starts out from the fact that the embedded software on the station

is unable to process received data while data is being transmitted. The blockage of the station

from processing the received data in tum causes congestion on the network and eventually can

cause deadlock. Typically, the limitation of a station not being able to process received data

while transmission is in progress is imposed by the software API. The API can be modified to

interleave processing of data transmission and processing of received data. However, such an

implementation is inefficient and causes confusion to the software designer, especially when

the type of deadlock can only occur in rare cases.

The measure taken to resolve such a deadlock issue is to use a DMA device which allows

removal of received data in the receive PIFO while transmission is in progress. When trans­

mission and reception of data can occur simultaneously, the circular dependency is effectively

broken, which eliminates the potential of such deadlock.

Chapter 4

Simulation Model

This chapter discuses a software model of the proposed multiprocessor system for verifying the

functionality of the design as weIl as observing the behavior of the system. The model is also

used for design space exploration of the system such that the optimal design parameters can be

determined. In this chapter, modeling environment, as weIl as the implementation details for

the model of the proposed hierarchical rings are described.

4.1 Modeling Languages and Libraries

The behavior of a system can be modeled in software. Different aspects of the system can

be evaluated in software before the actual hardware implementation. For the model to be

efficiently used in a design project, the model must be able to be developed quickly, and should

properly refiect the behavior of the system.

4.1.1 Systeme

C and C++ are among the most popular programming languages used today. Because designers

are familiar with these languages, it makes sense to use them to build executable specifications.

C and C++, however, are generic programming languages and lack the constructs that are

50

CHAPTER 4. SIMULATION MODEL 51

necessary to describe hardware behaviors.

SystemC is a C++ library that provides modeling constructs similar to those used for RTL

and behavioral modeling within VHDL or Verilog [6]. Highlights of SystemC are described

in the SystemC User Guide [3] and are summarized below.

• SystemC supports the description of hardware, software, and interfaces in a C++ envi­

ronment,

• The SystemC syntax for modeling hardware is similar to that typically found in hardware

description languages (HDLs). Constructs such as modules, processes, and ports are

supported for describing hardware behavior.

• Multiple clock signaIs of arbitrary phase relation that are common in an SoC environment

can be modeled easily in SystemC.

• SystemC supports cyc1e-based simulation for fast and effective simulations.

• Multiple abstraction levels are supported in SystemC, where the levels of abstraction

range from high-Ievel functional models to detailed cycle-accurate RTL models.

• Lastly, the SystemC library supports signal-trace capabilities which are essential for ver­

ification purposes. SystemC models can generate waveform output in various industry

standard formats such as VCD, WIP and ISDB.

SystemC provides support for an HDL-like design methodology while allowing the design

to be implemented at various level of abstraction. This flexibility allows for fast validation

and optimization of the design, as well as the ability to perform exploration of various algo­

rithms [3]. The SystemC library is freely available to the general public; it works with most of

the C++ development environment and tools. Because the SystemC libraries are implemented

in C++, standard C++ development tools can be used at low co st as compared to the cost of

standard HDL development tools. There are no requirements for expensive licenses and the

development environment can be installed on relatively inexpensive computers.

CHAPTER 4. SIMULATION MODEL 52

The SystemC library provides support functionality commonly found in HDL development

tools as weIl as syntax similar to HDL languages. The SystemC core consists of an event­

driven simulator that works with events and processes [26]. Modules and ports are used to

represent structure, while interfaces and channels are used to describe communication [26].

Modules provide the ability to partition a system into functional blocks and are composed

of processes, ports, internaI data, channels, and other modules [26]. Processes belonging to

different modules communicate through channels and ports. Events are triggered in the same

fashion as other HDLs such as Verilog and VHDL.

System models can be built in different abstraction levels which range from high-Ievel be­

havior models to HDL-like cycle-accurate models. For fast development and evaluation of a

new component, high-level behavioral modeling can be used su ch that the functionality can

be verified. A component modeled at a behavioral level does not need to reflect the hard­

ware implementation and must generate the proper response with given input. The interior

of the components can be designed in pure C++ syntax. For code reuse, the component can

be encapsulated into a module and connected to other components through ports, interfaces,

or channels. In SystemC, the module can be treated as a C++ class, while instantiation of a

module is equivalent to instantiating an object of the class. For more detailed simulation, Sys­

temC allows cycle-accurate design with the use of HDL-like constructs. Similar to designing

in HDL, the content of a component is divided into processes that are triggered with specified

signal events. The signal events can be either system clocks or signais originating from another

component connected through the input port.

The goal of SystemC is to build system models that can be refined into synthesizable RTL,

then synthesized into netlist, and ultimately can be used to fabricate the designed system. When

the technology becomes available, the overall design flow can be greatly simplified. In the

CUITent method of designing an IC, a system-level model is designed independent of the hard­

ware. Once the system-Ievel model is developed, a designer manually converts the model into

an HDL where the design is simulated again and synthesized for production. With the con-

CHAPTER 4. SIMULATION MODEL 53

ventional design methodology, inconsistencies between the software model and the hardware

design become an issue. First of aIl, conversion from the system-level model to HDL is tedious

and error prone. Secondly, once converted to HDL, when design fiaws are discovered and fixed

in hardware, updates to the software model are often neglected to refiect the modifications. Fi­

nally, test-benches used for system-level models are typically not compatible with the HDL

model, and it is often necessary to convert the test-benches in languages such as Cinto the

HDL environment [3].

With the proposed SystemC approach, inconsistency is no longer an issue. SystemC adopts

the refinement methodology where the system is divided into modular components. Each com­

ponent model is initially written at the highest level of abstraction, typically to refiect the

behavior of the model. The design can then be slowly refined for each component to add more

detail such as hardware and timing constraints. When aIl components are modeled in the cycle­

accurate level of abstraction, the model then is complete, and can be converted into synthesiz­

able RTL with relatively less effort. Designers can model in SystemC from the system-level

to RTL level without having to know multiple languages. Unlike the conventional approach,

SystemC testbenches can be reused for both system-Ievel models and RTL models, which lead

to considerable savings in development time.

4.1.2 StepNP

StepNP is a network exploration platform developed by STMicroelectronics that provides sim­

ulation tools and SystemC modules targeted for network processor modeling. The modules

provided by StepNP includes processors, memory, and interconnect modules [27]. Supplied

with the platform is a collection of cross-compiler tools for generating binaries to be executed

on the processor modules. Other tools provided by the platform include SystemC macros that

can be used for the introspection of signaIs during simulation as weIl as a graphical user inter­

face that can be used to interface with the simulator for debugging and data collection purposes.

A high-Ievel model of standard interface is also supplied with the StepNP library to allow faster

CHAPTER 4. SIMULATION MODEL 54

Rsp

Master

Req

Figure 4.1: Transaction-level communication

system integration and more efficient simulation of the system model.

4.1.3 Transaction-Level Communication and SOCP

The transaction-Ievel model is introduced in SystemC as part of a high-Ievel modeling ap­

proach to improve simulation performance. Transaction-Ievel channels implement the com­

munication behavior of bus protocols without timing information. Communication through

channels is modeled by events that are typically specified by the type of operation. Events in

the transaction-Ievel are categorized into requests and responses. Bit-level signaIs and other

physicallevel components are not included as part of the transaction-Ievel model.

Figure 4.1 illustrates how transaction-Ievel communication is performed. The communica­

tion is initiated by the master device sending a request operation. The operation is interpreted

by the slave device and the corresponding task is performed. When the slave device completes

the task, a response is sent back to the master device [28].

The SystemC Open Core Protocol (SOCP) communication channel is the SystemC ab­

straction of the Open Core Protocol (OCP) standard [29, 7]. The goal of OCP / SOCP is to

provide a standard configurable interface for IP cores that is capable of handling aIl types of

communication. The standard interface specification allows components to be integrated with

minimal effort. With a standard interface such as SOCP, the designer no longer needs to follow

a particular input/output specification and to try to connect the components together manu aIl y

through their input and output signaIs. SOCP offers the high-Ievel abstraction of the OCP stan­

dard. SOCP have no bit-Ievel signais, polarities, clock cycles, or detailed timing information.

Communication is modeled at the transaction level; the requests and responses to requests are

CHAPTER 4. SIMULATION MODEL 55

modeled and can be considered functionally identical to the OCP. The higher-level abstraction

allows better performance in simulation; more details can be added to SOCP channels in later

stages of the design cycle to conform to the timing requirements specified by the OCP standard.

4.2 Components

The two-level hierarchical ring multiprocessor system described previously is modeled with

SystemC and StepNP libraries. The system is composed of 16 stations communicating over

a two-level hierarchical ring interconnect. Each station contains a processor with a dedicated

memory component and relevant control logic. To allow expandability in the future for more

processors, a shared memory is connected to the processor through a configurable access con­

troller the can supports up to four processors. Transmitter and receiver blocks are used to

handle communication between the processor and the interconnect module.

Following the SoC design methodology proposed in a study by Cesario et al. [30], the

implementation of the multiple-processor system is divided into two distinct categories: the

interconnect module and the station module. The functionalities of each module are defined

so that the modules can be developed independently of the other. The interface between the

modules adopts the SOCP communication channel interface. Communication specification for

operations between the interconnect network and station modules is also defined with a list of

expected requests and responses to the requests so that there is no ambiguity in integrating the

components.

The interconnect module forms the physical layer of the communication protocol. The

module itself can be viewed as an independent IP core and the primary function of the inter­

connect module is to relay data from one of its end points to another. Given that the interconnect

network and station modules are implemented with a standard interface, the interconnect mod­

ule can be replaced easily with a different architecture. Similarly, the station modules can also

be replaced with other types of modules that are not restricted to multiprocessor implementa-

CHAPTER 4. SIMULATION MODEL

Stàtjq~l, Slalion2 Slation3 Stlltion4 StationS Station6 Station7 StationS

Interconnect
fv)0dule

Station14

" .

'"~" 1 ,.,~" 1

Figure 4.2: Simplified component integration with SOCP

56

tion. In the proposed two-Ievel hieratical ring multiprocessor system, the stations are instances

of the same station module. However, it is not required that aIl stations are made equal; stations

of different implementation can be used. For example, sorne stations may be responsible for

1/0 processing, while another maybe responsible for computation such as execution of algo­

rithms on the input data.

The division of components into different IP cores reduces the complexity of system inte­

gration. This ability is especially useful in simulation models, as the design space can be easily

explored to determine the feasibility of an experimental architecture in terms of performance

or cost, or trade-off of different algorithms.

Figure 4.2 illustrates the connectivity of the interconnect module and the station modules.

With SOCP, the interconnect network can be replaced with different architecture implementa-

tions. Stations can also be individually replaced with modules with different implementations.

CHAPTER 4. SIMULATION MODEL 57

o 8 15

Src Ring 1 SrcStation 1 DestRing
1

Dest Ring

Sequence Number
1

Data

Data

Data
1

Figure 4.3: Packet structure

4.2.1 Interconnect

In this section, the implementation of the interconnect module is described. The module imple-

ments the hierarchical ring architecture described in Section 3.1. The multiprocessor system

consists of four local rings with four stations for a total of 16 stations. Each local ring is con-

nected to a central ring with an inter-ring interface that contains two packet PIFOs, one for each

direction to or from the central ring. Each station is connected to a local ring with a station-ring

interface that has a FIFO to store packets received from the local ring, and a transmit PIFO for

staging packets that will be sent to the local ring.

The links connecting the inter-ring interfaces or station-ring interfaces are bit-parallel sig-

naIs which represent one packet of data, i.e., each bit represents one bit of the packet content.

The packet has a size of 57 bits and the format is illustrated in Figure 4.3. The SrcRing and

SrcStation fields form the bit mask used to identify the station that created the packet. The

DestRing and DestStation fields form the bit mask used to identify the intended destination of

the packet. The two fields of a packet can be modified by the switches. The bits after sequence

number until the end of the packet are used for storing data that the packet encapsulates. The

Data field of the packet can be expanded to contain more data in the future if higher bandwidth

is desired.

4.2.2 Inter-ring Interface

Figure 4.4 illustrates the implementation of the inter-ring interface block. The inter-ring inter­

face is connected as part of the central ring and connects to the two ends of a local ring. The

functions of the inter-ring interface are outlined below.

CHAPTER 4. SIMULATION MODEL 58

• The inter-ring interface switches packets from local rings (destined to stations on another

ring) to the central ring.

• The inter-ring interface also is responsible for forwarding packets on the central ring that

are destined to another local ring.

• Packets targeted for the attached local ring are switched at the inter-ring interface from

the central ring to the local ring.

• In case of switching multi-cast packets, one copy of the packet is forwarded to the next

inter-ring interface and a copy is forwarded to the local ring. Both copies of the packet

have their ring-mask adjusted accordingly.

• Inter-ring level flow-control is achieved through implementation of FIFO monitoring

logic integrated with the switching algorithm. The details were described in section 3.6.3.

There are two inputs to the inter-ring interface, localInput takes input from the local ring at­

tached to it, where centralInput takes input from the previous inter-ring interface connecting

to il. There are also two outputs from the inter-ring interface, centralOutput and [ocalOutput,

connecting to the next inter-ring interface and the local ring respectively.

When switching packets, priority is given to packets on the same hierarchy level. Pack­

ets switching from one level to another have lower priority. The packet on centralInput will

have priority over packet at localInput when there are packets arriving on both inputs, both

expected to be switched to central Output. In this case, packet at 10calInput is buffered in the

Up PIFO (also called 10caiCentrai PIFO) until there are no more packets on the centralInput.

Similarly, when there are packets arriving on both 10calInput and central input both expected

to be switched to 10calOutput, the packet at 10calInput has priority over the packet at the cen­

tralInput, and packets in from the central ring are stored in the Down PIFO (also called the

centralLocal PIFO) while there is traffic from the local ring passing through the inter-ring in­

terface. The switch controller block in the figure is a generalization of the controllogic within

the inter-ring interface module.

CHAPTER 4. SIMULATION MODEL 59

Central Input

Central Output

C=>

Local Output

C=>
Local Input

Figure 4.4: Inter-Ring interlace implementation

Station Input Station Output

c::::::::> . C>

~tRSP GtReq

Figure 4.5: Station-Ring interlace implementation

4.2.3 Station-ring Interface

The station-ring interlace is the bridge between the interconnect module and the station mod-

ules. Figure 4.5 illustrates the implementation ofthe Station-Ring interlace block. The station­

ring interface connects to its neighboring interlace through the stationInput and stationOutput

ports. Connection to the station module is achieved through the masterPort and slavePort with

SOCP interlace. The functions of the station-ring interlace are listed below:

• Packaged data is transmitted from the station into a packet and stored in the station Out

PIFO.

• Packets that are not destined to the station are forwarded to the next interface in the local

ring.

CHAPTER 4. SIMULATION MODEL 60

• At each clock cycle, the interface transmits data from the station Out PIFO to the next

interface in the ring when the interface is not busy forwarding packets.

• Packets that are destined for the attached station are removed from the network at the

station-ring interfaces. Received packets are stored in the stationln PIFO.

• In case of switching multi-cast packets, one copy of the packet is forwarded to the next

station-ring interface and another copy is stored in the stationln PIFO. The station mask

of the CUITent station is removed from the forwarded packet.

• Mechanisms for the station to query transmission status are also provided for the com­

ponent connected to it through a SOCP interface.

• Ring-Ievel and station-Ievel fiow control is achieved through implementation of FIFO

monitoring logic integrated with the switching algorithm. Details are described in sec­

tion 3.6.3.

The switching algorithm is similar to the inter-ring interface. Priority is given to existing traffic

on the ring. When there are packets on both the station input and the station Out FIFO, the

packet on station input is transmitted first. Packets on stationOut PIFO can only be transmitted

when there are no packets on the stationln port.

The SOCP interface connects the station-ring interface and the station module. A putReq

remote function is implemented on the station-ring interface to service requests from the station

module.

The putReq function implemented on the station-ring interface allows the attached station

module to query the status of the stationln PIFO and the transfer of packet data. The main

features implemented on the putReq function are listed below,

• At every clock cycle, the station-ring interface inquires if there are data available in the

stationln PIFO in the interconnect module.

CHAPTER 4. SIMULATION MODEL 61

• When there are data available from the interconnect module, the station-ring interface

acquires a packet worth of data from the interconnect module and place in the specified

memory location .

• The station-ring interface also implements a protocol to inquire the overhead information

(packet header) of the first packet in the stationIn FIFO.

When an operation is requested by the station module, the putReq function first decodes

the operation code in SOCP request, and then performs the corresponding operation. The types

of operations are divided into read and write requests and are described in Table 4.1.

Operation Op Code Description
Read 0 query the stationIn PIFO status

1 read input overhead (mask bit representation)
2 read input overhead (station number representation)
3 read data field
4 read output PIFO status

Write 1 Update target station mask bits
other transmit data to the target station

Table 4.1: Operation descriptions

A read operation with operation code 0 is used to query stationIn FIFO status. If the PIFO is

not empty, 1 is placed on the data field. SOCP retums data back to the station module together

with a data-valid fiag. If the FIFO is empty, 0 is retumed with a data-invalid fiag to indicate

that the PIFO is empty.

A read operation with operation code 1 and 2 are used to fetch the packet overhead infor-

mation. The overhead bits from the first packet on the receive FIFO is placed on the data field

of the SOCP communication channel and transmitted back to the station as a response.

A read operation with operation code 3 is used to fetch the data field of the first packet

in the stationIn FIFO. When requested, the first packet on the stationIn PIFO is copied to the

packet FIFO and the packet entry is popped from the stationIn PIFO.

A read operation with operation code 4 is used to query the stationOut PIFO status. The

number of free slots in the station Out PIFO is retumed to the station module. When station Out

CHAPTER 4. SIMULATION MODEL

Private
fy\emory

ARM

TransmitBuffe~
Shared
Memory

Figure 4.6: Station content

62

PIFO is full, 0 is retumed to the station module together with an invalid code in the SOCP

response.

A write operation with operation code 1 is used to update the value of the target ring-mask

and station-mask. The data field of the SOCP request specifies the mask bits of the target

station. When the request is processed, the mask bits are copied into the targetMask register

that will be used in creating the packet header. The register maintains the last updated value of

the target station mask bits until the next write request with operation code 1.

Write operations with operation codes other than 1 are processed as data transmission re-

quests. The data field of the SOCP request con tains the data that will be sent to the station

specified in the targetMask register. When the request is received, the data included in the

SOCP request is placed on the data field of the packet, the targetMask register content is placed

in the target ringMask and target stationMask field and the sending station mask bits is stored

in the source ringMask and source stationMask field. A sequence number is incremented and

assigned to the seqNum field. Once prepared, the packet is placed in the StationOut PIFO. If

there is insufficient space in the station Out PIFO, the packet is dropped. The simulator will

output a waming message, but it is Station module's responsibility to check the station Out

PIFO status before performing a data write request.

CHAPTER 4. SIMULATION MODEL 63

4.2.4 Station

Each station model consists of an ARM processor with its own private processor memory,

a shared memory block to support multiple processors in each station, a transmit buffer for

staging outbound packets, and transmitter/receiver units for packet transmission to/from the

interconnect network.

The contents of each station in the system model are illustrated in Figure 4.6. The ARM

processor module simulates the execution of code and accesses of data in the attached private

memory module. If additional ARM processors are added to the station, they each have their

own private memory, but they may access common information stored in the separate shared

memory in the station through the access controller.

Communication to access the received data is performed through the SOCP interface on

the station receiver module. Embedded software must configure the receiver to process arrived

packet from the station-ring interface. When a processor wishes to send a message to another

station (whether on the same local ring or a different local ring), the message is staged in the

transmit buffer or in the shared memory. When the processor triggers the transmission, the

transmitter fetches the message into the transmit buffer if it is not already staged in the buffer.

In each clock cycle, a word is fetched from the transmit buffer and sent to the station-ring

interface.

4.2.5 Direct Memory Access Usage

Direct memory access is a mechanism for off-Ioading data transfer functionality from the pro­

cessor and having the device controller transfer data directly to or from memory without involv­

ing the processor [20]. The effect of DMA in the multiprocessor implementation described in

this thesis not only improves performance, but DMA can also be used to prevent the occurrence

of certain deadlock-related issue.

The transmitter and receiver modules are implemented using a modified form ofDMA. The

implementation of DMA described here differs from the conventional DMA implementations

CHAPTER 4. SIMULATION MODEL 64

for parallel computers. There are two differences. First, the DMA component in the transmitter

adds another layer of protection for data corruption. While DMA data transfer is in progress, no

new DMA transfer request will be accepted to prevent write-after-write type of data corruption.

Second, received data is copied directly to the memory location specified by the embedded

software. The use of a receive buffer is eliminated.

DMA allows sending data to another station by means of non-blocking writes. It is im­

portant to note, however, that non-bloc king writes can introduce inconsistency in data trans­

mission. When consecutive requests for transmission occur, the processor must make sure that

data has been transferred completely before it triggers the next send operation. If the processor

tries to send a second set of data before the first has completed, the first set of data will be

interrupted and will not be received completely at the receiving station. In the implementation

of the system model, the second request is rejected and a retum code is retumed to the proces­

sor. The embedded software must check the retum status of the transmission request and take

appropriate action.

DMA for the receiver in convention al message passing systems typically transfers the re­

ceived data into a buffer where they are queued until the target process performs a matching

receive. The data is copied into the address space of the receiving process only after the read

request is received. The approach taken here for the described architecture eliminates the use

of a receive buffer because the functionality is already provided by the receiving queue on the

station-ring interface. The embedded software must specify in advance the location to which

the received data should be stored. When data is fetched by the DMA mechanism, they are

stored directly to the specified location.

4.2.6 Transmitter Module

The transmitter and receiver modules are the bridge between the processor on the station and

the interconnect module. The functions of the transmitter module are outlined below.

• The transmitter module can query packet information from the shared memory module as

CHAPTER 4. SIMULATION MODEL 65

well as the out-going PIFO status on the station-ring interface. The information includes

packet header information and availability of FIFO space.

• The transmitter can also configure the station-ring interface for packet transmission based

on the transfer information fetched.

• Data that are to be transmitted can be copied from the shared memory module into the

transmit buffer.

• The transmitter can transmit data of specified size and prevents potential data corruptions

that are caused by consecutive transmit requests.

Transfer information is the information that is used to generate the packet header. In the

implementation, the transfer information contains the target ring mask, target station mask and

length of data to be transmitted. Registers are used to store information necessary for control

and monitor of data transmission. The register names and their functionalities are listed in

Table 4.2.

1 RegisterName 1 Description
SourceMask masking bits which correspond to the station itself
TargetMask masking bits which correspond to the target station(s)
MemAddr memory address of the beginning of data content that is to be transmitted
TxSize length of data (in number of 32-bit words) that will be transmitted
TxTrigger Write access to the register initiates DMA packet transmission
TxStatus Read access to the register retums status of transmission. busy = 0, idle = l

Table 4.2: Transmitter control and monitoring registers

A memory range in the shared memory block is reserved for the transfer info. The transfer

info is fetched first after detection of write access to the TxTrigger register. After the transfer

information is fetched, the target station mask and ring mask are combined to form the 8-bit

mask that is described in Section 3.1. The conversion is necessary due to the fact that the

processor writes one word at a time, and processing the bits on embedded software can lead

to inefficient use of processing cycles. Implementation in logic allows the operation to be

CHAPTER 4. SIMULATION MODEL 66

performed within one clock cycle, while it may take multiple cycles if the equivalent operation

is performed on the proceSSOf.

To provide more options to embedded programmers, the transmitter allows the embedded

software to specify a station through both bit masking or simply with a station number, i.e., a

station can either be represented by bit masking as "0010 1000" or simply as station number 8.

Representing a station with a station number relieves the programmer from having to know the

system architecture details and allow more systematic programming of parallel applications.

The transmitter is responsible for handling data transmission of different sizes through the

DMA mechanism. While the DMA transmits a large chunk of data, new requests for data

transmission cannot occur; this protection mechanism is implemented with a critical section in

the embedded software. Because memory used to store data can be overwritten by the processor

while data is being transmitted, a transmit buffer is used to store the data while transmission

is in progress. Access to the transmit buffer is also guarded by a critical section so that data

integrity is maintained.

Transmission process begins by setting a mutex "TRIGGERED" to indicate that transmis­

sion is in progress. AlI packet-related data are transmitted to the station-ring interface through

request on the SOCP communication channel interface. At the beginning of the DMA transmis­

sion, the information necessary to construct packets is transmitted. Then, in each clock cycle,

the transmit FIFO status is checked, and if the FIFO is not full, one word of data is sent to

the station-ring interface. The transmission process is temporary halted when there is no more

space in the transmit FIFO. The process of data transmission continues until it has transmitted

packets equal to the amount specified in the TxSize register. At the end of transmission, the

"TRIGGERED" mutex is released to allow more transfer requests. Note that transmit requests

can be issued at any time, but no operation will be performed as long as the TRIGGERED

mutex is asserted. It is up to the programmer to check the TxStatus register before initiating

any DMA transfer.

CHAPTER 4. SIMULATION MODEL

TX requested
TRIGGER == 1

Tx requested
TRIGGER ==0

Set TRIGGER = 1
Set TX_SIZE

Set TRANSMITTED = 0 Copy data trom TX_ADDR to TX butter

TRANSMITTED >= TX_SIZE
Set TRIGGER = 0

TRANSMITTED < TX_SIZE
Transmit 1 word to Station·
Ring I/F.
Increment TRANSMITTED

Figure 4.7: State diagram for the transmitter module

67

Figure 4.7 illustrates the state diagram for the logic implemented on the transmitter. Figure

4.11 later in this section con tains a ftow chart that illustrates the operation for data transmission

withDMA.

4.2.7 Receiver Modules

In message-passing parallel programs, data reception is achieved through an explicit caU to a

receive function in the embedded program. As opposed to its name, the receiver module does

not actually receive data from the interconnect network. Instead, the module acquires received

data from the stationIn FIFO on the interconnect module. The state diagram in Figure 4.8

illustrates how the receiver module operates, and Figure 4.12 later in this section contains the

ftow chart that illustrates the operation for data Reception with the DMA.

Similar to the transmitter, the receiver module has a set of registers that are used to store

information necessary for control and monitor of data transmission. The receiver registers and

their functionalities are listed in Table 4.3.

1 RegisterName 1 Description

MemAddr Memory address where the received data will be stored
RxSize Length of data (in number of 32-bit words) that will be received

Write access to the register initiates DMA data reception
RxStatus Read access to the register retums status of reception. busy = 0, idle = 1

Table 4.3: Receiver control and monitoring registers

CHAPTER 4. SIMULATION MODEL

Set DMA_ADDRESS
Set RX_S!ZE

Triggeuegister = 1

No response trom
Station·Ring !/F

Station·Ring !/F
returned with data

Figure 4.8: State diagram for the receiver module

68

When a receive operation is initiated by the embedded program, the software sends the

address of memory location in which the received data will be stored. Embedded programs

also must specify to the receiver the length in the number of words that it is expecting. The

DMA receive operation is initiated when a write access is detected at the RxSize register.

The MemAddr register must be specified before a write to RxSize to guarantee proper data

transmission. Reception of data is handled by a DMA module which periodically checks the

receive PIFO for newly-received packets. After being initiated, in each clock cycle, the DMA

sends a request with an operation code to the station-ring interface indicating that it wants to

receive data. The data field on the first PIFO slot is retumed as the response to the receiver

module. The receiver will process the retumed operation code. If the operation code indicates

that data is available, the data field in the SOCP response is copied to the memory location

previously specified. If the operation code indicates that the PIFO is empty, no action will

be taken in the receiver. The DMA component continues to fetch data from the station-ring

interface until it has fetched the specified amount of data, at which point RxStatus is cleared

to indicate the end of transmission. The embedded program must write to the RxSize register

each time it wants to receive data.

CHAPTER 4. SIMULATION MODEL

Private
Processor Memory

Memory
Access

TX B\j{fer

Figure 4.9: Station memory map

4.2.8 Memory Map and Access Controller

Transmilter
Registers

69

Modules in the station are categorized into mas ter and slave groups and are connected through

SOCP interfaces. Each slave device is assigned to an address range; access to the device can

then be made through the memory map. The access controller connects aIl the devices in

the station, and it is responsible for decoding memory accesses and forwarding requests and

responses to the corresponding device. Figure 4.9 illustrates the memory mapping of the com­

ponents in the station. The private processor memory can be accessed by the processor directly

without going through the access controller. Access to components inc1uding the transmitter,

receiver, shared memory, and the transmit buffer must go through the access controller.

The processor module is the he art of the station that coordinates other devices to perform

specified tasks. The processor is capable of communcicating to other components in the station

through memory access. A memory address decoder on the processor module allows the pro-

cessor to perform reads and writes to its internaI memory space. Based on the accessed memory

address, the address decoder looks up the address in the memory map file and performs neces­

sary operations. In case of access to other devices, the decoder sends access request through the

SOCP interface to the access controller, which forwards memory access to the corresponding

components in the station. The decoder is configured to allow other types of operations such

CHAPTER 4. SIMULATION MODEL

Rsp

ARM socp
Processor

Req

Access
Controller

s o ~=---P'

~IR;~~~

S ~=-P'
o
Cf----::::--tl\
P

Shared
Memory

Transmit
Bulfer

Transmitte

Receiver

Figure 4.10: Transactions-level communications between the components

as program termination.

70

Figure 4.10 illustrates how the devices are connected through SOCP interface. The proces-

sor module acts as the master device in communications between the processor and the access

controller. The task performed by the access controller is to forward the request from the pro-

cessor to the corresponding slave devices. In the process of forwarding requests, the access

controller becomes the master device for communications to the slave devices.

4.2.9 Partitioning of Software and Hardware

At one point in the design, a decision must be made regarding where to draw the line between

the software and hardware. In the described multiprocessor architecture, the boundary is 10-

cated at the station module. The operations necessary for controlling basic message passing

include transmission and reception of data through the interconnect network. The logical par­

tition for the DMA implementation described is to have the software performing operations

that set up the DMA mechanisms and allow the hardware to handle the actual data transmis­

sion. Figure 4.11 and Figure 4.12 illustrate how the software and hardware are partitioned for

CHAPTER 4. SIMULATION MODEL 71

transmiting and receiving data.

4.3 Embeded Software API

The application programming interface (API) is the bridge between the embedded software and

the hardware components. The API provides a layer of abstraction for the system to perform

low-Ieveloperations. Each operation in the API performs some specified task where the details

of the operation are hidden to the application software designers. The goal of API is to provide

ways for applications at a higher layer of abstraction to perform specified functions independent

of the hardware specific details. Because users do not need to understand the low-Ievel details,

programs can be made portable as long as the API functions are implemented properly for the

hardware.

The API package developed for the multiprocessor platform contains functions for sending

packets from a station and receiving packets at a station. The API function developed for basic

message passing are summarized in Table 4.4. The API implements the software portion of

the processes illustrated in Figure 4.11 and Figure 4.12. Note that the send operations provide

the software designer the flexibility of specifying the target station address in either decimal

notation or in bit-masking notation. The conversion from decimal to bit-mask is performed by

the transmitter logic.

1 Operation Il Type 1 Description

Send Normal Send one word of data to a specific station
Burst Send multiple words of data to a specific station

MSend Normal Send one word of data to multiple stations specified by
TargetMask

Burst Send multiple words of data to multiple stations specified by
TargetMask

Receive Configure Configure the DMA to receive number of words of data as
specified in the RxSize register and store results in MemAddr

Table 4.4: message passing API for the embedded software

CHAPTER 4. SIMULATION MODEL

1
Yes

!

Read Transmit
'Statu$

Transmit
Tnggè(ed?

Fetchmemory into
TXbuffer

Yes

'"
Ouery Transmit
Fifo l't'ltus J,om
Station'Ring I/F

FIFOFull?

No

Send tWord to
Station-Ring

interface

r-""""""""""""""

No

End

Software

Selup registers:
TargelMask
MemAddr

TxSize

'Ii.

TRIGGEREO=1
TRANSMITTED .. 0

Hardware

Figure 4.11: Software and hardware partitioning in transmitter

72

CHAPTER 4. SIMULATION MODEL

1 ..
Raad Receiver

Slatus

1
No

1

RECEIVED=O

AECEIVEO<
Rx$lze?

Yes
'if

<;ilqery Reqeive
FlfoSlatùs Irom
Station-Ring tiF

FtFO Empty?

No

" ~M6ve Dàta in the
(e~P9nse to.MemAddr
·Jncrememt RECEIVED

!

Software

Yas

Hardware

NO

End

Figure 4.12: Software and hardware partitioning in receiver

73

CHAPTER 4. SIMULATION MODEL 74

A

A

c c

(a) (b) (c)

Figure 4.13: Program synchronization

4.4 Simulation Environment

Parallel programs written for the system can be compiled and executed on the SystemC model

simulator. Program code written for the system must first be compiled with the cross-compiler

to produce the binary file that uses the ARM processor instruction set. The simulator loads the

binary file into the ISS simulator in the ARM processor SystemC module and begins program

execution. All stations in the model execute the same program code, but use branch instructions

to direct pro gram flow on different stations to execute different sections of the pro gram.

The programs running on the described platform require special attention in handling pro­

gram termination. Because aU processors execute one instance of the same program locally,

synchronization is required to maintain of the program states. Program synchronization on

message passing systems is performed through send-receive pairs. Each word sent in one

station is matched with a receive operation in the target station. Station-to-station synchroniza­

tion can be achieved with blocking reads on the receiving station where the receiver blocks

while waiting for an expected message. Blocking reads can be implemented by looping the

CHAPTER 4. SIMULATION MODEL 75

instructions that check the receive status register. The loop terminates when the status register

indicates aU data have been received. Similarly, system-wide synchronization can be achieved

through the use of broadcast messages coupled with blocking reads that receive one message

from each station. The process is illustrated in Figure 4.13.

Figure 4.13(a) shows the desired behavior: Station1 sends a message at A, Station2 re­

ceives the message from Station 1 and sends the processed message at point C back to Station 1.

Figure 4. 13(b) shows a possible scenario which may occur and cause problem. As each station

run independent of another, Station2 may reach point C before Station1 reaches Point A, then

Stationl will get erroneous data at point D. To prevent the above-mentioned behavior, the two

stations must synchronize in order to ensure that the data is sent at the right time and under

the right conditions [31]. Figure 4.13(c) shows how synchronization can be achieved through

send-receive pairs. A blocking read is placed on station2, the blocking read operation will

force station2 to wait for the message from station 1 , and then the right response from station2

will be received at station1.

The ARM processor SystemC module from stepNP was designed to run in single-processor

simulation environment. When the program terminates, it is assumed that the simulator can be

terminated. In the multiprocessor simulation platform, not aIl instances of the programs ter­

minate at the same time. Termination of an instance of the pro gram can confuse the processor

module because it indicates to the ISS emulator that the pro gram has completed. ISS emulator

would terminates when an instance of the program terminate while there are still instances of

the programs that continue to require the ISS emulator.

To handle the above-mentioned issue, the embedded software is required to signal the sta­

tion module for program termination by writing to a reserved register, and then keeping the

program in a while loop. A static variable in the station class is used to keep track of the

number of stations that have terminated their programs, and the simulator terminates when aH

stations have written to the register.

Chapter 5

Results

This chapter describes the details of a parallel program running in the simulation platform. Em­

bedded software are designed to demonstrate proper operation of the system, which includes

the interconnect network, station cores, and the software API. The model is also used to eval­

uate design parameters for the design. Three synthetic testbenches were developed to simulate

applications with different traffic characteristics. Then, design space exploration is performed

on sorne of the design parameters for the system. The synthetic testbenches as well as one

of the parallel programs developed are used as the reference applications for the design space

exploration. Finally, analysis of testbenches and simulation results which contribute to finding

optimal design parameters are also presented.

5.1 Parallel Programs

The general concept of parallel processing is to divide a large task into smaller and more man­

ageable sub-tasks. The sub-tasks can then be executed simultaneously across multiple proces­

sors to give higher processing throughput. In the ideal case, a parallelized pro gram would take

less time to execute until completion than the same program running on a single processor. In

reality, there are communication overheads that are associated with parallel processing, and

may result in negligible performance improvements or even worse performance depending on

76

CRAPTER 5. RESULTS 77

Row 0
I-+-++-+-+-+--+--

Row 0
I-+-++-

10 10

I-+-++-'
" "
12 12

13 13

14 14

15 15

Processor 0 1 2 3 4 5 6 7 8 9 o 1 2 3 4 5 Processor 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

Iteration 1 Iteration 2

Figure 5.1: Transpose algorithm

the type of the application.

The process of partitioning an application into sub-tasks for parallei execution is generally

non-trivial. Normally, parallel programs would minimize the amount of communication and

have most of the processor cycles processing the sub-tasks that were assigned to them.

5.1.1 Matrix Transpose

The parallei application discussed in this section performs matrix transposition using the al-

gorithm presented in [32]. The algorithm is a representative application which can be used to

stress the functional accuracy of the interconnect network with above-average inter-processor

communication. In the algorithm, each processor ho Ids one column of the matrix. At each

iteration of the algorithm, the matrix is divided into four sub-blocks where the lower left block

in the matrix is then swapped with the upper right block. A synchronization point is placed at

the end of each iteration to make sure that aIl processors have successfully updated their re-

spective columns. Each of the sub-blocks is then processed in the next iteration. The algorithm

continues until each sub-block can no longer be sub-divided (i.e., each is a 1 x 1 matrix). The

process is illustrated in Figure 5.1. Because the system that is modeled in this thesis has up

to 16 processors, the original algorithm [32] has been modified to make each processor handle

CHAPTER 5. RESULTS 78

multiple columns when the matrix size is greater than 16 x 16.

The matrix transpose program has aboye-average communication overhead because the

main function of the program on each processor is to swap data with aIl other processors.

The amount of data exchanged in each iteration for a station amounts to half of the data the

station is holding. Therefore, the communication overhead can be significant for a large matrix.

The pro gram is especiaIly useful during development of the ring interconnect. In the algorithm,

each station will exchange data to each of the remaining stations for at least once so aIl possible

communication links can be tested. The correctness of the result can be easily observed by

simply verifying that the initial row data appears in each column of the resulting matrix. The

traffic characteristic of the program can also be manipulated by varying the maximum size of

data that each station will transfer at each send operation.

The transpose paraIlel program execution can be divided into three distinct phases: the

initialization phase, the communication phase, and the computation phase. In the initialization

phase, the aIlocated memory space is initialized to default values. The initial values of the

matrix are also generated in the initialization phase. In the communication phase, data is

swapped between the stations. Data to be transmitted is prepared in a buffer and transmitted to

the destination station. Data received from the other station is also processed, and it replaces

the corresponding location in the column of the matrix held by the station. Because each station

may be responsible for multiple columns of the matrix, in the computation phase, each station

performs transpose operations within the local memory and does not need to communicate

through the interconnection network.

5.2 Design Space Exploration

The system model that is implemented in SystemC is used to assist in finding optimal design

parameters for the on-chip ring interconnect. Because design specifications cannot be modi­

fied after production of the SoC design, the system must be optimized in early stages of the

CHAPTER 5. RESULTS 79

design. The system model provides an inexpensive alternative to evaluate the impact on perfor­

mance for different design parameters. Design parameters that are explored for the two-Ievel

hierarchical ring design are: maximum burst length recommended for the embedded program,

maximum memory access time for moving received packet contents into memory, FIFO depth

for PIFOs in the interconnect network, and relative operating frequencies for the rings in the

system. The importance of each design parameters is discussed in more detail in later sections.

The design parameters are most relevant in applications with high communication-to-computation

ratio, where the program is composed primarily of communication components. Applications

with high computation-to-communication ratio do not utilize the interconnect network enough

to have significant impact to the overall performance. Because the communication overhead

is considered negligible in computation-intensive applications, it is not the primary focus for

optimization in those applications. The following subsections de scribe the testbenches used in

simulations, and they also present simulation results and analysis of the findings.

5.2.1 Testbenches

Three synthetic testbenches were implemented to assist in the selection of optimal design pa­

rameters. Each testbench transmits a specified amount of data with a configurable maximum

burst length for each transmission. The testbenches are named SyntheticHigh, SyntheticMid

and SyntheticLow. Each testbench has different communication characteristics. In the Syn­

theticLow testbench, each station transmits a stream of data to a corresponding station in the

farthest ring. In the SyntheticMid testbench, each station multicasts the stream of data to aU

stations in the farthest ring. The SyntheticHigh testbench broadcast the stream of data to aU

stations in the system. An three testbenches must receive complete data before termination

of the program. The total execution time is measured at the end of the testbench when the

program terminates.

The purpose of the SyntheticLow testbench is to simulate communication characteristics

of one-to-one communication between the stations. The testbench stresses the communication

CHAPTER 5. RESULTS 80

network by having all stations communicating to one other station in the system. The Syn­

theticMid testbench places more emphasis on local-ring utilization, but the amount of global

traffic on the central ring remains the same as the SyntheticLow testbench. In the SyntheticMid

testbench, the number of inter-ring packets remains the same as the SyntheticLow testbench,

but each packet is duplicated at the local-ring level and multicast to aIl stations in the ring. The

SyntheticHigh testbench provides more stress from the amount of traffic by duplicating each

packet in the inter-ring level to broadcast to aIl local rings. Each packet is duplicated again in

each local ring so a copy is received by each station. The testbenches are configured to run at

100 MHz clock frequency and transfer 400 words of data from each station. Unless specified

otherwise, the PIFO depths are configured to be 16 packets for aIl PIFOs in the system. AlI

rings runs at the same operating frequency, and memory access latency of 1 clock cycles.

5.2.2 Data Burst Length

The burst length is the number of words a station would transmit at one time with each DMA

send operation. Because there are configuration overheads associated with setting up the DMA

hardware, embedded programs must select a reasonable data burst length where the configura­

tion overheads are not excessive. To send a fixed amount of data across the network, a larger

burst length would have lower configuration overhead because the embedded program does

not need to configure the DMA component as frequently. The larger burst length, however,

compresses the communication portion of the embedded software so that the instantaneous

traffic level is large, which can potentially cause more backpressure in the network and reduce

communication performance. The configuration overhead and the higher congestion level are

two opposing forces which affect the overall execution time of the embedded software. The

designer's goal is then to determine the burst length that best fits the application. Because each

transmit operation is matched with a receive operation in message passing systems, data burst

length also affects the size of memory which must be allocated to stage data for transmission

or to store the received data. Selecting a large burst length would mean that a large amount of

CHAPTER 5. RESULTS

12 16 20 24 28
-5

~
~
C -10~--~~--------------------------------~

o
(3 -15
:::J

& -20 t-------m--------------------------------------{ --+- High

CI> ---Mid
E -25 --Low
F
c o -30~----------~~~~~------------------~

:;:::;
:::J
~ -35t---­

X
W

-40 i-------------------------···

-45 J_ __ ... _._ _ .. .

Data Burst Length

Figure 5.2: Burst length Vs. Execution time (Memory Access Latency = 1 cycles)

memory is reserved unnecessarily.

81

Figure 5.2 illustrates the effect of different data burst length for the three different test-

benches. It can be observed that increasing the burst length can have a large impact on the

execution time for a small burst length, then the reduction diminishes as the length is increased.

For the three testbenches, incremental execution reduction becomes smalt for burst sizes larger

than 16. Further increases in burst length have negligible effect in performance, but introduce

higher memory requirements for staging the data for transmission and for storing the received

data. The effect of data burst length is investigated further in Section 5.3 with the matrix

transpose pro gram which represents a more realistic testbench.

5.2.3 Memory Access Latency

When the DMA mechanism on the station module attempts to move a received packet from

the receive PIFO at the station-ring interface, depending on the type of memory component

or control logic used, the process may take one or more clock cycles. System performance

can vary depending on the memory access time. To ensure good performance, the access time

CHAPTER 5. RESULTS 82

-- l

l'::t-_~=_-~:_--1~:~_8_-__ -_--1-2---1-6---2-0-_24 - ===-
m i

~ -20 - -- ---=--1 r:~ii~h1
°25 -- l:;J
:;
u
~ -30 ----~:___"~----------- ----- ----

w !

:::1-'---________________________ _
Data Burst Length

Figure 5.3: Burst length vs. Execution time (Memory Access Latency = 2 cycles)

constraint must be placed in selecting or implementing the memory and memory controller

modules. The goal of selecting suitable components such as memory is to reduce the design

cost: high performance components may be expensive to obtain or require more complex con-

trol logic which requires more space on silicon. A less expensive component can be used as

long as it can meet the timing constraints.

To study the effects of memory access time on communication performance, more simula-

tions have been performed with varying burst length for the memory access latencies for the

three synthetic testbenches. Results are shown in Figure 5.3 and Figure 5.4. The results indi-

cate that similar behavior is obtained for different memory access latencies. The improvement

in execution time diminishes at a burst length of 16 words. The results are summarized in Fig-

ure 5.5 to allow a more detailed evaluation of the impact of different memory access latency.

It can be observed that the execution times of the three synthetic testbench are not affected for

memory access latency less than or equal to 2 clock cycles, and the incremental increases in

execution time grows linearly with the access latency. Programs with higher network utiliza-

tion are more sensitive to increase in memory access latency. The increase in communication

time is caused by the station not being able to absorb the received packets fast enough. As a

CHAPTER 5. RESULTS

28
-5

-10

;]"
~
Q) -15

E
i= -+- High

C -20 -1-------\-\'''------------------------' ---fi-- Mid
0 --o.---Law
+"
::J

-25 ()
Q)
x

LU
-30

-35

-40

Data Burst Length

Figure 5.4: Burst length vs. Execution time (Memory Access Latency = 3 cycles)

. :+----1

E

___________ ~_~L--/-I
~ 40-l----------------~-----~
c
o
:;

~ I--Mid

~ 30 -I--~--~- .. - -.~-- ~-------____c,?__------~~ ç H~19h

: 20 t---------------,"--- ~--"""--~ l_-+- Law
gj
Q)

o 10+--------~----­
C

cf!.

4 5

Memory Access Time (Clock Cycles)

Figure 5.5: Memory access latency vs. Execution time (Burst length = 16 words)

83

CHAPTER 5. RESULTS 84

Access Time Execution Time percent increase
(clockcycles) (ns) (%)

1 729810 0
2 729450 -0.05
3 740610 1.48
4 743130 1.83
5 740970 1.53
6 776070 6.34
7 768150 5.25

Table 5.1: Effect of memory access time on communication performance

result, number of packets in the receive FIFO grows faster for systems with higher memory

access time, which causes more backpressure that propagates throughout the network.

In addition to the synthetic testbenches, simulations have been performed with the matrix

transpose program described in Section 5.1.1. Table 5.1 shows the how memory access time

can affect communications in the matrix transpose program. Because we are interested only

in the communication portion of the program, the processing parts of the program (i.e., the

local transpose operations) are removed to evaluate only the execution time for the actual inter-

station communication.

The result for matrix transpose agrees with the results obtained with the synthetic test­

benches. Memory acceSS latency less or equal to 2 clock cycles has no effect to the execution

time. It is then sufficient to say that the only limitation for memory and controller implemen-

tation is to ensure that a memory acceSS can be completed within 2 clock cycles. It should be

noted that the clock cycle time is measured based on the local ring operating frequency, where

the station IP core may be running at a slower frequency.

5.2.4 FIFO Depth

The depth of FIFOs located on the switches can affect both performance and design area of the

system. Design consideration must be made in selecting a FIFO depth that provides good per-

formance at reasonable design area requirement. Table 5.2 summarizes the effect of the FIFO

CHAPTER 5. RESULTS 85

PIFODepth Execution Time (ns)
(words) High Mid Low Trans

12 644670 466860 412530 740610
16 646290 463500 414420 740970
20 647760 469170 413790 741150
24 647610 466860 409860 740970
28 647550 462180 411690 740970
32 645450 467280 405240 746370
36 645510 472690 410910 746190
40 644670 442290 407760 746190
44 645660 442290 406290 746190
48 645240 442290 406290 746190

High Mid Low Trans
Max 647760 496860 414420 746370
Min 644670 442290 405240 740610

% difference 0.47 6.87 2.27 0.78

Table 5.2: Effect ofFIFO depth on performance

depth on the communication performance for the synthetic testbenches, as weIl as the matrix

transpose program. The performance improvement achieved through increasing PIFO depth

is limited for most of the testbenches, while only the SyntheticMid testbench shows a sizable

reduction in execution time. Nevertheless, it is still not a good trade-off considering the amount

of extra design space required to implement the FIFOs. The simulation results have indicated

that the PIFO depth does not have a significant impact on communication performance in the

two-Ievel hierarchical ring network. This phenomenon can be explained by noting that a small

PIFO size causes more backpressure to be triggered when the network is congested, whereas

an increase in FIFO size reduces the number of backpressure occurrences, although it takes

longer to recover for those. These two opposing forces for the hierarchical ring are observed

to be equal in strength for the applications tested, and results in relatively little variation in

performance with different PIFO depths, Based on the simulation results, it is helieved that the

FIFO size should he kept relatively small in order to reduce the design area while maintaining

satisfactory performance.

CHAPTER 5. RESULTS 86

5.3 Collaborative Work on Power Optimization

In addition to the individual efforts undertaken for this thesis, a collaborative project on SoC

power optimization is also currently under development. A power modeling framework devel­

oped at McGill University by Stephan Bourduas has been integrated with the multiprocessor

system model described in Chapter 4. The project adds capability for the model to monitor

the simulated energy usage of the interconnect network for the execution of a particular appli­

cation program. The power model is not intended to provide exact power estimation, but the

results obtained by the estimation should be in the same order of magnitude as expected from

the physical device. The point of the power modeling is to provide an estimation of relative

energy usage on a device with different design parameters.

The matrix transpose program was used to obtain the execution time and the power esti­

mation of the interconnect network for transpose of a 128x128 matrix. The first part of the

simulation experiment finds the optimal burst length for best performance. The second part of

test finds the best configuration for the clocking scheme to provide optimal power characteris­

tics for the architecture.

The results of simulations performed with different data burst lengths for a 128x128 matrix

transpose are shown in Table 5.3. It can be observed that short data burst lengths have longer

execution times. The execution time decreases until a burst length of 16 words, then execution

the time starts to increase. The higher execution time at a lower burst length results from

the fact that a station must configure the transmitter and the receiver. The overhead for data

transmission becomes dominant if a station needs to configure the transmitter and receiver for

each word it transmits. Higher burst lengths also increase execution time from congestion

caused by higher utilization of the interconnect network. For burst transfer of data, one packet

can be transmitted at each clock cycle. Hence, network utilization increases with the data

burst length. Congestion results from higher network utilization and may cause flow-control

to be activated more often and cause the execution time to increase. Flow-control stops the

transmission ofnew packet when the receive FIFO for a station is nearing its capacity. Stations

CHAPTER 5. RESULTS 87

Burst Length Execution Time
(words) (ms)

1 20.72
2 15.17
4 12.49
8 11.26
16 10.96
32 11.31
64 12.60

Table 5.3: Interconnect performance for different burst lengths (l28x128 matrix transpose

in the same ring are prevented from sending new packets to the network even when the upward

path is not blocked.

Frequencies of the ring c10cks can be varied to optimize the power requirement of the in-

terconnection network. In arder to compare the system performance for different interconnect

speeds, the following two parameters were evaluated .

• The local divisor is the factor by which the local rings are slowed down compared to the

global c1ock.

• The central divisor is the factor by which the central ring is slowed down compared to

the global c1ock.

For example, a local divisor of 2 would indicate that the local rings are running at a c10ck

speed which is half of the global c10ck frequency. Simulations were performed with burst a

size of 16, which was previously established to give the best performance. The results of sim-

ulations with varying ring speeds are listed in Table 5.4 for matrix transpose with a 128x128

problem size. It can be observed that the ring speeds have less impact on the execution time,

but can achieve substantial power savings with slower operating frequencies. The overall exe-

cution time can be longer because the latency increases with lower ring operating frequencies.

The execution time, however, is not affected significantly by the ring operating frequencies

due to the fact that the interconnect network is still able to transmit data with good through-

put. Because the interconnect network can hold multiple packets, a pipelining effect can be

CHAPTER 5. RESULTS 88

Local Central Exec Time Power
Divisor Divisor (ms) (mW)

1 1 10.96 42.68
2 1 10.97 23.57
2 2 11.05 21.47
2 3 11.13 20.80
2 4 11.15 20.44
3 1 10.99 17.21
3 2 11.06 15.09
3 3 11.17 14.39
3 4 11.15 14.07
4 1 11.04 14.03
4 2 11.10 11.91
4 3 11.19 11.21
4 4 Il.29 10.86
5 1 11.07 12.12
5 2 11.12 10.00
5 3 11.20 9.29
5 4 II.25 8.95

Table 5.4: Effect of varying ring speeds for burst size of 16 words

observed. In the simple st case, if there is only one station sending packets to another station

in the network, the station can still send one packet per clock cycle even when the network is

operating at lower frequency. Similarly, the receiving station can receive one packet per clock

cycle. The performance impact of lowering the central ring frequency can be observed to be

more significant than lowering the local ring frequency. The result can be explained by the fact

that the central ring is the throughput bottleneck because it is responsible for aU of the global

traffic from the four local rings. In terms of power saving, we can observe a large reduction

in power usage by simply slowing down the local rings. The reduction in power usage cornes

from savings in dynamic power from lower operating frequency. The power savings from re­

ducing the local ring operating frequency diminishes with a higher local divisor because the

static power portion becomes dominant. From results listed in Table 5.4, we believe that a local

divisor of 2 and a central divisor of 1 is the optimal clocking scheme for the hierarchical-ring

multiprocessor.

Chapter 6

Conclusions and Future Work

6.1 Conclusions

This thesis has discussed the process of modeling and evaluating a multiprocessor system tar­

geted for chip-level implementation, with an emphasis on the interconnection network. The

interconnect architecture that is studied in this thesis is based on the hierarchical ring network

that was implemented in the NUMAchine multiprocessor platform. This choice is based on

advantages of the original ring network such as the simplicity and modularity that would also

be beneficial for chip-Ievel implementation. To study the chip-Ievel adaptation of a ring-based

hierarchy, a model of the architecture has been implemented in the SystemC modeling lan­

guage. Simulation experiments have been conducted to verify proper system behavior, as weIl

as perform design space exploration to study the effects of some design parameters.

Requirements for successful SoC development are identified as follows:

• Short development time: IP reuse reduces the design and verification complexity, and

allows SoC to be developed within short time frame. Modular components together with

standard interfaces can also assist in reducing the time required for development of Soc.

• Lower cost: Integration of system components into a single chip reduces the packaging

cost. However, the size of design can have large impact to the production cost. Large

89

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 90

designs have higher silicon area requirement, as weIl, production yield reduces as the

design area increases.

• Low power: SoC is common in embedded applications which have strict power require­

ment.

The proposed system is designed to fulfill the stated requirements. Here is a summary of

the development:

• A simpler memory structure was implemented to lower the expected silicon area require­

ment for the interconnect network and the buffer size in the stations. The distributed

memory structure implemented in the design uses message passing communication and

relay on minimal hardware support. Memory management tasks are moved to the soft­

ware level in order to reduce the controllogic complexity.

• The potential of deadlocks are reconsidered to reflect changes in the communication

characteristic introduced by modification to the memory structure. An improved direct

memory access hardware implemented with the software API is used to enhance per­

formance of communications between the stations as weIl as removing the potential for

network deadlocks introduced in software-level.

• A software model was developed to verify the functional correctness of the proposed

design. The model was implemented in SystemC for its flexible refinement design ap­

proach. When the technology becomes available, the modeled system can eventually be

synthesized into gate-Ievel net list and fabricated on silicon. Following the SoC design

methodology, the software model is partitioned into two modular components so maxi­

mum IP reuse can be achieved to reduce the development time. The implemented model

consists of approximately 4000 lines of C++ code (excluding components provided by

the StepNP library).

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 91

• An estimate of the silicon area required to implement the interconnect network on chip is

performed. The interconnect network component is composed of switches which inc1ude

the inter-ring interface and the local-ring interface together with connection wires. The

switch is implemented in Verilog and synthesized with Synopsis design compiler. The

synthesis tool estimated the area of each interface to be O.225mm2 which gives total

design area of 4.5mm2 using TSMC O.18j.l technology library.

• Design parameters which can affect the design size and performance are identified. Be­

cause communication overheads are considered negligible for computation intensive ap­

plications, testbench of different traffic characteristics are developed. Design space ex­

plorations are performed for various design parameters and the optimal settings are de­

termined based on the simulation results.

6.2 Future Work

Improvement for higher performance can be achieved by additional computational units in the

system. The multiprocessor station core developed for the proposed system can add process­

ing throughputs for parallelizable applications. CUITent station core is designed with one ARM

processor but allow more processors to be added. Inter-processor communication can be per­

formed through mutex locks and variables located in the shared memory within each station.

For the proposed system, packet corruptions affect not only the data transmitted, corruptions

to the packet header can result to packets being transmitted to invalid destination. In such case,

the packet will need to be retransmitted. Because the design approach of the proposed system

places emphasis on minimal hardware and simple control logic, the retransmission protocol

should be implemented in software.

Bibliography

[1] International technology roadmap for semiconductors, 2001 edition. Avaliable at ht tp:

/ /publ ie . i trs . net.

[2] Eric Y. Chou and Bing Sheu. System-on-a-chip design for modem communications.

Circuits and Deviees, pages 12-17, November 2001.

[3] SystemC Version 2.0 User's Guide - Updatefor SystemC 2.0.1. Available at http:

//www.systeme.org.

[4] K. Loveless. The implementation of flexible interconnect in the NUMAchine multipro­

cessor. Master's thesis, Dept. of Electrical and Computer Engineering, University of

Toronto, 1996.

[5] R. Grindley et al. The NUMAchine multiprocessor. In Proc. 29th Int'l Conf on ParaUel

Processing, pages 487-496, Toronto, Ontario, August 2000.

[6] Functional specificationfor SystemC 2.0. Available at http://www . systeme. org.

[7] The important of sockets in soc design. available at www . oepip . org.

[8] W.J. Dally and B. Towles. Route packets, not wires: On-chip interconnection networks.

In Proceedings of the Design Automation Conference, 2001.

[9] L. Benini and G. De Micheli. Networks on chips: a new soc paradigm. IEEE Computer,

35, January 2002.

92

BIBLIOGRAPHY 93

[10] Vijay Raghunathan, Mani B. Srivastava, and Rajesh K. Gupta. A survey of techniques

for energy efficient on-chip communication. In Proceedings of the 40th conference on

Design automation, pages 900-905. ACM Press, 2003.

[11] Dongho Yoo and Inbum Jung. Multistage ring network: A new multiple ring network for

large scale multiprocessors. In International Workshops on Paralle! Processing, pages

290-294, Japan, September 1999.

[12] Cesar A. Zeferino, Marcio E. Kreutz, Luigi Carro, and A. Susin. A study on communi­

cation issues for systems-on-chip. In Proceedings of the 15 th Symposium on Integrated

Circuits and Systems Design (SBCCI 02),2002.

[13] Luca Benini Terry Tao Ye and Giovanni De Micheli. Packetization and routing analysis

of on-chip multiprocessor networks. Journal of Systems Architecture, 50, 2004.

[14] L. Benini and G. De Micheli. Powering network on chips. In Proceedings of the 14th

International Symposium on System Synthesis, pages 33-38, 2001.

[15] A Brinkmann, J-C Niemann, l Hehemann, D Langen, M Porrmann, and U Ruckert. On­

chip interconnects for next generation system-on-chips. In ASIC/SOC Conference, pages

211-215,2002.

[16] Andr Ivanov Partha Pratim Pande, Cristian Grecu* and Res Saleh. Switch-based inter­

connect architecture for future systems on chip. In Proceedings of SPIE, VLSI Circuits

and Systems, pages 228-237, 2003.

[17] S. Dey F. Karim, A. Nguyen and R. Rao. On-chip communication architecture for oc-

768 network processors. In Proceedings of the Design Automation Conference, pages

678-683,2001.

[18] James F. Kurose and Keith W. Ross. Computer Networking, A top-Down Approach Fea­

tu ring the Internet. Addison-Wesley, 2003.

BIBLIOGRAPHY 94

[19] Jamaloddin Golestani Mark Karol and David Lee. Prevention of deadlocks and livelocks

in lossless backpressured packet networks. In Transactions on Networking, volume 11,

December 2003.

[20] David E. Culler and Jaswinder Pal Singh. ParaUel Computer Architecture. Morgan Kauf­

mann Publishers, Inc., 1999.

[21] Klaus D. Gunther. Prevention of deadlocks in packet-switched data transport systems.

IEEE Transactions on Communications, 29(4):512-524, April 1981.

[22] Sy-Ye Kuo Shih-Chang Wang, Hung-Yau Lin and Yennun Huang. A simple and efficient

deadlock recovery shceme for wormhole routed 2-dimentional meshes. In Procedings

of Pacific rim International Symposium on Dependable Computing, pages 210-217, De­

cember 1999.

[23] Pieere G. Paulin, Chuck Pilkington, Essaid Bensoudance, Michel Langevin, and Damien

Lyonnard. Application of a multi-processor soc platform to high-speed packet forward­

ing. In Procedings of Design, Automation and Test in europe Conference and Exhibition

Designers' Forum, 2004.

[24] Drew Wingard. Micronetwork-based integration sof socs. DAC, June 2001.

[25] T. Theis. The future of interconnection technology. IBM Journal of Research and Devel­

opment, 44(3):379-390, May 2000.

[26] SystemC 2.0.1 Language Reference Manual, a hardware/software approach. Available at

http://www . systeme. org.

[27] P. Paulin, C. Pilkington, and E. Bensoudane. StepNP: A system-Ievel exploration plat­

form for network processors. IEEE Design and Test of Computers, 19(6): 17-26, Novem­

berlDecember 2002.

BIBLIOGRAPHY 95

[28] SystemC Version 2.0.1 Master/Slave Communication Library. Available at h t tp : / /

www. systeme. org.

[29] OCP-IP. Open Core Protocol Specification. available at www. oepip. org.

[30] Wander O.Cesario, Damien Lyonnard, Gabriela Nicolescu, Yanick Paviot, Sungjoo Yoo,

Lovic Gauthier, and Mario Diaz-Nava. Multiprocessor soc platforms: A component­

based design aproach. IEEE Design & Test of Computers, pages 52-63, 2002.

[31] Jane w.s. Liu. Real-time systems. Prentice Hall, 2000.

[32] Ian Foster. Matrix transposition. http://www-unix.mes.anl.gov/dbpp/

text /node12 6 . html.

