
Computing the Local Minimizers of a
Large and Sparse Trust-Region

Subproblem

Charles Fortin

Department of Mathematics and Statistics,

McGill University, Montréal

Québec, Canada

October, 2004

A thesis submitted to McGill University in partial

fulfillment of the requirements of the degree of

Doctor of Philosophy

Copyright © Charles Fortin, 2004

1+1 Library and
Archives Canada

Bibliothèque et
Archives Canada

Published Heritage
Branch

Direction du
Patrimoine de l'édition

395 Wellington Street
Ottawa ON K1A ON4
Canada

395, rue Wellington
Ottawa ON K1A ON4
Canada

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell th es es
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

ln compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

• ••
Canada

AVIS:

Your file Votre référence
ISBN: 0-494-12841-0
Our file Notre référence
ISBN: 0-494-12841-0

L'auteur a accordé une licence non exclusive
permettant à la Bibliothèque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par l'Internet, prêter,
distribuer et vendre des thèses partout dans
le monde, à des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protège cette thèse.
Ni la thèse ni des extraits substantiels de
celle-ci ne doivent être imprimés ou autrement
reproduits sans son autorisation.

Conformément à la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thèse.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

1

Abstract

We present new algorithms for computing local minimizers of the trust-region sub­

problem (TRS). This problem consists in minimizing a quadratic function subject to

a ball constraint. In particular, this problem appears as a subproblem in trust-region

methods for constrained and unconstrained optimization. First, by modeling the

TRS with a new semidefinite program, different than the standard semidefinite relax­

ation, we der ive an algorithm, similar in structure to the Rendl-Wolkowicz Aigorithm,

which implicitly solves the semidefinite program by maximizing a single variable con­

cave function over a closed interval. Second, we extend the theory needed for this

algorithm and the Rendl-Wolkowicz Aigorithm to derive two algorithms for comput­

ing a local-nonglobal minimizer of the TRS. These algorithms are based upon finding

a root of a single variable convex function with the secant method. In all our algo­

rithms, we compute at most the two smallest eigenvalues of a parameterized matrix.

This can be do ne using an ARPACK subroutine which only requires matrix-vector

multiplications. Renee, we are able to exploit the possible sparsity of the Ressian

matrix of the quadratic objective, making the algorithms suitable for large problems.

Computationally, the algorithms for finding a local-nonglobal minimizer are more

competitive than the previous approach based on computing a matrix factorization

at each iteration.

11 Abstract

iii

Résumé

Nous présentons de nouveaux algorithmes pour calculer les minimiseurs locaux d'un

sous-problème de région de confiance (SRC). Ce problème consiste à minimiser une

fonction quadratique à l'intérieur d'une boule. En particulier, ce problème est un

sous-problème pour les méthodes de région de confiance en optimisation avec et sans

contraintes. Premièrement, en modélisant le SRC par le biais d'un nouveau pro­

gramme semi-defini, différent de la relaxation semi-definie usuelle, nous proposons

un algorithme, similaire en structure à l'algorithme de Rendl-Wolkowicz, qui résout

implicitement le programme semi-defini en maximisant une fonction concave d'une

variable sur un intervalle fermé. Deuxièmement, nous élargissons la théorie nécessaire

à cet algorithme et l'algorithme de Rendl-Wolkowicz pour proposer deux algorithmes

visant à calculer un minimiseur local non-global du SRC. Ces algorithmes trouvent

une racine d'une fonction convexe d'une variable par la méthode de la sécante. Dans

tous nos algorithmes, nous calculons au plus les deux plus petites valeurs propres d'une

matrice parametrée. Ceci peut être calculé grâce à une sous-routine d'ARPACK qui

ne nécessite que des produits matrice-vecteur. Donc, nous sommes capable de prof­

iter de la faible densité potentielle de la matrice hessienne de la fonction objective

quadratique, rendant les algorithmes aptes à résoudre des problèmes de grande di­

mension. Pour les calculs sur ordinateur, les algorithmes permettant de trouver le

minimiseur local non-global sont plus performants que l'approche précédente utilisant

une factorisation matricielle à chaque iteration.

IV Résumé

v

Acknowledgments

J'aimerais remercier toutes les personnes, ami(e)s et famille, qui ont cru en moi et

cette thèse et qui ont su m'épauler et m'encourager. Merci à mon superviseur Jean­

Louis Coffin et à Henry Wolkowicz pour avoir stimulé ma réflexion. Enfin, merci au

Fond de recherche sur la nature et technologies du Québec, à l'Institut des sciences

mathématiques et à Jean-Louis Coffin pour leurs aides financières.

vi Acknowledgments

Table of Contents

Abstract

Résumé

Acknowledgments

Introduction

0.1 Notation

1 Literature Review

1.1 Global Minimizers

1.2 Local-Nonglobal Minimizer .

2 Global Minimizers

2.1 Optimality Conditions and Assumptions

2.2 Reformulating TRS Using Maximal Ellipsoids

2.3 Eigenvalue Functions

2.4 Constructing an Optimal Solution .

2.4.1 Solving TRS=

2.4.2 Solving TRS .

2.5 Handling the Hard Case

2.5.1 Stepping to the boundary

vii

i

iii

v

1

5

7

7

11

13

13

16

19

29

29

34

36

36

Vlll TABLE OF CONTENTS

2.5.2 Shifting the eigenvalues of A

2.6 Further Implementation Issues and the Algorithm

2.6.1 Choosing ~

2.6.2 Initializing the Bounds

2.6.3 Updating the bounds .

2.6.4 Generating a new iterate

2.6.5 The Algorithms

2.7 Convergence Results .

2.8 A Trust-Region Method for Unconstrained Optimization

2.9 A Trust-Region Method for Constrained Optimization .

2.10 Numerical Results

2.10.1 Comparing different TRS algorithms

2.10.2 Algorithm 2.8.1 for Unconstrained Optimization

2.10.3 Algorithm 2.9.1 for Constrained Optimization

3 Local-Nonglobal Minimizer

3.1 Background Results. . . .

38

42

43

43

45

46

47

53

59

60

65

66

73

76

81

81

3.2 Computing a Local-Nonglobal Minimizer 84

3.2.1 Computing a Local-Nonglobal Minimizer: First Method . 84

3.2.2 Computing a Local-Nonglobal Minimizer: Second Method 110

3.3 Numerical Results . 122

Conclusion 127

A Matlab functions 137

1

Introduction

Consider the following unconstrained minimization problem

min f(x),
xElRn

(1)

where f is a smooth function. When computing a pure Newton step from a given

estimate Xo of the solution of problem (1), one needs to solve the optimization problem

(2)

The standard iteration is equivalent to finding the optimal d where the gradient

of the quadratic model of f at Xo is zero. It is possible however that problem (2) is

unbounded or that the quadratic model is a poor representation of f at the minimizer

of problem (2). These situations lead to a lack of global convergence for Newton's

Method.

A possible globalization scheme is to include a ball constraint, equivalently a trust­

region, to problem (2), i.e. at each iteration, pick a well-chosen radius ~, and solve

min V' f(xO)T d + !~V'2 f(xo)d
(3)

s.t. Ildll:::;~.

Then a step Xl = Xo + d is taken under the condition that this yields an appropriate

decrease in the function f. The size of the trust-region is ajusted accordingly. Under

appropriate conditions, this method, called a trust-region method will converge to a

solution satisfying first and second order optimality conditions for problem (1) [8].

2 Introduction

Consider now the problem with equality constraints

min g(x)
(4)

S.t. c(x) = 0,

where c E IRm and c and gare smooth functions. Let .c(x, À) = g(x) - ÀT c(x) be

the Lagrangian function for this problem. Given again an estimate Xo of the solution

of problem (4) and an estimate Ào of a Lagrange multiplier (assuming a constraint

qualification insures such a multiplier exists), one may apply Newton's Method to the

first-order optimality conditions in order to compute the next iterate. If we assume

full row rank of the constraint Jacobian V'c(xo), this can be showed equivalent to

solving the quadratic program

min V' g(xo) + ~dTV';x.c(xo, Ào)d

S.t. V'c(xo)d + c(xo) = O.
(5)

However, it is possible that linearizing the constraints makes problem (5) infeasible

or that the quadratic program is a poor model of problem (4) at the minimizer of

problem (5). One possible "fix" is not to try to satisfy the equality constraint at

each step, but to improve t};le feasibility of the constraint, and to include a trust­

region. Thus, given well-chosen positive scalars 71" and Do, we solve the quadratically

constrained quadratic problem

min V' g(xo) + ~~V';x.c(xo, Ào)d

S.t. IIV'c(xo)d + c(xo)112 ~ 71"2,

IIdl1 2 ~ Do2
.

(6)

This problem is often referred to as the two trust-region subproblem and the idea

presented is the basis of trust-region sequential quadratic programming methods.

This thesis proposes different algorithms for computing the local minimizers of

the trust-region subproblem (TRS)

min xT Ax - 2aTx
(TRS) x (7)

s.t. Ilxll ~ Do.

3

Here, A is an n x n symmetric (possibly indefinite) matrix, a is an n-vector, x is

the n-vector of unknowns and the ball radius ~ is a positive scalar. AlI matrix and

vector entries are real. We focus on cases where A is a large and sparse matrix. In

order to exploit the sparsity, our algorithms will require only matrix-vector products

Aw +- w. In this sense, the algorithms are matrix-free.

Solutions to the TRS will be referred to as global minimizers. However, this

problem may possess a unique local minimizer which is not a global minimizer. Such

feasible solution will be referred to as a local-nonglobal minimizer. Clearly, if we

can compute a global minimizer, then we can solve problem (3). Moreover, if both

constraints of problem (6) are not active at an optimal solution for this problem, then

this optimal solution is a local minimizer (global or local-nonglobal) of a TRS such

as (7). Problems (3)'and (6) thus motivated our interest in the local-minimizer of the

TRS. In Chapter 1, we mention other contexts where this problem also appears.

The algorithms we present are motivated by a simple geometric interpretation for

the TRS, in the case where solutions are located on the boundary of the trust-region.

We show that each local minimizer located on the boundary of the trust-region lies

also on the boundary of an ellipsoid locally contained, near the local minimizer, in the

trust-region. This ellipsoid is an element of a family of ellipsoids having for boundary

the level curves of a convex quadratic function, obtained by properly shifting the

eigenvalues of the matrix A in the quadratic objective function of TRS.

When computing a global minimizer for TRS, the two main difficulties are exploit­

ing the sparsity of the matrix A and handling the so-called hard case. The algorithm

we propose builds on the method of Rendl and Wolkowicz [10, 39], which has overcome

these two major concerns. These authors have shown that TRS can be equivalently

solved by maximizing a concave function of one variable k(t), where

k(t) = (~2 + 1)À1(D(t)) - t, D(t) = (t -a
T

)

-a A

4 Introduction

and tER Sparsity of the matrix Amay be exploited, because the main efforts

in their algorithm lie in computing)q(D(t)), the smallest eigenvalue of D(t), and a

corresponding eigenvector using the Lanczos algorithm, which requires only matrix­

vector multiplications. The hard case is handled in two ways: first by taking steps to

the boundary from feasible points of TRS in a similar way to the Moré and Sorensen

Aigorithm [32] and second by a shift and defiate procedure based on the result that

every hard case TRS may be reduced to an equivalent easy case TRS [10].

Similarly, we show TRS can be equivalently solved by maximizing a concave func­

tion of one variable f ('Y), where

(8)

and 'Y E (-00,1). Here B = A - ~I for a weIl chosen value of ~ which makes B

positive definite. Computing.\1 (B("()) may be obtained through an ARPACK sub­

routine which exploits sparsity of the matrix A. By mimicking the Rendl-Wolkowicz

Aigorithm, our algorithm takes steps to the boundary from feasible points of TRS

and also applies the shift procedure developed in [10]. Thus, the algorithm proposed

exploits the recent advances for taking advantage of the sparsity of the matrix A and

handling hard case TRS. There is also one more link between our algorithm and the

Rendl-Wolkowicz Aigorithm. In the latter algorithm, maximizing k is showed to be

equivalent to solving the dual of the semidefinite relaxation of TRS [39]. We show

maximizing fis equivalent to solving a different semidefinite program that cornes out

of a result related to extremal ellipsoids.

An algorithm for computing a local-nonglobal minimizer was first proposed by

Martinez [29]. In addition to his algorithm, he presents surprising results. In partic­

ular, there is not more than one local-nonglobal minimizer.

The two algorithms we propose for computing the local-nonglobal minimizers of

TRS respectively build on the theory behind our algorithm for computing a global

0.1 Notation 5

minimizer and the Rendl-Wolkowicz Aigorithm. We also exploit the results of Martinez

[29]. Each algorithm share the same structure: we compute the largest root of a

strictly convex function using the secant method. Evaluating the function requires

finding the two smallest eigenvalues of the matrix Bh) or D(t), depending on the

algorithm. Again those are obtained through an ARPACK subroutine which exploits

sparsity of the matrix A.

The thesis is organized as follow. In Chapter 1, we review sorne of the algorithms

which have appeared in the literature to compute local minimizers of the TRS. We

also motivate the interest in the problem with sorne applications.

In Chapter 2, we derive a new algorithm for computing a global minimizer of

the TRS. We initially review the optimality conditions and reformulate the TRS

using maximal ellipsoids. In particular, this leads to a semidefinite program, differ­

ent from the usual semidefinite relaxation associated with TRS, which is implicitly

solved with our algorithm. A convergence result for a simplified version of our al­

gorithm is presented. Numerical results appear at the end of the chapter, where we

compare our algorithm with other recent algorithms and where we briefly show how

TRS algorithms may be used as subroutines within trust-region methods for solving

unconstrained and constrained optimization problems.

In Chapter 3, we start by reviewing the results obtained by Martfnez [29] on the

local non-global minimizer. We then present successively the two new algorithms for

computing this minimizer. We end the chapter by comparing all three algorithms

through sorne numerical experiments.

0.1 Notation

We will use the following standard notation throughout the thesis. AlI norms are

two-norms. The identity matrix is J. The space of n x m real matrices is denoted by

6 Introduction

Mn,m. For M E Mn,m, we denote its transpose by MT and its null space by N(M).

If n = m, we denote its inverse by M-1 , its Moore-Penrose generalized inverse by

Mt, its determinant by det(M) and its trace by tr (M). Given a symmetric matrix

SE Mn,n, Àj(S) denotes the j-th smallest eigenvalue of S, where 1 :::; j :::; n. Thus

If S is positive semidefinite (definite), we use S t 0 (S >- 0). We denote its square

root by Sl/2 and the inverse of the latter matrix by S-1/2. If Q is a set of vectors in

~n, X E ~n and xT q = 0 for an q E Q, we write x.l Q and, x -Ji Q otherwise. When

we write x '\. a, we mean x converges to a and x > a. Similarly, x /' a means x

converges to a and x < a. For a function f : ~ ~ ~, we define

f(a+) := lim f(x),
x",.a

f(a-) := lim f(x).
x/a

7

Chapter 1

Literature Review

1.1 Global Minimizers

Finding a minimizer of a quadratic function subject to a ball constraint is an impor­

tant problem in optimization and linear algebra. Sorne applications of this problem

are the computation of a new iterate in trust-region methods for unconstrained op­

timization [36, 37, 42], the computation of quadratically constrained least squares

[11, 16], the regularization of discrete forms of ill-posed problems [41], and ridge

regressions [22]. Because it is the main subroutine in trust-region methods for uncon­

strained optimization, the problem is called the trust-region subproblem. Recent re­

views of this problems are partially included in the papers of Yuan [55] and Fortin and

Wolkowicz [10]. For an introduction to the trust-region subproblem and trust-region

methods in general, the book by Nocedal and Wright [34] on numerical optimization

is a well-written reference intended for the graduate level. For a deeper treatment of

trust-regions methods, a monumental book was written by Conn, Gould and Toint

[8], where many pages are devoted to the trust-region subproblem.

The idea of minimizing a function by constructing a quadratic model and forcing

the minimization to take place in a neighborhood represented by an EUclidean ball

8 Literature Review

can be traced back as far as 1944. In a paper by Levenberg [26], this concept is

introduced for solving least square problems encountered in curve fitting. A similar

ide a is later presented by Marquardt [28] where using a Euclidean norm constraint

explicitly first appears. Due to the origin of the problems considered, these last

authors dealt only with convex quadratics. It is in 1966 that Goldfeld, Quandt and

Trotter [14] considered minimizing a non-convex quadratic objective subject to a baIl

constraint.

For a computationally efficient method that could handle the so-called hard case,

one needed to wait until the early 1980's for the work of Gay [12], where necessary

and sufficient optimality conditions first appeared, and Moré and Sorensen [32]. The

algorithm of Moré and Sorensen uses Newton's method for finding a root of the

single-variable function
1 1

~ Il (A - '\I)- l all'
which naturally arises from the optimality conditions. Cholesky factorizations are

used to computed the Newton directions and steps to the boundary are taken to han­

dIe the hard case. The algorithm is well-suited for sm aIl size trust-region subproblems

and particularly effective in the hard case. However, the use of Cholesky factoriza­

tions limits the size of the problems that can be considered in practical applications

(though for sorne problems, a sparse Cholesky algorithm may work).

Later on, the focus was turned toward methods that could exploit the sparsity of

the matrix A, which appears in the quadratic objective. Methods of choice were those

that would require only matrix-vector products w f-- Aw. Among the first algorithms

of this new generation of algorithms are the conjugate gradient based algorithm of

Steihaug [44] and Toint [49]. These algorithms do not compute a nearly optimal

solution to the trust-region subproblem, but an approximate solution at least as good

as the Cauchy point (the minimizer along the steepest descent direction) is obtained.

Since the late 1990's there has been a wide range of newly proposed algorithms.

1.1 Global Minimizers 9

The algorithm of Sorensen [42] has a superlinearly convergent two-point scheme in

the easy case based upon a well-chosen interpolant of the function

In the hard case, a linearly convergent one-point scheme is used and steps to the

boundary are taken from feasible points. Each iterate is obtained by computing the

smallest eigenvalue and an associated eigenvector of the bordered matrix

D(t) = (t -a
T

)

-a A

Sparsity may be exploited with the use of a Lanczos method for computing the desired

eigenvalues.

This is not the only algorithm which recasts the trust-region subproblem in terms

of a parametric eigenvalue problem. As mentioned in the introduction, the algo­

rithm of Rendl and Wolkowicz [39] reformulates the trust-region subproblem as an

unconstrained minimization of the single-variable function

Here again, one needs at each iterate t to compute the smallest eigenvalue of the

bordered matrix D(t) and an associated eigenvector in order to evaluate the function

k(t) and its first derivative.

As an extension to the algorithm of Sorensen, the algorithm of Rojas, Santos and

Sorensen [40] yields a superlinearly convergent two-point scheme based however on a

different interpolant of <p(À). The method converges in both the easy and hard case.

In particular, the hard case is handled by computing for each iterate two eigenvalues

and associated eigenvectors of the bordered matrix D (t) corresponding to the smallest

eigenvalue and an eigenvalue close to the second smallest eigenvalue.

10 Literature Review

Another possibility for solving the trust-region subproblem is to restrict the vari­

able x to lie in a specially constructed subspace, i.e. solve

min q(x)

S.t. Ilxll:::; ~
xE S.

In the algorithm of Gould, Lucidi, Roma and Toint [17], S is the Krylov subspace

S = {a, Aa, A2a, A3a, ... , Aka},

where k is increased at each iteration. The Lanczos method is used to obtain an

orthonormal basis of this subspace. At each iteration, the Moré-Sorensen Aigorithm

is used to solve a well-structured trust-region subproblem, where the matrix in the

quadratic objective is tridiagonal. The Cholesky factorizations required may take

advantage of this structure in order to exploit sparsity. However, this algorithm does

not handle the hard case. Another choice of S is also suggested by Hager [19]. His

algorithm keeps the size of S to a low dimension of four. At an iterate X, the subspace

S is the span of the vector X, the gradient Ax - a, an approximate eigenvector for

the smallest eigenvalue of A and the iterate obtained by applying one step of a

sequential quadratic programming algorithm to the trust-region subproblem. The

resulting method is proved to converge quadratically.

Finally, the algorithm of Tao and An [47, 48] exploits the fact that the quadratic

objective function may be rewritten as the difference of convex functions, i.e.

where p is a fixed constant chosen so that pl - A is positive definite. The resulting

algorithm is simple, but we are only guaranteed that a limit point of the sequence

of iterates is a local minimizer. Yet, the authors show how, from a local-nonglobal

minimizer, one may move to a feasible point with a smaller objective value where the

method may be restarted.

1.2 Local-Nonglobal Minimizer Il

1.2 Local-Nonglobal Minimizer

The interest in the local-nonglobal minimizer of problem (7) is that it may be the

global minimizer of the following problem:

mm xT Ax - 2aT x
x

s.t. h(x):::; 0,

Ilxll:::; ~,

(1.1)

where h : IRn ---+ IRffi. Indeed, if x* is a global minimizer of the latter problem and

h(x*) < 0, then clearly x* is a local-minimizer of problem (7). In this case, x* is a

local-nonglobal minimizer of problem (7) if all global minimizers of problem (7) do

not satisfy the first constraint of problem (1.1). An important special case known as

the two trust-region subproblem is when h is a convex quadratic [1, 21]. This problem

appears while computing the Celis-Dennis-Tapia problem [6, 38, 54] in a sequential

quadratic programming approach for solving nonlinear programs. It aiso appears as

a subproblem in the numerical solution of parameter identification problems of the

form

min IIF(x) - yl12
x

s.t. Ilxll:::;~,

see [20, 21]. For this subproblem, the constraints in (1.1) are two balls constraints.

More generally, Martinez and Santos [30] described an algorithm for minimizing a

differentiable function over an Euclidean baIl, where minimizing a quadratic function

over the intersection of two Euclidean balls also appears as a subproblem. Finally,

extensions to general quadratic constraints (possibly indefinite) is discussed in [31,

35,45].

It is important to mention, even in the case where h is a convex quadratic, that

there are no known polynomial time algorithm for computing the global minimum of

problem (1.1). It is not known either if the problem is NP-hard. If this happens to

12 Literature Review

be true, in general one may only expect approximate solutions. However, in special

cases, it is possible to compute a solution as close as we want to the exact solution.

For example, the paper of Zhang and Ye [53] combines the matrix decomposition

result of Sturm and Zhang [46] and semidefinite relaxation to show that sorne cases

of the two trust-region subproblem may be solved. They even propose an algorithm,

for the two trust-region subproblem, which follows the path of solutions of a family of

parameterized problems. However, no convergence result is proved for this algorithm,

but it is illustrated on sorne examples.

There is very little written on computing local-nonglobal minimizers for the trust­

region subproblem. In fact, the author of this thesis is only aware of the algorithm

of Martînez [29]. The algorithm is based on finding the smallest root of the convex

function <p(À) - ~2 on the interval (À 1(A), À2(A)) where lies the associated Lagrange

multiplier of the local-nonglobal minimizer. At each iterate, a full spectral decom­

position of the matrix A or a matrix factorization of a related matrix is required to

evaluate the function <p(À) and compute its first two derivatives; the algorithm is not

designed to exploit sparsity of the matrix A.

A last refence on local-nonglobal minimizers is the paper of Lucidi, Palagi and

Roma [27]. The paper shows in particular that strict complementarity holds at a

local-nonglobal minimizer.

13

Chapter 2

Global Minimizers

2.1 Optimality Conditions and Assumptions

Reeall the trust region subproblem is

(TRS)
min q(x):= xT Ax - 2aT x

x (2.1)
s.t. Ilxll:::;~,

and eonsider the equality eonstrained trust-region subproblem

(TRS=)
mm q(x) = x T Ax - 2aT x

x (2.2)
s.t. Ilxll = ~.

Without loss of generality, we assume in this thesis, unless mentioned otherwise,

~ = 1, since we may seale the matrix A, the veetor a and the veetor x, respeetively

by ~2, ~ and 1/ ~ so that we end up minimizing over the unit ball. This is done to

simplify the notation.

Unless

A>- 0 and (2.3)

an optimal solution to problem (2.2) will be also optimal for (2.1) [32]. The pro of

of this statement relies on the faet that a solution to the equation Ax - a = 0 has

14 Global Minimizers

the same objective value as x + z, if z E N(A). Thus, if the conditions (2.3) are not

satisfied and x* solves (2.2), then x* solves (2.1). We shall focus our attention on

problem (2.2) and return to problem (2.1) later. We will actually consider a slight

modified problem. Since the feasibility constraint of problem (2.2) allows us to write

q(x) = xT(A - À1(A)I)x - 2aTx + À1(A), if we replace the matrix A by the matrix

Ar := A - À1(A)1 in (2.2), the optimal solutions x* are unchanged. We thus reset A

to the latter matrix (note À1 (Ar) = 0) and consider the problem

x (2.4)
s.t. Ilxll = 1.

We assume for now a =1= O. This is justified since a = 0 makes (2.2) or (2.4)

simple eigenvalue problems. In the context of trust region methods for uncon­

strained optimization, this assumption also makes sense, since from problem (3) we

see a = \7 f(xo), and these methods usually stop when \7 f(xo) is close to zero.

It is well-known [13, 42] that x* is a global minimizer to (2.4) if and only if

(Ar - À* I)x* = a,

Ar - À*1 t 0,

Ilx*11 = 1.

(2.5a)

(2.5b)

(2.5c)

for sorne (unique) Lagrange multiplier À * E R For x* to be a minimizer of problem

(2.1), we need to add the complementary slackness equation À*(llx*11 - 1) = 0 and

the correct sign for the multiplier, i.e. À* + À1 (A) :S O.

Following [39], we use throughout the paper the terminology, given in Table 2.1,

to define three possible instances for (2.4). We use the term hard case when we are

not in the easy case. Then we may either be in the hard case 1 or the hard case 2.

Equation (2.5) shows that, in the easy case, the hard case 1 and the hard case

2.1 Optimality Conditions and Assumptions 15

Easy case Hard case 1 Hard case 2

a ~ N(Ar) a..l N(Ar) a..l N(Ar)

and and

(implies À* < 0) À* < 0 À* = 0

(i) IIAtal1 = 1

(ii) IIAtal1 < 1

Table 2.1: The three different cases for the equality trust region subproblem (2.4).

We include two sub-cases for the hard case 2.

2(i), x* = x(À*), where we define

and where À* (uniquely) solves, for À E (-00,0], Ilx(À)11 = 1. The hard case 2(ii)

is characterized by the fact that there exists R < 1 such that IIx(À)11 ::; R, for aU

À E (-00,0]. In this case, an optimum is given by

X* = Ata + az r , (2.6)

where a is chosen to satisfy Ilx*11 = 1 and z E N(Ar). In fact, the hard case 2(ii) is

what is referred to as the hard case by Moré and Sorensen [32], because it is truly

this case which forces the sophistication of their algorithm. However, even though

our techniques to handle the hard case are also mostly designed to treat the hard case

2(ii), we prefer the notation of Table 2.1 introduced in [39].

16 G lobai Minimizers

2.2 Reformulating TRS Using Maximal Ellipsoids

Since limÀ->_oo Il (Ar - ÀI)-la!l = 0, let 5. be such that

B >- 0, (2.7a)

(2.7b)

where we define B:= Ar -5.I. For x feasible for (2.4), q(x) = xT Bx-2aT x+5., and,

by completing the square, q(x) = (x - B-1a)T B(x - B-1a) + 5. - aT B-1a. Therefore,

(2.4) and the following problem share the same optimal solutions:

rb:= min r2 (x):= (x - B-1a)T B(x - B-1a)

S.t. !lx!l = 1,
(2.8)

The level curves r2 (x) = r2
, for r a fixed non-negative constant, are the boundaries

of the ellipsoids ET) where

(2.9)

The volume of each of these ellipsoids, where the unit is taken to be the volume of

the unit ball in]Rn, is the determinant of r B-1/2 and their center, B-1a, is by (2. 7b)

in the interior of the unit baIl. Therefore, problem (2.8) is equivalent to finding the

largest volume ellipsoid, say ErG' among the ellipsoids Er contained in the unit baIl.

Equivalence is in the sense that ErG intersects the unit sphere at an optimal x* for

(2.4). This is illustrated in Figure 2.l.

The constraint imposed on Er to be contained in the unit ball may be modeled

by a semidefinite constraint as indicated by the following lemma [2, 4]:

Lemma 2.1. An ellipsoid

E = E(Z, z) := {x = Zu + z I!lu!l ::; 1},

2.2 Reformulating TRS Using Maximal Ellipsoids 17

,
, ,>, ,

{:l "
,

Ilxll = 1 ' ,
0 \

\ , ,
0 B-Ia , ,

'- ,
,

* Xc
-0,

r2 (x) = rb
-1.5 -0,' , Xl " level curves of r 2 (x)

Figure 2.1: This figure illustrates problem (2.8) is equivalent to finding the largest

volume ellipsoid ErG contained in the unit baIl. A global optimum Xc lies in the

intersection of ErG and the unit sphere.

is contained in the ellipsoid

W = W(Y, y) := {x 1 (x - yfyyT(X - y) ::; I}, y E Mn,n , det(Y) =1- 0

if and only if there exists "(su ch that

l Y(z - y) YZ

(z - Y fyT 1 - "(t: o. o (2.10)

ZTyT 0

Applying Lemma 2.1 with Z rB-I/2 , z = B-Ia, Y = l and y = 0, and

multiplying the matrix in (2.10) from the right and the left by a weIl chosen block

diagonal matrix, we obtain the linear semidefinite program

rc = max r
r,"{

l B-Ia rI
(2.11)

S.t. aTB- I 1-"(0 t 0,

rI 0 "(B

whose optimal value is rc. The next step is to show (2.11) may be solved by minimiz­

ing the single variable function f defined in (8). To do so, we will need the following

18 Global Minimizers

lemma on the Schur complement which is a consequence of Sylvester's law of inertia.

Lemma 2.2. Let

be a symmetric matrix with k x k block N and 9 x 9 block D. Assume that N is positive

definite. Then M t 0 (>- 0) if and only if the matrix D - eN-leT t 0 (>- 0). 0

By feasibility of (2.11), the top left square matrix of size n + 1 is positive semidef­

inite and applying Lemma 2.2 with N = 1 gives 0 ::; , ::; 1 - IIB- laI1 2 < 1 (note

the left most inequality follows from our assumption a =1- 0). Note also r is bounded,

since, for Er to lie inside the unit ball of volume 1, det(rB-l/2) ::; 1 must hold.

Lemma 2.2 may again be used to gain further information by applying it to the full

constraint matrix in (2.11), with this time N equal to the bottom right matrix of size

n + 1 and assuming , < 1. This gives

r2 1 In - _B- l - --B-laaT B-l >- O. ,1-, - (2.12)

Multiplying the left hand side of (2.12) from the left and the right by (fB)l/2 yields

r ::; J,Àl(B(f)), where B(f) is defined in (8) with ~ = 1. Rence, for a fixed , < 1,

the largest possible r for which the matrix in (2.11) stays positive semidefinite is

r = J'Àl(B(f)). Thus to solve (2.11), one needs to find ,* which solves

rb = max f(f) = ,Àl(B(f))

S.t. , < 1.
(2.13)

The rest of this chapter is concerned with solving (2.13) and constructing an

optimal solution to (2.4) from ,*. As already mentioned in Section §2.1, a solution to

(2.4) is a solution for (2.1) (with .6. = 1), unless a strict unconstrained minimizer of

q(x) lies in the interior of the unit baIl. We will show in Section §2.4.2 how we may

detect the existence of such a minimizer while solving (2.13).

2.3 Eigenvalue Functions 19

Problem (2.13) is derived from our geometric interpretation of problem (2.8) in

terms of finding a largest volume ellipsoid Er contained in another ellipsoid, the unit

ball. However, this interpretation of the problem does not appear explicitly in the

algorithms we shall use to solve problem (2.13), i.e. it is only used as a modeling

tool to obtain the latter problem. Maximizing the volume of ellipsoids contained in

another ellipsoid appears in other contexts as weIl. For example, it is used in [52J

to der ive a measure used to preserve current Hessian information in Quasi-Newton

methods.

2.3 Eigenvalue Functions

In this section, we intend to study thoroughly the two functions À1(Bb)) and fb).

The former function may be evaluated, at a given value of "(, by finding the smallest

value of À among the couples (À, v) satisfying the equation

(B2 - 1 ~ "(aaT
) v = ÀBv. (2.14)

The latter equation is commonly referred to as a generalized eigenvalue problem and,

for a solution (À, v), À is a generalized eigenvalue and v is a corresponding general­

ized eigenvector. It may be used to evaluate À1(Bb)), sinee it can be rewritten as

Bb)B1/2V = ÀBl/2V. Henee, the generalized eigenvalues ofthe generalized eigenvalue

problem (2.14) are the same as the eigenvalues of Bb) and if v solves (2.14) for a

generalized eigenvalue À, then Bl/2V is an eigenvector of Bb) for the same eigenvalue.

We shall denote by v("() a solution with unit norm to (2.14) for À = À1(B("()). We

omit the argument, Le. we denote v("() by v, whenever the context is dear. Note we

do not daim vb) is unique. However, when the multiplicity of À1(B("()) is one, there

are only two possibilities which are opposite in sign.

For a given value of "(, we do not directly solve (2.14) in our algorithm to obtain

the required couple (À1(B("()), v("()). Since the vector B-1a is readily available, using

20 Global Minimizers

a conjugate gradient method, we equivalently find the smallest eigenvalue of the (non

symmetric) matrix B - 1/(1 - ,)B-IaaT and a corresponding eigenvector. This is

made possible through the use of a ARPACK [24, 25, 43] subroutine, which only

requires the matrix-vector multiplications W f- (B - 1/(1 - ,)B-IaaT)u. This will

make it possible for our algorithm to fully exploit the sparsity of the matrix Band

thus, the sparsity of the matrix A.

Let B = QDQT be an orthonormal diagonalization of B, i.e. the columns of Q

are orthonormal eigenvectors of Band D is a diagonal matrix with the eigenvalues of

B on its diagonal ordered increasingly such that Dl1 = ÀI(B). Notice ÀI(B) = -5..
We denote by qj the j-th column of Q and we define i to be the multiplicity of ÀI(B),

i.e. ÀI(B) = À2 (B) = ... = Ài(B) < Ài+I(B). Note from the definition of B that

Ar = Q(D + 5.I)QT, i.e. the columns of Q are eigenvectors of Ar and ÀI(Ar), which

is zero, has multiplicity i. Thus, from Table 2.1,

qJa = 0 for j = 1, ... , i (2.15)

in the hard case and we assume without loss of generality qf a -=1= 0 in the easy case.

To study the eigenvalues of Bh), we shaH need a result which is a corollary of

Weyl's inequalities [50] (see also [3, 23]).

Theorem 2.1. Let Hl and H2 be two nxn symmetric matrices for which HI -H2 ~ o.
If the rank of Hl - H2 is r, then

lnterlacing of the eigenvalues of Bh) and B follows from the theorem. Another

proof of this result is given in [51] using Cauchy's inequalities [5], Lemma 3.11 in this

thesis.

2.3 Eigenvalue Functions 21

Corollary 2.1. For 1 #- 1, the eigenvalues of Eh) and B interlace.

1. For 1> 1,

2. For 1 < 1,

Proof. We prove the first item, the proof of the second item being similar. Let

Hl := Bh) and H2 := B in Theorem 2.1 and note

Hl - H2 = __ I_B-l/2aaT B-l/2
1-1

is a rank 1 positive semidefinite matrix. o

Let Às(B) be the smallest eigenvalue of B such that a ;LN(B - Às(B)I) = N(Ar­

Às(Ar)I). Hence, qJ a = 0, for j = 1, ... , s - 1, and q; a#- O. Let [) be the diagonal

matrix with the n - s + 1 largest eigenvalues of B on its diagonal ordered increasingly

such that [)u = Às(B). Note D = [) and s = 1 in the easy case. Define

a := (q; a, ... ,q; a) T. Since B-l/2 = QD-l/2QT, we obtain

Bh) =Q o

o

o

[) _ _ 1_[)-1/2aaT [)-1/2
1-')'

(2.16)

Analogically to Bh), define [)h) := [) - 1~')'[)-1/2aaT [)-1/2. We have thus proved

the following lemma, which is illustrated in Figure 2.2

22 Global Minimizers

6 ------------------------------ - ---
4

2

0

2

6 - À1~12('y))
8

- - - - À1 D('y))
À = ÀdB) -, 0

-, -o., -0.6 -0.4 -0.2 'Y-trah1Bs 0.4 0.6 0.8 ,

Figure 2.2: This figure illustrates Lemma 2.3

The next lemma investigates the function À1(15('y)).

Lemma 2.4. À1(15('y)) is a concave, differentiable and strictly decreasing functionfor

'Y E (-00,1). Furthermore, the multiplicity ofÀ1(15('y)) is one for all'Y E (-00,1),

À1(15('y)) < Às(B), lim)'->_oo À1(15('y)) = Às(B) and limy->l- À1(15('y)) = -00.

Pra of. Let 'Y E (-00,1) and À < À1 (15). Then

det(15('y) - ÀI) = det (CD - ÀI) (1 - 1 ~ 'Y (15 - ÀI)-l 15-1/2aaT 15-1/2)) ,

g (Aj(D) - A) (1 - 1 ~ 'Y n~l Aj(D)(A:;D) _ A)) ,

g (Aj(D) - A) (1 - 1 ~ 'Y d(A)) , (2.17)

where the second equality follows from Golub and Van Loan [15J and where we define,

n-s+1 -2

d(À):= # Àj(D)(À:(D) - À).

From the choice of s, iÎ! =1= 0 and thus limÀ->Àl(iJ)- d(À) = 00. Clearly limÀ->_oo d(À)

= 0 also holds. In addition, a short computation reveals d(À) strictly increases on

2.3 Eigenvalue Functions 23

(-00, >11(.0)). Thus, by (2.17), >11(.0(')')) uniquely solves on the latter interval

(2.18)

and >'1(Db)) < À1(D) = Às(B). Monotonicity, concavity and differentiability of

À1 (D(')')) follow by implicitly differentiating (2.18). The limiting behaviors of À 1 (D(')'))

also follow from this equation. Similarly to Corollary 2.1, À1(D) ~ À2(Db)) and thus

À1(Db)) has multiplicity one. 0

From Lemmas 2.3 and 2.4, it can be observed À 1(Bb)) is the maximum of two

concave curves, one of which is constant. The curves are themselves differentiable,

but may intersect when À1(Bb)) = À1(B). Thus À1(Bb)) may be non-differentiable

at this point. However, we also observe, when s ~ i, that À1(Bb)) = À1(Db)) and

that in this case it is an everywhere differentiable function. The next lemma builds

on these observations and links the structure of À1 (Bb)) to the easy and hard case.

Lemma 2.5. 1. In the easy case, for')' E (-00,1), À1(Bb)) is a concave, every-

where differentiable and strictly decreasing function, À1(Bb)) < À1(B) and the

multiplicity of À1(Bb)) is one.

2. In the hard case, for')' E (-00,1), À1(Bb)) is a concave function. Moreover,

let l' E (-00,1) be the unique solution to À1(Db)) = À1(B), then À1(Bb))

is differentiable for')' E (-00,1) \ l' and is non-differentiable at 1. Define

ub):=Q(0, ... ,0, ub))T,whereub)isauniteigenvectorofthesmall­

est eigenvalue of Db)·

are i orthonormal corresponding eigenvectors.

(b) For')' = 1', À1(Bb)) = À1(B) with multiplicity i + 1 and

{q1, ... , qi, u(1)} are i + 1 orthonormal corresponding eigenvectors.

24 Global Minimizers

(c) For 'Y E Cy,l), À1(Bb)) < À1(B) with multiplicity one, ub) is a corre­

sponding unit eigenvector and À1 (B b)) is a strictly decreasing function on

this open interval.

Proof. l. The pro of follows from Lemma 2.4, since the easy case implies D = D

and 8 = l.

2. The hard case implies À1(B) < Às(B). Thus, by Lemma 2.4, there exists a

unique i E (-00,1) such that À1(D(i)) = À1(B) and, by Lemma 2.3,

À1(Bb)) - À1(B) for 'YE(-oo,iJ,

À1(Bb)) < À1(B) for 'Y E (i, 1).

(2.19a)

(2.19b)

Concavity ofthe function À1(Bb)) follows from Lemma 2.3 which shows it is the

minimum of two concave functions. Differentiability is obvious for 'Y E (-00, i),

by (2.19a). For 'Y E (i,1), since (2.19b) and Lemma 2.3 yield À 1(Bb)) =

À1(Db)), differentiability in this case follows from Lemma 2.4. As we now

show, the multiplicity of the eigenvalue À1(Bb)) changes at i. Therefore,loss

of differentiability occurs at this value.

(a) Equations (2.16), (2.19a) and 8-1 ~ i, implies the multiplicity of À1 (Bb))

is i. By (2.15), aT B-1/ 2qj = 0, for j = 1, ... ,i, and thus

for j = 1, ... , i. (2.20)

This shows {q1,'" ,qi} are i orthonormal eigenvectors for À1(Bb)).

(b) Since the smallest eigenvalue of D(i) is À1(B) with multiplicity one and

8 -1 ~ i, and because of (2.16) and (2.19a), we deduce the multiplicity of

2.3 Eigenvalue Functions 25

À1 (B(i-)) is i + 1. We also have

B(i)u(i) Q (0, ,0, D(i)u(i)) T,
Q (0, ,0,)q(D(i))u(i))T,
À1(B)u(i), (2.21)

where the first equality follows from (2.16). Equations (2.20) and (2.21)

imply {Q1, ... , qi, u(i)} are i + 1 orthonormal eigenvectors for the smallest

eigenval ue of B (i).

(c) Wh en "/ E (i,l), as mentioned ab ove , À1(B("/)) = À1(D("/)). Since

À1(D("/)) has multiplicity one, by (2.16), the same holds for À1(B("/)).

Similarly as in the proof of item 2(b), u("/) is a unit eigenvector for the

smallest eigenvalue of À1 (B("/)). The fact that À1 (B("/)) strictly decreases

on this interval follows from Lemma 2.4.

o

We are now in position to prove the main theorem of this section concerning the

function f("/). In particular, we show problem (2.13) is convex.

Theorem 2.2. f is concave for "/ E [0,1) and has a unique optimum ,,/*. Unless the

hard case holds and "/ = i, its derivative is given by

(2.22)

where v = v("/) solves (2.14). In the hard case, when "/ = i, let u(i) be defined

as in Lemma 2.5 and define 'Û := (1/IIB-1/2U(i)II)B-1/2U(i). Then, the directional

derivatives from the left and right are respectively

(2.23)

26 Global Minimizers

Proof. We prove concavity directly. Let 0 $ f-L $ 1, 0 $ 'Yi < 1 for i = 1,2, 'Y1 #- 'Y2

and define C("() := 'YB("(), then

f(f-L'Y1 + (1- f-Lh2) = À1 (C(f-L'YI + (1- f-Lh2)) = minyTC(f-L'Y1 + (1- f-Lh2)y
Ilyll=1

~ min yT ((f-L'Y1 + (1 - f-Lh2)B - (f-L...JL + (1 - f-L)JL) B-1/2aaT B-1/2) y lIyll=l 1-')'1 1-')'2

~ f-L min yTC("(l)y + (1 - f-L) min yTC("(2)y = f-L f(,,(d + (1 - f-L) f("(2).
Ilyll=l Ilyll=l

(2.24)

The first equality follows from f-L'YI + (1 - f-Lh2 ~ 0 and the first inequality fol­

lows since 'YI (1 - 'Y) is strictly convex over (-00, 1). Observe this inequality holds

strictly if the easy case holds or if 'Yi ~ 'Y, i = 1,2, if the hard case holds. The

reason is that for these cases a solution y* to minllYII=1 yTC(f-L'Yl + (1- f-Lh2)y satisfies

aT B-1
/
2y #- 0, since À1 (B(f-L'YI + (1f-Lh2) < À1 (B). This implies f is strictly concave

in the easy case for 'Y E [0,1) or on the interval (max{O'-:Y), 1) in the hard case. Since

lim')'->I- À1(B("()) = -00, then lim')'->I- f(,,() = -00. Furthermore, in the hard case,

by item 2(a) of Lemma 2.5, f is an increasing linear function on (-00, 'Y], which

implies 'Y* E [1',1). These observations yield uniqueness of 'Y*. We now prove (2.22)

when the multiplicity of À1(B("()) is one. Note from the discussion around equation

(2.14) that 1/I1Bl/2vIIBl/2v is a unit eigenvector for the smallest eigenvalue of B("().

Therefore (see e.g. Horn and Johnson [23]),

When the multiplicity of À1(B("()) is not one, but f is differentiable, we conclude from

Lemma 2.5 "Y E (-00, 'Y) and the hard case ho Ids . In this case)\1 (B ("()) =)'1 (B) has

multiplicity i and, trivially, f'("() = À1(B). Note for any v which satisfies (2.14), we

have, as mentioned ab ove , that Bl/2V is an eigenvector for the smallest eigenvalue of

2.3 Eigenvalue Functions 27

Bh). By item 2(a) of Lemma 2.5, B1/2v E span{q1,.'" Qi} and therefore

(2.25)

Thus, by (2.15), vT a = 0, proving (2.22) also holds in this case. Finally we are left

to prove (2.23). The left derivative in i clearly foUows from (2.19a). RecaU, from

Lemma 2.4, À1 (D(i)) has multiplicity one. Thus, as proved ab ove , and using Lemma

2.3, we have

f'C+) = d"(À 1(Dh)) 1 = À (DC)) _ i (a7D-
1

/
2
U(i))

2

"(d "('Y=i l "(u(i)T u(i) 1 - i (2.26)

AU that is left to note is that (2.26) is exactly the formula for 1'(i+) in (2.23). D

Figures 2.3, 2.4 and 2.5 illustrate the function f for different cases.

0.5

°o~~~~--~--~~~~--~--~--~ 0.1 0.2 0.3 01-vaIlies 0.6 0.7 0.8 0.9

Figure 2.3: fh) in the easy case

The previous theorem implies we can obtain an approximate value of r~ to any

desired precision, since aU is needed is to maximize the concave function f on the

closed interval [0,1 - IIB-1aI1 2
] (better bounds are given in Section §2.6.2). Note

the two end points are the roots of J, since B-3/2a E N(B(l - IIB-1aI1 2)) and

Àl(Bh)) ~ a for "(< 1 - IIB-1a11 2 (apply Lemma 2.2 to the top left square matrix

in (2.11) of size n + 1).

28 Global Minimizers

4.5
0

•
83 3.5
;:; ..- 3
~
~2.5

1.5

0.5

00~~0.~1--~02~~0.3~~01-_-v-~~fu-e-s~0~.6--~0~.7--~0.~a--~0.~9

Figure 2.4: fh) in the hard case (case 1)

•

-5

-10 <------=-'"0.4-:------=-'"o.2::-----O-----"(-_-="0v,-a-=-l u-e-S'-='".4:------="0.6:-----="O.a:---..-.J

Figure 2.5: f ("() in the hard case (case 2)

In Sections §2.5 and §2.6 we specify how we solve (2.13). However, even if the

optimal "(* is obtained, it is not clear yet how the optimal x* for (2.4) and its corre­

sponding Lagrange multiplier À * may be recovered.

2.4 Constructing an Optimal Solution 29

2.4 Constructing an Optimal Solution

This section is comprised oftwo parts: In Section §2.4.1, we focus on solving (2.4) from

the information gained by solving the convex problem (2.13). As already mentioned

in Section 2.1, a solution to (2.4) is a solution to the TRS (2.1) unless A >- 0 and

IIA-1all < 1. In Section §2.4.2, we show that, while solving (2.13), we are able to verify

if these two conditions hold and compute, in the affirmative case, the unconstrained

minimizer A -1 a.

2.4.1 Solving TRS=

We show how to obtain an optimal solution for problem (2.2). However, since x* is

also optimal for problem (2.4), we still focus on the latter problem. To construct a

couple (x*, À*) which satisfies (2.5) from an optimal "(*, we need a relation between

the variables "(and x. A clever observation reveals we have almost explicitly written

it down already. Namely rewriting (2.14), we obtain v("() solves

(2.27)

when aTv("() i= O. Now observe B - À1(B("())1 t 0 and notice this matrix may be

written as Ar - (À 1(B("()) + >..)1. The optimality conditions (2.5) suggests defining

(2.28)

We should be careful with this definition, since it is valid only if aT v("() i= 0 and

since v("() is not uniquely defined. However, x("() should be uniquely defined. As we

will see, unless the hard case holds and "(::; 1, x("() is weIl defined. If in addition

Ilx("()11 = 1, then (2.5) implies it is also optimal for (2.4). More generally, the following

lemma shows x("() is the optimum to a weIl-chosen problem.

30 Global Minimizers

Lemma 2.6. Let"(< l-IIB-1aI1 2 and assume if the hard case holds that "(> i. Let

x("() be defined as in (2.28). Then aTv("() =1= 0 and x("() solves

min (x - B-1af B(x - B-1a)

S.t. Il xii ~ Ilx(,,()Il

with corresponding Lagrange multiplier À1(B("()).

(2.29)

Praof. For simplicity, let v = v("(). Note first aTv =1= 0, otherwise, by (2.14), À 1(B("())

is an eigenvalue of Band this contradicts items 1 and 2(c) of Lerhma 2.5, which

yield À1(B("()) < À1(B), unless the hard case holds and "(:::; i. Therefore, x("() is

well defined. Similarly to (2.5), the necessary and sufficient optimality conditions for

(2.29) imply we need to prove

(B - À1(B("())I)x("() = a,

B - À1(B("())I t: 0,

À1(B("()) ~ O.

(2.30a)

(2.30b)

(2.30c)

Conditions (2.30a) follows from (2.27) and (2.30b) holds again by À1(B("()) < À1(B).

From the discussion at the end of Section§2.3, 1-IIB-1aI1 2 is the root of the decreasing

function À1(B("()), and thus À1(B("()) ~ 0 for "(:::; 1 -IIB-1aI1 2
, proving (2.30c). D

To find an optimal "(* for problem (2.4), Theorem 2.2 suggests solving f'("() = O.

On the other hand, Lemma 2.6 suggests solving Ilx("() Il = 1. Hence, it is not a surprise

these two functions are linked.

Lernrna 2.7. Assume the conditions of Lemma 2.6 hold. Then

Ilx(,,()II> (=, <) 1 {:=:::;> f'("() > (=, <) O. (2.31)

2.4 Constructing an Optimal Solution 31

Pra of. We have

(2.32a)

(2.32b)

(2.32c)

where (2.32a) follows from (2.14) and (2.32b), from (2.22). The conclusion follows by

writing (2.32c) as

(2.33)

D

It appears almost clear from the last two lemmas how the couple (x*, À *) may be

recovered from an optimal '"'(*. Still, a major concern is the hard case. Precisely, x('"'(*)

is not defined when f is non-differentiable at the optimum. Equation (2.6) suggests

how (x*, À*) should be obtained in this case.

Theorem 2.3. Let ,* solve (2.13).

1. In the easy case or in the hard case, when ,* =f 1, let v('"'(*) solve (2.14), then

aT v(,*) =f 0 and

* _ 1 - ,* (*)
x = T () Bv '"'(a v '"'(*

salves (2.4) with Lagrange multiplier À1(B('"'(*)) + 5..

(2.34)

2. In the hard case, when ,* = 1, let'Û be defined as in Theorem 2.2, then aT'Û =1= 0

and

(2.35)

salves (2.4) with zera Lagrange multiplier, where z E N(Ar) and ex is chosen ta

satisfy Ilx* II = 1.

32 Global Minimizers

Proof. 1. By items 1 and 2(c) of Lemma 2.5, Theorem 2.2 and since "'1* solves

(2.13), f is differentiable at "'1* and À1(B("'f*)) has multiplicity one. Thus

f'("'f*) = 0 and, by Lemma 2.6 and Lemma 2.7, x* solves (2.4) and À1(B("'f*))+>­

is its (unique) corresponding Lagrange multiplier. Note B - À1(B("'f))1 =

Ar - (À1(B("'f*)) + >-)1 was used.

2. Assume aTv = O. By definition of V, this is equivalent to 07 D-1/2U(1) = O.

Together with the fact that u(1) is an eigenvector for the smaIlest eigenvalue

of D(1), we obtain À1(D(1)) is an eigenvalue of D. However, this contradicts

Lemma 2.4 which says À1(D("'f)) < À1(D), for aIl "'1 < 1. Thus, aTv i= o. Now,

by optimality of 1, f'(1+) ::; 0, and, similarly to the proof of Lemma 2.7, we

may prove, using (2.23), that (1-1)/laT vlllBvl1 ::; 1. Thus, it is always possible

to choose z and ct to satisfy Ilx* Il = 1. This shows x* is weIl defined.

By construction, v solves

which may be rewritten as

(B - À1(B(1))I) (la;v1) Bv = a.

By item 2(a) of Lemma 2.5, À1(B(1)) = À1(B) and noting z E N(B - À1(B)I),

we have shown

(B - À1 (B)I)x* = a,

B - À1(B)1 ~ 0,

Ilx*11 = 1.

(2.36a)

(2.36b)

(2.36c)

FinaIly, from B - À 1(B)I = Ar' we see the equations (2.36) are exactly the

optimality conditions (2.5) for problem (2.4) with À* = O.

o

2.4 Constructing an Optimal Solution 33

Corollary 2.2. The following statements hold for problem (2.4).

1. Assume the hard case holds for (2.2), then the hard case 2 occurs if and only if

"(* = i· The hard case 2 (i) occurs if and only if l' (i+) = o.

2. The easy case or the hard case 1 occurs if and only if l'h*) = o.

Proof. 1. If the hard case 2 occurs, then the Lagrange multiplier À * for x* is zero.

Furthermore, "(* E [i, 1), sinee f is increasing for "(E (-00, i). Now, by item

2(c) of Lemma 2.5, "(* E (i,1) cannot occur, otherwise À* = À(Bh*)) + >. <

À1(B) + >. = O. Hence "(* = i. The converse statement ho Ids from item 2

of Theorem 2.3, sinee À* = 0 when "(* = i. Finally, when the hard case 2(i)

occurs, from Table 2.1, IIA~all = 1. We can show x(i) := ~:;.îBv = A~a, using

qJx(i) = 0, j = 1 ... i. Thus Ilx(i)11 = 1. Following the lines in the proof of

Lemma 2.7, we deduee this is equivalent to l'(i+) = O. Reverse these steps to

obtain the converse statement.

2. The proof follows from item 1 and Theorem 2.2.

D

The latter theorem is useful in two ways. First, it suggest a way to solve (2.4) in

the easy case or the hard case 1: find the root "(* to l' ("() = 0 and construct x* from

(2.34). Second, it shows with Lemma 2.6 that x* solves

rb = min (x - B-1a)T B(x - B-1a)

S.t. Ilxll 2: 1.
(2.37)

This problem is therefore a dual of problem (2.13) and strong duality holds. In other

words, if 'Y and x are feasible respectively for (2.13) and (2.37), then f("() ~ r 2 (x) and

the optimal value of these two problems are equal. This allows us in our algorithm

to compute a duality gap: from Lemma 2.7, if f'h) ::; 0, then x = xh) is feasible for

34 Global Minimizers

(2.37) and the duality gap, i.e. the interval of uncertainty for Tb, is

(2.38)

However, it is not clear how we can take advantage of (2.35) in the hard case 2.

SpecificaIly, how do we obtain the desired vector v? We will see this will be made

possible through our shift procedure. Practical methods to deal with the hard case

is the subject of Section §2.5.

2.4.2 Solving TRS

If A >- 0 and IIA-lall < 1, then a solution to (2.2) or (2.4) is no longer optimal for

(2.1). Our strategy is nevertheless to assume a priori the optimum of (2.1) lies on the

boundary of the unit baIl. As we show in this section, we are able to check implicitly

if the two latter conditions hold from the information available at the iterates of our

algorithm.

Recall in problem (2.4) we have reset the matrix A to Ar. This is done in our

algorithm only if Àl (A) s 0 for a reason to be made clear in Section §2.5.2. If this

case holds, we set fJ, = Àl(A) (to keep the smallest eigenvalue in memory) and reset

A - Ar. Otherwise, if Àl (A) > 0, we do not reset A and set fJ, = O. Note if the latter

case holds that the different cases for the equality trust-region subproblem (2.2) are

obtained by replacing A by A - Àl(A) in Table 2.1. Making this change gives Table

2.2.

No matter if A is reset or not in our algorithm, problem (2.2) or (2.4) may be

equivalently solved by solving problem (2.13). However, the choice of the parameter

5. which defines B will be different in either cases and we shall have B = A - (/1 + 5.)1.

We now show how we implicitly detect, as we are solving problem (2.13), when

an unconstrained minimizer of problem (2.1) lies in the interior of the unit baIl. Let

'Y < 1 and assume if the hard case holds that 'Y > i. From (2.30a) and (2.30b), if

2.4 Constructing an Optimal Solution 35

Easy case Hard case 1 Hard case 2

a J N(A - À1(A)I) a..l N(A - À1(A)I) a..l N(A - À1 (A)I)

and and

(implies'* < À1(A)) À* < À1 (A) À* = À1(A)

(i) II(A - À1(A)I)ta ll = 1

(ii) II(A - À1(A)I)ta ll < 1

Table 2.2: The three different cases for the equality trust region subproblem (2.2)

À1(Bb)) +), + fJ > 0, then

(A - (fJ +), + Àl(Bb)))I)xb) = a,

A - (fJ +), + À1(Bb)))I t 0,

and if À1(Bb)) +), + fJ > 0, then xb) solves

min q(x) = xT Ax - 2aT x

S.t. Ilxll ~ Ilxb)11

with Lagrange multiplier À1(Bb)) +), + fJ. Now assume J'b) < 0, so that, by

Lemma 2.7, Ilxb)11 < 1. Therefore, xb) minimizes q over the exterior of a baIl with

radius smaller than one. The sign of the Lagrange multiplier for x('"Y) implies it is also

unique. Thus an unconstrained minimizer of q exists and lies in the interior of the

unit baU. In particular, this implies A is positive definite. Hence, in our algorithm, if

'"Y satisfies aU the conditions mentioned, we return A-la, computed using a conjugate

gradient method.

36 Global Minimizers

2.5 Handling the Hard Case

This section discusses how our algorithm deals with the hard case. As stated in

Corollary 2.2, in the hard case 1, we may always solve f'('y) = 0 to obtain "/* and, by

(2.34), x*. In the hard case 2(i), is it also possible to obtain a nearly optimal solution,

sinee f'C:Y+) = O. However, in the hard case 2(ii), we encounter sorne difficulty, sinee

f'('y) is bounded away from zero. This is caused by f'C:y+) < o. Similarly, Ilx('y)II,
for "/ > 1', is bounded away from 1. This is in relation with our remark at the end of

Section §2.1 on Ilx(>')II. Thus, the hard case needs to be handled without having to

rely on solving either f'('y) = 0 or /lx('y)/I = 1.

2.5.1 Stepping ta the baundary

One of the way we treat the hard case is based in flavor on [32, Lemma 3.4], which

is restated later on as Lemma 2.10. Given any vector x which does not lie on the

boundary of the unit baIl, our intention is to move to the boundary and obtain

a feasible solution for (2.4) (or (2.2)) and (2.37), where the duality gap (2.38) is

decreased. The following lemma [9, 10] provides a way to achieve this goal given two

points x('y) on each side of the boundary of the unit baIl.

Lemma 2.8. Let 0 < ~l < 1 < ~2 and let

Xh E argmin{r2(x) : /lxlI 2 ~l}

Xe E argmin{r2(x) : /lxll 2 ~2}

(2.39a)

(2.39b)

Assume /lxh/l = ~l, /lxe/l = ~2, xI(xe - Xh) =1= 0 and the Lagrange multiplier >.

for problem (2.39a) satisfies B - >'1 ~ O. Let m(Q) := r2 (xh + Q(xe - Xh)). Then

m'(Q) ~ 0, forQ E [0,1], and therefore r2 (xh+ Q(X e-Xh)) :S: r2 (Xe), forQ E [0,1]. In

particular, fora E [0,1] su ch that /lXh+a(Xe-Xh)/I = 1 we have thatXh+a(Xe-Xh)

is feasible for (2.37) and has a sm aller objective value than Xe. 0

2.5 HandIing the Hard Case 37

Define the hard side and the easy side respectively as the side of function f where

f'h) < 0 and f'h) > o. Assume we are given two values ofthe variable " Ih and le,

respectively on the hard side and the easy side, such that both are strictly greater than

-y if the hard case holds. Then, according to Lemmas 2.6 and 2.7, Xh := Xhh) and

Xe := xhe) satisfy respectively (2.39a) and (2.39b), with ~I = IIxhll and ~2 = IIxell·

Note ~I < 1 < ~2. Furthermore, by Lemma 2.6, À I (Bhh)) is the Lagrange multiplier

for Xh and, by items 1 and 2(c) of Lemma 2.5, B-ÀI(Bhh))I >- O. Thus, ifwe assume

xI{xe - Xh) i= 0, the use of Lemma 2.8 is clear: let

(2.40)

and define

(2.41)

Thus, Xnew is feasible for (2.4) (or (2.2)) and (2.37), and r2(xnew) ::; r2(xe).

One problem with (2.41) is its inapplicability in the hard case 2. Indeed, any le

on the easy side satisfies le ::; -y. In this case we take a step to the boundary from Ih

in the direction of an eigenvector of ÀI(A), say qI, as suggested by (2.6) and Lemma

2.10. Namely,

where
1 - IIxhll2

ct = ~---:~---;=:;;~:;::::====;::=::;;:: xr qi + l:t~~1 V(xr qI)2 + (1 - II xhll 2)

(2.42)

(2.43)

Note the choice of ct in (2.43) is driven by the desire to make r2 (xh + ctqI) as small

as possible. There is a nice semidefinite programming duality theory based on (2.2)

which reinforces the choice of qi as a step direction [39, pp. 279J. Using [29, Lemma

3.4], we may also show, when À 1 (A) < 0, that ql points in the direction of a solution

of (2.1) for an infinitely large~. However, a simple argument for justifying a step

toward qI, is that q(x) decreases along qi far from the origin.

38 Global Minimizers

The two steps to the boundary we described are designed to handle the hard case

2(ii), but note we have not assume this case holds. In fact, stepping to the boundary

is quite often beneficial even in the other cases and we use (2.41) and (2.42) whenever

this step decreases the duality gap (2.38).

2.5.2 Shifting the eigenvalues of A

The authors in [10] have shown problem (2.4) may be solved by solving instead an

equality constrained TRS where the easy case holds. The optimal solution to this

latter equality constrained TRS is either identical to the optimal solution of problem

(2.4) or is equal to (Ar)ta and lies within the unit baIl. In both cases, we may easily

recover the optimal solution to problem (2.4). The key result is that we may avoid

the hard case 2(ii). In this section, we show that shifting the smallest eigenvalues of

Ar') which have an eigenspace orthogonal to a, pro duces the desired easy case TRS

mentioned above. We assume for the rest of this section the hard case holds for

problem (2.4).

When, < 1', if v - vb) satisfies (2.14), recall (2.25) is satisfied. We may assume

v = ql. In our algorithm, we use v to shift eigenvalues in the spectral decomposition

of B. The following lemma shows how the function ÀI(Bb)) changes.

Lemma 2.9. Let B:= B + I:;=i,Bjqjq;, where,Bj ~ O. Define

ml '- min(Àj(B) + ,Bj : j = 1, ... ,S - 1),

m2 '- ÀI(D(,)),

then ÀI(Bb)) = min(ml,m2)'

Pro of. Replace in (2.16) Bb) by Ëb) and Àj(B) by Àj(B) + ,Bj, j = 1, ... , S - 1.

The conclusion follows similarly to how Lemma 2.3 was deduced. o

Corollary 2.3. If,Bk = 0, for some k = 1, ... ,i, then ÀI(Bb)) = ÀI(Bb))·

2.5 Handling the Hard Case 39

Pra of. In Lemma 2.9 we obtain ml = ÀI(B). The conclusion follows from Lemmas

2.3 and 2.9. D

Now let VI := V, where V is the vector mentioned above. If i = 1, then we have

constructed a basis for span {q1}. If i > 1, and we reset B to B + {3VI vi, where we

choose (3 > 0, Corollary 2.3 implies the function ÀI(B(')')) has not changed. Hence,

f(')') has not changed. What has changed is the multiplicity of ÀI(B), which is now

i-1. Therefore, if as previously, for)' E (-00,1), we compute a unit vector V2 := v(')'),

which satisfies (2.14), then V2 is a unit eigenvector for ÀI(B). We may assume V2 = Q2.

It is also perpendicular and linearly independent from VI. Repeating this process i

times we obtain i orthonormal eigenvectors VI, ... , Vi, a basis for span {ql, ... , qi}, and

we may assume Vj = qj, j = 1, ... ,i. However, doing the last perturbation

(2.44)

will change f. Namely, the function may either be everywhere differentiable or non­

differentiable in 1new, a value we define shortly. If ml 2::: Às(B), f changes to l(')') :=

)'ÀI(D(')')), for)' < 1, and is thus everywhere differentiable. Otherwise, we define

1new as the solution to ÀI(D(')')) = ml and f changes to 1 defined as

if)' ~ 1new,
(2.45)

if 1new <)' < 1.

This is illustrates in Figure 2.6.
1

Because we choose (3j > 0 for j = 1, ... , i, then ml > À1 (B) and Lemma 2.4

implies 1new < 1. Therefore, for)' < 1, 1 has a slope which is greater than the slope

of f. Note maximizing lover (-00,1) has the same optimal value as min{xT(À)x-

2aT x+aT (.B)-la- >-: Ilxll = 1}, where À:= Ar+ ~~=1 {3jqjqJ and.B is defined as in

Lemma 2.9. The latter problem may not have the same optimal value as (2.2), since

1 does not necessarily have the same optimum as f. From (2.45) and Corollary 2.2,

40 Global Minimizers

18

16

~ ,.
;:l

......... 12

~
~'0

•

Figure 2.6: The figure illustrates how f changes to j. In the cases illustrated,

ml < Às(B).

the optimums will differ if and only if the hard case 2(ii) occurs. If this case holds

and Àl(A) ~ 0 (so that A has been reset to Ar), Table 2.1 yields IIAtal1 < 1. Renee,

Ata is the optimal solution to

smce

min q(x):= xT(À)x - 2aT x + aT(iJ)-la - ~

S.t. Ilxll ~ 1,

i

(Ar + 'L!3jQjQJ)- l a = À-la.
j=l

(2.46)

(2.47)

Therefore, the optimal solution to (2.46) is the unconstrained minimizer of q. By

(2.6), an optimal solution to (2.4) is recovered from

(2.48)

where k E {1, ... , i} and where Œ is chosen such that Ilx*11 = 1. Thus the optimal

solution to (2.1) and (2.2) is x* with Lagrange multiplier Àl (A). Note for "Y E (1'new, 1')

2.5 Handling the Hard Case 41

such that lb) s:; 0, À1(1~b))+>' > 0 and Ilib)11 < 1, where ib) = (l-"()/(aTv)Bv

and where v solves (2.14) with B replaeed by È. Thus, the theory of Section §2.4.2

applies and we will be able to detect the optimum of (2.46) is the unconstrained

minimizer of ij.

As mentioned in Section §2.4.2, if À1 (A) > 0, then we do not reset A to Ar. Recall

from that section the choiee of ..\ is different, but the theory of Section §2.2 is still

valid. In particular, problem (2.2) may be equivalently solved through problem (2.13).

Again the optimum of f and j will differ if and only if the hard case 2(ii) (see Table

2.2) holds for problem (2.2). However, and optimal x* for the latter problem, with

Lagrange multiplier À1(A), is not in this case the optimal value of (2.1), sinee the

Lagrange multiplier À * at an optimal solution satisfies À * s:; O. Henee, the solution to

problem (2.1) in this case is the unconstrained minimizer of q which lies in the interior

of the unit ball, i.e. IIA-1all < 1 and its Lagrange multiplier is zero. Now A-la is the

optimal solution of problem (2.46), with A := A + I:~=1 {3jqjqJ. Similarly to (2.47)

we have A-la = A-la. Again, for "(E (i'new,'Y), where 1 solves ÀI(Bb)) +..\ = 0, and

for "(such that lb) s:; 0, we have ÀI(Èb)) +..\ > 0 and !!ib)!! < 1. We will thus

be able to detect the optimum of (2.46) is the unconstrained minimizer of ij, which

is also in this case the unconstrained minimizer of q.

We may always make (2.46) an easy case TRS by choosing the {3j, j = 1, ... ,S -1,

large enough so that ml 2: Às(B) holds. As we have shown, in this case, (2.46)

possesses one (and only one) of the two following properties: 1) When À1 (A) s:; 0

(À1(A) > 0), the optimal solution x* of problem (2.4) (problem (2.2)) is the same

as the optimal solution of problem (2.46) if and only if the hard case 2(ii) do es not

hold for problem (2.4) (problem (2.2)); 2) the optimal solution of problem (2.46)

is A~a (A-la) and lies in the interior of the unit ball if and only if the hard case

2(ii) ho Ids for problem (2.4) (problem (2.2)). However, in our algorithm, we do not

foree ml 2: Às(B) as this is not neeessary for our needs. Mainly, choosing {3j > 0,

42 Global Minimizers

j = 1, ... ,i is enough for (2.46) to possess the desired property 1) or 2).

Note when the hard case 1 or 2(i) occurs and a solution lies on the boundary of

the unit baIl, the previous shifting procedure is still useful, since once we have done

(2.44), (-00, 1'newJ C (-00, 1'J. Hence, the interval on the easy side where lies the

desired "le of Section §2.5.1 is enlarged.

As a final remark, it should be understood that Section §2.5.1 provides a reliable

way of treating the hard case and that what is additionaUy propose in this section is

used to accelerate convergence in the hard case. We do not pretend that it is required

to compute a basis of eigenvectors for the eigenvalue À1(A) to handle the hard case,

especiaUy if i is large. Whenever an eigenvector v for À 1 (B ("()) is computed and that

laT vi faU below sorne tolerance, we consider this as an indicator of the hard case

and we reset B to B + (3vvT
, where we chose (3 = max1~i~n Bii as it is done in the

Rendl-Wolkowicz Algorithm [lOJ. If the multiplicity of À 1 (A) is large, this is unlikely

to enhance the performance of the algorithm in the hard case (since we need i shifts,

i.e. at least i iterations, to modify 1) and we rely on taking steps to the boundary

from hard side points to converge to an optimal solution. However, if i is smaU and

through the iterations we are able to compute a basis of eigenvectors for À1(A), then

we are able to modify f in order to speed up our search of an approximate solution.

2.6 Further Implementation Issues and the AIgo­

rithm

Before stating our algorithm, we still need to discuss precisely how we intend to

maximize f and update the information at a newly chosen value of "l, which we denote

bY'Ynew. We denote the upper and lower bounds on 'Y* by 'Yu and 'YL. Analogously,

let the bounds on T'b be T'~ and T'l. RecaU from Section §2.5.1 we denote by "le and

"Ih values of "1 which lie respectively on the easy and hard side.

2.6 Further Implementation Issues and the Aigorithm 43

2.6.1 Choosing À

We first need to specify a choice of), which satisfies the inequalities (2.7). First,

suppose first A has been reset to Ar. For), to satisfy (2.7a), we need), < o. Assume

this holds. We have, using B = QT(D -),1)Q,

Il -1 112 ~ (qJ a) 2 1 ~ T 2 1 2
B a = ~ (/\(A

r
) _ À)2 ::; (À1(A

r
) _ À)2 ~(qj a) =),211all .

Thus if we choose), = -Ilall, then the inequalities (2.7) are satisfied. Second, suppose

À1 (A) > 0 and problem (2.2) is being solved. Then a similar analysis shows), =

À1(A) - Ilaii will satisfy as well the inequalities (2.7). Note that in both cases B =

A - (À 1(A) -llall)I. Thus problem (2.13) is the same no matter if Ais reset to Ar or

not.

2.6.2 Initializing the Bounds

We now derive initial bounds on r~ and ,*. Trivially, we obtain

(2.49)

Hence, we let ri = 0 and r~ = Ilail. We have already obtained in Section §2.2 bounds

on ,*, namely 0 ::; ,* ::; 1 - IIB-1aI12. We initially let ,u = 1 - IIB-1aI12, but a

better lower bound on ,* may be obtained using the optimality conditions for the

semidefinite program (2.11).

Define

In B-1a 0 o 0 0

C:= aT B-1 1 0 ,Al :=

0 0 0 o 0 B

Henee, problem (2.11) may be rewritten as max{r : C + rAI + ,A2 t: O} and its dual

as

min{tr (Cn) : tr (AIn) = -1, tr (A2n) = 0, nt: O}. (2.50)

44 Global Minimizers

Note it is easy ta show bath semidefinite programs (2.11) and (2.50) are strictly

feasible. Therefore, both semidefinite programs are solvable and there is a zero duality

gap. Moreover, since the variables rand "(which satisfy the constraint of problem

(2.11) are bounded, it may be approximately solved in polynomial time with a path

following interior point method. A necessary and sufficient optimality conditions for

(2.11) and (2.50) is the complementary slackness equation

where 0* is optimal for (2.50). Let

M* m* N*

0* := m*T p* g*T

N* g* T*

(2.51)

(2.52)

where M*, N* and T* are n x n matrices, m* and g* are n x 1 vectors and p* is a

scalar. Feasibility of 0* yields

tr (N*) = -1/2 and tr (T* B) = p*.

Optimality of 0* and (ra, "(*) yields

ra = tr (CO*) = tr (M*) + 2m*T B-1a + p*.

From (2.51), it may be deduced

ratr (N*) + "(*tr (T* B) = 0,

m*T B-1a + p*(1 - "(*) = O.

Equations (2.53) and (2.55a) yield

* ra
p = 2"(*;

(2.53)

(2.54)

(2.55a)

(2.55b)

(2.56)

2.6 Further Implementation Issues and the Algorithm

equations (2.55b) and (2.56) yie1d

and equations (2.54), (2.56) and (2.57) yield

tr (M*) = 2rc .
"'1*

45

(2.57)

(2.58)

Since [2* t 0, the top 1eft matrix of dimension n + 1 in (2.52) is positive semidefinite,

and applying Lemma 2.2, with N = p* (note p* > 0), gives M* - ~m*m*T t O.
p

Taking the trace on both sides and using (2.56) and (2.58), we obtain

Ilm*11 ~ ;~*' (2.59)

From Equations (2.57) and (2.59), and the Cauchy-Schwartz inequa1ity

(2.60)

These inequalities give 1 -IIB-lall ~ "'1*. We thus set "'IL = 1 - IIB-lall·

2.6.3 Updating the bounds

We now discuss how we may update the bounds on "'1* and rb assuming the values of

J and its derivative J' are avai1ab1e at "'le and "'Ih (in our algorithm, these values of "'1

are respectively equal to "'IL and "'lu). The techniques we used are exactly those used

in [10, 39] with the function k(t) and we keep the same terminology.

To update the bounds on "'1*, we use a technique called vertical eut. Assume

Jhe) > Jhh)' (A similar argument holds for the reverse inequality.) We find the

intersection of the horizontal line through he, J he)) with the tangent line at the

point ("'(h, f("'(h)). Using the concavity of f, it is not hard to see we may update 'Yu

to:

46 Global Minimizers

3.5

l~b ~J't ~~)~ side points

~ ;:12.5

1
1 2,

1.5

0.5

00~~0.'--~0~.2--~0.3---0~.4--~~~~~-lu-~~·6--~07--~~~09--~

Figure 2.7: Vertical cut

Similarly, if the reverse inequality holds, we update IL. This technique is illustrated

in Figure 2.7.

To update the bounds on rb, we may trivially set r~ = max{Jbe), Jbh)}' An

update on r~ is obtained through triangle interpolation. Let i be the 1 coordinate

of the point where the two tangent lines to J at le and Ih intersect. Then, from the

concavity of J, we set r~ f- min{r~, Jbh) + f'bh)(i - Ih)}' This is illustrated in

Figure 2.8.

2.6.4 Generating a new iterate

At each iteration of our algorithm, we find a new iterate Inew E (,L, 'U) which is a

better approximation to 1*' As mentioned at the beginning of Section §2.5.1, unless

the hard case 2(ii) occurs, problem (2.13) may be solved by finding the root to the

equation f'b) = 0 (see Figure 2.9). Similarly to [10, 17, 32, 39], we find instead the

root to the function

(2.61)

2.6 Further Implementation Issues and the Algorithm

o interpolation points
4 • (-ynew,r~)

- 1(,,;)
,'t , \

3.5

'" 3 §
~2.5

1
'+-,

1.5

0.5

Figure 2.8: Triangle interpolation

47

This is clearly equivalent. This function has the advantage not to have an asymptote

at 'Y = 1, thus it is in sorne sense less non-linear than f'b) and interpolating on 'l/J

will provide better estimates of 'Y* (see Figure 2.10). Therefore, we will use, whenever

possible, inverse linear (or quadratic) interpolation on 'l/Jb) = 0 to obtain a better

approximation to 'Y*. Suppose we have computed the points ('l/Ji, 'Yi), i = 1,2,3. Then

we solve the system

'l/Jî 'l/Jl 1

'l/J~ 'l/J2 1

'l/J~ 'l/J3 1

a

b

'Yint

and get the new estimate 'Ynew = 'Yint, if 'Yint E bL' 'Yu), We use the top 2 x 2 system

in the linear interpolation case.

To generate a new iterate, we may also use triangle interpolation and set 'Ynew =)'.

This has the advantage to provide an update even in the hard case 2(ii).

2.6.5 The Aigorithms

We are now ready to outline our main algorithm. We write the titles of the sections

and subsections in capitalletters. The algorithm solves (2.1), but focuses on solving

48 Global Minimizers

00 4
Q)
;::l 2 -~
1 0 «-. -2

-4

-6
-8

* -10 0 0.1 0.2 0.3 0-y-vailles 0.6 0.7 0.8 0.9

Figure 2.9: "(* may be obtained by solving f'b) = o.

00 4
Q)
;::l - 2
~
~o

-2
-4

-6

-8
'lj;b)

* b*,O)
-10 0 0.1 0.2 0.3 0-y-vailles 0.6 0.7 0.8 0.9

Figure 2.10: "(* may be obtained by solving 'Ij;("() = O. The function has the advantage

to be less nonlinear than f' ("().

(2.2) or (2.4). If À1(A) :S 0 we set f.J, = À1(A) and reset A to Ar; otherwise, f.J, = 0

and A is left unchaI;ged. In either case, this is equivalent to resetting A to A - f.J,I.

We rely on the theory in Section §2.4.2 if an unconstrained minimizer exists for

problem (2.1) or the shifted problem (2.46). In the affirmative case, our algorithm

halts and returns a solution to (2.1) using a conjugate gradient method and stepping

to the boundary using (2.48) if needed wh en the hard case 2(ii) holds, the shift (2.44)

2.6 Further Implementation Issues and the Algorithm 49

has been done and (2.46) is being solved.

Our algorithmhas mainly four input pàrameters Ek , k = 1,2,3,4. The first two

parameters are respectively the toleranee we allow on the relative duality gap and on

the length of the interval of uneertainty h'L, ,u 1 for ,*. We stop whenever, one of these

two quantities falls below the tolerance. The third parameter is used as an indicator

of the hard case. SpecificaIly, if v(J) solves (2.14), then we use the appropriate

techniques to handle the hard case whenever Iv(Jf al < E3' The fourth parameter is

used to check if a is nearly zero. The output returned is ,*, x* and À *, where the

latter quantity is the Lagrange multiplier for (2.1). Theorem 2.3 suggests we should

set À* = Àl(B(J*)) + ~ + fJ,. This is ide al if we return x* = x(J) for, close to the

optimal ,*. However, x* may be returned after having taken a step to the boundary,

i.e. x* is nearly optimal, but the current value of, may not be. Note the stationarity

equation (A - (À* + fJ,)I)x* = a and Ilx*11 = 1 imply À* = x*T Ax* - aT x* + fJ,. We

prefer the latter formula for À*, sinee it is more suitable if we want (x*, À*) to satisfy

stationarity.

Algorithm 2.6.1.

1. INITIALIZATION

1.1. Compute Àl(A) and a corresponding unit eigenvector ql'

1.2 If Ilaii :::; E4 and Àl (A) ~ 0, exit and return x* = 0, À* = O.

1.3 If Ilaii :::; E4 and Àl(A) < 0, exit and return x* = ql, À* = Àl(A).

1.4. If Àl(A) > 0, let fJ, = 0, ~ = Àl(A) -Ilall, B = A - ~I and x = ql.

1.5. If Àl(A) :::; 0, let fJ, = Àl(A) and ~ = -Ilail. Reset A +- A - Àl(A)I and let

B = A - ÀI.

1.6. Set 'L = 1 -IIB-lall, ,u = 1 -IIB-laI1 2
, ri = ° and r~ = Ilall·

1.7. If Iqf al < E3, do fJ = maXl::;i::;n Bii, B +- B + fJqlqf, ,5 = 1 and

r~ = f3 + Ilail. EIse, do s = ° (s indicates if a shift has been done).
2 2

2. ITERATION: While ;+I~(x~1 > El and ,u -'L > E2·

50 Global Minimizers

2.1. FIND A BETTER ApPROXIMATION TO 'Y* AND UPDATE THE BOUNDS.

2.1.1. Do triangle interpolation if Xe and Xh have been defined (see §2.6.3 and

§2.6.4); update rb and obtain 'Ynew.

2.1.2. Do vertical cut if Xe and Xh have been defined (see §2.6.3): update 'YL

or 'Yu.

2.1.3. Do linear or quadratic inverse interpolation on 'l/Jh) if at least two

points are available (see §2.6.4): obtain 'Ynew.

2.1.4. If 'Ynew ~ hL, 'Yu), set 'Y = hL + 'Yu)/2. Else, set 'Y = 'Ynew·

2.2. UPDATE THE INFORMATION AT 'Y.

2.2.1. Compute Àl(Bh)), fh), f'h) and a corresponding generalized

eigenvector v which satisfies (2.14).

2.2.2. If fh) > ri, do ri = fh)·

2.2.3. If f'h) < ° h is on the hard side), do:

2.2.3.1. Let 'Yh = 'Y, Vh = v, Xh = ~-:;'7;Bv and 'Yu = 'Y.

2.2.3.2. If Àl(Bh)) +:\ + (1 - s)JL > 0, exit the algorithm and return

(A-la,O) if S = 0,

(X*,À*) = ((B+:\I)-la+Œql,JL) if s=landJL<O"

((B + :\I)-la, JL) if s = 1 and JL = 0,

where Œ is defined from (2.43), substituting Xh for (B + :\I)-la.

2.2.3.3. If Xe has been defined and Ivr al 2: E3, use (2.41) to obtain Xnew·

Else , use (2.42) to obtain Xnew.

2.2.3.4. If q(xnew) < q(x), do X = X new , rb = r2
(x).

2.2.4. If f'h) > ° h is on the easy side), do:

2.2.4.1. Let 'Ye = 'Y, Ve = v, 'YL = 'Y.

2.2.4.2. If IvT al < E3, do f3 = maxl::;i::;n Bii' B - B + f3vvT
, S = 1 and

rb = f3 + Ilall· Else, do Xe = ~-:;'7;Bv.

2.2.4.3. If Xh and Xe have been defined use (2.41) to obtain Xnew. Else,

2.6 Further Implementation Issues and the Aigorithm 51

X -~
new - IIxell'

2.2.4.4. If q(xnew) < q(x), do x = X new , r~ = r 2 (x).

3. RETURN THE OUTPUTS: r* = r, x* = x and À* = x*T Ax* - aT x* + /1.

We now consider a simplified version of the previous algorithm for which we are

able to provide convergence results. We also change our stopping criteria and use

the ones introduced by Moré and Sorensen [32]. Our analysis follows closely the

convergence analysis they provided for their algorithm. In our simplified version of

Aigorithm 2.6.1, we do not reset A, we do not shift the eigenvalues of A and we do

not consider the bounds on rb. The initial parameters are 0'1 and 0'2 in (0,1), and

P E (0,1/2).

Aigorithm 2.6.2.

1. INITIALIZATION

1.1. Compute Àl(A) and a corresponding unit eigenvector ql.
1.2 If Ilaii = a and Àl (A) ~ 0, exit and return x* = 0, À* = O.

1.3 If Ilaii = a and Àl(A) < 0, exit and return x* = ql, À* = Àl(A).

1.4. Let ~ = Àl (A) - Ilali and B = A - ~I.

1.5. Set rL = 1 - IIB-lall, rU = 1 - IIB-laI1 2
.

1.6 Let c = a (number of consecutive points from the easy and hard side).

2. ITERATION: Repeat this step until termination

2.1. FIND A BETTER ApPROXIMATION TO r* AND UPDATE THE BOUNDS.

2.1.1. Do triangle interpolation if Xe and Xh have been defined (see §2.6.3 and

§2.6.4); obtain rnew.

2.1.2. Do vertical cut if Xe and Xh have been defined (see §2.6.3): update rL

or 'Yu.

2.1.3. Do linear or quadratic inverse interpolation on 'ljJ(r) if at least two

points are available (see §2.6.4): obtain rnew.

52 Global Minimizers

2.1.4. If c = 4 and (-rh is not defined or "lu < "Ih), then "1 = "lu·

Else, if "Inew ~ bL + p('yu - "IL), "lu - p('yu - "Id], let "1 = ('yL + "lu)/2,

otherwise let "1 = "Inew·

2.2. UPDATE THE INFORMATION AT "1.

2.2.1. Compute ÀI(B(-r)), f('y), f'('y) and a corresponding generalized

eigenvector v which satisfies (2.14).

2.2.2. If f'('y) < ° ('y is on the hard side), do:

2.2.2.1. Let "Ih = "l, Vh = v, Xh = ~-:;'ZBv, "lu = "1 and c = min{ -1, c - 1}.

2.2.2.2. If ÀI(B('y)) +.\ > 0, exit the algorithm and return

(x*, À*) = (A-Ia,O).

2.2.2.3 If Il -llxhlll :::; al and ÀI(B('y)) +,\ :::; 0, exit and return

(x*, À*) = (Xh, ÀI(B('y)) + '\).
2.2.2.4. Let z = ql and compute a from (2.43).

If a2zT(B - ÀI(B('y))I)z:::; al(2 - ad max{a2,xra - (,\ + ÀI(B('y)))},

(x*, À*) = (Xh + az, X*T Ax* - aT x*). Exit the algorithm.

2.2.2.5. If Xe has been defined and vI a =1- 0, let z = II~::::~~II and compute

a from (2.40).

If a2zT(B - ÀI(B('y))I)z:::; al(2 - ad max{a2,xra - (,\ + ÀI(B('y)))},

(x*,À*) = (Xh +az,x*T Ax* - aTx*). Exit the algorithm.

2.2.3. If f'('y) > ° (-r is on the easy side), do:

2.2.3.1. Let "le = "l, Ve = v, "IL = "1 and c = max{l, c + 1}.

2.2.3.2. If vT a =1- 0, Xe = ~-:;'Z Bv.

2.2.3.3. If Il -lixelii :::; al and ÀI(B(-r)) +.\ :::; 0,

(x*, À*) = (Xe, ÀI(B('y)) + .\). Exit the algorithm

2.2.3.4. If Xh and Xe have been defined and vI a =1- 0, let z = IIXe-Xhll and
Xe-Xh

compute a from (2.40).

If a2zT(B - ÀI(B('yh))I)z :::; al(2 - al) max{a2' xra - (,\ + ÀI(B('yh)))},

2.7 Convergence Results 53

(x*, À*) = (Xh + az, X*T Ax* - aT x*). Exit the algorithm.

2.7 Convergence Results

For our convergence analysis, we shaH need the foHowing lemma proved by Moré and

Sorensen [32, Lemma 3.4].

Lemma 2.10. Let 0 < (J < 1 be given and suppose that A - ÀI >- 0, (A - ÀI)x = a

and À ~ O. Let z E]Rn satisfy

then

-q(x + z) 2:: (1- (J)(xT(A - ÀI)x - À) 2:: (1 - (J)lq*l, (2.63)

where q(x) = xT Ax - 2aTx and q* is the optimal solution to problem (2.1).

Pro of. For any z E]Rn,

-q(x + z) = xT(A - ÀI)x - zT(A - ÀI)z - À(x + zf(x + z). (2.64)

For any z E]Rn which satisfy (2.62),

Moreover, if q* = q(x+z*), where Ilx+z*11 ~ 1, then equality (2.64) and zT(A-ÀI)z 2::

o implies

Iq*1 = -q(x + z*) ~ xT(A - ÀI)x - À.

The last two inequalities imply the result. o

54 G 10 bal Minimizers

If x and z satisfy the conditions of Lemma 2.10, then x + z is optimal if q* = O.

otherwise q* < 0 and x + z is nearly optimal, i.e.

q(x + z) - q* <
/q*/ _ (J.

We now prove Algorithm 2.6.2 terminates in a finite number of iterations.

Lemma 2.11. Algorithm 2.6.2 teïminates in a finite number of iterations with a

solution x* which satisfies

q(x*) - q* < (J1(2 - (J1) max{/q*/, (Jd

/lx*/I < 1+(J1.

(2.65a)

(2.65b)

Proof. Suppose the contrary, i.e. that the algorithm does not terminate. Let {'Yd kEN

be the sequence of 'Y-iterates and denote by 'YLk and 'YUk respectively the current lower

and upper bounds on 'Y* after k iterations, where 'Y* is optimal for problem (2.13).

Notice the step 2.1.4 imply limk-+oo 'YUk - 'YLk = 0 and that there exist a subsequence

{'Ykj} of {'Yk} on the hard side such that limj-+oo 'Ykj = 'Y*. Such a subsequence exists,

since the step 2.1.4 insures that if the current interval of uncertainty ['YLk' 'Yukl for 'Y*

does not contain an iterate 'Yh from the hard side and that if the last four iterates

were on the easy side, then the next iterate is forced to be on the hard side.

First, assume the unique solution to problem (2.1) lies in the interior of the unit

baIl, i.e. A >- 0 and /lA- 1a/l < 1. Now recall, from Lemmas 2.3 and 2.4, that

lim)'1 (B b)) + 5.
"1-+ 1-

-00,

and that)'1 (Bb)) + 5. is a decreasing function on the interval (-00,1). Hence there

exists a unique solution in the interval (-00,1) to

2.7 Convergence Results 55

say ry. Note also that Ilx(ry)11 IIA-lall < 1 and thus, by Lemma 2.7, "1* < 1.

Henee for "1 E b*,1),)q(Bb)) + ~ > 0 and Ilxb)11 < 1. Thus for j large enough,

Ilxbj)11 < 1 and Àl(Bbj)) + ~ > 0 and the algorithm would terminate in 2.2.2.2 and

return the exact minimizer of problem (2.1), a contradiction.

Second, assume a solution to problem (2.1) lies on the boundary of the unit ball,

i.e. an optimal solution for problem (2.2) is optimal for problem (2.1). In particular

this implies

(2.66)

If the hard case 2(ii) does not occur for problem (2.2), then, according to Corollary

2.2, the right-hand derivative of fat "1* satisfies J'bé) = O. Thus limj--;oo J'bk j) = 0

and using Lemma 2.7 we deduce

(2.67)

Equations (2.66) and (2.67) imply that for j large enough the algorithm would ter­

minate in 2.2.2.3, a contradiction.

If the hard case 2(ii) occurs for problem (2.2), then limj--;oo Àl(BbkJ) = Àl(B).

Hence

(2.68)

and for j large enough the algorithm would terminate in 2.2.2.4, a contradiction.

Thus we have proved that Aigorithm 2.6.2 terminates in a finite number of itera­

tions and returns the couple (x*, À *), which satisfies either one of the three following

criteria:

1. 11-llx*111 ~ al, (A - À*I)x* = a, À* ~ 0, A - À*1 >- 0,

2. Ilx*11 ~ 1, Ax* = a, À* = 0, A>- 0,

56 Global Minimizers

3. x* = Xh + az, Ilx*11 = 1, À* = X*T Ax* - aTx*, (A - ÀhI)Xh = a, Àh S; 0,

A - ÀhI >- 0, a2zT(B - À1(B(-'yh))I)Z S; 0'1(2 - 0'1) max{0'2' xIa - Àh},

where Xh = X(-'yh), Àh := À1(B(-'yh)) + >. and 1h is on the hard side.

We now show that x* satisfies the inequalities (2.65). First, if the criteria of items

1 or 2 are satisfied, then Il - Ilx* III S; 0'1 implies

1-0'1 S; Ilx*ll,

1+0'12: Ilx*ll·

(2.69a)

(2.69b)

Note the last inequality is the same as (2.65b). Using (2.64) and (2.69a), we obtain

- q(x*) = -q(x* + 0) X*T (A - À* I)x* - ,* Ilx* 11 2,

> x*T(A-À*I)X*-À*(1-O'd2,

> (1 - 0'1)2(X*T (A - À* I)x* - À*). (2.70)

Now if the optimal solution to problem (2.1) is x* + z*, then again using equation

(2.64) and z*T(A_ À*I)z* 2: 0, we obtain

Iq*1 = -q(x* + z*) X*T (A - À* I)x* - Z*T (A - À* I)z* - À*

< X*T (A - À* I)x* - À*.

Combining the inequalities (2.70) and (2.71) yields

Henee

q(x*) - q* < 0'1(2 - O'dlq*l,

< 0'1(2 - 0'1) max{lq*l, 0'2}.

Finally note the last inequality is the same as (2.65a).

(2.71)

2.7 Convergence Results 57

Second, if the criteria of item 3 are satisfied, then consider first the case where

xr a - Àh > (J2. Then the assumptions of Lemma 2.10 are satisfied when (J is replaced

by (JI (2 - (JI) and thus the inequality (2.65a) holds.

Now suppose xra - Àh ~ (J2. If the optimal solution to problem (2.1) is Xh + z*,

then similarly to how the inequality (2.71) was obtained, we obtain

Combining the last inequality with equation (2.64) we obtain

q(Xh + az) -xnA - Àh)Xh + Àh + a 2zT (A - ÀhI)z,

< q* + a 2zT(A - ÀhI)z,

q* + a 2zT(B - ÀI(B(--Yh))I)z,

Now the inequalities (2.72) and (2.73) give

(2.72)

(2.73)

Henee equation (2.65b) is satisfied and notice equation (2.65a) is trivially satisfied. 0

Notice the assumption (J2 > 0 is important in the previous proof so that equations

(2.68) implies the algorithm eventually terminates ifthe hard case 2(ii) occurs in step

2.2.2.4. However, we may relax that assumption as shown in the following corollary.

Corollary 2.4. If (J2 = 0, then Algorithm 2.6.2 terminates in a fini te number of iter­

ations with either the optimal solution or a nearly optimal solution x* which satisfies

q(x*) - q*

Iq*1
Ilx*11

(2.74a)

(2.74b)

58 Global Minimizers

ProoJ. First, if q* = 0, then a = ° and À1(A) ~ O. Hence, the algorithm terminates

in the step 1.2 with the exact minimizer.

Second, if Iq*1 > 0, then notice, for "th on the hard side and Xh = X("(h) , that,using

equation (2.72), we obtain Iq*1 ~ xIa - (5; + À1(B("(h)). Hence, max{a2, xIa - (5; +
À1 (B("(h))) > Iq* 1 and thus, if the hard case 2(ii) occurs, equation (2.68) still forces

the algorithm to terminate in step 2.2.2.4. In the other easy and hard cases, the pro of

is identical to the one of Lemma 2.11. D

Typically, under appropriate conditions, trust-region methods will have a limit

point where the gradient of the function minimized is zero and thus where the first

optimality condition is satisfied. One possible condition is that at each iteration,

the approximate solution to the trust-region subproblem attains a reduction in the

quadratic model proportional to the reduction attained by the Cauchy point (the min­

imizer of q within the trust-region in the direction of steepest descent). To satisfy the

second-order optimality condition, one needs to make better use of the quadratic term

q. One possibility is that the approximate solution attains a reduction proportional

to the reduction attained by the exact minimizer of the trust-region subproblem. The

next Lemma shows equations (2.74) imply this result.

Lemma 2.12. If a2 = 0, then Algorithm 2.6.2 retums an approximate solution x*

which satisfies, for some /31 > ° and /32 > 0,

- q(x*) > /31Iq*l,

Ilx* Il < /32.

(2.75a)

(2.75b)

ProoJ. From Corollary 2.4, either x* satisfies equations (2.74) or it is the exact solu­

tion. In the first case, since -q(x*) ~ (1- a1?lq*l, let /31 = (1- ad 2 and /32 = 1 +a1·

In the second case, notice this choice for /31 and /32 is still valid. D

2.8 A 'frust-Region Method for Unconstrained Optimization 59

2.8 A Trust-Region Method for Unconstrained Op-

timization

This section is a summary of Section §4 in [32J. We are interested in solving the

unconstrained optimization problem

min f(x),
xERn

where f is a twice continuously differentiable function. The following algorithm is a

standard trust-region method for solving such problem.

Algorithm 2.8.1. Trust Region Method

1. Given Xj and tJ. j , calculate V f(xj) and V 2 f(xj). Stop if

IIV f(xj) Il <
1 + If(xj)1 E.

2. Find 6j, which approximately solves the following TRS:

6j E argmin qj(6):= Vf(xjf6 + ~6TV2f(xj)6

s.t. 116// 2
::; tJ.;.

4. (a) If rj > 0.95, set tJ.j+l = 2tJ. j and Xj+l = Xj + 6j.

(b) If 0.01 ::; rj < 0.95, set tJ.j+l = tJ.j and Xj+! = Xj + 6j .

(c) If rj < 0.01, set tJ.j+l = 0.5tJ.j and Xj+l = Xj.

(2.76)

(2.77)

If in step 2 of Algorithm 2.8.1 we use Algorithm 2.6.2 with (J2 = a to obtain an

approximation to 6j, then it follows from Lemma 2.12 that the Theorems of Section

§4 in [32J hold. We recall their results and the reader is referred to this paper for the

corresponding proofs.

The first Theorem says that if the level set of f at Xo is bounded, then a limit

point of the sequence {Xj} will satisfy first and second order optimality conditions.

60 Global Minimizers

Theorem 2.4. Let f : ~n -t ~ be twice continuously differentiable on the level set

n = {x : f(x) ::; f(xo)} and consider the sequence {Xj} produced by Algorithm 2.8.1,

where cSj in step 2 is obtained using Algorithm 2.6.2 to solve the TRS (2.77) with

al E (0,1) and a2 = O. If n is a compact set then either the algorithm terminates

at Xl because \1 f(XI) = 0 and \12 f(XI) t 0, or {Xj} has a limit point x* E n with

\1 f(x*) = 0 and \12 f(x*) t o.

The second theorem implies that if the limit point of the previous theorem sat­

isfies the sufficient second order optimality conditions, then the hole sequence {Xj}

converges to this limit point, eventually Algorithm 2.8.1 becomes Newton's method

and the quadratic model at each iterate is a reliable approximation of the function f.

The standard results of Newton's method on the rate of convergence thus apply.

Theorem 2.5. Let f : ~n -t ~ be twice continuously differentiable on the level set

n = {x : f(x) ::; f(xo)} and consider the sequence {Xj} produced by Algorithm 2.8.1,

where cSj in step 2 is obtained using Algorithm 2.6.2 to solve the TRS (2.77) with

al E (0,1) and a2 = O. If x* is a limit point of {Xj} and \12f(x*) is nonsingular,

then {Xj} converges to x*, \1f(x*) = 0 and \12f(x*) >- O. Furthermore, the bound

IlcSll ::; !:lj is inactive for sufficiently large j, rj -t 1, and {Xj} converges to x* at a

Q-superlinear rate of convergence. In addition, if \12 f is Lipschitz continuous then

the rate of convergence is Q-quadratic.

2.9 A Trust-Region Method for Constrained Op-

timization

Having considered a trust-region method for unconstrained optimization, we now

look at a trust-region method for solving an optimization problem with (possibly)

nonlinear objective, (possibly) nonlinear inequality constraints and linear equality

2.9 A Trust-Region Method for Constrained Optimization

constraints. Thus, we want to solve

mm f(x)

s.t. Ax = b

c(x) ;::: 0,

61

(2.78)

where x E IRn, A is an m x n matrix with full row rank, b E IRm and c(x) E IRP. We

assume that f (-) and c(·) are twice contiguously differentiable and that there exists

Xo such that Axo = band c(xo) > o. For ease of notation, if v is a vector, then V is

the diagonal matrix obtained from v. We denote by e the vector of an ones and Jk,j

is the Jacobian matrix for the inequality constraints, i.e.

(2.79)

\1cp (xk,jf

The algorithm we are about to present appears in Conn and al. [7] and is a primal­

dual trust-region method. The method is based on lifting the inequality constraints

in the objective through a log-barrier and aims at solving for J-lk ----t 0 the sequence of

problems

min cjJ(x, J-lk) := f(x) - J-lk 2:f=llog(Ci(X))

s.t. Ax = b.
(2.80)

It is primaI-dual since the method iterates on the primaI variable x and on a dual

variable z for the inequality constraints of problem (2.78). In addition to the log­

barrier, at each x-iterate, a trust-region forces the new iterate to stay in the set

{x : c(x) > O}. Since problem (2.80) is also solved iteratively, we shan denote by Xk,j

the x-iterate at the j-th iteration while solving this problem. A similar notation is

used for other variables and functions. Thus the index k refers to the outer iteration

and j to the inner iteration.

A key idea is to replace the function cjJ(x, J-lk) by an appropriate quadratic model,

the goal being to solve problem (2.80) through a sequence of trust-region subproblem

62 Global Minimizers

of the type (2.1). If rjJ(x, J.lk) is approximated by a quadratic model obtained from the

first three terms of a Taylor series expanded around Xk,j, we get

rjJ(Xk,j + !:::"Xk,j, J.lk) ~ rjJ(Xk,j, J.lk) + (\1 f(Xk,j), !:::"Xk,j) + 1/2 (!:::"Xk,j , \12 f(Xk,j)!:::"Xk,j)

-J.lk(Jl,jCï:,}e, !:::"Xk,j) + 1/2J.lk(!:::"Xk,j, JLCï:,J Jk,j!:::"Xk,j)
p 1

-1/2J.lk ~ Ci (Xk,j) (!:::"Xk,j, \12~(Xk,j)!:::"Xk,j). (2.81)

However, according to the comments in [7], this quadratic approximation does not

model the log-barrier function very weIl near the boundary of {x : c(x) ~ O}. This

has the effect in practice of slowing down convergence. Thus, the second order term

in (2.81) is replaced by a term whose growth is less dominant. Namely, the matrix

is replaced by

p

Wk,j := \12 f(Xk,j) + JLCï:,}Zk,jJk,j - :~::)Zk)i \12Ci (Xk,j) , (2.82)
i=l

where Zk,j is a bounded positive diagonal matrix. Thus the quadratic model of

rjJ(x, J.lk) at Xk,j is

(2.83)

Assuming AXk,O = b, then at the j-th iteration, we may obtain Xk,j+l by solving the

quadratic program

(2.84)
s.t. A!:::"Xk,j = O.

However, we have no guarantee the latter problem has a solution. This justifies

the addition of a trust-region constraint. This constraint will also be of use in the

2.9 A 'Trust-Region Method for Constrained Optimization 63

algorithm for enforcing c(Xk,j + .6.Xk,j) > O. Thus, at each inner iteration of the

algorithm, the trust-region subproblem

s.t. A.6.xk,j = °
Il.6.Xk,jll ::; .6.k,j,

(2.85)

is solved. Note if N is a basis for the null space of A, then the change of variable

.6.Xk,j = N Sk,j transforms the trust-region subproblem (2.85) exactly in the form

(2.1). Precisely, (2.85) may be solved if we can solve the TRS

min
Sk,j (2.86)

Before stating the algorithm, we consider another motivation for using the quadra­

tic model mk,j(xk,j, /-Lk)' Consider the first order optimality conditions for problem

(2.78), namely

\l f(x) + AT Y - J(xf z = 0, Ax = b, C(x)z = ° c(x) 2: 0, z 2: 0,

where Z and y are Lagrange multipliers. Now, if we perturb the complementary

slackness equation on the right hand side, introducing a perturbation /-Le > 0, we

obtain

\l f(x) + AT Y - J(xf z = 0, Ax = b, C(x)z = /-Le c(x) 2: 0, Z 2: O.

Let Yk,j+l = Yk,j + .6.Yk,j. Applying Newton's method to the previous system of

equations at sorne iterate (Xk,j, Zk,j, Yk,j) yields the system

(
tlXk,j) = _ (V' f(Xk,j) - ILkJ[,jC;,;e) ,

Yk,j+l °
(2.87a)

tlzk,j = -Zk,j - Ck,}Zk,jJk,jtlXk,j + /-LkCk,Je. (2.87b)

64 Global Minimizers

Now notice the system (2.87a) gives the first-order optimality conditions for problem

(2.84). This gives another motivation for replacing the second order term in (2.81)

by Wk,j' Equation (2.87b) will also be used to update Zk,j, but a proper safeguarding

procedure is used to guarantee Zk,j + !:lzk,j > O. We now outline the algorithm which

is split for convenience into its inner and outer iterations. We use PI[V] to denote the

component-wise projection of the vector v onto the interval I.

Aigorithm 2.9.1.

1. INITIALIZATION: An initial point Xo that satisfies Axo = band c(xo) > 0 is

given. Let Zo = poC(xo)-le. Set k = 0 and Po = 10.

2. ITERATION: While Pk > toI or k = 0

2.1. Let (k = lO-k and minimize the log-barrier function </J(x, Pk) starting

from (Xk, Zk) - (Xk,O' Zk,O) using Aigorithm 2.9.2 and obtain (Xk+1' Zk+l)

2.2. Pk+l = min(O.lpk, pP) and k = k + 1.

Aigorithm 2.9.2.

1. INITIALIZATION: An initial point Xk,O that satisfies AXk,o = band C(Xk,O) > 0,

a vector of dual variables Zk,Q > 0 and (k E (0.1) are given. Set j = 0 and

let !:lk,O = 10pk.

2. ITERATION: while IICk,jZk,j - Pkelloo > Pk'°l, IINT(V' f(Xk,j) - Jl,jZk,j) Il > Pk-°1

and À1(NTWk,jN) > -Pk-°1

2.1. Approximately solve the trust-region subproblem (2.85).

2 2 If c(x . +!:lx .) > l' c(x .) let . = </J(Xk,j,J.tk)-</J(Xk,j+!:"Xk,j,J.tk)
. . k,] k,] - ':,k k,], Pk,] mk,j(Xk,j,J.tk)-mk,j(Xk,j+!:"Xk,j,J.tk)·

Eise Pk,j = -00.

2.3. If Pk,j 2: 0.01, Xk,j+l = Xk,j + !:lXk,j' Eise Xk,j+l = Xk,j'

min(1020,max(2\\NTflXk,j\\,flk,j)), if Pk,j 20.9,

2.4. Set !:lk,j+l = if Pk,j E [0.01,0.9),

if Pk,j < 0.01.

2.10 Numerical Results

2.5. Let 'I = [1/2 min(e, Zk,j, fLkCk,Je) , max(1020e, Zk,j, 1020fL;;le, 1020 fLkCk,Je)].

Let D.Zk,j = -Zk,j - Ck,JZk,jJk,jD.Xk,j + fLkCk,Je.

_ { PI[Zk,j + D.zk,j] if Xk,j+l = Xk,j + D.Xk,j,
Let Zk,j+l -

Zk,j if Xk,j+l = Xk,j.

2.6. j = j + 1.

65

Although stating the convergence result for Aigorithm 2.9.1 would require a longer

exposure of the original paper than we want to give here, one may expect that a finite

limit point (x*, z*) will satisfy the optimality conditions for (2.78), namely

NT(V f(x*) - J(x*)T z*) = 0, Ax* = b, C(x*)z* = 0 c(x*) ~ 0, z* ~ 0,
p

(s, (V2 f(x*) - L Z;V2Ci(X*))S) ~ 0, for aU s EU,
i=l

where

As = 0, }

[J(X*)S]i = 0 if Ci(X*) = O.

2.10 Numerical Results

The goal of this section is to compare Aigorithm 2.6.1 with other existing TRS al­

gorithms, particularly the Rendl-Wolkowicz Aigorithm, and to briefly give results

obtained by using the trust-region algorithms 2.8.1 and 2.9.1 to respectively solve un­

constrained and constrained optimization problems. Although we believe the interest

in Aigorithm 2.6.1 is mainly theoretical, since we do not expect it to be faster or more

robust than other existing methods, our hope is that it can perform reasonably weIl.

AH algorithms were implemented using MATLAB 6.5 and computations were do ne

on a Pentium 4 at 1.8GHz with 256MB of memory (all codes may be found at the

following URL: www.math.mcgill.ca/rvfortin). Unless stated otherwise, MATLAB'S

implementation of ARPACK, the function eigs, was chosen to compute required

66 Global Minimizers

eigenvalues and eigenvectors and we used min(m/2, 40) basis vectors before each im­

plicit restart, where m is the size of the eigenvalue problem considered. Whenever

Algorithm 2.6.1 is used, E2 = 10-13 , E3 = max(10-S , EllO-6) and E4 = 10-13 .

2.10.1 Comparing different TRS algorithms

Our first concern is to use different algorithms for solving trust-region subproblems

(our test problems are similar to those used in [40]) and compare the performance

of Algorithm 2.6.1. We should not expect Algorithm 2.6.1 to perform better than

the Rendl-Wolkowicz Algorithm, since at each iteration we require eigs to com­

pute the smallest eigenvalue of a non-symmetric parameterized matrix (i.e. the ma­

trix B - 1/(1 - "()B-1aaT), where as the parameterized matrix D(t) in the Rendl­

Wolkowicz Algorithm is symmetric. It would also be possible to find instead the

smallest eigenvalue of the symmetric generalized eigenvalue problem (2.14), but in

the version of MATLAB used by the author, the function eigs did not return accu­

rate eigenvalue estimates on such problems. Nevertheless, this should also lead to

an algorithm at least as expensive as the Rendl-Wolkowicz Algorithm. However, our

hope is that Algorithm 2.6.1 is not much more expensive and that there is more than

just theoretical interest in the method.

The General Case

In the first experiment, trust-region subproblems were generated by choosing A =

1/2(L - 51), where L is the two-dimensional discrete Laplacian on the unit square

based upon a 5-point stencil with equally mesh points. The shift -51 makes A in­

definite. The components of the vector a and the radius ~ are randomly generated

and respectively uniformly distributed on the intervals (-2,0) and (0,100). We com­

pared Algorithm 2.6.1, the Rendl-Wolkowicz Algorithm (RW), the Moré-Sorensen

Algorithm (MS), the difference of convex functions algorithm of An and Tao [47]

2.10 Numerical Results 67

(DCA) and the generalized Lanczos trust-region method of Gould, Lucidi, Roma and

Toint [17] (GLTR). It should be noted that the GLTR and the DCA Aigorithms are

personal implementations in MATLAB by the author of this thesis. For each TRS

generated, we first computed an approximate solution with the GLTR Aigorithm and

stopped when the iterates (Xk, Àk) satisfied

(2.88)

or 40 iterations beyond the Steihaug-Toint point have occurred (see [17] for the rel­

evant terminology). For the last four algorithms, we stopped once a solution as

accurate was obtained. In the DCA Aigorithm, we have set p = 0.251IAIII'
We report the computation time, the number of matrix-vector multiplications and

the number of iterations (in case of the GLTR Aigorithm we report the number of

iterations beyond the Steihaug-Toint point) needed for each algorithm to converge.

Since the MS Aigorithm requires a Cholesky factorization at each iteration, the num­

ber of matrix-vector multiplications for this algorithm is irrelevant. The numbers

indicate the average obtained by generating five different TRS for each problem size.

Note this is also true for aIl numbers in the other tables that appear in this section.

The results appear in Tables 2.3, 2.4 and 2.5.

As we expected, Aigorithm 2.6.1 and the Rendl-Wolkowicz algorithm behave sim­

ilarly, although the latter algorithm uses less matrix-vector multiplications and con­

sequently its computation times are sm aller. This is obviously due to the fact that

the eigenvalue problems it has to solve are simpler. In terms of computation time, it

appears clear that the Moré-Sorensen algorithm becomes outperformed by aIl other

algorithms and we stopped testing the algorithm beyond the problem size 2500, be­

cause of the increasing time taken to compute the Cholesky factorizations. However,

when we compare the four remaining algorithms, we were surprise to observe how

quick the GLTR and DCA algorithms were and how few matrix-vector multiplica­

tions were needed to achieve the same accuracy obtained with the other algorithms.

68 Global Minimizers

Problem Size TRS Algorithm

GLTR Alg. 2.6.1 MS RW DCA

25 0.222 0.194 0.030 0.198 0.058

100 0.186 0.418 0.102 0.326 0.046

225 0.146 0.452 0.296 0.358 0.040

400 0.128 0.510 0.664 0.426 0.056

625 0.158 . 0.620 1.120 0.488 0.038

900 0.138 0.778 2.164 0.598 0.052

1225 0.126 1.050 3.852 0.802 0.080

2500 0.160 1.856 15.950 1.412 0.078

22500 0.512 24.474 - 16.500 0.360

62500 1.058 99.612 - 76.894 0.868

122500 2.104 262.320 - 207.542 1.770

Table 2.3: Computation times for different TRS algorithms on problems involving

the 2D discrete Laplacian.

Notice the DCA Algorithm required only 5 iterations and matrix-vector multiplica­

tions for the larger problems. It remains to see if such behavior can be observed in

the hard case 2ii).

The Hard Case 2ii)

In our second experiment, we wanted to test the performance of the TRS algorithms

on hard case 2ii) TRS. We chose A = 1/2U DUT with D diagonal, U = 1 - 2uuT and

Iluil = 1. The elements of D were randomly generated with uniform distribution on

(-5,5) then sorted in decreasing order and Djj set to -5 for j = 1, ... ,S, allowing

multiplicity S for the smallest eigenvalue of A. The eigenvalues of A are Djj with

2.10 Numerical Results 69

Problern Size TRS Algorithm

GLTR Alg. 2.6.1 RW DCA

25 57.0 130.8 117.0 35.2

100 57.0 334.2 240.0 23.2

225 49.0 328.0 240.0 17.2

400 45.8 342.0 260.0 14.6

625 45.0 338.6 260.0 12.4

900 41.0 355.0 280.0 11.0

1225 37.8 373.0 300.0 10.0

2500 37.0 397.8 320.0 9.0

22500 29.0 656.0 480.0 6

62500 25.0 933 784 5

122500 25.0 1210 1072 5

Table 2.4: Number of matrix-vector multiplications for different TRS algorithms on

problems involving the 2D discrete Laplacian.

corresponding eigenvectors qj = ej - 2uuj, where ej is the j-th column of the identity

matrix. The vectors U and 9 have entries uniformly distributed on the intervals

(-0.5,0.5). The vector U is normalized to have unit length and density J5/n so

that the matrix A has density 5/n, i.e. A has Sn nonzeros. If s = 1, the vector 9 is

orthogonalized against q1 and if s > 1 it is reset to 9 f-- 2:7=8+1 gjqj. Then a noise

vector w of norm 10-8 is generated and 9 is reset to 9 f-- (g + w)/iig + wll. Finally

a = -1/2g and b. = 211(A - À 1(A)I)t a ll to force the hard case 2ii).

We first considered TRS where s = 1. Each TRS was first solved using Algorithm

2.6.1 with El = 10-12 . Then, the other algorithms were halted when a solution with

equal or smaller objective value was obtained, or when the objective value was within

70 Global Minimizers

Problem Size TRS Algorithm

GLTR Alg. 2.6.1 MS RW DCA

25 13.0 4.4 6.0 5.2 35.2

100 13.0 5.0 6.0 5.0 23.2

225 11.0 5.0 5.0 5.0 17.2

400 10.2 5.0 4.8 5.0 14.6

625 10.0 5.0 4.0 5.0 12.4

900 9.0 5.0 4.0 5.0 11.0

1225 8.2 5.0 4.0 5.0 10.0

2500 8.0 5.2 4.0 5.0 9.0

22500 6.0 6.0 - 3.0 6.0

62500 5.0 6.0 - 3.6 5.0

122500 5.0 6.0 - 3.8 5.0

Table 2.5: Number of iterations for different TRS algorithms on problems involving

the 2D discrete Laplacian.

10-10 from the optimal objective value obtained with Algorithm 2.6.1. We compare

Algorithm 2.6.1 to the Moré-Sorensen Algorithm and the Rendl-Wolkowicz Algorithm

only, since the GLTR Algorithm is not suited to handle the hard case 2ii) and the

DCA Algorithm in our experience, on our test problems, has very slow convergence in

the hard case 2ii) (more than 5000 matrix-vector multiplications needed). However,

for this set of problems, we were unable to use the function eigs in Algorithm 2.6.1

for dimensions higher than n = 2500, since the former function often failed to give

the required eigenvalues and eigenvectors. This highlights the fact that our method is

quite dependent on the robustness of the eigenvalue solver and explains why the larger

size problems do not appear in our results. For aU three algorithms considered, we

2.10 Numerical Results 71

compare the computation time and the number of iterations needed to converge. We

also report for Algorithm 2.6.1 and the RW Algorithm the number of matrix-vector

multiplications and the number of shifts (the ones of Section §2.5.2) that are used.

Results are given in Table 2.6.

Computation time Iterations matrix-vector X Shifts

Problem Size Alg. 2.6.1 R·W M·S Alg. 2.6.1 R-W M-S Alg. 2.6.1 R-W Alg. 2.6.1 R-W

25 0.3567 0.5733 0.0900 1.4 7.6 21.6 329.7 482.7 1.0 1.7

225 1.8933 4.0667 2.1900 3.8 7.6 24.0 1174.0 1941.3 1.0 4.7

625 20.2500 46.2733 12.2033 3.4 9.2 29.8 1890.0 3580.0 1.0 5.7

1225 138.2267 462.5367 46.8767 5.0 10.8 25.4 3130.0 9646.0 1.0 5.7

Table 2.6: Comparison of Algorithm 2.6.1, the Rendl-Wolkowicz Algorithm and the

Moré-Sorensen Algorithm for hard case 2ii) TRS with a multiplicity of one for À1(A).

Two things may be noted from Table 2.6. First, it is surprising that the Moré­

Sorensen is faster than its two other competitors. One possible explanation is that one

can show the Cholesky factors keep for this special set of problems the same density as

the matrix A. In other words, sparsity is not lost through the Cholesky factorizations.

Also, it appears that for Algorithm 2.6.1 and the Rendl-Wolkowicz Algorithm, many

matrix-vectors multiplications are required for computing the eigenvalues. Indeed,

when comparing with the results of Table 2.4, we see that as much as ten times

more matrix-vectors multiplications were needed for similar size TRS. It thus seems

the difficulty of the TRS created is refiected in the effort required for computing the

eigenvalue and eigenvector at each iteration.

Second, we were surprised to find that Algorithm 2.6.1 did better than the Rendl­

Wolkowicz Algorithm. This seems to be caused by the fact that at least twice as

many iterations are needed by the former algorithm to converge. This can partly be

72 Global Minimizers

explained by the different heuristics used in each respective algorithms or by the fact

that up to six shifts may be done by the Rendl-Wolkowicz algorithm even though the

multiplicity of ÀI (A) in these examples is only one.

Table 2.7 gives the result of a similar experience, but this time with s = 5, i.e.

the smallest eigenvalue of the matrix A has multiplicity five. This time eigs failed

to return accurate eigenvalues even for the smallest size problems. We thus turned

to using eig and did not go beyond TRS of size n = 625.

Computation time Iterations Shifts

Problem Size Alg. 2.6.1 R-W M-S Alg. 2.6.1 R-W M-S Alg. 2.6.1 R-W

25 0.176 0.588 0.098 7.4 5.6 19.8 5.0 2.6

225 1.028 2.006 0.504 7.8 7.6 23.6 5.0 3.2

625 8.352 4.862 1.834 7.4 8.6 25.6 5.0 3.4

Table 2.7: Comparison of Algorithm 2.6.1, the Rendl-Wolkowicz Algorithm and the

Moré-Sorensen Algorithm for hard case 2ii) TRS with a multiplicity of five for ÀI(A).

This time, the Rendl-Wolkowicz Algorithm did less than five shifts before it con­

verged and it is not as clear as in Table 2.6 if Algorithm 2.6.1 performed better.

As we have mentioned ab ove , the example created have the advantage for the

Moré-Sorensen Algorithm of preserving the sparsity of the matrix A in the Cholesky

factorizations. We thus wanted to look at other examples where this would not

happen. Henee we have created examples where the matrix A has its first log(n) rows

and columns fully dense. This creates fully dense Cholesky factorizations in the Moré­

Sorensen Algorithm. The small code used for generating our problems in given in

Appendix A. Our problems have approximately 5n non-zeros, where n is the problem

size and the multiplicity of ÀI (A) is one. Computation times are illustrated in Figure

2.11 and Table 2.8 gives the number of iterations and matrix-vector multiplications

2.10 Numerical Results 73

required. Note there was no problem in using eigs on this set of problems when

computing eigenvalues and eigenvectors were required.

- Moré-Sorensen
Alg.2.6.1

10' - _. Rendl-Wolkowicz

?
0...
~1O'

b-O o --
10°

*

200 400 ~ao . 800
mmenslOn

1000 1200

Figure 2.11: Logarithm of the computation time (seconds) in function of problem

dimensions of three algorithms used to solve hard case 2ii) TRS with first rows and

columns fully dense.

Figure 2.11 shows the consequence of a loss of sparsity for the Moré-Sorensen

Algorithm: the computation times are much slower than those obtained by the other

two algorithms. Few iterations are needed for convergence by these two latter algo­

rithms and only one shift is used. In this case there is no doubt the Rendl-Wolkowicz

performs better than Algorithm 2.6.1 due to a sm aller number of iterations to solve

each problem and consequently less matrix-vector multiplications are required.

2.10.2 Aigorithm 2.8.1 for Unconstrained Optimization

Our goal here is to briefty study the behavior of Algorithm 2.8.1 in function of the

TRS algorithms (aIl algorithms that appear in Section §2.10.1 except for the Moré-

74 Global Minimizers

Iterations Matrix-vector X Shifts

Problem Size Alg. 2.6.1 R-W M-S Alg. 2.6.1 R-W Alg. 2.6.1 R-W

25 2.8 2.2 26.2 341.2 189.4 1.0 1.0

225 3.8 2.2 32.8 688.6 332.2 1.0 1.0

625 1.0 1.0 31.8 213.4 95.0 1.0 1.0

1225 2.6 1.6 30.0 655.2 336.2 1.0 1.0

Table 2.8: Number of iterations, matrix-vector multiplications and shifts for three

algorithms used to solve hard case 2ii) TRS with the log(n) first rows and columns

fully dense.

Sorensen Algorithm, sinee the problems are not of small size) used to approximately

solve the TRS (2.77). Our test problems are taken from the CUTEr [18] package.

When Algorithm 2.6.1 and the Rendl-Wolkowicz Algorithms are used to solve

problem (2.77), we stop when the relative duality gap is sm aller than

When using the GLTR Algorithm, we consider the couple (lSk, Àk) of approximate

solution and corresponding Lagrange multiplier a reasonable approximation if

([10] shows the expression on the left-hand side is of the same order as the square

root of a duality gap for problem (2.77)) or if 10 iterations were done beyond the

Steihaug-Toint point. Finally when the DCA Algorithm was used, we chose in their

algorithm to set E = El and p = 0.251IAIII' The results appear in Table 2.9 where we

give the number of iterations taken by Algorithm 2.8.1 to satisfy

2.10 Numerical Results 75

Iterations Computation time

Problem Name Size Alg. 2.6.1 R-W GLTR DCA Alg. 2.6.1 R-W GLTR DCA

BRYBND 1000 16 28 34 - 75.71 59.81 49.24 -

CHAINWOOD 1000 167 - 712 - 2179.17 > 2500 366.02 -

COSINE 1000 18 19 11 - 62.59 26.90 0.86

CRAGGLVY 1000 16 16 16 25 12.17 4.54 3.98 47.69

DIXXMAANA 1500 10 10 10 10 7.92 2.85 0.65 31.26

DQRTIC 1000 - 77 43 63 - 514.51 756.49 109.65

FREUROTH 1000 11 11 11 - 10.29 3.47 0.75 -

GENROSE 1000 708 703 801 - 1350.43 649.72 192.66

MAN CINO 100 16 16 16 - 12.84 9.52 5.6 -

NONCVXU2 1000 - 338 327 - > 2500 605.91 131.90 -

NONCVXUN 1000 - 304 276 - - 792.07 471.39 -

SENSORS 100 19 19 19 20 12.25 8.21 2.44 31.00

SINQUAD 5000 12 12 12 - 25.71 13.25 1.88 -

SPARSINE 1000 - - 29 - - > 2500 2082.05 -

Table 2.9: Number of iterations and computation times (seconds) obtained by testing

different TRS algorithms within Algorithm 2.8.1

and the computation time needed.

There are different reason for the absence of data in Table 2.9. First, we halted

the computations if more than 2500 seconds were needed. Second, for the problems

DQRTIC, NONCVXUN and SPARSINE and when using Algorithm 2.6.1 ta solve

the TRS (2.77), the computation was terminated because eigs was unable to return

accurate eigenvalues. Third, wh en the DCA Algorithm was used to solve the TRS

76 Global Minimizers

(2.77), we terminated the computation if an optimal objective value of (2.77) was

greater than zero, indicating a lack of convergence of the DCA Algorithm.

On the problems we tested, the general tendency is that when the GLTR Algo­

rithm is used within Algorithm 2.8.1, less iterations and less computation times are

involved (see [10] for numerical examples where the GLTR Algorithm may take more

iterations than the Rendl-Wolkowicz Algorithm). Furthermore, only while using the

GLTR Algorithm were we able to solve aIl of the problems within the 2500 seconds

time limit.

Ifwe compare the results obtained using Algorithm 2.6.1 and the Rendl-Wolkowicz

Algorithm, we observe that Algorithm 2.8.1, with the Rendl-Wolkowicz Algorithm

used to solve the TRS, leads, as it should be, to a faster and more robust method

(since eigs never failed in the Rendl-Wolkowicz algorithm to compute the eigenvalues

accurately). However, the results we obtained with Algorithm 2.6.1 were usually of

the same order as the one obtained with the Rendl-Wolkowicz Algorithm.

Not surprisingly, Algorithm 2.8.1 combined with the DCA Algorithm did not prove

to be robust nor fast, except only for DQRTIC. In our experience, this is caused by

the slow convergence of the latter algorithm. Often, after 5000 iterations of the DCA

Algorithm (which was the bound given) on the TRS (2.77), the approximate solution

obtained did not have an objective value less than zero, the trivial upper bound on

the optimal objective value.

2.10.3 Aigorithm 2.9.1 for Constrained Optimization

In this section, we give results obtained by applying Algorithm 2.9.1 to solved con­

strained problems of the type (2.78). Our test problems are taken from the CUTEr

[18J problem set. We have considered the following algorithms to find the approx­

imate solutions of the TRS (2.86): the Moré-Sorensen Algorithm, Algorithm 2.6.1

and the GLTR Algorithm (the DCA Algorithm was initially considered as weIl, but

2.10 Numerical Results 77

failed within Algorithm 2.9.1 to give a convergent method on any of the problems we

tested). In Aigorithm 2.6.1 and the Rendl-Wolkowicz Aigorithm, we stopped when

the relative duality gap was less than

The Moré-Sorensen Aigorithm was halted when

with ()" = éd~. This choice is made so that we hope solutions in both algo­

rithms have the same relative accuracy. Again, as in Section §2.1O.2, when using the

GLTR Aigorithm, we consider the couple (Sk,j, Àk,j) of approximate solution and cor­

responding Lagrange multiplier a reasonable approximation of the optimal solution

of (2.86) if

or if 10 iterations were do ne beyond the Steihaug-Toint point. FinaUy, the stopping

tolerance tol in Aigorithm 2.9.1 was set to 10-2 .

The problems we have chosen to use in our tests are of smaU and medium size.

The main reason for this is that the matrix NTWk,jN which appears in (2.86) will be

dense. We have thus chosen to compute the required eigenvalues in Aigorithm 2.6.1

with the MATLAB function eig.

AU problems considered have linear constraints and most have a quadratic objec­

tive. The exceptions are HIMMELBI and SSEBLIN (this last problem has a linear

objective). Bound constraints on the variables were treated just as the other linear

constraints (although [7] suggest it is possible to handle these constraints in a special

way). We chose as an initial x-iterate, xo, the one suggested by CUTEr. However, we

had to choose a different initial solution Xo if the constraint Axo = b was not satisfied.

78 Global Minimizers

The new Xo was obtained by solving a linear program with zero objective. We also

altered slightly the bounds Cl and Cu on the constraints if Cl < c(xo) < Cu was not

satisfied.

In Table 2.10.3, we report the computation time in seconds and the total number

of inner iterations (inner it) needed to converge (because of our choice of 110 = 10

and toI = 10-2 , convergence occurred after 4 outer iterations). For each problem, V

indicates the number of variables, LE, the number of linear equality constraints and

LI, the number of inequality constraints.

Problem V LE LI Inner iterations Computation time

M-S Alg. 2.6.1 R-W GLTR M-S Alg. 2.6.1 R-W GLTR

DUALCI 9 1 232 188 143 143 159 7.22 10.49 12.35 8.10

DUALC2 7 1 242 121 102 102 101 4.30 7.95 8.07 4.47

DUALC5 8 1 293 29 20 20 20 1.27 1.19 1.48 1.10

HATFLDH 4 0 21 38 36 29 29 0.89 2.13 1.50 0.72

HIMMELBI 100 0 212 62 132 91 100 5.95 43.21' 17.08 9.49

PRIMALC2 231 0 236 81 113 111 > 1000 23.64 218.78 199.60

PRIMALC5 287 0 286 65 115 88 > 1000 29.12 844.44 286.20 -

QPCBOEIl 384 9 971 60 104 61 63 84.61 1234.40 286.40 289.76

QPCBOEI2 143 4 378 81 162 71 71 14.93 112.14 22.02 353.40

QPCSTAIR 467 209 696 40 48 37 37 24.67 148.97 67.14 63.02

QPNBOEI2 143 4 378 458 658 384 > 1000 94.75 636.74 123.05 -

QPNSTAIR 467 209 696 97 104 96 98 64.47 740.48 200.60 32.00

Table 2.10: Number of inner iterations and computation times obtained by testing

different TRS algorithms within Aigorithm 2.9.1

Using the Moré-Sorensen Aigorithm to solve the TRS (2.86) within Aigorithm

2.10 Numerical Results 79

2.9.1 gives the best results in terms of computation time. This is in sorne sense not

surprising sinee the TRS solved are dense and eig was used in the computation of

eigenvalues. What is interesting however, is that GLTR failed to converge after 1000

inner iterations on three problems, where Algorithm 2.6.1 and the Rendl-Wolkowicz

Algorithm succeeded (on the other hand the results in [7] are mu ch better than what

we were able to obtain with our personal MATLAB implementation of Algorithm 2.9.1

and the GLTR Algorithm). However, when Algorithm 2.9.1 does converge when the

GLTR Algorithm is used to solve the TRS, the computation times are usually smaller

than those obtained when Algorithm 2.6.1 or the Rendl-Wolkowicz Algorithm are

used. There thus appears to be a trade-off in this case between robustness of the

method and speed.

80 Global Minimizers

81

Chapter 3

Local-N onglo bal Minimizer

3.1 Background Results

We start by surveying the work of Martinez [29]. Hence, the reader is referred to this

paper for the corresponding proofs of the lemmas and theorems which appear in this

section.

The first theorem states the classical necessary optimality conditions for local

minimizers of (2.1) and (2.2).

Theorem 3.1. 1. Assume that x* is a local minimizer of (2.2). Then there exists

a unique À * E IR su ch that

(A-À*I)x*=a

and

wT(A - À* I)w 2: 0

for ail w E IRn such that wT x* = o.

(3.1)

(3.2)

2. Assume that x* is a local minimizer of (2.1). If Ilx*11 = 1, there exists),* ::; 0

su ch that (3.1) and (3.2) hold. If Ilx*11 < 1, then x* is a global minimizer,

equation (3.1) holds with À* = 0 and A is positive semidefinite.

82 Local-Nonglobal Minimizer

3. Assume that Ilx*1I = 1, À* E ~ satisfies (3.1), and

wT(A - À*I)w > 0 (3.3)

for all w =1- 0 such that wT x* = O. Then x* is a strict local minimizer of (2.2).

4. Assume that Ilx*11 = 1 and that À* < 0 satisfies (3.1) and (3.3). Then x* is a

strict local minimizer of (2.1). 0

RecaIl from the optimality condition (2.5b) that the Lagrange multiplier for a

global minimizer of problem (2.1) lies in the interval (-00, À1 (A)]. There exists

bounds on the Lagrange multiplier of a local-nonglobal minimizer which depends as

weIl on eigenvalues of A.

Lemma 3.1. If x* is a local-nonglobal minimizer of (2.1) or (2.2), then (3.1) holds

with À* E (À 1 (A), À2 (A)). 0

Global minimizers of problems (2.1) or (2.2) always exist, since a continuous func­

tion is minimized over a compact set. However, it is not always the case that a

local-nonglobal minimizer exists for one of these two problems. In particular, we

have the two foIlowing cases for which no such point exists. The first case is an

obvious consequence of the previous lemma.

Corollary 3.1. If À 1 (A) = À2 (A) then there are no local-nonglobal minimizer of

problems (2.1) or (2.2). 0

Lemma 3.2. If a is orthogonal to an eigenvector of A for the eigenvalue À1(A), then

there are no local-nonglobal minimizer of problems (2.1) or (2.2). 0

When a is orthogonal to aH eigenvectors of A for the eigenvalue Àl(A), then the

hard case occurs. However, the previous lemma states this cannot happen if a local­

nonglobal minimizer exists.

3.1 Background Results 83

Define

(3.4)

Let A = QDQT be an orthonormal diagonalization of A, i.e. the columns of Q are

orthonormal eigenvectors of A and D is a diagonal matrix with the eigenvalues of A

on its diagonal ordered increasingly such that Dl1 = Àl(A). Also let a := QT a. The

function cp and its derivatives are given by the following formulas:

n -2

cp(À) = ~ (Ài(A~i_ À)2'

n -2

cp'(À) = 2 ~ (Ài(A~i _ À)3' (3.5)

(3.6)

Suppose Àl(A) < À2(A) and al =1= O. Note from (3.6) that cp is a strictly convex

function over the interval (À 1(A), À2(A)). Therefore the equation cp(À) = 1 has at

most two roots in (À 1 (A), À2 (A)) and the following theorem shows, that in the case two

roots exists, only the smallest root may be a local-nonglobal minimizer of problems

(2.1) or (2.2).

Theorem 3.2. 1. Ifx* is a local-nonglobal minimizer of (2.1) or (2.2), then (3.1)

holds with À* E (Àl(A), À2(A)) and cp'(À*) ::; O. If x* is a local-nonglobal mini­

mizer of (2.1) then À* ::; O.

2. There exists at most one local-nonglobal minimizer of (2.1) or (2.2).

3. If IIx*11 = 1, (3.1) holds for some À* E (Àl(A), À2(A)) and cp'(À*) < 0, then x*

is a strict local-nonglobal minimizer of (2.2). If in addition, À* < 0, x* is also

a strict local-nonglobal minimizer of (2.1). 0

84 Local-Nonglobal Minimizer

3.2 Computing a Local-Nonglobal Minimizer

As mentioned in the introduction, our intention is to build on the theory behind the

algorithms of Chapter 2 and the Rendl-Wolkowicz Algorithm [39], which compute a

global minimizer of problem (2.2), in order to compute a local-nonglobal minimizer of

problems (2.1) and (2.2). In these algorithms, one needs at each iteration the smallest

eigenvalue of a parameterized matrix. In the algorithms of this chapter, the first two

eigenvalues are relevant. The functions of interest for our algorithms will be similar

to the ones used in Algorithms 2.6.1 and 2.6.2, except that the first eigenvalue of the

parameterized matrices may need to be replaced by the second one.

We assume throughout this section the following assumptions hold:

Assumption 3.2.1. À1(A) < À2 (A);

Assumption 3.2.2. iÎ! -1- o.

These are justified by Corollary 3.1 and Lemma 3.2. Note also that whenever we

refer to the matrix B in this chapter, we mean B = A -)..! with).. = À1(A) - Ilail.
This choice of).. and Assumption 3.2.1 guarantee that the equations (2.7) will hold.

3.2.1 Computing a Local-Nonglobal Minimizer: First Method

In Section §2.2, we showed solving problem (2.2) is equivalent to finding the largest

volume ellipsoid ErG among the ellipsoids Er contained in the unit baIl. Equivalence

is in the sense that ErG intersects the unit sphere at a global minimizer Xc for (2.2).

Similarly, a local-nonglobal minimizer XL of problem (2.2) lies in the intersection of an

ellipsoid ErL and the unit sphere, for sorne TL > TC. This ellipsoid is not contained in

the unit ball, but points which are element of ErL and close enough to XL are contained

in the unit ball. This is illustrated in Figure 3.1. Recall from problem (2.13) that

in order to compute a global minimizer we maximize the function lb) = ,Àl(Bb)).

3.2 Computing a Local-Nonglobal Minimizer

-0.5

-1.5

1,' " \'.
\ 1 \ \

\,.\ '0 \

\ \ \
" ,

, ' , "

o Xl 0.5

, ,

1.5

o

*

o

Xc

r2(x) = rb
XL

r2 (x) = ri
level curves of r 2 (x)

85

Figure 3.1: This figure illustrates a local-nonglobal minimizer XL for problem (2.2)

intersects the unit sphere and the ellipsoid ErL which is locally contained in the unit

baIl at XL. Here the global minimizer of problem (2.2) is Xc.

We shall see that for finding a local-nonglobal minimizer of problems (2.1) or (2.2),

a new function 9 related to the function f is involved. Corollary 2.1 and Lemma 3.1

motivate the definition of this new function.

For problem (2.2), the Lagrange multiplier of a global optimal solution lies in

the interval (-00, Àl(A)). It was shown in Lemmas 2.3 and 2.4 that the function

Àl (B('y)) + >. of a single variable 'Y maps the interval (-00, 1) onto the interval

(-00, Àl (A)). Furthermore, À(B(i)) + >. is the Lagrange multiplier, where i is the

optimal solution for problem (2.13). On the other hand, recall from Lemma 3.1 that

the Lagrange multiplier of a local-nonglobal minimizer of problem (2.2) lies in the

interval (À1(A), À2(A)). Notice from the definition of B that Ài(B) = Ài(A) - >. for

i = 1 ... n and, from Assumption 3.2.1, À 1 (B) < À2 (B). Thus, Corollary 2.1 suggests

investigating the function defined as Àl(B('y)) + >. E (Àl(A), À2 (A)) for 'Y > 1 and

À2 (B('y)) + >. E (À1(A), À 2 (A)) for 'Y < 1. This is do ne in the next lemma.

86 Local-Nonglobal Minimizer

Let

J(- {k:)..,k(B) =)..,2(B)}, (3.7a)

:T - {j : aj :f= O}, (3.7b)
-2

d()"') - ~)..,j(B)()..,:(B) -)..,).

Note Assumptions 3.2.1 and 3.2.2 may be stated as 1 E J(c n :T, where J(c is the

complement of the set J(.

Lemma 3.3. Let

)..,2 (B (--y)) for, < 1,

)..,(--y) :=).., for, = 1,

)..,1 (B(--y)) for, > 1,

where .\ =)..,2 (B) if J(n :T = 0 and d()..,2 (B)) :::; 0; otherwise, .\ is the unique value

in the interval ()..,l(B),)..,2 (B)) ta satisfy d(.\) = o.

1. If J(n :T :f= 0,).., (--y) is infinitely differentiable and satisfies d()'" (--y)) = 1 - ,.

Moreover,
-1 Il -d"()",(--y))

X(--y) = d'()..,(--y)) and)", (--y) = [d'()..,(--y))J3 (3.8)

for aU, E IR.

2. If J(n:T = 0,)..,(--y) is continuous and infinitely differentiable for, E IR \ {1 -

d()..,2(B))}.

(a) For, > 1 - d()..,2(B)),)..,(--y) satisfies d()"'(--y)) = 1 -, and

-1 Il -d"()",(--y))
À'(--y) = d'()..,(--y)) and À (--y) = [d' ().., (--y))j3 . (3.9)

(b) For, < 1 - d()..,2(B)),)..,(--y) =)..,2(B), N(--y) = 0 and)..,II(--y) = o.

3.2 Computing a Local-Nonglobal Minimizer 87

(c) for, = I-d(À2(B)), À(r) = À2(B) and satisfies d(À(r)) = 1-,; the right

handed and left handed derivatives are given respectively by

-1 "(+) _ -d"(À2(B))
d'(À2(B)) ' À, - [d'(À2(B))j3'
0, ,X"b-) = o.

(3.lOa)

(3.10b)

Proof. 1. For, i- 1, we have

det(B(r) - ÀI) - det ((B - ÀI) (1 - 1 ~, (B - À1)-l B-1/2aaT B-1/2)) ,

det(B - ÀI) (1- _1_aT B-1/2(B - ÀI)-lB-1/2a) ,
1-,

n (1 -2) rr (Àj(B) - À) 1 - ~ ~ À .(B)(À~(B) _ À) (;3.11a)
J=l ' JE.:! J J

g (.\j(B) - .\) (1 -1 ~ ,/(.\)) , (3,llb)

where the second equality follows from Golub and Van Loan [15J. Since Kn.:r i­
o and al =1= 0, then

lim d(À) = -00 and lim d(À) = 00.
À'\.Àl(B) À/À2(B)

Furthermore,
-2

d'(À) = ~ Àj(B) (À:(B) _ À)2 > O.

Therefore, for aIl , E IR, d- 1 (1 - ,) is weIl defined, where d- 1 (1 -,) E

(À 1(B), À2(B)). Moreover, (3.11b) shows it is an eigenvalue of B(r). From

Corollary 2.1, this shows

À2 (B(r)) for, < 1,

d- 1 (1 - ,) = À for , = 1,

Àl(Bb)) for 'Y > 1.

Hence, Àb) = d- 1(1 - ,) and is infinitely differentiable. Equations (3.8) are

obtained by implicit differentiation.

88 Local-Nonglobal Minimizer

2. Since lCnJ = 0, then d()\dB)) is weIl defined. Let"(=1= 1. By equation (3.11b),

À2 (B) is an eigenvalue of Bh). Also, Assumptions 3.2.1 and 3.2.2 imply À1(B)

is not an eigenvalue of Bh), since from equation (3.11a) we obtain

Note again d(À) is strictly increasing for À E (À 1(B), À2(B)] and therefore

(3.12)

(a) If 1 - "(< d(À2 (B)), then d- 1 (1 - "() is weIl defined, where d- 1(1- "() E

(À 1(B), À2(B)). The rest of the proof is similar to the proof of item 1.

(b) and (c) If 1-"(2 d(À2 (B)), by (3.12), d(À) < 1-"(for À E (À 1(B), À2 (B)).

Therefore, there are no eigenvalues of Bh) in the interval [À 1(B), À2 (B))

and, from Corollary 2.1,

for"(= 1,

Thus Àh) = À2 (B). In particular, the derivatives of À("() for "(< 1 -

d(À2 (B)) are zero and equations (3.10b) hold. Note finally 1- "(= d(Àh))

for"(2 1 - d(À2 (B)) and thus (3.lOa) holds.

o

Corollary 3.2. For"(E lR., Àh) > À1(B) and lim Àh) = À1(B). Moreover,
"(-+00

2. If lC n J = 0,

3.2 Computing a Local-Nonglobal Minimizer 89

Recall in problem (2.13) the function f('y) = ')'À 1(B('y)) is maximized over the

interval (-00,1) and the optimal ')'* is used to construct a global minimizer for prob­

lem (2.2). This motivates the definition of the following function: g('y) := ')'À('y).

Its domain is IR. An obvious question is if an optimum of the function 9 is related

to a local-nonglobal minimizer of problem (2.1) or (2.2). This will be answered in

Theorems 3.4 and 3.5. As a first step toward an answer, the next lemma is coneerned

with the first derivative of g.

Let

{

IR,

r := (1 _ d(À2(B), 00),

if J(n ..J =1- 0,

if J(n..J = 0.

Note, from Lemma 3.3 and Corollary 3.2,

r = {')' : À('y) E (À 1(B), À2(B))},

À'('y) < 0 for ')' E r.

Lemma 3.4. For')' E r \ {1}, let the vector v E IRn satisfy the equation

(B2 - _1_aaT) v = À('y)Bv.
1-')'

Note v depends on')'. Then we may write the derivative of 9 as

l('y) = À('y) __ ')'_ (aTv)2
vT Bv 1 - ')'

Proof. Using Corollary 2.1 and equation (3.13), we obtain

À1(B) < À1(B('y)) < À2(B) :::; À2(B('y))

À1(B('y)) :::; À1(B) < À2(B('y)) < À2(B) :::; À3(B('y))

if ')' > 1,

if ')' < 1.

(3.13)

(3.14)

(3.15)

(3.16)

Henee À('y) is an eigenvalue of B('y) of multiplicity one and it is easy to see 1I~~j~~1I

is a corresponding unit norm eigenvector. Therefore (see e.g. Horn and Johnson [23,

90 Local-Nonglobal Minimizer

o

When lCnJ = 0 and 'Y < 1-d(À2 (B)), then g'("() = À2 (B). For 'Y = 1-d(À2 (B)),

9 may not be differentiable since it is possible to show the multiplicity of À('Y) is

changing. As seen in Chapter 2, a similar phenomena occurs in the hard case and

needs to be weIl understood when one is interested in computing a global minimum.

However, when computing a local-nonglobal minimizer, this phenomena has little

consequence on our algorithm and a detailed analysis similar to the one done in

Lemma 2.5 is not necessary.

For 'Y Er, define

(3.17)

where v satisfies (3.15). Note aT v # 0, otherwise this would imply À("() is an eigen­

value of B. Rewriting equation (3.15) and substituting B for A - >.1, we see x("()

satisfies the first order necessary condition (3.1), i.e.

(A - (À("() + >.)I)x("() = a. (3.18)

For 'Y E r, À("() + >. E (À1(A), À2(A)). Therefore A - (À("() + >.)1 is invertible, and we

may write Ilx(,,()112 as

(3.19)

It foIlows
dcp(À("() + >.) dÀ("()

dÀ 'Y
(3.20)

3.2 Computing a Local-Nonglobal Minimizer 91

The Martinez Algorithm [29] which is used to compute a local-nonglobal minimizer

of problems (2.1) and (2.2) finds a root of the function cp(),) - 1 in the interval

(À1(A), À2(A)). As we shall see in Section §3.2.1, our algorithm finds a root of the

function Ilx(-Y) 11 2 - 1 in the interval r. We may immediately derive the equivalent of

Theorem 3.2.

Theorem 3.3. 1. If x* is a local-nonglobal minimizer of problems (2.1) or (2.2),

then (3.1) holds with À* E (À1(A), À2 (A)). Let "(* be the unique solution to

À(-y) + ~ = À*, then x* = x(-y*) and dllx~~·)112 ~ O. If x* is a local-nonglobal

minimizer of (2.1) then À(-y*) + ~ ~ O.

2. If, for "f* E r, Ilx(-Y*)11 = 1 and dllx~~·)112 > 0, then x(-y*) is a strict local­

nonglobal minimizer of (2.2). If in addition, À(-y*) + ~ < 0, x(-y*) is also a

strict local-nonglobal minimizer of (2.1).

3. For "(E r n {"(: dllxt)1I2 > O}, x (-y) is a strict local non-global minimizer of

(3.21)
s.t. Ilxll = Ilx("()11

with Lagrange multiplier À(-y) +~. In addition, if À (-y) + ~ < 0, then x(-y) is a

strict local-nonglobal minimizer of

mm xT Ax - 2aT x
x (3.22)

s.t. Ilxll ~ Ilx(-Y)II·
Proof. Sinee "(* E r, the proofs of items 1 and 2 follow from Theorem 3.2 and equa­

tions (3.14), (3.19) and (3.20). To prove item 3, fix "(E r and let 6 := Ilx(-Y)II. Note

x(-y) is a local-nonglobal minimizer of problem (3.21) if and only if x(-y; 6) := x(-y)/6

is a local-nonglo bal minimizer of

min xT (62 A)x - 2(oaf x
x (3.23)

s.t. !!x!! = 1.

92 Local-Nonglobal Minimizer

Now we may write cp(À;6):= 1I((62A) - ÀI)-1(6a) 11 2 as

(3.24)

and its derivative as
n 62 - 2

cp'(À; 6) = 2 ~ (62 Ài(A~i _ À)3·

For 'Y E r n {'Y : dllxJ~)1I2 > O}, it follows byequations (3.14) and (3.20) that

dcp(À("() + :\) 0
dÀ <. (3.25)

By item 3 of Theorem 3.2, x("(; 6) is a local-nonglobal minimizer of problem (3.23),

since

o

From equation (3.6) we easily see cp is a strictly convex function on the open

interval (À 1(A), À2(A)). The Martinez Aigorithm takes advantage of this property.

The following lemma shows Ilx(,,() 11 2 is also strictly convex over r. Convexity will play

a main role in the convergence analysis of our algorithm, since the secant method will

be used to find a root of the function Ilx(,,() 11 2
- 1.

Lemma 3.5. Consider the function Ilx('Y) 11 2 with do main r. Then it is an infinitely

differentiable strictly convex function and limy->oo Ilx(,,()11 2 = 00.

Proof. Since cp(À) and À('Y) are infinitely differentiable respectively on the intervals

(À 1(A), À2 (A)) and r, and À("() + :\ E (À1(A), À2 (A)), then infinite differentiability

follows from (3.19). By Corollary 3.2, lim1'->oo À("() + :\ = À1(A) and À("() + :\ >

3.2 Computing a Local-Nonglobal Minimizer 93

À1 (A), and, by Assumption 3.2.2, lim>'''.>'l(A) cp(À) = 00. Thus, using equation (3.19),

lim')'->oo Ilx(,),)11 2 = 00.

An that is left to prove is strict convexity. For simplicity, let Ài = Ài(B), for

i = 1, ... , n and let À')' = À('Y). There are two cases to consider.

1. Case 1: ch =1- 0 and aj = 0 foT' j = 2, ... ,n. We have in this case

IIx(,),) 11
2

dllx(,),) 11
2

d'Y

where equations (3.8) and (3.9) were used to obtain the first derivative. Thus,

using equation (3.14),

2. Case 2: 3j 2: 2 such that a1aj =1- O. We have, using once again equations (3.8)

and (3.9),

From equations (3.13) and (3.14), our result is proved if we can show for an

À E (À 1 ,À2), that

94 Local-Nonglobal Minimizer

is strictly negative. In fact, we prove the st ronger statement, for À E (À 1 , À2),

that

(3.26)

is strictly negative. We may rewrite (3.26) as

n -2-2 (\ \) n -2-2 (\ \) a·a· /\" - A a·a· A' - A'
t J -1+ t _ t J t J L À·(À· - À)4(À' - À)2 À· - À - L À·(À· - À)4(À' - À)2 À· - À

i,j=1 J t J J i,j=1 J t J J

n ahi~ (À'-À') t J t J

= L À'(À' - À)4(À' - À)2 À· - À .
i,j=l,ii} J t J J

The previous sum may be rewritten as

Recall, from Assumption 3.2.2, À1 < À2 . Thus, the first sum is strictly negative

for À E (À 1, À2), where we use there exists j 2: 2 such that a1aj i=- 0 . We next

daim, for 2 ~ i ~ n - 1 and i < j ~ n, that

(3.27)

is negative. Indeed, if aiaj = 0 or Ài = Àj, it is trivial. Otherwise, aiaj i=- 0 and

Ài < Àj and (3.27) is negative if and only if

-1 1
-.,-----.....,-...,.-,-----:-:-+-------
Àj(Ài - À)4(Àj - À)3 Ài(Àj - À)4(Ài - À)3

is negative. Rewriting the last expression, we obtain

ÀiÀAÀi - À)4(Àj - À)4'

which is negative, sinee À 2: À1 > 0 and Àj > Ài' Thus (3.26) is strictly negative

and Ilx('y)1I2 is a strictly convex function for 'Y E r. 0

3.2 Computing a Local-Nonglobal Minimizer 95

Similarly to Lemma 2.7, our next lemma shows Ilx(-Y)1I is related to the first

derivative of g.

Lemma 3.6. Let l' E r. Then

Il x (-y) Il > (=, <) 1 ~ g'(-y) > (=, <) O.

Praof. For l' E r \ {1}, we have

Ilx(-Y) 11 2 = (1-1')2VTB2V,
aTv

1 - 'Y + À(-y) Ca~2)' vT
Bv,

1 + g'(-y) Ca~2)' vT
Bv,

vTBv
- 1 + g'(-y) Il x (-y) 11

2
T B2 '

V V

(3.28)

(3.29a)

(3.29b)

(3.29c)

where (3.29a) follows from (3.15) and (3.29b), from (3.16). The conclusion follows by

writing (3.29c) as
2 1

Il x (-y) Il = 1 '() vTBv
- 9 l' vTB2v

(3.30)

and noting that in the case where l' = 1 E r, the relation (3.28) holds as well by

continuity of the functions g' and Il x (-y) 11 2
. 0

We are now ready with the next two theorems to relate a candidate for a local

minimizer of the function 9 to a local-nonglobal minimizer of problem (2.1) or (2.2).

The first one states that if a local-nonglobal minimizer of problem (2.1) or (2.2) exists,

then there exists 1'* where the first and second order optimality conditions for a local

minimizer of gare satisfied. The second one is almost its converse: if the first and

second order sufficient optimality conditions for a local minimizer of gare satisfied

at sorne 1'*, then x(r*) is the local-nonglobal minimizer of problem (2.2). Tt is also a

local-nonglobal minimizer of problem (2.1), if the sign of the Lagrange multiplier is

strictly negative.

96 Local-Nonglobal Minimizer

Theorem 3.4. Suppose x* is a local-nonglobal minimizer of (2.2) or (2.1) with cor­

responding Lagrange multiplier À*. Let "'(* be the solution ta À("'() + >. = À*. Then

g'("'(*) = 0 and g"("'(*) ~ O.

Proof. By Lemma 3.1, À("'(*) E (À 1(B), À2(B)) and thus "'(* E r. Theorem 3.3 gives

x* = x("'(*). The fact that g'("'(*) = 0 follows from the feasibility of x* and from

Lemma 3.6.

By equation (3.20) and item 1 of Theorem 3.2, we obtain

dllx(",(*) 11
2

= d<p(À("'(*) + >') dÀ("'(*) > O.
d"'(dÀ d"'(-

(3.31)

If g"("'(*) < 0, then g'("'(* +h) < g'("'(*) = 0, for h > 0 small enough, and, using Lemma

3.6, we deduee Ilx(",(* + h)1I < 1. Thus, sinee IIx(",(*) Il = 1,

dllx(",(*)112 = lim Ilx(",(* + h)112 -lIx(",(*)112 < O.
d"'(h-.O h -

(3.32)

Inequalities (3.31) and (3.32) give

dllx(",(*) 11 2
= 0

d"'(.

It follows then from equality (3.31), and X("'(*) < 0 that <p'(À("'(*) + >') = O. From

equation (3.6), <p is strictly convex over the interval (À 1 (A), À2(A)) and thus À("'(*) + >.
is its strict minimizer. By equation (3.19), the following inequality thus holds

Ilx(",()Il ~ Ilx(",(*)Il = 1 for"'(E r.

This contradicts Ilx(",(* + h) Il < 1 for h > 0 small enough. Thus g"("'(*) ~ o. 0

Theorem 3.5. Suppose "'(* E lR satisfies g'("'(*) = 0 and g"("'(*) > 0, then xh*) is a

strict local non-global minimizer of (2.2) with Lagrange multiplier À* := À("'(*) + >..
In addition, if À* < 0, then x("'(*) is a strict local-nonglobal minimizer of (2.1).

3.2 Computing a Local-Nonglobal Minimizer

12
r:t:J
(1)

::l'0

~
~8

1- g('y) 1 • ('y*,g('y*))

°0~~~~7-~~~7-~~~~
0.2 0.4 0.6 0.8 ')'_ vaIlles 1.4 1.6 1.8

Figure 3.2: This figure illustrates Theorem 3.4.

97

Proof. From Lemma 3.3, g"('y*) =1- 0 implies À('y*) E (À 1(B), À2(B)) and ')'* E f.

Therefore x (')'*) is weIl defined and if we let x* : = x (')'*) and À * : = À (')'*) + >., then by

equation (3.18), the stationarity condition (3.1) is satisfied. Feasibility of x* foIlows

from Lemma 3.6. If we can further show cp'(À*) < 0, then the result foIlows from item

3 of Theorem 3.2.

Since g"('y*) > 0, then g'('y* - h) < g'('y*) = 0 for h > 0 smaIl enough. By Lemma

3.6, this implies J1x('y* - h)// < 1 and thus

dJlx('y*)J12 = lim J1X('y*)J12 -J1x('y* - h)//2 > o.
d')' h-->O h -

(3.33)

By a similar argument that appears in the proof of Theorem 3.4, we conc1ude that

the inequality in (3.33) holds strictly. From inequality (3.14) and equation (3.20), we

deduce <p'(À*) < O. 0

Bounds on À * and ')'*

For this section, we assume a local-nonglobal minimizer of problem (2.2) exists. Our

algorithm is based on finding a root ')'* to //x('y) //2 - 1 and we need initial bounds on

')'*. If J(n.:r = 0, then Lemma 3.3 implies 1 - d(À2 (B)) < ')'* < 00. However, this

98 Local-Nonglobal Minimizer

lower bound is of no practical utility, since we aim for an algorithm which exploits

the sparsity of A and computing d(À2 (B)) requires a full spectral decomposition of A.

Otherwise, if K n.:J =1= 0, the lemma does not gives us any supplementary information

on bounds for "(*, i.e. we only know "(* E IR. Our next lemma shows better bounds

on "(* exists, and these will improve the bounds on À* in Lemma 3.1 (Lemma 3.3 in

Martinez [29]).

Lemma 3.7. If a local-nonglobal minimizer of problems (2.1) or (2.2) exists, let "(*

be defined as in Theorem 3.3. Then "(* E [0, 2].

Pro of. From Theorem 3.3, x("(*) is the local-nonglobal minimizer and by feasibility

Therefore,

(1 _ "V*)2 = (a
T

v)2 < (~)2
1 vTB2v- À1(B) ,

where the last inequality follows from the Cauchy-Schwartz inequality and the fact

that vT B 2v 2:: À1(B)21IvI1 2. Taking squares roots on both sides of the previous equa­

tion yields

"(* E [1 -~ 1 + ~l
À1(B)' À1(B)'

Finally, note from the defini tion of B that À 1 (B) = Il a Il. o

Corollary 3.3. If a local-nonglobal minimizer of problems (2.1) or (2.2) exists, then

À* E [:\ + À(2),:\ + À(O)].

Proof. Recall, from Lemma 3.3, À("() is a decreasing function. o

Note

3.2 Computing a Local-Nonglobal Minimizer 99

Thus the lower bound of Lemma 3.1 is improved and the upper bound is improved

when À(O) < À2(B). It is also possible to deduee bounds on À* from the feasibility of

X*. Sinee cp(À*) = 1, then

a~
(Ài(A) ~_ À*)2 :::; 1 for aU i = 1 ... n.

Henee, by taking square roots on both sides

The Algorithm

We are now ready to present an algorithm for either computing a possible local­

nonglobal minimizer of problem (2.2) or either returning as an output that such a

candidate does not exist. We will also indicate at the end of the section how this

algorithm may be modified to compute a local-nonglobal minimizer of problem (2.1).

The upcoming algorithm is mainly the secant method. It exploits the fact that

"xh)" 2 is strictly convex for Î E rand that we have an upper bound on Î* when

a local-nonglobal minimizer of problem (2.2) exists. To simplify our analysis, let

hh) := Ilxh)112 - 1 and recall we are looking for a root of this function.

Algorithm 3.2.1.

1. INITIALIZATION

1.1. Let ÎL = 0, ÎU = 2, ÎO = 2.1, Î1 = ÎU and k = 1.

1.2. If Àhu) = À2(B) or if h(-y~~=~~'Yo) :::; 0, LNGM = 0, else LNGM = 1.

2. ITERATION While LNGM = 1 and Ilxhk)11 i= 1, do

2 1 = _ h(-Yk)('Yk-'Yk-l)
. . Îk+1 Îk h('Yk)-h(-yk-d .

2.2. If either Àhk+d = À2(B), h(-Yk+l)-h(-Yk) :::; 0 or Îk+1 < ÎL, then
'Yk+l-'Yk

LNGM = O.

2.3. k = k + 1.

100 Local-Nonglobal Minimizer

The convergence results for Algorithm 3.2.1, which we are about to present, are

based on the fact that we are using the secant method to find the root of a strictly

convex function. To facilitate our analysis, we define the foIlowing linear function of

"f which depends on the parameters "fk and "fk-l.

The foIlowing lemma is a weIl known consequence of strict convexity for the function

Lemma 3.8. Let "fk < "fk-l. For"f E IR, the following inequalities and equality hold:

In Algorit~m 3.2.1, the secant iteration is initiated at "fo and "fI and halted if,

for k ~ 1, À("(k) = À2(B) or the slope of the secant line going through the points

("(k, h("(k)) and ("(k-l, h("(k-l)) is not strictly positive. The next lemma shows, in the

case these situations do not occur, that the sequence {"fd prod~ced by the secant

iteration is strictly decreasing and converges to a root of h if bounded below. Such a

bound could be "fL for example.

Lemma 3.9. Let "fo and "fI be defined as in Algorithm 3.2.1, and assume

2. "fk Er, for k ~ 0,

3.2 Computing a Local-Nonglobal Minimizer 101

Then b'd is a strictly decreasing sequence. Furthermore, if b'd is bounded below,

then the sequence converges to 1 which satisfies h(1) = 0 and h'(1) ~ o.

Proof. Since s('l'; '1'1, 'l'a) is a function with positive slope by assumption, since '1'2

is its root and since h('f'l) > 0, then clearly '1'2 < '1'1. By item 3 of Lemma 3.8,

h('f'2) > S('f'2; '1'1, 'l'a) = O. By induction we may similarly prove {'l'd is a strictly

decreasing sequence and h('f'k) > 0 for k ~ O.

If {'l'd is bounded below, because it is a decreasing sequence it converges, say to

1. Now by the mean value theorem, for k ~ 1,

h('f'k) - h('f'k-l) = h'(Ck) for Ck E bkl'l'k-d.
'l'k - 'l'k-l

By assumption h'(Ck) > 0, for k ~ 1, and since h is strictly convex, we deduce that

for k ~ 1

Convergence of {'l'k} implies

h('f'k) - h('f'k-1) < h'(co).
'l'k - 'l'k-1

(3.34)

By (3.34) the denominator in the last limit is bounded away from infinity, hence the

numerator converges to zero, i.e. h(1) = O. Finally, since Ck E bk' 'l'k-1], then Ck

converges to 1 and thus h'(1) = 1imk-->oo h'(Ck) ~ O. o

For our convergence results, we need to make one further assumption concerning

problem (2.2).

Assumption 3.2.3. If problem (2.2) does not have a local-nonglobal minimizer, then

for E > 0 small enough, the equality constrained trust-region subproblem

(3.35)
s.t. Ilxll = 1 + E.

does not have a local-nonglobal minimizer.

102 Local-Nonglobal Minimizer

The scalar 1 on the right hand side of the equality constraint of problem (3.35)

is due the fact we assume ~ = 1 in problem (2.2). Now consider for a moment

that ~ is allowed to vary in (2.2). Our assumption mainly says that for ~ larger

but close enough to 1, there are no local-nonglobal minimizer. Note if Assumption

3.2.3 holds, that for ~ < 1 there are no local-nonglobal minimizer as weIl. This is

a consequence of Theorem 3.2 and of the strict convexity of the function r.p define in

(3.4). Furthermore, in view of Lemma 3.10, there exists ~o such that (2.2) admits a

local-nonglobal minimizer for aIl ~ > ~o. Thus in case a local-nonglobal minimizer

does not exist for (2.2) the assumption is equivalent to the inequality 1 < ~o .

Under the extra Assumption 3.2.3, the following theorem holds.

Theorem 3.6. The sequence {')'k} produced by Algorithm 3.2.1 either converges to

')'* su ch that x(')'*) is a local-nonglobal minimizer of problem (2.2) or there do es not

exist a local-nonglobal minimizer of problem (2.2) and LNGM is set to o.

Proof. First, consider the case where a local-nonglobal minimizer for problem (2.2)

exists. Let ')'* be defined as in Theorem 3.3. Then

h(')'*) = 0 and h'(')'*) ~ o. (3.36)

Recall')'l is an upper bound on ')'*. If ')'1 = ')'*, then Ilx(')'l) Il = 1. Hence, Aigorithm

3.2.1 terminates and there is nothing to prove.

Assume ')'1 > ')'*. Note, from Lemma 3.1, À* E (À 1(A), À2(A)) and from Theorem

3.3, À* = À(')'*) +~. Hence À(')'*) E (À 1(B), À2(B)), i.e. ')'* E f. Since À(')') is a

decreasing function, À(')'l) ::; À(')'*) < À2(B). From Corollary 3.2, À(')'l) > À1 (B).

Hence, ')'1 E f. Since h is strictly convex, since ')'1 > ')'* and since (3.36) holds,

h("(l) > 0 and h'("(l) > o.

Suppose for k ~ 1 that ')'k > ')'*, ')'k E f, h(')'k) > 0 and h'(')'k) > o. Note we just

proved these conditions hold for k = 1. We wish to show

3.2 Computing a Local-Nonglobal Minimizer 103

3. 1'k+l > 1'*,

5. 1'k+l E f.

Since
h(1'k)-h(')'k-l) ,
--.:...~-~:........:;.:.. = h (Ck) for Ck E bk,1'k-l],

1'k - 1'k-l

and h is strictly convex, then h'(Ck) ~ h'(')'k) > 0, proving item 1. It foUows

s(')'; 1'k, 1'k-l) is strictly increasing. Since ° = S(')'k+l; 1'k, 1'k-l) and S(')'k; 1'k, 1'k-l) =

h(')'k) > 0, then 1'k+l < 1'k· By Lemma 3.8, h(')'k+d > S(')'k+l; 1'k, 1'k-d = ° and this

proves item 2. We have 1'* < 1'k+l, otherwise 1'* E (')'k+l, 1'k) and by Lemma 3.8

This contradicts h(')'*) = 0, proving item 3. Since h'(')'*) ~ 0, by strict convexity

we have h'(')'k+l) > 0, proving item 4. FinaUy, from an argument similar as above,

1'k+l E f holds, proving item 5.

By induction it foUows that for aU k ~ 1

2. h(1'k) > 0,

3. 1'k > 1'*,

5. 1'k E f.

104 Local-Nonglobal Minimizer

It follows from Lemma 3.9 that {-yd converges, say to 1, which satisfies h(1) = 0 and

h'(1) ~ o. By strict convexity of h and sinee h("(*) = 0 and h'("(*) ~ 0, then 1 = 'Y*.

Second, consider the case where a local-nonglobal minimizer of problem (2.2) do es

not exist. Suppose there exists :y E r such that hb) < 0, then since h is strictly

convex and, by Lemma 3.5, since limy-+oo h("() = 00, there exists 'Y* > :y such that

'Y* E r, h("(*) = 0 and h'("(*) > O. By Theorem 3.3, there exists then a local-nonglobal

minimizer of problem (2.2), yielding a contradiction. Thus, h("() ~ 0 for 'Y E r. In

fact, this inequality holds strictly. Otherwise, from the strict convexity of h, for every

E > 0, the equation h("() = E(E + 2) has a solution, say :y E r, with h'(:Y) > O. From

item 3 of Theorem 3.3, x(:Y) is a local-nonglobal minimizer of problem (3.21) with

Ilx(:Y)11 = 1 + E. This contradicts Assumption 3.2.3. Renee h("() > 0 for 'Y E r. We

obtain in particular that h("(l) > O.

If a sequence {'Yk} obtained with Aigorithm 3.2.1 would be bounded below and

satisfy, for aH k ~ 1, 'Yk E rand

h("(k) - h("(k-d 0
--..:...:....:...:..-_--..:....:~:..:...> ,

'Yk - 'Yk-I

then by Lemma 3.9, {'Yd would converge, say to 1, which would satisfy h(1) = 0 and

h'(1) ~ O. This would imply that for every E > 0, the equation h("() = E(E + 2) has

a solution, say :y Er, with h' (:y) > 0, contradicting as explained above Assumption

3.2.3. Thus, there must exist sorne k ~ 1 such that either one of the foHowing cases

is true:

3. 'Yk tf. r (if and only if À("(k) = À2 (B)).

In either cases, a local non-global minimizer of problem (2.2) do es not exist and our

algorithm sets LNGM = O. D

3.2 Computing a Local-Nonglobal Minimizer 105

Corollary 3.4. Supposex* is a local-nonglobal minimizer of problem (2.2) with a

corresponding Lagrange multiplier À* that satisfies (3.1). Let "(* be the unique solution

to À("() +:\ = À*. If h'("(*) > 0, the sequence {"(d produced by Algorithm 3.2.1

converges ta "(* superlinearly and x("(*) is a strict local-nonglobal minimizer of problem

(2.2).

Proof. The proof holds from Theorem 3.3, Theorem 3.6 and since the secant method

converges superlinearly when it converges to a simple root, see e.g. Neumaier [33,

Corollary 5.4.2J. o

We now discuss how we can modifies Algorithms 3.2.1 in order to compute a

local-nonglobal minimizer of problem (2.1).

From item 2 of Theorem 3.1, if x* is a local-nonglobal minimizer of problem (2.1),

then Ilx*" = 1 must hold. Hence x* is necessarily a local-nonglobal minimizer of

problem (2.2). From the standard necessary optimality conditions it has a negative

Lagrange multiplier À * :s; O. Furthermore, it is shown in [27J that in fact strict

inequality holds, i.e. À * < O.

Recall that as long as LNGM = 1 the sequence b'd generated by Algorithm 3.2.1

is decreasing and that the function À("() + :\ is decreasing. Therefore, in Algorithm

3.2.1, if at sorne iteration k,

(3.37)

we may deduce from Theorem 3.3 that problem (2.1) does not have a local-nonglobal

minimizer. Thus in order to modify Algorithm 3.2.1 for computing a local-nonglobal

minimizer of problem (2.1), we may set the boolean parameter LNGM to 0 whenever

(3.37) holds. With this change to the algorithm, Theorem 3.6 and Corollary 3.4 also

ho Id if problem (2.2) is replaced by problem (2.1) in the statements.

106 Local-N onglo bal Minimizer

Local Optimums of TRS for Infinitely Large Trust Regions

Consider problem (2.2) where ~ is now any positive number. We wish to investigate

the limiting behavior of local (global and nonglobal) minimizers of problem (2.2) as

~ ---t 00. Obviously, x* is a local minimizer of problem (2.2) if and only if x* / ~ is a

local minimizer of the following problem:

min XT(~2A)x - 2(~afx
x (3.38)

s.t. Ilxll = 1.

Thus equivalently, we investigate the limiting behavior of local minimizers of problem

(3.38) as ~ ---t 00.

In this new setting, redefine ~ := ~2 À1 (A) - ~lIali and B := ~2A - ~I. Recall

A = QDQT. Let Q = [q1' ... , qn], where qi is the i-th column of Q.

Ifwe define xG(~) and xd~) to be respectively the global and the local-nonglobal

minimizers of (3.38), then Martinez [29J has shown the following

Lemma 3.10. There exists ~o > 0 such that (3.38) admits a local-nonglobal mini­

mizer for all ~ > ~o and

xG((0) := lim xG(~)
~-->oo

ch
Ichl q1,

ch
-lchl q1 .

Similarly to how problem (2.8) was derived, we rewrite (3.38) as

s.t. IIxll = 1.

(3.39)

(3.40)

(3.41)

Our goal is to show equations (3.39) and (3.40) may be deduced from the geometry

of problem (3.41). Define for p > 0 the level set

3.2 Computing a Local-Nonglobal Minimizer 107

This set is an ellipsoid centered in the interior of the unit ball and bounded by the

level curve r~ (x) = p2 Àl (B). The choice of the latter constant is made to sirnplify

the upcorning expressions. It follows x* is a local rninirnizer of problern (3.38) if

and only if, for sorne p > 0, x* E Op,.6. n {x : Ilxll = 1} and, for sorne b > 0,

Op,.6. n {x: Ilx - x*11 :::; b, Ilxll > 1} = 0. This rneans x* lies on the boundary of OpA,

for sorne p > 0, which is locally contained at x* in the unit baIl and tangent to the

unit sphere at x*.

We have B = Q(~2D - 5..I)QT, so that B = QDBQT, where

~llall °
D B :=

°
Note Ài(B) = (DB)ii for i = 1 ... n. Now we rnay write Op,.6. as

It follows

N ow, for i = 2 ... n,

and

lirn Q(~DE/)a,
.6.-+00

. al a2
l~ W ql + ~(À2(A) - ÀI(A)) + lIall q2 + ...

an
+ ~(Àn(A) - ÀI(A)) + Ilaii qn,

al wql
'

(3.42)

(3.43)

108 Local-N onglobal Minimizer

where the last equality follows by Assumption 3.2.1. Hence, as ~ becomes large, the

length of the n - 1 smaller axis of the ellipsoid (3.42) tend to zero, the length of the

larger axis tends to 2p and the center of the ellipsoid tends to Rql' In other words,

as ~ becomes large, the ellipsoid (3.42) converges to the segment

np,oo := {x = Qz + I~II ql : IZII ::; p ; Zi = 0 for i = 2 ... n} ,
which can be rewritten as

(3.44)

Therefore, Xa ((0) and x d (0) are obtained from the intersection of the boundary of

the unit sphere with an end point of a segment of the form np,oo' We have to look

for values of p = lai such that

(3.45)

There are two values of a that satisfy (3.45):

al := 1- ch/llall and a2 := -1- ch/llall·

Now let

Therefore xa((0) is the intersection of the limiting level set nm,oo with the unit sphere.

It follows

if ch ~ 0

if ch < O.

Thus (3.39) holds. Similarly, equation (3.40) holds, since for

we have that XL (00) is the intersection of the end points of the limiting level set nM,oo

with the unit sphere.

3.2 Computing a Local-Nonglobal Minimizer 109

For each value of .6, there exists a value of p for which the global minimizer xc(~)

lies in the intersection of the unit sphere and an ellipsoid np,~ contained in the unit

sphere. In Figure 3.3, on the le ft side, we illustrate, as ~ varies, this sequence of

ellipsoids np,~. One sees, as ~ becomes large, that the ellipsoids converge to the

segment nm,oo. Figure 3.3, on the right side, illustrates the same concept, but this

time, for different values of ~, we plot the ellipsoids np,~ locally contained at the

local-nonglobal minimizers XL(~). In this case, the ellipsoids converge to the segment

0.4

0.2

'" t'lo

-0.6

-' .. > ..
.. ,"~.. 1

~ "-....., .. 1

-<J.' ~I

Ilxll = 1
rî(x) = rî(xc(l))
rro(x) = rro(xc(lO))
r~o(x) = r~o(xc(50))
rî05(x) = rîo5(xc(105))

* xc(oo)

06

02

'" t'lo

" , -- - -'::. -"

:rI "

Ilxll = 1
ri (x) = rr (x L (1))
rro(x) = rro(xL(lO))
r~o(x) = r~o(xL(50))
rî05(x) = rîo5(xL(105))

o XL(OO)

Figure 3.3: Limiting behavior as ~ --7 00 of the ellipsoids nm,~ to which the points

Xc (~) (on the right) and XL (~) (on the left) are associated.

110 Local-Nonglobal Minimizer

3.2.2 Computing a Local-Nonglobal Minimizer: Second Method

Rendl and Wolkowicz [39] have proposed an algorithm for computing the global min­

imizer of problem (2.2). The algorithm is based on the problem

max k(t):= 2À1(D(t)) - t,
tER

(3.46)

where

D(t) := [~a _:T].
Its optimal objective value is the same as the one of problem (2.2). Problem (3.46)

is useful since k is a concave function over IR and if À * is the Lagrange multiplier of a

global optimal solution x* for problem (2.2), then À* = À1(D(t*)), where t* is optimal

for problem (3.46).

The matrix D(t) is of dimension n + 1 and is simply the matrix A to which a

new row and column was added. The fact that the eigenvalues of A interlace those

of D(t) is known as Cauchy's inequalities [5] or the interlacing eigenvalues theorem

for bordered matrices. It is formally stated in the next lemma and a pro of may be

found in [23].

Lemma 3.11. For tE IR,

Our next lemma studies the properties of the function À2 (D (t)). Our interest in

this function cornes from the fact that its image lies in the interval [À 1(A), À2(A)],

the same interval where lies the Lagrange multiplier of a local-nonglobal minimizer

of problem (2.2). We will make use in our analysis of the function

and of the sets :J and K defined in (3.7).

3.2 Computing a Local-Nonglobal Minimizer 111

Lemma 3.12. 1. If K, n.J =1= 0, >dD(t)) is infinitely differentiable and satisfies

p(À2(D(t))) = t. Moreover,

1 " -p"(À2 (D(t)))
À~(D(t)) = p'(À

2
(D(t))) and À2 (D(t)) = [p'(À

2
(D(t)))j3 (3.47)

for aU t E IR.

2. If K n.J = 0, À2 (D(t)) is continuous and infinitely differentiable for t E IR \

{p(À2(A))}.

(a) For t < p(À2 (A)), À2 (D(t)) satisfies p(À2 (D(t))) = t and

1 " -p"(À2(D(t)))
À;(D(t)) = p'(À

2
(D(t))) and À2 (D(t)) = [P'(À

2
(D(t)))j3' (3.48)

(b) For t > p(À2 (A)), À2 (D(t)) = À2 (A), À;(D(t)) = 0 and À~(D(t)) = O.

(c) for t = p(À2 (A)), À2 (D(t)) = À2 (A) and satisfies p(À2 (D(t))) = t; the right

handed and left handed derivatives are given respectively by

À;(D(t+))

À;(D(r))

Praof. 1. We have

1 X'(D(+)) _ -p"(À2 (A))
- p'(À2 (A)) ' 2 t - [P'(À2 (A))j3'

- 0, À~(D(r)) = O.

[1 0] [t - À -a
T

] [1 0] T D(t) - ÀI = 0
Q -a D - ÀI 0 Q

(3.49a)

(3.49b)

Expanding the determinant of the diagonal matrix with respect to its first col-

umn gives

det(D(t) - M) = (t - À) D (Àj(A) - À) - t (ai fi (Àj(A) - À)) , (3.50a)

n

= (t - p(À)) I1(Àj(A) - À) for À ~ {Àj(A)lj E J}.(3.50b)
j=l

112 Local-Nonglobal Minimizer

Since K n .J =1 0 and cÎI =1 0, then

Furthermore,
-2

p'(À) = 1 + ~ (Àj(A~j _ À)2 > O.

Therefore, for aIl t E IR, p-l(t) is weIl defined, where p-l(t) E (À 1(A), À2 (A)).

Moreover, (3.50b) shows it is an eigenvalue of D(t). From Lemma 3.11, this

shows p-l(t) = >dD(t)). Hence, À2 (D(t)) is infinitely differentiable and equa­

tions (3.47) are obtained by implicit differentiation.

2. Let t E IR.. Since Kn.:J = 0, then p(À2(A)) is weIl defined. By equation (3.50b),

À2 (A) is an eigenvalue of D(t). Assumptions 3.2.1 and 3.2.2 imply À 1(A) is not

an eigenvalue of D(t), since from equation (3.50a) we obtain

n

det(D(t) - À1(A)I) = -aî II (Àj(A) - À1(A)) =1 O.
j=2

Combining this last inequality with Lemma 3.11 gives

(3.51)

Note again p(À) is strictly increasing for À E (À 1(A), À2 (A)] and therefore

(3.52)

(a) . Ift < p(À2 (A)), thenp-l(t) is weIl defined, where p-l(t) E (À 1 (A), À2 (A)).

The rest of the proof is similar to the proof of item 1.

(b) and (c). If t 2: p(À2 (A)), by (3.52), p(À) < t for À E (À 1(A),À2 (A)).

Therefore, from equation (3.50b), there are no eigenvalues of D(t) in the

interval [À 1(A), À2 (A)) and, using the expression (3.51), we obtain À2 (A) =

À2 (D(t)). In particular, the derivatives of À2 (D(t)) for t > p(À2 (A)) are

3.2 Computing a Local-Nonglobal Minimizer 113

zero and equations (3.49b) hold. Note finally t = p(À2(D(t))) for t ~

p(À2 (A)) and thus (3.49a) holds.

o

Corollary 3.5. Fort E IR, À2(D(t)) > À1(A) and lim À2(D(t)) = À1(A). Moreover,
t-+-oo

1. if J(n..J i= 0, À2(D(t)) < À2 (A) and lim À2(D(t)) = À2(A).
t-+oo

2. If J(n ..J = 0,

(a) À2(D(t)) = À2(A) for t ~ p(À2(A)),

(b) À2(D(t)) < À2(A) for t < p(À2(A)). 0

Analogously to how function 9 was defined in Section §3.2.1, we define the function

m(t) := 2À2(D(t)) - t,

which has the real axis for domain. Furthermore, define

{

IR, if J(n ..J i= 0,

T := (-oo,p(À 2 (A)), if J(n..J = 0.

Note, from Lemma 3.12,

T = {t : À2(D(t)) E (À1(A), À2(A))},

À;(D(t)) > 0 for t E T.

(3.53)

(3.54)

For t E T, let the vector y E IRn be a unit norm eigenvector of D(t) for the eigenvalue

D(t)y = À2(D(t))y. (3.55)

Note y depends on t. Let y := (Ya, z)T, where Ya E IR and z E IRn. Thus, the derivative

of mis

m'(t) = 2Y5 - 1. (3.56)

114 Local-Nonglobal Minimizer

Wh en Je n.J = 0 and t > p(À2(A)), then m'(t) = -1. For t = p(À2(A)), it may

happen that m is not differentiable, since it is possible to show the multiplicity of

À2(D(t)) is changing.

From equation (3.55), we have

Now for t E T, define

Note

tyo - aT z = À2(D(t))yo,

-yoa + Az = À2(D(t))z.

z
x(t) := -.

Yo

Yo =1= 0 for t ET,

(3.57)

(3.58)

(3.59)

(3.60)

otherwise, by equation (3.58), this would imply À2 (D(t)) is an eigenvalue of A. Rewrit­

ing this same equation, we obtain that x(t) satisfies the first order necessary condition

(3.1), i.e.

(A - À2(D(t))I)x(t) = a. (3.61)

For t E T, À2(D(t)) E (À 1(A), À2(A)). Therefore A - À2(D(t))I is invertible, and we

may write Ilx(t) 11 2 as

It follows
dllx(t)11 2

dt
d<p(À2(D(t))) dÀ2(D(t))

dÀ dt

(3.62)

(3.63)

Again, the algorithm of this section is based on finding a root of the function Ilx(t) 11 2
-

1 in the interval T. A theorem similar to Theorem 3.2 holds.

Theorem 3.7. 1. Ifx* is a local-nonglobal minimizer ofproblems (2.1) or (2.2),

then (3.1) holds with À* E (À 1 (A), À2 (A)). Let t* be the unique solution to

À2(D(t)) = À*, then x* = x(t*) and dllx~?12 ~ O. If x* is a local-nonglobal

minimizer of (2.1) then À2(D(t*)) ~ O.

3.2 Computing a Local-Nonglobal Minimizer 115

2. If, for t* ET, Ilx(t*)/i = 1 and dllx~?12 < 0, then x(t*) is a strict local-nonglobal

minimizer of (2.2). If in addition, À2(D(t*)) < 0, x(t*) is also a strict local­

nonglobal minimizer of (2.1).

3. For tE T n {t : dll xJ2 112 < a}, x(t) is a strict local non-global minimizer of

(3.64)
s.t. Ilxll = Ilx(t) Il

with Lagrange multiplier À2(D(t)). In addition, if À2(D(t)) < 0, then x(t) is a

strict local-nonglobal minimizer of

min xT Ax - 2aT x
x (3.65)

s.t. Ilxll:::; Ilx(t)ll·

Proof. Since t* E T, the proofs of items 1 and 2 follow from Theorem 3.2 and equa­

tions (3.54), (3.62) and (3.63). To prove item 3, fix t E T and let 8 := Ilx(t)ll. Note

x(t) is a local-nonglobal minimizer of problem (3.64) if and only if problem (3.23) is

solved by x(t; 8) := x(t)j8.

For t ET n {t : dllxi:)112 < O}, it follows by equations (3.54) and (3.63) that

d<p(À 2 (D(t))) 0
dÀ <. (3.66)

By item 3 of Theorem 3.2, Ilx(t; 8)11 solves problem (3.23) since

since À1(82A) < 82 À2(D(t)) < À2(82 A) and since, from the equation (3.24) and the

inequality (3.66),

D

116 Local-Nonglobal Minimizer

As for Algorithm 3.2.1, a key property for the algorithm of this section is that

\\x(t)\\2 is a strictly convex function.

Lemma 3.13. Consider the function \\x(t)11 2 with do main T. Then it is an infinitely

differentiable strictly convex function and limt-->-oo IIx(t) 11
2 = 00.

Praof. Since <p(À) and À2(D(t)) are infinitely differentiable respectively on the in­

tervals (À1(A), À2(A)) and T, and À2(D(t)) E (À1(A), À2(A)), then infinite differ­

entiability foUows from (3.62). By Corollary 3.5, limt-->-oo À2(D(t)) = À1(A) and

À2 (D(t)) > À1(A), and, by Assumption 3.2.2, lim>''''>'l(A) <p(À) = 00. Thus, using

equation (3.62), limt-->-oo IIx(t) 11
2 = 00.

AU that is left to prove is strict convexity. For simplicity, let Ài = Ài(A), for

i = 1, ... , n, let Àt = À2(D(t)) and let À~ = À~(D(t)). There are two cases to

consider.

1. Case 1: ch #- 0 and aj = 0 for j = 2, ... , n. We have in this case

IIx(t) 11
2

dllx(t) 11
2

dt

where we have used equation (3.47) and (3.48) to obtain the first derivative.

Thus, using equation (3.54),

2. Case 2: :3j 2: 2 such that alaj #- O. We have, using once again equations (3.47)

3.2 Computing a Local-Nonglobal Minimizer

and (3.48),

Ilx(t)1I 2

dllx(t)11 2

dt

117

From equations (3.53) and (3.54), our result is proved if we can show for aU

À E (À 1, À2), that

~ ~ (~ ~) ~ ~ ~ ~
3 tt (Ài - À)4 1 + f;;: (Àj - À)2 - 2 tt (Ài - À)3 f;;: (Àj - À)3

is strictly positive. In fact, we prove the st ronger statement, for À E (À 1, À2),

that

t a; t a; t a; t a; (3.67)
i=l (Ài - À)4 j=l (Àj - À)2 i=l (Ài - À)3 j=l (Àj - À)3

is strictly positive. We may rewrite (3.67) as

The previous sum may be rewritten as

118 Local-N onglobal Minimizer

Recall, from Assumption 3.2.2, À1 < À2 . Thus, the first sum is strictly positive

for À E (À 1, À2), where we use that fact there exists j 2:: 2 such that ëi1ëij =F 0 .

We next daim, for 2 ::; i ::; n - 1 and i < j ::; n, that

(3.68)

is positive. lndeed, if ëiiëij = 0 or Ài = Àj, it is trivial. Otherwise, ëiiëij =1= 0 and

Ài < Àj and (3.68) is positive if and only if

1 1

is positive. Rewriting the last expression, we obtain

which is positive. Thus (3.67) is strictly positive and IIx(t)11 2 is a strictly convex

function for t E T.

D

Just as in Lemma 3.6, our next lemma shows Ilx(t) Il is related to the first derivative

ofm.

Lemma 3.14. Let t E T. Then

Il x (t) Il > (=, <) 1 -Ç:::=} m' (t) < (=, » O.

Proof. For t E T, we have

1 - ya
Y5

1 _ m'Ct)+!
2

m'(t)+l
2

1 - m'(t)
1 + m'(t) ,

(3.69)

(3.70)

where the second equality follows from y being unit norm and where the third equality

follows from equation (3.56). This proves our result sinee, for t E T, m'(t) E (-1,1]

and sinee the function w(x) := i~~ is strictly decreasing with w(O) = 1. D

3.2 Computing a Local-Nonglobal Minimizer 119

Following are two theorems, analogous to Theorems 3.4 and 3.5, which relate a

local non-global minimizer to the function m. The first one states that if a local­

nonglobal minimizer of problem (2.1) or (2.2) exists, then there exists t* where the

first and second order optimality conditions for a local minimizer of mare satisfied.

The second one is almost its converse: if the first and second order sufficient optimality

conditions for a local minimizer of mare satisfied at sorne t*, then x(t*) is the local­

nonglobal minimizer of problem (2.2). It is also the local-nonglobal minimizer of

problem (2.1), if the sign of the Lagrange multiplier is strictly negative.

Theorem 3.8. Suppose x* is a local-nonglobal minimizer of (2.2) or (2.1) with cor­

responding Lagrange multiplier À*. Let t* be the solution to À2 (D(t)) = À*. Then

m'(t*) = 0 and m"(t*) 2 o.

Proof. By Lemma 3.1, À2(D(t*)) E (À 1(A), À2 (A)) and thus t* E T. Theorem 3.7

gives x* = x(t*). The fact that m'(t*) = 0 follows from the feasibility of x* and from

Lemma 3.14.

By equations (3.54) and (3.63), and since, by Theorem 3.2, ip'(À*) ::; 0, we obtain

dllx(t*)112
= dip(À2(D(t*))) dÀ2 (D(t*)) < o.

dt dÀ dt-
(3.71)

If m"(t*) < 0, then m'(t* - h) > 0 for h > 0 small enough and using Lemma 3.14 we

deduce Ilx(t* - h) Il < 1. Thus, sinee Ilx(t*) Il = 1,

dllx(t*)112
= lim Ilx(t*)112

-llx(t* - h)112 > o.
& h~ h -

Inequalities (3.71) and (3.72) give

dllx(t*)112
= o.

dt

(3.72)

It follows then from equality (3.71), and À;(D(t*)) < 0 that ip'(À2 (D(t*))) = O. From

equation (3.6), ip is strictly convex over the interval (À 1 (A), À2 (A)) and thus À2 (D(t*))

120 Local-Nonglobal Minimizer

is its strict minimizer. By equation (3.62), the following inequality thus holds

Ilx(t)II'~ II x (t*)1I = 1 for tE T.

This contradicts IIx(t* - h)1I < 1 for h > 0 small enough. Thus m"(t*) ~ o. 0

Theorem.3.9. Suppose t* E IR satisfies m'(t*) = 0 and m"(t*) > 0, then x(t*) is a

strict local non-global minimizer of (2.2) with Lagrange multiplier À* := À2(D(t*)).

In addition, if À* < 0, then x(t*) is a strict local-nonglobal minimizer of (2.1).

Proof. From Lemma 3.12, m"(t*) # 0 implies À2(D(t*)) E (À 1(A),À2(A)), i.e. t* ET.

Therefore x(t*) is weIl defined and if we let x* := x(t*) and À* := À2(D(t*)), then by

equation (3.61), the stationarity condition (3.1) is satisfied. Feasibility of x* follows

from Lemma 3.14. If we can further show cp'(À*) < 0, then the result follows from

item 3 of Theorem 3.2.

Sinee m"(t*) > 0, then m'(t* + h) > m'(t*) = 0 for h > 0 small enough. By

Lemma 3.14, this implies IIx(t* +h)1I < 1 and thus

dllx(t*)11 2
= lim IIx(t* + h)1I2 -lIx(t*)1I2 < O.

~ h~ h -
(3.73)

By a similar argument that appears in the proof of Theorem 3.8, we conclude that

the inequality in (3.73) holds strictly. From inequality (3.54) and equation (3.63), we

deduee cp'(À*) < O. 0

Bounds on À * and t*

For this section, we assume a local-nonglobal minimizer of problem (2.2) exists. Our

algorithm is based on finding a root t* to IIx(t)1I 2 - 1 and we need initial bounds on

t*.

Lemma 3.15. If a local-nonglobal minimizer of problems (2.1) or (2.2) exists, let t*

be defined as in Theorem 3.7. Then

3.2 Computing a Local-Nonglobal Minimizer 121

Proof. By definition of t*, À2(D(t*)) E (À1(A),À2(A)) and thus t* ET. Henee, for

t = t*, if Y satisfies equation (3.55), then equation (3.60) implies Ya =J O. Dividing

equation (3.57) by Ya, we obtain

The conclusion follows from À* E (Àl(A),À2(A)) and -Ilaii ~ aTx* ~ Ilail. 0

Corollary 3.6. If a local-nonglobal minimizer of problems (2.1) or (2.2) exists, then

(3.74)

Proof. Recall, from Lemma 3.12, À2(D(t)) is an increasing function. o

The Algorithm

We now describe our second algorithm for either computing a possible local-nonglobal

minimizer of problem (2.2) or either returning as an output that such a candidate

does not exist. We mention below how to modify the algorithm to compute local­

nonglobal minimizer of problem (2.1). Sinee Ilx(t)11 2 is strictly convex for t E T and

sinee we have a lower bound on t* when a local-nonglobal minimizer exists, it is not

surprising this algorithm is similar in structure to Algorithm 3.2.1. To simplify our

analysis, let r(t) := Ilx(t)11 2 - 1 and recall we are looking for a root of this function.

Algorithm 3.2.2.

1. INITIALIZATION

1.1. Let tL = -Ilaii + À1(A), tu = Ilaii + À2 (A), ta = tL - 0.1, t l = tL, k = 1.

1.2. If À2(D(td) = À2(A) or if r(t~;=;~to) ~ 0, LNGM = 0, else LNGM = 1.

2. ITERATION While LNGM = 1 and Ilx(tk)11 =J 1, do
2 1 t = t _ r(tk)(tk-tk_l)

. . k+l k r(tk)-r(tk-l) .

2.2. If either À2 (D(tk+d) = À2 (A), r(t~±1)-;(tk) ~ 0 or tk+l > tu, then
k+l- k

122

LNGM = O.

2.3. k = k + 1.

Local-Nonglobal Minimizer

The convergence results of Algorithm 3.2.2 and their proofs are identical to those

of Theorem 3.6 and CoroUary 3.4. We again suppose Assumption 3.2.3 holds.

Theorem 3.10. The sequence {td produced by Algorithm 3.2.1 either converges to

t* such that x(t*) is a local-nonglobal minimizer of problem (2.2) or there does not

exist a local-nonglobal minimizer of problem (2.2) and LNGM is set to O.

Corollary 3.7. Suppose x* is a local-nonglobal minimizer of problem (2.2) with a

corresponding Lagrange multiplier À * that satisfies (3.1) . Let t* be the unique solution

to À2(D(t)) = À*. Then ifr'(t*) > 0, the sequence {td produced by Algorithm 3.2.2

converges to t* superlinearly and x(t*) is a strict local-nonglobal minimizer of problem

(2.2).

Similarly to the comments that foUow CoroUary 3.4, we can modify Algorithm

3.2.2 in order to compute a local-nonglobal minimizer of problem (2.1) by setting the

parameter LNGM to 0 if at sorne iteration k

(3.75)

Again, with this change to the algorithm, Theorem 3.10 and CoroUary 3.7 also hold

if problem (2.2) is replaced by problem (2.1) in the statements.

3.3 Numerical Results

In this section, we compare Algorithms 3.2.1,3.2.2 and the Martinez Algorithm [29].

As in Section §2.1O, aU algorithms were implemented using MATLAB 6.5 and com­

putations were done on a Pentium 4 at 1.8GHz with 256MB of memory (an codes

3.3 N umerical Results 123

may be found at the following URL: www.math.mcgill.ca/ ... fortin). The necessary

eigenvalues and eigenvectors for Algorithm 3.2.1 are obtained, with the function eigs,

using the matrix-vector multiplications stated in Section §2.3. For Algorithm 3.2.2,

we naturally use the matrix-vector multiplications W -t D(t)u. Thus these algo­

rithms are able to exploit the sparsity of the matrix A for large-sparse problems. On

the other hand, the Martinez Aigorithm requires at each iteration a matrix factor­

ization (LDLT or LU) or a spectral decomposition of a parameterized matrix of the

same dimension as A. Therefore, this algorithm does not take advantage of sparsity.

We should thus expect a great deal of improvement in the computation times of the

matrix-free Algorithms 3.2.1 and 3.2.2.

For problems (2.2) of dimension n = 40, 80, 160, 320, 640 and 1280, we compared

aIl three algorithms. For each dimension, five random problems were solved and

data colIected were averaged out. We also considered large problems of dimension

n = 2000, 8000, 32 000 and 128 000, but only compared in these cases the matrix­

free Algorithms 3.2.1 and 3.2.2. AlI problems considered had a density of 5/n and

were generated so that a local-nonglobal minimizer existed (see Appendix A for the

MATLAB source code used to generate the problems).

We coded the Martlnez Algorithm (computing an LU factorization at each it­

eration and using the function SI for the parameter update, see [29]). AlI three

algorithms haIt when an approximate multiplier>' E (À 1 (A), À2 (A) satisfy approxi­

mately

In our tests, the stopping criterion is

Results are shown on Figure 3.4 and Table 3.1, where we are interested in the number

of iterations taken to converge, the total computation time and the number of matrix-

124 Local-Nonglobal Minimizer

vector multiplications needed by the matrix-free algorithms to haIt.

10' c--~~-.-.-..,--~~~,.,---~~rro-.,-~~~~~~.........,

- Alg. Martlnez

10'

10'

10'

10'

Alg. 3.2.1
- -. Alg. 3.2.2

,
/

. , ,
/

10' log(dim~nsion) 10'
10'

Figure 3.4: Logarithm of computation time required by the Martlnez Algorithm,

Algorithms 3.2.1 and 3.2.2 in function of the logarithm of problem dimensions.

We observe from Figure 3.4 that computation times are faster for small size prob­

lems for the Martlnez Algorithm, even though the number of iterations taken to

converge is approximately the double of what is required by the other algorithms.

Martlnez [29] daims local cubic convergence for his algorithm, but it may take a

few iterations for convergence to take place. As for our algorithms, the approximate

solution is better at each iteration and (superlinear) convergence is quickly attained.

However, for medium size sparse problems the Martfnez Algorithm is outper­

formed by the matrix-free Algorithms 3.2.1 and 3.2.2. For aIl algorithms, the results

indicate the computation time are proportional to a power of the problem dimensions.

When comparing Algorithms 3.2.1 and 3.2.2, we see both algorithms take approx­

imately the same amount of iterations to converge, although these data are slightly

better for Algorithm 3.2.1. However, Algorithm 3.2.2 dearly needs less matrix-vector

multiplications at each step, a consequence of the simpler (symmetric) eigenvalue

3.3 Numerical Results 125

Iterations Matrix-Vector X

Size(n) Martinez Alg. 3.2.1 Alg. 3.2.2 Alg. 3.2.1 Alg. 3.2.2

40 32.8 13.0 14.0 1180.4 988.2

80 33.8 13.0 14.0 1444.4 1176.0

160 33.8 14.2 15.2 2095.0 1975.8

320 37.2 15.4 16.4 3209.0 2242.2

640 40.0 16.0 17.0 3909.4 2557.6

1280 41.6 17.8 18.8 5320.6 4391.6

2000 - 15.8 16.8 5390.8 4571.4

8000 - 22.0 23.4 11061.2 10573.4

32000 - 21.2 22.0 12805.2 7983.2

128000 - 23.0 23.8 11577.6 9756.4

Table 3.1: Total number of iterations needed to converge by the Martfnez Algorithm,

Algorithms 3.2.1 and 3.2.2 in function of problem dimensions. The total number of

matrix-vector multiplications is given for the last two matrix-free algorithms.

problems it needs to solve at each iterations). Therefore, even if the exponential

growth in computation times is approximately of the same order for both algorithms,

Algorithm 3.2.2 is faster.

126 Local-N onglobal Minimizer

127

Conclusion

We have considered in this thesis new approaches for computing the local minimiz­

ers of the trust-region subproblems (2.1) and (2.2). The algorithms presented have

a different Havor depending on whether we seek for a global minimizer or a local

non-global minimizer. In Aigorithm 2.6.1 we presented a method for computing an

approximate global minimizer which is a primaI-dual method similar to the Rendl­

Wolkowicz Aigorithm and based implicitly on solving a semidefinite program. The

algorithms we presented for computing an approximate local non-global minimizer

are based upon fin ding a root of a convex function with the secant method. Our

goal was to produce algorithms that only required matrix-vector multiplications (as

opposed to matrix factorization or full spectral decomposition) and computing a few

eigenvalues at each iteration, because we wanted to exploit the possible sparsity of

the matrix A in the quadratic objective.

In Chapter 2 we have focused on finding an approximate solution to the equality

constrained trust-region subproblem (2.2). By convexifying the quadratic objective

using the feasibility constraint, we have formulated the problem of fin ding a global

minimizer equivalently as the one of finding the intersection of the unit sphere and

the largest volume ellipsoid inscribed in the unit baIl among the family of ellipsoids

(2.9). In our view, one of the interesting results of this chapter is that we can model

this geometric formulation of the problem as a linear semidefinite program, different

from the semidefinite programming relaxation usually associated with problem (2.2).

128 Conclusion

Although, our algorithm does not explicitly solve this SDP, it is implicitly solved by

equivalently maximizing a concave function of a single variable over a closed inter­

val. This is similar to what is done in the Rendl-Wolkowicz Algorithm. However,

there is more link between the two algorithms, since there is a bijection between the

results obtained in their framework and the ones obtained in ours. Therefore, both

algorithms are in structure similar. This includes a similar way of detecting an in­

terior optimal solution for problem (2.1) and a similar treatment of the hard case,

i.e. when we are faced with non-differentiability of the single variable concave objec­

tive. In particular, we take advantage of the shift and deftate procedure introduced

in [10]. The main drawback of our method is that we need to find at each iteration

the smallest eigenvalue of a non symmetric parameterized matrix, where as, in the

Rendl-Wolkowicz Algorithm, the parameterized matrix is symmetric. Thus there is

at least more work involved in our method. In this respect, our algorithm is not com­

putationally attractive. What we believe to be the main interest of this chapter lies

in the fact that we have showed that two approaches, based on different semidefinite

programs, le ad to two algorithms that are quite similar in structure.

We introduced as well, in this chapter, Algorithm 2.6.2, a modified version of AIgo­

rit hm 2.6.1, in order to prove convergence results that are useful when one is interested

in proving the global convergence of a trust-region method for unconstrained opti­

mization. Such problems are solved (we also solve constrained optimization problems)

in the last part of our numerical results, but we were first interested in comparing

Algorithm 2.6.1 with other existing approaches. OveraIl, our observations lead to the

conclusion that this algorithm and the Rendl-Wolkowicz Algorithm behave similarly,

although the latter algorithm is usually faster due to less work needed in solving the

eigenvalue problems. We have also shown in Sections §2.1O.1 and 2.10.1 examples

where these algorithms outperform the approach of Moré-Sorensen which computes

a Cholesky factorization at each iteration. However, Section 2.10.1 presents as weIl

129

cases where this is not always true and where sparsity is preserved through the fac­

torizations. Furthermore, the results indicate that there is a trade-off between speed

and robustness: on some problems the GLTR or DCA Aigorithms perform impres­

sively faster and necessitate less matrix-vector multiplication, but are either unable

to obtain accurate solutions to hard case 2ii) TRS or convergence is extremely slow.

However, the robustness of Aigorithm 2.6.1 and the Rendl-Wolkowicz Aigorithm is

quite dependent on the eigensoiver used. We must admit to be disappointed by the

fact that eigs sometimes failed to return accurate eigenvalues and eigenvectors or to

converge and that we had to rely on eig. This had the effect of Iimiting the size of

our tests problems.

In Chapter 3, we have considered two algorithms for computing the locai-nongiobai

minimizer of problem (2.1) or (2.2). For each aigorithm, the main computing effort

at each step lies in approximating the first two eigenvalues of the same parameterized

matrices found in Aigorithm 2.6.1 and the Rendl-Wolkowicz Aigorithm. Byextending

the geometric approach of Chapter 2, we have showed a relationship between global

minimizers and the Iocal-nonglobal minimizer: each minimizer lies in the intersection

of the unit sphere with an ellipsoid locally contained in the unit baIl at the minimizer.

As we have seen in Section §3.2.1, this is a generalization of the result of Martinez

[29] that was known to ho Id when the trust-region radius tends to infinity.

Aigorithms 3.2.1 and 3.2.2 presented in this chapter are respectively motivated by

Corollary 2.1 and Cauchy's inequality, Lemma 3.11, and build on the theory needed

to der ive Aigorithm 2.6.1 and the Rendl-Wolkowicz Aigorithm. Both algorithms are

based on applying the secant method respectively to the strictly convex functions

Ilx(-y)Jl2 - 1 and JlX(t)Jl2 - 1. Although the author was not able to prove it, it seems

the functions IIx(-Y)// - 1 and IIx(t)1I - 1 are strictly convex as weIl, and numerical

experiments tend to show the performance of the secant method on these functions

is enhanced. Obviously this constitute material for future research. In any case, our

130 Conclusion

numerical results clearly show our approaches are more competitive than the previous

approach of Martinez. Because the eigenvalue problems that need to be solved in

Algorithm 3.2.2 are simpler, less matrix-vector multiplications and computation time

are required compared to Algorithm 3.2.l.

For final remarks, we would like to point out sorne additional work that could

be done in or der to improve the results of this thesis. Aigorithm 2.6.1 is based

on finding at each iteration a nearly exact smallest eigenvalue. ls it possible to

derive an algorithm that only requires approximate eigenvalues? At the moment,

fin ding nearly exact eigenvalues seem to require on sorne problems many matrix-vector

multiplications and thus affect the computation times. We may also see this problem

the other way around and wonder if it is possible to set the eigenvalue problems in a

way that facilitates computations by ARPACK (eigs)? Obviously, similar remarks

apply to the algorithms of Chapter 3.

131

Bibliography

[IJ K. ANSTREICHER and H. WOLKOWICZ. On Lagrangian relaxation of quadratic

matrix constraints. SIAM J. Matrix Anal. Appl., 22(1):41-55 (electronic), 2000.

[2J A. BEN-TAL and A. NEMIROVSKI. Lectures on modem convex optimization.

Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2001.

Analysis, algorithms, and engineering applications.

[3J R. BHATIA. Matrix analysis, volume 169 of Graduate Texts in Mathematics.

Springer-Verlag, New York, 1997.

[4J S. BOYD, L. EL GHAOUI, E. FERON, and V. BALAKRISHNAN. Linear matrix

inequalities in system and control theory, volume 15 of SIAM Studies in Applied

Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadel­

phia, PA, 1994.

[5J A. L. CAUCHY. Sur l'équation à l'aide de laquelle on détermine les inégalités

séculaires des mouvements des planètes. In Oeuvres Complètes (Ir Série), vol­

ume 9. 1829.

[6J M. CELIS, J. DENNIS, and R. TAPIA. A trust region strategy for nonlinear

equality constrained optimization. In Numerical optimization, 1984 (Boulder,

Cola., 1984), pages 71-82. SIAM, Philadelphia, PA, 1985.

132 BIBLIOGRAPHY

[7] A. CONN, N. GOULD, D. ORBAN, and P. TOINT. A primaI-dual trust-region

algorithm for non-convex nonlinear programming. Math. Program., 87(2, Ser.

B):215-249, 2000. Studies in algorithmic optimization.

[8] A. CONN, N. GOULD, and P. TOINT. Trust-region methods. MPS/SIAM Se­

ries on Optimization. Society for Industrial and Applied Mathematics (SIAM),

Philadelphia, PA, 2000.

[9] C. FORTIN. A survey of the trust region subproblem within a semidefinite frame­

work. Master's thesis, University of Waterloo, 2000.

[10] C. FORTIN and H. WOLKOWICZ. The trust region subproblem and semidefinite

programming. Optimization Methods and Software, 19(1):41-67, February 2004.

[11] W. GANDER. Least squares with a quadratic constraint. Numer. Math.,

36(3):291-307, 1980/81.

[12] D. GAY. Computing optimal locally constrained steps. SIAM J. Sei. Statist.

Comput., 2:186-197, 1981.

[13] D. GAY. Computing optimallocally constrained steps. SIAM Journal on Sei­

entifie and Statistieal Computing, 2(2):186-197, 1981.

[14] S. GOLDFELD, R. QUANDT, and H. TROTTER. Maximization by quadratic hill­

climbing. Eeonometriea, 34(2):541-551, 1966.

[15] G. GOLUB and C. VAN LOAN. Matrix Computation. The Johns Hopkins Uni­

versity Press, third edition, 1996.

[16] G. GOLUB and U. VON MATT. Quadratically constrained least squares and

quadratic problems. Numer. Math., 59(6):561-580, 1991.

BIBLIOGRAPHY 133

[17] N. GOULD, S. LUCIDI, M. ROMA, and P. TOINT. Solving the trust-region sub­

problem using the lanczos method. SIAM Journal on Optimization, 9(2):504-525,

1999.

[18] N. GOULD, D. ORBAN, and P. TOINT. Cuter: Constrained and unconstrained

testing environment revisited. http://cuter.rl.ac.uk/cuter-www/index.html,

2001.

[19] W. HAGER. Minimizing a quadratic over a sphere. SIAM J. Optim., 12(1):188-

208 (electronic), 2001.

[20] M. HEINKENSCHLOSS. Mesh independence for nonlinear least squares problems

with norm constraints. SIAM J. Optim., 3(1):81-117, 1993.

[21] M. HEINKENSCHLOSS. On the solution of a two ball trust region subproblem.

Math. Programming, 64(3, Ser. A):249-276, 1994.

[22] A. HOERL. and R. KENNARD. Ridge regression: Biased estimation of nonorthog­

onal problems. Technometrics, 12:55-67, 1970.

[23] R. HORN and C. JOHNSON. Matrix Analysis. Cambridge University Press, 1987.

[24] R. LEHOUCQ and D. SORENSEN. Deflation techniques for an implicitly restarted

Arnoldi iteration. SIAM J. Matrix Anal. Appl., 17(4):789-821, 1996.

[25] R. LEHOUCQ, D. SORENSEN, and C. YANG. ARPACK users' guide. Soft­

ware, Environments, and Toois. Society for Industrial and Applied Mathematics

(SIAM), Philadelphia, PA, 1998. Solution of large-scale eigenvalue problems with

implicitly restarted Arnoldi methods.

[26J K. LEVENBERG. A method for the solution of certain nonlinear problems. Quar­

terly of Applied Mathematics, 2:164-168, 1944.

134 BIBLIOGRAPHY

[27] S. LUCIDI, 1. PALAGI, and M. ROMA. On sorne properties of quadratic programs

with a convex quadratic constraint. SIAM J. Optim., 8(1):105-122 (electronic),

1998.

[28] D. MARQUARDT. An algorithm for least-squares estimation of nonlinear param­

eters. SIAM Journal on Applied Mathematics, 11(2):431-441, 1963.

[29] J. MARTINEZ. Local minimizers of quadratic functions on euclidian balls and

spheres. SIAM Journal on Optimization, 4(1):159-176,1994.

[30] J. MARTINEZ and S. SANTOS. A trust-region strategy for minimization on arbi­

trary domains. Math. Progmmming, 68(3, Ser. A):267-301, 1995.

[31] J. MORÉ. Generalization of the trust region problem. Optimization Methods and

Software, 2:189-209, 1993.

[32] J. MORÉ and D. SORENSEN. Computing a trust region step. SIAM Journal on

Scientific and Statistical Computing, 4(3):553-572, 1983.

[33] A. NEUMAIER. Introduction to numerical analysis. Cambridge University Press,

Cambridge, 2001.

[34] J. NOCEDAL and S.J.WRlGHT. Numerical optimization. Springer Series in Op­

erations Research. Springer-Verlag, New York, 1999.

[35] J.-M. PENG and Y.-X. YUAN. Optimality conditions for the minimization of a

quadratic with two quadratic constraints. SIAM J. Optim., 7(3):579-594, 1997.

[36] M. POWELL. A new algorithm for unconstrained optimization. In J. Rosen,

O. Mangasarian, and K. Ritter, editors, Nonlinear Progmmming, pages 31-65.

Academic Press, New York, NY, 1970.

BIBLIOGRAPHY 135

[37] M. POWELL. Convergence properties of a class of minimization algorithms. In

O. Mangasarian, R. Meyer, and S. Robinson, editors, Nonlinear Programming 2,

pages 1-27. Academic Press, New York, NY, 1975.

[38] M. POWELL and Y. YUAN. A trust region algorithm for equality constrained

optimization. Math. Programming, 49(2, (Ser. A)):189-211, 1990/91.

[39] F. RENDL and H. WOLKOWICZ. A semidefinite framework for trust region sub­

problems with applications to large scale minimization. Mathematieal Program­

ming Series E, 77(2):273-299, 1997.

[40] M. ROJAS, S. SANTOS, and D. SORENSEN. A new matrix-free algorithm for the

large-scale trust-region subproblem. SIAM J. Optim., 11(3):611-646 (electronic),

2000/01.

[41] M. ROJAS and D. SORENSEN. A trust-region approach to the regularization

of large-scale dis crete forms of ill-posed problems. SIAM J. Sei. Comput.,

23(6): 1842-1860 (electronic), 2002.

[42] D. SORENSEN. Newton's method with a model trust region modification. SIAM

Journal on Numerieal Analysis, 19(2):409-426, 1982.

[43] D. SORENSEN. Implicit application of polynomial filters in a k-step Arnoldi

method. SIAM J. Matrix Anal. Appl., 13(1):357-385, 1992.

[44] T. STEIHAUG. The conjuguate gradient method and trust regions in large scale

optimization. SIAM Journal on Numerieal Analysis, 20(3), 1983.

[45] R. STERN and H. WOLKOWICZ. Indefinite trust region subproblems and non­

symmetric eigenvalue perturbations. SIAM J. Optim., 5(2):286-313, 1995.

[46] J. STURM and S. ZHANG. On cones of nonnegative quadratic functions. Math.

Oper. Res., 28(2):246-267, 2003.

136 BIBLIOGRAPHY

[47J P. TAO and L. AN. Difference of convex functions optimization algorithms

(dca) for globally minimizing nonconvex quadratic forms on euclidean balls and

spheres. Oper. Res. Lett, 19(5):207-216, 1996.

[48] P. TAO and L. AN. A d.c. optimization algorithm for solving the trust-region

subproblem. SIAM J. Optim., 8(2):476-505 (electronic), 1998.

[49] P. TOINT. Towards an efficient sparsity exploiting newton method for minimiza­

tion. In 1. S. Duff, editor, Sparse matrices and their uses, Institute of Math­

ematics and its Applications Conference Series, pages xii+387, London, 1981.

Academic Press Inc. [Harcourt Brace Jovanovich Publishers].

[50] H. WEYL. Das asymptotische verteilungsgesetz der eigenwerte linearer partieller

differentialgleichungen. Mathematische Annalen, 71:441-469, 1911.

[51] J. WILKINSON. The algebraic eigenvalue problem. Clarendon Press, Oxford,

1965.

[52] H. WOLKOWICZ. Measures for symmetric rank-one updates. Math. Oper. Res.,

19(4):815-830, 1994.

[53] Y. YE and S. ZHANG. New results on quadratic minimization. SIAM J. Optim.,

14 (1) : 245-267 (electronic), 2003.

[54] Y. YUAN. On a subproblem of trust region algorithms for constrained optimiza­

tion. Math. Programming, 47(1, (Ser. A)):53-63, 1990.

[55] Y. YUAN. A review of trust region algorithms for optimization. In ICIAM 99

(Edinburgh), pages 271-282. Oxford Univ. Press, Oxford, 2000.

137

Appendix A

Matlab functions

A function used for creating hard case 2ii) TRS with log(n) dense rows and columns.

function [A,a,s]=genhard(n,density)

% generates a random hard case 2ii) TRS.

nrow = fioor(log(n));

tt=l/rand;

D = tt*sprand(n-nrow,n-nrow,density);

D = D+D';

% fill the first 'nrows' rows and columns: to create problems for Cholesky factorization

E = sprandsym(nrow,l);

WW = rand(nrow,n-nrow);

A = [E,WW;WW',D);

tt=l/rand;

a=tt*sprandn(n,1,.5);

[va,lambdaA) = eigs(A,l,'SA');

if lambdaA 2: 0

shift = 10*1/rand;

A = A-(lambdaA+shift)*speye(n);

138

lambdaA = -shift;

end

atemp = a;

Matlab functions

a=(A-lambdaA*speye(n))*a; % ensure hard case, i.e. a is in range

s=2*norm(atemp); % to ensure hard case 2ii), i.e. s too large

A function used for generating TRS with a local-nonglobal minimizer

function [A,a,s]=genlngm(n,density)

% generates a TRS with a local-nonglobal minimizer.

tt=l/rand;

A = tt*sprand(n,n,density);

A = A+A';

tt=l/rand;

a=tt*sprandn(n,l,density);

s=l;

% get the two smallest eigenvalues of A

OPTIONS.tol= eps;

OPTIONS.issym = 1; % because we know the matrices A and D are symmetric

OPTIONS.disp = 0; % no display of the output for eigs.m

[v,lambda,fiageigs] = eigs(A,2,'SA',OPTIONS); % computes 2 smallest eigenvalues of A

lambda = diag(lambda);

% avoid the hard case

a = l/n*v(:,l) + a; % enforces a'v(:,l) = 0

% ensure a local nonglobal min exists.

na = norm(a);

while na > abs(lambda(2)-lambda(1))/2

131

Bibliography

[IJ K. ANSTREICHER and H. WOLKOWICZ. On Lagrangian relaxation of quadratic

matrix constraints. SIAM J. Matrix Anal. Appl., 22(1):41-55 (electronic), 2000.

[2J A. BEN-TAL and A. NEMIROVSKI. Lectures on modem convex optimization.

Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2001.

Analysis, algorithms, and engineering applications.

[3J R. BHATIA. Matrix analysis, volume 169 of Graduate Texts in Mathematics.

Springer-Verlag, New York, 1997.

[4J S. BOYD, L. EL GHAOUI, E. FERON, and V. BALAKRISHNAN. Linear matrix

inequalities in system and control theory, volume 15 of SIAM Studies in Applied

Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadel­

phia, PA, 1994.

[5J A. L. CAUCHY. Sur l'équation à l'aide de laquelle on détermine les inégalités

séculaires des mouvements des planètes. In Oeuvres Complètes (Ir Série), vol­

ume 9. 1829.

[6J M. CELIS, J. DENNIS, and R. TAPIA. A trust region strategy for nonlinear

equality constrained optimization. In Numerical optimization, 1984 (Boulder,

Cola., 1984), pages 71-82. SIAM, Philadelphia, PA, 1985.

