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ABSTRACT

A steady-state primitive equations model is used to study the structure of

stationary planetary waves in the Northern Hemisphere stratosphere. The zonal mean

circulation is specified using observed January mean data, as is the wave structure at the

lower boundary of 100 hPa. Experiments are performed using data from four years,

1982-84 and 1986. Numerical solutions are found for the structures of zonal

wavenumbers 1 to 3 throughout the Northern Hemisphere stratosphere.

In one series of experiments, a linear model is employed, with forcing only by

stationary waves at the lower boundary. This model reproduces the gross features of the

stratospheric stationary waves, but the wave amplitudes are much 1ess than those

observed in nature.

In a second series of experiments, the January means of the transient vorticity and

heat flux divergences are calculated using observed data, and applied as an additional

forcing term in the mode1, along with the lower boundary forcing. The model yields

significantly larger wave amplitudes, closer to those observed in nature, when forcing

by transients is incIuded.

In a third series of experiments, a model which incIudes the nonlinear interactions

among the stationary waves is employed, with forcing only by the waves at the lower

boundary. This yields somewhat better results than the linear model, but the change in

the wave structure due to the inclusion of nonlinear interactions among the stationary

waves is smaller than that due to the inclusion of forcing by transients.

The abiIity of the model to reproduce the observed features of the monthly mean

stratospheric circulation varies greatly, depending on the year studied.
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RÉSUMÉ

Un modèle aux équations générales est employé pour étudier la structure des ondes

planétaires stationnaires dans la stratosphère de l'hemisphère nord. La circulation zonale

moyenne est precisée en employant la moyenne mensuel1e de janvier calculée à partir

d'observations. La structure des ondes à la limite inférieure du modèle à 100 hPa est precisée

de la même façon. Des solutions numériques sont calculées pour les structures des ondes zonales

1 à 3 dans toute la stratosphère de l'hemisphère nord.

Dans lIne série d'expériences, un modèle linéaire est employé, forcé uniquement par les

ondes stationnaires à la limite inférieure. Ce modèle reproduit les caractéristiques générales des

ondes stationnaires dans la stratosphère, mais les amplitudes des ondes sont beaucoup plus faibles

que cel1es observées dans la nature.

Dans une deuxième série d'expériences, les moyennes mensuel1es de janvier des

divergences de transport du tourbillon et de la chaleur par l'écoulement transitoire sont calculées

en employant des données observées. Ces divergences sont employées comme un terme de

forçage qui s'ajoute au forçage à la limite inférieure. Les ondes calculées par le modèle ont des

amplitudes nettement supérieures, et plus proche de cel1es observées dans la nature, lorsque le

forçage par l'écoulement transitoire est inclus.

Dans une troisième série d'expériences, un modèle qui inclut les interactions nonlinéaires

entre les ondes stationnaires est employé, forcé uniquement par les ondes à la limite inférieure.

Ce modèle donne des résultats légèrement meilleurs que ceux du modèle linéaire, mais le

changement dans la structure des ondes dO à l'inclusion des interactions nonlinéaires entre les

ondes stationnaires est moindre que celui dO à l'inclusion du forçage par l'écoulement transitoire.

La habileté du modèle à reproduire les caractéristiques observées de la moyenne

mensuel1e de la circulation dans le stratosphère varie considérablement d'une année à l'autre.
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CHAPTER 1

INTRODUCTION

In the last quarter-century, there has been a considerable effort to understand the

circulation of the stratosphere through studies using observations and numerical models.

It is certain that the troposphere has an important effect on the stratosphere. Although

the importance of the effect of the stratosphere on the troposphere is somewhat less clear,

it seems certain that this effect is not negligible, and that a proper understanding of the

dynamics of the stratosphere is necessary to understand fully the behaviour of the

troposphere.

Interest in the stratosphere has been heightened in recent years by the concern that

pollutants such as chlorofluorocarbons and oxides of nitrogen are contributing to a

depletion of the stratospheric ozone and affecting the global climate. An understanding

of the stratospheric circulation is vital in the study of this phenomenon, since it is this

circulation which transports the radiatively and photochemically active substances.

Furthermore, the temperature structure of the stratosphere, upon which the ozone­

depleting chemical reactions are crucially dependent, is determined in part by dynamical

processes.

The circulation of the stratosphere displays a strong seasonal dependence. The

very direction of the mean polar vortex reverses from summer to winter. The present

work dea1s with the circulation in the Northem Hemisphere in January. The zonal mean

flow (i.e. averaged over longitude) is driven primarily by differential heating owing to
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absorbtion of solar ultraviolet radiation by ozone and infrared emission by carbon dioxide

and ozone. Because of the negative declination of the sun in January, there is maximum

heating at the South Pole and maximum cooling at the North Pole. The resulting strong

horizontal temperature gradient, combined with the Coriolis force owing to the earth's

rotation, produces an easterly flow in the Southern (summer) Hemisphere, and a westerly

flow in the Northern (winter) Hemisphere.

When averaged over a period of a month, the circulation in the summer

hemisphere is almost completely zonal (i.e. east-west), while that in the winter

hemisphere shows large deviations from a purely zonal flow. These deviations are

known as (quasi-) stationary waves. They are produced principally by disturbances

produced in the troposphere by the earth's topography and by land-water thermal

contrasts, which propagate upward into the stratosphere. These disturbances are unable

to propagate in the easterly flow of the summer stratosphere, 50 they remain trapped in

the troposphere and the circulation of the summer stratosphere remains almost purely

zonal. In contrast, the westeriy flow of the winter stratosphere permits the propagation

of these disturbances, resulting in the presence of stationary waves in the winter

stratosphere. The present work is concerned primarily with the modeIling of these

waves.

It is convenient to retain the vertical and latitudinal dependence of these

disturbances, but to transform the longitudinal dependence, expressing it as a sum of

zonal harmonies. Because the disturbances are large in scale, the gravest harmonies,

2
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principally zonal wavenumbers 1 and 2, are much more important than the higher

harmonies, so the expansion can be truncated at a low wavenumber.

In principle, the circulation of the atmosphere is governed by the Navier-Stokes

equations of fluid dynamics. In practice, however, the full Navier-Stokes equations are

never used in studies of large-scale atmospheric dynarnics. Various simplifications are

always used. Following Holton (1975), these may be divided in10 three categories. The

first, dynamical simplification, involves dropping from the governing equations terms

which areshown by scale analysis 10 be of negligible importance in the problem being

considered. Besides the obvious advantage of reducing the complexity of the equations

to be dealt with, this simplification also has the advantage of filtering out phenomena

such as sound waves which, though they are valid solutions of the Navier-Stokes

equations, are of no meteorological importance. The most complete system of equations

genera1ly used in large-scale atmospheric dynarnics is the system of so-called primitive

equations, in which the vertical component of the equation of motion is replaced by the

equation of hydrostatic balance between gravity and the vertical pressure gradient, and

the Coriolis force due to vertical motion is neglected. Using the observed fact that the

rotational part of large-scale atmospheric motions is much larger than the divergent part,

one can derive a more highly simplified system of equations known as the quasi­

geostrophic system. This system has been used in many previous studies. In the present

work, the more complete primitive equations are used.

The second category is a geometrical simplification. Although the spherical shape

of the earth is of great importance in atmospheric dynarnics, the extreme thinness of the

3
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atmosphere compared to the earth's radius allows one to replace the variable distance to

the centre of the earth by a constant mean radius. A more extreme simplification is the

so-called beta-plane approximation, where spherical coordinates are replaced by cartesian

coordinates, and the sinusoidal dependence of the Coriolis force on latitude is replaced

by a Iinear dependence. This may be a reasonable approximation when modelling

phenomena over a restricted range of latitude, but in the present work, where the entire

Northern Hemisphere is to be considered, spherical coordinates are used.

The third category of simplification is linearization. The nonlinear nature of the

equations of motion for the atmosphere makes them very difficult to solve, either

analytically or numerically. If one considers the flow field as the sum of a zonal mean

and a perturbation, then assumes that the perturbations are sufficiently small that terms

involving products of perturbations may be neglected, one obtains a system of equations

that are Iinear in the perturbations, and therefore much easier to solve. This form of

simplification has been used in many previous studies, and is found to give qualitatively

good results. However, the assumption that the perturbations are small compared to the

zonal mean flow is not valid for the winter stratosphere, sc it is cIearly of interest to use

a nonlinear model in an effort to simulate better the observed atmospheric circulation.

It is also of interest to investigate why Iinear models give reasonably good resu1ts when

the assumption of small perturbations, on which they are based, is not valid.

Although there are transient phenomena in the stratosphere, occurring on a time

scale of days, in this work we wish to focus on the quasi-stationary waves which persist

over a period of a month or more. This allows us to use the steady-state equations

4
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obtained by averaging the equations of motion over the time period of interest, thereby

eliminating the time-dependence of the equations. In the previous works employing this

technique, the effect of the time-averaged transient fluxes of heat and momentum has

been neglected. It is of interest to determine the importance of these transients in the

forcing of the stationary waves, by retaining these terms in the model, calculating their

value from observed data, and including them as an additional forcing term.

In the present work, as in severa! previous studies, the mean zonal flow

throughout the domain of the model is specified from observations, as are the stationary

waves at the lower boundary, representing the forcing propagating upward from the

troposphere. The model then finds the structure of the stationary waves throughout the

domain. Since the mean zonal flow is specified, the model does not allow for the effect

of the waves on the zonal flow. This is not entirely realistic, and must be regarded as

a Iimiting case of strong forcing of the zonal flow, 50 that the effect of the waves on the

mean flow is negligible. Ideally, one would like to model both the mean flow and the

waves, allowing for wave-mean flow interaction. This would require inclusion in the

mode! of the radiative forcing and mechanical damping of the mean flow. There are

general circulation models of the stratosphere which attempt to simulate completely the

dynamics of the atmosphere, given only the external conditions. These models are vastly

more complex and demand much greater computing resources than the model used in the

present study. The re!atively simple model employed here allows one to isolate the effect

of wave-wave interactions, to attempt to determine their importance.
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The pioneering work in the study of stratospheric stationary waves was that of

Charney and Drazin (1961). Using the quasi-geostrophic equations on a beta-plane and

an idealized mean flow, they showed that disturbances could not propagate upward

through an easterly mean flow, and only the largest scale disturbances could propagate

upward through a westerly mean flow, thus explaining the observed restriction of

planetary waves to the winter hemisphere. This result remains qualitatively valid when

a spherical geometry and a more realistic mean flow are used, although the quantitative

details are modified.

Matsuno (1970) developed a linear quasi-geostrophic steady-state model with

spherical geometry. Linearizing about a realistic zonal basic state and using observed

mean 500 hPa heights al: a forcing at the lower boundary of the model, his model

computed wave solutions very similar to the observed waves for zonal wavenumbers 1

and 2, though there were significant differences between the observed and computed

waves. This ability to reproduce a wave structure essentially similar to that observed,

using lower-boundary forcing, strongly suggests that the stratospheric stationary waves

are driven by disturbances in the troposphere.

Matsuno also showed that the behaviour of the waves is dependent on the

structure of the basic state. ln particular, he showed that a refractive index goveming

the behaviour of the waves could be defined as a function of spatial derivatives of the

basic-state wind field. The structure of the basic-state wind creates a sort of wave guide

which tends to confine the waves to a restricted range in latitude and height.
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Schoeberl and Geller (1977) used a slightly generalized version of Matsuno's

modeI. By varying the basic-state wind field, they showed explicitly that the stationary

wave structure is very sensitive ta the structure of the basic state. This is as one would

expect, given Matsuno's finding that the wave propagation is governed by a refractive

index depending on spatial derivatives of the basic-state wind field. Schoeber1 and Geller

also found that the wave structure is highly dependent on the rate of radiative cooling,

but relatively insensitive ta the vertical profile of the basic-state temperature field.

Lin (1982) used a linear primitive-equations model with spherical geometry,

including both the troposphere and the stratasphere, ta study st1tionary waves. Forcing

by topography and diabatic heating in the troposphere was included explicitly, unlike in

previous models where the forcing was provided by the lower boundary condition. By

experimenting with different mean zonal wind fields, Lin found that the stationary wave

response is very sensitive ta the structure of the mean zonal wind. He also found that

the model could reproduce most of the features of the stationary wave pattern, with

topography being a more important source of forcing than diabatic heating.

Jacqmin and Lindzen (1985) employed an approach similar to that of Lin, but

arrived at quite different conclusions. They found that the stationary wave response was

relatively insensitive to changes in the mean zonal wind. They attributed Lin's result to

insufficient resolution in his numerical mode!. However, even Jacqmin and Lindzen find

that the stratospheric wave response was considerably more sensitive ta changes in the

mean zonal wind than the tropospheric response. Although they were more concerned

with investigating the sensitivity of the wave response than with trying to reproduce the

7
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observed wave structure, Jacqmin and Lindzen's model does give a stratospheric wave

pattern qualitatively similar to that observed.

It is remarkable that the above models are able to reproduce the observed wave

structure so well, even though the models are linear. The amplitude of the waves is not

small compared to the mean zonal wind, so linearization should not be a valid

approximation. However, Derome (1984) showed that if th~ zonal basic state satisfies

certain criteria, then linear solutions of the steady-state equations of motion will also be

solutions of the full nonlinear equations. The observed basic state does approximatdy

satisfy the required criteria, thus explaining why linear solutions are such good

approximations, in spite of the large wave amplitudes. It should be noted that Derome's

result is obtained in the framework of quasi-geostrophic theory, and ignores the effects

of transients and dissipation. This result does not hold in the more general case where

ageostrophic motion, transients, and dissipation are significant.

Early works on nonlinear models of stationary waves include those of Egger

(1976) and Ashe (1979). Bath models determined tropospheric responses at only two

height levels. Egger's model was forced only by topogrnphy at the lower boundary, and

had a simple analytic basic state wind. Transients were neglected. He found that the

inclusion of nonlinear interactions significantly affected the amplitude but not the phase

of the wave response. Ashe's model included forcing by both topography and diabatic

heating, and used a zonal mean state taken from observations Transients were not

included explicitly, but dissipation terms provided a rough parameterization of their

effect. With this model, it was found that the inclusion of nonlinearities could produce

8
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a significant shift in the phase of the response to diabatic heating, but that nonlinearities

were less important for topographically forced waves. In general, inclusion of

nonlinearities produced a more realistic solution, though the linear and nonlinear model

solutions were much more similar to each other than either was to the observed wave

field.

Robinson (1986) employed a quasi-geostrophic beta-plane model with a simple

basic-state wind profile and lower-boundary forcing to study wave-wave interactions in

the stratosphere. The basic state satisfies Derome's non-interaction criteria, so wave­

wave interaction occurs only in the presence of dissipation. Dissipation can lead to

significant nonlinear interactions. Because of the simplified nature of the model, detailed

comparisons with observations or oilier models are not possible.

A more realistic nonlinear atrnospheric model is that of McLandress and Derome

(1990, 1991). This is a steady-state quasi-geostrophic model with spherica1 geometry,

with the basic-state wind field and lower-boundary forcing taken from observations. A

linear version of this model gave wave solutions in qualitative agreement with

observations, but the model's waves have too small amplitudes and too much phase tilt

with height. Inclusion of nonlinear interactions in the model increased the wave

amplitudes and reduced the phase tilt, so the nonlinear results were closer to the observed

wave pattern, but the inclusion of wave-wave interactions had a relatively small effect

on the model results. The waves remained too weak and too tilted in the vertical,

compared to the observed waves. Since the mode1's basic state approximately satisfied

9
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the Derome noninteraction criteria, the small effect of wave-wave interactions is not

surprising.

It will be recalled that this result of Derome (1984) is valid only for steady-state

quasi-geostrophic equations. When ageostrophic motions and transient are included, the

nonlinear interactions may he significant even though the basic state satisfies the quasi­

geostrophic noninteraction criteria. It is therefore of interest to study a nonlincar

primitive-equations model of the stratosphere, to see whether the presence of

ageostrophic motion has a significant effect on wave-wave interactions. It is aiso of

interest to calculate the time means of transient momentum and heat fluxes, as

determined from observations. These can then be included in the model as forcing terms

in addition to the stationary wave forcing at the lower boundary of the model, in order

to determine which mechanisms are significant for the maintenance of the quasi-stationary

waves in the stratosphere.

In this thesis, Chapter 2 describes the data set used in this study, and the observed

behaviour of the January stratosphere as evidenced in that data set. Chapter 3 contains

a description of the model used in this work, with a derivation of the model equations.

In an effort to make this section more readable, sorne of the lengthier steps in the

derivation have been relegated to Appendix A, while the numerical methods used to solve

the model equations are described in Appendix B. Chapter 4 deals with the results of

numerical experiments performed for different years and with different versions of the

model. The results of these experiments are compared to the observed behaviour of the

stratospheric stationary waves. Conclusions and discussion follow in Chapter 5.

10
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CHAPTER2

OBSERVATIONS

(2.1) Introduction

This chapter describes the data set used in this study and the observed behaviour

of the stratosphere as reflected in these data. Section 2.2 describes the data set, which

consists of five years of daily height and temperature fields at nine levels. These data

are used to compute mean zonal winds, as explained in Section 2.3. The zonal mean

state is used as an input in the numerical model used in this work.

The zonal mean state is also important because it influences the propagation of

planetary waves. In linear theory, this control of wave propagation by the zonal mean

circulation can be expressed in terms of an index of refraction. This concept is discussed

briefly in Section 2.4.

The observed stationary waves in the monthly mean geopotential height field have

been computed from the data, and are presented.in Section 2.5. The observed structure

of the waves at 100 hPa is used as a lower boundary condition in the model, and

provides the forcing for the waves throughout the model domain. The observe<i wave

structure also serves as a standard against which the performance of the various versions

of the model is to be measured.

11
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(2.2) Data set

This study uses a stratospheric data set compiled by Hamilton (1987, personal

communication), and used in the previous study by McLandress and Derome (1991). It

consists of daily values of geopotential heights at eight levels, from 100 hPa to 1 hPa,

on a 5° latitude x 10° longitude grid covering the entire globe, for the time period 1982

to 1986. The data set was constructed using 100 hPa height fields taken from the

ECMWF geopotential analysis, and NMC temperature data at 70, 50, 20, 10,5, 2, and

1 hPa, obtained by satellite soundings using infrared radiometry. Height fields at the

different 1evels were constructed by integrating upward from 100 hPa using the

hypsometric equation and the NMC iemperature data.

Data for a few days are missing from this set. The present study is restricted to

the month of January, for which the data set has 31 days of observations for 1982, 29

days of observations for 1983 (January 1 and 10 missing), 31 days of observations for

1984, and 24 days of observations for 1986 (January 1-4, 11, 13, and 23 missing). The

year 1985 has been excluded from the study for reasons discussed below. No attempt

has been made to reconstruct data for the missing days by interpolation or extrapolation.

When we refer to a January monthly mean, this will indicate a mean of the data for the

available days.

Daily values of the 0.4 hPa geopotential height field, taken from NMC analyses,

have been added to the data set described in the previous paragraph. Although these two

data sets are not perfectly consistent, McLandress and Derome (1991) found that mean

12



• zonal winds in the 70 hPa to 1 hPa region ca1culated from the Hamilton data set differed

by only a few percent from those obtained using the NMC data set. Inclusion of these

additional data therefore appears justified, in order ta extend the observations as high as

possible.

(2.3) Mean zonal wind

Monthly mean height fields have been ca1culated from this data set for January

1982-84 and 1986. The mean zonal wind was then ca1culated using the gradient wind

equation

aJIu] + [U]2tanO + a[ip] .0,ao (2.1)

•

where the square brackets represent the zonal average. Other symbols are standard and

are defined in the List of Symbols. It is assumed that there is no mean meridional

circulation, so the mean flow is purely zonal. These ca1culations were performed for

each pressure level in the data set, then cubic spline interpolation was used to project the

wind fields onto an equally-spaced vertical grid in log-pressure coordinates.

Equation (2.1) differs from the geostrophic wind eql1ation by the presence of the

[uf tan 0 term. Severa! previous studies (Eison, 1986; Boville, 1987; Randel, 1987)

have found that use of the geostrophic approximation may lead ta significant errors when

computing stratospheric winds from height fields. At 700 N latitude, inclusion of this

13
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additional term in the gradient wind equation gives values of the mean zonal wind,

computed from the data set used in the present study, which are typically 10-15% smaller

than those computed geostrophically. This is consistent with the differences among

gradient and geostrophic zonal mean winds found by Randel (1987). Rande1 found that,

while gradient winds were a better approximation than geostrophic winds, a slighUy

better approximation was provided by what he termed "balance winds," though the

difference was small in most cases. The latter, however, also yield a non-zero mean

meridional circulation. In the mode1 used for the present study, it is assumed that the

mean flow is purely zonal, with no mean meridional circulation. The gradient wind

equation with the mean meridional circulation set to zero therefore provides an

appropriate level of approximation fcir computing the zonal mean circulation for use in

this mode\.

The stratospheric circulation for the winter of 1984-85 was highly anomalous.

A major sudden warming occurred ear1y in the winter, resulting in a reversai of the zonal

mean winds to an easterly direction in the lQwer stratosphere near the North Pole. The

monthly mean zonal wind field for January 1985 has a zero-wind line at high latitudes.

This produces a near-singularity in the model equations, and causes severe numerical

difficulties. This case has therefore been excluded from the present work, which deals

with January 1982-84 and 1986.

The mean zonal winds for these four months are shown in Figure 2.1. Note that

the vertical coordinate used here and throughout this work is the log-pressure height,

defined by

14
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• %- -Hlogl!..,
p.

(2.2)

•

where p, is a reference pressure of 1000 hPa, and H is the mean scale height, taken to

be 7000 m.

One may note that the qualitative features of the mean zonal circulation are

broadly similar for all years. The winds are westerly throughout the domain of interest.

There is a local maximum of wind velocity near latitude 60-65° N and altitude 36-42 km.

Below this 1evel, the jet axis is approximate1y vertical, but at higher altitudes the axis tilts

equatorward, with the greatest velocities at the highest observed leve1 and near latitude

40-45° N.

Although the qualitative structure of the monthly mean zonal circulation is similar

for all the years studied, the quantitative values of the wind ve10cities show very

significant interannual variability, of over 50 %.

There is also significant day-to-day variability in the zonal mean circulation. This

is reflected in Figure 2.2, which shows the zonal mean wind velocity for each day at

65°N latitude and 32 km height. (As mentioned in Section 2.2 above, data are missing

for sorne days in 1983 and 1986.) The variability is especially large for 1982, when

there were large fluctuations in the zonal mean wind velocity throughout the month, and

for 1983, when the zonal mean circulation was very strong early in the month, but

becarne weak near the end of the month. The variability is less in 1984 and 1986, but

17
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stiJl not negligible. The standard deviation of the zonal mean wind speed at 65 ON and

32 km is 15 m S·1 for 1982 and 1983, 11 m S·1 for 1984, and 6 m S·1 for 1986.

(2.4) Refractive index

The structure of the mean flow contraIs the propagation of waves in the

stratosphere. This behaviour can be quantified by use of the squared refractive index Q;

for zonal wavenumber k, as defined by Matsuno (1970) within the context of a quasi-

geostrophic modeI:

Waves can propagate oilly in regions where C?t is positive, and are evahescent in regions

where this quantity is negative. Figure 2.3 shows QI as computed from the monthly

mean winds for each of the four Januaries studied in this work. Qk becomes strongly

negative at high latitudes, because of the -k?-/cos20 term in Equation (2.2), so waves

vanish at the pole. The refractive index is also observed 10 take on Iow values in the

lower stratosphere around 40oN, above the midlatitude tropospheric jet, so waves do not

propagate upwards at these latitudes. The stationary waves in the stratosphere are thus

largely confined to the region between 50oN and 80oN. The refractive index decreases

with increasing height in the upper stratosphere, as the zonal westerlies increase in

19
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• strength, so even the longest waves are trapped. Wave reflection off this barrier can

produce standing wave patterns, giving amplitude maxima in the interior of the

stratosphere, even if the waves are forced entirely from below.

(2.5) Stationary planetary waves

The amplitudes and phases of the stationary planetary waves of the monthly mean

geopotential height field have been calculated from the observed data for each of the four

Januaries being studied. We can write zonal wave k of the geopotential height as

z-:"

Zk - Aie 2H cos(H + Ip k) ,
(2.3)

•

where À is longitude and la is a reference height, chosen ta correspond to a pressure of

100 hPa. We define the amplitude and phase ta be At and lOb respectively. Note that.
Ak is the amplitude as usually defined, divided by exp«z-2lJ)/2H). The exponential term

is included in our definition of amplitude in order that At be proportional to the wave

kinetic energy density.

Note also that the phase \Ok is not defined as the longitude of the wave crest, a

definition used in sorne works. With our definition, there is a wave crest at longitude

-lOk/k. Thus an increase in phase with height corresponds ta a wave tilting westward with

height.
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Figure 2.4 shows the structure of zonal wavenumbers 1 through 3 as a function

of latitude and height for January 1983. One sees that wave 1 is able to propagate into

the stratosphere, and has an amplitude maximum near 30 km, while waves 2 and 3 are

trapped at lower levels, and have amplitudes which decrease monotonicaIly with height.

Wave 3 is seen to be more strongly trapped than wave 2. Similar behaviour is observed

for the other years studied.

Figure 2.5 shows the sum of the zonal wavenumber 1 - 3 components of the

monthly mean height field at a log-pressure height of 32 km (approximately 10 hPa) for

January, for each of the four years studied. Note that for this figure the wave amplitudes

have not been divided by a factor of exp«z-~/2H). Wave 1 cIearly dominates, though

there is a significant wave 2 component as weIl, as shown by the asymmetry between the

amplitudes of the high and the low. Th~ position of the high varies littIe from year to

Year' being always located near the Bering Strait, while that of the low is much more

variable, being in sorne years as far east as northwestem Russia, and in other YearS as

far west as Davis Strait.

Figure 2.6 shows the structure of wave 1 for each of the four Januaries

considered in this work. One notes that the behaviour of this wave is broadly similar

from year to year, with an amplitude maximum near latitude 65° N and altitude 30 km.

The case of January 1984 is an exception ta this behaviour, with the maximum wave

amplitude for that year being significantly weaker and located at a lower altitude.
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At the lowest level (100 hPa), however, the maximum amplitude of wave 1 is much

greater in 1984 than in the other years studied, being 229 m in 1984, as compared to

150 m in 1982, 164 m in 1983, and 128 m in 1986.

The phase structure of wave 1 is also generally similar from year to year, with

the wave tilting westward with height. The slope is greater at midlatitudes than at Arctic

latitudes. This tilt is more pronounced in 1983 than in 1982 and 1986. Again 1984 is

anomalous, showing a slight eastward tilt with height.

In the horizontal, wave 1 tends to slope eastward with increasing latitude, i.e.

from southwest to northeast. This slope is greatest at midlatitudes and higher altitudes

(above 30 km), and is weaker in the lower stratosphere and nearer the North Pole. Here

too, the behaviour of wave 1 for January 1984 is anomalous. It shows very little

horizontal tilt through most of the region where the amplitude is significant, and there

is a southeast to northwest tilt at midlatitudes in the upper stratosphere, above 37 km.

Figure 2.7 shows the structure of wave 2 for each of the four Januaries

considered in this work. Again, the behaviour of this wave is generally similar from

year to year. The amplitude is a maximum at the lower boundary and at a latitude of

6O-65°N. The maximum amplitude of wave 2 at 100 hPa is 228 m in 1982, 173 m in

1983, 252 m for 1984, and 181 m for 1986. For all the years studied, the amplitude

decreases monotonically with height. In most cases the wave tilts westward with height.

The vertical tilt of wave 2 is very weak for January 1983.

Figure 2.8 shows the sum of the zonal wavenumber 1 - 3 components of the

monthly mean height field at 100 hPa, the lowest level in the data set, for January of

30
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Fig. 2.8 January monthly mean geopotential height field (sum of
zonal waves 1-3), from observations, for 100 hPa surface.
Contour interval 50 m. (a) 1982, (b) 1983, (c) 1984, (d) 1986.
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each of the four years studied. The high over Alaska is a nearly constant feature, with

a similar position and amplitude in ail the years studied. The lows vary somewhat in

position, and vary greatly in amplitude, from year ta year. Unlike the 32-km surface,

whose pattern is dominated by wavenumber 1, this lower surface shows a strong

wavenumber 2 component. These 100 hPa height fields are used as the lower boundary

condition in the model described in the next chapter, and act as the principal forcing

mechanism for the waves computed by this model.
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CHAPTER3

DESCRIPI'ION OF MODEL

(3.1) Introduction

This chapter commences with a derivation of the equations to be used in this

model, beginning from the primitive equations. Because the expressions for sorne of thc

coefficients which arise in this derivation are very long, they have becn placed in

Appendix A. The numeriC"..1 method of solution of the model equations is describcd in

Appendix B. The choice of the model domain and the conditions imposed at the

boundaries of that domain are discussed in Section 3.3.

The model requires that the zonal mean state be specified. The zonal mean wind

is computed from observed data, as discussed. in Chapter 2 above. A number of other

parameters, such as the buoyancy frequency and the Newtonian cooling and Rayleigh

friction coefficients, must also be specified. The choice of these parameters is discusscd

in Section 3.4.

For certain zonal mean states, the model equations reduce to the Laplace tidal

equations. Since the solution to these equations is known, one can perform a partial test

of the mode!. This testing is described in Section 3.5.

As part of this study, forcing fields due to the monthly mean of the transient

momentum and heat fluxes were computed from observations. The derivation in Section

3.2 gives equations for this forcing. However, numerical difficulties arose when thesc
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equations were used to compute the forcing due ta transients. A quasi-geostrophic

approximation has therefore been used to simplify the computation of these forcing fields.

This question is discussed in Section 3.6.

In another portion of this study, solutions are found ta the model equations for

the case where nonlinear interactions between the stationary waves are included.

Inclusion of these nonlinearities renders the solution of the model equations substantially

more difficult. An iterative technique, described in Section 3.7, has been employed to

solve the system of nonlinear equations.

The calculations required for this iterative procedure generate spurious small-scale

structure in the geopotential field calculated by the mode!. If these structures are not

removed, they will cause the model solution ta diverge. In order to prevent this,

smoothing has been applied to the model fields at each iteration, as explained in Section

3.8.

(3.2) Derivation of model equations

The model is based upon the primitive equations in log-pressure coordinates on

the sphere:

•

Du _ [/+ utanll) v+ q,~ -X,
Dt· a a cos Il
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• Dv +[/+ utanO) u+cJ?s _ Y,
Dt a a

DT KTw J-+----,
Dt H cp

[ux + (v cosO)s] + (po w), _ 0
--a-c-o-s'O---'- Po '

(3.2)

(3.3)

(3.4)

(3.5)

•

(e.g. Andrews et al., 1987). These are, respectively, the zonal momentum, meridional

momentum, hydrostatic, thermodynamic, and continuity equations. Most symbols have

their conventional meanings and are defined in the list of symbols. Subscripts À, 0, and

z denote partial derivatives. X, Y, and J are, respectively, the zonal and meridional

components of the friction force and the diabatic heating rate, whose forms are as yet

unspecified.

Eliminating Tbetween (3.3) and (3.4), expanding the material derivative DlOt,

and performing some algebraic manipulation gives the system of equations:
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• au u au v a 9 "au f" ép~a- + + (u cos ) + W - - V + -- - aK,
al cos9 aÀ cos9 a9 az cos9

av u av av "av 2 tan 9 f" va_+ +V_+W -+u + u+ B-a.,
al cos9 aÀ a9 az

aép, u aép, aép, ".,., a"Ja- + +v- +w 1V---,

al cos9 aÀ a9 H

1 au 1 a aw" w"___ + (v cos 9) + __ - - -0,
cos9 aÀ cos 9 a9 az H

where w" = aw and! = af

(3.6)

(3.7)

(3.8)

(3.9)

We wrile the variables u, v, w", and ép as the sum of lime-mean and transient

parts (e.g. u(À,9,z,t) - Ü(À,9,z) + u' (À,9,z,t) ), then take the lime mean of (3.6)-(3.9).

This resuits in the following system of equalions:

•

-
u au v iJ (- 9) -" iJu f" - ép~ - ( )--- +--- U cos + W - - V + -- - aK + Tr ,

cos9aÀ cos9iJ9 iJz cos9 "
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• u éiv - éiv - éiv -2 • - - -
---+v-+w'-+u trmO+f u+cJ1e-aY+(Tr) ,
COS 0 éiÀ. éiO éiz •

u éii: _éii: -."i71 aKJ
---- + v- + W IY- - - + (Tr)T'
cos0 éiÀ. éiO H

1 éiu 1 éi - éJw' w'
--- + ---(v cos 0) + -- - - - 0,
cosO éiÀ. cosO éiO éiz H

(3.11)

(3.12)

(3.13)

where the transient terms are inc1uded in (Ir)., (Ir).. and (Ir)n which are detailed in

Appendix A.

We now separate the time means into zonal mean and stationary wave parts. Wc

also neglect the mean meridional circulation, so

•

u (À.,O,z) - [u](O,z) + û(}..,O,z)v (À.,O,z) - ll(}..,O,z)
w·(À.,O,z)- w(À.,O,z)
i (}..,O,z) - [cJ1](O,z) + 4>(À.,O,z)

Then (3.10)-(3.13) give, after subtraction of the zonal mean part:
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• w aû + P' 1) + a[u] w+ _1_ a4> _-avû + (St) + (Tr) ,
a>.. az coso aÀ ••

av a4>
~. û+ w a>.. + ao - -avl) + (St). + (Tr).,

a4> •
Z' v+ [N2]w + w aÀz - -aacl>z + (St)r+ (Tr)'T'

1 aû 1 a aw w____ + (v cos8) + _ - - - 0,
cos8 a>.. coso ao az H

(3.15)

(3.16)

(3.17)

(3.18)

•

where the nonlinear interactions between the stationary wave terms are found in (St).,

(St)" and (St)r. which are detailed in Appendix A. The coefficients w, p', ~', and Z are

functions of the zonal mean state, and are also detailed in Appendix A. The friction

(X, Y) and the diabatic heating J are assumed to take the form of Rayleigh friction with

coefficient v and Newtonian cooling with coefficient a.

Note that in deriving (3.16) from (3.11) we have used the fact that for steady,

purely zonal flow with no friction or diabatic heating, we have

41



•
Now we let

r [u] + [U]2 lanlJ + [rl>.J, - O• (3.19)

Û(À,IJ,Z) a,.(1J,z)

~>..,IJ,z) Al i'V,.(IJ,z)
exp [im>..+ ~;), (3.20)-I:W(À,IJ,z) m--N i'W,.(IJ,z)

""0
CÎ>(À,IJ,z) ~ ,.(IJ,z)

and note that since the left band side of (3.20) is real, we bave a.,. = a,.·, P,,. = -P,.·,

'W,,. = _'W,.o, ~.,. = ~,.o, wbere the asterisk denotes the complex conjugale.

Substituting (3.20) in (3.15)-(3.18), multiplying the resulting equations by

exp ( -ikÀ-(z-Zo)12H) , and integrating around a latitude circle, our system of

equations takes the form

(3.21)
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k l a [a 1)--at+---(~tCOsO)+ --- Wt-O,
cosO cosO ao az 2H

(3.22)

(3.23)

(3.24)

•

where à t = kUJ-iav, r t = kUJ-iaOl, and where pi, Qi, and Ri (j = Sor 1), detailed in

Appendix A, include the nonlinear interactions among the stationary waves and among

the transients, respectively.

We can solve (3.21)-(3.23) to give at , ~b and Wk as functions of iPb giving

kik S T
---Pk-Pk

-àk[NZ] Z" a[u] -(3" [NZ] A a[u] cos0

'[J
az kaz

aik S T (3.25)
-~" [NZ] At[NZ]

--Qk-Qk-Z" ao ,

~"Z" -Z"à -e
[aik i k ] S T

k
r k -+- -Rk -Rk

az 2H

where e and T are functions of the zonal mean state, detailed in Appendix A.

Finally, we substitute (3.25) into (3.24) to obtain the single equation
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• (3.26)

•

where the coefficients A-G are detailed in Appendix A.

We wish to solve (3.26) to detennine the structure of the stationary planetary

waves i t • In principle, one needs to do so for all values of the zonal wavenumber k in

order to completely detennine the state of the atmosphere. In practice, it is found that

small-scale waves are trapped in the troposphere and cannot propagate into the

stratosphere. We therefore need only retain the largest scale waves in our mode\. We

choose to retain zonal wavenumbers 1 through 3. This gives us three equations of the

fonn of (3.26) to be solved.

Note that OS is a nonlinear function of ~b and its presence in (3.26) gives a

system of three coupled nonlinear differential equations to be solved. Setting OS = 0

reduces the system to one of three uncoupled linear differential equations.

(3.3) Model domain and boundary conditions

The model equations are solved on a hemispheric domain extending from the

equator to the North Pole. A global domain would seem the most natural choice, but as

noted in the introduction, the easterly zonal mean circulation in the summer stratosphere

prevents propagation of planetary waves into this region, so the flow is almost purely

zonal and is not of interest for the present study. The domain can therefore be restricted

to the winter hemisphere.
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• At the North Pole, we impose the boundary condition

(3.27)

•

while the boundary condition at the equator is that the wave be symmetric about the

equator. The boundary condition at the pole is a consequence of the geometry of the

model (Matsuno, 1970). At the equa1or, the physical justification for this boundary

condition is less obvious. However, as will be discussed in more detail below, the model

is not expected to produce realistic results for tropical latitudes, due to the presence of

a criticallayer on which the mean zonal wind vanishes. These latitudes can be taken to

be a computational region, in which a simple boundary condition may be chosen,

motivated by convenience.

The vertical domain of the model is taken 10 extend from 16 to 80 km. At the

lower boundary, the observed stationary wave structure is imposed as a boundary

condition. This constitutes the principal forcing mechanism in the model, and represents

mainly the effect of waves generated at the earth's surface by topography and by land-sea

thermal contrast, which propagate upward in10 the stratosphere.

The location of the upper boundary and the choice of an upper boundary condition

are somewhat arbitrary, since the real atmosphere does not have an upper boundary. It

is observed that the westerly zonal flow, whose strength increases with height, tends to

trap the wave energy in the stra10sphere and prevent propagation in the mesosphere.

This can be reproduced in the model by imposing the condition that the waves vanish at

the upper boundary, and including a "sponge layer" with large dissipation in the upper
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•

portion of the model. This sponge layer is a computational region, where the model is

not expected to generate realistic results.

In order to test the effect of this upper boundary condition, the model has been

run with the upper boundary raised from 80 te 100 km. The solution obtained with the

upper boundary at 100 km is found te differ significantly from that obtained with the

upper boundary at 80 km only at altitudes above 65 km. Below this height, in the region

of interest for this study, the two models give virtually identica\ results. This suggests

that the choice of an upper boundary at 80 km is adequate for the purposes of this study.

(3.4) Zonal mean state

The coefficients A-F in (3.26) are functions of the mean zonal state only. [u] is

ca\culated using (3.19). Beginning with a data set, described in Chapter 2, made up of

daily values of height fields, we ca\culate the zonal and time mean geopotential [clJ]. We

replace the derivative in (3.19) by a centred finite difference, and compute [u] on each

pressure surface and at each gridpoint in latitude for the observed data set. Bicubic

spline interpolation is then used te project the mean zonal wind field onto the latitude­

height grid te be used in the model. Given the mean zonal wind field [u], the derived

quantities CAl, p', r, and Z' can be computed using (A.1)-(A.lO), where again derivatives

have been replaced by centred fmite differences.
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• Previous investigatars (e.g Schoeberl and Geller, 1977) have found that the

stationary wave structure is relatively insensitive ta the value of the buoyancy frequency.

We therefore talœ (Nl] ta have a constant value of 4 x 1()4 S-I.

The frictional force in the horizontal momentum equations and the diabatic term

in the thermodynamic equation are assumed ta take the form of Rayleigh friction and

Newtonian cooling, respectively. The Newtonian cooling coefficient is taken from

Hollon and Mass (1976). It is a function of height only, and varies from about

(20 daysyl at the bottom of the model domain ta (4.6 daYS)'1 at the top. The Newtonian

cooling coefficient, in (seconds)'I, is given by

ex - (l.S+tanh(../H-S»xl0-6 , (3.28)

where .. is the log-pressure height and H is the scale height, taken to have a constant

value of 7000 m. Below 50 km, this proftle is very similar to that of Dickinson (1973).

At higher altitudes, the Newtonian cooling rate remains large, and serves to absorb wave

energy.

Below 50 km, the Rayleigh friction coefficient, in (seconds)-I, is given by the

equation

v - Sxl0-7 {200 -199tanh2 (4e)}, (3.29)

•
where 6 is the latitude in radians. Above 50 km, this coefficient is increased by the

additional term
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• (3.30)

•

where z is the height in kîlometres.

Equation (3.29) gives a value of (23 daYS)"1 for the Rayleigh friction coefficient

at the North Pole and below 50 km. Above 50 km, the inclusion of the additional term

(3.30) causes the Rayleigh friction coefficient to increase in valu!', to a maximum of (2

days)"1 at the upper limit of the mode!. This serves as a sponge layer to prevent

reflection from the upper boundary.

Without thermal and frictional damping, the model equation (3.26) would be

singular at points where the mean zonal wind vanishes. Inclusion of damping serves to

remove this singularity, but with weak damping the equation is nearly singular in this

criticallayer region, and the model does not perform weil in reproducing the observed

stationary wave structure. It is found ta be necessary ta introduce strong Rayleigh

friction damping at low latitudes, where the mean zonal wind is weak, in order to obtain

realistic results from the mode!. This is the justification for the latitudinal dependence

of the Rayleigh friction, as given in (3.29) above. The choice of the functional

dependence of the damping on latitude and the values of the coefficients in the (3.28) are

somewhat arbitrary. It has been found by trial and error that the nonlinear model does

not converge ta a solution when smaller values of the Rayleigh friction coefficient are

used at low latitudes. Because the damping is unrealistically large at low latitudes, we

do not expect the model to produce realistic results south of 30oN.
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(3.5) Test of model using Hough functions

In the case where there is no dissipation (01 = JI = 0), a constant buoyancy

frequency [NI], a mean zonal state in solid-body rotation (w = constant), and no

nonlinear interactions (OS = Gr = 0), the model equation (3.26) reduces to the Laplace

tidal equation. In this case, the solutions are separable inta horizontal and vertical parts.

The horizontal structure equation has an infinite number of eigensolutions known as

Hough functions, described in detail by Longuet-Higgins (1968). The vertical structure

equation has a solution which is either a sinusoidal function of height or an exponential

decaying with increasing height. The functional forro of the vertical solution and its

wavelength (for a sinusoidal solution) or rate of decay (for an exponential solution)

depend on the eigenvalue of the corresponding horizontal solution.

To test the model, it has been run with a mean zonal state in solid-body rotation,

no dissipation, and no nonlinear interactions. The wave structure at the lower boundary

is specified to be a Hough function, and the model run ta determine the wave structure

in the interior of the model domain. This procedure has been repeated using severa!

different values of the rotation rate w and for different Hough modes. AIl of the modes

tested represented vertically trapped waves.

The Laplace tidal equation is singular at a latitude 8 given by
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• 6 . -1 tc.l-sm
2(aC+c.l) ,

(3.31)

•

where k is the zonal wavenumber, Col the zonal wind velocity at the equator for the

atmosphere in solid-body rotation, and () the angular velocity of Barth. For the low

zonal wavenumbers used in this study, and for values of Col which approximate observed

mean zonal winds, the singular latitude is found near the equaIDr. In order to perform

these tests, the model was modified slightly ta exclude the singular latitude from the

domain.

In all cases, the numerical solution is found ID agree very weU with the analytic

solution, i. e. the horizontal structure of the model solution is, throughout the model

domain, that of the Hough function specified as the lower boundary condition, with the

amplitude of the waves decaying exponentially with height at the rate predicted by the

analytic solution. Near the top levels of the model, the rate of decay of the amplitude

is slightly larger than that predicted analytically, since the upper boundary condition

forces the solution to go to zero at a finite height, instead of extending ta infinity. The

ability of the model to reproduce the analytic result for this special case provides a partial

test that model derivation and computer coding have been performed correctly.
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(3.6) Computation of transient forcing fields

GT is to be computed from observations. Our data set consists only of

geopotential height fields, while or depends on the wind fields, through (A.l)-(A.3). An

attempt was made to compute or using the model equations given in the appendix. In

(A.I)-(A.3), the terms involving the vertical velocity were ignored. Daily values of the

transient horizontal winds u' and Vi were computed from the height fields , assuming

geostrophy. The transient forcing field orwas then computed using (A.l)-(A.3), (A. 14)­

(A. 16), (A.26)-(A.28), and (A.25). This method did not yield satisfac10ry results, with

or taking on very large values ncar the North Pole.

Note that sorne terms in (A.25) contain a factor of cos 8 in the denominator. G

will remain finite at the pole only if k X - Ysin 8 goes 10 zero at least as fast as cos 8.

It cao be shown analytically that this condition is indeed satisfied. However, when GT

is calculated numerically, this condition does not hold, either due to errors in the data

set or to inaccuracies due 10 the finite resolution of the grid used for the calculations.

This results in the computed values of or blowing up ncar the pole.

In order 10 determine whether this problem resulted from insufficient accuracy of

the geostrophic winds, the calculations were repeated using "balance winds, " as defined

by Randel (1987). This failed 10 resolve the difficulty.

We have therefore resorted 10 a quasi-geostrophic formulation of the forcing field

due to transients, rather than one derived from the primitive equations. Tt cao be shown

that for quasi-geostrophic flow, the forcing due 10 transients in (3.26) takes the form
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•
where V· is the horizontal divergence operator on the unit sphere, V.' is the transient

geostrophic wind, and .1.' the transient geostrophic vorticity, computed from

(3.33)

With this formulation, the computed values of (jT remain well-behaved near the pole.

(3.7) Iterative solution technique for nonIinear model

The values of GT are computed from observations. In contrast, the values of G',

the term representing the nonlinear interactions among the stationary waves, are a

function of the model solutions <Pk' An iterative method is used to solve the model

equation (3.26). Let cpl be the solution found on thejth iteration. The model equation

(3.26) may be written in the fonn

(3.34)
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•
where L(flJ represents the left-hand side of (3.26) and is a linear function of flk , GS is

a nonlinear function of flk for the different values of the wavenumber k, while GT is

independent of the solution cPk• For the fust iteration, we set cP to zero and solve

For subsequent iterations we solve

L(~J) _ Gs(~-1 ~-I)+GT
.t ,"'II •

(3.35)

(3.36)

As a measure of the convergence of this method to a solution of (3.26), we may

compute the residual

L(~J)_Gs(~J ~J)_GT.t ln' Il •
(3.37)

This will tend ta zero if the iterative method is converging to a solution. Using (3.36),

the residual (3.37) is equivalent to

(3.38)

•

In arder ta oblain a single number ta serve as a measure of convergence, we transform

ôG/ from Fourier space ta real space in longitude, via
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ô Gp.,6,z) - 2L Re (ô G:(6,z)e 'H ).
1-1

We similarly transform the nonlinear forcing field G/ via

3

G(À.,6,z) - 2L Re {G:(6,z)eIH }.
1-1

(3.39)

(3.40)

We then integrate the square of the residual over the domain of validity of the model,

taken ta extend from 16 ta 50 km and from 30 0 N ta 90o N, and normalize by the square

of the nonlinear forcing field integrated over the same domain, i.e. we compute

J,50f.'l1f· (ÔG(À.,6,z) )2cos6di.d6ck
l1 G _ 16 "/6 -" .

J,50f."l1f" (G(À.,6,z) )2cos6dld6ck
16 "/6 -"

(3.41)

•

We shall consider the iteration process ta have converged ta a solution when the value

of l1G falls below 10-3
•

For severa! cases, we have continued the iterative process after this criterion has

been met, in an effort ta determine whether this criterion corresponds weil ta an intuitive

notion of convergence. In one case, for example, the criterion of l1G < 10-3 was met

after 14 'iterations. Calculations were continued for a total of 40 iterntions. Il was found

that t:.G continued ta decrease monotonically at each iteration, that the values of ~k at a

given gridpoint varied by less than 0.3% from the l4th ta the 40th iteration, and that
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graphs of.fit as a function of latitude and height show no variation upon visual inspection

for all of the iterations from 14 to 40. Similar results were obtained for other cases. It

therefore appears that this criterion for convergence is a reasonable one.

In sorne cases, this criterion is never attained. AG is found to decrease for a

finite number of iterations, then to increase with further iterations until the model

eventually blows up. In these cases, we cannot claim to have found an exact nonlinear

solution to the model equation (3.26). In such cases, however, the residuals of (3.26),

as defined by (3.37), are typically significantly smaller for the solution.fil that minimizes

ÂG than they are for the solution .fi/ of the linear system. It is therefore of interest to

examine that solution which minimizes AG, as a best approximation to the exact solution

to the nonlinear equation (3.26).

It is found (Robinson, 1986) th.at the system is more likely to converge to a

solution if the value of G' to be used for the fj+ l)-th iteration is computed, not from the

solution .fil of the jth iteration, but from a linear combination

(3.42)

•

of solutions from the last two iterations. By trial and error, a value of 71 = 0.5 has been

found to yield satisfactory results in most cases. (Note that in computing the residual

ôG/, as defined in (3.38), in order to test for convergence, we use the solution obtained

at the last iteration, not a linear combination of the last two solutions).

A series of experiments has shown that, in the cases where the nonlinear system

converges to a solution, the solution is not strongly dependent on 71. If the value of 71
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• chosen is too small, the system may not converge. If 7/ is greater than sorne critical

value, which may vary from one case ta another, the system converges to a solution

which is virtually independent of the value of 7/, though the rate of convergence will

depend on 7/.

(3.8) Smoothing of model fields

Multiplication of Iwo fields in a gridpoint model will lead to the generation of

spurious small-scale structure. In order ta filter out such small scales, smoothing is

performed after each multiplication. The smoothed field h at gridpoint j is related to the

unsmoothed field/j by

(3.43)

•

Two such smoothings are performed in latitude and two in height after each

multiplication of fields.

In order to filter out spurious small-scale structure in the model solutions, the

fields eiik are projected onta associated Legendre functions P/k after each iteration. We

let
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~ k(6,z) - E ~ l(z)P,k(sin6) ,
I-k

(3.44)

•

and truncate the resulting expansion at L = 16. GS is filtered by a similar procedure at

each iteration. Since as is a more highly differentiated field than <,[il' it will have more

small-scale structure. Smoothing of OS is thus perfonned with truncation at L = 18.
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CHAPTER4

RESULTS OF MODEL SIMULATIONS

(4.1) Introduction

Three series of experiments have been performed using the numerical model

described in Chapter 3. In the first series, both the nonlinear interaction among

stationary waves, GS
, and the monthly mean of the nonlinear interaction among

transients, GT
, have been set to zero in the model equation (3.26). We refer to this as

the linear model without transients. Because the model equation is linear in 4'" the

existence and uniqueness of a solution are assured, and computation of this solution is

straightforward. The results of these experiments are presented in Section 4.2.

In the second series, if is computed from the observed data set and included as

a forcing term in the model, while as is set to zero. We refer to this as the linear model

with transients. Note that the term if represents the monthly mean of the nonlinear

interaction among transients. Though we refer to this as a "model with transients," the

model remains time-independent. The transients only enter the model through (f, which

is taken from observations and input into the model, not computed by the mode!. Note

also that, although GT represents a nonlinear interaction, the model equation (3.26) is

linear iri 4', when as is set to zero. It is for this reason that we refer to this case as a

linear mode1. As in the previous series of experiments, the linearity of the model

equation ensures that there exists a unique solution, which can be computed in a
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straightforward manner. The results of this series of experiments are presented in

Section 4.3.

In the third series, c;r is set to zero, while as is computed iteratively, as described

in Chapter 3. We caU this the nonlinear model without transients. In this case, one must

solve a system of coupled nonlinear differential equations. This is a much more difficult

computational problem than that of the previous sections. The results of these

experiments are presented in Section 4.4.

One would like to perform a fourth series of experiments, with a nonlinear model

with transients. Gr would be computed from the observed data set, and Cf computed

iteratively. Such experiments have been attempted, but it was found to be difficult to

obtain convergence to a solution of the system of nonlinear equations.

In each series of experiments, calculations have been performed for the January

monthly means of each of four years, 1982-84 and 1986. For a given year, the mean

zonal state and the lower boundary forcing are unchanged from one series of experiments

to another. Recall that the mean zonal wind and the lower boundary forcing (i.e. the

stationary waves at 100 hPa) are taken from observations, as described in Chapter 2.

(4.2) Linear model without transients

Figure 4.1 shows the amplitude and phase of each of the first three zonal

wavenumbers as a function of latitude and height, computed by the linear model without

transients, for January 1983. Note that the amplitudes are scaled by a factor
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exp(-(z-z.o)/2H), so that an increase in amplitude corresponds lo an" mcrease in wave

kinetic energy. We note that wavenumber 1 bas an amplitude maximum in the interior

of the model domain, while wavenumbers 2 and 3 have amplitudes which decrease

monotonically with height, with wavenumber 3 decaying more rapidly than wavenumber

2. This is in accord with theory, which predicts that only the largest scale waves will

be able to propagate into the stralosphere.

Comparing the observed stationary wave structure in Figure 2.4 and that

computed by the linear model without transients in Figure 4.1, we note that the model

reproduces the observed qualitative behaviour of the waves quite well for January 1983.

For wave 1, the model correctly reproduces the position of the amplitude maximum near

65°N and 30 km. The maximum amplitude in the mode1 is, however, only 73% of that

which is observed. As noted above, waves 2 and 3 decay monolonically with height.

The rate of decay is reasonably weil simulated by the model, though the maximum

amplitude of wave 2 at any given height tends to be somewhat farther south in the model.
than in the observations.

The model computes a zonal wave 3 which decays rapidly with height, in good

agreement with the observed behaviour of this wave. Wave 3 has been retained

throughout this study, in order lo investigate the possibility that it could take on large

values due lo forcing by transients or due to nonlinear interactions among waves 1 and

2. It is found, however, that for ail the years studied and with aIl versions of the model,

wave 3 remains strongly trapped at lower levels and makes only a minor contribution to

62



•

•

the monthly mean stratospheric circulation. Wave 3 will therefore not he discussed

further in this work.

Figure 4.2 shows the height field at 32 km (approximately 10 hPa) due to the sum

of zonal waves 1-3, as computed by the linear model without transients, for each of the

four Januaries in this study. This is to he compared with the observed monthly mean

fields, as shown in Figure 2.5. For 1982, the position of the high over eastern Siberia

is well-reproduced by the model, but the calculated amplitude is less than half that

observed in rea1ity. The low near Hudson Bay is simulated well. The low over

northwestern Russia is positioned correctly, but is far too weak.

For 1983, the performance of the linear model without transients is considerably

better than for the previous year. The high over Alaska is well-positioned, and its

computed amplitude is 83% of that observed. The position of the low is fairly well

reproduced, though the minimum is more elongated in longitude in the model than in

rea1ity. Again, the amplitude given by the model is too weak.

For 1984, the model performs very poorly. From Figure 2.5(c), one sees that

the observed 32 km wave height field is dominated by zonal wavenumber 1, but the

model output, as shown in Figure 4.2(c), displays a strong wavenumber 2 component.

The model amplitudes are much wealœr than those observed.

For 1986, the model is reasonably successp.:1'at reproducing the observed

positions of both the high and the low, but the amplitudes are again much too weak, with

the computed high being only 57% of that observed•
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Figure 4.3 shows the structure of the January mean zonal wave 1 as calculated

by the linear model without transients for each of the four years studied. This is to be

compared to the observed structure of this wave, as shown in Figure 2.6. Recall that the

amplitudes have been divided by a factor of exp«z-7Q}/2H), as discussed in Section 2.5.

We note that there is a very large interannual variability in the behaviour of wave

1 as computed by the mode\. For 1982 and 1984, the model generates a wave 1 which

decays monotonically with height, while for 1983 and 1986 the amplitude of wave 1 is

found to attain a maximum in the interior of the model domain. This contrasts with the

observed behaviour of wave 1, which displays an amplitude maximum in the interior of

the domain for aU of the years studied. For 1983 and 1986, the model generates an

amplitude maximum at the correct latitude and height, but in aU four years, the model

amplitudes are much less than those which are observed in the real atmosphere.

The linear model wilhou!. transients reproduces the phase structure of wave 1

fairly weIl, in a qualitative sense. The wayes tilt westward with increasing height, and

eastward with increasing latitude (i.e. there is a southwest-northeast tilt in the horizontal).

Quantitatively, there is, at the latitude of maximum amplitude, somewhat less phase tilt

with height in the model output than in observations for 1983. For the other three years,

however, the model generates a wave 1 with substantially more phase tilt with height

than is observed in nature, at the latitude of maximum amplitude.

Figure 4.4 shows the structure of the January mean zonal wave 2 as calculated

by the linear model without transients for each of the four years studied. This is to be

compared to the observed structure of this wave, as shown in Figure 2.7. In all cases,
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the model correctly reproduces the vertical trapping of this wave. The model's wave 2

tends ta decay in amplitude with height somewhat more rapidly than is observed in

nature. The model also places the maximum amplitude of wave 2 slightly too far south,

for any given height. The model' s wave 2 tilts westward with increasing height and with

decreasing latitude. This is in general agreement with the obs.."'IVed behaviour of wave

2, though the model wave tends ta display more tilt in both height and latitude than that

of the real atmosphere. Note that the model's performance in simulating wave 2 is not

significantly worse for 1984 than for other years, in sharp contrast with its performance

in simulating wave 1.

In summary, the linear model without forcing by the monthly mean of the

transient momentum and heat flux divergences is fairly successful at reproducing the

gross features of the stationary planetary waves in the stratasphere. The positions of the

highs and lows are reproduced reasonably weil. However, the wave amplitudes

calculated by the model are in ail cases tao weak:, and in three of the four years there is

too much phase tilt with height for wave 1, which makes the largest contribution to the

wave structure. For two of the four years, the model computes a wave 1 whose

amplitude decreases monotonically with height, in disagreement with observations.

(4.3) Linear model with transients

Figure 4.5 shows the height field at 32 km (approximately 10 hPa) due ta the sum

of zonal waves 1-3, as computed by the linear model with transients, for each of the four
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Januaries in this study. Comparing these with the output of the linear model without

transients (Figure 4.2) and with observations (Figure 2.5), we see that inclusi0n of

forcing by the monthly mean of the transients bas a large effect on the model results for

1982 and 1986, but a much smaller effect for 1983 and 1984, and that the inclusion of

forcing by transients tends to bring the mode! output into closer agreement with

observations.

For 1982, the high over eastem Siberia is well-positioned in both versions of the

model, but inclusion of forcing by transients increases its amplitude, giving better

agreement with observations. The structure of the low is less well-reproduced for this

year. The computed position of the low near Hudson Bay is closer to the observed

location when transients are included, but its amplitude is toc large. This model does

not give another low centre near northwestem Russia, unlike both the observed

atmosphere and the linear model without transients.

For 1983, inclusion of transients produces fewer changes in the 32 km map. The

amplitude of both the high and the low are increased somewhat, bringing them into better

agreement with observations. The high remains well-positioned. The low is less

elongated than in the model without transients, giving better agreement with observations,

but it is now positioned toc far to the east.

For 1984, the model performs poorly both with and without transients. Inclusion

of transients has little effect. Amplitudes at 32 km are reduced slightly, and the positions

of the extrema are largely unchanged.
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For 1986, inclusion of transients produces a large increase in the amplitude of the

high over Alaska, giving better agreement with observations. The structure of the low

is less well-reproduced, however. Instead of a single low over the north Atlantic, as

seen in both the observations and the output of the linear model without transients, the

model with transients gives two distinct lows.

Figure 4.6 shows the structure of the ranuary mean zonal wave 1 as calculated

by the linear model with transients for each of the four years studied. Comparing these

with the output of the linear model without transients (Figure 4.3), we see that inclusion

of forcing by the monthly mean of the transients has a large effect on the model results

for 1982 and 1986, but a much smaller effect for 1983 and 1984.

For ranuary 1982, the linear mode1 without transients computes a wave 1 that is

much weaker than that observed, and which decays with height instead of having a

maximum in the interior of the model domain. Inclusion of transients gives a substantial

increase in the amplitude of the waves. The model with transients gives an amplitude

maximum in the interior of the model domain, at a slightly higher altitude and more

southerly latitude than the observed maximum. The model with transients, like that

without transients, produces considerably more phase tilt with height at the latitude of

11l~.:dmum amplitude than was observed for ranuary 1982.

For ranuary 1983, inclusion of transients bas a relatively small effect on the

structure of wave l, as compared ta the model without transients. The amplitude of this

wave is somewhat greater in the mode! with transients, though it remains weaker than

that which is observed in nature. The latitude and height of the amplitude maximum is
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weU reproduced in both models. Bath models exhibit Jess phase tilt with height \han is

observed, with the model with transients performing slightly worse in this respect than

that without transients.

For January 1984, the linear models, bath with and without transients, compute

a stationary wave 1 whose amplitude decreases monotonical1y with height. The wave

decays slightly more rapidly with height in the model with transients than in that without

transients. This behaviour is not in agreement with that observed in nature, where there

is an amplitude maximum at an altitude of 26 km. The linear models with and without

transients also compute very similar phase structures for wave 1, neither of which is in

good agreement with the observed phase structure.

For January 1986, inclusion' of forcing by transients produces a very large

increase in the amplitude of wave 1 computed by the linear model, compared to that

computed by the model without transients. The model withoi:!t transients generates a

maximum amplitude which is only 46%of that observed, while the model with transients

gives a maximum amplitude 81 %of that observed in the real atmosphere. The position

of the amplitude maximum is at the correct altitude but slightly tao far south in the model

without transients, and at the correct latitude but slightly tao 10\\' in altitude in the model

with transients. Inclusion of transients alse decreases the phase tilt with height, bringing

the model results into better accord with the observations.

The linear model with transients is better able 10 reproduce the observed

behaviour of stationary wave 1 than the linear model without transients for January 1982,

1983, and 1986. The improvement brought about by the inclusion of transients is large

78



•

•

for 1982 and 1986, and smaller for 1983. Neither the linear mode1 without transients

not that with transients is able to reproduce weil the observed behaviour of wave 1 for

January 1984.

Figure 4.7 shows the amplitudes of the forcing fields G1T due ta transients as

computed from data for each January in this study and used as mode1 input in Equation

(3.26). The forcing due ta transients is significantly weaker for 1984 than for the other

years studied. (The wave 2 forcing due to transients, G/, (not shown) is also

significantly weaker for 1984 than for the other years studied.) Thus it is not surprising

that the mode1 solution is 1ess affected by the inclusion of transients for this year than for

other years. There is, however, not a simple linear relationship between the magnitude

of the forcing by transients and its effect on the mode1 solution, since the forcing due to

transients in 1983 is comparable to that in 1982 and 1986, but the change in the mode1

response is 1ess in 1983 than in the other years.

Figure 4.8 shows the structure of the January mean zonal wave 2 as calculated

by the Iinear model with transients for each of the four years studied. Comparing these

with the output of the Iinear mode1 without transients (Figure 4.4), we see that inclusion

of forcing by transients has considerab1y less effect on wave 2 than on wave 1. Wave 2

remains trapped in al1 cases (with the exception of a local maximum in the interior of the

model domain for 1982). Inclusion of transients increases the rate of decay of amplitude

with height in two cases, 1982 and 1984, and decreases this rate of decay in the other

two cases.
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In summary, inclusion of forcing by the monthly mean of transient flux

divergences results in generally better performance of the model, as compared to the

model without transients. The model without transients computes waves which are much

weaker than those observed in the real atmosphere; inclusion of transients gives

significantly larger wave amplitudes, though the model's waves remain somewhat weaker

than those observed. The improved performance of the mode! is due in large part to the

greater amplitudes of wave 1, and is most pronounced for 1982 and 1986, and more

modest for 1983. For 1984, the model perfonns poorly whether or not forcing by

transients is included.

(4.4) Nonlinear model with()ut traDsients

As noted in Section 4.1 above, solution of the coupled nonlinear differential

equations of this version of the model is a more difficult computational problem than

solution of the linear equations of the models used in Sections 4.2 and 4.3. The iterative

solution technique described in Section 3.7 has been employed. As explained in that

section, the model is considered 10 have converged 10 a solution when the value of ilG,

as defined by Equation (3.41), falls below 10'3. Satisfactory convergence by this

criterion was obtained for 1982, 1983, and 1984.

For 1986, the model did not converge. A solution was found for which

ilG = 0.0244, but further iterations resulted in the solution diverging. As discussed in

Section 3.7, this solution at the iteration which minimizes ilG constitutes a best available
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approximation to the exact solution to the nonlinear equation (3.26). This solution is

presented below as that for 1986. It should be viewed with caution, however, since it

is not the exact solution.

Figure 4.9 shows the height field at 32 km (approximately 10 hPa) due to the sum

of zonal waves 1-3, as computed by the nonlinear model without transients, for each of

the four Januaries in this study. Comparing these with the output of the linear model

without transients (Figure 4.2), with the linear model with transients (Figure 4.5), and

with observations (Figure 2.5), we find that inclusion of nonlinear interactions among the

stationary waves has relatively little effect on the amplitude of the waves calculated by

the model, but gives a phase structure in better agreement with observations.

For 1982, the linear model without transients positions the high and low centres

correctly, but their amplitudes are much too weak, and the relative depths of the two

lows are incorrect, with the Western Hemisphere low being deeper than the Eastern

Hemisphere low in this version of the model. Inclusion of nonlinear interactions among

the stationary waves has little effect on the amplitudes at 32 km, weakening them

somewhat, but it does give a better simulation of the relative depths of the two lows.

This contrasts with the effect of including transients in the model, which gives a large

increase in the amplitudes of the waves at 32 km, giving better agreement with

observations, but gives a less accurate simulation of the phase structure, with only a

single low centre instead of the two observed in nature.

For 1983, inclusion of the nonlinear interactions among the stationary waves gives

a slightly weaker high at 32 km, and a slightly deeper low, as compared to the linear
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model without transients. The shape of the low is more accurately reproduced in the

nonlinear model, without the excessive elongation to the west given by the linear mode!.

Again, the change in amplitude due to the inclusion of the nonlinear interactions among

the stationary waves is less than that given by the inclusion of forcing by transients.

For 1984, the nonlinear model performs only slightly better than the other

versions of the mode!. The model results continue to show a strong wave 2 pattern at

32 km, in contrast to observations, which show a pattern dominated by wave 1.

Inclusion of nonlinear interactions gives a slight improvement in that the high over the

Bering Strait, which corresponds to an observed feature, is strengthened, while that over

western Russia, which is spurious, is wealœned.

For 1986, inclusion of the non1inear interactions among the stationary waves gives

a slightly stronger high at 32 km, in better agreement with observations. The low is

weakened slightly, but its position near Iceland.is in better agreement with observations

than that in the linear mode!. Once again, inclusion of nonlinear interactions among the.
stationary waves has less effect on the wave amplitudes than does inclusion of forcing

by transients. The linear model with transients gives a better approximation to the

observed amplitudes, but the nonlinear model without transients better reproduces the

observed phase structure.

Figure 4.10 shows the structure of the January mean zonal wave 1 as calculated

by the nonlinear model without transients for each of the four years studied. Comparing

these with the output of the linear model without transients (Figure 4.3), we ~ that

inclusion of forcing by the nonlinear interaction among the stationary waves has a
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relatively small effect on the amplitude of stationary wave 1, except for 1986, where the

maximum amplitude is increased by 35%. For 1982, this version of the model gives a

wave 1 which has an amplitude maximum at 20 km. Although this is slightly better than

the linear model without transients, which gives a monotonically decaying wave, the

wave is still much too strongly trapped, in contrast with observations. Inclusion of

forcing by transients gives much better results in this case, with a correctly-positioned

amplitude maximum. Inclusion of nonlinear interactions among stationary waves does

reduce the phase tilt of wave 1, giving better agreement with observations.

For 1983, the nonlinear model gives a slight increase in the amplitude of wave l,

compared to the linear model without transients, but the increase is less than that

produced by the inclusion of forcing by transients. In all cases, the general structure of

this wave is reproduced reasonably well, but the wave amplitude remains too weak.

For 1984, the nonlinear model gives a trapped wave, like the other versions of

the model, but in contrast to the observed behaviour of the atmosphere. Both the

nonlinear model without transients and the linear model with transients give a more

rapidly decaying wave than the linear model without transients.

For 1986, the inclusion of nonlinear interactions among stationary waves gives

a wave 1 with a substantially greater amplitude than that computed by the linear model

without transients. The phase tilt with height is decreased. Beth these changes bring the

model output into better agreement with observations. The increase in amplitude is

considerably less than that given by the linear model with transients.
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Figure 4.11 shows the structure of the January mean zonal wave 2 as calculated

by the nonlinear model without transients for each of the four years studied. Comparing

these with the output of the Iinear model without transients (Figure 4.4), we see that

inclusion of forcing by the nonlinear interaction among the stationary waves has a

relatively small effect on wave 2, much less than that on wave 1. In both versions of the

model, wave 2 tends to be somewhat more rapidly decaying with height than in nature.

Inclusion of nonlinear interactions tends to shift the latitude of maximum amplitude

slightly farther north, giving better agr~ment with observations.

In summary, the nonlinear mode! without transients reproduces the gross features

of the stratospheric stationary waves fairly well, for three of the four years studied. The

main shortcoming of this version of the model is that the amplitudes it generates are

significantly too weak. Inclusion of forcing by the monthly mean of transient momentum

and heat flux divergences results in a significant increase in the amplitude of wave 1,

bringing the model into better agreement with observations, though the wave amplitudes

remain somewhat too weak. There is much less change in waves 2 and 3 when forcing

by transients is included. Inclusion of nonlinear interactions among the stationary waves

has less effect on wave amplitudes than does the inclusion of forcing by transients, but

the nonlinear model without transients is better able to reproduce the observed phase

structure of the waves.
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CHAPTERS

DISCUSSION AND CONCLUSIONS

This work has extended previous modelling studies of stationary planetary waves

in the winter stratosphere by the use of a nonlinear primitive-equations model, by the use

of observed data from individual years to speeify the zonal mean state and the forcing

fields, and by computation of the monthly mean of the transient momentum flux and heat

flux divergences, and the use of these fields as additional forcing terms in the mode!.

The observed January monthly mean circulation in the stratosphere varies greatly

from one year to another. The zonal mean wind speed, the stationary wave amplitudes,

and the transient momentum and heat flux divergences can ail vary by 50% or more.

This variability is reflected in the performance of the model, which is much more

successful at reproducing the observed stationary wave structure for someyears than for

others.

A linear version of the model without forcing by the monthly mean of the

transients is found to be able to reproduce many of the gross features of the observed

stratospheric circulation. Zonal wavenumbers 2 and 3 are found to be trapped at lower

levels, with wave 3 more strongly trapped than wave 2, in good agreement with

observations. Only wave 1 is able to propagate in the stratosphere. The position of the

height maximum near Alaska, a feature showing relatively little interannual variability

in the real atmosphere, is correctly computed by this mode!. The position of the height
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minima are less weil reproduced, though there is some similarity between observations

and model output.

This model's ability to reproduce the observed wave structure is deficient in

severa! resp<:cts. The most notable of these is that the wave amplitudes computed by the

model are much too .weak. Zonal wavenumber 2 decays somewhat more rapidly with

height in the model than in nature, but the main deficiency occurs with zonal

wavenumber l, which is much weaker in the linear model without transients than in

nature. The performance of the model with respect to wave 2 is similar from year to

year, but for wave 1 it varies greatly. For some years, the model reproduces the

observed propagation of wave 1 into the stratosphere, though the model's wave

amplitudes are too weak, while for ott..~"!" years the model computes a trapped wave which

decays monotonically with height.

The Iinear model without transients is also able ta reproduce the genera! features

of the waves' phase structure, namely a westward tilt with height and a southwest­

northeast tilt in the horizontal. There is somewhat more phase tilt in the model than in

observations.

Inclusion of forcing by the monthly mean of transient momentum and flux

divergences is found to produce a substantial improvement in the model's ability to

reproduce the observed wave structure. In particular, the amplitude of wave 1 is

increased substantially in two of the four years studied, and increased slightly for one

year, bringing the model results into better agreement with observations, though the

model amplitudes remain somewhat tao weak. This suggests that the time-averaged
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effects of transient fluxes are a significant forcing mechanism for stratospheric stationary

waves, in addition to forcing by stationary waves from the troposphere. The phase

structure of wave 1 and the amplitude and phase of wave 2 are less affected by the

inclusion of forcing by transients !han is the amplitude of phase 1.

Inclusion of nonlinear interactions among the stationary waves has a smaller effeet

on the model results than does inclusion of forcing by transients. The nonlinear model

without transients yields somewhat larger wave 1 amplitudes than does the linear model

without transients, but the improvement is modest. Nonlinear interactions among the

stationary waves appear to he less important !han those among transients for the forcing

of wave 1. The nonlinear model without transients does yield a more rea1istic phase

structure than the other versions of the model, by reducing the westward phase tilt with

height.

For one of the years studied, 1984, ail of the models perform poor1y at

reproducing the observed wave structure. The models' wave 2 for this year is not

significantly worse than for other years, but none of the models correctly simulates the

behaviour of wave 1 for 1984. AlI of the models compute a wave 1 which decays ',vith

height, while in nature this wave was found 10 have an amplitude maximum in the

interior of the region studied. The 1984 circulation is anomalous in sorne respects. The

mean zonal wind speed in the upper stratosphere is greater for this year than for the other

years studied. This should produce stronger trapping of the stationary waves, and the

maximum kinetic energy of zonal wave 1 is indeed found at a Iower k"Jel in 1984 than

in other years. However, the wave decays much too rapidly in the mode!. The forcing
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due to transient flux divergences is smaller in 1984 than in the other years studied, so

it is not surprising that the inclusion of forcing by transients does not produce a

significant improvement in the model performance. A completely satisfactory

explanation for the poor performance of the models in simulating wave 1 for this year

has not been found.

Since the inclusion of either forcing by transients or nonlinear interactions among

stationary waves tends to improve the model's ability to reproduce the observed

circulation, it seems plausible to conjecture that including both of these mechanisms

simultaneously would give an even more accurate simulation of the observed wave

structure. Compared to the linear model without transients, the linear model with

transients gives substantially greater wave amplitudes, though they remain somewhat too

weak, while the nonlinear model without transients gives slightly greater wave amplitudes

and a more accurate phase structure. It seems likely that a nonlinear model with

transients should compute wave structures very similar in both amplitudes and phases to

those observed in nature. Unfortunately, numerical difficulties in obtaining convergence

to a solution of the coupled nonlinear equations of this model have prevented this

experiment from being conducted successfully.

The difficulty in finding an exact solution using the nonlinear model with

transients is not surprising. As we have seen above, the inclusion of forcing by

tr~nsients significantly increases the amplitudes of the stationary waves computed by the

Iinear model. The nonlinear interactions among these waves will therefore tend to be

stronger, and the difference between the linear solution and that found at subsequent
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iterations will be greater. Under these circumstances, the iterative technique, which

works best for a weakly nonlinear system, is less likely ta converge to an exact soiution

of the nonlinear equations. It may therefore he difficuit ta extend this line of research

further, unless another solution technique is employed.

The model used in titis work is an extension of those used in a series of studies,

beginning with that of Matsuno (1970). These are grid point models in latitude and

height, and spectral in longitude. At severa! points in this work, numerical difficulties

were encountered at grid points near the North Pole. As described in Section 3.8,

smoothing by averaging the values of fields at neighbouring grid points was employed

to overcome these difficulties. In future work, it may he preferable to use a model

which is spectral in both horizontal dimensions, in an effort to avoid numerical

difficulties near the pole and to provide.a more natural method of eliminating spurious

small-scale structures through truncation of an expansion in spherical harmonics.

The present work has found that the hehaviour of the stationary planetary waves

in the stratosphere shows a strong interannual variability. It would be of interest to

examine how titis variability correlates with other phenomena known to show strong

interannual variability, such as the quasi-biennial oscillation in the equatorial

stratosphere, or the El Niiio-Southem Oscillation. As discussed in Section 3.4, the

present model includes strong Rayleigh friction at low latitudes to avoid numerical

difficulties near the critical surface, so titis model cannot be used ta study possible

tropical-extratropical interactions. A modification of the model ta allow such studies

would be of interest. There is, however, no known method of generalizing models of
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the type used in this work 10 enable them 10 dea1 with critica1layers, within which wave

transience, dissipation, and nonlinearity may a11 he important. It may therefore be

necessary to employ fully nonlinear time-dependent models 10 study these phenomena.
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• APPENDIX A

COEFFICIENTS OF MODEL EQUATIONS

In equations (3.10)-(3.12), the monthly means of the nonlinear interactions

between the transients are given by:

'a' 'a a'(Tr)• • - _u_....!!.... + _v__(u, cos 0) + w·'....!!.... ,
cosO ah cosoao az

(Tr)• • - ~ av' + v' av' + w" av' + (U')2 tan0 ,
coso ah ao az

u' arI>~ v'arI>~ .',t>'(Tr)T· - ---- + - +w LV-
coso ah ao

(A.l)

(A.2)

(A.3)

In equations (3.15)-(3.17), the nonlinear interactions between the stationary waves

are given by:

•

[
a aa p a A aa](St) • - --- + ---(a cosO) + W- ,• cosoah cosoao az
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• (St) _ - [_/2_ a~ + ~a~ + lVa~ + tan0 /22] ,
v cosO aÀ ao aZ.

(A.5)

(A. 6)

while the coefficients w, {Jo, ~o, and ZO, which are functions of the zonal mean state, are

given by:

•

w --M..,
cosO

(JO - c:so :0 ([u] cos 0) -l",

~O -1" + 2 [u] tan 0 -2(aO+w)sinO,
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• Z. _ a[q,], __ ~. a[u] •
ae az

(A. 10)

When îhe longitudinal dependence in the model equations is transfonned from real

to Fourier space, the nonlinear interactions of the stationary waves and those of the

transients are given in (3.21)-(3.23) by:

•

. l-Za
pS ,_ e-""'lIT J2~(St) e-i».f!À

k 2 "''Il' 0
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III (3.25), e and 'T are functions of the zonal mean state, given by:

The coefficients and inhomogeneous terms of (3.26) are given by
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(A. 18)

(A. 19)

(A.20)

(A.21)



•

•

F_.,.I Jro. t [~a[Ul_k[N2]] __l_~[k~'[N2]+r;z' COS8]l COS 8 2H az COS 8 cos8 a8 2H

+~ [~'Z' _Ert]) + a.,. [k~' [N2] + rtz']
az cos8 2H a8 COs8 2R

[a.,. "'][Ert_k~'Z']+ -+- - ,az 2H 2H COs 8

In (A.25), Je, Ji, and li are given by

Xi _ ~t[[NZlPi- a[UlRi] + [[NZlP' -Z' a[Ul] Qi,. az az
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Vi - Z·(Aiit-~·11) + eRi.

(A.21)

(A.28)

In (A.25)-(A.28), the superscriptj may taire the value S or T, for "stationary" and

"transient," respectively, as used in (A.11)-(A.I6).

By substituting (A.4) in (A. 11), and using (3.20) to write the wind components

in (A.4) as Fourier series, it can he shown !hat

•

Similarly, we have

{
k _ _ 1 a (- - a)--u V +---- V V coscosa .. n casa aa ...",n

M+n-k
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(A.30)



• and

%-'0

Rf - -e2iï ~ {.....!.-ü y +_1_~(\Ï y <:ose)
• L" <:ose" 8 case ae .. 8_.8

M+n..k
(A.3!)

where K is the ratio of the gas constant and the heat capacity of dry air (RIc.), and

•

-- -~
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APPENDIX B

NUMERICAL SOLUTION OF MODEL EQUATIONS

Calculations are performed on a rectangular grid with a spacing of lOin latitude

and 1 km in height. This resolution is the same as that used by Jacqmin and Lindzen

(1985). They found that with lower resolution, the model was very sensitive to small

changes in the zonal mean state, but that this sensitivity decreased as the model resolution

increased.

More precisely, the moàel has 90 grid points in latitude, with the southemmost

grid point one-half grid space north of the equator, and the northemmost grid point one

grid space south of the North Pole. This gives a grid spacing of 180/181 degrees.

Let grid points be labelled G,t), where j runs from 1 at the grid point nearest the

equator to 90 at the grid point nearest the pole, and t runs from 1 at the lower boundary

to 65 at the upper boundary. We write cI» for the value of the solution CÎ>k to the model

equation (3.26) at the latitudinal grid point j, with cI» considered to be a continuous

function of the vertical coordinate z, and cI»/ for the value of 4/k at grid point G,t), with

a similar notation for the coefficients A-G in (3.26). In order to simplify the notation,

the wavenumber subscript k will be omitted in this appendix.

We wish to discretize the model equation (3.26). We replace the derivatives with

respect to latitude with second-order centred finite differences, considering the

coefficients A-G and the solution cI> to be continuous functions of z. Then at the latitude

of grid point j we have
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• (B. 1)

In order to evaluate (B.l) at grid point j = 1, we need the value of <1> at the

"virtual" grid point j = O. This grid point is one-half grid space south of the equator,

so since the solution is assumed to be symmetric about the equator, we have <1>0 = <1>}.

As discussed in Section 3.3, this choice of boundary condition near the equator does not

strongly affect the results of this study, since strong Rayleigh damping is imposed at low

latitudes, causing the wave amplitudes to be small at low latitudes.

In order to evaluate (B. 1) at j = 90, we need the value of <1> at the "virtual" grid

point j = 91. This is the North Pole, 50 <1> = 0 there. Barly versions of the model

employing this boundary condition at the pole displayed numerical problems at high

latitudes, so an alternative boundary condition was employed. Analytically, this is

(3.27). Numerically, this takes the form <l>w = 2"\:<1>89' (B.l) is not solved at j = 90;

this grid point is used to impose the boundary condition near the pole.

(B.l) can be expressed in matrix form as

•

&i ai Al -A--+M-+Nw -R,
az2 az
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where• Al 0 0 0

0 ~ 0 0

0 0 A3 0

A-

o 0 0 A89

and

BI BI
0 0 0 0D---

1 2Ae 2Ae
B2 D2

B2 0 0 0
ne 2Ae

0
B3 D3

B3 0 0
2Ae ne

0 0
B.

D.
B.

0 0
M- 2U ne

0 0 0 0
_ Bill

Dili
Bu

2U 2Ae

0 0 0 0
B89 D +2-1 B89---

2Ae 89 2Ae
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and• CI E, C, E,
0 0 0F----- --+-

1 (uf 2AO (Aof 2AO

-.S..-_.5... 2C, c. E,
0 0F--- --+- ...

(Aof 2AO ' (ABf (AB)' 2AO

0 -.S..-_..!!... 2C,
0 0F---

(AB)' 2AO ' (AOf

N-

0 0 0
2Ca Ca EaF --- --+-a
(AOf (AOf 2AB

0 0 0
C.. E., -.t c.. _. E..
---- F +(2 -2)--+2 -
(AOf 2AO" (AOf 2AB

Here

and

We now discretize (B.2) in the vertical, replacing derivatives with second-order finite

differences, giving
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• (B.3)

where A" MI' N" '1>1' G, represent the matrices and vectors as defined above, but

evaluated at a given vertical level l, 50, for example,

and similarly for the other vectors and matrices. (B.3) can be rewritten as

•

where

and

and
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• AI MI
CC ---+--.

1 (Az.)2 2Az.

(BA) is an equation of the form which can easily be solved using the method of Lindzen

and Kuo (1969). For each vertical level l, let

where a, is a matrix and {3, a vector to be determined. From (B.5) we have

Substituting (B.6) in (BA) gives

or

(B.5)

(B. 6)

Comparing (B.5) and (B.?) gives

•
and
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•

•

P,- -(AÂ,IX,_I +BB,)-I(G,-AÂ'P'_I)' (B.9)

At 1 = 1 (the lower boundary), the solution is specified, so (31 = oP l and al = O.

Then we can use (B.8) and (B.9) to calculate a, and 'p, at allieveis. The upper boundary

condition is that the waves vanish, so oP, = 0 at the uppermost level (in this case,

1 = 65). Then (B.5) can be used to compute 0P, at allievels, completing the solution of

the model equation.
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