
Quality-of-Service Routing for Voice-over-IP
in Service Overlay Networks

Hong Li

Department of Electrical & Computer Engineering
McGill University
Montreal, Canada

November 2009

A thesis submitted to McGill University in partial fulfillment of the requirements for the
degree of Doctor of Philosophy.

c© 2009 Hong Li

2009/11/11

i

Abstract

Voice-over-IP (VoIP) becomes more and more popular with the development of service

convergence in the next generation network. This thesis focuses on improving VoIP quality

with application-layer routing in service overlay networks.

Internet end-to-end delay is one of the most important impairments on VoIP quality.

We therefore analyze, model and simulate it to better understand it and thus to discover

potential advantages of routing in service overlay networks.

Based on the investigation of the Internet end-to-end delay, we find that VoIP quality on

a pair of diverse paths is better and more stable than that on a single path. We therefore

propose a novel centralized data fusion approach to search for the best pair of diverse

paths. This method jointly optimizes source routing with adaptive play-out scheduling at

the receiver. It requires transmitting the delay distributions of all the overlay links for

estimating the delay distributions of diverse paths. We propose to transmit only the model

parameters of the link delay distributions to reduce the communication overhead. It is

shown that the best pair of diverse paths can be estimated with a small error.

Nonetheless, the centralized approach is computationally expensive. We therefore pro-

pose an online diverse routing method, which uses distributed learning automata to actively

probe path delays and to determine the best pair of diverse paths for VoIP based on the

state of the learning automata. We have demonstrated the scalability and the optimality

of the approach by simulations, and proven the optimality of the approach using Kushner’s

weak convergence method. VoIP quality has been shown to improve from unsatisfactory

levels to satisfactory levels. In addition, we propose a method to detect and recover from

link failures based on the state of the learning automata. Considerable improvement in link

failure recovery time has been achieved.

In sum, this work demonstrates that the proposed centralized diverse routing approach

is effective to improve VoIP quality in terms of R-factor for small overlay networks, and that

the proposed distributive diverse routing approach together with the link failure detection

scheme provides a scalable, effective and robust solution to VoIP routing for large overlay

networks.

ii

Sommaire

Voix sur IP (VoIP) est un service dont la popularité crôıt avec le développement de la

convergence entre les services dans les réseaux dits de nouvelle génération. Dans cette

thèse, nous nous appliquons à améliorer la qualité des services de VoIP grâce au routage

au niveau la couche application en utilisant des réseaux dédiés.

Dans cette thèse, nous procédons à l’étude des délais de bout en bout du réseau Internet,

qui sont le facteur impactant le plus sur la qualité de la VoIP. Nous analysons, modelons

et synthétisons des traces de délais de bout en bout, afin de découvrir un potentiel intérêt

relatif à leur utilisation dans le cadre du routage au niveau le la couche application utilisant

des réseaux dédiés.

En nous appuyant sur l’étude des traces de délais de bout en bout, nous montrons

que la qualité de la VoIP peut être améliorée et stable en utilisant un couple de routes

diverses, au lieu d’une seule route. Nous donc proposon un centre de fusion de données qui

utilise notre approche pour trouver le meilleur couple de routes diverses. Cette méthode

optimise le routage source conjointement avec adaptation play-out au niveau du récepteur.

Il faut transmettre des délais des-dites distributions de tous les liens au niveau le la couche

application pour estimer des distributions de tous les couples de routes possibles. Nous

proposons de transmettre uniquement les paramètres du modèle de la distribution des

délais, afin de réduire des coûts de communication. Nous prouvons que cette méthode peut

trouver le meilleur couple de routes à une faible erreur.

Comme la technique centralisée requiert une grande puissance de calcul, nous proposons

une solution de routage divers extensible en ligne, qui utilise l’apprentissage distribué au-

tomata activement sonde des délais de bout en bout et détermine la meilleure paire de

diverses voies de VoIP basé sur l’état de l’apprentissage d’automates. Nous avons dé-

montré l’extensibilité et l’optimalité de cette approche par les simulations, et démontré

l’optimalité de l’approche par l’utilisation de la méthode de convergence faible de Kushner.

Nous montrons que la qualité de la VoIP est ameliorée, passant d’une qualité inacceptable à

une qualité acceptable. De plus, nous proposons une méthode pour détecter les défaillances

du lien et de sa récupération sur la base de paramètres de l’apprentissage d’automates, qui

permettent une réduction considérable du temps de récupération à la suite de la défaillance

d’un lien.

En somme, cette thèse démontre que la proposition de la diversité de routage centralisé

iii

approche est efficace pour améliorer la qualité de la VoIP en termes de R-facteur pour

les petits réseaux de la couche application, et que l’apprentissage de un couple de routes

diverses avec des méthodes de détection de défaillance offre un extensible, efficace et robuste

solution pour services de VoIP grâce au grands réseaux de la couche application.

iv

Acknowledgments

I would like to express my gratitude to my supervisors, Prof. Lorne Mason and Prof.

Michael Rabbat, for their guidance over the course of my studies at McGill University.

Through their wisdom, they have provided me with insights and feedback that have proven

to be invaluable; I am greatly appreciative of their contributions. I also thank the other

members of my Ph.D. committee, Prof. Mark Coates, Prof. Peter Kabal and Prof. Muthu-

cumaru Maheswaran. Financial support for this thesis was provide by Prof. Lorne Mason

and Prof. Michael Rabbat via grants from NSERC. I wish to thank them for their assistance.

I would like to recognize the graduate students in the McGill ECE department for their

help and friendship. I would like to thank my colleagues Yvan Pointurier and Boris Ore-

shkin, who have been a sounding board for discussion. In particular, I thank Dr. Yvan

Pointurier and my friend JuJing Tan for proofreading this manuscript. Further thanks to

Yvan Pointurier for translating the abstract. Likewise, I thank my fellow lab members

Frederic Thouin, Fariba Heidari and Alex Lam and Mohammed Ghanassi for their kind

support and discussion. I would also like to thank my dear friend Dr. Huiqun Deng for

encouraging and supporting me.

I would also like to thank my family for their vital support. My parents always provided

me the love and encouragement to complete my education, and greatly contributed to my

success at McGill. Thanks to Meizheng Jia and Huimin Zeng for their love.

v

Contents

1 Introduction 1

1.1 Background and Big Picture of the Work . 1

1.2 Motivation . 4

1.2.1 End-to-end Delay Analysis, Simulation and Sampling 5

1.2.2 R-factor based Diverse Routing for VoIP: a Centralized Solution . . . 6

1.2.3 Learning Minimum Delay Paths: a Decentralized Solution 6

1.2.4 Online Distributed Diverse Routing for VoIP 7

1.2.5 Link Failure Detection in Service Overlay Networks 7

1.3 Novel Contributions . 8

1.3.1 Analyzing, modeling, simulating and sampling end-to-end delays . . . 8

1.3.2 Improving R-factor with Diverse Routing: a Centralized Approach . . 8

1.3.3 Learning Minimum Delay Paths: a Decentralized Approach 8

1.3.4 Online Distributed Diverse Routing for VoIP 9

1.3.5 Link Failure Detection in Service Overlay Networks 9

1.4 Related Publications . 9

1.4.1 Journal Paper . 9

1.4.2 Report of Invention . 9

1.4.3 Conferences . 10

1.5 Thesis Organization . 10

2 VoIP and its Quality: Background and Related Work 11

2.1 Introduction . 11

2.1.1 Chapter structure . 13

2.2 Voice-over-IP (VoIP) . 13

Contents vi

2.2.1 R-factor: VoIP Quality Measure . 13

2.2.2 VoIP Quality Degradation with Mouth-to-ear Delay and Losses . . . 15

2.2.3 Adaptive Play-out vs. Fixed Play-out Scheduling 17

2.3 QoS Routing in Service Overlay Networks 20

2.3.1 QoS Routing in Service Overlay Networks 21

2.3.2 Single Best Path Routing . 21

2.3.3 Diverse Routing . 25

2.3.4 Minimum Delay Routing . 28

2.3.5 Reinforcement Learning (RL) for Adaptive Routing 28

2.4 VoIP in Service Overlay Networks . 29

2.5 Summary . 31

3 End-to-end Delay Trace Analysis, Simulation and Sampling 32

3.1 Introduction . 32

3.1.1 Chapter Structure . 33

3.2 Analysis of real end-to-end delay traces . 33

3.2.1 The sample mean and the sample standard deviation of a delay trace 36

3.2.2 Probability distribution . 39

3.2.3 Relationship between the minimum delay and the geographical distance 40

3.2.4 Autocorrelation . 41

3.2.5 Cross-covariance between delay traces 43

3.3 End-to-end Delay Trace Simulation with Fluid Network Model 43

3.3.1 Fluid Network Model . 45

3.3.2 Network Setting . 47

3.3.3 Delay simulation results . 49

3.4 Sampling End-to-end Delay Traces . 57

3.4.1 Introduction . 57

3.4.2 Bi-objective Optimization Problem 58

3.4.3 Solution to the Bi-objective Optimization Problem 59

3.4.4 Experimental results . 62

3.5 Summary . 65

Contents vii

4 Improving R-factor with Diverse Routing: A Centralized Approach 66

4.1 Introduction . 66

4.1.1 Chapter Structure . 68

4.2 Selecting the Optimal Pair of Paths for VoIP 68

4.2.1 Problem statement . 68

4.2.2 Solution: Optimal path pair selection for VoIP 69

4.2.3 Simulation . 76

4.3 Summary . 78

5 Learning Minimum Delay Paths: A Distributed Approach 81

5.1 Introduction . 81

5.1.1 Chapter Structure . 81

5.2 Architecture . 82

5.3 Active Probing and Learning (APL) . 83

5.3.1 Preliminary: Learning Automaton . 84

5.3.2 Active Probing Process . 85

5.3.3 Active learning algorithm . 86

5.3.4 Initialization of the Learning Automata 88

5.3.5 Hop-by-hop learning . 89

5.4 Experiments . 95

5.4.1 3-node network . 95

5.4.2 Experiment in a 50-node model of the AT&T backbone network . . . 98

5.5 Probing Overhead Analysis . 103

5.5.1 Probing overhead for hop-by-hop learning 104

5.5.2 Probing overhead for end-to-end learning 108

5.5.3 Remarks . 110

5.6 Convergence of the cross-correlation learning automata 111

5.6.1 Proof of Convergence . 111

5.6.2 Practical Considerations . 113

5.7 Summary . 114

6 Online Distributed Diverse Routing for VoIP 115

6.1 Introduction . 115

Contents viii

6.1.1 Chapter Structure . 116

6.2 Diverse routing for VoIP in SONs . 116

6.2.1 Problem Formulation . 116

6.2.2 Approximation Problem . 117

6.3 Methodology for Determining the Optimal Diverse Paths 118

6.4 Determining the Primary and Secondary Optimal Paths 120

6.4.1 Determine and Track the Primary Optimal Paths for Routing VoIP

Calls . 120

6.4.2 Determine and Track the Secondary Optimal Paths for Routing VoIP

Calls . 122

6.5 Resiliency against Link Failures . 126

6.5.1 Link failure detection . 126

6.5.2 Modification to the Primary and Secondary Optimal Path Determi-

nation . 128

6.6 Performance Evaluation . 131

6.6.1 Simulation Results . 131

6.7 Stability Analysis . 140

6.8 Implementation Considerations . 142

6.9 Overlay performance comparison with BGP and RON for VoIP routing . . . 142

6.10 Summary . 143

7 Conclusion 145

7.1 End-to-end delay analysis, simulation and sampling 145

7.2 R-factor based diverse routing: a centralized approach 146

7.3 Learning minimum delay paths and diverse paths: a distributed approach . . 146

7.4 Remarks and future work . 147

A Some properties related to the active learning scheme 149

A.1 ODE approximation of the cross-correlation learning algorithm 149

A.2 Learning gain . 151

A.3 Some properties of the random paths determined by learning automata . . . 152

B Nodes in the 50-node model of AT&T backbone network 154

Contents ix

C End-to-end delay synthesis 157

D Analytical end-to-end Delay computation for VoIP SONs 160

References 162

x

List of Figures

1.1 A general setting for VoIP [1]. It shows that the Internet, instead of the

traditional telephone network, carries voice calls between computers and

telephones. 2

1.2 Service Overlay Network. 4

2.1 VoIP penetration in U.S. and Europe [2]. It shows the increasing trend of

VoIP subscribers as percent of households in U.S. and Europe from 2005 to

2011. 11

2.2 A simple VoIP system. Voice signals are encoded and packetized before

being sent to the Internet via a VoIP gateway. The packetized voice goes

through a path selected by the Internet routing protocol to reach its destina-

tion/receiver. At its receiver, the voice packet is buffered at the play-out/de-

jitter buffer until the time scheduled to play it out (i.e. de-packetization and

decoding). 12

2.3 Quality of voice rating V.S. R-factor and MOS values [3] 15

2.4 R-factor as a function of packet delay and loss for the codec G.711. 16

2.5 Fixed play-out scheduling vs. Adaptive play-out scheduling. 19

2.6 Integrate call signaling and voice traffic transmission in the service overlay

network . 29

List of Figures xi

2.7 Call signaling and call transmission process. The “Calling” message refers

to the initialization of call establishment. The “Trying” message indicates

the gateway is trying to connect to the callee. When the callee picks up

the phone, an “OK” message will be sent to the caller, and the caller replies

with a “Ack” message to complete the call establishment process. Then the

conversation between the caller and callee can start. When one side hangs

up the phone call, a “Disconnect” message is sent to the other side and the

other side responds with a “Disconnect” message to end the voice session. . . 30

3.1 The minimum, 25% quantile, median, mean, 99% quantile and the maximum

of the end-to-end delay measurements on 15 overlay links. 34

3.2 Scatter plot for S and (x̄−D), and the linear fit to S
x̄−D

on 15 different links 35

3.3 Representative network delay traces for links with random delay spikes . . . 37

3.4 Representative network delay traces for links with long delay spikes. 38

3.5 Cumulative Distributions Function (CDF) fitted to 100 queuing delay sam-

ples (the propagation delay has been removed from the measured network

delay samples). 39

3.6 Scatter plot for the minimum delay D and the geographical distance of 15

links. 41

3.7 Network delay measurements showing weak or no autocorrelation. 42

3.8 Cross covariance coefficient between two link delay traces. 44

3.9 Delay traces of link 9 (top) and link 13 (bottom). The cross-covariance

between the two delay traces is shown in Fig. 3.8. 45

3.10 Fluid network model. 46

3.11 50-node model of AT&T backbone network. 48

3.12 Queuing delay trace on a link (between two major cities located in the Cen-

tral time zone and the Eastern time zone respectively) at GMT 21:00. 51

3.13 Queuing delay trace on a link (between two major cities located in the Cen-

tral time zone and the Eastern time zone respectively) at GMT 16:00. 52

3.14 Queuing delay trace on a link (between two major cities located in the East-

ern time zones) at GMT 21:00. 53

3.15 Cross covariance for the queuing delays on two links at GMT 21:00. 54

3.16 Cross covariance for the queuing delays on two links at GMT 16:00. 54

List of Figures xii

3.17 Queuing delay traces for a link during the warm-up period with different

initial network states. 55

3.18 Round Trip Time for a source-destination pair at GMT 21:00 56

3.19 The autocorrelation for the delay trace in Fig. 3.18 56

3.20 Total queuing delay on an end-to-end path and its distribution fitting to a

Gamma distribution. 57

3.21 Trade-off between sampling frequency and sampling accuracy. 63

3.22 Network delay sampling with the proportional fair sampling frequency. . . . 64

4.1 Diverse routing in service overlay networks. 67

4.2 Illustration of the expected end-to-end delays when adaptive play-out schedul-

ing is adopted at the receiver. 70

4.3 Illustration of the direct and concatenated paths. 71

4.4 Illustration of the centralized data fusion based diverse routing method. . . . 74

4.5 R-factor for the best R-path versus that for the direct path between two

service gateways over the whole measurement period (277.5 hours). 76

4.6 R-factor calculated over two different periods for the direct path , the best-R

path and the best-R combination of two paths. 77

4.7 R-factor on the optimal pair of paths vs. R-factor on the direct path for a

source-destination pair. 79

4.8 Difference between the R-factor on the real optimal pair of paths and that

on the selected optimal pair of paths. 79

4.9 Difference between the average R-factor on the real optimal pair of paths

and that on the selected optimal pair of paths for all the source-destination

pairs in the 7-node service overlay network. 79

5.1 Proposed network architecture for VoIP service provision in overlay networks. 82

5.2 Learning automaton. 84

5.3 Hop-by-hop learning of the minimum delay path from source S to destination

D. The probability distribution parameters of each learning automaton are

initialized with the uniform initialization. 85

5.4 Hop-by-hop learning of the minimum delay path from source node S to des-

tination node D. 90

List of Figures xiii

5.5 Flow chart for hop-by-hop learning algorithm. This process is started when-

ever a probing packet is received. 91

5.6 End-to-end learning of the minimum delay path from S to D. The parame-

ters of the learning automata at each node are initialized with the uniform

initialization method defined in section 5.3.4. 92

5.7 End-to-end learning of the minimum delay path from source S to destination

D. The learning automata are initialized using the geographical location

aware initialization method. 93

5.8 Flow chart for end-to-end learning algorithm. This process is started when-

ever a probing packet is received. 94

5.9 Fully connected 3-node network . 95

5.10 The queuing delay on a heavily loaded link (1,2). 96

5.11 The evolution of the parameters of the learning automata when the learning

gain g = 0.001. 97

5.12 The average delay for all source-destination pairs when the learning gain

g = 0.001 (on the left) and g = 0.01 (on the right). 98

5.13 Average RTT measured by the probing packets between all source-destination

pairs, versus that on the minimum delay paths and that on the minimum

hop paths. 99

5.14 Comparison of the average probing delay for three different routing: optimal

(i.e. minimum delay path), minimum hop (i.e. shortest hop path), learned

(i.e. the path determined by the distributed learning automata). 102

5.15 This figure combines the absolute error for the 10, 15, 20 and 25 node overlay

networks. The absolute error is the difference between the average probing

delay on the paths determined by the learning automata and that on the

minimum delay paths. 103

5.16 Average RTT measured by the probing packets between all source-destination

pairs, versus that on the minimum delay paths and that on the minimum

hop paths for a 15-node overlay network. 104

5.17 The data format of a probing packet for hop-by-hop learning. 105

5.18 Average probing and routing traffic at each node. 109

List of Figures xiv

6.1 Components for learning the primary-optimal and secondary-optimal next-

hop nodes for VoIP routing. 119

6.2 Illustration of the primary-optimal path determination: scenario 1. 121

6.3 Illustration of the secondary-optimal path determination: scenario 1. 124

6.4 Illustration of the primary-optimal path determination: scenario 2 125

6.5 Illustration of the secondary-optimal path determination: scenario 2. 125

6.6 Illustration of the primary optimal paths determination when a link (S,D)

fails. 129

6.7 Illustration of the secondary optimal path determination when a link (S,D)

fails. 130

6.8 Illustration of the primary optimal path determination when a link (i, k) fails.130

6.9 Illustration of the secondary optimal path determination when a link (i, k)

fails. 131

6.10 Average R-factor for all the voice calls in the overlay network when there is

no physical link failure. 134

6.11 Average R-factor for all the voice calls in the overlay network when there is

no physical link failure. 135

6.12 R-factor comparison for an example source-destination pair. 136

6.13 Average R-factor of all the voice calls in the overlay network for 20 different

scenarios (with random link failures). 138

6.14 The average delay over all source-destination pairs as a function of time. . . 141

6.15 Voice packet format . 142

C.1 Real delays vs. synthetic delays . 159

xv

List of Tables

2.1 Codec Information [4] . 14

2.2 Parameter values for computing Ief (`) . 14

2.3 Internet outage and link failure characteristics 20

3.1 KL-divergence and the L1 norm of the difference between the empirical PDF

and the fitted distribution. 39

3.2 Algorithm for Capacity Assignment . 50

6.1 Abbreviations for different routing methods simulated in this section. 132

6.2 Average R-factor over the whole simulation time for all the source-destination

pairs when there is no link failure. Note that the number after each ± refers

to standard deviation of R-factor. 133

6.3 Average R-factor over the whole simulation time for all source-destination

pairs when there is a physical link failure. Note that the number after each

± refers to standard deviation of R-factor. 135

6.4 Average R-factor for six routing methods: CDR, APL2, APL1, APL1+SP,

TaoPS, SHP, when there is a random link failure. Note that the number

after each ± refers to standard deviation of R-factor. 138

6.5 Average Link Failure Detection for APL1 and APL1+LFD. Note that the

number after each ± refers to standard deviation of R-factor. 139

6.6 Overlay Performance Comparison. “+” means “good”, “−” means “bad”. . . . 143

B.1 Nodes in the 50-node AT&T backbone network in Fig. 3.11 154

1

Chapter 1

Introduction

This work investigates quality-of-service routing methods for improving Voice-over-IP qual-

ity. In this chapter, I first present the background and the big picture of the thesis work.

Then I show the motivation for each part of the work. After that, my novel contributions

and related publications are also presented.

1.1 Background and Big Picture of the Work

Voice-over-IP has its origins in the early days of packet switching when in 1973 the Network

Voice Protocol (NVP) specification was defined in RFC 741 [5]. NVP was implemented

in the ARPANET, the ancestor of today’s Internet, however service quality was not satis-

factory. From its early origins to the present day, packet voice quality is impaired by the

statistical multiplexing inherent in packet switching, whereby random delay is introduced

as packets traverse routers or packet switches. To remove this jitter in the arrival times of

voice packets at the receiver, it is necessary to buffer and then read the packets out in a

manner that preserves the constant bit rate voice packet stream had at its point of origin.

Some of the mechanisms considered are to mitigate delay and loss impairments within the

network while other mechanisms reside at the receiver. Before describing the mechanisms

in detail, we briefly review the diversity of approaches employed to transport voice packets.

With the appearance of the global Internet in the mid-1990s, hobbyists experimented with

sending voice packets over the Internet and in 1994 the first commercial service was offered

by Vocaltec Inc. [6]. Following that event many different implementations of VoIP have ap-

peared. A general setting for Voice-over-IP is shown in Fig. 1.1, where the Internet, instead

2009/11/11

1 Introduction 2

Fig. 1.1 A general setting for VoIP [1]. It shows that the Internet, instead of
the traditional telephone network, carries voice calls between computers and
telephones.

of the traditional telephone network, carries voice calls between computers and telephones.

Many large corporations introduced VoIP in their private Intra-nets using RSVP [7] and

IntServ [8] to provide good quality of service among their global branch offices. While the

Quality of Service (QoS) is acceptable as a result of the bandwidth reservation inherent

in the IntServ model, the approach does not scale to the global Internet. DiffServ [9] was

proposed as a scalable alternative to provide differentiated service over the Internet and

many Internet Service Providers (ISPs) have adopted the complementary combination of

DiffServ-aware MPLS [10] in their networks. This approach does not employ signalling and

bandwidth reservation associated with IntServ and thereby avoids the scalability problem

at the expense of relinquishing QoS guarantees. DiffServ relies on priority queueing, and

traffic engineering, including capacity provisioning and routing to provide service quality,

which by its very nature relies on accurate forecasts of traffic demand and timely capacity

provisioning, a very challenging task in today’s environment, where new services appear

overnight.

In addition to the challenge of good traffic engineering there is a more fundamental issue

which impedes high quality end-to-end QoS necessary for toll quality VoIP. The current

Internet is structured as a hierarchy of interconnected Autonomous Systems (ASes), where

1 Introduction 3

no single ISP has control over the end-to-end service quality. Indeed a given VoIP call might

originate within a wireless LAN offering only a best effort service (no QoS guarantees),

then transit a local ISP before reaching a tier one or backbone ISP which implements

MPLS/DiffServ, before going down the hierarchy of local ISP, and perhaps an ADSL loop

and then reaching a standard fixed telephone. Packet delay, loss and jitter are introduced

within each segment of the end-to-end path with no one being responsible for the end-to-end

quality of the call.

Apart from variations in quality resulting from statistical multiplexing, abrupt degra-

dation in quality also occurs as a result of link and node failures on the transmission path,

as well as path changes invoked by the Internet’s routing protocols [11]. This is the cur-

rent state of affairs and in spite of the long sought goal of constructing an Integrated QoS

enabled Internet, this vision still remains to be realized.

Many traditional carriers and cable operators offer VoIP over their MPLS DiffServ-

aware networks, however off-net calls can still encounter quality impairments. Apart from

the large players in the market place, there have recently been a spate of phone card

operators who provide VoIP service to their customers by having them dial, for example, a

toll-free number which connects a circuit switched voice call to a gateway, where PCM to

packet conversion takes place before the call enters the public Internet.

While the initial attraction of VoIP was inexpensive or free calling, there are now nu-

merous other benefits associated with VoIP, since it is much easier to create new multimedia

service combinations if every component service employs the IP protocol. Indeed this is a

primary driver of service convergence long sought by network operators. When VoIP was

in its infancy, users were prepared to tolerate poor quality as the service was effectively

free, however as more and more voice traffic is being transported as VoIP, customers now

demand toll quality service.

As the current Internet cannot guarantee Quality-of-Service for VoIP, hence, an alter-

native approach, service overlay network has been proposed to provide end-to-end quality-

of-service as shown in Fig. 1.2.

Service overlay networks are logical networks formed by connecting nodes/gateways via

logical links/tunnels through the underlying network, as shown in Fig. 1.2. The key to

improve VoIP quality via service overlay networks is to choose the paths that provide the

best VoIP quality from all the paths that are provided by the virtual network. The goal of

this work is to invent new routing methods to improve VoIP quality.

1 Introduction 4

Fig. 1.2 Service Overlay Network. The overlay nodes/gateways are inter-
connected via virtual connections as shown by the dashed lines.

The challenge for selecting the best paths for VoIP is to determine which paths provide

the best R-factor. A number of previous work [12–17] has shown that diverse routing,

i.e. sending redundant voice packets to two diverse paths, can improve VoIP quality and

improve robustness against link failures. However, the methods for finding the best diverse

paths have been heuristics and no optimal solution is available. Moreover, the previous

diverse routing approaches do not scale with network sizes and are thus inapplicable to

large overlay networks.

This work proposes a new method to select the best diverse paths for VoIP and we

evaluate this method based on modeling and simulating end-to-end delays of each path.

We also propose a scalable distributed routing approach to adaptively learn the best pair

of diverse paths. In addition, we propose a distributive scheme to detect and recover from

link failures.

1.2 Motivation

In this thesis, I present my work on the fundamental study of real end-to-end delay measure-

ments, the design and simulation of a centralized VoIP QoS routing approach for small-scale

service overlay networks, the proposal and experiment of a distributed routing approach

for choosing the single best paths and a pair of diverse paths in large-scale service overlay

networks. In the following, I am going to first present the motivation for these works.

1 Introduction 5

1.2.1 End-to-end Delay Analysis, Simulation and Sampling

End-to-end delay is one of the most important impairments for VoIP quality. It is also

an important measure of network performance, useful for network diagnosis, application

performance optimization, and network design. However, it is expensive to measure end-to-

end delays for all the source-destination pairs in a rapidly growing large network. Nowadays,

there are over 53247 Autonomous Systems (ASes) [18] and the number keeps increasing

each year. To measure end-to-end delays for such a large network and to store all the

measurements require a large amount of monitoring facility and storage space. Hence, it is

very important to be able to reduce the amount of measurements and storage, while still

maintaining a good understanding of the end-to-end performance.

To reduce the amount of monitoring and thus to reduce the amount of storage required,

many work on compressed monitoring and network tomography [19–22] has been inves-

tigated, which infer network performance based on a reduced amount of measurement.

Network performance characteristics inferred with these techniques are mostly statistics of

the network performance and are useful for network diagnosis.

However, for the purpose of real-time application performance optimization, which usu-

ally involves measuring end-to-end delay for each application packet, the previous network

tomography or compressed monitoring techniques are not sufficient to infer end-to-end de-

lay time series. Hence, in this case, an approach that can synthesize or infer end-to-end

delay time series is required.

Suppose we only store the mean value of an end-to-end delay time series and that the

other statistics of the end-to-end delay time series are missing, is it possible to reconstruct or

synthesize the end-to-end delay time series? If this can be done, it means only the mean of

the end-to-end delays needs to be stored, which will significantly reduce the amount of stor-

age for end-to-end delay measurements. Another approach is to find an optimal sampling

rate for end-to-end delays, such that the sampling rate guarantees a maximum sampling

accuracy at a minimum sampling cost. This approach also reduces network monitoring and

storage, while still allowing reconstruction of the end-to-end delay time series. Hence, the

purpose of understanding, simulating and sampling end-to-end delay time series forms the

motivation of this work on end-to-end delay analysis, simulation and sampling. Chapter 3

will present the details of the investigations on end-to-end delay analysis, simulation and

sampling.

1 Introduction 6

1.2.2 R-factor based Diverse Routing for VoIP: a Centralized Solution

With the analysis of real end-to-end delay time series in the fundamental study just men-

tioned, we observe triangle inequality violations [23], i.e. the delay on an alternative path

through an intermediate hop not on the shortest-path route can be shorter than that on a

direct path (a direct path between a source-destination pair is the path determined by the

underlying network). Hence, there are benefits to route voice packets via the alternative

paths instead of the direct paths. Selecting the best alternative paths requires measuring

overlay link performances and computing the paths that provide the best VoIP quality. A

standard measure for VoIP quality, R-factor is then chosen as the routing metric.

In previous work [12–15], diverse routing, i.e. sending redundant voice packets to two

diverse paths, has suggested successful quality improvement for VoIP in overlay networks.

However, the methods for finding the best diverse paths have been heuristics and no optimal

solution is available. Hence, we are motivated to choose the best pair of paths to maximize

R-factor for VoIP calls, which is very challenging because R-factor is related to both the

routing path and the packet play-out scheduling scheme [16] (i.e. the scheme to determine

when a packet is decoded and played out at the receiver). In Chapter 4 we tackle this

problem with a novel centralized method to estimate the diverse paths with the best R-

factor, which shows improved VoIP quality.

1.2.3 Learning Minimum Delay Paths: a Decentralized Solution

In the centralized approach above, estimating R-factor for all the possible pairs of paths is

computationally expensive, which limits its applicability to large overlay networks. Hence,

we are motivated to design a distributed routing approach that is scalable with network

sizes, to provide the best quality for VoIP calls in service overlay networks. In this dis-

tributed scheme, no routing update message or overlay link performance characteristics are

communicated among the overlay nodes. Routing decisions are made locally at each overlay

node.

As VoIP quality is sensitive to end-to-end delay, we choose paths to minimize end-to-end

delays. As previous minimum delay routing methods [24–28] are usually very complex, our

approach is also motivated to have low computational complexity. In sum, the desirable

features of our approach include low computational complexity, distributed routing decision

making, scalability with network sizes and adaptivity to dynamic network environments.

1 Introduction 7

In Chapter 5, we present this completely distributed approach. It is able to discover the

minimum delay paths in around 5 seconds if the probing interval is 5 ms, and the method

scales well with network sizes.

1.2.4 Online Distributed Diverse Routing for VoIP

Section 1.2.2 has mentioned a centralized approach to determine the best pair of diverse

paths for VoIP in small-scale service overlay networks. For large-scale service overlay net-

work, since the distributed approach mentioned in Section 1.2.3 is able to learn the min-

imum delay paths and scalable to network sizes, we extend it to learn the best pair of

diverse paths. However, this online distributed diverse routing introduces new challenges,

for example, how to guarantee link disjointness between the diverse paths distributively

and adaptively to network dynamics. No distributive approach has been seen dealing with

such challenges. We tackle this issue with a max-rule based approach, detailed in Chapter

6, to choose the best pair of diverse paths that have minimum delays and maximum link

disjointness. Improved VoIP quality and robustness against link failures on the selected

diverse paths are also shown in Chapter 6.

1.2.5 Link Failure Detection in Service Overlay Networks

In the current best-effort Internet, all the packets on a link are dropped if that link fails.

Overlay networks are known to be able to provide better alternate paths to avoid link fail-

ures. For the distributed minimum delay path learning and diverse path learning methods

mentioned in Sections 1.2.3 and 1.2.4, we are also motivated to propose a distributed link

failure detection algorithm to provide robustness against link failures. For VoIP sessions,

it is an important objective to detect and recover from a link failure in 2 seconds to avoid

sessions being dropped. If we recover in less than 2 seconds the VoIP user will only ex-

perience a click but the session continues [29]. It will be shown that this objective can be

achieved with the proposed link-failure detection and recovery approach. The detail of this

mechanism is also presented in Chapter 6.

1 Introduction 8

1.3 Novel Contributions

1.3.1 Analyzing, modeling, simulating and sampling end-to-end delays

• Detailed analysis of end-to-end delay traces.

• Suggested ways to synthesize end-to-end delay traces and ways to design the capacity

of a network to simulate realistic delays.

• Proposed a fair sampling solution to resolve the trade-off between the sampling ac-

curacy and the sampling cost.

1.3.2 Improving R-factor with Diverse Routing: a Centralized Approach

• Suggested jointly optimizing routing with adaptive play-out scheduling to choose a

pair of diverse paths that maximizes R-factor for VoIP.

• Proposed to use a centralized data fusion center to estimate R-factor for all the

possible pairs of paths based on the summarized performance characteristics of all

the overlay links.

1.3.3 Learning Minimum Delay Paths: a Decentralized Approach

• Proposed to use distributive learning automata and cross-correlation learning algo-

rithm to learn minimum delay paths distributively. Four variations of this approach

are proposed.

• Simulation results showing the scalability and optimality of the proposed approach.

• Proved the cross-correlation learning algorithm converges to a globally stable user

equilibrium solution by Kushner’s weak convergence method [30] and by finding a

Lyapunov function for end-to-end delays.

• Analyzed the probing overhead for the proposed learning automata based approaches.

1 Introduction 9

1.3.4 Online Distributed Diverse Routing for VoIP

• Proposed to learn a pair of diverse paths for VoIP with the distributive learning

automata based approach above.

• Proposed a max-rule based approach to determine the primary-optimal paths and

the secondary-optimal paths for VoIP based on the state of the distributive learning

automata.

• Suggested ways to choose the secondary-optimal paths to be disjoint to the primary-

optimal paths.

1.3.5 Link Failure Detection in Service Overlay Networks

• Proposed to detect and recover from link failures based on the state of the distributive

learning automata.

• Simulation results showed considerable reduction in link failure recovery time com-

paring to that when the link failure detection mechanism was not applied.

1.4 Related Publications

1.4.1 Journal Paper

• Hong Li, Lorne Mason and Michael Rabbat, “Learning Optimal Diverse Paths for

Voice-Over-IP in Service Overlay Networks: a Distributed, Scalable and Robust So-

lution,” to appear in IEEE Trans. Network and Service Management, 2009.

1.4.2 Report of Invention

• Hong Li, Lorne Mason and Michael Rabbat, “Online Distributed Diverse Routing for

Voice-over-IP in Service Overlay Networks.”, 2009.

1 Introduction 10

1.4.3 Conferences

• Hong Li, Lorne Mason and Michael Rabbat, “Learning minimum delay paths for VoIP

in Service Overlay Networks,” IEEE NCA’08, Jul. 10 - Jul. 12 2008, Cambridge, MA,

USA.

• Hong Li and Lorne Mason, “Optimal multipath routing with adaptive playback

scheduling for VoIP in Service Overlay Networks,” IEEE Sarnoff’08, Apr. 28-Apr. 30,

2008, Princeton, NJ, USA.

• Hong Li and Lorne Mason, “Synthesis of network delays for voice packets in Ser-

vice Overlay Networks,” IEEE/ACM Qshine’07, Aug. 14-Aug. 17, 2007, Vancouver,

Canada.

• Hong Li and Lorne Mason, “Estimation and Simulation of Network Delay Traces for

VoIP in Service Overlay Network,” IEEE ISSSE’07, Jul. 31-Aug. 2, 2007, Montreal,

Canada.

1.5 Thesis Organization

This chapter is the introduction of the whole thesis work. Chapter 2 reviews related work.

Chapter 3 presents our contribution on end-to-end delay analysis, simulation and sampling.

The work on improving R-factor with a centralized diverse routing approach is presented

in Chapter 4. Chapter 5 shows our contribution on learning minimum delay paths with

a distributed approach. The work on online distributed diverse routing and link failure

detection are presented in Chapter 6. Chapter 7 concludes the whole work.

11

Chapter 2

VoIP and its Quality: Background

and Related Work

2.1 Introduction

Fig. 2.1 VoIP penetration in U.S. and Europe [2]. It shows the increasing
trend of VoIP subscribers as percent of households in U.S. and Europe from
2005 to 2011.

As mentioned in Section 1.1, due to low cost and service flexibility of VoIP, the number

of VoIP subscribers has been increasing rapidly over the past few years, and it is expected

to continue increasing in the future, as illustrated in Fig. 2.1. Then the immediate problem

following the increase of VoIP subscribers is how to provide toll-quality voice calls.

2 VoIP and its Quality: Background and Related Work 12

Fig. 2.2 A simple VoIP system. Voice signals are encoded and packetized
before being sent to the Internet via a VoIP gateway. The packetized voice
goes through a path selected by the Internet routing protocol to reach its
destination/receiver. At its receiver, the voice packet is buffered at the play-
out/de-jitter buffer until the time scheduled to play it out (i.e. de-packetization
and decoding).

2 VoIP and its Quality: Background and Related Work 13

Fig. 2.2 illustrates a simple VoIP system. For a toll-quality VoIP call, ITU G.114

recommends the mouth-to-ear delay, which includes the delays for voice encoding and

packetization, the network delay and the play-out delay at the receiver, to be less than 150

ms. The mouth-to-ear loss, which includes the network loss and the play-out loss at the

receiver, is recommended to be less than 1%, The delay jitter is expected to be as small

as possible. However, the current Internet is unable to provide such Quality-of-service for

Voice-over-IP which leads to our investigation on Quality-of-service routing in Chapters 4,

5 and 6. Before describing our work on VoIP QoS routing in the following chapters, we

first review the background on VoIP and present related work on VoIP QoS routing in this

chapter.

2.1.1 Chapter structure

The organization of the chapter is as follows. Section 2.2 introduces VoIP quality measure.

Section 2.3 reviews the previous work on Quality-of-service routing for VoIP. Section 2.4

presents integration of VoIP in service overlay networks with exising standard signalling

protocol. At the end, Section 2.5 summarizes this chapter.

2.2 Voice-over-IP (VoIP)

2.2.1 R-factor: VoIP Quality Measure

R-factor is a standard measure for VoIP quality defined in ITU-T G.107 E-model [3]. This

model maps various network impairments to speech quality and provides a scalar quality

rating value R, ranging from 0 to 100. It combines all the transmission parameters related

to a connection under consideration. By definition, R = Ro−Is−Id−Ief +A [3]. Ro refers

to the basic signal-to-noise ratio. It is a function of the circuit noise, send-loudness rating,

room noise and receive-loudness rating. Is refers to the impairments that occur more or less

simultaneously with voice transmission, such as too low loudness rating, non-optimum side-

tone and quantizing distortion. Id represents the impairments caused by voice signal delay,

including the impairments by talker echo, listener echo, and unacceptably long absolute

delay. Ief is the equipment impairment due to low bit rate codecs and packet losses. ITU

has defined a few codecs for VoIP, as given in Table 2.1. A is the advantage factor, which is

0 in the conventional environment. For a multi-hop satellite connection A can be as high as

2 VoIP and its Quality: Background and Related Work 14

20. If all the parameters are set to the default values given in Table 2 of ITU-T G.107 [3],

the rating R is 93.2.

Codec Bit Rate
(Kbps)

Sample Size
(Bytes)

Sample
Interval
(ms)

Voice Payload
Size (ms)

Packet Per
Second

G.711 64 80 10 20 50
G.729 8 10 10 20 50
G.723.1 6.3 24 30 30 34
G.723.1 5.3 20 30 30 34
G.726 32 20 5 20 50
G.726 24 15 5 20 50
G.728 16 10 5 30 34

Table 2.1 Codec Information [4]

Denote the mouth-to-ear delay as d and the mouth-to-ear loss as `, then R-factor can

be written as a function of d and ` by setting all the other impairments to their default

values [3], as follows.

R = 93.2− Id(d)− Ief (`), (2.1)

where Id(d) is the impairment caused by mouth-to-ear delay d an Ief (`) is the impairment

caused by mouth-to-ear loss `. Id(d) and Ief (`) can be computed as in ITU-T G.107 [3] or

as follows [31]:

Id(d) = 0.024d+ 0.11(d− 177.3)I(d− 177.3), (2.2)

Ief (`) = γ1 + γ2 ln(1 + γ3 `), (2.3)

where I(x) = 0 when x < 0 and I(x) = 1 when x ≥ 0. The parameters γ1, γ2, γ3 vary

among codec and loss types as given in Table 2.2.

Codec γ1 γ2 γ3

G.711 0 30 15
G.729 11 40 10

Table 2.2 Parameter values for computing Ief (`)

A subjective rating system for received media (voice, audio or video) after compression

and/or transmission is Mean Opinion Score (MOS). This score is given by averaging the

2 VoIP and its Quality: Background and Related Work 15

scores provided by all the individual testers. R-factor can be related to the subjective rating

MOS by the following expression: for R < 0, MOS = 1; for R > 100, MOS = 4.5; for

0 < R < 100, MOS = 1 + 0.035R+ 7 ·10−6 ·R · (R−60)(100−R). A commonly recognized

quality of voice rating with the value of R-factor and MOS is shown in Fig. 2.3. It can be

seen that voice quality is rated high or best when R-factor is above 80. Thus, the target

R-factor for VoIP quality of service provision can be set to be above 80.

Fig. 2.3 Quality of voice rating V.S. R-factor and MOS values [3]

2.2.2 VoIP Quality Degradation with Mouth-to-ear Delay and Losses

R-factor as a function of mouth-to-ear delay d and loss ` [3] for the standard voice codec

G.711 is illustrated in Fig. 2.4. The reader should note that it is imperative to maintain

a low mouth-to-ear delay d and loss ` to achieve high VoIP quality. In the following, we

show how the mouth-to-ear delay d and loss ` are computed.

The mouth-to-ear delay d includes encoding delay denc, network delay dnet and play-out

delay dplay, i.e. d = denc + dnet + dplay. The encoding delay denc is usually 20 ms for G.711,

G.729 and G.726 codec, 30 ms for G.723 and G.728 codec. The network delay dnet equals

the end-to-end delay of the selected voice path. The characteristics of the network delay

dnet is analyzed in detail in Chapter 3. The play-out delay dplay depends on the play-out

scheduling algorithm at the receiver, which is detailed in Section 2.2.3.

The mouth-to-ear loss ` includes end-to-end network loss lnet and play-out loss lplay, i.e.

` = lnet+(1− lnet)∗ lplay. The end-to-end loss lnet is the end-to-end loss rate on the selected

2 VoIP and its Quality: Background and Related Work 16

Fig. 2.4 R-factor as a function of mouth-to-ear delay and loss for the codec
G.711 [3]. The maximum R-factor for this codec is 93.2. We adopted G.711
codec in our simulations at Chapter 6 because this codec is commonly used in
practice.

2 VoIP and its Quality: Background and Related Work 17

voice path. The play-out loss lplay is determined by the play-out scheduling scheme at the

voice call receiver, as detailed in Section 2.2.3.

2.2.3 Adaptive Play-out vs. Fixed Play-out Scheduling

At the VoIP call receiver, the decoder expects a smooth voice packet input for a smooth

voice signal output. However, due to network delay jitters in the Internet, voice packets

arrive at the receiver at a variable rate. Thus, a play-out buffer is applied at the receiver to

temporarily store voice packets and then play them out at a scheduled time. In this way,

the decoder can play the voice packets out at a relatively smooth rate. However, this also

introduces an additional delay and loss for voice packets, i.e. the play-out delay dplay and

loss lplay. The play-out delay dplay is the delay from the time a voice packet arrives at the

receiver till the time it is played out. The play-out loss lplay refers to the probability that

a voice packet arrives at the receiver later than the scheduled time for it to be played out.

The values of dplay and lplay depend on the play-out scheduling algorithm. In general, there

are two types of play-out scheduling algorithms, fixed play-out scheduling and adaptive

play-out scheduling [16,32] as follows.

1. Fixed play-out scheduling

Fixed play-out scheduling means that the play-out buffer delay is set to be fixed

during a call or during a talk-spurt. Suppose the fixed play-out delay is 120 ms and

the first received packet of a talk spurt has a network delay of d1 ms, then the total

delay for all the packets in this talk spurt is d1 + 120 ms, as illustrated in Fig. 2.5,

and all the packets in this talk spurt with a network delay over d1 + 120 ms are lost.

Denote the network delay cumulative distribution as F (x), where unit of x is ms,

then the play-out loss probability is lplay = P (dnet > d1 + 120) = 1 − F (d1 + 120).

Such fixed play-out delay setting can be computed for a whole call, (i.e. d1 is the

network delay of the first packet of a call), or calculated for each talk spurt, (i.e. d1

is the network delay of the first packet of each talk spurt).

2. Adaptive play-out scheduling

In adaptive play-out scheduling, the play-out delay for the first packet of each talk

spurt can vary with time. An example of the play-out delay in [32] is d̂i + αv̂i − ni if

packet i is the first packet of a talk-spurt. ni is the network delay of packet i. α is a

2 VoIP and its Quality: Background and Related Work 18

scalar parameter. d̂i and v̂i are the estimates of the mean and standard deviation of

the end-to-end delay for this talk-spurt, which are updated whenever a packet arrives.

For the other packets in this talk-spurt, the play-out delay is d̂i + αv̂i − nj, where nj

is the network delay of packet j. In this method [32], the sum of the network delay

and the play-out delay for packets in a talk spurt is d̂i + αv̂i. The play-out loss for

packets in this talk-spurt is therefore given by Pr{nj > d̂i + αv̂i}. On one hand,

if this estimate d̂i + αv̂i is too large, there is zero play-out loss but long play-out

delays; on the other hand, if the estimate is too small, there is a large play-out loss

probability but small play-out delays. Hence, the play-out delay and loss depend on

the “goodness” of the estimate d̂i +αv̂i. Therefore, the tradeoff between the play-out

delay and play-out loss has to be tuned by setting α optimally. A more elegant way to

determine the play-out delay for packets in a talk spurt is to use the distribution of the

network delays of the previously received packets. Let the network delay distribution

be F (x). The 99th percentile delay value F−1(99%) indicates only 1% packets have

a network delay over F−1(99%). Therefore, given the delay distribution F (x) and

a certain play-out loss probability lplay, one can compute the network and play-out

delay for a talk spurt as dnet + dplay = F−1(1 − lplay), i.e. the adaptive play-out

delay is dplay = F−1(1− lplay)−dnet. The play-out loss parameter lplay can actually be

optimized so that best R-factor can be obtained for the adaptive play-out scheme [16].

In a dynamic network environment, especially when network delays vary a lot, the play-

out delay dplay should not be set as a fixed value, otherwise, either a packet is delayed

very long before being played out (when dplay is set too large), or all packets that arrive

later than the fixed deadline will be discarded (when dplay is set too small) which can

lead to a large play-out loss. Fig. 2.5 illustrates two play-out scheduling schemes for three

consecutive talk spurts. It is evident that the network delay for talk spurt 2 is longer than

that for talk spurts 1 and 3. If fixed play-out scheduling is applied, we can see that either

a packet is delayed considerably before being played out (for the case play-out delay equals

D1play), or all packets that arrive later than the scheduled play-out time are discarded (for

the case play-out delay equals D2play). However, if adaptive play-out scheduling is applied,

the play-out delay of each packet is adapted to the latest network delay statistics to keep

both the play-out delay and loss low.

2 VoIP and its Quality: Background and Related Work 19

Fig. 2.5 Fixed play-out scheduling VS. Adaptive play-out scheduling. This
figure shows the sending time, receiving time and the play-out time for three
talk spurts. With fixed play-out scheduling, if the play-out delay is set to be
as large as D1play, all packets arrive before their scheduled play-out time, so
there is no play-out loss, but the play-out delay for the packets in talk spurts
1 and 3 is long. However, if the play-out delay is set to be D2play, 4 packets
of the talk spurt 2 are dropped, which results in a play-out loss of 80%. In
contrast, if adaptive play-out scheduling is employed, the play-out time of
each packet is adapted based on the order statistics of the previously received
packets. Hence, it is possible that both the play-out delay and play-out loss
are minimal.

2 VoIP and its Quality: Background and Related Work 20

Previous work has also shown that adaptive play-out scheduling performs better than

fixed play-out scheduling [16,32], and for this reason we assume adaptive play-out schedul-

ing is applied at the receiver when we propose to jointly optimize routing and play-out

scheduling scheme in Chapter 4.

2.3 QoS Routing in Service Overlay Networks

In the current best-effort Internet, shortest hop routing is widely deployed by Internet

Service Providers (ISPs) for intra-AS routing [33]. However, the shortest hop paths may not

provide the best quality for VoIP. A link on a shortest hop path can be heavily loaded during

peak hours and experiences large queuing delays and jitters1, which are detrimental to VoIP

quality. For inter-AS routing, it is also known that the policy-based BGP routing [34] is

unable to provide best quality routes [35–39] because routing decisions are not made based

on path performance. It has been reported that the Internet loss can be as large as 13% or

even more when equipment failure happens [40]. Table 2.3 summarizes the reported Internet

outage and failure characteristics. As can be seen, the link failure duration and network

outage duration/down time can range from several minutes to many hours [36, 38, 41–44],

and it usually takes tens of minutes or longer for the inter-domain routers to converge to a

new consistent view of the network topology after a fault [39].

Link/node out-
age duration

very long, sometimes follow Pareto distribution [41],
5% last more than 2 hours, can last more than 20
hours [36]

Link failure du-
ration

10% greater than 20 minutes, 40% between 1 to 20
minutes, 50% below 1 minute [42]

Classification of
failures

20% due to planned maintenance activities. Of the
unplanned failures, 70% affect a single link at a time
[43].

Table 2.3 Internet outage and link failure characteristics

Therefore, considering these poor Internet delay and loss performances, we can see that

it is hard for the current best-effort Internet to provide QoS for VoIP. Hence, it is important

to develop QoS routing schemes to select high quality paths for VoIP and develop good link

1A detailed analysis of Internet delay characteristics is presented in Chapter 3.

2 VoIP and its Quality: Background and Related Work 21

failure detection and adaptive routing schemes to avoid those paths that encounter outages

and link failures.

As network level QoS remains a goal of network engineers, another approach, referred

to as Service Overlay Networks (SONs), has been employed as an alternative to provide

QoS routing for VoIP [12–14,45–48]. As illustrated in Fig. 1.2, a Service Overlay Network

(SON) consists of gateways that are interconnected via logical links over the underlying

network.

2.3.1 QoS Routing in Service Overlay Networks

Internet measurement research [23] has shown triangular inequality violation in the Internet,

i.e. the delay on an alternative path through an intermediate hop not on the shortest-path

route can be shorter than that on a direct path. As a consequence, there may be advantage

to search for alternative paths in service overlay networks to leverage VoIP quality (this

is verified in our preliminary research on QoS routing in Chapter 4).

In general, QoS routing for VoIP in service overlay networks includes the following two

types of methods: single best path routing and diverse routing. Single best path routing

is to choose only one path that optimizes a quality metric for VoIP. Diverse routing refers

to improve VoIP quality by sending voice packets through more than one paths. In the

following, I will present related work on these two routing methods in Section 2.3.2 and

Section 2.3.3, respectively.

2.3.2 Single Best Path Routing

In this part, we discuss previous work that studied how a single best path can be determined

for overlay routing to improve quality of service, which include a brute-force search method

[48, 49], a modified Dijkstra’s algorithm [13, 14] and a modified distance-vector algorithm

[12].

Brute-force Search Method

Resilient overlay network (RON) [48,49] is a pioneering work that adopts application layer

routing to improve reliability for distributed Internet applications. It uses brute-force search

method to search for latency, loss or throughput optimized paths. Andersen et.al. [49] have

shown that path loss and latency can be considerably reduced by using a relay node.

2 VoIP and its Quality: Background and Related Work 22

The optimal path selection of RON is based on measuring and estimating overlay link

performances. The size of a RON is usually small. It allows the overlay network to per-

form “aggressive” monitoring and path computation (at the cost of scalability). In a RON,

the health of an overlay link is monitored and inferred by measuring packet loss rate,

path latency or available bandwidth. By periodically or randomly sampling link perfor-

mance with probes, an estimate of the link latency, loss and throughput can be computed,

and then broadcast to all the overlay nodes. At the end, the best paths are selected

based on brute-force search with these link quality estimates, which is not very costly

in this case because the alternate routes under consideration are only one-hop. The se-

lected route with the maximal routing metric estimate is then broadcast to other RON

nodes every ROUTING INTERVAL. To determine if a link is down, probes are sent

per PROBE INTERVAL. A probe is lost if it does not return in PROBE TIMEOUT.

Such measurement and estimation based overlay routing method in RON is also seen

in many other overlay networks [12–14]. Therefore, it is of interest to have a better

understanding of the measurement and routing cost of such methods. For an N-node

RON, the probing and routing traffic grows with O(N2) [48]. For a 10-node RON with

ROUTING INTERVAL = PROBE INTERVAL = 5 ms, the aggregate probing and

routing traffic at each node is 0.65 MBps. The probing and routing overhead and the

time required to recover from link outages are both related to the probing frequency and

the routing update frequency. For a RON with ROUTING INTERVAL = 5 ms and

PROBE INTERVAL = 5 ms, the link failure detection time is a function of the timer

setting, i.e. PROBE TIMEOUT. When PROBE TIMEOUT is 150 ms, 500 ms, 1 sec

and 10 sec, the link failure detection time will be 606 ms, 2.005 sec, 4.005 sec and 40.005 sec,

respectively. Also note that a reasonable PROBE TIMEOUT cannot be too small, e.g.

to be less than 150 ms. It will be shown in Section 5.5 that under the same probing rate,

the communication overhead and the link failure detection time of our methods presented

in Sections 5.5 and 6.5 are less than those of RON.

The limitation of RON is that it only considers one-hop alternate paths and the routing

metrics of RON are targeted for general applications, which limit its capability to improve

VoIP quality. In the following, we will discuss routing methods that are specifically de-

signed for VoIP application and are not limited to one-hop paths, which include a modified

Dijkstra’s method and a modified distance-vector method.

2 VoIP and its Quality: Background and Related Work 23

Modified Dijkstra’s Algorithm

Paper [13] proposes to use modified Dijkstra’s algorithm to choose the best path with the

maximum packet delivery ratio. Packet delivery ratio refers to the percent of packet arrivals

before the play-out deadline. Maximizing packet delivery ratio is equivalent to minimizing

the play-out loss. By assuming a fixed deadline for playing-out each voice packet, packet

delivery ratio for partial paths can be computed based on the combination of link delay

distributions. Dijkstra’s algorithm is then applied to select the best path with the maximum

packet delivery ratio.

The limitation of this method is that the quality of the selected path is highly related

to the setting of the fixed play-out deadline and it only minimizes the play-out loss, which

does not necessarily maximize R-factor for VoIP.

Modified Distance Vector Algorithm

The routing algorithm in OverPhone [12] system is a modified distance-vector algorithm.

In this algorithm, link quality is measured and broadcast for computing the best paths.

1000 Probes, which are 132-byte data packets, are sent at 15 ms intervals to emulate VoIP

talk-spurts. Link quality is estimated based on the delays and losses of the 1000 probing

packets. For an overlay link a, the link quality of interest includes link delay da, link loss

la, play-out loss ja and conditional loss probability ca. Note that da represents the delay d

on link a instead of d to the power a, and similarly for la, ja and ca. Given these measured

link quality, multi-hop path quality can be estimated. For a concatenated path with link a

and link b, the network delay, network loss, play-out loss, and conditional loss probability

of this path are estimated as dab = da + db, lab = 1 − ((1 − la)(1 − lb)), jab ≈ ja + jb, and

cab = (la×ca+lb×cb)
lab , respectively. Note that the authors use ja + jb to approximate jab due

to the complexity of computing jab. It is claimed that such approximation gives close or

over estimation when the play-out loss rate of a link is greater than 1%. Then a modified

Distance-Vector algorithm is used to select the best path with the highest R-factor, which

is computed from the estimated network delay, network loss, play-out loss and conditional

loss probability.

The limitation of this work is that they assume fixed play-out scheduling at the receiver,

and there exists a better estimation of the play-out loss jab when the delay distributions

of link a and b and the network delay of the first packet of each talk spurt are known.

2 VoIP and its Quality: Background and Related Work 24

Therefore, the selected best R-factor path is in fact sub-optimal and the quality of the

selected path is related to the setting of the fixed play-out deadline.

Tracking the Best Path for VoIP

Paper [46] proposes an optimal path switching scheme based on path quality estimation.

UDP probes are sent regularly to measure the network performance of each available path.

R-factor is then estimated based on the probing delays and losses. It is expected that the

optimal R-factor path varies with time in a dynamic network environment. This paper

proposes an adaptive path switching algorithm that determines when to switch to a new

path and which path the application should switch to.

For a predefined set of time scales, the proposed solution gives an optimal time scale

for path switching, and chooses the path that gives sufficient gain over the current optimal

path. It works as follows. (1) Predefine a set of time scales {tn}, e.g {5, 100, 200, 500} ms,

each time scale tn is a time unit for path switching. (2) For each time scale tn, a baseline

is defined as the maximum R-factor computed based on the measurements in the past T

time slots (each slot is of size tn). (3) In the time slot k at time scale tn, evaluate all the

path qualities, and compute the gain of switching to a new optimal path versus the quality

of the baseline, compute the gain ρ̃k(tn) based on the gain of the predicted path switching.

(4) Compute the average gain ρ̃(tn) for the last T time slots for the time scale tn. (5) The

best time scale is t = arg max ρ̃(tn). (6) For the best time scale t, switch to another path

if that path is sufficiently better than the current path in terms of R-factor.

In sum, the paper suggests the potential benefit of path switching for exploiting the

Internet path diversity. It switches to a better path at an optimal time scale among a

predefined set of time scales. The results it obtains can be sub-optimal because of the

quantization of path switching time scales and a path only switches when the gain is suffi-

ciently large. In addition, the method did not show how the candidate paths are determined.

The applicability of the method relies on the accuracy of path quality prediction2, which

can be error-prone in a dynamic network environment.

As this method is also an adaptive routing method and track the optimal as our routing

methods in Chapters 6 and 4 do and it also adopts adaptive play-out scheduling, we compare

the performance of this method with that of our methods in Chapter 6. The probing

2The predictor they use is simply the future R-factor equals the current R-factor.

2 VoIP and its Quality: Background and Related Work 25

overhead of this method (to measure the quality of a predefined set of candidate paths)

is also compared in Section 5.5. For this method, the probing overhead at each node is
S((N−1)+(N−2)(N−1))
PROBE INTERVAL

3, where S is the size of a probing packet, for an N-node full mesh overlay

network and considering only direct or one-hop candidate paths. If we choose the same

setting as in RON with S = 69 bytes, PROBE INTERVAL = 5 ms and N = 10, the

probing overhead is 1.1178 MBps.

2.3.3 Diverse Routing

Having discussed the related work on single best path routing, we continue to discuss

another VoIP QoS routing method, i.e. diverse routing method. Diverse routing for VoIP

and media transmission has been studied in some previous work [12–16], in which packets

can be fully or partially duplicated for transmission on diverse paths. In this thesis we

assume voice packets are fully duplicated4 for diverse routing.

In [40], different combinations of diverse paths are experimented, which have been shown

that diverse routing is able to reduce packet loss rate and packet delay more than that one

single best path can do. When considering the effect of reactive best path routing and

diverse routing on losses and delays, the authors [40] suggest that reactive routing avoids

paths with long-term pathologies, and that diverse routing masks transient congestion-

related losses and delays. Thus, intuitively, a method combining reactive routing and

diverse routing is able to perform better in both cases, which becomes one motivation for

our work in Chapter 6.

Paper [12] shows that diverse routing can improve VoIP quality. It was shown that

in general VoIP quality improves mostly from one path to two-path diversity, while when

four-path diversity is used, a quality decrease can happen due to link capacity saturation.

Therefore, we only consider two-path diversity in this thesis.

Having shown the advantages of diverse routing above, next, I will discuss previous

work on diverse path selection, which include brute-force search method [51], active path

3The probing overhead refers to the probing traffic received at each node. Each node receives (N-1)
probing packets from direct path probing and (N-2)(N-1) probing packets from one-hop path probing.

4In cases when network bandwidth is limited, one can always apply multiple-description codec [50] or
only duplicate the important voice packets (i.e. the packets containing transitional (unvoiced-to-voiced)
frames and unvoiced frames that proceed voiced frames, which account for only around 11% of all the voice
packets [16]). The quality for VoIP calls in this case is then highly related to the actual coding method,
e.g. the specific multiple description codec, which is out of the scope of this thesis.

2 VoIP and its Quality: Background and Related Work 26

first method [17] and diverse path selection method in physical networks [52,53].

Brute-force Search Method

Paper [51] uses brute-force search method to determine the diverse paths by solving the

problem in (2.4) for each source-destination pair (u, v).

O′ = arg min
k∈O
|p′(u, k, v) ∩ p∗(u, v)|

k′ = arg min
z∈O′

w(p′(u, z, v)) (2.4)

traceroute is used to measure links and link latencies between all overlay node pairs, which

can be inaccurate. In (2.4), O is the set of candidate next-hop nodes for the source-

destination pair (u, v), p∗(u, v) is the direct Internet path for (u, v). p′(u, k, v) denotes

the one-hop redundant path via k. |p′(u, k, v) ∩ p∗(u, v)| denotes the number of joint links

between paths p′(u, k, v) and p∗(u, v) in the underlying network. w(·) represents the cost or

delay of a path. The redundant paths considered are only one-hop redundant paths. Thus,

the first step to solve the problem is to maximize link disjointness between path p′(u, k, v)

and path p∗(u, v), i.e. to find the set of next hop nodes O′ that minimize the number of

joint links between the direct path and the redundant path. Once O′ is found, the optimal

redundant path is selected as the one with the minimum cost.

One limitation of this brute-force search method is that it requires identifying the num-

ber of joint links between all the candidate secondary paths and the direct Internet path,

which is not scalable with network sizes. The other limitation is that it only considers

the combination of a one-hop path with the direct Internet path which may not provide

better VoIP quality than the combination of two one-hop paths or two paths with more

than one hop. In our work, we consider all the possible combinations of one-hop paths

with or without the direct path in Chapter 4 and consider paths with more than one hop

in Chapter 6.

Active Path First (APF)

Active path first method is in general known as using the Dijkstra’s algorithm to find

the shortest path first, and then finding a backup path from the remaining network using

2 VoIP and its Quality: Background and Related Work 27

Dijkstra’s algorithm again. Cui, et al., [17] propose two APF methods to choose the backup

paths based on a correlated link failure probability model in overlay networks. The goal

of [17] is to minimize the link failure probability on the chosen pair of paths, which is an

NP-hard integer quadratic programming problem. The authors propose two heuristics to

solve the problem: (1) choose the primary path as the minimum delay path and choose the

secondary path to minimize the joint failure probability with the primary path; (2) choose

the primary path as the minimum delay path and choose the secondary path as a minimum

delay path that is link disjoint to the primary path.

The limitation of this work is that it is a centralized method and it requires knowing

link failure probability model for computing the optimal paths. In addition, it cannot

adaptively route voice calls to avoid link failures. In our work in Chapter 6, we propose

a distributed and adaptive routing approach that requires no prior knowledge about link

failure model and it is able to adaptively route voice calls to avoid link failures.

Finding Diverse Paths in Physical Networks

Diverse path selection has also been studied in the context of survivable networks [52, 53],

for example, to provide reliability against failures in optical networks. The problem of

finding disjoint paths that minimizes/maximizes a specific objective can be formulated as

an Integer programming problem [17, 54–56], which is usually NP-hard [57–59]. There are

three well known problems, the Min-Sum problem (minimize the sum of the cost of the

selected routes) [56, 60, 61], the Min-Max problem (minimize the maximum cost of the

selected routes) [58] and the Min-Min problem (minimize the minimum cost of the selected

routes) [59]. Li, McCormick and Simchi-Levi [58] have developed a heuristics to the NP-

complete Min-Max problem. Suurballe, et al., [60,61] have proposed algorithms for solving

the Min-Sum problem. Xu, et al., [59] have proposed a heuristics to the NP-complete

Min-Min problem. Book [52] has also given a thorough review of previously investigated

diverse routing algorithms, where given the topology and the cost of each link, edge/node

disjoint shortest pair of paths can be found. However, the algorithms in [52] are centralized

algorithms which requires to know network topology and link cost. In our work, we propose

a distributive method to minimize delay or maximize R-factor on disjoint paths, which is

different from the Min-Max, Min-Min or Min-Sum problem. No distributive solution is

known for such a problem in previous work.

2 VoIP and its Quality: Background and Related Work 28

2.3.4 Minimum Delay Routing

In this part, we discuss minimum delay routing, which is related to our work in chapter 5.

To find the minimum delay paths, two categories of minimum delay routing methods have

been reported. One category is to find the user optimal paths that minimize the estimated

end-to-end delay for each packet [62] [25] [63]. The other category is to find the system

optimal paths that minimize the total delay of all packets [64]. Both the system optimal

minimum delay routing [64–68] and the user optimal minimum delay routing [24–26] have

been studied extensively in the literature. The approach commonly used for system optimal

routing problem requires estimating delay gradients [64–68], and the approach for user

optimal routing problem usually requires estimating marginal delays [24–28].

In our work in Chapter 5, we also minimize delays for each source-destination pair,

which belongs to the user optimal routing problem. These previous work on user optimal

routing in packet switching networks [24–28] may be modified and applied for minimum

delay routing in overlay networks. However, their complexity limits their practical values

and they are more complex than our method in Chapter 5.

2.3.5 Reinforcement Learning (RL) for Adaptive Routing

Reinforcement learning methods [27, 28, 69–71] have been applied to adaptive routing in

dynamic network environments. These methods can distributedly learn QoS-aware paths

by online measurement. Q-routing [27,28] is a value-search algorithm, which is basically a

modified distance-vector algorithm, where Q-functions are estimated for finding the min-

imum cost paths. [71] is a policy-search algorithm, where an optimal (stochastic) routing

policy is learned with a gradient ascent algorithm by trying and evaluating a set of policies.

They both show the promise in providing QoS with RL-based adaptive routing control,

however, the simulation settings of [27,28,71] are far from realistic.

Erol Gelenbe’s Cognitive Packet Network (CPN) [69,70,72] learns QoS-aware paths by

using “smart” packets for route discovery where the route of the “smart” packets are chosen

based on Random Neural Network(RNN) based algorithms. The successful paths found by

the“smart”packets are exploited by the“dumb”packets. This method is very similar to our

learning automata based adaptive routing in Chapters 5 and 6 in spirit, however, the route

learning algorithms of our method are much simpler and provably converge to the minimum

delay paths in a stationary network environment. In addition, the experiments of [69, 70]

2 VoIP and its Quality: Background and Related Work 29

are based on very simple network topologies, while the simulations in Chapters 5 and 6

take into account more aspects of the complex behaviour witnessed in realistic network

traffic, including non-homogeneous networks with different link bandwidth, routing node

buffer size limits and link propagation delays are simulated. The final difference between

our work and CPN is that CPN method is not resilient to link failures since it only learns a

single route between source and destination, while we develop a diverse routing method and

a link failure detection method based on the reinforcement learning algorithm to provide

resilience to link failures in Chapter 6.

2.4 VoIP in Service Overlay Networks

Fig. 2.6 Integrate call signaling and voice traffic transmission in the service
overlay network.

Fig. 2.6 illustrates the signaling and voice traffic transmission in an overlay network,

where the overlay gateways function as proxies or relays for VoIP calls. For implementa-

tion in the overlay gateways, the proposed routing method should be integrated with the

known VoIP framework of SIP [73] or H.323 [74], i.e., the signaling functions including call

establishment, access control and disconnection.

The call signalling and voice call transmission sequence are illustrated in Fig. 2.7. The

first phase is the call establishment period, illustrated by the dashed arrows in the top,

where a session is initialized for the caller and callee, while the route for this call is also

determined in the calling period. Once a voice session is established, voice packets can

be transmitted over the overlay network, as illustrated by the solid arrows in the middle.

2 VoIP and its Quality: Background and Related Work 30

Fig. 2.7 Call signaling and call transmission process. The “Calling” message
refers to the initialization of call establishment. The “Trying” message indi-
cates the gateway is trying to connect to the callee. When the callee picks up
the phone, an “OK” message will be sent to the caller, and the caller replies
with a “Ack” message to complete the call establishment process. Then the
conversation between the caller and callee can start. When one side hangs up
the phone call, a “Disconnect” message is sent to the other side and the other
side responds with a “Disconnect” message to end the voice session.

2 VoIP and its Quality: Background and Related Work 31

The last phase is the call disconnection period, where the voice session is terminated, as

illustrated by the dashed arrows in the bottom.

The underlying transport layer that supports the VoIP service over a Service Overlay

Network can be TCP [75] or UDP [76]. However, we consider using UDP protocol to

transmit voice calls in this work since TCP introduces delays at source. The potential

losses due to using UDP protocol can be masked by using diverse paths.

2.5 Summary

Service overlay networks, driven by the fast development of VoIP, video streaming and

content distribution, provide a cost-effective way to support Quality of Service over the

current best-effort Internet. Previous work on QoS routing in overlay networks [12–14,

40, 45, 46, 48, 51, 77–79], has shown that alternative paths can provide better quality for

applications than the direct paths. Brute-force search method, modified Dijkstra’s al-

gorithm and modified distance-vector algorithm, et. al, have been studied in previous

works [12–14,40,45,46,48,51,55,77,78] for finding the single best paths and diverse paths.

However, these works all have their limitations as mentioned in each section. For example,

they usually consider one-hop or two-hop paths that are not necessarily the best path for

VoIP, and they are often centralized methods which require link cost broadcasts or require a

central server to collect link costs when estimating path quality. These constraints limit the

optimality and the scalability of those approaches. Therefore, in our work, we investigate

how to select the optimal diverse paths for VoIP and how to achieve a scalable distributed

overlay routing method.

A preview of our work on overlay routing is as follows. Chapter 4 presents an optimal

R-factor-based diverse routing approach; Chapter 5 proposes a scalable minimum delay

path learning approach; Chapter 6 proposes a distributive approach to learn diverse paths.

In the next chapter, we will first present our work on end-to-end delay analysis, simulation

and sampling, which are important for understanding the end-to-end delay characteristics

and thus to discover potential method for QoS routing in service overlay networks.

32

Chapter 3

End-to-end Delay Trace Analysis,

Simulation and Sampling

3.1 Introduction

End-to-end delay is one of the most important impairments for VoIP phone calls. Thus,this

chapter is dedicated to the investigation on end-to-end delays. For the preliminary research

on VoIP QoS routing, we require end-to-end delay traces for a long period of time for many

source-destination pairs. To save the substantial cost of gathering traces, especially for large

networks with hundreds of nodes, a practical way is to generate end-to-end delay traces

that are statistically similar to the real end-to-end delay traces. Thus, in Section 3.2, we

analyze the statistical characteristics of real end-to-end delay traces to understand end-

to-end delays in depth so that we can simulate end-to-end delays for VoIP QoS routing

research, which is given in Section 3.3 and Appendix C. Another practical problem is the

optimal sampling problem. Supposing we have collected a large quantity of end-to-end

delay traces that require a large amount of storage, we may desire to only store parts of the

traces while still be able to reconstruct the original end-to-end delay traces. In this case, an

optimal sampling rate is desired such that the trade-off between the reconstruction accuracy

and the sampling/storage cost can be fairly resolved, which is solved in Section 3.4.

As end-to-end delay analysis, end-to-end delay simulation and end-to-end delay sam-

pling all focus on investigating end-to-end delays. Therefore we combine them into one

chapter. We also place this chapter before Chapters 4, 5 and 6 on VoIP QoS routing

2009/11/11

3 End-to-end Delay Trace Analysis, Simulation and Sampling 33

because understanding end-to-end delay characteristics is key to VoIP QoS routing.

3.1.1 Chapter Structure

This Chapter is divided into three parts. Section 3.2 analyzes real end-to-end delay traces.

Section 3.3 presents a network model designed for simulating realistic end-to-end delay

traces. Finally, Section 3.4 shows the work on end-to-end delay sampling. At the end,

Section 3.5 summarizes the three parts of work.

3.2 Analysis of real end-to-end delay traces

We first analyzed real end-to-end delay traces collected by an Internet Service Provider

(ISP) in Asia. The network delay measurements under study are Round-Trip-Time (RTT).

The measurement method the ISP adopted was to send 100 consecutive probing packets(

with 30 milliseconds (ms) interval) per 2.5 minutes. The consecutively sent probing packets

are used to emulate a talk spurt. We obtained two sets of raw data from the Internet Service

Provider. The first set of data is the RTT measurement between Singapore and 15 other

network nodes (located in the USA, China, Korea, Japan, Singapore and Malaysia) in a

time period T1, which lasts 6.8 hours. Denote this set of measurement data as XK×L, where

K = 16300 is the number of samples, L = 15 is the number of overlay links. The second

set of data are sample means of each 100 RTT measurements in a different time period T2,

which lasts 277.5 hours, among network nodes (again located in the USA, China, Korea,

Japan, Singapore and Malaysia). Denote this set of measurement data as YN×M , where

N = N1 × N2 represents the number of overlay links with N1 = 14 source nodes and

N2 = 11 destination nodes, and M = 6660 is the number of sample means per overlay link.

As the first set of data mentioned above is at finer time granularity, we use it to analyze

the property of network delay trace1. The second set of data will be used for end-to-end

delay synthesis in Appendix C.

1As network is dynamic and keeps evolving, we cannot claim the traces we analyzed here represent all the
delay traces in the Internet. However, the properties we obtained in the first and second order statistical
analysis, e.g. relationship between the propagation delay delay and geographical distance, originate in
either network design (e.g. network topology and routing protocol [33]) or network traffic dynamics (self-
similarity [80]). Some similar properties (e.g. triangle inequality, Gamma distribution, delay spikes) have
also been observed in traces collected by other work [16,81–83]. Also note that I focus on analyzing delays
instead of loss patterns in this work because a good analysis of loss pattern requires a large amount of
measurement, while we only have 16300 delay samples for each of the 15 links.

3 End-to-end Delay Trace Analysis, Simulation and Sampling 34

Fig. 3.1 This figure shows, from bottom to top, the minimum, 25% quantile,
median, mean, 99% quantile and the maximum of end-to-end delay values on
each of the 15 overlay links. Each box contains delay values between quantiles
25% and 99%. Note that on some links, the minimum, 25% quantile, median
and mean values are so close that their difference is indistinguishable.

First, let us consider the minimum, 25% quantile, median, mean, 99% quantile, and the

maximum of the RTT measurements in the first set of data, as given in Fig. 3.1. This figure

shows the RTT range from less than 10 ms to more than 800 ms although the median and

mean of the delay values are mostly less than 250 ms. Furthermore, the large difference

between 99% and 50% quantiles of the delay values shows the existence of large delay spikes,

which can be detrimental to VoIP quality. This reinforces the importance of designing QoS

routing schemes to choose paths with low end-to-end delays and jitters. In Chapter 4, I

will present a QoS routing scheme to deal with this issue.

3 End-to-end Delay Trace Analysis, Simulation and Sampling 35

Fig. 3.2 Scatter plot for S and (x̄ − D), and the linear fit to S
x̄−D on 15

different links (the links are ordered from the left to the right and from the
top to the bottom). S is the standard deviation per 100 network delay samples.
x̄ is the average network delay per 100 network delay samples on a link. D
is the minimum of all the network delay samples on a link. x̄ − D can be
considered as the average queueing delay per 100 network delay samples on a
link.

3 End-to-end Delay Trace Analysis, Simulation and Sampling 36

3.2.1 The sample mean and the sample standard deviation of a delay trace

Given a random sequence {X1, X2, ..., XM}, its sample mean x̄ and its unbiased standard

deviation S are

x̄ =
1

M

M∑
i=1

Xi (3.1)

S =

√√√√ 1

M − 1

M∑
i=1

(Xi − x̄)2

. Let the minimum of the random sequence be D = min{X1, X2, ..., XM}. The relation

between S and x̄−D for measured delay is shown in Fig. 3.2 (M=100 for the figure). There

is evidently a strong linear correlation between S and x̄−D in most cases. A similar result

can be found for S and x̄. Such a relation maybe used to linearly estimate S from x̄−D.

Fig. 3.3 shows two representative network delay traces2 that have relatively strong

correlation between their sample mean and sample standard deviation. The links that have

similar property as link 3 and 4 are links 1, 2, 3, 4, 5, 6, 7, 8, 9, 11 and 15, as indicated

in Fig. 3.2. The figures on the right of Fig. 3.3 show the sample mean x̄ and the sample

standard deviation S per 100 delay samples for the delay traces on the left. By comparing

Fig. 3.2 and Fig. 3.3, we can see that the correlation on link 4 is a little higher than that on

link 33, but both have short delay spikes, which can be due to short bursts in traffic arrival.

The delay traces of the other links in this group all appear similar to those in Fig. 3.3 and

are not shown here to save space. Due to the strong correlation between S and x̄ −D for

this type of links, one may linearly estimate S from x̄ − D or x̄ as D is a constant for a

specific link.

For links 12, 13, and 14, we observe much longer spikes, which can be interpreted as the

result of long bursts in traffic arrival and link congestions. For example, Fig. 3.4 shows the

delay traces of link 12 and link 14, (link 13 performs similar to link 12). On links 12 and

14, the sample standard deviation does not increase drastically with the sample mean4, in

2Note that in the network delay trace, we miss 147 seconds of measurements per 2.5 minutes because
100 probing packets with 30 ms interval are sent per 2.5 minutes.

3Note that there is a short period of route change on link 3 at time steps 5300 and 10500.
4The network delay traces shown in Fig. 3.3 and Fig. 3.4 are only “continuous” per 3 seconds. Although

3 End-to-end Delay Trace Analysis, Simulation and Sampling 37

Fig. 3.3 Representative network delay traces for links with random delay
spikes and strong correlation between the sample mean S and the sample
standard deviation x̄, where S and x̄ are calculated based on per 100 network
delay samples, i.e. M=100 in (3.1).

3 End-to-end Delay Trace Analysis, Simulation and Sampling 38

Fig. 3.4 Representative network delay traces for links with long delay spikes
and weak correlation between the sample standard deviation S and the sample
mean x̄, where S and x̄ are calculated based on per 100 network delay samples,
i.e. M=100 in (3.1).

3 End-to-end Delay Trace Analysis, Simulation and Sampling 39

other words, they are not strongly correlated; thus, it is hard to linearly estimate S from

x̄−D or x̄ for links that show long delay spikes such as links 12, 13 or 14.

3.2.2 Probability distribution

End-to-end network delay consists of three components: propagation delay, transmission

delay and queuing delay. Propagation delay is a constant value due to signal propagation

between two ends, and is the minimum delay that a voice packet can experience. Trans-

mission delay is considered to be negligible for high speed links, while queuing delay is a

random variable, which follows a certain distribution.

Fig. 3.5 Cumulative Distributions Function (CDF) fitted to 100 queuing de-
lay samples (the propagation delay has been removed from the measured net-
work delay samples). In this figure, the Gamma distribution [83] and Weibull
distribution [80] both give good fit to the empirical distribution, and their
difference is visually indistinguishable.

Gamma Poisson Weibull
KL-divergence 0.4166 1.4485 0.3537

`1 norm 0.6293 1.4285 0.6020

Table 3.1 KL-divergence and the L1 norm of the difference between the
empirical PDF and the fitted distribution.

they have gaps in time, they do show the bursts and congestion characteristics as these characteristics
appear very frequently in the samples.

3 End-to-end Delay Trace Analysis, Simulation and Sampling 40

We fit various commonly known positive-valued parametric distributions to the real

network delay measurements obtained from the ISP mentioned before. We find that Gamma

and Weibull distributions are good approximations to the empirical distribution of the

queuing delays 5. As shown in Fig. 3.5 and Table. 3.1, Gamma distribution is a good fit to

the 100 queuing delay samples, and it is also true for a larger number of delay samples on

many different links6.

In fact, Gamma distribution can represent many commonly seen distributions. For

example, by setting γ = 1, we get an exponential distribution; by setting γ to be an

integer, we get an Erlang distribution; by setting γ = v/2 and β = 2, we get a Chi-square

distribution. Therefore, according to the distribution fitting above and due to the amenable

properties of Gamma distribution, we use Gamma distribution to model the queuing delay

distribution. Then the distribution of the total network delay can be modeled as a shifted

Gamma distribution, whose Probability Distribution Function (PDF) is given by:

f(x) =
(x−θ
β

)(γ−1) · exp(−x−θ
β

)

β · Γ(γ)
;x ≥ θ; θ, γ, β > 0, (3.2)

in which γ is the shape parameter, β is the scale parameter, and θ represents the minimum

network delay experienced by a voice packet, i.e. the propagation delay. As a result, the

mean network delay µ is µ = θ + γβ, the standard deviation σ =
√
γβ, and the skewness

k is k = 2√
γ
. In fact, when θ = 0, f is a Gamma distribution which models the queuing

delay distribution. Such shifted Gamma distributed model for end-to-end delays can also

be found in [83,84].

3.2.3 Relationship between the minimum delay and the geographical distance

By locating each network node based on its IP address7, we can compute the geographical

distance between nodes. As the scatter plot of Fig. 3.6 shows, we find that the correlation

between the minimum delay and the geographical distance between two nodes is low because

5The distribution fitting is performed as follows. Given the real data and a parametric distribution, the
maximum likelihood estimate of the parameters of the parametric distributions can be computed.

6Gamma distribution gives relatively large log-likelihood comparing to that of other commonly known
positive-valued parametric distributions. It can also be expected that a non-parametric distribution will
provide higher log-likelihood of estimation comparing to that of any parametric distribution, but a non-
parametric distribution is hard to generalize to all the delay traces on different links.

7The location resolution is at a city level.

3 End-to-end Delay Trace Analysis, Simulation and Sampling 41

the physical length of an overlay link between two nodes is not necessarily equal to the

geographical distance between them.

Fig. 3.6 Scatter plot for the minimum delay D and the geographical distance
of 15 links. It shows there is low correlation between them.

3.2.4 Autocorrelation

The autocorrelation coefficient rk of lag k for a time series {X1, X2, ..., XM} can be com-

puted as8:

rk =

∑M−k
i=1 (Xi − x̄)(Xi+k − x̄)∑M

i=1(Xi − x̄)2
, (3.3)

where x̄ is the sample average of Xi, with x̄ =
∑M

i=1Xi

N
.

By plotting the autocorrelation function of the real network delay measurements on

different links in the first group represented by Fig. 3.3, we see that the autocorrelation is

usually negligible when there are only random delay spikes, as in the examples of Fig. 3.7.

Therefore, an identical and independently distributed shifted Gamma distribution model

can be used to simulate the network delays when the time series has no spike or random

spikes. However, if there is strong or medium autocorrelation in the time series, as for

the second group of links shown in Fig. 3.4, the model would need to be modified to take

8Note that autocorrelation function computed with finite size of samples can result in oscillation in the
autocorrelation function.Similar oscillation can also be observed in computing cross-covariance with finite
size of samples. An analysis of the effect can be made using Fourier theory, which is left for future work.

3 End-to-end Delay Trace Analysis, Simulation and Sampling 42

Fig. 3.7 The figures on the left show the real network delay measurements.
The figures on the right show the autocorrelation computed for the 100 network
delay samples in the left figures, which are negligible.

3 End-to-end Delay Trace Analysis, Simulation and Sampling 43

account of autocorrelation. In this case, a possible model would be an Auto Regressive

(AR) model with a Gamma distributed residual, as with the ARTA process [85].

3.2.5 Cross-covariance between delay traces

The cross-covariance of two random sequences X = {X1, ..., XM} and Y = {Y1, ..., YM} can

be computed as follows. Let the sample mean of Xk, k = {1, ...,M}, be µX = 1
M

∑M
k=1Xk,

and the sample mean of Yk, {k = 1, ...,M}, be µY = 1
M

∑M
k=1 Yk. Denote the conjugate of

Yk as Y ∗k . Then, the cross-covariance between X and Y is:

CXY (n) =

{
1

CXY (0)

∑M−k
k=1 (Xk+n − µX)(Y ∗k − µY), n ≥ 0

C∗Y X(−n), n < 0
(3.4)

The cross-covariance is computed between all the link delay traces on the measured

15 links of the ISP. We see that the cross-covariance between some link delay traces is

relatively strong, as shown in Fig. 3.8, which is because a large delay spike occurs on each

of two links under consideration with a time difference of around 150 seconds. Thus it is

evident that there can be relatively strong correlation between delay spikes on different

overlay links due to correlated traffic congestion on these links.

3.3 End-to-end Delay Trace Simulation with Fluid Network

Model

Based on the analysis above, we can synthesize delays that are statistically similar to

the real end-to-end delay traces that have weak or no autocorrelation (see Appendix C).

However, it is not easy to synthesize traces with strong autocorrelation or cross-correlation

among different links. In this section, we therefore use a traffic model that incorporates

time zone information and design a simple capacity assignment method to simulate realistic

network delays.

Fluid network simulation [86] has been shown to be much faster than NS2 [87] simula-

tion. It is more scalable to simulate large scale networks than the packet level simulation

does [86]. The simulation result for discrete time fluid network is very similar to that of

packet level simulation [88].

The original contribution in this section is to apply fractional Brownian motion traffic

3 End-to-end Delay Trace Analysis, Simulation and Sampling 44

0 5000 10000 15000−5000−10000−15000
−0.2

0

0.2

0.4

0.6

Lags

C
ro

ss
 c

ov
ar

ia
nc

e
co

ef
fic

ie
nt

Fig. 3.8 Cross covariance coefficient between the delay trace of link 9 and
that of link 13. As can be seen, the cross-covariance between the delays on the
two links is relatively strong. This large cross covariance coefficient at around
-5000 lags is because two large delay spikes on the two links occur with 5000
lags of samples, as illustrated in Fig. 3.9. Note that this cannot be interpret
as a traffic surge passing two links consecutively since the time different for
the 5000 lags is 2.5× 5000

100 = 125 minutes.

3 End-to-end Delay Trace Analysis, Simulation and Sampling 45

Fig. 3.9 Delay traces of link 9 (top) and link 13 (bottom). The cross-
covariance between the two delay traces is shown in Fig. 3.8.

model [80] and the gravity traffic model [89] to simulate dynamic traffic among network

nodes, and link capacities are also chosen to closely simulate realistic network design.

Note that the goal of the delay simulation work is to simulate network delay traces that

show autocorrelation and cross-covariance, as well as delay spikes and triangle inequality9,

as observed in the real network delay traces (see Section 3.2 and [16,82]).

3.3.1 Fluid Network Model

Fig. 3.10 illustrates a fluid network model [88]. In this figure, the on-the-fly time of a

link l, with propagation delay Dl, queuing capacity qmaxl and bandwidth cl, is divided into

dl+
qmax
l

clτ
time slots with each time slot being τ , where dl is the quantized propagation delay

(i.e. Dl

τ
). Then each flow transmitting on this link is moved forward in these time slots, as

shown in Fig. 3.10. In the fluid network model, the end-to-end delay of each flow can be

9Triangle inequality means that the delay on an alternate path can be less than that on the direct
Internet path, which is the key why overlay routing can provide better path than the direct Internet path.
This property is not only observed in the MediaRing trace mentioned in Section 3.2. We also observed it
in collected delay traces from PlanetLab [81]. It is also observed in other research [82].

3 End-to-end Delay Trace Analysis, Simulation and Sampling 46

Fig. 3.10 Fluid network model [88]. di is the quantized propagation delay.
qmaxl is the queuing capacity. cl is the link bandwidth. τ is the time slot size.

tracked as in (3.5) and (3.6) [88].

Delayanext(a,l)[n+ dl + j]+ = Delayal [n] + dl + j,∀j, i < j ≤ k. (3.5)

Delayanext(a,l)[n+ dl + i]+ = Delayanext(a,l)[n+ dl + i]− ·
(λanext(a,l)[n+ dl + i]−

λanext(a,l)[n+ dl + i]+

)
+

(Delayal [n] + dl + i) ·
(

1−
λanext(a,l)[n+ dl + i]−

λanext(a,l)[n+ dl + i]+

)
. (3.6)

next(a, l) is the next hop after link l for flow a, λanext(a,l) is the traffic arrival of flow a

at link next(a, l), and ql[n] is the queuing length at time step n for link l, k = ql[n+1]
clτ

and

i = ql[n]
clτ

.

Similar to the above, we can derive a function for tracking the end-to-end loss of each

flow as (3.7).

Lossanext(a,l)[n+ dl + j]+ = Lossanext(a,l)[n+ dl + j]− +
λal [n]pl(n)

k − i+ 1
,∀j, k ≥ j ≥ i. (3.7)

where pl(n) is the loss rate on link l at time step n. (3.7) means that the loss on link

next(a, l) at step n + dl + j for flow a is the sum of the loss before adding the loss from

link l, Lossanext(a,l)[n+ dl + j]− and the loss from link l at time step n, which is divided into

k − i+ 1 parts,
λa

l [n]∗pl(n)

k−i+1
.

3 End-to-end Delay Trace Analysis, Simulation and Sampling 47

The accuracy of the discrete time fluid network simulation can be tuned by changing

time step size τ . A large step size of 10 ms can still capture the basic network behavior [88].

In our simulation, we set τ = 5 ms.

Note that we built our own fluid network simulation platform in MATLAB because pre-

vious work [86,88] is used mainly for TCP flow simulation and has not considered relatively

realistic network topologies for simulating relatively realistic network delays. In my work,

I simulated self-similar traffic, i.e. fractional Brownian motion [80] traffic, as background

traffic10 in a representative network topology, i.e. AT&T backbone network, with relatively

realistic network setting in the fluid network model, in order to simulate delays that show

autocorrelation, cross-covariance, large delay spikes, and triangle inequality, as observed in

the real delay traces in Section 3.2.

3.3.2 Network Setting

To test this, we simulated a model of the AT&T backbone network, as shown in Fig. 3.11.

It includes 50 nodes located in the major cities of the United States and 196 directed links.

Each node represents a Point of Presence (PoP). The network topology is inferred from

Rocketfuel data [91] and the AT&T optical network topology [92]. From Rocketfuel data,

we extracted a network topology with 103 network nodes (including stub nodes and transit

nodes). The traffic from leaf nodes can also be combined with the traffic in transit nodes

if single-homing for stub nodes is employed, allowing us to remove the leaf nodes from the

network. However, if multi-homing is enabled, the stub nodes should not be removed. We

finally obtain the 50-node network topology by doing single-homing and multi-homing for

the stub nodes according to the AT&T link level optical network topology.

Aggregate Background Traffic Model

Research has shown that Internet traffic shows self-similarity. The fractional Brownian

motion process is a well known long range dependent self-similar process. In Norros’ paper

[80], the accumulated traffic arrival in time (−∞, t) is represented by a fBm process At,

where At = mt+
√
amBH(t), t ∈ (0,∞), with m being the mean traffic arrival rate, a being

the variance coefficient for traffic arrival, BH(t) being a normalized fBm process andH being

the Hurst parameter of BH(t). The increment process for this fBm process is a fractional

10Internet traffic has been found to be self-similar [80,90].

3 End-to-end Delay Trace Analysis, Simulation and Sampling 48

Fig. 3.11 50-node model of AT&T backbone network with 196 directed links.

Gaussian noise (fGn) process, which is a long range dependent, self-similar and stationary

process. Given parameters m, a,H, a fGn process can be generated. Thus, we can use the

fGn process to model the dynamics of traffic demand, and study the stationary network

behavior for long range dependent and self-similar traffic arrivals. The autocorrelation

function for a fractional Gaussian noise (fGn) with Hurst parameter H is ρ(s) = 1
2
[(s +

1)2H − 2s2H + (s− 1)2H], 0.5 < H < 1.

Traffic Demand

Gravity model [89] [93] has been used to model mean network traffic demands between

ingress and egress points of a network. Let MSD(t) be the mean traffic demand from node

S to node D at Greenwich Mean Time (GMT) time t, and let P(t, S) be the number of

active population at node S as a function of GMT time t as measured in [89]. Given that the

average traffic generated per person is a constant α, the mean traffic originating from node S

is set to be proportional to the total active population P(t, S) of the metropolitan area where

node S is located, i.e. αP(t, S). In addition, the variance of the traffic demand between a

source-destination pair is set to introduce realistic queuing delays in the network. In the

gravity model, the mean traffic demand MSD(t) from an origin node S to a destination node

D is proportional to the total traffic leaving node S and that entering node D. Let GSD(t)

3 End-to-end Delay Trace Analysis, Simulation and Sampling 49

be the fan-out factor of traffic originating from node S and entering node D, proportional

to the number of active population P(t,D) of node D at time t, generating the following

two equations:

MSD(t) = αP(t, S)GSD(t), (3.8)

GSD(t) =
P(t,D)∑
D P(t,D)

. (3.9)

In the present simulation, the total population at each node is obtained from census

data [94]. The average traffic demand per person is set to α = 0.01 kb/5ms/person, i.e.

5.184 Gb or 648 MB per month per person, the Hurst parameter H = 0.8.

Capacity assignment

As we do not know link capacities in the AT&T network, in order to simulate realistic

end-to-end network delays, the capacity of each link must be set properly. We develop a

simple discrete optimization method described below.

Let the backbone network be modeled as a directed graph G = (V,E). The number

of nodes in G is |V | = n. E is the set of links in graph G. To formulate a capacity

assignment problem, we consider the following two points. First, link delays increase with

link utilization rates. Thus, if we can control the maximum link utilization rate of a network,

the link delays can also be controlled. Therefore, we set a maximum link utilization rate

ρmax for capacity assignment. Second, in a realistic network, especially a backbone network,

there are physical limitations on link capacity values, e.g. OC-3 (155 Mbps), OC-12 (622

Mbps), OC-192 (10 Gbps). Thus, it is reasonable to set a minimum capacity Cmin for the

capacity assignment problem. In our simulation, we choose the minimum capacity of a

backbone network link as 155 Mbps (OC-3), and assume that the capacity a link can have

are multiples of OC-3. Then we use the following algorithm to determine capacity of each

link.

3.3.3 Delay simulation results

The following presents the simulated network delays. As mentioned before, we model

the AT&T backbone network by a discrete time fluid network model with finite queuing

capacity. The gravity model and fractional Brownian motion (fBm) traffic model presented

3 End-to-end Delay Trace Analysis, Simulation and Sampling 50

in Section 3.3.2 is applied to generate aggregate fluid traffic arrivals for all source-destination

pairs in the 50-node AT&T network shown in Fig. 3.11. Traffic flows are routed through

minimum hop paths [33]. The aggregate traffic input at each link is then the sum of

the external fBm traffic input and the cross-traffic from upstream links. In the following

subsections, we show the simulated delays in the fluid network with the time resolution of

5 ms.

In simulating the following delays, I set the link utilization rate to be relatively high in

order to simulate delay spikes, autocorrelation and cross-covariance that are observed in the

real network delay traces in Section 3.2. I have also simulated cases when link utilization

rate is very low, for which queuing delays or delay spikes are rarely seen, and thus I would

not show them here. In the following, I show the simulation results when all the times zones

in USA are in their peak hours [89], i.e. GMT 21:00 or Eastern Time 16:00, and when the

western time zone is not yet in its peak hour, i.e. GMT 16:00 or Eastern Time 11:00. By

intuition, there are more traffic load in the network at GMT 21:00 than that at GMT 16:00,

especially for links connecting the western time zone to the eastern time zone, and thus we

can expect to observe higher link delays at GMT 21:00 than those at GMT 16:00, which is

validated in the simulation results as follows. Also note that, at other time, e.g. at GMT

10:00 or EST 05:00, it might still be advantageous to use overlay routing from a global

point of view since there are some other countries at their peak hours although all the time

zones in the USA are at low traffic load and one can still see triangle inequality [82] (note

that overlay routing is beneficial when there is triangle inequality), which is left for future

work.

Input: Traffic arrival ml at each link l.
Initialization: Set all link capacities equal Cmin=155 Mbps (OC-3) ;
Iteration: for each link l
(i) Compute link utilization ρl, ρl = ml

Cl

(ii) If ρl > ρmax, let Cl = Cl + 155 Mbps;
If Cl > Cmin, Cl = Cmin

(iii) Stop if no more updates for Cl,∀l;

Table 3.2 Algorithm for Capacity Assignment

3 End-to-end Delay Trace Analysis, Simulation and Sampling 51

Fig. 3.12 Queuing delay trace on a link (between two major cities located in
the Central time zone and the Eastern time zone respectively) at GMT 21:00
(i.e. EST 16:00) when all the time zones in the US are at peak hours.

Queuing delays

We simulate the network at GMT 21:00 (i.e., EST 16:00), as is a time when the traffic in

all time zones in the United States is at its peak [89]. Thus, the links are all relatively

heavily loaded, comparing to other times. However, as there are a total of 196 directed

links, we cannot show all the queuing delays on each of them. Consequently, we show only

an example of the link queuing delay trace as in Fig. 3.12 for a relatively heavily loaded

link NC, which connects a node N in the eastern time zone to a node C in the central time

zone. Among all the simulated queuing delays, we see that some links have relative large

queuing delays, as in Fig. 3.12, while some links have zero or very small queuing delays

even at peak times. This demonstrates that the shortest hop routing is unable to provide

balanced traffic on different links. For VoIP service providers, service overlay networks can

be employed to route traffic around heavily loaded links and choose links with low queuing

delays.

We also simulated the network at GMT 16:00 (i.e. EST 11:00), to compare with traffic

at GMT 21:00. At GMT 16:00, traffic originating from the western time zones is not at

its peak. Fig. 3.13 shows the queuing delay trace at GMT 16:00 for the same link between

the central time zone and the eastern time zone. Evidently, the queuing delay is very low

3 End-to-end Delay Trace Analysis, Simulation and Sampling 52

Fig. 3.13 Queuing delay trace on a link (between two major cities located in
the Central time zone and the Eastern time zone respectively) at GMT 16:00
(i.e. EST 11:00) when the western time zones in the US are not at its peak
hours, demonstrating that the queuing delay is very low because much less
traffic transits this link at this time compared to that at GMT 21:00.

because much less traffic transits this link at this time. Therefore, we can see that the

quality of a link varies with time and that the overlay network routing scheme should be

able to learn and adapt to such changes.

The cross-covariance among link queuing delays is also evident with the fluid network

simulation. Fig. 3.15 illustrates the cross-covariance between the queuing delay traces of

link CN and NW , (which connects two nodes N and W in the Eastern Time zone, with

a queueing delay as in Fig. 3.14) at GMT 21:00. As can be seen, there is a strong cross-

covariance between the queuing delay traces at around the lag of 50 seconds, which is

due to delay spikes in both queuing delay traces. At GMT 16:00, we can compute the

cross-covariance similarly for the two links, and we find that there is no such strong cross-

covariance, as in Fig. 3.16. The difference between Fig. 3.15 and Fig. 3.16 is due to the

traffic level at different times. When the network traffic level is high, there can be more

cross-covariance between the queuing delays on different physical links. A possible reason

for such behavior is that both links are shared by some of the shortest hop paths in the

network.

As is also observable in Fig. 3.12 to Fig. 3.16, the fluid network model based simulation

3 End-to-end Delay Trace Analysis, Simulation and Sampling 53

Fig. 3.14 Queuing delay trace on a link (between two major cities located
in the Eastern time zones) at GMT 21:00 (i.e. EST 16:00) when all the time
zones in the US are at peak hours.

is able to generate realistic network delays.

Warm-up period

In the fluid network model based simulation, it takes time for the queuing network to reach

its stationary state from the time traffic is injected into it. The time taken to reach the

stationary state is called the warm-up period, which is estimated by simulating the network

with different initial states. Fig. 3.17 shows an example for estimating the warm-up period.

The bottom graph in Fig. 3.17 shows a link queuing delay trace when the queuing network

is initialized with empty queues and links. The bottom graph shows the queuing delay on

the same link while the queuing network is initialized with fully loaded queues and links.

We also compare all of the other link queuing delays for the two different network state

initializations, and find that the warm-up period can be approximated as 50 seconds for

the simulated network. We have determined the duration of the warm-up period based on

experimental results. A theoretical derivation of the warm-up period is outside the scope

of the thesis and can be explored in future work.

The active probing and learning process, which I present in Chapter 5, is simulated on

3 End-to-end Delay Trace Analysis, Simulation and Sampling 54

Fig. 3.15 Cross covariance for the queuing delays on the two links CN and
NW at GMT 21:00 (i.e. EST 16:00) when all the time zones in USA are at peak
hours. There is a strong cross-covariance between the queuing delay traces at
around a lag of 50 seconds, which is due to delay spikes in the queuing delay
traces on link CN and NW , as shown in Fig. 3.12 and Fig. 3.14, respectively.

Fig. 3.16 Cross covariance for the queuing delays on two links CN and NW
at GMT 16:00 (i.e. EST 11:00), when traffic originating from the western time
zones is not at its peak. No strong cross-covariance is observable for the two
queuing delay traces.

3 End-to-end Delay Trace Analysis, Simulation and Sampling 55

Fig. 3.17 Queuing delay traces for a link during the warmup period with
different initial network states. The upper figure illustrates the situation when
the queuing network is initialized with fully loaded queues and links; in the
bottom figure the queuing network is initialized with empty queues and links.
In this example, the warm-up period is around 25 sec.

top of this fluid network model, and is started after the warm-up period.

Round trip time

Assuming unicast traffic and shortest hop routing [33], we simulated the end-to-end delays

for all 2450 source-destination pairs of the AT&T topology shown in Fig. 3.11. Fig. 3.18

shows an example of the round trip time for a source-destination pair at GMT 21:00.

Similar to the queuing delays experienced at GMT 16:00, the round trip time at GMT

16:00 would also be lower (I have not shown this in order to save space). The trace is very

similar to the real delay traces collected by the ISP, that were discussed in Section 3.2.

There are also large delay spikes that can be detrimental to VoIP quality.

The autocorrelation of the round-trip-time is plotted in Fig. 3.20. Obviously, the trace

in Fig. 3.18 has relatively strong autocorrelation. The small peak at around 20-second lag

is due to the 20 seconds gap between two large delay spikes shown in Fig. 3.18.

3 End-to-end Delay Trace Analysis, Simulation and Sampling 56

Fig. 3.18 Round Trip Time for a source-destination pair at GMT 21:00,
when network traffic level is relatively high (i.e. when all the time zones in
USA are at their peak hours).

Fig. 3.19 The autocorrelation for the delay trace in Fig. 3.18. It is evident
that the trace in Fig. 3.18 has relatively strong autocorrelation. The small
peak at around 20-second lag is due to the 20 seconds gap between two large
delay spikes in Fig. 3.18.

3 End-to-end Delay Trace Analysis, Simulation and Sampling 57

Fig. 3.20 Total queuing delay on an end-to-end path and its distribution
fitting to a Gamma distribution.

3.4 Sampling End-to-end Delay Traces

The last two sections presented our work on end-to-end delay trace analysis and simulation.

This section focuses on how to sample end-to-end delay traces. The goal of this work is to

find a method to determine the sampling rate that resolves the tradeoff between sampling

cost and sampling accuracy. As mentioned in Section 1.2.1, it is expensive to collect all

the end-to-end delay traces for all the source-destination pairs. Therefore, we want to

collect a minimum amount of end-to-end delay samples, while still being able to sufficiently

accurately reconstruct the delay trace from the collected minimum amount of delay samples.

The question is how to determine the sampling frequency that minimizes sampling overhead

while maximizing sampling accuracy.

3.4.1 Introduction

Signal sampling is a fundamental issue for statistical signal processing. Generally speaking,

there are two basic sampling approaches: deterministic sampling and random sampling.

In the deterministic sampling approach, the sampling intervals are fixed; while in random

3 End-to-end Delay Trace Analysis, Simulation and Sampling 58

sampling, as the name implies, the sampling intervals are random. The deterministic

sampling method is specifically useful for measuring network impairments for Constant Bit

Rate (CBR) applications, e.g. VoIP. For example, probing packets sent with the same

bit rate as that of a CBR application can emulate the CBR application, with the result

that the end-to-end delay measured by a probing packet equates that experienced by a

CBR application packet. The deterministic sampling approach can thus obtain a more

accurate measurement of the end-to-end delays for VoIP traffic. However, for statistical

signal sampling that involves either random or deterministic sampling, there is always a

tradeoff between sampling cost and sampling accuracy. Previous studies have acknowledged

the fact that higher sampling accuracy is usually obtained with higher sampling cost [95].

However, it is unclear how this tradeoff can be optimally resolved. This study develops an

original approach that suggests an optimal sampling rate that both maximizes sampling

accuracy and minimizes sampling cost. The traditional way usually formulates the problem

as maximizing sampling accuracy with constraint to a certain sampling cost. However,

when we we are not constrained to a sampling cost but we still want to minimize sampling

cost and maximize sampling accuracy, we need a different problem formulation, i.e. a

bi-objective optimization problem.

3.4.2 Bi-objective Optimization Problem

Denote the network delay trace as x(t). The Fourier transform of x(t) is represented by

X(f). Then, |X(f)| is the amplitude spectrum of x(t), and Φ(f) = |X(f)|2 is the power

spectrum of x(t), where Φ(f) = Φ(−f) for real valued x(t).

Let the cut-off frequency of X(f) be Fm, Fm ∈ (0,∞). Define the signal-to-noise ratio

(SNR) as the ratio of the signal energy in x(t) to the noise energy introduced by aliasing

when x(t) is sampled at frequency 2f , where f < Fm. Then the signal-to-noise ratio SNR

is a function of f as follows.

SNR(f) =

∫ Fm

−Fm
Φ(u)du∫ −f

−Fm
2Φ(u)du+

∫ Fm

f
2Φ(u)du

. (3.10)

The sampling cost c(f) is a monotonous increasing function of the sampling frequency

f . It is defined as c(f) = f , for simplicity. Define the sampling error Er(f) as the noise-

3 End-to-end Delay Trace Analysis, Simulation and Sampling 59

to-signal ratio 1
SNR(f)

and the sampling accuracy Ar(f) as 1− Er(f). Then,

Ar(f) = 1− 1

SNR(f)
. (3.11)

As defined above, the sampling accuracy Ar(f) and the sampling cost c(f) both increase

with the sampling frequency 2f , where 2f ≤ 2Fm. Hence, the maximization of the signal-

to-noise ratio SNR(f) or the sampling accuracy Ar(f) conflicts with the minimization of

the sampling cost c(f). Let the fair sampling frequency that resolves the conflict be 2f ∗

and the optimal sampling accuracy be Ar∗. Thus, the problem of maximizing the sampling

accuracy Ar(f) while minimizing the sampling cost c(f) can be formulated as a bi-objective

optimization problem in (3.12):

f ∗ =

{
arg maxf Ar(f),

arg minf c(f),

s.t. 0 < f ≤ Fm. (3.12)

Since 0 < f < Fm, the maximum sampling cost equals c(Fm). Hence, we can rewrite

the bi-objective optimization problem as follows:

f ∗ =

{
arg maxf Ar(f),

arg maxf max(c(f))− c(f),
s.t.

{
0 < f ≤ Fm

max(c(f)) = c(Fm)
(3.13)

3.4.3 Solution to the Bi-objective Optimization Problem

Related work

To solve a multi-objective optimization problem the weighted sum method [96] has been

proposed to reduce a multi-objective optimization problem to a single-objective optimiza-

tion problem, for which a Pareto front (for bi-objective optimization) or a Pareto surface

(for multi-objective optimization) can be approximated by changing the weights among the

objective functions. The present work proposes a new approach to solving the bi-objective

optimization problems.

3 End-to-end Delay Trace Analysis, Simulation and Sampling 60

A proportional fair solution

Solving bi-objective problems is typically done through the provision of a compromise that

maintains a balance between two competing interests. The balance can be obtained when

measures (such as the value or the rate of change of each competing interest) corresponding

to the competing interests are given equal weight. However, in the case where two compet-

ing interests are measured with different metrics, it makes more sense for the competing

interests to possess the same rate of change at balance instead of possessing the same value.

For the problem in (3.12), the sampling accuracy Ar(f) and the sampling cost c(f) are dif-

ferent physical quantities. Hence, we seek a balance with the same rate of change. Such a

balance can be obtained with a proportional fair solution.

Definition 1 (Proportional fairness [97–99]). An allocation of rates ~x = [x1, ..., xs, ..., xN]

is “proportional fair” if and only if for any other feasible allocation ~y = [y1, ..., ys, ..., yN],∑N
s=1

ys−xs

xs
≤ 0.

The concept of proportional fairness has been applied to solving the network optimal

flow control problem in [98]. The present study applies the concept of proportional fairness

to solve the bi-objective optimization problem, which provides a sampling frequency f ∗

that guarantees the same rate of change for Ar(f) and c(f) at the balance, i.e. for any

other sampling frequency f 6= f ∗:

Ar(f)− Ar(f ∗)

Ar(f ∗)
+

c(f)− c(f ∗)

c(f ∗)
≤ 0. (3.14)

This means the rate of increase in Ar(f) or c(f) cannot compensate for the rate of de-

crease in c(f) or Ar(f) at any other sampling frequency f other than f ∗. In [99], it has

been proven that there exists one unique proportional fair allocation achieved by maxi-

mizing
∑N

s=1 ln(xs) over the set of feasible allocations. Therefore, we obtain the following

proportional fair solution to the bi-objective optimization problem.

Lemma 3.4.1. The proportional fair optimal solution f ∗ to the bi-objective optimization

problem in (3.12) maximizes the product of the two objectives in (3.13).

Proof. Paper [99] shows that a proportional fair allocation can be obtained by maximizing∑
s ln(xs) over the set of feasible allocations xs, where xs is the share allocated to user s.

3 End-to-end Delay Trace Analysis, Simulation and Sampling 61

Therefore, following the approach of [99], a proportional fair solution to the problem (3.13)

or (3.12) can be given by:

maxf ln(v1) + ln(v2) (3.15)

v1 = Ar(f)

v2 = max(c(f))− c(f)

s.t. 0 < f ≤ Fm

max(c(f)) = c(Fm)

In fact, if we formulate the bi-objective optimization problem as a bargaining problem

between two players, with the set of payoffs under agreement being the points interior to

and on the boundary of Ar(f) and the payoff under disagreement being (0,0), we can obtain

a Nash bargaining solution [100] that is the same as that for (3.15).

The solution to the bi-objective optimization problem also possesses the properties of

a Nash Bargaining solution [100], i.e. 1. Pareto efficiency11, 2. invariant to affine trans-

formations or invariant to equivalent utility representations, 3. independence of irrelevant

alternatives12, 4. symmetry13. By proving the following lemmas, the equivalence between

the proportional fair solution to the bi-objective optimization problem and the Nash Bar-

gaining solution is established. From the definition of Ar(f) and c(f), it is easy to see

that the property 3, independence of irrelevant alternatives, is satisfied. The symmetry is

also guaranteed if the two objectives are indistinguishable. Consequently, we only prove

properties 1 and 2.

Lemma 3.4.2. The optimal solution f ∗ to the bi-objective optimization problem (3.12) is

a Pareto efficient solution.

11Pareto efficient is an important concept in economics with broad application in game theory, engineering
and social science [101, 102]. A situation is Pareto efficient if any change to make one person better off
(i.e. put in a preferred position) would cause someone else to be worse off [100–102]. Any Pareto inefficient
system can be improved to Pareto efficient by making some person better off without causing others to be
worse off.

12If A is preferred to B out of the choice set {A,B}, then introducing a third alternative X, thus expanding
the choice set to {A,B,X}, must not make B preferable to A [100,103].

13If two players are indistinguishable, they should achieve the same utility at the NBS [100].

3 End-to-end Delay Trace Analysis, Simulation and Sampling 62

Proof. Supposing the sampling cost function c(f) and the sampling accuracy function Ar(f)

are differentiable, we can write c′(f ∗) = lim∆f→0
c(f∗+∆f)−c(f∗)

∆f
.

Similarly, Ar′(f ∗) = lim∆f→0
Ar(f∗+∆f)−Ar(f∗)

∆f
. It is easy to see that Ar′(f) ≥ 0 and c′(f) ≥ 0.

Now consider two situations:

(a) If we increase f ∗ by ∆f , ∆f > 0, and 0 < f ∗ + ∆f ≤ Fm, then c(f ∗ + ∆f) > c(f ∗)

and Ar(f ∗ + ∆f) > Ar(f ∗), i.e. c(f) becomes worse off if we make Ar(f) better off by

increasing the sampling frequency.

(b) Similar to (a), if we decrease f ∗ by ∆f , ∆f > 0, and 0 < f ∗ − ∆f ≤ Fm, then

c(f ∗ − ∆f) < c(f ∗) and Ar(f ∗ − ∆f) < Ar(f ∗), i.e. Ar(f) becomes worse off if we make

c(f) better off by decreasing the sampling frequency.

In sum, no single objective can be better off without making the other objective worse

off, i.e. the optimal solution f ∗ is a Pareto efficient solution.

Lemma 3.4.3. The optimal solution f ∗ to the bi-objective optimization problem in (3.12)

is invariant to the linear equivalent representation of Ar(f) and c(f).

Proof. Let Ãr(f) be α1Ar(f) + β1 and c̃(f) be α2c(f) + β2. The transformation maintains

the order of preference in Ar(f) and that in c(f), i.e. α1 > 0, α2 > 0. The original

bi-objective optimization problem in (3.12) becomes:{
maxf Ãr(f) or α1Ar(f) + β1,

minf c̃(f) or α2c(f) + β2,
s.t. 0 < f ≤ Fm. (3.16)

Let a Pareto efficient solution to the problem in (3.12) be f ∗. Then it is easy to see that

f̃ ∗ = f ∗ is also a Pareto efficient solution to problem (3.16) since the order of preference in

Ãr(f) and c̃(f) is the same as that in Ar(f) and c(f).

3.4.4 Experimental results

We generated a stationary network delay trace x(n) with the fBm traffic, as shown on

the top left graph of Fig. 3.22. The parameters of the fBm traffic are from the Bellcore

data [80], where Hurst parameter is H=0.86, the mean input rate is m=12.3 kbit/sec, and

the variance coefficient is a=68.6 kbit· sec. Then we apply the optimal sampling method

proposed in Section 3.4.3 to sample the network delay trace x(n). The sampling accuracy

Ar(f) = 1− 1
SNR(f)

is a concave function, as shown in Fig. 3.21.

3 End-to-end Delay Trace Analysis, Simulation and Sampling 63

Fig. 3.21 Trade-off between sampling frequency and sampling accuracy. In
this example, sampling accuracy Ar(f) is plotted on the x-axis, the cut-off
frequency Fm = 33.3Hz. The sampling cost is c(f) = f . The y-axis is the
residual sampling cost Fm − f . f∗ is the fair sampling frequency. The star
point represents the optimal residual sampling cost Fm − f∗.

The optimal solution to the bi-objective optimization problem in (3.13) is the point on

the curve in Fig. 3.21 which maximizes the product of the two coordinates. The resulting

proportional fair sampling frequency given by the solution to (3.15) is f ∗ = 1.3HZ. This

reduces the original sampling frequency (Fm = 33.3HZ) by about 30 times. Signal y(k),

which is sampled with frequency f ∗ from x(n), and signal z(n), which is reconstructed

from the sampled signal y(k), are also shown on the top right and bottom left of Fig. 3.22,

respectively. The noise in the reconstructed signal, i.e. x(n) − z(n) is also plotted on the

bottom right of Fig. 3.22. The corresponding signal-to-noise ratio SNR for the reconstructed

signal is about 20dB.

In sum, we have resolved the trade-off between the sampling accuracy and the sampling

cost by solving a bi-objective optimization problem. We show that the proportional fair

and Pareto efficient solution to the bi-objective optimization problem is given by the point

that maximizes the product of the objectives. This proportional fair solution is equivalent

to a Nash bargaining solution. It provides relatively accurate estimation and reconstruction

of the original delay trace at low sampling cost, and it also shows that significant savings

in monitoring costs (as quantified by the number of samples) are possible. The proposed

method gives a fair sampling rate that addresses the fairness of the tradeoff [104]. The

end-to-end delay sampling method considered here is deterministic in methodology, but

the approach to tradeoff resolution can be extended to many other sampling methods.

3 End-to-end Delay Trace Analysis, Simulation and Sampling 64

Fig. 3.22 Sample network delay with the proportional fair sampling fre-
quency. The top left figure is the original delay trace x(n), which is sampled
every 30 ms. The top right figure shows the delay trace y(k) after down-
sampling x(n) at a ratio of 30

763 (the ratio is decided by the proposed optimal
sampling method). The bottom left figure is the delay trace z(n) reconstructed
from y(k) by upsampling y(k) at a ratio of 763

30 . As can be seen, the delay trace
on the top left figure and that on the bottom left figure looks very similar. The
noise in the reconstructed signal z(n), i.e. x(n) − z(n) is plotted on the bot-
tom right. The corresponding signal-to-noise ratio SNR for the reconstructed
signal is about 20 dB.

3 End-to-end Delay Trace Analysis, Simulation and Sampling 65

3.5 Summary

End-to-end delay is one of the most important performance characteristics of the Internet.

It can affect the quality of a VoIP call significantly. In this chapter, I have presented new

contributions on end-to-end delay analysis, simulation and sampling.

In the end-to-end delay analysis section, I analyzed the relation between the sample

mean and the sample standard deviation of end-to-end delay traces, the relation between

the minimum delay and the geographical distance between two nodes, the marginal prob-

ability distribution and the autocorrelation of end-to-end delay traces. A shifted gamma

distribution model is then fitted to the real network delay measurements. Based on the

analysis, delay traces with random delay spikes and no/weak autocorrelation can be syn-

thesized.

To simulate more realistic network delays, where strong auto-correlation and cross-

correlation among delay traces are also maintained, we simulate a 50-node model of the

AT&T backbone network, with the fluid network model implemented in MATLAB, a grav-

ity model for traffic demand, a fractional Brownian motion process for traffic dynamics,

and well-designed link capacities. Simulation results show that the simulated end-to-end

delays are within a reasonable range. Autocorrelation and cross-correlation among delay

traces are also observed in the simulated network delays. Such a carefully designed network

model and simulated delays will be used for distributed QoS routing schemes presented in

Chapters 5 and 6.

Measuring end-to-end delays requires sending probing packets to the network, which

adds additional overhead. Storing these measurements also puts pressure on the storage

system. To find a proportional fair sampling frequency that minimizes sampling cost (and

thus saves storage) and also maximizes sampling accuracy, we formulated a bi-objective

optimization problem with two conflicting objectives: sampling cost minimization and sam-

pling accuracy maximization. The tradeoff is resolved in a solution that provides the same

rate of change for both objectives. This is a proportional fair solution that maximizes the

product of the two objectives, which is the same as the Nash Bargaining solution if we

formulate the two objectives as two selfish players. Finally, this method for resolving the

trade-off between conflicting interests can also be extended to solve other multi-objective

optimization problems.

66

Chapter 4

Improving R-factor with Diverse

Routing: A Centralized Approach

4.1 Introduction

Following the end-to-end delay study in the last chapter, I conducted preliminary research

on diverse routing in small scale overlay networks. This chapter presents a centralized

solution for the diverse routing problem based on R-factor estimation.

In general, the network layer of the Internet only provides a single route (e.g., shortest

hop path) between a given source-destination pair. This route is calculated to minimize

criteria specified by the ISP(s) owning the networking infrastructure between the source

and destination, and their criteria do not necessarily attempt to minimize the latency expe-

rienced by packets traveling from source to destination. For latency-sensitive applications,

such as voice-over-IP or other streaming multimedia, the “given route” provided by the net-

work layer may not be adequate, and it may be possible to improve the quality of service by

routing the traffic along an alternate route through the nodes of a service overlay network.

However, this requires identifying the optimal route through the overlay network.

As mentioned in Section 2.3, previous studies [12, 14, 15, 47, 48] have demonstrated the

benefit of path diversity in overlay networks — using two disjoint paths between the origin

and destination improves the perceived end-user performance when one path temporarily

experiences congestion, as illustrated in Fig. 4.1. In practice, a pair of paths has been often

used to provide a good tradeoff between performance improvement and cost of transmitting

2009/11/11

4 Improving R-factor with Diverse Routing: A Centralized Approach 67

Fig. 4.1 Diverse routing in service overlay networks.

on two paths [12, 48, 49]. However, the pair of paths is usually selected arbitrarily. In this

chapter, we develop a method to choose the best pair of paths for VoIP, by selecting that

with the best R-factor to route VoIP packets to their destination.

As discussed in Section 3.2, we have obtained end-to-end delay traces measured between

gateways of an Internet Service Provider (ISP). The gateways are located in the USA,

China, Korea, Japan, Singapore and Malaysia. By considering these gateways of the ISP

as overlay nodes of a full mesh overlay network, I conducted a preliminary research on

how VoIP can benefit from routing on a pair of paths. In this chapter, we propose a novel

mechanism to select the optimal pair of paths that provides the best R-factor estimate for

VoIP phone calls when adaptive play-out scheduling is applied at the receiver. The paths

considered have a maximum of two hops due to the computational complexity of estimating

R-factor on multi-hop paths. This method also proposes a framework for communicating

network performance characteristics, where pre-processing of network measurements and

a data fusion center are involved. In the data fusion center, the optimal pair of paths

is determined based on the pre-processed overlay link performance characteristics. The

proposed mechanism is evaluated in the small-scale overlay network of the ISP referred to

before by comparing the R-factor of the VoIP calls sent through the optimal pair of paths

with that of the VoIP calls sent through the direct path1. The simulation results show that

1The direct path is the shortest hop path decided by the underlying network

4 Improving R-factor with Diverse Routing: A Centralized Approach 68

the proposed method can improve VoIP quality and provide much more stable quality for

VoIP calls.

4.1.1 Chapter Structure

The rest of the chapter is organized as follows: Section 4.2 presents the routing problem

to be solved, the proposed solution and the simulation results. Section 4.3 summarizes the

chapter.

4.2 Selecting the Optimal Pair of Paths for VoIP

4.2.1 Problem statement

For a centralized routing problem, it is practical to consider only overlay paths that are

comprised of either a one-hop overlay link, which can be called a direct path, or a two-hop

overlay path, which is a concatenated path. In this study, a pair of overlay paths is used to

route voice calls from a source to a destination. We also assume that the overlay links of

a pair of overlay paths are independent. This can be assumed for a well designed overlay

network whose overlay links are disjoint in the physical layer, e.g. when each overlay node

is located in a different country and in a different Internet Service Provider.

Let d̂ and l̂ represent the estimate of the total end-to-end delay d and loss l, respectively.

Then, the estimate of the R-factor is:

R̂(d̂, l̂) = 93.2− Id(d̂)− Ie(l̂). (4.1)

Denote the set of the candidate overlay paths for a source-destination pair as S. This

includes all the concatenated paths and the direct path between the source-destination pair.

Thus, the set of all the possible path pairs between the source-destination pair is S × S.

Here, a pair of paths is used interchangeably with diverse paths. Denote a pair of diverse

path as [s; t], where s, t ∈ S and s 6= t. Note that [t; s] is the same as [s; t]. The optimal

diverse path selection problem can be written as:

(s∗, t∗) = arg max
(s,t)∈S×S,s6=t

R̂(d̂[s;t], l̂[s;t]) (4.2)

4 Improving R-factor with Diverse Routing: A Centralized Approach 69

where d̂[s;t] and l̂[s;t] are the estimate of the end-to-end delay and loss, respectively, for the

pair of paths s and t, s, t ∈ S. s∗ and t∗ represent the selected optimal pair of paths.

4.2.2 Solution: Optimal path pair selection for VoIP

To solve the problem in (4.2), we propose a novel diverse routing mechanism to select the

optimal multipath with the best R-factor estimate. The advantage of the proposed method

is that the selected optimal path not only maximizes the R-factor but also automatically

guarantees a more stable quality. This is because the proposed end-to-end delay estimation

method accounts for network delay variations by cooperating with the adaptive playback

scheduling at the receiver.

There are two challenges in estimating R-factors on diverse paths and choosing the best

pair of paths accordingly: estimation of the end-to-end delay and loss on a pair of paths,

and the communication of the network performance characteristics for optimal diverse path

decisions.

I present the details of the challenges and propose solutions below.

Estimation of the end-to-end delay and loss on a pair of paths

The first challenge in solving the optimization problem is the estimation of the end-to-end

delay d̂ on a pair of paths. The end-to-end delay d of a voice call includes not only the

network delay dnet, which can be measured by sending active probes between a source-

destination pair, but also the playback delay dplay at the receiver of the voice call. The

probing overhead for measuring network delays is the same as that for RON as discussed

in Section 2.3.

As mentioned in Section 2.2.3, adaptive play-out scheduling performs better than fixed

play-out scheduling in a dynamic network environment, especially when network delay

varies considerably.

• Adaptive play-out scheduling

In this work, we consider adaptive playback scheduling [16,105] at the receiver. The

empirical Complementary Cumulative Distribution Function (CCDF) Hr
dnet

(x) for

network delay is stored for the last N received voice packets. The play-out delay

for the next packet is decided according to Hr
dnet

(x). With this approach, if the

acceptable play-out loss rate is lplay, the receiver automatically adjusts the play-out

4 Improving R-factor with Diverse Routing: A Centralized Approach 70

delay as dplay = Hr(−1)
dnet

(lplay)− dnet given that the next packet received has a network

delay of dnet and that the inverse of the function Hr
dnet

is Hr(−1)
dnet

. It can be seen

that E(dplay) = Hr(−1)
dnet

(lplay) − E(dnet) if the network delay is stationary with CCDF

Hr
dnet

(x) and the mean network delay is E(dnet). Suppose that the CCDF Hdnet(x) for

the network delay dnet measured by the sender and the CCDF Hr
dnet

(x) measured at

the receiver are the same and slowly varying, then the sender is able to estimate the

play-out delay dplay at the receiver with d̂play based on Hdnet(x).

S D

P1

P2

De-jitter buffer

(lplay=maximum tolerable play-out loss)

Decoder

H2
-1
(lplay)

PDF for the

network delay

on path P1

PDF for the

network delay

on path P2

:

Average

network

delay

H1
-1
(lplay) :Expected end-to-end

delay for adaptive play-out

scheduling

Fig. 4.2 Illustration of the expected end-to-end delays when adaptive play-
out scheduling is adopted at the receiver. Given a tolerable play-out loss lplay at
the receiver and the Probability Density Function (PDF) for the network delay
on path P1 or its Complementary Cumulative Distribution Function (CCDF)
H1(x) , the expected end-to-end delay for path P1 is H−1

1 (lplay). Similarly, the
expected end-to-end delay for path P2 is H−1

2 (lplay). Hence, path P2 is better
than path P1, although the average network delay on path P1 is less than that
on path P2.

It is important to include d̂play in the end-to-end delay estimate d̂ for the following

reasons.

4 Improving R-factor with Diverse Routing: A Centralized Approach 71

Fig. 4.3 Illustration of the direct and concatenated paths between nodes 1
and 3

– As illustrated in Fig. 4.2, for two paths with the same mean network delay

E(dnet), the path with heavier tail distribution, i.e. with larger Hr(−1)
dnet

(lplay), will

have a larger expected play-out delay, since E(dplay) = Hr(−1)
dnet

(lplay)−E(dnet), and

thus a longer expected end-to-end delay. Therefore, the heavy tail of a network

delay distribution indicates a large delay variation on a path, which should be

taken into consideration when the routing decision is made.

– The computation of R-factor requires knowledge of the total end-to-end delay

and loss, which by definition include the play-out delay and loss.

Let d̂play(lplay) represent the estimate of the play-out delay dplay for a certain tolerable

play-out loss lplay at the receiver. Then, d̂play(lplay) = H−1
dnet

(lplay)−dnet. The estimated

end-to-end delay d̂ on the path is:

d̂ = dnet + d̂play(lplay) = H−1
dnet

(lplay) (4.3)

In order to estimate d̂, we must first estimate the CCDF Hdnet(x) of the network delay

for each pair of diverse paths, which is discussed below.

• Estimation of network delay and loss on a concatenated path.

To estimate Hdnet(x) for a pair of diverse paths, we must first consider estimating

Hdnet(x) for each concatenated path, (i.e. two-hop overlay path). Let d
[j]
net and l

[j]
net

represent the network delay and loss on an overlay link j.

Given the network delay distribution of each overlay link, we can find the network

delay distribution on a concatenated overlay path. As shown in Fig. 4.3, link i repre-

sents an overlay link between overlay node 1 and 2. For the purposes of representation

we denote the concatenated path formed by overlay link i and j as [i, j]. Let F
d
[i]
net

(x)

and F
d
[j]
net

(x) represent the Cumulative Distribution Function (CDF) of the network

4 Improving R-factor with Diverse Routing: A Centralized Approach 72

delays on overlay link i and j. Then the CCDF H
d
[i,j]
net

(x) for the network delay on a

concatenated path [i, j] can be computed from F
d
[i]
net

(x) and F
d
[j]
net

(x) by (4.4), assum-

ing the independence of d
[i]
net and d

[j]
net, where F and F−1 are the Fourier transform

and the inverse Fourier transform, respectively. Similarly, the network loss l
[i,j]
net on

the concatenated path [i, j] can also be computed from l
[i]
net and l

[j]
net as in (4.4).

d
[i,j]
net = d

[i]
net + d

[j]
net (4.4)

H
d
[i,j]
net

(x) = Pr{d[i,j]
net ≥ x}

= 1−F−1(F(F
d
[i]
net

(x)) · F(F
d
[j]
net

(x)))

l
[i,j]
net = 1− (1− l[i]net) · (1− l

[j]
net)

• Estimation of the network delay and loss for a pair of paths.

For purposes of representation, we denote a pair of paths that consists of a pair of

diverse paths s and t as [s; t], where s and t are two candidate paths for a source-

destination pair. If a voice packet is received from both paths, the one that arrives

later is discarded. Thus, the network delay for a voice packet transmitted on the pair

of paths [s; t] is the minimum of network delays on paths s and t. The network loss

on the pair of paths is the product of losses on two paths as shown in (4.5):

d
[s;t]
net = min(d

[s]
net, d

[t]
net)(1− l

[t]
net)(1− l

[s]
net) + (1− l[t]net)l

[s]
netd

[t]
net + (1− l[s]net)l

[t]
netd

[s]
net;

l
[s;t]
net = l

[s]
net · l

[t]
net . (4.5)

When the path loss rates l
[t]
net and l

[s]
net are small, we approximate d

[s;t]
net as min(d

[s]
net, d

[t]
net).

Let the CCDF of the network delay on the pair of paths [s; t] be H
d
[s;t]
net

(x).

H
d
[s;t]
net

(x) = Pr{d[s;t]
net ≥ x} (4.6)

≈ Pr{min(d
[s]
net, d

[t]
net) ≥ x}

, h
d
[s;t]
net

(x)

= (1− F
d
[s]
net

(x)) · (1− F
d
[t]
net

(x))

4 Improving R-factor with Diverse Routing: A Centralized Approach 73

• Estimation of the end-to-end delay and loss on a pair of paths.

Using (4.4)–(4.6), the estimated end-to end delay d̂[s;t] on the pair of paths [s; t] can

be estimated according to (4.3), as shown in (4.7), where lplay is the pre-set tolerable

play-out loss rate at the receiver, e.g. lplay = 0.01. The end-to-end loss on the pair of

paths [s; t] is the sum of the network loss and the play-out loss as given in (4.8):

d̂[s;t] ≈ h−1

d
[s;t]
net

(lplay); (4.7)

ˆ̀
[s;t] = l

[s]
net · l

[t]
net + (1− l[s]net · l

[t]
net)lplay. (4.8)

Communication of network performance characteristics

In the service overlay network, each overlay node measures only the network delays and

losses from itself to all the other overlay nodes. Therefore, in order to estimate the end-to-

end delays and losses on the concatenated overlay paths, the delay distributions on other

overlay links has to be communicated efficiently. However, the communication cost would

be high when delay distributions are non-parametric.

We propose a method whereby feature vectors of the network performance characteris-

tics are sent to a data fusion center, as illustrated in Fig. 4.4, where R-factors on diverse

paths are estimated and the optimal diverse paths are selected. The optimal diverse path

selection algorithm is given in Algorithms 1 and 2.

Require: Service overlay network G=(V,E), at each overlay node i ∈ V
1: Perform active probing from i to all j, j ∈ V , per τ time interval;
2: Get N consecutive network delay measurements TNij = {d1

netij
, ..., dknetij , ..., d

N
netij
}

between node i and j;
3: Fit a shifted Gamma distribution with parameters (µij, αij, βij) to TNij using the

maximum likelihood method;
4: Compute the loss rate lij from TNij ;
5: Send the feature vector [µij, αij, βij, lij] to the data fusion center.

Algorithm 1: Operation at each overlay node

• Feature vector for network performance characteristics

We have shown the formula for computing the network delay distribution on concate-

nated paths in (4.4). For a non-parametric representation of the distributions F
d
[i]
net

(x)

4 Improving R-factor with Diverse Routing: A Centralized Approach 74

Fig. 4.4 Illustration of the centralized data fusion based diverse routing
method. Each overlay node collects and pre-processes network performance
measurements, then sends the pre-processed network performance feature vec-
tors [µ, α, β, l] to the data fusion center for making optimal diverse routing
decisions.

Require: Service overlay network G=(V,E), feature vectors [µij, αij, βij, lij] for all
i, j ∈ V

1: Estimate end-to-end delay and loss for all candidate paths with (4.3)–(4.6);
2: Find the optimal pair of paths that solves the optimization problem in (4.2)

by brute-force search for each source-destination pair;
3: Send the selected optimal pair of paths [s∗; t∗] for each source-destination pair

to the corresponding source overlay node.

Algorithm 2: Operation at the data fusion center

4 Improving R-factor with Diverse Routing: A Centralized Approach 75

and F
d
[j]
net

(x), it is difficult to evaluate H
d
[i,j]
net

(x) from the convolution of F
d
[i]
net

(x) and

F
d
[j]
net

(x), and thus to evaluate the delay distributions on concatenated paths and those

on a pair of paths.

As referred to in Section 3.2.2, network delay distributions are slowly varying and

network delay distributions on different links at different times can be fitted to a

shifted Gamma distribution [?, 106]. Therefore, we use the parameters of a shifted

gamma distribution to represent the network delay distribution of an overlay link.

The feature vector for the network delay and loss l on an overlay link i can be written

as [µi, αi, βi, li].

• Optimal diverse path selection in data fusion center

Once the data fusion center receives feature vectors of network performance on all the

overlay links, the parameters of the delay distributions on all concatenated paths can

be approximated. For the shifted Gamma distributed network delays dneti and dnetj
with parameters (µi, αi, βi) and (µj, αj, βj), respectively, paper [107] stated that the

distribution of the sum of two Gamma distributed random variables can be approx-

imated as a Gamma distribution. Therefore, a shifted Gamma distribution can be

used to approximate the distribution for the network delay d
[i,j]
net on the concatenated

path [i, j]. with parameters (µ, α, β) as follows [107]:

µ = µi + µj, (4.9)

α = αi + αj,

β =
αi · βi + αj · βj

αi + αj
,

The end-to-end delay and loss can be estimated for each possible path pairs between a

source-destination pair from (4.3)–(4.6). The R-factor can then be evaluated accord-

ing to (4.1). The optimization problem given in (4.2) can be solved by brute-force

search where the entire set of possible path pairs is searched and compared. The

selected optimal pair of paths will then be sent to the corresponding source nodes.

4 Improving R-factor with Diverse Routing: A Centralized Approach 76

Fig. 4.5 R-factor for the best R-path (top) versus that for the direct path
(bottom) between two service gateways over the whole measurement period
(277.5 hours). G.723 codec is assumed for R-factor computing.

4.2.3 Simulation

A preliminary simulation on diverse path routing

With measured data in an implemented SON with 7 service gateways and 42 overlay links,

we simulate the quality of a VoIP call encoded with the G.723.1-A codec [3, 108]. The

adaptive play-out delay at the receiver is set to correspond to 1% play-out loss. Then we

calculate the R-factor for all different paths between two service gateways. Fig. 4.5 shows

the R-factor results for the direct path and the best R-factor among all paths. As shown

in the figure, choosing the best R-factor path for routing packets can significantly improve

the R-value, especially for periods where the direct path has a low R-value.

We selected a period of 5 hours where the network performance is poor and another

similar period where it is acceptable, and calculated the R-factor for the direct path, the

best single path and the best combination of two paths. Results are shown in Fig. 4.6.

It is apparent that the R-factor in the two-path scheme is more stable than that in the

single path cases. Compared to using only a single best R-factor path, there is a noticeable

improvement in R-factor when path diversity is used for the period of poor performance,

4 Improving R-factor with Diverse Routing: A Centralized Approach 77

Fig. 4.6 R-factor calculated over two different periods for the direct path
(bottom plot), the best-R path (middle plot) and the best-R combination of
two paths (top plot). G.723 codec is assumed for R-factor computation.

as shown in the top graph of Fig. 4.6, whereas for the period of acceptable performance,

R-factor value is not largely improved, as shown in the bottom of Fig. 4.6. An intuitive

explanation for this difference is that in the second case the performance of the single best

path is much better than that of any other path in the network, and therefore adding a

second path cannot largely improve R-factor.

Simulation of the proposed optimal diverse routing

The proposed novel optimal diverse routing scheme presented in Section 4.2.2 is also sim-

ulated for the 7-node overlay network of the ISP described above. Feature vectors are

computed from the end-to-end delay traces for all overlay links, and then sent to the data

fusion center. The communication overhead between the overlay nodes and the data fu-

4 Improving R-factor with Diverse Routing: A Centralized Approach 78

sion center is kept small by transmitting only the feature vectors and the optimal diverse

path decisions. The data fusion center computes the optimal diverse paths for all source-

destination pairs.

The real optimal multipath refers to the pair of paths that gives the best R-factor when

voice quality is evaluated at the receiver. We also evaluate R-factor for voice calls that are

sent through the estimated optimal pair of paths. At the receiver of the voice call, adaptive

play-out scheduling is applied.

Fig. 4.7 shows an example where the optimal pair of paths increases R-factor by a

minimum of 5 and a maximum of 32 when the direct overlay path is in poor condition. The

R-factor on the optimal pair of paths is also much more stable compared to that for the

direct path. Fig. 4.8 shows the difference between the R-factor on the real optimal diverse

paths and that on the estimated optimal diverse paths. The discrete difference in Fig. 4.8

is because R-factors on the best multipath and on the estimated best multipath are stable

during the simulation time. For other source-destination pairs, the difference is not always

discrete. The average difference for all the source-destination pairs is shown in Fig. 4.9.

This estimation loss is due to the approximation of the network delay distribution on the

concatenated paths and that on the pair of paths. As can be observed, the difference is

very small in this network, which means that the estimated optimal pair of paths, which

is selected based on the approximated shifted Gamma distributions, can provide a voice

quality close to that given by the real optimal pair of paths. It is important to note that the

method assumes there is no correlation between the pair of selected paths. The end-to-end

delay follows the shifted Gamma distribution and the end-to-end loss is small. When these

assumptions are not satisfied, we would see larger estimation losses. In that case, we would

have to transmit the whole end-to-end delay measurements to the data fusion center to

obtain a better estimate of the best pair of paths, which would incur a high communication

cost.

4.3 Summary

This chapter is a preliminary study on diverse routing in a small-scale service overlay

network based on the end-to-end delay trace measured by an Internet Service provider in

Asia. Path diversity is shown to provide a stable and higher R-factor for VoIP in the service

overlay network under study. We have also explored the potential use of shifted Gamma

4 Improving R-factor with Diverse Routing: A Centralized Approach 79

Fig. 4.7 R-factor on the optimal pair of paths (upper line) vs. R-factor
on the direct path for a source-destination pair. G.729 codec is assumed for
R-factor computation.

Fig. 4.8 Difference between the R-factor on the real optimal pair of paths
and that on the selected optimal pair of paths.

Fig. 4.9 Difference between the average R-factor on the real optimal pair
of paths and that on the selected optimal pair of paths for all the source-
destination pairs in the 7-node service overlay network.

4 Improving R-factor with Diverse Routing: A Centralized Approach 80

distribution to estimate end-to-end network delay distribution. We proposed an optimal R-

factor diverse path selection scheme, which cooperates with an adaptive playout scheduling

scheme at the receiver to provide optimal quality for voice calls. The simulation shows that

the proposed optimal diverse path selection algorithm gives a much more stable R-factor

than that on the direct paths, and it also shows that the proposed method can improve

R-factor as in the example. We found that the paths with the best performance vary

depending on the time. As shown in Fig. 4.8, the shifted Gamma distribution approximation

for the network delay distributions on the concatenated paths results in acceptable errors,

in choosing the optimal diverse paths. Therefore, the estimated optimal diverse paths can

provide as satisfactory quality for VoIP calls as can the real optimal diverse paths.

When network bandwidth resources are limited, multiple-description-coded voice pack-

ets can be sent instead of duplicate voice packets in the two-path diversity scheme. In this

study, we considered only two-path diversity and it can be expected that with more than a

pair of diverse paths, VoIP quality may be improved. However, as mentioned in [12], when

four-path diversity is used, a quality decrease can occur due to link capacity saturation.

This centralized brute-force search method requires computation of all the end-to-end

delay distributions for all pairs of candidate paths, which is computationally very expensive,

and limits the scalability of this approach. Due to the complexity of computing end-to-end

delay distributions, the candidate paths considered are only one-hop or two-hop paths for

each source-destination pair. However, it can be expected that VoIP quality may be further

improved with more than two-hop paths. In Chapters 5 and 6, we propose a method to find

paths that are not limited to one or two hops, in order to improve VoIP quality. Moreover,

we seek a method that is scalable, distributed, adaptive, and has low computational cost.

In addition, in the simulation presented in Fig. 4.5, Fig. 4.6, we also saw that the resultant

R-factor ratings are not very satisfactory with G.723 and G.729 codec when the network

performance is poor. In the next stage of simulations, we use G.711 codec, which has much

lower codec impairment [3, 108].

81

Chapter 5

Learning Minimum Delay Paths: A

Distributed Approach

5.1 Introduction

In the previous chapter, we have shown how much VoIP quality can be improved by diverse

routing in a small scale service overlay network based on the collected network delay mea-

surements from an Internet Service Provider. This chapter presents a scalable QoS routing

scheme for larger overlay networks.

In a dynamic network environment, it is challenging to adaptively find the minimum

delay paths for service overlay networks. In this work, we propose a novel approach to

actively probe and learn the minimum delay paths for VoIP calls. Learning automata are

applied to probe unwastefully and learn the optimal paths in a distributed manner. We

proposed four strategies to actively probe and learn the optimal paths. The performance of

the four strategies is then evaluated in a fluid model of the AT&T backbone network. Sim-

ulation results show that the proposed active probing and learning strategies can converge

to the minimum delay paths very quickly. We also prove the convergence of the learning

automata and show that they converge to the user equilibrium for minimum delay routing.

5.1.1 Chapter Structure

The rest of the chapter is structured as follows. Section 5.2 shows the architecture of the

proposed method. Section 5.3 presents the proposed active probing and learning method.

2009/11/11

5 Learning Minimum Delay Paths: A Distributed Approach 82

The simulation results for the proposed method are shown in Section 5.4. Section 5.5

analyzes the probing overhead of this method. Section 5.6 proves its convergence to the

minimum delay paths. Section 5.7 summarizes this chapter.

5.2 Architecture

The architecture of the proposed QoS routing solution consists of three layers: service

overlay network layer, probing layer and VoIP routing service layer, as shown in Fig. 5.1.

Fig. 5.1 Proposed network architecture for VoIP service provision in overlay
networks. An overlay network is formed by interconnected overlay nodes. The
probing layer and the VoIP routing service layer are the novel design in our
work, which are presented in detail in Sections 5.3 and 6.4, respectively.

The service overlay network layer consists of two types of nodes: user nodes and overlay

nodes. User nodes run VoIP applications. Each user node typically connects to an overlay

node that is geographically closest to it, which we call its local overlay node. All the overlay

nodes are interconnected via virtual connections. During the call initialization process, a

caller connects to its local overlay node and uses the paths provided by the overlay network

to communicate with its callee via the callee’s local overlay node.

Overlay nodes are responsible for identifying routes that provide high quality of ser-

vice through the overlay network. As the performance of the overlay links is random and

unknown to the overlay nodes, it is necessary to actively probe the network performance

for finding the minimum delay overlay paths. To accomplish this, the overlay nodes peri-

5 Learning Minimum Delay Paths: A Distributed Approach 83

odically probe alternative paths through the overlay network via a measurement plane to

support VoIP routing decisions. UDP packets are sent periodically between each source

and destination overlay nodes to measure round trip time of all the possible candidate

paths. For the remainder of the thesis, we refer an overlay node as a node, unless otherwise

specified. Probes are used to measure the .

Rather than probing all the candidate paths in a brute-force fashion, the probing process

is controlled by learning automata. Detail of the probing algorithm is provided in Section

5.3. By using learning automata (a form of reinforcement learning agent), we quickly

learn which paths have little potential to provide sufficient quality of service for a given

destination. This allows us to significantly reduce the amount of probing traffic on low-

quality paths, and focus on probing a smaller subset of paths that will likely have the

optimal performance. The learning automata parameters are probability distributions over

which each overlay node is to be probed for a given destination. Each overlay node maintains

its own independent learning automata, so that the algorithm is completely decentralized.

When a node receives a probe from another node, it randomly selects a next hop for the

probe according to its learning automata parameters.

Each probe follows a round-trip path through the overlay, from origin to destination

and back to its origin. When the probe returns to its origin node, it updates the learning

automata parameters based on the measured Round-Trip Time (RTT). As RTT feedback

is continuously-valued, the commonly used learning automata algorithms that are based on

binary or discrete-valued feedback, such as LRI, LReP [109], are not applicable. Instead,

we adopt the cross-correlation learning algorithm [110] that has been proposed for positive

finite continuous feedback environments.

5.3 Active Probing and Learning (APL)

This section presents the detail of the probing layer in Fig. 5.1. The overlay network in

Fig. 5.1 is modeled as a graph G = (V,E), where |V | = m and |E| = m(m−1). Each overlay

node S, S ∈ V , runs (m − 1) learning automata, with each automaton being responsible

for actively probing the RTT from S to each destination D, D ∈ V,D 6= S. As the total

number of paths for each source-destination pair is very large, it is not efficient to always

probe all the paths for determining the minimum delay path. Thus, a learning algorithm

is employed to save the cost on probing paths with large delays.

5 Learning Minimum Delay Paths: A Distributed Approach 84

In the following subsections, we first give a brief description of the learning automaton

in Section 5.3.1, then we present the active probing process in Section 5.3.2. The detailed

learning algorithm is given in Section 5.3.3.

5.3.1 Preliminary: Learning Automaton

A learning automaton is a form of reinforcement learning agent. It can be represented by

a tuple {Z, U , Φ, f , π, T} [110, 111], where Z is the set of inputs to the automaton, U is

the set of outputs of the automaton, Φ is the set of states that the automaton can take,

f is the function that maps Φ to U , π represents the probability vector that governs the

states of the automaton, and T is an operator that updates the probability vector π. The

probability vector π is updated as

π(t+ 1) = T (z(u(t), t), π(t)), (5.1)

where z(u(t), t), is the feedback from the environment to the automaton when it outputs

u(t) at time t as shown in Fig. 5.2. For the next time instant, the output of the automaton

is given by

u(t+ 1) = f(π(t+ 1)). (5.2)

Fig. 5.2 Learning automaton. When the automaton outputs u(t) at time t,
the environment produces a feedback z(u(t), t) to the automaton. Then the
probability vector of the learning automaton is updated as in (5.1). Then for
the next time instant, the output of the automaton u(t+ 1) is given by (5.2).

In Fig. 5.2, the input to the learning automaton is in fact the feedback from the envi-

ronment. It is called a P-model environment when the set of feedback Z equals {0,1}; it is

called a S-model environment when Z is positive and continuous [110].

5 Learning Minimum Delay Paths: A Distributed Approach 85

5.3.2 Active Probing Process

Before describing the active probing process, we first clarify the notation. Suppose a probing

packet pp(S,D) is scheduled to be sent from a source node S, S ∈ V , to a destination node

D, D ∈ V . Let πDSj,∀j ∈ V , denote the probability that node j is the first hop of the

probing packet pp(S,D). For all the possible choices of j, j ∈ V , we define the probability

distribution πDS = [πDS1, π
D
S2, ..., π

D
Sj, ..., π

D
Sm], with

∑m
j=1 π

D
Sj = 1 and 1 ≥ πDSj ≥ 0. The

probability distribution πDS is maintained only at the source node S.

1

3

4

S

2

5

D

6

7

D

S

D

D

Fig. 5.3 Hop-by-hop learning of the minimum delay path from source S to
destination D. The probability distribution parameters of each learning au-
tomaton are initialized with the uniform initialization. Each next-hop node
of a probing packet is chosen randomly according to its previous hop node’s
learning automaton’s parameters. The identifier and the arrival time at each
intermediate node is recorded by the probe. Once the probe reaches its desti-
nation D, D sends the probe back immediately to its previous hop, i.e. node
2 in this example. When node 2 receives the probe, it updates its learning
automaton according to the RTT from 2 to D. Then node 2 passes the probe
to its previous hop, i.e. node 4, 4 updates its corresponding learning automa-
ton and then passes the probe to its previous hop, and so on, until the probe
returns to its source S, and S updates its corresponding learning automaton.

With the πDS well defined for all the source-destination pairs S and D in the overlay

network, the active probing process for a probing packet pp(S,D) is as follows. As illus-

trated in Fig. 5.3, the first hop of the probing packet is selected randomly based on the

5 Learning Minimum Delay Paths: A Distributed Approach 86

probability distribution, e.g. node 4 is selected with probability πDS4. In this example, node

4 is selected as the first-hop of pp(S,D). Then, the probing packet is passed to node 4. The

random next-hop node selection process is repeated at node 4 based on the distribution

πD4 . Such a procedure continues until the probing packet reaches its destination D. Then

the probing packet is sent back from D to S.

The active probing method above is a distributed and scalable method, as the next-

hop node for each probing packet pp(S,D), ∀S,D ∈ V , is determined locally at each

intermediate node. The RTT measured by the probing packet depends on the random

path formed by the randomly selected next hops.

5.3.3 Active learning algorithm

The probability distribution πDS is updated during the active learning process, thus we

rewrite πDS as a function of time t, i.e. πDS (t). To update the probability distribution

πDS (t), we adopte the cross-correlation learning algorithm [110] that works for S-model

environment1.

Suppose at time t, a probing packet pp(S,D) returns to its source S with RTT feedback

dDS (u). dDS (u) is a function of u, where u is the first hop of the probing packet. We

then normalize dDS (u) with respect to the maximum RTT dmax
2 as in (5.3) to obtain the

environment reward zDS (u), zDS (u) ∈ [0, 1] for the S-model environment [110],

zDS (u) = (1− dDS (u)

dmax
)+, (5.3)

where (1 − dD
S (u)

dmax
)+ is non-negative part of the function 1 − dD

S (u)

dmax
. Suppose the current

1RTT is a positive continuous feedback to the automata. Thus it can be represented by S-model [110].
2dmax is predefined to be a constant value that is reasonably large for VoIP calls. dmax = 2 seconds in

our simulations, which means the maximum tolerable RTT for a probing packet is 2 seconds. If dmax is set
small, e.g. dmax = 0.5 second, the initial learning will be slow because the automata parameters are not
updated from RTT feedback larger than 0.5 second, which is highly probably during the initial learning
process due to initial long random path. If dmax is large, e.g. dmax = 5 seconds, the whole learning process
will be faster because the reward for the RTT feedback will be relatively large, which is similar to using
a larger learning gain, where the update step size is large. However, dmax cannot be too large because
otherwise the resolution of path delay will be small. One should also note that dmax and the learning gain
should be kept constant during the whole learning process for each learning automaton, which is required
for the convergence of the cross-correlation learning algorithm [110]. However, one may choose different
dmax and learning gain for different learning automata in the overlay network, although I set them to be
the same in all my simulations.

5 Learning Minimum Delay Paths: A Distributed Approach 87

probability distribution is πDS (t) = [πDS1(t), πDS2(t), ..., πDSj(t), ..., π
D
Sm(t)]. Applying the cross-

correlation learning algorithm [110], we have

πDSj(t
+) = πDSj(t) + g zDS (u) (δju − πDSj(t)), ∀j = 1, . . . ,m, (5.4)

where t+ is the time instant right after the update at time t, g is the learning gain, δju

satisfies

δju =

{
1, if j = u;

0, else.
(5.5)

The update in (5.4) increases πDSu(t) according to the value of dDS (u). The smaller dDS (u)

is, the more increase for πDSu(t), while πDSj(t), j 6= u, are decreased accordingly. When the

learning gain is sufficiently small, the higher the learning gain is, the more increase for

πDSu(t) and the more decrease for πDSj(t), j 6= u, and thus the faster the learning automata

converge3. A theorectical method for deriving a sufficiently small learning gain is presented

in Appendix A.2.

With the updating formula in (5.4), we can show that the probability distribution πDS (t)

converges to a distribution that satisfies the property given in (5.6), i.e. if the minimum

delay path from S to D is unique, and link (S, j∗) is on the minimum delay path, then

πDSj =

{
1, if j = j∗;

0, otherwise.
(5.6)

The proof of the convergence is given in Section 5.6. Note that in practice, we will set

a bound on the values of πDSj, which is detailed in Section 5.6.2, in order to avoid being

trapped at any local minimum, so that the learning automata can adapt to network changes

in a non-stationary network environment.

Also note that the learning algorithm converges to paths with the minimum mean delay.

In the simulations of Section 5.4, we can see that it can converge in 5 seconds when each

node send a probe per 5 ms. If there are abrupt network delay changes that last for a

short time of period, e.g. less than 5 seconds, it is hard for the algorithm to adapt to such

3I started from a small learning gain 0.0001, and increased it to 0.0005, 0.001, 0.005, 0.01, 0.02. For
learning gains smaller or equal to 0.01, I observed convergence of the learning algorithm and that the
learning speed increases proportionally with the learning gain, but when the learning gain equals 0.02, I
observed false convergence.

5 Learning Minimum Delay Paths: A Distributed Approach 88

changes. In this case, it might be advantageous to maintain second order staistics, i.e. not

just the mean performance, but also the variance, to be able to react faster to sudden severe

link quality degradations, which is left for future work.

5.3.4 Initialization of the Learning Automata

One issue for using the cross-correlation learning algorithm is how to initialize the probabil-

ity distributions πDS (t). For each source-destination pair (S,D), ∀S,D ∈ V , the probability

of choosing the first hop as node j at the starting time 0 is πDSj(0).

Uniform initialization

The uniform initialization method allows all possible paths to be scanned fairly at the

beginning of probing. Uniform initialization of the probability distribution πDS (0) allows

all nodes in V except node S equally probably being the next-hop of node S, as shown in

(5.7):

πDSj(0) =
1

m− 1
, j ∈ {1, ...,m}S. (5.7)

When a node j, j 6= S, receives a probing packet pp(S,D), it may send pp(S,D) back

to node S, as the next hop choice is made independently at each node. This can introduce

random loops on the probing path, as detailed in Appendix A.3. It can be shown that,

random loops occur with high probability at the starting stage, and the probability increases

with network sizes. However, as paths with loops have higher delays than loop-free paths,

the learning automata will automatically learn to avoid these loops [63].

Geographical location aware initialization

As mentioned above, uniform initialization method can result in a high probability of

random loops at the initial stage of the probing. While this is not detrimental to the

algorithm, probing resources are needed to learn not to use paths with loops. In order to

avoid these random loops, we propose a geographical location aware initialization method.

Let L(S,D) be the Euclidean distance (or the great circle distance on a sphere) between

nodes S and D. Geographical-location-aware initialization, as given by:

πDSj(0) =
I(L(j,D) < L(S,D))∑
j I(L(j,D) < L(S,D))

, j = 1, ...,m (5.8)

5 Learning Minimum Delay Paths: A Distributed Approach 89

where I(·) is an indicator function, guarantees that only nodes with distances to the desti-

nation D less than that from the origin S are explored. In this way, loops can be avoided in

the whole probing process and the initial RTT can be reduced. However, one should note

that this method could potentially rule out paths that are better than those which satisfy

the condition of always moving closer to the destination.

5.3.5 Hop-by-hop learning

We have mentioned how a probing packet is sent from its source to its destination in

Section 5.3.2. Once a probe reaches its destination, it needs to return feedback to the

sender. There can be multiple ways to send it back. One way is to select the backward

path randomly as what we did in the forward path selection. However, this is not efficient

for updating the probability distributions (in terms of the number of updates per second).

The most efficient way is to use the hop-by-hop learning, as illustrated in Fig. 5.3 and

Fig. 5.4 for the uniform initialization and the geographical-location-aware initialization,

respectively.

In hop-by-hop learning, feedback from a probing packet pp(S,D) is sent back to its

source S by the exact reverse path of its forward path from S to D, which requires the

probing packet records all the intermediate nodes on its forward path. For example, in

Fig. 5.3, the forwarding path for the probing packet pp(S,D) is {(S, 4), (4, 2), (2, D)}. Then

its backward path is {(D, 2), (2, 4), (4, S)}. Thus, all the probability distributions πDS (t),

πD4 (t) and πD2 (t) are updated according the probing packet’s RTT measurements dDS (4),

dD4 (2) and dD2 (D), respectively, as given in (5.4). This hop-by-hop learning algorithm is

shown in Algorithm 3. A more clear view of the algorithm is shown by the flow chart in

Fig. 5.5.

The difference between Fig. 5.3 and Fig. 5.4 is that the uniform initialization method

considers all the possible paths for learning the minimum delay path, while the geograph-

ical location aware initialization considers only a subset of the possible paths. Moreover,

as mentioned before, the uniform initialization method leads to random loops at the ini-

tial stage, although the loops eventually disappear [63]. The geographical location aware

initialization method has no loop throughout the whole process. However, the optimal

paths learned may be a suboptimal path if the real minimum delay path is excluded by the

geographical location aware initialization.

5 Learning Minimum Delay Paths: A Distributed Approach 90

4

1

3

S

2

5

D

6

7

S

D

D

D

Fig. 5.4 Hop-by-hop learning of the minimum delay path from source node
S to destination node D. The active probing and learning process is similar to
that in Fig. 5.3, that except this method works on a smaller set of next-hop
nodes, as defined by the geographical location aware initialization.

Require: Probing packet pp(S,D), current node ID k.
Ensure: Forward the probing packet to a random next hop overlay node, or update

the probability distribution πDk .

1: if The probing packet is on its forward path from S to D and k == D then
2: Send the probing packet back to its source node S, choose its next hop as the

previous hop where it comes from;
3: else if pp(S,D) is on its forward path from S to D, and k 6= D then
4: Send pp(S,D) to a next hop node chosen randomly from distribution πDk , and

append node k in the probing packet’s intermediated node list;
5: else
6: Compute the RTT from k to D, update the distribution πDk , send pp(S,D) to

node k’s last hop on the forward path.
7: end if

Algorithm 3: Hop-by-hop learning algorithm

5 Learning Minimum Delay Paths: A Distributed Approach 91

Fig. 5.5 Flow chart for hop-by-hop learning algorithm. This process is
started whenever a probing packet is received.

5 Learning Minimum Delay Paths: A Distributed Approach 92

End-to-end learning

Fig. 5.6 End-to-end learning of the minimum delay path from S to D. The
parameters of the learning automata at each node are initialized with the
uniform initialization method defined in section 5.3.4.

In end-to-end learning, the backward path of a probing packet is also a random path.

Each intermediate node i on the forward path from S to D and on the backward path from

D to S chooses its next hop node randomly according to its own probability distribution

πDi on the forward path or πSi on the backward path. Therefore, only the source node S

can get the RTT measurement from the probing packet and update its learning automaton,

i.e. when S receives the probing packet pp(S,D) coming back from D to S, it updates the

probability distribution πDS .

For example, Fig. 5.6 and Fig. 5.7 illustrate the active probing and end-to-end learning

process for a probing packet pp(S,D) sent from source S to destination D. In Fig. 5.6,

the source node S initializes its probability distribution πDS uniformly according to (5.7); in

Fig. 5.7, the probability distribution πDS is initialized according to (5.8). The first hop of the

probing packet is selected randomly according to the probability distribution πDS , i.e. node

4 in Fig. 5.6. Similarly, all the following hops are selected. This process continues until

the probing packet reaches its destination D. D will then send it back to S by randomly

selecting the reverse path in a similar way as in selecting the forward path. The probing

packet is passed to the randomly selected next hops until it returns to its origin node

S. When S receives the probe, it updates the probability distribution πDS from the RTT

5 Learning Minimum Delay Paths: A Distributed Approach 93

measurement according to the cross-correlation learning algorithm.The algorithm for the

end-to-end learning method is given in Algorithm 4. The flow chart for the algorithm is

shown in Fig. 5.8.

Fig. 5.7 End-to-end learning of the minimum delay path from source S to
destination D. The learning automata are initialized using the geographical
location aware initialization method. Therefore the candidate next hop nodes
of each node are restricted to a smaller set of network nodes compared to that
in the uniform initialization method. The method of probing and probability
distribution updating are the same as that in Fig. 5.6..

In end-to-end learning, the probing packet does not need to record each intermediate

node on its forward path, which makes it easier to implement at the cost of slower learning

speed and the size of a probing packet is smaller than that in the hop-by-hop learning

method. One thing to note is that the end-to-end learning method will be very inefficient

if precise one-way delay measurement is available and used as feedback to the learning au-

tomata; while in this case, the hop-by-hop learning method is still very efficient in updating

the probability distributions.

5 Learning Minimum Delay Paths: A Distributed Approach 94

Require: Probing packet pp(S,D), current node ID k
Ensure: Forward the probing packet to a random next hop overlay node, or update

the probability distribution πDS .

1: if The probing packet is on its forward path from S to D and k == D then
2: Send the probing packet back to its source node S, choose a random next hop

node based on distribution πSD;
3: else if pp(S,D) is on its forward path from S to D, and k 6= D then
4: Send pp(S,D) to a next hop node chosen randomly from distribution πDk ;
5: else if The probing packet pp(S,D) is on its backward path from D to S, and
k == S then

6: Compute the RTT from S to D, update the distribution πDS ;
7: else if The probing packet pp(S,D) is on its backward path from D to S, and k 6= S

then
8: Compute the RTT from k to D, update the distribution πDk ;
9: end if

Algorithm 4: End-to-end learning algorithm

Fig. 5.8 Flow chart for end-to-end learning algorithm. This process is
started whenever a probing packet is received.

5 Learning Minimum Delay Paths: A Distributed Approach 95

5.4 Experiments

5.4.1 3-node network

We first learn the minimum delay paths in a 3-node fully connected network, as shown

in Fig. 5.9. Suppose the three nodes are also overlay nodes. Active probing and learning

automata, specifically hop-by-hop learning with uniform initialization, are implemented at

all three nodes.

Fig. 5.9 Fully connected 3-node network

The goal of the experiment is to understand whether the cross-correlation learning

algorithm is able to converge to the minimum delay path when the network is in its transient

state. We set the network as follows. We know that the queuing delay on a link with high

link utilization rate can increase until reaching its maximum queuing capacity during the

network warm-up period. In this period, the network performance is dynamic and transient.

Thus, we tune one link in the 3-node network to be heavily loaded to see if the algorithm

converges to the minimum delay paths. Note that the actual values of the network setting

are not important as long as they can be used to generate the desired end-to-end delay

traces. Suppose the capacities of all links are 622.08 kbps. There is fractional Brownian

motion traffic only from node 1 to node 2, with the mean traffic demand 604 kbps. i.e.

the utilization rate for the directed link (1,2) is 97.09%. Then the queuing delay at link

(1,2) can be close to infinite for infinite queuing capacity. In our simulation, we set queuing

capacity to be finite. Then, traffic will be dropped when the queue is full. The propagation

delays of all links are set to be 0.06 sec. As there is no background traffic on links other

than link (1,2), we only show the queuing delay on link (1,2) in Fig. 5.10. It can be seen

5 Learning Minimum Delay Paths: A Distributed Approach 96

Fig. 5.10 The queuing delay on the heavily loaded link (1,2). The delay
value does not increase infinitely because the queuing capacity of the link is
set to be finite.

that the time period from 0 second to 50 seconds is the transient warm-up period for the

network. The traffic arriving at link (1,2) can still be emptied from 0 second to 30 seconds.

The mean queuing delay on link (1,2) from 0 to 30 seconds is 0.05 sec, which is less than

the propagation delay on link (1,3). During this period, the minimum delay path from

node 1 to node 2 is thus the direct link (1,2). The 30 seconds is a turning point. From

30 seconds to 50 seconds, the queue at link (1,2) starts to build up, as indicated by the

increase of queuing delay. From 50 seconds to 70 seconds, the queue keeps on accumulating

until it reaches its maximum queuing capacity, and afterwards, the queueing delay drops

again to the delay level at around 50 seconds. As the queuing delay from 50 seconds to 100

seconds appear stationary, we consider the transient warm-up period ends at 50 seconds

for this network. The queuing delay on link (1,2) is very high in the stationary state from

50 seconds on (much larger than the end-to-end delay on path {(1,3),(3,2)}), then the

minimum delay path for a voice call originating from node 1 and destined for node 2 should

be {(1,3),(3,2)}, on which the end-to-end delay is 0.06+0.06=0.12 second.

Figure. 5.11 shows the evolution of the probability distribution π2
1(t). This figure shows

only π2
12(t) (thick line) and π2

13(t) (thin line) as π2
11(t) = 0 all the time. It can be seen that

the probability π2
12(t) for sending a probing packet to node 2 is higher than that to node 3

and it keeps increasing until around 30 seconds. This is because the mean delay on path

{(1,2)} (0.05+0.06=0.11 sec) is lower than that on path {(1,3),(3,2)} (0.06+0.06=0.12 sec).

From 30 seconds on, the mean delay on path {(1,2)} increases and surpasses that on path

5 Learning Minimum Delay Paths: A Distributed Approach 97

Fig. 5.11 The evolution of the probability distribution π2
1(t) when the learn-

ing gain g = 0.001. This figure only shows π2
12(t) (thick line) and π2

13(t) (thin
line) as π2

11(t) = 0 all the time.

{(1,3),(3,2)}. Then the probability π2
12(t) starts to decrease and π2

13(t) starts to increase,

until they converge to π2
12(t) = 0 and π2

12(t) = 1 at around t=100 seconds. This shows

that before the learning automata converge, (e.g. at t=30 seconds), the cross-correlation

learning algorithm is able to learn the current minimum delay path adaptively in a transient

network environment.

Fig. 5.12 shows the average delays for all source-destination pairs on the learned paths

(the paths taken by the probing packets) when the learning gain g = 0.001 (on the left) and

g = 0.01 (on the right), on the shortest hop paths and on the optimal paths. It can be seen

that the average delay on the shorted hop paths increases drastically at around 30 seconds

due to the delay increase on link (1,2) shown in Fig. 5.10. On the optimal paths, the average

delay is 0.153 second from time 0 to 30 seconds, while it is around 0.16 second from the

time 30 seconds to 100 seconds. On the learned path when the learning gain g = 0.001, it

can be seen that the average delay starts to increase at 30 seconds, and starts to decrease

at around 45 seconds. The increase at 30 seconds is due to the increase in queuing delay on

link (1,2), as shown in Fig. 5.10 and the high probability of probing path {(1,2)}, as shown

in Fig. 5.11. The decrease at around 45 seconds is because the probability of probing path

{(1,3),(3,2)} starts to be higher than that of probing path {(1,2)}. However, when the

learning gain is 0.01, as shown on the right of Fig. 5.12, the learning algorithm converges

to a suboptimal value.This is becuase the learning automata have already converged to

the current minimum delay path, i.e. π2
12(t) = 1 and π2

13(t) = 0 before the mean delay

5 Learning Minimum Delay Paths: A Distributed Approach 98

Fig. 5.12 The average delay for all source-destination pairs when the learn-
ing gain g = 0.001 (on the left) and g = 0.01 (on the right). This shows that
the learning algorithm can keeps track of the current minimum delay path
when the learning gain g is small enough, e.g. g = 0.001 in this example.

on path {(1,2)} starts to increase at 30 seconds. Therefore, when the network dynamics

changes, the learning algorithm cannot track the new minimum delay path. To avoid this,

we can set a threshold on the maximum and minimum values of the probabilities, as given

in Section 5.6.2.

By varying the learning gain in this network environment, we also find that the conver-

gence speed of the learning automata is sensitive to the learning gain. The general trend

is that the learning algorithm converges to the optimum faster for larger gains. The sensi-

tivity of the learning speed to the learning gain setting is also shown in the simulation of

a larger network in Fig. 5.13 of Section 5.4.24.

5.4.2 Experiment in a 50-node model of the AT&T backbone network

The 50-node model of the AT&T backbone network and its setting have been described in

Section 3.3. We chose 10 of the 50 nodes in Fig. 3.11 to form a full mesh overlay network.

The overlay nodes were chosen to be geographically distributed across the network5. The

4In Fig. 5.13, the setting of learning gain g = 0.01 does not lead to false convergence because its network
environment does not experience drastic change during the learning process and we set a bound on the
probability values.

5The selected 10 overlay nodes are: Sacramento, CA, Las Vegas, NV, Houston, TX, Raleigh, NC,
Dayton, OH, Phoenix, AZ, Nashville, TN, Pittsburg, PA, New York, NY, Anaheim, CA. A more strategic
overlay network construction method is left for future work

5 Learning Minimum Delay Paths: A Distributed Approach 99

Fig. 5.13 Average RTT measured by the probing packets between all source-
destination pairs, versus that on the minimum delay paths and that on the
minimum hop paths.

active probing and learning algorithm described in Section 5.3 is simulated in this overlay

network6. For each source-destination pair in the overlay network, a probing packet is sent

every 5 ms to measure RTT. Simulation of the active probing and learning process is based

on the fluid network simulation described in Section 3.3, where time is slotted into 5 ms

bins. At the nth time slot, each overlay node S send one probing packet ppn(S,D) to each

destination nodes D in the overlay network. Note that only one potential next-hop of all the

possible next-hop options from S to a given destination D is probed during each time-slot.

Also note that when the learning algorithm converges, the paths that the probing packets

transit are the minimum delay paths, as given in (5.6).

In the following, I present the simulation results on the average delay of all source-

destination pairs in the overlay network.

5 Learning Minimum Delay Paths: A Distributed Approach 100

Average Latency

Let dn(S,D) denote the RTT measured by the probing packet ppn(S,D), S,D ∈ V , and

let d̄(n) denote the average of the RTT for all source-destination pairs. Then,

d̄(n) =
1

|V |(|V | − 1)

∑
i 6=j

dn(i, j) (5.9)

Similarly, the average RTT for the minimum hop paths and that for the minimum delay

paths can be defined7. Denote them as d̃(n) and d̄∗(n), respectively. Let ddn(S,D) denote

the RTT measured for the shortest hop paths (i.e. the direct paths determined by the

underlying network) and d∗n(S,D) denote the RTT measured for the minimum delay paths.

d̃(n) =
1

|V |(|V | − 1)

∑
i 6=j

ddn(i, j) (5.10)

d̄∗(n) =
1

|V |(|V | − 1)

∑
i 6=j

d∗n(i, j) (5.11)

Then, a comparison of d̄(n), d̃(n) and d̄∗(n) is shown in Fig. 5.13. The average delay d̄(n)

is then shown in black line or blue line for the learning gain of 0.001 and 0.01. It can be

seen that d̄(n) converges to d̄∗(n) as n increases, which indicates that the probing paths

converge to the minimum delay paths, i.e. the probability distribution πDS (t) converges to

the distribution that satisfies property (5.6). Fig. 5.13 also shows that the convergence

speed increases proportionally as the learning gain increases from 0.001 to 0.01. We have

also simulated the learning algorithm for larger gains and observed false convergence when

the learning gain is greater than 0.01. Comparing with the example on the right of Fig. 5.12,

we can state that the learning gain has to be sufficiently small to avoid false convergence

in a dynamic network environment, as derived in Section A.2, and a bound should be set

on the probability values to be able to adapt to network changes.

6The advantage of using the simulated network is that we can always verify that the learning algorithm
converges to the minimum delay paths since we can compute the real minimum delay paths in the simulated
(stationary) network. This is one reason why we do not run the algorithm in the real Internet because it
is impossible to determine which path is the minimum delay path in the non-stationary real Internet, e.g.
in the PlanetLab [81] environment.

7The minimum hop paths and the minimum delay paths are computed with Dijkstra’s Algorithm [112],
with the overlay network adjacency metric and the overlay link latency metric respectively.

5 Learning Minimum Delay Paths: A Distributed Approach 101

Scalability

We then chose the overlay network size to be 15, 20 and 25. The overlay nodes were chosen

to be geographically distributed across the network. The same setting (i.e. hop-by-hop

learning with uniform initialization, learning gain g = 0.01) is applied for the 10, 15, 20,

25 node overlay networks. Similar convergence results as in Fig. 5.13 are shown for all 4

overlay networks.

Let the difference between d̄(n) and d̄∗(n) be the absolute error ε(n), i.e.,

ε(n) = d̄(n)− d̄∗(n) (5.12)

For overlay network size of 10, 15, 20 and 25, we compute their absolute errors and

combine them in Fig. 5.15. It can be seen that the convergence speed remains similar

although the overlay network size increases from 10 to 25. This figure also shows that

the convergence can be very fast, which is about 5 seconds in this example. Note that the

absolute error is driven down to around 10 ms. Our simulations are conducted at time-scale

τ = 5 ms, so this is effectively as good as we can hope to achieve. The remaining error can

be thought of as noise, due to quantizing time in the fluid network simulation. Also note

that larger overlay networks (20 or 25 nodes) converge at a slightly slower rate, but that in

general, the size of the overlay network does not dramatically impact the time required to

learn minimum delay paths.

End-to-end learning

There are four factors that may affect the learning speed: learning method, initialization

method, network size and the learning gain. An example of the simulation results for

end-to-end learning is shown in Fig. 5.16. In this example, we use end-to-end learning,

geographical location aware initialization for a 15-node network. As can be seen, the initial

RTT measurement for geographical location aware initialization in Fig. 5.16 is less than

that for uniform initialization in Fig. 5.13. However, it takes around 60 seconds to converge

to the optimal result, which is much longer than the case in Fig. 5.13. We also know that,

for end-to-end learning, the probability distribution update only occurs at the source node

of a probing packet, hence, it is almost the same as the probing rate. When the probing

rate is fixed, the update rate will not be much affected by the network size. Then the

5 Learning Minimum Delay Paths: A Distributed Approach 102

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

Time in seconds

A
ve

ra
ge

 p
ro

bi
ng

 d
el

ay
 (

se
c)

Optimal
Minimum hop
Learned, gain=0.01

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

Time in seconds
A

ve
ra

ge
 p

ro
bi

ng
 d

el
ay

 (
se

c)

Optimal
Minimum hop
Learned, gain=0.01

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

Time in seconds

A
ve

ra
ge

 p
ro

bi
ng

 d
el

ay
 (

se
c)

Optimal
Minimum hop
Learned, gain=0.01

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

Time in seconds

A
ve

ra
ge

 p
ro

bi
ng

 d
el

ay
 (

se
c)

Optimal path
Minimum hop paths
Learned paths, gain=0.01

Fig. 5.14 Comparison of the average probing delay for three different rout-
ing: optimal (i.e. minimum delay path), minimum hop (i.e. shortest hop
path), learned (i.e. the path determined by the distributed learning automata).
The comparison is among 4 different overlay network sizes: 10 (top left), 15
(top right), 20 (bottom left) and 25 (bottom right) node overlay net-
works. The learning gain is 0.01. It can be seen that the learning speed is fast
and similar for all the 4 figures. The small bump at around 2 seconds in the
four figures is due to a temporary delay increase in the network environment,
which causes a small purturbation to the learning algorithm; but the learning
automata converge to the real optimal paths afterwards. This is similar to the
bump on the left of Fig. 5.12.

5 Learning Minimum Delay Paths: A Distributed Approach 103

Fig. 5.15 This figure combines the absolute error for the 10, 15, 20 and
25 node overlay networks. The absolute error is the difference between the
average probing delay on the paths determined by the learning automata and
that on the minimum delay paths.

dominant factor for learning speed is the learning method and the learning gain. While

for the same learning gain 0.001, end-to-end learning has much slower learning speed, as

illustrated in Fig. 5.16, because it has lower probability distribution update rate.

5.5 Probing Overhead Analysis

This section analyzes the amount of probing traffic received at each node. It determines

the probing overhead, as well as the probability distribution update rate of each learning

automaton. It can be computed as follows. First, we define a routing matrix for each

destination v in the overlay network, i.e. Π(v) = [πvij], with πvij ∈ [0, 1], i, j, v ∈ V , |V | = m,

denoting the probability that a probing packet pp(i, v) is sent to a neighboring node j.

Let the probing interval be PROBE INTERVAL. Then the probing rate between each

source i and destination v is λvi = 1
PROBE INTERVAL

. Denote γvi as the aggregate probing

packet arrival rate at node i for destination v. Let λv be λv = [λv1, ..., λ
v
m]T and γv be

γv = [γv1 , ..., γ
v
m]T . Then γv can be computed as [63]:

γv = [I − (Π(v))T]−1λv

=
1

PROBE INTERVAL
[I − (Π(v))T]−1(1− [δ1v, δ2v, ..., δmv])

T (5.13)

5 Learning Minimum Delay Paths: A Distributed Approach 104

Fig. 5.16 Average RTT measured by the probing packets between all source-
destination pairs, versus that on the minimum delay paths and that on the
minimum hop paths for a 15-node overlay network. With geographical aware
location initialization method and a gain of 0.001, the end-to-end learning is
close to the optimal result.

where δiv = 1 if i = v; otherwise, δiv = 0.

5.5.1 Probing overhead for hop-by-hop learning

In hop-by-hop learning, the size of a probing packet grows along its forward path. As shown

in Fig. 5.17, the length of the header of a probing packet is 28 bytes. The probing data

is 13 + 9(N − 1) bytes long, where N is the number of hops that the probing packet has

gone through. For example, if N = 1, the probing packet has just been sent to its first hop

from its source node. If this first hop equals the destination, we do not record this hop;

Otherwise, we record this hop and the time the probing packet is forwarded to a new hop,

which will add 9 bytes to the probing data, and we set N = 2. Adding up the headers and

the probing data, the probing packet is B = 41 + 9(N − 1) bytes long.

For any v ∈ V , the expected probing path length N to a destination v is a function of

the probing probability Π(v) = [πvij]. π
v
ij is the probability of sending a probing packet from

node i via node j to destination node v. An example for computing the expected probing

path length N is as follows. For a three-node network, Π(1) is the probing probability

5 Learning Minimum Delay Paths: A Distributed Approach 105

Fig. 5.17 The data format of a probing packet for hop-by-hop learning. The
source ID and destination ID are identifiers for overlay nodes. The number of
nodes can be extended if necessary. The 8-bit next-hop ID is the identifiers
of the next-hop overlay node for this probing packet. The sending time field
is 64 bits, which has a precision of microsecond. 1-bit direction is 0 if the
probe is on the forward path to its destination; this field is 1 if the probe is
on the backward path to its source. The maximum of the 7-bit overlay path
N is 27 = 128. The 8-bit last hop ID is the last hop overlay node that this
probing packet has passed. The following 64-bit sending time is the time the
probing packet is sent from the last hop overlay node. The content in dash
lines grows as the probing packet travels through the network before reaching
its destination and shrinks as it is sent back to its source.

5 Learning Minimum Delay Paths: A Distributed Approach 106

matrix for destination node 1, as follows.

Π(1) =

 0 0 0

0.5 0 0.5

0.7 0.3 0

 (5.14)

The data in the diagonal of Π(1) are all zeros because the probability of sending a probing

packet from a node to itself is zero. The data in the first row of Π(1) are all zeros because

the probabilities of sending a probing packet from the destination node, i.e. node 1 in this

example, to other nodes are zeros. Similarly, the second row of Π(2) will be all zeros if the

destination under consideration is node 2. Then, from Π(1), we can get

Π(1)2
= Π(1)Π(1) =

 0 0 0

0.35 0.15 0

0.15 0 0.15

The 1st column of Π(1)2

represents the probabilities of reaching destination 1 from node 1,

2 and 3 in two steps.

Π(1)3
= Π(1)2

Π(1)

 0 0 0

0.075 0 0.075

0.105 0.045 0

Similarly, the 1st column of Π(1)3

represents the probabilities of reaching the destination

node 1 from node 1, 2 and 3 in three steps; and the 1st column of Π(1)k represents the

probability of reaching the destination node 1 from any source node in k steps. Thus, the

expected number of steps from each source node to a destination node can be computed as

follows.

Let

X(v) = 1 · Π(v) + 2 · Π(v)2
+ 3 · Π(v)3

+ . . . =
∞∑
k=1

k · Π(v)k (5.15)

Then, the vth column of X(v) contains the expected numbers of steps to destination v from

all the source nodes. i.e., the expected probing path length from any source node i to the

5 Learning Minimum Delay Paths: A Distributed Approach 107

destination node v is given by X
(v)
iv . X(v) can be computed as follows.

X(v) · Π(v) = Π(v)2
+ 2 · Π(v)3

+ 3 · Π(v)4
+ . . . =

∞∑
k=1

k · Π(v)k+1
(5.16)

X(v) · (I− Π(v)) = Π(v) + Π(v)2
+ Π(v)3

+ . . . =
∞∑
k=1

Π(v)k (5.17)

For a deadlock-free routing pattern Π(v), (I − Π(v))−1 =
∑∞

k=0 Π(v)k [63]. Then,

X(v) · (I− Π(v)) = (I − Π(v))−1 − I. Thus,

X(v) =
(

(I − Π(v))−1 − I
)

(I− Π(v))−1 (5.18)

Hence, the expected probing packet length from any source node i to destination v is

Biv = 41 + 9(X
(v)
iv − 1) bytes. Combining (5.13) and (5.18), the aggregate probing traffic at

each node i for destination v denoted by ξvi bytes/sec can be computed with (5.19). The

factor 2 in (5.19) is because the probing packet is sent back to its origin for measuring RTT.

ξvi = 2
(

41 + 9(X
(v)
iv − 1)

)
γvi (5.19)

From (5.13), (5.18) and (5.19), we can see that ξvi is a function of Π(v) and the probing

rate λv. As Π(v) is updated with the cross-correlation learning algorithm in the active

probing and learning process, ξvi is also a function of time.

From the deduction above, we can also find the update rate for probability distribution

πvi at node i for destination v. As each intermediate node on the forward path from source i

to destination v receives a RTT measurement, thus, the probability distribution update rate

of each node is the same as the aggregate probing packet arrival rate, i.e. γvi .

Examples

For the example three node network with Π(1), as given in (5.14),

X(1) =
(

(I − Π(1))−1 − I
)

(I− Π(1))−1 =

 0 0 0

1.7647 0.4152 0.7958

1.5294 0.4775 0.4152

5 Learning Minimum Delay Paths: A Distributed Approach 108

Then the expected probing path length from node 1, 2, 3 to destination 1 is X
(1)
11 = 0,

X
(1)
21 = 1.7647 and X

(1)
31 = 1.5294. It is reasonable that X

(1)
11 = 0 since no probing packet is

sent from node 1 to itself. It is also reasonable that X
(1)
21 > X

(1)
31 since node 3 has a larger

transition probability to node 1 than node 2 does in Π(1).

If PROBE INTERVAL=5 ms, we have γ1 = [0, 352.9412, 305.8824]T . Then, for

the 3-node network, we have the probability distribution update rates at node 1, 2, and

3 are [0, 352.9412, 305.8824]T times per second. The expected aggregate probing traffic

at node 2 and 3 for destination 1 are: ξ1
2 = 2

(
41 + 9(X

(1)
21 − 1)

)
γ1

2 = 33.7991 kBps and

ξ1
3 = 2

(
41 + 9(X

(1)
31 − 1)

)
γ1

3 = 27.9978 kBps.

For the 10-node overlay network as in Fig. 5.13, the average probing traffic overhead

can be computed from (5.13), (5.18) and (5.19). For comparison, the average probing and

routing traffic overhead for path switching method (TaoPS) [46] and that for RON [48] with

the same probing and routing update interval is also computed and plotted in Fig. 5.18.

Note that in the Active Probing and Learning scheme (APL), similar for TaoPS, there is

no routing update message required for routing decisions as in RON. Therefore, the routing

traffic in APL and TaoPS is zero. As can be seen in Fig. 5.18, the average probing traffic

for APL initializes with around 4 MBps, and quickly reduces to around 0.35 MBps, which

is almost half of the probing and routing traffic in a same size RON (i.e., 0.65 MBps as

mentioned in Section 2.3.2) and much lower than that of “TaoPS” (i.e., 1.1178 MBps as

mentioned in Section 2.3.2).

5.5.2 Probing overhead for end-to-end learning

For end-to-end learning, a probing packet only has the 28 bytes IP and UDP headers, and

the fixed size 13 byte probing data. The expected probing path length from any source i to

destination v is the same as that in the hop-by-hop learning case, i.e. X
(v)
iv . The expected

aggregate probing traffic ξvi at each node i for destination v is:

ξvi = 2 · 41γvi = 82γvi . (5.20)

The factor 2 is because the probing packet is sent back to its origin for measuring RTT.

For end-to-end learning, similarly, we can find the probability distribution update rate

at node i for destination v. As only the source node of each probing packet receives a RTT

5 Learning Minimum Delay Paths: A Distributed Approach 109

Fig. 5.18 Average probing and routing traffic received at each node. The
average probing and routing traffic at each node represents the overhead for
routing decisions in an overlay network. Note that in the Active Probing
and Learning scheme (APL), there is no routing update message required
for routing decisions as in RON, similar for TaoPS. Hence the routing traffic
in APL and TaoPS is zero. The probing and routing update traffic for the
centralized routing method of Chapter 4 is the same as that for RON. TaoPS
has the most probing overhead because it has to probe the performance of
each candidate path for each source-destination pair.

5 Learning Minimum Delay Paths: A Distributed Approach 110

measurement, the probability distribution update rate for πvi is the same as the probing rate,

i.e. λvi = 1
PROBE INTERVAL

. For the 3-node network, we have the probability distribution

update rates at node 1, 2, and 3 are [0, 200, 200]T times per second for the end-to-end

learning, which are less than that for hop-by-hop learning. This explains why the learning

speed of hop-by-hop learning is faster than that of end-to-end learning.

5.5.3 Remarks

Since the learning automata learn the minimum delay paths, all the probing traffic will

concentrate on the minimum delay paths when the learning automata converge. Therefore,

the average amount of probing traffic at each node depends only on the average minimum-

delay-path length (in terms of the number of hops). This is because the probing traffic for

each source-destination pair goes through its minimum delay path. Suppose the minimum-

delay-path length between a source-destination pair s and d is hsd. Then hsd nodes receives

the probing traffic from s to d. Thus, the average amount of probing traffic at each node is∑
s,d hsdλ

d
s

N
for a N -node overlay network. Note that

∑
s,d hsd

N(N−1)
is the average minimum-delay-

path length. Denote it as K. Then the average amount of probing traffic at each node

when the learning automata converge is K(N − 1)λds = K(N−1)
PROBE INTERVAL

.

Therefore, the scalability of the amount of probing traffic with network size depends

on how the average minimum-delay-path length K scales with network size. Although we

can not determine how K grows network size N , however, it is easy to understand that

K < N−1
2

for N > 2 since the worst case is that the minimum delay path tree of the

network forms a chain, for which the average path length is less than N−1
2

. Therefore, we

can say that K grows with less than O(N−1
2

) and thus the probing traffic grows with less

than O((N−1)2

2
)when the automata converge, which is less than those of RON and TaoPS

(see Section 2.3, [48] and [46]). In fact, as the probing traffic focuses on the minimum delay

paths when the automata converge, one may prefer to reduce the probing frequency to

reduce the amount of probing traffic injected into the network when the learning automata

converge.

When the automata haven’t converged, e.g. during the intial stage, the amount of

probing traffic can be simply computed from (5.19)(5.18) for uniform initialized learning

automata. It can be expected that the initial probing traffic is large due to random loops,

however, we can expect that it reduces very quickly (in around 5 seconds) as the learning

5 Learning Minimum Delay Paths: A Distributed Approach 111

algorithm converges, as illustrated in Fig. 5.14 and Fig. 5.18.

5.6 Convergence of the cross-correlation learning automata

In this section, we prove that the learning algorithm defined by (5.3) and (5.4) converges

to the optimal solution given by (5.6). Our approach is to first find the Karush-Kuhn-

Tucker (KKT) conditions [113] for the delay minimization problem, and then show that

asymptotically, the learning algorithm satisfies the KKT conditions.

5.6.1 Proof of Convergence

The minimum delay routing problem for a commodity/user with source-destination pair

(S,D) can be formulated as follows. The graph model for the overlay network is G = (V,E),

V = {1, ...,m}, S, j,D ∈ V . Assume the network is stationary during the active probing

and learning process. Let ∆D
Sj(t) = ∆Sj+∆D

j (t) be the expected delay from node S to node

D via node j at time t, ∆Sj is the expected link delay from node S to node j and ∆D
j (t)

is the expected delay from node j to node D at time t. Let θDSj denote the probability for

sending a probing packet from source S to destination D via j. Note that θDSj is different

from πDSj(t) because θDSj is a scalar parameter while πkij(t) is a function of time t. Then

the user optimization problem for the minimum end-to-end delay routing problem can be

formulated as follows in (5.21).

min
θD
Sj

∑
j

θDSj∆
D
Sj (5.21)

s.t.
∑
j

θDSj = 1,

θDSj ≥ 0,∀j.

The KKT conditions for the user optimization problem in (5.21) are as follows. Let µD∗S
be the multiplier for the constraint

∑
j θ

D
Sj − 1 = 0 in the KKT condition. Then the KKT

condition for θD∗Sj , j = 1, ...,m, being the optimal solution to (5.21) is:{
θD∗Sj ≥ 0, if ∆D

Sj = µD∗S ;

θD∗Sj = 0, if ∆D
Sj > µD∗S .

(5.22)

5 Learning Minimum Delay Paths: A Distributed Approach 112

where µD∗S =
∑m

u=1 ∆D
Suθ

D∗
Su . Thus, the user optimal point satisfies:

θD∗Sj (∆D
Sj −

m∑
u=1

∆D
Suθ

D∗
Su) = 0. (5.23)

In the stochastic network environment, according to the Kushner’s weak convergence

method [30] and following the proof in Vázquez-Abad and Mason’s work [114,115], we can

derive from the cross-correlation algorithm that as t → ∞ and the learning gain goes to

zero, limt→∞ π
D
Sj(t) = θD∗Sj , where θD∗Sj satisfies the following equation:

dπDSj(t)

dt
= −β

πDSj(t)

dmax
(∆D

Sj(t)−
∑
u

∆D
Su(t)π

D
Su(t)) (5.24)

in which β > 0 corresponds to an update rate.

For θD∗Sj to be locally stable, it should satisfy
dπD

Sj(t)

dt
|θD∗

Sj
= 0 according to the appendix

(A.2), which is true given the KKT conditions in (5.23) and (5.22).

To show the solution is globally stable, let MD
S (t) =

∑m
j=1 π

D
Sj(t)∆

D
Sj. MD

S (t) can be

thought as the objective in (5.21) being a function of time t. From the cross-correlation

learning algorithm, πDSj(t
+) = πDSj(t) + gz(u, t)(δju − πDSj(t)), we can write:

MD
S (t+)−MD

S (t) = −
∑
j

πDSj(t)
(

(∆D
Sj)

2 − (
∑
j

πDSj(t)∆
D
Sj)

2
)

(5.25)

i.e. MD
S (t+)−MD

S (t) ≤ 0, since
∑

j π
D
Sj(t)

(
(∆D

Sj)
2 − (

∑
j π

D
Sj(t)∆

D
Sj)

2
)

equals the variance

of ∆D
Sj. Let M(t) =

∑
S

∑
DM

D
S (t). Then M(t) is monotonically decreasing with each

update of πDS (t), ∀S,D ∈ V .

Thus, when the learning gain g > 0 is sufficiently small, the expected delay MD
S (t) keeps

decreasing with time until πDSj(t) = θD∗Sj , where MD
S (t+) −MD

S (t) = 0, and θD∗Sj minimizes

MD
S (t) or equivalently the expected delay from node S to node D. In fact, since the user

optimization problem in (5.21) is a linear programming problem, the optimal solution θD∗Sj
is unique and stable if ∆D

Su, u = 1, ...,m, are distinct. If ∆D
Su are not distinct, the optimal

solution may be not unique, but all the optimal solutions will give the same optimal value

for the objective function.

5 Learning Minimum Delay Paths: A Distributed Approach 113

5.6.2 Practical Considerations

This section discusses practical concerns regarding applying the active probing and learning

process for VoIP routing in a dynamic network environment.

When the cross-correlation learning algorithm converges to the optimal solution given

in (5.6), the values of πDSj(t) cannot be changed any more, i.e. they are stuck in the current

(local) optimum. For example, if at time t, πDSj(t) = 0, then link (S, j) will be eliminated

from being a candidate next-hop on the optimal path from S to D; or if πDSj(t) = 1, then

link (S, j) becomes the only candidate next-hop for that. In practice, we would not allow

πDSj(t) = 0 or πDSj(t) = 1, so that it can adapt to network changes in a non-stationary

network environment. Thus, we constrain all πDSj ≥ ε, for a small ε > 0, so that changes in

network environment can be tracked over time.

We have proved in Section 5.6 that the learning automata can converge to the minimum

delay paths. However, in a dynamic network environment, there exist situations when VoIP

routing decisions have to be made before the learning automata converge. If voice calls are

routed in the same way as that for the probing packets, random path selection before the

learning automata converge, can lead to choosing different paths for voice packets of a

single voice call, and thus results in out-of-order arrivals. In addition, fair quality provision

for all users requires us to avoid the risk of choosing a bad random path8 for some users.

Thus, we need a mechanism to choose a fixed path for each new incoming voice call, which

is detailed in Chapter 6.

Also note that the probing packets measure round-trip-time instead of one-way delay.

This means that the minimum delay paths learned with the learning automata are in fact

paths with minimum round-trip-time. The reason we measure round-trip-time is that in

practice there is clock drift in computer systems which can lead to inaccurate one-way

delay estimation. The other reason is that the conversational delay (i.e. the delay from

the time one speaker says something till the time this speaker hears the response from

the other side), which is highly related to the round-trip-time, is also very important for

a voice call. If accurate one-way delay estimation is available, for example when Global

Positioning System (GPS) is installed on all the overlay nodes, we can certainly use one-

way delay as feedback dDS (u) in (5.3) to the cross-correlation learning algorithm. Then the

minimum delay paths learned with the cross-correlation learning algorithm will be paths

8Loops might still exists with very small probability, as we disallow πD
Sj(t) = 0 or πD

Sj(t) = 1

5 Learning Minimum Delay Paths: A Distributed Approach 114

with minimum one-way delays.

5.7 Summary

In this chapter, we proposed a novel method to learn minimum delay paths for each source-

destination pair in service overlay networks. Based on the cross-correlation learning algo-

rithm, we proposed four active probing and learning strategies to learn the optimal paths,

which are uniformly initialized hop-by-hop learning, geographical location aware initialized

hop-by-hop learning, uniformly initialized end-to-end learning, and the geographical loca-

tion aware initialized end-to-end learning. The performance of the proposed active probing

and learning strategies is simulated in service overlay networks over a model of the AT&T

backbone network. The simulation results show that the learning method converges to the

minimum delay paths very quickly (around 5 seconds for hop-by-hop learning in a 10-node

overlay network), and the convergence speed scales well with the overlay network size. We

then analyzed the overhead for the hop-by-hop learning and end-to-end learning methods,

and proved that the cross-correlation learning algorithm converge to the user equilibrium.

At the end, we pointed out a practical concern that is treated in the next chapter.

115

Chapter 6

Online Distributed Diverse Routing

for VoIP

6.1 Introduction

The previous chapter has shown that minimum delay paths can be learned with the pro-

posed learning method. This chapter presents an online distributed diverse routing methods

to route voice calls based on the parameters of the learning automata.

We have seen improved VoIP quality with path diversity in Chapter 4, where a novel

centralized approach was proposed for VoIP routing in small-scale overlay networks. In

this chapter, we propose a distributed and scalable approach to find the diverse paths to

improve VoIP quality in service overlay networks. We demonstrate improved VoIP quality

for single best path routing and diverse routing by answering the following two questions:

(1) How can we determine and track optimal diverse paths for VoIP routing in a distributed,

scalable and efficient way?

(2) How can we detect and recover from a link failure quickly?

To answer these two questions, we apply the cross-correlation learning automata frame-

work to guide a probing process that learns primary and secondary delay-optimal paths

for VoIP path diversity; we present a novel link failure detection mechanism based on the

states of the learning automata, which allows routes in our overlay to rapidly recover after

link failures.

2009/11/11

6 Online Distributed Diverse Routing for VoIP 116

6.1.1 Chapter Structure

The rest of the chapter is organized as follows. Section 6.2 provides a formal problem

statement. Section 6.3 presents the methodology for learning diverse paths. Section 6.4

presents a scheme for determining the primary and secondary optimal paths based on

learning automata parameters. Section 6.5 presents a novel the method for link failure

detection. Section 6.6 gives simulation results. Section 6.7 discusses the stability of the

proposed routing method. Section 6.8 presents the implementation considerations for the

routing method. Section 6.9 compares the overlay performance between RON, our method

and BGP routing. Section 6.10 summarizes the chapter.

6.2 Diverse routing for VoIP in SONs

The aim of this work is to distributively find and track the two best disjoint paths so that

VoIP quality can be improved with path diversity in overlay networks.

6.2.1 Problem Formulation

To formulate the optimal diverse routing problem, the overlay network is modeled as a

graph G = (V,E) as before, where V = {1, 2, ..,m} is the set of overlay nodes and E is the

set of overlay links. Each overlay link is represented by two end nodes. It may consist of

multiple physical links. An overlay path is represented by a set of overlay links.

Let P represent the set of all possible overlay paths from a source overlay node S ∈ V ,

to a destination overlay node D ∈ V . For any pair of overlay paths pi, pk ∈ P , pi 6= pk,

define R(pi, pk) as the R-factor when voice packets are sent on both paths pi and pk. Then

the R-factor R(pi, pk) for the pair of paths can be evaluated based on the performance of

the two paths. If the same voice packets are received from both paths, the network delay

of this voice packet would be the minimum of the network delays on the two paths, and the

loss rate would be the product of the loss rates on the two paths (assuming independence

of the losses on pi and pk). Suppose the network delays on paths pi and pk are dpi
and dpk

,

respectively, and the network loss rates on the two paths are lpi
and lpi

, respectively. Then,

the end-to-end network delay dnet can be computed as the minimum of dpi
and dpk

when a

voice packet is duplicated and received from both paths pi and pk.

In order to maximize the quality of a voice call by duplicating voice packets and sending

6 Online Distributed Diverse Routing for VoIP 117

them on diverse paths pi and pk, we need to find a pair of paths pi and pk that maximizes

the R-factor R(pi, pk). Then the optimal diverse path routing problem can be formulated

as follows:

maxR(pi, pk), (6.1)

s.t. pi, pk ∈ P .

6.2.2 Approximation Problem

The problem (6.1) is in fact an NP-hard problem (refer to Section 2.3.3 and [57–59] on

this). A brute-force search solution to the problem (6.1) is to search all the possible pairs

of disjoint paths, which can be exponentially large. Such a method is straightforward, but

it is not scalable, as it is computationally expensive to calculate R-factor for all the possible

disjoint pairs of paths in P for a large and dynamic network.

Thus, a solution, that requires no prior knowledge of the path performance character-

istics, with only small computation and probing cost, adaptive to network dynamics, and

scalable with network size, is the goal we aim for in this work. However, it is hard to find

such a solution for (6.1) directly. Thus, we solve an approximation problem, as given below.

First, we differentiate the two paths pi, pk ∈ P in (6.1). We call pi be a candidate for the

primary optimal path and pk a candidate for the secondary optimal path. The end-to-end

path delay on pi is expected to be less than that on pk, i.e. dpi
≤ dpk

. The second path pk

is used to prevent voice calls from being dropped during link losses or failures on path pi.

We expect the performance on paths pi and pk to be uncorrelated when there is no joint

link between pi and pk. Thus, we also try to minimize the number of joint overlay links1

between pi and pk, i.e. |pi ∩ pk|.
Then we convert problem (6.1) into the following two problems (6.2) and (6.3):

p∗i = arg min
pi∈P

dpi
(6.2)

1Completely disjoint paths cannot be guaranteed if we are considering overlay networks built in a single
ISP network, since we only have control over routing at the overlay level and not actual router-level routing.
Also note that zero link jointness may produce paths with large delays. Therefore, one may argue that
it is better to find a set of secondary minimum delay paths and choose one path that has minimum link
jointness with the primary path. However, it is also possible that the set of secondary minimum delay
paths may share many links with the primary path. As we are looking for a distributed solution, we rely
on the secondary learning automata to find a minimum delay path that shares as few overlay links with
the primary path as possible.

6 Online Distributed Diverse Routing for VoIP 118

{
p∗k = arg minpk∈P ′ dpk

P ′ = {pk ∈ P , |pk ∩ p∗i | = minpk∈P |pk ∩ p∗i |}
(6.3)

Problems (6.2) and (6.3) are an approximation of the original problem (6.1). The benefit

of such an approximation is that it is easier to estimate additive delay than to estimate R-

factor for a path2, especially for the adaptive learning algorithm, as used in this work. The

effectiveness of the approximation is further illustrated in the simulation results presented

in Section 6.6.

Solving problem (6.2) is equivalent to determining the primary optimal path p∗i ∈ P that

minimizes end-to-end delay from source S to destination D. Then, we solve problem (6.3)

to determine the secondary optimal path p∗k ∈ P ′. p∗k is a path with secondary minimum

end-to-end delay from S to D and with a minimum number of joint overlay links with

p∗i . We cannot assume that two distinct overlay links do not share physical links without

knowing the router-level topology and policy. Hence, for overlay routing control, it is only

feasible to control the disjointness at the overlay link level.

6.3 Methodology for Determining the Optimal Diverse Paths

To get a distributed and scalable diverse routing solution, the active probing and learning

automata described in the previous chapter is implemented at each overlay node, as illus-

trated in Fig. 6.1. It consists of the necessary components for making local decisions on the

primary and the secondary optimal next hop nodes for VoIP calls. As illustrated in Fig. 6.1,

the probing layer is responsible for probing all the candidate pairs of next-hop nodes. The

VoIP routing service layer makes decisions on the current primary and secondary optimal

next-hop nodes for each new incoming call.

To determine the primary and secondary optimal paths for each source-destination pair,

i.e. to solve the problems (6.2) and (6.3), the following two steps should be followed.

2Note that it is hard to guarantee that paths with minimum end-to-end delays always maximize the
R-factor, but mostly we would expect to see better VoIP quality on paths with low end-to-end delays. We
have not taken loss into consideration in the problem formulation because diverse paths are usually able
to reduce losses when the performance of the two diverse paths are uncorrelated, which is why we desire
the primary and the secondary paths to be disjoint.

6 Online Distributed Diverse Routing for VoIP 119

Fig. 6.1 Components for learning the primary-optimal and secondary-
optimal next-hop nodes for VoIP routing. An end-to-end route can be set
up for VoIP calls based on the local primary-optimal and secondary-optimal
next hop decisions during the call session initialization phase.

• Step 1:

Each node S probes all its neighbors j to learn if the link (S, j) is on its minimum

delay path from S to a destination D.

• Step 2:

The minimum delay path from a node S to D is determined based on the primary

optimal next-hop or secondary optimal next-hop node decisions at all nodes.

Both steps are necessary for determining the primary optimal path p∗i or the secondary

optimal path p∗k. However, there are still some differences in determining p∗i and p∗k, as

follows.

• To find the primary optimal path p∗i , i.e. to solve problem (6.2), we need to consider

all pi ∈ P so that the minimum delay path found is a global minimum solution.

• To find the secondary optimal path p∗k, i.e. to solve problem (6.3), we must find a

minimum delay path p∗k, which has the minimum number of joint overlay links with

p∗i .

The next section presents how to determine the primary and the secondary optimal

paths. The detail on how to efficiently search all pi ∈ P to determine the primary optimal

path is presented in section 6.4.1. Section 6.4.2 gives detail on how to determine the

secondary optimal path.

6 Online Distributed Diverse Routing for VoIP 120

6.4 Determining the Primary and Secondary Optimal Paths

This section presents the detail of the VoIP routing service layer in Fig. 5.1. As discussed

in the last chapter, assuming that the network is stationary, the solutions to problems (6.2)

and (6.3) are obtained when the primary and the secondary optimal next hop learning

automata converge. However, in a dynamic network environment, we are more concerned

with how to track the primary optimal and the secondary optimal paths, and always choose

the best possible pair of paths for new incoming voice calls. This is a more challenging

problem than the problems in (6.2) and (6.3) for a stationary network environment.

To solve it in a dynamic network environment, the most important and practical ques-

tion to answer is which pair of paths we should select when the learning automata have not

yet converged. That is to say, a rule for predicting the primary optimal path p∗i and the sec-

ondary optimal path p∗k has to be determined based on the current probability distributions

πDS (t), S,D ∈ V .

In this section, we present the proposed solution to problems (6.2) and (6.3), i.e. track-

ing the best diverse paths. Section 6.4.1 shows how to determine the instantaneous primary

optimal path p∗i for incoming VoIP calls. Section 6.4.2 shows how to determine the instan-

taneous secondary optimal path p∗k for incoming VoIP calls.

6.4.1 Determine and Track the Primary Optimal Paths for Routing VoIP

Calls

To determine and track the primary optimal paths, as illustrated in Fig. 6.1, active probing

and learning presented in Section 5.3 is applied to track the probability of a potential next-

hop node being the optimal next hop at any time instant t. Let the probability distribution

at node S for destination D at time t be π(p)D

S (t). The superscript (p) of π(p)D

S (t) indicates

that π(p)D

S (t) is used for determining the primary optimal next-hop node of S for destination

D.

In a stationary network environment, we can run the learning automata for a sufficiently

long period of time. Then the primary optimal next-hop for each source-destination pair

is determined based on the maximum of the probability distribution π(p)D

S (t). In fact, as

implied by the updating scheme in (5.4), the value of π(p)D

Sj(t) gives some indication on

the ranking of the link quality. In a dynamic network environment, the optimal next hop

j∗ for a source node can vary with time, i.e. it is a function of time and the network

6 Online Distributed Diverse Routing for VoIP 121

dynamics. When π(p)D

S (t) is updated with (5.4), Algorithm 5 is used to track the primary

optimal path. Thus, for an incoming voice call session initiated at time t, with source S

and destination D and candidate next hop node set U = {1, 2, ...,m} \ {S}, the primary

optimal next hop node for node S is given by (6.4):

j∗ = arg max
j∈U

π(p)D

Sj(t) (6.4)

Then similarly, the primary optimal next hop node for node j∗ with destination D is

u∗ = arg maxu π
(p)D

j∗u(t). In this way, the primary optimal path from source S to destination

D can be determined.

Note that in (6.2), the candidate path set P for learning p∗i includes all the possible paths

between that source-destination pair. That is to say, to solve problem (6.2), the primary

optimal next-hop node learning process has to be initialized with uniform initialization,

given in Section 5.3.4. As mentioned before, such initialization introduces undesirable

loops before final convergence. However, loops can be avoided by adding an additional loop

check in the primary optimal path determination algorithm. Whenever a loop is found,

the primary optimal path is reset to the default path, e.g. the shortest hop path, between

that source-destination pair, or the path previously used. The algorithm for determining

the primary optimal path for a VoIP call is shown in Algorithm 5. As Algorithm 5 runs

at each overlay node independently and distributedly, it is a scalable solution for problem

(6.2).

Fig. 6.2 Illustration of the primary-optimal path determination: scenario 1.
The left figure shows the network with probabilities π(p)D

sj(t), labeled on each
corresponding link (s, j), s, j ∈ {S, i, k}. The thick arrows in the right figure
shows the primary optimal paths from node S, i, k to destination D determined
by the algorithm in Algorithm 5.

6 Online Distributed Diverse Routing for VoIP 122

Require: Source-destination pair (S,D), current time t
Ensure: The primary optimal path p∗i for an incoming voice call at time t.

1: Set the last hop node u = S.
2: while u 6= D do
3: Set the primary optimal next-hop:

j∗ = arg maxj π
(p)D

uj(t)
4: if Node j∗ already used in p∗i , i.e. there will be a loop if j∗ is used then
5: j∗ = D, p∗i = {(S,D)}, Return.
6: else
7: p∗i = p∗i ∪ {(u, j∗)}.
8: u = j∗.
9: end if

10: end while

Algorithm 5: Primary optimal path determination algorithm

An example of the primary optimal path determination process is illustrated in Fig. 6.2.

The left figure shows a network with nodes {S, i, k,D}, and the probability distributions

π(p)D

v (t) at each node v, v ∈ {S, i, k}, for a certain destination D at time t. For instance,

π(p)D

i (t) = [0.1, 0, 0.7, 0.2]. Thus the primary optimal next hop of node i is k, since k =

arg maxj π
(p)D

ij (t). Applying Algorithm 5, the primary optimal path from each node v,

v ∈ {S, i, k}, to destination D is found, as illustrated by the thick arrows on the right of

Fig. 6.2.

6.4.2 Determine and Track the Secondary Optimal Paths for Routing VoIP

Calls

Once the primary optimal path is determined, the secondary optimal path that has minimal

overlap with the primary optimal path can also be determined based on the parameter of

the learning automata.

The active probing and learning presented in Section 5.3 is also applied here for learning

the secondary optimal paths. Let the probability distribution at node S for destination D

at time t be π(s)D

S (t). The superscript (s) of π(s)D

S (t) indicates π(s)D

S (t) is used to determine

the secondary optimal next-hop node of S for destination D.

Ideally, the primary optimal next hop node j∗ should not be a candidate for the sec-

ondary optimal next-hop node. By setting the probability π(s)D

Sj∗ to be zero, the corre-

6 Online Distributed Diverse Routing for VoIP 123

sponding link (S, j∗) is then removed from the original graph G.

To satisfy the maximum disjointness constraint for p∗k and p∗i , as required in (6.3), where

p∗k and p∗i are the secondary and the primary optimal path from S to D, respectively, we set

up the following procedure. If link (S, j∗) is on the primary optimal path from S to D at

time t, we divide the value of π(s)D

Sj∗(t) into all other π(s)D

Sj(t), ∀j ∈ J , where J represents

the set of candidate nodes for the secondary optimal next-hop, and we set the probability

π(s)D

Sj∗(t) = 0. Then with the new distribution π(s)D

S (t), the secondary optimal next hop at

node S for destination D is:

j′∗ = arg max
j′∈J

π(s)D

Sj′(t) (6.5)

With the above secondary optimal next-hop selection procedure, as detailed in Algorithm 6,

the secondary optimal path can be decided.

Require: Source-destination node pair (S,D)
Ensure: The secondary optimal path p∗k for an incoming voice call at time t.

1: Set last hop node u = S;
2: while u 6= D do
3: Set j′ = j∗, where j∗=the primary optimal next-hop of u

4: if There exists a node j′ 6= j∗ such that π(s)D

uj′(t) > 0 then

5: Divide the value of π(s)D

uj∗(t) into all the other positive π(s)D

uj′(t) to keep∑
j π

(s)D

uj(t) = 1, i.e. π(s)D

uj′(t) = π(s)D

uj′(t) +
π(s)D

uj∗ (t)

|J ′| , for each j ∈ J ′,
J ′ = {j|π(s)D

uj′(t) > 0}.
6: Set π(s)D

uj∗(t) = 0;

7: j′∗ = arg maxj′ π
(s)D

uj′(t);
8: p∗k = p∗k ∪ {(u, j′∗)},u = j′∗;
9: end if

10: end while

Algorithm 6: Secondary optimal path determination algorithm

As we are striving for a scalable and distributed solution to problem (6.3), we assume

that there is no communication between different overlay nodes on their optimal next hop

nodes. Thus, the secondary optimal next-hop node decision at node S for destination D is

made locally and independently based solely on the local probability distributions π(p)D

S (t)

and π(s)D

S (t). However, there is one thing to note about the initialization of π(s)D

S (t). In

(6.3), in order to search all the possible paths in P that are disjoint with p∗i , π
(s)D

S (t) should

6 Online Distributed Diverse Routing for VoIP 124

be uniformly initialized. For the scenario of Fig. 6.2, it is easy to show how the method in

Algorithm 6 can find secondary optimal paths that are completely disjoint, whether π(s)D

S (t)

is initialized with uniform initialization or geographical-location-aware initialization. With

the primary optimal paths being determined, as in the example of Fig 6.2, those links on the

primary optimal paths are removed from the original graph when we chose the secondary

optimal paths. Then we set π(s)D

vj∗(t) = 0 if j∗ is the primary optimal next-hop of node

v. Then the probability distribution parameters π(s)D

vj(t) are re-normalized and labeled on

each link (v, j), as illustrated in Fig. 6.3, with π(s)D

vj(t) adopts uniform initialization in the

left figure and geographical-location aware initialization in the right figure.

Fig. 6.3 Illustration of the secondary-optimal path determination: scenario
1. The left figure shows the determined secondary optimal path for uniformly
initialized secondary optimal learning automata; The right one shows the de-
termined secondary optimal path for geographical-location aware initialized
secondary optimal learning automata. The thick dashed arrows show the sec-
ondary optimal paths from source S, i, k to destination D determined with the
algorithm in Algorithm 6.

Note that, at any time, the values of π(s)D

v (t) depend on the network dynamics and

the setting of the secondary optimal next-hop learning automata. It is not necessary that

they are the same as those of π(p)D

v (t) and the values of π(s)D

v (t) can also differ for different

initialization methods, which is also indicated in the values labeled on each link of Fig. 6.2,

the left and the right side of Fig. 6.3. For example, in Fig. 6.2, at node k, π(p)D

kS(t) = 0.1;

on the left side of Fig. 6.3, π(s)D

kS(t) = 0.2; while on the right side of Fig. 6.3, π(s)D

kS(t) = 0

due to geographical-location aware initialization.

If uniform initialization is used for there are cases when no completely disjoint secondary

optimal path can be found, as shown in the example of Fig. 6.4. The left graph shows the

network with probability distributions π(p)D

vj(t) on each link (v, j). The right graph shows

6 Online Distributed Diverse Routing for VoIP 125

Fig. 6.4 Illustration of the primary-optimal path determination: scenario 2.
The left graph shows the network with probabilities π(p)D

sj(t), s, j ∈ {S, i, k},
labeled on each corresponding link (s, j). The thick arrows on the right side
show the primary optimal paths from nodes S, i, k to destination D, which are
determined with the algorithm in Algorithm 5.

the primary optimal path determined by Algorithm 5, as in the example of Fig. 6.2. Once

the primary optimal paths are determined, the secondary optimal paths can be determined.

However, if π(s)D

v (t) are uniformly initialized, no secondary optimal path can be found, as

illustrated in the left graph of Fig. 6.5, as all the direct paths from v, v ∈ {S, i, k} to

destination D are disallowed for disjointness, i.e. π(s)D

vD(t) = 0.

Fig. 6.5 Illustration of the secondary optimal path determination for the
scenario in Fig. 6.4. The probabilities π(s)D

vj(t), v, j ∈ {S, i, k}, are labeled
on each corresponding link (v, j) in both the left and right figures. On the
left figure, all distributions π(s)D

v (t) are uniformly initialized. No secondary
optimal path can be determined by the method given in Algorithm 6. While on
the right, all distributions π(s)D

v (t) are initialized with geographical-location-
aware initialization. The thick dashed arrows show the secondary optimal
paths from source S, i, k to destination D determined with Algorithm 6.

In this case, we use geographical-location-aware initialization for all distributions π(s)D

v (t),

which means that the set of candidate next hop nodes for the secondary optimal next hop

determination only includes those closer to destination D than v. Then Algorithm. 6 can

6 Online Distributed Diverse Routing for VoIP 126

find the secondary optimal paths, which are minimally joint with the primary optimal

paths, as shown by the thick dashed arrows on the right of Fig. 6.5.

Thus, combining Algorithm 5 and Algorithm 6, we have the diverse routing approach for

VoIP calls, implemented in overlay networks as in Fig. 6.1. Next, I am going to show how to

detect link failures to improve the robustness of the proposed routing method. Simulations

of the diverse routing method and the link failure detection approach are presented in

Section 6.6.

6.5 Resiliency against Link Failures

We have presented the work on determining diverse paths based on the parameters of the

learning automata. This section presents a novel link failure detection method for enhancing

resiliency against link failures.

When a link fails, all the voice packets on it are dropped. Thus, to improve the ro-

bustness of Algorithm 5 and Algorithm 6, we consider how to detect overlay link failures

as early as possible to reduce the number of lost calls. The primary and the secondary

optimal next-hop learning embedded in Algorithm 5 and Algorithm 6 are able to detect

a link failure after the probability of choosing the failed link drops below that of another

choice. To improve this, we propose to detect link failures based on the change of the

probability distribution πDS (t).

6.5.1 Link failure detection

Suppose at time t, the primary optimal next-hop of node S for destination D is j∗, i.e.

j∗ = arg maxj π
(p)D

Sj(t).

Proposition 6.5.1. For n(ε) = dlog(ε)/log(1 − π(p)D

Sj∗(t))e, if the sequence {π(p)D

Sj∗(t −
n(ε)+1), ..., π(p)D

Sj∗(t)} is monotonically decreasing, a link failure can be declared with (1−ε)
confidence.

Proof. As defined in Section 5.3, the probability that node j∗ is probed at time t is π(p)D

Sj∗(t).

Then, the probability that node j∗ was not chosen in the past consecutive n time steps

f(n) =
∏t

τ=t−n+1(1−π(p)D

Sj∗(τ)). If node j∗ was probed and rewarded positively during the

last n time steps, at least one increase should be observed in the sequence L = {π(p)D

Sj∗(t−
n+ 1), ..., π(p)D

Sj∗(t)}. However, if a physical link between j∗ and destination D fails, there

6 Online Distributed Diverse Routing for VoIP 127

would be no positive increase observed in L = {π(p)D

Sj∗(t − n + 1), ..., π(p)D

Sj∗(t)}, because

no probing packet returned. In this case, π(p)D

Sj∗(t− n+ 1) > ... > π(p)D

Sj∗(t). Then f̂(n) =

(1 − π(p)D

Sj∗(t))
n ≥ f(n). Thus, for a sufficiently small ε > 0, n = n(ε) = dlog(ε)/log(1 −

π(p)D

Sj∗(t))e guarantees f(n) ≤ f̂(n) ≤ ε. Or equivalently, the probability that sequence L

should have at least one positive increase is 1 − f(n) > 1 − ε if there is no link failure on

(j∗, D). Therefore, no positive increase in sequence L indicates a link failure, with (1− ε)
confidence. Otherwise, if there is positive increase in the sequence L, this is not a necessary

condition for link failure, thus, no failure alarm will be reported.

A link failure event is defined as an event when the condition in Proposition 6.5.1 is

satisfied. According to Proposition 6.5.1, for a sufficiently small ε > 0, a link failure event

can be declared with confidence (1−ε) when sequence L = {π(p)D

Sj∗(t−n+1), ..., π(p)D

Sj∗(t)}
shows consecutive decrease. This method can be applied to link failure detection for both

the primary and the secondary optimal next-hop node decision. As they are similar, we only

show the link failure detection algorithm for primary optimal next-hop node decisions in

Algorithm 7. In Algorithm 7, the variable count is used to count the number of consecutive

link failure events. If such link failure events happen consecutively for N times, a link

failure alarm is reported, i.e. we set FailAlarm(S,D, j∗) = 1. The value of ε and N can

be adjusted to trade off the link failure detection time and the probability of a false alarm.

The link failure detection method can be run after each update with (5.4) or less frequently,

for example per 1 second interval if a gap of 2 seconds is tolerable3.

Note that we desire a completely distributed link failure detection method, thus we do

not consider propagating link failure information across the network, because it requires

additional routing update overhead as RON does [48], and it is not necessarily useful since

link failures can be quickly detected, recovered and avoided by re-routing voice calls on

that failed link.

32 seconds is the time taken by voice network signalling protocols to release a connection if there is a
failure and so it is an important objective to meet to avoid dropping connections when a failure occurs,
since if we recover in less than 2 seconds the user will only experience a click but the session continues [29].

6 Online Distributed Diverse Routing for VoIP 128

Require: Source-destination node pair (S,D), π(p)D

Sj∗(t), ε, L, count.
Ensure: Link Failure Alarm FailAlarm.

1: n(ε) = log(ε)/log(1− π(p)D

Sj∗(t))

2: if Sequence L = {π(p)D

Sj∗(t− n(ε) + 1), ..., π(p)D

Sj∗(t)} shows consecutive decreases, i.e.

π(p)D

Sj∗(t− n(ε) + 1) > ... > π(p)D

Sj∗(t) then
3: count = count+ 1
4: else
5: count = 0
6: end if
7: if count >= N then
8: FailAlarm(S,D, j∗) = 1

//A link failure alarm is reported.
9: else

10: FailAlarm(S,D, j∗) = 0
//No link failure.

11: end if

Algorithm 7: Link Failure Detection Algorithm

6.5.2 Modification to the Primary and Secondary Optimal Path

Determination

To apply the link failure detection Algorithm 7 into the primary and secondary optimal

path determination algorithms, we need to add a rule to recover from a link failure when it

is detected, i.e. to determine which link should replace the failed link. Note that, although

the probability of two physical links failing at the same time is small, one cannot assume

the probability of two overlay links failing at the same time is equally small, since two

overlay links may share the same failed physical link. Hence, the new optimal next hop

must be without link failure alarm and with as high π(p)D

Sj(t) as possible. In other words,

the rule for link failure recovery is:

• the new primary optimal next hop j must satisfy FailAlarm(S,D, j) = 0;

• j should have as high π(p)D

Sj(t) as possible, since the probability π(p)D

Sj(t) implicitly

indicates the ranking of path quality through next-hop node j.

For the secondary optimal path determination, modification to Algorithm 6 is also

needed to detect and recover from link failures, and to maintain link-disjointness if possible.

6 Online Distributed Diverse Routing for VoIP 129

Once a link failure is detected with Algorithm 7 for the secondary optimal path, the link

failure recovery rule is as follows.

• Choose the secondary optimal next hop to be the one without link failure alarm, with

as high π(s)k

ij(t) as possible and disjoint with the primary optimal next hop if possible.

• To be disjoint with the primary optimal next hop, whenever the primary optimal next

hop changes, the secondary optimal next hop has to be changed so that the primary

optimal next hop j∗ is not equal to the secondary optimal hop j′∗. There are only

two cases where j∗ can be equal to j′∗, i.e. when all other choices except j∗ are not

available or have link failures.

Examples

Fig. 6.6 Illustration of the primary optimal path determination when a link
(S,D) fails. The left graph shows the network with probabilities π(p)D

vj(t),
v, j ∈ {S, i, k}, labeled on each corresponding link (v, j). The thick arrows on
the right show the new primary optimal paths from S, i, k to destination D
after the link failure on (S,D) is detected.

An example for link failure recovery for primary optimal path determination is illus-

trated in Fig. 6.6. The left graph of Fig. 6.6 shows the network with probabilities π(p)D

vj(t)),

v, j ∈ {S, i, k}, labeled on each corresponding link (v, j). It also shows the detected link

failure on link (S,D). The thick arrows on the right side of Fig. 6.6 show the new primary

optimal paths from S, i, k to destination D after the link failure on link (S,D) is detected

and recovered. The failed link (S,D) is detected by Algorithm 7, and replaced by link

(S, i) based on the link failure recovery rule above. This example illustrates that a link

6 Online Distributed Diverse Routing for VoIP 130

Fig. 6.7 Illustration of the secondary optimal path determination when a
link (S,D) fails. The probabilities π(s)D

sj(t), s, j ∈ {S, i, k} are labeled on each

corresponding link (s, j). Note that π(s)D
S (t) are initialized with geographical-

location-aware initialization. The thick dashed arrows show the secondary
optimal path from source nodes S, i, k to destination D.

failure can be recovered with the proposed link failure recovery rule once it is detected.

Simulations for the link failure detection and recovery method are presented in Section 6.6.

Continuing with the example of Fig. 6.6, where the primary optimal path has recovered

from the link failure on (S,D), Fig. 6.7 shows the secondary optimal path determination.

As the failed link is not on the secondary optimal path, the secondary optimal path is the

same as that in Fig. 6.5.

Fig. 6.8 Illustration of the primary optimal path determination when a link
(i, k) fails. The left side shows the network with probabilities π(p)D

vj(t), v, j ∈
{S, i, k}, labeled on each corresponding link (v, j). The thick arrows on the
right show the new primary optimal paths from S, i, k to destination D after
the link failure is detected.

In the next example, we show the link failure recovery on the primary optimal and the

secondary optimal path when link (i, k) fails, as in Fig. 6.8 and Fig. 6.9. In this case, the

failed link does not affect the primary optimal path, as illustrated in Fig. 6.8, but it affects

the secondary optimal path selection, as shown in Fig. 6.9. When a failure is detected for

6 Online Distributed Diverse Routing for VoIP 131

link (i, k) the secondary optimal next-hop of node i has to be D, rather than k.

Fig. 6.9 Illustration of the secondary optimal path determination when a
link (i, k) fails. The probabilities π(s)D

vj(t), v, j ∈ {S, i, k} are labeled on each
corresponding link (v, j). The thick dashed arrows show the secondary optimal
path from source S, i, k to destination D.

6.6 Performance Evaluation

This section evaluates VoIP quality on the primary optimal paths and on the diverse paths,

when there is no link failure and when there are link failures.

In the following, we simulate a physical network with 50 nodes, which is a model of the

AT&T backbone network, as in Fig. 3.11. Overlay nodes are selected to be geographically

distributed over the network, and all the overlay nodes are interconnected. In the over-

lay network, we run the primary and the secondary optimal next hop learning automata

detailed in Sections 5.3, 6.4 and 6.5. Based on the values of the probability distributions

π(p)D

S (t) and π(s)D

S (t), ∀S,D ∈ V , the primary and the secondary optimal paths are deter-

mined and applied to route VoIP calls, as illustrated in Fig. 5.1 and Fig. 6.1.

6.6.1 Simulation Results

In this section, we compare VoIP quality, i.e. R-factor, for source routing on the learned

primary optimal path (abbreviated “APL1”), diverse routing with the learned primary and

secondary optimal paths (abbreviated “APL2”) with three other VoIP routing methods:

routing on the direct paths (i.e. paths determined by the underlying network, i.e. the

Shortest Hop Paths, abbreviated “SHP”), the routing method proposed in Section 4.2 of

Chapter 4 (abbreviated “CDR”), and the path switching method proposed in [46] and

6 Online Distributed Diverse Routing for VoIP 132

Abbreviation Routing Method Reference Features

APL2 Routing with the learned
primary and secondary opti-
mal paths.

Section 6.4 Decentralized, diverse,
adaptive, flow-based
routing

APL1 Routing with the primary
optimal paths.

Algorithm 5 Decentralized, single
path, adaptive, flow-
based routing

APL1+LFD The APL1 method plus the
link failure detection algo-
rithm.

Sections 6.4
and 6.5

Decentralized, single
path, adaptive, flow-
based routing, link
failure detection

CDR Routing with two diverse
paths.

Chapter 4 Centralized, diverse,
adaptive, flow-based
routing

TaoPS Path switching algorithm. Section 2.3.2
and [46]

Decentralized, single
path, adaptive, packet-
based routing

SHP Shortest hop routing. [33] Decentralized, single
path, fixed, packet-based
routing

APL1+SP Routing with the primary
optimal next-hops deter-
mined by the max-rule in
(6.4).

Equation (6.4) Decentralized, single
path, adaptive, packet-
based routing

Table 6.1 Abbreviations for different routing methods simulated in this sec-
tion.

6 Online Distributed Diverse Routing for VoIP 133

described in Section 2.3.2 (abbreviated “TaoPS”). The goal of this comparison is to un-

derstand if the proposed distributed diverse routing method “APL2” can provide the same

competitive and stable VoIP quality as the centralized diverse routing method “CDR”, and

also to show the gain of using the proposed methods over the existing methods ”SHP”

and “TaoPS”. We compare our methods with “TaoPS” because “TaoPS” is also an adaptive

routing method for VoIP traffic.

With background traffic generated for the 50-node model of AT&T backbone network,

we evaluate VoIP quality for the primary optimal path and the diverse paths in the same

10-node overlay network as that for Fig. 5.13. In the simulation, the voice codec is G.711 [3]

and the learning gains for APL1 and APL2 are set to be sufficiently small with g = 0.0005.

The time scales for the path switching method TaoPS are set to be similar to [46] as

tn = 5× 2n ms for n ∈ {0, 5, 10, 12, 15}. As the routing method TaoPS can switch the path

of an on-going call, i.e. re-routing a call when a better path is found, we also compute the

R-factor for APL1 when distributed re-routing is applied (abbreviated APL1+SP). The

abbreviations of all the simulated routing methods are also listed in Table. 6.6.1.

A Scenario When There is No Physical Link Failure

We first simulated the VoIP routing methods CDR, APL2, APL1, TaoPS and SHP for

a scenario with no physical link failure. The average R-factors for all voice calls in the

overlay network are shown in Fig. 6.10. The top three lines are the R-factors for CDR,

APL2 and APL1. We can see that the three routing methods CDR, APL2 and APL1

provide competitive “High” VoIP quality, while APL2 performs slightly better than APL1.

The R-factor for the path switching method TaoPS is not as high as those of CDR, APL2

and APL1, but it is still much higher than that of the shortest hop path routing SHP.

CDR APL2 APL1 TaoPS SHP
R-factor 90.79±0.88 91.09±0.57 91.01±0.67 89.31±1.96 71.79±4.62

Table 6.2 Average R-factor over the whole simulation time for all the source-
destination pairs when there is no link failure. Note that the number after each
± refers to standard deviation of R-factor.

Table. 6.2 shows the average R-factor of the five routing methods CDR, APL2, APL1,

TaoPS and SHP when there is no link failure. It also shows that the diverse routing

method APL2 performs slightly better than the single path routing APL1, TaoPS and

6 Online Distributed Diverse Routing for VoIP 134

Fig. 6.10 Average R-factor for all the voice calls in the overlay network when
there is no physical link failure. The lines from top to bottom represent the
R-factors for APL2, APL1, CDR, TaoPS and SHP, respectively. It can be seen
that the three routing methods APL2, APL1 and CDR provide competitive
performance and that they are better than TaoPS and much better than SHP.

SHP on average in this case. We can see that APL1 performs slightly better than CDR,

which is because CDR only considers single-hop paths. The relative increases in average

R-factor for APL2, APL1 and CDR comparing to that of TaoPS are 2%, 1.91%, and 1.66%,

respectively. When comparing to the R-factor on the direct paths, the relative increases

for APL2, APL1, CDR and TaoPS are 26.9%, 26.78%, 26.47% and 24.41%, respectively.

A Scenario When There is a Physical Link Failure

Fig. 6.10 has shown that there is no significant gain by using diverse routing APL2 or CDR

when there is no link failure. We are now interested in if there are benefits by using diverse

routing when there is a physical link failure. Thus, we disable a physical link that is on

the primary optimal paths of four source-destination overlay node pairs. This is a similar

but worse case than that described in Fig 6.2, since four primary optimal paths fail due to

this single physical link failure, which can result in Algorithm 5 to take longer to learn new

optimal paths. Fig. 6.11 shows the simulation results when this link fails at 50 seconds.

It can be observed that the R-factor for the diverse routing method APL2 is not affected

by the link failure at 50 seconds, while that of APL1 and APL1+SP drops significantly

6 Online Distributed Diverse Routing for VoIP 135

Fig. 6.11 Average R-factor for all the voice calls in the overlay network when
there is a physical link failure. This link failure disables 4 primary optimal
paths. From 50 to 72 seconds, we can see 4 jumps in R-factor that are due to
the recovery of the 4 paths.

at 50 seconds. After that, the R-factors for APL1+SP and APL1 grow slowly4, and that

of APL1+SP gets close to the value of APL2 at around 70 seconds, i.e. the learning

automata finish learning four new primary optimal paths at around 70 seconds. Note

that the average R-factor for APL1+SP is higher than that for APL1 after 50 seconds.

This is because APL1+SP allows packet re-routing for on-going voice calls while APL1

only allows flow-based source routing. Table 6.3 lists the average R-factor over the whole

CDR APL2 APL1 APL1+SP TaoPS SHP
R-factor 90.46±1.22 90.79±1.02 85.08±2.96 90.41±1.50 86.65±2.71 71.48±4.52

Table 6.3 Average R-factor over the whole simulation time for all source-
destination pairs when there is a physical link failure. Note that the number
after each ± refers to standard deviation of R-factor.

simulation time for all source-destination pairs for the six routing methods CDR, APL2,

APL1, APL1+SP, TaoPS and SHP. It can be seen that the diverse routing methods CDR

and APL2 performs much better than the single path routing APL1, TaoPS and SHP. We

can also see that APL1+SP performs similar to the diverse routing methods. The relative

4This is because it takes time for Algorithm 5 to learn four new primary optimal paths.

6 Online Distributed Diverse Routing for VoIP 136

increases in R-factor for APL2 and APL1+SP comparing to that of APL1 are 6.71% and

2.3%, respectively. In this example, we see that re-routing voice packets to newly learned

primary optimal paths as in the case of APL1+SP and TaoPS provides higher VoIP quality

than the case of APL1 where packets of the on-going voice calls on the link are dropped

when the link failure occurs at 50 seconds. However, one should note that the packet re-

routing for APL1+SP and TaoPS can result in out-of-order arrivals and may lead to route

oscillations when the amount of voice traffic is non-negligible5.

Link Failure Detection and Recovery

In this section, we evaluate the efficiency of the proposed novel link failure detection method

detailed in Section 6.5. In this simulation, we assume that the same physical link failure as

in Fig. 6.11 fails. The simulation result is shown in Fig. 6.12, where R-factor of an example

source-destination pair that is affected by the link failure is compared for APL1 (i.e. link

failure detection is not implemented), APL1+LFD (i.e. link failure detection and recovery

is implemented) and APL2 (i.e. both the primary and the secondary optimal paths are

used).

Fig. 6.12 R-factor comparison for three routing methods: APL2 (both the
primary and the secondary optimal paths are used), APL1 (i.e. link failure
detection is not implemented) and APL1+LFD (i.e. link failure detection is
implemented with N = 1, ε = 10−6 in Algorithm 7) for an example source-
destination pair. The figure on the left shows that VoIP quality is not affected
by the link failure when diverse routing is adopted, while the APL1 method
takes 22 seconds to detect and recover from the link failure. The figure on
the right shows that APL1+LFD method takes only 0.16 second to detect and
recover from the same link failure.

5In this example, we assume the amount of voice traffic is small compared to other background traffic
on a link, as it is currently and likely to be in the future.

6 Online Distributed Diverse Routing for VoIP 137

As shown in Fig. 6.12, when no link failure detection is applied, Algorithm 5 discovers a

new primary optimal path at t = 72 seconds. Consequently, all voice calls/packets on this

optimal path will be dropped due to the 22 second gap6. When the proposed link failure

detection algorithm is implemented, with the same link failure setting, the link failure is

detected and recovered at t = 50.16 seconds, just a few tenths of a second after the failure

occurs. This indicates that the link failure detection method can significantly reduce the

gap from 22 seconds to 0.16 seconds. It should also be noted that when both the primary

and the secondary optimal paths are used, no gap is observed in R-factor for APL2.

Fig. 6.12 has shown the link failure detection time for an example source-destination

pair. The link failure detection time is in fact related, the probing rate and the parameters

(ε>0 and N>0) in Algorithm 7. The higher the probing rate is, the faster the link failures

are detected. The lower the ε is and the higher the N is, the slower the link failures are

detected. One should also note that the link failure detection time is not affected by the

learning gain, as defined in Algorithm 7. According to (5.13), we can compute the probing

packet arrival rate γvi at a node i for a destination v, the link failure detection time for a

failed overlay link (i, v) can then be estimated as n(ε)+(N−1)
γv

i
.

The Average Result with Random Physical Link failures

We also simulated the six different routing methods CDR, APL2, APL1, APL1+SP, TaoPS

and SHP for 20 different scenarios with a random physical link failure [17]. The random

physical link failures are generated from a link failure model similar to [17], where each

link fails with a probability uniformly distributed between [10−4, 10−3]. Fig. 6.13 shows

the average R-factor for all calls over all scenarios for the five routing methods CDR,

APL2, APL1, TaoPS and SHP from top to bottom7. R-factors for the centralized and

the distributed diverse routing methods CDR and APL2 are shown by the top two lines.

It is evident that R-factor for these two routing methods are very close to 93.2, i.e. the

maximum R-factor for the G.711 codec, which means they can provide “best”8 quality VoIP

and thus both are good heuristics for the optimal diverse routing problem in (6.1). It is also

observable that CDR performs slightly better than APL2 because the diverse paths chosen

6This gap can be reduced by increasing probing rate or learning gain.
7The R-factors for APL1+SP and APL1+LFD are between that of APL2 and APL1. They are not

shown in Fig. 6.13 because they are very close to that of APL2 and APL1.
8The VoIP quality level has been illustrated in Fig. 2.3.

6 Online Distributed Diverse Routing for VoIP 138

Fig. 6.13 Average R-factor of all the voice calls in the overlay network for 20
different scenarios (with random link failures). The lines from top to bottom
represent the R-factor for CDR, APL2, APL1, TaoPS and SHP, respectively.

by CDR are selected based on mouth-to-ear latency and loss, while those of APL2 are

based on network latency only. R-factor for the single path routing method APL1 is lower

than those of the diverse routing methods CDR and APL2, which shows the advantage of

diverse routing over single path routing. It is observable that APL1 performs better than

TaoPS because the path switching method is sub-optimal as discussed in Section 2.3.2.

CDR APL2 APL1 APL1+SP TaoPS SHP
R-factor 91.54±0.09 91.14±0.18 90.35±0.31 90.81±0.27 88.98±0.44 66.80±0.89

Table 6.4 Average R-factor for six routing methods: CDR, APL2, APL1,
APL1+SP, TaoPS, SHP, when there is a random link failure. Note that the
number after each ± refers to standard deviation of R-factor.

The average R-factors over time for the six routing methods are listed in Table. 6.4.

It can be seen that the four routing methods CDR, APL2, APL1+SP and APL1 provide

competitive VoIP quality, with the diverse routing CDR and APL2 performing slightly

better than the single path routing APL1+SP and APL1. APL1+SP performs slightly

better than APL1 because the APL1+SP method adaptively learns a better path when

6 Online Distributed Diverse Routing for VoIP 139

a link failure happens on an overlay link and it re-routes voice calls to the better path.

The difference between APL1 and APL1+SP is small because the probability a link fails in

100 seconds is still small although we have set the link failure probability to be relatively

large (within [10−4, 10−3] comparable to that in [17]). The relative increases in R-factor

for CDR, APL2, APL1+SP and APL1 comparing to that of TaoPS are 2.88%, 2.43%,

2.06% and 1.54%, respectively9. When comparing to the R-factor of the voice calls on the

direct paths, we see a big gap between those of the adaptive routing methods CDR, APL2,

APL1+SP, APL1 and TaoPS and that of SHP, where the relative increases in R-factor

are 24.74%, 24.34%, 24.01%, 23.55% and 22.19%, respectively, which shows significant

advantage of adaptive routing for improving VoIP quality in overlay networks.

Fig. 6.12 has shown the link failure detection time for an example source-destination

pair. For the example with 20 scenarios, we also compute the average link failure detection

time for the two methods APL1 and APL1+LFD10, as given in Table. 6.5. We see that the

link failure detection time when the link failure detection algorithm is adopted is 8 times

faster than that when it is not used.

APL1 APL1+LFD
Link failure detection

time (second) 3.67± 2.91 0.46±0.31

Table 6.5 Average Link Failure Detection for APL1 and APL1+LFD. Note
that the number after each ± refers to standard deviation of R-factor.

Remarks

From the simulations in Fig. 6.10, Fig. 6.11, Fig. 6.12 and Fig. 6.13 we can reach the

following conclusions. First, when there is no link failure in the network, the single path

routing method APL1 provides competitive performance to the diverse routing methods

CDR and APL2 in terms of R-factor. Second, when there are link failures, the diverse

9The difference is not as large as that in Table. 6.3 because 13 out of 20 scenarios are without overlay
link failure during the simulation time.

10Link failures that are not detected before the simulation time ends for APL1 are not counted in the
average link failure detection time computation. That is why we do not show the link failure detection time
for TaoPS, since it only detects one link failure for all the 7 scenarios that have overlay link failures and the
detection time was 4.27 seconds for the one case). However, we can still estimate the link failure detection
time for TaoPS as longer than 36.8 seconds since we know each link failure time and the simulation ending
time.

6 Online Distributed Diverse Routing for VoIP 140

routing methods CDR and APL2 provide higher R-factor than the single path routing

method APL1. When path switching is allowed for APL1, the single path routing method

APL1+SP can provide competitive R-factor to the diverse routing methods. Third, in

the simulations, we also observe that the proposed three methods CDR, APL1 and APL2

provide higher R-factor than the path switching method TaoPS on average. Fourth, in

terms of scalability, the distributed routing methods APL1 and APL2 are better than the

centralized routing method CDR and the brute-force search method TaoPS.

6.7 Stability Analysis

Simulation results in Section 6.6 have shown that the learned primary optimal path and

diverse paths are able to improve VoIP quality. The other issue of interest is the stability

of the routing approach given in Algorithm 5 and Algorithm 6. As both the primary and

secondary optimal path determinations are based on the max-rule in (6.4) or (6.5), we only

analyze the stability of the primary optimal path determination in this section.

For an overlay network with m overlay nodes and m(m− 1) overlay links, we have the

matrix Π(v) =
[
π

(v)
ij

]
, v = 1, ...,m, with 0 ≤ π

(v)
ij ≤ 1 denoting the probability that voice

arrivals with source i and destination v should be sent to node j. Let Π = [Π(v)]. Then the

user optimization problem for each source-destination pair (i, j), ∀i, j ∈ {1, ...,m}, i 6= j, is

as follows.

Π∗ = arg min
Π
D(i, j) (6.6)

where D(i, j) is the end-to-end delay from node i to j11. If there exists a feasible solution to

the above delay minimization problem in (6.6), one can claim that there is an optimal load

sharing solution for the problem, and it should be stable. However, it is hard to find the

optimal solution for the minimization problem analytically. Paper [63] suggests a learning

algorithm to find the user equilibrium solutions. Thus, we can check if the average delay

for the paths determined by the max-rule in (6.4) converges to that given by the optimal

solution found by the learning algorithm in [63].

This framework is simulated in the following setting. For the same 50 node model of the

AT&T backbone network and the same overlay network, we simulated the max-rule based

primary optimal path determination algorithm, as in Algorithm 5, and the user equilibrium

11The computation of D is given in Appendix D.

6 Online Distributed Diverse Routing for VoIP 141

learning algorithm in [63].The average delay over all source-destination pairs as a function

of time is shown in Fig. 6.14. Note that the delay function d(f, c) is determined according

to a piecewise linear fit to link delay function as in paper [116]. The absolute value for the

delays can be tuned. However, as we are only concerned with the stability of the adaptive

routing approach, we did not optimize the parameter setting for the delay function in this

simulation.

Fig. 6.14 The average delay over all source-destination pairs as a function
of time.

Fig. 6.14 shows the simulation results for the max-rule based adaptive VoIP routing

method and the user equilibrium learning method as in paper [63]. The thick line shows

the average delay for the user equilibrium learning method. At the beginning, the average

delay is very large because uniform random routing is assumed for the initial stage of the

method. The thick line suggests the downward trend for average delays with marginal

fluctuation due to call departure. It can also be seen that the slope of the line decreases

with time and the line becomes almost flat at the end of the simulation. The thin dash-line

shows the average delay for the max-rule based adaptive routing method; before time 50

seconds, the thin dash line and the thick line overlaps because the user equilibrium learning

method is also used for the warm-up period of the max-rule based method; the thin dash

line shows lower average delay from the time the max-rule base method is applied, i.e.,

the time 50 seconds; the average delay after time 500 seconds remains steady, with small

magnitude of fluctuation due to new call arrivals and departures; the average delay value

is lower than that of the method in [63] because the max-rule based method predicts the

6 Online Distributed Diverse Routing for VoIP 142

best route even before the user equilibrium learning method converges. When the user

equilibrium is reached for the method in [63], the average delays for both methods are

very close. As suggested by the figure, the effect of routing new calls adaptively with the

max-rule cannot significantly affect system performance; it is because the number of new

call arrivals at each time instant is much less than that of the on-going calls. Hence, the

system performance is more determined by the ongoing calls than by the adaptive routing

of new calls.

6.8 Implementation Considerations

Fig. 6.15 Voice packet format

For implementation, each voice packet is encapsulated as in Fig. 6.15. In each packet,

the IP addresses of all the intermediate overlay nodes are included for source routing. The

field “Number of left overlay node” represents the number of remaining overlay hops before

the voice packet reaches its destination overlay node. It starts with the length of the

source-destination routes and decreases 1 each time it arrives at an intermediate overlay

node. When the packet reaches its destination, this field equals zero. The“Destination Host

IP” is the callee’s IP address, which is the final destination of the packet. Voice signals are

encapsulated using the RTP protocol [117].

6.9 Overlay performance comparison with BGP and RON for

VoIP routing

In this section, we consider the performance of the proposed overlay routing framework

with that of BGP [34] and RON [48, 49], as shown in Table 6.6. BGP is a completely

distributed routing protocol and does not require any network monitoring mechanism;

6 Online Distributed Diverse Routing for VoIP 143

BGP RON our work
Scalability ++ − +
Path optimality − + ++
Failure detection speed − + ++

Table 6.6 Overlay Performance Comparison. “+” means “good”, “−” means
“bad”.

thus, it has excellent scalability. However, it has been performing poorly with its policy

based path selection schemes, e.g. AS-hop based routing and hot-potato routing, which

can not choose the paths with optimal performance for applications and are usually slow to

detect path failures [35–39,48,49]. On the other hand, RON requires aggressive monitoring

of overlay link performance, and a central performance database is required for storing

and distributing link performance measurements to all the overlay nodes, which limits its

scalability. Optimal path selection in RON is based on inaccurate overlay link performance

estimation, and only one-hop overlay paths are considered. RON is able to detect path

failures in a few seconds, which is faster than that with BGP [48,49]. In our work, minimum

delay paths and diverse paths can be learned with a reasonable amount of probing overhead;

the probing and minimum delay path learning scheme is completely distributed, yielding

good scalability as shown in Fig. 5.13 of Chapter 5. The optimality of the minimum delay

paths has also been shown. The proposed link failure detection scheme is able to detect

and recover from a failure in less than 2 seconds on a typical backbone network, which

can prevent a voice connection from being dropped. Thus, our work provides better path

quality and failure detection speed, as indicated in Table 6.6.

6.10 Summary

This chapter presented a distributed method to identify and track the primary and the

secondary optimal paths for VoIP in service overlay networks. Our approach is to deploy

learning automata at each overlay node. The learning automata are responsible for con-

trolling the probing process, with the idea being to quickly rule out routes that will not

lead to optimal performance so that probing resources can be focused on promising paths.

Ideally, the primary and secondary optimal paths we learn should be statistically inde-

pendent, however this is a challenging task to accomplish in practice. Instead, we learn

the secondary optimal path as a minimum delay path that are maximally disjoint with

6 Online Distributed Diverse Routing for VoIP 144

the primary optimal path in the overlay network. Simulations on a model of the AT&T

backbone network indicate that our algorithm can considerably improve VoIP quality from

medium to high level, and by using diverse paths, in combination with a novel algorithm for

detecting link failures, we can make VoIP overlay networks more resilient to link failures.

145

Chapter 7

Conclusion

This chapter summarizes the original contributions of this study and the advancements it

makes over previous research. First, I developed a QoS routing method to optimize R-

factor by jointly considering routing and the play-out scheme of the receiver. In addition, I

developed a distributive minimum delay path learning method that is scalable with network

sizes, and a distributive diverse path learning method that improves VoIP quality. Finally,

I developed a link failure detection and recovery method that improves routing robustness

against link failures.

7.1 End-to-end delay analysis, simulation and sampling

Understanding Internet end-to-end delay characteristics is essential for VoIP QoS routing.

In this context, we studied end-to-end delay characteristics by modeling and simulating

end-to-end delay traces and found the potential advantage of VoIP QoS routing. Using

the real end-to-end delay traces measured by an Internet Service Provider, we analyzed

the marginal probability distribution for delay samples, the autocorrelation of delay traces,

the relation between the sample mean and the sample standard deviation of delay traces,

and the relation between the propagation delay and geographical distance. We found that

there is no strong correlation between the propagation delay of a path and the geographical

distance between two ends of the path. We also observed that for most of the links ana-

lyzed, the sample mean and the sample standard deviation are more correlated when the

autocorrelation of a delay trace is weak than when it is strong. Based on these analyses,

we suggested that a delay trace with weak or no autocorrelation can be synthesized using

2009/11/11

7 Conclusion 146

its sample mean, sample standard deviation and minimum delay. We also simulated delay

traces based on a fluid model of the 50-node model of the AT&T backbone network, in

which we incorporated a fractional Brownian motion traffic model, a gravity traffic demand

model and a maximum link-utilization-rate based link capacity assignment technique. Sim-

ilar delay spikes, autocorrelation and cross-covariance were observed in the simulated delay

traces as those in the real end-to-end delay traces we obtained from an ISP.

We also investigated the bi-objective optimization problem arising from end-to-end delay

sampling, i.e. finding a fair sampling frequency to both maximize the sampling accuracy

and minimize the sampling cost. A proportional fair solution, which equalizes the rate of

change for the two competing objectives, was proposed to solve this problem. Any deviation

from this solution would result in one side losing proportionally more than the other side

gained.

7.2 R-factor based diverse routing: a centralized approach

Based on the analysis of end-to-end delay characteristics, we suggested a routing method

that maximizes R-factor for VoIP by jointly considering routing and the adaptive play-out

scheduling at the receiver. The advantage of this method over previous studies is that we

adapted the routing control to provide paths with low mouth-to-ear delay and loss instead

of just low network delay and loss, as in other research. Using this method, improved VoIP

quality in terms of R-factor was observed in simulations.

This method requires transmitting delay distributions of all the overlay links to a central

node for estimating the delay distributions of diverse paths. We proposed to transmit only

the model parameters of the link delay distributions to reduce the communication overhead,

and demonstrated that the selected diverse paths based on these model parameters provide

comparable VoIP quality as that of the real best diverse paths.

7.3 Learning minimum delay paths and diverse paths: a

distributed approach

The centralized method is useful primarily for small scale overlay networks. For large-scale

overlay networks, we developed a scalable distributed approach to adaptively learn the min-

imum delay paths and the best pair of diverse paths. The minimum delay paths are learned

7 Conclusion 147

with active probing and learning automata. We presented four variations of active probing

and learning methods, i.e. hop-by-hop learning with uniform or geographical-location-

aware initialization and end-to-end learning with uniform or geographical-location-aware

initialization. Simulations on these schemes showed that hop-by-hop learning converges

faster to the minimum delay paths than end-to-end learning. For uniform initialization,

when the learning gain of the learning algorithm is sufficiently small, the minimum delay

paths are learned; while with geographical-location-aware initialization, there is no random

loops on the probing paths from the beginning of learning. We have also demonstrated,

by simulations, the scalability and the optimality of the approach. Convergence to the

minimum delay paths was proved using Kushner’s weak convergence method.

We also applied the active probing and learning algorithm to learn a pair of diverse

paths for VoIP routing. This is a distributed approach since VoIP routing decisions were

made locally at each overlay node based on the state of the learning automata. VoIP quality

was shown to improve from unsatisfactory levels to satisfactory levels. A much more stable

performance with diverse routing was also observed compared to that seen on a single path.

Finally, we proposed a novel link failure detection and recovery scheme based on the

changes of the parameters of learning automata. In this respect, simulation results have

shown considerable improvement in link failure recovery time.

7.4 Remarks and future work

Quality of Service routing for VoIP investigated in this work allows VoIP applications to

take advantage of network measurements to obtain better quality. To achieve “high” or

“best” VoIP quality, we recommend the centralized routing method proposed in Chapter 4

for small-scale service overlay networks. When the network size is large, we recommend

the distributed diverse routing method investigated in Chapter 6 if bandwidth is not a

concern; otherwise, the primary path routing with the link failure detection method can

perform similarly well when bandwidth is a concern.

In fact, the proposed methods in this thesis are not limited to the service overlay net-

works although the thesis work is conducted in the context of service overlay networks.

The insights gained here regarding end-to-end delay characteristics, the solution to the bi-

objective optimization problems in end-to-end delay sampling, the consideration of adaptive

play-out scheduling in the centralized R-factor-based diverse routing problem, active prob-

7 Conclusion 148

ing and learning, online distributed diverse routing and link failure detection and recovery

approaches can all be applied to solve problems in other types of networks. In future

work, we would like to explore these potential applications. For example, we can inves-

tigate how the active probing and learning based routing method can be applied to find

bandwidth-optimal paths for video-streaming services. In that case, the feedback to the

learning automata would be bandwidth estimation of different paths. Another interesting

problem to study is how a strategic overlay network design, e.g. overlay node selection, can

affect the performance of the diverse routing. This is because the bandwidth, delay, loss

and failure probability of the overlay links are determined by the choice of overlay nodes

for a full-mesh overlay network. We would expect that an optimal overlay network design

changes with time since network traffic varies with time in a low frequency. The method

for finding a fair operation point for the bi-objective optimization problem can also be ex-

tended to solve other multi-objective optimization problems. The diverse routing methods

and link failure detection method have been shown to provide better resiliency than single

path routing methods for failure-prone networks. It is thus also interesting to investigate

the performance of these methods in wireless networks.

149

Appendix A

A.1 ODE approximation of the cross-correlation learning

algorithm

In this section, we prove the cross-correlation learning algorithm weakly converges to an

Ordinary Differential Equation (ODE) with Kushner’s method [30] following the proof in

Vázquez-Abad and Mason’s work [114,115].

For each automaton with source-destination pair (S,D), τ
(S,D)
k is the epoch of the kth local

update. πDS is the state probability vector of the automaton. Then the cross-correlation

learning automata can be expressed as πDS (k+1, g) = πDS (k, g)+gXg
k , where g is the learning

gain, Xg
k = (δiu − πki (k, g))s(u, k), action u is a random action drawn from πDS (k, g) and

s(u, k) is the network reward for action u.

We sort the epoch of the updates at all learning automata in the network, and let τk

be the epoch of the kth global update. Let k be the kth global update epoch. We define θ

as the vector of all πDS ,∀S,D, then θgk+1 = θgk + gY g
k . Y g

k depends on the feedback function.

This process can be embedded in a Markov decision process (MDP) (θgk, ξ
g
k). The state ξgk

is the vector of queue lengths and local information at time τk.

Let G(θ, ξ) = E(Y g
k |θ

g
k = θ, ξgk = ξ). The σ-algebra related to the MDP up to the kth

update will be denoted by Fgk . By the Markovian property, G(θ, ξ) = E(Y g
k |F

g
k), which is

a random variable depending on the distribution of (θgk, ξ
g
k).

In our problem, the fixed control process ξ(θ) is Markovian with transition probability

P(dx, x) = P(ξk+1(θ) ∈ x + dx|ξk(θ) = x), which is weakly continuous in θ. The network

is stable for every possible θ since the probing traffic is negligible, and even if it is not

negligible, the finite buffer network guarantees the network is stable for every possible

2009/11/11

A Some properties related to the active learning scheme 150

value of θ.

Let µθ(dx) be the invariant measure of the fixed control process and

g(θ) =

∫
µθ(dξ)G(θ, ξ)

= lim
m→∞

1

m

m−1∑
k=0

E(G(θ, ξk(θ)))

= lim
m→∞

1

m

m−1∑
k=0

Eξ(EY g
k

(Y g
k |θ

g
k = θ, ξgk(θ) = ξ))

The random variables Y g
k are uniformly integrable, since they are uniformly bounded by

construction of the feedback function. Furthermore, the sequence {(θgk, ξ
g
k), k ≥ 0, g > 0} is

tight. That is, for every α > 0, there exists a compact set Kα such that supg,k P((θgk, ξ
g
k) /∈

Kα) < α. This follows because θgk are probability vectors and ξgk are uniformly tight: queue

sizes are all bounded by the buffer size. Tightness is the stochastic analog of compactness.

Define the control interpolation process: θg(t) = θgk for t ∈ [kg, (k+1)g]. From this definition

and the stochastic approximation form, for t = gk, we have: θg(t+g)−θg(t)
g

= Y g
k , and the

conditional expected behavior of Y g
k is related to E{ θ

g(t+g)−θg(t)
g

|Fgk} = G(θg(t), ξgk). From

Vázquez-Abad et.al [114] proposition 1, it follows that every subsequence of θg(·) as g → 0

has a further weakly convergent subsequence and all weak limits are Lipshitz continuous

a.s. All the assumptions of Kushner and Vázquez-Abad et.al [30] are satisfied, therefore,

any such limit satisfies the ODE dθ(t)
dt

= g(θ(t)). If the ODE has a unique solution for

each initial condition, the limit does not depend on the subsequence and therefore θg(·)
converges to θ(·). As θ is a vector of all the control parameters πDSj,∀S, j,D,

g(θ) = lim
m→∞

1

m

m−1∑
k=0

EξEY g
k

(Y g
k |θ

g
k = θ, ξgk(θ) = ξ) (A.1)

is also a vector. Let the control parameter corresponding to πDSj(k, g) and πDS (k, g) be

θDSj and θDS , respectively. Denote the expected reward strength and the expected delay

of sending a probe from S to D through j as sDSj and ∆D
Sj, respectively. Supposing θd(t)

represent the routing pattern for destination d, we have θ(t) = {θ1(t), ..., θN(t)}. For an

element of g(θ), it can be shown that for the cross-correlation learning algorithm,

A Some properties related to the active learning scheme 151

g(θDSj)(t) = lim
m→∞

1

m

m−1∑
k=0

Eξ(EY g
k

(Y g
k |θ

D
Sj(k, g) = θDSj(t), ξ

g
k(θ) = ξ))

= Qj(θ(t))
(
λDS θ

D
Sj(t)s

D
Sj − θDSj(t)

∑
u

sDSuλ
D
u θ

D
Su(t))

)
= Qj(θ(t))λ

D
S

(
θDSj(t)(1−

∆D
Sj(t)

dmax
)− θDSj(t)

∑
u

(1− ∆D
Su(t)

dmax
)θDSu(t)

)
= −

Qj(θ(t))λ
D
S θ

D
Sj(t)

dmax

(
∆D
Sj(t)−

∑
u

θDSu(t)∆
D
Su(t)

)
(A.2)

where λDS refers to the probing rate from source S to destination D. Qj(θ(t))λ
D
S is the

parameter update rate for θDSj(t), which can be computed as the probing packet arrival rate

γDS according to (5.13).

A.2 Learning gain

Paper [110] points out that the learning gain of the cross-correlation learning algorithm

must be sufficiently small for the learning automata to converge. However, it is not clear

how small the learning gain should be used in practice. For the cross-correlation learning

algorithm, we can derive an ordinary differential equation (ODE) that approximates the

behavior of the algorithm. Then the solution to the ODE implies the performance of the

algorithm when it converges.

The general framework for such an ODE approximation is [109]: given a learning al-

gorithm of the form θgk+1 = θgk + gG(θgk, ξ
g
k), θ

g
0 = θ0, where θgk+1 ∈ <N is the state vector

and ξgk ∈ <N
′

is the noise vector, G(·, ·) is a function that maps <N × <N ′ to <N . The

approximating ODE for this algorithm is dz
dt

= g(z), with z(0) = θ0. It is proven in [109]

that for any initial condition x0 and any given finite T , ε, δ > 0, there exists a g∗ > 0 such

that for all 0 < g ≤ g∗, the probability that the maximum difference between the value of

the learning algorithm θgk and that of the ODE z(kg) is greater than ε is less than δ, i.e.,

Prob{sup0≤k≤T
g
‖πDSj(k)− z(kg)‖ ≥ ε} ≤ δ, (A.3)

In page 234 of [109], g∗ can be set as δε2

K3T
, where K3 satisfies kK3 ≥ (k + 1)η and η is the

A Some properties related to the active learning scheme 152

maximum of E{‖G(θgk, ξ
g
k)− g(θgk)‖2}.

Hence, if we can derive η for the cross-correlation learning algorithm, we can find the

appropriate learning gain g ≤ δε2

K3T
to guarantee ε-optimality. Derivation of η, which requires

analyzing the dynamics of a Markov decision process, is left for future work. One intuition

is that the more variant the network performance is, the higher η will be, and the smaller

g∗ = kδε2

(k+1)Tη
should be.

A.3 Some properties of the random paths determined by

learning automata

Lemma A.3.1. For a full mesh service overlay network with m overlay nodes, at the

beginning of active probing with the uniform initialization, the probability of there being at

least a random loop is 1−
∑m−1

k=1

Pk−1
m−2

(m−1)k , where Pk−1
m−2 = (m−2)!

(k−1)!
.

Proof. Let event Ak, k = 1, ...,m − 1, be there is no loop in k hops. Let event Bk, k =

1, ...,m− 1, be the total number of hops from source to destination is k. Then we have:

Pr{Ak} =
Pk−1
m−2

(m− 2)k−1
(A.4)

Pr{Bk} =
(m− 2)k−1

(m− 1)k
, k = 1, ...,m− 1 (A.5)

Pr{there is no loop} =
m−1∑
k=1

Pr{Ak}Pr{Bk} =
m−1∑
k=1

Pk−1
m−2

(m− 1)k
(A.6)

Pr{there is at least a loop} = 1− Pr{there is no loop} = 1−
m−1∑
k=1

Pk−1
m−2

(m− 1)k
(A.7)

For example when m=3, the probability of at least a loop in a random path is 0.25;

when m=5, the probability of at least a loop is 0.5117; when m=10, the probability is

0.7419. It shows that the more nodes in the network, the higher probability there is a loop

in the random path, which is also true by intuition.

Lemma A.3.2. For a mesh network with m nodes, m ≥ 3, let the number of hops from

a source node i to a destination node d, d 6= i, be N . At the beginning of the probing

A Some properties related to the active learning scheme 153

with the uniform initialization, the expectation of N is m − 1, and the variance of N is

(m− 1)2 − (m− 1). The probability of N being over (k + 1)(m− 1) is less than 1
k2 .

Proof.

Pr{N = n} =
(m− 2)n−1

(m− 1)n
, n = 1, ...,∞

E{N} =
∞∑
n=1

Pr{N = n} · n = m− 1

E{N2} =
∞∑
n=1

Pr{N = n} · n2

= 2(m− 1)2 − (m− 1)

Var{N} = E{N2} − E{N}2 (A.8)

= (m− 1)2 − (m− 1)

By Chebyshev inequality, we know Pr{|N − E{N}| > k
√
V ar{N}} ≤ 1

k2 ,

i.e. Pr{N > (m− 1) + k
√

(m− 1)(m− 2)} ≤ 1
k2 .

Therefore, Pr{N > (k + 1)(m − 1)} ≤ 1
k2 . For example, if k = 10, Pr{N > 11(m − 1)} ≤

0.01.

Further, given the queuing delay probability on one link

Pr{Any one hop delay > x} < h(x), we can find the end-to-end delay probability

Pr{End − to − end delay > (k + 1)(m − 1)x} ≤ 1
k2h(x). This result is useful since we

need to set an appropriate maximum Round Trip Time (RTT) in computing the reward

strength in Eq. (5.3). For example, if the tolerable error for the maximum RTT estimation

is ε and h(x) = 0.01, i.e. Pr{End − to − end delay > (k + 1)(m − 1)x} ≤ 1
k2h(x) = ε,

then k =
√

h(x)
ε

. Let h−1(·) be the inverse of h(·). The maximum RTT can be set as

2(
√

δ(x)
ε

+ 1)(m− 1)x.

154

Appendix B

Table B.1 Nodes in the 50-node AT&T backbone network in Fig. 3.11

City latitude (n) longitude (w) Population
Seattle, WA 47.616665 122.35 582454
Portland, OR 45.533333 122.65 537081
San Francisco, CA 38 122.55 744041
Oakland, CA 37.8044 122.2697 397067
Santa Clara, CA 37.35 121.96667 1731281
Sacramento, CA 38.5817 121.4933 1374724
los angeles,CA 34.1 118.4 9948081
Anaheim,CA 33.8353 117.9136 334425
San Diego, CA 32.8 117.13333 2941454
Spokane, WA 47.666668 117.4 446706
Las Vegas, NV 36.2 115.21667 552539
Salt Lake City, UT 40.766666 111.916664 178858
Phoenix, AZ 33.533333 112.066666 1512986
Tucson, AZ 32.2217 110.9258 518956
Denver, CO 39.766666 104.86667 566974
Colorado Springs, CO 38.85 104.75 372437
Dallas, TX 32.783333 96.75 2345815
Fort Worth, TX 32.7253 97.3206 653320
Austin, TX 30.3 97.75 26407
San Antonio, TX 29.45 98.5 1296682
Houston, TX 29.766666 95.38333 23044
Oklahoma City, OK 35.4675 97.5161 537734
Tulsa, OK 36.1539 95.9925 577795
Omaha, NE 41.2586 95.9375 419545

B Nodes in the 50-node model of AT&T backbone network 155

City latitude (n) longitude (w) Population
Kansas City, MO 39.116665 94.55 447306
St. Louis, MO 38.633335 90.23333 1000510
Springfield, MO 37.2153 93.2981 150797
Little Rock, AR 34.7464 92.2894 184422
Memphis, TN 35.1494 90.0489 670902
Louisville, KY 38.2542 85.7594 554496
Bridgeton, MO 38.7535 90.4162 15173
Des Moines, IA 41.6006 93.6089 40885
Minneapolis, MN 44.98 93.2636 372833
St. Paul, MN 44.9444 93.0931 273535
Chicago, IL 41.85 87.65 2833321
Galva, IL 41.1648 90.0437 2676
Champaign, IL 40.1164 88.2433 185682
Indianapolis, IN 39.7683 86.1581 785597
New Orleans, LA 30.05 89.916664 223388
South Bend, IN 41.6833 86.25 104905
Grand Rapids, MI 42.9633 85.6681 193083
Milwaukee, WI 43.05 87.96667 915097
Madison, WI 43.0731 89.4011 223389
Atlanta, GA 33.75 84.416664 486411
Birmingham, AL 33.5206 86.8025 229424
Nashville, TN 36.1658 86.7844 552120
Orlando, FL 28.5381 81.3794 220186
Jacksonville, FL 30.333334 81.65 794555
Tampa, FL 27.95 82.46667 332888
Fort Lauderdale, FL 26.133333 80.13333 185804
Miami, FL 25.7739 80.1939 404048
West Palm Beach, FL 26.715 80.0536 98774
Columbia, SC 34.033333 80.88333 119961
Raleigh, NC 35.816666 78.65 356321
Charlotte, NC 35.2269 80.8433 630478
Detroit, MI 42.366665 83.1 871121
Cincinnati, OH 39.1619 84.457 332252
Cleveland, OH 41.4994 81.6956 444313
Dayton, OH 39.766666 84.183334 156771
Plymouth, MI 42.3711 83.4861 9037
Brookhaven, MI– Traverse city 44.7333 85.5525 14407
Washington DC 38.9 77 581530

B Nodes in the 50-node model of AT&T backbone network 156

City latitude (n) longitude (w) Population
Arlington, VA 38.8864 77.0946 199776
Abingdon, VA 36.7097 81.9775 7933
Dunwoody, GA 33.946 84.334 32808
Greensboro, NC 36.0725 79.7922 236865
Norfolk, VA 36.916668 76.23333 229112
Baltimore, MD 39.3 76.6 787384
Pittsburgh, PA 40.4406 79.9961 312819
Akron, OH 41.0814 81.5192 209704
Harrisburg, PA 40.2736 76.8847 47164
Philadelphia, PA 40 75.13333 1448394
Wayne, PA 40.0439 75.3881 50929
Camden, NJ 39.9258 75.12 517001
New York, NY 40.7142 74.0064 8214426
Rochelle Park, NJ 40.9066 74.0784 5528
Newark, NJ 40.7356 74.1728 281402
Cedar Knolls, NJ 40.823 74.4523 3882
Richmond, VA 40.516666 74.21667 9142
New Brunswick, NJ 40.4861 74.4522 50172
Hamilton Square, NJ 40.2272 74.6536 26419
Freehold, NJ 40.2418 74.2768 11394
Bohemia, NY 40.7689 73.1108 9871
White Plains, NY 41.0339 73.7633 57081
Stamford, CT 41.083332 73.55 119261
Bridgeport, CT 41.1669 73.2053 137912
Hartford, CT 41.7636 72.6856 876927
Albany, NY 42.6525 73.7567 297556
Syracuse, NY 43.0481 76.1478 140658
Rochester, NY 43.166668 77.6 1611581
Buffalo, NY 42.8864 78.8786 276059
Cambridge, MA 42.375 71.1061 101365
Framingham, MA 42.3 71.433334 66910
Worcester, MA 42.266666 71.8 784992
Providence, RI 41.8239 71.4133 635596

157

Appendix C

End-to-end delay synthesis

Based on the analysis in Section 3.2, we attempt to synthesize network delay traces for trace

based simulations in our preliminary research on VoIP QoS routing. A related work on

delay synthesis is SS-SVM [118], which is a non-parametric method for generating network

delays. [118] claims that the synthetic delay trace generated by SS-SVM is statistically

similar to the real trace in terms of the marginal probability distribution of the real delays.

Papers [82,119] investigate simulating Internet delay space by modeling the Internet delay

space. However, the previous work [82, 118, 119] cannot synthesize delay traces given only

the mean delays, which is the problem we need to solve, i.e. we need to synthesize delay

traces with the second set of data (mean delays) obtained from the ISP mentioned in

Section 3.2. Therefore, we developed a parametric model of the end-to-end network delay

based on the analysis discussed in Section 3.2 to synthesize delay traces. As a result, given

the sample mean, we estimate the standard deviation and the minimum delay of a network

delay trace, then we estimate the parameters and synthesize new delay traces with the

parametric model.

As mentioned in Section 3.2, shifted Gamma distribution gives a good fit to the real

delay measurements in the ISP aforementioned. From the same ISP, we obtained a second

set of raw measurement data which are 6660 sample mean values (of each 100 RTT mea-

surements) for 154 links (whose end nodes are located in the USA, China, Korea, Japan,

Singapore and Malaysia). In order to synthesize a network delay trace that is statistically

similar to the original network delay trace based on these 6660 sample mean values, we

first estimate the parameters of the shifted Gamma distribution, and rewrite the problem

C End-to-end delay synthesis 158

in a formal way as: reconstruct a stationary and ergodic random sequence {X1, X2, ..., XM}
from the sample mean X̄, where Xi, i = 1, ...,M , are independently and identically dis-

tributed with shifted Gamma distribution with parameters θ, γ, β. To estimate the param-

eters θ, γ, β, we can first estimate the sample standard deviation S and minimum delay D

from X̄. Admittedly, this is an under-constrained problem, but we can infer S and D from

X̄ based on the analysis in Section 3.2, and then estimate the parameters θ, γ, β from X̄, S

and D. First, since we cannot linearly estimate the minimum delay D from the geographical

distance of an overlay link, the minimum delay D can be estimated as the minimum of the

sample means in the night and at dawn. Let the estimator of S be Ŝ. Given the sample

mean X̄, the best estimator of the sample standard deviation Ŝ = E{S|X̄}, which is the

minimum mean square estimate. It is therefore possible to determine the conditional dis-

tribution Pr{S|X̄} from the real delay measurements of the first set of raw data. However,

the learned conditional distribution Pr{S|X̄} is inapplicable when a X̄ value in the second

set of raw data does not occur in the training data. An alternative is to linearly estimate

the sample standard deviation S from the sample mean X̄ since they have shown strong

correlation for most links as seen in Section C. We synthesize Ŝ by Ŝ = α(x̄−D)+k+ω, in

which the parameter α is tuned to be mostly constant and to vary with x̄−D for outliers

shown in Fig. 3.2, and ω is a very small Gaussian noise to add perturbation to the linear

function (refer to the linear fitting in Fig. 3.2). With Ŝ, x̄ and D, we can estimate the

parameters of a shifted Gamma distribution as follows:

θ̂ = D

γ̂ =
(x̄−D)2

Ŝ2
(C.1)

β̂ =
Ŝ2

x̄−D

We can then generate end-to-end delay traces with the shifted Gamma distribution with

the parameters θ̂, γ̂, β̂. As we only know the mean delays, the parameters estimated from the

mean delays cannot be very accurate, but the key to the delay synthesis here is to provide

spiky delay traces for QoS routing research. Fig. C.1 is an example of the synthetic network

delay trace, which is visually similar to the real measured trace in that it also contains delay

C End-to-end delay synthesis 159

Fig. C.1 Real delays vs. synthetic delays (4000 samples). The synthetic
delay trace is visually similar to the real delay trace in that it also contains
delay spikes, and therefore can be used in our preliminary research for evalu-
ating QoS routing mechanisms. The KL-divergence and the L1 norm of the
difference between the marginal distributions of the real and synthetic delays
are 0.2845 and 0.4374, respectively.

spikes1, and therefore can be used in our preliminary research for evaluating QoS routing

mechanisms. The KL-divergence and the L1 norm of the difference between the marginal

distributions of the real and the synthetic delays are 0.2845 and 0.4374, respectively. The

difference in the two delay traces of Fig. C.1 and the KL-divergence measure shows that

the method based on the linear estimation is hard to accurately reconstruct the delay trace

provided that we only store the sample means of that delay trace. This is a difficult and

open problem that could be addressed in future studies.

1It is important to synthesize delay spikes because delay spikes can significantly degrade VoIP quality.

160

Appendix D

Analytical end-to-end delay

computation for VoIP SONS

Let the number of nodes in the underlying physical network be n and the underlying

background traffic demand be f = [fi], which is a 1-by-n(n− 1) vector, with fi denoting

the traffic demand for the ith source-destination pair in the underlying physical network.

Suppose the number of physical links in the underlying router-level network is k. U is an

n(n − 1)-by-k matrix, where Uij = 1 if a physical link j is on the shortest hop path for a

source-destination pair i in the underlying physical network; otherwise Uij = 0. Then the

vector e = f · U represents the background traffic on each physical link.

Suppose call arrival of each user is a Poisson process with arrival rate λ, and the call

departure rate is µ. If there are a maximum of N users, and if the number of inactive

users at a time instant is K, the total call arrival rate at that time instant is then Kλ,

and the total call departure rate is (N − K)µ. Then the number of on-going calls for a

source-destination pair forms a birth-death process. The voice traffic demand for all source-

destination pairs in the overlay network is denoted by a 1-by-m(m − 1) vector Λ = [Λi],

with Λi representing the voice demand for the ith source-destination overlay node pair.

Let Q = [Qij] be an m(m − 1)-by-k matrix, with Qij = 1 if the jth physical link is on

the ith overlay link, otherwise, Qij = 0.

Then, given Λ, Π1 and Q, the nodal voice traffic at each node for destination v is a

m-by-1 vector γ(v) = (I − Π(v))−1Λv. Given Γ = [γ(v)], the voice traffic on all the physical

1It is defined in Section ??

D Analytical end-to-end Delay computation for VoIP SONs 161

links can be computed. Let it be denoted as b.

The traffic on all the physical links is then a vector f = b + e. Denote physical link

delay as a function of link load f and capacity c, i.e. d(f, c), which is a k-by-1 vector. Then

the overlay link delay in the overlay network is L = Q · d(f, c), which is a m(m − 1)-by-1

vector. Convert L to an m-by-m matrix A with the rows and columns representing source

and destination respectively and A = [A(v)]. For destination v, the overlay path delay from

all source nodes to destination v is D(v) = (I − Π(v))−1A(v), v = 1, ...,m. Then D = [D(v)]

is the end-to-end delay matrix of the overlay network.

162

References

[1] “FCC.” http://www.fcc.gov/voip/.

[2] “TeleGeoGraphy.” http://www.telegeography.com.

[3] “The E-Model, a computational model for use in transmission planning,” ITU-T Rec-
ommendation G.107, Mar. 2003.

[4] “Cisco.” http://www.cisco.com/.

[5] “Specifications for the network voice protocol (NVP),” IETF RFC 741, Jan. 1976.

[6] “Vocaltec Inc.” http://www.vocaltec.com.

[7] “Resource reservation protocol (RSVP),” IETF RFC 2205, Sep. 1997.

[8] “Integrated services in the Internet architecture: an overview,” IETF RFC 1633, Jun.
1994.

[9] “An architecture for differentiated services,” IETF RFC 2475, Dec. 1998.

[10] G. R. Ash,“Performance evaluation of QoS-routing methods for IP-based multiservice
networks,” Computer Communications, vol. 26, pp. 817–833, May 2003.

[11] F. Tobagi, “Voice over IP: the challenges behind the vision,” in Proc. Asilomar Con-
ference on Signals, Systems and Computers, vol. 1, (Monterey , USA), pp. 410–414,
Nov. 2004.

[12] R. K. Rajendran, S. Ganguly, R. Izmailov, and D. Rubenstein, “Performance op-
timization of VoIP using an overlay network,” in Proc. IEEE Infocom, (Barcelona,
Spain), Apr. 2006.

[13] Y. Amir, C. Danilov, S. Goose, D. Hedqvist, and A. Terzis, “1-800-OVERLAYS: using
overlay networks to improve VoIP quality,” in Proc. NOSSDAV, (Skamania, USA),
pp. 51–56, Jun. 2005.

References 163

[14] Y. Amir, C. Danilov, S. Goose, D. Hedqvist, and A. Terzis, “An overlay architecture
for high-quality VoIP streams,” IEEE Trans. Multimedia, vol. 8, pp. 1250–1262, Dec.
2006.

[15] P. Frossard, J. de Martin, and M. R. Civanlar, “Media streaming with network diver-
sity,” Proc. the IEEE, vol. 96, pp. 39–53, Jan. 2008.

[16] M. Ghanassi and P. Kabal, “Optimizing Voice-over-IP speech quality using path di-
versity,” in Proc. IEEE MMSP, (Victoria, Canada), pp. 155–160, Oct. 2006.

[17] W. Cui, I. Stoica, and R. Katz,“Backup path allocation based on a correlated link fail-
ure probability model in overlay networks,” in Proc. ICNP, (Paris, France), pp. 236–
245, Nov. 2002.

[18] “Internet assigned numbers authority (IANA).”http://www.iana.org/assignments/as-
numbers/.

[19] M. Coates, A. Hero, R. Nowak, and B. Yu, “Internet tomography,” IEEE Signal
Processing Magazine, vol. 19, pp. 47–65, May 2002.

[20] N. G. Duffield and F. L. Presti, “Network tomography from measured end-to-end
delay covariance,” IEEE/ACM Trans. Netw., vol. 12, pp. 978–992, Dec. 2004.

[21] M. Coates, Y. Pointurier, and M. Rabbat, “Compressed network monitoring for IP
and all-optical networks,” in Proc. IMC, (San Diego, USA), pp. 241–252, Oct. 2007.

[22] H. H. Song, L. Qiu, and Y. Zhang, “Netquest: a flexible framework for large-scale
network measurement,” IEEE/ACM Trans. Netw., vol. 17, pp. 106–119, Feb. 2009.

[23] G. Wang, B. Zhang, and T. S. E. Ng, “Towards network triangle inequality violation
aware distributed systems,” in Proc. IMC, (San Diego, USA), pp. 175–188, Oct. 2007.

[24] V. S. Borkar and P. R. Kumar, “Dynamic cesaro-wardrop equilibration in networks,”
IEEE Trans. Autom. Control, vol. 48, pp. 382–396, Mar. 2003.

[25] V. Raghunathan and P. R. Kumar, “On delay-adaptive routing in wireless networks,”
in Proc. IEEE CDC, vol. 5, pp. 4661–4666, Dec. 2004.

[26] P. Gupta and P. R. Kumar, “A system and traffic dependent adaptive routing algo-
rithm for ad hoc networks,” in Proc. IEEE CDC, vol. 3, pp. 2375–2380, Dec. 1997.

[27] J. A. Boyan and M. L. Littman, “Packet routing in dynamically changing networks:
A reinforcement learning approach,” in Proc. NIPS 6, (Denver, USA), pp. 671–678,
Dec. 1994.

References 164

[28] S. P. M. Choi and D. Yeung, “Predictive q-routing: A memory-based reinforcement
learning approach to adaptive traffic control,” in Proc. NIPS 8, (Denver, USA),
pp. 945–951, Dec. 1996.

[29] M. N. Ellanti, S. S. Gorshe, L. G. Raman, and W. D. Grover, Next Generation
Transport Networks: Data, Management, and Control Planes. Springer, Apr. 2005.

[30] H. J. Kushner and F. J. Vazquez-Abad, “Stochastic approximation methods for sys-
tems over an infinitehorizon,” SIAM J. Control Optim., vol. 34, pp. 712–756, Mar.
1996.

[31] H. Xie and Y. R. Yang, “A measurement-based study of the Skype peer-to-peer VoIP
performance,” in Proc. IPTPS, (Bellevue, USA), Feb. 2007.

[32] R. Ramjee, J. Kurose, D. Towsley, and H. Schulzrinne, “Adaptive playout mechanisms
for packetized audio applications in wide-area networks,” in Proc. IEEE Infocom,
(Toronto, Canada), pp. 680–688, Jun. 1994.

[33] “OSPF version 2,” IETF RFC 2328, Apr. 1998.

[34] “A border gateway protocol 4 (BGP-4),” IETF RFC 1771, Mar. 1995.

[35] S. Savage, A. Collins, E. Hoffman, J. Snell, and T. Anderson, “The end-to-end ef-
fects of Internet path selection,” SIGCOMM Comput. Commun. Rev., vol. 29, no. 4,
pp. 289–299, 1999.

[36] M. Dahlin, B. B. V. Chandra, L. Gao, and A. Nayate, “End-to-end WAN service
availability,” IEEE/ACM Trans. Netw., vol. 11, pp. 300–313, Apr. 2003.

[37] A. Markopoulou, F. Tobagi, and M. Karam,“Loss and delay measurements of Internet
backbones,” Computer Communications, vol. 29, pp. 1590–1604, Jun. 2006.

[38] C. Labovitz, G. R. Malan, and F. Jahanian,“Internet routing instability,” IEEE/ACM
Trans. Netw., vol. 6, pp. 515–528, Oct. 1998.

[39] C. Labovitz, A. Ahuja, A. Bose, and F. Jahanian, “Delayed Internet routing conver-
gence,” IEEE/ACM Trans. Netw., vol. 9, pp. 293–306, Jun. 2001.

[40] D. G. Andersen, A. C. Snoeren, and H. Balakrishnan, “Best-path vs. multi-path
overlay routing,” in Proc. IMC, (Miami, USA), pp. 91–100, Oct. 2003.

[41] Y. Zhang and N. Duffield, “On the constancy of internet path properties,” in Proc.
ACM IMW, (San Francisco, USA), pp. 197–211, Nov. 2001.

References 165

[42] G. Iannaccone, C. nee Chuah, R. Mortier, S. Bhattacharyya, and C. Diot, “Analysis
of link failures in an IP backbone,” in Proc. ACM IMW, (Marseille, France), pp. 237–
242, Nov. 2002.

[43] A. Markopoulou, G. Iannaccone, S. Bhattacharyya, C.-N. Chuah, Y. Ganjali, and
C. Diot, “Characterization of failures in an IP backbone,” IEEE/ACM Trans. Netw.,
vol. 16, pp. 749–762, Aug. 2008.

[44] C. Labovitz, A. Ahuja, and F. Jahanian, “Experimental study of Internet stability
and backbone failures,” in Proc. FTCS, (Madison, USA), pp. 278–285, Jun. 1999.

[45] V. Hilt, A. Hari, and M. Hofmann, “An efficient and robust overlay routing scheme
for VoIP,” in Proc. ICICS, (Bangkok, Thailand), pp. 508–512, Dec. 2005.

[46] S. Tao, K. Xu, A. Estepa, T. Gao, R. Guerin, J. Kurose, D. Towsley, and Z. L.
Zhang, “Improving VoIP quality through path switching,” in Proc. IEEE Infocom,
vol. 4, (Miami, USA), pp. 2268–2278, Mar. 2005.

[47] H. Li and L. Mason, “Optimal multipath routing with adaptive playback scheduling
for VoIP in service overlay networks,” in IEEE Sarnoff Symposium, (Princeton, USA),
pp. 1–5, Apr. 2008.

[48] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris, “Resilient overlay net-
works,” SIGOPS Oper. Syst. Rev., vol. 35, no. 5, pp. 131–145, 2001.

[49] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and R. Morris, “The case for
resilient overlay networks,” in Proc. HotOS, (Elmau, Germany), pp. 152–157, May
2001.

[50] E. Orozco, S. Villette, and A. Kondoz, “Multiple description coding for Voice-over-IP
using sinusoidal speech coding,” vol. 1, pp. I–9–I–12, May 2006.

[51] T. Nguyen and A. Zakhor, “Path diversity with forward error correction system for
packet switched networks,” in Proc. IEEE Infocom, (San Francisco, USA), pp. 663–
672, Mar. 2003.

[52] R. Bhandari, Survivable networks: Algorithms for Diverse Routing. Springer, Jan.
1999.

[53] G. Li, D. Wang, C. Kalmanek, and R. Doverspike, “Efficient distributed path selection
for shared restoration connections,” in Proc. IEEE Infocom, vol. 1, (New York, USA),
pp. 140–149, Jun. 2002.

References 166

[54] Y. Liu, D. Tipper, and P. Siripongwutikorn, “Approximating optimal spare capac-
ity allocation by successive survivable routing,” IEEE/ACM Trans. Netw., vol. 13,
pp. 198–211, Feb. 2005.

[55] Z. Ma, H.-R. Shao, and C. Shen,“A new multi-path selection scheme for video stream-
ing on overlay networks,” vol. 3, pp. 1330–1334, Jun. 2004.

[56] T. Gomes, J. Craveirinha, and L. Jorge, “An effective algorithm for obtaining the
minimal cost pair of disjoint paths with dual arc costs,” Computers and Operations
Research, vol. 36, pp. 1670–1682, May 2009.

[57] C. L. Li, S. McCormick, and D. Simchi-Levi, “Finding disjoint paths with different
path costs: complexity and algorithms,” Networks, vol. 22, pp. 653–667, Oct. 1992.

[58] C. L. Li, S. T. McCormick, and D. Simchi-Levi, “The complexity of finding two dis-
joint paths with Min-Max objective function,” Discrete App. Math., vol. 26, pp. 105–
115, Oct. 1990.

[59] D. Xu, Y. Chen, Y. Xiong, C. Qiao, and X. He, “On finding disjoint paths in single
and dual link cost networks,” vol. 1, (Hong Kong, China), pp. 705–715, Mar. 2004.

[60] J. W. Suurballe, “Disjoint paths in a network,” Networks, vol. 4, pp. 125–145, Oct.
1974.

[61] J. W. Suurballe and R. E. Tarjan, “A quick method for finding shortest pairs of
disjoint paths,” Networks, vol. 14, pp. 325–336, Oct. 1984.

[62] F. E. Heart, R. E. Kahn, S. M. Ornstein, W. R. Crowther, and D. C. Walden, “The
interface message processor for the arpa computer network,” in Proc. AFIPS Joint
Comput. Conf., (Atlantic City, USA), pp. 551–566, May 1970.

[63] L. G. Mason, “Equilibrium flows, routing patterns and algorithms for store-and-
forward networks,” Large Scale Systems, vol. 8, no. 3, pp. 187–209, 1985.

[64] R. Gallager, “A minimum delay routing algorithm using distributed computation,”
IEEE Trans. Commun., vol. 25, pp. 73–85, Jan. 1977.

[65] S. Vutukury and J. J. Garcia-Luna-Aceves, “A simple approximation to minimum-
delay routing,” in Proc. ACM SIGCOMM, (Cambridge, USA), pp. 227–238, Aug.
1999.

[66] C. G. Cassandras, M. V. Abidi, and D. Towsley, “Distributed routing with on-line
marginal delay estimation,” IEEE Trans. Commun., vol. 38, pp. 348–359, Mar. 1990.

References 167

[67] D. P. Bertsekas, E. M. Gafni, and R. Gallager, “Second derivative algorithms for
minimum delay distributed routing in networks,” IEEE Trans. Commun., vol. 32,
pp. 911–919, Aug. 1984.

[68] T. Guven, C. Kommareddy, R. J. La, M. A. Shayman, and B. Bhattacharjee, “Mea-
surement based optimal multi-path routing,”Proc. IEEE Infocom, vol. 1, pp. 187–196,
Mar. 2004.

[69] E. Gelenbe, R. Lent, A. Montuori, and Z. Xu, “Cognitive packet networks: Qos and
performance,” in Proc. IEEE MASCOTS, (Fort Worth, USA), pp. 3–9, Oct. 2002.

[70] E. G. Ricardo, R. Lent, and Z. Xu, “Reliable networking with cognitive packets,” in
Proc. IEEE MASCOTS, (San Francisco, USA), pp. 3–12, Aug. 2000.

[71] L. Peshkin and V. Savova, “Reinforcement learning for adaptive routing,” in Proc.
IJCNN, (Hawaii, USA), pp. 1825–1830, May 2002.

[72] G. Sakellari, “The Cognitive Packet Network: A Survey,” The Computer Journal:
Special Issue on Random Neural Networks, pp. 1–12, Jun. 2009.

[73] “SIP: Session initiation protocol,” IETF RFC3261, Jun. 2002.

[74] “Packet-based multimedia communications systems,” ITU-T Recommendation H.323,
Jun. 2006.

[75] “Transmission Control Protocol,” IETF RFC 793, Sep. 1981.

[76] “User Datagram Protocol,” IETF RFC 768, Aug. 1980.

[77] A. C. Begen, Y. Altunbasak, O. Ergun, and M. A. Begen, “Real-time multiple de-
scription and layered encoded video streaming with optimal diverse routing,” in Proc.
ISCC, (Kemer, Turkey), pp. 887–892, Jun. 2003.

[78] S. Qazi and T. Moors, “Scalable resilient overlay networks using destination-guided
detouring,” Proc. ICC, pp. 428–434, Jun. 2007.

[79] J. G. Apostolopoulos and M. D. Trott, “Path diversity for enhanced media streaming,”
IEEE Communications Magazine, vol. 42, pp. 80–87, Aug. 2004.

[80] I. Norros, “On the use of fractional brownian motion in the theory of connectionless
networks,” IEEE J. Sel. Areas Commun., vol. 13, pp. 953–962, Aug. 1995.

[81] “PlanetLab.” http://www.planet-lab.org/.

References 168

[82] B. Zhang, T. S. E. Ng, A. Nandi, R. Riedi, P. Druschel, and G. Wang, “Measurement
based analysis, modeling, and synthesis of the internet delay space,” in Proc. IMC,
(Rio de Janeriro, Brazil), pp. 85–98, Oct. 2006.

[83] A. Mukherjee, “On the dynamics and significance of low frequency components of
Internet load,” Internetworking: Research and Experience, vol. 5, pp. 163–205, Dec.
1994.

[84] C. J. Bovy, H. T. Mertodimedjo, and G. Hooghiemstra, “Analysis of end-to-end delay
measurements in internet,” in Proc. Passive Active Measurement Workshop, (Fort
Collins, USA), pp. 26–33, Mar. 2002.

[85] M. C. Cario and B. L. Nelson, “Autoregressive to anything: Time-series input pro-
cesses for simulation,” Oper. Res. Lett., vol. 19, pp. 51–58, Aug. 1996.

[86] Y. Liu, F. L. Presti, V. Misra, D. F. Towsley, and Y. Gu, “Scalable fluid models and
simulations for large-scale IP networks,” ACM Trans. Model. Comput. Simul., vol. 14,
no. 3, pp. 305–324, 2004.

[87] “ns2.” http://www.isi.edu/nsnam/ns/.

[88] L. Jansen, I. Gojmerac, M. Menth, P. Reichl, and P. Tran-Gia, “An algorithmic
framework for discrete-time flow-level simulation of data networks,” in Proc. ITC20,
(Ottawa, Canada), pp. 865–877, Jun. 2007.

[89] A. Gunnar, M. Johansson, and T. Telkamp, “Traffic matrix estimation on a large IP
backbone: a comparison on real data,” in Proc. IMC, (Taormina, Italy), pp. 149–160,
Oct. 2004.

[90] W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson, “On the self-similar
nature of ethernet traffic (extended version),” IEEE/ACM Trans. Netw., vol. 2, pp. 1–
15, Feb. 1994.

[91] N. Spring, R. Mahajan, D. Wetherall, and T. Anderson, “Measuring ISP topologies
with rocketfuel,” IEEE/ACM Trans. Netw., vol. 12, pp. 2–16, Feb. 2004.

[92] G. R. Ash, Traffic Engineering and QoS Optimization of Integrated Voice & Data
Networks (Morgan Kaufmann Series in Networking (Hardcover)). Morgan Kaufmann
Publishers Inc., Oct. 2006.

[93] Y. Zhang, M. Roughan, C. Lund, and D. L. Donoho, “Estimating point-to-point and
point-to-multipoint traffic matrices: an information-theoretic approach,” IEEE/ACM
Trans. Netw., vol. 13, pp. 947–960, Oct. 2005.

[94] “US Census Bureau.” http://www.census.gov.

References 169

[95] N. G. Duffield, C. Lund, and M. Thorup, “Learn more, sample less: control of volume
and variance in network measurement,” IEEE/ACM Info. Theory, vol. 51, pp. 1756–
1775, May 2005.

[96] I. Kim and O. de Weck, “Adaptive weighted-sum method for bi-objective optimiza-
tion: Pareto front generation,” Struct Multidisc Optim, vol. 29, pp. 149–158, Sep.
2004.

[97] F. Kelly, A. Maulloo, and D. Tan, “Rate control in communication networks: shadow
prices, proportional fairness and stability,” in Journal of the Operational Research
Society, vol. 49, pp. 237–252, Mar. 1998.

[98] R. Mazumdar, L. G. Mason, and C. Douligeris, “Fairness in network optimal flow
control: Optimality of product form,” IEEE/ACM Trans. Comm., vol. 39, pp. 775–
782, May 1991.

[99] J. Y. Boudec, “Rate adaptation, congestion control and fairness: A tutorial,” Dec.
2006. http://icapeople.epfl.ch/leboudec.

[100] M. J. Osborne and A. Rubinstein, A Course in Game Theory. The MIT Press, Jul.
1994.

[101] D. Fudenberg and J. Tirole, Game Theory. The MIT Press, Aug. 1991.

[102] Y.-K. Ng, Welfare Economics: Towards a More Complete Analysis. Palgrave Macmil-
lan, Apr. 2004.

[103] P. Ray, “Independence of irrelevant alternatives,” Econometrica, vol. 41, pp. 987–991,
Sep. 1973.

[104] H. Li and L. Mason, “Synthesis of network delays for voice packets in service overlay
networks,” in Proc. IEEE/ACM Qshine, (Vancouver, Canada), Aug. 2007.

[105] Y. J. Liang, E. G. Steinbach, and B. Girod, “Real-time voice communication over
the internet using packet path diversity,” in Proc. ACM MULTIMEDIA, (Ottawa,
Canada), pp. 431–440, Sep. 2001.

[106] H. Li and L. G. Mason, “Estimation and simulation of network delay traces for VoIP
in service overlay network,” in Proc. IEEE ISSSE, (Montreal, Canada), pp. 423–425,
Jul. 2007.

[107] H. C. S. Thom, “Approximate convolution of the Gamma and mixed Gamma distri-
butions,” Monthly weather review, vol. 96, pp. 883–886, Dec. 1968.

References 170

[108] “Transmission impairments due to speech processing,” ITU-T Recommendation
G.113, Feb. 2001.

[109] M. Thathachar and P. Sastry, Networks of learning automata : techniques for online
stochastic optimization. Springer, Oct. 2003.

[110] L. G. Mason,“An optimal learning algorithm for s-model environments,” IEEE Trans.
Autom. Control, vol. 18, pp. 493–496, Oct. 1973.

[111]

[112] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms.
The MIT Press, 2 ed., Sep. 2001.

[113] J. Nocedal and S. Wright, Numerical Optimization. Springer, Apr. 2000.

[114] F. J. Vázquez-Abad, C. G. Cassandras, and V. Julka, “Centralized and decentralized
asynchronous optimization of stochastic discrete event systems,” IEEE Trans. Autom.
Control, vol. 43, pp. 631–655, May 1998.

[115] F. J. Vázquez-Abad and L. G. Mason, “Decentralized adaptive flow control of high-
speed connectionless data networks,” Operations Research, vol. 47, pp. 928–942, Jun.
1999.

[116] B. Fortz, J. Rexford, and M. Thorup, “Traffic engineering with traditional IP routing
protocols,” IEEE Communications Magazine, vol. 40, pp. 118–124, Oct. 2002.

[117] “RTP: A transport protocol for real-time applications,” IETF RFC 1889, Jan. 1996.

[118] J. Hernandez, I. Phillips, and J. Moguerza,“A SS-SVM approach to generate synthetic
network delays,” in Proc. ASMTA, (Riga, Latvia), pp. 125–131, Jun. 2005.

[119] S. Kaune, K. Pussep, C. Leng, A. Kovacevic, G. Tyson, and R. Steinmetz, “Modelling
the internet delay space based on geographical locations,” in Proc. PDP, (Weimar,
Germany), Feb. 2008.

