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Abstract 

Liquid chromatography coupled with high-resolution mass spectrometry (LC-MS) has become a 

workhorse in global metabolomics studies with growing applications across biomedical and 

environmental sciences. However, outstanding bioinformatics challenges for global metabolomics 

data processing remain critical barriers to the wider adoption of this technology. These challenges 

include optimal raw spectral MS processing, tandem MS (MS/MS) spectral deconvolution, and 

accurate function analysis of global metabolomics. This thesis aims to address these challenges by 

developing multiple bioinformatic tools and platforms, and bridging auto-optimized raw spectra 

data processing to yield accurate functional insights. 

Firstly, an auto-optimized raw LC-MS spectra processing workflow was developed in an R 

package (MetaboAnalystR 3.0) and implemented in MetaboAnalyst (v5.0) website with a user-

friendly interface. This workflow has been demonstrated by multiple case studies as highly 

efficient and fast. Secondly, an ultra-fast and auto-optimized data-dependent acquisition MS/MS 

data and data-independent acquisition data processing workflow was implemented in a later 

version of MetaboAnalystR package (v4.0). The performance of quantification and qualification 

of MetaboAnalystR for LC-MS and LC-MS/MS data processing has been benchmarked against 

other popular tools, showing significant improvements in multiple aspects. Finally, functional 

analysis for global metabolomics has been enhanced by integrating retention time and MS/MS-

based identifications into mummichog algorithm to improve the accuracy. Functional meta-

analysis has also been developed to enable integration of multiple metabolomics datasets. The 

performance has also been demonstrated through COVID-19 case studies. 

Overall, this thesis describes how MetaboAnalystR and MetaboAnalyst can be utilized to bridge 

global metabolomics raw spectral processing to accurate biological insights. 
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Résumé 

La chromatographie liquide couplée à la spectrométrie de masse à haute résolution (LC-MS) est 

devenue un outil indispensable dans les études de métabolomique globale avec des applications 

croissantes dans les domaines biomédicaux et environnementaux. Cependant, d'importants défis 

bioinformatiques dans le traitement des données de métabolomique globale restent des obstacles 

critiques à une adoption plus large de cette technologie. Ces défis incluent le traitement optimal 

des spectres de spectrométrie de masse bruts, la déconvolution spectrale MS/MS (MS/MS) en 

tandem et l'analyse précise des fonctions de métabolomique globale. Cette thèse vise à relever ces 

défis en développant plusieurs outils et plateformes bioinformatiques pour relier le traitement 

automatique des données de spectres bruts à des informations fonctionnelles précises. 

Tout d'abord, un flux de travail de traitement de spectres LC-MS bruts auto-optimisé a été 

développé dans un paquet informatique R (MetaboAnalystR 3.0) et implémenté sur le site web de 

MetaboAnalyst (v5.0) avec une interface conviviale. Ce flux de travail a été démontré par de 

multiples études de cas comme étant très efficace et rapide. Deuxièmement, un flux de travail de 

traitement ultra-rapide et auto-optimisé des données de MS/MS dépendantes des données et des 

données d'acquisition indépendantes a également été implémenté dans une version ultérieure du 

paquet informatique MetaboAnalystR (v4.0). Les performances de quantification et de 

qualification de MetaboAnalystR pour le traitement des données LC-MS et LC-MS/MS ont été 

comparées à d'autres outils populaires, montrant des améliorations significatives dans de multiples 

aspects. Enfin, l'analyse fonctionnelle pour la métabolomique globale a été améliorée en intégrant 

le temps de rétention et les identifications basées sur MS/MS dans l'algorithme mummichog pour 

améliorer la précision. Une méta-analyse fonctionnelle a également été développée pour permettre 
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l'intégration de multiples ensembles de données de métabolomique. Les performances ont 

également été démontrées par des études de cas de COVID-19. 

Dans l'ensemble, cette thèse décrit comment MetaboAnalystR et MetaboAnalyst peuvent être 

utilisés pour relier le traitement des données spectrales brutes de la métabolomique globale à des 

informations biologiques précises. 
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Contribution to Original Knowledge 

The proposed methods in this thesis aim to solve several essential bottlenecks by developing tools 

and platforms for LC-MS/MS raw data pre-processing, features annotation and functional analysis. 

Herein, we have enabled all users to obtain optimal metabolomics data processing results in an 

ultra-fast way without laborious programming or parameters’ optimization work by manual. All 

significant novel contributions to metabolomics field are highlighted. 

1. MetaboAnalystR 3.0, an R package was developed to implement an auto-optimized 

workflow for global metabolomics data processing. This package addresses three key 

bottlenecks by providing the following features: 

• An efficient parameters’ optimization method used for LC-MS raw spectral processing 

to obtain optimal peak profiling results automatically. 

• An adaptive batch effect correction method used for large-scale metabolomics datasets 

with multiple batches to minimize the influence from batch effects. 

• Functional analysis algorithm, mummichog, has been updated by annotating putative 

compounds based on both m/z and retention time information to increase the accuracy. 

2. MetaboAnalyst 5.0, a website aiming to further narrow the gap from raw data to functional 

insights for global metabolomics based on high-resolution mass spectrometry by enabling 

a user-friendly interface and providing more functional utilities for metabolomics data 

interpretation. There are three main features developed: 

• A LC-MS Spectra Processing module which offers an easy-to-use and intuitive 

interface-based pipeline that can perform automated parameter optimization and 

resumable analysis to significantly lower the barriers to LC-MS spectra processing. 
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• An enhanced Functional Analysis module which expands the previous mummichog 

algorithm to allow users to intuitively select any peak groups of interest and evaluate 

their enrichment of functions as defined by metabolic pathways and metabolite sets. 

• A functional meta-analysis method developed to combine multiple global 

metabolomics datasets for comprehensive functional insights. 

3. MetaboAnalystR 4.0, an R package was updated by enabling streamlined MS/MS spectral 

deconvolution and compound annotation coupled with comprehensive spectral reference 

databases and offering a further enhanced sensitive functional interpretation: 

• An auto-optimized DDA data deconvolution workflow to remove contamination 

signals in chimeric spectra. 

• A highly efficient SWATH-DIA data deconvolution pipeline. 

• Comprehensive MS/MS databases curated from all public database that can support 

diverse application purposes. 

• Accurate functional activity prediction by integrating LC-MS and MS/MS results.  

4. Comprehensive meta-analysis of multiple COVID-19 datasets was performed to 

demonstrate LC-MS raw spectral processing and functional analysis pipelines and reveal 

biological insights associated with the pathogenesis of COVID-19. 

• The efficacy of computational pipeline for raw spectra processing, functional analysis 

and functional meta-analysis has been demonstrated. 

• Extensive dysregulations of amino acids metabolism, damage to the oxygen transport 

in red blood cells, exhaustion of endogenous immune bioactive metabolites and the 

suppression of physiological processes are related to the progression of COVID-19.  
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Chapter 1: Introduction and literature review 

1.1 Background 

The emergence of various "omics" techniques has revolutionized many areas of systems biology 

(1). Owing to the advances of high-throughput sequencing technologies, genomics and 

transcriptomics have become crucial in deciphering the biological functions of genes and 

transcripts. Meanwhile, post-genomics biochemistries, such as proteomics and metabolomics, 

have focused on studying the systematic changes in molecules of different weight scales (2, 3). 

Specifically, proteomics investigates the interactions, function, composition, and structures of 

proteins and their cellular activities (4, 5), while metabolomics is a comprehensive study of small 

molecules or metabolites (3). 

1.2 Overview of metabolome 

The metabolome is the complete set of small molecule metabolites present in a biological system, 

such as cells, tissues, and organisms (6). These metabolites include sugars, amino acids, lipids, 

and other organic molecules that are involved in cellular processes such as energy production, 

signaling, and biosynthesis. The composition of human metabolome can vary depending on factors 

such as diet, genetics, environmental exposure and medications (7, 8).  

The metabolome is a critical component of biological systems, with implications for understanding 

health and disease. It plays a vital role in cellular processes such as energy production, signaling, 

and biosynthesis, and changes in the metabolome have been linked to a variety of diseases and 

disorders, including cancer, diabetes, and neurological disorders (9, 10). In contrast to the genome, 

which provides information on potential biological events, the metabolome directly reflects what 



2 
 

has occurred in a biological system (11). In a brief summary, the metabolome represents a critical 

component of biological systems, with implications for understanding health and disease. 

In recent years, exposomics has gained prominence as a means to investigate environmental 

exposures and their potential effects on biological individuals. Similarly, exposomics primarily 

focuses on the comprehensive range of low-weighted compounds and metabolites present in both 

biological and environmental samples, such as soil, water, and air (12). It offers direct insights into 

the metabolic activity of organisms and the overall state of ecosystems. Consequently, it has broad 

applications across various fields, including agriculture, environmental toxicology, and the study 

of environmental pollution and microbial interactions (13). By characterizing the exposome, 

researchers can gain a better understanding of the impact of environmental factors on ecosystems 

and develop strategies to preserve ecological balance and improve human health. 

1.3 Metabolomics and system biology 

Metabolomics is the study of the metabolome, which involves the identification and quantification 

of metabolites in biological samples using analytical techniques such as gas/liquid 

chromatography-mass spectrometry (GC-MS/LC-MS) and nuclear magnetic resonance 

spectroscopy (NMR) etc. The metabolome is complex and presents significant challenges for 

metabolomics research, including the large number of metabolites that need to be annotated, as 

well as the wide range of metabolite concentrations present in biological samples (14). 

Metabolomics encompasses two primary approaches: targeted metabolomics and untargeted 

metabolomics (15, 16). Targeted metabolomics measures the levels of specific metabolites, 

typically using internal standards and specific mass spectrometry instruments for accurate 

quantitation. In contrast, untargeted metabolomics aims to measure all molecules that ionize within 
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a specific range of mass values, providing broader global coverage of the metabolome (15). While 

targeted metabolomics could offer better quantitation if it is designed for an absolute quantification, 

untargeted metabolomics has been more widely used and is now considered the main workhorse 

for metabolomics research. Thus, in this thesis, terms "metabolomics" and "global metabolomics" 

will refer specifically to untargeted metabolomics. 

Metabolomics employs a range of analytical techniques to detect small molecules (<1,500 Da) and 

their interactions within a biological system, including blood (11, 17), urine (18), feces (19), 

sputum (20), and even tissues (21). LC-MS and GC-MS are the most commonly used techniques 

in metabolomics (22). While traditional proton nuclear magnetic resonance (H-NMR) based 

metabolomics usually show a higher quantitative capacity, MS-based platforms, particularly high-

resolution MS (HRMS), offer consistently higher sensitivity and precision (23). GC-MS is 

typically used to separate volatile and thermally stable or easily derivatized compounds, which is 

its major limitation (24). In comparison, LC-MS displays wider applicability across almost all 

organic compounds in contrast to GC-MS, and has been implemented extensively, becoming a 

primary technique for metabolomics studies (25, 26). In addition to chromatogram-coupled MS, 

direct injection MS and flow injection MS have emerged as useful approaches for large-scale 

studies and have shown high consistency with LC-MS to some extent (27). These new techniques 

have expanded the scope of metabolomics research and allowed for the analysis of a broader range 

of metabolites in complex matrices of diverse samples. 

In brief, metabolomics enables the systematic identification and quantitation of all metabolites 

present in a biological or environmental system, and is increasingly being used to comprehensively 

illustrate various events, including responses to disease and environmental stress (28, 29). When 

combined with other systems biology techniques, such as genomics, transcriptomics, and 
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proteomics, metabolomics can help reconstruct the functionalities of a system and further aid in 

deciphering the mechanisms or discover the biomarkers of various biological processes, including 

different diseases (30, 31). 

1.4 Metabolomics raw data processing and algorithms 

Despite the significant advancements in MS instrumentation that allow for high-throughput sample 

acquisition, high-quality data processing remains a challenge for untargeted metabolomics. Raw 

LC-MS data of a single sample consists of a series of MS and/or MSn spectra scans that form a 

three-dimensional entity comprising retention time (RT), m/z, and intensity, but is inhomogeneous 

in nature. The primary task in LC-MS data processing is to identify molecular ion traces (metabolic 

features) in this entity, followed by finding correspondences to other features within the same 

sample (e.g., isotopes, ion adducts) and across samples. Detection and quantification for each 

potential ion feature on this entity requires different algorithmic steps. The first and most important 

one is “peak picking” (32), which extracts and integrates the signals originating from each sample. 

Different mass spectrometers produce spectra with distinct characteristics, making it challenging 

to identify the most effective data processing strategy. Poor signal-to-noise ratios for low-

abundance metabolites, detector noise, and the presence of various peaks from isotopes, 

contaminants, and in-source degradation products can complicate peak picking (33). Over the past 

few decades, several computational algorithms have been developed and integrated into different 

software programs, such as XCMS (34, 35), MZmine (36-38), MS-DIAL (39, 40), OpenMS (41), 

apLCMS (42). Each algorithm initiates peak detection from different dimensions or perspectives. 

The computational performance and sensitivity of different tools are significant. 
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LC tandem mass spectrometry (LC-MS/MS) is a widely used platform in untargeted metabolomics, 

enabling the separation of thousands of metabolites and providing fragmentation patterns of LC-

MS features/ions to identify chemical structures (32). MS/MS acquisition involves data-dependent 

acquisition (DDA) and data-independent acquisition (DIA). Multiple algorithms have been 

implemented to improve the accuracy of MS/MS-based compound identification. In the following 

sections, we provide a systematic and concise summary of the internal mathematical mechanisms 

of these algorithms for both LC-MS and LC-MS/MS data processing. 

1.4.1 LC-MS data processing 

1.4.1.1. From retention time dimension 

A commonly used and easily understood approach for peak detection is based on the RT dimension, 

since analytes are eluted chromatographically from the column with time. Correspondingly, ion 

signals are acquired from the time domain. Thus, the raw data file is organized from the RT 

dimension as a series of scans in most open-source format of mass spectral data, such as mzML 

and mzXML (43). 

The most conventional method for peak detection is the "MatchedFilter," which was first adopted 

by XCMS in 2006 (35). This method utilizes a mass slice-based peak detection and matching 

approach. Specifically, it divides the MS data into small slices along the m/z dimension (typically 

with 0.1 m/z width), and then attempts to overlap adjacent slices to generate clean signals. Next, a 

second-derivative Gaussian model is used to filter the slices and identify potential peaks across the 

entire RT domain of the slice. The zero-crossing points are used as the peak borders. To improve 

the precision for HRMS, a manually defined signal-to-noise ratio and intensity-weighted mean are 

used to generate mass slices (35). 
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Similarly, MS-DIAL also employs mass slices binning-based feature detection to extract the peak 

spots, which are the peaks being referred to (40). However, MS-DIAL applies a different approach 

than the "MatchedFilter" algorithm of XCMS. MS-DIAL uses a linearly weighted smoothing 

average model to reduce the noise of the data points. This process returns the detected peaks across 

the RT domain (44). Nonetheless, one major drawback of this method is determining an optimal 

bin size, which can significantly impact the peak shape (if too small) or cause features to be buried 

by adjacent high-intensity features (if too large) (45). Besides, computing speed is also a bottleneck 

for this method. 

To address the limitations of the mass slices-based peak picking method, XCMS developed a new 

algorithm called centWave. This algorithm uses a combination of density-based detection of 

Regions of Interest (ROIs) in the m/z domain and a Continuous Wavelet Transform (CWT)-based 

approach for chromatographic peak resolution (45). Initially, a series of m/z lists are generated 

based on the m/z values of the first scan and then extended along the scan order, consistent with 

the RT domain, to generate all ROIs. Any ROIs that cannot be continuously extended are discarded. 

Next, a CWT model is applied as a stretchable wavelet model to adapt to different peak widths, 

with the help of various noise removal parameters. Finally, the peak centroid information is 

computed based on the weighted mean of ions.  

The advantage of centWave is that it can adapt to different peak widths, providing a self-adjusted 

peak detection model. However, a major disadvantage is that dozens of parameters need to be 

manually defined, requiring experience to produce optimal results unless an additional software is 

used to optimize the parameters first (46). Another popular raw spectral processing software, 

MZmine, has also implemented centWave. However, the centWave used by MZmine differs 

slightly from the one used by XCMS (47). The difference lies mainly in the generation of ROIs 
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for CWT fitting. In a brief summary, XCMS adds the m/z points of the entire scan into a ROI if 

the m/z tolerance meets the criteria, while MZmine only considers the m/z points with near intensity. 

This modification seems to produce similar peak picking results, although not entirely consistent 

(47). 

In addition to its matchedFilter and centWave algorithms, XCMS has also integrated Massifquant 

for peak picking. This algorithm uses a Kalman filter model to address the issue of 

heteroscedasticity in m/z variance (48). Essentially, a Kalman Gain is used to search for peaks 

across the RT domain while simultaneously evaluating all potential m/z centroids to avoid any 

missing. This approach solves the potential m/z merging issue of centWave when generating the 

ROIs list but tends to be oversensitive and return a lot of noise. Although it requires fewer 

parameters than centWave, this method is rarely used. Massifquant originated from TracMass (49), 

which has been upgraded and replaced by TracMass2 (50). TracMass2 uses a similar concept to 

ROIs and CWT, but it provides real-time graphical feedback to users for parameter exploration. 

However, the mathematical abstraction of TracMass2's parameters makes it difficult to understand 

their meaning from an analytical chemistry perspective. 

1.4.1.2. From m/z dimension 

RT-oriented approaches were initially developed for low-resolution mass spectrometry and have 

since evolved to adapt to HRMS. One specific strategy for HRMS peak detection from the m/z 

dimension is implemented in the R package, apLCMS (42). In detail, the approach taken by 

apLCMS involves breaking down the conventional data RT-based data structure and re-ordering 

all m/z centroids from highest to lowest (e.g., from 1,500 to 50). The differences in m/z values are 

then calculated between all adjacent m/z values, resulting in the differences between all m/z 

neighbors being made up of two distinct components. The first component is the differences 
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between m/z values in the same peak, which is caused by instrumental variation and tends to be 

quite small. The second component is the m/z differences between different peaks or noises, which 

are usually larger than the first component. A mixed distribution model is then used to separate 

these components in the following steps. 

Once the first component is extracted, different m/z points can be easily grouped. Kernel density 

estimators are used in both the m/z and RT domains respectively to extract all potential peaks. A 

run-filter model is then applied to further check the continuity and filter noise. Finally, a kernel 

smoother and pseudo-likelihood model are used to determine the location of features and resolve 

potential overlapping issues between peaks with extremely similar m/z values and neighboring 

RTs. While this approach provides a unique and reasonable solution for HRMS, it is not 

compatible with data generated by relatively low-resolution MS spectrometers for MS feature 

detection, which is a major disadvantage. However, an automated and resumable processing 

workflow developed by apLCMS can reduce the heavy computational burden when users adjust 

the parameters of peak picking. 

1.4.1.3. From intensity dimension 

FeatureFinderMetabo (51) is a software tool developed and embedded in OpenMS (41) that differs 

from conventional RT and m/z domain-oriented approaches by focusing on the intensity domain. 

Initially, all m/z centroids are re-ordered based on intensity, from highest to lowest. Then, the m/z 

with the highest intensity is selected and extended alongside the RT domain by aggregating similar 

m/z values. A heteroscedastic model is used to estimate the m/z error in real-time and automatically 

adapt to the specific spectra, with the aggregated m/z values being excluded from the following 

steps. These steps are performed recursively until all m/z centroids are exhausted. This approach 
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provides a unique solution, but may be not suitable for low resolution MS data due to the estimation 

on m/z error and RT range. 

Unlike the other algorithms, FeatureFinderMetabo fits the peaks with a local regression model 

with a polynomial of degree two rather than a Gaussian model. This smoothing approach does not 

make any assumptions about the shapes of chromatographic peaks and allows for high sensitivity 

in detecting low-intensity peaks. The peaks with similar m/z values and RTs will split from the 

minima between the two maximums. Finally, the mass traces or features detected from the 

intensity domain are kept for the following feature assembly process (described later). 

Similar to the algorithm used in OpenMS, MZmine has developed an intensity domain-oriented 

approach called the Automated Data Analysis Pipeline (ADAP). This method starts with the most 

intense m/z centroid and extends along the RT in both directions (52). However, what significantly 

differentiates ADAP from OpenMS is the subsequent steps. Instead of using the LOWESS model 

to fit potential peaks, ADAP adopts CWT fitting, which is quite similar to centWave. Ridgeline 

detection is used to determine the boundaries and locations of all peaks. A noise estimation and 

S/N ratio strategy has also been developed to remove potential noise. 

There are several other software tools available for peak picking, including commercial ones such 

as Compound Discovery, MarkerLynx, and Progenesis QI. Despite these commercial tools have 

been used for this task, they are not open-source, and their detailed functional mechanisms are 

unknown, making it impossible to fully evaluate their performance. 

In summary, several algorithms have been developed over the past decades to handle peak picking 

in MS data analysis. Among these algorithms, centWave has shown compatibility towards diverse 
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MS platforms, although it requires careful manual optimization of numerous parameters to achieve 

an optimal peak picking result. 

1.4.1.4. Peak Alignment and gap filling 

Chromatographical deviation and mass drift are common issues in metabolomics analysis, often 

requiring grouping of peaks across the samples. To address this challenge, XCMS has developed 

a kernel density estimator-based "grouping" method (35), which uses a non-linear correction 

alignment approach to remove RT deviation. This method utilizes a local regression fitting 

approach, loess, which outperforms traditional linear correction methods and eliminates the need 

for internal standards, which can obscure real features (35).  

Another alignment algorithm, Obiwarp, uses a dynamic time warping model to achieve optimal 

correction results in proteomics data alignment (53). MZmine initially developed a two-

dimensional alignment method, called "Join Aligner", but it cannot handle non-linear deviation 

(36, 37). To address this limitation, a "Random Sample Consensus Aligner" was implemented in 

MZmine (36). However, MS-DIAL still uses the Join Aligner from MZmine for peak alignment, 

despite four versions of software evolution (39, 40). Besides, apLCMS using a kernel density 

estimator to align the peaks across the RT domain, while TracMass2 is using a P-splines based 

clustering and warping method to handle this issue (50). Peak alignment for metabolomic data 

processing is missing in OpenMS. apLCMS and TracMass2 employ kernel density estimator  (42) 

and P-splines based clustering and warping methods, respectively, to align peaks across the RT 

domain (50). Notably, peak alignment is currently absent in OpenMS for metabolomic data 

processing. 

Overall, various algorithms have been integrated with different peak picking methods in different 

software tools to address the peak alignment issue. The quality of peak alignment plays a critical 
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role in subsequent data analysis steps, as it can affect the stability of peak groups and data point 

distribution. Suboptimal parameters or algorithms used in peak alignment may result in poor 

alignment quality, leading to high variability of peaks across different samples. Nevertheless, peak 

grouping coupled with the loess or Obiwarp method is generally capable of handling both linear 

and non-linear cases, and has been widely utilized by the metabolomics community. 

In addition, metabolites with low concentrations may not be detected by peak picking algorithms 

or may not meet peak shape criteria, such as the Gaussian model, resulting in a zero entry for that 

peak in a particular sample in the feature table produced by peak picking and alignment steps. This 

loss of information could be significant as valuable data may be overlooked. To address this issue, 

gap filling methods have been developed, which recover weaker signals. Effective gap filling 

strategies have been implemented in apLCMS, XCMS, and MS-DIAL (35, 40, 42). Firstly, a RT 

boundary is established based on the picked peaks and alignment results. Next, signals within 

specific regions of the time domain are extracted. Finally, the peak with the most consistent 

characteristics to previously picked peaks is used to replace the zero entry (42). This simple yet 

effective strategy enables the recovery of valuable information that might have been missed due 

to low metabolite concentrations. 

1.4.1.5 Peak Annotation and identification 

The mass spectra obtained from LC-MS are complex due to the presence of numerous adducts, 

isotopologues, dimers, and fragments. Consequently, identification of the molecular ion, which is 

not always the peak with the highest intensity in the MS spectrum, can be challenging (24). 

Consequently, a large number of features, which can be several-fold higher due to the 

aforementioned factors, can be detected and aligned into a feature table. This often leads to an 

overestimation of the actual number of compounds present (54, 55). Although the percentage of 
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unique metabolites among all detected features varies widely between studies, ranging from 3% 

to over 50%, it is well-established that a tool capable of annotating potential relationships among 

the detected features is critical (56-58). 

To address the challenge of annotating complex mass spectra generated by LC-MS, several 

algorithms have been developed and integrated into the peak pre-processing pipeline. One of the 

widely used algorithms is the CAMERA R package, which works in conjunction with XCMS for 

the annotation of adducts and isotopes by considering the ratio of peaks and feature similarities 

(54). Another newly developed R package, CliqueMS, has been reported as more powerful 

compared to CAMERA (55). While CliqueMS can directly communicate with the results from 

XCMS, its annotation mechanism is different from CAMERA. However, a major limitation of 

CliqueMS is its inability to process data from multiple samples. 

In addition to CAMERA and CliqueMS, FeatureFinderMetabo from OpenMS provides an 

alternative solution for isotope annotation, which is based on millions of empirical and mimic mass 

traces instead of the compounds from the real world (51). But this approach is providing an 

alternative method to do the isotope annotation. Several other tools, like MS-FLO (59), MSClust 

(60), MetAssign as well as the algorithm in MZmine mainly rely on intensity correlation analysis. 

There are several tools available for direct compound identification from MS1 level. For example, 

ProbMetab employs a Bayesian probabilistic model and knowledge database of biochemical 

reactions to achieve basic chemical identification (61). However, the limited size of the chemical 

database restricts the practical application of this approach. Another tool, xMSannotator, 

modularizes all features based on the intensity correlations among them and uses a kernel density 

estimator. The features are then matched with different compound databases, including HMDB, 
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KEGG, and T3DB, with the assistance of metabolic knowledge-based networks. Finally, a scoring 

rule is applied to evaluate the possibilities of all candidate compounds for a specific feature (62).  

In summary, the aforementioned tools offer a range of functionalities to annotate and identify MS1 

features, thereby reducing redundancy. However, in order to enhance accuracy and minimize 

mismatching results, chemical identification of MS features based on MS/MS spectrum, together 

with reference library is often necessary. 

1.4.2 LC-MS/MS data processing 

The primary challenge in LC-MS-based metabolomics is identifying the structural identities of the 

targeted features. Metabolic profiling can be performed in either MS1 or MS2 (MS/MS) mode. 

MS1 profiling provides a complete coverage on the entire metabolome, whereas MS2 captures 

structural information from the fragmentation pattern of features. Two commonly used MS/MS 

fragmentation approaches for LC-MS are data-dependent acquisition (DDA) and data-independent 

acquisition (DIA) (63, 64).  

DDA is usually performed by acquiring the top intensity precursors (65). DDA method enables 

clear association between precursors and their fragmentation patterns. In contrast, DIA involves a 

series of acquisition cycles, each comprising a full scan plus fragmentation of all precursors in the 

subsequent MS/MS scan(s). The MS/MS scan can be a full range (all ion fragmentation mode, 

AIF) or a sequential window acquisition of all theoretical mass spectra (SWATH) (66). Due to the 

absence of a direct relationship between precursors and fragments, deconvolution on MS/MS 

spectra data is always required for DIA. 

The utilization of MS/MS acquisition with the DIA method involves a series of cycles, which has 

been reported to yield superior quantitative precision and MS2 spectrum coverage compared to 
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other methods (67). Theoretically, DIA methods could potentially acquire all fragment ions for all 

precursors simultaneously in each cycle to enhance the coverage of detectable compounds (40).  

However, the SWATH-DIA spectral acquisition approach typically employs a wide isolation 

window (> 15m/z), which disrupts the association between precursors and their corresponding 

MS/MS fragments and may introduce some contaminants into the spectral data, resulting in what 

is known as a "Chimeric" spectrum (68). The process of relinking the precursors and their 

associated MS/MS fragmentation patterns is referred to as deconvolution. 

In comparison to DIA, DDA spectral acquisition utilizes a narrow isolation window (e.g., 1m/z) to 

fragment a single precursor in each MS/MS scan. However, recent studies have revealed that over 

50% of the acquired MS/MS spectra in DDA are still contaminated by other precursors, leading to 

the prevalence of chimeric spectra (69, 70). These chimeric spectra can result in a lack of matching 

or mismatch with the reference library, thereby hindering the identification of compounds. 

Furthermore, the metabolome coverage of DDA acquisition is limited unless iterative DDA 

acquisition is implemented (71). Nevertheless, the use of iterative DDA increases the acquisition 

times and sample consumption, rendering it unsuitable for rare samples. 

Several algorithms have been developed to deconvolve multiplexed DIA spectra, with the 

objective of separating and identifying the constituent metabolites. These algorithms can be 

broadly classified into two categories, as described in a previous study (72): 1) spectral library-

based deconvolution, which entails comparing the DIA spectrum to a reference library of known 

metabolites to facilitate identification and quantification of the constituent metabolites, and 2) de 

novo deconvolution, which involves fitting the MS/MS chromatogram to the precursor ions for 

identification and quantification of metabolites without reliance on a reference library. 
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In DIA metabolomics, spectral data deconvolution can be achieved using various tools. For 

instance, Specter utilizes a linear algebra approach to match mixtures of spectra against a spectral 

library (73). OpenSWATH is another widely-used tool for DIA data deconvolution in proteomics 

(74). DIAMetAlyzer (67), a tool derived from OpenSWATH, has been developed to extract 

MS/MS fragments from DIA based on the spectrum pattern of data-dependent acquisition (DDA). 

However, due to the limited coverage of DDA data over the metabolome, DIAMetAlyzer may not 

be able to provide complete coverage over the metabolome. Moreover, the potential contamination 

of the DDA spectral library has not been taken into account. Similarly to Specter, MetDIA matches 

MS/MS fragments with their precursors by referencing a spectral library (75), but it also considers 

the correlation of peaks to avoid over-fitting. 

Furthermore, various tools have been developed to perform deconvolution of DIA metabolomics 

spectra by fitting MS/MS chromatography. The widely used tool in this field is MS-DIAL. Initially, 

MS-DIAL employed the MS2Dec algorithm to deconvolve multiplexed DIA spectra by selecting 

three model peaks to deconvolve the original chromatogram (40). However, this method is not 

universally applicable to all ion fragmentation (72). Subsequently, MS-DIAL adopted a 

correlation-based deconvolution approach, CorrDec, to address this limitation. It has been 

demonstrated that CorrDec outperforms MS2Dec (72). DecoMetDIA has also been developed to 

deconvolve multiplexed SWATH-DIA data. Different from MS-DIAL, DecoMetDIA selects 

multiple model peaks to automatically fit the original chromatography. DecoMetDIA has been 

shown to effectively enhance the coverage of metabolome. Nevertheless, DecoMetDIA is 

programmed in R, and the computing performance is the primary bottleneck (76). 

DDA spectra has been found to be prevalently chimeric, necessitating deconvolution to match the 

reference library. Traditional methods of deconvolution for DDA spectra rely on the experimental 
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proportional changes of MS/MS fragments from the elution profiles of chromatography, including 

RT shifting and intensity changes within and across samples. Several algorithms have been 

developed to deconvolve chimeric spectra based on this principle (40, 68, 69, 77). Moreover, 

HERMES is a tool that has been developed from an experimental perspective to optimize the 

acquisition of DDA data and enhance the selectivity and sensitivity for MS/MS acquisition (78). 

Therefore, the chimeric issue of DDA data is not resolved. DecoID, on the other hand, was created 

to address the deconvolution of chimeric DDA data. This algorithm employs spectral records from 

a database to decompose an experimentally acquired spectrum. In brief, multiple candidate 

components of the chimeric spectrum are extracted and a LASSO regression model is then applied 

to deconvolve the spectrum into distinct components. However, critical parameters require manual 

curation, and the missing components from database may hinder the performance. 

Following the deconvolution of MS/MS spectra, a critical step in retrieving the chemical 

information of spectra is MS/MS reference library searching. Several tools have been developed 

for this purpose. One of the most widely used software is MS-Finder, which initially determines 

the formula from accurate mass, isotope ratio, and product ion information. It then utilizes 

hydrogen rearrangement rules to annotate MS/MS fragments and score the outcomes (79). 

Additionally, CSI:FingerID, a technique that combines fragmentation tree computation and 

machine learning (80), has been implemented by SIRIUS (81). Subsequent versions of the software 

have enabled the prediction of accurate molecular formula and matching fragmentation pattern in 

greater depth. The comprehensive internal database and user-friendly interface facilitate the easy 

database searching. Nevertheless, the bottleneck of this tool is the need to optimize numerous 

parameters, while the RESTful web-based searching is also easily influenced by network traffic. 
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Several studies have demonstrated that compounds sharing similar chemical structures tend to 

exhibit similar MS/MS spectra. Consequently, a number of tools, such as GNPS (82), MetDNA 

(83), and NetID (84), have been developed to use spectral similarity for MS/MS-based compound 

identification. GNPS employs a molecular networking model to identify compounds. In this model, 

the ions or features are connected based on the similarity of the extracted ion chromatogram of 

MS features and MS/MS spectral data. The relationships of adductions and isotopes are usually 

annotated by MS feature association, while MS/MS similarity among ions is used to illustrate their 

chemical associations and differences. Unlike GNPS, MetDNA employs molecular networking in 

a different manner. It begins with a few seeds of MS/MS spectra, and the metabolic reaction 

network model allows these seeds to propagate recursively to create a network. This network is 

based on the reaction pairs (substrate-product metabolites) (83). This metabolic reaction-based 

molecular network significantly improves chemical identification. NetID, developed from GNPS 

and MetDNA, establishes a propagatable network based on abiotic and bio-transformation 

knowledge to substantially improve annotation in untargeted metabolomics datasets. The entire 

network is then optimized using an integer linear model to facilitate metabolite discovery. 

1.5 MS/MS reference libraries 

The recommended method for identifying compounds using tandem mass spectrometry is to 

compare the spectrum against an in-house standard spectral library, which is considered the “gold 

standard” approach (85). However, this method may not be applicable in many situations due to 

the limited size of in-house libraries. In such cases, using public data sources would be more 

helpful, even though it may result in lower accuracy. Several public MS/MS databases have been 

developed and widely used for MS/MS identification, including METLIN (86), NIST database, 

MoNA (87), Massbank (87), mzCloud (https://www.mzcloud.org/), HMDB (88) and GNPS (89). 
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In addition, several in silico MS/MS database prediction algorithms have been developed, such as 

MINEs (90) and LipidBlast (91). Furthermore, some databases offer information about compounds 

without MS/MS spectra, such as KEGG (92), LIPIDMAPS (93) and LipidBank (94). 

MassBank (https://massbank.eu/MassBank/) is also a public MS/MS reference database, providing 

access to both EI-MS and ESI-MS spectra references. It comprises the NIST and RIKEN databases. 

The MassBank of North America (MoNA, https://mona.fiehnlab.ucdavis.edu) has significantly 

expanded upon MassBank, offering additional spectral references from Oliver Fiehn’s lab. All of 

these databases are formatted as msp files, which can be readily redistributed for MS/MS matching. 

The Human Metabolome Database (HMDB, https://hmdb.ca) is a comprehensive, well-curated 

collection of human metabolome data. HMDB offers a wealth of information, including MS and 

NMR spectra, and provides online searching and open-source downloading capabilities. The 

original database is formatted as an XML file, which can be easily parsed by different 

programming languages. The versatility of HMDB makes it applicable for various fields, such as 

metabolomics, lipidomics, and exposomics. 

Global Natural Product Social Molecular Networking (GNPS, https://gnps-

external.ucsd.edu/gnpslibrary) is a dynamic online platform that facilitates interactive MS/MS 

spectral analysis and matching. The platform is specifically designed for MS/MS data processing 

and chemical result matching. Multiple MS/MS reference libraries are provided by GNPS, 

including clinical databases, pesticides, and small molecular pharmacological compounds, among 

others. Data within the database are offered in various formats, including msp, mgf, and json. 

Metabolic In silico Network Expansions (MINEs, https://minedatabase.mcs.anl.gov/) is a novel 

extension of existing metabolic databases, featuring a distinct focus on previously unknown, yet 
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biological reactions related compounds (90). To construct this database, the Biochemical Network 

Integrated Computational Explorer algorithm was employed in conjunction with specific reaction 

rules. Notably, MINEs functions as a complementary resource to other metabolic databases, 

providing predicted spectra that enable the confident identification of unknown peaks. MINEs 

database offers open-source Application Programming Interface (API) access and permits 

database downloading in the msp format, facilitating user and developer dissemination. 

Lipids play an essential role in cellular function and pathogenesis of various diseases. To support 

lipidomics studies, several databases have been developed, including LIPID MAPS (93), 

LipidBank (94), and LipidBlast (91). LIPID MAPS database provides a comprehensive collection 

of lipids, complete with their chemical structures, as well as tools for structure drawing. However, 

it should be noted that no MS/MS spectra are included in the database. Similarly, LipidBank offers 

a diverse array of lipids, categorized into distinct classes. Unfortunately, the database does not 

provide direct access to MS/MS spectra, and chemical information can only be downloaded as csv 

files. LipidBlast is an in-silico MS/MS spectra database, consisting of over one hundred thousand 

lipids belonging to 26 distinct lipid classes. Curated from LIPID MAPS, LipidBlast predicts the 

spectra of lipids at various voltages of fragmentation. LipidBlast is downloadable in msp format. 

The KEGG Compound database (https://www.genome.jp/kegg/compound/) constitutes an 

extensive collection of small molecules, biopolymers, and other chemical substances that 

participate in crucial biological processes and interact with genomic components. This database 

contains more than 20,000 biologically relevant compounds across different species. However, 

MS/MS spectra are absent. The KEGG Compound database is readily downloadable through the 

KEGGREST package via API services in the KGML format, which can be easily parsed. 
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Furthermore, it is noteworthy that there is another valuable MS/MS spectral database, METLIN, 

which stands as one of the largest experimental MS/MS databases, featuring over 700,000 

chemical MS/MS and neutral loss data. It can be freely accessed by the public for general search 

and compound annotation. However, the entire database is not possible to be downloaded or used 

for other machine learning purposes. mzCloud is also a popular MS/MS spectral database. 

Regrettably, it is not open-source. 

In summary, over the past decades, multiple open-source MS/MS reference databases have been 

published. Identification based on MS/MS spectral matching can be helpful in revealing the 

chemical identity of MS features to some extent and thus, identifying potential chemical markers. 

However, in most cases, identification based solely on MS/MS is not sufficient to confirm 

chemical structures, which can hinder the analysis of biological insights from metabolomics data. 

1.6 Functional analysis of metabolomics data 

Functional analysis of metabolomics data mainly refers to the interpretation to the perturbed 

biological pathways and processes based on metabolomic data (95, 96). Metabolites are direct 

products and readout of functional activities. After a set of metabolites were identified, a functional 

analysis is required to convert these raw lists of compounds into biological knowledge.  

Metabolomics functional analysis aims to understand the functional significance of metabolites 

and their role in biological systems (11, 97). This can be achieved through various methods, such 

as pathway analysis, enrichment analysis, and network analysis. Pathway analysis involves 

mapping metabolites to known biochemical pathways, while enrichment analysis compares the 

abundance of metabolites in a given dataset to a reference database to identify overrepresented 

functions. Network analysis aims to uncover the relationships between metabolites and other 
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cellular components, such as proteins and genes, to gain insights into the underlying mechanisms 

of metabolic regulation (95). Overall, functional analysis of metabolomics data is critical to 

provides a comprehensive understanding of the metabolic processes involved in cellular function 

and disease (11), and can aid in revealing the biological stories behind the metabolomics dataset. 

Pathway enrichment analysis is employed to establish associations between molecules and 

pathways, which represent collections of molecular entities that share a biological function. The 

analysis is based on existing knowledge of biological pathways, with metabolites being mapped 

into a set of pathways that represent different biological functions. The most commonly used 

method for pathway analysis is over-representation analysis (98). Additionally, topology-based 

analysis can also be utilized to uncover the perturbation of pathways (99). Another method is 

Metabolite Set Enrichment Analysis (MSEA), which was developed from Gene Set Enrichment 

Analysis (GSEA) - a technique used for transcriptomics data analysis. MSEA aids researchers in 

identifying and interpreting patterns of biological perturbation (100). Moreover, several other tools 

are available for handling the functional enrichment of metabolites from metabolomics (97).  

However, functional analysis of untargeted metabolomics data faces a bottleneck due to the 

difficulty of comprehensively identifying all MS features without the use of standard libraries. 

Therefore, annotation-based pathway enrichment analysis results may be inaccurate or biased. 

Recently, the mummichog algorithm was established as a state-of-the-art method to overcome the 

challenge of functional enrichment analysis in untargeted metabolomics by utilizing the feature 

list directly (101, 102). This algorithm predicts pathway enrichment based on the collective power 

of metabolites within perturbed pathways. Initially, all MS features are matched to potential 

empirical compounds based on their m/z, RT, and adducts information. Next, the significant 

empirical compounds (based on user-defined p-value cutoff) are permuted with all empirical 
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compounds, and the perturbations of pathways are evaluated based on the enrichment level of 

significant empirical compounds from the permutation test. Currently, mummichog utilizes m/z 

and RT information to propose empirical compounds, but improvements to expand the MS data 

dimension used by mummichog are still needed. 

1.7 Rationale and objectives 

LC-MS-based metabolomics data processing involves a series of procedures that convert raw mass 

signals into metabolic features. Among the available algorithms, centWave is considered one of 

the optimal choices for processing both low-resolution MS and HRMS data, although many 

parameters require optimization to obtain satisfying results. Deconvolution of MS/MS spectra is 

crucial to obtain high-quality spectra for reference library-based compound identification. 

Previously ignored, DDA data deconvolution is now recognized as crucial due to the prevalence 

of chimeric spectra in DDA. While DecoID has been proposed as a solution, manual optimization 

of a key parameter for linear regression is required, and a missing component can cause the 

deconvolution to fail.  An efficient and auto-tuned deconvolution algorithm for DDA is still highly 

needed. Besides, although DecoMetDIA has been shown to perform well for deconvolution of 

DIA data, it has low computing performance, and an efficient algorithm is still required. Moreover, 

functional analysis is a critical step in revealing biological insights in scientific research. However, 

current algorithms either rely on accurate compound identification or do not sufficiently utilize the 

information from LC-MS/MS data. 

Therefore, it is hypothesized that an automated parameters’ optimization pipeline cooperating with 

centWave could obtain optimal feature lists for different scenarios without the need for manual 

intervention. Using an auto-tuned regression, together with a spectral similarity-based spectra 

prediction network may be helpful to deconvolve chimeric DDA data. Furthermore, a highly-
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efficient Rcpp/C++-based framework for DIA spectral data deconvolution algorithm could 

enhance the computing efficiency and decompose multiplexed DIA data more effectively. 

Additionally, integrating the MS/MS identification results into mummichog algorithm could 

further improve the accuracy of functional prediction.  

The primary objectives of my thesis are: 

1. To develop an automated pipeline for optimizing parameters in centWave, with the goal of 

improving its performance. To achieve this, a Design of Experiment-based mathematical 

model will be constructed to identify the optimal parameter combinations. This 

optimization process will be based on regions of interest extracted from the entire spectrum, 

allowing for the development of an effective and efficient method for optimizing centWave.  

2. To improve the efficiency and efficacy of MS/MS spectral deconvolution for both DDA 

and SWATH-DIA data. To accomplish this, a spectral similarity network-based spectrum 

prediction model will be developed to predict missing components for DDA deconvolution. 

A penalized elastic regression model will be applied to deconvolve chimeric spectra, with 

an auto-tuned matrix utilized to minimize deconvolution residue. Additionally, SWATH-

DIA deconvolution will be improved through the implementation of an Rcpp/C++ 

framework, resulting in enhanced performance. 

3. To enhance the functional analysis algorithm by integrating MS/MS results into 

mummichog. This will be accomplished by combining compound identification results 

from MS/MS, which will reduce the redundancy of empirical compound lists and improve 

the accuracy of functional analysis. These improvements to mummichog will lead to a more 

comprehensive and accurate results from function analysis. 
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4. To evaluate the performance of the auto-optimized MS feature processing pipeline. A 

comprehensive meta-analysis on multiple metabolomics datasets will be performed. This 

evaluation will ensure that the data processing pipeline is effective and reliable, and the 

integration of results from meta-analysis will be helpful to reveal biological insights. 

The general design of this thesis is depicted in Figure 1.1. 

 

Figure 1.1. Overall design of the project presented in this thesis. The primary focus of this thesis 

is on advancing the development of auto-optimized LC-MS data processing and MS/MS data 

deconvolution workflows. This also involves the implementation of algorithms along with user 

interfaces and improvements to the functional analysis of global metabolomics. All of these 

functionalities have been introduced and integrated into various tools, including MetaboAnalystR 

version 3.0 and 4.0, as well as the MetaboAnalyst website version 5.0. To validate the effectiveness 

and performance of these tools, multiple datasets have been incorporated, and these tools have 

been benchmarked against other widely used software. 
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1.8 Outline of achievements 

This section outlines the four main projects that have been undertaken to achieve the objectives of 

this dissertation. 

1. MetaboAnalystR 3.0:  an R package that has been updated by incorporating an auto-

optimized parameter optimization workflow for the centWave algorithm. This version of 

MetaboAnalystR extracts specific regions of interest from spectra data and uses them to 

fine-tune parameters to an optimal state for detecting features in the entire spectra data in 

the following steps. The primary aim of this project was to accomplish Objective 1; 

2. MetaboAnalyst 5.0: an updated version of website that now supports the processing of raw 

MS spectral data with the auto-optimized workflow. In this version, a user-friendly 

interface has been designed to enable users to process their raw spectral data online, using 

functions from MetaboAnalystR 3.0. Additionally, other features have also been 

incorporated. The primary objective of this project was also to achieve Objective 1; 

3. MetaboAnalystR 4.0: an R package updated again to incorporate more functions for 

processing raw LC-MS/MS data. This version of MetaboAnalystR now supports DDA and 

SWATH-DIA raw spectral data processing and includes highly efficient data 

deconvolution, a comprehensive MS/MS reference library, and an enhanced mummichog 

algorithm that integrates MS/MS results into the workflow of empirical compounds 

generation. Several benchmark studies have been conducted, including standards 

validation, unknown compound discovery from whole blood samples, evaluation with 

serial dilutions, and two biological cases. This version was mainly developed to achieve 

Objectives 2 and 3; 
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4. Meta-Analysis of COVID-19 metabolomics datasets: analysis of seven COVID-19 

metabolomics datasets were performed with MetaboAnalyst. In this study, raw spectral 

data was processed with the auto-optimized workflow. The function analysis was 

performed with mummichog algorithms. Results were integrated at the pathway level. 

Several significant pathways have been demonstrated to be associated with the 

pathogenesis of COVID-19. The main aim of this study was to achieve Objective 4. 

The four achievements listed above correspond to Chapters 2 through 5 of this dissertation, 

respectively. 
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Preface to Chapter 2 

This chapter presents an updated version of the MetaboAnalystR package that provides a 

streamlined workflow for processing LC-MS raw spectral data using an auto-optimized approach. 

The primary focus of this chapter is to address the issue of optimizing parameters for the centWave 

algorithm. The aim is to achieve Objective 1 successfully. In addition to this, several other 

functions have also been updated, with particular emphasis on mummichog. In summary, this 

version of MetaboAnalystR offers three primary functionalities: 1. an efficient workflow for auto-

optimization of parameters for peak picking; 2. automated batch effect correction for large 

metabolomics datasets across multiple batches, and 3. more accurate pathway activity prediction 

using version 2 of the mummichog algorithm. 
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2.1 Abstract 

Liquid chromatography coupled to high-resolution mass spectrometry platforms are increasingly 

employed to comprehensively measure metabolome changes in systems biology and complex 

diseases. Over the past decade, several powerful computational pipelines have been developed for 

spectral processing, annotation, and analysis. However, significant obstacles remain with regard 

to parameter settings, computational efficiencies, batch effects, and functional interpretations. 

Here, we introduce MetaboAnalystR 3.0, a significantly improved pipeline with three key new 

features: 1. efficient parameter optimization for peak picking; 2. automated batch effect correction; 

and 3. more accurate pathway activity prediction. Our benchmark studies showed that this 

workflow was 20~100X faster compared to other well-established workflows and produced more 

biologically meaningful results. In summary, MetaboAnalystR 3.0 offers an efficient pipeline to 

support high-throughput global metabolomics in the open-source R environment. 

2.2 Introduction 

Global or untargeted metabolomics is increasingly used to investigate metabolic changes of 

various biological or environmental systems in an unbiased manner (6, 103). Liquid 

chromatography coupled to high-resolution mass spectrometry (LC-HRMS) has become the main 

workhorse for global metabolomics (89, 104). The typical LC-HRMS metabolomics workflow 

involves spectra collection, raw data processing, statistical and functional analysis (105). A wide 

array of bioinformatics tools has been developed to address one or several of these steps (105, 

106). Despite significant progress made in recent years, critical issues remain with regard to several 

key steps involved in the current metabolomics workflow. 
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The first issue is related to peak detection during raw spectra processing. Improving the ability to 

extract real compound signals and reduce noise is crucial to avoid noise inflation prior to statistical 

and functional analyses. Default parameters provided by common spectra processing tools are not 

applicable to all experiments (107), and misuse of parameters can lead to significant issues in data 

quality (108). To mitigate this issue, commercial tools such as Waters MassLynx™ and open-

source software such as XCMS (35) and MZmine (36) allow users to specify multiple parameters 

to define LC-MS scan signals as chromatographic peaks. Although useful, such manual 

configuration assumes users are familiar with the experiments, which is often not the case. To 

facilitate the process, several tools and protocols have been developed for optimizing parameters 

for spectra processing (46, 109, 110). For instance, Isotopologue Parameter Optimization (IPO) is 

an R package designed to estimate the best parameters for XCMS (46). While the approach is 

effective, its stepwise optimization based on the entire spectra is very time consuming. IPO can 

often take days to weeks to compute the optimized parameters. Another recent tool is AutoTuner 

(110), which optimizes peak widths based on pre-defined extracted ion chromatograms (EIC). 

Despite being more computationally efficient than IPO, it may lead to potential errors due to 

unverified EICs used. Aside from these tools, Design of Experiment (DoE) strategies based on 

diluted samples provide a relative time-saving protocol for parameter optimization, but requires 

an extra series of diluted standards to be prepared (111). Another optimization strategy, One 

Variable at A Time (OVAT) (112), attempts to maintain the lowest coefficient of variation of peaks 

within a group, but this method takes even more computational time than IPO, in our experience. 

The second issue is batch effect, which is commonly associated with large-scale clinical or 

population studies when samples are analyzed in different batches or across a long time period 

(113, 114). Over the course of spectral collection, chromatographic conditions can change and 
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baselines can drift (115). Besides, mass and intensity drifts are also quite common for LC-HRMS 

based metabolomics (116, 117). To address this issue, several types of batch correction methods 

have been developed based on quality control (QC) samples, QC metabolites, internal standards, 

matrix factorization, or location-scale normalization (118). These methods are based on different 

assumptions with their own advantages and limitations. Selecting a suitable batch correction 

method is critical, as it has a significant impact on downstream statistical and functional analysis. 

Finally, biological interpretation of metabolomics data typically requires metabolites to be first 

identified prior to functional analysis. This process is very time consuming and remains a key 

bottleneck in global metabolomics (119, 120). The mummichog algorithm has introduced the 

concept of predicting pathway activity from ranked LC-MS peaks based on matching patterns of 

putatively annotated metabolites (101). The algorithm is available as Python scripts (121). To 

support the broad R user community, previous versions of MetaboAnalystR (105, 122) 

implemented mummichog v1.08. The recently released version 2 has added several improvements 

including the use of RT to refine the grouping of signals into empirical compounds (EC). The 

inclusion of RT will reduce false-positive annotations to increase the accuracy of pathway activity 

prediction.  

Here, we introduce version 3.0 of MetaboAnalystR. Compared to its predecessor, version 3.0 has 

three key features: 1. efficient parameter optimization for spectral peak picking; 2. automatic 

selection of an optimal batch correction approach from 12 well-established methods; and 3. 

incorporation of RT coupled with updated pathway libraries for improved pathway activity 

prediction. The performances of these new features are assessed in the three case studies below. 
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2.3 Results 

MetaboAnalystR 3.0 aims to provide an efficient pipeline to support end-to-end analysis of LC-

HRMS metabolomics data in a high-throughput manner. This open-source R package is freely 

available at the GitHub repository (123). Detailed tutorials, manuals, example datasets, and R 

scripts are also included in the repository. The enhanced key points in the global metabolomics 

workflow of MetaboAnalystR 3.0 is summarized in Figure 2.1. 

 

Figure 2.1. MetaboAnalystR 3.0 provides an optimized workflow for global metabolomics. (A) 

optimized peak picking, (B) automized batch effect correction, and (C) improved pathway activity 

prediction. 

In comparison with other currently available parameter optimization tools, MetaboAnalystR 3.0 

adopts an optimization strategy based on regions of interest (ROI) to avoid the time-consuming 

step of recursive peak detection using complete spectra. Briefly, the algorithm first scans the whole 

spectra across m/z and RT dimensions to select several ROIs that are enriched for real peaks. 

Second, these ROIs are then extracted as new synthetic spectra. Finally, a DoE model is used to 

optimize peak picking parameters based on the synthetic spectra (See Methods, 5.1. Peak Picking 

Optimization for more detail). 
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In this study, three benchmark datasets were used to evaluate the performance of MetaboAnalystR 

3.0 including four standard mixture (SM) samples from a recent benchmark study (124), 12 

standard reference materials samples from the National Institute of Standards and Technology 

(NIST), and 12 Quality Control (QC) samples from a large-scale metabolomics study on 

inflammatory bowel disease (IBD) (113). The overall time to complete the parameter optimization 

by the four different tools is shown in Figure 2.2. Compared to OVAT and IPO, there was a 

significant improvement in terms of speed for MetaboAnalystR 3.0. The CV based OVAT strategy 

took days to complete (>4 days for four samples), which is impractical for real-world datasets. 

Therefore, OVAT was not included in the case studies described in later sections.  

 

Figure 2.2. Time consumed by One Variable at A Time (OVAT), Isotopologue Parameter 

Optimization (IPO), MetaboAnalystR, and AutoTuner for parameter optimization on three 
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different datasets. The evaluations were performed on a desktop computer (Ubuntu 18.04.3 with 

an Intel® Core™ i7-4790 CPU and 32 GB of memory). 

2.3.1. Peak identification benchmark case study 

The performance of the optimized parameters for peak picking was evaluated with the SM samples 

consisting of 1100 common metabolites and drugs (124). The results of the raw data processing 

tools: (i) XCMS-Online with default parameters, XCMS R package (v3.8.2) with parameter 

optimization using (ii) IPO or (iii) AutoTuner, and (iv) MetaboAnalystR 3.0, are shown in Table 

2.1. 

Table 2.1. Qualitative peak picking results of the different tools using different settings. 

Methods Total Peaks True Peaks  Quantified 
Consensus 

Gaussian Peak 
Ratio 

Default 16896 382 350 47.8% 
IPO 24346 744 663 52.0% 

AutoTuner 25517 664 603 40.5% 
MetaboAnalystR 3.0 18044 799 754 64.4% 

True peaks are peaks that match the targeted metabolomics results with m/z ppm <10 and RT 

difference <0.3 min. Qualified consensus refers to the peaks where the relative error of intensity 

ratio between the two groups is less than 50% compared with the actual concentration. Gaussian 

Peak Ratio is the ratio of peaks with shapes following a Gaussian distribution (cor > 0.9 and P < 

0.05). 

From Table 2.1, it is clear that the default parameters for XCMS are not optimal for this dataset. 

All parameter optimization tools (IPO, AutoTuner, and MetaboAnalystR 3.0) significantly 

improved the number of true peaks as well as peaks with consensus qualification. With regard to 

true peaks and quantified consensus peaks, MetaboAnalystR 3.0 increased 109.1% and 115.4%, 
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respectively, compared to the default XCMS. For IPO and AutoTuner, as the number of true peaks 

increased, so did the total number of peaks, indicating a potential inflation of noise. Meanwhile 

MetaboAnalystR 3.0 maintained a low total number of peaks (increase of 6.79% compared with 

default XCMS). In addition to the quantification of true peaks, we calculated the number of 

identified peaks following a Gaussian distribution. Peaks with a cor estimate over 0.9 and P value 

less than 0.05 are considered Gaussian Peaks. XCMS under different parameters (default, IPO and 

AutoTuner) displayed different performances on the peak simulation. Meanwhile, peaks picked 

by MetaboAnalystR 3.0 had the highest Gaussian Peaks ratio compared with other strategies. 

2.3.2. Algorithm reliability benchmark case study 

The reliability of MetaboAnalystR 3.0 and other tools/approaches were evaluated using the NIST 

SRM 1950 diluted serum series (125). The performance was assessed using the reliability index 

(RI) as defined by Zheng et al. (111). Briefly, peaks following the linearity in diluted series are 

considered to be reliable peaks, the higher the RI value, the better the data quality (126). RI is used 

to describe the general relative reliability of all identified peaks, while Linear peaks is the absolute 

count of peaks following linearity. The results from the four approaches are summarized in Figure 

2.3. 

As shown in Figure 2.3A, compared to the default (no optimization), IPO produces the best RI 

value (6252), however, at the cost of speed (316 minutes in total). Meanwhile MetaboAnalystR 

3.0 has both good RI performance (5658) and acceptable speed (total of 49 minutes for 

optimization and data processing). AutoTuner is the fastest for optimization and data processing, 

but the improvement on RI is marginal. The number of peaks that meet the linearity (P < 0.001) 

are summarized in Figure 2.3B. MetaboAnalystR 3.0 produced the largest number of linear peaks 

compared to the other options. 
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Figure 2.3. Assessment of the performance of different tools utilizing the NIST 1950 serum 

dilution series. (A) Reliability Index (RI) vs. processing speed for three optimization strategies 

compared to the default. X axis, speed, is the normalized time consumption to the default. (B) A 

bar graph showing the number of peaks with good linearity (P < 0.001). 

2.3.3. Overall workflow evaluation using a large-scale clinical dataset 

To evaluate the performance of the overall workflow, we applied the data processing pipeline on 

545 clinical metabolomics samples obtained from the Inflammatory Bowel Disease (IBD) 

Multiomics Database (113). The dataset includes 58 QC samples assayed per every 20 patients’ 

samples. The QCs are a pooled mixture of all patients’ samples. Raw data processing identified a 

total of 8542 peak features using the optimized picking parameters compared to 6653 peaks with 

the default settings. The peak intensity tables were subjected to PCA and batch effect correction 

as shown in Figure 2.4. 
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Figure 2.4. Performance evaluation using Inflammatory Bowel Disease (IBD) data. Principal 

Component Analysis (PCA) of peaks picked with (A) default parameters and (B) optimized 

parameters. (C) Performance of batch effect correction by different strategies. Among them, 

EigenMS behaved the best (indicated by *). (D) PCA of the optimized and batch corrected data. 

Given that the QC samples are a homogenous mixture of all of the patients’ samples, they are 

expected to locate in the center of the PCA as a tight cluster. However, this was not the case using 

the default parameters (Figure 2.4A). Using optimized parameters, these pooled QC samples were 

better mixed with the other samples (Figure 2.4B). However, both A and B showed systematic 

variations among these samples, suggesting batch effects in this large-scale study. In this case, 
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MetaboAnalystR3.0 applied batch effect correction with the Combat, Analysis of Covariance 

(ANCOVA), WaveICA, Quality Control-robust LOESS signal correction (QC-RLSC), and 

EigenMS methods, respectively. The PCA distances among all QC samples are summarized in 

Figure 2.4C, which indicates that the best correction was performed by EigenMS, a method based 

on singular value decomposition to detect and correct for systematic bias (127). After applying 

EigenMS, QCs were tightly clustered together and biological samples were clustered based on 

their biological origins (Figure 2.4D), providing strong evidence for the utility of the batch effect 

correction method selected by MetaboAnalystR 3.0. 

Predicting pathway activities directly from LC-HRMS peaks can significantly accelerate 

biological discoveries in global metabolomics. We have previously implemented mummichog 

v1.08 within MetaboAnalystR 2.0. Now, MetaboAnalystR 3.0 has incorporated a major update of 

mummichog (v2.0) with RT integration. To demonstrate the improvements to biological 

interpretation stemming from both the optimized pre-processing steps and the updated mummichog 

algorithm, we applied both versions of the mummichog algorithm using the human BiGG and 

Edinburgh Model pathway library (“has_mfn”) to compare the biological significance detected by 

the original pipeline (default peak parameters and non-corrected data, as shown in Figure S2.1) 

versus the optimized pipeline. For the Crohn’s disease (CD) and non-IBD controls, a total of 3048 

features were identified using the optimized pipeline and 2364 features using the non-optimized 

pipeline. For the non-optimized dataset, mummichog v. 1.08 identified no significant pathways 

(Gamma-adjusted P value < 0.05), while mummichog v. 2.0 identified 16 significantly different 

pathways (Tables S2.3 and S2.4). Similarly, for the optimized dataset, mummichog v. 1.08 

identified only nine significantly perturbed pathways, whilst v. 2.0 identified 17 significantly 

perturbed pathways (Table 2.2). Evidently, mummichog version 2.0, with its integration of RT 
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information to group related m/z features into empirical compounds, reveals more biological 

insights than its predecessor. Moreover, mummichog results (both versions 1.08 and 2.0) for the 

optimized versus non-optimized dataset consistently identified differences in Bile acid 

biosynthesis, Vitamin D metabolism, and Vitamin E metabolism between CD patients and non-IBD 

controls. The details of the pathways identified are summarized in Tables S3–S6. Finally, both 

versions of mummichog algorithms also consistently identified a higher total number of pathways 

for the optimized dataset, versus the non-optimized dataset. This highlights the importance of data 

calibration to improve the detection of true biological signals. The other comparisons (ulcerative 

colitis vs. non-IBD control) showed similar results, as shown in Figure S2.2. 

Table 2.2 The pathway enrichment results (top 20, Crohn’s disease vs. non-IBD) generated by 

mummichog v1.0.8 and v2.0. Text in grey indicate pathways that are not significant (P value > 

0.05). 

Mummichog v1.0.8 Mummichog v2.0 
Pathways P Value Pathways P Value 

Bile acid biosynthesis 0.017199 Bile acid biosynthesis 0.011283 
Vitamin D3 

(cholecalciferol) 
metabolism 

0.017526 Vitamin E metabolism 0.011321 

Vitamin E metabolism 0.017966 Vitamin D3 (cholecalciferol) 
metabolism 0.014207 

Carnitine shuttle 0.018084 Galactose metabolism 0.016026 
Glycosphingolipid 

metabolism 0.021048 Glycerophospholipid 
metabolism 0.020464 

De novo fatty acid 
biosynthesis 0.026554 Carnitine shuttle 0.021085 

Keratan sulfate 
degradation 0.031317 Chondroitin sulfate 

degradation 0.025739 

Fatty Acid 
Metabolism 0.032132 Vitamin B2 (riboflavin) 

metabolism 0.025739 

N-Glycan Degradation 0.043912 Vitamin H (biotin) 
metabolism 0.025739 

Phosphatidylinositol 
phosphate metabolism 0.053756 Fatty acid oxidation 0.025739 
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Hexose 
phosphorylation 0.069236 Omega-6 fatty acid 

metabolism 0.025739 

Fatty acid activation 0.075044 Glycosphingolipid 
metabolism 0.041115 

Limonene and pinene 
degradation 0.078492 Phosphatidylinositol 

phosphate metabolism 0.043604 

Chondroitin sulfate 
degradation 0.082534 Hyaluronan Metabolism 0.04815 

Glycosphingolipid 
biosynthesis - 
globoseries 

0.082534 
Putative anti-Inflammatory 
metabolites formation from 

EPA 
0.04815 

Saturated fatty acids 
beta-oxidation 0.082534 Electron transport chain 0.04815 

Heparan sulfate 
degradation 0.082534 Heparan sulfate degradation 0.04815 

Glycerophospholipid 
metabolism 0.09418 Sialic acid metabolism 0.061564 

Starch and Sucrose 
Metabolism 0.13566 Vitamin A (retinol) 

metabolism 0.061564 

Ascorbate (Vitamin C) 
and Aldarate 
Metabolism 

0.14503 Saturated fatty acids beta-
oxidation 0.061564 

 

2.4 Discussion 

The previous version (v2.0) of MetaboAnalystR provided an end-to-end workflow to process raw 

LC-HRMS metabolomics data (105). This new version (v3.0) has further enhanced three key steps 

of this workflow by focusing on efficient optimization for peak picking, improved batch effect 

correction, and more meaningful putative compound annotations for pathway analysis. 

Parameter optimization remains a computational bottleneck in current raw LC-HRMS spectra data 

processing. Most tools rely on users to manually adjust the default parameters, which is 

inconvenient as users need to be very familiar with their MS instruments and experimental setup. 

The key concept of our optimization strategy is to use a subset of spectra based on multiple ROIs 

that are enriched for real peaks, instead of using complete spectra. These ROIs are selected based 

on the characteristics of the eluted compounds’ peaks across the whole chromatogram to extract 
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peaks with wide m/z ranges (see Materials and Methods for more detail). The subsequent 

optimization is performed on peaks in these ROIs. One potential criticism we anticipate is the 

“bias” toward high-intensity peaks. We would like to point out that this is generally not the case, 

low intensity peaks are still sufficiently represented in these ROIs due to the sparse nature of LC-

HRMS spectra (see Figure 2.5 in Materials and Methods). By focusing computational resources 

on real signals instead of noise, our approach has significantly accelerated the process for practical 

applications. Meanwhile, users can manually adjust the default m/z or RT window for selecting 

ROIs. The qualitative and quantitative efficacy of this approach have been demonstrated by two 

benchmark datasets. In particular, a significant improvement on the identification of true peak 

features has been observed using a known standards benchmark dataset (124). This resulted from 

the increased emphasis on the Gaussian fitting and peak group stability at the same time, rather 

than only focusing on the number of detected isotopes. The quantitative improvement of the 

parameters optimized by MetaboAnalystR 3.0 was also illustrated using the NIST SRM 1950 

datasets. It should be noted that this data contains only two replicates for each concentration, which 

is a limiting factor for this validation.  

Finally, the IBD data was first processed using the optimized parameters, followed by batch 

correction based on QC samples. The PCA revealed clear group patterns according to different 

IBD groups. Furthermore, more metabolic pathways were reported when using our optimized 

metabolomics workflow. The majority of these pathways are biologically meaningful according 

to previous studies including bile acid (127, 128), vitamin E (129), vitamin D3 (130, 131), 

galactose (132), glycerophospholipid (132), fatty acid (128, 133), and hyaluronan (134) 

metabolism pathways. Similarly, other comparisons between the different IBD groups also 

produced more perturbed metabolic pathways by our optimized workflow in MetaboAnalystR 3.0.  



42 
 

Using the IBD samples, we also compared the performances of the mummichog algorithm 

implemented in MetaboAnalystR 2.0 versus that in MetboAnalystR 3.0. The main difference 

between their implementations is that RT information is integrated when performing the putative 

compound annotation. This step moves pathway enrichment from the compound space to the 

empirical compound space formed by grouping co-eluting m/z features. Our results show that the 

new version improves both the number and quality of significant pathways that can be identified, 

as it identified perturbed pathways that are more consistent with IBD literature, as stated above. 

2.5 Conclusions 

MetaboAnalystR 1.0 provided the comprehensive statistical and functional analysis underlying the 

MetaboAnalyst web application, while MetaboAnalystR 2.0 equipped v1.0 with comprehensive 

raw LC-MS data processing and pathway activity prediction from MS peaks. MetaboAnalystR 3.0 

has further enhanced three key aspects of the LC-MS data processing workflow including 

parameter optimization for peak picking, adaptive batch effect correction, and improved 

annotation of putative compounds for pathway activity prediction. MetaboAnalystR 3.0 represents 

our latest efforts toward developing an efficient pipeline for high-throughput global metabolomics.  

2.6 Materials and methods 

2.6.1. Peak picking optimization 

The steps for parameter optimization include representative peaks extraction using the 

PerformDataTrimming function and parameter optimization based on the extracted peaks with the 

PerformParamsOptimization function. The concepts and mathematical details behind each 

function are provided below. 

2.6.1.1. Extraction of Representative Peaks from Regions of Interest (ROIs) 
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The extraction of representative MS peaks is performed with the PerformDataTrimming function, 

which reads raw MS data of common formats (mzXML, mzML, etc.) into memory and extracts 

peaks using three strategies. The first strategy (default option) is named “Standards Simulation 

Method” (ssm). As its first step, at the m/z dimension, ssm divides the whole mass spectra into m/z 

bins and detects the signal intensity with a sliding window in parallel for all bins. The windows 

with the highest scan intensity sum within each bin will be retained, as shown in Figure 2.5A. 

Second, at the RT dimension, the sliding window method is used again to detect the scan signal 

intensity and returns the window with the highest values (Figure 2.5B). Synthetic spectra are 

created based on the returned ROIs defined by the two dimensions (m/z and RT). Peaks are 

extracted from the synthetic spectra to simulate standards across the whole m/z range (Figure 

2.5C). These ROIs are enriched for true peaks, which are characterized by overall high-intensity 

signals distributed across the window. It is important to note that ROIs still contain a sufficient 

number of low-intensity signals for optimization, as shown in Figure 2.5D. The RT sliding window 

is also manually adjustable to cover different percentages (0, 100%] of RT dimension to further 

overcome the potential bias. If there are internal standards or quality control metabolites included 

within the user’s samples, peaks with specific m/z and/or RT can be extracted or removed with the 

modes named “mz_specific” or “rt_specific”. 
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Figure 2.5. The selection process of regions of interest (ROIs) that are enriched for true peak 

signals. Red dashes in (A) represent the bin boundaries used for sliding windows’ working to 

contain the most signal points. The whole spectrum is divided evenly into four bins. Four m/z 

windows (light red area) will slide within each bin respectively in parallel and select the window 

with the highest scan intensity sum in the retained m/z window. RT window (light red area) in (B) 

will slide across the entire RT dimension to get RT regions with the highest scan signal intensity. 

(C) The intersected MS scan signals from both the m/z and RT dimensions containing four ROIs. 

(D) The zoomed-in view of the ROIs (note low intensity peaks are still abundant). 
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2.6.1.2. Design of Experiment (DoE) Based Optimization 

Once the representative peaks are obtained, the parameter optimization based on these peaks is 

performed with the PerformParamsOptimization function. The noise level (including noise and 

prefilter parameters) and the m/z variation (ppm) of a certain ROI is first evaluated with the kernel 

density estimator model developed by AutoTuner. Then, other detailed peak width and alignment 

parameters (peak width min, peak width max, mzdiff, s/n_thershold and bandwidth) are optimized 

with the DoE model based on the Box–Behnken method, as used by IPO. Unlike IPO, the 

optimization effects during the process is evaluated with the response variable, Quality Score (QS), 

defined below. 

𝑄𝑄𝑄𝑄 =
𝑅𝑅𝑅𝑅3/2

′𝑎𝑎𝑎𝑎𝑎𝑎 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠′ − 𝐿𝐿𝐿𝐿𝐿𝐿
∗ 𝐺𝐺𝐺𝐺2 ∗ 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 

where RP is the reliable peaks and LIP is the low-intensity peaks, as defined by IPO according to 

the isotopes detected by CAMERA. Briefly, RPs refers to peaks with detectable isotopes. “all 

peaks” means all peaks detected including reliable and unreliable peaks. LIP refers to a group of 

peaks with the intensity of their isotopes too low (less than the average of the lowest 3% peak 

intensity in the spectra). Unlike IPO, the exponential factor for RP was lowered to 1.5 to reduce 

the sensitivity for peak picking and to avoid the inflation of noise. GR is the Gaussian peaks ratio. 

An exponential factor of 2 was empirically used to put more emphasis on the peak shape. QcoE is 

the quality coefficient. GR and QcoE are defined as below.  

𝐺𝐺𝐺𝐺 =
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝑎𝑎𝑎𝑎𝑎𝑎 𝑝𝑝𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎
 

where Gaussian Peaks refer to the peaks that have shapes that follow the Gaussian distribution 

(cor estimate ≥ 0.9 and P value ≤ 0.05). 
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𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(RCS) + 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(GS) + 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(CV) 

where RCS is the RT correction score and GS is the grouping score and both are defined by IPO 

(46). Briefly, they are used to evaluate the RT shift and peak number within a peak group, 

respectively. Higher values of RCS and GS mean more stable and reliable peaks have been 

included and grouped as a peak feature. CV, the coefficient of variation, refers to the CV of peak 

intensity in a group, as described by Sascha K (112). This index highlights the importance of the 

peak intensity within a group. RCS, GS, and CV are normalized using the unit-based method. QcoE 

is further normalized to 0 to 1 and by weighted RCS, GS, and CV with 0.4, 0.4, and 0.2, 

respectively. 

The SetPeakParam function provides initial parameters for different platforms including Ultra 

Performance Liquid Chromatography (UPLC)- Q-Exactive (Q/E) Orbitrap, UPLC- Quadrupole 

Time-of-Flight (Q/TOF), UPLC-Triple TOF (T/TOF), UPLC-Ion trap, UPLC-G2-S, High-

performance liquid chromatography (HPLC)-Q/TOF, HPLC-Ion Trap, HPLC-Orbitrap, and 

HPLC- Single Quadrupole (S/Q). The best parameter combination is the one that produces the 

greatest number of reliable peaks, whose peak shapes follow a Gaussian distribution and show 

stable peak groups, as defined by the formula for Quality Score. The step is performed in parallel 

using multicores to accelerate the process. 

2.6.2. Adaptive batch effort correction 

Batch effect correction can be achieved with the updated PerformBatchCorrection function. All 

correction strategies are summarized in Table 2.3. At least three method candidates are available 

for all experimental designs. To identify the most suitable method for a given dataset, the 

correction results will be evaluated using PCA or the CCA model according to the gradient length 
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along the first axis of DCA analysis. If the value is over 3, PCA is an appropriate method, 

otherwise, CCA will be used (135). The results showing minimum inter-batch distances will be 

returned. QC-RLSC could be specified to adjust the signal drift.  

Table 2.3. Batch effect correction methods available in MetaboAnalystR 3.0. 

Categories Methods 

QC Sample Independent Combat (136), WaveICA (118), Eigens 
MS (137)  

QC Sample Dependent QC-RLSC (114), ANCOVA (138)  

QC Metabolite Dependent RUV-random (139), RUV2 (140), 
RUVseq (141)  

Internal Standards Dependent NOMIS (142), CCMN (143)  
 

2.6.3. Mummichog2 for pathway activity prediction 

The R implementation of mummichog (101) was described in the previous version (105). 

Mummichog version 2 has incorporated RT in grouping ions and introduced the concept of 

empirical compounds (ECs). ECs are putative metabolites as measured by LC-HRMS, possibly 

containing a mixture of enantiomers, stereoisomers, and positional isomers that are not resolved 

by the instruments. Thus, ECs are similar to the “feature groups” referred by Mahieu and Patti 

(2017) (58). Whilst the Python version is available on GitHub as a separate project, our 

implementation in MetaboAnalystR 3.0 is as follows: 

1) All m/z features are matched to potential compounds considering isotopes and adducts. 

Then, per compound, all matching m/z features are split into ECs based on whether they match 

within an expected RT window. By default, the RT window (in seconds) is calculated as the 

maximum RT * 0.02. This results in the initial EC list. Users can either customize the RT fraction 

(default is 0.02) or RT tolerance in general in the UpdateInstrumentParameters function (rt_frac 

and rt_tol, respectively). 
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2) ECs are merged if they have the same m/z, matched form/ion, and RT. This results in the 

merged empirical compounds list. 

3) Primary ions are enforced (defined in the UpdateInstrumentParameters function 

[force_primary_ion]), only ECs containing at least one primary ion are kept. Primary ions 

considered are ‘M+H[1+]’, ‘M+Na[1+]’, ‘M−H2O+H[1+]’, ‘M−H[−]’, ‘M−2H[2−]’, 

‘M−H2O−H[−]’, ‘M+H [1+]’, ‘M+Na [1+]’, ‘M−H2O+H [1+]’, ‘M−H [1−]’, ‘M−2H [2−]’, and 

‘M−H2O−H[1−]’. This produces the final EC list. 

4) Pathway libraries are converted from “Compound” space to “Empirical Compound” space. 

This is done by converting all compounds in each pathway to all empirical compound matches. 

Then, the mummichog/GSEA algorithm works as before to calculate pathway enrichment.  

5) To use the updated algorithm, set the version parameter in SetPeakEnrichMethod to “v2”. 

2.6.4. Benchmark case studies 

2.6.4.1. Known Standards Mixture 

The SM dataset produced by the HPLC-Q/E HF system consists of two samples with five replicates 

for each sample, as described by Li et al. 2018 (124). The global mass spectra were inspected with 

the PerfromDataInspect function. The extremely anomalous high-intensity dimethyl sulfoxide 

stock contaminant peak ([2*M+H] at m/z 157.035) was removed to avoid mistakenly 

overwhelming the parameter optimization process. The total ion chromatogram (TIC) of the data 

is shown in Figure S2.2. The parameter optimization was performed with HPLC-Q/E initial 

parameters based on two samples randomly selected from each group. The optimized parameters 

are provided in Table S2.1. 
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2.6.4.2. NIST-1950 Serum Diluted Series 

The NIST 1950 serum dilution samples of 1, 0.2, 0.1, 0.05, and 0.025 were obtained from the 

MassIVE database (MSV0000083469). This dataset was generated by Pieter Dorrestein et al. using 

a Q Exactive Orbitrap (Thermo Fisher Scientific) in positive mode. Scanning m/z range was set 

between 133.0000 to 1981.0000 Thomson. The raw spectra were first converted to centroided 

mzXML format with ProteoWizard (v3.0.19073) msConvert (144). Parameter training was 

performed using the dilutions of 1 and 0.2 starting from the UPLC-Q/E default settings. TICs of 

the data are shown in Figure S2.3. The optimized parameters are provided in Table S2.1. 

2.6.4.3. Clinical Inflammatory Bowel Disease Data 

The Clinical IBD data was obtained from the Inflammatory Bowel Disease Multiomics Database 

(113). A large cohort of IBD patients were included for this study. The stool samples of CD (n = 

266), UC (n = 144), and non-IBD (n = 135) were collected. The extraction and purification steps 

have already been described previously (128). The quality control (QC, n = 59) samples were also 

included. All clinical information from the samples is summarized in Table S2.2. The data format 

conversion and initial parameters were identical to the NIST dilution series above. The TICs of 

the data are shown in Figure S2.4. Parameter optimization was performed using four QC samples 

from each group randomly selected from the whole batch. The optimized parameters are provided 

in Table S2.1. The data analysis was finished with the whole MetaboAnalystR 3.0 workflow. 

Functional analysis was performed by integration with mummichog2 for the comparisons between 

different groups (cutoff of P value 2.0×10-62.0e-6). 

2.7 Supplementary materials 
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Supplementary Materials: The following are available online at https://www.mdpi.com/2218-

1989/10/5/186/s1, Figure S2.1: Bar plots of mummichog pathway enrichment results applied on 

Crohn’s disease patients versus non-IBD controls, Figure S2.2: Scatter plots of the mummichog 

pathway enrichment results applied on ulcerative colitis patients versus healthy controls, Figure 

S2.3: TICs of benchmark 1 (known standard data) before and after optimization, Figure S2.4: TICs 

of benchmark 2 (NIST series) before and after optimization, Figure S2.5: TICs of benchmark 3 

(IBD data) before and after optimization, Table S2.1: Optimized parameters summary of all 

datasets, Table S2.2: Clinical characteristics summary of IBD subjects, Table S2.3: Mummichog 

(v.1) pathways (Top 20) of non-optimized IBD data (CD vs. non-IBD), Table S2.4: Mummichog 

(v.2) pathways of non-optimized IBD data (CD vs. non-IBD), Table S2.5: Mummichog (v.1) 

pathways (Top 20) of optimized IBD data (CD vs. non-IBD), Table S2.6: Mummichog (v.2) 

pathways (Top 20) of optimized IBD data (CD vs. non-IBD). 

Table S2.1. Optimized Parameters Summary of All Datasets 

Data Cases peakwidith ppm mzdiff snthreshold noise prefilter bw 
Known Standards (5.875,37) 1.84 0.0192 19.15 8061 (2,15046) 2 
NIST Dilution (6.25,14.75) 1.629 0.024 5 267 (2,601) 3 
IBD (8.125,15) 1.879 0.0012 7.5 1801 (2,3372) 5 

 

Table S2.2. Clinical Characteristics Summary of IBD Subjects 

Characteristics CD UC nonIBD 
Number 265 146 135 
Gender (F/M) 116/149 93/53 61/74 
Age of Diagnosis 20.54 ± 10.88 23.34 ± 14.39 / 
Antibiotics/Yes 36 10 3 
Chemotherapy/Yes 14 6 2 
Immunosuppressants/Yes 61 19 0 
Ileum ulcers 39.53% 0 % 0 % 
Right Colon ulcers 13.95% 0 % 0 % 
Transverse Colon ulcers 9.30 % 0 % 0 % 
Left Colon ulcers 9.30 % 0 % 0 % 
Rectum ulcers 11.62 % 0 % 0 % 
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Table S2.3. Mummichog (v.1) Pathways (Top 20) of non-optimized IBD data (CD vs. nonIBD) 

Pathway Names Pathway 
total Hits total 

Gamma-
adjusted P 

value 

Emp 
Hits Empirical 

De novo fatty acid biosynthesis 106 17 0.088229 0 0 
Vitamin D3 (cholecalciferol) 

metabolism 16 11 
0.10484 0 0 

Porphyrin metabolism 43 12 0.10773 0 0 
Bile acid biosynthesis 82 50 0.11527 0 0 

Drug metabolism - cytochrome 
P450 53 26 

0.14867 0 0 

Aspartate and asparagine 
metabolism 114 27 

0.1516 0 0 

Tyrosine metabolism 160 59 0.17341 0 0 
Leukotriene metabolism 92 36 0.17784 0 0 

Vitamin A (retinol) metabolism 67 37 0.18074 0 0 
Tryptophan metabolism 94 41 0.19228 0 0 

C21-steroid hormone 
biosynthesis and metabolism 112 79 

0.22105 0 0 

Androgen and estrogen 
biosynthesis and metabolism 95 53 

0.22638 0 0 

Hyaluronan Metabolism 8 4 1 0 0 
Glycolysis and Gluconeogenesis 49 13 1 0 0 

Pyruvate Metabolism 20 5 1 0 0 
Sialic acid metabolism 107 14 1 0 0 

Chondroitin sulfate degradation 37 3 1 0 0 
Linoleate metabolism 46 31 1 0 0 
Galactose metabolism 41 22 1 0 0 

Carnitine shuttle 72 26 1 0 0 
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Table S2.4. Mummichog (v.2) Pathways of non-optimized IBD data (CD vs. nonIBD) 

Pathway Names Pathway 
total 

Hits 
total 

Gamma-
adjusted P 

value 

Emp 
Hits Empirical 

Chondroitin sulfate degradation 1 1 0.000507 0 0 
Omega-6 fatty acid metabolism 1 1 0.000507 0 0 
De novo fatty acid biosynthesis 13 13 0.000516 5 0.05 

Heparan sulfate degradation 2 2 0.000555 0 0 
Hyaluronan Metabolism 3 3 0.000607 0 0 

Ascorbate (Vitamin C) and 
Aldarate Metabolism 3 3 0.000607 0 0 

Pentose and Glucuronate 
Interconversions 3 3 0.000607 0 0 

Phosphatidylinositol phosphate 
metabolism 6 6 0.000787 0 0 

Fatty acid activation 9 9 0.00101 24 0.24 
Tryptophan metabolism 11 11 0.001186 0 0 
Porphyrin metabolism 13 13 0.001387 61 0.61 

Prostaglandin formation from 
arachidonate 14 14 0.001497 33 0.33 

Glycerophospholipid 
metabolism 15 15 0.001615 41 0.41 

Bile acid biosynthesis 17 17 0.001872 54 0.54 
Arachidonic acid metabolism 19 19 0.002162 39 0.39 

Leukotriene metabolism 19 19 0.002162 45 0.45 
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Table S2.5. Mummichog (v.1) Pathways (Top 20) of optimized IBD data (CD vs. nonIBD) 

Pathway Names Pathway 
total 

Hits 
total 

Gamma-
adjusted P 

value 

Emp 
Hits Empirical 

Bile acid biosynthesis 82 48 0.017199 0 0 
Vitamin D3 (cholecalciferol) 

metabolism 
16 10 0.017526 0 0 

Vitamin E metabolism 54 35 0.017966 0 0 
Carnitine shuttle 72 27 0.018084 0 0 

Glycosphingolipid metabolism 67 20 0.021048 0 0 
De novo fatty acid 

biosynthesis 
106 18 0.026554 94 0.94 

Keratan sulfate degradation 68 3 0.031317 0 0 
Fatty Acid Metabolism 63 10 0.032132 36 0.36 
N-Glycan Degradation 16 4 0.043912 8 0.08 

Phosphatidylinositol phosphate 
metabolism 

59 10 0.053756 22 0.22 

Hexose phosphorylation 20 14 0.069236 0 0 
Fatty acid activation 74 20 0.075044 97 0.97 
Limonene and pinene 

degradation 
10 6 0.078492 2 0.02 

Chondroitin sulfate 
degradation 

37 3 0.082534 0 0 

Glycosphingolipid 
biosynthesis - globoseries 

16 3 0.082534 3 0.03 

Saturated fatty acids beta-
oxidation 

36 3 0.082534 34 0.34 

Heparan sulfate degradation 34 3 0.082534 0 0 
Glycerophospholipid 

metabolism 
156 30 0.09418 4 0.04 

Starch and Sucrose 
Metabolism 

33 12 0.13566 0 0 

Ascorbate (Vitamin C) and 
Aldarate Metabolism 

29 9 0.14503 0 0 
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Table S2.6. Mummichog (v.2) Pathways (Top 20) of optimized IBD data (CD vs. nonIBD) 

Pathway Names Pathway 
total 

Hits 
total 

Gamma-
adjusted P 

value 

Emp 
Hits Empirical 

Bile acid biosynthesis 37 37 0.011283 21 0.21 
Vitamin E metabolism 8 8 0.011321 0 0 

Vitamin D3 (cholecalciferol) 
metabolism 4 4 0.014207 3 0.03 

Galactose metabolism 7 7 0.016026 0 0 
Glycerophospholipid 

metabolism 11 11 0.020464 8 0.08 

Carnitine shuttle 14 14 0.021085 100 1 
Chondroitin sulfate degradation 1 1 0.025739 0 0 

Vitamin B2 (riboflavin) 
metabolism 1 1 0.025739 0 0 

Vitamin H (biotin) metabolism 1 1 0.025739 0 0 
Fatty acid oxidation 1 1 0.025739 0 0 

Omega-6 fatty acid metabolism 1 1 0.025739 0 0 
Glycosphingolipid metabolism 8 8 0.041115 64 0.64 
Phosphatidylinositol phosphate 

metabolism 5 5 0.043604 23 0.23 

Hyaluronan Metabolism 2 2 0.04815 0 0 
Putative anti-Inflammatory 
metabolites formation from 

EPA 
2 2 0.04815 51 0.51 

Electron transport chain 2 2 0.04815 18 0.18 
Heparan sulfate degradation 2 2 0.04815 0 0 

Sialic acid metabolism 6 6 0.061564 0 0 
Vitamin A (retinol) metabolism 6 6 0.061564 72 0.72 

Saturated fatty acids beta-
oxidation 6 6 0.061564 83 0.83 
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Figure S2.1. Bar plots of mummichog pathway enrichment results applied on Crohn’s Disease 

patients versus nonIBD controls for: data generated using the default pre-processing 

parameters with mummichog v. 1.08 (A, above); using the optimized pre-processing 

parameters with mummichog v. 1.08 (A, below); using the default pre-processing parameters 

with mummichog v. 2.0 (B, above); and finally using the pre-processing optimized parameters 

with mummichog v. 2.0 (B, below). The light pink areas represent the pathways with P values 

< 0.05. For each panel, only the top 5 pathways are labeled. 
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Figure S2.2. Scatter plots of the mummichog pathway enrichment results applied on ulcerative 

colitis patients versus healthy controls for: data generated using the default pre-processing 

parameters with mummichog v. 1.08 (A); using the optimized pre-processing parameters with 

mummichog v. 1.08 (B); using the default pre-processing parameters with mummichog v. 2.0 

(C); and finally using the pre-processing optimized parameters with mummichog v. 2.0 (D). 

The light pink areas represent the pathways with P values < 0.05. 
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Figure S2.3. TICs of benchmark 1 (Known standard data) before (top) and after (bottom) 

optimization. 

 

Figure S2.4. TICs of benchmark 2 (NIST series) before (top) and after (bottom) optimization. 
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Figure S2.5. TICs of benchmark 3 (IBD data) before (top) and after (bottom) optimization. 
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Preface to Chapter 3 

This chapter provides an updated version of MetaboAnalyst, a popular web-based tool for 

metabolomics data analysis. The primary objective of this update is to integrate newly-developed 

functionalities from MetaboAnalystR 3.0 (Chapter 2) into the web-based platform, thereby 

enabling users to process their data through a user-friendly interface without the need for 

installation of R packages or programming languages on their local machine. The updated version 

facilitates online processing of raw spectral data through an auto-optimized approach, and enables 

functional analysis of one or multiple metabolomics datasets with the use of mummichog version 

2. Additionally, this version implements a streamlined analysis workflow linking raw spectral data 

processing to functional insights, and several other updated features, including multi-omics 

integration. Overall, the purpose of this chapter is to enhance the tool's functionalities to meet the 

objective 1. 
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3.1 Abstract 

 

Since its first release over a decade ago, the MetaboAnalyst web-based platform has become 

widely used for comprehensive metabolomics data analysis and interpretation. Here we introduce 

MetaboAnalyst version 5.0, aiming to narrow the gap from raw data to functional insights for 

global metabolomics based on high-resolution mass spectrometry (HRMS). Three modules have 

been developed to help achieve this goal, including: (i) a LC–MS Spectra Processing module 

which offers an easy-to-use pipeline that can perform automated parameter optimization and 

resumable analysis to significantly lower the barriers to LC-MS1 spectra processing; (ii) a 

Functional Analysis module which expands the previous MS Peaks to Pathways module to allow 

users to intuitively select any peak groups of interest and evaluate their enrichment of potential 
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functions as defined by metabolic pathways and metabolite sets; (iii) a Functional Meta-Analysis 

module to combine multiple global metabolomics datasets obtained under complementary 

conditions or from similar studies to arrive at comprehensive functional insights. There are many 

other new functions including weighted joint-pathway analysis, data-driven network analysis, 

batch effect correction, merging technical replicates, improved compound name matching, etc. 

The web interface, graphics and underlying codebase have also been refactored to improve 

performance and user experience. At the end of an analysis session, users can now easily switch 

to other compatible modules for a more streamlined data analysis. MetaboAnalyst 5.0 is freely 

available at https://www.metaboanalyst.ca. 

3.2 Introduction 

Over the past two decades, metabolomics has contributed significantly to our understanding of 

metabolism across a broad spectrum of physiological and pathophysiological conditions (145, 146). 

It also plays a leading role in dissecting host-environment interactions (147) and has become an 

essential component in deep phenotyping for precision medicine (11, 148-150). As with other 

omics technologies, bioinformatics and analytics go hand-in-hand to enable high-throughput 

metabolomics data processing, analysis and interpretation. Among a wide array of bioinformatics 

tools developed for metabolomics (151, 152), MetaboAnalyst has been often listed among the 

popular choices together with XCMS (34, 153) and SIMCA-P (Umetric) etc. The first version 

(v1.0) of MetaboAnalyst was introduced over a decade ago, focusing on data normalization and 

statistical analysis (154). Since then, it has undergone continuous growth and co-evolves with 

metabolomics, encapsulated as milestone releases every three years. The v2.0 expanded to support 

functional analysis for targeted metabolomics (155). The v3.0 focused on translational biomarker 

analysis (156) and addressed the performance bottleneck by leveraging cloud computing and 
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modern web technologies (157). The v4.0 further improved on integrative and reproducible 

analysis (158), and began to support functional interpretation of global metabolomics data (101). 

With these successive releases, MetaboAnalyst has been steadily gaining and retaining users. 

According to Google Analytics, this web-based platform has processed over three million jobs 

submitted from >100 000 users worldwide in the past 12 months alone. For advanced users, the 

underlying functions have been released as the MetaboAnalystR package to permit more tailored 

data analysis and batch processing (102, 105, 122). 

A key limitation of MetaboAnalyst was its limited support for global metabolomics especially with 

regards to raw data processing. With the consolidation of various protocols and availability of 

commercial kits developed for targeted metabolomics (159), global metabolomics based on high-

resolution mass spectrometry (HRMS) has received growing attention (104, 147, 160). HRMS 

instruments such as Orbitrap or time-of-flight (TOF) systems can simultaneously measure a vast 

number of endogenous and exogenous compounds in a biological sample, providing unique 

information on an individual's metabolic phenotype, environmental exposures and associated 

biological responses. However, HRMS data processing is currently a labor-intensive task 

involving significant user input, as many parameters need to be empirically tuned in order to obtain 

satisfying results (107, 161). To democratize the power of HRMS to researchers beyond a few 

expert groups, we need to overcome two major hurdles - developing a self-tuning algorithm to 

enable automated parameter optimization and implementing a high-performance computational 

platform to deal with the big data challenges associated with raw data processing. 

For most researchers, the peak tables obtained from raw data processing are not interpretable. The 

conventional approaches such as pathway or enrichment analysis require peaks to be identified 

first to gain functional insights (162). Therefore, it is necessary to enhance the support for 
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functional analysis directly based on peak tables. With the availability of public metabolomics 

repositories (163, 164), there is a growing interest in data mining and meta-analysis. However, the 

heterogeneity of global metabolomics datasets due to differences in analytical platforms and data 

processing parameters has posed significant challenges for this purpose. Addressing this need will 

greatly improve the value of global metabolomics datasets. Finally, improved support for 

lipidomics data, better integration with other ‘omics’ data, batch-effect correction, etc. have been 

among the common requests from the MetaboAnalyst users. 

Here, we introduce MetaboAnalyst version 5.0, which represents our three years of effort to narrow 

the gap between raw HRMS spectra and functional insights since the release of the version 4.0. 

The key features of MetaboAnalyst v5.0 include: 

1. A new module to support high-throughput, self-optimized LC-MS1 spectral processing. 

2. A new module to allow meta-analysis of multiple global metabolomics datasets. 

3. A weighted joint pathway analysis module for multi-omics integration, and a new function 

for data-driven network analysis (165). 

4. Significantly updated and expanded underlying knowledge bases (species-specific 

pathway libraries and metabolite sets) for comprehensive functional analysis of both 

targeted and untargeted metabolomics. 

5. Completely upgraded interactive graphics, refactored underlying codebase for improved 

performance and streamlined data analysis across compatible modules. 

6. Other new features including support for mzTab 2.0-M (166) input format and importing 

data from the Metabolomics Workbench (163), as well as utility functions for automated 

batch correction and merging technical replicates. 
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The MetaboAnalyst v5.0 is freely available at https://www.metaboanalyst.ca. To accommodate 

computational demand, we have also set up two mirror sites hosted on high-performance 

computers dedicated for raw data processing. We have updated frequently asked questions (FAQs) 

and added seven new tutorials, which are easily accessible from the home page. The key features 

of MetaboAnalyst 5.0 are described below. 

3.3 Overview of Metaboanalyst 5.0 workflow 

In addition to supporting raw data processing for MS-based global metabolomics, MetaboAnalyst 

version 5.0 harmonizes workflows for both targeted and untargeted data analysis. As summarized 

in Figure 3.1, after proper data processing, all main inputs can be handled consistently within the 

framework of statistical analysis, functional analysis and meta-analysis with coherent interface 

design and navigation support. Altogether, these updates allow users to easily perform their 

analytical workflow and focus more on understanding their own data rather than how to operate 

the tool. 
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Figure 3.1. Overview of MetaboAnalyst v5.0 workflows. Steps for targeted metabolomics are 

indicated by boxes in green, steps for untargeted metabolomics are in blue, and those in orange 

can be used for both. Experienced users can use various utility functions or install the 

corresponding R packages (yellow boxes) to perform analysis beyond those pre-defined regular 

workflows. 

3.4 Raw data processing 

Over the past 15 years, XCMS and MZmine have evolved into the two most popular, open-source 

tools for HRMS raw data processing (35, 36). Both now use the CentWave algorithm for 

chromatographic peak detection (45). However, multiple parameters often need to be specified 

beforehand in order to obtain good results, which has caused challenges for its practical 

applications even for an experienced analyst. The XCMS Online platform has partially addressed 

the issue by offering several pre-optimized platform-specific parameters (34, 167). However, more 

refined parameter optimization is usually necessary, because chromatography can vary greatly 

between laboratories, and the spectral data are influenced by sample preparation and many 

configurations or conditions of mass spectrometers. 

We have recently developed a self-tuning parameter optimization method for XCMS-based HRMS 

spectra processing and benchmarked its performance against other well-established approaches 

(102). The algorithm was initially developed as a component in MetaboAnalystR 3.0. Based on 

user feedback, we recently extracted and optimized the algorithm as an independent R package 

(OptiLCMS, https://github.com/xia-lab/OptiLCMS) to be embedded in other pipelines. This 

pipeline is designed to automatically identify the optimal parameters for a user-provided dataset 

in an efficient manner. Briefly, the ‘automated optimization’ pipeline will select multiple regions 

of interest (ROIs) across the whole spectra as the training spectra. Then, a design-of-experiment 
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(DoE) optimization will be executed to find out the combination of parameters with the most well-

behaved peak shape and stable peak groups to be applied to whole dataset for peak detection. 

MetaboAnalyst v5.0 offers this pipeline via its user-friendly web interface to support both 

automated and manual parameters optimization to accommodate both regular and expert users. We 

have also developed a resumable workflow to accelerate data re-analysis after parameter update. 

To accommodate a wide range of spectral data qualities, we recently implemented a function to 

detect and exclude common background noises and experimental contaminants during the 

parameter optimization stage. Specifically, all m/z centroids from the whole spectrum will be 

extracted first and those m/z features appearing consecutively across half of the entire 

chromatogram will be excluded for parameters’ optimization. Following peak detection and 

alignment, the annotation of adducts and isotopes is based on the CAMERA R package (54). The 

pipeline is now available as the new LC–MS Spectral Processing module in MetaboAnalyst v5.0. 

Users can upload up to 200 data files in the supported open data formats (mzML, mzXML, netCDF 

or mzData). Since raw data processing is a time-consuming process, users can create and save a 

bookmark link after job submission. The link is used to check their job status and to retrieve the 

result. Alternatively, users can freely create accounts using their emails for better data management 

and communication. Registered users can create up to 10 projects, revisit or re-analyze their data 

later. When raw spectral processing is complete, users can visually inspect their results in an 

interactive 3D PCA plot (Figure 3.2A), as well as view total ion chromatogram (TIC) plots, base 

peak intensity (BPI) plots, RT correction results, etc. Furthermore, users can click any feature of 

interest to view its corresponding extracted ion chromatogram (EIC) plot. From the Results 

Download page, users can download all the processed data and peaks tables or start a new journey 

to other compatible modules. 
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Figure 3.2. Example outputs from several new features of MetaboAnalyst v5.0. (A) Interactive 

PCA scores and loadings plots generated from the Raw Data Processing module. Users can click 

any samples or features to view their spectra; (B) Enrichment analysis of patterns detected in a 

peak table from the Functional Analysis module. Users can drag-select any patterns and test their 

enriched functions for further exploratory analysis; (C) An example output from the Joint-Pathway 
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Analysis module. Users can click any data points to view the underlying pathways; (D) An 

example output from the DSPC network analysis. 

3.5 Functional analysis of MS peaks 

It is now possible to directly translate a HRMS peak table into biological insights after raw data 

processing. MetaboAnalyst v4.0 first implemented the ‘MS Peaks to Pathways’ module based on 

the mummichog algorithm (101). Briefly, the algorithm first performs putative annotation of MS 

peaks considering different adducts and ion modes. These putative compounds are then mapped 

onto user selected pathway libraries for pathway activity prediction. The previous version 

(mummichog version 1) only considered the m/z dimension. In MetaboAnalyst v5.0, we have 

upgraded the algorithm to version 2 by integrating both m/z and RT dimensions to formulate 

empirical compounds, thereby further improving the accuracy of functional interpretation (102). 

Both versions of the mummichog algorithm are now available in MetaboAnalyst v5.0. The new 

interface also allows advanced users to customize the default adduct lists and currency metabolites 

- ubiquitous compounds such as water, oxygen, carbon dioxide, etc. (168). 

The typical application of the mummichog algorithm is to predict pathway activities based on a list 

of MS peaks ranked based on t-tests. The concept can be generalized to test enrichment of any 

predefined function (i.e., metabolite sets) in any peak groups of interest (i.e., a cluster of similar 

peaks instead of significant peaks). Herein, we have implemented an interactive heatmap to allow 

users to perform functional analysis on any manually selected region of interest. In this case, the 

uploaded peak intensity table will be first visualized as an interactive heatmap (169). Users can 

perform cluster analysis with different methods, and then specify (via drag-select) one or more 

patterns of interest. The mummichog will be applied to predict enriched functions for the selected 
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peaks. From the result, users can click any function name (i.e., pathway or metabolite set) to see 

the corresponding features annotated beside the heatmap (Figure 3.2B). 

3.6 Meta-analysis of global metabolomics data 

It is notoriously challenging to integrate untargeted metabolomics data across different studies, 

because different extraction methods, chromatographic conditions and mass spectrometry 

platforms all lead to heterogeneity of HRMS data. This issue has precluded the use of untargeted 

metabolomics datasets for large-scale meta-analysis using conventional statistical methods (170). 

Some strategies have been proposed to resolve this issue before (171). To address this gap, we 

have developed a new module to enable researchers to perform functional meta-analysis of global 

metabolomics datasets. 

Users can submit multiple peak intensity tables obtained from the same (or very similar) diseases 

or phenotypes of interest. The meta-analysis can be performed by pathway-level integration or by 

pooling peaks. If the studies are independent of each other (i.e., different samples) but interrogate 

more or less the same pathways, the integration should be performed at the pathway level. In this 

case, the pathway analysis will be first performed on each dataset and the final significant pathways 

will be identified based on the integrated p-values. The results can be visually explored in an 

interactive Venn diagram. In contrast, the peak pooling strategy aims to improve the metabolome 

coverage by combining complementary information obtained under different experimental 

conditions (i.e., compound extractions, chromatographic conditions, ion modes, etc.) from the 

same set of samples using the same or very similar MS instruments. The results can be visually 

explored in a KEGG metabolic network. The utility of the pathway-level integration has been 

demonstrated in our recent meta-analysis of COVID-19 global metabolomics datasets (29). 
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3.7 Multi-omics integrative analysis 

Integrating data from different omics layers can provide greater resolutions to reveal mechanistic 

insights as compared to using a single omics profile. Multi-omics integration can be either data-

driven based on multivariate statistics (172) or knowledge-driven based on known pathways or 

molecular interaction networks (173). In practice, both data-driven and knowledge-driven 

approaches can be further integrated to maximize information gain (174, 175). 

Integrated pathway analysis of genes and metabolites was first launched as the ‘Joint Pathway 

Analysis’ module in MetaboAnalyst v3.0 by directly concatenating genes and metabolites into a 

single query (i.e., combining queries) followed by over-representation analysis. However, the 

results are often dominated by transcriptomics data which tends to yield many more significant 

features than metabolomics. To address this issue, we have added three new options for combining 

P-values from different tests of the same hypothesis (176), including one unweighted (Fisher's 

method) and two weighted approaches (Stouffer's Z-score method). The weights are the 

proportions of genes or metabolites within the combined universe (overall) or within individual 

pathways (pathway-level) (Figure 3.2C). Four types of pathway libraries are provided. Users can 

choose metabolic pathways or all pathways (including signaling pathways) for integrated analysis. 

The other two types - metabolic pathways (metabolite only) and all pathways (gene only) allow 

users to perform pathway analysis for individual omics data. 

The integration of transcriptomics and metabolomics data can also be explored using the Network 

Analysis module. The knowledge-based network integration has been established since 

MetaboAnalyst v4.0. However, such an approach excludes the high volume of unannotated MS 

features detected by HRMS. We added the support for data-driven network analysis by 

implementing the well-established debiased sparse partial correlation (DSPC) algorithm (165). 
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Briefly, networks are created using a graphical LASSO model to compute the partial correlation 

coefficients and P-values for every pair of features in the dataset (177). The result can be visually 

explored as an interactive network with node size corresponding to node degrees and edge 

thickness based on the correlations between two connecting nodes (Figure 3.2D). The DSPC 

network is applicable to both targeted and global metabolomics and can be accessed from either 

Network Analysis or Statistical Analysis module. 

3.7 Extended knowledge bases 

The underlying knowledge bases within MetaboAnalyst have undergone significant updates to 

ensure that users’ inputs can be identified correctly and accurately. These improvements are 

summarized as below. 

3.7.1 Compound database 

The compound databases, used by the Enrichment, Pathway, Joint-Pathway and Network Analysis 

modules have been enhanced by updating chemical identifiers from HMDB (178), KEGG (179), 

PubChem (180) and ChEBI (181). We have also expanded the database by including an additional 

197,854 lipids from RefMet (182) and LIPID MAPS (183). 

3.7.2 Metabolite sets 

Metabolite sets, which are groups of metabolites with shared biological functions or collective 

behaviors, regulations or structures, are the backbone of the Enrichment Analysis module. To 

enhance these sets, we have added 44 metabolite sets related to disease signatures found in fecal 

samples, as well as 1571 metabolite sets identified by RefMet (182) and LIPID MAPS (183). These 

metabolite sets have also been transformed into appropriate libraries for Functional Analysis 
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module for global metabolomics. Users can now identify perturbations in organism-specific 

metabolic pathways or metabolite sets from raw spectra or peak lists. 

3.7.3 Pathway libraries 

Pathway libraries are used by the Pathway, Joint Pathway and Network Analysis Modules. All 

KEGG pathways libraries have been updated with the latest information from KEGG using their 

API (179). Additionally, we have added five new species (Plasmodium vivax, Chlorella variabilis, 

Klebsiella pneumoniae, Klebsiella variicola and Streptococcus pyogenes) based upon users’ 

requests. The global KEGG metabolic network has also been updated to the latest version for the 

Network Analysis and Functional Analysis modules. 

3.8 Other features 

3.8.1 Enhanced visualizations 

We have systematically updated the interactive plots across several modules (Enrichment, 

Pathway, Statistical and Biomarker Meta-Analysis), including synchronized 3D scatter plots for 

Principal Component Analysis (PCA) and Partial Least Squares - Discriminant Analysis (PLS-

DA), as well as interactive volcano plots, bar plots, pie charts, and 2D scatter plots using the 

powerful Chart.js library (https://www.chartjs.org/). Furthermore, we have enhanced several 

publication quality graphics in the Statistical Analysis module such as box plots, K-means and 

self-organizing map (SOM) overview plots. Finally, users can now customize the colors and 

shapes of groups or samples in many important images. 

3.8.2 Improved compound name matching 
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To provide better support for lipidomics data, we have implemented a smart name matching 

algorithm to improve the mapping from a user uploaded list or table of lipid names with our 

internal compound database. This algorithm considers common lipid abbreviations used by the 

LIPID MAPS classification system (184) as well as variations in punctuation marks used by 

different companies or databases. Compound synonyms for all metabolites in our internal 

compound database have been complemented from HMDB, PubChem and LIPID MAPS. This 

algorithm is used in all compatible modules within MetaboAnalyst v5.0. 

3.8.3 Automated batch effect correction 

The utility function for batch effect and signal drift correction has been updated with eight 

algorithms-EigenMS (137), QC-RLSC (114), ANCOVA (138), RUV-random (139), RUV2 (140), 

RUVseq (141), NOMIS (142) and CCMS (143) for correction based on either the data itself, QC 

samples or internal standards. The highlight for this update is the ‘automated’ design that can 

automatically identify and perform the optimal correction for the results (102). Users can upload 

the batches individually or as a merged table with all data together. All applicable correction 

methods will be executed, and the best results indicted by the distance among the batches will be 

returned. 

3.8.4 Merging technical replicates 

Technical replicates improve the stability and reproducibility of global metabolomics (176). 

However, averaging signals across the replicates may not be the best approach. We developed a 

new utility function to handle technical replicates in MetaboAnalyst v5.0. For a certain feature 

with multiple replicates, if the missing proportion in the replicates is over 1/3, the coefficient of 

variation (CV) of the feature in these replicates will be evaluated (185). If the CV is over 1.0, this 
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feature will be considered ‘highly variant’ with an assigned value of zero. A kernel density 

estimator is also available for users to smooth their data. 

3.8.5 Supporting new input formats 

The mzTab-M is a standard quantitative metabolomics data format (166). The latest version of this 

data format (version 2.0) is now supported by MetaboAnalyst v5.0. The Metabolomics Workbench 

is one of the most popular data repositories for metabolomics (163). We have added support to 

allow users to easily perform analyses on published datasets deposited in the Metabolomics 

Workbench. Users simply need to input the study ID of their preferred dataset. MetaboAnalyst 

will then retrieve the deposited data table for further statistics, functional enrichment, biomarker 

or network analysis. 

3.8.6 Streamlined data analysis 

A major effort in v5.0 is to refactor the underlying software architecture to enhance the modular 

structure and to improve the interoperability among different modules. With this update, modules 

can be developed and tested more independently, and users can now switch to other compatible 

modules at the end of each analysis, therefore creating their own custom pipelines. 

3.9 Implementation 

The web component of MetaboAnalyst v5.0 is implemented using the PrimeFaces framework 

(https://www.primefaces.org/). The core functions and graphics are executed using R (v4.0.2) and 

are freely available from the GitHub repositories as MetaboAnalystR (https://github.com/xia-

lab/MetaboAnalystR) and OptiLCMS (https://github.com/xia-lab/OptiLCMS). The main site of 

MetaboAnalyst is hosted on a Google Cloud Server (with 64GB RAM and eight virtual CPUs with 

2.6 GHz for each) for general data analysis except for the raw data processing module. To 
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accommodate the computing demand for raw data processing, we have set up two additional 

computing nodes located at the McGill Data Center and Compute Canada through a collaboration 

with the GenAP project (genap.ca), respectively, with 1TB RAM and 50TB of storage in total. 

These two websites are linked with the main site. Users can choose whether to register an account 

to manage their jobs. A maximum of 40GB data volume is allocated for each project (at most 10 

projects for each registered user). The job submission and scheduling are based on the Simple 

Linux Utility for Resource Management (SLURM) system. During the upgrade to v5.0, we have 

made every possible effort to ensure backward compatibility with v4.0. For those who still need 

to access MetaboAnalyst v4.0, we have made it available as a Docker image 

(https://github.com/xia-lab/MetaboAnalyst_Docker). 

3.10 Comparison with other web-based tools 

Several web-based tools are available for metabolomics data analysis. Here we compared 

MetaboAnalyst v5.0 with these tools as well as the previous two versions (v4.0 and v3.0). The 

main features and characteristics of different tools are summarized in Table 3.1. Compared to the 

previous versions, the v5.0 has significantly enhanced many features and is distinctive in raw data 

processing and functional analysis for global metabolomics. Among other web-based tools, XCMS 

Online is well-known for raw data processing (34). MetaboAnalyst compares favorably with 

XCMS Online in several aspects including optimized raw data processing and downstream 

statistical and functional analysis, while XCMS Online excels in compound annotations based on 

the METLIN database (186). Among the remaining tools, Workflow4Metabolomics (W4M) (187) 

is a Galaxy-based workflow which uses the XCMS package for raw LC–MS data processing. The 

default workflow does not include a parameter optimization step, although experienced users can 

customize the pipeline to include IPO (46). In addition, W4M supports other types of raw 
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metabolomics data including GC-MS and NMR. The two other tools - 3Omics (188) and 

NOREVA (189) mainly focus on metabolomics data integration and normalization, respectively. 

MetaboAnalyst v5.0 remains the most comprehensive web-based platform that enables user-

friendly and streamlined metabolomics data analysis and interpretation. 

3.11 Conclusion 

We have implemented a fully automated workflow to perform optimized peak detection, alignment 

and annotation tasks for LC–MS1 data generated in global metabolomics. The workflow can be 

easily accessed via the user-friendly web interface of MetaboAnalyst v5.0 or can be installed 

locally as an R package. We have also enhanced functional analysis by allowing biological 

interpretation directly from any peak groups or patterns of interest. The functional meta-analysis 

module further enables users to integrate heterogeneous global metabolomics datasets for 

improved understanding. We have also updated the compound databases and pathway libraries to 

enable comprehensive functional analysis for a wide range of species. During the process, we have 

consolidated the majority of modules in terms of interface, graphics and code architecture to 

improve user experience and performance. Overall, MetaboAnalyst v5.0 has addressed important 

gaps in the current metabolomics data processing and analysis pipeline. In the future, we aim to 

support more vendor data formats for raw spectral processing and to support spectral 

deconvolution based on tandem MS data. 
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Table 3.1. Comparison of MetaboAnalyst (versions 3.0-5.0) with other web-based tools. 

Symbols used for feature evaluations with ‘√’ for present, ‘-’ for absent, and ‘+’ for a more 

quantitative assessment (more ‘+’ indicate better support) 

Tools Name MetaboAnalyst XCMS 
Online W4M 3Omics NOREVA 

5.0 4.0 3.0 
Raw Spectral Processing        
Parameter Optimization +++ - - + - - - 
Supported Algorithms +++ - - ++ ++ - - 
Resumable Analysis +++ - - - + - - 
Compound Annotation + + - +++ ++ - - 
Statistical Analysis        
Univariate +++ ++ ++ + + - + 
Multivariate +++ ++ + + +++ - ++ 
Clustering +++ +++ ++ + + - - 
Power Analysis √ √ √ - - - - 
Time-series Analysis √ √ √ - - - √ 
Biomarker Analysis √ √ √ - - - - 
Biomarker Meta-analysis √ √ - - - - - 
Functional Analysis        
Function Analysis (MS peaks) +++ ++ - ++ - - - 
Enrichment Analysis 
(compounds) +++ + + - - ++ - 

Pathway Analysis +++ ++ + - - ++ - 
Functional Meta-analysis +++ - - ++ - - - 
Integrative Analysis        
Unbiased Joint Pathway  +++ + + - - +++ - 
Knowledge-based Network  ++ ++ - - - ++ - 
Correlation-based Network  ++ - - - - - - 
Other Features        
Data Normalization ++ + + - + - +++ 
Missing Value Estimation √ √ √ - - - √ 
Technical Replicates Merging √ - - - - - - 

• XCMS online: https://xcmsonline.scripps.edu/ 
• Workflow4Metabolomics (W4M): https://workflow4metabolomics.usegalaxy.fr/ 
• 3Omics: https://3omics.cmdm.tw/ 
• NOREVA: http://idrblab.cn/noreva/ 
  

https://xcmsonline.scripps.edu/
https://workflow4metabolomics.usegalaxy.fr/
https://3omics.cmdm.tw/
http://idrblab.cn/noreva/
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Preface to Chapter 4 

This chapter describes a comprehensive update to MetaboAnalystR, an R package toolkit used for 

metabolomics data processing, statistical analysis and functional interpretation. This chapter 

update version of MetaboAnalystR from version 3 to version 4. The aim of this chapter is to 

achieve Objectives 2 and 3, providing an auto-optimized workflow for LC-MS/MS data processing 

and integrating MS/MS for functional analysis. There are four new features included by this 

version of MetaboAnalystR. 1) An auto optimized DDA data deconvolution workflow to clean 

chimeric spectra; 2) A highly efficient SWATH-DIA data deconvolution pipeline for SWATH-

DIA data; 3) Comprehensive MS/MS databases supporting diverse application purposes; 4) More 

accurate functional analysis by integrating LC-MS and MS/MS results. In this update, the auto-

optimized LC-MS pipeline in version 3 has been updated and incorporated to the new 

functionalities of LC-MS/MS data processing. In this chapter, MetaboAnalystR could handle both 

LC-MS and LC-MS/MS raw data processing conjunctively. Results from raw spectral processing 

can be used for function analysis directly. Overall, MetaboAnalystR could bridge raw spectral 

processing to functional insights. 
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4.1 Abstract 

Liquid chromatography – high-resolution mass spectrometry (LC-HRMS) has played a significant 

role in advancing metabolomics and exposomics. However, it remains challenging to perform data 

analysis especially in terms of raw spectra processing, compound identification and functional 

interpretation. A flexible yet comprehensive pipeline is urgently needed. Here we introduce 

MetaboAnalystR 4.0 as a unified workflow to address three computational bottlenecks in current 

LC-HRMS workflow: 1) an auto-optimized feature detection and quantification module for LC-

MS1 spectra processing; 2) an efficient MS2 spectra deconvolution and compound identification 

module for both data-dependent or data-independent acquisition; and 3) a sensitive functional 

interpretation module integrating LC-MS1 and MS2 results. MetaboAnalystR 4.0 comes with a 

large collection of reference spectra databases and knowledge libraries to allow large-scale local 

processing. In benchmarking and case studies with other well-established platforms, 

MetaboAnalystR 4.0 has identified > 10% more high-quality MS1 and MS2 features; it has also 

significantly increased true positive rate of identification (> 40%) without increasing false 

positives; finally, pathway enrichment analysis integrating LC-MS1 and MS2 spectra from 

COVID-19 datasets has produced results that are better aligned with the literature report. 

MetaboAnalystR 4.0 represents a significant step toward a unified workflow for LC-MS based 

global metabolomics in the open-source R environment. 
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4.2 Introduction 

Liquid chromatography - mass spectrometry (LC-MS) has been the main analytical workhorse for 

untargeted (global) metabolomics and exposomics (83). To facilitate quantitative analysis and 

compound identification, LC-MS experiments are typically conducted with MS full scans coupled 

with tandem MS or MS/MS using data-dependent acquisition (DDA) or data-independent 

acquisition (DIA) methods (67, 190). DDA acquires MS/MS spectra by fragmentation of precursor 

ions selected using a relatively narrow MS/MS isolation window (e.g., 1 m/z). Although DDA 

spectra are directly linked to precursors, recent studies show that over 50% of them are ‘chimeric’ 

and need to be deconvolved before searching any reference database (190). DIA usually fragments 

all ions in a wider m/z range (e.g., >15 m/z) with multiple cycles to improve the coverage on the 

metabolome. SWATH-MS (sequential window acquisition of all theoretical fragment ion spectra 

mass spectrometry) is a common DIA approach for both metabolomics and proteomics (191). 

Spectral deconvolution is essential to relink precursors with fragment ions in DIA. 

Raw data processing in LC-MS based metabolomics starts with MS and MS/MS feature detection. 

Putative compound identifications are performed by matching m/z values and retention times of 

MS1 features, as well as their associated MS2 patterns against reference spectral databases. The 

process often returns more than one candidate and requires further time-consuming, manual 

curation before one can perform functional interpretation. It has been shown recently that 

functional activities can be reliably predicted based on the global patterns of putative identification 

results despite uncertainties at individual compound level (101, 192).  

Several powerful algorithms and tools have been developed to process both LC-MS and MS/MS 

spectra using different strategies (35, 38, 39, 51, 76, 81, 89). DIA usually utilizes either spectral 

library or extracted chromatogram to deconvolve multiplexed spectra (39, 67, 76). Pseudo-MS2 
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based deconvolution could reconstruct MS/MS de novo without depending on pre-defined 

database, thereby improving the identification and coverage over unknowns (76). MS-DIAL is the 

first to deconvolve DIA by linearly decomposing the chromatographic profiles with three 

neighboring model peaks to reconstruct MS/MS spectra of precursors (40). DecoMetDIA further 

extended this approach by using multiple model peaks-based deconvolution (76). However, the 

computational cost of DecoMetDIA is high, making it unsuitable for high-throughput analysis. 

Similar to DIA, deconvolution of DDA data is also necessary (193). The group who reported 

prevalent contamination in DDA also presented a solution - DecoID (190) to remove the 

contamination by using a spectral library-assisted linear regression model based on LASSO (least 

absolute shrinkage and selection operator). However, the deconvolution is not suitable if any 

convolved component(s) are missing. In addition, given the complexity of MS/MS spectrum, 

LASSO regression model parameter needs to be manually tuned to effectively clean the 

contamination. Finally, integration of MS1 and MS2 results for further downstream functional 

analysis remains a key bottleneck in LC-MS based metabolomics. 

Here we introduce MetaboAnalystR 4.0 as a unified framework for processing raw LC-MS and 

MS/MS data and integrating the results for deep functional insights. By leveraging and 

consolidating the comprehensive statistical and functional analysis functions, as well as LC-MS 

data processing workflow established in the previous version (102, 105, 122), version 4.0 aims to 

address the key demands from our user community to support MS/MS spectra processing and 

integrative analysis. It contains four key new features:  

1) An auto optimized DDA data deconvolution workflow to remove contamination signals in 

chimeric spectra. 
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2) A highly efficient SWATH-DIA data deconvolution pipeline to process the SWATH-DIA 

data. 

3) Comprehensive MS/MS databases curated from all public database that can support diverse 

application purposes. 

4) Accurate functional activity prediction by integrating LC-MS and MS/MS results.  

4.3 Results 

4.3.1 General workflow 

The LC-MS/MS data processing workflow in MetaboAnalystR involves several steps, including 

raw spectral data import, MS data processing (auto-optimized peak picking, alignment, gap filling 

and annotation) (102), DDA/SWATH-DIA data deconvolution, spectrum consensus from 

replicates, MS/MS reference library searching, results export, and integration into functional 

prediction. The workflow is depicted in Figure 4.1a.  

For DDA spectral data, MetaboAnalystR assigns all MS/MS spectra of an individual spectral data 

into different feature groups based on precursors’ information (m/z, RT), and chimeric status is 

evaluated based on the nearest MS scan. The MS/MS spectra of all ions (including main precursor 

and other contaminating ions within the isolation window and above the intensity threshold) are 

extracted from reference libraries as candidate spectra (Methods, Figure 4.1b). If any reference 

spectrum is missing, a predicted spectrum will be generated using a similarity-network model (84) 

(Methods, Figure 4.1c). All candidates are then used to obtain the deconvolved spectrum based on 

elastic-net regression with extra penalties to the predicted spectra (Methods). The SWATH-DIA 

MS/MS data processing module of MetaboAnalystR has been developed based on the 

DecoMetDIA (76). The entire deconvolution workflow was written using Rcpp/C++ framework 
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and further optimized to enable high-throughput processing. In addition, MetaboAnalystR 

supports multi-threaded data processing to further speed up the analysis through parallel 

computing. 

After the deconvolution step, all deconvolved spectra for a specific MS feature from replicates (if 

any) are then subjected to consensus - a step aiming to produce single spectrum from 

technical/biological replicates to reduce potential errors and noise. This process can optionally be 

performed in a database-assisted manner to prevent over-fitting from a hard-coded cut-off value 

(Methods, Figure S4.1). 

The consensus spectral results are submitted to database searching for compound annotation 

(Methods). Users can choose different databases based on MS instrument type, collision energy, 

and other database options. The dot-product or spectral entropy similarity method is used to 

evaluate MS/MS matching similarity (194). The candidates for a particular feature are scored by 

considering m/z, RT, isotope, and MS/MS similarity together, based on the rule from MS-DIAL 

(40). The matching score ranges between 0 and 100, where 0 indicates negative matching and 100 

indicates perfect matching (Methods). The top N chemical candidates, defined by the user, can be 

exported as the database searching results. If the matching score is below 10, MetaboAnalystR 

optionally performs neutral loss scan to further improve compound annotation (195).  

 



87 
 

 

Figure 4.1. Implementation of MetaboAnalystR for LC-MS/MS data processing and biological 

interpretation. a. Raw spectra data processing workflow. MetaboAnalystR accepts common open-

source formats. Centroid format is highly recommended for both MS and MS/MS. Mass spectral 

signals are processed separately from MS and MS/MS levels. All detected MS features are mapped 

as empirical compounds, and filtered based on the chemical candidates from MS/MS. The resulting 

clean empirical compounds list would be permuted to predict biological functions. b. Workflow 
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of DDA spectral deconvolution. All spectra acquired by DDA are evaluated as “clean” or 

“chimeric” based on the MS signals of the nearest MS scan. The reference spectra of all ions (A, 

B and C) acquired within the isolation windows and above the intensity threshold are extracted 

from reference MS/MS library for regression analysis. c. Diagram of reference spectrum prediction 

strategy. MetaboAnalystR predicts one or more candidates missing in the MS/MS library. 

Formula(s) of the ion (e.g., ion C) is predicted at first. An abiotic/bio-transformation network is 

constructed for the formula (e.g., C2H7NO3S), and all neighbors with reference spectra of the 

formula are extracted as a list. Each fragment of a single spectrum in the list is predicted into 

formula. If the formula (e.g., C3H9) of the fragment includes more chemical elements (number or 

type) than the original formula (C2H7NO3S), it is excluded from the spectrum. The clean spectrum 

is returned into the list. The similarities to original MS/MS spectrum (the most left one in b.) of 

all spectra in the list are evaluated, and the one with the highest similarity score is selected as the 

predicted spectrum for the ion (e.g., ion C). 

 

MetaboAnalystR 4.0 offers comprehensive database options to facilitate high-throughput MS/MS 

spectra processing and compound annotation. A total of five databases are provided, including 

pathway compound database, biological compound database, lipids database, exposomics database 

and the complete database. All these databases are curated from public MS and MS/MS data, 

including HMDB (196), MoNA Series (87), LipidBlast (91), MassBank (87), GNPS (89), 

LipidBank (94), MINEs (90), LipidMAPs (184), KEGG (92, 179) (Methods). The summary of 

these five databases is provided in Table S4.1. 
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Table 4.1. Summary of identified compounds by different tools (DDA, ESI+) 

Tools Detected 
(MS1) 

Annotated 
(MS2) 

Percentage 
(%) 

CPU 
Time 
(min) 

MS-DIAL/MS-FINDER 271 121 26.4 36 
MZmine/SIRIUS 317 124 27.0 84 
MetaboAnalystR (deco) 336 194 42.3 28 
MetaboAnalystR (non-deco) 336 185 40.3 15 

 
Obtaining functional insights underlying the observed phenotypic differences is among the main 

objectives of most metabolomics studies. However, conventional approaches generally require 

manual annotation of a significant portion of spectral features, which is a very time-consuming 

process. The bottleneck has been addressed by the mummichog algorithm (101). We have recently 

shown that the algorithm can significantly improve the accuracy and specificity in pathway activity 

prediction by leveraging HRMS and MS/MS (192). This algorithm has been enhanced in 

MetaboAnalystR 4.0 by introducing MS/MS-based compound identification results lists to filter 

out impractical chemical possibilities. Briefly, after MS and MS/MS spectral data processing, 

MetaboAnalystR can automatically perform statistical analysis from the peak intensity table and 

format the database searching results for functional enrichment analysis (see Figure 4.1a and 

Methods). The functional analysis is based on the known biological functional databases curated 

from KEGG (179), BioCyc (197), etc, supporting >120 species. 

4.3.2 Benchmarking and validation 

Using a total of seven datasets including three standard mixtures (190, 198, 199), one serial dilution 

data, one whole blood exposomics data, and two COVID-19 plasma metabolomics datasets (30, 

200), we benchmarked the performance of MetaboAnalystR together with other widely used tools. 

For DDA workflow, we included MS-DIAL/MS-FINDER (39, 40) and MZmine (38)/SIRIUS (81), 

while for the SWATH-DIA workflow, we included MS-DIAL/MS-FINDER and XCMS 
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(35)/SIRIUS pipelines because MZmine does not support deconvolution on LC-SWATH-DIA 

data at the moment. 

4.3.3 Characterizing performance of compound annotation with standard mixtures  

We firstly used three standard mixture (SM) datasets with different complexities from Mass 

Spectrometry Metabolite Library (MSMLS, IROA Technologies). The 1st SM data include 15 

DDA samples (198). Each contains 10-15 non-isobaric compounds (simple mixture). The 2nd SM 

data contain a mixture of 526 standards (complex mixture), including one DDA spectrum and one 

SWATH-DIA spectrum (190). The 3rd SM data contain 91 compounds (199). Both DDA and 

SWATH-DIA (ESI+ and ESI-) modes are included, with three replicates for each mode. 
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Figure 4.2. Validation of MetaboAnalystR with standard mixtures. a. Compound discovery ratio 

of simple standards mixture samples in three workflows (ESI+ mode). For all samples, 

MetaboAnalystR could detect the highest ratio of compounds as the top first candidate. b. 

Statistical analysis of the compound discovery results. Compared to other two workflows, 

MetaboAnalystR reported significantly higher compound discovery ratio (P < 0.01). c. 

Comparison of matching scores of DDA (w/o deconvolution, ESI+) in complex standard mixture 

sample. In contrast to the non-deconvolved spectra, the deconvolution algorithm in 

MetaboAnalystR could significantly improve the matching score of chemical candidates (paired t-

test, P < 0.001). d. Venn Diagram of compounds identified from the complex standard mixture by 

different tools (SWATH-DIA, ESI+). e. Performance evaluation of compound discovery with 

different reference libraries by MetaboAnalystR. The majority of the compounds identified with 

different database are shared for both DDA and SWATH-DIA (ESI+). 

 

Using the 1st SM data (198), MetaboAnalystR always detected most correct compounds as the top 

first candidate (ESI+, Figure 4.2a), with significantly higher compound discovery rate than MS-

DIAL/MS-FINDER and MZmine/SIRIUS (ESI+, Figure 4.2b). Similar results were also observed 

in ESI- mode (Figure S4.2). Using the DDA samples in 2nd SM data (190), MetaboAnalystR could 

find the highest number of MS features (RT deviation < 20 sec, m/z error < 10 ppm) and 

compounds in an efficient way, compared to MS-DIAL/MS-FINDER and MZmine/SIRIUS 

pipeline (Table 4.1). Deconvolution increased the number of compounds correctly identified as 

the top candidate (Table 4.1, Table S4.2), and the matching scores reported by deconvolution 

pipeline were significantly improved in comparison to the non-deconvolution pipeline (Figure 

4.2c). 
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For SWATH-DIA samples in the 2nd SM data, MetaboAnalystR correctly detected most 

compounds (ESI+, Figure 4.2d, Table S4.3). In this study, MS-DIAL/MS-FINDER did not find 

sufficient MS features with default parameters as only one compound was discovered (ESI+, Figure 

4.2d, Table S4.3). However, XCMS/SIRIUS workflow reported 51 compounds correctly, with 23 

of them not detected correctly by MetaboAnalystR. Similar results were also observed in ESI- 

mode (Figure S4.3, Tables S2 and S4). 

4.3.4 Effects of reference spectral databases 

Using the 2nd SM data (190), we compared the results obtained using the pathway reference library 

or the complete reference library. Only 75% compounds in the standards mixtures are included in 

the pathway reference library, while all of them are contained in the complete reference library. 

As shown in Figure 4.2e, most compounds identified correctly are shared in both libraries. For 

DDA dataset (ESI+), MetaboAnalystR could identify two times more compounds using the 

complete library compared to using the pathway library. For SWATH-DIA dataset (ESI+), the 

numbers of unique compounds identified by both libraries are similar (41 vs. 46). Similar results 

are found in ESI- mode (Figure S4.3). 

4.3.5 Evaluating false discovery rate 

Using the 3rd SM data (199), we first tested the number of compounds that could be identified 

correctly from both acquisition and ion modes. For DDA dataset, MetaboAnalystR could correctly 

identify most compounds by using either the complete database or the pathway database compared 

to other tools (for both ESI+ and ESI-, Figure 4.3a). For the data from ESI- mode, MZmine/SIRIUS 

only identified one compound correctly.  However, for SWATH-DIA dataset, MetaboAnalystR 
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identify most compounds from ESI+ mode, but not from ESI- mode (4 compounds fewer than MS-

DIAL/MS-FINDER, even with the complete library, Figure 4.3b).  

To evaluate the false discovery rate, we generated a series of decoy spectral data by randomly 

increasing m/z error and replacing the original MS/MS spectra with synthetic spectra from isobaric 

compounds (Methods, Figure 4.3c). Both DDA and SWATH-DIA workflows were tested with 

decoy spectra datasets (Methods, Figure 4.3c, Figure S4.4). The results showed that 

MetaboAnalystR did not produce significantly higher number of false positives in comparison to 

other tools (Figure 4.3d-e).  For SWATH-DIA dataset, MS-DIAL/MS-FINDER detected more 

false positives. Similar results were observed in ESI- modes (Figure S4.5). This study indicates 

that MetaboAnalystR could significantly improve chemical identifications without increasing false 

identifications, independent of the reference library. 
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Figure 4.3. Validation of MetaboAnalystR with standard mixtures and false discoveries. a. 

Statistics of correctly identified compounds from DDA dataset. b. Statistics of correctly identified 

compounds from SWATH-DIA dataset. c. Workflow to generate decoy spectra data (DDA). d. 

Falsely identified compounds from decoy spectra data (DDA, ESI+). 
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4.3.6 Characterizing unique metabolome of different types of blood samples 

To evaluate the performance of compounds annotation in real biological samples, we conducted 

LC-MS/MS based metabolomics including both DDA and SWATH-DIA on paired blood samples 

of different types (plasma, serum and whole blood) and compared their chemical differences. 

Understanding the unique chemical compositions of different types of blood samples are important. 

For instance, compared to serum or plasma, whole blood can provide extra insights for many 

critical illnesses such as sepsis (201) and COV-SARS-2 infection (202) that are closely related to 

blood cellular components. 

The general design of this study is shown in Figure 4.4a. Iterative targeted DDA was optimized 

with HERMES (78) to improve the coverage on the metabolome (Methods). All MS features were 

detected with MetaboAnalystR and other workflows. Overall, the metabolomes of the three 

different blood samples show significant intrinsic chemical difference (PCAs, Figure S4.6). In this 

study, we focused on elucidating the distinct features among different blood types (Figure 4.4b, 

Figure S4.7-4.10). All these “unique features” are used as target lists for MS/MS-based compound 

identification. For both DDA and SWATH-DIA, MetaboAnalystR identified highest number of 

compounds compared to other tools, especially from SWATH-DIA datasets (Figure 4.4c), 

indicating SWATH-DIA spectral data processing workflow in MetaboAnalystR could improve the 

chemical identification rate (level 2a (203)). 
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Figure 4.4. Comparison of chemical identification from different blood samples. a. Experiment 

design of metabolomics study. b. Heatmap of complete metabolic profiles (MS level, C18, ESI+). 

Unique MS features for a specific blood type were highlighted with rectangles. Blue, unique 

features for serum compared to plasma; Green, unique features for plasma compared to serum. 

Ruby, unique features for whole blood compared to plasma and serum. c. Summary of all 
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compounds identified by different tools from all modes (including both DDA and SWATH-DIA). 

d. Percentage of HMDB matching of compounds identified by different tools. 

 

To evaluate the validity of all chemical identifications, all identified compounds results from 

different tools were matched to HMDB database and HMDB blood database (Methods). As shown 

in Figure 4.4d, compounds identified by MetaboAnalystR had the highest percentage (and absolute 

number) of compounds matched into databases compared to other tools. The chemical composition 

analysis showed that whole blood sample contains more lipids, organic acids and organic 

heterocyclic components in contrast to serum and plasma (Methods, Figure S4.11). The main 

chemical difference between serum and plasma are lipids (Figure S4.11), which is expected based 

on the blood coagulation of serum and consistent to the previous study (204). 

4.3.7 Evaluation on quantitative performance with serial dilutions 

To benchmark the quantitative performance of MetaboAnalystR, a dilution series was prepared by 

mixing serum and urine in a cross-gradient manner (205) (Figure 4.5a, Methods). The unique 

features detected from MS1 level (Figure 4.5c) in serum or urine were extracted as the target 

features for further analysis. Other features shared by urine and serum are considered as generic 

features; therefore, they are excluded to evaluate the quantitation performance. 

Correlation analysis of MS features’ intensities with dilution ratios was performed. Compared to 

XCMS, MS-DIAL and MZmine, unique features detected by MetaboAnalystR showed the highest 

average correlation coefficient (C18, ESI+, Figure 4.5b). Similar results were also found from other 

modes (C18 ESI-, HILIC ESI+ and HILIC ESI-, Figure S4.12), indicating that quantification by 
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MetaboAnalystR performs better than others. The serial dilution patterns could be observed clearly 

from heatmaps for all modes (Figure 4.5c and Figure S4.13). 
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Figure 4.5. Evaluation of quantitative and qualitative performance based on serial dilutions. a. 

Design of serial dilutions. Urine and serum are mixed according the ratio labelled at x-axis. b. 

Correlation analysis of MS features from serial dilutions (detected by different tools under C18 

ESI+ mode). MetaboAnalystR reported highest average correlation coefficients compared to other 

tools. c. Heatmap of all MS features (MetaboAnalystR, C18 ESI+). All features are normalized and 

clustered. Samples are sorted based on the dilution series. Pure/undiluted urine and serum samples 

are also included. Unique features for urine and serum are highlighted with red and green dashed 

rectangles respectively. d. Association between the number of identified compounds from DDA 

mode and correlation coefficient cut-offs. e. Association between the number of identified 

compounds from SWATH-DIA mode and correlation coefficient cut-offs. 

 

To further assess the annotation performance from MS/MS-based chemical identification, all 

unique features were extracted as the targets. As the correlation coefficient threshold relaxing, the 

number of compounds identified by all tools was increasing. In comparison, for both DDA and 

SWATH-DIA datasets, MetaboAnalystR chemically identified the highest number of compounds 

(at level 2a) which following the dilution gradients. MS-FINDER workflow identified more 

compounds than SIRIUS from both DDA and SWATH-DIA datasets. Compared to DDA, the 

SWATH-DIA based dataset showed a higher coverage (of the chemical identification) on the 

gradient features. In brief, MetaboAnalystR could more effectively quantify and annotate the MS 

and MS/MS features. 

4.3.8 Biological interpretation of COVID-19 metabolomics data 
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We used two COVID-19 metabolomics datasets to showcase the complete workflow of 

MetaboAnalystR - from raw LC-MS and MS/MS spectra to biological interpretation. The 1st 

dataset (30) includes a total of 160 samples both polar metabolites and non-polar lipids datasets 

(ESI+ and ESI-, DDA, Methods) categorized into COVID-19 with multiple severities. While the 

2nd dataset (200) includes 30 samples (ESI+ and ESI-, SWATH-DIA, Methods) categorized into 

COVID-19 and healthy control. 

 

Figure 4.6. Interpretation of biological insights of COVID-19. a. Summary of MS features 

detected by different tools from DDA and SWATH-DIA datasets. b. Percentage of MS features 

which has been identified with MS/MS spectra. c. Summary of pathway prediction results from 
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different tools by integrating MS/MS identification results (MS+MS/MS) or not (MS_only). d. 

Scatter plot of pathway enrichment analysis results of SWATH-DIA dataset (processed by 

MetaboAnalystR). e. Venn diagram of pathway analysis results from SWATH-DIA dataset 

(processed by MetaboAnalystR). A total of 12 pathways are reported as significant by both 

methods. However, integrating MS/MS results into pathway prediction added another 4 significant 

pathways. 

Table 4.2. Comparison of computational performance of different tools. The values are presented 

as relative values to the MS-DIAL/MS-FINDER workflow. 

Comparisons Tools 

MS MS/MS 

Mean DDA 

Polar* 

DDA 

Lipids 

SWATH 

DIA 

DDA 

Polar 

DDA 

Lipids 

SWATH 

DIA 

Clock Time 

Elapse 

MS-DIAL/MS-

FINDER 
1 1 1 1 1 1 1 

MetaboAnalystR 0.76 0.86 0.61 0.33 0.55 0.43 0.59 

MZmine/SIRIUS 0.53 0.57 - 0.91 1.39 - 0.85 

XCMS/SIRIUS - - 0.33 - - 0.54 0.44 

RAM Usage 

MS-DIAL/MS-

FINDER 
1 1 1 1 1 1 1 

MetaboAnalystR 1.04 1.45 1.34 1.17 1.22 0.56 1.13 

MZmine/SIRIUS 2.38 3.57 - 2.57 2.02 - 2.64 

XCMS/SIRIUS - - 0.91 - - 2.13 1.52 

* Polar, polar compounds 
 
MS features were detected at first by different workflows. According to the summary of MS 

features (Figure 4.6a), different tools showed significantly distinct sensitivities. For metabolites 

(ESI+) and lipids (ESI+), MetaboAnalystR detected the highest number of MS features; while for 

the other four datasets, MS-DIAL detected the highest number. In contrast, MZmine and XCMS 

did not detect as many MS features as MetaboAnalystR and MS-DIAL. We acknowledge that 
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manual parameter tunning by expert users may change the sensitivities of these algorithms to some 

extent, while MetaboAnalystR performs automated parameter tuning to avoid such needs. 

Chemical identification was performed by different tools with the corresponding MS features 

detected above as targets (Figure 4.6a). MetaboAnalystR could identify the highest percentage of 

compounds from MS features (level 2a, Figure 4.6b). However, for DDA metabolite ESI- dataset, 

MS-DIAL/MS-FINDER identified most compounds based on the absolute number (Figure S4.14), 

indicating MS-DIAL/MS-FINDER can be used to complement MetaboAnalystR in some 

situations. 

Next, we applied the enhanced mummichog algorithm (Methods) to the results generated by the 

three tools. In comparison to the previous version, the enhanced algorithm leverages MS/MS-

based chemical identifications to filter out impractical compound assignments to improve pathway 

activity prediction. We chose to compare biological differences between Mild and Fatal COVID-

19 cases for the 1st data (DDA), and between COVID-19 case and healthy controls for the 2nd 

data (SWATH-DIA). There are two sub datasets (polar and non-polar lipids) in 1st data and one 

dataset in 2nd data. Therefore, a total of nine comparisons were performed for different workflows. 

As shown by COVID-19 datasets (Figure 4.6c).  Six out of nine comparisons reported more 

pathways if both MS and MS/MS data were used. In addition, the enhanced mummichog algorithm 

predicted more pathways using spectral processing results from MetaboAnalystR compared to 

other tools. For example, 16 pathways were predicted by MetaboAnalystR from DIA-SWATH 

dataset if both MS and MS/MS are utilized together (Figure 4.6d). Compared to the prediction 

based only on MS features, four more pathways were reported as significantly perturbed (Figure 

4.6e). These pathways are related to phosphatidylinositol phosphate, vitamin D, vitamin C 

metabolism and arachidonic cascades (Table S4.5). They have been reported to be related to the 
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pathogenesis of COVID-19 by previous studies (206-209). All pathway predicting results are 

provided in Figure S4.15-4.18 and Table S4.5-4.7. 

4.3.9 Computational performance assessment 

To assess the computation performance, the same COVID-19 datasets were used to compare the 

difference of computational performance of all tools included in this study. This assessment was 

performed in a standard workstation (Dell OptiPlex 7070, 64GB RAM, Intel-i7-9700 CPU, Ubuntu 

20.04.2). To ensure the fairness, this comparison was performed and controlled with Simple Linux 

Utility for Resource Management (SLURM44, Methods). 

In comparison to other tools, MetaboAnalystR could finish MS features detection at a similar speed 

to MZmine and MS-DIAL. MetaboAnalystR is slower than XCMS for MS feature detection on 

SWATH-DIA dataset due to the extra parameter optimization step (Table 4.2 and Figure S4.19-

4.20). The RAM usage of MetaboAnalystR is approximative to MS-DIAL, but obviously lower 

than MZmine/SIRIUS or XCMS/SIRIUS. As for the MS/MS data processing, MS-FINDER and 

SIRIUS is significantly slower than MetaboAnalystR. According to the execution logs, MS/MS 

spectra searching in SIRIUS is based on API access to remote web services, which is highly 

depending on the network traffic and responsiveness of remote server. MS-FINDER also partially 

uses remote access to predict formulas. Different from SIRIUS and MS-FINDER, raw spectra 

processing and annotation in MetaboAnalystR is all based on local databases to allow users to 

detect MS features and annotate MS/MS features in a highly efficient way. 

4.4 Methods and materials 

4.4.1 Chemicals 
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Standard human serum, ammonium acetate (NH4AC) was purchased from Sigma-Aldrich (Sigma, 

St. Louis, MO, USA). Acetonitrile (ACN) and methanol (MeOH), 0.1% formic acid (FA) in Water, 

0.1% FA in ACN and pure water were purchased from Fisher Chemical (Morris Plains, NJ, U.S.A.). 

4.4.2 Sample preparation of bloods 

Healthy volunteers were recruited from McGill University as previously discussed (210). About 

five milliliters of venous whole blood were drawn from each volunteer into a BD K2-EDTA Trace 

Element free Vacutainer.  A sub-sample of this whole blood was used to obtain plasma (i.e., whole 

blood centrifuged for 15 min at 4 ℃ at 2,700 rpm).  From each individual, another sample of blood 

was collected into a BD Vacutainer tube not containing any anticoagulant, which was allowed to 

sit for ~30-60 minutes for clots to form following which serum was obtained by centrifugation (15 

min at 4 ℃ at 2,700 rpm). Blood samples from 14 individuals were collected and included for this 

study. All blood samples are paired with three different types (whole blood, serum and plasma). 

All samples were immediately frozen at -80 ℃ until analysis. The demographic information of all 

subjects is summarized in Table S4.8. This study was approved by Research Ethics Office of 

McGill University (Study ID: A05-M26-16B). 

The different blood sample types were prepared based on the previously published protocols (211, 

212). The three blood sample types (WB, serum and plasma) were thawed on ice for 1 hour, and 

then vortexed for 30 seconds to ensure homogeneity. 100 µL of each sample type was transferred 

to a 1.5 mL Eppendorf microcentrifuge tube, to which 400 µL of -20°C 1:1 ACN:MeOH (v/v) was 

added. Samples were next vortexed for 60 seconds and stored at -20°C for 1 hour. Samples were 

then centrifuged at 16,100 × g for 10 minutes at 4°C. The supernatants were collected (250 µL) 

and filtered by centrifugation using 0.2 µm Nanosep centrifugal filters (PALL Life Sciences) at 

14,000 × g for 15 minutes at 4°C. Filtered samples (120 µL) were then transferred to LC-MS vials 
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equipped with 250 µL glass inserts and run in the LC-MS. A Quality Control (QC) sample was 

made by pooling equal volumes from each filtered all samples supernatant into one 1.5 mL 

Eppendorf microcentrifuge tube. 

4.4.3 Sample preparation of serial dilutions 

A urine sample was collected from a donor of McGill University (210). A total of 100mL urine 

was sub-sampled and frozen at -80 ℃. A human standard serum sample (Sigma-Aldrich, Sigma, 

St. Louis, MO, USA) and the urine were thawed in ice for 1 hour, and then vortexed for 30 seconds 

to ensure homogeneity. A total of 13 Eppendorf microcentrifuge tubes were prepared and labelled 

from A to M. For tubes A to E, 150 µL urine was transferred into each of them. For tube G to K, 

150 µl standard serum was transferred into each of them. 250 µL pure urine were transferred into 

tube L, and 250 µl pure serum were transferred into tube M. Then, 50 µL pure serum were extracted 

and mixed into tube E. Then, 50 µl liquids were extracted and mixed into tube D, and so on until 

tube A. Same operations were repeated for pure urine tube L, and tube G-K. Finally, 75 µl pure 

urine and serum were extracted respectively and mixed into tube F. At a result, a total of 11 dilution 

mixtures and 2 pure samples were generated. The whole preparation workflow is shown in Figure 

S4.21. After the preparation of the serial dilutions, all samples were processed similarly as the 

samples of blood. But the ratio of organic reagents to samples is 1:2.5 instead of 1:4 above for 

blood samples. All processed samples (120 µL) were then transferred to LC-MS vials equipped 

with 250 µl glass inserts and run in the LC-MS. No QC samples prepared in this case study. Three 

replicates were prepared for each of the serial dilutions. This study has been approved by Research 

Ethics Office of McGill University as described above. 

4.4.4 LC-MS/MS analysis 
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Metabolic profiling at the MS1 level was performed on an UHPLC system (Thermo Scientific™ 

UltiMate™ 3000 System). A hydrophobic column (Hypersil GOLD™ aQ C18 Polar Endcapped 

HPLC Column, 100mm × 2.1mm, 1.9μm) and a hydrophilic (Accucore™ 150 Amide HILIC 

HPLC Column, 100mm × 2.1mm, 2.5μm) column were used for reverse phase (C18 column) and 

hydrophilic interaction liquid chromatography (HILIC column) separation, respectively. The 

chromatogram system was coupled to a Thermo Scientific Q-Exactive Orbitrap mass spectrometer. 

The chromatographic conditions for the C18 and HILIC columns were optimized as follows. For 

both columns, the flow rate was fixed as 0.4 mL/min. For C18 columns, the composition of the 

mobile phases A and B were 0.1% FA in water and 0.1% FA in ACN, respectively. For HILIC 

chromatography, the composition of the mobile phases A and B were 50% ACN in water with 5 

mmol/L NH4AC and 95% ACN in Water with 5mmol/L NH4AC, respectively. The gradient 

procedures and other instrumental parameters are provided in Table S4.9. 

The Q-Exactive Orbitrap MS was configured as follows. For the C18 column, an electrospray ion 

(ESI) source with a spray voltage of 4 keV in positive mode and 3.5 keV in negative mode were 

used, and for HILIC a voltage of 4 keV in positive mode and 3.8 keV in negative mode were used. 

Additional MS parameters were set for the C18 and HILIC columns, which are summarized in 

Table S4.10. Both positive (ESI+, pos) and negative (ESI-, neg) ion modes were adopted for ion 

acquisition. 

LC-MS/MS was performed immediately after the LC-MS experiment with the corresponding 

mode (C18-ESI+, C18-ESI-, HILIC-ESI+ or HILIC-ESI-). The chromatographic conditions were 

the same as the ones detailed in the LC-MS section, while the mass spectrometer was specifically 

configured for untargeted DDA, DIA and iterative targeted DDA, respectively. DIA was 
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performed with sequential windowed acquisition of all theoretical fragment ion mass spectra 

(SWATH) strategy. All parameters for the MS/MS acquisitions are summarized in Table S4.10. 

Untargeted DDA was performed to detect the top ten ions with highest intensity of each full MS 

scan. Immediately after the acquisition of MS1 and untargeted DDA, the SWATH was performed. 

Each cycle of SWATH consisted of a full MS scan and 10 MS/MS windows with different window 

size. The m/z size of MS/MS window was determined based on the general distribution of 

metabolic features at the MS1 level. The adjacent windows were sequentially used for DIA 

MS/MS detection. The windows were overlapped with their neighbors at 1.0 m/z. The design of 

SWATH windows is summarized in Table S4.11. Approximately 0.9s elapsed in total for each 

SWATH cycle. 

The sample type-specific metabolic features were extracted based on the results of MS1 and used 

as the inclusion list. Iterative targeted DDA was executed with the updated inclusion list 

(optimized using HERMES (78)) to exhaust the targets as much as possible48. In detail, the 

sample-specific ions were input as the acquisition targets for DDA. Once the 1st round DDA was 

finished, the detected ions were excluded from the target inclusion list. Then, the 2nd round of 

targeted DDA was performed with the updated inclusion list until the targets or samples were 

exhausted. 

4.4.5 MS/MS spectra reference library curation 

A total of 9 public MS/MS database were collected and curated. The schema of reference library 

in MetaboAnalystR is displayed in Figure 4.21. HMDB database (196) were downloaded directly 

HMDB websites (https://hmdb.ca/downloads) as xml file. The database was parsed with XML 

package into R and curated into the SQLite format. Four tables (HMDB_experimental_NegDB, 
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HMDB_experimental_PosDB, HMDB_predicted_NegDB, HMDB_predicted_NegDB) were 

generated from HMDB database. MoNA series and LipidBlast database were downloaded from 

MassBank of North Americ (https://mona.fiehnlab.ucdavis.edu/downloads) as msp format. Nine 

tables (MoNA_PosDB, MoNA_NegDB, ReSpect_PosDB, ReSpect_NegDB, VaniyaNP_PosDB, 

Vaniya_NegDB, BMDMS_PosDB, LipidBlast_PosDB and LipidBlast_NegDB) were generated. 

MassBank database was downloaded from MassBank websites 

(https://github.com/MassBank/MassBank-data/releases/latest) as msp files. Four tables were 

generated (RIKEN_PosDB, RIKEN_NegDB, MassBank_PosDB, MassBank_NegDB). GNPS 

database was downloaded from GNPS website (https://gnps-external.ucsd.edu/gnpslibrary) as msp 

format. Two tables (GNPS_PosDB, GNPS_NegDB) were generated. MINEs database was 

downloaded from MINEs website (https://minedatabase.mcs.anl.gov/#/download) as msp format. 

Two tables were curated (MINEs_PosDB, MINEs_NegDB) from it. The these downloaded msp 

files were curated with tailored in-house R scripts into SQLite format. All spectra data tables are 

collected and formatted based on the same schema into a database, which is named as “Complete 

library”. Starting from this “Complete library”, we curated another 3 specific MS/MS reference 

libraries (Pathway library, Biology library and Lipid library) to improve the accuracy and avoid 

false positives. 

Pathway library was mainly curated according to the KEGG pathway information. KEGG 

pathways of 120 species (which are common model species or pathogenic microorganisms) were 

downloaded with KEGGREST (213). All compounds from the metabolic pathways of all species 

were extracted as a compound list. A total of 3,456 compounds were included (Figure S4.22). All 

MS/MS records in the “Complete library” matching to these compounds were extracted as a 

“Pathway library”. 
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Similarly, Biology library was curated based on the compound information from KEGG (92) 

compound database and HMDB (196). In details, all compounds and glycans from KEGG are 

summarized as compound list 1. All compounds in HMDB labelled as “Serum”, “Urine”, “Sweat”, 

“Saliva”, “Feces” and “Cerebrospinal Fluid” were summarized as compound list 2. Compound list 

1 and 2 were merged as a target list. All MS/MS records in the “Complete library” matching to 

these compounds were extracted as a “Biology library”. 

Lipid library was curated based on the compound information from LIPIDMAPS (183), LipidBank 

(94), LipidBlast (91) and compounds in HMDB database (which were classified (214) as “Lipids 

and lipid-like compounds”). All lipids from these databases were summarized as a lipid list. All 

MS/MS records in the “Complete library” matching to these compounds were extracted as a “Lipid 

library”. Besides, all lipids in this library are classified into super classes, main classes and sub-

classes based on RefMet (182). 

Exposomics library was curated from KEGG Drug database (215), Microbial Metabolites 

Database (MiMeDB) (216), Toxin-Toxin-Target Database (T3DB) (217), FooDB (www.foodb.ca), 

Phenol-Explorer (218), Exposome-Explorer (219), and NORMAN Suspect List Exchange 

database (220). All compounds from these databases were extracted as exposomics compound list. 

All MS/MS records in the “Complete library” matching to these compounds were separately 

extracted as a “Exposomics library”. 

In addition, four neutral loss spectra databases were pre-calculated, corresponding to the five 

options above. The curation of these neutral loss databases was based on the algorithm 

implemented by METLIN neutral loss database (195). In brief, neutral loss spectra was calculated 

by deducting the m/z from precursor ion as the neutral loss ion. The intensity values were directly 

mirrored. Schema of all MS/MS reference libraries is shown in Figure S4.23. 
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4.4.6 DDA data deconvolution algorithm 

The first step of DDA spectral data deconvolution is to assign all MS/MS spectra into all individual 

target features based on the information of precursors. If users provide a targeted feature list, 

MetaboAnalystR can automatically perform MS/MS data processing. Otherwise, MetaboAnalystR 

uses the complete MS features detected for MS/MS data processing. By default, MS1 features list 

generated by MetaboAnalystR includes minimum and maximum values for m/z and RT. If m/z and 

RT are not provided as in ranges, the m/z and RT ranges are going to be calculated automatically 

based on tolerance values defined by users (ppm for m/z, and rt_tol for RT). If there are multiple 

MS/MS spectra assigned to an individual target MS feature, the spectra would be merged in a 

weighted manner developed from MZmine (38). The median m/z (mz_med) and median RT 

(rt_med) is extracted or calculated based on the MS feature’s information. Then the nearest MS1 

is extracted for following analysis. If there are multiple different centroids within the (mz_med 

centered) isolation window, and any of their intensity values are over the acquisition threshold 

(user defined), the spectrum is considered as “Chimeric”, otherwise the spectrum is categorized as 

“Clean”. All Chimeric spectrum are organized to be deconvolved in the next steps. The centroid 

ion corresponding to the MS feature is considered as “main ion”, others are considered as 

“contamination ions”. 

The purpose of deconvolution is to remove the fragments produced from “contamination ions” in 

the chimeric spectrum (“Spectrum 0”) and generate a clean deconvoluted spectrum for “main ion”. 

Technically, the “main ion” is the ion of target feature, while the “contamination ion” may come 

from multiple sources, such as isobarics, orphan isotopologues (190), and other known or unknown 

ions with their m/zs falling into the isolation windows, etc.  At the second step, MetaboAnalystR 

goes through all contamination ions and determine if they are orphan isotopologues. If any of them 
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is identified as orphan isotopologues based on MS1 scan, the spectrum of this orphan isotopologue 

is predicted with the method from DecoID (190). We name the predicted spectrum of the orphan 

isotopologue as “Candidate Spectrum I”. Then, if there is any ion has been detected and identified 

as a clean spectrum in one or two nearest MS/MS scans inside the data itself, the clean spectrum 

is also extracted for deconvolution, named as “Candidate Spectrum II”. Next, MetaboAnalystR 

extracts potential spectra from MS/MS library as the reference spectrum for the ions, which is 

neither orphan isotopologues nor the ones with clean spectrum included by the spectra data itself. 

All spectra from reference are extracted, and the one showing highest similarity to the original 

chimeric spectrum (“Spectrum 0”) is retained as “Candidate Spectrum III”. The spectral similarity 

is evaluated with dot-product (190) or spectral entropy similarity (194) methods based on user’s 

preference. If all ions in this isolation window have been assigned with a reference spectrum, the 

deconvolution can be executed directly. 

But in many cases, some ions can be identified as neither orphan isotopologues nor the one with a 

clean spectrum contained in the data itself nor the one with a reference spectrum from library. 

These ions are named as “Unknown ions” here. MetaboAnalystR predicts the spectrum of these 

“Unknown ions” based on a hypothesis that the ions with abiotic/bio-transformation relationships 

share highly similar MS/MS spectra pattern (83, 84). In this case, the most accurate formula is 

firstly predicted for the “Unknown ion”. Then an abiotic/bio-transformation network is constructed 

around the “Unknown ion” (Figure 4.1c) based on the rules from NetID (84). Different from the 

network in NetID, this prediction network model is not propagatable to avoid potential redundancy. 

Once the network is constructed successfully, all neighbors of the “Unknown ion” are searched 

against the library to get their spectra data. All fragments of the spectra data are predicted as the 

most accurate formula. If the chemical elements’ composition of the formula is against the formula 
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of the “Unknown ion”, this fragment is considered as an unreasonable fragment, and then removed 

from the spectrum. Once this cleaning step is completed, the similarity of all spectra to the original 

chimeric spectrum (“Spectrum 0”) are evaluated. The one with the highest similarity score is 

returned as the predicted spectrum for the “Unknown ion”. It is named as “Candidate Spectrum 

IV”. 

Next, Candidate Spectra I-IV are returned as the components to deconvolve the original chimeric 

spectrum (“Spectrum 0”). Given that the Candidate Spectrum IV are neither from a real data nor 

reference library, a penalty (0-10; 0, no penalty for perfect match; 10, 10 times penalty for negative 

match) is given based on the similarity to the “Spectrum 0”. Deconvolution on the “Spectrum 0” 

is performed with a penalized elastic-net regression model (221, 222). The purpose of this 

deconvolution model is to minimize the residue. The deconvolution method is shown as the 

formula below: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑒𝑒 =  min��(y − x𝑖𝑖𝛽𝛽)2 +  𝜆𝜆𝑃𝑃𝛼𝛼(𝛽𝛽)
𝑛𝑛

𝑖𝑖=0

� 

where 𝑃𝑃𝛼𝛼(𝛽𝛽) = 1
2

(1 − 𝛼𝛼)||𝛽𝛽||22 +  𝛼𝛼||𝛽𝛽||1 is the elastic net penalty(222). y is the response vector 

(Spectrum 0), x is the candidate components (Candidate Spectra I-IV). In this model, α and λ are 

two critical parameters. If α=1, the model is a LASSO regression model, similar to DecoID2. 

Instead of using an arbitrary value for α and λ from DecoID, MetaboAnalystR permutates a matrix 

of α and λ combination. In detail, 11 α values (starting from 0, and end with 1, step by 0.1) and 10 

λ values, estimated by the correlations between response vector and component vectors (222). 

Therefore, 110 α and λ combinations are prepared to automatically optimize the elastic-net model. 

Then, deconvolution based on the penalized elastic model is executed and results in 110 solutions 

for “Spectrum 0”. All residues of 110 solutions are iterated and the one with minimal residue is 
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returned (Solution 0). Different from DecoID, MetaboAnalystR optimizes α and λ for every 

individual peak, instead of imply a hard value for all peaks. 

Finally, all 𝛽𝛽 values for contamination ions (𝛽𝛽𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) in Solution 0 is used to remove fragments 

in “Spectrum 0”. The remaining fragments are normalized and exported as “deconvoluted” 

spectrum for “main ion”. If there is no fragment left after the cleaning or the β value for “main ion” 

is 0, the deconvolution failed. The original “Spectrum 0” will be retained and exported directly for 

MS/MS reference library searching. The deconvolution of DDA data can be achieved with the 

function, PerformDDADeconvolution. 

4.4.7 SWATH-DIA data deconvolution algorithm 

SWATH-DIA data deconvolution algorithm follows the steps described by DecoMetDIA (76). In 

brief, for a specific MS feature, all extracted ion chromatograms (EICs) of MS/MS peaks from the 

corresponding SWATH window are detected and clustered based on peak similarity and RT 

information. One model peak is selected from each cluster, and all model peaks are organized to 

decompose all EICs. Each decomposed component from different EICs is used to reconstruct the 

composition of the MS/MS cluster. The cluster containing the original MS feature is exported as 

a pseudo-MS/MS spectrum. Unlike DecoMetDIA, the entire data deconvolution workflow is 

implemented in Rcpp/C++. The deconvolution of SWATH-DIA data can be achieved with the 

function, PerformDIADeconvolution. 

4.4.8 Spectra consensus of replicates algorithm 

MS/MS data acquisition with multiple replicates is common. In such cases, all deconvolved M/MS 

spectra corresponding to the same MS1 peak must be processed to generate a single consensus 

spectrum. If there are no replicates, this step is skipped. All MS/MS fragments across different 
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replicates are initially summarized by count. If the frequency of an individual fragment is above a 

user-defined threshold (e.g., 50%), it is kept; otherwise, the fragment is removed. Optionally, a 

database-assisted spectrum consensus in MetaboAnalystR can be used to avoid potential over-

deletion (see Figure S4.1). If database-assisted option is enabled by users, all spectra of the 

precursor are extracted as referent list (L) from the reference library. All fragments not meeting 

the (user-defined) frequency threshold are then searched against L. If this fragment can be found 

from L and the frequency of the fragment across the replicates is over 2, the fragment is kept; 

otherwise, it is discarded. All kept fragments are normalized and merged to generate a consensus 

spectrum for database searching in the next step. The spectrum consensus can be achieved with 

the function, PerformSpectrumConsenus. 

4.4.9 Reference library searching and scoring algorithms 

Reference library searching is based on the m/z (and optionally, the information of RT) of 

precursors. All matches are extracted from database for formula prediction. MetaboAnalystR uses 

the same scoring rule as MS-DIAL14. The matching score is calculated using the following 

formula: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑖𝑖𝑖𝑖𝑖𝑖 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆+𝑀𝑀𝑀𝑀1 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆+𝑅𝑅𝑇𝑇 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆+0.5×𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
3.5

× 100  

where the MS/MS similarity (ranging from 0 to 1) is calculated using the popular dot product 

similarity (40, 190) or spectral entropy similarity (194) algorithms. In this study, dot-product 

similarity was used to evaluate the MS/MS matching results. MS1 similarity and RT similarity 

(both ranging from 0 to 1) are calculated with exponential distribution method based on deviation. 

Isotope similarity is also calculated using a similar method as implemented in MS-DIAL. However, 

the calculation of isotope distribution similarity only considers [M+n] (n<3), as the intensity of 
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isotopes [M+n] (n≥3) is very low and highly variant to be considered. Briefly, the isotope 

distribution similarity evaluation is performed based on the experimental isotope distribution and 

the theoretical distribution of formulas extracted from the reference library. Isotope elements 

considered here include carbon (C13), hydrogen (H2), nitrogen (N15), oxygen (O17, O18) and 

sulfur (S33, S34). Other elements are not considered due to their extremely low abundance in 

nature. RT is optionally used based on users’ request. If RT is disabled (by default), the RT 

similarity is not calculated, and denominator is modified to 2.5. The database searching is 

performed based on SQLite query, and can be achieved with the function, 

PerformDBSearchingBatch. 

4.4.10 Neutral loss searching 

If the matching score is below 10 (out of a maximum of 100), the option neutral loss searching can 

be performed to find the potential chemical identification. In such cases, the target precursor (P0) 

is extracted and incorporated into the abiotic/bio-transformation network model (84) (described in 

“DDA data deconvolution algorithm”) to find all potential neighbors. These neighbors are used as 

targets for extracting spectra from neutral loss reference library. Neutral loss of P0 is calculated 

directly (195) and is matched against the neutral loss spectra extracted from reference library. All 

potential matches are scored and exported as reference of chemical identification. The results are 

labelled as “Neutral loss matching”. The database searching with neutral loss can be achieved by 

enabled the “enableNL” parameter in the PerformDBSearchingBatch function. 

4.4.11 Result export 

All compound identification results can be exported as a data frame and saved as a .csv or .txt file. 

The exported information includes compound names, chemical formula, InChIKeys, and matching 
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scores. If the reference library is lipid library, the exported information also includes lipid 

classifications (super class, main class and sub-class). The database searching results can be 

exported using PerformResultsExport function and formatted as a data frame table using 

FormatMSnAnnotation function. 

4.4.12 Decoy spectra generation and null evaluation 

To generate decoy spectra, a standard mixture of 91 compounds (199) was used as the raw spectra 

data in the mzML format, which was imported using the mzR package (144).  Spectral scans were 

split into MS data and MS/MS data based on MS level (as shown in Figure 4.3c). MS data was 

processed similarly for both DDA and SWATH-DIA methods. Specifically, the m/z values of mass 

centroids of MS data were randomly adjusted by adding mass errors ranging from 10 to 30 ppm, 

while the intensity values were randomly distorted by multiplying with a coefficient (ranging from 

0.01 to 50.0). The RT dimension was kept unchanged. For DDA spectra, the MS/MS spectrum 

pattern was replaced with a synthetic MS/MS spectrum randomly simulated from isobaric 

compounds. In contrast, for SWATH-DIA spectra, the MS/MS spectrum pattern was processed in 

the same way as MS spectra, while the SWATH window and RT were kept unchanged. A total of 

18 spectra decoy spectra data were generated for each replicate in the both DDA and SWATH-

DIA datasets. These decoy spectra were processed in the same way as the original real dataset 

using different tools, to perform null evaluations. 

4.4.13 MetaboAnalystR usage 

The MS spectral data used in this study were converted into mzML centroid mode using 

Proteowizard (144) for both MS and MS/MS levels. The auto-optimized workflow was first 

applied to process the MS spectra, including peak picking, peak alignment, gap filling, and peak 
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annotation, to generate complete MS feature tables. These tables were used as the target list for 

MS/MS spectra processing in both DDA and SWATH-DIA. The chemical classification analysis 

of blood samples was performed using ClassyFire database (214). Pearson correlation analysis 

from the R stats package was employed to perform the correlation analysis of serial dilutions. The 

heatmap analysis was directly performed using MetaboAnalystR. Identification and matching of 

compounds to the standards list were performed based on InChIKeys. 

4.4.14 MS-DIAL/MS-FINDER usage 

MS-DIAL (v4.9.22, Linux version) and MS-FINDER (v3.52, Linux version) were used. A mass 

accuracy parameter of 0.005 Da was set for "MS1 tolerance" and 0.01 Da for "MS2 tolerance". 

The minimum percentage of peaks within one group was set to 50%, while other parameters were 

left as default. Following DDA or SWATH-DIA data processing, peak area alignment results were 

exported as the results of MS level. All features with MS/MS information were exported for MS-

FINDER analysis performed in batch mode. PubChem access was only allowed when there was 

no candidate from other databases. All MS/MS spectra libraries were selected for searching, while 

other parameters were left as default values. The identified formula and structures were exported 

automatically by MS-FINDER. Compound identification and matching to the standards list were 

based on InChIKeys. 

4.4.15 MZmine usage 

We used MZmine (v3.2.8, Linux version) to process the raw spectral data. Firstly, we imported 

the raw data and performed mass detection at MS level 1. Next, we executed the ADAP 

chromatogram builder (161) with a parameter scan-to-scan accuracy set at 0.005 Da or 10 ppm, 

while keeping other parameters as default values. We then performed smoothing and joint 
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alignment, which resulted in an aligned feature list that we exported as the MS feature table. 

Subsequently, we executed the MSn feature list builder, followed by mass detection at MS level 

2. Finally, we exported the feature list in the SIRIUS/CSI-FingerID format with all feature lists 

with MS2 features selected. We enabled the merge MS/MS option, leaving the other parameters 

as default values in this step. To evaluate computational performance, we processed the COVID-

19 dataset in batch mode from the command line. For other datasets, we used the MZmine UI for 

analysis. 

4.4.16 XCMS usage 

XCMS (v3.20.0, an R package) was used to process SWATH-DIA data. All parameters from the 

XCMS online platform (https://xcmsonline.scripps.edu/) were extracted to process MS data. For 

SWATH-DIA data processing, we utilized function, reconstructChromPeakSpectra, to deconvolve 

SWATH-DIA data. We exported all deconvoluted spectra into a msp file using an in-house R 

script. 

4.4.17 SIRIUS usage 

We used SIRIUS (v5.6.3, Linux headless version) to search MS/MS spectra. For formula 

prediction, we set the program to use the entire database, while enabling ZODIAC, CSI:FingerID, 

and CANOPUS. For CSI:FingerID, we selected all available databases. Other parameters were left 

at their default values. We exported the MS/MS searching results with the "write summarize" 

option enabled. To identify chemicals and match them to the standards list, we used the InChIKeys 

generated by InChIs from SIRIUS. 

4.4.18 Computational performance assessment 
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To evaluate the computational performance of the tools, we used SLURM (v22.05.6) to execute 

and record the usage of the computational resources for each job. All tools had a command-line 

interface to be executed. We allocated two CPU cores and all RAM resources for each tool for 

comparison. We recorded the clock time between the starting and ending of the job, as well as the 

maximum usage of RAM. 

4.4.19 Integration of MS/MS results into mummichog algorithm 

MetaboAnalystR can process MS and MS/MS directly and convert the results into formatted lists 

for pathway enrichment prediction with enhanced mummichog. It also accepts MS peaks list/table 

individually or in combination with MS/MS-based compounds identification. The mummichog 

algorithm was improved by incorporating MS/MS-based chemical identification results. Initially, 

the algorithm matches all features based on their m/z and/or RT to generate empirical compounds 

(102). One MS feature may be mapped to multiple empirical compounds. In such cases, MS/MS-

based chemical identifications are utilized to filter out those empirical compounds that are not 

feasible based on the MS/MS spectrum. This process results in a shorter but more accurate list of 

empirical compounds. The permutation test is then performed based on the filtered empirical 

compound list. The underlying pathway libraries have been updated with additional compound 

IDs to be more compatible with the results generated from MS/MS identification. In 

MetaboAnalystR 4.0, all compounds in various pathway databases have been converted into 

different types of chemical IDs, including InChIKeys, KEGG IDs, HMDB IDs, PubChem SIDs, 

PubChem CIDs, and SMILES. 

4.4.20 Interfacing with other tools 
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MetaboAnalystR is capable of processing metabolomics data from raw spectra and providing 

biological insights directly. However, it can also accept results from other raw spectra data 

processing tools, such as MS-DIAL (in mat format), MZmine (in msp format), and XCMS (as an 

R object) for MS/MS identification with a comprehensive/specific database. In addition, 

MetaboAnalystR can automatically convert MS/MS identifications from MS-FINDER (structure 

result table) and SIRIUS (compound identification table) into a compound list for mummichog-

based pathway enrichment analysis. All MS/MS reference libraries are curated as open-source 

SQLite files. Users can easily convert their in-house reference library into SQLite format to 

incorporate into the workflow of MetaboAnalystR. 

4.5 Discussion 

MetaboAnalystR is a comprehensive toolkit for LC-MS metabolomics data analysis, including raw 

spectra processing, statistical analysis, and functional analysis (102, 105, 122). In version 4.0, 

MetaboAnalystR has been enhanced by introducing a series of functions to perform an end-to-end 

LC-MS/MS raw data processing and biological interpretation. 

By deconvolving DDA spectra with a penalized elastic-net regression model and spectra prediction 

network, together with comprehensive MS/MS reference library options, MetaboAnalystR enables 

high throughput MS/MS-based compound identification. By introducing the SWATH-DIA data 

processing workflow and adapting it into MetaboAnalystR raw data processing workflow, the 

computing efficiency and compound annotation coverage has been significantly improved. 

MetaboAnalystR accepts all common open-source raw spectra data formats. MS/MS data acquired 

by DDA or SWATH-DIA strategies can be processed directly. Finally, MetaboAnalystR enables 

accurate pathway enrichment analysis directly with the results from raw spectra processing 

workflow. 
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Within the realm of metabolomics, two tools have emerged for processing DDA data 

deconvolution: DecoID (190) and MS2Purifier (77). In our present study, we introduced a 

network-based spectral prediction model and an auto-optimized elastic net regression to address 

the limitations of DecoID. MS2Purifier, on the other hand, is grounded in the principle of 

establishing similarity between the elution profiles of MS and MS/MS features. By integrating a 

machine learning model, contaminations are discriminated and eliminated. Given the algorithmic 

strategies at play, MS2Purifier potentially complements MetaboAnalystR. This prompts the need 

for a comprehensive comparison and benchmark study to further enhance MetaboAnalystR's 

performance in the future. 

To be more compatible and interoperable with other popular tools, MetaboAnalystR supports the 

MS/MS database searching workflow with MS-DIAL and MZmine software. The pre-processed 

results from other tools could also been easily formatted into msp format for searching by 

MetaboAnalystR. However, compared to MS-DIAL and MZmine, the current version does not 

support ion mobility spectrometry MS data. The functionalities to process ion mobility spectral 

data, direct injection and flow-injection spectral data will be achieved in next version. 

 

4.6 Conclusion 

MetaboAnalystR is a comprehensive workflow for LC-MS metabolomics data analysis, including 

raw spectra processing, statistical analysis, and functional analysis. The version 4.0 has introduced 

a series of important functions to enable streamlined LC-MS/MS raw data processing, annotation, 

and biological interpretation. Through careful design and efficient implementation, it allows 

unified spectral deconvolution, consensus and annotation for both DDA and DIA data. The results 

can be directly integrated for more accurate pathway enrichment analysis. MetaboAnalystR 
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accepts all common open-source raw spectra data formats. MS/MS data acquired by DDA or 

SWATH-DIA strategies can be processed directly. To be more compatible and interoperable with 

other popular tools, MetaboAnalystR supports the MS/MS database searching workflow with MS-

DIAL and MZmine software. The pre-processed results from other tools could also been easily 

formatted into MSP format for searching by MetaboAnalystR. Compared to MS-DIAL and 

MZmine, the current version does not support ion mobility spectrometry MS data. The 

functionalities to process ion mobility spectral data, direct injection and flow-injection spectral 

data will be achieved in the future release. 

 

4.7 Supplementary materials 

 

Figure S4.1. Workflow of spectral consensus of replicates. The deconvoluted/clean spectra 

obtained from DDA or SWATH-DIA are summarized by counting the frequency of each fragment. 

Fragments that meet a user-defined threshold (e.g., 50%) are retained. If the databases-assisted 

consensus is enabled, fragments that do not meet the threshold are searched against the reference 
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library. All spectra are extracted based on the precursors' information, and if the fragment can be 

found in any of the extracted spectra, it is considered chemically reasonable. Fragments with a 

frequency of over 2 are retained, while those with lower frequency are considered noise and deleted. 

 

Figure S4.2. Validation results of MetaboAnalystR with simple standard mixtures in ESI- mode. 

a. Compound discovery ratio of simple standards mixture samples in three workflows. For all 

samples, MetaboAnalystR detected the highest ratio of compounds as the top first candidate. b. 

Statistical analysis of the compound discovery results. Compared to other two workflows, 

MetaboAnalystR reported significantly higher compound discovery ratio (P < 0.01 vs. 

MSDIAL/MSFINDER and vs. MZmine/SIRIUS; P <0.01, MSDIAL/FINDER vs. 

MZmine/SIRIUS). 
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Figure S4.3. Analysis results of complicated standards mixture. a. Comparison of matching scores 

of DDA (w/o deconvolution, ESI-) in complex standard mixture sample. The deconvolution 

algorithm in MetaboAnalystR significantly improved the matching score of chemical candidates, 

as compared to the non-deconvolved spectra (paired t-test, P < 0.01). b. Venn Diagram of 

compounds identified from the complex standard mixture by different tools (SWATH-DIA, ESI-). 

MetaboAnalystR identified the highest number of correct compounds compared to other tools. 

MSDIAL/MSFinder and XCMS/SIRIUS workflow could find compounds that were not identified 

by MetaboAnalystR. e. Performance evaluation of compound discovery with different reference 

libraries by MetaboAnalystR. The majority of the compounds identified with different databases 

are shared for both DDA and SWATH-DIA (ESI-). However, compared to the complete reference 

library, the pathway library could also be used to find some unique compounds that were masked 

by false positives from the complete reference library. 
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Figure S4.4. Workflow to generate decoy spectra data (SWATH-DIA). Raw spectra data is 

initially split into MS and MS/MS. For signals from the MS level, mass errors (10~30 ppm) for 

m/z values and variance for intensities were randomly added, while RT information is retained in 

its original status. For MS/MS data, the original SWATH windows and cycles are retained, while 

MS/MS spectra were modified by adding mass errors and variance for all MS/MS centroids. 

Finally, all modified MS and MS/MS scans were merged into a decoy spectra data. A total of 18 

decoy spectra datasets were generated for both ESI+ and ESI-. 

 

Figure S4.5. Summary of falsely identified compounds from null evaluations in ESI- mode. a. 

falsely identified compounds from decoy spectra data (DDA) are compared between different tools. 

MetaboAnalystR did not significantly increase the false identification (ANOVA, P > 0.05) with 

any reference library, outperforming other tools. b. falsely identified compounds from decoy 

spectra data (SWATH-DIA) are compared between MetaboAnalystR, XCMS/SIRIUS, and 

MSDIAL/MSFinder workflows. MetaboAnalystR did not significantly increase false 
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identification compared to XCMS/SIRIUS (P > 0.05). However, MetaboAnalystR had a 

significantly lower false identification number compared to MSDIAL/MSFinder workflow (P ≈ 

0.01). 

 

Figure S4.6. PCA results of metabolomic profiles of four different modes analyzed by 

MetaboAnalystR. a. C18-ESI+; b. C18-ESI-, c. HILIC-ESI+ and d. HILIC-ESI-. 
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Figure S4.7. Heatmap of blood samples from C18 ESI- mode. MetaboAnalystR was used to detect 

MS features, and the heatmap was generated based on the detected features. The ruby rectangle 

highlights unique MS features detected in whole blood compared to serum and/or plasma. The 

green rectangle indicates unique MS features detected in plasma compared to serum, while the 

yellow rectangle highlights unique MS features detected in serum compared to plasma. 
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Figure S4.8. Heatmap of blood samples from HILIC ESI+ mode. MetaboAnalystR was used to 

detect MS features, and the heatmap was generated based on the detected features. The ruby 

rectangle highlights unique MS features detected in whole blood compared to serum and/or plasma. 

The green rectangle indicates unique MS features detected in plasma compared to serum, while 

the yellow rectangle highlights unique MS features detected in serum compared to plasma. 
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Figure S4.9. Heatmap of blood samples from HILIC ESI- mode. MetaboAnalystR was used to 

detect MS features, and the heatmap was generated based on the detected features. The ruby 

rectangle highlights unique MS features detected in whole blood compared to serum and/or plasma. 

The green rectangle indicates unique MS features detected in plasma compared to serum, while 

the yellow rectangle highlights unique MS features detected in serum compared to plasma. 
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Figure S4.10. Statistics of MS features detected by different tools. Features are classified as 

"Generic Features" and "Unique Features". Generic features can be detected from all blood 

samples, while unique features are the features detected from a certain blood sample type 

specifically. The results show that MZmine and MSDIAL are more sensitive compared to 

MetaboAnalystR and XCMS, indicating that these tools may be more suitable for detecting 

features at a trace level. 
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Figure S4.11. Summary of chemical classification of identified compounds from MetaboAnalystR. 

All unique features from Supplementary Fig. 10 were targeted for compound identification. More 

lipids, organic acids, and organic heterocyclic compounds were identified in whole blood 

compared to serum and plasma. More lipids, organic acids, and benzenoids were identified in 

serum compared to plasma. Conversely, more phenylpropanoids, organic heterocyclic and 

benzenoids were identified in plasma samples compared to serum. 
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Figure S4.12. Evaluation of quantitative performance based on serial dilutions. The correlation 

analysis of MS features from serial dilutions was detected by different tools under different modes. 

Under the C18 ESI- mode in a, MetaboAnalystR reported the highest average correlation 

coefficients compared to other tools. The same trend was observed for HILIC ESI+ mode in b and 

HILIC ESI- mode in c. This indicates that MetaboAnalystR is better at accurately quantifying the 

identified compounds in serial dilutions compared to other tools. 
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Figure S4.13. Serial dilution heatmaps. Heatmaps of all MS features detected by MetaboAnalystR 

under different modes (a. C18 ESI-; b. HILIC ESI+; c. HILIC ESI-). All features have been 

normalized and clustered, and the samples are not sorted based on the dilution series. Pure urine 

(100:0) and serum (0:100) samples are also included. Clear serial dilution patterns are evident for 

all modes. Only the features that are not shared by urine and serum are used for compound 

identification. 
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Figure S4.14. Statics of compound identification by different tools. The results show that in most 

cases, MetaboAnalystR identified the highest number of compounds from the datasets, except for 

the DDA metabolomics dataset in ESI- mode. Overall, MetaboAnalystR showed superior 

performance in compound identification when compared to the other tools. 
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Figure S4.15. Scatter plot of pathway enrichment of datasets analyzed by MetaboAnalystR. The 

MS features and MS/MS compounds used in this figure were processed by MetaboAnalystR. In 

most cases, integrating MS/MS results into the pipeline increases the discovery of pathways or 

improves the statistical significance compared to using "MS only". 
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Figure S4.16. Scatter plot of pathway enrichment of datasets generated by MSDIAL / MSFinder. 

The MS features and MS/MS compounds used in this figure were processed by 

MSDIAL/MSFinder. Pathway analysis was performed by MetaboAnalystR. In most cases, 

integrating MS/MS results into the pipeline increases the discovery of pathways or improves the 

statistical significance compared to using "MS only". 
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Figure S4.17. Scatter plot of pathway enrichment of datasets generated by MZmine / SIRIUS or 

XCMS / SIRIUS. The MS features and MS/MS compounds used in this figure were processed by 

MZmine/SIRIUS (for DDA) or XCMS/SIRIUS (for SWATH-DIA). Pathway analysis was 

performed by MetaboAnalystR. In most cases, integrating MS/MS results into the pipeline 
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increases the discovery of pathways or improves the statistical significance compared to using 

"MS only". 

 

Figure S4.18. Venn diagram of pathway analysis results from different datasets. These diagrams 

summarize the intersections of pathways identified by MetaboAnalystR mummochog function on 

the MS features or MS/MS features from different tools. In general, integrating MS/MS results 

into mummichog functions increases the discovery of pathways or improves the statistical 

significance compared to using "MS only" for most cases. 
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Figure S4.19. Comparison of computational efficiency of different tools. This figure accompanies 

Table 4.2 in the manuscript, and displays efficiency scores of different tools in different colors 

based on tools. Compared to other tools, MetaboAnalystR took less RAM and finished both MS 

and MS/MS detection in an efficient way. MSDIAL/MSFinder usually consumed less RAM, but 

more time. MZmine could finish the MS features detection by taking less time, but the RAM usage 

may be high. SIRIUS is very slow based on the testing results because of the remote API access is 

easily affected by network connection. In addition, the RAM usage may be quite high when there 

is a big number of features to be annotated. 
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Figure S4.20. Comparison of computational efficiency of different datasets. This figure 

accompanies Figure 4.7 in the manuscript, and displays efficiency scores of different tools in 

different colors based on datasets. Processing of SWATH-DIA datasets by various tools is notably 

faster than other datasets, which is attributed to the smaller size of SWATH-DIA (n=30) compared 

to others (n=160). The computational performance shows no clear difference among DDA datasets, 

suggesting that the computational efficiency is primarily determined by the tools used, rather than 

by the datasets. 
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Figure S4.21. Steps involved in preparing a serial dilution. To begin, tubes A to E are filled with 

150 µl of base urine, while tubes G to K are filled with 150 µl of base serum. The quadruple 

dilution process is carried out by adding urine to serum or serum to urine in a quadruple dilution 

manner. Tube F contains an equal volume of serum and urine. 

 

Figure S4.22. Statistics of compounds in pathway reference library. The summary encompasses 

all 3,456 compounds in the database, with over 90% of the compounds having MS/MS records 
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included. Moreover, over half of the compounds in the library feature both experimental and in-

silico MS/MS spectra. 

 

Figure S4.23. Schema of MS/MS reference library for MetaboAnalystR. The reference library is 

based on an SQLite database, which supports multiple tables. Each table in the database should 

contain the following mandatory columns: ID, CompoundName, Precursor MZ, Precursor Type, 

Formula, InChIKeys, and MS2Peaks. Other columns can be included as required, but they are not 

mandatory. 
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Table S4.1. Summary of compounds in different database options 

MS/MS Reference Library Records Unique Compounds Size 
Pathway Library 172,370 3,456 138.2 MB 

Biological Library 864,386 49,055 744.0 MB 
Lipids Library 3,221,409 878,220 1.9 GB 

Complete Library 10,420,215 1,551,012 7.2 GB 
 

Table S4.2. Summary of identified compounds by different tools (DDA, ESI-) 

Tools 
Number of 

detected standards 
(MS1) 

Compounds 
correctly annotat

ed (MS2) 

Percent
age 

Time elapsed 
(1 CPU core) 

MS-DIAL + MS-FINDER 271 121 26.4% 36 min 
MZmine + SIRIUS 317 124 27.0% 84 min 

MetaboAnalyst 336 194 42.3% 28 min 
MetaboAnalyst (nonDeco) 336 185 40.3% 15 min 

 

Table S4.3. Summary of identified compounds by different tools (SWATH-DIA ESI+) 

Tools 
Number of 

detected 
standards (MS1) 

Compounds 
correctly 

annotated (MS2) 
Percentage Time elapsed 

(1 CPU core) 

MS-DIAL + MS-FINDER 5 1 0.25% 3 min 
XCMS + SIRIUS 108 42 10.3% ~ 12 h 
MetaboAnalyst 324 143 35.22% 14 min 

MetaboAnalyst (PathwayDB) 324 148 36.45% 5 min 
 

Table S4.4. Summary of identified compounds by different tools (SWATH-DIA ESI-) 

Tools 
Number of 

detected 
standards (MS1) 

Compounds 
correctly 

annotated (MS2) 
Percentage Time elapsed 

(1 CPU core) 

MS-DIAL + MS-FINDER 6 3 0.65% 12 min 
XCMS + SIRIUS 107 46 10.02% ~ 13 h  
MetaboAnalyst 241 102 22.22% 24 min 

MetaboAnalyst (PathwayDB) 241 97 21.13% 3 min 
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Table S4.5. Pathway enrichment results of polar metabolites datasets from three tools 

Pathways Pathway 
total Hits.total Hits.sig Expected P value Results Tools 

Fatty acid activation 74 35 14 6.6766 0.0012 MS_only 

MetaboAnalystR 

Glycolysis and 
Gluconeogenesis 49 16 13 1.9637 0.0037 MS_only 

De novo fatty acid 
biosynthesis 106 30 10 6.2838 0.0070 MS_only 

Chondroitin sulfate 
degradation 37 4 4 0.78548 0.0209 MS_only 

Biopterin metabolism 22 3 3 0.78548 0.0209 MS_only 
Heparan sulfate degradation 34 4 4 0.78548 0.0209 MS_only 

Glycerophospholipid 
metabolism 156 35 14 9.6221 0.0216 MS_only 

Butanoate metabolism 34 14 8 3.3383 0.0228 MS_only 
TCA cycle 31 8 4 1.3746 0.0241 MS_only 

Arachidonic acid metabolism 95 30 23 4.1238 0.0249 MS_only 
Tyrosine metabolism 160 51 18 10.015 0.0311 MS_only 

Leukotriene metabolism 92 28 13 5.302 0.0427 MS_only 
Fatty acid activation 74 27 12 5.8327 0.0009 MS+MS/MS 
De novo fatty acid 

biosynthesis 106 26 10 5.8327 0.0035 MS+MS/MS 

Leukotriene metabolism 92 21 12 3.8214 0.0039 MS+MS/MS 
Tyrosine metabolism 160 44 18 9.0508 0.0123 MS+MS/MS 

Arachidonic acid metabolism 95 18 13 3.8214 0.0154 MS+MS/MS 
Prostaglandin formation from 

arachidonate 78 19 8 3.218 0.0186 MS+MS/MS 

Glycerophospholipid 
metabolism 156 32 13 9.453 0.0189 MS+MS/MS 

Phosphatidylinositol 
phosphate metabolism 59 16 9 2.6147 0.0221 MS+MS/MS 

Chondroitin sulfate 
degradation 37 3 3 0.80451 0.0229 MS+MS/MS 

Biopterin metabolism 22 3 3 0.80451 0.0229 MS+MS/MS 
Heparan sulfate degradation 34 3 3 0.80451 0.0229 MS+MS/MS 

Glycolysis and 
Gluconeogenesis 49 13 11 1.4079 0.0269 MS+MS/MS 

Butanoate metabolism 34 10 6 2.8158 0.0328 MS+MS/MS 
Vitamin D3 (cholecalciferol) 

metabolism 16 10 5 2.2124 0.0394 MS+MS/MS 

Ascorbate (Vitamin C) and 
Aldarate Metabolism 29 13 7 3.0169 0.0463 MS+MS/MS 

TCA cycle 31 6 3 1.0056 0.0495 MS+MS/MS 
De novo fatty acid 

biosynthesis 106 32 15 7.4104 0.0001 MS_only 

MSDIAL 
MSFINDER 

Arachidonic acid metabolism 95 54 45 9.1394 0.0002 MS_only 
Linoleate metabolism 46 23 13 6.1753 0.0037 MS_only 

Fatty Acid Metabolism 63 18 9 6.1753 0.0037 MS_only 
Fatty acid activation 74 36 14 8.6454 0.0047 MS_only 

Prostaglandin formation from 
arachidonate 78 40 18 8.3984 0.0096 MS_only 

Heparan sulfate degradation 34 6 5 1.4821 0.025 MS_only 
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Chondroitin sulfate 
degradation 37 4 4 0.98805 0.0372 MS_only 

Glycosphingolipid metabolism 67 23 15 7.1633 0.0404 MS_only 
De novo fatty acid 

biosynthesis 106 32 15 7.2442 0.0001 MS+MS/MS 

Arachidonic acid metabolism 95 53 42 8.2101 0.0025 MS+MS/MS 
Fatty Acid Metabolism 63 18 9 6.0368 0.0029 MS+MS/MS 

Fatty acid activation 74 36 14 8.4516 0.0036 MS+MS/MS 
Prostaglandin formation from 

arachidonate 78 39 17 8.2101 0.0076 MS+MS/MS 

Linoleate metabolism 46 23 13 6.0368 0.0100 MS+MS/MS 
Heparan sulfate degradation 34 6 5 1.4488 0.0229 MS+MS/MS 

Chondroitin sulfate 
degradation 37 4 4 0.96589 0.0346 MS+MS/MS 

Prostaglandin formation from 
dihomo gama-linoleic acid 11 1 1 0.48295 0.0476 MS+MS/MS 

Glycolysis and 
Gluconeogenesis 49 5 4 0.12698 0.0046 MS_only 

XCMS 
SIRIUS 

Glycerophospholipid 
metabolism 156 30 6 1.3651 0.0055 MS_only 

3-oxo-10R-octadecatrienoate 
beta-oxidation 27 4 4 0.031746 0.0293 MS_only 

Vitamin B1 (thiamin) 
metabolism 20 1 1 0.031746 0.0293 MS_only 

Sialic acid metabolism 107 14 6 0.38095 0.0449 MS_only 
Glycerophospholipid 

metabolism 156 28 6 1.2146 0.0031 MS+MS/MS 

Glycolysis and 
Gluconeogenesis 49 5 4 0.12146 0.0042 MS+MS/MS 

3-oxo-10R-octadecatrienoate 
beta-oxidation 27 4 4 0.030364 0.0280 MS+MS/MS 

Vitamin B1 (thiamin) 
metabolism 20 1 1 0.030364 0.0280 MS+MS/MS 

Sialic acid metabolism 107 13 6 0.36437 0.0412 MS+MS/MS 
Glycosphingolipid metabolism 67 21 7 0.91093 0.0458 MS+MS/MS 
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Table S4.6. Pathway enrichment results of polar metabolites datasets from three tools 

Pathways Pathway 
total Hits.total Hits.sig Expected P value Methods Tools 

Dynorphin metabolism 8 5 4 3.2683 0.0010 MS_only 

MetaboAnalystR 

Bile acid biosynthesis 82 56 45 19.994 0.0219 MS_only 
Prostaglandin 

formation from dihomo 
gama-linoleic acid 

11 8 6 7.3056 0.0271 MS_only 

Carnitine shuttle 72 30 18 12.689 0.0352 MS_only 
Vitamin D3 

(cholecalciferol) 
metabolism 

16 14 12 7.8823 0.0477 MS_only 

Dynorphin metabolism 8 5 3 2.0546 0.00552 MS+MS/MS 
Vitamin D3 

(cholecalciferol) 
metabolism 

16 14 13 8.0316 0.0106 MS+MS/MS 

Bile acid biosynthesis 82 55 39 16.997 0.01829 MS+MS/MS 
Tryptophan metabolism 94 65 36 36.236 0.0290 MS+MS/MS 

Carnitine shuttle 72 32 21 14.195 0.0303 MS+MS/MS 
Tyrosine metabolism 160 100 70 82.367 0.0002 MS_only 

MSDIAL 
MSFINDER 

Ubiquinone 
Biosynthesis 10 8 6 7.9871 0.00244 MS_only 

Electron transport chain 7 2 2 3.4944 0.0246 MS_only 
TCA cycle 31 17 11 11.731 0.0277 MS_only 

Tyrosine metabolism 160 99 68 79.193 0.0002 MS+MS/MS 
Ubiquinone 
Biosynthesis 10 8 6 8.1161 0.0031 MS+MS/MS 

Electron transport chain 7 2 2 3.4432 0.0230 MS+MS/MS 
Caffeine metabolism 11 10 8 8.8539 0.0471 MS+MS/MS 

Tryptophan metabolism 94 69 41 27.25 0.0068 MS_only 

MZmine 
SIRIUS 

Lipoate metabolism 8 4 4 1.6029 0.0176 MS_only 
Fructose and mannose 

metabolism 33 27 22 6.4118 0.0303 MS_only 

Tryptophan metabolism 94 69 40 26.683 0.0099 MS+MS/MS 
Fructose and mannose 

metabolism 33 25 21 5.8859 0.0146 MS+MS/MS 

Lipoate metabolism 8 4 4 1.5696 0.0164 MS+MS/MS 
Dynorphin metabolism 8 3 3 1.1772 0.04609 MS+MS/MS 
Tyrosine metabolism 160 103 54 36.1 0.046879 MS+MS/MS 
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Table S4.7. Pathway enrichment results of lipids datasets from three tools 

Pathways Pathway 
total Hits.total Hits.sig Expected P value Methods Tools 

Glycerophospholipid 
metabolism 156 31 13 11.809 0.00274 MS_only 

MetaboAnalystR 

Tyrosine metabolism 160 35 10 5.3565 0.00603 MS_only 
Prostaglandin formation 

from arachidonate 78 57 11 7.6696 0.00625 MS_only 

Sialic acid metabolism 107 18 4 3.287 0.02279 MS_only 
Glycerophospholipid 

metabolism 156 31 14 13.746 0.00841 MS+MS/MS 

Tyrosine metabolism 160 25 10 4.9485 0.00993 MS+MS/MS 
Prostaglandin formation 

from arachidonate 78 53 13 8.11 0.01077 MS+MS/MS 

Glycosphingolipid 
biosynthesis - globoseries 16 4 2 0.68729 0.01609 MS+MS/MS 

Glycosphingolipid 
metabolism 67 23 7 6.1856 0.01877 MS+MS/MS 

Glycosphingolipid 
biosynthesis - ganglioseries 62 10 6 3.9863 0.02166 MS+MS/MS 

Fructose and mannose 
metabolism 33 12 4 0.82474 0.02925 MS+MS/MS 

Sialic acid metabolism 107 18 5 5.0859 0.03374 MS+MS/MS 

Sphingolipid metabolism 3 3 2 1.512 0.03896 MS+MS/MS 

Sialic acid metabolism 107 26 8 6.9532 0.01843 MS_only 

MSDIAL 
MSFINDER 

Glycosphingolipid 
biosynthesis - ganglioseries 62 13 6 4.5404 0.01600 MS+MS/MS 

Sialic acid metabolism 107 26 8 6.9014 0.01749 MS+MS/MS 
Glycosphingolipid 

metabolism 67 24 11 8.536 0.04060 MS+MS/MS 

Glycerophospholipid 
metabolism 156 33 16 16.709 0.04551 MS+MS/MS 

Glycerophospholipid 
metabolism 156 32 15 7.4704 0.00030 MS_only 

MZmine 
SIRIUS 

Dynorphin metabolism 8 5 4 1.0672 0.00632 MS_only 
Glycerophospholipid 

metabolism 156 32 16 7.5352 8.54E-
05 MS+MS/MS 

Ascorbate (Vitamin C) and 
Aldarate Metabolism 29 5 4 1.0765 0.00664 MS+MS/MS 

Dynorphin metabolism 8 5 4 1.0765 0.00664 MS+MS/MS 
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Table S4.8. Demographics of all subjects involved in current study  

Items Values 
Age 28.4 ± 5.6 

Gender (F/M) 12 (5/7) 
BMI 22.7 ± 4.1 

Ethnicities Caucasian/South Asian/East Asian/Latino/Mixed (7/1/2/1/1) 
Diabetes None 
Pregnant None 

Breastfeeding None 
 

 

Table S4.9. Chromatographic conditions, gradient procedure instrumental settings 
Columns Time (min)  Flow rate (mL/min)  A (%)  B (%)  

C18 

0 0.4 95 5 
1 0.4 95 5 
3 0.4 50 50 
15 0.4 20 80 

15.5 0.4 0 100 
19.5 0.4 0 100 
20 0.4 95 5 

Column Temperature 40℃ 
Autosampler Temperature 4℃ 

Injection Volume 5µL 

HILIC 

Time (min)  Flow rate (mL/min)  A (%)  B (%)  
0 0.4 1 99 
3 0.4 1 99 
20 0.4 50 50 
21 0.4 95 5 
24 0.4 95 5 
25 0.4 1 99 
35 STOP 

Column Temperature 35℃ 
Autosampler Temperature 4℃ 

Injection Volume 1µL 
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Table S4.10. Parameters of mass spectrometers for both MS1 and MS/MS 

MS levels Parameters Values 

MS1 

MS Scan Range 70~1000 m/z 
MS Resolution 70,000 

AGC target 1×106 
Maximum IT 200 ms 

Capillary temperature 350℃ 
Sheath Gas flow 55 arb 
Aux Gas flow 10 arb 

MS/MS 

MS level(s) Parameters Values 

Full MS 

Resolution 70,000 (DDA) 
35,000 (DIA) 

AGC target 3×106 (DDA) 
1×106 (DIA) 

Maximum IT 200 ms (DDA) 
100 ms (DIA) 

Scan Range 70~1000 m/z 

MS2-Settings 

Resolution 17,500 
AGC target 2×105 

Maximum IT 50 ms (DDA) 
auto (DIA) 

Loop Count 
10 (DDA) 

7+3 (DIA of HILIC) 
8+2 (DIA of C18) 

TopN 10 (DDA) 
Isolation Window 1.0 (DDA) 

Scan range 200~2,000 
(N)CE 15, 30, 45 

Minimum AGC target 

1×102 (Targeted DDA of HILIC) 
8×103 (Untargeted DDA) 

1×102 (Targeted DDA of C18 Negative) 
2×102 (Targeted DDA of C18 Positive) 

Intensity threshold 

2×103 (Targeted DDA of HILIC) 
1.6×105 (Untargeted DDA) 

2×103 (Targeted DDA of C18 Negative) 
4×103 (Targeted DDA of C18 Positive) 
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Table S4.11. Design of SWATH-DIA for different modes for blood Samples 

Mode MS levels MZ Starting MZ Ending Scan Time/ms Cycle Duration/ms 

C18 ESI+ 

Full MS1 69.5 1000.5 140 

~900 

SWATH 69.5 140.5 

75 

SWATH 139.5 210.5 
SWATH 209.5 280.5 
SWATH 279.5 350.5 
SWATH 349.5 420.5 
SWATH 419.5 490.5 
SWATH 489.5 560.5 
SWATH 559.5 630.5 
SWATH 629.5 700.5 
SWATH 699.5 1000.5 

C18 ESI- 

Full MS1 69.5 1000.5 140 

~900 

SWATH 69.5 140.5 

75 

SWATH 139.5 210.5 
SWATH 209.5 280.5 
SWATH 279.5 350.5 
SWATH 349.5 420.5 
SWATH 419.5 490.5 
SWATH 489.5 560.5 
SWATH 559.5 630.5 
SWATH 629.5 750.5 
SWATH 749.5 1000.5 

HILIC 
ESI+ 

Full MS1 69.5 1000.5 140 

~900 

SWATH 69.5 130.5 

75 

SWATH 129.5 190.5 
SWATH 189.5 250.5 
SWATH 249.5 310.5 
SWATH 309.5 410.5 
SWATH 409.5 510.5 
SWATH 509.5 610.5 
SWATH 609.5 710.5 
SWATH 709.5 810.5 
SWATH 809.5 1000.5 

HILIC 
ESI- 

Full MS1 69.5 1000.5 140 

~900 

SWATH 69.5 135.5 

75 

SWATH 134.5 175.5 
SWATH 174.5 215.5 
SWATH 214.5 255.5 
SWATH 254.5 295.5 
SWATH 294.5 335.5 
SWATH 334.5 375.5 
SWATH 374.5 500.5 
SWATH 499.5 750.5 
SWATH 749.5 1000.5 
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Preface to Chapter 5 

Chapter 5 showcases a meta-analysis of COVID-19 global metabolomics datasets. This chapter 

mainly aims to achieve the Objective 4. In this chapter, we performed a comprehensive meta-

analysis of seven metabolomics datasets obtained from three countries. In this study, the 

performance of raw spectral processing pipeline and updated functional analysis workflow was 

validated. This meta-analysis has confirmed the efficacy of MetaboAnalystR and MetaboAnalyst 

website when solving biological questions from the real world. This study also suggests that 

extensive dysregulations of multiple metabolic pathways and bioactive metabolites are the 

metabolic characteristics underlying the progression of COVID-19. Overall, this chapter validated 

and confirmed the previous chapters by using seven COVID-19 metabolomics datasets. 
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5.1 Abstract 

 

The novel coronavirus SARS-CoV-2 has spread across the world since 2019, causing a global 

pandemic. The pathogenesis of the viral infection and the associated clinical presentations depend 

primarily on host factors such as age and immunity, rather than the viral load or its genetic 

variations. A growing number of omics studies have been conducted to characterize the host 

immune and metabolic responses underlying the disease progression. Meta-analyses of these 

datasets have great potential to identify robust molecular signatures to inform clinical care and to 

facilitate therapeutics development. In this study, we performed a comprehensive meta-analysis of 

publicly available global metabolomics datasets obtained from three countries (United States, 
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China and Brazil). To overcome high heterogeneity inherent in these datasets, we have (a) 

implemented a computational pipeline to perform consistent raw spectra processing; (b) conducted 

meta-analyses at pathway levels instead of individual feature levels; and (c) performed visual data 

mining on consistent patterns of change between disease severities for individual studies. Our 

analyses have yielded several key metabolic signatures characterizing disease progression and 

clinical outcomes. Their biological interpretations were discussed within the context of the current 

literature. To the best of our knowledge, this is the first comprehensive meta-analysis of global 

metabolomics datasets of COVID-19. 

5.2 Introduction 

COVID-19 is an unprecedented health emergency driven by the severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2) (223). This disease had led to over 1.2 million deaths globally by 5 

November 2020 according to the WHO (224). A broad spectrum of clinical presentations has been 

observed, ranging from asymptomatic, mild, moderate, or severe symptoms, to fatal illness. Such 

diverse trajectories are believed to be the result of the differences in individual immune responses 

to COVID-19 (223, 225, 226). A comprehensive understanding of the molecular events underlying 

different clinical courses is urgently needed to help improve patient management and to accelerate 

the development of therapeutic strategies. 

Metabolism fuels all biological processes in the human body, including immune responses. Blood 

metabolites are the end products of many systematic processes and are informative indictors of 

biochemical activities or diseases’ phenotypes (11, 227). Powered by the growing applications of 

high-resolution mass spectrometry (MS), metabolomics has become a key member of the omics 

toolkit in biomedical research. Multiple metabolomics studies have been recently conducted across 

the world to study COVID-19, revealing key metabolic dysregulations during the disease’s 
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progression (228-237). For instance, several amino acids have been observed to be positively 

correlated with the severity of COVID-19 as key indicators of clinical prognosis of the disease 

(229, 230, 233-235). Perturbations in energy metabolisms such as glycolysis and pentose 

phosphate pathway, TCA and urea cycle have also been reported (228, 230, 233). The changes in 

lipid metabolites such as fatty acid, arachidonic acid, glycerophospholipid and sphingolipids are 

now considered important hallmarks in the pathogenesis of COVID-19 (238, 239). To help to 

accelerate diagnostics, prognostics, and treatment of the disease, the COVID-19 MS Coalition has 

been recently launched as a collective community effort to combat the pandemic (240). 

Meta-analysis of the available datasets is a promising approach to gain a comprehensive 

understanding of the pathogenesis of the disease (241, 242), as well as to help to identify robust 

biomarkers to inform better clinical care and to facilitate therapeutics development. Indeed, meta-

analyses of the COVID-19 transcriptomics datasets are quickly emerging and have produced 

important insights into common and unique gene expression patterns of the disease (243-245). 

However, to the best of our knowledge, meta-analyses of COVID-19 metabolomics datasets have 

not been conducted so far. This could be due to a much smaller number of metabolomics studies 

reported so far or even more likely, due to the practical challenges in dealing with the high levels 

of heterogeneity inherent in global metabolomics datasets. Unlike transcriptomics in which genes 

or transcripts can be reliably identified and quantified directly from sequencing data, the features 

reported by liquid chromatography (LC)-MS-based global metabolomics are peaks characterized 

by their RTs and m/z values, which are insufficient for metabolite identification in general. 

Moreover, spectral peaks are not usually comparable across different studies due to differences in 

chromatographic and/or MS conditions. 
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To address this research gap and to gain a better understanding of the metabolic changes 

underlying the disease, we systematically collected the COVID-19 global metabolomics datasets 

that were publicly available as of 5 November 2020 and implemented a computational pipeline for 

spectra processing, visual exploration and meta-analysis. In this manuscript, we report our findings 

and discuss their implications within the context of the current understanding of the disease. 

5.3 Results 

5.3.1. Summary of different datasets and their clinical characteristics 

A total of 175 COVID-19 papers were identified in our initial search. After filtering these studies 

based on our inclusion/exclusion criteria, six studies from the USA, China and Brazil were finally 

included in this meta-analysis (Figure 5.1). One study from the USA generated two datasets using 

two different metabolomic platforms. As a result, seven datasets were finally included in this meta-

analysis. Among them, five datasets were obtained as raw spectra, including two from 

MetaboLights (246), one from MassIVE (https://massive.ucsd.edu/) and two directly from the 

authors. The remaining two datasets were annotated metabolite intensity tables obtained from the 

Supplementary Materials of the original publications. In total, 438 samples from 337 subjects were 

included. Table 5.1 summarizes the key information about these datasets. More details on the 

patient classification criteria, technical information on experimental conditions and the 

demographic characteristics of all subjects are provided in Tables S5.1–S5.3, respectively. 
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Figure 5.1. The workflow diagram of our data curation process and analysis strategy. The six 

studies contain seven datasets, five as raw spectra and two as putatively annotated peak tables. 

5.3.2. Processing and overview of individual datasets 

The five raw spectra datasets were processed using our MetaboAnalystR 3.0 pipeline for optimized 

peak detection, quantification and alignment (with peak numbers ranging from 2553 to 11,665). 

The final optimized parameters are provided in Table S5.4. The resulting peak intensity tables 

from both positive and negative ion modes were combined, median normalized and log 

transformed for an initial data quality check and visual inspection. The two annotated peak tables 

were directly used to perform multivariate analysis. Figure 5.2 shows the results from Principal 

Component Analysis (PCA) of samples between COVID-19 and healthy controls (HCs). No clear 
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batch effects were observed in the normalized datasets. The first two PCs showed the clear patterns 

of separation for all datasets (except the C1). The relative low variances explained by the top two 

PCs could be due to the very high dimensionality of the global metabolomics data, similar to PCA 

of transcriptomics data. We further analyzed C1 using Orthogonal Projections to Latent Structures 

Discriminant Analysis (OPLS-DA), which showed a significant separation. The model was 

evaluated with cross validations (Q2 0.964 and R2 0.803) and permutation tests (p-value < 0.001). 

Overall, these results indicated overall significant metabolic perturbations in COVID-19 patients 

across all study populations. For two randomly selected datasets, we also compared the results 

from our spectra processing pipeline against those from two other public spectra processing tools 

(34, 42) and observed that the PCA from our pipeline produced better separation patterns (data not 

shown). 

Table 5.1. Summary of the seven datasets and the corresponding COVID-19 patient classifications. 

Datasets Chromatogram MS 
Patient Classification 

Country 
Total HC MM Severe Fatal 

A1 (233) UPLC-C18 Q/E 49 16 27 6 0 USA 
A2 * (234) UPLC-HILIC 

Q/TOF 59 20 39 0 0 USA 
A3 * (234) UPLC-C18 
B1 (247) HPLC- C18 micrOTOF 28 13 6 3 6 Brazil 
C1 (229) UPLC-C18 Triple TOF 76 26 37 11 2 China 

C2 ** (230) UPLC-C18 QE-HF 71 25 37 28 0 China 
C3 ** (228) UPLC- C30 Q/TRAP 96 10 14 11 9 China 
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Figure 5.2. Overview of the separation patterns between COVID-19 and healthy controls (HCs) 

across the seven datasets. The 1st and 2nd rows are the principal component analysis (PCA) results 

of datasets A1, A2, A3, B1, C2 and C3, respectively. For C1 (3rd row), we performed PCA, 

followed by Orthogonal Projections to Latent Structures Discriminant Analysis (OPLS-DA) and 

its validation by permutations (n = 1000). 
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Figure 5.3. Pathway analysis and meta-analysis between COVID-19 and healthy controls (HC) 

across the seven datasets. Each row represents a pathway and each column represents a dataset. 

The rightmost column shows the result from the meta-analysis. 

5.3.3. Metabolic pathways changes in COVID-19 patient 

For each raw spectral dataset, we performed metabolic pathway activity predictions using the 

mummichog approach (101) in MetaboAnalystR 3.0. For the two annotated peak tables, we 
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performed pathway analysis using the quantitative enrichment method based on their annotations. 

The human Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database was used in 

both cases. The pathway-level p-values were further integrated to produce a final ranked list of 

perturbed pathways (Figure 5.3). Four common pathways were significantly changed between 

COVID-19 patients and HCs (p-value < 0.05). Despite the ambiguities in individual compound 

assignments, we also attempted to extract the peaks underlying these four perturbed pathways from 

individual studies. The correlations between these peaks with the symptom onset days were then 

statistically evaluated. Nine peaks were significant (p-value < 0.05), with one negative and eight 

positive associations (Figure S5.1). 

5.3.4. Identification of metabolic hot spots in COVID-19 

In order to gain a high-level overview of the changes in metabolic activities caused by COVID-

19, we mapped all significant metabolites (based on putative peak annotations) onto the KEGG 

global metabolic network (Figure 5.4). Network visualizations could reveal coordinated metabolic 

activities as clusters of metabolites distributed both within and across pathway boundaries. A total 

of 65 compounds have been reported by at least two datasets within these pathways. The five 

colored areas indicate the top five pathways identified in Figure 5.3. Other metabolic pathways 

also contain many metabolites that have received hits from multiple datasets. For instance, 

cholesterol, d-Mannose, Tyrosine, L-phenylalanine and Bilirubin are the top five most common 

compounds identified in our meta-analysis, which indicates their potentials as metabolic 

biomarkers. To complement the meta-analysis, we performed cluster heatmap analysis at feature 

levels for each dataset. We were able to identify clusters with consistently upregulated or 

downregulated metabolic patterns between the two conditions in six out of the seven datasets 
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(Figures S5.2–S5.7). The pathway analyses based on these patterns reported similar results to those 

in Figure 5.3. 

 

Figure 5.4. Overview of potentially perturbed metabolites and extracted metabolic pathways based 

on the seven datasets. The top five pathways ranked by their integrated p-values are shown here. 

The top part is the KEGG global metabolic map, with nodes in brown showing the matched 

metabolites whose sizes are based on the total number of hits from different datasets. Different 

colored areas represent different pathways. At the bottom are the five extracted pathways 
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corresponding to the five colored regions in the map, with nodes shown as pie charts whose sizes 

and components correspond to the hits from different datasets. 

5.3.5. Metabolic changes between mild-to-moderate and severe COVID-19 

 

Figure 5.5. Metabolic pathway analysis and cluster heatmap analysis between mild-to-moderate 

(MM) and severe groups. (A) Summary of pathway analysis and meta-analysis result. (B) 

Enrichment analysis on a pattern of interest identified in dataset A1 (negative ion mode). P0: 

Caffeine metabolism; P1: Glyoxylate and dicarboxylate metabolism; P2: Citrate cycle (TCA cycle); 

P3: Purine metabolism; P4: Lysine degradation. The vertical dashed line in the bar plot is the 

threshold of p = 0.05. (C) Enrichment analysis on a pattern of interest in A1 (positive ion mode). 
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P0: Glycine, serine and threonine metabolism; P1: Glyoxylate and dicarboxylate metabolism; P2: 

Cysteine and methionine metabolism; P3: Citrate cycle (TCA cycle); P4: Selenocompound 

metabolism. 

Four datasets contain samples from patients classified as MM and severe COVID-19. The patients 

with fatal outcomes were also included in the severe group for this comparison based on their 

clinical status. We first aimed to identify commonly perturbed metabolic pathways across the four 

datasets. As summarized in Figure 5.5A, six pathways were ranked as the top changed metabolic 

pathways between MM and severe groups. Similarly, we also mapped the significant metabolites 

onto the KEGG global metabolic map and noticed that only a few metabolites (L-Alanine, Uridine 

and Uracil) were shared across the four datasets (Figure S5.8). We then performed cluster heatmap 

analysis on individual datasets and visually examined the cluster patterns to identify consistent 

changes between MM and, severe COVID-19. As shown in Figure 5.5B,C, there are some regions 

that show a general decrease in abundance in the Severe group of A1. A total of eight metabolic 

pathways were significantly downregulated in this group. Similarly, a consistent metabolic pattern 

was also found in dataset C3 (Figure S5.9), but not in C1 and C2 (Figure S5.10). 

5.3.6 Exploration of metabolic perturbations in fatal COVID-19 

Three datasets (C1, C3 and B1) contained COVID-19 patients with mortality information. The C1 

dataset was excluded because it contained only two cases to perform meaningful statistical analysis. 

Metabolic differences between the severe and fatal patients were evaluated with the remaining two 

datasets (Figure 5.6). Several common metabolic pathway changes were identified from these two 

datasets (Figure 5.6A). Six metabolites were found as the common hits after mapping to the KEGG 

global metabolic map (Figure S5.11). From the cluster heatmap of the B1 dataset (positive ion 

mode), we identified a consistent pattern of change showing five enriched metabolic pathways 
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(Figure 5.6B). From the cluster heatmap of C3, we combined two regions of interest and identified 

three enriched metabolic pathways (Figure 5.6C). 

 

Figure 5.6. Pathway analysis and cluster heatmap analysis between severe and fatal groups. (A) 

Summary of pathway analysis and meta-analysis result. (B) Enrichment analysis on a metabolic 

pattern of interest in dataset B1 (positive ion mode). P0: Primary bile acid biosynthesis; P1: D-

Glutamine and D-glutamate metabolism; P2: Steroid biosynthesis; P3: Ubiquinone and other 

terpenoid-quinone biosynthesis; P4: Alanine, aspartate and glutamate metabolism. The vertical 

dashed line in the bar plot is the threshold of p = 0.05. (C) Enrichment analysis on the combined 

metabolic patterns of interest in dataset C3. P0: Arginine biosynthesis; P1: Tyrosine metabolism; 

and P2: Pantothenate and Coenzyme A (CoA) biosynthesis. 
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5.4 Discussion 

Patients with SARS-CoV-2 infection manifest a classical respiratory virus-like clinical course with 

activated innate and adaptive immune responses (225, 248). Multiple metabolic pathways, such as 

amino acid metabolism, energy metabolism and lipid metabolism, are involved in the initiation 

and maintenance of the immune responses in COVID-19. Our meta-analysis has not only 

confirmed the dysregulations of these pathways as reported by original studies, but also observed 

novel patterns of metabolic changes underlying the pathogenesis of COVID-19. 

Several common metabolic pathways were identified by comparing COVID-19 patients with 

healthy subjects. The most significantly perturbed pathway is Porphyrin metabolism or Heme 

biosynthesis, which is consistent with previous reports (249, 250). The SARS-CoV-2 virus could 

capture hemoglobin, displace iron and decrease the ability of carrying oxygen, thus causing 

respiratory distress and coagulation reactions, damaging multi-organs (251). The hijacking of the 

cellular amino acid metabolism to fuel viral proliferation might be a critical mechanism underlying 

the COVID-19 pathogenesis (252). Arachidonic acid is an endogenous bioactive antiviral lipid, 

and this metabolic pathway has been suggested to play an important role in susceptibility to 

COVID-19 (253, 254). The elevated levels of free poly-unsaturated fatty acids are characteristics 

of COVID-19 patients (231, 255). However, their roles are still controversial (256-258) and 

warrant further studies. 

The heterogeneity of COVID-19 patients shows a wide spectrum of symptoms as well as disease 

severity. The risk categorization of COVID-19 is difficult because of the complexity of the 

pathophysiological status of the patients. Therefore, understanding the molecular underpinnings 

of the disease severities is important to help to reduce the mortality. 
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Patients with mild-to-moderate (MM) cases of COVID-19 typically have an optimistic prognosis 

and can recover very quickly. Pathway analysis between MM and severe COVID-19 showed six 

common perturbed pathways. Most of them were amino acids pathways. Our analysis identified 

propanoate as a novel pathway in the progression of COVID-19. Propanoate metabolism usually 

starts with the gut microbiota and enters into immune cells such as macrophages, thereby 

modulating the biological process (259). The glyoxylate and dicarboxylate metabolism pathway 

has been reported to be decreased after infection (260). We observed that this pathway was 

downregulated in severe compared to MM. Downregulation of the TCA might be related to the 

high energy consumption of SARS-CoV-2 (228). Decreased TCA metabolism would cause an 

imbalance of anti-oxidization and inflammatory damage (261, 262). Finally, selenocompound is 

an ex vivo compound originating mainly from gut microbiota (263), and the biological effect of 

its decrease needs further investigation. Both propanoate metabolism and selenocompound 

metabolism suggest potential roles played by gut microbiota in the progression of COVID-19, a 

topic which has gained increasing attention recently (259, 264). 

SARS-CoV-2 infection can not only cause pathogenic changes in the respiratory system but can 

also lead to systematic multi-organ damages and death (265). Preventing fatal COVID-19 is the 

most important objective in current clinical care. In addition to the observation of extensive 

dysregulations in amino acid metabolism, our analysis also detected other energy-related pathways 

such as mannose metabolism as reported previously (230). The change in glutathione metabolism 

was observed in fatal COVID-19, providing direct evidence for a recent clinical hypothesis that 

glutathione deficiency could lead to serious manifestation and death in COVID-19 (266). This 

metabolic pattern also reveals other interesting metabolic signatures. For instance, biosynthesis of 

bile acid might be a key clinical manifestation of liver damage by SARS-CoV-2 infection (228, 



169 
 

267). The inhibition of its synthesis might accelerate the deterioration of COVID-19 to death (268). 

Endogenous steroid biosynthesis was found to be decreased, although it could have been caused 

by medical treatments. Ubiquinone has been reported to alleviate the cytokine storm and restore 

exhausted T cells in COVID-19 (269). The suppression of its biosynthesis could worsen the disease 

condition. The role of vitamin B5 biosynthesis on the deterioration of COVID-19 remains unclear, 

but vitamin B6 has been proposed to ameliorate the severity of COVID-19 (270). 

The high level of heterogeneity inherent in global metabolomics datasets poses tremendous 

challenges to conduct metabolomics meta-analysis at the feature (MS peaks) level. In this study, 

we utilized the well-established mummichog method to first compute pathway activities from MS 

peaks and performed meta-analysis at the pathway level. There are however, several limitations to 

this analysis method. The potential bias caused by differences in the extraction procedures and 

analytical platforms at pathway level remains an open question. Due to the nature of putative 

annotations, the significant metabolites reported in this study need to be further validated using 

more targeted approaches. Although the potential confounding factors (diet, ethnicity, medical 

treatment, etc.) were controlled within each study, they were not considered in the current meta-

analysis because most meta-data are incomplete or missing from the original studies. We intend to 

address this issue by expanding this analysis to include multiple-cohorts-based metabolomics 

studies when more datasets become available in the coming year. In addition, many signatures are 

likely to reflect general immune and inflammatory responses. We plan to include studies on other 

viral infections (such as SARS-CoV and influenza) to identify unique metabolic signatures of this 

disease as illustrated in a recent meta-analysis based on transcriptomics (271). 
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5.5 Methods and materials 

5.5.1 Data curation 

This meta-analysis was strictly conducted based on the PRISMA guidelines (272). All studies were 

searched for on PubMed, medRxiv (www.medrxiv.org/), and bioRxiv (www.biorxiv.org/) using 

the search term “(COVID-19) AND (Metabolomics)” before 5 November 2020. The inclusion 

criteria for further processing were as below: (1) The study should have had a matched healthy 

control for COVID-19 samples; (2) all raw spectra data or original/annotated peak tables should 

have been available publicly or upon request; (3) to ensure comparability, only LC-MS-based 

global metabolomics datasets were included; other metabolomics datasets generated by gas 

chromatography (GC)-MS or nuclear magnetic resonance (NMR) were excluded. The PRISMA 

2009 Flow Diagram is provided in Figure S5.12. 

5.5.2 Patient classification 

All COVID-19 patients were diagnosed separately at their original hospitals or testing centers. 

Their disease severities were classified according to a combined standard based on the Guideline 

of Diagnosis and Treatment Protocol for Novel Coronavirus Pneumonia (8th) published by the 

National Health Commission of China (273), WHO R&D Blueprint novel Coronavirus COVID-

19 Therapeutic Trial Synopsis (274), and an inflammation correlated cytokine, IL-6 as used in the 

original studies (233). 

5.5.3 Raw spectra processing 

Raw LC–MS spectra were first converted and centroided from vendor format to mzML using 

ProteoWizard (144). All centroided spectra were processed with an automated pipeline with built-

in parameter optimization procedures as described in MetaboAnalystR 3.0 (102). For annotated 
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peak tables, the names were standardized with the ID conversion tool in MetaboAnalyst (275). 

The remaining ambiguous compounds/peaks were manually corrected based on HMDB (196). 

5.5.4 Statistical analysis 

Chemometrics analysis (PCA and OLS-DA) was performed based on the normalized peak tables 

using the corresponding functions in MetaboAnalystR 3.0. Spearman correlations between the 

onset days of symptoms and metabolic features were calculated using base R package (v4.0.2). 

The confidence interval of the significant correlation was set to 0.95. 

5.5.5 Metabolic pathway analysis and meta-analysis 

The pathways analysis on the datasets from raw spectra in this present study was performed 

independently for every dataset using mummichog (101) from the MetaboAnalystR 3.0 workflow 

(102). The pathways analysis on the two annotated peak tables was completed with the Pathway 

Analysis module based on the default quantitative enrichment analysis method and the human 

KEGG database (215). The meta-analysis was performed at the pathway levels. The combined p-

values were computed based on the vote counting method in the metap package in R (v4.0.2) by 

counting the p-value from two directions and outputting an integrated p-value based on the 

counting results. The enrichment ratio describes the relative percentage of the empirical compound 

hits to the whole empirical pathway. The enrichment ratio of the compounds from the annotated 

peak tables was calculated with the average of the other empirical pathway size as the denominator. 

5.5.6 Global metabolic network visualization 

The MS peaks from different studies were putatively annotated based on the mummichog algorithm 

and mapped to the KEGG global metabolic network using the Peaks to Pathway module in 

MetaboAnalyst (275). The sizes of the matched nodes (compounds) corresponded to the number 
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of hits received from different studies. For those highlighted pathways, the corresponding 

compounds were extracted, with edges between compounds representing direct interactions based 

on the KEGG global metabolic reaction network. 

5.5.7 Cluster heatmap analysis 

The peak intensity tables from the individual datasets were uploaded to the Peaks to Pathway 

module in MetaboAnalyst 4.0 (275). After normalization, the peak tables were displayed as an 

interactive heatmap with different clustering options. From the Overview on the left panel, we 

manually selected patterns of interest to be displayed on the Focus view on the central panel. 

Pathway activity predictions were performed based on mummichog using the peaks in the current 

Focus view as significant peaks. 

5.6 Conclusion 

There are significant knowledge gaps in the systems biology of COVID-19. The ongoing multi-

omics investigations will continue to yield valuable insights to fill this gap in the coming year. 

Global metabolomics can provide rich data that complement other omics layers to inform the 

development of diagnostics, prognostics, and treatment of COVID-19. In this study, we have 

systematically curated public metabolomics datasets and performed comprehensive data 

processing, analysis and meta-analysis to identify common as well as unique metabolic signatures 

underlying different clinical courses of COVID-19. Our results suggest that extensive 

dysregulations of amino acids metabolism, damage to the oxygen transport in red blood cells, 

exhaustion of endogenous immune bioactive metabolites and the suppression of multiple 

physiological processes are the metabolic characteristics underlying the progression of COVID-
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19. We will continue to improve the computational workflow and expand the scale and scope of 

the current meta-analysis when more metabolomics datasets become available in the coming year. 

5.7 Supplementary materials 

Supplementary Materials: The following are available online at https://www.mdpi.com/2218-

1989/11/1/44/s1. Table S5.1: Classification Standards for Different Severities of COVID-19; 

Table S5.2: Technical information of all datasets included in this study; Table S5.3: Clinical 

demographics characteristics of all subjects; Table S5.4: Optimized parameters of all datasets for 

raw spectral processing. Figure S5.1: The Spearman correlation analysis on the onset time (days) 

with the metabolites in the significantly perturbed pathways; Figure S5.2: Cluster heatmap analysis 

between COVID-19 and HC groups of Dataset A1; Figure S5.3: Cluster heatmap analysis between 

COVID-19 and HC groups of Dataset A2; Figure S5.4: Cluster heatmap analysis between COVID-

19 and HC groups of Dataset A3; Figure S5.5: Cluster heatmap analysis between COVID-19 and 

HC groups of Dataset C1; Figure S5.6: Cluster heatmap analysis between COVID-19 and HC 

groups of Dataset C2; Figure S5.7: Cluster heatmap analysis between COVID-19 and HC groups 

of Dataset B1; Figure S5.8: Overview of perturbed pathways in COVID-19 across datasets for 

comparison between mild-to-moderate (MM) and severe COVID-19; Figure S5.9: The metabolic 

pattern between MM and severe of dataset C3; Figure S5.10: The metabolic pattern between MM 

and severe of dataset C1 and C2; Figure S5.11: Overview of perturbed pathways in COVID-19 

across datasets for comparison between severe and fatal COVID-19; Figure S5.12: PRISMA 2009 

Flow Diagram. 
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Table S5.1. Classification Standards for Different Severities of COVID-19 

Severities Classification Criteria 

Mild to Moderate 

1). Hospitalized but without oxygen or with low-flow oxygen. 2). 

Imagological changes found or not, but not meet the standard of Severe. 

3). Serum IL-6 concentration less than 90 pg/mL. Meet one of the above. 

Severe 

1). Intubation and ventilation or high-flow oxygen, or additional organ 

support. 2). Shortness of breath, RR≥30 beats/min. 3). SO2 less than 

93% at rest. 4). PaO2/FiO2 less than 300mmHg. 5). Acute progressing 

with imagological lesion grew more than 50% in past 24-48 hours. 6). 

Shocked. 7). Serum IL-6 concentration more than 90 pg/mL Meet one of 

the above. 

Fatal Reported death as the clinical end. 

Non-Covid 
Shown similar clinical characteristics including fever and/or cough as 

COVID-19 patients but tested as negative with nucleic acid. 

 

Table S5.2. Technical Information of all datasets included in this study 

 Data Platform Column Main Extraction* Ion Mode Sample 

A1 Raw UPLC-QE C18 Folch -> Choroform/methanol Neg + Pos Serum 

A2 
Raw UPLC-QTOF 

HILIC Acetone + methanol 

->acetonitrile + H2O 
Neg + Pos Serum 

A3 C18 

C1 Raw UPLC-TTOF C18 
Chloroform/methanol -> water 

-> aqueous/methanol 
Neg + Pos Plasma 

C2 Table UPLC-QEHF C18 Ethanol ->methanol Neg + Pos Serum 

C3 Table UPLC-QTRAP C30 Methanol + MTBE Neg + Pos Plasma 

B1 Raw HPLC-micrOTOF C18 MeOH:MeCN -> Water Neg + Pos Plasma 

* Extraction method only show the main steps of all studies briefly. 
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 Table S5.3. Clinical Demographics Characteristics of All Samples 

 CONTROL COVID-19 
Characteristics/Severity Healthy Mild to Moderate Severe Fatal 

Age/Years/Sample#     
<20 0 4 0 0 

20~60 69 96 36 0 
> 60 3 40 23 4 

Not Clear * 56 28 22 36 
Sex (Sample#)     

Male 50 72 39 7 
Female 33 57 19 1 

Not Clear * 26 28 22 36 
Onset time/Days - 8.26 9.6 8.12 

Treatment     
Hydroxychloroquine - 28 - - 

Remdesivir - 3 - - 
* Not Clear: refers to that the related information is not available from the original manuscript. 

The number refers to the samples number rather than the subjects’ number. 
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Table S5.4. Optimized parameters of all datasets for raw spectral processing 

NO ION  Algorithm ppm Peak 
width mzdiff s/n noise prefilter bw 

A1 Negative centWave 1.78 3.625, 
35.375 0.004 10.65 0 2, 

1172.26 2 

A1 Positive centWave 1.78 3.625, 
42.125 0.006 12.05 0 2, 

1172.26 2 

A2 Negative centWave 11.1
3 

6.25, 
14.75 0.013 15 0 2, 10 2 

A2 Positive centWave 17.9
9 

10.125, 
40.75 0.016 9.5 0 2, 10 2 

A3 Negative centWave 13.8 8.25, 
51.5 0.012 16.05 0 2, 10 2 

A3 Positive centWave 13.2
6 

4.375, 
48.875 0.016 14.5 0 2, 10 2 

C1 Negative centWave 10.5
8 4.5, 19 0.013 13.75 0 2, 10 2 

C1 Positive centWave 35.9
6 7, 15.5 -0.02 10 0 2, 10 2 

NO ION  Algorithm Critical Value 
Consec 
Missed 
Limit 

Unions Check 
back 

B1 Negative Massifquant 1.125 2 1 0 

B1 Positive Massifquant 1.125 2 1 0 
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Figure S5.1. The spearman correlation analysis on the onset time (days) with the metabolites in 

the significantly perturbed pathways. (A). C05791, D-Urobilinogen. (B). C00154, Palmitoyl-CoA. 

(C). C01079, Protoporphyrinogen IX. (D). C00157, PC (16:0/16:1(9Z)). (E). C00157, PC 

(16:0/18:0). (F). C00219, Arachidonic acid. (G). C00430, 5-Aminolevulinate. (H). C01024, 

Hydroxymethylbilane. (I). C01051, Uroporphyrinogen III. 
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Figure S5.2. Cluster heatmap analysis between Covid and HC groups of Dataset A1 in negative 

(A) and positive mode (B). 
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Figure S5.3. Cluster heatmap analysis between Covid and HC groups of Dataset A2 in negative 

(A) and positive mode (B). 
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Figure S5.4. Cluster heatmap analysis between Covid and HC groups of Dataset A3 in negative 

(A) and positive mode (B). 
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Figure S5.5. Cluster heatmap analysis between Covid and HC groups of Dataset C1 in negative 

(A) and positive mode (B). 
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Figure S5.6. Cluster heatmap analysis between Covid and HC groups of Dataset C2 (A) and C3 

(B). 
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Figure S5.7. Cluster heatmap analysis between Covid and HC groups of Dataset B1 in negative 

(A) and positive mode (B). 
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Figure S5.8. Overview of perturbed pathways in COVID-19 across datasets for comparison 

between MM (Mild-to-moderate) and Severe COVID-19. Every dataset is marked as a specific 

color. Multiple hits from different datasets on the same metabolite is shown a pie chart with each 

part colored with the same color code. 
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Figure S5.9. The metabolic pattern between MM and Severe of dataset C3. A consistent decreased 

metabolic pattern was observed and enriched as only one significantly perturbed pathway 

(Phenylalanine, tyrosine and tryptophan biosynthesis, containing 1 changed metabolite). 
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Figure S5.10. The metabolic pattern between MM and Severe of dataset C1 and C2. There is no 

consistent metabolic pattern cluster found in these datasets. 
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Figure S5.11. Overview of perturbed pathways in COVID-19 across datasets for comparison 

between Severe and Fatal COVID-19. Each dataset is marked as a specific color. Multiple hits 

from different datasets on the same metabolite is shown a pie chart with each part colored with the 

same color code. 
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Figure S5.12. The PRISMA Flow Diagram 

  



189 
 

Author Contributions: Conceptualization, J.X.; data curation, Z.P.; formal analysis, Z.P., G.Z. 

and J.C.; funding acquisition, J.X.; methodology, Z.P., G.Z., J.C. and J.X.; supervision, J.X.; 

writing, original draft, Z.P.; review and editing, J.X. and J.C. All authors have read and agreed to 

the published version of the manuscript. 

Funding: This research was funded by Genome Canada, Génome Québec, US National Institutes 

of Health (U01 CA235493), Natural Sciences and Engineering Research Council of Canada 

(NSERC) and Canada Research Chairs (CRC) Program. 

Data Availability Statement: The data presented in this study are openly available from this link: 

https://drive.google.com/drive/folders/1R_I_gu5D3SkD_9q_J93HOA9GuKxZiGNG. 

Acknowledgments: The authors truly appreciate the support from original authors Angelo 

D’Alessandro and Guanghou Shui for providing the raw spectra datasets. 

Conflicts of Interest: The authors declare no conflict of interest. 

 

 

 

 

  



190 
 

Chapter 6: General Discussion 

6.1 Brief summary of this thesis 

The overarching theme woven throughout this thesis and extending beyond its chapters is the 

pursuit of a highly efficient computational approach to empower LC-MS based metabolomics. The 

primary objective of this thesis has been to bridge the gap between raw LC-MS spectral data 

preprocessing and the extraction of functional insights. To realize this goal, four chapters (Chapter 

2 to 4) have been presented.  

Briefly speaking, Chapter 2 introduced the development of the MetaboAnalystR 3.0 package (102). 

This package established a streamlined workflow for the automated optimization of raw LC-MS 

spectral data processing. It incorporated empirical compounds characterized by both m/z and RT, 

enhancing the functional analysis based on Mummichog. Building upon Chapter 2, Chapter 3 

upgraded the MetaboAnalyst website to version 5.0 (276). This version offers a user-friendly 

interface, enabling users without programming expertise to process their raw LC-MS spectral data 

using automated optimization. Furthermore, it enhanced functional analysis by integrating results 

from multiple datasets at the pathway level, addressing the challenge of heterogeneity in global 

metabolomics functional meta-analysis. Additionally, a heatmap-based functional analysis feature 

was introduced to explore specific metabolic patterns resulting from perturbations (276, 277). 

In Chapter 4, we advanced to MetaboAnalystR 4.0, which introduced an automated workflow for 

LC-MS/MS data deconvolution. This version also incorporated a comprehensive collection of 

spectral reference libraries, significantly enhancing MS/MS-based compound identification 

capabilities. Furthermore, MS/MS-based compound identifications were seamlessly integrated 

into the functional analysis workflow, thereby augmenting the accuracy of pathway predictions. 
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Lastly, Chapter 5 saw the comprehensive meta-analysis of multiple COVID-19 global 

metabolomics datasets, serving as a practical demonstration of the functional analysis workflows 

we developed (29). 

In summary, this thesis culminates in the creation of the MetaboAnalystR package and the 

enhancement of the MetaboAnalyst website. Subsequent sections will delve into the conceptual 

underpinnings of Chapters 2 to 5, the strengths and limitations of this thesis, as well as ongoing 

work and future directions. 

6.2 More discussions on chapters 2-5 

Global metabolomics has emerged as the primary tool for comprehensively exploring overall 

changes in the metabolic profile. Over the past decades, numerous algorithms have been developed 

to process raw LC-MS metabolomics spectral data. In chapter 2, centWave was employed as the 

fundamental algorithm within this thesis to create an auto-optimized workflow, chosen for its 

established performance and robustness, as evidenced by numerous studies. IPO (46) is a widely 

used tool for optimizing parameters in centWave, although it does suffer from performance defects. 

To tackle this, MetaboAnalystR 3.0 addresses the performance issue by extracting a subset of 

spectra data containing the most abundant MS signals. This approach has greatly expedited the 

parameter optimization step, leading to optimal outcomes. This forms the nucleus of the 

MetaboAnalystR 3.0 package. However, it's important to note that only centWave was considered 

in the current phase. For future progress, it's necessary to also consider other popular algorithms 

and optimization methods. More discussions will be included in the limitations and future works 

section below. Additionally, in this auto-optimized workflow, the regions of MS spectra used for 

parameter optimization are automatically extracted. It is also possible to extend this capability to 

allow users to pre-define and extract specific regions of MS spectra based on their personalized 
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interests and needs. The functionality to achieve this goal has been established, but further 

validations and case studies are required. 

In Chapter 3, the development of the MetaboAnalyst v5.0 website aimed to furnish a user-friendly 

interface that streamlines the workflow for processing raw spectra. The primary objective of this 

chapter was to implement all the functionalities introduced in Chapter 2, with a special emphasis 

on the auto-optimized raw spectral processing workflow. This chapter introduced the capability 

for users to upload their raw spectral data, initiate processing by simply clicking website buttons, 

and subsequently obtain their raw spectral processing results without the need for manual 

adjustment of parameters for the centWave algorithm (an example results page is depicted in Figure 

6.1). Similar to the MetaboAnalystR 3.0 package, the MetaboAnalyst website exclusively employs 

an auto-optimization pipeline for the centWave algorithm. 

When compared to another widely used online web-based tool for raw spectral processing, XCMS 

Online, MetaboAnalyst has an advantage in terms of parameter optimization functionalities. 

However, it's important to note that the version of MetaboAnalyst in this context lacks MS/MS-

based compound identification due to the absence of a connecting algorithm and reference libraries 

within MetaboAnalystR 3.0.  

Hence, in Chapter 4, our focus shifted towards refining the workflow for processing LC-MS/MS 

raw spectral data, resulting in the development of the latest iteration, MetaboAnalystR 4.0. 

Compound identification in global metabolomics poses challenges when contrasted with targeted 

metabolomics, which relies on established standards (278). MS/MS-based metabolite 

identification stands out as the predominant approach, primarily due to its independence from 

standards. However, MS/MS-based compound identification is characterized by reduced accuracy 

and increased complexity due to the heterogeneous nature of publicly available MS/MS reference 
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libraries. Over the past decades, several algorithms have been devised to process MS/MS spectral 

data. Regrettably, none of these algorithms have exhibited precise compound identification. 

Consequently, a series of additional compound identification steps must be undertaken prior to 

leveraging the compound information for subsequent functional interpretation. 

In more detail, the issue of contamination is widespread in DDA spectral data and necessitates 

thorough cleansing for increased result accuracy. Until recently, two algorithms have been 

developed specifically for purging chimeric DDA spectra: DecoID (190) and MS2Purifier (77). 

DecoID employs a linear regression of spectral references to eliminate contamination fragments. 

However, this approach can result in failed deconvolutions due to the absence of spectral 

candidates for certain contaminants. MS2Purifier, on the other hand, distinguishes between 

contaminated and true fragments by assessing elution profile similarities. The incorporation of a 

machine learning model enables the recognition and elimination of contaminated fragments.  

In Chapter 4, MetaboAnalystR 4.0 integrates a network-based spectrum prediction model to tackle 

the issue of chimeric spectra. Unlike MS2Purifier, MetaboAnalystR 4.0 primarily relies on an 

auto-optimized linear regression model and the spectrum prediction model to eliminate 

contamination. In terms of algorithmic nature, MetaboAnalystR 4.0 can be complementary with 

MS2Purifier, which may need more demonstration and comparison in the future. 

Raw LC-MS spectral processing stands as the foremost critical aspect addressed within this thesis. 

Nevertheless, functional analysis takes precedence after raw spectral processing in order to glean 

valuable biological insights. Pathway enrichment analysis has proven precise for targeted 

metabolomics due to its accurate quantification and compound identification. In global 

metabolomics, the functional analysis is facilitated through the utilization of the Mummichog 
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algorithm. In Chapter 2, we enhanced the original Mummichog algorithm by incorporating m/z and 

RT information, thereby augmenting the accuracy of pathway perturbation prediction. 

Moving into Chapter 3 and building upon the functionalities present in MetaboAnalystR 3.0, we 

have further refined the functional analysis process. This was achieved by introducing metabolic 

pattern-based functional analysis and conducting functional meta-analysis across multiple datasets. 

Unlike targeted metabolomics (95, 100), functional analysis in the context of global metabolomics 

capitalizes on the clustering effect exhibited by perturbed metabolites within their respective 

pathways. All information of the global metabolomics is included to evaluate the functional 

perturbation. In this vein, Chapter 3 not only expands the scope of functional analysis of global 

metabolomics data but also introduces a user-friendly interface meticulously designed to facilitate 

comprehensive analysis. This is a novel contribution to global metabolomics field. 

To further enhance biological exploration and maximize the utilization of information within MS 

data, Chapter 4 introduces the integration of MS/MS into the functional analysis workflow. The 

incorporation of MS/MS-based compound identifications serves to filter out impractical empirical 

compounds used for pathway prediction. This refinement results in a significant enhancement of 

the discovery of biological insights. At its current stage, MetaboAnalystR 4.0 also accommodates 

results from other raw spectral processing tools such as MS-DIAL/MS-Finder and SIRIUS, 

enabling a comprehensive approach to functional analysis. As the platform is still under review, 

additional functionalities will be incorporated to facilitate connections with other widely used tools. 

Since the emergence of the COVID-19 outbreaks in late 2019, understanding the pathogenesis of 

this severe respiratory disease has emerged as a paramount concern for both clinicians and 

researchers. Simultaneously, numerous metabolomics studies have been conducted to identify 

perturbations in metabolic profiles. However, the heterogeneity of metabolomics platforms and 
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sample processing has led to a considerable degree of variability and inconsistency in results for 

certain cases. Against this backdrop, Chapter 5 undertakes a comprehensive meta-analysis. Its 

primary objectives are to assess the performance of functional analysis algorithms and, 

concurrently, to offer a comprehensive overview based on evidence gleaned from multiple 

metabolomics datasets. Consequently, the metabolic pathways we elucidated through functional 

meta-analysis have demonstrated consistency with other clinical researches, as discussed in 

Chapter 5. This study not only validates effectiveness but also strengthens the comprehension of 

the pathogenesis from a metabolic perspective. 

 

Figure 6.1. Overview of MetaboAnalyst and MetaboAnalystR. MetaboAnalyst and 

MetaboAnalystR focuses on comprehensive support for LC–MS-based global metabolomics 
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including spectral processing, functional interpretation, statistical analysis with complex metadata, 

and multi-omics integration. ROI, regions of interest; DoE, design of experiments. 

 

Finally, both MetaboAnalyst and MetaboAnalystR stand as comprehensive toolkits equipped with 

functionalities tailored for both targeted and untargeted metabolomics. In its earlier versions (v1.0-

v3.0) (154, 155, 157), the MetaboAnalyst website primarily focused on statistical and functional 

analyses of targeted metabolomics. In the initial iterations of MetaboAnalystR (v.1.0-v.2.0) (105, 

122), its primary role was to reproduce website results. However, with the release of 

MetaboAnalyst version 4.0 and MetaboAnalystR version 3.0, a growing array of features dedicated 

to processing untargeted metabolomics data has been introduced. These functionalities constitute 

the core elements of this thesis. 

Encompassing statistical analysis, integration of multiple omics data, raw LC-MS spectral 

processing, and functional analysis utilities, both MetaboAnalyst and MetaboAnalystR have 

evolved into comprehensive toolkits offering all-encompassing functionalities for the analysis of 

global metabolomics data, as shown in Figure 6.1 (277). 

6.3 Strengths 

MetaboAnalyst and MetaboAnalystR stand out as the most comprehensive toolkits, as described 

earlier. In addition to these attributes, there are several key features that contribute to the superior 

performance of MetaboAnalyst and MetaboAnalystR. 

Firstly, MetaboAnalystR has established an auto-optimized workflow for both MS and MS/MS 

data processing. This aspect is vital for achieving optimal outcomes without the need for manual 
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parameter adjustments. Nonetheless, advanced users also have the option to customize parameters 

manually.  

Secondly, the parameters' optimization process is both automatic and exceptionally rapid. 

Optimizing parameters for MS1 data processing typically takes minutes to a maximum of two 

hours, even on a standard laptop. In contrast, other automatic parameter optimization tools, like 

IPO, might take days or even weeks for parameter refinement. The linear regression model 

employed for DDA MS/MS data deconvolution is also swift and automatic. The algorithm 

incorporates a penalized elastic net model that achieves real-time optimization of critical 

parameters within milliseconds, ensuring optimal deconvolution outcomes without manual 

intervention. 

Thirdly, diverse MS/MS reference libraries have been curated to cater to various studies or sample 

types, such as biological, lipidomics, and exposomics studies. MetaboAnalystR supports searches 

within these MS/MS reference libraries. These libraries have been assembled from public 

repositories to ensure comprehensive metabolome coverage. Importantly, the entries within these 

libraries are meticulously categorized based on MS instrumental types and adduct information, 

further enhancing accuracy and coverage. 

Fourthly, functional analysis of global metabolomics data has undergone significant enhancement 

through the integration of RT and MS/MS candidates with m/z values, resulting in improved 

accuracy. Standards-based and labor-intensive compound identification procedures can now be 

circumvented directly. Moreover, functionalities established in this thesis has empowered users to 

engage in meta-analysis of metabolomics datasets at the pathway level, bolstering result 

confidence through multiple similar or complementary metabolomics studies. This represents a 

substantial advancement. Furthermore, pattern-based metabolic pathway perturbation prediction 



198 
 

empowers users to conduct precision exploration of distinct feature clustering patterns within the 

entire metabolome.   

Lastly, a series of user-friendly interfaces (UIs) have been developed to facilitate these 

functionalities, encompassing auto-optimized MS processing and comprehensive functional 

analysis of metabolomics datasets, among others. These UIs enable non-programming users to 

conveniently upload and process their data. Crucially, these interfaces empower users to intuitively 

and interactively explore their data for biological insights. Reproducing results from the 

MetaboAnalyst website using the local R package is also seamless. 

Besides, as a comprehensive toolkit, MetaboAnalyst and MetaboAnalystR have been regularly 

updated and maintained in response to user feedback. When compared to the previous versions 

and other popular tools in the field, the latest iterations of both MetaboAnalyst and 

MetaboAnalystR boast the most stable and comprehensive functionalities for processing global 

metabolomics data. 

6.4 Limitations 

While MetaboAnalyst and MetaboAnalystR possess distinctive features, certain limitations persist. 

For the MetaboAnalyst website, a restriction emerges due to proprietary formats and the 

substantial file sizes produced by LC-MS instruments. Presently, MetaboAnalyst does not support 

the upload of raw spectra in vendor-specific formats. Consequently, raw data from various MS 

instruments necessitates preliminary conversion into an open data format using either a vendor-

provided conversion tool or a free alternative such as ProteoWizard. 

Furthermore, the public iteration of MetaboAnalyst currently imposes a cap on the processing of 

raw spectra, limiting it to a maximum of 200 samples per job. This limitation, in our experience, 
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typically accommodates common metabolomic studies efficiently. For expansive projects, users 

are encouraged to conduct spectra processing locally utilizing MetaboAnalystR. Neither 

MetaboAnalyst nor MetaboAnalystR currently facilitate the processing of spectra from GC-MS or 

ion mobility spectrometry, which are commonly employed within global metabolomics. 

Moreover, flow-injection and direct injection mass spectrometry have gained traction in profiling 

the metabolic or ionic composition of samples, particularly for large-scale sample assays (27, 279). 

By bypassing chromatography-based separation and directly injecting samples into the MS 

instrument, data acquisition is expedited and batch effects are minimized. However, neither 

MetaboAnalyst nor MetaboAnalystR support the processing of flow/direct injection data, 

constituting an additional limitation. 

As of now, only the MetaboAnalystR package has an implemented MS/MS data processing 

algorithm. A UI-based platform is not currently available, necessitating the use of the R/RStudio 

console for MS/MS data analysis. The MS/MS data processing pipeline within MetaboAnalystR 

4.0 has exclusively undergone benchmarking against a selection of popular data processing tools, 

each with their comprehensive raw data processing workflows. Other contamination removal 

solutions, such as MS2Purifier, require further evaluation and comparison. 

Functional analysis and integration in MetaboAnalyst mainly focus on biological samples, while 

environmental and industrial samples are not well supported owing to lack of well-established 

conceptual frameworks and knowledgebases required for these types of analysis. 

6.5 Future directions 

To address the aforementioned limitations, our forthcoming efforts will center on the development 

of additional algorithms to facilitate data processing for flow/direct injection and ion mobility MS 
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data. This could further enhance the raw data processing ability of MetaboAnalystR package. 

Furthermore, plans are in place to seamlessly integrate MS/MS data deconvolution and reference 

library search functionalities into the MetaboAnalyst website with user-friendly UIs, ensuring their 

availability in the subsequent release.  

In parallel with the expansion of functionalities, an essential aspect involves conducting further 

case studies and benchmark evaluations. This will enable comprehensive comparisons and 

assessments of the performance exhibited by newly introduced MS data processing pipelines, such 

as asari (205). Additionally, for MS/MS DDA data deconvolution, conducting extensive 

comparisons with other robust tools like MS2Purifier will be crucial. Through such comparisons, 

we can further refine and enhance performance by harnessing the potential of machine-learning-

based models. 

Furthermore, an imperative aspect involves the undertaking of additional biological studies to 

further assess the efficacy of functional analysis. Within this thesis, we conducted a meta-analysis 

on seven COVID-19 metabolomics datasets. Since the emergence of COVID-19, the landscape 

boasts a proliferation of over a hundred metabolomics publications. This surge in data prompts the 

necessity for a more expansive meta-analysis across these datasets. Such an undertaking holds a 

two-fold objective: firstly, to comprehensively evaluate and refine the algorithm's performance; 

and secondly, to enhance the understanding of COVID-19's pathogenesis from a metabolic 

perspective. 
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Chapter 7: Conclusions and Future works 

MetaboAnalystR 3.0 in Chapter 2 has created an auto-optimized LC-MS raw data processing 

workflow, which could process raw LC-MS data to obtain optimal results automatically in a 

highly-efficient way. The pipeline has been implemented into MetaboAnalyst website (v5.0, 

Chapter 3) to offer an intuitive and easy-to-use interface for users. Data deconvolution 

functionalities created in MetaboAnalystR 4.0 (in Chapter 4) has also enabled the processing of 

LC-MS/MS raw spectral data (for DDA and SWATH-DIA) in a high-precision and ultra-fast 

approach. Multiple comprehensive reference MS/MS library options further allow users mining 

the chemical candidates based on MS/MS. 

Function analysis of global metabolomics dataset has also been updated by integrating RT and 

MS/MS identification information in MetaboAnalystR 3.0 and 4.0, respectively. A user-friendly 

interface has enabled users to perform function analysis either based on the complete 

metabolomics dataset or a pattern of metabolomics features in MetaboAnalyst website. Besides, 

the implementation of functional meta-analysis in the website has further empowered the 

biological interpretation from multiple metabolomics datasets. The efficacy of functional analysis 

and functional meta-analysis has been demonstrated by a COVID-19 study (in Chapter 5). 

Other utilities for metabolomics data processing, including batch effect correction and multi-omics 

integrative analysis has also been offered, together with the main features above. 

In summary, MetaboAnalystR and MetaboAnalyst offers a comprehensive and powerful toolkit to 

bridge LC-MS and LC-MS/MS raw spectral processing to accurate functional analysis.  

Moving forward, both MetaboAnalystR and MetaboAnalyst does not support processing ion 

mobility spectral data, direct injection and flow-injection spectral data at current stage. The related 
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functionalities will be achieved in the future release. Besides, LC-MS/MS raw spectral processing 

is only available from MetaboAnalystR package. A user-friendly interface for LC-MS/MS would 

be released in the next version MetaboAnalyst website (v6.0). 
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