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- - ' Abstract

o~ The problem of binpicking consists of computing sufficient informatién about
identity. position and orientation of 3-D objects randomly stacked in a bin, in order to allow
a robot to individually grasp a part and place it at a specified pose.

In this thesis we_describe the BIFOCAL VISION system which we have devel-
oped to enable a PUMA 260 robot to grasp and place industrial parts which are randomly
- piled and oriented in a bin. This is achieved through the graceful integration. as visual
feedback signals. of the sensory inputs provided by a 2-D television camera positioned over
. the workspace and a wrist-mounted single-point range finder.

The standard approach 1s to first attempt the recognition of identity and pose

™~ of the part and’ then send the robot hand to an appropriate holdsite so that the part can
be grasped and moved The main dlsadvantage of this method is that it usually is very
difficult to recognize a heavily occluded part in a 2-D image A
- . The BIFOCAL approacg‘,gntegrates mformatlon from two types of sensors. First,
' visual information from adgfnera IS analyzed to i1solate the location of potential holdsites
in the 2-D image. The robot gripper is then sent to the most promising holdsite using

" line-of-sight control. Second. close to the object the robot is guided by a single-point range

finder and acquisition is attempted. N

~

The complete system has been developed and tested on different types of objects
such as cylinders. rings, bolts, etc. We have also evaluated the system’s sensitivity to
. variations in scene lighting, holdsite models and the amount of collected range data. On
the basis of these experimental results. we have found that the BIFOCAR WSION system
provides robust and reliable binpicking. .
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Le probléme de I'acquisition robotisée de piéces empilées. au hasard consiste a

déterminer lidentité. I'emplacement et l'orientation des pitces, de fagon a permettre au
robot de les saisir et de les manipuler une par une. ‘

-

L

4

Dans cette thése nous décrivons le systtme BIFOCAL VISION que nous avons
développé en vue de doter un robot PUMA 260 de la capacité de saisir et placer des objets
tri-dimensionnels empilés au hasard. et ce grice 3 une intégration adéquate des signaux
fournis par deux senseurs visuels: une caméra TV placée au-dessus de la pile d'objets et
un senseur ponctuel de profondeur installé sur la main du robot. .

L'approche conventionnelle consiste a, déterminer d"abord l'identité et I'emplacement

d’une piéce. et ensuite a envoyer le robot afin d'acquérir ladite piéce. Cette techmque com-
porte un désavantage lmportant il est souvent trés difficile de reconnaitre des pieces

partiellement visibles dans une image de luminosité.
\

» » , . g
Notre approche comporte deux étapes essentielles. ' Le premier module utilise -

une image globale de la scéne, fournie par une caméra TV, afin, de trouver I'emplacement
de points de saisie potentiels pour une pince a doigts paraliefes. Le deuxiéme module
obtient, i l'aide du senseur de profondeur, une grille de données thi-dimensionnelles autour

du meilleur point de saisie potentiel,

‘¢

de facon a confirmer la présence du point de saisie et a calculer son emplacement
précis et son accessibilité au moyen de la pince du robot. Ensuite le robot prend la piéce
et la dépose a I'endroit voulu et avec I'orientation désirée. ,

Le systtme BIFOCAL VISION a été verlflé en utlhsant différents types de piéces,
telles que des cylindres. tores. vis. etc. La sensibilité du systéme par rapport 4 I'illumination,
les modeles des points de saisie et la quantité de données tri-dimensionnelles échantillonnées
a aussi été é(aluée. Les résultats obtenus nous permettent d'affirmer que BIFOCAL VISION
effectue I'acquisition de piéces empilées au hasard de fagon robuste et Qable.
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Introduction

Chapter 1 Cy

&

0

) The problem of feeding workpieces that are unoriented in bins is an ubiqui-
tous one in rﬁanufacturin\g. Solving this problem should prove useful for the numerous

applications that require robots to acquire and manipulate objects whose orientations are

-

unkr{own. The purpose of most of the existing algorithms is to use sensory data, mostly

visual, so ;s to recognize the identisy. position and orientation of the parts. A robot"could
then be able to feed the oriented parts to an automated assembly line. Thus, the problem
of binpicking consists of computing sufficient information about %identity and pose (i.
e.. position and origntation) of 3-D objects randomly stacked in a bin. in order to allow a
robot to individually grasp a part/aﬁi‘place it at a s‘pecified posé. This process may be

IS

repeated for evéry part in the bin. -

the occluded part. and then send the robot manipulator to an appropriate holdsite so that

o
—

the part ‘can be moved. The main disadvantage o} this method is that it
usually is very difficult to recognize a heavily occluded 3-D part in a 2-D image. Virtually
every published aIgoriLhm in this class deals only with two-dimensional flat objects. Hence,

it is reasonable to assume that the bin-of-parts problem has been solved for the case of



flat objects and. to a certain extent. of 3-D parts with a few stable positions even when

piled in a bin. Lowe [32.33] constitutes an exception, since he claims that the viewpoint
consistency constraint can lead to robust three-dimensional object recognition from single
gray-level images. Another approach consists of first using computer vision techniques to
isolate the location of pé)tentiai holdsites in an image. The robot gripper is theq sent to
the most promising holdsite, and an attempt is made to grasp the urknown object. Upon
successful grasping. the part’s identity and ‘pose are more easlly computed. This method
reduces the complexity of the imitial problem by breaking 1t into two which are simpler to
handle Current implementations of this approach do not seem to be very rehable, nor do
they take full advantage of the wide variety of sensory devices available, such as tactile and

range sensors

The proposed approach is holdsite-based It uses a CCD TV camera and a
single-point range finder as sensors The visual input 1s used for holdsite detection and
fast control of the manipulator. whereas the depth data provides close-in control  This

results in a reliable and robust system for part acquisition and manipuiafion.

This thesis is orgamized as follows. the next chapter consists of a survey of
previous work in the area of binpicking and related topics Then. the physical components

of the system are described in chapter 3, whereas chapters 4 and 5 describe the 2-D"and 3-D

image processing algorithms used in this project. The experimental results are shown and N

subsequently discussed in chapter 6 Finally, in the last chapter. we present the conclusion
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Chapter 2 ' - Survey

- \ N

This chapter essentially consists of a survey of a large number of papers related
to the bin-of-parts problem They\?asncally’deal with the recognition of the identity, position
and orientation 9‘ overlapping parts r;mdomly piled in a bin  The hiterature is covered in a
structu‘red manner Methods are classified by, among others: the type of features used for
recagnition, the sources of sensory data. and the methodology Fihally. the state-of-the-art

o

in binpicking 1s described

2.1 Classification Criteria

g

The classification of methiods used for the recognition of industrial parts is not
Y
n . . ‘ . . » . 0
a trivial task. The literature is rich in this subject. so it 1s necessary to group methods on
the basis of certain key parameters. Several of these have been selected, although some

parameters are not completely independent of the others. These are listed as follows:

L4
(1) Source of sensory data magnetic sensors, tactile sensors, range scanners, television

e 2
cameras or a combination of two or more sensors.

(i) Type of features used for recognition: local, global or both.

+




(i) Type of objects that the system is able to recogniie: mostly flat 2-D objects or

3-D objects. .

-

(iv) Arrangement of objects in the bin: in the simplest case. each object to be recognized
must be completely visible and ;urrounded by background. In a more complex case.
objects are allowed to touch nejghboring ones but pot overlap. In the most gene(al

., case, objects are allowed to touch or partially occlude one another.

‘ 4

(v) Methodology to detect identity and pose before grasping by a robot or to use a
holdsite-based approach in which legal grasp configurations are first detected, aJnd
once the object is held by the robot’s gripper, the ident;ty and pose are computed.

»

(vi) Type of matching algorithm. data-driven, model-driven or a mixture of both

-

v

(vii) Method of entering object models into th/computer manually, using a teach-by-
showing tgc’hnique or retrieving models from a CAD/CAM database.
. , \
Among the above parameters, the type of the matching algorithm is one of
the most complex to determine: Usually 1t is composed of a mixture of both data and
model-driven modules. /However, often one of the components clearly dominates the other.'
and thus it is relatively difficult to assign a typé to the algorithm. This is a basic control
issue, namely, whether recognition is triggered by high'-level expectations or by low-level
visual input. In its pure form data-driven processing is ﬁso known as bottom-up control.
The image is first preprocessed in a domain-independent way: then it is segmented into
N .

meaningful regions. or contours, and finally the objects and theit relations are identified.

4
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In a similar way, model-driven processing is known as top-down control.. Predictions are

generated by internal models in the knowledge database, and then the verification of these

predictions leads to image understanding. This goal-oriented paradigm is also called “hy-
pothesize and verify”. It seems clear that_neither of the the two matching types in its pure
form is well suited to computer vision. This fact has brought about some very interesting

combinations of the two matching algorithm types.

2.2 Binpicking Algorithms

2.2.1 Blind Acquisition ,

The simplest way of solving the bin-of-parts problem is to use a blind rgbot

equipped with only local sensing devices It could acquire pieces by physically scanning a

4
bin until contact with a piece was sensed, and then use tactile sensing capabilities to pick

up the piece. Blind acquisition systems have been implemented using magnetic, vacuum
or one-fingered hands [15.41]. This technique has several drawbacks. an mherenﬂy low
probability of finding workpieces along the search path due to its blindness. and the long

time constants assoctated with arm motions. It may also be impossible to desigh grippers

[

which can blindly acqt:nre all typed of workpieces. magnetic techniques only work for metallic

parts, and vacuum cups cannot easily pick large piecés nor those with irregular surfaces.

—

2.2.2 Methods Using Global Features

AY

3
We will now consider robotic systems equipped with sensing capabilities. namely

computer vision systems. First, we will focus our attention on algorithms that use global

5

!
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features for quect recognition. A global, as opposed to local feature. is one that depends

¥ "_.
€ k

onthe totality of the objéct ~Typically global techniques for object recognition consist of
pattern recognition usirg global feature vectors [25] Each object is described by a list

@

of numerical values that are as invariant as possible with regard to translation. rotation

s

and scaling of the object During the system’s learning stage. a model (or a feature

vector) 1s computed and stored for every possible object type In the recognition phase,

4

the feature vector of the unknown piece 1s compared to the feature vectors of each object
type The workpiece is recognized using a nearest neighbor or likelihood ratio classtfier
This procedure can be slow if the feature vector i1s large and time-consuming to compute,
or if there 1s a large number of models against which it has to be matched Thus, a binary
decision tree may be used to speed up recognition time [5] Beginning at the root node,
a single global feature 1s computed Different branches of the tree are taken depending

P

on the value of the feature Thus, all objects connected to branches other than the one

( chosen are eliminated from consideration. One by one. more features are computed and
- ' 4

| .
compared to thresholds, reducing the possible-object se&. until only one object 1s left in the

for was based on the current possible-object set

I
| / " set Yachida and Tsup '[55] used a binary decision tree. in which the next feature to look

~ Among the global features that can be used are moment invanants [14.22]. as

given by equation (2 1)

4 RY

+oco r+oc .
Mpq = / / . plz.y)z" yldzdy p,qg =0,1,2,... (2.1)
— 00 — o0

where p(z,y) is the density function which can be either zero or one in the case of a binary

‘ ¥ image. In the more general case of a gray level image. the density function corresponds

~
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to image intensity. These moments are then algebraically combined to yield a sequence of .

n . moment invariants which are subsequently used as a feature vector.
' L

A}

The SRl vision module [17] uses a set of heuristically determined global fe;tures.
such as the area of the binary silhouette of the object, perimeter, number of holes, §ea .
of holes, maximum and minimum radii from the object’s centroid. the ratio of these two
radii, etc. A similar approach \n;as taken by Pugh [39] who proposed efficient algorithms

®  for computing moments.

L

, . . . . b
Another global feature set is the normalized Fourier descriptor, which has been

\

used to recognize aircraft from silhouettes [il] The Fourier descriptor of an object is found
by taking the discrete Fourier transform of its contour The boundary curve is treated as
a periodic complex function with real and imaginary parts corresponding to the x and y

coordinates. The descriptor 1s then normalized to a standard location, rotation angle,

size, and contour trace starting point. During recognition, the normalized descriptor of the

» unknown object is compared to each one of the models stored in the object database, and

S

object idéntity is determined by the closest match.

°

As mentioned earlier. global features are dependent on the totality of the object,

and hence they cannot be used to recognize objects that are ‘only partially visible, such as

o

objects that are partially in the field of view or occluded by others. The reason is that global

. &

features computed for part of an object are, in general, different from those computed for

AN
4 ~ '

. R . ly
the entire object. To solve this proélem many researchers have opted for the use of local

features, which depend on parts of an object, and can therefore increase the possibility of

*

o " finding"identity and pose of overlapping objects. .



~

2.23 Methods Using Local Features for the Recognition of 2-D Objects

N ¢

Local features canbe computed on the basis of different types of sensory input.
\
such as two-dimensional brightriess images. range maps, and even tactile data. Our review

. of the literature will start with the algorithms that use 2-D images in order to recognize

mainly flat objects Almost ei;ery method in this group is model-driven.

Bolles and Cain [9] introduced the local-feature-focus method, which is an al-
gorithm designed to recognize and locaté occluded two-dimensional objects. The local

features used are holes, convex corners, and concave corners, as shown in figure 2.1. The

first step is the detection of the type. location, orientati\éq and size of the local features’

found in the image. The local-feature-focus models are génerated by an algorithm that

performs a detailed analysis of computer’ aded design (CAD)
searches for a cluster of local features in a relative configutation that_does not occur else-
where in the same object nor in‘ any other object in the database. One feature in this
clustgr is selected as "the "focus” fea;ture. The secand step is to search for objects jn the
image. This is done by sequentially searching for their focus features. When one of them
is found, its neighborhood is searched for the remaining features in the cluster. If these
are found in a configuration consistent with the model, then the object is hypothesizecli__ to
exist at thQ)cation. The system uses a maximal-clique élgorithm [8]-as-a graph matchipg
technique so as to locate the Iargest\cluster of mutually consistent assignments. Finally,
the object’s template is translated and r}ated as required, and then matched to the image.

If the match yields a good result, the hypothtgis is considered to be verified. and the object

is retognized.

Perkins [37,38] proposed a system which can determine the position and orien-

5. 8
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Figure 2.1 Local features of a hinge part from |9]
] / N
J & \
tation of complex curved objects in noisy gray-level scenes First, edge points are detected
-~

oy
in the image using the Hueckel operator [23] These edge points are linked and stored as

chain codes The edge chains are then approximated by straight lines and circular -arcs

=

by fitting lines. using a least-squares fit to the chain data in #-s space (e angle-arc

‘length space) Thus, the system organizes and reduces image data to a compact repre-

N ~

. sentation having the appearance-of a line drawing (see figure 2 2) ‘This representation
is gsed for forming wbject models by sequentsually showing every possible object to the
camera under favorable lighting and background conditions Under these conditions the
system ,stores the detected "concurves” (1e curves) as models As the program tries to
recognize objects, image curves are matched against-medel curves. Possible matches are

. suggested by the curve's type. length. total angular change. bending energy. and several

other of its properties. At this point, potential matches are checked using cross-correlation

in the G-s space. Finally, if the results are adequate. matches are verified by computing a

transforimation from model coordinates to image coordinates and by searching for edges in

"‘o the expected directions at a list of points spaced along the model’s perimeter If this test

%



provides enough Asupportirfg evidence, the object’s identity and pose are determined. An

.

earlier system proposed by McKee and Aggarwal [35] also used similar techniques.

(b) :

S Figure 2.2 Example of concurves, adapted from [37]

e Ayache and Faugérés [3] introduced HYPER (HYpotheses Predicted and Eval-

10




uated Recursively), a recognition method based on the generation and recursive evaluation

of hypotheses Whether the system is trying to build a model or a scene description. it
performs the same sequence of operations on the‘imz;ge If the object-background contrast
1s high enough, the image 1s thresholded into a binary lmage/ and then smoothed using
erosions ;md dilations, which are mathematical ;norphology operators [47] However, under
more general lighting conditions, edges are found by combining gradient (Sobel) and sec-
ond order derivative information {zero crossings) At this point the program builds a list of
connected border points, after which the connécted components are-approximated by poly-
gons Shapes of 2-D objects are ther?fore represented by polygonal approximations of their
b10unda.r|es The ten longest segments of the model description are sequentially matched
against the segments of the scene description so as to generate hypotheses These are
evaluated by attempting the 1dentification of additional segments bet\:veen the two descrip-
tions Also. the predicted position of the model 1s refined by a Kalman filter The matching
ends when a sufficient number of hypotheses has been tested or if a very high quality match
1s obtained Finally, the best hypothesis is ree)}ammed so that it can be either vahdated or

rejected

[}

Knoll and Jain [28] describe a system for recogmzing partially wvisible objects
using feature indexed hypotheses Each local feature 1s associated with a list of where it
occurs n the object models When a match 1s found for a feature in the image, objects are
hypothesized for each object identity and pose in the feature's st These hypotheses are
tested by first translating and rotating the object model to the hypothesized location, and
then verifying at a penodic sampling of points along the object model boundary, that the ,
predictions are fulfilled in the image Using this algonthm. recogmition time grows only as
the square root of the number of possible objects. It 1s worth noting that a non-optimal

‘
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procedure is provided for automatic feature selection, given a set of possible objects.

14
N N
N

Turney et al. [49] introduced an ‘algorithm to recognize and JJ;cate partially
& . : .
occluded 2-D parts using a subtemplate based versipn of the Hough transform [30]. The

[

subtemplates are overlappinf segm-ents of the object model boundaries. Each ‘subtemplate
is assigr;ed a weight which is a measure of its distinctiveness or saliency. The saliency of
an object’s subtemplate is entirely dependent on the set of possible objects and therefore
embodies a priori knewledge about what can appear on the scene (see figure 2.3). The
subtemplates are sequentially ma:ched o the image using a least%quares fit in the 6-s
space. Whenever a match is found. the accimulator pointed to by the subtempléte's vector
(i e the hypothesized object's ‘centroid) is incremented. Finally, when all the SL:btemplates
have been matched against the edges in the image, the accumulator with the largest v.alue ‘

) Py

is selected If it is above a certain threshold, the object is recognized. with the accumulator
[»Y

location indicating the “object's centroid. The main advantz;ge of this method over earlier
P N

techniques is the weighting scheme that increases the importance of the most distinguishing

features found in the set of possible objects

-

Koch and iashyap [29] proposed a vision system to identify occluded industrial
parts. First, objects are separated from the background using a simple thresholding tech-

nique. Next, the boundaries are extracted by a contour following algorithm. At this point,

I

the boundaries of the objects are smoothed using a polygon approximation procedure. The
&,

result is a grouping of the contour points into line segments. From the polygon approxima-

tion the curvature function of the boundary is estimated. Vertices with positive curvature

are tabeled convex, while those with negative curvature arf labeled as concave. Corners are

detected as local maxima of the absolute value of the curvature function and are used as

12
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Figure 2.3 Context dependency of salient features, from [49]

local features for matching purposes. For every fhatching between an image feature and
?

'

a modekh feature the corresponding coordinate transform is computed to map the model

_corner into the image corner. This transform is the best in a least squares sensé. A graup

o

of consistent matches ecan easily be recognized, since they all have approximately the same

coordinate transform. Therefore, hypotheses are generated by clusters of consistent cor-

i

[

ners in the image. Hypothesis verification is performed by projecting the boundéry of the
model onto the image, using the transform previously found. and checking the ‘interior of”

the contour for consistency. Depending on the outcome of this test the object is recognized

&
’

or the hypothesis rejected.

Hattich [20] proposed a-strategy in which the boundary of the objects is sequen-
tially constructed, on the basis of consistent local evidence, by a model-driven algorithm.

13
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The algorithm is able to “jump” over occlusions and is reported to work well for two-

‘

dimensional overlapping parts.

Wallace* et al. [52] describe a system that uses local shape descriptors for

. recognition of single aircraft silhouettes. Although not used for binpicking the method is

general. -First, the boundary of the object is traced, and peaks and valleys in the curvature
function are detected. The local shape descriptors are arc length between peaks and angle .
change between valleys. The list of image features is matched against the lists of the
models, and the unknown object is recognized by the closest match. Tejwani and Jones

\
[48] used a similar system for the recognition of partial shapes. ~

Relaxation techniques have also been used for the purpose of matching two-

dimensional shapes. Local features in the image are computed and then matched to all

* the features in the object models. For each image feature a vector is stored containing

the estimated probability that it corresponds to each feature in the models. These vectors
are updated by a relaxation algorithm in which neighboring consistent labelings support
each other. At the end of the labeling process image features are recognized as their

vectors' entries with the highest probability. Methods using this approach can be found in

[6.11.44.45].

O

>

The Hough transform and modified versions of it have been used for shape tecog-
nition, such as the generahzed Hough transform which detects arbitrary two-dnmensnonal
shapes [4] and a subtemplate based version of the Hough transform that recognizes oc-
clu‘ded objects [4]. Segen [46] describes a Hough based technique witt; a particular search
method‘. Initially, objects have three degrees of freedom, namely rotatior and x-y trans-
lation. Tl;ese three dimensions are reduced one at‘a time by the use of one-dimensional

i ' ‘ 14



Hough transforms.

-

" The methods described above differ from each other mostly with regard to the
local features used. and on the way in _vghich they perform matching between models and
data. The basic approach.to binpicking is that of object recognition, which is in turn
defined as a representation and search problem. In view of this paradigm, local features
are the means to represent the world. whereas matching algorithms correspond to search

h)

procedures that ensure scene, interpretation in a limited context. _

This concludes the review of papers concerning the recognition of identity, po-

sition and orientation of two-dimensional objects. «

2.2.4 Methods Using Local Features for the Recognition of 3-D Objects

-

With regard to binpicking three-dimensional parts we will first consider systems
that use television cameras. Systems with other types of sensors, such as tactile sensors
and range cameras, will then be discussed. This clas:sification of methods, by the sensor
type they use, seems to be adequate, since systems in the same group have to face similar

limitations and constraints due to the nature of their sensory input.

Kelley et al. [26] at URI (University of Rhode Island) have developed three vision
algorithms for binpicking. All the algorithms are holdsite driven, that is, they recognize the
k;cation of potenti?l gripping points for a particular type of gripper. Part acquisition is then
‘ attempted, followed by the computation of object’s pose. Two types of grippers are used:
a vacuurp cup gripper and a parallel-jaw gripper. Object grasping with the vacuum cup
requires the detection of patches of smooth surfaces, whereas with the parallel-jaw gri;;per

@
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it requires two opposing parallel edges, linear or curvilinear. The heuristic techniques

detect these surfaces and edggs. and thus they provide a st;ong indication of potential
holdsites. One such techr:ique is called shrinking. It is mainly used for finding planar
surface patches where a vacuum cup can be applied. First, a gray level picture of the scene
is taken Intensity and gradient thr\esholding are then applied so as to separate parts from
background. and also overlapping parts from one another This last procedure outputs a
binary image. which i1s subsequently eroded The shrinking operation amounts to iteratively
peeling the boundary of ,\ﬁ\he objects until a preset number of iterations is achieved, as shown
in figure 24 The remalw are clustered by distance into regions The largest of
these regions are labeled as potential holdsites for a vacuum cup gripper

: .

Il

ey

le

Figure 2.4 Different erosion levels as obtained by the shnnking procedure (adapted
from [26])

Another method s the collision fronts algorithm, which can be considered as
a gray-level version of the shrinking algorithm. Its objective, however, is to search for
opposing parallelsgdges which correspond to parts that can be grasped by a parallgl-jaw
gripper. This alggrithm attempts to obtain the reduced skeleton, namely the subset of the
skeleton that is bounded by long parallel edges. by propagating edges towards the middle

7/

of the part. Whenever a propagating edge encounters an edge being propagated from the

b ) 16



(c)

“‘} <

Figure 2.5 Collision fronts applied to connecting rods (a) shows the original image.
whereas (b} illustrates the gradient image and (c) the collision fronts (from {26})

~>

opposite direction, a collision point is formed. Collision points are subsequeg\tly clustered
into collisioh fronts by using a line merging technique. The longest collision fronts indicate
L3

the presence of potential holdsites, as shown in figure 2 5. ) B
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The 'third method proposed is the parallel-jaw filter algorithm, which uses

" matched filters for detecting holdsites (see figure 2.6). In all, four "eigenﬁlters:' are applied
to the image, yielding the\ position and orientation of potential gripping points in the form

of parallel clamping surfaces. The filters are rotated versions of the parallel-jaw template.

The shrinking. collision fronts and parallel-jaw filter methods are complementary. since

they can be used for diﬂe(ent grip’per types. objects and lighting environments. A robotic

system using these algorithms has also‘been implemented with reportedly good results.

Further work on the same holdsite-driven approach. by researchers at URI. can be found in

[12.13.27).
¥
I o -
Dol : T
N -
CRIPPEN PIECE CkIPPER
Figure 2.6 Parallel-jaw filter schematic showing an appropriate operator structure :
for holdsite detection Maximum response is obtained when the central region
corre$ponds to the holdsite and the [eteral ones map into free space (from |26))

Boissonnat (7] describes a method for matching a robot hand”structure to an

object’s contour. The location of stable holdsites is computed by means of a local anal;sis
of the otiject sthhouette The polygonal approxlmatl'oni of the sithouette is segmented nto
primitives, and these primitives are then parametrized. The final result is the complete
list of possible gras!:s. ‘The main adva(rgage of this algorithm is that it fc;llows a well-

defined general procedure for finding stable gripping points. However. it requires a properly

computed object silhouette as an input.

Fukada et al. 36] built a system which recognizes crankshafts that are tightly

arranged and piled up in multiple layers. Their algorithm first carries out the con ectivity

)
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analysis of the input binary image. Then it computes elementary plobs by using a line fitting
s

procedure on boundary pixels of connected regions. At this point, blobs are matched to

object components, and finally groups of blobs are recognized as objects on the basis of

relational models Object pose is computed simultaneously with the recognition stage.
~n ‘ .

. Horn and lkeuchi [21] have used‘photome}tnc sZereo to find surfacg orientation
at every pixel Three images of the scene are obtained ysing a single CCD television camera 4 -
and three different light sources Triplets of intensity values for the same pixel under three
different hghtings are mapped into surface onentatioh vectors by means of a look-up tgble
developed using a calibration object The result of the photometric stereo module is called
a needle diagrant of the scene. since it can be shoém as a picture of the surface covered with
short needles. each‘;)eedle being parallel to the local normal to the smurface A segmentation
procedure is then caé\ned out This procedure divides-the input scene into 1solated regions
based‘ on the surface orientation data generated by the pHoto‘metnc stereo module Edges
are detected 1n areas where the surface normal vanes discontinuously with position, and
also 1n %areas where surface \orientatnon 1s undefined due t& either mutual illumination or
shadoyyjng O{wz:e the /|:r1age has been segmented. one region ;s selected on the basis of
its area ;ﬁf} Ealer number Figure 27 shows the detailed needle diagram over the target
region Next, an orientation histogram is generated for the selected region. The orientation
histogram is a discrete approximation of the Extended Gaussian Image (EGI) The EGI
of the object (i.e the region) is matched against model EG!s in order to determine the
cbject’s attitude. Object identity is assumed to be known. but could also be found by
EG& matching. Furthermore, lkeuchi et al [24] have added a binocular stereo module to
their photometric stereo(;ystem. Binocular stereo Eenerates range data so as to produce

—

a coarsely sampled elevation map of the scene. This depth map is used by the planning

< . 19
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Figure 27 Detaicd needle diagram (from [24],

*

progess in order to compute collision free grasp configurations

Tactile sensors are also used to provide range and surface onentation data
Grimson and Lozano-Perez [18] describe a system that has tactile sensing capabilities An

object in the field of view can be identified by analyzing sparse range and surface normal

data obtained by the sensor Object models are stored in a CAD-type database and have

discrete faces Matching 1s performed by pairing range data points to faces in the object

models

Equation 2.2 shows that for m known objects with n, faces each. and s range

data|points, there are ¢ possible combinations of pairings

20
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c= Z(n,)’ (2.2)

8 1=1

4

v

The resulting tree of combinations is searched to find a consistent set of pair-
ings, which is the basis for object recognition. The tree search may be accelerated by
the use of face distance and normal constraints that prune almost all of the combinations.
Grimson [19] has also proposed techniques for acquiring position and surface orientation
data about; points on the faces of objects so as to select sensory points that will force
a unique Interpretation of the identity and pose of the object with as few data points as

possible

Rodger and Browse [40] have proposed a system that attempts to integrate
visual and tactile inputs Object models are clear!y edge-based. in that objects are brokers
into faces. which are in turn described by their edges Visual input 1s used to detect edges
and to compute their length and attitude, whereas tactile input indicates the location of
corners, edges or flush contacts. Matching and object recognition are performed on the
basis of sensory data provided by both sources of input, namely, edges and corners. The
approach seems to be adequate. however a system implementing this algontf'\m has yet to

be built

3

2.2.5 3-D Vision and Binpicking

We will now turn our attention to some research efforts which attemptto solve
the hin-of-parts problem by using three-dimensional vision (i.e. rar\xge maps). Yang and
Kak [53.54] describe an algorithm for detecting the identity and pose of the topmost object
in a pile. Objects may be planar. like those of the convex polyhedral type, or curved, such

21
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as those that can be identified uniquely by using EGl's. The first step in the algorithm is

w

finding the highest point in the scene, which is assumed to belong to the topmost. object

in the pile. Planar objects are then segmented by a region growing procedure based on

surface normal adjacency and object normal constraints. Once the object is isolated, its

. h \‘
B EGIl is computed so as to be able to recognize the object’s 1dentity g‘nd attitude. In the case
of curved objects boundary detection 1s used to segment the topmost surface. its interior

1s then filled 1n  Object 1dentity ts detected by means-of-surface curvature analysis, while

the EGI 1s matched with prototype EGIs uyorder to yield object pose

:‘\gln et al [1] use local features found in three-dimensional 1mages so as to
recogmze randomly oniented piled objects Therr method 1s called " pose cluster matching”
It consists of first computing single local-feature assignments, after WF:I‘Ch the algorithm
finds mutually compatible sets of features that constrain the match pose Finally. clustering

( . 1s performed Object identity and pose are dictated by the largest set of consistent features

Archibald and R»oux‘([2] have buillt WITNESS. a system for object recognition
using range images Planar surface extraction 1s performed by means of clustenng, on
the basis of slope. and region merging Objects are modeled t;y augmented surface adja-
cency graphs Thus, matching an object with a model is equivalent to graph matching for
|so.morph|sm The method used s called heurstic augr}nented graph matching and takes

1

into account the following constraints structural compatibility. relational compatibility and
¥

-

rellabihty

IS

Bolles and Horaud [50] have extended the local-feature-focus method [9] in order
to detect 3-D objects using range maps Objects are recognized one by one. on the basis
‘( of clusters of consistent features, and then the system builds a global description of the

22



scene that describes whidh objects are on top of the others. -
O " a

Van Laethem et al. [50] describe a holdsite-based approach to binpicking. First
the range image is approximated by ﬂa.t regions. Then, the algorithm searches for g;'ipping
sites that the gripper: can access following collision-free trajectories. Roth [42.43] also uses
a holdsite driven method. His algorithm™finds the highest point in the range image and
then computes the orientation of the major axis of the object containing the highest point.
Several profiles of the object are subsequently collected perpendicular to its major axis, and
- finally thebest legal holdsite is computed. This is achieved by using a set of parameters

§ for n’1easuring holdsite quality: slippage, which is dependent on the angle between the two

o2
clamping surfaces, stability, which is proportional to the area of contact between the gripper
fingers and the object: and safety, which is related to translational uncertainty Figure 28
- illustrates a holdsite detected using this algorithm.
-
/z
[}
/
Figure 2.8 Example of a computed holdsite whose presence is indicated by the two
% e white rectangles (from [42]).
( “ 23
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A very interesting approach to object recognition using range images has been
proposed by Oshima and Shirai [36]. Object models consist of regions, with their respective
properties, and the topological relations between them. That is to say that models are
graphs which have regions as nodes and topological relationi as branches. Matching an
image to a model ;s a combination of data-driven and model-driven search processes, as
shown in figure 2.9. The first part of the matching algorithm, which is data-driven, consists
of finding regions in the range image.and separately matching them with compatible regions
in the object models The second part of the procedure, which is model-driven. sequentially

k-]
takes single region image-model pairings and searches for more global evidence of the match.
That is, adjacent regions are also matched and dn overall measure of the adequacy of the

match is determined This procedure is equivalent to graph matching, and could prove to

be too sensitive to errors in the segmentation of the rSnge map

N
g _scene 10 pe recogmized coject modes
AL
l I { v\l
]
kernet
regions N doto-dre Y
oround kernel  motChing
model-drven
mﬂfchlhq

Figure 2.9 Matching process, from [36]°

, 2.2.6 Discussion

At this point, having described a large number of algorithms, it becomes nec-
essary to summarize the work that has been done to date in search of solutions for the

24



bin-of-parts problem. Thus, a number of remarks can be stated concerning the state-of-

1-

2-
i

3

e eremE D R Y g

the-art in binpicking:

Algorithms for the recognition of two-dimensional overlapping objects are reported to

work fairly well They use the recognize-pick paradigm, and are usually model-driven.

Systems based on sensors of three-dimensional objects, such as range cameras and
profile scanners, are most promising since they have the potentlal.for a general so-
lution to the bin-of-parts problem. The systems that have already been built look
rather primitive and show considerable room for improvement. However, serious re-

search efforts are now ur*der way, and better systems are therefore to be expected in

the near future

E

Holdsite driven algorithms for the recognition of three-dimensional objects asmg the
pick-identify paradigm are very interesting The idea behind this apprsach 1s to break
the difficult problem of recognizing occluded 3-D objects into two which are easier
to handle individually Namely, the problem of finding a suitable holdsite somewhere
in the image, and then the problem of identifying an object that has already been

isolated from the rest.

The current methods just described also have several drawbacks. Most of the

algorithms designed for binpicking deal only with flat objects. and are not easily modifiable

for dealing with three-dimensional objects Furthermore, three-dimensional sensors are

" very expensive, especially when custom made Finally. even the holdsite-based methods

previously described have some significant weaknesses:
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- Kelley et al [26] use intensity images for holdsite detection, whereas closein robot

“control and acquisition are guided by binary optical switches. This method's main

disadvantage is that it does not ensure collision-free grasp configurations.

e

- Boissonnat [7] requires a silhouette in order to produce a list of legal grasps. However,

‘

the generation of connected contours is a difficult problem on its own.

v
- Van Laethem et al [50] use range images to find flat regions which constitute adequate ,

holdsites for a vacuum-type gripper. The constraint that objects must contain flat

regions Is in our view too restrictive since it excludes a wide range of industrial parts

(pipes. bolts, etc)

- Roth and O'Hara [43] employ depth data to find and acquire the highest object in

.

a pite. However, the method by which the onentation of the object’s main axis is

v

computed appears to be inadequate, since it involves unnecessary robot motion for

range data acquisition purposes

26



Chapter 3 The BIFOCAL System Descripiion

The BIFOCAL method 1s designed for binpicking three-dimensional industnial -
parts using a holdsite-driven approach. Its sensory hardware requirements are only a CCD
TV camera and a single-point range finder, both readily available The visual input is use>d

for holdsite detection and fast control of the manipulator, while the depth data provides

™ )
close-in control .

The proposed approach consists of first using computer vision to isolate the
3

location of potential holdsites in the intensity image The robot gripper is then sent to the

[

most promising holdsite using line-of-sight control. Close’to the object. the robot is guided

by a single-point range finder, and an attempt 1s made to grasp the unknown object. Upon
successful grasping the part is shown to the CCD camera, and its pose is easily computed.
Several assumptions are made that simplify“the~problem. while keeping the solution as

general as possible:

(1) The robot hand consists of a‘parallel-jaw gripper:

""(?) The parts to be picked contain at least one region which can be used for grasping
.

0 . by a parallel-jaw gripper (i.e. two parallel clamping surfaces):

RS AR R S A e AR A A et S B R
Y H « - S e 7 N ) v ~ &y




(3) The scene is static, meaning that the bin does not move during processing:

/
|

¥

(4) The weight of every individual part is within the lifting ability of the robot:

o=

' (5) A CCD TV camera is placed over the bin of parts_in a fixed position, with its main

axis orthogonal to the horizontal plane, and

-

s
(6) A single-point range finder is wrist-mounted, so as to provide reliable close-in infor-

mation about potential holdsites.
P , -
In view of these constraints, and in compliance with tl;e selected appro;ch. we
designed the BIFOCAL algorithm, which consists of two main steps. The first is concerned
with the pracessing of 2-D images in order to extract parallel lines which constitute potential
( holdsites in 3-D space. Figure 3 1 shows an examiple of Iine~detection obtained by applying
Mansouri's hypothesis prediction /verification par;digm [34] to the image of a pile of rods.
The second step deals with the guidance of the robot to the selected gripping points by
using scaitered local ddpth data provided by the range finder. One of the principal objectives
of this system is thus to attempt the graceful integration, as visual feedback signals, of

the sensory inputs provide%)y a. TV camera and a single-point range finder. These factors

- 9 . 3 . - 3
result in a system that is considerably more reliable and robust than previous ones.

3.1 The Choice of a Single-Po thange Finder
} A
The four basic material components of our system are: Rcomputer. the robot,

( the T.V. canﬁera and the range finder, as shown in figure 3.2. For the first three elements

- »
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Figure 3.1 Example of hine detection

we selected existing equipment at the McRCIM Computer Vision and Robotics Laboratory
a Microvax Il computer. a Puma 260 robot runming RCCL [31], and a Fairchild TV camera
However, a single-point range finder had to be selected and acquired This section deals

with the problems and issues involved in the choice of a range sensor

The purpose of s'mgle—point range finders 1s to provide accurate measurements
of the distance between the measuring device and the object’s surface (1e the depth) The
“ . ’

specifications that we estabhished for an ideal range finder. as required by our particular

application, are the following

v - Light weight. since the device 1s to be wrist-mounted

- Output proportional to depth, analog or digital.
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Figure 3.2 The BIFOCAL system
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- Large measuring range. from a few mm to some 20 ¢m.

<

- Good accuracy. error lower than 025 mm

- Small volume ease of installation

e

i

Ease of calibration of the device

e

The measurements should be independent of variations in color texture, orientation

and magnetic properties of the object s surface

Inexpensive

\‘\(ve different types of range sensors were evaluated pho{'o—electnc, tnangulation

based ultrasonic inductive and capacitive

311 Photo-Electric Sensors

Photo-electric sensors use modulated infrared light to detect the presence of

objects Each sensor contains a light source and a receiver The light source combines

-

an oscillator and a LED. so as to generate modulated light The receiver 1s compnised

of a photo transistor, an amplifier tuned to the frequency of the modulated light. and an
<
output switch Detection occurs when a sufficient amount of light 1s reflected directly off
the object and returned to the recewver. as illustrated in figure 33 Thus. the output switth
o

has two possible states ON / OFF

3
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Figure 3.3 Diffuse sensing

Before using this type of sensor a few considerations should be taken into

j account

\

~

It only provides a binary output
- Sensing distance depend\s on the surface reflectivity of the object
v
- Highly reflective background objects may be detected by the sensor.

- If depth must be measured, then one must use the response curve of the sensor for

this surface A typical curve is shown in figure 3 4

This response curve is ambiguous. since for the same response y there are

; ®
t%vo possible depth values z, and z; (see figure 3.4), which constitutes an important

“@éadvantage'. i

o
g2

3.1.2 Triangulation-Based Sensg¢rs

~

Triangulation-based sensors also use infrared light or laser beams. 7awever.

‘

/
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they have a different principle of operation. as shown in figure 35. They basically consist
of an emitter and a linear sensor (a receiver) The emitter projects an IR or laser beam of
light, whereas the linear sensor captures the light reflected off the object’s surface The

depth measurement is a function of where the reflected light hits the sensor.

»
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Figure 3.5 The triangulation principle
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3
Triangulation-based sensors are usually very accurate They are also refatively
0 expensive, especially those using laser beams
+ 3.1.3 Ultrasonic Sensors .
Ultrasonic sensors use the time-of-flight principle of operation A transducer
transmuts a short ultrasonic pulse the echo of which s receved by the same transducer
The time elapsed between the transmission and the reception ot the signal 1s proportional
to the distance traveled Since the spced of sound 1s known the distance between the
sensor and the reflecting surface can be calculated
r——-—— T s s s - - e .
———Ya-s §
. ¥
% TRANSDUCER A 40 mm
U ¥
Figure 3 6 Ulrasonic beam poattern
N\
Again a few considerations are worth noting concerning this type of sensor
. 9
- They are relatively fragile
- Measuring range goes from approximately 10 cm to tens of feet i
S
ﬁ@ - - Relative accuracy 1s poor when measuring short distances
’

./-“\s
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- The beam pattern. shown in figure 3.6, is too thick, thus yielding an overly coarse

resolution.

3.1.4 1{inductive Sensors

Inductive proximity sensors consist of an oscillator and sensing coil. a detector.
and an output switch. The oscillator generates an electromagnetic field through the sensing
coil When metallic objects enter this field. eddy currents are induced in the objects. causing
a voltage drop in the oscillator The detector senses the voltage drop and signals the output

to change state

~

AXIAL fpkoé;

\ D

Electromagnetic
ield

TARGET

LATERAL APPROACH
|

TARGET

w L3,

SENSOR # St )

Figure 3.7 Typical sensing field

Figure 3.7 illustrates a typical sensing field for an inductive device. Note that
the sensing distance varies for different metals and alloys. and is also a function og object
size. Moreover, even if the voltage drop is proportidhal to the object-sensor distance, there
is ambiguity due to the possibility of a lateral, rather tha'n axial, approach.
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3.1.5 Capacitive Sensors

Capacitive proximity sensors consist of an oscillator. a capacitor plate, which
is the sensing device, and an output switch. The capacitor plate generates an electric
field which is altered by the physical (dielectric) properties of the material to be sensed.
As an object, composed of elements such as glass, plastic. wood and metal, enters the
electric field. capacitance increases bringing about a change in oscillator frequency. The
detector senses this frequency vanation and outputs a voltage proportional to it. As for
the inductive sensors, sensing distance is a function of the sensed mat,erlal and its size

Capacitive sensors are mostly used for binary object detection

3.1.6 OQur Choice of a Sensor

After carefully considerating a wide variety of sensors, including Micro Switch’s
909 series inductive proximity sensors, Visitronic’s HVS electro-optical distance gauges,
Candid Logic's Precimeter laser range finder, Skan-a-matic’'s C40000 series modulated
visible bea@ot&electnc sensors, Tri-tronics’ Smarteye infrared photo-electric sensor,
Diffracto’s Laser Probe 400 laser range sensor, and ISSC’s self-contained inductive analog

sensor. we selected Keyence's Optical Displacement Sensor

Keyence's PA-1830 range sensor uses the following principle of operation. an

infrared LED beam. narrowed by a lens, 1s applied to the object Diffused reflection is

* Micro Switch. 825 McCaffrey. St-Laurent, Quebec HAT IN3, Visitronic, PO Box 5077. En-
glewood, CO 80155, Candid Logic, 31681 Dequindre, PO Box 71943, Madison Heights. Mi
48071-0943, Skan-a-matic, Route 5 West. P O. Box S, Elbridge. NY 13060, Tri-tronics, P.O
Box 25135, Tampa, Florida 33622, Diffracto. 6360 Hawthorne, Windsor, Ontario N8T 1J9,
ISSC. 435 West Philadelphia, P.O. Box 934, York, PA 17405-0934; Keyence, 407 McGill suite
312. Montreal, Quebec H2Y 2G3
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focused through a reception lens, forming a spot image on the photo detector. This spot

( shifts proportionally with object displacement; therefore its position is converted to an

a

electrical signal which is transmitted to the sensor’s controller, and subsequently interpreted

5 as a distance.
L)
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Figure 3.8 Keyence PA-1830 sensor’s response curve
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Figure 3.9 Keyence PA-1830 sensor

To summarize, this sensor basically uses an infrared beam and the triangulation
principle to provide an output that varies linearly wi . as shown in figure 3.8. Its
( specifications are the following:
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Resolution 10 um

éo

L ]

Analog output, between -5 and 45V

Output unaffected by material type or object color

- Standoff 40 mm

Measuring range -5 mim .

Accuracy 20 pmn + 1% of measurement

Maximum spot diameter 3 i

Weight approximately 80 gr

- Price. approximately 5000 CDN$

The reason for buying this particular sensor 1s a combination of adequate mea-

suring range, light weight, very good accuracy and reasonable cost

3.2 Lighting

’

Lighting 1s a subject too often overlooked by computer vision designers, even
though most of them would readily admit that there i1s no substitute for a high quality

image Pre-processing techniques can be time consuming and do not always yield adequate
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results. The selection of a;()propriate sources of illumination, whenever possible, is thus an

important first step in the solution of an image processing problem. °

A conflicting consideration is the fact that, when@signing a system, one does
not want to render it so dependent on illumination that a minor lighting variation would
cause the algorithm to fail As a £onsequence. when the system designer has control
over the environment, the best solution is to select lighting equipment so as t9‘1>bta|n the
/éest possible image and, at the same time. allow for illumination variations by designing

adaptive, flexible algorithms

&

In our case, the objective Is to detect parallel lines, and we want those hines
to correspond to physical edges. not to shadows We therefore selected a fluorescent ring
as the sole source of ilumination, since it provides with diffuse, almost omnidirectional,
hghting Finally, the camera was placed at the centér of the fluorescent ring so as to

minimize any shadowing effects. as illustrated in figure 3 10

3.3 Hand-Eye Calibration ,
Hand-eye calibration is necessary for controlling the robot by visual feedback.

It consists of a mapping of image coordinates into world (ie robot) coordinates.

Given the fact that axis of the camera is parallel to the vertical axis, we selected
a very simple calibration procedure. For any given value of z {i.e. z = constant) image
coordinates (u,v) are mapped into world coordinates (z,y). as shown in equations (3.1)
and (3.2): ; ,
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Figure 3.10 Lighting set-up

T = ay +au+ azv (3.1)

% By + Bau + B3v ‘ (3.2)

whe:e ay,09,03,01,0; and B3 are calibration coefficients. The image-world mapping

therefore consists of a translation and a rotation. Obviously these coefficients are only

3 .
valid for a specific z = constant plane, which is referred to as the calibration plane. Also
to be computed are the heights of the calibration plane and of the camera, since they allow

the interpolation of the calibration results over the entire volume defined by the camera’s

N * P
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Figure 3.11 Calibrated space J

field of view. as illustrated in figure 3.11. Hence, eight calibration parameters are required

to map any image point (u,v) into its corresponding line in x-y-z space

Since only eight unknowns have to be determined, four points would be suffi-
cient to obtain a single solution. By point we refer to the ‘camera coorqinates (v,v) and
the corresponding world coordinates (z,y, 2). However, calibration accuracy can be con-
siderably improved by collecting. more points so as to generate an overconstrained system
of equations, and then solve it usin§ a least-squares fit. We employed this latter technique
with about 20 points. The latter are collected by first conpecting to the robot’s end effector
a special calibration tool, shown in figure 3.12, that contains regularly spaced marks on
its surface-. a:rd subsequently showing it to the TV camera. The operator then manually
locates those marks in the image, and each one of them is sa;ied as’a (u,v,z,y,2) vec-\
tor. Once the desired number of points has been collected, the calibration parameters are

computed by solving the underlying system of equa'%ions. “The results obtained indicate

that the average error is approximately 0.33 mm with a standard déviation of 0.16 mm.
~ -
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_ These values are well within the tolerances that can be accounted for by the use of the

- “

range sensor, ‘which confitms the increased.flexibility and robustness brought about by this

-

additional source of sensory input.’

Figure 3.12 Calibration tool
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Chapter 4 Holdsite Determination Using a TV Camera

This chapter describes how holdsites are found in the intensity image There
are two main steps in finding potential holdsites in a two-dimensional image The first
consists of a lire detection procedure. whereas the second finds holdsites and measures

their quality and appropriateness

4.1 Line Detection

The line detection algorithm has been developed at McGill University by Man-
souri [34] and uses a hypothesis prediction / verification paradigm Given a pixel (z.,y.) i
the image, whose gradient, as computed using the Sobel operator, exceeds a pre-determined
threshold. 1t is hypothesized that a segment of a line exists which 1s centered at the (z.,y.)
pixel. whose onentation i1s perpendicular to that of the gradient, and whose total length 1s
equal to 2n +1 points (where n1s the order of the segment) Thus, a set of points {(z,,y,)}

is assumed to belong to the hypothesized line, as shown in equation (4 1)

H: V(Iuyt) €5 . (Il - Ic)eic + (y1 - yc)eyc =0 (4 1)




¢ 3

where H is the hypothesis. S the segment. and (e, ey ) the gradient components along

the z and y directions at pixel (z.,yc)

/

The sample mean orientation of the gradient through the segment are given by

Sz and Sy (see equations (4 2) and (4 3))

o 2n+1
Sz = é;l:? L €z (4 2)

1=1

1 }n+1

Sy=-—— Y
YT 1 = 43)

e

In a similar manner sample vanances s,? and S, are given by equations (4 4)

’

and (45)

1 2n+1 )
2 .
Si= o Y (ez, - 52) (44)
1=1
1 it ,
2 \ T
S = 5- L (ey, - Sy) (4.5)
1=t

If we assume that {e; } and {e, } are normally distributed random variables
-
with unkown mean and variance, namely {u;,py} and {og,ag} . the sampling distributions
of the statistics given by equations {46) and (4.7) are then student t distributions with-2n
“

degrees of freedom.
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52
In+1 \)
Sy-u
Y 5 Y (4.7)

Figure 4.1 Student t distnbution

-

-wr
Therefore, it 1s possible to show that a 100(1 — ) percent two-sided confidence interval

on u; is given by equation (4.8):

Sz —t S < Sz +t 52 (4.8)
R L U T Rt i A TP S '

This also holds for the confidence interval on p, (see equation (4.9)):

_ 51 _ 52
C - vt 2n 41 S S Syt 5T (4.9)

) 45
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L=

Maintaining the same assumptions, it is also possible to prove that the sam-
S

pling distributions of the statistics given by equations (4.10) and (4.11) are chi-squared

distributions with 2n degrees of freedom.

(4.10)

(4.11)

Figure 4.2 Chi-Square distribution

o

Hence. we can show that a 100(1 — a) percent two-sided confidence interval on 03 is given

. L

by equation {4.12):

2nS? 2nS?
L (4.12)
Xa, Xi-a2 °
2" 2"
Agéin. the same analysis is also true for 03. as shown in equation (4.13):
]
46
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nS?  , 8]
: X2 <oy < Pe) (4.13)
g ] 2o 1-%.2n
™ Thus. in order to establish bounds for the variance and mean difference for

X

100(1 — )% confidence intervals on the estimation of parameters, namely pz, uy,02 and

03 . we use the results stated above This procedure yields, for u;. a bound on the error

D;. which 1s computed as shown in equation (4 14)

Similarly, Dy, 1s computed as shown in equation (4 15)

_ 52 - 52
Cyc ~ Sy - t%,Zn n+1 €yc — Sy +t%,2n n +1‘) (4'15)

AT
Bounds on the variance. V; and V. are also computed in a simple way. as

)

Dy = ma:c(

llustrated in equations (4 16) and (4 17)

2 ~

« Vo= 2% (4.16)

X —%,Zn

' 2nS2
- -7y (4.17)
Yy X2

—%,Zn
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At this point, we can state four tests of hypotheses for the purpose of confirming

or rejecting the existence of one specific line:

S
Ho uz = pgy as opposed to  Hy pz # uz (4.18)
/
og unknown
| »
| Hy py =pyy as opposed to  Hg py # py, (4 19)
\
| 05 unknown
- H,y 0% = o? dto Hg o) #al 4.20
- 2 07 =07, s opposed to 6 Oz % 0% (4.20)
)
H 2 _ 2 d L2 2
3 Oy =0y,  3s opposed to Hy oy # 0y, (4.21)

Hypotheses H( through H3 have to be true in order to infer the presence of the

.
line Therefore, line L exists if and only if the following expression is true: (»
(Vz < Q%) and (Vy 795) and (Dz < A,) and (Dy < Ay, (4.22)

where 22 and Qg are user-determined thresholds on variance, and A, and A, are the

@ threshol¢s on mean differences, which are also selected by the user.



el

~

This line detection algonthm finds lines in a sequential manner. Thus in order/\ ’

to diminish the number of lines generated by the same physical edge. which is in part due
to the fact that edge operators tend to thickeh edges, a new line I1s not created if it is
located in the neighborhood of previously found lines This is stated in a more nigorous

way by equation (4 23)

-

U,

5, < > Card(S,{ ) V(S ACard(s (4.23
‘ J 1 J

where S, s the new line and S, a previously found segment N is the neighborhood defined

as a 3-pixel wide line whose center and orientation comcide with those of the line for which
;

it 1s determined A 1s a user selected coefficient that sets the threshold with regard to the

maximum amount of overlap between new and,previous lines so that the new lne can be

saved as such

When lines are found in the intensity image they are stored in order on the
basis of their onientation This contributes to the subsequent processing of the lines which

analyses certain relationships between them so as to detect more elaborate geometrical

structures

4.2 Holdsite Finding

Once the lines have been found and stored according to their orientation it
becomes necessary to detect the potential holdsites that they generate. A prlon.\any
combination of two lines in the database may constitute a holdsite These large number of

possible combinations must therefore be pruned so as to retain only those pairs of lines that
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are most likely to correspond to potential holdsites. Hence. the holdsite finding procedure

0 consists of a search algorithm.

Three parameters applied to pairs of lines are used for pruning the search space:
orientation, distancé and separation Since the algorithm searches for parallel clamping
surfaces, the orientation constraint can be stated as in equation (4.24), and illustrated a;
in figure 4 3. This constraint is used to reject line pairs whose orientations are not opposite

| ]

| (ie. approximately 180° apart)

|
|
|
|
| x (e +175%)360 < 03 < (g +185°) 35 (4.24)
|

where ay 1s the orentation angle of the first line Ly . ay is the angle of the second fine L,

¢

. and the values are modulo 360

I s

0 Figure 4.3 The orientation constraint




Figure 4.4 Geometric model of the holdsite

Now. considering the geometric model of the holdsite shown in figure 4 4, we
can establish the remaining two constraints The first relates to the distance between the
centers of the two line segments Ly and L, . This distance constraint, as sllustrated n
figure 4 5. causes the pruning of those pairs composed of lines which are too far apart
Specifically. potential holdsites are rejected if the distance between the centers of gravity

: 5
of the two lines exceeds a computed threshold. as indicated in equation (4.25). h

d(Ly,Ly) < Dpaz (4.25)
)

where d(L1, L) is the distance between lines. Dpg; is the maximum allowed distance (see

equation (4.26)). and d and h are the dimensions of the holdsite.

\ )
Dpnaz =\[ 7+ h2 . (4.26)

The last is the separation constraint. It is based on the average separation between the

two segments. as defined in figure 4.6. This separation must be in the range indicated by

equation (4.27):
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Figure 4.5 The distance constraint

0.75h < s <125h (4.27)

where s 1s the average separation, and h the holdsite width

{
L1’ \
S2
\
P S1 >

( =(51+52)/2

Figure 4.6 The separation constraint

@ The separation constraint therefore consists of matching procedure between the line pairs
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and the holdsite model. since it allows the algorithm to retain only those pairs of lines

which match, at least to a certain degree. the underlying model.

The constraints described above permit the search algorithm to build a lst of
potential holdsites which, as in the case of lines, are ordered according to their orientation.
These holdsites will be evaluated according to suitability criterra which we will describe

later However, we must first deal with the problem of multiple representations for the

holdsites
4.3 Holdsite Filtering

The algonthm hypothesizes potential holdsites which may not be unique for
each actual holdsite In other words. the same physical holdsite may correspond to many
computed holdsites For reasons. of efficiency and logical consistency., we must therefore °
filter the redundant potential holdsites so that there is a one-to-one mapping between the
physical world and a representation of 1t In view of this, a filtering procedure has been
implemented in which holdsites ;re clustered on the basis of location and orientation. Two
Holdsnes are merged together if the distance between their centers of gravity 1s smaller

than a model-based threshold (see equation (4 28)} and if therr respective orientations are

approximately equal, as stated in equation (4 29) ' 5
(‘2 .
(€92, — cz,)? + (cgy, — cgy,)? < (g)z (4.28)
.
3
(81 — 25°%) < By < (B1 +25°) (4.29)
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where (cgz, 1€y, ) and (cgz,.cgy, ) are the centers of gravity of the first and second hold-

sites, respectwefy. and 31 and 3, are their corresponding orientations (see figure 4.7)

) “

N

Figure 4 7 Holdsitc merging criteria

/

After filtering. the remaining holdsites arc all distinct (1 e they correspond to
different local image structures) At this point, these well- defined potential gripping points
must be evaluated n terms of their quality and appropriateness  But before explaining
the manner in which quality 1s computed we describe the characteristics of a holdsite in
terms of what i1s dgsirable. of what makes a holdsite a good one and of the risks involved
N grasping an objfct with a parallel-jaw gripper It then becomes clear which parameters

should be used as a measure of quahty

4.4 Characteristics of a Holdsite

In this section we define four basic properties of a holdsite that characterize its

suitability to a parallel-jaw gripper. namely slippage. stability, accessibility and safety |

!
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,44.1 Slippage

F)

' 2
Slippage measures the probability that t;lgj\egmay slip out of the robot hand
during acquisition [43]. In the intensity image, the only cI;Je ‘about this parameter is given
by the alignment of the two clamping surfaces, which indicates the possibility of slippage
in the x-y plane as the gripper attempts grasping (see figure 4.8}. Thus we have:

*

Slippage o 0 (4.30)

&
v
&

Figure 4.8 Slippage in the 2-D image

4.4.2 Stability

) .

Stability during part acciuisition is directly related to the size of }he contact area
between the part and the manipulator’s fingers. In the intensity image. stability can only
be approximated by assuming that it is proportional to the overlap of the préjection of the
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first line onto the second line that constitutes the potential holdsite, as illustrated in figure

4.9. Thus we can state that:

Stability o« overlap (4.31)

! .
OVERLAP — \ 44— -
L1

\

L2

/7

Figure 4.9 Stability in the 2-D image

4.4.3 Accessibility

For a specific holdsite and a given gripper, accessibility can be characterized as
the binary decision as to whether the holdsite, can be reached or not. A holdsite may be

located in an intensity image, b,ut it might be infipossible to grasp it. as neighboring objects

]

‘might impede acquisition. The height of these potential obstacles cannot be determined in

an intensity image and thus neither can holdsite accessibility. \

4.4.4 Safety | 4

Safety is determined by the effects that uncértainties in the translational and

Piiags &

A 56.
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& -
rotational location of the gripper may have on the acquisition process, such as thzjossibility

of collisions or grasping failures

Once a sutable holdsite has been detected. the grasping pose of the gripper 1s
computed It consists of six values, the 3-D position (r,y, z) and the orientation angles
(roll.pitch,yau’) Safety 1s the sensitivity of the stability and accessibility of the holdsite

to small changes in r y = roll.pitch and yau Thus

4

/
N
é Stabilit /
Safety o 7MY AL S (4 32)
or
b Accessibilit
Safety x -“f:;’ i (4 33)

if we reduce this to the r y plane, as i1s the case in intensity images. safety is
defined by the amount of displacement that the grasp configuration can tolerate along the

r and y'directions and about the z axis

4.5 Computation of Holdsite Quality

In hght of the matters discussed in the previous section, holdsite quality depends

Qn the closeness of fit between the data and .the holdsite model. and on the holdsite
F

characteristics. namely slippage stability, acceésubcllty and safety

a

As shown previously. holdsite accessibility cannot be computed on the basis

e L
of a two-dimensional image Furthermore, safety can be agcounted for by incorporating it

(A

into the shippage and safety computations This 1s achieved by adding a safety factor that

57
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results in more conservative estimates. Quality is therefore evaluated as a function of three

parameters: closeness of model fit ¢ f - slopage s; and stability s, . as given in equation

(4.34):

g =100 - acy — Bs; — s (4.34)

where ¢ indicates the quality in percentage, a,8 and ~ are constant parameters, ¢y is the
difference between nominal and computed holdsite separation, s; i1s the difference between

the orientations of the two segments that constitute the holdsite. and s, i1s the shift angle

as defined in figure 4 10

Figure 4.10 The shift angle

It is worth noting that c; equals zero for a perfect fit between model and data.
s; is also equal to zero if both holdsite lines have the same orientation, and finally s; has
a .\'/alue of-2erd if the two lines are exactly facing each other, thereby indicating excellent
stability. Therefore a quality of 100 % is assigned to a perfect holdsite and this value

decreases as the holdsite characteristics become less desirable.

)

The program computes the quality ¢ of every filtered holdsite and selects the
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three best potential holdsites whose quality is above a threshold (20 %). These ordered
‘ gripping points constitute the input to the line-of-sight module which controls the robot's
approach and the subsequent range scanning procedure. The line-of-sight approach consists

of sending’ the robot’s gripper towards the selected holdsite following a specific line in space. '

This line (i e. the hine-of-sight) is defined by the focal point of the camera and by the center

i .tx.mw

of gravity of the holdsite, as illustrated in figure 4 11.

T

= f )

e v TR KT

R

Camera

T Liine-of-sight

Crmefr - - - -

-~

rd
\‘_. rd
- ‘t‘
TS
. Holdsite

x “  Field of View

»

Figure 4.11 The line-of-sight

.

The robot, which was positioned outside the camera’s field of view during image
acquisition and processing, is moved to the line-of-sight at a pre-determined height. The
gripper orientation is selected so as to result in the range finder being aligned with the
line-of-sight and pointiné towards the holdsite center, as shown in figure 4 12. As for the

orientation about the line-of-sight, it is determined in order to position the gripper fingers

( parallel to the clamping surfaces of the holdsite.
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Figure 4.12 Gripper orentation during line-of-sight approach

At this point, the second step of the BIFOCAL VISION algorithm must be car-

ried out This step encompasses the guarded approach and the acquisition and processing

of local range data

z f . Robot Gripper

%

Range Sensor

A\

‘-L Line-of-sight
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Object
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Chapter 5 Range Processing

&

1

This chapter describes the guarded approach and the range image processing
techniques used in order to confirm holdsite existence. update the location of its center of

gravity and orientation, and determine whether the holdsite can be reached and grasped by
[

the robot gripper

5.1 The Guarded Approach

»

The objective of the guarded approach 1s to move the robot hand towards the
holdsite while at the same time preventing any collisions from occurring This 1s vachieved
by collectmig-range data as the robot approaches the holdsite and stopping the motion on

condition (+ e when the wrist-mounted sensor 1s at a certain distance from the object)

“ The guarded approéch is implemented in two steps due to practical consider-
ations concerning the range sensor, as indicated in section 316 and illustrated in figure
38 During the first phase the robot moves at a high speed along the line-of-sight until

o

the first positive indication is returned by the sensor. This takes place at approximately
v

50 mm from the holdsite. In the second phase the robot continues moving in the same




defectibn but at a much lower speed. Tl!i_s fine approach ends when the sensor is at exactly
35 mm froin the object, thus placing the holdsite within the sensor’'s measuring range so
that a local depth grid can be acquired by moving the sensor at constant height. In other
words, the guarde? approach determines the height at which the robot end effector should
stay throughout the whole range data acquisition process. This has the effect of ensuring

»

that the holdsite 1s always within the range finder's measuring range. o

The range gnd consists of four parallel profiles and has a rectangular shape

The location of the grid on the  — y plane 1s chosen as a function of the holdsite location
@
computed using the global mtgnSIty image. more precisely the center of the range grnid
1s selected so as to coincide with the center of gravity of the 2-D holdsite The grd's
orientation 1s chosen so that the collected profiles are perpendicular to the holdsite, as
Mlustrated in figure 51 The actual size of the grid 1s a function of the holdsite width h and
gripper thickness. Another factor is the required tolerance with regard to possible holdsite
location errors due to the 2-D image analysis In our case we chose to use a 12.5 mm wide by

25.0 mm long grid, the length being measured along the profile These dimensions ensure, |

foy/é’pecific parts and gripper. proper holdsite detection and accessibility computation.

5.2 Range Image Processing

Once the data have been acquired by moving the robot end.effector in a specific
way so as to generate a local depth grid (see figure 5.15, it becomes necessary to process
this range grid in order to confirm the presence of the potential holdsite. update its location,
and compute its accessibifity by a parallel-jaw gripper. This procedure is summarized in
the diagram shown in figure 5.2.
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Figure 5.3 shows such an accessible holdsite. It is defined by two clamping

surfaces separated by a specific distance as determined by\the holdsite model, having
specific areas of free space in front of each of the two surfaces. The size a, of these areas
is related to the size of the robot fingers. In our case we selected a, equal to three times

the finger width (ie ay, = 5mm ) as a safety precaution.

n PROFILE37
x

POTENTIAL
HOLDSITE

Figure 5.1 Path followed by the range sensor's beam as the robot end effector

moves so that the sensor can collect a grid of depth values
-

As indicated above the range profiles are collected perpgndicular to the main axis
of the holdsite. This can be done since the approximate holdsite location and orientation
are previously found in the intensity image. The range grid can therefore be processed row
by row. Every row corresponds to a different profile of depth values and is processed as‘
a one-dimensional digital signal so as to extract the location of the two clamping surfaces
that co.nstitute the holdsite. The profile processing procedure is llustrated, through two

-

examples, in figure 54.

The profiles are combined. because of their spatial contiguity. into an integrated

deécription of the grid. Profile processing is performed according to the following steps:

- Smoothing: Implemented by a Gaussian mask [30] which is applied over a neighbor-
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Holdsite Detection

.
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Profile Results

Computation of
Holdsite Location,
Orientation and
Accessibility

Figure 5.2 Diagram of the range image processing procedure
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Figure 5.3 An accessible holdsite

hood of five pixels. Its purpose is to eliminate small artifacts and other types of noise

generated during the range data acquisition process.

- Gradient computation' Implemented as a subtraction of the values of adjacent pixels

along a given row of the smoothed image.

- Local extremum detection: The objective is to detect the presence and location

of potential clamping surfaces which are assumed to correspond to extrema in the

signal’s first derivative (see figure 5.4).

- Holdsite detection: This step consists of detecting the first maximum-minimum pair

that matches the holdsite width, as discussed in Section 4.2.

When all of the profiles have been processed. we obtain a set {2 (jm), zx (7p) }.
where £ = 1,2,...,n . n is the number of profiles, z is the depth, j,, is the location of
the local maximum, and j'p is the location of the matching local minimum. In other words,
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&

this set consists of the locations of the clamping surfaces as detected in every individual

- v
@ profile. At this point we fit two lines using the least-squares approximation, one through
{z(7)} and another through {z(jp)} . as indicated by equations (5.1). (5.2) and (5.3). The
purpose of this procedure is tq combine the results of profile ?rocessing so as to obtain a

¥
3-D representation of the holdsite.

Let N
\

z=ay+b (5.1)

be the line which is approximated by a least-squares fit on the basis of a {z;,y;} set of

points. Then it can be shown that:

a:}:ykszyk—Zinxk (52)
(Cw)?-T1r 92 '

DTN e XY
SRR TSP I SE Y 53)

If the approximated clamping surfaces are not parallel within a tolerance of ten
degrees, the holdsite is rejected since this indicates a lack of consistency between the results
obtained for adjacent range profiles. Otherwise the holdsite is confirmed and its location
estir;tated as the center of gravity of the area enclosed between the two approximated lines,

) whereas its orientation is tarl;ten to be the av:rJage orientation of the clamping surfaces.
Holdsite accessibility is computed by verifying the depth values of pixels near each of :he

clamping surfaces. Accessibility, as described in Section 4.4.3, is a binary parameter' which
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indicates whether a holdsite can be reached or not using a specific robot gripper. Figure 5.5

shows the gwo/critical zones for accessibilityﬁ If the 'depth of eyery pixel in these zones is
below the required level for object grasping, which for the gripper used in our experin;ents
was equal. to the maximum holdsite height max;, zx () less 7 mm, t.hen the holdsite is
deemed accessible by the robot gripper. and a command is issued to the robot in order
to attempt part acquisition. The object grasping and manipulation operations consist of
several steps. First, the robot gripper is moved over the holdsite location and oriented
along the holdsite’s mair axis, then it is moved down vertically until it reaches the already
described appropriate grasping level. The robot gripper is subsequently closed so as to
grab the object, and finally the object is moved to a specific location and deposited in the

required orientation

ZONE

CRITICAL 87
[

L1
L2

CRITICAL
ZONE

AN

Figure 5.5 Critical zones for accessibility

We have therefore described in this section how local range information can

be used as a complement to the global intensity data, in order to obtain more accurate

" estimates of holdsite position, orientation and accessibility.
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Chapter 6 ‘ Results

in this chapter we describe the test results of the BIFOCAL binpicking system
when applied to piles of cylinders and stacks of industrial parts. We also analyze the
algorithm sensitivity to variations in gradient threshold values, holdsite models and amount
of collected range data. Finally, timing considerations are described and suggestions given

as to how to improve execution times.
6.1 Binpicking Cylinders

This section deals, through an example. with the complete procedure of picking
up a cylinder out of a pile. Figure 6.1 shows an infage of a pile of cylindricéal objects. This
inter;sity image is processed so as to extract the best potential holdsites, as illustrated in
figure 6.2. Fir§\t. the Sobel gradient of the image is computed and thresholded and lines
. of a pre-determined length (15 pixels) are then detected. Subsequently, potential holdsites

are generated as pairs of parallel lines, and finally, these holdsites are evaluated according

to their appropriateness and the three best among them are saved for further processing.

The holdsite which has the highest quality is selected as a target for grasping

and the robot’s end effector is moved toward it _along the line-of-sight using a guarded

-~y
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Figure 6.1 Pile of cylinders

motion approach. A local range grid is then collected around the holdsite, as shown in

figure 6.3. This depth map is processed in order to: confirm the presence of the holdsite.

compute its exact location. and determine its accessibility by a parallel-jaw gripper. Figurej}

o

6.4 shows the local exttema of the gradient and the least-squares “approximation of the
holdsite’s clamping surfaces. In this example the holdsite is accessible and acquisition is

thus successfully attempted.

The BIFOCAL system was tested on 50 different holdsites.m 40 of which were
found to be accessible. Table 6.1 summarizes’ the results of these experiments which
show a remarkable success rate of 85.0 % on the first acquisjtion attempt. Furthermore,
considering that for a gi{ren scene three holdsites are selected, the probability of not being

, . |
able to grasp any part after three consecutive acquisition attempts is very small.
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(b)

Figure 6.2 Image processing results concerning the pile of cylinders: (a) thresholded
gradient and (b) fine detection
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. (d)
Figure 6.2 Image processing results concerning the pile of cylinders (continued):
@ (c) holdsite detection and (d) most promising holdsites

n -



(b)

c Figure 6.3 Local range grid: (a) pseudo-gr*level image and (b) 3-D view
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(b)
Figure 6.4 Range image processing: (a) local extrema of the first derivative and
(b) least-squares approximation of the holdsite RN
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Object Total Number| Successfully Failed .
4 Type of Holdsites Grasped Acqulsition | Inaccessible
Cylinders 50 34 6 10
Industclal
Parts 50 27 8 15 77.1%
Tou! 100 61 14 25 81.3%

Table 6.1 Results of binpicking

6.2 Binpicking Industrial Parts

Our system was subsequently tested on piles of industrial parts, most of which
were provided by General Motors of Canada Inc ™ while the rest were specifically designed
for testing purposes Some parts had to be colored with white paint since they were
too dark and could not be detected by the available range finder An example of a pile of
industrial parts is given 1in figure 6 5 whereas figure 6 6 shows the image processing results

corresponding to the particular scene

As in the previous section, the program determines the three best potential
holdsites and the robot hand is sent to the most promising holdsite along the line-of-sight.

However. after determining that this holdsite is inaccessible. the robot end effector is moved

T

General Motors of Canada Inc PO Box 660, Ste-Thérése, Québec Canada
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Figure 6.5 Pile of industrial parts

towards the second best holdsite A local depth grid is then collected around the holdsite,

as shown in figure 6.7, and holdsite location, orientation and accessibility are computed

(see figure 6 8). ,

Again, we have verified the system’s performance on 50 different holdsites and
the results of these tests are shown in Table 6.1. It is worth noting that the BIFOCAL

system achieved a success rate of 77.1 % on the first acquisition attempt, and this for a
i

pile of industnial parts.

6.3 Variations in the Gradient Threshold

The thresholded gradient image constitutes the basic input to the line-finding
algorithm and is therefore critical to the success of the complete 2-D holdsite detection
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(b)

Figure 6.6 Image processing results concerning the pile of industrial parts: (a)
( thresholded gradient and (b) line detection - - .
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~ (d)
Figure 6.6 Image processing results concerning the pile of industrial parts (contin-
0 ved): (c) holdsite detection and (d) most promising holdsites



3 C(b) o o

Figure 6.7 Local range grid: (a) pseudo-gray level image and {b) 3-D view




: | (b)
Figure 6.8 Range image processing: (a) local extrema of the first derivative and
o N (b) least-squares approximation of the holdsite



procedure. In this section we study the sensitivity of the holdsite finding algorithm to
variations in the value of the gradient threshold. féigures 6.9 and 6.10 show the detected
potential holdsites for different gradient thresholds in the respective cases of a pile of

cylinders and a stack of industrial parts.

'

Figure 6.9 Computed holdsiteskfor a pile of cylinders (a) threshold = 5

These results indicate that there is a wide range of threshold values for which
the program performs adequately. In other words, the holdsite finding algorithm is robust
as far as gradient threshold variations are concerned. and it therefore has a desirable low

sensitivity to lighting conditions.
e

A

6.4 Variations in the Holdsite Model .

3

The holdsite model, as previously described, consists of only two parameters:
81
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Figure 6.9 Computed holdsites for a pile of cylinders (continued) (b) threshold =
15 and (c) threshold = 25
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Figure 6.10 Computed holdsites for a pile of industrial parts: (a) threshold = 5
and (b) threshold = 15
»

' 8




‘ Figure 6.10 Computed holdsites for a pile of industrial parts (continued) (c)
threshold = 25

#

5 ) i . . »
@ width and length. Variations in the values of any of these two parameters are bound to have

an effect on the algorithm’s performance. Figures 6.11 and 6.12 illustrate the sensitivity of

the holdsite detecting procedure to variations in the width of the holdsite model.

As expected, significant variations in the width value considerably alter the

detection of potential holdsites. This is a desirable property, since the width parameter

’
-

acts as a holdsite filter, discarding those parallel lines that are too close together or too
' N «

far apart to correspond to a-egal holdsite according to the model. However, we note that

.

holdsite detection is not sensitive to small variations (of the order of 20 %) in the value of

the model width.

’

| Thus we observe that the BIFOCAL system is flexible in that it disregards small

0 width variations, while being sensitive enough to ‘be able to sort parts according to their

84
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- (d)
Figure 6.11 Computed holdsites for a pile of cylinders (continued): (c) width =
13 mm and (d) width = 15 mm
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Figure 6.12 Computed holdsites for a pile of industrial parts' (a) width = 9 mm
and (b} width = 11 mm
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: (d) -
Figure 6.12 Computed holdsites for a pile of industrial parts (continued): (c) width
= 15 mm and (d) width = 17 mm
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Figures 6.13 and 6.14 show computed holdsites as a function of the length of

- the holdsite model. These results vary gracefully for different values of model length. In

other words, there is a large number of length values which result in adequate system

performance. - .

Figure 6.13 Computed holdsites for a pile of cylinders. (a) length = 15 mm

* ]
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6.5 Variations ir; the Amount of Collected Range Data

° In this section, we analyze the sensitivity of the range image processing algo-

5

rithm to va‘riationﬂsu%;n the amount of collected -depth data. To this end we performed a

.
series of tests which consisted of measuring the error in the computed location and orien-

tation of a cylinder. as/ a function of the number of collected scan lines (i.e. ‘range profiles).

»
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30 mm and (c) length = 40 mm -
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. Figure 6.14 Computed holdsites for a pileof industrial parts: (a) length = 15 mm
and (b) length =30 mm _ '
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C .
Figure 6.14 Computed holdsites for 3 pile of industrial parts (continued) (c) length

= 40 mm e

A

The results of these tests are illustrated in gfngures 6 15 and 6.16, and show that both the

»

location and the orientation errors decrease as the number of scan lines increases.

]

4

The higher accuracy brought about by the addition of range data is due to
the fact that the extra ipformation increases redundancy and diminishes the statistical

probability of error. However, the ideal number of scan'lines must be a compromise between

I

scanning speed on one side, and accuracy, of the computed holdsite location, orientation and

accessibility, on the other side. Furthermore, the absolute errors in holdsite location and

orientation estimates are, in our context, very small, even in the case of only two scan lines.

Because of this we chose to collect four profiles per grid. which in our View constitutes an

¢ .

appropriate trade-off between speed and computational precision. We therefore conclude

that. due to the high qualityv of the acquired range data, the BIFOCAL system i relatively
» a 4
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, 6.6 Tim“ing Considerations

Under its current implementation, the BIFOCAL system takes an average-of ~

the execution time is as follows:

2

T.V. image capture: 55 s. -

[y

o

four minutés to a“cqvuire and manipulate a part from a pile. The approximate breakdown of

Sobel gradient computation_and thresholding: 35 s.

Line finding: 45 s.

%

Holdsite detection: 15 s.

Line-of-sight approach: 20s.

s

Fine approach and gripper positioning: 15 s.

3-D scanning (consisting of four profiles):" 30 s.

Range image processing: 5 s.

Object acquisition: 10 s.

- -

Object manipulation: 10 s.

G
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It is worth noting that if we reduced the unnecessary overhead associated with
LY ‘

image capture (i.e. almost one minute) *‘and we optimlze the image processing algorithms

ave

- 1

as well as the robot motions, we could easily achieve execution times of approxifnately

& = .

two minutes per object. Moreover, if all of the’ processing algorithms were implemented in -
( ¢ . .

the form of VLSI circuits, namely the Sobel gradient computation and thresholding, line

- - finding, holdsite detection and range image processing, the only limiting factor would then
) be robot speed. Therefore, we consider that there is significant room’ for improvement in

the area of execution speed, particulérly if this system is to be developed into an industrial

&

product,

”
P R A ‘ ﬁ
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p - } |
~
- \ ® « ’ PR », ° ) . @ .
This.image acquisition delay is due to the fact that, in our experimental set-up, the image must
o \ be sent through the computer network before it can be processed. :
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Chapter 7 ' ‘ . Cynclusion

N~

"The problem of binpicking is a r‘elevant' one in industry today. Many researchers

-t -
»

have attémpted to find a gf;neral solution but. in general, they have ended up developing -
context dependent algorithms . In this thesis we have described the BIFOCAL systemﬁ
whose purpose is to acquire and manipulate three-dirhepsionél objects which are initially
piled up and- tandomly oriented. The only restriction on parts is that they must have at

least one appropriate holdsite that can be grasped by a parallel-jaw grip}:er. . .

— — < :

-

The binpigking algorithm is holdsite-driven, in other words, no att‘er;tpt is mad;
to recognize object identity. Only holdsites are of interest since any part ;nay be grasped
out of ‘the pile. One of the sys;tem's main contributions is the fact that twc; sources of °
sepsoryeinput “are used so that they complement each other: a T.V. camera placed over the

workspace captures intensity images of the global scene, and a wrist-mounted single-point

ed

e
-~ range finder collects local 3-D data. The brightness images are used to find the location of

W potential holdsites and to evaluate their quality on the basis of appropriate suitability

criteria. At this point, the robot hand is moved so that the range finder can collect a local

"

grid of 3-D data around the most promising holdsite, Range*data are used to confirm

v ' \ : ,
the presence of the holdsite, compute its exact location and orientation, and determine its

-
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accessibility by the robot gripper. .These loc§l data contain accurate information .about

&
el b T

the geometry of the holdsite and it{neighborhood. and thus provie, thé system with a

z -

much higher degree of robustness and reliability than can be found in previous systems.
‘ . ¢ L.

, Furthermore, we only used inexpensive, Eomrﬁerciall.y available sensors, as opposed to

I'g
. ¢ e .
custom made range finders -,
§ i
-~
& ’ . .

The flexibility of the system has been experimentally confirmed, as it performed -
N . v f
consistently well when faced with substantial variations in the values of the gradient thresh-

old. the holdsite model and the ar,no:mt ofﬁcoliected range data. We have therefore proven
> the feasibility and appropriateness of a holdsite-based system that integrates 2-D-and 3-D
i inputs and that prgvides reliable binpicking of 3-D objects. Future work should concentrate
on improving the execution speed of the overall program, as well as explore alternative
. 0
= - range image p“r?cessigg techniques. In this regard, the replacement of the single-point

range finder by a more ade),quat'e 3-D sensor (i.e. with a larger measuring® range) would

certainly have a p(;sitive effect on the system'’s performance.
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