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ABSTRACT

Least squares linear regression is a common tool in

ecological research. One of the central assumptions of least

squ~res linear regressicn is that the independent variable

is measured without error. But this variable is measured

with error whenever it is a sample mean. The significance of

such contraventions is not regularly assessed in ecological

studies. A simulation program was made to provide such an

asssssment. The prcgram requires a hypothetical data set,

and using estimates of s2 it scatters the hypothetical data

to simulate the effect of sampling error. A regression line

is drawn through the scattered data, and SSE and r 2 are

measured. This is repeated numerous times (e.g. 1000) to

generate probability distributions for r 2 and SSE. From

these distributions it is possible to assess the likelihood

of the hypothetical data resulting in a given SSE or r 2 . The

method was applied to survey data used in a published TP­

CHLa regression (Pace 1984). Beginning with a hypothetical.

linear data set (r2=1). simulated scatter due to sampling

exceeded the SSE from the regression through the survey data

about 30% of the time. Thus chances are 3 out of 10 that the

level of uncertainty found in the surveyed TP-CHLa

relationship would be observed if the true rel~tionship were

perfectly linear. If this is so. more precise and more

comprehensive models will only be possible when better

estimates of the means are available. This simulation
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clpp~OclCh should apply to ail least squares regression

studies thclt use sampled means, and should be especially

relevclnt to studies that use log-transformed values .
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RÉSUMÉ

La régression linéaire simple est un outil conID1un dans

la recherche écologique. L'une des sllppositions centrales de

la régression linéaire simple est que la variable

indépendante est mesurée sans erreur. Cependant, la variablè

indépendante est mesurée~ erreur lorsqu'il s'agit d'une

moyenne d'échantillon. La signification de telles

infractions n'est pas régulièrement évaluée dans les études

écologiques. Un programme de simulation a été créé dans le

but de fournir une telle évaluation. Le programme exige un

ensemble de données hypothétique et, en utilisant des

calculs approximatifs de 52, disperse les données

hypothétiques afin de simuler l'effet d'erreur

d'échantillonage. Ensuite, une droite de régression est

établie à travers les données dispersées, et SSE et r 2 sont

calculés. Ce processus est répété nombreuses fois le.g.

1000) afin de produire des distributions de probabilité pour

r 2 et SSE. À partir de ces distributions il est possible

d'évaluer la probabilité que les données hypothétiques

résultent dans un SSE ou r 2 donné. La méthode a été

appliquée à une régression TP-CHLa publiée (Pace 1984). À

partir d'un ensemble de données hypothétique linéaire

(r2=1), la dispersion dû à l'échantillonage simulée a

excédee le SSE de la régression publiée 30% des fois.

Ainsi, il y a 3 chances sur la que le niveau d'incertitude

que l'on voit dans la relation TP-CHLa publiée aurait été
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obz~rv~e si l~ ',raie relation était parfaitement linéaire .

Cette approche de simulation devrait s'appliquer a tous les

études ~e régression linéaire simple qui utilisent des

moyennes d'échantillons, et devrait s'avérer

particulièrement pertinente aux études qui utilisent une

transformation de aonnées logarithmique .
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INTRODUCTION

In many branches of science we must sample

"populations" to estimate the quantities we wish to know.

This is especially so in ecology, where models often

represent large spatial and temporal dimensions. Yet,

sampling introduces such uncertainty to all of our estimates

that "true" values are almost never known. In turn, this

uncertainty can dramatically influence the way we test our

models. This study focuses on uncertainties in the estimates

of mean values, and their consequences for simple linear

regression studies. This is exemplified by scrutinizing one

previously published regression equation. l did not attempt

to investigate error from causes other than sampling, nor

how it would interact with sampling error.

Whether our ultimate aim is to predict or explain, an

important part of science is to consider the likely models

that might be compatible with our data. This directs our

science by narrowing the choice of models that we might

investigate. In a simple regression study, an obvious model

to consider is that there is an imperfect relationship

between X and Y, whose slope is the slope of the regression

equation. The degree of imperfection - hcw much explaining

we have yet to do - is quantified by the r 2 . Another model

that almost always is considered is that there is no

relationship between X and Y; this is usually the null
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hypothesis for statistical tests of significance.

Once a predictive equation has been developed, and the

null hypothesi0 discarded, the next step lS usually to

further investigate the hypothesis that the relation between

x and Y is imperfect because other factors have influenced

it. Generally, this involves residual analysis of sorne sort,

which may lead to another regression study - one that

includes more independent variables.

If we have used average values in our analysis, there

is another model that should be considered before extensive

studies are undertaken that require costly measurements of

more variables. One must ask if the existing data set is

compatible with a perfectly correlated mean X and mean Y.

Few published ecological studies do so.

A perfect correlation between mean X and mean Y can be

thought of as another null hypothesis - in addition to "no

relationship between mean X and mean Y". The reason that we

should consider it, even though the data clearly do not lie

on a straight line, is that error results from sampling a

population. When we sample a population to estimate the true

average for that population, a random error is introduced

into our data. Like a jumping bean, our measured mean strays

from the true population average. If we can find a way to

simulate these "data hops", we can test the hypothesis that

the data are consistent with a perfect relationship.

The simulations of sampling error are easy in
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principle. First. a perfectly fit relationship between mean

X and mean Y is hy~othesized (the regression line fit to the

data is a reasonable choice). Then a sampling program is

simulated by introducing random sampling error to the

hypothetical values along the regression line. Finally,

simulateà data sets are compared with a survey data set

(Figures 1a,b,c,d).

The remainder of the study discusses a computer program

that performs such simulations. The approach is examined

using a regression between mean total phosphorus (TP) vs.

mean chlorophyll a (CHL) (Pace, 1984) from 12 bodies of

water (lakes or lake basi~s) in the Eastern Townships of

Quebec. This data set is interesting for several reasons.

TP-CHL relacionships have been an important area of

study for close to 30 ycars (Sakamoto, 1966; Vol lenweider ,

1968; Dillon and Rigler, 1974; Smith, 1982; Molot and

Dillon, 1991), have proven a successful management tool

(Molot and Dillon, 1991), and illustrate the benefits of

"predictive ecology" (Peters. 1986). Yet. despite great

effort spent looking for additiona1 predictor variables

(Smith, 1982; Canfield et al., 1983; Pace, 1984; Prairie et

al., 1989). a good deal of residual scatter around these

relationships awaits explanation (France et al., 1994). The

high uncertainty associated with estimating mean phosphorus

and CHL may be one explanation (Pepin. 1987; France et al .•

1994). Pace's (1984) data set is interesting, therefore.
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because it is one example from a body of important work, and

conclusions about Pace's data set may be relev~nt to this

larger body. lt is also interesting because Pace (1984) did

not consider uncertainty in mean TP and CHL when he

investigated the residuals in his TP-CHL relationship. This

oversight could have affected his interpretation of

statistically insignificant correlations ("negative

results"), and in at least one case his interpretation has

been used as corroborating evidence (Morales-Baquero et dl.,

1994). Finally, McQueen et al. (1986) interpreted the

residuals from several nutrient-consumer relationships

without considering the effects of uncertainty in estimating

means (Pepin, 1987). One of these relations was the Pace

(1984) TP-CHL relationship.

METHOOS

ASSUMPTlONS AND GOALS

The following conditions are assumed:

[1] Ordinary least squares linear regression is used on

sample means from a survey. l will calI these sample means

"survey mean X" and "survey mean Y".

[2] The survey rnean X values and survey mean Y values are

irnperfect estimates of the unknown "true" means. l calI this
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discrepancy "sampling error". To simplify this introductory

st~~y, l assume that all measurements are free of error.

Sampling error, therefore, is entirely due to the

stochasticity introduced by choosing to measure only sorne of

the values that underlie a true mean. l also ignore the fact

that the values used to estimate a sample mean might,

themselves, be averages of several measurernents (cornrnonly

triplicates are used). These simplifications allow sampling

error to be more easily simulated, and are realistic when

measurement error is small and the triplicate values do not

dif fer much.

[3] The sample size (n) used to estimate each mean is

known, as is the variance (S2) associated with the values

used to estimate a mean. l use the terrns "replicate X" and

"replicate Y" to describe the values used to calculate

survey means. The following forro of variance is used:

n
~

i=1
(survey mean X

(n - 1)

replicate Xi )2

•
[4] The following is known about the regression analysis of

the survey data: the nurnber of data points is d; the slope

is m; the inte=cept is b; the surn of squares (SSE) is the

"survey SSE"; the r 2 is the "survey r 2 " .
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[5] A perfect relation bet\~een X and Y is hypothesized that

has d points each lying on the regression line from [4]:

y = m * X + b . These points are hypothesiz,~d t 0 be the

"true" means that the survey attempted to estimate. (1 will

refer to this set of d hypothetical values as Hl) .

The goal of the thesis is to determine if Hl is

compatible with the survey results. l set two related tasks

to achieve this goal: (1) l ~stimate the probability of

finding an SSE greater than, or equal to the survey SSE, if

Hl is indeed correct; (2) l determine whether th", survey r 2

is different in a statistically significant way l'rom the r 2

= 1 associated with Hl.

These two tasks are accomplished by: (1) recording the

SSE from 1000 simulated data sets, and then checking the

percentage of times that these exceeded the survey SSE; (2)

recording the array of r 2 values from 1000 simulated data

sets, sorting that array, and then developing 95% CI by

selecting the values at position 25 and 975.

As the probability in (1) increases, or when there is

no statistically significant difference in (2), we should

consider more seriously that Hl might be correct, and in

subsequent surveys shift the emphasis of research towards

reducing sampling error, and away from seeking additional

explenatory variables.

The approach required is similar to power analysis
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(Zar, 1984; Peterman, 1990) because it questions whether

some estimated value such as the survey SSE or survey r 2

might come from a population with a different value, and

answers this question by estimating the distribution of SSE

or r 2 values that are possible given Hl' The approach

differs from a power analysis in that no attempt is made to

quantify a type II error.

The usual methods for estimating the distribution of

regression statistics (eg. r 2 , Zar 1984) are inappropriate

because sampling error is in both X and Y. Even if error

were restricted to Y, these convenient methods would be

compromised when sampling error differs over Y, as it does

in this study (and in many ecological surveys). Simulation

is used, therefore, to estimate the distributions of SSE and

r2 given Hl'

OVERVIEW OF THE SIMULATIONS

The simulation requires that sampling error be

introduced to each of the data points in Hl (Figure 1). Each

hypothetical data point has an X and y component

(hypothetical mean X, hypothetical mean Y), and the

simulations assume that the sampling error in each component

is independent .



FIGURE 1: A depiction of the simulation process.

•

(al The data set of means from a field survey. and the

regression line through it. (bl Hypothetical XY coordinates

(solid circlesl are placed where each dotted line intersects

the regression line. The survey data set (open circles) is

shown for comparison. (cl Sampling error is simulated. (dl

A regression line is fit to the simulated data set and SSE

and r 2 are measured.

•
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For each of the hypothetical mean values. a pseudo-

random nurnber is chosen from a Normal distribution with mean
~

equal to the hypothetical mean and variance equal to 5~/n

(52 is the variance of the replicate values used to estimate

a survey mean, and n is the sample size used). The shape of

these distributions is based on the Central Limit Theorem

(CLT) (Hogg and Tanis, 1983). This theorem is convenient

because it allows us to estimate the shape of a distribution

of means without knowing exactly the shape of its underlying

distribution. This reduces the time required to simulate

each X and y value (simulated mean X, and simulated mean Y)

since mean values can be simulated directly, and need not be

calculated from n simulated replicates.

One simulated data set is complete once a simulated

mean has been generated for each of the hypothetical means.

The simulated mean y values are then regressed on the

simulated mean X values, and the SSE and r 2 are recorded

(model SSE, and model r 2 ). This is repeated for 1000

simulated data sets to build a distribution of SSE and r 2

given Hl' Once those distributions are built, they can be

compared with the SSE and r 2 from the survey data (survey

SSE, and survey r 2 ). Figure 2 shows a simplified flow chart

for the program, whose code is in Appendix II.

visual examination of simulated data sets is also a way

to check if the survey data is consistent with a perfect-fit

Hl' If scatter about the survey regression line is due to
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sampling error, then simulated data will resemble the survey

data in a substantial proportion of the simulations (so long

as the simulations are realisticl .



FIGURE 2: The

and accepts survey

simulation program is written in TBA5IC

means, 52 values, sample sizes, and

•

min/max limits from file or keyboard, simula tes sampling

error, and fits regression lines. If desired, simulations

can be viewed on a computer screen.

•
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Flow chaTt for simulation program

1data input 1

regression through real data

positioning of hypothetical data

,......-~ beginning of simulation loop

1 simulation of data 1

1regression through simulated data

( option to view simulated data)

compilation of distributions of SSE & r
L...-----i end of simulation loop

calculations using compiled distributions
ofSSE &r
printing results
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CHOICE OF HYPOTHETICAL VALUES (Hl)

There is one hypothetical mean for every survey Inean.

If more than 5% of the hypothetical means fall outside the

95% confidence intervals (CI) around their corresponding

survey means, the compatibility of the hypothetical data set

and the survey data set would be in doubt - even if the

model SSE were to frequently exceed the survey SSE in

subsequent simulations. It is therefore desirable to choose

hypothetical data that fall as close as possible to their

corresponding survey data. That way. when hypothetical data

are incompatible with the survey data. one can conclude that

aIl linear hypothetical data sets are incompatible with that

survey data, and reject the linear hypothesis.

The positions of hypothetical data were determined by

projecting perpendicular lines from the survey regression

line to the survey data (Figure la). Hypothetical data were

placed where these perpendiculars touched the survey

regression line. Perpendicular projections yield the

shortest distance between the survey regression line and the

survey data, but do not necessarily reveal the hypothetical

data (along the survey regression line) most likely to be

compatible with the survey data. Maximizing this

compatibility requires minimizing the 'statistical distance'

(sensu Johnson and Wichern, 1982: p.20) between the

hypothetical data and survey data. perpendicular projections
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were used because they were simp1er, yet still provided

hypothetical data that were compatible with Pace's (1984)

survey data. The compatibility of the survey means and the

hypothetical means was assessed using 95% CI based on a t­

distribution. This distribution was used because the

distributions of survey means were assumed to be Normal

(using the CLTl, and had an estimated variance.

SIMULATED MEAN VALUES

A logistic approximation method (pers. comm. D.Roff.

Biology McGill University) was used to generate Normal

distributions:

simulated mean =
[.5513 * loge(rand/(l-rand))] * [(S2/n )1/2]

+ hypothetical mean,

where the "hypothetical mean" above is not log-transformed;

and "rand" is a single pseudo-random number from a uniform

[0,1] distribution. This approximated the desired

distribution with mean equal to the hypothetical mean, and

variance equal to S2/n . Since Pace (1984) log10-transformed

his data before regression analysis. each simulated mean was

also log10-transformed .

No simulated mean value was allowed to exceed the 95%
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confidence limits of its hypothetical mean, nor fall beyond

minimum (min) or maximum (max) values that were chosen for

TP and CHL in each 1ake. These arbitrary min and max values

provided biologically based limits to simulation, and helped

offset the bias in simulations that might result if the s2

value from Pace (1984) were inflated. l set min and max

values as the smallest and largest replicate values. For

instance, if the smallest replicate TP value in a lake were

4 mg/l, then the simulated mean TP for that lake would not

drop below that value. The 95% CI also limited extreme

simulations, and made simulations more realistic if the min

or max values differed very much from the mean. These CI may

have caused sampling error to be underestimated when min/max

values were realistic, yet more lenient than the 95% CI. In

general, all these limits restrict SSE and increase r 2 , so

they make these tests conservative.

TESTING ASSUMPTIONS AND SENSITIVITY TO PARAMETER

FLUCTUATIONS

Distributions of model SSE and r 2 were generated using

1000 simulated data sets. l tested the appropriateness of

this number then tested the simulation program's sensitivity

to the following:

(1) the min and max values used to limit simulated means,
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(2) the use of the CLT to approximate the shape of

distributions,

(3) the 52 estimates,

(4) the samp1e sizes used to estimate survey means.

Areas of sensitivity that were not tested include: the

slope, intercept, number and range of data points us·;d for

Hl' the location of hypothetical points along a line (they

need not be positioned as illustrated in Figure la), and the

effect of correlation between the sampling error in survey

mean X and survey mean Y. l leave these for future studies.

THE DATA

In the Eastern Townships of Quebec, Pace (1984) visited

10 lakes 5 times between May and 5eptember. One of the lakes

had 3 basins, and was treated as 3 separate lakes. This gave

the data set 12 sites. Triplicate measurements of TP and CHL

were taken from one central location at each site. From the

triplicates a single value was calculated, these single

values were then compiled into a seasonal mean for each site

(Table 1). Generally, sample sizes of 5 were used to

estimate seasonal means, except for 3 sites where a sample

size of 4 was used to estimate TP means. Pace (1984)

provides details of lake chemistry and morphometry .

Pace (1984) used geometric means as data points in his
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published regressions. l have used arithmetic means. They

are simple and are commonly used by ecologists. This changed

the regression equations only slightly:

LogCHL = 1.14 ~ LogTP - 0.60, r 2=0.94 for arithmetic data;

LogCHL = 1.09 ~ LogTP - 0.56, r 2=0.93 for geometric data.

Strictly speaking, because simulations are based on

arithmetic means while the published regression in Pace

(1984) is based on geometric means, we should be careful

when drawing conclusions about his published regression from

this study. We can be more confident when drawing

conclusions about the TP-CHL regression that uses arithmetic

means. l leave it to another to decide if such precaution is

pedantry .



19• TABLE 1. The survey values derived from Pace (1984) .

TP CHL

mean mean

Site n (mg/m3 ) S2 n (mg/m3 ) S2

Bowker 4 3.75 4.8 5 1.30 0.54
Orford 4 5.33 1.5 5 1.53 0.41
Brompton 4 6.52 5.8 5 1.97 0.28
Lovering 5 7.04 1.4 5 2.50 0.18
Argen~ 5 10.71 5.7 5 2.45 0.29
North .. 5 9.10 9.6 5 3.82 2.97
Centr~l 5 10.04 7.0 5 4.57 1.39
South 5 12.79 7.0 5 5.64 2.89
Massawippi 5 12.71 8.0 5 4.19 3.54
Brome 5 14.65 8.8 5 4.07 5.90
Magog 5 47.38 44.6 5 16.88 87.60
Waterloo 5 59.70 434.7 5 34.98 387.40

.. different basins in Lake Memphremagog. al! other sites are
separate lakes .

•
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The non-transformed aritruùetic TP-CHL data. the log­

transformed data. and the hypothetical data used in

simulations are shown in Figure 3.

RESULTS AND DISCUSSION

PRE-SIMULATION CONCERNS

Assessing the plausibility of the hypothetical data:

In most cases the hypothetical means for both TP and

CHL were deep inside the 95% confidence limits for their

corresponding survey means (Figure 4). Therefore the

hypothetical values appear consistent with the survey means.

The use of the t-distribution can be questioned though,

since the distributions of replicate TP and CHL are

typicallyasYmmetric (Heyman et al., 1984; Walmsley. 1984).

This aSYmmetry might compromise the CLT prediction that the

distributions of survey means will be Normal (Hogg and

Tanis, 1983). However. the hypothetical values are generally

close to the survey means and far from the 95% confidence

limits; therefore small inaccuracies in estimating those

confidence limits are believed to have little impact .



FIGURE 3: (al Non-transformed seasonal mean TP and CHL

•

data from Pace (1984). (b) Log-transformed seasonal mean TP

and CHL data derived from Pace (1984). The regression

equation is: LogCHL = 1.14 LogTP - 0.60. r 2 = 0.94. (c)

The hypothetical data set used in simulations. Hypothetical

data are placed along the regression line fit to the log­

transformed survey data from Pace (1984), as shown in Figure

1.

•
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FIGURE 4: The plausibility of each hypothetical daca

point depends, in part, on it being reasonably close to the

survey data. Here the survey means and 95% CI for TP and CHL

have been shifted 50 that the survey means aIl lie at zero.

The 95% CI for the survey mean from each lake is shown by a

vertical line. The hypothetical means are marked by short

horizontal lines. The hypothetical means lie weIl within the

95% CI in aIl cases.

•

•
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The effect of correlation between sampling error in survey

mean X and survey mean Y:

The simulation program assumes that, within each lake,

sampling error in a survey mean X does not covary with

sampling error in survey mean Y. This assumption has been

used by others. though it has dangers (Reckow, 1994). If

sampling errors do covary, then the simulation results will

be biased. The simulation program will tend to overestimate

the effects of sampling error when the covariance is

positive, and underestimate it when the covariance is

negative (Figure 5) .

l believe that assuming independence will not seriously

bias simulation results based on the Pace (1984) data set.

The double constraints imposed on simulated means (min/max

and 95% CI) should counter-balance bias that might result

from weak, positive correlations between sampling error in

survey mean X and Y. Plots of replicate X and y from Pace's

(1984) 12 sites did not reveal any trend to strong

correlation (Table 2), which is consistent with weak or no

covariance between the sampling error in survey means

(Figure 6). However, the sample sizes (4 or 5) used in these

plots may be insufficient to expose covariance. Some larger

data sets from one of the lakes that Pace surveyed did not

suggest strong covariance either (Table 2) .



FIGURE 5: (a) A close look at one hypothetical data

point on a regression line. Dashed lines delineate the

limits imposed on simulated sampling error. (bl Four arrows

symbolizing sampling error divide the available space into

quadrants. With a positively sloping regression line. if the

sampling error in mean X and Y is positively correlated.

then quadrants II and IV are more likely to be occupied.

where residuals tend to be lower.

•

•
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FIGURE 6: Examples of systems where sampling error in

mean X and mean Y are (al independent. and (bl correlated.

Correlation between replicate X and replicate Y is

associated with correlation between the sampling error in

Mean X and Mean Y.

•

•
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TABLE 2. Within-lake correlations between replicate TP and
CHL. Data are from two sources: Pace (1984) and The McGill
Limnology ResZarch Centre. The number?of replicate data
points (n), r , and the significant r- at 5% level are
shown. The McGill Limnology Research Centre sites are on
Lake Memphremagog.

Pace data

Lake r 2
signi qcant

n r-

Bowker 4 0.05 0.77
Orford 4 0.06 0.77
Brompton 4 0.97* 0.77
Lovering 5 0.23 0.66
Argent 5 0.39 0.66
North 5 0.45 0.66
Central 5 0.42 0.66
South 5 0.50 0.66
Massawippi 5 0.00 0.66
Brome 5 0.70* 0.66
Magog 5 0.02 0.66
Waterloo 5 0.49 0.66

McGill Limnology Research Centre data

Sites Year n r 2
signif~cant

r

Pender 1975 20 0.49* 0.20
Border 1979 33 0.44* 0.13
Central 1979 33 0.09 (1.12
North 1979 34 0.02 0.11
Pender 1979 33 0.37* 0.12
Border 1980 31 0.41* 0.13
Border 1981 15 0.43* 0.26
Central 1981 15 0.02 0.26
North 1981 16 0.00 0.24
Central 1985 19 0.34* 0.21

* statistica1ly significant r 2 (p<0.05l .

•
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The effect of non-random sampling:

Pace (1984) sampled lakes periodically (about once a

month) rather than randomly. The CLT assumes random sampling

(Hogg and Tanis, 1983). If sampling is not random, then the

distribution of a survey mean might differ from the CLT

approximation.

Unfortunately, there is no way of knowing how much

simulated distributions differ from those distributions that

gave rise to Pace's (1984) survey means. This is not a

unique situation. For instance, random sampling is often

assumed when we make confidence intervals, even when

sampling is periodic.

SIMULATION RESULTS

About 30% of the 1000 regressions on simulated data had

SSE values that exceeded the 5SE found using Pace's (1984)

survey data (Table 3). In other words, about 30% of the

survey regressions from a set of 12 lakes in which logCHL

was perfectly predictable from logTP would have an 55E

greater than the SSE found using Pace's (1984) data, given

that survey means behave like the simulated means. Using

computer generated 95% CI, the model r 2 is not significantly

different than the survey r 2 . The distributions of model S5E
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TABLE 3. Simulation results from 1000 simulated data sets.

Probability that model SSE > survey SSE = 30.1%

mean model r2 (95% CI) = 0.95 (0.89 - 0.99)

mean model SSE (95% CI) = 0.092 (0.026 - 0.210)

For comparison, derived from Pace (1984l:

•

survey SSE

survey r 2

= 0.1082

= 0.94
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and r 2 are shawn in Figure 7.

Individual simulated data sets are also consistent with

the perfect-fit hypothesis. Three simulated data sets are

shown in shown in Figure S. Scatter is due only to the

effects of simulated sampling. The program generated 1000

such data sets, and only three are illustrated, so there is

a danger of persuasion through editing. However, the three

data sets reflect the spectrum of r 2 and SSE values produced

through simulation. Only Figure Sa has an SSE greater then

the survey SSE. This corresponds roughly to the 30% of aIL

simulated data sets that had higher SSE values than the

survey SSE.

Though it is counter-intuitive to believe the perfect­

fit hypothesis (it seems unlikely that CHL could be entirely

predicted by TPl, the possibility that most of the variation

in CHL could be explained by TP cannot be dismissed out of

hand. This is disturbing. By exposing such ambiguity in one

regression analysis, the simulation results force us to

question aIl interpretations that do not consider the

·perfect-fit" null hypothesis.

These results evoke a second question: when faced with

residuals in a y on X regression, is it better to diffuse

our effort searching for other predictors (X2'X3'X4' and so

on ... l, or to focus effort on achieving better estimates of

X and Y? (Of course. it would be nice to do bothl .



FIGURE 7: (a) The distribution of model SSE, from 1000

•

simulated data sets. The SSE found using Pace's (1984) data

was 0.1082 and is shown by a vertical arrow. (b) The

distribution of model r 2 , from the same 1000 simulated data

sets. The r 2 found using Pace's (1984) data was 0.94 and is

shown by a vertical arrow. Shading emphasizes where model

SSE exceeds the survey SSE, or model r 2 is less than the

survey r 2 .

•
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FIGURE 8: Three simulated data sets were chosen to

•

provide examples of SSE greater than. about the same as. and

less than the survey SSE (0.1082). (a) The first simulated

data set. (bl The third simulated data set. (cl The fifth

simulated data set.

•
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This study implies that achieving better estimates of mean

TP and CHL could be more informative than sampling

additional variables at the same intensity as the initial

study.

SENSITIVITY TESTS

Three criteria are used to assess sensitivities: the

probability that model SSE exceeds survey SS~, mean model

SSE and its 95% CI, and mean model r 2 and its 95% CI.

The effect of altering the number of simulated data sets:

Analyses were done using 100, 200, 500, 1000, 2000,

5000 and 10000 simulated data sets. A sample size of 500 was

sufficient to produce stable results for the probability

that model SSE exceeded survey SSE (Figure 9al. AlI sample

sizes produeed similar mean model SSE values (Figure 9bl.

Likewise, aIl sample sizes produeed similar mean r 2 values

(Figure gel. Considering these findings, a sample size of

500 may have been adequate, but a sarnple size of 1000 seemed

to offer a better blend of eomputing time and eredibility .



FIGURE 9: Results using different numbers of simulated

•

data sets. (al The probability that model SSE exceeds

survey SSE. (bl The mean and 95% CI for model SSE. (cl The

mean and 95% CI for model r 2 .

•
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The effect of using non-CLT dependent simulations:

The resu1t chat 30% of mode1 SSE exceeded survey SSE

came from simulations based on the CLT. The CLT general1y

gives good approximations if n is greater than 25 or 30,

where n is the sample size used to ca1culate the samp1e

mean. If the unàerlying distribution (the distribution of

replicate values) is sYmmetric, unimodal, and continuous,

then good approximations can be had when n is as low as 4 or

5 (Hogg and T~nis, 1983). Pace (1984) used sample sizes of 4

or 5, but the underlying distributions of his survey mean TP

and CHL were possibly 10gNormal (Pace, 1984), and therefore

aSYmmetric. If 50, the sample sizes provided by Pace (1984)

may have been too small for the CLT to give good

approximations of the distributions of means.

To investigate this problem, a second simulation

program was made that did not use the CLT. The original

simulation program (CLT program) chooses means directly from

a distribution of means approximated by the CLT. The second

program instead calculates each mean from n simulated

replicates (n is the number of replicates used by Pace

(1984) to estimate each survey mean) .

The second simulation program (logNormal replicate

program) assumes that all underlying distributions are

10gNormal. The means of these underlying distributions are

the same hypothetical means used in the CLT program, and the
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?variances are the S- values mea,ured by Pace (1984). The

computer code appears in Appendix II.

In the CLT program the following equation ~s used to

calculate 95% CI for simulated means:

95% confidence limit= hypothetical mean +/- 1.96 * (S2/ n )1/2

But this equation is appropriate only when the CLT applies.

so it is not used in the 10gNormal replicate program.

Instead, 95% CI are based on simulations. For each of the

hypothetical mean TP and CHL values, 1000 simulated means

are made by averaging n simulated replicates. 1000 times.

Each collection of 1000 simulated means is ordered from

lowest to highest value; the 25th and 975th values are used

as the 95% confidence limits.

A third simulation program (Normal replicate program)

was also made. Its broad structure is identical to the

10gNormal replicate program, except that the Normal

replicate program assumes that ail underlying distributions

are Normally distributed.

This third program acts as a control in comparisons

between the simulation results of the 10gNormal replicate

program and CLT program. If results from the CLT program are

similar to results from the Normal replicate program, then

any difference between results from the CLT program and the

10gNormal replicate program must stem from their different
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The effect of altering min and max used as bounds in

simulation:

TwO additional sets of simulations were done using

different min/max values. One set of simulations ("narrow")

used min/max that were close to the hypothetical means,

another set ("wide") used min/max that were far from

hypothetical means.

In each lake. the "narrow" min wa!:> calculated by

halving the distance between the hypothetical mean and the

lowest sampled replicate value. The "narrow" max was

calculated by halving the distance between the hypothetical

mean and the highest sampled replicate value. The "wide" min

was calculated by halving the lowest sampled replicate

value, the max by multiplying the highest replicate value by

1. 5.

Sometimes when "narrow" min/max are used, limits to

simulated values are exceeded by hypothetical means

themselves (before there is any simulation). In these

situations, either the min/max limits or the hypothetical

means are inappropriate. Hypothetical means exceeded

"narrow" min/max limits 4 times out of the 24 (17%) using

the Pace (1984) data. Since these min/max limits were chosen

to test the effects that the min/max limits have on

simulations, and were not an attempt to represent real

min/max limits, it may not matter whether the hypothesis or
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min/max limit was inappropriate in four cases. To avoid

faulty simulations, limits were widened, in those four

cases, to include the hypothetical mean.

Under "narrow" min/max limits, the probability of model

SSE exceeding survey SSE was 9% (Table 5). Under the regular

min/max limits, the probability was 30%. Under "wide"

min/max limits, the probability was 34%. Therefore, how we

choose min/max limits certainly affects these probabilities.

Simulations predict a 3% to 5% reduction in r 2 , on

average, due to sampling error, regardlezs of the min/max

limits used (Table 5). The average model SSE and r 2 are more

robust with respect to min/max limits than is the

probability of model SSE exceeding survey SSE. There is

almost a fourfold difference between the "narrow" and "wide"

results for the probability of model SSE exceeding survey

SSE, which reveals this question's requirement for

accurately estimated min/max. How to best estimate min/max

is unresolved.

The effect of altering S2 estimates:

Each simulated mean cornes from a distribution that is

Normal and has a variance of S2/n , where S2 is the variance

of replicates surveyed by Pace (1984) and n is the samp1e

size he used to estimate means. The amount of sampling error
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TAbLE 5. Results using different criteria to set min/max
for simulated mean TP and CHL. "Narrow", "regular", and
"wide" are described in text. Shown are the probability that
model SSE exceeds survey SSE ("P"), the

2
mean of model SSE

and its 95% CI, and the mean of model rand its 95% CI.

Model SSE Model r 2
Min/max P (95% CI) (95% CI)

Narrow 9 0.065 0.97
(0.019 - 0.138) (0.92 - 0.99)

Regular 30 0.092 0.95
(0.026 - 0.210) (0.89 - 0.99)

wide 34 0.099 0.95
(0.028 - 0.230) (0.88 - 0.98)



•

•

48

allotted to each hypothetical mean during simulation depends

on S2 /n , which in turn affects model SSE. This section

discusses S2 effects, the next section discusses n effects.

Simulations used four sets of S2 values, in

addition to the s2 values from sampled replicates (called

regular S2). Each of the four sets was made by multiplying

each of the 24 regular S2 values by a factor of: 0.1, 0.5,

2.5, or 5. One way to give these factors a context is to

look at confidence intervals for S2. Using the method of

shortest unbiased confidence intervals (Sokal and Rohlf,

1981), when sample size is five. the 95% confidence interval

for the S2 of a normal distribution is:

0.3125 * S2 to 6.590 * S2

When S2 values are set at 1/10th the S2 of sampled

replicates, the probability of model SSE exceeding survey

SSE is zero. When s2 values are set at five times the s2 of

sampled replicates, the probability is 97% (Figure 10). Mean

model SSE and r 2 also show wide spreads due to changes in S2

(Figure 10).

These findings may not be as troublesome as they first

appear. When the S2 factors shown in Figure 10 were applied,

the same factor was applied to aIl of the 24 underlying

distributions for TP and CHL, and then 1000 data sets were

simulated. Then a new S2 factor was applied and the process



FIGURE 10: Results assuming different S2 estimates for

•

replicate TP and CHL. (a) The probability that model SSE

exceeds a fixed SSE (0.1082, the survey SSE from Pace

(1984»). The range in S2 values was achieved by multiplying

Pace's S2 measurements by 0.1, 0.5, l, 2.5 and 5. (bl The

mean and 95% CI for model SSE. (c) The mean and 95% CI for

model r 2 .

•
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repeated. But in a we11 designed study, the chance of every

S2 estimate being vP.ry low, or very high, relative to the

true values is minute. For instance, a factor of 0.3 falls

at the lower edge of the 95% confidence interval for an S2

from a sample size of five from a Normal distribution. The

chance of every sampled S2 value being that low is about 4 *

10- 39 , and would on average require 2.5 * 1038 surveys

before happening.

Because one would expect overestimates of S2 as often

as underestimates of S2, the effects of inaccurate 52

estimation may not be large. In fact, this seems to be the

case with Pace's (1984) 52 measurements. When his 52

measurements are plotted on published mean-variance

rcgressions for TP (France and Peters, 1992) and CHL

(Marshal et al., 1988) they are not consistently high; sorne

are high, sorne are low, sorne are in the middle (Figure 11) .

S2 has an upperbound of nM2 (where n is the sample size

used to estimate the mp.an, M) (Appendix I). It is possible

that Pace's (1984) 52 values are highly inflated but fall

within the mean-variance plots in Figure 11 because his

values are more mathematically constrained than those values

in the published plots (France and Peters (1992), for

instance, use n=7). The dashed 1ine in Figure 11 shows nM2

for n=5, the sample size most used by Pace (1984). Pace's

(1984) 52 values are about 1/10th to 1/100th of the nM2

maximum, therefore there is no evidence of mathematical



FIGURE 11: Mean:variance plots can be used to sho\: that

Pace's (1984) S2 measurements are not unusual. (a) Pace's

measurements of S2 associated with TP (solid circles)

superimposed on a mean:variance plot for TP from France and

Peters (1992) (open circles) . (b) Pace's measurements of S2

associated with CHL (solid circles) superimposed on a

mean:variance plot for CHL from Marshall et al. (1988) (open

circles). The dotted lines show the theoretical nM2 maximum

for S2 for Pace's results (n=5), and that mathematical

constraints are not the reason that Pace's results fall

within those of the general mean:variance plots.

•

•



o

o

o•

.'.'

.........
.. '

.........
.'.....

........1

w
()
z 3
c:(

lI:
c:(

> 2
(!J
a
....J

• 5
(a) .'

.
...

4 °0

0.5 1 1.5

LOG MEAN TP (mglm3
)

2 2.5

0 8
00 .0

o<9
cPo.

o 8 Oc9°
o

o
-1 -

4 r--------------------~..---...'
~ (b) ... '

3 .'~ .....'.. '.'.'.......
w 2 .', "1. ~ •••••...., .'z ....
c:( .'- .....
cr: If- .•••..
~ .... ()

> J"i°o·o _
(!) .••.•.• o ...~.
oOt--"""""'::"I'"..r..;.,..-------:l~~-.:.-----------~
...J •••••• tbeo ou~

-1

21.50.5 1

LOG MEAN CHL (mglm
3

)

-2 L.-_........_....I11oo.-.-_..I..-_......' __Ioo.-.-_..J.....-_....I..-_--I.. ----'

-0.5 0

•



•

•

54

constraint at a given level of M..~other criticism might be

that the published mean-variance plots provide an "easy"

test if sorne of their s2 values are inflated due to low

sample size. The France and Peters (1992) plot, however,

used n=7 to calculate each of their data points (Figure

11a), which is larger than any sample size used by Pace

(1984). The sample size criticism may apply to the Marshall

et al. (1988) plot (Figure 11b); but if it does, then it

also suggests that sorne of the S2 values are underestimated

in this plot, which would suggest that any of Pace's s2

values that fall along the bot tom of this plot are

especially low. A reasonable conclusion is that Pace's

values do not appear unusual. This study's findings,

therefore, may be applicable to TP-CHL relationships in

general.

The effect of altering the sample size used to estimate the

mean:

Because sample size is almost always known without

error, it does not affect the robustness of the simulation

results. But the effects of sample size are interesting

since samp1e size is something which researchers control.

The simulation program was run with all n = l, then

with all n = 2, then 3, and so on until aIl n = 10. The
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probability that model SSE exceeded survey SSE falls from

96% to 2% as sample size increases from one to ten (Figure

12a). As n increases, the effects of sampling error become

increasingly difficult to reduce by further adjustments to

sample size. This pattern should be quite general, since it

stems from the fact that sample sizes can be incremented at

a constant rate to a practically limitless number, whereas

the probability has a lower bound of zero.

Graphs such as these could help researchers plan

sampling programs. For instance, if we want to reduce the

probability of model SSE exceeding sorne fixed SSE (0.1082 in

Figure 12a) from 30% to less thar. 5%, a sample size of nine

is needed. However, after a sample size of about 6 or 7,

gains in the precision of SSE estimates become very small.

There is a growing body of literature that uses mean­

variance relationships to predict the sample sizes required

to estimate mean values with desired precision. Examples

include sample size predictions for TP (France and Peters,

1991), CHL (Marshall et al., 1988), zooplankton (Downing et

al., 1987), stream benthos (Mori~, 1985), lake and river

benthos (Downing, 1979), aquatic macrophytes (Downing and

Anderson, 1985), and epiphytic invertebrates (Downing and

Cyr, 1985). However, none of these studies looks at the

effect of precision on regre~sion analysis. Knowlton et al.

(1984) stressed that sampling intensity must satisfy the

requirements of whichever statistical test is used.



FIGURE 12: Results when the sample sizes used to

•

calculate the standard error of the hypothetical means are

altered. S2 values are those measured by Pace (1984), and

are kept constant throughout. (a) The probability that

model SSE exceeds a fixed SSE (0.1082. the survey SSE from

Pace (1984)). (b) The mean and 95% CI for model SSE. (c)

The mean and 95% CI for model r 2 .

•
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Researchers who intend to use their measurements for

regression analysis should not assume that sampling error

will be unimportant if they follow the recommendations in

the mean-variance literature. This is not a criticism of

these interesting papers; it uses those ideas as a platform

for new ones. France and Peters (1991), for instance,

recommend that sampling prcgrams designed to develop TP-CHL

relationships should use five to seven temporal replicates.

This study shows that sampling error can still be a problem

when five replicates are used.

Figure 12b is based on the same model SSE distributions

as Figure 12a, and the information in Figure 12a can be

approximated by the information in Figure 12b. For instance,

in Figure 12b the lower 95% confidence limit for model SSE

is about 0.1 when sample size is one. This is close to the

survey SSE in Pace's (1984) study. Therefore, one would

expect that the probability of model SSE exceeding the

survey SSE in Pace's (1984) study would be about 98%, when

sample size is set at one. This is what Figure 12a shows.

It is sometimes difficult to assess the importance of

"raw" SSE values (i.e. what does an SSE of 0.1082 mean?).

Figure 12c shows sample size comparisons in terms of r 2 .

Keeping in mind that results are based on one data set and

all of the assumptions in the simulation program, it can be

interpreted as fo11ows. When we sample a system whose mean ï.

and y values fall perfectly a10ng a line, the resultant
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regression is likely to show an r 2 less than one. How much

less will be àetermined. in part. by the sample sizes used

to estimate the mean values.

Under the program assumptions. Figure 12c shows that

0.80 is the lower 95% confidence limit for model r 2 from

perfectly correlated hypothetical means that are based on a

sample size of three. Yet, given a regression with an r 2 of

0.80, few scientists would recognize that they might be

dealing with a perfect-fit. In fact, if 52 values were high

enouqh. and the range of X small enough, one could lose aIl

of a perfect relationship to the effects of sampling error.

When sampling error is not large enough to obscure the

relationship between a first predictor variable and Y, it

can still diminish the statistical significance of a ~econd

predictor variable. This should be a concern especially when

the first predictor accounts for much of the variation in Y,

because then it is easier for sampling error to overshadow

any additional variation in Y attributable to the second

variable. This has great relevance to sampling design, and

might be particularly relevant to "old questions". such as

nutrient-CHL regressions, where existing models already

explain much of the variation in y and small increments in

predictive power are sought through yet another variable.

The interpretations of previous negative findings in those

sorts of studies should be reconsidered .
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CONCLUSIONS

This study investigates the hypothesis that a set of

true mean TP and CHL values is transposed, through sampling

error, from being perfectly correlated into the data set

measured by Pace (1984). A simulation program was developed

to help answer this question, a set of simple sensitivity

tests assessed the applicability of simulations to Pace's

(1984) work, and the rcbustness of the simulation program's

results.

Two specific questions were asked: (1) How often do

•

regressions through simulated data result in an SSE that
?exceeds the survey SSE? (2) Is the average r- from

regressions through simulated data significantly different

than the survey r 2?

The answers are: (1) Regressions through simulated

data result in SSE that exceeds survey SSE about 30~ of the

time. This might be called a "cautious o"erestimate". lt is

cautious because simulated values were constrained, and it

may be an overestimate because within each lake sampling

error in mean X was assumed to be independent of sampling

error in mean Y. Both aspects of the simulation were

reasonable, however, and l do not think that either

seriously biased the results. lnstead, my confidence in the

simulations is increased when l consider their counter­

balancing effects. (2) The mean r 2 of regressions through
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simulated data was not significantly different than the

survey r 2 . The criteria for significance were 95% confidence

1imits derived from 1000 regr~ssion analyses through 1000

simulated data sets.

These resu1ts are consistent with the hypothesis that

samp1ing error in mean TP and CHL accounts for all of the

residual error in the regression through Pace's (1984) TP­

CHL data. We should therefore question whether looking for

additional predictor variables is the best way to improve

predictions of mean CHL in these lakes. Instead, improving

the precision of the estimates of means may be more

effective.

A central assertion of this study is that when mean

values are used in a regression analysis. then dependent and

independent variables are measured with error. This

assertion conflicts with an important assumption underlying

least squares linear regression. By investigating the

consequences of these conflicts, we enhance our ability to

interpret regression results. The simulation approach used

in this study should extend beyond limnology; it should be

applicable to any least squares regression study involving

sample means .
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APPENDIX l

?The maximum value for the S- of samples from a populacion

l use the following form of s2 (Sokal and Rohlf, 1981):

(n - 1)

[ 1]

where xi is the magnitude of each individual measurement, X
is the mean of all measurements, and n is the sample size.

For a given n and x, 52 is maximized by max~m~2~ng ~(Xi2)
because the other terms in [1] remain constant.

Maximizing 2(xi:L

l use an approach that is relatively simple but not
algebraically rigorous.

The samples are first arranged in n boxes. The focus will
initially be on the last two boxes, boxes n-l and n. Let
their magnitudes be z and y so that subscripts are
unnecessary. There are no negative magnitudes.

box 1 box 2

CJc:J
box n-1 box n

~~
~~

•
Now ask which arrangement yields a larger sum of squares:

the noncompiled boxes: z2 + y2 [2]

or the compiled boxes: (z + y)2 + 02 [3]
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[3] can be written as:

(z + y)2 + 02 = z2 + v2 + ~ [4]

•

Therefore the compilation of the two boxes gives the larger
sum of squares, or an equal sum of squares when z or y are
zero.

Next, one can ask what happens when those compiled boxes are
compiled wi1h box n-2. The same reasoning shows that an even
higher I(xi ) is obtained (exczpt when one of the boxes has
a magnitude of zero, then I(x· ) remains unchanged). This
process can be continued untir aIl boxes are compiled into
one.

2
At that point, when no more compilations are possible,

I(xi ) is maximized. AlI but one box will have zero
magnitude. The magnitude of the nonzero box will be 2xi' If
this value is inserted into [1]:

ŒXil2 - nx2 [ 5]
s2 =

(n - 1)

(nX) 2 - nx2

=
(n - 1)

n2x2 - n2X2
=

(n - 1)

nX2 (n - 1)
=

(n - 1)

= nX2

Therefore the maximum S2 is nX2.
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.".PPENDIX II

Computer code for the CLT oroaram

Note: The code is slightly more extensive than ~s required
for this thesis. It is written in TBASIC.

REM Program that simulates scat ter around a perfectly
REM deterministic linear model. Amount of scatter is related
REM to the estimateà uncertainty involved in estimating the
REM population means - ie the data points - shown along
REM the x and y axis of a regression line.

cls
$stack 4054 'allocates extra memory for arrays

____________~Control Variables _

%wantGraphics = 0

%wantDataPoints = 0

%sampleSizeCheck = 0

%wantEachResult = 0

%soundOn = 0

wantSSEfile$ = "n"
wantSSEoverSSYfile$
wantSSYfile$ = "n"
wantR2file$ = Iln l '

'non-zero value permits $IF/$ENDIF
block in SUB Regression

'non-zero value permits $IF/$ENDIF
block in sua Regression

'a loop to alter sample size, to see
effect on model SSE
'non-zero value causes samplesize
check to stop after each n.

'adds sound to alert user when
processing done.

'files modelSSE array.
= "n" 'files modelSSe/SSY array.

'files modelSSY array.
'files modelr2 array.

•

INPUT "maximum number of data points to be entered = ";
maxNum% 'required for DIM statements

INPUT "number of simulated data sets requested = ";
numTrials%

DIM DYNAMIC x(l:maxNum%), y (l:maxNum%), logX(1:maxNum%),
logY(l:maxNum%), logRandx(l:maxNum%), logRandy(l:maxNum%),
hypX(l:maxNum%), logHypX(l:maxNum%), hypY(1:maxnum%),
logHypY(l:maxNum%)

DIM DYNAMIC unexplainedMSE(l:numTrials%),
modelr2(l:numTrials%), pseudor2(l:numTrials%),
arrayModeISSE(l:numTrials%),
modeISSEoverSSY(l:numtrials%), arrayModeISSY(l:numtrials%1

DIM DYNAMIC Xrnax(l:maxNum%), Xrnin(l:maxNum%),
Ymax (1 :maxNum%) , Ymin (1 :maxNum%) ,
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repLevelSlope(l:maxNum%l, repLevellntereept(l:maxNum%).
repLevelS2YgivenX(1:maxI1um%). S2Y(1:maxNum%),
S2X(1:max~um%)

DIM DYN~~IC sampleSizeX%(l:maxNum%).
sampleSizeY%(l:maxNum%), lowerCI(l:maxNum%).
upperCI(l:maxNum%). logPerfeetFitY(l:maxNum%)
·······temporarily here to test graphies

DIM DYNAMIC S2hypX(1:maxNum%), S2hypY(1:maxNum%)
DIM DYN~~IC sortedlogRealX(l:ma~~um%),

sortedlogRealY(l:maxNum%). sortedlogRandX(l:maxNum%).
sortedXmin(l:maY~um%). sortedXmax(l:maxNum%),
sortedYmin(l:maxNum%). sortedYmax(l:maxNum%)

DIM DYNAMIC orthoX(l:maxNum%), orthoY(l:maxNum%).
Xgap(l:maxNum%). Ygap(l:maxNum%)

simulationsForX& = 0
simulationsForY& = 0

'inerements at each simulation.

'as above. for simulated meanY.

'occurances of: preset min
values that are less than 95% CI.

'max values that are greater
than 95% CI.

= 0 'initializes variable to
count occurances of a simulated
meanX bound by 95% CI.
'bound by 95% CI.
'bound by preset minimum value.
'bound by preset maximum value.

meanXboundByHi95CI&

meanXboundByLo95CI& = 0
meanXboundByMin& = 0
meanXboundByMax& = 0

minMeanXisUnder95CI& = 0

maxMeanXisOver95CI& = 0

meanYboundByHi95CI& = 0
meanYboundByLo95CI& = 0
meanYboundByMin& = 0
meanYboundByMax& = 0

minMeanYisUnder95CI& = 0
maxMeanYisOver95CI& = 0

•

repxBoundByHi95CI& = 0

repxBoundByLo95CI& = 0
repxBoundByMin& = 0
repxBoundByMax& = 0

minRepxIsUnder95CI& = 0

maxRepxIsOver95CI& = 0

repyBoundByHi95CI& = 0
replicate y.

'initializes variable to count
occurances of a simulated
replicate x bound by 95% CI.

'bound by 95% CI.
'bound by preset minimum value.
'bcund by preset maximum value.

'occurances of: preset min values
that are less than 95% CI.

'max values that are greater than
95% CI .

• as above. for simulated
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repyBoundByMin&
repyBoundBYMax%

= 0
= 0
= 0
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minRepyIsUnder95CI& = 0
maxRepyIsOver95CI& = 0

CALL GETOATA ( sampleSizeX%(), sampleSizeY%(), numTrials%,
numPoints%, X(), Y(), logX(), logY()

CALL GETS2INFO ( S2method%, S2X(), S2Y(), numPoints%,
replicateCorrelation$, expYS2, propConstYS2, expXS2,
propConstXS2, repLeveLSlope(), repLevelIntercept(),
repLevelS2YgivenX(), maxS2X, minS2X, maxS2Y, minS2Y)

CALL GetBoundsInfo (numPoints%, boundsType%, repBoundsType%,
Xrnax() , Xrnin() , Ymax(),Ymin(), minRepx, maxRepx, minRepy,
maxRepy)

CALL Regression (logX(),logY(), (numPoints%), realSSY,
realSSE, realSlope, realIntercept)

CALL HypothesizedXY (logHypX(), hypX(}, logHypY(), hypY(),
S2h~~X(), S2hypY()

CALL MinMaxCIcheck ("meanX", X(), Xrnin ( ), Xrnax ( ), hypx ( ) ,
sampleSizex%(), S2X(), S2hypx(»

CALL MinMaxCIcheck ("meanY", Y(), Ymin(), Ymax(), hypY(),
sampleSizeY%(), S2Y(), S2hypY(»)

startTimel& = TIMER 'initial time, used to time
non-interactive part of program.

loopCounter& = 1 'used in counting %sampleSizeCheck loops

" .,

turned on

common

'entered only if
by user

size program uses a
X and Y."

PRINT "The sample
sample size for

PRINT " "
INPUT" average sample size used = ";

meanSampleSize%
DO 'end of DO is embedded in $IF/$ENOIF below

cls
IF loopCounter& > 1 THEN

PRINT "Sample size just tested:
meanSampleSize%

PRINT "
PRINT "probability modelSSE > realSSE = ";

probModelSSEgtRealSSE
END IF

$IF %sampleSizeCheck

•
meanSampleSize% = meanSampleSize% + 1
FOR i = 1 to numPoints%

sampleSizeX%(i) = meanSampleSize%
sampleSizeY%(i} = meanSampleSize%

NEXT i
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$ENDIF

FOR trial = 1 to numTrials%
IF replicateCorrelation$ = "y" THEN

CALL SimulateWhenReplicatesCorr ( sampleSizeX%(),
sampleSizeY%(), numPoints%, xe), expXS2,
p,opConstXS2, hypY(), expYS2, propConstYS2,
repLevelSlope(), repLevelIntercept(),
repLevelS2YgivenX(), logRandX(), logRandY())

ELSE
CALL SimulateSamples ( hypY(), sampleSizeX%(),

sampleSizeY% (), (numPoints%), (expXS2),
(propConstXS2), (expYS2), (propConstYS2), hypX() ,
logRandX(), logRandY())

END IF
CALL Regression (logRandx(), logRandy(), (numPoints%),

modelSSY, modelSSE, slope, intercept)

$IF %wantGraphies
CALL Graphies (boundsType%, Xrnin() , Xrnax() ,

Ymin(), Ymax(), numPoints%, logX(), logY(),
realSlope, realIntereept, logRandX(),
logRandY(), slop~ , intereept)

$ENDIF
CALL CompileSSEdist «(modeISSE), (modeISSY), (reaISSE),

(reaISSY), (numPoints%), (trial), unexplainedMSE () ,
modelr2(), pseudor2(), arrayModeISSE(),
modeISSEoverSSY(), arrayModeISSY() )

NEXT trial

IF %sampleSizeCheek=O THEN
finishTimel& = TIMER

$IF %soundOn
CALL SoundAlert(nuIIVariable)

$ENDIF

CALL PrintBoundsInfringements ( numPoints%, numTrials%,
boundSType%, meanXboundByMin&, meanXboundByMax&,
meanXboundByHi95CI&, meanXboundByLo95CI&,
minMeanXisUnder95CI&, maxMeanXisOver95CI&,_

meanYboundByMin&, meanYboundByMax&,
meanYboundByHi95CI&, meanYboundByLo95CI&,
minMeanYisUnder95CI&, maxMeanYisOver95CI&)

IF replieateCorrelation$ = "y' THEN
CALL ReplieateBoundsInfringements ( repBoundsType%,

repxBoundByMin&, repxBoundByMax&, repxBoundByHi95CI&,
repxBoundPyLo95CI&, minRepxIsUnder95CI&,
maxRepxIsOver95CI&,_

repyBoundByMin&, repyBoundbyMax&, repyBoundByHi95CI&,
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repyBoundByLo95CI&, minRepyIsUnder95CI&,
maxRepyIsOver95CI&)

END IF
END IF

startTime2& = TIMER 'restarts program timing after user
interaction in SUB
PrintBoundslnfringements

CALL ComputeSSEstats ( unexplainedMSE(), modelr2(),
pseudor2(), (numTrials%), meanUnexplainedMSE, meanModelr2,
meanPseudor2, arrayModeISSE(), (reaISSE),
probModelSSEgtRealSSE, meanModelSSE, lowerBoundMeanSSE,
upperBoundMeanSSE)

CALL FindProbModelSSEgtRealSSE ( (reaISSE), (numTrials%),
arrayModeISSE(), probModelSSEgtRealSSE)

IF Clwarning$ = "y" THEN PRINT "WARNING CI below determined
from too few random trials."

PRINT " "
PRINT " RESULTS: "
PRINT " (with 95% CI for simulations)"
PRINT "

#!!#.!!!!!!!!

PRINT USING "1 realSSE
###. #### 1"; realSSE

PRINT USING "1 mean modelSSE
! ###.#### ! ###.#### 1"; lowerBoundMeanSSE,
"-",meanModeISSE, "-", upperBoundMeanSSE

PRINT "1

"==--::-:"".

PRINT USING "1 prob.
#. ###

PRINT "

1"
that modelSSE >= realSSE 1

1"; probModelSSEgtRealSSE

_________ 11

PRINT " "
PRINT "

"

•

PRINT USING "1 mean sq. error of real data 1
###.#### 1"; reaISSE/numPoints% '****check
formula

PRINT USING "1 mean unexplained mean sq. error ###.####
! ###. #### ! ###. #### I"; lowerBoundMSE, "- N

meanUnexplainedMSE, "_", upperBoundMSE
PRINT "

---------"
PRINT Il ..

PRINT "
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"
PRINT TJSING "1 real r2 1

il. il# 1"; (realSSY - realSSE) 1 realSSY
PRINT USING "1 mean modelr2 1

#. ## ! #. il# ! #. ## 1"; lowerBounclModelr2, "-"
meanModelr2, "-", upperBounclModelr2

PRINT USING "1 mean pseudor2
#.##! #.##! #.## 1"; lowerBoundPr2, "-"
meanPseudor2, "-", upperBoundPr2

PRINT "
_________ u

PRINT " "

•

finishTime2& = TIMER

$if %sampleSizeCheck

$IF %wantEachResult
input "press any key to continue";carryon$

$ENDIF

INCR loopCounter&
LOOP UNTIL probModelSSEgtRealSSE <= .OS OR

meanSampleSize% >= 100

$IF %soundOn
CALL SoundAlert (nullVariable)

$ENDIF

INPUT ·Samplesize looping completed. Press any
key for bounds information."; carryOn$

cls
loopCounter& = loopCounter& - 1 'resets to

appropriate
value

CALL PrintBoundsInfringements ( numPoints%.
numTrial~%, boundsTYPe%, meanXboundByMin&.
meanXboundByMax&. meanXboundByHi9SCI&.
meanXboundByLo9SCI&. minMeanXisUnder9SCI&.
maxMeanXisOver9SCI&._

meanYboundByMin&. meanYboundByMax&.
meanYboundByHi9SCI&. meanYboundByLo9SCI&.
minMeanYisUnder9SCI&. maxMeanYisOver9SCI&)

IF replicateCorrelation$ = .y. THEN
CALL ReplicateBoundsInfringements {

repBoundsTYPe%. repxBoundByMin&.
repxBoundByMax&. repxBoundByHi9SCI& •
repxBoundByLo9SCI&. minRepxIsUnder9SCI&.
maxRepxIsOver9SCI&._
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repyBoundByMin&. repyBoundbyMax&,
repyBoundByHi95CI&. repyBoundByLo95CI&.
minRepyIsUnder95CI&, maxRepyIsOver95CI&1

IF

IF meanSampleSize% >= 100 THEN
PRINT "required sample size exceeds 100;

program stopped."
ELSE

PRINT " "
PRINT; "required sample size is = ";

meanSampleSize%
END IF
PRINT " "
elapsedTime = (finishTime2& - startTimel&) 1 60
PRINT USING " ~Hl,T'S ALL: elapsed time = ####.#

&"; elapsedTime, " min."
END

$ENDIF
elapsedTimel = (finishTimel& - startTimel&) 1 60
elapsedTime2 = (finishTime2& - startTime2&) / 60
PRINT USING "THAT'S A~L: elapsed time PART 1 = ####.# &

####.# &"; elapsedTimel, " min., PART 2 = ", elapsedTime2.
-min a"

END

renarne:
INPUT "file
RESUME

'file error trapping
not found, please try again"; fileName$

•

,-----------------------------------------------------------

PRCCEDURES

SUB GetData ( sarnpleSizeX%(l) , sampleSizeY%(l) , numTrials%,
nurnPoints%, x(l), y(l), logx(l), logy(l))

REM retrieves measured data points from file or keyboard.
SHARED fileNarne$ 'this allows file error trapping (see

RESUME above)
LOCl'L i, continueS, xRawDataLogged$, yRawDataLogged$,

sarnpleSize%. xSarnpleSize%, ySarnpleSize%

INPUT "Is x raw data log transformed? Use srnall letters
y/no ";xRawDataLogged$

INPUT "Is y raw data log transformed? Use srnall letters
y/no ";yRawDataLogged$

PRINT " "
INPUT "Is XY Data on file or to be keyboarded? Use small
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letters f/k."; routeS
IF routeS = "f" THEN

INPUT "What is the XY data file name"; fileNameS
CALL GetFile ( fileNameS, x(), y(), numPoints%

ELSE
CALL GetKeyboard ( x(), y(), numPoints%)

END IF

IF xRawDataLoggedS = "y" THEN
FOR i = 1 to numPoints%

logx (i) =x (i)
x(i)=10 A logx(i)

NEXT
ELSE

FOR i = 1 to numPoints%
logx(i)=LOG10(x(i))

NEXT
END IF
IF yRawDataLogged$ = "y" THEN

FOR i = 1 to numPoints%
logy (i) =y (i)
y(i) =10 A logy(i)

NEXT
ELSE

FOR i = 1 to numPoints~

logy(i)=LOG10( y(i) )
NEXT

END IF

'x values already logged

'transform data

'y values already logged

'transform data

PRINT " "
PRINT " X
PRINT ,,---------

Y'
--- 11

FOR i = 1 to numPoints%
PRINT USING "####.### ####.###"; x(i), y(i)
IF «i/15) - FIX(i/1S)) = 0 THEN

INPUT "more. press any key";carryOn$
END IF

NEXT
PRINT " "
INPUT "press any key to continue";carryOn$
cls

size for aIl X, a different sample

used for aIl X and Y."
location, but is the same

The same sample size is
Sample size varies with
,(X, Y) ."
One sample
aIl Y."

PRINT "Options for sample sizes:"
PRINT "-------------------------,,
PRINT " "
PRINT " 1.
PRINT " 2.

for each
PRINT • 3.

size for•
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PRINT " 4. Each sample size must be entered separately."
PRINT " "
INPUT " Which \~ould you like: 1,2,3, or 4"; sampleSi zeType%
cls

SELECT CASE sampleSizeType%
CASE 1

PRINT "The same sample size is used for aU X and Y."
PRINT " "
INPUT "sample size = "; sampleSize%

FOR i = 1 to numPoints%
sampleSizeX%(i) = sampleSize%
sampleSizeY%(i) = sampleSize%

NEXT i

CASE 2
PRINT "Sample size varies with location, but is the

same for each (X,Y)."
INPUT "Are sample size data on file (y/n)";file$
IF fileS = "y" THEN

INPUT "what is the file name ";fileName$
CALL Geta2variableFile (fileName$, sampleSizeX%(),

sampleSizeY%())
ELSE

PRINT " "
PRINT "Each location's sample size must be entered

separately. "
PRINT " "
PRINT "Location: "
PRINT "---------,,

FOR i = l to numPoints%
PRINT; i; ... •
INPUT "sample size = "; sampleSizeX%(i)
sampleSizeY%(i) = sampleSizeX%(i)

NEXT i
END IF

CASE 3
PRINT "One sample size for all X, a different sample

size for aIl Y."
PRINT " "
INPUT "X sample size = "; xSampleSize%
INPUT "Y sample size = "; ySampleSize%
PRINT " "
PRINT "Location:"
PRINT "---------,,

FOR i = 1 to numPoints%
sampleSizeX%(i) = xSampleSize%
sampleSizeY%(i) = YSampleSize%
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NEXT 1

CASE 4
INPUT "Are sample size data on file (y/n)";fileS
IF fileS = "y" THEN

INPUT "what is the file name ";fileNameS
CALL Geta2variableFile (fileNameS, sampleSizeX%(),

sampleSizeY%())
ELSE

PRINT "Each sample size must be entered separately."
PRINT " "
PRINT "Location:"
PRINT ,,---------"
FOR i = l to numPoints%

PRINT; i;"."
INPUT "X sample size = "; sampleSizeX%(i)
INPUT "Y sample size = "; sampleSizeY%(i)

NEXT i
END IF

CASE OTHER
PRINT "ERROR. SAMPLE SIZE TYPE NOT SELECTED PROPERLY."
PRINT "THERE IS AN ERROR CHECK AHEAD; PLEASE. RE-ENTER

ANY DATA REQUESTED."
INPUT "press any key'; carryOn$

END SELr.:CT
cls

"Sample Sizes:'
" X Y

PRINT
PRINT
PRINT
PRINT

" -
" ,

____ "

•

FOR i = l to numPoints%
PRINT USING '#### ####'; sampleSi7.eX%(i).

sampleSizeY%(i)
NEXT i
PRINT ' "
INPUT "Would you like this data filed (y/n)';fileMe$
IF fileMe$ = 'y' THEN

INPUT "What name would you like (DOS restrictions)';
fileName$

CALL Create2variableFile (fileName$. numPoints%.
sampleSizeX%(). sampleSizeY%())
END IF

INPUT 'Error check. Continue (y/n)';continue$
cls

IF continueS = 'n' THEN
CALL GETDATA ( sampleSizeX%(). sampleSizeY%().

numTrials%. 'lumPoints%. x (). y ( ). logx ( ). logy ( ) )
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END IF
END SUS

SUB Geta2variableFile (moniker$, a%(l), b%(l»
REM siphons a 2 integer variable DOS file.
LOCAL count%, carryOn$

ON ERROR GOTO rename
OPEN moniker$ FOR INPUT AS #1 'accesses an external

data file
ON ERROR GOTO 0
$EVENT OFF

count% = 0
DO UNTIL EOF(1)

count% = count% + 1 'count% will have a count upon exit
INPUT #1, a%(count%), b%(count%)

LOOP
CLOSE #1
PRINT " "
PRINT "Data read from "; moniker$
PRINT "file has ";count%;" observations."
INPUT "press any key to continue";carryOn$
cls
END SUB

SUB Create2VariableFile (moniker$, numPoints%, a%(1), b%(l»)
REM creates a 2 integer variable external data file.
LOCAL count%, carryOn$

OPEN moniker$ FOR OUTPUT AS #1
count% = 0
DO

count% = count% + 1
PRINT #1, a%(count%), b%(count%)

LOOP UNTIL count% = numPoints%
CLOSE #1
PRINT "File "; moniker$;" created."
INPUT "press any key to continue";carryOn$
cls
END SUB

SUB GetS2Info ( S2method%, S2X(1), S2Y(1), numberOfLakes%,
replicateCorrelation$, expYS2, propConstYS2, expXS2,
propConstXS2, repLeveLSlope(1) , repLevelIntercept(1),
repLevelS2YgivenX(1) , maxS2X, minS2X, maxS2Y, minS2Y)



• REM gets 52 information from
5HARED Xl), Y(), fileName$

LOCAL set52Limits$, carryOn$

79

operator.
'allows file
trapping

name error

PRINT "Options for estimating 52 associated with meanX and
meanY: 1.

PRINT
1. _

PRINT
PRINT
PRINT
PRINT
PRINT
INPUT
cls

----------------------------------------------------"
"
1. Use a mean:variance function."
"
2. Use 52 measured from each lake."
•
Which would you like: 1,2"; 52method%

•

5ELECT CASE 52method%
CA5E 1 'mean:variance regression used

PRINT Il ••

INPUT "Exponent, b, of X 52 predictor function
(52=aX h b) = ";expX52

INPUT ·value of a from 52= a X~b = ";propConstXS2
PRINT " "
PRINT " "
INPUT "Exponent, b, of y 52 predictor function

(52=aY h b) = ";expY52
INPUT 'value of a from 52= a Y~b = ";propConstY52

FOR i = 1 to numberOfLakes%
52X(i) = propConstX52 * (X(i) ~ expX52)
52Y(i) = propConstY52 * (Y(i) ~ expY52)

NEXT
cls

CA5E 2 'use 52 measured in each lake.
PRINT 'You have chosen to use different 52 values for

each lake."
INPUT 'Are 52 data on file (yin)'; onFile$
IF onFile$ = "y" THEN

INPUT "What is fi lename " ; fileName$
CALL GetFile (fileName$, 52X(), 52Y(),

numberOfLakes%)
EL5E

FOR i = 1 to numberOfLakes%
PRINT ' "
PRINT ' ,
PRINT 'Lake ";i
PRINT ,----------,
PRINT " ,
INPUT' 52 x = '; 52X(i)
PRINT ' ,
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INPUT" S2 y = "; S2Y(i)
NEXT 1

cls
END IF

END SELECT

CALL Print2RealVariables (" X S2
S2X(), S2Y(), numberOfLakes%)

" y S2 M,

from replicate

ELSE
PRINT " "
PRINT " Parameter values required

regression (rep.x vs. rep.y):"
PRINT

INPUT "Is there correlation betwen x and y at the replicate
level (yin)"; replicateCorrelation$

IF replicateCorrelation$ = "y" THEN
PRINT " "
PRINT "Is there a file holding:"
INPUT "replicate level slope, intercept and and S2ylx

(yin) "; repFile$
IF repFile$ = "y" THEN

INPUT "What is the file name "; fileName$
cls
CALL GetRepParameters (fileName$, repLevelSlope(),

repLevelIntercept(), repLevelS2YgivenX())
, ie. repFile$ = "n"

"-----------------------------------------------------------
____________ 11

--------------------------------"

'repFile$

slope

Lake !I;i

S2yintercept

= "; repLevelSlope(i)
= "; repLevelIntercept(i)

X = "; repLevelS2YgivenX(i)

slope
intercept
S2Y given

PRINT " "
FOR i=l to numberOfLakes%

PRINT Il Il

PRINT " "
PRINT '
PRINT '
PRINT " "
INPUT "
INPUT "
INPUT "

NEXT i
END IF
cls
PRINT " "
PRINT " "
PRINT "Lake

given x "
PRINT

"-----------------------------------------------------------

FOR i = 1 to nUffiberOfLakes%
PRINT USING "#### ####.####

####.####";i. repLevelSlope(i),•
PRINT " "

####.####
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repLevelIntercept(i), repLevelS2YgivenX(i)
IF INT(iI1S) - (iI1S) = 0 THEN INPUT "More, press any

key" ; carryOn$
NEXT i

INPUT "Would you like this data to be filed (y/n) ";
fileRepParameters$

IF fileRepParameters$ = "y" THEN
INPUT "What file name would you like (DOS restrictions)

"; fileName$
CALL CreateRepParameterFile (filename$, numberOfLakes%,

repLevelSlope(), repLevelIntercept(),
repLevelS2YgivenX()

END IF
END IF 'replicateCorrelation$

PRINT Il Il

INPUT "Error check. Continue (y/n)";continue$
cls
IF continueS = "n" THEN

CALL GETS2INFO ( S2method%, S2X(), S2Y(), numberOfLakes%,
replicateCorrelation$, expYS2, propConstYS2, expXS2,
propConstXS2, repLeveLSlope(), repLevelIntercept(),
repLevelS2YgivenX(), maxS2X, minS2X, maxS2Y, minS2Y)

END IF
END SUB

SUB GetRepParameters (moniker$, slope(l) , intercept(l) ,
S2YgivenX(1»

REM siphons rep parameters from a DOS file.
LOCAL count%

$EVENT ON
ON ERROR GOTO rename
OPEN moniker$ FOR INPUT AS #1

ON ERROR GOTO 0
$EVENT OFF

'accesses an external
data file

•

count% = 0
DO UNTIL EOF(l)

count% = count% + 1 'count% will have a count upon exit
INPUT #1, slope(count%), intercept(count%),

S2YgivenX(count%)
LOOP

CLOSE #1
PRINT " "
PRINT "Data read from "; moniker$
PRINT "file has ";count%;" observations."
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INPUT "press any key to continue";carryOn$
cls
END SUB

SUB CreateRepParameterFile (moniker$, numPoints%. slope(l).
intercept(l) , S2YgivenX(1))

REM creates an external data file for replicate correlation
info.

LOCAL count%

OPEN moniker$ FOR OUTPUT AS #1
count% = 0
DO

count% = count% + 1
PRINT #1, slope(count%). intercept(count%),

S2YgivenX(count%)
LOOP UNTIL count% = numPoints%
CLOS;~ #1
PRINT "File "; moniker$;" created."
INPUT "press any key to continue";carryOn$
cls
END SUB

SUB GetBoundsInfo (numberOfLakes%, boundsType%,
repBoundsType%, Xmax(l), Xmin(l). Ymax(l). Ymin(l),
minRepx, maxRepx, minRepy, maxRepy)

REM more data requirements. these are in two SUBs because of
tbasic restrictions.

LOCAL continueS, minMeanX. maxMeanX, minMeanY, maxMeanY
SHARED replicateCorrelation$. fileName$

PRINT "Options for constraining simulated mean values:"
PRINT "-----------------------------------------------
PRINT " "
PRINT " Values will be bound by:"
PRINT " "
PRINT " 1.
PRINT " 2.

lakes. "
PRINT " 3.
PRINT " "
INPUT" Which would you like: 1,2,3 "; boundsType%
cls

Select Case boundsType%
Case 1

PRINT " "
PRINT "Simulated values of meanX and meanY will be
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bound by 95% CI, "
PRINT "also simulated values will be bound by an

arbitrary
PRINT "min value."
PRINT "
INPUT" min meanX value: "; minMeanX
PRINT " "
INPUT" min meanY value: "; minMeanY
FOR i = 1 to numberOfLakes%

Xrnin(i) = minMeanX
Ymin(i) = minMeanY

NEXT
cls
PRINT ,,~~~* max not applicable ........ "

Case 2
PRINT " "
PRINT "Simulated values of meanX and meanY will be

bound by 95% CI,"
PRINT "and by a general max or min value."
PRINT " "
INPUT" min meanX value: "; minMeanX
INPUT" max meanX value: "; maxMeanX
IF (minMeanX >= maxMeanX) THEN CALL BoundsErr

(minMeanX, maxMeanX)
PRINT " "
INPUT" min meanY value: "; minMeanY
INPUT" max meanY value: "; maxMeanY
IF (minMeanY >= maxMeanY) THEN CALL BoundsErr

(minMeanY, maxMeanY)
FOR i = 1 to numberOfLakes%

Xrnin(i) = minMeanX
Xmax (i l = maxMeanX
Ymin(i) = minMeanY
Ymax(i) = maxMeanY

NEXT
cls

CASE 3
PRINT " "
PRINT "Simulated values of meanX and meanY will be

bound by 95% CI, "
PRINT "and by a unique max or min value."
PRINT " "
INPUT "Are min-max data on file (y/n)";file$
IF files = .y. THEN

INPUT "loJhat is file name for X min-max
data";fileName$

CALL GetFile (fileName$, Xrnin() , Xrnax() ,
numberOfLakes%l

INPUT "What is the file name for y min-max data";
fileName$

CALL GetFile (fileName$, Ymin(), Ymax(),
nur:1berOfLakes%)
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ELSE
PRINT
PRINT "First. the x values:"
PRINT Il Il

FOR i=l to numberOfLakes%
PRINT "for lake ";i
INPUT "min replicate x value "; Xminli)
INPUT "max replicate x value "; Xmax(i)
IF (Xrninli) >= Xrnaxli)) THEN CALL BoundsErr

IXrninli). Xrnaxli))
PRINT Il Il

NEXT

PRINT "now. the y values: "
PRINT Il Il

FOR i=l to numberOfLakes%
PRINT "for lake ";i
INPUT "min replicate y value "; Yminli)
INPUT "max replicate y value "; Ymax(i)
IF (Ymin(i) >= Ymax(i)) THEN CALL BoundsErr

(Ymin(i), Ymax(i))
PRINT Il Il

NEXT
END IF
cls

END SELECT
PRINT" "
PRINT "Lake X (min - max) y (min -

max) "
PRINT

" II

a$ = "III !""."" ! "".""!
IIII.IIII!"

! 1111.1111

•

FOR i=l to numberOfLakes%
IF «i/15) - FIX(i/15)) = 0 THEN

INPUT "more, press any key";carryOn$
END IF
PRINT USING a$;i,"(", Xrnin(i),"-", Xrnax(i),")","(",

Yrnin (i) , Il -", Ymax (i ) , Il ) "

NEXT i

PRINT " "
INPUT "Would you like these data filed (yIn) "; fileIt$
IF fileIt$ = "y" THEN

INPUT "Please name Xrnin,max file"; fileNarne$
CALL CreateFile (fileName$, Xrnin() , Y~x(),

numberOfLakes%)
INPUT "Please name Ymin,max file"; fileName$
C~LL CreateFile (filenameS, Ymin(), Ymax() ,
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numberOfLakes%)
END IF

INPUT "Error check. Continue (y/n)"; continueS
cls
IF continueS = "n" THEN

CALL GetBoundsInfo (nuffiberOfLakes%. boundsType%.
repBoundsTYPe%. Xrnax ( ). Xrnin ( ), Ymax ( ), Ymin ( ) ,
minRepx, maxRepx, minRepy, maxRepy)

END IF
cls

IF replicateCorrelation$ = "y" THEN
$INCLUDE "repdat. inc" . code is in another file to

free up editor memory. *** not in this appendix ***
END IF •!"eplicateCorrelation$ ="y"
END SUB

SUB BoundsErr (min, max)
REM traps input errors for two real variables, allows

re-entry.
PRINT " "
PRINT "input error: a min value equaled or exceeded a max.

Please try again."
PRINT " ,
INPUT ' min value: "; min
INPUT" max value: "; max
IF (min >= max) THEN CALL BoundsErr (min, max)
END SUB

SUB GetFile (moniker$, a(l), b(l), count%)
REM gets a 2 variable file from disk, counts records.
LOCAL i, carryOn$

•

$EVENT ON
ON ERROR GOTO rename
OPEN moniker$ FOR INPUT AS #1

ON ERROR GOTO 0
$EVENT OFF

count% = 0
DO UNTIL EOF (1 )

count% = count% + 1
INPUT #1, a (count%), b(count%)

LOOP

'accesses an external
data file
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CLOSE #1
PRINT " Il

PRINT "Data read from ";moniker$
PRINT "file has ";count%;" data pairs."
INPUT "Press any key to continue";carryOn$
cls
END SUB

SUB GetKeyboard ( x(1), y(1), numPoints%)
PEM takes values from keyboard, places on disk if desired.
SH&~ED xRawDataLogged$, yRawDataLogged$
LOCAL i, makeFile$

INPUT "Number of data points to be entered = "; numPoints%
FOR i=l to numPoints%

PRINT ' "
PRINT "observation "; i
PRINT "-----------------,,
INPUT "X value = ";x{i)
INPUT "Y value = ";y(i)

NEXT
IF (xRawDataLogged$ = "y" OR yRawDataLogged$ = "y") THEN
'when data are not logged then fi1ing takes place in GetData

PRINT " "
INPUT "transfer data to a file? Use small letters (yin)."

; makeFile$
IF makeFile$ = "y" THEN

INPUT "What is file name (DOS restrictions) ";fileName$
CALL CreateFile ( fileName$. x(). y(). (numPoints%»)

END IF
END IF
cls
END SUB

SUB CreateFile (moniker$. a(l). b(l). numPoints%)
REM creates an external data file
LOCAL n%. carryOn$

OPEN moniker$ FOR OUTPUT AS #1
n% = 0
DO

n% = n% + 1
PRINT #1. a{n%), b(n%)

LOOP UNTIL n% = numPoints%
CLOSE #1
PRINT "File "; moniker$;" created."
INPUT "Press any key to continue";carryOn$
cls



• 87

END SUB

SUB Regression (x(l), y(l), n%, SSY, SSE, slope, intercept)
REM takes in log transformed values and regresses y on x.
LOCAL i, surnx, sumy, meanx, meany, SSX, preCovXY,

predictedY, carryOn$, pleaseFile$
SHARED trial

SSY=û
SSE=Û

FOR i = 1 to n%
surnx = surnx + x(i)
sumy = sumy + y(i)

NEXT

meanX = surnx / n%
meanY = sumY / n%

FOR i = 1 to n%
SSX = SSX + ( xli) - meanX ) ~ 2
SSY = SSY + ( y(i) - meanY ) ~ 2
preCovXY = preCovXY + ( x(i) - meanX ) * ( y(i) - meanY )

NEXT

slope = preCovXY / SSX
intercept = meanY - (slope * meanX)

FOR i = 1 to n%
predictedY = slope * xli)
SSE = SSE + ( predictedY

NEXT

+ intercept
y(i)) ~2

slope
intercept
SSE
(SSY - SSE)/SSY

SUB HypothesizedXY (logHypX(l) , hypX(l) , 10gHypY(1) ,
hypY(l), S2hypX(ll, S2hypY(lll•

$IF %wantDataPoints
PRINT "SIMULATION #";trial
PRINT "-------------------------"
PRINT USING "slope = ###.###";
PRINT USING "intercept = ###.###";
PRINT USING "SSE = ###.###";
PRINT USING "r2 = ###.###";
PRINT " "
CALL Print2RealVariables ( " 10gRandX

logRandY" , X(l, Y(), n%)
$ENDIF
END SUB

" "
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REM: Puts hypothesized XY values into hypX, hypY. (These
valu~s are later used

REM: to simulate sampling, and then results are compared
with real data SSE).

SHARED fileName$, numPoints%, X(), logX(), realSlope,
realIntercept, Y(), logY(), expXS2, propConstXS2, expYS2,
propConstYS2, S2Method%, S2X(), S2Y(), orthoX(), orthoY(),
Xgap(), Ygap() 'orthoX & Y() and gapX & Y() here to

avoid DIM
LOCAL fitType%, i, retry$, factor

PRINT 'Choices for Fitting meanX & meanY:'
PRINT ,---.------------------------------"
PRINT " "
PRINT " "
PRINT '1. use measured meanX, and meanY fitted to log:log

regression line."
PRINT "2 .... fitted orthogonally to regression line."
PRINT '3 .. ,. fitted part way along orthogonal from

regression line to real data point.'
PRINT "4. use a high SSE (meanX,meanY) data set."
PRINT '
PRINT ' "
INPUT 'please choose a number: 1,2,3, or 4";fitTYPe%
cls

SELECT CASE fitTYPe%
CASE 1

FOR i = 1 to numpoints%
logHypY(i) = realSlope • logX(i} + realIntercept
hypY(i) = 10 A logHypY(i)
hypX(i) = X(i)
logHypX(i) = logX(i)

NEXT

CASE 2
orthoSlope = -(1 / realSlope)
FOR i = 1 to numPoints%

orthoIntercept =logY(i) - (logX(i) • orthoSlope}
'ie. b =Y - Mx

loghypX(i) = (orthoIntercept - realIntercept) •
(realSlope / «realSlope A 2) + 1)}
'derived from 1) y=-(l/m)x + bortho 2) y=mx +
breal

logHypY(i) = orthoSlope • logHypX(i} +
orthoIntercept

hypX(~) = 10 A loghypX(i}
hypY(i) = 10 A logHypY(i)

NEXT

CASE 3
INPUT 'enter the factor (0-1: proportional distance
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towards rea1 data a10ng orthogoan1 1ine)"; factor
orthoS1ope = -(1 / rea1Slope)
FOR i = 1 to nurnPoints%

ortholntercept =logY(i) - (logX(i) * orthoSlope)
'ie. b = Y - Mx

orthoX(i) = (ortholntercept - reallntercept) *
(rea1Slope / «realS1ope A 2) + 1»
'derived from 1) y=-(l/m)x + bortho 2) Y=~X +
breal

orthoY(i) = orthoSlope * orthoX(i) + ortholntercept
'orthogoanl projections to regression 1ine.

Xgap(i} = factor * (logX(i) - orthoX(i)
'distance desired along orthogonl

Ygap(i) = factor * (logY(i) - orthoY(i)
logHypX{i} = orthoX{i) + Xgap(i)
logHYPY(i) = orthoY{i) + Ygap(i)
hypX(i) = 10 A loghypX(i)
hypY(i) = 10 A logHypY(i)

NEXT

CASE 4
PRINT "A sort-of nul test will be performed: sampling

will be simulated"
PRINT "using high SSE X,Y (rather than X,Y along

regression line). This"
PRINT "will show how often real data X,Y might be

expected from high SSE X,Y."
PRINT " "
INPUT "What is the file name for high SSE (logged) data

" ; fi 1eName$
CALL GetFile (fileName$, logHypX{), logHypY{),

numPoints%)
FOR i = 1 to numPoints%

hypY{i) = 10 A (logHypY{i)}
hypX(i) = 10 A (logHypX(i»

NEXT

CASE OTHER
reTry$ = "y"

END SELECT

'used as flag to reenter parameter.

SELECT CASE S2method% 'find S2 associated with
hypothesized values.

•
CASE 1

FOR i = 1 to numPoints%
S2hypX{i) = propConstXS2 * (hypX{i) A expXS2)
S2hypY(i) = propConstYS2 * (hypY{i) A expYS2)

NEXT
CASE 2

FOR i = 1 to numPoints%
S2hypX{i) = S2X(i)
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S2hypY(i) = S2Y(i)
NEXT

END SELECT

h::r-pY" ,"

Il logHypY",

" S2hypY",

"

"

"

CALL Print2RealVariables ( " logHypX
logHypX(), logHypY(), nurnPoints%)

CALL Prin~2RealVariables (" hypX
hypX(), hypY(), nurnPoints%)

CALL Print2RealVariables ( " S2hypX
S2hypX(), S2hypY(), nurnPoints%)

Input "Error check. Continue (yin)"; continueS
cls
IF continueS = On" OR reTry$ = "y. THEN

PRINT "An error was made in entering a parameter, please
cry again."

PRINT • •
PRINT " "
CALL HypothesizedXY (logHypX(), hypX() , logHypY(),

hypY() , S2hypX(), S2hypY(»
END IF
END SUB

SUB Print2RealVariables (varl$, var2$, varl(l) , var2{1),
nurnpoints%)

REM prints a 2 variable table of values. (varl starts at
10th spot, then 6 blanks)

PRINT "lake "; varl$; var2$
PRINT "---- -----------------------------------"

FOR i = 1 to nurnPoints%
a$ = "### ######.#### ######.####"
PRINT USING aS; i, varl(i), var2{i)
IF Fix(i/12) - (i/12) = 0 THEN 'stops screan output

after 12 values.
PPINT
PRINT
INPUT

END IF
NEXT

" .
" .
"press any key to continue";carryOn$

•

PRINT " "
INPUT "would you like this data filed (y/n)";pleaseFile$
IF pleaseFile$ = "y" THEN

PRINT " "
INPUT "what file name would you like? {DOS

format) ";fileName$
CALL CreateFile (fileName$, varl(), var2(), numPoints%)

END IF
cls
END SUB
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SUB MinMaxCICheck (meanXorYS, Q(l), Qmin(l), Qmax(l),
hypQ(l), sampleSizeQ%(l) , S2Q(1), S2hypQ(1))

REM: Checks if preset max or min are below or above
hypothesized X or Y values.

REM: Aiso checks if CI of real data X and Y include
hypothesized X and Y.

SHARED boundsType%, repBoundsType%, numPoints%, lowerCI(),
upperCI() 'lower and upperCI() are shared only to

dimension arrays
LOCAL i, max, min, carryOn$, maxQbelowHypQ%, minQaboveHypQ%,

flag$, flagIt $

maxQbelowHypQ% = 0

minQaboveHypQ% = 0

'initializes varible to count when
preset lower bound on meanY is above
real data regression line.

FOR i = 1 to numPoints%
IF (Qmin(i) > hypQ(i)) THEN 'check for min over

hypothesized value.
minQaboveHypQ% = minQaboveHypQ% + 1

END IF

IF boundsType% = 1 THEN
'skip any investigation of max (because it is not
invoked in type 1)

ELSE
IF (Qmax(i) < hypQ(i»)

maxQbelowHypQ%
END IF

END IF
NEXT

THEN 'check for max under
hypothesized value.

= maxQbelowHypQ% + 1

PRINT " "
PRINT " "
PRINT "TALLY

values. "
PRINT

based on ";numPoints%;" fitted "; meanXorY$;"

•

M M

PRINT "preset min ";meanXorY$;" is above hypothesized value
";minQaboveHypQ%;" times."

IF boundsType% = 1 THEN
'skip the printing of any max meanQ info

ELSE
PRINT "preset max ";meanXorY$;" is below hypthosized

value ";maxQbe1owHypQ%;" times. "
END IF

PRINT " "
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PRINT " "
PRINT " a non-zero value suggests that random error due to

sampling is unlikely "
PRINT" to account for sorne of real d<.t:a, even if model

SSE excedes real SSE."
PRINT " ..
INPUT "press any key to continue"; carryOn$
CLS

CALL FindConfidencelntervals (Q(), numPoints%,
sampleSizeQ%(), S2Q(), lowerCI(), upperCI(»

PRINT " " ;mea:lXorY$;" : measured vs.
hypothesized values."

PRINT "
-----------------------------------------"

(lower95CI - data v~lue - upper95CI)
"

PRINT "When hypothesized value is
sampling error "

PRINT "is unlikely to account for
hypothesized and data value."

PRINT " "
PRINT " "
PRINT "Lake

hyp. value
PRINT

outside CI for data value,

the gap between the

•

"-----------------------------------------------------------
------- 11

PRINT " "

FOR i = 1 to numPoints%
IF (hypQ(i) > lowerCI(i» AND (hypQ(i) < upperCI(i» THEN

flaglt$ = "OK"
ELSEIF hypQ(i) <= lowerCI(i) THEN

flaglt$ = "**LoHyp**"
ELSEIF hypQ(i) >= upperCI(i) THEN

flaglt$ = "**HiHyp**"
END IF

PRINT USING "### &####.### & ####.### & ####.###&
####.###

&";i," (",lowerCI(i) ,"-",Q(i) ,"-",upperCI(i),") ",hypQ(i ),flag
It$

IF INT(i/15) - (i/15) = 0 Tf.EN
INPUT "More, press any keY";carryOn$
PRINT " "

END IF
NEXT i
PRINT " "
INPUT "press any key to continue";carryOn$
cls
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lowerCI - hyp.value -

------------------------------"

";meanXorY$;" : bouncts for

min
"

CALL FindConfidencelntervals (hypQ(), numPoints%,
sampleSizeQ%(), S2hypQ(), lowerCI(), upperCI(»

SELECT CASE boundsType%
Cl,SE 1

PRINT "
simulation."

PRINT "
PRINT " This table helps to spot if hypothesized vaiue

is below min. "
PRINT " and which of min. max, lowerCI or upperCI will

bind simulations."
PRINT " "
PRINT Il Il

PRINT "Lake
upperCI

PRINT

•

" -----------------------------------------------------
----------------"

a$ = "### ####.####
####.#### & "

#####.#### ! ####.#### !

FOR i = 1 to numPoints%
IF (Qmin(i) < lowerCI(i» THEN

flag$ = "OK'
ELSEIF (Qmin(i) > hypQ(i» THEN

flag$ = '**LoHyp**'
ELSE

flag$ = "**CIflag**"
END IF

PRINT USING aS; i, Qmin(i), lowerCI(i), "-',
hypQ(i), '-', upperCI(i), flag$

IF INT(i/15) - (i/15) = 0 THEN
INPUT "More, press any key';carryOn$

PRINT " "
END IF

NEXT

";meanXorY$;' : bounds for

lowerCI -
"

min - max
upperCI

CASE 2, 3
PRINT "

simulation. "PRINT • . __ M

PRINT " This table helps to spot if hypothesized value
is below min or over max, "

PRINT " and which of min, max, lowerCI or upperCI will
bind simulations.'

PRINT ' "
PRINT " "
'PRINT "Lake

hyp.value
PRINT•
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-----------------------------------------------------------
-------------------"

aS = "### ####.####! #I#i.####
###i.##I# ! #il#.#i## &"

#####.#i## !

•

FOR i = 1 to numPoints%
IF (Qmin(i) < lowerCI(i)) AND (Qmax(i) > upperCI(i))

THEN
flag$ = "OK"

ELSEIF (Qmin(i) >= hypQ(i)) THEN
flag$ = "**LoHyp**"

ELSEIF (Qmax(i) <= hypQ(i)) THEN
flag$ = Il '*'*HiHyp** Il

ELSE
flag$ = "**CIflag**"

END IF

PRINT USING aS; i, Qmin(i), "-" Qmax(i),
lowerCI(i), "-", hypQ(i), "-" upperCI(i), flag$

IF INT(i/15) - (i/15) = 0 THEN
INPUT "More, press any key";carryOn$

PRINT " "
END IF

NEXT
END SELECT

INPUT "press any key to continue";continue$
cls
END sua

sua FindConfidenceIntervals (W(1), numPoints%,
sample5izeW%(1) , S2W(1), lowerCI(1), upperCI(1)

REM finds confidence intervals for each mean W using
mean:variance or real data S2.

LOCAL S2, i, SE
FOR i = 1 to numPoints%

S2 = S2W(i)
SE = SQR ( S2 / sampleSizeW%(i)
upperCI(i) = W(i) + 1.96 • SE
lowerCI(i) = W(i) - 1.96 • SE

NEXT i
END sua

sua FindRepConfidencelntervals (W(1), numPoints%, S2Method%,
expWS2, propConstWS2, S2W(1), lowerCI(1), upperCI(1»

REM finds confidence intervals for replicat W using
mean:variance or real data 52.

SELECT CASE S2method%
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CASE 1
FOR i = 1 to numPoints%

S2 = propConstWS2 * W(i) , expWS2
SO = SQR(S2)
upperCI(i) = W(i) + 1.96 * SO
lowerCI(i) = W(i) - 1.96 * SO

NEXT i
CASE 2

FOR i = 1 to numPoints%
S2 = S2W(i)
SO = SQR(S2)
upperCI(i) = W(i) + 1.96 * SO
lowerCI(i) = W(i) - 1.96 * SO

NEXT i
END SELECT
END SUB

SUB RepXminMaxClcheck (numPoints%. X(l). boundsType%,
minRepx. maxRepx. Xmin(l), Xmax(l)

REM Creates a table for meanX and repx CI. min and max.
Shows whether CI or min. max bind simulations.
$INCLUDE "repXCI.inc" .*** not in this appendix ***

END SUB

SUB SimulateSamples (hypY(l). sampleSizeX%(l),
sampleSizeY%(l). numPoints%. expXS2. propConstXS2, expYS2.
propConstYS2. hypX(l). logRandX(l) , logRandy(l))

REM Randomizes mean X and perfectFit Y (both
non-transformed). then log-

REM transforms them. Randomizations mimic sampling from a
Normal dist. with

REM hypX(i) or hYPY(i) as mean. and an SO derived from an
appropriate

REM S2:M regression or from data S2.
LOCAL i. meanXupperCI. meanXlowerCI. meanYupperCI.

meanYlowerCI. simulatedMeanX, simulatedMeanY
SHAREO boundsType%. meanXboundByHi95CI&.

meanXboundByLo95CI&. meanXboundByMin&. meanXboundByMax&.
minMeanXisUnder95CI&. maxMeanXisOver95CI&. Xmax().
Xmin()._
meanYboundByHi95CI&. meanYboundByLo95CI&.
meanYboundByMin&. meanYboundByMax&. minMeanYisUnder95CI&.
maxMeanYisOver95CI&. Ymax(). Ymin()

SHAREO S2method%. S2hypX(). S2hypY(). simulationsForX&.
simulationsForY&

FOR i = 1 to numPoints%
CALL Randomization ((S2hypX(i)). sampleSizeX%(i).
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hypX(i), simulatedMeanX, meanXupperCI, meanXlowerCI)
INCR simulationsForX& 'counts simulations
CALL ApplyBounds (boundsType%, simulatedMeanX,

meanXupperCI, meanXlowerCI, xmax(i), xmin(i),
meanXboundByHi95CI&, meanXboundByLo95CI&,
meanXboundByMax&, meanxboundByMin&,
maxMeanxisOver95CI&, minMeanXisUnder95CI&)

logRandx(i) = LOGIO (simulatedMeanX)

CALL Randomizatian «(S2hypY(i)), sampleSizeY%(i),
hypY(i), simulatedMeanY, meanYupperCI, meanYlowerCI)

INCR simulationsForY&
CALL ApplyBounds (boundsType%, simulatedMeanY,

meanYupperCI, meanYlowerCI, Ymax(i), Ymin(i),
meanYboundByHi95CI&, meanYboundByLo95CI&,
meanYboundByMax&, meanYboundByMin&,
maxMeanYisOver95CI&, minMeanYisUnder95CI&)

logRandy(i) = LOGIO (simulatedMeanY)
NEXT i
END SUB

SUB SimulateWhenReplicatesCorr ( sampleSizeX%(l) ,
sampleSizeY%(l) , numPoints%, meanX(l), expXS2,
propConstXS2, hypY(l), expYS2, propConstYS2,
repLevelSlope(l) , repLevellntercept(l) ,
repLevelS2YgivenX(1) , logRandX(l), logRandY(l)

REM simulates sampleSizeX replictes of meanX, for each of
these a replicate y is simulated using the rep. level
regression between rep.x and rep. y, and S2~'lx (rep.
level) .

REM note that xMax(), xMin(), yMax(), yMin() are used as
bounds for both means and replicates, if boundsType% 3 and
repBoundsType% 3 are chosen.

LOCAL i, j, surnX, sumY, sirnReplicateX, sirnReplicateY,
simulatedMeanX, simulatedMeanY, carryOn$, errorCondition%,
S2forX, S2forY, SEmeanX, SEmeanY

SHARED boundsType%, meanXboundByHi95CI&,
meanXboundByLo95CI&, meanXboundByMin&, meanXboundByMax&,
mir~eanXisUnder95CI&, maxMeanXisOver95CI&, xmax() ,
Xmin(),_
meanYb~undByHi95CI&, meanYboundByLo95CI&,
meanYboundByMin&, meanYboundByMax&, minMeanYisUnder95CI&,
maxMeanYisOver95CI&, Ymax(), Ymin()

SHARED repBoundSType%, repxBoundByHi95CI&,
repxBoundByLo95CI&, repxBoundByMin&, repxBoundByMax&,
minRepxIsUnder95CI&, maxRepxIsOver95CI&, minRepx,
maxRepx,_
repyBoundByHi95CI&, repyBoundByLo95CI&, repyBoundByMin&,
repyBoundByMax&, minRepyIsUnder95CI&, maxRepyIsOver95CI&,
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minRepy, maxRepy
SH.".RED S2method%, S2X (), S2Y ( ), simulat ionsFolX,~,

simulationsForY&

FOR i=1 to numPoints%

SELECT CASE S2method%
CASE 1

S2forX = (propConstXS2) • (meanX(i) , expXS21
'from a logS2:logX plot.

S2forY = (propConstYS2) • (hypY(i) , expYS2)
CASE 2

S2forX = S2X(i)
S2forY = S2Y(i)

END SELECT

SEmeanX = SQR (S2forX 1 sampleSizeX%(i))
SEmeanY = SQR (S2forY 1 sampleSizeY%(i))

meanXupper95CI = meanX(i) + 1.96 • SEmeanX
meanX1ower95CI = meanX(i) - 1.96 • SEmeanX

meanYupper95CI = hyp(i) + 1.96 * SEmeanY
meanY1ower95CI = hypY(i) - 1.96 * SEmeanY

counter% = 0
surnx = 0
SUIllY = 0

Do
counter% = counter% + 1
CALL RandomizeRep1icateX (i, meanX(i), S2forX,

simu1atedRepx)
surnx = surnx + simu1atedRepx
CALL RandomizeRep1icateY (i, hypY(i), repLeve1S1ope(i),

simu1atedRepx, repLeve1Intercept(i),
repLeve1S2YgivenX(i), simu1atedRepy)
SUIllY = SUIllY + simu1atedRepy

Loop unti1 (counter% = samp1eSizeX%(i)) OR (counter% =
samp1eSizeY%(i))

IF sampleSizeX%(il > samp1eSizeY%(i) THEN
DO

counter% = counter% + 1
CALL RandomizeRep1icatex (i, meanX(i), S2forX,

simulatedRepx)
surnx = surnx + simulatedRepx

Loop unti1 counter% = sampleSizeX%(i)
ELSE

IF sampleSizeY%(i) > sampleSizeX%(i) THEN
'and if samp1esizes are equa1 we are finished.

DO
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eounter% = eounter% + 1
CALL RandomizeReplieateX (i, meanX(i), S2forx,

simulatedRepx)
CALL RandomizeReplieateY (i, hypY(i),

repLevelSlope(i), simulatedRepx,
repLevelIntereept(i), repLevelS2YgivenX(i),
simulatedRepy)

sumy = sumy + simulatedRepy
Loop until eounter% = sampleSizeY%(i)

END IF
END IF

simulatedMeanX = (surnx/sampleSizex%(i»)
simulatedMeanY = (sumy/sampleSizeY%(i))

CALL ApplyBounds (boundSType%, simulatedMeanX,
meanXupper95CI, meanXlower95CI, Xrnax(i), Xrnin(i),
meanXboundByHi95CI&, meanXboundByLo95CI&,
meanXboundByMax&, meanXboundByMin&,
maxMeanXisOver95CI&, minMeanXisUnder95CI&)

logRandx(i) = LOGIO (simulatedMeanX)

CALL ApplyBounds (boundsType%, simulatedMeanY,
meanYupper95CI, meanYlower95CI, Ymax(i), Ymin(i),
meanYboundByHi95CI&, meanYboundByLo95CI&,
meanYboundByMax&, meanYboundByMin&,
maxMeanYisOver95CI&, minMeanYisUnder95CI&)

logRandy(i) = LOGIO (simulatedMeanY)
NEXT i
END SUB

SUB Graphies (boundsType%, Xrnin(l), Xmax(l), Ymin(l),
Ymax(l), numPoints%, logRealX(l), logRealY(l) , realSlope,
realIntereept, logRandX(l), logRandY(l) , slope ,
intereept)

REM graphs real data and regression in upper part of screen
and simulated data and

REM regression in lower part of screen.
LOCAL maxLogX, minLogX, maxLogY, minLogY, initialFittedLogY,

finalFittedLogY, carryOn$
SHARED modelSSE, realSSE, sortedlogRealX(),

sortedlogRealY(), sortedlogRandX(), sortedXrnin(),
sortedXrnax(), sortedYmin(), sortedYmax()

•
FOR i = 1 to numPoints% 'preserves

sortedlogRealX(i) = logRealX(i)

sortedLogRealY(i) = logRealY(i)

original arrays
'sorne sorts not new
for each CALL,

'but are here for
clarity.
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sorted1ogRandX(i) = 1ogRandX(i)
sortedXmax(i) = Xmax(~)

sortedYmax(i) = Ymax(i)
sortedXmin(i) = Xmin(i)
sortedYmin(i) = Ymin(i)

NEXT
CALL Quieksort (1, (numPoints%), sorted1ogRea1X(»)

'used for sereen sizing
CALL Quieksort (1, (numPoints%), sorted1ogRea1Y())
CALL Quieksort (1, (numPoints%), sorted1ogRandX(»)
CALL Quieksort (1, (numPoints%), sortedXmax())
CALL Quieksort (1, (numPoints%), sortedYmax())
CALL Quieksort (1, (numPoints%), sortedXmin())
CALL Quieksort (l, (numPoints%), sortedYmin(»)

e1s
sereen 1,0
'graphies during anu1test?

IF boundSType% = 1 THEN ie. no max speeified
maxLogX = 1.4 * sorted1ogRea1X(numpoints%)

, seales viewport to data
maxLogY = 1.4 * sortedlogRealY(numpoints%)

ELSE
maxLogX = LOG10 (sortedXmax(numPoints%»
maxLogY = LOG10 (sortedYmax(numPoints%»

END IF

minLogX = LOG10(sortedXmin(1») 'LOG10(.05) this will
shrink line when min is low

minLogY = LOG10(sortedYmin(1» 'LOG10(.05)
window (minLogX, minLogy) - (maxLogX, maxLogY)

view (25,0) - (319, 75) 'upper part of sereen prepared
for real data

* sortedLogRealX(l) +
'may require sort****

sortedLogRealX(numPoints%) +

initia1FittedLogY = realSlope
rea1Intereept
fina1FittedLogY = rea1Slope *
realIntereept

line (sortedLogRealX(l) , initialFittedLogY) ­
(sortedLogRealX(numPoints%), finalFittedLogY) 'real data

regression

•
FOR i = 1 to numPoints% 'rea1 data points

PSET (logRealX(i), logRealY(i», 14
NEXT
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'lower part of screen prepared
for simulated data

initialFittedLogY = slope * sortedLogRandX(l) + intercept
finalFittedLogY = slope * sortedLogRandX(numPoints%) +
intercept

line (sortedLogRandX(l) , initialFittedLogY} ­
(sortedLogRandX{numPoints%), finalFittedLogY)

FOR i = 1 to numPoints%
PSET (logRandX(i), logRandY{i», 10

NEXT

LOCATE 1,r
PRINT 'real SSE= '
PRINT USING '##.####';realSSE
LOCATE 15,1
PRINT "model SSE = '
PRINT USING '##.####';modelSSE
LOCATE 25,2
INPUT 'press";carryOn$
cls
cls
screen 0
width 80
END SUB

'simulated
data
regression

•

SUB CompileSSEdist (modelSSE, modelSSY, realSSE, realSSY,
numPoints%, trial, unexplainedMSE(l), modelr2(1) ,
pseudor2(1) , arrayModeISSE(l}, modelSSEoverSSY(l) ,
arrayModelSSY(l} }

REM builds arrays of modelSSE etc.
SHARED wantSSEoverSSYfile$, wantSSYfile$
LOCAL unexplainedSSE, carryOn$

unexplainedSSE = realSSE - modelSSE
IF unexplainedSSE < 0 THEN unexplainedSSE = 0
unexplainedMSE(trial) = unexplainedSSE 1 numPoints%
:nodelr2(trial} = (modelSSY - modelSSE) 1 modelSSY
.,seudor2(trial} = (realSSY - unexplainedSSE) 1 realSSY
tlrrayModelSSE (trial) = modelSSE
lF wantSSEoverSSYfile$ = 'y' THEN modeISSEoverSSY(trial}

= modelSSE / modelSSY
IF wantSSYfile$ = 'y' THEN arrayModelSSY(trial}

= modeISSY
'print 'arrayModeISSE(trial} = ';arrayModelSSE(trial}
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***used for checks***
'print "arraymodelSSY (trial) =" ;arrayModelSSY (trial)
'print "modelSSEoverSSY(trial)="; modelSSEoverSSY(trial)
'print "model r2=" modelr2(trial)
'input "press";c$

END SUB

SUB ComputeSSEstats ( unexplainedMSE(l), modelr2(1) ,
pseudor2{l), nurnTrials%, meanUnexplainedMSE, meanModelr2,
meanPseudor2, arrayModelSSE(l), realSSE,
probModelSSEgtRealSSE, meanModelSSE, lowerBoundMeanSSE,
upperBoundMeanSSE )

REM takes arrays of simulation results: unexplainedMSE{),
model r2{), pseudor2(), and arrayModelSSE() -

REM deterrnines means, then sorts arrays into ascending order
and finds 95% CI.

SHARED Clwarning$, lowerBoundMSE, upperBoundMSE,
lowerBoundModelr2, upperBoundModelr2, lowerBoundPr2,
upperBoundPr2, wantSSEfile$, modelSSEoverSSY(),
wantSSEoverSSYfile$, wantSSYfile$, arrayModelSSY(},
wantR2file$

LOCAL trial, surnUnexplainedMSE, surnPseudor2, sumModelSSE,
pos2.5%, pos97.5%

surnUnexplainedMSE = 0
sumModelr2 = 0
surnPseudor2 = 0
sumModelSSE = 0

FOR trial = 1 to nurnTrials%
surnUnexplainedMSE = unexplainedMSE{trial) +

surnUnexplainedMSE
sumModelr2 = mode1r2{trial) + sumModelr2
surnPseudor2 = pseudor2{tria1) + surnPseudor2
sumModelSSE = arrayModelSSE{trial} + sumModelSSE

NEXT trial

meanUnexplainedMSE = surnUnexplainedMSE / nurnTrials%
meanModelr2 = sumModelr2 / nurnTrials%
meanPseudor2 = surnPseudor2 / nurnTrials%
meanModelSSE = sumModelSSE / nurnTrials%

CALL QuickSort (1, (nurnTrials%), unexplainedMSE{)}
'a sort procedure

CALL QuickSort (1, (nurnTrials%), pseudor2()}
CALL QuickSort (1, {nurnTrials%}, modelr2{)}
CALL QuickSort (1, (nurnTrials%), arrayModelSSE{})

IF nurnTrials% < 50 THEN
pos2.5% = 1
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pos97.5% = nurnTrials% - 1
CIwarning$ = .y" 'a small sample size warning

ELSE
pos2.5% = INT ( .025 * nurnTrials% )
pos97.5% = INT ( .975 * nurnTrials% )

END IF

lowerBoundMSE = unexplainedMSE( pos2.5%)
upperBoundMSE = unexplaine~~SE( pos97.5%)
lowerBoundModelr2 = modelr2( pos2.5%)
upperBoundmodelr2 = modelr2( pos97.5%)
lowerBoandPR2 = pseudor2( pos2.5%}
upperBoundPR2 = pseudor2( pos97.5%)
lowerBoundMeanSSE = arrayModelSSE( pos2.5%)
upperBoundMeanSSE = arrayModelSSE( pos97.5%)

IF wantSSEfile$ = ·y· THEN
INPUT ·What filename would you like for modelSSE array

.; moniker$
CALL Create1RealVariableFile (moniker$. numTrials%.

arrayModelSSE())
END IF
IF wantSSEoverSSYfile$ = .y. THEN

INPUT "What filename would you like for modelSSE/SSY
array ";moniker$

CALL Create1RealVariableFile (moniker$, numTrials%.
modelSSEoverSSY()}

END IF
IF wantSSYfile$ = "y" THEN

INPUT "What filename would you like for modelSSY array
" ;moniker$

CALL Create1RealVariableFile (moniker$. numTrials%.
arrayModelSSY(})

END IF
IF wantR2file$ = "y" THEN

INPUT "What filename would you like for modelr2 array
" ;moniker$

CALL Create1RealVariableFile (moniker$. numTrials%.
modelr2(})

END IF
END SUB

SUB Create1RealVariableFile (moniker$. numPoints%. a(1)}
REM creates a 1 real variable external data file.
LOCAL count%. carryOn$

OPEN moniker$ FOR OUTPUT AS #1
count% = 0
DO

count% = count% + 1
PRINT #1, a (count%)
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LOOP UNTIL count% = numPoints%
CLOSE #1
PRINT "File "; moniker$;" created."
INPUT "press any key to continue";carryOn$
cls
END SUB

$INCLUDE "Boundspr.inc"
boundsinfringemnts.

'has two procedures for printing

•

SUB QuickSort ( start%, finish%, datum(l)) 'ascending sort
REM Recursively sorts array called da~~, with bounds start%

and Linish%.
REM This procedure is from a book called Oh!Pascal (Cooper

and Clancy, 1985) and was translated to
REM TurboBasic. A sort is needed to find 95% CI's for

simulated statistics.
LOCAL left%, right%, starterValue, temp

left%=start%
right%=finish%
starterValue=datum«start%+finish%) \2)
DO

DO WHILE datum(left%)<starterValue
left%=left%+l

LOOP
DO WHILE starterValue < datum(right%)

right%=right%-l
LOOP
IF left% <= right% THEN

temp = datum(left%)
datum(left%) = datum(right%)
datum(right%) = temp
left% = left% + 1
right% = right% - 1

END IF
LOOP UNTIL right% <= left%
IF start% < right% THEN CALL QuickSort «start%),

(right%), datum()
IF left% < finish% THEN CALL QuickSort «left%),

(finish%), datum()
END SUB

SUB FindProbModelSSEgtRealSSE ( realSSE, numTrials%,
arrayModelSSE(l) , probModelSSEgtRealSSE )

REM finds the number of times modelSSE matched or exceeded
realSSE, ie

REM 'explained' all scatter around real-data regression
line.

LOCAL count%
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count% = numTria1s%
DO UNTIL (count% = 0) OR (rea1SSE >=

arrayMode1SSE(COunt%))
?RINT "in Find?robRea1SSE DO LOO? "; count%
count% = count% - 1

LOO?
probMode1SSEgtRea1SSE = (numTria1s% - count%) / numTria1s%

END SUB

SUB Randomization (52, samp1eSize%, meanVa1ue,
simu1atedVa1ue, upper95CI, 1ower95CI)

REM Randomly samples a value from a Normal (meanValue,
SQR(S2/n) dist.

REM Note that it is Non-transformed values of x and y that
are manipulated.

LOCAL SE, rand, varMean
SHARED S2method%

rand = RND 'uniform distribution.

varMean = 52 / sampleSize% 'when not a mean (ie.
sampleSize = 1) 52 is not
altered.

SE = SQR ( varMean )
simulatedValue = (.5513 * LOG ( rand / (l-rand) » * SE +

meanValue 'normal dist.
upper95CI = meanValue + (1.96 * SE)
lower95CI = meanValue - (1.96 * SE)
END SUB

SUB RandomizeReplicateX (i, meanX, 52, simulatedRepx)
REM Randomly samples a value from a Normal (meanValue,

SQR(52/n» dist.
REM and truncates distribution to fit specified bounds.
REM Note that it is Non-transformed values of x and y that

are manipulated.
LOCAL rand, 5D
5HARED repBoundSType%, repxBoundByHi95CI&,

repxBoundByLo95CI&, repxBoundByMin&, repxBoundByMax,
minRepxIsUnder95CI&, maxRepxIsOver95CI&, minRepx, maxRepx,
xMax(), xMin(), simulationsForX&

simulatedRepx = (.5513 * LOG ( rand / (l-rand) » * 50 +
meanX 'normal dist. with 50 of disaggregated data.•

rand = RND
50 = 5QR ( 52

'uniform distribution.
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INCR simu1ationsFOrX&
, PRINT "in randomizeRX, before bounds, sim rep x =

";simu1atedRepx ,***

repxUpperCI = meanX + 1.96 * SD
repxLowerCI = meanX - 1.96 * SD

IF repBoundsType% = 3
maxRepx = xMax(i)

minRepx = y~in{i)

END IF

THEN
'sets max and min
the ith 1ake.

specifie for

CALL ApplyBounds (repBoundSType%, simu1atedRepx,
repxUpperCI, repxLowerCI, maxRepx, minRepx,
repxBoundByHi9SCI&, repxBoundByLo9SCI&,
repxBoundByMax&, repxBoundByMin&, maxRepxIsOver9SCI&,
minRepxIsUnder9SCI&)
, PRINT "in randomizeRX, after bounds, sim rep x =

";simu1atedRepx ,***
END SUB

SUB RandomizeReplicateY (i, perfectFittingMeanY, slope, x,
intercept, S2repyGivenRepx, simulatedRepy)

REM A function that simulates y values at the disaggregated
level -

REM it takes a simu1ated x value
REM and then simulates an appropriatly constrained y value

by using the x:y
REM regression at disaggregated level, and S2YgivenX at that

level. Note that
REM most published bottom-up regressions use aggregated data

points.

LOCAL rand, y, SD
SHARED repBoundSType%, repyBoundByHi9SCI&,

repyBoundByLo95CI&, repyBoundByMax&, repyBoundByMin&,
minRepyIsUnder95CI&, maxRepyIsOver95CI&, minRepy, maxRepy,
yMax(), yMin{), simulationsForY&

rand = RND 'uniform distribution.

y = slope * x + intercept

SD = SQR (S2repyGivenRepx)

•

'x is a simulated replicate,
y is on a line through
replicate data.

'S2y!x from regression
through replicates.

simulatedRepy = (.55l3 * LOG ( rand / (l-rand) )) * SD + y
'normal dist. with SD of disaggregated data.

INCR simulacionsForY&
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repyUpperCI = y + 1.96 * SD
repyLowerCI = y - 1.96 * 5D

IF repBoundsType% = 3
maxRepy = yMax(il

minRepy =yMin(i)
END IF

THEN
'sets max and min specific for
the ith 1ake.

CALL App1yBounds (repBoundsType%, simu1atedRepy,
repyUpperCI, repyLowerCI, maxRepy, minRepy,
repyBoundByHi95CI&, repyBoundByLo95CI&,
repyBoundByMax&, repyBoundByMin&, maxRepyIsOver95CI&,
minRepyIsUnder95CI&)

END SUB

SUB App1yBounds (limits%, simulatedValue. upperCI, lowerCI,
max, min, boundByHiCI&, boundByLoCI&, boundByMax&,
boundByMin&, maxOverHiCI&, minUnderLoCI&)

REM places simulated mean or replicate values within
prescribed bounds.

Select Case limits%

Case 0

Case 1

'fits simu1ated value to preset
bounds

'no bounds on simulated values.
(for future program)

'bound by Confidence Interva1 and
an arbitrary minimum.

' upper bound _

•

IF simulatedValue > upperCI THEN
boundByHiCI& = boundByHiCI& + 1
simulatedValue = upperCI

END IF

' lower bound _

IF min < lowerCI THEN 'higher of the two will
be bounds

minUnderLoCI& =minUnderLoCI& + 1
'tells us about min wrt. CI

IF simulatedValue < lowerCI THEN
'if> lowerCI then no need for bounding .

simulatedValue = lowerCI
boundByLoCI& = boundByLoCI& + 1
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END IF

ELSE 'ie. lowerCI <= min
IF simulatedValue < min THEN

simulatedValue = min
boundByMin& = boundByMin& + 1

END IF
END IF

Case 2,3 'bound by 95%CI and a max and min value
(specifie to each lake in case 3)

' upper bound _

•

IF max > upperCI THEN 'lower of the two will be
bounds

maxOverHiCI& = maxOverHiCI& + 1
'tells us about min wrt. CI

IF simulatedValue > upperCI THEN
simulatedValue = upperCI
boundByHiCI& = boundByHiCI& + 1

END IF

ELSE 'ie. upperCI >= max
IF simulatedValue > max THEN

simulatedValue = max
boundByMax& = BoundByMax& + l

END IF
END IF

' lower bound _

IF min < lowerCI THEN 'higher of the two will be
bounds

minUnderLoCI& = minUnderLoCI& + 1
'tells us about min wrt. CI

IF simulatedValue < lowerCI THEN
simulatedValue = lowerCI
boundByLoCI& = boundByLoCI& + 1

END IF

ELSE 'ie. lowerCI <= min
IF simulatedValue < min THEN

simulatedValue = min
boundByMin& = boundByMin& + 1

END IF
END IF

END SELECT
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END SUB

SUB SoundA1ert (nullVariable)
REM notifies user when input required

FOR n = 1 to 5
SOUND 500, .01
DELAY .4
SOUND 2000, .01
DELAY .04

NEXT n

FOR n = 1000 to 700 step -5
SOUND n,l

NEXT n

FOR n = 1 to 700
SOUND 50 * RND + 37, .0015

NEXT n
END SUB

*** because of memory restrictions, the following pocedure
was accessed through the $INCLUDE statement ***

SUB PrintBoundsInfringements ( nurnPoints%, nurnTrials%,
boundSType%, meanXbound~Min&, meanXboundbyMax&,
meanXbound~Hi95CI&, meanXbound~Lo95CI&,

minMeanXisUnder95CI&, maxMeanXisOver95CI&,_

meanYbound~Min&, meanYbound~Max&, meanYbound~Hi9SCI&,

meanYbound~Lo9SCI&, rninMeanYisUnder95CI&,
maxMeanYisOver95CI&)

REM prints the nurnber of times that bounds for simu1ated
meanX or meanY are crossed.

LOCAL carryOn$, surnNX%, sumNY%, totalMeanX&, totalMeanY&
SHARED simulationsForX&, simulationsForY&, sarnp1eSizeX%(),

sarnpleSizeY%(), replicateCorrelation$, loopCounter&
,**** below not needed if loopCounter& is used
'IF replicateCorrelation$ = .y. THEN 'IF block

needed for tal1y
surnNX% = 0
sumNY% = 0
FOR i = 1 to numPoints%

surnNX% = sampleSizeX%(i) + surnNX%
'surn of sarnpleSize from each location

sumNY% = sarnpleSizeY%(i) + sumNY%
NEXT i
totalMeanX& = (simulationsForX& / surnNX%) * nurnPoints%
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tota1MeanY& = (simu1ationsForY& 1 sumNY%) • numPoints%
'ELSE

tota1MeanX& = simu1ationsForX&
tota1MeanY& = simu1ationsForY&

'END IF

totalMeanX& = loopCounter& • numPoints%' numTrials%
totalMeanY& = totalMeanX&

Select Case boundSType%
CASE 1

PRINT ' "
PRINT " Tally: "; totalMeanX&;" simulations of mean X / ";

totalMeanY&;" simulations for mean Y"
PRINT

"-----------------------------------------------------------
-----------------"

PRINT " ,
PRINT "initial simulated meanX was bound by min: (";

meanXboundByMin&;") times."
PRINT "intiial simulated meanX was bound by (Hi/Lo) 95% CI:

("; meanXboundByHi95CI& ;"/"; meanXboundByLo95CI&;")
times."

PRINT "arbitrary min meanX is under 95% CI:
(" ;minMeanXisUnder95CI&;") times."

PRINT ' "

PRINT "initial simulated meanY was bound by min: (";
meanYboundByMin&;") times. '

PRINT "initial simulated meanY was bound by (Hi/Lo) 95% CI:
("; meanYboundByHi95CI&;"J"; meanYboundByLo95CI&;")

times."
PRINT "arbitrary min meanY is under 95% CI:

(";minMeanYisUnder95CI&;") times."
PRINT " "

CASE 2,3
PRINT " "
PRINT " Tally: "; totalMeanX&;" simulations of mean X J ";

totalMeanY&;" simulations for mean Y"
PRINT

M _

-----------------"
PRINT " "
PRINT "initial simulated meanX was bound by (maxJmin): (";

meanXboundByMax&; "J";meanXboundByMin&; ") times."
PRINT "intiial simulated meanX was bound by (HiJLo) 95% CI:

("; meanXboundByHi95CI& ;"J"; meanXboundByLo95CI&;")
times. "

PRINT "max meanX and min meanX are (overJunder) 95% CI:
(";maxMeanXisOver95CI&;"J";minMeanXisUnder95CI&;")

times."
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PRINT " "

PRINT "initial simulated meanY was bound by (max/ min): (";
meanYboundByMax&; "/";meanYboundbyMin&; ") times. "

PRINT "initial simulated meanY was bound by (Hi/Lo) 95% CI:
("; meanYboundByHi95CI&;"/"; meanYboundByLo95CI&;")

times. "
PRINT "max meanY and min meanY are (over/under) 95% CI:

(";maxMeanYisOver95CI&;"/";minMeanYisUnder95CI&;")
times. '

PRINT ' "
END SELECT

PRINT " "
INPUT "press any key to continue$";carryOn$
cls
END SUB

'***improvement: use a character$ to tell program if rep or
not, combine SUBS into one

SUB ReplicateBoundsInfringements ( repBoundsTYPe%,
repxBoundByMin&, repxBoundByMax&, repxBoundByHi95CI&,
repxBoundByLo95CI&, minRepxIsUnder95CI&,
maxRepxIsOver95CI&,_

repyBoundByMin&, repyBoundByMax&, repyBoundByHi95CI&,
repyBoundByLo95CI&, minRepyIsUnder95CI&,
maxRepyIsOver95CI&)

REM prints the number of times that bounds for simulated
meanX or meanY are crossed.

SHARED numPoints%, sampleSizeX%(), sampleSizeY%(),
numTrials%, simulationsForX&, simulationsForY&,
loopCounter&

LOCAL carryOn$

Select Case repBoundsTYPe%

CASE a
PRINT "no bounds set on simulation of replicates."

CASE 1
PRINT " "
PRINT "TALLY: ";simulationsForX&;" simulations of rep x /

";simulationsForY&;" simulations of rep y"
PRINT

"-----------------------------------------------------------
------------------

PRINT " "
PRINT "initial simulated replicate x is bound by min: (";
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repxBoundByMin&;") times."
PRINT "intiia1 simu1ated repx is bound by (Hi/Lo) 95% CI:

("; repxBoundByHi95CI& ;"/"; repxBoundByLo95CI&;")
times. 1I

PRINT "arbitrary min repx is under 95% CI:
(";minRepxIsUnder95CI&;") times."

PRINT " "

PRINT "initial simulated replicate y is bounô by min: (";
repyBoundByMin&;") times. "

PRINT "initial simulated repy is bound by (Hi/Lo) 95% CI:
("; repyBoundByHi95CI&;"/"; repyBoundByLo95CI&;") times."

PRINT "arbitrary min repy is under 95% CI:
(";minRepyIsUnder95CI&;") times."

PRINT " "

CASE 2.3
PRINT " "
PRINT "TALLY: ";simulationsForX&;" simulations of rep x /

";simulationsFOrY&;" simulations of rep y"
PRINT

" -----------------------------------------------------
----------- "

PRINT " "
PRINT "initial simulated replicate x is bound by (max/min):

("; repxBoundByMax&; "/";repxBoundByMin&; ") times."
PRINT "intiial simulated repx is bound by (Hi/Lo) 95% CI:

("; repxBoundByHi95CI& ;"/"; repxBoundByLo95CI&;")
times."

PRINT "max repx and min repx are (over/underl 95% CI:
(";maxRepxIsOver95CI&;"/";minRepxIsUnder95CI&;") times."

PRINT " ,

PRINT "initial simulated repy is bound by (max/min): (";
repyBoundByMax&; "/";repyBoundByMin&; ") times. '

PRINT "initial simulated repy is bound by (Hi/Lo) 95% CI:
("; repyBoundByHi95CI&;"/"; repyBoundByLo95CI&;") times."

PRINT "max repy and min repy are (over/under) 95% CI:
(";maxRepyIsOver95CI&;"/";minRepyIsUnder95CI&;") times."

PRINT " "
END SELECT

PRINT ' ,
INPUT "press any key to continue"; carryOn$
cls
END SUB
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Computer cod~ for the loaNormal replicate proaram

The logNormal replicate program closely resembled the
CLT program, and only that code which differs from the CLT
program is included here. SUB FindConfidencelntervals and
SUB Randomization have counterparts in the CLT program, but
SUB MakeDistOfMeans is not in the CLT program. There is also
an additional parameter that the logNormal replicate program
requires: the number of means that must be generated to
estimate confidence intervals for means. This is one of the
first values that a user is asked to give by keyboard, and
is stored in "overPop%" (the code for this is not shown).

SUB FindConfidencelntervals (W(I), numPoints%,
sampleSizeW%(l) , S2W(1), lowerCI(l) , upperCI(l))

REM finds confidence intervals for each mean W using
mean:variance or real data 52.

LOCAL 52, i
SHARED overPop%, zmean() 'desired number of means taken

from under pop.

FOR i = 1 to numPoints% 'for each lake
dmean - W(i) 'desired mean of logNormal dist.

(ie. sample mean.)
dvar = $2W(i) 'desired variance of logNormal dist.

(ie. sample var.)
k = LOG ( dmean )
rNstd = SQR( LOG ( dvar+EXP( 2*k ) ) - (2*K) )

'Normal Std required to produce desired logN dist.
rNmean = LOG ( dMean ) - «rNstdA 2)/2)

'Normal mean required to produce desired logN dist.

CALL MakeDistOfMeans (overPop%, sampleSizeW%(i), rNmean,
rNstd, zmean(»)

low = INT ( .025 * overPop% )
high = INT (.975 * overPop% )
if low < 1 then low = 1
upperCI(i) = zmean(high)
lowerCI(i) = zmean(low)

NEXT i
END SUB

'lower tail of 95% CI

•
SUB MakeDistOfMeans (overPop%, sampleSize%, rNmean, rNstd,

meanz (1) )
REM sampIes overPop% # of means from a logNormal dist.and

puts them
REM in an array called meanz(), sorted by QuickSort.
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LOCAL i, surn, j, x, z, low, high

FOR i = l to overPop%
surn = 0
FOR j = 1 to sampleSize%

rand = RND
x = (.5513 * LOG ( rand/(l-rand)) ) * rNstd + rNmean

'x is Ncrm(rNmean,rNstd A 2)
z = EXP (x) 'z is Lnorm(dMean, dvar)
surn = surn + Z

NEXT j
meanz(i) = surn/sampleSize%
NEXT i

CALL QuickSort ( 1, overPop%, meanz() )
END SUE

SUB Randomization (dvar, sampleSize%, dMean, simulatedValue)
REM Randomly samples a value from a Normal (meanValue,

SQR(S2/n») dist.
REM Note that it is Non-transformed values of x and y that

are manipulated.
LOCAL SE, rand, varMean

k = LOG( dMean )
rNstd = SQR( LOG ( dvar+EXP( 2*k ) ) - (2*K)

required to produce desired logN dist.
rNmean = LOG! dMean ) - «rNstdA 2)/2)

'Normal Std

. Normal mean

•

su:n = 0
FOR j = 1 to samp1eSize% 'sample from under dist.

rand = RND
simNorm = (.5513 * LOG ( rand / (l-rand) ) * rNstd +

rNmean 'normal dist.
simLogNorm = EXP (simNorm) 'logNorm
surn = surn + simLogNorm

NEXT
simulatedValue = surn/sampleSize%

END SUE
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Cornouter code for the Normal replicate prograrn

The Normal replicate program and the logNormal
replicate program were the same, except in the way that they
generated distributions of replicates. The Normal replicate
program used an equation that generated values from a Normal
distribution. These differences appear in the three
procedures shown below, whose counterparts in the logNormal
replicate program are shown above.

5UB FindConfidencelntervals (W(l), numPoints%,
sample5izeW%(1) , 52W(1), lowerCI(l) , upperCI(l»

REM finds confidence intervals for each mean W using
mean:variance or real data 52.

LOCAL 52, i
5HARED overPop%, zmean{) desired number of means taken

from under pop.

FOR i = 1 to numPoints% 'for each lake
std = 5QR ( 52W(i) )
CALL MakeDistOfMeans (overPop%, sampleSizeW%(i), W(i),

std, zmean ( ) )

low = INT ( .025 * overPop% )
high = INT (.975 * overPop% )
if low < 1 then low = 1
upperCI(i) = zmean(high)
lowerCI(i) = zmean(low)

NEXT i
END SUB

'lower tail of 95% CI

•

SUB MakeDistOfMeans (overPop%, sampleSize%, mean, std,
meanx(l) )

REM sampIes overPop% # of means from a logNormal dist.and
puts them

REM in an array called meanx(), sorted by QuickSort.

LOCAL i, sum, j, x, low, high

FOR i = 1 to overPop%
sum = 0
FOR j = 1 to sampleSize%

rand = RND
x = (.5513 * LOG ( rand/(l-rand» ) * std + mean

'x is Norm(mean,std~2)

sum = sum + X
NEXT j

meanx(i) = sum/sampleSize%



•

•

115

NEXT i
CALL QuickSort ( l, overPop%, meanx() )

END SUE

SUE Randomization (var, sampleSize%, mean, simulatedValue)
REM Randomly samples a value from a Normal (meanValue,

SQR(S2/n)) dist.
REM Note that it is Non-transformed values of x and y that

are manipulated.
LOCAL std, rand, varMean

std = SQR ( var )
sum = 0
FOR j = 1 to sampleSize% 'sample from under dist.

rand = RND
simNorm = (.5513 * LOG ( rand / (l-rand) )) * std + mean

'normal dist.
sum = sum + simNorm

NEXT
simulatedValue = sum/sampleSize%

END SUE




