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Least squares linear regression 1s a common tool in
ecological research. One of the central assumptions of least
squares linear regressicn is that the independent variable
is measured without error. But this variable is measured
with error whenever it is a sample mean. The significance of
such contraventions is not regularly assessed in ecological
studies. A simulation program was made to provide such an
assessment. The pregram requires a hypothetical data set,
and using estimates of s2 it scatters the hvpothetical data
to simulate the effect of sampling error. A regression line
is drawn through the scattered data, and SSE and rl are
measured. This is repeated numerous times {(e.g. 1000) to
generate probability distributions for r? and SSE. From
these distributions it is possible to assess the likelihood
of the hypothetical data resulting in a given SSE or r?. The
method was applied to survey data used in a published TP-
CHLa regression (Pace 1984). Beginning with a hypothetical,
linear data set (r2=1), simulated scatter due to sampling
exceeded the SSE from the regression through the survey data
about 30% of the time. Thus chances are 3 out of 10 that the
level of uncertainty found in the surveyed TP-CHLa
relationship would be observed if the true relitionship were
perfectly linear. If this is so, more precise and more
comprehensive models will only be possible when better

estimates of the means are available. This simulation



approach should apply to all least sguares regression
studies that use sampled means, and should be especially

relevant to studies that use log-transformed values.



RESUME

La régression linéaire simple est un outil commun dans
la recherche écologique. L‘une des suppositions centrales de
la régression linéaire simple est que la variable
indépendante est mesurée sans erreur. Cependant, la variable
indépendante est mesurée avec erreur lorsqu’il s'agit d’une
movenne d’échantillon. La signification de telles
infractions n’est pas réguliérement évaluée dans les études
eécologiques. Un programme de simulation a été créé dans le
but de fournir une telle évaluation. Le programme exige un
ensemble de données hypothétique et, en utilisant des
calculs approximatifs de 82, disperse les données
hypothétiques afin de simuler l’effet d’erreur
d’échantillonage. Ensuite, une droite de régression est
établie & travers les données dispersées, et SSE et r? sont
calculés. Ce processus est repété nombreuses fois (e.g.
1000) afin de produire des distributions de probabilité pour

2

et SSE. A partir de ces distributions il est possible
d’'évaluer la probabilité que les données hypothétiques
résultent dans un SSE ou r? donné. La méthode a été
appligquée & une régression TP-CHLa publiée (Pace 1984). A
partir d‘un ensemble de données hypothétique linéaire
(r2=1), la dispersion dii & 1’'échantillonage simulée a
excédee le SSE de la régression publiée 30% des fois.

Ainsi, il y a 3 chances sur 10 que le niveau d'incertitude

que l’on voit dans la relation TP-CHLa publiée aurait été



observée i la wvraie relation étalit parfaitement linéaire.
Cette approche de simulation devrailt s’appliguer a tous les
2rudes de régression linéaire simple quili utilisent des
moyennes d’échantillons, et devrait s’avérer
particuliérement pertinente aux études gui utilisent une

transformation de données logarithmique.
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INTRODUCTION

In many branches of science we must sample
"populations® te estimate the guantities we wish to know.
This is especially so in ecology, where models often
represent large spatial and temporal dimensions. Yet,
sampling introduces such uncertainty to all of ocur estimates
that “true® values are almost never known. In turn, this
uncertainty can dramatically influence the way we test our
models. This study focuses on uncertainties in the estimates
of mean values, and their consequences for simple linear
regression studies. This is exemplified by scrutinizing one
previously published regression equation. I did not attempt
to investigate error from causes other than sampling, nor
how it would interact with sampling error.

Whether our ultimate aim is to predict or explain, an
important part of science is to consider the likely models
that might be compatible with our data. T@is directs our
science by narrowing the choice of models that we might
investigate. In a simple regression study, an obvious model
to consider is that there is an imperfect relationship
between X and Y, whose slope is the slope of the regression
equation. The degree of imperfection - hew much explaining
we have yet to do - is quantified by the r2. Another model
that almost always is considered is that there is no

relationship between X and Y; this is usually the null
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hyvpothesis for statistical tests of significance.

Once a predictive equation has been developed, and the
null hypothesis discarded, the next step is usually to
further investigate the hypothesis that the relation between
X and Y is imperfect because other factors have influenced
it. Generally, this involves residual analvsis of some sort,
which may lead to another regression studv - one that
includes more independent variables.

If we have used average values in our analysis, there
is another model that should be considered before extensive
;tudies are undertaken that require costly measurements of
more variables. One must ask if the existing data set is
compatible with a perfectly correlated mean X and mean Y.
Few published ecoclogical studies do so.

3 perfect correlation between mean X and mean Y can be
thought of as another null hypothesis - in addition to *no
relationship between mean X and mean Y*. The reason that we
should consider it, even though the data clearly do not lie
on a straight line, is that error results from sampling a
population. When we sample a population to estimate the true
average for that population, a random error ics introduced
into our data. Like a jumping bean, our measured mean strays
from the true population average. If we can find a way to
simulate these "data hops", we can test the hypothesis that
the data are consistent with a perfect relationship.

The simulations of sampling error are easy in
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principle. First, a perfectly fit relationship between mean
X and mean Y is hypothesized (the regression line £it to the
data is a reasonable choice). Then a sampling program is
simulated by introducing random sampling error to the
hypothetical values along the regression line. Finally,
simulated data sets are compared with a survey data set
(Figures la,b,c,d).

The remainder of the study discusses a computer program
that performs such simulations. The approach is examined
using a regression between mean total phosphorus (TP) vs.
mean chlorophyll a (CHL) (Pace, 1984) from 12 bodies of
water {(lakes or lake basins) in the Eastern Townships of
Quebec. This data set is interesting for several reasons.

TP-CHL relationships have been an important area of
study for close to 30 years (Sakamoto, 1966; Vollenweider,
1968; Dillon and Rigler, 1974; Smith, 1982; Molot and
Dillon, 1991), have proven a successful management tool
(Molot and Dillon, 1989%1), and illustrate the benefits of
*predictive ecology" (Peters, 1986). Yet, despite great
effort spent looking for additional predictor variables
(Smith, 1982; Canfield et al., 1983; Pace, 1984; Prairie et
al., 1989), a good deal of residual scatter around these
relationships awaits explanation (France et al., 1994). The
high uncertainty associated with estimating mean phosphorus
and CHL may be one explanation (Pepin, 1987; France et al.,

1994). Pace’s (1984) data set is interesting, therefore,
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because it is one example from a body of important work, and
conclusions about Pace’s data set may be relevant to this
larger body. It 1is also interesting because Pace (1984) did
not consider uncertainty in mean TP and CHL when he
investigated the residuals in his TP-CHL relationship. This
oversight could have affected his interpretation of
statistically insignificant correlations ("negative
results*), and in at least one case his interpretation has
been used as corrcoborating evidence (Morales-Baguero et al.,
1994). Finally, McQueen et al. (1986) interpreted the
residuals from several nutrient-consumer relationships
without considering the effects of uncertainty in estimating
means {Pepin, 1987). One of these relations was the Pace

(1984) TP-CHL relationship.

METHODS
ASSUMPTIONS AND GOALS

The following conditions are assumed:
[1] Ordinary least squares linear regression is used on
sample means from a survey. I will call these sample means

"survey mean X" and "survey mean Y*'.

f2] The survey mean X values and survey mean Y values are

imperfect estimates of the unknown "true® means. I call this
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discrepancy "sampling error*. To simplify this introductory
stidy, I assume that all measurements are free of error.
Sampling error, therefore, is entirely due to the
stochasticity introduced by choosing to measure only some of
the values that underlie a true mean. I also ignore the fact
that the values used to estimate a sample mean might,
themselves, be averages of several measurements (commonly
triplicates are used). These simplifications allow sampling
error to be more easily simulated, and are realistic when
measurement error is small and the triplicate values do not

differ much.

[3] The sample size (n) used to estimate each mean is
known, as is the variance ($2) associated with the values
used to estimate a mean. I use the terms "replicate X" and
*replicate Y" to describe the values used to calculate

survey means. The following form of variance is used:

n
¥ (survey mean X - replicate Xi)2
i=1

Sz=
(n - 1)

(4] The following is known about the regression analysis of
the survey data: the number of data points is d; the slope
is m; the intercept is b; the sum of squares (SSE) is the

*survey SSE"; the r? is the "survey ren.
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[S] A& perfect relation between X and ¥ is hypothesized that
has & points each lyving on the regression line from [4]:
Y =m* X + b . These points are hypothesized to be the
"true” means that the survey attempted to estimate. (1 will

refer to this set of & hypothetical values as Hq).

The goal of the thesis is to determine if H; is
compatible with the survey results. I set two related tasks
to achieve this goal: (1) I estimate the probability of
finding an SSE greater than, or equal to the survey SSE, if
H; is indeed correct; (2} I determine whether the survey r2
is different in a statistically significant way from the r2
= 1 associated with H;.

These two tasks are accomplished by: (1) recording the
SSE from 1000 simulated data sets, and then checking the
percentage of times that these exceeded the survey SSE; (2}
recording the array of r? values from 1000 simulated data
sets, sorting that array, and then developing 95% CI by
selecting the values at position 25 and 875.

As the probability in (1) increases, or when there is
no statistically significant difference in (2), we should
consider more seriously that H; might be correct, and in
subsequent surveys shift the emphasis of research towards
reducing sampling error, and away from seeking additional
explenatory variables.

The approach required is similar to power analysis
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(Zar, 1984; Peterman, 1990} because it questions whether
some estimated value such as the survey SSE or survey r2
might come from a population with a different value, and
answers this gquestion by estimating the distribution of SSE

or I.’2

values that are possible given H;. The approach
differs from a power analysis in that no attempt is made to
quantify a type II error.

The usual methods for estimating the distribution of
regression statistics (eg. r2, Zar 1984) are inappropriate
because sampling error is in both X and Y. Even if error
were restricted to Y, these convenient methods would be
compromised when sampling error differs over ¥, as it does
in this study (and in many ecological surveys). Simulation

is used, therefore, to estimate the distributions of SSE and

ry given Hp.

OVERVIEW OF THE SIMULATIONS

The simulation requires that sampling error be
introduced to each of the data peoints in H; (Figure 1). Each
hypothetical data point has an X and Y component
(hypothetical mean X, hypothetical mean Y), and the
simulations assume that the sampling error in each component

is independent.



FIGURE 1: A depiction of the simulation process.

(a} The data set of means from a field survey, and the
regression line through it. (b) Hypothetical XY coordinates
(solid circles) are placed where each dotted line intersects
the regression line. The survey data set (open circles) is
shown for comparison. (¢) Sampling error is simulated. (d)
A regression line is fit to the simulated data set and SSE

and r2 are measured.



(©)

d) .
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For each of the hypothetical mean values, a pseudo-
random number is chosen from a Normal distribution with mean
equal to the hvpothetical mean and variance equal to Szln
(52 is the variance of the replicate values used to estimate
a survey mean, and n is the sample size used). The shape of
these distributions is based on the Central Limit Theorem
(CLT) (Hogg and Tanis, 1983). This thecorem is convenient
because it allows us to estimate the shape of a distribution
of means without knowing exactly the shape of its underlying
distribution. This reduces the time required to simulate
each X and Y value (simulated mean X, and simulated mean Y}
since mean values can be simulated directly, and need not be
calculated from n simulated replicates.

One simulated data set is complete once a simulated
mean has been generated for each of the hypothetical means.
The simulated mean Y values are then regressed on the
simulated mean X values, and the SSE and r? are recorded
(model SSE, and model rz). This is repeated for 1000
simulated data sets to build a distribution of SSE and r?
given H;. Once those distributions are built, they can be
compared with the SSE and r2 from the survey data (survey
SSE, and survey rl). Figure 2 shows a simplified flow chart
for the program, whose code is in Appendix II.

Visual examination of simulated data sets is also a way
to check if the survey data is consistent with a perfect-fit

Hq. If scatter about the survey regression line is due to
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. sampling error, then simulated data will resemble the survey
data in a substantial proportion of the simulations (so long

as the simulations are realistic).



FIGURE 2: The simulation program is written in TBASIC
and accepts survey means, 52 values, sample sizes, and
min/max limits from file or keyboard, simulates sampling
error, and fits regression lines. If desired, simulations

can be viewed on a computer screen.



— |beginning of simulation loop

Flow chart for simulation program

data input

regression through real data

positioning of hypothetical data

simulation of data

regression through simulated data

( option to view simulated data )

Y |compilation of distributions of SSE & r*

end of simulation loop

calculations using compiled distributions
of SSE & I

printing results
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CHOICE OF HYPOTHETICAL VALUES (H,)

There is one hypothetical mean for every survey mean.
I1f more than 5% of the hypothetical means fall outside the
95% confidence intervals (CI) around their corresponding
survey means, the compatibility of the hypothetical data set
and the survey data set would be in doubt - even if the
model SSE were to frequently exceed the survey SSE in
subsequent simulations. It is therefore desirable to choose
hypothetical data that fall as close as possible to their
corresponding survey data. That way, when hypothetical data
are incompatible with the survey data, one can conclude that
all linear hypothetical data sets are incompatible with that
survey data, and reject the linear hypothesis.

The positions of hypothetical data were determined by
projecting perpendicular lines from the survey regression
line to the survey data (Figure la). Hypothetical data were
placed where these perpendiculars touched the survey
regression line. Perpendicular projections vield the
shortest distance between the survey regression line and the
survey data, but do not necessarily reveal the hypothetical
data (along the survey regression line) most likely to be
compatible with the survey data. Maximizing this
compatibility requires minimizing the "statistical distance*
(sensu Johnson and Wichern, 1982: p.20) between the

hypothetical data and survey data. Perpendicular projections
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were used because they were simpler, yet still provided
hypothetical data that were compatible with Pace’s (1984)
survey data. The compatibility of the survey means and the
hypothetical means was assessed using 95% CI based on a t-
distribution. This distribution was used because the
distributions of survey means were assumed to be Normal

(using the CLT), and had an estimated variance.

SIMULATED MEAN VALUES

A logistic approximation method (pers. comm. D.Roff,
Biology McGiil University) was used to generate Normal

distributions:

simulated mean =

[.5513 * logg(rand/(l-rand))] * [(s?/n)1/2]

+ hypothetical mean,

where the “hypothetical mean" above is not log-transformed;
and *rand" is a single pseudo-random number from a uniform
{0,1] distribution. This approximated the desired
distribution with mean equal to the hypothetical mean, and
variance equal to s2/n. Since Pace (1984) logqp-transformed
his data before regression analysis, each simulated mean was
also logqg-transformed.

No simulated mean value was allowed to exceed the 85%
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confidence limits of its hypothetical mean, nor fall beyond
minimum {(min) or maximum (max) values that were chosen for
TP and CHL in each lake. These arbitrary min and max values
provided biologically based limits to simulation, and helped
offset the bias in simulations that might result if the s
value from Pace (1984) were inflated. I set min and max
values as the smallest and largest replicate values. For
instance, if the smallest replicate TP value in a lake were
4 mg/l, then the simulated mean TP for that lake would not
drop below that value. The 95% CI also limited extreme
simulations, and made simulations more realistic if the min
or max values differed very much from the mean. These CI may
have caused sampling error to be underestimated when min/max
values were realistic, yet more lenient than the 95% CI. In
general, all these limits restrict SSE and increase 2, so

they make these tests conservative.

TESTING ASSUMPTIONS AND SENSITIVITY TO PARAMETER
FLUCTUATIONS

Distributions of model SSE and r? were generated using
1000 simulated data sets. I tested the appropriateness of
this number then tested the simulation program’s sensitivity
to the following:

(1) the min and max values used to limit simulated means,
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(2) the use of the CLT to approximate the shape of

distributions,
(3) the $2 estimates,
{(4) the sample sizes used to estimate survey means.
Areas of sensitivity that were not tested include: the
slope, intercept, number and range of data points usad for
Hy, the location of hypothetical points along a line (they
need not be positioned as illustrated in Figure la), and the
effect of correlation between the sampling error in survey

mean X and survey mean Y. I leave these for future studies.

THE DATA

In the Eastern Townships of Quebec, Pace (1984) visited
10 lakes 5 times between May and September. One of the lakes
had 3 basins, and was treated as 3 separate lakes. This gave
the data set 12 sites. Triplicate measurements ¢f TP and CHL
were taken from one central location at each site. From the
triplicates a single value was calculated, these single
values were then compiled into a seasonal mean for each site
(Table 1). Generally, sample sizes of 5 were used to
estimate seasonal means, except for 3 sites where a sample
size of 4 was used to estimate TP means. Pace (1984)
provides details of lake chemistry and morphometry.

Pace (1984) used geometric means as data points in his
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. published regressions. I have used arithmetic means. They
are simple and are commonly used by ecologists. This changed

the regression equations only slightly:

LogCHL 1.14 * LogTP - 0.60, r220.94 for arithmetic data;

LogCHL = 1.09 * LogTP - 0.56, r2=0.93 for geometric data.

"

Strictly speaking, because simulations are based on
arithmetic means while the published regression in Pace
(1984) is based on geometric means, we should be careful
when drawing conclusions about his published regression from
this study. We can be more confident when drawing
conclusions about the TP-CHL regression that uses arithmetic
means. I leave it to another to decide if such precaution is

pedantry.
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TABLE 1. The survey values derived from Pace (1984).

TP CHL
mean mean
Site n (mg/m3) 52 n (mg/m3) 52
Bowker 4 3.75 4.8 5 1.30 0.54
Orford 4 5.33 1.5 5 1.53 0.41
Brompton 4 6.52 5.8 5 1.97 0.28
Lovering 5 7.04 1.4 5 2.50 0.18
Argent 5 10.71 5.7 5 2.45 0.29
Neorth 5 9.10 9.6 5 3.82 2.97
Centragl S 10.04 7.0 5 4.57 1.39
South 5 12.79 7.0 5 S.64 2.8%
Massawippi S 12.71 8.0 S 4.19 3.54
Brome S 14.65 8.8 5 4.07 5.90
Magog 5 47.38 44.6 S 16.88 87.60
Waterloo 5 59.70 434.7 S 34.98 387.40

* different basins in Lake Memphremagog, all other sites are
separate lakes. :
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The non-transformed arithmetic TP-CEL data, the log-
transformed data, and the hypothetical data used in

simulations are shown in Figure 3.

RESULTS AND DISCUSSION

PRE-SIMULATION CONCERNS

Assessing the plausibility of the hypothetical data:

In most cases the hypothetical means for both TP and
CHL were deep inside the 95% confidence limits for their
corresponding survey means (Figure 4). Therefore the
hypothetical values appear consistent with the survey means.
The use of the t-distribution can be questioned though,
since the distributions of replicate TP and CHL are
typically asymmetric (Heyman et al., 1984; Walmsley, 1984).
This asymmetry might compromise the CLT prediction that the
distributions of survey means will be Normal (Hogg and
Tanis, 1983). However, the hypothetical values are generally
close to the survey means and far from the 95% confidence
limits; therefore small inaccuracies in estimating those

confidence limits are believed to have little impact.



FIGURE 3: {a) Non-transformed seasonal mean TP and CHL
data from Pace {(1984). (b) Log-transformed seasonal mean TP
and CHL data derived from Pace (1984). The regression
equation is: LogCHL = 1.14 LogTP - 0.60, r? = 0.94. (c)
The hypothetical data set used in simulations. Hypothetical
data are placed along the regression line fit to the log-
transformed survey data from Pace (1984), as shown in Figure

1.
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FIGURE 4: The plausibility of each hypothetical daca
point depends, in part, on it being reasonably close to the
survey data. Here the survey means and 95% CI for TP and CHL
have been shifted so that the survey means all lie at zero.
The 95% CI for the survey mean from each lake is shown by a
vertical line. The hypothetical means are marked by short
horizontal lines. The hypothetical means lie well within the

95% CI in all cases.
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The effect of correlation between sampling error in survey

mean ¥ and survey mean Y:

The simulation program assumes that, within each lake,
sampling error in a survey mean X does not covary with
sampling error in survey mean Y. This assumption has been
used by others, though it has dangers (Reckow, 1984). If
sampling errors do covary, then the simulation results will
be biased. The simulation program will tend to overestimate
the effects of sampling error when the covariance is
positive, and underestimate it when the covariance is
negative (Figure 5).

I believe that assuming independence will not seriously
bias simulation results based on the Pace (1984) data set.
The double constraints imposed on simulated means (min/max
and 95% CI) should counter-balance bias that might result
from weak, positive correlations between sampling error in
survey mean X and Y. Plots of replicate X and Y from Pace’s
{1984) 12 sites did not reveal any trend to strong
correlation (Table 2), which is consistent with weak or no
covariance between the sampling error in survey means
(Figure 6). However, the sample sizes (4 or 5) used in these
plots may be insufficient to expose covariance. Some larger
data sets from one of the lakes that Pace surveyed did not

suggest strong covariance either (Table 2).



FIGURE 5: (a) A close look at one hypothetical data
point on a regression line. Dashed lines delineate the
limits imposed on simulated sampling error. (b) Four arrows
symbolizing sampling error divide the available space into
quadrants. With a positively sloping regression line, if the
sampling error in mean X and Y is positively correlated,
then quadrants II and IV are more likely to be occupied,

where residuals tend to be lower.
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FIGURE &: Examples of systems where sampling error in
mean X and mean Y are (a) independent, and (b) correlated.
Correlation between replicate X and replicate Y is

associated with correlation between the sampling error in

Mean X and Mean Y.
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TABLE 2. Within-lake correlations between replicate TP and
CHL. Data are from two sources: Pace (1984) and The McGill
Limnology Ressarch Centre. The number_of replicate data
points (n), r“, and the significant r® at 5% level are
shown. The McGill Limnology Research Centre sites are on
Lake Memphremagog.

Pace data
signif%cant

Lake n r? r<

Bowker 4 0.05 0.77
Orfoxrd 4 0.06 0.77
Brompton 4 0.97~ 0.77
Lovering 5 0.23 0.66
Argent S 0.3¢9 0.66
North 5 0.45 0.66
Central 5 0.42 0.66
South 5 0.50 0.66
Massawippi 5 0.00 0.66
Brome = 0.70* 0.66
Magog 5 0.02 0.66
Waterloo 5 0.49 0.66

McGill Limnology Research Centre data

signif%cant
Sites Year n r2 r
Pender 1875 20 0.49~ 0.20
Border 1978 33 0.44~ 0.13
Central 1979 33 0.09 0.12
North 1979 34 0.02 0.11
Pender 1979 33 c.37~ 0.12
Border 1980 31 0.41~ 0.13
Border 1981 15 0.43* 0.26
Central 1981 15 0.02 0.26
North 1981 16 0.00 0.24
Central 1985 19 0.34~* 0.21

* statistically significant r? (p<0.03).
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The effect of non-random sampling:

Pace (1984) sampled lakes pericdically (about once a
month) rather than randomly. The CLT assumes random sampling
(Hogg and Tanis, 1983). If sampling is not random, then the
distribution of a survey mean might differ from the CLT
approximation.

Unfortunately, there is no way of knowing how much
simulated distributions differ from those distributions that
gave rise to Pace’s (1984) survey means. This is not a
unique situation. For instance, random sampling is often
assumed when we make confidence intervals, even when

sampling is periodic.

SIMULATION RESULTS

About 30% of the 1000 regressions on simulated data had
SSE values that exceeded the SSE found using Pace’s (1984)
survey data (Table 3). In other words, about 30% of the
survey regressions from a set of 12 lakes in which logCHL
was perfectly predictable from logTP would have an SSE
greater than the SSE found using Pace’s (1984) data, given
that survey means behave like the simulated means. Using
computer generated 95% CI, the model r? is not significantly

different than the survey r2. The distributions of model SSE
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. TABLE 3. Simulation results from 1000 simulated data sets.

Probability that model SSE > survey SSE = 30.1%

mean model 2 (95% CI)

0.95%5 (0.89 - 0.99)
mean model SSE (95% CI)

0.092 (0.026 - 0.210)

For comparison, derived from Pace (1884):

survey SSE 0.1082

survey r? = 0.94
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2 are shown in Figure 7.

and r

Individual simulated data sets are also consistent with
the perfect-fit hypothesis. Three simulated data sets are
shown in shown in Figure 8. Scatter is due only to the
effects of simulated sampling. The program generated 1000
such data sets, and only three are illustrated, so there is
a danger of persuasion through editing. However, the three

2 and SSE values produced

data sets reflect the spectrum of r
through simulation. Only Figure 8a has an SSE greater then
the survey SSE. This corresponds roughly to the 30% of all
simulated data sets that had higher SSE values than the
survey SSE.

Though it is counter-intuitive to believe the perfect-
fit hypothesis (it seems unlikely that CHL could be entirely
predicted by TP), the possibility that most of the variation
in CHL could be explained by TP cannot be dismissed out of
hand. This is disturbing. By exposing such ambiguity in one
regression analysis, the simulation results force us to
question all interpretations that do not consider the
*perfect-£fit" null hypothesis.

These results evoke a second question: when faced with
residuals in a Y on X regression, is it better to diffuse
our effort searching for other predictors (X5,%3,Xy4, and so

en ...), or to focus effort on achieving better estimates of

X and Y? (Of course, it would be nice to do both).



FIGURE 7: (a) The distribution of model SSE, from 1000
simulated data sets. The SSE found using Pace’s (1984) data
was 0.1082 and is shown by a vertical arrow. (b) The
distribution of model r?, from the same 1000 simulated data
sets. The r? found using Pace‘s (1984) data was 0.94 and is
shown by a vertical arrow. Shading emphasizes where model

SSE exceeds the survey SSE, or model r2 is less than the

survey r2.
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FIGURE 8: Three simulated data sets were chosen to

provide examples of SSE greater than, about the same as, and
less than the survey SSE (0.1082). (a) The first simulated
data set. (b) The third simulated data set. (c) The fifth

simulated data set.
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This study implies that achieving better estimates of mean
TP and CHL could be more informative than sampling

additional variables at the same intensity as the initial

study.

SENSITIVITY TESTS

Three criteria are used to assess sensitivities: the
probability that model SSE exceeds survey SSE, mean model

SSE and its 95% CI, and mean model r? and its 95% CI.

The effect of altering the number of simulated data sets:

Analyses were done using 100, 200, 500, 1000, 2000,

5000 and 10000 simulated data sets. A sample size of 500 was
sufficient to produce stable results for the probability
that model SSE exceeded survey SSE (Figure %a). All sample
sizes produced similar mean model SSE values (Figure 9b).
Likewise, all sample sizes produced similar mean r? values
(Figure 9c¢). Considering these findings, a sample size of
500 may have been adequate, but a sample size of 1000 seemed

to offer a better blend of computing time and credibility.



FIGURE 9: Results using different numbers of simulated
data sets. (a) The probability that model SSE exceeds
survey SSE. (b) The mean and 95% CI for model SSE. (¢) The

mean and 95% CI for model r2.
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The effect of using non-CLT dependent simulations:

The result that 30% of model SSE exceeded survey SSE
came from simulations based on the CLT. The CLT generally
gives good approximations if n is greater than 25 or 30,
where n is the sample size used to calculate the sample
mean. If the underlying distribution (the distribution of
replicate values) 1s symmetric, unimodal, and continuous,
then good approximations can be had when n is as low as 4 or
5 {Hogg and Tanis, 1983). Pace (1984) used sample sizes of 4
or 5, but the underlying distributions of his survey mean TP
and CHL were possibly logNormal (Pace, 1984), and therefore
asymmetric. If so, the sample sizes provided by Pace (13584)
may have been too small for the CLT to give good
approximations of the distributions of means.

To investigate this problem, a second simulation
program was made that did not use the CLT. The original
simulation program (CLT program) chooses means directly from
a distribution of means approximated by the CLT. The second
program instead calculates each mean from n simulated
replicates (n is the number of replicates used by Pace
{1984) to estimate each survey mean).

The second simulation program (logNormal replicate
program) assumes that all underlying distributions are
logNormal. The means of these underlying distributions are

the same hypothetical means used in the CLT program, and the
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variances are the s2 values measured by Pace (1984). The
computer code appears in Appendix II.
In the CLT program the following equation is used to

calculate 95% CI for simulated means:

95% confidence limit= hypothetical mean +/- 1.96 * (s2/nyd/2

But this equation is appropriate only when the CLT applies,
so it is not used in the logNormal replicate program.
Instead, 95% CI are based on simulations. For each of the
hypothetical mean TP and CHL values, 1000 simulated means
are made by averaging n simulated replicates, 1000 times.
Each collection of 1000 simulated means is ordered from
lowest to highest value; the 25th and 975th values are used
as the 95% confidence limits.

A third simulation program (Normal replicate program)
was also made. Its broad structure is identical to the
logNormal replicate program, except that the Normal
replicate program assumes that all underlying distributions
are Normally distributed.

This third program acts as a control in comparisons
between the simulation results of the logNormal replicate
program and CLT program. If results from the CLT program are
similar to results from the Normal replicate program, then
any difference between results from the CLT program and the

logNormal replicate program must stem from their different
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The effect of altering min and max used as bounds in

simulation:

Two additional sets of simulations were done using
different min/max values. One set of simulations ("narrow")
used min/max that were close to the hypothetical means,
another set ("wide") used min/max that were far from
hypothetical means.

In each lake, the "narrow" min was calculated by
halving the distance between the hypothetical mean and the
lowest sampled replicate value. The “narrow' max was
calculated by halving the distance between the hypothetical
mean and the highest sampled replicate value. The "wide" min
was calculated by halving the lowest sampled replicate
value, the max by multiplying the highest replicate value by
1.5.

Sometimes when "narrow" min/max are used, limits to
simulated values are exceeded by hypothetical means
themselves (before there is any simulation). In these
situations, either the min/max limits or the hypothetical
means are inappropriate. Hypothetical means exceeded
*narrow" min/max limits 4 times out of the 24 (17%) using
the Pace (1984) data. Since these min/max limits were chosen
to test the effects that the min/max limits have on
simulations, and were not an attempt to represent real

min/max limits, it may not matter whether the hypothesis or
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min/max limit was inappropriate in four cases. To avoid
faulty simulations, limits were widened, in those four
cases, to include the hypothetical mean.

Under "narrow® min/max limits, the probability of model
SSE exceeding survey SSE was 9% (Table 5). Under the regular
min/max limits, the probability was 30%. Under "wide*
min/max limits, the probability was 34%. Therefore, how we
choose min/max limits certainly affects these probabilities.

Simulations predict a 3% to 5% reduction in r2, on
average, due to sampling error, regardless of the min/max
limits used (Table 5). The average model SSE and r? are more
robust with respect to min/max limits than is the
probability of model SSE exceeding survey SSE. There is
almost a fourfold difference between the "narrow" and “wide*
results for the probability of model SSE exceeding survey
SSE, which reveals this question’s requirement for
accurately estimated min/max. How to best estimate min/max

is unresolved.

The effect of altering s2 estimates:

Each simulated mean comes from a distribution that is
Normal and has a variance of Szln. where 52 is the wvariance
of replicates surveyed by Pace (1984) and n is the sample

size he used to estimate means. The amount of sampling error
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TABLE 5. Resulits using different c¢riteria to set min/max
for simulated mean TP and CHL. “"Narrow", "regular", and
*wide" are described in text. Shown are the probability that
model SSE exceeds survey SSE ("P"), the.mean of model SSE
and its 95% CI, and the mean of model re and its 95% CI.

Model SSE Model r2

Min/max P (95% CI) (95% CI)

Narrow g D.065 0.97
(0.019 - 0.138) (0.92 - 0.59)

Regular 30 0.092 0.95
(0.026 - 0.210) {0.89 - 0.99)

Wide 34 0.099 0.95

(0.028 - 0.230) (0.88 - 0.98}




48

allotted to each hypothetical mean during simulation depends
on $2/n, which in turn affects model SSE. This section
discusses S° effects, the next section discusses n effects.

Simulations used four sets of $2 values, in
addition to the §2 values from sampled replicates {(called
regular s2). Each of the four sets was made by multiplying
each of the 24 regular s2 values by a factor of: 0.1, 0.5,
2.5, or 5. One way to give these factors a context is to
look at confidence intervals for S2. Using the method of
shortest unbiased confidence intervals (Sokal and Rohlf,
1981}, when sample size is five, the 95% confidence interval

for the 82 of a normal distribution is:
0.3125 * S2 to 6.590 * S2

when $2 values are set at 1/10th the §2 of sampled
replicates, the probability of model SSE exceeding survey
SSE is zero. When S¢ values are set at five times the S% of
sampled replicates, the probability is 97% (Figure 10). Mean
model SSE and r? alsc show wide spreads due to changes in s2
(Figure 10).

These findings may not be as troublesome as they first
appear. When the s2 factors shown in Figure 10 were applied,
the same factor was applied to all of the 24 underlying
distributions for TP and CHL, and then 1000 data sets were

simulated. Then a new s2 factor was applied and the process



FIGURE 10: Results assuming different s? estimates for
replicate TP and CHL. (a) The prcbability that model SSE
exceeds a fixed SSE (0.1082, the survey SSE from Pace
(1984)}). The range in s2 values was achieved by multiplying
Pace’'s $2 measurements by 0.1, 0.5, 1, 2.5 and 5. (b) The

mean and 95% CI for model SSE. (c) The mean and 95% CI for

model r2.
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repeated. But in a well designed study, the chance of every
s? estimate being very low, or very high, relative to the
true values is minute. For instance, a factor of 0.3 falls
at the lower edge of the 95% confidence interval for an s2
from a sample size of five from a Normal distribution. The
chance of every sampled s? value being that low is about 4 *
10“39, and would on average require 2.5 * 1038 surveys
before happening.

Because one would expect overestimates of s2 as often
as underestimates of $2, the effects of inaccurate $2
estimation may not be large. In fact, this seems to be the
case with Pace’s (1984) S2 measurements. When his $2
measurements are plotted on published mean-variance
rogressions for TP (France and Peters, 1992) and CHL
(Marshal et al., 1988) they are not consistently high; some
are high, some are low, some are in the middle (Figure 11).

s has an upperbound of nm? {(where n is the sample size
used to estimate the mean, M) (Appendix I). It is possible
that Pace’s (1984) S2 values are highly inflated but fall
within the mean-variance plots in Figure 11 because his
values are more mathematically constrained than those values
in the published plots (France and Peters (1992), for
instance, use n=7). The dashed line in Figure 11 shows nM2
for n=5, the sample size most used by Pace (1984). Pace’'s
(1984) S° values are about 1/10th to 1/100th of the nM?

maximum, therefore there is no evidence of mathematical



FIGURE 11: Mean:variance plots can be used to show that

Pace’s (1984) S measurements are not unusual. (a) Pace’s
measurements of $2 associated with TP (solid circles)
superimposed on a mean:variance plot for TP from France and
Peters (1992) (open circles). (b) Pace’'s measurements of s2
associated with CHL (solid circles) superimposed on a
mean:variance plot for CHL from Marshall et al. (1988) {open
circles). The dotted lines show the theoretical nM? maximum
for s% for Pace’s results (n=5), and that mathematical
constraints are not the reason that Pace’s results fall

within those of the general mean:variance plots.
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constraint at a given level of M. Another criticism might be
that the published mean-variance plots provide an "easy"
test if some of their §° values are inflated due to low
sample size. The France and Peters (1992} plot, however,
used n=7 to calculate each of their data points (Figure
lla), which is larger than any sample size used by Pace
(1984} . The sample size criticism may apply to the Marshall
et al. (1988) plot (Figure 1llb); but if it does, then it
also suggests that some of the s? values are underestimated
in this plot, which would suggest that any of Pace’s s2
values that fall along the bottom of this plot are
especially low. A reasonable conclusion is that Pace’s
values do not appear unusual. This study’'s findings,
therefore, may be applicable to TP-CHL relaticnships in

general.

The effect of altering the sample size used to estimate the

mean:

Because sample size is almost always known without
error, it does not affect the robustness of the simulation
results. But the effects of sample size are interesting
since sample size is something which researchers control.

The simulation program was run with all n = 1, then

with all n = 2, then 3, and so on until aill n = 10. The
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probability that model SSE exceeded survey SSE falls from
96% to 2% as sample size increases from one to ten (Figure
12a). As n increases, the effects of sampling error become
increasingly difficult to reduce by further adjustments to
sample size. This pattern should be guite general, since it
stems from the fact that sample sizes can be incremented at
a constant rate to a practically limitless number, whereas
the probability has a lower bound of zero.

Graphs such as these could help researchers plan
sampling programs. For instance, if we want to reduce the
probability of model SSE exceeding some fixed SSE (0.1082 in
Figure l2a) from 30% to less than 5%, a sample size of nine
is needed. However, after a sample size of about 6 or 7,
gains in the precision of SSE estimates become very small.

There is a growing body of literature that uses mean-
variance relationships to predict the sample sizes required
to estimate mean values with desired precision. Examples
include sample size predictions for TP (France and Peters,
1991), CHL (Marshall et al., 1988), zooplankton (Downing et
al., 1987), stream benthos (Morin, 1885), lake and river
benthos (Downing, 1979), aguatic macrophytes (Downing and
Anderson, 1985), and epiphytic invertebrates (Downing and
Cyr, 1985). However, none of these studies looks at the
effect of precision on regression analysis. Knowlton et al.
(1984) stressed that sampling intensity must satisfy the

requirements of whichever statistical test is used.



FIGURE 12: Results when the sample sizes used to

calculate the standard error of the hypothetical means are
altered. $? values are those measured by Pace {(1984), and
are kept constant throughout. (a) The probability that
model SSE exceeds a fixed SSE (0.1082, the survey SSE from
Pace (1984)). (b) The mean and 95% CI for model SSE. (c)

The mean and 95% CI for model 2.
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Researchers who intend to use thelr measurements for
regression analysis should not assume that sampling error
will be unimportant if they follow the recommendations in
the mean-variance literature. This is not a criticism of
these interesting papers; it uses those ideas as a platform
for new onss. France and Peters (1991), for instance,
recommend that sampling programs designed to develop TP-CHL
relationships should use five to seven temporal replicates.
This study shows that sampling érror can still be a problem
when five replicates are used.

Figure 12b is based on the same model SSE distributions
as Figure 12a, and the information in Figure 12a can be
approximated by the information in Figure 12b. For instance,
in Figure 12b the lower 95% confidence limit for model SSE
is about 0.1 when sample size is one. This is close to the
survey SSE in Pace’'s (1984) study. Therefore, one would
expect that the probkability of model SSE exceeding the
survey SSE in Pace’s (1984) study would be about 98%, when
sample size is set at one. This is what Figure 12a shows.

It is sometimes difficult to assess the importance of
"raw" SSE values (i.e. what does an SSE of 0.1082 mean?).
Figure 12¢ shows sample size comparisons in terms of r2,
Keeping in mind that results are based on one data set and
all of the assumptions in the simulation program, it can be
interpreted as follows. When we sample a system whose mean %

and Y values fall perfectly aleng a line, the resultant
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regression ic likely tc show an r2 less than one. How much
less will be determined, in part, by the sample sizes used
to estimate the mean values.

Under the program assumptions, Figure 12c¢ shows that
0.80 is the lower 95% confidence limit for model r? from
perfectly correlated hypothetical means that are based on a
sample size of three. Yet, given a regression with an rl of
0.80, few scientists would recognize that they might be
dealing with a perfect-£fit. In fact, if s2 values were high
enough, and the range of X small enough, one could lose all
of a perfect relationship to the effects of sampling error.

When sampling error is not large enough to obscure the
relationship between a first predictor variable and Y, it
can still diminish the statistical significance of a second
predictor variable. This should be a concern especially when
the first predictor accounts for much of the variation in Y,
because then it is easier for sampling error to overshadow
any additional wvariation in Y attributable to the second
variable. This has great relevance to sampling design, and
might be particularly relevant to "old questions®, such as
nutrient-CHL regressions, where existing models already
explain much of the variation in ¥ and small increments in
predictive power are sought through yvet another variable.
The interpretations of previous negative findings in those

sorts of studies should be reconsidered.
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CONCLUSIONS

This study investigates the hypothesis that a set of
true mean TP and CHL values is transposed, through sampling
error, from being perfectly correlated into the data set
measured by Pace (1984). A simulation program was developed
to help answer this question, a set of simple sensitivity
tests assessed the applicability of simulations to Pace's
{1984} work, and the robustness of the simulation program’s
results,

Two specific questions were asked: (1) How often do
regressions through simulated data result in an SSE that
exceeds the survey SSE? (2) Is the average r? from
regressions through simulated data significantly different
than the survey r??

The answers are: (1) Regressions through simulated
data result in SSE that exceeds survey SSE about 30% of the
time. This might be called a *cautious overestimate®. It is
cautious because simulated values were constrained, and it
may be an overestimate because within each lake sampling
error in mean X was assumed to be independent of sampling
error in mean Y. Both aspects of the simulation were
reasonable, however, and I do not think that either
seriously biased the results. Instead, my confidence in the
simulations is increased when I consider their counter-

balancing effects. (2) The mean r? of regressions through



61
simulated data was not significantly different than the
survey r?. The criteria for significance were 95% confidence
limits derived from 1000 regression analyses through 1000
simulated data sets.

These results are consistent with the hypothesis that
sampling error in mean TP and CHL accounts for all of the
residual error in the regression through Pace'’s (1984) TP-
CHL data. We should therefore guestion whether looking for
additional predictor variables is the best way to improve
predictions of mean CHL in these lakes. Instead, improving
the precision of the estimates of means may be more
effective.

A central assertion of this study is that when mean
values are used in a regression analysis, then dependent and
independent variables are measured with error. This
assertion conflicts with an important assumption underlying
least squares linear regression. By investigating the
consequences of these conflicts, we enhance our ability to
interpret regression results. The simulation approach used
in this study should extend beyond limnology; it should be
applicable to any least squares regression study involving

sample means.
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APPENDIX I

The maximum value for the S> of samples from a population

I use the following form of s2 {Sokal and Rohlf, 1981):

$2 = Z(x;2) - nx? (1]

{n - 1)

where X3 is the magnitude of each individual measurement, X
is the mean of all measuremencs, and n is the sample size.

. . 2 . . AP o)
For a given n and X, S§* is maximized by maximizing Z(xi“)
because the other terms in [l] remain constant.

Maximizing Z(Xizl

I use an approach that is relatively simple but not
algebraically rigorous.

The samples are first arranged in n boxes. The focus will
initially be on the last two boxes, boxes n-1 and n. Let
their magnitudes be z and y so that subscripts are
unnecessary. There are no negative magnitudes.

box 1 box 2 box n-1 box n
xl xz ------ xn_l Xn
= 2 = y

Now ask which arrangement yields a larger sum of squares:
the noncompiled boxes: z2 + y2 i2)

or the compiled boxes: (z + y)z + 02 (3]
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[3] can be written as:

2

(z + y)2 + 02 = 22

+ v2 4+ 2zy [4]

Therefore the compilation of the two boxes gives the larger
sum of squares, or an egual sum of squares when z or y are
zero.

Next, one can ask what happens when those compiled boxes are
compiled wiah box n-2. The same reasoning shows that an even
higher X(x;“) is obtained {excspt when one of the boxes has
a magnitudé of zero, then X(x;¢) remains unchanged). This
process can be continued untif all boxes are compiled into
one. At that point, when no more compilations are possible,
Jix:<) is maximized. All but one box will have zero
magnitude. The magnitude of the nonzero box will be in. If
this value is inserted into [1]:

o2 (Ix;)2 - nx? (5]
(n - 1)
(nf)2 - niz
) (n - 1)
n2%2 - ndx?
) (n - 1)
niz in - 1)
B (in - 1)
= nX?

. Therefore the maximum S° is nxe.
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APPENDIX II

Computer code for the CLT program

Note: The code 1s slightly more extensive than is required
for this thesis. It is written in TBASIC.

REM Program that simulates scatter around a perfectly

REM deterministic linear model. amount of scatter is related
REM to the estimated uncertainty involved in estimating the
REM population means - ie the data points - shown along

REM the x and y axis of a regression line.

cls
$stack 4054 'allocates extra memory for arrays
! Control Variables
$wantGraphics = 0 ‘non-zero value permits $IF/$SENDIF
block in SUB Regression
$wantDataPoints = 0 'non-zero value permits $IF/S$ENDIF
block in SUB Regression
$sampleSizeCheck = 0 ‘a loop to alter sample size, to see
effect on model SSE
$¥wantEachResult = 0 ‘non-zero value causes samplesize
check to stop after each n.
$soundoOn =0 'adds sound to alert user when
processing done.
wantSSEfiles = "n* ‘files modelSSE array.
wantSSEoverSSYfile$ = "n" '‘files modelSSe/SSY array.
wantSSyfile$ = "n* ‘files modelSSY array.
wantR2file$ = "n* *files modelr2 array.

INPUT "maximum number of data points to be entered = *;
maxNum$ ‘required for DIM statements

INPUT *number of simulated data sets requested = *;
numTrials$

DIM DYNAMIC x(l:maxNum%), y(l:maxNum%¥), logX(l:maxNum%},
log¥ (1l :maxNum%), logRandx(l:maxNum%), logRandy (1l:maxNum%),
hypX({1l:maxNum%), logHypX(l:maxNum%)}, hypY(l:maxnum$),
logHypY (1 :maxNum$)

DIM DYNAMIC unexplainedMSE(l:numTrials%),
modelr2 (l:numTrials%), pseudor2(l:numTrials%),
arrayModelSSE(l:numTrials%),
modelSSEoverSSY (l:numtrials%), arrayModelSSY(l:numtrials%)

DIM DYNAMIC Xmax{l:maxNum%), Xmin(l:maxNum%),

Ymax (1 :maxNum%), ¥Ymin(l:maxNum$),
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replevelSlope(l:maxNum%), replLevellntercept (l:maxNum$),
repLevelS2YgivenX{l :maxNum%}, S2Y¥{l:maxNum%),
S2X (1 :maxNum%}

DIM DYNAMIC sampleSizeX%(l:maxNum%),
sampleSize¥% (l:maxNum¥), lowerCI(l:maxNum¥),
upperCI (1 :maxNum%), logPerfectFitY(l:maxNum$)
rrwwrxwrromnorarily here to test graphics

DIM DYNAMIC SZhypX(l:maxNum%), S2hypY({l:maxNum$)

DIM DYNAMIC sortedlogRealX(l:maxNum$),
sortedlogRealY ({1l :maxNum%), sortedlogRandX(l:maxNum$),
sortedXmin (1l :maxNum%), sortedXmax{l:maxNum%},
sorted¥min(l:maxNum%}, sorted¥max(l:maxNum%)

DIM DYNAMIC orthoX(l:maxNum%), orthoY{l:maxNum%),

Xgap (l:maxNum$), Ygap(l:maxNum3)

simulationsForXa = 0 ‘increments at each simulation.
simulationsForY& = 0
meanXboundByHi95CI& = 0 ‘initializes variable to
count occurances of a simuiated
mean¥ bound by 95% CI.
meanXboundByLo35CI& =0 ‘bound by 95% CI.
meanXboundByMin& =0 ‘bound by preset minimum value.
meanXboundByMax& =0 ‘bound by preset maximum value.
minMeanXisUnder95CI& = 0 ‘occurances of: preset min

values that are less than 95% CI.

maxMeanXisQver95CI& = 0 ‘max values that are greater
than 95% CI.
meanYboundByH195CI& = 0 'as above, for simulated meanV.
meanYboundByLoS5CI& =0
meanYboundByMin& = 0
meanYboundByMax& = 0
minMeanYisUnder95CI& = 0
maxMeanYisCOver95CI& = 0
repxBoundByHi95CI& =0 ‘initializes variable to count
occurances of a simulated
replicate x bound by 95% CI.
repxBoundByLo95CI& =0 ‘bound by 95% CI.
repxBoundByMin& =0 ‘bound by preset minimum value.
repxBoundByMax& =0 'bound by preset maximum value.
minRepxIsUnder95CI& = ‘occurances of: preset min values
that are less than 95% CI.
maxRepxIsOver9sSCIi& = ‘max values that are greater than
95% CI.
repyBoundByHi95CI& =0 ' as above, for simulated

replicate v.
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repyBoundByLoS5CI&
repvBoundByMing
repyBoundBYMax$

w nn
[oNeRe

minRepyIsUnder95CI&
maxRepyIsOver85CI&

nn
QO

CALL GETDATA ( sampleSizeX%(), sampleSizeY¥%(), numTrials%,
numPoints%, X(), Y(), logX{(), logY!())

CALL GETS2INFO ( S2method$%, S2X(), S82Y{), numPoints%,
replicateCorrelation$, exp¥S$S2, propConstYS2, expXS2,

propConstXS2, repLeveLSlope(), replLevellntercept(),
repLlevelS2Y¥YgivenX (), maxS2X, minS2X, maxS2Y, minS2Y)

CALL GetBoundsInfo (numPoints%, boundsType%, repBoundsTypes$,
Xmax(), Xmin(), ¥Ymax(),¥min({), minRepx, maxRepx, minRepy,
maxRepy)

CALL Regression (logX(),log¥(), (numPoints%), realSSYy,

realSSE, realSlope, reallntercept)

CALL HypothesizedXY (logHypX(), hypX(), logHypY(), hypY(),
S2hypX{), S2hypY¥())

CALL MinMaxCIcheck ("meanX", X(), Xmin(), Xmax(), hypX(),
sampleSizeX% (), S2X(), SZhypX())

CALL MinMaxCIcheck ("mean¥*, ¥(), Ymin(), Ymax({), hyp¥Y(),
sampleSizeY%(), S2Y(), S2hypY())

startTimel& = TIMER *initial time, used to time
non-interactive part of program.
loopCounters = 1 'used in counting %sampleSizeCheck loops
$IF %sampleSizeCheck 'entered only if turned on
by user

PRINT "The sample size program uses a common
sample size for X and Y."

PRINT " "
INPUT " average sample size used = ";
meanSampleSizeg
DO ‘end of DO is embedded in S$IF/SENDIF below
cls
IF loopCounter& > 1 THEN
PRINT "Sample size just tested: *;
meanSampleSize$
PRINT *

PRINT "probability modelSSE > realSSE = *;
probModel SSEgtRealSSE
END IF

meanSampleSize% = meanSampleSize% + 1
FOR i = 1 to numPoints%
sampleSizeX%(i) = meanSampleSize%
sampleSizeY% (i) = meanSampleSize%
NEXT i
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SENDIF
FOR trial = 1 to numTrials$
IF replicateCorrelation$ = "y" THEN
CALL SimulateWhenReplicatesCorr ( sampleSizeX%()},
sampleSizeY%{), numPoints%, x(), expXs2,
propConstXS2, hypY(), expY¥$S2, propConst¥YS2,
repLevelSliope(}, replLevellntercept(),
repLevelS2YgivenX(}, logRandX(), logRand¥())
ELSE
CALL SimulateSamples ( hypY(), sampleSizeX%(),
sampleSize¥Y% (), (numPoints%), (expXS2),

(propConstXS2}), (exp¥S82), {propConst¥S2), hvpX(),
logRandX (), logRand¥Y())
END IF
CALL Regression (logRandx{), logRandy(}, (numPoints$%),
modelsSsSY, modelSSE, slope, intercept)

$IF $wantGraphics
CALL Graphics (boundsType%, Xmin(), Xmax(),

Ymin{), ¥Ymax(), numPoints%, logX(), log¥(),
realSlope, reallntercept, logRandX(),
logRandY (), slope , intercept)
SENDIF
CALL CompileSSEdist ((modelSSE), (modelSSY), (realSSE),

{realSSY), (numPoints%), (trial), unexplainedMSE(),

modelr2 (), pseudor2(), arrayModelSSE(),

modelSSEoverSSY (), arrayModelSSY() )

NEXT trial

IF %$sampleSizeCheck=0 THEN
finishTimel& = TIMER

S$IF %soundOn
CALL Soundalert (nullvariable)
SENDIF

CALL PrintBoundsInfringements ( numPoints%, numTrials$,
boundsType%, meanXboundByMin&, meanXboundByMax&,
meanXboundByH195CI&, meanXboundByLo95CIg&,
minMeanXisUnder95CI&, maxMeanXisOver95CI&, _

meanYboundByMin&, meanYboundByMaxé&,

meanYboundByHi95CI&, meanYboundByLo95CI&,

minMeanYisUnder95CI&, maxMeanYisOver%5CI&)

IF replicateCorrelation$ = "y" THEN

CALL ReplicateBoundsInfringements ( repBoundsType%,
repxBoundByMin&, repxBoundByMax&, repxBoundBvHi95CI&,
repxBoundByLo95CI&, minRepxIsUnder95CI&,
maxRepxIsOver95CIs, _

repyBoundByMing, repyBoundbvMax&, repyBoundByHi9SHCIg,
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repyBoundByLo95CI&, minRepvIsUnder9dsCIs,
maxRepyIsOverasSCis)
END IF
END IF

startTime2& = TIMER ‘restarts program timing after user
interaction in SUB
PrintBoundsInfringements

CALL ComputeSSEstats ( unexplainedMSE(), modelr2{},
pseudor2(), (numTrials$), meanUnexplainedMSE, meanModelrl,
meanPseudor2, arravModelSSE(), (realSSE),
probModel SSEgtRealSSE, meanModelSSE, lowerBoundMeanSSE,
upperBoundMeanSsE)

CALL FindProbModelSSEgtRealSSE ( (realSSE), (numTrialsgy),
arrayModelSSE (), probModelSSEgtRealSSE)

IF CIwarning$ = "y" THEN PRINT "WARNING CI below determined
from too few random trials."

PRINT " *

PRINT * RESULTS: "

PRINT * {with 95% CI for simulations)*
PRINT "

PRINT USING "| realSSE !

BHE, BEEE 1*: realSSE

PRINT USING "| mean modelSSE I HH# HHHY
| HE# _###H ) ### . 4E8E |v; lowerBoundMeanSSE,
v-* meanModelSSE, "-", upperBoundMeanSSE

PRINT "1 ]

Ill
PRINT USING *"! prob. that modelSSE >= realSSE |
#_#44% | *; probModelSSEgtRealSSE

PRINT "

PRINT " "

PRINT "

]

PRINT USING *| mean sq. error of real data I

BEE G488 |"; realSSE/numPoints% ‘****check
formula
PRINT USING "| mean unexplained mean sq. error | HHE . HEHY
VOBHH _HHEE | #E# 4848 |v; lowerBoundMSE, "-*,
meanUnexplainedMSE, "-", upperBoundMSE
PRINT "
PRINT " "

PRINT *
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PRINT USING "| real r2 [

#_#4 |"; (realSsSY - realSSE) / realSSY
PRINT USING "] mean modelr2 I
#.#8# | 8§ | B BE 1*; lowerBoundModelr2, "-*,
meanModelr2, "-", upperBoundModelr2
PRINT USING "{ mean pseudor2 I
#. 44 1 £ _#8 | # #4 {*; lowerBoundPr2, "--,
meanPseudor2, "-", upperBoundPr2
PRINT ™
PRINT " "

finishTime2& = TIMER
$if %$sampleSizeCheck

SIF $wantEachResult
input “"press any key to continue*;carryon$
$ENDIF

INCR loopCounter&

LOOP UNTIL probModelSSEgtRealSSE <= .05 OR
meanSampleSize$ >= 100

SIF %soundCn
CALL Soundalert (nullVariable)
SENDIF

INPUT "Samplesize looping completed. Press any
key for bounds information."; carryOn$

cls

loopCounters& = loopCounterk - 1 ‘resets to
appropriate
value

CALL PrintBoundsInfringements ( numPoints%,
numTrials%, boundsType%, meanXboundByMing,
meanXboundByMax&, meanXboundByHi95CI&,
meanXboundByLo95CI&, minMeanXisUnder95CI&,
maxMeanXisOver95CI&, _

meanYboundByMing&, meanYboundByMax,

meanYboundByHi195CI&, meanYboundByLoS85CIg&,

minMeanYisUnder95CI&, maxMeanYisOver95CI&)

IF replicateCorrelation$ = “y" THEN
CALL ReplicateBoundsInfringements (

repBoundsType%, repxBoundByMing,
repxBoundByMax&, repxBoundByHi95CI&,
repxBoundByLo95CI&, minRepxIsUnder95CIg&,
maxRepxIsOver95CI&, _
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repvBoundByMing, repyvBoundbvMaxk,

repyBoundByHi9SCI&, repyBoundByLo95CIk,

minRepvIsUnderd5CI&, maxRepyvIsOver9sCIs)
END IF

IF meanSampleSize% >= 100 THEN
PRINT "required sample size exceeds 100;
program stopped.*

ELSE
PRINT * "
PRINT; *“required sample size is = *;
meanSampleSize%
END IF
PRINT " "
elapsedTime = (finishTime2& - startTimel&) / 60
PRINT USING " THAT'S ALL: elapsed time = ####, #
&"; elapsedTime, " min."
END
SENDIF
elapsedTimel = (finishTimel& - startTimel&) / 60
elapsedTime2 = (finishTime2& - startTime2&) / 60

PRINT USING "THAT'S ALL: elapsed time PART 1 = ####.# &
§444 4 &"; elapsedTimel, " min., PART 2 = ", elapsedTime2,
‘min.*"

END

rename: ‘file error trapping
INPUT "file not found, please try again®; fileName$
RESUME

v —— AR ek R ey e e S R S W W S M e R ey Sy T T MR W o T MR T MR W MM WS S R R e ke e e e e Em e w

- e

SUB GetData ( sampleSizeX%(l), sampleSizeY%(1l), numTrials%,
numPoints%, x(1), yv(1}), logx{l), logy(l))
REM retrieves measured data points from file or keyboard.
SHARED fileName$ ‘this allows file error trapping (see
RESUME above)
LOCAL i, continue$, xRawDatalogged$, YRawDataloggeds$,
sampleSize%, xSampleSize%, ySampleSize%

INPUT "Is x raw data log transformed? Use small letters
y/n. ";xRawDataLogged$

INPUT "Is y raw data log transformed? Use small letters
y/n. ";yRawDatalogged$

PRINT " "

INPUT "Is XY Data on file or to be keyboarded? Use small
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letters f/k. "; route$

IF route$ = "f" THEN
INPUT *What is the XY data file name"; fileNames$
CALL GetFile ( fileName$, x{), v({), numPoints% )
ELSE
CALL GetKeyboard ( x(), y(), numPoints%)
END IF

IF xRawDatalogged$ = "y* THEN
FOR i = 1 to numPoints$

logx (i) =x(i) ‘x values already logged
x(i)=10"1logx (i)
NEXT
ELSE ‘transform data

FOR 1 = 1 to numPoints$
logx(i)=LOGl0({x(1i})

NEXT
END IF
IF yRawDatalogged$ = “y* THEN
FOR 1 = 1 to numPoints$% ‘v values already logged

logy (1) =y (i)
y{1}=10"logy (1}
NEXT
ELSE ‘transform daca
FOR i = 1 to numPoints3
logy (1) =LOGl0( y (i) )
NEXT
END IF

PRINT * *
PRINT " X Y
PRINT "~=-—-===== ——ce-ececea-- "

FOR i = 1 to numPoints%
PRINT USING “#### . ### SH#E EEE; x(1), yv()
IF ((i/15) - FIX(i/15)) = 0 THEN
INPUT "more, press any key';carryOn$
END IF
NEXT
PRINT " "
INPUT “press any key to continue";carryon$
cls

PRINT "Options for sample sizes:*

PRINT "====~--rrerer s e e e e e mmmam "

PRINT " "

PRINT * 1. The same sample size is used for all X and Y.*

PRINT " 2. Sample size varies with location, but is the same
for each (X, ¥Y).*

PRINT " 3. One sample size for all X, a different sample
size for all v."
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PRINT " 4. Each sample size must be entered separately.*
PRINT " "

INPUT * Which would you like: 1,2,3, or 4*; sampleSizeType%
cls

SELECT CASE sampleSizeTvpe$

CASE 1
PRINT "The same sample size is used for all X and Y.*
PRINT * *

INPUT "sample size = *; sampleSize%

FOR i = 1 to numPoints$

sampleSizeX% (i) = sampleSize%
sampleSizeY% (i) = sampleSize%
NEXT 1
CASE 2

PRINT *“Sample size varies with location, but is the
same for each (X,Y).*
INPUT "Are sample size data on file (y/n)";file$
IF file$ = "y* THEN
INPUT "what is the file name ";fileName$
CALL Geta2variableFile (fileName$, sampleSizeX%(),
sampleSizeY%())
ELSE
PRINT " *
PRINT "Each location’s sample size must be entered
separately."
PRINT * "
PRINT “Location: "

FOR 1 = 1 to numPoints%
PRINT; i;"."
INPUT “sample size = "; sampleSizeX%(i)
sampleSizeY$(i) = sampleSizeX%(i)
NEXT 1
END IF

CASE 3
PRINT *“One sample size for all X, a different sample
size for all Y.*
PRINT * *
INPUT "X sample size
INPUT *Y sample size

*:; xSampleSize%
". ySampleSize%

PRINT " "
PRINT “"Location:*
PRINT "-~-~----- "

FOR 1 = 1 to numPoints$
sampleSizeX% (i) = xSampleSize%
sampleSizeY$ (i) ySampleSize%
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NEXT 1

CASE 4
INPUT "Are sample size data on file (v/n)*;file$
IF file$ = "y" THEN

INPUT "what is the file name ";fileNames$
CALL Getal2variableFile (fileName$, sampleSizeX%(),
sampleSize¥%())
ELSE
PRINT “Each sample size must be entered separately.®
PRINT " "
PRINT "Location:"
PRINT "-=====--- "
FOR i = 1 to numPoints%
PRINT; i;"."
INPUT "X sample size
INPUT "Y sample size
NEXT 1
END IF

"; sampleSizeX% (i)
*; sampleSizeY$ (1)

CASE OTHER
PRINT "ERROR. SAMPLE SIZE TYPE NOT SELECTED PROPERLY."
PRINT “THERE IS AN ERROR CHECK AHEAD; PLEASE, RE-ENTER
ANY DATA REQUESTED.*
INPUT “press any key*; carryOn$
END SELECT
cls

PRINT “"Sample Sizes:*

PRINT " X Y
PRINT "---- -———-t
PRINT * *
FOR i = 1 to numPoints$
PRINT USING “#### #4#4#",; sampleSizeX%(i),
sampleSizeY% (1)
NEXT i
PRINT " *

INPUT "Would you like this data filed (y/n)";fileMeS$
IF fileMe$ = "y" THEN

INPUT *“What name would you like (DOS restrictions)*;
fileName$

CALL CreatelvariableFile (fileName$, numPoints$,
sampleSizeX% (), sampleSizeY%(})
END IF

INPUT *"Error check. Continue (y/n)*;continue$
cls

IF continue$ = "n* THEN
CALL GETDATA ( sampleSizeX%(), sampleSizeY%(),
numTrialst, uumPoints%, x(), v{), leogx(}), logy())
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END IF
END SUB

SUB GetalvariableFile (moniker$, a%$i{l), b%(1))
REM siphons a 2 integer variable DOS file.
LOCAL count%, carrvOon$

ON ERROR GOTOQO rename
OPEN moniker$ FOR INPUT AS &1 ‘accesses an external

data file
ON ERROR GOTO 0

SEVENT OFF

count®% = 0
DO UNTIL EOF({1l)

count® = count% + 1 ‘count%$ will have a count upon exit
INPUT #1, a%(count%), b%(count%)

LOOP

CLOSE #1

PRINT * *

PRINT "Data read from *; monikers$

PRINT *file has ";count%;* observations.*
INPUT “press any key to continue";carryOn$
cls

END SUB

SUB Create2VariableFile (moniker$, numPoints%, a%(l), b%(1})
REM creates a 2 integer variable external data file.
LOCAL count%, carryOn$

OPEN moniker$ FOR QUTPUT AS #1
count% = 0
DO

count% = count% + 1

PRINT #1, a%(count%;), b%(counts)
LOOP UNTIL count% = numPoints$
CLOSE #1
PRINT "File *"; moniker$;" created."®
INPUT "press any key to continue®;carryOn$
cls
END SUB

SUB GetS2Info ( S2method%, 82X(1), S2Y(1l}), numberOfLakes%,
replicateCorrelation$, expYS2, propConst¥YS2, expxS2,
propConstXS2, replevelLSlope(l), replLevellIntercept(l),
replevelS2Y¥givenX(1l), maxS2X, minS2X, maxS2Y, minS2Y)
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REM gets S2 information from operator.

SHARED Z(), Y{(), fileName$ ‘allows file name errox
trapping

LOCAL setS2Limits$, carryOn$

PRINT "Options for estimating S2 associated with meanX and
meanyY:*"
PRINT

PRINT " 1. Use a mean:variance function.®
PRINT " 2. Use S22 measured from each lake."

INPUT " Which would you like: 1,2"; S2method$%

SELECT CASE S2method%
CASE 1 ‘mean:variance regression used
PRINT * "
INPUT "Exponent, b, of X S2 predictor function
(S2=aX"b) = ";expXS2

INPUT *value of a from S2= a X"b = ";propConstXs2

PRINT " "

PRINT " "

INPUT "Exponent, b, of ¥ §2 predictor function
(S2=a¥"b) = ";exp¥S2

INPUT "value of a from S2= a Y¥Y*b = ";propConst¥S2

FCR i = 1 to numberOflLakes%

S2X (1) = propConstXS2 * (X(i) ~ expXS2)
S2Y(1) = propConst¥S2 * (Y(i) ~ expYS2)
NEXT
cls
CASE 2 'use 82 measured in each lake.

PRINT "You have chosen to use different 82 values for
each lake.*
INPUT “Are S2 data on file (y/n)"; onFile$
IF onFile$ = *y" THEN
INPUT "What is filename"; fileName$
CALL GetFile (fileName$, S2X(), S2Y{(),
numberQfLakes%)
ELSE
FOR 1 = 1 to numberQfLakes%
PRINT * *
PRINT * *
PRINT "Lake ";i
PRINT "~=-=--=-===-- "
PRINT * *
INPUT " S2 x
PRINT " *

", 82X (1)



INPUT " 82 v = "; S2Y (1)
NEXT 1
cls
END IF
END SELECT
CALL Print2RealVariables ( " X 82 w, Y 82 ¢,

82X (), S2Y(), numberQflLakes$)

INPUT “Is there correlation betwen x and y at the replicate
level (y/n)*; replicateCorrelation$
IF replicateCorrelation$ = "y" THEN
PRINT " "
PRINT "Is there a file holding:"
INPUT “replicate level slope, intercept and and S2yIx
(y/n)*; repFile$
IF repFile$ = "y" THEN
INPUT "What is the file name *; fileName$
cls
CALL GetRepParameters (fileName$, replLevelSlopel(),
repLevellntercept (), repLevelS2¥givenX())
ELSE * ie. repFile$ = "n*
PRINT " "
PRINT " Parameter values required from replicate
regression (rep.x vs. rep.y):"
PRINT

PRINT * *
FOR i=1 to numberOfLakes%
PRINT " *
PRINT * * )
PRINT * Lake *;i
PRINT " ~=memceccecmcecc e rem e v e ee—— -~ »
PRINT "
INPUT " slope
INPUT " intercept
INPUT " S2Y given X
NEXT i
END IF ‘repFile$
cls
PRINT * "
PRINT * *
PRINT "Lake slope intercept S2y
given x *
PRINT
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": replevelSlope(i)
": repLevellntercept (i)
*; replLevelS2Y¥givenX (i)

nomir

FOR i = 1 to numberOfLakes%
PRINT USING "###i $ERE §H#H HEHE . BHEAH
#### . 8448 ;1, repLevelSlopel(i),
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repLevelIntercept (i), repLevelS2Y¥givenX (i)
IF INT{(i/15) - (i/1%) = Q0 THEEN INPUT "More, press any
key*;carryoOns
NEXT 1

INPUT "Would you like this data to be filed (y/n) *;
fileRepParameterss$

IF fileRepParameters$ = "y" THEN
INPUT “What file name would vou like (DOS restrictions)
*; fileName$
CALL CreateRepParameterFile (filename$, numberOfLakes%,
repLevelSlope(), repLevellntercept(),
repLevelS2YgivenX(})
END IF
END IF ‘replicateCorrelation$

PRINT * "

INPUT “"Error check. Continue (y/n)*;continue$

cls

IF continue$ = "n" THEN

CALL GETS2INFO ( S2method%, S$2X{), S2Y(), numberOflakes$%,

replicateCorrelation$, exp¥S2, proplonstYS2, expXS2,
propConstXS2, replevelLSlope(), repLevellntercept(),
repLevelS2Y¥givenX (), maxS$S2X, minS2X, maxS2Y, minS2Y)

END IF

END SUB

SUB GetRepParameters (moniker$, slope(l), intercept(l),
S2¥givenx(1l))

REM siphons rep parameters from a DOS file.

LOCAL count$

SEVENT ON

ON ERROR GOTO rename

OPEN moniker$ FOR INPUT AS #1 'accesses an external
data file

ON ERRCR GOTC 0

SEVENT OFF

count% = 0
DO UNTIL ECF (1)
count% = count%$ + 1 ‘count% will have a count upon exit
INPUT #1, slope(count%), intercept{count%),
S2YgivenX (count$)
LOOP
CLOSE il
PRINT * "
PRINT "Data read from "; monikers$
PRINT *“file has ";count%;* observations."
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INPUT "press any keyv to continue®;carryOn$
¢cls
END SUB

SUB CreateRepParameterFile (moniker$, numPoints$%$, slope(l),
intercept (1), S2Y¥givenX(l})

REM creates an external data file for replicate correlation
info.

LOCAL count$

OPEN moniker$ FOR OUTPUT AS #1
count® = 0
DO
count% = count% + 1
PRINT #1, slope{count%), intercept(count%},
S2YgivenX (count%)
LOOP UNTIL count% = numPoints%
CLOS=T #1
PRINT "File *; moniker$;" created."
INPUT "press any key to continue";carryOn$
cls
END SUB

SUB GetBoundsInfo (numberOflLakes%, boundsType%,
repBoundsType%, Xmax{l), Xmin(l), Ymax(l), ¥Ymin(l),
minRepx, maxRepx, minRepy, maxRepy)

REM more data requirements, these are in two SUBs because of
tbasic restrictions.

LOCAL continue$, minMeanX, maxMeanX, minMeanY, maxMeanY

SHARED replicateCorrelation$, fileName$

PRINT "Options for constraining simulated mean values:*

PRINT "---—mmemm e cm e e e m e e m e

PRINT * *

PRINT " Values will be bound by:"

PRINT * "

PRINT " 1. 95%CI and a min value."

PRINT * 2. 95%CI and one min and max value shared by all
lakes.®

PRINT " 3. a min and max value unique to each lake."

PRINT * *

INPUT " Which would you like: 1,2,3 *; boundsType%

cls

z

Select Case boundsType%
Case 1
PRINT * "
PRINT "Simulated values of meanX and meanY will be
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bound by %5% CI,*"
PRINT "also simulated values will be bound by an

arbitrary

PRINT "min value."
PRINT " "
INPUT " min meanX value: *; minMeanX
PRINT " *
INPUT " min meanY value: "; minMeanY
FOR i = 1 to numberQfLakes$%

Xmin(i) = minMeanX

Ymin(i) = minMeanyY
NEXT
cls
PRINT "**** max not applicable ****#

Case 2

PRINT * *

PRINT "Simulated values of meanX and mean¥ will be
bound by 95% CI,"
PRINT "and by a general max or min value."

PRINT " *
INPUT " min meanX value: "; minMeanX
INPUT * max meanX value: "; maxMeanX

IF (minMeanX >= maxMeanX) THEN CALL BoundsErr
(minMeanX, maxMeanX)

PRINT * *
INPUT " min mean¥ value: "; minMeanyY
INPUT * max mean¥ value: "; maxMeanyY

IF (minMeanY >= maxMeany) THEN CALL BoundsErr
(minMeanY, maxMeanY)
FOR 1 = 1 to numberOfLakes%

Xmin{i) = minMeanX
Xmax{i) = maxMeanX
Ymin{i) = minMeany¥
Ymax{i) = maxMeany¥

NEXT

cls

CASE 3
PRINT * *

PRINT "Simulated values of meanX and mean¥Y will be
bound by 95% CI, * '
PRINT "and by a unique max or min value."
PRINT * "
INPUT "Are min-max data on file (y/n)";file$
IF file$ = "y" THEN
INPUT "What is file name for X min-max
data';fileName$
CALL GetFile {fileName$, Xmin{}, Xmax()},
numberOfLakes%)
INPUT "What is the file name for Y min-max data"';
fileName$
CALL GetFile (fileName$, Ymin(), Ymax(),
numberQflakes%)



ELSE
PRINT "™ *
PRINT “"First, the x valuss:"
PRINT " "

FOR i=1 to numberOfLakes$
PRINT "for lake ";i
INPUT "min replicate x value "; Xmin(1i)
INPUT "max replicate x value "; Xmax(i)
IF (Xmin{i) >= Xmax{i)) THEN CALL BoundsErr
(Xmin(i), Xmax{(i))
PRINT "
NEXT

PRINT "now, the v values: *
PRINT " *

FOR i=1 to numberOfLakes$
PRINT "for lake *:1
INPUT "min replicate y value "; Ymin(i)
INPUT "max replicate y value "; Ymax(1i)
IF (Ymin(i) >= Ymax(i)) THEN CALL BoundsErr
(Ymin(i), Ymax(i))
PRINT "
NEXT
END IF
cls
END SELECT
PRINT" *
PRINT "Lake X (min - max) Y({min -
max) "
PRINT

as = "### LEERE EEES | HEHE BUEH: 233 00 355 3
REEE HEHE

FOR i1=1 to numberOflLakes$%
IF ((i/15) - FIX(i/1l5)) = 0 THEN
INPUT "more, press any key";carryOn$

END IF
PRINT USING a$;i," (", Xmin{i),"-", Xmax{i),"*)"," (",
Ymin(i),"-", Ymax{(i),")"
NEXT i
PRINT * ¥

INPUT "Would you like these data filed (y/n)*; filelIts$
IF fileIt$ = *y* THEN
INPUT "Please name Xmin,max file*; fileName$
CALL CreateFile ({fileName$, Xmin(), Xmax(),
numberOfLakes$)
INPUT "Please name Ymin,max file"; fileName$
CALL CreateFile (filename$, Ymin(), Ymax{),
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numberOfLakass)
END IF
INPUT "Error check. Continue (v/n)"; continue$
cls
IF continue$ = "n" THEN
CALL GetBoundsInfeo (numberOflLakes%, boundsTypel,
repBoundsTyvpe%, Xmax{), Xmin(}, Ymax{), Ymin{),
minRepx, maxRepx, minRepv, maxRepy)
END IF
cls
IF replicateCorrelation$ = "y"* THEN
S$INCLUDE "repdat.inc"® ‘code is in another file to
free up editor memory. **™ not in this appendix *=**
END IF 'replicateCorrelation$ ="y"
END SUB

SUB BoundsErr (min, max)

REM traps input errors for two real variables, allows
re-entry.

PRINT " "

PRINT "input error: a min value equaled or exceeded a max.
Please try again."

PRINT " *

INPUT * min value: "; min

INPUT " max value: *; max

IF (min >= max) THEN CALL BoundsErr (min, max)}

END SUB

SUB GetFile (monikers$, al(l), b{l), count%)
REM gets a 2 wvariable file from disk, counts records.
LOCAL i, carryOn$

SEVENT ON
ON ERROR GOTO rename
OPEN moniker$ FOR INPUT AS #1 raccesses an external

data file
ON ERROR GOTO O
SEVENT OFF

count% = 0
DO UNTIL EOF(1l)

count% = count% + 1

INPUT #1, a{count%), b{count%)
LOOP



86

CLOSE #1

PRINT =

PRINT "Data read from ";moniker$

PRINT "file has ";count%;" data pairs."
INPUT "Press any key to continue";carryCn$
cls

END SUB

SUB GetKeyboard ( x(1), v(1l), numPoints$)

REM takes values from keyvboard, places on disk if desired.
SHARED xRawDatalLogged$, yRawDatalogged$

LOCAL i, makeFile$

INPUT "Number of data points to be entered = "; numPoints%
FOR i=1 to numPoints$%

PRINT " *

PRINT ‘“observation "; i

PRINT “--———immmmmee—e—o "

INPUT "X value = *;x{i)

INPUT "Y value = ";y(i)
NEXT

IF (xRawDataliogged$ = "y" OR yRawDatal.ogged$ = "y*) THEN
‘when data are not logged then filing takes place in GetData
PRINT "
INPUT *transfer data to a file? Use small letters (y/n)."
; makeFile$
IF makeFile$ = "y" THEN
INPUT *What is file name (DOS restrictions)";fileName$
CALL CreateFile ( fileName$, x(), v()., {(numPoints%))
END IF
END IF
cls
END SUB

SUB CreateFile (moniker$, af(l), b(l), numPoints%)
REM creates an external data file
LOCAL n%, carryOn$

OPEN moniker$ FOR OUTPUT AS #1
ng =0
DO
n% = n% + 1
PRINT #1, a({n%), b(n%)
LOOP UNTIL n% = numPoints%
CLOSE #1
PRINT *File "; moniker$;" created.®
INPUT "Press any key to continue*;carryOn$
cls
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END SUB

SUB Regression (x(1), y{l), n%, SSY, SSE, slope, intercept)

REM takes in log transformed values and regresses v on X.

LOCAL 1, sumx, sumy, meanx, meany, S$SX, preCovXy,
predictedY, carryOn$, pleaseFile$

SHARED trial

88Y=0
SSE=0

sSumx sumx + X({i)
sumy sumy + y(i)
NEXT

FOR 1 = 1 to n%

meanX
meany

sumx / n%
sumY¥ / n%

FOR i 1 to n%

$§SX = S$8X + ( x{i) - meanX ) =~ 2

SSY = SSY + ( y(i) - meanY ) "~ 2

preCovXY¥ = preCovXY + { x{i) - meanX } * { y(i) - mean¥Y )
NEXT

slope = preCovXY / SsSX
intercept = meanY - (slope * meanX)

FOR i = 1 to n%
predictedY = slope * x{(i) + intercept
SSE = SSE + ( predictedY - y(i))~"2
NEXT

SIF %wantDataPoints
PRINT “SIMULATION #";trial

PRINT USING "slope
PRINT USING "intercept
PRINT USING “SSE
PRINT USING “r2

#88 #4##"; slope

#4# ###"; intercept

#4#  ###"; SSE

#4% ##4v; (SSY - SSE)/SSY

PRINT " *
CALL Print2RealVariables { " logRandX v,
logRandy*, X(), ¥Y(), n%)
$ENDIF
END SUB

SUB HypothesizedXY (logHypX(1l), hypX(l}, logHypY(1l),
hypY(1l), SZhypX(1l), S2hypY(1l})
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REM: Puts hypothesized XY values into hypX, hypY. (These
values are later used

REM: to simulate sampling, and then results are compared
with real data SSE).

SHARED fileName$, numPoints%, X(), logX(), realSlope,
realIntercept, Y(), log¥{), expXS2, propConstXS2, exp¥YS2,
propConst¥S2, S2Method%, S2X{), S2Y(), orthoX(}, ortho¥(),
Xgap (), Ygap ()} ‘orthoX & Y() and gapX & ¥Y() here to

avoid DIM

LOCAL fitType%, i, retrv$, factor

PRINT “Choices for Fitting meanX & meanyY:*

PRINT “---+==-------mmmmmmmmm e m e m e "

PRINT * "

PRINT * "

PRINT "1. use measured meanX, and meanyY fitted to log:log
regression line."

PRINT "2. ... fitted orthogonally to regression line.®

PRINT “3. ... fitted part way along orthogonal from
regression line to real data point.*

PRINT "4. use a high SSE (meanX,meanyY) data set.*

PRINT *

PRINT * "

INPUT *Please choose a number: 1,2,3, or 4";fitType%

¢ls

SELECT CASE fitType%
CASE 1
FOR i = 1 to numPoints$
logHypY (1) = realSlope * logX(i} + reallntercept
hypY(i) = 10 * logHypY(i)
hypX(i) = X(i)
logHypX{i) = logX(i)

NEXT
CASE 2
orthoSlope = -(1 / realSlope)
FOR i = 1 to numPoints$
orctholntercept =log¥ (i) - {(logX(i) * orthoSlope)
*ie. b = y - Mx
loghypX (i) = (orthoIntercept - reallntercept) *
(realSlope / ((realSlope ~ 2) + 1))
‘derived from 1) y=-(i/m)x + bortho 2) y=mx +
breal
logHypY (i) = orthoSlope * logHypX(i) +
ortholntercept
hypX(x) = 10 ~ loghypX(i}
hypY(i) = 10 ~ logHypY(i)
NEXT
CASE 3

INPUT “enter the factor (0-1: proportional distance
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towards real data along orthegoanl line)"; factor
orthoSlope = -(1 / realSlope)
FOR 1 = 1 to numPoints$
orthoIntercept =logY¥(i} - (logX(i) * orthoSlope)
'ie. b = v - Mx
orthoX (i) = {orthoIntercept - reallntercept} *

{realSlope / {({realSlope ~ 2} + 1))
‘derived from 1) v=-(1l/m)xX + bortho 2} y=mx +

breal

orthoY (i) = orthoSlope * orthoX(i) + ortholntercept
‘orthogoanl projections to regression line.

Xgap{i) = factor * (logX(i) - orthoX(i))
‘distance desired along orthogonl

Ygap(i) = factor * (log¥(i) - orthoY(i))

logHypX (i} = orthoX(i) + Xgap(i)

logHypY (i) = orthov(i) + Ygap(i)

hypX(i) = 10 ~ loghvpX(i}

hypY(i} = 10 "~ logHvpY (i)

NEXT
CASE 4

PRINT *A sort-of nul test will be performed: sampling
will be simulated*

PRINT "using high SSE X,Y (rather than X,Y along
regression line). This"

PRINT "will show how often real data X,Y might be
expected from high $SE X,Y."

PRINT *» *

INPUT "What is the file name for high SSE (logged) data

*;fileName$

CALL GetFile (fileName$, logHypX(), logHypY(),
numPoingss)

FOR 1 = 1 to numPoints$
hypY(i) = 10 ~ (logHypY(i))
hypX(i) = 10 ~ (logHypX(i))

NEXT

CASE OTHER
reTry$ = "y" ‘used as flag to reenter parameter.

END SELECT

SELECT CASE S2method% ‘find S§2 associated with

hypothesized values.
CASE 1

FOR i1 = 1 to numPoints%

S2hypX{i) = propConstXS2 * (hypX(i) "~ expXS2)
S2hypY(1i) = propConst¥S2 * (hypY(i) ~ exp¥YS2)
NEXT

CASE 2
FOR i = 1 to numPoints#%
S2hypX(i) = 82X(1)
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S2hypY¥ (i} = 82Y¥({i)

NEXT
END SELECT
CALL Print2RealVariables {( " logHvpX ", " logHypY",
logHypX (), logHypY (), numPoints$)
CALL Print2RealVariables ( " hypX *, " hypy",
hypX (), hypY(), numPoints$)
CALL Print2RealVariables ( * S2hypX ", " SZhvpY",

S2hypX (), S2hypY(), numPoints%)
Input *"Error check. Continue (y/n)*; continue$
cls
IF continue$ = "n®* OR reTry$ = "y* THEN
PRINT “An error was made in entering a parameter, please
try again.*®
PRINT * *
PRINT * *
CALL HypothesizedXY (logHypX({), hypX(), logHypY(),
hypY (), S2hypX{}), SZhypY¥())
END IF
END SUB

SUB Print2RealVariables ( varl$, wvar2s$, wvarl(l), wvar2{l).
numPoints%)

REM prints a 2 variable table of values. (varl starts at
10th spot, then 6 blanks)

PRINT "lake *". varl$; var2s

PRINT "--~- =eemeec e e ccmmt e cem e = "
FOR i = 1 to numPoints%®
as$ = "### 623333 38 113 HhEEH4E HEEE
PRINT USING a$; i, varl(i), wvarz2(i)
IF Fix(i/12) - (i/12) = 0 THEN ‘stops screan output
after 12 wvalues.
PRINT * *
PRINT * *

INPUT "press any key to continue*;carryOn$
END IF
NEXT

PRINT *» "
INPUT *would you like this data filed (y/n)*;pleaseFile$
IF pleaseFile$ = "y" THEN

PRINT * *

INPUT *"what file name would you like? (DOS

format) *; fileName$

CALL CreateFile (fileName$, varl(), wvar2(), numPoints%)
END IF
cls
END SUB
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SUB MinMaxCICheck {meanXorY$, Q(1), QOmin{(l), Qmax({l},
hypQ(l), sampleSizeQ%(1l), S2Q(1), S2hvpQ(l))

REM: Checks i1f preset max or min are below or above
hypothesized X or ¥ values.

REM: Also checks 1if CI of real data X and Y include
hypothesized X and Y.

SHARED boundsType%, repBoundsTvpe%, numPoints%, lowerCI(),
upperCIi{) 'lower and upperCIl{) are shared onlv to

dimension arrays

LOCAL i, max, min, carryOn$, maxCbelowHypQ%, minQaboveHvpQ%,

flag$, £flagIts

maxQbelowHvpQ% = 0 'initializes varible to count when
preset lower bound on meanY is above
real data regression line.
minQaboveHypQ% = 0

FOR i = 1 to numPoints%
IF (Qmin(i) > hypQ(i)) THEN ‘check for min over
hypothesized value.

minQaboveHypQ% = minQaboveHypQ% + 1
END IF

IF boundsType% = 1 THEN
‘skip any investigation of max {(because it is not
invoked in type 1)
ELSE
IF (Qmax{i) < hypQ{i)) THEN ‘check for max under
hypothesized value.
maxQbelowHypQ% = maxQbelowHypQ% + 1
END IF
END IF
NEXT

PRINT * *
PRINT " ™

PRINT "TALLY : based on “;numPoints%;" fitted *; meanXorY¥$;"
values."

PRINT "preset min ";meanXorY¥$;" is above hypothesized value
* ;minQaboveHypQ%;" times.*

IF boundsType% = 1 THEN
*skip the printing of any max meanQ info
ELSE

PRINT “preset max ":meanXorY$:* is below hypthosized
value ";maxQbelowHypQ%;" times. *
END IF

PRINT " *
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PRINT * "
PRINT " & non-zero value suggests that random error due to

sampling is uniikely *®

PRINT * to account for some of real data, even if model
SSE excedes real SSE.¢

PRINT " *

INPUT "press any key to continue"; carryon$

CLS

CALL FindConfidencelntervals {Q(), numPoints$,

sampleSizeQ%(}), S2Q(), lowerCI(), upperCI())

PRINT * *;meanXor¥Y$; " : measured vs.
hypothesized values."

PRINT *

PRINT "When hyvpothesized value is outside CI for data value,
sampling error *

PRINT "is unlikely to account for the gap between the
hypothesized and data value."®

PRINT * ™

PRINT " ™

PRINT "Lake (lower85CI - data value - upper$5CI)
hyp. value "
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FOR i = 1 to numPoints$

IF (hypQ(i) > lowerCI(i)) AND (hypQ(i) < upperCI(i))} THEN
flaglit$ = *OK"

ELSEIF hypQ(i) <= lowerCI(i} THEN
flagIt$ = *"**LoHyp***

ELSEIF hypQ(i) >= upperCI(i) THEN
flagIt$ = “**HiHyp***

END IF

PRINT USING "### SEHEH HHEE & HEEH HEH & HHE# ###s
#H48 . HH$
&*;1," (", lowerCI(i),*-",Q(1),"-",uppexrCI{i),") ", hypQ(i), flag
Its
IF INT(1/15) - (i/15) = 0 TEEN
INPUT *More, press any key";carryon$
PRINT " *
END IF
NEXT 1
PRINT " *
INPUT "press any key to continue”;carryOn$
cls
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CALL FindConfidenceintervals (hvpQ(), numPointss%,

CASE 1

sampleSizeQ% (), S2hvpQ(), lowerCI(), upperCI())
SELECT CASE boundsType$
PRINT * '";meanXor¥Y$;" : bounds for
simulation."
PRINT " = m e - "

- ——

PRINT * This table helps to spot if hvpothesized vaiue
is below min, "

PRINT * and which of min, max, lowerCI or upperCI will
bind simulations."

PRINT " "

PRINT » *

PRINT "Lake min lowerCI - hyp.value -
upperCI "

PRINT

a$ = a#E  BEEE . BEEE BREHE BHEE ) BEEH BHEE
$EHE $a88 & ° .

FOR i = 1 to numPoints%

IF (Qmin(i) < lowerCI{i})} THEN
flag$ = "OK*

ELSEIF (Qmin{i) > hypQ(i)) THEN
flags - n**LoHyp**n

ELSE
flag$ = "**CIflag**"

END IF

PRINT USING a$; i, OQmin{(i), lowerCI(i), *-"
hypQ(i), *-*, upperCI(i), flag$
IF INT(i/15) - (i/15) = O THEN
INPUT "More, press any key";carryon$
PRINT * "
END IF
NEXT

r

CASE 2, 3

PRINT * *;meanXor¥$;:;" : bounds for
simulation.*

PRINT » = =emeesssdecccccceccmcmmee—a= = "

PRINT * This table helps to spot if hypothesized value
is below min or over max, *

PRINT " and which of min, max, lowerCl or upperCI will
bind simulations.*

PRINT * *

PRINT »

‘PRINT *“Lake min - max lowerCI -
hyp.value - upperCIl "

PRINT



a$ = wHEEE  FEEE BEEE | BREE BHEE HEEEE, BEEE |
BEe4 HEEE | BESE E8EE 0 &

FOR 1 = 1 to numPoints$% ‘
IF (Qmin(i) < lowerCI(i)) AND (Qmax(i) > upperCI(1l))

THEN
flags = "OK"
ELSEIF (Qmin(i) >= hypQ(i))} THEN
flag$ = "**LoHyp™*"

ELSEIF (Qmax({i) <= hypQ(i}) THEN
flag$ = “**HiHyp**"

ELSE
flagS = "**CIflag**“
END IF
PRINT USING a$; i, Qmin(i), "-", Qmax(i},

lowerCI(i), "-", hypQ{i), "-*, upperCI(i), flag$
IF INT(i/15) - (1/15) = 0 THEN
INPUT "More, press any key“;carryOn$
PRINT " "
END IF
NEXT
END SELECT

INPUT "press any key to continue";continue$
cls
END SUB

SUB FindConfidenceIntervals {(W(l), numPoints$,
sampleSizeW%(1l), S2W(l), lowerCI{(l), upperCI(1l))
REM finds confidence intervals for each mean W using
mean:variance or real data S2.
LOCAL S2, i, SE
FOR i = 1 to numPoints$
S2 S2W({1i)
SE = SQR ( S2 / sampleSizeW% (i) )
upperCI(i) = W(i) + 1.96 * SE
lowerCI(i) = W({(i) - 1.96 * SE
NEXT i
END SUB

SUB FindRepConfidencelntervals (W(l), numPoints%, S2Method%,
expWs2, propConstWsS2, S2W(l), lowerCI(l), upperCI(i))

REM finds confidence intervals for replicat W using
mean:variance or real data S2.

SELECT CASE SZmethod$



CASE 1
FOR i = 1 to numPoints$
S2 = propConstWS2 * W(i) ~ expwWs2
SD = SQR(S2)
upperCI(i) = W(i) + 1.96 * SD
lowerCI{(i) = W(i) - 1.86 * SD
NEXT 1
CASE 2
FOR 1 = 1 to numPoints$
s2 S2W(i)
SD = SQR(S2)
upperCI (1)
lowerCI (1)
NEXT i
END SELECT
END SUB

W(i) + 1.96 * SD
W{i) - 1.96 * SD

SUB RepXminMaxCIcheck {(numPoints%, X(1l), boundsType%,
minRepx, maxRepx, Xmin(l), Xmax(1l))

REM Creates a table for meanX and repx CI, min and max.
Shows whether CI or min, max bind simulations.
$INCLUDE “repXCI.inc" '*** not in this appendix **»

END SUB

SUB SimulateSamples {(hypY(l), sampleSizeX%(1l},
sampleSize¥%{1l), numPoints$%, expXS2, propConstXS2, expY¥YS2,
propConst¥S2, hypX(l), logRandX(l), logRandy(1l))

REM Randomizes mean X and perfectFit Y (both
non-transformed), then log-

REM transforms them. Randomizations mimic sampling from a
Normal dist. with

REM hypX(i) or hypY(i) as mean, and an SD derived from an
appropriate

REM S2:M regression or from data S2.

LOCAL i, meanXupperCI, meanXlowerCl, meanYupperCI,
meanYlowerCI, simulatedMeanX, simulatedMeany

SHARED boundsType%, meanXboundByHi95CIg,
meanXboundByLo95CI&, meanXboundByMin&, meanXboundByMax&,
minMeanXisUnder95CI&, maxMeanXisOver95CI&, Xmax()},
Xmin(),_
meanYboundByHi95CI&, meanYboundByLo95CI&,
meanYboundByMin&, meanYboundByMax&, minMeanYisUnder95CI&,
maxMeanY¥isOver35CI&, Ymax({), Ymin()

SHARED S$2method%, S2hypX (), S2hypY(), simulationsForXg,
simulationsForY&

FOR 1 = 1 to numPoints%
CALL Randomization (({SZhypX(i)), sampleSizeX%(i},
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hyp# (i), simulatedMeanX, meanXupperCI, meanXlowerCI)
INCR simulationsForXk ‘counts simulations
CALL ApplyBounds {(boundsType%, simulatedMeanX,

meanXupperCI, meanXlowerCI, Xmax(i), Xmin(i),

meanXboundByHi95CI&, meanXboundByLoS5CI&,

meanXboundByMax&, meanxXboundByMing,

maxMeanXisQOverd5CIl&, minMeanXisUnder95CIi&)
logRandx (i) = LOG1l0 (simulatedMeanX)

CALL Randomization {(S2hypY(i))., sampleSize¥Y% (i),
hypY (i}, simulatedMeanY, meanYupperCI, meanYlowerCI)

INCR simulationsForY&

CALL ApplyBounds (boundsType%, simulatedMeanY,
meanYupperCI, meanYlowerCI, Ymax(i), Ymin(i),
meanYboundByvH195CI&, meanYboundByLoS%5CI&,
meanYboundByMax&, meanYboundByMink,
maxMeanYisOver95CI&, minMean¥isUnder95CI&)

logRandy (i) = LOGl0 {(simulatedMeany)

NEXT i
END SUB

SUB SimulateWhenReplicatesCorr {( sampleSizeX%(1l},
sampleSizeY%(1l), numPoints%, meanX(l), expXs2,
propConstXS2, hypY(l), exp¥S2, propConst¥S2,
repLevelSlope(l}, replevellntercept(l),
repLevelsS2YgivenX(l), logRandX{l), logRand¥Y(l)})

REM simulates sampleSizeX replictes of meanX, for each of
these a replicate y is simulated using the rep. level
regression between rep.x and rep. vy, and S2yIx (rep.
level).

REM note that xMax{), xMin(), yMax(), yMin() are used as
bounds for both means and replicates, if boundsType% 3 and
repBoundsType% 3 are chosen.

LOCAL i, j, sumX, sumY, simReplicateX, simReplicateY,
simulatedMeanX, simulatedMeanY, carryOn$, errorCondition$,
S2forX, S2forY, SEmeanX, SEmeanY

SHARED boundsType%, meanXboundByHiS5CIg,
meanXboundByLo95CI&, meanXboundByMin&, meanXboundByMax&,
miriMeanXisUnder95CI&, maxMeanXisOver95CI&, Xmax(),
Xmin(}), _
meanYboundByHi95CI&, meanYboundByLo95CIg,
meanYboundByMin&, meanYboundByMax&, minMeanYisUnder95CI%,
maxMeanYisOver95CI&, Ymax({), Ymin()

SHARED repBoundsType%, repxBoundByHi95CI%,
repxBoundByLo95CI&, repxBoundByMing, repxBoundByMaxg,
minRepxIsUnder85CI&, maxRepxIsOver95CI&, minRepx,
maxRepx, _
repyBoundByHi95CI&, repyBoundByLoS95CI&, repyBoundByMing,
repyBoundByMax&, minRepyIsUnder95CI&, maxRepyIsOver95CI&,
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minRepy, maxrepy
SHARED S$2Zmethod%, S$2X{), S2Y{), simulationsForXs,
simulationsForyY&

FOR i=1 to numPoints%

SELECT CASE S$2method$
CASE 1
S2forX = (propConstXS2) * {(meanX (i) ™ expXs
*from a log82:logX plot.
S2forY = (propConst¥S2) * (hyp¥Y(i) " exp¥S2)

CASE 2

Sz2forX = 82X{(i)

S2forY = S§2Y (i)
END SELECT
SEmeanX = SQR (SZ2forX / sampleSizeX%(i})
SEmeanY = SQR (S2forY / sampleSizeY%(i))
meanXupper95CI = meanX(i) + 1.96 * SEmeanX
meanXlower95CI = meanX(i) - 1.96 * SEmeanX
meanYupper$5CI = hyp(i) + 1.96 * SEmeanY
meanYlower95CI = hyp¥(i) - 1.96 * SEmeany

counters = 0

sumx = 0
sumy = 0
Do

counter¥% = counter% + 1

CaLL RandomizeReplicateX (i, meanX(i), S2forX,
simulatedRepx)

sumx = sumx + SimulatedRepx

CALL RandomizeReplicateY (i, hypY(i), repLevelSlope(i),
simulatedRepx, repLevellntercept (i),
repLevelS2YgivenX(1i), simulatedRepy)
sumy = sumy + simulatedRepy

Loop until (counter% = sampleSizeX%{i)) OR (counter% =
sampleSizeY¥Y%(i))

IF sampleSizeX%(i) > sampleSizeY$%(i) THEN
DO
counter¥ = counter¥ + 1
CALL RandomizeReplicateX (i, meanX(i), S2forX,
simulatedRepx)
sumxX = sumx + simulatedRepx
Loop until counter® = sampleSizeX% (1)
ELSE
IF sampleSizeY%(i) > sampleSizeX%{(i} THEN

rand if samplesizes are equal we are finished.
DO
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counter% = counter$ + 1

CALL RandomizeReplicateX {i, meanX(i}, SZ2forX,
simulatedRepx)

CALL RandomizeReplicateY (i, hypY(i),
repLevelSlope(i), simulatedRepx,
replevellIntercept (i), repLevelS2¥givenX(i),
simulatedRepy)

sumy = sumy + SimulatedRepy

Loop until counter% = sampleSizeY% (1)
END IF
END IF

simulatedMeanX = (sumx/sampleSizeX%(i))
simulatedMeanY = (sumy/sampleSizeY%(i))

CALL ApplyBounds (boundsType%, simulatedMeanX,
meanXupper95CI, meanXlower95CI, Xmax(i), Xmin(i),
meanXboundByHi95CI&, meanXboundByvLo95CI&,
meanXboundByMax&, meanXboundByMing,
maxMeanXisOver95CI&, minMeanXisUnder95CIx)

logRandx{i) = LOGl0 {(simulatedMeanX)

CALL 2ApplyBounds (boundsType%, simulatedMeanY,
meanYupper95CI, mean¥lower9SCI, ¥Ymax(i), ¥Ymin(i),
meanYboundByHi95CI&, meanYboundByLo95CI&,
meanYboundByMax&, meanYboundByMing,
maxMeanYisOver95CI&, minMeanYisUnder95CIL)

logRandy (i) = LOGl0 (simulatedMeanY)

NEXT i
END SUB

SUB Graphics (boundsType%, Xmin(l), Xmax(l), ¥Ymin(l),
Ymax(l), numPoints%, logRealX(l), logRealY¥Y(l), realSlope,
realIntercept, logRandX(1l), logRand¥(l), slope ,
intercept)

REM graphs real data and regression in upper part of screen
and simulated data and

REM regression in lower part of screen.

LOCAL maxLogX, minLogX, maxLogY, minLog¥, initialFittedLogy,
finalFittedLogY, carryOn$

SHARED modelSSE, realSSE, sortedlogRealX(),
sortedlogRealY (), sortedlogRandX(), sortedXmin(),
sortedXmax(), sorted¥Ymin(), sorted¥Ymax()

FOR i = 1 to numPoints% ‘preserves original arrays
sortedlogRealX (i) = logRealX(i) ‘some sorts not new
for each CALL,
sortedLogRealY (i) = logRealY (i) '‘but are here for

clarity.
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sortedlogRandX(i) = logRandX(i)
sorted¥max (i) = Xmax(1i)
sorted¥max (i) = Ymax(1i)
sortedXmin(i) = Xmin(i)
sorted¥min(i) = ¥Ymin({i)

NEXT

CALL Quicksort (1, (numPoints%), sortedlogRealX())
‘used for screen sizing
CALL Quicksort (1, (numPoints%), sortedlogReal¥Y(})
CALL Quicksort (1, {(numPoints%), sortedlogRandX())
CALL Quicksort (1, (numPoints%), sortedXmax{))
CALL Quicksort (1, {(numPoints%), sorted¥Ymax())
CALL Quicksort {1, (numPoints%), sortedXmin(})
CALL Quicksort (1, (numPoints%), sorted¥Ymin())

cls
screen 1,0
‘graphics during anultest?

IF boundsType%$ = 1 THEN ' ie. no max specified
maxLogX 1.4 * sortedlogRealX{numPoints%)
* scales viewport to data

maxLog¥ = 1.4 * sortedlogReal¥Y(numPoints%)
ELSE
maxLogX = LOGL0 (sortedXmax(numPoints$))}
maxLogY¥ = LOGl0 (sorted¥Ymax(numPoints$))
END IF
minLogX = LOGlO (sortedXmin(l)) 'LOG10(.05) this will
shrink line when min is low
minLog¥ = LOGl0 (sorted¥Ymin{l)) ‘LOG10({.05)
window (minLogX, minLogY) - (maxLogX, maxLogYy)
view (25,0) - (319, 75) ‘upper part of screen prepared

for real data

initialFittedLogY = realSlope * sortedLogRealX(l} +
realIntercept ‘may require sort****
finalFittedlLogY = realSlope * sortedLogRealX (numPoints%) =+
realIntercept

line (sortedLogRealX(l), initialFittedLogY) -

{sortedLogRealX (numPoints%), finalFittedLogY) ‘real data
regression
FOR 1 = 1 o numPoints$ ) '‘real data points

PSET (logRealX(i), logRealY(i)), 14
NEXT
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view (25,100) - (319,175) ‘lower part of screen prepared
for simulated data

initialFittedLogY = slope * sortedLogRandX(l) + intercept
finalFittedLogY = slope * sortedLogRandX (numPoints%) +
intercept

line (sortedLogRandX(l), initialFittedLogY¥} -

{sortedLogRandX (numPoints%), finalFittedLogY) ‘simulated
data
regression

FOR i = 1 to numPoints$
PSET (logRandX (i), logRand¥Y(i)}), 10
NEXT

LOCATE 1,1

PRINT "real SSE= *

PRINT USING *“##.####";realSSE
LOCATE 15,1

PRINT *“model SSE = *

PRINT USING "##.####" ;modelSSE

LOCATE 25,2

INPUT "press";carryOn$
cls

cls

screen 0

width 80

END SUB

SUB CompileSSEdist (modelSSE, modelSSY, realSSE, realSSy,
numPoints%, trial, unexplainedMSE(l), modelr2(l),
pseudor2(l), arrayModelSSE(l), modelSSEoverSsY (1),
arrayModelssy (1) )

REM builds arrays of modelSSE etc.

SHARED wantSSEoverSSyYfile$, wantSSyYfiles

LOCAL unexplainedSSE, carryOn$

unexplainedSSE = realSSE - modelSSE

IF unexplainedSSE < 0 THEN unexplainedSSE = 0

unexplainedMSE(trial) = unexplainedSSE / numPoints%

:nodelr2 {trial) = (modelSSY - modelSSE) / modelSSY

Jseudor2{trial) = (realSSY - unexplainedSSE) / realSSY

arrayModelSSE(trial) = modelSSE

1F wantSSEoverSSYfile$ = *y" THEN modelSSEoverSsSY(trial)
= modelSSE / modelSsy

IF wantsSsYfile$ = "y* THEN arrayModelSSY(trial)
= modelSSY

‘print "arrayModelSSE(trial) = ";arrayModelSSE(trial)
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***used for checks=*»~
‘print “arrayvmodelSSY(trial) =";arrayModelSSY(trial)
‘print "modelSSEoverSSY(trial)="; modelSSEoverSsSY(trial}
‘print "model r2=*" modelr2(crial)
‘input “"press*";c$
END SUB

SUB ComputeSSEstats ( unexplainedMSE(l), modelr2(l},
pseudor2(1l), numTrials$%, meanUnexplainedMSE, meanModelr2,
meanPseudor2, arrayModelSSE(l), realSSE,
probModelSSEgtRealSSE, meanModelSSE, lowerBoundMeanSSE,
upperBoundMeanSsSE )

REM takes arrays of simulation results: unexplainedMSE(),
model r2{), pseudor2(}, and arrayModelSSE() -

REM determines means, then sorts arrays into ascending order
and finds 95% CI.

SHARED CIwarning$, lowerBoundMSE, upperBoundMSE,
lowerBoundModelrx2, upperBoundModelr2, lowerBoundPr2,
upperBoundPr2, wantSSEfile$, modelSSEoverSSY (),
want SSEoverSSYfile$, wantSSyYfile$, arrayModelSSY(),
wantR2file$

LOCAL trial, sumUnexplainedMSE, sumPseudor2, sumModelSSE,
pos2.5%, pos97.5%

sumUnexplainedMSE = 0
sumModelr2 = 0
sumPseudor2 = 0
sumModelSSE = 0

FOR trial = 1 to numTrials$
sumlUnexplainedMSE = unexplainedMSE(trial) =+
sumUnexplainedMSE
sumModelr2 = modelr2({trial) + sumModelr2

sumPseudor2 = pseudor2{trial) + sumPseudor2
sumModelSSE = arrayModelSSE(trial) + sumModelSSE
NEXT trial

meanUnexplainedMSE = sumUnexplainedMSE / numTrials$
meanModelr2 = sumModelr2 / numTrials$

meanPseudor?2 = sumPseudor2 / numTrials$
meanModelSSE = sumModelSSE / numTrials$

CALL QuickSort (1, (numTrials%), unexplainedMSE())
‘a sort procedure

CALL QuickSort (1, (numTrials%), pseudor2())

CALL QuickSort (1, (numTrials%), modelr2{))

CALL QuickSort (1, (numTrials%), arrayModelSSE(})

IF numTrials% < S0 THEN
pos2.5% = 1
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. p0s87.5% = numTrials% - 1 .
CIwarning$ = “y* ‘a small sample size warning
ELSE

pos2.5% = INT ( .025 * numTrials% )
pos97.5% = INT ( .975 * numTrials$ )
END IF

lowerBoundMSE = unexplainedMSE( pos2.5%)
upperBoundMSE = unexplainedMSE( pos97.5%)
lowerBoundModelr2 = modelr2( pos2.S5%)
upperBoundmodelr2 = modelr2( pos97.5%)
lowerBoundPR2 = pseudor2{ pos2.5%)
upperBoundPR2 = pseudor2( pos$7.5%)
lowerBoundMeanSSE = arrayModelSSE( pos2.5%)
upperBoundMeanSSE = arrayModelSSE( pos97.5%)

IF wantSsSEfile$ = "y" THEN
INPUT *"What filename would you like for modelSSE array
*; moniker$
CALL CreatelRealVariableFile (moniker$, numTrials$,
arrayModelSSE!{)) '
END IF
IF wantSSEoverSSyfile$ = "y" THEN
INPUT "What filename would you like for modelSSE/SSY
array *;moniker$
CALL CreatelRealVariableFile (moniker$, numTrials$,
modelSSEoversSsSY())
END IF
IF wantSsyfile$ = "y* THEN
INPUT "What filename would you like for modelSSY array
*:moniker$
CALL CreatelRealVariableFile {(moniker$, numTrials$,
arrayModelSSY())
END IF
IF wantR2file$ = “y" THEN
INPUT *What f£ilename would you like for modelr2 array
*“:monikers$
CALL CreatelRealVariableFile (moniker$, numTrialsg,
modelr2 ())
END IF
END SUB

SUB CreatelRealVariableFile (moniker$, numPoints%, a(l))
REM creates a 1 real variable external data file.
LOCAL count%, carryOn$

OPEN moniker$ FOR QUTPUT AS #1
countd = 0
DO
. count® = count% + 1
PRINT #1, a({count%)
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LOOP UNTIL count% = numPoints$

CLOSE #1

PRINT "File "; moniker$;" created."

INPUT "press any kev to continue";carrvOn$
cls

END SUB

$INCLUDE "Boundspr.inc" 'has two procedures for printing
boundsinfringemnts.

SUB QuickSort ( start%, finish%, datum(l) )} ‘ascending sort
REM Recursively sorts array called datum, with bounds start$
and rinishs$.
REM This procedure is from a book called Oh!Pascal (Cooper
and Clancy, 1985) and was translated to
REM TurboBasic. A sort is needed to find 95% CI's for
simulated statistics.
LOCAL left%, right%,., startervValue, temp
left%$=start$
right$=finish$%
startexValue=datum( (start¥+finish%)\2)
DO
DO WHILE datum({left%)<starterValue
lefti=left%+1
LOOP
DO WHILE starterValue < datum{right%)
right$=right%-1
LOOP
IF left% <= right% THEN
temp = datum(left$)
datum(left%) = datum{right%)
datum{right%) = temp
lefts = lefts + 1
right% = right% - 1
END IF
LOOP UNTIL right$% <= left$%
IF start% < right$ THEN CALL QuickSort ({start%),
{right%), datum())
IF left% < finish% THEN CALL QuickSort {({left%),
(finish%), datum())
END SUB

SUB FindProbModelSSEgtRealSSE { realSSE, numTrialsk,
arrayModelSSE{l), probModelSSEgtRealSSE )

REM finds the number of times modelSSE matched or exceeded
realSSE, ie

REM ‘explained’ all scatter around real-data regression
line.

LOCAL counts
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count% = numTrials$

DO UNTIL {(count% = 0) OR (realSSE >=
arrayModelSSE({countc%))
PRINT "in FindProbRealSSE DO LOOP "; count$
count% = count% - 1

LOOP

probModelSSEgtRealSSE = (numTrials$ - count®) / numTrials$

END SUB

SUB Randomization (S2, sampleSize%, meanValue,
simulatedvValue, upperS5CI, lowerS5CI)

REM Randomly samples a value from a Normal (meanvalue,
SQR(S2/n)) dist.

REM Note that it is Non-transformed values of x and y that
are manipulated.

LOCAL SE, rand, varMean

SHARED S2method%

rand = RND ‘uniform distribution.

varMean = S2 / sampleSize$% ‘when not a mean (ie.
sampleSize = 1) S2 is not
altered.

SE = SQR ( varMean )

simulatedvValue = (.5513 * LOG( rand / (l-rand) )) * SE +

meanvValue ‘normal dist.
upper95CI = meanValue + (1.96 * SE)

lower95CI
END SURB

meanvValue - (1.96 * SE)

SUB RandomizeReplicateX (i, meanX, S2, simulatedRepx)

REM Randomly samples a value from a Normal (meanvValue,
SQR(S2/n)) dist.

REM and truncates distribution to fit specified bounds.

REM Note that it is Non-transformed values of x and y that
are manipulated.

LOCAL rand, SD

SHARED repBoundsType%, repxBoundByHig95Ci&,
repxBoundByLo95CI&, repxBoundByMing, repxBoundByMax,
minRepxIsUnder95CI&, maxRepxIsOver95CI&, minRepx, maxRepx,
xMax (), xMin(}, simulationsForX&

rand = RND ‘uniform distribution.
SD = SQR ({ 82 )

simulatedRepx = (.5513 * LOG( rand / (l-rand) )) * SD +
meanX ‘normal dist. with SD of disaggregated data.
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INCR simulationsForX&
* PRINT "in randomizeRX, before bounds , sim rep x =
*;simulatedRepx rExw

meanX + 1.96 * SD
meanX - 1.96 * SD

repxUpperCI
repxLowerCIl

IF repBoundsType% = 3 THEN
maxRepx = xMax(i) ‘sets max and min specific for
the ith lake.
minRepx = xMin(i)
END IF

CALL ApplyBounds (repBoundsType%, simulatedRepx,
repxUpperCI, repxLowerCI, maxRepx, minRepx,
repxBoundByHi95CI&, repxBoundByLo95CI&,
repxBoundByMax&, repxBoundByMin&, maxRepxIsOverS85CIlg,

minRepxIsUnder95SCI&)
* PRINT "in randomizeRX, after bounds , sim rep x =
*;simulatedRepx twww
END SUB

SUB RandomizeReplicateY (i, perfectFittingMean¥, slope, x,
intercept, S2repyGivenRepx, simulatedRepy)

REM A function that simulates y values at the disaggregated
level -

REM it takes a simulated x value

REM and then simulates an appropriatly constrained y value
by using the x:y

REM regression at disaggregated level, and S2YgivenX at that
level . Note that

REM most published bottom-up regressions use aggregated data
points.

LOCAL rand, y, SD

SHARED repBoundsType%, repyBoundByH195CIk,
repyBoundByLo95C1&, repyBoundByMax&, repyBoundByMing,
minRepyIsUnder95CI&, maxRepylsOver95CI&, minRepy, maxRepy,

yMax (), yMin(), simulationsForY&
rand = RND ‘uniform distribution.
y = slope * x + intercept 'X 1s a simulated replicate,

y is on a line through
replicate data.

SD = SQR (S2repyGivenRepx) 'S2yix from regression
through replicates.

simulatedRepy = (.5513 * LOG( rand / (l-rand) )) * SD + vy
'normal dist. with SD of disaggregated data.
INCR simulationsForY&
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y + 1.96 * 8D
y - 1.96 * SD

repyUpperCI
repyLowerCI

IF repBoundsType% = 3 THEN
maxRepy = yMax(i) ‘sets max and min specific for
the ith lake.
minRepy = yMin({i)
END IF

CALL ApplyBounds (repBoundsType%, simulatedRepy,
repyUpperCI, repyLowerCI, maxRepy, minRepy,
repyBoundByHi%85CI&, repyBoundByLo95CI&,
repyBoundByMax&, repyBoundByMing, maxRepyIsOverS5CIg,
minRepyIsUnder95CI&)

END 8UB

SUB ApplyBounds {(limits%, simulatedvalue, upperCI, lowerCI,
max, min, boundByHiCI&, boundByLoCI&, boundByMaxk,
boundByMin&, maxOverHiCI&, minUnderLoCIk)

REM places simulated mean or replicate values within
prescribed bounds.

Select Case limits$ *fits simulated value to preset
bounds
Case 0 'no bounds on simulated values.

(for future program)

Case 1 'bound by Confidence Interval and
an arbitrary minimum.

*___upper bound

IF simulatedvalue > upperCl THEN
boundByHiCI& = boundByHiCI& + 1
simulatedvValue = upperCl

END IF

’ lower bhound

IF min < lowerCI THEN ‘higher of the two will
be bounds
minUnderLoCI& = minUnderLoCI& + 1
'tells us about min wrt. CI

IF simulatedvValue < lowerCI THEN
‘1f > lowexrCY then no need for bounding.

simulatedvalue = lowerCI
boundByLoCI& = boundByLoCI& + 1
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END IF

ELSE ‘ie. lowerCl <= min
IF simulatedvalue < min THEN
simulatedvalue = min
boundByMin& = boundByMin& + 1

END IF
END IF
Case 2,3 ‘bound by 95%CI and a max and min value
(specific to each lake in case 3)
' ___upper bound____
IF max > uppexCI THEN ‘lower of the two will be

bounds
maxOverHiCI& = maxQOverHiCIg + 1
‘tells us about min wrt. CI

IF simulatedValue > upperCI THEN
simulatedvalue = upperCI

boundByHiCI& = boundByHiCI& + 1
END IF

ELSE ‘ie. upperTl >= max
IF simulatedvValue > max THEN
simulatedvalue = max
boundByMax& = BoundByMax& + 1
END IF
END IF

' lower bound

IF min < lowerCI THEN ‘higher of the two will be
bounds
minUnderLoCI& = minUnderLoCI& + 1
‘tells us about min wrt. CI

IF simulatedvalue < lowerCI THEN
simulatedvalue = lowerCI
boundByLoCI& = boundByLoCI& + 1

END IF

ELSE ‘ie. lowerCI <= min
IF simulatedvalue < min THEN
simulatedvalue = min
boundByMin& = boundByMin& + 1
END IF
END IF

END SELECT
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END SUB

SUB SoundAlert {(nullvVariable)
REM notifies user when input reguired
FORn =1 to 5
SOUND 500, .01

DELAY .4
SOUND 2000, .01
DELAY .04
NEXT n
FOR n = 1000 to 700 step -5
SOUND n, 1
NEXT n

FOR 1 = 1 to 700
SOUND 50 * RND + 37, .0015
NEXT n
END SUB

*** because of memory restrictions, the following pocedure
was accessed through the S$INCLUDE statement ***

SUB PrintBoundsInfringements ( numPoints$%, numTrials$,
boundsType%, meanXboundByMin&, meanXboundbyMax&,
meanXboundByHi95CI&, meanXboundByLo95CI&,
minMeanXisUnder95CI&, maxMeanXisOver95CI&,

meanYboundByMin&, meanYboundByMax&, meanYboundByHi95CI%,
meanYboundByLo95CI&, minMeanYisUnder95CIg,
maxMeanYisOver95CI&)
REM prints the number of times that bounds for simulated
meanX or meanY are crossed.
LOCAL carryOn$, sumNX%, sumNY$, totalMeanX&, totalMeanY&
SHARED simulationsForX&, simulationsForY&, sampleSizeX$%(),
sampleSizeY% (), replicateCorrelation$, loopCounter&
rexx* helow not needed if loopCounter& is used
*IF replicateCorrelation$ = "y" THEN 'IF block
needed for tally
SuUmNX$ 0

SumNY$ 0
FOR i = 1 to numPoints$
sumNX$ = sampleSizeX% (i) + sumNX$%
*sum of sampleSize from each location
. SumNY$% = sampleSize¥%(i) + sumNY$
! NEXT i
' totalMeanX& = (simulationsForX& / sumNX%) * numPoints$

- % w W
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. ' totalMeanY& = (simulationsFor¥& / sumNY$) * numPoints$
‘ELSE
! totalMeanX& = simulationsForXk
’ totalMeanY& = simulationsForY&
‘END IF
totalMeanX& = loopCounter& * numPoints$ * numTrials$
totalMean¥& = totalMeanX&
Select Case boundsType$
CAaSE 1
PRINT * "

PRINT " Tally: "; totalMeanX&:;" simulations of mean X / “;
totalMean¥&:;" simulations for mean Y*

PRINT

PRINT " ™

PRINT "initial simulated meanX was bound by min: {(";
meanXboundByMin&; ") times."

PRINT "intiial simulated meanX was bound by (Hi/Lo) 95% CI:
{*; meanXboundByHi95CI& ;"/"; meanXboundByLo95CI&;*)
times."
PRINT "arbitrary min meanX is under 95% CI:
(*;minMeanXisUnder95CI&;*) times."
PRINT * *

PRINT "initial simulated meanY¥ was bound by min: (*;
meanYboundByMink:;*) times. *

PRINT "initial simulated meanY was bound by (Hi/Lo} 95% CI:
("; mean¥YboundByHi95CI&;"/"; meanYboundByLo95CI&; ")}

times.*

PRINT *arbitrary min meanY is under 95% CI:
(" ;minMeanYisUnder985CI&; ") times.*

PRINT " °

CASE 2,3
PRINT * *
PRINT * Tally: "; totalMeanX&;" simulations of mean X / *;
totalMeanY&; " simulations for mean Y*
PRINT
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PRINT " *

PRINT "initial simulated meanX was bound by (max/min}: (*;
meanXboundByMax&: * /" ;meanXboundByMing; *) times.*

PRINT *intiial simulated meanX was bound by (Hi/Lo) 95% CI:
(*; meanXboundByHi95CI& ;"/"*; meanXboundByLo95CI&;*)

times."
PRINT *max meanX and min meanX are {(over/under) 95% CI:
. {*;maxMeanXisOver95CI&; * /" ;minMeanXisUnder9sCI&; ")
times.*
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PRINT " *

PRINT "initial simulated meanY was bound by (max/ min): {";
meanYboundByMax&; " /" ;meanYboundbyMin&; "} times. *
PRINT "initial simulated meanY was bound by (Hi/Lo) 95% CI:
(*; meanYboundByHi95CI&;"/"; meanYboundByLoS95CI&; ")
times."
PRINT "max meanY and min meanY are (over/under} 95% CI:
(" ;maxMean¥isOver9sCI&; * /" ;minMean¥isUnder95CI&; )
times."
PRINT ® *
END SELECT

PRINT " *

INPUT “"press any key to continue$®;carryOn$
cls

END SUB

r*x*improvement: use a character$ to tell program if rep or
not, combine SUBS into one

SUB ReplicateBoundsInfringements ( repBoundsType%,
repxBoundByMin&, repxBoundByMax&, repxBoundByHiS85CI&,
repxBoundByLo95CI&, minRepxIsUnder95SCIs,
maxRepxIsOver9SCIs&, _

repyBoundByMin&, repyBoundByMax&, repyBoundByHi95CIg&,
repyBoundByLo95CI&, minRepyIsUnder95CI%,
maxRepylsOver95CI&)

REM prints the number of times that bounds for simulated
meanX or meanY are crossed.

SHARED numPoints%, sampleSizeX%(), sampleSize¥%(),
numTrials%, simulationsForX&, simulationsForY&,
loopCounterk

LOCAL carrvOn$

Select Case repBoundsType$

CASE 0
PRINT "no bounds set on simulation of replicates.™

CASE 1
PRINT » *
PRINT "TALLY: *;simulationsForX&;" simulations of rep x /
*:;simulationsForY¥&; " simulations of rep v*
PRINT

PRINT * *
PRINT *"initial simulated replicate x is bound by min: (“;
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repxBoundByMing; ") times."®
PRINT "intiial simulated repx is bound by (Hi/Lo) 95% CI:
("; repxBoundByHi95CI& ;"/"; repxBoundByLo95CI&;")

times."
PRINT "arbitrary min repx is under 95% CI:
(" ;minRepxIsUnder95CI&;*) times.*
PRINT " *

PRINT "initial simulated replicate y is bound by min: (“;
repyBoundByMin&;") times. *

PRINT *initial simulated repy is bound by (Hi/Lo) 95% CI:
(*; repyBoundByHi9%5CI&;"/"; repyBoundByLo95CI&;") times.*

PRINT *arbitrary min repy is under 95% CI:

(" ;minRepyIsinder95CI&; ") times."

PRINT " ™

CASE 2,3

PRINT " *

PRINT *TALLY: ";simulationsForX&;" simulations of rep x /
*;simulationsForY¥&;"* simulations of rep y*

PRINT

PRINT " *

PRINT "initial simulated replicate x is bound by (max/min):
"; repxBoundByMax&;"/";repxBoundByMin&;") times."

PRINT "intiial simulated repx is bound by (Hi/Lo) 95% CI:
("; repxBoundByHi95CI& ;"/*; repxBoundByLo95CI&;*)

times."
PRINT “"max repx and min repx are (over/under) 95% CI:
(" ;maxRepxIsQOver95CI&; /" ;minRepxIsUnder9sCI&; ") times."
PRINT * *

PRINT *initial simulated repy is bound by (max/min): (*;
repyBoundByMax&; " /" ; repyBoundByMin&; ") times. *
PRINT *initial simulated repy is bound by (Hi/Lo) 95% CI:
{*; repyBoundByHi95CI&;"/"; repyBoundByLo95CI&;*) times.*
PRINT "max repy and min repy are (over/under) 95% CI:
(*;maxRepylsOver85CI&;* /" ;minRepyIsUnder95CI&;*) times.*
PRINT * "
END SELECT

PRINT * *»

INPUT "press any key to continue®; carryoOn$
cls

END SUB
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Computer code for the loagNormal replicate program

The logNormal replicate program closely resembled the
CLT program, and only that code which differs from the CLT
program is included here. SUB FindConfidencelntervals and
SUB Randomization have counterparts in the CLT program, but
SUB MakeDistOfMeans is not in the CLT program. There is also
an additional parameter that the logNormal replicate program
requires: the number of means that must be generated to
estimate confidence intervals for means. This is one of the
first values that a user is asked to give by keyboard, and
is stored in "overPop%" (the code for this is not shown).

SUB FindConfidenceIntervals (W(l), numPointsg,
sampleSizeW$ (1), S2W(l), lowerCI{l), upperCI(l))
REM finds confidence intervals for each mean W using

mean:variance or real data S2.

LOCAL S2, i
SHARED overPop%, zmean() ' desired number of means taken
from under pop.
FOR 1 = 1 to numPoints$% * for each lake
dmean = W{i} 'desired mean of logNormal dist.
(ie. sample mean.)
dvar = S2W(i) ‘desired variance of logNormal dist.

(ie. sample var.)
k = LOG( dmean )
rNstd = SQR{ LOG( dvar+EXP( 2*k )} )} - (2*K) )
‘Normal Std required to produce desired logN dist.
rNmean = LOG( dMean } ~ {((rNstd"2)/2)
‘Normal mean required to produce desired logN dist.

CALL MakeDistOfMeans (overPop%, sampleSizeW$(i), rNmean,
rNstd, zmean())

low = INT { .025 * overPop$ ) *lower tail of 95% CI
high = INT (.%75 * overPop$% )
if low < 1 then low = 1
upperCI(i) = zmeant{high)
lowerCI({i) = zmean{low)
NEXT i
END SUB

SUB MakeDistOfMeans (overPop$%, sampleSize%, rNmean, rNstd,
meanz (1))

REM samples overPop% # of means from a logNormal dist.and
puts them

REM in an array called meanz{), sorted by QuickSort.
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LOCAL i, sum, j, %X, =, low, high
FOR 1 = 1 to overPop$

to sampleSize$
RND
x = (.95%13 * LOG( rand/(l-rand)} ) * rNstd + rNmean
*x is Ncrm{rNmean, rNstd"2)
Z = EXP (%) 'z is Lnorm(dMean, dvar)
Sum = sSum + Z
NEXT 3
meanz (i) = sum/sampleSize%
NEXT 1
CALL QuickSort ( 1, overPop%, meanz() )
END SUB

n

SUB Randomization (dvar, sampleSize$%, dMean, simulatedvValue)

REM Randomly samples a value from a Normal (meanValue,
SQR(S2/n)) dist.

REM Note that it is Non-transformed values of x and y that
are manipulated.

LOCAL SE, rand, varMean

k = LOG({ dMean )

rNstd = SQR( LOG( dvar+EXP( 2*k ) ) - {(2*K) ) ’'Normal Std
required to produce desired logN dist.
rNmean = LOG( dMean ) - ((xNstd~2)/2) * Normal mean
sum = 0
FOR j = 1 to sampleSize% ‘sample from under dist.
rand = RND
simNorm = (.5513 * LOG{ rand / {(l-rand) )} * rNstd +
rNmean ‘normal dist.
simLogNorm = EXP (simNorm) *logNorm
sum = sum + simLogNorm
NEXT
simulatedvValue = sum/sampleSize$
END SUB



114

Computer code for the Normal replicate program

The Normal replicate program and the logNormal
replicate program were the same, except in the way that they
generated distributions of replicates. The Normal replicate
program used an equation that generated values from a Normal
distribution. These differences appear in the three
procedures shown below, whose counterparts in the logNormal
replicate program are shown above.

SUB FindConfidenceIntervals (W(l), numPoints%,
sampleSizeW$(l), S2W(l), lowerCI{(l), upperCI(l))
REM finds confidence intervals for each mean W using

mean:variance or real data S2.

LOCAL 82, i
SHARED overPop%, zmean() * desired number of means taken
from under pop.
FOR 1 = 1 to numPoints$ ' for each lake
std = SQR ( S2W(1i) )

CALL MakeDistOfMeans (overPop%, sampleSizeW%(i), W(i),
std, zmean(})

low = INT ( .025 * overPop% ) ‘lower tail of 95% CI
high = INT (.975 * overPop% )
if low < 1 then low = 1
uppexCI(i) = zmean{high)
lowerCI(i) = zmean({low)
NEXT i
END SUB

SUB MakeDistOfMeans (overPop%, sampleSize%, mean, std,
meanx (1))

REM samples overPop¥ # of means from a logNormal dist.and
puts them

REM in an array called meanx(), sorted by QuickSort.

LOCAL i, sum, j, X, low, high
FOR 1 = 1 to overPop%

sum = 0
FOR j = 1 to sampleSize$
rand = RND
x = (.5513 * LOG( rand/(l-rand)) ) * std + mean

‘x 1s Norm(mean,std~"2)
sum = Sum + X
NEXT j
meanx(i) = sum/sampleSize%
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NEXT i

CALL QuickSort ( 1, overPop$%, meanx() )
END SUB

SUB Randomization {var, sampleSize%, mean, simulatedvalue)

REM Randomly samples a value from a Normal (meanValue,
SQR(S2/n) ) dist.

REM Note that it is Non-transformed values of x and y that
are manipulated.

LOCAL std, rand, varMean

std = SQR ( var )}

sum = 0

FOR j = 1 to sampleSize% ‘sample from under dist.
rand = RND
simNerm = (.5513 * LOG({ rand / (l-rand) }} * std + mean

‘normal dist.
sum = sum + SimiNorm
NEXT

simulatedValue = sum/sampleSize$
END SUB





