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ABSTRACT

The problem of determining a statistical population belonging
to a certain class of distributions is widely investigated in
Mathematical Statistics. Of special interest is the characterization

of the Normal distribution.

In this thesis, characterizations of the Normal distribution
through different considerations are treated in great detail .
Chapter II is concerned with the characterization of the Normal
distribution by using specified or unspecified distributions of
suitable statistics. Chapter III deals mainly with the property
of independence of suitable statistics, such as linear statistics,
linear and quadratic statistics, linear and polynomial statistics,
by which the Normal distribution is characterized. Chapter IV gives
some generalizations of some results in Chapter III by replacing the

property of independence by a weaker condition of regression such



as constant regression and polynomial regression. Finally,
Chapter V discusses the characterization of the Normal distri-
bution through linear structural relations and through properties
of sample estimators. Other characterizations which do not fall

into the preceding categories are mentioned at the end of Chapter V.
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CHAPTER I

Characteristic Functions and Conditional Expectations

Introduction 1.0. The characterizations of populations have appeared
in the literature from time to time, especially in the last two decades.
Different methods, setups and techniques have been developed, among
which characterizations through independence of statistics, distribu-
tions of statistics amd regression properties are the main ones. In
short, all these can be said characterizations through properties of
statistics. 1In the monograph by Laha and Lukacs [48] characteriza-
tions of populations using the properties mentioned above are studied
in great detail , and it also contains a complete bibliography of
the work up to 1963 and its historical background. A great portion
of research work on characterizations of population is mainly on the

normal distribution.

In this thesis, we shall only deal with the characterizations of
Normality. The motivation of compiling the work on the characterization
of the normal distribution is apparent from the text of the thesis.
Further discussion is given at the end of the thesis in Chapter V.

Apart from most of the results contained in [48], we also discuss
some other results which are not treated in [48] and some recent de-
velopments. Our aim is to give an up-to-date complete survey on this
subject, and hence it is of expository nature and no original result

is obtained in the thesis.



One important technique of the characterizations of Normality
is to obtain a functional equation in the characteristic function
and obtain a unique solution.of this functional equation a functional
form of the form exp{p(t)], where p(t) is a polynomial in t say. If
the random variable X involved is not degenerate, i.e., X equals
some constant with probability one, then exp[p(t)] can only be the
characteristic function of some normal distribution in view of a
theorem of Marcinkiewicz which states that if f(t) = explp(t)] is
a characteristic function, and if p(t) is a polynomial in t, then
the degree of the polynomial p(t) cannot be greater than two.
Perhaps this is a great achievement in the history of the characteriza-
tion of Normality. Needless to say, the importance of the characteri-
stic functions to the studies of probability measures or random variables
is always emphasized. In the monograph [66] by Lukacs, characteristic
functions are studied from the mathematical point of view in great

detail.

For our purpose, we introduce here the characteristic function of
a distribution function or a random variable and some general properties
of conditional expectation in order to provide necessary terminology

and notations for the subsequent chapters.

1.1. Characteristic functions.

By a distribution function F(x) of a random variable x, we mean

that F(x) is a real-valued function which is non-decreasing and right-



continuous such that F(+w ) =1 and F(- o ) = 0, and the mathe-
matical expectation, denoted by E(X) of the random variable X, we

mean the integral E(X) = [ . xdF(x) taken in Lebesgue-Stieltjes sense.
R

The characteristic function £(t) is defimed as follows:

£(t) = E[exp(itx))= [ ¥ ar(x)
R

1

which is known in analysis as the Fourier-Stieltjes transform of F(x).

An important class of characteristic functions is the class of
analytic characteristic functions. This class contains the characteristic
functions of the well-known distributions such as the Normal distribution,
the Gamma distribution and the Poisson distribution; etc. One of the
most important properties of analytic functions is the uniqueness theorem:
If the function f(z) is analytic (regular) in the domain D, and if there

exists a sequence of points =z 225 eee in D having a limit point in D

1
such that f(zn) =0, n=1,2,..., then the function f(z) vanishes on
the entire domain D. The concept of analytic continuation plays an
important role in the application of the uniqueness theorem. By an
analytic continuation of a function £(z) on a set E, we mean a function
F(z) which is analytic in some domain D containing E and coincides with
f(z) in the set E. As a consequence of the uniqueness theorem of

analytic functions, it is found that if the set E has at least

one limit point contained within the domain D, then the



-l

function f£(z) has at most one analytic continuation to the domain

D. This result is very useful for problems of characterizing popu-
lations. 1Instead of considering the characteristic function on the
whole real line one needs only to determine the functional form of

the characteristic function in some neighbourhood of the origin in
such cases. We list some results of the analytic characteristic
functions which will be frequently used in our subsequent work. The
most important results concerning criteria for analytic characteristic
functions refer to a class of entire functions. The proofs of them

can be found in [66] and are therefore omitted.

Theorem 1. (Marcinkiewicz) If f£f(t) = exp[pn(t)] is a characteristic
function, where pn(t) is a polynomial of degree n, then n cannot

be greater than two.
Proof. See pp. 146 [66].

Theorem 2. Every factor fl(z) of an entire characteristic function
f(z) is an entire characteristic function. The order of the factors

of an entire characteristic function cannot be greater than that of f(z).
Proof. See pp.170 [66].

Theorem 3. (Cramer). The characteristic function f£f(t) of a normal
distribution has only factors which are characteristic functions of

some normal distribution.

Proof. See pp. 174[66].



.

Theorem 4. (Linnik) Let fl(t), fz(t),...,fn(t) be arbitrary

characteristic functions, and let al,az,...,a be positive real
n

numbers. Assume that f(t) is an analytic characteristic function

and the relation

n a,
I [f.(t)] . exp [impt - L 02t2 ]
21 J 2
J
holds in a neighbourhood of the origin, where K and 02 > 0 are

.2
real, and i~ = -1. Then the functions fj(t),(j =1,2,...,n) are

characteristic functions belonging to the normal distribution.

Proof. See pp. 190-196 [66].

1,2. Conditional Expectations

There are several ways of introducting conditional expectation of
a random variable Y given another random variable X, and is usually
denoted by E(Y|X). In statistical terminology, the conditional expec~
tation X 1is referred as the regression of Y on X. One way of intro-
ducing the E(Y|X) is by means of Radon-Nikodyon theorem. i.e., the con-
ditional expectation E(Y|X) is defined as a EFx-measurable (5FX = g-field
generated by the random variable X) function up to a set of measure zero

such that

J E(Y|X)dp = J Ydp for every B¢ 5; where p is
B B x

the probability measure associated with the random variables X and Y.



We see that if B 1is the whole space, say I, then we have the well-

known relation

E[E(Y|X)] = E(Y) .

1.3. General Properties of the Conditional Expectation

1. E(X|X) = E(X)
2. E(X, + x2|x) = E(xllx) + E(X2|X)
3. Let X and Y be random variables such that E(Y) exists and

let f be a Borel measurable function. If E(£f(X)Y) exists, then

E[£(X)Y|X]=£(X) E(Y|X) .
4, If X and Y are independent, then E(Y|X) = E(Y).

All these proofs are straightforward, and hence are omitted. Generali-
zation to a finite number of random variables is also straightforward.
One version of E(Y|X1,...,Xn) is a function f (Xl""’xn)’ where f
is a Borel function of n wvariables Xpseeor X such that for every

B e 27§1 .. Xn (o-field generated by X "’Xn)’ we have

1’

fB £(xy50005% )dp = fB Ydp.

Also we have

E(E(lel,...,xn)) = E(Y).

For a detailed treatment of conditional expectation one may refer to

[10] ana [61].



CHAPTER II

Characterization of Normality by using known distribution of some Statistics.

2.1. Specified distributions of some statistics.

The problem of determining a theoretical distribution belonging to
a given class is widely investigated in mathematical statistics., As
mentioned in the previous chapter, we shall only confine our attention
to the characterization of Normality. By a statistic S(Xl,...,Xn) of
a random sample Xl,Xz,...,anrbnua random variable X with d.f. F(x)
(Xl’XZ""’Xn aren i.i.d. r.v.'s having the same d.f. F(x) as X),
we shall understand a measurable and single-valued function of Xl’XZ""Xn’
more precisely, S(Xl,Xz,...,Xn) is itself a random variable. If as-
sumptions are imposed on the properties of some specific statistics
based on a given random sample, then they will, in general, restrict or
determine the distribution of the population under consideration. For
instance, assumptions that give explicitly the distribution of S or
relate it in some specified manner to the d.f. F(x) can be used to cha-
racterize various populations. In this chapter, we make assumptons that

(1) S(Xl,X Xn) has specified distribution, (ii) S(XI’XZ""’Xn)

grees

has the same distribution as F(x) by which the normality is characterized.

We first discuss the well-known Cramer's theorem. The theorem

was conjectured by P. Levy and was proved by Cramer in 1936 [11] .



Theorem 1. (Cramer) Let X. and X, be two independent r.v.'s.

1 2

1f X1+X2 has a univariate normal distribution, then X1 and X2 are

normal. (here "identically distributed" is not needed).

This theorem actually is a restatement of Theorem 3, in Chapter
One. For a proof, see p. 272 [61]

In the light of this theorem, we have the following as a corollary.

Corollary 1.1. Let Xl,Xz,...,Xn be n(n > 2) independent r.v.'s

=}

and let L = 3 aiXi, a;s (i =1,2,...,n) are real. If I is normal,
i=1

then each Xi’ (i =1,2,...,) is normal.

Based on this corollary, Linnik [56] gave a very elegant proof
of the so-called "8kitovich-Darmois" theorem which states, in short,
that in two indeéendent linear functions of independent r.v.'s, the
components having non-zero coefficients in both forms are normally
distributed. He also showed that Cramer's theorem can be deduced from
Skitovich-Darmois' theorem. Incidently this result reveals the
generality of 'Skitovich-Darmois' theorem. We shall discuss the Skitovich-

Darmois' theorem in Chapter III.

One of the most important univariate distributions used in theore-
tical or applied statistics is no doubt the normal distribution. It
is also true that the multivariate normal distribution plays an important

role in statistical inference in multivariate analysis.

Just as the univariate normal density function



where 0 > 0 and u are real, the density of a multivariate normal

distribution has an analogous form, which is defined to be

f(xl,xz,...,xp) = (2n)'P/2|A|1/2exp (- %(x-g)_ "A(X-W) ]

where X = (Xl,...,Xp)' is a p-dimensional random vector, [ is a p-
dimensional scalar column vector, (vector with real components),A is

a positive definite p x p matrix and (X-g)' denotes the transpose of X-p.
It can be shown by integration that A-1 = cov(X)(the covariance matrix,

defined as (cov(Xi,Xj)), i,j =1,2,...,p, see [81], and E(X) = )

It is interesting to note that the marginal distributions, the
conditional distributions derived from a multivariate normal distri-
bution are also normal distributions. This is one of the characteristics
of the multivariate normal distribution.

The study of multivariate normal distributions is always not as
simple as the study of the univariate case. To a great extend, this diffi-
culty is overcome by the result due to Cramer and Wold which states that
the distribution of a normally-distributed vector is completely charac-
terized by the one-dimensional normal distribution of the linear function
X'L for every fixed scalar vector L. This result enables one to bring
over the study of a multivariate normal distribution to that of linear
statistics which in most of the cases is found convenient. The study of
the multivariate normal distribution adopting this line of appraach is
revealed in the book [81] by Rao, where a series of results are obtained
by using the known properties in the univariate case.

We now give the result by Cramer and Wold mentioned above, and by

using it, we obtain an analog of Theorem 1, in multivariate case.
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Theorem 2. (Cramer-Wold). ILet X = (X X )' be a p-dimensional

1Xpees "
random vector. Then the distribution of X = (XI,XZ,...,XP)' has a
p-variate normal distribution iff for every p-dimensional non-zero

P
scalar vector L = (41 52,...,5p)', X'L = 3% tiXi has a univariate
i=1

normal distribution.

Proof. It is easy to show by integration that the marginal distribution
of any component in the p-dimensional random vector having p-variate
normal distribution is normal. We shall only show the sufficiency.
Assume that X'L is univariate normal for every non-zero scalar vector

L= ( 51,..., ﬁp)'. Since X'L is normal with the parameters p and 02

say, we may write

E(X'L)

L and Var(X'L)

|
Q

But E(X'L)

g

U'L and Var(X'L) = (2.1)

where E(X) = U and cov(X) = M (covariance matrix of X).

Consider the ch.f. of the r.v. X'L

E(exp(i tX'L)] = exp [itp- % cth] since X'L is

normal with mean p and variance ¢

Also, in view of the equation (2.1) we have

Elexp(it X'L)] = explity - % 02t2]

explit U'L - % LML 2]
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let T = tL. Then we have

1
Elexp(i X'T)]= expli U'T - 12“- T 'MT]

This is the ch.f. of a multivariate normal distribution. By the

uniqueness theorem, X has a p-variate normal distribution.

In virtue of Theorem 2, we have the following corollary.

Corollary 2.1. Let X = (Xl,...,Xp)' and Y = (Y . Yp)' be two

17"

independent p-dimensional random vectors. If Z = X+Y is p-variate

normal then both X and Y are p-variate normal.

By considering any linear function Z'L, using Theorem 2 and
Theorem 1. Taking into account of the independence of X'L and Y'L

the result easily follows.
2.2. 1Identically distributed linear statistics.

Let Xl,...,X.n be a random sample from X with distribution

function F(x). Consider two different statistics S1 = Sl(xl""’xn)'

32 = SZ(Xl""’Xn)' In general, the properties of S1 and 82 may have

a great deal of difference. But for certain statistics S1 and 82 it

might happen that S1 and 52 are identically distributed, or it might

happen that S1 and 82 are stochastically independent. We shall discuss
the characteristics of the independence of statistics in the next
chapter. One may think that the properties of two statistics having the

same distribution is a characteristic property of some populations.



-12-

Indeed, it has long been known that if X. and X, are independent

1 2
X, X
with common d.f. F(x) with mean zero amd variance one, and 4if _1 "2

'3

also has the same d.f. F(x), then F(x) is the standard normal distri-
bution function. This result has already been generalized to some

linear functions with suitable coefficients of a finite number of i.i.d.
r.v.'s. Perhaps the most remarkable results in cennection with this
aspect are revéaled in several papers [50], [51], [52] by Linnik, in
which the relation between '"independently distributed " and"identi-

cally distributed" statistics is investigated in great detail: , and a
necessary and sufficient condition for the equivalence of the statement
that the population is normal with the assertion that two linear statistics
are identically distributed is obtained. He also characterized a class
of symmetrical distribution which contains the convolutions of symmetric
stable laws. Several principal results of Linnik are treated in great
detail 1in [48]. A theorem of Marcinkiewicz on identically distributed
linear functions of infinitely (or finitely) many i.i.d.r. 'v's is also
discussed in [48]. We shall only present the statements of these results

here.

Theorem 3. (Shimizu) Iet X, ,X X be a random sample from X

1°722°°° %
with d.£f. F(X) with mean ¢ and finite variance 02. If there exist
n
non-zero constants a,,...,a such that L = X a,X, and X are
1 n i=1 ivi

identically distributed, the F(x) is normal.

Proof. We note that the result can be established by direct applications
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of some properties of analytic ch.f.'s (see pp. 182 [66]). We

give another proof due to Shimizu.

For simplicity, we prove the theorem for n = 2 and with a, =a
and a, = b. Consider E {exp[it(aX1 + 11X2)]} and take into account
of the independence of X1 and XZ' We have

E {exp[it(ax1+4>x2)]} = E[exp(itaxl)]E[exp(ithz)]

By assumption, f£(t) = f(at) f(bt) (3.1)

where £(t) is the ch.f. of F(x). In a neighbourhood of the origin,
we can introduce log f(t) = @(t) (here after @(t) will be referred as

the cumulant generating function ) so that (3.1) beomes
@(t) = ¢(at) + ¢o(bt) . (3.2)

Since F has a finite variance, f(t) has continuous second deri-

vative at the origin. We can differentiate (3.2) twice and obtain

¢'(t)

a ¢'(at) + bg'(bt)

a2g(at) + b2g"(bt) (3.3)

¢" (t)

From (3.3) we have

¢"(at) = a’ ¢"(a’t) + b2g"(abt)

8" (bt)

aZg"(abt) + b2¢"(b2t) (3.4)



«lb~

Substitute (3.4) into (3.3), and we get

g1 (t) = (a2)2g"(a%t) + aZb2g"(abt) + aZblg"(abt) +(b2)Z gn(b2t) .
By induction, we can show for any n (positive integer)

n -
') =z (@ @ EHE gr@D " b (3.5)
k=0

By letting t =0 in (3.5), we have

n

2 2.k -k
-t =z () @ eHVD (3.6)
k=0
since ¢"(0) = - 02. It follows that
T n 2.k . 2 n-k
Z (p) @) (Y =1 3.7
k=0
which in turns implies that
0<|a] <1, 0<]|b] <1 (3.8)

Taking into account of equations (3.5) and (3.6), we have

g'(t) - 02,

n
' 5 (z) (a2)k(b2)n-k[¢"(akbn-k £) - 02 ],

n
< 2@ Y @ o- @9
=0
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Since ¢"(t) is continuous at t = 0, and since 0< |a|] <1

0< |b! < 1, by continuity, we can make
|¢"(_ akbn-k t) _ 02|

so small as we please, say € > 0,

i.e. (3.9) becomes

b
) - Pl ce 2 (D EHF =

k=0

in virtue of (3.7). Since € 1is arbitrary, it follows that

2
dll(t) =g .
. 1 22
Hence f£f(t) = exp {1ut -50 t } holds in a neighbourhood of the origin.
By analytic continuation f(t) = exp {iut - % oth} is true for all &, This

completes the proof.

Corollary 3.1. Let X and Y be independent with common d.f. F(x) with
mean zero and variance one. Supposge that %%X also has the d.f. F(x).

Then F(x) is the standard normal distribution function.

The foregoing result indicates the possibility that two different
linear statsitics might be identically distributed. This problem was
first investigated by J. Marcinkiewcz [69] who obtained the following
result.
Theorem 4. Let X,,X,,...5%X s... be a finite or infinite sequence of i.i.d.
1’72 n
r.v.'s with common d.f. F(x). Assume that the two (finite or infinite)

sums 2 anj and 2 ijj exist, and F(x) has moments of any order.
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If 2 anJ and 2 bjxj are identically distributed, then either
the sequence {|aj|}and {|bj|} are identical, except for the order

of the terms, or F(x) is normal (possibly degenerate).

The proof of this result is clearly presented in [48] . This
result gives us a sufficient condition for the realization of the normality
of F(x). But in statistical analysis, only finite samples are used,
and hence it would be much more interesting to formulate the previous
result for finite sums, We give another analogous result of the previous
one as a characterization of the normality for the finite case.

Theorem 5. Let Xl,XZ,..

o]
having all finite absolute moments Bk = f [x[kd F(x), k =1,2,..., ©,
- 00

.,Xn be a sample from a r.v. with d.f. F(x)

n n
Let L1 = i aka and L2 = i bkxk be two linear functions of

Xl’XZ”"’Xn with real coefficients. Suppose that the numbers

|a1',|32|,...,|an| are not a permutation of the numbers tb1|,|b2|,...,|b

n n noo2 2
and that z a, = z bk’ by ak k Then L1 and L2 are

ol
n

. 3 b
k=1 k=1 © k=1 k=1

identically distributed iff F(x) 1is normal.

A proof of the result is given in [65] . We present the proof in
details for it may be of theoretical interest. By consideriﬁg the charac-

teristic functions of L1 and L2 assuming F(x) is normal, it can be

easily deduced that the ch. £ 's of L1 and L2 are identical. By the

uniqueness theorem, L1 and L2 must be identically distributed.
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Necessity. There is no loss of generality in assuming that F(x)

n
is symmetrical for we may consider Li = 7 ai(Xﬁ-Yﬁ) and
n 1
Lé = 3 bi(xi-Yi)’ where Yi’ i=1,2,...,n are i.i.d. r.v.'s gg
1

Xi, i=1,2,...,n respectively,in view of Cramer's theorem. Clearly,

if L, and L, are identically distributed so are L! and L'

1 1 2

Let f£f(t) be the ch.f. of F(x), and let

g(t) = &n £(t) (c.g.f.of F(x))

in a neighbourhood of the origin. By the assumption, we have

n n
zé (a,t) = 2 d(bkt) (5.1)
1 1

in a certain neighbourhood of the origin,

Since all the moments of F(x) exists we may differentiate the
last equation (5.1) any number of times . Let m be a positive

integer. Differentiating 2m times, and setting t = 0, we obtain

n n

[2 (2™ - 2 )™ 670 = 0 m=12....
k
1 1
Suppose n n
5 (ak)Zm - 5 (bk)Zm
1 1

holds for infinitely many times. But this can be true only if
|a1|,|a2| »-++» |a | are permutations of lbll,..., |b_| which contradicts

our assumption. Hence we must have
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¢2m(0) =0 for all m,.

Since F(x) 1is a symmetric distribution, we have also

2m-1

é (0) = 0 for all m.

Thus there exists an integer p such that

k
¢ (0) =0 for m>p. This means the c.g.f.
of F(x) 1is a polynomial of degree not exceeding p. Hence by Marcinkiewciz,

theorem in Chapter I. F(x) is normal (possibly degenerate).

Linnik proves several important results related to the iden-
tically distributed linear statistics of i.i.d. r.v's. in his paper
[51] 1953. He also generalized Marcinkiewicz's result in some sense by
introducing the "determining function' ¢(2) which is an entire function
of the complex variable Z. We present here three main results of Linnik

taken from [48].

Theorem 6A. (Linnik). Let X ,...,Xn be n i.i.d.r.v's with common

1
d.f. Féx) . Consider two linear statistics L, = % a,X; and
L, = % bixi with the condition max(|al|,|a2| ,...,Ihn|)#
max(|b1|,|b2| ,...,Ibnl). Let r be the greatest real zero of the
determining function o(z) = |al|Z + |a2|z +o.04 |an|z - Iblfz -...-|bn|z .

Suppose F(x) has moments up to order 2m, where m = [% + 1] (greatest

integer less than % + 1), Then F(x) is normal if L1 and L2 are

identically distributed.
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In the same paper, Linnik indicates some of the modifications

regarding the condition max( ) seees @, ) # max( b1 yenes bn )

without giving a detailed proof the following result.

Theorem 6B. Let X1’X2""’Xn be n i.i.d. r.v.'s with common d.f.
n n

F(x). Let L1 = f aixi and L2 = % bixi be two linear statistics

of Xl’XZ""’xn' Let r be the exact upper bound of the real parts of

the zeros of og(z) and m = [ % + 1}. Suppose F(x) has a finite
moment of ordér 2m. Then F(x) is normal (possibly degenerate) if

L1 and L2 are identically distributed.

It should be remarked here if ¢(z) = 0, then L., and L, are iden-

1 2
tically distributed for any arbitrary d.f. F(x), and if o(z) # O and
F(x) has moments of all orders, the conditions of Theorem 6.B are there-
fore satisfied., Thus Theorem 6.B contains Theorem 4 for the case of
linear forms in finitely many variables. The preceding result gives a
necessary condition for the normality of the common d.f. of the components
in two linear statistics of finitely many i.i. d. r.v.s. Linnik also
obtained a necessary and sufficient condition for a population to be

normal and two linear statistics to be identically distributed in his

paper [51].

Theorem 7, (Linnik) Let Xl’XZ""’Xn be n i.i.d.r.v.'s with common

n n
d.f. F(x). Consider two linear statistics Ll = i akxk,,L2 = f kak

with max(|al|,|azl,...,|an|) # max(|b1|,|b2|,...,|bn|). Then the

following two assertions
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(4) F(x) is a normal distribution

(B) L1 and L2 are identically distributed, are equivalent iff the

the following five conditionsare satisfied

(i) al + a, +...+ an = b1 + b2 +...+ bn,
(ii) e(2) =0
(iii) all zeros of ¢(2) which are integers and are divisible

by 4 are simple roots.

(iv) all positive roots of ¢g(2) which are even integers of the
form 4k + 2(k integer) have a multiplicty not exceeding 2. If there
exists such a double root, then it is unique and is the greatest positive

root of ¢(2).

(v) the determining function ¢(2) can have at most one odd
integer,positive, real root. If such a root exists, then it is simple

and [:'25] is odd.

2,3. Student distributions and normal distributions

It is well-known that the student distribution is closely related
to the normal distribution and that its applications are always found in

statistical literature. Let X ,X ,..., Xn (n>1) be i.i.d. normal

1

r.v.'s with mean zero. It is known that the r.v.'s

x1~/'1 x2~f2 xn
L n

Y, = Y, = =5==5 ,..., ¥ =
1 > 2 ’ 3 n ﬁ »
| X / xoz+ le S

ol
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" are r.v.'s distributed according to Student's law with 1,2,...,n
degrees of freedom respectively, and for n > 2 by carrying out the
transformation techniques, it can be shown that they are independent.
It is natural to ask whether the converse of the statement holds.

More precisely, does this property characterize the normal distribution
uniquely? This problem was investigated by Mauldon [74] (1956) who
showed that the answer is negative for n =1 {i.e., only two r.v.'s
Xo’xl)' Recently, I.Kotlarski [37] (1966) successfully proved that the
answer is in the affirmative for n > 2 under some conditions. The

following theorem is due to Kotlarski (1966).

Theorem 8, (Kotlarski) Let Xo,Xl,...,Xn be ntl (n > 2) independent
r.v.is satisfying the conditions that p(Xk =0) =0 (k =0,1,2,...,n),
and each r.v.'s XQ,...,Xn has a symmetric distribution about the origin.
Then the necessary and sufficient condition for Xk to be identically
normally distributed with mean zero anml common standard deviation ¢ 1is

that Yl’ Y2,..., Yn’ where Y,, k =1,2,...,n are defined as above, are

k’
independently distributed according to student's law with 1,2,...,n

degrees of freedom respectively.

It is well known that for continuous random variables a one-to-one
transformation, say y = h(x), with domain S and range space T trans-
forms the probability density £(x) of a continuous r. v. X, say, to

the probability density given by

g(y) = f(h_l(y))|g§ | where I%% | is the Jacobian of the
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transformation. But this inverse result is seldom recognized and seems to
have escaped attention. That is, if a r.v. Y has probability density
g(y) (y € T), then x = h-l(y) has probability density £(x), (x € S)
provided the transformation involved is one-to-one. This result is
readily seen by applying the transformation techniques usually employed

in Statistics in finding out the probability density of a continuous r.v.

which is transformed.

The necessity of the theorem can be established easily by means
of the transformation téchniques. We need only to prove the sufficiency.
Since the random variables Xk in Theorem 8 are symmetrical about the
origin, their distributions are uniquely characterized by the distribution

of U, defined by

k

U, =X k=20,1,2,...,n (8.1)

and the characterization is one-to-one since the Xk (k = 0,1,2,...,n)
are independent. If Xk (k = 0,1,2,...,n) are normal with mean zero and
common standard deviation g, then the distribution of Uk(k =0,1,2,...,n)

is given by the common density

0 u<o0

f(u) = - (8.2)
1 exp ( u2 ) u>0
21 2¢

The sane arguments apply to
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When Yk’ k =1,2,..., n are distributed according to Student's "

law with k degrees of freedom respectively, then VK(k =1,2,...,n)

are distributed according to the densities

g (v) = (8.3)
1

B(% ’ % k)\,1/2(14“’)1/2(1&1)

known as the beta-distribution of the second kind. Hence if we can

prove that if each of the r.v.'s V1 = El , V- U2
U 2 U +U
o o 1
U3 Un
V3 = IF:I;:EI_- seees VS is distributed according
otUtY, UFU S+ U

to (8.3), it implies that each Uy k=1,2,...,n is distributed according
to the density (8.2), where of course Uo’Ul""’Un are ntl independent

positive r.v.'s (n > 2) then the sufficiency follows.

To do this, we need the following lemmas.

Lemma 8.1, Let Uo’Ul""’Un be ntl (n > 2) independent positive r.v.'s.

Y Yy Ya
Let Z, = = = =< R - £,
j TR Z2 TR Zn T If the joint ch.f. of
) o )
(#n z.,4n 2,,...,4n z_) does not vanish, then the joint distribution
1 2 n

of (zl,...,zn) determines all the distributions of Uo’Ul""’Un up to

a change of the scale.
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Proof. Let fk(t) be the ch.f. of /U, k =0,1,2,...,n and let

k’

¥ (tl,tz,...,tn) = E[ exp i(t1 nz, +...+ €, £n zn) b

1

ti’ i=1,2,...,n

are real. By independence of Uo’Ul""’Un’ we have
w(tl,...,tn) = fl(tl)fz(tz)...fn(tn)fo(-tl-tz-,.rtn).

By hypothesis, W(tl,...,tn) is nonvanishing, we conclude that so are

fk(tk), k =0,1,2,...,n.

Now if Ué, Ui,...,U& and Zi, Z',...,ZA also satisfying the
conditions of the lemma, and if lnﬁHL"has ch. f. f&(t) and (£n zi,Zn zl, ...

£n za) has ch.f. w’(tl,tz,...,tn), then by previous argument, we have

) -1 | ' ' V' obp e = =
Y(tgseeast ) = £1(E)E(E)) 500, £1(E ) £1(-E -Ep-0uumE )
tk’ k =1,2,..., are real.

If (Zl"°"zn) and (Z'.Zé,...,Z;) have the same joint distribution,

1 b
then
fi(tl)fé(tz),...,f;(tn)fé(-tl-tz-...-tn)
= fl(tl)...fn(tn)fo(-tl-tz-...-tn) (8.4)
Let
fL(t) = fk(t) pk(t), k =0,1,2,...,n (8.5)

where pk(t) are complex-valued functions, continuous on the whole line non-
vanishing and satisfying the conditions pk(O) = 1. Substituting (8.5) into

(8.4), we get
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pl(tl) pz(tz),...,pn(tn)po(-tl-tz-...-tn) =1 (8.6)

Let po(—t) = p(t) where t 1is real, and put tk =t , tj = (0 for

j # k. We obtain from (8.6)

pl(t) = pz(t) = ... =p (t) =— . (8.7)
Substituting (8.7) into (8.6), we obtain

p(tr+t2 +.. .+ tn) = p(tl)p(tz) cee p(tn) .

This is a Cauchy equation. The only complex solution p(t) continuous

on the whole real line, nonvanishing and satisfying the condition p(0) =1
ct

is the exponential function p(0) = e (t is real and ¢ is a complex number).
Hence

p(£) = p(t) =...=p (£) =& °F

o 1 ‘ n

. - -ct
and hence f k(t) fk(t) e .

But we have f(-t) = £(t), c must be pure imaginary
i.e., ¢ = - ia, This implies
' _ iat
f k(t) = fk(t) e .

The proof is complete.

Lemma 8.2. Let Uo’U

17 .,Uh be nt+l (n > 2) independent positive
U

r.v.'s. Let z, = ﬁk » k=1,2,...,n. The necessary and sufficient
o

condition Uk to be identically distributed according to the density
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; 0 if u<O
f{u) =

1
m—— exp (-
. Zj‘tu 202 ) ifu>0

is that the n-dimensional r.v. (zh,...,zq) is distributed as the

density
1 1
I( 3 ) 1 1
_ 1 1 [z.2,),...52 n/2 + 1/2
h(zl,...,zn) = -n-(2 nt E) 192 n (1+z1+z2+...+zn)
z, >0 (8.8)
0 otherwise, k =1,2,...,n.

Proof. A direct calculation shows that the ch.f. fk(t) of £n .
k =0,1,2,...,n and the ch.f. W(tl,...,tn) of (4n Zyseees £n zk) where

Zl""’zk is distributed as (8.8) are given respectively by

2.it
(207) 1
fk(t) = —_]%:_—- F(i + it), t real
_ 1 1, . 1, .
\),r(tl,tz,...,tn) = T I I‘(2 + 1t:1) I‘(2 + 1t2)
Tt 3)
1 \ | .
oo (7 F i) T(5 -it -...- it ). (8.9)

where tk’ k=1,2,...,n are real. It is obvious that w(tl,...,tn) is

nonvanishing for all real t t2,...,tn, and

1’

w(tl,...,tn) = fl(tl)fz(tz),....fn(tn)fo(-tl-t2~...-tn) (8.10)
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(202)it

I

in (8.10) and by applying Lemma 8.1 the lemma is established.

tys k =1,2,...,n are real. By substituting fk(t) =

We are now in a position to prove the sufficiency of Theorem 8.

It follows from Lemma 8.2 that if (Zl"

1“(% + it)

..,Zn) distributed according

to (8.8), the Uk(k =0,1,2,..., n) are identically distributed according

to (8.2). Now it suffices to show that ifv,,v ,...,Vn are independently

= 1772
distributed as (8.3), then (Zl,...,Zn) is distributed as (8.8). Since
YUy
Zk = E— » k=1,2,...,n, we see that
o
Z Z Z
V,=Z, V)= <= , Va3 v = n
Lo 142 2 4z 142+ z .
1+ Z2 1 oot n-1
(8.11)
The Jacobian of this transformation is
8(v1,...,vn) 1
J = Y - = (8.12)
yeees
1 n (L+z1)(L+Zf+zz),...,(L+zr+...+zn_1)
The density ot (Vl,...,Vn) is given by
BV seees¥) = 8 (V)58
n
1
= I ; (8.13)
k=1 1 1 1/2 kt1/2
B(E’ 3 k) Vi (1+vk)

all v, > 0,
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Hence the density of (zl,...,zn) is given by h(zl,...,zn)

n
. I
k=1 |3]
11 z 1/2 z (k+1) /9
B(;45 k) ( k ) 1+ k y o
1+Zl+zz+. . .+zk_1 1+zl+z2 +...+ z
where z =0
(o}
. 1/2 k+1/2
) n (1+zl+....‘.k_1) (1+z1+...+zk_1)
T M
11 1/2 k+1/2
PG+ DIG ). TG + B 1042 T2 (142 42) /2 (142 Ltz 30
2 51 2 1 n-1’%
1l lipel n, _ 1/2 1/2 1+1/2 (n+1)/2
1*(2)1“(2)1“(2)?(1)...1"(%\1‘(2) 2,2z R (L) coo (Mzph. )

1
I‘(I—z‘l + E)

>0, k=1,2,...,n.

1
1) 3+3
212y - - zn( +z1+. . .+zn)

This completes the proof.
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CHAPTEK 1i
Characterizations of Normality by Independence of suitable Statistics

3.1. 1Independence of linear statistics.

The appearance of Geary's paper in 1936 proving that the stochastic
independence of the sample mean and sample variance implies the Normality
of the pbpulation under consideration suggests a general method of finding
statistical populations by using this property. Geary proved the result
under the superflous assumption on the existence of all moments. Soon
after Geary's theorem, a series of papers have appeared, generalizing
Geary's theorem in various directions. The main generalizations are
given by Lukacs [62] Laka [38], Kawata and Sakamoto [33] and Zinger [99].
Lukacs (1942) proved Geary's theorems assuming only the existence of the
second moments. Later Kawata and Sakamoto (1949) and Zinger (1951) showed
that Geary's theorem is true without the assumption on the existence of
moments. There are a number of papers on generalization of Geary's
theorem by constructing other statistics instead of the sample mean and
sample variance such as Laha [38] and Geisser [25]. Recently the property
of independence of statistics is replaced by the regression properties
so as to drop the condition of independence to a weaker condition of regression.
We shall see how the independence of statistics can be replaced by re-
gression properties in the next chapter. 1In this chapter, we shall deal
with the characterizations through independence of suitable statistics,
for instance linear and linear statistics, linear and quadratic statistics,

and linear and polynomial statistics. We first consider the independence
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of two linear statistics which has a rather interesting history and
involves a good number of authors (Kac [29], Bernstein [7], Gnedenko [27],
Darmois [17] and Skitovich [88]). The problem was discussed in its full
generality independently by Darmois (1953) and Skitovich (1954). The

following theorem was established.

Theorem 1. (Darmois-Skitovich). Let L, =

1 i1 2

=MD

n
a.X and L, = I b,X
1

be two independent linear statistics, where xl’XZ""’Xn are n
independent (but not necessarily identically distributed) r.v.'s then

each r.v. Xj’ (j = 1,2,...,n ) with nonzero. coefficients in both forms is
normally distributed.

As a detailed proof of the theorem is available (see [48] pp. 75-78),
we shall only outline the proof. We first note that if any r.v. has zero
coefficients in one of the two forms. Then the corresponding r.v. can
be arbitary. 1In view of this, we can omit all those r.v.'s which have
zero coefficients in one of the two forms and are left with considering
the r.v.'s having nonzero coefficients in both forms. Further, it is
obvious that the resulting forms so obtained are also independent. Hence,

there is no loss of generality in assuming that

aJ.bJ.%-O, (j =1,2,...,n) and a1=bl=1.

We may also group all those r.v.'s such that the ratio of their re-
spective coefficients is equal to some fixed constant. Let the coeffi-

cients of the linear forms L1 and L2 satisfy the following conditions
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ajbj #0, j=1,2,...yn (1.1)

ajbk - akbj £0 i Fk, jykyee.,n .

Now, taking into account of the independence of L1 and L2 and writing

it down in terms of the characteristic functions, fl’fZ""’fn , of

X.5¢+.,X  we obtain a relation
1 n

rFh
~~
cr
wn
pA
i
=
Hh
—
s
e
Tt
+
o
n
g
I
R =R=

fj(ajt)fj(bjs) (1.2)

i=1 !

By continuity of ch.f. at the origin and fj(O) =1, j=1,2,...,n
there exist a neighbourhood of the origin such that every factor of (1.2)
is nonzero, and by taking the logarithm of both sides of (1.2), we arrive

at the following equation

n
jil dj(ajt + bjs) = Ao(t) + Bo(s)
(1.3)

where

nhMB

n
A (t) = . ¢J.(ajt), B (t) = ji dj(bjt)

3 1

In view of (1.1), it is possible to select hl and kl in such a way

that h.,+k, = s and a h,+b k
nl n

1ty 1 1= 0 hold. Choose a real number s

1

so small that (1.3) 1is satisfied if t 1is replaced by t+h, and s by stk

1 1°

Substituting the quantities and using the method of finite difference
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(sece [48] pp.77), we can eliminate the function dn by this pracedure.
Proceed in the same manner, we can finally eliminate the functions
dz,...,dn, and obtain a difference equation of the function dl(t) of
order n. It then follows that dl(t) is a polynomial of degree not
exceeding n, and hence by Marcinkiewicz's theorem and the properties
of analytic functions, fl(t) is the ch.f. of a normal distribution.

Similarly, X’2,...,Xn can be shown to be normal.

Having established '"Darmois-Skitovich's" theorem, we can deduce

a good number results from it.

Corollary 1.1. (Xing and Lukacs 1954) Let xl’XZ""’Xn be n-inde-

pendently (but not necessarily identically) distributed r.v.'s and

assume that the nth moment of each . €] (i =1,2,...,n) exists. The

necessary and sufficient conditions for the existence of two independent

linear statistics

b X are

a. X and 1, = . 1K

1 k'k 2 K

[
I
[ =]
n™MB

k

(i) Each r.v. with nonzero coefficient in both forms is normally

distributed.
° 2 2
(ii) X akbkck = 0, where o = var(Xk), k =1,2,...,n.
k=1
For n =2, and a; = b1 =a, = 1, b2 =1, this reduces to a theorem

of Bernstein.

The necessity follows immediately from Theorem 1. To prove the

sufficiency, assume that (1) and (ii) hold, then it can be shown that I_.1
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and L2 are uncorrelated. Since L1 and L2 are normal and uncorrelated,

they are independent.

Corollary 1.2. (Kac) Let X1 and X2 be two independent r.v.'s.

If for every real number ¢

Y1 = chos o + Xzsin Oy Y2 =X.sing ~ X

1 200& 04

are independent, then X1 and X2 are normal,

Instead of considering two independent linear forms, one may consider

m linear forms of the independent r.v.'s xl’XZ""’xn

n
L = Z aX, k=12,...,my m<n.

By Theorem 1, one can easily see that all r.v.'s Xl""’xn are normally
distributed if (i) the linear forms Ll’L2’°"’Ln are mutually inde-

pendent, (ii) each of the column of the matrix

contains at least two nonzero constants. Also, using Cramer-Wold's theorem
one can formulate an analogous result of the above result in multivariate

case, i.e.,, if there exist linear forms

of the independent p-dimensional (p > 2) ‘random vectors (but not
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necessarily identically distributed) X Xn such that they are

e
independent, then each random vector Xj’ j=1,2,...,n has a p-

variate normal distribution if each of the column of the matrix

all ) aln

m eee

W eve
L]

.

mn mn

contains at least two nonzero elements,

As seen in the previous discussion, it is worthwhile to investigate

the above result in multivariate case for m = 2 and with ail""’ain’

i =1,2,. replaced by p x p scalar matrices. However, when a

1172 %4n?

1,2, are replaced by p x p scalar matrices Ail""’Ain’ i=1,2,

i
the reduction to univariate case by using Cramer-Wold's theorem no longer
holds. In univariate case, Darmois-Skitovich's theorem tells us that the
distribution of the r.v. with zero coefficient can be arbitrary. The

same 1is also true in the matrix case if one of the matrix A i=1,2

ik’

1,2,...,n 1is zero (null). However, if a matrix A

for some k ik

1,2,...,n (say) is singular but not null, then some linear

for some k

combinations of elements of the corresponding random vector Xk are

normally distributed, but the distribution of X, 1is partly arbitrary.

k
An example is constructed in [26] to illustrate this fact. This means
generalization cannot be made by using matrices other than nonsingular

matrices. The following result is due to Ghurge and Olkin (1962).



-35-

Theorem 2, (Ghurye and Olkin) Let xl,...,xn be n independent
p-dimensional (column) random vectors, and let Al""’An’ Bl""’Bn
be nonsingular p x p matrices. If 2 Aixi and 2 Bixi are inde-

pendent, then X,, i =1,2,...,,n are p-variate normal.

i’

Since the proof of this theorem is every similar to theorem 1

and is lengtly, we shall only sketch the proof.

n n
First considering the ch.f. of ( Z AiXi’ z Bixi) and taking into
n 1 1
n
account the independence of 2 Aixi and % BiXi we obtain a relation

1
of the form

n

I ¢, (T'A, + U'B,) = F(T') G(U') where

NPT R j

J_.

@j(T) = E exp [iT'Xj ] and T,U are p-dimensional (column) scalar

vectors. It can be shown that wj (j =1,2,...,n) have no zeros so that

log @j(T') is defined. Also, by similar arguments of Theorem 1, we can
n

show % log wj (T') is a polynomial in T'. By letting T = kV where k

is real, and V 1is a fixed p-dimensional (column) scalar vector, and

n

using the univariate theorem of 'Marcinkiewicz, it follows that I log wj(kV')
1

is a quadratic polynomial in k for each fixed vector V. This implies

n
that 2 log wj(T') is a quadratic polynomial in the vector T' which
1

means that Xi, i=1,2,...,n are p-variate normal.

3.2. Independence of linear and quadratic Statistics.

As mentioned in the beginning of this chapter, the independence of
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the sample mean and sample variance implies the Normality of the
population, Instead of sample variance, one may use some other quadratic
forms. We present here a result due to Rao [84] and obtain the results of
Luchs (1942) and Geisser (1956) as corollaries.

Theorem 3. (Rao, 1958) Let Xl,...,Xn be a sanple from X with

d.f. F(x). Assume that E(X) = ¢ and var(X) = 02 exist. Let

n

8
o

2 -1 2
Q=( 2 Z a..) 2 (a . X, +...+a X)), m>1
k=1 3=l kj k=1 k171 kn n

n
where Z a . =0 for k =1,2,..,m. The necessary and sufficient

i=1 kj

J _ n
condition that F be normal is that X = 3 Xi/n and Q are inde-

i=1

pendent.

m n

m n 2 -1 m n 2 2
Proof. E(Q=(2z2 Z ak.) { oI a, E(X))+z2 2 ak.akiE(X.Xi)}
k=1 j=1 k=1 j=1 3 I k=1 AL J

m n m n m n
- 2 2
>z az.) 1{ > 2 ai, E(X))- £ 2 ai, T }
k=1 j=1 J J

1
~
~

k=1l j=1 3 k=1 j=1

The joint ch.f. of X and Q is given by

it XHit it.X it,Q, _
Be,e) = B(e Lo 20 = E(e 1) E(eT2) = 0y(£))9,(ty)

itZQ

it X
where wl(tl) =E(e !) and ¢2(t2) = E(e ) .
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It follows that

3 d
N N t 3.1
t2= t2=0
- t1 n _ itX
But P () = £( /) where f(t) = E(e ),
and so
g . - n-1 it
atz f(t1’t2) =i (i 2 ak? ) 1{ i b akg[f(t]_/n)] E(xzelrlx,/n )
t,= ] 3

- i 2
bz 2 ey e (™ ma ) e
k j#i

) 0
Using (3.2) and S__ m2<t2) = icz , equation (3.1) reduces to

)
£,=0
et a’£(t,) df(e) 2 ) )
- £( 1) — + [ ] = © [f(tl)] (3.3)
a d,

The solution of (3.3) is the ch.f. of the normal distribution with
mean ;; and variance 2

To prove the necessity, we prove a more general result as follows:
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Let Xl""’xn be a random sample from a normal distribution with
2
mean B and variance ¢ . If the statistic § = S(Xl,...,Xn) is

translation-invariant (i.e.S(Xl,...,Xn) = S(X1 + a ..,Xn+ a) for

1’
n

any real a), then S is independent of the sample mean X = 2 Xi/n .

1

Let f(tl’tz) denote the ch.f.of the random vector (E,S).

. 2
Since Xl""’xn are normal with mean U and variance ¢ , we have

t n
1 .
f(tl:tz) = ( 5 2x Y [ exp i — .Z Xj+182(X1, ,X )
R j=1
n
1 n
- T 'Z (x, - W) dx1 dx2 ves dxn
27 j=1
or @2 2
£(t,ty) = g(t;,t)) exp{ltlu - £ tl} (3.4)
1 n n -
where g(tl,tz) = (— )y [ exp {- l—f S (x, - K- li tl)2 +
o} 2‘)'[ R 20' J=1
n
+ 1t2 S(xl,...,xn)} dx1 cee dxn
The function g(tl’tZ) is an entire function of t1 . Letting
zj = xj - U - czy/n , Wwhere -t1 = iy (y real) and taking into consi-

deration that § is translation-invariant, we obtain

1. n 1
g(tpty) = (—5 ) [ exp {' —3
2¢q ]

h ™MD

1

2
zj + itZS(zl,...,zn)} dzl..
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That is, g(tl,tz) is a constant for purely imaginary values of tl.
Since it is an entire function of tl' it must be independent of tl.
We thus obtain

gl(tz) = g(t]_’tz)
From (3.4), we get

o2t? ]

2n

f(t = il -
( 1’t2) gl(tz) exp [iK t1

This shows that X and S are independent, Finally, we conclude by
the above result that the necessity of the theorem holds since Q is

invariant under a translation. This completes our proof.

Corollary 3.1. (Lukacs 1942). ILet Xl,...,Xn be a random sample

from X with d.f. F(x). Assume that E(X) and var(X) exist.
= 2 1 ! =2
Then F(x) is normal iff X and S8~ = 1 z (Xi-X) are
n-1

independent
To obtain the result from Theorem 3, let

- L for k = j
n

It
=]

for k#3j and m

Corollary 3.2. (Geisser 1956) ILet X .,Xn be a random sample

1"
from X with d.f. F(x). Assume that E(X) = p and var (X) = 02 exist.
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- n 2 BP 2
Then X = 2 X./n and 85 = Z (X, -X)%, p=1,2,...,n-1
i=1 1 P4y St T

are independent iff F is normal.

To obtain the result from Theorem 3, let

1 for j = ktp
a = -1 fo j = k
kj T
0 for other values of j and m = n-p .

It should be noted here that a further generalization of the previous

theorem Fas been established by Shimizu (1961).

Following the line of the above approach, one can easily establish
the following theorem due to Laha (1956) concerning the independence of

the mean and a homogeneous quadratic statistic.

Theorem 4. (Laha 1956) ILet X ,Xn be a random sample from a

10"
population with d.f. F(x) having finite variance 02. Let
n n .
Q= z 2z aij xixj be a quadratic statistic with the coefficients
j=1 j=1

satisfying the conditions:

(1)

i=1,2,...n.

[T o I
[V
-
o

™M
[V
It
(o]
Hh
o]

[a]

i

Then X and Q are independent iff F(x) is normal.
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We shall only outline the proof. Since X and Q are inde-
pendent, in terms of ch.f. one can easily obtain a relation of

the forms

2
d 2
— (log £(t)) =- ¢
dt2
in a certain neighbourhood of the origin. We conclude from the
properties of analytic functions that the solution of the above

equation is the ch.f of a normal distribution.

To prove the sufficiency we need only show that X and Q are

uncorrelated of order (2,2). That is,
=i ] =1 ] ; ~
E(X" Q) = E(X' ) EQY) i=1,2, j=1,2, (see pp.72 48 ).

Direct verifications show that the above relations hold, which

completes the proof.

‘It should be remarked here that the assumption of the existence
of finite variance is in fact, superflous in all the results just con-
sidered due to a theorem of Zinger (1958) concerning admissible poly-
nomial statistics. A polynomial p(xl,...,xn) of degree m is said
to be admissible if the coefficients of the terms x?, j=12,...,n
are nonzero. The important result obtained by Zinger (1958) concerning

admissible polynomial statistics is that if two admissible polynomial

statistics pl(xl""’xn) ,pz(xl,...,xn), where Xl""’xn are n
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independent (but not necessarily identically distributed) r.v.'s,
are independent then each r.v. Xj’ j =1,2,..y,n has finite moments

%

of all order. The proof of this result can be found in [48].

3.3. 1Independence of polynomial Statistics

If the preceding sections, we have seen that the independence
of two linear statistics and the independence of a linear and a
quadratic statistic characterize Normality. In what follows, we shall
consider the independence of two polynomial statistics, or more generally,

the independence of certain functions of independent r.v.'s.

We first introduce a special class of polynomials. Let p(xl,...,xn)

3 ]
= X A, . — 1 eee X 2 be a polynomial of degree r.
Jpticteei <Y Jydgseeendy
&

We may write p(xl,...,xn) as a sum of a homogeneous polynomial of

degree r and another polynomial of degree less than r. 1i.e.

p(xl,xz,...,xn) = po(xl,...,xn) + pl(xl,...,xn)

j1 jn
where po(xl,...,xn) = z Aj 3 X" oeee X is a
Y s g ey
J1+.oo+Jn— r 1 n

homogeneous polynomial of degree r, while pl(xl,...,xn) is a polynomial

of degree less than r. The polynomial p(x ,xn) is said to be non-

1,0--
singular if po(xl,...,xn) contains the rth power of at least one
variable and no(k) # 0 for all integers k > 0, where no(k) is the

polynomial obtained by replacing each positive power Xi by
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K(j) = k(k-1) ... (k-j+1) in po(xl,...,xn). We shall see that the
k-statistic of order q is a nonsingular polynomial. By a k-statistic

of order q we mean a symmetric homogeneous polynomial stastistic of

degree q such thatits. :expectation is equal to the kth cumulant of the
population. It is interesting to note that the independence of the

sample sum X1 +...+Xn and a nonsingular polynomial statistic of degree

r implies that the ch.f. of the distribution function under consideration
is an entire function of finite order with no zeros in the complex plane
(see pp. 96[48]). Hence according to Hadamard's factorization theorem,
the ch.f. is of the form f£(z) = exp[pn(z)] and hence we conclude from
Marcinkiewicz's theorem that £(t) is the ch.f. of some normal distri-
bution. This readily gives us a characterization of the normal distribution

through the independence of sample sum and a nonsingular polynomial

statistic. Thus we have

Theorem 5. Let xl,...,xn be a random sample from X with distribution
function F(x). Let p(Xl,...,Xn) be a nonsingular polynomial statistic.
Then F(x) 1is normal provided that p(Xl,...,Xn) and the sample sum

X1 + X2 +...t Xn are independent.

As a direct application of Theorem 5, we have the following four

corollaries.

Corollary 5.1. Let Xl""’xn be a random sample from X with d.f.

F(x). Let p(Xl,...,Xn) be an admissible homogeneous polynomial statistic

of degree r such that the expected value of p(Xl,...,Xn) is equal to rth

cumulant kr' Then F(x) 1is normal provided that p(X Xn) and the

1777

sample sum are independent.



It can be shown thst p(Xl,---,Xn) is a non~singular polynomial
statistic. In virtue of Theorem 5, the corollary follows immediately.
We note that in particular if p(Xl,...,Xn) is the k-statistic of
order r, then conditions of Theorem 5 are automatically satisfied. That

is to say the following holds

Corollary 5.2. (Basu and Laha 1954) Ilet Xl""’xn be a random

sample from X with d.f. F(x). Let kp be the k-gtatistic of order r.

The F(x) is normal provided that kp and the sample sum Xlt...#xn

are independent.

Corollary 5.3. Let xl,...,xn be a random sample from X with distri-

bution function F(x). Let

n n n
A = 2 2 a.iX.X. + 2 b.X.
j=1 i=1 Jr 1] j=1 J ]
such that
n n n
B =2 a,.#0 and BZ=Z 28.i= 0.
1 j=1 31 j=1 i=1 J

Then Q and the sample sum are independent iff

(i) F(x) is normal

(ii) B -
k j=1

0
[ng]
]
I
o
Hh
Q
A
~
0
[y
-
N
B

(iii) B

1]
N ~Maps
o
]
o
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To prove the necessity, one needs only to form the polynomial

no(k) corresponding to the polynomial Q. It is easy to find that

n n n
ﬁo(k) = 7 a,. k(k-1) + 2 Z a.ikk
j=1 1 =1 itg o
2
= sz - Blk

This shows that Q is indeed a non-singular polynomial of degree two

and hence F(x) is normal by Theorem 5.

The conditions (ii) and (iii), and the sufficiency of the
corollary follows from a result proven by Laha (1956a). The result
states that the necessary and sufficient condition that two real poly-

nomial statistics of the second degree denoted by

X ) =X'BX +MX

pl(Xi ,...,Xn) = X'AX + L'X and pz(Xl,..., 0

are independent is that

(8 AB =0, (b) L'B=0, (c) M'A=0, (d) L'M=0.

Here X = (Xl,...,xn)' (Xl""’xn is a random sample) is a random
(column) vector, L',M' are column scalar vector and A,B are both

nxn real symmetric matrices.

The following result is another application of Theorem 5.
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Corollary 5.4 (laha, Lukacs and Newman 1960). Let Xl,...,Xn be a
random sample from X with d.f. F(x). Let p be a positive integer

_ n
such that (p-1).! 4is not divisible by (n-1). ILet X = 3 Xi/n

i=1
n

and m_= 3 (Xi - i)p/n be the sample mean and sample central moment
i=1

respectively. The F(x) is normal iff X and mp are independent.

Proof. The necessity follows from a previous result that in a normal
population any translation-invariant statistic is independent of the

sample mean. To prove the sufficiency, we first note that the poly-

nomial no(k) formed by substituting each power Xg by k(j) = k(k-1)...(k-j+1)
has no non-zero integer roots if (p-1)! is not divisible by (n-1) (see

[46]). This means that no(k) corresponding to mp does not vanish for

any positive integer k, that is, mp is a non-singular polynomial

statistic. The sufficiency follows immediately with the application -

of Theorem 5.



| CHAPTER IV
®

Characterizations of Normality by means of Regression Properties

4.1. Constant regression and polynomial regression.

In the previous chapter, we have seen that several properties
of certain statistics have been used to characterize the normal distri-
bution, namely, the distribution of a certain statistic , and the in-
dependence of linear and polynomial statistics. If we examine care-
fully the proof of Theorem 3 in Chapter III, we see that the assump-
tion that the independence of sample mean and the quadratic statistic
Q can be replaced by a condition as E(Qeiti) = E(Q)E(eiti) which also

enables us to arrive at the same differential equation. It is well
known that the independence of Q and X implies E(Qeltxj = E(Q)E(eltx)

@ but not conversely. Hence this is a slight generalization of Theorem 3
in Chapter III. We shall call this kind of property the constant regression

) = E(QQE(el™)

of Q on X for it is easy to see that the condition E(QeltX

1%y = E(Q).

is equivalent to E(Q|e

As mentioned before, the conditional expectation E(Y|X) is called
the regression of Y on X, and is a Borel measq;able function of X. It
is interesting to find out under what condition. the regression of Y on X
is constant, or a linear function, or a polynomial in X. We first intro-

duce the following definition.

Definition 4.1. Let X and Y be two r.v.'s such that E(Y|X) exists.
Let K be a non-negative integer. Then the r.v. Y 1is said to have a

polynomial regression of order k on X 1f
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k .
E(YIX) = 2 Bj X}  holds almost everywhere.

J=o

If k =0, we say that Y has a constant regression on X.

1]

In such a case, we have E(Y|X) = Bo E(Y), provided that the
expected value of Y exists., If k =1 and Bl £ 0 (k =2 and 62 £0),

then we speak of linear (quadratic) regression.

We first establish a necessary and sufficient condition under

which the random variable Y has a polynomial regression on X.

Lemma 1. Let X and Y be two r.v.'s such that E(Xk) (k = a non-
negative integer) and E(Y) exist. Then the r.v. Y has a poly-

nomial regression of order k on X 1iff the relation

. k o
w  Exe™y = 3 g 5! My, p.isreal (§ =1,2,...,k)
jeo 3 j
holds for all real t.
Proof. Necessity.
itX k . itX
E(Y|X) e = (2 pX)e
j=
itX k . itX
E(E(Y|X)e™™) =k [( 2 B.xN)e ™
j=o
itX k i itX
E(E(Ye' ""[X)) =E[ ( = B .xN)e™
"]
j=o
itx k | itX
E(Ye' ™) = 3 BjE(XJe ).

j=o
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To prove the converse, suppose that the relation (A ) holds for

ali real t. Then

itX k '
E(e’™ [v- z g.x)]) = 0
j=o
> itx k '
[, ™ Ely- 2 pxXI[X] du =0 where b 1is
. ] X X
R j=o

the probability measure associated with the r.v. X (see pp.33, [10]). Let

k .
wB) = [ E(Y- 2 BjXJ|X)dux , where B 1is a borel
B j=o

set of R1 . This is a function of bounded variation defined on all

Borel sets of Rl. But then we have

It is well-known that a function of bounded variation is uniquely

determined by its Fourier transform. Hence

H(B) = u(Rl) =0 for all Borel sets B.

But this can happen only if
k

E(Y- 2 pXJ|X) = 0 a.e.
j=1 J

This completes the proof.
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In particular, for k = 0, we see that Y has constant

X itX

regression on X iff the relation E(Yelt ) = E(Y)E(e" ") holds

for all real t.

4,2, Constant regression of linear Statistics on another Statistic

Let X1 X2""’Xn be a random sample from a normal distribution.

It is easily shown that two uncorrelated linear statistics

n n
L = Ya,X,, L, = X b.,X, of the normal variates X,,...,X are
1 1 i3 2 1 i3 1 n

independent. We also know from Darmois-Skitovich's theorem that

the independence of two linear forms implies that the random variables
with nonzero coefficients in both forms are normal. It is, therefore,
natural to ask whether the independence of the linear forms can be
relaxed to a weaker condition of constant regression; i.e., whether
normality can be characterized by the property of constant regression

of a linear statistic on another. However, this is, in general, not

n
true. Any linear statistic L = 2 anj always has a constant re-
1
gression or linear regression on the sample sum X1+X2 +... + Xn by

suitably choosing the coefficients aj (j =1,2,...,n), This points
out that we shall only deal with constant regression of a linear
statistic on some linear statistic not proportional to the sample
sum. Indeed, under some restrictions on the coefficients of the linear
statistics Lland L2’ Rao (1967) gives a slight generalization of

Darmois-Skitovich's theorem. The following theorems are due to Rao (1967).
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Theorem 1. (Rao 1967) Let Ki,X be two i.i.d. r.v.'s with

2
E(Xl) = 0. Let alx1 + 32X2 and b1X1 + b2X2 be two linear functions
of X1 and X2 with a,s bi #£#0 1i=1,2 such that
E(alxl + a2x2|b1x1 +b,X,) =0 (1.1)

and ]bzlbll < 1 (without loss of generality).

Then we have

(i) X;,X, are degenerate if [32£81| <1 and |[b,/b | < 1.

(ii) X, and X, are normally distributed provided that E(Xi) < @

ab, +ab, =0, and |b2/b1| < 1.

Proof of (i). By Lemma 1, we have

B[ (a,X, + azxz)elt(ble+b2x2)] = 0 (1.2)

holds for all real t.

Let f(t) be their common ch.f. Since E(Xl) exists, the first

derivative f'(t) exists and is continuous everywhere (1.2) can thus
be written as

alf'(blt) f(bzt) + azf(blt) f'(bzt) =0 (1.3)

There exists a neighbourhood of the origin, say I = (-8,d), such that
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both f(blt) and f(bzt) do not vanish in this neighbourhood.

1]
Dividing (1.3) by f(blt) f(bzt) and writing VY(t) = f?ifl , we
f(t
obtain

a w(blt) + a, w(bzp) =0 for every t € I = (-3,8) ... (1.4)

This implies

We == 2 w4 = aven (1.5)
1 1
where a b
2 2 : b
o = - ;I » B = E; . Now if |az/al| <1 and | 2/b1| <1,

it follows from (l1.5) that

ar(8t) =a’ WEZt) = ...= " w(a")

¥(t) =
¥(t) = tim " we"t) = 0
n =
i.e. In f(t) = c holds in I = (-5,9).

By analytic continuation of ch.f., we have

f(t) = ¢ for all real t. That is to say, X1 and X2

are degenerate.

Proof of (ii). 1If E(Xz) < o ,  then the second derivative f£"(t) of £(t)
exists and is continuous everywhere. 1In such a case the first derivative
of Y(t) also exists in I = (-3,8) and is continuous at t = 0.

Therefore {(t) is of the form ¢t@(t) where @(t) 1is continuous at
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the origin. Replacing V(t) by t @(t) 1in (1.4), we-obtain for t # 0

B(t) = a BOEE) = aB20(E2t) =...=(0p)"" 8(s® )

ie., BCe) = lim (@8)°" 8(8%%e) = 9(0)

n - ®
{(0(0) =k when || =1

0 when |a6| < 1.

But since alb1 = - azbz, we have ]aﬁl = 1
Hence ¥(t) = kt for t eI = (-5,0)
k 2
or log f(t) = E t for t eI = (-5,%)

By analytic continuation, 1log f(t) = t~ holds for all t.

This completes the proof.

The following theorem is also established by Rao in the same paper [831.

Theorem 2. (Rao 1967) Let Xj,...,X, be a random sample from X with

n

d.f. F(x) having mean zero. Let there exist two linear functions

t
I
[ o =]

Xi and L2 = '
1 i

(L v =]

. . b.X; with [b | > max (|b1|,---,|bn¥i|)

and a # 0, such that E(LllLZ) = 0., Then F(x) 1is normal provided
n

that E(Xz) < ® 2 a,b, =0 and aibi/a b < 0 fori=1,2,...,n-1,
j=1 11 nn

Proof, By Lemma 1 one obtains a relation of the form
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a W(blt) +...+ anW(bnt) = 0 where V(t) = fé%%% (2.1)

and f£(t) is the ch.f. of F(x). As seen in the previous proof V'(t)
exists and is continuous at the origin, and V(t) can be expressed in

the form t @(t) where @(t) 1is continuous at the origin.

From (2.1), by substituting V¥(t) by ¢t @(t), one has,

B(e) = - [aBy BBLE) +.ta 4B BB t) ]

ai bi
where a; = T Bi = 1=12 »n-1
n n
or B(e) = v, B(ByE) ooty BB ), -y =auBy, 1= 1,2,
(2.2)
n a b,
In viewof % ab, =0 and —* <0 (i =1,2,...,n-1), we see
. ii ab
i=1 n n
n-1
that z Y; = 1 and all Yi’ i=1,2,...,n-1 are positive.
i=1

We have, by replacing t by B ¢ jp (2.2),
i

¢(Bit) = v, 0B B t) +..t v 0B _B.t),1=1,2,...50-1

n-1 n-1 n-1
so that Pty = 3 ) t)y = 3z ZY.Y. 6.t
(t) o Y1¢(61 ) j : YlYJ @(BIBJ )
or P(t) = ? ? 8ij ¢(BiBj) where aij = Yin >
and 2 95,., =1 (2.3)
1]
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Hence @(t) - §(0) = 2 = Sij[ﬁ(BiBjt) - P(0)] (2.4)
j i

Proceeding in this manner, one obtains

i
m

B(E) - B(0) = Z8.,..., [B(B; ... B, £)- BO] (2.5)
1 1 m

where 2 Bi { = 1 and summation is taken over all integers i
10"

k’

m

i< ik <m, k=1,2,...,n-1. Now for any fixed t # 0, t < 0, we

can choose m so large that [max IBidn < n/|t] where 17 is such that
i

|#(r) - 8(0)| < € for |m| < m. But then the modulus of the right-hand

side of (2.5) is less than e so that for any e > 0, we have |@(t)-@(0)| < e.

i.e. #(t) = P(0) = c (say)
= @(t) = ct
log £(t) = % tz which completes the proof in view of the

analytic continuation of the characteristic function.
As an application of Theorem 2, we have

Corollary 2.1, Let Xl,...,Xn be given as in Theorem 2. If
n

E(XIXj-X) =0 for amy j =1,2,...,n, where X = % Xi/n and 1if
1

E(Xi) < o , then F(x) 1is normal.

Instead of considering the conditional expectation of one linear

function of the random sample on another linear function, one may
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consider the conditional expectation of one linear function given
several linear functions. Hence an extension of Theorem 2 is pos-
sible in the following direction, in which "identically distributed"

is not assumed as in the preceding theorems.

1,...,X (n>3) be n independently

Theorem 3. (Rao 1967). Let X 0

(not necessarily identically) distributed r.v.'s. Let the three linear

n

n
functions L1 = iil aiXi, L2 = 2 bixi’ L3 . ciXi be such that

i=1 i

1]
N ™MB

i) a, # 0, i=1,2,...,n
ii) for each i, bi and c, are not both zero.

iii) B, # B for any 1 # j where ci/bi =p; if both c, and

b are not zero.

i
iv) all q,, where q, = Ei when ¢, #0 and b, = 0 are
i i a i i

b i

of the same sign and all Sj = _i when b, #0, Ci =0 are of the

i

a4

same sign.

Then Xl’XZ""’Xn are all normally distributed provided that

E(L1|L2,L3) = 0.
We first establish a useful lemma by Linnik (1964) and Rao (1966).

Lemma 2. (Linnik, 1964 and Rao 1966). Let bj’ (j =1,2,...,n) be real

numbers such that bj # bk’ j #k, j,k=1,2,...,n. Let
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¢1,¢2,..., > A, B be continuous functions. Assume that the equation

(*) ¢1( 'u+b1v) + ¢2(u+b2v) +.. .+ ¢n(u+bnv) = A(u) + B(v) + QCu,v)

holds in |u| < 60,|v| < 60 » where u and v are real, and Q 1is a

quadratic function. Then @ .,¢n A and B are all polynomial

17"

functions of degree max(2,n) at most in a neighbourhood of the orign.

Proof., Multiplying both sides of the equation (%) by (x-u) and integrating

with respect to u from 0 to x, where le < 60, we get

X X
n X
2 (xwB(utb v)du = [ (x-u) A(u)dutrB(v) J (x-u)du +
j=1 o] J J o o
x _ 2 3
+ f (x-u) Q(u,v)du = c(x) + x Bl(v) + x"D(v)
)

(1)

where D(v) 1is linear in v and Bl(v) is a continuous function of v.

Letting u+ij = t, |t| < B, < 60 in (i), we get

1

n x+b.v
Z f (x+b v-t) @.(t)dt = x3D(v) + szl(v)+c(x) (ii)
j=]_ b v J ]
]
The equality (ii) is true when |x| < 52, Iv[ < 82, 0< 62 < 81 . Since

the left-hand side of (ii) is differentiable with respect to v for
each fixed value of x, |x| < 8, it follows that Bl(v) is also differen-

tiable with respect to v. Writing (ii) in the form
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x+b v
" J 3 2
2 bv [ @g.(t)dt = x'D(v) + x“B,(v) + c(x) -
i=1 J J 1
J b.v
j
*x+b v x+b v
n j n i
-z x [ ¢j(t)dt + z [ ¢t ¢j(t)dt
j=1 b.v j=1 ij

and then differentiating it with respect to v, we get

n X'l"ij
2 b, | “p.(t)dt = hx° + B'(v)x> + B.(v)x + B, (V) (iii)
j=l ] o ] 1 2 3
b.v
n J
in which X bj f ¢j(t)dt has been added to both sides,
j=1 0

Here h 1is a constant, B2(v) and B3(v) are functions of v, and
the equality (iii) holds for a certain domain of v and x. Now

differentiating both sides of (iii) with respect to x, we get

2 1
bjﬂj(x+ij) = 3hx™ + ZBl(v)x + BZ(V) (iv)

N ~Mp

j=1

Setting v =0 1in (iv) we have

n
22000 = (v)

where f21(x) is a polynomial in x of degree two at most.

Starting from the equation (iv), and repeating the procedure as

before, we get
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N Mz

2
by B0 = £, (0

j=1

where f22(x) is a polynomial in x of degree three at most. Hence

by repeating the procedure n times, we obtain the equations

blﬂl(x) + ...t bnﬂn(x) = f21(x)

2
bl(bl(x) + ...+ bi‘bn(") = fzz(x) (vii)

b‘l‘wl(x) ...+ b;(bn(x) £, (%)

where f2n(x) is a polynomial in x of degree n at most. Since

b .,bn are all different, ¢j, j =1,2,...,n are uniquely deter-

1,.-

mined by solving the equations(vii) and are linear combinations of

f21(xx.",f2n(x). This means that each ¢j, j=1,2,...,n 1is a poly-

nomial of degree max(2,n) at most in a neightbourhood of the origin.

We now proceed to the proof of the theorem. There is no loss

of any generality in assuming that

b, =...=b =0, c =...= ¢ =0 and bi # 0, c; £ 0 for

a3
1l
o)
=
=
1

Denote 1,2,..., stk

> stktl so that we have

o
1
o
>
[ ad
[
A"

|l
[}
<
+
)
F
"

1 - gty YorcY stier1 Vet 1t Vn 't

a,
where vy, = _j
1,

]

(3.1)
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b ..
= - sti
L, 65+1YS+1 +...+ Ss+k¥s+k+Ys+k+1+"'+Yn where 85+j as+j
Y 4.+ ‘i
L3 = al 1 e asYS+ 5s+k+1Ys+k+1 +...+ BnYn where ai = ;_
i
Cotlok ;
and Bs-f-k-{-' = b—s__.__l
] st
If E(L1|L2,L3) = 0, then we have
itslL, + it,L
E(Lye 2727 73y g (3.2)

In terms of ch.f.'s f »f of Y,,1i=1,2,...,n, and writing

ety i

£1(6)
= P.(t)y, i=1,2,...,n, the equation (3,2) becomes
f(t) 1
s s+k n
T B.(a.ty) + T B.(5.t,) + I v.8. (e 48.t,) = 0 (3.3)
1 iv™i 3 o+l it7i2 o+kt1 ii* 2713

in a neighbourhood [t,[ < &, and |tg] < 84 .

1

We may write (3.3) in the form

n s stk
oy 0.(tAB.ty) =~ 2O .(a.t) - T 0.(5.t,)
oHlt] T 1L 2’7173 ] & i3 o1 i*7i 2
n s+k

Since all B are different, and - J ¢i(ait3), -7 ¢i(61t2)

seesy B
s+k+1 n 1 o1
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s
are continuous, by Lemma 2, @.(t,) (i = st+k+l,...,n) =0, (x.t.), and
i3 1] L 373
s+k
z ¢i(8it3) are all polynomials in t. This implies that {n f

stl
j=1,...,n-8-k are also polynomials in t. By Marcinkiewicz's theorem,

sthktj ’

Ys+k+1"'°’Yn are normally distributed.

s
Furthermore, it is obvious that 2 all in fi(ait) is a polynomial
1
in t. Since ai are all of the same sign, by a result listed in Chapter I

on analytic ch.f.'s, fi(t)’ i=1,2,...,s are ch.f's of normal distri-

butions. Similarly Yi’ i =stl,...,stk are all normally distributed.

It should be noted that .. Bil = =, ..= Bik for a set of indices

Pia
Liseeesip and 1fvthe corresponding Yil""’Yik are of the same sign,

then Theorem 3 is still true. This is because the functional equation
k

(3.3) ensures that 32 Yij¢ij(t) is a polynomial in t in a certain
i<l |

neighbourhood of the origin. With the same argument as before, the

r.v.'s Y.., j=1,2,...,k can be seen to be normal.
1]

As a corollary, we have

Corollary 3.1. Let Xl""’xn (n > 3) be independent (but not
necessarily indentically distributed) r.v.'s suych that E(Xi) < o0,

i=12,...,0. Then E(X[X; - X, X, - X) = 0 implies that

2

X .,Xn are all normally distributed.

120"
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It was shown in a paper by Rao (1952) that the mean square error

of i is not smaller than

v:n~[x-}zo(x]x2-x1 xn-xl)]

where Xl""’xn are i.i.d r.v.'s from a location parameter family,
where Var denotes the variance and Eo denotes the conditional expectation when

the location parameter vanishes. Also it was shown that i-Eo(ilxz-Xl,...,Xn-Xl)

is an unbiased estimation of the location parameter, and that X is

the minimum variance unbiased estimator of the location parameter when
the distribution is normal. This means that EO(XIXZ-Xl,...,Xn-Xl) = 0.
It is interesting to note that this proposition characterizes a normal
distribution without however assuming that the underlying distribution
belongs to the location parameter family. It was shown by Kagan, Linnik

and Rao (1965) that E(X]XZ-X Xn-Xl) = 0 implies that Xi is

ERLRE
normal, where Xi’ i=1,2,...,n0 (n>3) arei.i.d. r.v.'s with mean

zero. This result turns out to be a special case of the following theorem

which is also due to Rao (1967).

Theorem 4. (Rao 1967) Let Xl""’xn (n > 3) be independent (but not

necessarily identically distributed) nondegenerate r.v.'s with

E(Xi) =0 i=1,2,...,n. Consider the n linear functions

L1 = ailxl +...+ aian, i=1,2,...,n
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with a, ; #0, j=1,2,...,n such that the determinant I(aij)l # 0.

Then Xl""’xn are all normally distributed if E(L1|L2f...,Ln) = 0,

It is easy to show from the given condition that

it L +...+it L
E(Lle 172 n-1"n ) =0
We may assume ayy Tayy =e..=a = 1 (without loss of generality)
£'(t) ,
In terms of @.(t) = X , where fi(t) is the ch.f. of Xi’
J £;(t)
i=1,,2,...,n, we obtain a functional equation of the form
¢1(321t1+...+an1tn_1) +...+ an(aZntl +...+ anntn-l) =0 .
By letting athl +...+ anjtn-l = Tj’ j=1,,2,...,n~1, the above
equation can be expressed as
8 (T +oouk @ (T + @ (KT +oout kT ) =0
where kl”"’kn-l are suitable constants. Putting Ti = 0 except

for i =r and i =s and in view of ¢j(0) =0, j=1,2,...,n we
obtain

¢r(Tr) + ¢S(TS) - %krTr + kSTS)

Hence by Lemma 2 ¢r(t) and ¢S(t) are polynomials in t. Since r

and s are arbitrary, we conclude that ¢1(t) yeees ﬂn(t) are all



polynomials in t. With the same reasoning as before Xl""’xn

are all normally distributed.

Let X ,...,Xn be a random sample from X with d.f. F(x)

1
having mean zero and finite kth absolute moment. Consider the
n — n n
, . _ _ . r
linear functions L1 = 3 aiXi and L2 z biXi with 2 aibi #0,
1 1 1
n
r =2,,..,k-1. If E(L1|L2) = 0, then it can be shown that 2 aibi =0
1

and that the jth cumulant of F(x) is equal to zero for j = 3,...,k.
The by assuming that F(x) has moments of every order, we immediately
get a characterization of the normal distribution (see 83 ). The converse

n

of the proposition is also true sicne E(L1|L2) =0 implies 2 aibi =0
1

which in turns implies that L1 and L2 are uncorrelated. This means

that L1 and L2 are independent, and hence the assertion follows at once.
In Theorem 4, we have seen that Normality is characterized by the
constant regression of a linear function given several linear functions
of the nondegenerate independent r.v.'s. It is interesting to note that
the assertion of Theorem 4 is still true if the condition E(LllL

2""’Ln)

is replaced by an analogous condition as E(Li|L Ln) =0 for

NELEEE
i=1,...,p. To see this, we first transform the Lj to L'j which

takes the form

X +... i
g F bjp+1 p+l + bjnxn ]

LB =X 1,2,...,p.
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This is possible since the determinant I(aij)l # 0. Similarly

L to L'

transform LP+1,..., n pHl 7

L; which take the forms

Lp+k = cp+k:}xi+"'+

cp+k;pxp + Xp+k’ k = l,..., n-p. The

. . = . 3 [} ] -
condition E(Lil L 170 Ln) 0 1is equivalent to E(LiILp+1""’Ln) 0,

p.*.

i =1,..,p. From this condition, we get as before a functional

equation of the form

b.( + ¢ B (E ). Hb, B (e ) =0

or1, 151 Tt Cnifa-p) oot o1 p

i=1,2,...,p. Applying the same arguments as in Theorem 4, and using

Lemma 2, we conclude that the assertion is true.

4.3, Constant regression and polynomial regression of a polynomial

Statistic on a linear Statistic.

We have seen that the complete independence of two linear statistics
can be replaced by a weaker condition, namely the constant regression of
one linear statistic on another. The same is true for a quadratic
statistic on a linear statistic as mentioned in the beginning of this
chapter. A thorough and detailed analysis of the proofs such as that
of Theorem 3 in Chapter III readily gives us some modifications of the
previous results, Therefore we shall only state the following results

without proofs.



Theorem 5. (Laha) Let X X be a random sample from X with

1,.0-, n
d.f. F(x) having finite variance 02. Consider the polynomial statistic

n n
Z a, XX + Z b.X,
jkg-

1 k=l L I

o
1]
n™Ms

h
with coefficients satisfying

n n
(i) B, = 2 a,,#0, B,= % 2% a, =0 and B, = 2 b, =0
j=1 j: i=

Then F(x) 1is normal iff Q has constant regression on the sample

sum X1 + X2 +...+ Xn.

Corollary 5.1. (Laha 1953) Let X ,...,Xn be a random sample from X

1
with d.f. F(x) having a finite variance 02. If the regression of
n
any unbiased quadratic statistic Q = 2 ainin of coz(c # 0) on
ij

X1 + X2 +...+ Xn is constant, then F(x) is normal.

From the definition of unbiasedness, we have

2
E(Q) = co
n n
The above equation implies that 2 a,, =c¢c and % a,, =0 . By
jo1 43 iy i

Theorem 5, the result follows.

Instead of constant regression, we may as well consider poly-

nomial regression which also characterizes Normality. The following

theorem is a generalization of Theorem 5.
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Theorem 6. (Laha and Lukacs 1960) Let Xl,Xz,..., Xn be a random

sample from X with d.f. F(x) having a finite variance 02. Consider

n n
a polynomial statistic Q= 2 a,. XX, + Z b.X, with coeffi-
13,1 M3 g
n
cients satisfying A = Al(n-l) - A2 # 0, where A1 = I a,, and
i1 M
n
Ay = 2 a, - Let By and By be two real constants such that
it
1 n
61 = and 62 = = (A1 + Az) where B = % b, . Then the relation
n j=1
J
2 02
E(Q|A) = B+ ByA +B,A" holds iff (i) B =A — , (ii) F(x) is
n
normal, where A = X1 + X2 +...+ X1 .
n n n
We first note that if 3 Z a,, =0, p= 2 b, =0, then
i=1 j=1 1 j=1

By = 0, and By = 0. This reduces to the case of Theorem 5. We now

proceed to the proof of the Theorem 6. By Lemma 1 we have

itA

i . .
E(Qe y =8 E(elt/\ i1t 2 ita
o

) +BEC e M) + g (A% Y (6.1)

holds for all real t. Let f£f(t) be the ch.f. of F(x) and
@(t) = £&n £(t) be its cummulat generating function (valid in a

neighbourhood of the origin). We have

itn n " 1 2 '
BQe" ) = - (2017 4,07(0) + (a9 ()] -pid! (0}

. . (6.2)
and fioE(eltA) + B EC eItAy 4 B 2 1t
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= - (5017 [ - B8 10" (6) + m,y8"(e) + n B0 (9] ] (6.3)
From (6.1) and using (6.2) and (6.3), we obtain
' 2 2
By = (1By-A)) B'() + [n'B, - (A+A)1[8' ()] +
+ (B-08,)18' (1) (6.4)

But since nZBZ - (A1+A2) =0, B - nBl = 0, we have from (6.4)

BQ = (nﬁz - Al) ¢"(t) .

2

By letting t = 0 and using ©"(0Q) = - 02, we obtain Bo = %— A
1" 2
and hence @"(t) =- g° .
1 22 , . .
Hence f(t) = exp {- 30 t + nat} holds in a neighbourhood of the

origin. By analytic continuation, we conclude that F(x) is normal.

To prove the sufficiency, write

#(t) = log f(t) = - % 02t2 + igt
Uisng (6.2) and (6.3) and taking into account Bl = %, ﬁz = AI+A2
2 n’
and 62 = A %— , we have
itA itA it 2 itA
B(Qe ) =B E(e ) + BiE(Ae M) 4 BE(ATT)

for all real t. By lemma 1, we have
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itA 2
e

E(Qe V) =B +BA +B, AT a.e.

This completes the proof.

By appropriately choosing the coefficients of the polynomial
statistic Q and the regression coefficients Bo’Bl and 62 we have
seen that the regression properties of a polynomial statfistic of secand
degree on a-linear ‘statistic characterize the normal distribution.
Applying the similar technique as in Theorem 6, Gordon and Mathai (1968)
generalize the above result by constructing a polynomial statistic of
third degree which has polynomial or constant regression on the sample
sum X1 +..:+Xn and obtain a series of characterization theorems for
various populations such as Normal,Gamma and Poisson etc. Moreover, a
technique that can be used to study any general.rghs mth order poly-
nomial regression of any mth degree polynomial statistic on a linear
one is also revealed in [28] . We present here a few results proven in [28].
The proofs of these are similar to Theorem 6, and hence will be omitted.

Theorem 7. Let Xl""’xn be a random sample from X with d.f. F(x)

having finite third moment. Let

s = z a.,. XXX 4+ 2 b, XX 4+ ZcX
. km i k'm . ik ik . 33
i k,m ] 1 Jsk I ] J 1]
be a polynomial statistic of third order, where ajk’ bjk and cj (for

all j,k,m =1,...,n) are real constants.

Assume that the following relations hold
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P, = 0
c - n&l =0
By - mBy =0

2
B1 + B2 - B, = 0
n(n+2)53 - 3A1 - A, =0

n(n2-2n+2)B3 -A -A, -A,=0

1 %2773
n53 -A#0,
where A, = 3 a, A, = 2 (a + a + a, ..)
1 2 k kjj’?
PR AR [ jkj i3
A, = I a B, = Zb B, = Z b C= 2¢C,, and
37, jkm” S F A jk’ . 3’
itifm ooy itk j

80,61,62,83 are real constants., Then F(x) is normal iff

2
E(S]/\) = Bo+61/\ +62/\ + 53/\3 a.e., where A = X1 + X2 +...+ Xn

The condition E(S|A) =B  +B. A+ B /\2 + B 3 yields a
o T P1AT By 3

fundamental differential equation of third order in the ch.f. f(t) of
F(x). The assumptions of the coefficients of the statistic S and the
regression coefficients permit us to reduce the fundamental equation to

the simple form

3
d

i(nB3 - Al) —3 log £(t) =0
dt

which readily gives us a solution of a ch.f. of a normal distribution,
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By imposing another set of conditioms of the coefficients of the

statistic S and the regression coefficients, for example

c-n3 =0
nBy - A = 0
B.+B, - 20, = 0
17870 By
n(m+2)By - 3A1-A2 =0
2
n(n~ - 2n+2)33 - Al-AZ-A3 =0

BO = 02(B1-n62) # 0

where 02 is the variance of F(x), we can also obtain another
characterization of the normal distribution. A glance at the conditions
of the coefficients of the statistic: S and the regression coefficients
will tell us the fundamental differential equation resulting from the
condition E(S|A) = B, t B1AT 621\2 + 63/\3 is rather complicated and
cannot be solved readily. Hence if we go on considering the regression
properties of a mth (m > 3) degree polynomial statistic on a linear one,
we shall meet with a séries of conditions on the coefficients of the mth
degree polynomial statistic and the regression coefficients and also

have to deal with a very complicated differential equation of mFR order.

In such cases, it is worthwhile to investigate the analytical properties

of those solutions which are characteristic functions.

Linnik and Zinger (1957) discussed a special class of polynomial

of degree r that has a constant regression on the sample sum . This
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class of polynomial is called regular polynomial (see pp.110 [48])
They obtained two important results, one regarding the existence of
the moments of the underlying distribution function, the other con-
cerning the analytical properties of the ch.f. of the underlying
distribution function from the assumption that a regular polynomial
statistic of degree r has a constant regression on the sample sum
X, + X, +...+ Xn' We shall only state these two results, and for the

1 2
proofs, we refer the reader to [48] pp.l10.

Theorem 8. (Linnik and Zinger 1957). Let X

1""’Xn be a random

sample from X with d.f. F(x) having finite moments up to order m,
i1 ;

Let p(Xl,...,Xn) =37 A X: yeees x'n be a regular poly-

jl"."jn 1
nomial statistic [see pp. 110] of degree r and order m(m< r). If
p(Xl,...,Xn) has constant regression on the sample sum Xl +...+ Xn’

then F(x) has moments of all orders.

Theorem 9. Under the conditions of Theorem 8, if (i) p(Xl,...,Xn) has
constant regression on the sample sum X1 +...+ Xn (ii) m > n-1 then

the ch.f. of f£(t) of F(x) is an entire function.
It should be noted here that the assertion of Theorem 8 still

holds if the sample sum is replaced by any linear statistic a1XI+...+aan.
As an application of Theorem 9, we have the following corollary:

Corollary 9.1. Let Xl,...,Xn be a random sample from X with d.f. F(x)

having finite second moment . Let L, = a., X, +...+ a X and
1 171 nn
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L =b.X. +...+ b X be two linear statistics. If L2 has constant
2 171 nn 2

regression on L then F(x) has moments of every order.

1’
We note here that the assertion follows by applying Theorem 9

with P = Lg with m =1r = 2. We now give a characterization of the

normal distribution.

Theorem 10. (Cacoullas 1967). ILet xl,...,xn be a random sample from

X with d.f. F(x). Let L, = a,X, +...+ aan and L, = b, X, +...+ b X

1 171 2 171 nn
be two linear statistics with alb1 + aZbZ + ...+ anbn =0 and
ajak >0 for all j, k=1,2,...,n. Then Lg has constant regression

on L1 iff F(x) is normal.

As seen before, the sufficiency is obvious.. To prove the

necessity, consider

2 itL 2 it
E(L, el = E(L) E(eM) (10.1)

In terms of the ch.f. £(t) of F(x), we have from (10.1).

n 2 n ' 1 2. W

2 c.gj(t) II gs(t) + 3 c,ﬁ§j(t)gk t) I gr(t) = - E(LZ) I gj(t)

1 S#] jik J r#j,k j=1

. (10.2)
where c¢. = _J] and g.(t) = f(a.t), j = 1,2,...,n. By
J a, ] k|

corollary 9.1 all moments of F(x) exist, and hence the kth deri-
vatives ggkzt)of gj(t) exists for every k. lLet Gj(t) = fn gj(t),

j=1,2,...,n., (valid in a neighbourhood of the origin). Dividihg..
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both sides of (10.2) (permissible in a neighbourhood of the origin)

by ﬁ' gj(t) we have

j=1
2 ' 2 2
b3 ¢ 1) J.(t) + [z cj¢ j(t)] = - E(L 2) (10.3)

We shall show that the cumulants kr of F(x) are zero for r > 2,

Differentiating (10.3) once and setting t = 0, we get

R, n n 9
k, Zc¢c .a .+ 2kk, (2 c.a, 2 c.a, = 0 10.4
3 iod 1% j J) [ i3 ] ( )
1 1 ]
, . (xr) _.xr 4(r) T T
by taking into account the relations ¢j (0) =a 3 ) (0) =i a 3 kr
n 9 n nog o,
But X c,a, =2a,b, =0 and 3 a, ¢ , # 0, we must have k, = 0.
; 33 77 ;373 3

Similarly, we can show k.r =0 for r > 2. This completes the proof,

If we are given a sample Xl,...,Xn from X with a symmetrical distri-

bution, then following the proof of Theorem 10, we can show that the

. . . . , 2 ,
distribution is normal iff L°, has a constant regression on L

2 1
where L, = blx1 +..;+ bnxn and L, = a;X; +...+a X with aj £0,
j=1,2,...,n and £ a,b, = 0,

1 41

4.4, Multivariate Case. Having seen a number of results in univariate
case, we now come to consider the multivariate case. Analogous

results can be formulated without much difficulties.



-75«

Theorem 11. (Kagan, Linnik and Rao 1965). ILet Xl""’xn be a sample
from a multivariate distribution with E(Xi) = 0. Then

E(ilxz-xl,..., xn-xl) =0 implies that the common distribution of

X Xn is multivariate normal ,

1,.0.,

The result follows from Cramer-World theorem and Kagan-Linnik and

Rao's theorem in univariate case.

Theorem 12. Let Xl""’xn be a random sample from a nondegenerate

p-dimensional distribution with covariance matrix M. ILet

n
= 3 XA, XX
R L

]
where Xj is a (column) random vector, Ajj are p x p matrices
n
satisfying (i) 2 A,..=- Z .. = A 3 (ii) A is nonsingular.
=t B g

Then the distribution is p-variate normal iff Q has constant regression

on L = X1 + X2 +...+ Xn,

This result is a generalization of Lukacs' result (1942) in
multivariate case as well as an analogous form of Laha's result in

univariate case. By putting

1 .
a,, = L 3= l,...,0
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I ™MM8

then Q = L (X. - X) (X. - X)' shich is the case considered
n-1 j h|

j=1

in [62] by Lukacs.

The proof of this result is nothing new, except changes of nota-

tions, and hence is omitted.

Similarly, Theorem 10 has an analogous form in multivariate

case in the light of Cramer-Wold's theorem.

4,5. Linearity of regression and homoscedasticity

In the conclusion of this chapter, we consider some properties of
linearity of regression and homoscedasticity and its applications in
characterization problems. It is a remarkable fact that the regression
of - a- component of a two-dimensional normal random vector on another is
linear and tlie conditional variance of a component of a two-dimensional
normal random vector does not depend on another. A question arises
whether this property is only enjoyed by the normal distribution. 1In
the following we shall establish the normality of the r.v.'s under
consideration from the property of the linearity of regression and homo-
scedasticity of the conditional distribution. Fur this purpose, we intro-

duce the following concepts.

Let X and Y be two r.v.'s and assume that the second moment of

Y exists. The expression

E(YZIX) - [E(Y|x)]2
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is called the conditional variance of Y given X and will be

denoted by var (Y|X). We say that the conditional distribution of Y
given X 1s homoscedastic if the conditional variance of Y given X

is a constant. i.e., var(Y|X) = ci a.e., ci > 0. We first establish
the following necessary and sufficient conditions for the existence of
linearity of regression and homoscedasticity of the conditional distri-

bution of a r.v. Y given X.

Lemma 3. (Rao, Mourier and Rothschild). Let X and Y be two r.v.'s
having finite second moments. Then the r.v. Y has linear regression
on X and the conditional variance of Y given X is constant, i.e.,
E(Y|X) =a + B X, var(Y|X) = 05 a.e. iff the relations

af(u,V) d
— = - & £(y,0) + B 5 £(u,0)
v V=0

o

2
- - (o2 +oP)E(u,0) + 2108 §5 £(u,00+ 87 Sr(y,0)

Bzf(u,v)l
= du

2
S
holds for all real u, where £(u,v) is the ch.f. of the random

vector (X,Y).

2 2
By multiplying E(Y|X) = ot X and E(Y2|X) =a  +( atpX)
by e1tX and taking expectation on both sides with respect to X, the
necessity follows. The proof of the sufficiency of the lemma is very

similar to Lemma 1.
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If the r.v.'s Y and X have mean zero, it is easy to see that

E(Y|X) = BX in virtue. of E[E(Y|X]= E(Y).

Lemma 4. Let (Xi’Yi)’ i=1,2,...,n be n nondegenerate independent
(but not necessarily identically distributed) random vectors such that
every component of the random vector (Xi’Yi)’ i=1,2,...,n, has mean

zero and a finite variance and

2 2 —
E(Yi|Xi) = B X, Var(Yi|Xi) =05, 1=L2...,m0
n n
Let L, = Y a/ X, and L, = > b,Y, be two linear functions with
1 . il 2 X i'i
i=1 i=1
. _ _ 2
ajbj #0 (j=1,2,...,n). Then E(L2|L1) = pL, and Var(LzlLl) =a,
b b b P
provided that }?l_ = 262» =,,.= nn _ B 1is satisfied.
3 ) n

Proof. Let W, = anj and Zj = b.Yj for j=1,2,...,n0. Then

] ]
n n
L, = X W and L, = z Z.
1 j=1 J 2 j=1
By Lemma 3, it can be shown that,
bp,
E(Z,|W,) =g = 11
J 1] ] a,
]
12 2 2
Var (Z.|W.,) = = b, g , 1=1,2,...,n.
( Jl J) Gjo J J10 ? ’ }

Let fj(u,v) and fj(u,o) denote respectively the ch.f.s of
(Wj,Zj) and Wj, j=1,2,...,n, and similarly g(u,v) and g(u,o0)

denote that of (Ll, L2) and L1 réspectively. Then
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g(u,v) = E [exp(iuL1 + isz)]
n n
= E [exp (iu 2 W, +iv 3 Z)) ] (i)
j=1 3 j=1
n
= I £. (u,v)
j=t
Since E(Z |W.) =g'W, var(z, W, = 0% for j =1,2,...,n, by
j ] J ] J ] jo
Lemma 3, we have
afj(u,V) df ;(u,0)
= 63 _— (i)
v du
v=0
azf.(u,v) d2f,(u,o)
3 '2 12 el 21,2 n
==-0q f,(u,o)+5, 2 y JTls45600, .
2 jo ] j du
ov
v=0

Differentiating both sides of (i) with respect to v m times ( m = 1,2),

and then putting v = o and using the relations (ii), we obtain

dg(u,v) n df (u,o)
—’ = sp'—l 1 £, (u,0) (iii)
dv _ j=1.J du k#j
v=0
2 2
a g(u)v) n n n d f_(u,O)
— =-1I f,(u,0) Z 0'2 + 3 6'2 —J1 I f£.(u,0)
a j= i= o i= j 2 k#. ]
v v=o 3 j=1 3] =1 1 du h|

. df ,(u,0) df, (u,
+ z glp, —— __l?_u_o) I f,(u,0)
s#e du da ghye
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Letting v = o on both sides of (1), and then differentiating with

respect to u m times (m = 1,2), we obtain

d n df, (u,0)
—g_(_‘.l’—o—) = X _J___ H fk(u’o) (iV)
du J=]_ du k#_]
dzg(u,o) n dzf.(u,O) df.(u,u)
-———-2—— = Z -—-12_— I[ fk(u,o) + z _-]_..——..x
du j=1 du k#j j#k du
d fk(u,o)
—_— I f (u,0).
du 243,k 2
Since B} = By =...= a;l =B , we have from (iii) and (iv)
0 g(u,v) dg(u,o0)
= B ——
aV v=0 du
Og(u,v) B s dalg(ue)
2 = - g(uy,0) E o+ B —m—
Bv J=1 o du2
v=0

By Lemma 3, the proof is complete.

We see from the above result that if there exist two linear
n
a,X, and L, = 3 bin with ajbj #0(j=1,2,..

p 3 2 4=

functions L1 =

[|J e B =]

i

)]
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where Xl""’xn are independent (but not necessarily identically

distributed) r.v.'s each having mean zero and finite variance, then
2 .

E(L2|L1) =B and var(L2|L1) =a whenever the relation

b, /a

/81 = bz/a2 =,,,= bn/an = B 1is satisfied.

We are now in a position to prove the following theorem .

Theorem 13. (Laha 1957a) Let (X ,v.), i =1,2,...,n be u non-
i’7i

degenerate independent (but not necessarily identically distributed)

random vectors such that E(Xi) = E(Yi) =0 E(Yilxi) = BiXi and

2 . _n

var (Yi|xi) =05, for i =1,2,...,n . Let L1 = .Z anj ,
i=l
n
L, = X b.X, be two linear functions with ab, #0, (j =1,2,...,n).
2 4 11 ii
Then 2
E(LzlLl) =B and Var(L2|L1) =g, iff
b.g.
(i)  each Xj for which _1J # B is normally distributed
a,
J
while each ﬁﬁ and the other Xj's can be arbitrary.
2
(ii) B = 3 a.b.B.og / 3 a2 o and
AN i
2 "2 2 b.p. 2
0, = z b.0’.0+ z' (—J—l—,‘- B) az_o'z,,
j=1 3 ] 3, I3
2 .

where cj = Var(Xj), (j =1,2,...,n) and 3' stands for the summation

b.B.

over all indices }j for which 1.1 2 g,
a.
J
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Proof: Necessity, With exactly the same notations as those used
in lemma 4, and with the aid of Lemma 3, the following relations can

be easily verified.

n df (u,0) n df,(u,o0)
B -——1—33—— I fk(u,o) =g I " I fk(u,o)
j=1 3 jHk 3=1 Kt

(13.1)

n n n 2
- I fj(uso) 2 0"2 + > B'Z d fj(uyo)

L Z o, 1 s = T £ (u,0) 4+ I B B'x
=1 =1 jo =1 J ’
j j j au? wti & g 3K
df .(u,0)  df, (u,0)
h| i f (u,0)
du du E#J,k J
n n 2:
= - g Hf.(u,0)+f32 Z d_f_j_(.i’_o_).l'[f(uo)+
.=1 ] j:l 2 k ’
] du k#j
df (u,0) d fk(u,O)
5 i I £, (u,0)
j#k du du z#Jsk
(13.2)

As before, there exists a neighbourhood in which none of the

1,2,...,n) vanishes. Dividing both sides

function fj(u,o) (3

of (13.1) and (13.2) by fj(u,o), we obtain

=N

j=1
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o2 12 d’f (u,0) ., (df.(u,0)
) jil gjo ¥ jil Bj 2 / tP .Z Bj Bk{ du / }X
du fj(u,o) J#k fj(uso)

{dfk(u,o)/ }
du fk(u,o)
il 2
- cICZ) + B2 .Z d f.(u,o)/ r 3 df.(u,o)/ }{ dfk(u,o)/
3=l du2 fj(u,o) jfk du fj(u,o du fk(u,o)

(13.4)

(valid in a certain neighbourhood of the origin).

Let Q)j(u) = /n fj(U,o) for 3 =1,2,...,n. Writing (13.3) and

(13.4) in terms of the derivatives of ﬁj(u), we have

n

v d@. n dd.
LA R N (13.5)
J_l u j=1 du



-84-

n n 2
2 g, n
T ooyt 2 82 2% (3 8! ffi)z
j=1 =l 3 4.2 j=1 J du
2
2 2 2 d7g, n g
= - Uo+ B [.Z __2_1 + (Z ¢‘| )2] (13.6)
3=l qu j=1 dv

Making use of (13.5), (13.6) further reduces to

(13.7)

Now, differentiating both sides of (13.5) with respect to u, we have

n ' d2¢ n 2
B, i _ d™g.
3=1 j 5~ = B .Z i (13.8)
du j=1 du
Combining (13.7) and (13.8) , we have
n 2 2 2 2
' n2 470, n 2 4%, n d 9. n 470,
du j=1 du j=1 1 du j=1 du
n , 2 2
_ 2 d7°¢, n d47¢,
-2 Bj 7 " 6 3 —
J du j=1 du
n
= - (02 - 2 a 2 )=c (say) (13.9)
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Finally, integrating (13.9) with respect to- u, we obtain

' 2
(B.-B)
{ f.(u,0) '} J = eP(u)
1 J

[ J s =]

j

which holds in some neighbourhood of the origin,where P(u) is a quadratic
polynomial in u. By Theorem 4 in Chapter I, we conclude that each Wj

for which B; # B is normally distributed.

Sufficiency. There is no loss of generality in assuming that

biBi/ai #p for the first r pairs (¥ < n)

and biBi/ai = B for the remaining n-r pairs.

By assumption, the first r r.v'.s , Xl,...,Xr are normally distributed

while others are arbitrary. (using the notations as before, we denote

Ll =W + Wr+1 +...F Wn

r B
L2 =7 + Zr+1 +...+ Zn where W = i W., 2 =.i Z,

Now let fwz(u,v) and fw(u,o) be the ch.f.'s of the distribution

of (W,z) and the distribution of W respectively, and let (szd&ﬂOte
' J

the variance of Wj, ij=1,2,...,0. Then
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Wuti
fwz(u’v) = E [ei le ]
n
= I £,(u,v) (13.10)
j=1
of (u,v) r Of .(u,v)
=z = 3 —l— 1 £, (u,v) (13.11)
v v=0 j=1 ov j#k v=0
r Of .(u,0)
= 3y —A— 1 £, (u,0)
j=1 ov j#k
2
o
fWZ(u’v) r Bzf.(u,o)
2 =z —h— £,(u,0)
ov v=0 j=1 v j#k
r afj(u,o) 5fk(u,o) E £ (u,0)
oz 3 > i
v v :
itk 1>
By using the fact E(Yi|xi) = Bixi s var(Yi|Xi) = Uio (i =1,2,...,r)

and Lemma 3, it can be shown as in Lemma &4 that

of (u,v) r df,(u,0) r .,
—wz = 3z B S A =- 12 B.G.zu
v v=0 fw(u,o) j=1 ] du f.(u,0) j=1 1
i
(13.12)
Bszz(u,V) T w2 T oo 2T 4 4302
— = -3 0.0-25:oj+u(z B. 0.
B =1 1% 5= =1

v=0 fw(u,o)

(13.13)
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r
since f (u’o) = exp { - _1. uz pe .2
w 2 3=1 j

Since W 1is normal with mean zero and variance

=l ]
dfzw(u,o) r '2
————/ =-u X g (13.14)
du £_(u,0) =1 ]
2
d"f (u,0) T T
w 1}
——-—2——/ - 2 oG 3 o'2)? (13.15)
du .= . -= .
fw<“’°) j=L ] j j

We see from (13.12), (13.13), (13,14) and (13.15) that

af (U,O) df (u,0)
_wz -8 —2 _ yhere
3 du
v V=0
r 1]
=z 8o 2/ v
=l 3 ] 3 g2
=l ]
2
and 0 fwz(u,v)l
2
dv ///
v=0 fw(u,o)



-88-

2
a f (U,V) ] 2
W2 _ 2 O°f (u,o0
= v 2 =m0 f(uo)+p W( >0 where
v v=o0 du?
2 % r '
o} = X o + I (B.-B)2 0.2 .
0 j=1 jo j=1 J J
By Lemma 3, we have
'2
E(Z|W) = BW, and var (Z|W) = a0,
] .
But since Br+1 = 5;+1 = ... = B; =B, by Lemma 4, we conclude
that
- - 2
E(LZILl) = BL,, var(L2|L1) o
n r
where oi = 3 o2 + z ;B' - 6)2 0%2 .
=1 ° 3=1 j

Hence the proof is complete.

Since E(X|X) = E(X) and var(X|X) = var(X) for any random

variable X we have as a corollary the following.

Corollary 13.1. Let Xl,...,Xn be n independent (but not necessarily

identically distributed) nondegenerate r.v.'s each having mean zero
g

. \ 2 \
and a finite variance cj > 0. Then the necessary and sufficient con-
n

dition for E(L |L ) =L, and var(L,|L,) = 02 where L, = 2 a,X
2'71 2'71 o 1

1 1 171

I
and L2 = 3 biXi with ajbj #0(j=1,2,...,n), is that
1
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i) each Xj for which bJ./aj # B is normally distributed while

the remaining Xj's have arbitrary distributions,

2 b 2 2 2
ii =3 a.b.g"./ 2 2 and o = 3'(jla.- a” g .
) B 3259 375 2% o7, o i/ j B) 5

b
where the summation runs through all indices j such that j/aj £B .

Multivariate cases of the above results is considered in [73] by
Mathai (1967) in which some necessary and sufficient conditions for the
existence of rational regression of one stochastic matrix on a number
of stochastic matrices are established, and also a series of characteri-
zation theorems for the multivariate normal distribution are obtained.
We present here a few results provea in [73]. For the proof we refer
the reader to [73].

Theorem 14. Let Xl""’xn be n independently but not necessary
identically distributed stochastic column vectors of order k each with
finite covariance matrices. Let U = a,X, +...+ a X and

171 : nn
\'4

171
1,2,...,n. If E(V]U) =A + bU and var(V|U) = B 1is positive

b.X., +...+ ann where a's and b's are scalars and ajbj # 0 for

[
i

definite and independent of U, then each xj for which aj #Db bj has

a multivariate normal distribution.

We note that if the above X,,...,X  are replaced by n independently
distributed symmetric stochastic matrices (matrix stochastic variables)

of order k with each row having finite covariance matrices, then the

assertion of the theorem still holds with A representing a matrix
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of constants, b a scalar and var(VIU) replaced by cov(VIU) =B
where B 1is positive definite and independent of U. Furthermore
1]

replacing the scalars a s and b's by nonsingular matrices A's

and B's, similar assertion of Theorem 14 can be formulated (see [?73]).
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CHAPTER V

Characterizations of the Normal Distribution in a Linear

Structural Relations and by Properties of Sample Estimations.

The methods of characterizing the normal distribution that have
been discussed so far are based on some properties of suitable statistics.
In this chapter we shall see that characterizations of the normal
distribution can also be done through other considerations. We shall only
discuss a few of them, while others not considered here can be found

in the bibliography.

5.1. Linear structural relations

To being with, we introduce some model of random (stochastic)
variables which is known as linear structural relations or in general
linear model. Suppose that we have a set of r.v.'s Xl""’xn ;

Yl,...,Xm; el,...,en such that the following relations are satisfied:

where the aji(j =1,2,...,n, i =1,2,,..,m) are some real constants.
i.e. Xj is a linear function of Y.'s and ej. The r.v.'s X's,Y's

and €'s altogether are said to form a stochastic linear structure.

The aji (j =1,2,.004n, i =1,2,...,m) are always referred as the
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parameters of the structure. Such model is often encountered in

factor analysis mainly used in psychological statistics. We may express
the above relation in terms of vector and matrix notations. Accordingly
we have

X =AY + ¢ .

We shall call the r.v.'s Xl""’xn the observable r.v.'s, while the
Yl""’Ym the latent variables and el,...,en the error variables .

As can be seen from the structure, the distribution of the observable
variables is closely related to that of the latent variables, the error
variables and the parameters of the structure. A question arises, whether
the representation of X's in terms of Y's and €'s and

ajk(j =1,2,...,0, k=1,2,...,m) is uniquely determined by the latent
variables, the error variables and the parameters. i.e., is it possible

to have two different stnuctures which have the same distribution for

the observable variables? The answer is in thé affirmative, if some random
variables iare normally distributed. Accordingly we define that two
structures are equivalent if the distribution of the observable variables
is the same in both structures. Linear structural relations also lead

to a number of interesting problems such as the investigation of the
latent variables or the estimation of the parameters ajk or the iden-
tification problem, that is the problem of finding conditions which

assure that a parameter is identifiable (A parameter is said to be

identifiable if it has the same value in all equivalent structure.)

In this section, we shall only be concerned with the problems of
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characterizing the latent and the error variables. It appears under
the independence of the latent variables and error variables and
some restrictions on the parameters that the equivalence of two
structures is meaningful only if some latent variables are normally

distributed.

Theorem 1. (Rao 1966) Let X = (Xl,Xz)' be a two dimensional random

vector such that

1 1171 1k'k 1 111 lm m
X2 = a21Y1 +...+ aZkYk X2 = b2121 +...t+ meZm
(1.1)
where Yl’YZ""’Yk are independent r.v.'s, ZIZZ""’Zm are inde-

pendent r.v.'s and a"’bit (i=121,2, j=1,2,...,k, £=1,2,...,m)

1]
a
are real constants. Assume that ( 1r) jg not a multiple of any column
a
2r
a. . b..
of the type (alJ), j#r or of any column of the type (le), j=1,2,...,m.

23

2]
Then the r.v. Yr is normally distributed.

Proof, Considering the joint characteristic function of Xl’XZ

from the two representations (l.1) taking logurithms and equating them,

in terms of the cumulant generating functions Wj(j =1,2,...,k),

¢j (j =1,2,...,m) of Yj and Zj respectively, we have

Wl(a11u+321v) +...+ Wk(alku+a2kv) = ¢1(b11u+b21v) +...+ ¢m(b1mu+b21v)

(1.2)
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which is valid in a neighbourhood of the origin. There is no loss

of generality in assuming that arr # 0 and in replacing nonzero
ali and bij by unity, which only means taking aliYi and biij

into consideration instead of Yi and Zj' Then, by the condition

of Theorem 1, the equation (1.2) reduces to

Wr(u+azrv) + nl(u+c21v) +...+ ns(u+czsv) = A(u) + B(v) (1.3)
if 3y # 0, and to
nl(u+c21v) +...+ ns(u+c28v) = Wr(v) + B(v)

if a

oy = 0. Here every mn is the function obtained adding the -

functions and substracting the @ functions having a common coefficients

for v $n (1.2), and a can all be taken to be

2r° 2177225
different. By Lemma 3 in Chapter IV, ¢r is a polynomial of degree at
most S 1in a neighbourhood of the origin. Hence, in view of

Marcinkiewicz's theorem, if Yr is nondégenerate, it must be normally

distributed.

The following result Rao [82] is noteworthy... Suppose that a
p-dimensional random vector X takes the two representations X = AY
and X = BZ, where A and B are matrices such that no two columns of
either A or B are equivalent in the sense that one is a multiple of
the other, and Y and Z are random vectors of independent :nondegenerate

r.v.'s. It may be assumed that A is a p xt matrix and Bis a p x s
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matrix without any restrictions on ranks of A and B. Then the
following are true: i) The ranks of A and B are the same. 1ii)
If the 1P column of A is not a multiple of any column of B, then

fth component of Y is normally distributed. iii) If the it column

h

of A is a multiple of the jt column of B, then the cumulant generating

th component of Y differs from that of jth component

function of the i
of Z by a polynomial in a neighbourhood of the origin. Therefore if
none of the columns of A is a multiple of any columns of B, then X

has a p-variate normal distribution.
The next theorem is related with factor analysis models.

Theorem 2. (Rao 1966). Let X = AY + € and X = BZ + €, be two
representations where A is a p x r matrix of rank m, B is a p x s
matrix of rank n, both having no equivalent column, el and €, are
vectors of error variables, and Y and Z denote vectors of latent

variables. Then if m < n we have

i) at least (n-m) of the latent variables in the representation

X = BZ + €2 are normally distributed, ii) there are linear functions
L'el, L2'e2 of the error variables which differ by a nondegenerate
normal component, ( a variable is said to have a normal component

if its distribution can be expressed as the convolution of two distri-
butions of which one is normal. iii) The cumulant generating functions
of at least one of the pairs (li,ﬂi) (Qiand l; are respectively the ith
component of € and 62) i=1,2,...,p differ by a second degree poly-

nomial in a neighbourhood of the origin.
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Since the condition m < n implies that at least (n-m) columns
of B are not multiples of columns of A, as seen above, the corres-
ponding r.v.'s are then normally distributed which proves (i). The
proofs of (ii) and (iii) are omitted here. For the proofs we refer

the reader to the original paper [82].

5.2. Characterization of the normal distribution by properties of

sample estimations.

By a Gauss-Markoff Model we mean a linear model

Y, =a, 0+...+a, © + ¢, i
im m i

i i1°1 1,2,...,n, (3.1)

— — 2 - —
such that E(Yi) = ailgl +...+ aiQO, var(Yi) =g (i=1,2,...,n) and

E(ei)= 0 (i =1,2,...,n), where Yl""’Yn are independent (sometimes
"uncorrelated" may be preferable), 91,...,9m are real unknown parameters
and ail""’aim (i =1,2,...,n) are known constants i.e., unlike in

4] are random variables. The

linear structural relations where 91,..., -

theory of least squares is concerned with the problem of estimating
unknown parameters 91,...,9m in a linear model. The essentials of the
theory are found in the works of Gauss (1809) and Markoff (1900). A
unified approach to the least square theory covering all the practical
situations has been suggested, using the concept of a generalized
inverse (g-inverse) of a singular matrix in [8l]). The least squares

estimator of an estimable parametric function qIO +...+ qmgm (see

1

pp 182 [81]) is the linear function of Y ,...,Yn which has the minimum

1
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variance in the class of all linear unbiased estimators. This

means that the least squares estimator depends only on the coeffi-
cients aij(i =1,2,...,0, j=1,2,...,m) and not on the exact
distribution of Yl"“’Yn' However, it is shown in [79] that if
Yl""’Yn have normalvdistributions with a common variance independent
of 91,...,0m, then the least square estimator of qlgl +...+ qum

has minimum variance in the class of all unbiased estimators. 1In

this section, we shall see that the converse of this propesition

also holds under certain conditions.

Let us assume that (Yi-E(Yi), i=1,2,...,n have the same

distribution FO¢ which may depend on © = (8 Om) and certain

120

other unknown parameter @. We first notice that the mean of the

distribution Fg¢ is zero whatever © and @ may be .

‘ = + i = LI N
Theorem 3. Let Yi ailgl +...+ aime ei, i 1,2, s, be a

Gauss-Markoff Model. Assume that the rank of (aij) is unity and that

Z = blYl +...+ bnYn is the least squares estimator of the essentially

unique estimable linear parametric function q19 +...+ qum. Further

1
assume that FOp has finite moments up to order 2s for each §,8 and
that, bl""’bn are all different from zero (without loss of generality).
If Z = blYl +.. .+ bnYn has minimum variance in the class of all unbiased
estimators which are polynomials of order s or less and the vector

(b b ) 1is not a multiple of a vector with entries only + 1 as its

1,.--, n

elements, then Yi agrees with a normal distribution up to moments of

order (s+1).
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We first note that since the rank of (a ) i =1,2,...,n,
ij
j=1,2,...,m is unity, there is only one independent estimable
linear parametric function, and there exist (n-1) linear functions
Zj = cti1 +...+ Cann j=1,2,...,n-1 such

that . .
E(Zj) =0, E(ZjZ) = 0, E(ZjZi) =0, 1i#].

Since E(ZjZ) =0 and Var(ZjZ) <o if s> 2, it follows from a
result by Rao (see [81] pp.257, (i)) that if Z has minimum variance

in the class of all unbiased estimators of the second degree, then

- 2 —-—
E[Z(ZjZ)] = E(ZjZ )y =0

Similarly, we have

E(Zer) =0, r=1,2,.0.,8, j=1,...,n-1.

Consider it[2-E(2)]
¥(t) E~[izj e }

[Cj?(blt) +...+ cjn¢(bnc)] f(blt)...f(bnt)

Here f(t) denotes the ch.f. of FGO and @(t) =
£(t)

neighbourhood of the origin). Since the moments of F9¢ exist up

|
~
[ N
=}
o

to order 2s, @(t) 1is differentiable s times. Thus differentiating
@§(t) r times ( r < s) and then putting t = 0, in view: of

E(Zer) =0 r =1,2,...,s, we obtain
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(z cjibir)kr+1(9,¢) =0, r<s and j=1,2,...,0-1,
i

where kr+1(9,¢) is the (r+1)th cumulant of F9¢. From the above

equation, we have either

. =0
2 chx
or
kr+1(9,¢) 0 or both.
Since E(ZjZ) =0, we have 3 cjfi =0, j=1,2,...,n-1,
i
Then Z Cj?ir =0 j=1,2,...,n-1 implies
i
T
. =Aaxb., j=1,2,...,n,
bJ £ ]

which holds only if r =1 or b, =0, or proportional to + 1,
j=1,2,...,n. Hence we must have

kr+1(9,¢) =0 for r =1,2,...,s.

This completes the proof.

From the above theorem, we see that if all the moments of F9¢

exist, then under the conditions of theorem 3 on the coefficients

bl""’bn a necessary condition for the least squares estimator to
be the minimum variance unbiased estimator is that the variables are
normally distributed. This is the main theorem provenin the earlier

paper by Rao (1959).
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The case that the rank of (aij) is greater than one is also
considered in [83] in which a similar result is obtained under some

sightly different condition on the matrix (aij).

In conclusion, we mention some other types of characterization

of the normal distribution that have been done so far.

Ferguson (1962) has studied the families of distributions invol-
ving location and scale parameters and he obtained several characteri-
zations of the normal distribution, one of which extends the result
by Teicher (1961) on the characterization of the normal distribution
by maximum likelihood estimate of the location parameter in a family
of distributions involving location parameter. Actually the above
mentioned result by Teicher has long been known in literature and can
be found in the work of Gauss. Patil and Seshadri (1964) considered
the problem of characterizing the Binomial, Exponential, Normal and Power
series from the conditional distribution of X 'given X+Y in a
bivariate case. Mathai (1967) dealt with the problem of the structural
properties of the conditional distributions and obtained several
characterization theorems by assigning specific form for the condi-

tional distribution of a random variable given a set of random variables.

We have seen that characterizations of the normal distribution
can be achieved from various aspects and through various methods,

among which those considered in the second to the fourth chapters seem
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more important and have been investigated in great detail . Others
are far from complete. All these works may have thrown some lights
in the determiﬁation of an underlying theoretical distribution from
the knowledge of either properties of statistics or of some other
information regarding the experimental or other si“uations. These
results or the characteristic properties enhances the status of the
Normal distribution as a very important distribution in statistical

literature.
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