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Abstract

Chern-Simons theory is a field theory in 2 spatial dimensions where particles interact by a
generalized form of the Aharonov-Bohm effect. When particles circumnavigate one-another,
their quantum-mechanical wavefunctions acquire a complex phase, imbuing them with any-
onic statistics. It was recently discovered that in Chern-Simons theory crossing symmetry - a
symmetry relating processes with an incoming particle to ones with an out-going anti-particle
- takes on a modified form. In this thesis we investigate this modification by looking at 2 — 2
scattering of Bosons. We work in light-cone gauge and primarily at 1-loop in order to be able
to probe the non-planar regime as well as to compute the scattering amplitude directly in
various representations including the singlet-channel . We compute the 1-loop planar 4-point
correlator and obtain gauge-dependent terms that survive the on-shell limit. This suggests
that restoring gauge-invariance (possibly by dressing the amplitude with Wilson lines) might
lead to the modified crossing relation. We perform a 1-loop calculation away from the planar
limit. Finally, we demonstrate how the modified crossing relation is necessary to satisfy a

relation between the phase of higher-spin form factors and the phase of the S-matrix.
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La théorie de Chern-Simons décrit des particules se déplacant dans un espace bi-dimensionel
et interagissant par un effet d’Aharonov-Bohm généralisé. Quand une particule effectue une
rotation autour d’une autre, sa fonction d’onde quantique acquiert une phase complexe, at-
tribuant aux particules des statistiques dite anyoniques. Récemment, il a été découvert que
la symmétrie d’échange - une relation entre des processus impliquant deux particules, et
d’autres impliquant particule et anti-particule - existe sous une forme modifiée dans cette
théorie. Cette thése vise a clarifier cette modification en étudiant en détail 'amplitude
décrivant les collisions 2 — 2 entre Bosons. Des calculs sont effectués dans une jauge axiale-
nulle, et surtout a 'ordre de une boucle, afin d’explorer le régime non-planaire et calculer
directement ’amplitude dans diverse représentations incluant la représentation triviale. La
fonction de correlation est aussi étudiée pour des impulsions génériques (hors de la couche de
masse) et il est démontré qu’'un terme dépendant de jauge survit dans la limite de la couche
de masse. Cela démontre que dans cette théorie, une définition plus précise de 'amplitude
sera nécessaire pour restaurer son invariance de jauge (possiblement en incluant des lignes de
Wilson), et suggére une origine microscopique de la modification de la symmétrie d’échange.
On effectue aussi le calcul a une boucle hors de la limite planaire. Finalement, on montre
que la modification proposée est compatible avec une identité reliant la phase de 'amplitude

de diffusion et la phase de facteurs de forme.
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1. Preface 1

1 Preface

Chern-Simons theory is a 241 dimensional field theory that describes a “gauge field” - a
field analogous to the familiar electromagnetic field - and its interactions with other matter
particles. While the electromagnetic field in Maxwell’s theory propagates (in the form of
photons) between charged matter particles such as electrons , thereby mediating the exchange
of momentum (force) between them, the Chern-Simons field is unable to propagate through
space. Instead, it “sticks” to charged particles. Particles then interact when they come into
contact with one another (and therefore with the Chern-Simons field carried by one another)
or through the Aharonov-Bohm effect [1| at a distance. This latter - purely quantum
mechanical - effect is present also in EM (electro-magnetism) and describes the interaction
of a charged particle with a narrow tube of electromagnetic flux with which it doesn’t come
into direct contact.

The Aharonov-Bohm effect revolutionized physics in 1959 by demonstrating for the first
time that the electromagnetic potential was an indispensable physical field, rather than a mere
mathematical tool. The underpinning of this effect is best understood through Feynman’s
path-integral picture of quantum mechanics - the electron’s motion is a sum (or integral)
over all possible paths it could take, with paths on either side of the flux tube giving rise
to different contributions to the final quantum mechanical transition-amplitude. This leads
to a change in the interference pattern of an electron whose motion has been split into a
superposition of such paths, as shown in figure 1. In our familiar 341 dimensional world,
this is a feasible way for a particle to interact with a “tube” (or any “line-like” object), but in
241 dimensions, where particles are confined to a plane, there is also a meaningful sense in
which a particle can circumnavigate another particle! This is where Chern-Simons theory
comes in.

The effect of the Chern-Simons gauge field is sometimes described as imbuing particles
with anyonic statistics. While the familiar Bosons and Fermions obeying the familiar
Bosonic and Fermionic statistics acquire a phase of 1 (respectively —1) when identical quanta
are exchanged, anyons acquire a more general complex phase. The phase acquired when
circumnavigating the “flux” carried by a particle can be thought of as such anyonic statistics.

For more on Yang Mills and other Gauge theories we refer to [23, 27| or any quantum
field theory textbook.

But what is the physical relevance of a theory that lives in "flatland’? Chern-Simons theory
has applications in Condensed matter theory, where one often deals with thin (effectively
flat) objects or with excitations that are confined to the 2d boundary of a solid, such as a

superconductor. In particular, it features heavily in our understanding of the quantum Hall
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FIGURE 1: 1959 Experiment proposed by Yakir Aharonov and David Bohm|1].

A solenoid produces a tube of magnetic flux, and electrons passing on either

side of it without coming into contact with it interfere in a way that depends
on the flux. Picture credit: Y. Aharonov, D. Bohm [1].

effect|28, 14], where the “Hall conductivity” of a conductor becomes quantized. It is also
of interest to physicists studying 2d rational conformal field theories[24| or the AdS-CFT
correspondence[16], and to mathematicians studying knot theory[30]. We elaborate on this
last connection in 2.3.

In one variety of Chern-Simons theory (the one we’ll be studying in this thesis) the
matter content of the theory is comprised of a single N-component massive Bosonic scalar
field ¢;, © = 1,..., N, transforming in the fundamental representation of the gauge group of
the theory SU () - that is to say that it is “charged” in a sense that generalizes the electric
charge, and that its charge is like that of the electron’s - a fundamental building block for
other charges. The (Euclidean) action of the theory (see the review in 2.1) is given by:

S = SCS +SBose—matter> (11)
k 2
Scs = z’—/Tr ANdA+ - ANANA (1.2)
47 3
M

N 2
= i / BTy (Au(?VAp - ngMA,,Ap) ,
_ _ 1 _
SBose—matter = /dngungugb + m2¢¢ + szl (¢¢)2 ) (13)

where A is the gauge field, and other symbols are defined in 2.4. There is evidence that
this theory is dual to, meaning it is physically equivalent to, a similar theory where this
matter field ¢ is replaced by a Fermionic field in the same representation[19, 18, 3]. The free
energy (also known as the thermal partition function) has been computed|6, 4, 18, 3| in the

't Hooft limit, also known as the large N limit and as the planar limit (this could be thought
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of as an approximation where the number of particles in the theory is large, suppressing the
contribution of certain processes in the computation of various quantities - see 2.1.5) and has
been shown to match in the two theories.

Fermion-Boson dualities have been known to occur in 1+1 dimensional theories, and there
they are best understood; explicit Bosonization (or Fermionization) maps are known that re-
late the fields in one theory to those in the other. Chern-Simons theory is the only known
example so far in higher dimensions. In search of such a Bosonization (or Fermionization)
map for Chern-Simons-matter theories, the authors in [19] opted to compute the S-matrix.
The S-matrix is simply an object that “tabulates” the scattering amplitudes of the theory.
Since the Chern-Simons field has no propagating modes, the matter particles are those that
can be used in scattering experiments. The benefit of the S-matrix is its gauge invariance,
and for this reason [19] chose it as their object of study. The fields themselves as well as their
correlation functions are gauge dependent and as such aren’t “real” but rather include redun-
dant, unphysical information - in a similar vain to how the phase of the electron wavefunction
isn’t real.

The present project was initiated by one of the results in [19], which concerns the crossing-
symmetry of the S-matrix. Crossing symmetry relates scattering processes involving an in-
coming (outgoing) particle with ones where it’s been exchanged with an outgoing (incoming)
anti-particle. It is one of the reasons why anti-particles are sometimes described as “parti-
cles moving back in time”. This is a manifestation of CPT symmetry - a symmetry that

simultaneously:

1. T - time reversal - reverses time,
2. C - charge conjugation - exchanges particles with anti-particles and

3. P - parity - inverts space (x — —x) (in even dimensions) or reflects with respect to
a spatial plane (in odd dimensions). In the latter case it is sometimes known as R -

reflection, and is the one that is most relevant to us.

For further reading about the S-matrix, crossing symmetry and CPT symmetry we refer
to [13, 25]. This symmetry could also be understood as analyticity of the S-matrix as a
function the momenta of the participating particles. This is best understood in a tree-level
perturbative calculation using Feynman diagrams (see 2.1.4), as computing the different
processes translates immediately into evaluating the rational (and therefore meromorphic)
functions for different values of external momenta. For instance, in 2 — 2 scattering of
particles with mass m, if the incoming momenta are denoted p;, ps we denote the center-

of-mass energy squared as s = (p; +py)”> > 4m?. If we think of the 2 — 2 S-matrix as an
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FiGuRE 2: A trajectory in the complex s-plane connecting two scattering pro-
cesses without crossing branch cuts. The process A stands for particle-particle
scattering whereas the one at B stands for particle-anti particle scattering.
Picture credit: Eden et. al. [13].
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FiGURE 3: Branch cuts in the complex s-plane. Picture credit: Eden et. al.
[13].

analytic function of s, we can think of analytically continuing it to the region s < 0 and
then s can be reinterpreted as the momentum-transfer squared between an incoming particle
and outgoing anti-particle. This analytic continuation in the complex s-plane is presented
in figure 2. Standard unitarity arguments [13| show that the S-matrix has branch cuts in
the complex s-plane originating in so-called “normal thresholds” like s = 0,4m?,9m?, ... (see
figure 3) where the incoming particles have enough energy to produce the particles in an
intermediate process. Other branch cuts (“anomalous thresholds”) may also exist. Figure 2
demonstrates how one can relate the process at A (particle - particle scattering) to one at
B (particle - anti-particle scattering) without crossing any of the branch cuts. Note that we
give s a small imaginary part (an ie prescription) to pick the right branch of the S-matrix.

One remarkable result from [19] was the modified crossing relation (eq’ (3.11) of |19]):

sin (w))

Tnaive 1.4
v A S ’ ( )

Sg = cos (TA) I (p1, p2, ps3, pa) +

where:
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1. Ssis the singlet-channel S-matrix, found in the decomposition of the particle-antiparticle

S-matrix into irreducible representations:

: ol o768k
(SPA)g/lg = <5§5i - Tk) Sa+ Nk Ss. (1.5)

adjoint channel

2. T2V is the connected singlet-channel S-matrix naively expected to arise from the
standard crossing relation (analytic continuation from the A (adjoint) channel or from
the particle-particle S-matrix). In standard crossing the cos and sinc! are replaced with
1.

The meaning of these different channels is described in 2.5.2. Modified crossing implies
that the analyticity properties of the S-matrix are unorthodox in this theory. The cos term
is actually somewhat expected, as it reflects the contact interaction due to the trapped
flux carried by each particle, and is present already in the standard quantum mechanical
Aharonov-Bohm effect[1]. The magnitude of this flux is suppressed in the large N limit for
the other channels of scattering, which is why it is absent there.

The authors conjectured this relation in order to satisfy unitarity constraints that
they derived. This conjecture was shown to hold non trivially in the non-relativistic limit
[12]. The authors believe the modification to the crossing relation follows from the anyonic
statistics that the particles are imbued with by the Chern-Simons gauge field, and have given
a heuristic argument based on knot invariants in the purely topological gauge sector of the
theory.

Our central motivation is to better understand this modified crossing relation. Our main
approach has been to compute the S-channel scattering equation directly. The S-matrix was
successfully computed in [19] in the other channels. This computation was made possible
in light cone gauge (A_ = 0) by use of a simplifying assumption about the external momenta
that is invalid in the S-channel. We wish to relax this assumption and make perturbative
calculations to see the emergence of this non-analyticity directly. We also wish to check

this relation in the non-planar theory. Those are the main goals of the project.

1.1 Owutline and Summary of Results

In section 2 we review the background material relevant to the project. We start with a quick

review of gauge theory and field theory 2.1. Next 2.2 we review pure Chern-Simons theory

1 sin(z)

sinc (z) 1= =,



(the theory without matter fields). In this section we perform calculations determining the
theory’s Lagrangian, demonstrating its gauge invariance and the quantization of the Chern-
Simons level k, and justifying the statement that the theory lacks propagating degrees of
freedom. We then proceed to discuss the connection knot theory and knot invariants2.3, and
illustrate said connection with explicit calculations in the Abelian U (1) theory. In subsection
2.4 we discuss our variety of Chern-Simons matter theory by including the aforementioned
fundamental scalar field ¢. We reproduce the all-loop self-energy of scalar cited in [19] by
solving an integral equation (see 2.4.2). The last part of the background section is a review
of scattering kinematics and the S-matrix 2.5. We compute the tree-level S-matrix and
demonstrate its gauge invariance.

In section 3 we discuss our attempts to compute a “color” factor of the 1-loop amplitude
away from the planar limit. This color factor is in fact precisely the Abelian part of the 1-loop
amplitude - in the Abelian theory it would constitute the entirety of the amplitude at that
order in the coupling constants. We find that we are able to demonstrate gauge-invariance.
Final results are forthcoming, but it appears that the analyticity properties of the result are
not anomalous for a QFT in a way that would give rise to a modified crossing relation. We
discuss the possible reasons for this.

In section 4 we discuss the planar connected 4-point correlator and its on-shell limit
(the 2 — 2 S-matrix). We review the all-loop results from [19] and discuss the simplifying
assumption v - s = 0 used there and its implications. We reproduce the “effective exchange
interaction” described in [19] and show how it is modified when one relaxes the assumption
v-s =0 (see 41.1). We compute the off-shell 4-point correlator at 1-loop in generality (4.3)
and find it includes terms that are gauge-dependent on shell. We discuss the possible reasons
for this.

We proceed to section 5 where we compute the phase of the S-matrix and show how the
modified crossing relation is necessary to satisfy predictions found in [9] regarding it and
regarding the phase of form factors.

Finally we conclude the work so far and describe future work in section 6.
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2 Background

In this section we review the background material relevant to the project. We start with a
quick review of gauge theory and field theory in 2.1. Next, in 2.2, we review pure Chern-
Simons theory (the theory without matter fields). We then proceed to discuss the connection
knot theory and knot invariants2.3. In subsection 2.4 we discuss our variety of Chern-Simons
matter theory by including the aforementioned fundamental scalar field ¢. The last part of

the background section is a review of scattering kinematics and the S-matrix2.5.

2.1 Gauge Theory and Field Theory

In this subsection we’ll go through a short and basic review of quantum field theory and

gauge theory. We will also describe the large N limit.

2.1.1 Classical Theory - KG and Maxwell Theory

A classical field theory describes the dynamics of a field by means of an equation of motion -
a partial differential equation. For instance, Klein-Gordon theory describes a real or complex

scalar field ¢ evolving according to the KG equation:
0*¢ = 0} — V¢ = —m?>. (2.1.1)

Wavepacket solutions to this equation behave like relativistic particles with mass m. This
theory is free - there are no interactions between particles. This follows from the fact that
(2.1.1) is linear in the field ¢ so solutions satisfy the superposition principle.

Another free theory is free Maxwell Electrodynamics (in 4 space-time dimensions), which

describes a vector field A* satisfying Maxwell’s equations:*

oM'F,, = 0,
E“”W@VFPU = 0, (2.1.2)
F, = (dA)/w = 8MAV —0,A,.

This is also a gauge theory, as it satisfies a gauge symmetry:

Ay = A+ O, (2.1.3)

2Note that (2.1.2) is known as Bianchi’s identity and is trivially satisfied by virtue of the commutation of
partial derivatives and the definition F' = dA.



for some scalar field \. Gauge symmetries are understood to be redundancies in the de-
scription of the system, as opposed to real, or global symmetries which relate physically
distinguishable configurations. In a gauge theory one must often make a gauge choice - that
is - exhaust the gauge symmetry by satisfying some condition, such as 0#A, = 0 or Ay = 0.

Most field theories can be described using the action principle - the E.O.M. is equivalent

to the statement that the field extremizes the action functional S:

0S &S

For instance, Maxwell’s equations can be obtained by varying the action:

SMaxwell = d*zF"™F,,, 2.1.5
s

4g?
with respect to A, (g is a coupling constant). We can couple the gauge field A to a
background current J* (x) by adding a term ~ A,J" to the Lagrangian (the integrand of
the action), which gives rise to an inhomogeneous (“source”) term ~ J,, for the E.O.M.
When the Lagrangian is at most quadratic in the fields, as is the case in (2.1.5), the theory
is free. Otherwise, it is known as an interacting theory, as solutions no longer satisfy the
superposition principle. An example is scalar QED, which couples Maxwell’s gauge field A,

to a complex scalar ¢:

1 _ _

Sqep = / d'z (—4—gQF“”FW+DM¢D“¢+m2¢¢), (2.1.6)

D, = 0,—iA,. 2.1.7
H H

I

D, is known as the gauge-covariant derivative. This Lagrangian contains terms cubic (~
- — = _
pA - (8 - 0) ¢) and quartic (~ ¢A%¢) in the fields. These are known as interaction terms.

The theory which describes the EM force in the real world (QED) is precisely this theory,
except coupled to a Dirac spinor instead of a scalar.

2.1.2 Abelian Gauge Theory

The gauge symmetry that keeps the action (2.1.6) invariant is:

¢ — Do, (2.1.8)
Ay — A, +0,0. (2.1.9)
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This symmetry can be identified with the group U (1) of complex phases - § parameterizes
the gauge transformation by telling us what element of the gauge group (U (1)) is chosen
at each point in space-time. Electrodynamics is known as an Abelian gauge theory because
the gauge group is Abelian - all elements commute. From this point of view, the covariant
derivative (2.1.7) could be understood as a derivative modified to take into account the fact
that ¢’s phase is not an observable - its variation over space-time is therefore not entirely
physical, but could be a reflection of our gauge choice.

The covariant derivative is also known a connection - it allows us to compare ¢’s phase
at different positions in space-time. ¢ can be said to be covariantly constant on a curve
v:[0,1] - M if:

YDup =0, (2.1.10)

where ¥ = ‘fl—z is the tangent vector to the curve . The solution to this equation is:

6 (7 (1) = ¢ (7 (0)) & "4, (2.1.11)

We can say that ¢ (v (1)) is the result of parallel-transporting (moving while keeping covariantly-
constant) ¢ along . The expression W, (A) = exp <7, f7 "y“Audt> is known as a Wilson line.

An important property of this object is how it transforms under gauge transformations:

W, (A) = W, (A)exp | i / 19,0dt | = e OO, (4) 0D, (2.1.12)

Y

In particular, this means that Wilson loops® (v (1) = v (0)) are gauge invariant. Much like
the modulus of ¢ is its “physically observable” part, Wilson loops help us understand what
the “physical” part of A is. To see this note that by Stoke’s theorem, if ¥ is a surface that
satisfies 0¥ = v (0¥ means “the boundary of ¥”), then:

W, (A) = exp i/dA = exp Z/F . (2.1.13)

b 2

This leads to the interpretation that F;

w, the field strength tensor, is the “locally observable

part” of A. F'is also known as the curvature of the connection, since it quantifies the change
in a particle’s phase as it’s parallel transported in a small closed loop - an infinitesimal Wilson

line.

3 A Wilson loop is also known as the holonomy of the gauge field around the loop +.
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2.1.3 Non-Abelian Gauge Theory

The natural generalization of Maxwell theory is to pick a different gauge group G, and one
that might not be Abelian. Fields will then transform in various irreducible representa-
tions pg of G:

¢ = (pr (g (2)] &5 = (exp (ia"T}))] ¢, (2.1.14)

where the T%, a = 1,...,dimG are the generators of the gauge group in the representation
R, satisfying [TI‘?{, Tg] = i fOT¢ with f% the structure constants, and a® are parameters that
take the place of 6. Such theories describe real-world forces, such as the strong interaction
(G =SU(3)) or the standard model (G = U(1) x SU(2) x SU(3)).

The gauge-covariant derivative has the same interpretation as before and takes the form:

D, = 8,—iA,, (2.1.15)
A, = AT (2.1.16)

so that now A is a Lie algebra valued vector field. The non-Abelian Wilson line arises in the
same way as the Abelian one - it describes parallel transport. It is given by a path-ordered

exponential:

Pexp z'/A , (2.1.17)
vy
which means that in the expansion of the exponent the order of matrix products matches their
ordering along . The field strength, or curvature, can again be defined as an “infinitesimal
Wilson loop™
F. =1i[D,, D, =0,A, —0,A, —i[A,, A). (2.1.18)

For D, to make sense as a connection A must transform as:

A, — gAg +90.97, (2.1.19)
= Fu = gFug, (2.1.20)

under the gauge transformation g (x). The classic example of non-Abelian gauge theory is
Yang Mills theory:

=13 d'zTr (F™F,,). (2.1.21)
g

The last term in (2.1.18) makes this theory an interacting theory.
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2.1.4 Second Quantization

There are many ways to quantize a classical field theory. We will briefly and schematically
review the path integral approach. In the quantum theory, rather than describe the evolution

of the field configuration in time, we are interested in transition amplitudes:

(¢ (t:) | &y (t5)) - (2.1.22)

The modulus-squared of these amplitudes give the transition probability - the probability of
finding the field at the configuration ¢ at time ¢; given that it was measured to be in a

configuration ¢; at time ¢;. In the path integral approach this is given by:

¢f

(60 (1) | by (t7)) = / Dé exp (iS [4]) (2.1.23)

o

where S is the action and fff D¢ is an integration over all field configurations satisfying the

boundary conditions:
¢ (t:) = @i, & (ty) = ¢y (2.1.24)

Thus the transition amplitude is the sum over paths consistent with the measurements,
weighted by a complex phase determined by the action.

When the field configurations ¢; s are large (or equivalently we rewrite S — S/h and h is
small) we can use the saddle point approximation where the integral gets contributions only
from saddle points of the action - classical solution. This is the correspondence principle - at
small & the theory becomes classical. Put differently, quantum corrections are hA-suppressed.

The path integral can be computed in free theories where the action is quadratic in the

fields: A
S = /ddx%¢, (2.1.25)

where A is some differential operator. Using an infinite dimensional generalization of the

Gaussian integral:
1 22
— [ dxe 20 = /0. 2.1.26
=/ ve (2126

In interacting theories we write the action S = Siinetic + Sinteraction Where the kinetic part

is quadratic in the fields and the interacting part is of higher order. When the coupling
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constants of the theory are small so that schematically Sijteraction << Skinetic W€ can write:

o0

exp (iS) = exp (iSkinetic) Z

n=0

Z‘n n

interaction
—mtention, (2.1.27)

This is the key to computing quantities in perturbation theory. The higher the order in
interaction terms, the more cluttered the path-integral becomes with powers of the fields.
Integrating these monomials in the fields against exp (iSkinetic) gives rise to many integrals

that are represented using Feynman diagrams. For instance, let’s say we compute a 4-point

correlator:
(P1920304) = /D¢¢ (21) ¢ (22) ¢ (23) ¢ (w4) exp (1S [¢]) , (2.1.28)
and that Sipteraction = f ddxb4‘i—?. At first order in by we have the tree-level correlator:
. q, ¢ (@4
Do¢ (x1) ¢ (w2) ¢ (v3) ¢ (24) exp (iSkinetic [¢]) [ d 1’54T, (2.1.29)
which gives rise to a number of diagrams. One such diagram is:
2 4
, (2.1.30)
1 3

Where the vertex in the center represents the monomial ‘Z—?. For a more thorough review of
quantization and Feynman perturbation theory, see [23].

As already mentioned, in quantum theory we are interested in transition amplitudes. A
particularly useful subset is that of scattering amplitudes which encode the outcome of
scattering experiments. The LSZ reduction formula|23| relates these to correlation functions
like the 4-point correlator above. Its content is roughly that one must compute correlation
functions in momentum space (the Fourier transforms of position space correlators) and then

take a properly defined residue localizing them to the so-called “mass-shell condition” where
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the momenta satisfy Einstein’s relation:
P =m?. (2.1.31)

2.1.5 The Large N (’t Hooft) Limit

In much of this thesis we will be working in the Large N limit. A very cogent description of
this limit can be found in chapter 8 of [11]. At its core the large N limit is an approximation
assuming that the number of particles in the theory is large. For instance, consider the theory

of N complex scalars ¢', i = 1,..., N with action:
4 - b4 7\ 2
S = [ d'zd,$0"¢ + N (¢0)", (2.1.32)
where ¢¢ = (¢)" ¢, by is a finite constant and N is large. We see that, as that, as is often the

case, interactions are 1/N suppressed, making the theory seemingly free. However, consider

the diagram:

(2.1.33)

L

We see that the large number of particles running in the “loop” enhances the interaction
strength by 076" = N, partially offsetting the 1/N suppression. However, not all diagrams
contributing to this process at a given order in perturbation theory will have sufficient en-
hancements of this type to contribute to the leading (O (1/N)) part of the amplitude. Thus
only diagrams with the maximal number of “index loops” contribute, as those are most en-
hanced by the multitude of particles in the theory. This tends to suppress diagrams with
fewer faces for a given number of edges and vertices. Diagrams with the maximal number of
faces are known as “planar” diagrams, as they can be drawn on a plane (or a sphere) without
self-intersection.

There are multiple benefits to calculations in the large N limit:
1. Fewer diagrams contribute to a given process.

2. Diagrams have fewer “topologies”, meaning that the number of distinct propagators is

lower. This makes integral reductions simpler and decreases the amount of momentum
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shifts one must use in the course of the calculation. In some cases, such as N = 4

SYM, this makes the notion of a Feynman “integrand” well defined.

3. Keeping track of “color factors” - factors involving indices like ¢« = 1,..., N. Away
i
J
whereas in the planar limit one can use “double line notation” where the index is just

from the planar limit one must keep track of group generators in terms like (T“Tb)

kept constant along a line. For instance, in Chern-Simons matter theory we’ll be using

vertices like:
2, i

k i
"= (p1 —p2), 5,65 (2.1.34)

Lj

The single lines stand for propagation of a particle in the fundamental representation
of SU (N) , whereas the doubled lines represent the propagation of a gauge Boson (or

particle in the adjoint representation).

4. In some cases, as we'll see in 2.4.2 and 4.2, one can obtain all-loop results by solving

integral equations.

2.2 Pure Chern-Simons Theory

This is a topological theory of a single gauge field A, usually with gauge group U (N) or
SU (N). By topological, we mean that it is equivalent in all conceivable coordinates. There-
fore coordinate transformations are symmetries of the theory (see 2.2.3). To obtain a topo-
logical gauge invariant local action, we must construct an (up to total derivatives) gauge
invariant 3-form without referencing a metric or a set of coordinates. We have a 1-form A
and 2-form F' = DA =dA +i[A, A] so the 3-forms:

ANdA, ANANA, (2.2.1)

form a basis we can work with. Note that the latter of these vanishes for Abelian theories.

In abstract index notation we can write w.l.o.g. (without loss of generality):

L= i%e“””Tr (A, (0, +0A,) A,). (2.2.2)

™
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Then given an infinitesimal gauge transformation:
dA; = O A+ [N A, (2.2.3)

we need the Lagrangian to vary by a total derivative. We find:

21 . .
§L o< 3b (1 - é) €M Ty (9;AA;Ar) + 0; (75 Tr (AD; Ay)) (2.2.4)
which gives a total derivative when:
21
b= 3 (2.2.5)
giving us the Chern-Simons Lagrangian:
ko 2
L= e Tr | A0,A, — gAuAVAp . (2.2.6)

Dimensional analysis gives the mass dimensions [A] = 1, [k] = 0. The constant k is known
as the level and takes on integer values - as we’ll prove in the next subsection in the non-
Abelian case. In the Abelian case this quantization comes from considering the theory on a
manifold with boundary.

Note that the e symbol is real €23 = 1. This follows from unitarity - we need the
Lagrangian to be invariant under simultaneous reversal of the time coordinate and complex

conjugation. To see this, notice that:
2 1 a a 1 abc fa Ab pc
Tr ( A 00A, — gA“AVAp = §Au&,AP + §f AL A AD (2.2.7)

is clearly real, and under time reversal any term that is constructed by full contraction with

the € symbol gets a — sign, unitarity amounts to:
1P = (1 (—e"P))" =i (eP)". (2.2.8)

2.2.1 Gauge Invariance and Quantization of the Level &

Although invariance under infinitesimal gauge transformations was sufficient to fix the action,
it doesn’t guarantee that the theory is invariant under gauge transformations not connected

to the identity - that is, maps g : M — G with non-trivial homotopy.
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Under a finite gauge transformation g = e~** we have (see the appendix A):

A, — gAg ! +igd.g! (2.2.9)
= gAug ' — .99 (2.2.10)
= g (Au - auA) g—l’ (2.2.11)
k nvp -1 . k pvp  —1 -1 -1
L—L+Tr Eﬁﬂ (e A,0,99 ) + 15 9 0,99 90,9 0,9 | . (2.2.12)

The first term is a total derivative, as expected. The second, however, doesn’t vanish. It is

proportional |28] to the integrand of the “counting function”:

1
T 2472

w(g) /d?’xe””pgl@#gglg&,glapg €7, (2.2.13)

which counts the number of times ¢ winds around the gauge group G. As expected: we
found that gauge transformations connected to the identity leave the action invariant. More

generally:
S_S - e—S—zm‘kw(g)' (2.2.14)

Hence for gauge invariance we require k € Z. This term vanishes for Abelian theories and
level-quantization is then instead related to the boundary term when the theory is considered
on a manifold with boundary, or gauge transformations with non-trivial winding if the theory

is considered on a manifold with compact dimensions (see, e.g. section 5.1.3 of [28]).

2.2.2 Equation of Motion

Varying A gives the E.O.M.:

5L o § (e’“’pTr <AM8VAP— %AMA,,A,)» (2.2.15)
= 1’“”5 A%0, A %“VPT 0(AAA 2.2.16
- 26 ( Thdt s p) - 3 € r( ( He v P)) ( s )

? .
= oA IAY — % [y, A,)" #P5 A% + total derivative, — (2.2.17)

=0 = AL —i[A, A" (2.2.18)
= F" =0 (2.2.19)
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Hence the space of solutions is the space of flat connections. Note that if we arbitrarily pick

a “time” direction z(, then we have:

Foi = 0,1=1,2(first order in time), (2.2.20)
Fi5 = 0(0-th order, a constraint on initial data). (2.2.21)

Let’s specialize to a manifold M = ¥ x R = {(zo,Z) | g € R = "time", T € £} so that we
can pick the gauge Ay =0 . Then:

Hence we see that there are no propagating degrees of freedom. Furthermore:
Fi; = 0. (2.2.23)

Hence the space of solutions is precisely the moduli space of flat connections on . If

we couple the theory to matter by adding a source term:
—1Tr (A, J"), (2.2.24)

we’ll get an E.O.M.:
47

?e‘“’pFﬂp = Jme (2.2.25)
Equation (2.2.25) tells us that matter charged under the gauge group traps flux. This is the
main difference between Chern-Simons theory and Yang-Mills - In the latter charged particles
interact with one another by acting as sources and sinks for field lines - by the exchange of
gauge field quanta - whereas in the former all interaction is due to a generalized Aharonov

Bohm effect [1].

2.2.3 Symmetries

In addition to the gauge symmetry, Chern-Simons theory possesses 2 notable global symme-
tries. The first is inherent in the moniker “topological” - diffeomorphism invariance. This
is the infinite-dimensional group of coordinate transformations on the spacetime M, some-
times denoted diff (M). Invariance under it follows simply from the fact that the theory is
formulated in the language of differential forms and without any reference to a particular set
of coordinates. However, the above statement isn’t entirely accurate - the symmetry actually

only includes orientation preserving diffeomorphisms diff " (M). Suppose we perform a
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change of coordinates z'* = z* (z¥) then a 1-form transforms:

ax/l/

A, () = =—A, (&), (2.2.26)

so one can work out:

ox'*
2.2.2
E%det(axy)ﬁ, ( 7)

which is just the transformation law of a volume form. Of course, the integral measure

transforms via the familiar Jacobian of the inverse transformation:
ox#
det
(31””)

oz
i det . 2.2.2
S—>51gn<e (&E”))S ( 9)

For orientation reversing transformations the above sign is negative. We can negate such a

dBr — &

: (2.2.28)

so that in total we have:

negative sign by simultaneously flipping the sign of & (or equivalently A = k/N), which gives

our second symmetry:

_ diff (M)
T difft (M)

We can pick a representative element of this group. One such choice in R? is the parity

) (2.2.30)

operation x — —x, denoted P. Another is R - reflection of a single coordinate. In section 4
this Zs symmetry will be used extensively to constrain Feynman integrals - for instance, by
telling us which branch of a logarithm to pick.

2.2.4 Quantization

Let us rewrite the Lagrangian using integration by parts:

k 2i
L= i e (Aua,,Ap— gZAMA,,Ap)
= —iﬁTr(eijA-aoA')+z’ﬁTr(Aoe"jF--). (2.2.31)
47 B 2m "

For our gauge Ay = 0 we obtain a vanishing Hamiltonian and commutation relations:

A (@), Ay )] o ey () 6% (x — ). (2.2.3)
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But here we haven’t enforced Gauss’ law! Thankfully, we can show that the path integral
localizes to the flat connections, thereby demonstrating the lack of propagating degrees of
freedom. Consider shifting A by some vector AA. First, let us shift only Ay — Ay + AA,.
Now using (2.2.31) we get:

k .
L— L+ iQ—Tr (AApe" F) . (2.2.33)
T

One can now average over choices of AAjg:
/ DAeS = / DAD (AAg) =51 ] d'aadgr
= / DAs (FYY),

where we have re-scaled AAg to absorb various constants. The theory has therefore reduced
to time-dependent flat connections on the time-slice 3. The remaining part of the action
is linear in the components of either connection and an identical “trick” could be used to
localize the remaining components of the field strength (note that one has use only shifts of

localized integration variable - that is, shifts that leave F} 5 invariant). Thus we get:

/ DAe™ / DAe 56 (F)

Curiously, we have lost track of the level k. This is because in reality we want to have some
insertion in the path integral. Does this localization still take place when gauge invariant
observables are included in the integrand? We’ll find that it does, by looking at the partition
function Z [J] rather then just the path integral Z[0]! To see how that works consider that
we can repeat the above argument after coupling the field to an external “source” J by a
term —iTr (A,J"), where the “trace” stands in for any form of linear coupling, for instance
Y Arp. The result will simply be to modify the E.O.M to:

4
P Fe — %J“’“, (2.2.34)

and this is how the level £ is relevant in the theory. Of course, in the pure CS theory, the

observables are the Wilson loops:

TrrP |exp i/A : (2.2.35)

Y
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where P[] stands for path-ordering and R is an irrep. By introducing auxiliary “worldline”
fields living on the support of the Wilson loop, one can rewrite it as the exponent of such
a linear coupling term with an appropriate current constructed with said fields . This is
alluded to in [30] and described in David Tong’s lecture notes [28] for gauge group SU (N).

Tong writes:

Wr(y) = TrgP |exp i/A (2.2.36)
v
= /DwDﬂ)DozeXp /dt(z’ﬂ)th—/{a) (2.2.37)
v

= /DwDﬂ;Doz exp /dt (iwow + (ww — k) a + wAw) |, (2.2.38)

where:
1. t is a parameter of the worldline (Wilson Loop).
2. Ay (t) = A(¥(t)) is the gauge field along the Wilson line.
3. w is the worldline field and takes values in CP™ 1,
4. « is a worldline gauge field associated with w’s U (1) phase ambiguity.
5. K is a constant chosen so as to get the right irrep R.

« acts as a Lagrange multiplier enforcing a particular norm for ww = « for the worldline field.
U (1) gauge invariance requires x to be quantized to integer values (this is analogous to the
quantization of the level k and in fact the term sa is known as the Chern-Simons 1-form*),
which correspond to various symmetric (anti symmetric) irreps for Bosonic (Fermionic) w.

What will our equation of motion be in the presence of w? We can write:

wAw = (w*) Alw; (2.2.39)
= A (w") (T wj, (2.2.40)

“For further reading on Chern forms and Chern-Simons forms we refer to [7].
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giving an E.O.M.:

" Fy, = = (W) (T°)] w6 (z)

where the d-function localizes to the Wilson line, which we have taken to lie at the origin,
and stretch along “time”. Let us partially solve this equation. We can pick temporal gauge
Ag = 0, in which case the solutions are time-independent. We can also further specify the
gauge so that at a specific time:

w = (k,0,...,0). (2.2.41)

Now at this time we can guess a solution where A; is diagonal for all ¢ (is in the Cartan
subalgebra), in which case the field strength is just given by its Abelian variant. The solution
then is the same as in the Abelian case, which we will deal with later (see 2.3.1). The
important thing for us to note is that the magnitude of the holonomy of the gauge field now
depends on the ratio #. In fact, it will turn out to have the schematic form exp (2m’%),
indicating that there is an equivalence k — k + k. This is, in fact, a manifestation of a more
elaborate statement that when considering Wilson loops in Chern-Simons theory, it suffices
to consider only those with so called integrable representations. More reading on that
can be found in [30, 17].

What of “quadratic” coupling terms like DquﬁD“qzﬁ = ...+ ¢A%p, with ¢ a scalar field? We

can rewrite this as a “current” by introducing an auxiliary “Lagrange multiplier” field A, ;:
L—L— (A +0A4,) W+ A4g), (2.2.42)
which transforms under a gauge transformation via:

Mui = G5 — 0 (99,9719)7 65 (2.2.43)

By introducing this spurious degree of freedom we linearize the interaction in terms of A.

While these considerations are useful for understanding the theory in general, and the
statement that the gauge field lacks physical degrees of freedom in particular, in our work we
ultimately didn’t use this localization. More information about localization of path integrals
can be found in |26].
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2.2.5 Light-Cone Gauge

When we couple the theory to matter it will be useful to have the gauge propagator in
our arsenal. To that end we must gauge-fix. Most (if not all) gauge choices break the
diffeomorphism invariance down to Lorenz invariance by introducing a metric. Of course,
this same breaking will happen explicitly when we couple to matter. We decided to work in

light cone gauge, as it has the following advantages”:

1. The self-interaction vertices of the gauge field vanish.
2. A variety of additional diagrams in the matter-coupled theory vanish.
3. There is no need to introduce ghosts.

4. On-shell conditions, or the vanishing of propagators, can be solved without introducing

branch-cuts (specifically square-roots):

_mi4ph

2.2.44
o (2.2.44)

pr=m" = py

We found that it also has certain challenges:

1. Lorenz symmetry breaks down SO (2,1) — GL (1).

2. Demonstrating gauge invariance can be tricky as some of the gauge dependence is in
the denominator of the gauge propagator. This stands in contrast to, for instance, the

familiar &-gauge in YM theory:

pp.z/

gl“/ - (1 - g) p?
p2

: (2.2.45)

where dependence on gauge “parameter” ¢ is localized to the numerator, making alge-

braic manipulations simpler.

Another property of this gauge choice is a mixed blessing - carrying out Feynman integrals is
different. On the one hand one can avoid the hassle of using Schwinger / Feynman parameters,
and instead use contour integration techniques that in a different gauge would introduce
plenty of branch cuts and square-roots. On the other hand, some integrals become a bit
ambiguous (see below), and relating their branch cut structure to kinematics becomes more

difficult (due to the breakdown of Lorenz symmetry).

5Points 1 and 3 are also true for temporal gauge or any gauge that simply sets a component of the gauge
field to 0.
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Light-cone coordinates are related to Minkowski coordinates ¢ as follows:
zt = i (:101 + x2)
\/§ )
= a3,
The square-roots are chosen so that the metric takes the simple form:
ds* = 2dx,dv_ — dz?, (2.2.47)
01 0
I = 1 0 0 (2.2.48)
00 -1
We will often Wick-rotate into Euclidean space:
Ty — il’l, (2249)
1
- - 1.2
=z — 11— (T Fux’). 2.2.50
—_———
xi
E
This entails redefining the metric:
ds* — —ds3, (2.2.51)
dsy, = dxi+ dad+ da; (2.2.52)
= 2dx,dr_ +da?. (2.2.53)

We will suppress the the “E” from here on. We see that for real Euclidean coordinates (z7)

*

x~. Note that we’ll often use the Levi civita tensor interpreted as e**?, u, v, p = +, —, L with

et=+ = 1. For all vectors we have:

pr = gep’ =pT,

so in particular:

€py =€ =1

8for which:
ds* = da? — dak — da?

(2.2.54)

(2.2.55)

(2.2.46)
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Light cone gauge is given by the condition:
A_=A"=0. (2.2.56)

In pure CS theory, this choice is indistinguishable from setting any component of A to 0,

since the metric we introduced is arbitrary. Our gauge fixing function is:

G(A) = A (2.2.57)
Under a gauge transformation:
A =T (A, = 9,) e T (2.2.58)
G (AY) =T (A —0_)e 1", (2.2.59)
Infinitesimally:
5@(5(5&) —D_—p_—i[A°,], (2.2.60)

hence in accordance with the Faddeev-Popov procedure we use the identity[23]:

- /Da5 (G (A%)) det (%) (2.2.61)

to write:
/DAeiS[A] = /DADa5 (G (A%)) det (%) Sl (2.2.62)
- / Da / DAS (G (A))det (. —i[A_, )W, (2.2.63)

where in the last line we used gauge invariance:
DAexp (iS[A]) = DA%exp (1S [A?]), (2.2.64)

and then renamed A% to A. At this point one normally|23] deals with § (G (A)) by replacing
G (A) — G (A,w) where w parameterizes a family of gauge choices and then averages over
choices of w, so that w, rather than A, is localized by § (G (A)). This is necessary if the gauge
condition involves derivatives of A, as is common in covariant gauges, since localizing A
isn’t straightforward. With A not localized one must deal with det <%) by introducing
Fermionic ghost fields. In our case, however, § (G (A)) = §(A_) and so localizing A is
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straightforward. We can proceed:

_ / Da / DAS(A_)det (9 — [0, ]) eiS!A (2.2.65)

= det (0-) / Da / DAGS (A_) S, (2.2.66)
hence up to a constant:
/ DAESHAI / DA+DALeiS[A]‘A . (2.2.67)
~_=0

In other words, we can safely just set A_ = 0 and not worry about any ghosts! Note that one
normally gets “Gauss’ law” (in our case F'y ;| = 0) from varying A_ which we’ve just integrated
out! Of course, it should still hold. To see this, note that Gauss’ law generates perturbations
in A_, effectively coupling the system to a “background” A_. This can the absorbed into
A, | via a gauge transformation, leaving the path-integral invariant. Invariance under an
infinitesimal transformation then amounts to the statement of Gauss’ law.

The Lagrangian becomes:
. k a_ij a
L= ngi €l0_Af, (2.2.68)

with 7,7 = +, L and e*+ = 1. In momentum space:

s ARIO_AT A% () (1) AT () — oo AT (<) (—ip-) AT () (2269
= AL () AL (). (2.2.70)
so we get the propagator:
a b A 1 3 ¢3 ab
(A7 (—q) A (p)) = T (27m)7 0% (p — q) 6%€y;. (2.2.71)

Another useful way of writing this is by defining the vector gauge-parameter:
o' = (v" =10t =0,0" =0), (2.2.72)

which satisfies:
v-p=ph v*=0. (2.2.73)
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v is simply a basis vector in our basis choice:

p=pres+pe_+pel, (2.2.74)
v=e;. (2.2.75)
Now: A )
AT : ab V€ o
(4L (=) A0 (p)) = =i (2m)° 6% (p—q) 0 bv—_’)]’;. (2.2.76)

The color-conserving Kronecker delta ensures the equation of motion is satisfied:

(Fo) = 0,(A2) —8,(A%) —i([A,, A" (2.2.77)
oc 0 — 04 & fbee (2.2.78)
= 0, (2.2.79)

where in the last line we’ve used the anti-symmetry of the structure constants f. Note also
that our gauge condition:
v-A=0, (2.2.80)

commutes with a Lorenz boost along 1:
p="pp") = (¢ e ). (2.2.81)

Hence this is our unbroken Lorenz symmetry, which we’ll refer to as GL(1);. We can

think of this as simply the scaling transformation for v, under which (2.2.76) is manifestly

invariant. We will often regulate the propagator by (see [19, 18]):
1 p- 2p~

— = — = —.
pt  ptpT—ie  pj—ic

(2.2.82)

This ze prescription, known as the Leibbrandt—Mandelstam prescription, allows one to con-
sistently Wick rotate, since the relative sign between the energy squared and e is the same as
for covariant propagators. We can also write v = v, and define v_ as the “other” lightcone
direction that satisfies v_-v; = 1 and has GL (1) weight -1, so the propagator gets rewritten:

V€ o P 2Pg € o

_l’_

_ —, 2.2.83
vep pﬁ — j€ ( )
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where the denominator is now GL (1), invariant. This allows us to think of our various

Feynman integrals as Lorenz - covariant tensor integrals, albeit with a spatial split into L, ||.

2.3 Connection to Knot Polynomials

In this subsection we’ll discuss the relation between Chern-Simons theory and Knot invariants
discovered by Witten in his paper “Quantum Field Theory and the Jones Polynomial”|30].
We'll start by motivating this connection with a U (1) calculation, then go through a quick
review of knot theory before describing Witten’s results and connecting the question to
crossing-symmetry. A useful reference on these matters is chapter 5 from Baez and Muniain’s
book [7]. Another is Tong’s lecture notes [28].

2.3.1 Abelian Calculation

Let’s begin by computing the correlation function of two Wilson loops on the curves 7 5 in

representations n o of the gauge group U (1):

Wm,z (’71,2) = exp ani y{ Al. (2.3.1)

71,2

From the discussion in 2.2.4 we know this is just the partition function:

2
mﬂ:/a%miﬁjfﬂwma@+2y%ﬁq, (2.3.2)
=y

where the Wilson line exponents act as the current, and that the path integral should localize
to the classical solution. The Abelian theory is free and so this can be seen more directly by
“completing the square” in terms of A and performing a Gaussian integral over A. This is

equivalent to just solving the equation of motion:

1%
P, = ——

JH, (2.3.3)

or:
2T 2
F,= —?J’“‘ewp = —?J,,p, (2.3.4)
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where we interpret J as a 2-form. From linearity we know the solution will be a sum of terms

Aj 4+ As, each sourced by one of the currents. Hence we get:

exp @'Z%AH—ZZ’%AJ- . (2.3.5)

7] Yi
Let’s assume we are working in a simply connected space so that:

Then we get for the cross terms:

Z%AFZ/sz—Z%%Jj, (2.3.7)

i#5 5, i#i 3, i# %,

where in the last equality we used the E.O.M. (2.3.3). In other words, the Wilson line induced
on one curve by the other is proportional to the charge flow through the surface obtained by

shrinking it. Since in our case the current is localized to the support of the Wilson loop:

/Jj = n;L;; (no summation over j), (2.3.8)

3

where Lj; is the linking number of v; with «;, meaning the number of times ~; intersects
¥; with a positive orientation minus the number of intersections with a negative orientation.
It’s easy to see that L;; = Lj;. An example of a configuration with L;, = 0 is shown in figure
4 and the link known as the “Hopf link” in knot theory, satisfying L1, = +1 is displayed in
figure 5.

What about the “self-interaction” terms? Those are given by:
> / A, (2.3.9)
‘ i

We will return to those after discussing some knot theory. Let us only remark that the
discreteness of our results so far appear to be consistent with the topological nature of the
theory - the correlation function is insensitive to deformations of the Wilson lines, as long as
the curves don’t “pass through” one-another (or themselves). Furthermore, since we seem to
be getting something of the form:

2w

er ", nel. (2.3.10)
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FIGURE 4: Two unlinked knots. Credit: John Baez and Javier P Muniain [7]

1 2

F1aURE 5: The Hopf link. Credit: John Baez and Javier P Muniain [7]
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It’s clear that integers like n are only observable mod £ this is similar to our result in
the non-Abelian case from 2.2.4. Let us briefly compute the gauge field sourced by a single
Wilson loop with n = 1 on S (spacetime with infinity identified as a point). Using our
diffeomorphism invariance we can align the Wilson line W, along the “time” axis such that
v (t) = (t,0,0). We have J* = (6%(z),0,0). In temporal gauge we have Ay = 0 and the
E.O.M. is:

0=J" o € Fy; = Do A, (2.3.11)

making the solution time-independent, and:

Fiy (2) = —2%52 (7). (2.3.12)

We can change to polar coordinates:

2
O (TAp) = _Eé (r). (2.3.13)
A natural guess is now:
2
Ay (r,0) = —k—i, (2.3.14)
Which gives rise to a holonomy:
—2mi circumnavigates the origin
exp ¢§1§A = e s s (2.3.15)
0 | otherwise

v

as expected.

2.3.2 Knot Theory

The linking number we’ve found in U (1) Chern-Simons theory is known in knot theory as a
link invariant. Knot theory is the mathematical study of knots and links - where a “knot”
usually refers to a single “loop” (an embedding 7 : ST — M of the circle into a real 3-manifold
M) and a “link” is just a bunch of different knots. Sometimes the knots are dressed with
extra structure - such as an orientation (a nowhere vanishing vector field tangent to the knot)
or a framing (like an orientation but never tangent to the knot). Most importantly, knots are
identified with one another when they can be related by ambient isotopy which is simply
a transformation on M that is connected to the identity. In other words, knots are identified

when they can be deformed into one-another with intersecting themselves along the way.
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FIGURE 6: The trefoil knot. Credit: John Baez and Javier P Muniain 7]

Knots are often visualized by projecting them onto a plane. We demonstrate this in figure 6
using the “trefoil” knot.

It is not usually obvious whether two such projections represent the same knot. For
this reason, knot theorists, in their efforts to classify all existing knots, are interested in
knot invariants - numbers that characterize a knot independently of its projection. The
linking number we saw in 2.3.1 is one such knot invariant. Another example is the Jones

Polynomial[30)].

2.3.3 Witten’s Knot Invariants

Witten’s insight in [30] was that correlation functions of Wilson loops in various representa-
tions in a topological theory should give rise to knot (or link) invariants. We've seen this
in 2.3.1 in the Abelian case, where the correlation functions evaluate to linking numbers.
Witten showed, among other things, that for gauge group SU (2) and Wilson lines in the
fundamental representation embedded in S3, the correlation functions evaluate to the Jones
polynomial. This was the first time that an inherently 3 dimensional definition of invariant
derived. Historically, all invariants were defined using projections of knots, and then shown
to be invariant under the 3 Reidemeister moves [30, 7] that are the building blocks of all
ambient isotopies.

More precisely, Witten discovered framed-knot invariants. The correlation functions
depend on a framing chosen for the knots. This is most easily seen when we return our
attention to self-interaction terms (2.3.9). These are naively divergent. However, one can

regulate them by a so-called point-splitting regularization. Given some framing f* (¢) of the
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loop v (t) one can rewrite:
/ Ao / A, (2.3.16)
Y ytef
where A is sourced by ~ but is integrated along the slightly shifted contour v+ €f where € is
a small real parameter. This now should evaluate to the linking of the shifted contour with

the original contour - effectively counting the number of times the framing f winds around

.

2.3.4 Possible Connection to Crossing Symmetry

Recall the crossing phase from (1.4):

sin ()

Tgai\’e N Tgaive = NTTparticle—particle (2'3'17)

sin ()
A

(the extra factor of N is explained in 2.5.3). It was observed in [19] that this factor is
exactly the relative factor (found by Witten in [30]) between the expectation value of a single
fundamental SU (N) Wilson loop in S? and that of 2 unlinked Wilson loops. In 7.4 of [19], the
authors conjecture that those Wilson loops arise in the following heuristic way: to compute a
truly gauge invariant quantity, one must dress the 4 field insertions in the correlation function

with Wilson lines:

Cs) = 8308 (& (22) 65 (1) &' (24) 6 () (2.318)
= (& (e2) W (120 61 (1) &' (20) We (ya)f 6 (0)), (2:3.19)

where Wy is a Wilson loop in the fundamental representation and «;; is a contour connecting
z; to z;. This is depicted in figure 7 where the points z; are taken to lie at a sphere S% at
infinity of R3. The idea is that the scattering particles’ motions together with the Wilson lines
(which can be thought of as heavy “probe particles”) close to form gauge invariant Wilson
loops. The relative factor between the link invariants in the different channels produces
the crossing phase. This difference of link topologies between particle-particle scattering and
particle-antiparticle scattering doesn’t arise when relating the exchange and adjoint channels.

See 2.5.3 for a description of these different channels.
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FIGURE 7: Scattering processes in the direct (particle-particle) channel (left)
and in the singlet (particle-antiparticle) channel (right). The solid black circles
represent the sphere S2 at infinity of R? at which particles begin and end
their motions. The red lines represent Wilson lines dressing the amplitude.
The black lines represent the particles’ trajectories. On the left, time flows to
the right, so that the depicted process is the creation of particles in positions
x1,x3 and their scattering to positions xs and x4 respectively. On the right,
time flows downwards, hence a particle and antiparticle are created at xz1 and
respectively xo and then scatter to final positions x3, x4. The overall motion of
the scattering particles as well as the “probe” particles (the Wilson lines) trace
a single knot on the right but two knots on the left. Credit: Sachin Jain et.
al.[19]

Ia I
F1GURE 8: Scattering in the adjoint channel. Time flows downwards and the
particles’ motions are like in the singlet channel in figure 7. However, the
Wilson lines dressing the amplitude give rise to an overall link topology that
is the same as that in particle-particle scattering, which is why the crossing

relation isn’t modified for this channel. Credit: Sachin Jain et. al.[19]



34

2.4 Chern-Simons Matter Theory

In this section we’ll describe the theory we’ll be working with, where the CS gauge field is
coupled to fundamental Bosonic matter.

Let’s return to the full action (1.1), this time written in our chosen gauge 2.2.5:

B - k a_ij a P 7 1 7 2
S = /d3gg (ngieJa_Aj + D, dD" ¢+ m*pp + qu (00) ) , (2.4.1)
D, = 0,+i4,, (2.4.2)
A= % (2.4.3)
A, = AT, (2.4.4)
1
arpb _  _—gab
Tr (T°T°) = 50" (2.4.5)

where ¢ is a scalar in the fundamental representation of SU (N). In [19] the authors use
U (N) but work in the large N ('t Hooft) limit, where the distinction is inconsequential.

Let’s take a closer look at the gauge-matter coupling term:

D,¢pD'¢ = 0,0 +iA,b(0"d +iAr ) (2.4.6)
0,001 + id (A - (3 _ 3)) b+ BA%. (2.4.7)

Note that in our gauge choice the quartic vertex looks like:
PA%p = ¢ A30. (2.4.8)

Since an Aj insertion can only Wick-contract with A, we learn that in a Feynman graph two
quartic vertices cannot connect to one another via a gauge-Boson propagator. This is a source
of much simplification when one enumerates Feynman diagrams, and plays an important role
in the computability of all-loop quantities in the 't Hooft limit.

Even without the chosen gauge, the diffeomorphism symmetry of the theory is broken
down to the much smaller (orientation preserving part of -) Poincaré symmetry in 3d. We

retain the symmetry under simultaneous parity (or reflection) and negation of k (or \).



2. Background

35

2.4.1 Feynman Rules

The following is written in Euclidean signature. The propagators are given by:

| 5 ] |
i >~ I = —L—x{(¢;(-p) ¢ (p))

p2+m? — ie

and:

p L vep

4 Py
A AN ) _ Z’_Tr(sabv Cpp o <AZ (_p) Ab (p)> ]

The quartic scalar self-interaction can be written:

(2.4.9)

(2.4.11)

(2.4.12)
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so that the “decorations” o, 3 are unnecessary. 'The gauge interaction vertices are given by:

2, i
e = (pr—pa), (T“); , (all momenta outgoing) (2.4.14)
Lj
; v b
— g {T", Tb}; , (2.4.15)
J #s @

where {-, -} is the anti-commutator.

Let us further specialize to the ’t Hooft limit. Here we take N,k — oo with A = %
held constant. In any computed quantity, we must keep the leading terms in N. Our various
interactions carry factors of %, but those are offset by terms of the type 6! = N which arise
in “color loops”. This leads to the famous criterion that the relevant diagrams are the planar
diagrams. The theory can now be treated as U (V) and we can parameterize A by its

matrix-indices instead of its generator indices and represent it using double-line notation:

> i 2T\ V€ ;
z - e L L s o (A} (=p) (AL (). (2:4.16)

"This can be done formally, as in [19], by integrating out an auxiliary “heavy” field o to obtain the 4-point

interaction: 9
- N N by - by - \2
opp — E02 = - (\/ EU - 2N¢¢> + N (¢¢) (2.4.13)
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This way we need not keep track of generators. Our vertices become:

2,i

M= (p =), 0495, (2.4.17)

s

Ly

_g;u/a (2418)

A

where in the last graph we have suppressed the color structure, as we will continue to do
going forward since it is trivially represented by the edges of the graph. Note that the two

terms in the anti-commutator {T“, Tb}j. now appear as two distinct diagrams.

2.4.2 The Interacting Planar Scalar Propagator

Minwalla et. al. [19] state that the self energy ¥ is momentum-independent and that the
pole mass ¢ of the scalar propagator is given by:
A2 b
2 2 4 2
¢ =—c"——|c|l+m". 2.4.19
T =l + (2419)
We will now reproduce this by re-summing all planar 1PI graphs. Note that the manifest
off-shell Lorenz and Gauge invariance of this result is unexpected. Some basic diagramatics
indicate that the gauge propagator gets no corrections at leading order in /N, so we can ignore

such corrections in writing the diagrams below.
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Denoting the interacting propagator by:

| 5
i ———— i j (2.4.20)
p

We have:
k
Y = { > + /@\ (2.4.21)
P p p k+p p
k l
P k+p p—1 P
k

+ m + reflection, (2.4.23)

P p—k—1 p—k P

where we have organized all the diagrams participating in the process. This amounts to a
recursive definition of X - an integral equation. Solving it will give the all-loop self energy.

A few comments are in order:

1. The gauge propagator receives no corrections at leading order in %

2. The diagrams are all O (N°).
3. The rainbow diagram vanishes:

k

/@\ o Ve (k -+ 2p) (k + 2p)° = 0. (2.4.24)

4 k+p p

We therefore find:

S (p) = bali (B) + 270 (L (p, %)) — 21 (0, 2)) (2.4.25)
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with:

Pk |
L) = /(27r)3k2+m2+2(k‘2)’ (2.4.26)

L(pY) = /dgki 2"+ k7 (2.4.27)
2P Cr)’ kT (p+ k) +m2+ 3 ((p+k)%)’ o
LS — t/‘zﬁk Bl opt + 2k + 1t (2.4.98)
s\ @Cr)? @)’ K+ k+ D)2 +m2+ S ((p+k+1)°) o
+ +
X 2"tk (2.4.29)

(p+k)>+m2+ 2 ((p+k)?)
After straightforward algebra we find:
2 —2I; =17 (2.4.30)

Hence all integrals have been reduced to Lorenz-invariants and therefore all gauge dependence

is gone. Furthermore, all dependence on p vanishes. We conclude that:

Y (p) = const = byl (B)+ X (2x1, ()%, (2.4.31)

&k 1
L(2) = .
1 (%) /(27r)3k:2+m2+2

Using dimensional regularization we obtain:

1
L =——Vm?2+ Y= —M, (2.4.32)
47 47

which when plugged into (2.4.31) gives (2.4.19). Going forward we will denote ¢ = m and

forget about the original value.

2.5 Kinematics and Color

In this section we’ll discuss the kinematics of scattering - the participating momenta and
variables derived from them, choices of notation, the on-shell condition, etc. - and color
- that is, what kind of tensor structures we expect to see that involve the fundamental

representation indices ¢ = 1,..., N and generator indices a = 1,...,dimG.
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We will be concerned with connected, amputated correlation functions:

2,1 3, k

(0" (p2) &5 (01) &' (pa) & (P3)) (. = , (2.5.1)

1,7 4,1

and their on-shell limits (the S-matrix).We’ll think of all momenta as outgoing so that mo-

mentum conservation implies:
4
> pi=0. (2.5.2)
i=1

This (all-outgoing) approach is handy when one wishes to consider different channels of

scattering, as opposed to just one. Bose symmetry is reflected by summing over 2 classes of

diagrams:
2, i 3,k 2,0 3, k
_>|—>_
= +((2,2) < (4,1)) (2.5.3)
_4_1_4_
1,4 4,1 1, 4,1

Where the dashed line represents the most general exchange of any number of gauge Bosons
and “heavy o-s”. We are therefore free to consider only the first term. In fact, had we included
different “Havors” of scalar, and computed a “mixed” correlator involving two different flavors,

only one of the terms in (2.5.3) would contribute.
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We will define a basis of vectors:

s = p1+Dpe (2.5.4)

which we’ll refer to as the “Mandelstam basis”. The Mandelstam invariants are given in
Euclidean signature by:
S=—52T=—t*U=—u’ (2.5.7)

Due to momentum conservation, any 3 of the vectors {s,t,u, p1, p2, p3, ps} forms a basis with
which we can write all the external momenta in the problem. Of course, they also (generically)

form a basis for 2+1 dimensional spacetime. The inverse transformation is given by:

po= ;&H+m (2.5.8)
p2 = ;w%—w (2.5.9)
ps = ;—&%+m (2.5.10)
o %(—3+t—u). (2.5.11)

Given any 3 vectors v; we will often use the notation:
"’ (v1), (v2), (v3), = € (v1,v2,v3) = v1 - (V2 X V3), (2.5.12)

and:
E (v1,v9,v3) = sign (€ (v1, va,v3)) . (2.5.13)

2.5.1 On-Shell Kinematics

On shell we have:

P2 = 2p; p; + (pil)2 = —m? | in Euclidean signature (25,14
l 2p p; — (pf)2 =m? | in Lorenzian signature

We can also write this as:
S+T+U=4m?, (2.5.15)
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s-t=t-u=u-s=0. (2.5.16)

Hence the s,t,u basis is orthogonal on-shell! This also implies for any vector p:

€(s,t,u)

€(p,s,t) = p-u———=and cyclic rotations of s,t,u, (2.5.17)
u
e(s,t,u)’ = STU. (2.5.18)

2.5.2 The S-Matrix

The S-matrix tabulates the scattering amplitudes of the theory. Since those are observable,
the S-matrix, if properly computed should be a gauge-invariant object. According to the L.SZ
reduction formula, the S-matrix is the on-shell limit of connected, amputated momentum-
space correlation functions. Said correlation functions are not required to be gauge invariant,
although one can modify them into gauge-invariant functions by dressing them with Wilson
lines. Normally, in computing the S-matrix, such modification is unnecessary, and all gauge-
dependence falls off as one approaches the mass-shell. Nevertheless, as we’ll see in 4, this
naive expectation appears not to be the case, at least for light-cone gauge, in Chern-Simons
matter theory.

The S-matrix is a function of on-shell momenta, and can be written:

S ({Z% il ) = 00021 (1, pa; P2, p3) + 052002 (p1, P23 D3, Pa) + Seonnected (P4, Qi)
(2.5.19)

where a-s are color-indices. The [-s correspond to free propagation and are given by:

I (p1,pa; p3, pa) = 2Ep, (21)% 6% (py + o) 2B, (27)° 62 (P + Ba) ,

Ep = \/ m2 + ]_92,
while Sconnected 1S proportional to the scattering amplitude M:

Sconnected (pzv az) = Z 27T (Z pz> pu Oéi) . (2520)

Note that I (p1, ps;pe, ps) can also be written in terms of the scattering angle 6 between p;

and py and the center of mass energy E = 1/(p1 + p2)2:

I (pr,pa; 2, p3) = (27)° (sz> AnE hm (0(@+¢€)+6(0—¢). (2.5.21)

=1
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Our main interest is in:
M (pi, ;) = M (p1,Jip2, 403, k;pa, 1) (2.5.22)

where we have placed color indices and momenta belonging to the same particle side by side.

Since all generator indices are summed over, we can write:

M (p1, J; pas 5 3, ki pas 1)
= §;5IZCMD (pLZ-FfwéME (pLZ

Vv Vo
’direct’ ’exchange’

1, 4 1, .. 4
) (5}52 + 5115;) Mesym (pi) + 2 (5;512 - 51255) Masym (pi)
sym;etric anti—sy;;metric
. 1 . 1 .
= (5;5; — N&;dg) Ma (pi) + N&;a;/\/ls (pi) - (2.5.23)
N L N—
adj‘,oint singlet

The (anti-)symmetric, adjoint and singlet “channels” correspond to different irreducible rep-
resentations of SU (N), and must be gauge-invariant (e.g. independent of the choice of null
vector parameter v). A different way of organizing the color structure is to split M into

“color factors” such as:
Cp (T (T, (T°T*T°)" (17),, ({7, 1"}); ({1, 1"}), . - .. (2.5.24)

This will be more useful in the non-planar regime, as we’ll discuss in 3. There, we will also
discuss in more detail what constitutes a basis of such color factors.

The various amplitudes M are functions of kinematic Lorenz invariants, which in 3d are
the Mandelstam invariants S, T, U as well as F (p1,p2, p3) - the handedness of the triplet
of vectors p1,ps, p3. This is the only Lorenz invariant that isn’t invariant under parity or
reflection. In light of the Z, symmetry described in 2.2.3, the handedness must enter the
amplitude only through terms of odd power in .

2.5.3 Channels of Scattering

In our “all outgoing” convention, incoming particles will be represented by having negative
energy. W.Lo.g. we can take p} < 0 so that we always have at least 1 incoming particle. There
are then 3 configurations (consistent with both the mass-shell condition and momentum-

conservation) we may consider:
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Lp)<0,p)3>0=U>4m? TS <0. This is particle-particle scattering which

naturally decomposes into the symmetric and anti-symmetric representations.

2.p) <0,p8, >0= S5 >4m* T,U < 0. This is particle-antiparticle scattering

which naturally decomposes into the adjoint and singlet representations.
3. p3<0,p},>0=T2>4m? S,U <0. This too is particle-antiparticle scattering.

In the large N limit the Feynman diagrams split naturally into the “direct” and “exchange”
color factors 5}52, 5,@5§ which are related by Bose symmetry. We will keep only those with fac-
tor 6.6}, (and note that (8,05 — 30201 ) My (pi) =~ 6,0' M (p;)) so that we have the following

Correspondence:

S

T > 4m? + adjoint channel,

v

4m? < singlet channel, (2.5.25)

U > 4m? + direct channel.

That is to say that evaluating this set of diagrams with a particular choice of signage for the
Mandelstam invariants computes the amplitude in a particular channel. Having chosen our
color factor 5;52 the only question is which pair of indices corresponds to incoming particles.
The Mandelstam invariant corresponding to this pair is then the one to satisfy > 4m? (for

real, on-shell momenta). This leads to the following naive conjecture when S > 4m?:
1 .
Ms (S.7.0) = My (U, T, S) = My (T, S, U). (2.5.26)

Note the factor of 1/N - this comes from the prefactor 60, /N in (2.5.23), and effectively
“enhances” the singlet channel relative to the other channels. This, of course, is simply a
way of stating crossing symmetry. Of course, as discussed in 1, the actual relationship
is modified to 1.4. A crucial point is that for S > 4m? the vector s is timelike while ¢, u
are spacelike so we can pick our vector gauge parameter to satisfy v-t =0 orv-u =0
but not v-s = 0. These assumptions make the resummation in [19] possible. For this
reason, the authors were only able to re-sum the S-matrix in the adjoint, direct and exchange
channels but had to conjecture the form of the singlet channel. This suggests that the off-
shell correlator has some form of non-analyticity in S. We wish to better understand how

this arises.



2. Background 45

2.5.4 Gauge Invariance of the S-Matrix

Individual Feynman diagrams are often functions of the gauge parameter - whether it’s v,
as in our case, ¢ in -gauge or otherwise. This gauge dependence can remain even when we
some the diagrams to form off-shell correlation functions. However, the on-shell scattering
amplitudes must not depend on these parameters - they must be gauge invariant. Note that in
our case, individual Feynman diagrams are invariant under rescalings of v - which amount
to nothing more then our surviving boost symmetry. Hence our only actual parameter is the
spatial direction of v. Checking gauge invariance provides us with a valuable sanity check
for our calculations. The presence of v in expressions is also what breaks Lorenz invariance,
by picking out a preferred spatial direction. Hence, the restoration of gauge invariance is
equivalent to the restoration of Lorenz invariance.

Besides being a sanity check, we expect whatever unorthodox analyticity properties the
S-matrix exhibits to be easiest to see once Lorenz invariance is restored. Hence naively, a
crucial step in any calculation is to rid ourselves of the dependence on v. Our gauge choice
is very useful in reducing the number of diagrams for us to consider, but, at least initially,
hinders the consideration of analyticity properties. As we’ll see in 4, some of the 1-loop

quantities we compute are in fact gauge dependent.

2.5.5 Example: Tree Level Gauge Invariance

At tree level the S-matrix is a meromorphic function (it contains only poles), so naive crossing
should be satisfied. We will also see that it is gauge-invariant. There are 2 diagrams. The
first:

x ——, (2.5.27)

is trivially gauge-invariant. The second is simply:

4\ ;
Ptm = —i— (T, (1)

v+ (p1—pa) X (p3 — p2)
¥ :

v (p1 + pa)

(2.5.28)



46

Let us motivate:

(pr+pa)- (1 —pa) = P —pi, (2.5.29)
(p1+pa) (3 —p2) = —(p2+p3)-(ps—p2) (2.5.30)
= 1y~ Di. (2.5.31)

Both of these vanish on shell! Hence subject to the on-shell condition we have:
p1+pa L p1 — pa, p3s— P2, (2.5.32)
which, in a 2-+1 d spacetime implies:

(p1 — pa) X (p3 — p2) X p1 + pa, (2.5.33)

making (2.5.28) independent of v. In fact we need not even choose v to be null, we may

choose v = p; + p4 to get:

v - (p1 — pa) X (p3 — p2) (p1 + pa) - (p1 — pa) X (p3 — p2)

— 2.5.34
v - (pl +p4) (p]_ —|—p4)2 ( )
_ J@M%%X (2.5.35)
(p2 + p3)
What of the color factor?
(T (T*); = (T*®@T*); (2.5.36)
B 1 (T°RI+TRTY)(T*RI+1T®T) — (2.5.37)
2 (TaTa ® I) _ ([ ® TzzTa) . . LO.

This decomposition is an example of a more general formula - given irreps R; 2 and R; such
that:
Ri®@Ry=>» R, (2.5.38)

we have in the R; representation:

T4, © T4, = 31n, (C(R) — C(Ry) ~C (Ry)). (25.39)

With C (R) the quadratic Casimir invariant in the R irrep. We see that in each channel,

at tree-level, the interaction induced by the CS gauge field is the same as that obtained in
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the Abelian theory, except that the flux carried by each particle, and therefore the anyonic
statistics that the particles are imbued with, depend on the channel of scattering and are
proportional to (2.5.39).

In our case, however, we are can just make an Ansatz based on the tracelessness of T to
find:

(T*), (T = A (5;52— 6}1\?), (2.5.40)

This follows from the tracelessness of T%. We only need to find the constant A. We can do

this by contracting ¢ with j and [ with k:

N? -1
= w (T (2.5.41)
— (T (T (2.5.42)
= A(N*-1), (2.5.43)
1
4 = 5 (2.5.44)
In total we obtain:
2,1 a 3, k
i s
P+ s = ¥ (gigt - k0, (P12 ps). (2.5.45)
N N (p2 + p3)

luj a 47 [

Note that in the large N limit we can write 0%0} — % ~ 010}, so we get a result consistent

with [19]. We can also write this in terms of Mandelstam invariants:

2,1 a 3, k

/ 471'/\ 5Z (Sl SU
P1+ P4 = N (62(51 N ) FE (p17p27p3) T (2546)

1,7 a 4,1
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3 The 1-loop Non-Planar Scattering Amplitude

The modified crossing relation (1.4) was obtained in the planar limit. It is therefore natural
to ask whether it shows up away from the planar limit, or whether some other non-trivial
analytic behavior emerges.

In this section we discuss our non-planar one loop computation of a particular gauge-
invariant “color factor”. In fact, this amounts to a calculation in the Abelian theory, where
this color factor would correspond to the part of the amplitude of order e?e2 (if the Bosons
had different electric charges). We will start by discussing how we picked this color factor,
then we present its covariantization (and thereby demonstrate its gauge invariance), and
finally we discuss what form we expect the final result to take after the implementation of
integral reduction techniques and what that implies for modified crossing. While this result
is forthcoming, we indicate why it’s unlikely to exhibit the anomalous analytic properties

implicit in the modified crossing relation, and discuss the possible reasons for that.

3.1 The “Abelian” Color Factor

The 1-loop amplitude splits into 3 monomials in the coupling constants:
O (b), O (baX), O (N?), (3.1.1)

each of which must be separately gauge-invariant. Away from the planar limit we will focus
on the A\? terms, or equivalently, set by = 0. The modified crossing relation (1.4) doesn’t
depend on by so we shouldn’t miss anything substantial with this assumption. The relevant
diagrams are given in eq’ (3.1.2).

Note that (3.1.4) are gauge-propagator corrections that vanish in the planar limit. Simi-
larly the second term in (3.1.2) (the “cross-box” diagram) as well as both diagrams in (3.1.3)
are large-N suppressed, and their negligibility in the 't Hooft limit underlies the reduction
of the all-loop 4-point function into a resummable sequence of ladder graphs.

We further wish to locate an even smaller gauge-invariant combination of diagrams. Sup-
pose we considered the process with 2 different representations R;, one for each of the

scattering particles, then our diagrams will split schematically into “color factors™

(Tgh);f (TRQ); ’ (TIQ?J)Z (Tég)i ) (TRl)Z (Tg’,g)i ) (315)
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2,1 3, k 2,1 3, k
1M -+ (3.1.2)
bs=0
1,j 40 1,5 4,1
2,1 3, k
+ 1reflection (3.1.3)
1, 4,1
2,1 3, k 2,1 3, k
(3.1.4)

4,1 1,5 4,1

2,4

+ 3reflections

1,7 4,1

3,k 2,i 3, k

e

1, 4,1 L,j 4,1
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where the superscript is roughly an exponent. These are not, in general, independent. E.g.:

a a ( l aoc fca ( l
([TRNTI%J TRl)k (T}bﬁ)j X f ’ f ! (Tf(:iil)k (Tll;@)j
o \i " !
X (TR1)I<; ([TRWT}[)?J TI%Q)j'

In other words, they are related via the representation-independence of the structure con-

stants f%¢. We can therefore focus on the terms proportional to:

{TI%1’T£1}Z {TEQ’TgQ }2 : (316)

This “color factor” must satisfy gauge invariance by itself, as there is no prospect for a gauge-
dependent part in it to cancel against other color factors. It is simply the “fully symmetrized”
part of the middle term in (3.1.5). Of course, the mathematical manipulations by which this
invariance is made manifest are blind to the choice of representations, so we can drop the
generator subscripts going forward.

Which diagrams contribute to this color factor? First note that:
a b ¢ arpb) !
o« {71}, (T°T"), (3.1.7)

1 —
= S{r AT T (3.1.8)

« (T°T%) (T°T")!

J

(3.1.9)

1 i (ra [ . T l
= {7 I AT T~ 1 [T, 7°], [T, T°],,  (3.1.10)
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o (T°TY), (T°T") (3.1.11)

l
J

1. i (ra | . i 1
= .y AT Ty 4 g [ T [T T (3.112)

So to summarize we can write:

iM = i (”%)2 {1, 1"}, {1, 1"} iM ot (3.1.13)
And schematically:
2, i 3k 2,0 3, k
iM = i i +
bs=0,sym
1,j 40 1, 4,1
2, i 3, k 2, i 3, k
+ 2x ; )2 +2 x (3.1.14)
1,j 4,1 L ~ 4

The presence of the non-planar cross-box diagram on an equal footing with the box diagram
shows that this is an inherently non-planar quantity. This can also be understood in a
different way: in the Abelian theory all commutators vanish and so this color factor is simply
the O (M\?e3e) part of the amplitude (with ey 5 being the charges that take the place of Ry
in (3.1.5)). Hence we are simply considering the amplitude for G = U (1), and nothing could
be further from large N then U (1)!

We wish to rid ourselves of the v-dependence, subject to the on-shell condition. We
find that we can accomplish this and thus bring the color factor into the form of a sum
of covariant Feynman integrals. Using standard manipulations we will further reduce these

into scalar “triangles”, “bubbles” and “tadpoles” - that is - Feynman integrals involving at
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most 3 propagators and a numerator free of loop-momenta. These integrate into various
transcendentality 1 functions (logarithms, arctangents, etc.). Does this square with the

modified crossing relation (1.4)? Let us reproduce it here:

sin ()

— T/ naive 3.1.15
¢ Y S ( )

Sg = cos () I (p1,pa;p2,p3) +

T2ave is O (M) so the term we expect to see at O (A?) comes only from the first term:

— (7)1 (p1, pai p2. ps) - (3.1.16)

After extracting the overall momentum-conserving delta function this reduces to simply a
d-function at forward scattering ¢ (6). This doesn’t seem to be captured by our result. A
possible reason is that we use the Schouten identity to reduce box integrals into triangle
integrals in a way that isn’t valid at 6 = 0 (see below). Alternatively, it might be that
we must compute the off-shell correlation function and carefully approach the mass-shell -
this is the approach we take in section 4. Finally note that (1.4) is merely the result in
the planar limit. For all we know the non-planar theory may have completely unexpected
analyticity properties in the non-planar limit. It also could be that our specific form factor

simply exhibits the standard crossing symmetry.
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3.2 Gauge Invariance of the Color Factor

Let us first focus on the box diagram:®

_ / (dsk ! ! (3.2.2)

27T)3 k? + m? (k‘—pl —p2)2+m2

e(v,k+pi1,k—p1—2ps) €(v,k — pa, k+ ps+ 2p3)

v (k=) v (k+p1) (3.2.3)

The box can be thought of as two tree level exchanges in sequence, each of which, as we saw
in subsection 2.5.5 | is gauge invariant when the scalar legs leading to it are on-shell. Hence

on the residue of both scalar propagators we should be able to write:

e(v,k+pi,k—p1—2ps) R e(k—pi,k+pi,k—pi—2ps)

N — )P : (3.2.4)

We should be able to add-and-subtract this covariantized version of the box, and the difference
will be proportional to the on-shell condition - that is - to inverse scalar propagators! We can
see how that works using the Schouten identity: Using the on-shell condition and momentum

conservation we can write:

B4+m? = K —ply=(k—pa) (k+pa), (3.2.5)
(k—pi—p2)+m® = (k—pi—2p)- (k—p1)
= (k+pa) - (k+ps+2ps).

8The cross-box is related by a simple relabeling:

2,1 3,k 2,1 3, k

_ (3.2.1)

p24>p3

1,7 4,1 1 4,1

B Bk 1
N /(2ﬁ)3k2+m2(kp1p3)2+m2
e(v,k+p1,k—p1 —2p3) e (v, k —pa, k+ pa+ 2p2)
v (k—p1) v (k+pa) .
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This suggests we can use the Schouten identity” to write:

e(v,k+p1,k —p1 — 2p2) (/{;—pl)Qe(v,k—i-pl,k—pl—2p2)
v (k—p1) v (k—p1)(k—p)?
_ (k=p)-(k—m —2p2)e(v,k2—p1,k+p1) (3.2.7)
v (k=p1)(k—p1)
(k—p1)-(k+pi)e(v,k—pi,k—p —2ps)
ve(k—p) (k—p)*
€(k—pi,k+pi,k—p—2p)
(k—p1)°

As expected, we obtain a covariantized version of the propagator along with terms propor-
tional to inverse scalar propagators. We repeat this for the other gauge propagator, and for

the cross box so we are left schematically with:

iM = covariant box + covariant cross-box (3.2.8)
bs=0,sym

+ non-covariant triangles, bubbles, etc. (3.2.9)

We refer as triangles (bubbles) to terms where one (resp’ two) scalar propagators have been
canceled, as well as the actual triangle diagrams (3.1.14). We must deal with the non-
covariant part. A useful hint as to how to proceed is to change the mass of particles 1,4

relative to particles 2,3:

p; =pi = —mi # —mj = p; = p3, (3.2.10)

(K +m?) ™ = (B+md), (3.2.11)
(k—p1—p2)*+m?) " = ((k—p—p)>+md) | (3.2.12)
((k—p1—p)>+m?) " = ((k—pi—ps)* +m3) . (3.2.13)

Earlier manipulations such as (3.2.5) carry through. The amplitude in this deformed 2-scalar

theory must still be gauge invariant, and this tells us what terms we must combine - we may

9n our case this is simply:
4
0= Z (*1)11’35&“6 (D244 P3+i Pati) » (3.2.6)
i=1

where p,, n =1,...,4 are any 4 vectors and is understood mod 4.
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focus only one class of triangle diagrams:

2, i 3,k
(3.2.14)
1,5 4,1
These should be gauge invariant up to bubble terms where the scalar propagator:
(B +m?) " = ((k—p1) - (k+p) ", (3.2.15)

has canceled. Our expectation is to see the eventual cancellation of all the “spurious” poles
(v-(k—p)"", (v (k+p))~". Naively, we could try to just select an “algebraic basis” of
inner products which trivializes the on-shell conditions and momentum conservation, and
then see whether the poles cancel - this doesn’t work! The reason is that the poles may
cancel only when one remembers that the expression is under the integral sign - shifts and
reflections of our loop momentum k can be applied to different terms before combination.
Another issue is that our integrand isn’t expressed purely in terms of inner products - there

are also triple products - however, this is easily remedied by the identity:

3
Iy = — Y sign (o) [ o, (3.2.16)
ceS(3) i=1

or equivalently:

€(y,...,x3)€(y1,...,y3) = —det <{xl : yj}i,j:l,...3> : (3.2.17)

As for momentum shifts - since there is a unique scalar propagator (with mass m;) we expect
them to be unnecessary until we cancel all terms that have both a scalar propagator and a
spurious one. After choosing an appropriate basis we find we are left with only two terms
involving the scalar propagator and both of the spurious poles:

(v (p1 — pa))° (v (p1 —pa)? (k= p1) - (k + pa))°

(k2 +m?)v-(k=p)v-(k+ps) (k2 +m?)v-(k=p)(k—p)°v-(k+ps)(k+p)
(3.2.18)
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The reason is that we haven’t used all constraints available to us - namely, we haven’t used
the dimensionality off spacetime. Linear dependencies among the vectors can be expressed
using the Schouten identity, as we have done in (3.2.7). Another form of this identity is the

vanishing of the Gram determinant of linearly dependent vectors:

G(x1,...,x,) = det <{xl : xj}i,j=1,.--n) = Ofor n > 3, (3.2.19)

=0 = G(v,k—pi,k+psp1—pa), (3.2.20)

= (v (pr—pa)? (k= p1) - (k+p1)° = (v (pr—pa)? (k —p1)? (k+pa)* +... (3.221)

> - which all contain at least one

Hence the terms in (3.2.18) cancel up to the terms in “..
inverse spurious propagator. At this point we again simplify using an algebraic basis and find
the straightforward cancellation of all terms involving both scalar and spurious propagators.

After repeating for the “inverted triangle” terms:

2,4 3, k

, (3.2.22)
1,7 4,1

and applying a few momentum-shifts, we arrive at a fully Lorenz invariant and gauge invariant

integrand, involving no spurious poles. This expression is too long to be reproduced here.

3.3 Integral Reductions

The next step is to reduce our integrals to a basis of scalar integrals. In 3 dimensions, we
expect all diagrams to reduce to ones having at most 3 propagators (triangle diagrams). We

expect the final result to be a significantly simpler integrand satisfying the following:

1. No remaining gauge propagators. If any integrals remain that have a gauge propaga-
tor, then it can be “cut” (placed on-shell) along with the other propagators and the
result should be the amplitude of a physical process involving a gauge Boson. Since
Chern-Simons gauge Bosons do not propagate, we expect such a residue to be 0, and

hence with sufficient algebra the pole should turn out to be spurious. An exception is
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tadpole diagrams - those containing only a gauge propagator. However, those give no

contribution in dimensional regularization and so can be ignored.

2. In the planar limit (see 4) the 1-loop amplitude reduces (roughly) to an integrand that
corresponds to “pinching” all scalar propagators in the original diagrams derived from

the Feynman rules - a few scalar tadpoles which integrate to constants along with a

scalar bubble diagram which integrates to 47r\}75 arctan <2£ms) (see C). We thus expect

a similar result here, except that the cross-box should give rise to a “crossed” bubble,
with S — U.

How does one perform this reduction? We’ll describe it step by step.

3.3.1 Reduction of the Box Integrals

Our covariantized integrand is now given by:

iM = covariant box + covariant cross-box (3.3.1)
bs=0,sym

+ covariant triangles, bubbles, etc. (3.3.2)

The box and cross-box have a “tensor” numerator, meaning it contains powers of the loop mo-
mentum k. Our first step is to express all such powers as inverse propagators, so that they can-
cel the propagators giving “lower order” integrals (triangles, bubbles, etc.). There are 3 inde-
pendent external vectors, which we can choose to be any 3 of the vectors {s,t,u, p1, p2, ps3, P4}
, as described in 2.5. Hence we can write all the inner products in the numerator (slightly
redundantly) as:

K k-p;,i=1,2,3. (3.3.3)

Note that each box has 4 propagators. For instance, the (not-crossed) box has:
(B +m2) ™" (k=92 +m?) ", (k—p)™2, (k+pa) 2. (3.3.4)

Thus it is straightforward to solve for the inner products in (3.3.3) in terms of the inverse
propagators and kinematic invariants. This needs to be done separately for the cross-box,
although one can avoid this by using the relation (3.2.1).

Before long, we are left only with scalar box integrals. Reduction of these depends on the
3d nature of the problem and employs the Schouten identity. Specifically, we know that any

4 vectors are linearly dependent and so have a vanishing Gram determinant (determinant of
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the 4 x 4 matrix of inner products):

0= G (k,pl,pg,pg) . (335)

This expression can converted into a polynomial in inverse propagators and kinematic invari-

ants S,T,U. We can solve (3.3.5) to write unity as:

- Ppox (inverse box propagators)  Pxpox (inverse cross-box propagators)
B (T+U)ST? B (T+S)UT? ’

(3.3.6)

where P stands for “polynomial”. The denominators are simply the terms of order 0 in in-
verse propagators in (3.3.5). Now we can simply “multiply” our scalar box integrals with the
appropriate expression for unity to obtain an integrand composed only of triangles and lower
order integrals. Importantly, this reduction depends on the non-vanishing of the denomina-
tors in (3.3.6). Since the d-function we expect from the crossing relation (1.4) is supported
on T = 0, it is possible that by using this reduction we are missing something. Nevertheless,

let us proceed.

3.3.2 Reduction of Triangles

Reducing the scalar box integrals depended on the Schouten identity in a way that cannot be
used to reduce scalar triangles. However, we will see that tensor triangles can be reduced to
scalar triangles and bubbles. The key is that powers of loop momentum can now be expressed
as combinations of inverse propagators and numerators for which the integral vanishes! This

can be seen clearly with an example. Let’s consider the triangle integrand:
k=2 (k —p1) 2 (k — p2) 2 X numerator. (3.3.7)

We are ignoring mass terms and p; o here have no relation to our actual scattering momenta.
Now the inner products k2, k- p1, k- po can be expressed in terms of inverse propagators. But

what of other products? Consider the vector integral:

/ Bk Jot (335)
(2m)* k2 (k = p1)* (k — p2)* -

By symmetry considerations, it should evaluate to A (p{ + ph). The only important thing

about this is that it should vanish when “dotted” into a vector orthogonal to both p; and
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P2, such as p; X pg. This means that:

/ &’k ¢ (k. p1, pa) _ (3.3.9)
(2m)* k2 (k — p1)?* (k — p2)?

In fact, we can write more generally:

/ dgkg (cthpup))” (K%, k- pr, k- pa) = 0, nodd, (3.3.10)
(2m)" k2 (k — p1)” (k — p2)

where N is some polynomial. That this integral vanishes follows from the existence of an
isometry (reflection through the plane spanned by pi,p2) that negates € (k, p;, p2) but not
the other inner products.

Hence we can complete pi, po to a basis by adding the vector p; x po! Finally, note that
even powers of € (k, p1, p2) can be re-expressed in terms of k%, k-p;, k-p, using (3.2.17). Hence
all inner products in the numerator in (3.3.7) can be re-expressed as combinations of inverse
propagators and kinematic invariants up to vanishing terms like (3.3.10), proving that we

can reduce a general triangle to scalar triangles and bubbles.

3.3.3 Reduction of Bubbles

Reduction of bubble to scalar bubbles is very similar to the reduction of triangles. In our

case, we are left only with vector bubbles. These are especially easy to reduce to scalars.

Consider that:

Bk kH

= Apt. (3.3.11)
(2m)* k2 (k — p)°

Then we can write:

L&k kep
4= p? / (27)% k2 (k — p)* (3.3.12)
S (R S S

So for a general vector numerator we can write:

3 .
/ LN LY (3.3.14)
(2m)” k2 (k — p)

completing the reduction.
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3.4 Discussion

A trustworthy final result is forthcoming, so at present we cannot present a final expression.
Nevertheless, we find with high confidence that this color factor is gauge invariant. This
stands in contrast to our 1 loop results in the planar limit (see 3). Note that in the Abelian
theory we nevertheless expect to see a 0 function at forward momenta, so in the future it

could be worthwhile look more carefully at how this color factor behaves near § = 0.
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4 The Planar Scattering Amplitude

In much of the literature on the topic, including [19], computation is simplified greatly by
the assumption v - s = 0. For real v, s (in Minkowski space) this is only possible when s is
space-like. Hence one can use this assumption to compute the 4-point correlation function
and then go on-shell. Naively, there should be no problem in analytically continuing the
result to time-like s. The modified crossing relation (1.4), however, casts doubt on that. Eq’
(2.5.25) indicates that the results obtained for v - s = 0 should hold in the adjoint and direct
channels, but not necessarily the singlet. Our goal is then to compute the 1-loop amplitude
off-shell and without any assumptions about v or s. This will constitute a check on [19]’s
results, and perhaps show the emergence of (1.4) by direct calculation.

First, in 4.1 and 4.2, we’ll review [19]’s results. We will then describe 1-loop our calcu-
lations and results. We find agreement with [19] up to some gauge-dependent corrections.
In fact, we find that these corrections survive the on-shell limit, spoiling the amplitude’s
gauge invariance. However, these corrections exhibit some nontrivial structure - they take
the form of a prefactor multiplying the tree-level amplitude. We believe this suggests that
gauge invariance should be restored by dressing the amplitude with Wilson lines. Finally, we

discuss our results in 4.4.

4.1 The Effective Exchange Interaction for v-s =10

In the planar limit, with fundamental matter, diagrams like:

2,4 3, k

, (4.1.1)

1,7 4,1
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are sub-leading in % So are:

(4.1.2)
1,7 4,1

In other words, if we think of time as flowing left-to-right, interactions “across time” are sup-
pressed. To see this one can observe that most of those interactions, including (4.1.2) above,
can be thought of for purposes of N power counting as gauge-propagator corrections (think
of the 2 propagators leaving the lower line in the diagram as being one gauge propagator
contributing to its self energy), which we have already observed are non-planar. This means
that the interaction reduces to the sum of all ladder graphs. We follow [19] by looking first

at one “rung” on the ladder, which we can think of as an effective exchange interaction. This
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is composed of the following diagrams:

1 k
2, i 3, k 2, i a 3, k
= —.I— D1+ Pa
17 ] 47 l 1, j a 4, [
J l
2, 3, k
+ I + 3reflections (4.1.3)
1,j 4,1
2, 3,k 2,4 3, k
+ ; 2 + (4.1.4)
Ly 4,1 L 4,1

It has both tree level and 1-loop contributions. The gauge dependence is, as usual, limited
to the gauge propagators, and with an appropriate choice of shift for the loop momentum k

the three propagator denominators in the problem can be written:
1 1 1 1

, : . 415
kt —pi’ kT +pi pf +pi ut (415

The linearity of these denominators means that partial fractioning can be used to write:

! ! ! ( ! ! ) (4.1.6)

kt—pfkt+pf  pi +pf \kt—pf kT +pf
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Also, with this choice we have 2 scalar propagators:

1 1 B 1 )
2+ m2 (k—pi — )2 2 (h_ ) 5 (4.1.7)
(k—p1—pa)"+m? (k—s)"+m

With this in mind let us focus 2 of the propagator correction-like diagrams in (4.1.3). We will

strip off the factor of (—i%)2 from the propagators, as well as the N from the color-loop in

all of the following calculations. With that we have the integrand:

v s —p2) 1 (vx(=k=p1)), —(vx(pa—k)),
_( x(pu+p)) k2+m2< P ) (4.1.8)

_ops—ps 1 (kT4pl K —pf (11.9)
ut k24 m2 \kt —p kT +pf o
1 kt 1
= 2(pf —p}) (4.1.10)

k2 +m? k+ —pf kT +pp

where in the second line we have used a variant of (3.2.17) which is simply:

4.1.11
4.1.12
4.1.13
4.1.14

(U X pl) : ('U X p2) = gmméuwlplUylpll)lEMszpzvyng2
= ngeLjp{ELlplz
= (—pf) (-0%)

= UV-pv - Pa.

(4.1.11)
(4.1.12)
(4.1.13)
(4.1.14)

Hence these diagrams have combined to form triangle diagrams like those in (4.1.4). Let’s

examine one of those:

1 (wx(=k=p1)),—(vx(ps— k)"

o 4.1.15
Krm? k- pt K+ +pf (4-1.15)
S AR (4.1.16)
W2+ mikt —pt kKt +pr 1.
1 (k™ +pf) (k" —pf) — (k" —pf) (k" +pi)
k2 2 T 2 2 + + (4.1.17)
k*+m (k +m)(k3+—p1)(k+—i—p4)
1 kt 1 1
- ot _ F
TR +m? 2 (i —p) W m2kt — pr Kt +pr (4.1.18)
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We have extracted a “gauge independent part” (k? —|—m2)71. Let us combine the gauge

dependent parts we have so far:

kT 1 1
2 2 L+ _ ot L+ +(2(p
kT 1 1
—4-7 277 F11 LTS
k2 +m2kt —pl kT +p,

5 —ps) = 2(pf —pi)) (4.1.19)

(4.1.20)

Hence we see that it falls off for v - s = 0. Meanwhile, the covariant part is:

2\ 2 A3k 1 omA\” _|m|  wAZ|m)
ATAY N [ R b (EmAN D iml T m] 4.1.21
( ZN) /(271)3/€2+m2 (N) in N (4.1.21)

The remaining 1-loop diagrams in (4.1.3), (4.1.4) are simply a reflection of those we dealt with
so far and are identical with the replacement (k2 + m?)™" — ((k—s)+ m2)_1. The 1-loop
part of the effective exchange interaction, therefore, does not depend on external momenta

at all, and is gauge invariant off-shell. It effectively corrects the contact interaction:

b4 — b4 — 277')\2 |m| = —54. (4122)
Thus we find:
2,14 3,k
= 2mA v (p1 — pa) X (p3 — p2)
= by—1 4.1.23
! N v (p1+ pa) ( )
1,5 4,1
up to 2 additional terms that fall off under our assumption v - s = 0:
27m\)? ket et — st 1 1
ST + - - —u-s. (4.1.24)
N k2 +m? (K —s)" +m2/) kT —p kT +py

These will be shown to play a role when we compute the 1-loop correlator in 4.3.
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4.2 The All-Loop Planar Amplitude

Using the effective interaction we can write an integral equation for the amplitude:

2,1 3, k
2,1 3, k
= (4.2.1)
Lj 4,1
L 4,1
2,i 3, k 2,0 3, k
+ X . (4.2.2)
1,7 4,1 1,7 4,1
Which is solved in [19] to give the all-loop planar scattering amplitude:
4T\ SU
M= ik — 12.3
iM N (p1, P2, p3) T ( )
7 T —2i)\arctan ( =5
A\ (64 - 4m\/—s) n <b4 + 4m’)\\/—8) o~ 2ixarctan (42
i Vo —— (4.24)

N — (54 — 47Tz')\\/—_5> + (54 + 47ri)\\/—_5) e_%)‘arcmn< 2m )

This result was obtained for v - s = 0 so s is spacelike, which means S is negative. The first
term is simply the tree level contribution and is the only part of the amplitude odd in powers of
A. As discussed in 2.5.2, it enters the amplitude with a factor of the handedness E (p1, pa, p3),
consistent with Z, symmetry. That the second term is even in A can be seen by negating A
and then multiplying numerator and denominator by exp (—2@')\ arctan (%)) This also
means that the analytic continuation of the second term to positive S is unambiguous, since
we get v/—S — +iv/S but one can simultaneously replace A — F\, canceling the ambiguity

that under normal circumstances would be resolved by the ie prescription.
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Let’s consider the A\ — 0 limit:

1 by
= — 4.2.5
N arctan(—VQ;Ls) ( )
L+by— =+

arctan (E)

1 > 2m
= — ittt ————~ 4.2.6
N nZ:o 4 4/ =8 ( )
The result matches our expectation from a theory with only a quartic self-interaction in the
planar limit - a geometric sum of bubble diagrams.
The expression in (4.2.3) is merely the on-shell result. The full off-shell correlation func-

tion found in [19] is given by:

2. /29t pT 2 NI 2
iM = exp <—2i/\ (arctan( Pipy tm ) - arctan( PiPy £ )(}}7)

S| S|
+ _ f
x (mxsﬂi Pa j(|sL|,)\)), (4.2.8)
Di + Dy

<l~94 — 4\ |3L|> + (54 + A\ |3L\> e_%/\armn(%)

glsil,A) = 4miX|sy| s |\
~ . ~ . —2i)\arctan( 2#)
— (b4 — 47\ |SJ_‘> + <b4 + 4miA ]5L|> e

Note that since st = 0:

s | = Vs = V=5, (4.2.9)

and:
pi —pf  sipi —pf) —sT(pi —pi)  e(v.pi — D4, s) 191
LoF + = + + - ’ (4.2.10)
pr + D4 p1 + 1 v-t
making the expression in (4.2.8) match (4.2.3). But what of of the prefactor (4.2.7)7 It’s

important that in [19] the authors treat s as a real vector in Euclidean space, meaning that:

sT=(s")"=(-s)" =0, (4.2.11)

SO:

s=(0,0,5,) = (0,0, i\/—_5> . (4.2.12)
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When on-shell this gives:

0 = m?—m? (4.2.13)
= pi— 1 (4.2.14)
= pi—(p1—s)° (4.2.15)
= 2p-s—s° (4.2.16)
— opt (i\/—s) +8 (4.2.17)
2 S
= (m) = 7 (4.2.18)
A similar calculation leads to:
S
= (pr)" = D=l (4.2.19)
2v/2p p; +m?
o VD T i (51 (4.2.20)
s
Hence the prefactor (4.2.7) naively goes to:
exp (iSign (s*) A (arctan (i) — arctan (i))) . (4.2.21)

Although arctan (¢) is divergent, the authors argue that we should interpret this factor as 1.
Note that the function arctan also has a mn ambiguity, so hypothetically one could interpret

the limit as:
e, (4.2.22)

for some integer n. Of course this isn’t Z, symmetric, but it resembles the trigonometric
factors in the modified crossing relation (1.4). One could think of Z, symmetrizing by
averaging over A = A\, —\, to get:

cos (2mn) (4.2.23)

but this would only match the cosine in (1.4) for non-integer n = 3 and it wouldn’t be
multiplying the predicted J-function, but rather taking the place of % Hence the relation
between (4.2.7) and modified crossing, if there is one, is unclear. However, the presence of
such factors motivates us to carefully compute the off-shell 1-loop 4-point correlator away

from the v - s = 0 assumption, to which we currently proceed.
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4.3 The 1-loop Planar Amplitude

To get an idea of what to expect, let us expand [19]’s to orders b3, A? (we know that terms
odd in A like byA will not be present):

V=8
1arctan<w) , 1 /1 v-=5 m 2
M = NI e L g Y72 L M) e 4.3.1
iM TN /-3 R (W Samtan( 2m >+2W)( A (431)

+ ... (4.3.2)

We recognize the term 2rmA? as the 1-loop part of the effective exchange interaction (4.1.23).

The missing O (A\?) diagram at 1-loop is the planar box diagram:

2,14 3, k
(4.3.3)
1, 4,1
The O (b3) is also not very surprising, as it is simply the bubble integral:
2,4 3, k
k—s
i 1 V=5
=1 arctan (—) , (4.3.4)
N 4rv/-8S 2m
k

1, 4,1
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which we compute in the appendix C. The remaining diagrams are:

2,4 3,k 2, 3, k

1-loop

3,k

, (4.3.5)

4,1

where in the first line we keep only the 1-loop order terms in the effective exchange interaction.
Interestingly, the O (A\?) terms in (4.3.1) look roughly like what one would expect to obtain

from shrinking all gauge propagators.

4.3.1 O (by)\) integrals

The diagrams in (4.3.5) are O (byA\) and should vanish, at least when v - s = 0. Let’s focus

our attention on them'?:

/ Pl 1

3 7.2 2 2 2
; _J @)k +m®(k—s)"+m 4.3.6
oc I (p1,p2) e(v,k+pi,k—p—2ps) ( )
. v (k—p1)

/ A3k 1 1
2m)* kB2 +m? (k — 5)° + m?
€(v,k — pa, k + ps+ 2p3) - (437)
v - (k -+ p4)

10Recall that s = p; + ps = —p3 — pa
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Since the prefactor is (—bs) (—27i)) %, Zo symmetry requires the integral to be parity-odd,
which it indeed is. We perform these integrals in the appendix B.1 in Lorenzian signature,'!

where we find:

A
J (v, 1, p2) arctan (23L1,p2,lﬂ) ; (4.3.10)
2m A(pl,p%m) m(pl _p2)
with:
A(pr,p2,m) =€ (v,p1,p2)” — s ((m* +p3) pf + (m* +p}) p3) . (4.3.11)

It can easily be seen that either the on-shell condition or s™ = 0 are sufficient to obtain:

A= (e (v,p1,p2))?, (4.3.12)
giving:
1
I = —— arctan (—6 (v, p1,p2) ) . (4.3.13)
2 mu - (p1 — p2)

We find that for v - s = 0 this reduces to:

2m
2T

arctan (B>
[ =sign(s7) ———= (4.3.14)
The integral loses its p;-dependence and becomes almost Lorenz-invariant, except for the
pre-factor which is necessary for parity-oddness. The other integral (when expressed using
P4, $) is simply obtained by replacing p; — —py, but since in the v - s case p; is absent, the
two integrals match. Then the overall minus sign in (4.3.7) ensures the 2 diagrams cancel.

In general these terms do not cancel one another giving a final answer (reintroducing the

coefficients):
by A €(v e (v
M — i (arctan (M) + arctan (M>) . (4.3.15)
O(ba)) N mv - (p1 — pa) mu - (ps — p3)
HThere is a relative factor of —2 since (using anti-symmetry):
e(v,k+p1,k—p1 —2p2) = —2¢ (v, k+ p1,p1 +p2) = —2€ (v, k +p1,5) (4.3.8)

€(v,k —pa,k +ps+2p3) = 2€ (v, k — pa,pa +p3) = —2¢ (v, k — pa, 5) (4.3.9)
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4.3.2 O ()\?) integrals

Let’s move on to the O (\?) part of the correlator. We know from 4.1 that the 1-loop part of

the effective exchange interaction evaluates to:

272 |m)| ( : iant part)
= auge 1mnvarlan ar
1-loop N gans P

N 4(2m)2 < Kt kT — st

N _k2+m2+(k—s)2+m2
1 1
v
k* —pl k* +pf

) (4.3.16)

- 8. (4.3.17)

The “gauge dependent” parts proportional to v - s are integrated in the appendix B.1.1 but
we won’t use that result here. We’ll keep them in mind as we look at the remaining diagram,

the box:

or\)? [ Pk 1 1
__(@m) / : (4.3.18)
N ] R m? (k-8 +m?
1 41
—p —9 2 —
y €(v,k+pi,k th p2) € (v, k + p3+13f’k P1) (4.3.19)
k»+ -y kJr + P4
(27))” / Pk 1 1
. 4.3.20
N (27%) k2 + m? (k — 5)* + m? ( )
k k—
o Cktpys) ek —pus) (4.3.21)
kt — P1 k+ +p4
Note that for v-s = 0 we have:
_ + + .+ _ ot
e(v,k:—l—pr s)e (v, k pj'l_a s) _ sik +pik pi (4.3.22)
k* — p{ kt + py BT —pi BT+ ps
Etu®
Y _s (4.3.23)

(Kt —pl) (k" +p1)
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where we have used the fact that —S = s*> = s?. The gauge-invariant term —S when plugged

back into the integrand gives rise to another bubble diagram which integrates to:

. (-s) ﬁarcmn (%) - %% S arctan (é;_nf) L (4324)

consistent with (4.3.1). We expect the gauge dependent term to integrate to 0. One can see
that it does by integrating out £~. As discussed in the computation of the triangle diagram
in B.1.2, the £k~ integration localizes the range of k™ to (0,s%). As s — 0 the range shrinks
to 0, but there is a non-zero contribution nevertheless since for k™ = 0 the integrand becomes
finite and &k~ independent, leading to a § (0). In the case of the box, the “gauge-dependent”
part of the integrand is proportional to k*ut and so vanishes. However, we will be more
thorough and fully integrate the box for s™ # 0.
It will be useful to add and subtract the “bubble™

(27))° / Pr 1 1
4 N o (2m3) k2 4+ m2 (k — 5)° + m?’ (4.3.25)

in anticipation of its “popping out” anyway. Thus we are led to consider the integral:

(2m)2/ Pr 1 1
4 4.3.2
N (271'3) k:2—|—m2 (]{;—5)2—|—m2 ( s 6)
6(U7k+p175)6(vak_p475) )
+5). 4.3.27
( kt —pf k* +py ( )

The integrand is O (k7%), O ((l{;_)ﬁ) and O ((k’L)*d) and so is naively UV convergent.
However, a subtlety arises if one integrates out k= using contour integration. One of the
scalar propagators “shrinks” in the residue, making it so that the integrand becomes O (k7)
- linearly divergent. We wish to find a simpler integral to subtract from the box in order to
cancel the ~ k% (s+)2 term in the numerator. Since the scalar propagators contain terms of

order k%, one can imagine subtracting a “triangle” like:

/ Bk (st 1 1 / APk (s7)° 1 1

~ or ~ .

(27%) k2 +m? k+ — pi k* + pf (27%) (k — s)° + m2 k* —p{ k* +pj
(4.3.28)

However, this introduces powers of £~ into the numerator, which upon integration are eval-

uated at the residue k=~ = O (k?), so the integrand is still UV divergent. It turns out that

a unique combination triangle diagrams cancels the k2 (s*)* term in the numerator with-

out introducing powers of k7, and that combination is precisely the gauge dependent terms
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(4.3.16) that we said we should keep in mind. Thus we are led to consider the integral:

/ (dgk ! ! (4.3.29)

277'3) k% +m? (kj — 3)2 + m?

e(v,k—O—p}r, S)E(U,k—pia s) _ g2 (4.3.30)
k+ - pl k+ +p4
&k kTt K — st ! 1
.\ B N + 4.3.31
/(27T3) ( k? +m? (k—8)2+m2) S ( )

where we have divided out the prefactor 4%. Now integration of £~ only leads to a
logarithmic divergence O (kll) which gives rise to a finite “arc at infinity” contribution. This
integral should account for any difference between our result and the gauge invariant result
(4.3.1).

One can integrate this in exactly the same way as in B.1.2 (in Lorenzian signature). Note

also that thanks to the partial fraction relation:

1 11 1 1 (43.32)
kt—pf kt+pf  tt \kt—pf kTt +pf)’ o

the integral can be thought of as a sum of two triangle integrals, one related to the other by

a simple relabeling of momenta. Indeed, upon integration (in Lorenzian signature) we get:

arctan ( 2(1;)01(;22_’:1);“)

Al
4mtt \/A (p17p27 m) + s
+ ((p1:p2) < (—=p1, —p3)) (4.3.34)

p17p27m) - €<U7p17p2)€(v7p37p4)) (4333)

where:

A(pr,pa,m) = (e(v,p1,p2))° — s ((m* +p2) py + (m*+p})ps).  (4.3.35)

Note the similarity of this result to the one obtained at O (by\) - (4.3.10). This similarity will
become even more striking on-shell and for v-s = 0. As in 4.3.1 either the on-shell condition

or sT = (0 are sufficient to obtain:

A= (e(v,p1,p2))”, (4.3.36)
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giving:

4\
= 7]TV (arctan (M) +arctan( (v, P, p1) )) G(S’Ugu)(.él.?).?)?)

muv - (p2 — p1 mu - (ps — ps3) v -

On shell this changes slightly:

€(s,v,u)  €(s,t,u)
N 4.3.38
- T ( )
and for v - s = 0 (equivalently p; = —p;) it is:
ol oot L
6(U7p17p2> — ppo +p_1,’_p1 (4339)
mv - (p2 — p1) m (—2171 )
ol
= — 4.3.40
v ( )
: V=S
= — o —— 4.3.41
sign (s ) T ( )
but:
v—=>5
@) o () Y25 (4.3.42)
muv - (ps — p3) 2m
making it so that the arctangents cancel.
4.3.3 Final on-shell result
Putting it all together we get:
1 arctan (%)
iMy = — (b7 — 4mA%S) 4 2mX*m

N 4ny—S
Y <arctan (M) + arctan <M)) iMo, (4.3.43)

mv - (p2 — p1 mu - (ps — ps
where iM is the 1-loop amplitude and 1M, is the tree-level amplitude found in 2.5.5:

_ Amide (s, t,u) by
_ AL LU 4.3.44
iMo=———7F N (4.3.44)

We've obtained a result that matches [19] up to gauge dependent terms. The form of said
terms indicates some structure. In particular, it suggests that to restore gauge invariance
one must dress the correlation functions with Wilson lines connecting particles 1 to 2 and 3
to 4. It is possible that that the interaction of these Wilson lines with the scattering process

will give rise to a term to cancel (4.3.43). We are also missing a gauge dependent term that
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vanishes on shell but is present in the expansion of exponential prefactor in [19]’s off-shell
result (4.2.7):

2/ T 2 2. /20 2
— 24\ (arctan < pip, ) — arctan ( PiPy £ >> iM,. (4.3.45)

S1 S1

Although this has a similar form to (4.3.43), it is quite distinct. Most significantly, it vanishes
an shell, whereas (4.3.43) vanishes for st = 0. The reason for this discrepancy likely has to
do with sub-gauge conditions, that is - residual gauge freedom in light-cone gauge. The
Leibbrandt-Mandelstam propagator prescription corresponds to a particular sub-gauge. For
a discussion on various prescriptions and their relation to sub-gauge conditions we refer to
[10]. To obtain (4.3.43) we used an integration procedure (see appendix B.1.2) in which the
lightcone “energy” k~ is integrated first. Although naively we have used the Leibbrandt-
Mandelstam prescription, it is claimed in [8] that this integration procedure is equivalent to
the use of a prescription not involving k~, e.g. the principal value (PV) prescription which
in Lorenzian signature has the form:

1 k*

! _ (4.3.46)

1 1 1
— = - .
kt 2k‘+—|—i6+ 2kt — e (k+)2+52

Hence we have used a different sub-gauge than that used in [19]. The discrepancy therefore
does not contradict the calculations in [19] since it vanishes in the combined on-shell and
v-s = 0 limits. However, it is not consistent with the continuation of [19] for v -s # 0,
indicating a breakdown of gauge-invariance.

We can investigate the discrepancy by focusing on the integral that showed up in 4.3.1:

/ A3k 1 1 e(v,k+ p1,k —p1 — 2p9) (4.3.47)

om)? k2 +m? (k — 5)° + m? v (k—p1)

This can be thought of as the 1-loop form factor for the spin-0 current Jy = ¢¢ to create
a particle-antiparticle pair with combined momentum s, and so should be gauge-invariant

on-shell. If evaluated in a covariant gauge it has the form:

~ / &’k _1 L ¢ (k.1 p2) (4.3.48)
@)’ k2 +m? (k—pi—p2)? +m2 (k—pi)°

and so vanishes by Lorenz symmetry (the integrand is odd in the component of k along

p1 X p2). Hence if we subtract 0 in this form from (4.3.47), and use the Schouten identity
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and the on-shell condition, (4.3.47) reduces to:

-/ <d3k e (4.3.49)

om)® k2 +m? (k —py)°v - (k—p1)

These integrals are much simpler to integrate in the Leibbrandt prescription and together
yield 0 on-shell. The integrals vanish individually when £~ is integrated first (PV prescrip-
tion). This means that the on-shell arc-tangents in (4.3.43) are not reproduced if one uses
the Schouten identity prior to integration, leading to a contradiction.

How can this be? Leibbrandt claims |21, 20| that the PV prescription for light-cone gauge
integrals is inconsistent and demonstrates that they give inconsistent results and violate the
Ward and BRS identities in [21]. However, Capper claims that consistent results can be
obtained if one uses the “method of exponentiation of propagators” - a slight variation on the
Feynman trick [8]. We find that this method of integration likewise produces the arc-tangent
in (4.3.43), and so likewise gives inconsistent results.

Furthermore, we find that if the covariant integral (4.3.48) is integrated in light-cone co-
ordinates, then it doesn’t vanish as expected, but rather evaluates to an expression similar to
the arctangent in (4.3.43). In summary, it appears that integration in light-cone coordinates

has many subtleties and one has to work more carefully to make them well-defined.

What of the modified crossing relation (1.4)7 At 1-loop we expect a term:

(mA)°
N

8wES (6) (4.3.50)

where F is the energy and we have used the expression (2.5.21) for the identity matrix. Could
this ¢ function be hiding somewhere in our result? Note that arctan has an ‘n7m ambiguity
(for integer n). The “branch” we implicitly chose in (4.3.43) is ostensibly the unique branch

satisfying Z, symmetry, since:
AT\ € (s,t,u)
N T

is Zo-odd. However, we can rewrite this for small scattering angle as:

(4.3.51)

™

€(s,t,u) 0 1
—— =Fcot | - | =2FE-. 4.3.52
T co (2) 7 (4.3.52)
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This can be made Z, symmetric by writing:

. 8w\? 1 1
= E<6+z’e—9—ie> (4.3.53)
(A’
= 4dn———87F . 4.3.54
N 8nEJ () (4.3.54)

Although the coefficient isn’t quite right for any choice of n, it’s possible that a careful
calculation paying more attention to the ze prescription would give rise to such a term.
However, this is just a possible scenario.

A clue as to how this might happen comes from looking at the Wilson line dressed version
of the form factor (4.3.47). If one attaches 2 Wilson lines, one to each produced particles,
that head off to infinity in a specified direction n, the resulting 1-loop graphs have “Eikonal”

factors of the form: .

n-k’

where k is the loop momentum. Note that if one takes n = v then the Wilson lines are trivial

(4.3.55)

(by virtue of the choice of gauge v- A = 0) and so what remains is simply the “undressed”
amplitude! In this case the dependence of the “undressed” amplitude on v no longer reflects
gauge-dependence but rather dependence on the Wilson lines. This gives us a hint as to
what the a Wilson line dressed amplitude of this type (where all Wilson lines are infinite and
parallel) should look like in general - it should have the same form as the undressed amplitude
in light-cone gauge (or more generally axial gauge v? # 0) but with v replaced by n. Indeed,
the Eikonal factor has a form similar to the spurious poles of the gauge propagator in axial
gauge (in Chern-Simons as well Yang-Mills theory).

We find that indeed this is the case for the form factor (4.3.47). The diagrams involving
interaction between the Wilson lines and the propagating particles combine with the single
triangle diagram (4.3.47) present in the undressed amplitude in such a way that by the

Schouten identity one remains with:

/ A3k 1 1 e(n,k+p1,k—p —2p2) (4.3.56)

om)® k2 +m? (k — 5)° +m? n-(k—p)

This “replacement” carries through if one works in covariant gauge or in any other axial
gauge.
However, now one must find the regularization prescription for the spurious pole due to

the Eikonal factor. Requiring the Wilson lines to be invariant under gauge transformations
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at infinity gives the prescription:

1 1
- (4.3.57)

n-k n-k—ie

This prescription can be decomposed into “Eigenvectors” of parity:

1 _ 1PV+1 1 1 (4358)
n-k—ie  2n-k 2\n-k—ic n-k+ic e
1 PV .

And this is precisely the kind of d-function we need to produce the contact interaction term
in the modified crossing relation. More work is needed to understand this.

Although this is a possible scenario by which the d-function term might arise, we stress
that it is currently speculation and that the above discussion is not material to the rest of
this thesis.

4.4 Discussion

We have found that the naive scattering amplitude contains gauge-dependent terms, which

take the form of a factor:

=i (aretan (L e (2000 ), (141)

muv - (p2 — D1 mu - (p4 - p3)

multiplying the tree-level amplitude. Scattering amplitudes are observables, and hence one
normally assumes they should be gauge invariant, so what happened? The amplitude roughly

corresponds to a correlation function:

50t (8 (2261 (1) 8 (@0) 0 (23) ) (142)

where the positions are taken to be “at infinity” (far removed from one another). Under a
gauge transformation exp (¢A (x)), this will transform non-trivially, since the particles are
at different positions, unless A falls off at oco. To make this gauge invariant, one must take
a closer look at the Kronecker d-s in this expression. They project onto the case that the
particles are of the same color. Of course, the only real way to compare the color structures of

particles that don’t coincide, is to parallel transport one to the other, and only then project!
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This is precisely the purpose of Wilson lines:

010" (w2) di (1) = Wi (21)iy; & (22) 1 (1) (4.4.3)

This leads us to consider Wilson-line dressed correlation functions, as described in 2.3.4.
Usually in gauge theories, one assumes that the connection is flat at infinity so that one can
pick a gauge where all Wilson lines trivialize. However, the anyonic statistics induced by the
CS gauge field amount to a topological interaction and as such don’t “care” how far apart we
take the particles!

Indeed, the form of (41.3.43) suggests that it could be obtained from the Wilson lines
W (721) s W (7a3), given that is a sum of terms where one depends on p; 5 and the other on
P3.a.-

Another mystery that remains is the discrepancy between our result and that of [19],

although that vanishes in the combined on-shell and v - s = 0 limit.
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5 Unitarity and Form Factors

In this section we’ll show that the modified crossing relation (1.4) is crucial for consistency
with some previous results regarding the phase of the S-matrix|9] and certain form factors.
The motivation for derives from the phase exp (imA/2) of the form factors computed in [3],
and their similarity to trigonometric factors cos /sinc (7 ) found in (1.4).

Let us recall what form factors are. Given some local operator F on the theory’s Hilbert
space, a form factor is simply the matrix element of this operator between some in-state
and out-state (scattering states). We will focus on vacuum-to-out-state form factors, which
can be thought of as the amplitude with which the operator creates a particular out-state.
For instance, to make contact with our scattering notation, the form factor to create a
particle-antiparticle state with center of mass energy squared S = —s?> = E? (in Euclidean

or mostly-plus signatures) is given by:

F= - = o (P00); Al | F(9)[0). (1)
L

These form factors have been shown in [9] to satisfy:'?

F(p;) = e P RE* (—p:i) = e~ m(P=Bo) R (pi), (5.2)

0
Opt
mass-dimension of the operator (that is, scaling dimension without quantum corrections).

where R is a spatial reflection and D = ). p* is the dilatation operator and Aq is the
D — Ay is the anomalous dimension. The operator exp (—iwD) has the effect of negating
all the momenta. The form factor is computed using a small positive imaginary part which
enforces time-ordering. A negative imaginary part would give anti-time-ordering, hence there
is a branch cut on the real energy axis. For this reason e=P relates the anti-time-ordered
process at negative momenta to the time ordered process at positive momenta, via analytic

continuation (see figure 9).

12Tn [9] the operation R is missing. There is a remark that the identity should include CPT in order to
cancel the flip of momenta from e~*"P. In 241 dimensions, the CPT is not a symmetry and must be replaced
by CRT, which motivates the extra R in the above.
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F*
I

FIGURE 9: Analytic continuation induced by the operation e in the com-
plex energy-plane of a participating particle. The form factor is computed
using a small positive imaginary part which enforces time-ordering. A negative
imaginary part would give anti-time-ordering, hence there is a branch cut on
the real axis. For this reason e "™ relates the anti-time-ordered process at
negative momenta to the time ordered process at positive momenta. Picture

credit: Caron-Huot & Wilhelm|9]
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For the form factors .J,, we’ll be concerned with D = n + d — 1 and receives no quantum

corrections (D = Ay) at leading order in N|[22]|. Hence we should have:
Jo = RJ. (5.3)

We'll see based on results from [3] that the form factor to emit particles with relative angle
0 is:

Jp o< €m0 (5.4)

Since in Chern-Simons theory we must accompany R with a negation of A (see 2.2.3), this
appears to be consistent with (5.3). Eq’ (5.4) also indicates that the form factor to emit

particles with angular momentum n (see (5.2)) is:

A

Jp o< e (5.5)

This becomes relevant to another result from [9]. There, it was found that a variant of the

optical theorem implies:
F=SF~, (5.6)

with S the S-matrix. Hence we expect the phase of the S-matrix € (this notion will be made
precise in 5.2) to satisfy:
% = 1T = = 1, (5.7)

This will turn out to depend on the modified crossing relation (1.4). In this chapter, we
somewhat haphazardly analytically continue results obtained for v -s = 0 to timelike s. This
calls for a more careful 1-loop calculation, similar to the one we did in 4.3. Such a calculation
will have the schematic form of a triangle diagram much like (4.3.6), and so we should expect
the same kind of on-shell gauge dependent terms to arise. Potential future work could focus

on such a form factor, to see what might restore gauge invariance for v - s # 0.

5.1 Form Factors of Higher-Spin Currents

Higher-spin currents are an infinite set of traceless (w.r.t. the metric tensor) operators
{Jpkzeabiny - of increasing tensor rank - and therefore spin. They are described more
thoroughly in Section 4 of [4] where they arise in the context of the large N limit of N' = 2

super-conformal Chern-Simons-matter theory. Importantly, they are color singlets (e.g. Jy =
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¢¢) and therefore can only create particles in the singlet channel:

out <P(p1)j JA(pa)’ | Jrnbziin () | 0> = §16% (s — p1 — po) V2t (pys) . (5.11)

This form factor has been computed in [3] for the all-plus case p; = + together with the
assumption v-s = s* = 0. This was computed in a different theory then the one we’ve been

working with:
1. The particles are massless.

2. The quartic interaction is missing by = 0.

3. There is a sextic interaction 3332 (g?ﬁgzﬁ)g.
4. The theory is conformally invariant.

Nevertheless the planar all-loop 4-point correlator is computed in [3] for v-s = 0 and can be

shown to match with [19]’s result for m = by = 0. The form factor is given by:

+ —
Vbt (py,s) = ay, (pf) " exp | 2iA | arctan 2L — arctan | 2 by ,
. TS 3

(5.1.2)

where:
1. «,, is an overall normalization.
2. Ais a UV cutoff.
3. v-s =0 implies that s is spacelike so /—S is real.

If we take this on-shell we get:

|2pf pr
arctan | 2 p_l—gl %arctan(l):%, (5.1.3)

and if we take the cutoff to co we get:

A
arctan (2\/?5) — g (5.1.4)

Thus:
Vet (ps) = ap (pf)n els . (5.1.5)
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We can think of analytically continuing this result to timelike s and reinterpreting the +

direction as lying in the (spatial) plane perpendicular to s:
p= "0 0"), " =p" tip®. (5.1.6)

Then for massless on-shell p; we have pj o« Fe? where @ is the angle between py, py in the

spatial plane. Thus we have:
Vn+,+ ..... + <p17 3) _ Vn+,+ ..... + (E,@) x Enein6€i%>‘7 (5.1.7)

as stated in (5.4). We see that the spin n all-plus current component produces a state with

angular momentum n:
ITA

2 |E, n,singlet)

JI T (5)|0) x e (5.1.8)

out ?

with an overall phase 2, as stated in (5.5). This is exactly half the phase of the S-matrix
(5.2.13) in the singlet channel at angular momentum +n, obtained using the modified crossing

relation, as we shall see in 5.2.

5.2 The Phase of the S-matrix

The 2 — 2 S-matrix can be thought of as a function of S = E? - the center of mass energy

squared - and 6 - the angle of scattering. We can think of a scattering operator S satisfying:

dBoy
S|E,0y), — / S (B, 1 o) | oo (5.2.1)

Let us write an angular momentum eigenstate as:

o
B, n) :/—e—m9|E,e>,
2

|E,0)=> ¢ |E,n).

neL

We can similarly define the Fourier transform of the S-matrix:

S(E.0) =4E> 5, (E)e™. (5.2.2)
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Angular momentum conservation implies that momentum eigenstates should also be S-matrix

eigenstates, and indeed:

do i deou zn -
S|E, nin)y, = /% in 1"/87TEt4EZS Oin=0out) | B G (5.2.3)

deout —in; ¢
= / o' Snin (E) € infou |Ea 00ut>0ut (524)
= Snin (E) |E7 niﬂ)out ) (5-2.5)
where we have used the identity:
de
eltmr)l — g 5.2.6
/ o’ oz ( )

twice. We see that S, (E) is an eigenvalue of the S-matrix. Note that unitarity now implies

that such eigenvalues be complex phases:
1= 0 (E,n|S'S|E,n),, = |S. (B)]".

Let’s see how that works for the identity S-matrix (see (2.5.21)):

I(E,0) = 4nFE lin(l) (0(0+€)+6(0—¢)) (5.2.7)
=1,(F) =1 (5.2.8)

More generally we expect:
S, (E) = e, (5.2.9)

where s, is what we will refer to as the phase of the S-matrix. In the following we’ll always

assume n # 0. Now instead we consider the case:
0
My (E,0) = —4n\E cot 5) (5.2.10)

This function has a divergence at § = 0 but its principle value can shown to be (M,), (E) =
sign (n) mA. Clearly this has incorrect modulus to satisfy unitarity. Hence the “naive” S
-matrix:

So = I +iM, (5.2.11)
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isn’t unitary. On the other hand, if we mimic the modified crossing relation (1.4) and take:

S =cos(mA\)I+i Mo, (5.2.12)

sin ()
A

we get:
Sn (E) = exp (isign (n) wA) . (5.2.13)

Which has the correct modulus. This is part of what underlies (1.4). Of course, we see now
that it also ensures consistency with (5.7), and therefore with the “optical theorem” (5.6).
We'll now show that (5.2.12) is precisely the S matrix relevant in our case, up to some

irrelevant terms! We described it in 4.2, where its connected part iM was given by (4.2.3):

. AT SU
M = ZTE (plapZap3) T (5214)

AmA <l~74 - 47”)\\/—_5) + <l~)4 + 4m')\\/_—5> ~2inarctan (45
| N \/__S b ' b ; —2ilarctan ( %5
_ (b4 - 4772>\\/—_S) + (b4 + 4 A\/—_S) ¢ (52)

[\ J/

i(VS)

(5.2.15)

b

However, since we are interested in the singlet channel, we must multiply this by N as per
the naive crossing relation (2.5.26). The second term j depends only on v/—S ~ E and not
on 6, and will get projected out by the angular integration when computing S,, for n # 0.
Thus it doesn’t matter that this term is evaluated for m,b, # 0. We can focus on the
first term which is simply the tree level amplitude! We can pick the c.o.m. frame where
s=FE(1,0,0),t= %E (0,1 —cosf,—sinf), u= %E (0,1 + cosf,sinf) and rewrite:

SU €(s,t,u)

E (p1, p2; ps) T T Tz (5.2.16)
- B QSmf . (5.2.17)
— (1 —cosf)” —sin” 6
sin 6
= b 2.1
El — cosf (5.2.18)
_ _E51n(0‘/22)cos(9/2) (5.2.19)
sin® (6/2)

— _—Fcot Q . 5.2.20
(5) (5.2.20)
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Plugging that back in we get:
: : 0 : : :
iM = —4mi\E cot 5) 7 (E)=iMy—j(E), (5.2.21)

as required. Thus the modified crossing relation plays a role not just in the standard optical

theorem (unitarity of the S-matrix), but also in its variant (5.6).
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6 Conclusions and Future Work

We set out to investigate the analytic properties of the S-matrix in Chern-Simons theory
coupled to Bosonic fundamental matter, specifically as it relates to crossing symmetry.

Working at 1-loop in the planar limit (see 4.3), we relaxed the assumption v -s = 0, in
light cone gauge v - A = 0. Initially, we expected the amplitude to be gauge invariant, but
that result eluded us for a while. We came to see that the naive amplitude is, in fact, gauge
dependent. This substantiates the intuition in [19] that one must look at Wilson-line dressed
amplitudes instead. Indeed, the gauge dependent terms we obtain have the suggestive form
of a prefactor multiplying the tree-level amplitude.

Our 1-loop result agrees with [19] when both the on-shell condition and v -s = 0 are

satisfied. Apart from that, there are 2 discrepancies:

1. The all-loop result obtained in [19] has an exponential prefactor which evaluates to

unity on-shell, but away from the mass shell has the form:

2./t pT 2 NI 2
— 20\ (arctan ( Py ) — arctan ( PiPy M >) iMo, (6.1)

S1 S1

where 1M, is the tree-level amplitude. Our result instead has:

=i (aretan (L nctan (LD i, (62

mU'(pz—Ih mv-(p4—p3

and it actually survives on-shell but not for v-s = 0. This discrepancy most likely
has to do with sub-gauge conditions, but possibly also with problems in well-defining

light-cone integrals, as discussed in 4.4.

2. While it is true that the choice v - s is possible in those channels where s is a space-
like vector, we find that the gauge dependent part survives in those channels as well,
indicating that there is a problem to be resolved in all channels, rather than only in

the singlet channel.

The fact that both the O (bs) and O (\) terms in M, emerged from the calculation dressed
with the same overall factor is probably not coincidence. Hence, these results indicate that

we should instead consider manifestly gauge-invariant objects. Possible such objects include:

1. Wilson-line dressed 4-point correlators, as already mentioned, but also

2. Form factors of gauge invariant operators such as higher-spin currents, where the emit-

ted particles are dressed with Wilson lines, and
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3. Correlation functions of higher spin currents.

2 (without the Wilson-line dressing) and 3 have been computed, as mentioned in 5, by
Aharony et. al. in [3], in the v-s = 0 regime. So a similar one-loop comparison can be made.
We find that dressing the form factor with Wilson lines does in fact restore (off-shell) gauge
invariance (if one can trust the Schouten identity for possibly poorly defined integrands).

In both the planar and non-planar 1-loop amplitudes, the terms one would expect to arise
from modified crossing are localized at forward scattering. It could prove useful to revisit
these calculations and pay special attention to the § = 0 limit. The contribution at 2-loops
should have the form ~ \?i M, (up to constants), and so perhaps could be obtained directly
from a 2-loop calculation. Our past attempts at a 2-loop calculation have focused on its
covariantization (equivalently, gauge invariance). However, we now know not to expect a
gauge invariant result to begin with, and are equipped with full off-shell 1-loop results that
could significantly speed up such a calculation.

Our results at 1-loop away from the planar limit 3 appear to be gauge invariant. The
form factor we computed corresponds to an Abelian calculation, but together with the planar
result, the full non-planar 1-loop amplitude can be reconstructed. Hence one could say that
whatever nontrivial analytic properties of the S-matrix arise, they will likely have to do with
the “planar part” of the amplitude.

As an alternative to the covariantization and integral reductions described in 3, we can
use our planar 1-loop results to integrate the various diagrams comprising it. Hypothetically,
we might find that the various gauge dependent terms cancel.

In 5 we saw another way in which the modified crossing relation (1.4) plays a role in the
theory - it is crucial in satisfying the relations regarding the phase of form factors and of the
S-matrix derived in [9].

Another possible future direction is to study the S-matrix in the context of the brane
construction of Chern-Simons theory [29, 15]. In this setting, N coincident D3 branes in
type IIB superstring theory end on an NS5 brane. The low energy effective field theory on
the D3 branes is N' = 4 SYM. The NS5 brane, in general breaks some of the SUSY. However,
if one insists on the retention of certain subset of SUSY, the theory becomes topological. In
particular, the boundary action associated to the 3 dimensional intersection of the D3 branes
with the NS5 brane describes an SU (V) Chern-Simons theory with a gauge field constructed
out of the SYM fields. For details we refer to [29, 15]. In this configuration one can add
super-Wilson lines confined to the 3D boundaries. This gives a 4-dimensional viewpoint on

knot polynomials and is related to the study of Khovanov homology. One can try to couple
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such a theory to matter and study a 4d or higher dimensional realization of the S-matrix.
Perhaps an entirely different perspective on the modified crossing relation can be achieved.

Furthermore, one can consider the scattering of particles in different representations of
the gauge group. For instance, the scalars and spinors of ABJ(M) theory [5, 2] transform
in the bi-fundamental of SU (V) x SU (M). This can be studied from the perspective of
M-theory, or through its holographic correspondence with type IIA superstring theory on
AdS, x CP3.
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A Variation of The CS Action Under a Finite Gauge

Transformation

In this appendix we’ll show how the Lagrangian of pure Chern-Simons theory (2.2.6) trans-

forms under a finite gauge transformation.

Under a finite gauge transformation ¢ = e~** we have:
A, — gAg ! +igd.g! (A.1)
= gA,g ' —id,g97" (A.2)
= g(A— 9N g (A.3)

It will be useful to rewrite the Lagrangian in terms of the field strength:

A DA, — %EWPAN (0,4, — 9,A,) (A4)

_ %e“”pA#(Fueri[Ay,Ap]) (A5)

_ %e"””AMF,,erz’e“”pAMA,,Ap, (A.6)

Iy (1AMF,,p + 1z'AMA,,Ap) | (A7)
In > 3

We now transform the Lagrangian:
ko, 1 . . I
L — L+ Ly Tr —58#AF1,,, +1A,0,A0,A —iA,A,0,\ — gzauA&, + AJ,A
k 1
= L+ iEe“l’pTr (—GHAl,apA —1A,0,A0,\ — gz’aﬂA&,AapA) : (A.8)

We focus our attention on the first term:

P9, A,0,N = ie"0,A,0,997" (A.9)
= 0, (G“VPAyﬁpgg_l) — ie"”pAyapgaug_l (A.10)
= 00, (""" A,0,997") — ie"PA, 0,99 90,g" (A.11)

—0uA  i9,A

= i0, (" A,0,997") — i€ A,d,AD,A. (A.12)
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Plugging this back into (A.8) and rewriting the last term we get:

k k
= L+ Tr (Eau (e"””Ayapgg_l) + z'Ee“”pg_lﬁugg_lgﬁyg_lapg) . (A13)

B Integration in Light-Cone Coordinates

We will compute Feynman integrals in light-cone coordinates and discuss their technicalities.

B.1 Lorenzian Signature
B.1.1 Triangle diagram with 2 gauge propagators

Let’s consider the integral:'?

A3k kt 1 1
I(p17p2> = /(27‘1’)3 k2—m2 k+—p;r ]C“'—p; (Bll)

2,0 3, k

1,7 4,1

Let us make manifest our ie prescription (2.2.82):

/ A3k kt k= —py k= —py

(2m)? 2kt k= — (k1) —m2 +ie (k* —pi) (k= —py) +ie (kT —p3) (k= —py) +ie
(B.1.2)

What are the convergence properties of this integral? We can think of it as an integration of

2 vectors (kll k+) € R? x R:

3 kM ki — p¥ ki — b
/dk || | Py I~ P2y (B.1.3)

3 2 2 2°
(2m)" kjf = (k)" =m? L (ky = puy)” 5 (k) — pay)

In £ it is an O (k:”_3> UV-convergent rank 3 tensor integral. In k't it’s an O (sz) uv

convergent scalar integral. We can use this form to carry out integration in more-or-less

13This integral, as written, has —1 charge under the GL (1); symmetry (2.2.81). Therefore it should come
with some charge 1 prefactor like pf + p}' .
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standard ways such as the Schwinger trick[23]:

1 1 1
T ; . (B.1.4)
| — (K57 =m? (ky —puy)” (k) — pay)
dwdyd 1
= / e . (B.1.5)

GL(1) (8 = B =m2) 2+ (k= pug)*y+ (kg = po)° 2’)3

However, in this case it will be simpler to work directly with the form (B.1.2). Interestingly,
this form is O ((k‘*)_3> but is logarithmically UV-divergent O <(k‘)_1>. This is an arti-
fact of this choice of coordinates and is one of the many subtleties that arise in light-cone
integration. In this case, however, one can still integrate £~ using contour techniques, as long
as one pays attention to the contribution from the “arc at infinity”. To avoid this subtlety
we can start by integrating out k% or k. Integrating k* will introduce square-roots into the
integrand and therefore complicate its analyticity properties. Hence we start by integrating
k™ by contour methods. This will amount to summing a few residues to give an analytic inte-
grand. We can deform the & contour into the upper- or lower-half of the complex k™ plane,
but where are the poles located? It is here that a unique aspect of light-cone coordinates

becomes relevant. The poles are located at:

S(H) =5 3 =) 20-—m) (B.1.6)

When k= < 0,p;,p; all poles are in the upper half plane and so one can deform the contour
downwards to get 0. Similarly when k= > 0,p], p; one can deform upwards to get 0! Hence
the kT integral localizes k~ to a finite range! In general, we can choose to avoid one the three
poles in (B.1.6). Let’s choose to avoid the pole in the scalar propagator (k* — mz)_1 because
the residue there is the most “complicated”. Hence we will deform downwards for £k~ < 0 and

upwards for k= > 0. If p; > 0 we'll get a counter-clockwise residue:

[ee) P
/ dit / dk~ (+2mi) pt k= — py

2m 2 27 2pfk — (kL)Q —m? + e (pir — p;) (k‘* — p;) + i€

—00 0

(B.1.7)

If p; < 0 we'll get the same thing since:

2%

/Odk‘ (—2mi) _ / dk” (+2mi) (B.1.8)

2r 27 or 2w
0
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and of course we’ll get a similar term from the psy pole:

dk* [ dk~ 1
:Z“ / / S — 4 (14 2). (B.1.9)
[ — s 21 2pi k™ — (k4)" — m? + e

We are left with a finite-range integral and an infinite-range one. What is the preferred order?
Integrating &~ will introduce transcendentality 1 functions (logarithms) into the integrand -
functions that posses branch cuts and will interfere with contour methods for the L integral.
Integrating k* first will introduce square-roots, which won’t significantly complicate the k=

integral. So let’s start with k=:

Py
ipf  2mi [ dk™ 1
I = —%— — —+(1+2)
pi —py 27 / 2m 2\ /2pT k= — m?2 +ie
1 N p;dk:_ 1
= _+p1+/ — —+ (1+2)
2pi —ps ) 2™ \/2pTk — m2 +ic

1 1 1
= —\/prkr——m2 "

47Tp1 —p 0

! 1 \/2pi Py 24 +(1+2)
= —_— —m?2 —1im

dmpy —py \V P

1 1 _ _

A comment is in order - the integral in its initial form(B.1.1) appears to only be “aware” of p; o

+ (1 2)

through their “+” components, yet the final answer depends also on their “—” components.

These components enter the integral only through the 7e prescription.
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B.1.2 Triangle diagram with 1 gauge propagator

We'll consider the integral:

B 1 1 € (v, k+p1,s)
, _ B.1.11
<p178) / (2ﬂ)3 k2 — m2 (k—3)2—m2 (o (k—pl) ( )
- / $E 1 1 (b tpi) st = (R 4pi)s™ g
= (271')3 k2 — m2 (/{;—S)Q—MZ k+_p;r -
2,4 3k
N | (B.1.13)
1 4,1

As before, we can start by integrating k™ and again we’ll be forced to pick up 2 of the 3 poles.
This time, however, at least one of these will be a scalar propagator and will complicate our
integrand. However, unlike in (B.1.1) our integrand is O <(k*)72> - it is UV convergent in
k= - so we can start by integrating £~. This will localize the k™ integration to the range
(0,s™). Note that in the case s = 0 this range vanishes but at the same time the integrand
becomes k~ - independent at £ = 0 so we should get something like 6 (0). Although what
this means is unclear, suffice it to say that we don’t necessarily expect the integral to vanish
for s = 0, despite the empty range of integration. Note that with the ie prescription we will
have another pole:
1 k= —p;

ko—pf  (kt—pf) (k= —pp) +ie (B.1.14)

but the residue is proportional to € and can be neglected. Thus we choose to take only the

residue at (k2 —m2) ™ :

oo st
dkt [ dkt 1 1
I = 1 B.1.15
Z/ 2 / 21 2k+(k—5)2—m2 ( )
—00 0
(k++pf) SL_(]{'.L—i_plL) 8+‘ (B116)
K=t pa .

Interestingly, the new integrand is logarithmically divergent in k* - it is O ((kL)A). We

will have to include the effect of the arc at infinity when deforming the k' contour. First
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note that:

(k= 5)” = m?) 24| (B.1.17)

(ki) +m?2
2K+

= 25t (m2—ie) (B.1.18)

k—=

where ... doesn’t include m? and therefore doesn’t include ie. Hence the sign of s* determines
the sign of the imaginary part of the denominator. Note that sign (sT) is actually a GL (1),
- invariant since sign (s*e®) = sign (s*). Of the two poles in k*, one is in the lower half
k*-plane, and the other is in the upper. We will decide to pick up a particular pole, but
whether that corresponds to deforming the contour into the upper or lower half-plane will

depend on sign (s*). The arc at infinity contribution looks like (ignoring the numerator):

+ 1 + i6
/ dk / dk~ 1 _ / dk / idfe 1' 1 (B.1.19)
2m 2k+ k:+ —pf 21 2e" |+ — pf
st
1 dkt 1
— g + _
= —sien (s7) e e——— (B.1.20)

Combining this with the residue gives:

1. dk™ 1 stpL — stpl
I = —sign (s%) / 5 - =T T (B.1.21)
32T\ J=S (k) 4 Sktst —m2 (s) i

where S = s2. Note that we've sloppily ignored the ie prescription for the gauge-propagator
pole, but we’ll just get to the final answer and figure out how to resolve any ambiguity there.

Upon integration we get:

I sign (s) (sTpi — s*pf) o st —pl 2m?st — Sp — 2imsign (st) VA
8TV A pi —2m2st — S (pf — st) + 2imsign (st) VA )
(B.1.22)
A=-S (pf)2 + SsTpi —m? (s+)2. (B.1.23)

Interestingly, we can set sign (s7) — 1, since the argument of the log, which we can denote

B (sign (s*),...), can be shown to satisfy:

B (—sign (s7),...) = ; . (B.1.24)
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so that the combined expression:

sign (s1) log (B (sign (s7),...)) (B.1.25)

is actually independent of sign (s7). Hence we can rewrite:

I

_ stpb — stpt g <S+ —pf 2m?st — Spi — 2imV/A ) ' (B.1.26)

8TV A pi —2m2st — S (pi —st) + 2imy/A

The same algebra shows that this expression is independent of the branch chosen for v/ A
when A is negative, and that the expression is parity-odd as expected (in 4.3 it comes with
a factor ~ byA and so this parity-oddness is required to satisfy Z, symmetry). This behavior
under parity also tells us that we've chosen the right branch for the log - shifting it by
2mi would give rise to a term that is parity-even. Hence our sloppiness in disregarding the
i€ prescription appears to be inconsequential. Since all of these operations (parity, branch
choice for \/Z) amount to just complex conjugating the log’s argument B (at least when A is
positive, but one can analytically continue the resulting expressions to negative A), the fact

that it inverts B indicates that B is a complex phase B = €% so that:

[

log B = ifl = i arctan (%) : (B.1.27)

Hence we rewrite the result in terms of and arctan (we’ll also use variables p, = s — p1, Py
and 5):

I — pypi — P3Pt retan 2m (pf — p3) \/—m2 (pi + p;)z + Spips
smy/—m? (of +p5)° + Spi v} om? ((p})" + (v1)*) — Spipi

(B.1.28)
This can be further simplified. Note that for general x, y:

1 1—1
arctan (r) = —ilog ( zx) (B.1.29)
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1 1—dx1—1
arctan (z) + arctan (y) = éilog (1 " Z o Z) (B.1.30)
1 1—i=L
= —il — 5 B.1.31
2" 8\ Tz ( )
py
= arctan ( Tty ) : (B.1.32)
1—xzy
so in particular:
2
arctan (1 _:22) = 2arctan (). (B.1.33)
Now note that we can rewrite:
2
2m (pf — pi) \/—m? (of +p3)" + Spip .
2 2 o
2m? ((p})* + (1)°) — Spiw
\/* ( Py +p2) +Sp1 p2
_ G "’2> (B.1.35)
I 1.
| () 0)) ot i~ (o —03)
(m(pf —PQ))
\/me (pt+p3) +5pi Pt
i)
ETR I (B.1.36)
1 — m=\py TP2 51 P2
(m(pr‘pz ))
so we can finally write:
Lot — pipt \/—m2 i +03)" + Spip
I = Pabi — P2 i i arctan (v - 2)+ ! (B.1.37)
dm/—m? (pf +p3)” + Spiws m (vt — %)
Furthermore, after some manipulation we find:
2
—m? (pf +p3)" +Spips = €(v.pi,ps)? (B.1.38)
— st ((m® =p3) pr + (m* —pi)p3),  (B.1.39)
and of course:
papt —p3pi = €(v,p1,p2) (B.1.40)
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so that when either the on-shell condition p? = p2 = m? or the condition v-s = 0 are satisfied

we get:

— -~ arctan (M) . (B.1.41)
Am mv - (p1 — p2)

When st — 0 this further simplifies to:'*

2
47

arctan ( %)

I = —isign(s") (B.1.43)

B.2 Euclidean Signature

Let’s consider again the integral (B.1.1), but now in Euclidean signature:

A3k kt 1 1
I(plij):/<2’/T)3k2+m2k+—pfk+—p§r' (B21)

We'll see that this time around we can carry out the integral without the ie prescription, and

get the same answer (B.1.10) as in Lorenzian signature. The key is to write:

k* = |ky| e, dkTdk™ = |ky| d|ky| do, (B.2.2)

4Note that dependence on p; is lost. This could have been foreseen from the fact that the kT integral

localizes to 0 where: ool
c@hk+p,s) (K 4pr)st B.1.42
ey it (B.1.42)

and thus becomes p;-independent.
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~ [dke [k d|’f\/d96“’
=1 = / / o 2k2+/~c2+m (B2:3)

B.2.4
- kz+—p+k:+—p2 (B:24)

) /d/ﬂ /\md\k”\yg () 1 525

2m  2k{ 4+ kT +m?

X B.2.6
\’f|||€”—p1 |’ﬂ\\6’9—Pz (B.26)

_ dk [ k|’ d\kn\yg

N / / 2m 2k; +k2 +m? (B.2.7)

X (B.2.8)

\k|||Z—P1 \kn\z—pa

We have turned the # integral into a complex contour integral over the unit circle v. The

integrand is O (272) so we can safely deform the contour to infinity or shrink it to 0. If we

+
shrink to 0 we’ll pick up the pole at p; when ﬁ | < 1, and when we expand the contour to
I

+
infinity we’ll pick up the ﬁ;‘ > 1. Hence we can choose to avoid the py pole,
I
and we’ll pick up the pole at p; when |kH‘ is localized to a finite range, in a similar vain to

the localization we saw in B.1. If ‘pl ! < ’p§| we'll get:

24
, /dkj_/ k’n\ d k| 2mi ! Lt (B.2.9)

27 27 2kﬁ+ki+m2|k“‘pf—p§“

When ‘p | > |p ‘ we’ll get the same since:

|3 |
(—2mi) = / ori, (B.2.10)
+ +
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so we get:
1 dk |p;|]k5|d‘k’ 1
= L I ||
I = pf—p;/ 27 / o 2kﬁ+ki+m2 (B.2.11)
vt ]
2y
L diky| |k

_ (B.2.12)
pr—ps 27 9, [2k + m?
|1 |
V[
L1 / d(,/2k2+ 2) (B.2.13)
— —_— m L.
dr pf — p3 |
il
1

N Epfip; (\/2 pi [P+ m2 =2 \pTl2+m2)- (B.2.14)

If we further assume that that p; o are real momenta we get:

11
— +.0= -
I= e —— (\/2;92;92 +m2 — \/2pfp; +m2) . (B.2.15)

Does this match the result (B.1.10)? We’ll have to use p; p; — —p;p; and m? — m? — ie

so that:
\/ 205 Dy +m? = iy 2p p; —m?. (B.2.16)

Also the integral measure transforms:

kg — —id’ky, (B.2.17)
so we really should have included this factor to begin with. We get:
I I \/2p3 Py —m? — \/2pfpr —m? B.2.18
= (=9 EH Do Py —M" — /2P Py — M (B.2.18)
1 1

= —— 2ptpT — 2—\/2+_— 2 B.2.19
47Tpf—p; (\/ P1 Py m P2 Po m)a ( )

which matches (B.1.10) as expected.
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C The Bubble Integral

We wish to compute (ignoring coupling constants):

2,4 3, k

:/<d3k ! S (C.1)

2m )P K2+ m? (k — )’ + m?

1,5 4,1

We work in FEuclidean coordinates and we can assume s lies entirely along the L axis so we
can write k = (k:H =k k, = l):

2
_ /dkdl 1 1 (C.2)

2r)> K2+ 2 +m? k2 4 (1 — 5)° + m?

kdkdl 1
B / / 27T]€2+l2+m2/{32 (I —5)* + m? (C3)

124m?2
1 dl IOg <l2—2lsim2+s2>
8ms 2w (l — %5)

—0o0

o lo Ptls+m?+2-
- 1 / dl & l2—ls+m2+% (C 5)
-~ 8rs ) on l ' '

The remaining integral is UV (and IR) convergent since the argument of the log is unity for

[ — oo (and [ — 0). Hence we can use contour integration. The numerator:

2 2
log (12 +Is +m? + SZ) — log <l2 —Is+m?+ SZ) : (C.6)
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can be thought of as analytic in the upper half plane except on the line (branch cut) con-

necting [ = tm & 5. Hence the integral localizes as:

Finally we identify |s| =

Lj

) 2 2, 52
dl 12—ls+m?2+4-

1
= — — C.7
87 |s] 27 l (C.7)
im—|s|/2
sl/2 (2145) (21 +4im+-s)
B 1 d] Disc [lOg ( 20— s))(2l+4imfs)>i| (©3)
87| o l+im '
s|/2
e
i
= C.9
87r|s]/27rl—|—zm (C.9)

Isl/2

47 ||

V=5 to get:

4,1

|s| + 2im

1 Zl
—lo
arls]2 B\ 2
1 il
—lo
47 |s| 2 &
1 (!s
arctan | —

2m

- it
1—1—1%

> (C.10)

s| + 2tm

(C.11)

) _ (C.12)

g) . (C.13)

arctan
47T v — (
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