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ABSTRACT

The computational tractability of economic games has been a core theme of the

study of Algorithmic Game Theory. The underlying rationale for this research is

that if equilibria cannot be computed by an algorithm in a reasonable time (usually

polynomial time), then it is difficult to imagine that rational agents will be able to

find it through strategic interaction. In this thesis we apply this principle to the

decisions faced by market oligopolists. We study the computational complexity of

decisions in oligopoly models, the effectiveness of heuristic search algorithms they

can apply, and the overall social impact of strategization on imperfectly competitive

markets.

We first consider the complexity of decision making with regards to predatory

pricing in multimarket oligopoly models. Specifically, we present multimarket ex-

tensions of the classical single-market models of Bertrand, Cournot and Stackelberg,

and introduce the War Chest Minimization Problem. This is the natural problem

of deciding whether a firm has a sufficiently large war chest to win a price war. On

the negative side we show that, even with complete information, it is hard to obtain

any multiplicative approximation guarantee for this problem. Moreover, these hard-

ness results hold even in the simple case of linear demand, price, and cost functions.

On the other hand, we give algorithms with arbitrarily small additive approxima-

tion guarantees for the Bertrand and Stackelberg multimarket models with linear

demand, price, and cost functions. Furthermore, in the absence of fixed costs, this

problem is solvable in polynomial time in all our models.
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We next turn our attention to the Lookahead heuristic, one of the most widely

used game-playing heuristics. Given the practical importance of the method, we

compare the performance of lookahead search in several economic settings: those of

Cournot competition and Adword auctions. The main question we try to answer

with this framework is the impact on social quality of outcome when agents apply

lookahead search. Myopic game playing, where each player can only foresee the im-

mediate effect of her own actions, is a special case of lookahead search. Thus, it

is natural to ask whether social outcomes improve when players use more foresight

than in myopic behaviour. We demonstrate that the answer depends on the game

played.

Finally, we examine the Fisher market model when buyers, as well as sellers,

have an intrinsic value for money. We show that when the buyers have oligopsonistic

power they are highly incentivized to act strategically with their monetary alloca-

tions, as their potential gains are unbounded. This is in contrast to the bounded

gains that have been shown when agents strategically report utilities. Our main fo-

cus is upon the consequences for social welfare when the buyers act strategically. To

this end, we define the Price of Imperfect Competition (PoIC) as the worst case ratio

of the welfare at a Nash equilibrium in the induced game compared to the welfare

at a Walrasian equilibrium. We prove that the PoIC is at least 1/2 in some markets

with CES utilities. Furthermore, for linear utility functions, we prove that the PoIC

increases as the level of competition in the market increases. Additionally, we prove

that a Nash equilibrium exists in the case of Cobb-Douglas utilities. In contrast, we
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show that Nash equilibria need not exist for linear utilities. However, in that case,

good welfare guarantees are still obtained for the Nash dynamics of the game.
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ABRÉGÉ

La résolubilité computationnelle des jeux économiques est un thème central à

la théorie des jeux algorithmique. La logique sous-jacente à cette étude repose sur

l’idée qu’il est difficile d’imaginer que des agents rationnels puissent parvenir aux

équilibres d’un jeu dans le cadre d’interactions stratégiques si ces équilibres ne peu-

vent être calculés par un algorithme en un temps raisonnable. Dans cette thèse,

nous appliquons ce principe aux décisions auxquelles font face les oligopoles. Nous

étudions la complexité computationnelle des décisions dans les modèles d’oligopoles,

l’efficacité d’algorithmes de recherche euristique qu’ils peuvent employer, et l’impact

social général de l’élaboration de leurs stratégies sur les marchés imparfaitement

compétitifs. Nous nous penchons en premier lieu sur la complexité décisionnelle de

l’adoption prédatrice de prix dans le cadre de modèles d’oligopoles multi-marchés.

Plus particulièrement, nous présentons des extensions multi-marchés des modèles

classiques de Cournot, Bertrand et Stackelberg, et nous introduisons le Problème

de Minimisation du Trésor de Guerre. Ce problème est celui d’une firme ayant à

évaluer si elle détient un “trésor de guerre” suffisant pour remporter une guerre de

prix. Nous démontrons que même avec information complète, il est difficile d’obtenir

une garantie d’approximation multiplicative pour ce problème. Ce résultat tient

même dans le cas simple de demande, prix, et fonctions de coûts linéaires. D’autre

part, nous concevons des algorithmes avec garanties d’approximation additive ar-

bitrairement petite pour les modèle multi-marchés de Bertrand et Stackelberg avec

demande, prix et fonctions de coût linéaires. En l’absence de coûts fixes, ce problème
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est solvable en temps polynomial dans tous nos modèles.

Nous abordons ensuite l’euristique “Lookahead”, l’un des plus généralement utilisés

dans le cadre de jeux. Étant donné l’importance pratique de cette méthode, nous

comparons sa performance dans différents environnements économiques, plus par-

ticulièrement dans les situations de compétition à la Cournot et dans les enchères

Adword. L’objectif principal de cette démarche est l’étude de l’impact de l’emploi

d’une recherche de type lookahead par les agents sur le bien-être agrégé. Jouer de

facon myopique, c’est-à-dire quand les agents jouent en ne prévoyant que les effets

immédiats de leurs actions, est un cas spécial de recherche de type lookahead. Dans

cet ordre d’idées, il est naturel de se demander si les résultats sociaux (e.g. pro-

duction et bien-être) s’améliorent quand les agents adoptent un comportement plus

prévoyant que myopique. Nous montrons que la réponse à cette question dépend du

jeu.

Finalement, nous examinons le modèle de marché de Fisher quand les acheteurs et

vendeurs attribuent une valeur intrinsèque à l’argent. Nous montrons que lorsques

les acheteurs ont un pouvoir oligopsonique, ils ont hautement intérêt à agir de fa-

con stratégique avec leur part d’argent puisque leurs gains potentiels sont illimités.

Ce résultat contraste avec celui de gains limités obtenu lorsque les agents dévoilent

leur utilité stratégiquement. Nous portons notre attention principalement sur les

conséquences, en termes de bien-être social, du comportement stratégique des acheteurs.

À cette fin, nous définissons le Prix de compétition imparfaite come le pire ratio pos-

sible de bien-être à un équilibre de Nash dans le jeu induit au bien-être à un équilibre

Walrasien. Nous prouvons que le Prix de compétition imparfaite est au d’au moins
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1/2 dans les marchés avec des fonctions d’utilité de type CES. De plus, nous prouvons

que le Prix de compétition imparfaite s’accrôıt avec le niveau de compétition. Nous

prouvons également qu’un équilibre de Nash existe toujours dans le cas des fonctions

d’utilité de type Cobb-Douglas, mais pas nécessairement dans le cas de fonctions

d’utilité linéaires. Dans ce dernier cas, toutefois, des garanties de haut bien-être sont

obtenues pour les dynamiques de Nash du jeu.
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CHAPTER 1
Introduction

1.1 Overview

This thesis studies, from an algorithmic perspective, the challenging decisions

that market participants are faced with when they find they have power in a partic-

ular marketplace. Our primary focus is on the cases of oligopoly (and oligopsony)

where a few sellers (resp. buyers) have market power and can use it to affect the

price they achieve on the market.

The computational tractability of economic games has been a core theme of

the study of algorithmic game theory. The underlying rationale for this research is

that if equilibria cannot be computed by an algorithm in a reasonable time (usually

polynomial time), then it is difficult to imagine that rational agents will be able to

find it through strategic interaction. To quote Kamal Jain, “If your laptop cannot

find it, neither can the market” [131]. In this thesis we apply this principle to

the decisions faced by market oligopolists. In Chapter 3 we formulate models of

oligopolistic price wars which prove to be computationally intractable, though we

are able to provide some positive approximation results. In Chapter 4 we discuss

how limits on the computational ability of market agents can affect the quality of the

resultant equilibria. Finally, in Chapter 5 we explore how the simple act of strategy

can affect the welfare of a marketplace.
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For the remainder of this chapter we examine the historical contexts of oligopoly

theory and strategic market games. We introduce the fundamental models of Cournot

and Bertrand which together form the basis of key subsequent work on oligopoly

competition. We outline some of the key historical insights in the development of

these models and current directions of research. We also discuss the roots of the

algorithmic study of markets and the recent breakthroughs that have been made in

the computation of market equilibria.

In Chapter 2, we go over the formal definitions of economic models for oligopoly

and perfect competition. We describe the Cournot model and present equilibria for

a few simple Cournot markets. We contrast this to the results that are obtained

under the Stackelberg and Bertrand models. For perfect competition, we introduce

the Fisher model of general equilibrium theory and define the Eisenberg-Gale convex

program for computing equilibrium prices and allocations.

In Chapter 3 we study the complexity of predatory pricing in an oligopolistic

multimarket setting. We introduce multimarket models of oligopoly competition

and the War Chest Minimization Problem which asks how much of a War Chest an

oligopolist needs to successfuly price a competitor out of the market. We demonstrate

that this is an NP-hard problem to solve, even in the linear case, and that it is even

NP-hard to find an approximation algorithm. However, we demonstrate polynomial

time algorithms for solving the problem if there are no fixed costs. We also prove

additive approximation guarantees for the Bertrand and Stackelberg models.
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In Chapter 4, we study the framework of lookahead search as it applies to eco-

nomic games. This framework provides heuristic algorithms that market participants

can use if they have limited computing capabilites. We demonstrate that under the

Cournot model of equilibria, looking ahead encourages oligopolists to increase pro-

duction and thereby increase the social surplus. This effect is also shown to be

non-linear with the highest social surplus achieved for 2 degrees of lookahead. We

also examine Generalised Second Price Auctions, a popular online auction method-

ology. We show that, depending on the nuances of the lookahead model in question,

the social utility that arises with 2 degrees of lookahead in this setting is either

optimal or within a constant factor of optimal.

Chapter 5 explores the social cost of strategic decision making and the con-

nection between oligopsony theory and general equilibrium theory. We introduce a

strategic variant of the Fisher market called the Fisher Game. This game, based on

the earlier work of Codognato, Gabszewicz, and Michel ([41],[70]), adapts Fisher’s

perfectly competitive context by allowing market participants some indirect influence

on price. We introduce a welfare concept called the Price of Imperfect Competition

which captures the social utility lost by this pricing power and demonstrate that

this loss is bounded by a factor of 2. We also explain how this welfare ratio changes

as market competition increases and examine the dynamic context when equilibria

don’t exist.

We conclude in Chapter 6 by summarizing our contributions in this thesis and

articulating research directions that stem from this work.
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1.2 Historical Context

In this section we review the relevant historical context of oligopoly theory and

the application of algorithmic techniques to markets. We leave detailed discussions

of the modern literature related to each particular topic that we study to the intro-

ductory sections of Chapters 3, 4, and 5. Our aim here is instead to describe the

historical and empirical importance of both the economics of imperfect competition

and the application of algorithmic techniques to market problems.

1.2.1 The History of Oligopoly

Oligopoly theory is the study of markets and industries dominated by a few

sellers. Oligopolistic markets sit between the extremes of perfect competition, also

known as general equilibrium theory where any individual market participant has

little influence on the price of goods, and monopoly competition, where one partici-

pant can entirely dictate the price. In the oligopolistic setting, the centralization of

market power allows the market participants to have a strong but incomplete influ-

ence on market prices for the goods they sell. This adds a layer of complexity not

seen in either of the extreme cases, as participants must now consider not only their

own production and sale decisions, but must also incorporate the decisions of other

market participants. Put more simply, oligopolistic competition, unlike monopoly or

perfect competition, is a game.

Antoine Augustin Cournot is credited as the founder of Oligopoly theory [119].

His seminal book Researches on the Mathematical Principles of the Theory of Wealth,
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published in 1838, introduces the first mathematical models of duopoly1 competition

in the context of the mineral water industry. Indeed the book is credited as being

one of the earliest works to articulate a mathematical model in economics [135].

Cournot introduces the concept of equilibrium analysis with his Cournot equilibrium

which anticipates the more general approach of Nash equilibrium analysis [119], a

concept that John Nash would not formalize until 1949. This book also introduces

models of monopoly that are still in use today and discusses key questions in the

theory of perfect competition that inspired “the Marginal Revolution” in economics,

an attempt to understand economic behaviour from the point of view of marginal

utility.

Cournot’s model examines two oligopolistic sellers competing in a market who

each strategize over the quantity of good they will produce. The goods are assumed

to be homogeneous, meaning that there is no way for buyers to differentiate between

goods. The quantity of goods produced and the market demand function thus com-

pletely determine the price at which goods are sold. Cournot’s analysis, which we

will examine in more detail in Chapter 2, illustrates how to compute an equilibrium

level of production where no seller has an incentive to change their production. This

equilibrium has many properties considered to be realistic based on observed evi-

dence. In particular, it allows for firms with different costs of production to coexist

1 A duopoly is an oligopoly with only two sellers.
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in the marketplace and it allows oligopolistic sellers to use their market power to

generate economic profit by pricing above their marginal cost.

One of Cournot’s harshest critics was Joseph Louis Francois Bertrand [18].

Bertrand challenged the concept of mathematical economics in general and was crit-

ical, in particular, of the quantity competition that underlay Cournot’s work. He

argued that, in the market, firms choose prices and consumers generate demand

depending on this price, in stark contrast to Cournot’s model. This led to the devel-

opment of the Bertrand model of price competition. In this model, two oligopolists

selling homogeneous goods now set a price for these goods. The demand of the mar-

ket depends on this price but the market then chooses to buy entirely from the seller

with the lowest price. This quickly leads to only one equilibrium outcome, whereby

the seller with the lowest marginal cost of production sells at the cost of production

of his most efficient rival. The implications of this model are that only sellers with

the lowest marginal cost can exist in a market and that if even two of these sellers

coexist, neither can make economic profit. This leads to questions about why either

participant would enter the market in the presence of even the mildest fixed costs.

This peculiar implication of the equilibrium is known as Bertrand’s Paradox.

These two models of quantity and price competition laid the groundwork for over

a century of subsequent oligopoly theory. It became standard to refer to all quantity

based models of competition as Cournot competition and price based models as

Bertrand competition. It can be argued that all subsequent models of oligopoly

theory simply introduce layers of realism and complexity to these models in order to

better explain observable phenomena.
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An important adaptation of Cournot’s model was introduced by Heinrich von

Stackelberg in 1934 [162]. Stackelberg did not believe in the Cournot concept of

equilibrium as it only held in the case of simultaneous action by both players. He

believed that a sequential game made more sense in real world contexts. Thus, he in-

troduced a framework for leader-follower behaviour where some firm (or set of firms)

called leaders initially produce a quantity of goods and other firms, called follow-

ers, must adapt their quantity based on the leaders’ production. This model allows

leaders to capture more profit than in the Cournot case, at the expense of followers.

This theory led American and European economists in the 1980s to recommend that

the government pay export subsidies to domestic firms in certain industries to allow

them to become market leaders [127].

In the realm of price competition, Edgeworth gives an early enhancement of

Bertrand’s model of price competition by introducing capacity constraints for pro-

ducers in his 1897 paper Me teoria pura del monopolio [51]. His model remediates

some of the challenges of Bertrand’s paradox as it allows for sustainable prices above

the level of perfect competition. However, in introducing capacity constraints, Edge-

worth introduces discontinuities into the model that mean equilibria are no longer

guaranteed to exist.

Another generalization of Bertrand’s model was introduced by Edward Cham-

berlin [35]. Chamberlin’s model introduces differentiation of goods, allowing con-

sumers to have a preference for goods which act as substitutes and allowing for the

demand of each good to depend on the price of all goods in the markets. This model
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and subsequent work on price based competition of differentiated goods is now stud-

ied as the Theory of Monopolistic Competition and Chamberlin is credited as its

founder.

Differentiation of another type is explored by the work of Hotelling [84]. In

this model, the differentiation of goods is based on location. In the original paper,

Hotelling presents an example of two price-setting oligopolists selling an otherwise

homogenous good who are given the option to differentiate based on location. Buyers

are distributed uniformly along a line segment and the sellers must choose both the

price of sale and where to locate themselves. The cost of the good to buyers is

a function of both the price set by the oligopolists and the distance to the seller

(transportation cost). The surprising outcome of Hotelling’s model is that even

given the choice to differentiate on location, the only equilibrium strategy is for both

firms to be collocated at the middle of the segment. This additionally causes quite a

loss in social welfare as compared to a scenario where the firms locate at the quartiles

of the segment and thereby reduce transportation costs for buyers.

Lerner and Singer helped to resolve this somewhat paradoxical outcome by

pointing out that Hotelling’s model relied on unrealistic assumptions of inelastic

demand [109]. In the original model, regardless of prices, buyers would always de-

mand a unit of the good. Lerner and Singer and later Smithies presented models

with elastic demand functions and demonstrated more reasonable equilibria for the

game.
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The original Bertrand and Cournot models were formulated as simultaneous,

one-shot games. By studying oligopoly competition in a repeated or dyanmic setting

(see for example [168] or [145]), the nature of equilibria change. It can be argued that

in a repeated oligopoly game, players are incentivized to collude and form cartels so

as to avoid a price war. This is yet another way that Bertrand’s paradox can be

resolved. In Chapter 3, we will discuss the dynamics of cartel’s and price wars in

more detail.

Modern oligopoly research continues to build on the complexity and realism

of these models. The study of theoretical oligopoly continues in myriad directions

from work on oligopoly dynamics [135] to strategies of differentiation [86] or work

on capacity precommitment [107]. The theory has also found applications to fields

including futures markets [4], international trade [27], electricity distribution [178],

and the airline industry [28].

1.2.2 Algorithms and Markets

The study of markets from an algorithmic perspective begins in a different part

of industrial organization, namely with general equilibrium theory: the study of

perfect competition.

The foundation of general equilibrium theory is attributed to Léon Walras, one

of the key figures in the “Marginal Revolution” of Economics. He sought to study

the problem formulated by Cournot of whether supply and demand could be made

to equate to clear all markets simultaneously (it was known at the time that they
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could easily be made to equate in a single market). In his 1874 publication Ele-

ments of Pure Economics [175], Walras formulated the first mathematical model of

pure competition, the so-called Walras model which could model the “state of the

economic system at any point in time” [7]. This model was largely ignored during

Walras’ lifetime but soon thereafter came to prominence, becoming one of the core

models for microeconomic theory in the 20th century.2

The simplest version of Walras’ model of general equilibrium theory starts with

a market whose participants are endowed with an initial set of goods. The problem is

then for the market mechanism to find prices for these goods so that players can sell

and buy goods to maximize utility and so that the market clears, meaning that there

is no excess supply or demand. While Walras did not establish that such equilibrium

prices always existed, he did propose a process called tâtonnement, by which this

system could converge towards an equilibrium. Walras describes the process as an

auctioneer adjusting market prices based on feedback from market agents as to their

demand at a given price. This process could be thought of as the first attempt at an

algorithm for computing market prices.

It was not until 1954 [7] that Kenneth Arrow and Gerard Debreu were able to

establish that equilibria exist in the context of pure competition. Using the Kakutani

fixed point theorem, the same approach as used by John Nash in proving the existence

of a mixed strategy Nash equilibrium, they demonstrated that if the participants

2 Schumpeter, a prominent Austrian economist, acclaimed Walras as the “greatest
of all economists” [176].

10



had concave utility functions (along with a few other technical assumptions) then an

equilibrium price could be found for which the market clears. However, their proof

technique was non-constructive and so did not articulate how such market prices

could be found in practice.

The success of Arrow and Debreu in establishing the existence of equilibrium

prices revitalized the study of how these prices could actually be computed. In 1959,

Arrow, Block, and Hurwicz [6] established that Walras’ tâtonnement would indeed

always converge to the equilibrium prices if the goods in the market satisfied the

property of weak gross substitutability (we will define this property in more detail

in Section 2.2.2). Unfortunately, soon thereafter Scarf gave a simple example where

tâtonnement does not converge if goods are not substitutes [143].

Scarf proposed a different approach to computing equilibria prices [144]. His

approach seeks to make the original fixed point proof constructive, by finding ap-

proximate fixed points which correspond to approximately equilibrium prices for the

market. His approach, while promising, had the disadvantage that it could take an

exponentially long time before market prices were reached.

In 1976, Curtis Eaves managed to formulate the problem of finding these equi-

librium prices as a linear complementarity problem [48]. Algorithms for computing

solutions to these kinds of problems had already been established by that point, and

so using, for example, Lemke’s algorithm one could compute exact market prices.

Again, though, this algorithm converges to equilibrium solutions only after an ex-

ponential amount of time in the worst case. Despite this, Eave’s reformulation of
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the problem is still important today as it was the first proof that concretely demon-

strated that if the inputs to the market are all rational numbers and utilities are

linear, then the solution must be a rational number as well.

The first numerical success in computing equilibrium prices for perfectly com-

petitive markets must be attributed to Irving Fisher and his famous 1891 Ph.D.

thesis [26]. In his thesis, Fisher proposed his own framework for general equilibrium

theory without any knowledge of Walras’ work. His model, which turns out to be a

special case of the more general model of Walras, seperates the market into buyers

and sellers. Sellers are endowed with some set of goods and buyers are endowed with

a certain amount of money which they bring to the market. Money is a special good

for which sellers all have the same unit utility. We again seek a set of equilibrium

market prices such that buyers and sellers can all maximize their utility without

there being an excess of supply or demand.

What makes Fisher’s research stand out from the work of his contemporaries

is not the formulation of the theory of market equilibrium prices, though that is

impressive in its own right. Fisher’s unique accomplishment, was that he built a

machine to actually compute these prices. The machine, a complex hydraulic device

(see Figure 1–1 for an image from Fisher’s thesis [26]) uses a system of cisterns and

rods to encode the input endowments and express the output equilibrium prices.

This approach to numerically computing equilibrium prices was decades ahead of his

contemporaries and it would not be until the advent of rudimentary computers that

Leontief was able to replicate a simplified version of this calculation in the 1930s [26].
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Figure 1–1: Diagram of Fisher’s Machine

The Fisher model of general equilibrium theory proved to be much easier to an-

alyze than Walras’ model. In 1959, Eisenberg and Gale discovered a convex program
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whose optimal solutions corresponded exactly to market equilibrium prices in the

case of linear utilities. A few years later, Eisenberg was able to extend this result

to cover all homogenous utility functions. The existence of this convex program,

coupled with Curtis Eave’s proofs that all optimal solutions are rational, allows for a

polynomial time algorithm to compute equilibrium market prices in the linear Fisher

market model. This powerful result has led the Fisher model to become a key subject

of study among 21st century algorithmic game theorists.3

In a 2001 paper [130], Christos Papadimitriou made a connection between mar-

ket computation and the algorithmic theory of complexity when he presented a the-

orem that in the Arrow-Debreu model, if goods are integer valued instead of contin-

uous, then it is NP-hard to determine if market equilibrium prices exist. However,

a randomized polynomial time algorithm exists which can find ε-approximate prices

(in expectation) to the equilibrium market prices. This algorithm makes use of a

technique known as randomized rounding.

Algorithmic game theorists contend that the computational complexity of mar-

ket problems is an important factor in determining the validity of equilibrium prices.

Even if all actors in a market act as independent rational agents, the market is akin

to a computer capable of parallel processing. By understanding both the complexity

and approximability of market equilibria, we are able to discern if it is reasonable to

3 Despite Fisher’s success as an economist, he was not infallible. He is notorious
for stating in a television interview that “Stock prices have reached what looks like
a permanently high plateau” just days before the stock market crash of 1929.
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expect that market agents will be able to reach an equilibrium by individual actions.

Providing algorithms to find equilibria are often also important, as with the advent

of the internet, many marketplaces have online components which these algorithms

can help navigate.

In 2002, Devanur et al outline a combinatorial algorithm for finding equilib-

rium prices in the linear Fisher market model [47]. This algorithm extended the

primal-dual methodology of linear progamming to the case of convex programming.

By providing a combinatorial algorithm, rather than a mathematical programming

result, Devanur et al’s approach gives more insight into the structure of the market

and provides an algorithm that is more flexible to changes in the problem setup.

The insights of this algorithm inspire, for example, Nisan et al’s work on Google’s

auctions for TV ads [126].

Other combinatorial algorithms for solving the linear Fisher market model have

subsequently discovered. Garg and Kapoor outline an auction based algorithm [72]

and Kelly and Vazirani demonstrate a technique that involves congestion analysis

in a network [96]. These discoveries continue to shed light on the intricacies of

market structures and also help us understand the connection that Fisher market

mechanisms have to other areas of economics and computer science.

A convex programming formulation of the linear Arrow-Debreu model of general

equilibrium theory was finally discovered in 2004 by Kamal Jain [87]. In this paper,

Jain also demonstrates how this convex program can be solved using the ellipsoid

method for the first polynomial time algorithm for finding market equilibrium prices,
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when they exist, in the more general Walrasian setting. Ye provides an intertior point

algorithm using the same convex program in [179].

While we now have fast algorithms for market models with linear utilities, the

context of more general utility functions is harder. For piecewise-linear concave

utility functions, it has been demonstrated that finding market equilibrium prices is

PPAD-complete ([36], [38], [173]). This complexity class, first defined by Christos

Papadimitriou in 1994 [129], is believed to be intractable, leading algorithmic game

theorists to question the validity of some of these market equilibria concepts. Much

more work needs to be done to understand the true structure of even perfectly

competitive markets and whether equilibrium prices can truly be found by market

mechanisms.
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CHAPTER 2
Economic Models

2.1 Models of Oligopoly

2.1.1 The Cournot Model

As mentioned in the Introduction, the original model of oligopolistic competition

was formulated by Augustin Cournot in 1838 [43]. In this model, we assume a

marketplace where a few sellers are selling identical, non-differentiated goods. Each

seller chooses an amount of the good to produce and the price is set by market

demand. We will define the model for the case of two sellers (a duopoly) but it is

easily generalized to any number of market participants.

In this model, each player chooses some quantity of the good to produce, qi, and

pays some cost to produce it, Ci(qi). The price for the good is then set by the inverse

demand function of the quantities produced by both players, P (qi+ qj). Each player

i makes profit:

Πi(qi, qj) = qiP (qi + qj)− Ci(qi). (2.1)

For the remainder of this thesis, we will focus on the basic case of linear price

and cost functions. In particular, we will only consider cost functions of the form

Ci(qi) = ciqi+ fi for qi > 0 where ci is a constant marginal cost of production and fi
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is a fixed cost (this fixed cost is not paid if nothing is produced and so Ci(0) = 0).

We will also only consider price functions of the form P (q) = a− q.1

The Cournot Equilibrium is a choice of quantites for each player such that each

player is playing a best response to their opponent. In this game, a best response is a

choice of quantity that maximizes a players profit given their opponent’s strategy. In

order to compute this equilibrium strategy, we begin by computing best responses.

Suppose player j chooses to produce quantity q∗j . Player i’s profit function is

then

Πi(qi, qj) = qi(a− qi − qj)− ciqi − fi. (2.2)

Using first order conditions, we see that this is maximized when qi is such that

a− 2qi − qj − ci = 0 (2.3)

i.e. when qi =
a−qj−ci

2
. This equation describes the best response curve BRi(qj) of

player i. The equilibrium quantities are obtained when both players are playing best

responses to each other, i.e. where these best response curves intersect (see Figure

2–1). Thus the Cournot Equilibrium in the linear duopoly case is (q∗1, q
∗
2) where:

q∗i =
a− 2ci + cj

3
. (2.4)

1 More generally, linear price functions are of the form P (q) = a− bq, but we can
assume b = 1 without loss of generality to simplify our calculations.
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Figure 2–1: Best Response Curves in the Cournot Game

Their profit can be calculated to be

Πi(q
∗
i , q

∗
j ) =

(
a− 2ci + cj

3

)2

− fi. (2.5)

This equilibrium is unique in the absence of fixed costs. If there are positive

fixed costs, then other equilibria may arise. For example, it is possible that player

one’s monopoly production would cause player two’s maximum profit to fall under

their fixed cost. In this instance, another equilibria would be the monopoly strategy

for player one and for player two to produce nothing.
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2.1.2 The Bertrand Model

The Bertrand model arose from a critique of the quantity strategization of

Cournot[18]. Bertrand argues that is more natural and realistic to model oligopoly

sellers as the price setter for goods in a market. As we did in the Cournot case, we

will define the model for the duopolies and leave the generalization as clear.

Again, suppose we have two players each producing identical, non-differentiated

goods. Player i has a cost function Ci(q) based on the quantity he produces. We

will again restrict our attention to the linear case so that

Ci(q) =

⎧⎪⎨
⎪⎩

ciq + fi if q > 0

0 otherwise
(2.6)

Here, ci is the marginal cost of production and fi is a fixed cost which is paid only

if production occurs at all. Each player then chooses the unit price pi at which they

will sell the good in the market. Since the goods are not differentiated, each consumer

simply purchases the good from whomever charges the least. If both players charge

the same price, then we assume that the market is shared evenly.

We assume that there is some function D(p) that represents the market demand

at a given price. As with the cost function, this thesis focusses on the case of linear

demand so we assume D(p) = a− p.2 This gives rise to the following profit function

2 More generally a linear demand function is of the form D(p) = a − bp but we
may assume b = 1 without loss of generality to simplify our calculations.
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for player i:

Πi(pi, pj) = (pi − ci)Di(pi, pj)− fi (2.7)

where Di(pi, pj) is the demand for player i’s good under the current prices and is

defined by

Di(pi, pj) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

D(pi) if pi < pj

1
2
D(pi) if pi = pj

0 if pi > pj

(2.8)

A natural consequence of this model is that there is only one Nash equilibrium

and in it the player with the lower marginal cost gets the entire market by pricing

at their opponent’s marginal cost. If both players have the same marginal cost, then

they will both price at cost and share the market. The profit of each player in this

case will be −fi.

This equilibrium result is sometimes called Bertrand’s paradox. It implies that

two oligopolists are enough to reduce pricing levels to that of perfect competition.

This lack of pricing power of oligopolies seems counterintuitive to what is observed

in real markets. Bertrand’s model further implies that all such markets should, in

fact, be monopolies as, if there is more than one participant, then almost all of the

firms will be losing money.

There are a number of ways of enhancing the model to overcome this paradox.

It is possible by introducing capacity constraints on firms, adding a time element to

the game, or by allowing for product differentiation. For further discussion on each

of these topics, see [168].
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2.1.3 The Stackelberg Model

The Stackelberg model was formulated by Heinrich von Stackelberg in 1934 as

an adaptation of the Cournot model of quantity competition [162]. It challenged the

simultaneity assumption of Cournot’s model and attempted to capture some of the

dynamic elements of oligopoly competition.

In this model, the profit functions, price functions, and cost functions are identi-

cal to Cournot’s model in Section 2.1.1. The Stackelberg model, however, separates

the players into two types: leaders and followers. In the duopoly case, the model

assumes that leader chooses their production quantity first and commits to it, after

which followers make their choice with perfect information about the leader’s choice.

Being able to commit first gives the leader an enormous advantage, as it forces

the follower to optimize her profit on the leader’s terms. From the follower’s point

of view, the optimization problem remains the same. Suppose player 1, the leader,

produces q1. Then the follower, player 2, in optimizing his profit is subject to the

same first order condition (2.3). Thus he will choose q2 =
a−q1−c2

2
.

However, the leader has a different problem than in the Cournot case. A rational

leader would understand the optimization problem that the follower must face and

could thus take it into account when he is choosing his strategy. Thus the leader

must optimize the profit function:

Π1(q1) =
q1(a− q1 + c2)

2
− c1q1 − f1. (2.9)
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His first order conditions is now:

a

2
+

c2
2
− q1 − c1 = 0. (2.10)

The equilibrium strategy for the leader is to choose q∗1 = a+c2−2c1
2

. In this case

an optimizing follower must choose q∗2 = a−3c2+2c1
4

. Notice that the leader captures a

larger market share than in the Cournot game, at the expense of the follower. This

is reflected in their equilibrium profits:

Π1(q
∗
1, q

∗
2) =

(
a− 2c1 + c2

2
√
2

)2

− f1 (2.11)

Π2(q
∗
1, q

∗
2) =

(
a− 3c2 + 2c1

4

)2

− f2 (2.12)

2.1.4 Comparison of Models

Let us compare the Cournot, Bertrand, and Stackelberg equilibrium outcomes

to that of monopoly competition. We will consider the price, quantity produced, and

total firm profits at equilibrium in a duopoly where sellers have equal marginal costs

c and no fixed costs. We adapt the table below from [166].

Table 2–1: Comparison of Oligopoly Models

Bertrand Stackelberg Cournot Monopoly
Price c (a+ 3c)/4 (a+ 2c)/3 (a+ c)/2
Quantity (a− c) 3(a− c)/4 2(a− c)/3 (a− c)/2
Total Firm Profits 0 3(a− c)2/16 2(a− c)2/9 (a− c)2/4
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We assume a > c for the demand (and inverse demand) function as, otherwise,

the sellers’ profits will always be negative and none will be incentivized to participate

in the market.

Table 2–1 allows us to easily compare the quality of each equilibrium from

the point of view of both buyers and sellers. Buyers naturally prefer Bertrand or

Stackelberg competition, as more goods are produced at lower prices (indeed in this

Bertrand example, twice as many goods are produced than at monopoly). Sellers

would prefer to compete in Cournot or Monopoly settings to maximize their profits.

2.2 General Equilibrium Theory

General equilibrium theory is the study of market prices in contexts of perfect

competition. The original models were formulated to discover if equilibrium prices

existed that could simultaneously equate supply and demand throughout the market.

In this section, we present the Fisher model of general equilibrium theory and discuss

an important class of market utility functions.

2.2.1 The Fisher Market

A Fisher market M, introduced by Irving Fisher in his 1891 PhD thesis, consists

of a set B of buyers and and a set G of goods (owned by sellers). Let n = |B| and
g = |G|. Buyer i brings mi units of money to the market and wants to buy a

bundle of goods that maximizes her utility. Here, a non-decreasing, concave function

Ui : R
g
+ → R+ measures the utility she obtains from a bundle of goods. Without loss

of generality, we may assume the aggregate quantity of each good on the market is

one by scaling units appropriately.
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Given prices p = (p1, . . . , pg), where pj is price of good j, each buyer demands

a utility maximizing (an optimal) bundle that she can afford. The prices p are said

to be a market equilibrium (ME) if agents can be assigned an optimal bundle such

that demand equals supply, i.e. the market clears. Formally, let xij be the amount

of good j assigned to buyer i. So xi = (xi1, . . . , xig) is her bundle. Then, p is an

equilibrium price and x is an equilibrium allocation if the following two conditions

are simultaneously satisfied.

1. Supply = Demand: ∀j ∈ G, ∑
i xij = 1 whenever pj > 0.

2. Utility Maximization: xi is a solution of maxUi(z) s.t
∑

j pjzij ≤ mi.

We denote by yij the amount of money player i invests in item j after prices are set.

Thus yij = pjxij. Equivalently yij can be thought of as player i’s demand for item j

in monetary terms.

This model is a special case of the more general Arrow-Debreu model introduced

in [7]. The more general model does not distinguish between buyers and sellers,

instead proposing that all consumers to come to the market with a certain endowment

of goods and are looking to trade goods so as to maximize their utility. It additionally

allows for production to take place in the market via firms which take certain goods

as inputs in order to produce others.

It was proved in [7] using fixed point techniques that as long as the utility

functions of participants were continuous, quasi-concave, and satisfy non-satiation,
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a set of equilibrum market prices must exist in the Arrow-Debreu model.3 Since the

Fisher model is just a special case of Arrow-Debreu, equilibrium prices must exist in

this model as well.

Theorem 1. If the utility functions of buyers and sellers are continuous, quasi-

concave, and satisfy non-satiation, then a set of market equilibrium prices exists.

One of the advantages of the Fisher model over the Arrow-Debreu setting was

that it proved to be computationally tractable. In [52], Eisenberg and Gale formu-

lated a convex program that would capture equilibria prices and allocations in the

Fisher model for linear utilities of the form Ui(x) =
∑

j uijxij. This program is:

max
∑

i mi logUi(x) (2.13)

s.t.
∑

i xij ≤ 1, ∀j

xij ≥ 0, ∀i, j.

Any optimal allocation that solves this program is an equilibrium allocation.

Equilibrium prices can be found as variables in the corresponding dual program.

This program gives us a polynomial time algorithm for finding market prices (if they

exist) in the linear Fisher game, via the ellipsoid method. Since 2002, a number of

other methods have been formulated to compute equilibrium prices in this setting

(see for example [47] or [72]).

3 Non-satiation means that for every allocation of goods to player i, there is some
other allocation that will increase his utility. Quasi-concavity means that if ui(xi) >
ui(x

′
i) then ui[txi + (1− t)x′i] > ui(x

′
i) for any 0 < t < 1.
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2.2.2 Utility Functions

We are interested in analyzing a more general class of utility functions than just

linear utilities. We focus on the important class of Constant Elasticity of Substitution

(CES) utilities [161]. These functions have the form:

Ui(xi) = (
∑
j

uijx
ρ
ij)

1
ρ (2.14)

for some fixed ρ ≤ 1 and some coefficients uij ≥ 0.

This class allows us to specify the elasticity of substitution for these markets

as 1
1−ρ . Hence, for ρ = 1, i.e. linear utilities, the goods are perfect substitutes; for

ρ → −∞, the goods are perfect complements. As ρ → 0, we obtain the well-known

Cobb-Douglas utility function:

Ui(x) =
∏
j

x
uij

ij (2.15)

where each uij ≥ 0 and
∑

j uij = 1.

CES utility functions are widely used in economics as they are flexible enough

to capture a large range of economic situations, but simple enough to remain compu-

tationally tractable. In fact, the Eisenberg-Gale program captures market equilibria

prices for this more general class of functions. This was first proven by Eisenberg in

[53]4 .

4 In fact, Eisenberg showed that the program applied to all homogeneous utility
functions, i.e. utilities which satisfied U(αx) = αU(x) for any scalar α.
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A utility function is said to satisfy weak gross substitutability if increasing the

price of one good cannot decrease demand for other goods. In a number of settings,

utility functions having this property is the key to computational tractability. We

have mentioned earlier that it is the condition under which the tâtonnement process

converges for the Walras model ([6], [143]). Gross substitutability is also a critical

condition in the theory of mechanism design. Tim Roughgarden states that “this

condition captures the frontiers of tractability” for a wide range of auctions. We

will find in our analysis in Chapter 5, that weak gross substituability is also the key

condition for tractability in the Fisher Game. For CES utilities, this property is

achieved when 0 < ρ ≤ 1 and Cobb-Douglas Utilities (ρ → 0).
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CHAPTER 3
Multimarket Price Wars

3.1 Introduction

In this chapter, we will explore the complexity of oligopolistic decision making.

In particular, we are interested in the decision of when to start a price war or engage

in predatory pricing in an oligoply markets. We focus on firms interacting in multiple

markets (or a single segmentable market) as it allows us to model a broader and more

realistic set of interactions.

A firm may initiate a price war by decreasing its prices in order to increase

market share or to deter other firms from competing in particular markets. The firm

suffers a short-term loss but may gain large future profits, particularly if the price

war forces out the competition and allows it to price as a monopolist.

Price wars (and predatory pricing) have been studied extensively from both an

economic and a legal perspective. A detailed examination of all aspects of price wars

is far beyond the scope of this thesis. Rather, we focus on just one important aspect:

the complexity of decision making in oligopolies (e.g. duopolies). Specifically, we

consider the budget required by a firm in order to successfully launch a price war.

This particular question is fundamental in determining the risk and benefits arising

from predatory practices. Moreover, it arises naturally in the following two scenarios:
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Entry Deterrence: How much of a war chest must a monopolist or

cartel have on hand so that they are able to successfully repel a new

entrant?

Competition Reduction: How much money must a firm or cartel

have to force another firm out of business? For example, in a duopoly

how much does a firm need to save before it can defeat the other to create

a monopoly?

We formulate the War Chest Minimization Problem as a generalization of both of

these scenarios and study the computational complexity of and approximation algo-

rithms for this more general problem.

3.1.1 Background

Price wars and predatory pricing are tools that have been long associated with

monopolies and cartels. The literature on these topics is vast and we touch upon

just a small sample in this short background section.

Given the possible rewards for monopolies and cartels engaging in predatory

behaviour, it is not surprising that it has been a recurrent theme over time. The late

19th century saw cartels engaging in predation in a plethora of industries. Prominent

examples include the use of “fighting ships” by the British Shipping Conferences

([146], [133]) to control trade routes, the setting up of phoney independents by the

American Tobacco Company to undercut smaller competitors [32]. Perhaps the most

infamous instance, though, of a cartel concerns Standard Oil under the leadership of

John D. Rockefeller ([112], [145], [44]). More recent examples of price wars include
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the cigarette industry [57], the airline industry [20], and the retail industry [25]. In

the computer industry, Microsoft regularly faced accusations of predatory practices

([65], [102], [103]).

Antitrust legislation has been introduced in many countries to prevent anticom-

petitive behaviour like predatory pricing or oligopolistic collusion1 . In the United

States, the most important such legislation is the Sherman Act of 1890. One of the

Act’s earliest applications came in 1911 when the Supreme Court ordered the break-

up of both Standard Oil and American Tobacco; more recently, it was applied when

the Court ordered the break-up of American Telephone and Telegraph (AT&T) in

1982.2

Given that such major repercussions may arise, there is a need for a cloak of

secrecy around any act of predation. This has meant the extent of predatory pricing

is unknown and has been widely debated in the literature. Indeed, early economic

work of McGee [112] suggested that predatory pricing was not rational. However, in

Stigler’s seminal work on oligopolies [165], price wars can be viewed as a break-down

of a cartel, albeit they do not arise in equilibria because collusion can be enforced via

punishment mechanisms. Moreover, recent models have shown how price wars can

1 Whilst it is easy to see the negative aspect of cartels, it is interesting to note
that there may even be some positive consequences. For example, it has been argued
[64] that the predatory actions of cartels may increase consumer surplus.

2 In 2000, a lower court also ordered the breakup of Microsoft for antitrust viola-
tions under the Sherman Act. On appeal, this punishment was removed under an
agreed settlement in 2002.
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be recurrent in a “functioning” cartel! For example, this can happen assuming the

presence of imperfect monitoring [79] or of business cycles [138]. This is particularly

interesting as recurrent price wars were traditionally seen as indicators of a healthy

competitive market.3

Based primarily on the work of McGee, the US Supreme court now considers

predatory pricing to be generally implausible.4 As a result of this, and in an at-

tempt to strike a balance between preventing anti-competitive behaviour and overly

restricting normal competition, the Court applied the following strict definition to

test for predatory practices.

1. The predator is pricing below its short-run costs.

2. The predator has a strong chance or recouping the losses incurred during the

price-war.

The established way for the Court to test for the first requirement is the Areeda-

Turner rule of 1975 [5] which established marginal cost (or, as an approximate sur-

rogate, average variable cost) as the primary criteria for predatory pricing.5 We will

3 Therefore, should such behaviour also arise in practice it would pose intriguing
questions for policy makers. Specifically, when is a price war indicative of competition
and when is it indicative of the presence of a cartel or a predatory practice?

4 See the 1986 case Matsushita Electric Industrial Company vs Zenith

Radio Corporation and the 1993 case Brooke Group Limited vs Brown and

Williamson Tobacco Corporation.

5 We note that the Areeda-Turner rule may be inappropriate in high-tech indus-
tries because fixed costs there are typically high. Therefore, measures of variable
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incorporate the Areeda-Turner rule as a legal element in our multimarket oligopoly

models in Section 3.2.1. The second requirement essentially states that the “short-

run loss is an investment in prospective monopoly profits” [56]. This requirement is

typically simpler to test for in practice, and will be implicit in our models.

Finally, we remark that we are not aware of any other work concerning the

complexity of price wars. One interesting related pricing strategy is that of loss-

leaders which Balcan et al. [13] examine with respect to profit optimization. For the

scale and type of problem we consider, however, using strategies that correspond to

“loss-leaders” is illegal. Alternative models for oligopolistic competition and collusion

in a single market setting can be found in the papers of Ericson and Pakes [58] and

Weintraub et al. [177].

3.1.2 Our Results

A firm with price-making power belongs to an industry that is a monopoly

or oligopoly. In Section 3.2, we develop three multimarket models of oligopolistic

competition on top of the Bertrand, Cournot, and Stackelberg models introduced

in Chapter 2. We then introduce the Minimum War Chest Problem to capture

the essence of the Entry Deterrence and Competition Reduction scenarios outlined

above.

costs may not be reflective of the presence of a price-wars. In fact, hi-tech industries
may be particularly susceptible to predatory practices as large marginal profits are
required to cover the high fixed costs. Consequently, predatory pricing can be used
to inflict great damage on smaller firms.
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In Section 3.3, we prove that this problem is NP-Hard in all three multimarket

models under the legal constraints imposed by the Areeda-Turner rule. We emphasise

that decision making is hard even under complete information. These hardness

results utilise the fact that we have multiple markets. This assumption, however, is

not essential. Decision-making can be hard in single-markets if either the number of

firms is large or if the number of strategic options available to a firm is large. We

give a simple example to illustrate this in Section 3.6.

We extend the hardness results in Section 3.4.2 to show that no multiplicative

approximation guarantee can be obtained for the Minimum War Chest Problem,

even in the simple case of linear cost, price, and demand functions. However, the

situation for potential predators is less bleak than this result appears to imply. To

see this we present two positive results in Section 3.4, assuming linear cost, price,

and demand functions. First, the problem can be solved in polynomial time if the

predator faces no fixed costs. In addition, for the Bertrand and Stackelberg models

there is a natural way to separate the markets into two types, those where player one

is making a profit and those in which she is truly fighting a price war. Our second

result states that in these models, we can solve the problem on the former set of

markets exactly and can find a fully polynomial time approximation scheme for the

problem on the latter markets. This leads to a polynomial time algorithm with an

arbitrarily small additive guarantee.
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3.2 Models

3.2.1 Multimarket Models of Oligopoly

In this section, we formulate multimarket Bertrand, Cournot, and Stackelberg

models as a generalization of the fundamental economic models introduced in Chap-

ter 2. These allow for the investigation of more numerous and assorted interactions

between firms.

A Multimarket Bertrand Model

Let us consider the following generalization of the asymmetric Bertrand model

to multiple markets6 . We will describe the model for the duopoly case, but again

all of the definitions are easily generalizable. Suppose we have two players and n

markets m1,m2, ...,mn. Every player i has a budget Bi where a negative budget is

thought of as the fixed cost for the firm to exist and a positive budget is thought

of as a war chest available to that firm in the round. Every market mk has a linear

demand curve Dk(p) = ak − bkp and each player i also has a marginal cost, cik, for

producing one unit of good in market mk. In addition, each player i has a fixed cost,

fik, for each market mk that she pays if and only if she enters the market, i.e. if she

sets some finite price.

We model the price war as a game between the two players. A strategy for player

i is a complete specification of prices in all the markets. Both players choose their

6 We remark that this multimarket Bertrand model is also a generalization of the
multiple market model used in the facility location game of Vetta [174].
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strategies simultaneously. If pik < ∞ then we will say that player i enters market

mk. If player i chooses not to enter market mk, this is signified by setting pik = ∞.

The demand for each market then all goes to the player with the lowest price. If the

players set the same price, then the demand is shared equally. Thus analogously to

Section 2.1, if player i participates, then she gets profit Πik in market mk where

Πik(pik, pjk) = (pik − cik)Dik(pik, pjk)− fik (3.1)

and where Dik is the demand for player i’s good in market mk and is defined as

Dik(pik, pjk) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Dk(pik) if pik < pjk

1
2
Dk(pik) if pik = pjk

0 if pik > pjk

(3.2)

If player i chooses not to participate then her revenue and costs are both zero;

thus, she gets 0 profit.

The sum of these profits over all markets is added to each player’s budget. A

player is eliminated if her budget is negative at the end of the round.

Multimarket Cournot and Stackelberg Models

We now formulate a multimarket version of the Cournot model. Again we will

restrict ourselves to the case of the duopoly as the generalization is obvious. In this

Cornout model, there are n independent Cournot markets m1, ...,mn. Each market

mk has a linear price function Pk(q) = ak − q. Each player has a budget Bi, which

serves the same role as in the Bertrand case. Each player i also has a cost function
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in every market Cik(qik) = cikqik + fik, which consists of a marginal cost cik and a

fixed cost fik.

As before we model the price war as a game. This time, a strategy for each

player i is a choice of quantities qik for each market mk. Again, both players choose

a strategy simultaneously. We say that player i enters market mk if qik > 0. As in

the Bertrand case, a player pays the fixed cost fik if and only if they enter market

mk. Analogously to Section 2.1, player i then makes a profit in market mk equal to

Πik(qik, qjk) = qikPk(qik + qjk)− Cik(qik). (3.3)

Again, each player’s aggregate profit is added to their budget at the end of the

round. As above, a player is eliminated if her resulting budget is negative.

The multimarket Stackelberg model can then simply be adapted from the Cournot

model. We define all of the quantities and functions as above. However, we now con-

sider one player to be the leader and one to be the follower. The game is no longer

simultaneous, as the leader gets to commit to a production level before the follower

moves.

3.2.2 The War Chest Minimization Problem

We will examine the questions of entry deterrence and competition reduction

in the two-firm setting. Thus, we focus on the computational problems facing (i)

a monopolist fighting against a potential market entrant (entry deterrence) and (ii)

a firm in a duopoly trying to force out the other firm (competition reduction). We
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model both these situations using the same duopolistic multimarket models of Section

3.2.1.

We remark that our focus on a firm rather than a cartel does not affect the

fundamental computational aspects of the problem. This restriction, however, will

allow us to avoid the distraction arising from the strategic complications that occur

in ensuring coordination amongst members of a cartel.

Our game is then as follows. We assume that players one and two begin with

budgets B1 and B2, respectively. They then play one of our three multimarket games.

The goal of firm one is to stay/become a monopoly; if it succeeds it will subsequently

be able to act monopolistically in each market. To achieve this goal the firm needs

a non-negative payoff at the end of the game whilst its opponent has a negative

payoff (taking into account their initial budgets). This gives us the following natural

question:

War Chest Minimization Problem: How large a budget B1 does player one need

to ensure that it can eliminate an opponent with a budget B2 < 0.

The players can play any strategy they wish provided it is legal, that is, they

must abide by the Areeda-Turner Rule. All our results will be demonstrated under

the assumptions of this rule, as it represents the current legal environment. However,

similar complexity results can be obtained without assuming this rule.
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Areeda-Turner Rule: It is illegal for either player to price below their marginal

cost in any market.

Before presenting our results we make a few comments about the problem and

what the legal constraints mean in our setting. First, notice that we specify a negative

budget for player two but place no restriction on the budget for player one. This is

natural for our models. We can view the budget as the money a firm initially has

at its disposal minus the fixed costs required for it to operate; these fixed costs are

additional to the separate fixed costs required to operate in any individual market.

Consequently, if the second firm has a positive budget it cannot be eliminated from

the game as it has sufficient resources to operate (cover its fixed costs) even without

competing in any of the individual markets; thus we must constrain the second

firm to have a negative budget. On the other hand, for the first firm no constraint

is needed. Even if its initial budget is negative, it is plausible that it can still

eliminate the second firm and end up with a positive budget at the end of the

game, by making enough profit from the individual markets. Specifically, the legal

constraints imposed by the Areeda-Turner rule may ensure that the second firm

cannot maliciously bankrupt the first firm even if the first firm has a negative initial

war-chest.

Second, since we are assuming that player one wishes to ensure success regardless

of the strategy player two chooses, we will analyze the game as an asynchronous game

where player two may see player one’s choices before making her own. Player two

will then first try to survive despite player one’s choice of strategy. If she cannot
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do so, she will undercut player one in every market in an attempt to eliminate her

also. To win the price war, player one must find strategies that keep herself safe

and eliminate player two irrespective of how player two plays. Therefore, an optimal

strategy for player one has maximum profit (i.e. minimum negative profit) amongst

the collection of strategies that achieve these goals, assuming that player two plays

maliciously.

Finally, the Areeda-Turner Rule has a straightforward interpretation in the

Bertrand model of price competition, that is, neither player can set the price in

any market below their marginal cost in that market! In models of quantity compe-

tition, however, the interpretation is necessarily less direct. For the Cournot model

of quantity competition, we interpret the rule as saying that neither player can pro-

duce a quantity that will result in a price less than their marginal costly assuming

the other player produces nothing, in other words qik < ak − cik. This is the weakest

interpretation possible for this simultaneous game. Finally, for the Stackelberg game,

we assume that the restriction imposed by the Areeda-Turner rule is the same for

player one as in the Cournot model, as she acts first and player two has not set a

quantity when player one decides. Player two on the other hand, must produce a

quantity so that her marginal price is greater than her marginal cost, given what

player one has produced. In other words, for the Stackelberg game q1k < ak − c1k

and q2k < ak − q1k − c2k.
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3.3 Hardness Results

We are now in a position to show that the War Chest Minimization Problem

is hard in all three models, even with linear price and demand functions. It follows

that this problem is hard for more complex price and demand functions as well.

Theorem 2. The War Chest Minimization Problem is NP-hard for the multimarket

Bertrand model, even in the case with linear demand functions.

Proof. We give a reduction from the knapsack problem. There we have n items,

each with value vi and weight wi, and a bag which can hold weight at most W .

In general, it is NP-hard to decide whether we can pack the items into the bag so

that
∑

wi ≤ W and
∑

vi > V for some constant V (where the sums are taken over

packed items).

We will now create a multimarket Bertrand game based on the above instance.

Suppose that there are nmarkets and each marketmk has the linear demand function

Dk(p) = 5
√
vk − p. (3.4)

Set player two’s fixed costs to f2k = 0 for all k and her marginal costs to

c2k = 3
√
vk for all k. Also set player one’s marginal costs to c1k = 0 for all k and

her fixed costs to f1k = (25/4)vk + wk for all k. Set the budgets to be B1 = W and

B2 = V −∑n
k=1 vk.
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We now calculate the monopoly prices for player one and player two. If player

i wins market mk at price pik then their profit in that market is

Πik(pik) = (pik − cik)Dk(pik)− fik = −p2ik + (cik + 5
√
vk)pik − 5

√
vkcik − fik. (3.5)

Taking derivatives, we see that the monopoly price for player i in market mk is

p∗ik =
cik + 5

√
vk

2
≥ cik. (3.6)

In particular, notice that the monopoly price for player one is

p∗1k =
5

2

√
vk < 3

√
vk = c2k. (3.7)

Moreover

p∗2k = 4
√
vk > 3

√
vk = c2k. (3.8)

Thus, if player one enters market mk then she can price at her monopoly price

without fear that player two will undercut her. If she does not enter, then player two

could price at her monopoly price to maximize revenue, as her fixed costs are zero.

In the first case, player two earns 0 profit and player one earns monopoly profit

Π1k(p
∗
1k) = −p∗1k

2 + (c1k + 5
√
vk)p

∗
1k − 5

√
vkc1k − f1k

= −p∗1k
2 + 5

√
vkp

∗
1k − f1k = −wk (3.9)
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In the second case, player one earns zero profit while player two earns her monopoly

profit

Π2k(p
∗
2k) = −p∗2k

2 + (c2k + 5
√
vk)p

∗
2k − 5

√
vkc2k − f2k

= p∗2k(8
√
vk − p∗2k)− 5

√
vkc2k = vk (3.10)

Thus, if player one could solve the War Chest Minimization Problem then she

could determine whether or not there exists a set of indices K of markets that she

should enter such that both of the following equations hold simultaneously:

W −
∑
k∈K

wk ≥ 0 (3.11)

V −
n∑

k=1

vk +
∑
k/∈K

vk < 0 (3.12)

Rearranging these equations, we obtain the conditions of the knapsack equations,

namely
∑

k∈K wk ≤ W and
∑

k∈K vk > V .

Theorem 3. The War Chest Minimization Problem is NP-hard for the multimarket

Cournot model, even in the case of linear price and cost functions.

Proof. We again reduce from an instance of the knapsack problem. The Cournot

game we create is as follows. Set ak = 6
√
vk, then for each market mk let the price

function be Pk(q) = ak − q. We now set player one’s marginal cost in market mk to

be c1k = 0 and her fixed cost to be f1k = 4vk + wk. Player two’s marginal cost in

market mk is set to be c2k = 2ak/3 = 4
√
vk and her fixed cost is set to be f2k = 0.

Again, we set the budgets to be B1 = W and B2 = V −∑n
k=1 vk.
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Suppose now that player one has chosen which markets to enter and has, in

particular, chosen to enter market mk by producing quantity q1k > 0. Consider

player two’s response. At first, player two will try to survive and will thus try to

maximize her profit, given player one’s quantity. She will consequently try to choose

q2k that maximizes Π2k(q1k, q2k), call this quantity q+2k. By taking derivatives, we can

calculate q+2k to be (ak − 3q1k)/6.

If player two calculates that she can’t survive by choosing q+2k in every market,

then she will try to undercut player one in every market in an attempt to also

drive her out. She will therefore choose q2k = q−2k, the quantity which minimizes

Π1k(q1k, q2k). This can be achieved by making q2k as large a possible; given the

constraints of the Areeda-Turner rule this implies that q−2k = ak − c2k. Thus, we

calculate q−2k = ak/3 = 2
√
vk.

Now, if we assume that player one enters market mk (i.e. assume q1k > 0) then

by calculating the partial derivatives of Π2k(q1k, q
+
2k) and Π1k(q1k, q

−
2k) with respect

to q1k, we see that the quantity q∗1k = ak/3 = 2
√
vk minimizes the former and

maximizes the latter. Therefore if player one chooses to enter market mk she will

produce quantity q∗1k. So if player one enters market mk then she, in the worst case,

makes profit

Π1k(q
∗
1k, q

−
2k) = q∗1k(Pk(q

∗
1k + q−2k)− c1k)− f1k

= q∗1k((6
√
vk − 4

√
vk)− 0)− f1k = −wk (3.13)

Against this, player two, in her best case, plays q+2k = (ak − 3q∗1k)/6 = 0. This

clearly gives her a profit Π2k(q
∗
1k, q

+
2k) = 0. On the other hand, if player one doesn’t
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enter market mk then she makes profit 0 in that market and player two makes her

monopoly profit, which in this case is

Π2k(0, q
∗
2k) = q∗2k(Pk(q

∗
2k)− c2k)− f2k = q∗2k(2

√
vk − q∗2k)− 0 = vk (3.14)

The proof follows.

A similar proof holds for the Stackelberg case. We include the proof as it will

be needed in Section 3.4.2.

Theorem 4. The War Chest Minimization Problem is NP-hard for the multimarket

Stackelberg model if player one is the Stackelberg leader, even in the case linear price

and cost functions.

Proof. We again reduce from the knapsack problem. Take any instance of the knap-

sack problem and define the quantities n, W , V , the wis, and the vis as in the proof

of Theorem 2. We will now create a multimarket Stackelberg game based on the

above instance. Set ak = 4
√
vk, and suppose that there are n markets and each

market has price function Pk(q) = ak − q. We now set player one’s marginal cost

in market mk to be c1k = 0 and her fixed cost to be f1k = 4vk + wk. Player two’s

marginal cost in market mk is set to be c2k = ak/2 = 2
√
vk and her fixed cost is set

to be f2k = 0. Finally, set the budgets to be B1 = W and B2 = V − ∑n
k=1 vk as

before.

Now consider the decision player one faces when deciding whether or not to

enter market mk. First notice that her monopoly quantity is q∗1k = ak/2 = 2
√
vk

which we can calculate by maximizing Π1k(q1k, 0) through simple calculus. Notice
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also that ak − q∗1k − c2k = 0 and so, by the Areeda-Turner rule, player two cannot

produce in any market in which player one is producing.

Thus, if player one enters any market then she will produce her monopoly quan-

tity in that market and player two will not enter that market. In this case, player

one makes profit

Π1k(q
∗
1k, 0) = q∗1k(Pk(q

∗
1k)− c1k)− f1k

= 2
√
vk(2

√
vk − 0)− (4vk + wk) = −wk (3.15)

and player two makes profit Π2k(q
∗
1k, 0) = 0. On the other hand, if player one

does not enter the market then player two will produce her monopoly quantity,

q∗2k = ak/4 =
√
vk, and will make profit

Π2k(0, q
∗
2k) = q∗2k(Pk(q

∗
2k)− c2k)− f2k

=
√
vk(3

√
vk − 2

√
vk)− 0 = vk (3.16)

Since player one did not enter, she will make profit 0. Thus we find ourselves back in

the exact circumstances of the proof of Theorem 2. The rest of the proof follows.

3.4 Algorithms

In this section, we explore algorithms for solving the War Chest Minimization

Problem. We highlight a case where the problem can be solved exactly and explore

the approximability of the problem in general. For the entirety of this section, we

assume linear cost, demand, and price functions.
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3.4.1 A Polynomial Time Algorithm in the Absence of Fixed Costs

All of the complexity proofs in Section 3.3 have a similar flavor. We essentially

use the fixed costs in the markets to construct weights in a knapsack problem. In

this section, we demonstrate that in the absence of fixed costs, it is computationally

easy for a player to determine if they can win a multimarket price war even under

the restrictions of the Areeda-Turner rule. This rule adds additional complications

in this Stackelberg model, so we analyse that model first here. Again, we assume

player one is the Stackelberg leader. Without fixed costs, the profit functions of both

players in each market mk are particularly simple:

Πik(qik, qjk) = qik(ak − q1k − q2k − cik) (3.17)

As discussed, there are two strategies that player two may employ to prevent player

one from winning the price war. She may play so as to survive or, if that is destined

to fail, she may play so as to leave player one with a negative budget. In the

former strategy, she will choose in every round and in every market the quantity, q+2k,

that maximizes her own profit. In the latter strategy she will choose the quantity,

q−2k, that minimizes player one’s profit (while obeying the Areeda-Turner rule). By

considering the partial derivatives of the players’ profits, one can calculate q+2k and

q−2k as functions of q1k:
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q+2k =
ak − q1k − c2k

2
(3.18)

q−2k =

⎧⎪⎨
⎪⎩

ak − q1k − c2k if q1k < a− c2k

0 otherwise
(3.19)

The latter case for q−2k occurs if player one chooses a quantity so high that

player two can choose nothing by the Areeda-Turner rule; this can only occur if

c1k < c2k as otherwise the Areeda-Turner rule itself prevents player one from choosing

a sufficiently high quantity.

We now partition the markets into two sets: let k ∈ A denote the set of markets

for which c1k ≤ c2k and let k ∈ B denote those markets where c1k > c2k. For the

first subset A of markets, we will show that there is a natural choice of quantity for

player one in every market. Namely, q+1k = max{q∗1k, ak − c2k}, where q∗1k = ak−c1k
2

is player one’s monopoly quantity. Clearly player one will never choose more than

this as either (i) she is at her monopoly and player two can’t enter or (ii) she is at

a quantity that prevents player two from entering and increasing her quantity can

only decrease her profit (since her profit is a concave quadratic). She will also never

choose less than q+1k as she is either (i) at her monopoly quantity and preventing

player two from entering or (ii) decreasing her quantity allows player two to enter

the market with quantity ak − q1k − c2k, resulting in player one selling fewer goods

at a lower (or equal) price. Thus, in those markets A where player one is more

competitive than player two, she will always enter at quantity q+1k and will always

make a positive profit. Consequently, the optimal strategy for player one in these

48



markets is clear. The problem, therefore, reduces to selecting quantities only in the

subset B of markets where player one is less competitive.

So take a market k ∈ B. Then q−2k = ak − q1k − c2k always. Thus player

one’s profit, in the worst case is given by the linear function q1k(c2k − c1k). So,

again assuming that player two will first try to survive in every market and then try

to undercut player one, the War Chest Minimization Problem for these markets is

equivalent to the following quadratically constrained program:

min
∑

k∈B q1k(c1k − c2k)

s.t.
∑

k∈B(
ak−q1k−c2k

2
)2 ≤ −B2

0 ≤ q1k ≤ ak − c1k

We can solve this convex program in polynomial time.

The Cournot case is similar, this time with a convex quadratic objective function.

In this case, q+2k is the same as above and the difference in Areed-Turner rule means

that q−2k = ak − c2k. Thus, the War Chest Minimization Problem is equivalent to:

min
∑

k q1k(q1k + c1k − c2k)

s.t.
∑

k(
ak−q1k−c2k

2
)2 ≤ −B2

0 ≤ q1k ≤ ak − c1k

The Bertrand case is even easier, as without fixed costs player one may enter

every market and it is optimal for her to price at p1k = max{c1k,min{p∗1k, c2k − γ}}
where γ is some minimum increment of price and p∗1k is player one’s monopoly price
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in the market.7 In other words, she will price either at her own marginal cost or

just below player two’s as prescribed by the Areeda-Turner rule, which provides a

quick solution to the War Chest Minimization Problem. Thus, we have shown the

following:

Theorem 5. In the absence of fixed costs and assuming linear cost, price, and de-

mand functions, the War Chest Minimization Problem in the Cournot, Bertrand,

and Stackelberg models can be solved in polynomial time.

3.4.2 An Inapproximability Result

In this section, we will explore approximation algorithms for the War Chest

Minimization Problem. A first inspection is disheartening for would-be predators,

as demonstrated by the following theorem.

Theorem 6. It is NP-hard to obtain any (multiplicative) approximation algorithm

for the War Chest Minimization Problem under the Bertrand, Stackelberg, and Cournot

models.

Proof. We prove this for the Stackelberg model - the other cases are similar. Let

n,W, V, wi, and vi be an instance of the knapsack problem. Construct markets

m1, ...,mn exactly as in Theorem 4, with identical price functions, fixed costs, and

marginal costs. Let W ∗ denote the optimal solution to the War Chest Minimization

Problem in this case. Notice that W ∗ > 0 since all player one makes a negative

profit in all of her markets. We now construct a new market mn+1 as follows. Let

7 See the proof of Theorem 7 for a more detailed discussion.
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Pn+1(q) = 2
√
W ∗−q be the price function. Let player one’s fixed and marginal costs

be c1,n+1 = f1,n+1 = 0. Let player two’s marginal cost be c2,n+1 = 2
√
W ∗ and let her

fixed cost be an arbitrary nonnegative value. Then player one will clearly enter the

market and produce her monopoly quantity, q1,n+1 =
√
W ∗, thereby forcing player

two to stay out of the market, by the Areeda-Turner rule. Thus player one will earn

her monopoly quantity of W ∗ in this market. Consequently, the budget required for

this War Chest Minimization Problem is zero. Any approximation algorithm would

then have to solve this problem, and thereby the knapsack problem, exactly.

3.4.3 Additive Approximation Guarantees

Observe that the difficulty in obtaining a multiplicative approximation guarantee

arises due to conflict between markets that generate a loss for player one and markets

that generate a profit. Essentially the strategic problem for player one is to partition

the markets into two groups, α and β, and then conduct a price war in the markets

in group α and try to gain revenue to fund this price war from markets in group β.

This is still not sufficient because, in the presence of fixed costs, the optimal way to

conduct a price war is not obvious even when the group α has been chosen. However,

in this section we will show how to partition the markets and generate an arbitrarily

small additive guarantee in the Bertrand and Stackelberg cases.

Given an optimal solution with optimal partition {α∗, β∗}, let wα∗ be the ab-

solute value of the sum of the profits of the markets with negative profit, and let

wβ∗ be the sum of the profits in positive profit markets. Then the optimal budget

for player one is simply OPT = wα∗ − wβ∗ . For both the Bertrand and Stackelberg
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models, we will present algorithms that produce a budget of most (1 + ε)wα∗ −wβ∗ ,

for any constant ε. Observe this can be expressed as OPT + εwα∗ , and since wα∗

represents the actual cost of the price war (which takes place in the markets in α∗),

our solution is then at most OPT plus epsilon times the optimal cost of fighting the

price war. Let’s begin with the Bertrand model.

Theorem 7. There is an algorithm that solves the War Chest Minimization Problem

for the Bertrand model within an additive bound of εwα∗, and runs in time polynomial

in the input size and 1
ε
, assuming linear demand functions.

Proof. We begin by proving that we can find the optimal partition {α∗, β∗} of the

markets. Towards this goal we show that there is a optimal pricing scheme for any

market, should player one choose to enter the market. Using this scheme we will

be able to see which markets are revenue generating for player one and which are

not. This will turn out to be sufficient to obtain {α∗, β∗}. This is because, in the

Bertrand model, player two cannot make a profit in a market if player one does and

vice versa and because player one needs a strategy that maintains a non-negative

budget even if player two acts maliciously (but legally).

The pricing scheme for player one should she choose to enter market mk is

p+1k = max{c1k,min{p∗1k, c2k − γ}}, where γ is the minimum increment of price and

p∗1k is player one’s monopoly price. Certainly, she should not price below p+1k as

either (i) it is illegal by the Areeda-Turner rule or (ii) she cannot increase her profit

by doing so (as the profit function for player one is a concave quadratic in p1k).

She also should not price above p+1k. If she did then either (i) she cannot increase
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her profit (due to concavity) or (ii) player two could undercut her or increase her

own existing profits in the market. Indeed, it is certain that player two will try to

undercut her if player one succeeds in keeping player two’s budget negative.

Given that we have the optimal pricing scheme for player one, we may calcu-

late the profit she could make on entering a market assuming that player two acts

maliciously. Let α be the set of markets where she makes a negative profit under

these conditions, and let β be the set of markets where she makes a non-negative

profit. Since all markets in β give player one a non-negative profit even if player two

is malicious, she will clearly always enter all of them. Consequently, as we are in

the Bertrand model, player two cannot make any profit from markets in β. Thus by

entering every market in β player one will earn wβ profit, and this must be optimal

for player one if the goal is to put player two out of business. So {β, α} = {β∗, α∗}
is an optimal partition.

It remains only to show that there is a fully polynomial time approximation

scheme for the markets in α. We will prove this result by demonstrating an ap-

proximation preserving reduction of the War Chest Minimization Problem with only

α-type Bertrand markets to the Minimization Knapsack Problem. Define wk to be

the negative of the profit earned by player one if she enters the market mk and as-

suming player two undercuts if possible. By the above, she will price at p1k = p+1k

and thus

wk =

⎧⎪⎨
⎪⎩

−(p+1k − c1k)D(p+1k) + f1k if c1k < c2k

f1k otherwise.
(3.20)
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Recall that wk is non-negative for markets in α. Let p∗2k be player two’s monopoly

price in market mk and let Π∗2k be her monopoly profit in that market. We also

let vk = Π∗2k − Π2k(p
+
1k), where Π2k(p

+
1k) is the maximum profit that player two

can achieve in market mk if player one enters and prices at p+1k. The War Chest

Minimization Problem is that of maximizing player one’s profit (i.e. minimizing the

negative of her profit) even if player two acts maliciously, while ensuring that player

two’s budget is always negative. So it can be expressed as

min
∑

k wkyk

s.t. B2 +
∑

k(Π
∗
2k(1− yk) + Π2k(p

+
1k) · yk) ≤ 0

yk ∈ {0, 1}

Setting the constant C to be the sum of player two’s budget and her monopoly profit

in all of the markets, that is C = B2 +
∑

k Π
∗
2k, the problem can be rewritten as

min
∑

k wkyk

s.t.
∑

k vkyk ≥ C

yk ∈ {0, 1}

Finally, since the wk are non-negative, this formulation is exactly the minimization

knapsack problem. The reduction is approximation preserving and so we are done as

there is a fully polynomial time approximation scheme for the minimization knapsack

problem [74].

We now turn to the Stackelberg problem.
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Theorem 8. There is an algorithm that solves the War Chest Minimization Prob-

lem for the Stackelberg model within an additive bound of εwα∗, and runs in time

polynomial in the input size and 1
ε
, assuming linear cost and price functions.

Proof. As we have seen, there are two strategies that player two may employ to

prevent player one from winning the price war. She may play so as to survive or, if

that is destined to fail, she may play so as to leave player one with a negative budget.

As in Section 3.4.1, define the quantity q+2k to be the quantity that maximizes player

two’s own profit in every market and q−2k to be the quantity that minimizes player

one’s profit (while obeying the Areeda-Turner rule). As before, though now adjusting

for fixed costs, we get:

q+2k =

⎧⎪⎨
⎪⎩

ak−q1k−c2k
2

if (ak−q1k−c2k
2

)2 ≥ f2k

0 otherwise
(3.21)

q−2k =

⎧⎪⎨
⎪⎩

ak − q1k − c2k if q1k < a− c2k

0 otherwise.
(3.22)

We initially split the markets of the Stackelberg case into two sets: let k ∈ A

denote the set of markets for which c1k ≤ c2k and let k ∈ B denote those markets

where c1k > c2k. In the former case, if player one enters the market mk then she will

necessarily produce quantity q+1k = max{q∗1k, ak − c2k}, where q∗1k = ak−c1k
2

is player

one’s monopoly quantity. The argument for this is identical to that in Section 3.4.1,

as the fixed costs here do not change anything. Let β be the set of all markets for

which player one’s worst case profit, Π1k(q
+
1k, q

−
2k), is now nonnegative. Clearly she

will enter all of these markets, and again β = β∗. Let α = α∗ be the set of markets
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for which her worst case profit is negative. These include some of the markets in A

and all of the markets in B, since player two as the follower can always force a price

that is less than player one’s marginal cost in these latter markets.

Again, player two will clearly enter each market in β∗ and produce quantity q+1k,

earning a positive profit of wβ∗ . Thus, we need only find a fully polynomial time

approximation scheme for the markets in α∗. So for the remainder of the proof, we

will deal solely with the markets of α∗. By scaling, we may also assume that all of

the variables and constants are integral.

As discussed above, the markets in α∗ ∩ A have a canonical choice of quantity

for player one, q+1k. The worst case profit for player one in these markets will always

be negative, by definition. Now let Π∗2k be player two’s monopoly profit in market

mk. Define V to be the sum of player two’s monopoly profits in every market. Also

define vk(q1k) to be the difference between player two’s monopoly profit in market

mk and her maximum profit if player one enters the market with quantity q1k. So,

vk(q1k) = Π∗2k − Π2k(q1k, q
+
2k). Notice that vk(q1k) is monotonically nondecreasing in

q1k.

Define wk(q1k) to be player one’s worst case cost (negative profit) if she chooses

to produce quantity q1k in market mk. For those markets where c1k ≤ c2k, there is

a natural strategy for player one and so wk(q1k) = −Π1k(q
+
1k, q

−
2k) > 0. For markets

with c2k ≤ c1k, we have q−2k = ak − q1k − c2k and so

wk(q1k) =

⎧⎪⎨
⎪⎩

0 if q1k = 0

q1k(c1k − c2k) + f1k otherwise
(3.23)
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All of these weights are also non-negative.

The War Chest Minimization Problem requires player one minimize the cost

of the markets she enters while keeping the sum of player two’s budget and profits

below zero. Since player two may “win” either by reducing player one’s budget below

zero or keeping her final budget nonnegative, player one needs to work with both her

worst case costs and player two’s best case profits. Thus the War Chest Minimization

Problem, after some simple algebra, may be formulated as the problem of finding

the integer vector (q11, q12, ..., q1n) that solves

min
∑

k wk(q1k)

s.t
∑

k vk(q1k) ≥ V

q1k ∈ {0, q+1k} if c1k < c2k

0 ≤ q1k ≤ ak − c1k if c1k ≥ c2k.

The last constraint comes from the Areeda-Turner rule. We will refer to this

problem as Stackelberg War Chest Minimization (SWCM). The weight of the vec-

tor (q11, q12, ..., q1n) will mean
∑

k wk(q1k) and the value of the vector will mean∑
k vk(q1k).

The remainder of this proof will be broken into parts. We first show that there

is a pseudo-polynomial time dynamic program for SWCM. We then show how to use

rounding techniques to obtain a polynomial time approximation scheme.

So let’s describe the dynamic program. Let W̄ be the maximum attainable

weight. For each market mi with i ∈ {1, ..., n} and for each weight w ∈ {0, 1, ..., W̄},
let Ui,w denote the vector (q11, ..., q1n) such that q1j = 0 for all j > i which has total
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weight w and with the maximum value amongst all such vectors. Let f(i, w) denote

the value of Ui,w; if no such vector exists, then we set f(i, w) = −∞. It is easy to

calculate the base cases f(1, w) for every w. We then get the recurrence:

f(i+ 1, w) = max
q1,i+1

f(i, w − wi+1(q1,i+1)) + vi(q1,i+1) (3.24)

where the maximum is taken over the feasible values of q1,i+1, where we understand

that f(n,w) = −∞ for all w < 0. Thus we get a dynamic program that solves

SWCM exactly and whose running time is polynomial in n, W̄ , and ak−c1k for those

markets k with c1k ≥ c2k.

This dynamic program is pseudo polynomial. We can make it polynomial by

a suitable scheme to round the quantities and to round the weights. Rounding the

quantities, we shall try to make the running time depend on log(ak − c1k) instead

of ak − c1k, for those markets k with c1k ≥ c2k. To do this, we will restrict the

possible feasible choices of quantity, in each of these market, in the following manner.

First fix some δ0 > 0. For each interval I = [0, ak − c1k], partition it into the

subintervals I0 = {0}, I1 = {1}, I2 = (1, 2], ..., Ii = (2i−2, 2i−1], ..., I�log(ak−c1k)+1� =

(2�log(ak−c1k)−1�, ak − c1k]. Each subinterval Ii, i > 1, is further partitioned into the

minimum number of subintervals Jij whose lengths are at most δ02
i−2. For each

i, there are at most � 1
δ0
� subintervals. For each quantity q1k let hk(q1k) be the

maximum value of the Jij subinterval that contains q1k (we define hk(0) = 0 and

hk(1) = 1). Thus hk maps the integer values of the interval [0, ak − c1k] into a set of

O( 1
δ0
log(ak − c1k)) integers.
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Now let q = (q11, ..., q1n) be any solution to SWCM. Since the objective function

is linear, by replacing each q1k with hk(q1k) we change the weight of the resulting

vector by at most δ0w(q). By standard arguments, using these rounded quantities

gives a (1+ δ0) approximate algorithm whose running time is polynomial in n, 1
δ0
, W̄

and log(ak − c1k) for those markets k with c1k ≥ c2k.

We can round the weights using a similar trick to obtain a (1+ε) approximation

algorithm for SWCM whose running time is polynomial in n, log(a1−c11), ..., log(an−
c1n),

1
ε
and log(W̄ ). This completes the proof.

The approach taken here does not apply directly to the Cournot model. In

particular, a more subtle rounding scheme is required there when player one is more

competitive than player two. We conjecture, however, that a similar type of additive

approximation guarantee is possible in the Cournot model.

3.5 Summary of Results

Here, we take a moment to summarize the complexity results we have achieved

for the War Chest Minimization Problem:

1. All three models admit polynomial time algorithms in the absence of fixed

costs.

2. The Bertrand and Stackelberg models are NP hard to solve within any multi-

plicative approximation, however an additive guarantee exists.

3. The Cournot model is NP hard to solve within any multiplicative approxima-

tion. The status of an additive guarantee is an open problem.
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3.6 Single Market Case

Clearly, our hardness results require that there be a large number of markets

(or submarkets). Whilst the multimarket problem is the most interesting one in our

opinion, we remark that hardness results can be obtained even in the single-market

case, provided that each firm has a sufficient number of strategic choices available to

it. For example, in this section, we introduce a very simple modified single market

model, where firms are able to invest in themselves by increasing their fixed cost to

decrease their marginal cost. Despite the simplicity of this model, the War Chest

Minimization Problem is trivially hard, indicating that more complex and realistic

single market models will typically also be hard.

3.6.1 Hardness Result

Suppose player one and player two are competing in a single Bertrand market.

Player two has a certain marginal cost c2. Player one begins with a marginal cost c1.

However, she may choose to invest in any subset of n technologies each of which will

cost her a fixed cost fi but will reduce her marginal cost by λi. Suppose player one

begins with a budget B1 and may not spend more than this budget in technology in-

vestment. Player one wins the market from player two if she can reduce her marginal

cost c1 to below player two’s c2 within her budget constraints. This produces the

problem:

Single Market War Chest Minimization Problem: If the initial c1 and c2 are

fixed, what is the minimum budget B1 that player one needs so that she can win the
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market from player two?

Theorem 9. This problem is NP-hard but has a fully polynomial time approximation

scheme.

Proof. We prove the theorem by showing that this problem is completely equivalent

to the minimization knapsack problem in an approximization preserving way. Notice

that the problem can be formulated as

min
∑

i fixi

s.t. c1 −
∑

i λixi < c2

xi ∈ {0, 1}

But then if we write vi = fi, wi = λi, C = c1−c2 then we have reduced the prob-

lem to the minimization knapsack problem as seen in Section 3.4.3. This reduction

clearly preserves approximation.
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CHAPTER 4
Lookahead Search

4.1 Introduction

In the previous chapter, we demonstrated how firms competing in oligopoly

markets might face complex decisions. In this chapter, we explore how such complex

economic games may be played in practice. To this end, we consider the strategy of

lookahead search, described by Pearl [132] in his classical book on heuristic search

as being used by “almost all game-playing programs”. To understand the lookahead

method and the reasons for its ubiquity in practice, consider an agent trying to decide

upon a move in a game. Essentially, her task is to evaluate each of her possible moves

(and then select the best one). Equivalently, if she knows the values of each child

node in the game tree then she can calculate the value of the current node. However,

the values of the child nodes may also be unknown! Recall two prominent ways to

deal with this. Firstly, crude estimates based upon local information could be used to

assign values to the children; this is the approach taken by best response dynamics.

Secondly, the values of the children can be determined recursively by finding the

values of the grandchildren. At its computational extreme, this latter approach in a
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finite game is Zermelo’s algorithm - assign values to the leaf nodes of the game tree

and apply backwards induction to find the value of the current node.1

Both these approaches are special cases of lookahead search: choose a local search

tree T rooted at the current node in the game tree; valuations (or estimates thereof)

are given to leaf nodes of T ; valuations for internal tree nodes are then derived

using the values of a node’s immediate descendants via backwards induction; a move

is then selected corresponding to the value assigned the root. For best response

dynamics the search tree is simply the star graph consisting of the root node and

its children. With unbounded computational power, the search tree becomes the

complete (remaining) game tree used by Zermelo’s algorithm.

In practice the actual shape of the search tree T is chosen dynamically. For

example, if local information is sufficient to provide a reliable estimate for a current

leaf node w then there is no need to grow T beyond w. If not, longer branches rooted

at w need to be added to T . Thus, despite our description in terms of “backwards

induction”, lookahead search is a very forward looking procedure. Subject to our

computational abilities, we search further forward only if we think it will help evaluate

a game node. Indeed, in our opinion, it is this forward looking aspect that makes

1 Often the values of the leaf nodes will be true values rather than estimates, for
example when they correspond to end positions in a game.
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lookahead search such a natural method, especially for humans and for dynamic (or

repeated) games.2

Interestingly, the lookahead method was formally proposed as long ago as 1950

by Shannon [153], who considered it a practical way for machines to tackle complex

problems that require “general principles, something of the nature of judgement,

and considerable trial and error, rather than a strict, unalterable computing pro-

cess”. To illustrate the method, Shannon described in detail how it could be applied

by a computer to play chess. The choice of chess as an example is not a surprise: as

described the lookahead approach is particularly suited to game-playing. It should

be emphasised again, however, that this approach is natural for all computation-

ally constrained agents, not just for computers. Lookahead search is an instinctive

strategic method utilised by human beings as well. For example, Shannon’s work

was in part inspired by De Groot’s influential psychology thesis [80] on human chess

players. De Groot found that all players (of whatever standard) used essentially the

same thought process - one based upon a lookahead heuristic. Stronger players were

better at evaluating positions and at deciding how to grow (prune or extend) the

search tree but the underlying approach was always the same.

Despite its widespread application, there has been little theoretical examination

of the consequences of decision making determined by the use of local search trees.

The goal of this chapter is to begin such a theoretical analysis. Specifically, what are

2 In contrast, strategies that are prescribed by axiomatic principles, equilibrium
constraints, or notions of regret are much less natural for dynamic game players.
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the quantitative outcomes and dynamics in various games when players use lookahead

search?

4.1.1 Lookahead Search: The Model.

Having given an informal presentation, let’s now formally describe the looka-

head method. Here we consider games with sequential moves that have complete

information. These assumptions will help simplify some of the underlying issues, but

the lookahead approach can easily be applied to games without these properties.

We have a strategic game G(P,S, {αi : i ∈ P}). Here P is the set of n players, Si

is the set of possible strategies for i ∈ P, S = (S1×S2 . . .×Sn) is the strategy space,

and αi : S → R is the payoff function for player i ∈ P. A state s̄ = (s1, s2, . . . , sn) is

a vector of strategies si ∈ Si for each player i ∈ P.

Suppose player i ∈ P is about to decide upon a move. With lookahead search

she wishes to assign a value to her current state node s̄ ∈ S that corresponds to the

highest value of a child node. To do this she selects a search tree Ti over the set of

states of the game rooted at s̄. For each leaf node l̄ in Ti, player i then assigns a

valuation Πj,l̄ = αj(l̄) for each player j. Valuations for internal nodes in Ti are then

calculated by induction as follows: if player p is destined to move at game node v̄

then his valuation of the node is given by

Πp,v̄ = max
ū∈C(v̄)

[rp,v̄ +Πp,ū]. (4.1)

Here, C(v̄) denotes the set of children of v̄ in Ti, and rp,v̄ is some additional payoff

received by player p at node v̄. Should p choose the child ū∗ ∈ C(v̄) then assume
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any non-moving player j 
= p places a value of Πj,v̄ = rj,v̄ + Πj,ū∗ on node v̄. Then

given values for children of the root node s̄ of Ti, player i is thus able to compute

the lookahead payoff Πi,s̄ which she uses to select a move to play at s̄. (The method

is defined in an analogous manner if players seek to minimise rather than maximise

their “payoffs”, e.g. minimize costs.)

After i has moved, suppose player j is then called upon to move. He applies the

same procedure but on a local search tree Tj rooted at the new game node. Note

that j’s move may not be the move anticipated by i in her analysis. For example,

suppose all the players use 2-lookahead search. Then player i calculates on the basis

that player j will use a 1-lookahead search tree T ′j when he moves – because for

computational purposes it is necessary that T ′j ⊆ Ti. But when he moves player j

actually uses the 2-lookahead search tree Tj and this tree goes beyond the limits of

Ti.

4.1.2 Lookahead Search: The Practicalities.

There is still a great deal of flexibility in how the players implement the model.

For example

• Dynamic Search Trees. Recall that search trees may be constructed dynam-

ically. Thus, the exact shape of the search tree utilized will be heavily influenced

by the current game node, and the experience and learning abilities of the players.

Whilst clearly important in determining gameplay and outcomes, these influences

are a distraction from our focal point, namely, computation and dynamics in games

in which players use lookahead search strategies. Therefore, we will simply assume
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here that each Ti is a breadth first search tree of depth ki. Implicitly, ki is dependent

on the computational facilities of player i.

• Evaluation Functions. Different players may evaluate leaf nodes in different

ways. To evaluate internal nodes, as described above, we make the standard as-

sumption that they use a max (or min) function. This need not be the case. For

example, a risk-averse player may give a higher value to a node (that it does not

own) with many high value children than to a node with few high value children –

we do not consider such players here.

• Internal Rewards or Not: Path Model vs Leaf Model. We distinguish

between two broad classes of game that fit in this framework but are conceptually

quite different. In the first category, payoffs are determined only by outcomes at the

end of game. Valuations at leaf nodes in the local search trees are then just estimates

of the what the final outcome will be if the game reaches that point. Clearly chess

falls into this category. In the second category, payoffs can be accumulated over time

- thus different paths with the same endpoints may give different payoffs to each

player. Repeated games, such as industrial games over multiple time periods, can be

modelled as a single game in this category. The first category is modelled by setting

all internal rewards rp,v̄ = 0. Thus what matters in decision making is simply the

initial (estimated) valuations a player puts on the leaf nodes. We call this the leaf

(payoff) model as an agent then strives to reach a leaf of Ti with as high a value as

possible. The second category arises when the internal rewards, rp,v̄, can be non-zero.

Each agent then wishes to traverse paths that allow for high rewards along the way.
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More specifically, in this model, called the path (payoff) model, the internal reward

is rp,v̄ = αp(v̄).

• Order of Moves: Worst-Case vs Average-Case. In multiplayer games, the

order in which the players move may not be fixed. This adds additional complexity

to the decision making process, as the local search tree will change depending upon

the order in which players move. Here, we will examine two natural approaches a

player may use in this situation: worst case lookahead and average case lookahead. In

the former situation, when making a move, a risk-averse player will assume that the

subsequent moves are made by different players chosen by an adversary to minimize

that player’s payoff. In the latter case, the player will assume that each subsequent

move is made by a player chosen uniformly at random; we allow players to make

consecutive moves. In both cases, to implement the method the player must perform

calculations for multiple search trees. This is necessary to either find the worst-case

or perform expectation calculations.

In practice, such versatility is a major strength and a key reason underlying

the ubiquity of lookahead search in game-playing. For example, it accords well

with Simon’s belief, discussed in Section 4.1.4, that behaviours should be adapt-

able. For theoreticians, however, this versatility is problematic because it necessitates

application-specific analyses. This will be apparent as we present our applications;

we will examine what we consider to be the most natural implementation(s) of looka-

head search for each game, but these implementations may vary each time!
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4.1.3 Techniques and Results.

We want to understand the social quality of outcomes that arise when computationally-

bounded agents use k-lookahead search to optimise their expected or worst-case payoff

over the next k moves. Two natural ways we do this are via equilibria and via the

study of game dynamics. In this thesis, we focus on the equilibria based ap-

proaches. To see an example of a dynamics based analysis refer to our full paper

[116].

To explain the equilibrium approach, consider the following definition. Given

a lookahead payoff function, Πi,s̄, a lookahead best-response move for player i, at a

state s̄ ∈ S, is a strategy si maximising her lookahead payoff, that is, ∀s′i ∈ Si:

Πi,s̄ ≥ Πi,(s̄−i,s′i). (A move s′i for player i, at a state s̄ ∈ S, is lookahead improving

if Πi,s̄ ≤ Πi,(s̄−i,s′i).) A lookahead equilibrium is then a collection of strategies such

that each player is playing her lookahead best-response move for that collection of

strategies. Our focus here is on pure strategies. Then, given a social value for each

state, the coordination ratio (or price of anarchy) of lookahead equilibria is the worst

possible ratio between the social value of a lookahead equilibrium and the optimal

global social value.

It is worth noting that lookahead equilibria are generalizations of the more

prevalent concept of a Nash equilibrium. By our definition, these concepts coincide

for k = 1. Just as with Nash equilibria, there need not be a pure strategy lookahead

equilibrium in any given game. We do not know of any results which address the

question of the existence of a mixed strategy lookahead equilibrium.
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The coordination ratio will allow us to discover when lookahead equilibria guar-

antee good social solutions, and how outcomes vary with different levels of foresight

(k). In this thesis, we will focus on economic games of imperfect competition: par-

ticularly oligopoly games like the Cournot model and AdWord auctions. In our

paper [116] we additionally analyze congestion games, valid-utility games, and a

cost-sharing network design game.

We begin, in Section 4.2, with the Cournot duopoly game. Here two firms

compete in producing a good consumed by a set of buyers via the choice of production

quantities. We study equilibria in these simple games resulting from k-lookahead

search. The equilibria for myopic game playing, k = 1, are well-understood in

Cournot games. For k > 1, however, firms produce over 10% more than if they

were competing myopically; this is better for society as it leads to around a 5%

increase in social surplus. Surprisingly, the optimal level of foresight for society is

k = 2. Furthermore, we show that Stackelberg behaviours arise as a special case of

lookahead search where the firms have asymmetric computational abilities.

In Section 4.3, we examine strategic bidding in an AdWord generalised second-

price auction, and study the social values of the allocations in the resulting equilibria.

In particular, we show that 2-lookahead game playing results in the optimal outcome

or a constant-factor approximate outcome, depending on the specifics of the modelf.

This is in contrast to 1-lookahead (myopic) game playing which can result in arbi-

trarily poor equilibrium outcomes, and shows that more forward-thinking bidders

would produce efficient outcomes.
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Observe that our results show that lookahead search has different effects depend-

ing upon the game. It would be interesting to study further which game structures

lead to more beneficial outcomes when longer foresight is used, and which game

structures lead to more detrimental outcomes.

4.1.4 Background and Related Work.

This work is best viewed within the setting of bounded rationality pioneered by

Herb Simon. In Rational Choice Theory a rational agent (or economic man) makes

decisions via utility maximisation. Whilst the non-existence of economic man is not

in doubt, rationality remains a central assumption in economic thought. This is

typically justified using an as if as expounded by Friedman [68]: whether people

are actually rational or not is unimportant provided their actions can be viewed in

a way that is consistent with rational decision making - that is, provided agents

act as if they are rational.3 Friedman concluded that a model should be judged

by its predictive value rather than by the realism of its assumptions. On this scale

rationality often (but not always) does very well.

However, motivated by considerations of computational power and predictive

ability, Simon [156] argued that “the task is to replace the global rationality of eco-

nomic man with a kind of rational behaviour that is compatible with the access to

3 For example, a consumer whose purchasing strategy allocates fixed proportions of her

budget to specific goods (regardless of price levels) can be viewed as rational consumer

with a Cobb-Douglas utility function!
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information and the computational capacities that are actually possessed by organ-

isms, including man, in the kinds of environments in which such organisms exist”.

He argued that, instead of optimising, agents apply heuristics in decision making.

An example of this being the satisficing heuristic: agents search for feasible solutions,

stopping when they discover an outcome that achieves an aspired level of satisfac-

tion.4 We remark that the use of a search phase provides a fundamental distinction

between rational and boundedly rational agents. For rational agents the search is

irrelevant as they will anyway make an optimal choice given the constraints of the

problem. For agents of bounded rationality the form of the search can heavily influ-

ence decision making.

Interestingly, De Groot’s work on chess players also heavily influenced Simon’s

general thinking on cognitive science.5 This is exemplified in his famous book with

Newell on human problem solving [125], where humans are viewed as information

processing systems.

The label bounded rationality is currently used in a number of disparate areas

some of which actually go against the main thrust of Simon’s original ideas; see

Selten [149] and Rubenstein [139] for some discussion on this point. Two schools

of thought developed by psychologists, experimental economists, and behavioural

4 Over time, and depending upon what is found in the search, this aspiration level may

be changed.

5 In fact, Simon sent his student George Baylor to help translate De Groot’s work into

English.
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economists are, however, well worth mentioning here. First, the Heuristics and

Biases program espoused by Kahneman and Tversky [170] and, second, the Fast and

Frugal Heuristics program espoused by Gigerenzer [76]. Whilst both programs agree

that humans routinely use simple heuristics in decision making, their philosophical

outlooks are very different. The former program primarily looks for outcomes (caused

by the use of heuristics) in violation of subjective excepted utility theory, and views

such biases as a sign of irrationality likely to lead to poor decision making. In

contrast, the latter program views the use of heuristics as natural and, in principle,

entirely compatible with good decision making. For example, simple heuristics may

be more robust to environmental changes and actually outperform methods based

upon subjective excepted utility maximisation. As with the work of Simon, for the

fast and frugal heuristics school, the actual quality of an heuristic is assumed to

be dependent upon the search - how to search and when to stop searching - and

the choice of decision rule after the search is terminated. Clearly, the lookahead

heuristic can be viewed in this light: there is a search (via a local search tree), there

is a “stopping rule” (determined, for example, by computational constraints and by

the expertise of the player), and there is a decision rule (backwards induction).

The value of lookahead search in decision-making has been examined by the

artificial intelligence community [123]; for examples in effective diagnostics and real-

time planning see [98] and [147]. Lookahead search is also related to the sequential

thinking framework in game theory [120, 163]. However, compared to these works and

the research carried out by the two schools above, our focus is more theoretical and
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less experimental and psychological. Specifically, we desire quantitative performance

guarantees for our heuristics.

Our research is also related to works on the price of anarchy in a game, and

convergence of game dynamics to approximately optimal solutions [117, 78] and

to sink equilibria [78, 60]. Numerous articles study the convergence rate of best-

response dynamics to approximately optimal solutions [40, 62, 10, 22]. For example,

polynomial-time bounds have been proven for the speed of convergence to approxi-

mately optimal solutions for approximate Nash dynamics in a large class of poten-

tial games [10], and for learning-based regret-minimisation dynamics for valid-utility

games [22]. In another line of work, convergence of best-response dynamics to (ap-

proximate) equilibria and the complexity of game dynamics and sink equilibria have

been studied [61, 2, 39, 159, 60, 115], but our thesis does not focus on these types of

dynamics or convergence to equilibria.

Motivated by concerns of stability, convergence, and predictability of equilibria

and game dynamics, various equilibrium concepts other than Nash equilibria have

also been studied in the economics literature. Among them are correlated equilib-

ria [8], stable equilibria [105], stochastic adjustment models [95], strategy subsets

closed under rational behaviour (CURB set) [14], iterative elimination of dominated

strategies, the set of undominated strategies, etc. Convergence and strategic stabil-

ity of equilibria in evolutionary game theory is also an important subject of study.

Many other game-theoretic models have been proposed to capture the self-interested

behaviour of agents. As well as best-response dynamics, noisy best-response dy-

namics [54, 180, 118], where players occasionally make mistakes, simultaneous Nash
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dynamics [17], where all players change their strategies simultaneously, second-order

Nash equilibria [19], where beginning with Nash equilibria the set of equilibria are

recursively relaxed so that at any equilibrium there are no short, improving paths to

worse equilibria, have all been studied.

In many other models the effect of learning algorithms [181] is examined, for

example, regret minimisation dynamics [67, 82, 83, 23, 21, 22, 59] and fictitious

play [30]. In most of these studies the most important factor is the stability of

equilibria, and not measurements of the social value of equilibria. Furthermore, most

of them are motivated by theoretical game theoretic concepts rather than practical

game-playing, and none of the above works consider lookahead search.

4.2 Industrial Organisation: Cournot Competition

For our first example, we consider the classical Cournot model for duopolistic

competition, which we introduced in Chapter 2. Our main result here is that the

social surplus increases when firms are not myopic; surprisingly, social welfare is

actually maximized when firms use 2-lookahead.

Recall that the Cournot model assumes players sell identical, nondifferentiated

goods, and studies competition in terms of quantity (rather than price). Each player

takes turns choosing some quantity of good to produce, qi, and pays some marginal

cost to produce it, c. In this chapter, we assume there are no fixed costs and that

the marginal costs are symmetric to simplify the calculations. The analysis is easily

extended to the non-symmetric case.
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The price for the good is then set as a function of the quantities produced by

both players, P (qi + qj) = (a − qi − qj), for some constant a > c. On turn l, each

player i makes profit: Πl
i(qi, qj) = qi(a − qi − qj − c). In this form, the model then

only has one equilibrium, called the Cournot equilibrium, where qi = (a − c)/3 for

each player. We may assume that a = 1 and c = 0. Then, at equilibrium, each

player makes a profit of Πi(qi, qj) = qi(1− 2qi). The consumer surplus is 2q2i and the

social surplus (the sum of the firms profits and the consumer surplus) is 2qi(1− qi).

4.2.1 Production under Lookahead Search.

We analyse this game when players apply k-lookahead search. In industrial

settings it is natural to assume that payoffs are collected over time (as in a repeated

game); thus, we focus upon the path model. We define this model inductively. In

a k-step lookahead path model, each player i’s utility is the sum of his utilities in

the current turn and the k − 1 subsequent turns. He models the quantities chosen

in the subsequent turns as though the player acting during those turns were playing

the game with a smaller lookahead. More specifically, he assumes that the player

acting in the t’th subsequent turn chooses their quantity to maximise their utility

under a k − t lookahead model. In order to rewrite this rigorously, let πi
l be the

contribution to his utility that player i expects on the lth subsequent turn (and πi
0

be the contribution to his utility that player i expects on his current turn), let πj
l

be the contribution to player j’s utility that player i expects on the l’th subsequent

turn, and let qil (respectively, qjl ) be the quantity that player i expects to choose

(respectively, expects his opponent to choose) under this model.
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Then in the path model, player i’s expected utility function is Πi =
∑k−1

t=0 π
i
t.

Player j’s expected utility function on player i’s turn is Πj =
∑k−1

t=0 π
j
t . Our aim now

is to determine the quantities that player i expects to be chosen by both players in

the subsequent turns and, thereby, determine the quantity he chooses this turn and

the utility he expects to garner. To facilitate the discussion, it should be noted that

unless noted otherwise, any reference to a “turn” refers to a turn during player i’s

calculation and not an actual game turn.

To simplify our analysis, we will define ql to be the quantity chosen on turn l

by whichever player is acting and Πl to be the expected utility that player garners

from turn l to turn k. So Π0 = Πi, Π1 =
∑k−1

t=1 π
j
t , etc. We define Πl to be the

utility garnered from turn l to turn k by the player who does not act during turn l.

So Π0 = Πj, Π1 =
∑k−1

t=1 π
i
t, etc. It is clear that on each turn l, the active player is

trying to maximise Πl.

We are now ready to compute these quantities and utilities recursively. By our

definition above, we have that Πk = qk(1−qk−qk−1) and Πk = qk−1(1−qk−qk−1). Our

definition also gives us the recursive formula for l < k that Πl = ql(1−ql−ql−1)+Πl+1

and Πl = ql−1(1− ql − ql−1) + Πl+1. Note that in each of these formulas, Πl and Πl

are each functions of qt for t ≥ l; ql−1 is in fact fixed on the previous turn and is,

therefore, not a variable in Πl. It is now possible to calculate ql recursively.

Lemma 1. It holds that ql is βl − αlql−1, where βk = αk = βk−1 = 1
2
, αk−1 = 1

3
and,

for l < k − 1,

βl =
2− βl+1 + αl+1βl+2 − αl+1αl+2βl+1

4− 2αl+1 − α2
l+1αl+2

, αl =
1

4− 2αl+1 − α2
l+1αl+2

(4.2)
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Proof. We proceed by inducting down from qk. Consider qk which is the active

player’s choice on the final turn. As it is the final turn, he is acting myopically

and so will choose qk so as to maximise Πk = qk(1 − qk − qk−1). This parabola as

a function of qk is maximised when qk = 1−qk−1

2
. Doing a similar calculation for

Πk−1 = qk−1(1− qk−1 − qk−2) +Πk gives us the desired values for βk−1 and αk−1. We

now assume the lemma for all l > L and try to prove it for qL. Recall the recursive

formula ΠL = qL(1 − qL − qL−1) + ΠL+1. Taking the derivative of this with respect

to qL and setting it all equal to zero gives us

0 = (1− 2qL − qL−1) + (1− 2qL − qL+1)− ∂qL+1

∂qL
qL − ∂qL+1

∂qL
qL+2 +

∂ΠL+2

∂qL+2

∂qL+2

∂qL

The last term of the above sum is zero, since qL+2 is chosen so that ∂ΠL+2

∂qL+2
= 0. Thus,

if we plug in the inductive hypothesis into the above equation and simplify, we get

2− βL+1 + αL+1βL+2 − αL+1βL+2 − αL+1αL+2βL+1

= (4− 2αL+1 − α2
L+1αL+2)qL + qL−1 (4.3)

This gives us the desired result.

Our goal is now to calculate q0 as this will tell us the quantity that player i

actually chooses on his turn. From the above lemma, we can calculate q0 if we can

determine α0 and β0. Using numerical methods on the above recursive formula, we

see that as k → ∞, α0 decreases towards a limit of 0.2955977 . . . and β0 approaches

a limit of 0.4790699 . . .. These values also converge quite quickly; they both converge

to within 0.0001 of the limiting value for k ≥ 10. Thus, at a lookahead equilibrium,

player i will choose qi ≈ .0.4790699 − 0.2955977qj and player j, symmetrically, will
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choose qj ≈ 0.4790699 − 0.2955977qi. So each player will choose a quantity q ≈
0.369767. which is more than in the myopic equilibrium. Indeed, it is easy to show

that for every k ≥ 2, each player will produce more than the myopic equilibrium.

This is illustrated in Figure 4–1. Observe the quantity produced does not change

monotonically with the length of foresight k, but it does increase significantly if non-

myopic lookahead is applied at all. Consequently, in the path model looking ahead

is better for society overall but worse for each individual firm’s profitability (as the

increase in sales is outweighed by the consequent reduction in price).

Figure 4–1: How output varies with foresight k

Theorem 10. For Cournot games under the path model, output at a k-lookahead

equilibrium peaks at k = 2 with output 12.5% larger than at a myopic equilibrium

(k = 1). As foresight increases, output is 10.9% larger in the limit. The associated

rises in social surplus are 5.5% and 4.9%, respectively,
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4.2.2 Stackelberg Behaviour.

We could also analyse this game under the leaf model, but this model is both

less realistic here and trivial to analyse. However, it is interesting to note that for the

leaf model with asymmetric lookahead, where player i has 2-lookahead and player

j has 1-lookahead, we get the same equilibrium as the classic Stackelberg model

for competition. Thus, the use of lookahead search can generate leader-follower

behaviours.

4.3 Generalised Second-Price Auctions

For our second example, we apply the lookahead model to generalised second-

price (GSP) auctions. Our main results are that outcomes are provably good when

agents use additional foresight; in contrast, myopic behaviour can produce very poor

outcomes.

The auction set-up is as follows. There are T slots for sale with click-through

rates c1 > c2 > ... > cT > 0, that is, higher indexed slots have lower click-through

rates. There are n > T players bidding for these slots, each with a private valuation

vi. Each player i makes a bid bi. Slots are then allocated via a generalised second

price auction. Denote the jth highest bid in the descending bid sequence by bj, with

corresponding valuation vj. The jth best slot, for j ≤ T , is assigned to the jth

highest bidder who is charged a price equal to bj+1. The T highest bidders are called

the “winners”. According to the pricing mechanism, if bidder i were to get slot t in

the final assignment, then he would get utility ui
t = (vi− bt+1)ct. We denote a player

i’s utility if he bids bi by ui(bi) (the other players bids are implicit inputs for ui).
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This auction is used in the context of keyword ad auctions (e.g, Google Ad-

Words) for sponsored search. Given the continuous nature of bids in the GSP auction,

the best response of each bidder i for any vector of bids by other bidders corresponds

to a range of bid values that will result in the same outcome from i’s perspective.

Among these set of bid values, we focus on a specific bid value bi, called the balanced

bid [34]. The balanced bid bi is a best-response bid that is as high as possible such

that player i cannot be harmed by a player with a better slot undercutting him, i.e.

bidding just below him. It is easy to calculate that for player i in slot t, 1 ≤ t < T ,

the only balanced bid is

bi = (1− ct
ct−1

)vi +
ct
ct−1

bt+1. (4.4)

An important property of balanced bidding is that each “losing” player i (one

not assigned a slot) should bid truthfully, that is bi = vi. To see this add dummy

slots with ct = 0 if t > T . The player who wins the top slot should also bid

truthfully under balanced bidding. Balanced bidding is the most commonly used

bidding strategy [34, 111]. For some intuition behind this, note that balanced bidding

has several desirable properties. For a competitive firm, bidding high obviously

increases the chance of obtaining a good slot. Within a slot this also has the benefit

of pushing up the price a competitor pays without affecting the price paid by the

firm. On the other hand, bidding high increases the upper bound on the price the

firm may pay, leading to the possibility that the firm may end up paying a high price

for one of the less desirable slots. Balanced bidding eliminates the possibility that

a change in bid from a higher bidder can hurt the firm. (Clearly, it is impossible
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to obtain such a guarantee with respect to a lower bidder.) Thus, balanced bidding

provides some of the benefits of high bidding at less risk. Balanced bidding naturally

converges to Nash equilibria unlike other bidding strategies such as altruistic bidding

or competitor busting [34]. Moreover, the other bidding strategies would require

some discretization of players’ strategy space in order to analyse the best response

dynamics [34, 111]. Consequently, balanced bidding is the most natural strategy

choice for our analysis.

For this auction problem, we consider only the leaf model. The leaf model seems

more natural than the path model for a single auction as players are interested in

the final allocation output by the auction (there are no intermediary payoffs). We

analyse both worst-case and average-case lookahead; depending upon the level of

risk-aversion of the agents both cases seem natural in auction settings.

Let player i’s lookahead payoff (or utility) at bid bi with respect to player j,

denoted by uij(bi), be player i’s payoff (or utility) after player j makes a best-response

move. In the worst-case lookahead model, we define player i’s lookahead payoff for a

vector b̄ of bids as Πi,b̄ = ũi(bi) = minj u
ij(bi). In the average-case lookahead model,

player i’s lookahead payoff Πi,b̄ for a bid vector b̄ is Πi,b̄ = ūi(bi) = 1
n

∑
j u

ij(bi).

Changing strategy from bid bi to bid b̄i is a lookahead improving move if lookahead

utility increases, i.e., ūi(b̄i) > ūi(bi). We are at a lookahead equilibrium if no player

has a lookahead improving move.

It is known that the social welfare of Nash equilibria for myopic game playing

can be arbitrarily bad [34] unless we disallow over-bidding [108]. Here, we prove the
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advantage of additional foresight by showing that 2-lookahead equilibria have much

better social welfare. In particular, we show that all such equilibria are optimal in the

worst-case lookahead model, and all such equilibria are constant-factor approximate

solutions in the average-case lookahead model.

4.3.1 Worst-Case Lookahead.

Our proof for the worst-case lookahead model can be seen as a generalisation of

the proof of [31] for a slightly different model. We start by proving a useful lemma

in this context.

Lemma 2. Label the players so that player i is in slot i (so vi = vi for all i), and

suppose there is a player t such that vt < vt+1. Then player t myopically prefers slot

t+ 1 to slot t.

Proof. Suppose not. Then, as player t does not myopically prefer slot t+ 1 we have

(vt − bt+1)ct ≥ (vt − bt+2)ct+1 (4.5)

By definition, bt+1 = vt+1 − ct+1

ct
(vt+1 − bt+2). Plugging this in gives

(vt − bt+2)ct+1 ≤
(
vt − ct − ct+1

ct
vt+1 − ct+1

ct
bt+2

)
ct (4.6)

<

(
ct+1

ct
vt − ct+1

ct
bt+2

)
ct

= (vt − bt+2)ct+1

Thus we obtain our desired contradiction. Note that the strict inequality above

follows directly from the fact that vt < vt+1.
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An equilibrium is output truthful if the slots are assigned to the same bidders as

they would be if bidders were to bid truthfully. It is easy to verify that an allocation

optimizes social welfare if and only if it is output truthful. Thus to prove 2-lookahead

equilibria are socially optimal it suffices to show they are output truthful.

Theorem 11. For GSP auctions, any 2-lookahead equilibrium gives optimal social

welfare in the worst-case, leaf model.

Proof. We proceed by contradiction. Consider a non-output-truthful 2-lookahead

equilibrium. Again, label the players so that the player i is in slot i. Amongst all

the winning players, take the one with the lowest valuation, vi. First suppose that vi

is not amongst the T highest valuations. Then, there is a losing player with a higher

value than vi. But this player is bidding his value, as a result of balanced bidding.

Consequently, player i’s utility must be negative, a contradiction.

Thus, we may assume that vi is amongst the T highest valuations; specifically it

must have exactly the T th highest valuation. We will show that player i moving into

slot T is a lookahead improving move. Notice that the lookahead value for player i

staying in slot i is at most the myopic value of staying in that slot. This follows from

the fact that the myopic play of a losing player cannot improve the utiility of player

i. Hence, it suffices to show that the lookahead value of changing slots is better than

the myopic value of staying in slot i.

By several applications of Lemma 2, we see that player i myopically prefers slot

T to slot i. However, in moving to slot T , player i will still make a balanced bid.

Thus, no other winning player may reduce i’s utility by undercutting him. Also, no
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losing player j wants to move to a winning slot as they can only be left with negative

utility - since j cannot then be amongst the T highest valuations. So moving to slot

T is a lookahead improving move for player i.

If player i were originally in slot T , then the entire argument can be applied with

regards to slots 1 to T − 1. Inductively, we then conclude that in any non-output-

truthful equilibrium, there is a lookahead improving move, which is a contradiction.

This gives us the desired result.

4.3.2 Average Case Lookahead.

Next, we consider the average-case lookahead model and show that the above

theorem does not hold for this case.

Theorem 12. In GSP auctions, there exist 2-lookahead equilibria that are not output-

truthful in the average-case, leaf model.

Proof. Consider the following example with n = T = 4. Let the click-through rates

be c1 = 35, c2 = 26, c3 = 25, and c4 = 20. Let the valuations be v1 = 82, v2 =

83, v3 = 100, v4 = 93. Starting with the highest slot and working to the lowest, let

bidder i bid the balanced bid for slot i. It can be verified that this turns out to be

a non-output-truthful equilibrium.

Despite this negative result, 2-lookahead equilibria cannot have arbitrarily bad

social welfare.

Theorem 13. In GSP auctions, the coordination ratio of 2-lookahead equilibria is

constant in the average-case, leaf model.
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Proof. Suppose that we are at an equilibrium. Let vi∗ be the ith highest valuation,

let player i∗ denote the corresponding player, let bi∗ denote their bid, and ci∗ be the

click through rate of the slot they currently occupy. We recall that vi denotes the

player in slot i and it has click through rate ci and bid bi. The social welfare of a set

A of players is
∑

i∈A vici. Thus, by the above definitions, the optimal social welfare

is
∑

i vi∗ci.

Now, choose α, β < 1 such that (1 − α)2 > mβ for some m to be chosen later.

Let I be the set of indices i that satisfy both vi < αvi∗ and ci∗ < βci. Note that

for all i /∈ I the pair of players {vi, vi∗} contribute at least min{α, β}vi∗ci to OPT.

So if I is empty, then we have achieved a constant coordination ratio. We may thus

suppose I is not empty and choose i ∈ I.

Consider ci∗−1. As we assume “balanced” bidding, bi∗ ≥ (1 − ci∗
ci∗−1

)vi∗ . Since

bi∗ < bi < vi < αvi∗ by assumption, we have ci∗−1 < 1
1−αci∗ . Choose m > 1. We first

prove the following claim.

Claim 1. For all i ∈ I, we have ci+1 ≤ ci
m
.

Proof. Suppose ci+1 > ci
m
, for some i ∈ I. We will show that player i∗ moving into

slot i is then lookahead improving. Consider his lookahead utility for staying put.

Ignoring a repeat move for player i∗, which occurs with probability 1
n
, player i∗’s

utility in every other circumstance is at most ci∗−1vi∗ , as other players can improve

his position by at most one. On the other hand, if player i∗ moves into slot i then

his lookahead utility is at least ci+1(vi∗ − bi); he wins at least slot i+ 1 and pays at

most his bid. If player i is chosen to repeat his move then his utility is the same for
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both cases (as he will then simply play a best response move). Thus, it is enough

for us to show that

ci+1(vi∗ − bi) > ci∗−1vi∗ (4.7)

However bi < vi < αvi∗ and putting this together with the above inequalities

gives

ci+1(vi∗ − bi) >
ci
m
(1− α)vi∗ ≥ β

1− α
civi∗ >

1

1− α
ci∗vi∗ > ci∗−1vi∗ (4.8)

We are now done, by our choice of α and β, and have shown that player i∗ moving

into slot i is a lookahead improving move. This contradicts the fact we are at an

equilibrium.

Thus we have established that for all i ∈ I, ci+1 <
ci
m
. Thus, we can bound the

optimal social welfare contributed by the slots i ∈ I by m
m−1ci0vi0∗ where i0 = mini∈I i.

Now if 1 /∈ I then we have achieved our constant coordination ratio since

then either c1v1 > αc1v1∗ or c1∗v1∗ ≥ βc1v1∗ . Hence, we are guaranteed at least

min{α, β}c1v1∗ ≥ min{α, β}ci0vi0∗, that is, a least a constant factor of the social

welfare from all the slots in I in the optimal allocation. So we suppose 1 ∈ I.

Choose α1 = m
m−1α and consider the player currently in slot 2. By this choice

of α1, we ensure that this player does not have value more than α1v1∗ . To see this,

recall the player is bidding in a balanced manner and so, by Claim 1, his bid b2

satisfies

v2 ≥ b2 ≥ (1− c2
c1
)v2 ≥ (1− 1

m
)v2 (4.9)

87



On the other hand, as 1 ∈ I we have

b1 = v1 ≤ αv1∗ (4.10)

Thus, we must have v2 ≤ m
m−1αv1∗ = α1v1∗ or the second player would win the first

slot.

Now let Γ be the set of players with value at least α1v1∗ . Choose some constant

γ. If |Γ| < γn, then player 1∗’s lookahead utility for moving into slot one is at least

(1 − γ)(1 − α1)v1∗c1. If player 1∗ stays put, ignoring a repeat move for player 1∗,

which occurs with probability 1
n
, player i∗’s utility in every other circumstance is at

most

c1∗−1v1∗ <
1

1− α
c1∗v1∗ <

β

1− α
c1v1∗ (4.11)

Since player 1∗’s utility is the same for both cases when a repeated move occurs

and since we can choose β sufficiently small (i.e, β < (1− γ)(1− α)(1− α1)), player

1∗ will improve by moving into slot 1 in this case, contradicting the fact that we are

at an equilibrium.

Thus, we may suppose |Γ| > γn. Let i1 = maxi∈Γ i. Then the players in Γ

contribute at least γnα1v1∗ci1 to the social welfare. Take a constant δ and suppose

that ci1 ≥ δ c1
n
. Then the players in Γ would contribute at least γδα1c1v1∗ . Again, this

is a constant fraction of social welfare that is contributed in the optimal allocation

by player 1∗ which, in turn, is a constant factor of the optimal social welfare of the

slots in I. Thus, we would achieve a constant factor of the optimal social welfare.

88



So we may assume ci1 < δ c1
n
. Consider player i1. His lookahead utility for

staying in place, ignoring the case of a repeated move, is at most

ci1−1vi1 ≤
1

1− α
ci1vi1 ≤

1

1− α

δ

n
c1vi1 ≤

1

1− α

δ

n
c1vi∗ (4.12)

We may assume that player v1 ≤ (1 − ε)α1v1∗ , for some constant ε, otherwise

we are done. Therefore, if player i1 moves to slot 1 then he will earn at least εc1v1∗

provided that player 1 makes the next move. This occurs with probability 1/n, and

so his total lookahead utility, ignoring a repeated move, is at least ε
n
c1v1∗ . Thus by

choosing δ ≤ (1−α)ε, it follows that the coordination ratio is constant in the average

case model.
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CHAPTER 5
The Fisher Game

5.1 Introduction

As we saw in Chapter 1, general equilibrium is a fundamental concept in eco-

nomics, tracing back to 1872 with the seminal work of Walras [175]. Traditionally,

the focus of this theory has been upon perfect competition, where the number of

buyers and sellers in the market are so huge that the contribution of any individual

is infinitesimal. In particular, the participants are price-takers.

In practice, however, this assumption is unrealistic. This observation has mo-

tivated researchers to study markets where the players have an incentive to act

strategically. A prominent example is the seminal work of Shapely and Shubik [154].

They defined trading post games for exchange markets and examined whether Nash

equilibria there could implement competitive equilibrium prices and allocations. An-

other example, and a prime motivator of our research, is the Cournot-Walras market

model introduced by Codognato and Gabszewicz [41] and Gabszewicz and Michel

[70], which extends oligopolistic competition into the Walrasian setting. The impor-

tance of this model was demonstrated by Bonniseau and Florig [24] via a connection,

in the limit, to traditional general equilibria models under the standard economic

technique of agent replication. More recently, in the computer science community,
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Babaioff et al [12] extended Hurwicz’s framework [85] to study the welfare of Wal-

rasian markets acting through an auction mechanism.

Our interest is in how robust a pricing mechanism is against strategic manipu-

lation. Specifically, our primary goal is to quantify the loss in social welfare due to

price-making rather than price-taking behaviour. To do this, we define the Price of

Imperfect Competition (PoIC) as the ratio of the social welfare at the worst Nash

equilibrium to the social welfare at the perfectly-competitive Walrasian equilibrium.

Two remarks are pertinent here. First, we are interested in changes in the welfare

produced by the market mechanism under the two settings of price-takers and price-

makers. We are not interested in comparisons with the optimum social welfare, which

requires the mechanism to possess the unrealistic power to perform total welfare

redistribution. In particular, we are not concerned here with the Price of Anarchy or

Price of Stability. Interestingly, though, the groundbreaking Price of Anarchy results

of Johari and Tzitsiklis [91] on the proportional allocation mechanism for allocating

one good (bandwidth) can be seen as the first Price of Imperfect Competition results.

This is because in their setting the proportional allocation mechanism will produce

optimal allocations in non-strategic settings; in contrast, for our markets, Walrasian

equilibria can be arbitrarily poor in comparison to optimal allocations.

Second, in some markets the Price of Imperfect Competition may actually be

larger than one. Thus, strategic manipulations by the agents can lead to improve-

ments in social welfare! Indeed, we will exhibit examples where the social welfare

increases by an arbitrarily large factor when the agents act strategically.
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In this chapter, we analyze the Price of Imperfect Competition in Fisher markets

with strategic buyers, a special case of the Cournot-Walras model. This scenario

models the case of an oligopsonistic market, where the price-making power lies with

the buyers rather than the sellers (as in an oligopoly).1 Adsul et al. [3] study

Fisher markets where buyers can lie about their preferences. They gave a complete

characterization of its symmetric Nash equilibria (SNE) and showed that market

equilibrium prices can be implemented at one of the SNE. Later Chen et. al. [37]

studied incentive ratios in such markets to show that a buyer can gain no more

than twice by strategizing in markets with linear, Leontief and Cobb-Douglas utility

functions. In upcoming work, Branzei et al [29] study the Price of Anarchy in

the game of Adsul et al. and prove polynomial lower and upper bounds for it.

Furthermore, they show Nash equilibria always exist.

In the above games (and the Fisher model itself), only the sellers have an in-

trinsic utility for money. In contrast, we postulate that buyers (and not just sellers)

have utility for money. Thus, buyers may also benefit by saving money for later

use. This incentivizes buyers to withhold money from the market. This defines our

Fisher Market Game, where agents strategize on the amount of money they wish

to spend, and obtain utility one from each unit of saved money. Contrary to the

bound of two on gains when strategizing on utility functions [37], we observe that

strategizing on money may facilitate unbounded gains (see Section 5.7.1). These

1 The importance of oligopsonies was recently highlighted by the price-fixing be-
haviour of massive technology companies in San Francisco.
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incentives can induce large variations between the allocations produced at a Market

equilibrium and at a Nash equilibrium. Despite this, we prove the Price of Imperfect

Competition is at least 1
2
for Fisher markets when the buyers utility functions belong

to the utililty class of Constant Elasticity of Substitution (CES) with the weak gross

substitutability property – this class includes linear and Cobb-Douglas functions.

5.1.1 Overview of Chapter

In Section 5.2, we define the Fisher Game and present our welfare metrics. In

Section 5.3, we prove that Price of Imperfect Competition is at least 1
2
, for CES

utilities which satisfy the weak gross substitutability property. In Section 5.4, we

apply the economic technique of replication to demonstrate that, for linear utilities,

the PoIC bound improves as the level of competition in the market increases. In

Section 5.5, we turn our attention to the question of existence of Nash equilibria.

We establish that Nash equilibria exist for the subclass of Cobb-Douglas utilities.

However, they need not exist for all CES utilities. In particular, Nash equilibria need

not exist for linear utilities. To address this possibility of non-existence, in Section

5.6, we examine the dynamics of the linear Fisher Game and provide logarithmic

welfare guarantees. In Section 5.7, we provide examples of Fisher Games to show

that the PoIC can range from below 1 to unboundedly high. In Section 5.8, we

demonstrate that for another game, the Proportional Allocation Mechanism, the

PoIC can also be arbitrarily small.

93



5.2 Preliminaries

We now define the Fisher Game where agents strategize on how much money to

spend.

5.2.1 The Fisher Game.

Recall the Fisher Market Model from Section 2.2.1. An implicit assumption

within this model is that money has an intrinsic value to the sellers, stemming

from its potential use outside of the market or at a later date. Thus, money is not

just a numéraire. In our model, we assume this intrinsic value applies to all market

participants including the buyers. This assumption induces a strategic game in which

the buyers may have an incentive to save some of their money.

This Fisher Game is a special case of the general Cournot-Walras game intro-

duced by Codognato, Gabszewicz, and Michel ([41], [70]). Here the buyers can choose

some strategic amount of money si < mi to bring to the market, which will affect

their budget constraint. They gain utility both from the resulting market equilibria

(with si substituted for mi) and from the money they withhold from the market.

Observe, in the Fisher market model, the sellers have no value for the goods in the

market. Thus, in the corresponding game, they will place all their goods on sale

as their only interest is in money. (Equivalently, we may assume the sellers are

non-strategic.)

Thus, we are in an oligopsonistic situation where buyers have indirect price-

making power. The set of strategies available to buyer i is Mi = {s ≥ 0 | s ≤ mi}.
When each buyer decides to spend si ∈ Mi, then p(s) and x(s) are the prices and
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allocations, respectively, produced by the Fisher market mechanism. These can be

determined from the Eisenberg-Gale program (2.13) by substituting si for mi. Thus,

the total payoff to buyer i is

Ti(s) = Ui(xi(s)) + (mi − si) (5.1)

Our primary tool to analyze the Fisher Game is via the standard solution concept of

a Nash equilibrium. A strategy profile s is said to be a Nash equilibrium if no player

gains by deviating unilaterally. Formally, ∀i ∈ B, Ti(s) ≥ Ti(s
′, s−i), ∀s′ ∈ Mi. For

the market game defined on market M, let NE(M) denote its set of NE strategy

profiles.

The incentives in the Fisher Game can be high. In particular, in Section 5.7.1,we

show that for any L ≥ 0, there is a market with linear utility functions where an

agent improve his payoff by a multiplicative factor of L by acting strategically.

5.2.2 The Price of Imperfect Competition.

The social welfare of a strategy is the aggregate payoff of both buyers and sellers.

At a state s, with prices p = p(s) and allocations x = x(s), the social welfare is:

W(s) =
∑
i∈B

(Ui(xi) +mi − si) +
∑
j∈G

pj =
∑
i∈B

Ui(xi) +
∑
i∈B

mi (5.2)

Note, here, that the cumulative payoff of sellers is
∑

j∈G pj =
∑

i∈B si.

The focus of this chapter is how strategic manipulations of the market mecha-

nism affect the overall social welfare. Thus, we must compare the social welfare of

the strategic Nash equilibrium to that of the unstrategic market equilibrium where
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all buyers simply put all of their money onto the market. This latter equilibrium

is the Walrasian equilibrium (WE). This comparison gives rise to a welfare ratio,

which we term the Price of Imperfect Competition (PoIC), the ratio of the minimum

welfare amongst strategic Nash equilibria in the market game to the welfare of the

unstrategic Walrasian equilibrium. Formally, for a given market M,

PoIC(M) = min
s∈NE(M)

W(s)

W(m)

Thus the Price of Imperfect Competition is a measure of how robust, with respect to

social welfare, the market mechanism is against oligopsonist behaviour. Observe that

the Price of Imperfect Competition could be either greater or less than 1. Indeed,

the example in Section 5.7.1 shows that a Nash Equilibrium may produce arbitrarily

higher welfare than a Walrasian Equilibrium. Of course, one may expect that welfare

falls when the mechanism is gamed and, in Section 5.7.2, we do present an example

where the welfare at a Nash Equilibrium is slightly lower than at the Walrasian

Equilibrium. This leads to the question of whether the welfare at a Nash can be

much worse than at a market equilibrium. We will show that the answer is no; a

Nash always produces at least a constant factor of the welfare of a market equilibrium.

5.3 Bounds on the Price of Imperfect Competition

In this section we establish bounds on the PoIC for the Fisher Game for CES

utilities with 0 < ρ ≤ 1 and for Cobb-Douglas utilities. The example in Section 5.7.1

shows that there is no upper bound on PoIC for the Fisher Game. Thus, counter-

intuitively, even for linear utilities, it may be extremely beneficial to society if the

players are strategic.

96



In the rest of this section, we demonstrate a lower bound of 1
2
on the PoIC.

This result distinguishes the Fisher Game from other strategic market models. For

example, consider the case of the Proportional Allocation Mechanism applied over a

multi-good market (see Feldman et al. [63] for details on this application). In Section

5.8, we show that the PoIC may then approach zero in the proportional allocation

mechanism with savings. Thus the Fisher Game is, in a sense, more resilient to

strategic play than other mechanisms.

So take a market with Cobb-Douglas or CES utility functions (where 0 < ρ ≤ 1).

We assume that the market is non-trivial in the sense that for each buyer i, there

is some good j such that uij > 0 and also fore each good j, there is some buyer i

for which uij > 0. The key to proving the factor 1
2
lower bound on the PoIC is the

following lemma showing the monotonicity of prices.

Lemma 3. Given two strategic allocations of money s∗ ≤ s, then the corresponding

equilibrium prices satisfy p∗ ≤ p, where p∗ = p(s∗) and p = p(s).

Proof. We break the proof up into three classes of utility function.

(i) Cobb-Douglas Utilities

The case of Cobb-Douglas utility functions is simple. To see this, recall a result of

Eaves [49]. He showed that, when buyer i spends si, the prices and allocations for

the Fisher market are given by

pj =
∑
i

uijsi xij =
uijsi∑
k ukjsk

(5.3)
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It follows that if strategic allocations of money increase, then so must prices.

(ii) CES Utilities with 0 < ρ < 1

Recall that market equilibria for CES Utilities can be calculated via the Eisenberg-

Gale convex program (2.13). From the KKT conditions of this program, where pj is

the dual variable of the budget constraint, we observe that:

∀j, pj > 0 ⇒ ∑
i xij = 1

∀(i, j), siuij

Ui(xi)ρx
1−ρ
ij

≤ pj and xij > 0 ⇒ siuij

Ui(xi)ρx
1−ρ
ij

= pj
(5.4)

Claim 2. If players have CES utilities with 0 < ρ < 1 and σi > 0, then xij >

0, ∀(i, j) with uij > 0.

Proof. Consider the derivative of Ui with respect to xij as xij → 0:

lim
xij→0

∂Ui(xi)

∂xij

= lim
xij→0

uijUi(xi)
1−ρ

x1−ρ
ij

= +∞ (5.5)

The claim follows since pj ≤
∑

i si and is, thus, finite.

We may now proceed by contradiction. Suppose ∃k s.t. pk < p∗k. Choose a good

j such that
pj
p∗j

is minimal and therefore less than 1, by assumption. Take any player

i such that uij > 0. By the above claim, we have xij, x
∗
ij > 0. Consequently, by the

KKT conditions (5.4), we have:

uij

pjx
1−ρ
ij

=
Ui(xi)

ρ

si
and

uij

p∗jx
∗1−ρ
ij

=
Ui(x

∗
i )

ρ

s∗i
(5.6)
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Taking a ratio gives:
pjx

1−ρ
ij

p∗jx
∗1−ρ
ij

=
Ui(x

∗
i )

ρsi
Ui(xi)ρs∗i

(5.7)

Indeed, this equation also holds for every good t ∈ G with uit > 0. Next consider

the following two cases:

Case 1: xij ≤ x∗ij for some player i.

From (5.7) we must then have that Ui(xi) > Ui(x
∗
i ). However, by the minimality of

pj
p∗j
, and since (5.7) holds for every t ∈ G with uit > 0, we obtain xit ≤ x∗it for all such

t. This implies Ui(xi) ≤ Ui(x
∗
i ), a contradiction.

Case 2: xij > x∗ij for every player i.

Since p∗j > pj, we must have p∗j > 0. By (5.4) it follows that
∑

i x
∗
ij = 1. But now

we obtain the contradiction that demand must exceed supply as
∑

i xij >
∑

i x
∗
ij = 1.

(iii) Linear Utilities

We begin with some notation. Let Si = {j ∈ G : xij > 0} be the set of goods

purchased by buyer i at strategy s. Let βij =
uij

pj
be the rate-of-return of good j for

buyer i at prices p. Let βi = maxj∈G βij be the bang-for-buck buyer i can obtain at

prices p. It can be seen from the KKT conditions of the Eisenberg-Gale program

(2.13) that at {p,x}, every good j ∈ Si will have a rate-of-return equal to the bang-

for-buck (see, for example, [172]). Similarly, let S∗i , β
∗
i be correspondingly defined for

strategy s∗.

Note that, assuming for each good j, ∃i, uij > 0, we have that p,p∗ > 0. Thus,

we can partition the goods into groups based on the price ratios
p∗j
pj
. Suppose there
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are k distinct price ratios over all the goods (thus k ≤ g), then partition the goods

into k groups, say G1, . . . ,Gk such that all the goods in a group have the same ratio.

Let the ratio in group j be λj and let λ1 < λ2 < · · · < λk. Thus G1 are the goods

whose prices have fallen the most (risen the least) and Gk are the goods whose prices

have fallen the least (risen the most).

Let Ik = {i : ∃j ∈ Gk, xij > 0} and I∗k = {i : ∃j ∈ Gk, x
∗
ij > 0}. Thus Ik and

I∗k are the collections of buyers that purchase goods in Gk in each of the allocations.

Take any buyer i ∈ I∗k ; so there is some good j ∈ S∗i ∩ Gk.

If Si ∩
⋃k−1

�=1 G� 
= ∅ then buyer i would not desire good j at prices p∗j . To see

this, take a good j′ ∈ Si ∩
⋃k−1

�=1 G�. Then βij′ = βi ≥ βij. Therefore

β∗i ≥ uij′

p∗j′
≥ uij′

λk−1 · pj′ >
uij′

λk · pj′ (5.8)

=
1

λk

· uij′

pj′
≥ 1

λk

· uij

pj

=
uij

p∗j
= β∗i

This contradiction tells us that Si ⊆ Gk and I∗k ⊆ Ik. It follows that ∪i∈I∗kSi ⊆ Gk.

Putting this together, we obtain that

∑
i∈I∗k

si ≤
∑
i∈Ik

si ≤
∑
j∈Gk

pj (5.9)

Now recall that all goods must be sold by the market mechanism (as p,p∗ > 0).

Thus the buyers I∗k must be able to afford all of the goods in Gk. Thus

∑
i∈I∗k

s∗i ≥
∑
j∈Gk

p∗j = λk ·
∑
j∈Gk

pj (5.10)
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But s∗i ≤ si for all i. Consequently, Inequalities (5.9) and (5.10) imply that λk ≤ 1.

Thus no price in p∗ can be higher than in p.

First we use Lemma 3 to provide lower bounds on the individual payoffs.

Lemma 4. Let si be a best response for agent i against the strategies s−i. Then

Ti(s) ≥ max(Ûi,mi), where Ûi is her utility at the Walrasian equilibrium.

Proof. Clearly Ti(s) ≥ mi, otherwise player i could save all her money and achieve

a payoff of mi. For Ti(s) ≥ Ûi, let p = p(m) and x = x(m) be the prices and

allocation at Walrasian equilibrium. If buyer i decides to spend all his money when

the others play s−i, the resulting equilibrium prices will be less than p, by Lemma

3. Therefore, she can afford to buy bundle xi. Thus, her best response payoff must

be at least Ûi.

It is now easy to show the lower bound on the Price of Imperfect Competition.

Theorem 14. In the Fisher Game, with Cobb-Douglas or CES utilities (0 < ρ ≤ 1),

we have PoIC ≥ 1
2
. That is, W(s∗) ≥ 1

2
W(m), for any Nash equilibrium s∗.

Proof. Let p∗ = p(s∗) and x∗ = x(s∗). Let p and x be the Walrasian equilibrium

prices and allocations, respectively. At the Nash equilibrium s∗ we have Ti(s
∗) ≥

max(mi, Ui(xi)) for each player i, by Lemma 4. Thus, we obtain:

2
∑
i

Ti(s
∗) ≥

∑
i

Ui(xi) +
∑
i

mi (5.11)

Therefore W(s∗) ≥ 1
2
W(m), as desired.
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5.4 Social Welfare and the Degree of Competition

In this section, we examine how the welfare guarantee improves with the degree

of competition in the market. To model the degree of competition, we apply a

common technique in the economics literature, namely replication [154]. In a replica

economy, we take each buyer type in the market and make N duplicates (the budgets

of each duplicate is a factor N smaller than that of the original buyer). The degree

of competition in the resultant market is N . We now consider the Fisher Game

with linear utility functions and show how the lower bound on Price of Imperfect

Competition improves with N .

Theorem 15. Let s∗ be a NE in a market with degree of competition N . Then

W(s∗) ≥ (1− 1

N + 1
) · W(m) (5.12)

In order to prove Theorem 15, we need a better understanding of how prices

adjust to changes in strategy under different degrees of competition. Towards this

goal, we need the following two lemmas.

Lemma 5. Given an arbitrary strategic money allocation s. If player i increases

(resp. decreases) her spending from si to (1+δ)si then the price of any good increases

(resp. decreases) by at most a factor of (1 + δ).

Proof. We focus on the case of increase; the argument for the decrease case is anal-

ogous. Suppose all players increase their strategic allocation by a factor of (1 + δ).

Then the allocations to all players would remain the same by the market mechanism

and all prices would be scaled up by a factor of (1 + δ). Then suppose each player
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k 
= i subsequently lowers its money allocation back down to the original amount sk.

By Lemma 3, no price can now increase. The result follows.

Lemma 6. Given an arbitrary strategic money allocation s in a market with degree

of competition N . Let buyer i be the duplicate player of her type with the smallest

money allocation si. If she increases her spending to (1 + N · δ)si then the price of

any good increases by at most a factor (1 + δ).

Proof. We utilize the symmetry between the N identical players. Let players i1 =

i, i2, ..., iN be the replicas identical to player i. If each of these players increased

their spending by a factor of (1 + δ) then, by Lemma 5, prices would go up by at

most a factor (1 + δ). From the market mechanism’s perspective, this is equivalent

to player i increasing her strategic allocation to si + δ · ∑k sik . But this is greater

than (1 + N · δ)si. Thus, by Lemma 3, the new prices are larger by a factor of at

most (1 + δ).

Now let x = x(m) and x∗ = x(s∗). Since we have rational inputs, x and x∗

must be rational [89]. Therefore, by appropriately duplicating the goods and scaling

the utility coefficients, we may assume that there is exactly one unit of each good

and that both x and x∗ are {0, 1}-allocations. Recall from the proof of Lemma 3 our

definition of Si, S
∗
i and βi, β

∗
i . Under this assumption, Si = {j ∈ G : xij = 1} and

similarly for S∗i . We are now ready to prove the following welfare lemma.
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Lemma 7. For any Nash equilibrium {s∗,p∗,x∗} and any Walrasian equilibrium

{s = m,p,x}, we have

∑
i∈B

∑
j∈S∗

i

uij ≥
(
1− 1

N

)
·
∑
i∈B

∑
j∈Si

uij (5.13)

Proof. To prove the lemma we show that total utility produced by goods at NE,

after scaling by a factor N
N−1 , is at least as much as the utility they produce at the

Walrasian equilibrium. We do this by partitioning goods into the sets Si. We then

notice that for each good, the player who receives it at NE must receive utility from it

in excess of the price he paid for it. In many cases, this price is more than the utility

of the player who receives it in Walrasian equilibrium and we are done. Otherwise

we will set up a transfer system where players in NE who receive more utility for

the good than the price paid for it transfer some of this excess utility to players who

need it. This will ultimately allow us to reach the desired inequality.

For the rest of this proof, without loss of generality, we will restrict our attention

to Nash equilibria where each identical copy of a certain type of player has the same

strategy. We are able to do this as the market could treat the sum of these copies as a

single player and thus we are able to manipulate the allocations between these players

without changing market prices or the total utility derived from market allocations.

Thus if our argument holds for Nash equilibria where identical players have the same

strategy, it will also hold for heterogeneous Nash equilibria. Now take any player i.

There are two cases:

Case 1: s∗i = mi.
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By Lemma 3, we know that

∑
j∈S∗

i ∩Si

p∗j ≤
∑

j∈S∗
i ∩Si

pj (5.14)

Therefore, by the assumption that s∗i = mi, we have

∑
j∈Si\S∗

i

pj = mi −
∑

j∈S∗
i ∩Si

pj = s∗i −
∑

j∈S∗
i ∩Si

pj ≤ s∗i −
∑

j∈S∗
i ∩Si

p∗j =
∑

j∈S∗
i \Si

p∗j (5.15)

Thus buyer i spends more on S∗i \ Si than she did on Si \ S∗i . But, by Lemma 3, she

also receives a better bang-for-buck on S∗i \ Si than on Si \ S∗i , as β∗i ≥ βi (Lemma

3). Let β∗i = 1 + ε∗i . Thus, at the Nash equilibrium, her total utility on S∗i \ Si is

∑
j∈S∗

i \Si

uij =
∑

j∈S∗
i \Si

β∗i · p∗j = (1 + ε∗i ) ·
∑

j∈S∗
i \Si

p∗j (5.16)

Of this utility, buyer i will allocate p∗j units of utility to each item j ∈ S∗i \ Si. The

remaining ε∗i ·p∗j units of utility derived from good j is reallocated to goods in Si \S∗i .

Consider the goods in Si. Clearly goods in Si ∩ S∗i contribute the same utility

to both the Walrasian equilibrium and the Nash equilibrium. So take the items in

Si \ S∗i . The buyers of these items at NE have obtained at least
∑

j∈Si\S∗
i
p∗j units of

utility from them (as β∗d ≥ 1, ∀d). In addition, buyer i has reallocated ε∗i ·
∑

j∈S∗
i \Si

p∗j

to goods in Si \ S∗i . So the total utility allocated to goods in Si \ S∗i is

∑
j∈Si\S∗

i

p∗j + ε∗i ·
∑

j∈S∗
i \Si

p∗j ≥
∑

j∈Si\S∗
i

p∗j + ε∗i ·
∑

j∈Si\S∗
i

p∗j = (1 + ε∗i ) ·
∑

j∈Si\S∗
i

p∗j

= β∗i ·
∑

j∈Si\S∗
i

p∗j ≥
∑

j∈Si\S∗
i

uij (5.17)
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Here the first inequality follows by (5.15) and the final inequality follows as β∗i ≥ uij

p∗j
,

for any good j /∈ S∗i . Thus the reallocated utility on Si at NE is greater than the

utility it provides in the Walrasian equilibrium (even without scaling by N
N−1).

Case 2: s∗i < mi.

Suppose buyer i increases her spending from s∗i to (1 + N · δ) · s∗i . Then the prices

of the goods she buys increase by at most a factor (1 + δ) by Lemma 6. Thus her

utility changes by

(mi − (1 + δ ·N) · s∗i ) + s∗i · β∗i ·
1 +N · δ
1 + δ

− (mi − s∗i )− s∗i · β∗i ≤ 0 (5.18)

where the inequality follows as s∗ is a Nash equilibrium. This simplifies to

s∗i ·
(
−δ ·N + β∗i · (

1 +N · δ
1 + δ

− 1)

)
≤ 0 (5.19)

Now suppose (i) s∗i = 0. In this case we must have uij/p
∗
j ≤ 1 for every good

j. To see this, we argue by contradiction. Suppose uij/p
∗
j = 1 + ε for some good j.

Notice that if player i changes s∗i to γ the price of good j can go up by at most γ

as we know each price increases by Lemma 3 and the sum of all prices is at most

γ higher (by the market conditions). Thus, if player i puts γ < ε money onto the

market then good j will still have bang-for-buck greater than 1 and so player i will

gain more utility than the loss of savings. Thus, s∗i cannot be an equilibrium, a

contradiction.

106



Thus uij ≤ p∗j ≤ ui∗j where i
∗ is the player who receives good j at NE. Therefore

this player obtains more utility from good j than player i did in the Walrasian

equilibrium, even without scaling or a utility transfer.

On the other hand, suppose (ii) s∗i > 0. This can only occur if we have both

β∗i ≥ 1 and

β∗i ·
(N − 1) · δ

1 + δ
≤ δ ·N (5.20)

Therefore 1 ≤ β∗i ≤ (1 + δ) · (1 + 1
N−1). Since this holds for all δ, as we take δ → 0

we must have β∗i ≤ N
N−1 . Thus

uij

p∗j
≤ N

N−1 for every good j. Thus if we multiply

the utility of the player receiving good j in the Nash equilibrium by N
N−1 he will be

getting more utility from it than player i did in the Walrasian equilibrium.

Proof of Theorem 15. Given the other buyers strategies s∗−i suppose buyer i

sets si = mi. Then, by Lemma 3, prices cannot be higher for (mi, s
∗
−i) than at the

Walrasian equilibrium p(m). Therefore, by selecting si = mi, buyer i could afford

to buy the entire bundle Si at the resultant prices. Consequently, her best response

strategy s∗i must offer at least that much utility. This is true for each buyer, so we

have ∑
i∈B

(
(mi − s∗i ) +

∑
j∈G

uij · x∗ij
)

≥
∑
i∈B

∑
j∈G

uij · xij (5.21)

Thus

W(s∗) =
∑
i∈B

∑
j∈G

uij · x∗ij +
∑
i∈B

mi =
∑
i∈B

(
(mi − s∗i ) +

∑
j∈G

uij · x∗ij
)

+
∑
i∈B

s∗i

≥
∑
i∈B

∑
j∈G

uij · xij +
∑
i∈B

s∗i (5.22)
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On the other hand, Lemma 7 implies that

W(s∗) =
∑
i∈B

∑
j∈G

uij · x∗ij +
∑
i∈B

mi ≥
(
1− 1

N

)
·
∑
i∈B

∑
j∈G

uij · xij +
∑
i∈B

mi

Taking a convex combination of Inequalities (5.22) and (5.23) gives

W(s∗) ≥
(
α · (1− 1

N
) + (1− α)

)
·
∑
i∈B

∑
j∈G

uij · xij + α ·
∑
i∈B

mi + (1− α) ·
∑
i∈B

s∗i

≥
(
α · (1− 1

N
) + (1− α)

)
·
∑
i∈B

∑
j∈G

uij · xij + α ·
∑
i∈B

mi

=
(
1− α

N

)
·
∑
i∈B

∑
j∈G

uij · xij + α ·
∑
i∈B

mi (5.23)

Thus plugging α = N
N+1

in (5.23) gives

W(s∗) ≥
(
1− 1

N + 1

)
·
(∑

i∈B

∑
j∈G

uij · xij +
∑
i∈B

mi

)
=

(
1− 1

N + 1

)
· W(m)

(5.24)

This completes the proof.

5.5 Existence of Nash Equilibria

We have demonstrated bounds for the Price of Imperfect Competition in the

Fisher Game under both CES and Cobb-Douglas utilities. However, these welfare

results only apply to strategies that are Nash equilibria. In this section, we prove that

Nash equilibria exist for the Cobb-Douglas case, but need not exist for linear utilities.

For games without Nash equilibria, we may still recover some welfare guarantees; we

show this in Section 5.6, by examining the dynamics of the Fisher Game with linear

utilities.
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5.5.1 Cobb-Douglas Utility Functions

We will prove that a Nash equilibrium always exists for Fisher Games with Cobb-

Douglas utilities as long as each good provides utility for at least two players.2

Recall that Ti(s) is player i’s total utility at strategy profile s. The first step

in this proof is to show that Ti is a concave function with respect to si when s−i is

fixed.

Lemma 8. Ti is a concave function of si.

Proof. First, it is enough for us to consider the component of the utility from the

market, Ui (as the utility from saving money is always concave). Recall that from

(5.3), we have yij = xij · pj = si · uij. Thus, we can easily express Ui as a function of

si as:

Ui =
∏
j

x
uij

ij =
∏
j

(
si · uij

p̃j + siuij

)uij

(5.25)

Here p̃j =
∑

k 	=i ykj. We get the second equality simply by writing each xij as
yij
pj
.

Now, note that
∏

j u
uij

ij is just a positive constant and so does not affect concavity.

Also,
∏

j s
uij

i = si by our assumption that
∑

j uij = 1. Thus it is enough to show

that the following is concave:

Ũi =
si∏

j(p̃j + siuij)uij
. (5.26)

2 In the absence of this assumption, it is possible for a player who is a monopsonist
of a single good to continually decrease their strategic allocation, trivially precluding
the possibility of an equilibrium.
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Taking derivatives give us:

Ũ ′i =

∏
j(p̃j + siuij)

uij − si
∑

k u
2
ik(p̃k + siuik)

(uik−1) ∏
j 	=k(p̃j + siuij)

uij∏
j(p̃j + siuij)2uij

(5.27)

Notice that the numerator simplifies considerably, if we take advantage of the fact

that
∑

j uij = 1 to rewrite it as:

∑
k

uik

∏
j

(p̃j + siuij)
uij − si

∑
k

u2
ik(p̃k + siuik)

(uik−1)
∏
j 	=k

(p̃j + siuij)
uij

=
∑
k

p̃k(p̃k + siuik)
(uik−1)

∏
j 	=k

(p̃j + siuij)
uij (5.28)

Thus, we can simplify to

Ũ ′i =
∑
k

p̃k
(p̃k + siuik)

∏
j(p̃j + siuij)uij

(5.29)

But this is clearly a decreasing function of si and so Ũi is concave.

We are now ready to prove the existence of an equilibrium.

Theorem 16. If for every good at least two players have positive utility for that

good, then a Nash equilibrium of the strategic game exists.

Proof. This proof is similar in structure to that of [63]. Let Γ = (U ,m) be the

original market game. For each ε > 0, we define the epsilon-market as Γε. This

market has all of the original players and goods, but will limit the strategy sets of

each player by forcing them to put at least ε of their money on the market.

It is easy to see that in the epsilon version of the game, utilities are continuous

with respect to the strategic variable. This follows from (5.25). Also, by Lemma 8,
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we see that the function Ti with respect to si is concave. Applying Rosen’s theorem

[137] we get that a market equilibrium must exist for each epsilon market. Let s∗ε be

this equilibrium.

Notice that, since the strategy sets are compact, there must be a limit point to

s∗ε as ε → 0. Call this point s∗. Clearly s∗ is a feasible strategy of the original game.

We will try to show that s∗ is a strategic Nash equilibrium for the original game.

Note also that we can take a subsequence of the s∗ε , say {ε1, ε2, ...} so that each of

the corresponding allocations and prices x∗εj and p∗εj also converge to a limit point,

say x∗ and p∗, respectively, as they also lie on a compact set. Next we show a lower

bound on p∗εj .

Claim 3. If at least two players have positive utility for good j, then there is some

constant c > 0 such that for every epsilon game, the strategic equilibrium price p∗ε > c.

Proof. We argue by contradiction. Let us choose some ε and some good j for which

two players have positive utility and such that the equilibrium price is p∗εj ≤ c. We

will define c later. Since there are at least two users who have positive utility from

good j, there is at least one user, say user i, who has uij > 0 but who is allocated at

most half of good j (i.e. x∗ij ≤ 1/2 and could in fact be 0). Consider two cases.

Case 1: s∗i ≥ mi

2
.

In this case, by (5.3), we must have p∗j ≥ yij = s∗iuij ≥ miuij

2
. Choosing c < mminumin

2

gives a contradiction.
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Case 2: s∗i <
mi

2
.

In this case, recall from (5.29) that:

∂Ui

∂si
=

∑
k

p̃k
(p̃k + siuik)

∏
j(p̃j + siuij)uij

∏
j

u
uij

ij (5.30)

Since we are assuming x∗ij < 1/2, we must have that p̃∗j > y∗ij = s∗iuij. Then, as all

of the terms of the above sum are positive, we can simply focus on the j-th term to

get the following inequality at the equilibrium point:

∂Ui

∂si
>

1

2(2p̃j)uij
∏

k 	=j(p̃k + siuik)uik

∏
k

uuik
ik (5.31)

Now we let U =
∏

k u
uik
ik and notice that each term of the product in the denominator

is bounded by the total money between all players (which we will call M). Thus, at

equilibrium we have:

∂Ui

∂si
>

U

2(2p̃j)uijMm
(5.32)

Thus, by choosing c < 1
2
( U
2Mm )

1
umax , we can ensure that ∂Ui

∂si
> 1. This contradicts

the fact that we are at an internal equilibrium of the strategic game.

By the above claim it is clear that for each epsilon game the prices for each good

must be at least c and, thus, in the limit p∗ > c. From this we will establish that x∗

and p∗ are in fact valid prices and allocations for the market equilibrium if the players

play strategy s∗. First, the demands and prices are feasible as, by convergence, we

have that
∑

i x
∗
ij = 1 for all j and

∑
j x
∗
ijp
∗
j = s∗i for all i. It is also clear from the

convergence that the allocation x∗ must maximize each player’s utility amongst all

allocations that they can afford. We need only check that if a player has s∗i = 0 that
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they are allocated no goods which is the only possible discontinuous condition on the

game. This follows from the fact that we have guaranteed that p∗ > c > 0. Thus,

x∗ = x(s∗) and p∗ = p(s∗).

Since the allocations xεj of sεj converge to the allocation x∗ of s∗, it must be

that, for every δ > 0, there exists some J > 0 such that for all j > J :

∣∣Ti(s
∗)− Ti(sεj)

∣∣ < δ. (5.33)

We are now ready to show that s∗ is a Nash equilibrium for the strategic game.

Suppose that it is not. Then there must be some player i who has a payoff im-

proving allocation. In fact, suppose that instead of playing s∗, player i deviated

to a new strategy ŝi with strictly greater payoff. Define ŝ = (s∗1, ..., ŝi, ..., s
∗
n) and

ŝε = (sε1 , ..., ŝi, ..., sεn) for sufficiently small ε. Again, we partition into two cases.

Case 1: ŝi = 0.

If ŝi = 0 then s∗i > 0. Now consider s∗ε1i, s
∗
ε2i
, . . . the set of strategies converging to

s∗i . Since these are at Nash equilibrium, each of these strategies has utility more than

mi − ε (which is the minimum utility obtained if player i only put ε in the market in

the epsilon game). Thus these must converge to a strategy with utility ≥ mi. Thus,

defecting with ŝi = 0 which gives utility mi cannot be a utility increasing move.

Case 2: ŝi > 0.

Suppose Ti(ŝ)−Ti(s
∗) = ε′ > 0. Then, for sufficiently small ε we must have Ti(ŝε)−

Ti(s
∗
ε) > 0 by (5.33). This contradicts the fact that s∗ε is a Nash equilibrium. Thus

s∗ must be a Nash equilibrium for the strategic game as required.
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5.5.2 Linear Utility Functions

A Nash equilibrium need not exist in a Fisher Game with linear utilities. We

show this using the following simple counterexample. Consider a market with two

buyers a and b and two goods 1 and 2. Let each player get utility 1 for each good,

except that ua2 = 2. Let the budgets of each player be ma = mb = 4. Suppose now

that each player chooses a strategy sa ≤ ma and sb ≤ mb. There are four cases.

Case I: sa < sb.

The market equilibrium in this case is p1 = p2 = sa+sb
2

, a taking only good 2 with

total utility Ua =
4sa

(sa+sb)
+ma− sa, and b taking the full good 1 and the rest of good

2 with utility 2sb
sa+sb

+ma − sa. Now Ua is a concave function in sa, its derivative is

4sb
(sa+sb)

2 − 1, and the sa value maximizing it must satisfy 4sb = (sa + sb)
2, hence this

must hold in NE. Similarly, for b, we get 2sa = (sa + sb)
2 in NE. This gives sa = 2sb,

a contradiction to sa < sb.

Case II: sa = sb = s.

Now s = 0 cannot be NE, because a buyer putting a tiny amount of money on the

market could get the utility 3 or 2, resp. If s > 0 then the market equilibrium prices

are p1 = p2 = s, a buying the full unit of 2, b buying the full unit of 1. This cannot

be a NE, since if b’s utility is 1+mb− sb then if he puts in a little less money he will

still get the full unit of good 1, giving utility 1 (see next case).

Case III: sb < sa ≤ 2sb.

At the market equilibrium, a only buys 2 and b only buys 1. Hence p1 = sb, p2 = sa.

This clearly cannot be a NE: a’s utility is 2+ma−sa, b’s utility 1+mb−sb, i.e. they
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get the full utility of the corresponding good for infinitesimal money. In particular,

a could decrease sa.

Case IV: 2sb < sa.

At the market equilibrium, p1 =
sa+sb

3
and p2 =

2(sa+sb)
3

. Buyer a takes the full good

2, b spends all his money on 1. So

Ua =
3sa

sa + sb
− sa, Ub =

3sb
sa + sb

− sb (5.34)

Then the same way as in Case I, if 0 < 2sb < sa < ma, then we must have that if

it’s a NE then 3sa = 3sb = (sa + sb)
2. This again contradicts 2sb < sa.

If sb = 0, then a gets all goods with utility 3 + ma − sa, and could get it for

less. If 0 < 2sb < sa = ma = 4, then again we must have 3sa = (sa + sb)
2 for b to be

optimal, giving sb = 2
√
3− 4 < 0.

5.6 Social Welfare under Best Response Dynamics

Whilst Nash equilibria need not exist in the Fisher Game with linear utilities,

we can still obtain a good welfare guarantee in the dynamic setting. Specifically,

in the dynamic setting we assume that in every round (time period), each player

simultaneously plays a best response to what they observed in the previous round.

Dynamics are a natural way to view how a game is played and a well-studied question

is whether or not the game dynamics converge to an equilibrium. Regardless of the

answer, it is possible to quantify the average social welfare over time of the dynamic

process. This method was introduced by Goemans et al in [78] and we show how

it can be applied here to bound the Dynamic Price of Imperfect Competition - the
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worst case ratio of the average welfare of states in the dynamic process to the welfare

of the Walrasian equilibrium.

For best responses to be well defined in the dynamic Fisher Game, we need

the concept of a minimum monetary allocation si. Thus we discretize the game by

allowing players to submit strategies which are rational numbers of precision up to Φ.

This has the added benefit of making the game finite. In the remainder of this section,

we prove the following bound on the Dynamic Price of Imperfect Competition.

Theorem 17. In the dynamic Fisher Game with linear utilities, the Dynamic Price

of Imperfect Competition is lower bounded by Ω(1/ log(M
φ
)) where M = maxi mi.

To prove Theorem 17, we first notice that if a player puts a certain fraction of

his budget onto the market, he is guaranteed at least that fraction of his utility in

the Walrasian equilibrium.

Lemma 9. In strategy profile s suppose player i has played strategy si > mi

K
for

some K. Then Ui(xi(s)) ≥ Ûi

K
where Ûi is that player’s utility in the Walrasian

equilibrium.

Proof. Let βi and βW
i be the bang-for-buck of player i at the current strategy and

at Walrasian equilibrium, then using Lemma 3 we have Ui(xi(s)) = siβi ≥ mi

K
βi ≥

mi

K
βW
i = Ûi

K
.

Next, we will show that if a player is not receiving much utility in the cur-

rent strategy state, then in his next move he will either dramatically decrease or

dramatically increase his allocation of money to the market.
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Lemma 10. Suppose at time t, the players have chosen strategies st. If for player

i, Ti(s
t) < Ûi

K
then st+1

i ≥ Ksti.

Proof. Notice that if for his next move, player i were to put in st+1
i = mi then he

would get utility at least Ûi (Lemma 4). Thus his best response must lead him to

expect at least this amount. Since increasing si from sti will only worsen his bang

per buck and reduce the savings, the only way to get at least Ûi is to put in at least

K times what he previously did.

Lemma 11. Suppose at time t, the players have chosen strategies st. If for player

i, Ti(s
t) < mi

K
, then st+1

i ≤ sti
K
.

Proof. Since Ti(s
t) < mi

K
, player i’s bang-for-buck at st is less than 1

K
. Notice that if

for his next move, he were to put in st+1
i = 0 then he would get total utility at least

mi. Thus his best response must lead him to expect at least this amount. By Lemma

5, the only way he can expect to increase his bang-for-buck to 1 is by decreasing his

allocation of money by a factor of at least 1
K
.

We observe that it is not possible for the conditions of Lemmas 10 and 11 to be

satisfied simultaneously for K > 1. We are now ready to prove Theorem 17.

Proof of Theorem 17. Let us fix some constant K > 1. We will argue that any

player i will receive aggregate utility at least max(Ûi,mi)
K

in any sequence of C · log(M
φ
)

moves, for some constant C. Note that sum of these agregates is at least O(
∑

i mi),

and therefore the utility of sellers is also taken care of with an additional factor of 2.
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Let βW
i be the bang-for-buck that player i achieves in the Walrasian equilibrium,

and let βt
i be her bang-for-buck in round t. From Lemma 3 we have βt

i ≥ βW
i , ∀i, ∀t,

and Ûi = miβ
W
i and Ti(s

t) = Ui(s
t) +mi − sti = stiβ

t
i +mi − sti. We will consider 4

cases:

Case I: 1 ≤ βW
i ≤ K. In this case, player i’s bang-for-buck will always be at least

1 in each round. Thus ∀t, Ti(s
t) ≥ mi ⇒ Ti(s

t) ≥ Ûi

K
using Ûi = miβ

W
i .

Case II: 1
K

≥ βW
i ≥ 1. As βt

i ≥ βW
i , ∀i, we have that she will receive at least Ûi

total payoff which is βW
i mi ≥ mi

K
.

Case III: βW
i > K. Since βt

i ≥ βW
i > K, we will have that Ti(s

t) ≥ mi, ∀t. So we

need only show that at least once in every C · log(M
φ
) moves, player i receives utility

at least Ûi

K
. We argue by applying Lemma 10. If player i is not receiving the desired

utility, then in the next time period she will increase her allocation by a factor of K.

Thus within O(log(M
φ
)) time periods either she receives Ûi

K
payoff or she allocates at

least mi

K
. In the latter case too she will receive Ûi

K
payoff due to Lemma 9.

Case IV: βW
i < 1

K
. Since βW

i < 1
K
, we will have that Ti(s

t) ≥ Ûi, ∀t. So we need

only show that at least once in every O(log(M
φ
)) moves, player i receives utility at

least mi

K
. In this case, we argue by applying Lemma 11. If player i is not receiving

the desired utility, then in the next time period she will decrease her allocation by

a factor of 1
K
. Thus, in the next time period she will receive a utility of at least mi

K

which is sufficient.

118



5.7 Examples of Fisher Games

In this section, we provide some examples of Fisher Game’s to demonstrate some

of the range that the Price of Imperfect Competition can achieve.

5.7.1 A Fisher Game with Unbounded PoIC

We begin with a Fisher Game with one good where potential gain in welfare at

its only NE is unbounded compared to its WE. Since a CES function on one good

is essentially a linear function, we show the result for a Fisher Game under a CES

utility function.

Theorem 18. For any Δ > 1, there exists a Fisher Game under linear utility

functions with exactly one NE s∗, and W(s∗) ≥ ΔW(m).

Proof. Consider the following market with one good a and three buyers 1, 2 and 3.

Buyers 1 hasm1 = 1 and u1a = H. Buyer 2 is identical: m2 = 1 and u2a = H. On the

other hand the third buyer has m3 = 2L−2 and u3a = 1. Assuming there is one unit

of good j then the market equilibrium is pa = 2L and {x1a, x2a, x3a} = { 1
2L
, 1
2L
, 2L−2

2L
}.

This has a total welfare of

W(m) =

(
1

2L
·H +

1

2L
·H +

2L− 2

2L
· 1
)
+ 2L <

H

L
+ 2L+ 1 (5.35)

There is a Nash equilibrium {s∗1, s∗2, s∗3} = {1, 1, 0} with p∗j = 2 and {x∗1j, x∗2j, x∗3j} =

{1
2
, 1
2
, 0}. For high enough values for H and L, this game has no other equilibrium.

The total welfare at this equilibrium is

W(s∗) =
(
(
1

2
·H + 0) + (

1

2
·H + 0) + (0 · 1 + 2L− 2)

)
+ 2 = H + 2L (5.36)
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Thus, for any Δ > 1, we can choose H high enough relative to L so that the welfare

ratio between the Nash equilibrium and the market equilibrium is greater than Δ.

5.7.2 A Fisher Game with PoIC < 1

In this section we will demonstrate an example of the linear Fisher Game where

the PoIC is < 1.

Take a four buyer game with two items. There are three units of good 1 and one

unit of good 2 (e1 = 3, e2 = 1). The buyers have (m1,m2,m3,m4) = (1, 1, k+1−δ, δ)

where k is large and δ < 6k
(6k+1)2

. The utility coefficients are (u11, u12) = (3, 0),

(u21, u22) = (3, 0), (u31, u32) = (6, 6k) and (u41, u42) = (0, 1). Thus buyer 3 is the

only buyer who values both goods.

The market equilibrium is (p1, p2) = (1, k) with (x11, x12) = (x21, x22) = (1, 0),

(x31, x32) = (1, k−δ
k
) and (x41, x42) = (0, δ

k
). Total welfare at the equilibrium is then

∑
i∈B

∑
j∈G

uij · xij +
∑
i∈B

mi

=

(
3 · 1 + 3 · 1 + (6 · 1 + 6k · k − δ

k
) + 1 · δ

k

)
+ (1 + 1 + (k + 1− δ) + δ)

= 7k + 15 +
δ

k
· (1− 6k)

> 7k + 15− 6 · δ (5.37)

On the other hand, we claim (m∗
1,m

∗
2,m

∗
3,m

∗
4) = (1, 1,

√
6k · δ − δ, δ) is a Nash

equilibrium. This gives the allocation (x∗11, x
∗
12) = (x∗21, x

∗
22) = (3

2
, 0), (x∗31, x

∗
32) =
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(0,
√
6k·δ−δ√
6k·δ ) and (x∗41, x

∗
42) = (0,

√
δ√

6k·δ ). The welfare of the equilibrium is

∑
i∈B

∑
j∈G

uij · x∗ij +
∑
i∈B

mi

=

(
3 · 3

2
+ 3 · 3

2
+ (6 · 0 + 6k ·

√
6k · δ − δ√
6k · δ ) + 1 · δ√

6k · δ

)

+(1 + 1 + (k + 1− δ) + δ)

=

(
9 + 6k +

δ√
6k · δ (1− 6k)

)
+ (3 + k)

= 7k + 12−
√
6k · δ +

√
δ

6k

< 7k + 12 (5.38)

As δ is small this is lower welfare than at the Market equilibrium. Now we need to

confirm this is a Nash equilibrium. Since player 2 is spending 1 and is only interested

in good 1 we must have that p∗1 ≥ 1
3
. Now for buyer 3 to purchase both goods we

must have p∗2 = k · p∗1 and hence p∗2 ≥ 1
3
·k. But only buyers 3 and 4 want good 2 and

m∗
3 +m∗

4 =
√
6k · δ < 1

3
· k. Thus, for the market to clear, buyer 3 will only purchase

good 2.

It follows that we can separate the game in two submarkets. The first has buyers

1 and 2 with good 1, and the second has buyers 3 and 4 with good 2.

Consider the first sub-market. Let’s show that buyer 1 is making a best response.

She is facing (m∗
2,m

∗
3,m

∗
4) = (1,

√
6k · δ − δ, δ) and needs to select m∗

1. When buyer

2 spends y ≤ 1 dollars, the utility of buyer 1 is (1− x) + 3 · 3 · x
x+y

when she spends

x ≤ 1 dollars. To see this, she wins a x
x+y

fraction of the good; there are three units

of the good and she gets a utility of 3 per unit.
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Taking the derivative we get

−1 +
9

x+ y
− 9x

(x+ y)2
= −1 +

9(x+ y)− 9x

(x+ y)2

= −1 +
9y

(x+ y)2
(5.39)

But this is positive because y = 1 and x ≤ 1. Thus buyer will spend as much

as possible, that is x = 1 is a best response. By symmetry, buyer 2 is also making a

best response.

Now consider the second sub-market. When buyer 4 spends y dollars, the utility

of buyer 3 is (k + 1− δ − x) + 6k · x
x+y

when she spends x dollars. To optimise x we

equate

−1 +
6k

x+ y
− 6kx

(x+ y)2
= 0 (5.40)

∴ 6ky = (x+ y)2 (5.41)

∴
√
6ky − y = x (5.42)

Since buyer 4 is spending δ dollars, it is a best response for buyer 3 to spend
√
6k · δ−δ

dollars, as desired.

Now consider buyer 4. When buyer 3 spends x dollars, the utility of buyer 4 is

(1− y) + 1 · y
x+y

when she spends y ≤ δ dollars. Taking the derivative we have

−1 +
1

x+ y
− y

(x+ y)2
=

−(x+ y)2 + x

(x+ y)2
(5.43)
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Since buyer 3 is spending x =
√
6k · δ − δ dollars and y ≤ δ, the numerator is at

least

x− (x+ δ)2 =
√
6k · δ − δ − (

√
6k · δ)2

=
√
6k · δ − (6k + 1) · δ (5.44)

But this is positive provided

6k · δ > (6k + 1)2 · δ2 (5.45)

∴ 6k

(6k + 1)2
> δ (5.46)

Thus, buyer 4 will spend all his money and we have a Nash equilibrium.

5.8 The Proportional Share Mechanism

In this section we analyze proportional share mechanisms [63] with and without

utility for saved money, and compare welfare at corresponding equilibrium. We

show that in proportional share mechanisms [63] adding utility for saved money

may lead to an unbounded loss in welfare. In other words, the Price of Imperfect

Competition may go to zero. This is unlike the Fisher Game, where the Price of

Imperfect Competition is bounded below by 1
2
(Theorem 14). In proportional share

mechanisms [63] buyer i allocates in advance a specific amount mij of money to each

good j. The key point here is that when we allow unit utility from each unit of saved

money, then prices can rise for some goods.
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For example. Take three players and two goods. Let the players have budgets

K,K, 1, respectively. Let (u11, u12) = (h−1, 0), (u21, u22) = (h2, h), (u31, u32) =

(0, h3), for some large h.

The optimality conditions at an equilibrium in these games are:

uij · pj −mij

(p∗j)2
= 1 + ε∗i if mij > 0 (5.47)

and

uij · pj −mij

(p∗j)2
≤ 1 + ε∗i if mij = 0 (5.48)

Without having any value for saved money, we have that buyer 1 allocates all her

money to good 1 and buyer 3 allocates all his money to good 2. Thus the optimality

conditions state if buyer 2 allocates money to both goods then

u21 · K

(K +m21)2
= u22 · 1

(1 +m22)2
(5.49)

h2 · K

(K +m21)2
= h · 1

(1 +K −m21)2
(5.50)

h · (1 +K −m21)
2 ·K = (K +m21)

2 (5.51)

But for h >> K this cannot happen and buyer 2 will allocate all her money to good

1. Thus buyer 3 will win all of good 3 fetching social welfare of at least h3.

On the other hand if each unit of saved money gives unit utility, then buyer 1

will not allocate any money to good 1 unless its price is at most h−1.

Thus player 2 cannot allocate more than h−1 to good 1. Thus he allocates at

least K−h−1 dollars to good 2. Thus the price of good 2 rises! In which case, buyer

3 gets a 1
K

fraction of good 2. This gives a social welfare of around 1
K
· h3.
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CHAPTER 6
Conclusion

In this thesis, we have made substantial contributions to the application of al-

gorithmic game theory techniques to the economic theory of oligopoly. In particular,

we have:

• Formulated the War Chest Minimization Problem for multimarket predatory

pricing.

• Demonstrated the NP-hardness of this problem and of multiplicative approxi-

mation guarantees.

• Solved this problem in polynomial time in the absence of fixed costs. Also

achieved additive approximation guarantees for the Bertrand and Stackelberg

models.

• Demonstrated that lookahead search improves the social utility in the Cournot

oligopoly context.

• Shown that for generalised second price auctions, lookahead search achieves

optimal outcomes under the worst case model and within a constant factor of

optimal for the average case model.

• Formulated the Price of Imperfect Competition as a welfare ratio for market

games.
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• Demonstrated that the Price of Imperfect Competition is at least 2 for the

Fisher Game and this can be improved as the level of market competition

increases.

• Proved a logarithmic lower bound on the Price of Imperfect Competition in

the dynamic Fisher Game.

However, many interesting unanswered questions remain. We outline some of

the most promising here.

Additive approximation guarantee for the multimarket Cournot model:

While we were able to demonstrate a polynomial time algorithm for finding an addi-

tive approximation to the optimal solution of the War Chest Minimization Problem

for Stackelberg and Bertrand models, our methodology did not extend directly to

the Cournot model. An alternative rounding scheme could be developed to extend

our results to this model.

Alternative rules to test for predation: The Areeda-Turner rule is not the only

rule used in practice to test for predatory pricing. Adapting our models to other

rules could yield a more robust set of results around whether multimarket predation

is possible.
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What are other contexts for the lookahead model? In this thesis and in

an associated paper [116], we explore the impact that using the lookahead search

heuristic can have on a large class of games including market games, AdWord auc-

tions, congestion games, network sharing games, and valid and basic utility games.

To what other classes of games does the lookahead equilibrium apply? Can one cat-

egorize the classes for which this equilibrium is an improvement over the myopic one?

Under what conditions are lookahead equilibria guaranteed to exist? Is

there an analogue to Nash’s theorem or Rosen’s theorem for lookahead equilibria

which describes the necessary and sufficient conditions for it to exist?

How are games affected by combining lookahead equilibria with other

heuristic search techniques? Our lookahead model explores the simplest of game

search heuristics. In practice, this heuristic is often improved through the use of

iterative-deepening, branch and bound methods, and imbalanced search trees. Can

we model the impact of these advanced algorithmic techniques on game equilibria?

Is the factor 2 bound on the PoIC tight? We proved that for CES and Cobb-

Douglas utilities that the Price of Imperfect Competition is at most 2. Is this factor

tight or could it be improved by a more subtle analysis of price dynamics?
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Bounding the Price of Imperfect Competition for more utility functions:

In our analysis, we were able to prove bounds on the Price of Imperfect Competi-

tion for Fisher Games where utility functions treated goods like substitutes. The

structure of market interactions makes the case of complementary goods (e.g. when

the utility functions are Leontieff or CES with ρ < 0) more difficult to study. Is a

constant Price of Imperfect Competition achievable in this case?

Extending the analysis: The Fisher Game we present is a specific case of the more

general Cournot-Walras model introduced by Codognato, Gabszewicz, and Michel.

The concept of Price of Imperfect Competition is easy to extend to this model. What

bounds are achievable in this context?
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[113] R. Mehta, N. Thain, László Végh and A. Vetta, “To save or not to save: the
Fisher game”, Proceedings of 11th International Workshop on Internet and
Network Economics (WINE), pp294-307, 2014.

[114] P. Milgrom and J. Roberts, “Predation, reputation, and entry deterrence”,
Journal of Economic Theory, 27, pp280-312, 1982.

[115] V. Mirrokni and A. Skopalik, “On the complexity of Nash dynamics and sink
equilibria”, Proceedings of the ACM International Conference on Electronic
Commerce (EC), 2009.

[116] V. Mirrokni, N. Thain and A. Vetta, “A theoretical examination of practical
game playing: lookahead search”, Proceedings of the 5th international confer-
ence on Algorithmic Game Theory (SAGT), pp251-262, 2012.

[117] V. Mirrokni and A. Vetta, “Convergence issues in competitive games”, Pro-
ceedings of the 7th International Workshop on Approximation Algorithms for
Combinatorial Optimization Problems (APPROX), pp183-194, 2004.

[118] A. Montanari and A. Saberi, Convergence to equilibrium in local interaction
games and ising models, Technical Report, arXiv:0812.0198, CoRR, 2008.

[119] R. Myerson, “Nash Equilibrium and the History of Economic Theory”, Journal
of Economic Literature, 37(3), pp1067-1082, 1999.

[120] R. Nagel, “Unraveling in guessing games: an experimental study”, The Amer-
ican Economic Review, 85(5), pp1313-1326, 1995.

[121] D. Nau, “Pathology on game trees: a summary of results”, Proceedings of the
National Conference on Artificial Intelligence (AAAI), pp102-104, 1980.

[122] D. Nau, “An investigation of the causes of pathology in games”, Artificial
Intelligence, 19, 257-278, 1982.



139

[123] D. Nau, “Decision quality as a function of search depth on game trees”, Journal
of the ACM, 30(4), pp687-708, 1983.

[124] D. Nau, “Pathology on game trees revisited, and an alternative to minimaxing”,
Artificial Intelligence, 21, pp221-244, 1983.

[125] A. Newell and H. Simon, Human Problem Solving, Prentice-Hall, 1972.

[126] N. Nisan, J. Bayer, D. Chandra, et al., “Google’s auction for TV ads”, Pro-
ceedings of the 36th International Colloquium on Automata, Languages and
Programming (ICALP), pp309-327, 2009.

[127] P. Oberender and T. Rudolf, “Heinrich Von Stackelberg (1905-1946)”, In Pio-
neers of Industrial Organization, pp50-51, 2007.

[128] J. Ordover and G. Saloner, “Predation, monopolization, and anti-trust”, in R.
Schmalensee and R. Willig (eds.), The Handbook of Industrial Organization,
North-Holland, pp537-596, 1989.

[129] C. Papadimitriou, “On the complexity of the parity argument and other in-
efficient proofs of existence”, Journal of Computer and System Sciences, 48,
pp498-532, 1994.

[130] C. Papadimitriou, “Algorithms, games, and the internet”, Proceedings of the
33rd annual ACM Symposium on Theory of Computing (STOC), pp749-753,
2001.

[131] C. Papadimitriou, “The Complexity of Finding Nash Equilibria”, in Algorith-
mic Game Theory, pp29-50, 2007.

[132] J. Pearl, Heuristics: Intelligent Search Strategies for Computer Problem Solv-
ing, Addison-Wesley, 1984.

[133] J. Podolny and F. Scott Morton, “Social status, entry and predation: the case
of British shipping cartels 1879-1929”, Journal of Industrial Economics, 47(1),
pp41-67, 1999.

[134] R. Porter, “On the incidence and duration of price wars”, The Journal of
Industrial Economics, 33(4), pp415-426, 1985.

[135] T. Puu and I. Sushko, Oligopoly dynamics: Models and tools, Springer, 2002.



140

[136] A. Rao, M. Bergen and S. Davis, “How to fight a price war”, Harvard Business
Review, pp107-120, March/April, 2000.

[137] J. B. Rosen, “Existence and Uniqueness of Equilibrium Points for Concave
N-person Games”, Econometrica, 33(3), pp520-534, 1965.

[138] J. Rotemberg and G. Soloner, “A supergame-theoretic model of price wars
during booms”, American Economic Review, 76(3), pp390-407, 1986.

[139] A. Rubenstein, Modeling Bounded Rationality, MIT Press, 1998.

[140] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 2nd
Edition, Prentice-Hall, 2002.

[141] L. Savage, The Foundation of Statistics, Wiley, 1954.

[142] T. Sargent, Bounded Rationality in Macroeconomics, Clarendon Press, 1993.

[143] H. Scarf, “Some Examples of Global Instability of the Competitive Equilib-
rium”, Cowles Foundation Discussion Papers, 79, 1959.

[144] H. Scarf, “The Computation of Equilibrium Prices”, in Applied General Equi-
librium Analysis, Cambridge Books, 1984.

[145] F. Scherer, Industrial Market Structure and Economic Performance, Houghton
Miffin, 1980.

[146] F. Scott Morton, “Entry and predation: British shipping cartels 1879-1929”,
Journal of Economics and Management Strategy, 6, pp679-724, 1997.

[147] E. Sefer and U. Kuter and D. Nau, “Real-time A* Search with Depth-k Looka-
head”, Proceedings of the International Symposium on Combinatorial Search,
2009.

[148] R. Selten, “The chain store paradox”, Theory and Decision, 9, pp127-159,
1978.

[149] R. Selten, “What is bounded rationality?”, in Bounded Rationality: the Adap-
tive Toolbox, G. Gigerenzer and R. Selten (eds), MIT Press, pp13-36, 2001.



141

[150] R. Selten, “Boundedly Rational Qualitative Reasoning on Comparative Stat-
ics”, in Advances in Understanding Strategic Behavior: Game Theory, Ex-
periments and Bounded Rationality, Steffen Huck (ed.), Palgrave Macmillan,
pp1-8, 2004.

[151] A. Sen, “Rational fools: a critique of the behavioral foundations of economic
theory”, Philosophy and Public Affairs, 6(4), pp317-344, 1977.

[152] A. Sen, “Internal consistency of choice”, Econometrica, 61(3), pp495-521,
1993.

[153] C. Shannon, “Programming a computer for playing chess”, Philosophical Mag-
azine, Series 7, 41(314), pp256-275, 1950.

[154] L. Shapley and M. Shubik, “Trade using one commodity as a means of pay-
ment”, The Journal of Political Economy, pp937–968, 1977.

[155] V. Shmyrev, “An algorithm for finding equilibrium in the linear exchange model
with fixed budgets”, SIAM Journal of Applied and Industrial Mathematics,
3(4), pp505–518, 2009.

[156] H. Simon, “A behavioral model of rational choice”, Psychological Review, 63,
pp129-138, 1955.

[157] H. Simon, “Rational choice and the structure of the environment”, Psycholog-
ical Review, 63, pp129-138, 1956.

[158] H. Simon, The Sciences of the Artificial, 3rd edition, MIT Press, 1996.
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