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Abstract

Chern-Simons theory is a �eld theory in 2 spatial dimensions where particles interact by a

generalized form of the Aharonov-Bohm e�ect. When particles circumnavigate one-another,

their quantum-mechanical wavefunctions acquire a complex phase, imbuing them with any-

onic statistics. It was recently discovered that in Chern-Simons theory crossing symmetry - a

symmetry relating processes with an incoming particle to ones with an out-going anti-particle

- takes on a modi�ed form. In this thesis we investigate this modi�cation by looking at 2→ 2

scattering of Bosons. We work in light-cone gauge and primarily at 1-loop in order to be able

to probe the non-planar regime as well as to compute the scattering amplitude directly in

various representations including the singlet-channel . We compute the 1-loop planar 4-point

correlator and obtain gauge-dependent terms that survive the on-shell limit. This suggests

that restoring gauge-invariance (possibly by dressing the amplitude with Wilson lines) might

lead to the modi�ed crossing relation. We perform a 1-loop calculation away from the planar

limit. Finally, we demonstrate how the modi�ed crossing relation is necessary to satisfy a

relation between the phase of higher-spin form factors and the phase of the S-matrix.
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La théorie de Chern-Simons décrit des particules se déplaçant dans un espace bi-dimensionel

et interagissant par un e�et d'Aharonov-Bohm généralisé. Quand une particule e�ectue une

rotation autour d'une autre, sa fonction d'onde quantique acquiert une phase complexe, at-

tribuant aux particules des statistiques dite anyoniques. Récemment, il a été découvert que

la symmétrie d'échange - une relation entre des processus impliquant deux particules, et

d'autres impliquant particule et anti-particule - existe sous une forme modi�ée dans cette

théorie. Cette thèse vise à clari�er cette modi�cation en étudiant en détail l'amplitude

décrivant les collisions 2→ 2 entre Bosons. Des calculs sont e�ectués dans une jauge axiale-

nulle, et surtout à l'ordre de une boucle, a�n d'explorer le régime non-planaire et calculer

directement l'amplitude dans diverse représentations incluant la représentation triviale. La

fonction de correlation est aussi étudiée pour des impulsions génériques (hors de la couche de

masse) et il est démontré qu'un terme dépendant de jauge survit dans la limite de la couche

de masse. Cela démontre que dans cette théorie, une dé�nition plus précise de l'amplitude

sera nécessaire pour restaurer son invariance de jauge (possiblement en incluant des lignes de

Wilson), et suggére une origine microscopique de la modi�cation de la symmétrie d'échange.

On e�ectue aussi le calcul à une boucle hors de la limite planaire. Finalement, on montre

que la modi�cation proposée est compatible avec une identité reliant la phase de l'amplitude

de di�usion et la phase de facteurs de forme.
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1 Preface

Chern-Simons theory is a 2+1 dimensional �eld theory that describes a �gauge �eld� - a

�eld analogous to the familiar electromagnetic �eld - and its interactions with other matter

particles. While the electromagnetic �eld in Maxwell's theory propagates (in the form of

photons) between charged matter particles such as electrons , thereby mediating the exchange

of momentum (force) between them, the Chern-Simons �eld is unable to propagate through

space. Instead, it �sticks� to charged particles. Particles then interact when they come into

contact with one another (and therefore with the Chern-Simons �eld carried by one another)

or through the Aharonov-Bohm e�ect [1] at a distance. This latter - purely quantum

mechanical - e�ect is present also in EM (electro-magnetism) and describes the interaction

of a charged particle with a narrow tube of electromagnetic �ux with which it doesn't come

into direct contact.

The Aharonov-Bohm e�ect revolutionized physics in 1959 by demonstrating for the �rst

time that the electromagnetic potential was an indispensable physical �eld, rather than a mere

mathematical tool. The underpinning of this e�ect is best understood through Feynman's

path-integral picture of quantum mechanics - the electron's motion is a sum (or integral)

over all possible paths it could take, with paths on either side of the �ux tube giving rise

to di�erent contributions to the �nal quantum mechanical transition-amplitude. This leads

to a change in the interference pattern of an electron whose motion has been split into a

superposition of such paths, as shown in �gure 1. In our familiar 3+1 dimensional world,

this is a feasible way for a particle to interact with a �tube� (or any �line-like� object), but in

2+1 dimensions, where particles are con�ned to a plane, there is also a meaningful sense in

which a particle can circumnavigate another particle! This is where Chern-Simons theory

comes in.

The e�ect of the Chern-Simons gauge �eld is sometimes described as imbuing particles

with anyonic statistics. While the familiar Bosons and Fermions obeying the familiar

Bosonic and Fermionic statistics acquire a phase of 1 (respectively −1) when identical quanta

are exchanged, anyons acquire a more general complex phase. The phase acquired when

circumnavigating the ��ux� carried by a particle can be thought of as such anyonic statistics.

For more on Yang Mills and other Gauge theories we refer to [23, 27] or any quantum

�eld theory textbook.

But what is the physical relevance of a theory that lives in '�atland'? Chern-Simons theory

has applications in Condensed matter theory, where one often deals with thin (e�ectively

�at) objects or with excitations that are con�ned to the 2d boundary of a solid, such as a

superconductor. In particular, it features heavily in our understanding of the quantum Hall

https://en.wikipedia.org/wiki/Flatland
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Figure 1: 1959 Experiment proposed by Yakir Aharonov and David Bohm[1].
A solenoid produces a tube of magnetic �ux, and electrons passing on either
side of it without coming into contact with it interfere in a way that depends

on the �ux. Picture credit: Y. Aharonov, D. Bohm [1].

e�ect[28, 14], where the �Hall conductivity� of a conductor becomes quantized. It is also

of interest to physicists studying 2d rational conformal �eld theories[24] or the AdS-CFT

correspondence[16], and to mathematicians studying knot theory[30]. We elaborate on this

last connection in 2.3.

In one variety of Chern-Simons theory (the one we'll be studying in this thesis) the

matter content of the theory is comprised of a single N -component massive Bosonic scalar

�eld φi, i = 1, . . . , N , transforming in the fundamental representation of the gauge group of

the theory SU (N) - that is to say that it is �charged� in a sense that generalizes the electric

charge, and that its charge is like that of the electron's - a fundamental building block for

other charges. The (Euclidean) action of the theory (see the review in 2.1) is given by:

S = SCS + SBose-matter, (1.1)

SCS = i
k

4π

ˆ

M

Tr

(︃
A ∧ dA+

2

3
A ∧ A ∧ A

)︃
(1.2)

= i
N

4πλ

ˆ
d3xϵµνρTr

(︃
Aµ∂νAρ −

2i

3
AµAνAρ

)︃
,

SBose-matter =

ˆ
d3xDµφ̄D

µφ+m2φ̄φ+
1

2N
b4
(︁
φ̄φ
)︁2
, (1.3)

where A is the gauge �eld, and other symbols are de�ned in 2.4. There is evidence that

this theory is dual to, meaning it is physically equivalent to, a similar theory where this

matter �eld φ is replaced by a Fermionic �eld in the same representation[19, 18, 3]. The free

energy (also known as the thermal partition function) has been computed[6, 4, 18, 3] in the

't Hooft limit, also known as the large N limit and as the planar limit (this could be thought

https://en.wikipedia.org/wiki/Hall_effect
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of as an approximation where the number of particles in the theory is large, suppressing the

contribution of certain processes in the computation of various quantities - see 2.1.5) and has

been shown to match in the two theories.

Fermion-Boson dualities have been known to occur in 1+1 dimensional theories, and there

they are best understood; explicit Bosonization (or Fermionization) maps are known that re-

late the �elds in one theory to those in the other. Chern-Simons theory is the only known

example so far in higher dimensions. In search of such a Bosonization (or Fermionization)

map for Chern-Simons-matter theories, the authors in [19] opted to compute the S-matrix.

The S-matrix is simply an object that �tabulates� the scattering amplitudes of the theory.

Since the Chern-Simons �eld has no propagating modes, the matter particles are those that

can be used in scattering experiments. The bene�t of the S-matrix is its gauge invariance,

and for this reason [19] chose it as their object of study. The �elds themselves as well as their

correlation functions are gauge dependent and as such aren't �real� but rather include redun-

dant, unphysical information - in a similar vain to how the phase of the electron wavefunction

isn't real.

The present project was initiated by one of the results in [19], which concerns the crossing-

symmetry of the S-matrix. Crossing symmetry relates scattering processes involving an in-

coming (outgoing) particle with ones where it's been exchanged with an outgoing (incoming)

anti-particle. It is one of the reasons why anti-particles are sometimes described as �parti-

cles moving back in time�. This is a manifestation of CPT symmetry - a symmetry that

simultaneously:

1. T - time reversal - reverses time,

2. C - charge conjugation - exchanges particles with anti-particles and

3. P - parity - inverts space (x → −x) (in even dimensions) or re�ects with respect to

a spatial plane (in odd dimensions). In the latter case it is sometimes known as R -

re�ection, and is the one that is most relevant to us.

For further reading about the S-matrix, crossing symmetry and CPT symmetry we refer

to [13, 25]. This symmetry could also be understood as analyticity of the S-matrix as a

function the momenta of the participating particles. This is best understood in a tree-level

perturbative calculation using Feynman diagrams (see 2.1.4), as computing the di�erent

processes translates immediately into evaluating the rational (and therefore meromorphic)

functions for di�erent values of external momenta. For instance, in 2 → 2 scattering of

particles with mass m, if the incoming momenta are denoted p1, p2 we denote the center-

of-mass energy squared as s = (p1 + p2)
2 ≥ 4m2. If we think of the 2 → 2 S-matrix as an
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Figure 2: A trajectory in the complex s-plane connecting two scattering pro-
cesses without crossing branch cuts. The process A stands for particle-particle
scattering whereas the one at B stands for particle-anti particle scattering.

Picture credit: Eden et. al. [13].

Figure 3: Branch cuts in the complex s-plane. Picture credit: Eden et. al.
[13].

analytic function of s, we can think of analytically continuing it to the region s < 0 and

then s can be reinterpreted as the momentum-transfer squared between an incoming particle

and outgoing anti-particle. This analytic continuation in the complex s-plane is presented

in �gure 2. Standard unitarity arguments [13] show that the S-matrix has branch cuts in

the complex s-plane originating in so-called �normal thresholds� like s = 0, 4m2, 9m2, . . . (see

�gure 3) where the incoming particles have enough energy to produce the particles in an

intermediate process. Other branch cuts (�anomalous thresholds�) may also exist. Figure 2

demonstrates how one can relate the process at A (particle - particle scattering) to one at

B (particle - anti-particle scattering) without crossing any of the branch cuts. Note that we

give s a small imaginary part (an iϵ prescription) to pick the right branch of the S-matrix.

One remarkable result from [19] was the modi�ed crossing relation (eq' (3.11) of [19]):

SS = cos (πλ) I (p1, p2, p3, p4) + i
sin (πλ)

πλ
T naive
S , (1.4)

where:
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1. SS is the singlet-channel S-matrix, found in the decomposition of the particle-antiparticle

S-matrix into irreducible representations:

(SPA)
jl
ik =

(︄
δliδ

j
k −

δji δ
l
k

N

)︄
SA⏞ ⏟⏟ ⏞

adjoint channel

+
δji δ

l
k

N
SS. (1.5)

2. T naive
S is the connected singlet-channel S-matrix naively expected to arise from the

standard crossing relation (analytic continuation from the A (adjoint) channel or from

the particle-particle S-matrix). In standard crossing the cos and sinc1 are replaced with

1.

The meaning of these di�erent channels is described in 2.5.2. Modi�ed crossing implies

that the analyticity properties of the S-matrix are unorthodox in this theory. The cos term

is actually somewhat expected, as it re�ects the contact interaction due to the trapped

�ux carried by each particle, and is present already in the standard quantum mechanical

Aharonov-Bohm e�ect[1]. The magnitude of this �ux is suppressed in the large N limit for

the other channels of scattering, which is why it is absent there.

The authors conjectured this relation in order to satisfy unitarity constraints that

they derived. This conjecture was shown to hold non trivially in the non-relativistic limit

[12]. The authors believe the modi�cation to the crossing relation follows from the anyonic

statistics that the particles are imbued with by the Chern-Simons gauge �eld, and have given

a heuristic argument based on knot invariants in the purely topological gauge sector of the

theory.

Our central motivation is to better understand this modi�ed crossing relation. Our main

approach has been to compute the S-channel scattering equation directly. The S-matrix was

successfully computed in [19] in the other channels. This computation was made possible

in light cone gauge (A− = 0) by use of a simplifying assumption about the external momenta

that is invalid in the S-channel. We wish to relax this assumption and make perturbative

calculations to see the emergence of this non-analyticity directly. We also wish to check

this relation in the non-planar theory. Those are the main goals of the project.

1.1 Outline and Summary of Results

In section 2 we review the background material relevant to the project. We start with a quick

review of gauge theory and �eld theory 2.1. Next 2.2 we review pure Chern-Simons theory

1sinc (x) := sin(x)
x
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(the theory without matter �elds). In this section we perform calculations determining the

theory's Lagrangian, demonstrating its gauge invariance and the quantization of the Chern-

Simons level k, and justifying the statement that the theory lacks propagating degrees of

freedom. We then proceed to discuss the connection knot theory and knot invariants2.3, and

illustrate said connection with explicit calculations in the Abelian U (1) theory. In subsection

2.4 we discuss our variety of Chern-Simons matter theory by including the aforementioned

fundamental scalar �eld φ. We reproduce the all-loop self-energy of scalar cited in [19] by

solving an integral equation (see 2.4.2). The last part of the background section is a review

of scattering kinematics and the S-matrix 2.5. We compute the tree-level S-matrix and

demonstrate its gauge invariance.

In section 3 we discuss our attempts to compute a �color� factor of the 1-loop amplitude

away from the planar limit. This color factor is in fact precisely the Abelian part of the 1-loop

amplitude - in the Abelian theory it would constitute the entirety of the amplitude at that

order in the coupling constants. We �nd that we are able to demonstrate gauge-invariance.

Final results are forthcoming, but it appears that the analyticity properties of the result are

not anomalous for a QFT in a way that would give rise to a modi�ed crossing relation. We

discuss the possible reasons for this.

In section 4 we discuss the planar connected 4-point correlator and its on-shell limit

(the 2 → 2 S-matrix). We review the all-loop results from [19] and discuss the simplifying

assumption v · s = 0 used there and its implications. We reproduce the �e�ective exchange

interaction� described in [19] and show how it is modi�ed when one relaxes the assumption

v · s = 0 (see 4.1). We compute the o�-shell 4-point correlator at 1-loop in generality (4.3)

and �nd it includes terms that are gauge-dependent on shell. We discuss the possible reasons

for this.

We proceed to section 5 where we compute the phase of the S-matrix and show how the

modi�ed crossing relation is necessary to satisfy predictions found in [9] regarding it and

regarding the phase of form factors.

Finally we conclude the work so far and describe future work in section 6.
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2 Background

In this section we review the background material relevant to the project. We start with a

quick review of gauge theory and �eld theory in 2.1. Next, in 2.2, we review pure Chern-

Simons theory (the theory without matter �elds). We then proceed to discuss the connection

knot theory and knot invariants2.3. In subsection 2.4 we discuss our variety of Chern-Simons

matter theory by including the aforementioned fundamental scalar �eld φ. The last part of

the background section is a review of scattering kinematics and the S-matrix2.5.

2.1 Gauge Theory and Field Theory

In this subsection we'll go through a short and basic review of quantum �eld theory and

gauge theory. We will also describe the large N limit.

2.1.1 Classical Theory - KG and Maxwell Theory

A classical �eld theory describes the dynamics of a �eld by means of an equation of motion -

a partial di�erential equation. For instance, Klein-Gordon theory describes a real or complex

scalar �eld φ evolving according to the KG equation:

∂2φ = ∂2t φ−∇2φ = −m2. (2.1.1)

Wavepacket solutions to this equation behave like relativistic particles with mass m. This

theory is free - there are no interactions between particles. This follows from the fact that

(2.1.1) is linear in the �eld φ so solutions satisfy the superposition principle.

Another free theory is free Maxwell Electrodynamics (in 4 space-time dimensions), which

describes a vector �eld Aµ satisfying Maxwell's equations:2

∂µFµν = 0,

ϵµνρσ∂νFρσ = 0, (2.1.2)

Fµν ≡ (dA)µν = ∂µAν − ∂νAµ.

This is also a gauge theory, as it satis�es a gauge symmetry:

Aµ → Aµ + ∂µλ, (2.1.3)

2Note that (2.1.2) is known as Bianchi's identity and is trivially satis�ed by virtue of the commutation of
partial derivatives and the de�nition F = dA.
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for some scalar �eld λ. Gauge symmetries are understood to be redundancies in the de-

scription of the system, as opposed to real, or global symmetries which relate physically

distinguishable con�gurations. In a gauge theory one must often make a gauge choice - that

is - exhaust the gauge symmetry by satisfying some condition, such as ∂µAµ = 0 or A0 = 0.

Most �eld theories can be described using the action principle - the E.O.M. is equivalent

to the statement that the �eld extremizes the action functional S:

E.O.M. (φ,A, . . . )↔ 0 =
δS

δφ
=
δS

δA
= . . . (2.1.4)

For instance, Maxwell's equations can be obtained by varying the action:

SMaxwell = −
1

4g2

ˆ
d4xF µνFµν , (2.1.5)

with respect to Aµ (g is a coupling constant). We can couple the gauge �eld A to a

background current Jµ (x) by adding a term ∼ AµJ
µ to the Lagrangian (the integrand of

the action), which gives rise to an inhomogeneous (�source�) term ∼ Jµ for the E.O.M.

When the Lagrangian is at most quadratic in the �elds, as is the case in (2.1.5), the theory

is free. Otherwise, it is known as an interacting theory, as solutions no longer satisfy the

superposition principle. An example is scalar QED, which couples Maxwell's gauge �eld Aµ

to a complex scalar φ:

SQED =

ˆ
d4x

(︃
− 1

4g2
F µνFµν +Dµφ̄D

µφ+m2φ̄φ

)︃
, (2.1.6)

Dµ = ∂µ − iAµ. (2.1.7)

Dµ is known as the gauge-covariant derivative. This Lagrangian contains terms cubic (∼
φ̄A ·

(︂←−
∂ −−→∂

)︂
φ) and quartic (∼ φ̄A2φ) in the �elds. These are known as interaction terms.

The theory which describes the EM force in the real world (QED) is precisely this theory,

except coupled to a Dirac spinor instead of a scalar.

2.1.2 Abelian Gauge Theory

The gauge symmetry that keeps the action (2.1.6) invariant is:

φ → eiθ(x)φ, (2.1.8)

Aµ → Aµ + ∂µθ. (2.1.9)
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This symmetry can be identi�ed with the group U (1) of complex phases - θ parameterizes

the gauge transformation by telling us what element of the gauge group (U (1)) is chosen

at each point in space-time. Electrodynamics is known as an Abelian gauge theory because

the gauge group is Abelian - all elements commute. From this point of view, the covariant

derivative (2.1.7) could be understood as a derivative modi�ed to take into account the fact

that φ's phase is not an observable - its variation over space-time is therefore not entirely

physical, but could be a re�ection of our gauge choice.

The covariant derivative is also known a connection - it allows us to compare φ's phase

at di�erent positions in space-time. φ can be said to be covariantly constant on a curve

γ : [0, 1]→M if:

γ̇µDµφ = 0, (2.1.10)

where γ̇ = dγ
dt

is the tangent vector to the curve γ. The solution to this equation is:

φ (γ (1)) = φ (γ (0)) ei
´
γ γ̇µAµdt. (2.1.11)

We can say that φ (γ (1)) is the result of parallel-transporting (moving while keeping covariantly-

constant) φ along γ. The expressionWγ (A) = exp
(︂
i
´
γ
γ̇µAµdt

)︂
is known as aWilson line.

An important property of this object is how it transforms under gauge transformations:

Wγ (A)→ Wγ (A) exp

⎛⎝i ˆ
γ

γ̇µ∂µθdt

⎞⎠ = e−iθ(γ(0))Wγ (A) e
iθ(γ(1)). (2.1.12)

In particular, this means that Wilson loops3 (γ (1) = γ (0)) are gauge invariant. Much like

the modulus of φ is its �physically observable� part, Wilson loops help us understand what

the �physical� part of A is. To see this note that by Stoke's theorem, if Σ is a surface that

satis�es ∂Σ = γ (∂Σ means �the boundary of Σ�), then:

Wγ (A) = exp

⎛⎝i ˆ
Σ

dA

⎞⎠ = exp

⎛⎝i ˆ
Σ

F

⎞⎠ . (2.1.13)

This leads to the interpretation that Fµν , the �eld strength tensor, is the �locally observable

part� of A. F is also known as the curvature of the connection, since it quanti�es the change

in a particle's phase as it's parallel transported in a small closed loop - an in�nitesimal Wilson

line.

3A Wilson loop is also known as the holonomy of the gauge �eld around the loop γ.
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2.1.3 Non-Abelian Gauge Theory

The natural generalization of Maxwell theory is to pick a di�erent gauge group G, and one

that might not be Abelian. Fields will then transform in various irreducible representa-

tions ρR of G:

φi → (ρR (g (x)))ji φj = (exp (iaaT a
R))

j
i φj, (2.1.14)

where the T a
R, a = 1, . . . , dimG are the generators of the gauge group in the representation

R, satisfying
[︁
T a
R, T

b
R

]︁
= ifabcT c

R with fabc the structure constants, and aa are parameters that

take the place of θ. Such theories describe real-world forces, such as the strong interaction

(G = SU(3)) or the standard model (G = U(1)× SU(2)× SU(3)).

The gauge-covariant derivative has the same interpretation as before and takes the form:

Dµ = ∂µ − iAµ, (2.1.15)

Aµ = Aa
µT

a, (2.1.16)

so that now A is a Lie algebra valued vector �eld. The non-Abelian Wilson line arises in the

same way as the Abelian one - it describes parallel transport. It is given by a path-ordered

exponential:

P exp

⎛⎝i ˆ
γ

A

⎞⎠ , (2.1.17)

which means that in the expansion of the exponent the order of matrix products matches their

ordering along γ. The �eld strength, or curvature, can again be de�ned as an �in�nitesimal

Wilson loop�:

Fµν ≡ i [Dµ, Dν ] = ∂µAν − ∂νAµ − i [Aµ, Aν ] . (2.1.18)

For Dµ to make sense as a connection A must transform as:

Aµ → gAµg
−1 + g∂µg

−1, (2.1.19)

⇒ Fµν → gFµνg
−1, (2.1.20)

under the gauge transformation g (x). The classic example of non-Abelian gauge theory is

Yang Mills theory:

SYM = − 1

4g2

ˆ
d4xTr (F µνFµν) . (2.1.21)

The last term in (2.1.18) makes this theory an interacting theory.
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2.1.4 Second Quantization

There are many ways to quantize a classical �eld theory. We will brie�y and schematically

review the path integral approach. In the quantum theory, rather than describe the evolution

of the �eld con�guration in time, we are interested in transition amplitudes:

⟨φi (ti) | φf (tf )⟩ . (2.1.22)

The modulus-squared of these amplitudes give the transition probability - the probability of

�nding the �eld at the con�guration φf at time tf given that it was measured to be in a

con�guration φi at time ti. In the path integral approach this is given by:

⟨φi (ti) | φf (tf )⟩ =
φfˆ

φi

Dφ exp (iS [φ]) , (2.1.23)

where S is the action and
´ φf

φi
Dφ is an integration over all �eld con�gurations satisfying the

boundary conditions:

φ (ti) = φi, φ (tf ) = φf . (2.1.24)

Thus the transition amplitude is the sum over paths consistent with the measurements,

weighted by a complex phase determined by the action.

When the �eld con�gurations φi,f are large (or equivalently we rewrite S → S/~ and ~ is

small) we can use the saddle point approximation where the integral gets contributions only

from saddle points of the action - classical solution. This is the correspondence principle - at

small ~ the theory becomes classical. Put di�erently, quantum corrections are ~-suppressed.
The path integral can be computed in free theories where the action is quadratic in the

�elds:

S =

ˆ
ddx

φ∆φ

2
, (2.1.25)

where ∆ is some di�erential operator. Using an in�nite dimensional generalization of the

Gaussian integral:
1√
2π

ˆ
dxe−

x2

2σ =
√
σ. (2.1.26)

In interacting theories we write the action S = Skinetic + Sinteraction where the kinetic part

is quadratic in the �elds and the interacting part is of higher order. When the coupling
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constants of the theory are small so that schematically Sinteraction ≪ Skinetic we can write:

exp (iS) = exp (iSkinetic)
∞∑︂
n=0

inSn
interaction

n!
. (2.1.27)

This is the key to computing quantities in perturbation theory. The higher the order in

interaction terms, the more cluttered the path-integral becomes with powers of the �elds.

Integrating these monomials in the �elds against exp (iSkinetic) gives rise to many integrals

that are represented using Feynman diagrams. For instance, let's say we compute a 4-point

correlator:

⟨φ1φ2φ3φ4⟩ =
ˆ
Dφφ (x1)φ (x2)φ (x3)φ (x4) exp (iS [φ]) , (2.1.28)

and that Sinteraction =
´
ddxb4

φ4

4!
. At �rst order in b4 we have the tree-level correlator:

ˆ
Dφφ (x1)φ (x2)φ (x3)φ (x4) exp (iSkinetic [φ])

ˆ
ddxb4

φ (x)4

4!
, (2.1.29)

which gives rise to a number of diagrams. One such diagram is:

1

2

3

4

, (2.1.30)

Where the vertex in the center represents the monomial φ4

4!
. For a more thorough review of

quantization and Feynman perturbation theory, see [23].

As already mentioned, in quantum theory we are interested in transition amplitudes. A

particularly useful subset is that of scattering amplitudes which encode the outcome of

scattering experiments. The LSZ reduction formula[23] relates these to correlation functions

like the 4-point correlator above. Its content is roughly that one must compute correlation

functions in momentum space (the Fourier transforms of position space correlators) and then

take a properly de�ned residue localizing them to the so-called �mass-shell condition� where
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the momenta satisfy Einstein's relation:

p2i = m2. (2.1.31)

2.1.5 The Large N ('t Hooft) Limit

In much of this thesis we will be working in the Large N limit. A very cogent description of

this limit can be found in chapter 8 of [11]. At its core the large N limit is an approximation

assuming that the number of particles in the theory is large. For instance, consider the theory

of N complex scalars φi, i = 1, . . . , N with action:

S =

ˆ
d4x∂µφ̄∂

µφ+
b4
2N

(︁
φ̄φ
)︁2
, (2.1.32)

where φ̄φ = (φi)
∗
φi, b4 is a �nite constant and N is large. We see that, as that, as is often the

case, interactions are 1/N suppressed, making the theory seemingly free. However, consider

the diagram:

k

k − s

1, j

2, i

4, l

3, k

∝
(︃
b4
N

)︃2

δnmδ
m
n =

b24
N
. (2.1.33)

We see that the large number of particles running in the �loop� enhances the interaction

strength by δnmδ
m
n = N , partially o�setting the 1/N suppression. However, not all diagrams

contributing to this process at a given order in perturbation theory will have su�cient en-

hancements of this type to contribute to the leading (O (1/N)) part of the amplitude. Thus

only diagrams with the maximal number of �index loops� contribute, as those are most en-

hanced by the multitude of particles in the theory. This tends to suppress diagrams with

fewer faces for a given number of edges and vertices. Diagrams with the maximal number of

faces are known as �planar� diagrams, as they can be drawn on a plane (or a sphere) without

self-intersection.

There are multiple bene�ts to calculations in the large N limit:

1. Fewer diagrams contribute to a given process.

2. Diagrams have fewer �topologies�, meaning that the number of distinct propagators is

lower. This makes integral reductions simpler and decreases the amount of momentum
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shifts one must use in the course of the calculation. In some cases, such as N = 4

SYM, this makes the notion of a Feynman �integrand� well de�ned.

3. Keeping track of �color factors� - factors involving indices like i = 1, . . . , N . Away

from the planar limit one must keep track of group generators in terms like
(︁
T aT b

)︁i
j

whereas in the planar limit one can use �double line notation� where the index is just

kept constant along a line. For instance, in Chern-Simons matter theory we'll be using

vertices like:

1, j

2, i

µ
l
k

= (p1 − p2)µ δikδlj. (2.1.34)

The single lines stand for propagation of a particle in the fundamental representation

of SU (N) , whereas the doubled lines represent the propagation of a gauge Boson (or

particle in the adjoint representation).

4. In some cases, as we'll see in 2.4.2 and 4.2, one can obtain all-loop results by solving

integral equations.

2.2 Pure Chern-Simons Theory

This is a topological theory of a single gauge �eld A, usually with gauge group U (N) or

SU (N). By topological, we mean that it is equivalent in all conceivable coordinates. There-

fore coordinate transformations are symmetries of the theory (see 2.2.3). To obtain a topo-

logical gauge invariant local action, we must construct an (up to total derivatives) gauge

invariant 3-form without referencing a metric or a set of coordinates. We have a 1-form A

and 2-form F = DA = dA+ i [A,A] so the 3-forms:

A ∧ dA, A ∧ A ∧ A, (2.2.1)

form a basis we can work with. Note that the latter of these vanishes for Abelian theories.

In abstract index notation we can write w.l.o.g. (without loss of generality):

L = i
k

4π
ϵµνρTr (Aµ (∂ν + bAν)Aρ) . (2.2.2)
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Then given an in�nitesimal gauge transformation:

δAi = ∂iΛ + i [Λ, Ai] , (2.2.3)

we need the Lagrangian to vary by a total derivative. We �nd:

δL ∝ 3b

(︃
1 +

2i

3b

)︃
ϵijkTr (∂iΛAjAk) + ∂i

(︁
ϵijkTr (Λ∂jAk)

)︁
, (2.2.4)

which gives a total derivative when:

b = −2i

3
, (2.2.5)

giving us the Chern-Simons Lagrangian:

L = i
k

4π
ϵµνρTr

(︃
Aµ∂νAρ −

2i

3
AµAνAρ

)︃
. (2.2.6)

Dimensional analysis gives the mass dimensions [A] = 1, [k] = 0. The constant k is known

as the level and takes on integer values - as we'll prove in the next subsection in the non-

Abelian case. In the Abelian case this quantization comes from considering the theory on a

manifold with boundary.

Note that the ϵ symbol is real ϵ123 = 1. This follows from unitarity - we need the

Lagrangian to be invariant under simultaneous reversal of the time coordinate and complex

conjugation. To see this, notice that:

Tr

(︃
Aµ∂νAρ −

2i

3
AµAνAρ

)︃
=

1

2
Aa

µ∂νA
a
ρ +

1

3
fabcAa

µA
b
νA

c
ρ (2.2.7)

is clearly real, and under time reversal any term that is constructed by full contraction with

the ϵ symbol gets a − sign, unitarity amounts to:

iϵµνρ = (i (−ϵµνρ))∗ = i (ϵµνρ)∗ . (2.2.8)

2.2.1 Gauge Invariance and Quantization of the Level k

Although invariance under in�nitesimal gauge transformations was su�cient to �x the action,

it doesn't guarantee that the theory is invariant under gauge transformations not connected

to the identity - that is, maps g :M→ G with non-trivial homotopy.
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Under a �nite gauge transformation g = e−iΛ we have (see the appendix A):

Aµ → gAµg
−1 + ig∂µg

−1 (2.2.9)

= gAµg
−1 − i∂µgg−1 (2.2.10)

= g (Aµ − ∂µΛ) g−1, (2.2.11)

L → L+ Tr

(︃
k

4π
∂µ
(︁
ϵµνρAν∂ρgg

−1
)︁
+ i

k

12π
ϵµνρg−1∂µgg

−1g∂νg
−1∂ρg

)︃
. (2.2.12)

The �rst term is a total derivative, as expected. The second, however, doesn't vanish. It is

proportional [28] to the integrand of the �counting function�:

w (g) =
1

24π2

ˆ
d3xϵµνρg−1∂µgg

−1g∂νg
−1∂ρg ∈ Z, (2.2.13)

which counts the number of times g winds around the gauge group G. As expected: we

found that gauge transformations connected to the identity leave the action invariant. More

generally:

e−S → e−S−2πikw(g). (2.2.14)

Hence for gauge invariance we require k ∈ Z. This term vanishes for Abelian theories and

level-quantization is then instead related to the boundary term when the theory is considered

on a manifold with boundary, or gauge transformations with non-trivial winding if the theory

is considered on a manifold with compact dimensions (see, e.g. section 5.1.3 of [28]).

2.2.2 Equation of Motion

Varying A gives the E.O.M.:

δL ∝ δ

(︃
ϵµνρTr

(︃
Aµ∂νAρ −

2i

3
AµAνAρ

)︃)︃
(2.2.15)

=
1

2
ϵµνρδ

(︁
Aa

µ∂νA
a
ρ

)︁
− 2i

3
ϵµνρTr (δ (AµAνAρ)) (2.2.16)

=
1

2
∂[µA

a
ν]ϵ

µνρδAa
ρ −

i

2
[Aµ, Aν ]

a ϵµνρδAa
ρ + total derivative, (2.2.17)

⇒ 0 = ∂[µA
a
ν] − i [Aµ, Aν ]

a , (2.2.18)

⇒ F a
µν = 0. (2.2.19)
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Hence the space of solutions is the space of �at connections. Note that if we arbitrarily pick

a �time� direction x0, then we have:

F0i = 0, i = 1, 2 (�rst order in time), (2.2.20)

F12 = 0 (0-th order, a constraint on initial data). (2.2.21)

Let's specialize to a manifold M = Σ × R = {(x0, x̄) | x0 ∈ R = "time", x̄ ∈ Σ} so that we

can pick the gauge A0 = 0 . Then:

0 = F0i = ∂0Ai ⇒ Ai (t, x̄) = Ai (x̄) . (2.2.22)

Hence we see that there are no propagating degrees of freedom. Furthermore:

Fij = 0. (2.2.23)

Hence the space of solutions is precisely the moduli space of �at connections on Σ. If

we couple the theory to matter by adding a source term:

− iTr (AµJ
µ) , (2.2.24)

we'll get an E.O.M.:
4π

k
ϵµνρF a

νρ = Jµ,a. (2.2.25)

Equation (2.2.25) tells us that matter charged under the gauge group traps �ux. This is the

main di�erence between Chern-Simons theory and Yang-Mills - In the latter charged particles

interact with one another by acting as sources and sinks for �eld lines - by the exchange of

gauge �eld quanta - whereas in the former all interaction is due to a generalized Aharonov

Bohm e�ect [1].

2.2.3 Symmetries

In addition to the gauge symmetry, Chern-Simons theory possesses 2 notable global symme-

tries. The �rst is inherent in the moniker �topological� - di�eomorphism invariance. This

is the in�nite-dimensional group of coordinate transformations on the spacetimeM, some-

times denoted diff (M). Invariance under it follows simply from the fact that the theory is

formulated in the language of di�erential forms and without any reference to a particular set

of coordinates. However, the above statement isn't entirely accurate - the symmetry actually

only includes orientation preserving di�eomorphisms diff+ (M). Suppose we perform a
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change of coordinates x′µ = x′µ (xν) then a 1-form transforms:

Aµ (x)→
∂x′ν

∂xµ
Aν (x

′) , (2.2.26)

so one can work out:

L → det

(︃
∂x′µ

∂xν

)︃
L, (2.2.27)

which is just the transformation law of a volume form. Of course, the integral measure

transforms via the familiar Jacobian of the inverse transformation:

d3x→ d3x′
⃓⃓⃓⃓
det

(︃
∂xµ

∂x′ν

)︃⃓⃓⃓⃓
, (2.2.28)

so that in total we have:

S → sign

(︃
det

(︃
∂x′µ

∂xν

)︃)︃
S. (2.2.29)

For orientation reversing transformations the above sign is negative. We can negate such a

negative sign by simultaneously �ipping the sign of k (or equivalently λ = k/N), which gives

our second symmetry:

Z2 ≈
diff (M)

diff+ (M)
. (2.2.30)

We can pick a representative element of this group. One such choice in R3 is the parity

operation x→ −x, denoted P . Another is R - re�ection of a single coordinate. In section 4

this Z2 symmetry will be used extensively to constrain Feynman integrals - for instance, by

telling us which branch of a logarithm to pick.

2.2.4 Quantization

Let us rewrite the Lagrangian using integration by parts:

L = i
k

4π
ϵµνρTr

(︃
Aµ∂νAρ −

2i

3
AµAνAρ

)︃
= −i k

4π
Tr
(︁
ϵijAi∂0Aj

)︁
+ i

k

2π
Tr
(︁
A0ϵ

ijFij

)︁
. (2.2.31)

For our gauge A0 = 0 we obtain a vanishing Hamiltonian and commutation relations:

[Ai (x) , Aj (y)] ∝
4π

k
ϵij (2π)

3 δ3 (x− y) . (2.2.32)
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But here we haven't enforced Gauss' law! Thankfully, we can show that the path integral

localizes to the �at connections, thereby demonstrating the lack of propagating degrees of

freedom. Consider shifting A by some vector ∆A. First, let us shift only A0 → A0 + ∆A0.

Now using (2.2.31) we get:

L → L+ i
k

2π
Tr
(︁
∆A0ϵ

ijFij

)︁
. (2.2.33)

One can now average over choices of ∆A0:

ˆ
DAe−S =

ˆ
DAD (∆A0) e

−S−i
´
d3xϵij∆Aa

0F
a
ij

=

ˆ
DAδ (F a

12) ,

where we have re-scaled ∆A0 to absorb various constants. The theory has therefore reduced

to time-dependent �at connections on the time-slice Σ. The remaining part of the action

is linear in the components of either connection and an identical �trick� could be used to

localize the remaining components of the �eld strength (note that one has use only shifts of

localized integration variable - that is, shifts that leave F1,2 invariant). Thus we get:

ˆ
DAe−S ∝

ˆ
DAe−Sδ (F )

=

ˆ
DAδ (F ) .

Curiously, we have lost track of the level k. This is because in reality we want to have some

insertion in the path integral. Does this localization still take place when gauge invariant

observables are included in the integrand? We'll �nd that it does, by looking at the partition

function Z [J ] rather then just the path integral Z [0]! To see how that works consider that

we can repeat the above argument after coupling the �eld to an external �source� J by a

term −iTr (AµJ
µ), where the �trace� stands in for any form of linear coupling, for instance

ψ̄��Aψ. The result will simply be to modify the E.O.M to:

ϵµνρF a
νρ =

4π

k
Jµ,a, (2.2.34)

and this is how the level k is relevant in the theory. Of course, in the pure CS theory, the

observables are the Wilson loops:

TrRP

⎡⎣exp
⎛⎝i ˆ

γ

A

⎞⎠⎤⎦ , (2.2.35)
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where P [·] stands for path-ordering and R is an irrep. By introducing auxiliary �worldline�

�elds living on the support of the Wilson loop, one can rewrite it as the exponent of such

a linear coupling term with an appropriate current constructed with said �elds . This is

alluded to in [30] and described in David Tong's lecture notes [28] for gauge group SU (N).

Tong writes:

WR (γ) = TrRP

⎡⎣exp
⎛⎝i ˆ

γ

A

⎞⎠⎤⎦ (2.2.36)

=

ˆ
DwDw̄Dα exp

⎛⎝ˆ
γ

dt (iw̄Dtw − κα)

⎞⎠ (2.2.37)

=

ˆ
DwDw̄Dα exp

⎛⎝ˆ
γ

dt (iw̄∂tw + (w̄w − κ)α + w̄A0w)

⎞⎠ , (2.2.38)

where:

1. t is a parameter of the worldline (Wilson Loop).

2. A0 (t) ≡ A (γ̇ (t)) is the gauge �eld along the Wilson line.

3. w is the worldline �eld and takes values in CPN−1.

4. α is a worldline gauge �eld associated with w's U (1) phase ambiguity.

5. κ is a constant chosen so as to get the right irrep R.

α acts as a Lagrange multiplier enforcing a particular norm for w̄w = κ for the worldline �eld.

U (1) gauge invariance requires κ to be quantized to integer values (this is analogous to the

quantization of the level k and in fact the term κα is known as the Chern-Simons 1-form4),

which correspond to various symmetric (anti symmetric) irreps for Bosonic (Fermionic) w.

What will our equation of motion be in the presence of w? We can write:

w̄A0w = (w∗)iAj
iwj (2.2.39)

= Aa (w∗)i (T a)ji wj, (2.2.40)

4For further reading on Chern forms and Chern-Simons forms we refer to [7].
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giving an E.O.M.:

ϵ0νρF a
νρ =

8π

k
(w∗)i (T a)ji wjδ

2 (x̄)

F a
i0 = 0,

where the δ-function localizes to the Wilson line, which we have taken to lie at the origin,

and stretch along �time�. Let us partially solve this equation. We can pick temporal gauge

A0 = 0, in which case the solutions are time-independent. We can also further specify the

gauge so that at a speci�c time:

w = (κ, 0, . . . , 0) . (2.2.41)

Now at this time we can guess a solution where Ai is diagonal for all i (is in the Cartan

subalgebra), in which case the �eld strength is just given by its Abelian variant. The solution

then is the same as in the Abelian case, which we will deal with later (see 2.3.1). The

important thing for us to note is that the magnitude of the holonomy of the gauge �eld now

depends on the ratio κ
k
. In fact, it will turn out to have the schematic form exp

(︁
2πiκ

k

)︁
,

indicating that there is an equivalence κ→ κ+ k. This is, in fact, a manifestation of a more

elaborate statement that when considering Wilson loops in Chern-Simons theory, it su�ces

to consider only those with so called integrable representations. More reading on that

can be found in [30, 17].

What of �quadratic� coupling terms like Dµφ̄D
µφ = · · ·+ φ̄A2φ, with φ a scalar �eld? We

can rewrite this as a �current� by introducing an auxiliary �Lagrange multiplier� �eld λµ, i:

L → L−
(︁
λ̄µ + φ̄Aµ

)︁
(λµ + Aµφ) , (2.2.42)

which transforms under a gauge transformation via:

λµ, i → gjiλµ, j − i
(︁
g∂µg

−1g
)︁j
i
φj. (2.2.43)

By introducing this spurious degree of freedom we linearize the interaction in terms of A.

While these considerations are useful for understanding the theory in general, and the

statement that the gauge �eld lacks physical degrees of freedom in particular, in our work we

ultimately didn't use this localization. More information about localization of path integrals

can be found in [26].
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2.2.5 Light-Cone Gauge

When we couple the theory to matter it will be useful to have the gauge propagator in

our arsenal. To that end we must gauge-�x. Most (if not all) gauge choices break the

di�eomorphism invariance down to Lorenz invariance by introducing a metric. Of course,

this same breaking will happen explicitly when we couple to matter. We decided to work in

light cone gauge, as it has the following advantages5:

1. The self-interaction vertices of the gauge �eld vanish.

2. A variety of additional diagrams in the matter-coupled theory vanish.

3. There is no need to introduce ghosts.

4. On-shell conditions, or the vanishing of propagators, can be solved without introducing

branch-cuts (speci�cally square-roots):

p2 = m2 ⇒ p± =
m2 + p2⊥
2p∓

. (2.2.44)

We found that it also has certain challenges:

1. Lorenz symmetry breaks down SO (2, 1)→ GL (1).

2. Demonstrating gauge invariance can be tricky as some of the gauge dependence is in

the denominator of the gauge propagator. This stands in contrast to, for instance, the

familiar ξ-gauge in YM theory:

gµν − (1− ξ)pµν

p2

p2
, (2.2.45)

where dependence on gauge �parameter� ξ is localized to the numerator, making alge-

braic manipulations simpler.

Another property of this gauge choice is a mixed blessing - carrying out Feynman integrals is

di�erent. On the one hand one can avoid the hassle of using Schwinger / Feynman parameters,

and instead use contour integration techniques that in a di�erent gauge would introduce

plenty of branch cuts and square-roots. On the other hand, some integrals become a bit

ambiguous (see below), and relating their branch cut structure to kinematics becomes more

di�cult (due to the breakdown of Lorenz symmetry).

5Points 1 and 3 are also true for temporal gauge or any gauge that simply sets a component of the gauge
�eld to 0.
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Light-cone coordinates are related to Minkowski coordinates 6 as follows:

x± =
1√
2

(︁
x1 ± x2

)︁
,

x⊥ = x3.

The square-roots are chosen so that the metric takes the simple form:

ds2 = 2dx+dx− − dx2⊥, (2.2.47)

gµν =

⎛⎜⎝ 0 1 0

1 0 0

0 0 −1

⎞⎟⎠ . (2.2.48)

We will often Wick-rotate into Euclidean space:

x1 → ix1, (2.2.49)

⇒ x± → i
1√
2

(︁
x1 ∓ ix2

)︁
⏞ ⏟⏟ ⏞

x±
E

. (2.2.50)

This entails rede�ning the metric:

ds2 → −ds2E, (2.2.51)

ds2E = dx21 + dx22 + dx23 (2.2.52)

= 2dx+dx− + dx2⊥. (2.2.53)

We will suppress the the �E� from here on. We see that for real Euclidean coordinates (x+)∗ =

x−. Note that we'll often use the Levi civita tensor interpreted as ϵµνρ, µ, ν, ρ = +,−,⊥ with

ϵ+−⊥ = 1. For all vectors we have:

p± = g±νp
ν = p∓, (2.2.54)

so in particular:

ϵ+−⊥ = ϵ−+⊥ = −1. (2.2.55)

6for which:
ds2 = dx2

1 − dx2
2 − dx2

3 (2.2.46)
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Light cone gauge is given by the condition:

A− = A+ = 0. (2.2.56)

In pure CS theory, this choice is indistinguishable from setting any component of A to 0,

since the metric we introduced is arbitrary. Our gauge �xing function is:

G (A) = A−. (2.2.57)

Under a gauge transformation:

Aα
µ = eiα

aTa

(Aµ − ∂ν) e−iαaTa, (2.2.58)

G (Aα) = eiα
aTa

(A− − ∂−) e−iαaTa

. (2.2.59)

In�nitesimally:
δG (Aα)

δα
= D− = ∂− − i

[︁
Aα

−, ·
]︁
, (2.2.60)

hence in accordance with the Faddeev-Popov procedure we use the identity[23]:

1 =

ˆ
Dαδ (G (Aα)) det

(︃
δG (Aα)

δα

)︃
, (2.2.61)

to write:

ˆ
DAeiS[A] =

ˆ
DADαδ (G (Aα)) det

(︃
δG (Aα)

δα

)︃
eiS[A] (2.2.62)

=

ˆ
Dα

ˆ
DAδ (G (A)) det (∂− − i [A−, ·]) eiS[A], (2.2.63)

where in the last line we used gauge invariance:

DA exp (iS [A]) = DAα exp (iS [Aα]) , (2.2.64)

and then renamed Aα to A. At this point one normally[23] deals with δ (G (A)) by replacing

G (A) → G (A, ω) where ω parameterizes a family of gauge choices and then averages over

choices of ω, so that ω, rather than A, is localized by δ (G (A)). This is necessary if the gauge

condition involves derivatives of A, as is common in covariant gauges, since localizing A

isn't straightforward. With A not localized one must deal with det
(︂

δG(Aα)
δα

)︂
by introducing

Fermionic ghost �elds. In our case, however, δ (G (A)) = δ (A−) and so localizing A is
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straightforward. We can proceed:

. . . =

ˆ
Dα

ˆ
DAδ (A−) det (∂− − i [0, ·]) eiS[A] (2.2.65)

= det (∂−)

ˆ
Dα

ˆ
DAδ (A−) e

iS[A], (2.2.66)

hence up to a constant:

ˆ
DAeiS[A] ∝

ˆ
DA+DA⊥e

iS[A]
⃓⃓⃓
A−=0

. (2.2.67)

In other words, we can safely just set A− = 0 and not worry about any ghosts! Note that one

normally gets �Gauss' law� (in our case F+⊥ = 0) from varying A− which we've just integrated

out! Of course, it should still hold. To see this, note that Gauss' law generates perturbations

in A−, e�ectively coupling the system to a �background� A−. This can the absorbed into

A+,⊥ via a gauge transformation, leaving the path-integral invariant. Invariance under an

in�nitesimal transformation then amounts to the statement of Gauss' law.

The Lagrangian becomes:

L = i
k

8π
Aa

i ϵ
ij∂−A

a
j , (2.2.68)

with i, j = +,⊥ and ϵ+⊥ = 1. In momentum space:

i
k

8π
Aa

i ϵ
ij∂−A

a
j → i

k

8π
Aa

+ (−p) (ip−)Aa
⊥ (p)− k

8π
Aa

+ (−p) (−ip−)Aa
⊥ (p) (2.2.69)

= − k

4π
p+Aa

+ (−p)Aa
⊥ (p) , (2.2.70)

so we get the propagator:

⟨︁
Aa

i (−q)Ab
j (p)

⟩︁
= −i4π

k

1

p+
(2π)3 δ3 (p− q) δabϵij. (2.2.71)

Another useful way of writing this is by de�ning the vector gauge-parameter:

vµ =
(︁
v− = 1, v+ = 0, v⊥ = 0

)︁
, (2.2.72)

which satis�es:

v · p = p+, v2 = 0. (2.2.73)
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v is simply a basis vector in our basis choice:

p = p+e+ + p−e− + p⊥e⊥, (2.2.74)

v = e+. (2.2.75)

Now: ⟨︁
Aa

µ (−q)Ab
ν (p)

⟩︁
= −i4π

k
(2π)3 δ3 (p− q) δabv

ρϵρµν
v · p . (2.2.76)

The color-conserving Kronecker delta ensures the equation of motion is satis�ed:

⟨︁
F a
µν

⟩︁
= ∂µ ⟨Aa

ν⟩ − ∂ν
⟨︁
Aa

µ

⟩︁
− i ⟨[Aµ, Aν ]

a⟩ (2.2.77)

∝ 0− 0 + δbcf bca (2.2.78)

= 0, (2.2.79)

where in the last line we've used the anti-symmetry of the structure constants f . Note also

that our gauge condition:

v · A = 0, (2.2.80)

commutes with a Lorenz boost along ⊥:

p =
(︁
p+, p−, p⊥

)︁
→
(︁
eξp+, e−ξp−, p⊥

)︁
. (2.2.81)

Hence this is our unbroken Lorenz symmetry, which we'll refer to as GL (1)L. We can

think of this as simply the scaling transformation for v, under which (2.2.76) is manifestly

invariant. We will often regulate the propagator by (see [19, 18]):

1

p+
→ p−

p+p− − iϵ =
2p−

p2∥ − iϵ
. (2.2.82)

This iϵ prescription, known as the Leibbrandt�Mandelstam prescription, allows one to con-

sistently Wick rotate, since the relative sign between the energy squared and ϵ is the same as

for covariant propagators. We can also write v ≡ v+ and de�ne v− as the �other� lightcone

direction that satis�es v− ·v+ = 1 and has GL (1)L weight -1, so the propagator gets rewritten:

vρϵρµν
v · p → vρ+v

σ
−
2pσϵρµν
p2∥ − iϵ

, (2.2.83)
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where the denominator is now GL (1)L invariant. This allows us to think of our various

Feynman integrals as Lorenz - covariant tensor integrals, albeit with a spatial split into ⊥, ∥.

2.3 Connection to Knot Polynomials

In this subsection we'll discuss the relation between Chern-Simons theory and Knot invariants

discovered by Witten in his paper �Quantum Field Theory and the Jones Polynomial�[30].

We'll start by motivating this connection with a U (1) calculation, then go through a quick

review of knot theory before describing Witten's results and connecting the question to

crossing-symmetry. A useful reference on these matters is chapter 5 from Baez and Muniain's

book [7]. Another is Tong's lecture notes [28].

2.3.1 Abelian Calculation

Let's begin by computing the correlation function of two Wilson loops on the curves γ1,2 in

representations n1,2 of the gauge group U (1):

Wn1,2 (γ1,2) = exp

⎛⎜⎝n1,2i

˛

γ1,2

A

⎞⎟⎠ . (2.3.1)

From the discussion in 2.2.4 we know this is just the partition function:

Z [J ] =

ˆ
DA exp

⎛⎝i k
4π

ˆ
d3xϵµνρAµ∂νAρ +

2∑︂
i=1

nii

˛

γi

A

⎞⎠ , (2.3.2)

where the Wilson line exponents act as the current, and that the path integral should localize

to the classical solution. The Abelian theory is free and so this can be seen more directly by

�completing the square� in terms of A and performing a Gaussian integral over A. This is

equivalent to just solving the equation of motion:

ϵµνρFνρ = −
4π

k
Jµ, (2.3.3)

or:

Fνρ = −
2π

k
Jµϵµνρ ≡ −

2π

k
Jνρ, (2.3.4)
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where we interpret J as a 2-form. From linearity we know the solution will be a sum of terms

A1 + A2, each sourced by one of the currents. Hence we get:

exp

⎛⎝i∑︂
i

˛

γi

Ai +
∑︂
i ̸=j

i

˛

γi

Aj

⎞⎠ . (2.3.5)

Let's assume we are working in a simply connected space so that:

∃Σi : γi = ∂Σi, i = 1, 2. (2.3.6)

Then we get for the cross terms:

∑︂
i ̸=j

˛

γi

Aj =
∑︂
i ̸=j

ˆ

Σi

Fj = −
∑︂
i ̸=j

2π

k

˛

Σi

Jj, (2.3.7)

where in the last equality we used the E.O.M. (2.3.3). In other words, the Wilson line induced

on one curve by the other is proportional to the charge �ow through the surface obtained by

shrinking it. Since in our case the current is localized to the support of the Wilson loop:

ˆ

Σi

Jj = njLji (no summation over j), (2.3.8)

where Lji is the linking number of γj with γi, meaning the number of times γi intersects

Σj with a positive orientation minus the number of intersections with a negative orientation.

It's easy to see that Lij = Lji. An example of a con�guration with L12 = 0 is shown in �gure

4 and the link known as the �Hopf link� in knot theory, satisfying L12 = ±1 is displayed in

�gure 5.

What about the �self-interaction� terms? Those are given by:

∑︂
i

ˆ

γi

Ai. (2.3.9)

We will return to those after discussing some knot theory. Let us only remark that the

discreteness of our results so far appear to be consistent with the topological nature of the

theory - the correlation function is insensitive to deformations of the Wilson lines, as long as

the curves don't �pass through� one-another (or themselves). Furthermore, since we seem to

be getting something of the form:

e
2πi
k

n, n ∈ Z. (2.3.10)
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Figure 4: Two unlinked knots. Credit: John Baez and Javier P Muniain [7]

Figure 5: The Hopf link. Credit: John Baez and Javier P Muniain [7]
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It's clear that integers like n are only observable mod k this is similar to our result in

the non-Abelian case from 2.2.4. Let us brie�y compute the gauge �eld sourced by a single

Wilson loop with n = 1 on S3 (spacetime with in�nity identi�ed as a point). Using our

di�eomorphism invariance we can align the Wilson line Wγ along the �time� axis such that

γ (t) = (t, 0, 0). We have Jµ = (δ2 (x̄) , 0, 0). In temporal gauge we have A0 = 0 and the

E.O.M. is:

0 = J i ∝ ϵijF0j = ∂0ϵ
ijAj, (2.3.11)

making the solution time-independent, and:

F12 (x̄) = −
2π

k
δ2 (x̄) . (2.3.12)

We can change to polar coordinates:

∂r (rAθ) = −
2

kr
δ (r) . (2.3.13)

A natural guess is now:

Aθ (r, θ) = −
2π

kr
, (2.3.14)

Which gives rise to a holonomy:

exp

⎛⎝i ˛
γ

A

⎞⎠ =

⎧⎨⎩−2πi
k
| γ circumnavigates the origin

0 | otherwise
, (2.3.15)

as expected.

2.3.2 Knot Theory

The linking number we've found in U (1) Chern-Simons theory is known in knot theory as a

link invariant. Knot theory is the mathematical study of knots and links - where a �knot�

usually refers to a single �loop� (an embedding γ : S1 →M of the circle into a real 3-manifold

M) and a �link� is just a bunch of di�erent knots. Sometimes the knots are dressed with

extra structure - such as an orientation (a nowhere vanishing vector �eld tangent to the knot)

or a framing (like an orientation but never tangent to the knot). Most importantly, knots are

identi�ed with one another when they can be related by ambient isotopy which is simply

a transformation onM that is connected to the identity. In other words, knots are identi�ed

when they can be deformed into one-another with intersecting themselves along the way.



2. Background 31

Figure 6: The trefoil knot. Credit: John Baez and Javier P Muniain [7]

Knots are often visualized by projecting them onto a plane. We demonstrate this in �gure 6

using the �trefoil� knot.

It is not usually obvious whether two such projections represent the same knot. For

this reason, knot theorists, in their e�orts to classify all existing knots, are interested in

knot invariants - numbers that characterize a knot independently of its projection. The

linking number we saw in 2.3.1 is one such knot invariant. Another example is the Jones

Polynomial[30].

2.3.3 Witten's Knot Invariants

Witten's insight in [30] was that correlation functions of Wilson loops in various representa-

tions in a topological theory should give rise to knot (or link) invariants. We've seen this

in 2.3.1 in the Abelian case, where the correlation functions evaluate to linking numbers.

Witten showed, among other things, that for gauge group SU (2) and Wilson lines in the

fundamental representation embedded in S3, the correlation functions evaluate to the Jones

polynomial. This was the �rst time that an inherently 3 dimensional de�nition of invariant

derived. Historically, all invariants were de�ned using projections of knots, and then shown

to be invariant under the 3 Reidemeister moves [30, 7] that are the building blocks of all

ambient isotopies.

More precisely, Witten discovered framed-knot invariants. The correlation functions

depend on a framing chosen for the knots. This is most easily seen when we return our

attention to self-interaction terms (2.3.9). These are naively divergent. However, one can

regulate them by a so-called point-splitting regularization. Given some framing fµ (t) of the
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loop γ (t) one can rewrite: ˆ

γ

A→
ˆ

γ+ϵf

A, (2.3.16)

where A is sourced by γ but is integrated along the slightly shifted contour γ+ ϵf where ϵ is

a small real parameter. This now should evaluate to the linking of the shifted contour with

the original contour - e�ectively counting the number of times the framing f winds around

γ.

2.3.4 Possible Connection to Crossing Symmetry

Recall the crossing phase from (1.4):

T naive
S → sin (πλ)

πλ
T naive
S = N

sin (πλ)

πλ
Tparticle-particle (2.3.17)

(the extra factor of N is explained in 2.5.3). It was observed in [19] that this factor is

exactly the relative factor (found by Witten in [30]) between the expectation value of a single

fundamental SU (N)Wilson loop in S3 and that of 2 unlinked Wilson loops. In 7.4 of [19], the

authors conjecture that those Wilson loops arise in the following heuristic way: to compute a

truly gauge invariant quantity, one must dress the 4 �eld insertions in the correlation function

with Wilson lines:

C (xi) = δijδ
k
l

⟨︂
φ̄
j
(x2)φi (x1) φ̄

l
(x4)φk (x3)

⟩︂
(2.3.18)

→
⟨︂
φ̄
j
(x2)WF (γ21)

i
j φi (x1) φ̄

l
(x4)WF (γ43)

k
l φk (x3)

⟩︂
, (2.3.19)

where WF is a Wilson loop in the fundamental representation and γij is a contour connecting

xi to xj. This is depicted in �gure 7 where the points xi are taken to lie at a sphere S2
∞ at

in�nity of R3. The idea is that the scattering particles' motions together with the Wilson lines

(which can be thought of as heavy �probe particles�) close to form gauge invariant Wilson

loops. The relative factor between the link invariants in the di�erent channels produces

the crossing phase. This di�erence of link topologies between particle-particle scattering and

particle-antiparticle scattering doesn't arise when relating the exchange and adjoint channels.

See 2.5.3 for a description of these di�erent channels.
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Figure 7: Scattering processes in the direct (particle-particle) channel (left)
and in the singlet (particle-antiparticle) channel (right). The solid black circles
represent the sphere S2

∞ at in�nity of R3 at which particles begin and end
their motions. The red lines represent Wilson lines dressing the amplitude.
The black lines represent the particles' trajectories. On the left, time �ows to
the right, so that the depicted process is the creation of particles in positions
x1, x3 and their scattering to positions x2 and x4 respectively. On the right,
time �ows downwards, hence a particle and antiparticle are created at x1 and
respectively x2 and then scatter to �nal positions x3, x4. The overall motion of
the scattering particles as well as the �probe� particles (the Wilson lines) trace
a single knot on the right but two knots on the left. Credit: Sachin Jain et.

al.[19]

Figure 8: Scattering in the adjoint channel. Time �ows downwards and the
particles' motions are like in the singlet channel in �gure 7. However, the
Wilson lines dressing the amplitude give rise to an overall link topology that
is the same as that in particle-particle scattering, which is why the crossing

relation isn't modi�ed for this channel. Credit: Sachin Jain et. al.[19]
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2.4 Chern-Simons Matter Theory

In this section we'll describe the theory we'll be working with, where the CS gauge �eld is

coupled to fundamental Bosonic matter.

Let's return to the full action (1.1), this time written in our chosen gauge 2.2.5:

S =

ˆ
d3x

(︃
i
k

8π
Aa

i ϵ
ij∂−A

a
j +Dµφ̄D

µφ+m2φ̄φ+
1

2N
b4
(︁
φ̄φ
)︁2)︃

, (2.4.1)

Dµ = ∂µ + iAµ, (2.4.2)

λ =
N

k
, (2.4.3)

Aµ = Aa
µT

a, (2.4.4)

Tr
(︁
T aT b

)︁
=

1

2
δab, (2.4.5)

where φ is a scalar in the fundamental representation of SU (N). In [19] the authors use

U (N) but work in the large N ('t Hooft) limit, where the distinction is inconsequential.

Let's take a closer look at the gauge-matter coupling term:

Dµφ̄D
µφ = ∂µφ+ iAµφ (∂

µφ+ iAµφ) (2.4.6)

= ∂µφ̄∂
µφ+ iφ̄

(︂
A ·
(︂←−
∂ −−→∂

)︂)︂
φ+ φ̄A2φ. (2.4.7)

Note that in our gauge choice the quartic vertex looks like:

φ̄A2φ = φ̄A2
3φ. (2.4.8)

Since an A3 insertion can only Wick-contract with A+ we learn that in a Feynman graph two

quartic vertices cannot connect to one another via a gauge-Boson propagator. This is a source

of much simpli�cation when one enumerates Feynman diagrams, and plays an important role

in the computability of all-loop quantities in the 't Hooft limit.

Even without the chosen gauge, the di�eomorphism symmetry of the theory is broken

down to the much smaller (orientation preserving part of -) Poincaré symmetry in 3d. We

retain the symmetry under simultaneous parity (or re�ection) and negation of k (or λ).
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2.4.1 Feynman Rules

The following is written in Euclidean signature. The propagators are given by:

p
i j =

δij
p2 +m2 − iϵ ∝

⟨︁
φ̄j (−p)φi (p)

⟩︁
(2.4.9)

and:

p
a b = −i4π

k
δab

vρϵρµν
v · p ∝

⟨︁
Aa

µ (−p)Ab
ν (p)

⟩︁
. (2.4.10)

The quartic scalar self-interaction can be written:

j

l

i

k

α
α
β

β

= − b4
N
δijδ

l
k. (2.4.11)

Since there are 2 possible contractions it will be useful to �split� the diagram as:

j

l

i

k

α
α
β

β

≡

j

l

i

k

, (2.4.12)
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so that the �decorations� α, β are unnecessary. 7The gauge interaction vertices are given by:

1, j

2, i

µ, a = (p1 − p2)µ (T a)ij , (all momenta outgoing) (2.4.14)

j

i

µ, a

ν, b

= −gµν
{︁
T a, T b

}︁i
j
, (2.4.15)

where {·, ·} is the anti-commutator.

Let us further specialize to the 't Hooft limit. Here we take N, k → ∞ with λ = N
k

held constant. In any computed quantity, we must keep the leading terms in N . Our various

interactions carry factors of 1
N
, but those are o�set by terms of the type δii = N which arise

in �color loops�. This leads to the famous criterion that the relevant diagrams are the planar

diagrams. The theory can now be treated as U (N) and we can parameterize A by its

matrix-indices instead of its generator indices and represent it using double-line notation:

j
µ
l k

ν
i

= −i2πλ
N

δikδ
l
j

vρϵρµν
v · p ∝

⟨︂
(Aµ)

i
j (−p) (Aν)

l
k (p)

⟩︂
. (2.4.16)

7This can be done formally, as in [19], by integrating out an auxiliary �heavy� �eld σ to obtain the 4-point
interaction:

σφ̄φ− N

2b4
σ2 = −

(︄√︃
N

2b4
σ −

√︃
b4
2N

φ̄φ

)︄2

+
b4
2N

(︁
φ̄φ
)︁2

(2.4.13)
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This way we need not keep track of generators. Our vertices become:

1, j

2, i

µ
l
k

= (p1 − p2)µ δikδlj, (2.4.17)

µ ν

= −gµν , (2.4.18)

where in the last graph we have suppressed the color structure, as we will continue to do

going forward since it is trivially represented by the edges of the graph. Note that the two

terms in the anti-commutator
{︁
T a, T b

}︁i
j
now appear as two distinct diagrams.

2.4.2 The Interacting Planar Scalar Propagator

Minwalla et. al. [19] state that the self energy Σ is momentum-independent and that the

pole mass c of the scalar propagator is given by:

c2 =
λ2

4
c2 − b4

4π
|c|+m2. (2.4.19)

We will now reproduce this by re-summing all planar 1PI graphs. Note that the manifest

o�-shell Lorenz and Gauge invariance of this result is unexpected. Some basic diagramatics

indicate that the gauge propagator gets no corrections at leading order in N , so we can ignore

such corrections in writing the diagrams below.
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Denoting the interacting propagator by:

p

j i =
δij

p2 +m2 + Σ(p)
. (2.4.20)

We have:

−Σ =
p p

+
p

k

k + p p

(2.4.21)

+
p

k

k + p p− l

l

p

(2.4.22)

+
p

k

p− k − l

l

pp− k

+ re�ection, (2.4.23)

where we have organized all the diagrams participating in the process. This amounts to a

recursive de�nition of Σ - an integral equation. Solving it will give the all-loop self energy.

A few comments are in order:

1. The gauge propagator receives no corrections at leading order in 1
N
.

2. The diagrams are all O (N0).

3. The rainbow diagram vanishes:

p

k

k + p p

∝ vµϵµνρ (k + 2p)ν (k + 2p)ρ = 0. (2.4.24)

We therefore �nd:

Σ (p) = b4I1 (Σ) + (2πλ)2
(︁
(I2 (p,Σ))

2 − 2I3 (p,Σ)
)︁
, (2.4.25)
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with:

I1 (Σ) =

ˆ
d3k

(2π)3
1

k2 +m2 + Σ(k2)
, (2.4.26)

I2 (p,Σ) =

ˆ
d3k

(2π)3
1

k+
2p+ + k+

(p+ k)2 +m2 + Σ
(︁
(p+ k)2

)︁ , (2.4.27)

I3 (p,Σ) =

ˆ
d3k

(2π)3
d3l

(2π)3
1

k+
1

l+
2p+ + 2k+ + l+

(p+ k + l)2 +m2 + Σ
(︁
(p+ k + l)2

)︁ (2.4.28)

× 2p+ + k+

(p+ k)2 +m2 + Σ
(︁
(p+ k)2

)︁ . (2.4.29)

After straightforward algebra we �nd:

I22 − 2I3 = I21 . (2.4.30)

Hence all integrals have been reduced to Lorenz-invariants and therefore all gauge dependence

is gone. Furthermore, all dependence on p vanishes. We conclude that:

Σ (p) = const = b4I1 (Σ) + λ2 (2πI1 (Σ))
2 , (2.4.31)

I1 (Σ) =

ˆ
d3k

(2π)3
1

k2 +m2 + Σ
.

Using dimensional regularization we obtain:

I1 = −
1

4π

√
m2 + Σ = −|c|

4π
, (2.4.32)

which when plugged into (2.4.31) gives (2.4.19). Going forward we will denote c = m and

forget about the original value.

2.5 Kinematics and Color

In this section we'll discuss the kinematics of scattering - the participating momenta and

variables derived from them, choices of notation, the on-shell condition, etc. - and color

- that is, what kind of tensor structures we expect to see that involve the fundamental

representation indices i = 1, . . . , N and generator indices a = 1, . . . , dimG.
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We will be concerned with connected, amputated correlation functions:

⟨︁
φi (p2) φ̄j (p1)φ

l (p4) φ̄k (p3)
⟩︁
C.A.
≡

1, j

2, i

4, l

3, k

, (2.5.1)

and their on-shell limits (the S-matrix).We'll think of all momenta as outgoing so that mo-

mentum conservation implies:
4∑︂

i=1

pi = 0. (2.5.2)

This (all-outgoing) approach is handy when one wishes to consider di�erent channels of

scattering, as opposed to just one. Bose symmetry is re�ected by summing over 2 classes of

diagrams:

1, j

2, i

4, l

3, k

=

1, j

2, i

4, l

3, k

+ ((2, i)↔ (4, l)) (2.5.3)

Where the dashed line represents the most general exchange of any number of gauge Bosons

and �heavy σ-s�. We are therefore free to consider only the �rst term. In fact, had we included

di�erent ��avors� of scalar, and computed a �mixed� correlator involving two di�erent �avors,

only one of the terms in (2.5.3) would contribute.
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We will de�ne a basis of vectors:

s = p1 + p2 (2.5.4)

t = p1 + p4 (2.5.5)

u = p1 + p3, (2.5.6)

which we'll refer to as the �Mandelstam basis�. The Mandelstam invariants are given in

Euclidean signature by:

S = −s2, T = −t2, U = −u2. (2.5.7)

Due to momentum conservation, any 3 of the vectors {s, t, u, p1, p2, p3, p4} forms a basis with

which we can write all the external momenta in the problem. Of course, they also (generically)

form a basis for 2+1 dimensional spacetime. The inverse transformation is given by:

p1 =
1

2
(s+ t+ u) (2.5.8)

p2 =
1

2
(s− t− u) (2.5.9)

p3 =
1

2
(−s− t+ u) (2.5.10)

p4 =
1

2
(−s+ t− u). (2.5.11)

Given any 3 vectors vi we will often use the notation:

ϵµνρ (v1)µ (v2)ν (v3)ρ ≡ ϵ (v1, v2, v3) ≡ v1 · (v2 × v3) , (2.5.12)

and:

E (v1, v2, v3) = sign (ϵ (v1, v2, v3)) . (2.5.13)

2.5.1 On-Shell Kinematics

On shell we have:

p2i =

⎧⎨⎩2p+i p
−
i +

(︁
p⊥i
)︁2

= −m2 | in Euclidean signature

2p+i p
−
i −

(︁
p⊥i
)︁2

= m2 | in Lorenzian signature
. (2.5.14)

We can also write this as:

S + T + U = 4m2, (2.5.15)
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s · t = t · u = u · s = 0. (2.5.16)

Hence the s, t, u basis is orthogonal on-shell! This also implies for any vector p:

ϵ (p, s, t) = p · uϵ (s, t, u)
u2

and cyclic rotations of s, t, u, (2.5.17)

ϵ (s, t, u)2 = STU. (2.5.18)

2.5.2 The S-Matrix

The S-matrix tabulates the scattering amplitudes of the theory. Since those are observable,

the S-matrix, if properly computed should be a gauge-invariant object. According to the LSZ

reduction formula, the S-matrix is the on-shell limit of connected, amputated momentum-

space correlation functions. Said correlation functions are not required to be gauge invariant,

although one can modify them into gauge-invariant functions by dressing them with Wilson

lines. Normally, in computing the S-matrix, such modi�cation is unnecessary, and all gauge-

dependence falls o� as one approaches the mass-shell. Nevertheless, as we'll see in 4, this

naive expectation appears not to be the case, at least for light-cone gauge, in Chern-Simons

matter theory.

The S-matrix is a function of on-shell momenta, and can be written:

S
(︂
{pi, αi}i=1,...,4

)︂
= δα4

α1
δα2
α3
I (p1, p4; p2, p3) + δα2

α1
δα4
α3
I (p1, p2; p3, p4) + Sconnected (pi, αi) ,

(2.5.19)

where α-s are color-indices. The I-s correspond to free propagation and are given by:

I (p1, p2; p3, p4) = 2Ep̄1 (2π)
2 δ2 (p̄1 + p̄2) 2Ep̄3 (2π)

2 δ2 (p̄3 + p̄4) ,

Ep̄ =
√︁
m2 + p̄2,

while Sconnected is proportional to the scattering amplitudeM:

Sconnected (pi, αi) = i (2π)3 δ3

(︄∑︂
i

pi

)︄
M (pi, αi) . (2.5.20)

Note that I (p1, p4; p2, p3) can also be written in terms of the scattering angle θ between p1

and p4 and the center of mass energy E =
√︂

(p1 + p2)
2:

I (p1, p4; p2, p3) = (2π)3 δ3

(︄
4∑︂

i=1

pi

)︄
4πE lim

ϵ→0
(δ (θ + ϵ) + δ (θ − ϵ)) . (2.5.21)
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Our main interest is in:

M (pi, αi) = M (p1, j; p2, i; p3, k; p4, l) , (2.5.22)

where we have placed color indices and momenta belonging to the same particle side by side.

Since all generator indices are summed over, we can write:

M (p1, j; p2, i; p3, k; p4, l)

= δijδ
l
kMD (pi)⏞ ⏟⏟ ⏞
'direct'

+ δikδ
l
jME (pi)⏞ ⏟⏟ ⏞
'exchange'

=
1

2

(︁
δijδ

l
k + δikδ

l
j

)︁
MSym (pi)⏞ ⏟⏟ ⏞

symmetric

+
1

2

(︁
δijδ

l
k − δikδlj

)︁
MASym (pi)⏞ ⏟⏟ ⏞

anti-symmetric

=

(︃
δikδ

l
j −

1

N
δijδ

l
k

)︃
MA (pi)⏞ ⏟⏟ ⏞

adjoint

+
1

N
δijδ

l
kMS (pi)⏞ ⏟⏟ ⏞
singlet

. (2.5.23)

The (anti-)symmetric, adjoint and singlet �channels� correspond to di�erent irreducible rep-

resentations of SU (N), and must be gauge-invariant (e.g. independent of the choice of null

vector parameter v). A di�erent way of organizing the color structure is to split M into

�color factors� such as:

CF (T a)ij (T
a)lk ,

(︁
T aT bT a

)︁i
j

(︁
T b
)︁l
k
,
(︁{︁
T a, T b

}︁)︁i
j

(︁{︁
T a, T b

}︁)︁l
k
, . . . (2.5.24)

This will be more useful in the non-planar regime, as we'll discuss in 3. There, we will also

discuss in more detail what constitutes a basis of such color factors.

The various amplitudesM are functions of kinematic Lorenz invariants, which in 3d are

the Mandelstam invariants S, T, U as well as E (p1, p2, p3) - the handedness of the triplet

of vectors p1, p2, p3. This is the only Lorenz invariant that isn't invariant under parity or

re�ection. In light of the Z2 symmetry described in 2.2.3, the handedness must enter the

amplitude only through terms of odd power in λ.

2.5.3 Channels of Scattering

In our �all outgoing� convention, incoming particles will be represented by having negative

energy. W.l.o.g. we can take p12 < 0 so that we always have at least 1 incoming particle. There

are then 3 con�gurations (consistent with both the mass-shell condition and momentum-

conservation) we may consider:
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1. p04 < 0, p01,3 > 0 ⇒ U ≥ 4m2, T, S ≤ 0. This is particle-particle scattering which

naturally decomposes into the symmetric and anti-symmetric representations.

2. p01 < 0, p03,4 > 0 ⇒ S ≥ 4m2, T, U ≤ 0 . This is particle-antiparticle scattering

which naturally decomposes into the adjoint and singlet representations.

3. p03 < 0, p01,4 > 0⇒ T ≥ 4m2, S, U ≤ 0 . This too is particle-antiparticle scattering.

In the large N limit the Feynman diagrams split naturally into the �direct� and �exchange�

color factors δijδ
l
k, δ

i
kδ

l
j which are related by Bose symmetry. We will keep only those with fac-

tor δijδ
l
k (and note that

(︁
δikδ

l
j − 1

N
δijδ

l
k

)︁
MA (pi) ≈ δikδ

l
jMA (pi)) so that we have the following

correspondence:

S ≥ 4m2 ↔ singlet channel, (2.5.25)

T ≥ 4m2 ↔ adjoint channel,

U ≥ 4m2 ↔ direct channel.

That is to say that evaluating this set of diagrams with a particular choice of signage for the

Mandelstam invariants computes the amplitude in a particular channel. Having chosen our

color factor δijδ
l
k the only question is which pair of indices corresponds to incoming particles.

The Mandelstam invariant corresponding to this pair is then the one to satisfy ≥ 4m2 (for

real, on-shell momenta). This leads to the following naive conjecture when S ≥ 4m2:

1

N
MS (S, T, U)

?
=MD (U, T, S)

?
=MA (T, S, U) . (2.5.26)

Note the factor of 1/N - this comes from the prefactor δijδ
l
k/N in (2.5.23), and e�ectively

�enhances� the singlet channel relative to the other channels. This, of course, is simply a

way of stating crossing symmetry. Of course, as discussed in 1, the actual relationship

is modi�ed to 1.4. A crucial point is that for S ≥ 4m2 the vector s is timelike while t, u

are spacelike so we can pick our vector gauge parameter to satisfy v · t = 0 or v · u = 0

but not v · s = 0. These assumptions make the resummation in [19] possible. For this

reason, the authors were only able to re-sum the S-matrix in the adjoint, direct and exchange

channels but had to conjecture the form of the singlet channel. This suggests that the o�-

shell correlator has some form of non-analyticity in S. We wish to better understand how

this arises.
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2.5.4 Gauge Invariance of the S-Matrix

Individual Feynman diagrams are often functions of the gauge parameter - whether it's v,

as in our case, ξ in ξ-gauge or otherwise. This gauge dependence can remain even when we

some the diagrams to form o�-shell correlation functions. However, the on-shell scattering

amplitudes must not depend on these parameters - they must be gauge invariant. Note that in

our case, individual Feynman diagrams are invariant under rescalings of v - which amount

to nothing more then our surviving boost symmetry. Hence our only actual parameter is the

spatial direction of v. Checking gauge invariance provides us with a valuable sanity check

for our calculations. The presence of v in expressions is also what breaks Lorenz invariance,

by picking out a preferred spatial direction. Hence, the restoration of gauge invariance is

equivalent to the restoration of Lorenz invariance.

Besides being a sanity check, we expect whatever unorthodox analyticity properties the

S-matrix exhibits to be easiest to see once Lorenz invariance is restored. Hence naively, a

crucial step in any calculation is to rid ourselves of the dependence on v. Our gauge choice

is very useful in reducing the number of diagrams for us to consider, but, at least initially,

hinders the consideration of analyticity properties. As we'll see in 4, some of the 1-loop

quantities we compute are in fact gauge dependent.

2.5.5 Example: Tree Level Gauge Invariance

At tree level the S-matrix is a meromorphic function (it contains only poles), so naive crossing

should be satis�ed. We will also see that it is gauge-invariant. There are 2 diagrams. The

�rst:

j

l

i

k

∝ − b4
N
, (2.5.27)

is trivially gauge-invariant. The second is simply:

p1 + p4

1, j

2, i

4, l

3, k

a

a

= −i4πλ
N

(T a)ik (T
a)lj

v · (p1 − p4)× (p3 − p2)
v · (p1 + p4)

. (2.5.28)
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Let us motivate:

(p1 + p4) · (p1 − p4) = p21 − p24, (2.5.29)

(p1 + p4) · (p3 − p2) = − (p2 + p3) · (p3 − p2) (2.5.30)

= p22 − p23. (2.5.31)

Both of these vanish on shell! Hence subject to the on-shell condition we have:

p1 + p4 ⊥ p1 − p4, p3 − p2, (2.5.32)

which, in a 2+1 d spacetime implies:

(p1 − p4)× (p3 − p2) ∝ p1 + p4, (2.5.33)

making (2.5.28) independent of v. In fact we need not even choose v to be null, we may

choose v = p1 + p4 to get:

v · (p1 − p4)× (p3 − p2)
v · (p1 + p4)

=
(p1 + p4) · (p1 − p4)× (p3 − p2)

(p1 + p4)
2 (2.5.34)

= 4
ϵ (p1, p2, p3)

(p2 + p3)
2 . (2.5.35)

What of the color factor?

(T a)ik (T
a)lj = (T a ⊗ T a)ilkj (2.5.36)

=
1

2

(︄
(T a ⊗ I + I ⊗ T a) (T a ⊗ I + I ⊗ T a)−

(T aT a ⊗ I)− (I ⊗ T aT a)

)︄il

kj

. (2.5.37)

This decomposition is an example of a more general formula - given irreps R1,2 and Ri such

that:

R1 ⊗R2 =
∑︂
i

Ri, (2.5.38)

we have in the Ri representation:

T a
R1
⊗ T a

R2
=

1

2
IRi

(C (Ri)− C (R1)− C (R2)) . (2.5.39)

With C (R) the quadratic Casimir invariant in the R irrep. We see that in each channel,

at tree-level, the interaction induced by the CS gauge �eld is the same as that obtained in
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the Abelian theory, except that the �ux carried by each particle, and therefore the anyonic

statistics that the particles are imbued with, depend on the channel of scattering and are

proportional to (2.5.39).

In our case, however, we are can just make an Ansatz based on the tracelessness of T a to

�nd:

(T a)ik (T
a)lj = A

(︄
δijδ

l
k −

δikδ
l
j

N

)︄
, (2.5.40)

This follows from the tracelessness of T a. We only need to �nd the constant A. We can do

this by contracting i with j and l with k:

N2 − 1

2
= tr (T aT a) (2.5.41)

= (T a)il (T
a)li (2.5.42)

= A
(︁
N2 − 1

)︁
, (2.5.43)

⇒ A =
1

2
. (2.5.44)

In total we obtain:

p1 + p4

1, j

2, i

4, l

3, k

a

a

= −i8πλ
N

(︄
δijδ

l
k −

δikδ
l
j

N

)︄
ϵ (p1, p2, p3)

(p2 + p3)
2 . (2.5.45)

Note that in the large N limit we can write δijδ
l
k −

δikδ
l
j

N
≈ δijδ

l
k so we get a result consistent

with [19]. We can also write this in terms of Mandelstam invariants:

p1 + p4

1, j

2, i

4, l

3, k

a

a

= −i4πλ
N

(︄
δijδ

l
k −

δikδ
l
j

N

)︄
E (p1, p2, p3)

√︃
SU

T
. (2.5.46)
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3 The 1-loop Non-Planar Scattering Amplitude

The modi�ed crossing relation (1.4) was obtained in the planar limit. It is therefore natural

to ask whether it shows up away from the planar limit, or whether some other non-trivial

analytic behavior emerges.

In this section we discuss our non-planar one loop computation of a particular gauge-

invariant �color factor�. In fact, this amounts to a calculation in the Abelian theory, where

this color factor would correspond to the part of the amplitude of order e21e
2
2 (if the Bosons

had di�erent electric charges). We will start by discussing how we picked this color factor,

then we present its covariantization (and thereby demonstrate its gauge invariance), and

�nally we discuss what form we expect the �nal result to take after the implementation of

integral reduction techniques and what that implies for modi�ed crossing. While this result

is forthcoming, we indicate why it's unlikely to exhibit the anomalous analytic properties

implicit in the modi�ed crossing relation, and discuss the possible reasons for that.

3.1 The �Abelian� Color Factor

The 1-loop amplitude splits into 3 monomials in the coupling constants:

O
(︁
b24
)︁
, O (b4λ) , O

(︁
λ2
)︁
, (3.1.1)

each of which must be separately gauge-invariant. Away from the planar limit we will focus

on the λ2 terms, or equivalently, set b4 = 0. The modi�ed crossing relation (1.4) doesn't

depend on b4 so we shouldn't miss anything substantial with this assumption. The relevant

diagrams are given in eq' (3.1.2).

Note that (3.1.4) are gauge-propagator corrections that vanish in the planar limit. Simi-

larly the second term in (3.1.2) (the �cross-box� diagram) as well as both diagrams in (3.1.3)

are large-N suppressed, and their negligibility in the 't Hooft limit underlies the reduction

of the all-loop 4-point function into a resummable sequence of ladder graphs.

We further wish to locate an even smaller gauge-invariant combination of diagrams. Sup-

pose we considered the process with 2 di�erent representations R1,2, one for each of the

scattering particles, then our diagrams will split schematically into �color factors�:

(︁
T 3
R1

)︁i
k
(TR2)

l
j ,
(︁
T 2
R1

)︁i
k

(︁
T 2
R2

)︁l
j
, (TR1)

i
k

(︁
T 3
R2

)︁l
j
, (3.1.5)
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iM
⃓⃓⃓
b4=0

=

1, j

2, i

4, l

3, k

+

1, j

2, i

4, l

3, k

(3.1.2)

+

1, j

2, i

4, l

3, k

+ 1 re�ection (3.1.3)

+

1, j

2, i

4, l

3, k

+

1, j

2, i

4, l

3, k

(3.1.4)

+

1, j

2, i

4, l

3, k

+ 3 re�ections

+

1, j

2, i

4, l

3, k

+

1, j

2, i

4, l

3, k
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where the superscript is roughly an exponent. These are not, in general, independent. E.g.:

(︁[︁
T a
R1
, T b

R1

]︁
T a
R1

)︁i
k

(︁
T b
R2

)︁l
j
∝ fabcf cad

(︁
T d
R1

)︁i
k

(︁
T b
R2

)︁l
j

∝
(︁
T a
R1

)︁i
k

(︁[︁
T a
R2
, T b

R2

]︁
T b
R2

)︁l
j
.

In other words, they are related via the representation-independence of the structure con-

stants fabc. We can therefore focus on the terms proportional to:

{︁
T a
R1
, T b

R1

}︁i
k

{︁
T a
R2
, T b

R2

}︁l
j
. (3.1.6)

This �color factor� must satisfy gauge invariance by itself, as there is no prospect for a gauge-

dependent part in it to cancel against other color factors. It is simply the �fully symmetrized�

part of the middle term in (3.1.5). Of course, the mathematical manipulations by which this

invariance is made manifest are blind to the choice of representations, so we can drop the

generator subscripts going forward.

Which diagrams contribute to this color factor? First note that:

1, j

2, i

4, l

3, k

∝
{︁
T a, T b

}︁i
k

(︁
T aT b

)︁l
j

(3.1.7)

=
1

2

{︁
T a, T b

}︁i
k

{︁
T a, T b

}︁l
j
, (3.1.8)

1, j

2, i

4, l

3, k

∝
(︁
T bT a

)︁i
k

(︁
T aT b

)︁l
j

(3.1.9)

=
1

4

{︁
T a, T b

}︁i
k

{︁
T a, T b

}︁l
j
− 1

4

[︁
T a, T b

]︁i
k

[︁
T a, T b

]︁l
j
, (3.1.10)
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1, j

2, i

4, l

3, k

∝
(︁
T aT b

)︁i
k

(︁
T aT b

)︁l
j

(3.1.11)

=
1

4

{︁
T a, T b

}︁i
k

{︁
T a, T b

}︁l
j
+

1

4

[︁
T a, T b

]︁i
k

[︁
T a, T b

]︁l
j
. (3.1.12)

So to summarize we can write:

iM =
1

4

(︃
−i4πλ

N

)︃2 {︁
T a, T b

}︁i
k

{︁
T a, T b

}︁l
j
iM
⃓⃓⃓
b4=0, sym

+ . . . (3.1.13)

And schematically:

iM
⃓⃓⃓
b4=0, sym

=

1, j

2, i

4, l

3, k

+

1, j

2, i

4, l

3, k

+ 2×

1, j

2, i

4, l

3, k

+ 2×

1, j

2, i

4, l

3, k

.(3.1.14)

The presence of the non-planar cross-box diagram on an equal footing with the box diagram

shows that this is an inherently non-planar quantity. This can also be understood in a

di�erent way: in the Abelian theory all commutators vanish and so this color factor is simply

the O (λ2e21e
2
2) part of the amplitude (with e1,2 being the charges that take the place of R1,2

in (3.1.5)). Hence we are simply considering the amplitude for G = U (1), and nothing could

be further from large N then U (1)!

We wish to rid ourselves of the v-dependence, subject to the on-shell condition. We

�nd that we can accomplish this and thus bring the color factor into the form of a sum

of covariant Feynman integrals. Using standard manipulations we will further reduce these

into scalar �triangles�, �bubbles� and �tadpoles� - that is - Feynman integrals involving at
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most 3 propagators and a numerator free of loop-momenta. These integrate into various

transcendentality 1 functions (logarithms, arctangents, etc.). Does this square with the

modi�ed crossing relation (1.4)? Let us reproduce it here:

SS = cos (πλ) I (p1, p4; p2, p3) + i
sin (πλ)

πλ
T naive
S . (3.1.15)

T naive
S is O (λ) so the term we expect to see at O (λ2) comes only from the �rst term:

− (πλ)2 I (p1, p4; p2, p3) . (3.1.16)

After extracting the overall momentum-conserving delta function this reduces to simply a

δ-function at forward scattering δ (θ). This doesn't seem to be captured by our result. A

possible reason is that we use the Schouten identity to reduce box integrals into triangle

integrals in a way that isn't valid at θ = 0 (see below). Alternatively, it might be that

we must compute the o�-shell correlation function and carefully approach the mass-shell -

this is the approach we take in section 4. Finally note that (1.4) is merely the result in

the planar limit. For all we know the non-planar theory may have completely unexpected

analyticity properties in the non-planar limit. It also could be that our speci�c form factor

simply exhibits the standard crossing symmetry.
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3.2 Gauge Invariance of the Color Factor

Let us �rst focus on the box diagram:8

1, j

2, i

4, l

3, k

= −
ˆ

d3k

(2π)3
1

k2 +m2

1

(k − p1 − p2)2 +m2
(3.2.2)

× ϵ (v, k + p1, k − p1 − 2p2)

v · (k − p1)
ϵ (v, k − p4, k + p4 + 2p3)

v · (k + p4)
. (3.2.3)

The box can be thought of as two tree level exchanges in sequence, each of which, as we saw

in subsection 2.5.5 , is gauge invariant when the scalar legs leading to it are on-shell. Hence

on the residue of both scalar propagators we should be able to write:

ϵ (v, k + p1, k − p1 − 2p2)

v · (k − p1)
→ ϵ (k − p1, k + p1, k − p1 − 2p2)

(k − p1)2
. (3.2.4)

We should be able to add-and-subtract this covariantized version of the box, and the di�erence

will be proportional to the on-shell condition - that is - to inverse scalar propagators! We can

see how that works using the Schouten identity: Using the on-shell condition and momentum

conservation we can write:

k2 +m2 = k2 − p21,4 = (k − p1,4) · (k + p1,4) , (3.2.5)

(k − p1 − p2)2 +m2 = (k − p1 − 2p2) · (k − p1)
= (k + p4) · (k + p4 + 2p3) .

8The cross-box is related by a simple relabeling:

1, j

2, i

4, l

3, k

=

1, j

2, i

4, l

3, k

⃓⃓⃓
p2↔p3

(3.2.1)

= −
ˆ

d3k

(2π)
3

1

k2 +m2

1

(k − p1 − p3)
2
+m2

× ϵ (v, k + p1, k − p1 − 2p3)

v · (k − p1)

ϵ (v, k − p4, k + p4 + 2p2)

v · (k + p4)
.
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This suggests we can use the Schouten identity9 to write:

ϵ (v, k + p1, k − p1 − 2p2)

v · (k − p1)
=

(k − p1)2 ϵ (v, k + p1, k − p1 − 2p2)

v · (k − p1) (k − p1)2

= −(k − p1) · (k − p1 − 2p2) ϵ (v, k − p1, k + p1)

v · (k − p1) (k − p1)2
(3.2.7)

+
(k − p1) · (k + p1) ϵ (v, k − p1, k − p1 − 2p2)

v · (k − p1) (k − p1)2

+
ϵ (k − p1, k + p1, k − p1 − 2p2)

(k − p1)2
.

As expected, we obtain a covariantized version of the propagator along with terms propor-

tional to inverse scalar propagators. We repeat this for the other gauge propagator, and for

the cross box so we are left schematically with:

iM
⃓⃓⃓
b4=0, sym

= covariant box+ covariant cross-box (3.2.8)

+ non-covariant triangles, bubbles, etc. (3.2.9)

We refer as triangles (bubbles) to terms where one (resp' two) scalar propagators have been

canceled, as well as the actual triangle diagrams (3.1.14). We must deal with the non-

covariant part. A useful hint as to how to proceed is to change the mass of particles 1,4

relative to particles 2,3:

p21 = p24 = −m2
1 ̸= −m2

2 = p22 = p23, (3.2.10)

(︁
k2 +m2

)︁−1 →
(︁
k2 +m2

1

)︁−1
, (3.2.11)(︁

(k − p1 − p2)2 +m2
)︁−1 →

(︁
(k − p1 − p2)2 +m2

2

)︁−1
, (3.2.12)(︁

(k − p1 − p3)2 +m2
)︁−1 →

(︁
(k − p1 − p3)2 +m2

2

)︁−1
. (3.2.13)

Earlier manipulations such as (3.2.5) carry through. The amplitude in this deformed 2-scalar

theory must still be gauge invariant, and this tells us what terms we must combine - we may

9In our case this is simply:

0 =

4∑︂
i=1

(−1)i pµ1+iϵ (p2+i, p3+i, p4+i) , (3.2.6)

where pn, n = 1, . . . , 4 are any 4 vectors and is understood mod 4.
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focus only one class of triangle diagrams:

1, j

2, i

4, l

3, k

. (3.2.14)

These should be gauge invariant up to bubble terms where the scalar propagator:

(︁
k2 +m2

1

)︁−1
= ((k − p1) · (k + p1))

−1 , (3.2.15)

has canceled. Our expectation is to see the eventual cancellation of all the �spurious� poles

(v · (k − p1))−1 , (v · (k + p4))
−1. Naively, we could try to just select an �algebraic basis� of

inner products which trivializes the on-shell conditions and momentum conservation, and

then see whether the poles cancel - this doesn't work! The reason is that the poles may

cancel only when one remembers that the expression is under the integral sign - shifts and

re�ections of our loop momentum k can be applied to di�erent terms before combination.

Another issue is that our integrand isn't expressed purely in terms of inner products - there

are also triple products - however, this is easily remedied by the identity:

ϵµ1µ2µ3ϵν1ν2ν3 = −
∑︂

σ∈S(3)

sign (σ)
3∏︂

i=1

δµi
νσ(i)

, (3.2.16)

or equivalently:

ϵ (x1, . . . , x3) ϵ (y1, . . . , y3) = − det
(︂
{xi · yj}i,j=1,...3

)︂
. (3.2.17)

As for momentum shifts - since there is a unique scalar propagator (with mass m1) we expect

them to be unnecessary until we cancel all terms that have both a scalar propagator and a

spurious one. After choosing an appropriate basis we �nd we are left with only two terms

involving the scalar propagator and both of the spurious poles:

(v · (p1 − p4))2
(k2 +m2) v · (k − p1) v · (k + p4)

− (v · (p1 − p4))2 ((k − p1) · (k + p4))
2

(k2 +m2) v · (k − p1) (k − p1)2 v · (k + p4) (k + p4)
2 .

(3.2.18)
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The reason is that we haven't used all constraints available to us - namely, we haven't used

the dimensionality o� spacetime. Linear dependencies among the vectors can be expressed

using the Schouten identity, as we have done in (3.2.7). Another form of this identity is the

vanishing of the Gram determinant of linearly dependent vectors:

G (x1, . . . , xn) = det
(︂
{xi · xj}i,j=1,...n

)︂
= 0 for n > 3, (3.2.19)

⇒ 0 = G (v, k − p1, k + p4, p1 − p4) , (3.2.20)

⇒ (v · (p1 − p4))2 ((k − p1) · (k + p4))
2 = (v · (p1 − p4))2 (k − p1)2 (k + p4)

2 + . . . (3.2.21)

Hence the terms in (3.2.18) cancel up to the terms in �...� - which all contain at least one

inverse spurious propagator. At this point we again simplify using an algebraic basis and �nd

the straightforward cancellation of all terms involving both scalar and spurious propagators.

After repeating for the �inverted triangle� terms:

1, j

2, i

4, l

3, k

, (3.2.22)

and applying a few momentum-shifts, we arrive at a fully Lorenz invariant and gauge invariant

integrand, involving no spurious poles. This expression is too long to be reproduced here.

3.3 Integral Reductions

The next step is to reduce our integrals to a basis of scalar integrals. In 3 dimensions, we

expect all diagrams to reduce to ones having at most 3 propagators (triangle diagrams). We

expect the �nal result to be a signi�cantly simpler integrand satisfying the following:

1. No remaining gauge propagators. If any integrals remain that have a gauge propaga-

tor, then it can be �cut� (placed on-shell) along with the other propagators and the

result should be the amplitude of a physical process involving a gauge Boson. Since

Chern-Simons gauge Bosons do not propagate, we expect such a residue to be 0, and

hence with su�cient algebra the pole should turn out to be spurious. An exception is
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tadpole diagrams - those containing only a gauge propagator. However, those give no

contribution in dimensional regularization and so can be ignored.

2. In the planar limit (see 4) the 1-loop amplitude reduces (roughly) to an integrand that

corresponds to �pinching� all scalar propagators in the original diagrams derived from

the Feynman rules - a few scalar tadpoles which integrate to constants along with a

scalar bubble diagram which integrates to 1
4π

√
−S

arctan
(︂√

−S
2m

)︂
(see C). We thus expect

a similar result here, except that the cross-box should give rise to a �crossed� bubble,

with S → U .

How does one perform this reduction? We'll describe it step by step.

3.3.1 Reduction of the Box Integrals

Our covariantized integrand is now given by:

iM
⃓⃓⃓
b4=0, sym

= covariant box+ covariant cross-box (3.3.1)

+ covariant triangles, bubbles, etc. (3.3.2)

The box and cross-box have a �tensor� numerator, meaning it contains powers of the loop mo-

mentum k. Our �rst step is to express all such powers as inverse propagators, so that they can-

cel the propagators giving �lower order� integrals (triangles, bubbles, etc.). There are 3 inde-

pendent external vectors, which we can choose to be any 3 of the vectors {s, t, u, p1, p2, p3, p4}
, as described in 2.5. Hence we can write all the inner products in the numerator (slightly

redundantly) as:

k2, k · pi, i = 1, 2, 3. (3.3.3)

Note that each box has 4 propagators. For instance, the (not-crossed) box has:

(︁
k2 +m2

)︁−1
,
(︁
(k − s)2 +m2

)︁−1
, (k − p1)−2 , (k + p4)

−2 . (3.3.4)

Thus it is straightforward to solve for the inner products in (3.3.3) in terms of the inverse

propagators and kinematic invariants. This needs to be done separately for the cross-box,

although one can avoid this by using the relation (3.2.1).

Before long, we are left only with scalar box integrals. Reduction of these depends on the

3d nature of the problem and employs the Schouten identity. Speci�cally, we know that any

4 vectors are linearly dependent and so have a vanishing Gram determinant (determinant of
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the 4× 4 matrix of inner products):

0 = G (k, p1, p2, p3) . (3.3.5)

This expression can converted into a polynomial in inverse propagators and kinematic invari-

ants S, T, U . We can solve (3.3.5) to write unity as:

1 =
Pbox (inverse box propagators)

(T + U)ST 2
=
PXbox (inverse cross-box propagators)

(T + S)UT 2
, (3.3.6)

where P stands for �polynomial�. The denominators are simply the terms of order 0 in in-

verse propagators in (3.3.5). Now we can simply �multiply� our scalar box integrals with the

appropriate expression for unity to obtain an integrand composed only of triangles and lower

order integrals. Importantly, this reduction depends on the non-vanishing of the denomina-

tors in (3.3.6). Since the δ-function we expect from the crossing relation (1.4) is supported

on T = 0, it is possible that by using this reduction we are missing something. Nevertheless,

let us proceed.

3.3.2 Reduction of Triangles

Reducing the scalar box integrals depended on the Schouten identity in a way that cannot be

used to reduce scalar triangles. However, we will see that tensor triangles can be reduced to

scalar triangles and bubbles. The key is that powers of loop momentum can now be expressed

as combinations of inverse propagators and numerators for which the integral vanishes! This

can be seen clearly with an example. Let's consider the triangle integrand:

k−2 (k − p1)−2 (k − p2)−2 × numerator. (3.3.7)

We are ignoring mass terms and p1,2 here have no relation to our actual scattering momenta.

Now the inner products k2, k · p1, k · p2 can be expressed in terms of inverse propagators. But

what of other products? Consider the vector integral:

ˆ
d3k

(2π)3
kµ

k2 (k − p1)2 (k − p2)2
. (3.3.8)

By symmetry considerations, it should evaluate to A (pµ1 + pµ2). The only important thing

about this is that it should vanish when �dotted� into a vector orthogonal to both p1 and
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p2, such as p1 × p2. This means that:

ˆ
d3k

(2π)3
ϵ (k, p1, p2)

k2 (k − p1)2 (k − p2)2
= 0. (3.3.9)

In fact, we can write more generally:

ˆ
d3k

(2π)3
(ϵ (k, p1, p2))

n

k2 (k − p1)2 (k − p2)2
N
(︁
k2, k · p1, k · p2

)︁
= 0, n odd, (3.3.10)

where N is some polynomial. That this integral vanishes follows from the existence of an

isometry (re�ection through the plane spanned by p1, p2) that negates ϵ (k, p1, p2) but not

the other inner products.

Hence we can complete p1, p2 to a basis by adding the vector p1 × p2! Finally, note that
even powers of ϵ (k, p1, p2) can be re-expressed in terms of k2, k ·p1, k ·p2 using (3.2.17). Hence
all inner products in the numerator in (3.3.7) can be re-expressed as combinations of inverse

propagators and kinematic invariants up to vanishing terms like (3.3.10), proving that we

can reduce a general triangle to scalar triangles and bubbles.

3.3.3 Reduction of Bubbles

Reduction of bubble to scalar bubbles is very similar to the reduction of triangles. In our

case, we are left only with vector bubbles. These are especially easy to reduce to scalars.

Consider that: ˆ
d3k

(2π)3
kµ

k2 (k − p)2
= Apµ. (3.3.11)

Then we can write:

A =
1

p2

ˆ
d3k

(2π)3
k · p

k2 (k − p)2
(3.3.12)

=
1

2p2

ˆ
d3k

(2π)3

(︃
1

(k − p)2
− 1

k2
+

p2

k2 (k − p)2
)︃
. (3.3.13)

So for a general vector numerator we can write:

ˆ
d3k

(2π)3
k · l

k2 (k − p)2
= Ap · l, (3.3.14)

completing the reduction.
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3.4 Discussion

A trustworthy �nal result is forthcoming, so at present we cannot present a �nal expression.

Nevertheless, we �nd with high con�dence that this color factor is gauge invariant. This

stands in contrast to our 1 loop results in the planar limit (see 3). Note that in the Abelian

theory we nevertheless expect to see a δ function at forward momenta, so in the future it

could be worthwhile look more carefully at how this color factor behaves near θ = 0.
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4 The Planar Scattering Amplitude

In much of the literature on the topic, including [19], computation is simpli�ed greatly by

the assumption v · s = 0. For real v, s (in Minkowski space) this is only possible when s is

space-like. Hence one can use this assumption to compute the 4-point correlation function

and then go on-shell. Naively, there should be no problem in analytically continuing the

result to time-like s. The modi�ed crossing relation (1.4), however, casts doubt on that. Eq'

(2.5.25) indicates that the results obtained for v · s = 0 should hold in the adjoint and direct

channels, but not necessarily the singlet. Our goal is then to compute the 1-loop amplitude

o�-shell and without any assumptions about v or s. This will constitute a check on [19]'s

results, and perhaps show the emergence of (1.4) by direct calculation.

First, in 4.1 and 4.2, we'll review [19]'s results. We will then describe 1-loop our calcu-

lations and results. We �nd agreement with [19] up to some gauge-dependent corrections.

In fact, we �nd that these corrections survive the on-shell limit, spoiling the amplitude's

gauge invariance. However, these corrections exhibit some nontrivial structure - they take

the form of a prefactor multiplying the tree-level amplitude. We believe this suggests that

gauge invariance should be restored by dressing the amplitude with Wilson lines. Finally, we

discuss our results in 4.4.

4.1 The E�ective Exchange Interaction for v · s = 0

In the planar limit, with fundamental matter, diagrams like:

1, j

2, i

4, l

3, k

, (4.1.1)
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are sub-leading in 1
N
. So are:

1, j

2, i

4, l

3, k

. (4.1.2)

In other words, if we think of time as �owing left-to-right, interactions �across time� are sup-

pressed. To see this one can observe that most of those interactions, including (4.1.2) above,

can be thought of for purposes of N power counting as gauge-propagator corrections (think

of the 2 propagators leaving the lower line in the diagram as being one gauge propagator

contributing to its self energy), which we have already observed are non-planar. This means

that the interaction reduces to the sum of all ladder graphs. We follow [19] by looking �rst

at one �rung� on the ladder, which we can think of as an e�ective exchange interaction. This
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is composed of the following diagrams:

1, j

2, i

4, l

3, k

=

j

i

l

k

+ p1 + p4

1, j

2, i

4, l

3, k

a

a

+

1, j

2, i

4, l

3, k

+ 3 re�ections (4.1.3)

+

1, j

2, i

4, l

3, k

+

1, j

2, i

4, l

3, k

.(4.1.4)

It has both tree level and 1-loop contributions. The gauge dependence is, as usual, limited

to the gauge propagators, and with an appropriate choice of shift for the loop momentum k

the three propagator denominators in the problem can be written:

1

k+ − p+1
,

1

k+ + p+4
,

1

p+1 + p+4
=

1

u+
. (4.1.5)

The linearity of these denominators means that partial fractioning can be used to write:

1

k+ − p+1
1

k+ + p+4
= − 1

p+1 + p+4

(︃
1

k+ − p+1
− 1

k+ + p+4

)︃
. (4.1.6)
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Also, with this choice we have 2 scalar propagators:

1

k2 +m2
,

1

(k − p1 − p2)2 +m2
=

1

(k − s)2 +m2
. (4.1.7)

With this in mind let us focus 2 of the propagator correction-like diagrams in (4.1.3). We will

strip o� the factor of
(︁
−i2πλ

N

)︁2
from the propagators, as well as the N from the color-loop in

all of the following calculations. With that we have the integrand:

−(v × (p3 − p2))µ
u+

1

k2 +m2

(︃
(v × (−k − p1))µ

k+ − p+1
+
− (v × (p4 − k))µ

k+ + p+4

)︃
(4.1.8)

=
p+3 − p+2
u+

1

k2 +m2

(︃
k+ + p+1
k+ − p+1

− k+ − p+4
k+ + p+4

)︃
(4.1.9)

= 2
(︁
p+3 − p+2

)︁ 1

k2 +m2

k+

k+ − p+1
1

k+ + p+4
, (4.1.10)

where in the second line we have used a variant of (3.2.17) which is simply:

(v × p1) · (v × p2) = gµ1µ2ϵµ1ν1ρ1v
ν1pρ11 ϵµ2ν2ρ2v

ν2pρ22 (4.1.11)

= g⊥⊥ϵ⊥jp
j
1ϵ⊥lp

l
2 (4.1.12)

=
(︁
−p+1

)︁ (︁
−p+2

)︁
(4.1.13)

= v · p1v · p2. (4.1.14)

Hence these diagrams have combined to form triangle diagrams like those in (4.1.4). Let's

examine one of those:

− 1

k2 +m2

(v × (−k − p1))µ
k+ − p+1

− (v × (p4 − k))µ
k+ + p+4

(4.1.15)

=
1

k2 +m2

k+ + p+1
k+ − p+1

k+ − p+4
k+ + p+4

(4.1.16)

=
1

k2 +m2
+

(︁
k+ + p+1

)︁ (︁
k+ − p+4

)︁
−
(︁
k+ − p+1

)︁ (︁
k+ + p+4

)︁
(k2 +m2)

(︁
k+ − p+1

)︁ (︁
k+ + p+4

)︁ (4.1.17)

=
1

k2 +m2
− 2

(︁
p+1 − p+4

)︁ k+

k2 +m2

1

k+ − p+1
1

k+ + p+4
. (4.1.18)
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We have extracted a �gauge independent part� (k2 +m2)
−1
. Let us combine the gauge

dependent parts we have so far:

k+

k2 +m2

1

k+ − p+1
1

k+ + p+4

(︁
2
(︁
p+3 − p+2

)︁
− 2

(︁
p+1 − p+4

)︁)︁
(4.1.19)

= −4 k+

k2 +m2

1

k+ − p+1
1

k+ + p+4
v · s. (4.1.20)

Hence we see that it falls o� for v · s = 0. Meanwhile, the covariant part is:(︃
−i2πλ

N

)︃2

N

ˆ
d3k

(2π)3
1

k2 +m2
=

(︃
2πλ

N

)︃2

N
|m|
4π

=
πλ2 |m|
N

. (4.1.21)

The remaining 1-loop diagrams in (4.1.3), (4.1.4) are simply a re�ection of those we dealt with

so far and are identical with the replacement (k2 +m2)
−1 →

(︁
(k − s)2 +m2

)︁−1
. The 1-loop

part of the e�ective exchange interaction, therefore, does not depend on external momenta

at all, and is gauge invariant o�-shell. It e�ectively corrects the contact interaction:

b4 → b4 − 2πλ2 |m| ≡ −b̃4. (4.1.22)

Thus we �nd:

1, j

2, i

4, l

3, k

= b̃4 − i
2πλ

N

v · (p1 − p4)× (p3 − p2)
v · (p1 + p4)

(4.1.23)

up to 2 additional terms that fall o� under our assumption v · s = 0:

4
(2πλ)2

N

(︃
− k+

k2 +m2
+

k+ − s+
(k − s)2 +m2

)︃
1

k+ − p+1
1

k+ + p+4
v · s. (4.1.24)

These will be shown to play a role when we compute the 1-loop correlator in 4.3.
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4.2 The All-Loop Planar Amplitude

Using the e�ective interaction we can write an integral equation for the amplitude:

1, j

2, i

4, l

3, k

=

1, j

2, i

4, l

3, k

(4.2.1)

+

1, j

2, i

4, l

3, k

×

1, j

2, i

4, l

3, k

. (4.2.2)

Which is solved in [19] to give the all-loop planar scattering amplitude:

iM = i
4πλ

N
E (p1, p2, p3)

√︃
SU

T
(4.2.3)

− i
4πλ

N

√
−S

(︂
b̃4 − 4πiλ

√
−S
)︂
+
(︂
b̃4 + 4πiλ

√
−S
)︂
e
−2iλ arctan

(︂√
−S
2m

)︂

−
(︂
b̃4 − 4πiλ

√
−S
)︂
+
(︂
b̃4 + 4πiλ

√
−S
)︂
e
−2iλ arctan

(︂√
−S
2m

)︂
.
(4.2.4)

This result was obtained for v · s = 0 so s is spacelike, which means S is negative. The �rst

term is simply the tree level contribution and is the only part of the amplitude odd in powers of

λ. As discussed in 2.5.2, it enters the amplitude with a factor of the handedness E (p1, p2, p3),

consistent with Z2 symmetry. That the second term is even in λ can be seen by negating λ

and then multiplying numerator and denominator by exp
(︂
−2iλ arctan

(︂√
−S
2m

)︂)︂
. This also

means that the analytic continuation of the second term to positive S is unambiguous, since

we get
√
−S → ±i

√
S but one can simultaneously replace λ→ ∓λ, canceling the ambiguity

that under normal circumstances would be resolved by the iϵ prescription.
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Let's consider the λ→ 0 limit:

. . . =
1

N

b4

1 + b4
arctan

(︂√
−S
2m

)︂
4π

√
−S

(4.2.5)

=
1

N

∞∑︂
n=0

bn+1
4

⎛⎝−arctan
(︂√

−S
2m

)︂
4π
√
−S

⎞⎠n

. (4.2.6)

The result matches our expectation from a theory with only a quartic self-interaction in the

planar limit - a geometric sum of bubble diagrams.

The expression in (4.2.3) is merely the on-shell result. The full o�-shell correlation func-

tion found in [19] is given by:

iM = exp

(︄
−2iλ

(︄
arctan

(︄
2
√︁

2p+1 p
−
1 +m2

s⊥

)︄
− arctan

(︄
2
√︁
2p+4 p

−
4 +m2

s⊥

)︄)︄)︄
(4.2.7)

×
(︃
4πiλs⊥

p+1 − p+4
p+1 + p+4

+ j (|s⊥| , λ)
)︃
, (4.2.8)

j (|s⊥| , λ) = 4πiλ |s⊥|

(︂
b̃4 − 4πiλ |s⊥|

)︂
+
(︂
b̃4 + 4πiλ |s⊥|

)︂
e
−2iλ arctan

(︃
|s⊥|
2m

)︃

−
(︂
b̃4 − 4πiλ |s⊥|

)︂
+
(︂
b̃4 + 4πiλ |s⊥|

)︂
e
−2iλ arctan

(︃
|s⊥|
2m

)︃ .

Note that since s+ = 0:

|s⊥| =
√
s2 =

√
−S, (4.2.9)

and:

s⊥
p+1 − p+4
p+1 + p+4

=
s⊥
(︁
p+1 − p+4

)︁
− s+

(︁
p⊥1 − p⊥4

)︁
p+1 + p+4

=
ϵ (v, p1 − p4, s)

v · t , (4.2.10)

making the expression in (4.2.8) match (4.2.3). But what of of the prefactor (4.2.7)? It's

important that in [19] the authors treat s as a real vector in Euclidean space, meaning that:

s− =
(︁
s+
)︁∗

= (v · s)∗ = 0, (4.2.11)

so:

s = (0, 0, s⊥) =
(︂
0, 0,±

√
−S
)︂
. (4.2.12)
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When on-shell this gives:

0 = m2 −m2 (4.2.13)

= p21 − p22 (4.2.14)

= p21 − (p1 − s)2 (4.2.15)

= 2p1 · s− s2 (4.2.16)

= 2p⊥1

(︂
±
√
−S
)︂
+ S (4.2.17)

⇒
(︁
p⊥1
)︁2

=
S

4
. (4.2.18)

A similar calculation leads to:

⇒
(︁
p⊥i
)︁2

=
S

4
, i = 1, . . . , 4, (4.2.19)

⇒ 2
√︁

2p+i p
−
i +m2

s⊥
= iSign

(︁
s⊥
)︁
. (4.2.20)

Hence the prefactor (4.2.7) naively goes to:

exp
(︁
iSign

(︁
s⊥
)︁
λ (arctan (i)− arctan (i))

)︁
. (4.2.21)

Although arctan (i) is divergent, the authors argue that we should interpret this factor as 1.

Note that the function arctan also has a πn ambiguity, so hypothetically one could interpret

the limit as:

e2πinλ, (4.2.22)

for some integer n. Of course this isn't Z2 symmetric, but it resembles the trigonometric

factors in the modi�ed crossing relation (1.4). One could think of Z2 symmetrizing by

averaging over λ = λ,−λ, to get:

cos (2πnλ) , (4.2.23)

but this would only match the cosine in (1.4) for non-integer n = 1
2
and it wouldn't be

multiplying the predicted δ-function, but rather taking the place of sinπλ
πλ

. Hence the relation

between (4.2.7) and modi�ed crossing, if there is one, is unclear. However, the presence of

such factors motivates us to carefully compute the o�-shell 1-loop 4-point correlator away

from the v · s = 0 assumption, to which we currently proceed.
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4.3 The 1-loop Planar Amplitude

To get an idea of what to expect, let us expand [19]'s to orders b24, λ
2 (we know that terms

odd in λ like b4λ will not be present):

iM = · · ·+ 1

N

arctan
(︂√

−S
2m

)︂
4π
√
−S b24 +

1

N

(︃
1

π

√
−S arctan

(︃√−S
2m

)︃
+
m

2π

)︃
(2πλ)2 (4.3.1)

+ . . . (4.3.2)

We recognize the term 2πmλ2 as the 1-loop part of the e�ective exchange interaction (4.1.23).

The missing O (λ2) diagram at 1-loop is the planar box diagram:

1, j

2, i

4, l

3, k

. (4.3.3)

The O (b24) is also not very surprising, as it is simply the bubble integral:

k

k − s

1, j

2, i

4, l

3, k

=
b24
N

1

4π
√
−S arctan

(︃√−S
2m

)︃
, (4.3.4)
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which we compute in the appendix C. The remaining diagrams are:

iM = · · ·+

1, j

2, i

4, l

3, k

+

1, j

2, i

4, l

3, k

⃓⃓⃓
1-loop

+

k

k − s

k + p4

1, j

2, i

4, l

3, k

+

k

k − p1

k − s

1, j

2, i

4, l

3, k

, (4.3.5)

where in the �rst line we keep only the 1-loop order terms in the e�ective exchange interaction.

Interestingly, the O (λ2) terms in (4.3.1) look roughly like what one would expect to obtain

from shrinking all gauge propagators.

4.3.1 O (b4λ) integrals

The diagrams in (4.3.5) are O (b4λ) and should vanish, at least when v · s = 0. Let's focus

our attention on them10:

k

k − p1

k − s

1, j

2, i

4, l

3, k

∝ I (p1, p2) =

ˆ
d3k

(2π)3
1

k2 +m2

1

(k − s)2 +m2

×ϵ (v, k + p1, k − p1 − 2p2)

v · (k − p1)

, (4.3.6)

k

k − s

k + p4

1, j

2, i

4, l

3, k

∝ −I (−p4,−p3) = −

⎛⎜⎜⎝
ˆ

d3k

(2π)3
1

k2 +m2

1

(k − s)2 +m2

×ϵ (v, k − p4, k + p4 + 2p3)

v · (k + p4)

⎞⎟⎟⎠ . (4.3.7)

10Recall that s = p1 + p2 = −p3 − p4
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Since the prefactor is (−b4) (−2πiλ) 1
N
, Z2 symmetry requires the integral to be parity-odd,

which it indeed is. We perform these integrals in the appendix B.1 in Lorenzian signature,11

where we �nd:

I = − ϵ (v, p1, p2)

2π
√︁
A (p1, p2,m)

arctan

(︄√︁
A (p1, p2,m)

m
(︁
p+1 − p+2

)︁ )︄ , (4.3.10)

with:

A (p1, p2,m) = ϵ (v, p1, p2)
2 − s+

(︁(︁
m2 + p22

)︁
p+1 +

(︁
m2 + p21

)︁
p+2
)︁
. (4.3.11)

It can easily be seen that either the on-shell condition or s+ = 0 are su�cient to obtain:

A→ (ϵ (v, p1, p2))
2 , (4.3.12)

giving:

I = − 1

2π
arctan

(︃
ϵ (v, p1, p2)

mv · (p1 − p2)

)︃
. (4.3.13)

We �nd that for v · s = 0 this reduces to:

I = sign
(︁
s⊥
)︁ arctan(︂√

−S
2m

)︂
2π

. (4.3.14)

The integral loses its p1-dependence and becomes almost Lorenz-invariant, except for the

pre-factor which is necessary for parity-oddness. The other integral (when expressed using

p4, s) is simply obtained by replacing p1 → −p4, but since in the v · s case p1 is absent, the
two integrals match. Then the overall minus sign in (4.3.7) ensures the 2 diagrams cancel.

In general these terms do not cancel one another giving a �nal answer (reintroducing the

coe�cients):

iM
⃓⃓⃓
O(b4λ)

= i
b4λ

N

(︃
arctan

(︃
ϵ (v, p1, p2)

mv · (p1 − p2)

)︃
+ arctan

(︃
ϵ (v, p3, p4)

mv · (p4 − p3)

)︃)︃
. (4.3.15)

11There is a relative factor of −2 since (using anti-symmetry):

ϵ (v, k + p1, k − p1 − 2p2) = −2ϵ (v, k + p1, p1 + p2) = −2ϵ (v, k + p1, s) (4.3.8)

ϵ (v, k − p4, k + p4 + 2p3) = 2ϵ (v, k − p4, p4 + p3) = −2ϵ (v, k − p4, s) (4.3.9)
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4.3.2 O (λ2) integrals

Let's move on to the O (λ2) part of the correlator. We know from 4.1 that the 1-loop part of

the e�ective exchange interaction evaluates to:

1, j

2, i

4, l

3, k ⃓⃓⃓
1-loop

=
2πλ2 |m|

N
(gauge invariant part)

+ 4
(2πλ)2

N

(︃
− k+

k2 +m2
+

k+ − s+
(k − s)2 +m2

)︃
(4.3.16)

× 1

k+ − p+1
1

k+ + p+4
v · s. (4.3.17)

The �gauge dependent� parts proportional to v · s are integrated in the appendix B.1.1 but

we won't use that result here. We'll keep them in mind as we look at the remaining diagram,

the box:

1, j

2, i

4, l

3, k

= −(2πλ)2

N

ˆ
d3k

(2π3)

1

k2 +m2

1

(k − s)2 +m2
(4.3.18)

× ϵ (v, k + p1, k − p1 − 2p2)

k+ − p+1
ϵ (v, k + 2p3 + p4, k − p4)

k+ + p+4
(4.3.19)

= 4
(2πλ)2

N

ˆ
d3k

(2π3)

1

k2 +m2

1

(k − s)2 +m2
(4.3.20)

× ϵ (v, k + p1, s)

k+ − p+1
ϵ (v, k − p4, s)
k+ + p+4

. (4.3.21)

Note that for v · s = 0 we have:

ϵ (v, k + p1, s)

k+ − p+1
ϵ (v, k − p4, s)
k+ + p+4

= s2⊥
k+ + p+1
k+ − p+1

k+ − p+4
k+ + p+4

(4.3.22)

= −2S k+u+(︁
k+ − p+1

)︁ (︁
k+ + p+4

)︁ − S, (4.3.23)
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where we have used the fact that −S = s2 = s2⊥. The gauge-invariant term −S when plugged

back into the integrand gives rise to another bubble diagram which integrates to:

4
(2πλ)2

N
(−S) 1

4π
√
−S arctan

(︃√−S
2m

)︃
=

(2πλ)2

N

1

π

√
−S arctan

(︃√−S
2m

)︃
, (4.3.24)

consistent with (4.3.1). We expect the gauge dependent term to integrate to 0. One can see

that it does by integrating out k−. As discussed in the computation of the triangle diagram

in B.1.2, the k− integration localizes the range of k+ to (0, s+). As s+ → 0 the range shrinks

to 0, but there is a non-zero contribution nevertheless since for k+ = 0 the integrand becomes

�nite and k− independent, leading to a δ (0). In the case of the box, the �gauge-dependent�

part of the integrand is proportional to k+u+ and so vanishes. However, we will be more

thorough and fully integrate the box for s+ ̸= 0.

It will be useful to add and subtract the �bubble�:

− 4
(2πλ)2

N
S

ˆ
d3k

(2π3)

1

k2 +m2

1

(k − s)2 +m2
, (4.3.25)

in anticipation of its �popping out� anyway. Thus we are led to consider the integral:

4
(2πλ)2

N

ˆ
d3k

(2π3)

1

k2 +m2

1

(k − s)2 +m2
(4.3.26)

×
(︃
ϵ (v, k + p1, s)

k+ − p+1
ϵ (v, k − p4, s)
k+ + p+4

+ S

)︃
. (4.3.27)

The integrand is O
(︁
k−2
⊥
)︁
, O
(︂
(k−)

−2
)︂
and O

(︂
(k+)

−3
)︂
and so is naively UV convergent.

However, a subtlety arises if one integrates out k− using contour integration. One of the

scalar propagators �shrinks� in the residue, making it so that the integrand becomes O (k0⊥)

- linearly divergent. We wish to �nd a simpler integral to subtract from the box in order to

cancel the ∼ k2⊥ (s+)
2 term in the numerator. Since the scalar propagators contain terms of

order k2⊥, one can imagine subtracting a �triangle� like:

∼
ˆ

d3k

(2π3)

(s+)
2

k2 +m2

1

k+ − p+1
1

k+ + p+4
or ∼

ˆ
d3k

(2π3)

(s+)
2

(k − s)2 +m2

1

k+ − p+1
1

k+ + p+4
.

(4.3.28)

However, this introduces powers of k− into the numerator, which upon integration are eval-

uated at the residue k− = O (k2⊥), so the integrand is still UV divergent. It turns out that

a unique combination triangle diagrams cancels the k2⊥ (s+)
2 term in the numerator with-

out introducing powers of k−, and that combination is precisely the gauge dependent terms
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(4.3.16) that we said we should keep in mind. Thus we are led to consider the integral:

ˆ
d3k

(2π3)

1

k2 +m2

1

(k − s)2 +m2
(4.3.29)

×
(︃
ϵ (v, k + p1, s)

k+ − p+1
ϵ (v, k − p4, s)
k+ + p+4

− s2
)︃

(4.3.30)

+

ˆ
d3k

(2π3)

(︃
− k+

k2 +m2
+

k+ − s+
(k − s)2 +m2

)︃
1

k+ − p+1
1

k+ + p+4
s+, (4.3.31)

where we have divided out the prefactor 4 (2πλ)2

N
. Now integration of k− only leads to a

logarithmic divergence O
(︁
k−1
⊥
)︁
which gives rise to a �nite �arc at in�nity� contribution. This

integral should account for any di�erence between our result and the gauge invariant result

(4.3.1).

One can integrate this in exactly the same way as in B.1.2 (in Lorenzian signature). Note

also that thanks to the partial fraction relation:

1

k+ − p+1
1

k+ + p+4
=

1

t+

(︃
1

k+ − p+1
− 1

k+ + p+4

)︃
, (4.3.32)

the integral can be thought of as a sum of two triangle integrals, one related to the other by

a simple relabeling of momenta. Indeed, upon integration (in Lorenzian signature) we get:

. . . =

arctan

(︃√
A(p1,p2,m)+iϵ

mv·(p2−p1)

)︃
4πt+

√︁
A (p1, p2,m) + iϵ

(A (p1, p2,m)− ϵ (v, p1, p2) ϵ (v, p3, p4)) (4.3.33)

+ ((p1, p2)↔ (−p4,−p3)) , (4.3.34)

where:

A (p1, p2,m) = (ϵ (v, p1, p2))
2 − s+

(︁(︁
m2 + p22

)︁
p+1 +

(︁
m2 + p21

)︁
p+2
)︁
. (4.3.35)

Note the similarity of this result to the one obtained at O (b4λ) - (4.3.10). This similarity will

become even more striking on-shell and for v · s = 0. As in 4.3.1 either the on-shell condition

or s+ = 0 are su�cient to obtain:

A→ (ϵ (v, p1, p2))
2 , (4.3.36)
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giving:

. . . =
4πλ2

N

(︃
arctan

(︃
ϵ (v, p1, p2)

mv · (p2 − p1)

)︃
+ arctan

(︃
ϵ (v, p3, p4)

mv · (p4 − p3)

)︃)︃
ϵ (s, v, u)

v · t .(4.3.37)

On shell this changes slightly:
ϵ (s, v, u)

v · t → ϵ (s, t, u)

T
, (4.3.38)

and for v · s = 0 (equivalently p+2 = −p+1 ) it is:

ϵ (v, p1, p2)

mv · (p2 − p1)
=

p+1 p
⊥
2 + p+1 p

⊥
1

m
(︁
−2p+1

)︁ (4.3.39)

=
s⊥

2m
(4.3.40)

= −sign
(︁
s⊥
)︁ √−S

2m
, (4.3.41)

but:
ϵ (v, p3, p4)

mv · (p4 − p3)
= sign

(︁
s⊥
)︁ √−S

2m
, (4.3.42)

making it so that the arctangents cancel.

4.3.3 Final on-shell result

Putting it all together we get:

iM1 =
1

N

arctan
(︂√

−S
2m

)︂
4π
√
−S

(︁
b24 − 4πλ2S

)︁
+ 2πλ2m

− iλ

(︃
arctan

(︃
ϵ (v, p1, p2)

mv · (p2 − p1)

)︃
+ arctan

(︃
ϵ (v, p3, p4)

mv · (p4 − p3)

)︃)︃
iM0, (4.3.43)

where iM1 is the 1-loop amplitude and iM0 is the tree-level amplitude found in 2.5.5:

iM0 =
4πiλ

N

ϵ (s, t, u)

T
− b4
N
. (4.3.44)

We've obtained a result that matches [19] up to gauge dependent terms. The form of said

terms indicates some structure. In particular, it suggests that to restore gauge invariance

one must dress the correlation functions with Wilson lines connecting particles 1 to 2 and 3

to 4. It is possible that that the interaction of these Wilson lines with the scattering process

will give rise to a term to cancel (4.3.43). We are also missing a gauge dependent term that
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vanishes on shell but is present in the expansion of exponential prefactor in [19]'s o�-shell

result (4.2.7):

− 2iλ

(︄
arctan

(︄
2
√︁

2p+1 p
−
1 +m2

s⊥

)︄
− arctan

(︄
2
√︁
2p+4 p

−
4 +m2

s⊥

)︄)︄
iM0. (4.3.45)

Although this has a similar form to (4.3.43), it is quite distinct. Most signi�cantly, it vanishes

an shell, whereas (4.3.43) vanishes for s+ = 0. The reason for this discrepancy likely has to

do with sub-gauge conditions, that is - residual gauge freedom in light-cone gauge. The

Leibbrandt-Mandelstam propagator prescription corresponds to a particular sub-gauge. For

a discussion on various prescriptions and their relation to sub-gauge conditions we refer to

[10]. To obtain (4.3.43) we used an integration procedure (see appendix B.1.2) in which the

lightcone �energy� k− is integrated �rst. Although naively we have used the Leibbrandt-

Mandelstam prescription, it is claimed in [8] that this integration procedure is equivalent to

the use of a prescription not involving k−, e.g. the principal value (PV) prescription which

in Lorenzian signature has the form:

1

k+
→ 1

2

1

k+ + iϵ
+

1

2

1

k+ − iϵ =
k+

(k+)2 + ϵ2
. (4.3.46)

Hence we have used a di�erent sub-gauge than that used in [19]. The discrepancy therefore

does not contradict the calculations in [19] since it vanishes in the combined on-shell and

v · s = 0 limits. However, it is not consistent with the continuation of [19] for v · s ̸= 0,

indicating a breakdown of gauge-invariance.

We can investigate the discrepancy by focusing on the integral that showed up in 4.3.1:

ˆ
d3k

(2π)3
1

k2 +m2

1

(k − s)2 +m2

ϵ (v, k + p1, k − p1 − 2p2)

v · (k − p1)
. (4.3.47)

This can be thought of as the 1-loop form factor for the spin-0 current J0 = φ̄φ to create

a particle-antiparticle pair with combined momentum s, and so should be gauge-invariant

on-shell. If evaluated in a covariant gauge it has the form:

∼
ˆ

d3k

(2π)3
1

k2 +m2

1

(k − p1 − p2)2 +m2

ϵ (k, p1, p2)

(k − p1)2
, (4.3.48)

and so vanishes by Lorenz symmetry (the integrand is odd in the component of k along

p1 × p2). Hence if we subtract 0 in this form from (4.3.47), and use the Schouten identity
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and the on-shell condition, (4.3.47) reduces to:

∼
ˆ

d3k

(2π)3
1

k2 +m2

1

(k − p1)2
ϵ (v, k, p1)

v · (k − p1)
+ (p1 → p2) . (4.3.49)

These integrals are much simpler to integrate in the Leibbrandt prescription and together

yield 0 on-shell. The integrals vanish individually when k− is integrated �rst (PV prescrip-

tion). This means that the on-shell arc-tangents in (4.3.43) are not reproduced if one uses

the Schouten identity prior to integration, leading to a contradiction.

How can this be? Leibbrandt claims [21, 20] that the PV prescription for light-cone gauge

integrals is inconsistent and demonstrates that they give inconsistent results and violate the

Ward and BRS identities in [21]. However, Capper claims that consistent results can be

obtained if one uses the �method of exponentiation of propagators� - a slight variation on the

Feynman trick [8]. We �nd that this method of integration likewise produces the arc-tangent

in (4.3.43), and so likewise gives inconsistent results.

Furthermore, we �nd that if the covariant integral (4.3.48) is integrated in light-cone co-

ordinates, then it doesn't vanish as expected, but rather evaluates to an expression similar to

the arctangent in (4.3.43). In summary, it appears that integration in light-cone coordinates

has many subtleties and one has to work more carefully to make them well-de�ned.

What of the modi�ed crossing relation (1.4)? At 1-loop we expect a term:

− (πλ)2

2N
8πEδ (θ) , (4.3.50)

where E is the energy and we have used the expression (2.5.21) for the identity matrix. Could

this δ function be hiding somewhere in our result? Note that arctan has an inπ ambiguity

(for integer n). The �branch� we implicitly chose in (4.3.43) is ostensibly the unique branch

satisfying Z2 symmetry, since:

iπn
4πλ2

N

ϵ (s, t, u)

T
, (4.3.51)

is Z2-odd. However, we can rewrite this for small scattering angle as:

ϵ (s, t, u)

T
= E cot

(︃
θ

2

)︃
≈ 2E

1

θ
. (4.3.52)
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This can be made Z2 symmetric by writing:

iπn
8πλ2

N
E

(︃
1

θ + iϵ
− 1

θ − iϵ

)︃
(4.3.53)

= 4n
(πλ)2

2N
8πEδ (θ) . (4.3.54)

Although the coe�cient isn't quite right for any choice of n, it's possible that a careful

calculation paying more attention to the iϵ prescription would give rise to such a term.

However, this is just a possible scenario.

A clue as to how this might happen comes from looking at the Wilson line dressed version

of the form factor (4.3.47). If one attaches 2 Wilson lines, one to each produced particles,

that head o� to in�nity in a speci�ed direction n, the resulting 1-loop graphs have �Eikonal�

factors of the form:
1

n · k , (4.3.55)

where k is the loop momentum. Note that if one takes n = v then the Wilson lines are trivial

(by virtue of the choice of gauge v · A = 0) and so what remains is simply the �undressed�

amplitude! In this case the dependence of the �undressed� amplitude on v no longer re�ects

gauge-dependence but rather dependence on the Wilson lines. This gives us a hint as to

what the a Wilson line dressed amplitude of this type (where all Wilson lines are in�nite and

parallel) should look like in general - it should have the same form as the undressed amplitude

in light-cone gauge (or more generally axial gauge v2 ̸= 0) but with v replaced by n. Indeed,

the Eikonal factor has a form similar to the spurious poles of the gauge propagator in axial

gauge (in Chern-Simons as well Yang-Mills theory).

We �nd that indeed this is the case for the form factor (4.3.47). The diagrams involving

interaction between the Wilson lines and the propagating particles combine with the single

triangle diagram (4.3.47) present in the undressed amplitude in such a way that by the

Schouten identity one remains with:

ˆ
d3k

(2π)3
1

k2 +m2

1

(k − s)2 +m2

ϵ (n, k + p1, k − p1 − 2p2)

n · (k − p1)
. (4.3.56)

This �replacement� carries through if one works in covariant gauge or in any other axial

gauge.

However, now one must �nd the regularization prescription for the spurious pole due to

the Eikonal factor. Requiring the Wilson lines to be invariant under gauge transformations
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at in�nity gives the prescription:

1

n · k →
1

n · k − iϵ (4.3.57)

This prescription can be decomposed into �Eigenvectors� of parity:

1

n · k − iϵ =
1

2

PV

n · k +
1

2

(︃
1

n · k − iϵ −
1

n · k + iϵ

)︃
(4.3.58)

=
1

2

PV

n · k − iδ (n · k) (4.3.59)

And this is precisely the kind of δ-function we need to produce the contact interaction term

in the modi�ed crossing relation. More work is needed to understand this.

Although this is a possible scenario by which the δ-function term might arise, we stress

that it is currently speculation and that the above discussion is not material to the rest of

this thesis.

4.4 Discussion

We have found that the naive scattering amplitude contains gauge-dependent terms, which

take the form of a factor:

− iλ
(︃
arctan

(︃
ϵ (v, p1, p2)

mv · (p2 − p1)

)︃
+ arctan

(︃
ϵ (v, p3, p4)

mv · (p4 − p3)

)︃)︃
, (4.4.1)

multiplying the tree-level amplitude. Scattering amplitudes are observables, and hence one

normally assumes they should be gauge invariant, so what happened? The amplitude roughly

corresponds to a correlation function:

δijδ
k
l

⟨︂
φ̄
j
(x2)φi (x1) φ̄

l
(x4)φk (x3)

⟩︂
, (4.4.2)

where the positions are taken to be �at in�nity� (far removed from one another). Under a

gauge transformation exp (iΛ (x)), this will transform non-trivially, since the particles are

at di�erent positions, unless Λ falls o� at ∞. To make this gauge invariant, one must take

a closer look at the Kronecker δ-s in this expression. They project onto the case that the

particles are of the same color. Of course, the only real way to compare the color structures of

particles that don't coincide, is to parallel transport one to the other, and only then project!
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This is precisely the purpose of Wilson lines:

δijφ̄
j
(x2)φi (x1)→ WF (γ21)

i
Wj φ̄

j
(x2)φi (x1) (4.4.3)

This leads us to consider Wilson-line dressed correlation functions, as described in 2.3.4.

Usually in gauge theories, one assumes that the connection is �at at in�nity so that one can

pick a gauge where all Wilson lines trivialize. However, the anyonic statistics induced by the

CS gauge �eld amount to a topological interaction and as such don't �care� how far apart we

take the particles!

Indeed, the form of (4.3.43) suggests that it could be obtained from the Wilson lines

W (γ21) , W (γ43), given that is a sum of terms where one depends on p1,2 and the other on

p3,4.

Another mystery that remains is the discrepancy between our result and that of [19],

although that vanishes in the combined on-shell and v · s = 0 limit.
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5 Unitarity and Form Factors

In this section we'll show that the modi�ed crossing relation (1.4) is crucial for consistency

with some previous results regarding the phase of the S-matrix[9] and certain form factors.

The motivation for derives from the phase exp (iπλ/2) of the form factors computed in [3],

and their similarity to trigonometric factors cos /sinc (πλ) found in (1.4).

Let us recall what form factors are. Given some local operator F on the theory's Hilbert

space, a form factor is simply the matrix element of this operator between some in-state

and out-state (scattering states). We will focus on vacuum-to-out-state form factors, which

can be thought of as the amplitude with which the operator creates a particular out-state.

For instance, to make contact with our scattering notation, the form factor to create a

particle-antiparticle state with center of mass energy squared S = −s2 = E2 (in Euclidean

or mostly-plus signatures) is given by:

F ≡
s

1, j

2, i

F
= out

⟨︂
P (p1)j , A (p2)

i | F (s) | 0
⟩︂
. (5.1)

These form factors have been shown in [9] to satisfy:12

F (pi) = e−iπDRF ∗ (−pi) = e−iπ(D−∆0)RF ∗ (pi) , (5.2)

where R is a spatial re�ection and D =
∑︁

i p
µ ∂
∂pµ

is the dilatation operator and ∆0 is the

mass-dimension of the operator (that is, scaling dimension without quantum corrections).

D − ∆0 is the anomalous dimension. The operator exp (−iπD) has the e�ect of negating

all the momenta. The form factor is computed using a small positive imaginary part which

enforces time-ordering. A negative imaginary part would give anti-time-ordering, hence there

is a branch cut on the real energy axis. For this reason e−iπD relates the anti-time-ordered

process at negative momenta to the time ordered process at positive momenta, via analytic

continuation (see �gure 9).

12In [9] the operation R is missing. There is a remark that the identity should include CPT in order to
cancel the �ip of momenta from e−iπD. In 2+1 dimensions, the CPT is not a symmetry and must be replaced
by CRT, which motivates the extra R in the above.
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Figure 9: Analytic continuation induced by the operation e−iπD in the com-
plex energy-plane of a participating particle. The form factor is computed
using a small positive imaginary part which enforces time-ordering. A negative
imaginary part would give anti-time-ordering, hence there is a branch cut on
the real axis. For this reason e−iπD relates the anti-time-ordered process at
negative momenta to the time ordered process at positive momenta. Picture

credit: Caron-Huot & Wilhelm[9]
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For the form factors Jn we'll be concerned with D = n+ d− 1 and receives no quantum

corrections (D = ∆0) at leading order in N [22]. Hence we should have:

Jn = RJ∗
n. (5.3)

We'll see based on results from [3] that the form factor to emit particles with relative angle

θ is:

Jn ∝ einθ+iπλ
2 . (5.4)

Since in Chern-Simons theory we must accompany R with a negation of λ (see 2.2.3), this

appears to be consistent with (5.3). Eq' (5.4) also indicates that the form factor to emit

particles with angular momentum n (see (5.2)) is:

Jn ∝ ei
πλ
2 . (5.5)

This becomes relevant to another result from [9]. There, it was found that a variant of the

optical theorem implies:

F = SF ∗, (5.6)

with S the S-matrix. Hence we expect the phase of the S-matrix θ (this notion will be made

precise in 5.2) to satisfy:

ei
πλ
2 = eiθ−iπλ

2 ⇒ θ = πλ. (5.7)

This will turn out to depend on the modi�ed crossing relation (1.4). In this chapter, we

somewhat haphazardly analytically continue results obtained for v · s = 0 to timelike s. This

calls for a more careful 1-loop calculation, similar to the one we did in 4.3. Such a calculation

will have the schematic form of a triangle diagram much like (4.3.6), and so we should expect

the same kind of on-shell gauge dependent terms to arise. Potential future work could focus

on such a form factor, to see what might restore gauge invariance for v · s ̸= 0.

5.1 Form Factors of Higher-Spin Currents

Higher-spin currents are an in�nite set of traceless (w.r.t. the metric tensor) operators

{Jµ1,µ2,...,µn
n }n=0,1,... of increasing tensor rank - and therefore spin. They are described more

thoroughly in Section 4 of [4] where they arise in the context of the large N limit of N = 2

super-conformal Chern-Simons-matter theory. Importantly, they are color singlets (e.g. J0 =
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φ̄φ) and therefore can only create particles in the singlet channel:

out

⟨︂
P (p1)j , A (p2)

i | Jµ1,µ2,...,µn
n (s) | 0

⟩︂
≡ δijδ

3 (s− p1 − p2)V µ1,µ2,...,µn
n (p1, s) . (5.1.1)

This form factor has been computed in [3] for the all-plus case µi = + together with the

assumption v · s = s+ = 0. This was computed in a di�erent theory then the one we've been

working with:

1. The particles are massless.

2. The quartic interaction is missing b4 = 0.

3. There is a sextic interaction b6
3!N2

(︁
φ̄φ
)︁3
.

4. The theory is conformally invariant.

Nevertheless the planar all-loop 4-point correlator is computed in [3] for v · s = 0 and can be

shown to match with [19]'s result for m = b4 = 0. The form factor is given by:

V +,+,...,+
n (p1, s) = αn

(︁
p+1
)︁n

exp

⎛⎝2iλ

⎛⎝arctan

(︃
2

Λ√
−S

)︃
− arctan

⎛⎝2

√︄
2p+1 p

−
1

−S

⎞⎠⎞⎠⎞⎠ ,

(5.1.2)

where:

1. αn is an overall normalization.

2. Λ is a UV cuto�.

3. v · s = 0 implies that s is spacelike so
√
−S is real.

If we take this on-shell we get:

arctan

⎛⎝2

√︄
2p+1 p

−
1

−S

⎞⎠→ arctan (1) =
π

4
, (5.1.3)

and if we take the cuto� to ∞ we get:

arctan

(︃
2

Λ√
−S

)︃
→ π

2
. (5.1.4)

Thus:

V +,+,...,+
n (p1, s)→ αn

(︁
p+1
)︁n
ei

πλ
2 . (5.1.5)
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We can think of analytically continuing this result to timelike s and reinterpreting the +

direction as lying in the (spatial) plane perpendicular to s:

p =
(︁
p0, p1, p2

)︁
, p± = p1 ± ip2. (5.1.6)

Then for massless on-shell p1 we have p+1 ∝ Eeiθ where θ is the angle between p1, p2 in the

spatial plane. Thus we have:

V +,+,...,+
n (p1, s) = V +,+,...,+

n (E, θ) ∝ Eneinθei
πλ
2 , (5.1.7)

as stated in (5.4). We see that the spin n all-plus current component produces a state with

angular momentum n:

J++···+
n (s) |0⟩ ∝ e

iπλ
2 |E, n, singlet⟩out , (5.1.8)

with an overall phase πλ
2
, as stated in (5.5). This is exactly half the phase of the S-matrix

(5.2.13) in the singlet channel at angular momentum +n, obtained using the modi�ed crossing

relation, as we shall see in 5.2.

5.2 The Phase of the S-matrix

The 2 → 2 S-matrix can be thought of as a function of S = E2 - the center of mass energy

squared - and θ - the angle of scattering. We can think of a scattering operator S satisfying:

S |E, θin⟩in =

ˆ
dθout
8πE

S (E, θin − θout) |E, θout⟩out . (5.2.1)

Let us write an angular momentum eigenstate as:

|E, n⟩ =
ˆ

dθ

2π
e−inθ |E, θ⟩ ,

|E, θ⟩ =
∑︂
n∈Z

einθ |E, n⟩ .

We can similarly de�ne the Fourier transform of the S-matrix:

S (E, θ) = 4E
∑︂
n

Sn (E) e
inθ. (5.2.2)
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Angular momentum conservation implies that momentum eigenstates should also be S-matrix

eigenstates, and indeed:

S |E, nin⟩in =

ˆ
dθ

2π
e−ininθin

ˆ
dθout
8πE

4E
∑︂
n

Sn (E) e
in(θin−θout) |E, θout⟩out (5.2.3)

=

ˆ
dθout
2π

Snin
(E) e−ininθout |E, θout⟩out (5.2.4)

= Snin
(E) |E, nin⟩out , (5.2.5)

where we have used the identity:

ˆ
dθ

2π
ei(n1−n2)θ = δn1,n2 (5.2.6)

twice. We see that Sn (E) is an eigenvalue of the S-matrix. Note that unitarity now implies

that such eigenvalues be complex phases:

1 = in ⟨E, n|S†S |E, n⟩in = |Sn (E)|2 .

Let's see how that works for the identity S-matrix (see (2.5.21)):

I (E, θ) = 4πE lim
ϵ→0

(δ (θ + ϵ) + δ (θ − ϵ)) (5.2.7)

⇒ In (E) = 1 (5.2.8)

More generally we expect:

Sn (E) = eisn , (5.2.9)

where sn is what we will refer to as the phase of the S-matrix. In the following we'll always

assume n ̸= 0. Now instead we consider the case:

M0 (E, θ) = −4πλE cot

(︃
θ

2

)︃
. (5.2.10)

This function has a divergence at θ = 0 but its principle value can shown to be (M0)n (E) =

sign (n) πλ. Clearly this has incorrect modulus to satisfy unitarity. Hence the �naive� S

-matrix:

S0 = I + iM0 (5.2.11)
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isn't unitary. On the other hand, if we mimic the modi�ed crossing relation (1.4) and take:

S = cos (πλ) I + i
sin (πλ)

πλ
M0, (5.2.12)

we get:

Sn (E) = exp (isign (n) πλ) . (5.2.13)

Which has the correct modulus. This is part of what underlies (1.4). Of course, we see now

that it also ensures consistency with (5.7), and therefore with the �optical theorem� (5.6).

We'll now show that (5.2.12) is precisely the S matrix relevant in our case, up to some

irrelevant terms! We described it in 4.2, where its connected part iM was given by (4.2.3):

iM = i
4πλ

N
E (p1, p2, p3)

√︃
SU

T
(5.2.14)

− i
4πλ

N

√
−S

(︂
b̃4 − 4πiλ

√
−S
)︂
+
(︂
b̃4 + 4πiλ

√
−S
)︂
e
−2iλ arctan

(︂√
−S
2m

)︂

−
(︂
b̃4 − 4πiλ

√
−S
)︂
+
(︂
b̃4 + 4πiλ

√
−S
)︂
e
−2iλ arctan

(︂√
−S
2m

)︂
⏞ ⏟⏟ ⏞

j(
√
S)

.(5.2.15)

However, since we are interested in the singlet channel, we must multiply this by N as per

the naive crossing relation (2.5.26). The second term j depends only on
√
−S ∼ E and not

on θ, and will get projected out by the angular integration when computing Sn for n ̸= 0.

Thus it doesn't matter that this term is evaluated for m, b4 ̸= 0. We can focus on the

�rst term which is simply the tree level amplitude! We can pick the c.o.m. frame where

s = E (1, 0, 0) , t = 1
2
E (0, 1− cos θ,− sin θ) , u = 1

2
E (0, 1 + cos θ, sin θ) and rewrite:

E (p1, p2, p3)

√︃
SU

T
=

ϵ (s, t, u)

t2
(5.2.16)

= E
2 sin θ

− (1− cos θ)2 − sin2 θ
(5.2.17)

= −E sin θ

1− cos θ
(5.2.18)

= −E sin (θ/2) cos (θ/2)

sin2 (θ/2)
(5.2.19)

= −E cot

(︃
θ

2

)︃
. (5.2.20)
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Plugging that back in we get:

iM = −4πiλE cot

(︃
θ

2

)︃
− j (E) = iM0 − j (E) , (5.2.21)

as required. Thus the modi�ed crossing relation plays a role not just in the standard optical

theorem (unitarity of the S-matrix), but also in its variant (5.6).
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6 Conclusions and Future Work

We set out to investigate the analytic properties of the S-matrix in Chern-Simons theory

coupled to Bosonic fundamental matter, speci�cally as it relates to crossing symmetry.

Working at 1-loop in the planar limit (see 4.3), we relaxed the assumption v · s = 0, in

light cone gauge v · A = 0. Initially, we expected the amplitude to be gauge invariant, but

that result eluded us for a while. We came to see that the naive amplitude is, in fact, gauge

dependent. This substantiates the intuition in [19] that one must look at Wilson-line dressed

amplitudes instead. Indeed, the gauge dependent terms we obtain have the suggestive form

of a prefactor multiplying the tree-level amplitude.

Our 1-loop result agrees with [19] when both the on-shell condition and v · s = 0 are

satis�ed. Apart from that, there are 2 discrepancies:

1. The all-loop result obtained in [19] has an exponential prefactor which evaluates to

unity on-shell, but away from the mass shell has the form:

− 2iλ

(︄
arctan

(︄
2
√︁

2p+1 p
−
1 +m2

s⊥

)︄
− arctan

(︄
2
√︁

2p+4 p
−
4 +m2

s⊥

)︄)︄
iM0, (6.1)

where iM0 is the tree-level amplitude. Our result instead has:

− iλ
(︃
arctan

(︃
ϵ (v, p1, p2)

mv · (p2 − p1)

)︃
+ arctan

(︃
ϵ (v, p3, p4)

mv · (p4 − p3)

)︃)︃
iM0, (6.2)

and it actually survives on-shell but not for v · s = 0. This discrepancy most likely

has to do with sub-gauge conditions, but possibly also with problems in well-de�ning

light-cone integrals, as discussed in 4.4.

2. While it is true that the choice v · s is possible in those channels where s is a space-

like vector, we �nd that the gauge dependent part survives in those channels as well,

indicating that there is a problem to be resolved in all channels, rather than only in

the singlet channel.

The fact that both the O (b4) and O (λ) terms inM0 emerged from the calculation dressed

with the same overall factor is probably not coincidence. Hence, these results indicate that

we should instead consider manifestly gauge-invariant objects. Possible such objects include:

1. Wilson-line dressed 4-point correlators, as already mentioned, but also

2. Form factors of gauge invariant operators such as higher-spin currents, where the emit-

ted particles are dressed with Wilson lines, and
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3. Correlation functions of higher spin currents.

2 (without the Wilson-line dressing) and 3 have been computed, as mentioned in 5, by

Aharony et. al. in [3], in the v ·s = 0 regime. So a similar one-loop comparison can be made.

We �nd that dressing the form factor with Wilson lines does in fact restore (o�-shell) gauge

invariance (if one can trust the Schouten identity for possibly poorly de�ned integrands).

In both the planar and non-planar 1-loop amplitudes, the terms one would expect to arise

from modi�ed crossing are localized at forward scattering. It could prove useful to revisit

these calculations and pay special attention to the θ = 0 limit. The contribution at 2-loops

should have the form ∼ λ2iM0 (up to constants), and so perhaps could be obtained directly

from a 2-loop calculation. Our past attempts at a 2-loop calculation have focused on its

covariantization (equivalently, gauge invariance). However, we now know not to expect a

gauge invariant result to begin with, and are equipped with full o�-shell 1-loop results that

could signi�cantly speed up such a calculation.

Our results at 1-loop away from the planar limit 3 appear to be gauge invariant. The

form factor we computed corresponds to an Abelian calculation, but together with the planar

result, the full non-planar 1-loop amplitude can be reconstructed. Hence one could say that

whatever nontrivial analytic properties of the S-matrix arise, they will likely have to do with

the �planar part� of the amplitude.

As an alternative to the covariantization and integral reductions described in 3, we can

use our planar 1-loop results to integrate the various diagrams comprising it. Hypothetically,

we might �nd that the various gauge dependent terms cancel.

In 5 we saw another way in which the modi�ed crossing relation (1.4) plays a role in the

theory - it is crucial in satisfying the relations regarding the phase of form factors and of the

S-matrix derived in [9].

Another possible future direction is to study the S-matrix in the context of the brane

construction of Chern-Simons theory [29, 15]. In this setting, N coincident D3 branes in

type IIB superstring theory end on an NS5 brane. The low energy e�ective �eld theory on

the D3 branes is N = 4 SYM. The NS5 brane, in general breaks some of the SUSY. However,

if one insists on the retention of certain subset of SUSY, the theory becomes topological. In

particular, the boundary action associated to the 3 dimensional intersection of the D3 branes

with the NS5 brane describes an SU (N) Chern-Simons theory with a gauge �eld constructed

out of the SYM �elds. For details we refer to [29, 15]. In this con�guration one can add

super-Wilson lines con�ned to the 3D boundaries. This gives a 4-dimensional viewpoint on

knot polynomials and is related to the study of Khovanov homology. One can try to couple
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such a theory to matter and study a 4d or higher dimensional realization of the S-matrix.

Perhaps an entirely di�erent perspective on the modi�ed crossing relation can be achieved.

Furthermore, one can consider the scattering of particles in di�erent representations of

the gauge group. For instance, the scalars and spinors of ABJ(M) theory [5, 2] transform

in the bi-fundamental of SU (N) × SU (M). This can be studied from the perspective of

M-theory, or through its holographic correspondence with type IIA superstring theory on

AdS4 × CP3.
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A Variation of The CS Action Under a Finite Gauge

Transformation

In this appendix we'll show how the Lagrangian of pure Chern-Simons theory (2.2.6) trans-

forms under a �nite gauge transformation.

Under a �nite gauge transformation g = e−iΛ we have:

Aµ → gAµg
−1 + ig∂µg

−1 (A.1)

= gAµg
−1 − i∂µgg−1 (A.2)

= g (Aµ − ∂µΛ) g−1. (A.3)

It will be useful to rewrite the Lagrangian in terms of the �eld strength:

ϵµνρAµ∂νAρ =
1

2
ϵµνρAµ (∂νAρ − ∂ρAν) (A.4)

=
1

2
ϵµνρAµ (Fνρ + i [Aν , Aρ]) (A.5)

=
1

2
ϵµνρAµFνρ + iϵµνρAµAνAρ, (A.6)

⇒ L = i
k

4π
ϵµνρTr

(︃
1

2
AµFνρ +

1

3
iAµAνAρ

)︃
. (A.7)

We now transform the Lagrangian:

L → L+ i
k

4π
ϵµνρTr

(︃
−1

2
∂µΛFνρ + iAµ∂νΛ∂ρΛ− iAµAν∂ρΛ−

1

3
i∂µΛ∂ν + Λ∂ρΛ

)︃
= L+ i

k

4π
ϵµνρTr

(︃
−∂µAν∂ρΛ− iAµ∂νΛ∂ρΛ−

1

3
i∂µΛ∂νΛ∂ρΛ

)︃
. (A.8)

We focus our attention on the �rst term:

ϵµνρ∂µAν∂ρΛ = iϵµνρ∂µAν∂ρgg
−1 (A.9)

= i∂µ
(︁
ϵµνρAν∂ρgg

−1
)︁
− iϵµνρAν∂ρg∂µg

−1 (A.10)

= i∂µ
(︁
ϵµνρAν∂ρgg

−1
)︁
− iϵµνρAµ ∂νgg

−1⏞ ⏟⏟ ⏞
−i∂νΛ

g∂ρg
−1⏞ ⏟⏟ ⏞

i∂ρΛ

(A.11)

= i∂µ
(︁
ϵµνρAν∂ρgg

−1
)︁
− iϵµνρAµ∂νΛ∂ρΛ. (A.12)
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Plugging this back into (A.8) and rewriting the last term we get:

. . . = L+ Tr

(︃
k

4π
∂µ
(︁
ϵµνρAν∂ρgg

−1
)︁
+ i

k

12π
ϵµνρg−1∂µgg

−1g∂νg
−1∂ρg

)︃
. (A.13)

B Integration in Light-Cone Coordinates

We will compute Feynman integrals in light-cone coordinates and discuss their technicalities.

B.1 Lorenzian Signature

B.1.1 Triangle diagram with 2 gauge propagators

Let's consider the integral:13

I (p1, p2) =

ˆ
d3k

(2π)3
k+

k2 −m2

1

k+ − p+1
1

k+ − p+2
(B.1.1)

∝

1, j

2, i

4, l

3, k

.

Let us make manifest our iϵ prescription (2.2.82):

ˆ
d3k

(2π)3
k+

2k+k− − (k⊥)2 −m2 + iϵ

k− − p−1(︁
k+ − p+1

)︁ (︁
k− − p−1

)︁
+ iϵ

k− − p−2(︁
k+ − p+2

)︁ (︁
k− − p−2

)︁
+ iϵ

.

(B.1.2)

What are the convergence properties of this integral? We can think of it as an integration of

2 vectors
(︁
k∥, k⊥

)︁
∈ R2 × R:

ˆ
d3k

(2π)3
kµ∥

k2∥ − (k⊥)2 −m2

kν∥ − pν1,∥
1
2

(︁
k∥ − p1,∥

)︁2 kρ∥ − p
ρ
2,∥

1
2

(︁
k∥ − p2,∥

)︁2 . (B.1.3)

In k∥ it is an O
(︂
k−3
∥

)︂
UV-convergent rank 3 tensor integral. In k⊥ it's an O

(︁
k−2
⊥
)︁
UV

convergent scalar integral. We can use this form to carry out integration in more-or-less

13This integral, as written, has −1 charge under the GL (1)L symmetry (2.2.81). Therefore it should come
with some charge 1 prefactor like p+1 + p+2 .
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standard ways such as the Schwinger trick[23]:

1

k2∥ − (k⊥)2 −m2

1(︁
k∥ − p1,∥

)︁2 1(︁
k∥ − p2,∥

)︁2 (B.1.4)

=

ˆ
dxdydz

GL (1)

1(︂(︂
k2∥ − (k⊥)2 −m2

)︂
x+

(︁
k∥ − p1,∥

)︁2
y +

(︁
k∥ − p2,∥

)︁2
z
)︂3 . (B.1.5)

However, in this case it will be simpler to work directly with the form (B.1.2). Interestingly,

this form is O
(︂
(k+)

−3
)︂
but is logarithmically UV-divergent O

(︂
(k−)

−1
)︂
. This is an arti-

fact of this choice of coordinates and is one of the many subtleties that arise in light-cone

integration. In this case, however, one can still integrate k− using contour techniques, as long

as one pays attention to the contribution from the �arc at in�nity�. To avoid this subtlety

we can start by integrating out k+ or k⊥. Integrating k⊥ will introduce square-roots into the

integrand and therefore complicate its analyticity properties. Hence we start by integrating

k+ by contour methods. This will amount to summing a few residues to give an analytic inte-

grand. We can deform the k+ contour into the upper- or lower-half of the complex k+ plane,

but where are the poles located? It is here that a unique aspect of light-cone coordinates

becomes relevant. The poles are located at:

ℑ
(︁
k+
)︁
= − ϵ

2k−
, − ϵ

2
(︁
k− − p−1

)︁ , − ϵ

2
(︁
k− − p−2

)︁ . (B.1.6)

When k− < 0, p−1 , p
−
2 all poles are in the upper half plane and so one can deform the contour

downwards to get 0. Similarly when k− > 0, p−1 , p
−
2 one can deform upwards to get 0! Hence

the k+ integral localizes k− to a �nite range! In general, we can choose to avoid one the three

poles in (B.1.6). Let's choose to avoid the pole in the scalar propagator (k2 −m2)
−1

because

the residue there is the most �complicated�. Hence we will deform downwards for k− < 0 and

upwards for k− > 0. If p−1 > 0 we'll get a counter-clockwise residue:

∞̂

−∞

dk⊥

2π

p−1ˆ

0

dk−

2π

(+2πi)

2π

p+1
2p+1 k

− − (k⊥)2 −m2 + iϵ

k− − p−2(︁
p+1 − p+2

)︁ (︁
k− − p−2

)︁
+ iϵ

. (B.1.7)

If p−1 < 0 we'll get the same thing since:

0ˆ

p−1

dk−

2π

(−2πi)
2π

=

p−1ˆ

0

dk−

2π

(+2πi)

2π
, (B.1.8)
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and of course we'll get a similar term from the p2 pole:

I =
ip+1

p+1 − p+2

∞̂

−∞

dk⊥

2π

p−1ˆ

0

dk−

2π

1

2p+1 k
− − (k⊥)2 −m2 + iϵ

+ (1↔ 2) . (B.1.9)

We are left with a �nite-range integral and an in�nite-range one. What is the preferred order?

Integrating k− will introduce transcendentality 1 functions (logarithms) into the integrand -

functions that posses branch cuts and will interfere with contour methods for the ⊥ integral.

Integrating k⊥ �rst will introduce square-roots, which won't signi�cantly complicate the k−

integral. So let's start with k⊥:

I = − ip+1
p+1 − p+2

2πi

2π

p−1ˆ

0

dk−

2π

1

2
√︁

2p+1 k
− −m2 + iϵ

+ (1↔ 2)

=
1

2

p+1
p+1 − p+2

p−1ˆ

0

dk−

2π

1√︁
2p+1 k

− −m2 + iϵ
+ (1↔ 2)

=
1

4π

1

p+1 − p+2

√︂
2p+1 k

− −m2

⃓⃓⃓p−1
0

+ (1↔ 2)

=
1

4π

1

p+1 − p+2

(︃√︂
2p+1 p

−
1 −m2 − im

)︃
+ (1↔ 2)

=
1

4π

1

p+1 − p+2

(︃√︂
2p+1 p

−
1 −m2 −

√︂
2p+2 p

−
2 −m2

)︃
. (B.1.10)

A comment is in order - the integral in its initial form(B.1.1) appears to only be �aware� of p1,2

through their �+� components, yet the �nal answer depends also on their �−� components.

These components enter the integral only through the iϵ prescription.
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B.1.2 Triangle diagram with 1 gauge propagator

We'll consider the integral:

I (p1, s) =

ˆ
d3k

(2π)3
1

k2 −m2

1

(k − s)2 −m2

ϵ (v, k + p1, s)

v · (k − p1)
(B.1.11)

=

ˆ
d3k

(2π)3
1

k2 −m2

1

(k − s)2 −m2

(︁
k+ + p+1

)︁
s⊥ −

(︁
k⊥ + p⊥1

)︁
s+

k+ − p+1
(B.1.12)

∝

1, j

2, i

4, l

3, k

. (B.1.13)

As before, we can start by integrating k+ and again we'll be forced to pick up 2 of the 3 poles.

This time, however, at least one of these will be a scalar propagator and will complicate our

integrand. However, unlike in (B.1.1) our integrand is O
(︂
(k−)

−2
)︂
- it is UV convergent in

k− - so we can start by integrating k−. This will localize the k+ integration to the range

(0, s+). Note that in the case s+ = 0 this range vanishes but at the same time the integrand

becomes k− - independent at k+ = 0 so we should get something like δ (0). Although what

this means is unclear, su�ce it to say that we don't necessarily expect the integral to vanish

for s+ = 0, despite the empty range of integration. Note that with the iϵ prescription we will

have another pole:
1

k+ − p+1
=

k− − p−1(︁
k+ − p+1

)︁ (︁
k− − p−1

)︁
+ iϵ

, (B.1.14)

but the residue is proportional to ϵ and can be neglected. Thus we choose to take only the

residue at (k2 −m2)
−1
:

I = i

∞̂

−∞

dk⊥

2π

s+ˆ

0

dk+

2π

1

2k+
1

(k − s)2 −m2
(B.1.15)

×
(︁
k+ + p+1

)︁
s⊥ −

(︁
k⊥ + p⊥1

)︁
s+

k+ − p+1

⃓⃓⃓
k−=

(k⊥)2+m2

2k+

. (B.1.16)

Interestingly, the new integrand is logarithmically divergent in k⊥ - it is O
(︂(︁
k⊥
)︁−1
)︂
. We

will have to include the e�ect of the arc at in�nity when deforming the k⊥ contour. First
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note that:

(︁
(k − s)2 −m2

)︁
2k+

⃓⃓⃓
k−=

(k⊥)2+m2

2k+

(B.1.17)

= · · · − 2s+
(︁
m2 − iϵ

)︁
, (B.1.18)

where . . . doesn't includem2 and therefore doesn't include iϵ. Hence the sign of s+ determines

the sign of the imaginary part of the denominator. Note that sign (s+) is actually a GL (1)L
- invariant since sign

(︁
s+eξ

)︁
= sign (s+). Of the two poles in k⊥, one is in the lower half

k⊥-plane, and the other is in the upper. We will decide to pick up a particular pole, but

whether that corresponds to deforming the contour into the upper or lower half-plane will

depend on sign (s+). The arc at in�nity contribution looks like (ignoring the numerator):

i

s+ˆ

0

dk+

2π

ˆ

arc

dk⊥

2π

1

2k⊥
1

k+ − p+1
= i

s+ˆ

0

dk+

2π

ˆ
idθeiθ

2π

1

2eiθ
1

k+ − p+1
(B.1.19)

= −1

4
sign

(︁
s+
)︁ s+ˆ

0

dk+

2π

1

k+ − p+1
. (B.1.20)

Combining this with the residue gives:

I =
1

4
sign

(︁
s+
)︁ s+ˆ

0

dk+

2π

1√︂
−S (k+)2 + Sk+s+ −m2 (s+)2

s+p⊥1 − s⊥p+1
k+ − p+1

, (B.1.21)

where S = s2. Note that we've sloppily ignored the iϵ prescription for the gauge-propagator

pole, but we'll just get to the �nal answer and �gure out how to resolve any ambiguity there.

Upon integration we get:

I =
sign (s+)

(︁
s+p⊥1 − s⊥p+1

)︁
8π
√
A

log

(︄
s+ − p+1
p+1

2m2s+ − Sp+1 − 2imsign (s+)
√
A

−2m2s+ − S
(︁
p+1 − s+

)︁
+ 2imsign (s+)

√
A

)︄
,

(B.1.22)

A ≡ −S
(︁
p+1
)︁2

+ Ss+p+1 −m2
(︁
s+
)︁2
. (B.1.23)

Interestingly, we can set sign (s+) → 1, since the argument of the log, which we can denote

B (sign (s+) , . . . ), can be shown to satisfy:

B
(︁
−sign

(︁
s+
)︁
, . . .

)︁
=

1

B (sign (s+) , . . . )
, (B.1.24)
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so that the combined expression:

sign
(︁
s+
)︁
log
(︁
B
(︁
sign

(︁
s+
)︁
, . . .

)︁)︁
(B.1.25)

is actually independent of sign (s+). Hence we can rewrite:

I =
s+p⊥1 − s⊥p+1

8π
√
A

log

(︄
s+ − p+1
p+1

2m2s+ − Sp+1 − 2im
√
A

−2m2s+ − S
(︁
p+1 − s+

)︁
+ 2im

√
A

)︄
. (B.1.26)

The same algebra shows that this expression is independent of the branch chosen for
√
A

when A is negative, and that the expression is parity-odd as expected (in 4.3 it comes with

a factor ∼ b4λ and so this parity-oddness is required to satisfy Z2 symmetry). This behavior

under parity also tells us that we've chosen the right branch for the log - shifting it by

2πi would give rise to a term that is parity-even. Hence our sloppiness in disregarding the

iϵ prescription appears to be inconsequential. Since all of these operations (parity, branch

choice for
√
A) amount to just complex conjugating the log's argument B (at least when A is

positive, but one can analytically continue the resulting expressions to negative A), the fact

that it inverts B indicates that B is a complex phase B = eiθ so that:

logB = iθ = i arctan

(︃ℑ [B]

ℜ [B]

)︃
. (B.1.27)

Hence we rewrite the result in terms of and arctan (we'll also use variables p2 ≡ s − p1, p1
and S):

I =
p⊥2 p

+
1 − p+2 p⊥1

8π
√︂
−m2

(︁
p+1 + p+2

)︁2
+ Sp+1 p

+
2

i arctan

⎛⎝2m
(︁
p+1 − p+2

)︁√︂
−m2

(︁
p+1 + p+2

)︁2
+ Sp+1 p

+
2

2m2
(︂(︁
p+1
)︁2

+
(︁
p+2
)︁2)︂− Sp+1 p+2

⎞⎠ .

(B.1.28)

This can be further simpli�ed. Note that for general x, y:

arctan (x) =
1

2
i log

(︃
1− ix
1 + ix

)︃
(B.1.29)
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arctan (x) + arctan (y) =
1

2
i log

(︃
1− ix
1 + ix

1− iy
1 + iy

)︃
(B.1.30)

=
1

2
i log

(︄
1− i x+y

1−xy

1 + i x+y
1−xy

)︄
(B.1.31)

= arctan

(︃
x+ y

1− xy

)︃
, (B.1.32)

so in particular:

arctan

(︃
2x

1− x2
)︃

= 2arctan (x) . (B.1.33)

Now note that we can rewrite:

2m
(︁
p+1 − p+2

)︁√︂
−m2

(︁
p+1 + p+2

)︁2
+ Sp+1 p

+
2

2m2
(︂(︁
p+1
)︁2

+
(︁
p+2
)︁2)︂− Sp+1 p+2 (B.1.34)

=
2

√︂
−m2(p+1 +p+2 )

2
+Sp+1 p+2

m(p+1 −p+2 )

1 +
2m2

(︂
(p+1 )

2
+(p+2 )

2
)︂
−Sp+1 p+2 −(m(p+1 −p+2 ))

2

(m(p+1 −p+2 ))
2

(B.1.35)

=
2

√︂
−m2(p+1 +p+2 )

2
+Sp+1 p+2

m(p+1 −p+2 )

1− −m2(p+1 +p+2 )
2
+Sp+1 p+2

(m(p+1 −p+2 ))
2

, (B.1.36)

so we can �nally write:

I =
p⊥2 p

+
1 − p+2 p⊥1

4π
√︂
−m2

(︁
p+1 + p+2

)︁2
+ Sp+1 p

+
2

i arctan

⎛⎝
√︂
−m2

(︁
p+1 + p+2

)︁2
+ Sp+1 p

+
2

m
(︁
p+1 − p+2

)︁
⎞⎠ . (B.1.37)

Furthermore, after some manipulation we �nd:

−m2
(︁
p+1 + p+2

)︁2
+ Sp+1 p

+
2 = ϵ (v, p1, p2)

2 (B.1.38)

− s+
(︁(︁
m2 − p22

)︁
p+1 +

(︁
m2 − p21

)︁
p+2
)︁
, (B.1.39)

and of course:

p⊥2 p
+
1 − p+2 p⊥1 = ϵ (v, p1, p2) , (B.1.40)
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so that when either the on-shell condition p21 = p22 = m2 or the condition v ·s = 0 are satis�ed

we get:

− i

4π
arctan

(︃
ϵ (v, p1, p2)

mv · (p1 − p2)

)︃
. (B.1.41)

When s+ → 0 this further simpli�es to:14

I = −isign
(︁
s⊥
)︁ arctan(︂√

−S
2m

)︂
4π

. (B.1.43)

B.2 Euclidean Signature

Let's consider again the integral (B.1.1), but now in Euclidean signature:

I (p1, p2) =

ˆ
d3k

(2π)3
k+

k2 +m2

1

k+ − p+1
1

k+ − p+2
. (B.2.1)

We'll see that this time around we can carry out the integral without the iϵ prescription, and

get the same answer (B.1.10) as in Lorenzian signature. The key is to write:

k± =
⃓⃓
k∥
⃓⃓
e±iθ, dk+dk− =

⃓⃓
k∥
⃓⃓
d
⃓⃓
k∥
⃓⃓
dθ, (B.2.2)

14Note that dependence on p1 is lost. This could have been foreseen from the fact that the k+ integral
localizes to 0 where:

ϵ (v, k + p1, s)

k+ − p+1
=

(︁
k+ + p+1

)︁
s⊥

k+ − p+1
= −s⊥ (B.1.42)

and thus becomes p1-independent.
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⇒ I =

ˆ
dk⊥
2π

ˆ ⃓⃓
k∥
⃓⃓2
d
⃓⃓
k∥
⃓⃓

2π

ˆ
dθeiθ

2π

1

2k2∥ + k2⊥ +m2
(B.2.3)

× 1

k+ − p+1
1

k+ − p+2
(B.2.4)

= −i
ˆ
dk⊥
2π

ˆ ⃓⃓
k∥
⃓⃓2
d
⃓⃓
k∥
⃓⃓

2π

˛

γ

d

(︄
eiθ⏞⏟⏟⏞
≡z

)︄
2π

1

2k2∥ + k2⊥ +m2
(B.2.5)

× 1⃓⃓
k∥
⃓⃓
eiθ − p+1

1⃓⃓
k∥
⃓⃓
eiθ − p+2

(B.2.6)

= −i
ˆ
dk⊥
2π

ˆ ⃓⃓
k∥
⃓⃓2
d
⃓⃓
k∥
⃓⃓

2π

˛

γ

dz

2π

1

2k2∥ + k2⊥ +m2
(B.2.7)

× 1⃓⃓
k∥
⃓⃓
z − p+1

1⃓⃓
k∥
⃓⃓
z − p+2

. (B.2.8)

We have turned the θ integral into a complex contour integral over the unit circle γ. The

integrand is O (z−2) so we can safely deform the contour to in�nity or shrink it to 0. If we

shrink to 0 we'll pick up the pole at pi when
|p+i |
|k∥| < 1, and when we expand the contour to

in�nity we'll pick up the same pole if
|p+i |
|k∥| > 1. Hence we can choose to avoid the p2 pole,

and we'll pick up the pole at p1 when
⃓⃓
k∥
⃓⃓
is localized to a �nite range, in a similar vain to

the localization we saw in B.1. If
⃓⃓
p+1
⃓⃓
<
⃓⃓
p+2
⃓⃓
we'll get:

I = −i
ˆ
dk⊥
2π

|p+2 |ˆ

|p+1 |

⃓⃓
k∥
⃓⃓2
d
⃓⃓
k∥
⃓⃓

2π

2πi

2π

1

2k2∥ + k2⊥ +m2

1⃓⃓
k∥
⃓⃓ 1

p+1 − p+2
. (B.2.9)

When
⃓⃓
p+1
⃓⃓
>
⃓⃓
p+2
⃓⃓
we'll get the same since:

|p+1 |ˆ

|p+2 |
(−2πi) =

|p+2 |ˆ

|p+1 |
2πi, (B.2.10)
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so we get:

I =
1

p+1 − p+2

ˆ
dk⊥
2π

|p+2 |ˆ

|p+1 |

⃓⃓
k∥
⃓⃓
d
⃓⃓
k∥
⃓⃓

2π

1

2k2∥ + k2⊥ +m2
(B.2.11)

=
1

p+1 − p+2

|p+2 |ˆ

|p+1 |

d
⃓⃓
k∥
⃓⃓

2π

⃓⃓
k∥
⃓⃓

2
√︂

2k2∥ +m2
(B.2.12)

=
1

4π

1

p+1 − p+2

√︂
2|p+2 |2+m2ˆ

√︂
2|p+1 |2+m2

d
(︂√︂

2k2∥ +m2
)︂

(B.2.13)

=
1

4π

1

p+1 − p+2

(︃√︂
2
⃓⃓
p+2
⃓⃓2
+m2 −

√︂
2
⃓⃓
p+1
⃓⃓2
+m2

)︃
. (B.2.14)

If we further assume that that p1,2 are real momenta we get:

I =
1

4π

1

p+1 − p+2

(︃√︂
2p+2 p

−
2 +m2 −

√︂
2p+1 p

−
1 +m2

)︃
. (B.2.15)

Does this match the result (B.1.10)? We'll have to use p+i p
−
i → −p+i p−i and m2 → m2 − iϵ

so that: √︂
2p+i p

−
i +m2 → −i

√︂
2p+i p

−
i −m2. (B.2.16)

Also the integral measure transforms:

d3kE → −id3kL, (B.2.17)

so we really should have included this factor to begin with. We get:

I → (−i)2 1

4π

1

p+1 − p+2

(︃√︂
2p+2 p

−
2 −m2 −

√︂
2p+1 p

−
1 −m2

)︃
(B.2.18)

=
1

4π

1

p+1 − p+2

(︃√︂
2p+1 p

−
1 −m2 −

√︂
2p+2 p

−
2 −m2

)︃
, (B.2.19)

which matches (B.1.10) as expected.
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C The Bubble Integral

We wish to compute (ignoring coupling constants):

k

k − s

1, j

2, i

4, l

3, k

=

ˆ
d3k

(2π)3
1

k2 +m2

1

(k − s)2 +m2
. (C.1)

We work in Euclidean coordinates and we can assume s lies entirely along the ⊥ axis so we

can write k =
(︁
k∥ ≡ k, k⊥ ≡ l

)︁
:

. . . =

ˆ
d2kdl

(2π)3
1

k2 + l2 +m2

1

k2 + (l − s)2 +m2
(C.2)

=

∞̂

0

kdkdl

2π

∞̂

−∞

dl

2π

1

k2 + l2 +m2

1

k2 + (l − s)2 +m2
(C.3)

=
1

8πs

∞̂

−∞

dl

2π

log
(︂

l2+m2

l2−2ls+m2+s2

)︂
(︁
l − 1

2
s
)︁ (C.4)

=
1

8πs

∞̂

−∞

dl

2π

log

(︃
l2+ls+m2+ s2

4

l2−ls+m2+ s2

4

)︃
l

. (C.5)

The remaining integral is UV (and IR) convergent since the argument of the log is unity for

l→∞ (and l→ 0). Hence we can use contour integration. The numerator:

log

(︃
l2 + ls+m2 +

s2

4

)︃
− log

(︃
l2 − ls+m2 +

s2

4

)︃
, (C.6)
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can be thought of as analytic in the upper half plane except on the line (branch cut) con-

necting l = im± s
2
. Hence the integral localizes as:

. . . =
1

8π |s|

im+|s|/2ˆ

im−|s|/2

dl

2π

Disc

[︃
log

(︃
l2+ls+m2+ s2

4

l2−ls+m2+ s2

4

)︃]︃
l

(C.7)

=
1

8π |s|

|s|/2ˆ

|s|/2

dl

2π

Disc
[︂
log
(︂

(2l+s)(2l+4im+s)
(2l−s))(2l+4im−s)

)︂]︂
l + im

(C.8)

=
1

8π |s|

|s|/2ˆ

|s|/2

dl

2π

2πi

l + im
(C.9)

=
1

4π |s|
i

2
log

(︃ |s|+ 2im

− |s|+ 2im

)︃
(C.10)

=
1

4π |s|
i

2
log

(︄
1− i |s|

2m

1 + i |s|
2m

)︄
(C.11)

=
1

4π |s| arctan
(︃ |s|
2m

)︃
. (C.12)

Finally we identify |s| =
√
−S to get:

k

k − s

1, j

2, i

4, l

3, k

=
1

4π
√
−S arctan

(︃√−S
2m

)︃
. (C.13)
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