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ABSTRACT

The first measurement of the differential cross section of the associated production

of a photon and a bottom quark in proton–proton collisions is presented. Protons

are accelerated and brought into collision at a center-of-mass energy of 8 TeV by

the Large Hadron Collider. The collisions are recorded with the ATLAS detector

and correspond to an integrated luminosity of up to 20.2 fb−1. The measurement is

performed in two regions of the absolute value of the photon pseudorapidity: from 0

to 1.37 and from 1.56 to 2.37. The measurement is performed as a function of the

photon transverse energy, from 25 to 400 GeV in the former pseudorapidity region and

from 25 to 350 GeV in the latter region. The relative uncertainty in the measurement

varies between 13% and 54% and is dominated by the uncertainty in the efficiency of

identifying jets containing bottom quarks. The ratio of the cross section in the two

pseudorapidity regions is also measured to reduce the positively correlated systematic

uncertainties in the measurement between the two regions. The measurement is

compared to predictions of perturbative quantum chromodynamics at the leading

order and at the next-to-leading order. At low transverse energy, a good agreement is

observed between the measured and the predicted values. At high transverse energy,

however, the measured values are observed to be up to a factor of two larger than

the most precise predicted values. This measurement can help improve the modelling

of bottom quarks in perturbative quantum chromodynamics.
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ABRÉGÉ

La première mesure de la section efficace différentielle de la production associée d’un

photon et d’un quark bottom dans des collisions proton–proton est présentée. Des

protons sont accélérés et amenés à entrer en collision à une énergie de 8 TeV au centre

de masse par le Grand collisionneur de hadrons. Les collisions sont enregistrées par le

détecteur ATLAS et correspondent à une luminosité intégrée allant jusqu’à 20.2 fb−1.

La mesure est effectuée dans deux régions de la valeur absolue de la pseudorapidité du

photon : de 0 à 1.37 et de 1.56 à 2.37. La mesure est effectuée en fonction de l’énergie

transverse du photon, de 25 à 400 GeV dans la première région de pseudorapidité

et de 25 à 350 GeV dans la seconde région. L’incertitude relative de la mesure varie

entre 13% et 54% et est dominée par l’incertitude sur l’efficacité de l’identification des

jets contenant un quark bottom. Le ratio de la section efficace dans les deux régions

de pseudorapidité est aussi mesuré afin de réduire les incertitudes systématiques

sur la mesure qui sont positivement corrélées entre les deux régions. La mesure est

comparée à des prédictions de chromodynamique quantique perturbative d’ordre le

plus bas et d’ordre supérieur. À basse énergie transverse, les valeurs mesurées sont en

accord avec les valeurs prédites. Cependant, à haute énergie transverse, les valeurs

mesurées sont jusqu’à deux fois plus grandes que les valeurs prédites les plus précises.

Cette mesure peut permettre de parfaire la modélisation du quark bottom dans la

chromodynamique quantique perturbative.
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AUTHOR’S CONTRIBUTION

This doctoral thesis presents the measurement of the cross section of the associated

production of a photon and a bottom quark in proton–proton collisions. It is the first

time that the measurement of this physical process is performed. Consequently, the

results presented in this thesis are an original and distinct contribution to knowledge.

The measurement is published in Phys. Lett. B 776 (2018) 295, along with the similar

measurement of the cross section of the associated production of a photon and a

charm quark. This publication is signed by a collaboration of about three thousand

authors who all contributed to the overall experiment and made this measurement

possible, but not necessarily to this specific measurement. A group of eight of the

authors of the publication contributed directly to that particular publication. The

author of this thesis led the group for the measurement presented in this thesis.

The author also contributed significantly to the measurement that is part of the

publication but that is not presented in this thesis.

Specifically, the author of this thesis designed, coded, carried out and optimized

the complete data analysis through which the cross section is measured; identified

and evaluated the uncertainty sources that affect the measurement; contacted and

discussed with theoretical physicists what state-of-the-art theoretical predictions are

available to compare to the measurement; and interpreted the results in terms of

the underlying physics. The author also wrote the majority of the above publication

on behalf of the collaboration, including the production of all the published plots.
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Furthermore, the author made publicly available on the Web the measured values of

the cross section and of the correlations of their individual uncertainties. Finally, the

author wrote and made publicly available on the Web software that implements the

definition of the fiducial phase-space region in which the cross section is measured,

which simplifies the comparison of the measurement with future theoretical predictions.

A summary of the contributions of the author of this thesis and of the co-authors of

the publication follows for each chapter.

In Chapter 1, the author motivates the measurement of the physical process presented

in this thesis from the context of measurements of other physical processes performed

prior to it.

In Chapter 2, the author synthesizes the theoretical description of the physical process

that is measured and provides a literature review of the possible theory predictions

of that process. The particular predictions that are compared to the measurement

are chosen by the author but are technically produced by the co-authors of the

publication.

In Chapter 3, the author presents the experimental apparatus that is used to perform

the measurement and which has been built by the co-authors of the publication. The

author contributed partially to the operation of the trigger system of the apparatus.

In Chapter 4, the author summarizes the reconstruction of physical objects from the

signals measured by the apparatus. This reconstruction has been developed by the

co-authors of the publication.
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In Chapters 5, 6, 7, 8 and 9, the original contribution to knowledge of the author is

presented. In these chapters, the author presents the data analysis that is originally

developed, making use of what has been presented in the previous chapters, and

of the ensuing results. Every figure presented in these chapters is produced by the

author. The co-authors of the publication provided supervision to the author, such

as to perform the most accurate and the most precise measurement possible.

In Chapter 10, the author summarizes the data analysis and the results and provides

ideas on how to improve upon them in a possible future iteration of the measurement.

In Appendices A, B and C, the author defines observables, physical objects and

techniques that are used throughout the thesis.

In Appendices D and E, the author provides the measured values of the cross section

and of the correlations of their uncertainties, which have been made publicly available

on the Web.
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CHAPTER 1
Introduction

The bottom quark was discovered at Fermilab in 1977 by the experiment E288 [1]. A

resonance at 9.5 GeV was observed in the production of oppositely charged muons

produced in the collisions of protons with fixed targets made of copper and platinum.

This resonance was due to the presence of the Υ composite particle, a bound state

of a pair of bottom quark and antiquark. The existence of the bottom quark,

alongside that of the top quark, had been predicted in 1973 by Makoto Kobayashi

and Toshihide Maskawa to explain violation of the charge–parity (CP) symmetry

in kaons [2]. However, this prediction published in Japan had not reached North

America at the time of the discovery, such that the resonance came as a surprise [3].

The bottom quark was at the time the first particle to be accepted as part of a new

third generation of elementary fermions, even though evidence for the existence of

the τ lepton existed since 1975 [4].

Composite particles containing bottom quarks can possess uniquely interesting prop-

erties. They can have relatively heavy masses and long lifetimes, making them

compelling objects to study both theoretically and experimentally.

Electron–positron colliders have been built to produce abundantly bottom quarks.

These colliders enable experiments such as BaBar [5], Belle [6] and the upcoming

Belle II [7] to search for new physical phenomena and to study precisely CP violation,
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a phenomenon related to the matter–antimatter asymmetry of the universe. Bottom

quarks have also been used in the CDF [8] and D0 experiments [9] at the Tevatron [10]

to discover the top quark in 1995 in proton–antiproton collisions [11, 12]. Bottom

quarks can also help establish the nature of the Higgs boson since it is expected

to decay predominantly into a pair of bottom quark and antiquark. Using proton–

proton collisions provided by the Large Hadron Collider (LHC) [13], the ATLAS [14]

and CMS [15] experiments recently found evidence for that decay channel [16, 17].

Furthermore, several theories predict new particles that would decay into bottom

quarks, such as compositeness models [18], in which the quarks are not elementary

particles and could be excited; supersymmetric models [19], in which known elementary

particles are associated to heavier unknown particles; or models with new heavy

gauge bosons [20].

In searches for new physics, the production of bottom quarks from known mechanisms

in quantum chromodynamics (QCD) constitutes an important background that needs

to be well modelled. A measurement of the production cross section of particle

jets containing composite particles made up of bottom quarks, referred to as b-jets,

in proton–proton collisions provides a quantity that can be compared to theory

predictions. This comparison can help improve the modelling of the production of

bottom quarks.

The production of b-jets in QCD processes at the LHC has been measured by the

ATLAS [21, 22] and CMS [23] experiments. An experimentally more precise way of

measuring the production of b-jets is through the associated production of electroweak

gauge bosons, since these can be measured more precisely than jets. The associated
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production of a Z boson with a b-jet has been measured recently by ATLAS [24] and

CMS [25, 26]. In addition, the LHCb experiment [27] has measured that process [28].

The associated production of a W boson with a b-jet has also recently been measured

by ATLAS [29], CMS [30, 31] and LHCb [32, 33]. The associated production of a

photon with a b-jet has not been measured in proton–proton collisions.

The production of prompt photons is theoretically and experimentally interesting in

its own right, where prompt photons refer to photons not produced by the decays

of composite particles. Photons are among the most abundantly produced particles

in proton–proton collisions. They are also directly observable, in contrast to most

other types of particles that are produced in the collisions. The photons that are

detected are the same ones that are produced in the scattering of the protons. The

detected photons directly probe the QCD dynamics of the proton–proton collisions. In

addition, photons are measured by calorimeters through the electromagnetic shower

that they produce. These showers can be measured precisely and thus the energy of

the photons can also be measured precisely.

The inclusive prompt photon production in proton–proton collisions, where inclusive

refers to the possible production of any other particles, has been measured by

ATLAS [34–36] and CMS [37]. These measurements provide a test of the predictions

of perturbative QCD (pQCD). The less inclusive measurement of a prompt photon

produced in association with a jet allows to test pQCD through additional observables,

in addition to being an important background to Higgs bosons decaying into two

photons. This process has also been measured by ATLAS [38–40] and CMS [41–43].

Beyond testing the predictions of pQCD, the ubiquitous production of a prompt
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photon in association with a jet makes it an interesting channel in which to search for

new physics, such as excited quarks and quantum black holes. These searches have

recently been performed by ATLAS [44] and CMS [45].

In proton–proton collisions, the even more exclusive production of a prompt photon

with a b-jet has been used to search for new physics by CMS [45] but has yet to be

measured. Measurements of this process, however, have been performed in proton–

antiproton collisions by CDF [46, 47] and D0 [48, 49]. The production was measured

as a function of the component of the photon momentum that is transverse to the

momenta of the colliding particles, the transverse momentum.1 These measurements

did not agree with the most precise theoretical predictions of this process available in

pQCD, the next-to-leading order (NLO) calculations. This disagreement can be seen

in the most recent D0 measurement, reproduced in Figure 1–1. This measurement

has the largest kinematic acceptance for the prompt photon and the b-jet out of the

Tevatron measurements. The ratio of the data to the NLO prediction is shown, as

well as that of other predictions that are less precise but which test different aspects

of the calculations.

In proton–proton or proton–antiproton collisions, Compton scattering is the largest

contribution to the production of a photon and a b quark. The quark–antiquark

annihilation is an additional contribution that is important in the collisions of protons

1The main observables describing the kinematics of this process, i.e. the transverse
momentum, pT, and the rapidity, y, are discussed in Appendix A.
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Figure 1–1 – Ratio of the D0 measurement to the NLO prediction of the associated
production cross section of a prompt photon and a b-jet in proton–antiproton collisions
as a function of the photon transverse momentum, for two mutually exclusive regions
of photon rapidity. Reproduced with permission from Ref. [49].

and antiprotons due to the increased presence of antiquarks. This contribution is

not as well predicted as the Compton scattering contribution and is believed to be

the source of the disagreement between the Tevatron measurements and the NLO

calculations. As such, the production of a photon and a bottom quark in proton–

proton collisions is expected to be better described by NLO predictions than in

proton–antiproton collisions. A measurement at the LHC would provide a stringent

test of pQCD, especially for the aspects related to the bottom quark. Furthermore, the

Compton scattering contribution is sensitive to the presence of bottom quarks in the

proton, while the quark–antiquark annihilation contribution is not. A measurement

of this type of production at the LHC would thus also provide increased sensitivity

to the bottom-quark content of the proton compared to the Tevatron measurements.
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Motivated by these reasons, this thesis presents the first measurement of the cross

section of the inclusive production of a prompt photon in association with a b-jet

in proton–proton collisions. Collisions are provided by the LHC at a center-of-mass

energy of 8 TeV and are measured with the ATLAS detector. The measured cross

section is fiducial in the four-momenta of the particles, i.e. boundaries are placed

on the measured photon and b-jet four-momenta. The measured cross section is

differential as a function of the photon transverse momentum. The cross section is

measured statistically from an ensemble of collisions; no single collision is explicitly

determined to have produced a prompt photon and a b-jet. The measurement is

performed in two mutually exclusive regions of photon rapidity. The ratio of the cross

section in these two regions is also measured to reduce theoretical and experimental

uncertainties that are positively correlated between the two regions.

This thesis is divided into the following chapters.2 Chapter 2 discusses the theoretical

background of the concepts introduced in this chapter and of the predictions of the

measured process. Chapter 3 covers the experimental setup that allows for two protons

to collide and for the detection of the particles that are produced in the collisions.

Chapter 4 gives details about how the physical objects of interest are reconstructed

from the measured signals. Chapter 5 describes the selection criteria that are applied

on the reconstructed objects to measure the desired particles. Chapter 6 explains how

background contributions are subtracted from the selection. Chapter 7 discusses how

2Natural units are used throughout the thesis, for which the speed of light and
the reduced Plank constant are equal to unity: c = 1 and ℏ = 1.
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the measurement is corrected to allow comparisons to theory predictions. Chapter 8

goes into details about the uncertainties that are considered in the measurement

and theory predictions. Chapter 9 presents the measured and predicted values of

the cross section and cross-section ratio and provides an interpretation of the results.

Chapter 10 summarizes the results and offers some ideas on how to improve the

measurement.
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CHAPTER 2
Theoretical Background

This chapter covers the theoretical background necessary to interpret the results

presented in this thesis. The first section presents the Standard Model of particle

physics in terms of its particle content and associated interactions. The second section

describes how this theory is actually used to predict the outcome of collisions between

protons, such that the theory can be compared to experimental results. The details

specific to the predictions of the cross section of the associated production of a photon

and a bottom quark are discussed in the third section.

2.1 Standard Model

The theoretical description of nature at the smallest distance scales that have been

measured is given by the Standard Model [50–53]. The Standard Model describes

mathematically the dynamics of nature’s fundamental components, the elementary

particles, which are believed to be point-like. To satisfy the requirements of a theory

describing multiple objects at small scales and with possible high velocities, the

Standard Model is a quantum field theory, which is based on concepts of field theory,

quantum mechanics and special relativity. As such, it is a probabilistic description of

nature. Although the theory can make predictions, several of its parameters are free

and must be measured prior to making quantitative predictions about nature.
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The Standard Model describes the interactions of the elementary particles listed in

Table 2–1. The measured particle masses, which are free parameters in the theory,

and some of the quantum properties of the particles in the model are also listed.

Particles are divided into fermions and bosons. The spin, J , of these kinds of particles

respectively takes half-integer and integer values. Due to the conservation of angular

momentum, fermions only interact in pairs with bosons. If a boson has J = 1, it is

called a gauge boson and it mediates a force between two fermions. Gauge bosons

can also interact among themselves. The Higgs boson is the only scalar boson, i.e. a

boson with J = 0. Its interactions are related to the origin of particle masses, which

would be zero otherwise. It only interacts with massive particles.1

The rules of the interactions between the particles are governed by two theories that

make up the Standard Model: the electroweak theory and quantum chromodynamics

(QCD). The electroweak theory describes the interactions of particles under a combined

U(1) and SU(2) gauge symmetry. This electroweak symmetry is spontaneously broken

via the Brout–Englert–Higgs mechanism [55, 56]. The symmetry breaking results in

the electromagnetic force, described by a U(1) symmetry, and the weak force. The

electromagnetic force is mediated by the photon. Fermions that interact under that

force carry an electric charge, qe, and the sum of the electric charges is conserved

in an electromagnetic interaction. The weak force is mediated by the W and Z

1Although neutrinos are measured to be massive, they do not interact with the
Higgs boson, and thus are formally massless, in the Standard Model. They acquire
non-vanishing masses via a currently unknown mechanism.
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Table 2–1 – Particle content of the Standard Model. The values for the mass m, the
spin J , the electric charge qe, and the z-component of the weak isospin Tz of the
particles are given. If a particle carries a color charge, it is indicated as such by a
checkmark and, otherwise, by a cross. The mass values come from measurements [54].
They are reported here with three significant figures, if the precision allows, and with
two significant figures otherwise; their uncertainties are omitted. The upper limit at
95% confidence level on the sum of the neutrino masses is reported for each neutrino
flavour. The electric charge is given as a multiple of the fundamental electric charge.

Name Symbol Generation m J qe Tz Colored

Le
pt

on
s

Electron neutrino νe I < 0.12 eV 1
2 0 1

2 ×

Muon neutrino νµ II < 0.12 eV 1
2 0 1

2 ×

Tau neutrino ντ III < 0.12 eV 1
2 0 1

2 ×

Electron e I 511 keV 1
2 −1 −1

2 ×

Muon µ II 106 MeV 1
2 −1 −1

2 ×

Tau τ III 1.78 GeV 1
2 −1 −1

2 ×

Q
ua

rk
s

Up u I 2.2 MeV 1
2

2
3

1
2 ✓

Charm c II 1.28 GeV 1
2

2
3

1
2 ✓

Top t III 173 GeV 1
2

2
3

1
2 ✓

Down d I 4.7 MeV 1
2 −1

3 −1
2 ✓

Strange s II 96 MeV 1
2 −1

3 −1
2 ✓

Bottom b III 4.18 GeV 1
2 −1

3 −1
2 ✓

G
au

ge
B

os
on

s Gluon g 0 1 0 0 ✓

Photon γ 0 1 0 0 ×

W W 80.4 GeV 1 1 1 ×

Z Z 91.2 GeV 1 0 0 ×

Higgs boson H 125 GeV 0 0 −1
2 ×
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bosons. The mathematical structure of the weak force is more complex than the

electromagnetic force, but it can be approximately understood as the conservation of

the z-component of the weak isospin, Tz.2 All fermions interact through the weak

force. Quantum chromodynamics describes the interactions of particles coupling via a

strong force, described by an SU(3) symmetry. Particles interacting this way carry a

color charge, such as quarks and gluons, of which the latter mediate the force. Quarks

are defined as fermions carrying a color charge, the colored fermions, while leptons are

the fermions that do not. The flavour of a quark or lepton refers to a specific type of

quark or lepton. Quarks and leptons can be further separated into three generations

of corresponding particles. Corresponding particles across generations interact in the

same way but have different masses. The first generation refers to the least massive

particles and the third generation refers to the most massive ones.3 In addition to the

particles of Table 2–1, distinct antiparticles exist for the fermions and the W boson.4

The values of qe and Tz for these antiparticles are opposite to those of the particles.

The symmetries of the Standard Model define the interactions between a gauge boson

mediating a force and other particles up to a dimensionless proportionality constant.

2For completeness, all interactions conserve this quantity, except those involving
the Higgs boson.

3As the neutrinos are massless in the Standard Model, their generations instead
refer to that of the electrically charged leptons. It is currently unknown if the ordering
of the non-vanishing masses of the neutrinos coincides with their generation ordering.

4It is possible that the neutrinos do not have distinct antiparticles. It is yet
undetermined if this is the case.
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The constants are called αS, α and αW respectively for the strong, electromagnetic

and weak forces. Being dimensionless, these coupling constants define the intrinsic

strength of the force. Their values are free in the theory and have to be measured.

The values of these constants change with the energy of the interaction, Q. This

energy dependence is called the running of the constants. The values of the coupling

constants at an energy scale corresponding to the mass of the Z boson are given in

Table 2–2. The strength of the weak force is in practice weaker at energy scales below

Q ≈ mZ since, in contrast to the other forces, the gauge bosons mediating that force

are massive. At those low energy scales, the coupling constant αW is accompanied by

a factor of about 1/m2
Z [57]. Thus, the effective value of the weak coupling constant

is αW/m
2
Z ≈ 0.000004 GeV−2, much weaker than the other two forces at interaction

energies of about 1 GeV. In addition, for interactions involving the W boson and

quarks, an additional coupling parameter is involved specific to the pair of quarks

interacting. The W boson has a value Tz = 1, such that quarks must be of different

flavours, giving rise to nine possible quark-pair interactions. The collection of these

nine additional coupling parameters form the unitary Cabibbo–Kobayashi–Maskawa

(CKM) matrix [2, 58]. The values of the parameters are measured to be ordered such

that interactions of quarks within the same generation are stronger than between

generations, with interactions between the first and the third generations being the

weakest.

The values of the coupling constants of the electromagnetic and weak forces slowly

increase with increasing energy. In contrast, the coupling constant of the strong force

decreases with increasing energy, a phenomenon known as asymptotic freedom [59, 60].
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Table 2–2 – Forces described by the Standard Model and their mediating gauge
bosons. The measured values of their coupling constants are given at an energy scale,
Q, equal to the mass of the Z boson. The values presented in the table are derived
from the values of the physical constants given in Ref. [54]. The values are given with
two significant figures and their uncertainties are omitted.

Name Gauge boson Coupling constant at Q = mZ

Strong Gluon αS = 0.12

Electromagnetic Photon α = 0.0078

Weak W and Z αW = 0.034

As a comparison point to the value in Table 2–2, the strong coupling is about 0.33

at the energy scale corresponding to the mass of the tau lepton [61]. An additional

phenomenon occurs in QCD: color confinement, i.e. colored particles cannot be

observed. A consequence of this phenomenon is that quarks are bound together to

form composite particles known as hadrons. A quark and an antiquark can bind

together to form a meson and three quarks can bind together to form a baryon. The

proton, p, is a baryon made up of two up quarks and one down quark. These three

quarks that define the content of the proton are called valence quarks.

The running of a coupling constant can be calculated by its renormalization group

equation. In the case of the strong coupling constant, that equation [59, 60] is

dαS(µr)

d lnµ2
r

= β(αS(µr)) = −(b0α
2
S(µr) + b1α

3
S(µr) + b2α

4
S(µr) + · · · ), (2.1)

where µr and β(αS(µr)) are respectively an energy scale called the renormalization

scale and the beta function. The latter can be expanded and calculated perturbatively
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in αS, as is done on the right-hand side. The bi coefficients depend on the number

of active quark flavours, that is the number of quark flavours with a mass smaller

than µr. They have been computed up to b4 [62] and are positive for up to five

active quark flavours. Therefore, the beta function is negative, which explains the

asymptotic freedom.

In the Standard Model, physical processes are difficult to calculate exactly. A

solution to this challenge is the use of perturbation techniques, in which the equation

describing a physical process is essentially expanded as a Taylor series in terms of a

small parameter. The coupling constant is taken as the small parameter, given its

presence in every interaction and its value usually less than unity. The terms in the

expansion of a perturbative series are proportional to an increasing number of powers

of the coupling constant. Each power of the coupling constant can be interpreted as

corresponding to one interaction between a gauge boson and other particles. Therefore,

each term in a perturbative series expansion describing a physical process can be

interpreted as describing an increasing number of interactions. The perturbative term

with the smallest number of interactions, and thus the simplest to compute, is known

as the leading-order (LO) term, while the next smallest is known as the next-to-leading-

order (NLO) term. Although the mathematical description of a single interaction is

known, the calculation of combinations of several different interactions, corresponding

to higher-order terms, remains complicated. The mathematical description of physical

processes are typically known only up to a few orders in the series.

Predictions of the Standard Model have been experimentally tested many times.

Numerous measurements and their associated Standard Model predictions are, aside
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from one exception, in agreement, showing the validity of the theory as a description of

nature. The one exception is the non-zero mass of neutrinos. In the Standard Model,

neutrinos are massless, while experiments have shown that they are massive [63, 64].

This shortcoming of the Standard Model is however not the only one. Although this

theory describes three forces of nature, a fourth one is known: the gravitational force.

Attempts have been made to reconcile quantum mechanics and general relativity, a

necessary step to include the gravitational force in the Standard Model, but these

have not yet been successful [65]. Still, neglecting the effects of the gravitational force

does not compromise the predictions of most elementary physical processes, since

the gravitational force is relatively much weaker than the electromagnetic, weak and

strong forces. The impact of gravitational effects on measured processes is usually

within experimental uncertainties. However, the lack of predictive power regarding

the gravitational force is an additional shortcoming of the Standard Model. Despite

providing robust predictions for processes related to the strong, electromagnetic and

weak forces, the Standard Model is incomplete.

2.2 Event Generation

Theory predictions for the scattering of particles, such as the associated production of

a photon and a bottom quark (γ+b) in the collision of two protons, are given in terms

of a cross section, σ. As in classical mechanics, cross sections have a dimension of

area. However, the notion of the geometric size of the colliding objects is replaced by

the intrinsic probability of the dynamical process, which is given by the interactions

described by the Standard Model.
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In the case of proton–proton collisions, an important force at play is the strong force,

since protons are composite particles made up of colored particles. Perturbative

techniques can be used to describe physical processes involving the strong force at

high energies or, equivalently, at small distances. The scattering of particles in this

regime is referred to as a hard scattering. The perturbative approach breaks down

if the coupling constant is not small compared to unity, which happens in QCD at

distances larger than about one femtometer. These distances correspond to energies

smaller than ΛQCD ∼ 200 MeV. In this case, non-perturbative models have to be

used to make predictions. These models are built on the phenomenology of QCD. As

these models are not based on first principles, they are not unique. Predictions of the

outcome of collisions between protons that can be compared to experimental results

therefore relies on both the rigorous calculations of the process in the perturbative

regime of QCD (pQCD) and on non-perturbative QCD models.

Computer programs have automated the LO, and even NLO, calculations in pQCD

of any process in the Standard Model and also include the use of non-perturbative

QCD models, thereby providing a complete description of the outcome of collisions

between protons. Due to the complexity of the Standard Model, these programs

make use of the probabilistic Monte Carlo integration technique to compute the

kinematic integrals that appear in predictions of cross-section values. Given the

probabilistic nature of the theory, these techniques are well suited to this task and

are further used to determine probabilistically the four-momenta of the produced

particles. This approach to determine the four-momenta of particles is referred to as

event generation. The programs performing these calculations are thus called Monte
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Carlo event generators. These programs provide a fully exclusive final state of a

collision, that is the four-momenta of all particles are specified.

The generation of a particular outcome of a proton-proton collision can be broken

down into different components: the parton distribution functions, which describe

the proton in terms of elementary particles; the matrix elements, which describe

the dynamics of the hard scattering of a given process; the parton shower, which

describes additional particle emissions before and after the hard scattering; the

hadronization, which describes via a non-perturbative QCD model how the colored

elementary particles form composite particles; and the particle decays, which describe

how unstable particles decay to stable particles that can be observed. In addition, the

parts of the proton that did not participate in the hard scattering can still influence

the event and must thus be taken into account in what is known as the underlying

event. These different components of the event generation are all illustrated in

Figure 2–1. They are the topic of the forthcoming sections.

2.2.1 Parton Distribution Functions

When a proton collides at high energy, it is its constituent particles that collide.

Although a proton is made up of three valence quarks, two up quarks and one

down quark, the gluons keeping them bound together can also collide. The gluons

in the proton can in turn split into quark–antiquark pairs, g → qq̄, and one of

these quarks can collide. Other particles than quarks and gluons, such as photons

can also be created by the interactions between the valence quarks and can thus

collide. However, since these interactions are not mediated by the strong force, their
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Figure 1: Pictorial representation of a tt̄h event as produced by an event generator. The hard

interaction (big red blob) is followed by the decay of both top quarks and the Higgs boson (small

red blobs). Additional hard QCD radiation is produced (red) and a secondary interaction takes

place (purple blob) before the final-state partons hadronise (light green blobs) and hadrons decay

(dark green blobs). Photon radiation occurs at any stage (yellow).

colourless hadrons occurs. The parton showers model multiple QCD bremsstrahlung in

an approximation to exact perturbation theory, which is accurate to leading logarithmic

order. At the hadronisation scale, which is of the order of a few ΛQCD, QCD partons are

transformed into primary hadrons (light green blobs) by applying purely phenomenological

fragmentation models having typically around ten parameters to be fitted to data. The

primary hadrons finally are decayed into particles that can be observed in detectors. In

most cases effective theories or simple symmetry arguments are invoked to describe these

decays. Another important feature associated with the decays is QED bremsstrahlung,

which is simulated by techniques that are accurate at leading logarithmic order and, even-

tually, supplemented with exact first-order results. A particularly difficult scenario arises

in hadronic collisions, where remnants of the incoming hadrons may experience secondary

hard or semi-hard interactions. This underlying event is pictorially represented by the

purple blob in figure 1. Such effects are beyond QCD factorisation theorems and there-

fore no complete first-principles theory is available. Instead, phenomenological models are

employed again, with more parameters to be adjusted by using comparisons with data.

Modern event generators. The most prominent examples of event generators are the

highly successful, well-established programs Pythia [1] and Herwig [2]. They have been

constructed over the past decades alongside with experimental discoveries and most of the

features visible in past and present experiments can be described by them. However, the

need for higher precision to meet the challenges of new energy scales occuring at the LHC,

the complexity of final states at those scales, the necessity of maintenance and the wish

to easily implement new physics models have demanded those codes to be rewritten in

a modern programming language providing a higher level of modularity. Object-oriented

– 3 –

Figure 2–1 – Schematic illustration of a hard scattering process in a proton–proton
collision [66]. The three green lines coming from both the left and right of the diagram
represent the valence quarks of the protons and the green ellipses represent the parton
distribution functions of the proton. Initial-state particles are represented in blue,
along possible initial-state particle emissions. The large red circle represents the hard
scattering, producing two top quarks and one Higgs boson. These particles decay,
as indicated by the small red circles, and also emit other gluons and quarks, in red.
The light green ellipses represent the hadronization of the colored particles. Hadrons
decay until stable particles are formed, represented by the dark green circles. Particles
interacting electromagnetically, in yellow, are produced throughout the process. An
additional parton interaction, represented by the purple ellipse, occurs as part of the
underlying event. The softer particles produced, in purple, evolve in a similar way as
those in the hard interaction. The remaining particles of the incoming protons make
up the beam remnants, in cyan, also part of the underlying event.
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interaction probability is smaller and they are often neglected as constituents of the

protons.

The constituents of the proton are called partons. The content of the proton in terms

of partons is described by parton distribution functions (PDFs) as a function of x, the

fraction of the proton momentum carried by the parton. As the interactions inside

the proton involve low energies, where the strong coupling constant is large, the PDFs

cannot be calculated from pQCD and therefore must be inferred from measurements.

However, as quarks can emit gluons, q → qg, and gluons themselves can split into

additional gluons, g → gg, there is an interplay between the PDFs of the quarks

and gluon. At higher energies, there is a higher probability of such gluon and quark

splittings compared to lower energies due to the available larger phase space. The

PDFs thus have a dependence on the energy scale Q of the interaction, of which the

square usually corresponds to the square of the four momentum of the exchanged

particle in the interaction. The energy at which PDFs are evaluated is called the

factorization scale, µf.

The dependence of the PDFs on µf can be described in pQCD via the Dokshitzer–

Gribov–Lipatov–Altarelli–Parisi (DGLAP) evolution equations [67–69]:

d fi(x, µf)

d lnµ2
f

=

∫ 1

x

dz

z

∑
j

Pi←j(z, αS(µf))fj

(x
z
, µf

)
, (2.2)

shown here for the PDF of parton i, fi(x, µf). The sum is over all partons, such

that the equations for the PDFs of the different partons are coupled. The splitting

function Pi←j(z, αS) represents the probability of a parton j to split into a parton i
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with a momentum fraction z. The splitting functions can be calculated perturbatively

in αS, in a way similar to the right-hand side of Equation 2.1, and the expansion

coefficients are known up to the next-to-next-to-leading order (NNLO) [70, 71].

The PDFs represent the number density of a given parton inside the proton in an

interval between x and x + dx at an energy µf. As such, they must respect the

following equations: ∫ 1

0

dx (fi(x, µf)− f̄i(x, µf)) = ni, (2.3)

∑
i

∫ 1

0

dx xfi(x, µf) = 1. (2.4)

In Equation 2.3, i is one of the quark flavours and nu = 2, nd = 1, ns = nc = nb =

nt = 0. In Equation 2.4, i runs over all quark flavours and also the gluon. These

equations respectively have the meaning that the proton has the quantum properties

of its valence quarks and that the sum of the momentum of every parton must be

equal to the proton momentum.

Parton distribution functions have been shown to be independent of the ensuing

hard parton scattering by the factorization theorem [72]. In proton–proton collisions,

this theorem has only been proven for Drell–Yan processes [73], i.e. quark–antiquark

annihilation leading to the pair production of oppositely charged leptons, and inclusive

processes [74], i.e. processes for which the final state is not specified. It is however

believed to hold for processes that are more exclusive, i.e. processes for which the

four-momenta of some final-state particles are specified.
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Since different types of partons can collide when two protons collide, the description

of a process with a given final state is obtained by convoluting the PDFs with the

cross section for a specific partonic initial state, summed over all possible partons:

σpp→X(µr, µf) =

∫ 1

0

dx1

∫ 1

0

dx2
∑
i,j

fi(x1, µf)fj(x2, µf)σ̂ij→X(x1, x2, µr, µf, αS(µr)).

(2.5)

In this equation, the left hand-side is the cross section of the production of the final

state X in proton–proton collisions and σ̂ij→X is the parton-level cross section for

producing X when the partons i and j collide. The dependence of the cross section on

µr and µf is not physical and only appears due to the use of perturbation theory at a

finite order. The dependence on the renormalization scale is associated to divergences

at higher energies than µr. Similarly, the dependence on the factorization scale is

associated to divergences at lower energies than µf. Divergences at high and low

energies are known respectively as ultraviolet and infrared divergences. Usually, for

the purpose of calculating the outcome of collisions, the values of the scales are taken

to be µr = µf = Q.

Several collaborations provide quantitative values for the PDFs, such as those pro-

vided in NNPDF3.0 [75] and CT14 [76]. The PDFs are extracted from data by

parameterizing the PDFs at a low starting scale Q0, evolving the PDFs to the higher

values of µf that correspond to the measurements and using calculations of σ̂ij→X

and Equation 2.5 to obtain predictions for σpp→X . The predicted values of the cross

sections are compared to all relevant measurements and the procedure is repeated by
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varying the values of the PDF parameters until the predictions best agree with the

measurements. This procedure is known as a global PDF fit.

A common PDF parameterization at the starting scale Q0, used in both the NNPDF3.0

and CT14 PDF sets for example, is xfi(x,Q0) = Aix
ai(1 − x)biPi(x), where Ai, ai

and bi are parameters to be fitted and Pi(x) is a function that varies slowly and

that can contain additional parameters. The dependence of the PDF on the exact

choice of the parameterization at Q0 is lost at higher energies through the DGLAP

evolution. The value for Q0 is thus usually taken to be about 1 GeV as this value

is high enough to be in the perturbative region of QCD and low enough that the

PDFs at high energy are not too sensitive on the parameterization. As this energy

is smaller than the mass of either the c or the b quark, the PDFs for these two

types of quarks are set to zero. When the evolution energy scale becomes greater

than their masses, the c- and b-quark PDFs start to become non-zero due to the

DGLAP evolution. Therefore, the contributions of the c and b quarks to the content

of the proton originate solely from gluons splitting into those types of quarks. These

contributions are referred to as the extrinsic quark contributions. The possibility

of non-perturbative contributions, referred to as the intrinsic quark contributions,

has recently been explored for the charm quark in NNPDF3.1 [77] and CT14 [78] by

choosing Q0 ≈ mc and by parameterizing and fitting the charm quark PDF. A small

contribution of intrinsic charm, around 1%, has been found to be compatible with

the measurements used as input to this global PDF fit.

The available PDF sets mainly differ in the choice of Pi(x) in the PDF parameterization

and in the choice of which measurements to include in the PDF fit. For example,
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CT14 uses polynomial functions while NNPDF3.0 uses the output of a neural network.

In general, global PDF fits make use of measurements from a variety of experiments

such as to extend the coverage in the x–Q phase space. Measurements from fixed-

target experiments, such as BCDMS [79] and NuTeV [80], are used to provide input

data at high x and low Q, i.e. x > 0.01 and Q < 10 GeV. Measurements from

deep-inelastic scattering experiments at HERA [81], which measured the results of

collisions between a proton and either an electron or a positron, provide constraints

at low x and moderate Q, i.e. x > 0.0001 and Q < 100 GeV. Measurements from

hadron colliders, such as the Tevatron and the LHC, are used to cover the region at

low x and high Q, i.e. x > 0.0001 and Q < 1 TeV. Cross-section measurements at the

LHC particularly sensitive to PDFs typically involve the production of photons, W

bosons, Z bosons, top–antitop quark pairs and jets [82].5

Parton distribution functions are available at LO, NLO and NNLO in pQCD. The

order of a PDF is determined by the order of the expansion of the splitting functions

in Equation 2.2. Parton distribution functions at different orders can be qualitatively

different. For example, some singularities in the splitting functions used in the DGLAP

equations only start appearing at NLO, changing the behaviour of the b-quark PDF

at small x compared to LO [83]. In order to achieve a consistent theoretical precision,

the parton-level cross sections and the beta function of the strong coupling constant

need to be calculated at the same relative order in pQCD as the PDFs in the global

5Jets are defined in Appendix B.
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PDF fit.6 Similarly, the order of the input PDFs is usually chosen to agree with

the order of the pQCD calculations when predicting cross sections in proton–proton

collisions.

Figure 2–2 shows the NNPDF3.0 PDF set at NLO for two different energy scales:

3.16 GeV and 100 GeV. At the lower energy scale, the b-quark PDF is zero since

the energy scale is below the value of the b-quark mass. In contrast, at the higher

energy scale, which is above the value of the b-quark mass, the PDF of the b quark is

non-zero. For about x > 0.2, the up- and down-quark PDFs are the largest, while for

about x < 0.2 the gluon PDF is the largest. As the energy scale increases, the valence

quarks can radiate an increasing number of gluons, which can split into quarks. This

distributes some of the proton momentum associated to the up and down quarks

to the rest of the partons. Consequently, as the energy scale increases, the gluon

and the quark PDFs increase at low x, while the up- and down-quark PDFs decrease

at high x. Furthermore, since the b-quark has a relatively heavy mass, its PDF is

relatively small. This is because its PDF has not received contributions from the

gluon splittings at the energy scales that are below the value of its mass, while the

PDFs of the lighter quarks did receive the contributions at those energy scales.

6It can be argued that this is not always necessary, for example due to the lack of
precision of the input data [76] or to improve the fit quality [84].
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Figure 2–2 – Parton distribution functions of the proton from NNPDF3.0 at NLO in
pQCD as a function of the fraction of the proton momentum at two energy scales: (a)
Q = 3.16 GeV and (b) Q = 100 GeV. For display purposes, the gluon PDF is divided
by 10 and the PDFs are weighted by the momentum fraction. Due to this weight, the
graphs represent the momentum density associated to a parton type instead of its
number density. No uncertainties are shown.

2.2.2 Matrix Elements

The parton-level cross section in Equation 2.5, describing the large momentum

exchange in proton–proton collisions, can be obtained by computing the matrix

elements (MEs) relevant to a given process. The MEs are complex numbers that

depend on the particle kinematics and dynamics, of which the latter correspond to a

specific arrangement of individual particle interactions. The LO MEs in pQCD are

those with the fewest interactions, while the NLO MEs contain additional interactions

with a gluon. For inclusive processes, NLO MEs can have an additional particle in

the final state. The MEs of the complete process can be categorized into subprocesses

according to the particles in the initial and final states that are involved. To obtain

the cross section associated to a subprocess, all the MEs associated to that subprocess
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are first summed and then multiplied by their complex conjugate, such as to give

a real number. Within a subprocess, interferences between matrix elements thus

happen. The cross section of the complete process is given by the sum of the cross

sections of the different subprocesses, as per the factorization theorem.

For the case of the inclusive production of a photon in association with a bottom

quark in proton–proton collisions, where the bottom quark is not distinguished from

its antiparticle, i.e. both pp → γbX and pp → γb̄X, with X representing possibly

any other particles, the leading order in pQCD correspond to a cross section of order

O(ααS). At this order, if the b-quark PDF is non-zero, only the Compton scattering

subprocess, gb→ γb, can occur. At NLO in pQCD, i.e. O(αα2
S), the additional gluon

interaction increases the number of subprocesses that can occur. The LO and NLO

subprocesses are given in Table 2–3. The NLO MEs that have an additional final-state

particle compared to the LO MEs are referred to as real contributions. The NLO

MEs that contribute to the LO subprocess are referred to as virtual contributions.

Matrix elements can be represented schematically via Feynman diagrams. In those

diagrams, the horizontal axis represents time, from left to right, while the vertical

axis represents space. Fermions are denoted by lines pointing in the forward time

direction, antifermions by lines pointing in the backward time direction, gluons by

curly lines and photons by wavy lines. Figure 2–3 shows the only two MEs possible

at LO for γ + b production: Compton scattering in the s-channel and t-channel. The

s-channel refers to a diagram in which the incoming particles directly interact to

produce a particle that momentarily carries all the incoming four-momentum, while
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Table 2–3 – Subprocesses for the inclusive production of a photon and a bottom
quark, or antibottom quark, in pp collisions at leading and next-to-leading orders in
pQCD. The leading-order subprocess can include virtual contributions. The quark q
represents a specific quark flavour different from b. Additional subprocesses obtained
from the ones listed by exchanging particles to their antiparticles are implied.

LO NLO

gb→ γb gg → γbb̄

gb→ γgb

qb→ γqb

q̄b→ γq̄b

qq̄ → γbb̄

bb̄→ γbb̄

bb→ γbb

(a) (b)

Figure 2–3 – Compton scattering in the (a) s-channel and (b) t-channel. The fermion
lines represent a b quark.
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the t-channel refers to a diagram in which the incoming particles interact indirectly

via an exchanged particle.

At NLO, there are about one hundred diagrams that exist for the γ + b production

process. Figure 2–4 shows examples of NLO diagrams. In all these diagrams, and

those at LO, the fermion lines could be replaced by antifermion lines, to account for

the production of γ + b̄, which is implied.

Figures 2–4(a) and 2–4(b) show examples of virtual contributions at NLO to the

LO Compton scattering. These diagrams have two additional gluon interactions

compared to the LO diagrams. Thus, they are O(αα3
S) contributions to the cross

section, a higher order than NLO. However, since they have the same initial-state and

final-state particles as the LO subprocess, these matrix elements interfere with the

LO ones. The interference terms are O(αα2
S) contributions and must be included for a

complete NLO calculation in pQCD. Also, since they correspond to interference terms,

the virtual contributions can be negative. The loops in the diagrams of the virtual

contributions can carry an arbitrarily large amount of four-momentum and are the

source of the ultraviolet divergences. If the bottom quark is considered to be massless,

as the gluon is also massless, infrared divergences also occur since the four-momentum

can reach zero. The ultraviolet divergences are regularized by redefining the value of

the strong coupling constant such as to include those divergences. The value of the

strong coupling constant can then be obtained through a measurement, circumventing

the limitations of perturbative theory. This step, known as renormalization, however

comes at the cost of introducing an unphysical scale, the renormalization scale µr, in
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(a) (b)

(c) (d)

(e) (f)

Figure 2–4 – Examples of next-to-leading-order contributions. Specifically, the
diagrams show examples of (a) and (b) virtual contributions to Compton scattering,
(c) final-state radiation of a gluon, (d) final-state radiation of a photon, (e) gluon-
splitting creation of b quarks and (f) t-channel creation of b quarks. The fermion
lines represent a b quark in (a), (b), (c) and (f). In (d) and (e), the incoming fermion
lines represent a quark–antiquark pair of any flavour and the outgoing fermion lines
represent a bottom–antibottom quark pair.
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the calculation of the cross section. This step also creates the running of the strong

coupling constant, as its value now depends on µr.

Examples of real contributions at NLO to the γ+b cross section are given in Figures 2–

4(c) and 2–4(d), showing different subprocesses. These diagrams represent the emission

of a photon or a gluon from the final-state particles, known as final-state radiation.

Radiation of a photon or a gluon from initial-state particles can also happen and is

known as initial-state radiation. Since the photon and the gluon are massless, infrared

divergences arise when quarks are considered as massless partons and the energy of

the emitted particle goes to zero or when it is perfectly collinear to the particle that

emitted it. In the case of the diagram with a radiated gluon, the infrared divergences

cancel those appearing in the virtual contributions and the sum of the real and virtual

contributions gives a finite contribution to the cross section. This is assured by the

Kinoshita–Lee–Nauenberg theorem [85, 86] for inclusive observables in pQCD, which

states that these divergences cancel between real and virtual contributions to give

finite cross sections at each order of the perturbative expansion. Inclusive observables

could be jets for example, for which both the real and virtual contributions give rise to

the same final state. The Bloch–Nordsieck theorem [87] assures a similar cancellation

of infrared divergences for radiated photons. The same idea of inclusiveness also

applies for photons since photons with arbitrarily low energy cannot be distinguished

from no photon emission at all, thus giving rise to the same final state between real

and virtual contributions. However, in the case of the diagram describing the real

contribution of a radiated photon, since the process without the radiated photon,

qq̄ → bb̄ is of no relevance to the γ + b production and therefore not considered, there
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is no virtual contribution to cancel the divergences. The infrared divergences remain

and must be regularized in a different way, as discussed in Section 2.3.1.

Figures 2–4(e) and 2–4(f) give other examples of real contributions at NLO. In

particular, these show examples of the dynamic creation of bottom quarks, that is

the b quark in the final state is not present in the initial state. In addition to the

quark–antiquark annihilation leading to gluon splitting and to the gluon-fusion t-

channel flavour excitation, the quark–antiquark annihilation s-channel flavour creation

subprocess shown in Figure 2–4(d) also creates bottom quarks dynamically. The case

of the gluon-splitting diagram is unique as a collinear divergence associated to the

splitting of the gluon can occur. If the bottom quarks are considered to be massive,

no divergence happens as the non-zero mass restricts the four-momentum from going

to zero. However, if the calculation of the ME is done in the approximation that

the b quark is massless, a collinear divergence does occur. This divergence is not

compensated by virtual contributions since the subprocess without gluon splitting,

qq̄ → γg, is not considered in the γ+ b production. Ways to regularize this divergence

are discussed in Section 2.3.2.

As can be seen from the diagrams, the b quark produced in Compton scattering is

directly related to the b quark in the initial state. In other words, it is sensitive to the

b-quark PDF. On the other hand, the subprocesses related to the dynamical creation

of b quarks are not directly sensitive to the b-quark PDF.
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2.2.3 Parton Shower

The convolution of the PDFs with the parton-level cross sections as in Equation 2.5

provides a prediction for the γ+ b production cross section in proton–proton collisions.

However, as the energy scale goes down from the high-momentum exchange of the

collision, Q, to a perturbative energy scale close to the non-perturbative transition

of quarks into hadrons, Qhad ≈ 1 GeV, the value of the strong coupling constant

increases. This increase is of particular importance in the collinear and low-energy

regimes associated with parton splittings, where divergences appear. Each parton

splitting in these regimes give rise to logarithms of the different energy scales, thus

to terms proportional to αS(Q) ln(Q/Qhad). These terms are O(1) since αS(Q) =

(b0 ln(Q/Qhad))
−1, as can be obtained by integrating Equation 2.1 when considering

only the b0 term, and since b0 is itself O(1). These additional collinear and low-energy

contributions, compared to what is predicted by LO and NLO pQCD calculations,

cannot be ignored to obtain an accurate calculation of the cross section. They can

be accounted for by considering the change in the matrix elements, and thus in

the cross section, that is caused by parton emissions in these regimes. As multiple

such emissions can happen between the energy scales Q and Qhad, not only from the

original parton but also from the partons that were themselves produced in previous

splittings, this technique is referred to as a parton shower. Parton emissions are

assumed to be independent of one another. Each emission gives rise to a factor of

αS multiplied by a logarithm. This type of correction thus takes into account, at all

orders in αS, a subset of the complete higher-order pQCD correction, referred to as

the leading logarithm terms.
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Considering the parton splitting i → jk, with four-momentum conservation rule

Pi = Pj + Pk, and defining t = P 2
i , the small angle approximation gives for massless

partons:

t = 2EjEk(1− cos θ) ≈ EjEkθ
2, (2.6)

where θ is the separation angle between partons j and k. The relation between the

cross section before the splitting, σN , and after, σN+1, is

σN+1 = σN

∫
dt

t

αS(t)

2π

∫
dz P ′j←i(z). (2.7)

The logarithmic nature of the divergence in the collinear regime, i.e. θ → 0, in

particular can be seen from that equation. The splitting functions P ′j←i(z), where z

is the energy fraction carried by the parton j relative to parton i, are related to the

possible divergences at low energy. The splitting functions are similar to those in the

DGLAP equations 2.2, but with the exception that some of them are singular at z = 0

and z = 1. These singularities are associated with the emission of a low-energy gluon

and can occur even if the quark from which the gluon is emitted is not considered to

be massless. In practice, the singularities do not come as an issue, since the energy

only goes down to Qhad and not 0. The splitting functions are usually considered at

LO, but parton showers at NLO have recently started to be considered [88].

The collinear divergences affect the emissions of either quarks or gluons, while the

low-energy divergences only happens for gluon emissions. Considering the more

generally applicable case of collinear divergences, the probability that a parton i does

not split in the final state of the hard scattering when it evolves down from the energy
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scale t2 to t1 is given by the QCD Sudakov form factor [89, 90]:

Si(t1, t2) = exp

(
−
∫ t2

t1

dt

t

αS(t)

2π

∫
dz
∑
j

P ′j←i(z)

)
, (2.8)

where the limits of the integral with respect to z depend on t. Given a starting scale

t2, the scale t1 at which a splitting occurs can be obtained via a Monte Carlo (MC)

method by generating the uniform random number Si(t1, t2) between 0 and 1 and

solving the previous equation for t1 [91]. For each of those splittings, the value of

the energy fraction z is generated in a similar way: generating a uniform random

number between 0 and 1 and solving for z the normalized cumulative distribution of

the splitting functions that corresponds to that random number. This procedure is

iteratively repeated, from the starting scale Q until t1 is smaller than the value of t

corresponding to Qhad, at which point the shower stops.

Equation 2.8 describes the evolution of partons from the high energies of the scattering

calculated by the matrix elements down to the non-perturbative energies. Such a

description is natural for final-state partons and a similar description can also be used

for initial-state partons, which can split before they enter the matrix element. To

ensure the kinematics of the matrix element are correct, the parton evolution is still

done from high to low energies, although this is backwards in time. In contrast to the

final-state showers, the low-energy regime of the initial-state showers is described by

the PDFs. The effect on the cross section of a parton splitting, i→ j, in the initial

state is thus

σN+1(x) = σN(x)

∫
dt

t

αS(t)

2π

∫
dz P ′j←i(z)

fi
(
x
z
, t
)

fj(x, t)
. (2.9)
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The PDF multiplying the cross section in the factorization theorem changes upon the

presence of the splitting. If no splitting occurred, the parton j participating in the

matrix element with a fraction x of the proton momentum is described directly by

the PDF. If the splitting occurred, the PDF must instead describe parton i with a

momentum fraction increased to x/z such as to recover, after the splitting, the value

x that enters into the calculation of the cross section. The ratio of the PDFs enforces

the change of PDFs in the factorization theorem. The corresponding Sudakov form

factor for initial-state showers [92] is

Sj(x, t1, t2) = exp

(
−
∫ t2

t1

dt

t

αS(t)

2π

∫ 1

x

dz

z

∑
i

P ′j←i(z)
fi
(
x
z
, t
)

fj(x, t)

)
. (2.10)

The MC method can also be applied here with the modification that the energy

fraction z is to be generated following the cumulative distribution of the product of

the splitting function and the numerator of the PDF ratio.

PDFs are thus not only used in the calculation of the cross section via the factorization

theorem but also in initial-state showers. Parton showers are not used in global PDF

fits as the convolution between the PDFs and the parton-level cross sections cannot be

easily implemented. Also, the previous discussion implies that PDFs can be interpreted

as having already resummed the contributions of collinear parton splittings up to

the scale µf at which they are evaluated. In other words, the PDFs regularize the

initial-state infrared divergences. This is possible since the PDFs are obtained from

measurements, which are not affected by divergences. However, this regularization

comes at the cost of introducing a dependence on the unphysical scale µf in the

calculation of the cross section.
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The large masses of heavy quarks such as the bottom quark have various effects on

the parton shower. For example, as mb > Qhad, where mb is the mass of the bottom

quark, the natural cutoff for the evolution towards low energy becomes the mass of the

bottom quark instead of Qhad, thus ending sooner. In comparison to massless quarks,

the heavy quarks produced in the matrix element will carry a larger fraction of their

momenta until the end of the shower. On the other hand, fewer heavy quarks will be

produced in the shower. Other effects in the parton shower related to non-zero masses

can be assessed either by correcting the parton shower based on the calculations of

matrix elements [93] or by modifying the splitting functions [94].

In the discussion up to now, the parton showers have been evolved with the square of

the parton four-momentum in the small angle approximation. Other approaches make

use of different evolution variables, such as the separation angle, θ, or the transverse

momentum relative to the splitting parton, and of different splitting functions making

different approximations. The separation angle is a particularly interesting evolution

variable as it provides a good description of the divergences specific to low-energy

gluon emissions, which can happen even at large separation angles. A low-energy

gluon emitted at a large angle could have originated from different partons in the

scattering, it is not strictly associated to a single parton as is the case in collinear

emissions. An interference between the emissions from the different partons occur.

The evolution variable θ allows to properly consider this interference. An alternative

to using θ as the evolution variable that still produces coherent low-energy emissions

is considering parton splittings from dipoles instead of individual partons. This is

essentially considering splittings as 2 → 3 processes instead of as 1 → 2. For example,
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the Catani-Seymour dipole splitting functions [95] describe such kind of splittings.

These allow to correlate the parton undergoing a splitting with the parton that does

not and thus provide a different approximation of the splitting process.

2.2.4 Hadronization

After the parton shower, all quarks and gluons are free particles at the energy scale

Qhad. As the energy decreases towards ΛQCD, the strong coupling constant becomes

large enough to spoil the convergence of the perturbative expansion in QCD. At

these energies, the phenomenon of color confinement happens [96]. The colored

particles stop evolving freely and instead become bound into baryons and mesons,

i.e. particles with no color. This transition from partons to hadrons is known as

hadronization. As hadronization is in the realm of non-perturbative QCD, it cannot

be calculated from first principles. Instead, models based on the properties of QCD

and the phenomenology of hadrons are developed. They take as input the colored

particles produced in the parton showers, create quark pairs as necessary and output

hadrons and their kinematics.

Several hadronization models have been used in the past [97, 98], but modern MC

event generators mainly use two models, which can have their variants: the cluster

model [99] and the string model [100]. These non-perturbative QCD models have

differences that can be significant, or not, in the produced hadrons. It is this inherent

uncertainty in the hadronization that makes the photon an interesting probe to study

QCD. As the photon is not colored, it does not hadronize and is not affected by the

modelling of the hadronization and of other QCD effects.
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The descriptions of the cluster and string models follow.

Cluster model The cluster model, illustrated in Figure 2–5(a), is based on color

preconfinement [101]. It is the phenomenological observation that colored

particles produced in the parton shower are organized in groups in such a way

that the groups, called clusters, are not colored. As gluons are not valence

constituents of hadrons, they are manually split into quarks with the quarks

going into different clusters, thus separating the clusters. The shape of the

mass distribution of these clusters does not depend on the collision energy, only

on Qhad. This universality of the mass distribution makes clusters a robust

way to describe hadrons. The mass distribution of clusters peaks at around

Qhad and steeply falls down at higher masses, with clusters having a typical

mass of about 3Qhad. Clusters with large masses are broken into two clusters

along an axis defined by the original quarks until the masses of the clusters

are below some cutoff value. The clusters then decay isotropically into two

hadrons. Alternatively, low-mass clusters can transition readily to a single

hadron. The specific hadrons produced follow a probability distribution based

on the available kinematic phase-space, the quark flavours and the spins of the

hadrons.

String model The string model, illustrated in Figure 2–5(b), is based on the de-

scription of color confinement as a linear potential between two quarks with

a proportionality constant of about 1 GeV/fm [103]. As the distance between

the quarks from the parton shower increases, the field lines of the strong force

form a tube, i.e. a string, between the quarks. The energy increases linearly
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(a) (b)

Figure 2–5 – Illustrations of hadronization models for a generic scattering process: (a)
the cluster model and (b) the string model [102]. The grey regions in (a) represent
the clusters and in (b) the strings.

until it becomes energetically favorable to create a pair of massless quarks.

A gluon produced in the parton shower in-between quarks will stretch the

string perpendicularly. The creation of quark–antiquark pairs will happen at an

angle compared to the original direction of the string, thus creating transverse

momentum in the otherwise one-dimensional string. This procedure is repeated

until the energy of the string cannot create additional quark–antiquark pairs.

The pairs then form mesons. To form baryons, the creation of a pair of diquarks,

two loosely bound quarks, can happen instead of a quark–antiquark pair. The

types of hadrons produced are based on the quark flavours and the spins of the

hadrons. The kinematics of the hadrons follow a given functional form.

39



2.2.5 Particle Decays

The hadrons produced in the hadronization are not necessarily stable relative to the

time scale relevant for their detection. Unstable hadrons can decay via the strong,

electromagnetic and weak forces. These decays must be taken into account by the

MC event generators to have a realistic description of proton–proton collisions. Most

particles that can be detected are produced in this step.

Unstable hadrons are made to decay into all possible combinations of stable particles,

which are O(1000). The branching fractions of each decay channel follow the mea-

sured values [54]. However, some decay channels have not been measured or have

inconsistencies. In particular, this is the case for hadrons containing heavy quarks.

Approximations have to be made to ensure that the lifetimes of the hadrons are

consistent with the sums of the branching fractions of each decay channel. These

approximations can change the production of some hadrons. As changing the pa-

rameterization of the hadronization can also change the production of these hadrons,

the modelling of these two aspects must be coherent to ensure the measured hadron

abundances are correctly reproduced.

The four-momenta of the particles produced in the decays follow the available phase-

space. They can however be corrected by matrix elements to take into account

correlations among the produced particles. The decays of hadrons containing heavy

quarks are especially complex due to their large masses and successive decays of their

decay products. The complete decay chain can be considered at once to keep all

correlations among the produced particles.
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2.2.6 Underlying Event

The theoretical description of the large-momentum scattering in proton–proton

collisions, from PDFs to stable particles that can be detected, is not sufficient to fully

describe proton–proton collisions. While some constituents of the proton entered the

hard scattering described by the matrix elements, the remaining constituents of the

protons can also interact between the two protons. This additional activity in the

event is called the underlying event of the hard collision.

To understand its contribution, the total scattering cross section of the collision of

two protons can be divided into three categories, where the fractional contributions

are derived from the predicted cross sections [104]:

• Elastic scattering, in which the two protons remain intact after the scattering.

No exchange of color happens and no new particles are created. It amounts to

approximately 25% of the total cross section.

• Inelastic diffractive scattering, in which one proton, or both, dissociate and

do not remain intact after the scattering. No color exchange happens but new

particles are created by the dissociation. This category corresponds to about

20% of the total cross section.

• Inelastic non-diffractive scattering, in which a color exchange between the

protons and the creation of new particles happens. Parton–parton scatterings

that can be described by pQCD fall in this category. It represents around 55%

of the total cross section.
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Therefore, the underlying event is defined in inelastic non-diffractive proton–proton

scattering and is believed to come from additional parton interactions. Multiple

parton interactions (MPI) can thus occur in addition to the hard parton interaction.

From the PDFs of Figure 2–2, it can be expected that MPI is the result of the

scattering of soft gluons, due to their prevalence. This low-momentum region borders

the realm of non-perturbative QCD and as such models describing MPI have been

conceived [105]. The average number of parton interactions in a given inelastic proton–

proton collision can be larger than one [106]. The exact number can be expected to

follow a Poisson distribution as the interactions should be approximately independent.

This approximation is however subjected to the constraint that momentum must be

conserved, reducing the number of events with a large number of parton interactions.

The underlying event contains on average more parton interactions than the average

inelastic collision, a phenomenon known as the pedestal effect [107]. This can be

understood as a selection bias. The underlying event is defined for events containing

a large-momentum exchange. A given collision is more likely to have such a large-

momentum exchange if it contains more than one parton interaction.

The new particles that are created in the underlying event can shower and hadronize.

The inclusion of the effects of the underlying event is thus an essential part of the MC

event generators. Beyond the production of new particles, the effects can also include

the MPI affecting the particles produced in the hard parton interaction through

parton rescattering and interleaved showers [108]. Furthermore, the partons in the

protons that did not scatter, the beam remnants, are still correlated to the rest of
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the event. Although they do not produce measurable particles, they can still affect

the event. Models of these effects of the underlying event have been devised [109].

2.2.7 Generator Tuning

The non-perturbative models of the previous sections make use of a multitude of

parameters that are a priori unknown and which can be adjusted, or tuned, to provide

a better description of the data. Some observables are more sensitive to certain

parameters of the event generation than others. Measurements of these observables

can be used to constrain specific subsets of parameters. Also, as models mainly

describe non-perturbative QCD, that is phenomena at low energy, parameter tunes

are determined separately for the underlying event and for the average inelastic

collision, since they correspond to different amounts of low-momentum scattering

activity.

2.3 Signal Cross-section Predictions

Predictions of the inclusive γ + b production cross section can be obtained at LO

in pQCD with the Pythia [110] and Sherpa [66] event generators. Both of these

generators include the various steps discussed in the previous section and thus

generate stable particles for a given physical process. The two generators differ in

their predictions due to the use of different modelling options at the various steps of

the event generation. Their main differences are now discussed.

In Pythia, matrix elements are calculated for 2 → 2 processes, i.e. processes with

two initial-state particles and two final-state particles. The parton shower is evolved

as a function of the transverse momentum of the partons. Usual 1 → 2 parton
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splitting is used instead of dipoles, but the parton kinematics follow that of dipoles.

The combination of transverse momentum and dipole kinematics ensures coherent

low-energy gluon emissions [111]. Furthermore, the initial-state parton shower is

interleaved with multiple parton interactions. Partons that have already participated

in the hard scattering can also rescatter. The string model is used for hadronization.

In Sherpa, matrix elements can be calculated not only for 2 → 2 processes but also

for real contributions up to 2 → N , where N is arbitrarily large and only limited by

computing power. Virtual contributions are not included such that the calculations

are still formally at LO in pQCD, although NLO and higher-order effects are partly

included, i.e. up to O(ααN−1
S ) for γ + b. The transverse momentum is used to evolve

the parton shower to low energies and the splitting procedure is based on Catani-

Seymour dipoles. The hadronization model is based on a modification of the cluster

model that improves some aspects of the cluster formation and decay [112]. The use

of matrix elements of different multiplicities with a parton shower is referred to as a

calculation in the ME+PS scheme. In this scheme, parton showers following a 2 → 2

process can generate jets with similar kinematics as the real contributions of the

higher multiplicity processes, thus duplicating the contributions of these jets. The

double counting of these contributions can be avoided by enforcing that a jet must

come from a real contribution to the matrix element if it is above a given combined

energy scale and angular separation, known as the merging scale Qcut, and from the

parton shower if not. This procedure of merging real contributions of different jet

multiplicities with the parton shower is implemented in Sherpa with a theoretically
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motivated jet algorithm [113].7 This approach makes use of the better modelling

properties at collinear angles and low energies of the parton shower and that of the

high-multiplicity matrix element in the rest of the phase-space.

In addition to the LO pQCD predictions of Pythia and Sherpa, predictions for NLO

matrix elements are obtained with MadGraph5_aMC@NLO [115]. This software

can calculate LO and NLO matrix elements for a large variety of processes, but it

does not implement non-perturbative QCD models. However, MC event generators

can be interfaced to those calculations to obtain a complete exclusive description of

the event in terms of stable particles, i.e. matching the matrix elements to the parton

shower. In that case, the NLO+PS calculation scheme is used, where PS refers to

the parton shower and to the other aspects of the event generation. In this scheme,

similarly to the ME+PS scheme, a double counting of the real contributions and of

the parton emissions from the parton shower must be avoided. However, the presence

of virtual contributions complicates things as cancellations of infrared divergences

must be maintained between the virtual and the real contributions. Two prescriptions

can be used: MC@NLO [116], which uses the parton shower as a counter term in the

calculation of the cross section to cancel the double counting, and POWHEG [117],

which scales the cross section from LO to NLO and modifies the Sudakov factor of the

parton shower to avoid the double counting. Differences in predictions between the

two prescriptions can occur in regions of the kinematic phase space that are sensitive

7The second major version of Sherpa, Sherpa 2, also allows this procedure to
be done at NLO in pQCD, in the MEPS@NLO scheme [114].
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to higher order effects. MadGraph5_aMC@NLO uses the MC@NLO prescription

to provide NLO+PS predictions. MadGraph5_aMC@NLO also allows a merging

of matrix elements of different jet multiplicities at NLO, similarly to Sherpa, using

the FxFx scheme [118]. However, this approach cannot be used for processes that

contain a bottom quark or a jet in their final state at LO, such as γ + b production.

The Jetphox [119] and Diphox [120] computer programs are also often used to

provide dedicated NLO calculations of cross sections for the production of prompt

photons, as is done for example in Refs. [36, 121]. Although they cannot currently

provide predictions for the production of γ + b, they could be modified to allow for

such predictions [122].

The difficulties in the modelling of prompt photons and b quarks that arise in the

predictions of the γ + b cross section are discussed in the following sections. A

discussion of the exact theoretical predictions that are compared to the measurement

presented in this thesis ends this chapter.

2.3.1 Prompt Photon Divergences

As mentioned in Section 2.2.2, the production of photons is affected by infrared

divergences. The divergence at low energy is avoided by simply requiring the photon

to be above some finite value of transverse momentum. Although the divergence is

avoided, this cut reduces the total phase space to a fiducial phase space. This fiducial

cut is motivated by the impossibility of measuring arbitrarily small photon energies.

The collinear divergence can be regulated in two ways: by using parton-to-photon

fragmentation functions or by requiring the photon to be isolated from other particles.
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The fragmentation functions (FFs) are essentially the opposite of the PDFs. Whereas

PDFs describe the probability that a given parton inside a hadron initiates a high-

energy collision, FFs describe the probability of producing a hadron, or a photon,

from a given final-state parton. They depend on the momentum fraction of the

parton and on a new unphysical energy scale at which the fragmentation occurs, the

fragmentation scale µf. The scale evolution can be described in terms of analogous

equations to the DGLAP equations and with the additional splitting q → qγ for

photon FFs. As for the PDFs, the FFs are convoluted with the parton-level cross

section, giving predictions in terms of specific final-state hadrons, or photons, instead

of partons. While the PDFs absorb collinear divergences in the initial state, the FFs

absorb collinear divergences in the final state. Due to being sensitive to this non-

perturbative regime, their exact values are extracted from measurements, similarly to

the PDFs.

The Bourhis–Fontannaz–Guillet gluon-to-photon and quark-to-photon FFs [123] are

the most modern photon FFs. Figure 2–6 shows their representation in Feynman

diagrams. Without the fragmentation part, these diagrams are formally O(α2
S).

However, the fragmentation functions are O(α/αS) [123]. They bring the diagrams to

the same order as the LO diagrams, O(ααS). The production cross section of photons

from fragmentation is thus commensurate to that of photons from the hard scatter,

referred to as direct photons. These two contributions make up the production of

prompt photons. The production of fragmentation photons is taken into account in

the calculations of Jetphox and Diphox up to NLO, thus requiring calculations

of diagrams with only quarks and gluons in the final state, formally at order α3
S.
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(a) (b)

Figure 2–6 – Production of photons through fragmentation from a (a) gluon and
(b) quark. The filled circles represent the gluon-to-photon and quark-to-photon
fragmentation respectively. In (a), the fermion lines represent a b quark, while in (b)
the fermion lines at the top represent a b quark and the fermion lines at the bottom
represent a quark of any flavour.

This fragmentation contribution is shown to be important at small values of photon

transverse energy [124]. Additionally, some observables can distinguish between

the contributions of fragmentation and direct photons due to the unique t-channel

gluon exchange diagram of Figure 2–6(b), which occurs at O(ααS) for the former

contribution but not for the latter [40].

Sherpa and MadGraph5_aMC@NLO do not include the contribution of fragmen-

tation photons in the cross sections of prompt photons. Instead, as the collinear

divergences are associated to the production of photons close, in the angular phase-

space, to other partons, an isolation requirement is imposed. The isolation requirement

restricts the energy sum of the particles that are angularly close to the photon to

be below some given value. This cuts away a significant fraction of the contribution

of fragmentation photons, while keeping the contribution of direct photons mostly

intact. Thus, this approach avoids altogether the calculation of the fragmentation

contribution, at the cost of adding the fiducial isolation cut. However, a similar
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fiducial isolation cut is required in any case, even with the fragmentation function

approach, for experimental reasons that will be discussed in Section 4.2.3. Thus, for

a well-chosen isolation cut, this approach has effectively no more drawbacks than the

fragmentation function approach.

The photon isolation requirement can be implemented in different ways. An appro-

priate isolation definition is given by the Frixione isolation criterion [125]:

∑
i

ET,i θ(δ −∆Riγ) ≤ ϵγET,γ

(
1− cos δ

1− cos δ0

)n

, ∀δ ≤ δ0, (2.11)

where the sum runs over all partons, θ(x) is the Heaviside step function, ∆Riγ is the an-

gular distance between parton i and the photon, i.e. ∆Riγ =
√
(yi − yγ)2 + (ϕi − ϕγ)2

and δ0, ϵγ and n are parameters. In words, this isolation requires that, for all angular

distances below a given value δ0, the sum of transverse energies of all particles within

that angular distance is below a certain value, which smoothly decreases as the angular

distance decreases. Such a requirement removes the possibility of having partons

collinear to photons, as desired, while not restricting the production of low-energy

gluons. This last point is important as the low-energy gluons must be produced

inclusively, since they are associated to the parton-splitting infrared divergences.

The Frixione isolation criterion is therefore infrared safe, i.e. infrared divergences

from real and virtual contributions properly cancel. This type of isolation is used in

MadGraph5_aMC@NLO. Sherpa uses instead a simpler isolation cut that only

requires that all partons are not within a cone around the photon: ∆Riγ > δ0 for

every parton i and some value δ0. This is not infrared safe, since it rejects events
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in which low-energy gluons lie in that cone, but it does not cause problems in this

specific case as Sherpa does not compute virtual contributions.

Pythia is a particular case as it only calculates 2 → 2 processes such that no

photons are radiated from quarks in the matrix element. No collinear divergences are

encountered. However, to approximate the effects of these radiative photons, photons

are emitted in the parton shower through the splitting q → qγ. The production of

these bremsstrahlung photons requires the additional calculation of all 2 → 2 LO

matrix elements with two partons in the final state, which are O(α2
S).

2.3.2 Bottom Quark Divergences

After jet formation and cancellation of the infrared divergences between the real

and virtual contributions, two infrared divergences remain related to the parton

splittings. One of them is a divergence related to jets at low energy. Low-energy

gluons emitted at large angles could be considered as separate jets, implying that

the infrared divergences would not cancel between real and virtual contributions

since they would have different final states. This divergence can be regularized by

imposing a minimum value on the transverse momentum of the jet, similarly to the

photon. The second remaining divergence, which is more problematic, is the collinear

divergence from the gluon-splitting process of Figure 2–4(e), as already discussed in

Section 2.2.2.

In general, infrared divergences related to parton splittings are due to terms pro-

portional to ln(Q/mq), where mq is the mass of the quark. For the up, down and

strange quarks, the values of their masses are smaller than the energy scale below
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which pQCD calculations are possible, i.e. mq ≪ ΛQCD. As such, their masses cannot

be included in pQCD calculations and the quarks are taken to be massless, which

creates the divergences. On the other hand, the value of the mass of the bottom

quark is much higher than the perturbative scale of QCD, that is mb ≫ ΛQCD. This

implies that the logarithmic terms can be included explicitly in pQCD calculations, in

contrast to the case of the lighter quarks. The ways the collinear divergence associated

to the gluon splitting into bottom quarks can be regularized depend on whether terms

proportional to ln(Q/mb) are included explicitly in the pQCD calculations or not.

If the logarithmic terms are included explicitly in the matrix element, the calculation

is said to be in the four-flavour (4F) scheme and the bottom quark is considered to

be massive, while if they are not included explicitly, the b quark is treated as any

other parton and the calculation is said to be in the five-flavour (5F) scheme. Other

calculation schemes have also been devised [83]. The numbers in the names of these

two schemes are a reference to the number of quarks considered to be massless. In

all cases, the parton shower is performed with massive quarks as otherwise b quarks

would be overproduced and would also end up being too soft due to a larger number

of gluon emissions [126]. Predictions in these two schemes can differ. For example,

the evolution in energy of the strong coupling constant is different, as it depends on

the number of massless quarks. Also, the splitting functions can be different if the

mass effects are taken into account, leading to different showers and jet kinematics. It

is important however to note that any prediction differences between two schemes are

due to the finite expansion of pQCD. An all-order calculation in a given scheme would
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agree with an all-order calculation in the other. In other words, the two schemes

simply represent different ways of rearranging terms in the perturbative expansion.

In the 4F scheme, the terms proportional to ln(Q/mb) are kept in the calculation

of the matrix element as well as other terms dependent on mb, which are power

suppressed. As long as Q ≈ mb, the logarithm will be small and will not spoil the

convergence of the pQCD series. This suggests that the 4F scheme is better suited at

energies closer to the mass of the bottom quark. As the logarithm is considered to be

small, no infrared divergences related to the bottom quarks occur. The large value of

their mass serves as an infrared cutoff. In particular, no jets need to be formed from

the b quarks and no minimum transverse momentum needs to be required. Having

no infrared divergences in the final state implies that no special consideration need

to be made concerning the produced b quarks from the gluon splitting in particular.

Similarly, having no divergences in the initial state implies that a PDF is not needed

to describe the effects of b quarks prior to the hard scattering, as the splittings are

included explicitly in the matrix element. Consequently, no b quarks can be in the

initial state of the matrix elements. All b quarks are created in pairs from gluon

splittings in the matrix element.8 This means that the 2 → 2 Compton scattering

diagrams do not represent a valid process in the 4F scheme. The lowest order at

which a photon and a b quark can be produced in proton–proton collisions is O(αα2
S).

The production of γ + b is really the production of γ + b + b̄ in that scheme. The

8Bottom quarks can also be produced individually via an interaction with a W
boson.
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Table 2–4 – Subprocesses for the inclusive γ + b production in pp collisions in the
four-flavour scheme at leading and next-to-leading orders in pQCD. The leading-order
subprocesses can include virtual contributions. The quark q represents a specific
quark flavour different from b. Additional subprocesses obtained from the ones listed
by exchanging particles to their antiparticles are implied.

LO NLO

gg → γbb̄ gg → γbb̄g

qq̄ → γbb̄ qq̄ → γbb̄g

gq → γbb̄q

LO diagrams become those of Figures 2–4(d), 2–4(e) and 2–4(f), among others.

The NLO diagrams have additional gluon interactions, with the real contributions

representing 2 → 4 processes at O(αα3
S). A list of the LO and NLO subprocesses for

γ + b production in the 4F scheme is given in Table 2–4. Although the number of

subprocesses is smaller than when considering a non-zero b-quark PDF, the matrix

elements they represent are more complex. About a thousand diagrams need to be

calculated at NLO. Jet formation still needs to be done with the partons, excluding

the bottom quarks, such as to have infrared safe observables. Then, the bottom

quarks can be showered and hadronized similarly to the other partons if passed to an

MC event generator.

In the 5F scheme, the terms proportional to ln(Q/mb) are considered to be divergent

and cannot be included in the matrix element. Initial- and final-state infrared

divergences must be regularized. As the logarithms do not appear explicitly in

the calculations, this scheme is better suited for interaction energies that are large
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compared to the mass of the b quark. The regularization of the initial-state divergences

is done by using a b-quark PDF, since PDFs resum the large logarithms associated to

collinear splittings at all orders in pQCD. Matrix elements with initial-state b quarks

are thus allowed and the diagrams discussed in Section 2.2.2 are relevant to the 5F

scheme. Since the matrix elements are different between the 4F and 5F schemes,

along with the aforementioned differences in the evolution of αS and the splitting

functions, a given scheme might be better suited than the other to predict certain

observables or certain processes.

The final-state splitting of the gluon into collinear b quarks creates a divergence in

the 5F scheme, in contrast to the 4F scheme. The divergence can be regularized in

three ways: by introducing an infrared cutoff, by using parton-to-hadron FFs or by

forming flavour-kt b-jets. These approaches aim to solve the issue of the divergence

at the parton level. They are now described.

Cutoff approach The cutoff approach simply regularizes directly the collinear di-

vergence by constraining the gluon to have an invariant mass of at least twice

the mass of the bottom quark. In other words, the b quark is considered to be

massive for that particular subprocess. Therefore, the logarithm is cut off by

the mass of the b quark, as in the 4F scheme and does not diverge. With the

gluon-splitting divergence regularized, jet formation can follow for the other

partons. As this approach needs the mass of the b quark to be different for

different subprocesses, it requires a dedicated parton-level calculation, which is

not available for γ + b production.
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FF approach The FF approach uses parton-to-hadron FFs to regularize collinear

divergences. It follows the same idea as for the photon FFs, discussed in

the previous section: the FFs resum final-state collinear divergences at all

perturbative orders. The transition from partons in the matrix element to

hadrons containing at least one bottom or antibottom quark, referred to as

a b hadron, is then performed with FFs obtained from measurements [127].

Similarly to the photon case, the use of FFs requires the introduction of the new

unphysical fragmentation scale µf. Not all relevant FFs have been measured

however, such that predictions using this approach have an inherent uncertainty

related to the choice of modelling of the missing information. A similar approach

is the use of FFs transitioning partons to a b quark, instead of b hadrons. This

approach has been pursued for the charm quark in Ref. [128]. No current

calculations of γ+b production make use of FFs, but Diphox could be modified

to follow this approach.

Flavour-kt approach The flavour-kt approach relies on forming jets that can dis-

tinguish b quarks against the other partons. The flavour-kt algorithm [129] is

such an appropriate algorithm since it is infrared safe in forming b-jets, i.e. jets

initiated by bottom or antibottom quarks.9 By requiring that the partonic final

state contains such a b-jet instead of a b quark, the gluon-splitting diagram

is not considered to be part of the relevant process since its jet is initiated

9The flavour-kt algorithm is defined in Appendix B.
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by a gluon and not by a b quark. Thus, this procedure avoids its divergence

altogether. Jetphox could be modified to make use of this approach. However,

b-jets defined that way are experimentally hard to measure and this approach

is not followed further to make predictions.

Considering that the three previous parton-level approaches are not adequate in

their current state to provide predictions, the alternative of particle-level predictions

is considered. At this level, the flavour-kt approach can be modified by using an

experimentally accessible definition of b-jets. In this approach, b-jets are defined as

jets containing at least one b hadron. This jet definition is not infrared safe, but the

infrared effects have already been taken into account, as the jet formation is done at

the particle level, such that this is not an issue. Since jets are identified as b-jets only

at the particle level, all matrix elements producing a photon and a parton must be

considered. These are necessary as a gluon splitting into b quarks, thus creating a

b-jet, can originate from any parton. In this case, several hundred diagrams need to

be calculated. By considering all such matrix elements, the infrared divergences are

then cancelled between the real and virtual contributions, after jet formation. This is

the case in particular for the collinear divergence associated to the gluon splitting into

b quarks, since the corresponding virtual contribution, qq̄ → γg, becomes relevant to

γ + b production. This is the approach used to produce predictions with Pythia,

Sherpa and MadGraph5_aMC@NLO.

An inconvenience of the predictions in the previous approach in comparison to those

in the parton-level approaches is that they cannot be used to perform global PDF

fits, since they need to generate fully-exclusive events. Furthermore, the definition of
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b-jets at the particle level implies that the cross section of the production of b quarks

at high energy is dominated by b-jets in which the b quark is produced through gluon

splitting. This reduces the sensitivity of the γ + b process to the b quark PDF in that

phase-space region. On the other hand, an advantage of that approach compared to

the flavour-kt one is that measurements that can be compared to theory predictions

are easier to perform. Also, an advantage compared to the FF approach is that jets

are more inclusive observables to study b quarks than hadrons. Thus, the predictions

are less sensitive to the details of the non-perturbative effects. For example, they are

not affected by the lack of knowledge of every FF [130].

The particle-level jet approach can supplement the cutoff and FF approaches in the 5F

scheme and it can also be implemented in the 4F scheme. For the FF approach, this

can be done such as to allow comparisons of the b-hadron predictions to measurements

of b-jets. In that case, the fragmentation scale is chosen to be µf = RpT, where R and

pT are respectively the radius and transverse momentum of the jet [131]. In the cutoff

approach and in the 4F scheme, particle-level b-jets can be formed to be compared to

b-jet measurements. However, matrix elements with a photon and a parton in the

final-state are not taken into account in these cases, thus missing contributions to

the production of b-jets. An underestimation of the cross section of the production of

a photon in association with a b-jet is expected. The underlying reason is that b-jets

defined this way are not infrared safe. This approach is used to produce predictions

with MadGraph5_aMC@NLO in the 4F scheme, such that the predictions in the

4F and 5F schemes are with respect to the same observables.
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Table 2–5 – Summary of the theoretical predictions. The details are given in terms
of the perturbative order in QCD of the matrix element, the parton distribution
function, the treatment of the b quark mass in the matrix element and in the parton
shower and the treatment of the collinear divergences associated to the photon and
to the b quark in the matrix element. For the treatment of the b quark mass, a
checkmark and a cross indicate respectively that the b quark is considered to be either
massive or massless. The treatment of the photon divergence relates to the type of
photon isolation used.

Massive b Collinear divergence

Generator ME pQCD order PDF ME PS γ b

Pythia 8.160 LO (2→ 2) CTEQ6L1 × ✓ – –
Sherpa 1.4.5 LO (2→ 2, 3, 4, 5) CT10 ✓ ✓ Cone Jet+PS
MadGraph5_aMC@NLO 2.3.3 NLO (2→ 2, 3) NNPDF3.0nlo 5F × ✓ Frixione Jet+PS
MadGraph5_aMC@NLO 2.3.3 NLO (2→ 3, 4) NNPDF3.0nlo 4F ✓ ✓ Frixione –

2.3.3 Measurement Predictions

Details of the specific theoretical predictions that are compared to the measurement of

the γ + b production cross section in proton–proton collisions, in which the b quark is

observed as a particle-level b-jet, are now given. The information is also summarized

in Table 2–5.

Pythia 8.160 is used to generate events based on 2 → 2 LO matrix elements with

a photon and a parton in the final state. The parton is recognized directly as a jet

since no other partons are present. The low-energy divergences of the photon and

the jet are regularized by the single requirement pT > 15 GeV, where the transverse

momentum refers to both the jet and the photon by virtue of the conservation of the

transverse momentum. As only 2 → 2 matrix elements are considered, no collinear

divergences regarding either the photon or the bottom quark occur. All partons are
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generated and bottom quarks are only selected via b-jets at the particle level. The

generator is tuned with the AU2 set of parameters [132], optimized for the presence of

an underlying event, i.e. for events with a hard scattering. The five-flavour CTEQ6L1

LO PDF set [133] is used in conjunction with massless quarks in the matrix elements,

such that the calculations are in the 5F scheme. The quarks are taken to be massive

in the shower.

Sherpa 1.4.5 is used to generate events in the ME+PS scheme based on 2 → 2,

2 → 3, 2 → 4 and 2 → 5 LO matrix elements with one photon and one parton in

the final state, supplemented by up to three partons. The photon is required to

satisfy pT > 15 GeV and a separation of ∆R > 0.3 from every other parton. The

soft jet divergence is regularized by the merging procedure of matrix elements of

different jet multiplicities with the parton shower, for which a merging scale around

Qcut = 30 GeV is used and is allowed to vary based on Q = Eγ
T [134]. All partons

are generated and b-jets are only selected at the particle level. Due to a software

limitation, the mass of the quarks must be treated in the same way in both the matrix

elements and the parton shower.10 The bottom quark is thus taken to be massive in

both the matrix elements and the parton shower and it is not considered as a parton.

Still, the five-flavour CT10 NLO PDF set [135] is used. The calculations are thus in

a crude massive 5F scheme [136]. The default tuning of parameters based on CT10 is

used.

10This limitation has been lifted in Sherpa 2.
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MadGraph5_aMC@NLO 2.3.3 is used to compute NLO matrix elements in the

NLO+PS scheme using the MC@NLO prescription. The calculations are done

separately in the 4F and 5F schemes. In the 4F scheme, the process of interest

is pp → γbb̄ and thus the calculated matrix elements are 2 → 3 for the LO and

virtual contributions and 2 → 4 for the real contributions. The b quark is taken to

be massive and thus does not need any regularization. The four-flavour NNPDF3.0

NLO PDF set is used. In the 5F scheme, the 2 → 2 LO and virtual contributions of

pp→ γb are calculated in addition to the 2 → 3 real contributions. The b quark is

treated as a massless parton and the five-flavour NNPDF3.0 NLO PDF set is used.

In both schemes, jets using the kt algorithm with parameter R = 1 are built from

the massless partons and are required to satisfy pT > 10 GeV. Photons must satisfy

pT > 20 GeV and also the Frixione isolation requirement given by Equation 2.11

with δ0 = 0.4, ϵγ = 1 and n = 1. In the matrix elements, the strong coupling

constant value is set to αS(MZ) = 0.118 at the energy scale corresponding to the

mass of the Z boson and its running is considered at two loops, i.e. up to coefficient

b1 in Equation 2.1, that is at NLO. The running of the electromagnetic coupling

constant is not considered and the value is set to α = 1/137, as is appropriate

for photon emissions [137]. The renormalization and factorization scales are set to

half of the sum of the transverse masses of the final-state particles in the matrix

element. This corresponds approximately to the transverse energy of the photon.

The matrix elements are then interfaced to Pythia 8.212 [138] with the A14 set of

tuned parameters [139] to obtain events at the particle level. In either calculation

scheme, quarks are taken to be massive in the shower.
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The theory predictions compared to the D0 pp̄→ γb measurement in Figure 1–1 are

now addressed. The way that the Pythia and Sherpa predictions are obtained

is similar to the ones presented above but with some differences. For Pythia, the

predictions compared to the D0 measurements only take into account Compton

scattering, gb → γb, and quark–antiquark annihilation, qq̄ → γg, where the gluon

splits into bottom quarks in the parton shower. For Sherpa, the predictions are

obtained with only up to 2 → 4 matrix elements and by requiring one of the jets to

be a b-jet. The kT factorization [140] refers to an approach in which both the PDFs

and matrix elements retain a dependence on the transverse momentum of the partons,

which is only integrated in the factorization theorem. This approach allows to resum

at all orders terms containing logarithms of the form ln(1/x), where x is the usual

fraction of the proton momentum, which can be large when Q≪
√
s since x ≈ Q/

√
s.

The specific parton-level predictions in this approach that are compared to the D0

measurements only take into account a subset of the possible γ + b subprocesses at

O(αα2
S) [141]. The NLO predictions are based on the cutoff approach and the jet

formation is done at the parton level only [142].11 A correction factor that accounts for

the non-perturbative effects of the hadronization and of the underlying event, which

differs from unity by at most 10%, is applied to the NLO predictions. The Sherpa,

NLO and kT -factorization predictions all require the photon to be isolated such that

no fragmentation functions are used. The kT -factorization predictions describe the

data appropriately in some regions of phase-space but not in others. Both the NLO

11The software implementing these NLO calculations is not available anymore.
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and Pythia predictions do not take into account the possibility of gluons splitting

into b quarks in jets that would otherwise not be b-jets, apart from the qq̄ → γg

process. As such, they underestimate the data since the b-jet definition that is used

is not infrared safe. On the other hand, the Sherpa predictions include higher-order

matrix elements in which additional jets can contain these gluon splittings and thus

be identified as b-jets. These predictions describe better the D0 data.
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CHAPTER 3
Experimental Setup

This chapter explains how protons are made to collide at high energy and how the

results of the collisions are measured. The first section gives details about the Large

Hadron Collider and how it operates. The second section discusses the ATLAS

detector and details of its sub-detectors. The chapter ends with a section presenting

the sample of events recorded in 2012 and details pertaining to the simulation of

event samples.

3.1 Large Hadron Collider

Collisions between two protons are achieved by the Large Hadron Collider (LHC) [13],

currently the highest-energy particle accelerator ever built. The LHC, with a circum-

ference of 26.7 km, is a synchrotron located at the CERN laboratory site, near Geneva

in Switzerland. The LHC is the last accelerator in the accelerator complex illustrated

in Figure 3–1. The accelerator chain starts with a hydrogen bottle. Hydrogen atoms

are stripped of their electrons and the resulting protons are sent to the LINAC 2

linear accelerator, which accelerates them up to a kinetic energy of 50 MeV. They

are then accelerated by the subsequent Proton Synchrotron Booster (PSB), up to

1.4 GeV, and by the Proton Synchrotron (PS), up to 25 GeV, which also groups them

into bunches. The proton bunches are then sent to the Super Proton Synchrotron

(SPS), which accelerates them up to 450 GeV. The SPS provides the LHC with both
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Figure 3–1 – The CERN accelerator complex providing protons to the LHC. The
stars indicate interaction points at which the LHC collides protons.

clockwise- and anticlockwise-circulating bunches. This proton accelerating procedure

is repeated multiple times until the proton bunches fill up the LHC rings. The LHC

then accelerates the protons up to an energy of several teraelectronvolts, depending on

the year of operation, and brings the beams into collision at four different interaction

points where particle detectors are located: ALICE [143], ATLAS [14], CMS [15] and

LHCb [27].

The LHC itself is mainly composed of radiofrequency cavities, in which an electromag-

netic field accelerates the protons, and of dipole magnets, which bend the trajectory

of the protons such that they move in a circular trajectory. This circular trajectory
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allows the protons to travel through the same radiofrequency cavities multiple times,

repeatedly increasing their energy. The energy that the protons acquire has an upper

bound determined by the strength of the magnetic field that the dipole magnets can

produce. Indeed, keeping the same orbit around the LHC for protons of increasing

energy requires an increasingly stronger magnetic field. To this end, superconducting

dipole magnets, producing a magnetic field strength up to 8.33 T, are used. To

prevent protons from colliding with particles outside of the designated interaction

points, the beam pipes, in which protons circulate, is in a vacuum state. Quadrupole

magnets are used to focus the proton beams such that they do not hit the beam pipe

and also to reduce the transverse size of the beams at the interaction points. Higher

multipole magnets are used to correct further the trajectories of the protons.

The luminosity, L, of a particle collider is related to the production rate, R, of a

particular final state via R = Lσ, where σ is the cross section to produce that final

state in proton–proton collisions. The luminosity has the same dimensionality as a

flux. Integrated over a specific period of time, the relation is

N = Lintσ, (3.1)

where N is the number of events produced and Lint is the integrated luminosity.

The luminosity is an experimental quantity entirely determined by parameters of

the collider. It factorizes the experimental parameters from the intrinsic physical

processes. A higher luminosity results in a higher number of events produced for

a particular physical process. Thus to investigate rare processes and to reduce
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statistical uncertainties caused by the finite sample size of events, a higher luminosity

is desirable.

The luminosity of a collider represents the number of interactions per unit time and

per unit area. It is calculated in the following way [13]:

L =
frevnbN1N2

A
, (3.2)

where frev is the revolution frequency of the proton bunches, nb is the number of

bunches that are paired between the two beams and that can collide at an interaction

point and N1 and N2 are the numbers of particles in each bunch of the pair, since

each particle in one bunch can interact with any particle in the other bunch. The

geometrical area factor A is related to the transverse area of the beam at an interaction

point, which is determined by the focusing of the beams and their crossing angle. Out

of the four LHC interaction points, those associated to ATLAS and CMS have been

designed to have a high luminosity, with a nominal value of L = 1034 cm−2s−1 [13].

During LHC operation, the luminosity degrades with time, as the number of protons

per bunch decreases due mainly to collisions. Beams are dumped and the filling

process starts anew when doing so would result in a larger integrated luminosity. It

is common for beams to collide continuously for more than ten hours.

In contrast to the Tevatron, which collided protons with antiprotons, the LHC collides

protons with protons. This is motivated both by physical and technical reasons.

Although the production cross sections of several physical processes are higher for

collisions of quarks with antiquarks than for collisions of two quarks, and thus

respectively for pp̄ and pp collisions, the difference between the latter two becomes
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less significant as the collision energy increases, such as from that of the Tevatron,

O(1 TeV), to that of the LHC. This is due to the larger momentum density fraction

of the proton carried by antiquarks and gluons at higher energy, as can be seen from

Figure 2–2, which compensates for the lower cross section between two valence quarks.

The increasingly smaller difference between the cross sections of proton–antiproton

and proton–proton collisions as a function of the center-of-mass energy happens for

example for the production cross section of a pair of W bosons [144], a pair of Z

bosons [145] and a pair of top quarks [146]. In parallel, since it is technically easier to

accelerate protons than antiprotons, as they are naturally occurring and thus there

is no need to produce and collect them, a higher luminosity can be achieved. This

higher luminosity can compensate a smaller cross section to ultimately produce more

physically interesting events.

The LHC started producing proton–proton collisions with commissioning beams in

late 2009. Beams producing collisions intended for physics analysis started in 2010,

with essentially all of the integrated luminosity produced at a center-of-mass energy

of 7 TeV. In 2011, the integrated luminosity continued to ramp up for collisions at

7 TeV. In 2012, the center-of-mass energy increased to 8 TeV and the integrated

luminosity increased further. After 2012, the LHC went into a two-year long shutdown

for various consolidations and upgrades, ending Run 1 of the LHC. It is the collisions

provided by the LHC in 2012 at 8 TeV, i.e. protons accelerated up to 4 TeV, that are

used for the measurement presented in this thesis.

In 2012, the LHC was filled with up to 1380 colliding paired bunches with a time

interval between consecutive bunches as short as 50 ns [147]. The peak luminosity
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attained was 7.7 × 1033 cm−2s−1 with a number of protons per bunch of about

1.7× 1011 [147]. These values imply the presence of multiple inelastic proton–proton

interactions in a given crossing of paired bunches, known as pileup interactions. The

number of pileup interactions, µ, can be obtained from the ratio of the inelastic event

rate to the bunch crossing rate:

µ =
Lσinel
frevnb

, (3.3)

with σinel = 75.6 mb at
√
s = 8 TeV [104] and with the revolution frequency of the

proton bunches around the LHC being approximately given by the speed of light

divided by the circumference of the LHC, i.e. frev = 11.2 kHz. In 2012, the maximum

number of pileup interactions was about 38, while the average over the data-taking

period was about 21 [147]. In the nominal LHC design, there are 2808 colliding

bunches, giving a maximum number of pileup interactions of about 24. The larger

number of maximum interactions per bunch crossing in 2012 compared to the nominal

design can be mainly attributed to the smaller number of proton bunches per beam.

A larger number of bunches is allowed in the nominal design as a narrower bunch

spacing of 25 ns is assumed.

3.2 ATLAS Detector

The ATLAS detector, shown in Figure 3–2 is one of two general-purpose detectors,

the other being CMS, that measure the momenta and energies of particles produced

in the collisions provided by the LHC. It is a hermetic detector with a cylindrical

geometry. The system of coordinates describing the detector has its origin placed in

the geometrical center of the detector, with the x-axis pointing towards the center of
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Figure 3–2 – Representation of the ATLAS detector with an opening in ϕ allowing
for the labelling of the different sub-detectors [14].
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the LHC ring, the y-axis pointing upwards and the z-axis pointing in the anticlockwise

direction of the LHC ring when viewed from above, thus forming a right-handed

coordinate system. Cylindrical coordinates are defined by the azimuthal angle around

the z-axis, ϕ, equal to zero in the direction of the x-axis, and the radius, R, defined

as the distance from the z-axis. Additionally, the pseudorapidity, η, is used and is

given in terms of the polar angle, θ, by η = − ln tan θ
2
, where θ is zero in the direction

of the z-axis. The pseudorapidity is zero in the transverse plane defined by z = 0,

increases towards infinity towards the direction of the z-axis and decreases towards

minus infinity in the direction opposite to the z-axis. The pseudorapidity is used over

the polar angle since, for massless particles, it corresponds to the rapidity, whose

measure is invariant under Lorentz boosts along the z-axis.

The ATLAS detector is composed of several sub-detectors differing in technology

and purpose that are placed in concentric cylindrical layers around the nominal

interaction point. Tracking detectors occupy the innermost region of the ATLAS

detector, closest to the beam pipe. They are inside a magnetic field created by a

solenoidal magnet that surrounds them. Outside of the solenoidal magnet lie the

electromagnetic and hadronic calorimeters. A muon spectrometer acts as the external

layer of the detector. Toroidal magnets provide a magnetic field for the spectrometer.

Following the cylindrical geometry of the detector, the sub-detectors are further

separated into barrel and end-cap sections. The barrel section is referred to as being

central and the end-caps as being forward. A trigger system making use of the

information from the sub-detectors selects in real time which events to record to

long-term storage.
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3.2.1 Inner Detector and Solenoidal Magnet

The Inner Detector [14] is composed of three tracking detector technologies: pixel,

silicon microstrip and transition radiation trackers. Their purpose is to provide a mea-

surement of the positions of charged particles while not disturbing their trajectories.

By combining measurements of the position of a particle at different locations in space,

its trajectory can be reconstructed. Furthermore, when a charged particle moves

inside a magnetic field, its trajectory curves with a radius of curvature proportional

to its momentum and inversely proportional to its electric charge. A measurement of

the momentum and of the charge becomes possible in addition to the trajectory of

the particle. The tracking detectors are located inside a superconducting solenoidal

magnet that produces an axial field of 2 T along, and pointing towards, the z-axis

direction. This specific magnetic field configuration allows to measure the momentum

component transverse to the z-axis of a charge particle. The transverse momentum

is a physically relevant quantity at a hadron collider since it is boost invariant along

the z-axis.

The pixel detectors and the silicon microstrip trackers, of which the latter are also

called the semiconductor tracker (SCT), are silicon-based solid-state detectors with

an operating principle based on a p–n junction diode. When charged particles pass

through the depletion region of the detector, they ionize the material. Due to a bias

voltage applied to the electrodes on either side of the depletion region, the electron-

hole pairs drift towards the electrodes, producing an electric current that is measured.

In the case of the pixel trackers, the electrodes are segmented in two dimensions,

while the microstrip trackers are only segmented in one direction. The pixels provide
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the highest granularity, most of them having a size of 50 µm × 400 µm, and thus the

highest resolution of the position of the particles: 10 µm and 115 µm [14] along the

respective granularity directions. As such, they are located closest to the center of

ATLAS. Regarding the microstrips, to provide a measurement of the coordinate along

their non-segmented direction, pairs of microstrip trackers are layered together with

an angle of about 2◦ between the directions of the strips. The combined measurement

of the position of a particle in the two layers allows to reconstruct the component

of the position along the non-segmented direction, albeit with a reduced resolution

compared to the pixels: 17 µm and 580 µm [14], for a respective strip pitch of 80 µm

and a strip length of 12 cm.

The transition radiation tracker (TRT) is a collection of drift tubes located outside

of the SCT. These cylindrical tubes, with an inner radius of 2 mm, are filled with a

gas mixture mainly composed of xenon and with a wire located in the middle of the

tube along the axis. A high voltage is applied between the surface of the tube and

the wire. Charged particles going through the tube ionize the gas and the ionization

electrons drift to the wire, generating an electric current. The time it takes for the

electrons to reach the wire, with respect to the reference time associated to the bunch

crossings, given by the LHC, is used to infer at what distance to the wire a charged

particle travelled. This distance restricts the position of the particle in the transverse

section of the tube to a circle around the wire, with a resolution of 130 µm [14].

The tubes do not measure the position of charged particles along their axes. The

TRT has a worse resolution than the silicon-based trackers, but the performance is

compensated by the larger number of independent position measurements it produces.
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Additionally, the TRT can distinguish electrons from pions, which are light mesons.

When charged particles cross interfaces of differing dielectric constants, they emit

transition radiation photons [148]. The space between the tubes is filled with fibres

and foils of polypropylene, for the barrel and the end-caps respectively. When

charged particles cross the polypropylene, they radiate X-ray photons. Through the

photoelectric effect, these photons are absorbed by the gas in the tube and produce

additional ionization electrons. Impinging pions radiate fewer photons than electrons,

such that the TRT can distinguish between these two types of particles.

Figure 3–3 shows the disposition of the tracking detectors in both the barrel and the

end-caps. The pixel modules are disposed into three cylindrical layers in the barrel

and into three disks perpendicular to the beam pipe in either end-cap. They are

aligned such that the direction with the better resolution is in the R–ϕ plane. In the

barrel, the direction with the worse resolution is aligned along z, while it is aligned

along R in the end-caps. Double-layered microstrip modules are assembled into four

cylindrical layers in the barrel and in nine disks on either side of the barrel. They

are aligned along the same directions as the pixel modules. The TRT in the barrel is

composed of up to 73 layers of tubes, while the end-caps each contain up to 160 layers.

The TRT tubes are positioned along z in the barrel and along R in the end-caps.

A charged particle traverses typically 36 tubes. In terms of the pseudorapidity, the

coverage of the pixels and microstrips extends up to |η| = 2.5, while that of the TRT

extends up to |η| = 2.0. Thus, ATLAS has tracking capabilities up to |η| = 2.5.

In the context of the measurement of γ + b production, the Inner Detector is used to

distinguish photons from electrons, as the former do not leave tracks while the latter
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Figure 3–3 – Section in ϕ of the Inner Detector in (a) the barrel and (b) one of the
end-caps [14].
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do. Also, the Inner Detector is used to tag jets that contain b hadrons from those

that do not. Therefore, the measurement presented in this thesis is restricted to the

pseudorapidity coverage of the Inner Detector.

3.2.2 Calorimeter System

The calorimeter system of ATLAS, shown in Figure 3–4, is located outside of the

solenoidal magnet. It is divided into the electromagnetic calorimeter and the hadronic

calorimeters, of which the latter is composed of different detector technologies. The

purpose of the calorimeters is to measure the energy of particles. This is done through

the destructive process of absorbing the energy of the particles and converting it

into an electric current, which is then calibrated to the corresponding energy of the

incoming particle. The electromagnetic calorimeter measures the energy of photons

and electrons, while the hadronic calorimeters are designed to measure the energy of

hadrons.

All ATLAS calorimeters are sampling calorimeters, which means that they contain

successive layers of both active material that is instrumented and absorber material

that is not. The role of the absorber material, usually dense, is to increase the number

of interactions the impinging particles will have with the calorimeter. An incoming

photon or electron impinging on the electromagnetic calorimeter will produce a

cascade of secondary particles, called a shower, primarily via bremsstrahlung and

pair-production processes. The typical distance over which an electron emits a photon,

or a photon converts into an electron pair, is given by the radiation length, X0, of the

material. In the case of an incoming hadron, since hadrons are made up of colored
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Figure 3–4 – The calorimeter system of ATLAS with an opening in ϕ allowing for
the labelling of the different calorimeter components [14].
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particles, they interact via the strong force. They can interact with the nuclei of the

calorimeters, producing a more complex hadronic shower. This shower, characterized

by the interaction length λ in analogy to the radiation length, is usually longer

and larger, i.e. λ > X0. The electromagnetic calorimeter is designed to optimize

the measurement of electromagnetic showers while the hadronic calorimeters, which

enclose the electromagnetic calorimeter, are designed to measure and contain the

larger hadronic showers.

The ATLAS electromagnetic calorimeter [14] uses lead as the absorber and liquid

argon (LAr) as the active material. The passage of electrons within an electromagnetic

shower in the LAr ionizes argon atoms. Ionization electrons drift to an electrode

located in the middle of the LAr gap under the influence of an electric field, thereby

creating an electric current that is measured. To alternate the absorber and active

materials while ensuring that no gaps are present in ϕ, the calorimeter has an accordion

shape in the longitudinal direction of the shower. The layout of the electromagnetic

calorimeter is illustrated in Figure 3–5. It is divided into three longitudinal layers,

themselves segmented in cells along η and ϕ. The first layer is the most finely

segmented in η, but is the coarsest in ϕ. The size in η of these cells is the smallest in

the barrel and increases with the pseudorapidity in the end-caps. The cells have a

∆η ×∆ϕ granularity of about 0.003× 0.1 in the barrel. Due to the fine granularity

of the cells, they are referred to as strip cells. The second layer collects most of

the shower energy and has a granularity of about 0.025 × 0.025 in ∆η ×∆ϕ. The

third layer is mainly used to capture the tail of the electromagnetic shower and is

the coarsest in η with a granularity of about 0.05× 0.025 in ∆η ×∆ϕ. The size of
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Figure 3–5 – Geometry of cells in the barrel electromagnetic calorimeter [14]. The
accordion shape of the calorimeter is also displayed.
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the cells in the first and third layers are integer multiples or fractions of those in

the second layer. The fine segmentation of the first layer allows to distinguish an

electromagnetic shower initiated by one photon from that initiated by two photons,

produced for example by the decay of a π0 meson into two photons close to the

calorimeter. Its coarser segmentation in ϕ is motivated by photons converting into

electron pairs inside the Inner Detector, which can happen since the amount of

material upstream of the first layer corresponds to about 3X0, varying as a function

of the pseudorapidity. Due to the solenoidal field, the trajectories of electrons and

positrons become separated in ϕ, however, with a coarser cell in ϕ, the energy can

still be collected by one cell as if the conversion had not happened. Furthermore, to

help in correcting for electromagnetic showers that start before the calorimeter, an

additional layer, the presampler, is located closer to the solenoidal magnet, while still

being outside of it. The granularity of this layer is about 0.025× 0.1 in ∆η ×∆ϕ. In

total, the electromagnetic calorimeter has a thickness of at least 22X0, varying with

pseudorapidity.

The ATLAS hadronic calorimeters [14] make use of different technologies. In the

barrel, the calorimeter uses steel as the absorber and scintillating plastic, composed

mainly of polystyrene, as the active material. The scintillator is shaped into thin

tiles that are inserted into the steel support structure. When charged particles

from the hadronic shower pass through the scintillating tiles, ultraviolet photons

are emitted. These scintillation photons travel through wavelength-shifting fibres

to photomultiplier tubes, which convert the light into an electric current. This

tile hadronic calorimeter is separated into three longitudinal layers, with ∆η ×∆ϕ
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granularities of 0.1× 0.1 for the first two layers and of 0.2× 0.1 for the third layer.

The tile calorimeter is separated into two parts: the barrel and the extended barrel.

The former lies behind the barrel of the electromagnetic calorimeter while the latter

extends the pseudorapidity coverage to complete the cylindrical layer. The end-cap

hadronic calorimeters use LAr as the active material, similarly to the electromagnetic

calorimeter, but uses copper as the absorber instead. It has four layers of cells, whose

granularities range from 0.1× 0.1 to 0.2× 0.2 in ∆η ×∆ϕ. The amount of material

traversed by the particles originating from the interaction point and travelling to the

end of the hadronic calorimeters corresponds to about 10λ.

The coverage of the electromagnetic and hadronic calorimeters extends up to |η| = 3.2.

To extend further the coverage, up to |η| = 4.9, forward calorimeters [14] are located

close to the beam pipe in the inner regions of the end-caps. They have three layers:

the first one serving as the electromagnetic calorimeter and the other two serving as

the hadronic calorimeter. All layers use LAr as the active material. The first layer

uses copper as the absorber while the other two use tungsten.

The transition from the electromagnetic barrel to the electromagnetic end-cap occurs

in the region around |η| = 1.5. In this region, the amount of material upstream of

the calorimeter, due to the tracking detectors and other non-active service material,

is large relative to the rest of the pseudorapidity region. Figure 3–6 shows the

amount of material as a function of η in that region. The amount of material in

front of the calorimeter accordion is more than double of that outside the transition

region. Scintillating tiles are placed in the transition gap in front of the end-cap

electromagnetic calorimeter to improve the energy resolution in this region. However,
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Figure 3–6 – Amount of material in front of the electromagnetic calorimeter and inside
of it, expressed in units of radiation lengths, as a function of the pseudorapidity [14].

even with those tile cells, the energy resolution is poor compared to that outside the

transition region. As a consequence, the region 1.37 < |η| < 1.56 is not used for the

physics measurement of photons. Additionally, the first layer is not finely segmented

in this region. It is only finely segmented in the regions |η| < 1.4 and 1.5 < |η| < 2.4,

roughly matching the coverage of the Inner Detector.

In general, the relative resolution at which a calorimeter can measure the energy of

an incoming particle can be parameterized as [149]

σ(E)

E
=

√(
a√
E

)2

+

(
b

E

)2

+ c2, (3.4)

where a, b and c are parameters and E is the energy of the particle. The first term

represents the contribution to the resolution coming from the stochastic process of the
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shower and of the sampling of its energy. The second term represents the contribution

due to the signal noise, coming from either the electronics used to process the signal

or from particles produced in other proton–proton collisions than that of interest, i.e.

from pileup. The third term is the constant contribution that does not depend on the

energy of the incoming particle, such as a non-uniform response across the calorimeter

due to detector imperfections. The relative resolution improves with higher energy

and in particular the noise term becomes negligible.

For the electromagnetic calorimeter, the resolution is described by a = 10%
√

GeV

and c = 0.2% [14]. For the tile calorimeter, the parameters are a = 56%
√

GeV and

c = 6% for an impinging pion [14]. The hadronic end-cap calorimeter is described by

a = 71%
√

GeV and c = 6% for an incoming pion [14], while the forward calorimeter

is described by a = 29%
√

GeV and c = 4% for an electron [14] and by a = 70%
√

GeV

and c = 3% for a pion [14]. The expected noise contribution for the different

calorimeters under the pileup conditions of 2012 is given in Figure 3–7. It is below

100 MeV for most of the electromagnetic and tile calorimeters, below 1 GeV for the

hadronic end-cap calorimeter and below 10 GeV for the forward calorimeter.

In the context of γ+ b production, calorimeters are used to measure the energy of the

photon and of the b-jet. Additionally, the cell segmentation of the electromagnetic

calorimeter allows to distinguish electromagnetic showers from hadronic ones. This is

used to distinguish photons from jets.
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Figure 3–7 – Total noise expected in the calorimeter cells as a function of the
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PS refers to the presampler, EM to the layers of the electromagnetic calorimeter, Gap
to the tile scintillator in the transition region between the barrel and the end-caps,
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3.2.3 Muon Spectrometer and Toroidal Magnets

The muon spectrometer [14] is the outermost sub-detector in ATLAS. Its purpose

is to provide an independent measurement of the momentum of muons. Muons

pass through the calorimeters since, at the energy scale at which they are likely to

be produced, i.e. O(100 GeV), they interact with the detector material mostly via

ionization rather than by emitting bremsstrahlung photons. Muons do not create

showers in the calorimeters. This is in contrast to electrons and is due to the higher

mass of muons. Consequently, muons are easily identified by tracking detectors placed

after the calorimeters.
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The ATLAS muon spectrometer is a collection of four tracking detector technolo-

gies: monitored drift tubes (MDTs), cathode strip chambers (CSCs), resistive plate

chambers (RPCs) and thin gap chambers (TGCs). To provide a measurement of

the momentum, the trackers are located inside a toroidal magnetic field provided by

three superconducting toroidal magnets, one for the barrel and one in either end-cap.

These magnets provide an azimuthal magnetic field up to |η| = 2.7. The field bends

the trajectories of the muons in the R–z plane, perpendicular to the curvature plane

of the solenoid magnet. The trackers, which are located up to |η| = 2.7, thus offer an

independent measurement of the muon momentum. Figure 3–8 shows the location of

the components of the muon spectrometer in ATLAS.

In the context of the γ + b measurement, only the MDTs are used. They provide a

correction to the jet energy resolution that accounts for showers punching through

the calorimeters into the muon spectrometer.

3.2.4 Luminometers

The luminosity of the LHC beams at the ATLAS interaction point is measured by

luminometers. In 2012, the primary ATLAS luminometer was the BCM detector [151],

composed of diamond-ionization sensors that are nominally used to detect abnormal

beam conditions. Additionally, the LUCID detector [152], a Cherenkov-light detector

measuring inelastic pp scattering, and the ATLAS detector, via the counting of tracks

in the Inner Detector, were used to provide complementary measurements of the

luminosity [147]. These detectors provide a measurement of the relative luminosity of

the LHC beams.
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Figure 3–8 – Layout of the muon trackers and of the toroidal magnets in ATLAS [14].
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The relative luminosity is a measurement of the absolute LHC luminosity up to a

calibration factor [147]. It is given by

L =
µvisfrev

σvis
, (3.5)

where frev is the revolution frequency of the proton bunches and µvis is the number

of inelastic interactions per bunch crossing, for a given bunch pair, that is visible

to a particular measurement procedure. It is obtained by counting in a given time

interval the number of bunch crossings for which a signal was detected, by assuming

that number follows a Poisson distribution and by comparing it to the total number

of bunch crossings in that time interval. The last quantity, σvis, is the cross section

of the production of that visible signal and its value is smaller than that of the pp

inelastic cross section. It is a priori unknown and can be considered as a calibration

constant.

To measure σvis, a simultaneous measurement of L and µvis is required. The mea-

surement of L can be performed through van der Meer beam scans [153]. These

scans, during which the beams successively cross one another in the horizontal and

the vertical directions, allow for a direct measurement of the beam transverse area,

making possible the use of Equation 3.2 to measure the luminosity. As µvis can

be simultaneously measured during the scans, σvis can be obtained. Therefore, the

relative luminosity that is measured by the luminometers can be calibrated to the

absolute LHC luminosity.
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3.2.5 Trigger System

The event rate of 20 MHz provided by the LHC in 2012 was too high to permit the

recording of every event to permanent storage. To reduce the number of events, a list

of physically interesting features in events of interest was designed. A trigger system

compares in real time this list to the features of the current event and records the

event if it satisfies at least one of them. The 2012 ATLAS trigger system [14] was a

succession of three levels of trigger decisions, each reducing the event rate towards the

recording rate of 400 Hz. By partially reducing the event rate, each level allows more

time for the subsequent level to reach a decision and thus allows for more complex

features to be investigated.

The first level, the Level-1 trigger, is implemented in hardware for the fastest decision

time, with a latency of 2.5 µs. It reduces the event rate to 75 kHz by using simple

algorithms that are run on a subset of detector systems and making use of a coarser

detector granularity. It can select events based on information from the calorimeters

or from the muon spectrometer. Several selection criteria have been conceived to

cover all physically interesting possibilities. An event is accepted if it satisfies at least

one of them. Additionally, the Level 1 identifies regions of interest.

The second level of the trigger, the Level-2 trigger, is implemented in software and

has a latency of 40 ms. It reduces the event rate to 3.5 kHz. It has access to the full

detector granularity but only in the regions of interest that are passed to it by the

Level 1. To avoid trigger inefficiencies, the software algorithms that are investigating

the features of the event are usually similar in nature to the ones used in physics
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analyses of recorded events. An event satisfying any of the predefined criteria on the

extracted features of the event is accepted to be studied by the third level of the

trigger system.

The third level is called the Event Filter and is also implemented in software. It has

a latency of 4 s and reduces the event rate to the recording rate of 400 Hz. The

full detector information is available at this level. The algorithms are essentially the

same as those used in the physics analyses. Events satisfying the criteria of the Event

Filter are committed to permanent storage, allowing for thorough physics analyses.

At any of the trigger levels, a prescale factor p can be applied to any of the trigger

criteria. In those cases, only 1/p events, randomly chosen, that would have been

analyzed for the associated feature are actually investigated. The other events are

automatically made to fail to satisfy the criterion. This functionality is used for

criteria that are satisfied by a large number of events but which are still of physical

interest. An example is a low energy threshold on a group of calorimeter cells. Having

the prescale functionality allows to record a fraction of events while maintaining a

low latency and event rate. Features that are to be investigated, algorithms, criteria

and prescale factors are all chosen to optimize the trigger rates at every trigger level

while still selecting a physically diversified sample of events.

3.3 Event Samples

With the goal of measuring the cross section of the production of γ + b, the recorded

events need to be analyzed. However, these events do not contain the information

on a per-particle basis but only the signals that were measured by the detector. To
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understand the relation between the particles and the signals that they produce in

the detector, simulations of the interactions of the particles with the detector are

necessary. These allow to assess the performance of the detector, to estimate the

efficiency of various algorithms and to calibrate the measured signals such that they

describe accurately the properties of the particles that produced them. Details of the

recorded events and of the simulated events are now discussed.

3.3.1 Recorded Events

The data analyzed for the measurement of the cross section production of γ + b were

recorded from the collisions of two protons by the LHC at
√
s = 8 TeV in 2012. The

evolution of the integrated luminosity throughout the year, from April to December,

is shown in Figure 3–9. The LHC delivered an integrated luminosity of 22.7 fb−1 at

the ATLAS interaction point [147]. The delivered integrated luminosity is not fully

recorded by ATLAS. This recording inefficiency occurs to allow for safe operations of

the detector and to avoid overloading its readout system. Furthermore, events are only

considered suitable for physics analysis if all the sub-detectors are fully operational.

The overall ATLAS physics data-taking efficiency in 2012 was 95.5% [154]. Taking

these inefficiencies into account, the integrated luminosity of the sample of events

recorded by ATLAS in 2012 and suitable for physics analysis is 20.2 fb−1.

3.3.2 Simulated Events

Monte Carlo event generators produce exclusive events by generating particles of

definite properties such as their four-momenta. As such, they can be made to interact

with a simulated detector. Detector simulation software, such as Geant4 [156],
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takes as input a detector geometry and its material composition to simulate the

interactions of particles with that detector. Such a simulation of the ATLAS detector

has been developed [157]. The physical interactions that are simulated include

multiple Coulomb scattering, the photoelectric effect, bremsstrahlung, ionization

among others. The energy deposited in the detector via these interactions is recorded

as hits. The hits can then be interfaced to a simulation of the electronics system

specific to each sub-detector, taking into account effects such as electronic noise and

crosstalk. This step is referred to as the digitization of the hits since the output

are the same kinds of digital information that would be obtained from real detected

signals. The output of the digitization step is similar to the recorded information
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of real data events. Therefore, the simulated events, called MC events due to their

origin, can be analyzed in the same way as the real recorded events.

During the digitization step, the effect of pileup is taken into account. Since a detector

signal takes in general more time to process than the time between two bunches, the

recorded signals are not only affected by multiple interactions happening during the

same bunch crossing but are also affected by interactions happening before and after

that bunch crossing. These interactions are referred to as out-of-time pileup. Each

sub-detector has a different time window during which it is sensitive to out-of-time

pileup, depending on the speed of its signal processing. Therefore, the simulation must

take into account not only the in-time pileup but also this out-of-time pileup. This is

achieved by generating soft inelastic pp scatterings with Pythia 8.186, using the A2

set of tuned parameters [132], optimized for events with no hard scattering, and the

MSTW2008LO PDF set [158]. These soft collisions are representative of the average

inelastic pp collision. They are interfaced through the ATLAS detector simulation

to produce hits, independently of other MC samples. It is at the digitization step

that the hits of these soft collisions are combined to the simulated samples of interest.

The overlay of the hits follows the proper timing structure of the bunch crossings as

they are in the LHC, i.e. some bunches are separated by more than 50 ns. The results

of the digitization are then simulated samples with the effect of pileup included in a

way similar to how it affects recorded data.
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CHAPTER 4
Physical Object Reconstruction

This chapter treats the topic of the association of signals measured by the ATLAS

detector to physical objects, such as photons and jets, and the determination of

their kinematics. This reconstruction procedure includes the calibration of the

kinematic quantities, which ensures that they are not biased and that the simulated

samples describe appropriately the recorded data. The reconstruction algorithms

are adjusted to account for the larger amount of pileup in 2012 compared to the

LHC nominal value, which amounts to a larger amount of activity in the detector

and higher noise levels. The first section presents the reconstruction of objects that

are themselves used as input to other reconstruction algorithms. The second section

presents the reconstruction of photons. The third and last section explains how jets

are reconstructed and how b quarks are identified.

4.1 Intermediate Objects

The reconstruction of the photon and jet objects that are to be analyzed for the

measurement of the γ + b production cross section is in most cases not directly

performed on the detector signals, such as the position measurements from the

trackers and the energies in the calorimeter cells. Rather, they are performed on

intermediate objects, which are themselves reconstructed out of the detector signals.
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Such intermediate objects are reconstructed in both the tracking system, that is

tracks and primary vertices, and in the calorimeters, the topological cell clusters.

4.1.1 Tracks

The reconstructed trajectories of charged particles, based on the combination of

position measurements, are called tracks. In the Inner Detector, due to the solenoidal

magnetic field, the trajectories of charged particles describe a circular motion in the

plane transverse to the z-axis. The z-component of the trajectories is not affected

since it is parallel to the magnetic field and thus has no Lorentz force acting on it.

The overall motion of the charged particles is that of a helix. A parameterization of

this motion can be given as a function of five parameters: d0, z0, ϕ, θ and q/p. These

parameters are evaluated at the perigee, which is the point of the trajectory that is

closest in the transverse plane to a reference point, for example the origin. The first

and second parameters are the values of the distance between the perigee and the

reference point projected respectively onto the transverse plane and the z-direction,

i.e. the impact parameters. The next two parameters are the angles of the vector

momentum. The last parameter is the ratio of the electric charge of the particle to

the magnitude of its momentum, which is related to the curvature of the trajectory.

A typical charged particle in the Inner Detector will hit three pixel layers, eight

microstrip layers and about 36 drift tubes. As hundreds of particles are produced in

an event, considering pileup conditions, hundreds of tracks can be reconstructed. In

practice, because of the high number of hits, the number of possible tracks that can be

reconstructed is considerably larger, due to the misassignment of hits to tracks. To add
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to the complexity, the trajectories of charged particles can be deflected due to multiple

Coulomb scatterings with the detector material. Two procedures are employed to

tackle the difficult task of reconstructing tracks that provide a precise description of

the trajectories of the charged particles while avoiding tracks reconstructed by the

wrong combinations of hits: inside-out and outside-in tracking [159].

Inside-out tracking The first procedure starts the track reconstruction from all

possible track seeds of three hits in the silicon layers that satisfy some cuts on

the transverse momentum and on the transverse impact parameter. The tracks

are then built in the rest of the silicon detectors with a Kalman filter [160], an

iterative algorithm that predicts what the parameters of the track will be at the

next tracker layer, taking into account the effects of particle interactions with

the detector material. The filter combines that prediction with the measured hit

on that layer via a weighted mean to produce a statistically optimal estimate of

the track parameters and of their covariance. The filter then iterates towards

the next tracker layer. This filter is equivalent to a global least-square fit, but

is computationally more efficient. Among all the silicon-only tracks produced,

some will share hits. To remove tracks with incorrectly assigned hits, tracks are

scored according to their precision and whether they cross layers without hits

when hits are expected. Shared hits are associated to the higher-score tracks

and tracks with a score below a given threshold are removed. The surviving

tracks are then simply extrapolated to the TRT where compatible hits are

added to the tracks. Finally, the tracks are refitted with the TRT hits.
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Outside-in tracking The second procedure starts with TRT hits, removing hits

associated to tracks from the first procedure. A Hough transform [161] is

performed on the remaining TRT hits. This transform scans the possible

values for the track parameters and counts the number of tracker hits that are

compatible with those values. Maxima in the parameter distributions are used

to identify TRT tracks. The tracks are then extrapolated to the silicon layers,

where compatible hits are added to the tracks, and refitted.

The first procedure is the main one for reconstructing tracks. However, some particles

will travel a short distance in the Inner Detector, such that they might interact with

too few silicon layers and thus not create seeds for the first procedure. The second

procedure, which is not based on silicon seeds, is used to recover their reconstruction.

The presence of pileup produces additional hits in the Inner Detector. Tracks from a

combination of hits not associated to the passage of a charged particle are more likely

to be reconstructed. To reduce this possibility tracks can be required to have at least

nine hits in the silicon layers and to have no missing hits in the pixel layers when

hits are expected. The track reconstruction efficiency with these selection criteria is

approximately 80% in the central region and 70% in the forward region [162].

Given a track describing a circle of radius R in the transverse plane under a uniform

magnetic field B, the transverse momentum associated to the track can be found, via

the description of the circular motion due to the Lorentz force, to be

pT = qBR. (4.1)

95



In the case of particles whose electric charge is the fundamental electric charge,

qe =
√
4πα ≈ 0.3, and assuming a value B = 2 T ≈ 2 GeV/m, this equation becomes

pT ≈ R× 0.6
GeV
m

. (4.2)

Therefore, the trajectory of a charged particle produced on the z-axis with pT <

0.4 GeV will significantly bend and never exit the Inner Detector, since the solenoidal

magnet is located at a distance of about 1.2 m.

The relative transverse momentum resolution depends on the number of measured

track hits, N , and it is given by [163], for a particle with an electric charge equal to

the fundamental electric charge,

σ(pT)

pT
≈

√(
ANpTσRϕ

0.3BL2

)2

+

(
0.045 GeV
B
√
LX0

)2

, (4.3)

where AN is a statistical factor depending on N , with AN =
√
720/(N + 4) for

N → ∞, σRϕ is the hit position uncertainty in the transverse plane and L is the

length of the track. The first term is the contribution of the uncertainty related to

the measurement of the track. The second term is the contribution related to the

deflection due to multiple Coulomb scatterings. The first term dominates at high

transverse momentum. In contrast to the relative energy resolution, which improves

at higher energy, the relative resolution of the transverse momentum worsens with

larger values of transverse momentum.
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4.1.2 Primary Vertices

A primary vertex is the reconstructed object corresponding to the position of an

inelastic proton–proton collision. Although the LHC beams are colliding at a nominal

interaction point, due to the finite transverse area of the beams and to the finite length

of the proton bunches, the proton–proton collisions occur in a region of space. This

region is called the beam spot and has a size of about 15 µm in the transverse plane

and about 50 µm in the z-direction [164]. Primary vertices are to be distinguished

from secondary vertices, which represent the decays of particles and the interactions

of particles with the detector material that produce new particles. Secondary vertices

are separated from a primary vertex by a measurable distance in the transverse plane.

Both types of vertices are reconstructed based on the information of reconstructed

tracks.

The primary vertices are reconstructed in two steps [164]. The first step consists in a

vertex reconstruction without any constraints on the coordinates of the vertices to be

reconstructed. The goal of this step is to determine the position of the beam spot.

Only a small subset of events are used. A second step of the vertex reconstruction is

performed using the position of the beam spot to constrain the coordinates of the

vertices.

The vertex reconstruction begins by the identification of a vertex seed. This seed is

determined by the transverse position of the beam spot and, for the z-coordinate, by

the most frequent value of the z-coordinates of the tracks, evaluated at the perigee

with respect to the center of the beam spot. An adaptive iterative least-square fitting
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procedure [165] is then performed. In each iteration, tracks are weighted. The weights

are defined as a continuous monotonic function of the distance between a track and

the vertex. The vertex position is calculated using the weighted tracks and a new

iteration of the fitting procedure begins anew. The smoothness of the weight function

is reduced in each iteration to approach ultimately a step function. This procedure

makes it possible to remove outlying tracks from the fit. After a given number of

iterations, tracks still compatible with the vertex are associated to it and are removed

from the pool of tracks. The whole procedure is repeated with the remaining tracks.

This occurs until all tracks are associated to vertices or no additional vertex can be

produced. Vertices with at least two associated tracks are taken to be the primary

vertices. The track selection criteria based on the number of silicon hits, discussed in

the previous section, eliminates the reconstruction of primary vertices that do not

correspond to an actual pp collision.

Tracks associated to a primary vertex are refitted taking as reference point the

position of their reconstructed vertex. Among all reconstructed primary vertices in

an event, the vertex chosen to correspond to the hard scattering process is the one

with the largest value of
∑
p2T, where the sum runs over the associated tracks and

the transverse momentum refers to that of the tracks. This selected vertex is referred

to as the hard vertex of the event. The combined efficiency of the reconstruction of

primary vertices and of the selection of the hard scattering among them is stable with

respect to the level of pileup and is above 99% within typical detector acceptance

used in physics analyses [164].
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Figure 4–1 – Dependence of the average number of reconstructed primary vertices on
the level of pileup [164]. The simulation fit refers to a fit to the MC distribution with
values of µ scaled by 1.11.

A larger number of pp collisions in an event reduces the average distance between

them. Collisions that are too close to each other to be resolved are reconstructed

as a single, merged primary vertex. For this reason, the number of reconstructed

primary vertices is smaller than the number of pileup interactions. Furthermore, the

dependence of the average number of primary vertices as a function of the pileup

is different between data and the detector simulation. This difference is due to the

length of the beam spot along z being longer in the simulation, leading to fewer

merged vertices. A multiplicative correction factor of 1.11 is applied to the value of µ

in the simulated events of the MC samples to bring their distribution in agreement

with that of the data [164]. Figure 4–1 shows the agreement between the data and

the simulation after the correction.
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4.1.3 Topological Cell Clusters

The topological cell clusters are collections of calorimeter cells assembled in three di-

mensions based on the energy measured in each individual cell of the calorimeters. [150].

These clusters are built in order to reduce the effect of the both electronic and pileup

noise on the energy measurement of showers in the calorimeters. Furthermore, they

allow for an energy calibration that depends on cluster properties.

Topological clusters are built from individual calorimeter cells according to the energy

significance of the cells, i.e. the ratio of the cell signal, Ecell, to the expected cell noise,

σcell. The expected noise per cell is given in Figure 3–7. The clusters are seeded

by cells for which the significance satisfies |Ecell|/σcell > 4. All neighbouring cells to

a seed are added to the cluster. The neighbouring cells are defined as those being

adjacent in a given calorimeter layer or, if in different layers, as overlapping in (η, ϕ).

Cells can be neighbours across different calorimeter subsystems. If a neighbouring cell

to a seed satisfies |Ecell|/σcell > 2, all of its neighbouring cells are also added to the

cluster. This process is repeated until no neighbouring cells satisfy that significance

requirement. As a last step, all neighbouring cells to the cells in the cluster are added

to the cluster, irrespective of their significance. If multiple cells corresponding to

local energy maxima are found in a cluster, the cluster is split to ensure that each

reconstructed cluster only contains one energy maximum.

The clustering criteria on the cell energy significance are defined in terms of the

absolute value of the cell energy in order to take into account cells with a negative

energy. Negative values are possible due to fluctuations of the cell noise, mostly

100



caused by pileup fluctuations. These negative-energy cells are added to the cluster in

order to compensate on average for positive noise fluctuations in other cells.

The kinematics of a topological cluster are defined by its energy and its angular

position, i.e. (η, ϕ). The topological cluster energy is defined as the energy sum of

the individual cells making up the cluster. The angular position of the cluster is

calculated as the energy-weighted mean of the position of each cell in the cluster, as

defined with respect to the center of the detector. A mass of zero is associated to the

topological cluster in order to build a momentum four-vector.

Next, the topological cluster energy is calibrated. This is achieved by individually

calibrating the energy of each cell in a cluster via a weighting of its energy. This

calibration is referred to as a local cell weighting. The calibration corrects for the

lower response of the calorimeters to hadronic showers, compared to electromagnetic

showers, i.e. it corrects for the calorimeter non-compensation. The calibration also

corrects for energy deposits measured outside of the clusters and for energy deposits

not measured by the calorimeters. These corrections depend on the energy and the

position of the considered cell and of its associated cluster. The corrections are

derived from the signal response of neutral and charged pions in MC event samples.

The neutral pion decays to two photons and thus produces an electromagnetic shower

while the charged pion produces a hadronic shower in the calorimeters. As a result of

this calibration procedure, the cluster energy is typically increased by roughly 50%.

The (η, ϕ) position of the cluster is also recalculated after this calibration procedure

is applied.
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An electromagnetic shower caused by a single neutral pion produces typically one

topological cluster while a hadronic shower caused by a single charged pion produces

typically three topological clusters. This difference comes from the nature of hadronic

showers, which are made up of a significant fraction of undetected energy due to

strong interactions.

Topological clusters are used to quantify the amount of activity around a reconstructed

photon and are used as input to jet algorithms.

4.2 Photon Object

Prompt photons are abundantly produced in proton–proton collisions due to the

relatively high value of the electromagnetic coupling constant. Particles that are most

often mis-reconstructed as photons are hadronic particles, which are observed as jets.

The distinctive features in the detector of prompt photons are the absence of tracks in

the Inner Detector, since they do not carry an electric charge, and the production of

an electromagnetic shower. However, a complication in the measurement of photons

occurs due to the non-negligible probability that a photon interacts with the detector

material upstream of the calorimeter, thereby producing an electron–positron pair.

These photons are called converted photons. Their reconstruction differs from photons

that did not convert into an electron–positron pair, the unconverted photons. The

reconstruction of photons and their identification via their shower properties are now

discussed. Also discussed is the photon isolation, an additional photon identification

requirement.
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4.2.1 Photon Reconstruction

The photon reconstruction in the calorimeter is based on a sliding window algorithm

searching for clusters of electromagnetic towers, which are projections of cells across

the different layers of the electromagnetic calorimeter [166]. Topological clusters

are not used since clusters of fixed size, provided by the sliding window, allow for a

straightforward calibration of the photon energy [167]. The window has an initial

size in ∆η ×∆ϕ of about 0.075× 0.125, corresponding to 3× 5 cells in the second

layer of the electromagnetic calorimeter. The energy of the cluster is defined as the

sum of the energy of the cells composing the cluster. Clusters with an energy above

2.5 GeV are used as seeds for the next steps of the reconstruction. Tracks from the

Inner Detector are considered matched to a seed if their position extrapolated to the

second layer of the electromagnetic calorimeter lies within a given distance around

the cluster center in (η, ϕ).

Converted photons are reconstructed by first reconstructing the secondary vertex at

which the photon produced the electron–positron pair. The reconstruction of this

vertex uses tracks matched to the cluster seed. A vertex fit is done for tracks that

approach each other with a constraint that the tracks be parallel at the vertex, since

photons are massless. Although in a photon conversion the electron and positron are

collimated, they have opposite electric charges. Their trajectories will bend in opposite

directions in the transverse plane. If the conversion occurs in the outermost layers of

the Inner Detector, the electron and positron tracks will not be significantly deflected

and the two tracks will be reconstructed as a single track. Therefore, converted

103



photons are separated into two categories: two-track and one-track conversions. One-

track conversions can also happen due to an asymmetric conversion, in which one

particle has significantly less energy than the other and ends up not being properly

reconstructed. The position of the conversion vertex in those cases is taken to be at

the first track hit. Selection criteria are imposed on tracks associated to conversion

vertices, based on for example the number of track hits in the various tracker layers

and the likelihood of the particle to be an electron as determined via the measured

amount of transition radiation in the TRT. The selection criteria applied to tracks

associated to single-track conversion vertices are more stringent in order to compensate

for the inability to perform a secondary vertex fit.

If no tracks are matched to a calorimeter cluster seed, the cluster is classified as an

unconverted photon. If the tracks associated to the conversion vertices are matched

to a cluster seed, the cluster is classified as a converted photon. A possible ambiguity

exists between photons and electrons produced in the hard scattering of the event,

since both are defined by the presence of tracks and electromagnetic clusters. If an

electron track is associated to the conversion vertex matched to a cluster, the cluster

is identified as a converted photon. If the electron track is matched to a cluster

but is not associated to a conversion vertex matched to the cluster, the cluster is

classified as a converted photon only if the transverse momentum of the electron track

is smaller than that of the tracks associated to the conversion vertex. Additional

criteria are also used to resolve further the identification ambiguity between electrons

and converted photons. These criteria are based on the ratio of the cluster energy to
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the track momentum, the transverse momentum of the track and whether the track

has hits in the silicon layers.

After the classification of the photon cluster, a reclustering is done on the electro-

magnetic towers with a window size that depends on the classification of the cluster

and also if it is located in the barrel or in the end-caps. In the barrel, the sizes of

the window correspond to 3 × 5 and 3 × 7 second-layer cells, for unconverted and

converted photons respectively. The larger window size in ϕ used for the converted

photons accounts for the opening angle between the electron and the positron due

to the solenoidal magnetic field. In the end-caps, the size of the sliding window

corresponds to 5× 5 second-layer cells for both unconverted and converted photons.

If the photon is a converted photon and the tracks associated to the conversion vertex

have hits in the silicon layer, its pseudorapidity and its azimuthal angle are based on

those of the tracks. Otherwise, the values of pseudorapidity and azimuthal angle of

the photon are based on those of the calorimeter cluster.

The photon reconstruction efficiency is shown in Figure 4–2. While the reconstruction

of unconverted photons is close to 100%, the more difficult case of converted pho-

tons, with an efficiency of about 94%, brings down the overall photon reconstruction

efficiency to around 98% [168]. The efficiency decreases at larger values of pseudora-

pidity due to the larger amount of detector material. The reconstruction efficiency

of converted photons decreases for pT > 150 GeV, due to the electron and positron

tracks becoming more collimated. The criteria on the reconstruction of single-track
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Figure 4–2 – Photon reconstruction efficiency as a function of the photon pseudora-
pidity [168].

conversion vertices become too stringent and the efficiency decreases. The overall

photon reconstruction efficiency is about 90% for pT = 1 TeV [166].

Next, the energy of the photon cluster is calibrated. Without being calibrated, the

energy of a photon cluster is shifted with respect to that of the corresponding particle

prompt photon. The difference in the energy scales can be caused for example by

energy lost in the material upstream of the calorimeter or by energy deposits in the

calorimeter outside of the cluster. Additionally, the dispersion of the reconstructed

energy with respect to the particle energy can be different between recorded and

simulated photons. This difference in the energy resolutions can be caused for example

by inhomogeneities in the response of the calorimeter cells. The calibration procedure

is based on four steps and is applied to the photon energy in both recorded data
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events and MC events [169]. The purpose of the steps differ between the two types of

events. Their descriptions follow.

1. (a) For recorded events, to correct for different levels of energy response

across the layers of the electromagnetic calorimeter, the responses of the

layers are calibrated with respect to the simulation. An intercalibration of

the responses of the first two layers of the electromagnetic calorimeter is

performed using Z → µµ decays, since muons are insensitive to the amount

of material in front of the calorimeter. The response of the presampler

is calibrated from electrons produced in W and Z decays, to understand

the amount of material before the presampler and between the presampler

and the first layer of the electromagnetic calorimeter. No calibration

is performed for the third layer of the calorimeter as its contribution is

negligible to the measured energies.

(b) For MC events, a boosted decision tree (BDT) is trained based on cluster

and track information to produce a calibration factor that brings the cluster

energy to the particle photon energy. The training is done separately for

converted and unconverted photons.

2. For recorded events, the BDT calibration is applied to the cluster energy. This

is the main contribution to the photon energy calibration.

3. For recorded events, additional corrections for hardware effects that are not

simulated are applied. The effects include high-voltage inhomogeneities in

space and time, the widening of gaps between the different parts of the barrel
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electromagnetic calorimeter due to gravity and the difference between the energy

responses of medium- and high-gain amplifiers.

4. (a) For recorded events, the electron energy scale is shifted with respect to

that in simulated events, as determined from Z → ee decays. A scaling

correction is applied to the electron energy in data such that the electron

energy scale matches that in the simulation. The same scaling correction

is applied to the photon energy.

(b) For MC events, the electron energy resolution is better than that in data,

as determined from Z → ee decays. A Gaussian smearing correction is

applied to the electron energy in the MC events in order for it to match

the resolution in the recorded events. The same smearing correction is

applied to the photon energy.

In the fourth step of the calibration procedure, the decays of Z bosons are used

since the distribution of the invariant mass of the electron–positron pairs that they

produce forms a well-described resonant peak. The position and the width of the

peak allows for an absolute calibration of the energy scale and resolution between

recorded and MC events. The calibration procedure is validated via the invariant

mass distributions of J/ψ → ee decays for electrons and of radiative decays of the Z

boson, Z → eeγ and Z → µµγ, for photons.

The overall energy scale correction is typically within 5% of unity. The correction is

independent of the amount of pileup since the energy response of the electromagnetic

calorimeter is stable as a function of pileup at the 0.05% level [169]. Figure 4–3

108



 [GeV]TE

20 40 60 80 100 120 140 160 180 200

 / 
E

σ

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04
-1 = 20.3 fbtdL∫=8 TeV, sATLAS

|=0.2ηUnconverted photons, |
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presents the energy resolution for unconverted photons, showing that it is smaller

than 3% over the energy range investigated.

4.2.2 Photon Identification

The energy-calibrated photon cluster is required to be identified as a prompt photon.

In comparison to the hadronic-shower background, created by hadrons, or jets, the

electromagnetic shower of prompt photons is narrower and has a smaller portion of

its energy in the hadronic calorimeter. Still, hadronic jets can be mis-reconstructed

as photons in two ways. It can be that non-prompt photons, produced in hadron

decays, inside jets carry a significant fraction of the jet energy, mimicking prompt

photons as a result. Also, it can be that the distribution of the energy deposits

in the calorimeters of the hadrons themselves is consistent with that of a prompt
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photon. The former is the source of the majority of background photon clusters. An

important subset of the non-prompt photon background comes from the π0 mesons

and other neutral mesons that decay into two photons. The energy they deposit

exhibits two maxima in the first layer of the electromagnetic calorimeter due to the

two photons, as long as the decay happens in the r–η plane, since the segmentation in

ϕ is coarse. The fine segmentation along the pseudorapidity of the first layer enables

this distinction between nearby maxima.

To distinguish prompt photons from the hadronic background, photon identification

criteria based on the values of nine variables are used [166]. These variables describe

the shape of an electromagnetic shower. Variables based on the information of strip

cells of the first calorimeter layer mainly aim to reduce the background from neutral

mesons. Variables based on the second layer, in which most of the electromagnetic

energy is deposited, aim to test the compatibility of the width of the shower with

the expected narrow width of electromagnetic showers, while an additional variable

based on the hadronic calorimeter tests the length of the shower. The description of

the variables follows.

• First electromagnetic calorimeter layer

Fside Ratio of the energy contained in seven cells centered around the most

energetic strip cell, E(±3), minus that in the central three cells, E(±1),

to the energy in the central three:

Fside =
E(±3)− E(±1)

E(±1)
. (4.4)
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ws,3 Energy-weighted pseudorapidity width in units of strip cells, considering

three cells along η centered around the most energetic strip cell:

ws,3 =

√∑
iEi(i− imax)2∑

iEi

, (4.5)

where i is the identification number of the considered strip cell along η,

imax is the identification number of the most energetic strip cell and Ei is

the energy of strip cell i.

ws,tot Energy-weighted pseudorapidity width in units of strip cells, similarly to

ws,3, but considering cells in a window of size about 0.06× 0.2 in η × ϕ,

corresponding to 20×2 strip cells in the barrel calorimeter, centered around

the most energetic cell in the second layer.

Eratio Ratio of the energy difference between the largest energy deposit in the

strip cells, Emax
1 , and the second largest energy deposit in the strip cells,

Emax
2 , to their energy sum:

Eratio =
Emax

1 − Emax
2

Emax
1 + Emax

2

. (4.6)

∆E Difference in energy between the second largest energy deposit in the strip

cells, Emax
2 , and the smallest energy deposit that is located in-between the

largest and second largest energy deposits in the strip cells, Emin
1,2 :

∆E = Emax
2 − Emin

1,2 . (4.7)
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• Second electromagnetic calorimeter layer

Rη Ratio of the energy contained in 3× 7 cells of the second layer, E3×7, to

the energy contained in 7× 7 cells of the second layer, E7×7, in η × ϕ:

Rη =
E3×7

E7×7
. (4.8)

Rϕ Ratio of the energy contained in 3× 3 cells of the second layer, E3×3, to

the energy contained in 3× 7 cells of the second layer, E3×7, in η × ϕ:

Rη =
E3×3

E3×7
. (4.9)

wη2 Energy-weighted width in pseudorapidity, considering 3 × 5 cells of the

second layer in η × ϕ:

wη2 =

√∑
iEiη2i∑
iEi

−
(∑

iEiηi∑
iEi

)2

, (4.10)

where i is an index that runs over all considered cells, ηi is the pseudora-

pidity coordinate of cell i and Ei is the energy of cell i.

• Hadronic calorimeter

Rhad Ratio of the transverse energy deposited in the cells of the first layer of the

hadronic calorimeter that are located in a region of 0.24× 0.24 in ∆η×∆ϕ

behind the photon cluster, Ehad,1
T , to the transverse energy of the photon

cluster, ET:

Rhad =
Ehad,1

T

ET
, for |η| < 0.8 or |η| > 1.37. (4.11)
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For photon clusters within the region 0.8 < |η| < 1.37, the numerator of

the ratio is taken to be the transverse energy deposited in the cells of the

hadronic calorimeter that are located in a region of 0.24× 0.24 in ∆η×∆ϕ

behind the photon cluster, Ehad
T :

Rhad =
Ehad

T

ET
, for 0.8 < |η| < 1.37. (4.12)

Within the region 0.8 < |η| < 1.37, this definition provides a better discrim-

ination against hadronic showers compared to the former definition [168].

The distributions of these identification variables are given in Figure 4–4 for uncon-

verted photons and in Figure 4–5 for converted photons. The distributions of these

variables for jets, the main photon background, are also given. The distributions are

similar between the unconverted and the converted photons, with the exception of Rϕ.

Converted photons have smaller values of Rϕ than unconverted photons on average.

The electron and the positron produced in a photon conversion get separated in ϕ by

the magnetic field. This separation widens the shower shape along the ϕ-direction,

decreasing the value of Rϕ. Taken together, the distributions of these nine identifica-

tion variables show the narrower and shallower nature of photon-initiated showers

compared to jet showers.

Different sets of cuts on the values of the variables, with varying efficiencies and

background rejection capabilities, have been devised. Cut values are optimized

separately for unconverted and converted photons. Cut values also vary as a function

of the photon cluster but are mostly independent of the transverse energy of the

cluster.
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Figure 4–4 – Distributions of the photon identification variables for unconverted
photons and jets [168]. The variables wtot

η1 and w3
η1 in this figure correspond respectively

to ws,tot and ws,3 in the text.
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Figure 4–5 – Distributions of the photon identification variables for converted photons
and jets [168]. The variables wtot

η1 and w3
η1 in this figure correspond respectively to

ws,tot and ws,3 in the text.
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Two sets of cuts are primarily used, referred to as tight and relaxed tight [166]. Both

of these have the same cut values. The tight definition cuts on all nine variables

and corresponds to the strictest set of photon identification criteria. It has a jet

background rejection factor of about 5 × 103 [168], i.e. only one out of about five

thousand jets passes the cuts. An example of such a jet is one containing a neutral

meson that is sufficiently boosted that the two photons produced in its decay become

collimated and are reconstructed as a single photon. Similarly, the two photons can

be reconstructed as a single one if the decay is along ϕ. The tight definition cannot

distinguish these photons from prompt photons.

The relaxed tight set of cuts requires at least one failed cut on the four following

variables: Fside, ws,3, Eratio, ∆E. Relaxed tight and tight are mutually exclusive

due to the veto on at least one of these variables. The four variables on which a

failed cut is required are chosen to be variables based on the information of the first

calorimeter layer, in order to increase the probability that photons produced in the

decay of neutral mesons satisfy the relaxed tight definition. As will be explained in

Section 6.1, the relaxed tight set of photon identification criteria is used to further

suppress the residual background of prompt photons. As the particular choice of

these four variables is somewhat arbitrary, two variants of the relaxed tight definition

are also used for the purpose of estimating the systematic uncertainty related to this

choice. One variant is more stringent than the nominal relaxed tight definition and

one variant is less stringent. Respectively, the two variants are defined by requiring

that ∆E satisfies its cut value and by adding ws,tot to the list of possible variables on

which a cut has failed. Table 4–1 summarizes all four identification definitions.
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Table 4–1 – Description of the various photon identification definitions in terms of
the discriminating variables defined in the text. A checkmark means that the variable
must have passed its cut value. For a given photon identification definition, at least
one of the asterisked variables must have failed its cut value.

Photon identification Fside ws,3 ws,tot Eratio ∆E Rη Rϕ wη2 Rhad

Tight ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Relaxed tight * * ✓ * * ✓ ✓ ✓ ✓
Relaxed tight (tighter) * * ✓ * ✓ ✓ ✓ ✓ ✓
Relaxed tight (looser) * * * * * ✓ ✓ ✓ ✓

Differences exist in the distributions of the discriminating variables between the

data and the detector simulation. Corrective shifts are applied to the discriminating

variables in the MC event samples to bring their distributions in closer agreement

to the data distributions, that is the χ2 between the two distributions is minimized.

These shifts are binned as a function of transverse momentum and pseudorapidity

and are different for unconverted and converted photons. The magnitudes of the

shifts are typically 10% of the root mean squares of the distributions. After applying

these shifts, differences remain in the tight photon identification efficiency between

data and simulated events. Scale factors, defined as data-to-simulation efficiency

ratios, ϵdata/ϵMC, are measured in radiative decays of the Z boson. These scale factors

are applied as event weights on the MC events such that the tight identification

efficiency in the MC events agrees with that in the recorded events. They are binned in

transverse energy and pseudorapidity and are different for unconverted and converted

photons.
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The effect of pileup on the tight identification efficiency and on the scale factors

has been reduced by optimizing the cut values on the identification variables for the

pileup conditions observed in 2012. For photons with ET > 30 GeV, the photon

identification efficiency at µ = 25 is approximately 5% lower than that at µ = 0.

However, the values of the scale factors are found not to strongly depend on the level

of pileup, indicating that pileup effects are properly accounted for in simulation.

Figure 4–6 shows the tight photon identification efficiencies for photons produced in

radiative decays of the Z boson. The efficiency increases as a function of the photon

transverse energy since background contributions to the discriminating variables

become less important relative to that of the photon. The scale factors are also shown.

Their values are typically within 3% of unity. The photon identification efficiency

shown in Figure 4–6 was measured after requiring that the isolation energy of the

photon be less than 4 GeV. The definition of the isolation energy is the topic of the

next section.

4.2.3 Photon Isolation

The photon transverse isolation energy, Eiso
T , referred to as the isolation energy, is the

amount of energy deposited around the photon cluster. It is used in addition to the

discriminating variables on the shower shape to reject further the background due to

jets, as the wide physical dispersion of particles inside jets will increase this quantity.

For example, jets in which photons carry most of the jet energy might pass the tight

identification variables; however they will be accompanied by other particles. These
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Figure 4–6 – Tight photon identification efficiency measured in radiative decays of
the Z boson as a function of the photon transverse energy in the region 0 < |ηγ| < 0.6
for (a) unconverted and (b) converted photons [166]. The scale factors are given in
the bottom panels. Efficiencies determined in MC Z → eeγ and Z → µµγ samples
with and without the corrective shifts to the photon shower discriminating variables
are also shown.

other particles will deposit energy in the calorimeter around the photons and increase

the isolation energy.

The isolation energy is defined as the sum of the transverse energies of positive-energy

topological clusters whose barycenters are located within an angular distance of

∆R =
√

∆η2 +∆ϕ2 = 0.4 to the barycenter of the photon cluster. The energy falling

within a window of size corresponding to 5× 7 second-layer cells in η × ϕ around the

center of the photon cluster is subtracted from Eiso
T to remove the contribution of the

photon itself. Figure 4–7 illustrates the geometry of the definition.

The isolation energy is meant to be a measure of the activity around the photon

cluster that comes from the hard scattering but that is not due to the photon. If the

photon shower is wider than the 5× 7 window, it contributes to the isolation energy.
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Figure 4–7 – Diagram of the definition of the photon transverse isolation energy.
The grid corresponds to the granularity of the cells in the second layer of the
electromagnetic calorimeter in the η–ϕ plane. The yellow circular region is the region
in which the transverse energy is summed. The pink squares represent cells part of a
topological cluster. The white rectangle represents the area in which the isolation
energy is not summed.

Additionally, energy deposits from the pileup and the underlying event contribute to

the isolation energy. Corrections to the isolation energy are used to subtract these

contributions.

The correction for the leakage of the photon energy outside of the 5× 7 window is

derived by evaluating this effect in single-particle MC event samples. The value of

this leakage correction increases with the photon transverse energy and is typically

5 GeV for photons with ET = 400 GeV.

Pileup and underlying-event contributions to the isolation energy are reduced via a

correction based on the jet area subtraction method [170]. In short, the correction

is derived by forming jets via the kt algorithm [171, 172] with a parameter R = 0.5,
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taking as input positive-energy topological clusters.1 The median value among all

the jets of the ratio of the jet transverse momentum to its angular area is taken to be

the ambient transverse-momentum density. This procedure is performed in different

pseudorapidity regions. The ambient transverse-momentum density is then multiplied

by the area in which the isolation energy is measured, i.e. the circular area of radius

R = 0.4 minus the central window, to obtain the correction. The typical size of this

correction is 2 GeV.

Differences in the distribution of Eiso
T between data and simulated events are observed.

In the central region of the detector, the MC events have a shifted Eiso
T distribution

and, in the forward region, the distribution is additionally narrower. Shifts and

smearing corrections are considered as a function of the photon transverse energy

and pseudorapidity. Shifts are applied to the MC events in the central region, such

that the χ2 between the distributions in the recorded and MC events is minimized.

For the forward events, shifts and Gaussian smearing corrections are applied in the

same manner. The values of the shifts and of the standard deviations of the Gaussian

smearing corrections are about 1 GeV.

4.3 Jet Object

The reconstruction of the b quark in the γ + b event production can be done either

by reconstructing the b hadron in which it hadronizes or the hadronic jet that it

produces. The reconstruction of the b hadron is less efficient than the jet approach

1The kt algorithm is defined in Appendix B.
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since specific decay channels must be investigated. In turn, this low efficiency can

potentially restrict the measurement in the regions where few events are produced.

Additionally, the reconstruction and the theory predictions have to agree on the

objects that are investigated. As only jet predictions are available at NLO in pQCD,

the reconstruction of the b quark is done by reconstructing jets and identifying those

that contain b hadrons. The details of these aspects are now treated.

4.3.1 Jet Reconstruction

Jets are reconstructed by using the anti-kt algorithm [173] with a parameter R = 0.4

using as input positive-energy topological clusters.2 Typically, about ten topological

clusters are part of a jet [150]. The four-momentum recombination scheme is used,

i.e. the four-momentum of the jet is the sum of the four-momenta of the topological

clusters [174]. The anti-kt algorithm is chosen to build jets since its performance is

less dependent on the amount of pileup. This behaviour can be explained by the fact

that the anti-kt algorithm starts the jet formation with particles with large values of

transverse momentum. The value for the parameter R is chosen to be large enough to

encompass most of the jet energy deposited in the calorimeter, while still being small

enough to reduce the sensitivity to the pileup contributions. Particle-level jets are

built with the same algorithm as detector-level jets and with the same R parameter

value. To build particle-level jets, the algorithm takes as input all long-lived particles,

2The anti-kt algorithm is defined in Appendix B.
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defined as particles with a lifetime longer than 10 ps, except muons and neutrinos

since they do not deposit energy in the calorimeters.

Although the jet formation makes use of calibrated topological clusters, the energy

scale of the jets is shifted with respect to that of particle jets. The difference can

be caused for example by large pileup energy deposits that were included in the

topological clusters and thus in the jets. A jet calibration is necessary to correct for

this effect, among others, and to set the absolute jet energy scale. The jet calibration

procedure has five steps [175], which are applied to both recorded and MC events,

except for the last step which is only applied to recorded events. Each step of the jet

calibration procedure is described below.

1. The direction of the reconstructed jet is defined with respect to the center of

the detector since the directions of the topological clusters are also defined with

respect to that position. The origin of the jet is changed to be the position of the

hard vertex of the event. This is accomplished by redefining the pseudorapidities

and azimuthal angles of the topological clusters such that their origin is the hard

vertex. The jet direction is recomputed. Since the energies of the topological

clusters are not modified, the jet energy is not modified either, but the jet

transverse momentum does change.

2. The effect of the pileup is subtracted using the jet area method, similarly to

the photon isolation, that is, by subtracting from the transverse momentum

of the jet the product of the jet area and ambient pT density. After this

subtraction, a residual pileup dependence remains. An additional correction
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is applied to mitigate this. It contains two terms, one proportional to the

average number of interactions per bunch crossing and one proportional to the

number of reconstructed primary vertices. The two proportionality constants

are determined from MC samples. The correction is applied on the jet four-

momentum.

3. The bulk of the jet calibration comes from an evaluation in MC samples of the

jet energy response. The jet energy response is defined as the ratio of the energy

of the detector-level jet to that of the geometrically matched particle-level jet.

The response is measured as a function of the jet energy and pseudorapidity.

The inverse of the response is applied to the reconstructed jet four-momentum

as a calibration factor. Furthermore, an additive correction is applied to the

jet pseudorapidity, which is obtained from the difference in pseudorapidities

between detector-level jets and particle-level jets. This compensates for a

possible bias due to differences in the calorimeter response in different regions

of the calorimeters, such as the transition region between the barrel and the

end-caps, which would make the jet direction point towards the region with the

better response.

4. A global sequential calibration [176] is then applied to improve the jet energy

resolution. The jet energy response is parameterised in terms of the jet energy,

pseudorapidity and a global jet variable based on tracking information. A

calibration factor proportional to the inverted response is then applied on the

jet four-momentum. The proportionality constant is chosen such as not to

change the average jet energy. This procedure is done sequentially for each
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global jet variable. Those variables are, in order, the number of tracks associated

to the jet, the pT-weighted angular distance of a track from the jet axis for the

tracks associated to the jet and the number of muon track segments in MDTs

behind the jet.

5. For recorded events only, an absolute in situ calibration is applied [177, 178]. It

is derived by measuring in data the ratio of the transverse momentum of the

jet to the transverse momentum of a reference object: either another jet, a Z

boson, a photon or multiple jets. In all cases, the average of the ratio measured

in data is compared to that measured in the MC samples and their ratio is

taken as the calibration factor on the jet four-momentum.

The overall energy scale correction is typically within 20% of unity. This value is

larger than the correction of the photon energy scale, as is expected, since the response

of the calorimeters to electromagnetic showers is higher than to hadronic showers.

The resolution of the jet energy is obtained in recorded events from in situ analyses.

The jet energy resolution is related to the width of the distribution of the ratio of the

transverse momentum of the jet to that of the reference object. In MC events, the

resolution is taken to be the width of the distribution of the jet energy response. The

resolution obtained in recorded events agree with that obtained in MC events. No

further corrections are necessary.

Figure 4–8 shows the relative resolution of the jet transverse momentum in recorded

events as a function of the jet transverse momentum. It can be seen that the relative

resolution, which is at most 30% for pT > 20 GeV, is worse than the photon relative
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Figure 4–8 – Relative resolution of the jet transverse momentum as a function of the
jet transverse momentum for jets in |η| < 0.8 that are built from topological clusters
calibrated with local cell weighting (LCW) and that have a calibrated jet energy scale
(JES) [175]. Equation 3.4 is fitted to the in situ measurements of the resolution.

energy resolution by about an order of magnitude. This is the reason why the γ + b

production cross section is measured as a function of the photon transverse energy

and not as a function of the jet transverse momentum.

4.3.2 Jet Identification

Reconstructed jets can be produced in hard or pileup vertices. Most pileup jets have

a small value of transverse momentum. To reduce the contribution of pileup jets in

the low-pT region, a quantity called the jet vertex fraction (JVF) [179] is used to

distinguish the jets produced in the hard scattering from the pileup jets. The JVF

takes as input two quantities, a jet and a vertex. It is defined as the ratio of the

scalar sum of the transverse momenta of the tracks associated to the jet that comes
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from the given vertex over the scalar sum of the transverse momenta of all tracks

associated to the jet. As such, its value is between 0 and 1. The JVF value associated

to the hard vertex will be small for pileup jets and large for jets produced in the hard

scattering thus allowing to distinguish between them. If a jet has no tracks associated

to it, its JVF value is −1.

4.3.3 b-tagging Identification

The b quarks hadronize into b hadrons within a timescale given by the perturbative

QCD scale, ΛQCD, corresponding to O(10−24 s) or equivalently O(1 fm), which is

too short to be measured by the detector. The b quarks are thus identified via the

presence of b hadrons. The b hadrons decay via the strong or electromagnetic forces

until a b hadron that decays via the weak force is produced.3 These weakly decaying

b hadrons decay via a W boson mostly to hadrons containing a c quark, due to the

ordering of the values of the CKM matrix. In turn, these c hadrons decay strongly or

electromagnetically until a c hadron that decays via the weak force is produced, which

then decay weakly into hadrons containing s quarks, the hyperons, and similarly for

them until stable hadrons with u and d quarks are produced.4 The weak decays, due

to the small effective coupling of the weak force, have a low probability of occurring.

The lifetimes of the weakly decaying hadrons are longer than those of the hadrons

3The known weakly-decaying b hadrons are B0, B+, B0
s , B+

c , Λ0
b , Ξ0

b , Ξ
−
b , Ω−b and

their antiparticles [54].

4The known weakly-decaying c hadrons are D0, D+, D+
s , Λ+

c , Ξ0
c , Ξ+

c , Ω0
c and their

antiparticles [54].
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that decay via the strong or electromagnetic forces. The weak b-hadron decays in

particular are suppressed further due to the CKM matrix, since the b and c quarks

are not in the same generation. The lifetime, τ , of weakly decaying b hadrons is

τ ≈ 10−12 s, to be compared to the weakly decaying c hadrons which have a lifetime

of τ ≈ 10−13 s and whose decays are not suppressed by the CKM matrix. The

lifetime of these b hadrons is long enough that it allows them to travel a measurable

distance away from the position of the hard scattering before decaying, which can

be reconstructed as a secondary vertex. For example, a b hadron with an energy

of 50 GeV will roughly have a Lorentz factor of γ ≈ 10 in the reference frame of

the detector and thus have a dilated lifetime of γτ ≈ 10−11 s, corresponding to a

measurable distance of βcγτ ≈ 3 mm between the primary vertex and the secondary

vertex.

The b hadrons are identified by assigning a value to the reconstructed jets according

to the likelihood that they contain a b hadron. This approach is called b-tagging.

Jets can then be selected according to this value with an arbitrary efficiency.

The b-tagging identification relies on properties of the jet that emerge from the long

lifetime and heavy mass of a weakly decaying b hadron to assign a b-jet likelihood

weight to the jet. Figure 4–9 summarizes the different properties that are used. Some

tracks associated to the jet will have large values for their impact parameter with

respect to the primary vertex, since they will originate from the secondary vertex.

The secondary vertex will have a large number of associated tracks and they will carry

a significant fraction of the jet momentum, due to the mass of the b quark acting as

a cutoff in the parton shower. For the same reason, the c hadron produced in the
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TV

PV

Figure 4–9 – Diagram of a b-jet and of the properties that can be used to perform
b-tagging. The solid black lines represent the trajectories of charged particles and the
red dots labelled PV, SV and TV represent respectively the primary, secondary and
tertiary vertices. The dashed black lines represent the extrapolation of the trajectories
to the primary vertex, with the red dashed line being an example of the impact
parameter of one of the trajectories. The solid red line connecting the three vertices
is the line of flight of the b and c hadrons.

decay of the b hadron will travel in the same direction as the b hadron. Therefore, a

tertiary vertex, associated to the decay of the c hadron, will be present in a b-jet and

will likely form a line with the primary and secondary vertices. This axis is referred

to as the line of flight of the b hadron.

A b-tagging algorithm must assign a large weight to b-jets while assigning a low

weight to other jets that form the background. Jets that do not contain b hadrons

can contain c hadrons, the c-jets, or contain no b or c hadrons, the light jets. Another

possible jet category are the τ -jets that can be reconstructed from the hadronic

decays of τ leptons, however their contribution compared to the hadronic jets is in
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general negligible. Although the light jets do not contain b or c hadrons, they can still

contain secondary vertices due to particle interactions with the material or due to the

presence of hyperons. The weakly decaying hyperons have lifetimes that can be longer

than τ ≈ 10−10 s and thus their decays also produce measurably displaced secondary

vertices with respect to the primary vertex. However, they are less massive than b

hadrons and do not have the same properties. Observable differences remain between

the b-jets and the c- and light jets, such that the b-tagging is a viable approach.

In the MC samples at both the detector and the particle levels, the flavour of a jet is

determined according to its associated hadron as follows. The jet is labelled as a b-jet

if a b hadron with pT > 5 GeV is located within an angular distance of 0.3 of the jet

axis. The jet is labelled as a c-jet if no such b hadron is found but a c hadron with

pT > 5 GeV is located within an angular distance of 0.3 of the jet. The jet is called a

τ -jet if no b or c hadrons are found but a τ lepton with pT > 5 GeV is located within

an angular distance of 0.3 of the jet. If none of those particles are found, the jet is

called a light jet. The requirement of 5 GeV on the transverse momentum of the

particles reduces the infrared effects related to the presence of low-pT b or c hadrons.

An algorithm that can be used for the b-tagging of jets is MV1 [180]. It is an artificial

neural network based on the output of three simpler b-tagging algorithms: IP3D [180],

SV1 [180] and JetFitter [180].5 These are all algorithms making use of the properties

of jets emerging from the long lifetimes and heavy masses of the weakly decaying b

5The details of the IP3D, SV1 and JetFitter algorithms are given in Appendix C.
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Figure 4–10 – Normalized distribution of the MV1c weight for b-, c- and light jets in
γ + jet Sherpa events.

hadrons. The MV1 algorithm is trained on MC events to discriminate b-jets against

light jets. A variation of this algorithm, called MV1c, is trained to discriminate b-jets

against both c-jets and light jets. It is the MV1c algorithm that is used for b-tagging

in the measurement of the γ + b production.

The output of the MV1c algorithm is a tagging weight that is normalized to a unit

integral and goes from 0 to 1. The distributions of the MV1c tagging weight for the

three jet flavours are shown in Figure 4–10. Its b-jet identification power can be seen

at large weight values. The peak around the value of 0.4 is associated to jets in which

no secondary vertex could be reconstructed and the spikes close to the value of 0

correspond to jets which have no associated tracks satisfying the selection criteria of

the algorithms.
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Table 4–2 – MV1c weight values above which the integrated MV1c distribution
corresponds to the working-point b-jet tagging efficiencies.

MV1c weight Efficiency [%]

0 100
0.4051 80
0.7068 70
0.8349 60
0.9195 50
1 0

A b-jet b-tagging efficiency can be associated to an MV1c weight simply by integrating

the b-jet MV1c distribution from that weight value up to 1, since the distribution is

unit-normalized. The MV1c weight values corresponding to predetermined b-tagging

efficiency values of approximately 80%, 70%, 60% and 50%, and the trivial 100% and

0% values, are listed in Table 4–2. These specific weight values are called working

points and jets that have a weight value larger than that of a given working point are

said to be tagged. The efficiency of a working point is only an approximation. The

value of the actual efficiency depends on the event selection, with the pre-determined

values corresponding to a simulated tt̄ event sample. In such an event sample,

the rejection factors for c- and light jets are respectively about 5 and 120 at the

70%-efficiency working point.

Although a b-tagging efficiency can easily be associated to the MV1c weight, differences

are observed between the efficiencies obtained in MC events and those obtained in

data events. A calibration is required for them to agree. For each jet flavour, data-to-

simulation efficiency scale factors have been measured in an analysis of recorded and
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simulated events. These scale factors are applied as event weights on the MC events

to bring the b-tagging efficiency in the MC events to the level of that in the recorded

events, similarly to the scale factors discussed in Section 4.2.2. These scale factors

depend on the jet transverse momentum, and also on the jet pseudorapidity for the

light-jet scale factors. They are measured for the working points listed in Table 4–2.

The calibration analyses are described below.

b-jets The b-jet calibration analysis uses a maximum likelihood fit to extract the

b-jet b-tagging efficiency distribution in data [181]. It uses a tt̄ selection in which

most selected jets are b-jets. It performs the fit on those jets, using probability

density functions of the MV1c weight taken from MC events for the c- and light

jets. The b-jet probability density function of the MV1c weight is the quantity

fitted. Once obtained, it can then be integrated from a given weight value up

to 1 to obtain the corresponding b-tagging efficiency.

c-jets The c-jet calibration analysis explicitly reconstructs D∗+ mesons, or the

antiparticles, in the jets of multijet events [182]. The c-jet b-tagging efficiency is

extracted from the simultaneously fitted yields of D∗+ mesons in jets that are

tagged and in those that are not. Since b hadrons can also produce D∗+ in their

decays, a template fit to subtract the background due to b-jets is performed

using the pseudo-proper time of the meson as the observable. The templates

are built from physics arguments related to the decay times of the mesons. The

c-jet b-tagging efficiency measured this way is restricted to c-jets containing

D∗+. An extrapolation based on the experimental values and on the predictions

of the EvtGen [183] MC event generator of the production and branching
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fractions of the c hadrons is performed to obtain the efficiencies for inclusive c

hadrons.

Light jets The light-jet calibration analysis employs the negative-tag method in

multijet events [182]. Light jets are tagged as b-jets mainly due to the finite

tracking resolution, which affects the sign of the impact parameter of the

tracks and the sign of the decay length of the reconstructed vertices. This

method reverses the sign of these two quantities in the algorithms. The weight

distribution of this modified MV1c weight for all jet flavours is similar to that

of the original MV1c weight for light jets. Consequently, the b-tagging efficiency

of all jets in data using this modified MV1c weight is taken as the light-jet

b-tagging efficiency. The MC samples are used to correct the measured efficiency

in data for effects that are not related to the tracking resolution, for example

the contamination of b and c hadrons, hyperons and material interactions.

The b-tagging efficiencies are measured for jets with transverse momenta up to

pT = 300 GeV for the b- and c-jets and up to pT = 750 GeV for the light jets. A

lack of events prevents the accurate measurement of efficiencies above these values.

Furthermore, the light-jet efficiencies are measured in two different regions: |η| < 1.2

and 1.2 < |η| < 2.5. This is motivated by the different amount of material in the

Inner Detector in these two regions, which can cause a different amount of material

interactions and thus change the light-jet efficiency. The values of the b-tagging

efficiency scale factors for all three jet flavours are within 30% of unity.
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For the measurement of the γ + b production cross section, a special form of the

b-tagging calibration is used, referred to as the continuous calibration. The difference

with the standard working-point calibration is that no jets are tagged by requiring

them to have a larger MV1c weight value than that of the working point. Instead,

the complete MV1c weight distribution is used. In particular, the MV1c weight

distribution can be separated into bins whose boundary values correspond to the

working points.

The b-jet calibration analysis, which measures the efficiency via the integral of the

b-jet probability density function, is easily adapted to the case of the continuous

calibration. The boundaries of the integral are simply changed to match the various

working points. The integral between the boundaries then gives the efficiency for a

particular MV1c weight bin.

The continuous calibration for the c- and light-jet scale factors is done using a different

approach. As the MV1c weight distribution is normalized to unity and bounded by 0

and 1, the scale factors are correlated across the MV1c bins. However, since working

points are simply lower bounds on the MV1c weight, a simple relation can be used to

derive scale factors in an MV1c bin delimited by the working points i and i+ 1, SF′i,

from scale factors measured at a working point i, SFi:

SF′i =
ϵMC
i SFi − ϵMC

i+1SFi+1

ϵMC
i − ϵMC

i+1

=
ϵdata
i − ϵdata

i+1

ϵMC
i − ϵMC

i+1

. (4.13)

In this relation, i goes from 1 to N−1 and represents the working points in decreasing

order of efficiency, i.e. ϵMC
1 = 1 and ϵMC

N = 0, with N being the number of working

points and with N = 6 for MV1c. The second equality comes from the definition of
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the scale factor at a working point, SFi = ϵdata
i /ϵMC

i . Although the first equality is

the one used technically, the second one shows that the definition of a scale factor in

an MV1c bin is equivalent to the definition of a scale factor at a working point: it is

the data-to-simulation ratio of tagging efficiencies for events in a range of the MV1c

weight. This type of calibration is referred to as the pseudo-continuous calibration,

since the efficiency has not been measured directly in a continuous manner, as in the

case of the b-jets. Despite its look, it is not an iterative process as the information for

any SF′i is readily available. By construction, it ensures a similar correlation across

the bins as for the continuous calibration and also ensures the boundaries at 0 and 1.

The values of the scale factors for the continuous calibration are similar to that of

the working points.
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CHAPTER 5
Event Selection

This chapter explains how the reconstructed and calibrated physical objects are used

to select events in which a photon and a jet are produced. The measurement of the

number of γ + jet events leads to the measurement of the γ + b production cross

section when used in conjunction with a measurement of the integrated luminosity.

Furthermore, the measurement of the cross section requires a knowledge of how the

detector-level event selection compares to the fiducial phase space of the cross section

at particle level. To this end, simulated samples of the signal γ + b process are

necessary. The detector-level event selection is applied to simulated γ + b events in

conjunction with a particle-level selection that defines the fiducial phase space of the

cross-section measurement. The first section of this chapter describes the simulated

signal samples. The second section lists the different detector-level selection criteria.

The third section does the same for the particle-level selection.

5.1 Simulated Signal Samples

Simulated samples of the production of prompt photons from Sherpa and Pythia

are necessary to measure the γ+b production cross section in proton–proton collisions.

The specific simulated samples that are used for the measurement are generated in

the way explained in Section 2.3.3 and are interfaced to a simulation of the ATLAS
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detector as detailed in Section 3.3.2. Since these samples contain γ + b events, they

are signal MC samples.

Background MC samples consist of events containing mainly jets. However, due to

the high rejection factor of the tight photon identification criteria, only one out of

about five thousand jet events would pass these criteria and be suitable for an analysis

of background events. This has the implication that most of the computer processing

time necessary to generate, simulate, digitize and reconstruct events would not be

useful from a physics point-of-view. For this technical reason and since they are not

strictly necessary for the measurement of the cross section, the use of background

MC samples is not considered further.

The Sherpa sample is taken as the nominal simulated sample. Most studies of

the signal that require a knowledge of the particle-level information are performed

with this sample. The choice of this sample over the Pythia sample stems from

the observation that Sherpa provides an overall better description of the inclusive

production cross section of prompt photons in pp collisions at
√
s = 8 TeV [35].

The Pythia sample is used to provide a comparison point to the studies performed

with the Sherpa sample, allowing to test the differences in the non-perturbative

QCD models. Additionally, the Pythia sample approximates the production of

fragmentation photons via the emission of bremsstrahlung photons in the parton

shower. The fragmentation and the direct photons are associated to different matrix

elements. The events with fragmentation photons can be distinguished from those

with direct photons. The possibility of this distinction enables the investigation of
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the impact of the relative contribution to the γ + b production of the fragmentation

photons in comparison to that of the direct photons.

The production cross section of prompt photons steeply decreases as a function of the

photon transverse momentum, spanning several orders of magnitude at the energy

scales accessible with the LHC [35]. To generate efficiently events with large values of

photon transverse momentum, pγT, the Sherpa and Pythia samples are each divided

into different individual samples. These individual samples each have a different

requirement on the minimum pγT value of the event. This requirement acts as a filter

on the generation of events. A luminosity event weight, wlumi, is applied to each

sample to reconstruct a smooth physical pγT spectrum representative of the recorded

events. The weight is based on the integrated luminosity of the data and also on

the cross section and the number of generated events associated to a filtered sample.

A lower boundary on pγT is applied at particle level after the generation to avoid

any filter inefficiency. Furthermore, an upper boundary on pγT is applied at particle

level after the generation to avoid the double counting of events between the filtered

samples. In addition to the pγT filter, a filter based on the presence of b hadrons is

used for the Sherpa samples to increase the number of events with b hadrons. The

reconstruction of the smooth spectrum from the combination of the different filtered

sample is referred to as the stitching of the samples.

Table 5–1 lists the requirements of the various pγT filters used in the Sherpa and

Pythia samples and the corresponding particle-level cuts on pγT that ensure an

efficient filter and no double counting of events. Figure 5–1 shows the weighted

spectra of the Sherpa samples as a function of the particle-level pγT before and after
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Table 5–1 – Requirements on the photon transverse momentum imposed by the filters
and the boundaries defining the pγT ranges in which the associated filters are used at
particle level. The two values for the lowest-threshold filter correspond to Sherpa
and Pythia respectively.

Filter [GeV] Particle-level boundaries [GeV]

pγT > 15 or 17 25 < pγT < 55
pγT > 35 55 < pγT < 105
pγT > 70 105 < pγT < 200
pγT > 140 200 < pγT < 400
pγT > 280 400 < pγT < 650
pγT > 500 650 < pγT < 1100
pγT > 800 1100 < pγT
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Figure 5–1 – Weighted number of leading particle-level photons as a function of the
particle-level photon transverse momentum in the generated Sherpa filtered samples
(a) without particle-level cuts and (b) with particle-level cuts. The vertical dashed
lines represent the values of the particle-level cuts. The symbol p̂γT in the legend
indicates that the photon filter is applied at parton level.
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stitching the different filtered samples together. A smooth spectrum is reconstructed

after the stitching procedure. Similar weighted spectra are obtained with the Pythia

samples. In the case that an event contains more than one photon, only the photon

with the largest value of pγT, i.e. the leading photon, is considered.

The properly normalized number of events in a given pγT bin, N ′bin, of the smoothly

falling pγT distribution is related to the number of simulated events in that bin, Nbin,

via

N ′bin =

Nbin∑
i=1

wi
lumi = wlumiNbin, (5.1)

where the sum runs over all events contributing to that bin and where wi
lumi is

the luminosity weight of event i. With the application of particle-level cuts in the

reconstruction of the expected smoothly falling spectrum of events, all events within

a given pγT bin come from the same filtered sample and thus have the same weight,

wlumi. The number of simulated events in a given bin is a random process that follows

a Poisson distribution. Therefore, the statistical uncertainty in N ′bin, ∆N ′bin, is that

of a sum of weighted independent Poisson distributions of mean one, which is

∆N ′bin =

√Nbin∑
i=1

(wi
lumi)

2 =
√
w2

lumiNbin = wlumi

√
Nbin. (5.2)

The statistical uncertainty, ∆Nbin, in the number of simulated events in a particular

pγT bin is the standard deviation of a Poisson distribution of mean Nbin, i.e. ∆Nbin =
√
Nbin. As can be seen, the relative statistical uncertainties are not modified by the

weights: ∆N ′bin/N
′
bin = ∆Nbin/Nbin = 1/

√
Nbin. As a result of the decreasing cross

section as a function of pγT within a given filtered sample, the relative statistical
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uncertainty in the reconstructed smooth pγT spectrum sharply decreases at each of

the filter pγT boundaries. Although the weighted spectrum is smooth as a function of

pγT, the relative statistical uncertainty is not smooth as a function of pγT.

In addition to the luminosity weight, other weights are applied to the simulated

events. The simulated samples are weighted such that the simulated conditions of

proton-proton collisions agree with those provided by the LHC. Specifically, event

weights are applied to simulated samples in order to correct the description of the

pileup level and of the reconstructed position of the hard scattering vertex along

the z-direction (PVz). As shown in Figure 4–1, there is a known correspondence

between the average number of reconstructed primary vertices and the amount of

pileup. Event weights are applied to simulated events in order to correct the number

of reconstructed primary vertices (NPV), which can be determined on a per-event

basis.1 Event weights are applied sequentially to simulated events, first to correct the

NPV simulated distribution and then to correct the PVz distribution.

Figure 5–2 shows the distributions of NPV and of the z-coordinate of the hard vertex

in data and in the Sherpa simulated samples before and after the application of the

NPV and PVz event weights. The ratios in the bottom panels of Figures 5–2(a) and

5–2(b) correspond to the weights that are applied. The Sherpa NPV distribution

after the weighting differs from the data by at most 3%, since the subsequent PVz

1The NPV event weights are derived separately for events recorded with prescaled
and unprescaled trigger selections.
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Figure 5–2 – Normalized data and Sherpa distributions of (a) the number of re-
constructed primary vertices before the weighting, (b) the z-coordinate of the hard
vertex before the weighting, (c) the number of reconstructed primary vertices after
the weighting and (d) the z-coordinate of the hard vertex after the weighting. The
ratio of the data distribution to that of Sherpa is given in the bottom panel. The
vertical error bars in the data distribution correspond to the statistical uncertainty.
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weighting modifies slightly the distribution. A perfect description of the data PVz

distribution is reached by the weighted Sherpa samples. Similar distributions and

levels of agreement with data are obtained after the weighting of the Pythia simulated

samples.

5.2 Detector-level Selection

The measurement of the γ+b production cross section relies on the use of Equation 3.1,

solved for the cross section. Detector-level selection cuts are applied on the recorded

events in order to select a subset of events compatible with at least one photon and one

hadronic jet having been produced in a proton-proton collision. The determination

of the jet flavour is done after the event selection cuts are applied.

The event selection consists in first selecting events suitable for physics analysis, next

selecting events in which at least one photon has been reconstructed and, lastly,

selecting events that additionally contain at least one reconstructed hadronic jet. In

order to understand the impact of these detector-level selection criteria with respect

to the particle level, the event selection is applied to both recorded and simulated

events. The selection criteria used in this analysis are presented below in the order in

which they are applied.

1. Hard scattering vertex

Events are selected if the hard vertex of the event has at least two associated

tracks, each with a transverse momentum satisfying pT > 0.4 GeV. This cut

ensures that the hard vertex is a properly reconstructed primary vertex.
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2. Trigger selection

Recorded events are selected if they satisfy one of the trigger criteria designed

to select photons.

The Level-1 algorithm used to select photons aims to identify electromagnetic

showers based on the distinctive feature that they are narrower than hadronic

showers. Calorimeter cells used as input to the algorithm are grouped lon-

gitudinally within the electromagnetic calorimeter and within the hadronic

calorimeters. The cells are also grouped transversely to reach a coarse granu-

larity of approximately 0.1× 0.1 in ∆η ×∆ϕ. These groups of cells are called

trigger towers and are identified in Figure 3–5. The towers are scanned in

groups of 4× 4 to find a group of towers of size either 2× 1 or 1× 2 in the inner

2× 2 towers that has a sum of transverse energies greater than some predefined

threshold [184].

The Level-2 and the Event Filter trigger selections make use of a similar

photon reconstruction as the one discussed in Section 4.2.1 [184]. At both

of these trigger levels, photons must satisfy a photon identification based on

variables discriminating the shapes of showers in the calorimeters, similarly

to the approach discussed in Section 4.2.2. The cuts on the discriminating

variables are not as stringent in the trigger selections as the tight set of cuts in

order to avoid inefficiencies related to the trigger selection.

The photon trigger selection criteria in the Event Filter (EF) are called

EF_gXX_loose, where XX is a placeholder for one of the many possible
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Figure 5–3 – Trigger efficiencies of the photon trigger selection criteria as a function of
the photon transverse energy. The dashed lines indicate the lower boundaries beyond
which each trigger criterion is used for the measurement presented in this thesis. The
vertical error bars represent the statistical uncertainty in the efficiencies.

ET thresholds that the photon cluster must exceed: 20, 40, 60, 80, 100 and

120 GeV. Figure 5–3 shows the efficiencies of these trigger criteria as a func-

tion of the photon transverse energy, Eγ
T, reconstructed after the recording

of the events. The trigger efficiency is defined as the ratio of the number of

events satisfying the photon trigger criterion and all detector-level selection cuts

presented in this section to the number of events satisfying all detector-level

selection cuts presented in this section. Trigger efficiencies are measured using

event samples that were recorded by a different trigger selection than that for

which the efficiency is being measured. The efficiency of the trigger selection

with the lowest-ET threshold criterion is measured with respect to inelastic
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proton–proton collisions producing a minimum amount of activity in the detec-

tor. Efficiencies of the other, higher-ET threshold criteria are measured with

respect to the events that satisfy the lower-ET threshold criteria thus building

towards higher Eγ
T values. This so-called bootstrapping method provides a

higher number of events with which to measure the trigger efficiency of the

different trigger selection criteria. This approach at measuring the trigger

efficiencies does not introduce biases because the reference trigger criteria used

in the efficiency measurement are fully efficient at the energy scales of the

higher trigger selection. The statistical uncertainty in the trigger efficiency

of EF_g20_loose is larger than that of the other trigger selections since few

inelastic pp collisions satisfy the detector-level selection cuts. The statistical

uncertainty in the efficiencies is taken to be the Clopper–Pearson asymmetric

binomial intervals at the 68% confidence level [185]. A given trigger criterion is

used in the event selection when it is at least 99% efficient. This corresponds to

using photon trigger criteria only for photons that have values of Eγ
T at least

5 GeV higher than the values of the trigger thresholds.

The rates of events satisfying the photon trigger criteria are too large to allow

the recording of every event that satisfies them. The trigger criterion with a

threshold of 120 GeV is unprescaled while the criteria with thresholds below

120 GeV have prescale factors with increasingly larger values as the value of

the thresholds decreases. A prescale factor p reduces the recorded luminosity of

the associated trigger criterion by 1/p. The trigger criterion with a threshold of

20 GeV thus has the lowest recorded integrated luminosity. The trigger criteria

147



Table 5–2 – Efficiencies, average prescale factors, and integrated luminosities of the
photon trigger criteria and the Eγ

T ranges in which they are used. The listed efficiency
is the trigger efficiency at the lower boundary of the Eγ

T range. The average prescale
factors are rounded to the nearest unit.

Trigger criterion Range [GeV] Efficiency [%] Prescale factor Lint [pb−1]

EF_g20_loose 25 < Eγ
T < 45 100+0

−2 4418 4.58
EF_g40_loose 45 < Eγ

T < 65 99.6+0.1
−0.2 349 58.0

EF_g60_loose 65 < Eγ
T < 85 99.3+0.1

−0.1 81 250
EF_g80_loose 85 < Eγ

T < 105 99.41+0.08
−0.09 29 709

EF_g100_loose 105 < Eγ
T < 125 99.32+0.08

−0.08 13 1552
EF_g120_loose 125 < Eγ

T 99.19+0.08
−0.09 1 20.2× 103

are used in exclusive ranges of Eγ
T in order to simplify the treatment of the

integrated luminosity in the measurement of the cross section as a function of

Eγ
T. Table 5–2 lists the trigger criteria with the Eγ

T range in which they are

used and their associated average prescale factors and integrated luminosities.

The trigger efficiencies measured at the lower boundaries of the Eγ
T ranges are

also shown in the table.

3. Photon preselection

Reconstructed photons are required to satisfy the photon preselection. The

photon preselection requires that photons satisfy cuts on the discriminating

identification variables that are common to both the tight and the relaxed tight

sets of cuts. These variables are nominally ws,tot, Rη, Rϕ, wη2 and Rhad.

Events are selected if there is at least one reconstructed photon that satisfies

the preselection.
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4. Photon particle-level matching

Reconstructed photons in simulated events are required to be matched ge-

ometrically in (η, ϕ) to a particle-level prompt photon. Reconstructed and

particle-level photons are considered matched if their angular distance is less

than 0.2: ∆R < 0.2.

Simulated events are selected if there is at least one reconstructed photon that

is matched to a particle-level prompt photon.

5. Photon ET acceptance

Reconstructed photons are required to satisfy Eγ
T > 25 GeV. This cut ensures

that the trigger efficiency is above 99%.

Events are selected if there is at least one reconstructed photon in this acceptance

region.

6. Photon η acceptance

Reconstructed photons are required to satisfy |ηγ| < 1.37 or 1.56 < |ηγ| < 2.37.

The separation of the pseudorapidity values in two ranges is motivated by the

transition region between the barrel and the end-caps of the electromagnetic

calorimeter, spanning 1.37 < |η| < 1.56 as discussed in Section 3.2.2. The upper

boundary of the acceptance range is determined by the region where finely

segmented strip cells are present in the calorimeter.

Events are selected if there is at least one reconstructed photon in either of

these acceptance regions.
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7. Photon identification

Events are selected if the leading reconstructed photon passes the tight set of

identification cuts, defined in Section 4.2.2.

8. Photon isolation

Events are selected if the isolation energy of the leading reconstructed photon

satisfies Eiso
T < 4.8 GeV + 0.0042 × Eγ

T. The specific values of the isolation

cut were optimized to provide the best signal-to-background ratio in selected

events [35].

The dependence of the requirement on Eγ
T is to improve the isolation efficiency

at large Eγ
T values. The isolation efficiency is defined as the ratio of the number

of events satisfying the complete event selection at the detector level to the

number of events satisfying the complete event selection at the detector level

but without the isolation cut. Figure 5–4 shows the isolation efficiencies of

different isolation cuts in the Sherpa and Pythia samples. It can be seen

that the efficiencies of the fixed-value isolation cuts decrease as a function of

Eγ
T. The decrease is due to an imperfect correction of the leakage of the photon

energy outside of the photon window. Adding a term dependent on Eγ
T in the

definition of the isolation cut allows to reduce this decrease. Also, the isolation

efficiency is lower in the Pythia samples than in the Sherpa samples. This

is due to the emission of bremsstrahlung photons in the parton shower in the

Pythia samples, which on average results in larger values of Eiso
T .
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Figure 5–4 – Isolation efficiency in the Sherpa and Pythia samples as a function of
the photon transverse energy for (a) the central region and (b) the forward region.
Isolation efficiencies for different requirements on the isolation energy are displayed.

9. Jet vertex fraction requirement

Reconstructed jets within the phase-space region defined by pjet
T < 50 GeV and

|ηjet| < 2.4 are required to satisfy |JVF| > 0.5. The value of this cut on the

JVF corresponds to an efficiency of selecting jets produced in the hard vertex of

about 90% and to a rejection factor of about 50 for jets produced in additional

pp collisions.

Events are selected if there is at least one reconstructed jet that satisfies the

JVF cut or that is outside of the phase-space region defined above.

10. Jet–photon overlap removal

Reconstructed jets are required to be located at an angular distance of ∆R > 0.4

from the leading reconstructed photon. Reconstruction algorithms of physical

objects are independent of each other. This has the consequence that energy
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deposits in the calorimeters can be reconstructed as both a photon and a jet.

With the leading photon already identified and selected, jets that are within an

angular distance of 0.4 of the leading photon are considered to be overlapping

the leading photon.

Events are selected if there is at least one reconstructed jet that does not overlap

the leading reconstructed photon.

11. Jet pT acceptance

Events are selected if the leading reconstructed jet satisfies pjet
T > 20 GeV. The

value of the requirement on the jet transverse momentum is chosen to be smaller

than that of the photon. This allows for a possible decrease in jet transverse

momentum due to hadronization effects.

12. Jet η acceptance

Events are selected if the leading reconstructed jet satisfies |ηjet| < 2.5. This

cut is required to ensure that the leading jet is within the coverage of the Inner

Detector, such as to make possible the use of the b-tagging algorithms.

13. Jet–photon separation

Events are selected if the leading reconstructed jet is located at an angular

distance of ∆R > 1 from the leading reconstructed photon. The jet area has a

radius of 0.4 and the radius of the region in which the isolation energy of the

photon is measured is 0.4. Requiring an angular distance of at least 1 ensures
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Table 5–3 – Number of data, Sherpa and Pythia events satisfying the detector-
level selection cuts described in the text. A dash indicates that the selection cut
is not applied. The total numbers of Sherpa and Pythia events are the number
of generated events before the stitching of the filtered samples. The effect of the
stitching on the number of selected events is included in the photon preselection cut.

# Detector-level selection cut Data Sherpa Pythia

0 Total 729,720,140 61,958,741 20,373,297
1 Hard scattering vertex 699,781,767 61,958,601 20,373,288
2 Trigger selection 57,022,566 – –
3 Photon preselection 30,314,757 5,777,026 4,013,596
4 Photon particle-level matching – 4,968,236 3,575,264
5 Photon ET acceptance 16,818,097 4,923,631 3,547,416
6 Photon η acceptance 16,239,775 4,790,290 3,448,668
7 Photon identification 7,489,875 4,589,944 3,298,820
8 Photon isolation 4,945,136 4,154,080 2,879,730
9 Jet vertex fraction requirement 4,945,074 4,153,960 2,879,648

10 Jet–photon overlap removal 4,944,990 4,153,855 2,879,598
11 Jet pT acceptance 4,830,027 3,900,668 2,741,702
12 Jet η acceptance 4,493,408 3,577,088 2,526,891
13 Jet–photon separation 4,482,887 3,553,236 2,515,753

that the leading jet does not contribute to the isolation energy of the leading

photon, keeping the two objects independent.

The impact of each detector-level selection cut on the number of data and simulated

events is given in Table 5–3. About 4.5 million recorded events satisfy the selection

criteria. It is worth noting that no b-tagging on the jets is performed and thus the

tagging has no effect on the number of events selected.

The γ + b production cross section is measured differentially as a function of the

photon transverse energy. This observable is chosen instead of the jet transverse
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momentum since the energy resolution of the reconstructed photons is better than

that of jets, as mentioned in Section 4.3.1. The widths of the Eγ
T bins follow that

of the trigger Eγ
T ranges for the prescaled trigger criteria. For Eγ

T > 125 GeV, the

bin widths are chosen to increase with Eγ
T such as to compensate for the decreasing

number of events in each bin. As a result, the Eγ
T bins used in the cross-section

measurement have widths of 20 GeV in the Eγ
T range 25–125 GeV, 25 GeV in the Eγ

T

range 125–200 GeV and 50 GeV in the Eγ
T range 200–400 GeV. Although there are

selected events with Eγ
T > 400 GeV, the uncertainty in the measurement effectively

limits the range to 400 GeV in the central region, |ηγ| < 1.37, and to 350 GeV in the

forward region, 1.56 < |ηγ| < 2.37.

Figures 5–5, 5–6 and 5–7 show the correlation between the kinematics of the selected

leading photon and jet. The distributions between the recorded and the simulated

events do not agree perfectly since the selected recorded events contain background

events that also pass the selection cuts. The figures show that in the samples of

selected events, the leading photon and jet are typically produced back-to-back and

with similar transverse energies and pseudorapidities. The distributions in Figure 5–6

have different shapes in the central and forward regions. This is because the central

and forward regions are defined by the pseudorapidity of the photon.

Figure 5–8 shows a computer event display of a typical recorded event passing

the selection cuts. In addition to the selection cuts, the leading jet satisfies the

most stringent requirement on the MV1c value, corresponding to the b-jet b-tagging

efficiency of 50%. The event exhibits the expected features of a γ + b event, including

that the photon and the jet have opposite directions in the transverse plane and
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Figure 5–5 – Normalized data, Sherpa and Pythia distributions of the ratio of the
difference between the transverse momenta of the leading photon and the leading jet
to the sum of their transverse momenta for (a) the central region and (b) the forward
region. The data distribution contains background events. The statistical uncertainty
in the data distribution is too small to be visible.
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Figure 5–6 – Normalized data, Sherpa and Pythia distributions of the difference in
pseudorapidities between the leading photon and the leading jet for (a) the central
region and (b) the forward region. The data distribution contains background events.
The statistical uncertainty in the data distribution is too small to be visible.
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Figure 5–7 – Normalized data, Sherpa and Pythia distributions of the absolute
value of the difference in azimuthal angles between the leading photon and the leading
jet for (a) the central region and (b) the forward region. The data distribution
contains background events. The statistical uncertainty in the data distribution is
too small to be visible.

that the photon shower is narrower and shorter than the one produced by the

jet. Furthermore, the secondary vertex, located at about (−0.5,−0.3, 40.2) mm

in (x, y, z) is displaced by about one millimeter from the hard vertex, located at

(−0.3, 0.5, 39.8) mm, which is of the order of the displacement expected from a

b-hadron lifetime and subsequent decay.

5.3 Particle-level Selection

A particle-level selection applied to MC events is necessary to define the fiducial

phase-space of the cross-section measurement. It is independent of the detector-level

selection. The particle-level selection is also needed to study the reconstruction

and selection efficiency of the detector-level selection, to assess the calibration of
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Figure 5–8 – Event display of a selected recorded event with a leading jet satisfying
MV1c > 0.9195. The event was recorded on 2012-12-05. The electromagnetic
and hadronic calorimeters are displayed in green and red respectively. The muon
spectrometer is in blue. The tracks in the Inner Detector are colored according to
their transverse momenta, the colors being cyan, blue, magenta and orange for pT

values greater than 1 GeV, 2 GeV, 4 GeV and 8 GeV, respectively. Only tracks with
pT > 1 GeV and |z0| < 2.5 mm with respect to the hard vertex are shown. The yellow
rectangles are indicative of energy deposits in the calorimeters, with their sizes being
an indication of the amount of energy deposited. A two-dimensional histogram of the
energy deposits is displayed in the top right panel.
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the physical objects and to gain knowledge on the resolutions of the reconstructed

kinematic quantities.

With the aim of maximizing the reconstruction and selection efficiency, the particle-

level selection mimics the detector-level selection. Events are considered at the particle

level only after they pass the cut on the hard-vertex tracks at the detector level. The

ordered selection criteria on the events that survive that cut follow.

1. Photon ET acceptance

Particle-level photons are required to satisfy Eγ
T > 25 GeV.

Events are selected if there is at least one particle-level photon in this acceptance

region.

2. Photon η

Particle-level photons are required to satisfy |ηγ| < 1.37 or 1.56 < |ηγ| < 2.37.

Events are selected if there is at least one particle-level photon in either of these

acceptance regions.

3. Photon isolation

Events are selected if the particle-level isolation energy of the leading particle-

level photon satisfies Eiso
T < 4.8 GeV + 0.0042× Eγ

T.

The isolation energy at particle level is defined in a similar way as the detector-

level isolation energy, including the correction for the ambient transverse-

momentum density. The particle-level four-momenta of long-lived particles,
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except those of muons and neutrinos, within an angular distance of 0.4 of

the prompt photon are summed. The four-momentum of the prompt photon

itself is excluded from that summation. The transverse energy of the resulting

four-momentum is taken as the particle-level isolation energy. The particle-level

ambient transverse-momentum density is determined from the median value

of the ratio of the particle-level jet transverse momentum divided by the jet

area for jets built using the kt algorithm with parameter R = 0.5 taking as

input all long-lived particles, except muons and neutrinos. The particle-level

ambient transverse momentum density is then multiplied by a circular area of

radius R = 0.4 to obtain the correction. This correction is derived in coarse

pseudorapidity bins. Pileup is not considered at any stage of this correction,

as such this corrects only for contributions to the isolation energy from the

underlying event.

The cross section does not depend strongly on the specific values of the cut on

the isolation energy as long as the angular region in which the isolation energy

is measured is large enough to include the effects of photon fragmentation, while

being not too large to avoid being sensitive to activity in the rest of the event.

A radius parameter of 0.4 is adequate in that respect [186].

4. Jet–photon overlap removal

Particle-level jets are required to be located at an angular distance of ∆R > 0.4

from the leading particle-level photon. Particle-level jets are defined here

with the same jet algorithm and the same parameter value as those used to
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reconstruct jets at the detector-level but by using as input objects all long-lived

particles, including muons and neutrinos. Muons and neutrinos are included in

the definition of particle-level jets as they are expected to carry a non-negligible

amount of energy, since they can be produced in the decay of the b and c

hadrons via the decay of W bosons.

Events are selected if there is at least one particle-level jet that does not overlap

the leading particle-level photon.

5. Jet pT acceptance

Events are selected if the leading particle-level jet satisfies pT > 20 GeV.

6. Jet rapidity acceptance

Events are selected if the rapidity of the leading particle-level jet satisfies

|y| < 2.5.

7. Jet–photon separation

Events are selected if the leading particle-level jet is located at an angular

distance of ∆R > 1 from the leading particle-level photon.

8. b-jet label

Events are selected if the leading particle-level jet is labelled as a b-jet, as

dicussed in Section 4.3.3.
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Table 5–4 – Number of Sherpa and Pythia events satisfying the particle-level
selection cuts described in the text. The total numbers of events are the number
of generated events before the stitching of the filtered samples. The effect of the
stitching on the number of selected events is included in the photon ET acceptance
cut.

# Particle-level selection cut Sherpa Pythia

0 Total 61,958,741 20,373,297
1 Photon ET acceptance 7,291,048 4,810,341
2 Photon η acceptance 5,419,503 4,087,552
3 Photon isolation 4,818,921 3,329,573
4 Jet–photon overlap removal 4,818,841 3,329,558
5 Jet pT acceptance 4,516,478 3,147,322
6 Jet y acceptance 4,192,922 2,925,311
7 Jet–photon separation 4,173,875 2,916,194
8 b-jet label 782,874 71,697

The reduction in the number of MC events selected at each step of the particle-level

selection is given in Table 5–4. In contrast to the detector-level selection, the particle-

level jet is selected only if it is labelled as a b-jet. The b-jet label cut is not as severe

on the Sherpa samples as it is on the Pythia samples, since the Sherpa samples

are filtered to contain a higher number of events with b hadrons.
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CHAPTER 6
Signal Extraction

This chapter describes how signal events are extracted from the selected events. The

fraction of selected events in which the selected photon is a prompt photon, called

the photon purity, and the fraction of selected events in which the selected jet is a

b-jet, called the b-jet fraction, are extracted sequentially. The extraction of prompt

photons is necessary as a significant number of events that do not contain prompt

photons are selected. The extraction of b-jets is necessary as the event selection does

not distinguish between different jet flavours. The first and second sections describe

how the photon purity and the b-jet fraction are extracted from the selected events.

6.1 Prompt-photon Signal

The event selection discussed in the previous chapter aims to select γ + jet events

among all the pp collisions provided by the LHC. Some background events that do

not contain a prompt photon and a jet are still selected.

Background objects that can be mis-reconstructed and selected as prompt photons

include electrons and jets. The stringent photon reconstruction process, particularly

the resolution of the ambiguity between electrons and photons, reduces the impact of

the electron background contribution. Electrons reconstructed as photons contribute

less than 1% of the reconstructed prompt photons in the phase space that is investi-

gated [35]. This source of background is thus negligible and not discussed further.
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The jet background contribution is however not negligible. Although the photon

identification criteria result in a jet background rejection factor of about 5× 103, the

ratio of the number of jets that are produced in proton–proton collisions in the phase

space that is explored to the number of prompt photons produced is also of the same

order of magnitude. The requirement on the isolation energy helps reduce the jet

background further but a non-negligible number of background jet events are still

selected.

To extract the prompt-photon signal from the selected γ + jet events, a data-driven

procedure based on a two-dimensional sideband is used. This procedure extracts the

prompt-photon signal statistically, i.e. not on a per-event basis, from the recorded

event sample by using mainly the recorded events themselves. The idea behind the

procedure is to exploit two measurable quantities that both define the phase space

of the signal events and that are not correlated to each other for background events.

Since the quantities are not correlated, the number of events in the background

phase-space region of one quantity, relative to the number of events in its signal

region, will not change if that number is evaluated in the signal region or in the

background region of the other quantity. Therefore, the numbers of events in the

background regions can be used to determine the number of background events in

the signal region.

In practice, the two quantities used are the isolation energy of the leading photon and

the set of photon identification discriminating variables. The signal region of these

quantities are those used in the event selection, i.e. Eiso
T < 4.8 GeV + 0.0042 × Eγ

T

and the tight set of identification cuts. The background regions of these quantities
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Figure 6–1 – Normalized Sherpa and Pythia distributions of the difference between
the particle- and the detector-level isolation energies for (a) the central region and
(b) the forward region. The standard deviations of the distributions are displayed in
the legend.

are defined as Eiso
T > 6.8 GeV + 0.0042 × Eγ

T and the relaxed tight identification.

These definitions of the background regions have been chosen such as to minimize the

amount of signal events satisfying them while maximizing the number of background

events.

The gap of 2 GeV between the signal and the background regions of the isolation

energy reduces the amount of prompt photons, compared to having no gap, that would

get categorized in the background region due to the resolution of the measurement of

the isolation energy. Figure 6–1 shows the distribution of the difference in isolation

energy between the particle and the detector levels for prompt photons. A standard

deviation of about 2 GeV is observed. A wider gap is not used to avoid decreasing

further the number of background events in the background region.
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The use of the relaxed tight identification cuts to define the background region related

to the photon identification is motivated by the fact that π0 mesons, and other neutral

mesons, can pass the tight identification cuts, as mentioned in Section 4.2.2. The

data-driven two-dimensional sideband method is only sensitive to the background

events in the signal region that have a similar origin as those in the background

regions. To ensure that events in which the selected photons originate from the decays

of neutral mesons are not considered as signal events, this type of events must be

accepted into the background region. The relaxed tight definition is designed for such

a task since it vetoes the discriminating identification variables based on the first

layer of the electromagnetic calorimeter, which are the most sensitive to the presence

of photons produced in the decays of neutral mesons. Events with neutral mesons

will thus be found in the background regions and be properly subtracted from the

signal region via the sideband procedure.

In the context of the photon identification and the isolation energy, the two assump-

tions that underlie the sideband method can be stated as follow.

• There is no correlation in the background events between the isolation energy

and the identification variables based on the first layer of the electromagnetic

calorimeter.

• No prompt-photon events satisfy Eiso
T > 6.8 GeV + 0.0042× Eγ

T or the relaxed

tight identification.

The first assumption is reasonable because the energy deposits contributing to the

variables based on the information of the first calorimeter layer are different than
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those contributing to the isolation energy, since the former are inside of the photon

cluster while the latter are outside of it. The second assumption does not necessarily

hold however and needs to be addressed.

The sideband method can be applied on distributions of the isolation energy of the

selected photon in the signal and background regions of the photon identification

variables or on the integrated numbers of events of these distributions. The approach

based on the distributions of the isolation energy allows to assess the validity of the

method in removing background events from the signal region. However, it does

not allow to assess the impact of the two assumptions that underlie the method.

The approach based on the integrated numbers allows to assess the assumptions.

Therefore, these two approaches are complementary.

Figure 6–2 shows the impact of the two-dimensional sideband method on the distribu-

tion of the isolation energy of the selected photon for the lowest-Eγ
T bin. Figure 6–3

similarly shows the impact in the highest-Eγ
T bin. The sideband method concretely

consists in scaling the distribution of the isolation energy of relaxed-tight photons

such that its integral in the background region of the isolation energy matches that

of the tight photons in that background region. The scaled number of relaxed-tight

events in the signal region of the isolation energy is then subtracted from that of

the tight events to give the distribution of the prompt-photon events. It can be

seen in those figures that the shape of the data distribution after this subtraction

mostly agrees with that of the MC distributions, which only contain prompt photons.

This level of agreement gives confidence that the method does indeed remove the
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Figure 6–2 – Data, Sherpa and Pythia distributions of the isolation energy in the
lowest-Eγ

T bin of (a) the central region before the background subtraction, (b) the
central region after the background subtraction, (c) the forward region before the
background subtraction and (d) the forward region after the background subtraction.
The data events are weighted by the prescale factor associated to the Eγ

T bin to
bring their numbers to those corresponding to an integrated luminosity of 20.2 fb−1.
The signal region of the isolation energy is to the left of the green line while the
background region is to the right of the red line. The relaxed-tight distribution is
scaled such that its integral to the right of the red line correspond to that of the tight
distribution. The MC distributions are scaled such that their integrals to the left of
the green line correspond to that of the tight or the subtracted distributions. The
statistical uncertainties in the data distribution are too small to be visible.
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Figure 6–3 – Data, Sherpa and Pythia distributions of the isolation energy in the
highest-Eγ

T bin of (a) the central region before the background subtraction, (b) the
central region after the background subtraction, (c) the forward region before the
background subtraction and (d) the forward region after the background subtraction.
The signal region of the isolation energy is to the left of the green line while the
background region is to the right of the red line. The relaxed-tight distribution is
scaled such that its integral to the right of the red line correspond to that of the tight
distribution. The MC distributions are scaled such that their integrals to the left of
the green line correspond to that of the tight or the subtracted distributions. The
error bars in the data distribution correspond to the statistical uncertainty.
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Figure 6–4 – Diagram of the regions defined in the two-dimensional sideband method
as a function of the isolation energy and the photon identification (ID). The grey
regions are not associated to any sideband region.

background events from the signal region. Imperfections in the agreement can be

caused by the breakdown of the assumptions that underlie the sideband method.

The approach of the sideband method using the total numbers of events in each

background and signal regions can be expressed in terms of the regions defined in

Figure 6–4. Region A represents the signal region and regions B, C and D represent

respectively the background regions of the isolation energy, of the photon identification

and of both the isolation energy and the photon identification.

The relation between the numbers of background events in the regions can be stated

as
Nbkg

A

Nbkg
B

= Rbkg
Nbkg

C

Nbkg
D

, (6.1)
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where Rbkg is a factor that relates the two ratios. It is a measure of the correlation

between the isolation energy and the photon identification in the background events.

The assumption that there is no correlation in the background events between the

photon identification and the isolation energy is equivalent to having Rbkg = 1. The

assumption that there is no signal events in the background regions is equivalent

to having NX = Nbkg
X , for X ∈ {B,C,D}. The quantity Ni is the total number

of events in region i and can be decomposed into signal and background events:

Ni = N sig
i +Nbkg

i . Under these two assumptions, the previous equation becomes

Nbkg
A

NB

=
NC

ND

. (6.2)

The prompt-photon event purity is defined as pprompt-γ = N sig
A /NA. A knowledge of it

allows to obtain the number of prompt-photon events from the number of selected

events. Using the previous equation, it is given by

pprompt-γ =
NA −Nbkg

A

NA

= 1− NBNC

NAND

. (6.3)

This equation is equivalent to the procedure used to subtract the background events

in the distribution of the isolation energy .

If the assumption that there are no signal events in the background regions is not

expected to hold, the photon purity becomes

pprompt-γ = 1− Nbkg
B Nbkg

C

NAN
bkg
D

. (6.4)

Since in data only the total number of events in a region is known, i.e. it is not known

in data if an event is a signal or a background event, the previous equation can be
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transformed to make use of the total numbers of events:

pprompt-γ = 1− (NB − cBN
sig
A )(NC − cCN

sig
A )

NA(ND − cDN
sig
A )

(6.5)

with

cB =
N sig

B

N sig
A

, cC =
N sig

C

N sig
A

, cD =
N sig

D

N sig
A

. (6.6)

The cX factors represent the number of signal events in the background regions

relative to the signal region, i.e. the amount of signal leaking into the background

regions. These factors cannot be obtained from data. However, they can be obtained

from the signal MC samples. By construction of the background regions, the values

for these leakage factors are expected to be small such that they are used as a small

MC correction to an otherwise data-driven procedure.

Figure 6–5 shows the values of the factors. It can be seen that the values in the

Sherpa samples are below 10%. The values of cB and cD are different between the

Sherpa and Pythia samples because the Pythia samples includes bremsstrahlung

photons, which have larger Eiso
T values. The values of cC are larger at low Eγ

T since

the efficiency of the photon identification is lower at these low values. The values of

cD are the smallest since the prompt photon has to fail the requirements on both the

isolation energy and the tight photon identification.

Equation 6.5 gives the purity once N sig
A is known, which is not the case in data.

However, since pprompt-γ = N sig
A /NA, the equation can be interpreted as a quadratic
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Figure 6–5 – Leakage correction factors cB, cC and cD in the Sherpa and Pythia
samples as a function of the photon transverse energy for (a) the central region and
(b) the forward region.

equation in N sig
A , which can be solved via the usual quadratic formula to give

pprompt-γ =
1

2NA(cBcC − cD)

{
cBNC + cCNB −ND − cDNA

+
[
(cBNC + cCNB −ND − cDNA)

2

− 4(cBcC − cD)(NBNC −NAND)
]1/2}

.

(6.7)

The other solution of the quadratic formula is rejected since it gives unphysical purity

values, i.e. values outside the range 0 to 1. This equation expresses the purity in

terms of quantities that are accessible in data. It is this equation that is used to

extract the contribution of prompt-photon events in the selected events.

Figure 6–6 shows the prompt-photon purity in each Eγ
T bin as obtained with Equa-

tions 6.3 and 6.7. The effect of the MC correction is to increase the estimated purity.
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Figure 6–6 – Prompt-photon purity in the selected recorded events as a function of the
photon transverse energy for (a) the central region and (b) the forward region. The
prompt-photon purity is shown with and without the MC correction for the signal
leakage, which is obtained from the Sherpa samples. The statistical uncertainties in
the distributions are specified with vertical error bars, but they are too small to be
visible.

The correction is obtained from the Sherpa samples. The purity is observed to

increase from about 50% to 100% as a function of Eγ
T.

The purity is measured in each Eγ
T bin to allow for a measurement of the cross section

in each Eγ
T bin. However, the photon purity does not determine the flavour of the

selected jet in the event. This is done by making use of the MV1c distribution. To

properly take into account the photon purity in the extraction of the jet flavour,

the purity needs to be measured also as a function of the MV1c weight. This is

necessary as a slight dependence of the purity on the MV1c weight of the selected jet

is observed.

Figure 6–7 displays the dependence of the photon purity as a function of the MV1c

weight, using the values listed in Table 4–2 as bin boundaries, in the lowest-Eγ
T bin
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Figure 6–7 – Measured prompt-photon purity with the MC correction obtained from
the Sherpa samples as a function of the MV1c weight for (a) the central region
and (b) the forward region. The vertical error bars correspond to the statistical
uncertainty in the purity. A first-order polynomial is fitted to the measured values.
The values of the fitted slope and of the reduced chi-squared are displayed.

as an example. A least-square fit of a first-order polynomial to the measured purity

is performed to quantify the dependence. A statistically significant non-zero value for

the slope is obtained in the central region, indicating an observable dependence of

the purity on the MV1c weight, but not in the forward region.

The slope of the fitted polynomial in each Eγ
T bin is reported in Figure 6–8. It can

be seen that, in the central region at low Eγ
T and in the forward region at high Eγ

T, a

statistically significant dependence of the purity on the MV1c weight is observed. The

cause of the dependence of the photon purity on the MV1c weight is not investigated

further due to the lack of background MC samples, which prevents a study of the

relation between the purity and the flavour of the selected jet. Therefore, to be as

general as possible and to take into account the effects on the measured cross section
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Figure 6–8 – Fitted values of the slope of the first-order polynomials as a function of
the transverse photon energy for (a) the central region and (b) the forward region.
The vertical error bars represent the statistical uncertainty in the fitted slope.

of such a dependence, the purity is measured simultaneously as a function of Eγ
T

and the MV1c weight. This two-dimensional purity is shown in Figure 6–9. The

values of the MV1c weight are categorized according to the working points such as to

correspond to the MV1c b-jet b-tagging efficiencies, i.e. the categories are equivalent

to the bins in Figure 6–7. It is these values of the photon purity that are used to

measure the γ + b production cross section.

6.2 b-jet Signal

The product of the number of selected events in the recorded dataset with the prompt-

photon purity results in the number of events containing a prompt photon and a jet.

From this number of events, the number of events in which the selected jet is a b-jet

needs to be extracted. The background of b-jets can be either c-jets or light jets. The
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Figure 6–9 – Measured prompt-photon purity with the MC correction obtained from
the Sherpa samples in the selected recorded events as a function of the MV1c b-jet
b-tagging efficiency and the photon transverse energy for (a) the central region and
(b) the forward region.

b-jet signal is extracted statistically from the recorded events by using information

about the jet flavours from the MC samples.

A procedure based on a template fit is used to separate the b-jet signal from the

c- and light jets. The template fit involves the use of known distributions, the

templates, to fit a distribution that is an admixture of the known ones, i.e. the data

distribution. The template fit keeps the shapes of the templates intact but changes

their normalizations such that their sum agrees with the data. The templates are

obtained from MC events passing the event selection and are separated according to

the flavour of the selected jet. A calibration of the shapes of the templates is required

to ensure that the templates can properly describe the data.

The template fit relies on the differing shapes of the templates to determine their

fractions. An observable sensitive to the b-jet flavour is required, such that the
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shape of the b-jet template is different from the shapes of the other templates. This

observable is chosen to be the MV1c weight that is usually used for tagging jets.

The templates are separated into five bins with the bin boundaries given by the

values listed in Table 4–2. This choice of binning permits the use of the continuous

calibration, discussed at the end of Section 4.3.3. Each bin of the template can be

individually calibrated. This use of per-bin scale factors allows to calibrate the shape

of the template.

This approach, which does not tag jets and instead uses the tagging weight itself

as the observable for the template fit, is different than that used in the Tevatron

γ + b measurements [47, 49]. In these measurements, the jets were tagged using an

observable sensitive to the b-jet properties and a template fit is performed on these

tagged jets using a different observable sensitive to the b-jet properties. In general,

this different observable is likely to be based on the same properties of b-jets as

the tagging weight, i.e. the track impact parameters, the secondary vertex and the

line of flight of the decay chain. If a calibration of the shapes of the templates is

necessary, it will be affected by similar sources of uncertainty as those affecting the

calibration of the b-tagging efficiency. Non-trivial correlations between these related

sources have to be understood. To avoid such studies and to simplify the analysis,

jets are not tagged and the continuously calibrated MV1c distributions are used as

templates. This approach has been used previously for the measurement of the cross

section of the production of tt̄ in association with b-jets in proton–proton collisions

at
√
s = 8 TeV [187]. The measurement presented in this thesis marks the first time

that this approach is used for the measurement of a differential cross section.
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Concretely, the template fit is performed via a binned maximum likelihood fit. The

fractions of the three jet-flavour templates are fitted to the data. The sum of all three

fractions must sum to unity: the third fraction is fully determined from the first two.

These two fractions, f1 and f2, are the two fit parameters.

The probability for an event to appear in bin i of the distribution of the MV1c weight,

Si(f1, f2), is obtained from the sum of the templates and is

Si(f1, f2) = f1Bi + (1− f1)[f2Ci + (1− f2)Li]. (6.8)

The quantities Bi, Ci and Li are the values in bin i of the b-, c- and light-jet templates

respectively. They are unit-normalized across all bins such that Si is also unit-

normalized and describes a proper probability density function. The relations of

these fractions to the physical b-, c- and light-jet fractions are respectively f b-jet = f1,

f c-jet = (1− f1)f2 and f light-jet = (1− f1)(1− f2) = 1− f b-jet − f c-jet. This particular

choice of parameterization allows both fitted fractions to be varied independently in

the range 0 to 1 without mathematical inconsistencies.

The binned likelihood function to be maximized is L(f1, f2). The total number of

events, N , is fixed, i.e. it is the product of the photon purity with the number of

selected events. Only the fitted fraction of each template is of interest to the cross-

section measurement. The numbers of events in the bins of the MV1c distribution

are thus constrained by
∑

i ni = N , where ni is the number of events in bin i. The

measured distribution in data follows a multinomial distribution with a likelihood
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given by

L(f1, f2) = N !
5∏

i=1

[Si(f1, f2)]
ni

ni!
. (6.9)

The negative log-likelihood to be minimized is given by

− lnL(f1, f2) = −
5∑

i=1

ni lnSi(f1, f2), (6.10)

where the terms that do not depend on the parameters to be fitted are omitted. The

product and the sum run over the five bins of the MV1c distribution. The statistical

uncertainties in the data and in the MC distributions are not taken directly into

account in the fit.

Figure 6–10 shows the templates and the data distribution before and after the

template fit in the lowest-Eγ
T bin, while Figure 6–11 shows the impact of the fit in

the highest-Eγ
T bin. The agreement between the data and the Sherpa distributions

is also displayed in those figures. All sources of uncertainties, which are discussed in

Chapter 8, are taken into account, including their correlations. The data and the

Sherpa distributions are not expected to agree before the template fit is performed

because large theoretical uncertainties are expected in the Sherpa distributions.

After the template fit is performed, a good agreement is observed, given the considered

uncertainties. The bins driving the fit, and hence those with the smallest uncertainties,

are the 100–80% MV1c bin, due to its large number of events, and the 50–0% MV1c

bin, due to its b-jet discriminating power. These bins respectively drive the fit of the

light-jet and of the b-jet templates. The good agreement of the fit results with the

data gives confidence that the fitted Sherpa distributions describe adequately the

data.
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Figure 6–10 – Data and Sherpa distributions of the MV1c weight in γ + jet events
in the lowest-Eγ

T bin of (a) the central region before the template fit, (b) the central
region after the template fit, (c) the forward region before the template fit and (d)
the forward region after the template fit. The ratio of the data distribution to that of
Sherpa is shown in the bottom panel. The data distribution has been subtracted of
background photons with the prompt-photon purity and is weighted by the prescale
factor associated to the Eγ

T bin to bring the numbers of events to those corresponding
to an integrated luminosity of 20.2 fb−1. The error bars in the data correspond to
the statistical uncertainty. The uncertainty band includes all sources of systematic
uncertainties that are discussed in Chapter 8. The numbers in the legend are the
fitted fractions of each template and their statistical uncertainties.
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Figure 6–11 – Data and Sherpa distributions of the MV1c weight in γ + jet events
in the highest-Eγ

T bin of (a) the central region before the template fit, (b) the central
region after the template fit, (c) the forward region before the template fit and (d)
the forward region after the template fit. The ratio of the data distribution to that
of Sherpa is shown in the bottom panel. The data distribution has been subtracted
of background photons with the prompt-photon purity. The error bars in the data
correspond to the statistical uncertainty. The uncertainty band includes all sources of
systematic uncertainties that are discussed in Chapter 8. The numbers in the legend
are the fitted fractions of each template and their statistical uncertainties.
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Several studies performed to inspect the validity of the fit give further confidence

in the accuracy of the values of the flavour fractions obtained with the template fit.

For example, Figure 6–12 shows the distributions of the negative log-likelihood for

the lowest- and the highest-Eγ
T bins. It can be seen that each of the distributions

has a clear minimum at the fitted values of the fractions. Additionally, the partial

anticorrelation between f b-jet and f c-jet, due to the constraint on the sum of the

fractions, can be seen from the contour levels of the distributions.

The closure of the template fit among the MC samples has also been investigated,

in which the templates of one MC sample, for example those of Sherpa, are used

to fit the event distribution of another sample, for example that of Pythia. It is

found that the flavour fractions obtained with the template fit describe accurately

the flavour fractions of the sample at the particle level.

To inspect the stability of the template fit with respect to background events, the

template fit has been performed anew but without considering the 100–80% MV1c

bin. The choice of removing this specific bin stems from the fact that this bin contains

the largest amount of events and that these events are mostly light-jet background

events. Removing this bin allows to alleviate the dependence of the fitting procedure

on the background events. It is found that the fitted values in this approach do not

change significantly with respect to those obtained when fitting the whole MV1c

distribution, indicating that the values are indeed stable and are not dominated by

background events.

182



-ln
 L

1

10

210

310

410

510

610

710

810

b-jet
f

0 0.2 0.4 0.6 0.8 1

c-
je

t
f

0

0.2

0.4

0.6

0.8

1
-1 = 8 TeV, 4.58 pbs

 < 1.37γη
 < 45 GeV

γ
T25 < E

(a)

-ln
 L

1

10

210

310

410

510

610

710

810

b-jet
f

0 0.2 0.4 0.6 0.8 1

c-
je

t
f

0

0.2

0.4

0.6

0.8

1
-1 = 8 TeV, 4.58 pbs

 < 2.37γη1.56 < 

 < 45 GeV
γ
T25 < E

(b)

-ln
 L

1

10

210

310

410

b-jet
f

0 0.2 0.4 0.6 0.8 1

c-
je

t
f

0

0.2

0.4

0.6

0.8

1
-1 = 8 TeV, 20.2 fbs

 < 1.37γη
 < 400 GeV

γ
T350 < E

(c)
-ln

 L

1

10

210

310

b-jet
f

0 0.2 0.4 0.6 0.8 1

c-
je

t
f

0

0.2

0.4

0.6

0.8

1
-1 = 8 TeV, 20.2 fbs

 < 2.37γη1.56 < 

 < 350 GeV
γ
T300 < E

(d)

Figure 6–12 – Distribution of the negative log-likelihood as a function of the fitted
fractions in (a) the lowest-Eγ

T bin of the central region, (b) the lowest-Eγ
T bin of the

forward region, (c) the highest-Eγ
T bin of the central region and (d) the highest-Eγ

T
bin of the forward region. The values of the distribution have been shifted such that
the minimum value is 1.
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Figure 6–13 – Measured b- and c-jet fractions, i.e. the fitted heavy-flavour (HF)
jet fractions, as a function of the transverse photon energy for both the central
and the forward regions, as published in Ref. [188]. The fractions are defined with
respect to recorded events containing a prompt photon and a jet. The vertical error
bars correspond to the total uncertainty in the fractions, including the statistical
uncertainty and all sources of systematic uncertainties that are discussed in Chapter 8.

The b- and c-jet fractions in data as a function of Eγ
T are given in Figure 6–13. These

are the fractions of γ + b and γ + c events in the selected and purity-corrected γ + jet

recorded events. The light-jet fraction can be obtained via f light-jet = 1− f b-jet − f c-jet.

The values of the b-jet fraction are observed to be about 3%. Since the scales of the

momentum exchange in the proton–proton collisions measured in this analysis are

well above the values of the b- and c-quark masses, the matrix elements for γ + b and

γ+ c processes are similar. Differences in the production of these types of events then

come from differences in the b-quark and c-quark PDFs. Due to the heavier mass of

the b quark compared to that of the c quark, the b-quark PDF is smaller than that of

the c quark, resulting in smaller values of the b-jet fraction compared to those of the

c-jet fraction. The values of the b-jet fraction are indeed observed to be smaller.
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Concerning the dependence of the flavour fractions on Eγ
T, the b- and c-quark PDFs

increase as a function of the energy scale of the hard scattering. The Eγ
T value of the

event can be used as an approximation of the energy scale of the hard interaction

since it is a boost-invariant energy scale. However, larger Eγ
T values correspond not

only to higher interaction energy scales but also to larger values of the fraction x

of the proton momentum, as derived in Appendix A. Although the b- and c-quark

PDFs increase with the interaction energy, the PDFs decrease as a function of x. The

net effect on the PDFs of these opposite trends as a function of Eγ
T depends on the

precise interplay between the dependences of the PDFs on the interaction energy scale

and on the fraction of the proton momentum. The overall shapes of the fractions are

similar to what is seen in the MC samples at the particle level, giving confidence in

the accuracy of the measurement of the fractions.
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CHAPTER 7
Data Unfolding

This chapter covers the data unfolding procedure, which produces a particle-level

distribution from a given detector-level distribution. This procedure is necessary to

take the measured detector-level distribution of γ + b events to the particle level,

such as to obtain the particle-level cross section. The unfolding procedure hinges on

the accurate simulation of the detector. The detector simulation allows to describe

how effects specific to the detector transform a particle-level distribution into the

corresponding detector-level distribution. The first section describes these detectors

effects. The second section discusses the implementation of two unfolding methods

that are used to unfold the measured Eγ
T distribution of γ+ b events and thus produce

the differential cross section of the production of γ + b events as a function of Eγ
T.

7.1 Detector Effects

Following the event selection and the signal extraction, the distribution of recorded

γ + b events at the detector level is obtained. However, this distribution cannot

be used directly as is to determine the number of γ + b events at the particle level

because of detector effects that affect this distribution. These detector effects distort

the particle-level distribution to produce the one that is measured at the detector

level.
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Mathematically, the distortion is given by the integral equation

g(d) =

∫
R(d, p)f(p)dp, (7.1)

where f(p) is the particle-level distribution of interest, R(d, p) is the response function

of the detector and g(d) is the detector-level distribution that is measured. The

response function serves as the kernel of the integral equation and is specific to

the detector and to a given physics analysis. In practice, due to the finite detector

resolution and the finite number of events, the distributions are discretized in bins.

The previous equation becomes then

NDj
=
∑
i

RjiNPi
, (7.2)

with NPi
being the number of events in bin i of the particle-level distribution, Rji

being the response matrix and NDj
being the number of events in bin j of the

detector-level distribution.

The response matrix can be interpreted as the conditional probability

Rji = P (Dj|Pi). (7.3)

It is the probability of measuring an event in bin j of the detector-level distribution

given that it is found in bin i of the particle-level distribution.

The detector effects that are included in the detector response can be categorized

into three types:
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• Non-linear response: This category includes non-linear effects in the detector

response, reconstruction algorithms of physical objects and potential biases

introduced by the selection cuts of the physics analysis. A variable at the

particle level is transformed into a different quantity at the detector level. This

type of effect results in a distortion of the particle-level distribution.

• Detector resolution: The finite resolution of the detector in the measurement

of particle kinematics has the effect of smearing distributions. This type of

effect results in events migrating from one bin of the particle-level distribution

to different bins of the corresponding detector-level distribution.

• Efficiency: This effect encompasses detector, reconstruction and selection

inefficiencies. This type of effect results in a reduction in the number of

events in the detector-level distribution compared to that in the particle-level

distribution.

These detector effects are investigated by using simulated event samples that include

a full simulation of the ATLAS detector response. Selected events at the detector

level can then be compared to those selected at the particle level to investigate the

detector effects.

The detector effects can be investigated via the transfer matrix, which is the two-

dimensional distribution of events satisfying both the detector- and the particle-level

selections as a function of the detector-level and particle-level quantities. The transfer

matrix is related to the response matrix via a normalization of its elements. Figure 7–1

shows the transfer matrix of the photon transverse energy, i.e. the distribution of
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Figure 7–1 – Distribution of Sherpa events satisfying both the detector- and the
particle-level selections as a function of the detector-level and the particle-level photon
transverse energies for (a) the central region and (b) the forward region.

events that satisfy both the detector- and the particle-level selections as a function of

both the particle-level and detector-level Eγ
T. Here, the event selection at the detector

level requires that the selected jet be b-jet in addition to the criteria discussed in

Section 5.2. This is necessary in order to be representative of the recorded events

after the signal extraction. It can be seen that the matrix is nearly diagonal, with

off-diagonal elements whose values are around 5% of the values of the neighbouring

diagonal elements. This indicates a good linear detector response and that few events

are migrating across bins.

The small amount of event migrating between bins is due to the small resolution

of the photon transverse energy compared to the chosen widths of the bins of the

Eγ
T distribution. Figure 7–2 shows the distribution of the relative difference in the

detector- and particle-level Eγ
T. A relative energy resolution of about 3% is observed.

This is to be compared to the widths of the Eγ
T bins, which are typically 20% of the
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Figure 7–2 – Normalized Sherpa and Pythia distributions of the relative difference
between the detector- and the particle-level photon transverse energies for (a) the
central region and (b) the forward region. The standard deviations of the distributions
are displayed in the legend.

value of the lower Eγ
T boundary. Figure 7–3 shows the distribution of the difference

between the photon pseudorapidities at the detector and the particle levels. A

resolution of about 0.02 is observed. This is smaller than the width in pseudorapidity

of 0.19 of the transition region between the central and the forward regions. As such,

this motivates the ability to study the detector effects separately in the central and

forward regions.

The combined reconstruction and selection efficiency of γ + b events at the detector

level in bin i, ϵi is defined as

ϵi =

∑
j NPiDj

NPi

, (7.4)

where NPiDj
is the number of events associated to the element of the transfer matrix

corresponding to bin i and j of the particle-level and detector-level quantities respec-

tively. The efficiency includes the effects of all efficiencies related to the reconstruction
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Figure 7–3 – Normalized Sherpa and Pythia distributions of the difference between
the detector- and the particle-level photon pseudorapidities. The standard deviations
of the distributions are displayed in the legend.

or the selection of events. In addition, resolution effects can have an impact on the

efficiency. When a value of a given quantity at the particle level is close to a cut

value of the event selection, the event can pass the particle-level cut but fail the

detector-level cut due to the finite detector resolution.

In the case of the photon transverse energy, the resolution can cause a reduced

efficiency in the lowest-Eγ
T bin. Also, since the transverse momenta of the selected jet

and of the selected photon tend to have the same values, the efficiency measured in

the low-Eγ
T bins are decreased by a similar effect related to the jet pT. This effect

is bigger than that related to Eγ
T, since pjet

T has a worse resolution. The effect is

amplified further due to the calibration of the jet energy. The calibration is done

with respect to particle jets that do not contain muons or neutrinos, while the

particle jets investigated in the analysis do contain these particles. Therefore, in the

analysis, the particle-level jets will have larger values of transverse momentum than
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Figure 7–4 – Combined reconstruction and selection efficiency in the Sherpa and
Pythia samples as a function of the particle-level photon transverse energy for (a)
the central region and (b) the forward region. The vertical error bars correspond to
the statistical uncertainty in the efficiency.

the corresponding detector-level jets. The particle jets are more likely to satisfy the

pjet
T cut than the detector-level jets. Also contributing to the inefficiency at low Eγ

T is

the additional requirement of the JVF cut for jets with pT < 50 GeV. Furthermore,

the photon identification efficiency is smaller at low Eγ
T than at high Eγ

T.

Figure 7–4 shows the combined reconstruction and selection efficiency obtained using

simulated signal events. The combination of all the effects at low-Eγ
T discussed above

reduces the combined efficiency to about 45% in the lowest-Eγ
T bin. In contrast,

the efficiency is about 80% (75%) in the highest-Eγ
T bins of the central (forward)

region. In those bins, the dominant sources of inefficiencies are from the photon

reconstruction, identification and isolation. The forward region has a lower combined

efficiency due to the lower efficiency of the photon reconstruction in that region.

192



The resolution effects related to the crossing of a selection cut threshold, such as

that on Eγ
T mentioned above, can reduce the efficiency if the event satisfies the

particle-level cut but not the detector-level cut. The opposite effect, i.e. an event that

does not satisfy the particle-level cut but does satisfy the detector-level cut, produces

background events from the perspective of the fiducial phase space. This background

contribution can be quantified by the combined reconstruction and selection purity

in a bin j, pj, which is defined as

pj =

∑
iNPiDj

NDj

. (7.5)

Figure 7–5 shows the combined reconstruction and selection purity obtained using

simulated signal events. The purity at high Eγ
T is about 96%. The remaining 4%

of background contamination is primarily due to resolution effects related to the

isolation energy. At low Eγ
T, the purity is approximately 85%, lower than that at

high Eγ
T values. Background contamination at low Eγ

T is primarily due to resolution

effects related to the jet transverse momentum.

7.2 Data Unfolding Methods

To compare theory predictions against data, generated events can be interfaced to a

detector simulation to produce detector-level distributions. These samples can then be

compared to the measured detector-level distribution, allowing to test the theoretical

model that generated the samples. An approach that is more versatile is instead to

unfold the detector effects from the measured detector-level distribution, bringing it

to the particle level. This is desirable since it makes the measurement independent
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Figure 7–5 – Combined reconstruction and selection purity in the Sherpa and
Pythia samples as a function of the detector-level photon transverse energy for (a)
the central region and (b) the forward region. The vertical error bars correspond to
the statistical uncertainty in the purity.

of the detector. The measured distribution can then be compared directly to the

distributions of generated samples or to unfolded measurements obtained using other

detectors.

The data unfolding procedure corresponds to solving Equation 7.2 for NPi
given

a measured NDj
, and a Rji obtained using simulated events. The procedure is

not simply the inversion of the response matrix since the response matrix can be

singular. Additionally, measured distributions and the response matrix are affected

by statistical fluctuations since they are obtained from samples with finite amounts

of events. The unfolding procedure should avoid being sensitive to these fluctuations.

Several unfolding techniques have been developed [189]. Two techniques have been

investigated for the case of the measurement of the γ+ b cross section: the bin-by-bin

method and the iterative Bayesian method. Their implementations are now discussed.
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7.2.1 Bin-by-bin Method

The bin-by-bin data unfolding method consists in the use of simple multiplicative

correction factors that are derived and applied individually in each bin of a given

detector-level distribution to bring it to the particle level. It is this unfolding method

that is used to measure the γ + b cross section.

The correction factor in bin i of a distribution, Cunf
i , is defined such that its product

with the detector-level distribution gives the particle-level distribution:

Cunf
i =

NPi

NDi

. (7.6)

To determine these correction factors, the quantities NPi
and NDi

are taken from

simulated event samples. As such, the correction factors are sensitive to a possible

mismodelling of the detector response in the simulated samples.

The correction factor corrects for signal events that have not been selected and for

events that have been selected but which do not satisfy the particle-level cuts defining

the fiducial phase space. If the transfer matrix is symmetric, then Cunf
i = pi/ϵi.

In the case of the measurement of the differential γ + b cross section as a function of

Eγ
T, the use of the bin-by-bin correction factors is motivated by the good resolution of

the photon transverse energy, since it results in a small number of events migrating

across Eγ
T bins. A small number of migrating events is necessary to ensure the

accuracy of the unfolded distribution since the transfer matrix is not used in the

calculation of the correction factors. In other words, the bin-by-bin data unfolding

procedure does not properly take into account event migrations between bins.
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Figure 7–6 – Bin-by-bin particle-level correction factors obtained from Sherpa γ + b
events as a function of the reconstructed photon transverse energy in both the central
and forward regions. The vertical error bars correspond to the total uncertainty in the
factors, including the statistical uncertainty and all sources of systematic uncertainties
that are discussed in Chapter 8.

Figure 7–6 shows the correction factors as a function of Eγ
T for γ + b events. Since

the Eγ
T transfer matrix is approximately symmetric, the correction factors correspond

approximately to the ratio of the combined reconstruction and selection purity to

the combined reconstruction and selection efficiency. The values of the efficiency

are farther from unity than those of the purity. Thus, the correction factors are

dominated by the inefficiency of the reconstruction and selection. The values and

dependence of the correction factors as a function of Eγ
T can be explained in a similar

way to those of the efficiency distribution shown in Figure 7–4.

Using the particle-level correction factors, the measured detector-level Eγ
T distribution

of γ + b events is unfolded to the particle level. The differential γ + b cross section
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can then be obtained by dividing by the integrated luminosity, as specified by

Equation 3.1. The following equation summarizes all the quantities that are involved

in the measurement of the γ + b differential cross section in bin i of Eγ
T with the

bin-by-bin data unfolding method:(
dσγ+b

dEγ
T

)
i

=
1

(∆Eγ
T)i

1

(Ltrig
int )i

1

ϵtrigi

Cunf
i f b-jet

i

∑
j∈MV1c

pprompt-γ
ij Nγ+jet

ij , (7.7)

where (∆Eγ
T)i is the width of the Eγ

T bin i, (Ltrig
int )i is the integrated luminosity of the

trigger criterion associated to the Eγ
T bin i, ϵtrigi is the trigger efficiency of the trigger

criterion associated to the Eγ
T bin i, Cunf

i is the particle-level correction factor in the

Eγ
T bin i, f b-jet

i is the b-jet fraction in the Eγ
T bin i, pprompt-γ

ij is the prompt-photon

purity in bin i of Eγ
T and bin j of the MV1c weight and Nγ+jet

ij is the number of

events satisfying the detector-level selection in bin i of Eγ
T and bin j of the MV1c

weight. It is this equation that is used to measure the differential γ + b production

cross section.

7.2.2 Iterative Bayesian Method

The iterative Bayesian data unfolding method consists in the repeated usage of Bayes’

theorem [190]. It makes use of the transfer matrix and is thus of general applicability,

i.e. it does not require that the number of events at the particle-level migrating into a

different bin at the detector-level be small, in contrast to the bin-by-bin data unfolding

method. The iterative Bayesian method is however more complex than the bin-by-bin

method and it can be affected by large statistical uncertainties. This method is used to

investigate the impact of event migrations on the unfolded distribution. Furthermore,
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this unfolding method is less sensitive to the choice of simulated samples used to

unfold distributions.

The unfolded number of events in bin i, N̂Pi
, can be obtained from the measured

detector-level distribution by using the equation [190]

ϵiN̂Pi
=

nD∑
j=1

P (Pi|Dj)pjNDj
, (7.8)

where ϵi is the combined reconstruction and selection efficiency, nD is the number

of bins in the detector-level distribution, P (Pi|Dj) is the conditional probability

that an event measured in bin j of the detector-level distribution is found in bin

i of the particle-level distribution, pj is the combined reconstruction and selection

purity and NDj
is the number of events in bin j of the detector-level distribution.

The presence of the efficiency and of the purity in the equation is required as the

conditional probability is only valid for events that satisfy both the detector- and the

particle-level selections. The conditional probability is given by Bayes’ theorem:

P (Pi|Dj) =
P (Dj|Pi)P (Pi)∑nP

k=1 P (Dj|Pk)P (Pk)
, (7.9)

where nP is the number of bins in the particle-level distribution, P (Dj|Pi) is an

element in the response matrix and P (Pi) is the prior probability that an event is

found in bin i of the particle-level distribution. The prior can be obtained from the

particle-level distribution via

P (Pi) =
NPi

Ntot
, (7.10)

where NPi
is the number of events in bin i of the particle-level distribution and

Ntot is the total number of events that pass either the particle- or the detector-level
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distribution. It is given by

Ntot =

nP∑
i=1

NPi
+

nD∑
j=1

NDj
−

nD∑
j=1

nP∑
i=1

NPiDj
, (7.11)

where NPiDj
is an element in the transfer matrix.

The response matrix is related to the transfer matrix through

P (Dj|Pi) =
P (Pi, Dj)

P (Pi)
=
NPiDj

NPi

. (7.12)

The last equality of the previous equation holds since the joint probability is simply

the normalized transfer matrix:

P (Pi, Dj) =
NPiDj

Ntot
. (7.13)

As a consequence of Equations 7.8 and 7.9, the unfolded distribution is directly

dependent on the choice of the prior. The prior is obtained from the MC signal

samples. After the application of Equation 7.8, the unfolded distribution, which has

knowledge of both the MC and the data samples, can be normalized and taken as the

new prior. This can be iterated, each time reducing the dependence of the unfolded

distribution on the original MC prior. Each iteration however increases the statistical

uncertainty in the unfolded distribution. An optimization of the number of iteration

must be performed. The response matrix stays the same for all iterations.

Equation 7.8 can be written as

N̂Pi
=

nD∑
j=1

UijNDj
, (7.14)
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where Uij is called the unfolding matrix and is given by

Uij =
pj
ϵi
P (Pi|Dj) =

pj
ϵi

NPiDj∑nP

i=1NPiDj

. (7.15)

The unfolding matrix corresponds to the bin-by-bin correction factors if the transfer

matrix is diagonal. In other words, the bin-by-bin method and the first iteration of

the Bayesian method with any diagonal transfer matrix produce the same unfolded

distribution.

Since the prior is updated after each iteration, the unfolding matrix needs to be

expressed as a function of it. The reconstruction efficiency and the reconstruction

purity can be expressed in terms of the event probabilities as

ϵi =

∑nD

j=1NPiDj

NPi

=

∑nD

j=1 P (Dj|Pi)P (Pi)

P (Pi)
=

nD∑
j=1

P (Dj|Pi) (7.16)

and

pj =

∑nP

i=1NPiDj

NDj

=

∑nP

i=1 P (Dj|Pi)P (Pi)

P (Dj)
. (7.17)

The efficiency does not depend on the prior but the purity does depend on it. The

purity needs to be updated after each iteration.

A way of updating the purity is to include it in the definition of the conditional

probability, giving the following new conditional probability

P ′(Pi|Dj) = pjP (Pi|Dj) =
P (Dj|Pi)P (Pi)∑nP+1

k=1 P (Dj|Pk)P (Pk)
, (7.18)

where the denominator of the fraction is a way of considering P (Dj) as a function of

the prior. It is achieved by including an additional bin in the particle-level distribution.
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This bin corresponds to events that satisfy the detector-level selection but fail the

particle-level selection. Doing this allows to treat those events at the particle level

on the same footing as the other ones. The values of the additional elements of the

transfer matrix, i.e. those at i = nP + 1, are given by

NPnP+1Dj
= NDj

−
nP∑
i=1

NPiDj
(7.19)

and the number of events in the additional bin of the particle-level distribution is

NPnP+1 =

nD∑
j=1

NPnP+1Dj
, (7.20)

such that
∑nP+1

i=1 NPi
= Ntot.

With the definition of this new conditional probability, the unfolding matrix becomes

Uij =
P ′(Pi|Dj)

ϵi
. (7.21)

It can be used in Equation 7.14 to obtain the unfolded distribution. After an iteration,

the assignment N̂Pi
→ NPi

can be done, giving the new prior

P (Pi) =
N̂Pi∑nP+1

i=1 N̂Pi

. (7.22)

This new prior is to be used in Equation 7.18 to give a new unfolding matrix and

thus a new unfolded distribution. This can be iterated an arbitrary amount of times.
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The differential γ+b cross section in bin i of Eγ
T calculated using the iterative Bayesian

data unfolding method is given by(
dσγ+b

dEγ
T

)
i

=
1

(∆Eγ
T)i

1

(Ltrig
int )i

∑
j

Uunf
ij

1

ϵtrigj

f b-jet
j

∑
k∈MV1c

pprompt-γ
jk Nγ+jet

jk , (7.23)

where Uunf
ij is the unfolding matrix of the previous iteration.

In general, few iterations of the Bayesian data unfolding procedure are necessary [190].

Since the Eγ
T transfer matrix is nearly diagonal, it is expected that the unfolded

distribution is stable against variations in the number of iterations. It is preferable to

choose a number of iterations as small as possible, since larger numbers of iterations

increase the statistical uncertainty in the unfolded distribution. There is however

a qualitative difference between using a single iteration and two iterations of the

unfolding procedure. Using a single iteration of the unfolding procedure results in

an unfolded distribution that is directly dependent on the MC prior. Using two

iterations of the unfolding procedure results in a reduced dependence of the unfolded

distribution on the MC samples. Therefore, two iterations are considered to be

optimal for the Bayesian data unfolding of the Eγ
T distribution of γ + b events.

Figure 7–7 shows the unfolding matrix after two iterations of the iterative Bayesian

data unfolding procedure. As for the case of the transfer matrix, it is nearly diagonal

with the value of the off-diagonal elements being typically 5% of that of the diagonal

elements.

The unfolded Eγ
T distribution of γ + b events can be divided by the detector-level

distribution to provide similar unfolding correction factors as the bin-by-bin method.
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Figure 7–7 – Unfolding matrix of the Eγ
T distribution of Sherpa γ + b events after

two iterations of Bayes’ theorem for (a) the central region and (b) the forward region.

This allows to compare the two unfolding methods. Figure 7–8 gives the comparison

of the bin-by-bin correction factors with those of the iterative Bayesian method with

one, two and three iterations.

The comparison of the bin-by-bin correction factors with those of the Bayesian

approach with one iteration allows to quantify the impact of neglecting the off-diagonal

elements of the transfer matrix in the bin-by-bin unfolding process. It is seen that these

factors are in agreement and thus the impact of event migrations is not significant.

Similarly, the factors of the Bayesian approach with two iterations agree with those

using three iterations, as expected from the stability of the unfolded distribution on

the number of iterations beyond the first iteration. However, statistically significant

differences can be observed between the bin-by-bin correction factors and those

obtained using the Bayesian approach with two iterations. Such differences quantify

the mismodelling of detector effects by the simulated event samples. Since the
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Figure 7–8 – Unfolding correction factors of the bin-by-bin and of the 1-, 2- and
3-iteration Bayesian unfolding methods obtained from Sherpa γ + b events as a
function of the photon transverse energy in (a) the central region and (b) the forward
region. The vertical error bars correspond to the statistical uncertainty in the factors.

differences are small, at most 5%, the bin-by-bin method is kept as the nominal

approach as it is simpler to implement and to interpret.
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CHAPTER 8
Uncertainties

This chapter provides a description of the uncertainties that have been evaluated in

the measured values of the γ + b differential cross section as a function of Eγ
T for the

central and the forward regions. Uncertainties arise from the finite size of the event

samples, from the calibration of the reconstructed objects, from the modelling of the

signal events and from the choice of analysis techniques. Since the measurement is to

be compared to theoretical predictions, uncertainties in the theoretical predictions

are also described. The uncertainties in the theoretical predictions arise from the

truncation of the infinite perturbative QCD series to a finite order and from the

uncertainties in the quantities that are used as input to the calculations. To reduce the

size of both the uncertainties in the measurement and in the theoretical predictions,

the ratio of the cross section in the central region to that in the forward region is

measured. The uncertainties in the measured and predicted values of the cross-section

ratio are also presented. The first section of this chapter discusses the measurement

uncertainties, while the second section discusses the theoretical uncertainties.

8.1 Measurement Uncertainties

The measurement of the cross section as given by Equation 7.7 depends on several

different ingredients: physical objects that are reconstructed from detector signals,

different theoretical models in the generation of simulated signal samples and analysis
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techniques chosen to make the measurement. Each of these ingredients are affected

by uncertainties, the systematic uncertainties, that in turn affect the measured values

of the cross section. In addition, the measured values are affected by statistical

uncertainties since both the recorded and the simulated event samples contain a finite

number of events.

Most sources of systematic uncertainties are positively correlated across the central

and the forward regions. Since a ratio of positively correlated quantities has a lower

variance than either of the quantities, the ratio of the cross section in these regions is

measured to obtain a more precisely measured quantity against which to compare

theoretical predictions.

The determination of the statistical uncertainties is explained in the next section.

Sources of systematic uncertainties are described in the following section. Also dis-

cussed are cross-check studies, which do not result in uncertainties. The presentation

of the size of the uncertainties and of the total uncertainty in the measured values

then follows.

8.1.1 Statistical Uncertainty

Due to the use of event samples with finite numbers of events, measured quantities are

affected by a statistical uncertainty. The source of this statistical uncertainty can be

attributed to the Poisson process of selecting an event in a given bin of a distribution.

For example, the number of selected events in a given bin of the Eγ
T distribution,

N , is the sum of N independent Poisson distributions of mean one, which is itself

a Poisson distribution of mean N . The statistical uncertainty in that number, ∆N ,
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is given by the standard deviation of the Poisson distribution of mean N , that is

∆N =
√
N . Such a statistical uncertainty is present in both the recorded and the

simulated event samples. The statistical uncertainty in the MC event samples is

categorized as a systematic uncertainty of the measurement.

To propagate these Poisson uncertainties through each step of the analysis up to the

measured values of the cross section and cross-section ratio, the bootstrap resampling

technique is used [191]. This technique is preferred to the traditional formula for the

propagation of uncertainties due to the complexity of the analysis, particularly the use

of the prompt-photon purity and the b-jet fraction. The bootstrap technique makes it

possible to assess the asymmetry in the uncertainty, does not require the linearization

of the dependence of the cross section on the number of selected events and does

not require the derivation of partial derivatives. In particular, the mathematical

expressions for the partial derivatives would necessitate the decomposition of events

into exclusive categories to avoid the double counting of events that are used in more

than one quantity of the cross-section equation, which would be non-trivial.

The bootstrap resampling technique consists in assigning a weight to each recorded

or simulated event. The value of the weight is randomly picked from a Poisson

distribution of mean one. Such a random weight assignment resamples the sample

of events. The complete physics analysis is repeated on this new sample of events.

The new measured values of the cross section and cross-section ratio differ from those

measured with the original event sample due to the event weights. The mean of

the resampled values however coincide with the value measured with the original
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sample. Therefore, this resampling technique makes it possible to assess the impact

of statistical variations on a measured quantity.

A particular resampling of the original event sample is called a replica, while the

original sample is called the nominal sample. The resampling described above can be

done multiple times, each time with a different weight assignment. A distribution

of replicas is thus created. The replica distribution of a measured quantity follows

the underlying statistical distribution of the quantity. The statistical uncertainty is

defined as the two-sided 68% confidence interval of this distribution of replicas. The

statistical uncertainty obtained this way can be asymmetric.

In the context of this analysis, one thousand replicas are used, as a compromise

between the precise description of the underlying statistical distribution and computer

processing time. Data and MC statistical uncertainties are determined separately by

resampling the data and the MC samples one after the other.

As an example, Figure 8–1 shows the replica distribution of the measured cross-section

ratio obtained in the lowest-Eγ
T bin and also in the lowest-Eγ

T bin that is associated to

an unprescaled trigger selection. The underlying statistical distributions as obtained

from the bootstrap technique and from an MC toy study are compared. The MC toy

study corresponds to the generation of one thousand random numbers for each of the

numerator and denominator of the ratio. A pair of numbers correspond to a replica

of the data. The random numbers follow the Gaussian distributions of the measured

values of the cross section.
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Figure 8–1 – Replica distributions of the measured central-to-forward cross-section
ratio obtained from the bootstrap technique and the MC toy study for (a) the lowest-
Eγ

T bin and (b) the lowest-Eγ
T bin that is associated to an unprescaled trigger selection.

The solid red line corresponds to the nominal value of the ratio while the dashed red
lines delimit the two-sided 68% confidence interval.

It can be seen that the two methods produce a similar distribution for the ratio. The

ratio in the lowest-Eγ
T unprescaled bin is Gaussian, while that in the lowest-Eγ

T bin is

not. The asymmetry of the latter distribution is due to the large relative uncertainties

that affect the numerator and the denominator. As a comparison, the asymmetry

of the distribution would not have been captured by the traditional formula for the

propagation of uncertainties since the linear approximation under which it is derived

breaks down for these large relative uncertainties. The bootstrap technique allows to

preserve the asymmetry of the statistical uncertainty.

8.1.2 Systematic Uncertainties

All systematic uncertainties in the measured values of the cross section and of the

cross-section ratio are estimated using a similar approach. For each individual
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source of uncertainty, the quantities in the analysis that are affected by it are varied

simultaneously and the complete physics analysis is repeated with these varied

quantities. For most sources of uncertainties, quantities are varied in the nominal

Sherpa simulated samples. The difference between a measured value obtained

with the systematic variation and that obtained without the systematic variation is

taken as the systematic uncertainty in that measured value. Asymmetric systematic

uncertainties are assessed by considering individual upward and downward variations

of the quantities. Since systematic variations are evaluated using finite-size event

samples, the impact of these variations is affected by statistical fluctuations. A

smoothing procedure is performed on every systematic variation to remove the

statistical fluctuations.

The smoothing procedure depends on the statistical uncertainty in the systematic

variation. This statistical uncertainty is determined by using the same bootstrap

technique as explained in the previous section. For each systematic variation, one

thousand replicas are produced by varying the event weights of the Sherpa events.

For each replica, the relative systematic variation in a measured value is evaluated

with respect to the nominal measured value. The standard deviation of the replica

distribution of this relative variation is taken as the statistical uncertainty in the

variation. As a consequence, the statistical uncertainty in a systematic variation is

related to the statistical uncertainty in the Sherpa samples.

The smoothing procedure is accomplished in two steps. The first step consists in

rebinning the Eγ
T distribution of a relative systematic variation by merging bins until

the value of the relative variation in each new bin is greater than two times the size
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of its statistical uncertainty. If this condition cannot be satisfied, the systematic

variation is set to zero. The rebinning procedure is attempted starting from both

the lowest-Eγ
T bin and the highest-Eγ

T bin, using whichever way produces the largest

number of significant bins. Afterwards, the values of the new bins are given to each

of the original bins that were merged, that is the binning of the original distribution

is used but with the values associated to the rebinned distribution. The second step

of the smoothing procedure is a sliding average over the Eγ
T bins with a Gaussian

kernel. Assuming that the distribution of the relative systematic variation is smooth

as a function of Eγ
T, this step extracts this smooth distribution while avoiding a

significant change to the values of the relative systematic variation. The relative

systematic variation that results from these two smoothing steps is taken as the

relative systematic uncertainty in the measured quantity.

Figure 8–2 shows the effect of the smoothing procedure on two systematic variations,

described later in this section, chosen for illustration purposes. In Figure 8–2(a), the

effect of the rebinning step can be seen at low Eγ
T while that of the sliding-average

step has no impact. Conversely, Figure 8–2(b) shows that the rebinning step has no

impact while the sliding-average step changes slightly the values at high Eγ
T.

The systematic uncertainties that are considered in this analysis are divided into

categories according to what part of the analysis they affect. The systematic uncer-

tainties are now discussed in the following order: uncertainties related to the photon

reconstruction, to the jet reconstruction, to the signal modelling and to the analysis

techniques.
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Figure 8–2 – Relative systematic uncertainty in the differential cross section for the
central region as a function of Eγ

T related to an upward variation in the Sherpa events
of (a) the jet energy resolution and (b) the first eigenvector of the c-jet b-tagging
efficiency. The states of the relative uncertainty before the smoothing, after the
rebinning and after the Gaussian-kernel sliding average are displayed. The vertical
error bars correspond to the statistical uncertainty in the relative systematic variation
before the smoothing, as obtained from the bootstrap replicas.

Photon Energy Scale

The energy calibration of the reconstructed photons is affected by several uncertain-

ties [169]. A total of 20 independent uncertainty sources are considered, related to the

following aspects of the calibration of the photon energy scale: the relative calibration

between the layers of the electromagnetic calorimeter, the description of the detector

material upstream of the calorimeter cells, the knowledge of the calorimeter geometry,

the simulation of the physical interactions, the dependence of the energy response on

the amplifier gains, the modelling of the photon energy leaking outside the photon

cluster, the misclassification of photons as unconverted or converted and the physics

analysis performed to determine the electron energy scale from Z → ee decays. The
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individual uncertainty with the largest impact on the measured cross-section values

is the dependence of the energy response on the amplifier gains in the second layer of

the electromagnetic calorimeter.

Most of the uncertainties are correlated across the barrel and the end-cap electromag-

netic calorimeters. However, uncertainties related to the relative layer calibration,

the material description upstream of the calorimeter cells and the knowledge of the

calorimeter geometry are taken to be uncorrelated across the barrel and the end-cap

electromagnetic calorimeters. This has the implication that they do not cancel in the

central-to-forward ratio of the cross section.

Photon Identification

The calibration of the efficiency of the tight photon identification in simulated events

is affected by various sources of uncertainties [166]. The total uncertainty in the scale

factors is propagated up to the measured values of the cross section and cross-section

ratio. The impact of having scale factors derived using an isolation energy cut of

4 GeV instead of the nominal Eγ
T dependent cut value has been assessed and has been

found to be negligible.

Jet Energy Scale

The calibration of the jet energy scale (JES) is affected by uncertainties [175]. The

JES uncertainties not only affect the selected jets in this physics analysis but also

the derivation of the scale factors of the b-tagging efficiency, since this efficiency is

measured from jets with a calibrated energy. As such, the individual JES uncertainties

are varied simultaneously in this analysis and in the derivation of the b-tagging scale
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factors of the b-jets. However, this simultaneous variation is not technically possible

for the b-tagging scale factors of c- and light jets. For those, the total JES uncertainty

is varied as part of the uncertainties specific to the b-tagging scale factors.

Most of the JES uncertainties are related to the absolute in situ calibration analyses.

There are 56 uncertainties related to these analyses. To reduce the number of uncer-

tainties to assess, the principal component analysis (PCA), described in Appendix D,

is used.1 The eigenvectors with the five largest eigenvalues are kept and the remaining

ones are combined into a residual uncertainty. The correlations in the JES calibration

factors obtained with this reduced set of uncertainties differ by about 5% from those

obtained with the complete set.

With the reduced set of in situ uncertainties and the uncertainties in the JES

calibration factors that are not related to the in situ analyses, a total of 18 independent

uncertainties affect the JES calibration. They are related to the absolute in situ

calibration analyses, the corrections dependent on the pileup, the corrections for jets

that punch through the calorimeters and the differences in response between the jet

flavours. These uncertainties are all considered in this analysis. The uncertainty with

the largest impact on the measured values of the cross section and cross-section ratio

is the uncertainty in the response of the b-jets, which is related to the modelling of

the fragmentation of the b quarks into b hadrons.

1The PCA replaces the variations of possibly correlated sources of uncertainties
in a set of quantities, in this case the JES calibration factors, by variations of the
uncorrelated eigenvectors of their covariance matrix.
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Jet Energy Resolution

The measurement of the jet energy resolution is affected by the uncertainties related

to the in situ analyses [175]. The uncertainty in the jet energy resolution is assessed

by applying a Gaussian smearing correction to the four-momentum of the jets in

simulated events, such as to vary the resolution within its uncertainty. The differences

in the measured values of the cross section and cross-section ratio that are obtained

with the smeared jets, compared to those without the smearing correction, are taken

as the uncertainty due to the jet energy resolution. This uncertainty is assessed

simultaneously in the jets of this physics analysis and in the derivation of the scale

factors of the b-tagging efficiency of all three jet flavours.

b-tagging Identification

The scale factors of the b-tagging efficiency are obtained from calibration analyses

specific to b-, c- and light jets, discussed in Section 4.3.3. Each analysis has its own set

of uncertainties. As these analyses all deal with jets, they are affected by uncertainties

pertaining to the reconstruction and selection of jets. These uncertainties are assessed

simultaneously in this physics analysis and in the derivation of the b-tagging efficiency

scale factors, as mentioned previously.

There are a multitude of uncertainties specifically affecting each of the calibration

analyses specifically. There are 41 independent sources of systematic uncertainties in

the derivation of the b-jet scale factors. These are related to the modelling of signal

and background events in the tt̄ selection, and to the calibration of the kinematics of

the electrons and muons that are selected [181]. There are 17 independent sources
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of systematic uncertainties in the derivation of the c-jet scale factors. These are

related to the template fit distinguishing between the b- and the c-jets, and to the

extrapolation of the scale factors measured for c-jets containing D∗+ mesons to those

obtained for inclusive c-jets [182]. There are 13 independent sources of systematic

uncertainties in the derivation of the light-jet scale factors. These are related to

the modelling of the tracks that are associated to jets, and to the modelling of the

contamination due to b and c hadrons, hyperons and material interactions [182].

In addition to these various sources of systematic uncertainties, the statistical uncer-

tainties in the scale factors have to be assessed. Since the MV1c weight distribution

is normalized to unity, the statistical uncertainty in the number of events in a given

bin of that distribution is not independent of that in other bins and instead follows a

multinomial distribution as a function of the MV1c weight.

To take into account the correlations in the statistical uncertainties, the PCA is used

and applied taking also into account the sources of systematic uncertainties discussed

above. The eigenvectors that are obtained are ordered by decreasing eigenvalue. An

eigenvector is considered in this analysis only if its eigenvalue is larger than 10−20. Out

of the 30 possible eigenvectors for the b-jet scale factors, 26 of them are considered.

Every eigenvector of the c-jet and the light-jet scale factors is considered. There are

20 and 60 of them respectively for the c-jet and the light-jet scale factors.

There is an additional uncertainty in the b-tagging efficiency scale factors that is

assessed independently for each jet flavour. It is related to the limited reach at high

pjet
T of the calibration analyses, due to a lack of recorded events in that region of
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phase space. For the b- and c-jet scale factors, values of scale factors can only be

derived up to a jet pT of 300 GeV, while those for light jets do not extend beyond

750 GeV. Beyond these values, the b-tagging efficiency scale factors are taken to be

those of the highest-pjet
T bins available. An extrapolation uncertainty accounting for

the possible differences in the actual scale factors at high pjet
T , compared to the ones

that are used, is obtained from the simulated samples.

The source of uncertainty related to the b-jet scale factors that has the largest impact

on the measured values of the cross section and cross-section ratio is the one related

to the jet energy scale. As described previously, the impact of the jet energy scale

is assessed separately in the analysis. The second leading source of uncertainty in

the b-jet scale factors, which is considered in this present uncertainty category, is

due to differences in the modelling of background events in the tt̄ selection between

different generators. For the c-jet scale factors, the dominant uncertainty is related

to the template fit that separates the c-jets from the b-jets. This uncertainty is also

the largest single one among all the uncertainties that are considered in this physics

analysis. For the light-jet scale factors, there are two dominant uncertainties: one

related to the modelling of the number of tracks that are associated to jets and one

related to the c-jet b-tagging efficiency.

The variations of the b-tagging efficiency scale factors according to their uncertainties

distort the shapes of the templates in the MV1c template fit. These variations assess

the dependence of the results of the template fit on the shapes of the templates. This

is an advantage of using templates that are continuously calibrated. Furthermore,

the dependence of the results of the template fit on the overall normalizations of
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the fitted data and MC distributions is taken into account through the bootstrap

replicas that are used to estimate statistical uncertainties. As such, no additional

uncertainties related to the technique of the template fit are necessary.

Photon Sideband Definition

The two-dimensional sideband method is used to obtain the purity of prompt photons

in the event selection. The purity depends on the definitions of the background

regions of the photon identification and of the isolation energy.

To assess the impact of the chosen background region for the photon identification, the

definition of the relaxed tight identification is made tighter and looser by respectively

requiring an additional tight photon discriminating variable and by removing such a

requirement, as specified in Table 4–1. Changing this definition also allows to assess

partially a possible mismodelling of the efficiency of the relaxed tight identification.

A mismodelling is possible since this identification efficiency in simulated events is

not calibrated to that in recorded events.

To assess the impact of the requirement on the isolation energy for the background

region of the isolation energy, the isolation cut is made tighter and looser by the

size of the resolution of the isolation energy, i.e. by 2 GeV. This uncertainty has a

larger impact on the measured values of the cross section and cross-section ratio

than the uncertainty related to the definition of the background region of the photon

identification.
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Photon Sideband Correlation

One of the assumptions in the two-dimensional sideband method is that the two

quantities that define the sidebands are not correlated in background events. In other

words, that the following equality holds for the correlation factor:

Rbkg ≡
Nbkg

A Nbkg
D

Nbkg
B Nbkg

C

= 1. (8.1)

Determining if this assumption holds is not possible due to the lack of background

simulated samples. Instead, the quantity R′bkg is used as a proxy to Rbkg and is

measured in data. This new quantity is defined similarly to the correlation factor

and is

R′bkg ≡
Nbkg

A′ N
bkg
D′

Nbkg
B′ N

bkg
C′

, (8.2)

where the definition of the prime regions is shown in Figure 8–3.

The four prime regions are located at larger values of Eiso
T than the corresponding four

non-prime regions and thus should all be dominated by background events. These

four prime regions are corrected for signal events leaking into them via similar MC

leakage correction factors as those used for the non-prime regions. The R′bkg quantity

is measured as a function of both Eγ
T and the MV1c weight according to the bins of

the two-dimensional purity. Figure 8–4 shows an example of measured R′bkg values in

a bin of the MV1c distribution as a function of Eγ
T. The values are within 10% of

unity, taking into account the statistical uncertainty.

The uncertainty in the purity due to the correlation of the two quantities that define

the sidebands in the background events is therefore assessed by varying Rbkg by 10%
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Figure 8–3 – Diagram of the non-prime and prime regions as a function of the isolation
energy and the photon identification (ID). The dashed line separates both regions B
and D into two prime regions. The grey regions are not associated to any sideband
region.
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Figure 8–4 – Correlation factor in the prime regions measured in recorded events in
the 50–0% MV1c b-jet b-tagging efficiency bin as a function of Eγ

T for (a) the central
region and (b) the forward region. The signal leakage in the prime regions has been
corrected with a correction factor obtained from the Sherpa samples. The vertical
error bars correspond to the statistical uncertainty in the correlation factor.
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from unity. The equation of the photon purity has to be modified to allow a non-unity

value for the correlation factor. The equation becomes

pγ-prompt =
1

2NA(cBcCRbkg − cD)

{
cBNCRbkg + cCNBRbkg −ND − cDNA

+
[
(cBNCRbkg + cCNBRbkg −ND − cDNA)

2

− 4(cBcCRbkg − cD)(NBNCRbkg −NAND)
]1/2}

.

(8.3)

This equation is used to assess the impact of this background-correlation uncertainty

on the measured values of the cross section and cross-section ratio.

Prompt-photon Modelling

As Pythia is a 2 → 2 event generator, the contributions of the initial- and final-state

radiated photons and of the fragmentation photons to the production of prompt

photons are approximated via the emissions of bremsstrahlung photons in the parton

shower. Events containing bremsstrahlung photons can be distinguished from those

containing direct photons that are generated in the hard process through the different

final states of their matrix elements. As such, it is possible to reweight the relative

contributions of events containing bremsstrahlung and direct, also called hard, photons

according to what is observed in data. The difference between this optimal admixture

and the admixture of bremsstrahlung and hard photons set by default in Pythia is

taken as an uncertainty pertaining to the modelling of the prompt photons.

To find the optimal admixture of bremsstrahlung and hard photons that best describes

the data, a least-square fit of the selected Pythia events containing bremsstrahlung
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and hard photons to the selected data events is performed. The function to minimize

is

χ2 =
∑
i,j

(
Ndata

ij (α)−NMC
ij (α)

∆Ndata
ij (α)

)2

, (8.4)

with

NMC
ij (α) =

∑
i,j N

data
ij (α)∑

i,j[αN
MC,hard
ij + (1− α)NMC,brem

ij ]

(
αNMC,hard

ij + (1− α)NMC,brem
ij

)
,

(8.5)

where i is a bin in Eγ
T, j is a bin in the MV1c weight and α is the relative weight applied

to the hard contribution and is the fit parameter. The numbers of Pythia events

with a hard photon and with a bremsstrahlung photon in bin (i, j) are respectively

NMC,hard
ij and NMC,brem

ij . This formula considers only events with prompt photons that

pass the detector-level selection. Thus, Ndata
ij (α) is the number of recorded events in

bin (i, j) after the application of the photon purity and ∆Ndata
ij (α) is its statistical

uncertainty. These quantities depend on α since the signal leakage correction factors

used in the sideband method depend on the reweighted MC events. The ratio in

Equation 8.5 is used to normalize the sum of the two Pythia distributions to the

data distribution.

The distribution of the reduced χ2 is shown in Figure 8–5. The actual values of the

reduced χ2 are not meaningful since the distributions of prompt photons in data and

in the Pythia samples are not expected to agree because systematic uncertainties

are not considered in the least-square fit. Only the shape of the distribution of the

reduced χ2 is of relevance. It can be seen that it admits a single minimum, giving

confidence in the accuracy of the fitted value.
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Figure 8–5 – Reduced χ2 of the reweighted contributions of the Pythia events
containing bremsstrahlung and hard photons, compared to the recorded events that
contain prompt photons, as a function of the weight parameter α for (a) the central
region and (b) the forward region.

The distributions of the selected events that contain hard and bremsstrahlung photons

before and after the fit are shown in Figure 8–6. The projection of the two-dimensional

distributions onto the Eγ
T axis has been performed. The photon purity that is applied

to the data distribution makes use of leakage correction factors that have been

obtained from the Pythia samples. Bremsstrahlung photons are relatively more

abundant at low Eγ
T than at high Eγ

T compared to hard photons, i.e. the distribution

of bremsstrahlung photons is more steeply decreasing as a function of Eγ
T than that

of the hard photons. These different shapes in the distributions make the fit of their

contributions to the data possible. It is observed that the data is better described by

an increased relative contribution of events containing hard photons compared to the

default Pythia admixture.
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Figure 8–6 – Distributions of selected events containing prompt photons in data and
in the Pythia samples as a function of Eγ

T for (a) the central region before the
least-square fit, (b) the central region after the least-square fit, (c) the forward region
before the least-square fit and (d) the forward region after the least-square fit. The
decomposition of the Pythia distribution into events containing bremsstrahlung
photons (Brem) and direct photons (Hard) is also displayed. The distributions
displayed are projections of the corresponding two-dimensional distributions onto the
Eγ

T axis. The number of events in each bin has been divided by the width of the bin.
The ratio of the data distribution to that of Pythia is shown in the bottom panel.
The statistical uncertainty in the data distribution is too small to be visible. The
numbers in the legend are the fitted value of α and its statistical uncertainty.
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Figure 8–7 – Distributions of selected events containing prompt photons in data and
in the Sherpa samples as a function of Eγ

T for (a) the central region and (b) the
forward region. The distributions displayed are projections of the corresponding
two-dimensional distributions onto the Eγ

T axis. The number of events in each bin
has been divided by the width of the bin. The ratio of the data distribution to that
of Sherpa is shown in the bottom panel. The statistical uncertainty in the data
distribution is too small to be visible.

For comparison purposes, Figure 8–7 shows the Eγ
T distribution of selected events

in the Sherpa samples. The data distribution that is compared to the Sherpa

distribution makes use of a photon purity that has been corrected with signal leakage

correction factors that have been obtained from the Sherpa samples. It can be seen

from the ratio of the data distribution to that of the simulated samples that the fitted

Pythia distribution is in closer agreement with the data, compared to that of the

Pythia distribution before the fit, and that the agreement obtained is similar to

that of the Sherpa distribution.

The product of the fitted α value with the ratio of the integrals of the data distribution

to that of the sum of the Pythia distributions produces event weights. The values
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of the weights are 1.43 and 0.26 respectively for the distributions of the hard and

bremsstrahlung events in the central region and 1.28 and 0.56 respectively for the

distributions of the hard and bremsstrahlung events in the forward region. The

application of these event weights to the hard and bremsstrahlung events produces

the optimal Pythia admixture that can be used in the physics analysis.

The difference between the measured values of the cross section and cross-section

ratio that are obtained by using the optimal and the default Pythia admixtures is

taken as the uncertainty related to the prompt-photon modelling. To evaluate this

uncertainty, the Pythia samples are used in the analysis instead of the Sherpa

samples, which are not used here. There is only one systematic variation associated

to this uncertainty. As such, the variation is symmetrized with respect to zero to

obtain a positive uncertainty and a negative uncertainty.

Non-Perturbative QCD Models

An uncertainty related to the modelling of the parton shower, the hadronisation

and the hadron decays, i.e. the non-perturbative QCD models, used to generate

the signal events, is considered. The difference between the measured values of the

cross section and cross-section ratio that are obtained by using the Sherpa and the

Pythia samples, which make use of different models, is taken as the uncertainty. In

the evaluation of this difference, the Pythia samples with the optimal admixture

of events containing bremsstrahlung and direct photons is used. This avoids the

double counting of the uncertainty in the prompt-photon modelling, since the Pythia

samples with the optimal admixture are more similar to the Sherpa samples than
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those with the default admixture. For the smoothing procedure of this systematic

variation, the statistical uncertainties related to the finite sizes of the Pythia and

Sherpa samples are added in quadrature and used as the statistical uncertainty in

the variation. The variation is symmetrized to produce a positive uncertainty and a

negative uncertainty.

Particle-level Bin Migration Effects

As can be seen in Figure 7–8, statistically significant differences exist in the unfolding

correction factors obtained using the bin-by-bin approach and the Bayesian approach

with two iterations. The difference between the measured values of the cross section

and cross-section ratio obtained using the Bayesian unfolding with two iterations

and the nominal bin-by-bin unfolding is taken as the uncertainty related to the

particle-level bin migration effects. These effects include the impact of neglecting

the off-diagonal elements of the transfer matrix in the unfolding procedure and the

mismodelling of the detector effects by the MC samples. This variation is symmetrized

to produce a positive uncertainty and a negative uncertainty.

Luminosity

The relative uncertainty in the integrated luminosity is determined to be 1.9% [147].

This uncertainty is dominated by the uncertainties related to the calibration of the

absolute luminosity via the van der Meer beam scans and also by the uncertainties

related to the differences between the conditions of the beams during these scans and

those during the pp collisions that are recorded for physics analysis. As the integrated

luminosity is a multiplicative factor in the equation used to measure the cross section,
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Equation 7.7, the relative uncertainty in the measured values of the cross section

has the same value as that in the luminosity. It is independent of Eγ
T. Also, this

uncertainty cancels completely in the cross-section ratio.

8.1.3 Cross-checks

Possible sources of systematic uncertainties different from those already discussed

in this section have been investigated. They result in no statistically significant

differences in the measured values of the cross section and cross-section ratio and

thus are not considered as additional sources of uncertainties. These sources of

uncertainties are those related to the calibration of the photon energy resolution, the

corrections that are applied to the isolation energy and the efficiency of the JVF

selection.

Additionally, the impact of several choices in the physics analysis, different than those

already discussed in this section, have been studied. These changes in the analysis

do not result in statistically significant differences in the measured values of the

cross section and cross-section ratio and thus serve as cross-checks. These studies

include the comparison of the measured cross section with the sum of the separately

measured cross sections for unconverted and converted photons, the comparison of

the b-jet b-tagging efficiencies derived in tt̄ simulated events with those derived in

γ + jet simulated events, and the comparison of the measured b-jet fractions using

different parameterizations of the sum of the MV1c templates in Equation 6.8. Also

studied is the comparison of the measured cross section obtained using MC samples

that are weighted with respect to the amount of pileup with that obtained using
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MC samples that are weighted with respect to the number of reconstructed primary

vertices.

8.1.4 Total Measurement Uncertainty

The smoothed systematic uncertainties and the statistical uncertainty in the measured

values of the cross section and cross-section ratio are all added in quadrature to

produce the total uncertainty in that quantity. To preserve the asymmetry in the

uncertainties, the sum in quadrature is done separately for the positive and the

negative variations. About 160 independent sources of systematic uncertainties are

considered. The total uncertainty and its breakdown into the category uncertainties

are shown in Figures 8–8 and 8–9 for the γ+ b cross section in the central and forward

regions respectively and in Figure 8–10 for the cross-section ratio. Table 8–1 lists the

range of the size of various uncertainties per category.

Most uncertainties are Gaussian in nature, and thus symmetric as can be seen from

the figures. The total relative uncertainty in the differential cross section is around

20% for both the central and the forward regions, although the total uncertainty

increases at low and high Eγ
T for the forward region. This increase is due to the larger

statistical uncertainty that is associated to those regions of the phase space. The

statistical uncertainty is large at low Eγ
T due to the prescaled trigger selection which

reduces the number of recorded events compared to the unprescaled trigger selection.

The statistical uncertainty is large at high Eγ
T due to the low amount of γ + b events

produced, owing to the steeply decreasing production cross section of γ + b events

as a function of Eγ
T. Additionally, the number of produced events is smaller in the
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Figure 8–8 – Total relative uncertainty in the measured values of the differential
γ + b cross section for the central region as a function of Eγ

T and its breakdown
into (a) the event-related uncertainties, (b) the photon-related uncertainties and (c)
the jet-related uncertainties. The total uncertainty is reported in all three plots for
comparison purposes.
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Figure 8–9 – Total relative uncertainty in the measured values of the differential
γ + b cross section for the forward region as a function of Eγ

T and its breakdown
into (a) the event-related uncertainties, (b) the photon-related uncertainties and (c)
the jet-related uncertainties. The total uncertainty is reported in all three plots for
comparison purposes.
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Figure 8–10 – Total relative uncertainty in measured values of the central-to-forward
cross-section ratio as a function of Eγ

T and its breakdown into (a) the event-related
uncertainties, (b) the photon-related uncertainties and (c) the jet-related uncertainties.
The total uncertainty is reported in all three plots for comparison purposes.
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Table 8–1 – Range of the size of the relative uncertainties in the measured differential
γ + b cross section and in the cross-section ratio as a function of Eγ

T for the different
uncertainty categories. Adapted from Ref. [188].

Uncertainty [%]

Uncertainty source dσcentral/dE
γ
T dσforward/dE

γ
T σcentral/σforward

MC statistical uncertainty 1.9− 6.4 3.1− 14 3.6− 17
Photon energy scale 0.2− 2.5 0.7− 5.3 0.9− 1.9
Photon identification efficiency 0.2− 1.2 0.4− 1.8 0.1− 0.5
Jet energy scale 0.6− 4.8 0.7− 4.6 0.1− 0.2
Jet energy resolution 0.0− 2.4 0.0− 1.0 0.0− 0.1
b-jet b-tagging efficiency 2.4− 17 2.5− 15 0.1− 0.6
c-jet b-tagging efficiency 5.7− 18 5.3− 11 2.3− 6.9
Light-jet b-tagging efficiency 4.9− 15 6.1− 31 1.6− 8.3
Sideband definition 0.2− 3.0 0.2− 2.9 0.1− 0.8
Sideband correlation 0.2− 4.5 0.4− 13 0.2− 10
Prompt-photon modelling 2.2− 2.5 2.4 4.2− 6.7
Non-perturbative QCD models 2.3 7.3 11
Particle-level bin migration effects 0.8− 2.9 0.4 1.2− 4.3
Luminosity 1.9 1.9 0

Total systematic uncertainty 12 − 25 13 − 38 14 − 22
Data statistical uncertainty 1.5− 13 2.1− 37 2.5− 58

Total uncertainty 13− 27 14− 54 14− 62
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forward region than in the central region. For a given Eγ
T value, events produced in

the forward region, compared to those in the central region, require a larger difference

between the fractions of the proton momentum carried by the two colliding partons,

x1 and x2, as can be inferred by Equation A.17. This larger difference implies that

one of the momentum fractions has a large value, which is less probable.

On Figures 8–8, 8–9 and 8–10, the MC statistical uncertainty can be observed not

to be smooth as a function of Eγ
T. This is due to the use of different filters for the

MC samples, as discussed in Section 5.1. The MC statistical uncertainty that is

considered in the figures and in the table is that of the Sherpa samples.

In most Eγ
T bins, the total uncertainty in the measured values of the cross section

is dominated by the systematic uncertainties. The largest uncertainties affecting

the measured values, other than the data and MC statistical uncertainties, are

uncertainties related to the b-tagging efficiencies. They are the limiting factor in

the precision of the measurement at high Eγ
T. At higher Eγ

T values than those for

which the cross section is measured, the uncertainties related to the b-tagging become

excessively large. This is due to the extrapolation uncertainty in the scale factors

of the b-tagging efficiencies, which significantly increases as a function of pjet
T , and

correspondingly has the largest impact at high values of Eγ
T. The highest Eγ

T values

at which the cross section is measured are chosen to be those for which the size of

the total uncertainty stays approximately constant as a function of Eγ
T, i.e. 400 GeV

for the central region and 350 GeV for the forward region.
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Since the precision of the measured cross-section values is systematically limited

and most of the uncertainties are positively correlated in pseudorapidity, the ratio

of the cross section in the central region to that in the forward region is measured.

Most of the systematic uncertainties in the ratio are indeed smaller than those in

the cross section in either region. The relative statistical uncertainty in the ratio is

however larger than that in the cross sections. It is larger as it corresponds to the

sum in quadrature of their relative statistical uncertainties, since the events in one

region are independent of the events in the other one. This increase in the statistical

uncertainty counteracts the decrease in the systematic uncertainty and produces a

total uncertainty that is approximately the same size as that in the cross section

for the forward region. Although the total uncertainty in the ratio is not reduced

compared to that in the cross section, its composition in terms of statistical and

systematic components is different.

Keeping in mind the possibility that the measured values of the cross section could be

used as input to some future analysis, the correlations of their systematic uncertainties

need to be provided. The correlations can be provided either as the sum of the

covariance matrices of each uncertainty or as signed upward and downward variations

of each systematic uncertainty. The latter option is chosen since it allows to keep

knowledge on the physical origin of the uncertainties and also since it allows to correlate

the uncertainties across different observables. The signed systematic uncertainties in

the cross section for the central and the forward regions are provided in Appendix E.

They can be used to obtain the systematic uncertainties in the central-to-forward

cross-section ratio, for example, or any other quantity that depends on these values.
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8.2 Theoretical Uncertainties

The theoretical predictions of the γ + b production cross section in pp collisions

that are discussed in Section 2.3.3 are affected by uncertainties. These theoretical

uncertainties arise from the truncation of the infinite pQCD series at a given order,

from the uncertainty in the parton distribution functions, from the uncertainty in

the measured parameters of the Standard Model and from the modelling of the

non-perturbative QCD effects.

The impact of the truncation of the perturbative series is assessed via the renormal-

ization and the factorization scales. The PDF uncertainty is assessed according to the

recommendations of the collaborations that produced them. The uncertainty in the

measured parameters of the Standard Model is only assessed by varying the value of

the strong coupling constant. Since the predictions are to be compared to the particle-

level cross-section measurement, the uncertainty related to the non-perturbative QCD

models is not considered in the predictions as this uncertainty is already taken into

account in the measurement uncertainties. The theoretical uncertainties are evaluated

only for the NLO predictions obtained from MadGraph5_aMC@NLO using the

NNPDF3.0 PDF sets in the 5F and in the 4F schemes.

The theoretical uncertainties are assessed in a similar manner as the measurement

systematic uncertainties. For each independent source of uncertainty, the relevant

parameters are varied upwards and downwards and the change in the predictions,

relative to those obtained without any variation, are taken as the uncertainty in the
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predictions. Variations are taken to be fully correlated between the central and the

forward regions. No smoothing of the theoretical uncertainties is performed.

The three categories of uncertainties that are considered and the total theoretical

uncertainty are discussed in the following sections.

8.2.1 Renormalization and Factorization Scales

The predicted cross section of a process in pp collisions is given by Equation 2.5. It is

dependent on the unphysical renormalization and factorization scales µr and µf. The

parton-level cross section has an explicit dependence on these scales to compensate the

dependences of the strong coupling constant and of the parton distribution functions

on them, which themselves appear to provide finite values in the calculations in the

presence of ultraviolet and infrared divergences.

The physical cross section is not dependent on the renormalization and the factor-

ization scales, i.e. an all-order calculation is independent of these scales. However,

at a finite pQCD order, the dependence is present and values must be chosen for

these scales. Therefore, there is an uncertainty related to the arbitrary choice of their

nominal values µ0
r and µ0

f.

A variation in the chosen values of these scales is related to the higher-order pQCD

terms that are missing from a calculation at a finite order. Indeed, since the all-order

calculation has no dependence on the scales and since the higher-order terms have an

increasingly smaller contribution to the cross section, an interplay exists between the

scale dependence and the terms at different orders. Specifically, the lower-order terms

contribute partially to the higher-order terms. Thus, given some known lower-order
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terms, the size of the impact on the cross section due to a variation in the scales is

representative of a part of the size of the contribution of the higher-order terms to

the cross section. Since the variation is only sensitive to a part of the higher-order

contributions, the uncertainty related to the scales is only an approximation of the

complete impact of the truncation of the infinite pQCD series. This approximation

becomes better as the pQCD order of the calculation increases.

The correspondence between the scale variation and the higher-order terms exist

only if the lower-order terms have an explicit dependence on the scales. This is

the case for the NLO terms but not for the LO terms, since these are not affected

by ultraviolet and infrared divergences. As such, the variation of the scales is not

physically meaningful for the LO predictions and is not performed.

The scale uncertainty in the NLO predictions is assessed by varying the nominal scale

values by a factor of two upwards and downwards: µ = 2µ0 and µ = µ0/2. The factor

of two is a common choice to evaluate the scale uncertainties but is arbitrary, owing

to the approximate nature of the uncertainty. The scales µr and µf can be varied

either simultaneously in the same direction, simultaneously in opposite directions or

independently. These possibilities result in eight independent variations of the values

of the scales. The scale uncertainty in the predictions is taken as the largest variation

among these eight variations.

8.2.2 Parton Distribution Functions

There are uncertainties in the parton distribution functions that are used in the

theoretical calculations. The PDF uncertainties arise from the uncertainties in the
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measured values of the cross sections from which the PDFs are extracted, from

the uncertainties in the theory predictions that are fitted to the measurements and

from the uncertainties in the fitting procedure. The sources of PDF uncertainties

that are considered depend on the PDF set. The procedure to propagate the PDF

uncertainties to the predictions also depend on the PDF set.

For the NNPDF3.0 PDF set, the uncertainties that are related to the measured

values of the cross sections from which the PDFs are extracted are considered. The

propagation of these uncertainties relies on MC replicas generated based on these

measured values. For each replica, a different PDF set is extracted. In the context of

the predictions of the γ + b cross section, one hundred PDF replicas are considered.

Each of these PDF replicas are used to produce theoretical predictions of the γ + b

cross section. The PDF uncertainty in a predicted cross-section value is taken to be

the two-sided 68% confidence interval of the replica distribution of that predicted

value [192].

8.2.3 Strong Coupling Constant

The strong coupling constant is a parameter that is present in every term of the

theoretical calculations. The variation of its value according to its uncertainty is thus

expected to have the largest impact on the predictions among the parameters of the

Standard Model. The value of the strong coupling constant at the energy scale of the

mass of the Z boson is αS(mZ) = 0.118± 0.002 at the 90% confidence level [54, 77].

The impact of the uncertainty in the strong coupling constant on the predictions

is assessed by varying this value according to its uncertainty simultaneously in the
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calculations of the matrix elements and in the PDFs.2 This results in an uncertainty

in the predictions at the 90% confidence level. To properly compare to the other

uncertainties, this uncertainty is reported at the 68% confidence level by dividing its

size by 1.645.

8.2.4 Total Theoretical Uncertainty

The total theoretical uncertainty in the predicted values is obtained by adding in

quadrature the three individual uncertainties listed in the previous sections. This

is done separately for positive and negative variations, allowing for the possibility

of an asymmetric total uncertainty. The total uncertainties in the NLO predictions

obtained from MadGraph5_aMC@NLO in the 5F and in the 4F schemes are

assessed. Figures 8–11 and 8–12 show the total relative theoretical uncertainty in the

predicted values of the γ + b differential cross section for the central and the forward

regions, and also for the cross-section ratio, in the 5F and 4F schemes respectively.

The figures also show the breakdown of the total uncertainty into the three individual

uncertainty components.

2For technical reasons, this uncertainty is assessed by using the NNPDF3.1 PDF
set, although the proper assessment would require the use of the NNPDF3.0 PDF set.
Both PDF sets produce a similar PDF uncertainty in the predictions, such that the
αS uncertainty in the predictions evaluated with the former set is expected to be also
similar to that using the latter PDF set.
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Figure 8–11 – Total relative uncertainty in the predicted values obtained from
MadGraph5_aMC@NLO in the 5F scheme as a function of Eγ

T of (a) the differential
γ + b cross section for the central region, (b) the differential γ + b cross section for
the forward region and (c) the central-to-forward cross-section ratio. Also displayed
is the breakdown of the total theoretical uncertainty into individual components.
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Figure 8–12 – Total relative uncertainty in the predicted values obtained from
MadGraph5_aMC@NLO in the 4F scheme as a function of Eγ

T of (a) the differential
γ + b cross section for the central region, (b) the differential γ + b cross section for
the forward region and (c) the central-to-forward cross-section ratio. Also displayed
is the breakdown of the total theoretical uncertainty into individual components.
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The uncertainties in the 5F predictions are affected by statistical fluctuations related

to the fact that not all generated events are γ+b events. Thus, a compromise between

the computer processing time and the accuracy of the uncertainties reduces the latter.

The total relative uncertainty in the predicted γ + b cross-section values is largest at

low Eγ
T and decreases as a function of Eγ

T. In the central region, the total uncertainty

in the 5F (4F) predictions decreases from about 25% (30%) to about 10% in the

Eγ
T range of the measurement, while that in the forward region is about 5% larger

throughout the range. It is observed that the dominant theoretical uncertainty comes

from the choice of the values of the renormalization and factorization scales, or in

other words from the missing higher-order terms of the pQCD series. It is this

uncertainty that decreases as a function of Eγ
T. The uncertainties related to the PDFs

and to αs are smaller and of a comparable size to one another. They are mostly

independent of Eγ
T.

The total relative uncertainty in the predicted cross-section ratio is mostly independent

of Eγ
T. It is about 5%.3 This independence on Eγ

T is due to the partial cancellation of

the scale uncertainty. Even with this partial cancellation, the scale uncertainty still

dominates the total theoretical uncertainty in the predicted cross-section ratio.

3For technical reasons, the uncertainties in the predicted values of the cross-section
ratio in the 4F scheme are obtained directly from the overall uncertainties in the
cross section for the central and the forward regions, in contrast to the propagation
of every individual uncertainty to the ratio. This can cause an underestimation of
the uncertainties.
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Overall, the size of the total theoretical uncertainty in the 5F predictions is similar to

that in the 4F predictions. The size of the total theoretical uncertainty in the cross

section is roughly similar to the size of the total measurement uncertainty in the

cross section. Although the size of the measurement uncertainty is not reduced in the

cross-section ratio in comparison to that in the cross section, the size of the theoretical

uncertainty is reduced. Thus, the ratio allows for a more stringent comparison of the

predictions against the measurement.

Theoretical uncertainties are not assessed for the LO predictions because the dominant

uncertainty, the scale uncertainty, does not correspond to the missing higher-order

pQCD terms. However, since the LO predictions are less precise than the NLO

predictions, it is expected that their total theoretical uncertainties are larger than

those shown in Figures 8–11 and 8–12.
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CHAPTER 9
Results

This chapter presents the measured values of the differential fiducial γ + b production

cross section as a function of Eγ
T in proton–proton collisions for the central and

forward pseudorapidity regions, and of the central-to-forward cross-section ratio.

These values are compared to the predicted values and the level of agreement between

them is interpreted in terms of the underlying physical processes. For completeness,

the integrated fiducial γ + b production cross section in proton–proton collisions is

also presented. The first and second sections present respectively the differential and

integrated γ + b cross-section measurements.

9.1 Differential Fiducial Cross Section

The differential fiducial cross section of the associated production of a photon and a

bottom quark as a function of Eγ
T is measured through Equation 7.7. Theoretical

predictions of this cross section are obtained from Sherpa, Pythia and Mad-

Graph5_aMC@NLO in the 5F and 4F schemes as described in Section 2.3.3. The

evaluation of the uncertainties in the measurement and in the predictions was pre-

sented in Chapter 8. The results in the central and in the forward regions are shown

in Figure 9–1. From that figure it can be seen that the differential cross section is

steeply decreasing as a function of Eγ
T, decreasing by about five orders of magnitude

in the Eγ
T range considered.
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Figure 9–1 – Differential fiducial cross section of the associated production of a
photon and a bottom quark as a function of Eγ

T as measured and as predicted by
Sherpa, Pythia and MadGraph5_aMC@NLO in the 5F and 4F schemes for
(a) the central region and (b) the forward region, as published in Ref. [188]. The
ratios of the LO predictions to the measurement are displayed in the middle panel,
while the ratios of the NLO predictions to the measurement are displayed in the
bottom panel. The error bars correspond to the total uncertainty in the measurement,
while the horizontal marks on the bars represent the contribution of the statistical
uncertainty. The label MG5_aMC+PY8 refers to predictions obtained from the
interface of MadGraph5_aMC@NLO to Pythia. The total uncertainty in the
MadGraph5_aMC@NLO prediction in the 5F scheme is displayed as a band. The
total uncertainty in the 4F prediction is not displayed but has a similar size to that
in the 5F prediction. No uncertainties are displayed or considered for the Sherpa
and Pythia predictions.
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The LO predictions provide a good description of the data at low Eγ
T. Although no

theoretical uncertainties are assessed for the LO predictions, the Pythia prediction

appear to underestimate the data above 150 GeV (85 GeV) in Eγ
T for the central

(forward) region, given the measurement uncertainties. On the other hand, the

Sherpa prediction agrees with the data across the whole Eγ
T range considered. The

smaller predicted values from Pythia compared to those from Sherpa have also

been reported in the analysis measuring the inclusive production cross section of

prompt photons in pp collisions at
√
s = 8 TeV in the Eγ

T range that is considered

in the present measurement [35]. As such, the underestimation of the data by the

Pythia prediction is possibly related to the modelling of the prompt photon.

The NLO predictions also provide a good description of the data at low Eγ
T. However,

above 125 GeV (85 GeV) in the central (forward) region, the 4F prediction increasingly

underestimates the data as a function of Eγ
T. The 5F prediction agrees with the

data up to larger Eγ
T values than the 4F prediction, but still underestimates the data

above 350 GeV (200 GeV) in the central (forward) region. At high Eγ
T, the predicted

values in the 5F scheme underestimate by up to a factor of two the measured values.

The observation that the 5F prediction provides a better description of the data at

larger Eγ
T values than the 4F prediction is consistent with the expectation that the

4F scheme is better suited for energy scales close to the b quark mass, while the 5F

scheme is better suited for larger energy scales.

The NLO prediction in the 5F scheme uses the NNPDF3.0 PDF set. The description

of the γ + b production in the 5F scheme depends directly on the PDF of the b quark.

Therefore, the 5F prediction, and its agreement with the data, could depend on the
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choice of the PDF set. To assess the sensitivity of the prediction to the choice of the

PDF set, a 5F prediction using the CT14 PDF set has been produced, including the

evaluation of its total theoretical uncertainty.1 The prediction that is obtained with

that PDF set does not differ significantly from the one obtained with the NNPDF3.0

PDF set. The 5F NLO prediction is not sensitive to the choice of the PDF set and

thus neither is its agreement with the data.

The underestimation of the data by the 5F NLO prediction at high Eγ
T occurs in the

region of phase space where the contribution of the Compton scattering subprocess,

gb → γb, starts to become less dominant as a function of Eγ
T in favour of gluon

splitting in the quark–antiquark annihilation subprocess, qq̄ → γg, as can be seen

in Figure 9–2(a). Since the gluon-splitting subprocess is not present at O(ααS)

and only starts to contribute at O(αα2
S), this subprocess does not receive real and

virtual contributions in the 5F NLO prediction, in contrast to the Compton scattering

subprocess. In other words, the description of the Compton scattering subprocess

is more accurate than the gluon-splitting subprocess in the 5F NLO prediction.

Therefore, the 5F NLO prediction is expected to become less accurate as a function of

Eγ
T. In comparison, the Sherpa prediction takes into account real contributions up

to O(αα4
S) and thus include real contributions to the gluon-splitting subprocess. It is

observed that this prediction agrees with the data. These observations indicate that

1The PDF uncertainty in the CT14 PDF set is propagated to the measured
quantities in a different way from that in the NNPDF3.0 PDF set. The Hessian
matrix of the fitted PDFs is diagonalized to provide eigenvectors that are to be
propagated to the measured quantities [193].
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Figure 9–2 – Fraction of the subprocess gb → γb in the sum of the subprocesses
gb→ γb and qq̄ → γg in Pythia events selected at the particle level for two regions of
the photon rapidity as a function of Eγ

T in (a) proton–proton collisions at
√
s = 8 TeV

and (b) proton–antiproton collisions at
√
s = 1.96 TeV. The vertical error bars in (a)

represent the statistical uncertainty in the fractions. Figure (b) is reproduced with
permission from Ref. [49].

the underestimation of the data by the 5F NLO prediction is seemingly caused by the

lack of higher-order terms in the truncated pQCD series. The impact of these terms

is not assessed as part of the scale uncertainty since the gluon-splitting subprocess is

essentially at LO in the 5F NLO prediction. The variation of the scale values does

not account for its contribution in the higher-order terms. The scale uncertainty

underestimates the complete impact of the missing higher-order terms at high Eγ
T.

Figure 9–2 shows the fraction of the Compton scattering subprocess in the sum of the

Compton scattering and the gluon-splitting annihilation subprocesses in the Pythia

samples in pp collisions at
√
s = 8 TeV, relevant to this measurement, and in pp̄
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collisions at
√
s = 1.96 TeV, relevant to the D0 measurement presented in Figure 1–1.

In both cases, the contribution of the Compton scattering subprocess decreases as

a function of Eγ
T since it depends directly on the b-quark and gluon PDFs, which

steeply decrease as a function of the momentum fraction of the proton, x, or similarly

Eγ
T. In parallel, the annihilation subprocess becomes relatively more dominant as

a function of Eγ
T since it directly depends on the PDFs of any pair of quarks and

antiquarks, in particular the valence quarks whose PDFs are relatively large at large

values of x, or Eγ
T. For a similar reason, the forward region, which requires larger

values of x, has a lower relative contribution of the Compton scattering subprocess

than the central region.

The relative contribution of the Compton scattering subprocess is more important in

pp collisions than in pp̄ collisions for a given Eγ
T value, as can be seen in Figure 9–2,

because valence antiquarks are present in the latter type of collision. This results

in an enhanced contribution of the quark–antiquark annihilation subprocess in pp̄

collisions. The 5F NLO predictions are thus expected to describe the γ+ b production

process in the collisions provided by the LHC up to larger Eγ
T values than those

provided by the Tevatron.

The comparison of the D0 measurement to the NLO prediction of the differential

γ + b cross section in pp̄ collisions, displayed in Figure 1–1, shows that the NLO

prediction underestimates the data for Eγ
T values above 70 GeV. This underestimation

occurs in the phase-space region in which the Compton scattering subprocess is less

dominant compared to the gluon-splitting subprocess, similarly to the measurement

presented in this thesis. The underestimation of the D0 data occurs for lower values
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of Eγ
T than the underestimation related to the measurement presented in Figure 9–1.

This is compatible with the expectation that the NLO predictions should provide

a good description of the data up to larger Eγ
T values at the LHC than at the

Tevatron. Additionally, it is observed that the Sherpa prediction provides a good

description of the D0 measurement. The previous observations give confidence that

the discrepancy between the NLO prediction and the D0 data is due to missing

higher-order contributions related to the gluon-splitting quark–antiquark annihilation

subprocess and that a similar, albeit smaller, effect is observed in the measurement

presented in this thesis.

In addition to the measurement of the differential fiducial cross section as a function

of Eγ
T in the central and the forward regions, the ratio of the cross section in those

regions is measured. The measured and predicted values of the ratio are shown in

Figure 9–3.

The ratio is greater than one due to the smaller cross section in the forward region

compared to that in the central region, as explained in Section 8.1.4. Also, the value

of the ratio increases as a function of Eγ
T since the cross section in the forward region

is more steeply decreasing than that in the central region. This is due to the fact that

the PDF values corresponding to the x values probed in the forward region decrease

more rapidly as a function of x than those corresponding to the x values probed in

the central region.

A similar conclusion regarding the agreement between the predictions and the mea-

surement of the differential cross section applies to the ratio. The Sherpa prediction

251



 [GeV]
γ
TE

fo
rw

ar
d

σ /
ce

nt
ra

l
σ

2

3

4

5

6

7

8

9

10
ATLAS

-1 - 20.2 fb-1 = 8 TeV, 4.58 pbs

+bγ

Data 2012

SHERPA

PYTHIA

 NNPDF3.0nlo 5F⊗MG5_aMC+PY8 

 NNPDF3.0nlo 4F⊗MG5_aMC+PY8 

LO
/D

at
a

0.5
1

1.5

 [GeV]
γ
TE

30 40 100 200 300

N
LO

/D
at

a

0.5
1

1.5

Figure 9–3 – Ratio of the fiducial cross section in the central region to that in the
forward region of the associated production of a photon and a bottom quark as
a function of Eγ

T as measured and as predicted by Sherpa, Pythia and Mad-
Graph5_aMC@NLO in the 5F and 4F schemes, as published in Ref. [188]. The
ratios of the LO predictions to the measurement are displayed in the middle panel,
while the ratios of the NLO predictions to the measurement are displayed in the
bottom panel. The error bars correspond to the total uncertainty in the measurement,
while the horizontal marks on the bars represent the contribution of the statistical
uncertainty. The label MG5_aMC+PY8 refers to predictions obtained from the
interface of MadGraph5_aMC@NLO to Pythia. The total uncertainty in the
MadGraph5_aMC@NLO prediction in the 5F scheme is displayed as a band. The
total uncertainty in the 4F prediction is not displayed but has a similar size to that
in the 5F prediction. No uncertainties are displayed or considered for the Sherpa
and Pythia predictions.
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provides the best description of the data among the considered predictions. The 4F

NLO prediction overestimates and does not agree with the data above 65 GeV in Eγ
T.

The 5F NLO prediction overestimates the measurement above 85 GeV in most bins,

but are within approximately two standard deviations of the measurement. Also, the

Pythia prediction, in contrast to the case of the differential cross section, agrees with

the data in most bins. This suggests that the underestimation of these predictions at

high Eγ
T is similar in the central and in the forward regions, such that effect cancels

in the ratio.

The measurement of the differential cross section and of the cross-section ratio of

the production of γ + b events in pp collisions is sensitive to the modelling of the b

quarks, as can be seen by the differing levels of agreement with the data between the

5F and the 4F NLO predictions. This measurement allows to assess which treatment

of the mass effects related to the bottom quark provides the best description of the

physical processes at energy scales larger than the b-quark mass.

To allow for the comparison of the measurement with future theoretical predictions,

which could improve the treatment of the mass effects, a number of actions have

been taken. The numerical values of the measurement of the differential cross

section and of the cross-section ratio, including the systematic uncertainties listed in

Appendix E, have been made publicly available in HEPData [194]. The numerical

values of the measurement, including the statistical uncertainty, the total systematic

uncertainty and the total measurement uncertainty, are also reported in Appendix F.

This appendix also lists the numerical values of the predictions, including the total
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theoretical uncertainties. Furthermore, software that takes as input generated particle-

level events and outputs predictions that can be compared to the measured values of

the differential cross section has been made publicly available in Rivet [195]. This

software allows to accurately reproduce the particle-level selection of Section 5.3,

which defines the fiducial region of the cross section. These actions have been taken

to facilitate the production of new predictions and their comparisons to the data.

9.2 Integrated Fiducial Cross Section

The measurement of the integrated fiducial cross section of the associated production of

a photon and a bottom quark in the central and the forward regions is discussed. The

ratio of the integrated cross section in the central region to that in the forward region

is also considered. The measured values are obtained by integrating the differential

fiducial cross section. The uncertainties in the measured values are obtained by

propagating the systematic and the statistical uncertainties in the differential cross

section, listed respectively in Appendices E and F, to the integrated cross section.

The statistical uncertainty in the cross-section ratio is obtained from an MC toy study

similar to that discussed in Section 8.1.1. Predictions of the measured quantities are

similarly obtained by integrating the differential cross section and by propagating the

individual variations up to these quantities.

Figure 9–4 shows the measured and the predicted values of the integrated cross section

in the central and the forward regions and of the ratio of the integrated cross section

in those regions. In the case of the integrated cross section, it can be seen that every

prediction agrees with the measurement for both the central and the forward regions.
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Figure 9–4 – Integrated fiducial cross section of the associated production of a
photon and a bottom quark as measured and as predicted by Sherpa, Pythia
and MadGraph5_aMC@NLO in the 5F and 4F schemes for (a) the central re-
gion and (b) the forward region, and also (c) the central-to-forward cross-section
ratio. The label MG5_aMC+PY8 refers to predictions obtained from the interface
of MadGraph5_aMC@NLO to Pythia. The total uncertainties in the Mad-
Graph5_aMC@NLO predictions are displayed as bands. No uncertainties are
displayed or considered for the Sherpa and Pythia predictions.
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Although the Sherpa prediction for the central region appears to underestimate

significantly the measurement, the size of its uncertainty is expected to be larger than

that in the NLO predictions and, consequently, is expected to cover the difference in

values. The integrated cross section is dominated by the differential cross section in

the lowest-Eγ
T bin. As such, the 4F NLO prediction, which is better suited at low

energy scales, provides a good description of the measurement. Also, the Compton

scattering subprocess dominates the cross section in the lowest-Eγ
T bin. Therefore,

the agreement between the other predictions and the data is a reflection of the good

theoretical description of the Compton scattering subprocess.

In the case of the cross-section ratio, the predictions agree with the measurement

within approximately one standard deviation. This appears to be caused by an

upward variation of the ratio in the dominating lowest-Eγ
T bin, as can be interpreted

from the size of the statistical uncertainty in the ratio in that Eγ
T bin and from the

shape of the measured distribution of the ratio in Figure 9–3.

The numerical values of the integrated cross section in the central and the forward

regions and of the central-to-forward ratio of the integrated cross section are provided

in HEPData and in Appendix F.
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CHAPTER 10
Conclusion

The measurement of the inclusive differential cross section of the associated production

of a photon and a bottom quark as a function of Eγ
T in proton–proton collisions at a

center-of-mass energy of 8 TeV was presented. The measurement uses the ATLAS

detector at the LHC and a dataset corresponding to an integrated luminosity of up

to 20.2 fb−1. It is the first measurement of this physical process in proton–proton

collisions. This process is sensitive to the modelling of bottom quarks in perturbative

QCD calculations and to the b-quark parton distribution function.

The cross section is measured in fiducial regions of the kinematic phase space at the

particle level. It is measured in two regions of |ηγ|: the central region, |ηγ| < 1.37, and

the forward region, 1.56 < |ηγ| < 2.37. The measurement covers the ranges 25 < Eγ
T <

400 GeV and 25 < Eγ
T < 350 GeV respectively for the two pseudorapidity regions.

The photon considered in this analysis is the leading prompt photon in an event. The

isolation energy of that photon is required to satisfy Eiso
T < 4.8 GeV + 0.0042× Eγ

T.

The bottom quark in the event is identified via the jet that it produces. The jet

considered in this analysis is the leading jet in an event. This leading jet is required

to contain a b hadron. This leading jet is also required to have pjet
T > 20 GeV and

|y| < 2.5. The angular distance between the leading photon and the leading jet is

required to be greater than one.
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At the detector level, recorded events are selected with analogous criteria on the

leading photon and on the leading jet as those at the particle level, with the exception

that no requirement is imposed on the flavour of the leading jet. The selected events

are statistically subtracted from events containing background prompt photons via

the two-dimensional sideband method, which is based on the photon identification and

on the isolation energy of the photon. The selected events are statistically reduced to

events in which the leading jet contains a b hadron via the template fit method, which

is based on the continuously calibrated distributions of the MV1c tagging weight.

The detector-level events are corrected for reconstruction and selection inefficiencies

and other detector effects by the bin-by-bin data unfolding method, which brings the

measurement to the particle level.

The uncertainties in the measured values of the cross section are dominated by

systematic uncertainties, which are themselves dominated by uncertainties related

to the b-tagging efficiencies and the Monte Carlo statistical uncertainty. The data

statistical uncertainty in the measurement is also important at low and at high Eγ
T.

The typical value of the total relative uncertainty in the measured cross section is

approximately 20%.

To reduce the contribution of the systematic uncertainties, which are for the most

part positively correlated between the central and the forward regions, the central-to-

forward cross-section ratio is measured. The systematic uncertainties in the ratio are

indeed decreased but the statistical uncertainties are increased, such that the size of

the total relative uncertainty is similar to that in the differential cross section.
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The numerical values of the measured quantities and of their uncertainties are publicly

available in the HEPData repository and software that reproduces the particle-level

event selection is provided in the Rivet repository.

The differential cross section and the cross-section ratio are compared to leading-order

predictions in perturbative QCD from Sherpa and Pythia and to next-to-leading-

order predictions from MadGraph5_aMC@NLO. For the next-to-leading-order

predictions, two different calculation schemes are considered, the five-flavour and

four-flavour schemes. The two schemes have a different treatment of the terms in

perturbative QCD that are dependent on the mass of the bottom quark. The total

uncertainty in the predictions are dominated by the scale uncertainty, which assesses

the impact of the truncation of the perturbative QCD series to a given finite order.

The total relative theoretical uncertainty in the cross-section ratio is reduced in

comparison to that in the differential cross section.

Among the theoretical predictions considered, the Sherpa prediction, which takes

partially into account terms of higher orders than those in the next-to-leading-order

predictions, provides the overall best description of the measured values. The four-

flavour next-to-leading-order prediction provides the overall worst description of the

measured values. This calculation scheme is better suited for energy scales close to

the mass of the bottom quark.

The five-flavour next-to-leading-order prediction, which should provide a priori the

best description of the data among the different theoretical predictions considered,

agrees with the measured values of the differential cross section at low Eγ
T. However,
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this prediction underestimates the measured values of the differential cross section at

high Eγ
T by up to a factor of two. The difference in the levels of agreement between

the four- and the five-flavour predictions indicate that the measurement is sensitive

to the treatment of the mass terms in perturbative QCD and that it can be used to

improve the modelling of the bottom quarks in perturbative QCD. Also, although

the five-flavour prediction is sensitive to the b-quark parton distribution function, no

significant differences are observed in the predictions that use parton distribution

functions provided by different collaborations.

The disagreement at high Eγ
T between the five-flavour prediction and the data occurs

in the region of phase-space where the gluon-splitting quark–antiquark annihilation

subprocess is dominant in comparison to the Compton scattering subprocess. The

gluon-splitting subprocess is not as well theoretically described by the predictions

since it does not occur at the leading order in perturbative QCD, in contrast to

the Compton scattering subprocess. This lack of agreement at high Eγ
T has been

observed between the D0 measurement and the next-to-leading-order prediction of

the differential production cross section of γ+ b events in proton–antiproton collisions.

In this process, the gluon-splitting subprocess dominates the Compton scattering

subprocess at a lower Eγ
T than in the proton–proton process. The disagreement

between the measurement and the prediction occurs also at a lower Eγ
T. These

observations indicate that a good theoretical description of these physical processes

requires that the predictions must be at a higher order than the next-to-leading order

to properly take into account the gluon-splitting effects. These effects are related
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to the b-jet definition that is used, which is not infrared safe with respect to the jet

flavour.

This first measurement of the pp→ γbX process paves the way towards more refined

analyses. Several aspects can be improved. From the point of view of the theoretical

predictions, Sherpa 2 could be used to obtain a five-flavour next-to-leading-order

prediction that also takes partially into account the higher-order effects, via the

use of the MEPS@NLO scheme. This prediction should provide a more accurate

description of the data than any of those that have been considered. Additionally,

these predictions could be obtained at the parton level, which would enable the data

to be included in a global fit of the parton distribution functions.

From the point of view of the measurement, it would be desirable to produce simulated

background samples of adequate size as they would allow to understand the physical

cause of the dependence of the prompt-photon purity on the MV1c weight of the

leading jet. Also, the analysis could be extended to measure the cross section

differentially as a function of additional observables, such as |ηγ|, pjet
T , |yjet| and the

angular distance between the leading photon and the leading jet, among others, which

would bring complementary information on the γ + b production process. In addition,

the analysis could measure the production of an additional b quark, producing a

subleading b-jet. These events could be identified by an additional template in

the MV1c template fit. A better understanding of the production of a photon in

association with two b quarks could help reduce the modelling uncertainty in the

background jet events of the production of tt̄H in proton–proton collisions with the
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Higgs boson decaying into two b quarks, which is the dominant uncertainty in the

search for this process [196].

The measurement would benefit from a calibration of the b-tagging efficiencies that

would extend beyond the current pjet
T values of 300 GeV for the b- and c-jets and of

750 GeV for the light jets. Such a calibration would allow to extend the measurement

up to larger Eγ
T values. Furthermore, although the continuously calibrated MV1c

templates allow to assess straightforwardly the uncertainty in the template fit, they

anticorrelate the uncertainties in the calibration of the b-tagging efficiencies. A fitting

procedure which would decouple the b-tagging uncertainties from the uncertainty in

the shapes of the templates would allow for a precise measurement of the ratio of the

γ + c cross section to the γ + b cross section. Such a ratio would allow to decrease

the size of most of the uncertainties, similarly to the central-to-forward cross-section

ratio, but without the increase in the size of the statistical uncertainties. This ratio

in pp̄ collisions has been measured by the D0 experiment [197]. The ratio is sensitive

to c-quark parton distribution function. In particular, it is sensitive to the possible

presence of intrinsic charm quarks in the proton [198].

The sensitivity of the measurement of the γ + b cross section to the b-quark parton

distribution function can be increased by removing the contribution of the gluon-

splitting subprocess. This can be achieved by using a b-jet definition that is infrared

safe with respect to the jet flavour. Such a definition is provided by the flavour-kt

jet algorithm. This algorithm is experimentally difficult to use as it requires the

knowledge of whether a b quark is present or not in every input object. An idea

on how to achieve this is via jet reclustering, i.e. forming large-radius jets from
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small-radius jets. For example, b-tagging could be performed on anti-kt jets of radius

0.2. These jets, for which the presence of a b quark is known through the b-tagging

procedure, could then be used as input to the flavour-kt algorithm with a parameter

R = 1. This innovative idea would however require detailed performance studies to

ensure its feasibility.
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APPENDIX A
Parton Kinematics

This Appendix aims to motivate the choice of observables used in the measurement

presented in this thesis. It also describes them in terms of parton-level quantities.

The particle kinematics in the laboratory frame of a 2 → 2 parton-level process in

proton–proton collisions at a center-of-mass (COM) energy of
√
s, where s is the

Mandelstam variable, is schematized in Figure A–1. It is assumed that
√
s is much

greater than the mass of the proton or that of the partons such that the masses

can be neglected. The z-axis is aligned to correspond to the momentum axis of the

protons. For such a frame, in which the colliding partons have a momentum fraction

x1 and x2 of their respective proton, the four-momenta of the partons are

P1 =

(
x1

√
s

2
, 0, 0, x1

√
s

2

)
and P2 =

(
x2

√
s

2
, 0, 0, −x2

√
s

2

)
. (A.1)

The two particles that are produced have the four-momenta

P3 = (E3, p
x
3 , p

y
3, p

z
3) and P4 = (E4, p

x
4 , p

y
4, p

z
4). (A.2)
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Figure A–1 – Parton-level kinematic diagram of a collision between two hadrons
producing two particles in the laboratory frame. Partons 1 and 2 collide to produce
particles 3 and 4. The z-axis points to the right.

The conservation of four-momentum between the initial and final states implies

E3 + E4 = (x1 + x2)

√
s

2
,

px3 + px4 = 0,

py3 + py4 = 0,

pz3 + pz4 = (x1 − x2)

√
s

2
.

(A.3)

The two produced particles have their x- and y-components of their momenta opposite

of each other. These components are also independent of the x1 and x2 momen-

tum fractions. This is an important observation as those momentum fractions are

experimental unknowns: each collision has random x1 and x2 following the parton

distribution functions, which are discussed in Section 2.2.1. The transverse component

of the momentum, pT =
√

(px)2 + (py)2, is thus an observable that can be interpreted

independently of the details specific to a given proton–proton collision. Also, it has

the same value for the two produced particles. The four-momenta can be expressed
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in terms of this quantity explicitly by using spherical coordinates. The four-momenta

are then

P3 = (E3, pT cosϕ, pT sinϕ, p3 cos θ3) ,

P4 = (E4, pT cos(ϕ+ π), pT sin(ϕ+ π), p4 cos θ4) ,

(A.4)

where pi is the magnitude of p⃗i, ϕ is the azimuthal angle of particle 3 around the

z-axis and θ is the polar angle from the positive z-direction. As ϕ only depends on

px and py, it is also independent of x1 and x2.

In contrast to the azimuthal angle, the polar angle does depend on x1 and x2. A

change in the relative values of the momentum fractions induces a Lorentz boost

along the z-axis. With the goal of minimizing the sensitivity of the observables to

boosts, the best that can be done is thus to choose an angle whose measure is boost

invariant. To construct such an angle, considering the COM frame proves to be

useful. The COM frame of the partonic system requires that (pz1)∗ = −(pz2)
∗, where

the asterisks mean that the quantities are in the COM frame. A boost of parameters

β and γ = (1− β2)−
1
2 can be applied on the parton four-momenta in the laboratory

frame to get the four-momenta in the COM frame:

P ∗1 =

(
γx1

√
s

2
(1− β), 0, 0, γx1

√
s

2
(1− β)

)
,

P ∗2 =

(
γx2

√
s

2
(1 + β), 0, 0, −γx2

√
s

2
(1 + β)

)
.

(A.5)
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The COM frame requirement implies that x1(1− β) = x2(1 + β), giving β = x1−x2

x1+x2
.

Applying the same boost on the four-momenta of the produced particles gives

P ∗3 = (γ(E3 − βp3 cos θ3), pT cosϕ, pT sinϕ, γ(p3 cos θ3 − βE3)) ,

P ∗4 = (γ(E4 − βp4 cos θ4), pT cos(ϕ+ π), pT sin(ϕ+ π), γ(p4 cos θ4 − βE4)) .

(A.6)

The tangent of the polar angle is defined directly in terms of the components pT and

pz = p cos θ of the four-momentum and its transformation rule is thus simple to write:

tan θ → tan θ∗ =
p∗T

p∗ cos θ∗
=

pT

γ(p cos θ − βE)
=

tan θ

γ(1− βE/(p cos θ))
. (A.7)

Since the transformed polar angle depends on both the energy and the momentum, it

cannot have a boost-invariant measure. This is because the polar angle is defined

by a component of the four-momentum that transforms under a boost and one that

does not.

An angle that would be defined in terms of components that both transform under

a boost could have a boost-invariant measure. The quantity α = pz/E follows that

idea and transforms as

α → α∗ =
p∗z
E∗

=
γ(pz − βE)

γ(E − βpz)
=

pz
E
− β

1− β pz
E

=
α− β

1− αβ
. (A.8)

Comparing to the hyperbolic identity tanh(y + z) = tanh(y)+tanh(z)
1+tanh(y) tanh(z)

, the following

identifications can be made: α = tanh(y) and β = − tanh(z). The transformation

rule becomes

tanh(y) → tanh(y + z). (A.9)
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The hyperbolic angle y, known as the rapidity, thus transforms as

y → y∗ = y − artanh β. (A.10)

The transformation rule of the rapidity depends on the boost parameter, such that

the rapidity is not boost invariant. However, its measure is boost-invariant:

∆y → ∆y∗ = y∗2 − y∗1 = y2 − artanh β − (y1 − artanh β) = ∆y. (A.11)

This property makes the rapidity a useful observable to define regions of size ∆y.

Regions defined that way will have the same size in all frames. Such regions can thus

be used to describe every proton–proton collision even if each collision has a different

boost.

The rapidity can be written as y = artanh pz
E

. Making use of the hyperbolic identity

artanhx = 1
2
ln
(
1+x
1−x

)
, the rapidity can also be written y = 1

2
ln
(

E+pz
E−pz

)
.

The energy and the longitudinal momentum can be expressed in terms of the rapidity

through the use of the identity 1− tanh2 y = sech2 y:

cosh y =
1√

1− tanh2 y
=

1√
1−

(
pz
E

)2 =
E√

E2 − p2z
,

sinh y = tanh y cosh y =
pz√

E2 − p2z
.

(A.12)

Defining the transverse mass as mT =
√
E2 − p2z =

√
m2 + p2T, the energy can be

expressed as E = mT cosh y and the longitudinal momentum as pz = mT sinh y.
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In terms of mT, pT, ϕ and y, the four-momenta of the produced particles are

P3 = (mT,3 cosh y3, pT cosϕ, pT sinϕ, mT,3 sinh y3) ,

P4 = (mT,4 cosh y4, pT cos(ϕ+ π), pT sin(ϕ+ π), mT,4 sinh y4) .

(A.13)

Approximating that the produced particles are massless, such that mT = pT, the

conservation of four-momentum implies

pT(cosh y3 + cosh y4) = (x1 + x2)

√
s

2
,

pT(sinh y3 + sinh y4) = (x1 − x2)

√
s

2
.

(A.14)

The addition and subtraction of these equations give respectively

x1 =
pT√
s
(cosh y3 + sinh y3 + cosh y4 + sinh y4) =

pT√
s
(ey3 + ey4),

x2 =
pT√
s
(cosh y3 − sinh y3 + cosh y4 − sinh y4) =

pT√
s
(e−y3 + e−y4).

(A.15)

Therefore, measuring the rapidities and the transverse momenta of the produced

particles gives a handle on the proton momentum fractions of the partons.

Working under the additional approximation that the produced particles have the

same rapidity gives

x1 =
2pT√
s
ey,

x2 =
2pT√
s
e−y.

(A.16)
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Multiplying and dividing these equations to solve respectively for the transverse

momentum and rapidity yields

pT =
1

2

√
x1x2s,

y =
1

2
ln
x1
x2
.

(A.17)

These results are valid under the approximations that only two particles are produced

in the collision, that they have the same rapidity and that all particles are massless.

These are good approximations for the production of a photon and a b-quark in

proton–proton collisions at
√
s = 8 TeV.

Notwithstanding any approximation, the transverse energy, ET, is defined as ET =

E
p
pT. For a photon, which is massless and thus E = p, the transverse energy is equal

to the transverse momentum, ET = pT. Consequently, the transverse energy for a

photon can also be expressed as ET = E/ cosh y. Therefore, small values of ET can

be measured either for small to moderate values of E at large y or for small values of

E at small values of y, while large values of ET can be obtained for high values of E

at small values of y.

The transverse momentum pT, or equivalently the transverse energy ET for a photon,

the rapidity y and the azimuthal angle ϕ are thus theoretically interesting observables

that are used to define the kinematics of the measurement presented in this thesis.

They are also used to define the partonic phase-space of the measurement.
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APPENDIX B
Jet Definitions

Colored particles that are produced in a high-energy collision are not directly de-

tectable due to color confinement, cf. Section 2.2.4. Instead, they form hadrons,

which are the particles that are detected. The hadron formation cannot be described

by pQCD and instead non-perturbative QCD models are used. These hadrons collec-

tively carry the momentum of the original colored particle and are thus collimated.

It becomes interesting to describe this collection of particles as a unique object with

properties that can be related to the original colored particle. Such an object is called

a jet, as a reference to the collimated spray of particles it describes.

Jets are not particles and as such they have a finite extension in space. Therefore,

they can be defined in different ways through the use of different algorithms that build

jets from a given list of constituents. Certain definitions will have some properties

that could be better suited to describe specific phenomena than other definitions.

However, one property of a jet algorithm that is paramount is that it needs to be

insensitive to the production of colored particles at collinear angles and of gluons at

low energy. This property of the jet definition is called infrared safe. If the algorithm

is not infrared safe, a different configuration of jets could be built if low-energy gluons

or collinear colored particles were produced. This would imply that the infrared

divergences would not cancel one another in the perturbative expansion of QCD and
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would lead to a divergent cross section for the production of jets. In other words, a

jet definition that is infrared safe assures that the same jets are built whether the

input to the algorithm are the partons in the matrix element at LO or NLO in pQCD

or even the particles after the parton shower and hadronization steps of the event

generation.

Jet algorithms can be separated into two categories: cone algorithms and sequential

recombination algorithms. Both categories build jets in the two-dimensional plane

defined by the rapidity and the azimuthal angle of the particles, since distances in

those variables are boost-invariant and can thus be used consistently for all proton–

proton collisions. Algorithms in the former class attempt to build cones containing

the spray of particles, which are then identified as jets. These algorithms are mostly

not infrared safe and thus were mainly used when infrared safe algorithms had not

been conceived. However, a modern cone algorithm, SISCone [199], is infrared safe.

It is seldom used as its implementation requires a larger number of computations

compared to the sequential recombination algorithms. These algorithms instead build

jets by progressively adding particles to the jet. They are the main jet algorithms

used in modern experiments as they are infrared safe and can be implemented to run

quickly.

The popular sequential recombination algorithms in proton–proton collisions can be

described with the two following quantities [200]:

dij = min(p2pT,i, p
2p
T,j)

(∆Rij)
2

R2
, diB = p2pT,i, (B.1)

272



where ∆Rij =
√

(yi − yj)2 + (ϕi − ϕj)2 is the distance between particles i and j in

the rapidity–azimuthal angle plane and R and p are parameters. The quantity dij

is thus the normalized angular distance between two particles weighted by some

function of the transverse momentum. The use of the transverse momentum keeps

the algorithm boost-invariant. The quantity dij is related to the component of the

momentum of one particle that is transverse to the momentum of the other particle.

The second quantity, diB is used as a way to stop the jet building. The subscript B

refers to the beam since the quantity is related to the component of the momentum of

the particle that is transverse to the axis of the colliding protons, which corresponds

to the usual definition of the transverse momentum. The algorithm computes dij

for all possible pairs, finds the minimum value among those and adds together the

four-momenta of the two particles in that pair, thus defining a new particle. If diB is

smaller than every dij, the particle i is called a jet and is removed from the list of

particles. This is repeated until all particles are associated to a jet.

The parameters R and p control the behaviour of the algorithm. Larger values of R

will increase the angular extent of the jet. This can be desirable to encompass more

of the activity associated to the original colored particle. However, larger values will

increase the activity not associated to the original particle. Algorithms with values of

p satisfying p > 0, p = 0 and p < 0 have qualitatively different behaviours. Algorithms

with p = 1, p = 0 and p = −1 are respectively called the kt, Cambridge/Aachen and

anti-kt algorithms. Their differences are highlighted as follows.

kt The kt algorithm [171, 172] first combines particles with low transverse momentum

and builds towards larger momentum. The jets it builds are more sensitive to
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particles with low energy. The algorithm is particularly useful to quantify the

activity coming from the underlying event or from proton–proton collisions that

did not have a large-momentum exchange. The jets have an irregular circular

shape of radius R in the y–ϕ plane.

Cambridge/Aachen The Cambridge/Aachen algorithm [201] combines particles

based purely on their angular distance. This feature is interesting for studies of

jet substructure, for example a boosted massive boson whose decay products

are collimated thus forming a jet. The jets are described in the y–ϕ plane by a

irregular circle of radius R.

anti-kt The anti-kt algorithm [173] combines the particles with the largest transverse

momentum first. It is well suited to build jets from particles originating from

hard proton–proton collisions while being robust against soft particles. The jets

it builds are circular in the y–ϕ plane and have a radius R.

Jet algorithms can take as input any object described by a four-momentum. These

objects include not only particles, but also calorimeter cells for example. The same jet

definition can thus be used in theoretical and experimental contexts, making possible

a direct comparison of predictions and measurements.

Quarks do not give rise to low-energy divergences in contrast to gluons. When

distinguishing quarks from gluons, or equivalently b quarks from the other partons,

the jet algorithm must be designed to keep track of this difference in divergences to

be infrared safe. The formation of b-jets, here defined as jets initiated by b quarks,

with no distinction between b and b̄ quarks, thus requires a modification of the jet
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algorithms. This modified algorithm, called flavour-kt [129], requires that each input

object be identified as either a b quark or not. The main modification is the change

of the minimum function to a maximum function in Equation B.1, if the parton with

smaller pT is a b quark. The result of the combination of two b quarks is considered

as not containing any b quarks. This is compatible with the idea that a jet containing

two b quarks from gluon splitting is not a jet that was initiated by a b quark but

rather by a gluon. However, the identification of each input object as a b quark or

not is experimentally difficult to achieve, for example that information is not readily

available for calorimeter cells. Therefore, this approach is not currently viable for a

proper comparison between theory and measurement.

However, a different definition of b-jets can be used with the algorithms described

previously. Using this different definition, the jets are identified as b-jets if they

simply contain at least one b quark, or similarly one b hadron. This definition of b-jets

however implies that most b-jets at high energy will be identified as such due to the

presence of b quarks that were created in gluon splitting and not from b quarks that

participated in the large-momentum exchange described by the matrix element [129].

Furthermore, this b-jet definition is not infrared safe since a collinear gluon could

split into a pair of b quarks thus changing a non b-jet into a b-jet. This definition

cannot be safely used with partons, only with particles after the parton shower and

hadronization steps, since for those particles the infrared effects have already been

resummed.
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APPENDIX C
b-tagging Algorithms

The main jet b-tagging algorithm used in the measurement presented in this thesis

is the MV1c algorithm, an artificial neural network, discussed in Section 4.3.3. The

output of three b-tagging algorithms, IP3D [180], SV1 [180] and JetFitter [180], are

used as input to the MV1c algorithm. The description of these input algorithms

follows.

IP3D This algorithm makes use of the large impact parameter that the tracks coming

from the secondary vertex have relative to the primary vertex. There is an

impact parameter in the transverse plane and also a longitudinal one along

the z-direction. The transverse impact parameter is signed: positive if the

track crosses the jet axis between the primary vertex and the jet direction and

negative if not. The b-jets contain more tracks that have a positive transverse

impact parameter than light jets, as the transverse impact parameters of tracks

coming from the primary vertex have an approximately equal probability of

being positive or negative due to the tracking resolution. IP3D uses both

the transverse and longitudinal impact parameters in a log-likelihood ratio to

associate a tagging weight to the jet. In more details, it compares the impact

parameter significance, that is the value of the signed impact parameter divided

by its uncertainty, of both the transverse and longitudinal impact parameters of

276



a track to probability density functions obtained from simulated events for b-,

c- and light jets. The b-tagging probability for a given jet flavour, pb, pc and pl,

for respectively b-, c- and light jets, is the product of the likelihood values of its

associated tracks. The IP3D tagging weight is ln(pb/pl). It is used as an input

to MV1c. This algorithm does not have discrimination power against c-jets.

SV1 This algorithm reconstructs explicitly a secondary vertex. It builds all possible

secondary vertices using pairs of tracks that are close to each other at a point.

Based on the invariant mass of the tracks, assuming they are pions, and on

the position of the vertex, it rejects vertices compatible with the decays of

hyperons or compatible with interactions with the detector material. The tracks

associated to the surviving vertices are combined into a single vertex. SV1

uses quantities related to that secondary vertex in a log-likelihood ratio. The

quantities used are the invariant mass of the secondary vertex, the ratio of the

energy sum of its associated tracks to the energy sum of all the tracks associated

to the jet, the number of two-track vertices and the angular distance between the

jet axis and the axis passing through both the primary and secondary vertices.

The probability density functions for the three jet flavours are obtained from

simulated events. For each jet, the likelihoods of each of the above quantities are

multiplied to give the jet-flavour probabilities pb, pc and pl. The SV1 tagging

weight is ln(pb/pl). It is used as an input to MV1c. This algorithm does not

have discrimination power against c-jets.

JetFitter This algorithm uses the topology of the sequential decays of the b and

c hadrons. A Kalman filter finds the best axis for the line of flight, aligning
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the primary, secondary and tertiary vertices. In contrast to SV1, this filter

has the capability of not merging the secondary and tertiary vertices, even if

they only each have one track associated to them. The output of the filter

includes six quantities based on the decay topology and based on the vertices.

The quantities are the number of vertices with at least two tracks, the total

number of tracks associated to these vertices, the number of single-track vertices

along the line of flight, the invariant mass of the tracks involved in the decay

chain, the ratio of the energy sum of the tracks involved in the decay chain to

the energy sum of all the tracks associated to the jet and the average signed

decay-length significance of the vertices, i.e. the ratio of the distance between

the primary vertex and a given vertex to the uncertainty in this distance. These

quantities, and also the IP3D tagging weight, are used as input to an artificial

neural network which is trained to discriminate between the jet flavours using

simulated events. Since the above quantities depend on the jet transverse

momentum and pseudorapidity, these two kinematic quantities are also used as

input to the neural network. The output of the neural network are the three

jet flavour probabilities: pb, pc and pl. They are used as input to MV1c.

The transverse momentum and the pseudorapidity of the jet are also used as input

to the MV1c algorithm in addition to the IP3D, SV1 and JetFitter input quantities

mentioned above.
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APPENDIX D
Principal Component Analysis

The principal component analysis (PCA), also known as the eigenvector decomposition

method, is a technique to simplify the treatment of uncertainties. It is based on the

idea of transforming the basis of the vector space spanned by the uncertainties into

a basis in which the uncertainties are uncorrelated. In other words, it is based on

the diagonalization of the covariance matrix. The method has two advantages: it

produces uncorrelated uncertainties and it can reduce the number of uncertainties.

An introduction to the PCA and its use in the context of the measurement presented

in this thesis follow.

Given a set of quantities xi with standard deviations σi, the elements of their covariance

matrix, Σ, are

Σij = cov(xi, xj) ≡ E[(xi − E[xi])(xj − E[xj])] (D.1)

where E[xi] is the expectation value of xi. In matrix notation, the previous equation

becomes

Σ = cov(x⃗) ≡ E
[
(x⃗− E[x⃗])(x⃗− E[x⃗])T

]
. (D.2)

A diagonal element of the covariance matrix is given by the variance of the correspond-

ing xi, Σii = σ2
i , while an off-diagonal element is given by the covariance between the

corresponding xi and xj, Σij = σij. Uncorrelated quantities have Σij = 0.
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Now considering a set of quantities yi dependent on xi, a linearization of their

dependence around x⃗0 is

yi(x⃗) ≈ yi(x⃗0) +
∑
j

xj
∂yi
∂xj

⏐⏐⏐⏐
xj=xj0

(D.3)

or, in matrix notation,

y⃗(x⃗) ≈ y⃗(x⃗0) + Jx⃗, (D.4)

where J is the matrix of partial derivatives, i.e. the Jacobian matrix. Making use of

that approximation and of the following property of the covariance matrix

cov(Ax⃗+ b⃗) = A cov(x⃗)AT, (D.5)

the covariance matrix of y⃗ as a function of that of x⃗ is

Σy = JΣxJ
T. (D.6)

The previous equation, which is the well-known formula for the propagation of

uncertainties, is valid as long as the linearization approximation of Equation D.3 is

valid. Although it is often the case, there are some situations for which it is not, such

as for a ratio of quantities when their standard deviations are large, as discussed in

Section 8.1.1.

Considering the case where a variable z depends on two variables, y1 and y2, the

variance of z is given by Equation D.6 and is

σ2
z =

(
∂z

∂y1

)2

σ2
y1
+

(
∂z

∂y2

)2

σ2
y2
+ 2

∂z

∂y1

∂z

∂y2
σy1y2 . (D.7)
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Furthermore, if the variables y1 and y2 are themselves dependent on two other

variables, x1 and x2, that are uncorrelated, the covariance matrix of y⃗ is

Σy =

⎡⎢⎣
(

∂y1
∂x1

)2
σ2
x1

+
(

∂y1
∂x2

)2
σ2
x2

∂y1
∂x1

∂y2
∂x1
σ2
x1

+ ∂y1
∂x2

∂y2
∂x2
σ2
x2

∂y1
∂x1

∂y2
∂x1
σ2
x1

+ ∂y1
∂x2

∂y2
∂x2
σ2
x2

(
∂y2
∂x1

)2
σ2
x1

+
(

∂y2
∂x2

)2
σ2
x2

⎤⎥⎦ . (D.8)

Combining Equations D.7 and D.8 gives the following relation between the variance

of z and the variances of x1 and x2, after simplification:

σ2
z =

(
∂z

∂y1

∂y1
∂x1

+
∂z

∂y2

∂y2
∂x1

)2

σ2
x1

+

(
∂z

∂y1

∂y1
∂x2

+
∂z

∂y2

∂y2
∂x2

)2

σ2
x2

=

(
∂z

∂x1

)2

σ2
x1

+

(
∂z

∂x2

)2

σ2
x2
.

(D.9)

In particular, the covariance term is not present, as it should be since x1 and x2 are

uncorrelated. Inversely, although x1 and x2 are uncorrelated, the covariance term

between y1 and y2 must be taken into account to obtain the proper variance on z.

In other words, the dependent variables can be correlated even if the independent

variables are not.

The function composition as illustrated above is common in the context of the

measurement presented in this thesis, due to the separation of performance studies

and physics analysis. As a concrete example, the independent variables xi could

represent the quantities used as input to measure the b-tagging efficiency and which

are directly affected by independent sources of uncertainties, yi would then be the

different kinematic bins in which the calibration factors of the efficiency are measured

and z could be one bin of the differential γ + b cross section that is measured.
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If there are fewer yi than xi, as is often the case, it becomes advantageous to determine

the uncertainty on z directly from that on yi instead of that on xi. Having fewer

uncertainty sources simplifies the treatment of the uncertainties on z, while reducing

the consumption of computing resources. However, a difficulty arises in using the

yi instead of the xi. The covariance terms among all the yi need to be taken into

account. This is in contrast to being able to simply sum in quadrature the various

uncertainties, as is possible with the xi.

The PCA simplifies the treatment of the covariance terms. As the covariance matrix

is real and symmetric, it can be diagonalized and an orthonormal set of eigenvectors

can be found. Furthermore, the covariance matrix is positive semi-definite, such that

the eigenvalues will be non-negative. Thus, the eigenvectors describe the covariance

matrix in a basis in which the covariance terms are zero and the eigenvalues are

identified as the variances in this new basis. The uncertainties in this basis can be

summed in quadrature.

Mathematically, the diagonalization of the covariance matrix means obtaining D via

D = P−1ΣP , where D is the diagonal matrix of eigenvalues and P is the matrix whose

columns are given by the corresponding eigenvectors. As the eigenvectors can be built

to be orthonormal, P can be taken to be orthogonal, giving D = PTΣP . Comparing

this relation to Equation D.6, the matrix D is identified to be the covariance matrix

in the eigenvector basis since the Jacobian matrix of the transformation rule of the

change of basis is given by PT.
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A change of basis from y⃗ to y⃗′, following the transformation described above, does

not change the covariance matrix of a set of dependent variables zi. Indeed, the

transpose of the Jacobian matrix of the dependence of zi on yi, JT, can be identified

to be the matrix whose columns are given by the components of the variables zi in

the original basis. The transpose of the Jacobian matrix of the dependence of zi on

y′i, J ′T, is thus related to the original one by the action of the inverse of the matrix

built from the eigenvectors, i.e. PT: J ′T = PTJT. Explicitly, the covariance of z⃗ in

the transformed basis, Σ′z, in terms of that in the original basis, Σz, is

Σ′z = J ′Σy′J
′T

= (PTJT)TΣy′(P
TJT)

= JP (PTΣyP )P
TJT

= JΣyJ
T

= Σz

(D.10)

Therefore, the change of basis in the PCA keeps the covariance of z⃗ invariant. This

important property makes the PCA a viable procedure for assessing properly the

uncertainty on the zi and their correlations.

To show visually the transformation induced by the PCA, an example to consider is

z = 3y1 + y2 with a covariance matrix

Σy =

[
4 3
3 4

]
. (D.11)
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The variance of z is, from Equation D.7:

σ2
z = 32 · 4 + 1 · 4 + 2 · 3 · 1 · 3 = 58. (D.12)

Using the PCA to simplify this last expression, the diagonalization of the covariance

matrix gives the following eigenvalues and orthonormal eigenvectors:

λ1 = 7, ŷ′1 =
1√
2

[
1
1

]
; λ2 = 1, ŷ′2 =

1√
2

[
1
−1

]
. (D.13)

In matrix notation, the previous quantities become

Σy′ = D =

[
7 0
0 1

]
and P =

1√
2

[
1 1
1 −1

]
(D.14)

In the new basis, z is given by z = 2
√
2y′1 +

√
2y′2, giving a variance of

σ2
z = 8 · 7 + 2 · 1 = 58, (D.15)

which is indeed the same value as obtained in the original basis but without the

covariance term. Figure D–1 gives a graphical interpretation of the effect of the basis

change for an underlying bivariate Gaussian probability distribution with a covariance

matrix given by either Equation D.11 or D.14. It can be seen in Figure D–1(a), where

a non-zero correlation exists, that the eigenvectors, at a plus or minus 45-degree angle

with respect to the unit vectors of the basis, are aligned with the symmetry axes of

the distribution. In the eigenvector basis shown in Figure D–1(b), where there is no

correlation, the symmetry axes are aligned with the unit vectors of the basis.
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Figure D–1 – Bivariate Gaussian probability distribution in (a) the original basis and
(b) the eigenvector basis.

With the PCA, an uncertainty in the transformed basis is given simply by

σ′i =
√
λiŷ
′
i, (D.16)

where there is one such uncertainty for each eigenvalue. Furthermore, the effect of

these uncertainty variations can be ordered by decreasing eigenvalue and the smallest

ones can be neglected, or combined, if they are below some arbitrary threshold. This

can decrease further the number of uncertainty sources.

In the context of the measurement presented in this thesis, the PCA is used for the

uncertainties in the calibration of the jet energy scale and of the b-tagging efficiency.

In each of these cases, multiple sources of uncertainty affect each kinematic bin in

which the calibration is derived. Each source of uncertainty affects the calibration
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bins with its own covariance matrix. These uncertainty sources are taken to be

independent of each other, such that the overall covariance matrix between the bins

is given by the sum of the individual covariance matrices:

Σ =
∑
i

Σi (D.17)

where i runs over all the uncertainty sources. The PCA is then performed on this

summed covariance matrix. The uncertainty described by the eigenvalues are thus

a linear combination of the total uncertainty in each of the calibration bin. Such a

combination cannot be assigned a physical description, in contrast to the sources of

uncertainties. Therefore, the simplicity of the treatment of the uncertainties provided

by the PCA comes at the cost of losing the knowledge of the physical origin of the

uncertainties.

To keep partial knowledge of the physical origin of the uncertainties, which is important

when determining how to reduce the uncertainty contributions for instance, the PCA

can be performed in different categories of uncertainties. The categories can be defined,

for example, for uncertainties having a related physical origin. In this approach,

the sum of the individual covariance matrices of Equation D.17 runs only over the

uncertainties associated to that category, thus producing a summed covariance matrix

for each category. Compared to the application of the PCA to the total covariance

matrix, this hybrid approach increases the number of uncertainties to consider, but

keeps some information on their physical origin via the categories.
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APPENDIX E
Tables of Systematic Uncertainties

Table E–1 – Signed relative variations of the individual systematic uncertainties in the
measured values of the differential fiducial γ+b cross section in the central region, |ηγ | < 1.37.
The top (bottom) value is the effect of an up (down) variation of the uncertainty. The
uncertainties related to the prompt photon modelling, the non-perturbative QCD models
and the particle-level migration effects are only varied once and not up and down by their
nature, but are to be symmetrized in the final results. A number following the name
of an uncertainty refers to an individual component of that uncertainty category. Only
uncertainties which produce at least a 1% variation in at least one bin of the cross section
in either the central or the forward region, or in the central-to-forward ratio, are listed.
The others are summed in quadrature and are listed as a single entry. Each bin of the MC
statistical uncertainty is independent of every other bin. The first four components of the
photon energy scale uncertainty are specific to this |ηγ | region, are indicated as such in the
name and are uncorrelated to the components in the other region.

Uncertainty [%] — E
γ
T bin [GeV] 25–45 45–65 65–85 85–105 105–125 125–150 150–175 175–200 200–250 250–300 300–350 350–400

MC statistical uncertainty +4.11
−3.98

+6.44
−5.85

+2.62
−2.91

+3.94
−4.63

+2.72
−2.73

+2.70
−2.57

+2.75
−2.73

+4.62
−4.68

+1.91
−2.14

+2.81
−2.92

+5.43
−6.08

+5.75
−5.79

Photon energy scale 1 central +0.00
−0.15

+0.00
−0.15

+0.00
−0.15

+0.00
−0.15

+0.00
−0.15

+0.00
−0.15

+0.00
−0.15

+0.00
−0.15

+0.00
−0.17

+0.00
−0.62

+0.00
−1.09

+0.00
−1.16

Photon energy scale 2 central −0.12
+0.00

−0.12
+0.00

−0.12
+0.00

−0.12
+0.00

−0.12
+0.00

−0.12
+0.00

−0.12
+0.00

−0.12
+0.00

−0.12
+0.00

−0.12
+0.00

−0.12
+0.00

−0.12
+0.00

Photon energy scale 3 central +0.00
−0.17

+0.00
−0.17

+0.00
−0.17

+0.00
−0.17

+0.00
−0.17

+0.00
−0.22

+0.00
−0.51

+0.00
−0.58

+0.00
−0.59

+0.00
−1.02

+0.00
−1.09

+0.00
−1.10

Photon energy scale 4 central +0.17
−0.32

+0.17
−0.32

+0.17
−0.32

+0.17
−0.32

+0.17
−0.32

+0.17
−0.43

+0.17
−0.95

+0.17
−0.66

+0.17
−0.50

+0.17
−0.50

+0.17
−0.50

+0.17
−0.50

Photon energy scale 5 +0.00
+0.02

+0.00
+0.02

+0.00
+0.02

+0.00
+0.02

+0.00
+0.02

+0.00
−0.15

+0.00
−1.12

+0.00
−1.35

+0.05
−1.37

+1.62
−1.71

+1.76
−1.74

+1.76
−1.74

Photon identification efficiency −1.19
+1.21

−0.55
+0.55

−0.32
+0.32

−0.23
+0.23

−0.20
+0.20

−0.21
+0.21

−0.30
+0.30

−0.29
+0.29

−0.28
+0.28

−0.32
+0.33

−0.33
+0.33

−0.33
+0.33

Jet energy scale 1 −0.58
+1.35

−0.58
+1.33

−0.53
+0.52

+0.12
+0.25

+0.21
−0.06

+0.26
−0.39

+0.50
−0.59

+0.61
−0.79

+1.04
−1.02

+1.72
−1.55

+1.99
−1.96

+2.26
−2.32

Jet energy scale 2 +1.01
−1.46

+1.04
−0.33

+0.41
−0.29

+0.11
−0.13

−0.09
+0.06

−0.16
+0.28

−0.44
+0.36

−0.69
+0.51

−0.99
+0.98

−1.44
+1.59

−1.73
+1.76

−1.98
+1.91

Jet energy scale 3 −0.07
+0.05

−0.07
+0.05

−0.07
+0.05

−0.04
+0.05

−0.03
+0.03

+0.01
+0.02

+0.02
−0.01

+0.02
−0.02

+0.10
−0.09

+0.19
−0.18

+0.24
−0.23

+0.26
−0.26

Jet energy scale 4 +0.08
+0.76

+0.08
−0.09

+0.08
−0.11

+0.08
−0.11

+0.08
−0.11

+0.08
−0.11

+0.08
−0.11

+0.10
−0.13

+0.39
−0.37

+0.72
−0.75

+1.15
−1.11

+1.10
−1.20

Jet energy scale 5 +0.06
+0.12

+0.06
+0.12

+0.06
+0.12

+0.06
+0.12

+0.06
+0.11

+0.06
−0.00

+0.06
−0.03

+0.03
−0.03

+0.02
−0.02

−0.06
+0.13

−0.13
+0.14

−0.17
+0.16

Jet energy scale 6 +0.27
+0.94

+0.27
+0.91

+0.27
−0.14

+0.27
−0.21

+0.29
−0.24

+0.44
−0.44

+0.56
−0.59

+0.62
−0.74

+0.91
−0.89

+1.39
−1.17

+1.47
−1.40

+1.60
−1.59

Jet energy scale 7 −0.56
+0.57

−0.15
+0.16

+0.07
−0.07

+0.19
−0.18

+0.28
−0.26

+0.40
−0.39

+0.56
−0.55

+0.68
−0.68

+0.96
−0.94

+1.50
−1.32

+1.62
−1.56

+1.81
−1.77

Jet energy scale 8 −0.15
+1.20

−0.15
+1.18

−0.16
+0.32

−0.29
+0.36

−0.39
+0.40

−0.60
+0.48

−0.57
+0.49

−0.61
+0.47

−0.41
+0.37

−0.16
+0.19

−0.14
+0.18

−0.14
+0.18

Jet energy scale 9 −2.18
+2.06

−1.11
+1.14

−0.54
+0.54

−0.23
+0.27

+0.09
−0.03

+0.20
−0.15

+0.49
−0.53

+0.76
−0.75

+1.20
−1.19

+1.98
−1.76

+2.32
−2.12

+2.41
−2.35
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Jet energy resolution −2.43
−0.54

−2.43
−0.54

−2.25
−0.54

+0.00
−0.54

+0.32
−0.54

+0.32
−0.54

+0.32
−0.46

+0.32
−0.18

+0.32
−0.07

+0.32
−0.07

+0.32
−0.07

+0.32
−0.07

b-jet tagging efficiency 1 +1.49
−1.46

+1.63
−1.59

+1.83
−1.79

+2.02
−1.96

+2.30
−2.21

+2.68
−2.58

+3.37
−3.21

+4.09
−3.85

+6.50
−5.97

+10.49
−9.27

+13.32
−11.47

+15.51
−13.20

b-jet tagging efficiency 2 −0.91
+0.91

−0.69
+0.69

−0.64
+0.64

−0.68
+0.68

−0.81
+0.81

−1.01
+1.02

−1.19
+1.21

−1.13
+1.14

−0.40
+0.40

+1.39
−1.26

+2.63
−2.56

+3.59
−3.49

b-jet tagging efficiency 3 −1.04
+1.05

−0.87
+0.88

−0.83
+0.84

−0.91
+0.92

−1.01
+1.02

−1.19
+1.21

−1.45
+1.48

−1.61
+1.65

−1.74
+1.77

−1.80
+1.92

−1.86
+1.84

−2.07
+2.01

b-jet tagging efficiency 4 +0.06
−0.06

+0.14
−0.14

+0.20
−0.19

+0.23
−0.23

+0.29
−0.29

+0.39
−0.38

+0.57
−0.57

+0.79
−0.78

+1.23
−1.22

+2.11
−2.06

+2.19
−2.27

+2.15
−2.31

b-jet tagging efficiency 5 +0.12
−0.12

−0.12
+0.12

−0.13
+0.13

−0.20
+0.20

−0.27
+0.28

−0.39
+0.39

−0.56
+0.57

−0.70
+0.72

−0.92
+0.93

−1.06
+1.15

−1.30
+1.26

−1.38
+1.27

b-jet tagging efficiency 6 +0.34
−0.34

+0.24
−0.24

+0.17
−0.17

+0.13
−0.13

+0.12
−0.12

+0.11
−0.11

+0.16
−0.16

+0.29
−0.29

+1.00
−0.99

+2.27
−2.19

+3.27
−3.15

+3.73
−3.63

b-jet tagging efficiency 7 +0.42
−0.42

+0.36
−0.35

+0.25
−0.25

+0.14
−0.14

−0.01
+0.02

−0.10
+0.23

−0.50
+0.53

−0.73
+0.74

−0.85
+0.86

−0.68
+0.84

−0.50
+0.53

−0.39
+0.39

b-jet tagging efficiency 8 −0.00
+0.00

−0.00
+0.00

−0.00
+0.00

−0.00
+0.00

−0.00
+0.00

−0.03
+0.03

−0.06
+0.06

−0.08
+0.10

−0.24
+0.25

−0.89
+1.07

−2.46
+2.71

−4.07
+4.63

c-jet tagging efficiency 1 +4.63
−4.36

+7.45
−7.26

+8.08
−8.12

+7.80
−7.97

+9.78
−10.15

+10.67
−11.23

+10.44
−11.06

+13.19
−14.27

+13.06
−13.90

+9.61
−10.32

+14.78
−16.52

+8.22
−9.46

c-jet tagging efficiency 2 −1.87
+2.04

+0.12
+0.57

+0.17
−0.18

+0.22
−0.38

+0.66
−0.53

+1.45
−1.44

+2.33
−2.47

+3.55
−3.86

+3.99
−4.46

+3.03
−3.42

+4.83
−5.61

+2.86
−3.43

c-jet tagging efficiency 3 +2.28
−2.26

+2.11
−2.11

+0.41
−0.37

−0.31
+0.35

−0.59
+0.62

−0.32
+0.34

+0.31
−0.28

+0.68
−0.60

+0.82
−0.69

+0.82
−0.63

+0.50
−0.29

+0.44
−0.23

c-jet tagging efficiency 4 +0.20
−0.18

−0.31
+0.34

−0.33
+0.35

−0.29
+0.33

−0.13
+0.16

+0.11
−0.12

+0.43
−0.46

+0.73
−0.76

+0.83
−0.90

+0.59
−0.68

+1.08
−1.19

+0.70
−0.79

c-jet tagging efficiency 5 +0.51
−0.46

+0.60
−0.59

−0.06
+0.07

−0.49
+0.50

−0.67
+0.69

−0.61
+0.62

−0.29
+0.24

+0.02
+0.15

+0.13
+0.15

+0.13
+0.15

+0.19
+0.15

+0.47
+0.15

c-jet tagging efficiency 6 +0.43
−0.34

+0.25
+0.31

−0.48
+0.37

−0.87
+0.87

−0.96
+1.01

−0.62
+0.68

+0.18
−0.10

+0.36
−0.27

+0.37
−0.28

+0.65
−0.46

+1.15
−1.00

+0.89
−0.81

c-jet tagging efficiency 7 −1.48
+1.45

−1.40
+1.38

−0.73
+0.73

−0.37
+0.38

−0.23
+0.23

−0.05
+0.01

+0.13
−0.08

+0.28
−0.26

+0.27
−0.26

+0.29
−0.20

+0.25
−0.25

+0.24
−0.26

c-jet tagging efficiency 8 −0.92
+0.92

−2.12
+2.10

−2.06
+2.04

−1.73
+1.72

−1.88
+1.86

−1.78
+1.76

−1.37
+1.35

−1.34
+1.35

−1.56
+1.53

−1.12
+1.03

−0.89
+0.92

−0.86
+0.91

c-jet tagging efficiency 9 +0.29
−0.29

+0.63
−0.63

+1.39
−1.41

+1.64
−1.65

+1.79
−1.81

+1.20
−1.17

+0.06
+0.05

−0.22
+0.50

−0.81
+1.10

−0.81
+1.21

−0.52
+0.87

−0.48
+0.82

c-jet tagging efficiency 10 −1.19
+1.17

−2.02
+1.98

+0.03
−0.01

+0.37
−0.35

+1.55
−1.54

+1.74
−1.76

+1.28
−1.30

+1.20
−1.18

+1.27
−1.25

+0.95
−0.87

+0.75
−0.69

+0.72
−0.67

c-jet tagging efficiency 11 +0.63
−0.65

+2.05
−2.16

+2.66
−2.82

+2.53
−2.69

+2.66
−2.81

+1.97
−2.06

+0.79
−0.82

+0.30
−0.30

−0.04
+0.05

−0.17
+0.26

−0.40
+0.39

−0.26
+0.25

c-jet tagging efficiency 12 +0.42
−0.35

+0.98
−0.81

+1.07
−0.96

+0.67
−0.62

+0.68
−0.64

+0.49
−0.48

+0.24
−0.23

+0.07
−0.06

+0.01
−0.01

+0.01
−0.01

+0.01
−0.01

+0.01
−0.01

c-jet tagging efficiency 13 −0.14
+0.13

−0.14
+0.13

−0.14
+0.15

−0.20
+0.48

−0.55
+0.62

−0.48
+0.49

−0.20
+0.20

−0.09
+0.09

+0.00
−0.00

+0.06
−0.06

+0.07
−0.07

+0.08
−0.08

c-jet tagging efficiency 14 −0.12
+0.13

−0.19
+0.19

+0.29
−0.28

+0.65
−0.65

+0.98
−0.99

+0.84
−0.85

+0.45
−0.46

+0.26
−0.27

+0.12
−0.12

+0.02
−0.02

+0.01
−0.01

+0.01
−0.01

c-jet tagging efficiency 15 +0.08
−0.08

−0.15
+0.15

−0.71
+0.75

−0.81
+0.91

−1.17
+1.29

−1.01
+1.10

−0.60
+0.64

−0.35
+0.36

−0.18
+0.18

−0.03
+0.03

+0.05
−0.05

+0.06
−0.06

c-jet tagging efficiency 16 +0.08
−0.08

+0.11
−0.11

−0.07
+0.13

−0.08
+0.15

−0.08
+0.15

−0.06
+0.16

+0.07
+0.00

+0.06
−0.03

+0.04
−0.04

+0.04
−0.04

+0.03
−0.03

+0.03
−0.03

c-jet tagging efficiency 17 +0.00
−0.00

+0.00
−0.00

+0.00
−0.00

+0.00
−0.00

+0.00
−0.00

+0.00
−0.00

+0.00
−0.00

+0.00
−0.00

−0.03
+0.03

−1.23
+1.43

−5.54
+5.84

−6.20
+6.52

Light-jet tagging efficiency 1 +9.58
−10.07

−3.47
+3.45

−3.83
+3.82

−4.23
+4.23

−5.40
+5.43

−5.19
+5.17

−4.42
+4.41

−4.11
+4.08

−4.42
+4.38

−3.70
+3.60

−3.36
+3.21

−3.18
+3.05

Light-jet tagging efficiency 2 −7.84
+7.96

−4.36
+4.39

−1.76
+1.76

−0.74
+0.74

−0.82
+0.82

−0.93
+0.92

−1.00
+1.01

−1.10
+1.13

−1.41
+1.42

−1.63
+1.63

−2.15
+2.09

−2.38
+1.97

Light-jet tagging efficiency 3 −3.06
+3.09

−2.02
+2.03

−2.52
+2.50

−2.42
+2.40

−3.06
+3.05

−3.16
+3.14

−2.89
+2.89

−3.03
+3.03

−3.30
+3.31

−2.90
+2.88

−2.65
+2.63

−2.53
+2.38

Light-jet tagging efficiency 4 −1.30
+1.27

−0.56
+0.56

−0.55
+0.54

−0.60
+0.60

−0.93
+0.94

−0.89
+0.87

−0.62
+0.62

−0.46
+0.49

−0.30
+0.41

−0.28
+0.13

−0.28
+0.11

−0.28
+0.11

Light-jet tagging efficiency 5 −2.34
+2.36

−1.87
+1.87

−1.23
+1.22

−0.37
+0.36

−0.23
+0.23

+0.07
−0.07

+0.15
−0.15

+0.15
−0.15

+0.15
−0.15

+0.35
−0.36

+0.54
−0.55

+0.66
−0.70

Light-jet tagging efficiency 6 +5.61
−5.57

+2.61
−2.60

+0.87
−0.88

+0.54
−0.54

+0.69
−0.68

+0.69
−0.69

+0.65
−0.65

+0.66
−0.64

+0.74
−0.74

+0.74
−0.71

+0.66
−0.67

+0.56
−0.57

Light-jet tagging efficiency 7 −1.21
+1.19

−0.60
+0.60

−0.41
+0.41

−0.48
+0.48

−0.41
+0.41

−0.25
+0.24

+0.01
−0.01

+0.07
−0.07

+0.07
−0.07

+0.17
+0.08

−0.20
+0.10

−0.25
+0.10

Light-jet tagging efficiency 8 +0.83
−0.85

+0.55
−0.55

+0.43
−0.43

+0.57
−0.57

+0.66
−0.66

+0.69
−0.69

+0.63
−0.63

+0.71
−0.69

+0.72
−0.72

+0.77
−0.74

+0.72
−0.73

+0.65
−0.66

Light-jet tagging efficiency 9 −1.10
+1.09

−1.54
+1.53

−1.66
+1.64

−1.79
+1.78

−2.08
+2.08

−1.92
+1.92

−1.56
+1.55

−1.49
+1.50

−1.47
+1.45

−1.36
+1.27

−1.23
+1.18

−1.03
+0.99

Light-jet tagging efficiency 10 −0.11
+0.38

−0.12
+0.38

−0.55
+0.40

−0.66
+0.64

−0.91
+0.92

−0.99
+0.98

−0.97
+0.97

−1.05
+1.07

−1.19
+1.18

−1.28
+1.24

−1.46
+1.43

−1.34
+1.29

Light-jet tagging efficiency 11 −0.12
+0.10

+0.18
+0.10

−0.09
+0.10

−0.11
+0.10

−0.14
+0.13

−0.34
+0.34

−0.50
+0.49

−0.67
+0.67

−0.78
+0.78

−0.96
+1.01

−1.16
+1.15

−1.05
+1.03

Light-jet tagging efficiency 12 −0.60
+0.60

+0.04
+0.06

+0.05
+0.04

+0.05
+0.04

+0.03
+0.04

−0.10
+0.04

−0.15
+0.08

−0.25
+0.22

−0.36
+0.36

−0.38
+0.47

−0.34
+0.35

−0.29
+0.28
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Light-jet tagging efficiency 13 +0.15
−0.15

+0.22
−0.22

+0.23
−0.23

+0.31
−0.30

+0.32
−0.31

+0.29
−0.28

+0.18
−0.18

+0.06
−0.06

+0.02
−0.02

+0.02
−0.02

+0.02
−0.02

+0.02
−0.02

Light-jet tagging efficiency 14 −0.08
+0.08

−0.08
+0.08

−0.09
+0.09

−0.19
+0.19

−0.25
+0.27

−0.27
+0.27

−0.24
+0.24

−0.24
+0.24

−0.24
+0.25

−0.24
+0.39

−0.17
+0.19

−0.16
+0.16

Light-jet tagging efficiency 15 −0.21
+0.21

+0.08
−0.08

+0.09
−0.09

+0.15
−0.15

+0.24
−0.22

+0.25
−0.25

+0.24
−0.24

+0.24
−0.24

+0.26
−0.26

+0.36
−0.25

+0.26
−0.25

+0.21
−0.22

Light-jet tagging efficiency 16 −0.24
+0.24

−0.23
+0.23

−0.07
+0.07

+0.05
−0.04

+0.11
−0.09

+0.11
−0.10

+0.09
−0.09

+0.08
−0.08

+0.09
−0.09

+0.06
−0.06

+0.06
−0.06

+0.06
−0.06

Light-jet tagging efficiency 17 −0.32
+0.31

−0.22
+0.22

−0.12
+0.12

−0.11
+0.12

−0.12
+0.15

−0.12
+0.13

−0.10
+0.10

−0.08
+0.08

−0.08
+0.08

−0.02
+0.02

−0.01
+0.01

−0.01
+0.01

Sideband isolation definition −1.55
+2.64

−1.03
+1.77

−0.57
+1.04

−0.52
+0.95

−0.36
+0.70

−0.29
+0.61

−0.23
+0.43

−0.14
+0.29

−0.09
+0.22

−0.06
+0.14

−0.03
+0.09

−0.02
+0.08

Sideband identification definition −0.18
+1.33

−0.18
+1.11

−0.18
+1.14

−0.23
+1.65

−0.33
+1.45

−0.25
+1.05

−0.28
+0.90

−0.48
+1.18

−0.26
+0.93

−0.18
+0.92

−0.19
+0.98

−0.19
+0.99

Sideband correlation −4.46
+4.36

−3.82
+3.77

−2.47
+2.44

−1.52
+1.51

−1.42
+1.43

−1.09
+1.09

−0.76
+0.76

−0.65
+0.65

−0.47
+0.46

−0.27
+0.27

−0.23
+0.23

−0.23
+0.22

Prompt photon modelling −2.20 −2.20 −2.20 −2.20 −2.20 −2.24 −2.46 −2.51 −2.51 −2.51 −2.51 −2.51

Non-perturbative QCD models −2.32 −2.32 −2.32 −2.32 −2.32 −2.32 −2.32 −2.32 −2.32 −2.32 −2.32 −2.32

Particle-level migration effects +0.84 −2.87 −2.64 −2.11 −2.86 −2.34 −1.33 −1.15 −1.46 −1.18 −2.52 +2.04

Luminosity +1.90
−1.90

+1.90
−1.90

+1.90
−1.90

+1.90
−1.90

+1.90
−1.90

+1.90
−1.90

+1.90
−1.90

+1.90
−1.90

+1.90
−1.90

+1.90
−1.90

+1.90
−1.90

+1.90
−1.90

Other sources combined +2.13
−2.21

+1.62
−1.63

+1.34
−1.41

+1.22
−1.28

+1.28
−1.27

+1.20
−1.24

+1.03
−1.10

+0.91
−1.05

+0.81
−0.93

+0.84
−0.90

+1.17
−1.04

+1.31
−1.17

289



Table E–2 – Signed relative variations of the individual systematic uncertainties in the
measured values of the differential fiducial γ + b cross section in the forward region, 1.56 ≤
|ηγ | < 2.37. The top (bottom) value is the effect of an up (down) variation of the uncertainty.
The uncertainties related to the prompt photon modelling, the non-perturbative QCD
models and the particle-level migration effects are only varied once and not up and down
by their nature, but are to be symmetrized in the final results. A number following the
name of an uncertainty refers to an individual component of that uncertainty category. Only
uncertainties which produce at least a 1% variation in at least one bin of the cross section
in either the central or the forward region, or in the central-to-forward ratio, are listed.
The others are summed in quadrature and are listed as a single entry. Each bin of the MC
statistical uncertainty is independent of every other bin. The first four components of the
photon energy scale uncertainty are specific to this |ηγ | region, are indicated as such in the
name and are uncorrelated to the components in the other region.

Uncertainty [%] — E
γ
T bin [GeV] 25–45 45–65 65–85 85–105 105–125 125–150 150–175 175–200 200–250 250–300 300–350

MC statistical uncertainty +11.89
−11.37

+14.06
−12.67

+3.95
−3.82

+5.46
−5.53

+3.62
−3.98

+3.70
−3.73

+5.21
−5.10

+7.33
−7.70

+3.27
−3.08

+5.40
−5.70

+11.44
−10.62

Photon energy scale 1 forward +0.22
+0.00

+0.22
+0.00

+0.22
+0.00

+0.22
+0.00

+0.22
+0.00

+0.22
+0.00

+0.22
+0.00

+0.22
+0.00

+0.22
+0.00

+0.22
+0.00

+0.22
+0.00

Photon energy scale 2 forward −0.51
+0.42

−0.51
+0.42

−0.51
+0.42

−0.51
+0.42

−0.51
+0.42

−0.58
+0.42

−0.97
+0.42

−1.06
+0.44

−1.06
+0.77

−1.06
+0.82

−1.06
+0.82

Photon energy scale 3 forward +0.00
−0.41

+0.00
−0.41

+0.00
−0.41

+0.00
−0.41

+0.00
−0.41

+0.00
−0.41

+0.00
−0.41

+0.00
−0.41

+0.00
−0.41

+0.00
−0.41

+0.00
−0.41

Photon energy scale 4 forward +0.00
−0.46

+0.00
−0.46

+0.00
−0.46

+0.00
−0.46

+0.00
−0.46

+0.00
−0.46

+0.00
−0.58

+0.00
−1.03

+0.00
−1.21

+0.00
−1.21

+0.00
−1.21

Photon energy scale 5 +0.28
−0.18

+0.28
−0.18

+0.28
−0.18

+0.28
−0.18

+0.28
−0.18

+0.28
−0.18

+0.28
−0.18

+0.47
−0.18

+3.13
−0.32

+3.58
−4.55

+3.58
−4.93

Photon identification efficiency −1.70
+1.76

−0.63
+0.64

−0.58
+0.58

−0.73
+0.74

−0.48
+0.48

−0.37
+0.37

−0.40
+0.40

−0.41
+0.42

−0.41
+0.42

−0.59
+0.60

−0.60
+0.60

Jet energy scale 1 −0.73
+0.79

−0.73
+0.79

−0.69
+0.72

−0.20
−0.09

+0.04
−0.21

+0.14
−0.26

+0.52
−0.57

+0.69
−0.66

+1.05
−0.93

+1.59
−1.49

+2.28
−1.70

Jet energy scale 2 +0.95
−0.41

+0.94
−0.41

+0.55
−0.39

+0.12
−0.11

−0.12
+0.13

−0.31
+0.21

−0.50
+0.46

−0.71
+0.73

−1.01
+1.08

−1.37
+1.45

−1.40
+2.13

Jet energy scale 3 −0.04
+0.13

−0.04
+0.13

−0.04
+0.12

−0.04
+0.04

−0.03
+0.03

−0.03
+0.02

+0.02
−0.02

+0.06
−0.05

+0.11
−0.09

+0.17
−0.15

+0.22
−0.38

Jet energy scale 4 −0.56
−0.29

−0.54
−0.29

+0.14
−0.29

+0.19
−0.29

+0.19
−0.29

+0.19
−0.29

+0.19
−0.29

+0.20
−0.29

+0.43
−0.30

+0.71
−0.76

+0.73
−0.80

Jet energy scale 5 +1.03
+0.19

+1.01
+0.19

+0.30
+0.19

−0.04
+0.17

−0.08
+0.03

−0.08
−0.00

−0.08
−0.00

−0.08
−0.00

−0.08
−0.00

−0.08
−0.00

−0.08
−0.00

Jet energy scale 6 +0.17
+0.45

+0.17
+0.45

+0.17
+0.40

+0.17
−0.19

+0.19
−0.30

+0.35
−0.44

+0.54
−0.65

+0.66
−0.67

+0.92
−0.85

+1.28
−1.22

+1.82
−1.35

Jet energy scale 7 −0.58
+0.59

−0.14
+0.14

+0.08
−0.08

+0.20
−0.20

+0.30
−0.29

+0.41
−0.41

+0.58
−0.57

+0.71
−0.71

+0.97
−0.96

+1.31
−1.24

+1.50
−1.46

Jet energy scale 8 −0.22
+1.65

−0.22
+0.47

−0.22
+0.47

−0.25
+0.79

−0.42
+0.47

−0.54
+0.41

−0.47
+0.49

−0.34
+0.35

−0.32
+0.29

−0.33
+0.20

−0.33
+0.19

Jet energy scale 9 −1.80
+2.55

−1.05
+0.91

−0.55
+0.67

−0.49
+0.59

+0.00
−0.10

+0.18
−0.31

+0.61
−0.63

+0.91
−0.83

+1.27
−1.18

+1.75
−1.77

+2.10
−1.99

Jet energy resolution +1.03
+0.00

+1.03
+0.00

+1.03
+0.00

+1.03
+0.00

+1.03
+0.00

+1.03
+0.00

+0.83
+0.00

+0.12
+0.00

−0.16
+0.00

−0.16
+0.00

−0.16
+0.00

b-jet tagging efficiency 1 +1.40
−1.37

+1.72
−1.68

+1.96
−1.91

+2.12
−2.06

+2.38
−2.31

+2.78
−2.68

+3.53
−3.39

+4.41
−4.13

+6.90
−6.20

+10.67
−9.19

+13.56
−11.28

b-jet tagging efficiency 2 −0.84
+0.84

−0.75
+0.75

−0.69
+0.70

−0.72
+0.73

−0.84
+0.85

−1.03
+1.04

−1.21
+1.20

−1.08
+1.09

−0.55
+0.55

+0.88
−0.83

+1.99
−1.95

b-jet tagging efficiency 3 −1.00
+1.01

−0.85
+0.86

−0.83
+0.84

−0.90
+0.91

−1.03
+1.05

−1.20
+1.22

−1.49
+1.49

−1.63
+1.66

−1.62
+1.64

−1.26
+1.28

−1.12
+1.07

b-jet tagging efficiency 4 +0.18
−0.18

+0.11
−0.11

+0.19
−0.19

+0.23
−0.23

+0.30
−0.30

+0.40
−0.40

+0.60
−0.62

+0.76
−0.76

+1.29
−1.17

+1.71
−1.75

+1.79
−1.87

b-jet tagging efficiency 5 −0.10
+0.09

−0.10
+0.09

−0.10
+0.10

−0.20
+0.20

−0.29
+0.29

−0.39
+0.40

−0.57
+0.58

−0.75
+0.75

−1.00
+1.00

−1.52
+1.60

−1.79
+2.33

b-jet tagging efficiency 6 +0.35
−0.35

+0.26
−0.26

+0.19
−0.19

+0.15
−0.15

+0.13
−0.13

+0.13
−0.13

+0.20
−0.20

+0.39
−0.38

+1.20
−1.05

+2.75
−2.42

+3.98
−3.39

b-jet tagging efficiency 7 +0.50
−0.50

+0.34
−0.34

+0.23
−0.23

+0.11
−0.11

−0.03
+0.03

−0.13
+0.13

−0.58
+0.57

−0.78
+0.85

−0.91
+1.06

−0.94
+0.86

−0.62
+0.61
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b-jet tagging efficiency 8 −0.00
+0.00

−0.00
+0.00

−0.00
+0.00

−0.00
+0.00

−0.01
+0.01

−0.04
+0.04

−0.07
+0.07

−0.13
+0.13

−0.26
+0.26

−1.08
+1.07

−2.07
+2.76

c-jet tagging efficiency 1 +8.64
−8.20

+8.44
−8.20

+5.61
−5.65

+4.77
−4.93

+5.42
−5.65

+6.65
−7.00

+7.90
−8.39

+7.24
−7.46

+5.74
−5.46

+6.77
−5.84

+6.88
−5.90

c-jet tagging efficiency 2 −3.22
+3.48

+0.13
−0.06

+0.22
−0.15

+0.26
−0.15

+0.27
−0.26

+0.48
−1.07

+1.70
−1.98

+1.90
−2.07

+1.95
−1.98

+2.82
−3.08

+2.68
−3.18

c-jet tagging efficiency 3 +2.75
−2.56

+2.79
−2.84

+0.54
−0.51

−0.24
+0.25

−0.30
+0.32

−0.11
+0.11

+0.29
−0.28

+0.59
−0.45

+0.68
−0.48

+0.70
−0.48

+0.70
−0.48

c-jet tagging efficiency 4 +0.78
−0.76

−0.59
+0.63

−0.18
+0.20

+0.04
−0.04

+0.06
−0.07

+0.07
−0.07

+0.11
−0.12

+0.26
−0.28

+0.46
−0.34

+0.71
−0.49

+0.93
−0.50

c-jet tagging efficiency 5 +0.88
−0.81

+0.73
−0.73

−0.12
+0.04

−0.19
+0.14

−0.18
+0.40

−0.14
+0.23

−0.14
+0.17

−0.14
+0.17

−0.14
+0.17

−0.14
+0.17

−0.14
+0.17

c-jet tagging efficiency 6 −0.20
+0.24

−0.20
+0.24

−0.20
+0.24

−0.26
+0.29

−0.58
+0.60

−0.31
+0.36

+0.27
−0.16

+0.39
−0.27

+0.43
−0.30

+1.36
−1.11

+1.78
−1.23

c-jet tagging efficiency 7 −2.79
+2.72

−1.63
+1.61

−0.56
+0.56

−0.19
+0.20

−0.05
+0.05

−0.02
+0.02

−0.02
+0.02

−0.02
+0.02

−0.02
+0.02

−0.02
+0.02

−0.02
+0.02

c-jet tagging efficiency 8 −1.67
+1.67

−2.70
+2.66

−1.52
+1.51

−0.96
+0.97

−0.96
+0.96

−1.10
+1.08

−1.25
+1.18

−1.33
+1.27

−1.26
+1.36

−1.90
+1.86

−2.24
+2.09

c-jet tagging efficiency 9 +0.53
−0.53

+0.62
−0.62

+0.86
−0.87

+0.91
−0.92

+0.97
−0.98

+0.58
−0.55

−0.37
+0.53

−0.58
+0.77

−0.61
+0.81

−1.33
+1.69

−1.70
+2.44

c-jet tagging efficiency 10 −1.93
+1.91

−2.90
+2.84

−0.44
+0.45

+0.54
−0.54

+0.97
−0.98

+1.04
−1.07

+1.04
−1.10

+1.08
−1.07

+1.08
−0.95

+1.47
−1.28

+1.98
−1.57

c-jet tagging efficiency 11 +1.37
−1.42

+2.48
−2.62

+1.88
−2.00

+1.61
−1.74

+1.53
−1.63

+1.11
−1.17

+0.56
−0.61

+0.14
−0.16

+0.01
−0.01

+0.00
−0.01

+0.00
−0.01

c-jet tagging efficiency 12 +0.48
−0.45

+0.93
−0.45

+0.77
−0.67

+0.35
−0.32

+0.29
−0.27

+0.28
−0.27

+0.21
−0.21

+0.13
−0.13

+0.04
−0.05

+0.03
+0.11

+0.03
+0.12

c-jet tagging efficiency 13 +0.76
−0.67

−0.12
+0.16

−0.15
+0.18

−0.15
+0.18

−0.16
+0.19

−0.25
+0.24

−0.14
+0.04

−0.02
−0.01

+0.03
−0.02

+0.04
−0.02

+0.13
−0.02

c-jet tagging efficiency 14 −0.47
+0.47

+0.22
−0.22

+0.25
−0.25

+0.44
−0.45

+0.54
−0.55

+0.47
−0.49

+0.37
−0.40

+0.27
−0.23

+0.11
−0.08

+0.06
−0.06

+0.06
−0.06

c-jet tagging efficiency 15 −0.09
+0.10

−0.10
+0.11

−0.43
+0.46

−0.36
+0.43

−0.37
+0.45

−0.54
+0.59

−0.58
+0.59

−0.38
+0.44

−0.10
+0.12

−0.07
+0.07

−0.07
+0.07

c-jet tagging efficiency 16 +0.12
−0.04

+0.04
−0.04

+0.03
−0.04

+0.03
−0.04

+0.03
−0.04

+0.03
−0.04

+0.03
−0.04

+0.03
−0.04

+0.03
−0.04

+0.03
−0.04

+0.03
−0.04

c-jet tagging efficiency 17 +0.00
+0.00

+0.00
+0.00

+0.00
+0.00

+0.00
+0.00

+0.00
+0.00

+0.00
+0.00

+0.00
+0.00

+0.00
+0.00

+0.00
+0.00

+0.00
+0.00

+0.00
+0.00

Light-jet tagging efficiency 1 +22.03
−23.17

−5.99
+5.92

−6.57
+6.52

−5.14
+4.97

−6.83
+6.76

−6.70
+6.61

−6.93
+6.81

−6.56
+6.49

−5.85
+5.90

−5.51
+5.07

−4.37
+4.14

Light-jet tagging efficiency 2 −16.40
+16.73

−8.40
+8.51

−2.76
+2.75

−1.59
+1.57

−1.92
+1.92

−1.95
+1.95

−2.08
+2.05

−2.36
+2.39

−2.27
+2.47

−2.36
+2.44

−2.37
+2.44

Light-jet tagging efficiency 3 −6.15
+6.21

−2.28
+2.25

−2.15
+2.12

−1.93
+1.86

−2.59
+2.53

−2.87
+2.81

−3.49
+3.41

−3.28
+3.27

−3.33
+3.55

−3.05
+2.97

−2.73
+2.68

Light-jet tagging efficiency 4 −2.36
+2.33

−2.31
+2.28

−0.65
+0.65

−0.53
+0.53

−0.53
+0.53

−0.53
+0.52

−0.61
+0.58

−0.27
+0.33

−0.13
+0.22

−0.12
+0.22

−0.12
+0.22

Light-jet tagging efficiency 5 −4.12
+4.17

−3.30
+3.30

−1.89
+1.89

−0.73
+0.73

−0.72
+0.71

−0.33
+0.33

−0.23
+0.23

−0.22
+0.23

−0.22
+0.23

−0.22
+0.23

−0.22
+0.23

Light-jet tagging efficiency 6 +10.18
−10.10

+2.22
−2.22

+1.08
−1.08

+0.69
−0.70

+0.93
−0.94

+0.92
−0.93

+0.94
−0.99

+0.97
−0.98

+1.01
−0.86

+1.01
−0.81

+1.47
−0.94

Light-jet tagging efficiency 7 −1.84
+1.82

−0.46
+0.46

−0.44
+0.43

−0.55
+0.55

−0.34
+0.31

−0.22
+0.03

+0.01
−0.03

+0.07
−0.03

+0.07
−0.03

+0.07
−0.03

+0.07
−0.03

Light-jet tagging efficiency 8 +1.94
−1.96

+0.82
−0.82

+0.37
−0.38

+0.42
−0.42

+0.42
−0.42

+0.51
−0.52

+0.61
−0.65

+0.77
−0.76

+0.90
−0.76

+0.76
−0.59

+1.01
−0.58

Light-jet tagging efficiency 9 −2.15
+2.12

−2.32
+2.31

−2.05
+2.02

−1.94
+1.89

−2.23
+2.20

−2.12
+2.09

−2.07
+2.00

−1.96
+1.93

−1.53
+1.66

−1.16
+1.43

−1.66
+2.03

Light-jet tagging efficiency 10 −0.50
+0.49

−0.50
+0.49

−0.51
+0.50

−0.65
+0.63

−1.03
+1.01

−1.05
+1.03

−1.18
+1.13

−1.22
+1.21

−1.16
+1.30

−1.09
+1.31

−1.43
+1.89

Light-jet tagging efficiency 11 +0.14
−0.14

+0.14
−0.14

+0.12
−0.12

−0.07
+0.07

−0.10
+0.10

−0.14
+0.13

−0.39
+0.37

−0.61
+0.65

−0.74
+0.87

−0.81
+0.79

−0.84
+0.83

Light-jet tagging efficiency 12 −0.92
+0.92

−0.10
+0.13

−0.08
+0.11

−0.08
+0.11

−0.08
+0.11

−0.08
+0.11

−0.08
+0.11

−0.08
+0.11

−0.09
+0.12

−0.42
+0.35

−0.41
+0.40

Light-jet tagging efficiency 13 +0.24
−0.24

+0.24
−0.24

+0.26
−0.26

+0.55
−0.55

+0.57
−0.57

+0.41
−0.40

+0.11
−0.10

+0.05
−0.03

+0.05
−0.03

+0.05
−0.03

+0.05
−0.03

Light-jet tagging efficiency 14 −0.07
+0.06

−0.07
+0.06

−0.07
+0.07

−0.16
+0.15

−0.26
+0.26

−0.29
+0.28

−0.31
+0.28

−0.31
+0.35

−0.25
+0.26

−0.20
+0.25

−0.20
+0.25

Light-jet tagging efficiency 15 −0.39
+0.38

+0.13
−0.13

+0.14
−0.15

+0.19
−0.19

+0.28
−0.28

+0.29
−0.29

+0.22
−0.26

+0.22
−0.23

+0.23
−0.23

+0.20
−0.19

+0.26
−0.18

Light-jet tagging efficiency 16 −0.40
+0.40

−0.25
+0.25

−0.12
+0.12

+0.04
−0.04

+0.07
−0.07

+0.10
−0.10

+0.13
−0.16

+0.13
−0.14

+0.10
−0.10

+0.14
−0.09

+0.13
−0.13

Light-jet tagging efficiency 17 −0.65
+0.64

−0.42
+0.42

−0.17
+0.16

−0.13
+0.13

−0.15
+0.15

−0.16
+0.15

−0.15
+0.12

−0.10
+0.09

−0.08
+0.08

−0.08
+0.09

−0.08
+0.09

Sideband isolation definition −2.53
+2.81

−0.42
+2.78

−0.37
+1.53

−0.35
+0.90

−0.35
+0.70

−0.35
+0.56

−0.25
+0.42

−0.25
+0.35

−0.19
+0.33

−0.09
+0.24

−0.08
+0.18

Sideband identification definition −0.67
+0.86

−0.67
+0.85

−0.65
+0.54

−0.41
+0.52

−0.35
+0.51

−0.21
+0.45

−0.17
+0.30

−0.17
+0.27

−0.17
+0.26

−0.17
+0.26

−0.17
+0.26

Sideband correlation −13.26
+12.81

−6.33
+6.19

−3.33
+3.28

−2.00
+1.98

−1.48
+1.47

−1.42
+1.41

−1.07
+1.06

−0.90
+0.89

−0.81
+0.80

−0.57
+0.57

−0.42
+0.42
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Prompt photon modelling +2.45 +2.45 +2.45 +2.45 +2.45 +2.45 +2.45 +2.45 +2.45 +2.45 +2.45

Non-perturbative QCD models +7.31 +7.31 +7.31 +7.31 +7.31 +7.31 +7.31 +7.31 +7.31 +7.31 +7.31

Particle-level migration effects +0.39 +0.39 +0.39 +0.39 +0.39 +0.39 +0.39 +0.39 +0.39 +0.39 +0.39

Luminosity +1.90
−1.90

+1.90
−1.90

+1.90
−1.90

+1.90
−1.90

+1.90
−1.90

+1.90
−1.90

+1.90
−1.90

+1.90
−1.90

+1.90
−1.90

+1.90
−1.90

+1.90
−1.90

Other sources combined +2.41
−2.39

+1.80
−1.86

+1.54
−1.59

+1.31
−1.45

+1.36
−1.51

+1.30
−1.59

+1.16
−1.55

+1.06
−1.45

+0.99
−1.35

+0.90
−1.31

+0.94
−1.34
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APPENDIX F
Tables of Measured and Predicted Cross Sections

Table F–1 – Measured values of the fiducial integrated γ + b cross section in the
central and forward regions, including their statistical and systematic uncertainties.
The quadrature sum of the uncertainties is also given as the total uncertainty. The
central region is defined as |ηγ| < 1.37 and covers 25 < Eγ

T < 400 GeV and the
forward region is defined as 1.56 < |ηγ| < 2.37 and covers 25 < Eγ

T < 350 GeV. The
order-of-magnitude factor multiplies all values in the corresponding row.

Quantity Value Stat. unc. Syst. unc. Total unc. [pb]

σcentral 7.7 +0.7
−0.8

+1.4
−1.4

+1.6
−1.6 ×102

σforward 2.2 +0.6
−0.6

+0.8
−0.8

+1.0
−1.0 ×102

σcentral/σforward 3.5 +1.4
−0.8

+0.9
−0.8

+1.7
−1.2 –
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Table F–2 – Predicted values of the fiducial integrated γ + b cross section in the
central and forward regions by Sherpa, Pythia and MadGraph5_aMC@NLO
(MG5_aMC). The theoretical uncertainties related to the NLO predictions are given,
while no uncertainties are provided for the LO predictions. The central region is
defined as |ηγ| < 1.37 and covers 25 < Eγ

T < 400 GeV and the forward region is
defined as 1.56 < |ηγ| < 2.37 and covers 25 < Eγ

T < 350 GeV. The order-of-magnitude
factor multiplies all values in the corresponding row.

Quantity Sherpa Pythia MG5_aMC 5F MG5_aMC 4F [pb]

σcentral 5.60 6.94 7.2 +1.2
−1.6 6.8 +2.0

−1.9 ×102

σforward 2.53 2.97 3.2 +1.0
−0.9 2.5 +0.9

−0.7 ×102

σcentral/σforward 2.22 2.34 2.27+0.17
−0.24 2.71+0.07

−0.11 –
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Table F–3 – Measured values of the fiducial differential γ+b cross section in the central
region as a function of Eγ

T, including their statistical and systematic uncertainties.
The quadrature sum of the uncertainties is also given as the total uncertainty. The
central region is defined as |ηγ| < 1.37. The order-of-magnitude factor multiplies all
values in the corresponding row, except for the Eγ

T bin range.

Eγ
T bin [GeV] dσcentral/dE

γ
T Stat. unc. Syst. unc. Total unc. [pb/GeV]

25–45 3.20 +0.35
−0.40

+0.58
−0.58

+0.67
−0.70 ×101

45–65 4.60 +0.26
−0.27

+0.68
−0.67

+0.73
−0.72 ×100

65–85 1.15 +0.05
−0.05

+0.14
−0.15

+0.15
−0.15 ×100

85–105 4.02 +0.15
−0.15

+0.50
−0.51

+0.52
−0.53 ×10−1

105–125 1.47 +0.06
−0.06

+0.21
−0.21

+0.22
−0.22 ×10−1

125–150 6.8 +0.1
−0.1

+1.0
−1.0

+1.0
−1.0 ×10−2

150–175 3.48 +0.06
−0.06

+0.49
−0.51

+0.49
−0.51 ×10−2

175–200 1.49 +0.04
−0.04

+0.25
−0.27

+0.26
−0.27 ×10−2

200–250 6.8 +0.2
−0.2

+1.2
−1.2

+1.2
−1.2 ×10−3

250–300 2.58 +0.12
−0.12

+0.45
−0.45

+0.47
−0.46 ×10−3

300–350 8.3 +0.7
−0.8

+2.0
−2.0

+2.1
−2.2 ×10−4

350–400 6.0 +0.5
−0.6

+1.4
−1.3

+1.5
−1.4 ×10−4
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Table F–4 – Predicted values of the fiducial differential γ + b cross section in the
central region as a function of Eγ

T by Sherpa, Pythia and MadGraph5_aMC@NLO
(MG5_aMC). The theoretical uncertainties related to the NLO predictions are given,
while no uncertainties are provided for the LO predictions. The central region is
defined as |ηγ| < 1.37. The order-of-magnitude factor multiplies all values in the
corresponding row, except for the Eγ

T bin range.

Eγ
T bin [GeV]

dσcentral/dE
γ
T [pb/GeV]

Sherpa Pythia MG5_aMC 5F MG5_aMC 4F

25–45 2.2 2.8 2.9 +0.5
−0.7 2.7 +0.8

−0.8 ×101

45–65 4.3 5.0 5.3 +0.9
−1.0 5.2 +1.3

−1.2 ×100

65–85 1.14 1.14 1.36+0.20
−0.21 1.08+0.20

−0.19 ×100

85–105 3.9 3.8 4.2 +0.6
−0.6 3.4 +0.5

−0.5 ×10−1

105–125 1.61 1.37 1.58+0.15
−0.17 1.30+0.18

−0.17 ×10−1

125–150 7.0 5.4 6.2 +0.7
−0.7 4.5 +0.6

−0.6 ×10−2

150–175 3.08 2.25 2.92+0.35
−0.30 1.92+0.24

−0.21 ×10−2

175–200 1.55 1.11 1.45+0.14
−0.12 0.91+0.10

−0.09 ×10−2

200–250 6.56 4.28 5.1 +0.5
−0.4 3.18+0.36

−0.31 ×10−3

250–300 2.41 1.55 1.89+0.18
−0.16 1.00+0.10

−0.09 ×10−3

300–350 9.67 5.92 6.0 +0.7
−0.6 2.40+0.28

−0.25 ×10−4

350–400 4.48 2.85 3.21+0.37
−0.32 1.19+0.13

−0.11 ×10−4
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Table F–5 – Measured values of the fiducial differential γ+b cross section in the forward
region as a function of Eγ

T, including their statistical and systematic uncertainties.
The quadrature sum of the uncertainties is also given as the total uncertainty. The
forward region is defined as 1.56 < |ηγ| < 2.37. The order-of-magnitude factor
multiplies all values in the corresponding row, except for the Eγ

T bin range.

Eγ
T bin [GeV] dσforward/dE

γ
T Stat. unc. Syst. unc. Total unc. [pb/GeV]

25–45 8.5 +3.2
−3.2

+3.3
−3.3

+4.6
−4.5 ×100

45–65 1.68 +0.22
−0.19

+0.40
−0.38

+0.46
−0.43 ×100

65–85 5.5 +0.4
−0.4

+0.8
−0.8

+0.9
−0.9 ×10−1

85–105 1.86 +0.10
−0.10

+0.24
−0.25

+0.27
−0.27 ×10−1

105–125 7.4 +0.4
−0.5

+1.0
−1.0

+1.1
−1.1 ×10−2

125–150 2.93 +0.06
−0.07

+0.42
−0.43

+0.42
−0.43 ×10−2

150–175 1.38 +0.04
−0.04

+0.22
−0.22

+0.22
−0.23 ×10−2

175–200 5.9 +0.2
−0.3

+1.0
−1.0

+1.0
−1.0 ×10−3

200–250 2.49 +0.12
−0.12

+0.39
−0.37

+0.41
−0.39 ×10−3

250–300 6.9 +0.7
−0.6

+1.3
−1.3

+1.5
−1.4 ×10−4

300–350 2.10 +0.35
−0.36

+0.50
−0.46

+0.61
−0.58 ×10−4
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Table F–6 – Predicted values of the fiducial differential γ+b cross section in the forward
region as a function of Eγ

T by Sherpa, Pythia and MadGraph5_aMC@NLO
(MG5_aMC). The theoretical uncertainties related to the NLO predictions are given,
while no uncertainties are provided for the LO predictions. The forward region is
defined as 1.56 < |ηγ| < 2.37. The order-of-magnitude factor multiplies all values in
the corresponding row, except for the Eγ

T bin range.

Eγ
T bin [GeV]

dσforward/dE
γ
T [pb/GeV]

Sherpa Pythia MG5_aMC 5F MG5_aMC 4F

25–45 9.9 12.3 13 +4
−4 10.2 +3.7

−3.2 ×100

45–65 1.9 1.9 2.1 +0.5
−0.5 1.8 +0.5

−0.4 ×100

65–85 5.1 4.3 5.1 +1.6
−0.5 3.6 +0.8

−0.7 ×10−1

85–105 1.79 1.13 1.57+0.29
−0.26 1.01+0.19

−0.17 ×10−1

105–125 7.4 5.1 5.7 +1.1
−0.7 3.8 +0.7

−0.6 ×10−2

125–150 3.14 2.07 2.25+0.31
−0.26 1.27+0.24

−0.20 ×10−2

150–175 1.35 0.82 0.97+0.15
−0.12 0.50+0.09

−0.08 ×10−2

175–200 6.60 3.61 4.6 +0.7
−0.6 2.14+0.37

−0.31 ×10−3

200–250 2.56 1.46 1.49+0.25
−0.20 0.70+0.11

−0.09 ×10−3

250–300 7.66 4.45 4.4 +0.7
−0.5 1.83+0.29

−0.25 ×10−4

300–350 2.65 1.63 1.21+0.22
−0.17 0.37+0.07

−0.06 ×10−4
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Table F–7 – Measured values of the ratio of the fiducial γ + b cross section in the
central region to that of the forward region as a function of Eγ

T, including their
statistical and systematic uncertainties. The quadrature sum of the uncertainties is
also given as the total uncertainty. The central region is defined as |ηγ| < 1.37 and
covers 25 < Eγ

T < 400 GeV and the forward region is defined as 1.56 < |ηγ| < 2.37
and covers 25 < Eγ

T < 350 GeV.

Eγ
T bin [GeV] σcentral/σforward Stat. unc. Syst. unc. Total unc.

25–45 3.8 +2.2
−1.1

+0.8
−0.8

+2.3
−1.3

45–65 2.73 +0.39
−0.35

+0.59
−0.52

+0.71
−0.62

65–85 2.09 +0.18
−0.16

+0.29
−0.29

+0.34
−0.33

85–105 2.17 +0.16
−0.14

+0.31
−0.31

+0.35
−0.34

105–125 1.99 +0.15
−0.14

+0.28
−0.28

+0.32
−0.31

125–150 2.31 +0.06
−0.06

+0.32
−0.32

+0.33
−0.33

150–175 2.52 +0.09
−0.09

+0.38
−0.39

+0.39
−0.40

175–200 2.55 +0.15
−0.12

+0.42
−0.42

+0.44
−0.43

200–250 2.71 +0.16
−0.15

+0.37
−0.40

+0.41
−0.42

250–300 3.7 +0.4
−0.4

+0.6
−0.6

+0.7
−0.7

300–350 3.9 +0.9
−0.7

+0.7
−0.7

+1.2
−1.0
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Table F–8 – Predicted values of the ratio of the fiducial γ+b cross section in the central
region to that of the forward region as a function of Eγ

T by Sherpa, Pythia and
MadGraph5_aMC@NLO (MG5_aMC). The theoretical uncertainties related to the
NLO predictions are given, while no uncertainties are provided for the LO predictions.
The central region is defined as |ηγ| < 1.37 and covers 25 < Eγ

T < 400 GeV and the
forward region is defined as 1.56 < |ηγ| < 2.37 and covers 25 < Eγ

T < 350 GeV.

Eγ
T bin [GeV]

σcentral/σforward

Sherpa Pythia MG5_aMC 5F MG5_aMC 4F

25–45 2.20 2.27 2.20+0.21
−0.27 2.65 +0.07

−0.12

45–65 2.32 2.68 2.61+0.11
−0.14 2.87+0.03

−0.06

65–85 2.23 2.64 2.7 +0.4
−0.5 3.02 +0.10

−0.13

85–105 2.16 3.33 2.65+0.09
−0.11 3.32 +0.06

−0.08

105–125 2.18 2.68 2.77+0.24
−0.27 3.40 +0.10

−0.13

125–150 2.22 2.62 2.77+0.15
−0.14 3.57 +0.13

−0.14

150–175 2.29 2.73 3.03+0.11
−0.11 3.81 +0.18

−0.20

175–200 2.35 3.06 3.18+0.23
−0.22 4.26 +0.21

−0.22

200–250 2.56 2.94 3.41+0.19
−0.19 4.54 +0.20

−0.19

250–300 3.14 3.49 4.26+0.21
−0.21 5.46 +0.30

−0.26

300–350 3.66 3.64 5.00+0.27
−0.27 6.46 +0.45

−0.44

300
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