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Abstract 

In the mining industry, the selection of the location of a given piece of infrastructure is one of the 

most critical decision-making problems; some examples of infrastructure in the mine are the 

concentrator plant, the workshops, the waste dump, the tailing pond, the warehouse, the shaft, 

and others. Among all these, the shaft is one of the most expensive infrastructures in the lifetime 

of the underground mine. The principal function of a shaft is to transport ore, materials utilities, 

and the staff from the mine to the surface and vice versa, in addition is often the sole access to 

the underground operations. Given that the shaft location significantly affects the profitability 

and underground operations at a mine, its location is a key consideration in the mine design 

process. 

Selecting the shaft location is a complex process influenced by various factors, the primary ones 

being the positions and shapes of the orebodies, ore tonnage, rock characteristics, sinking 

method, mining equipment, and presence of water. The cost of excavating and transporting the 

ore, which depends on a complex combination of these factors, serves as the principal metric to 

evaluate the shaft location selection. Additionally, due to the high level of uncertainty around 

some of the problem’s parameters, the selection of the shaft location can also be seen as a high-

risky decision-making process. 

In this research study, a technically feasible polygon is initially defined for shaft localization, then 

it is discretized on the surface. For each discrete pattern a shaft sinking cost is calculated using a 

robust cost estimation model, and with the operational cost, the total cost associated to this 

discrete pattern is obtained. The best location for the shaft will be the grid cell with the minimum 

total cost. Given that there are many parameters are uncertain in this localization problem, a 

Monte-Carlo scheme is applied to evaluate the associated risks. The proposed methodology is 

tested through a case study. It provides a framework to facilitate the selection of the shaft 

location while considering the inherent uncertainties associated with some of the project 

parameters. 
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Résumé 

Dans l'industrie minière, le problème de décision de l'emplacement d'installation se révèle 

d’importance critique; quelques exemples d'installation liés à l’industrie minière peuvent être 

par exemple l’usine de traitement du minerai, les ateliers de maintenance, la verse à stérile, le 

parc à résidus, l'entrepôt, le puits, et encore d’autres. Parmi toutes ces installations, le puits est 

l'une des installations les plus coûteuses construite au cours du cycle de vie de la mine 

souterraine. La fonction principale d'un puits est de transporter le minerai, les matériaux, et le 

personnel de la mine vers la surface et vice versa, étant dans de nombreux cas le seul accès vers 

les opérations souterraines. Étant donné que l'emplacement du puits affecte considérablement 

la rentabilité et les opérations souterraines d'une mine, son emplacement est un facteur clé dans 

le processus de conception de la mine. 

La sélection de l'emplacement du puits est un processus complexe influencé par divers facteurs. 

La position et la forme des corps minéralisés, la quantité de minerai, les caractéristiques de la 

roche, la méthode d’excavation du puits, l'équipement minier et la présence d'eau sont les 

principaux facteurs à considérer. Les coûts d'excavation et de transport du minerai, qui 

dépendent d'une combinaison complexe de ces facteurs, servent de métriques principales pour 

évaluer un choix de placement de puits minier. De plus, en raison du niveau élevé d'incertitude 

entourant certains des paramètres du problème, la sélection de l'emplacement du puits peut 

également être considérée comme un processus de prise de décision risqué. 

Dans cette étude de recherche, un polygone techniquement faisable est initialement défini pour 

la sélection de l'emplacement du puits. Ensuite, ce polygone est discrétisé en surface. Pour 

chaque patron discret, un coût d'excavation de puits est calculé à l'aide d'un modèle d'estimation 

de coût robuste, et avec le coût opérationnel, le coût total associé à ce patron discret est obtenu. 

Le meilleur emplacement pour le puits sera la cellule de la grille avec le coût total minimum. Étant 

donné qu'il existe de nombreux paramètres incertains dans ce problème de sélection 

d'emplacement, un schéma de Monte-Carlo est appliqué pour évaluer les risques associés à ces 

incertitudes. La méthodologie proposée est ensuite appliquée à une étude de cas. Cette 
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montrent que la nouvelle approche fournit un cadre pour faciliter la sélection de l'emplacement 

d’un puits de mine, tout en prenant en compte les incertitudes inhérentes associées à certains 

des paramètres du projet. 
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1 Introduction 

 

1.1  Problem Statement 

A shaft is a vertical infrastructure that connects the surface with the production zones of an 

underground mine. The shaft is among the most critical pieces of infrastructure in an 

underground mine because it is an expensive investment that will be used during the entire life 

of the mine. The shaft location selection directly affects the production rate and materials 

handling costs. In other words, time and cost directly depend on this selection decision.   

Selecting the shaft location is a complex process influenced by various factors, including orebody 

position and shape, ore tonnage, mining equipment, geomechanics condition and presence of 

water. The cost of excavating the shaft and transporting the ore depends on a complex 

combination of these factors and serves as the principal metric to evaluate shaft position. The 

cost of excavating the shaft depends on the sinking method chosen and the conditions present 

during sinking, which can vary among location. The shaft sinking is the process to excavate the 

rock-mass between the surface and the operating zone of the underground mine. This variability 

makes estimating the sinking cost difficult and has led to the lack of a universally accepted cost 

estimation technique. Also, the uncertainties in the parameters and the knowledge of the 

orebody to be exploited affect the underground mine design and location of facilities. 

Given the uncertainty in the parameters involved in the underground mine design process, 

selection of the shaft location can also be seen as a high-risk decision-making process. An 

appropriate approach is necessary to minimize the associated global costs, that is, all costs that 

can vary with a given location of the shaft. These include the cost of sinking, of transporting ore 

from the orebody sectors to the shaft, and of drift excavation from the shaft to the orebody 

sectors. This new approach of shaft location selection needs to be accompanied by a robust cost 

estimation of shaft sinking, as this process is influenced by diverse factors. 
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1.2  Research Objectives 

• Identify the factors affecting shaft selection in underground mines 

• Propose a new approach to select shaft location, considering the cost of sinking the shaft 

and other technical factors 

• Develop and apply a new cost model for shaft sinking, considering the principal influential 

factors, such as rock mass quality and water conditions 

• Assess risks associated with the uncertainty of the mineral contained in the orebody in 

relation to the location of the shaft 

1.3 Economic Benefits 

The principal economic benefit is minimizing the global cost related to the shaft through a 1) 

location selection approach and 2) cost estimation technique. According to InfoMine (2021), 

shaft sinking represents 40–50% of the global cost related to the shaft; conditions surrounding 

shaft sinking can make the global cost vary by up to an additional 15%. Furthermore, evaluating 

uncertainty associated with ore tonnage will help decision-makers mitigate the effect of 

unexpected realizations. Thus, optimizing shaft localization will also reduce ore and worker 

transportation costs.   

1.4 Originality and Success 

The originality of this research lies in proposing a new shaft localization method based on a new 

cost estimation approach tailored to underground mines that considers the uncertainty of the 

ore tonnage. 

1.5  Thesis Organization 

This research is organized in the following chapters: 

Chapter 1 introduces the research with the statement of the problem, the aims, the economic 

benefits, and the originality of the research. 
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Chapter 2 reviews existing literature about facility localization. 

Chapter 3 introduces a methodology for selecting shaft location, considering the investment cost 

in shaft sinking and a new approach for this cost estimation. 

Chapter 4 presents a case study to demonstrate the performance of the proposed approach. 

Chapter 5 assesses risks associated with ore tonnage linked to the selection of the shaft location. 

Chapter 6 provides the conclusions and future work for new researchers.  
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2 Problem Description and Literature Review 

 

2.1 Mining Shaft Infrastructure 

2.1.1 Shaft versus inclined drift (ramp) 

A critical decision in underground mine design is the material handling and worker transportation 

system. In other words, the decision-making problem is whether mine access will be through a 

shaft or inclined drift (Figure 2.1). A shaft is vertical infrastructure, and an inclined drift is a 

secondary or tertiary inclined (horizontal or subhorizontal) development opening. Both shafts 

and inclined drifts are used to transport ore and waste from the mine to the surface, and 

equipment, materials, and workers to and from the surface. 

  

Figure 2.1. Two possible access routes in an underground mine 

 

Hartman and Mutmansky (2002 indicated that shaft requires more cost per meter than the 

inclined drift, but after certain deep, the shaft will be the only acceptable opening for a profitable 

mining project. Bloss, Harvey, Grant and Routley (2011) compared the different ore-handling-

system for different access models, considering different factors such as the safety and health, 

capital cost, capacity, economic, flexibility, reliability and operability. From this reference, a shaft 

has the following benefits. 



5 
 

• Lower costs of transporting ore and waste from the mine to the concentrator plant and 

waste dump, respectively 

• Higher production capacity due to more rapid transportation of the ore from the mine to 

the concentrator plant 

• Lower ventilation costs and greenhouse gas emissions because inclined drift access 

requires the use of trucks 

• Faster transportation of the workers from the surface to the work zone and back up to 

the surface 

• Lowe costs as mine goes deeper 

• Safer in poor rock quality 

• Less time required to construct in deep orebodies 

• Less accident probability because there are no trucks and vehicle 

• Less maintenance costs due to shorter distance of access 

2.1.2 Shaft types 

Shafts can be classified according to shape or slope. Tuck (2011) concluded that the circular shafts 

were the most common access to underground due to the higher stability of a circular excavation 

in contrast to a rectangular, and other shapes, such as elliptical. Other factors impacting the 

shape of the shaft are the purpose of the shaft, the size of the equipment that will be moved by 

shaft and the expected lifetime of shaft. Regarding to the slope, vertical (90° from horizontal) 

shafts are the most common due to their capacity to transport not only the material but also, 

equipment and workers using a skip and hoisting system and the possibility to reach deeper 

areas. USACE (2014). Inclined shafts are most commonly between 60 to 80°, they are used to 

move principally ore and waste due to the inclination, while the transportation of personnel and 
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material is limited, the inclined shafts were more preferred in coal mining due to the shape and 

geometry of the orebodies (Figure 2.2). 

 
Figure 2.2.- Comparison between Vertical shaft and Inclined shaft 

 

2.1.3 Methods to sink shafts 

Conventional sinking uses drilling and blasting (Figure 2.3). It was the most used method before 

mechanical excavation was possible. Although it is relatively inexpensive, it is labor-intensive, 

requires a longer sinking time, and is prone to safety problems.  

 
Figure 2.3.Conventional sinking (White, 2011) 
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Mechanical sinking is relatively new and has been adopted around the world since it is less labor-

intensive, safer, and allows a more rapid advance in blind shafts. Neye et al. (2015) provide some 

examples of the machines developed for mechanical sinking (Figure 2.4). 

 
Figure 2.4. Shaft boring machine (SBM), shaft boring roadhead (SBR), and shaft boring cutterhead (SBC) (Neye et al., 2015) 

 

2.2 Cost Estimation Methods 

The cost estimation methods are techniques used to estimate costs. Two commonly used 

methods for cost estimation are the Quantity-Based Method and the Cost-Based Method. 

2.2.1 Quantity-Based Method 

This method estimates the cost through the quantities and resources required to complete the 

project. The quantities and resources estimated (e.g., labor, materials, energy) will be multiplied 

by their respective unit costs to calculate the total cost of the project. 

The principal advantage of this method is to provide detailed cost estimation, breaking down the 

total project cost in the resources required. However, this method can not be used in the early 

stages of the project since the quantities required are still not defined completely. Additionally, 
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other factors that can affect the project's total cost (e.g., efficiency or productivity) are not 

considered. 

2.2.2 Experience-Based Method 

This method estimates the overall cost of the project using the information of historical data of 

similar projects. It requires an analysis of the historical data and comparison with the conditions 

of the new project; it involves the use of cost models, the judgment of the estimator, and other 

characteristics.   

The advantages of this method are the consideration of a project's unique characteristics, relying 

on the information of the historical data with similar conditions. Nevertheless, this method needs 

accurate historical data that sometimes may not be available. 

2.3 Cost Estimation Models 

The cost estimation models are mathematical process that has been applied in different domains, 

nevertheless, this process has been increased in accuracy and complexity after the development 

of computer processors, after which several cost estimation approaches have been proposed. 

Layer, Brinke, Houten, Kals and Haasis (2002) classified trends in cost estimation. Hashemi, 

Ebadati and Kaur (2020) extended this classification (Figure 2.5) by compiling information from 

projects spanning over 30 years. They collated and compared cost estimation methods from a 

variety of fields (e.g., building projects, public projects, roadway projects). They reported that 

68% of the operations under their research used analogous approaches, 28% parametric, 3% 

intuitive and 1% analytical.  Among all the analogous and parametric approaches, regression 

analysis, artificial neural networks, and case-based reasoning (CBR) have been the most widely 

adopted. Kim, An and Kang (2004) elaborated a comparison between these three approaches 

used in building industry cost estimation. Table 2.1 shows a comparison through the advantages 

and disadvantages of these three approaches in the context of cost estimation in general.  
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Figure 2.5. Cost estimation methods (modified for the mining industry from Hashemi et al., 2020) 

 

Table 2.1. Advantages and disadvantages of three cost estimation methods (adapted from Kim et al., 2004) 

 Multiple Regression 
Analysis 

Artificial Neural Networks  Case-Based Reasoning 

Advantages 
A simple and easy to apply 
Allowing statistical 
inference  

More accurate for cost 
estimation than regression 
model 
Unrestricted number of 
inputs and outputs  

Handling projects with 
complex and dynamic inputs 
Can consider the new 
estimations as a new case 
learned for future process 

Disadvantages 

Based on historical data, 
therefore may not replicate 
a future cost estimation  
May not generate a good fit 
to measured data 

Trial-and-error process to 
determine neurons is time-
consuming 
Requires large dataset 
Arbitrary selection of some 
parameters 

Depends on the quantity of the 
data available for the 
estimation 
The division of the range in 
some influencing factors can 
be subjective and bias the 
results 

Cost Estimation Models

Quantitative

Parametric

Regression 
Analysis

Cost Model

Monte Carlo

Model and Cost 
Data

Analogous

Artificial Neural 
Networks 

(ANNs)

Fuzzy ANNs

Case-Based 
Reasoning

Expert system

Support Vector 
Machine

Analytical

Decision Tree

Qualitative

Intuitive

Analytical 
Hierarchical 

Process
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The CBR is an approach widely used in cost estimation, specially in construction industry. Kim et 

al. (2004) conducted a comparison on 40 projects, evaluating the three approaches mentioned 

before. The results demonstrated that CBR and artificial neural network had a better 

performance than the multiple regression analysis. CBR exhibited superior clarity in the 

explanation of the cost estimation process. Moreover, CBR had more advantages in long-term 

applications. Koo, Hong, Hyun and Koo (2010) presented a CBR-based hybrid model for the cost 

prediction in building industry. Different techniques were mixed with the CBR to improve the 

results in cost estimation, the techniques used were the artificial neural network, multiple 

regression analysis. These techniques focused in two principal factors of the CBR, “the type of 

attribute weight” and “the minimum criterion for scoring the attribute similarity”. The 

optimization was completed using genetic algorithms, improving the accuracy and flexibility of 

CBR.  Ji, Park and Lee (2011) employed CBR for cost estimation. In their study, an optimization 

process was applied to define the scoring and weight of the attributes (two process that have not 

find consensus of best approach until today). The suggested methods for the optimization in the 

attributes were the Euclidian distance-based similarity and the genetic algorithms. 

Zima (2015) applied CBR for cost estimation in the preliminary stage of a construction project. 

The author noted that CBR is simple and accurate. However, the method has drawbacks, such as 

a lack of the differences that should exist in the cost structures due to the different locations and 

time gap between the new projects and the projects in the database and the large amount of 

data required for the transformation process. Ji, Ahn, Lee and Han (2019) overcame some 

drawbacks through a modified CBR model that applied a quantity-based method for cost 

estimation and a parameter-making process. The modified CBR model proved to be better than 

the typical CBR through a case study in the cost estimation for construction projects.   

2.4 Cost Estimation in the Mining Industry 

Cost estimation in the mining industry has been a major topic because mining operations require 

high capital and operating costs. Therefore, the accuracy of cost estimation is critical.  

Nevertheless, there is no single method applied for the cost estimation of the underground mine. 
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The initial stages of cost estimation in the mining industry are related to the engineers' 

experience involved in the estimation and the available data at that moment (experience-based 

method). These estimations did not have a robust mathematical procedure and lacked accuracy. 

O’Hara (1980) proposed a cost estimation model for underground and open-pit mines based on 

the actual costs of mining projects, principally in Canada, for fifteen years. The cost estimation 

was divided into different categories, such as capital cost, equipment, maintenance, 

development, shaft sinking, plant concentrator, and others. Figure 2.6 shows an example of this 

method for the cut & fill method, with different dimensions of stopes.  

 
Figure 2.6. Curves for cost estimation for cut and fill mining (O'Hara, 1980) 

 

With the graphic created the equation (2.1) is used to estimate new values for future projects. 

𝑥 = 𝑎 ∗ (𝑦)𝑏 (2.1) 
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Where a and b are values based on a regression model that depend on mining and excavation 

methods, rock characteristics, and geology; x is the estimated cost; and y is the parameter in 

question (e.g., capacity, production tonnage, diameter, or length). The production tonnage is the 

most used parameter. This type of equation ignores the time effect associated with inflation. 

Therefore, it should be used with an appropriate cost index. 

Stebbins (2011) described a cost estimation process for underground mines based on the two-

step process. The first step determines the distance required for openings (e.g., shaft, ramps, and 

drift) from the surface to the production area. Three principal parameters, the equipment, labor, 

and supply requirements, are estimated according to these distances. It is a common practice to 

use different mathematical approaches to estimate the distance required to reach production 

zones. The other option is based on the use of stope models. A preliminary design of the stope 

according to the mining method is made. Figure 2.7 shows an example of the stope model for cut 

and fill, with the respective opening required. Camm and Stebbins (2020) published a handbook 

for pre-feasibility cost estimation with stope models for the principal methods for underground 

mining. 

The second step of the estimation process is the determination of the cost parameters. After the 

application of the production rates in the first step, the cost of them if found regarding the 

selected mining method. Supply material, workforce and equipment costs fitting can be found in 

the mining handbooks (e.g., InfoMine USA, Inc.). This cost structure should be updated as 

macroeconomic parameters change.   
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Figure 2.7. Example of costs associated with cut and fill model (Camm & Stebbins, 2020) 

 

The two processes presented above could estimate the costs for the shaft sinking as part of the 

underground mine cost estimation analysis, nevertheless, due to the conditions for shaft sinking, 

mining companies commonly work with specialized contractor companies. During the tender 

process, contractors can estimate costs with a high degree of accuracy and help avoid 

unexpected costs. The contractor with the lowest bid wins the contract. 

2.5 CBR background 

CBR is a knowledge-based system that solves problems through experience accumulated of 

previous projects: the similarity in the previous projects is kept in memory and used in future 

projects. In other words, previous cases are adapted to a new query project through numeric and 

non-numeric parameters. CBR has its origins in the late 1970s and is strong potential to benefit 

from emerging artificial intelligence techniques. 

CBR appeared In the 1980s. The application of this method was in medicine in the early 

development. Emerging data management and updating methods improved the process of 

problem solving and modifying the database cases to create a better fit for the new query 

problem, extending his applications to estimations in industrial process, agriculture, banking, cost 

estimation, supplies, and others. Prentzas and Hatzilygeroudis (2011) compiled CBR applications 
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in various disciplines (e.g., medicine, banking, construction, agriculture), either alone or 

integrated with other artificial intelligence methods.  

In this research, the new query project will be the estimation of the shaft sinking cost for 

underground mines. CBR is based on the four principles listed below (Lopez, 2013). 

1. Analogical reasoning is a type of artificial intelligence. It compares two or more projects 

or objects and uses their similarities to make predictions about new projects or objects. 

2. Knowledge representation and reasoning is another component of artificial intelligence. 

The objective is to represent the characteristics or conditions of a project in a way that 

can be read and processed by a computer.   

3. Machine Learning is integrated in CBR through memory-based learning, in which the 

available training data are stored until a new prediction is required and the computing 

process starts. 

4. Mathematical foundation methods provide similarity measures that allow the retrieval 

of similar cases for solving new query cases.  

There are many ways to manage the CBR process. Table 2.2 shows different versions that can be 

configurated, according to the requirements of the problem that is being solving. 

Table 2.2. Case-based reasoning systems (Lopez, 2013) 

Knowledge Source Function Organization Distributive Class 

Structural 

Textual 

Conventional 

Temporal 

Images 

Classification 

Recommendation 

Tutoring 

Planning 

Monitoring 

Knowledge management 

Sole 

Multi-level 

Hybrid  

Meta  

Single memory 

Multiple memories 

Single agent 

Multiple agents 

 

The data organization can be plain or hierarchical (Figure 2.8). This different representation and 

order will be important when the CBR process generates code. The way the data are organized is 

significant because the new query project analysis will use the database (Bichindaritz, 2008). 

Table 2.3 shows the advantages and disadvantages of these data organizations. 
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Figure 2.8. Information organization of case-based reasoning, where the influential factors are {A,B,C,D} 

 

Table 2.3. Advantages and disadvantages of data organization 

Data Organization Plain Hierarchical 

Advantages 

i. requires less effort to 
implement due to its simplicity 

ii. can be adapted to different 
conditions of database 

improves the process of data 
selection since the data is 
presented in an order 
 

Disadvantages 
treats all the information in the 
database as the same categories 

less adaptable for different 
conditions of the database 

 

2.5.1 K-Nearest Neighbors (K-NN) Background 

K-NN is a principal algorithm in the machine learning field (Cover & Hart, 1967). It is a non-

parametric, instance-based learning technique used for classification and regression tasks. K-NN 

operates on the principle of similarity: it classifies or predicts a new input based on the average 

value of its K nearest neighbors in the dataset (Han, Kamber, & Pei, 2011). In conclusion, "K" 
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represents the number of neighbors considered for making predictions. K-NN assumes that 

similar inputs often share similar outcomes. 

The process of applying K-NN involves a straightforward sequence of steps. Given a dataset with 

labeled information, the algorithm calculates the distance between the input data point and 

every other information in the dataset (Han et al., 2011). Common distance between the inputs 

includes Euclidean distance, Manhattan distance, or other custom-defined distances. The next 

step is to select the K-nearest neighbors based on the calculated distances. Choosing an 

appropriate value for K is important, a small K could lead to noise sensitivity, while a large K might 

lead to over-smoothing. 

K-NN has a close similarity to the principles of CBR. Both methods rely on the idea that similar 

cases in a dataset can provide insights into new cases. The link between K-NN and CBR highlights 

the utility of experience-based reasoning in making decisions, whether by the K-NN process or 

by retrieving and adapting solutions using the CBR (Kolodner, 1993). 

2.6 Localization Problems in Mining 

Selecting the location of an underground mine waste dump, tailings pond, processing plant, in-

pit crusher, refuge chamber, and other infrastructure is complex. Mostly it is a cost minimization 

problem related to the capital costs, operating costs associated with haulage, and maintenance 

costs, it can also be a dynamic problem if that facility is moved over time. The principal factors 

impacting the final location of the facilities in mining are geomechanics considerations, orebody 

size, shape and orientation, the location of other facilities, environmental considerations, socio-

economic conditions, legal requirements. 

The geomechanics considerations plays an important role in the location of the facilities, even if 

there are multiple options to support the most difficult conditions of the rock mass, this condition 

is challenging due to the high cost involved in the support or the safety of the personal involved 

in the construction of the facility. Ground and rock conditions of facilities and connection roads 

are critical. 
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The orebody size, shape and orientation are some of the most important factors in facility 

locations selection. The facilities should be as close as possible to the orebodies to minimize 

haulage cost.  

Since the mining production is a sequential operation, many facilities will be related to other 

facilities, for instance, the tailings should be as close as possible to the concentrator plant, or the 

workshops to the points with high density of equipment.  

The environmental considerations are also helpful in the location selection; for instance, the 

presence of rivers can change the final location of a facility. The socio-economic conditions are 

also a factor that facilities can impact a community near to the mine operations, this condition is 

strongly related to the legal requirements, where the space that is available to the use of the 

mine facilities can impact the suitability of the selection of the best position.  

Many research studies have been conducted for the location of mining facilities Over the years 

the research studies have been increasing in complexity and in parameters involved, most of 

them related to open-pit mining industry, the principal objective of these research studies has 

been to involve most of the parameters or impacting factors in the mine.  

For instance, Zambó (1968) introduced a mathematical and graphical procedure to achieve two 

objectives: minimize the movement cost and minimize investment in the transport network.  

Robertson (1982) described a process to select the position of the tailing in a uranium mine, 

following two phases: the preliminary evaluation and the detailed investigation and evaluation, 

where the main options are evaluated through a “Fatal-flaw screening criteria”, considering 

ecological, topography, stability, and other factors. Osanloo and Ataei (2003) elaborated a 

procedure of five stages for the selection of pit rock-dumps, where the locations that are not 

suitable are discarded, and the remaining possible locations are evaluated trough four weighted 

impacting factors: the distance tock haulage, the capacity, the environmental disturbance, and 

rock stockpiling cost. Kumral (2005) proposed a genetic algorithm-based approach to select the 

location of a mineral processing plant for a multi-mine operation.  Akbari, Osanloo and Hamidian 

(2007) proposed a methodology for tailing dam site selection using four significant factors: 
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environmental factors, hydrological factors, geological factors, and cost factors. These significant 

factors were organized by hierarchy and weightings, and the best site was obtained through an 

Analytical Hierarchy Processing. Kumral and Dimitrakopoulos (2008) applied a tabu search 

algorithm, which is based on a local neighborhood search procedure until a termination criterion 

is satisfied to select waste dump locations at an open pit mine, considering the associated 

operational and the capital cost and a given number of possible locations. Fazeli and Osanloo 

(2013) discusses the impact of environmental factors in the mine facility location selection, 

analysing seventeen impacting factors and their respecting environmental components, applying 

Folchi algorithm. The method applied was flexible and allows the ranking of different 

alternatives. Shao, Yang, and Kumral (2023) proposed two models to select the optimal position 

of refuge chambers in underground mines. The models considered the distance between working 

face and refuge chambers dynamically. Also, Shao, Meyrieux, and Kumral (2022) focuses on 

determining a junction location on a shaft to minimize the evacuation distance of worker. The 

problem was formulated as a minimax problem. 

2.6.1 Shaft Location 

Choosing the shaft location selection is a key decision-making problem. The shaft is among the 

costliest of the underground mining operation infrastructure, and in most of the cases it serves 

during the entire lifetime of the mine. Materials handling, worker transportation, maintenance, 

and other activities are directly related to shaft location. The shaft location It is a cost 

minimization problem related to the capital costs, operating costs associated with haulage (i.e., 

excavation of drifts from the shaft to the orebodies, transportation of ore from orebodies to the 

shaft, and total amount of material to be transported through the shaft), and maintenance costs. 

Therefore, it needs a detailed analysis. The techniques suitable to shaft localization can be 

classified into three groups (Farahani & Hekmatfar, 2020): 

• The centroid of masses is used in physics when a point represents the average position 

of a group of points through the coordinates of the points and their weights. Shim and 



19 
 

Siegel (1999) and Chase, Jacobs and Aquilano (2006) used this method for facility location 

problems. This technique is calculated using equation below. 

𝐶𝑥 =
∑ 𝑚𝑖∗𝑥𝑖

𝑛
𝑖

∑ 𝑚𝑖
𝑛
𝑖

; 𝐶𝑦 =
∑ 𝑚𝑖∗𝑦𝑖

𝑛
𝑖

∑ 𝑚𝑖
𝑛
𝑖

 (2.2) 

Where Cx and Cy represent the centroid of masses and the potential new location of the 

facility, xi and yi are the coordinates of the point i and mi is the weight of the point i. 

• The Weiszfeld algorithm is an interactive method to find a median point among a set of 

points, with the principal objective of reducing the sum of the distances from the median 

point to all points. It has been widely used for selecting facility locations for cities (e.g., 

police stations, schools, and others). 

• The Elzinga-Hearn algorithm minimizes the maximum distance between the median 

point and any point in the group of points (minimax formulation). It is used principally for 

the location of emergency or first-aid facilities (Daneshzand & Shoeleh, 2009).  

In addition to these techniques, the studies have been conducted to select a position of the shaft 

that can fit criteria listed above. Initial approach proposed was based on a geometric approach. 

With new computational resources, more parameters (e.g., geomechanics) were ingrained. The 

proposed methodologies expanded such that optimization models and simulation analysis are 

incorporated. 

Lizotte and Elbrond (1985) presented the centroid of masses and the Multifacility Hyperboloid 

Approximation Procedure, a method that uses the Steiner minimal spanning tree, for 

underground mining levels. Bhattacharya (1998) applied the Weiszfeld algorithm for the location 

of the mining facilities, including the shaft. Bhattacharya, Kumar, and Sanjay (2001) assessed 

different algorithms, such as Weiszfeld, Elzinga-Hearn, and Quasi-Newton, considering the 

orebodies and the concentrator plants. Gligoric, Beljic, and Simeunovic (2010) used the network 

optimization to define a set of alternative solutions for shaft location. Subsequently, the 

parameters of transportation cost, total development and operational cost were utilized in the 

Steiner minimal tree, to create an order of the best alternatives for the location of the shaft. 
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Bakhtavar, Yousefi, and Jafarpour (2019) evaluated the selection of shaft location (ventilation 

and production) using a fuzzy multi-objective optimization, adding more parameters to the 

orebody conditions, such as the topography surface.  

The methods above approach the problem as a two-dimensional problem. Since a shaft has a 

vertical direction, the shaft selection problem must be converted from a three-dimensional to a 

two-dimensional problem (Figure 2.9). This conversion can be achieved through different 

techniques, in the research studies reviewed, the principal technique is the orthogonal 

projection. This arrangement will simplify the process and analysis of shaft location. 

 
Figure 2.9. Longitudinal (left) and plan view (right) of a vertical shaft serving three orebody sectors  
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3 Methodology 

 

3.1 New Approach to Shaft Location 

Shaft localization is an optimization problem focused on minimizing costs. It considers three 

parameters: the new approach adds a fourth parameter, the sinking cost, which represents the 

capital costs associated with excavating the shaft by a mechanical or conventional method 

(Figure 3.1). The primary benefit of using this cost model estimation is that it considers the 

conditions encountered throughout the entire shaft axis. 

 
Figure 3.1. Parameters used for the selection of the shaft location 

 

The methodology follows the following steps. 

1. Identify parameters related to the orebody sectors 

Orebody sectors differ qualitatively and quantitatively. The distance between orebody sectors 

and the shaft differs, as do the geologic conditions in drifts. Therefore, three types of 

transportation costs vary from drift to drift (Figure 3.2).  

i. Cost of drift excavation ($/km) that connects the orebody sector and the shaft. 

ii. Cost of transportation ($/km.t) from the orebody sector to the shaft. 

New approach to Shaft 
Location

•Excavation of the drifts from the shaft to the orebodies

•Cost of transportation of the ore from every orebody to the shaft

•Total amount of material production of the structures to be 
transported through shaft

•Sinking cost
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iii. Production (t) is the ore quantities of the orebody sector that will be transported to 

the surface using the shaft. 

 
Figure 3.2. Parameters of the orebody sectors (plan view) 

 

2. Calculate weights of the orebody sectors considering the parameters 

To account for quantitative and qualitative differences among orebody sectors, a weight was 

assigned to each sector from the three costs in step 1. 

𝑊𝑖 =  𝐶𝐷𝑖 + 𝐶𝑇𝑖 ∗ 𝑃𝑖 (3.1) 

Where Wi is the weight of orebody sector i, CDi is the cost of drift excavation for orebody sector 

i, CTi is the cost of transportation for orebody sector i, and Pi = production of orebody sector i. 

3. Create a model considering the cost related to the weight of the orebody sectors 

The total area of the surface was divided into 1 m x 1 m grid cells (Figure 3.3) to assign a total 

operating cost and investment value for any grid cell based on the assumption that the shaft will 

be located in that specific grid cell. The global cost will change at every grid cell.  
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Figure 3.3. Discretization of the area for the model 

 

This total operating cost in a grid cell is: 

𝑔(𝑥, 𝑦) =  ∑ 𝑤𝑖[(𝑥 − 𝑎𝑖)
2 + (𝑦 − 𝑏𝑖)

2]1/2𝑚
𝑖=1  (3.2) 

Where g(x,y) is the total operating cost of the grid cell (x,y); wi is the weight of the orebody sector 

i; (x,y) is the coordinates of the grid cell; ai, and bi are the coordinates of the orebody sector i; 

and m is the number of orebody sectors. 

4. Identify sinking cost according to grid cell characteristics  

Considering the parameters and characteristics of the grid cell, the sinking cost was calculated. 

The factors affecting the investment required for the sinking cost are the length and diameter of 

the shaft, the water, rock mass and weather conditions, and operator skills. Only two of these 

influential factors are subject to change among grid cells: the water and rock mass conditions. 

The remaining factors were assumed to remain constant across all grid cells. 

5. Create a final model considering total operating cost and sinking cost 

The final model considering the total operating and capital costs is as follows: 



24 
 

𝑓(𝑥, 𝑦) =  ∑ 𝑤𝑖[(𝑥 − 𝑎𝑖)
2 + (𝑦 − 𝑏𝑖)

2]1/2 + 𝐼𝑛𝑣(𝑥,𝑦)
𝑚
𝑖=1  (3.3) 

Where f(x,y) is the global total of the grid cell (x,y) and Inv(x,y) is the sinking cost of the shaft in 

grid cell (x,y). 

6. Locate the shaft 

For the final step, the grid cell with the lowest total cost is considered the best location for the 

shaft. 

𝑂𝑝𝑡𝑖𝑚𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑠ℎ𝑎𝑓𝑡 =  𝑀𝑖𝑛[𝑓(𝑥, 𝑦)] (3.4) 

Where Min[f(x,y)] is the grid cell with the lowest global cost. 

3.2 New Approach of Shaft Sinking Cost Estimation 

This research adapts a model developed by Ji et al. (2019) to estimate the cost of shaft sinking 

(Figure 3.4).  

  
Figure 3.4. Cost model developed process (adapted from Ji et al., 2019) 
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3.2.1 Framework selection 

This thesis will consider a single memory / single agent. The four steps for estimating the cost of 

shaft sinking with CBR are as follows (Figure 3.5 and Sections I – IV). 

 
Figure 3.5. Process for the CBR model (adapted from Aamodt & Plaza, 1994) 

 

I. Retrieve 

All data related to the shaft sinking cost are collected. It is essential to identify the characteristics 

or influential factors of the similar cases and then contrast them with the new query project. 

These influential factors can be represented by a Boolean description (two values), multiple 

descriptions (more than two values), or a longitudinal description, which is very helpful because 

some characteristics are exhibited along the axis of the shaft. The data organization used for the 

thesis was the hierarchical organization, due to the advantages showed in Table 2.3. 

The similarity between the new query project and previous projects in the database is assessed 

by considering the influential factors. The similarity can range from 0 to 1 (equation 3.5). 
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𝑆𝑖𝑚(𝑎, 𝑏) = [0,1] (3.5) 

The similarity assessment comprises two stages. The first stage assesses the similarity of two 

influential factors in the evaluation of two projects (equation 3.6). 

𝐹𝑖𝑟𝑠𝑡 𝑆𝑡𝑎𝑔𝑒 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = 𝑆𝑖𝑚(𝑃𝑑(𝑖𝑛), 𝑃𝑞(𝑖𝑛)) (3.6) 

Where Pd(in) and Pq(in) are influential factor numbers “n” of the project in the database and the 

new query project, respectively.  

The first-stage similarity is a function of the distance between the influential factors (equation 

3.7; Lopez, 2013): 

𝑆𝑖𝑚(𝑃𝑑(𝑖𝑛), 𝑃𝑞(𝑖𝑛)) =
1

1+𝑑(𝑃𝑑(𝑖𝑛),𝑃𝑞(𝑖𝑛))
  (3.7) 

Where Sim(Pd(in), Pq(in)) and d(Pd(in), Pq(in)) are similarity and distance, respectively, of the 

influential factor “n” between the new query project and a project in the database d(Pd(in). The 

distance should have the following properties: 

• Identity: 𝑑(𝑃𝑑(𝑖𝑛), 𝑃𝑞(𝑖𝑛)) = 0 

• Non-negativity: 𝑑(𝑃𝑑(𝑖𝑛), 𝑃𝑞(𝑖𝑛)) ≥ 0 

• Triangle inequality: 𝑑(𝑃𝑑(𝑖𝑚), 𝑃𝑞(𝑖𝑜)) ≤ 𝑑(𝑃𝑑(𝑖𝑚), 𝑃𝑞(𝑖𝑛)) + 𝑑(𝑃𝑑(𝑖𝑛), 𝑃𝑞(𝑖𝑜)) 

• Symmetry: 𝑑(𝑃𝑑(𝑖𝑛), 𝑃𝑞(𝑖𝑛)) = 𝑑(𝑃𝑞(𝑖𝑛), 𝑃𝑑(𝑖𝑛)) 

Among the many studies related to the measure of distance, most are defined by the type of 

influential factor (Lopez, 2013), with the following being most important: 

Numeric: 𝑑(𝑃𝑑(𝑖𝑛), 𝑃𝑞(𝑖𝑛)) = |𝑃𝑑(𝑖𝑛) − 𝑃𝑞(𝑖𝑛)| (3.8) 

Ordinal: Features are ordered by categories such as good, bad, and normal. Every category is 

assigned a number, and the numeric distance is applied. 

Nominal: The minor difference between the influential factors generates a zero similarity. 
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𝑆𝑖𝑚(𝑃𝑑(𝑖𝑛), 𝑃𝑞(𝑖𝑛)) =  {
1        𝑃𝑑(𝑖𝑛) = 𝑃𝑞(𝑖𝑛)

0                 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (3.9) 

Structured value: The data belong to a similar ancestor. It is possible to take the distance through 

the nodes that will be crossed from one datapoint to another. 

Heterogeneous: When there are different attributes with different characteristics, it is possible 

to use a numeric distance or a nominal distance according to the characteristics of the attribute. 

Based on the nature of the data, the measure of distance used was numeric and ordinal 

(heterogeneous). Additionally, one measure of distance was added—the similarity between the 

axis conditions of the shaft—because some influential factors require this application. 

The second stage assesses the similarity of the new query project and a previous project in the 

database: 

𝑆𝑒𝑐𝑜𝑛𝑑 𝑆𝑡𝑎𝑔𝑒 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = 𝑆𝑖𝑚(𝑃𝑑 , 𝑃𝑞) (3.10) 

Where Pd is a project in the database and Pq is a new query project. The similarity will range from 

0 to 1. 

𝑆𝑖𝑚(𝑃𝑑 , 𝑃𝑞) = [0,1] (3.11) 

The second analyzes two projects and determines their similarity as a function of the similarities 

between their influential factors. 

𝑆𝑖𝑚(𝑃𝑑 , 𝑃𝑞) = 𝑓 (𝑆𝑖𝑚 (𝑃𝑑(𝑖1), 𝑃𝑞(𝑖1)) , 𝑆𝑖𝑚 (𝑃𝑑(𝑖2), 𝑃𝑞(𝑖2)) , … , 𝑆𝑖𝑚 (𝑃𝑑(𝑖𝑛), 𝑃𝑞(𝑖𝑛))) (3.12) 

Where Sim(Pd(in), Pq(in)) is the similarity of the influential factor “n” between the new query 

project and a project in the database.  

Considering that all the similarities between the influential factor are between 0 and 1, the 

second stage of similarity is the average of these similarities (Lopez, 2013): 
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𝑆𝑖𝑚(𝑃𝑑 , 𝑃𝑞) =
1

𝑛
∗ ∑ 𝑆𝑖𝑚 (𝑃𝑑(𝑖𝑖), 𝑃𝑞(𝑖𝑖))𝑛

𝑖=𝑎  (3.13) 

Where Sim(Pd(ii), Pq(ii)) is similarity of the influential factor “i” between the new query project 

and a project in the database.  

The weight of the influential factors is then added to equation 3.13 to represent the impact of 

the influential factors on the similarity. The weights should sum to 1. The weighted second stage 

similarity measure is applied when the influential factors have a different impact. 

𝑆𝑖𝑚(𝑃𝑑 , 𝑃𝑞) = ∑ 𝑤𝑖 ∗ 𝑆𝑖𝑚 (𝑃𝑑(𝑖𝑖), 𝑃𝑞(𝑖𝑖))𝑛
𝑖=𝑎  (3.14) 

∑ 𝑤𝑖
𝑛
𝑖=𝑎 = 1 (3.15) 

Where wi = weight of the influential factor “i”. 

This research applies the k-NN procedure to identify the “k” nearest projects to the new query 

project. The principal drawback of the k-NN, is that considers all the parameters with the same 

weight. To overcome this limitation, El Aoun, Eleuch, Ayed and Aimeur (2009) provided a method 

to calculate the weights using a reference project and the adjustment of initial aleatory weights. 

Park, Kim, and Im (2006) used neural networks. Kim and Kim (2010) and Doğan, Arditi and 

Günaydın (2006) applied genetic algorithms, namely feature counting and gradient descent in 

the process of determining attribute weights. Wettschereck and Aha (1995), Yan, Shao, and Guo 

(2014), and Minghai and Huanmin (2010) have shown other methods used for the estimation of 

the weights in the parameters. The mathematical expression for the weighted k-NN, according 

to the weights of the influential factors is shown in equation 3.16 (Everitt, Landau, Leese, & Stahl, 

2011). 

𝐷𝑖𝑠(𝑃𝑑 , 𝑃𝑞) = √∑ 𝑤𝑖 ∗ [𝑑𝑖𝑠 (𝑃𝑑(𝑖𝑖), 𝑃𝑞(𝑖𝑖))]
2

𝑛
𝑖=1  (3.16) 

Where Dis(Pd, Pq) is the distance between the new query project and a project in the database 

and dis(Pd(ii), Pq(ii)) is the distance of the influential factor “i” between the new query project and 

a project in the database.  
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Using the k-NN process, it is possible to find the similarity between the projects, applying the 

relationship between the distance and the similarity. 

𝑆𝑖𝑚(𝑃𝑑 , 𝑃𝑞) =
1

1+𝐷𝑖𝑠(𝑃𝑑,𝑃𝑞)
 (3.17) 

One problem encountered when measuring similarity was missing data. Figure 3.6 shows the 

types of missing data and possible solutions. The solution used here was to discard incomplete 

data. 

Figure 3.6. Methods to solve the problem of missing data (adapted from Lopez, 2013) 
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Once the similarity was calculated between the new query project and all the projects in the 

database, the project in the database with the higher similarity was selected. Given that the 

weights are crucial in calculating the similarity, the subsequent sections elaborate on the 

calculation and impact of these weights.  

II. Reuse 

The reuse stage (see Figure 3.5) uses the solution of the projects in the database to estimate the 

solution (i.e., values required to estimate the sinking cost of the shaft) for the new query project. 

The goal is to select a project that has a perfect similarity with the new query project. If there is 

no perfect similarity, the project with greatest similarity to the new query project is selected.  

Adaptation is the next step to improve the accuracy of the estimation. Adaptation can be done 

via transformation, substitution, or derivational reply. Transformation methods modify the 

influential factors of the project with greater similarity to fit the new query project. They tend to 

be complex and involved and may require extensive modifications of the influential factors. 

Transformation methods are generally applied to a wide range of problems because they can 

make a project more general or more specific. Some examples are the heuristic method and the 

model-based method. Substitution methods replace or modify specific influential factors with 

greater similarity. They are typically simpler than transformation methods, but more limited in 

applicability because they focus on specific influential factors. Some substitution methods are 

parameter adaptation, local search, and memory-based adaptation. Derivational reply methods 

solve problems without using the solutions of the previous project. The adaptation process 

chosen for this research was transformation using heuristic methods (Figure 3.7). 
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Figure 3.7. Adaptation to improve accuracy of the estimation (adapted from Lopez, 2013) 

 

III. Revise  

During the revise stage (see Figure 3.5), solutions obtained in the reuse stage are evaluated in 

the new query project conditions to determine if they are suitable. If they are not suitable, the 

reasoning process will return to the retrieve or reuse stage to seek a better solution. 

IV. Retain 

After revision, the results are “learned” and stored for use in the next estimation (see Figure 3.5), 

enriching the database. 

3.2.2 Estimation Method Selection 

This research uses the quantities-based method (quantities × unit cost), due to its multifaceted 

advantages. For example, the identification and quantification of all the resources needed, such 

as materials, workforce, and others; the transparency of the estimation by breaking down costs 

into specific components; the detailing planning and the cost control during the execution of the 

project, identifying any deviations from the initial estimated quantities. 
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3.2.3 Item Simplification 

All elements and work required for sinking the shaft were grouped by adapting a process for the 

building industry (Ji et al., 2019; Table 3.1). As the number of elements increase, the level of 

complexity increases.   

Table 3.1. Elements for conventional and mechanical sinking 

Labor 

Foremen  Hoist operators  Food and services Underground helpers 
Miners  Mechanics  Yard workers  Production bonus 
Construction workers   Surface crew  Personal protection equipment 

Equipment Operations 

Raise Borer2 Winches  Ventilation system Electricity  
Cranes2 Air compressor Parts repair and overhaul Lubricants 
Infrastructure2 Installations Equipment purchase/rental Drilling and blasting equipment1 
Surface conditioning Shotcrete plant Diesel fuel  

Drilling and Blasting Supplies1 

Explosives Detonating cord Drill steel  
Caps Drill bits   

Utility Materials 

Water pipe  Electric cable  Skip guides Temporary hoist ropes 
Drainpipe  Ladders Steel grates Sinking stage ropes 
Compressed air pipe Conveyors1 Hanging bolts Iron ropes 
Ventilation tubing    

Ground Support Materials 

Cement  Rock bolts Timber  Sand 
Rebar Mesh  Lagging Gravel 
Structural steel Chemical additive   

Electricity 

Energy consumption 
1Conventional sinking only 
2Mechanical sinking only 

 

The unit costs associated with these elements were obtained from the InfoMine Handbook 

(2021) and Table 3.2 shows the cost ratio associated to each sinking method. No elements 

estimated by automation (i.e., without quantities) needed to be excluded from the analysis. For 

this objective, it is necessary to identify the similarities between unit costs. This can decrease the 

accuracy slightly, but it improves the efficiency of the process. As the number of groups increases, 

the accuracy increases. The quantities of these group items are the solutions that are estimated 

using CBR. 
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Table 3.2. Grouping of conventional and mechanical sinking elements 

Group from Table 4  No. elements  Cost ratio (%) 

  Conventional2 Mechanical1  Conventional Mechanical 

Labor  11 11  55 20 

Equipment operations  12 14  23 40 

Drilling and blasting  5 0  2 0 

Utility materials  13 12  4.5 8 

Ground support materials  10 10  8 7 

Energy  1 1  7.5 25 

Total  52 48  100 100 
1 Quantity-based for mechanical 
2 Quantity-based for conventional  

 

3.2.4 Influential Factor Selection 

This is an important stage in the construction of the cost model because the quantities of the 

solutions will change according to the influential factors. Table 3.3 shows the six principal 

influential factors that the CBR system used for the estimation. 

Table 3.3. Influential factors for shaft sinking 

Influential factor Value/Rank Data structure 

Water conditions 1 (dry), 2 (wet), 3 (saturated) Along axis 

Shaft diameter (m) 4.5–7.0 Numerical 

Rock mass condition 1 (good), 2 (normal), 3 (poor) Along axis 

Shaft length (m) 500–2,000 Numerical 

Operator skill level 1 (expert), 2 (good), 3 (fair), 4 (poor) Ordinal 

Weather 1 (favorable), 2 (normal), 3 (poor) Ordinal 

 

The water conditions along the axis of the shaft are important to know before shaft sinking, in 

the event of unfavorable conditions. During recent decades, new technologies have been 

developed to deal with water issues (e.g., freezing) and to monitor water conditions, though 

these increase the total cost of the shaft (Farazi, Quamruzzaman & Woobaidullah, 2012). The 

rock mass condition influences the supports, rate of sinking, and equipment selection and 

maintenance (e.g., drill bit wear). The parameters used to identify the rock mass rating along the 

shaft are rock hardness, texture, density, and fracture pattern; the general structure of the 

formation; and lithology (Singh & Goel, 2011). The three water and rock conditions were 
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compared between two projects (Figures 3.8 and 3.9), then CBR used equation 3.18 to measure 

the similarity. 

𝑆𝑖𝑚1,2 = min (
𝑙𝑒𝑛𝑔𝑡ℎ1,1

𝑙𝑒𝑛𝑔𝑡ℎ1
;

𝑙𝑒𝑛𝑔𝑡ℎ1,2

𝑙𝑒𝑛𝑔𝑡ℎ2
) + min (

𝑙𝑒𝑛𝑔𝑡ℎ2,1

𝑙𝑒𝑛𝑔𝑡ℎ1
;

𝑙𝑒𝑛𝑔𝑡ℎ2,2

𝑙𝑒𝑛𝑔𝑡ℎ2
) + ⋯ + min (

𝑙𝑒𝑛𝑔𝑡ℎ𝑛,1

𝑙𝑒𝑛𝑔𝑡ℎ1
;

𝑙𝑒𝑛𝑔𝑡ℎ𝑛,2

𝑙𝑒𝑛𝑔𝑡ℎ2
) (3.18) 

Where Sim1,2 is the similarity of the condition between project 1 and project 2; length1,1 and 

length1,2 are the lengths of state 1 in project 1 and 2, respectively; length1 and length2 are the 

lengths of project 1 and 2, respectively; and n = number of possible states. 

 
Figure 3.8. Comparison of cases of water conditions 

 

 
Figure 3.9. Comparison of rock mass conditions 

 

Equation 3.18 measures similarity according to the proportions of the conditions. For example, 

assume a 500-m project with 250 m each of dry and saturated conditions and a 1000-m project 

Dry 

Wet 

Saturated 

Poor 

Normal 

Good 
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with 500 m each of dry and saturated conditions. The similarity between the two projects from 

equation 3.18 will be 100% since the proportions of the states are the same.   

The two ordinal data types (Table 3.3) affect the rate of advance of shaft sinking: operator skill 

and weather conditions. Operator skills determine the total time required and the drill bit 

replacement times. Weather conditions affect the equipment required, especially extreme 

weather, and the work force requirements. 

3.2.4.1 Influential Factor Weighting 

The weights of the influential factors reflect their relative power to effect a change. To estimate 

the weights, the distances between the influential factors and the solution to find the optimal 

weights were determined using equations 3.19–3.21. Among all the projects in the database, a 

project was selected as the first reference project. Aleatory weights were then assigned to 

calculate the distance between the reference project and the remaining projects in the database.  

𝑑(𝑃𝑟𝑒𝑓,𝑝𝑗)
= √∑ 𝑤𝑖

2 ∗ 𝑑𝑖𝑠(𝑃𝑟𝑒𝑓(𝑖), 𝑃𝑛(𝑖))𝑛
𝑖=1  (3.19) 

Where 𝑑(𝑃𝑟𝑒𝑓,𝑝𝑗)
 is the distance between the reference project and project “j” in the database; wi 

is the weight of the influential factor “i”; and 𝑑𝑖𝑠(𝑃𝑟𝑒𝑓(𝑖), 𝑃𝑛(𝑖)) is the distance in the influential 

factor “i” between the reference project and the project “j” in the database. 

The distance between two projects must be equal to the distance between their solutions. So too 

should be the sum of the distances between the reference project and the remaining projects in 

the database and the sum of the distance of the solutions between the reference project and the 

remaining projects in the database. 

∑ 𝑑(𝑠𝑟𝑒𝑓,𝑠𝑗)

𝑚
𝑗=1 = ∑ 𝑑(𝑃𝑟𝑒𝑓,𝑝𝑗)

𝑚
𝑗=1  (3.20) 

Where 𝑑(𝑠𝑟𝑒𝑓,𝑠𝑗)
 is the distance between the solution of the reference project and the project “j” 

in the database and m = the number of projects in the database. Different CBR system have used 

this equation to optimize the weights through the generalized reduced gradient nonlinear solving 
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method, a method that Lasdon, Waren, Jain, and Ratner (1978) proved to be “robust and 

efficient” in the optimization of non-linear programming problems. 

This system repeats the process, using all the projects in the database as reference projects, 

creating different optimized weights according to the reference project used. Finally, the average 

of all weights is calculated to obtain the final weight for the influential factor. 

𝑤1,(𝑓𝑖𝑛𝑎𝑙) =
∑ 𝑤1,𝑖

𝑛
𝑖=1

𝑛
 (3.21) 

Where 𝑤1,(𝑓𝑖𝑛𝑎𝑙) is the final weight of influential factor 1; 𝑤1,𝑖 is the weight of influential factor 1 

estimated in the “i” process; and n is the number of estimations made, considering all the projects 

in the database as a reference project. 

In the same way that influential factor 1 was calculated, all the influential factors are calculated. 

All processes were repeated for every solution. 

3.2.5 Modified Parameter Making 

A critical part of the CBR model is adaptation because a new query project cannot have perfect 

similarity with a project in the database. The CBR process uses adaptation to increase the 

accuracy. Table 3.4 shows an example when a project in the database has all but one of the 

influential factors (shaft length) in common with the new query project. This CBR system will use 

a process to adapt this influential factor to the conditions of the new query project. 

Table 3.4. Modified parameters for case study 

Influential factor New query project Database 

Water conditions Conditions along the axis ✓ 

Shaft diameter (m) 4.5 ✓ 

Rock mass condition Conditions along the axis ✓ 

Shaft length (m) 800  

Operator skills 2 ✓ 

Weather 2 ✓ 

 

Ji et al. (2019) proposed an approach to transform a project in the database as follows: 
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1. Select the projects in the database with the greater similarity without considering the 

influential factor that will be transformed (Figure 3.10). As the level of similarity increases, 

the number of projects in the database decreases. 

 
Figure 3.10. Three estimations to adapt the case to the previous cases (adapted from Ji et al., 2019) 

 

2. Using the projects obtained in the step 1, a regression model is applied to estimate the 

solution with the value of the influential factor that is being transformed to the new query 

project (Figure 3.11). 
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Figure 3.11. Simple regression used to adapt the case using previous information (adapted from Ji et al., 2019) 

 

Two things must be considered when transforming a project in the database.  

1. To conduct regression analysis, at least three projects are needed. 

2. If more than one influential factor differs between the new query project and the projects 

in the database: 

• identify and transform the influential factor that has the strongest effect on the 

difference of the projects; and 

• since no projects have 100% similarity to create the regression, the projects with 

the higher similarity are used to obtain enough projects to conduct regression 

analysis. This adjustment will decrease the accuracy, but this will allow the process 

of transformation of the influential factor selected before.  

 

 



39 
 

3.2.6 Database Establishment 

The new project is established in the database to be used for a new estimation in future work. In 

the same way, the CBR system uses all the previous information—influential factors, item 

quantities, item unit costs, and item cost ratios—for new estimations. Figure 3.12 shows a 

schematic representation of all the process in the methodology. 

 
Figure 3.12.- Schematic representation of the methodology 
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4 Case Study 

 

The case study demonstrates an application of the cost model and the new approach for shaft 

location using synthetic information. The objective is to identify the location of the shaft for a 

project, considering a database of investment in previous shaft projects. The steps for the case 

study are as follows. 

4.1 Identify the zones according to the underground conditions 

The first step involves an assessment of the underground conditions, among the influential 

factors identified, two key influential factors could vary within a new query project, the water 

conditions, and the rock mass condition. Therefore, the division of the surface area into different 

zones depends on the conditions presented by these two influential factors. In the present case 

study, four different zones were identified on this criterion. Figure 4.1 shows the division of these 

four zones in the surface area. 

 
Figure 4.1. Distribution of zones in the case study (plan view) 
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4.2 Identify parameters to weight orebody sectors and sinking costs 

The information for the sinking costs is listed below and presented in Table 4.1. All currency is in 

US$. 

1. Labor: $20/h 

2. Equipment operation: $58/h 

3. Blasting: $3.11/kg of explosive 

4. Blasting supplies: $3.21/unit 

5. Drilling supplies: $60/unit 

6. Pipes: $50/m  

7. Cables: $166.05/m 

8. Hoist ropes: $39/m  

9. Rock-bolts: $12/bolt 

10. Shotcrete: $200/m3 

11. Energy: $0.119/KWh 

Three principal orebody sectors were considered for this case study, Table 4.1 shows specific 

characteristics for each of them used to calculate the weight of the orebody sector, tonnage, 

location, the cost of excavation from shaft to an orebody sector and movement cost per tonne 

from an orebody sector to the shaft, last two are going to be the same since the methods used 

for excavation and movement were same.  
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Table 4.1. Information used for the case study 

Orebody sector A B C 

Tonnage (tonnes) 5,000,000 4,500,000 1,800,000 
Location (x,y) (900, 300) (200, 500) (700, 800) 
Cost of excavation ($/m) 1,800 1,800 1,800 
Movement cost per tonne ($/tonne×m) 0.00029 0.00029 0.00029 

 

4.3 Calculate weights of the orebodies sectors 

For orebody sectors A, B, and C, the weights were 3,250, 3,105, and 2,322, respectively, based 

on the formula (3.1) and the numbers in Table 4.1. 

Weight A = 5,000,000*0.00029 + 1,800 = 3,250 

Weight B = 4,500,000*0.00029 + 1,800 = 3,105 

Weight C = 1,800,000*0.00029 + 1,800 = 2,322 

4.4 Create model considering costs related to orebody weight 

Equation 3.2 was applied to obtain the operating costs in a grid cell (i.e., the discretized area of 

the mine). Considering only the total operating cost, the optimal location for the new shaft is at 

x = 640 and y = 520 (Figure 4.2). 
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Figure 4.2. Total operating costs for a new shaft in US$ 

 

4.5 Identify sinking cost according to grid cell characteristics 

The first investment required will belong to zone 1 from Figure 4.1, which was named New Query 

Project 1 (Table 4.2). The water and rock mass conditions along the axis for this zone are shown 

in Figure 4.3. 

Table 4.2. Influential factors of zone 1 of the case study (New Query Project 1) 

Water 
conditions 

Shaft 
diameter (m) 

Rock mass 
rating 

Shaft length 
(m) 

Operator 
skill 

Weather 

Along the 
axis 

5.0 
Along the 

axis 
650 3 (fair) 2 (normal) 
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Figure 4.3. Water and rock mass conditions the zone 1 of the case study (New Query Project 1) 

 

The database for the case study is presented in Table 4.3. See Figures 4.4 and 4.5 for the water 

and rock mass conditions in the database, respectively. 

Table 4.3. Influential factors in the database of the case study 

Database Shaft diameter (m) Shaft length (m) Operator skill Weather 

P1 5.0 400 1 (expert) 2 (normal) 

P2 4.5 600 3 (fair) 3 (poor) 

P3 6.0 600 2 (good) 1 (favorable) 

P4 5.0 600 3 2 

P5 8.5 600 1 1 

P6 8.5 650 4 (poor) 2 

P7 8.5 700 3 2 

P8 5.0 750 3 2 

P9 6.5 800 4 2 

P10 6.0 800 3 3 

P11 7.0 800 4 2 

P12 6.5 800 3 2 

P13 7.5 850 3 2 

P14 7.0 900 3 2 

P15 6.5 1,000 4 2 

 

Dry 

Wet 

Saturated 

Good 

Normal 

Poor 
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Figure 4.4. Water conditions in the database of the case study 
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Figure 4.5. Rock mass conditions in the database of the case study 

 

The solutions presented in Table 4.4 represent more accurate information for the estimation 

than the groups presented in Table 3.1, Chapter 3.  
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Table 4.4. Solutions of the database in the case study 

Database Labor (h) 
Equipment 
operations 

(h) 

Blasting 
(kg) 

Blasting 
supplies 
(units) 

Drilling 
supplies 
(units) 

Utility 
materials 

(m) 

Ground 
support 

materials 
(units) 

Ground 
support 

materials 
(m3) 

Energy 
(MWh) 

P1 180,000 9,300 40,792 13,357 750 894 11,486 736 9,800 
P2 266,803 13,762 60,361 19,765 1,110 1,341 16,996 1,089 14,526 
P3 276,105 14,289 62,673 20,522 1,152 1,341 17,647 1,131 15,032 
P4 267,914 13,842 60,715 19,881 1,116 1,341 17,095 1,095 14,586 
P5 294,812 15,255 66,912 21,911 1,230 1,341 18,840 1,207 16,051 
P6 317,987 16,429 72,062 23,597 1,325 1,452 20,291 1,300 17,313 
P7 340,859 17,611 77,246 25,294 1,420 1,564 21,750 1,393 18,558 
P8 337,642 17,445 76,517 25,055 1,407 1,676 21,545 1,380 18,383 
P9 372,263 19,234 84,362 27,625 1,551 1,788 23,754 1,522 20,268 
P10 369,292 19,057 83,587 27,371 1,537 1,788 23,536 1,508 20,106 
P11 375,321 19,392 85,055 27,851 1,564 1,788 23,949 1,534 20,434 
P12 374,276 19,338 84,818 27,774 1,559 1,788 23,882 1,530 20,377 
P13 402,274 20,784 91,163 29,852 1,676 1,899 25,669 1,645 21,902 
P14 421,690 21,787 95,564 31,292 1,757 2,011 26,908 1,724 22,959 
P15 460,952 23,816 104,461 34,206 1,921 2,234 29,413 1,884 25,096 

 

The next step is to define the weights that correspond to the solution, “labor”. Therefore, the 

procedure outlined in Chapter 3 was applied, with the final weights shown in Table 4.5. 

Table 4.5. Calculations of the weights for the solution “labor” of the case study 

Reference case 
Water 

conditions 
Shaft 

diameter 
Rock mass 
conditions 

Shaft length Operator skill Weather Squared sum 

1 0.000 0.286 0.000 0.946 0.152 0.000 1.000 
2 0.000 0.163 0.000 0.987 0.000 0.000 1.000 
3 0.000 0.107 0.000 0.994 0.000 0.000 1.000 
4 0.000 0.181 0.000 0.984 0.000 0.000 1.000 
5 0.000 0.107 0.000 0.994 0.000 0.000 1.000 
6 0.000 0.163 0.000 0.987 0.000 0.000 1.000 
7 0.000 0.207 0.000 0.978 0.000 0.000 1.000 
8 0.096 0.000 0.136 0.986 0.000 0.016 1.000 
9 0.039 0.000 0.000 0.999 0.000 0.000 1.000 
10 0.041 0.000 0.000 0.999 0.000 0.000 1.000 
11 0.041 0.000 0.000 0.999 0.000 0.000 1.000 
12 0.008 0.000 0.000 1.000 0.000 0.000 1.000 
13 0.150 0.000 0.000 0.989 0.000 0.000 1.000 
14 0.000 0.379 0.000 0.925 0.000 0.000 1.000 
15 0.000 0.164 0.000 0.986 0.000 0.000 1.000 

Final weight 0.025 0.118 0.009 0.993 0.010 0.001 1.000 

 

The same procedure is replicated for all cases. With the weights found, the similarity between 

the new query project and the projects in the database was calculated, the following the 

procedures of Chapter 3 (Table 4.6). Project 4 was most similar. 
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Table 4.6. Similarity between the new query project and the database in the case study 

Project 
Water 

conditions 
Shaft 

diameter 
Rock mass 
conditions 

Shaft length 
Operator 

skill 
Weather 

Distance 
project 

Similarity 

1 0.000 0.000 0.000 0.171 0.000 0.000 0.414 0.707 
2 0.000 0.000 0.000 0.007 0.000 0.000 0.084 0.922 
3 0.000 0.001 0.000 0.007 0.000 0.000 0.090 0.918 
4 0.000 0.000 0.000 0.007 0.000 0.000 0.083 0.923 
5 0.000 0.011 0.000 0.007 0.000 0.000 0.133 0.883 
6 0.000 0.011 0.000 0.000 0.000 0.000 0.106 0.904 
7 0.000 0.011 0.000 0.007 0.000 0.000 0.132 0.883 
8 0.000 0.000 0.000 0.027 0.000 0.000 0.166 0.858 
9 0.000 0.002 0.000 0.062 0.000 0.000 0.252 0.799 
10 0.000 0.001 0.000 0.062 0.000 0.000 0.250 0.800 
11 0.000 0.003 0.000 0.062 0.000 0.000 0.255 0.797 
12 0.000 0.002 0.000 0.062 0.000 0.000 0.252 0.798 
13 0.000 0.005 0.000 0.109 0.000 0.000 0.339 0.747 
14 0.000 0.003 0.000 0.171 0.000 0.000 0.418 0.705 
15 0.000 0.002 0.000 0.335 0.000 0.000 0.581 0.632 

 

The next step is to increase the accuracy of the results. The influential factor representing the 

most distance in the similar project, shaft length, was transformed. Ignoring shaft length, projects 

1 and 8 were most similar to the new query project 1 (Table 4.7). 

Table 4.7. Similarity between the new query project 1 and the database in the case study if shaft length is ignored 

Project 
Water 

conditions 
Shaft 

diameter 
Rock mass 
conditions 

Operator 
Skills 

Weather 
Distance 
project 

Similarity 

1 0.000 0.000 0.000 0.000 0.000 0.004 0.996 
2 0.000 0.000 0.000 0.000 0.000 0.017 0.984 
3 0.000 0.001 0.000 0.000 0.000 0.034 0.967 
4 0.000 0.000 0.000 0.000 0.000 0.007 0.993 
5 0.000 0.011 0.000 0.000 0.000 0.104 0.906 
6 0.000 0.011 0.000 0.000 0.000 0.106 0.904 
7 0.000 0.011 0.000 0.000 0.000 0.103 0.906 
8 0.000 0.000 0.000 0.000 0.000 0.006 0.994 
9 0.000 0.002 0.000 0.000 0.000 0.046 0.956 
10 0.000 0.001 0.000 0.000 0.000 0.033 0.968 
11 0.000 0.003 0.000 0.000 0.000 0.059 0.944 
12 0.000 0.002 0.000 0.000 0.000 0.046 0.956 
13 0.000 0.005 0.000 0.000 0.000 0.075 0.931 
14 0.000 0.003 0.000 0.000 0.000 0.061 0.942 
15 0.000 0.002 0.000 0.000 0.000 0.049 0.953 

 

Figure 4.6 shows the transformation process to estimate the new value for the “Labor (h)” for 

the new query project. The solution for “Labor (h)” after transformation is presented in Table 

4.8. 



49 
 

 
Figure 4.6. Transformation of the solution “labor” for new query project 1 in the case study 

 

Table 4.8. Solution of “labor” after transformation for new query project 1 

  
Water 

conditions 
Shaft 

diameter (m) 
Rock mass 
conditions 

Shaft 
length (m) 

Operator 
skill 

Weather Labor (h) 

New query project 1 
Along the 

axis 
5.0 

Along the 
axis 

650 3 (fair) 2 (normal) 291,840 

 

The same procedure was implemented for all solutions. Not all influential factors affected the 

solutions (Table 4.9). 

Table 4.9. Impact of the influential factors on the solutions 

Solution 
Water 

conditions 
Shaft 

diameter 
Rock mass 
conditions 

Shaft 
length 

Operator 
skill 

Weather 

Labor (h) ✓ ✓ ✓ ✓ ✓ ✓ 
Equipment operations (h) ✓ ✓ ✓ ✓ ✓  
Blasting (kg) ✓ ✓ ✓ ✓ ✓  
Blasting supplies (units) ✓ ✓ ✓ ✓ ✓  
Drilling supplies (units) ✓ ✓ ✓ ✓ ✓  
Utility materials (m)    ✓   
Ground support materials (units) ✓ ✓ ✓ ✓ ✓  
Ground support materials (m3) ✓ ✓ ✓ ✓ ✓  
Energy (MWh) ✓ ✓ ✓ ✓ ✓ ✓ 
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With this information, the solutions were obtained using transformation (Table 4.10). 

Table 4.10. Solutions for zone 1 after transformation for new query project 1 

 Labor (h) 
Equipment 
operations 

(h) 

Blasting 
(kg) 

Blasting 
supplies 
(units) 

Drilling 
supplies 
(units) 

Utility 
materials (m) 

Ground 
support 

materials 
(units) 

Ground 
support 

materials 
(m3) 

Energy (MWh) 

New Query 
Project 1 

291,840 15,118 66,309 21,713 1,219 894 18,671 1,196 15,931 

 

The entire procedure was repeated for the four zones in which the project was divided (figure 

4.1). Table 4.11 shows the influential factors of the remaining zones that, in most of the projects, 

will be same. Nevertheless, if they change for any reason, the system can estimate the solution. 

Table 4.11. Influential factors for the remaining zones 

 Water 
conditions 

Shaft 
diameter 

(m) 

Rock mass 
conditions 

Shaft length (m) Operator skill Weather 

New Query Project 2 
Along the 

axis 
5.0 

Along the 
axis 

650 3 (fair) 2 (normal) 

New Query Project 3 
Along the 

axis 
5.0 

Along the 
axis 

650 3 (fair) 2 (normal) 

New Query Project 4 
Along the 

axis 
5.0 

Along the 
axis 

650 3 (fair) 2 (normal) 

 

The information regarding to the water and rock mass conditions for zones 2, 3, and 4 are 

presented in Figures 4.7, 4.8, and 4.9, respectively.  
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Figure 4.7. Water and rock mass conditions for zone 2 (new query project 2) 

 

 
Figure 4.8. Water and rock mass conditions for zone 3 (new query project 3) 
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Figure 4.9. Water and rock mass conditions for zone 4 (new query project 4) 

 

With this information of the remaining zones, the solutions are found for each of these zones 

applying the same process used for the zone 1. The results after transformation process are given 

in Table 4.12. 

Table 4.12. Solutions after transformation in the zones 2–4 in the case study 
New 
query 
project 

Labor (h) 
Equipment 
operations 

(h) 

Blastin
g (kg) 

Blasting 
supplies 
(units) 

Drilling 
supplies 
(units) 

Utility 
materials 

(m) 

Ground support 
materials (units) 

Ground support 
materials (m3) 

Energy 
(MWh) 

2 288,504 14,877 65,253 21,367 1,200 894 18,373 1,177 15,707 
3 291,157 15,043 65,982 21,606 1,213 894 18,578 1,190 15,852 
4 289,892 14,978 65,695 21,512 1,208 894 18,498 1,185 15,783 

 

The investments required for the zones 1, 2, 3, and 4 are $9,664,899, $9,529,486, $9,618,294, 

and $9,577,515, respectively. These investments were obtained using the unit costs presented in 

the initial part of the case study and the solution of the Table 4.12 and the Table 4.10.  
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4.6 Create final model considering total operating cost and the 

investment 

Equation (3.3) was used to generate the final model. The location for the shaft is the grid cell with 

the lowest final cost: x = 640 and y = 600 (Figure 4.10). 

 
Figure 4.10. Final model, considering the global cost 

 

4.7 Comparison between CBR and multiple regression 

The last stage is to compare the CBR model and the multiple regression method in the estimation 

of the quantities required. The first difference is the way the data are managed. While in the CBR 

model the data maintains their own characteristics, in the multiple regression method the rock 

mass condition and water conditions are converted to a numerical parameter. 

𝑊𝑎𝑡𝑒𝑟 𝑜𝑟 𝑅𝑜𝑐𝑘 𝑀𝑎𝑠𝑠 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 =  
1×𝐿𝑒𝑛𝑔𝑡ℎ1+2×𝐿𝑒𝑛𝑔𝑡ℎ2+3×𝐿𝑒𝑛𝑔𝑡ℎ3

𝑇𝑜𝑡𝑎𝑙 𝐿𝑒𝑛𝑔𝑡ℎ
 (4.1) 
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Where Length1, Length2, and Length3 are lengths of states 1, 2, and 3 in the shaft, respectively; 

and Total Length is the total length of the shaft. 

It is also important to check for multicollinearity for the multiple regression method using the 

row-wise method. Table 4.13 shows the results of the correlation between the influence factors 

and the solutions of Labor. Figure 4.11 shows the shaded ellipses for the correlations showed in 

the Table 4.13. A similar analysis is conducted for the remaining solutions and their 

corresponding influencing factors. It's important to note that all these factors need to be 

transformed into numerical parameters for the analysis. 

Table 4.13. Correlations between the influential factors and the result for “Labor” 

  
Water 

conditions 
Shaft 

diameter 
Rock mass 
conditions 

Shaft 
length 

Operator 
skill 

Weather Labor 

Water 
conditions 

1.0000 0.3726 -0.1308 0.3927 0.2158 -0.0588 0.4103 

Shaft 
diameter 

0.3726 1.0000 -0.2076 0.2538 0.1137 -0.4022 0.3818 

Rock mass 
condition 

-0.1308 -0.2076 1.0000 -0.2131 0.2413 -0.0556 -0.2280 

Shaft length 0.3927 0.2538 -0.2131 1.0000 0.6758 0.1770 0.9150 

Operator 
skill 

0.2158 0.1137 0.2413 0.6758 1.0000 0.4171 0.5525 

Weather -0.0588 -0.4022 -0.0556 0.1770 0.4171 1.0000 0.0231 

Labor 0.4103 0.3818 -0.2280 0.9150 0.5525 0.0231 1.0000 
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Figure 4.11. Shaded ellipses for correlations between the influential factors and the solution “Labor” 

 

With this information in the database, the coefficients were estimated (Table 4.14). The same 

process was applied to all the solutions required to estimate the investment cost (Table 4.15). 

Table 4.14. Multiple regression analysis results for “Labor” in new query project 1  

  Length 
Water 

conditions 
Shaft 

diameter 
Rock mass 
conditions 

Operator 
skills 

Weather Labor 

New Query Project 1 650 1.86 5.0 1.96 2 2 293,320 

 

Table 4.15. Results of all solutions applying multiple regression analysis to new query project 1 

Labor (h) 
Equipment 
operations 

(h) 

Blasting 
(kg) 

Blasting 
supplies (units) 

Drilling 
supplies 
(units) 

Utility 
materials 

(m) 

Ground support 
materials (units) 

Ground 
support 

materials 
(m3) 

Energy 
(MWh) 

293,320 15,155 66,472 21,766 1,222 1,452 18,717 1,199 15,970 

 

Then the process was applied to zones 2–4 in the mine (Table 4.16). 
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Table 4.16. Multiple regression analysis results for zones 2–4  

 Labor (h) 
Equipment 
Operation 

(h) 

Blasting 
(Kg) 

Blasting 
supplies 
(units) 

Drilling 
Supplies 
(units) 

Utility 
Materials: 

pipes, cables, 
hoses (m) 

Ground 
Support 

Materials 
(units) 

Ground 
Support 

Materials 
(m3) 

Energy (MWh) 

New Query 
Project 2 290,907 15,030 65,925 21,587 1,212 1,452 18,563 1,189 15,838 

New Query 
Project 3 294,702 15,226 66,786 21,869 1,228 1,452 18,805 1,205 16,045 

New Query 
Project 4 289,995 14,983 65,719 21,520 1,208 1,452 18,504 1,186 15,789 

 

The results of the solutions were utilized to obtain the investment of the shaft sinking in each 

zone. Table 4.17 shows the investment for the four zones, next to the result obtained using CBR 

process. After conducting a comparison between these two models, it was observed that, on 

average, there is a difference of 2.00% in the investment of the shaft sinking.  

Table 4.17. Investment for the four zones calculated from case-based reasoning (CBR) and multiple regression analysis 

 Investment (US$) 

Zone CBR model Multiple regression Difference (%) 

1 9,664,899 9,830,536 1.68 

2 9,529,486 9,752,705 2.29 

3 9,618,294 9,875,116 2.60 

4 9,577,515 9,723,299 1.50 

 

The 2.00% advantage observed in favor of the CBR model underscores an enhancement in the 

cost estimation process. Although this percentage might not appear substantial within the 

present case study, it's important to recognize its potential to grow under varying conditions and 

project scopes. Another significant benefit lies in the adept handling of data by the CBR model, 

considering the own conditions and nature of them. This aspect holds particular significance in 

the mining industry. 
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5 Uncertainty Analysis for Shaft Localization 

 

The previous chapters described and demonstrated a new approach to select shaft location; 

however, they did not consider the uncertainty associated with the parameters. The estimated 

mineral content of the orebody creates uncertainty in one of these parameters: production from 

the orebody sectors (Dominy, Noppé, & Annels, 2002). Figure 5.1 shows an example of how 

drillholes obtain information about the orebody sectors. 

 
Figure 5.1. Example of the drillholes in an orebody that generate uncertainty in the estimation 

 

Drillhole data make it possible to determine the probability density function (PDF) of the 

production from the orebody sector. Probabilities can follow normal, lognormal, or other 

distributions. When one of the parameters is a PDF, a joint probability distribution is applied to 

select the shaft location. The joint probability distribution is a statistical process that represents 

the probability of occurrence of two variables in the same space (Feller, 1957). It measure the 

probability of grid cell (x,y) being the best option, considering coordinates (x,y) as the two 

variables in the same space. 
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𝑓𝑋𝑌(𝑥, 𝑦) = 𝑃(𝑋 = 𝑥, 𝑌 = 𝑦) (5.1) 

Where fXY(x,y) is the probability that the best position of the shaft is at coordinates (x,y), X 

represents the variable of the coordinate “x” in space, and Y represents the variable of the 

coordinate “y” in space. 

Monte-Carlo simulations were used to generate random samples for the production of the 

orebody sectors on a Pert distribution fitted to production rates. Then the new approach 

described in Chapter 3 was applied to every simulation. 

5.1 Case Study 

The parameters used in the case study in Chapter 4 were used except the production of the 

orebody sectors was considered a PDF. For structures A, B, and C, the information in Table 4.1 

was used. The distributions are shown in Figures 5.2–5.4. 

 
Figure 5.2. Probability distribution of total minerals in orebody sector A 
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Figure 5.3. Probability distribution of total minerals in orebody sector B  

 

 
Figure 5.4. Probability distribution of total minerals in orebody sector C  

 

Table 5.1 shows the results of 10,000 simulations of the mineral content of the three orebody 

sectors. The best shaft locations were then obtained using the new approach. 
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Table 5.1. Monte-Carlo simulations for mineral production from three orebody sectors and their grid cell coordinates for the 
best shaft location 

 Total mineral content (tonnes)   

Simulation Structure A Structure B Structure C x y 

1 4,925,109 4,343,671 1,793,543 693 421 
2 4,967,417 4,538,295 1,831,792 664 434 
3 4,917,627 4,613,904 1,768,229 646 440 
4 5,225,227 4,439,959 1,751,572 740 392 
5 5,350,204 4,511,151 1,833,103 743 392 
6 5,296,550 4,588,010 1,866,554 712 409 
7 4,934,266 4,359,853 1,784,321 692 421 
8 4,743,482 4,474,114 1,823,594 639 447 
9 4,876,048 4,455,442 1,838,911 663 437 

10 5,058,722 4,459,327 1,764,301 699 415 
11 5,274,055 4,404,375 1,846,449 748 391 
12 4,988,398 4,511,146 1,699,962 680 422 
13 5,010,176 4,593,679 1,814,298 663 433 
14 4,739,747 4,453,117 1,781,448 643 444 
15 4,903,508 4,658,109 1,745,619 637 442 
16 5,282,371 4,540,294 1,792,230 726 400 
17 4,659,726 4,631,115 1,824,369 602 460 
18 5,020,989 4,537,807 1,792,357 676 427 
19 4,974,344 4,398,003 1,777,343 693 419 
20 5,127,939 4,515,506 1,861,638 694 420 
… … … … … … 

10,000 4,871,214 4,517,129 1,815,763 653 440 
 

 

The optimal location associated with each simulation is presented in Table 5.2, along with their 

corresponding probabilities based on the frequency of occurrence after the simulation. The 

results shown that one hundred eighty-seven possible locations for the shaft were obtained. 

Table 5.2. Probabilities coordinates for the location of the shaft 

N` X Y Probability 

1 651 440 0.0077 
2 652 439 0.0092 
3 653 438 0.0075 
4 654 438 0.0082 
5 655 438 0.0082 
6 656 438 0.0100 
7 657 437 0.0114 
8 658 437 0.0092 
9 659 436 0.0117 
… … … … 

287 660 436 0.0105 
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Using the information generated above, the joint probability distribution of the final location of 

the shaft was created. Figure 5.5 shows the plane in (x,y) coordinates and the probability that the 

shaft will be in every grid cell, considering the PDF of the production of the orebody sectors. The 

grid cell with the highest probability to be the best location for the shaft is at x = 680 and y = 530. 

 
Figure 5.5. Joint probability distribution of the shaft location 
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6 Conclusions and Future Work 

 

The locations of facilities in the mining industry holds significant importance in economic and 

design decision-making processes for new mining projects. It significantly affects operating costs. 

While past research studies generally used the similarities between different projects. Among all 

facilities, the shaft is one of the most crucial infrastructures in underground mining operations, 

and determining its optimal location carries substantial implications for project viability. First if 

all, shaft is the most expensive capital of a mining project. The shaft is an infrastructure that allow 

the movement of ore and waste from the mine to the surface and the workforce and materials 

from the surface to the mine, this infrastructure sometimes represents the major access to the 

mine and stands for all the life of the mine.  

Investment requirement as a parameter in the selection of the location selection is often 

overlooked. The shaft infrastructure represents a substantial and costly investment within 

underground mining operations. The different conditions encountered in the mine can impact 

the necessary investment.  

The current research presented a new approach to select the shaft location, considering the 

investment required for sinking the shaft. Most of the models involved the operating cost, 

nevertheless the present thesis added the initial investment to improve the models. Given that 

shaft sinking is one of the most expensive investments of an underground mining operation. 

A new cost model based on CBR was developed to estimate the cost of shaft sinking. The use of 

influential factors is a clear advantage of the CBR. They affect the quality of the solution (the 

cost). Also, they allow the CBR to use a wide range of data, such as the rock mass and water 

conditions along the shaft axis. In other words, managing the influential factors produces a better 

way to find the similarity between projects. Another advantage is the possibility of extrapolating 

the cost for projects that are higher or lower than the range of the database using linear 

regression.  
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For cost estimation, another consideration was finding the quantities required for the new 

project. To avoid problems with inflation or differing prices among countries, the cost is found 

indirectly, first via the quantities of the principal materials required and then multiplying by the 

unit cost in the country where the shaft is developed. For different regions, inflation and cost 

adjustments should be made. 

Once the method of the shaft sinking is defined, the surface of the mining zone is divided in grid 

cells, the operating cost and the cost of shaft sinking is calculated for each grid cell, creating a 

model for the total cost. The best location for the shaft was the grid cell with the lowest total 

cost.  

This research also assessed the uncertainty in parameters and its impact on shaft location 

selection. The uncertainty was analyzed for production from the orebody sectors. Production is 

related to the mineral content of the orebody, which is based on uncertain estimates (e.g., 

drillhole data). Using a PDF of the orebody sector production, the location of the shaft was 

defined such that this uncertainty was considered. Monte-Carlo simulations of production from 

the orebody sectors were made, the new approach was applied, and a group of possible locations 

were generated. With these results, a joint probability distribution was generated, where the 

coordinates (x,y) are the two variables in the same space, and the joint probability represents the 

probability that each grid cell (x,y) is the best position for the shaft. The grid cell with the greatest 

probability is the best location.  

The present research demonstrated that the investment in the shaft sinking and the 

consideration of the uncertainty in the parameters affect the selection of the shaft location 

significantly. Table 6.1 shows how the location selection was influenced by these factors in the 

case study. Furthermore, the research study highlights the suitability of CBR for the cost 

estimation of shaft sinking. CBR considers the different parameters and the own conditions 

presented in the mining industry and performs an accurate estimation. To improve the accuracy 

of the cost estimation the research study incorporates the k-NN algorithm, a machine learning 

method, to enhance the search of the similar projects, a crucial stage in the process. A 
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comparison was performed between CBR and multiple regression techniques, yielding similar 

(~2.0%) results in the case study conducted. 

Table 6.1. Comparison of the case study results 

Best shaft location Considering operational cost New approach With uncertainty analysis 

x (m) 640 640 680 

y (m) 520 600 530 

 

Although previous research considered the investment required for the location of mining 

facilities, in the case of the shaft location, this parameter has been omitted. Moreover, 

considering the uncertainties presented in the selection of facilities locations has not received 

the appropriate attention. On the other hand, CBR is an estimation process that has gained a 

good acceptation among the cost assessment, specially in the construction sector. Nevertheless, 

its potential in the mining industry remains unexplored.   

Future research should consider increase the groups of items for cost estimation, the present 

thesis considers seven principal groups of items according to their unit ratio, a higher number of 

group items will increase the accuracy of the estimation. A limitation of the present thesis is the 

number of influence factors that affect the sinking cost of the shaft (two influence factor 

considered), according to the own conditions of different projects, this number could increase, 

leading to greater complexity of the process. Regarding the uncertainty analysis, future research 

studies should consider the impact of the uncertainty through more advanced simulation 

techniques. Finally, this thesis considered the transformation of one influential factor to increase 

the accuracy; future research studies should consider the transformation of two or more 

influential factors to increase the accuracy. Also, quantitative methods and stochastic 

optimization techniques can be considered.  
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