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Introduction and Summary,

In his fundamental paper (1953) [25], entitled

"On the Theory of Order Statistics",6 A, Rényl developed a new

9
method by means of which many important results of the theory
of order statistics can be obtained with surprising simplicity.
The essential novelty of his method 1s that it reduces the
problems connected with order statistics to the study 6f sums
of mutually independent rendom varliables, Chapter 1 of this

i

thesis contains a review of this method,

The sbove mentioned method has also enabled Renyil

to give an interesting improvement of the Kolmogorov - Smirnov -
theorems, Lst F_(x) denote the distribution function of a
sample of size n drawn from a population having econtinuous
distribution function F(x). Kolmogorov [4] detsrmined the
limiting distribution of the supremum of [F,(x) - F(x)I|

and Smirnov [24] did the same for FLlx) - F(x), But it may
be more significant to measure the relative deviation of Fn(x)
from F(x); for example, if F(x) is small, it may be more
important to know something sbout sup an(x) N F(x)l /P(x)

and sup {Fn(x) - F(x)}/?(x) than the above mentioned deviations
of the Kolmogorov - Smirnov theorems, ﬁsing his method gnd
some generalized results of P, Erdds and M, Kac [5 ], A, Rényi
has determined the limiting distribution of the supremum of

the relative deviations |F,(x) - F(x)| /F(x) and

F(x) - F(x) /F(x) respectively, His results and the results

of P, Erdds and M, Kac generalized by him are given in



Chapter 2 of this thesis (Theorems 1, ,.., 8).

Introducing the weight function 1/F(x) in the
Kolmogorov ~ Smirnov theorems we charscterize the asymptotic
behaviour of the relative deviation of the population distrib-
ution function and that of the sample, The theorems provide
tests for verifying the hypothesis that a random sample of
size n with empirical distribution functioﬁ Fn(X) has been
drawn from & population having continuous distribution function
F(x). At the same time, as far as statistical considerations
are concerned, we lose one of the convenient properties of
the Kolmogorov - Smirﬁov theorems, Namely, we can use these
theorems to construct confldence intervals for an unknown
continuous distribution function F(x), Having the limiting
distribution of sup I[F,(x) - F(x)| /F(x) instead, we no
longer have that property., We could retain the advuntage of
these new theorems that they measufe relative deviation of
the population distribution function and thet of the sample
and could regain the above mentioned confldence interval |
property of the old theorems if we used 1/Fn(x) instesd of
1/F(x) as weight function, Thus in this way the idea arises
of considering the limiting distribution of the quotients
{Fn(x) - F(x)}/?n(x) and  IF (x) - F(x)| /F (x) respectively,
One of the major objJectivaes of thls thesis was the derivation
of these distributions using the method of A, Rényi and
our results In this connection are given nnd‘proved in

Chapter 3 of this thesis (Theorems 9, ..., 12),
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Let F,(x) and H,(x) be the empirical distrib-
ution functions of two random samples of size n and m
respectively from a population having continuous distribution
function F(x)., Smirnov [25] determined the limiting distrib-
ution of the supremum of IFu(x) - Hy(x)l and Fplx) -.Hm(x)
respectively, Again, it may be more significant to measure
the relative deviation of these two empirical distributions
Fn(x) and H (x). Thus in this way the ldea arises of con-
sidering the limiting distribution of the quotients '
{Fn(x) - Hm(x)}/F(x) and  IF_ (x) - Hu(x)l /F(x) reSpectively.
The second major objective of this thesls wes the derivation
of these distributions using the method of A, Renyi , some
of the results of P. Erdds and M, Kac and 2 lemmas of our own,
Our results in this connection are given and proved in Chapters
lt and 5 of this thesis (Theorems 13, ..., 18 and Lemmas 1

and 2),
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1, Presentation of A, Rényi's method

in the theory of order statistics,

Consider the following special case : T 1s a random
varliable distributed according to the exponential law, Thatv |
1s T has the probability density function (written as p.d.f,
from now on) : f(x) = Ae” * if x > 0, =zero otherwise
and cumulative density function (written as ¢.,d.f, from now.
on) Flx) =1 - % ir x > 0, zero otherwise for A > O,
Take a random sample of size n on T ; i.e, we have
31,-12, ..o,'Sn as mutually independent random variables with
the same exponential distribution function, We shall need the
following property of the exponential distributiom : if T
1s an exponentially distributed random variable then, if x > O
and y > O, we have

(1.1) P(T<x+ty | T > y) = P(T <« x)

To verify (1,1) we have :
(T« x+ty | T >3) = (T = x+ty,T> y)/P(T > y)
= P(y = T < x+y)/P(T = y)
{P(T= x+y) - P(T= 3)}/P(T2 y)
= {Flx+y) - F(y)}/{1 - P(y))

If we use the relation now that F(x) =1 - e~ %X, x>0, A\> 0,

then we get
P(T <« x+y IIE y) = {1 - e-}\(x+y) - (1 - e")\Y)}/e')\y

1 - e‘")‘vx

P( T« x), which was to be proved,



The converse of this statement is also true, that is
property (1.1) uniquely characterizes the exponential distrib-
ution and it can be, therefore, used to derive certgzin distrib-
ution properties of a random sample taken on the random variable

T distributed according to the exponential law,

To show converse of this statement, we have that

(1.1) 1is equivalent to
{F(x+y) - F(y)}/{1 - Fly)) = Fix)

so we have

1 - {F(x+y) - F(y)}/{1 - F(y)} =1 - F(x),
which is equivalent to the relation
(1.2) D(x+y) =Plx) Ply),
where (D(x) =1 - F(x) and it is known that, except for the
trivial cases (b(x) = 0 and (P(x) = 1, the monctonic non-
increasing functions which uniquely satisfy (1,2) have the
form (b(x) =e-AX, x>0, A>0; 1., F(x)=1- e ~AX

as a consequence of (1,.1),

The meaning of (1,1) becomes especially clear if
we interpret the random varisble $ as the duration of time
of the occurence of a random event, In this intsrpretatiqn
proposition (1,1) can be formulated as follews : if the
walting time for the occurence of the random event.;e distribuﬁed
according to the exponential law and if we are give% that the
waiting time has not yet terminated at time 1y, then the

duration of the further walting time to the occurence is inde-

pendent of y; 1.e. of the walting time that has already elapsed,



Going basck to our random sample of size n on 'I,'
let us arrange the& numbers '§1, 32, cosy Op 1in order of
magnitude and use the notation
(1.3) Se) =R, Ty e 3) ., kK=1,2, oo, m
where the function Ry(Xq, X5, ..., X;) of the n variables
X195 2° n

X eeoy X denotes the kth of the values X1, Kyy eoes Xy
in order of magnitude (k =1, 2, ,.., n); thus e,g,

B = min 5. and = max o, , Using relstion &1.1)
(1) 1<k<n k (n) 1<ken k & ’

the individual and joint distribution of the rendom variables
of the order statistics T(4) < J,) =« ... < ) can be
easlly determined, For this purpose we interpret the random
variables Kk as random waiting times for the occurence of
mutually independent random events, (This is going to be done
for the sake of bye-passing lengthy analytical proofs,) Then
T&k) denotes the duration of time of the occurence of the
(kth

random event finished as kth of the n observations

longest duration of time = K(k)).

We determine first the distribution of 31k+1) - f&k),
If we are given j&k) =y, then |
k) POTqy = Sy > X 1 Ty = 9) = B(J(geaq) > ¥4y 1 gy = 3),
where on the right side there stands the probability of the
event that none of the n-k happenings, being in progress
at the moment y, finishes until the moment X+y, By virtue

of (1.,1), the value of this probability is

(B(T> x ) = {o-M} 77K o pm(n-k)X



N

and thus the conditional distribution function of 'K(k+1) - Eik)

with respect to the condition that I(k) =y 1is

(1.5) P(Tar) - Sy <% | Sy = 7) = 1 = o7 (07K

As (1.5) does not depend on y, it also gives the non-

°

conditional distribution function of Kkk+1) - Sik), Indeed,

by virtue of the theorem on total probability, we have
o0

(1.6) PUpeq) = Sy <) = l, PO ket =Sy % 1 S=0 9B (=)

oo
= (1 - e"(t‘l-k))\X) ‘gdP(-S(k) < y)

=1 - eu(n-k)kx

Therefore the differences Ekk+1) - 3kk) are themselves

exponentially distributed with the mean value 1 and thus
(n=k)N

the random variables N
(107) gk+1 = (n"k) (-S(k+1) - _S‘(k))’ k = O’ 1’. ooy n-1

are also exponentially distributed with the mean value

1.
| A
(In the above relation 1&0) = 0 by definition,)

It also follows from what has been said esbove that
the variables 81, 32, cooy Sn are mutually independent random
variables, It is, namely, easy to see that the following

relation holds

(18) P8y ) 1 3(1)™10 3(2)" (1) 20 +oes T(e)™ Sie=1) i)

= P(Te1) = Sy <X)s kK=0,1, .0, 01,
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This is evident, as the above conditions in (1.8)
mean that T 4) = ¥,, S(2) TV T Va5 eees Gp) TV KTt e FYS
1.e, they glve the finishling instants of the first k +happenings
of the n observations which started simultanmeously at the
moment t = O, These conditions imply that at the moment
b=y, + ¥, ..t y, there are still (n-k) waiting times
Incompleted and the probability of the finishing of at lqast
one of them before the moment t + X 1is given by (1.6),
So we have the relation of (1,8) which in itself is a
necessary and sufficient condition for the random variebles
Sx+t) ~ Sti) (and therefore for §, ., =»(n-k).(3(k+1) - :%k)))’
k=0,1, ..., n=1, to be mutually independent,

3 H

Using (1.7) the random variables K(k) can be

expressed in the form

i.e. S(k) can be expressed as summs of multipies of seguences

of mutually independent, identically distributed reandom variables,
An alternative way of saying this is : the random variables B
Ikk) form an additive Markov Chain, By virﬁue of (1.9) the
distribution of any ‘3(k)’ further, the joint ditribution of

any number of the random variables Kkk) can be determined in

explicit form,

The above method can be appliled in general to the

study of order statistics., To show this, let T be any ran-

dom variable having & continuous c¢.,d.f, F(X), Let ?&, ?é, coos Zh



be a random sample of size n on %t ; 1i.e, 5&, Eé, ARl

—_—

‘n
are mutually independent random variasbles with the same c.,d.f,

#xr, L oo < T < et be the der statistics
‘ o TR Rl T g 2 s

based on the above sample, that is to say, we form the new ran-

dom variables T,y = Rk(fi, Eé, A Fh)o

The study of the random variables "T(k) can be re-
duced to the special case where the random variables Ek are
exponentially distributed (and therefore - by virtue of (1,9) =~
to the study of sums of mutually independent random variables),

as follows : 1let us put

9 9 25 seey Do

(1.10) Tk = F(5) and Jp = log

\j' i

k
Then () = F(f(k)) is the kPP of the random variables

‘,:1’ ‘23 o009 -?n’ ioeo '?(k) = Rk( ?I’ 1?29 ©0o0g ?n). Ful"ther‘,

let us put

£ LIS elopeiaaba sl o pia f Bl N
(k) ,?(n+1-k) 9 3 5y ’
As log Lo ws s steadlly decreasing function, we obtain
X
(1,12) (k)=Rk(—§1’ -(ag coog Tn) 9 k=192) ooy N 4 »
t.e. T 1s the kth  of the random variables S1) K2y 00 S(a)

—

in order of magnitude, As we have assumed the variables S

to be mutually independent 1t follows that T, Té, cesy Op

are also mutually lndependent,
We want to show now that the random variables
T}, fé, ..,,'Tn are distributed according to the exponential

law, Let us investigate the distribution of the single random



variable T = log 1 Let x = F"1(y) be the inverse

WE °
function of y = F(X), O < y < 1; thus we have

P(T, <x) =Pllog _1 _=x)=P(F >FNe X)), for x>0
F(%y)

1-PE <FNe™)) =1 - F(F V(e

i,e, P(-gk <X)

=1 - s X =20,

Therefore Tqs Ké, secy S 8TE mutually independent, identically
distributed, exponentlal random variables with common c¢.d.f,

1 - 6"%, x>0 and mean value 1,

In this way the random variables E(k) themselves

can be expressed in the form

-~

(21 + 92+

- ( ve. + On#1-k)
(113) T, = " mrek)) = pol(e @ BT T e
[ SRR

k=1,2, ,.., n , for |

K(k) = log F(E( 11 =3 implies that E(n+1-k) = F_1(e'3ik))’
n+1-
therefore, by (1.9), |
T —( g + + oo + et I )

Ty = Fle™ (n¥1-k)) o po1(, = —%T ! )

where the random variables 31, 52, coos 5n are defined as in

(1.7) and are mutually independent exponentially distributed

rendom variables with ¢,d.f, 1 - =% (x> 0) and mean value 1,

A consequence of (1.13) 1is that the random variables
¥(1)s §a)s eees §(n) form a Markov Chain, To shfw;fﬁ?f, let

us start with the relation B —

F(§$k+3; _ -%(n-k) _ odn+1-k) T Yn-k)
(k) "%m =T(n+1-k)




Put fjk = QERn+1~k) =3 n-k) k=1,2, ..., n , where

¢

9

e” 10) = Un+1) =1

The random variables /Ok are mutually independent since.we
have already seen that the differences J(,.i_) - 31n+1) =

‘ :
ginﬁj-k) are mutually independent, Let us also put q)(x, y) =

F-1(yR(x)), Then, by (1,13) we have

3

F-“(OGK‘(n"k)) ='F-1(e-—5(n+1"k) . (n+1=k) - 3-(I’l-lst))

]

E( k+1)

-1 _ |
FURE ) Pe) =PlE ey, Py) 5 where i)
and /Ok are independent random variables, This tmpﬁiaaukhat
the random variables §k1), EkZ)’ coes an) form a Markov

Chain, For we have :

Theorem. Let ..o =0(T,,pn) , where O(x, y)

1s an arbitrary two-variate continuous funetion; further O,
is independent of the random variables f&, Ea, °°"'§n
(n=1,2, ...). Then the random variables T, form a Markov
chain [22],

® o
A N, Kolmorgorov Ué] was the first who remarked

that the random variables E(1)9 E(Z)9 voos E(n)’. e, 8
sequence of order statistics, form a Markov Chain, A, Rényi's
method presented here starts from this fundgmental*ﬁbservatién,
but the possibilities implied by it could be developed only gfter
having transformed the Markov Chain {f(k)} into =n additive

Markov Chain by means of the transformation

1
F{§(n+1-k))

'F(k) = log
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In his paper E&ﬂ A, Rényl uses this method to prove
the following theorem of Malmquist [19]

Theorem, The random variables 1&k) k s, k=1, ..., n,
(k+1)

are mutually Independent and have the same uniform distribution

in the interval (0, 1),

He also builds up the theory of order statistics by
means of the method of this section, Then he proves the
theorems which we are going to present in the next section

of this dissertation,
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2, A, Rényi's theorems, Improvements of the

Kolmogorov - Smirnov theorems,

Keeping the notation and assumptions of section 1
about the random variable T, let us define
, 1 x< §g,
(2.1) Fo(x) = , if By = x < §)
, 1if -g(n) £ X .
i.e. Fn(x) is the distribution function of the sample, in

= gl O

other words, the frequency ratio of the values less than X

in the sample,

AN, Kolmogorov [16] proved a fundamental theorem
giving a test for the hypothesis that a samplg has been drawn
from a population having a given continuous ¢.d,f, PF(x), By
means of this test we can give confidence limits for unknown

distribution functions, Kolmogorov's theorem is as follows :

+ee k -2k2y2
(2.2) 1im P((m sup IF (X)-F(x)] = y) = 2 (-1)" e
n-00 ~00.6 X <400 % - 00

if y> 0, zero otherwise,

This theorem considers the difference IFn(x) - F(x)I
with the same welght, regardless to the value of F(x); so
e.2., the difference I(Fn(x) - F(x)| = 0,01 heas the same
welght at a point X with F(x) = 0,5 (where this difference
is 2% of the value of F(x)) as at a point x with |
F(x) = 0,01 (where this difference is 100 % of the value of

F(X)), We can avoid this by considering the quotient
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{IF (x) - F(x)1}/P(x) 1instead of IFyi{x) - F(x)l, that is

to say, by considering the relative error of Fn(x)° In this
way the idea arises to consider the limiting distribution of
the supremum of the quotient {IF_ (x) - F(x;l}/F(x: which
characterizes the relative deviation Qf the populeation distrib-

ution function and that of the sample,

A theorem similar to that of Kolmogorov's was

proved by N,V, Smirnov concerning the one-sided deviation of

the sample and population distribution functions. Smirnov's
theorem 1s as follows :

-2y
(2,3) lim P(Ym sup  (Fp(X) - F(X)) > y) =1 - »

Nn-oco =00 X K400
if y > 0 , zero otherwise, A, Renyl [23] also considers

the analogous problem for relative deviations,

In the course of solving these problems a natural
limitation is to be adopted : as F(x) can take on arbitrary
small values, we are not going to consider the supremum of '
{Fn(x) - F(x)} /F(x) or the supremum of {IF (x) = F(x)1} /F(x)
taken in the whole interval -o0« X « +eo_, We restrict our-
selves to an 1lnterval X(a) £ X < +oo, where F(x(g)) =a >0,
The value of a, however, can be an arbitrarily small pos-

itive value, A.Rényil proves the following results :

Theorem 1,

(2.4) lim P( (m Fnix) = F(x) < y)
oo ash(r) PoFTRT o~ 7
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e
—
‘.]m
[ ]

“Fro

L 0 if y=<o0

dt if y >0

il
o

com—r

= g?(yYT%;)

Theorem 2,

(2.5) lim P(/n  sup |Fp(x) - F(xJ] < y)
n-oo aﬁF(X) U]
( - (2k+é)2ﬂ2 1-a
oo aye
Loz (-1)k . if y>o0,
= | ® k=0 2k+1
0O if y=<O

N

L( y(;%)

We may consider the limiting distribution of the
supremum of {Fn(x) - F(x)}/F(x) and of its absolute value
taken in the lnterval x(a) = X = x(b) respectively, where

8y - a>0, F(x(P))=be1, (0O<a<b<1), In this

regard A, Rényi [23] vproves the following results :
Theorem 3,

(2.6) lim P((n sup Fp(x) - F(X) < y)
n- oo asF(X)<b F(X)

v (‘E‘ —B‘
T-b 1 -b

u) a(1-b)

|-

. b
-8
-ul -t2
e & e 2 dt du, -0 y <€ +°
0
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= N(y; a, b)
Theorem h,
(2,7) 1lim P((m sup IFp(x) = F(x)|1 < y)
n-»co a<F(x )<b F(x)
. (2k+1)%72(1-8)
oo K 8ayT
L b (=1)" e E,, If y>o0,
= T =0 2k+1
0, if y<oO,
o
-ul
where E,_=1 - 2 e 2 du + A
k k )
2T B
yiT=5
by (2k+1)X 1-b)ul
| R = c 2by2
/‘i = “Ei'_é_ v) 2e e sin u du
1-a
0

= R(y: a, b)

These theorems provide tests for verifying the
hypothesis that a random sample of size n, say '61, Eé, ,,.,‘fh,
has been drawn from a population having continuous c.d.f‘ F(x).
The character of these tests consists in that they give a band
around F(x) 1in which, if the hypothesis is tue, the sample
distribution function Fn(XJ has to 1lie with a c¢ertain probab-
11ity and the wldth of this band 1s proportional at all 1its

points x to F(x),

All these theorems are proved using the method of

section 1 and the results of some limiting distribution theorems




Lt

generalizing some results of P, Erdds and M, Kac [5 ], We

are going to give here these results of P, Erdds and M, Kac

too in the version given and proved by A, Rényl in his paper [237) s
for we shall also need them in the proofs of theorems proposed

in sections 3, h and 5 of this dissertation, Toward this end,

let a sequence be given consisting of the sets of random

variables

En’1’ En,a, 000y En’Nn (n=1, 2, ooo.)o

Let us assume that the random variables Eﬁ,k heve expect-

ation O and finite variance, further, that the random variables
having the same first index n (n =1, 2, ,,.,) eare mutually
independent and satisfy Lindeberg's condition, that is to say,

introducing the notations

k — Mo
Fn,k(x" = P(En,k < X) 3 Sn’k = vi1 En’v 3 Br1 =D Sn,Nn = ki.1 D En,k
where D2(x) = Variance (X) , we suppose

oQ
KSas | x a0 =0,
Np 5
and lim _1 2 xS dF, (xi =0, |
n-oeo an k=1 Ixi>€B, g

Concerning these sequences satisfying the above

conditions A, Rényi proves [23] the following theorems,
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Theorem 5,

£2
(%—- £ e 2 dt if x>0 ,

0 If x =0,

Theorem 6, _ (2k+1)2x%2
A: oo k X

(2.9) 1lim P( max IS, | « xBy) = if x>0
nsco  1<ksN, s

(2.8) 1im P( max 8 < xB_ ) =
n- oo 1sk<N, B,k n

Theorem 7,

(2,10) 1im P(=-yB_ « min S < max S < xB_)
n-eo n - 1<k=<N, n,k — 1<k<N_ n,k n
’ _ (2k+1)2n2
L3 1 e sin (2k#1)% 355 , 1f X > 0

0 1if either x <0 or y<« 0,

Remark, In case y = x, Theorem T reduces to

9

Theorem 6,

2 _ 12
Theorem 8, Let A5 =D 8, . with 1 <M, < N,

1 ,n
and
1im Ap = A (0« A<1) ,
nsee B,
Then
(2,11) 1im P( max 18n,k! =< yBy)




’ _(2k+1)2‘n2 i
oo y -u2
2 (=1)K . 1 -_2 Jez—du+f9k if y> o0,
T k=0 2k+1 ZE F
=< PN
O if y=< O

~

where

, -5 (2k+1) § zz_ug_
= i du ,
P %§ e J[ e 2y2 sin u du

(0]

Remark, In the special case of M, =1 (i,e, by
Lindeberg's condition, for A= 0), Theorem 8 is identical

with Theorem 6,

Note, For the special case in which all the consid-
ered random varigbles En,k have the smae distribution,
Theorems 5 and 6 were proved by P, Erdds and M, Kac [5] .
They remarked that their theorems can be proved under more

general conditions,

Going back for a moment to Theorams 1 and 3 of this
section we remark here that the statements of these theorems

hold for (@ sup {F(x) - Fy(x)}/F(x) and
asF(x)

{n sup {F(x) - Fn(x)}/F(x) respectively too, From this
a<F(x)<b '

remark ﬁnd Theorem 1 it follows that we have

Corollary 1,

(2.12) 1im P( ,  sup (Fp(x) - F(x)) < 0)
n+co  x.8)Ex<+00
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= 1lim P( sup (F{x) = F (x)) «0) =0
nsco  xl&)<x<too n ! .
1.e. the probabllity of the event that the sample distriﬁution
function does not exceed the population distribution function,
and vice versa, all along the interval x{8) « x < +oo, tends

to zero as n-» oo ,

On the other hand we have by the above remark and

Theorem 3 the following

Corollary 2,

(2,13) 1im P( (F(x) = F(X :.0)
3 nﬂo x(a);:;x(b) n(x) (X)) <.0)

lim P(  _sup (F(X) - Fp(x)) « 0)
nsoo  x.8J)<x<x{b)

oot ( (1-b)
=u2 ab"a —t2
e 2 e 2 dt

1 qu ,
n 0 0

l1.,e. the probability of the event that the sample distribution
function does not exceed the population distributionm function,
and vice versa, all along the interval in which the value of
F(X) 1ies between arbitrarily fixed values & and b

(0O« a «b< 1), remains positive in the limit,

This result 1ls obviously important from the point

of view of statistical practice (truncation problews),

The result that 1im P( sup

naeo  xf8)axex'b) (Fpix) - F(x)) < 0)

is positive was also proved by Gihman [8§ ]; moreover he

obtained that
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(2.14) 1im ¥ sup (Fp(x) - F(x)) <= 0) = 1 arc sin Y;(:-b) .
(1-2)

N 0o x(a)gxgx(b) T
Gihman also mentioned that the result (2,14) has already |
been known to Gnedenko, The results of Corollary 2 and (2.14)
are, of course, identical, Indeed, the result of Corollary 2

is twice the probability of the event that a random variable

(x, y) with p,d.f. 1_ exp(~y (x2 + y2)) 1ies inlthe infinite
2%
sector 0 <« X < +02_ 0 « y < X ‘a(1-b) , and this probab-
b-a
1l1ity is equal to s
a(1-b)
(2.15) 2 , 2re te { b-a = 1 arc sin ‘a(1-b0 ,
2% ' b B(1-2)
because of the circular symmetry of 1_ exp (—% (x2 + y2)),
27

the probability corresponding to an infinite sector of angle ©

is equal to ¥ .,
' 2N
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3. The Kolmogorov - Smirnov theorems using 1/Pn( x)

as welght function,

The intorduction of the weight fumction 1/F(x) in
the theorems of Kolmogorov and Smirnov by A, Rényi charscter-
1zes the asymptotic behaviour of the relative deviation'of the
population distribution function and that of the sample, The
theorems provide tests for verifying the hypothesis that a
rendom sample of size n with e¢.d.f, Fn(x) hag been éfawn
from a population having eontinuous c¢.d.f. F(x), At the same
time, as far as statistical considerations are concerned, we
lose one of the convenlent properties of Kolmogorov's theorem,
given in (2.2)° Namely, we can use this theorem to‘construct
confidence intervals for an unknown continuous c,d.f; F(X)

(.8, ¥y, = Fp{x) - ,gi and y, = Fo(x) + 1,35 constitute

a 99 20 confidence interval for an unknown continuous c¢.d,.f,
F(X); for tables see e.,g, (22]), Having the limiting distrib-
ution of sup IFn(x) - F(X)|/F(x) 4instead,-we no longer have
that property, We could retain the advantage of these new
theorems that they measure the relative deviation of the pop-
ulation ¢.d,f, and that of the sample and could regain the

above mentioned confidence interval property of the old theqrems
if we used 1/Fn(X) 1instead of 1/F(X) as weight function,
Thus in this way the idea arises of considering the limiting
distribution of the supremum of the quotients {Fpn(x) - F(R)}/Fn(x)
and [(F_(x) - F(x)[/Fp(X), In examining the limiting distrib-

ution of these quotients a natural limitation on Fp{X) 1is to
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he adopted, Namely, we restrict ourselves to the set of those

x's for which we have F_(x) > a > 0, The value of a can,

however, be arbitrarily small,

Keeping the notation and assumptions of the previous

chapters we are going to prove the following theorems :

Theorem 9,

(3.,1) 1im P(ym . Fn(Xx) - F(x) < y) "E‘
? n-.nio a_;;Z(x) Fp(x] 7 @(y 1_-5)

Theorem 9',

(3.2) 1im P(/W sup F(x) - Fp(x) =< y)
n-co aan(x) F,(x) 1-a

]
o
oy
<
o
a4

where, in both cases, q>(y v & ) stands for the function
1-a
defined in (2.4) of chapter 2,

Theorem 10,

(3,3) 1im P(im sup |IFa(x) - Fix)|l <« y) =Ly '_5_ )

n-oo asF,(x) Fptx] T-a

where L(y | a ) stands for the function defined in (2,5)
1-8

of chapter 2,

Theorem 11,

(3.4) 1im P(fm Fp(x) - F(x ) = N(y; a, b)
b Lm HE s | Eabdm ) < p) = Ny e
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Theorem 11!,

(3,5) 1lim P(/m sup F(x) - Fp({x) =< 1y) = N(y; a, b)
nseo asFp(x)sb = FplX

where , in both cases, N(y; a, b) stands for the function
defined in (2.,6) of chapter 2 and, as there, a and b

are such that O « a €« b « 1,

Theorem 12,

(3,6) 1im P((m sup |Fp(x) - F(x)] < y) =R(y; a, b)
n-oco asFp(x)sb Fp(x)

where R(y; a, b) stands for the function defined in (2,7)

of chapter 2 and agein we have O « a < b « 1,

These theorems provide tests for verifyiug.the
hypothesis that a random sample of size n with c¢.d.f Fp(x)
has been drawn from a population having continuous ¢.,d,f, F(x),
The character of these tests is that they give a band around
F(x) inwhich, if the hypothesis is true, the sample distrib-
ution function Fp(x) has to lie wlth & certain probability
and the width of this band 1s proportional at all its pointg
to Fh(Xx) instead of the previous proportionality to F(X),
Having these theorems we can also construct confidence intervals
for an unknown continuous c¢.d.f, F(x) using theorems 10 and
12, or lower and upper boundaries for an unknown'ooptinuous
c.d.f, F(x) using theorems 9 and 9' or 11 and 11', For
example if a = 0,05, wusing Theorem 10 and the table published
by A, Rényi in [23] for the function L(y Y;}E: ), we get

-8
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Zy = Fo{x) = 8,5 Fp{X) and 2, = Fn(x) + 8,5 Fp(x) as a 90%
m m
confidence interval for F(X) at all points x such that
Fp(X) > a = 0,05 provided that n 1is large enocugh to make

2, = Fp(x) - 8,5 Faég).z O, In general, given the value of a

and the probability level on which we would like to construct

a confidence interval for F(X), we can always decide how
large a sample size i1s the minimum for these theorems to work
at all, On the other hand, if we are given a sample of =a
certaln size and have a desirable degree of confidence interval
In mind we can get meaningful answers by manipulating the values
of y and a, perhaps at the cost of getting no lntervals
around the first few order statistlcs if the fixed sample

size in question would be a smaller one, To illustrate this
point let us consider that we are given a sample of size 30
and that on the basis of this sample we would liks to construct
& 90 % confidence interval for F(X); i,s, F(x) 1is to lie

in the interval : Fp(x) (1 + y) with probability 0,90,
mn "
given that n = 30, Taking y =5 makes FBO(X) (1 I(%U)

positive on both sides, Using Theorem 10 and the table
published by A, Renyi in [23] for the function L(y Y‘T ),
1-a

we get probabilities 0,8088 and 0,9751 for a = 0,1 and
a = 0,2 respectively., Interpolating, we take a = 0,16, We

must now have F;O(X) > 0,16, 1,e, k > 0,16 which implies
30

k > 4,8 . Thus we shall get confidence intervals for FBO(X) > 5
20



e3
that 1s from and to the right of the fifth order statistics,

The statements of corollaries 1 and 2 of chapter 2
hold to the theorems of this chapter too, mutatis mutandis,
That 1is, instead of talking about restricting the values of
F(X) to some intervals for x, we would talk here about
restricting the values of F_(X) 1in the sense of the theorems

of this chapter,
Proof of Theorem 9,

To summarize our assumptions, let T be a random
variable having continuous c¢.d.f. F(x) and let %, &, ..., 5
denote n 1independent observations onthe random variable T,
l.e. let §,, Eé, cesy § ~be n mutually independent random

variables having the same continuous c¢.d.f. F(x)., The distrib-

ution function of this random sample is denoted by Fn(x),

In keeping with the notation of previous sections,

we put T = F(§.) and T = log %E, further, T = F(F(y))

and Sy = R(T, 5, ..., T) which is such that Ty =

log 1 ., k=1,2, ..., n, The random variables ’Qk are
2(n+1-k) '

uniformly distributed in the interval (O, 1) and, if u = F(x),
their sample distribution function is Gp(u) = Fn(F'1(u)),

where X = F-1(u) 1is the inverse function of u = F(x),

Now the limiting distribution of the random variable

Vn sup FPn(x) = P(x) 1is identical with that of the random
a<F, (x) Fpix)




variable n sup Gp{u) - u , We also have
G.tu)
n

a<G,(u)
(3,7) fn su Gplu) ~u =vn max (1 - ’?(k) )
qun?u) Gplu]d 8<G, (" 1)+0) Gn(ﬁ(£)+67
=fF  max (1 - X)),
an<k<n k/n

for in the interval My ) < u < "Z(kH) Gplu) = k/n  and

because we can disregard the possibility of having

sup Gn(ug -u= max (1 - 1) ) = max (1=t )
a<Gp(u)  Gplu asGn (Y x+1)-0) Gol (k+1)-9) an<k<n k/n

for max (1 - "?k) ) > max (1 - '?kH) ) .-
ansk<n _§7ﬁ ~ an<ksn _éJEr_

So it i1s sufficient to examine the limiting distrib-

ution of the random variable

m mex (1 - Yx) )
an<k<n k/m

which 1In turn is identical with that of the random variable

(3.8) fn max (-log ﬁkk) )= n max log k/n
an<k<n k/n an<k<n (k)
Applying the theory of section 1 and using the notation in-

troduced there we have

(3.9) 1log 1 = 3 5n+1-v

'z k ) v=k v

where the 5£+1-v are mutually independent exponentially

distributed random variables with c.d.f, 1 - e~ ( x > 0),
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Therefore we have

n
M log _1 = 2 1
W(k) v=k Vv
(3,10)
2 n
D™ log 1 = 3 1

a8 the mean and veriance of 1log _1 respectively,

M x)

Consider now the sequence of random variables

(%.11) Snst-y " , v=k, ..., D
v

This sequence satisfies Lindeberg's condition and therefore
we apply Theorem 5 of section 2 with

(3.,12) max (log 1
‘n_‘_kf_ n 'i( k ) v

n n S -1
- 3 1) = max 2 %n+1-v
= v an<k<n k=v v

Therefore we have

n
(3.13) 1im P( max (log 1 - % 1) < z Y'* 3 1)
neco  an€k<n ey vk 7V an<ksn ke

yA
-2 :
_I"_Z: J;e’r-" it , 2> 0,
K
Since, if k > an and O « a « 1, we have, by Euler's summat-

ion formula, that

= logn - log k + ol1) = 1logn + o(1)
n k n

(3.14)

i ™Mp

1
v=k v

and
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(3.15) { 2 | 1 -1 + ol1) = Ji-a + ol1),
an<ksn k2 an  n n an n

from (3,13), (3,14) and (3,15) we deduce

(3,16) 1im P( max (log _1 - logn) ¢« zY1-a )
n- oo ansk«<n (k) k an

= 1im P( max (log k/n ) < z —a ) = (_- ~£
n-oce an<k<n (k)
z >0 ,
Letting y =z {1-a we get

a

e 2 dt

EY}}—E— _t2

(3,17) 1im P( {m max log k/n <« y) = rz
(k)

n-»co an<k<n T

if y > 0, zero otherwise, This, by (3.,8), completes the

proof of Theorem 9,
Proof of Theorem 9',

Repeating the argument of the first part of the
proof of Theorem 9 we can show that the limiting distribution

of the random varisble

fm  sup F(x) - Fnix)
asF,(x) Fplx)

i1s identical with that of the random variable

(3.18) M m k1) - 1
: anfign ( k/n )

which in turn has the same limiting distribution as the random

variable

(3,19) Im max log n%k+1) = {n max (-log ), %&n+1)

an<k<n k/n an<k<n (k+1)
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Using again the notation and results of section 1

we consider

(3.20) log 1 = 3 dn+1-v

where the are mutually independent exponentially

8n+1=v
distributed random variables with ¢.,d.,f, 1 - e * (x > 0),

Therafore we have

n : n
M log _ 1 = z 1 , where Z 1 =0,
Y, v=k+1 v v=n+1 v
D@ log __ 1 n n
= 2 1 where Z 1=0
(ict1) v=k+1 V& v=n+l v ’
as the expected value and variance of 1log 1 respectively,
(k+1)

We consider now the sequence of random variables

(3,22) 1 = bdnit-y , v=k+¥1, ..., n,
v

This sequence satisfies Lindeberg's condition and therefore we

apply Theorem 5 of section 2 with

n n
(3,23%) max { 2 1 - log _ 1 =  max z 1 - Sn+‘|-—v
an<k<n v=k+1 v (1+1) an<k<n-1 v=k+1 v
Therefore we have
. n
(3.24) 1im P( max P 1 = log _ 1 ) = gz { P 1 )
n+eo an<k<n v=k+1 v ?(k+1) an<k<n-1 (+1)2
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_t2
={—§_f32—dtifz>0.
T 0

Using Euler's summation formuls with k > an and
O < a <1 we have that
n
(%,25) b 1 = logn - log (k+1) + o(1) = 1log
v=k+1 v : n

and

(3.26) Z 1 = 1_ -1+ o0(1) = rn-an—1 + of
an<k<n-1 (k+1)2 an+1 n n (an+1)n

and n-an-1 = 1~-a-
(an+1)n an{1 +

s|p-

that is when n 1is large we have

n
(3.27) Z 1 = logn
=k+1 v k
and
(3.28) z 1 = Y1-a .
an<k<n-1 (k+1)2 an

So from (3.2li) we conclude that

(3,29) 1im P ( max (log n - log __1 ) < z Y1sa )
n-oo an<k<n k (k+1) an

= 1lim P ( max (=log _k/n ) > z Yl;g )
an

n-»o° an<k<n (k+1)
z t2
=Y’Z_f e2 dt , if z >0,
T 0

Putting y = 2Y1-a wevget

——acc—

an
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fy{_”%" o

(3.30) 1im P (" max (-log k/m ) < y) =1(2 T e" T 4t
n- oo an€ksn (k+1) = T 0

if y > 0, zero otherwise, By (3,19) this proves Theorem 9',

Because of some similarities to the above two proofs

let us turn now to the proofs of Theorems 11 and 11',

1
Proof of Theorem 11,
From the proof of Theorem 9 (namely from (3,12))
1t is clear that here we will have to consider the limiting

distribution of the random variable

1 LI n ¢ -
(3.31) @ = Vn  max (1og T - Zk =) ={n max. T n+l-y
v=

an<€k<bn an<ksbn' v=k

which may be written as the sum of two independent random
variables 601 and Coz where
=1

(3.32) @, =Vn & _5_21.11(.&:_

bn<k<n

fomax 2O’

ansk<bn k

i

(3.33) @,

By the Lindeberg form of the central limit theorem, %n the
limit 601 is a normally distributed random variable:with
standard deviation 117;_’2 , for, by (3,15), the standard

deviation of Z §Ei%:5 1s equal to I%ﬁh + old)

bn<k<n

Further, from the proof of Theorem 9, we can see that

1




(3.34)

for 1if

(3.35)

and so

(3.36)

30

2 A

“ _t N
1lim P((n)z o < z) {_J Z 4t , z4$ 0 ,
je 0 X- -]
an €« k €« bn, O €« a « b then
D JEM ol = Z -1— = .1_- - 1 + 0(1)

an<k4bn 'anﬁkfbn k2 an Eﬁ n
D Z 5n+1 -k = b-a + 0(1)

an<k<bn abn n "

are the variance and standard deviation of the random variable

an<k¢bn

(3.37)

Taking into account that (4 and 0)2 are independent random
variables it follows from (3.32), (3,37) and convolution that
2 b 2
vy _bw dy-u) Yﬂa_ _E
(3.38) 1lim Mw=< y) = % 'T%E J e 20-b e 2 dt du
n-—oco 0
- Q0
This completes the proof of Theorem 11,
Proof of Theorem 117,
From the proof of Theorem 9' (namely from (3,19))

-nf;J:-K

If, in (3.34),

1lim P(G)g < y)

n- co

g (1

we let y =

z/V6 then

2z
Tz

at y>0 .

L

it is clear that we are considering here the limiting distrib-
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ution of the random variable
(3.39) {m max log 2&%‘&].). = (n max ( -log TIE&' )
ansksbn an<k<bn (k+1)

which In turn has the same limiting distribution as the

random variable 3

n
(3,40) = \n 1.3 !
LN T n = max (Z i cgm)

an<k<bn " v=k+1

R4 .8
= rﬁ max Z = On+1 -y
an<ksbn v=k+1 v

in comparison with (3.23). The right hand side of (3.40) 4,
can be written as the sum of two independent random variables

U1 and Ua where

(3.41 = 1 -8 -k
3.44) F1 (= bqé%fn-1 k+1n

and

(3.42) T, = (o max > 1- dn-k

an<k<bn k k+1

By the Lindeberg form of the centreal 1limit theorem in the

limit ﬁ} is a normally distributed random variasble with

standard deviation 1§2 ;, for we have already seen that

D2 2 5n=k = Z, 1 = @—EE + o(%)

bn<k<n-1 ~ k+1 bnek«n=-1 (k+1 E

S
Further, from the proof of Theorem 9', we can see that
2
2lp2x %
(3.43) 1im P(Uzﬁ<z) = (%I o Z dt z >0
0

ns o0

»
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for if an < k < bn O=a<Db then

3

(3.44) D2 Y bn-k ) = z !
(anfkgbn K+1 ans<k<bn (k41 )% "
= 1 ___ + o(é) ,by- Buder's formula

an+1 bn+j

= b - + olg) .
abn( 1) (153) 7
That is when n 1is large we have

an<k<bn  k+1

From (3.,42) and (3.,43) we deduce, on letting y = 2/(5] that

b 2 ,
yy%=: ¥
(3.46) 1im P o<y = (% I; e 2 dt , y>0,

n-so00

Considering further that UH and [, independent random
variables it follows from (3.41), (3.43) and convolution that

b (y-u)(fBy g2
(3.47) lim P( T <y) = %KEBJ); M)Qyu b s 2 4t du ,

NG .

This completes the proof of Theorem 11!,

What remains now is to prove Theorems 10 and 12

of this section,
Proof of Theorem 10,
First we observe that the limlting distribution of

the random variable {n  sup IFp(x) - F(x)I/Fp(x) 1is
a<Fpn(x)
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identical with that of thvraﬁgbvagpiable

m sup IGplu) - G(Q)I/Gn(u)A whé;e again G, (u) = Fn(F°1(u)),
a<Gp(u) | "he }

and x = FP=1(u) 1is the inverse function of u = F(x).

We recall that Gn(u) = k/n if "'Z(k) fus= '?(k+1)
and in particular that Gp(%)*0) = Gp( Y jeq)=0) = k/n,

Therefore we have

(3,48) Yn sup |Gplu) - ul

a<G,(u) Gplu)
| PR T
- 0 (e - S
Now if ’r((k+1)<k/n, then

On the other hand, if q?(k+1) > k/n  then

ﬂ,,_ Wer) | - Mer) _, - Tenyro
/m | T T/m —kT

n

C , 1/n 1 Q§k+12
where ————— = = = that i C = and
'?( k+1 ) n k H 9

therefore

Per1) | = Wier1) n Uk+1)
1= k7: “‘ﬁ"‘ -1+ k(k_Iﬂ

n




3l

<

1 ‘?(k+1)‘ n Q1) , an < k €n
TR T e

But q?(k+1) = F(§4q1)) £ 1 and therefore, if "?(kﬂ‘) > k/n,

we have

(3.50) ' 1 - Nes1) < |1 - Mer1) 4

Coﬁsequently, in either case

551 |2 R | i . Ren| L
n - Kﬁl acn

By definition T y,q) =1 end Xl =1 4f k =n, therefore

(3.52) max
an<k<n

1 - ‘?$k+12 ’ < max
kﬁl — an<k=n

and from (3.,51) and (3,52) we get

(3.53) Qe k,‘ ?k-ﬂ) <  max ’Q(k) 1
525 angﬁgn 1- k%n 1= §7n 1)) = an<ken | 1 - &m0 T 224
From (3.48) and (3.53) we conclude that
(3.54) Vm "?§k) l< Vn 1Gn(u) - ul
3.5k ° aq?ﬁ%n - %m |~ ? qgézfu) gn(u)u

s \n a k) 1

B an;k;n T »§§n R-I

and this implies that the limiting distribution of the random

variable n su? IF (x) - F(x)1/Fp(x) 4is identical with
a<F,(x)

that of the random varliable
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- .:z;_l. M) ;
k/n “k/n

which in turn has the same limiting distribution &s the random

= n max
an<k<n

(3,55) Ym max

an<ksn

variable

(3.56) Y® Ue) | = = a k
00 T e | 7 T o [2es |

From the proof of Theorem 9 itwig clear that the limiting
distribution of the random variable of (3.56) 4is identical

with that of the random variable

-1
(3.57) max | .. 1 . £ 1l = max ;: 81’14-1 -v
ansksn k) v=k V ansksn | /oy v

Applying Theorsem 6 of section 2 with (3,59) and using the

results of (3.14) and (3.15) we get

(3,58) 1im P(ﬁT max Hlog kén I < y) = Ly

n+co angkgn (x)

This by (3.,56) completes the proof of Theorem 10,
Proof of Theorem 12,

Using the method of the proof of Theorem 10 we can
show here that the limiting distribution of the random vari-

able n sup IF,(x) - F(x)!/F (x) 1s identical with
a<F, (x)<b

that of the random variable

(3.59) (B mex

an<k=<bn

and therefore it is also identical with the limiting dlstrib-
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ution of the random variable

(3.60) Yn  max [10 ) |= Yn mex k/n
an<k<bn € T&/n an<ksbn | 198 ?(k)

which in turn has the same limiting distribution as the

random variable

(3.61) max log 1 _ f: 1] = mex § 5n+1 _V-‘l
ansk<bn ﬂ&k) e ¥ anzksbn | 2\ v
Let us define
n 8 -1
= n+1 -
2 _ 2 ) -1
(3,63) B2 =D )X n+1-k = X 1
& (anfkgn k ) ansk<n K
2 On+t -k~ 1
(3.64) 4.2 =D Y. n+1 -k = z 5
" (bngkfn -k ) bn<ksn k

By (3.15) we have

A = %ﬁb + o(%) and B, = v %%5 + o(%) and so
(3.65) - lim Ap _ a(1-b)
)\ n-seo B, b(1-a)

Thus we can apply Theorem 8 of section 2 with Sy n+1-k
, |

defined in (3,62) and with (3,63), (3.6h), (3.65)

and 1€ M, = n+1-bn « Ny = n+1-an, Therefors we have

(3,66) 1im P( max IS | = zB.)
N+cc  an<k<bn n,n+1-k n
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= lim P( max
n-oco angkjbn

1im P({m max I _ _k/n I
n+oo ( an<ksbn | 108 ﬁék) =

which is equal to the statement of Theorem 8 of chapter 2,

o 2 | <o (T2 )

I

Letting y = z 1§E we get

(3.67) 1lim P(fn max k/n .
n-»e0 ( an<k<bn | log (k) |< Y) R(y; a, b)

This, by (3,60) and (3,59) completes the proof of

Theorem 12,
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g, Some particular cases of the Smirnov limit theorems

for empirical distributions using 1/F(x) as weight function,

Let §51, 105 ooy T, Pe independent observations
on the random variable ¥y, and let T,,, Fop, «co, Sy be
independent observations on the random varisble fé, Agsume
that the random variables T ,, E&Z’ coos Tns §é1, Boos coes Eém
are mutually independent and, also, assume that the random varisbleg
%11 and EZj have continuous c¢.d.f - s F(x) and H(x)
respectively, which are unknown, Let Fp(x) and Hm(x) be
the sample (empirical) distribution functions of

-§11 9 ‘5129 co0oyg En and E21 9 -E22, cooy -Ezm I‘espectively,
Smirnov (1939) [25] proved the following two theorems :

If F(x) = H(x), then

(4.1) 1im P ( Tm_ sup (Fplx) - H (x)) < y) =1 - &72¥

(m,n;0) ntm  ~cosx<+oo0

if y> 0, zero otherwise, and

{fo(-1)ke"2k2y2

4

(L.2) lim POFEE: sup |Fu(x) - H (x)] = y)

(m,n;p) n+m = =eosx<+ =00
if y > 0, zero otherwise, where, in both cases, lim
(m,n;p)

is to mean the 1limlt as m-oco and n-»co in such a way
that %‘*f’° (The problem of determining the distributions
of the respective statistics for finite values of n and m
was solved by Gnedenko and Korolyuk (1951) DO] on the

assumption that n = m,)
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These results are used to test the statistical
hypothesis that two random samples'come from the same unknown
population, Even if F(x), the hypothetical c.d.f of the two
random samples in question, were known we would not get more
information out of the above theorems for they consider the
differences (Fn(x) - H (x)) and IFy(x) - Hy(x)} with the
same weight, regardless to the value of F(x), Thus in this
way the idea arises of consldering the limiting distribution
of the supremum of the quotients (F,(x) - Hm(x))/F(x) and
IFo(x) - H (x)1/F(x), In examining the limiting distribution
of these quotients a natural limitation on F(x) 1is to be
adopted, Namely, we restrict ourselves to an interval
x{t) < X € +oa, where F(x(t)) = t > 0, The value of t,

however, can te an arbitrarily small positive value,

In this connection we are going to examine the
limiting distribution of the quotient (Fn(x) - Hm(x))/F(x)
on the assumption that the number t > 0 1is such that both
Fn(x) and H_(x) are greater than zero and less than one
when F(k(t)) = t. (Later on we are going to relai these

conditions,) The following theorems are going to be proved :

Theorem 13, If F(x) = H(x) and n, mseo so

that g_, [ ‘then

\‘ cd (1+R)
SE VT N (=)

g- -
P

e 2dv , y>0
P (’ Fn(x) - Hp(x) J °
1im nm sup x) = X
(m,n;pE) ( n+m t<F(x) S S y)

0 ’:-Vf_o
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= @(y; c, d,p0)
for all values of t, O <t « 1, so thet when F(x{t)) = ¢

Fo(x) =d with 0 < d < 1

then ‘
H(x) =c with O=<c « 1,
Theorem 14, If F(x) = H(x) and n, m>» oo so that
% - (O then
(4.4 1im P (Vgg_ sup Fn(x) - Hulx) = y)
(m,n;p) n+m t<F(x)sl F(x
(y_u){d.of (1+p)
ef (14002 e-detp+ E-cjed
= 1 Yf(1-—e)/°+ e{1-f) | 2B0-0p+es-f) e Z dv du ,
T ef(1+0) -

- 0o 0 —-00« y < +og
= Nly; d, ¢, o, £, 0)
for all t and 1 with O € t = 1 € 1 where the other
parameters satisfy the following conditions :
Fplx) = d with 0 < d < 1
when F(x(t)) = t then -
H(x) = ¢ with 0<«c <1
Fulx) = e
and when F(x'1)) =1 then
Hp(x) = ¢ where 1 being
less than one, at most one of e and f can be equal to 1,

If one of e and f 1is equal to 1, the appropriste one is

replaced by 1 1in N(y; d;, ¢, e, £, ©),

To prove these theorems we need only the;assumption
that F(x) 1is continuous but the statistical applicability of
them requires the knowledge of F(x), Just as when introducing

the weight function 1/F(x) to (Fn(x) - F(x)) and
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IF,(x) = F(x)| we no longer have the possibility of construct-
ing confidence intervals for unknown continuous distribution
functions; that is the applicability of the Kolmogorov - Smirnov
theorems using the weight function 1/F(x) depends upon the
knowledge of F(x) but thereby they measure the asymptotic
behaviour of the relastive deviation of the population distrib-

ution function and that of the sample,

Assuming then that F(x) 1is a known continuous
c.,d.f.,, the above theorems provide tests for verifying the
statistical hypotheéis that two random samples come from the
same population with c.d.f., F(x). From the proofs of these
theorems it will become clear that we do not actually have
to know F(x) completely in order to apply them, It will
be seen that if we can estimate the numerical values of F(x)
at éll the sample points of the pooled sample of size n+m,
gained by pooling the two samples of size n and m, it will
be sufficient for the applicatlion of these theorems, The
character of these tests is that they give upper bounds below
which, if the hypothesis is true, (Fn(x) - H (x))/F(x) must
lie with probabilities (I)(y; c, d,0) and N(y;c,d, e, £f,0)
respectively for given valués of ¢, d, e, £, ©0 and y, We
shall always have to keep in mind though that the above theorems
have only an assymptotic character and do not allow fcr:the
influence of the number of observations, whereas this influence
may be very considerable if the numbers n and m are small,
A successful Gnedenko and Korolyuk type examination [M0] of

this problen Would enswer these difficulties,
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Proof of Theorem 13, Part A,

We have to examine the asymptotic behaviour of the

random variable

(L.5) nm_ sup Fpix) - Hp(x
n+tm  t<F(x) F(x

Let us pool the two random samples ‘§11, }%2’ ...,viﬁn

and §54, Fp2, ce., By of size n end m respectively,

Let this new sample of size n+m be iﬁ, Eé,,...,'1h+m,

which, on the assumption that both samples coms from the same
population with continuous ¢.,d.f, F(x) and on the assumption
that the random variables of the two samples are mutusally
independent, is a random sample of size n+m from a population

with continuous c.d.f. F(x).

Let the order statistic of t he randem sample of
size n Dbe Eh(1) <« E&(Z) € 000 ® E&(n) and that of the
random sample of size m be 52(1) < Eé(Z) € oo <'E2(m)
and also the order statistic of the pooled random sample of
size n+m be §(1) < EEZ) € .o G.E(n+m) ;5 that is using

the notation of chapter 1 we have

E‘](i):Ri(-E‘l-l, ?12, PP -Ea] ) , t=1,2, coosy
(h.6) Sa(3) = BylFaqs Taps eees Tap) » I =1, 2, 40,
Sie) = Rl B9 Bos eoes Bpym) 5 K =1, 2, oo,

We shall also need the transformed forms of these
random variables introduced in chspter 1 and adapted to the

present situation as
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'?211 = F("§1i) and T,, = log

]
kN

(L.7) =F(E,,) and §,. =logm—, 1=1,2, ..,

T Mgy = Py and Tpy=loege, =1, "
1

My ™

F(Ek) and §, = log

and the corresponding order statistics

]
-

/) = F( T ) &nd T = log 1 , 1
1(1) 1(1) 1(1) m

log 1 s ] s 25 ooy
(m1-3)

F( Ekk)) and 'S(k) = log 1 , k
an+m+1-k)

il
BN

(b‘oB) Yzz(j) =' F(EZ(j)) end -52(_1)

k)

-

where F(x) 1s the continuous c¢,d,f, of the population from
which the two random samples of size n and m and, therefore,

also the pooled sample of size n+m come,

Let us denote the empirical distribution function
of the pooled sample of size n+m by Fpun(x); that is

we have

0] , 1ir X"-E(1)

F_ . (x)

nm < _k_ , if .E(k)f-x‘-g(k+1)

1 , irf E(nm)f_x

“

We remark here that ‘E(k) = Ea(i) or .¥(k) = Eé(j) and that
k=141 5 1f Ty ='§'1(1) then we have '52”) < § (1) end

ir Fy) = By then Fy(qy < Sy o

The random variables ‘Q11, sz and ‘Qk of (h.7)

]
-
“
n
-
L
«
L]
-
o]
+
=]
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are uniformly distributed in the interval (0, 1) and, if

u = F(x), their sample distribution functions are
(L.9) G lu) = Fo(F-N(w)), K, = B (F"'(u)) and
Gpem(w) = Fo o (F-1(u))

respectively, where x = F-1(u) 1is the inverse function of

u = F(x),

Now the 1limiting distribution of the random variable

sup Fn(x) - Hu(x) 1is identical with that of the random
t€F(x) F(x)

variable

(4,10) sup  Gp(u) - Kp(u)
teus1 u

and the limiting distribution of the random variable of (h.10).

is identical with that of the random variable

(L11) sup Gplu) - Kplu) H
t<Gp4mlu)=1 u

that is to prove Theorem 13 it is sufficient to prove that

(4.12) lim p Gn(u) - Km(u) < y) =Q(y;c,d,0)
)P [E o haye Stk s Kal) < y) = Blyse,ap

(m,n; u

To see this last step, that 1s the identity of (h,10) and

(h.11), let us consider the svent IGn+m(u) -ul =¢, 1.,
the event -€< Gpyp(u)-ud€,From O« t € us<1 it follows
that |1Gppm(u) - tl =¢  or |Gp4m(u) - t1 >€, In the first

case there is nothing to prove and the second case can only
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result from Gpyp(u) = t >€, It follows then from Gp,,.(u) - u <€

and Gp,pm(u) = t >€ that t < G ,p(u) - € £ u and thus we have

(4.13) sup Gnlu) = Kylu) < sup Gplu) - Kn(u)
t+e<Gpipm(u) | u t<u u

Let A Dbe the event that sup Gplu) - Kp(u) « y | n+m

t<u ! u nm
and A' be the event that sup Gnlu) - Kpl(u) < y {n+m .
t+€5Gn+m(u) u nm

Then, by (L4,13), AGS A' and if we let B be the event
|Gpemlu) - ul =€ then ABE A'B, But A = ABU ABC BUA'B
& BUA', where B denotes the complementary svent of B,

Thersfore, P(A) = P(B) + P(A'), that is

(4,aly) P (Y%}qﬁ :.25 Gnlu) ;Km(U) < Y) s

P( |Gn+m(u)' -ul >€) + P(‘{E‘}_ sup Gn{u) - Kmlu) < y)
+

ntm  t+€<Gpym(u) u

Similarly, it can be shown that

(h.15) P ((ﬁﬁ: sup Gnlu) - Kgu) < y) =
+

ntm t-€<Gpyp(u) u

P(1Gp4plu) - ul >€) + P (Ynm sup Gpfu) - Kp(u) < y)
n+m t<u u
Since lim P(1Gp4mlu) - ul >€) = 0, €> 0, it follows

n,m-oo

from (L.14) and (4.15) that
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1im P («nm sup Gnlu) - Kplu) < y) < d@(y;c+€',d+e", )
(m,n;p) n+m t<u u :

and

lim P (yEG sup Gnlu) - Kplu) < y) > (I)(y;c-e',d-e", )

(m,n;0) ntm  tsu u
if the statement of (L.,12) 1is true, where ¢' and €" are
possible changes induced in the values of ¢ and d by
changing the value of t to t+€, Now € can be chosen
arbitrarily small and, as e result of that, €' and €" are
also made arbitrarily small, Also, the integral is a contin-

uous function of its upper limit and so 1t follows that

(L4.16) 1im P (\frﬁ‘ sup Gnlu) - Kplu) <« y) = @(y;c,d,/o)

(m,n;0) ntm t<u. u

on the condition that (l.12) 1is true.

The identity of the random variables of (L.,10) and
(),.11) 1is explained in the following heuristic considerations
too. According to (L4.,10) we consider the limiting distrib-

ution of the random variable sup Gpnlu) - Knlu), Let us
t<usi u

take the general case when t 1s positive, and arbltrarily
small, If both Gpl(u) and XKpylu) are zero for some subset
of u in t < u <1, then we have started the examination
of the above random varisble too soon and, in that subset of

u we get no real information on the behaviour of this random

3

variable, The resl examination starts when at least one of

Gplu) and K (u) 1is greater than zero and this is implied.
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by the condition that the ¢ .d,f, of the pooled sample Gh+m(u)
is such that t sGp,u(u) € 1 for some however small number t > O,
This implies that we have the following random variablé to

start with : sup Gnlu) = Kmlu)., In (L.,11) we have
<) s

this random variasble with the restriction that when t = Gpip(u)
both Gp(u) and Kplu) are positive as a result of the
original assumptions of Theorcp 13, This was the way we

arrived at the idea of examining the identity of (L,10)

and (L4,11) 1in the above analytic way which culminates in

the statement of (L.12). The proof of the equivalence of
(L.10) and (L.11) 1is free of the restrictions of Theorem 13
on t and this enables us to attempt the relaxation of them

later in this thesis,

To prove (L4.,12) we consider again its random

variable

(L,17) sup Gp(u) - Kplu)
t€G, , o(u)=1 u

If, in general, t < G,,,(u) = 1 then at least one of the
empirical distribution functions Gu(u) and Km(u) is
greater than zero and less than one at u when ¢t = Gn+m(u)'
Let d = Gplu) and c = Kplu) when t = Gy plu) and, for
the sake of Theorem 13, let us assume that both 4 and ¢
are greater than zero and less than one, Thus examining the
random variable of (L,12) for the set of u's for which

we have t « (u) € 1 also means the examination of this

Cnem
random variable for the set of u's for which d = G,(u) « 1
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and ¢ < Km(u) < 1 simultaneously, We are going to express

this by writing (L4.17) 1in the following form

(4.18) sup Gplu) - Kplu)
uel u

where I ={u :t < Gpup(u) £1,4d<Gplu) <1, ¢ <Kylu) =1},

Now the value of Gplu) - Ky(u) changes only when
the value of u passes a value %Rk) of the pooled sample,

This we express by writing (L,18) as

(4.19) sup Gnlu) - Kyplu)
ul u

Cal M) ) -Enl M) *0) CnlMser1)=0) Kl a0 )=0)

- max
S T
’y[(k) q?(k-ﬂ)
i . i i .41
= max n m n__ m
S ' I
v(k) ﬁz(k+1)
where S = {k,i,j st aslet, o< 1} and

where, if ‘% - % > 0, the expression (% - %)/'G&L() is used
and, if % ='% < 0 the expression (% "%)/‘Q(k+1) is used

to find maximum, If % - % = 0, it is irrelevant which one

of them is used, Moreover, having t(n+m) € k « n+tm and as
a result of that, nd <« 1 €« n, mc €« j € m, the maximum of

the above expression is at least zero and can be found through



L9

exsmination of (% - %)/‘ﬁkk) in the indicated regions for

k, 1 and Jj, Therefore we have
1.1
(4,20) sup Gnlu) = Kplu) - max n m
uel u S Q(k)

Thus, the examination of the random variable of
(4.,12) boils down to the examination of the order statistic
of the pooled sample for t(n+m) < k « n+tm and, thereby,
to the examination of the order statistics of the original
two samples for dn <€ 1 €n and cm< j € m respectively,
changing the value of % - & of (4.20) for a given k
according to the possibilities of having an ‘Q1(1) or an
'QZ(j) in ka), the kth order statistic of the pooled
sample, In any given practical situation, that is when we
are having two random samples of slze n and m, this

maximum statistic of (L,20) 1is easily found and we are

going to show now that its limiting distribution is given
by (L.12),

Proof of Theorem 13, Part B : a Lemma,

The present form of the right hand side of the

random variable of (L.20) does not lend itself to the method

of A, Rényi, presented in chapter 1 and used so far in proofs
of theorems of this thesis and which we also would like to
continue using in proving this theorem, Toward this eﬁd, we
are going to introduce a random variable which will always

be greater thean or equal to (% - %)/’Q(k) of (L4.20) for
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any given k and; therefore, its maximum will also have
this property in relation to the maximum of (% - %)/’Q(k)
of (L4.20) in the indicated regions for k, i ceand ],
Also, we are going to introduce a random variable which will
always be less than or aqual to (% - %)/‘ﬂ(k) of (L.20)
for any given k and, therefore, its maximum will also have
this property in relation to the maximum of (% - %)/‘Q(k)
of (L4.20) in the indicated regions for k, i and j,

The form of these new random varigsbles will be sdsptable to
the method of A, Rényl and this will enable us to derive their
limiting distribution and that, in turn, will emable us to
derive the limiting distribution of the right hand side of
(4,20) and, thereby, to prove relation (L,12) which was
shown to be sufficient for the proof of Theorem 13, Iﬁ'this

connection we are going to verify

Lemma 1,
| 1 1) 1.1
(4.21) max n - m 5 max n m
s U(1) CYERETY R T
1 i .1
(L.22) 2 d ILﬁﬁ —
o max n - m < max
S T (1+1) i72(;1) })— 8 (k)

where  Thyys W(1e1)s Ma(g)e '72(3+1)v and T,y are as
in (L.8) and 8 was defined in (L.19),

Proof of relstion (L4.21).

(a) Let % ,.% > 0 when ?(k) = Q1(i)° Then
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i

i
n

d
- m >
h(i) 22(j+1) - q&(i)

‘Q1(i) < 72(j+1)° We have equality when ’Q(k) = ﬂh(i) such
that there 1is no Vz(j) before Wy(1)s; that is when =1,
i

k
i 0
In this case relstion (a) above becomes n - 0=n"

i71(1) i!1(1)

This equality is impossible when we have the restriction of

d
m , for 'q(k)='Q1(i) and so

Theorem 13 on t, but we shall need this property of Lemma 1
that it remains valid when t 18 an arbitrarily small positive

number,
(b) Let % - % > 0 when Q(k) = ng(j), Then

i i
n i n 'ﬁji, for 'Q(k) =722(j) and so
(1 3

. . m___ n
Ty Rl T
’lm)"’la(j)‘ 2(341)°

(¢) Let % - % < 0 when ‘Q(k) = n1(i)° Then

i i
1?1 % m_ " % , for n(k) = nh(i) and so

T ey . (1)

1
1rZ1(1) < 12(341) o
1 _

(d) Let = - % < O when qak) = G(g)- Then
i d i _ 1
n _ m > n m o,

'21(1) iz2(j+1) 22(5)

for ﬁ%k) = HE(J) and so

Ty < '?2(3) < 172(j+1>°
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(Q) Let % - % =0 when "?(k) = '?1(1). Then
1 d i .1
n

n m

» - m : = 0 for 1?“{) =7 - and g0
Ty 't Ty ’ T

My < 1?2(j+1)"

(f) Let %-%:O when ?(k)=?2(j)° Then

i i .
n 4 n__ 't% _ for "l(k) ="?2(J) and so

n - m > = 0
Ty T2(3+1) (1) ’

sy = 7z(j) < G(g41)

Relations (a), (b), (e), (d), (e) and (f) imply statement
of (L.21),

Proof of relation (l.22),

(a) Let %»—-%>O when ’?(k)=72-1(1). Then

i d |
m

n m n

- < s Tfor k) = ?1(1 and so
M (1+1) T2( ) (1) %o )

ng(j) < %1y < 1?1(i+1)°

i -
(b) Let = =£> 0 when I'Z(k) = ?2(j)° Then

i d i - 1
n - m < B ___@m for 2?(k) = ’]2( y and so
W By T :

1?.2(3) < /?1(1+1)°

(c) Let %=-%<O when ’Q(k)= 721(1), Then



1 d .
|}

n _ m < B
M (1+1) B(y) (1

T < U € Ben-

lse

for 7(1{) = ’71(1) and so

Nt

i =
(d) Let & -d <0 when T, Then

Gy

i a i _ 3
n - m < b m for ’Q(k) = Qé( ) and ‘so
b(1e1) 2.2(;1) - z2(j) :
nZ(j) < Q1(i+1)° We have equality when M, = 72(5) such that

there is no ‘n1(i) before 'ﬂz(j); i,e, when k = j, In this
_ o0 - 4

m = T om .
i.2(.1) ljZ(j)

This equality is impossible when we have the re-

case relation (d) above becomes 0O -

striction of Theorem 13 on t, but we shall need thils
property of Lemma 1 that 1t remains valid when t 1is an

arbitrarily small positive number,

i = =
(e) Let = - % = 0 when ‘7(k) = 1&(1)‘ Then

£ d i .1 7 7
n _ m n L S for = (1)
T (141) 2~ T ’ | (k)

and s y05) < 1) < Urer)-

(f) Let ?11- -

Bk

= O when 'Q(k) = ?2(j)° Then

i ; i
A R R
z1(1+1) Z2(3) 22(.‘5)

for Q(k) = ?E(j) and so

Qz(j) < 1r(1(1+1) o
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Relations (a0, (b), (¢), (d), (e¢) and (f) imply statement

of (4.22) and this completes the proof of the above Lemma,
Proof of Theorem 13, Part C,

Taking the entities of the above Lemma let us

introduce the following notations, Let

i J.

A Dbe the event rnm max n < Y,

ntm 8 | Ty 2(3+1)

E

B be the event |nm max n m < y , and

n+tm S ?(k)

. 1 A

C be the event nm_ max n - m < v .

ntm S | M)

Relations (4.21) end (L4.22) of the above Lemma imply that
AC BE& C and therefore we have P(A) < P(B) = P(C), that is

. i i
(4.23) P(Ynm max|_nm % < y) < P(Ynm max n g < y)

and
R i
(L.2l) I(v_rgn_ max n %K y) =< P(Y_nﬁ__ max n - "mi < y)

Now we are going to show that

1 d
(4.25) lim P ’Eﬂm max n _ m__|<y)= Q(ysec,d,p)
(m,n;p) ( n+m S ?1(1) :i?g(j""]) ) @

and that
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i
(J.;°26) 1lim P ( nm_ max _____i__ - -g < y) = @(y;c,d,p)
(m,n3p) ntm S5 M) Me(p) )

Assuming for a moment that statements of (L4,25)
and (l.26) are true it follows from (L.23) .and (L4.2L) that

P
(L.27) (m%t%p) P(m mex n (k__)m_ - y) > (P(y;c,d,P)

and

—_— i _ 4
.28) 11 P ; d,
h (m,n?p) (‘gfm i i?(k)m A y) = (P(y °s 4y

and, in turn, (4.,27) and (L.28) imply that

i _ 4
° P e — T = ;9’
(4.29) (mfg? ) (Ygfm mgx n (k)m < y) db(y ¢,d,po)

But, by (L4.20), the random variable of (4.29) is equivalent
to that of (h.12) and, as we have already stated, 1t is
_sufficient to prove (L.12) in order to prove Theorem 13,
This means that we have proved Theorem 13 provided that thé

statements of (4.25) and (4.26) are true,

To prove (l4.25) we note that the limiting distrib-
ution of its rendom variable is identical with that of the

random variable

(14.30) 2 F 7
.30 max | log __n = log m s Mo(pe1) = 1
8 T(1) Ta(3+1) o)

Using the notation and results of chapter 1 we consider

n
(4.31) log 71— = T _On#i-y
(1) vEL W




and
(4.52) e = Z w1
052 1og = m+1 -8
2(3+1) s=j+1 .
where the Sn+1-vr Sm+1-s are mutually indapendent expon-
entially distributed random veriables with c¢c.d.f, 1 - e™*,

x > 0, Therefore we have

n
M log = 1
1(4) VZ% v
(4.33)
2 ] . o 1
D log et = -
(1) ;§3 v2

a2 the mean and varisnce of (L.,31) respectively and

m m

M1 ] = 1., wh 1 =
og ?ETE:;T s=§;1 S where 3;531 +
(k.3k)
m m

2 1 1 1
D= log = ) where
z2(j+1) 3;5;1 8= ? s=§i1 #

as the expected value and varisnce of (L.32) respectively,

Consider now the sequences of random variables

5n+1=v”1
v

9 vzis ooogn

(4.35)

-1
Omi1-8"' |, s = 341
3

These sequences satisfy Lindeberg's condition (given in
chapter 2) and considering these two sequences of mutually
independent random variables as one sequence, the random
variables of this sequence are again mutually independent

and satisfy Lindeberg's condition, Therefore we apply
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Theorem 5 of chapter 2 with

n m
(4.36) 1 1 - 1-] - |1 1 - 1
4.36) max [ T = Y € TGl s ®

T
as max Sn+m,k of this theorem, herefore we have

n m
(L.37) 11 P 1 1 _ . 1l -11 1 -
WA e (m? H D v V] [ S Tyrey Ry

<Z(Z}2+ 2 ,12)

nd<i<n me=<jsm-1 (j+1)

Z
vi
= YE f e 2 dv s, 1f 2 > 0 , 2zero otherwise,
T 0

But, if 1 >dn and O <« d « 1, we have by Euler's summation

formula that

n
(14.38) é;i % = logn - log i + o(%) = log % + o(%)
and
T e 4 Vi 1 1, = Y14 1
um)( S l\mow v T {E ¢
nd<i<n

Similarly, if j >cm and O < c < 1, we have by Euler's

summation formula that

LS 1 _ 1y _ 1
(4.4ho) sg%L1 < = log m = log (§+1) + olg) = log 3%T + O(E)

and

) e ‘ 1 _ 1+ old) = ‘ —cm=1 + o(d)
(L) vmcjjﬁm=1 72 cotl  m . (?m:$5m '
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1
But log m_ = leg 1 and m=cm=1_ = _1-c= that
j+1 m ot E (cm+1)m cm(1+_1117 ’

cm

is when m 1s large we have

1 _1 =1 m
(h‘oh’o) = +1 [ 08 '5
and
(b ly1) Z 1 =Y{1-
mcx jem-1 [ j+1)2 —chx

Therefore, using (L.38), (L.39), (L.ho), (L.41), (L.4O)' and
(L.41)!, 1t follows from (L.,37) that

(4.42) 1lim P (max [log 1 - log ___n] -| [log 1 - logm
(m,n;p) S [ h(1) 1 32(,J+1 ) J
< 1==d 1=-c )
\dn cm
lim P (max [1og i/m_ - log _Jj/m
(m,n;0) s T Ta( 3+1)

\<n+m\<c(1—d)h'$ﬁ + d(1-c) ‘n‘%ﬂ)

z _v? :
= {E f e X d&v if z > 0 s 2zero otherwise,
n o

, _m B
Letting y = zYcU—d) n+m__+ d(1-c) n+m and teking into
de

consideration that F-—>/0 as n, m—>oo we get

(4.43) lim P(_rﬂl_‘ max |log _i/m - log m <y)
(m;n;p) n+m S [ (1) "Eh




-

{_de (14
J(;:a-d\a o g
— e
Fr) ‘! "z ©
=2 e dv if y >0 , zero otherwise,
v T 0

This, by (h,BO)s proves ths assertion of (h°25).‘ The ésaertion
of (L.,26) can be proved in exsctly the same way, Having thus
proved (L4.,25) and (h,Zé), taking into consideration (h.27)'
and (L4.28) we also verified (L4,29) and this, by the remarks

after (L4.29), proves Theorem 13,

If in the sbove theorem we put n =m then Q=1

and Theorem 13 bacomes

Theorem 13', If PF(x) = Hix) t:henr Y 2¢d4
y \CO-D + A {1-0)
VJ-
Fi e Z dv 1if
(4.4 1im P({E sup Pp{x) - Hn(x) « y) =< |m 0
neco M2 t<F(x) F(x)
\O it

for all values of, O <« t <« 1, s0 that when
Fn(X)
H,(x)

' d with 0 < 4 < 1
F(x{t)) = t then ?

i

¢ with O «c¢ <1

Remarks on and some generslizations of Theorems

12 and 13', If we have two random samples of size n and

m such that all the observations of one are less than all the
observations of the other then Theorems 13 and 13' are not
applicable in their precsent forms, for then the set of x's
for which t « F(x), O <t « 1, so that when t = P(x{?))
we have d = F_(x) end c¢ = H (x) such that both d and ¢

are greater than zero and less than one is empty, On page LT

>0

y<0




60

we made the remark that the prdof of the esquivalence of (h.10)
and (L4.,11) was free of the restrictions of Theorem 13 on t,
and that this would enable us to attempt the relaxation of

them, This is what we are goling to do now,

We consider here the possibility of dropping the
restriction that both d = F (x) and ¢ = Hm(x) are less
than one when both of them are greater than zero at x(t)
with t = P(x{t)), Since we have O < t < 1, only one of
d = Fo(x) and ¢ = Hy(x) can be equal to one when ¢t = F(x't))

or, meking use of the above remark fegarding the equivalence

b
of (4.,10) and (4,11), when t = Gpyp(u) at most one of
the values d = Gu(u) and ¢ = Kj(u) 1is equasl to one, Re-
peating the argumesnt of (4,18), (L.,19) and (L4.20) we

have again

(L.4s5) sup Gplu) - Kplu) = m

a ,

(u) 1, dsGylu)=1, c¢s<sKlu) =1},
s ={k,1,] s t < K <1, d5%51, ¢c<d<1} and

where we still assume, a s in Theorems 13 and 13', that both of
the values d and c¢ are greater than zero but do not ‘
exclude the possibllity of having one of them equal to one,
Assuming then that both 4 = % and ¢ = % are greater than
zero when t = E%E (t > 0) we can have the following three
mutually exclusive possibilities :

(1) 4= % =1 and ¢ = % < 1
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or
(ii) 4 = 1= and ¢ = d < 1
n m
or
(11) d =3 <1 and ¢ =4 =1
. n m

Introducing 8' = {k,j st 5'EKE <1, c< % < 1} and

-+

s = {ksi st K <1, d=31«< 1} for cases (1i) -and

o

respectively , (4L.45) can be written as
( 1 _

max n m, if d<1, c <
> Mo

e
H
Q.
i
-
o
A

(L.46)  sup Gplu)-Emlu) = ,
Nl il =

max

S“’ —‘7;: 3 b

o)
il

\

Case (1) 1is handled by Theorems 13 and 13' in

their present forms,

(111)

Case (11), where both d and ¢ are greater than

zero and d =1, c¢c « 1, can be stated as

(L.47) sup Gplu) - Kplu) = max 1 = %
uel u st ?(k)

In terms of Lemma 1 thls implies that we are to examine the

limiting distribution of the random varisble

(4,48) max 1 _ i/m
| S'[ f(n) 2(3+1)J
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and
(4.9 max [ 1 o o 1/m ] . max [1 - _i/m ]
S' (M1 (n+1) 2(3)] 8! (1)

where the last identity follows from 4%(n+1) =1,

The limiting distribution of (L4.48) is-equivalent
to that of

(L.50) max [log 1 _ log __ i/m
s! M (n) (3+1)

From now on the argument follows that of examining the
limiting distribution of (L.30), The statement of (L.31)

becomes

(4.51) log 1 - ¢ .

% (n) n

and the statements of (L4.32) and (L4.34) remsin exactly

the same while (L,33) becomes

M log 1 = 1
(4.52) % (n) "
D2 log 1 = 1

M (n) nZ

as the expected mean and variance of (L.51) respectively.

Thus in the 1limit 1log 53 has mean and variance equal to
n

zero, In the light of this (L.36) becomes

m
(4L.53) max {log 1 -[1og 1 - Yy, 1
8! 1(n) T2(341) s=J+1 *




= max [_&L - i 8m+1-s—1J

s'in s=j+1 s

while (L4.42) becomes

(Lo5h) 1im  Pfnax [log __1__ - log i/m ) < z\,l:g

(m,n;’p) (S' C %(n) | ( §+1 )J cm )

lim P(max rlog 1 - log mw ) < z Yn+m Y1-c n )
(m,n;p) st | ?1(11) ?2(j+1)J nm c n+m

O , 2zero otherwise,

Il
:'-\INI
(@)

o

t
2
fof
<
“w

[

y

N

v

Letting y =z y1=¢ n and taking into account that %—»Io

¢ n+m

as n, m —»c0 we get

(br.55) lim P \]rnm max [log 1 - log m < y
(m,nSP) ( n+m St m 2(3_,_1) )
jgizzﬁ
1-6C 72

= ﬁ? Jy e 2 dv if y> 0, zero otherwise,
b 0

Thls, by (LL,SO), is the limiting distribution of (4,L48),
It is easily seen that the limiting distribution of (L.L9)
is the same as that of (4.,48), It follows then from Lemma 1
and using the argument of (L.23), (L.24), (L.25), (L.26),
(4.27), (L4.,28) and (L4.29) that the limiting distribution

of the random variable of (L.47) 1is as stated in (L4.55).

Case (1ii), where both d and ¢ are greater

than zero and d « 1, ¢ =1, can be stated as

i
(L.,56) sup Gnlu) = Kmlu) max n 1 .

u€I u S" iz(k)

i
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where S" was defined in (L 4j6), An argument similar to
that of case (i1 ) shows that the limiting distribution of
(4,56) 1is as follows

(L.57) 1im P [ fom sup Gplu) - Ey(u) =
’ (m,n;0) \E uel e y)

d (1+0)
J -3),0 2

_z_f e
0

gL

<

dv if y> 0, 2zero otherwise,

3

A look at (L.3) shows thet if d =1, ¢ <1,
that is in case (i1), then @ly; ¢, d=1,p0) = right hand
side of (L4,55) and when d <1 and ¢ = 1, that is in
case (1ii), then @(y; c=1, d,0) = right hand side of
(L.57). Thus Theorem 13 and therefore Theorem 13' can be
extended to the case when d =1 or ¢ =1, both of them
are being greater than zero, Equating d or ¢ in
@(y; ¢c,d,p) to 1 would not be valid without the verif-
ication of statements (L.55) and (L.,57), for the proof
of Theorem 13 reiies on the fact that we have ¢ and d such
that O <c <1, 0<ds<1, when using Euler's summation

formule, So we have the following extension of Theorem 13;

Theorem 15, If F(x) = H(x) and n, m-> ©© so that

%-a © then

(4.58) 11 P s Fpix) - Hu(lx) < y) = (y3c,d,0)
’ (m,nr?P) (V:%; teFlx) O FTR y) Blyie,ae

for all values of t, O < t « 1, so that when
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1) Fp(x) = d with 0 < d < 1
F(x'%/) = t then . If any one
H(x) =c¢ with 0 <c <1

|

1A

i

of d &and ¢ 1is equal to 1, we put d=1 or ¢ =1 1in
(P('y; ¢, d,0). Since we have O < t « 1, at most one of

the values d and c¢ can be equal to 1,

A similar extension of Theorem 13' is obvious,
Ware we able to derive now the limiting distribufion of the
random variable of (L,11), which is given as

(4.59) sup Gplu) - Kplu) ,
uel u

for any arbitrarily small positive number t, we would have
a complete generalization of Theorems 13 and 13!, This is

what we are going to sattempt next,

We recall first that I =.{u Pt o< Gpyplu) <1,
d < Gylu) €1, c<Kylu) < 1}, O«t«1, When t = Gppplu)
then at least one (but not necessarily both) of the sample
distribution functions Gp(u) and Km(u) is greater than
z=ro, So far, in theorems 13, 13" and 15, ws have imposed

the restriction on d and ¢ which are the values of Gn(u)

s
and Km(u) respectively for the value of u for which

t = Guyplu), that both of them are greater than zero, We
are going to drop this restriction now, Thus we are golng to
examine the limiting distribution of the random variable

(L.,60) sup Gplu) = Kplu) ,
uel u

where , as before, I ={u : t € Gyplu) <1, d<Gylu) <1,
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¢c<K(u)<1}, O<t<1, and d and c are such that

[oN
i

Gn(ll)

0
]

for the value of u for which t = Gpep(u)
K (u) T

and, since O < t < 1, at least one of ¢ and d is non-zero,

We again have

: 1
(L,61) sup Gplu) - Kplu) = mex mn % ;
uel u S '??(k)

<t,dast<1,ccd=1)

SI
+s
B

where, as before, S = {k,i,j it <

but with the above explained relaxation of previous conditions
on d and ¢, Due to this reiaxation of conditions on 4

and ¢ we have the following possibilities for them when t = E%E H
(1) 4 = 150 and c=d>0
n m
(11) d=2=0 and c=4>0

_ 1 _ 4
(111) d=L>0 and ¢ = % =0

These are three mutually exclusive posSibilitLes for d and

¢. Introdueing ¥ ={k,1,5 1 t= K <1, 0cdc1,ccidx 1}
48 _ . k
and 5% ={k,1,5:tegfet,dacdc1, 01} ror

cases (11) and (1i1) respecFively (4,61) can be written as
i .

max n m, if 4d>0,¢>0
5 Mo
i _ 4
(L.62) sup Gplu) - Kylu) = ¢ max n m, if d=0,¢>0

uel u g% '2( k)

max

L Sﬁ‘i‘* 7( N )




67

Case (1), where both d and c¢ ars greater

than zero, is handled by Theorems 13, 13' and 15,

Let us consider now case (ii), where d =0, c >0

3%5’ The statements (l.21) and (L4.22) of Lemma 1

are valid in this case too but A, Rényi's method cannot be

when t =

immediately used to derive the limiting distribution of the

random varisbles

1 d 1 d

max max

n - m . X n - m
5% | Th(1) T2(3+1) 8 | M) ()

which, according to the statement of Lemma 1, are to be ex-
3

amined when d = O, ¢ > O, To handle this problem let

t' = £_ be the smallest positive number such that 4' = l,
n-+m n

c! = % and both of them are greater than zero, In this

aituation the apprOpriate case of (L.62) can be written as

i _ 1 o - 4 i_Jd
(4.63) maﬁ n m = max maé m , max n m
s (% 517 M) 527 M)

where 31* ={k,; : t = E%E <tl,csd« c'} and

5,% = {k,i,j s t! = - <1,d' = % =1,0' = % = 1}° Now

having t'(n+m) < kK € n+m and, as a result of that, nd! < 1 < n,
me! < j < m in S>¥, the second random variable of the right
hand side of (L4.,63) 1s at least zero while the first random
variable of it is always negative, We can pick,bﬁherefore, the
second random variable of the right hand side of (L.63) as

the one which is going to provide maximum for us, Thus (L ,63)




can be written as

i d i .1
(L.63)! max B " m = max n m
S* z(k) S2 qQk)

where , as given above, t' 1in 5,% 1s the smallest positive
number such that both d' and ¢! in SZ*"are greater than
zero, This means that we reduced case (ii) to case (i) and

Theorems 13, 13' and 15 hold with t = t', d = 4! and ¢ = ¢!,

Concerning case (1ii), where d > 0, ¢ = O, using
the argument of case (ii), mutatis mutandis, the appropriate

case of (L.62) can be written, analogously to (L.63), as

1.1 R [
(L.6l) max 0 m = max{max m , max B m
S TS 51 o =2 W
3 . k " 1 n
where 5, = {k,i st < = <t',dspg=<d } and
et K i
s, % {k,i,j t“5W51,d"§ﬁ§1,c":%§_1} and
where t" = E%E is the smallest positive number such that
av = %, e = % and both of them are greater than zero. Un-

fortunately, there seems to be no way of choosing any one of
the random variables of the right hand side of (L .6l4) as
maximum of the two, Theoretically spesaking either one of them
can turn out to be the maximum of the two or when they would
be e qual either one would be satisfactory for deriving the
limiting distribution of the left hand side of (L.64), In

a given practical example we could of course spot the approp-

riaste one for examination and to handle these possibilities




69

we could derive here the possible limiting diatributions for
the appropriate situstions, To state things exectly we can

have the following three mutually exclusive possibilities for

(L.6L) :

i A
max N ... (1) or
51 (i)
i i :
(L.65) max n_- d = 4 max n " 311 ees (2) or
8 Mx) 82 (k)

either one of (1) and (2)

when they are equal.

The limiting distribution of the random Variable
of (2) 1s handled by the extended form of Theoreﬁ 13, that
is Theorem 15 holds with t = t", d = d" and ¢ = c", In
case of (1) we would have to consider the possibilities of
having : () d <1 and d" « 1, (b) d =1 and, therefore,
d" =1, (¢) d<«<1 and d" =1, Thus the limiting distrib-
ution of the random variable of (1) would have three different
forms, Namely in case (a) Theorem 3 of chapter 2 would hold
with a =d and b'=d", in case. (¢c) Theorem 1 of chapter 2
would hold with a =d and in case (b) we would have to

examine the "limiting" distribution of max _ 1
S W) k)
and could possibly use the exact distribution of log 1

‘ (k)
for declsion problems which was proved to be the exponentigl

law with c,d.f, 1 = ™%, In case of equality of the random

varisbles of (1) and (2) the limiting distribution can be
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taken as that of either ofrthems and would no doubt best be
taken as the more convenient one; which is the one of case (2)
hsndled by Theorem 15 asexplained above, All these limiting
distributions are conditional ones corresponding to the |

specified possible situations,

It is clear that, because of these conditional
limiting distribution statements, an attempt to give a completely
general form of Theorem 13 would become very cumbersome, We
are golng to propose instead a convention which willl enable us
to formulate the desired generalization of Theorem 13 in a

relatively simple manner,

We are trying to derlive the limiting distribution of

su ) QFn(x) - Hm&W?(x) or, squivalently, that of
t<F\x

sup (Gp(u) - K (u))/u for any arbitrarily small positive
uel

number t, thereby relsxing our conditions on d and ¢
as stated in (L.60)., We did not succeed in this attempt
because of the difficulties encountered in case (iii) of
(L,62), after successfully handling cases (i) and (i1)
of (L.62), This troublesome case (1ii) would reduce to

well behaving case (11) 1f we would adqpt the following

: - k
convention, If in (L.62), when t = a7m »+ We would have

d = é >0 and ¢ = % = 0, that is case (1i1), 1let us

write the appropriate statement of (L.62) as
4 . 1

(4.66) sup Kmlu) - Gnu) = max m n
, u€l ‘ u S 1?('1{)
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which amounts to interchanging Fp(x) and Hg(x) 1in the
proposed extended statement of Theorem 13; that is instesad

of starting with su ) (Fn(x) - Hy({x))/F(x) we would start
t<F(x

with  su ) (Hm(x) - Fn(x5)/F(x) in our attempt to generalize
t<F(x ’

Theorem 13, This is not a restriction, for we can set up our
original random variable with F,(x) and Hm(x) in any
order in it, Only because of the method of proof we are try-
ing to use here we would want them the way given in (L.66).
Having got (h,éé)y instead of (L .6lL) we could have the

following relation

i - 4 -
(L.67) max % " n = max{ max 0

¥ (k) 54 %% (k) 52 'Q(k)

pa J {208
= J =

where , again, 81**9 SZ**, t", 4" and c" are as defined

in (L.6L), Following the argument of (L.63)' we can
write (L4.67) as

Jd
(L.67)" max m _~
and theorems 13, 13' and 15 hold with ¢ = t", d = d" and
¢ = ¢" 1in this modified form of case (1iii) of (L.62).

We have , therefore, through Theorem 15, the follow=~

ing generalized form of Theorem 13,

Theorem 16, If F(x) = H(x) and n, m-> oo so that

m
o L then



T2

(L4.68) lim P[fnm  sup Fa(x) - Hulx) « =
(m,n;p) Q;;; t<F(x) % (x) x y)
Plys e, d,p) , 1f d>0,c >0 for all values of

t O<t <1, so that when

2

Fplx) = d with 0 < d

1A
-l

P(x'%)) = t then whers ,

9

Hplx) = ¢ with 0 < c <1
since O < t « 1, at most one of d and ¢ can be equal
to 1, If any one of d and ¢ 18 equal to 1 then we put
d=1 or ¢ =1 1in @(y;c,d,p); or

(L .69) lim P(P@g_ sup’ Fn(x%(: Hpm(x) = y)

(m,n;p) n+m t<F(x) x)

|
—
o
B

I’( fnm sup Fplx) - Huh(x) <« y)
(m,n;pE) 'n+m t'<F(x) F(x)

',d',p@) , 1f 4d=0,¢c>0

0
HH

d

o)

9

when F(x(t)) = t and where F(x(t')) =t!', O<t!' <1, is

d'

I

the smallest positive number such that {j
c!

where, since 0 < t! « 1, at most one of d' and c' can be
equal to 1, If any one of d' and c¢' 1is equalto 1 then

we put d' =1 or ¢! =1 1in @(y;c',d",p); or

(L, 11 P Hp(x) - Fp(x)
o (e, e < v)

lim P (YEET sup Hnw(x) - Ppn(x) = y)
(m,n;p0) n+tm  t"<F(x) F(x)

@(y; ", d",0) , if d>0, ¢=0 when F(x{t)) =t

Fp(x) with 0O « 4!

H (x) with O < ¢'

IA




>

"
and where F(X(t )) = g" 0 < t" « 1, 1is the smallest positive

9

a" = F (x) with 0«d" <1
number such that ’ , Where,
¢" = Hylx) with 0 < c" < 1

tA

i}

since 0 < t" < 1, at most one of 4" and c" can be equal
to 1., If any one of d" and c" is equal to 1 then

we put d" =1 or ¢" =1 in @(y: c", d", p).

We could have, of course, started the discussion

of Theorem 13 with  sup (Hp(x) - Fp(x))/F(x) instead of
t<F(x)

su ) (Fplx) - Hyp(x))/F(x) and would have arrived at the
t<F(x

same generalized statements of Theorem 16 as given above but
(4.68) where we would have F,(x) and H_(x) in reverse to
thsir present order which is irrelevant to the statement

being made there anyway,
Proof of Theorem 1l,

Repesting the argument of the proof of Theorem 13
it can be shown that it will be sufficient to derive the
limiting distribution of

(L.71) su Gnlu) - Kplu) , O <t <l «1,
tiGn+m?u)f.l u

in order to prove Theorem 1li, If, in general, 0 < t < Gpem()
< 1 <1 then at least one of the empirical distribution
functions Gn(u) and Km(u) is grester than zero at u

where t = Gpimlu) and, also, at least one of them is less
than 1 at u where G, ,.(u) =1, Let again, as before,

d = Gplu) and c¢ = Kylu) when t = Gpip(u) and let e =
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Gn(u), f = Kylu) when G,, (u) =1, For the sake of Theorem
14 wa make the assumption that both d4 and ¢ -=are greater
than zero and less than 1, As a result of this aséumption
both e and f are greater than zero, Otherwise we do not
make any restriction on e and f, that is we do not exclude
the possibility of having one of them equal to 1, Thus,
examining the random varisble of (L4.71) for the set of u's
for which we have t € Gpym(u) € 1 also means the examination
of this random variable for the set of u's for which d < Gn(u)
<e and c < K (u) < f simultaneously, This we express by
writing (L4.71) in the following form

(4.72)  sup Gplw) - Kplu)
ueU u

where U = {u 2t Gy (u) £1,d<Gylu) <o, c<Kylu) < t}
Anslogously to (L4,19), (L4.72) can be written as
i .1 1 _ 1
A4.73) sup Gp(u) - Km(u) = max|n m, n ml ,
, e U u T k) Pier1)

snere T = {k,i,j s t «k/(ntm) €1, d<i/m<e, ¢ < j/ms 1)}

and where, if i/n - j/m > O, the expression

(i/m - j/m)/ %(k) is used and, if i/n - j/m < O, the
sxpression (i/m - j/m)/.Q(k+1) is used

to find maximum, If % - % = 0, 1t is irrelevant which

one of them 1s used, We cannot say here, as we did in case
of (h,19), that the maximum of the above expression is ét
least zero, for we have here t(n+tm) < k < 1(n+m) and as a
result of that dn < 1 < en, cmlg ] € fm  which implies that

we may never have % - % = 0 and, as a consequence of this,
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ir % - g < 0 when examining ﬂ(k), the ordered statistics

of the pooled samples, for t(n+m) < k < 1l(n+m) we need

Sl

- %)/‘Y(k+1) to find indicated maximum in (h.7§). An

extended form of Lemma 1 will enable us, though, to derive
the limiting distribution of right hand sides of (L4.73).

In this connection we are going to prove

Lemma 2,
g : , R
Gt wan| & - A ] s mefEicd,d -4
T hn e T ) M | W)
[ 1 1) 1.1 L _ 1
(4,75) max n - m < max{n_ m, n_ "~ m
T \Q1(1+1) qZ(j)J T | Mx) M et )

where U(1)s Maenyr Taens Bigary 29 T 2ve as
defined in (L.8) and T 1s as defined in (L4.73).

Proof of relation (L.74).

If % - % > 0, then to find maximum of right hand

side of (L4.7L4) we use (% - %)/‘Q(k) and thus the first

two steps, (a) and (b), of the proof of (L,21) ‘apply

here too, 5o we take the case when % - % < 0, 1i.,e, when

(% - %)/ (k+1) of (4.74) 1= used to find maximum,

(o) Let =<0 when My =Ty and Lot Qg =B
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i A i _d
Then n - m > n m , for ?(k)=1?1(1)’

G(1) T2(3+1) Ti(1+1)

A1) = Taer) o2 that Tyos) < Man) < T gen)-

(¢)! Let %=%<O when 7(k)=?1(1) eand let ﬂ(k+1)=72(,j+1)°

1 d A
Then n - m > n m , for < ?2 .
(1) T2( 3+1) T(i+1) 1) H)

(d) Let % - % < 0 when ?(k) = ?é(j) and let q(k+1) = ?1(1+1)°

i Jd i d
n n m , for "?(k) =?2(j)’

- m > e
U1 T2( 541) T (1+1)

Ter1) = G101y 1mply thet Ty @ i) © e < oo

Then

(d)!' Let ?ii - .% < 0 when ?(k) = 7?2(,‘]) and let 'y((k_;_1) = ’?2(j+1)°

i d i
Then n -
1(1

i _ 1l
m > n m s for < < V .
W o B Ty = oy < e

The next two steps, (e) and (f), of the proof of (4,21)
apply here too, The gquoted relations of the proof of -(h,21)

and (c), (e)?, (d) eand (d)"' above prove (L.74),
Proof of relation (L4.75).

If - -% > 0, then to find maximum of right hand

Sl

side of (L.75) we use (% - %)/ ?(k) and thus the first two



T

steps, (a) and (b), of the proof of (L,22) apply here

too, So we take the case when i.]e« O, that is when
n m

(% - %)/ ,Q(k+1) of (L.75) 1is used to find maximum.

(¢) Let £ -4 <0 when %y =T andlet

i Jd S |
Tz(k+1)=,q1(i+1)o Then n - m_<n m o,
M(141) (1) 1(1+1)

for My = Th(1) implies that '72(3) < 1) <Y1

(c)' Let L.-J<o when /?(k)=71(1) and let

u 17 T i A i _ 1
(k+1) = 2(3+1)° hen = n - m € n m
I Ko (1+41) i32( 3) izz( j+1)

for 'Q(kﬂ) ='{22(j+1) implies that ?72(3“) < "21(1+1).

() Let X -Jd<o when T, = 72(j) and let

i d i _ 1
1?(k+1)=?1(1+1)° Then 2 g m

n
Ti(1s1) M2 5) Mh(1+1)

ror My =72(j) and Miypq) = Th(14q) 1mply that ‘72(1) < li(141)" |

()' Let 2 -4 <0 when M, ="My and let

i d i _d
n

- _m <€ n m o,

tor Moy = gy w08 Tiuy) = To(guq) Luoly onas
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4?2(j+1) < ﬁq(i+1) and naturally"qz(j) <ﬁ2(j+1).

The next two steps, (e) and (f), of the proof of (4,22)

apply here too, The guoted relations of the proof of (h.22)

and (c), (c)!

, (d) and (d)' sbove prove

(L.75).

Lemma 2 implies that the random variasbles which have

been used to prove Theorem 1% can also be usaed to derive the

limiting distribution of (h.71). Expressions, analogous to
(h.23), (L.2L), (k.2s), (L.26), (L.27),
imply that the proof of Theorem 1, can be accomplishad by

(L.28)

and (L4.,29)

examining the limiting distribution of the left hand side of

(L,74) and (L4.75) respectively. We consider first the

left hand side of (lL.7L) that is we examine the asymptotic

behaviour of

i
(4.76) max n - % s
T (o Ta(sen)

whers  repsating the conditions of Theorem 1L, we make the

assumption that both d and ¢ of T are greater than zero

and less than 1, Because we have : O < t < ] < 1,

one of the values e and f of T can be equal to

at most

1., Under

these conditions (L.76) can hsvse thres mutually exclusive

forms which we indicate by writing it as

( 1
max )5} - m
T My B
i d i
(4.77) wmeax| n - m ={max n = m
T 121(1) 172(j+1) T ”1(1) /72(j+1)

, 1t s f<1 ,,, (1)

J

if e=1,re1,,, (2)




where T

T?

i

T"

i

are less than

¢ are grester than zero and less than 1

both e

ution of the

{k,1,
{x.1,

and f
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i
max n_ - m , 1f o<1,
T
’?1(1) W2(3+1)
1s as defined in (lt.73) and whare
. k 1 l
j°t§milsdiﬁf1scimif}s
: k 1 |
1t =<, dsise,ccda1),
We examine first case (1) , where both e and f

1, DBecause of the assumption that both d

are greater than zero,

(4L,77) 1in this case 1is

random variable of

identical with theat of the random variable
i 4 |
7 - =
(4.78) m;x log _n log m . vé(m+1) 1,
(1) 5e1)
This, snalogously to (L.,36), can be written as
L .79) ( n m
(4.79 = max{| log 1 - % =] - |10g 1 - 5
0 T ) v=i ¥ M s=]+1
\ 1(1) a( j+1)
[ n 5 1 m 5 -
= max | }, n+1-v - 2. m+1-s
T \v=i v s=j+1 s
which, in turn may be written as the sum of two independent

random variables ¢X and fb where

(4.80)

and

K =

L Ontaa™ - T Gy
en<i<n i fm< j=m-1 j+1

it is assursd that

£=1 ooo(a)

and

The limiting distrib-

o]
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(1.81) B =max 7 Oariatt - % dwgtt
T 1 1 j j+1

It 1s clear from (L4,39), (L.,41) and (L. L1)!
that, as n, m— oo so that T-»0 , the standard deviation

of nm o 1is given by
n+m

(4.82) VE(1-e)p+ e(1-f)
ef(1+.0)

and, by the Lindeberg form of the central limit theorem in

the limit, as n, m= oo so that -‘3—)/0, nm_ X 1s a
n+m

normally distributed random variable with standard deviation as

given in (L.82),

Considering (L4,81), the variancs of 2 é&+1-1 ,
i i

if dns i «en, O<«<d«<e « 1 and using Euler's summation

formula, is given by

(b.85) 22 ( T 5n+1-1) = L 1=1 a4,
dn<i<en i dn<icen 12 dn en n

= o-d 1

= &an * o)

gnd, similarly, the variance of 2 8m—j , 1f em< § < fm,

h| Jj+1
O<ce<f <1, is given by
(L.8L4) D2 P2 ém‘) = L , o
em<j<fm  J+1 cfm m

which, mutatis mutandis, can be seen from calculations
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of (3.4l4)., Thus the standard deviation of

n+m \dn<i<en i cm<j<fm 1

as n, m- oc 80 that %—b/o, 1s given by

(4.85) We=—d)cf(°+ (f-cled
‘ sdef(1+0)
on using (L4.83) and (L4.84), From the proof of Theorem 13

it can be seen that, when applying Theorem 5 of chapter 2

with Ynm /6 as max S,,.nr i ©Of this theorem, we have
' n+m e

Y edcf (1:+ P)

J

' e-djcfP+{-c)ed
(L.86) lim P rn V2
(m,n;p) (E%Eﬁ < y) = {_2'_ J e 2 dv , if y >0,
e 0

zero otherwise,

Considering further that o< and B are indefiend-

ent it follows from (4.82), (4,86) and convelution that ‘ edcfg+¢
e-dicip +{f-c)e

‘ . (79
(4.87) 11 P(ng < y) : 1‘{(1 E-ﬁ-e(l 1) _2e1;(1+)p)1:“ v
o : m = - - -e)pt+e(l- -
(m,n;p) n+mF RG{TY: e P 1| e 7 gydu
-0 o

where we have : -o00« y <« +69, and this, by ()4-.78), is tho
1imiting distribution of left hand side of (L.74) for case (1)
of (h—o77)o

The limiting distribution of left hand side of (L.75)
for case (1) of (4,77) can be derived in exactly the same
way with the same result, This completes the proof of Theorem

114 in the cass when both e and f are less than 1,
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Concerning casa (2) of (L4,77), where e =1,

f <1 it can sesily be ssen from (L,52) that, as n, m= oo

2

so that %-4,0, (nm x 1= a normally distributed random
n+m

variable with stendard devistion

.88) Y (1-f) .
( T(1+ )

and the limiting distribution of Vnm ﬁ& has standard deviation
n+m

(4.89) 1(1=d)cfﬁ7+ (f=c)d
def(1+p0)

also easily seen from (L.83) and (L4.84).
Similarly, in case (3) of (L.,77), where e <1,

f =1, as n, ni» oc 80 that E"/o , ynm_ e~ is & normally
E nhm

distributed random varisble with standard devistion

(4.90) (1-o)R ,
e(1+p5

while the limiting distribution of rnm /3 has standard deviation
n+m

(4.91) ((e-d)cp + (1-c)ed
ede(1+¢)

Therefore  (4.88), (L.89), (L4.90) and (L.91)
imply that in (L ,87) we have proved Theorem 1l with the

understanding that we put e =1 when e =1, f « 1 and

9

f=1 when e« 1, f =1 1in the right hand side expresssion

3

of (L.87), that is in N(y; d, ¢, e, f,0) of the statement

of Theorem 1k, Also, iIf n=m we put f)= 1 in (L4.87)
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and then we have a special form of Theorsm 1k,

Just as in the case of Theoreﬁ 13, we could examine
here too the possibility of having one of d sand ¢ equal
to zero or having one of them equal to one and the possible
combinations of these two cases, To any one of these poss-
ibilities for the valugs of d and ¢ there would belong
some possible combinations for the values of e and £,
Because of these numerous possible combinations, difficulties
arise which are similar to those of cases (ii) and (11i)
of p., 66 and which cannot be similarly overcome when trying
to examine their limiting behaviour, 1 have therefores not
attempted the problem of generslizing Theorem 14 in this

dlrection,
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5., Remarks and some results concerning the problems

of deriving the limiting distribution of the supremum

of |Fplx) - Ho(x)|/F(x),

Repeating the argument lesading to (4,19), wmutatis

mutandis, we get

L | I |
(5.1) sup | Gnu) - Km(u) | . max{|n m|l,| n m
uet s S Mo T e
i _ 1 i A
But max | n s mex | n_ "~ wm] and, therefore, we

n___m
S k) S T e+1)

get from (5,1) that

(5.2) sup{ Gn(u) - Km(u)
uel u

From the statement of Lemma 1 of chapter h it is clear that

i_1 i d i d

(5.3) max | n " m| « max

n_ m ,lom _ _m
S Mk S T a0 [T T

Here we have the problem of deciding which one of
the random variables of the right hand side of (5.3) is going
to be maximum and there sesems to be no way of doing this,
If we were able to derive the limiting distribution of the right
hand side of (5.,3) then, through (5.3), we could have a

statement regarding I1F,(x) - Hplx)!/F(x) as follows

(5.4)  1im P(Y'E_E_' sup \Falx) - Hpls)l < y) 2
(m,n3p) n+m - t<F(x) F(x)
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lim P (rnm Rahm < y)
(m,n;p) n+m ’
where Rn,m stands for the right hand side of (5.,3), Then

we still would have the problem of finding an upper bound for

1im P Vnm sup [Fn{x) - Hp(x)l =y and if this
(m,n;p) ( n+m t<F(x) a F(x) a )

upper bound would turn out to be equal to right hand side

of (S,h) we would have a new limiting distribution at our

disposal, The derivation of this upper bound in question

would require a random variable which would be less than or
i .

equal to (H.- %)/'Q(k) when positive and greater than or

equal to it when negative, Thus its sbsolute value would be
i
n - m

k)

A Rényi's method of proof we would have to have it in a form

less than or equal to ;, &and 1f we wanted to use

adaptable to this method, I have not succeeded in finding

such a random variasble and have settled on trying to derive
statements like (5.4). Such statements would be of some
Interest as "Wat least" probability stdfaments, In this connect-

ion we are going to prove the following theorems :

Theorem 17, If F(x) = H(x) and n,m—> ©© so that
.3:13 - L then

(5.5) 1i P ¥ |IFalx) - Hp(x)] < )
220 (dmie) Q%%a £<F(x) NV 7

oo ke cl-dlo +d (1-0)
L 3 (0% -5 sedwwe o, if y> o0,
T k=0 2k+i
>
T 10, if y=<o0

- cc(1+P)
L vc(1=d)/00+ 1T |
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for all values of t, 0 < t <1

Fn(x) =4

]

i

c

F(x{t)) = t then
Hy(x)

of 4 and c¢ 1s equal to 1

9

- a(1+p) .
h(y(c(1-d3/0+ d(1—c))

H

=0 that when

with 0 « 4 = 1
. If any one
with 0 < ¢ < 1
we put d =1 or ¢ =1 1n
t <« 1 at most

Since we have O «

’

one of the values d and ¢ can be equal to 1,

Theorem 18, If F(x) = H(x) and n,m-» oo so0 that

%-—»/O then
(5.6)  1lim P =S LN NEI S EITRE 7)
(m,n;p) ( n+tm b<F(x)<l e
oo _(mﬁ'wz ct-djo +d(1-c)
3 (-1)k . F YEcd(+A)

T k=0 2k+1

v

0, if y<0

3

o o]

-]

- 2
=%

ef1+p)

Y

f(1-e)p +€(1-1)

ka, if y>0,

Vl

T

and © = (VZTI v cd(1+p)

le(1-d)p + d(1-¢)

i

R(y; d, e, e, T, 0)

9

dv + f’k
Qk+ /2

-1 viefu+o) [Hu-epreuL)v?
%) 9 @ T0-ePeera] é-zvrzrarﬁr"

0

for all t and 1 with 0 < t < 1 € 1 where the other

parameters satisfy the following conditions

. Ppix) =

when F(x'")) =t then 4
Hylx) =
F.(x)
and when F(x(1)) =1 thenl ™
H.(x)

than one, at most one of e and f

d with 0« d « 1

(¢

]

with O < ¢ « 1

e

can be equal to 1, If

f where , 1 being less

sin v dv
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one of e and f 1is equal to 1, therappropriate one is

replaced by 1 in R(y; d, c, e, £,p),

These theorems provide tasts for verifyling the
hypothesis that 2 random samples of size n and m res-
pectively have been drawn from a population havihg continuous
¢c,d.,f, F(x). The character of thess tests consists in thst
they give a band in which, if the hypothesis 1s true,
sup IFh(x) - H_(x)] has to lie with at least that much
probability as given in (5.,5) and (5.6) and the width of
this band is proportional at all its points x to F(x),.

It is quite likely that in (5.5) we have

1im P(yom_  sup [Pnlx) - Hp(x)l < y) = Ly cd(1+p)
(m,n;p) ((::; tsF(x) . F’('x)H1 ) Yc(1-db0+d(1-c)

Am_ sup |Fplx) - Hylx)l <« y)
(m,n;p) n+m t<F(x)<l F(x)

and in (5.6) we have lim P (Vnm

=R(y; d, ¢, e, £, 0). As it was already mentioned above ,

one would have to be able to show that 1im sup P(,) state-
' (m,n;p)

ments of (5.,5) and (5.,6) are bounded sbove by L(,) and
R(,.;...) respectively in order to prove these theorams in

such forms,
Proof of Theorem 17,

To prove Theorem 17 we will have to derive the
limiting distribution of right hand side of (5.,3) and for
that we would need the maximum of its two random variables,

As we have already remarked after (5.3), there seems to be
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no way of choosing this desirad meximum random varieble,

It so happens though that the llmiting distribution of the two
random variables in question 1s the same, This enables us to
say that it i1s sufficient to examine the asymptotic behaviour
of any one of them for if the one we pick would not happen

to be the maximum one we would have to choose the other one
and it would provide us with the =sme limiting c,d.f., Keeplng
this argument in mind let us assume that in (5,3) the

following occurs :

i d |4 d
n

(5.7) max{m = m < max

m '7 =1
BB = o (2(m+1)
S Moo 51 My B g+1) .

i
n

' Jd
Let A be the event ‘nm max - m
n+m 8 IZ](i) IiE(J""‘) <« T

i d
and B be the event Ynm mex|{n T m| < y.
n+m ) ﬁ(k)

It follows then from (5,7) that A B and, therefore, we
have P(A) < P/B), which immediately implies Theorem 17 1if
the limiting distribution of the event A 1is given by

MyY cd(1+R) ) of (5.5)
¢(1=d)o+d(1-c)

Let us cohéiaer then the right hand sids of (5,7)
where, for the time being, we assume that bééh d and c¢ of
S are less than 1, where S 1s as it was defimed in (L.19),
Now the limiting distribution of the right‘hand4siéo of (5.7)

is identlical with that of the random variable

©
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(5.8) z e &
55 max |[log _ n = log. m_ 5
S Ti(1) T2( 3+1)
which, in turn, has the same limiting distribution as
n -1 m -
(5.9) Max [ 3 5g+_1 -v - 2 Omt1-s”) ,
S v=1i v a=3+1 s

as can be seen from (L4.31), (L.32), (L.33), (h,Bh), (4.35)
and (4.36). Applying Theorem 6 of chaé%er 2 with (5.,9) as

max |S of this theorem and using the results of (L4,39),

n+m,k|

(1) and (LL1)' we get

i
(5.10) lim P(KEE: max [ log n - log m
(m,n;p) ntm 8 1(1) ﬂé(j+1)

= L cd(1+p)
(y (c(1—d)p + d(1=c)

where L(,) 1is as it was defined in (5,5),

It is clear from (4.148), (L.50), (L.51), (L.52),
(h,53) and (4.56) that the statement of (5.10) remains
valid when one of d and c¢ 1s equal to 1, This, with
the remark that the limiting distribution:of the second random
variable of the right hand side of (5,3) is also given by

(5.10), completes the proof of Theorem 17,

An attempt to generalize Theorem 17 on the lines of
Theorem 16 of chapter L, that is when we would want to allow
d or ¢ to be equal to zero, falls because of the absolute

sign of |F (x) - Hy(x)! of this theorem,
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Proof of Theorem 18,

From (L4.73) it is clear that we have

i
(5.11) sup Gnlu) - Kplu) = max|m ~ %
ue U u T l'?(k)

where U and T are as defined in (L4,72) and (L4,73) and
where, for the time being,bwe assume that both e and f of

U and T are less than 1, Now by Lemma 2 of chaptér L we
A
have

i Jd i Jd
-

(5.,12) max n

2 m . n - m
T M) T M Teny | 1 e (1)

where again we cannot though decide which one of the two random

variables iz going to give us maximum but here too we can say
that both of them have the same limiting distribution, As =
matter of fact, both of them have the asymptotic distribution
a8 given in (5.,6) by R{ys; d, c, e, f,f)), Repeating the
argument of (5,7) let us assume that in (5,12) the follow-

ing happens :

3 e

d :
m| < max

d
Moo LT T ) 1r_gh—' » Ta(mer) =1
Nx) 1(1) H(341) ,

From the argument immediately after (5.7), mutatis mutandis,

b+ F IR

(5.13) max
T

P

it follows that in order to prove Theorem 18 it is sufficiﬁnt
to prove that the limiting distribution of the right hand side
of (5.13) 1is given by Rly; d, ¢, o, f,/O) of (5.6),

Now the limiting distribution of the right hand side

of (5.,13) 1is identical with that of the random variable
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i !
(5.1L4) mex| log _m - log m .
T Ti(1) Wa(j+1)
which, in turn, has the same limiting distribution as
n m
(5.15) max | 3 dn+1-v~1 - 2 dmt1-s"]
T v=1 v s=j+1 s

and this is easily seen from (L.79).

Let us define

(5.16)  Spim;nemet-ksn+l-1,m-]

v=1 v 8= j+1 8
(5.17) B2, = D? 3 dns1-171 > Bm_3‘1
dn<i<n i ) cms jem-1  J+1
1
= Z 1 + zZ
dnei<n 12 cme jm-1 {J+#1)2
(5.18) A2, =D?| = Ont1-17" - z Sg_jv1
' en<l<n i fms jem-1  3+1
= 2 1+ 2 1
ensi<n 12 fm<jem-1  (J+1)2

By (4.39), (L.41) and (4.41)' we have

#
1-e 1-f 1 1
Atm = yen tm ¢ olg) + oly)
= 1-d 1~c 1 1
Bn+m de + cm * o(n) + o(m) 9
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(5.19) lim An+m chf(1-e)ﬁ7+ dce(1-f) _ A
(m,n;0) Bpem  lefe(1-d)p + efd(1-c)

as m, n-»> oo 80 that %-—»p, Thus we can apply Theorem 8
of chapter 2 with (5.16), (5.17), (5.18), (5.19) and with
1 <M, =ntl-en <« Ny = n+1-dn and 1 £ My = mt1-fm « Ny = m+1-cm,

Therefore we have, by (5.14) - (5,19), that

: 1 i
(5.20) 1im P (max log _n - log _Ell__ ‘
(m,n;p) T B(1) M2( 3+1)
. (E;g ¢0(1-d)ﬁ%ﬁ + d(1-c)wFm )
nm . de ‘

being equal to the statement of Theorem 8 of chapter 2, Letting

_m_ ) 2
y = ZVE(1-d) ntm _* d(1-c) ntm and n;, m» oo so that
de ,
%...,/o we get
— i A
(5.21) lim P <Vnm max |log n - log m « y)
(m,n;p) n+ém T A1) To(341)

= R(y; d, ¢, e, f,(O) ’
where R(y; d, c, e, £,0) 1is as it was defined in (5.,6)

It is clear from (4.48), (L.50), (L.51), (L4,52)
and their application, mutatis mutandis, to (5,16), (5.,17),
(5,18) eand (5.19) that the statement of (5,21) remains
valid when one of e and f 1is equal to 1, This, with the
remark that the limiting distributlion of the sdéénd random vari-
able of the right hand side of (5.,12) 1is also given by (5.21),

completes the proof of Theorem 17,



93

Bibliography,

[1] Anderson, T ,W, - Darling, D,A,, Asymptotic theory of
certain "goodness of fit" criteria on stochastic processes,

Ann, Math, Stat., Vel, 23 (1952), pp. 193 - 212,

[2] Donsker, M,D,, Justification and extension of Doob's
heuristic approach to the Kolmogorov - Smirnov theorems,

Ann, Math, Stat,, Vol 23 (1952), pp. 277 - 281,

[3] Doob, J. L., Stochastic Processes, John Wiley, New York
(1953),

[h] ' , Heuristic approach to the Kolmogorov -

Smirnov theorems, Ann, Math, Stat,, Vol 20 (1949),

pp. 393 - Lo3,

°3

[5] Erdés, P, - Kac, M., On certain llmit theorems of the

o9

theory of probability, Bull., Amer, Math, Soc
(1946), pp. 292 - 302,

Vol 52

°9

[6] Feller, W

°9

An Introduction to Probability Theory and
its Applications, Vol 1, second edition, John Wiley,

New York (1957),

[7] , On the Kolmogorov - Smirnov limit theorems

for emplrical distributions, Ann, Math, Stat,, Vol 19

(1948), pp. 177 - 189.

[8] Gihman, I,I,, Ob empirileskoi funkcii raspredelenija

sludaje gruppirovki dannych , Dokl. Akad, Nauk SSSR,



[9]

[1q

(11]

(13

[15]

ol
Vol. 82 (1952), pp. 837 - 8Lo,

Glivenko, V,I,, Sulla determinazione empirica delle

©°3

leggi di probabilite, Giorn, Ist, Ital, Attuari, Vol L
(1933), pp. 92 - 99,

Gnedenko, B,V, - Korolyuk, V,S,, On the maximum discrep-

°9
ancy between two empirical distributions, Dokl, Akad,

Neuk S.S,S.R., Vol L (1951), pp. 525 - 528,

Gnedenko, B.V, - Kolmogorov, A,N,, Limit Distributions
for Sums of Random Variables (translated from the 19&9
Russian edition by K,L, Chung; with an ippendix by

J.L, Doob), Addison - Wesley Publishing Company, Reading,

Mass, (1954),

Hajdés, G, - Rényi, A,, Elsmentary proofs of some basic
facts concerning order statistics, Acta Math, Acad, Sci,

Hung., Vol 5 (195L), pp. 1 - 6,

Halmos, P,R,, Measure Theory, D, Van Nostrand, Princeton,

NoJo (1950)0

Kaplansky, I, - Hewitt, E, - Hall, M,, Jr, - Fortet, R,,
Some Aspscts of Analysis and Probability, John Wiley,

New York (1958),

Kolmogorov, AN, , Grundbegriffe der Wahrascheinlichkeitsrech-
nung, Ergeb. Math, No, 3, Berlin (1933) (English trans-

lation by N, Morrison, Chelsea, New.York (1950)),



[16]
[17]

[16]

[19]
[29]
[21]

[22]

[22]

[24]

95

, Sulla determinazione empirico di una

legge di distribuzione, Giornale dell' Instituto Itallano

d, Attuari, Vol I (1933), pp. 83 - 91.

, Confidence limits for an unknown dis-

tribution function, Ann, Math, Stat,, Vol 12 (1941),
pp. L61 - Le3,

Lodve, M,, Probability Thesory, D, Van Nostrand, Princeton,
N,J, (1960),

Malmguist, S,, On a property of order statistics from a
rectangular distribution, Skand, Aktuerietidsskrift;

Vol. 3% (1950), pp. 214 - 222,

Messey, F.J A note on the sstimation of a distribution

° 3

function by confidence limits, Ann, Math, Stat,, Vel, 21

(1950), pp. 116 - 119,

Distribution table for the deviation be-

H

tween two sample cumulatives, Ann, Math, Stat,, Vol 23

(1952), pp. L35 - Lh1,

Rényi, A,, Valdszinlségszam{tas (Probability Theory, in
Hungarian), Tankdnyvkiadd, Budapest (1954).
; On the theory of order statistics, Acta Math,

Acad, Sci, Hung,, Vol 4 (1953) pp. 190 - 231,

Smirnov, N.,V,, Ob uklonenijah empirideskoi krivoi

raspredelenija, Recueil Mathematique (Matematideskii

Sbornik), N,S, Vel 6 (1939}, pp. 3 - 26.



[25]

[2€]

[27]

8,

[29]

96

3

On the estimation of the discrepancy
between empirical curves of distribution for two 1nde-
pendent sampleg, Bulletin Mathématique de 1l'Université

de Moscow, Vol, 2 (1939), No. 2, 3 - 1k,

Wald, A,, Limit distribution of the maximum and minimum

3
of successive cumulative sums of random varisbles 6 Bull,

Amer, Math, Soc,, Vol, 53 (1947), pp. 1h2 - 153,

, On the distribution of the maximum of successive
cumulative sums of independently, but not identically
distributed chance variables, Bull, Amer, Math, Soc,,

Vol., 5L (1948), pp. L22 - L30,

Wilks, S.8,, Order statistics, Bull, Amer, Math, Soc,,

Vol, 54 (1948), pp. 6 - 50,

, Mathematical Statistics, John Wiley, New

York (1962),



