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Introduction end Summeryo 

In hi~ fundementel peper (1953) [23], ~ntitled 

"On the Theory of Order Steti~tic~", A. R~nyi developed a new 

method by meen~ of which many importent reeulte of the theory 

of order stati~tics cen be obtained with eurpri~ing simplicity. 

The es~ential novelty of hie method i~ that it reduce~ the 

problems connected with order ~tati~tics to the ~tudy of ~um~ 

of mutually independent random variableso Chapt~r 1 of this 

thesis contain~ a review of this method. 

The above mentioned method hee elso enabled Rényi 

to give an interesting improvement of the Kolmogorov -,Smirnov 

theorem~. L~t F
0

(x) denote the di~tribution function of a 

sample of size n drewn from a population heving continuou~ 

distribution function F(x). Kolmogorov [16] det-,.,rmined the 

limiting distribution of the supremum of lFn(x)- F(x)l 

and Smirnov [24] did the same for Fnlx)- F(x) o But it may 

be more significant to measure the relative deviation of F (x) 
n 

from F(x); for exemple, if F(x) is small, it m~y be more 

important to know somethiag about sup 1Fn(x) - F(x)l /F(x) 

and eup {F0 (x) - F(x)}/F{x) than thè above ment~oned -deviations 

of the Kolmogorov - Smirnov theorem~. ùsing his method and 

~ome generalized results of Po Erd~~ and M. Kae [,!; J, A. Rény:i 

hAs determined the limiting distribution of the ~upremum of 

the relative d~vietions IFn(x) - F(x)l /F(x) and 

F
0

(x) ~ F(x) /F(x) respectivelyo His resulte and the resulta 

of Po Erdos and Mo Kac g~neralized by him are given in 
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Chapter 2 of this thesis (Th~orems 1 1 •oo~ 8). 

Introducing the weight function 1/F(x) in the· 

Kolmogorov - Smirnov theoreme we charact~rize th~ •symptotic 

behaviour of the relative deviation of the populatton distrib

ution function and that of the sample. The the-oreme provide 

teets for verifying the hypotheeie that a random eample of 

elze n with empirical distribution function Fn(x) hae been 

drawn from a' population having continuous distribution function 

F(x). At the aame time, as far as statistieal considerations 

are concerned'~ we loee one of the convenient prop~rties or 

the Kolmogorov - Smirnov theoreme. Namely, we ean use these 

theoreme to construot confidence intervals tor an unknown 

continuous distribution runction F(x). Having the limiting 

distribution of sup IFn(x) - F(x}l /F(x) inst~ad, we no 

longer have that prop.,rty. We could retain the advan.tage or 

theee new theorema that they measure relative deTiation or 

the population distribution function and that or the aample 

and could regain the above mentioned confidence interval 

property or the old theoreme if we used 1/Fn(x} instead of 

1/F(x) aa weight function. Thus in this way the id.ea arises 

of considering the limitin.g distribution or the quotienta 

{F11(x) - F{x)} /F11(x) and IFn(x} - F(x) 1 /F11(x} respectivel;y. 

One or the major objectives of this theaia waa the ~erivation 

of theae distributions uaing the method of A. R'nyi and 

our resulta in this connection are given and proved in 

Chapter 3 of this thesia (Theorema 9, ••• , 12). 
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Let F0 (x) and Hm(x) be the empirieal distrib

ution funetions of two r~ndom eample~ of size n and m 

respeetively from a population having continuous distribution 

function F(x) o Smirnov [2?] determined the limiting distrib

ution of the supremum of IF0 (x) - Hm(x)l and Fn(x) - Hro(x) 

respectivelyo Again~ it may be more eignificant to meaeure 

the relative deviation of these two empirical distributions 

F (x) and Hm(x)o Thus in this way the 1dea arises of con-
n 

aidering the limiting distribution of the quotiente 

The second major objective of this thesis was the derivation 

of the se distributions usinpz; the method of A. Rényi , some 

of the resulte of Po Erd8s and Mo Kac and 2 lemmas of our own. 

Our resulta in this connection are given and proved in Chaptera 

4 and 5 of this theeis (Theoreme 13i ooo, 18 and Lemmas 1 

and 2) .. 

I would like to express my eincere gratitude to 

Profeseor W .. A.O'N .. Waugh who supervieed this work while he 

was at McGill University and special thanks are due to him 

for continuing to do so after leaving for a position with the • : ... 

University of Hull~ Englando Hie patient encouragement was 

invaluable in the execution of this thesis, his commenta and 

criticisme led to many corrections and improvementa. I alao 

take this opportunity to thank him for his general guidance 

and help during my graduate yeare at McGill University.. My 

thanks also go to Professera Ao Evans (MoGill)~ I .. Guttman 

{formerly at MoGill 1 presently at the University of Wisconsin), 
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Montreal), ZoA. Melzak (formerly at McGill, presently at the 

University of British Columbia) for accasional but valuable 

discuaeionso I am also grateful to the audience of the 

Pro?ability and Statistics Seminar of McGill University and 

University of Montreal for giving me the opoortunity of talk

ing three times on eome of the resulta of this the~il in the 

last two years. This theais has been written with the support 

of a National Reaearch Council of Canada Studentship. 
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1, Presentation of A. Rényi's method 

in the theory of order statistics, 

Consider the following special case : I is a random 

variable distributed ace ording to the exponentbd la-w. That 

is ! has the probability den si ty function ( wri tten as p ,d ,f, 

from now on) : f(x) = A e- x if x > Oj ze~o otherwise 

and cumulative density function (written as c,d,f~ from now 

on) F( x) = 1 - e -À x if x > o, zero oth~~iee f-or À > 0 • 

Take a rand cm sample of aize n on !" ; i ,e., we have 

'!1 , 1 2 , .. , , "Sn as mutually independant rand cm variables with 

the same exponential distribution function, We ehall need the 

following property of the exponential distribution- : if "Ç 

is an exponentially distributed random variable then, if x > 0 

and y~ o, we have 

{ 1 • 1 ) P()< x+y 1'"'5' ~y)= P('""Çc: x) 

To verify (1 ,1) we have ~ 

P( 1" < x+ y 1 ""Ç .::_ y) = P( ~ < x+y, 1" ~ y) /P( 1'" .::_ y) 

= P( y .::_ ""S < x+ y) /P( -r =:: y} 

= { P( T < x+y) - P( "! < y)} /P( 1 .::_ y) 

= { F( x+y) - F( y)}/ { 1 - F( :f)} 

If we use the relation new that F(x) = 1 - e-x, x~ o, >-.> o, 

then we get 

P{1'< x+y l'!> y)= {1- e-À(x+y)- (1- e-ÀY)}/e-ÀY 

= 1 - e-Àx 

= P( -r < x), which was to be proved, 
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The converse of this statement is also true, that is 

property (1.1) uniquely characterizes the exp-onenti1!.1 distrib-

ution and it can be, therefore, used to derive certain distrib

ution properties of a random sample taken on the rand"'O'I!l variable 

~ distributed according to the exponential lawo 

To show converse of this statement, we have that 

(1.1) is equivalent to 

{ F( x+y) - F( y)}/ { 1 - F( y}) = F( x) 

so we have 

1- {F(x+y)- F(y)}/{1- F{y)} = 1- F(x), 

which is equivalent to the relation 

~{x+y) =~(x) cp< y), 

where cp<x) = 1 - F(x) and it is known that, exc-ept for the 

trivial cases ~(x) = 0 and cp(x) = 1, the m"onotonic non-

increasing functions which uniquely satisfy ( 1 .2) have the 

form <P<x) = e-Àx 
' 

x.:: o, À> 0; i.e. F( x) = 1 _ e-Àx 

as a consequence of {1.1). 

The meaning of (1 .1) becomes e~ie.lly clear if' 

we interpret the random variable '"I as the durati-on of time 

of the occurence of a random event. In this inte·rpretation 

proposition ( 1 .1) can be formulated as f~llewe : if the 

waiting time for the occurence of the random event is distributed 

according to the exponentiel law and if we e.Pe giTen that the 

waiting time has not yet terminated at time y, then. the 

duration of the further waiting time to the oeeurene-e is inde

pendent of y; i.eo of the waiting time that bas already elapsed. 



3 

Going back to our random sample of size n on ~~ 

let us arrange th8 numbers 3'1 , ! 2 , o o .. !1 'Jn in order of 

magnitude and use the notation 

( 1 .3) 

where the function Rk(X1 li x2 ll ••• , Xn) of the n variables 

x1' x2. 0. 0 li xn denotes the kth of the V&l1~8 x1 x x , .... ..., ·' . 2 , o • • ' n 

in order of magnitude 

1( 1 ) = min !k and 
1<k<n 

( k = 1 li 2, o •• , n); thus e .g. 

1'( n) = max '"'Sk • Using rel..ti.on 
1<k<n --

the individual and joint distribution of the random. variables 

of the order statistics '!( 1 ) < 1( 2 ) < ••• c l(n) can be 

easily determined. For this purpose we interp~t the random 

variables rk as random waiting times for the oecu~nce of 

mutually inde pendent random events. (This is going to be done 

for the sake of bye-passing lengthy analytical pr"Ot>fs .. ) Then 

!(k) denotes the duration of time of the occu~nce of the 

random event finished as kth of the n ob-servations (kth 

longest duration of time = J(k))• 

We determine first the distribution of Toc+1 ) - "'3( k). 

If we are given 3(k) = y~ then 

(1.4} P(1(k+1 )- 'S(k) >X 1 !(k) =y)= P(J(k+1 ) > X+y 1 "S"(k) =y}, 

where on the right side there stands the p!"obs:bility of the 

event that none of the n-k happenings, beiag in p-rogress 

at the moment y, finishes unt11 the moment X+y. By virtue 

of (1.1 }, the value of this probability is 
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and thus the conditional distribution function of ~(k+1 )- ~(k) 

with respect to the condition that 1(k) = y is 

( 1 .5) P( 1( k+1 ) - 3( k} < X 1 1( k) =- y) = 1 
-(n-k)ÀX - e .. 

As ( 1 .5) does not deuend on y, it also gives th" non-

conditional distribution function of 1"(k+1 ) - "S(k}. Indeed, 

by virtue of the theorem on total probability, we have 
00 

(1.6) P(1(k+1)- "!(k) <x)= ~ P(~(k+1)-J(k)<X 1 ~(k)=y)dP("!(k)<y). 
co 

= (1 - e-(n-k)ÀX) f dP(T ) 
0 1)( k) < y 

= 1 -
-(n-k)ÀX 

e • 

Therefore the differences '!(k+1 )- "J(k) are themselves 

exponentially distributed with the mean value 1 and thus 
(n-k))\ 

the random variables 

( 1 • 7) ~k+1 = (n-k) ("3'(lc+1 ) -1(k)), k = o, 1 1 .u, n-1 

are also exponentially distributed with the mean value 1 • 
~ 

(In the above relation '!(O) = 0 by definition.) 

It also follows from what has be~n said above that 

the variables ~1 , d2 , oo•t bn are mutually independant random 

variables. It is, namely, easy to see that the following 

relation holds 

= P( !( k+1 ) - 'J( k) < X) , k = 0, 1 , ••• 1 n-1 • 
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This is evident, as the above conditions in (1.8} 

mean that "S(1) = y1' -:s-(2) = y1 + y2, ooq "1"{k) = y1 + y2 + ••• +yk; 

i.e. they give the finishing instants of the fir~t k happenings 

of the n observ~tions which started simultarreously at the 

moment t = o. These conditions imply that at th~ moment 

t = Y1 + y2 + ••• + yk there are still (n-k) waiting times 

incompleted and the probability of the finishing of at least 

one of them before the moment t +X is given by (1.6). 

So we have the relation of (1 .8) which in itself is a 

necessary and sufficient condition for the random variables 

!{k+1 )- J(k) (and therefore for ~k+ 1 = (n-k)(!(k+1)- Jck))), 

k = o, 1, 
0 • 0 ' 

n-1 
' 

to be mutually independent. 

Using (1 .. 7) the random variables T(k) can be 

expressed in the form 

-:r.( k ) = .h i. â 2 -. :::--:;- + ••• + n n-1 
~k 

n-k+1 ' 
k = 1' 2, ••• , n ' 

i.e. ~(k) can be expressed as summs of multipl~s of sequences 

of mutually independent, identically distributed rs.ndom variables. 

An alternative way of saying this is the randem variables 

I(k) forman additive Markov Chain. By virtue of (1.9) the 

distribution of any 1( k) ~ further, the joint di-tribut ion of 

any number of the random variables 1(k) can be det'8rm1ned in 

explicit form. 

The above method can be applied in geae~al to the 
'· 

study of order statistics.. Ta show this, let l be any ran-

dom variable having a continuous c.d .. f. F(x). Let ~1 , ! 2 , ••• , Tn 
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be a random sample of size n ons; i.e. T ~ ••• , ~ 
"1' ';)2' "' tl. 

are mutually independent random variables with the same c.d.f • 

Let be the . ordeT"" stati stic s 

based on the above sample, that is to say, we form the new ran-

dom variables ..,.~ - R ( T -r -c) 
-"'( k ) - k "1 , "'2 , • • • , \., n • 

The study of the random variables can be re-

duced to the special case whe r e the random variabl-es _ ~k are 

exponentially distributed (and therefore - by virtue of (1 .9) -

to the study of sums of mutually independent random variables), 

as follows let us put 

(1.10) 

Then 

and ~k = log 1 , 
'?k 

k = 1, 2, ••• , n. 

/ - F( : ) is the kth of the random variables · (k) - t: (k) 

' :1, 2 , ••q '?n" i.e. f{(k) = Rk( 'Q1 , 1(2 , ••ot 1n). Further, 

let us put 

(1o11) "Ç(k) = log 1 k = 1, 2, ••• , no l'fi , 
.( n+1 -k) 

As log 1 is a steadily decreasing function, we obtain x 

(1 .12) T 
:-; ( k) = Rk ( !

1 
, 1

2
, o o o , 1n) , k = 1 , 2, o •• , n , 

is the kth of the random variables -::;·( 1 ), ~2 ), • o.,)( n) T 
' ( k) 

in order of ma~nitude. As we have assumed the variables ~k 

to be mutually independent it follows that ~1 , ! 2 , o •• , ~n 

are also mutually independent. 

We want to show now that the random variables 

T · 2' ••• , •Jn are distributed according to the e·xl'onential 

Let us investigate the distribution of the single random 
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variable ""Sk = log ~ • Let x = F=1 {y) be the inverse 

function of y = F(x) !i 

= P(log 1 
F(~k) 

P( -r, < x) 
K 

= 1 - e 

0 ~ y ~ 1; thus we ha:V'e 

< x } = P( Sk > F-1 (e-x)), 

-X x =::. 0 0 

for X =:, 0 

Therefore T1 , T2 , ooo, ~n are mutually inde~end~nt, identically 

distributed, exponentiel random variables with ~'Otmnon o.d.f. 

1 - -x 
e ' x> 0 and mean value 1 0 

In this way the random variables t(k) themselves 

can be expressed in the form 

(1.13) 1 
-(~1 + â2

1 
+ ••• + On+1-k) 

= F- ( e lr' n- . k ) , 

k = 1 , 2 , ••• , n , ~or 

!(k) =log 1 implies that ~(n+1 -k) = F-
1(e-"S(k)), 

F( f{ n+1 -k)) 

therefore, by {1o9), 

s _ F-1 { - T( n+1-k)) 
( k) - e 

-1 -( ât + â"2 . + 0 .. + bn+1-k} 
=F {e lï 'iï=T · ~ k ), 

where the random variables ~ 1 , ~2 , • o .. , b n anr -~fined as in 

(1.7) and are mutually independent exponentially distrtbuted 

random variables with c.d.fo 1- e-X (x=:_ 0) and 11rean value 1., 

A consequence o~ (1 .13) ia that the rand'OM variables 

1 ( 1 ) ' r, 2 ) ' 0 00 ' t ( n ) form a Markov Chain. 

us start with the relation 

F(S'-\-k+1j) = ~; e- !(n-k) 
F( ( k) 1( ( k) e ... f( n+1 -k) 

:::; 

To show this, let 
~ " ' .. 
..... 

e!'(p+1-k) - T(n-k) 



Put p - e J{ n+1 -k) = J( n-k} 
k -

e- :s{ 0 ) = '? ( n+1 ) = 1 " 
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k = 1 11 2 , •• o , n , where 
t 

The random variables f'k are mutually independent sfnce.we 

have already seen that the differences J(n+1 -k} - J(n+1 } = 

~(n,1-k) are mutually independent., Let us als~ p~t cp<x, y)= 

p-1(yF(x)). Then, by (1 .13) we have 

S(k+
1

) = F-1 (e-3{n-k)) = F-1 (e-1{n+1-k) -eJtu+1 .. Jd- J(n-k)) 

= p=
1 

< F( ~< k >) f1c > = cpr;( k >, f1c> , 'Wi'!'ernr !< k > 

and fJk are independent random variables., This im,à'•• ·~t 

the random variables S( 1 ), I( 2 }, ••• , f(n) forma Markov 

Chain. For we have 

Theorem. Let Sn+1 =~C'sn,Pn>, w~ <P<x, y) 

is an ar bi trary two-variate c ontinuous funetion; further p n 

is independent of the random variables r1 , ~2 , ••• ,sn 

( n = 1 11 2, .. o.). Then the random variables "Fn form a Markov 

chain [22]. 

" .~lffl !fil<....,.., 
A.N o Kolmorgorov [16 J was the first who remarked 

that the random variables S(1), S( 2 ), ••• , S(n)'. i.e. a 

sequence of order statistic s, form a Markov Ohain. .A. Rén.yi 1 s 

method presented here starts from this fundamental ~bs~vation, 

but the possibilities imnlied by it could be d~v-elopeti 'Only after 

having transformed the Markov Chain { I {lt)} into ·an additive 

Markov Chain by means of the transformation 

1(k) =log F(!(:+1-k)i • 
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In his pap~r [23] Ao Rényi uses this meth~d to prove 

the following theorem of Malmquist [13] 

Theorem. The random variables [~~l1 t . k: -= 1 
' • • •' n' 

are mutually independent and have the same uniform. distribution 

in the interval (o, 1 ). 

He also builds up the theory of order statistics by 

means of the method of this section. Then he proves the 

theorems which we are going to present in the n-ext section 

of this dissertation. 
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2, A, Rényi 1s theorems. Improvements of the 

Kolmogorov - Smirnov theoreme, 

Keeping the notation and assumptions of section 1 

about the random variable l 9 let us define 

( 2.1 ) 

0 , 

k 
n ' 

if x< Ic 1 > 

if I(k) <x< Ç(k+1 ) 

1 , if S(n) ~ X 

1 .e.. Fn(X) is the distribution function of the sample, in 

other words, the frequency ratio of the values less than x 

in the sample • 

A,N. Kolmogorov (16] proved a fundatrte'nta:l- theorem 

giving a test for the hypothesis that a sample h&s been drawn 

from a population having a given continuous c .d.f. F(x). By 

means of this test we can give confidence limita foP unknown 

distribution functions. Kolmogorov 1s theorem is as follows : 

{2 .2) lim 
0-+CO 

if y> 0 9 zero otherwise, 

This theorem considera the difference IFn(x) - F(x) 1 

with the same weight, regardless to the val\le of F(x.}; so 

e.g. the difference I(F (X) - F(x.) 1 = 0.01 h-a-s the same 
n 

weight at a point x with F(x) = 0.5 (wher-e this difference 

is 2% of the value of F( x)) as at a point x w1th 

F(x) = 0,01 (where this difference is 100% of t~ value of 

F(XJ). We can avoid this by considering the quotient 
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{IFn(x)- F(x)I}/F(x) instead of lFnb:)- F(x)l, that is 

to say, by considering the relative errer of Fn(x)Q In this 

way the idea arises to consider the limiting distribution of 

the supremum of the quotient {IFn{ x) - F(x 1 1} /F( x 1 which 

characterizes the relative deviation of the populttion distrib-

ution function and that of the sample. 

A theorem similar to that of Kolmogorov 1 s was 

proved by N. V. Smirnov concerning the one·-sided deviation of 

the sample and population distribution functions. Smirnov 1 s 

theorem is as follows : 

lim P( rn sup (F0 (X) - F(x)) > y) = 1 - e-2 y2 
n ... oo -oo<X ~+oo 

if y > 0 , zero otherwise. A. Rényi [23] also considere 

the analogous problem for relative deviations. 

In the course of solving these problems a natural 

limitation is to be adopted ~ as F(x) ean tak~ on arbitrary 

small values, we are not go1ng to consider the supremum of 

{Fn(><) - F( x)} /F( x) or the supremum of (1 Fn(x) - F(x} 1} /F(x) 

taken in the whole interval -oo < x < +00 • We restrict our-

selves to an interval x( a) < x < + oo , where F(x(a)) = a > o. 

The value of a, howevery can be an arbitrarily amall pos

itive value. A.Rényi proves the following resulta : 

Theorem 1. 

(2.4) lim P( (0 sup F...,{x. J - F(x) < y) 
n...,oo a,::F( x ) _....._ <ffi-r-
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Ï-a-
'2 

Y ., -a e-F J 'Jt dt if y> 0 
= 0 

0 if y~ 0 

Theorem 2. 

lim P( rn SUP IFnCx) - F(xJl c y) 
n~oc a<F( x) FfX.) 

(2k+1)2n2 1-a 

1± 
00 

( -1 )k 
8 ay2 

z e if y > 0 ' 
= 'J( k=O 2k+1 

0 if y :::. 0 

= L{yf~) 

We may consider the limiting distribution of the 

supremum of {Fn(x) - F(x)}/F(x) and of its absolute value 

taken in the interval x(a).:: x.:: x(b) respectively, where 

F( x (a}) = a > 0 ,~~ F( x ( b) ) = b c 1 , ( 0 < a < b < 1 ) • In this 

regard A. Rényi ~3] proves the following resulta : 

(2.6) 

= 1 
'J( 

Theorem 3. 

lim P( (rî sup ~~ - F(>\j < y) 
n-t oo a<F( x )~b F( x J 

y-u) 

l 
~ a( 1 -b) 
1 b-a 

-t2 
e z- dt du, -ooc y < +OO 



= N(y; ai b) 

Theorem 4. 

(2 .7} lim 
n..,.oo 

= 1t 
~ 

0 
' 

where 

P((n sup 
a<F(Y.. )!b 

00 
( -1 )k z 

k=O 2k+1 

if y '! 0 i 

1 - 2 
~ 

by2 

e 

- 2{1-b) Ife = {r21t r a y) -1 2e 
1-a 

= R(y: a, b) 

13 

l!ni_x) - F( x) 1 -mxr-

_ (2k+1~2~2 (1-a) 
ay2 

(2k+1 )~ 

[ e 

< y) 

Ek , 

(1-b)u2 
2by2 

if y> 0 , 

sin u du 

These theorems provide tests for verifying the 

hypothesis that a random sample of' size n, say -e- 1 , f2 , • o., Tn, 

has been drawn from a population having continuous c.d.f F(~). 

The character of these tests consista in that they give a band 

around F(x) in which, if the hyoothesis is tue, the sample 

distribution function Fn{X! ha.s to lie with a eerttlin probab

ility and the width of this band is proportional at all its 

points x to F(x). 

All these theoreme are proved using the method of' 

section 1 and the resulta of some limiting distribution theoreme 



generalizing seme results of Po Erdos and M. Kac [5 ]. We 

are going to give here these resulta of Po Erdos and M. Kac 

too in the version gi ven and proved by A .. Rényi in his pe.per [.23] , 

for we shall also need them in the proofs of theorems proposed 

in sections 3, 4 and 5 of this dissertation. Toward this end, 

let a sequence be given consisting of the sets of random 

variables 

Sn 1 ' "E' n 2' • • o , "$" n N { n = 1 ' 2' • o • ) • 
, ' ' n 

Let us assume that the random variables fn,~ have ~xpect-

ation 0 and finite variance, further, that the random variables 

having the same first index n (n = 1, 2, ••• ) a~ mutually 

independent and satisfy Lindeberg 1 s condition, that is to say, 

introducing the notations 

k 
8n k =- :z rn v ; 

' v=1 ' 

where n2(x) =Variance (x) , we suppose 
0<) 

and lim 
n-+oo 

MS k = n, 

1 
'B"2 n 

Nn z 
k=1 

L 
0 0 

Concerning these sequences satisfying the above 

conditions Ao Rényi proves ~5) the following theorems. 
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Theorem 5o 
){ 

t2 
~ [ e-z- dt if x > 0 ' 

0 if x .«( 0 0 

Theorem 6. - ~2k+1 )21t2 
8x2 

li: 
00 

( -1 )k e b 
'JI: k=O 2k+1 

(2.9) lim P( max 

(2.10) 

--

n .... co 1.::_k<N
0 

Theorem 7. 

lim 
0~00 

P{-yB < n-

00 
b 

k=O 

min 
1~k<Nn 

0 

S k < max 
n, - 1 N ,::k< n 

if x:: 0 • 

- {2f+1 )~~2 
2 Xt-y 

e sin (2k+1)~ x~y' 

0 if either x .:: 0 or y < 0 • 

Remark. In case y= xi Theorem 7 reduces to 

Theorem 6. 

and 

Th en 

{2.11) 

Theorem 8. Let A 2 
n = n2 s 

lim !n = À 
n-+oo Bn 

lim P{ max lSn,kl < yB0 ) 
n .... oo Mn<k.::,Nn 

n Mn . ' 
with 

(0_! À<1). 

if X> 0 ' 

if x> 0 
and y > 0 



:::: 

where 

,!! Ï { -1 )k e 
n k=O 2k+1 

0 if y ~ 0 

:::: 

16 

1 - 2 
l21l 

{2k+1) ~ 

~ 
il 

e 2y2 sin u du • 

Remark. In the special case of Mn= 1 (i.e. by 

Lindeberg's condition, for À= O)g Theorem 8 is identical 

with Theorem 6. 

if y > 0, 

Note. For the special case in which all the consid

ered random variables f
0 

k have the smae distribution, 
11 

Theoreme 5 and 6 were proved by Po Erdés and M. Kac [S ] • 

They remarked that their theoreme can be proved under more 

general conditionso 

Going back for a moment to Theor~ms 1 and 3 of this 

section we remark here that the statements of thes-e theoreme 

hold for (Il sup lF(x) - F0 {x)}/F(x) and 
a:!Fl x) 

(Jl sup {F{x) - Fn(x)}/F(x) respectively too. From 'Ais 
a<F(X):!b · 

remark and Theorem 1 it follows that we have 

C-orollary 1 o 

(2.12) lim P( eup (Fn(x)- F(x)) < O) 
n-+oo x: a )<.x(+oo 
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= lim P( SUD (F(xl - Fn{x)) < 0) = 0 

1 n~oo x\a)~x<+oo 

ioeo the proba~ility 0~ the ev~nt that the sampl~ distribution 

function.does not exceed the population distribution function, 

and vice versa~ all alonp: the interval x< a} ~ x < + oo, tends 

to zero as n~ oo • 

On the other hand we have by the above remark and 

Theorem 3 the following 

= 

= 

Corollary 2. 

lim 
n-+oo 

lim 
n-+oo 

00 

1 J 
'Jt 0 

(Fn(X)- F(X)) <-0) 

P( sup 
x: a >~x~x( b) 

(F(x) - Fn(X)) < O) 

[~ dt] du , -u2 J b-a 
8
-# ez-' 

ioe. the probability of the event that the sample distribution 

function does not exceed the population distribution function, 

and vice versa~ all alon.Q: the interval in which the value o~ 

F(x) lies between arbitrarily fixed values a and b 

(0 <a< b < 1)» remains positive in the limit. 

This result is obviously important from the point 

of view o~ statistical practice {truncation probl.._), 

The result that 

is positive WAS also proved by Gihman [8]; moreover he 

obtained that 



( 2 .14) lim 
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P( sup (F0 (xJ - F(~)) < 0) = 1 arc sin 
x{a)c:x<x(b) · 11: --

r::t:::.;;) • 
1~) 

Gihman also mentioned that the re-ault (2.,14) has already 

been known to Gnedenko. The resulte of C~ollary 2 and (2.,14) 

Are, of course, identical. Indeed, the Peault of C~rollary 2 

is twice the probab111ty of the event tha.t a ·re:ndom: variable 

{x, y) with p.d.f., L exp(~ (x2 + y2)) lies tnl·ti\e in.finite 
2n 

sector 0 ~x< +oo, 0 <y< X {A<1-b) , and this probab
b-a 

ility is equal to 

ia(1-b) 
2 • arc tg 1 b-a . 

211: 
= 1 arc 

'J[ 

because of the circular symmetry of 1 
2i 

sin 'i{ 1-b~ , 
B( 1-•) 

exp {~ (x 2 + 

the probability corresponding to an infinite "f!ect"Or of angle cp 
is equal to 
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3. The Kolmogorov - Smirnov theorems using 1/Fn(x) 

as weight function, 

The intorduction of the- weight function 1/F(x) in 

the theoreme of Kolmogorov and Smirnov by A. Hényi character

izes the asymptotic behaviour of the relative d~viation of the 

population distribution function and that of the sample, The 

theoreme provide tests for verifying the hypothesls that a 
,. 

random sample of size n with c.,dof. Fn(x) has be,n drawn 

from a population having continuous c .d .,f. F(x) o At the same 

time, as far as statistical considerations are c~erned, we 

lose one of the convenient properties of Kolmogorov'~ theorem, 

given in (2.2). Namely, we canuse this theorem to construct 

confidence intervals for an unknown continuous c,d,f. F{X) 

and y
2 

= F0 (x) + ~ eonstitute 
n 

a 99% confidence interval for en unknown continu~us c,d.f. 

F(X); for tables see e .g., [22]). Having the limi ting distrib

ution of sup IFn(X)- F(X)I/F{x) instead,-we no longer have 

that property., We could retain the advantage of these new 

theoreme that they measure the relative deviation ~f the pop-

ulation c.,d,f, and that of the sample and could regain the 

above mentioned confidence interval property of the ol~ theoreme 

if we used 1/Fn{XJ instead of 1/F(X) as weight funetion. 

Thus in this way the idea arises of considering the limit!ng 

distribution of the supremum of the quotients {F0 (X) • F(X))/F0 (x) 

and I(Fn(X) - F(x)I/F0 (X), In examining the limiting distrib

ution of these quotients a naturel limitation on Fn(x) is to 
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he adoptedo Namelyll we restrict ourselves to the set of those 

x 0s for which we have F
0

(x} ,::. & > Oo The value of a can, 

however, be arbitrarily small. 

Keeping the notation and assumptions of t~ previous 

chapters we are going to prove the following theorems 

Theorem 9. 

( 3 .1 ) lim P( '(il 
n-.oo 

Theorem 9'. 

(3.2) lim P( Yri sup F(x) - F~(x}-< y)= cp(y ( a ) 
n ... oo a <F n (x ) F n (x 1 - & 

where, in both cases~ <P (y ~ a ) stands for the function 
1-& 

defined in (2o4) of chapter 2. 

Theorem 10. 

( 3 .3) lim P( fn sup 
n-+oo &<Fn (x) 

where L( y f
1 
~a stands for the function defined in (2.5) 

of chapter 2. 

Theorem 11 • 

( 3 .4) lim P((n sup 
n-.oo •!Fn(X )!b 

!nlx) - F(x) <y) = N(y; a, b) 
Fn(x.)-
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Theorem 11 1 • 

( 3 .5) lim P( ffi sup 
n-.oo a~Fn( x )~b 

< y) = N(y; a, b) 

where~ in both cases~ N(y; aj b) stands f-or th"e funotion 

defined in (2.6) of chapter 2 and~ as there, a and b 

are auch that 0 < a < b < 1 • 

Theorem 12. 

( 3 .6) lim P( \'n sup 
n ~oo a<F n (x ),::b 

IF0 (x)- F(x)l <y)= R(.y; a, b) 
Fn(x} 

where R(y; a, b) stands for the function defined in (2.7) 

of chapter 2 and again we have 0 < a < b < 1. 

These theoreme provide tests for verifying tpe 

hypothesis that a random sample of size n with c.d.f Fn(X) 

bas been drawn from a population having continuous c.d.f. F(x). 

The character of these tests is that they give a band around 

F( x) in w hich j if the hypothesis is true, the ~ampl-e distrib

ution function F0 (x) ha.s to lie with a certain probability 

and the width of this band is proportional at all its points 

to Fn(x) instead of the previous proportionality to F(x). 

Having these theoreme we can also construct confid-eflee intervals 

for an unknown continuous c.d.f. F(x) Ul!ing theor-eme 10 and 

12, or lower and upper boundaries for an unknown oontinuous 

c.d.f. F(x) using theorems 9 and 9' or 11 and 11 1 • For 

example if a= 0.05, using Theorem 10 and the tabl-e published 

by A. Rényi in [23] for the function L(y fa ), we get 
1-a 
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confidence interval for F(X) at all points x such that 

F0 (x) ~a = 0.05 provided that n is large enough to make 

z1 = Fn(x)- 8o5 F~(x)~ O. In general, giv~n the value of a 
ffi 

and the probability level on which we would like to construct 

a confidence interval for F(x), we can always decide how 

large a sample size is the minimum for the·ee theo!"'ems to work 

at allo On the other hand, if we are given a sample of a 

certain size and have a desirable degree of confidence interval 

in mind we can get meaningful answers by manipulating the values 

of y and a, perhaps at the cost of g~tting no intervals 

around the first few order statistics if the fixed sample 

aize in question would be a smaller one. To illustrate this 

point let us consider that we are given a sample of size 30 

and that on the basis of this sample we would 11~ t~ aonstruct 

a 90% confidence interval for F{X); 1.~. F(x) is to lie 

in the interval : Fn(X) (1 ~x) with probability 0.90, 
rn 

given that n = 30. Taking y = 5 makes 

positive on both aides. Using Theorem 10 and the table 

published by Ao Renyi in ~3] for the function L( y r a ) , 
1-a 

we get probabilities o.8o88 and 0.9751 for a= 0.1 and 

a= 0.2 respectively. Interpolatingj we take a= 0.16. We 

must now have k > 0.16 
30 

which implies 

k > 4.8 • Thus we shall get confidence intervals for F30(x) > 5_ 
30 
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that is from and to the right of the fifth arder ~tatistios. 

The ~tatements of oorollaries 1 and 2 of chapter 2 

hold to the theorems of this chanter too, mutatis mutandis. 

That is, instee.d of talking about restricting the values of 

F{X) to sorne intervals for x., we would talk here about 

restricting the values of Fn(x) in the sense of th~ theoreme 

of this ohapter. 

Proof of Theorem 9. 

To summarize our assumptions, let 1 be a random 

variable having continuous Ood.f. F(x) and let . . . ' 
denote n independent observations on the random variable f, 

i.e. let ~ , s
2

, o o .. , su be n mutually independent random 

variables having the same continuous c.d.f. F(x). The distrib

ution function of this random sample is denoted by Fn(x). 

In keeping with the notation of pr~vious s&otions, 

we put '?k.= F(sk) and !k =log 1 , further, 1({k) = F(s{k)) 
iiik 

and '!{ k) = Rk{ "31 , 1'2 , ••• , "Çn) which 1 s auch that '!( k} = 
log 1 ,_ k = 1, 2, ••• , n. The random variables 'r{k are 

1l(n+1-k) 

uniformly distributed in the interval {0, 1} and, if u = F(x), 

their sample distribution function is Gn(u) = Fn(F-1(u}}, 

where X= F~1 ( u) is the inverse function of u = F(x). 

Now the limiting distribution of the random variable 

Fn( x) ~ F( xl is identical wi th that of the r andom 
Fn(X) 



variable We also have 

(3.7) fn sur G~( u) - u = Vn max ( 1 - "(~ k l ) 
a<Gn u) Gn(u) a<Gn("l(k)+O) Gn(' k)+O) 

=ffi max (1 - 'l( k)) 
' an.::,k<n kTn 

for in th~ interval '1(k) ! u < ~ k+1) Gn(u) = k/n and 

because we can disregard the possibility of having 

su p Gn ( u { - u = max { 1 - 1( ( k+1 ) ) = 
a!Gn(u) Gn u) a<Gn{~(k+ 1 )-0) Gn( (k+1 )-o} 

max { 1-'l{ J+1 )) 
an<k_::n k n 

for max { 1 - ~(~) ) :::, max 
a~k<n k n an<k<n 

( 1 - 'V?( ~+1 ) ) • " 
k n 

So it is sufficient to examine the li~iting distrib-

ution of the random variable 

( 1 - "<{ k) ) 
k7ft 

which in turn is identical with that of the random variable 

(3.8) ( -1 og ~ k ) ) = rn 
k/n 

log .!ilL 
(k) 

Applying the theory of section 1 and using the notation in-

troduced there we have 

log 1 = 
n 
z 

v=k 
bn+1-v 

v 

where the &n+1-v are mutually independent exponentially 

distributed random variables with c.d.f. 1 -X 
- e {x:::, o). 
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Therefore we heve 

n 
M log 1 = z 1 

~ -v=k v 

(3.10) 

D2 
n 

log _1_ = z .1 
"l( k) v=k v2 

es the mean and variance of log 1 respectively. 
~( k) 

Consider now the sequence of rendom variables 

v= k, ••• , n 

This sequence satisfies Lindeberg's condition and therefore 

we epply Theorem 5 of section 2 with 

n 
(3.12) (log 1 - Z 

"f{k') v=k 
1 ) 
v 

= 

The re fore we have 

n 
(3.13) lim P( max (log 1 - z 

n .. oo an<k<n ~ v=k --
z _t2 

=~ L ez- dt fi 
Z> 0 • 

max 
an<k<n 

1 ) oe:: -v 

n 
z 

k=v 

~ -1 
n+1-v 

v 

:t l an<~<n 1 
1{2 

) 

Since, if k > an and 0 < a < 1 fi we have, by Eul~r'e eummat-

ion formula, that 

n 
z 1 = -v=k v 

and 

log n - log k + o(1) 
n 

= log .!! + o(1) 
k n 



= 

from (3.13), (3.14) 

(3 .. 16) lim P( max 
n_.oo an<k<n 
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vL- 1 + 
1 an n 

and (3.,15) 

= 

we de duce 

~+ 

'~ 

(log 1 - log !!) c z 11-a ) 

~ k an 

o(j_) ' 
n 

_t2 
= lim P( max (log !L,u_) < z 11-a ) = {f ~ e z- dt 

n..,oo an<kc:n (k) an --
z > 0 .. 

Letting y= z ( 1 ;a we get 

YY-'-
~ 

! 1-a _t2 
(3.17) lim P( rn max log ~ < y) = er 

n~co an~k!n (k} 

if y> 0 , zero otherwise .. Th 1 s , b y ( 3 • 8 ) , completes the 

proor of Theorem 9. 

Proof of Theorem 9'. 

Repeating the argument of the first part of the 

proof of Theorem 9 we can show that the limiting distribution 

or the random variable 

(tl sup F(x) - Fn(x) 
a<Fn(x) F0 (x) 

is identical with that or the random variable 

( "7( 7+1 ) 
k n 

1 ) 

which in turn has the same limiting distribution as ~he random 

variable 

dt 

' 

log '?(k+1) 
k7n 

= rn max 
an<k<h 

(-log ..... ~ ) , ~( n+1 )=1 
~ --
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Using again the notation and result~ of section 1 

we consider 

(3.20) 

where the 

log .._... ...... 1 __ 
'f'({ k+1 ) 

En+1-v are 

n 
= z 

v-=k+1 
bn+1-v !) 

v 

mutually independent expt>nentie.lly 

distributed random variables with c.dof. 1 - e-x (x~ 0). 

Therefore we have 

n n 
M log 1 = z 1 where z 1 = 0 - ' ' '7( k+1) v=k+1 v v=n+1 v 

(3.21) 

n2 log 1 n n 
"?, k+1 ) = z 1 where z 1 = 0 

V2 
, - ' v=k+1 v=n+1 v 

as the expected value and variance of log 1 
--"l(,....:..k+ __ 1_) 

respectively. 

We consider now the sequence of random variables 

1 bn+1-v v = k+1 g ••• , n • 
v 

This sequence satisfies Lindeberg's condition and th~refore we 

apply Theorem 5 of section 2 with 

n 
( z 

v=k+1 
1 
v 

Therefore we have 

log 1 . ) = 
"i( lr+1 ) 

max ~ 1 - 0n+1-v 
an<k~n-1 v=k+1 v 
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if 

Using Euler's summation formula with k > an and 

0 < a< 1 we have that 

n 
( 3 o25) z 1 = log n - log ( k+1 ) + o(j_) = log...,!!_ + o(.l) -v=k+1 v n k+1 n 

and 

i an<~<n-1 (3.26) 1 = ~+ o(j_) = ~+ o(.l) 
( k+1)2 n n ( a:n+1 )a n 

But log _!L 
k+1 

ths.t is when 

( 3 .27) 

and 

= log 1 
k + 1 -n n 

n is large 

n 
~ 1 = -v=k+1 v 

and n-an-1 
{ an+1 )n 

we have 

log .!! 
k 

= 

1 = c 
(k+1 )2 1 ~ 

So from (3o24) we conolude ths.t 

1-·- .1 ll , 
an(1 + .L) 

an 

·• 

lim P ( max (log.!!- log 
an~k,!n k 

1 ) 
( k+1) 

< z (1=! ) 
an n-oo 

= lim p ( max 
n-.oo an<k<n --

lz t2 
= r1 e-r dt 

0 

Putting y = z r 1-a we get 
an 

(=log kLn _) > z ~1-a ) 
( k+1) an 

~ 
if z > 0 0 



(3 .. 30) lim 
n~oo 

29 

p ( Vri 

if y> 0, zero otherwise. By (3.19) this prove1! Theorem 9'. 

Beeause of sorne similarities to the above two proofs 

let us turn now to the proofs of Theorems 11 and 11 '. 

Proof of Theorem 11. 

From the proof of Theorem 9 (namely from (3.12)) 

it ie elear that here we will have to consider the limiting 

distribution of the random variable 

(log "/~ k) 
n 1 n â -1 - E -v ) = rn .. mu .. f E n+1 -v 

v=k a.acHCbnlv=k v --
which may be written as the sum of two independent random 

variables U)1 and uv2 where 

( 3 .32) 

( 3 .3 3) GJ 2 =rn max 
an<k<bn --

t' -1 E Dn+1-k 
k k 

By the Lindeberg form of the central limit theerem, in the 
f 

limit CJ1 is a normally distributed random variable~ with 

standard deviation r b , for, by {3.15), the standard 

deviation of E ~+~ -k is equal to f g~b + o(~) • 
bn<k<n 

Further, from the proof of Theorem 9, we ca~ see that 
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P( w
2 

(b < z) a r:r~ t1 
(.3 .. 34} lim = e- 2: dt , z 0 

' n-.oo 

for if an < k !:. bn, 0 <a< b th en -
( 3 .35) n2 l: bn+.l-k = z: 1 = .L -in+ o(1) 

an~k~bn 
k 

an~k<bn 
'k2 an n n 

and so . ·~".'t' 

(3.36) D r. Sn+1-k = ~ + o(1) 
an~k<bn 

k n n 
.... ,,~ 

are the variance and standard deviation of the ra:ndom variable 

L'. dn+1-k 
an::,k<bn k • 

If 11 in ( 3 .34), we let y = z/f'ô then 

lim P(G) 2 < y) y, > 0 0 

n-,1. co 

Taking into account that W 1 and W 2 are independen:t random 

variables it follows from (3.32)P (3.37) and convolution that 

lirn r(w < y) 
n-too 

1 rb Jy blù
1 ~y-u} (~=a = 'i f 1=6' e -2.(1-b) J 

-oc 0 

This completes the proof of Theorem 11. 

Proof of Theorem 11•. 

From the proof of Theorem 9' ( namely from ( 3.19)) 

it is clear that we are considering here the limiting distrib-
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ution of the random variable 

= max ( -log~) 
an<k<bn (k+1} 

which in turn has the same limiting distribution as the 

random variable 

(3.40) 
n 1 

(ri max ( E V - lcg 1 ) 
an<k<bn v=k+1 if( k+1 ) 

n 
1 - $n+1-v = (ri max v=~+1 anc:k<bn v - .,.. 

in comparison with ( 3 o23) e The right hand eid-e of (3.40) 

can be written as the sum of two independent random variables 

1f1 and 1'2 where 

( 3 .41 ) 1'1 = (ii E 1 - bn-k 
bn<kc:n-1 k+1 

and 

( 3.42) 1'2 (ii E 1 - bn-k = max 
an~k~bn k k+1 

By the Lindeberg form of the central limit theo!"'em in the 

limit T
1 

is a normally distributed random variable with 

standard deviation i b 1 for we have already aeen that 

~~--

= 1 ' = lÎn-b + o(i} 
( k+1 )~ 

Further, from the proof of Theorem 9' 1 we can aee that 

(3o43) lim P( '0'2fb..; z) 
n .... oo 

r-A i' 
= fi r: , tr-I: • - -,: dt • • > o • 
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for if an < k ~ bn , 0 < a < b then 

3.' 
., .. :::'~'. 

bn-k ) = 
k+1 

1 

',, ' 

= 1 - 1 + o(l) 6 •b-y:. ~'er' s formula 
an+1 bn+1 "" • 

= b - a + o(*) 
apn( 14I) ( 1t-1,'J 0 

That is wh en n is large we have 

( 3 .45) D ( I: dn-k ) = ~ • an!!_k<bn k+1 a n 

From ( 3 .42) and { 3 .43) we deduce, on lettin~ y = z/(Ti, that 

~r:~ tl 
(3.46) lim P( 1) 2 < y) = e-r dt y> 0 • , 

0-+00 

Consideriog further that "0'
1 

and 'lf 2 io~peft<iet'lt random 

variables it follows from ( 3 o41) 11 ( 3 .43) and convolution that 

lim 
0-+CO 

P( '(f < y) = ~~[.-:C,i ('-ul(~a: ..,--#dt du. 
-00 0 

This completes the proof of Theorem 11 '. 

What remains now is to prove Theoreme 10 and 12 

of this section. 

Proof of Theorem 10. 

First we observe that the limiting distribution of 

the raodom variable (ln sup IF0 (x)- F(x)I/F0 (x) is 
&!!Fn(x) 

• !Ill 
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::..· 

l~-~.· •.. 

identical ·With that of therandom .variable 
' ~ 

(ii sup IG0 (u) - G(u) 1/Gn(u) 
a<Gn(u) 

and x= F-1(u) is the inverse function of u = F(x). 

We recall that Gn(u) = k/n if 1((k) ~ u < "/{k+1) 

and in part~cular that G11(1((k)+O) = Gn("l(k+1 )-0) = k/n. 

Therefore we have 

= rn max ( 
an~k<n 

= max ( 1 1 ... 12( k) 1 11 _ 1[( k+1 ) 1) 
an!:k<n k/n ' k/n 

(; .. 49) 

Now if 7{( k+1 ) < k/n, then 

1 -
1?( k+1 ) 1 
k/n = 1 -

"i(k+1) 
k/n 

11k+1 
< 1 - lt+1· 

""""'r 
= 

On the other hand, if 'tl{ k+1 ) .:: k/n then 

1?( k+1 ) - 1 
k/n 

1((k+1 )+C.- 1 
k+1 ,-

"2( k+1 ) 
1 - k+i 

-u-

where c ~ , that is "i( k+1 ) 
c = "l(k+1) 

k , and 

therefore 

~( k+1) 
k/n 

= "l(k+1) 
lli n 

n ~( k+1) 
- 1 + k(k+1) 
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1( ( k+1 ) 1 n '1?( k+1 ) 
- ~ + k2 

an ~ k ,:!: n 

But '?( k+1 ) = F( t( k+ 1 ) ) < 1 and the re fore, if 1'/( l{:+'Î) ,:: k/n, 

we have 

(3.50) 11 - "'l(k+1) 1 < 
k/n - 1 -

"l(k+1) 

~ 
1 

+ a2n 

Consequently~ in either case 

(3.51) 11 - 1(&k+1) I.e 
/n -

By definition "?(n+1) = 1 and .!ü1 = 1 if n 

( 3 o52) max 1 
1(( k+1 ) c:: max 

11 -•n!k_!n ~ - an<k<n --
and from (3.51) and (3o52) we get 

From (3.48) and (3.53) we conclude that 

!: rn max 
an< ken --

k = n, the re fore 

a ~>~} 

~ 1 1 1-~ + a2n 

1 - i>~) 1+ 1 
u a2fiï 

and this implies that the limiting distribution of the random 

variable (li sup IF0 (x) - F(x)I/Fn(x) 
a<Fnlx) 

that of the random variable 

is identical with 



(3.55) fn max 
anc::k<n 
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1-~· 
kTrl 

= rn max 
an~k<n 

'Yl( k) - 1 
k/n 

which in turn has the same limiting distribution as the random 

variable 

I l ~( k) 1 = 
og k/n 

max 
an<k<n -- log k/n 

"l(k) 

From the proof of Theorem 9 it 'ie clear that th~ l~miting 

distribution of the random variable of (3.56) is identical 

wi th that of the random variable 

n 
~ 

v=k 
1 

1 og --=1?('-k-) 
1 = -v 

n 
L 

v=k 
~n+1 -v -

1 

v 

Applying Theorem 6 of section 2 with (3o59) and using the 

resulta of (3.14) and (3.15) we get 

lim P((rï max 1 10 ,~~ <Y) = L(y11~a) • 
n~oo an~k<n g ~ 

This by (3.56) completes the proof of Theorem 10 0 

Proof of Theorem 12o 

Using the method of the proof of Theorem 10 we can 

show hert"! that the limiting distribution of the random vari-

able Yn sup IFn(x) - F(x) 1/Fn(x) is identical with 
a_:!Fn(x)!:b 

that of the random variable 

(Ii max ~n _ 1 an<k<bn k/n 

and therefore it is also identical with the limiting distrib-



ution of the random variable 

(3.60) Vn .max . llog ~ 1 = Vn 
an~k<bn · ·· k7ri-

which in turn has the same lim1ting distributi~n ae the 

random variable 

{ 3 .61 ) max 
an<k<bn --

Let us define 

(3.62) 

A = r 1 -h + n bn 

( 3 .65) À = 

log ~1--1?( k) 

n 1 E -
v=k v 

n 

= v~ 

8n+1-k - 1 ) 
k 

~n+1-k .. 1 ) 
k 

a( 1 -b) 
bt 1-a) 

= 

= 

= 

n max 
an<k<bn ï: -- v::;k 

1 
k2 an<k<n --

L. ~2 
bn<k<n --

o(l} 
n and so 

Thu! we can apply Theorem 8 of !ection 2 with Sn n+1-k 

' defined in (?.62) and with (3 .. 63), (3.64), (.3.65) 

and 1< M = n+1-bn c Nn = n+1-an. - n 
Therefore we have 
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= li rn p ( max 
ilog 

kLn 
1 < z f!~a ) n-+oo an_::k<bn "l(k) 

= li rn P(tn max 
]log ":) 1 -: z ~ 1 ;• ) n...,oo an<k<bn 

which is equal to the statement of Theorem 8 of chapter 2. 

L~tting y = z '{Ii! we get 

( 3 • 6 7 ) 1 im P ((n' max Il 0 g ~ 1 ..::: y ) = R ( y; a , b ) 
n-+oo an,=:k<bn "d k) 

This 1 by (3.60) and (?.59) completes the proof of 

Theorem 12. 
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4.. Some particular cases of the Smh•nov limit theoreme 

for empirical distributions using 1/F(x) as weight function. 

Let s11 , 512 ~ .. ., o, 11
0 

be independent ()btJervations 

on the random variable and let 0 0 0 , be 

independent observations on the random variable ~2 o Assume 

that the random variables s11 , t12 , " •• , ! 10 , t 21 , f22' o o., S2m 

are mutually independent and, also, assume that the random varia.ble.s 

t1i and ~2 j have continuous c.d.f- s F(x) and H(x) 

respectively, which are unknown. Let and 

the sample (empirical) distribution functions of 

H (x} 
m 

!11, "f12 , ... .., ~n and i 21 , i 22 , •• .., T2m respectively. 

Smirnov (1939) [25] proved the following two theoreme : 

If F(x) = H(x), then 

if y> o, zero otherwise, and 

·(4.,2) lim 
(m,n;p) 

p (\rm!I: ,, ii+'m sup 
~x<+ 

if y > 0 li zero otherwise, where, in both cases, lim 
(m,n;f) 

i s to mean the limi t as m,... oo and n ...,.oo in such a way 

be 

th at (The problem of determining the distributions 

of the respective statistics for finite values of n and m 

was solved by Gnedenko a.nd Korolyuk { 1951) [10] on the 

assumption that n =mo) 
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These resulte are used to test the st~tistical 

hypothesis that two random eamples come from the same unknown 

population. Even if F{x), the hypothetical c.d.f of the two 

random samoles in question, were known we would aot get more 

information out of the above theoreme for they ecortsider the 

differences (F0 (x) - Hm{x)} and IF0 (x) - Hm(x)l with the 

same weight, regardless to the value of F(x). Thus in this 

way the idea arises of considering the limiting distribution 

of the supremum of the quotients (Fn(x) - Hm(x))/F(x) and 

IFn(x)- Hm{x)I/F(x). In examining the limiting distribution 

of these quotients a naturel limitation on F(x) is to be 

adopted. Namely, we restrict ourselves to •n interval 

x(t) <x< +oo, where F(x(t)) = t >o. The value of t, 

however, can be an arbitrarily small positive value. 

In this connection we are going to examine the 

limiting distribution of the quotient (F
0

(x) - Htp(x))/F{x) 

on the assumption that the number t > 0 is euch that both 

F
11 

(x) and ~(x) are grea ter than zero and 1-e·ss than one 

when F(~(t)) = to {Later on we are going to relax these 

conditions.) The following theoreme are going to be proved : 

Theorem 13. If F(x) = H(x) and n, m-;oo ao 

that th en 

y> 0 

lim P(~ sup Fn(x) - Hm(x) < v) 
{ m ,n ;,o) \ n+m t~F( x) F( x J " 

0 ' y< 0 ' -



4o 

= ~{y; c, d,,.o) 

for all values of t, 0 < t < 1, so that when F{x(t)) = t 
with 

then 
with O<c<1 o 

Theorem 14" If F(x) = H(x) and n, m.., co eo that 

: _., p then 

(4 .. 4> lim 
( m,n ;~) 

= 1 
1t 

p (\rn;
'~ 

= N{ y; d, c, e, f, fJ) 
for a11 t and 1 with 0 < t < 1 < 1 where the other 

parame te re eatiefy the fol1owing conditions 

{ Fn(x) = d with 0 < d < 1 
when F(x(t)) = t th en 

Hm( x) = c with 0 < c < 1 

F( x { 1 )) [ Fn<X) = e 
and when = 1 th en 

Hm{x) = f wh't'!'re + being 

le as them one, at most one of e and f can b-e equa1 to 1 • 

If one of e and f ie equal to 1 , the appropri1!1te one ie 

replaced by 1 in N(y; d, c, ell r,p). 

To prove these theoreme we need on1y the'a•eumption 

that F(x) ie continuous but the statistical app11e~bility of 

them requires the know1edge of F(x). Just as whefl introducing 

the weight function 1/F(x) t o ( F { x ) - F( x) ) 
n 

and 



lFn(x) - F(x)l we no longer have the possibility of construct

ing confidence intervals for unknown continuous distribution 

functions; that is the applicability of the Kolmogorov - Smirnov 

theoreme using th~ weight function 1/F(x) depends upon the 

knowledge of F{x) but thereby they measuPe th~ a5~ptotic 

behaviour of the relative deviation of the nooulation distrib-

ution function and that of the sampleo 

Assuming then that F(x) is a known continuous 

c.d.fo, the above theorems provide tests for verifying the 

statistical hypothesis that t wo random samoles come from the 

same population with codof. F{x). From the proofs of these 

theoreme it will become clear that we do not actually have 

to know F(x) comoletely in order to apnly the-m. It will 

be seen that if we can estimate the numerical values of F(x) 

at all the samole points of the pooled sample of elze n+m, 

gained by pooling the two samples of aize n and m, it will 

be sufficient for the application of theee theorems. The 

character of these testa is that they give upper bounds below 

which, if the hyoothesis is true~ (Fn(x) - Hm(x))/F(x) must 

lie with probabilities cp<y; c~ d,p) and N{y; c, d, e, f,fJ) 

respectively for given valuès of c, d, e, f, ,0 and y. We 

shall always have to keep in mind though the.t the e.bov·e theorems 

have only an asymptotic character and do not allow for the 

influence of the number of observations, whereas this influence 

may be very c onsidera.ble if the numbers n and m are small. 

A successful Gnedenko and Korolyuk type examination [10] of 

this problem would answer these difficulties. 



Proof of Theorem 13. Part A. 

We have to examine the asymptotic behaviour of the 

random variable 

mm- eup 
ln+m t~F(x) 

Fn(x) - Hm(xl 
F(x) 

Let us pool the two random samples S11" !12 , ••• , Ç1n 

and i 21 , i22' •• ., t2m of size n end rn respectively. 

Let this new sample of aize n+m be ~1 , i 2 ,, ••• , Sn+m' 

which, on the assumption that both samplel!l come ft"-otn the l!ll!lme 

population with continuous c.d.f. F(x) and on the assumption 

that the random variables of the two samples a~ mutually 

independent, is a random sample of size n+m from a population 

with continuous c.d.f. F(x). 

Let the order statistic of the randem sample of 

size n be t1( 1 ) < s1(2 ) < .... < S1(n) and that of the 

random sample of size m be &2(1 ) < i 2 (2 ) < ••• < i 2 (m} 

and also the order statistio of the pooled random sample of 

size n+m be 'i( 1 ) < "E"( 2 ) < ••• <t(n+m); that is using 

the notation of chapter 1 we have 

t1( 1) = R1(I11, "f12' • •" ' 1'1 n) ' 
1 = 1 ' 2, 

(4.6) S2(j) = R jrf21 , 122, • • o ~ 'f2m) j = 1 ' 2, 
' 

S(k) = Rk{!1,T2, ••• , Sn+m) k = 1 ' 2, 
' 

0 ~ q 

•• 0 ' 

... ' 
We shall also need the transformed form$ of these 

random variables introduced in chepter 1 end adapted to the 

preeent situation as 

n 

m 

n+m 
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~11 = F( ~1 i) and 1'11 = log 1 i = 1 ' 2, n 
"'fl1i ' 

0 0 0 , 

(4. 7) 1(2j F( 12 j) ahd 1"2j 
1 .j 1 ' 2' = = log 'fl2j = m 

' 
0 0 0 , 

1( k = F( s k) and ~k = log - 1- k = 1 ' 2' n+m 
"'ik ' 0 0 0 ' 

and the corresponding ord~r statistics 

~1 ( 1) = F( "f1 ( 1)) and 1"1(1) = log 1 i = 1 ' 2, n 
'{'., ( n+1 -i) ' 

• 0 • ' 

(4.8) Yi.2(j) = F( I2( j)) end 12( j) = log 1 j = 1 ' 2, • • •' m 
. 'l2 ( m+1 - j ) ' 

fl(k) = F( S( k)) l!lnd )(k) = log 1 k = 1 ,2, ••• ,n+m , 
~(n+m+1-k) 

where F(x) is the continuous c.d.f. of the popul8tion from 

which the two random sampl~s of size n and m a,nd, therefore, 

also the pooled sample of aize n+m come. 

Let us denote the empirical distribution function 

of the pooled samole of size n+m by Fn+m(x); that is 

we have 

We remark 

k = i+j . , 
if s, k) = 

= 

0 

k 

' n+m 

1 

if x < ~( 1) 

if s(k) ~x < 1(k+1 > 

if 1( n+m) .=!_ x 

here that s ( k ) = "f1( i ) or 1'(k) = -r2(j) l!lnd 

if s(k) = ~(i) th en we hl!lve 12(j) < T1(i) 

r2, j > th en "f1(i) -< f2(j) 0 

The random variables 'f21i, '(2j and T(k of 

th at 

and 

(4. 7) 
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are uniformly diatributed in the interval (0, 1) and, if 

u = F(x), their sample distribution functions are 

and 

respectively 9 where x= p-1(u) ia the inverse function of 

u = F(x). 

Now the limiting distribution of the r~ndom variable 

sup Fn(x) - Hm(x) is identical with that of the random 
t~F(x) F(x) 

variable 

<4 .. 10) sup Gn{u) - Km(u) 
t<u<1 u --

and the limiting distribution of the random variable of <4.10). 

is identical with that of the random variable 

sup Gn(u) - Km(u) . 
' t<Gn+m{u)~1 u 

that ia to prove Theorem 13 it is aufficient to prove that 

<4 .. 12) lim P(riiiL. 
(m,n; ) 1n+ni 

To eee this last step, that is the identity of <4.10) and 

<4.11), let us consider the event lGn+m(u) - ul _:! E: 1 i.e. 

the event O<t<u<1 - :tt follows 

that IGn+m(u) - t 1 ~ E or IGn+m( u) - t 1 :: €. In the firat 

case there is nothing to prove and the second case can only 
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result from Gn+m(u) - t ~(. It followa then from Gn+m{u)- u ~ f 

and Gn+m( u) - t .:::, € that t ~ Gn+m( u) ~ € .5. u· and thua we have 

sup 
t+EcGn+m(u) 

Gn(u) - Km{u) ~ eup Gn{u) - Km(u) 
u t<u u 

Let A be the event that eup G0 (u)- Km(u) c y tn+m 
t<u 1 u nm 

and A1 be the event that sup 
t+E:.5_Gn+m(u) 

G0 (u)- Km(u} <y rn+m. 
u nm 

Then,by (4.,13), AC.A' andifwelet B hetheevent 

lGn+m(u) - ul .!:_( then ABC AVB., But A= ABU AB(;: BU A'B 

Ç B U A 1 
$ where B denotes the c omplementary event of B. 

Therefore, P(A) .5. P(B) + P(A')~ that ie 

Si nee 

P (rn;;- eup Gn ( u) ~ ;Km( u) ,;: y) .5. 
ln::+üi t!_u 

P{ lGn+m(u} - ul > E:) + P(vnm sup Gn(u) - Km(u) <y) 
n+m t+E<Gn+m( u) u 

Similarly, it can be ehown that 

Gn(u) - Km(u) 
u 

P( lGn+m(u) - ul > E) + P (fnm eup Gn(u) ~ Km(u} <y) 
n+m t<u 

lim P(IGn+m(u)- ul >E:) = 0, E:> 0, it followe 
n ,m~co 

from (4. 14) and (4 .. 15) that 



and 

lim 
(m,n;p) 
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P (~tnm aup G0 (u) ~ Km(u) < y) < p<y;c+E:' ,d+E:", ) 
fn+in t<u 

P (~nm sup Gn(u) ~ Km(u) < y) > cp<y;c-e:' ,d-e:", ) 
n+m t:::.u . 

if the statement of ( 4 o 12) is true, where ( 1 e:nd E:" ere 

possible changes induced in the values of c and d by 

changing the value of t to t±(. Now € can be chosen 

arbitrarily small and
1 

as a result of that, (' and (" are 

also made arbitrarily small. Also, the integral is a contin

uous function of its upper limit and so it follows that 

p (ttruil 
·\n+ili 

eup Gn(u) ~ Km{u) < y) 
t<u -

on the condition that \4.12) is true. 

The id..,ntity of the rs.ndomvariables of <4.10) and 

(h.11) is explained in the following heuristic considerations 

too. According to <4.10) we consider the limiting distrib

ution of the random variable sup Gn(u) - Km(u). Let us 
t<u<1 u 

take the general case when t is positive, and arbitrarily 

smallo If both G0 (u) and Km{u) are zero for s~me subset 

of u in then we have started the examination 

of the above random variable too soon and, in that subset of 

u, we get no real information on the behaviour of this random 

variable. The real examination starts when at least one of 

G0 {u) and Km{u) is greater than zero and this is implied 
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by the condition that the c.,d.fo of the pooled s,ample Gn+m(u) 

is auch that t <Gn+m(u) ~ 1 for sorne howev~r sm~ll numb~r t > O. 

This implies that we have the following random variable to 

start with : eup 
t<Gn+m{u)_!1 

Gn ( u) - Km( u).. In ( 4.11 ) we have 
u 

this rrmdom variable with the reatriction that when t = Gn+m{u) 

both G0 (u) and Km{u) are positive as a reeult of the 

original aesumptions of Theore~ 1;., This was the way we 
1 

arrived at the idea of examining the identity ~f (4 0 10) 

and (4.11) in the above analytic way which culminates in 

the statement of (4.12)., The proof of the equivalence of 

<4.10) and (4.11) is free of the restrictions of Theorem 13 

on t and this enables us to attempt the relaxation of them 

later in this thesis., 

variable 

(4.17) 

To prove <4.12) we consider again its random 

sup 
t~Gn+m{u)~1 

If, in general, t ~ Gn+m{u) c 1 then at least one of the 

empirical distribution functions G0 {u) and ~(u) is 

greater than zero and less than one at u when t = Gn+m(u). 

Let d = G0 (u) and c = Km_(u) when t = Gn+m(,u) and, for 

the sake of Theorem 1;, let us assume that both d and c 

are grester than zero and le:!s than one. Thus ex-amining the 

random variable of (4.12) for the set of u's for which 

we have t <Gn+m(u) < 1 also means the examination of this 

random variable for the set of u's for which d < G0 (u)! 1 



and c < K (u) < 1 aimultaneouslyo We ar~ going to express - m -

this by writing <4o17) in the following form 

( 4 .. 18) sup Gn(u) - Km(u) 
U€I u 

where I = {u: t ~ Gn+m{u) < 1, d ~ Gn(u) ~ 1, c ~ Km(u) ~ 1}. 

Now the value of Gn(u) - Kw(u) changes only when 

the value of u passes a value ""((k) of the pooled sample. 

This we express by writing <4 .. 18) as 

(4.19) sup Gn(u}- Km(u) 
u I u 

= 

= 

where s = {k$i,j 

where ~ if l-...1> 
n m 

Gn('l?(k)+O)-~("l(k)+O) 

1?( k) 

Gn ( "?{ k+1 )-0 ) -Km( fl( k+1) -O) 

""k+1 ) 

-j} n m 

'4 k+1) 

i 

. t <.....!...., < 1 i 1 , c < ..1 < 1} and . d<-< - 11+m- ~ -n- -m-

o, the expression cA-~>! 'rl(k) is used 

and, if 1-...lc n m o, the exp re s si one ( ~ - ~) 1 11{ k+1 } is used 

to find maximum .. If n
1_..1=o m !i 

it is irrelevant which one 

of them is used. Moreover, having t(n+m) < k < n+m and as - -
a result of that, nd< 1 ~ n, mc < j < m - - , the nutximum of 

the above expression is at least zero and can be found through 
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examination of (~ - ~)/ "ê.(k) in the indieated regions for 

k, i and j 0 Therefore we have 

<4.20) Gn(u) - Km(u) 
.! - ..1 

sup = max n m 
uEI u s "2( k ) 

Thus, the examination of the random variable or 
<4.12) boils down to the examination of th~ order statistic 

of the pooled sample for t(n+m)! k _! n+m and, thereby, 

to the examination of the order statistics of the original 

two samples for dn < 1 < n and cm! j c: m re1!peetively, 

changing the value of _!_...1 
n tn of (4 .. 20) for a given k 

according to the poseibilities of having an ~1 (i) or an 

"l2(j) in ~k)~ the kth order statistic of the pooled 

sample. In any given pra.ctical situation, that is when we 

are having two random samples of aize n and m, this 

maximum statistic of {4.20) is easily found and we are 

going to show now that its limiting distribution is given 

by (4.12). 

Proof of Theorem 13. Part B a Lemma. 

The present form of the right band side of the 

re.ndom variable of (4.,20) does not lend itfllelf to the method 

of A., Rényi, presented in chapter 1 and used so far in proofs 

of theorems of this thesis and which we also would like to 

continue using in proving this theorem. Towa:rd this end, we 

are going to introduce a random variable which will always 

be greater than or equal to <i - ~)/~(k) of (4.20) for 
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any given k ands therefore~ its maximum will al~o have 

this property in relation to the maximum of (j- ~)/~,k) 

of (4.,20) in the indicated regions f{)r k, 1 4U'ld j. 

Also, we are going to introduce a random variable which will 

always be lesa than or ~qual to <! - ~)/ ~(k) of <4.20} 

for any given k and, therefore, its maximum will also have 

this uroperty in relation to the maximum of {~ - ~)/ ~(k) 

of (4 .. 20) in the indicated regions for k, 1 and j. 

The form of these new random variables will be adaptable to 

the method of Ao R~nyi and this will enable ue to derive their 

limiting distribution and that, in turn, will enable ue to 

derive the limiting distribution of the right h~nd side of 

(4.20) and, thereby, to urove relation (4.12) which was 

shown to be sufficient for the proof of Theorem 13. In this 

connection we are going to verify 

Lemma 1 o 

[ ,L '12(;+1) ] 

1 - 1 ( 4.21 ) -max > max n m 
s s 'k) 

[ 7?1 ( t1) ) ~ 
i - 1 

1 n m 
(4 o22) max m max 1(( k) s ~2(j) s 

where "?1( i) !) 171 ( 1+1 ) ' '12(j)' "'2( j+1 ) . 
and 'l(k) are aa 

in <4.8) and s was defined in <4 .. 19)0 

(a) Let when Th en 
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i 
n 

'71( i) 

1 
m 

1 1 
::> n m 

"l1( i) 
for 1/{ k) = 1/1{ i) and so 

ll1 (i) < ~2(j+ 1 )o We have equality when 

that there is no ~2 (j) before ~1(i)~ 

In thil! case relation (a) àbove becomes 

11{ k) = "l1 ( i) auch 

that t! when k = i. 
1 i 
n 0 = n - 0 

"l1{i) iil1(i) 

This equality is impossible when we have the r~striction of 

• 

Theorem 1? on t, but we shall need this property -of Lemma 1 

that it remains valid when t is an arbitrarily ~~11 positive 

number. 

(b) Let ~- J > 0 when ~(k) = ~2(j)• Then 

i 
n 

1?1 ( i) 

..1 
- m 

"l2(j+1) 

1 - ..1 
> n m , 

"l2{j) 

~1(1) < ~2{j) ~ ~2(j+1) 0 

for ~(k) = ~2 (j) 

( c) Let ii - ~ < 0 when 'fl( k) = ~ ( i) 0 Then 

1 ..1 1 j - 'Yi( k) = "l1( 1 ) n m m m 
' 

for 
'i1 ( 1 ) '72( j+1 ) 

> ,, ( i) 

1(, ( 1) 
'Y) 

< t2 ( j+1 ) 0 

(d) Let 1 - 1 < 0 when ~k) = "(2(j)• Th en -n m 

1 .J. 1 1 - "'1, k) ~2{ .1) 
n m > n m for = 

'(1(1) 'l2( 3+1 ) \( j) ' 

"~1( 1 > < \ < .1 ) "' v2 < .1 + 1 ) • 

and so 

and 10 

and so 
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( e) Let .! - 1 = 0 wh en '?( k) = "l1 ( 1). Then n m 

1 1 1 - 1 - ~k) = "'H.t) n m :> n m 
0 ' 

for 
111( 1.) "l2 t j+1 ) '11(1) 

= 

Yf1( 1) < 172( j+1 ) • 

(f) Let when 

1 
n 

~1( i) 

1 
m 

- 'l2( j+1 ) 

"/( k) = '?2 ( j ) o Then 

.! - l 
> n m = 0 ~ for ~(k) = ~2(J) 

'l2(j) 

~1(1) < ~(j) < ~2(j+1) 

and eo 

and so 

Relations (a), (b), (c). (d), (e) and (f) imply statement 

of <4.21). 

Proof of relation <4.22) .. 

(a) Let ! - ~ > 0 when '?( k) = 121 ( 1 ) o Then 

1 
n 

"'11 ( 1 +1 ) 

1 - l f) 
.-::: n m , for 'k) = ·r1 ( 1 ) and so 

"l1 ( i} 

1( 2 ( j ) c: 1(, ( i ) < 17, { 1 + , ) • 

( b ) Let .! - 1 > 0 whe n n m '({ k) = '72 ( j}. Then 

1 
n 

~1 ~ 1+1 ) 

j 
m 

"'12 ( j ) 

~ 2 ( j ) c: ~1( 1 + 1 ) .. 

1 = ..1 
< n m ~ for ll(k) = v2(j) and eo 

"l2 ( j ) 

( c) Let ~ - ~ < 0 when "1( k) = fl1 ( 1 ).. Then 
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n 

'11( 1+1 ) 
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1 1 
< n m $ for '?{k) = '?1{i) lt{i) 

1(2(j) < 1(1(1) c: 111(1+1) 0 

( d) Let ~ - ~ < 0 when 1(( k) = '?2 ( j) o Then 

1 
n 

~1( 1+1) 

! - _j ~ 
~ n m 

11 
for -t ( k ) = '12 ( j ) 

'12( j) 

and so 

and·so 

'12 ( j) < 'l1( 1+1 ) 0 We have equality when 'rl(k) = 1?2(j) auch that 

there is no 'l1 { 1) be fore '72(j); i.,e., when k = j • In this 

( d) 
1 0 - ..1 

case relation ab ove bec ome e 0 - m = m 
'Î2(j) '1?2 ( j ) 

This equality is impossible wh-en we have the re

striction of Theorem 13 on t, but we shall need this 

property of Lemma 1 that it remains valid when t is an 

arbitrarily small positive number. 

( e) Let ~ - ~ = 0 when "(( k) = ~ ( 1 ) • Then 

i 
n 

'?1 ( 1+1 ) 

..1 .! _1 1) , 

m n m for -(( k) = -t1( 1 ) 
'12 ( j ) < "<1{ i ) = 

0 ~ 

and so ~2 (j) < '?1{i) < ~(i+1 )" 

( f) 
1 0 

Let 0 - ~ = 0 when ~(k) = ~2 (j)" Then 

i 
n 

~1{ 1+1) 

j ! - 1 'D 
m n m for ~(k) = ~(j) 

'l2(j) < 'l2(j) = 
0 

$ 

~2( j) < '11( i+1) 0 

• 

and so 
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Relations ( aO, ( b), ( c), ( d), ( e) and ( f) imply statement 

of <4o22) and this completes the proof of th~ above Lemma. 

Proof of Theorem 13. Part c. 

Taking the entities of the above Lemma let us 

introduce the following notations. Let 

A be the event 1 nm max ( ~ 
n+m S ~1 (i) 

B be the event -r;;;;;- max 
r ii+m s 

i - ..1 
n m < 

"l(k) 

r -

y , and 

y ' 

c be the event ' [ 1 max n 

s 'l1 ( 1+1 ) 
l ] m < 

- "72 ( j) 
y • 

Relat1one (4o21) and (4.22) of the above Lemma 1mply that 

A<= BÇ C and therefore we have P(A) :!. P(B) ~ P(C), that 1s 

( 4 .. 23) [ 1 l ) ) (-
.!_l p(~ max n m < y < P nm max n mc 

s "11 ( 1} - '72( j+1} - ( n+m n+m s ill( k) 

and 

y) 

{4o24) 
1 = ..1 y) p((;;;- ( 1 l ) ~ r(~ max n m< < max n m c y 

s 'rl< k) 
- s 'l1{ i+1 ) - 12( j) n+m n+m 

<4.25) 

and that 

Now we are going to show that 

lim 
(m,n;,O) 

( 
( 

1 
P nm max i rn+m s ,1( i) 

cP< y;c ,d,p) 



· lim 
( m,n;p) 

p (V1!E: rn:+m 
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( 

i 
max n 
s '?1( 1+1 ) 

: )< y)= ~{y;c,d,p) 
- 112( j) . ·. 

A~euming for a moment that ~tatement~ of (4.25) 

and {4o26) are true it followf! from <4.23) .and (4.24} that 

and 

( 4.28) 

lim 
( m,n ;p) 

lim 
(m,n;p) 

P{~nm- max 
n+m S 

P ((nm max 
n+m S 

1. - 1 n m < 

1?{ k) 

i - l ) 
n ~( k) m < y ~ 

and, in turn, (4.27) and <4.28) imply that 

lim 
(m,n; (~ l - 1 

P ~ max n m < 
n+m S 'Î( k) 

= 

~( y;c ,d ,p) 

q,{y; c, d,,o) 

q>(y;c,d,p) 

But, by (4.20), the random variable of (4.29) i~ ~quivalent 

to that of (4.12) and, as we have already etated, it i~ 

. ~ufficient to prove <4.12) in order to prove Theorem 13. 

This means that we have proved Theorem 13 provided that the 

!tatement3 of (4.25) and <4.26) are true. 

To prove ( 4o25) we note that the limi ting dietrib-

ution of its random variable is identical with that of the 

random variable 

max [log ~ 
s 7{1 ( i) 

<4.30) 
l 

log m 
'2(j+1) 

] • "1z ( m+1 ) = 1 

U!ing the notation and reeult~ of chapt~r 1 we con~ider 

log 1 '1 ( i) 

= t bn+1-v 
v=i v 
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m 
= z 

s=j+1 
~m+1-a 

a 

where the Ô n+1-v j im+
1

_
8 

are mutually ind~pendent expon-

entially distributed random variables with c.d.fe 

x > 0. 'I'herefore we have 

n 
M logm ::: t 1 

1 ( i) v=i v 
<4.33) 

n2 
n 

1 log~ = t -2 
1( i) v=i v 

as the mean and variance of ( 4.;1 ) reapectively 

m 
M log l = s=~1 

1 where -'l2( j+1 ) 8 
, 

<4.34) 
m 1 

1 -

and 

m 
L. 

s=m+1 

m 

-x 
e ' 

1 
a 

1 

= 

n2 . 1 log = a=~+1 where L. 
'l2(j+1) 

-2 ' "i2 8 s=m+1 

as the expected value and varie.nce of <4.32) l"espectively. 

ConBider now the sequences of random variable:!! 

s -1 n+1-v , v=i,. ••• ,n. 

(4.35) 
v 

r 
-1 èm+1-a , s = j+1 , ..... , m 

8 

These sequences satisfy Lindeberg'a condition (given in 

che:pter 2) and considering the se two sequences of mutually 

independent re.ndom variables as one sequence, the random 

variables of this sequence are again mutually iadependent 

and aatisfy Lindeberg 1 B condition .. Therefore we apply 

0 

= 0 
' 
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Theorem 5 of chapter 2 with 

( 4o36) 

ae 

max { (log '1 1 n !) l: - (log 1 
s 1 ( i) v=i "72{ j+1) 

= max(~ én+1 ;,.v-1 m )lm+! -• -1) !, 
· S v= v s=j+1 

of this th~ orem o Therefore we have 

lim 
(m,n;p) 

P (ma
5
x fi(l og 1 u 'fl1(1) 

v:t. 
-:2 e dv , if 

l: 1 
nd<i<n 12 

z > 0 , zero otherwise. 

m 
t 

s=j+1 

But, if i > dn and 0 < d < 1, we have by Euler 1 e eummation 

formula that 

n 1 L v = log n - log i + o(~) 
v=i 

and 

J z 12 1 nd<i_!n 

Similarly, if j > cm and 

eummation formula that 

1 =-n 
1 + O([i) 

0 < c < 1 
' 

= log -i + o(~) 

1 o(-) n 

we have by Euler 1 e 

!J} 

m 
(4o4o) >'. ~ = log m - log ( j+1) + o(rir) = log~+ o(-m1 ) 

!J="j'+1 .)T 1 

and 

l: 1 2 = 
mc<j<m-1 (j+1} 

1 1 + o(1) - =- m cm+1 m 
= m-cm-1 + o(1) 

(cm+1 )m m 



But log _!L. 
j+1 

1 = log ::J 1 m•m 
and 1 m-cm=1 = 1-c- m 

(cm+1)m cm(1+_1) j 

that 

cm 

is when m 1s large we have 

m 
\4.4o >' ~ 1_ log m 

s= +1 ï - 1 

and 

(4o41 ) V 

Ymc<T!m-1 1 = ~ 1-o 
( j+1 )2 cm 

Therefore, us1ng \4o38), <4o39), (4o4o), (4.41), <4.40)' a'ftd 

(4.41 )', it follows from (4.37) that 

= 

lim 
(m,n;p) 

p (masx [[log 1 - log .!'!ll-r rlog 1 

~ < 1 > 
1JJ Ll "~2<)+1 > 

-:: z 1 -d 1 -c ) -+-
dn cm 

"' z '(n+m v c ( 1 -d) m + d( 1 -c ) nfm ) 
nm \' de 

if z > 0 ' zero otherwise. 

Letting y= z Y•(1-d) ~ ~0d(1-c) nfm and taking into 

consideration that ~-+ fJ al!! n, m-+ oo we get 

lim 
(m,n;p) 

p(~ 
tii+Di 

max 
s (

log 1/n - log ~J < yl 
1l1 { 1) "l2( j+1 ) J 
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'l'his, b;y (4.30)~ orove~ the e.!!sertion of (4.25). The as~ertion 

of <4o26) can be proved in exe.ctly the same way. He.ving thus 

proved (4.25) and (4.26), taking into consideration (4.27) 

and C4c28) we aleo verified (4.29) and this, by the remarks 

after (4o29), proves Theorem·13. 

If in the ab ove theorem we put n = m then f' = 1 

and Theorem 13 becomes 

Theorem 13 1 • If F(x) = x) th en y 2.Cd L -cl1-êil +dh-ci 
_y_• 

< y) e 2. dv if 
{4o44} lim p (ffi SUP F0 {x) - H0(x) = 0 

n,.oo 2 t!F{ x) F(x) 
0 

for all values of, O<t<1.P 80 that wh en 

F(x(t)) rn(x) = d with 0 < d < 1 
' = t th111n 

Hn{x) = 0 with 0 < 0 < 1 • 

Remarke on and seme generalizations of Theorems 

13 and 13'. If we have two random samplee of size n and 

m such that all the observations of one ar~ lese than all the 

observations of th~ other then Theoreme 13 and 13 1 are not 

applicable in the ir or~ sent form~ 9 for then the set of x 1s 

for which t !:, F( x) 9 0 < t < 1 ~ so that when t ~ F{x(t}) 

we have d = Fn(x) and c = Hm(x) such that botb d and c 

are gr'!\at!iH' th an zero and less than one is empty. On page 47 

if 

y>O 

yso 
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we made the remark that the proof of the equivale-nce of <4.10) 

and <4 .. 11) was free of the restriction~ of Theorem 13 on t, 

and that thia would ena ble us. to a ttempt the relaxation of 

them. This is what we are going to do now. 

We consider here the possib1lity of dropping the 

restriction that both d = Fn(x) and c = Hm(x) are lesa 

th an one when both of them are greater than zero at x{t) 

with t = F(x(t)) .. Since we have 0 c t < 1 Il ortly Olttt of 

d = Fn(x) and c = Hm( x) can be equal to one when t = F(x(t)) 

or, making use of the above remark regarding the equivalence 

of <4o10) and {4 .. 11 ), when t = Gn+m(u) at most one of 

the values d = Gn(u) and c = ~{u) is equal to one. Re

peating the argument of ( 4 .. 18), ( 4 .. 19) and { 4 .. 20) we 

have again 

aup Gn\u) - Kro(u) 
Ufl U 

i .J. 
= max n m 

s "~< k) 

S ={k ,1, j g t ! n!m _!: 1 , d ~ ~ ~ 1, e ·< ~ ,=: 1} and 

where we still assume, as in Theoreme 13 and 13', that beth of 

the values d and c are greater than zero but do not 

exclude the poss1bility of having one of them equal to one. 

Assuming then that both d = ~ and c = ~ are greater than 

zero when t = _!_ (t > 0) we cab have the following three 
n+m 

mutually exclusive possib111ties : 

(1} d =! < 1 and c = j c 1 
n iii 
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or 

(ii) d - i = 1 and c = ..1 < 1 --n m 
or 

(ii) d =.!< 1 and c = l = 1 
n m 

Introducing S' = {k~j . 
t ! n~m:! 1' o<.J.c 1} and 0 -m-

s" = { k ,1 0 t < ...!_ < 1 J d =.! < 1} for oaeee (ii) 1lnd (iii) c 

- n+m- n-

re~peotively; (4.45) can be written ae 

i ..1 
max n m 

' 
if d c. 1 ' c < 1 

s '1( k) 

<4.46) Gn(u)-~(u) 1 l 
eup = max m if d = 1 ' c < 1 , 
UE:l u gY 17( k) 

i 
1 max n if d < 1, c = 1 

sm "7, k) 
' 

Case (i) ie handled by Theoreme 13 and 13' in 

their present forms. 

Case (ii), where both d and e are greater than 

zero and d = 1 i cc 1, ean be stated ae 

<4.47> eup 
uei 

Gn(u) ~ Km(u) 
u 

= max 
s• 

1 - ..1 m 
~( k) 

In terms of Lemma 1 this implies that we are to examine the 

limiting distribution of the random variable 

max ( 1 
s' ~(n) 
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and 

{ 4.49 J max ( 1 
S' 1?1 ( n+1 ) 

J/m ] 
'12( j) 

where the la et ident i ty follows from '1"J - 1 "f1{ n+1} - • 

The limiting distribution of <4.48> 11! ·-equivalent 

to that of 

max 
S' 

1 
'l1 ( n) 

1 og __l.Lm_J 
~( j+1) 

From now on the argument follows that of examining the 

limiting distribution of <4.?0). The statement of <4.31) 

beoomee 

<4.51) log 1 = _h, 
'lt(n) n 

and the statement !l of ( 4.32) and ( 4 .34) remain exaotly 

the sa me while ( 4.33) beoomes 

M log 1 = 1 

~1 ( n) 
-n 

<4.52) 
n2 log 1 = 1 

'fl1 ( n) ft2' 

as the expeoted mean and variance of (4.51) respeotively. 

Thue in the limit log ~ hae mean and varianc~ equal to 
n 

zero. beoomes 

m 
<4.53) 

In the light of 

max {log 1 
S' fl, (n) 

- (log 1 
t(2(j+1) 

L: 
s=j+1 
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max ( _b 
m 

~+! -·-1J = l: 
S' n s=j+1 

( 4.42) becomes 

lim P (max (log 1 
- log '&t~:1 J c z V ~;c) (m,n;p) S' fl1(n) 

[log 
- log v2t~:1 )) < 

z yn+m y1-c __!!_) lim P(max 1 
(m,n;p) gY ~1(n) nm c n+m 

if z > 0 
' 

zero otherwise. 

y = Z {1 =C _!L 
J c n+m 

and taking into account that m 
n.- f 

as n , m - oo we ge t 

P ( inm max (log .._...;..1_ 
n+m S 1 'V1 ( n ) . 

= [
tc (1+ p) 

~~co .1 
_Y:. 

e :L dv 
0 

if y > () ' zero oth~rwise. 

This, by (4.50), is the limiting distribution of <4.48). 

It is easily seen that the limiting distribution of <4.49) 

is the same as that of (4.48). It follows then fr~m Lemma 1 

and using the argument of <4.2~), <4.24), <4.25), (4.26), 

(4.27), <4.28) and (4.29) that the limiting distribution 

of the random v aria ble of ( 4.47) is as stated in (4.55). 

Case (iii), where both d and c are greater 

than zero and d < 1 , c = 1 , can be stated as 

sup 
u(I 

Gnlu) - Km(u) 
u 

= max 
S" 

i 1 -n 0 

'~< k) 
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where s" was defined in {4 .. 46) .. An argument ~imilar to 

that of case (ii ) shows that the limiting distribution of 

( 4o56) is as follows 

u 

= if y> 0 ' zero otherwise. 

A look at <4 .. 3) shows that if d = 1, c < 1, 

that il! in case (ii), then cp< y; c, d=1, p) = right h~nd 

side of and when d < 1 and c = 1 that is in ' . 

case (iii), then ~{y; c=1 , d, p) = right hand !!ide of 

\4 .. 57) .. Thue Theorem 13 and therefore Theorem 13 1 can be 

extended to the case when d = 1 or c = 1 , both of them 

are being greater than zero. Equating d or c in 

cp< y; c 9 d, fJ) to 1 would not be val id wi thout the verif

ication of statements <4~55) and <4 .. 57), for the proof 

of Theorem 13 relies on the fact that we have c and d such 

that 0 < c < 1, 0 < d < 1, when using Euler'!! summation 

formulao So we have the following extension of Theorem 13ô 

Theorem 15 0 If F(x) = H(x) and n, m _,. oo so that 

m n .... P then 

( 4.58) lim p (y~~: sup F0 (x) - Hm(x) < y) = q>< y;c ,d ,p) 
(m,n;p) t<F(x) F(x) 

for all values of t, 0 < t < 1' ~0 that when 
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d with 0 < d < 1 
F(x( t)) = t then 

{Fn(x) = 
0 If any one 

Hm{x) = o with 0 < 0 < 1 

of d and 0 is equal to 1 !i we put d = 1 or c = 1 in 

q> (y; 0 !i d ,p) 0 Si noe we have 0 < t < 1 ' at most one of 

the values d and c can be equal to 1 0 

A similar extension of Theorem 13' ie obviouso 

Were we able to derive now the limitinR distribution of the 

random variable of <4.11), which is given as 

( 4.59) sup Gplu) - Km{u) , 
u~I u 

for any arbitrarily small positive number t, we would have 

a complete generalization of Theorems 13 and 13 1 • This is 

what we are p:oing t o a ttempt next o 

We recall firet th at I = { u . t < Gn+m{u} < 1 ' 
. 

d:: Gn(u) ~ 1, c < Km{u) < 1} !i - 0 < t < 1 • Wh en t = Gn+m(u} 

then at least one (but not necessarily bath) of the sample 

distribution functions Gn(u) and K. .. { u) 
ill 

is gr-eater than 

z~ro. So far, in theorems 13, 13' and 15 1 we have imposed 

the restriction on d and c 1 which are the value-s of Gn{u) 

and K (u) respectively for the value of u for which 
U! 

t = Gn+m(u), that both of them are greater than zero. We 

are going to drop this restriction now. Thus we are going to 

examine the limiting distribution of the random variable 

<4.60) eup G0 (u) nn Km(u) , 
uE:I u 

where, as before, I = {u ~ t < Gn+m{u) < 1, d < Gn(u) < 1, 



66 

c < Km(u) < 1}' O..,;::tc:1, and d and e are eu eh that -
d = Gn(u)} 

:for the value o:f u :for whieh t = Gn+m(u) 
c = ~(u) 

and, since 0 < t < 1, at least one of c and d ie non-zero. 

We aga in have 

i - ..1 
(4.,61 ) sup G0 (u) - Km(u) = ms.x n m , 

1 
U€1 u s 1(( k) 

where, as before, S = {k,i,j : t ~ n!m ~ 1, d ~ ~ ~ 1, e ~ ~ ~ 1) 

but with the above explained relaxation of previous conditions 

on d and e. 

and c we have 

{ i) 

(ii) 

{iii) 

Theee are three 

c. Introducing 

Due to this relaxation of c ondi ti ons on d 

the following possibilitiee for them when t - k --
d =.! > 0 

n 

1 
0 d =- = n 

and 

and 

and 

c = l > 0 

c 

m 

= ..1 > 0 m 

e = l = 0 m 

mutually exclusive pos~!ibilities for 

s* «- {k~i,j . t < _!_ < 1 J 0·<.! < • - n+m - -n-

n+m 

d and 

1 , e ~ ~ ~ 1} 

and s*.;f" ;:; { k, 1, J • t < .JL < 1 d < 1 < 1 , 0<1< 1} for ~ 

n+m- ' -Ir- -m-

cases (11) and (111) respeetively <4.61) ean be written as 

1 - ..1 max n m , if d > o, e > 0 
s '~< k) 

1 1 
( 4.62) Ge( u l - Km(u) -sup = max n m if d = 0, c > 0 

u~I s* 'l< k) ' u 

i - 1 
ms. x n m if d > o, c = 0 
s** ïfl(k) ' 

. 
" 
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Case (1), where both d and c are greater 

than zero, ie handled by Theoreme 13, 13' and 15. 

Let us consider now case (11), where d = 0, c > 0 

when t = u~m~ The statements (4.21) and {4o22} of Lemma 1 

are v alid in this case too but A. R~nyi' s method ce.nriot be 

immediately used to derive the limiting distribution of the 

random variables 

[ 

.! 
max n 

s* ~ ( i) 
..1. J m , 

12(j+1) 

which, according to the statement of Lemma 1 , are to be ex-

amined wh en d = o, c > o. To handle this problem let 

t' k be the sme.llest positive number such t hat d' - i -- - n> n+m 

c' = ~ and both of them are greater tha.n zero. In this 

situation the appropria.te case of <4.62) can be ·written e.s 

max 
s* 

0 - J. 
-=---m ' 
1l( k) 

1_..1.} n m 
ifl(k) 

ha.ving t 1 (n+m) < k < n+m e.nd, as a. result of that, nd' < 1 < n, 

mc' .:::. j < m in the second re.ndom ve.riable of the right 

band side of (4.63) is e.t lee.st zero while the first random 

variable of it is e.lwa.ys negative. We can pick, therefore, the 

second ra.ndomvaria.ble of the right band side of (4.63) as 

the one which is going to provide maximum for us. Thue (4.63) 

. ~----------~-------
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can be written as 

i ..1 1 ..1 
(4.63} 1 max n m = ma..x n m 

s·~ "l< k) s2* 
$ 

1?( k) 

where, Ill! given above 1 t' in s * 2 
is the small~st positive 

number su ch that both d' and cf in s2* e.re sre•ter than 

zero., Thie means that we reduced case (ii) to case { i) and 

Theorems 13, 13 1 and 15 hold with t = t 1 d = d 1 , and c = cf. 

Concerning esse {iii)$ where d > 0, e = 0, using 

the a.rgument of case (ii), mutatis mutandis, the appropriate 

case of ( 4.62) can be written, analogously to <4.63), as 

( 4.64} 
1 - ..1 1 0 .!. - ..1} max n m ;: max {max n max n m 

s** 1(( k) s1** ~( k:) ' S2** '+?( k} 

where . t < _!_ < t" d < i < d"} 
c - n+m - ' - lt -

and 

where t" = n~m is the smallest positive number such that 

d" = 1 c" = 1 and both of them are greater than zero. Un-n' m 

fortunately, there seems to be no way of chooeing any one· of 

the re.ndom variable!!! of the right hand si<ie of <4.64) ae 

maximum of the two. Theoretically speaking either one of them 

cam turn out to be the maximum of the two or when they would 

be e que.l e i ther one would be satisfactory for d eri ving the 

limiting distribution of the left hsnd side of (4.64). In 

a given practical example we could of course spot the approp-

riate one for examination and to handle these possibilities 
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we could derive here the possible limiting dietributione for 

the appropriate eituatione. To etate thinge exactly we can 

have the following three mutually exclueive p"Oesibilitiee for· 

( 4.65) 
! - .J. 

max D. m = 
s** ïfl(k) 

! 
max n 
s ** 2 

either 

i 
n 

{k) 

- .J. 
m 

(k) 

one of 

when they are 

• • • ( 1 ) .or 

• • • (2) or 

( 1 ) and (2) 

equal. 

The limiting distribution of the random variable 

of (2) is handled by the exten.ded form of Theorem 13, that 

is Theorem 15 holde w1th t = t", d = d" and c = c". In 

case of (1) we would have to consider the p()esibilitiee of 

having : (") d c 1 and d" c 1 , (b) d = 1 and, therefore, 

d" = 1 , ( c) ·d' c 1 and d" = 1. Thus the limi ti1'1g distrib

ution of the random variable of (1) would have thPee different 

forme. Namely in case (a) Theorem ~ of chapter 2 would hold 

w1th a = d and b·= d" 
' 

in caee · (o)' Theorem 1 or ohapter 2 

would hold with a= d and in case (b) 

examine the "limiting" distribution of 

we would 
1 
ft 

and could poeeibly use the exact distribution of 

have to 

= 1 
~(k} 

log 1 
11(k) 

for decision probleme wh1oh wae .Proved to be the exponential 

law w1th o.d.f, 1 -x - e • In c aee of equali ty of the r andom 

variables of {1) and {2) the limiting distribution oan be 
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taken as that of either of thems and would no doubt best be 

ta ken as the more c onvenient one s which is the one of case ( 2) 

handled by Theorem 15 aseocplained above., All th~s~ limiting 

distributions are conditional ones corresponding to the 

specified possible situations. 

It is clear that, because of th.ese conditional 

limiting distribution statements, an sttempt to giv~ a completely 

general form of Theorem 13 would become very cumbersome. We 

are going to propose instead a convention which will enable us 

to formulate the desired generalization of Theorem 13 in a 

relatively simple manner. 

We are trying to derive the limiting distribution of 

su~ (Fn(x) - Hm~~(x) or~ equivalently, that of 
t~F~x) 

sup (Gn(u) - Km(u))/u for any arbitrarily small positive 
uE:I 

number t, thereby relaxing our conditions on d and c 

as stated in (4.,60)., We did not succeed in this attempt 

because of the difficulties encountered in case (iii) of 

<4.62) 9 after successfully handling cases (i) and (ii) 

of (4.62)., This troublesome case (iii) would reduce to 

well behaving case (ii) if we would adQpt the following 

convention., If in ( 4 0 62)' when 

d = ~ > 0 and c = 1 = 0 
m ' 

th at is 

write the appropria te :!!tatement of 

(4.66) SUP 
, u€1 

Km( u) Gn( u) 
u 

= 

t = _!L n+m , we would have 

case (iii), let us 

( 4.,62) as 

1 1 
m n 

11( k) 
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which amounts to interchanging Fn{x) ~nd Hm(x) in the 

proposed extended stat~ment of Theor~m 13; that is instead 

of starting with sup (F (x) - Hm_(x))/F(x) 
t<F\x) n 

we would start 

with in our attempt to generalize 

Theorem 13.. This is not a restriction, for we can set up our 

original random variable with Fn(x) ~nd Hm(x) in any 

order in it. Only because of the method of proof we are try

ing to use here we would want them the way given in <4.66). 

Having got <4 .. 66), instead of <4.64) we could have the 

following relation 

j 1 0 i .1 - 1} <4.67) -max m n = max{ max n max m n 
s*~t- 'l( k) 'l(k) 

g 

s** s1 *i'" "l(k) 2 

where ~ again ~ s ** ** t" d" and e" 1 ~ s2 ' ~ 
are '8.!1 defined 

in ( 4.64) 0 Following the argument of <4.63)' we ean 

write <4 .. 67) a! 

j i j 
(4 .. 67P max m n = max m 

s·~·* 
"/(k) s ** "l, k) 2 

and theoreme 13, 13' and 15 hold with 

1 
n 

t = t" d = d" , and 

c = c" in this modified form of case (iii} of <4 .. 62). 

We have~ therefore, through Theorem 15, the follow-

ing generalized form of Theorem 13. 

Theorem 16., If F(x) = H{x) and n, m-J> oo eo that 

th en 



(4.68) 

t, 0 < 

F(x(t)) 

si nee 

to 1 0 

d = 1 

( 4 .. 69) 

= 

lim 
(m,n;p) 
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q>(y; c 1 d, p) , if d > Oll c > 0 for all values of 

t < 1 ' 80 that when 

{ Fn(x) = d with 0 < d < 1 
= t then where, J 

Hm(x) = c with 0 < c < 1 -
0 < t < 1 , at most one of d and c can be eque.l 

If any one of d and c iS equal to 1 then we put 

or c = 1 in c}?t y; c' d' p); or 

lim p(~ SUP F0 (x) - HmCx) "" y) 
(m,n;p) n+m t<F(x) F(x) 

lim p(~ SU'P Fg ( x ) - Hill { x) <y) 
{ m ,n; p) n+m t '::F(x) F(x) 

= ~ ( y; c 1 , d f $ (0) , if d = 0 ll c > 0 

when F(x(t)) = t and where F(x{t')) = t 1 , 0 < t 1 < 1, is 

the smallest positive number such that . 
{ 

d 1 - Fn(x} with 0 < d 1 < 1 -
cf = Hm(x) wi th 0 < c 1 ,:!: 1 

where, since 0 < t 1 < 1 i at most one of d 1 and c 1 can be 

equal to 1.. If any one of d' and c' ie equal t o 1 then 

we put d 1 = 1 or c' = 1 in p<y; c 1 , dV,f); or 

<4o 70) lim 
( m·Jin; p) 

= lim 
(m,n;p) 

P (v~ 
fn+m 

SUP 
tc:F(x) 

sup 
t"!F(x) 

Hmlx) - Fn(x) 
F{x) 

Hm ( x ) - Fn ( x ) 
F(x) 

= <;P(y; c", d",p), if d > O, c = 0 when F(x(t)) = t 

' 
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and where F{ x( t")) = ttt 
Il 0 < t" "' 1 Il is the small~~t positive 

r· = F
0

(x} with 0 < d" < 1 
number !!UCh that 

' 
where, 

c" = Hm{x) with 0 < c" < 1 

~!ince 0 < t" < 1 li at most one of d" and c" oan be eque.l 

to 1 0 If any one of d" and c" is eque.l to 1 th en 

we put d" = 1 or c" = 1 in tp{y; c", d",p). 

We could have, of course, started the discussion 

of Theorem 13 with eup (Hm{x) - F0 (x))/F(x) instead of 
t_::F(x) 

su:p 
tc:F\x) 

(Fn(x) = Hm(x))/F(x) and would have arrived at the 

same generalized statements of Theorem 16 as given above but 

<4o68) where we would have Fn(x) and Hm(x) in reverse to 

their present order which is irrelevant to the statement 

being made there anyway. 

Proof of Theorem 14. 

Repeating the argument of the proof of Theorem 13 

it can be shown that it will be sufficient to derive the 

limiting distribution of 

su~ Gn(u) - Km(u) , 0 < t < 1 < 1, 
t<Gn+m\u)~l u 

in order to prove Theorem 14. If, in general, 0 < t.:: Gn+m(u) 

< 1 < 1 then at least one of the empirical distribution 

·runctions Gn( u) and ~{ u) is gr~ a ter than zero at u 

where t = Gn+m{u) and, also, at least one of th~m is lese 

than 1 at u where Gn l·m( u) = 1. Let age.in, as be fore, 

d = Gn(u) and c = Km(u) when t = Gn+m(u) and let e = 
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G ( u), f = Km( u) when Gn+m( u) = 1 o For the 2!eJ~e of Theorem 
n 

14 w~ make the ae~umption that both d and c ~re greater 

than zero and le2!e than 1. As a re2!ult of thie am~umption 

both e and f are greater than zeroo Other~i~e we do not 

make any re2!triction on e and f, that ie we do not exclude 

the poeeibility of having one of them equal to 1 o Thus, 

examining the random variable of (4o71) for the 2!et of u's 

for which we have t ~ Gn+m(u) ~ 1 also mean2! the examination 

of this random variable for the set of u'e for whieh d ~ Gn(u) 

< e and c ~ ISn(u) ~ f eimultaneou2!ly. This we expre2!2! by 

writing (4o71) in the following form 

eup §:.n.( u) - Km( u) 
UE:U U 

where U = {u ~ t < Gn+m(u) ~ 1, d < G0 (u) ~ e, c < ~(u) < t} 
Analogouely to (4o19), (4.72) can be written aL! 

\4.73) Gn~u) - Km(u) m;xf - ..1 .! - l} sup = Il Il 11 , 
' u.:::U u '1( k) ~( k+1 ) 

.vhere T = {k,i,j g t ~ k/(n+ll) < 1 d < 1/n < e, c < j/m ~ r} - , - -
and where, if 1/n - j/ll > 0!1 the expression 

(i/n = j/m)/ ~(k) ia ueed and~ if i/n - J/11 < 0.51 the 

_,xpreseion { 1/n j/m)/ ~( k+1) ia ueed 

to find maximum. If 1-l=o 
n m ' 

it 12! irrelevant which 

one of them ie U2!ed. We cannet 2!ay here, ae we did in case 

of (4.19), that the maximum of the above expression is at 

least zero, for we have here t(n+m) ~ k < l(n+m) and as a 

result of that dn < i < en, cm < j < fm which implies that 

we may never have 1 
'!'f 1 ::c 0 

m and, as a consequence of this, 
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if ~- ~ < 0 when examining ~(k)' the ordered statietics 

of the pooled samples, for t(n+m) < k ~ l(n+m) we need 

to find indicated maximum in <4.73). An 
1 

extended form of Lemma 1 will enable ue, though, to derive 

the limit1ng di8tribution of r1ght band 8ide of <4 .. 73). 

In thie connection we are going to prove 

Lemma 2 o 

[ 1 
11ù ;+1 )l { .L .1 1 - 1] <4 .. 74> max n > max n m n m 

T 1f1( i) 
- Il 

T "?( k) "l( k+1 ) 

{ [ 1 ~2~j) 1 1- .1 1 - .1} ( 4. 75} -max n < max n m , n m 
T 'f{1( i+1 ) 

-
T ~k) 17( k+1 ) 

where ~1( 1 ) ~ '11( i+1 ) j) 1(2 ( j), 1(2 { j+1 ) and 1(( k) 

defined in (4.,8) and T is as defined in (4.73). 

are as 

Proof of relation (4 .. 74). 

If 1 - l > 0 then to f1nd maximum of r1ght hand 
n m ' 

side of (4 .. 74) we use <i - t>l ~(k) and thus the first 

two steps, (a) and (b), of the proof of (4.21) apply 

here too. So we take the ·case when ~ - ~ c o, i.e. when 

(1 - 1)/ of (4.74) is used to find maximum. 
n m ( k+1) 

(c) Let -â = ~ < 0 when 1((k) = 7{,( 1 ) and let 1((k+1 ) ='?1( 1+1 )• 
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Then n 

f(1( i) 
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i l 
> n • m 3 for ~(k) = ~1 (i)' 

~1{1+1) 

,~(k+1) = 1(1(1+1) imply that 1[1(1) < 'Jl1{i+1) < f?2(j+1)o 

(c)' Let ! - ~ < 0 when '?(k) = "(1 ( 1 ) and let 1(( k+1 ) = '72 { j+1 ). 

1 l 
Then n m ! -..1 11 n 

> n m , for < 1 ( 1 } -< c 2 ( j + 1 ) • '11 { 1) 172( j+1 ) 1!2( j+1 ) 

(d) Let ~- ~ < 0 when f{k) = Y2 (j) and let ~(k+1 ) = f1(i+1)• 

Then 

"12 ( j+1 ) 

..1 
m ! - ..1 ~ ~ 

> n . m , for c ( k) = ( 2 ( j ) , ,1 ( 1+1 ) 

"?( k+1 ) ·= '?., ( 1+1 ) imply that ~1{ 1) ,<: ~( j) 'F 'Yj1( 1+1 ) < 1(2( j+1 ) • 

{ d )' Let l - l < 0 when n m 

i 

~ k) = 1(2( j) and let 1'{(k~ 1 ) = 1(2( j+1) • 

Then n ..1 .! - ..J. 1') 11 'Y) 
m > n m , for ~( 1 ) < ~(j) < ~(j+ 1 )• 

1'l1(i) 112( j+1) "12(j+1) 

The next two l!ltepl!, ( e) and ( f) 11 of the proof of ( 4.21 ) 
apply here too: The quoted relationl!l of the proof of <4.21) 
and ( c), ( c )' 

li 
(d} and ( d)' above prove (4. 74). 

Proof of relation <4.75}. 

If ! - l > 0 then to f1nd maximum of right hand n m 11 

side of (4.7'3) we use (~- ~)/"/(k) and thue the firl!t two 
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~t~p~~ (a) and (b), of the proof of (4.22} apply here 

tooo So we take the ca~e when l - 1 < 0, that 1~ when 
n m 

(i- ~)/~(k+ 1 ) of (4.75) 1~ u~ed to find maximum. 

{ c) Let ! - ~ < 0 when 1(( k) = f(1 ( 1 ) and let 

1 ..1 1 - l 
Then n 

"11 { 1+1 ) 
m < n m , 

172(j) 1H1+1) 

for 1(( k) = "?1( 1 ) 1mpliee that ~2 ( j) < "71( 1) < ~ ( 1+1 ) • 

(c)' Let ~ - ~ < 0 when ~(k) = ~1 (i) and let 

'7 ( k+1 ) = '?2( j+1 ) 0 

1 
Then n 

"11(1+1} 

..1 
m 

172( j) 

1 - .J. 
< n m , 

'l2(j+1) 

for fl(k+1 ) ="72 (Jt1 ) 1mpliee that '?2 (j+1 ) < 1'/1 ( 1+1 ). 

(d) Let ~-; < 0 when 1(k) = V2 (j) and let 

~(k+1) = ~1(1+1)• 
i 

Then n 

'l1 ( 1+1 ) 

..1 1 - ..1 
m c n m , 

~2(j) ~1(1+1) 

for f{( k) = '?2 ( j) and 1(( k+1 ) = 1{1 ( 1+1 ) 1mply that 1/2 ( l} < 1]1 ( 1+1 ). 

(d) 1 Let %- ~ < 0 when ~(k) = ~2 (j) and let 

~(k+1) = ~2(j+1 )o 

i 
Then n 

1'11 { 1+1 ) 

..1 
m 

"12 ( j) 

1 - ..1 
c n m 

112(j+1) ' 

for ~(k) = ~2 (J) and ~(k+ 1 ) = 12 (j+1 ) imply tbat 
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41 < fl and na.tura.lly 'Y>2 ( j) <fl2 ( j+1 ) • {2(j+1) (1(1+1) ., 

The next two .eteoe, (e) and (f), of the proof of (4.22} 

a.pply here too. The quoted relation.e of the proof of <4.22) 

and ( c), ( c ) f 
' 

( d) and ( d)' above prove <4.75). 

Lemma 2 impliea that the ra.ndom variables which have 

been used to prove Theorem 1~ can a.l.eo be used to derive the 

limiting dietribution of <4.71}. Expression.e, analogous to 

(4.23), <4.24), (4.25), (4.26), {4.,27), <4.28) and <4.29) 

imply that the oroof of Theorem 14 ca.n be accomplished by 

exa.mining the limiting distribution of the left hand aide of 

<4.74) and (4.75) respectively. We consider fir.et the 

left band .eide of <4.74) that i.e we exnmine the asymptotic 

behaviour of 

( 

i 
max n 

T "t1( 1) 
l J m , 

'72( j+1 ) 

where, repeating the conditions of Theorem 14, we make the 

aesumption that both d and c of T are greater than zero 

and lese than 1. Because we have ~ 0 < t < 1 < 1, a.t most 

one of the valuea e and f of T can be equa.l to 1. Under 

theee conditions {4.76) can hBve three mutua.lly exclusive 

forml!l which we indicate by writ1ng it A! 

1 ..1 
max n m ' if ~ ,f<1 

T 1(1( 1) flz( j+1 ) 

1 

• • • ( 1 ) 

( 1 1 J ..1 <4. 77) - e=1 ,tc1 ••• (2) 
m;x "?1 ~ 1) ~ 'Î2( ;+1) = 

max n m 
' 

if 
T' ~2(j+1} "11 ( 1 ) 
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..i 
m , if e<1 , f=1 ••• ( 3) 

1(2(j+1) 

where T i~ •~ defined in (4.73) and where 

T" = { k, i, j t < n+m .::, 1 , d ~ ! ,:'! e , c .::, ~ .:! 1} . 

We examine first case (1) , where both e and f 

are lees than 1. Because of the assumption that both d and 

a are greater than z~ro and less than 1 it is a~sured that 

both e and f are gr~ater than zero. Th~ limiting di~trib

ution of the random variable of <4o77) in this case ie 

id~a.ntical with that of the random variable 

( 4. 78) max (log ~ 
T ~1{ 1) 

..i ) log m , 

11.2 ( j+1 ) 
'?2(m+1) = 1 • 

This, analogously to (4.36), can be written as 

r = m;{[ log n !) m 
<4.79) 1 - L: llbg 1 r. 

f{1(1) v=i "72(j+1) s=j+1 

= max ( i: s ~1 m ~m+!-•-1J n+1-v L: 
T v=i v s=j+1 

which, in turn may be writt•n as the ~um of two independent 

random v aria bles o<. and !' where 

L: 
fm<j«m-1 

and 

' -1 Om-j 
j+1 

~ J} 
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T 

L. 
i 
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~ -1 
Om-.1 

j+1 
• 

It is olear from (4.39), (4.~-1} !!nd <4.41) 1 

that 9 as n ~ rn-. oo eo that fi-. p ~ the standard devil!tion 

of ynm o< il!! given by 
n+m 

<4 .. 82) 1/f( 1-e )~ + e{ 1-f') 
f erl1+f'J 

and~ by the Lindeberg form of the central limit theorem in 

the limit, as n, m --+ co s o th at ~0( 
ln+M 

normally di~tributed random variable with standArd d~vi~rtion as 

given in <4.82). 

Considering {4.81 ), the vari~rno~ of L 
1 

~+1-i ' 
1 

if dn < i ~en, 0 < d < e < 1 ~rnd using Euler 1 s summation 

formula, is given by 

(4 .. 83) n2 (dn<~<en ~n~1-i) = L. 1 = 1 1' ( 1 ) 
dn<i<en Î2 dn -- + 0-en n --

e-d o(l) = -+ -edn n 

a.nd, similarly, the ve.rianoe ot L. Om-.1 if . em < j < f'm, !1 -j j+1 

0 < 0 < f' < 1 ' is given by 

(4o84) n2 (cm<Tcrm ~m-,~ = .f.=-2. o(1) + , 
j+1 of'm m --

whioh, mutatis mutandis, oan be l!!een from oaloul~rtions 
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of ( 3 .,44)" Thus the at andard deviation of 

i 
~ -1) m-j ' 
j+1 

t" -1 
Cln+1-i 

n , m -+ oc a o th at is given by 

~{e-d)cffJ.+ (f-c)ed 
edct( 1+,0' 

on using <4 .. 83) and (4.,84>.. From the proof of Theorem 13 

it can be seen that, when applying Theorem 5 of chapter 2 

with ynm A 
n+m/" 

as max Sne+mf k of this theorem, we have 
Ill; 

(4.86) lim 
{ m ,n ;p) 

zero otherwiee. 

Considering further 

ent it followe from (4.,82), 

<4 .. 87) 

edcf (1+P) 
u (e- ëi)cfP +<t- o) e a: 
J .,-f dv , U' 

0 
y> o, 

that o< and fo &l"'e indeJsend-

<4 .. 86) and convolution. that ~ eactJ~t~ 

Je 
~ (y -u;J e:..d)ëfp -c ea 

ef(HP)u; 1 v 1 = 1 l1- + e {t-f) e -2frt-e)p+e(t-tlJ -e- '2:" ..::~. ·' 
e ( 1+ f tt-Va. u. 

-oo 

where we have : ... ooc y< +oo, and this, by <4 .. 78), ie the 

limi ting distribution of le ft hand aide of ( 4o74) f'tYr case ( 1) 

of <4 .. 77)" 

The limiting distribution of left band aide of (4.75) 

for case ( 1) of (4.,77) can be derived in exactly the aame 

way with the same reault., This completes the proof. ~r Theorem 

14 in the c1ue when both e and f are lees than 1 .. 
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Concerning Cil!~!"! (2) of u,. 0 77) ' wh·~re e = 1 ' 

f "" 1 ' it cnn ee~ily be ~een from <4.:>2) that, a.s n, ffi-;. OC) 

that m fJ ( nm o< 1!1 normally distr>ibut~d rendom so -~ e 
tl ' n+m 

variable wi th st~n d'!rd d~vie.ti on 

And the limiting distribution of 1/nm fo hae ~tandard deviation 
~ n+m 

f = 1, 

, 

Similarly, in ca~~ ( 3) of ( 4. 77), where e < 1 , 

n 9 m-. oo eo that m --..a 
u r ' 

vnm ~ ia a normally 
f n+m 

di~tributed random variable with standard devi~tion 

while the limiting di~tribution of r m ~ ha~ standard deviation 

(4.91) (e-d)c~ + (1-c)ed 
ede ( 1 + ~") 

Therefore, (4.88), <4.89), (4.90) and (4.91) 

imply that in (4.87) we have proved Theorem 14 with the 

underetanding that we put e = 1 when e = 1 , f < 1 and 

f = 1 wh~n e < 1, f = 1 in the right hand !ide expression 

of that ie in N{ Y. ·, d • c e f ~ ) 
, 1 ' ' ,-

of the etetement 

of Theorem 14. Al!o, if n = m we put ~= 1 in (4.87) 



and then we h~ve a ~peeial form of Theor'm 14. 

Just as in the ea~e of Theorem 13i we could examine 

here too the possibility of h~ving one of d and e equal 

to zero or having one of them equal to one and t~ possible 

eombinatione of these two cases. To any one of these poss

ibilities for the values of d and e there would belong 

sorne possible eombinatione for the values of e and r. 
Because of these numerous pos~ible eombinations, difficulties 

arise whieh are similar to those of casee {ii) and (iii} 

of p. 66 and whieh eannot be similarly overe ome when trying 

to examine their limiting behaviour. I have therefore not 

attempted the problem of generalizing Theorem 14 in this 

direction o 
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5. Remarke and eome re~ulte concerning the problems 

of deriving the limiting distribution of the supremum 

R~peating the argument leading to (4.19), mutatis 

mutandis:; we get 

eup 
ue.I 

Gn(u) ~ Km(u) 1 = ~ 1 - ...1 
max n m , 
s 1ê(k) 

1 ..1 

1 - ..1 ~ n rn 

"'~< k+1 ) 

But max 
s 

max 
s 

n m 
"1(k+1) 

and, therefore, we 

get from (5.1) that 

( 5 .2) sup 1 Gn( u) - Km( u) 
U(I u 

i - ..1 1 = max n m • 
s 1'{( k) 

From the statement of Lemma 1 of chapt-,r 4 it ie clear tbat 

i ..1 

{ ~~1) ..1 i l } ( 5 .. 3) max n m < max Dl 

"l1(:+1)- "72~j) - , 
s 'Yi( k) s - '72( j+1) 

Here we have the problem of deciding which one of 

the random variablee of the right band side of (5.3) is going 

to be maximum and there eeems to be no way of doing this. 

If we were able to derive the limiting distribution of the right 

band eide of (5 .. 3) then, through (5 .. ?), we could have a 

statement regarding IFn(x) - Hm(x)I/F(x) as follows 

( 5 .. 4) lim 
(m,n;p) 

p (\1;:;-
tn+m 

eup IFn(x) - Hm(x) 1 
t~F(x) F(x) 



lim 
(m,n;p) 

where R stands for the right hand eide of (5.3). n 11 m Th en 

we etill would have the problem of finding an upper bound for 

lim 
, (m,n;p) 

p(~ 
fn+ii 

SUP 
tc:F{x) 

1 Fn ( x ). - Hm { x ) l 
F(x) 

and if this 

upper bound would turn out to be equ~l to right hand eide 

of {5.4) we would have a new limiting distribution at our 

disposal. The derivation of this upper bound in question 

would require a random veri~ble which would be lese than or 

equal to ( ~ - J;>/ 1'l(k) when positive and greater than or 

equ~l to it when neg~tive. 
i 

Thus its sbeolute value would be 
l 

lees than or equal to n rn and if we wanted to use 
1'/(k) 

A.R~nyi 1 s method of proof we would have to h~ve it in a form 

adaptable to this method. I have not succeeded in finding 

such a random varisble and hav~ settled on trying to derive 

statements like {5.4). Such etetements would be of some 

interest as ~at least" probability stat~ments. In this connect-

ion we are going to prove the following theoreme : 

Theorem 17. rr F(x) = H(x) ~nd n ,m~ oo so that 

~~,o th en 

{ 5 .5) lill p(~ sup 1 F!:! ( x ) - H11 { x li c:: y) 
(m.,n;p) n+m. t<F{x} F(x} 

co 

~ 
_ (2k+ffr;,. dt- d.)p + d ( f- C) 

1± z 8 yica(f +p) t if y > 0 ' 
1I k=O + e 

> - 0 , if y! 0 

= L( '<T r co( l+P) } 
J J Ô ( 1 =d )p + d( 1 =C) 9 
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for a.ll va.lue~ of t, 0 < t < 1;; eo tha.t when 

{ Fn(x) = d with 0 < d é 1 
F(x(t}) = t then 0 If a.ny one 

H11(x) = c with 0 < c < 1 

of d end c i8 equa.l to 1 ;; we put d = 1 or e = 1 in 

_ ( cd( 1 +Pt ) . 
L( Y c ( 1 -d) p + d l1 -c ) 

Since we ha.ve 0 < t < 1, at most 

one of the values d and c can be equal to 1 0 

Theorem 180 If F(x) = H(x) a. nd n,m-+ oo ISO that 

~ ... ,0 then 

( 5 .6) lim P(~ eup IFD(x) - H11(x) 1 é y) 
(11,n;p) n+m t<F(x)~l F(x) 

00 

11: z (-1)k 
'Jt k=O 2k+1 if y> 0 1 e 

> - 0 $ if y ~ 0 

where 

and pk sin v dv 

for all t and 1 with 0 < t < 1 < 1 where the other 

parametere aa.tiefy the following conditions : 

whe n F( x ( t ) ) = t 
w1th 0 < d g 1 

with 0 < c g 1 

ànd when F(x(l)) 1 
rn(x) = • 

= th en 
H:n(x) = f where, 1 being lese 

tha.n one r; at most one of e and t c11n be equal to 1 0 Ir 
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one of e and f ie equal to 1 , the appropriate one is 

replaced by 1 in R( y·, d. c e f p ) 
, ' , , 0 

Theee theoreme provide tests for verifying the 

hypothesis that 2 random samplea of aize n and m res-

pectively have been drawn from a population having continuoua 

Codof. F{x)o The character of these tests consista in that 

they give a band in which, if the hypothesis is true, 

eup lFn{x) - ~(x)l has to lie with at least that much 

probability as given in (5.5) and (5.6) and the width of 

this band 1s proportional at all ite oointe x to F(x). 

It is quite likely that in {5o5) we have 

lim p {f*- eup l Fn (x ) - Hm {x ) 1 411: y) = L(y r cd(1+P) ) 
(m,n;p) n+m t~F(x) F(x) c( 1-<i)p+d( 1-c) 

and in (5.6) we have lim p 
( r::m 

eup 1 Fn ( x ) - Hm ( x ll 
{m,n;p) t~F(x)!_l F(x) 

=R(y; d.~~ c, e.~~ r~p)o A'!J it W!t! alreadym.entioned above.~~ 

one would have to be able to l!how that lim eup P( o) atate
(m,n;p) 

mente of (5.5) and {5o6) are bounded above by L( .) and 

R( o;ooo} respectively in order to prove these theoreme in 

auch forml!o 

Proof of Theorem 17o 

To prove Theorem 17 we will have to derive the 

11miting distribution of right hand side of {5.3) and for 

that we would need the maximum of its two random v~riables. 

Al! we have already remarked after (5.3)~ there seems to be 

< y) 
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no way of ehoosing this deeired maximum random variable. 

It eo happene though thet the limiting distribution of the two 

random variables in question is the same.. This en·ables us to 

say that i t is suffie lent to exa.mine the asymptotie behaviour 

of any one of th~m for if the one we pick would not happen 

to be the maximum one we would have to choose the ether one 

and it would provide Ul!l with the seme lim.iting e.,d,.f •• Keeping 

this argument in mind let Ul!l assume that in {5.3) the 

following oecurs : 

1 ..1 

1 

1 
(5.7) -max n m < max n 

s ~{k) 
- s ~1 ( i) 

..1 
m. 1 12 ( m+ 1 ) = 1 " 

1(2{ j+1) 

~ 
1 

Let A be the event max n - s ~ 
..1 
Il 

< y , 

~-;;;-
.! - ..1 

and B be the event max n m 
n+m. s fl(k) 

< y 0 

It follows then from {5.7) that A;i B and, therefore, we 

have P(A) ~ P1 B), which immediately impliee Theorem 17 if 

the limiting distribution of the event A is given by 

L(y cd( 1+P) ) of 
c ( 1-d ~+d( 1-c) 

( 5 .. 5) 

Let us eonsider then the right hand aide of {5.7) 

where, for the time being, we asl!lume that both d •nd e ot 

S are lesa the.n 1 , where S is as it was defined 112 <4 .. 19). 

Now the limiting distribution of the right band side of (5.7) 

is identieal with that of the random variable 



(5 .. 8) 
1 

max log n 
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s "11( 1) 

\ ..1 
lolg. m _ 

. ~2(j+1) 

whieh, in turn, ha~ the ~ame limiting distribution a~ 

max 
s 

n 
z 

v=i 

( -1 
Dp,+1-v 

v 

Il 
11 

a=j+1 
~ m.+1-a -~ 

• 
as can be ~een from ( 4 .. 31), ( 4.32), ( 4 .. 33), \4 .• 34), <4.35) ,. 
and (4.36)., Applying Theorem 6 of chapter 2 with (5.9) as 

max ISntm ki of this theorem and using the resulta of <4.39), 
' (4.41) and we get 

lim P ((nm max 
(m,n;p) n~m S 

i 
log li 

~1 ( i) 

L(y\/ cd(1+P) ) 
le ( 1-d) ;0 + d( 1-c) 

= 

.J. 
log m 

'12( j+1 ) 

where L(.) is as it was defined in (5.5). 

It is clear from (4.48>, (4.50), <4.51), <4.52), 

(4.53) and (4 .. 56) that the atatement of (5.10) remaina 

valid when one of d and c is equal to 1. This, with 

the remark that the limiting distribution of the s~cond re.ndom 

variable of the right band aide of (5.3) is also given by 

(5.10)~ complete~ the proof of Theorem 17. 

An attempt to generalize Theorem 17 on th~ lines of 

Theorem 16 of chapt~r 4, that i~ when we would want to allow 

d or c to be equal to zero, fails because of the absolute 

sign of IFn(x) - H1111(x)l of this theorem. 
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have 
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Proof of Theorem 18. 

From {4o73) it 1e clear 

eup Gn(u) K01(u) ::: max 
U€.U u T 

u and T are ae defined'"" in 

for th~!! time beingj we aeeume 

T 

max 
T 

are lel!!e 

i ... j 
n m 

"l(k) 

th an 1 0 Now by 

1 
n 

171 ( 1 ) 

that we hav~ 

1 ..1 -1'1 m 
11( k) 

<4.72) and <40 73) and 

that both e and f or 

Lemma 2 of' chapt er 4.we 

" 

..1 
m ' 

12(j+1)' 

where aga1n we cannot though decide which one of the two random 

variable:!! is going to give ue maximum but here too we can say 

that both of them have the eame limiting dietribution. Ae a 

m8tter of fact, both of' them have the aeymptotic dietribution 

aJ! given in (5o6) 

argument of {5o7) 

ing happena 

max 
T 

.! j 
n m 

't'l( k) 

by R(y; d, c, e, f,p). Repeat!ng the 

let ue assume that in (5o12) the follow-

< max 
T 

1 
n 

1(1 ( i) 1?2( j+1) 

..1 
m ' 1(2( m+1 ) = 1 • 

From the argument immediately after (5o7), mutatis mutandis, 

it followa that in order to prove Theorem 18 it ia sufficient 

to prove that the limiting distribution of the right band aide 

of (5o1?) ia given by R(y; d, c, e, f,f) or (5.6). 

Now the limiting dietribution of the right hand side 

of {5o13) ie identical with that of the random variable 
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max log _n 

T 1(1(1) 
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_j 
log m 

~2(j+1) 

whichf in turn~ h~~ the ~~me limiting dimtribution as 

n 
max Z 

T v=i 
Ôn+1-v-1 

v 

m 
Z d m+1-s - 1 

s=j+1 s 

and this is ea5ily seen from (4 .. 79). 

Let us define 

m 
5n+m;n+m+1'-k:n+1-i,m-j 

n 
= z 

v=i 
~+1-v - 1 

v 
... :E 

s=j+1 

(5.18) 

= z 1 
dn<i<n I2 

= z 1 + 
12 en<i<n 

+ z 

z 
em<j<m-1 

1 

cm<j!m-1 (j+1 )2 

la 
fm<j<m-1 --

z 
fm<j<m-1 

1 
( j+1 )2 

By <4 .. 39), (4 .. 41) ~nd (4 .. 41)' we have 

A = n+m 
~ 1-e 1-r 1 1 

,il 

fm 
+ o{-) + o(-) -+ n en m 

B = n+m 11.::S + b + o(1) 1 + o(-) dn cm n Il Il 

and ao 

~m-.1-1J 
'j+1 ) 

~m-r-:1Î 
j+1 ) 

~rn+1-a - 1 

a 



lim 
(m,n;p) 

An+m 
Bn+m = 
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dcf( 1-e) P + dce( 1-f') 
efc(1-d)p + efd(1-c) = À 

as m, n-.. oo eo that ~4 p. Thue we can apply Theorem 8 

of chapter 2 with (5.16), (5.17)J (5.18), (5.19) and witb 

1 ~Mn= n+1-en < Nn = n+1-dn and 1 ~Mm= m+1-fm < Nm = m+1-cm. 

Tberefore we have, by (5.14) - (5.19), that 

(5 .. 20) lim 
(m,n;p) 

i 
log n 

"11( i) 

..1 
log m 

"'?2( j+1) 

z ( ::m ~ c ( 1 -d )~ : d ( 1 -c )~ ) 

being equal to the statement of Theorem 8 of chapter 2. Letting 

y = 

~-~~ (0 

z(.c( 1-d) 

we get 

lim 
(m,n;p) 

m + n+m 
do 

P(\~ 
Yrï+m 

d(1-c) n~m and n ~ m-+ oo so that 

1 l 
< max 

T 
log n 

iYf.t ( i ) 

log m 
172( j+1) 

= R( y; d JI c JI e JI f, p ) JI 

where R(y; d.~~ c.~~ e, r,p) ie as it was defined in (5.6) 

It ia clear from (4.48>, <4.50), <4.51), <4.52) 

and their applics.tions mutati!!! mutandis, to (5.16), (5.17), 

(5.18) and (5.19) ths.t the statement of (5.21) remains 

valid when one of e and f il!l equal to 1. This, with the 

remark that the limitinp: distribution of the se·cond random vari

abl~ of the right hand eide of (5.12) is also given by (5.21), 

completee the proof of Theorem 17. 
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