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ABSTRACT 

The problem of determining a statistical population belonging 

to a certain class of distributions is widely investigated in 

Mathematical Statistics. Of special interest is the characterization 

of the Normal distribution. 

In this thesis, characterizations of the Normal distribution 

through different considerations are treated in great detail • 

Chapter II is concerned with the characterization of the Normal 

distribution by using specified or unspecified distributions of 

suitable statistics. Chapter III deals mainly with the property 

of independence of suitable statistics, such as linear statistics, 

linear and quadratic statistics, linear and polynomial statistics, 

by which the Normal distribution is characterized. Chapter IV gives 

sorne generalizations of sorne results in Chapter III by replacing the 

property of independence by a weaker condition of regression such 



• --

as constant regression and polynomial regression. Finally, 

Chapter V discusses the characterization of the Normal distri­

bution through linear structural relations and through properties 

of sample estimators. Other characterizations which do not fall 

into the preceding categories are mentioned at the end of Chapter V. 
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CHAPTER l 

Characteristic Functions and Conditiona1 Expectations 

Introduction 1.0. The characterizations of populations have appeared 

in the literature from time to time, especia11y in the 1ast two decades. 

Different methods, setups and techniques have been deve10ped, among 

which characterizations through independence of statistics, distribu­

tions of statistics and regression properties are the main ones. In 

short, a11 these can be said characterizations through properties of 

statistics. In the monograph by Laha and Lukacs [48] characteriza­

tions of populations using the properties mentioned above are studied 

in great detai1 , and it also contains a complete bib1iography of 

the work up to 1963 and its historica1 background. A great portion 

of research work on characterizations of population is main1y on the 

normal distribution. 

In this thesis, we sha11 on1y dea1 with the characterizations of 

Norma1ity. The motivation of compiling the work on the characterization 

of the normal distribution is apparent from the text of the thesis. 

Further discussion is given at the end of the thesis in Chapter V. 

Apart from most of the resu1ts contained in [48], we a1so discuss 

some other results which are not treated in [48] and some recent de­

ve10pments. Our aim is to give an up-to-date complete survey on this 

subject, and hence it is of expository nature and no original result 

is obtained in the thesis. 
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One important technique of the characterizations of Norma1ity 

is to obtain a functiona1 equation in the characteristic function 

and obtain a unique solution.of this functiona1 equation a functiona1 

form of the form exp[p(t)J, where p(t) is a polynomial in t say. If 

the random variable X invo1ved is not degenerate, Le., X: equa1s 

some constant with probabi1ity one, then exp[p(t)] can on1y be the 

characteristic function of sorne normal distribution in view of a 

theorem of Marcinkiewic~ which states that if f(t) = exp[p(t)] is 

a characteristic function, and if p(t) is a polynomial in t, then 

the degree of the polynomial p(t) cannot be greater than two. 

Perhaps this is a great achievement in the history of the characteriza­

tion of Norma1ity. Need1ess to say, the importance of the characteri­

stic functions to the studies of probabi1ity rneasures or random variables 

is a1ways emphasized. In the monograph [66] by Lukacs, characteristic 

functions are studied fram the mathematica1 point of view in great 

detai1~ 

For our purpose, we introduce here the characteristic function of 

a distribution function or a random variable and sorne genera1 properties 

of conditiona1 expectation in or der to provide necessary termino1ogy 

and notations for the subsequent chapters. 

1.1. Characteristic functions. 

By a distribution function F(x) of a random variable x, we rnean 

that F(x) is a rea1-va1ued function which is non-decreasing and right-
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continuous such that F(+oo ) =-1 and F(- 00 ) = 0, and the mathe-

matical expectation, denoted by E(X) of the random variable X, we 

mean the integral E(X) = J xdF(x) 
RI 

taken in Lebesgue-Stieltjes 

The characteristic function f(t) is defined as follows: 

f(t) = E [exp(itX)] = J e itX dF(x) 

Rl 

sense. 

which is known in analysis as the Fourier-Stieltjes transform of F(x). 

An important class of characteristic functions is the class of 

analytic characteristic functions. This class contains the characteristic 

functions of the well-known distributions such as the Normal distribution, 

the Gamma distribution and the Poisson distribution; etc. One of the 

most important properties of analytic functions is the uniqueness theorem: 

If the function f(z) is analytic (regular) in the domain D, and if there 

exists a sequence of points zl,z2' ••• in D having a limit point in D 

such that f(z) = 0, n = 1,2, ••. , then the function f(z) vanishes on 
n 

the entire domain D. The concept of analytic continuation plays an 

important role in the application of the uniqueness theorem. By an 

analytic continuation of a function f(z) on a set E, we mean a function 

F(z) which is analytic in sorne domain D containing E and coincides with 

f(z) in the set E. As a consequence of the uniqueness theorem of 

analytic functions, it is found that if the set E has at least 

one limit point contained within the domain D, then the 
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function f(z) has at most one ana1ytic continuation to the domain 

D. This resu1t is very usefu1 for prob1ems of characterizing popu-

1ations. Instead of considering the characteristic function on the 

who1e rea1 1ine one needs on1y to determine the functiona1 form of 

the characteristic function in some neighbourhood of the origin in 

such cases. We 1ist seme r2su1ts of the ana1ytic characteristic 

functions which will be frequent1y used in our subsequent work. The 

most important resu1ts concerning criteria for ana1ytic characteristic 

functions refer to a c1ass of entire functions. The proofs of them 

can be found in [66] and are therefore omitted. 

Theorem 1. (Marc inkiewic Z;) If f(t) = exp[p (t)] n is a characteristic 

function, where p (t) 
n 

is a polynomial of degree n, then n cannot 

be greater than two. 

Proof. See pp. 146 [66]. 

Theorem 2. Every factor f
1

(z) of an entire characteristic function 

f(z) is an entire characteristic function. The order of the factors 

of an entire characteristic function cannot be greater than that of f(z). 

Proof. See pp. 170 [66]. 

Theorem 3. (Cramer). The characteristic function f(t) of a normal 

distribution has on1y factors which are characteristic functions of 

soœe normal distribution. 

Proof. See pp. 174[66]. 
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Theorem 4. (Linnik) Let 

characteristic functions, and let a
l
,a

2
, ..• ,a

n 
be positive real 

numbers. Assume that f(t) is an analytic characteristic function 

and the relation 

n 
II 

j=l 

a. 
[f.(t)] J 

J 
= 

holds in a neighbourhood of the origin, where ~ and cr
2 > 0 

real, and i
2 = -1. Then the functions f.(t)~ (j = 1,2, ... ,n) 

J 

are 

are 

characteristic functions belonging to the normal distribution. 

Proof. See pp. 190-196 [66]. 

1.2. Conditiona1 Expectations 

There are several ways of introducting conditional expectation of 

a random variable Y given another random variable X, and is usually 

denoted by E(yIX). In statistical terminology, the conditional expec-

tation X is referred as the regression of Y on X. One way of intro-

ducing the E(yIX) is by means of Radon-Nikodyon theorem. i.e., the con-

ditional expectation E(yIX) is defined as a ~x-measurable (;} = cr-field 
x 

generated by the random variable X) function up to a set of mea,>ure zero 

such that 

J E(YIX)dp = J Ydp 
B B 

for every B € ~x where p is 

the probability measure associated with the random variables X and Y. 
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We see that if B is the who1e space, say 0, then we have the we11-

known relation 

E[E(Y!X)] = E(Y) • 

1.3. General Properties of the Conditiona1 Expectation 

1. E(X!X) = E(X) 

3. Let X and Y be random variables such that E(Y) exists and 

let f be a Borel measurab1e function. If E(f(X)Y) exists, then 

E[f(X)Y~X]=f(X) E(Y!X) • 

4. If X and Y are independent, then E(Y!X) = E(Y). 

A11 these proofs are straightforward, and hence are omitted. Genera1i-

zation to a finite number of random variables is a1so straightforward. 

One version of E(Y!X
1

, •.• ,X
n

) is a function f (X
1

, •.. ,X
n
), where f 

is a Borel function of n variables x1, ••• ,xn such that for every 

B E 3f: (cr-field generated by Xl" .. ,Xn), we have 
xl'" xn 

J 
B 

A1so we have 

For a detai1ed treatment of conditiona1 expectation one may refer to 

[10] and [61]. 



CHAPTER II 

Characterization of Norma1ity by using known distribution of sorne Statistics. 

2.1. Specified distributions of sorne statistics. 

The prob1em of determining a theoretica1 distribution be10nging to 

a given c1ass is wide1y investigated in mathematica1 statistics. As 

mentioned in the previous chapter, we sha11 on1y confine our attention 

to the characterization of Norma1ity. By a statistic S(X1, ••• ,Xn) of 

a random samp1e Xl' X2, ••• ,Xn fr:emu.a random variable X with d. f. F(x) 

(X1,x2, ••. ,Xn are n i.i.d. r.v.'s having the same d.f. F(x) as X), 

we sha11 understand a measurab1e and sing1e-va1ued function of X1,X2, •• ,Xn, 

more precise1y, S(X
1
,x

2, ••• ,Xn) is itse1f a random variable. If as­

sumptions are imposed on the properties of sorne specifie statistics 

based on a given random samp1e, then they ~i11, in genera1, restrict or 

determine the distribution of the population under consideration. For 

instance, assumptions that give exp1icit1y the distribution of S or 

relate it in sorne specified manner to the d.f. F(x) can be used to cha­

racterize various populations. In this chapter, we make assumptons that 

(i) S(X
1
,x

2
, ••• ,X

n
) has specified distribution, (ii) S(X1,X2, ••• ,Xn) 

has the same distribution as F(x) by which the norma1ity is characterized. 

We first discuss the we11-known Cramer's theorem. The theorem 

was conjectured by P. Levy and was proved by Cramer in 1936 [11] • 
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Theorem 1. (Cramer) Let Xl and X2 be two independent r.v.'s. 

If Xl+X2 has a univariate normal distribution, then Xl and X2 are 

normal. (here "identically distributed" is not needed). 

This theorem actually is a restatement of Theorem 3, in Chapter 

One. For a proof, see p. 272 [61] 

In the light of this theorem, we have the following as a corollary. 

Corollary 1.1. Let 
n 

independent r.v.'s 

and let L = ~ a.Xi , a., (i = 1,2, ••• ,n) are real. If L is normal, 
i=l 1 1 

then each X., (i = 1,2, ••. ,) is normal. 
1 

Based on this corollary, Linnik [56] gave a very elegant proof 

of the so-called "Skitovich-Darmois" theorem which states, in short, 

that in two independent linear functions of independent r.v.'s, the 

components having non-zero coefficients in both forms are normally 

distributed. He also showed that Cramer's theorem can be deduced from 

Skitovich-Darmois' theorem. Incidently this result reveals the 

generalityof 'Skitovich-Darmois' theorem. We shall discuss the Skitovich-

Darmois' theorem in Chapter III. 

One of the most important univariate distributions used in theore-

tical or applied statistics is no doubt the normal distribution. It 

is also true that the multivariate normal distribution plays an important 

role in statistical inference in multivariate analysis. 

Just as the univariate normal density function e 
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where cr > 0 and ~ are real, the density of a multivariate normal 

distribution has an analogous form, which is defined to be 

-p/2
1 

1/2 1 
f(X

l
,x2 , ••• ,X) = (2~) AI exp [- -2(X-~) 'A(X-~)] p ,.,- '" 

where X = (Xl, .•• ,Xp)' is a p-dimensional random vector, ~ is a p­

dimensional scalar column vector, (vector with real components), A is 

a positive definite p x p matrix and (X-~)' denotes the transpose of X-~. 

It can be shown by integration that A- l = cov(X)(the covariance matrix, 

defined as (cov(Xi,X j », i,j = 1,2, .•• ,p, see [81], and E(X) = ~ 

It is interesting to note that the marginal distributions, the 

conditional distributions derived from a multivariate no=mal distri-

bution are also normal distributions. This is one of the characteristics 

of the multivariate normal distribution. 

The study of multivariate normal distributions is always not as 

simple as the study of the univariate case. To a great extend, this di ffi-

cult y is overcome by the result due to Cramer and Wold which states that 

the distribution of a normally-distributed vector is completely charac-

terized by the one-dimensional normal distribution of the linear function 

X'L for every fixed scalar vector L. This result enables one to bring 

over the study of a multivariate normal distribution to that of linear 

statistics which in most of the cases is found convenient. The study of 

the multivariate normal distribution adopting this line of approach is 

revealed in the book [81] by Rao, where a series of results are obtained 

by using the known properties in the univariate case. 

We now give the result by Cramer and Wold mentioned above, and by 

using it, we obtain an analog of Theorem l, in multivariate case. 
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Theorem 2. (Cramer-Wo1d). Let X = (X1 'X2 ' ••• ,Xp) , be a p-dimensionm 

random vector. Then the distribution of X = (X1 'X2 ' •.. ,Xp) , has a 

p-variate normal distribution iff for every p-dimensiona1 non-zero 

sca1ar vector has a univariate 

normal distribution. 

Proof. It is easy to show by integration that the marginal distribution 

of any component in the p-dimensiona1 random vector having p-variate 

normal distribution is norme1. We sha11 on1y show the sufficiency. 

Assume that X'L is univariate normal for every non-zero sca1ar vector 

L = ( t l' .•• , t p) , • Since X'L 2 is normal with the parameters ~ and cr 

say, we may write 

E(X'L) = ~ and Var(X'L) = 2 
cr 

But E(X'L) = U'L and Var(X'L) = L'ML 

where E(X) = U and cov(X) = M (covariance matrix of X). 

Consider the ch.f. of the r.v. X'L 

[ . 1 2 2 E (exp (.it X 'L)] = exp ü ~- 2" cr t ] since X 'L is 

normal with mean ~ and variance 
2 

cr 

A1so, in view of the equation (2.1) we have 

= exp[it U'L - 1 L'ML t 2] 
2 

(2.1) 
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Let T = tL. Then we have 

E[exp(i X'T)]= 
1 

exp[i U'T - ~ T'MT] 

This is the ch.f. of a mu1tivariate normal distribution. By the 

uniqueness theorem, X has a p-variate normal distribution. 

In virtue of Theorem 2, we have the fo11owing coro11ary. 

Corollary 2.1. be two 

independent p-dimensiona1 random vectors. If Z = X+Y is p-variate 

normal then both X and Y are p-variate normal. 

By considering any 1inear function Z'L, using Theorem 2 and 

Theorem 1. Taking into account of the independence of X'L and Y'L 

the resu1t easi1y fo11ows. 

2.2. Identically distributed linear statistics. 

Let Xl' ••. ,Xn be a random samp1e from X with distribution 

function F(x). Consider two different statistics 81 = 81(X1 ,··· ,Xn). 

82 = 8
2

(X
1

, ••. ,X
n
). In genera1, the properties of 8

1 
and 82 may have 

a great dea1 of difference. But for certain statistics 81 and 82 it 

might happen that 81 and 8
2 

are identica11y distributed, or it might 

happen that Sl and 8
2 

are stochastica11y independent. We sha11 discuss 

the characteristics of the independence of statistics in the next 

chapter. One may think that the properties of two statistics having the 

same distribution is a characteristnc property of sorne populations. 
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Ind~~d, it has long been known that if Xl and X2 are independent 

with conunon d.f. F(x) with mean zero am variance one, and if X1+X2 
[i 

a1so has the same d.f. F(x), then F(x) is the standard normal distri-

but ion function. This Eesult has a1ready been genera1ized to some 

1inear functions with suitab1e coefficients of a finite number of i.i.d. 

r.v.r's. Perhaps the most remarkab1e resu1ts in connection with this 

aspect are revea1ed in severa1 papers [50], [51], [52] by Linnik, in 

which the relation between "independent1y distributed " and"identi-

cally distributed" statistics is investigated in great detaiL l and a 

necessary and sufficient condition for the equiva1ence of the statement 

that the population is normal with thp assertion that two 1inear statistics 

are identica11y distributed is obtained. He a1so characterized a c1ass 

of symmetrica1 distribution which contains the convolutions of symmetric 

stable 1aws. Severa1 principal resu1ts of Linnik are treated in great 

detai1 in [48]. A theorem of Marcinkiewi~ on identica11y distributed 

1inear functions of infinite1y (or finite1y) many i.i.d.r.v's is a1so 

discussed in [48]. We sha11 on1y present the statements of these resu1ts 

here. 

Theorem 3. (Shimizu) Let X1'XZ"" ,Xn be a random samp1e from X 

wtth d.f. F(x) with mean ~ and finite variance 

non-zero constants such that L = 

identica11y distributed, the F(x) is normal. 

2 
cr If there exist 

n 
~ a,X i i=l ~ 

and X are 

Proof. We note that the resu1t can be estab1ished by direct applications 
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of some properties of ana1ytic ch.f. 's (see pp. 182 [66]). We 

give another proof due to Shimizu. 

For simp1icity, we prove the theorem for n = 2 and with al = a 

and a2 = b. Consider E ( exp [it (aX1 + bX2)]} and take into account 

of the independence of Xl and X2. We have 

By assumption, f(t) = f(at) f(bt) (3.1) 

where f(t) is the ch.f. of F(x). In a neighbourhood of the origin, 

we can introduce log f(t) = ~(t) (here after ~(t) will be referred as 

the cumulant generating function ) so that (3.1) beomes 

~(t) = ~(at) + ~(bt) (3.2) 

Since F has a finite variance, f(t) has continuous second deri-

vative at the origine We can differentiate (3.2) twice and obtain 

~' (t) = a ~'(at) + b~' (bt) 

~"(t) 
2 

= a ~"(at) + b2~"(bt) (3.3) 

From (3.3) we have 

~"(at) = a2 ~"(a2t) + b2~"(abt) 

~"(bt) = a2~" (abt) + b2~"(b2t) (3.4) 
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Subst itute (3.4) into (3~. 3), and we get 

By induction, we can show for any n (positive integer) 

!6"(t) = ~ (~) (a2)k(b 2)n-K !6"(a~n-k t) 
k=o 

By 1etting t = 0 in (3.5), we have 

2 
- cr 

n 
= L: 

k=o 

sinee 16" (0) = - 2 
cr • It follows that 

n 
(a2) k (b2) n-k n 

L: ( lt) 
k=o 

which in turns implies that 

= 

o < 1 al < 1 , o < Ibl 

1 

<1. 

Taking into account of equations (3.5) and (3.6), we have 

(3.5) 

(3.6) 

(3.7) 

(3.8) 
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Since tj"(t) is continuous at t = 0, and since 0< lai < 1 

o < Ibl < 1, by continuity, we can make 

so sma11 as we please, say € > o. 

1. e. (3.9) becomes 

1 tj" (t) - il < € 

in virtue of (3.7). Since € is arbitrary, it fo110ws that 

2 
tj" (t) = cr 

l 1 2 2} Rence f(t) = exp i~t - 2 0 t ho1ds in a 

By ana1ytic continuation f(t) = exp {i~t - t 
completes the proof. 

neighbourhood 

2 2} 
cr t J is true 

of the origine 

for a11~. This 

Corol1ary 3.1. Let X and Y be independent with common d.f. F(x) with 

mean zero and variance one. X+Y 
Suppose that ~ a1so has the d.f. F(x). 

Then F(x) is the standard normal distribution function. 

The foregoing resu1t indicates the possibi1ity that two different 

1inear statsitics might be identica1ly distributed. This prob1em was 

first investigated by J. Marcinkiewcz [69] who obtained the fo110wing 

result. 

Theorem 4. Let X1,X2, ••• ,Xn, ••• be a finite or infinite sequence of i.i.d. 

r.v.'s with common d.f. F(x). Assume that the two (finite or infinite) 

sums and exist, and F(x) has moments of any order. 
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If ~ a.X and ~ b.X. 
J J J J 

are identica11y distributed, then either 

the sequence {lajlJand {lbjlJ are identica1, except for the order 

of the terms, or F(x) is normal (possib1y degenerate). 

The proof of this result iR clearly presented in [48J. This 

resu1t gives us a sufficient condition for the rea1ization of the norma1ity 

of F(x). But in statistica1 ana1ysis, on1y finite samp1es are used, 

and hence it wou1d be much more interesting to formula te the pr~vious 

resu1t for finite sums. We give another analogous resu1t of the previous 

one as a characterization of the norma1ity for the finite case. 

Theorem 5. Let Xl ,X2,· •• ,Xn be a sample from a r. v. with d.f. F(x) 
00 

having a11 fini te abso1ute moments f3 k = J (x[kd F(x), k = 1,2, ••• , 00 

_00 

n n 
Let LI ~ akXk and L = ~ bkXk be two 1inear functions of 

1 
2 

1 

X
l

,X2, ••• ,Xn with real coefficients. Suppose that the numbers 

la11,la21, ••• ,lanl are not a permutation of the numbers Ibll,lb21, ••• ,lbnl 
n n n 2 n 

b2 
and that ~ a = ~ bk, ~ ak ~ Then LI and L2 are 

k=l 
k 

k=l k=l k=l k 

identically distributed iff F(x) is normal. 

A proof of the resu1t is given in [65] • We present the proof in 

details for it may be of theoretica1 interest. By considering the charac-

teristic functions of LI and L2 assuming F(x) is normal, it can be 

easi1y deduced that the ch. f ' s of LI and L2 are identical. By the 

uniqueness theorem, LI and L2 must be identica1ly distributed. 
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Necessity. There is no 10ss of genera1i.ty in assuming that F(x) 
n 

is symmetrica1 for we may consider LI = ~ ai(Xil-Yb) and 
n 1 1 

LI = î bi(Xi-Yi ), where Y. , i = 1,2, •.. ,n are LLd. r.v.Is as 2 ~ 

Xi' i = 1,2, •.• ,n respective1y,in view of Cramerls theorem. C1ear1y, 

are identica11y distributed so are 

Let f(t) be the eh.f. of F(x), and let 

~(t) = tn f(t) (e.g.f.of F(x» 

LI 
1 

and 

in a neighbourhood of the origin. By the assumption, we have 

(5.1) 

in a certain neighbourhood of the origin. 

Since a11 the moments of F(x) exists we may differentiate the 

1ast equation (5.1) any number of times Let m he a positive 

integer. Differentiating 2m times, and setting t = 0, we ohtain 

n 
(a

k
)2m 

n 
(h )2m] tJ 2m

(O) [ ~ ~ = 0 m = 1,2, ••• . 
1 1 k 

Suppose n 
(a

k
)2m 

n 
(h )2m ~ = ~ 

1 1 k 

ho1ds for infinitely many times. But this can he true on1y if 

our assumption. Renee we must have 
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~2m(O) = 0 11 ~ for a m. 

Sinee F(x) is a symmetrie distribution, we have a1so 

for a11 m. 

Thus there exists an integer p sueh that 

for m > p. This means the c.g.f. 

of F(x) is a polynomial of degree not exeeeding p. Renee by Mareinkieweïz~ 

theorem in Chapter 1. F(x) is normal (possib1y degenerate). 

Linnik proves severa1 important resu1ts re1ated to the iden-

tiea11y distributed 1inear statisties of i.i.d. r.v's. in his paper 

[51] 1953. He a1so genera1ized Mareinkiewicz'sresu1t in sorne sense by 

introdueing the "determining funetiod ll a(~) whieh is an entire function 

of the eomp1ex variable Z. We present here three main resu1ts of Linnik 

taken from [48]. 

Theorem 6A. 

d.f. 

= 

F(x) • 
n 
~ b.X

i 1 l 

(Linnik). Let X
1

, ••• ,Xn be n i.i.d.r.v's with common 
n 

Consider two linear statisties L1 = î aiXi 

with the condition max(l a
l l,l a21 , ••• ,Ianl)~ 

and 

max(lb11,lb21 ~ ••. ,Ibnl). Let r be the greatest rea1 zero of the 

determining funetion a(z) = lall
z + la21

z + ..• + lanl~ - Ib11~ - ••• -Ibnl~ • 

Suppose F(x) has moments up to order 2m, where 
r 

m = [2 + 1] (greatest 

integer less than 1 + 1). Then F(x) is normal if L1 and L2 are 

identiea11y distributed. 
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In the same paper, Linnik indicates some of the modifications 

regarding the condition max( al"'" an) F max( b1 , ••• , bn ) 

without giving a detai1ed proof the fol10wing resu1t. 

Theorem 6B. 

F(x). Let 

Let 

L = 1 

X1,X2,··· ,Xn 
n 
2': a.X. and 
1 ~ ~ 

be 

L = 2 

n i.i.d. r.v.ls with common d.f. 
n 
2': biXi be two 1inear statistics 
1 

of X1,X2, ••. ,Xn• Let r be the exact upper bound of the real parts of 

the zeros of cr(z) and r 
m = [ 2' + 1]. Suppose F(x) ha s a fini te 

moment of order 2m. Then F(x) is normal (possib1y degenerate) if 

Ll and L2 are identica11y distributed. 

It shou1d be remarked here if cr(z) = 0, then L1 and L2 are iden­

tica11y distributed for any arbitrary d.f. F(x), and if cr(z) F ° and 

F(x) has moments of a11 orders, the conditions of Theo~em 6.B are there-

fore satisfied. Thus Theorem 6.B contains Theorem 4 for the case of 

1inear forms in finite1y many variables. The preceding result gives a 

necessary condition for the norma1ity of the common d.f. of the components 

in two 1inear statistics of finite1y many i.i. d. r.v.s. Linnik a1so 

obtained a necessary and sufficien t condition fàr a population to be 

normal and two 1inear statistics to be identica11y distributed in his 

paper [51]. 

Theorem 7. (Linnik) Let be n i.i.d.r.v.Is with common 
n 

d.f. F(x). Consider two 1inear statistics Ll = 2': akXks ,L2 = 
1 

with max<la11,la21, ••• ,lanl) F max<l b
1 1 ,lb21, ••• ,lbnl). Tmen 

fo110wing two assertions 

n 

2': bk~ 
1 

the 



-20-

(A) F(x) is a normal distribution 

(B) LI and L2 are identically distributed, are equivalent iff the 

the following five conditions are satisfied 

(i) 

( H) g(2) = 0 

( iH) aIl zeros of a(2) which are integers and are divisible 

by 4 are simple roots. 

( iv) aIl positive roots of a(2) which are even integers of the 

form 4k + 2(k integer) have a mu1tiplicty not exceeding 2. If there 

exists such a double root, then it is unique and is the greatest positive 

root of a(2). 

(v) the determining function a(2) can have at most one odd 

integer,positive, rea1 root. If such a root exists, then it is simple 

r-and ['2J is odd. 

2.3. Student distributions and normal distributions 

It is we11-known that the student distribution is c1ose1y re1ated 

to the normal distribution and that its applications are a1ways found in 

statistica1 1iterature. Let Xo 'X
1

, •.• , X
n 

(n 2 1) be i.i.d. normal 

r.v.'s with mean zero. It is known that the r.v.'s 

x .Jn 
, ... , n 

y = 2 
n /X

Z
+ •.• +X 1 o n-
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are r.v.ls distributed according to Student's 1aw with 1,2, ••• ,n 

degrees of freedom respective1y, and for n > 2 by carrying out the 

transformation techniques, it can be shown that they are independent. 

It is natura1 to ask whetrer the converse of the statement ho1ds. 

More precise1y, does this property characterize the normal distribution 

unique1y? This prob1em was investigated by Mau1don [74] (1956) who 

showed that the answer is negative for n = 1 (i.e., on1y two r.v.'s 

Xo,X1). Recent1y, I.Kot1arski [37] (1966) successfu11y proved that the 

answer is in the affirmative for n > 2 under sorne conditions. The 

fo11owing theorem is due to Kot1arski (1966). 

Theorem 8. (Ko t 1ar ski) Let X ,X1, ••. ,X be n+1 (n 2 2) independent o n 

r.v.'s satisfying the conditions that p(Xk = 0) = ° (k = 0,1,2, ••• ,n), 

and each r.v.'s X , ••. ,X has a symmetric distr~bution about the origine o n 

Then the necessary and sufficient condition for Xk to be identica11y 

norma11y distributed with mean zero am common standard deviation cr is 

that Y1, Y2, ••• , Yn' where Yk, k = 1,2, ••• ,n are defined as above, are 

independent1y distributed according to student's 1aw with 1,2, ••• ,n 

degrees of freedom respective1y. 

It is we11 known that for continuous random variables a one-to-one 

transformation, say y = h(x), with domain S and range space T trans-

forms the probabi1ity density f(x) of a continuous r. v. X, say, to 

the probabi1ity density given by 

( 
-1 (lx 

g(y) = f h (y»)Id; 1 where 1 ~ 1 is the Jacobian of the 
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transformation. But this inverse resu1t is se1dom recognized and seems ta 

have escaped attention. That is, if a r.v. Y has probabi1ity density 

g(y) (y eT), then x = h- 1(y) has probabi1ity density f(x), (x € S) 

provided the transformation invo1ved is one-ta-one. This resu1t is 

readi1y seen by app1ying the transformation techniques usua11y emp10yed 

in Stat~stics in finding out the probabi1ity density of a continuous r.v. 

which is transformed. 

The necessity of the theorem can be established easi1y by means 

of the transformation techniques. We need only ta prove the sufficiency. 

Since the random variables Xk in Theorem 8 are symmetrical about the 

origin, their distributions are unique1y characterized by the distribution 

of Uk defined by 

Uk = X~ k = O,1,2, ••• ,n (8.1) 

and the characterization is one-ta-one since the X
k 

(k = O,1,2, .•• ,n) 

are independent. If Xk (k = O,1,2, ••• ,n) are normal with mean zero and 

common standard deviation G, then the distribution of Uk(k = O,1,2, ••. ,n) 

is given by the common density 

° u < ° 
f(u) = (8.2) 

1 exp (- u 
) u > ° 

12rru 2.,2 

The sane arguments app1y ta 
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K 
,k=1,2, .•• ,n. 

When Yk, k = 1,2, •.• , n are distributed according to Student's 

1aw with k degrees of freedom respective1y, then VK(k = 1,2, •.. ,n) 

are distrihuted according to the densities 

o v < 0 

1 
v > 0 

known as the beta-distribution of the second kind. Renee if we can 

prove that if each of the r.v.'s V1 = 
U

1 V 
U
2 - , 

U 2 Uo+U1 0 

U 

(8.3 ) 

U
3 

V3 
n is distributed according = V = 

Uo+U1+U2 
' ... , n 

U +Ul+·· .+U 1 o n-

to (8.3), it imp1ies that each Uk, k = 1,2, ••• ,n is distributed according 

to the density (8.2), where of course U ,U
1

, ••• ,U o n are n+1 independent 

positive r.v.'s (n ~ 2) then the sufficiency fo11ows. 

To do this, we need the fo11owing 1emmas. 

Lemma 8.1. Let U ,U1, ••• ,U he 0+1 (n ~ 2) independent positive r.v.'s. 
o n 

Let z. = 
J u'··· , Z 

n 

U 
n 

U 
o 

If the joint ch.f. of 
o 

(~n zl,tn z2, ••• ,tn zn) does not vanish, then the joint distribution 

of (zl, ••. ,zn) determines a11 the distributions of 

a change of the scale. 

U ,U
1

, ••• ,U 
o n 

up to 
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Proof. Let fk(t) be the ch.f. of ~n Uk' k = 0,1,2, ••• ,n and let 

t
i

, i = 1,2, ..• ,n 

are rea1. By independence of U ,U1, ••• ,U , we have 
o n 

By hypothesis, 1jt( t 1, ••• , tn) is nonvanishing, we conc1ude that 50 are 

Now if U~, Ui, .•. ,Uk and Zi, z2, ... ,z~ a1so satisfying the 

conditions of the 1emma, and if ln'~k-?as cb.f. fk(t) and (~n z i ' ~n 
, 

z2' ... 

ln z') 
n 

has ch.f. 1Ir'(t1,t2, ••• ,tn), then by previous argument, we have 

t k, k = 1,2, ••• , are rea1. 

If (Zl, ••• ,Zn) and (Zi,Z2, ••• ,Z~) have the same joint distribution, 

then 

= (8.4) 

Let 

(8.5) 

where Pk(t) are comp1ex-va1ued functions, continuous on the who1e 1ine non-

vanishing and satisfying the conditions Pk(O) = 1. Substituting (8.5) into 

(8.4), we get 
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Let p (-t) = p(t) where t 
o 

is rea1, and put t k = t , t j 

j F k. We obtain from (8.6) 

• •• = p (t) 
n 

Substituting (8.7) into (8.6), we obtain 

1 =--
p(t) 

(8.6 ) 

= 0 for 

(8.7) 

This is a Cauchy equation. The on1y comp1ex solution p(t) continuous 

on the who1e rea1 1ine, nonvanishing and satisfying the condition p(O) = 1 

is the exponentia1 function p(O) = ect 
(t is rea1 and c is a comp1ex number). 

Rence 

and hence 

- ••• - p (t) 
n 

-ct 
e 

-ct 
e 

But we have f(-t) = f(t), c must be pure imaginary 

i. e. , c = - ia. This imp1ies 

The proof is complete. 

Lemma 8.2. Let U ,U
1

, ••• ,U. be n+1 (n 2 2) independent positive 
o n 

Uk 
r.v.'s. Let zk = ur' k = 1,2, ••• ,n. The necessary and sufficient 

o 
condition Uk to be identica11y distributed according to the density 
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) 0 if u< 0 
feu) = 

l 1 exp (- u -- ) if u > 0 0'}2rru 20'2 

is that the n-dimensiona1 r.v. (zh""'z) is distrihuted as the 
n 

density 

1 1 
r( "2n-rz ) 

1 1 
jf(- n+ -) 

2 2 

1 

(8.8) 

o otherwise, k = 1,2, ... ,n. 

Proof. A direct ca1cu1ation shows that the ch.f. f (t) of 
k 

k = 0,1,2, ••• ,n and the ch.f. *(t1, ••• ,tn) of (tn zl"'" tn zk) where 

Zl, ••. ,Zk is distributed as (8.8) are given respective1y by 

r(~ + it), t rea1 

- it ). n 
(8.9) 

where t k , k = 1,2, •.• ,n are rea1. It i5 obvious that *(t
1

, ••• ,tn) is 

nonvanishing for a11 rea1 t
1
,t2, ••• ,t

n
, and 
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t k , k = 1,2, ••. ,n are rea1. By substituting fk(t) = 

in (8.10) and by app1ying Lemma 8.1 the 1emma is estab1ished. 

We are now in a position to prove th,.:! sufficiency of Theorem 8. 

It fo11ows from Lemma 8.2 that if (Zl"",Zn) distributed according 

to (8.8), the Uk(k = 0,1,2, .•. , n) are identica11y distributed according 

to (8.2). Now if suffices to show that if',v1,V
2
, ... ,V

n 
are independent1y 

distributed as (8.3), then (Zl"",Zn) is distributed as (8.8). Since 

Uk 
Zk = U 

o 

k = 1,2, ••• ,n, we see that 

V~ 

The Jacobian of this transformation is 

J 
d(V 1,···,Vn) 

d(zl, .. ·,zn) 

1 

The density ot (V1, .•• ,Vn) is given by 

aH vk > O. 

g(v , ... ,v ) 
1 n 

n 
II 

k=l 

g (v
1
),···,g(v ) 

1 n 

1 

( 1 -21 k) 1/2( 1 ) kH/2 B 2' vk +vk 

(8.11) 

(8.12) 

(8.13) 
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Renee the density of (zl"" ,zn) is given by h(zl"" ,zn) 

= 
n 
II 

k=l 

where 

n 

= II 
k=l 

1 1 z 1/2 B("2'2 k) (, ______ k:::...-___ ) (1 + 

z = 0 
o 

Zk (k+l)/2 
--------------) 

= 
r (!.t+ !)r(! +1) •.• re! + 1) 1· (l+zl) (2+2) !2( 1+zl+z2) (3+2) 12 . .• (1+Z1" o+Zn_1)"!(~' 

IJ 
r(!)r(!)r(~)r(1) ... r(~r(1) zll!2",zn1!2(1+zl)1+1!2 ... (1+zl+o .. +zn)(n+1)/2 

= 

zk > 0, k = 1,2, ..• ,n . 

This completes tœ proof. 



CHAPTER ilI 

Characterizations of Norma1ity by Independence of suitab1e Statistics 

3.1. Independence of linear statistics. 

The appearance of Geary's paper in 1936 proving that the stochastic 

independence of the samp1e mean and samp1e variance implies the Normality 

of the pbpulation under consideration suggests a general method of finding 

statistical populations by using this property. Geary proved the result 

under the superflous assumption on the existence of aIl moments. Soon 

after Geary's theorem, a series of papers have appeared, genera1izing 

Geary's theorem in various directions. The main generalizations are 

given by Lukacs [62] Lana [38], Kawata and Sakamoto [33] and Zinger [99]. 

Lukacs (1942) proved Geary's theorems assuming only the existence of the 

second moments. Later Kawata and Sakamoto (1949) and Zinger (1951) showed 

that Geary's theol'em is true without the assumption on the existence of 

moments. There are a number of papers on generalization of Geary's 

theorem by constructing other statistics instead of the sample mean and 

sample variance such as Laha [38] and Geisser [25]. Recent1y the property 

of independence of statistics is rep1aced by the regression properties 

50 as to drop the condition of independence to a weaker condition of regression. 

We shall see how the inàependence of statistics can be replaced by re-

gression properties in the next chapter. In this chapter, we shal1 deal 

with the characterizations through independence of suitable statistics, 

for instance linear and linear statistics, linear and quadratic statistics, 

and linear and polynomial statistics. We first consider the independence 
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of two 1inear statistics which has a rather interesting history and 

invo1ves a good number of authors (Kac [29], Bernstein [7], Gnedenko [27], 

Darmois [17] and Skitovich [88]). The prob1em was discussed in its full 

genera1ity independently by Darmois (1953) and Skitovich (1954). The 

fo110wing theorem was estab1ished. 

Theorem 1. (Darmois-Skitovich). Let L = 1 and 

be two independent 1inear statistics, where X
1

,X2, ••. ,Xn are n 

independent (but not necessari1y identica11y distributed) r.v.'s then 

each r.v. X., (j = 1,2, ••• ,n ) with nonzero.coefficients in both forms is 
J 

norma11y distributed. 

As a detai1ed proof of the theorem is avai1ab1e (see [48] pp. 75-78), 

we sha11 on1y out1ine the proof. We first note that if any r.v. has zero 

coefficients in one of the two forms. Then the corresponding r.v. can 

be arbitary. In view of this, we can omit a11 those r.v.'s which have 

zero coefficients in one of the two forms and are 1eft with considering 

the r.v.'s having nonzero coefficients in both forms. Further, it is 

obvious that the resu1ting forms so obtained are a1so independent. Rence, 

there is no 10ss of genera1ity in assuming that 

We may a1so group a11 those r.v.'s such that the ratio of their re-

spective coefficients ~s equa1 to some fixed constant. Let the coeffi-

cients of the 1inear forms L
1 

and L2 satisfy the fo110wing conditions 
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a = b = 1 
1 1 

a.b. f: 0, j = 1,2, ••• ,n 
J J 

j f: k, j,k, ••• ,n. 

( 1.1) 

Now, ta king into account of the independence of L1 and L2 and writing 

it down in terms of the characteristic functions, f
1
,f2, ••• ,fn , of 

X1, ••• ,Xn we obtain a relation 

f( t, s) 
n 

= II 
j=l 

f.(a.t + b.s) 
J J J 

n 
= II 

j=l 
f .(a .t)f .(b .s) 

J J J J 
( 1.2) 

By continuity of ch.f. at the origin and f.(O) = 1, j = 1,2, ... ,n 
J 

there exist a neighbourhood of the origin such that every factor of (1.2) 

is nonzero, and by taking the 10garithm of both sides of (1.2), we arrive 

at the f0110wing equation 

n 
L: 

j=l 
~.(a.t + b.s) = A (t) + B (s) 

J J J 0 0 

where 

A (t) = 
o 

n 
L: ~.(a.t), 

j=1 J J 
B (t) 

o 

n 
L: 

j=l 
~ .(b .t) 

J J 

(1.3 ) 

In view of (1.1), it is possible to select hl and k1 in such a way 

Choose a rea1 number 

so sma11 that (1.3) is satisfied if t is rep1aced by t+h1 and s by s+k1• 

Substituting the quantities and using the method of finite difference 
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(see [48J pp.(7), we can eliminate the function ~ by this procedure. 
n 

Proceed in the same manner, we can finally eliminate the functions 

~2' ... '~n' and obtain a difference equation of the function ~l(t) of 

order n. It then follows that ~l(t) is a polynomial of degree not 

exceeding n, and hence by Harcinkiewiczls theorem and the properties 

of analytic functions, fl(t) is the ch.f. of a normal distribution. 

Similarly, ~, ••• ,Xn can be shown to be normal. 

Raving established "Darmois-Skitovichl Sil theorem, we can deduce 

a good number results from it. 

Corollary 1.1. (King and Lukacs 1954) Let Xl ,X2" •• ,Xn be n-inde­

pendently (but not necessarily identically) distributed r.v.is and 

assume that the nth moment of each Xi (i = 1,2, ••• ,n) exists. The 

necessary and sufficient conditions for the existence of two independent 

linear statistics 

and are 

(i) Each r.v. with nonzero coefficient in both forms is normally 

distributed. 

( ii) 
n 
~ 

k=l 

For n = 2, and al = b l 

of Bernstein. 

where k 1,2, .•• ,n. 

l, this reduces to a theorem 

The necessity follows immediately from Theorem 1. To prove the 

sufficiency, assume that (i) and (ii) hold, then it can be shown that Ll 
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and L2 are uncorre1ated. Since L1 and L2 are normal and uncorre1atecl, 

they are independent. 

Coro11ary 1.2. (Kac) Let Xl and X2 be two independent r.v.is. 

If for every rea1 number a 

are independent, then Xl and X2 are normal. 

Instead of considering two independent 1inear forms, one may consider 

m 1inear forms of the independent r.v.is 

n 
L 

j=l 
a.X ., 

J J 
k 1,2, ••• ,m, m < n. 

By Theorem 1, one can easi1y see that a11 r.v.is X1' ••. 'Xn are norma11y 

distributed if (i) the 1inear forms L1,L2, ... ,Ln are mutua11y inde­

pendent, (ii) each of the co1umn of the matrix 

A = ~ln) 
mn 

contains at1east two nonzero constants. A1so, using Cramer-Wo1d l s theorem 

one can formu1ate an ana1ogous resu1t of the above resu1t in mu1tivariate 

case. i.e., if there exist 1inear forms 

n 
L = L ak X. , k = 1,2, ••. ,m, 2 < m < n, 

1 i=l i 1 

of the independent p-dimensiona1 (p > 2) random vectors (but not 
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necessari1y identica11y distributed) X
1

, ••• ,Xn such that theyare 

independent, then each random vector X., j = 1,2, ••• ,n has a p­
J 

variate normal distribution if each of the co1umn of the matrix 

A = tl mn 

contains a t least two nonzero e 1ements. 

As seen in the previous discussi0n, it is worthwhi1e to investigate 

the above resu1t in mu1tivariate case for m = 2 and with 

i = 1,2 •• rep1aced by p x p sca1ar matrices. However, when ai1 , ••• ,ain , 

i = 1,2, are rep1aced by p x p sca1ar matrices A
i1

, ••• ,Ain, i = 1,2. 

the reduction to univariate case by using Cramer-Wo1d's theorem no longer 

ho1ds. In univariate case, Darmois-Skitovich's theorem tells us that the 

distribution of the r.v. with zero coefficient can be arbitrary. The 

same is a1so true in the matrix case if one of the matrix Aik, i = 1,2 

for some k = 1,2, ••• ,n is zero (nuJ.1). However, if a matrix Aik 

for some k 1,2, ••• ,n (s~) is singu1ar but not nu11, then some 1inear 

combinations of e1ements of the corresponding random vector Xk are 

norma11y distributed, but the distribution of X
k 

is part1y arbitrary. 

An examp1e is constructed in [26] to i11ustrate this facto This means 

genera1ization cannot be made by using matrices other than nonsingu1ar 

matrices. The following resu1t is due to Ghurge and 01kin (1962). 
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Theorem 2. (Ghuty,e and Olkin) Let Xl, ••• ,Xn be n independent 

p-dimensional (column) random vectors, and let Al,··.,An, Bl, ••• ,Bn 

be nonsingular p x p matrices. If ~ AiXi and ~ BiXi are inde-

pendent, then Xi' i = l,2, ••• ,n are p-variate normal. 

Since the proof of this theorem is every similar to theorem 1 

and is lengtly, we shall only sketch the proof. 

n n 
First considering the ch.f. of ( ~ A .X

i
, 

1 ~ 
~ BiX.) 
1 ~ 

and ta king into 
n n 

account the independence of ~ AiX. 
1 ~ 

and ~ B.X. 
1 ~ ~ 

we obtain a relation 

of the form 

n 
II CP.(T'A. + U'B.) = F(T') G(U') where 

j=l J J J 

CP.(T) = E exp [iT'X.] and T,U are p-dimensional (column) scalar 
J J 

vectors. It can be shown that CPj (j = 1,2, ••• ,n) have no zeros so that 

log cp.(T') is defined. 
J 

n 

Also, by similar arguments of Theorem l, we can 

show r log CPj (T') is a polynomial in T'. By letting T = kV where k 

is re~l, anà V is a fixed p-dimensional (column) scalar vector, and 

using the univariate theorem of 'Marcinkiewicz. it follows that 
n 
~logcp.(kV') 
1 J 

is a quadratic polynomial in k for each fixed vector V. This implies 
n 

that ~ log CP.(T') is a quadratic polynomial in thû vector T' which 
1 J 

means that X., i = 1,2, ••. ,n are p-variate normal. 
~ 

3.2. Independence of linear and quadratic Statistics. 

As mentioned in the beginning of this chapter, the independence of 
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the sample mean and sample variance implies the Normality of the 

population. Instead of sample variance, one may use some other quadratic 

forms. We present here a result due to Rao [84] and obtain the results of 

Lukacs (1942) and Geisser (1956) as coro11aries. 

Theorem 3. 

d.f. F(x). 

n 

(Rao, 1958) 

Assume that 

m 

Q = ( l: 
k=l 

Let xl"",Xn he a sample fnom X with 

2 
E(X) = ~ and var (X) = cr existe Let 

n 2 -1 n 2 
l: ak') l: (ak1X1 + ... + ak X ) , 

J k--l n n j =:1 
m> 1 

where l: a k ], = 0 
j=1 

for k = 1,2, •• ,m. The necessary and sufficient 

condition that F be normal is that X = are inde-

pendent. 

Proof. E(Q) 

m n 2 -1{ m n 2 2 m n 2 ,,2J 
= ( l: l: ak') l: l: a

kJ
, E(X,)- l: l: a

kJ
, ~ 

k=1 j=l J k=l j=l J k=l j=l 

2 = cr 

The joint ch.f. of X and Q is given hy 

where 
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It follows that 

But 

and so 

Cl 
d 1 CP2(t 2)1 - ft = CP1 (t1) Clt

2 
(1,t2) Clt 2 

CP1(t) 

+ 

t =0 2 

t n 
= f( 1/ ) where n 

. (~ ~ a kj· akl.·) 
k jr!=i 

t =0 2 

f (t) = E (e itX) , 

t n-2 it x/n 2] 
f ( 1/ n) [E (X el)] 

Using (3.2) and Cl CP2(t
2
)/= i02, equation (3.1) reduces to 

Clt
2 

t =0 
2 

df(t ) 
+ [ 1 

dt
1 

2 

(3.1) 

(3.2) 

(3.3) 

The solution of (3.3) is the ch.f. of the normal distribution with 
mean ~ and variance 02 

To prove the necessity, we prove a more genera1 resu1t as fol10ws: 
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Let XI' ••• 'Xn be a random sample from a normal distribution with 

mean Il and variance 
2 

0' • If the statistic is 

translation-invariant (i.e.S(XI, .•. ,X
n

) = S(X
I 

+ al, .•• ,Xn+ a) for 
n 

any real a), then S is independent of the sample mean X = ~ X./n . 
l ~ 

Let f(t 1,t2) 

Since Xl'··· ,Xn 

f(t
l
,t2) 

or f(t
l
,t

2
) 

where 

The function 

-denote the ch.f.of the random vector (X, S) • 

are normal with mean 2 Il and variance 0' , we have 

= 

= 

l 
( 

0' 2rr 

l 

20'2 

g(t l ,t2) 

( 
l 

cr 2 rr 

)n J exp i 
R n 

n 
~ (x. - Il) 

j=l J 

exp { itlll 

J exp {­
R 

n 

2 

n t
1 

~ Xj+iS2(X1,···,Xn) n j=l 

dX
I 

dX2 

2 
L 
2n 

l 

2cr
2 

tî } 

n 
~ 

j=l 

dx 
n 

(3.4) 

. 2 2 
(x. - Il - ~ t) + 

J n l 

is an entire function of Letting 

2 z. = x. - Il - cr yin, where -t l = iy (y real) and taking into consi-
J J 

deration that S is translation-invariant, we obtain 

J exp {-
l 

20'2 
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That is, g(t
1
,t

2
) is a constant for pure1y imaginary values of t

1
. 

8inee it is an entire funetion of t
1

, it must he independent of t10 

We thus ohtain 

gl(t2) = g(t1 ,t2) 

From (3.4) • we get 

f(t
1
,t

2
) gl (t 2) [i~ t 1 - it2 

= exp --
2n 

This shows that X and 8 are independent. Fina11y, we eone1ude by 

the ahove resu1t that the neeessity of the theorem ho1ds sinee Q is 

invariant under a translation. This completes our proof. 

Coro11ary 3.1. (Lukacs 1942). Let Xl"" ,Xn he a random samp1e 

from X with d.f. F(x). Assume that E(X) and var (X) exist. 

8
2 = 1 n 

(x._X)2 Then F(x) is normal Hf X and 
n-1 ~ are 

n-1 l. 

independent 

To ohtain the resu1t from Theorem 3~ let 

1 

L 
1- -n 

akj = 

1 

for k = j 

for k f j and m = n 
n 

Coro11ary 3.2. (Geisser 1956) Let Xl"" ,Xn he a random samp1e 

from X with d.f. F(x). Assume that E(X) = IJ. and 2 var (X) = cr exist. 
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n 
8

2 n-p 2 Then X = ~ x/n and = ~ (Xj +p - X.) , P = 1,2, •.. ,n-l 
i=l 

p j=l J 

are inde pendent iff F is normal. 

To obtain the resu1t from Theorem 3, let 

{ -~ 
for j = k+p 

a = for j = k 
kj 

for other values of j and m = n-p . 

It shou1d be noted here that a further genera1ization of the previous 

theorem ras been established by Shimizu (1961). 

Fo11owing the line of the above approach, one can easi1y estab1ish 

the fol1owing theorem due to Laha (1956) concerning the independence of 

the mean and a homogeneous quadratic statistic. 

Theorem 4. (Laha 1956) Let Xl' .. ' ,Xn be a random samp1e fram a 

population with d.f. F(x) having finite variance a2 Let 

n n 
Q = ~ ~ a .. X.X. 

~J ~ J 
be a quadratic statistic with the coefficients 

j=l j=l 

satisfyiug the conditions: 

(i) 
n 
~ 

i=l 
a .. f 0, 
~1 

n 
~ 

j=l 
a .. 

1J 
= 0 for i = 1,2, ... n. 

Then X and Q are independent iff F(x) is normal. 
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We ahal1 on1y out1ine the proof. Since X and Q are inde-

pendent, in terma of ch.f. one can easily obtain a relation of 

the forms 

(log f(t)) 
2 

= - cr 

in a certain neighbourhood of the origin. We conc1ude from the 

properties of ana1ytic functions that the solution of the above 

equation is the ch.f of a normal distribution. 

To prove the sufficiency we need only show that X and Q are 

uncorrelated of order (2,2). That is, 

i = 1,2, j = 1,2, (see pp. 72 48 ). 

Direct verifications show that the above relations ho1d, which 

completes the proof. 

'It shou1d be remarked here that the assumption of the existence 

of finite variance is in fact, superf10us in a1l the results just con-

sidered due to a theorem of Zinger (1958) concerning admissible po1y-

nomial statistics. A polynomial p(x
1

, .•. ,xn) of degree m is said 

to be admissible if the coefficients of the terms m x.,j=1,2, .•. ,n 
] 

are nonzero. The important resu1t obtained by Zinger (1958) concerning 

admissible polynomial statistics is that if two admissible polynomial 

statist ics where are n 
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independent (but not necessari1y identica11y distributed) r.v.'s, 

are independent then each r.v. x., j = 1,2, •• ~,n has finite moments 
J 

of a11 order. The proof of this resu1t can be found in [48]. 

3.3. Independence of polynomial Statistics 

If the preceding sections, we have seen that the independence 

of two 1inear statistics and the independence of a 1inear and a 

quadratic statistic characterize Norma1ity. In what fo11ows, we sha11 

consider the independence of two polynomial statistics, or more generally, 

the independence of certain functions of independent r.v.'s. 

We first introduce a special c1ass of po1ynomia1s. Let 
j1 

xl = ~ A. . . 
. +. + +. <or J1J2,···,J 

jn 
x be a polynomial of degree r. 

n 
J1 J.. • •• J n 

L n-

We may write p(x
1

, ••• ,xn) as a sum of a homogeneous polynomial of 

degree rand another polynomial of degree 1ess than r. i.e. 

where p (x1' ••• ,x ) = o n 

jl 
~ A. . xl . J1,···,Jn j1+" '+J n = r 

is a 

homogeneous polynomial of degree r, while P1(x
1

, ••• ,xn) is a polynomial 

of degree 1ess than r. The polynomial p(x
1

, ••• ,xn) is said to be non-

singu1ar if p (xl"'" x ) o n contains the rth power of at 1east one 

variable and :n: (k) f= 0 for a11 integers k > 0, where :n: (k) is the 
o 0 

polynomial obtained by rep1acing each positive power 
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K(j) = k(k-l) ••• (k- j+l) in p (xl' ••• ,x). We shall see that the o n 

k-statistic of order q is a nonsingular polynomial. By a k-statistic 

of order q we mean a symmetric homogeneous polynomial stastistic of 

th 
degree q such thatits ;'expectation is equal to the k cumulant of the 

population. It is interesting to note that the independence of the 

sample sum Xl + •.• +Xn and a nonsingular polynomial statistic of degree 

r implies that the ch.f. of the distribution function under consideration 

is an entire function of finite order with no zeros in the complex plane 

(see pp. 96[48]). Rence according to Radamard's factorization theorem, 

the ch.f. is of the form f(z) = exp[p (z)] and hence we conclude from 
n 

Marcinkiewicz's theorem that f(t) is the ch.f. of sorne normal distri-

bution. This readily gives us a characterization of the normal distribution 

through the independence of sample sum and a nonsingular polynomial 

statistic. Thus we have 

Theorem 5. Let Xl, ••• ,Xn be a random sample from X with distribution 

function F(x). Let p(Xl, .•• ,Xn) be a nonsingular polynomial statistic. 

Then F(x) is normal provided that p(Xl, ••• ,Xn) and the sample sum 

Xl + X2 + ••. + Xn are independent. 

As a direct application of Theorem 5, we have the following four 

corollaries. 

Corollary 5.1. Let Xl, •.. ,X
n 

be a random sample from X with d.f. 

F(x). Let p(Xl, ••• ,Xn) be an admissible homogeneous polynomial statistic 

of degree r such that the expected value of p(Xl, .•• ,Xn) is equal to r th 

cumulant k
r

. Then F(x) is normal provided that p(Xl, .•• ,Xn) and the 

sample sum are independent. 
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It can be shown that p(X
1
,· •• ,X

n
) is a non-singu1ar polynomial 

statistic. In virtue of Theorem 5J the coro11ary fo11ows immediate1y. 

We note that in particu1ar if p(X1, ... ,Xn) is the k-statistic of 

order r, then conditions of Theorem 5 are automatica11y satisfied. That 

is to say the fol1owing ho1ds 

Coro11ary 5.2. (Basu and Laha 1954) Let Xl"" ,Xn be a random 

samp1e from X with d.f. F(x). Let k be the k-statistic of order r. 
p 

The F(x) is normal provided that 

are independent. 

k 
p 

Coro11ary 5.3. Let X1'."'Xn be a random samp1e from X with distri­

bution function F(x). Let 

such that 

B = 
l 

n 
A = ~ 

j=l 

n 
~ a .. :/= 0 

j=l J J 

n n 
~ a .. X.X. + ~ b .X. 

i=l J1 1 J j=l J J 

n n 
and ~ ~ a .. 

j=l i=l J1 
= o. 

Then Q and the samp1e sum are independent iff 

( i) F(x) is normal 
n 

(ii) t3 - = ~ a·k = 0 for k = 1,2, .•. ,no 
k j=l J 

n 
(iH) t3 = ~ b. = 0 . 

j=l J 
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To prove the necessity, one needs only to form the polynomial 

~ (k) corresponding to the polynomial Q. It is easy to find that 
o 

~ (k) = o 

= 

n n 
~ a

jj 
k(k-l) + ~ 

j=l j=l 

n 
~ s .. kk 

i#: j . J 1. 

This shows that Q is indeed a non-singular polynomial of degree two 

and hence F(x) is normal by Theorem 5. 

The conditions (ii) and (iii), and the sufficiency of the 

corollary follows from a result proven by Laha (l956a). The result 

states that the necessary and sufficient condition that two real poly-

nomial statistics of the second degree denoted by 

are independent is that 

(a) AB=O, (b) L'B=O, (c) M'A=O, (d) L'M=O. 

Here X = (Xl' •.. ,Xn,' (Xl' .•. ,Xn is a random sample) is a random 

(column) vector, L' ,M'are column scalar vector and A,B are both 

n x n real symmetric matrices. 

The following result is another application of Theorem 5. 
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Corollary 5.4 (Laha, Lukacs and Newman 1960). Let Xl"" ,Xn be a 

random sample from X with d.f. F(x). Let p be a positive integer 
n 

such that (p-l)! is not divisible by (n-l). Let X = ~ X./n 
i=l 1 

and m = p 

n 
~ 

i=l 

respectively. The F(x) 

be the sample mean and sample central moment 

is normal iff X and mare independent. 
p 

Proof. The necessity follows from a previous result that in a normal 

population any translation-invariant statistic is independent of the 

sample mean. To prove the sufficiency, we first note that the poly-

nomial rr (k) formed by substituting each power xj by k(j) = k(k-l) ..• (k-j+l) 
o s 

has no non-zero integer roots if (p-l)! is not divisible by (n-l) (see 

[46]). This means that rr (k) corresponding to m does not vanish for 
o p 

any positive integer k, that is, m 
p is a non-singular polynomial 

statistic. The sufficiency follows immediately with the application 

of Theorem 5. 



CRAPTER IV 

Characterizations of Norma1ity by means of Regression Properties 

4.1. Constant regression and polynomial regression. 

In the previous chapter, we have seen that severa1 properties 

of certain statistics have been used to characterize the normal dis tri-

bution, name1y, the distribution of a certain statistic , and the in-

dependence of 1inear and polynomial statistics. If we examine care-

fu11y the proof of Theorem 3 in Chapter III, we see that the assump-

tion that the independence of samp1e mean and the quadratic statistic 

itX itX. Q can be rep1aced by a condition as E(Qe ) = E(Q)E(e ) Wh1Ch a1so 

enab1es us to arrive at the same differentia1 equation. It is we11 

known that the independence of Q and X imp1ies E(QeitXj = E(Q)E(eitX) 

but not converse1y. Rence this is a slight generalization of Theorem 3 

in Chapter III. We sha11 ca11 this kind of .property the constant regression 

of Q on X for it is easy to see that the condition E(Qe
itX

) = E(Q)E(e
itX

) 

is equiva1ent to E(QleitX) = E(Q). 

As mentioned before, the conditiona1 expectation E(YIX) is ca11ed 

the regression of Y on X, and is a Borel meas~rable function of X. It 

is interesting to find out under what condition. the regression of Y on X 

is constant, or a 1inear function, or a polynomial in X. We first intro-

duce the fo110wing definition. 

Definition 4.1. Let X and Y be two r.v.Is such that E(yIX) exists. 

Let K be a non-negati"ve integer. Then the r. v. y is said to have a 

polynomial regression of order k on X if 
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k 
~ f3 X

j 

j=o j 
holds almost everywhere. 

If k = 0, we say that Y has a constant regression on X. 

In such a case, we have E(ylx) = f3 = E(Y), 
o 

provided that the 

expected value of Y exists. If k = 1 and f3 l f 0 (k = 2 and f3 2 f 0), 

then we speak of linear (quadratic) regression. 

We first establish a necessary and sufficient condition under 

which the random variable Y has a polynomial regression on X. 

Lemma 1. Let X and Y be two r.v.Is such that 
k 

E(X ) (k = a non-

negativ€ integer) and E(Y) existe Then the r.v. Y has a poly-

nomial regression of order k on X iff the relation 

k 
(A) = f3 ( j itX) 

j:o j E Xe, f3 j is real 

holds for aIl real t. 

Proof. Necessity. 

itX 
k 

E(yIX) e = ( ~ 

j=o 

E(E(YIX)eitX) = E [( 

f3 .X
j

) 
itX 

e 
J 

k 
f3 .X j ) e itX] ~ 

j=o J 

k 
~ f3.X j )eitX] 

j=o J 

~ f3.E(X
j
e

itX
). 

j=o J 
= 

(j 1,2, ... ,k) 
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To prove the converse, suppose that the relation (A ) ho1ds for 

all real t. Then 

E(eitX [Y- = o 

or 
. k. 

f l e
1tX 

E[Y - ~ ~.xJIX] d~ = 0 where ~x is 
R j=o J x 

the probabi1ity measure associated with the r.v. X (see pp.33, [10]). Let 

~(B) = f E(Y 
B 

k 
~ ~.xjIX)d~ 

j=o J x 
where B is a bore1 

set of Rl This is a function of bounded variation defined on al1 

Borel sets of Rl • But then we have 

itX 
e d~ = 0 

It is well-known that a function of bounded variation is uniquely 

determined by its Fourier transforme Rence 

~(B) 

But this can happen only if 

E(Y -

This completes the proof. 

1 
~(R ) o 

k 
~ ~.xjlx) 

j=l J 

for a11 Borel sets B. 

o a.e. 
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In particu1ar, for k = 0, we see that Y has constant 

regression on X iff the relation E(Ye
itX

) = E(Y)E(e
itX

) ho1ds 

for a11 rea1 t. 

4.2. Constant regression of 1inear Statistics on another Statistic 

Let Xl X2"",Xn be a random samp1e from a normal distribution. 

It is easi1y shown that two uncorre1ated 1inear statistics 

= 
n 
l: a.X., 
1 J J 

n 
l: b.X. 
1 J J 

of the normal varia tes X1, .•• ,Xn 

independent. We a1so know from Darmois-Skitovich's theorem that 

are 

the independence of two 1inear forms imp1ies that the random variables 

with nonzero coefficients in both forms are normal. It is, therefore, 

natura1 to ask whethér the independence of the 1inear forms can be 

re1axed to a weaker condition of constant regression; Le., whether 

norma1ity can be characterized by the property of constant regression 

of a 1inear statistic on another. However, this is, in genera1, not 
n 

true. Any 1inear statistic L = l: a.X. 
1 J J 

a1ways has a constant re J 

gression or linear regression on the samp1e sum 

suitab1y choosing the coefficients a. (j 
J 

1,2, ... ,n). This points 

out that we sha11 on1y dea1 with constant regression of a 1inear 

statistic on sorne 1inear statistic not proportiona1 to the samp1e 

sumo Indeed, under sorne restrictions on the coefficients of the 1inear 

statistics L
1

and L2, Rao (1967) gives a slight genera1ization of 

Darmois-Skitovich' s theorem. The fo11owing theorems are due to Rao (1967). 
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Theorem 1. (Rao 1967) Let ~i'X2 be two i.i.d. r.v.'s with 

E(X
1

) = O. Let a1X1 + a2X2 and b1X1 + b2X2 be two 1inear functions 

of Xl and X2 with a" b, # 0 
1 1 

i = 1,2 such that 

and /b2/b 1 / ~ 1 (without loss of genera1ity). 

Then we have 

(1.1) 

(ii) Xl and X2 are norma11y distributed provided that E(Xî) < ~ 

Proof of (i). By Lemma l, we have 

o (1.2) 

holds for al1 real t. 

Let f(t) be their common ch.f. Since E(X
l

) exists, the first 

derivative f'(t) exists and is continuous everywhere (1.2) can thus 

be written as 

o (1.3) 

There exists a neighbourhood of the origin, say l = (-ô,ô), such that 
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both f(b
1
t) and f(b 2 t) do not vanish in this neighbourhood. 

f'(t) 
Dividing (1.3) by f(b 1t) f(b 2t) and writing W(t) = we 

f(t) 
obtain 

o for every t € l = (-0,0) 

This implies 

W( t) = -

where 
a = - Now if 

it fo110ws from (1.5) that 

n n ••• = a w«(3 t) 

w(t) = lim an w«(3n t ) = 0 
n .... OO 

i. e. ln f(t) = c ho1ds in l = (-0,0). 

By ana1ytic continuation of ch.f., we have 

f(t) = c for a11 rea1 t. That is to say, Xl and X2 

are degenerate. 

( 1.4) 

( 1.5) 

Proof of (H). If E(X2) < 00, then the second derivative fll(t) of f(t) 

exists and is continuous everywhere. In such a case the first derivative 

of W(t) a1so exists in l = (-0,0) and is continuous at t = O. 

Therefore W(t) is of the form t0(t) where 0(t) is continuous at 
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the origine Replacing t(t) by t 0(t) in (1.4), we-obtain for t 1 0 

2 2 2 2n 2n 
0( t) = 0: (30«(3t) = 0: (3 0«(3 t) = .•. =(0:(3) 0«(3 t) 

i.e., 0(t) = lim (0:(3)2n 0«(3 2nt) = 0(0) 
n~CO 

k when 10:(31 1 

when 10:(31 < 1. 

Rence t(t) kt for t € l = (-5,ô) 

or log f(t) for . t € l = (-ô, ô) 

By analytic continu&tion, log f(t) holds for all t. 

This completes the proof. 

The following theorem is also established by Rao in the same paper [83]. 

Theorem 2. (Rao 1967) Let Xl,'" ,Xn be a random sample from X with 

d.f. F(x) having mean zero. Let there exist two linear functions 

and 

that 

n 
~ X. 

1 i=l 

a 1 0, n 

E(X2) < 

n 
and L2 = ~ b.X. with lb 1 > max (lbll, ..• ,lbn~l: 1) 

. 1 1 1 n 
1= 

such that E(Lll L2) = O. Then F(x) is normal provided 
n 

a.b. / b co ~ a.b. = 0 and < 0 for i :-:: l,2, ... ,n-l. , 1 1 a 
i=l 1 1 n n 

Proof. By lemma 1 one obtains a relation of the form 
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=~ 
f(t) 

(2.1) 

and f(t) is the ch.f. of F(x). As seen in the previous proof W'(t) 

exists and i~ continuous at the origin, and W( t) can be expressed in 

the form t 0(t) where 0(t) is continuous at the origin. 

where 

or 

From (2.1), by substituting W(t) by t 0(t), one has, 

= 

0( t) 

n 

a. 
1. 

a 
n 

= 
b. 

1. 

b 
n 

a.b. 

i = 1,2, .•. , n- 1 

(2.2) 

In viewof ~ a.b. = 
1. 1. 

o and 1. 1. < 0 (i = ;b 1,2, ..• ,n-l), we see 

that 

i=l 
n-l 

= 1 anel all 

n n 

1,2, ..• ,n-l are positive. 

We have, by replacing t by ~.t in (2.2), 
1. 

0(~.t) = Y1~(~1~.t) + ... + Y 1~(~ l~.t),i = 1,2, ... ,n-l 
1. 1. n- n- 1. 

n-l n-l n-l 
so that 0(t) = ~ y i0(~i t) ~ ~ Y.y· 0(~.~ .t) 

i=l j • 1. J 
1. 

1. J 

0( t) = ~ ~ ô .. 0(~i~j) where Ô •• = Y.y· 
j i 1.J 1.J 1. J 

or 

and ~ Ô •• = 1 (2.3) 
ij 1.J 
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Renee 0(t) - 0(0) = l: (2.4) 
j 

proeeeding in this manner, one obtains 

0(t) - 0(0) = ~ ô i '··., [0(~ ..•. 13. t)- 0(0)] 
1 i

m 
1 1 1m 

(2.5) 

where l: Ô. i = 1 and summation is taken over all integers i k, 
1

1 
... m 

i < i k :s m, k = 1,2, •.. ,n-l. Now for any fixed t 1= 0, t < 0, we 

can choose m so large that (max I~ilr < T}/I t 1 where T) is such that 
i 

10(!..l) - 0(0)1 < E for IIlI < T}. But then the modu1us of the right-hand 

side of (2.5) is 1ess than E so that for any E > 0, we have 10(t)-0(0)1 

Le. 0(t) = 0(0) = c (say) 

0(t) = ct 

log f(t) = c 2 
2 t which completes the proof in view of the 

ana1ytic continuation of the characteristic function. 

As an application of Theorem 2, we have 

Coro11ary 2.1. Let x1, .•• ,Xn be given as in Theorem 2. If 

E(xlx.-x) = 0 for any 
J 

E(X~) < ~ , then F(x) 
1 

n 
j = 1,2, ••. ,n, where X = l: X/n and if 

1 
is normal. 

Instead of considering the conditiona1 expectation of one 1inear 

function of the random samp1e on another 1inear function, one may 

< E. 
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consider the conditiona1 expectation of one 1inear function given 

severa1 1inear functions. Rence an extension of Theorem 2 is pos-

sib1e in the following direction, in which "identicaUy distributed" 

is not assumed as in the preceding theorems. 

Theorem 3. (Rao 1967). Let X1,···,Xn (n 2 3) be n independent1y 

(not necessari1y identicaUy) distributed r.v.' s. Let the three 1inear 
n n n 

functions L1 = L a .X., L2 L b.X., L3 = L c.Xi be such that 
i=l ~ ~ . 1 ~ ~ . 1 ~ 

~= l.= 

i) a. f: 0 , i = 1,2, .•. ,n 
~ 

U) for each 

iU) l3 i f: 13 . 
J 

b. are not zero. 
~ 

iv) all ex i , 

i, b. and 
~ 

for any i 

where ex i 

of the same sign and aU ô. 
J 

same signe 

f: 

= 

c. are not both zero. 
l. 

j where ci/b. = 13· if both 
l. l. 

c. 
f: 0 b. l. when c. and = 

a. l. l. 
~ 

b. 
when b. f: 0, 0 l. c. are 

a. l. l. 
l. 

Then X1,X2, ... ,Xn are a11 norma11y distributed provided that 

c. and 
l. 

0 are 

or the 

We first estab1ish a usefu1 1emma by Linnik (1964) and Rao (1966). 

Lemma 2. (Linnik, 1964 and Rao 1966). Let b., (j = 1,2, .•• ,n) be rea1 
J 

numbers such that b j f: bk , j f: k, j,k = 1,2, •.• ,n. Let 
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01'02' ••• ' On' A, B be continuous functions. Assume that the equation 

holds in lui < 5 ,Ivl < 5 o 0 
where u and v are real, and Q is a 

quadratic function. Then 0
l

, •.. ,0n A and B are aIl polynomial 

functions of degree max(2,n) at most in a neighbourhood of the orign. 

Proof. Multiplying both sides of the equation (*) by (x-u) and integrating 

with respect to u from 0 to x, where 1 xl < 5 , we get o 

n 
~ 

j=l 

x 

J 
o 

(x-ùHhu+b .v)du 
J J 

x 

+ J 
o 

x 
x 

= J (x-u) A(u)dU+B(v) J (x-u)du + 
o o 

(x-u) Q(u,v)du 
2 3 

= c(x) + x Bl(V) + x D(v) 

(i) 

where D(v) is linear in v and Bl(v) is a continuous function of v. 

Letting U+bjv = t, Itl < 51 < 50 in (i), we get 

n 
~ 

j=l 

X+bjv 

J 
b.v 

J 

3 2 
(x+b.v-t) 0.(t)dt = x D(v) + x Bl(V)+C(x) 

J J 
( ii) 

The equality (ii) is true when Ixl < 52' Ivl < 52' 0 < 52 < 51. Since 

the left-hand side of (ii) is differentiable with respect to v for 

each fixed value of x, Ixl < 5, it follows that Bl(V) is also differen­

tiable with respect to v. Writing (ii) in the form 
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L 

j=l 
b.v 

J 
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:x+b.v 
J 3 2 J 0j (t)dt = x D(v) + x Bl(v) + c(x) -

b.v 
J 

x+b .v :x+b.v n J n J 
L x J 0.(t)dt + L J t 0.(t)dt 

j=l b.v J j=l J 
J b.v 

J 

and then differentiating it with respect to v, we get 

n 

L 
j=l 

in which 

b. 
J 

n 
L 

j=l 

:x+b.v 

J J 0j (t)dt = hx
3 

+ Bi(v)x
2 

+ B2(v)x + B
3

(v) 
o 

b. 
J 

b.v 
J 

J 
o 

0.(t)dt 
J 

has been added to both sides. 

( Hi) 

Here h is a constant, B2(v) and B3(v) are functions of v, and 

the equality (iii) holds for a certain domain of v and x. Now 

differentiating both sides of (iii) with respect to x,' we get 

n 2 
L b.0 .(:x+b .v) = 3hx + 2Bi (v)x + B2(v) 

j =1 J J J 

Setting v = 0 in (iv) we have 

n 
L 

j=l 
b.0.(x) = 

J J 

where f
2l

(x) is a polynomial in x of degree two at most. 

( iv) 

(v) 

Starting from the equation (iv), ~nd repeating the procedure as 

before, we get 
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~ 
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b
2 O. (x) 
j J 

= 

where f 22 (x) is a polynomial in x of degree three at most. Rence 

by repeating the procedure n times, we obtain the equBtions 

b10l (x) + .•• + b 0n(x) = f
2l

(x) 
n 

2 
b20 (x) b10l(x) + ••. + f 22 (x) (vii) n n 

n 
bn0 (x) f 2n (x) b10l (x) + •.. + n n 

where f 2n(x) is a polynomial in x of degree n at most. Since 

bl, •.. ,b
n 

are all different, 0
j

, j = 1,2, •.. ,n are uniquely deter­

mined by solving the equations(vii) and are linear combinations of 

This means that each O., j = 1,2, ... ,n i5 a poly­
J 

nomia 1 of degree max(2,n) at most in a neightbourhood of the origin. 

We now proceed to the proof of the theorem. There i5 no 1055 

of any generality in assuming that 

i 5+k+l, •.• , n. 

Denote Yi = a .X. , i 
l l 

c s+k 
o and b. # 0, c. # 0 for 

l l 

1,2, .•. , s+k 

Yi = biX
i

, i > s+k+l so that we have 

where y. 
J 

a. 
= J 

b. 
J 

(3.1) 
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= 
c +k:+' s ] 

b s+k:+j 

(3.2) 

In terms of ch.f.~s f
1

, ••• ,f of Y, i = 1,2, ••. ,n, and wiiting 
n i 

f~(t) 
1. --

f(t) 
= 0.(t), 

1. 
i = 1,2, .•• ,n, the equation (3.2) becomes 

s s+k n 
L 0.(o.t3) + L 0.(o.t2) + L y.0.(t2+J3.t3) 
1 1. 1. s+1 1. 1. s+k+1 1. 1. 1. 

o (3.3) 

We may write (3.3) in the form 

n 

L Yi0i(t2+J3it3) 
s+k+1 

n s+k 
Since a11 ~S+k+1 , ... , ~n are different, and - î 0i (oi t 3)' - ~1 0i (oi t 2) 
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s 
are continuous, by Lemma 2, (i = s+k+l, .•. ,n) î- ~\ (0:3 t 3 ) , 

and 

s+k 
2: 0. (6 . t

3
) 

s+l 1 1 
are aIl polynomials in t. This implies that tn fS+k+j , 

j = l, •.• ,n-s-k are also polynomials in t. By Marcinkiewicz's theorem, 

Ys+k+l""'Yn are normally distributed. 

Furthermore, it is obvious that 
s -1 
2: 0: 1 ! n f. (0: . t) 
1 1 1 

is a polynomial 

in t. Since 0:. are aIl of the same sign, by a result listed in Chapter" l 
1 

on analytic ch.f.'s, 

butions. Similarly 

f.(t), i = 1,2, •.. ,s are ch.f's of normal distri-
1 

Y., i = s+l, ... ,s+k are aIl normally distributed. 
1 

It should be noted that ~L ~il = ~i2 = •.• = ~ik for a set of indices 

il, ..• ,ik , and if the corresponding Yil""'Y
ik 

are of the same sign, 

then Theorem 3 is still true. This is because the functional equation 
k 

(3.3) ensures that 2: y .. 0 . . (t) is a polynomial in t in a certain 
j=l 1J 1J 

neighbourhood of the origin. With the same argument as before, the 

r. v. 's Y .. , j = 1,2, ... , k can be seen to be norma 1. 
1J 

As a corollary, we have 

Coro llary 3.1. Let Xl' •.. ,X (n > 3) be independent (but not 
n -

necessarily indentically distributed) r.v.'s such that E(X.) < 00, 
1 

i = l,2, •.. ,n. Then E(XfXl - X, X
2 

- X) = 0 implies that 

Xl"",Xn are aIl normally distributed. 
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It was shown in a paper by Rao (1952) that the mean square error 

of X is not smaller than 

, ... , 

where Xl"",Xn are i.i.d r.v.'s from a location parameter family, 

where Var denotes the variance and Eo.denotes the conditional e~pecta.tion when 

the location parameter vanishes. Also it was shown that X-Eo(X/X2-Xl""'Xn-Xl) 

is an unbiased estimation of the location parameter, and that X is 

the minimum variance unbiased estimator of the location parameter when 

the distribution is normal. This means that Eo(XIX2-Xl""'Xn-Xl) = O. 

It is interesting to note that this proposition characterizes a normal 

distribution without however assuming that the underlying distribution 

belongs to the location parame ter family. It was shown by Kagan, Linnik 

and Rao (1965) that E(xlx2-xl ,···,xn-Xl ) = 0 implies that X. is 
l 

normal, where X. , i = 1,2, •.. ,n (n 23) are L Ld. r.v. 's with mean 
l 

zero. This result turns out to be a special case of the following theorem 

which is also due to Rao (1967). 

Theorem 4. (Rao 1967) Let Xl"",Xn (n 23) be independent (but not 

necessarily identically distributed) nondegenerate r.v.'s with 

E(X.) = 0 i = 1,2, ...• n. Consider the n linear functions 
l 

Ll = a. lXl + ... + a. X, i = 1,2, ••• , n 
l ln n 
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with j=1,2, ••• ,n such that the determinant I(a .. )1 -F o. 
1.J 

It is easy to show from the given condition that 

it1L2+·· .+it IL 
E(L e n- n) 0 

1 

We may assume aIl = a12 = ... = a1n = 1 (without 10ss of genera1ity) 

f~ (t) 
In terms of 0.(t) = 1. , where fi(t) is the ch.f. of Xi' 

J fi (t) 

i = 1,2, •.• ,n, we obtain a functiona1 equation of the form 

By 1etting a
2J

·t1 + ... + a .t 1 = T., 
nJ n- J 

j = 1,2, ••• ,n-1, the above 

equation can be expressed as 

where 

01(T1) + ... + 0 l(T) + 0 (k1T1 + ... + k 1T 1) = 0 n- n n n- n-

are suitab1e constants. Putting T. = 0 
1. 

except 

for i = rand i = s and in view of 0.(0) = 0, j = 1,2, ..• ,n we 
J 

obtain 

o (T ) + 0 (T ) 
r r s s 

0(k T + kT) 
n r r s s 

Renee by Lemma 2 o (t) and 0 (t) are po1ynomia1s in t. Since r 
r s 

and sare arbitrary, we conc1ude that 01(t) , •.• , 0n(t) are aIl 
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po1ynomia1s in t. With the same reasoning as before X
1

, ••• ,Xn 

are a11 norma11y distributed. 

Let X
1

, •.. ,Xn be a random samp1e from X with d.f. F{x) 

having mean zero and finite ~th abso1ute moment. Consider the 
-n n 

1inear functions L = 1 

n 
2: 
1 

and 2: b.X. 
1 l 1 

with 2: 
1 

r 
aibi 

n 

-1= 0, 

r = 2, ••• ,k-1. If E{L1IL2) = 0, then it can be shown that 2: a.b. = 
1 l l 

0 

and that the jth cumulant of F{x) is equa1 to zero for j = 3, ••• ,k. 

The by assuming that F{x) has moments of every order, we immediate1y 

get a characterization oc the norma 1 distribution (see 83). The converse 
n 

of the proposition is a1so true sicne E{L1IL2) = 0 imp1ies 

which in turns imp1ies that L1 and L2 are uncorre1ated. This means 

that L1 and L2 are independent, and hence the assertion fo110ws at once. 

In Theorem 4, we have seen that Norma1ity is characterized by the 

constant regression of a 1inear function given severa1 1inear functions 

of the nondegenerate independent r.v.Is. It is interesting to note that 

the assertion of Theorem 4 is still true if the condition E~L1IL2, .•• ,Ln) 

is rep1aced by an ana10gous condition as E(L. IL +l, •.• ,L ) = 0 for 
l p n 

i=l, •.• ,p. To see this, we fivst transform the 

takes the form 

LI. = X + b X + ••• + b. X 
J j jp+1 p+1 Jn n 

L. to 
J 

LI. 
J 

which 

j=1,2, ••. ,p. 
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This is possible since the determinant ICaij)1 1 O. Similarly 

transform Lp+l,···,Ln to , ••• , L' 
n 

which take the forms 

condition is equivalent to ECL~IL' 1, ••• ,L) = 0, 
1 p+ n 

i = l, •• ,p. From this condition, we get as before a functional 

equation of the form 

0.(Cp+l .t l + ••• + c.t )+b ... +10p+1Ct l )+ ••. +b. 0 Ct ) = 0 
1 ,1 nl n-p ..,p ln n n-p 

i 1,2, .•• ,p. Applying the same arguments as in Theorem 4, and using 

Lemma 2, we conclude that the assertion is true. 

4.3. Constant regression and polynomial regression of a polynomial 

Statistic on a linear Statistic. 

We have seen that the complete independence of two linear statistics 

can be replaced by a weaker condition, namely the constant regression of 

one linear statistic on another. The same is true for a quadratic 

statistic on a linear statistic as mentioned in the beginning of this 

chapter. A thorough and detailed analysis of the proofs such as that 

of Theorem 3 in Chapter III readily gives us some modifications of the 

previous results. Therefore we shall only state the following results 

without proofs. 
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Theorem 5. (Laha) Let X1"",Xn 
be a random samp1e from X with 

d. f. F(x) having finite variance 
2 

a • Consider the polynomial statistic 

n n n 
Q = ~ 

j=l 
~ a .kX .Xk + ~ b.X. 

k=l J J - j =1 J J 

with coefficients satisfying 

( i) 
n 

~ 
j=l 

a.. f= 0, 
JJ 

n n 

~ ~ a
J
·k 

j=l k=l 
o and 

n 
L: 

j=l 
b. = 0 

J 

Then F(x) is normal iff Q has constant regression on the samp1e 

Corollary 5.1. (Laha 1953) Let Xl"",Xn be a random samp1e from X 

2 
withd.f. F(x) having 8 fini te variance a • If the regression of 

any unbiased quadratic statistic 
n 

Q = ~ ai·x.X. 
ij J 1. J 

of 

Xl + X2 + ... + Xn is constant, then F(x) is normal. 

From the definition of unbiasedness, we have 

E(Q) = 

The above equation implies that 

Theorem 5, the resu1t fo110ws. 

2 ca 

n 
~ 

j=l 
a .. = c and 

JJ 

n 
~ 

ij 

2 ca (c f= 0) 

a .. 
1.J 

= 0 . By 

Instead of constant regression, we mayas we11 consider po1y-

on 

nomia1 regression which a1so characterizes Norma1ity. The fo110wing 

theorem is a genera1ization of Theorem 5. 
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Theorem 6. 

sample from 

(Laha and Lukacs 1960) Let Xl ,X2, ••• , Xn be a random 

2 X with d.f. F(x) having a finite variance cr. Consider 
n 

a polynomial statistic Q = 2: a .. XiX. 
ij=l 1J J 

n 
+ 2: b.X. 

j=l J J 
wi th coeffi-

n 
cients satisfying A = Al(n-l) - A2 F 0, where Al = 2: a

ii 
and 

i=l 
n 
2: a

iJ 
.• 

il: j 
Let ~l and ~2 be two real constants such that 

n 

~l ~ and ~2 where ~ = Lb. 
j=l J 

Then the relation 

2 
E(QI.I\) = ~ 0 + ~1J\ + ~2A holds iff 

normal, where A = Xl + X2 + ••• + Xl . 

We first note that if 
n 
2: 

i=l 

n 
2: 

j=l 
a 
ij 

2 
(i) ~ 0 = AL, (ii) 

n 

= 0, 
n 
2: b. = 0, 

j=l J 

F(x) is 

then 

~l = 0, and ~2 = O. This reduces to the case of Theorem 5. We now 

proceed to the proof of the Theorem 6. By Lemma 1 we have 

(6.1) 

holds for aIl real t. Let f(t) be the ch.f. of F(x) and 

0(t) = ~n f(t) be its cummulat generating function (valid in a 

neighbourhood of the origin). We have 

E(Qe
it/\ ) = - [f(t)]n{ A

1
0"(t) + (Al+A2)[0' (t)]2_~i~' (t)} 

(6.2) 
and 
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From (6.1) and using (6.2) and (6.3), we obtain 

(nf:32-Al) 0"( t) + 
2 

(A
l
+A2)] [0'(t)]2 + f3 0 = [n f3 2 -

But since 

By letting 

and hence 

2 
- (A l+A2) n f3 2 = 

t = ° and using 

2 0" ( t) = - cr . 

0, 

+ (f3-nf:3 l )i0' (t) 

f3 - nf:3 l = 0, we have from 

0"(0) = - 2 
cr , we obtain f3 

a 

(6.4) 

(6.4) 

2 
= .Q.... A 

n 

Rence f(t) = exp { - ~ cr
2

t
2 

+ iat} holds in a neighbourhood of the 

origin. By analytic continuation, we conclude that F(x) is normal. 

To prove the sufficiency, write 

0(t) = log f(t) = -

Uisng (6.2) and (6.3) and taking into account f3
l 

~ 
n' 

2 
and f3 2 = A ~ ,we have 

for aIl real t. By Lemma l, we have 
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This completes the proof. 

By appropriate1y choosing the coefficients of the polynomial 

statistic Q and the regression coefficients ~o'~l and ~2 we have 

seen that the regression properties of a polynomial statistic of second 

degree on a·linesI':statistic characterize the normal distribution. 

Applying the similar technique as in Theorem 6, Gordon and Mathai (1968) 

generalize the above result by constructing a polynomial statistic of 

third degree which has polynomial or constant regression on the sample 

sum Xl + •• ,+Xn and obtain a series of characterization theorems for 

various populations such as Norma1,Gamma and Poisson etc. Moreover, a 

technique that can be used to study any genera1 rSh::; mth order poly-

nomia1 regression of any th 
m degree polynomial statistic on a linear 

one is a1so revealed in [28] . We present here a few results proven in [28]. 

The proofs of these are similar to Theorem 6, and hence will be omitted. 

Theorem 7. Let Xl"",Xn be a random sample from X with d.f. F(x) 

having fini te third moment. Let 

s = ~ a.,_X.XkX + ~ b·kX.Xk + 
. k ]l\.lll] m . k ] ] ], ,m ], 

~ c.X. 
j ]] 

be a polynomial statistic of third order, where a jk, b jk and 

al1 j,k,m = l, ••• ,n) are real constants. 

Assume that the following relations hold 

c. (for 
] 



A = 0 
1-'0 

c - n(31 0 

B1 - n(32 = 0 

2 
B1 + B2 - n [32 = 0 

n(n+2)[33 - 3A1 -A2 = 0 

2 
n(n -2n+2)[33 - Al - A2 - A3 = 0 

where Al = L a jjj , 
j 

A2 = L (aook+aoko+akoo), 
j#k JJ J J JJ 

A = 3 L a J0km ' 
J~klm 

B = 
1 L b 00' 

j JJ 
C = L Co, 

j J 
and 

fundamenta1 differentia1 equation of third order in the ch.f. f(t) of 

F(x). The assumptions of the coefficients of the statistic S and the 

regression coefficients permit us to reduce the fundamenta1 equation to 

the simple form 

d3 
i(n[33 - Al) -3 log f(t) = 0 

dt 

which readi1y gives us a solution of a ch.f. of a normal distribution. 
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By imposing another set of conditioœof the coefficients of the 

statistic 

where 2 
cr 

S and the regression coefficients, for example 

c-0(3=O 

0(33. - A = 0 

2 
Bl+B2-n (32 = 0 

n(n+2)(33 - 3A l -A2 = 0 

2 
n(n - 2n+2)(33 - Al -A2-A3 0 

2 
(30 = cr (B l -0(32) f 0 

is the variance of F(x), we can also obtain another 

characterization of the normal distribution. A glance at the conditions 

of the coefficients of the statistic: S and the regression coefficients 

will tell us the fundamental differential equation resulting from the 

1 
2 3 

condition E(S A) = (30 + (311\+ (32/\ + (33/\ is rather complicated and 

cannot be solved readily. Rence if we go on considering the regression 

properties of a mth (m 2 3) degree polynomial statistic on a linear one, 

we shall meet with a series of conditions on the coefficients of the m~h 

degree polynomial statistic and the regression coefficients and also 

have to deal with a very complicated differential equation of tb m: ,1 order. 

In such cases, it is worthwhile to investigate the analytical properties 

of those solutions which are characteristic functions. 

Linnik and Zinger (1957) discussed a special class of polynomial 

of degree r that has a constant regression on the sample sum. This 
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c1ass of polynomial is ca11ed regu1ar polynomial (see pp.110 [48]) 

They obtained two important resu1ts, one regarding the existence of 

the moments of the under1ying distribution function, the other con-

cerning the ana1ytica1 properties of the ch.f. of the underlying 

distribution function from the assumption that a regu1ar polynomial 

statistic of degree r has a constant regression on the samp1e sum 

Xl + X2 + ... + Xn. We sha11 only state these two resu1ts, and for the 

proofs, we refer the reader to [48] pp. 110. 

Theorem 8. (Linnik and Zinger 1957). Let X1, ••• ,Xn be a random 

samp1e from X with d.f. F(x) having 
j1 

Let p(X1, ••• ,Xn) = ~ A. . Xl 
J 1,···,Jn 

finite moments up to order m. 

, ... , be a regu1ar po1y-

nomia1 statistic [see pp. 110] of degree rand order m(m ~ r). If 

p(X1, ••• ,X
n

) has constant regression on the samp1e sum Xl + ... + Xn, 

then F(x) has moments of a11 orders. 

Theorem 9. Under the conditions of Theorem 8, if (i) p(X
1

, ••• ,Xn) has 

constant regression on the samp1e sum Xl + ... + Xn (ii) m> n-1 then 

the ch.f. of f(t) of F(x) is an entire function. 

It shou1d be noted here that the assertion of Theorem 8 still 

ho1ds if the samp1e sum is rep1aced by any 1inear statistic a1X1+ ... +a nXn• 

As an application of Theorem 9, we have the fo11owing coro11ary: 

Coro11ary 9.1. Let X
1

, ••• ,Xn be a random samp1e from X with d.f. F(x) 

having fini te second moment . and 
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L2 = b1X
1 

+ ... + bnXn be two linear statistics .' If L~ has constant 

regression on LI' then F(x) has moments of every order. 

We note here that tœ assertion fo11ows by app1ying Theorem 9 

with P = L2 
with m = r = 2. 

2 
We now give a characterization of the 

normal distribution. 

Theorem 10. (Cacou11as 1967). Let X
1

, ... ,Xn be a random samp1e from 

X with d.f. F(x). Let LI = a1X1 + ... + anXn and L2 = b1X1 + ... + bnXn 

be two 1inear statistics with a1b1 + a2b2 + ... + anbn = 0 and 

ajak > 0 for a11 j, Ik= 1,2, •.. ,n. Then L~ has constant regression 

on LI iff F(x) is normal. 

As seen before, the sufficiency is obvious. To prove the 

necessity, consider 

(10.1) 

In terms of the ch.f. f(t) of F(x) , we have from (10.1). 

n 2 ni' 
~ c.g.(t) TI g (t) + ~ c'lf.(t)gk ~t) TI g (t) 
1 ] ] si:j s ji:k J ] ri:j,k r 

n 
= - E(L~) li g.(t) 

j=l ] 

where c. = 
] 

b. 
-.l 
a. 

] 

(10.2) 

and g.(t) = f(a.t), j = 1,2, ... ,no 
] ] 

By 

coro11ary 9.1 aIl moments of F(x) exist, and hence the deri-

vat ives g~k~t) of g.(t) exists for every k. Let C).(t) = ln g.(t), 
J J J J 

j = 1,2, ... ,no (valid in a neighbourhood of the origin). Dividing 
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both sides of (10.2) (permissib1e in a neighbourhood of the origin) 

by n 
TI g.(t) we have 
j=l J 

~ c~ 0" .(t) + [L: c.0' .(t)] 2 = - E(L
2

2) 
J J J J 

(l0.3) 

We sha11 show that the cumu1ants k of F(x) are zero for r > 2. 
r 

Differentiating (10.3) once and setting t = 0, we get 

n 2 3 n n 2 
~ c J' a J' + 2 k1 k2 ( ~ c. a .) t ~ c. a. J = 0 
1 1 J J j J J 

(10.4) 

by taking into the relations 0~r)(0) r 0(r)(0) .r r k account a = 1 a 
J j j r 

n 2 n n 3 2 But ~ c.a = ~ a.b. = 0 and ~ a. c f= 0, we must have k3 = O. 
i J j 1 J J 1 J j 

Similar1y, we can show k = 0 for r > 2. This completes the proof. r 

If we are given a samp1e X
1
"",Xn from X with a symmetrica1 distri­

bution, then fo11owing the proof of Theorem 10, we can show that the 

distribution is normal iff L2
2 

has a constant regression on L
1 

where L 2 = b1 Xl + ... + b nXn and 
n 

j = l, 2, •.. , n and ~ a.b. 
1 J J 

= o. 

a. f= 0, 
J 

4.4. Mu1tivariate Case. Having seen a number of resu1ts in univariate 

case, we now come to consider the mu1tivariate case. Ana1ogous 

resu1ts can be formu1ated without mu ch difficu1ties. 
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Theorem 11. (Kagan, Linnik and Rao 1965). Let X
1

, .•• ,Xn be a samp1e 

from a mu1tivariate distribution with E(Xi ) = O. Then 

E(Xlx2-x1 , •.. , Xn-X1) = 0 imp1ies that the common distribution of 

Xl' ••• ' Xn is mu1tivariate normal. 

The resu1t fo11ows from Cramer-Wor1d theorem and Kagan-Linnik and 

Rao's theorem in univariate case. 

Theorem 12. Let X
1

' ••• 'Xn be a random samp1e from a nondegenerate 

p-dimensiona1 distribution with covariance matrix M. Let 

where x. is a 
J 

satisfying (i) 

n 
Q = l: 

j=l 

n 
l: A.

i 
X.X: 

i J J ~ 

(column) random vector, A .. 
JJ n 

l: A .. = - l: A.k = A ; 
j=l JJ j#=k J 

are p x p matrices 

(ii) A is nonsingu1ar. 

Then the distribution is p-variate normal iff Q has constant regression 

This resu1t is a generalization of Lukacs' resu1t (1942) in 

mu1tivariate case as we11 as an ana1ogous form of Laha's result in 

univariate case. By putting 

1 a .. =-
JJ n 

j = 1, ... ,n 

1 
j #= k, j,k = 1, .• , n , 

n(n-1) 



then 1 Q =­
n-l 

in [62) by Lukacs. 

n 
~ 

j=l 
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(X. - X) (X. - X)' 
J J 

Nhich is the case considered 

The proof of this result is nothing new, except changes of nota-

tions, and hence is omitted. 

Similarly, Theorem 10 has an analogous form in multivariate 

case in the light of Cramer-Wold's theorem. 

4.5. Linearity of regression and homoscedasticity 

In the conclusion of this chapter, we consider sorne properties of 

linearity of regression and homoscedasticity and its applications in 

characterization problems. It is a remarkable fact that the regression 

of .. a' component of a two-dimensional normal random vector on another is 

linear and tlle conditional variance of a component of a two-dimensional 

normal random vector does not depend on another. A question arises 

whether this property is only enjoyed by the no~mal distribution. In 

the following we shall establish the normality of the r.v.'s under 

consideration from the property of the linearity of regression and homo-

scedasticity o'f the conditional distribution. Fut this purpose, we intro-

duce the following concepts. 

Let X and Y be two r.v.'s and assume that the second moment of 

y exists. The expression 

E(y
2 Ix) 
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is called the conditional variance of Y given X and will be 

denoted by var (YI X). We say that the conditional distribution of Y 

given X is homos cedas tic if the conditional variance of Y given X 

is a constant. i.e., var(yIX) = 2 
0'0 a.e., 

2 
0' > o. 

o 
We first establish 

the following necessary and sufficient conditions for the existence of 

linearity of regression and homoscedasticity of the conditional distri-

bution of a r.v. Y given X. 

Lemma 3. (Rao, Mourier and Rothschild). Let X and Y be two r.v.'s 

having finite s2cond moments. Then the r.v. Y has linear regression 

on X and the conditional variance of Y given X is constant, i.e., 

E(Ylx) = a + ~ X, 
2 

var(YIX) = cro a.e. iff the relations 

df(u,v) 

dV 
= - a f(u,o) + ~ ~ f(u,o) du 

2 
d f~U,v) 1 2 2 d 2 d2 

- (cro + 0: )f(u,o) + 2io:~ du f(u,o)+ ~ -2f(u,0) 
dV v=O du 

holds for all real u, where f(u,v) is the ch.f. of the random 

vector (X, Y). 

By multiplying E(YIX) = ~ X and 

by itX e and taking expectation on both sides with respect to X, the 

necessity follows. The proof of the sufficiency of the lemma is very 

similar to Lemma 1. 
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If the r.v.'s Y and X have mean zero, it is easy to see that 

E(ylx) = ~X in virtue, of E[E(YIX]= E(Y). 

Lemma 4. Let (X.,Y.), i = 1,2, ... ,n be n nondegenerate independent 
~ ~ 

(but not necessari1y identica11y distributed) random vectors such that 

every component of the random vector (Xi,Yi ), i = 1,2, ••. ,n, has mean 

zero and a finite variance and 

2 
= cr io' i 1,2, ••• ,n. 

n 
Let E a.X. 

. 1 ~ ~ 
~= 

and 
n 
E 

i=l 
b.Y. 
~ ~ 

be two 1inear functions with 

a.b. i, 0 
J J 

(j = 1,2, ••. ,n). Then E( L2 1 Li) = t3L1 

bn~n provided that = a 
n 

= ~ 

Proof. Let W. 
J 

a .X. and Z. = b. Y . for j 
J J J J J 

n 
E W. 

j=l J 
and 

By Lemma 3, it can he shown that, 

E(Z .Iw .) = 13 '. = 
J J J 

Var (z.lw.) 
J J 

n 
E Z. 

j=l J 

b.~ . 
-L..L 

a. 
J 

and 

is satisfied. 

1,2, ••• ,n. Then 

i=1,2, .•• ,n. 

Let f.(u,v) and f.(u,o) denote respective1y the ch.f.s of 
J J 

(W .,Z.) and W., j = 1,2, .•. ,n, and similar1y g(u,v) and g(u,o) 
J J J 

denote that of (L
1

, L2) and L1 respective1y. Then 
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g(u,v) = E [exp(iuL
1 

+ ivL2)] 

n 
= E [exp (iu ~ W, + iv 

j=l J 

n 
II 

j=l 
f, (u,v) 

J 

n 
~ 

j=l 

~ince E(Z IW,) = ~',lol" 
j . J J J 

2 
var(Z,IW,) = aJ,o for 

J J 

Lemma 3, we have 

of ,(u,v) 

1 

df,(u,o) J 
~', J = 

ôv J du 
v=o 

2 

z ,) ] 
J 

j = 1,2, ... ,n, 

2 
d f ,(u,o) 

( i) 

by 

( H) 

o f .(u,v) 
J 

a'2 f,(u,o) + ~~2 J J , j=1,2, •.. ,n • 
jO J J 

v=o 

Differentiating both sides of (i) with respect to v m times ( m = 1,2), 

and then putting v = ° and using the relations (ii), we obtain 

2 
Ô g(U,V)1 

ôv2 
v=o 

dg(U.V) 1 = n df ,(u,o) 
~ r:-',] II 

~v j=l·J du ki=j 
(Hi) 

n 
= - II 

j=l 

+ 

v=o 

f ,(u,o) 
J 

~ ~',~' 
ji=k J k 

n 
~ 

j=l 

df,(u,o) 
] 

du 

, 2 
~ 

j 

2 d f ,(u,o) 
] II 

ki=j 
f ,(u,o) 

J 

df!f(U'O) 

du 
II fiu,o) 

J4j, k 
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Letting v = ° on both sides of (i), and then differentiating with 

respect to u m times (m = 1,2), we obtain 

dg(u,o) 

dU 

2 
d g(u,o) n 

= ~ 
du2 

j=l 

n 
~ 

j=l 

df .(u,o) 
J 

du 

2 
d f.(u,o) 

1 

II fk(u,o) 
kh 

II fk(u,o) + ~ 
k#j j#k 

df .(u,fiJ) 
] x 
du 

Since t3' 1 
, 

= •.. = t3 = t3 
n 

, we have from (iii) and (iv) 

d g(U,V)1 

dv v=o 

dg(u,o) 

du 

dg(U,V) 

dV
2 - g( u, 0) 

By Lemma 3J the proof is complete. 

We see from the above result that if 
n n 

2 
d g( U,I'iJ) 

du2 

there exist two linear 

( iv) 

functions LI = ~ a.X. and L2 = ~ b .X. with a.b. 
J 

1= 0 (j = 1,2, •.• ,n) 
j=l J J j=l .1 J J 
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where X1"",Xn are indep2ndent (but not necessarily identically 

distributed) r.v.'s each having mean zero and finite variance, then 

E(L2 1 LI) = [3 

b/a1 = b2 /a2 

and var(L2IL1) 

= b /a n n 

2 
= cr whenever the relation 

o 

[3 is satisfied. 

We are now in a position to prove the fol1owing theorem 

Theorem 13. (Laha 1957a) Let (X.,Y.), i = 1,2, ••• ,n be n non-
1 1 

degenerate independent (but not necessari1y identically distributed) 

random vectors such that E(X.) = E(Y.) = 0 E(y.lx.) = [3iX, and 
1 1 1 1 1 

2 n 
var (Y.I X.) = cr. for i = 1,2, ••. ,n . Let LI ~ a .X. 

1 1 10 
j=1 J J 

n 
L2 = ~ b.X. be two linear functions with a.b. 1: 0, (j 

j=l J J J J 
1,2, ••. ,n). 

Then 2 
E( L2 IL1) = [3 and var( L2 IL1) = cr iff 

0 

(i) each X. for which 
J 

1: [3 is norma11y distributed 

while each 

(ii) 

Y 
j 

[3 

2 
cr 

and the other 

~' 
2 

= a.b.[3.cr. 
J J J J 

n 2 
= ~ cr 

X.' s 
J 

/ ~' 

+ 
0 

j=1 
b~ 

J jO 

can be arbitrary. 

2 
a cr 

j 

~' ( 

2 

j 

b .[3 . 
J J 
a 

j 

and 

2 
[3) 

2 2 
a. cr 

J j 

2 
where cr. = Var(X.), (j = 1,2, ... ,n) 

J J 
and ~' stands for the summation 

b .[3 . 
aller a11 indices j for which J J 

a. 
J 
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Proof: Necessity, With exact1y the same notations as those used 

in Lemma 4, and with tœaid of temma 3, the fo11owing relations can 

be easi1y verified. 

n , 
~ 13. 

df .(u,o) 
1 

j=l J 
du 

n n 
II 

j=l 
f .(u,o) 

J 
~ cr'2 + 

j =1 j () 

2 n 2 
= - cr. II f.(u,o) + 13 

J j=l J 

n 
~ 

j=l 

n df .(u,o) 
II f k ( u, 0) = 13 ~ ] d II ft« u, ° ) 

jf:k j=l u k#j 

dt .(u,o) 
J 

du 

2 . 
d f .(u,o) 

] 

df .(u,o) 
] 

du 

(13.1) 

II fk(u,o) + ~ 13~ 13' x 
k#j j#k J k 

du 
II fiu,o) 

Ûj,k 

du 
II ft (u,o) 
#j,k 

(13.2) 

As before, there exists a neighbourhood in which none of the 

function f.(u,o) (j = 1,2, .•. ,n) 
J 

vanishes. Dividing both sides 

of (13.1) and (13.2) by 
n 
II 

j=l 
f.(u,o), 

J 
we bbtain 



n 
2: 

j=l 

= -

n 
2: ~' 

j=l j 
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df .(u,o) L n 
] = ~ 2: 
d j=l u f .(u,o) 

J 

df .(u,o) ~ 
J (13.3) 

if.(U,O)! ' ,{df.(U,O)l } ] + ~ 2: ~. ~] x 
du2 jl=k J k du f .(u,o) 

f.(u,o) J 
J 

2 ] 
d f.(u,o) df.(u,o) dfk(u,o) 

~U2 ~.(u.O) + j~k { ~u lf.(u.Jf du ~ (uJ 
J J k 

(13.4) 

(va1id in a certain neighbourhood of the origin). 

Let 0.(u) = ~n f.(u,o) for j = 1,2, ... ,n. Writing (13.3) and 
J J 

(13.4) in terms of the derivatives of o .(u), we have 
J 

n 
2: ~'. d0 j = 

j=l J du ~ 
n d0. 
2: --L 

j=l du 
(13.5 ) 
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= -
d20. n rA , d lll • 2] 
---01. + (2: ---l ) 
du2 j=1 du 

Making use of (13.5), (13.6) further reduces to 

n 
l: 

j=1 

2 
a 

jO 

n 
+ l: 

j=1 
= -

(13.6 ) 

(13.7) 

New, differentiating both sides of (13.5) with respect to u, we have 

n , 
l: (3 J. 

j=1 

Combining (13.7) and (13.8) , we have 

n 
(3 l: 

j=1 
(13.8) 

n '2 d2rA 2tt. 
III. n, d JI. 2 

Z (3. ---1 - 2 (3 l: (3. ---i + (3 

2 
n d 0. 
l: ---1 

j=1 J du2 j=1 J du j=l d/ 

~ (3'2 d2~. 2 n 0
20. = ---1 ---1 - (3 l: j=1 j 2 d/ du j=1 

( 2 
n '2 

= - ao - l: a jO ) = c (say) (13.9) 
j=1 
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Finally, integrating (13.9) with respect to u, we obtain 

, 2 

n { } (f3ff3) 
L: f .(u,o) 

j=l J 

P( u) 
e 

which holds in sorne neighbourhood of the origin,where P(u) is.a quadretic 

polynomial in u. By Theorem 4 in Chapter 1, we conclude that each W. 
, 

for which f3
j 

# f3 is normally distributed. 

Sufficiency. There is no loss of generality in assuming that 

and 

b.f3. la. # f3 for the first r pairs (r S n) 
111 

b.f3./a. = f3 for the remaining n-r pairs. 
111 

J 

Byassumption, the first r r.v'.s, Xl, •.• ,X
r 

are normally distributed 

while others are arbitrary. (using the notations as before, we denote 

r fi 

Z + Zr+l + ... + Zn where W = L: W., Z = L: Z. 
j=l J j=l J 

Now let f (u,v) and f (u,o) be the ch.f. 's of the distribution 
wz w 

of (W , Z) and the distribution of W respectively, and let 

the variance of W., j = 1,2, •.. ,n. Then 
J 

(f '2denote 
j 
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f (u,v) = E [eiWU+iZV ] 
wz 

wz df (U,V)I 

dV v=o 

2 d f (u,v) 
wz 

v=o 

+ 

= 

r 
L 

j=l 

l't 

TI 
j=l 

f .(u,v) 
J 

df .(\l,v) 
J 

dv 
TI f

k
( u, v) 

j;l:k 

r 
= L 

df .(u,o) 
J 

r 
L 

j=l 

r 
L 

j=l 

dV 

2 d f .(u,o) 
J 

èf.(u,o) 
J 

dfk(u,o) 

L 

r 
TI 

èv dv t;l:j,k 
jl=k 

By using the fact E(Y·lx.) = f3 .X. var(y.IX.) 
2 , = O'. 

~ l l l l l 10 

and Lennna 3, it can he shown as in ~ennna 4 that 

wz df (u,v) A 

2 

r 

= L f3 '. 
j=l J 

df .(U,O~ J 

(13.10) 

(13.11) 

f iu,o) 

(i = 1,2, •.• ,r) 

r "2 
= - l: t'.cr. u 

j=l J J 

(13.12) 

d f (u,v) 
wz r '2 r '2 '2 2 r , '2)2 = - L a - L: f3.O'. + u ( L f3. a 

j=l jO j=l J J j=l J j 

(13.13) 
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since f (u,o) = exp {- i u
2 ~ a'.2} 

w j=l J 

Since W is normal with mean zero and variance 
r 
~ 

j=1 

, 2 
a ,we have 

zw df (u,o) ~ 
= - u 

r 
L: 

j=1 

'2 
a 

j 

r '2 2 
L: a +u( 

r 
L a'2)2 

j =1 j j =1 j 

j 

We see from (13.12), (13.13), (13,14) and (13.15) that 

and 

cf (u,o) 
wz 

r 
= - L 

j=l 

dv 

'2 
a 

jO 

Loo = 13 

r 
13 = L 

j=l 

df (u,o) w where 
du 

a: 
2 

/ 
13' r 

j L: '2 a 
j=l j 

C
2

f (U,O)! r 
wz + L: 

dU2 j=l 
f (u, 0) 
w 

(13.14) 

(13.15 ) 
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'2 2 
= - cr f (u,o) + ~ 

o w 

'2 
cr 

o 

n 
= L 

j=l 

'2 
cr 

jo 

2 d f (u,o) 
w 

E(zlw) = ~w, and var (ZIW) 

But since 

that 

where 
n 
L 

j=l 

,2 + cr. 
JO 

Rence the proof is complete. 

r 
L 

j =1 

by Lemma 4, 

2 f-2 
(~' -~) cr--

j j 

where 

we conclude 

Since E(Xlx) = E(X) and var(XIX) = var(X) for any random 

variable X we have as a coro1lary the fol10wing. 

Coro llary l3.1. Let X , •.. ,X be n independent (but not necessari1y 
1 n 

identical1y distributed) nondegenerate r.v.'s each having mean zero 

2 
and a finite variance cr. > o. 

J 
Then the necessary and sufficient con-

dition for E(L2ILl) = ~Ll and 

and La = 

r. 
L biX. with 
1 1 

a.b. 1: 0 (j = 1,2, ••• ,n), 
J J 

is that 
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i) each X. for which b./a. ~ ~ is normally distributed while 
J J J 

the remaining X.'s have arbitrary distributions. 
J 

ii) ~ ~' a.b.cr 
2 

/"" 
2 2 and 

2 ",' (b j/a ._~)2 2 2 
= cr = a .cr 

J J a .cr j 0 J J j 
J 

where the summation runs through aIl indices j such that b./ J a. 
J 
~~ 

Multivariate cases of the above results is considered in [73] by 

Mathai (1967) in which sorne necessary and sufficient conditions for the 

existence of rational regression of one stochastic matrix on a number 

of stochastic matrices are established, and a1so a series of characteri-

zation theorems for the multivariate normal distribution are obtained. 

We present here 8 few results prove~ in [73]. For the proof we refer 

the reader to [73]. 

Theorem 14. Let Xl, ..• ,Xn be n independently but not necessary 

identically distributed stochastic column vecto~'s of order k each with 

Hnite covariance matrices. Let U = al Xl + ... + anXn and 

V = b1Xl + ... + bnXn where aIs and bIS are sca1ars and a.b. 
J J 

~ 0 for 

j = 1,2, •.. ,n. If E(vIU) = A + bU and var(VIU) = B is positive 

definite and independent of U, then each x. for which a. ~ b b. has 
J J J 

a multivariate normal distribution. 

We note that if the above Xl" .. ,Xn are replaced by n independently 

distributed symmetric stochastic matrices (matrix stochastic variables) 

of order k with each row having finite covariance matrices, then the 

assertion of the theorem still holds with A representing a matrix 
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of constants, b a sca1ar and var(VIU) rep1aced by cov(VIU) = B 

where B is positive definite and independent of U. Furthermore 

rep1acing the sca1ars a s and bIS by nonsingu1ar matrices AIs 

and BIs, similar assertion of Theorem 14 can be formu1ated (see [73]). 
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CHAPTER V 

Characterizations of the Normal Distribution in a Linear 

Structural Relations and by Properties of Samp1e Estimations. 

The methods of characterizing the normal distribution that have 

been discussed so far are based on sorne properties of suitab1e statistics. 

In this chapter we sha11 see that characterizations of the normal 

distribution can a1so be done through other considérations. We shall.,on1y 

discuss a few of them, whi1e others not considered here can be found 

in tœ bibliography. 

5.1. Linear structural relations 

To being with, we introduce sorne mode1 of random (stochastic) 

variables which is known as 1inear structural relations or in genera1 

1inear mode1. Suppose that we have a set of r.v.is X
1
"",X

n 
; 

Y1""'Xm; E1, •.• ,En such that the fo110wing relations are satisfied: 

x .. = 
J 

m 
L a

J
' i Yi + Ej' j 

j=l 
=1,2, ... ,n, 

where the a .. (j = 1,2, .•• ,n, i = 1,2, ••• ,m) are some rea1 constants. 
J~ 

i.e. X. is a 1inear function of y.Is and E .. The r.v.is Xls,yls 
J J J 

and EIS a1bogether are said to form a stochastic 1inear structure. 

The a
ji 

(j = 1,2, ... ,n, i = 1,2, ... ,m) are a1ways referred as the 
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parameters of the structure. Such model is often encountered in 

factor analysis mainly used in psychological statistics. We may express 

the above relation in terms of vector and matrix notations. Accordingly 

we have 

x = AY + E 

We shall calI the r.v.'s Xl, ..• ,Xn 

Yl' ••. 'Ym the latent variables and 

the observable r.v.'s, while the 

the error variables . 

As can be seen from the structure, the distribution of the observable 

variables is closely related to that of the latent variables, the error 

variables and the parameters of the structure. A question arises, whether 

the representation of X's in terms of y's and E'S and 

ajk(j = 1,2, •.• ,n, k= 1,2, ••. ,m) is uniquely determined by the latent 

variables, the error variables and the parameters. i.e., is it possible 

to have two different stDuctures which have the same distribution for 

the observable variables? The answer is in the affirmative, if sorne random 

variables 1 are' normally distributed. Accordingly we define that two 

structures are equivalent if the distribution of the observable variables 

is the same in both structures. Linear structural relations also lead 

to a number of interesting problems such as the investigation of the 

latent variables mrJ the estimation of the parameters a jk or the iden­

tification problem, that is the problem of finding conditions which 

assure that a parame ter is identifiable (A parameter is said to be 

identifiable if it has the same value in aIl equivalent structure.) 

In this section, we shall only be concerned with the problems of 
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characterizing the latent and the error variables. It appears under 

the independence of the latent variables and error variables and 

some restrictions on the parameters that the equivalence of two 

structures is meaningful only if some latent variables are normally 

distributed. 

Theorem 1. (Rao 1966) Let X = (X
l

,X2)I be a two dimensional random 

vector such that 

( 1.1) 

where Yl 'Y2' ••• 'Yk are independent r.v.ls, ZrZ2, ••• ,Zm are inde-

pendent r.v.ls and 

are real constants. 

a .. , b 1, (i = 1, 2, j = l, 2, ••• , k, P, = 1, 2, ••• , m) 
1J i 

Assume that is not a multiple of any column 

of the type (a lj), j Fr 
a2j 

(a lr ) 
a 2r bl · 

or of any column of the type (b J), j = 1,2, ••. ,m. 

Then the r.v. y 
r 

is normally distributed. 
2j 

Proof. Considering the joint characteristic function of Xl ,X2 

from the two representations (1.1) taking log~rithms and equating them, 

in terms of the cumulant generating functions w.(j = 1,2, ••• ,k), 
J 

0. (j = 1,2, ••• ,m) of Y. and Z. respectively, we have 
J J J 

(1. 2) 
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which is valid in a neighbourhood of the origin. There is no loss 

of generality in assuming that a lr ~ 0 and in replacing nonzero 

a
li 

and b
1j 

by unit y, which only means taking aliY
i and bi.Z. 

J J 

into consideration instead of Then, by the condition 

of Theorem l, the equation (1.2) reduces to 

if a2r ~ 0, and t6 

* (v) + B(v) r 

if a2r = O. Rere every ~ is the function obtained adding the *-
functions and substracting the 0 functions having a common coefficients 

for v 

different. 

tn (1.2), and a2r,cZl, ••• ,c2s can all be taken to be 

By lemma 3 in Chapter IV, 0 is a polynomial of degree at 
r 

most S in a neighbourhood of the origine Rence, in view of 

Marcinkiewicz's theorem, if 

distributed. 

The following result 

y 
r 

is nondègenerate, it must be normally 

Rao [82] is noteworthy.\. Suppose that a 

p-dimensional random vector X takes the two representations X = AY 

and X = BZ, where A and B are matrices such that no two columns of 

either A or B are equivalent in the sense that one is a multiple of 

the other, and Y and Z are random vectors of independent:nondegenerate 

r.v.'s. It may be assumed that A is a p x ~ matrix and B is a p x s 
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matrix without any restrictions on ranks of A and B. Then the 

following are true: i) The ranks of A and B are the same. ii) 

If the i th column of A is not a multiple of any column of B, then 

i'th component of Y is normally distributed. iii) If the i th column 

of A is a multiple of the jth column of B, then the cumulant generating 

function of the i th component of Y differs from that of jth component 

of Z by a polynomial in a neighbourhood of the origin. Therefore if 

none of the columns of A is a multiple of any columns of B, then X 

has a p-variate normal distribution. 

The next theorem is related with factor analysis models. 

Theorem 2. (Rao 1966). Let X = AY + El and X = BZ + E2 be two 

representations where A is a p x r matrix of rank m, B is a p x s 

matrix of rank n, both having no equivalent column, El and E2 are 

vectors of error variables, and Y and Z denote vectors of latent 

variables. Then if m < n we have 

i) at least (n-m) of the latent variables in the representation 

X = BZ + E2 are normally distributed, ii) there are linear functions 

L'El' L2 'E2 of the error variables which differ by a nondegenerate 

normal component, (a variable is said to have a normal component 

if its distribution can be expressed as the convolution of two distri-

butions of which one is normal. iii) The cumulant generating functions 

of at least one of the pairs (l.,li') (l.and l~ are respectively the i th 
1 .1 1 

component of El and E2) i = 1,2, ••• ,p differ by a second degree poly­

nomial in a neighbourhood of the origin. 
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Since the condition m < n implies that at least (n-m) columns 

of B are not multiples of columns of A, as seen above, the corres-

ponding r.v.'s are then normally distributed which proves (i). The 

proofs of (ii) and (iii) are omitted here. For the proofs we refer 

the reader to the original paper [82]. 

5.2. Characterization of the normal distribution by properties of 

sample estimations. 

By a Gauss-Markoff Model we mean a linear model 

€. , 
~ 

i=1,2, .•. ,n, (3.1) 

such that E(Y.) = a. 19l + ... + a. 9, var(Yi ) = a2
(i = 1,2, ••• ,n) and 

~ ~ ~m m 

E(€i)= 0 (i = 1,2, ••• ,n), where Yl' ••. 'Yn are independent (sometimes 

"uncorrelated" may be preferable) ~ ~\, ••• , Qm are real unknown parameters 

and ail, ••• ,a im (i = 1,2, ... ,n) are known constants i.e., unlike in 

linear structural relations where Ql, ••. ,Qm are random variables. The 

theory of least squares is concerned with the problem of estimating 

unknown parameters 91, ..• , Qm in a linear model. The essentials of the 

theory are found in the works of Gauss (1809) and Markoff (1900). A 

unified approach to the least square theory covering all the practical 

situations has been suggested, using the concept of a generalized 

inverse (g-inverse) of a singular matrix in [81]. The least squares 

estimator of an estimable parametric function qlQl + ... + qmQm (see 

pp 182 [81]) is the linear function of Yl' ••• 'Yn which has the minimum 
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variance in the c1ass of a11 1inear unbiased estimators. This 

means that the 1east squares estimator depends on1y on the coeffi-

cients a .. (i = 1,2, ..• ,n, j = 1,2, ... ,m) and not on the exact 
1J 

distribution of Y1, ••• ,Yn • However, it is shown in [79J that if 

Y1""'Yn have normal distributions with a common variance independent 

of 91, •.• ,9m, then the 1east square estimator of q191 + ... + qm9m 

has minimum variance in the c1ass of a11 unbiased estimators. In 

this section, we sha11 see that the converse of this proposition 

a1so ho1ds under certain conditions. 

Let us assume that (Y.-E(Y.), i = 1,2, ••• ,n have the same 
1 1 

distribution Fe~ which may depend on 9 = (91,···,9m) and certain 

other unknown parameter 0. We first notice that the mean of the 

distribution F90 is zero whatever 9 and 0 may be . 

Theorem 3. Let Yi = a i191 + ... + a im9m + Ei , i = 1,2, ••• ,n be a 

Gauss-Markoff Mode1. Assume that the rank of (a .. ) is unit y and that 
1J 

Z = b1Y1 + ... + bnYn is the 1east squares estimator of the essentia11y 

unique estimable linear parametric function q19
1 + ... + qm9m' Further 

assume that has finite moments up to order 2s for each ~,0 and 

that, bl, ••• ,b n are a1l different from zero (without loss of genera1ity). 

If Z = blYl + ... + bnYn has minimum variance in the c1ass of a11 unbiased 

estima tors which are po1ynomia1s of or der s or 1ess and the vector 

(b 1, •.• ,bn) is not a multiple of a vector with entries only ± 1 as its 

e1ements, then Yi agrees with a normal distribution up to moments of 

order (S+l). 
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We first note that since the rank of (a ) i = 1,2, ••• ,n, 
ij 

j = 1,2, •.• ,m is unit y, there is on1y one independent estimable 

linear pst'ametric function, and there exist (n-1) linear functions 

Z. = c"Y1 + ... + c. Y j. = 1,2, ... ,n-1 such 
J Jl Jn n 

that 

Since E(Z.Z) = 0 and Var(Z.Z) < 00 if s ~ 2, it fo11ows from a 
J J 

resu1t by Rao (see [81] pp.257, (i)) that if Z has minimum variance 

in the c1ass of a11 unbiased estimators of the second degree, then 

Simi1ar1y, we have 

Consider 

E[Z(Z.Z)] 
J ° 

0, r = 1,2, ••. , s, j = 1, ••. , n-1 . 

Here f(t) denotes the ch.f. of Fe0 and 0(t) (in a 

neighbourhood of the origin). Since the moments of 

fl(t) 

f(t) 

Fe~ exist up 

to order 2s, 0(t) is differentiab1e s times. Thus differentiating 

0(t) r times ( r ~ s) and then putting t = 0, in view; of 

E(Z.Zr) = 0 r = 1,2, ••. ,s, we obtain 
J 



-99-

0, r < sand j 

where is the (r+1)th cumulant of 

equation, we have either 

or 

Since 

Then l: 

i 

r 
l: c.b. = 0 

JI 1: 

or both. 

E(Z.Z) = 0, we have l: c.P. 
J i J1 1. 

0, j 

c .b i 
r 

0 j 1,2, ... ,n-1 implies 
J1 

r 
À. b. j 1,2, •.• ,n, b j = r J 

1,2, .•• ,n-1, 

From the above 

1,2, ... ,n-1. 

which ho1ds on1y if r = 1 or b. 
J 

0, or proportiona1 to + l, 

j = 1,2, ..• ,n. Rence we must have 

o for r = 1,2, ••. ,s. 

This completes the proof. 

From the above theorem, we see that if a11 the moments of Fe0 

exist, then under the conditions of theorem 3 on the coefficients 

b
1

, ••• ,bn a necessary condition for the 1east squares estimator to 

be the minimum variance unbiased estimator is that the variables are 

norma11y distributed. This is the main theorem provenin the ear1ier 

paper by Rao (1959). 



-100-

The case that the rank of (a ij ) is greater than one is a1so 

considered in [83] in which a simi1ar resu1t is obtained under sorne 

sightly different condition on the matrix (a, ,). 
1J 

In conclusion, we mention sorne other types of characterization 

of the normal distribution that have been done so far. 

Ferguson (1962) has studied the families of distributions invol-

ving location and scale parameters and he obtained several characteri-

zations of the normal distribution, one of which extends the resu1t 

by Teicher (1961) on the characterization of the normal distribution 

by maximum likelihood estimate of the location parame ter in a fami1y 

of distributions involving locationparameter. Actual1y the above 

mentioned result by Teicher has long been known in literature and can 

be found in the work of Gauss. Pati1 and Seshadri (1964) considered 

the problem of characterizing the Binomial, Exponential, Normal and Power 

series from the conditiona1 distribution of Xgiven X+Y in a 

bivariate case. Mathai (1967) dea1t with the problem of the structural 

properties of the conditional distributions and obtained severa1 

characterization theorems by assigning specifie form for the condi-

tional distribution of a random variable given a set of random variables. 

We have seen that characterizations of the normal distribution 

can be achieved from various aspects and through various methods, 

among which those considered in the second to the fourth chapters seem 
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more important and have been investigated in great detail. Others 

are far from complete. AlI these works may have thrown sorne lights 

in the determination of an underlying theoretical distribution from 

the knowledge of either properties of statistics or of sorne other 

information regarding the experimental or other si~uations. These 

results or the characteristic properties enhances the status of the 

Normal distribution as a very important distribution in statistical 

literature. 
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Index of Symbols 

ch.f.'s = characteriztic functions 

c.g.f's cumulant generating functions 

d.f. = distr.ibution function 

1. 1. d. independently and identically distributed 

r.v.'s = random variables 

a € l a is an element of the set l 

=;> = logical implication 

sunnnation sign 

J = integral sign 

Var(X) = = variance of X 

iff = if and only if 

R
l = real line 

R = n-dimensional Euclidean space 
n 

pp page 

a.e. = almost everywhere 

ln log = logarithm 


