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Abstract 
 

Watershed models can play an important role in regional planning.  Their ability to 

consider large, spatially diverse regions and assess the impact of different land use scenarios 

on water resources can lead to better, more informed decision making.   Recent legislation in 

Ontario has led to the adoption of watershed models as part of drinking water source 

protection planning processes. 

In this study, the ability of the SWAT model to simulate the hydrology of the Raisin River 

watershed, an area of 556km2 located in eastern Ontario, is examined.  The model was 

calibrated using data from 1985 to 1994 and validated using data from 1995 to 2004.  Weekly 

average flow rates were used to evaluate the model, producing a Nash Sutcliffe coefficient of 

0.798 for the period of calibration and 0.788 for the validation period.   

Model error is most significant during the annual snowmelt period, suggesting deficiencies 

in the way snowmelt is modeled.  Baseflow predictions are correct on an annual basis but 

exhibit more volatility than the observed flow.  The Nash Sutcliffe coefficient is a common 

measure of hydrologic model performance but suffers from being strongly biased to certain 

times of the year.  Specifically, it is insensitive to periods of low flow which are important for 

source protection planning.  The possibility of transforming the observed and predicted flow 

rates to compensate is discussed. 

The methodology presented takes advantage of readily available standardised data, 

permitting a similar modeling exercise to be easily undertaken for a different region.  Results 

and analysis as presented could be used directly in the development of source protection 

plans.  Spatial and temporal variation of water budget components (runoff, recharge and 

evapotranspiration) throughout the watershed is discussed.  The impact of land use and soil 

type on the water budget is also highlighted. 
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Résumé 
 

Les modèles de bassin d’eau peuvent jouer un rôle important dans la planification 

régionale. Leur capacité de considérer de grandes régions, diverses en espace et évaluer 

l'impact de scénarios d'utilisation de différentes terres sur des ressources en eau peut mener à 

des prises de décisions meilleures et plus informées. La récente législation en Ontario a mené 

à l'adoption de modèles de bassin d’eau faisant partie de processus de planification de 

protection de source d'eau potable. 

Dans cette étude, la capacité du modèle SWAT (Outil d’évaluation du sol et de l’eau) pour 

simuler l'hydrologie du bassin de la Rivière Raisin, un secteur de 556km2 situé à l'est de 

l’Ontario, est examiné. Le modèle a été calibré au cours de la période de 1985 à 1994 et 

validé au cours de la période de 1995 à 2004. Des débits hebdomadaires moyens ont été 

utilisés pour évaluer le modèle, produisant un coefficient Nash Sutcliffe de 0.798 pendant la 

période de calibrage et 0.788 pendant la période de validation.   

L'erreur modèle est la plus significative pendant la période de fonte de neige annuelle, 

suggérant des manques dans la manière que la fonte de neige est modelée. Les prédictions du 

débit de base sont correctes sur une base annuelle, mais exposent plus de volatilité que le 

flux observé. Le coefficient Nash Sutcliffe est une mesure commune de performance du 

modèle hydrologique, mais souffre en étant fortement influencé par certains temps de 

l'année. Spécifiquement, il est insensible aux périodes de bas débit qui sont importantes pour 

la planification de la protection de source. La possibilité de transformer les débits observés et 

prévus pour indemniser est discutée. 

La méthodologie présentée profite de données standardisées aisément disponibles, 

permettant à un exercice de modélisation semblable d'être facilement entrepris pour une 

région différente. Les résultats et l'analyse tel que présentés pourraient être utilisés 

directement dans le développement de plans de protection de source. La variation spatiale et 

temporelle de composants budgétaires d'eau (l'écoulement, la recharge et 

l’évapotranspiration) partout dans le bassin d’eau est discutée. L'impact d'utilisation de terre 

et le type de sol sur le bilan hydrique est aussi mis en évidence. 
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1. Introduction 
 

Watershed models are useful tools for planners and engineers.  They can help identify 

ecologically significant areas and can link the impacts of land use to water quantity and 

quality in a basin.  Identifying areas susceptible to pollution and quantifying the components 

of the water budget are key tasks which must be undertaken for support of good planning.  

Forecasting and the ability to consider large, diverse areas are also important aspects to 

consider.  All of these are applications to which watershed models are well suited.   

In any large geographic region, spatial heterogeneity of land cover, soil type and elevation 

lead to localised effects on the water budget components.  Further, areas in downstream 

sections of a watershed are impacted by the upper reaches of the basin.  When estimating 

the water budget components for an entire region, the particular contributions of localised 

areas can often be obscured.  This has notable impacts on land use planning and 

environmental protection as decisions taken can ignore local specificity. 

On the other hand, spatially-based watershed models may provide regional planners with 

an effective tool for analysing regional water budgets (Leon et al. 2004).  Regional water 

authorities, such as Ontario's Conservation Authorities (CAs) have used models to identify 

target areas or potential goals for land use management.  A challenge to implementing 

watershed scale models is the potential amount of data required or available to be collected.  

At this scale it becomes intractable to physically sample all components of the watershed.  A 

compromise must be made by aggregating data and using remotely sensed data. 

In addition to data requirements, the expertise to select, implement and analyse models is 

needed.  Not all CAs have, in the past, had the resources to develop modeling experience, 

thus the use of spatial models is inconsistent across the province.  Now, there is a regulatory 

requirement that the water budget for each watershed used as a source of drinking water is 

quantified and understood.  The implementation of spatial, watershed scale models is 

expected to occur. 

In Ontario, the recently legislated Clean Water Act (S.O. 2006 c.22) requires regional 

authorities to develop source water protection plans (SPPs).  These plans are to include a 

watershed description, analysis of surface and groundwater availability, an understanding of 
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water demand, and an assessment of the risks to the water supply and water quality.  The 

means by which quantity and quality risks are determined for SPPs is not prescribed, but the 

use of watershed assessment models is identified as potentially necessary to quantify the risk 

of identified threats.   

In this thesis, the hydrology of the Raisin River watershed is modeled using the Soil and 

Water Assessment Tool (SWAT) (Neitsch et al. 2002).  This process should lead to specific 

outcomes detailed herein: 

1. The model is calibrated and validated, and the sensitivity of the results to the 

model parameters investigated. 

2. A methodology of processing and analysing the data is given such that a similar 

study could be done for another region. 

3. The limitations of the model in predicting certain aspects of the water cycle is 

shown.  The difficulties associated with using single-valued metrics to quantify 

model performance are also investigated. 

4. The hydrologic results presented can be combined with other SPP discoveries as 

part of a comprehensive risk assessment of the region's water supply. 

The modeling exercise has been undertaken with standardised public data which can be 

considered a baseline of information available for many regions in Canada.  By presenting a 

methodology which can be reproduced in other watersheds, comparable results could be 

obtained for other areas.  These results include quantifying the runoff, evapotranspiration 

and aquifer recharge, both spatially and temporally.  Each of these are important elements of 

SPP, illustrating that this model and methodology are useful for SPP development.  The 

implementation provides the possibility of further investigation into changes of climate or 

land use on the supply, demand and safety of the water supply.   

Region of study 

The area under study is the Raisin River watershed in eastern Ontario, within the United 

Counties of Stormont, Dundas and Glengarry (Figure 1).  This basin of 556km2 is 

predominantly forest (44%) and pasture land (32%) with some areas under agricultural 

production(11%) (CH2MHill 2001). Much of the region is zoned as rural (SDG 2005).  Most 
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of the urban and industrial development in the region is located south of the watershed, in 

the city of Cornwall. 

 

Figure 1 – Location and outline of the Raisin River watershed 

The climate in the region is typical of south eastern Ontario, with mean monthly 

temperatures ranging from -10ºC to 22ºC.  The watershed receives roughly 1020mm of 

precipitation a year, of which approximately 235mm falls as snow. 

Most of watershed is part of the physiographic region identified as the Glengarry Till Plain 

(Chapman and Putnam 1984).  The landscape is characterised by its rolling hills and winding 

streams; drumlins, small hills which are remnants of glacier movement during the last ice 

age, are common.  Singer et al. (2003) captured the geologic details of the till, noting that 

depth to bedrock is generally less than 10m but is up to 35m near the St. Lawrence.  Due to 

its stony, porous nature, there is great soil water capacity and good groundwater flow.  This 

geology informs us that baseflow is likely to be a significant contribution to the regional 

water budget.  Nearly all of the region’s potable water supply is from groundwater1.  Most 

wells in the area (more than 87%) are drilled into bedrock thus the quantity and location of 

recharge to deep (sub-bedrock) aquifers is of interest to the local population.   

A small area at the outlet of the basin has a different surficial geology, with up to 14m of 

deposits confining the aquifer underneath (Singer et al. 2003).  Modeling this different 
                                                 
1 John Meek, Raisin River Conservation Authority, personal communication, Oct. 5, 2005 
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physiographic region is accomplished through the specification of different groundwater 

parameters.  However, because this area is downstream of all flow measurement stations, the 

impact of its differing physiography is not considered part of the model calibration and 

validation process. 

   

 



2. Literature Review 
 

Context 

Institutional management of natural resources has often been in reaction to an existing or 

looming environmental catastrophe.  For example, increased agricultural mechanisation 

coupled with drought in the U.S. mid-west during the 1930s was a key driver for the creation 

of the Soil Conservation Service.  In Ontario, development and deforestation during the 

same period resulted in increased soil erosion and flooding.  Conservationists pushed for 

government action, which led to the passing of the Conservation Authorities Act in 1946 

(R.S.O. 1990, c.C.27). 

The objective of the conservation authorities (CAs) is "to further the conservation, 

restoration, development and management of natural resources" within their watershed 

(R.S.O. 1990, c.C.27).  The boundaries of the CAs were determined using environmental 

(watershed), rather that political boundaries, which is well suited to this goal.  The inclusion 

of local representatives in decision making processes is also a part of the authority’s 

mandate, which is a necessary component of integrated water resources management at this 

scale (Burton 2003).      

Other provincial legislation has dealt with standards for drinking water (S.O. 2002, c.32) as 

well as the use and discharge of water and water infrastructure design (R.S.O. 1990, c.O.40).  

After a tragedy involving the contamination of a municipal water supply, the Ontario 

government commissioned an inquiry to examine how water could be better managed within 

the province (O'Connor 2002).  One outcome of this inquiry was additional government 

legislation concerning water management and risk assessment in the province.  The Clean 

Water Act (S.O. 2006, c.22) received Royal Ascent in 2006.  This Act entrusts the CAs with a 

new responsibility for the protection of drinking water sources within their watersheds.   

A key characteristic of the new law is the introduction of source water protection 

planning.  All sources of drinking water are to be assessed for risks to availability as well as 

their potential exposure to pollution.  Each conservation authority (or other source 

protection organisation, such as groups of authorities or municipalities) is required to 
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develop and maintain a plan for source water protection.  A number of requirements are laid 

out for the development of source protection plans, including: 

• quantifying the existing quantity and quality of water within the watershed 

• identifying groundwater recharge areas  

• determining regions around surface intakes and wells that should be protected 

• describing actual and potential threats to the water supply  

To aid in plan development, the Ministry has released draft technical documentation with 

the intent that each watershed authority or municipality will assess their water supply in a 

common way (MOE 2006).  The use of watershed models is proposed as a means to predict 

the quality and quantity of water in each area.  Models can provide planners and responsible 

authorities with indications of the present and future risks their water supplies face.  Further, 

estimates to the impact of changes to the landscape, through development or natural causes 

can be predicted.  Knowledge of the water cycle can be estimated temporally and spatially 

given an appropriately chosen model.   

In this thesis, the implementation of a watershed scale hydrologic model is undertaken.  

This process begins by assessing different hydrologic models for suitability and exploring the 

variety of approaches to model implementation.  A survey of similar modeling experiences is 

presented.  Data requirements and the relationship of model structure to predictive 

capability are also examined.   

Models 

Models are an abstraction or simplification of complicated systems.  They are tools which 

allow some understanding of the behaviour and interaction between system components.  

The suitability of a model for a particular application depends on the end user, the available 

data, time and resources available for the study and most importantly, the questions which 

are being answered.   

Grayson and Blöschl (2000) classify models in three ways: 

1. by their algorithmic approach 

2. whether they are deterministic or stochastic 
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3. as being spatially lumped or distributed  

A model's algorithmic approach reflects how it is constructed.  For example, physically 

based models use theory based processes or equations to describe different components, 

while empirically based models use past observations to characterise the behaviour.   

Deterministic models require all data and parameters to be specified or calculated, while 

stochastic models allow values to vary as part of the simulation.   

Distributed models use inputs and parameters which are spatially explicit, allowing the 

model to more accurately represent heterogeneous areas.  Lumped models approximate 

spatial differences by "lumping" together areas or parameters.  This enables the model to be 

implemented with fewer data requirements but possibly with a loss of spatial detail.  The 

degree to which a spatial model should be lumped or distributed depends on the scale at 

which the model is to be used and the availability of input data.   

Models with a large number of parameters may be able to better represent the complex 

nature of the water cycle (Refsgaard and Storm 1996), however the use of many parameters 

may lead to difficulty in calibration and validation.  Acquiring sufficient data in order to tune 

and validate these parameters may be a challenge.  Importantly, a model with highly detailed 

components will not show improved accuracy if input data or other dependant components 

are not detailed.  Conversely, a model with few parameters may be overly general and may 

not be able to satisfactorily represent the wide range of conditions expected to be modeled.  

Since each watershed has its own unique characteristics, some components of the water 

cycle may be more important than others; this may ultimately affect the choice of model.   

We can further classify hydrologic models as to whether they are continuous (long term) 

or event based (short term) (Singh 1988).  Like spatial scale, identifying the time scale for 

which the simulations will be used is important to know before implementing a model.  

Hydrologic processes occur at different time scales.  For example, storm-generated floods 

occur over periods of hours or days, while aquifer recharge may occur over weeks or years.  

Knowledge of the end requirements will ensure that a model appropriate for the necessary 

time scale is chosen.  In order to understand the long term behaviour of a water system 

continuous time models must be used.  Event based models, which examine the result of 

single, transient occurrences are used for predicting such entities as expected peak flows but 

do not provide a long term view which is necessary for planning.  It is necessary to use 
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continuous models for water budget planning or the assessment of source protection 

measures. 

Hydrologic models 

Several continuous, integrated watershed assessment models have been developed.  

Descriptions of a number of models are given by their authors in Singh (1995).  Singh and 

Woolhieser (2002) reviewed a number of watershed models with an emphasis on their 

history and evolution.  Borah and Bera (2003) reviewed different watershed assessment 

models and compiled their particular mathematical basis.  An overview of commonly cited 

and recommended continuous-time models is given below. 

SWAT 

SWAT was developed for the USDA Agricultural Research Service (ARS).  It is an 

extension of previously existing ARS models, the Simulator for Water Resources in Rural 

Basins (SWRRB) (Arnold and Williams 1995) and ROTO (Routing Outputs To the Outlet) 

(Arnold et al. 1995).  Key components of the SWRRB model were derived from other ARS 

models, such as CREAMS (Chemicals, Runoff and Erosion from Agricultural Management 

Systems) (Knisel 1982) for surface hydrology, EPIC (Erosion Productivity Impact 

Calculator) (Williams et al. 1984) for erosion and sediment and GLEAMS (Groundwater 

Loading Effects of Agricultural Management Systems) (Leonard et al. 1987) for groundwater 

modeling.   

SWAT is a continuous time model which simulates runoff, erosion and nutrient transport 

through a watershed.  The watershed to be modeled is divided into subbasins.  Each 

subbasin is further divided into hydrologic response units (HRUs) which contain a unique 

combination of land use and soil type.  Each HRU has different properties which affect 

runoff and infiltration, both in quantity and quality.  In each simulated time interval (one 

day), changes in the water balance are calculated at the HRU level, then aggregated to the 

subbasin level.  Runoff and baseflow from each subbasin are directed to the main channel, 

then routed to the watershed outlet.  A complete description of the SWAT model is given by 

Neitsch et al. (2002). 
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The SWAT model predicts surface runoff and infiltration using either the SCS curve 

number method (SCS 1972) or the Green-Ampt Mein-Larson infiltration method (Mein and 

Larson 1973).  Potential evapotranspiration (PET) is modeled using either the Hargreaves 

(Hargreaves 1985), Penman-Montieth (Montieth 1965) or Priestley-Taylor (Priestley and 

Taylor 1972) method.  Percolation through the soil profile is based on one-dimensional 

saturated flow rates through the user-defined soil profile.  Channel routing is based on a 

variable storage method (Williams 1969) or the Muskingum method.  Snowmelt – a process 

important for the area under study – is calculated using a degree-day method. 

The key design features of SWAT are that it is physically based and, for basic simulations, 

requires minimal input data.  Since it was designed as a continuous time model, its authors 

state it is not capable of effective single-event simulation. 

HSP-F 

Hydrological Simulation Program – Fortran (HSP-F) (Bicknell et al. 1997) is an evolution 

of the Stanford Watershed Model (Crawford and Linsley, 1966).  It models a continuous 

time simulation of watershed hydrology as well as erosion, sediment and chemical transport.  

The time step of HSP-F is variable, depending on the resolution of the input data available.  

The size of watersheds modeled with HSP-F range from fields of a few hectares to large 

basins of thousands of square kilometres.   

Most of the hydrological processes in HSP-F are modeled conceptually rather than 

physically.  Infiltration and surface runoff are determined based on Philip's equation (Philip 

1957).  The model considers the soil profile to have an upper and lower storage zone, below 

which water percolates to groundwater aquifers.  Channel routing is based on storage or 

kinematic wave techniques.  HSP-F does not model PET, which must be provided by the 

user.  Snowmelt is calculated using an energy balance formula, though the most recent 

version of HSP-F has added a degree-day formula to reduce the amount of input climate 

data required. 

MIKE SHE 

MIKE-SHE (Refsgaard and Storm 1995) is another continuous time, physically based 

comprehensive model.  This model is an integration of the Système Hydrologique Européen 

 9



(SHE) model (Abbott et al. 1986) which conceptualises the land phases of the hydrologic 

cycle and MIKE 11 (Havnø et al. 1995), a river flow model.  A key feature which 

distinguishes it is the ability to model different sections of a watershed at different spatial 

and temporal scales, allowing the user to take advantage of different available inputs or more 

rigorously simulate regions of particular interest.  As a fully distributed model it requires 

large amounts of input data, though users may lump together sections and focus only on 

components of interest.  MIKE-SHE is capable of both event and continuous simulation.   

The model is based on physical equations.  Diffusive wave equations are used to model 

one-dimensional channel flow and two-dimensional overland flow.  Water movement 

through the soil profile is based on Richard's equation in one dimension for unsaturated 

flow and in three-dimensions for saturated flow.  The model is grid based, and these 

differential equations must be solved numerically for each grid cell in the simulation.    

AnnAGNPS 

The Annual Agricultural Non-point Source Pollution model (AnnAGNPS) (Binger et al. 

2001) is a continuous time version of the event based AGNPS model (Young et al. 1989).  

This model, like SWAT, derives many key equations from the ARS CREAMS model.   

The AnnAGNPS model divides a watershed into homogeneous "cells", with each cell 

discharging surface water and loadings to the stream network.  Surface runoff is calculated 

using the SCS curve number approach.  Erosion is estimated using a revision of the 

Universal Soil Loss Equation (USLE) (Renard et al. 1997).  The model is intended for 

understanding surface water processes, particularly how pollutant loads such as sediment and 

chemicals are transported by surface and channel processes through a watershed.  It does 

not have the capacity to model groundwater recharge or baseflow.  

Model comparison and selection 

  El-Nasr et al. (2005) compared MIKE-SHE to SWAT over a 465km2 Belgian agricultural 

watershed.  The lumped groundwater component of SWAT was not considered comparable 

to the fully distributed MIKE-SHE model, thus only surface flow components were 

compared.  Both models were found to predict streamflow well, but MIKE-SHE modeled 
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the variation in streamflow better.  However, the heavy data requirement of MIKE-SHE was 

cited as a hurdle to implementing the model. 

Van Liew et al. (2003) compared SWAT to HSP-F in several adjacent watersheds located 

in Oklahoma.  Results showed that SWAT performed better across the simulated set of 

climatic situations.  The HSP-F model exhibited better calibration results, attributed to its 

different runoff model, though calibration of runoff required detailed site specific 

information.  However, SWAT showed better validation results, suggesting that the model is 

more robust to different climatic situations.  The authors also noted that the calibration and 

input data procedures are much easier in SWAT.   

The same conclusions about SWAT and HSP-F were made by Saleh and Du (2004) when 

comparing the models for a watershed in central Texas.  It was also noted that the ability of 

SWAT to consider different agricultural land management practices resulted in better 

predictions of nutrient loadings than HSP-F. 

A comparison between HSP-F and SWAT was performed by Singh et al. (2005), which 

determined that SWAT generally predicted periods of low flow better than HSP-F.  Further, 

the smaller number of calibration parameters and the inclusion of PET calculations in the 

model made SWAT particularly useful.  Again, HSP-F results were not as consistent as 

SWAT between the calibration and validation periods, suggesting that the large number of 

parameters prevented effective calibration.  However, the hourly time step of HSP-F 

resulted in less variation of daily simulated flow error. 

The MIKE-SHE model has very high input data requirements, which limits its ability to 

be applied in areas with little existing data and few resources with which to gather data.  It is 

also a commercial product which is an additional hurdle to implementation.  The HSP-F 

model has reasonable data requirements and can simulate using small time steps, but appears 

to be less robust than the SWAT model.  For these reasons, the SWAT model was chosen 

for implementation.  

Previous SWAT implementations  

Borah and Bera (2004) reviewed about 20 implementations of SWAT.  By comparing the 

results obtained, they noted that the model lacks accuracy in predicting daily extreme events 

or extreme months.  We have no expectation that SWAT should perform well in daily event 
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simulations, given its daily time step and the authors' own caveats that the model is not 

intended for short term analysis (Nietsch et al. 2002).  However, extreme events tend to be 

of great interest to those who manage watersheds.  Chu and Shirmohammadi (2004) 

confirmed that SWAT’s daily hydrologic predictions often fail to meet extreme values.   

Land use planning and practices 

In assessing management plans or policy changes, the long term impact is often used as a 

measure of success.  A number of studies have used SWAT to determine the impacts of 

changes to land management or policy. 

Agriculture has been identified as the largest contributor to freshwater pollution in the 

United States (US-EPA 2002).  Thus the effects of agricultural practices on sediment and 

nutrient transport are of particular interest to resource managers.  This is one of the key 

capabilities of SWAT which has been examined by many researchers.  Bärlund et al. (2007) 

implemented SWAT to assess agricultural best management practices (BMPs).  The model 

was shown to predict flow and sediment reasonably well but accurate predictions of nutrient 

movement required detailed input data. Jayakrishnan et al. (2005) discussed applications of 

the SWAT model over very large areas, including the impacts of national-scale agricultural 

management policies and SWATs applicability to TMDL (total maximum daily load) studies.  

Santhi et al. (2006) also used SWAT to evaluate the potential of BMPs to reduce sediment 

and nutrient loading of waterways.  Kang et al. (2006) applied SWAT to an agricultural 

region in Korea to determine appropriate TMDL levels.  Grizzetti et al. (2003) evaluated 

SWAT for the prediction of nutrient (nitrogen and phosphorus) retention and loading on a 

1680km2 watershed in Finland.  They found that the model's ability to generate predictions 

spatially and temporally was an improvement over previously used statistical methods.   

Impacts of larger policy or economic initiatives have also been assessed using the SWAT 

model.  Attwood et al. (2000) linked SWAT with an economic model to predict the effect of 

national agricultural initiatives.  Nelson et al. (2006) used SWAT to determine the change in 

water quality and crop viability as land was put into switchgrass production.  This permitted 

the effects of different agricultural practices to be examined and allowed the economics of 

switchgrass production to be estimated.  Bekele and Nicklow (2005) used SWAT to 
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determine the linkages between agricultural profits and ecological services such as nutrient 

and sediment loading.   

When managing the resources of a large geographic area, it can be useful to identify the 

regions of particular importance or concern.  Rosenthal and Hoffman (1999) implemented 

SWAT for a large watershed in Texas which was lacking in water quality monitoring sites.  

Ecologically significant points in the river system were identified and thus particular sites 

could be targeted for the installation of water quality equipment. 

Climate change analysis  

The Ontario Ministry of Environment has indicated that, initially, source protection 

planning does not need to consider the impacts of climate change (MOE 2006).  However, 

this will likely change once initial studies have been completed.  It is therefore useful to 

know if SWAT has the capability to simulate the effects of climate change.   

The relationships between CO2 and plant growth have been integrated into SWAT 

(Williams et al. 1996).  These changes in plant growth cause changes to land cover, which 

has long term impacts on soil erosion.  Eckhardt and Ulrich (2003) used SWAT to perform 

climate change analysis, to observe the impact of temperature change and CO2 level on 

annual hydrology.  This amounted to a reduction in spring peak flow and lowering of 

summer flow. 

Effects of input data on model performance 

The SWAT model is sensitive to spatial resolution of the input data, and numerous studies 

have attempted to quantify the impact of spatial resolution on model results.  For example, 

Chaplot (2005) examined SWAT's sensitivity to digital elevation model (DEM) and soil map 

resolution.  It was noted that higher resolutions provide better model results and that DEM 

resolution should be at least 50m for accurate simulation.  This corresponds to results seen 

by Romanowicz et al. (2005), who examined the impact of soil and land use resolution on an 

uncalibrated SWAT implementation.  They also noted improved model results with higher 

resolution data.  Chaubey et al. (2005) also looked at DEM resolution impact on SWAT.  

They found that a minimum resolution of 100m was necessary for simulation and that 

predicted runoff decreased when DEM resolution decreased. 
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Since SWAT has different sensitivities to different inputs, the resolution of some inputs is 

more important than others.  Di Luzio et al (2005) examined the impact of input quality on 

model output.  An accurate DEM was considered most important, followed by land use (for 

runoff and sediment) and soil type.  The problems of using a DEM with insufficient 

resolution are described by Tarboton et al. (1991).  In particular, poor resolution can hide 

existing flowpaths and create localised land depressions that are not real.  Sensitivity of 

SWAT to land use inputs was also discussed by Eckhardt et al. (2003). 

Chaplot et al. (2005) looked at the effect of rain gauge density on SWAT.  It was expected 

that using more rain gauges would improve model accuracy as others have shown that 

SWAT is highly sensitive to climate and precipitation data (Hernandez et al. 2000, Muttiah 

and Wurbs 2002, Reungsang et al. 2005).  However, since the results were assessed on a 

monthly basis, the variation between gauges was masked.  In other words, additional 

precipitation data provided better input to the model on a daily basis, but over the period of 

a month the variation from station to station was minimal.  Thus it is important when 

considering the resolution of input data to take into account the differences in both space 

and time.   

Subbasin size 

 

The SWAT model divides the watershed under study into a series of subbasins.  The size 

of subbasins chosen has an effect on the model's predictions of erosion and consequently on 

nutrient transport and loading.  This is due to the use of the Modified Universal Soil Loss 

Equation (MUSLE) (Williams 1984), which exhibits non-linear behaviour with changes in 

area: 

CFRGLSPCKareaqQsed USLEUSLEUSLEUSLEhrupeaksurf ⋅⋅⋅⋅⋅⋅⋅⋅= 56.0)(8.11            1 

 

where sed is the sediment produced in a given day (tonnes), Qsurf is the runoff volume 

(mm/ha), qpeak is the peak rate of runoff (m3/s), areahru is the HRU area (ha).  K, C, P and LS 

are the erodibility, cover, practice and topographical factors from the USLE equation and 

CFRG is the coarse fragment factor.  
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SWAT calculates the peak runoff rate using the Rational formula: 

6.3
AiCq peak
⋅⋅

=                          2 

 

where C is the runoff coefficient, i is the rainfall intensity (mm/hour), A is the area (km2) 

and  is measured in m3/s.  Substituting this into the MUSLE, we find that: peakq

12.1Ased ∝                              3 

 

Increases to the area of an HRU will result in a greater than linear increase in the amount 

of sediment predicted.  This contradicts a number of studies cited by Parsons et al. (2006).  

Kinnell (2004a, 2004b) points out a number of other problems inherent in the mathematics 

of MUSLE.  Specifically, the MUSLE assumes a constant sediment delivery ratio.  Changes 

to the amount of predicted erosion have a linear impact on the amount of sediment 

predicted, yet Kinnell argues these are independent processes which cannot be captured in 

the same equation.  The equation is based on empirical data and may be reasonable for 

conditions similar to those used in its development.  However, the ability to translate the 

results to situations outside of this are questioned. 

FitzHugh and Mackay (2000) examined the effect of varying subbasin size in SWAT.  

Changes in HRU area greatly affected sediment predictions.  As expected, the curve number 

based runoff predictions were not affected by different delineation of sizes.  These findings 

were also reached by Chen and Mackay (2004) and Binger et al. (1997).  As shown, the 

MUSLE assumes that delivered sediment increases non-linearly with area.  However, this 

assumption is broken by the way that SWAT linearly aggregates runoff and sediment 

predicted at the HRU level into the subbasin level.  Thus, errors in sediment prediction 

which might be attributed to incorrect input data may actually be products of this (somewhat 

inconsistent) model structure.   

SWAT Processes 

Snowmelt 

The snowmelt process in SWAT is based on a degree day method.   
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where Tsnow is the temperature of the snowpack (ºC), Tmax is the maximum air temperature on 

a given day (ºC), Tmelt is the temperature at which snow begins to melt (ºC), cov is the percent 

of the land area covered by snow and b is the melt factor (mm/day·ºC) and melt is expressed 

in mm per day. 

The average of the snowpack temperature and the daily maximum air temperature is 

compared to the base melting temperature to determine the amount of melt in a given day.   

Snowpack temperature is modeled based on the mean daily air temperature and a user-

defined parameter which lags the daily temperature with that of the snowpack: 

ll ⋅+−⋅= − avgdsnowdsnow TTT )1()1()(                               5 

where is the mean daily air temperature,  is the temperature of the snowpack on a 

given day and is the user-specified lag factor (TIMP) which ranges from 0 to 1.  

Limitations of the degree-day method are discussed by Dunne and Leopold (1978).  A more 

thorough, physically based representation of snowmelt considers the energy balance of the 

snow, including solar radiation, energy loss to the atmosphere, etc.  The energy balance 

method, implemented in HSP-F, is more accurate but requires significant amounts of climate 

data to solve.  

avgT )(dsnowT

l

Fontaine et al. (2002) introduced improvements to the SWAT model to consider some 

additional aspects snowmelt.  The use of elevation to determine the temperature at which 

precipitation becomes snow was added for the benefit of mountainous regions.  It was also 

suggested that lag factor, , should vary inversely with snow depth rather than remain fixed.   l

Benaman et al. (2005) report the results of implementing SWAT for a New York state 

watershed where snowmelt is a significant component of the annual hydrologic cycle.  With 

large amounts of data available for calibration and validation, it was determined that the 

model was not particularly well suited to modeling snowmelt.  Monthly flow estimates in the 

snowmelt months were generally under predicted.  Underestimation of flow impacts the 

prediction of sediment.  As shown earlier, the quantity of runoff is a factor in the MUSLE 

equation.  Benaman and Shoemaker (2005) examined sediment prediction for high flow 
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events, typical of snowmelt runoff and attributed the under predictions to the poor modeling 

of snowmelt and snowmelt induced erosion.   

Wang and Melesse (2005) examine the sensitivity and performance of SWATs snowmelt 

structure on a basin in Minnesota.  They suggested that the model does not predict as well 

when the annual snowfall is less than normal.   

Baseflow and recharge effects 

 

While soil processes are mostly physical representations in SWAT, its implementation of 

aquifer storage and discharge is a simple conceptual framework.  Recharge is based on 

infiltration from the overlying soil layers.  Baseflow discharge is a linear function of the 

aquifer water level.  Model parameters exist to allow water to move back into the soil profile 

under dry soil conditions ("revap"), and the user may also specify what fraction of recharge 

is lost from the system to deep aquifer storage.     
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Figure 2 – Conceptual schematic illustrating the groundwater process in SWAT.  Water movement in 

and out of aquifers is simulated using equations 6 through 9. 

 

Arnold et al. (2000) used SWAT predict baseflow and aquifer recharge in a large area 

(roughly 500000 km2) of the upper Mississippi basin.  This was tested against an interpreted 
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Calibration is the estimation of model parameters that cannot be directly determined.  This 
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drograph (to determine the fraction of baseflow) and a calculated water balance (to 

determine the amount of recharge).  It was shown that SWAT could predict the baseflow 

and recharge reasonably well on a monthly basis.  This is contradicted by Romanowicz

(2005) which concluded that SWAT was poor at modeling baseflow and recharge in a 

Belgian agricultural region.  Also, Sun and Cornish (2005) attempted to use SWAT to 

estimate recharge amounts in an arid part of Australia.  Preferential flow due to crackin

identified as a model limitation which prevented accurate recharge estimation.   

Chu and Shirmohammadi (2004) identified another limitation of SWAT in that baseflow 

from outside the watershed is not considered.  This can lead to errors in the simu

ysiographic regions where this is a contributing factor.  This result was also obtained by 

Spruill et al. (2000) when evaluating SWAT on a karst watershed. 

In order to compensate for SWAT's limited groundwater conceptualisation, Sophocleous

et al. (1999) and Sophocleous and Perkins (2000) proposed a meth

AT with MODFLOW, a fully distributed groundwater model.  However, the potential 

increase in model accuracy comes at a trade off of requiring more input data, which may

necessarily be available. 

Calibration and V

can be a manual or automated process, or some combination of the tw

ocess where the model performance is assessed to see if it can perform acceptably well 

using different data than it was calibrated with.  A systematic framework for model 

calibration and validation is given by Refsgaard and Storm (1996).  A methodology for 

calibrating the SWAT model is described by Santhi et al. (2001). 

Hill (1998) described a number of mathematical techniques for calibrating and evalua

hydrologic models.  The ASCE (1993) has recommended a series

r evaluating hydrologic models, allowing published implementations to be more easily 

compared with one another.  For continuous time models, they recommend the use of 

deviation of volume (DV), the Nash Sutcliffe coefficient (Nash and Sutcliffe, 1970) (NS) 

the deviation of gain from the daily mean (DG): 
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In each equation, P and O  represent the mean predicted and observed values over the 

period of simulation,  and  represent the predicted and observed values at a given 

tim

iP iO

estep, and iO  rep sents he mean observed value for a given period of the year over al

years of the simulation.  Coffey et al. (2004) describes the application of these qualitative

measurements to hydrologic models, particularly SWAT.  Notably, monthly values tend to 

be used rather than daily values because they are more often normally distributed and hav

less autocorrelation. 

When calibrating a model, we can choose only one objective function to maximise (von 

Neumann and Morge

re  l 

 

e 

nstern 1953), yet the use of a single metric for evaluating hydrologic 

m  

 

ust 

   

 

ru

ove 

ll and Pearson (2000) discuss the need for understanding model variables 

t

odels can be misconstrued (Legates and McCabe 1999).  Any metric may have a particular

bias to some values, thus the incorporation of other, independent factors to generate a new

metric can be useful (Wang and Melesse 2005).  However, deviation from standardised 

measures makes comparison with other studies difficult.  Nevertheless, distributed and 

physically based models have numerous variables and independent components, thus m

be validated using an array of independent data and criteria (Refsgaard and Storm 1996).

Arnold and Allen (1996) also identify the shortcomings of validating a comprehensive 

watershed model using just stream flow.  Instead, using a combination of PET, water yield,

noff, baseflow and soil moisture was proposed.  Similar techniques were described by 

Grayson et al. (1992) and Cao et al. (2006).  Incorporation of a variety of aspects of the 

watershed as a means of validating across independent parameters should ultimately impr

model accuracy.   

Spatially based models have the ability to describe localised effects occurring throughout a 

watershed.  Aspina
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Single-valued metrics are convenient ways to quantify model performance, yet the main 

ed models is that they can predict many different variables.  

T

ces 

Such 

A key concern with highly parameterised models is that manual calibration can be difficult 

tomated techniques to find an optimal 

pa

ds 

   

he 

process was to identify the possible variability in each input parameter.  This variability was 

 their spatial context, that is, considering the landscape and geographic variability which 

surrounds a spatial parameter.   Jetten et al. (2003) examine erosion models, including 

SWAT, to determine their capability in predicting erosion spatially.  This is considered key 

since the use of single outlet measurements for calibration and validation tend to obscu

local effects. 

Ecological

benefit of comprehensive watersh

here is evidence that the use of multiple types of stream flow measures are required to 

describe a flow regime in a way that is useful for resource management, such as suitability for 

aquatic habitat or susceptibility to pollution.  For example, source protection planning pla

weight on periods of low flow, as this is when the quantity of available water is less and there 

is greater risk of unavailability (Ontario Ministry of the Environment 2006).  Conversely, 

periods of high flow, particularly during snow melt periods, are when most erosion and 

pollution occurs (Dunne and Leopold 1978).  Stream habitats can be affected by the 

durations and intensity of flow surges and recessions (Bradford and Maude).  For these 

reasons, alternate measures of stream flow have been proposed (Richter et al. 1997).  

multi-variate flow measures, or ecological flow regimes, give us an understanding of the 

quantity and variance of flow.  Multiple metrics cannot be directly used for model 

calibration, but can be used to assess the existing characteristics of a flow regime and to 

determine the ability of a model to mimic that regime.   

Automated calibration techniques 

and time consuming to perform.  The use of au

rameter set allows a model to be implemented faster and with potentially less expert 

knowledge required.  However, they also require that the model implementer understan

what the suitable parameter ranges are and whether the final result is reasonable or not.

For a 133km2 watershed in Illinois, Muleta and Nicklow (2005) performed an automated 

calibration of SWAT using a genetic algorithm to optimise 35 parameters.  A key part of t
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 land over a watershed scale, remote sensing techniques can provide 

fast, inexpensive access to necessary data.  There are many examples of remotely sensed data 

nte 2000, 2005).  One of the 

si

ation 

, 

classified 

ied to one of the 

predetermined land cover classes based on the similarities of the spectral signature.  In an 

ed as a means to restrict the ranges used for calibration as well as to determine the 

uncertainty in the final calibration point.  Al-Abed and Whiteley (2002) described a similar 

approach to automated calibration of HSP-F over the Grand River watershed in Ontario.  

By determining which parameters the model was most sensitive to, calibration effort c

be directed towards those parameters, potentially reducing final uncertainty of the model.   

Eckhardt and Arnold (2001) and Eckhardt et al. (2005) showed that SWAT could be 

calibrated using a shuffled complex evolution algorithm.  This allowed for a large number of

parameters to be used in calibration and thousands of parameter sets to be tested.  Yet 

timately, the model performance was similar to other SWAT implementations and 

exhibited a tendency to underestimate extreme runoff peaks.  Artificial neural networks 

(ANNs) are another automated technique which has been used to calibrate SWAT 

(Srinivastava et al. 2006, Heuvelmans et al. 2006). 

Some automated calibration routines have been integrated into the most recent version

SWAT.  These were reviewed by Van Liew et al. (2005).  It was concluded that the r

perform less well than manual calibration, but with

sults are satisfactory. 

Land cover and remotely sensed data 

In order to survey the

being used for hydrological studies (Pietroniro and Leco

gnificant inputs to the SWAT model is land use which can be easily acquired by remote 

means.  While soil types within a basin tend to be constant over the time scale of 

simulations, land use can change quickly and dramatically.  Examples include deforest

to enable agriculture, or the development of urbanised areas on agricultural land. However

remotely sensed images cannot be used directly by the model.  They must first be 

into the land covers or land uses of interest to the modeler.   

Techniques to classify image data can be supervised or unsupervised, (Richards and Jia 

1999). Supervised classification relies on the user to identify known areas of each desired 

land cover (training sets).  The rest of the image is then classif
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supervised classification scheme, the image is organised into spectrally similar classes.  T

user must then determine which land cover each class represents.   

Unsupervised classification is useful when it is difficult to define training sets 

images under investigation.  The effectiveness of five popular unsupervised classifications 

schemes were described by Duda and Canty (2002).  Cihlar et al. (2001) has proposed 

another unsupervised algorithm for multispectral data 

Supervised classification schemes are commonly used in hydrological studies when th

some knowledge of the region's land cover.  The maximum likelihood classifier was used b

Su (2000) on Landsat data to determine land cover changes for input to basin scale stud

Jobin et al. (2003) and Cherrill et al. (1994) also used th

ndsat data.  Haapanen et al. (2004) used a minimum distance algorithm to discriminate 

between forest types in Finland and the Great Lakes region. 

Both supervised and unsupervised schemes can be effective, but appropriate combinations

of the two can yield more accurate results (Richards and Jia, 1999).  Cihlar et al. (2003) 

proposed a combined supervised-unsupervised methodology to automate the generation o

Canada-wide land cover map.  A similar process was used by 

e Global Land Cover 2000 project and the development of land cover maps for North and 

Central America.  Kerr and Cihlar (2003) used the combined process to derive land use 

agricultural intensity for areas in Canada.  A combined methodology to generate input to the 

AGNPS model is described by Marzen et al. (2000) 

Steele et al. (1998) point out that the spatial variation in an image is not consistent, and 

depends on a number of factors such as terrain and land use.  Chica-Olmo and Abarca-

Hernandez (2000) exploit this notion and note that the signatures of individual Landsat 

pixels are not independent of the signatures of their 

tocorrelation they were able to improve image classification from their Landsat images. 

Aspinall and Pearson (2000) identify the need to link landscape features in their spatial 

context in order to properly implement watershed models. 

Prenzel and Treitz (2005) compare "structure" (land cover) based and "function

use) based classification schemes.  When we wish to examine the anthropogenic impacts on

a watershed, it is the land use (function) that we should consider.  However, remotely se
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ages provide inherently structural (land cover) information.  It is suggested that both 

structural and functional can work equally well since some functional groups (for example, 

grassland) are both functional and structural in nature.  However, in order to make an 

effective classification scheme, the separation between a class' functional and structural 

definition must be understood.  In some cases, further linkages between socio-economic 

factors and land management practices can be made (Jobin et al. 2003) which may also 

connecting structural and functional definitions.   

As noted earlier, the spatial resolution of input data is an important factor in model 

performance.  Goetz et al. (2003) assessed various classification schemes for use with high 

resolution (4m) IKONOS imagery.  Key limitation

 increased level of spatial variability within areas of the same land cover type.  The im

could identify spaces between trees and the shadows cast by trees, whereas this level of deta

is not seen when using Landsat (30m) imagery.  Such details may be useful for highly 

localised studies but are a hindrance to determining large scale land cover classifications.   

Physical properties of the land can be exploited when classifying multi-spectral images.  

For example, the tasselled-cap index (Crist and Kauth 1986) uses the changing reflecta

plants throughout their growing season to identify different crops and their stage of growth

ombined with some knowledge of local crop calendars, this technique can be used to 

determine land covers (Oetter et al. 2000), or distinguish between forest types (Dymond et 

al. 2002).  Soil moisture is another physical property which can be directly related to spectral 

response.  Cosh et al. (2004) outlined a procedure for relating point sampled soil moistu

satellite data.  Differences in soil moisture can also be used to infer levels of soil drainage 

(Peng et al. 2003), which is a key input to hydrologic models.   

 





 

 

3. Materials 

Overview of data 

Input required for modeling with SWAT can be divided into two major groups.  First, 

spatial data describing the landscape under study.  This includes topographical, land cover 

and soil information.  The second group consists of temporal data describing the climate.  

Daily precipitation and temperature values are required, while other climate parameters were 

defined seasonally.  To calibrate and validate the model, daily streamflow records were used. 

A summary of the data sources used can be found in Table 11.  An overview of the data 

and the preprocessing necessary for SWAT is described in this section. 

Spatial data 

Three data sources provided most of the spatial information for the watershed: Landsat 

imagery, a digital elevation model (DEM) and soil maps.  As well, the National Topographic 

Database (NTDB) provided the location of waterbodies and wetlands.   

For consistency, all spatial data was analysed using the Universal Transverse Mercator 

(UTM) coordinate system and the North American 1983 (NAD83) reference datum.  This 

necessitated reprojecting the soil maps which had been digitised to the NAD27 reference.  

In the Raisin River area, the coordinate error resulting from reprojecting NAD27 to NAD83 

is less than 1m (CCRS 2007).  As the spatial analysis was performed at a 30m resolution, this 

difference was considered negligible.   

 Landsat images 

Landsat imagery  was used to derive land cover classes.  Of the images available only two 

(Nov 1 1999 and May 29 1992) were generally cloud free, allowing full view of the 

watershed.  The images from 2001 have partial cloud cover but could be used as aids to the 

labelling of classes.  Each Landsat image is shown in Map 1 through Map 4. 

Digital elevation model (DEM) 

The digital elevation model (DEM) of the watershed from the NTDB 1:50000 map series 

was used.  The source data was converted from geographic coordinates to UTM NAD83, 
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resulting in a square grid resolution of 19.764m.  Vertical resolution of the DEM is 1m.  The 

topography of the watershed is illustrated in Map 5. 

Water and Wetlands 

The watercourses and waterbodies layers of the NTDB were used to identify the stream 

network and delineate the watershed.  The vector-based stream network consists of linear 

elements for reaches less than 25m wide (the watercourses layer) and polygon (“double line”) 

elements for wider reaches (the waterbodies layer).  The waterbodies layer also contributed 

to identifying ponds in the region.  The wetlands layer was used in the process of classifying 

land cover.  These maps were developed from analysis of air photos coupled with some field 

verification (Natural Resources Canada 2001). 

Soil 

Soil maps of the local townships were developed in the 1950s (Matthews and Richards 

1954, Matthews et al. 1957) and have since been digitised into the Canadian Soil Information 

System (CanSIS).  The soil descriptions in this database include general layer information 

such as approximate depths and soil texture.   

Specific soil layer information collected by CanSIS is limited.  The layer database does not 

contain all the soil classes found in the region, nor are there many samples from classes 

which were available.  Thus, some of the detailed soil information required by the SWAT 

model was estimated using information found in the Canadian soil classification standards 

(Agriculture and Agri-food Canada 1998).  Available water content was estimated based on 

typical values for the soil texture (Schwab et al. 1993).  Values of saturated hydraulic 

conductivity recommended for design purposes by the Ontario government (Stone 2006) 

were used. 

A complete listing of all soil parameters for all soil classes provided in Appendix D. 

Temporal data 

Climate 

Daily minimum and maximum temperature and daily precipitation amounts were obtained 

from the Environment Canada weather stations at Cornwall and Avonmore (see Map 5).  
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These stations were chosen as they have continuous data over the period of study.  Each 

subbasin was assigned the climate data from the nearest weather station.  For the 

occurrences of missing data points from a climate station (Table 1), values from the other 

station were used:  precipitation values were used directly, while temperature values were 

adjusted for the average 1.4ºC difference between the two stations. 

Number of missing records 
(Total records = 9132) 

Cornwall Avonmore 

Precipitation 0 34 
Min. Temperature 8 107 
Max. Temperature 13 115 

Table 1 - Records missing from climate stations, 1980 - 2004 

Typical rainfall intensities per month for southern Ontario were obtained from Dickenson 

(1977).  These values are used by the model to calculate rainfall induced erosion.  Typical 

monthly solar radiation values, required for potential evapotranspiration estimation, came 

from CanSIS.   

Stream gauge data 

There are three stream gauges in the watershed with daily flow records (Map 5).  Only 

gauge 02MC001 has continuous daily records.  It captures nearly 70% of the watershed area 

and was used for calibrating and validating the model.  The other gauges, with only seasonal 

records, were used for validation.   

Station Williamstown Black River South Raisin 
Station ID 02MC001 02MC027 02MC030 
Location 45º 9' 19"N  

74º 38' 16"W 
45º 4' 50"N  
74º 52' 4"W 

45º 3' 5"N  
74º 46' 25"W 

Contributing Area 363km2 26km2 129km2 
Data record Continuous Seasonal Seasonal 

Table 2 – Stream gauges within the Raisin River watershed 

Data preprocessing 

In order to prepare the data for use with SWAT, some preprocessing steps were taken.  A 

description of those tasks is given here.   
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Stream network 

It was first necessary to identify what part of the stream network fell within the basin.  

This was accomplished by manually all streams which were not connected to the main 

branch of the Raisin River.   

Waterbodies were converted to linear elements by identifying the centreline between 

enclosing arcs.  Occurrences of multiple vectors representing a single stream section 

between branch nodes were consolidated to a single vector by simplifying the stream arcs.   

The stream vectors had to be corrected to point in the downstream direction.  This was 

accomplished by first manually identifying the watershed outlet.  Once the outlet was 

identified all the headwater reaches could be programmatically identified.  The path from the 

headwater reaches to the outlet was traced and the direction of reaches corrected to point 

downstream.  A problem with this methodology occurs when the stream forks and then 

converges at some point downstream.  To resolve the proper flow direction in these 

situations, the DEM was used to identify the most elevated node;  flow was considered to 

flow away from that node. 

Width and Depth estimation 
The SWAT ArcView interface (BRC 2002) contains empirically based equations for 

determining stream width and depth as a function of contributing area.  These equations 

were used to estimate the unknown reach dimensions.  

Reaches which were waterbodies in the NTDB had their average widths estimated using 

the area of the reach divided by the length.  Width, in metres, for reaches less than 25m (the 

NTDB watercourses layer) was estimated as:  

6.029.1 CAwidth ⋅=                           13 

 

where CA is the contributing area of the reach in square kilometres (BRC 2002).  The width 

equation provided similar results to the polygon method (Figure 3) suggesting that the 

equation is reasonable for this watershed. 
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Figure 3 - Reach width (m) determined from empirical equation or polygon area.  Solid line represents 

equivalence between the two methods. 

 

Average depth (m) for all reaches was estimated as (BRC 2002):  

2911.08419.0 CAdepth ⋅=                          14 

The elevation at the head and outlet of each reach was determined using the DEM in order 

to provide an estimate of the channel slope. 

DEM and basin delineation 

The direction of surface flow was calculated by determining the direction of steepest 

downward slope from each pixel in the DEM.  The vector stream network was converted to 

a raster of the same resolution as the flow direction grid (19.764m).  Using each reach as a 

distinct outlet, subbasin delineation was performed with the flow direction grid. 

A probable stream network could have been estimated using the flow direction grid and 

used in place of the NTDB stream network.  However, the use of the NTDB to define the 

outlets for delineation allows consideration of narrow streams which may not be reflected in 

the resolution of the topographical map.   
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Sinks 

This initial delineation process highlighted areas of the watershed which did not appear to 

contribute surface flow to the stream network and were not included in any subbasins.  If 

the DEM is correct, these localised depressions (or "sinks") will collect surface runoff, 

possibly forming ponds or wetland areas.  In order to include these regions in the delineation 

process, the depressions were filled.   

The sink areas in the DEM up to a certain depth (initially 1m) were identified and filled 

using GIS. The new flow direction grid was calculated and subbasin delineation performed.  

If there remained any areas within the watershed which were not included as part of a 

subbasin, the depth limit for sinks was increased by 1m and the process repeated.  Sinks up 

to 4m were identified and filled.  In total, 445 hectares of sinks were filled to an average 

depth of 1.1m.   

A set of 307 subbasins with an average area of 181 ha each (mostly between 20 and 200ha) 

were generated (see Figure 4).  In aggregate these subbasins represent the entire watershed of 

556km2. 

Subbasin Area Distribution
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Figure 4 - Subbasin area distribution 
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Land cover classification 

The classification process began by determining the potential classes that land cover 

should be categorised into.  To represent the hydrology of this landscape, water, wetland, 

forest, unmanaged land (generally grassy fields, some of which may be used for pasture) and 

agriculture were chosen as the necessary master classes.   

Initially, the Landsat image from November 1999 was used for land cover classification.  

A key consideration in using this image is that it was taken late in the year.  In early 

November, agricultural crops have been harvested and leaves on deciduous trees have 

changed colour or fallen.  Thus the image cannot be used to distinguish based on summer 

foliage.  However, it can be used to distinguish between broad land cover categories as long 

as those categories remain spectrally different into the fall.  

The image was classified using an isocluster approach (Richards and Jia 2005) on the six 

30m resolution bands of the image.  Twenty spectral classes were used for the isocluster 

process - higher than the final number of classes sought.  Each clustered class was then 

labelled as the appropriate final class manually.  This process of class aggregation allows land 

covers which are not spectrally consistent to be defined as the set of a number of different 

spectral classes.   

The initial number of classes chosen is a trade off between classification certainty and the 

amount of manual intervention required.  As the number of classes chosen for isoclustering 

increases, the certainty with which each pixel is classified increases.  Yet as the number of 

classes increases, the manual effort required to assign each class to the correct land cover 

increases.  In the limiting case, there is a distinct class for every pixel:  each pixel is certain to 

belong to the predicted class, but the entire image must be labelled pixel by pixel defeating 

the purpose of automated clustering. 

Labelling of the classified image was done by visual observation of the other available 

satellite images and other land use maps (SDG 2005, CH2MHill 2001).  Field visits were 

used to confirm that the forested area was generally mixed deciduous and coniferous, that 

most fields are unmanaged and that agriculture land is generally corn production. 

Agricultural land was modeled as corn and hay as these are the crops typically grown in 

the area.  While the area does have some soybean production, the model is insensitive to the 
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field crop chosen for simulation.  Specifically, most of the agricultural land is concentrated in 

the south east of the watershed, outside of the catchments of the stream gauges used for 

validation.  Altering the simulation to use either corn or soybean results in negligible 

differences in daily and monthly hydrologic values (runoff, infiltration and actual 

evapotranspiration) for the basin.  Thus the choice of corn, soybean or some mixture of the 

two was not considered important.  

What we have labelled unmanaged land was graded into good, fair or poor conditions 

(Unmanaged I, II and III) based on the relative normalised difference vegetative index 

(NDVI) values of the distinctly identified groups.  The NDVI, originally proposed by Rouse 

(1973) is a measure of greenness and is defined as: 

REDNIR
REDNIRNDVI
+

=
-

                     15 

where NIR is the reflectivity in the near infrared band and RED is the reflectivity in the 

red band. 

The area has very little urban or built up areas.  Roads and other impermeable surfaces 

were absorbed into the other, vegetative classes.  Curve number values may be increased 

during calibration to account for the additional runoff that these areas would provide. 

Water and wetlands identified in classification are also identified in the NTDB layers.  This 

information is considered more accurate as it is sourced from higher resolution imagery.  

The areas from the NTDB were overlaid on the classified image.   

The clustering and labelling process was repeated using the Landsat image from May 1992.  

It was noted that the 1992 image was harder to label following classification. The amount of 

new green foliage tended to make classes appear more similar.  

Classification certainty 

The classification process is based on the maximum likelihood (ML) estimator, which 

assesses each pixel independently using a Bayesian approach (Richards and Jia, 2006). This 

process assumes that each class is comprised of a set of pixels which are normally 

distributed.  Thus the probability of a pixel belonging to a class can be determined using only 

class means and covariances.  The function indicating the relative likelihood that pixel x 

belongs to class i is given as: 
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where x  is the vector representing a given pixel, im is the mean vector of class i and iΣ  is 

the covariance matrix for class i.  The pixel is classified as class i for which the value of 

)(xgi is highest. 

Classes which were labelled the same were aggregated together.  The probability of a pixel 

belonging to an aggregated class is the sum of the probabilities of the pixel belonging to each 

of the classes that comprise the aggregated class.   

Though pixels in the original spectral classes were assumed to be normally distributed, 

pixels within aggregate classes would not be normally distributed.  The distribution of pixels 

within each aggregate class should exhibit peaks in the distribution, one peak for each class 

which was aggregated together.  

Figure 5 illustrates the classification confidence of the 1992 and 1999 images following 

labelling and aggregation.  The increased difficulty labelling the image from 1992 was 

validated by the results showing that the classification confidence for this image is somewhat 

lower than that of the 1999 image.   
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Figure 5 - Classification accuracy of Landsat images based on the maximum likelihood estimator 
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Classification confidence is a measure relating a pixel to the properties of a classes (in the 

case of the ML classifier, the mean and covariance).  Labelling confidence, however, relates a 

spectral class to the properties of a land cover label.  Since spectral or quantitative properties 

of each land cover are undefined, we could only assess the labelling accuracy by comparing 

with other land use classifications.   

Documents prepared for an eastern Ontario water study (CH2MHill 2001) identified land 

uses over a large region encompassing the Raisin River watershed.  Though the classification 

schemes were slightly different (the other study did not include wetlands, but did include 

bare soil) and the resolution of the available data much lower, we could compare the fraction 

of land cover within the watershed that some land covers represent. 

Label CH2MHill (2001) 
Classification 

(Landsat 1999) 
Forest 44 38 
Open space/Pasture 32 44 
Agriculture 11 12 

Table 3 – Percentage land use within the watershed, regional study versus classified image 

 

Regional planning documents (SDG 2005) highlight significant woodlands and wetlands.  

72% of this area was labelled forest or wetland on the November 1999 image.  Much of the 

rest (25%) was labelled Unmanaged-III due to its low NDVI value.  Some of this can be 

attributed to the spatial correlation between the forest and this class.  It tends to be located 

at the edge of forests, and may actually represent a transition region or a mixed class.   

Label 

As percentage of regionally 
significant woodlands and wetlands 

(SDG 2005) 
Forest 62 
Wetland 10 
Unmanaged – III 25 

Table 4 – Land cover classes as a percentage of regionally significant woodlands and wetlands 
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Soil preprocessing 

The soil maps for Stormont and Glengarry were merged to create an overall soil map for 

the region under study.  This map was clipped to the watershed boundary.  GIS tables 

containing the overall and layer specific properties were created. 

Each soil class was assigned to one of four broader categories indicating its overall 

drainage ability.  These hydrologic soil groups (NRCS 1996) were used to specify the curve 

number for various land uses over the range of soil types.  

The soil map was transformed to a raster format in the same resolution as the land cover 

map (30m).  The soil classes and hydrologic groups in the watershed are shown in Map 7 

and Map 8. 

Ponds and wetlands 

The NTDB waterbodies layer was used to identify ponds within the watershed.  Any 

waterbody not part of the stream network was considered a pond.   

All areas that were identified as sinks in the DEM (445ha over the watershed of 556km2) 

were modeled using the SWAT "wetland" landcover type.  Wetland depth was assumed to 

be the same as the average filled depression depth, or 1.1m.  SWAT models wetlands using a 

"normal" and "maximum" storage depth.  Outflow from the wetland occurs whenever the 

water volume is greater than the normal depth.  The maximum depth was also set to 1.1m, 

such that the model would release all water in excess the normal depth to surface runoff. 

The contributing area to the ponds and wetlands within each subbasin was calculated 

using the unfilled DEM.  This information was used by the model to determine the fraction 

of surface flow to be directed to stream, ponds or wetlands. 

HRU level data 

SWAT models each area as a combination of land cover and soil type known as 

hydrologic response units (HRUs).  Each subbasin is comprised of a set of HRUs which 

define the amount of runoff generated in each subbasin. 

The land cover, soil and subbasin maps were combined to identify each unique HRU.  

The HRU map took on the resolution of the lowest resolution input layer, the 30m land 
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cover map.  The resulting distribution of land use and soil group is shown in Figure 6.  The 

DEM was used to determine the mean slope within each HRU, required for runoff and 

erosion calculations. 
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Figure 6 – Distribution of watershed area by land use and soil group



 

 

4. Methodology 

Simulation 

The SWAT model was run for five years (1980 to 1985) to allow state variables such as 

soil water to reach equilibrium.  Results from the model for the period of 1985 to 1994 were 

used to calibrate the model.  The period of 1995 to 2004 was used to validate the model. 

Calibration 

Hydrologic calibration was performed by comparing the predicted streamflow at the 

location of gauge 02MC001 to observed values.  Average daily flow values were separated 

into runoff and baseflow values using a recursive digital filter suggested by Nathan and 

McMahon (1990):   

ttt Qqq *
2

1* 1
ββ +

+= −              16 

where  is the flow at time t,  is the filtered runoff, and tQ tq β  is the filter coefficient of 

0.925 (determined by Nathan and McMahon and verified through visual observation of the 

hydrograph).  The average of two passes of this filter was used to estimate the fraction of 

runoff and verified by observing the hydrograph graphically.  An example hydrograph 

illustrating the separation is given in Figure 7. 

A recommended metric (ASCE 1993) for quantifying the performance of hydrologic 

models is the Nash Sutcliffe coefficient (NS).  This was chosen as our objective function for 

calibration.  The equation for NS is given as: 

∑
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where  and  are the observed and predicted values at a given time interval, and iO iP O  is 

the mean value of all observed values over the calibration period.   
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Figure 7 - Baseflow separation example using the filter of Nathan and McMahon (1990) 

Weekly average flow was used to compare model output with observed.  This removes 

some of the error associated with the different definitions of "daily" in model inputs and 

outputs.  For example, precipitation is provided as daily total and occasionally reported on 

the following day, while stream flow is provided as daily average.  Such errors make it 

inappropriate to examine model performance on the same time scale as its time step 

(Jackson et al. 2000).  As well, the purpose of the model is not to predict watershed response 

on a daily basis but to assess the watershed with a longer term view.   

Calibration procedure 

Thirteen parameters were used to calibrate the SWAT model.  These parameters reflected 

different parts of the water cycle including runoff (two parameters), soil and 

evapotranspiration properties (three parameters), groundwater (three parameters) and the 

snowfall and snowmelt cycle (five parameters) (Figure 8).  A list of the calibration 

parameters, their calibration range and final value is given in Table 12.  A detailed 

description of the calibration parameters is provided in Chapter 5.   
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Figure 8 - SWAT hydrologic cycle and parameters used for calibration 

The initial value for the groundwater recession coefficient was estimated using the master 

recession curve procedure described in Arnold et al. (1995).  Using the flow values from 

gauge 02MC001, all recession periods of ten days or longer between the months of 

December to March were identified.  This was considered to be the season when recharge 

would be at its lowest.  The flow values were shifted up or down so that each recession 

period ended at the same flow, 1m3/s.  The natural logarithm of the flow was plotted against 

the day of the recession period.  The slope of this graph, estimated through linear regression, 

represents the recession coefficient.  To remove runoff or other flow peaks, all values over 

the regression line were removed and the regression line recalculated on the remaining values 

(Figure 9).  The slope of this line was used as an initial estimate of the groundwater recession 

coefficient.   
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Figure 9 - Recession curves for 02MC001.  Solid line is determined by linear regression;  the slope of 

this line is used as an initial estimate for the groundwater recession coefficient.  

 

The curve number and AWC parameters were set using typical values for the land use and 

soil type respectively, using data from the SWAT user manual (Neitsch et al. 2002) and 

Schwab et al. (1993).  The rest of the calibration parameters were set to the recommended or 

default values specified in the SWAT user manual.   

Annual flow was first calibrated to be within the desired range by adjusting curve 

numbers, loss to the deep aquifer and the surface lag coefficient.  Next, adjustments 

affecting seasonal performance were made. These steps were performed iteratively making 

finer adjustments with each iteration. 

Annual Calibration 

Initial calibration steps were taken to adjust the predicted annual flow, runoff and 

baseflow to within 5% of the observed values.  This process is outlined in Figure 44.  Curve 

number (CN) and the surface lag coefficient (SURLAG) were used to adjust annual runoff 

values, while the deep aquifer loss fraction was adjusted to calibrate the annual baseflow.   

Curve numbers were increased in 5% increments order to predict reasonable annual 

runoff.  However, as curve numbers were increased the model performance began to drop 
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off.  In particular, the predictions of runoff peaks in the summer period were too high.  

Once curve numbers were increased by 15% the daily NS coefficient for the summer period 

fell below 0 (Table 5).  At this point the model is generating poorer flow estimates than 

always choosing the average flow.  Since the goal of accurately predicting annual runoff 

needed to be balanced against the desire for reasonable model predictions throughout the 

year, the curve number values were limited to 10% higher than original.  

Model performance by season – calibration period 
(Daily NS) | (Average flow error %) Increase 

in curve 
number Jan 1 – Apr 30 Jun 1 – Sept 1 Oct 1 – Nov 30 Annual 

5% 0.629 -7 0.260 -5 0.377 27 0.608 -1 
10% 0.624 -7 0.153 13 0.284 31 0.592 2 
15% 0.616 -6 -0.058 46 0.143 42 0.561 8 

Table 5 - Seasonal impact on model performace due to an increase in curve number 

Decreasing the SURLAG parameter from its initial value resulted in lagging the surface 

flow, smoothing the hydrograph and decreasing the ratio of runoff to baseflow calculated by 

the baseflow separation filter.  Thus the SURLAG parameter has a significant effect on the 

interpretation of runoff and baseflow, though it does not change the total flow.   

By decreasing the SURLAG parameter less variation in the model error was observed, 

reflected in the higher calculations of NS.  Further decreases to SURLAG would increase 

NS, but decrease the amount of annual runoff enough to require a further increase in CN.  

However, as noted above, we have limited the increase in CN in order to maintain 

acceptable predictions throughout the year. 

The deep aquifer loss fraction affects the predicted baseflow in a nearly linear way, thus it 

is simple to calibrate the model to predict good baseflow on an annual basis.  Within a fairly 

large range from the calibration point, changes to this parameter have little impact on the NS 

value. 

Seasonal calibration 

The remaining parameters used in calibration affect the annual quantities of runoff and 

baseflow to a lesser extent.  Most impact the water cycle on a predominantly seasonal basis.  

These parameters were used for fine tuning of the model as outlined in Figure 46.  The 

procedure used to adjust an individual variable is shown in Figure 45.  The SURLAG and 
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deep loss coefficients used in annual calibration were also used in seasonal calibration.  Small 

adjustments to these variables could be made as the model was seasonally calibrated. 

The revap and soil evaporation (ESCO) parameters are connected to evapotranspiration 

predictions thus their primary impact is seen in the summer months.  The impact of soil 

available water content (AWC) is also dominant in the summer.   

Small changes in the groundwater delay coefficient (GWDLY) around the calibration 

point have little effect on the annual flow statistics, however there is some seasonal effect.  

Seasonal baseflow peaks, primarily in the spring, recede slower with an increase in the 

GWDLY parameter.  Baseflow recession is much more sensitive to the groundwater 

recession coefficient, impacting predictions primarily during winter and summer low flow 

periods. 

Model response for the snow fall and snow melt variables was isolated primarily to the 

months of March to May.  It was noted that these five parameters could be calibrated 

without affecting the ideal value of other parameters, minimizing the need for iterative 

calibration.  The specifics of adjusting snow melt parameters is shown in Figure 47.    

Model Sensitivity 

The sensitivity of the model to each parameter near the calibration point was examined.  

The change in streamflow (total, runoff and baseflow) and the value of the weekly NS 

coefficient was observed as each parameter was varied in turn.  A detailed examination of 

SWAT parameters and sensitivity is provided in Chapter 5 and summarised in Table 6.  

These results identify how important calibration accuracy will be on the model results.  

Parameters to which the model is insensitive will have little impact on results.  Conversely, 

sensitive parameters must be accurately calibrated to produce good results. 
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Parameter Annual Runoff Baseflow NS 

CN Medium High Low Medium 

SURLAG Low High High High 

AWC Medium Medium Medium Low 

ESCO Medium Medium Medium Low 

Revap Medium Low High Low 

Deep loss Medium Low High Low 

GW delay Low Low Low Low 

GW recession Low High High Medium 

Snowfall temperature Low Low Low Low 

Snowpack temperature lag Low Low Medium Low 

Snowmelt temperature Low Low Medium Medium 

Dec. 21 melt rate Low Low Medium High 

June 21 melt rate Low Low Medium High 

Table 6 - SWAT parameter sensitivity 

 

 

 

 

 





 

 

5. SWAT Parameters and Sensitivity 
 

Sensitivity  

While the SWAT model is deterministic, it is not feasible to have an analytic solution to 

determine the sensitivity of the model to each parameter.  Nor is it possible to know 

analytically if the calibration point we have determined is the most optimum.  However, we 

can determine the sensitivity of the model to individual parameters by graphical means.  

Changing only one parameter at a time and observing the change in model output gives us 

the sensitivity of the model to the parameter in question.   

If the model is highly sensitive to a particular parameter, then predictions will be greatly 

affected by small errors in the parameter estimation.  If the model is insensitive to a 

parameter, we can forego detailed calibration as small changes will not affect the model 

output. 

Sensitivity of the model was determined by observing the change in prediction of flow at 

the location of gauge 02MC001 over the validation period of the model (1995 – 2004).  

Changes to the annual flow error (total, runoff and baseflow) and changes in NS (daily and 

weekly) as each parameter was varied around the calibration point were used as measures of 

sensitivity.   

Each parameter was calibrated to the highest weekly NS value over the calibration period 

(1985-1994).  By examining model sensitivity over the validation period, we can observe if 

the calibrated value for each parameter is also the optimal value for the validation period.  A 

difference in optimal value between the two periods is another measure of uncertainty in the 

parameter.  However, uncertainty in calibrated values is only of importance if the model is 

sensitive to that particular parameter.   

Runoff Parameters 

The curve number (CN) and surface lag coefficient (SURLAG) parameters directly affect 

the prediction of runoff.  CN controls the amount of predicted runoff while SURLAG 

controls the rate at which runoff moves from land to stream. 
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Curve Number 

CN is used in the prediction of runoff by way of the SCS method (SCS 1972).  Changes to 

CN affect the fraction of precipitation which becomes runoff.  As well, CN controls the 

level of initial abstraction which is the threshold for precipitation to become runoff.   

Annual runoff increases roughly 7% for each 5% increase in CN (Figure 10).  As noted in 

the calibration procedure, an increase of curve number beyond 10% results in lower model 

performance due to overpredicted summer runoff peaks.   

Curve number sensitivity
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Figure 10 - Curve number sensitivity around the calibrated value (CN*) 

 

Surface lag coefficient 

The SURLAG variable affects the interpretation of runoff by shifting the annual flow 

from baseflow to runoff: 

( ) ( )conctSURLAG
istorsurfsurf eQQQ −
− −⋅+= 1' 1,             18 

Qsurf is the surface runoff discharged to the stream on a given day (in mm), Q'surf is the runoff 

generated on that day (mm) and Qstor,i-1 is the amount of runoff lagged from previous days 

(mm).  The SURLAG parameter is used as a fraction of the time of concentration, tconc 

(hours), which is calculated at the HRU level.   
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Increasing SURLAG results in the exponential term approaching zero, and the discharged 

runoff will approach the generated runoff on each day.  As SURLAG decreases, more runoff 

is lagged.  The method used to separate runoff from baseflow – a high pass filter with a fixed 

cutoff – is sensitive to this.  The lag has the effect of making some runoff appear as slow-

moving baseflow.  Consequently, our interpretation of runoff and baseflow changes, though 

total flow does not (Figure 11). 

SURLAG sensitivity
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Figure 11 - Surface lag coefficient sensitivity around the calibrated value (SURLAG*).  Runoff, 

baseflow and model performance are very sensitive to SURLAG near the calibration point. 

 

Runoff parameter interdependence 

To consider the possibility that CN and SURLAG were interdependent, the parameters 

were varied together.  By lowering the CN values below the calibration point and re-

examining the sensitivity of the SURLAG parameter, we can observe if there is a change in 

the model performance.  This could be suggestive of a change in model state whereby a 

different hydrologic process begins to dominate.  Figure 12 highlights the change in model 

performance as a function of SURLAG for two values of CN.  We see that the sensitivity of 

the model to SURLAG does not change substantially with a change in CN, nor does the 

optimal value for SURLAG differ.  This finding gives us confidence that the calibrated 

values for runoff parameters are optimal and not the result of some interdependence. 
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Effect of CN on SURLAG sensitivity
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Figure 12 - Effect of CN on SURLAG sensitivity.  Changes to CN do not appear to have a significant 

impact on the sensitivity of the model to SURLAG. 

Soil and Evapotranspiration parameters 

Three parameters were used to calibrate soil water and evapotranspiration.  Available 

water controls the soil water content, while the revap and soil evaporation compensation 

coefficients control actual evapotranspiration. 

Available water content 

Available water content (AWC) defines the soil water available to plants and is also used 

by the model to estimate field capacity.  An increase in AWC leads to a greater possibility of 

fulfilling plant ET requirements.  This decreases the amount of water available for recharge 

and baseflow (Figure 13).  Additionally, when calculating runoff volumes the runoff 

coefficient is adjusted for soil moisture conditions as a function of AWC.  Overall we 

observe a decrease in runoff with an increase in AWC.    
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Available water sensitivity
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Figure 13 - Available water content sensitivity.  Model performance increases slightly as AWC is 

increased to the calibrated value (AWC*) 

 

Revap 

The REVAP parameter affects the amount of water which plants can extract from the 

shallow aquifer to satisfy their evapotranspiration demand.  When the soil profile is dry, 

SWAT allows water to move upwards from the shallow aquifer back into the soil profile in 

order to satisfy ET demand.  The revap coefficient is defined as the fraction of the daily 

PET that can be satisfied in this manner.  As the REVAP coefficient increases, the amount 

of water which may be channelled from the shallow aquifer back to the soil profile increases.  

This decreases the amount of water in the shallow aquifer and thus decreases the amount of 

baseflow discharged.  The effect of this coefficient is particularly apparent in the early spring 

and summer.  A higher REVAP coefficient causes the spring baseflow peak to recede faster. 
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Revap sensitivity
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Figure 14 - Revap coefficient sensitivity.  Model performance is not affected by changes to REVAP 

near the calibration point (REVAP*), however baseflow is strongly affected. 

Soil evaporation compensation coefficient 

The soil evaporation compensation coefficient (ESCO) impacts the prediction of actual 

evapotranspiration.  As ESCO decreases, evapotranspiration demand is satisfied from deeper 

in the soil profile.  Thus, increases in ESCO tend to decrease the amount of actual ET, 

which in turn increases the amount of soil water, runoff, recharge and baseflow. 
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ESCO sensitivity
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Figure 15 - ESCO sensitivity.  Increases in ESCO decrease predictions of actual evapotranspiration, 

thus increasing predicted water yield. 

The model performance is not particularly sensitive to the values of ESCO nor REVAP, 

primarily because the impact of these parameters is greatest during the summer, low flow 

months.  This is the same period in which the NS metric is least sensitive (see Chapter 6).   

Groundwater parameters 

Groundwater delay coefficient 

The groundwater delay coefficient (GWDLY) affects the rate of recharge as water moves 

from the soil profile into the shallow aquifer:     

( )δδ 11
1 1 −−
− −⋅+⋅= eSeRR iii               19 

where  is the recharge on a given day (mm), is the amount of water moving from the 

soil profile in a given day (mm) and 

iR iS

δ is GWDLY (days).  This parameter is meant to 

account for any geologic transition that may exist between the bottom of the soil profile and 

the shallow aquifer.  As GWDLY decreases, the exponential term becomes vanishingly small 

and there is little delay between soil profile and aquifer.  
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Groundwater delay coefficient sensitivity
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Figure 16 - Groundwater delay coefficient sensitivity.  The model is insensitive to changes in the 

coefficient near the calibration point (GWDELAY*). 

For the calibrated delta value of 0.6, the exponential term is close to 0.189.  Small changes 

in the coefficient around the calibration point have little effect on the annual flow statistics 

however there is a slight seasonal effect.  The spring baseflow peak recedes slightly faster 

with a decrease in the GWDLY parameter.  

Deep aquifer loss fraction 

The deep aquifer loss fraction directly adjusts the amount of shallow aquifer recharge by 

removing water from the system.  As baseflow is a linear function of shallow aquifer storage, 

this has a direct impact on the amount of baseflow predicted.   
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Deep aquifer loss fraction sensitivity
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Figure 17 - Deep aquifer loss sensitivity.  Changes to this coefficient strongly affect baseflow 

predictions. 

 

Groundwater recession coefficient 

The groundwater recession parameter controls the rate that water which enters the 

shallow aquifer becomes baseflow.  The baseflow on a given day is calculated as: 

( )t
i

t
igwigw eReQQ ⋅−⋅−
− −⋅+⋅= αα 11,,             20 

where  and  are the recharge and baseflow on a given day (mm),  iR igwQ , α  is the recession 

coefficient and t  is the time step (one day).  Under conditions of no recharge, the second 

term becomes zero and baseflow decays in an exponential manner.  As alpha increases, 

recharge becomes baseflow more quickly.  As alpha decreases, the baseflow is lagged for a 

longer period of time.  This change in baseflow speed is interpreted as a shift between runoff 

and baseflow (Figure 18).  
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Groundwater recession coefficient sensitivity
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Figure 18 - Groundwater recession coefficient sensitivity.  Changes to this coefficient strongly affect 

the runoff-baseflow separation determined by Equation 16. 

Snow parameters 

Snowmelt is the dominant hydrologic event of the year, thus knowledge of the snowfall 

and melt parameters is important.  Due to the high sensitivity of the NS coefficient to high 

flow values, the snowmelt period is strongly represented in our measure of model 

performance.  As such, the snowmelt parameters play a key role in model performance, 

which has been noted in other SWAT implementations for similar climates (Wang and 

Melesse 2005).  

Snowfall temperature 

The model is generally insensitive to snowfall temperature (Figure 19).  The time of year 

when temperatures are such that precipitation could be either snow or rain is limited to short 

periods in the fall and spring.  In the late fall streamflow is waning and the impact of 

precipitation is small.  In the spring, the dominant factor is the melting of several months of 

accumulated snow.  At neither time does incorrectly predicting precipitation as rain or snow 

make a significant impact to the results.   
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Snowfall temperature sensitivity
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Figure 19 - Snowfall temperature sensitivity.  The appears insensitive to changes in the snowfall 

temperature. 

 

Snowpack temperature lag coefficient 

The snowpack temperature lag coefficient (TIMP) is the amount that the snow pack 

temperature lags the ambient air temperature.  This affects the rate at which melting begins.   

Model performance is somewhat sensitive to this parameter (Figure 20).  Perhaps more 

importantly is that the same optimal value for TIMP was found during the validation period, 

giving us certainty in the selected value.  
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TIMP sensitivity
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Figure 20 – Sensitivity of the model to changes in the snowpack temperature lag coefficient near the 

calibration point (TIMP*) 

 

Snowmelt temperature 

The snowmelt temperature has a strong impact on model performance as snowmelt is the 

dominant annual hydrologic event.  This parameter specifies the threshold temperature over 

which snow melts (see page 15).  As well, the degree-day method uses the difference 

between the current temperature and the melt temperature to determine the amount of melt 

for a given day.  What appears to be the optimal value of snowmelt temperature during the 

validation period is very close (within 0.1ºC) to the value determined in calibration.   
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Snowmelt temperature sensitivity
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Figure 21 - Snowmelt temperature sensitivity near the calibration point (SMTMP*) 

 

Snowmelt rates 

The snowmelt rates for the winter and summer solstices (December 21 and June 21) are 

used to define the snowmelt rate through the year.  This is based on the premise that there 

will be less snowmelt due to the lower solar radiation in the winter than in the summer.  The 

melt rate on a given day is determined by interpolation between the two days. 

Model sensitivity to the melt rates are shown in Figure 22 and Figure 23.  Increasing the 

June 21 melt rate would improve model performance during validation.  This would increase 

runoff during the spring but without increasing runoff during other times of the year.  This 

is in agreement with our calibration findings of a need to increase annual runoff but not 

increase runoff peaks.   
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Dec. 21 snowmelt rate sensitivity
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Figure 22 – Model sensitivity to changes in the minimum melt rate  

June 21 snowmelt rate sensitivity
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Figure 23 - Model sensitivity to changes in the maximum melt rate 

Interaction of snowmelt temperature and snowmelt rate 

To determine the interaction of the most sensitive melt parameters, the melt temperature 

and melt rates were varied simultaneously.  As expected, increasing the melt temperature 

required increased melt rates in order to compensate and generate enough snowmelt (Table 

7).  As well, the sensitivity of the model to melt rate greatly increases as the melt temperature 
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is varied from the calibrated value of 0.8 ºC.  Given the limited accuracy of the degree-day 

method to predict snowmelt, a greater sensitivity to the parameter values may not be 

desirable.  

June 21 melt rate 
(mm/ºC· day) 

Melt temperature 
(ºC) 

Dec. 21 melt rate 
(mm/ºC· day) 

2.0 2.3 2.6 
0.5 1.8 0.795 0.802 0.799 

 2.1 0.798 0.795 0.787 
 2.4 0.789 0.780 0.766 
     

0.8 1.8 0.779 0.794 0.800 
 2.1 0.792 0.799 0.797 
 2.4 0.794 0.794 0.787 
     

1.1 1.8 0.756 0.775 0.788 
 2.1 0.776 0.789 0.796 
 2.4 0.788 0.795 0.795 

Table 7 - Effect of melt temperature and melt rate on model performance, measured using the Nash-

Sutcliffe coefficient for weekly average values (validation period).   

 

 





 

 

6. Data transformation 
In this section we consider the relationship between the series of streamflow 

measurements and the metric used for analysis, the Nash Sutcliffe coefficient (NS).  We will 

examine how the distribution of streamflow values affect the NS calculation and the 

possibility of transforming the data to improve the usefulness of NS.   

The equation for NS is: 

∑
∑
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−
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i
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1             21 

where and  are the observed and predicted values at a given time interval, and iO iP O  is the 

mean value of all observed values over the period of interest.   

The fractional part of this equation is the ratio of mean squared model error to the 

variance in the observed values.  NS is thus a measure of how the model performs compared 

to the variance in the observed values.  Conceptually we can think of the variance specifying 

a reasonable level of model error.  The coefficient indicates whether the model does better 

than average by virtue of its sign.  NS values greater than 0 indicate that the model performs 

better than merely choosing the average value all the time and this threshold is used to 

determine whether or not a model is a reasonable predictor.   

The daily and weekly values are not normally distributed (Table 8) and as such are not well 

described by variance.  A skewed distribution will have a variance which does not reflect 

what a typical deviation is.  Additionally, for streamflow values the variance of values 

changes throughout the year.  As the median weekly error increases, so does the variance in 

the weekly values.  

Regardless of whether the variance in observed values is a good measure or not, the NS 

calculation can still be used for model calibration.  The denominator of the fractional part is 

constant for all calibration sets, and we expect the numerator to decrease as the model 

performance improves.  From one calibration run to the next, we can observe the relative 

difference in NS to determine if the mean squared model error has improved. 
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02MC001 

flow (m3/s) 

Daily Weekly Monthly 

 1985-1994 1995-2004 1985-1994 1995-2004 1985-1994 1995-2004

Mean 4.97 5.19 4.97 5.19 4.98 5.19

Median 1.50 1.55 1.68 1.80 2.15 2.67

Variance 100.15 106.51 78.90 81.79 49.76 38.76

Skewness 4.29 4.56 3.73 4.08 3.00 1.69

Kurtosis 23.28 28.38 17.73 24.26 11.72 2.50

Table 8 – Statistical metrics describing flow distribution at the site of gauge 02MC001 for daily, weekly 

and monthly average flows. 

 

However, if the variance term does not describe the dataset well, it becomes difficult to 

compare the resulting coefficient with other published models.  The primary goal of the 

ASCE 1993 report was to identify a set of metrics which could be commonly used amongst 

hydrologic models, which would enable comparative review of models possible.  By using a 

poor definition of variance, we are essentially changing the equation of NS, and removing 

the possibility of comparing models from different flow regimes.  

In order to create a normal distribution of daily and weekly flow values, we considered a 

transformation of the data.  By applying this transformation to both observed and modeled 

values, the NS calculation would better reflect its intended purpose.   

Box Cox transformation 

The Box-Cox transformation (Box and Cox 1964) is a power transformation which can be 

used to change the statistical distribution of a data set while maintaining the order of values.  

The form of the transform is: 

⎥
⎦

⎤
=
≠

⎢
⎣

⎡
=′

0
0

)ln( λ
λλ

for
for

x
x

x             22 

The value of lamda is determined to create the desired distribution, in this case, a 

distribution which is symmetric about the mean and which has a consistent spread based on 

the flow rate.  We use linear regression to determine what value of lamda will make the most 

normal distribution.   
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In order to transform the data so that the spread is reasonably consistent over the range, 

the spread versus level graphical procedure suggested by Emerson and Strenio (1983) was 

used.  Weekly values at gauge 02MC001 during the calibration period were analysed to 

determine the median and quartile weekly flow rates.  The difference between the first and 

third quartiles is defined as the fourth spread.  Supposing that the spread of the original data 

is proportional to some power of the median value: 

baMs =             23 

where s is the spread, M is the median value and a and b are constants.  In this case,  

[ ] [ ] [ ]Mbas lnlnln +=             24 

and the slope of the  versus [ ]sln [ ]Mln  will be the power term, b.  This is shown in Figure 

24, where the spread level plot for weekly streamflow values for gauge 02MC001 has a slope 

of 0.854.  To transform this data set for constant spread requires a power transformation of 

1-b, or 0.146.  As recommended by the author, utilising a power transform of 0 (for a 

logarithmic transform) or 0.5 (for a square root transform) is recommended.  Thus the data 

suggests that we should use a log transform in order to stabilise the spread over the range of 

values.  
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Figure 24 - Spread level plot for 02MC001.  Solid line determined through linear regression. 

With the goal to recreate the NS metric in such a way that it can be applied and realistically 

compared among other areas, using a straight log transformation would be most appropriate, 
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rather than having different values of lamda being calculated at each site and potentially 

reducing the ability to compare using this statistic.  However, this procedure is useful to 

determine that a log transformation is appropriate. 

Results of Transform 

The impact of the log transformation on NS values is shown in Table 9.  For a given 

percentage error, NS is sensitive to the magnitude of the observed value, while NS using log-

transformed values is insensitive to observed value.  The point at which the two measures 

are equally sensitive is dependant on the variance of the observed values and the variance of 

the transformed values, as well as the percentage error in predicted value.   

 
Model performance (NS) at 02MC001 1985-1994 1995-2004 

Weekly average flow 0.798 0.788 

ln (Weekly average flow) 0.528 0.523 

Table 9 - Effect of logarithmic transform on the Nash-Sutcliffe (NS) performance coefficient 

 

The skew of the original data values means that many data points are extreme values to 

which NS is sensitive, a common feature of streamflow records (Legates and McCabe 1999).  

In particular, model errors at high-flow periods are more heavily weighted in the NS 

calculation.  Under the transformed scenario, high flow periods (mainly, spring flow) are less 

heavily weighted while low flows (late summer) are given more significance.  The results in 

Table 9 confirm that the model predicts reasonably well during all times of the year.  The use 

of NS as a means to assess model performance throughout the year is questionable given the 

unequal weighting it gives to the different seasons.  

Point where impact of transform is zero 

The logarithmic transformation will, in general, give higher weight to periods of low flow 

and less weight to periods of high flow.  However, the impact is dependent on the level of 

prediction error. 

Consider the fractional part of the NS equation.  For a single data point, the relative 

contribution to the coefficient can be considered as:  
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There is a percentage error, ε , to each prediction, such that: 

( ) ii OP ⋅+= ε1                 26 

Thus we can represent the contribution of each prediction in terms of the observed value 

and the percentage error: 
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The NS coefficient is affected by the magnitude of the observed values.  An error in 

prediction during a period of high flow will have more impact on the final NS coefficient 

than an error during a period of low flow.  Errors in prediction during periods of low flow 

will tend to be masked by the high sensitivity of NS to flow, thus the coefficient does not 

reflect the performance of the model equally throughout the flow regime. 

In the transformed space, the contribution that each prediction makes to the coefficient is: 
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This is valid for all values of ε  greater than -1, which is to say all predicted values must be 

greater than 0.   

Note that the contribution each prediction has in the transformed space is a function only 

of the error in prediction.  Each prediction with a given error is weighted the same regardless 

of magnitude.  Use of this transformed coefficient would provide a measure of model 

accuracy which considers all flow regimes and times of the year equally.  However, a 

limitation of the transform is that positive errors, or over-predictions, will be weighted less 
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than negative errors, or under-predictions (Figure 25).  For prediction errors which are 

sufficiently small (less than 10%) the difference is negligible.  However, the difference 

between positive and negative errors quickly diverges such that large underpredictions are 

weighted very high. 
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Figure 25 – Sensitivity of the log-transformed Nash Sutcliffe coefficient to over and under predictions 

     

By transforming the data, the effect that each prediction has on the NS coefficient will 

change.  Periods of high flow which were previously given more weight will count for less.  

Conversely, predictions during low flow periods will have more impact.  The flow where the 

contribution to both coefficients will be the same can be determined where: 
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This is illustrated in Figure 26, where the effect of a 10% prediction error in average 

weekly flow is shown for both the original and transformed NS coefficients using the values 

from the calibration period for gauge 02MC001.  The transformed and original coefficients 
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are about the same when the average flow is near 5m3/s, or approximately (and coincidently) 

near the mean of the observed values.       

Effect of transformation on NS sensitivity
02MC001 Weekly Average 1985-1994
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Figure 26 – Sensitivity of the Nash Sutcliffe coefficient (original and log-transformed) to the 

magnitude of observed flow given a constant (10%) prediction error.   

 

 





 

 

7. Results 
Each area of the watershed makes a unique contribution to the balance of runoff, 

baseflow, ET and recharge in the basin.  Identifying the contributions that each subbasin 

makes to the water balance can highlight areas of environmental significance.  The key 

parameters which influence the water cycle are land cover and soil type.  Land cover is one 

variable which can be easily altered by development or planning policies, so knowledge of 

the contribution each land cover makes to the water balance in the basin provides useful 

information on the trade offs that are made when land use changes occur.  Soil type is not 

readily altered, but the model can inform us about how different areas of the watershed with 

different soil types will impact the water cycle differently.   

In this section, model predictions of streamflow are first compared with observed data.  

Predictions of other water budget components are also examined spatially and temporally.  

An assessment of the water balance predictions in the context of source water protection 

planning is presented.  Finally, the ability to predict low flow conditions, important for risk 

assessment and the protection of aquatic species, is also considered.     

Streamflow 

The model predictions of streamflow were assessed by comparing the results at the 

location of gauge 02MC001 with observed values.  This gauge provides the only series of 

continuous observed data for the watershed.  Cross plots of simulated and observed average 

weekly flow at gauge 02MC001, as well as the values of NS and mean error for the periods 

of calibration and validation are given in Figure 27 and Figure 28.  Box plots showing the 

weekly error in predicted flow are given in Figure 29 and Figure 30. 
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Figure 27 - Weekly average flow at 02MC001, calibration period.  Solid line indicates where predicted 

equals observed. 
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Figure 28 - Weekly average flow at 02MC001, validation period.  Solid line indicates where predicted 

equals observed. 
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Figure 29 - Weekly model error at 02MC001, calibration period.  Boxes illustrate the minimum, first 

quartile, median, third quartile and maximum weekly prediction error. 
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Figure 30 - Weekly model error at 02MC001, validation period.  Like the calibration period, prediction 

errors are greatest during the spring months. 

 

Generally, the median weekly error is very small, suggesting that the model performance is 

reasonable for most years.  During both the calibration and validation period, the model 

performance is worst during the months of March and April, when snowmelt occurs.   
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A possible constant source of error is the flow rate reported at the gauge site.  Gauge 

02MC001, which measures a contributing area of 363km2, was originally at a point 4.8km 

downstream of its present location draining an area of 404km2.  The depth to discharge 

relationship established at the original site is still in use, with no conversion for the different 

contributing area or possible difference in cross-sectional area1.  This likely adds some error 

to the reported values and may have led to incorrectly calibrated parameters. 

Two other gauges within the watershed have data which was used to validate the model.  

Both operate only seasonally, typically from March to May (see Map 5).  Gauge 02MC027 

has records from 1986 to 1992 and measures a contributing area of 129km2.  Gauge 

02MC030 has records from 1986 to 2004 and measures a contributing area of 26km2.  By 

assessing the model performance at these two sites (i.e. at points different than the 

calibration site) we can gain some insight into the ability of SWAT to model spatial 

variability within the watershed.  This is tempered by the fact that these gauges record only 

during the freshet which appears to be the most difficult time period to model. 

A comparison of predicted and observed weekly average flow at gauge 02MC027 is shown 

in Figure 31, representing 64 weeks over the seven years of data.  The model tends to 

overpredict (average error of 14.4%) but the calculated NS of 0.528 suggests the model is a 

reasonably good predictor. 

Records for gauge 02MC030 are sporadic, with many missing data points.  It was thus not 

always possible to determine a weekly average flow at this gauge site.  In order to compare 

our model data, we considered any period where there were continuous records of at least 

six days in length.  This provided 49 periods of average length 6.9 days over the entire 19 

year range of data.  The average error was -25.0% and NS was 0.308 as shown in Figure 32.  

It is difficult to assess the validity of these statistics with so many missing data points.  

However, the numbers are consistent with the simulated hydrograph which appears to under 

predict peak flows at this site.  The spring season of 1990 for which there are the most data 

points (52) is shown in Figure 33. 

 

 
1 Tom Arsenault, Water Survey Canada, personal communication, Dec. 19 2006 
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Figure 31 - Weekly flow at 02MC027.  Solid line indicates where predicted equals observed. 
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Figure 32 - Weekly flow at 02MC030.  Solid line indicates where predicted equals observed. 
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Figure 33 - Hydrograph at 02MC030 for March and April, 1990.   Flow peaks at this location are 

underpredicted by the model. 

 

Some of the underprediction at the location of 02MC030 may be attributable to the ponds 

and sinks located upstream of it.  Within the gauge's contributing area, the model directs 

roughly 26% of the surface runoff to ponds or inland detention rather than to the stream 

network.  This is notably higher than the amounts found upstream of gauges 02MC001 and 

02MC027 (11% and 14% respectively).  It is possible that there exists small surface features 

which would alter the contributing areas of the ponds and sinks.  Since this gauge captures a 

relatively small area compared to the other gauges, a few small topographical differences 

could have a significant impact.  As well, a major highway runs through a portion of this 

subwatershed, suggesting that there may be detailed anthropogenic changes to the landscape 

not reflected in the DEM or stream network.  More detailed topographical information 

would be required to account for these potential differences.   

Runoff 

The portion of streamflow at the location of gauge 02MC001 attributable to runoff was 

determined using the filter previously described.  Predicted and observed average weekly 

runoff rates are shown in Figure 34.  Annual runoff by land use and soil group is shown in 
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Figure 35.  The runoff values are directly related to the curve number coefficients selected 

for each class. 
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Figure 34 - Weekly average runoff at gauge 02MC001, observed and predicted. 
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Figure 35 – Predicted annual runoff by land use and soil group 

 

During the summer low flow period, runoff is slightly overpredicted.  This is likely due to 

our increase of CN values in order to obtain satisfactory annual runoff totals.  It is also 
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possible that the model does not sufficiently adjust CN values to account for dry, late 

summer soil conditions.   

Runoff is a clear function of hydrologic group, which is to be expected since the curve 

numbers were specified based on these groups.  Agricultural land and the Unmanaged-III 

classes produced the most runoff, while the forest and wetland covers produced the least.  

The land cover seems to be more significant than the hydrologic group: the difference in 

runoff between the classes is greater than the difference between one soil group.   

The model predicts most runoff to be generated from the organic soils located in the 

northern part of the watershed, and in the lower reaches of the watershed where soils are 

generally less well drained (Map 9).  Much of the area captured by gauge 02MC001 generates 

lower than average annual runoff, a consequence of the forests and well-drained soils which 

dominate the watershed. 

Baseflow 

Baseflow predicted by the model appears more reactive than observed.  In autumn, the 

predicted level of baseflow peaks higher and earlier than observed while winter baseflow is 

underpredicted.  During the freshet, the predicted baseflow peak is also slightly higher than 

observed, as well as slightly delayed with respect to observed (Figure 36).   

Much less is known about the shallow aquifer characteristics such as slope, extent and 

composition, than about surface features.  This limits our ability to model the groundwater 

system in a more detailed spatial way.  As well, other SWAT implementations have identified 

that the model's simplified groundwater design is limited (Romanowicz et al. 2005, Arabi et 

al. 2006).  Even if our specification of groundwater parameters is sufficiently detailed, the 

model structure may not be reasonable for this region.  The aquifer may also extend outside 

the watershed which would introduce additional error to our predictions.   
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Figure 36 - Weekly average baseflow at 02MC001, predicted and observed 

 

SWAT implements baseflow recession as an exponential decay of storage volume.  We can 

isolate the recession process to periods of no recharge or runoff, such as in winter months 

when the soil above the aquifer is frozen, or after periods of drought in other times of the 

year.  By observing the natural logarithm of the baseflow during these time periods, we 

should see a linear decay.  However, the observed flow decays at a less than exponential rate 

suggesting the model structure is incorrect, or that the aquifer is being continually recharged.  

It is possible that wetlands located in the headwaters of the watershed do not completely 

freeze in the winter, thus continually recharge the aquifer.  If so, the underprediction of 

baseflow in the winter we observe would reflect the model's failure to account for this.   

Snowmelt 

Runoff induced from snowmelt is a clear limitation of the SWAT model.  At this time of 

year the flow rates and flow variability are very high.  The absolute error of the model has 

much greater variation in this period of the year than any other.   

This limitation of the model was also highlighted by Benaman et al. (2005) who 

implemented SWAT for a watershed with similar winter characteristics.  Wang and Melesse 

(2005) undertook an evaluation of SWAT in another snowmelt-dominated watershed and 
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determined that model performance was quite poor when the snowfall received during the 

season was less than normal.  

SWAT does not take in consideration factors such as solar radiation or wind which affects 

the amount of melt occurring.  As well, the river in this study is subject to ice jams during 

the melt season which can dramatically alter the reported flow rate during the spring:  the 

model does not account for such occurrences.  Dunne and Leopold (1978) outline a 

physically-based, energy balance method for calculating snowmelt which is shown to have a 

marked improvement over the degree-day method.  The energy balance method has been 

implemented in other watershed models such as HSP-F (Bicknell et al. 1997), but the climate 

data required to use this method is substantial. 

Evapotranspiration 

The average monthly potential evapotranspiration (PET) predicted by the model for the 

validation period is shown in Figure 37, along with estimates of PET derived using the 

Thornthwaite method (MacIver and Isaac 1989) and the Penman method (CCN 2004) for 

the Cornwall region.  The simulated values, derived using the Priestley Taylor method 

(1972), amounted to 603mm per year.  The Thornthwaite equation, based solely on daily air 

temperature, estimates 585mm PET per year.  The Penman method utilises average 

temperature, wind speed, solar radiation and humidity to predict 676mm of PET.  The 

Thornthwaite and modeled values are comparable in magnitude, but the Thornthwaite 

estimates are slightly delayed in the season.   
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Figure 37 - Monthly estimated PET for the watershed. 

 

Actual ET is highest for the forest and wetland land covers which come close to satisfying 

the PET demand (Figure 38), while agricultural land exhibits less ability to satisfy PET 

demands (Figure 39).  This inability to satisfy the PET becomes more pronounced in the 

poorly drained soils.  As shown above, the poorly drained soils have been defined to have 

higher runoff coefficients, and thus less precipitation is predicted to infiltrate into the soil.   

ET predictions are sensitive to the climate input and the difference in temperature data 

between the two climate stations is apparent in the map of annual ET (Map 10).  The 

subbasins in the north west utilising data from the Avonmore station exhibit a lower annual 

ET than the rest of the basin.  This discrete difference in ET prediction highlights the 

limitations of the Thiessan methodology and the potential benefits of increasing the spatial 

density of climate stations. 
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Forest ET by soil group
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Figure 38 – Monthly model predicted actual ET for forest 

 

Corn ET by soil group

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10 11 12

Month

M
on

th
ly

 E
T 

(m
m

)

A
B
C
D
PET

 

Figure 39 – Monthly model predicted actual ET for corn 

Recharge 

The average annual deep aquifer recharge is shown for each land use and soil group in 

Figure 40.  Recharge is primarily dependent on CN and infiltration rate, both of which 

dictate the amount of water reaching the aquifer.    

 80



 

 

Annual deep aquifer recharge

0

10

20

30

40

50

60

70

80

A B C D
Soil group

A
nn

ua
l r

ec
ha

rg
e 

(m
m

)

Corn
Hay
Wetland
Forest
Unmanaged-I
Unmanaged-II
Unmanaged-III

 

Figure 40 – Predicted annual deep aquifer recharge by land cover and soil group 

 

These numbers must be considered in the context of the areal distribution of soils and 

land use within the basin (Figure 6).  Soil group A makes up the largest part of the watershed 

(52%).  This, combined with its strong contribution to recharge, means that these lands 

account for 78% of the recharge in the watershed.  Conversely, soil group D makes up 17% 

of the watershed area, but only 5% of the total recharge.  The distribution of recharge by 

subbasin is highlighted in Map 11. 

Unlike runoff, the impact of land use on recharge changes throughout the year. In the 

spring, the dominant contributions come from the forest and unmanaged-I land covers, with 

the agricultural contribution much lower.  However, in the fall agricultural land contributes 

as much to recharge as the other land use classes (Figure 41).  The spring event is the 

dominant annual event, thus on an annual basis forest contributes the most to recharge.   
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Figure 41 – Model predicted average monthly recharge for soil group A 

 

Water budget and supply 

The average annual amounts of the main water budget components over the area of the 

watershed are shown in Figure 42.  Average annual values provide a starting point for a more 

detailed assessment of available water supply.  In the Ontario SPP development process 

(MOE 2006), groundwater recharge levels are initially analysed on an annual basis.  

However, surface flow – by nature a faster process than recharge – is initially assessed at a 

monthly level.  More detailed assessment considers shorter time intervals to highlight 

specific periods with a higher potential threat to availability.   

  Provincial guidelines for SPP surface flow quantity assessment require initial analysis to 

be undertaken using median monthly values and more detailed analysis at the weekly level.  

The use of minimum seven-day moving average (7Q) values is recommended to quantify 

annual low flow periods.  Surface water is not used as a potable water source within the 

Raisin River watershed, thus the need to assess surface flow for this basin within the SPP 

framework is reduced.  However, the SWAT model implemented does provides sufficient 

detail to perform an analysis of surface water supply were it required.  Weekly flow data 

indicates that the model overpredicts on average during the summer low flow season (Figure 
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30), but the mean 7Q flow is less than observed (Figure 43).  This is in agreement with our 

previous observation that the predicted flow seems to be more dynamic than the observed 

flow.   

Annual water balance
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Figure 42 – Model predicted annual water balance for the watershed 
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Figure 43 – Annual average periodic minimum and maximum flows at 02MC001 
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Prediction of flow peaks or low flow levels is not specifically captured by the NS 

coefficient used for calibration and validation.  The coefficient is particularly insensitive to 

low flow conditions, as detailed in Chapter 6.  For the model to reasonably predict low flow 

conditions, it must be calibrated to do so.  Given the limitations of the NS coefficient in this 

regard, the calibration process undertaken is not appropriate for modeling the minimum 

surface water availability.  A different measurement, such as the range of variability approach 

(RVA) (Richter et al. 1997) must be used to capture the extreme conditions of the 

streamflow regime. 

The RVA uses several streamflow characteristics which provide insight into the parts of 

the flow regime masked by the NS coefficient.  The range of variability in streamflow is 

measured by the number, duration and magnitude of flow pulses and recessions.  Annual 

average peak and minimum flows for various time periods have been shown in Figure 43 

and flow pulse frequency and duration are given in Table 10.  We see that the SWAT model 

has predicted a greater number of peaks and recessions of shorter duration than observed at 

the stream gauge.  At the same time, the model predicts smaller flow peaks and, for short 

durations, lower minimum flow rates.  These measures also indicate that the model is too 

dynamic and, as calibrated, may not be suitable for precise estimation of minimum flow 

levels and periods.   

 

Annual average (1995-2004) SWAT 02MC001 
High pulses (highest quartile) 12.9 9.4 
High pulse duration (days) 7.5 12.1 
Low pulses (lowest quartile) 11.6 4.0 
Low pulse duration (days) 7.4 36.0 

Table 10 - Flow pulse characteristics at 02MC001, predicted and observed 

 

Due to the number of measurement values used by the RVA, it cannot be used directly 

with a calibration process that relies on maximising a single value.  However, the approach 

could be used to place further constraints on the calibration process, which may in turn 

improve the model performance for particular surface flow regimes.  

The Ontario SPP process requires initial analysis of groundwater supply and availability to 

be based on annual estimations of recharge.  Additionally, the identification of areas with 
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significant surface – groundwater interaction (i.e. high levels of recharge) is necessary.  The 

SWAT model as implemented generates this information.  Key recharge areas, primarily 

forest land, have been identified.  The impact of changes to land use on annual recharge 

levels can be assessed with the information presented.  However, we are unable to directly 

validate recharge predictions due to the lack of independently observed data.  As well, the 

effect or contribution of areas outside the watershed to the aquifer has not been investigated 

in this study.  To gain greater certainty or to perform recharge analysis at a more detailed 

spatial or temporal scale would require the implementation of a more detailed groundwater 

model.   

 

  





 

 

8. Conclusions and Summary 
 

The SWAT model implemented for the Raisin River watershed provides a means to assess 

the hydrology of the basin spatially and temporally.  Modeling was facilitated by existing data 

sources without the need for extensive field data collection.  The methodology described 

permits other regions to implement the model using the same data sources, as well as 

generate information useful in the development of source water protection plans.  The 

specific objectives of this thesis have been achieved:  

1. An implementation of a calibrated and validated SWAT model has been presented.  

A sensitivity analysis of model parameters has been undertaken. 

2. The data used for modeling comes from standardised national data.  This, along with 

the methodology described, would permit this study to be easily replicated for other 

watersheds. 

3. Limitations of the SWAT model, specifically related to snowmelt and groundwater 

predictions, have been described and their impact on the model results quantified.  

The limitations of a the Nash Sutcliffe coefficient to measure model performance is 

also quantified. 

4. The results as presented can be used directly in the development of source 

protection plans 

 

The streamflow predicted at the location of gauge 02MC001 is comparable to observed 

data and thus we have high confidence in the model to predict these values.  Inconsistent 

results at other stations and the lack of other continuous stream flow data sets limit our 

certainty that the model is equally accurate across the watershed.  Other indications that the 

model may not be consistent are the parameter values determined during calibration.  CN 

values needed to be increased substantially to sufficiently account for snowmelt.  This in 

turn led to the substantial increases in available water content values in an attempt to reduce 

runoff during the summer months.    
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The modeling of the snowmelt period is the most significant limitation of the model.  This 

time of year brings the highest flows and greatest flood risks to the region.  It is also the time 

when most of the erosion and sediment movement occurs within the watershed.  

Implementation of a snowmelt process which accounts for other climatic factors, particularly 

solar radiation, would likely improve the performance of the model.  Data for a region near 

to the Raisin River (Dunne and Leopold 1978) shows marked improvement in snowmelt 

predictions when a degree-day approach is replaced with an energy based approach.  A key 

barrier to implementing this would be the need for daily solar radiation values which are not 

currently measured (or predicted) at most Canadian climate stations.  While such values 

might be easily synthesised based on historical conditions, the use of synthetic data may limit 

the ability to validate the model against observed conditions.  Nevertheless, the climate data 

used in this model implementation appears insufficient to accurately predict snowmelt.  

More information would be needed to improve the model performance during the spring 

period.  

Other components of the model are also sensitive to the climate data available.  For 

example, predictions of evapotranspiration highlight the use of two distinct temperature 

gauges.  PET is notably less in the north west region of the basin where data from the 

Avonmore climate station was used.  The sensitivity of PET predictions to temperature 

highlights the need to use accurate climate data for all parts of the watershed.  Just as the 

temperature measurements from the two climate stations are different but highly correlated, 

it may be possible with additional gauges to quantify the temperature variation within the 

basin.  This information would improve the spatial hydrologic predictions of the model.     

The region's potable water is sourced from groundwater.  Proper assessment of the 

groundwater supply would require more detailed knowledge of the aquifer.  In particular, the 

extent to which the aquifer is affected by areas outside of the watershed should be 

investigated.  Any attempt to calibrate or validate the groundwater portion of the model (e.g. 

using well drilling records) would require a more precise groundwater model structure. 

New legislation in Ontario has created a requirement to develop a source protection plan 

which would comprehensively assess this water supply.  The SWAT model as implemented 

provides some of the key information required of a SPP.  The Raisin River watershed was 

described in terms of its surface features, topography and climate.  The SWAT model 
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quantified the runoff, baseflow, recharge and evapotranspiration on a daily basis throughout 

the basin.  We have analysed surface flow at a weekly level and recharge on a monthly basis.  

The impact of land use and soil type on the components of the hydrologic cycle were 

investigated.   

Assessment of surface water supply must consider periods when availability is at its lowest.  

The process by which this and other hydrologic models are often calibrated makes use of a 

single metric to quantify the model performance over the entire period of simulation.  

However, the commonly used Nash Sutcliffe coefficient does not capture the model 

behaviour during low flow periods.  The coefficient may be altered to place greater weight 

on these periods of interest.  Alternately, a greater number of constraints may be placed on 

the model during calibration in order to encourage better model behaviour during low flow 

conditions.  A consistent set of objectives for model performance should be developed if the 

use of watershed models is to be part of the SPP development process.  Consistent 

objectives will help ensure that water quantity assessments are made with a similar level of 

accuracy and certainty throughout the process.   
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Appendix A. Additional Tables 
 

Data Source 
Landsat imagery  

Path 15, Row 29 
1992 May 29  
1999 Nov 01  
2001 Sep 01  
2001 Jun 15 
 

GeoGratis (Natural Resources Canada)  
URL: geogratis.cgdi.gc.ca 

Global Observatory for Ecosystem Services 
(Michigan State University)  

URL: landsat.org 

Digital elevation model 
Map sheet 031G02 
Geographic NAD83 0.75 

arcseconds horizontal, 
1m vertical 
 

National Topographic Database (NTDB) 
1:50000 series, version 3.04, April 26 2001 

URL: www.cits.rncan.gc.ca 

Water layers 
Mapsheet 031G02 

Watercourses  
Waterbodies 
Wetlands 

National Topographic Database (NTDB) 
1:50000 series, version 3.04, April 26 2001 

URL: www.cits.rncan.gc.ca 

Soil data 
Climate normals 
Crop heat units 
Solar radiation 

Canadian Soils Information System (CanSIS) 
database 

URL: sis.agr.gc.ca 

Climate station records 
Cornwall (C6101874) 

45º 1' N, 74º 45' W 
Avonmore (C6100398) 

45º 10'N, 74º 58' W 
 

National Climate Archive (Environment Canada) 
URL: climate.weatheroffice.ec.gc.ca 

Stream flow records: 
Williamstown (02MC001) 
Black River (02MC027) 
Raisin River South branch 

(02MC030) 

Water Survey Canada 
URL: www.wsc.ec.gc.ca 

Table 11 – Data sources 
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Parameter Range Final value 

Curve number (CN) +/- 15% +10% 

Available water content (AWC) +/- 20% +20% 

Surface lag coefficient (SURLAG) 0.0 – 5.0 0.9 

Soil evaporation coefficient (ESCO) 0.1 – 1.0 0.7 

Revap coefficient (REVAP) 0.1 – 0.2 0.15 

Groundwater delay coefficient 0.0 – 10.0 0.6 

Groundwater recession coefficient 0.0 – 0.2 0.05 

Deep aquifer loss fraction 0.0 – 0.5 0.18 

Snowfall temperature [ºC] -1.0 – 2.0 0.6 

Snowmelt temperature [ºC] -1.0 – 2.0 0.8 

Snowpack temperature lag coefficient (TIMP) 0.0 – 1.0 0.7 

December 21 snowmelt rate [mm/(ºC· day)]  0.5 – 3.0 2.1 

June 21 snowmelt rate [mm/(ºC· day)] 0.5 – 3.0 2.3 

Table 12 - Calibration parameters: the ranges used during calibration and the final values 

 

 
 

 

 



 

 

Appendix B. Additional Figures 
 

 

Figure 44 - Annual calibration procedure 
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Figure 45 - Variable adjustment procedure 
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Figure 46 - Seasonal adjustment 
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Figure 47 - Snow calibration 

 

 

 

 

 

 



 

 

Appendix C. Maps 
 

 

Map 1 - Landsat May 29, 1992 
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Map 2 - Landsat November 1, 1999 
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Map 3 - Landsat June 15, 2001 
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Map 4 - Landsat September 3, 2001 
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Map 5 - Elevation and location of gauges 

 

 111



 

 

 

Map 6 - Landuse derived from November 1999 Landsat image 
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Map 7 - Soil types 
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Map 8 - Soil drainage class 
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Map 9 - Average annual runoff per subbasin 
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Map 10 - Average annual evapotranspiration 
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Map 11 - Average annual recharge 

 

 

 

 

 

 

 





 

 

Appendix D. Soil Data 
L’Achigan AHG 

Layer Depth 
(mm) 

AWC 
(mm/mm)

Ksat 
(mm/hr)

Carbon 
(%) 

Clay 
(%)

Silt 
(%)

Sand 
(%) 

Rock 
(%) 

Albedo

1 30 0.14 25.9 11 12 19 69 0 0.05
2 100 0.12 61.0 10 8 9 83 0 0.17
3 230 0.12 61.0 1 2 15 83 0 0.13
4 582 0.12 61.0 1 3 11 86 0 0.13
5 770 0.10 210.0 1 3 10 88 0 0.17
 
Allendale ALL 

Layer Depth 
(mm) 

AWC 
(mm/mm)

Ksat 
(mm/hr)

Carbon 
(%) 

Clay 
(%)

Silt 
(%)

Sand 
(%) 

Rock 
(%) 

Albedo

1 186 0.14 25.9 4 8 26 66 0 0.01
2 384 0.12 61.0 0 7 11 82 0 0.17
3 568 0.20 13.2 0 26 29 46 0 0.17
4 932 0.25 0.9 0 42 45 13 0 0.17
5 1000 0.20 13.2 0 25 28 47 0 0.17
 
Marionville BIV 

Layer Depth 
(mm) 

AWC 
(mm/mm)

Ksat 
(mm/hr)

Carbon 
(%) 

Clay 
(%)

Silt 
(%)

Sand 
(%) 

Rock 
(%) 

Albedo

1 163 0.20 6.8 8 13 54 33 0 0.05
2 367 0.14 25.9 0 3 39 59 0 0.13
3 524 0.20 13.2 0 14 48 38 0 0.17
4 990 0.25 0.9 0 46 45 9 0 0.17
5 1000 0.20 6.8 1 26 55 19 0 0.17
 
Belmeade BMD 

Layer Depth 
(mm) 

AWC 
(mm/mm)

Ksat 
(mm/hr)

Carbon 
(%) 

Clay 
(%)

Silt 
(%)

Sand 
(%) 

Rock 
(%) 

Albedo

1 177 0.23 1.5 20 35 51 14 0 0.01
2 337 0.23 1.5 1 35 51 14 0 0.13
3 697 0.23 1.5 1 34 50 16 0 0.17
4 1000 0.23 1.5 0 35 45 20 0 0.17
 
Carp CRP 

Layer Depth 
(mm) 

AWC 
(mm/mm)

Ksat 
(mm/hr)

Carbon 
(%) 

Clay 
(%)

Silt 
(%)

Sand 
(%) 

Rock 
(%) 

Albedo

1 253 0.23 2.3 6 30 45 25 0 0.09
2 377 0.23 2.3 2 28 46 26 0 0.17
3 633 0.23 1.5 0 34 48 18 0 0.13
4 883 0.23 1.5 0 35 51 14 0 0.13
5 1083 0.23 1.5 0 36 50 14 0 0.17
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Castor CST 

Layer Depth 
(mm) 

AWC 
(mm/mm) 

Ksat 
(mm/hr)

Carbon 
(%) 

Clay 
(%)

Silt 
(%)

Sand 
(%) 

Rock 
(%) 

Albedo

1 168 0.20 6.8 5 13 62 25 0 0.05
2 418 0.20 2.5 2 4 82 14 0 0.17
3 713 0.20 6.8 1 3 63 34 0 0.13
4 903 0.14 25.9 0 7 35 58 0 0.17
5 1067 0.23 2.3 0 36 32 32 0 0.17
 
Eamer EMR 

Layer Depth 
(mm) 

AWC 
(mm/mm) 

Ksat 
(mm/hr)

Carbon 
(%) 

Clay 
(%)

Silt 
(%)

Sand 
(%) 

Rock 
(%) 

Albedo

1 130 0.20 13.2 3 16 38 47 5 0.05
2 250 0.14 25.9 2 12 32 56 5 0.09
3 460 0.20 13.2 1 11 39 51 15 0.05
4 580 0.20 13.2 0 20 37 43 15 0.13
5 1000 0.20 13.2 0 19 33 49 15 0.13
 
Farmington FRM 

Layer Depth 
(mm) 

AWC 
(mm/mm) 

Ksat 
(mm/hr)

Carbon 
(%) 

Clay 
(%)

Silt 
(%)

Sand 
(%) 

Rock 
(%) 

Albedo

1 134 0.20 13.2 3 20 39 41 5 0.09
2 376 0.14 25.9 2 12 31 57 15 0.13
3 797 0.20 13.2 1 11 39 50 95 0.17
4 931 0.23 2.3 0 28 34 38 95 0.17
5 1000 0.23 2.3 0 28 34 38 95 0.17
 
Grenville GVI 

Layer Depth 
(mm) 

AWC 
(mm/mm) 

Ksat 
(mm/hr)

Carbon 
(%) 

Clay 
(%)

Silt 
(%)

Sand 
(%) 

Rock 
(%) 

Albedo

1 136 0.14 25.9 3 15 33 52 5 0.05
2 235 0.14 25.9 2 12 33 55 5 0.17
3 461 0.20 13.2 1 10 39 51 5 0.09
4 657 0.20 13.2 0 12 40 47 15 0.09
5 841 0.14 25.9 0 9 32 59 15 0.13
 
Kars KRS 

Layer Depth 
(mm) 

AWC 
(mm/mm) 

Ksat 
(mm/hr)

Carbon 
(%) 

Clay 
(%)

Silt 
(%)

Sand 
(%) 

Rock 
(%) 

Albedo

1 180 0.14 25.9 3 9 26 65 5 0.09
2 335 0.14 25.9 1 11 22 67 5 0.13
3 530 0.12 61.0 2 6 15 79 5 0.09
4 1000 0.10 210.0 1 2 9 89 20 0.13
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Lyons LYS 

Layer Depth 
(mm) 

AWC 
(mm/mm)

Ksat 
(mm/hr)

Carbon 
(%) 

Clay 
(%)

Silt 
(%)

Sand 
(%) 

Rock 
(%) 

Albedo

1 184 0.14 25.9 6 9 21 71 15 0.01
2 342 0.14 25.9 1 7 21 73 15 0.13
3 746 0.14 25.9 0 8 30 62 15 0.17
4 1000 0.14 25.9 0 7 34 59 15 0.17
 
Morrisburg MBG 

Layer Depth 
(mm) 

AWC 
(mm/mm)

Ksat 
(mm/hr)

Carbon 
(%) 

Clay 
(%)

Silt 
(%)

Sand 
(%) 

Rock 
(%) 

Albedo

1 150 0.23 2.3 2 34 33 33 5 0.09
2 250 0.23 2.3 1 34 33 33 5 0.09
3 380 0.23 2.3 0 34 33 33 5 0.09
4 1000 0.23 2.3 0 34 33 33 15 0.17
 
Matilda MTD 

Layer Depth 
(mm) 

AWC 
(mm/mm)

Ksat 
(mm/hr)

Carbon 
(%) 

Clay 
(%)

Silt 
(%)

Sand 
(%) 

Rock 
(%) 

Albedo

1 142 0.20 13.2 4 14 35 51 5 0.13
2 240 0.14 25.9 1 6 33 61 5 0.13
3 401 0.20 13.2 1 13 36 51 5 0.13
4 617 0.14 25.9 0 8 30 62 15 0.13
5 880 0.14 25.9 0 6 31 62 15 0.17
 
Mountain MUA 

Layer Depth 
(mm) 

AWC 
(mm/mm)

Ksat 
(mm/hr)

Carbon 
(%) 

Clay 
(%)

Silt 
(%)

Sand 
(%) 

Rock 
(%) 

Albedo

1 195 0.12 61.0 2 6 12 82 0 0.09
2 313 0.12 61.0 1 4 9 87 0 0.17
3 493 0.10 210.0 0 4 8 89 0 0.17
4 653 0.23 2.3 0 32 37 31 0 0.17
5 970 0.18 4.3 0 29 23 49 0 0.17
 
North Gower BDO 

Layer Depth 
(mm) 

AWC 
(mm/mm)

Ksat 
(mm/hr)

Carbon 
(%) 

Clay 
(%)

Silt 
(%)

Sand 
(%) 

Rock 
(%) 

Albedo

1 150 0.23 2.3 8 32 38 30 0 0.05
2 326 0.25 0.9 1 41 40 19 0 0.13
3 567 0.28 0.6 0 44 36 20 0 0.13
4 686 0.25 0.9 0 53 40 7 0 0.17
5 1000 0.28 0.6 0 54 37 10 0 0.17
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North Gower NGW 

Layer Depth 
(mm) 

AWC 
(mm/mm) 

Ksat 
(mm/hr)

Carbon 
(%) 

Clay 
(%)

Silt 
(%)

Sand 
(%) 

Rock 
(%) 

Albedo

1 182 0.20 6.8 4 27 51 22 0 0.05
2 424 0.23 2.3 1 31 46 23 0 0.13
3 628 0.23 2.3 0 38 40 22 0 0.13
4 924 0.23 1.5 0 36 44 19 0 0.17
5 1000 0.23 1.5 0 36 44 20 0 0.17
 
Osnabruck OBK 

Layer Depth 
(mm) 

AWC 
(mm/mm) 

Ksat 
(mm/hr)

Carbon 
(%) 

Clay 
(%)

Silt 
(%)

Sand 
(%) 

Rock 
(%) 

Albedo

1 250 0.28 0.6 8 48 37 15 5 0.01
2 400 0.23 1.5 0 36 50 14 5 0.17
3 1000 0.23 1.5 0 36 50 14 20 0.17
 
Osgoode OGO 

Layer Depth 
(mm) 

AWC 
(mm/mm) 

Ksat 
(mm/hr)

Carbon 
(%) 

Clay 
(%)

Silt 
(%)

Sand 
(%) 

Rock 
(%) 

Albedo

1 239 0.20 13.2 5 22 36 43 0 0.09
2 523 0.20 13.2 0 20 36 44 0 0.17
3 939 0.20 13.2 0 24 41 35 0 0.13
4 1000 0.20 13.2 0 23 45 32 0 0.13
 
Organic ORG 

Layer Depth 
(mm) 

AWC 
(mm/mm) 

Ksat 
(mm/hr)

Carbon 
(%) 

Clay 
(%)

Silt 
(%)

Sand 
(%) 

Rock 
(%) 

Albedo

1 537 0.20 2.5 50 25 50 25 0 0.1
2 1059 0.20 2.5 50 25 50 25 0 0.1
3 1401 0.20 2.5 50 25 50 25 0 0.1
4 1600 0.20 2.5 50 25 50 25 0 0.1
 
Uplands UPD 

Layer Depth 
(mm) 

AWC 
(mm/mm) 

Ksat 
(mm/hr)

Carbon 
(%) 

Clay 
(%)

Silt 
(%)

Sand 
(%) 

Rock 
(%) 

Albedo

1 120 0.10 210.0 4 5 7 88 0 0.05
2 185 0.12 61.0 2 4 10 87 0 0.13
3 295 0.10 210.0 1 2 7 92 0 0.13
4 528 0.10 210.0 1 2 3 95 0 0.13
5 780 0.10 210.0 0 2 2 96 15 0.13
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Wolford WFD 

Layer Depth 
(mm) 

AWC 
(mm/mm)

Ksat 
(mm/hr)

Carbon 
(%) 

Clay 
(%)

Silt 
(%)

Sand 
(%) 

Rock 
(%) 

Albedo

1 150 0.23 2.3 4 34 33 33 10 0.01
2 225 0.23 2.3 2 34 33 33 5 0.09
3 400 0.23 2.3 1 34 33 33 15 0.05
4 500 0.23 2.3 0 34 33 33 15 0.09
5 1000 0.23 2.3 0 34 33 33 15 0.17
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