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Abstract

Cellular differentiation is an important process where progenitor cells progressively develop
into mature cells with specialized functions. Understanding the molecular characteristics
and underlying regulatory mechanisms of cell fate is a central goal in biological research.
Advances in single-cell sequencing technology enable the exploration of cellular differentiation
at unprecedented resolution. In this thesis, I focus on characterizing and modeling of cellular
differentiation using machine learning approaches. First, I present a random forest approach
to identify the most discriminant genes for different cell populations in the developing brain.
This method was able to identify key gene markers that revealed dorsal-ventral patterning
in a heterogeneous class of progenitors present in a mouse developmental time-series dataset.
Next, as cellular differentiation is marked by continuous changes in gene expression and is
not well described by static cell populations, I present a framework to model the dynamics
of cell fate decisions based on ordinary differential equations (ODE). I train this model on
previously reported trajectory data for neural differentiation, and show that the model is
able to interpolate and predict the gene expression dynamics across unobserved regions in
this trajectory and extend the system dynamics for neural differentiation data. Finally,
by training the model on datasets that contain rate of change information for each gene
(RNA velocity), I demonstrate that the model has the capacity to predict the effects of gene
deletions to the cell’s overall gene expression profile with a prediction accuracy of 90%. In
summary, the Neural ODE method has the ability to learn the gene regulatory dynamics
from single cell data and predict the dynamics of individual genes as well as perturbation

response.



Résumé

La maturation cellulaire est un processus au cours duquel les cellules progénitrices se dévelop-
pent progressivement en cellules matures de fonctions spécialisées. Une meilleure compréhen-
sion des caractéristiques moléculaires et des mécanismes réglementaires du destin cellulaire
est un objectif central dans la recherche biologique. Des progrés dans la technologie de
séquencage des cellules simples permettent 'analyse de la différenciation cellulaire a une
résolution sans précédent. Dans cette thése, je modélise la maturation cellulaire a 1’aide
d’approches d’apprentissage machine. Je commence par présenter une approche utilisant
des foréts d’arbres décisionnels pour identifier les génes les plus discriminants pour dif-
férentes populations cellulaires dans le cerveau en développement. Cette méthode a permis
d’identifier des marqueurs génétiques dans des données du développement du cerveau murin
qui ont révélé une structuration dorso-ventrale dans une classe hétérogéne de progéniteurs.
Ensuite, comme la maturation cellulaire est marquée par un continuum d’expression et n’est
pas bien décrite par des populations cellulaires statiques, je présente une méthode pour
modéliser les dynamiques de décisions sur le destin cellulaire utilisant des équations différen-
tielles ordinaires (EDQ). J’entraine ce modéle sur des données de trajectoire rapportées pour
la différenciation neurale. Je démontre que le modéle est capable d’interpoler et de prédire la
dynamique d’expression génique dans des régions non observées de cette trajectoire et peut
étendre la dynamique du systéme. Enfin, en entrainant le modéle sur des données contenant
le taux de changement pour chaque géne (vélocité de I’ARN), je démontre que le modeéle
est capable de prédire les effets de suppression de génes sur le profil d’expression global de
la cellule avec une précision de prédiction de 90 %. Dans l’ensemble, la méthode Neural
EDO est capable d’apprendre la dynamique de régulation des génes & partir de données de
cellules simples et peut prédire la dynamique des génes individuels ainsi que les effets des

perturbations.
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1 Introduction

1.1 Background

Understanding the molecular characteristics and underlying regulatory mechanisms of cell
fate is a central goal of modern biology. Cellular differentiation is an important process where
progenitor cells progressively develop into mature cells with specialized functions. Disruption
of these processes has deleterious effects on phenotype, which frequently underlies disease. In
complex tissues, such as the brain, studying developmental processes in vivo is challenging,
as cell populations and their transcriptional profiles shift dramatically over time.

Recent technological advances have allowed the study of gene expression at single-cell
resolution [50], which provides unprecedented opportunities to study differentiation processes
for complex tissues invivo [11] [40] [44]. Single-cell data addresses two key limitations of
standard bulk level RNA sequencing: discovering cell classes in a population and tracing
the development of each class. The high resolution of single-cell sequencing technology
provides a platform for detailing the cell classes present. Subsequent differential expression
analyses can identify the gene signatures defining each class, hence providing insight to the
genetic programs driving cellular differentiation [32] [30] [36]. However, given the scale of
these datasets and the novelty of the analytical methods, novel methodology to infer gene
expression profiles and their dynamics over time is needed.

In this study, I focus on developing computation methods for understanding cellular
differentiation. The thesis will be presented in 2 parts. First, I focus on characterizing
molecular signatures of cell populations in the developing brain and present a method for
identifying their most discriminant gene marker combinations. Second, I turn my focus to
modeling gene dynamics across differentiation, where changes in transcriptomic profiles form
a continuous trajectory. I present a framework to predict the expression dynamics of cellular

states, as well as the cellular response to perturbation.
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1.2 Part I: Molecular signatures of cell populations in the develop-
ing brain

In single cell sequencing experiments, identifying the key differences between cell populations
is an important step in understanding the structure of the data. This process is often
facilitated by identifying the gene markers unique to each population of cells in the data.
Differential expression analysis is a common approach for identifying those gene markers
[55] [20]. In this approach, statistical tests are used to decide whether, for a given gene,
an observed difference in expression between cell population is significant. Each gene is
tested independently and ranked by fold change and p-value. However, the limitation of this
approach is that each gene is tested individually, without considering the combinatorial effect
of genes. However, it is often the concurrent expression of genes that labels cell identity. For
example, in immune cells, T-cell populations are marked by surface T-cell receptors (TCRs).
Within the T-cell population, surface markers such as CD4 and CD8 delineate subtypes like
T-helpers and cytotoxic T-cells, while the absence of these markers defines double-negative
T cells. Here, cell identity is marked by the presence or absence of the expression of certain
marker genes, which also labels their cellular function [22] [49]. This identification scheme
shares the same logic that informs the use of decision trees in machine learning.

In the decision tree algorithm, the tree is composed of a set of decision nodes that
are represented by logical statements. A toy example of a decision tree representing the
T-cell classification process is shown in figure 1. The root of the tree (topmost node) is
the first query on the data, or decision, which in this case is whether the cell expresses
TCR. Depending on the outcome, subsequent nodes are assessed sequentially until a final
decision is reached. The decision tree algorithm is a highly interpretable and simple method
for classifying cells that takes combinations of features, in this case genes, into account to
classify different cell populations. This algorithm is designed to find the most informative

features or genes, in a purely data driven matter, to classify the different cell populations in
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the data.
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Figure 1: A schematic of a decision tree representing T-cell classification

The nature of single cell data is noisy and prone to dropouts, which can impose potential
problems with the decision tree algorithm [24]. The nature of the decision tree algorithm is
constructed based on sequential queries on the data. In the toy example, the first query is on
the expression of TCR. However, if the expression of TCR is not detected due to sampling
noise, an incorrect decision would be made. A more robust approach is to construct multiple
trees, hence a forest, to make the predictions based on weighted majority vote. This describes
the random forest algorithm, where multiple different decision trees are constructed in the
process. A toy example of a random forest approach for classifying cells is shown in figure
2. In this example, three decision trees are used, and the weight of each tree is assumed to
be the same. In this scenario, for a cell that expresses CD8 but not TCR due to dropout,

two of the trees forming the majority vote will still correctly predict it to be a cytotoxic
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T-cell. It has been proven that by using a collection of different trees, the variance of the
predictions is decreased, thus making it a more robust method. The random forest algorithm
has been used for cell annotation [2| as well as clustering [31] in single cell analysis, and
showed promising performance in both cases. While clustering approaches focus on grouping
of cell populations in an unsupervised manner, cell annotation approaches emphasize the
classification of cell populations by training the model using labeled data, which does not
require the interpretation of the features/genes used by the model. In marker selection, the
emphasis is on the identification of genes/features that characterize each cell population,
where random forest methods have also been used for this purpose [1] [4]. However, most of
these approaches combine random forest with additional gene selections steps, reducing the
interpretability of the markers found by these algorithms. Thus, for this project, I will be
applying a random forest approach, without the addition of other methods, to identify gene

markers in single cell data.

N
Not T-cell cytotoxic T-cell Ve/ \0

Yes No
ne Doubl i
Yes i T ouble negative
/ \ cytotoxic T-cell Tocell
“helper cell @
T-helper cell Double netagive

\V w Tcell
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Figure 2: A schematic of a random forest classifier representing T-cell classification
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1.3 Part II: Modeling cellular dynamics during differentiation
1.3.1 Overview

The characterization of molecular profiles described so far, through the identification of gene
sets that discriminate cell populations in a sample, is not sufficient to capture the most
important aspects of cellular differentiation. Cellular differentiation is a dynamic process
where gene expression profiles change over time, in a continuous way. We can model this dy-
namic system as a function, X (¢), that predicts how the cell’s transcriptomic profile changes
throughout the course of differentiation. This model aims to predict X (¢) from an initial
condition X (0) to learn how gene expression changes over time. In addition, the model aims
to predict the change in transcriptomic profiles as a result of gene perturbations, such as a
gene deletion. To perform these two tasks, I require datasets that contain information on
the time evolution dynamics for the differentiation process.

Single cell data offers a convenient platform for observing this dynamical process. In
particular, the change in transcriptomic profile during differentiation can be inferred using
pseudo-time trajectory algorithms [44], giving us the information on X (¢). In addition, the
rate of change in the cell’s transcriptome can be estimated via the RNA velocity algorithm
[29], giving us the information on ‘fi—)t(. Although both pseudo-time trajectory algorithms
and RNA velocity can extract the dynamics information from single cell data, neither are
generative models that can predict on unobserved data, such as forecasting the future tran-
scriptomic states of the cells or the effect of perturbations. Although pseudo-time inference
algorithms and RNA velocity are not generative models, models can be built upon the in-

formation provided by these algorithms. In this project, I will build my model upon the

information provided by pseudo-time and RNA velocity.
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1.3.2 Inferring dynamics information from single cell data

Pseudo-time inference

Cell trajectory inference encompasses methods that reconstruct the dynamical informa-
tion by connecting the discrete ‘snapshots’ in single cell data into continuous trajectories.
Generally, gene expression profiles of cells are compared, and cells are ordered along a time
dimension, representing a continuous change in transcriptomic profiles through the course of
differentiation. A variety of methods for achieving this aim have already been proposed based
on a range of algorithmic approaches. For instance, Monocle uses reverse graph embedding to
learn a principal graph that represents this trajectory [52]|. In a different approach, diffusion
pseudotime (DPT) measures transitions between cells using diffusion-like random walks [16],
and TSCAN (Tools for Single Cell Analysis) uses a cluster-based minimum spanning tree ap-
proach to order cells along pseudo-time [56]. Studies by [43] and [44] have benchmarked the
accuracy and scalability of over 50 pseudo-time inference methods. Among them, Monocle
[52] is one of the top ranked trajectory inference methods.

One common theme among trajectory inference methods is that cells are placed sequen-
tially in pseudo-time to yield the information of how the transcriptome changes over time.
The limitation of this approach is that pseudo-time inference algorithms sorts cells along the
time axis, which only generates one trajectory for each lineage differentiation process. The
differences between individual cells are generally smoothed out along the trajectory. In con-
trast, RNA velocity respects the small differences between nearby cells, where the velocity

vector £ is inferred for each individual cell [29] [8] [9].

RNA velocity
In a study by [29], G La Manno et.al present an RNA velocity algorithm that is able to
infer the rate of transcription for each gene in each cell for single cell RNA seq data. In their

framework, the velocity is estimated based on the assumption that partially processed RNA
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molecules in a cell reflect the genes that are very recently transcribed, while completely
processed molecules reflect the genes that were transcribed earlier in time. This led the
authors to examine the relationship between spliced and unspliced RNA profiles to provide
dynamic information on the cellular states. In this framework, the transcriptional dynamics

are described by the following equation:

= a®(t) — Bu(t)

0
W) _ u(r) — s(t)

where u and s represent the unspliced and spliced RNA profiles of a gene, respectively.

The  and v terms represents the splicing rate and degradation rate, respectively, while

the a® (¢) term represents the synthesis rate of the unspliced transcript, which varies as a

function of time. The RNA velocity of a cell state is defined in this study as the rate of
ds(t)

change of the spliced RNA concentrations =~

The RNA velocity Cifti for a particular cell ¢ can be computed as fu; — vs;. Since both
s; and u; are measured quantities for each cell 7, only the parameters 5 and v need to be
estimated. To do this, the authors make use of the fact that 1) genes are turned on and

off for different cellular processes, and these genes are captured within the single cell RNA

seq dataset, and 2) at steady state % = 0 and Cfi—? = 0. By setting the derivatives to zero
and rearranging the equations in equation 1, one can obtain the expression B — sss where
Y Uss

sss and ug are the concentrations of the spliced and unspliced counts at steady state. A
schematic of the expected graph of plotting u against s is shown in figure 3. By running
linear regression to fit the equation s,s = g * g, ONE can obtain the ratio between § and ~
from the slope of the line. To perform the regression task, the data points or cells that satisfy
the assumed steady state must be selected within the single cell RNA seq dataset. Using the
assumption above where the single cell dataset captures both the on and off states of a gene,

the regression task can be done by selecting cells where u and s are maximized or when u
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and s are both zero. When s and u are zero, the gene is completely off, thus satisfying the

ds

< =0and % = 0. These two assumptions are also satisfied when s and u both

assumption
reach their maximum value, as the derivative is zero for any given function at its maximum
or minimum points. Here, the maximum is approximated by using the maximum observed
values in the data. A graphical representation of fitting the regression line to obtain the ratio
g is shown in figure 3. Note that for genes that do not reach their theoretical maximum in

the single cell dataset or that are not expressed, the estimations may not be accurate. The

”ﬁfti % s;. Here € = 9% 4 1 Because 3

— . — 2
= U di a ¥ 3

velocity for cell ¢ can be computed using 5

and v cannot be decoupled from the regression model, the estimated velocity is scaled by a

constant factor from the original equation.

steady state ratio

Gene up-regulating

Gene down-
regulating

Figure 3: Expected behaviour when plotting the spliced s against the unspliced u transcripts
counts for a particular gene in single cell RNA seq data. The dotted line represents the steady
state ratio obtained using linear regression. Points above the steady state line represents

up-regulation of the gene while the points below represents down-regulation.

In the RNA velocity method, the term a*)(¢) is never explicitly modeled, as it is conve-

niently not required in the velocity estimate approach. Here, the a(*)(t) term represents the
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regulatory relationship between different genes. Because the regulatory relationship between
genes is not modeled, even though the RNA velocity method is able to estimate the velocity
for each gene in each cell, it does not have the ability to predict the long term time evolution
of the expression profile of a gene s(t) over time. It also cannot predict how a perturbation
event, such as a gene deletion, can alter the expression profile of other genes. Although the
gene regulatory relationship is not directly modeled in their method, RNA velocity data has
been used by several methods to infer the regulatory relationship between genes [51] [35]

148].

1.3.3 Modeling of gene regulatory dynamics from single cell data

Causal network inference

Transcriptional states of cells during differentiation are the result of complex regulatory
interactions, including activating and repressive interactions between genes and their protein
products. These regulatory interactions can be thought of as a network, and much work has
been done over the past years to leverage developments from the field of network theory to
model biological gene regulatory relationships [5].

In network based approaches, each gene is represented by a node in the network, and the
directed edges represent the causal regulatory relationship between genes. For a particular
node 7, all other nodes with an edge pointing towards ¢ are considered incoming neighbours of
i. The expression profile of i (x;) in the next time step can be predicted as z;(t+1) = f;( X in)
where X ;,, is the expression levels of the incoming neighbours to gene i, and f;(X;;,) is the
function representing how the gene is controlled by its neighbours. Iterative updates can
be applied to each of the nodes to predict how all the genes change over time, which is
represented by X (¢).

To use this approach for predict gene dynamics, one must first accurately infer the net-

work connections from the data, or the X;n for each gene, as well as identify the exact
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mathematical relationship, f;(X;n), between genes and their incoming neighbours.

For instance, Secribe [51] is a method that uses the mutual information between the
velocity vector and the gene expression profile to infer network connectivity. To determine
whether a directed edge exists from two genes a to b, the algorithm computes the mutual
information between a(t) and b(t + 6t), which measure the amount of information that can
be obtained on future values of b given the current value of a. In this case, the future value of
b is obtained via linear extrapolation b(t+dt) = b(t) + 2« dt. Alternatively, another method
GRISLI (Gene Regulation Inference for Single-cell with Llnear differential equations) uses
the linear correlation between the expression profile and the velocity for network inference
[35]. Overall, a variety of methods exist to infer networks using the dynamics information
captured in single cell expression data, and RNA velocity provides a convenient platform for

such inference.

Predicting perturbation response based on gene regulatory networks

Causal inference algorithms primarily focus on identifying edges between genes to con-
struct the gene regulatory network, while the exact regulatory relationships between genes,
fi(Xiin), are not always directly modeled. However, several methods exist that model the
gene regulatory dynamics based on networks obtained from causal inference methods. In
the simplest case, Boolean networks can be use to model the gene regulatory dynamics [3]
[7] [34]. In a Boolean network model, the expression of each gene is binarized to either "on’
or ’off’, and each gene is represented by a node in the graph. Edges represent the causal
relationship between genes, where the edges point from the regulators, such as transcription
factors, to their targets. The regulation of each gene is controlled by a Boolean function of
its incoming neighbours. The time evolution of each gene 7 over a time frame of T, x;(t +T),
can be predicted by iteratively applying the update function z;(t + 1) = f(X;n(t)), where

Xi.in(t) is the state of the incoming neighbours to gene ¢ at the current time step, and
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x;(t+1) is the state of gene i at the next time step. The time evolution of the entire network
can be computed by simultaneously applying the update function to each node. In addition
to predicting the time evolution of the system, this method can also be used to predict the
perturbation response, such as the effect of gene deletions, by simply setting one of the nodes
permanently to the ’off” state while applying time evolution to the rest of the nodes.

As an example, the algorithm IQCFELL [17] is a Boolean network based approach that
infers gene regulatory networks, as well as the regulatory functions, from pseudo-time tra-
jectories constructed from single cell data. They use the learned network to predict cell
transition dynamics as well as perturbation response, and were able to accurately recover
over 75% of the causal gene connections in a 39 gene system. However, a small gene set was
selected for the model based on prior knowledge of genes involved in the T-cell differentiation
process studied. Therefore, applying this method to larger gene sets, and in cases where the
genes responsible for the process of interest are unknown, may be challenging. Generally,

such network based approaches are limited in their ability to scale to gene sets larger than

200 [47] [46].

A differential equation based approach to model differentiation

In the network based approaches described above, we see that the gene dynamics can be
predicted by iteratively applying the update function x;(t + 1) = f(X;n(t)). If we consider
infinitesimal changes in time in a continuous manner, the update function can be re-written

in the form of an ordinary differential equation (ODE): z;(t + At) = z;(t) + %  At, where

% is now a function of its incoming neighbours (i.e., dg = f(Xiin)). This concept is studied
in detail by [23], where they demonstrate the mathematical formulation of mapping different
types of graphs to ODEs.

A variety of ODE-based approaches have been proposed to model gene expression dy-

namics, but most still suffer from scaling to larger gene sets or imposing assumptions that
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are often violated in gene regulation [41] [21] [37]. However, these limitations have been over-
come by a recent method, PRESCIENT, which models the dynamics of single cell data using
stochastic ODEs [14]. This method is fast to compute and can incorporate information on a
large number of features/genes simultaneously, while imposing limited assumptions [14]. In
this approach, the cell state dynamics are modeled as a diffusion process that is represented
by ODEs, which in turn are approximated by neural networks. The model is trained on
single cell data collected from different time points and has shown to be able to accurately
predict the change in population structure at held-out time points, as well as the change in
fate bias as a result of gene perturbations [14]. One key difference between PRESCIENT and
previous ODE-based methods is that PRESCIENT takes advantage of the high resolution of
single cell data by using neural networks as a universal function approximator, and therefore
does not impose strict restrictions on what type of functions can be present in the ODEs
[14]. This allows PRESCIENT to impose fewer assumptions on the dynamical behaviours of
gene regulation.

The limitation of PRESCIENT’s approach is that the model is trained on datasets from
single cell sequencing sampled at different time points. This requirement of samples separated
in real-time restricts which datasets can be used. Moreover, this method has only shown
the ability to predict the effect of gene perturbations on the cell’s differentiation trajectory,
rather than the whole transcriptome. Whether this method can be generalized to predict

the overall changes in the cell’s transcriptome remains unknown.

Predicting perturbation response based on variational auto-encoders

In contrast to the above methods that mainly emphasize modeling time evolution of gene
expression and predict perturbation response as an additional extension, a recent variational
auto-encoder (VAE) method [33] uses neural networks to embed the high dimensional single

cell data into low dimensions and specifically addresses the perturbation prediction problem.

25



In this study, the authors use the VAE method to predict the perturbation response in the
gut after Salmonella or Heligmosomoides polygyrus (H. poly) infections. In their setup, they
use a single cell dataset containing eight different cell types under four different conditions.
In the experiment, they held out a cell type in the condition of active infection during
training, and evaluated the model’s performance on the held out data. They showed that
their method was able to predict the effect of perturbation on held out data. In addition, the
authors evaluated their method on data from immune cells during interferon beta (INF-73)
response. In this case, the INF-/ induced natural killer (NK) cells were held out during the
training and evaluated during testing. The authors demonstrated that their method was
able to performed well in both cases.

Following this line of work, several VAE approaches have been used to predict the pertur-
bation response from single cell data [26] [45] [27]. The aim of these approaches is to predict
the unsampled perturbation response of a cell type using the sampled perturbation response
of other cells as a reference. Although these VAE methods have been shown to perform well
in predicting the perturbation response of cells, they are limited in requiring data of the
perturbation of interest to make such predictions [33] [53] [15]. For example, in the study by
[33], when predicting the INF-3 response in NK cells, data corresponding to INF-3 response
in other immune cell types was needed, along with data from the unperturbed states of
the NK cells and other immune cell types. Therefore, these methods require a unique set
of data generated under specific conditions to generate their predictions, such as requiring
the perturbation of interest to be included in the data. Thus, VAE based methods are not

particularly useful for investigating perturbations that are absent from the training data.
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1.3.4 Aim: to build a framework for modeling gene dynamics and predicting

perturbation response using machine learning approaches

Both ODE-based methods, such as PRESCIENT [14], and network-based methods, such
as IQCELL [17], are able to predict gene regulatory dynamics from single cell data, in
addition to predicting perturbation response without perturbation data in training. This
ensures that the data required by the models does not scale linearly with respect to the
number of perturbations of interest. However, these two methods have their respective
limitations. IQCELL does not scale well as the number of genes in the network increases,
while PRESCIENT requires data collected from multiple time points and is subjected to
sampling bias in the population structure of the data.

Here, I develop a novel method for modeling gene dynamics from single cell data by
building upon and combining the above methods, along with pseudo-time inference and RNA
velocity, to overcome their individual limitations. In this project, I use an ODE-based ap-
proach to model gene regulatory dynamics in differentiation. However, unlike PRESCIENT,
I choose to directly model how the cell states change over time using inferred dynamics from
the data, obtained by pseudo-time inference and RNA velocity, rather than using the popu-
lation structure of time series data. I use dynamics information inferred from single cell data
such that multiple real time samples are not required. In my method, the regulatory process

of each gene is to be described by an equation similar to that of IQC ELL. FEach gene 7 will

dr; __
dt

be described by a differentiation f(Xin), where X, represents the set of regulators
of gene i. To model this process, I use the Neural ODE approach developed by [39]|, which
directly fits an ODE to model the data. The details of my approach will be described in the
Methods section, but I will first introduce the Neural ODE method and how it will be used

in this project.
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Using Neural ODE for forecasting time series data

For this project, I model the cellular expression dynamics with an ODE-based approach.
To do this, I use the neural ODE method introduced by [39]. This method uses neural
networks to represent a system of differential equations to describe the underlying dynamics
of a system. Here, I focus on the study done by [54] that emphasizes modeling of time series
data. The objective of this method is to perform time series forecasting by modeling the
system as ODEs. This method uses a neural network to model the dynamics as a differential
equation in the form of % = f(X), where X is a vector representing all the variables in the
system, and f(X) is represented by a neural network. The time series forecast of the system

X(t) can be predicted by performing numeric integration on f(X).

28



2 Materials and Methods

2.1 Part I: Marker selection using a random forest approach
2.1.1 Overview

The objective of this approach is to identify the most discriminant combination of genes
for a particular cell population in single cell data. Here, I assume that the cells have al-
ready been assigned into distinct populations, which is frequently done using a clustering
algorithm. The approach introduced here takes expression profiles of cells and their cluster
label as inputs, and outputs the most discriminant gene markers for each cluster. A random
forest algorithm is used to construct decision trees for the classification of cells into clusters
based on their expression profiles. Following the classification, each decision tree using a
different combination of genes is evaluated based on how accurately it assigns the cells to
its corresponding class. The genes used by the top performing trees are selected as cluster

markers.

2.1.2 Method details

Data pre-processing

This method uses the random forest algorithm to identify gene markers in single cell
data. The random forest algorithm is a machine learning approach where a model is first
trained and then its performance is evaluated. The data used to fit the model parameters is
considered the training data, while the data used to evaluate the model is the test data. In
this method, the cells in a single cell sequencing dataset are split randomly into a training
set and a test set. The ratio between the amount of cells in the training data versus the
test data is 75 : 25. For a dataset with N number of clusters, the method uses a one-vs-all
approach, where each decision tree classifier is designed to predict whether a cells belongs

to a particular cluster j or not rather than predicting which cluster the cell belongs to in
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N clusters. Thus, each cluster has a set of trees dedicated to its identity. When training
the decision trees for a particular cluster, the training data is re-sampled such that there is
an equal number of cells inside the cluster and outside the cluster. Meanwhile, for the cells
outside the cluster, the cells are sampled such that all clusters have an equal representation

of cells.

Training the model

During training, the algorithm constructs a set of decision trees to classify cells into each
cluster using only a small number of genes for each tree. A common approach to construct
decision trees is to consecutively add nodes to the tree by selecting features, in this case
genes, that maximize the model improvement at each step. As an example, figure 4 shows
the construction process. For each gene i in a gene set, the algorithm evaluates the model’s
performance of adding ¢ into the existing tree. Among all the possibilities, this greedy
approach will select the one that gives the maximum improvement at each step. The com-
putation complexity to construct trees using this approach is O(k * n x D), where k is the
number of genes to be included in the tree, n is the size of the gene set to choose from, and D
is the number of samples, in this case cells, in the training data. This approach only searches
a subset of the possible arrangements, making the computation feasible. For a given gene
set and training dataset, this deterministic approach will always construct the same tree,
which is not ideal for searching through different trees and finding different gene markers.
To accomplish this, a randomization step is added. To construct each tree, a subset of genes
(default of 100) is randomly chosen from the set of all possible genes, and the decision tree
construction algorithm is applied to the subset. This process is repeated until the total

number of desired trees has been constructed.
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Figure 4: A schematic of a decision tree construction algorithm

Identifying marker genes

After a set of decision trees are constructed for labeling cells to their corresponding clusters,
each tree is evaluated and the genes in the top ranked trees are used as the gene markers.
Here, the trees are ranked based on the error rate of the trees. As each tree is used to classify if
a cell belongs to the cluster or not, the genes used by the top ranked trees for the identification
of a particular cluster j are used as the gene markers for that cluster. In the decision tree
construction algorithm, each gene is allowed to be either upregulated or downregulated for
cells inside the cluster versus outside the cluster, thus allowing identification of negative

markers with this method.
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2.2 Part II: Modeling differentiation dynamics
2.2.1 Overview

To model the gene regulatory network from single cell expression data, a system of ordinary
differential equations (ODE) is used in the form of &% = f(X), where X = [z, ...z}] rep-
resents the gene expression levels (also referred to as cell states) of the k number of genes,
x1 to xp, to be modeled. Here, I assume the dynamics of all cells in the data are described
by a single system of ODEs regardless of their cell types. The cell states of the differen-
tiated cells of varying cell types are assumed to be different attractors, defined as having

cell states X that give rise to a zero velocity vector (i.e., dd—)f = 0), of the ODE system.

The differentiation process is modeled as the time evolution of cell states from an initial
condition X (¢ = 0), which is often sampled from the progenitor population. To predict the
time evolution process starting at an initial state X (0), numeric integration is applied on

the ODEs via X(t) = j;'; 42X The function f(X) is approximated by a neural network. To

train the model, I use two different types of data: 1) pseudo-time trajectory data (See 2.2.2
for details), and 2) RNA velocity data (See 2.3 for details). In the first case, the inferred
pseudo-time trajectory is used to train the model, where the data resembles consecutively

measured cell states across time represented by X (¢). In the second case, RNA velocity

information % is inferred from single cell data and used directly to train the model.

When using pseudo-time data, the model tries to find a system of ODEs, % = f(X),

such that when integrating the ODZEs, ftto f(X)dt, the model can reconstruct the training

data trajectory X (¢). When using RNA velocity data, since the velocity information for each

] ¢X

7 Is given in training, the differential equation is directly modeled using

gene in each cel

neural network regression.
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2.2.2 Predicting gene expression dynamics using model train on Pseudo-time

data

Data collection

Single cell data collected from the mouse brain at three developmental time points (E12,
E15, and P0) with annotated cell type labels reported in Jessa et al. [20] was used. From this
dataset, we extracted cells belonging to the following cell types of the interneuron lineage:
the ventral radial glial cells (RGC), medial ganglionic eminence (MGE) derived inhibitory
neurons, inhibitory progenitors, and mature inhibitory neurons. The top 995 most variable
genes within the selected cells were used by Monocle [52] to order the cells and yield a pseudo-
time trajectory. To remove confounding signals from cell cycle, cells were scored based on
their cell cycle activity (Figure 8), the G2M score, which is defined as the GSVA (gene set
variation analysis) score [19] of the “HALLMARK G2M checkpoint” gene set [25]. Cells
that had a G2M score above 0.4 were labeled as cycling and removed.

The retained cells were used as input for the Monocle algorithm [52], which assigns each
cell in the data matrix a pseudo-time value representing its inferred time position along
the trajectory. The inferred trajectory, which includes multiple branch points, is shown in
figure 9. To only focus on linear trajectories without branching, the longest path along the
trajectory was selected for downstream processing.

In addition to the single cell data collected from time points E12, E15, and PO, we also use
a dataset sampled at different time points (E13 and E16) to evaluate the model performance.
The data is processed using the same conditions to obtain the pseudo-time trajectory. The

model is tested on how well it predicts the trajectory generated in this test dataset.

Smoothing pseudo-time data
The pseudo-time inference algorithm Monocle is used to assign each cell a time value along

the differentiation trajectory. Here, the time assigned to each cell represents its maturation
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level and the time separation between consecutive data points varies across the trajectory,
thus representing irregularly sampled time series data. By aligning the cells sequentially
along the time axis, the continuous changes in expression of each gene can be obtained by
fitting a smooth line across time. As single cell data is noisy and prone to dropouts, locally
estimated scatterplot smoothing (LOESS) is used to smooth the data. LOFESS smooths the
data by fitting a linear regression model locally on the data, where a weight function is applied
to control the contribution of each data point. A Gaussian weight function is used when
applying LOESS. Although the original data before smoothing is considered irregularly
sampled time series data, data points can be re-sampled on the smoothed trajectory to
produce evenly sampled training data in which the time separation between consecutive
measurements is a constant. After LOFESS smoothing was applied to the data, 3000 points

were sampled evenly across the pseudo-time trajectory to train the model.

Model training
During the training process, initial conditions X (i) are randomly sampled from the smoothed

trajectory data. Then, starting from X(¢), the model is asked to consecutively predict fu-
ture data points X (¢ > i) up to a certain length N represented by X (i + 1..N + i). The
error/loss function is computed as L = | X (i +1,..., N +i) — X(1 4 4...N +14)||2/N, which
is the mean squared error between the model predictions and the data. The prediction
X(i+1...N +1) is generated via numeric integration of the ODE learned by the neural net-
work. The integration method used in this case is Euler’s method, where the future states
are iteratively computed using the recursive equation X (n+1) = X(n) + % x At. Gradient

decent using the Adam optimizer is used to train the model with a learning rate of 0.001.

Model evaluation
The performance of the model is evaluated by hiding parts of the data during training, and

assessing the model’s ability to interpolate and extrapolate the gene dynamics of the hidden
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data. The sequential change in the transcriptomic profile, for K cells, during differentiation
X(0)...X(K) is created by sorting the cells along the time axis using the values obtained from
Monocle [52]. A continuous segment of this sequence is taken as the hideout data represented
by X (7)...X (¢ + N) where 0 < i < K — N, and N taken as 8% of the total number of cells
in the trajectory. In the extrapolation case, the hideout data is taken from X(0)...X(N)
or X(K — N)..X(K), such that the model needs to predict outside of its observed range
within the training data. In the interpolation case, the hideout data X (i)..X (i + N) lies
in the middle of the trajectory rather than at the endpoints, and is sampled such that
K —-2N <i<N.

In addition to evaluating the model on hideout data, the model is also evaluated on an
independent test dataset containing cells from the same lineage, but collected at different
time points. The test data undergoes similar data processing as the training data to construct
the trajectory. In the evaluation process, the model uses X (0) from the test data to predict

the future states.
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2.3 Predicting perturbation response using RNNA velocity data
2.3.1 Overview

In pseudo-time trajectory reconstruction, cells are sorted along a time axis representing their
progress during differentiation. This approach generates a separate trajectory for the differ-
entiation of each cell type lineage. The data X (t) generated in this process only captures
the expectation value of how the transcriptomic profile changes over time during differen-
tiation. The cell-to-cell variation, which is rich in information, is smoothed out during the
process. In contrast, RNA velocity captures cell-to-cell variation by providing the velocity
vector at the single cell level. The cell-to-cell deviations can be seen as the results of small
perturbations applied to the cells, which provides a better estimate of the causal relationship
between genes. RNA velocity estimates the velocity vector % for each cell in the dataset,
dx

where the deviations between cells are retained. The velocity vector %7+ is then used to train

the model by modeling the velocity as a function of the cell state: &X = f(X).

Prior to training the model, several data processing steps are used to impute and ex-
tract the relevant information from the single cell sequencing data. Starting from the read
counts of the sequencing experiment, the velocyto [29] package is used to extract the spliced
and unspliced transcript counts.Since single cell data is noisy and prone to dropouts, an
imputation step is used to denoise the data. This imputation step is done using the deep
count auto-encoder (DC'A) method developed by [13]. After denoising, the normalized gene
expression data for both spliced and unspliced transcripts is used as input for the scvelo
[29] package for RNA velocity inference. An additional data re-sampling step is performed
for data balancing. The balanced data is then used to train the model. In this section, I
will describe the steps of this process sequentially, including 1) imputation using DCA, 2)

RNA velocity inference with scvelo, 3) data balancing, 4) model construction, and 5) model

evaluation.
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Step 1: Data denoising using DCA

Single cell data is noisy and prone to dropouts. This negatively impacts both the velocity
estimate by scvelo as well as the modeling process. To reduce the effect of noise, I used the
DCA method developed by [13] to estimate the expected gene expression profile of each cell.
DCA, which stands for deep count auto-encoder, is an imputation method that uses a deep
learning approach by fitting a zero inflated negative binomial (ZINB) model to the data.

The ZINB distribution is described by the following equation:

Pr(Zy=n+(1—-m)NB(Z);ift Z=0 (2)
Pr(Z) = (1 —m)NB(Z):if Z #0 (3)

where NB(Z) is the negative binomial distribution of the random variable Z, and 7 is the
probability of dropout. The DCA method assumes that the data has a ZINB distribution, and
uses a variational auto-encoder approach to estimate the dropout probability 7, the expected
expression value pu, and the variance 6 for each gene conditioned on the input X. In other
words, for each gene z; in X, the neural network estimates the function m;, u;, 0; = f;(X).
The parameters are estimated with maximum likelihood estimation by using the negative
log likelihood of the ZINB distribution as the loss function. DCA is used on both the spliced
and unspliced transcript counts, and the imputed normalized expression values (for both

spliced and unspliced transcripts) are used for subsequent analysis.

Step 2: RNA velocity inference using scvelo

The imputed data is used to compute RNA velocity using the package scvelo [29]. The
mathematics and details of this method are discussed in the Introduction in 1.3.2. The top
1000 genes based on expression level (detected with a minimum number of counts) and high

dispersion were selected for downstream processing. After inferring the velocity information

X

>, we can fit a regression model that predicts % from X, where X is the imputed expression

37



profile of the cell. However, single cell sequencing datasets often have sampling bias that is
dependent on the tissue sample, the age of the organism, and other technical factors. An
unequal representation of different cell populations may lead to the model emphasizing the

larger populations and underrepresenting less abundant cell populations.

Step 3: Data balancing

Prior to training the model, data balancing is performed to reduce the effect of sampling
bias. In most single cell sequencing datasets, not all cell types are represented equally.
In attempts to correct for sampling bias, the data is balanced such that each of the cell
populations are represented equally. Here a re-sampling process is used to up-sample the
under-represented populations such that all the populations are represented with equal pro-
portions. The populations are often labeled by their cell types, but more refined structures

are also allowed.

Step 4: Neural network modeling using RNA velocity data

After balancing the data, neural networks were used to model the function % = f(X),

where the neural network model is trained to predict the velocity vector (%) of a cell based
on its expression profile (X). In the framework of RNA velocity, the velocity is estimated
based on the spliced and unspliced RNA profiles, where the system of differential equations
are described in 1.3.2. In those equations, v and s represent the unspliced and spliced
RNA profiles of a gene, respectively. The [ and v terms represents the splicing rate and
degradation rate, respectively, while the a®)(t) term represents the rate of transcription
for the unspliced RNA. The a®)(¢) term is never explicitly modeled in the RNA velocity
algorithm as it is a complex process, and it is not required for the velocity estimation
process. However, I will be modeling this gene regulation, where the synthesis rate of the

unspliced transcripts is assumed to be controlled by the cell’s transcriptomic state X. Here,

the expression profile X is equivalent to the spliced RNA counts represented by S. By
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rearranging the equations in equation 1, and substituting x; for s, we can rewrite them in

the following form:

=0 (1) = = = m(t) (4)

For simplicity, I assume that the term a®(t) — dz‘l—y) — yz;(t) can be approximated by a

function of the current cell state X:

dt

~ F(X(1)) (5)

Generalizing this across all genes, I can write the system as:

aX(t)
— F(X(1)) (6)

Where F/(X(t)) is approximated by a neural network. The system dynamics X () can then

dX (1)

be predicted by applying numeric integration to =—=.

Model training and neural network structure

To model the system dynamics of the cell state X (¢) consisting of N genes, I used neural
networks that take the expression levels of those N genes as input to predict % for that gene
set. The mean squared error (MSE) is used as the loss function to train the regression model.
The model is trained via gradient decent using the Adam optimizer with a learning rate of
0.001. During the training process, the data is split into a training set and a validation set.

The validation data consists of a random sample of 10% of the data prior to data balancing.

This validation data is used for monitoring over-fitting as well as hyper-parameter tuning.

In this model, the regulation of each gene ¢ is modeled as d;ti = fi(X), where each differ-

ential equation is estimated by an independent multi-input, single-output neural network.

dz; . .
5 for gene 7. By doing so, parameters

Each neural network takes X as input and predicts

are not shared between the f;(X) functions, as each function is estimated separately such
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that parameters do not favour genes with a higher variance in their velocities. In addition,

L1 regularization can be used to limit the number of inputs to each network.

L1 Regularization and causal inference

In single cell data, the number of detected genes in the dataset often outnumbers the
amount of cells sequenced. It is often more favourable to train machine learning models with
more samples than features, as large feature sizes can lead to over-fitting. Here, I used L1
regularization to reduce the number of input features to each neural network. For each gene
i, the input features X ;, are selected based on how informative they are for the prediction
of %. The input feature set is unique for each gene. This feature selection step can be
interpreted as a causal inference process, and it is used in later steps to improve model

performance is described in 3.2.3.

The graph interpretation of the model and relations to causal inference

To model gene regulatory dynamics, I used neural networks to perform the regression

X where

task of learning the function mapping the cellular state X to its velocity vector %,

X and % are vectors of length k, and k is the number of genes included in the model.

When using pseudo-time data, training was performed with multi-input, multi-output neural

networks. However, when using RNA velocity data, k individual neural neural networks

dx i
dt

were trained, with each taking X as input and returning for the gene ¢. The system of
differential equations to be estimated by the neural networks can also be interpreted as a
gene regulatory network graph, where the selected input genes X; for a neural network of

gene i can be interpreted as the expression level of gene ¢ regulated by X;. This mapping

of X; to % is similar to the causal inference algorithm Scribe [51] (described in 1.3.3), in

which the information between velocities and gene expression values are used to infer causal
connections. Here, rather than using mutual information to measure the strength of the

connections as performed by Scribe, the direct regulatory relationship is estimated from the
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velocity data. The regulatory function for each gene or node i is represented in the form
of % = f(Xyn), with X, representing the incoming edges to that node. A schematic of
this process is shown in figure 5. One issue when training the regression model is that X;,
can potentially include all of the genes in the data. To reduce the number of incoming
edges to each node, L1 regularization, a technique able to reduce parameter weights to
zero in regression tasks, is used to set certain edge weights to zero. In this regularization
process, the regression task for each gene 7 is to learn the % = f(W ® X) where W are the
edge weights of all incoming edges to gene i (including ¢ itself), and ® represents element-

wise multiplication. By applying L1 regularization on the edge weights, one can effectively

eliminate weakly linked edges. The exact implementation is described as follows.

@ AXi _ fixo)

dt
_ dx
x) = g = fox)

dXs

@ ot - f(X1,X2)

Figure 5: Interpreting the differential equations as a graph

Implementation of causal inference using neural networks via L1 regularization

For each neural network that computes the velocity for gene i, a mask vector W; of
length £ is multiplied to the input X via element-wise multiplication represented as ©.
The penalization term of A *||.X ® W;||, is added to the loss function, with A being a user
defined hyper-parameter and |||, being the L1 norm. This penalization term aims to set

elements in W to zero. This process can be interpreted as causal network inference, where
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dr; __
dt

for each equation fi(X ® W,), the location of the non-zero elements in W; represents
a causal connection directed to gene i. Although L1 regularization has the tendency to
set weights to zero, when optimizing the model using iterative methods such as gradient
descent, the weights never reach zero due to the stochasticity of the optimization technique.
However, weakly connected edges have the tendency to frequently fluctuate between positive

and negative weights, and edge weights showing this trend are manually set to zero after a

threshold of such fluctuations.

Boundary conditions
For this model, two boundary conditions needed to be applied. The first is that when
integrating dd—)t(, the solution must be non-negative, as X () represents the concentration of

gene transcripts and cannot take on negative values. Thus, the equation for each gene z; in

X is subjected to the boundary condition of d;ti = 0 when z; = 0. Secondly, the solution X ()
must be bounded. This implies that % = 0 when x; has reached its maximum expression
level. However, z; is generally not known a priori, so the empirical maximum observed in
the training data is used as the theoretical maximum.

The implementation of these boundary conditions in the neural network is done by uti-
lizing the unit step function u(x) (also known as the heaviside function), where u(x) takes
the value of 0 when z <= 0 and 1 when x > 0. For the first boundary condition, we used
42 = f(X) *u(X) to ensure the solution X (¢) is non-negative, with f(X) being the output
of the neural network. The second boundary condition is similarly applied by modeling

L = F(X) * u(X e — X).

2.3.2 Model evaluation

Evaluation data
To evaluate the model’s ability to predict on perturbation response, a published pertur-

bation dataset from [42] was used. In this study, CRISPR interference (CRISPRIi) was used
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to reduce expression of selected genes in human iPSCs during induced neural differentiation.
The cells were sequenced by single cell RNA seq to evaluate the effects of gene knockdowns
on the transcriptome. To evaluate model performance in this study, I used the z-scores of

differentially expressed genes resulting from the CRISPRi gene knockdowns reported in [42].

Evaluate model accuracy

To evaluate the model performance, I binarized the results of the test data, with each
gene binarized as either up-regulated or down-regulated as a result of the gene deletion.
Predicting the effect of gene deletions with this model consists of three steps: 1) choose a
set of initial conditions X (¢ = 0), 2) perform integration on the system with and without
the perturbation, and 3) compare the expression profiles between the perturbed and non-
perturbed final state of the system for the differential expression profile.

1) Prior to predicting the system dynamics, the appropriate initial conditions must be
selected. Since the test data is collected from neurons, the initial conditions must be sampled
from cell populations or clusters that resemble the test data as closely as possible. In this
case, 100 random initial conditions were sampled from the granule cell clusters in the training
data.

2) Starting from the sampled initial conditions, numeric integration is performed until the
system reaches equilibrium. In this process, each initial condition is used to construct 2 tra-
jectories: one with the perturbation, and one without. While the non-perturbed trajectory

dx

is obtained by integrating the system of equations ;- normally, the perturbed trajectory is

obtained by integrating the equations while permanently setting the values of the perturbed

dx;

gene x; and its velocity component <7

to zero during the integration process.
3) The difference between the final states generated by the two different processes are
computed and used to evaluate the model’s prediction against the test data. For each gene,

the difference between the final expression value in the perturbed trajectory and in the non-
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perturbed trajectory indicates whether the gene is up or down-regulated as a result of the
perturbation. This is then binarized to a categorical outcome and compared to the test data

to evaluate the model accuracy.

44



3 Results

3.1 Part I: Marker selection using random forest approach identifies

key gene markers for neuron populations

In this study, I constructed a random forest approach to identify combination of gene markers.
The random forest marker selection method ranks gene combinations based on how well they
performed at classifying cells for each cluster. Figure 6 shows a sample output from the
algorithm. Panel A shows the cluster assignment of the cells, and panel B shows the table
of markers found by the algorithm for those clusters. In this table, the first two columns
indicate whether the genes in the next two corresponding columns are up or down-regulated
in the cluster. Each row represents the performance of a decision tree in identifying the
cells inside the cluster. The false positive and false negative rates are shown for each tree,
and the trees are ranked by % (shown on the conf index column in figure 6), where e is the
error rate evaluated on balanced test data. Figure 6 panel C shows the expression levels of a
positive and negative marker pair that distinguishes cluster 1. In this example, the markers
for cluster 2 all have a very high score. However, this is due to cluster 2 having very few

cells, which causes the algorithm to overfit.
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A) B) X114 X214 X1 X2 false.positive false.negative conf_index Cluster
+ 4+ Lhx2  Adoc 02100911 02422641 4098369 0
+ 4+ Lhx  Lparl 02040428 02416635 4012316 0
+ +  Adoc Gast 01925067 02523628 3984891 0
+ +  Llpart  Gast 02225123 02408184 3973138 0
+ o+ Lhx2  Alcam 02414140 02183480 3947802 0
4+ + Lk Lxi 02385321 02545455 3928571 0
+ 4+ Lhx2 Pppa2b 02547170 02190476 3925926 0
» + +  Lhx  Thp2c 02503851 02155064 3913200 0
+ + Dmta2 Gasl 01682730 02658854 3888040 0
+ - e 1d2 02502593  0.1886792 3857143 0
- - Neuwog2 Gast 01980831  0.1782530 4808064 1
- - Adoc Gast 01908948 02043608 4531700 1
~ ® - - Dmrta2 Gast 02159069  0.1930027 4477001 1
H [ 3 + - Tubb2a Gas! 02083116 02307470 4333750 1
- o: - - shisa2 Gast 02295070 02067857 4241136 1
- - Gast Acam 01855416  0.1636566 4225522 1
+ - Bub3  Gasl 02000000 02400000 4166667 1
+ - Ln  Gasl 02436770 01234416 4103793 1
" -+ Gas! Conb! 02095238 02439024 4100000 1
- - Tap2c Gas! 01835039 02362141 4069087 1
-+ Cdnlb Tt 00000000 00000000 100.000000 2
-+ Ddt4 Tt 00000000 00000000  100.000000 2
+ + Gaddsg Tt 00000000 00000000  100.000000 2
+ +  Hess  Tr 00000000 00000000  100.000000 2
. -+ e Tt 00000000  0.0000000 100000000 2
S0 3 onet E3 + o+ Ligt Tt 00000000  0.0000000 100000000 2
+ + Lmo4 Tt 00000000 00000000  100.000000 2
o+ M Tt 00000000  0.0000000 100000000 2
C) -+ Pm5 T 0.0000000  0.0000000  100.000000 2
Lxn Gas1 + + Sllad Tt 00000000 00000000  100.000000 2
25
N\
w o
F
-25
-50 -50
50 -5 0 25 -5 25 0 25

tSNE_1 tSNE_1

Figure 6: Sample output from random forest marker selection method. A) t-distributed
stochastic neighbor embedding (t-SNE) embedding of mouse forebrain progenitor cells from
embryonic time points, where cells are colored by a low resolution cluster assignment. B)
Table of markers found by the random forest algorithm for each of the clusters. The top
markers for each cluster are shown and ranked according to a score (in the conf score
column) computed as one over the overall error rate. C) Gene expression levels in the t-SNE

embedding of a positive-negative marker pair found by the algorithm for cluster 1.

Using the random forest approach, discriminant gene markers were identified that re-
vealed dorsal-ventral patterning in the brain. Figure 2.1 shows the gene markers identified

by the random forest approach, which were not identified by differential expression analysis.
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The genes Pax6 and Lhz2 are markers produced by the algorithm which have been shown to
be related to dorsal patterning in the brain [20], while the genes Nkx2—1, Ascll, Dlx2, Rbpl
mark ventral patterning. These results are included in the publication [20], and this method
is being used in the lab for identifying gene markers to facilitate labeling cell populations

during analysis of single cell data.
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Figure 7: a) TSNE embedding of mouse forebrain progenitor populations from embryonic
time points. Cells are colored by cluster assignment. b) t-SNE embedding colored by expres-
sion of top discriminant gene markers for each cluster, identified using a random forest-based
approach. c¢) In situ hybridization of selected discriminant marker genes from the Allen
Brain Atlas (2008 Allen Institute for Brain Science. Allen Developing Mouse Brain Atlas.

Available from: developingmouse.brain-map.org)
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3.2 Part II: Modeling differentiation dynamics
3.2.1 Interpolate and extrapolate system dynamics

To model the gene regulatory dynamics during differentiation of inhibitory neurons, I used
a machine learning approach with single cell expression data of samples collected from the
mouse brain at 3 time points: E12, E15, and PO [20]. The random forest marker selection
method was used to facilitate labeling of cell populations in these samples. From this dataset,
we selected cells of the interneuron lineage. To remove the effect of cell cycle on trajectory
inference, cells are scored based on cell cycle activity (figure 8), the G2M score, and cells
with a score above 0.4 are removed. Cells with a score below 0.4 are used to construct the
pseudo-time trajectory using (figure 9) and train the machine learning model (see section

2.2.2 for more details).

1-Ventral RGC 4-MGE-de rived inhib. neurons S-Inhib. ne urans 7-Inhibitory proge nitors (proli)

clustert
© 1-Vental RGG
®  4-MGE-derived inhib. ne urons

G2/M score
o

®  Sinhib. neurons
©  T-Inhibitory progenitors (prolif)

Figure 8: Cell cycle scoring for cell clusters selected for pseudo-time trajectory construction

from single cell data collected from E12, F'15, and PO.
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Figure 9: Pseudo-time trajectory reconstructed from single cell data of cells along the in-

hibitory neuron lineage at E12, E15, and P0 using Monocle [52].

To evaluate the model’s ability to learn the gene dynamics in neural differentiation, we
hide different parts of the data along the differentiation trajectory and ask the model to
interpolate or extrapolate the system dynamics towards unobserved regions along pseudo-
time. For the evaluation data, we sampled consecutive data points starting at different
regions in the trajectory by removing 8% of the data. The training data was then smoothed
using LOES'S, and the smoothed data was used to train the model. The mean squared error
(MSE) of the NODE predictions was then compared to a linear interpolation/extrapolation
process, with the comparisons shown in table 1. In each case, the initial state X (t,) represents
the earliest or latest time point in the test data, and the model was asked to predict X (¢ > t¢)
or X(t < tp) depending on the test scenario.

Table 1 shows that the linear extrapolation outperformed the neural ODE method. How-
ever, the neural ODE method is able to outperform the linear model in the interpolation
case. This may be due to the fact that the gene expression profile is more linear at the two
end points of the trajectory. By plotting the density of the cells along the trajectory (figure
10), we see that the cells are more densely sampled at the two end points. Thus, when 8%

of the data at the end points of the trajectories was used as the test data, the corresponding
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time window is small compared to other sampled segments. This can be seen in Table 1’s
test data time frame column, where the extrapolation time window is significantly smaller

than the interpolation cases, thus favouring linear trends.

Density of cells over pseudotime

0.35 1

0.30 1

0.25 1

0.20 1

Density

0.15 4

0.10 1

0.05 1

0.00 -

time

Figure 10: Cell density distribution across pseudo-time. The y-axis represents the percentage

of cells distributed across the time x-axis.

We evaluate the model performance by plotting several well characterized genes known to
be involved in the inhibitory neuron differentiation pathway across pseudo-time. We asked
the model to predict the time evolution of the system, and observe the model is able to
extrapolate and interpolate the system dynamics in those genes (figure 11).

In addition, we evaluated the model’s ability to properly converge to the final state when
part of the data is hidden in the trajectory. We ask the model to predict X (¢) for the entire
pseudo-time trajectory starting from X (0). Figure 12, show that all of the models trained

by hiding different portions of the data were able to converge towards the final state.
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A) Cross evaluation set |

C) Cross evaluation set Ill

Figure 11: Cross evaluation of selected genes involved in the inhibitory neuron differentiation
pathway. Each plot represents the expression level of a gene across pseudo-time. Each dot
represents the expression level of a particular cell at its assigned pseudo-time by Monocle
[52]. The green data points were used for training, while the red data points were used for
testing. The blue line is the model prediction, while the black line is the smoothed version of
the data. A) Data from the beginning of the trajectory are hidden and used for evaluation.
B) Data from intermediate time points are hidden and used for evaluation. C) Data from

end time points are hidden and used for evaluation.

51



Figure 12: Cross evaluation for overall model performance. Each dot represents the L2
distance between each cell along the trajectory to the final state. The green data points
were used for training, and the red data points were used for testing. The blue line is the

model performance, and the black line is the smoothed version of the data.

To further evaluate the model performance, an independent test dataset from different
developmental time points, £'13 and E16, was used. The trajectory reconstruction process
was performed by again selecting cells of the inhibitory neuron lineage. Cells with a G2M
score above (.35 were removed to reduce the effect of cycling cells on trajectory construction

(Figure 13). The Monocle trajectory for the test data is shown in Figure 14.
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Figure 13: Cell cycle scoring for cell clusters selected for pseudo-time trajectory construction

from single cell data collected from E13 and E16.

Component 2

Figure 14: Trajectory reconstructed from single cell data collected from F13 and E16 using

Monocle [52]

To characterize the model’s performance on the test data, the model is first evaluated on
its predictions of selected genes known to be involved in the inhibitory neuron differentiation
pathway (figure 15). We observe for most genes, although slightly deviated, the model is
able to accurately capture the overall trend of the genes behaviours over time. Some of the
genes used in the training data, such as Nkz2.1, are not detected in the testing data, but

still required as inputs to the model, are treated as zeros in the initial condition X (0) when
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predicting the gene regulatory dynamics X (¢). In addition to the individual genes, in figure
16, we see that the predictions also still converge to a similar final state in the test data.
To further asses the model prediction on all genes, we compared the MSE of the selected
genes to the MSE of all other detected genes. The MSE for the selected genes (omitting
the undetected genes in the testing data) was 0.1139, while the MSE for all the genes was
0.0398. Here, we see that the error in the overall data is lower than the error in the selected
genes. We suspect that this may result from a higher variance in the selected genes than the
rest of the genes used for the modeling process. Thus, we compared the scaled absolute error
(SAE) between the two. In the SAE computation, we scaled the absolute error between the
predictions and the data for each gene by their variance. The SAE for the selected genes
was 4.98, while the SAE for all genes was 3.54.
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Figure 15: Model performance on selected genes in the training data and testing data. The
blue line represents the model predictions and the black line represents the smoothed version

of the data.
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Figure 16: Model performance on the testing data, representing the convergence towards the

final state.
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To further characterize the model’s prediction errors, we randomly sampled 100 initial
states in the testing data, and evaluated the MSE and SAE. The average MSE for the selected
genes was 0.1863 with a variance of 0.0022. The average MSE for all genes was 0.0563 with
a variance of 0.0003. The SAE for the selected genes was 15.71 with a variance of 198.8, and

the SAE for all the genes was 12.493 with a variance of 100.3.

3.2.2 Predicting the effect of gene deletions

By modeling the gene regulatory dynamics as an ODE system, it is possible to simulate
perturbation response in the form of gene deletions by setting the value of the selected genes
to zero during the integration step. The details of the approach are discussed in the Methods
section 2.3. Here, to evaluate the model’s ability to predict the effects of gene deletions on
the overall gene expression profile, a perturb-seq dataset from [42] was used. In this study,
peturb-seq was done on iPSC-derived neurons and used to identify the differentially expressed
genes as a result of the gene deletion. The Z-scores were reported for the differentially
expressed genes between the knockdowns and control. The model performance is evaluated
by its accuracy at predicting whether a gene is up or down-regulated as a result of the gene
deletion. The details of the test data and the evaluation process is described in section 2.3.2.

For this study, data from the dentate gyrus [18] was used to train the model, as it shares
more detected genes with the evaluation dataset compared to our mouse developmental
data (that is used in constructing the pseudo-time trajectories). The training data was
processed through the steps described in sections 2.3.1, 2.3.1, and 2.3.1. During this data
processing step DCA [13| was used to remove noise from the data. To confirm that the DCA
imputation step did not drastically change the data structure or interfere with RNA velocity
inference, the two-dimensional reduction of the data using Uniform Manifold Approximation
and Projection (UMAP) [6] was compared for data processed with DCA (figure 17) and

without DCA (figure 18). In the UMAP visualizations, the relative cluster positions are
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comparable, while the directions of the velocity vectors for the DCA processed data resemble
the non-imputed counterpart. However, in the non-imputed case, the velocity vectors in
the mature granule population show a tendency toward the immature granule population,
counter to our expectations. In contrast, the velocity vectors in the imputed data shows
unidirectional flow from the immature to the mature granule population, which agrees with

the known biology.

dusters

Figure 17: UMAP of Dentate Gyrus dataset after applying DCA to the single cell data with

RNA velocity vectors computed by scvelo
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dusters

Cajal Retzius

Figure 18: UMAP embedding of Dentate Gyrus dataset with RNA velocity vectors computed

by scvelo

During the modeling process, the top 1000 genes were included in the model. In this
setup, the model was used to predict the effects of 4 different gene deletions on the overall
expression profile. To predict the effect the perturbation response, this process was simulated
by performing numeric integration on the learned system of equations. The process of
generating predictions is described in section 2.3.2. The UM AP embedding of the processed
data is shown in figure 17.

To predict the effect of the gene deletions in the test data, cells from the granule cell
cluster were set as the initial states of the simulation, following the described steps in section
2.3.2. Numeric integration was applied on the system to compute and compare the final
states of the trajectories with and without the gene deletion. For each gene deletion, the
simulation was repeated 100 times, each starting with a randomly sampled cell state in
the granule cluster. This was done for each of the 4 gene deletions in the test data. The
group average for each deletion event was used as the final prediction. The predictions

were binarized to either up or down-regulated for each of the affected genes as a result of
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the deletion, which reduces this to a binary classification problem. During the binarization
process, a threshold value was set on the Z-score to filter out expression value changes that
were not significant. Only genes with a Z-score of absolute value above 0.5 were used. The
accuracy of the model evaluated on this test data was 91%, while the baseline accuracy was
only 68% (shown in Figure 19). The baseline accuracy here was computed as the maximum
of either: 1) always predict true or 2) always predict false, which represents the best possible

non-educated guess on the outcome of a binary classification problem.
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Figure 19: Model’s prediction accuracy (left) on predicting the effect of gene deletions,
compared to the baseline (right). The model was trained using 1000 genes and evaluated on

4 different gene deletions.

3.2.3 Extending to more genes

To test the limit of how many genes can be modeled using this approach, the number of
genes included in the model was increased from 1000 to 2000. In this setup, the model was
used to predict the effects of 5 different gene deletions (1 additional gene deletion, which was
filtered out in the previous model). The model was trained and evaluated using the same

setup as above. However, the model was not able to outperform the baseline, as shown in
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figure 20. The increase in dimensionality may be the main cause in the decrease in model
performance. To account for this issue, a dimensionality reduction approach was applied.
Here, we used L1 regularization to reduce the number of variables used for the regression
task of each gene by setting certain edge weights to zero. The details of this approach are
described in 2.3.1. After applying this approach, the model was again able to outperform
the baseline by 15% (shown in figure 21). However, the accuracy was still lower than the

previous model including 1000 genes.
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Figure 20: Model’s prediction accuracy (left) on predicting the effect of gene deletions,
compared to the baseline (right). The model was trained using 2000 genes and evaluated on

5 different gene deletions.
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Figure 21: Model’s prediction accuracy (left) on predicting the effect of gene deletions, com-
pared to the baseline (right). The model was trained using 2000 genes with L1 regularization

and evaluated on 5 different gene deletions.

To further test the limits of the model, the number of genes was increased to 3000. In this
setup, the model was used to predict the effects of 8 different gene deletions (3 additional
gene deletion from the previous case). The same data processing steps were applied, and
the model was trained in the two cases with and without the L1 regularization. However, in

either case, the model was not able to outperform the baseline.
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4 Discussion

Understanding the molecular characteristics and underlying regulatory mechanisms of cellu-
lar differentiation is an important goal in current research. To study this complex process,
the high resolution data generated from single cell RNA sequencing technology provides a
convenient platform to investigate molecular changes during differentiation. In this study, I
focus on developing computation methods for understanding cellular differentiation, includ-
ing two methods: a random forest approach to characterize molecular markers defining cell
populations, and a method to model cellular dynamics with neural networks.

The random forest approach identified gene markers that differential expression analysis
had missed. The advantage of the random forest approach is its ability to evaluate the
combinatorial effect of multiple genes to distinguish a population of cells. However, two
limitations exist for this approach. First, this method tends to overfit when the number of
cells in a cluster is small. This can be seen in figure 6, where the algorithm finds high score
markers for a very small cluster as an artifact of the clustering algorithm. This represents an
issue with machine learning algorithms in general, where they will often find patterns in the
data, even when the patterns are artificial. Second, the markers found by the algorithm are
difficult to evaluate on their biological significance. The markers found by the algorithm in
figure 7 are cross referenced with prior knowledge of gene expression in brain development.
However, not all genes found by the algorithm can be validated in this manner, as the roles
of many genes involved in the the developmental process remain unknown, and the random
forest algorithm cannot determine the biological significance of its gene set.

In contrast, modeling of cellular dynamics identifies the relative relationship between
genes, which can explain the significance of genes in terms of how they impact one another.
In this approach, dynamics data inferred from single cell data, in the form of pseudo-time or
RNA velocity, is used to fit a system of ODEs in the form of neural networks. This model

is able to predict how the cell’s transcriptome changes over time during differentiation, as
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well as the effect of gene perturbations. As the model uses inferred dynamics data from
single cell, it is reliant on the accuracy of the inference algorithm. In particular, pseudo-time
inference and RNA velocity are used as the main methods of inferring the dynamics informa-
tion. In the pseudo-time case, the dynamics information is limited to only one trajectory per
differentiation process, where the differences between individual cells, which contains pertur-
bation information, are smoothed out along the trajectory. Thus, the models trained using
pseudo-time data are not suited for the prediction of gene perturbations when the number of
genes in the model is large. When trying to use this model to predict perturbation response,
it predicts no change in the majority of cases where changes should be present, indicating the
cause-effect relationship between genes is not correctly captured. In contrast, RNA velocity
estimates the velocity information at the cellular level, which captures the deviation between
individual cells. The model trained using RNA velocity data is able to predict the effect of
perturbations, but shows a decrease in performance as the number of genes in the model
increases.

In this experiment, we show that by using a machine learning approach to model the gene
regulatory dynamics in single cell data, we can use the model to predict: 1) the change in gene
expression profile during differentiation as well as 2) the change in the gene expression profile
as a result of gene deletions. This machine learning approach is data driven, and requires
minimal prior knowledge on the genes to be modeled. The future goal of this method is to
use the model to identify gene targets for disease intervention. The details of how the model

can be used to identify gene targets will be discussed in section 4.2.2
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4.1 Requirements and limitations on modeling cellular dynamics

using the neural ODE approach
4.1.1 Overview

In this section, I discuss the assumptions and limitations of the model. In particular, 1)
in order for the model to predict a perturbation response, it requires the corresponding
dynamics information to be included in the data, and 2) the number of genes included in the
model is limited by the size of the dataset, and the required data may increase exponentially

as a function of the number of genes included in the model.

4.1.2 To predict the effect of a perturbation, the corresponding dynamics need

to be included in the training data

In this project, I construct a machine learning model that tries to predict the effect of gene
deletions on the cell’s overall transcriptomic profile, despite the gene deletions not having
been observed in the training data. This out-of-sample prediction task is a difficult problem
for machine learning methods [38|, as most supervised machine learning methods require
the sample distribution of the test data to mimic the training data [12]| [28] [10]. Since the
test data is on gene deletions that were never present in the training data, this assumption
appears to be violated. However, as we select highly variable genes to be included in the
model, which includes genes that are turned on and off at different stages, the outcome of
a gene deletion on the overall transcriptome can be inferred from observing the on the off
states of that gene and extending the impact on its downstream targets, which are learned
by the model. Here, the underlying assumption is that both the on and off states of the
perturbed gene are observed in the training data. For this reason, this method would have
difficulties generalizing towards cell populations that are not observed in the training data,

as out-of-sample cell types can have active biological programs that are absent in the training
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data.

4.1.3 The amount of data required by the model increases exponentially with
respect to the number of genes to be modeled, but can be reduced by

imposing constraints on the system

In addition to the above requirements, the amount of data points sampled also limits the
performance of the model. In the simplest case, each gene can be considered as having one
of two states: ’on’ or ’off’. The total number of possible configurations for a system with k
genes is thus 2%, although in reality when the expression is continuous, this number grows
even larger. If n represents the total number of different configurations of the system, the
expected number of samples under uniform distribution, represented by F(N), needed to

capture all the different configurations/states in the data is:

2k
B(N) =3 (50—) > 2 (7)

The required data is expected to grow exponentially with respect to the number of genes
to be modeled. Thus, the performance of the model would start to decrease as more genes
are included in the model, as described in section 3.2.3. Furthermore, as the sampling of
cell states is generally not a uniform distribution, this will require more samples than this
estimate. To produce a more sample efficient approach, for each equation % = f(X), not
all genes are needed. If a constraint is imposed on the system, such as limiting the number
of possible regulators of a gene, the total number of configurations can be reduced. Letting
[ be the upper bound on the number of regulators of a particular gene, the total number
of possible configurations for the system is k2!, where [ << k. This is done by removing

weakly correlating genes from each equation via L1 regularization. The limitation of this

approach is that the gene selection process is stochastic and has a selection bias dependent
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on the neural network structure. In particular, different gene sets would be selected when the
number of layers or the activation function change. Moreover, the gene set varies even when
the network structure is fixed due to the stochastic nature of the training process (although
we expect less variation in the gene set than when the network structure is altered).

In summary, to reduce the exponential increase in data requirement, L1 regularization
is used to reduce the number of possible regulators to each gene. The downside is that
biases are introduced during this feature selection process. Thus, fine tuning of the L1
regularization parameters is required to select for the optimal trade-off between bias and

potential over-fitting.

4.2 Future work
4.2.1 Incorporating hidden states

In my model, I assume that the future state of a cell is only dependent on its current
transcriptomic state. However, this may not always be the case, as the epigenetic and
proteomic states also play a significant role in this process. For a more comprehensive
model, incorporating these layers of information could potentially lead to better performance.
Unfortunately, as epigenetic and proteomic information is not yet available at the single cell
level, they cannot be directly included in the modeling process. However, they can be
incorporated in the form of hidden states in the model. To demonstrate this, consider the
following example: first, let us assume that the flow of information between the epigenetic

state (E), transcriptomic state (T), and proteomic state (P) can be represented in figure 22.
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Figure 22: State diagram of incorporating epegenetic and proteomic states into the system.
T represents the RNA state, E represents the epigenetic state, and P represents the proteomic

state.

Following the diagram, the state transition equation can be described in the following

form:

Et+At = f(Pt> (8)
Tirat = f(Et, Pt) (9)
Priae= f(Th) (10)

68



In this formulation, the future E state (denoted by E;,a¢) is dependent on the current
P state (P;), where the transcriptomic state Tj;a; is dependent on P, & E;, and Pyya, is
dependent on T;. Since the E and P are not observed, the goal is to rearrange the equations
such that we can express T; . a; only as a function of the past states of 7. This can be done

by incorporating higher order derivatives, where the information coming from the F and P

states can be approximated by the second and third derivatives of T' (i.e., ddg;t and £ Tt).

The details of this formulation are discussed in Appendix A.

4.2.2 Using the machine learning model to control gene regulatory dynamics

and identifying optimal gene targets

The future application of this model is to identify the perturbations needed to control certain
aspects of the gene regulatory network. As an example, the model can be used to predict the
perturbations required to push the cells from an initial state X (0) to a desired target state
Xy. During cellular differentiation, the expression profile of a cell irreversibly changes from
the naive state towards their differentiated state. The model, in this case, can be used to
investigate the potential gene perturbations needed to push the cells from the differentiated
state back to its naive state. Here, I will discuss the mathematical procedures for this
prediction process.

The model can be used to predict the gene dynamics from an initial condition X (0)
by computing the integral X (T f T dx dt The dynamics of the system in response to
perturbations can be computed via X (T fo (L + P9, X ))dt, where P(6, X) are the
user-defined perturbations applied to the system with 6 being the free-parameters. Here

P(60, X) represents a system of functions p;(6;, X) with the same dimensionality as . The

objective is to choose the perturbations that minimize the loss function HX (T) — , with
2
|||, representing the L2 norm. The solution can be found via optimization methods such

as gradient descent. For practical applications, the preference is to select solutions that
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perturb the minimal number of genes to achieve the desired outcome. This can be seen

as enforcing sparsity on P(, X). Let’s assume each element p;(6;, X) in P(6, X) takes the

~

form of p;(0;, X) = 6; x ddii, such that the perturbed version of the equation is x;(T) =

fOT(% + 60; % d;i)dt. If 6; is zero, the equation behaves as if no external perturbation is
applied to gene . When 6; < 0, gene i is down-regulated, while positive values of 6; implies
up-regulation. Thus, to minimize the number of genes to perturb, L1 regularization can be
applied to 6 during the regression process. In summary, by applying a regression task on the

loss function in equation 11, one can use the model to identify perturbations to control the

cell’s transcriptomic state, and will be the future goal of this project.

HX(T)_Xf||2+||9H1 (11)
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5 Conclusion

In summary, this thesis presents two computational methods for the study of cellular dif-
ferentiation: one to identify molecular markers of cell populations using a random forest
approach, and one to model cellular dynamics with neural networks. While the random
forest approach is able to identify combinations of gene markers that differential expression
analysis missed, the neural network approach is able to learn the gene regulatory dynamics
from single cell data and predict the effect of gene perturbations at the cell level. This
neural network approach can be extended in future applications to investigate gene targets

for manipulating cell fate.
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A Incorporating hidden states to the model

Starting with the equation in discrete time:

Ti1 = f(Th—2, Th—1) (12)

substituting ¢t <— ¢ + 2

Tz = f(T3, Tiin) (13)

The future states T;;; and Ti,o can be expanded in the following form via first order

estimate:

dTy

Ty =T, + At_dt (14)
dT;
Tiyo = Ty1 + At C;t“ (15)
dT; dT; d*T,
Tio =T, + At— + At(— + At 16
vr2 = Ti b A==+ At(—5 4 At ) (16)
Expanding T}, 3 in terms of T} only using first order estimate:
dT;
Tips = Thpo + At dtt” (17)
dTiq dTy 41 d*T4
Ty 3="1T, At At At 1
t43 = Lep1 + FTaS ( FTaS pTE) ) (18)
dT; d*T,
Tyis = Tipr + 20t—— + (At)? dtt;l> (19)
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ar dT; d*T, d*T, d*T,
Tivs = Ty + At—(t) + 2AH(— + At——) + (At)? At 20
dT; d*T; 3T,
Tiys = Tp + 30— + 2(At)? At)? 21
t+3 t + dt + ( ) dt2 + ( ) dt3 ( )
Where the derivatives can be modeled as: ‘Psz,F = f(T) (where f(T) is to be approximated

by a neural network). The other derivatives can be computed as: %(t + At) = ‘%F(t) +

(At)%, and 2L(t + At) = 4L (¢) + (At) = (57;. To predict the time evolution of the system

T(t = 0 — o), starting with the initial conditions T'(t = 0), <L (¢t = 0), and LT (¢t = 0),

3T

% (t = 0). This prediction is then use to predict CT(f + AL).

dt?

Subsequently, 9 (t4+At) is predicted using %(t), and T'(t+At) is predicted using T'(t+At) =

the neural network predicts

T(t) + At * %(t). Then, T'(t = 0 — o) is computed by applying this update iteratively.
Note that it takes 3 update steps for the neural network f(7") to propagate its information
to T'(t) in oppose to 1 when we omit the epigenetic and proteomic states.

Here, although the epigenetic states and proteomic states are not directly observed,
the system can be model using higher order derivatives in the RNA data. In the case of
pseudo-time data, the higher order derivatives can be estimated from consecutive points
along pseudo-time. Whereas in RNA velocity data the higher terms can also be computed
in a similar matter. As an example, the RNA acceleration (which is computed in [29]) can

be computed using the spliced and unspliced counts as:

d?s

== Bu + 2Bus + vs — 2vs* (22)

while other derivative terms can be computed in a similar manner. In summary, the
effects of epigenetic and proteomic information can be included in the model by introducing

them as hidden states in aims to improve model performance.
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H Experiment test data time frame linear prediction MSE Neural ODE MSE H

Backward Extrapolation 0.0 - 0.398 7.23e-08 8.96e-06
Forward Extrapolation 19.0 - 21.1 2.76e-07 3.07e-06
Interpolation 1 1.00 - 3.80 8.07e-06 5.71e-06
Interpolation 2 3.00 - 4.89 6.64e-06 9.12e-06
Interpolation 3 5.00 - 9.41 1.06e-4 9.80e-05
Interpolation 4 9.01-11.5 1.35e-05 1.76e-05
Interpolation 5 12.1 - 179 4.01e-04 1.15e-04
Interpolation 6 18.0 - 20.2 1.05e-05 6.32e-06

Table 1: Cross evaluation of model performance by comparing the mean squared error on
the hideout data between the neural ODE method and linear prediction. The models were
evaluated on the hideout data. Different portions of the data were used as hideout data,
where each segment of the hideout data consists of 8% of the total number of data points.
The distribution of the population density of cells at different stages of the differentiation
process is not even, therefore the time window length corresponding to each hideout segment
is different despite the total number of cells in each segment remaining the same. In the
extrapolation case, the hideout data was taken at the ends of the trajectory where the models
were to extend the system dynamics beyond the sampled time window of the training data.
In the interpolation case, the hideout data was taken in the middle of the trajectory, where
the time window of the hideout data lies within the range of the training data. In the
extrapolation case, the linear model extrapolates using the slope at the end of the training
data. In the interpolation case, the linear model is constructed by connecting the two points

between the segments via a straight line.
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