Project Report

August 1984

— S md wd d) i d ad
e & 5 0 0 0 0 e
OO0~ Oy U W

[N
™

&

A-B-L.E_Q.-F..C O N T ENTS

i ane

INtrodUCtion cuecesececrescecosscsosccsossecccecnnasccnesosns
Introduction t0 MBDS/FS cevsesesnssemsenssssnscacscssss
MRDSA cecosesssansesocssnnscsssssnsssncsssossnsssscsnssossance
Runniﬂq MEDSA on the IBM PC eeeseva sPenesemnevsssevwesanae
The Relational Approach S sssssanscesssssssssssesanmena
MRDSA User Procedures BE G S P BBV L DI POV AL SI L SLNBENIRB S
MBDSA System RelatiONS eececssccesasescsssssnasnssnonneca
MRDSA SYStem Procedures S ss s esesesE sest e RAABSS RAsRRNERS
MRDSA User and System Procedures used by

”TABSINTEXT“ % 5 5 P DTS OO OO 0P IO SO DY SWOOHS SO NSEDOESIPS AN

?ormattinq Tables with Text R B B B O B B B B BE N B I R B R BN BE A B BN B N N J
The "INPUT" Relation, the ®TABLES" Relation, and
the Data to be referenced cscessesasescssasosansansocscas

The Fotmattinq ?hase OS8O BO S90S S PSS 0 DHE S SPS DSBS
The Formatting Algorithm E I I BRI B B B B I B B B R B B IR R B B B N I N)

The Program "TABSINTEXT"™ .oceccssanscescsscsnscssncsenancas
Setting up the Input for "TABSINTEXTY" weessscenccsceansae
APPENDIX A
APPENDIX B
APPENDIX C
APPENDIX D
APPENDIX E

BIBLIOGRAPHY

29
30

39
43
03
74

CcCCeC
cC
cC
cC
CCCCC

HH HH
HH HH
HHHHHHH
HH HH
HH HH

AAAAAAA PPPPPPP
AA AA PEF PP
AAAAAAA PPPPPPP
Al AA PP
AA AA PP
11
1m1n
11111
11
m

111111111111 11

111
11

TTTITTTIT
T
T
T
IT

EEEEEEEE
EE

EEEEE

EE
EEEEEEEE

RRRRERR
RR RR
RRRRERR
RR ER

RR ER

page 1

Introduction

Introduction to MEDS/FS

MRDSA

Running MRDSA on the IBM PC

The Relational Apgroach

MRDSA User Procedures

MRDSA System Relations

MRDSA System EFrocedures

MRDSA User and System Procedures used by

Y"TABSI NTEXT"

page 2

1.1 Iatroduction-

"TABSINTEXT"® is a program which implements the
inclusion of tables into the body of a text. The text is
preprocessed and information pertaining to each vord is
held in the form of a relation. Further to this, tags
are placed in the text and are preprocessed in much the
same way as non-tagged vwords. These tags serve as
references to the location and placement of tables into
the text. Data for each table are stored in relational
form. These are set up before the program "TABSINTEXTY
is executed.

The output from "TABSINTEXT" consists of an updated
version of the table which holds the information about
the words in the text, as well as a new relation having
information pertaining to each table which has been
incorporated into the corpus of the text.

Initially "TABSINTEXT" was written in MRDSA. MRDSA
is a McGill Relational Database System implemented on
the Apple II microcomputer using Apple Pascal. Though
MRDSA is very powerful it taxes the APPLE to its limits.
Compiling and running MRDSA programs is very slow since

mach swapping is required to accomodate the 75 K-byte

page 3

system library into a 64 K-byte RAM.

"TABSINTEXT" was rewritten to use MRDS/FS which is a
conversion and extension of MRDSA. MRDS/FS was developed
by Ted Vvan Rossum for his master's Thesis and rans in
the UCSD -p environment on the IBM PC with 128 K-Lytes

RAM and two double sided disk drives.

MRDS/PS 1is a prototype of a tool for use in
exploration of the concept of a relation as the
primitive data unit. As such the system provides the
user with a single data structure, the relation, plus a
rich set of functions for the manipulation of that data
structure. This tool can be used whenever individual
pieces of data can Le aggregated into one or more
meaningful relations and the 1inter-relationships among
these relations need be explored. Manipulation of the
data as relations allows the user to interact with his
data at a much higher level of abstraction than that
provided by single value manipulations. This data format
allows the data to deal with a set of inter-related
values as a single unit, thereby greatly simplifying
this type of complex fprogramming task.

MRDS/FS 1is an interactive relational expression

interpreter which provides the user with a complete set

page 4

of relational programming functions such as the
relational algebra functions, domain algebra functions,
branching functions, and housekeeping functions. These
functions allow the user to create complex user views of

the dataltase.

1.3 HBDSA

The McGill Relaticnal Database System for the
Apple microcomputer, (MEDSA), is a Pascal data
sub-language built by George Chiu for a master's thesis
in 1982, This system provides the user with a library of
subroutines for the execution of relational and
housekeeping functions such as project, mu-join, print,
etc.

MRDSA manages its database by maintaining
information on all relations 1in three system relations,
REL, DOM, and RD. These relations are automatically
created when a new datakase is set up. REL contains
information on the name, size, and location in the
database of each relation. DOM holds information on each
domain, dindicating name, size and virtual domain
characteristics. RD ties REL and DOM together. That is,
each domain in relation RD maintains information on the
location in the tuple of the domain and the position of

the domain in the sort order of the relation.

page 5

When the relation is constructed, (it may contain 1
to 50 diskettes), it is partitioned into 2 continuous
sections. The first section contains all the relations
which have been permanently saved, that is all systenm
relations plus permanent relations are stored
sequentially in contiguous sectors on the diskettes. The
second section comprises any space remaining in the
database and is used as workspace to store new relations
created during an MEDSA session. These relations are
discarded at the end of the session unless specifically
saved.

MRDSA uses virtual memory system for accessing
tuples of a relation, That is the datakase is
partitioned into 512 K-byte pages, ahd required pages
are read from disk into a group of cycling buffers using
a FIFO demand paging system. This system allows MRDSA to
handle arbitrarily large files.

Anot her important MEDSA feature is a full screen
relational editor which allows the user to design his
own screen layout, and update, input, or delete tuples
in a relation. This editor is true to the relational
concept in that it prevents the user from creating
taples with duplicate keys. This task is performed by
first creating a C-directory of the values in the key,
and then maintaining this directory during the edit

session.

page 6

1.4 Running-MRDSA-on- the- IBM PC

Using MRDS/FS is tantamount to runnning an
extended version of MBDSA on the IBM PC. All the MRDSA
software is stored ip a datafile called SYSTEM.LIBRARY
in the boot diskette. 1In addition, the UCSD-p Pascal
system unit PASCALIC is also stored in the above
datafile. The following 1is the format of a MRDSA

PLOYLaMe » «

Program format;

Uses globalerr, screenops, syspro,sort,insaveduap,numeri,
cnsdomop,fss_util,actual, krunch,algebra,projectt,
select1,forms, tidy fcn, process1,editor,rel_ops,
recgnize, fss_hart, history;

-
-

-

%% DECLARATIGN AND OTHER INTERNAL PROCEDURES DECLARATION k¥

s b

Begin (* format %)
setup(*'','");

¢ Sy

** PROGRAM BODY #**

promptboot;
Bnd; (* format %)
In the second 1line the declaration of the units
(separat e compilation modules) in MRDS/FS is made.
When we ran the MRDSA program, the system will

inquire for the following information :-

page 7

1. New database (Y/N):

2. Enter database nanme:

3. Enter number of diskettes (1.. 100):
4. Enter number of drives (1..6):

The first executable statement is always the call to
the initialization procedure SETUP (see section 1.9).
The first two items may be supplied as input parameters
to SETUP, or if they are null (as shown in the example)
the user is prompted.

If it is a new database, the system will create the
required system relations, otherwise it will 1load the
system relations from the database. The database nanme
becomes the name of the diskette that contains the
database., If +the name of the database is EXAMPLE and
there are three diskettes in all, then the diskettes
bear the nane EXANMPLEO, EXAMPLE1, and EXAMPLE2
respectively. The system works out for itself the size
of the database. The first six pages are alwvays reserved
for storing the system relations recording the size of
the database. All remaining pages after the 1last page
of the database are for the workspace. The data would be
stored in a datafile, MRDS.DATA . Finally, to utilize
all available drives, MRDSA should know the number of
disk drives which are available. The system will reguest
the user to put the required diskette into an appropiate
drive whenever it is necessary. These requests should be

followed strictly in order to have the program running

page 8

smoothly. However, this may mean the boot diskette may
not be in the boot drive when the program <finishes.
Therefore, at the end of every MRDSA program PROMPTBOQT
should be called, which will make sure the boot diskette
is in the boot drive before the program terminates. Note
that PROMPTBOOT could be omitted if the MRDSA procedure
SAVE 1is used, wvwhich always calls PROMPTBOOT before

terminating the progranm.

1.5 The Relational Approach-

The relational approach to data is based on the
realization that files that obey certain constraints may
be copsidered as mathematical relations, and hence that
elementary relational theory may be brought to bear on
various practical protlems of dealing with data in such
files.

The following diagram shows some sample data in

relational form.

page 9

| S% 1 SNAME 1 STATOS | CITY

! , ;n,' ,,x’_--._,*
{ s1 i Smith i 20 | London

] S2 | Jones { 10 | Paris

{ S3 i Blake { 30] Paris

{ 5S4 | Clarke i 20 i London

] S5 | Adams { 30 i New York
i_;;.;;;;;’,,,;,,.:.;;; ' e e e e ' e e e e

A table such as that in the diagram 1is referred to
as a relation. Rows of such a table are generally
referred to as tuples. Likewise, columns are usually
referred to as attributes. A domain 1is a pool of values
from which the actual value appearing in a given coluamn
are drawvn.

WTABSINTEXT" views both the data for the text and
the tables as a set of relations.’This view provides a
means for describing the data in its @natural structure
only without superimposing any additional structure for
machine representation rpurposes. Each table <can be
simply represented as a relation, which in turn can be
refined and processed to produce new relations. 1In
addition, MRDSA provides a set of user and systen
procedures which allow the programmer to manipulate
these relations.

In this relational data podel, attribute
relationships are represented by relations. Relations
that represent associations can be existing relations in
the database or they can be created using relational
operators. These operators can be described using the

page 10

C

relational algebra. The relational algebra 1is a

collection of high-level cperators on relations.

The two basic elements of the relational algebra as

used by MRDSA are (1) Relations and (2) Attributes.

1. Relations-

Belations are referred to by the name given to thenm
by the programmer or by the name associated with
them in the database. Relation names are STRING's
in Pascal, eight bytes long. Relations are
manipulated by MRDSA procedures when their names are
specified as parameters. For example, an MRDSA
procedure which creates a new relation must be
supplied (as an input parameter) with the name of
the new relation. All relations created by user
procedures are temporary relations stored in the

Wwork space.

2. Attributes-

Attributes are referred to by the names given to
them by the programmer or by the name associated
with them in the database. Attribute names are
STRING's in Pascal, eight bytes long and must be one

of the existing domains., Attributes are used, in the

page 11

context of the relation in which they occur, to
control operations of the relational algebra.
Attribute values are stored in character strings of
length specified in the database or by the

programmer.

1.6 MBRDSA User Procedures-

The following is a short description of each of

the user-level procedures in MRDSA.

Nage - Description-

CONREL Creates a constant relation on a given attribute.

DUMP Dumps the three system control relations : REL,
DOM, RD

EDIT Invokes the relational editor to edit a relation.

MERJOIN Creates the mu-join on two relations on specified
attributes, HMERJOIN includes the natural join and
generalizes the set operations intersection, uniosn
and so forth.

PROJ ECT Creates the projection of a relation on the
specified attributes.

PRTREL Outputs a relation in tabular form without

reordering.

page 12

QTEXPR Provides a query facility including gquantifiers on
single relations.

SAVE Saves a set of relations on the user's permanent
database and stops the run. A call to procedure
SAVE, if made, should be the last statement in an
MRDSA program (SAVE always calls PROMPTBOOT) .

SETUP Initializes MRDSA: must always be executed first
in a progranm.

SIGJOIN Creates a sigma join of two relatiomns on specified
attributes. SIGJOIN generalizes and replaces tae

divide and natural composition operations.

1.7 HMRDSA-System Relations-

To understand most of the MRDSA system level
procedures, it is necessary to know how MRDSA keeps
house using the three system relations REL, DOM, and
RD. These relations are always stored with each
database and are loaded or created by SETUP. Each
domain created adds to DOM and each relation created
adds to REL and RD. They are searched by the
routines FINDREL, FINDCDOM, and FINCRD respectively.
In order to include data about temporary relations,
they are updated by special code in the system and
user procedures but the updated version is not

rewritten permanently to the master file. When the

page 13

temporary relations is saved, the system relation on
the master file are changed appropiately. 2all
permanent and work relations are controlled by data

in REL, DOM and RD.

REL (RNAME VWIDTH SIZE PAGE RINDX WINDX INDXST INVST) iadex

REL 26 38 0 0 3 -1
DOM 20 50 2 0 23 -1
RD 8 126 4 0 19 -1

RNAME is the name of each relation. WIDTH is the
length of its tuple, in bytes. SIZE is the maximun
permissible number of tuples. The maximum value of
SIZE 1is 32767, +the maximum value of a Pascal
integer. PAGE is the address in virtunal memory of
the page containing the first tuple of the relation.
RINDX is used by GETUPLE to record the next tuple to
read in a sequential scan. Also WINDX gives the
number of tuples in the relation. The index is used
as a pointer by the internal procedures of MRDSA.
RINDX < WINDX must be satisified before the next

tuple is read and WINDX < SIZE before the next tuple

is added.

page 14

-1
-1
-1

0
1
2

DOM (DNAME LEN OPER LEFT RIGHT 1INDEX) index
RNAME 8 -1 -1 -1 0
WIDTH 2 -1 -1 -1 1
SIZE 2 -1 -1 -1 2
PAGE 2 -1 -1 -1 3
RINDX 2 -1 -1 -1 4
WINDX 2 -1 -1 -1 5
INDXST 2 -1 -1 -1 6
INVST 2 -1 -1 -1 7
DNAME 8 -1 -1 -1 8
LEN 2 -1 -1 -1 9
OPER 2 -1 -1 -1 10
LEFT 2 -1 -1 -1 11
RIGHT 2 -1 -1 -1 12
INDEX 2 -1 -1 -1 13
PRNAME 2 -1 -1 -1 14
PDNANE 2 -1 -1 -1 15
POS 2 -1 -1 -1 16
SORTRANK 2 -1 -1 -1 17
CINDX 2 -1 -1 -1 18
XPOS 2 -1 -1 -1 19
YPOS 2 -1 -1 -1 20
LRLEN 2 -1 -1 -1 21

DNAME is the name of each domain. LEN is the length,
in bytes, of the field representing the attribute.
OPER, LEPT, BRBRIGHT, and INDEX are not used by
relational algebra operations, but will be used in
the future for domain algebra operations. The
additional domains CINDX, XPOS, YPCS, LNLEN are used

in the Relational Editor.

page 15

RD (PRNAME PDNAME POS SORTRANK) index

0 0 1
0 1 11
0 2 13
0 3 15
0 i 17
0 5 19
0 b 21
0 7 23
0 8 2%
1 9 1
1 10 11
1 1M 13
1 12 18
1 13 17
1 14 19
2 15 1
2 16 3
2 17 5
2 18 7

PRNAME is the index in REL
index in DON of DNAME. POS
tuple of the first byte of
is the rank of the sort: if

attributed is not sorted.

-1

L]
b
Voo Fwdhao

[
-
P
- O

i

—
T S ury
NN EWN

of RNAME. PDNAME is the
is the position in the
the attribute. SORTRANK

the value is -1 then the

page 16

The

following is a brief description of the

HRDSA system procedures.

iz
o
i
i

ADMIN

ADTUPLE

CKADTUPLE

CHECK 10

COMPARE

ERROR

FINDDOHM

FINDRD

FINDREL

FORM

FREEZE

GETPAGE

Description-

Takes care of the setup phase of the usac
procedures PROJECT, SIGJOIN.

Sets integer pointers to the next available
space for tuples in a relation.

UDsed in MERJOIN and SIGJOIN to preveat the
overwriting of useful tuples of the sorted
relations by addition of new tuples resulting
from the join.

Writes out the I /0 error number and stops the
program when it occurs.

Compares two tuples for less, equal, gr=at oa
given attributes.

Writes out the error message and takes action
according to the severity of the error.

Given attribute list, finds indices in the
system relation DOM.

Given relation name and, optionally, attribute
list, finds indices in the system relation BD.

Given relation name, finds index in the systen
relation REL.

Designs the form template and takes carz2 of
the setup phase of the Relational Editor.

Puts size data into systen relation REL for a
given relation.

Retrieves a page of virtual memory, if
necessary, to find a given tuple. Sets index

page 17

http:CHECK.IO

GETUPLE
LOCRTUPLE
NEWDOM
NEWREL
OPENFILE
PAUSE
PROCESSING
?SORi
PROMPTBOOT

READFILE

HESORT

SETDIRECTORY

SETS

SETSORT

STRG

WHRITEFILE

of buffer in RAM where the page is loaded.

Sets integer pointer to the next tuple to be
read for a given relation.

Calls GETUPLE or ADTUPLE and then locks the
buffer that holds the required tuple.

Given domain list and domain lengths, add data
to the system relation DONM.

Given name and attribute list for a new
relation, adds data to system relations 2D
and REL. Must be followed by FREEZE.

Opens the appropiate file (diskette) for 1I/0.

Halts the program temporarily and prompts the
user to type space to continue.

Implements all the tuple operations imn the
Relational Editor.

Used in MEBRJOIN and SIGJOIN to sort the two
operand relations.

Requests the user to put back the boot
diskette in the boot drive.

Reads a page in from the diskette.

Uses external merge sort to sort a given
relation on specified attributes.

Creates the C-directory in the Relational
Editor.

Performs standard set operations on sets
specified as integer arrays.

Sets up the SORTRANK in BRD of the given
relation.

Converts a given digit 0 - 9 to the
corresponding character.

Writes a page to the diskette.

page 18

e A TR T WS T T

The following is a detailed description of

the MRDSA

user and system procedures vwhich are

atilized by "TABSINTEXTIM.

1. PROCEDURE ADTUPLE

PROCEDURE ADTUPLE (RDPTR : INT EGER;VAR PTR,TPTR : INTE3ER);

INPUT-

- v 7

RPTR -- Index in REL of the relation to which the new tuple

QUIRHI-

PTR --

is added.

Integer pointer points to the buffer containiag the
page to which the tuple is added.

TPTR -- Integer pointer points to the position of tuple ia

s. B.

the buffer,

Usage

Call ADTUPLE to set PTR & TPTR, then fill in
BUFPTR.

TECHNIQUE -

Distinguish between constant or general relation,
If general relation then call GETPAGE to set PTRER.

DESCRIPTION-

ADTUPLE allocates space for the next tuple, and
returns two integer rpointers, first to the index of
the buffer where the page is loaded and second to
the position of the tuple in the page. It is up to
the programmer subsegquently to f£fill in a character
string, based on these pointers and of the right
length, with the right information.

ADTUPLE

may be of use to the programmer in

performing tuple-by-tuple operations on relations
directly. Note that when we want to access more

page 19

http:pointe.rs

than one tuple simultaneously, then LOCKTUPLE
should be used. ADTUFLE increments attributes WINDX

of the system relation REL.

2. PPOCEDURE EDIT

PROCEDURE EDIT (RNAME : STRINGS8;DOMLIST : DLIST;DOMLEN : INDEX;
KEYNO,N : INTEGER; NEWNAMNE : STRINGS;
EROBEFACTOR, LOADFACTOR : REAL);

RNAME -- name of input relation.
DOMLIST -- N attributes appear in order of search key
attributes and the remaining attributes of
relation RNAME.
DOMLEN -- N leagths corresponding to attributes of DOMLIST.
NEWRNAME -- Name of result relation.
PROBEFACTOR -- PROBEFACTOR >= 1, used in the constructioa of
the C-directory.
LOADFACTOR -- LCADFACTOR <= 1, used in the construction >f the
C-directory.

NOTE

1. If RNAME is *'' then a new relation NEWRNAME with the
specification of DOMLIST and DOMLEN will be created.

2. Othervise if RNAME <> NEWNAME then a new relation NEWRNAME
will be created as an identical relation to relation RNAME.

3. If RNAME = NEWRNAME then no relation will be created but
the relation RNAME will be changed by the set of tupl=s
generated in the editing process.

4. In cases 2 & 3 specify only the search key attributes. In
the DOMLIST, DOMLEN is ignored. :

1. Find the input relation and create new relation
if necessary.

2. Find the form template or design one if
relation has no associated template.

3. Respond to user command (Design or Process)
antil the user has finished.

4. Design : Design the fore template.

5. Process : Create the C-directory and let the
user edit the relaticn NEWRNAME.

EDIT invokes the Belational Editor of MRDSA.
The editor has tvo aspects, algebraic and

page 20

interactive. Algetraically it is just another unary
operator on relations like PROJECT or
QT-expressions. However, the results 1is not
determined algorithmically as in the other cases.
The result depends on the interactive activity of
the person editing the relation. Interactively the
editor offers a number of features for creating or
modifying a relation.

To achieve the best direct access performance,
the programmer should always set the probe and load
factors to 1. However if the number of partitions
in the C-directory exceeds the implementation
limit, then the programmer is advised to lower the
load factor first. If this does not bring a
reduction in the number of partitions, then the
programmer should try to increase the probe factor.
In any case the programmer should try to keep the
factors as close to 1 as possible. In order to let
the programmer have ketter control over the access
performance, he can set either or both factors to
negative values. Then the system will prompt for
the factor and give the programmer the number of
partitions and the average number of secondary
access per direct access on the tuples. The
programmer can try different sets of factors to
obtain a satisfactory result. Then he can put the
optimal factors into the parameters. Note that
these things should be transparent to the end user
and the programser should try the above analysis
again after the relation has been changed
substantially.

page 21

e 3. FUNCTION FINDDOH

FUNCTION FINDDOM(DOMLIST : DLIST;N : INTEGER;
VAR DPTR : INDEX) :BOOLEAN;

INRUT
DOMLIST - Array of N attribute names to be found.
QUTPUT
DPTR - Array of N indicies of the rows of DOM containing
the names in DOMLIST.
Return true if not all attributes are found.
TECHNIQUE-

FINDDOM returns the indices in the system relation DOH of a
set of attributes.

4. FUNCTION FINDRD

FUNCTION FINDRD (RNANME STRINGS8; DOMLIST : DLIST;
VAR N : INTEGER;VAR BDPTR : INDEX) : BOOLEAN;

INPUT-

RNAME - Name of relation to be found. (If N = 0, then ail
attribute names are to be found).
DOMLIST - Array of N attribute names to be found.

TR e e T

RDPTR - Array of N indicies of RD.
Return true if error is found.

If N = 0 set integer pointers to all rows of RD
containing RNAME. Ctherwise find the lower limit
in RD of RNANE and do N sequential searches on
anordered attributes, PRNAME, PDNAME of RD, from
this limit to REL{2) .Windx -~ 1.

page 22

5. FUNCTION FINDREL

FUNCTION FINDREL(RNAME : STRING8) : INTEGER;

T e v 2 T

Return index of the rows of REL containing RNAME;
-1 if the relation is not found

IECHNIQUE-
Sequential searchk on unordered attributes RNAME of REL.

e ok T T T

FINDREL returns the index in the system relation REL of a
given relation.

6. PROCEDURE GETUPLE

PROCEDURE GETUPLE(RDPTIR : INTEGER;CH : CHAR;
VAR PTR,TPTR : INTEGER);

INBUT-

RPTR -- Index of relation in REL.

CH —-- The change code, '* or 'c' : passed to GETUPLE.
' peans routine calling GETUPLE does not inteni
to change tuple.

0UTRYT-

PTR -- Integer pointer points to the buffer containinjy th2
page to which the tuple is added.

TPTR -- Integer pointer points to the position of tuple in
the buffer.

N. B. Usage

Call GETUPLE to set PTR & TPTR, then retrieve the
tuple.

DESCRLRTION-

GETUPLE locates thke tuple in the requested page,
and returns two integer pointers, the first to the
index of the buffer where the page is 1loaded and
the second to the position of the tuple in the page
{that is, the first byte of the tuple). it is up

page 23

to the user subsequently to read or to change a
character string, based on these pointers and on

the right length.

GETUPLE may be of use to the application
programmer in performing tuple-by-tuple operatiomns
on relations directly. GETUPLE increments
attribute RINDX of the system relation REL.

7. PROCEDURE PROMPTBOCT
PROCEDURE PROMPTBOOT;
DESCRIPTION-

Since the boot disk drive may hold a database
diskette at the end of a MRDSA run, PROMPTBOOT

should be called to make sure the boot diskette is
online. It should be always the last executable
statement (unless SAVE is the last statement : SAVE
calls PROMPTBOOT before terminating MRDSA).

8. PROCECURE PRTREL

PROCEDURE PRTREL (RNAME : STRINGB;TITLE : STRINGS8O;
FILENAME : STRING14) ;

LNRUT-
RNAME -- Name of relation to be printed.
TITLE -- Printed at the top of page.
FILENAME -- Cne of the following

1. "CONSOLE:" : Output to Comnsole
2. "PRINTER:"™ : Output to Printer
3. Text filename with format
WDISKETT ENAME": "FILENAME" :
Output to the text file specified.

TECHNIQUE-

1. FPind RNAME in REL.

2. Find all attributes in RD.

3. If the destination is a text file then transfer the
relation to the destinated file one tuple per line
without any formatting; otherwise do the following.

4. Find POS, LEN of attributes and use their print
control.

5. Provide at least 8 spaces per attribute; truncate if

page 24

http:online.It

necessary to one tuple per line.

6, Find attribute names as output to headers.

7. Output all tuples in order of appearance in the
relation.

8. Output maximum 23 tuples per page on Console.

DESCRIRTION

PRTREL displays a relation on the console, or
prints it to the printer or transfers it to a text
file, depending on the value FILENAME. If FILENAME
is null or is an 1illegal format then the procedure
will prompt the user to enter the correct
destination. It displays or prints the together
with a title (if specified), the relation nanme
(RNAME) and column headings (the attribute names).
It displays or prints one tuple per 1line with one
space between the columns {attributes) and
truncates the tuples (and header 1lines) if they
exceed 80 characters in width in their output
layout. In case the output is to a text file; it
will be transferred a tuple per 1line without
formatting and the programmer will be prompted to
put the right diskette in. Tuples are not
reordered.

9. PROCEDURE SETUP
PROCEDURE SETUP(NEWDB : STRING1;DATABASE : STRING7);

INPUT

NEWDB -- "WyY%" for new database; "N" for old database.
DATABASE -- Name of database.

ACTION

1. Opens files, load REL, DOM, RD and process rum
parameters.

2. Request the necessary information : Database nanme,
number of diskettes, and number of drives.

Note

This is alwvays the first executable statement in a M3DSA
program.

This is MRDSA system initialization procedure.
It is always the first executable statement in an
MBRDSA program. If one or both parameters are

page 25

missing, the procedure will prompt the end user for
the missing parameters. This option enables the
programmer to specify ©parts of the required
information through the parameters for the end user
in using the editor.

page 26

CCCCC
cc
CcC

rers
o

CCCCC

HH HH AARAAAA PPPPPPP
HH HH AA AA PP PP
HHHHHHH AAAAAAA PPPPPPP
HH HH AA AA PP
HH HH AA AA PP
22222
22222222222
2222 222
222
2222
2222
2222
2222
222222222222222
222222222222222

TTTTTTTT
T
TT
TT
TT

EEEEEEEE
EE

EEEEE
EE
EEEEEEEE

page 27

RRRRERR
BRR R
RRERHRK
BR RR

RR KR

2.1 Formatting Tables with Text.

2.2 The "INPUT" Relation, the "TABLES" Relation, and
the Data to be referenced.

page 28

2.1 Formatting- - Tables with Text.

WTABSINTEXT" effectively incorporates tables into
text in a manner which handles both the text, and the
tables (which are to be incorporated into the text), as
r2lations. When dealing wvith the placement and
foraatting of tables into text, it becomes necessary to
adlhsre to a set of conventions for doing so. For
instance, in the event that a table is too wide to fit
on a page, then one cannot arbitrarily €fold each row of
tha table in two. In addition, the material in each row
(tuple) must be harmoniously aligned with other material
in that column. (domain) and so forth.

The page layout (the assignment of lines of text to
pages while coping with figures, tables, footnotes etc.)
is an important consideration and should consist of as
many properly spaced lines on a page as will fit, while
takiny into account both the size and number of tables
on the page. A 1list of some of these conventions 1is

given in APPENDIX A,

page 29

2.2 The "INPYT" Relation, the "IABLES" Relation, and the
Data- for-the-Tables %o he referenced.

The input to "TABSINTEXTY consist of two relations.
The first, refarred to as REL1 1in the program and
assigned the relation nanme Wl NPOT", holds the
information pertaining to the text to be formatted.

The second relation, referred to as REL2 in the
program, and assigned the relation npame "TABLESY,
contains information relating to the one or more tables
which are to be incorporated into the text. In fact,
"TABLES" has no tuples at the start of processing, but a
tuple is constructed and added to this relation whenever
a reference to the table is made.

The data for each table to be encountered is also
stored in relational form. As a result, this allows the
program to access the MRDSA system relation REL so as to
obtain information about the nanme, height and width of
each table referenced. A1l permanent and work relations
are controlled by the data in REL, DOM and RD, as was
discussed in section 1.7.

The relations "“INPUT", "TABLESY, and those which
refer to the tables which are to be refarenced are
derived using the Relational Editor.

The relation "INPUT" has the following format:

INPUT (Word, Seq, Wordleng, Line, Page)

page 30

The Significance of each attribute is as follows:

¥ord:~ This attribute value gives the words listed ia the tect.
words may be tagged or not. A tagged word serves is an
indicator to the placement of a table at that poiﬁt in
the text. Tagged words are easily differentiated froa
non-tajged words in that the first two characters in the
word are "xT", In addition, the condition is set #shere a
tagged word is the only word on any given line. Ihs niame

of a table must be at most six {6) characters in lLength.

Seq:- This is the sequence of the words within aa givea iine.
For tagged words, we do not care about the value of

this attribute.

Wordleng:- This gives the length of the word, for text formatting
purposes. For tagged words, we do not care abdut the

value of this attribute.

Line:- This is the line number om which the word appears.

Page:- This is the page number on which the word appears.
Initially, this attribute has no value. Later,
"TABSINTEXT" outputs the page number attribute value,
after it has determined the most appropriate page for
the placement of the table and correspondingly,

the most appropiate location of each line.

page 31

http:appea.rs

The following example gives a brief synopsis of the
processing phase in which the relation MW"INPUT" |is

d2duced from the body of the ¢text. The text is as

follows:

Line 1 The final array represents a relation which is

Lina 2 said to be a projection of the following relation.
Line 3 Example : Consider the relation ORDER

Line 4 *T ORDER

Line 5 A permuted projection of this relation is as follows
Line b *T ORDERYU

NB. *TORDFR and *TORDERY4 are references to tahles to be placed

into the text.

The relation "INPUT" would be as follows:

page 32

by
=
o
[
il
=
10
L)
i
10}
i
[T
=
O
]
[~9]
-
o
=]
(1l
"~
=]
1)
o
w
o]
i

. T —m - D D . e W

The 1 3 1 0
final 2 5 1 0
array 3 5 1 0
represents) 10 1 0
a 5 1 1 0
relation 6 3 1 0
which 7 5 1 0
is 8 2 1 0
said 1 4 2 0
to 2 2 2 0
be 3 2 2 0
a 4 1 2 0
projection 5 10 2 0
of 6 2 2 0
the 7 3 2 0
following 8 9 2 0
relation. 9 9 2 J
Example 1 7 3 0
: 2 1 3 0
Consider 3 8 3 0
the 4 3 3 0
relation 5 8 3 0
Supply 6 6 3 0
*PSUPPLY - - 4 0
A 1 1 5 J
pernuted 2 8 5 0
projection 3 10 5 J
of 4 2 5 0
this 5 4 5 0
relation 6 8 5 0
is 7 2 5 2
as 8 2 5 0
follows 9 7 5)
*TSUPPROJ - - b 0

The relation "TABLESY has the following format:

TABLES (Tname, Tsize, Twidth, Tpage, Tflag, Trank)

The significance of each attribute is as follows:

Tname:~ This attribute holds the names of the tables which have been

referenced in the text.

page 33

Tsize:~- This gives the number of tuples (and hence tablesize) ia the
relation (table) corresponding to the Tname attribute. TIhis
is obtained from the size attribute of the MRDSA systza

relation REL.

Twidth:~- This gives the length of "Tname" tuple (ie. the nuaber »>f
characters in the row of the table). This is obtainedl from

the WIDTH attribute of REL.

Tpage:- This gives the number of the page on which the table was

put.
Tflag:- The value of this attribute is either "T" or "3"
corresponding to whether the table was put at the IOP »>c

BOTTOM of the page.

Trank:~ This gives the sequence number of the table on a page.

There may be more than one table on a page.

The following example gives an indication of how the

r2lation "TABLESY is derived:

page 34

Example:

Suppose the following tables

processing of the text. Let us suppose

for each table were collected, then
shown:

M4 RKS

STERERTT T SRRRENT T ASS T TUERGA” 4
R T TR =T U bt -t
Cdang | mang 127, 1 58 4
f===m=ommmome |=====m - |===-== | === |
| Jones | Jones | 28. | 62. |}
paman | Raman | 20. 1 66. 1
\amitn) sith 1 2s. 1 eon |

 BECREAERIRITE S NI TN JECEEI St

REGSTR

| STUDENT1 | COURSEMK |
|”‘. . e ’ . I -z
} Smith | 85. |
| === | === {
| Jones { 30. {
j=—mmmmmm |- |
| Browm | 70. |
-~ |~===——————- i
| Hung | 85.]
| === e]
| Raman { 90. |

vere referenced during the
that statistics

#TABLES" would be as

Tuple length = 30

Page on which the
table was put = 2

Place of table on

Seq. " n "

Tuple length = 18

Page on which the
table was put = 5

page

Place of table on pagsz

" n)

Seq.

page 35

L

]

. T Y D e > T WD 0 T W e N R

{ ST{JDENT1 i COURSE i

| ool iz |

| Brown { Aldat] Tuple length = 14
|--——————-- | == l

{ Brown { Pascal] Page on which the
ittt ettt bl | table was put = 4§

{ Hung | Algol68 |

fmmeem e == i Place of table on »2ajge
] Jones | Aldat {

R e e | === ————] Seq. LI f "
| Jones | Algolé6s8 i

j-——— |

| Smith | APL i

|-~]

| Smith | Pascal {

l‘nnm-m-m--‘—‘———wm‘—m-'~'

The resulting "TABLES" relation would look as follows:

TABLES-

Tname Tsize Tv1dth Tpage Tf lag Trank
|RARRS 1 TTERTPC 3577 2 | B {1 |
|- e e
{REGSTR | 5 |} 18) 5] B | 1
it Reindeetaietind Rttt ekttt Attt Rttt |
| FINAL | 7 | 14 | 4 T | 1]
RN PSRy DI [PRI PRI .

page 36

"

[}

C
C

-

(99

CCCCC
C
C
ceclee

HH HH
HH HH
HHHHHHH
HH HH
HH HH

AAAAAAA PPPPPPP
AA AA PP PP
AAAAAAA PPPPPPP
AA AA PP
AA AA PP

33333333
333333333333
333
333
33333333
33333333
333
333
333333333333
33333333

TTTTTTTT
7T
TT
T
TT

EEEEEEEE
EE

EEEEE
EE
EEEEEEEE

page 37

RRRR2R3
BB RE
RRBRRER
RR RER

RR 2R

3.1 The Formatting Phase.

3.2 The Formatting Algorithm.

page 38

{=mmmm- page width -=-~--->

T T TSI S T . A D Wb W VED TR ST TP W WD TS TP WES SED NIRRT TS

{
i
{
1
{
J
i
f
i
i
i
{
{
R
|
I
i
i
:
1
I
I
i
i

Y T P . T W T WD 4 WP R THD WD UED HMD WD WA W TAD W WS T W WD e

- p— o, S

i

page height

§

i
i
i
!
I
i
{
!
i
!
i
{
‘v
S
{
]
{
:
{
{
!
{
!
i
t
i

i
L
i
{
i
i
{
!
i
i
i
{
':

'
i
!
[
L
i
i
i
i
i
I
L
{
i

v e -— T D TR SRS T W

[} i
[i
i
1
) i
i i
i i
|
!
i
]
1
]
i
1
]
[}
i
[}
[
1
!
{
1
. : [] .
. H s <‘* . B g ;
L]
—— VS gy O g, S i, W i S s T, b

.
3

i
'

<——_—hb_-l~

THE PAGE LA YOUT

As stated earlier, the page layout is an important
consideration when including tables in text. The page
frame, as used by "TABSINTEXT", has a page width which
is a fixed unit, and a page height which 1is variable.
Beciuse "TABSINTEXT" does not allow pagebreaks, tables
are not allowed either to exceed the width of the page
or to cross over onto the next page from the current
one.

The pageheight (wvhich we define as the number of
lines remaining on the page) varies between zero and a
"stdheight" (a fixed height set up by the programmer to
indicate the maximum number of lines to be allowed on
the pages). 1Initially pageheight is equal to stdheight

page 39

and as lines are placed onto the page, the pageheight is
reduced until it becomes zero, at which time the page is
fall and no more lines can be put onto that page.

As soon as the reference to a table is encountered,
the program attempts to output the table on the bottom
of the page which is being formatted. This is possible
if the height of the table (tableheight) is 1less than
the pageheight, and is done by giving a value of "B" to
the Tflag attribute in the tuple corresponding to the
referenced table in the relation "TABLES", The following

example illustrates this:

Suppose we are currently formatting page x, and the

current pageheight = 20, height of table referenced
12, then the table referenced (tab1) is placed at the

bottom of the page as follows:

page 490

- - e -

- -

[X% L .eruaanonas FEE| VERE UL LTI LT T ReE

[¥%% @i vnnansans *EX|] 5K o ennecaons K¥X]

| *Ttabl I | I |

i | i

| | | i

] H | | jnew

| | | | jpage

| | page i | aeight

i | height ! '

} I | | i

| | I | | | v

‘ i‘ l C I X B BN B BN BN BE B R 3 W) li

i i 1 i : : i

| 1 | : TABI1 H jtable

| || { : : } height

i i1 i lemscccssoansl id

LIS AR A B | | canzzad ¥
page x paje X

The tuple corresponding to tabl in the "TABLES" relation

wonld be:

TABLES {(Tname Tsize Twid th Tpage Tflag Trank)

tab1 12 .o X B 1

Suppose another table, tab2, was referenced on the
same page as tabl, and that the height of tab2 was less
than our new pageheight. Then tab2 will also be put on
the "bottom" of the page, but it would appear above tabl

as follows:

page 41

vam e -

e ——— enz

Rk

i*** » 98 5 9 665D SO Be ***' ! ® 9 B S D 9S8 088N
i*** > B O 9 S e OSSN AL ***' ’*** - H DO SHOE PISE ***l
|*Ttab1 | | (|
]*** > o9 DS s BDSIBDB O ***‘ l [UEB
}*Ttab2 | i {page
| { | { height
i | | i1
| i i 1 v
i l l P ® 9 SO S HOSSIBDE ‘
| | | : TAB2 H i
‘ ‘ l :..'....'.Q': ’
] ' l " e o009 esesses *
| i | : : i
| ! i : TAB1 : |
i | | : : i
l l l :.....‘..0..: l
R : S | | N RN |
page X page X
The 'TABLES" relation would now be:
TABLES (Tname Tsize Twidth Tpage Tflag Trank)
tab1 X B 1
tab?2 X B 2

#e can effectively interpret the Tflag/Trank attribute
values as follows:

A Tflag/Trank value of B/1 dimplies that the
raspactive table is the first table from the bottom of
the page.

A4 7Tflag/Trank value of B/2 1implies that the
raspactive table is the second table from the bottom of
the page.

Now because the system does not allow pagebreaks
(whenaver the tableheight exceeds the pageheight), it
may not always be possible to output the table at the

page 42

bottom of the page currently being formatted. For

instance, if a table happens to be twelve lines in

length and there are only

five lines on the current

page, such a situation would arise. In this event, the

table is output at the top

don2 by assigning a value of

of the next page.

This is

"TY to the Tflag attribute

in the tuple corresponding to the referenced table in

the YTABLESY relation.

illustrates this:

T Y -

| X%

" 50 0895 065908 ***
* ¥k ¥

’*** »se nss9e8nse

| *Ttab1
{

|
l
|
{
i
|
|
i
!
!
|
|
b ensccioocioioeiinan

page x

NB. There is enough
room Oon page x
for tabi1

The TABLES relation would be:

The following example

FRE Ll .oeeeems FEEK|

XK | neeececsnse KEX|
i
i
|
jnaw
ioage
{ height

s, e

[

L]
»
{]
.
[
)
[]
[]
[}
L)
L]
L)
.
L4

TAB1
ble
ight

5 we o4 §4 4

o
G R e -

— T, T S gy o Sy, W M . g
B, A iy, Wt - .

i
'Y 1

TABLES {Tname Tsize Twidth Tpage Tflag Trank)

tabl .. .s

X B 1

page 43

Later a reference is made to another table tab2 whose

tableheight is less than the new page height.

- - - --,-- o S . WD S e >

';** .;nc-.cooo..,;;;‘ ‘*** LI IR B BRI N N ***I

X% | e seeessaes ¥EX| [¥%F o teesasseas F¥E|

{*Ttab1 { | i |

JHREE i cneoassee XEX| i I i

| *Ttab2 | 1 i

|]] }curcani

{ | | {page

{ | | | height

| i | i

i ‘ ‘ 2 50 0S99 Possses 1 v

{ 1 I : : i)

| | | : : (I

i } { : TAB1 3 b

{ i i : : jtabl

]] | : : 1nelght

l | ‘ :‘00....'...': i !

";;;;. . . e --;:—i ‘_...;,..:_,.. - i i V
page x page x

l 2O 8B OEPOLOESTPBTES ’

| : : |

| : : {

| : : |

| 2 : i

| : TAB2 : {

| : : |

i 3 : |

| : : |

| H : |

i :.....'.‘..: ‘

| I 1

| |

| |next page

| |height

| i1

i o ¥
page x+1

page 44

The table relation would be:

TABLES (Tname Tsize Twidth Tpage Tflag Trank)
tabi soe cves X B 1

Suppose a later reference is made to a third table
tab3 whose tableheight is greater than the <current
pageheight but less than the next pageheight, then the

following results:

page 45

T W e TR W TR VAR W W e TR THE HTH TR AWM W MR TH TR

- -

[REE L. ovasenses XEX| | ¥ %% ,..,,..,,,,,_**t;
THEE e ieneennes ¥EX| 1X¥% o ieeanness ¥EE|
| *Ttabl]] F I |
| X% s eessenses ¥X¥| | i1
| *¥Ttab2 |] P i
{*Ttab3 i i jcarrent
{ { | | page
i |] { heighat
| | | (|
I ‘ ‘ sesseesasensawe ‘ V
| | | : : | I
] | | : : i
| | | : TAB1 : 11
i | | : H jtaple
| i i H : | height
] | | lecscsssasnsces I |
| et i ieeamad | S comnmzat ¥
page x page x
' e 99 BHSSdee ®e l
| : : |
| H : |
| : H |
{ S : |
| 3 TAB2 : |
| : : |
| : : |
| : 3 |
! Sesssssssvacs l
i " ® NencseNeceseven '
| R
| = TAB3 : |
1 = s
‘ S vsssswsrescs e '
1 | inext pageheight
| R rcrmmemal V
page x+1
The table relation would novw be:
TABLES {Tnane Tsize Twidth Tpage Tflag
Tr ank)
tabl e e es e X B 1
tab2 cn ceas x+1 T 1
tab3 “va av en X+ 2 T 2

we can effectively interpret a Tflag/Trank
attribute value of T/1 as the first table from the top
of the page. A value of T/2 can be interpreted as the
second from the top of the page and so forth.

This method of placing the table into pages may
often result in a resequencing of the tables so that
their order of appearance in the text differs from the
order in which they vwere referenced. This is however
traded off by the fact that "TABSINTEXT" seeks to place
a table at the esarliest possible position where it can
fit.

To handle pagebreaks when they occur, "TABSINTEXT"
sets up a linked list which is called the
next-page-list. This 1list gives:

1) The next page number;

2) The next pageheight;

3) The number of tables already on that page.

To find the most appropiate page on which to put a
table, the program searches down the next-page-list
checkingy each record to see if the tableheight is less
than the value of the pageheight field of that next page
record.

When it encounters the first such a record, it
updates the number of tables on the page and the
pageheight items so as to reflect the placement of the
table onto that pags. In the event that no such record

can be found, a new record is created, using the next

page 47

page number after the last in the 1list, an updated
pag2ha2ight (stdheight - tabheight) and an updated number
of tables on page element. This new record is then added
to the end of the next—-page-list. After these
operations, processing continues from the page which was
being processed when the table was encountered.

whenever there are no more available lines on the
current page, the program accesses the next-page-list.
If the list is not empty, then the values in the record
at the top of the list are assigned to the current page
valaes, and this top record is removed, hence
effectively switching onto the next page, and still
maintaining consistency with the upcoming "next" pages.
If the 1list is eampty however, the program adds one to
tha current page number and uses the stdheight value for
the pageheight. An empty list implies that there are no
tabies, previously referenced, which are to be output on
any upcoming page including and following the one

presently being used.

page 48

The program "TABSINTEXT® is written in accordance
with the algorithm gqiven below. The boxes displayed
throughout the algorithm outline the names of some of

the routines through which the program proceeds.

page 49

} INITIALIZE |

I a) Initialize Relations Attributes.
b) Initialize Next Page List.

¢) Initialize Program Variables.

- v—-a-n-'.--n-—-n-u----—

II a) Get the first tuple from the relation INPUT.

{ PROCESS TUPLES |

| |
b) Tf the tuple is not a reference to a table then

[,

| 100P = oW - LIEE 1

! T W T T T l

1) While line number remains unchanged

a) Add page number to the page attribute of INPUT r=zlation
b) If there are more tuples then get the next tuple.

2) Update line number value.

3) Go to II.d.

c) If the tuple is a reference to the table then

| PROC TABLES }

‘ TR N e P e VY D TS WS ST Y S S A T |

1) Determine the most appropriate page, and place on the page
where the table can fit.

page 50

{ FINDAPPROPAGE |

2) Add a nevw tuple to the TABLES relation with the data #hich
was derived from the referenced table.

| UPDATE_TABLES |

3) Add page number on which the table was placed to the page
attribute of the INPUT relation.

4) If there are more tuples, then get the next tuple.

i) Determine/Update the number of lines remaining on the current
page.,

e) If there are noc more lines left on current page thea

{ GET NEXT PAGE |

| e wont

1) Get the next page values and replace the current page
values with these.

IITI a) If there are more tuples in INPUT relation go to II.b.

{ PRINT RELS |

‘ " T W S Y l

b) Print relations INPUT, TABLES

¢) STOP

page 51

The following illustration indicates how the

algorithm proceeds:

AN - E X A M PLE
Suppose we have the following INPUT relation

INPUT Hopd- €4 Hordilea Line- Page-

Taple # 1 *Ttab1 1 0
2 Tablel 1 6 2 0
3 is 2 2 2 0
4 an 3 2 2 0
5 example 4 7 2 0
6 of 5 2 2 D
7 the 6 3 2 0
8 INPUT 7 5 2 0
9 Relation 8 8 2)
10 *Ttab2 3 0
11 Table2 1 6 4 0
12 is 2 2 4 0
13 an 3 2 4 9
14 example 4 7 q 0
15 of 5 2 iy J
16 the 6 3 4 0
17 TABLES 7 6 Y 0
18 Relation B 8 4 0

N.B. The field Tuple # has been indicated here purely for our
convienence, and is not an attribute of the INPUT relatisa.

page 52

Sappose we have already gone through the Step I of
the alyorithm (the INITIALIZE phase) and that the
following variable values have been obtained:

1. Pageno = 1
2. Lineno = 1

3. Currentpageht = 24
4., Number of tables on page {(numtblsonpage) = 0

Let us make the following assumptions:

20 for tabil
15 for tab2.

a. Tabheight
b. Tabheight

0o

Proceeding through the algorithm...

At Step ITI a Get tuple 1

" " IT ¢ Tuple 1 is a reference to tab1

" " I c.l

Most appropiate page = 1 since
currentpageht => tabheight for tabl
Position on page = B (bottom)

it Step II c,2 Add new tuple to TABLES. The result is

T ABLES

Tname Tsize Twidth Tpage Tflag Trank

I"tab1 1 20 1 es 1 1 1 B i 1

1
i
[]
i
!
i
1
!
e
i
)
i
i
¥
¥
i
-
[]
{

At Step II c.3 : Add pageno to page attribute of INPUT relation

page 53

Word Seq ¥ordleng Line Page

"""" R

1
| ===== = et B ey ALY
[

{ Tablel | 1 6 { 2 | 0 |

B ntainbeb Eatidedeintel Retetebaiebent bt % Sotnininbotaingd Retebebdntied |

I is i 2 l 2 { 2 | 0 1

== |—--—- | === | ——— | === i

| H { | i i
At Step IT c.4 : There are more tuples ==> get the next tuapls fr«

the relation INPUT

At Step II d No of lines on page ==

currentpageht -~ tabheight = 24 - 20 = 4§

4é

88 Ws ¥ 4

At Step ITI

s

There are more tuples ==> go to II b

At Step II b Tuple 2 is not a reference to a table

h " 17 b.l.a : Add pageno to page attribute in INPUT

INPUT
Word Seq Wordleng Line Paje
|~ *Ttabl | i i 111}
| -——====—--- |- - | === |======- i
| Tablel i 1 { 6 | 2 | 1
et Sinininieind Rttt R intintetninttnd Redeintedetedeg Ratiededegadel
| 1is i 2 | 2 | 2 0 |

| =====m-mm-- R I e

| | | { | i

At Step II b.1.b : There are nmore tuples ==>

page 54

Get tuple 3

go to 11 b.1

~m

i
|

After several iterations on line 2

At tuple # 10 the INPUT relation looks like

INPUT

Word Seq Wwordleng Line Paje

| *Ttabl | i 1 1710771
et B By B Rt
{ Tablel | 1 i 6 | 2 | 1 4

i B e B By

I is P 2 | 2 2 1 1y

e e e Bt Bt

| an | 3 I 2 { 2 | 1 9

e It B B By

| example | 4 | 7 | 2 | 1]

el Bl B el RREE Y

| of i 5 { 2] 2 | 1

e B e B Ry

| the | 6 i 3 | 2 | LI

el Bl et Rttt Retebededbd |
| INPUT | 7 | 5 I 2 | 1 |
e Bl e] et e ttd |

| Relation | 8 i 8 | 2 | 1

=== o [=====-- | === §=~=== St Rt |
| *Ttab2 i | | 3 | 3 |

l - o !--_——-— i--—-_-—--—-_ l—-—----‘-_--—--‘

| | {] i {

We are now at Step II b,

At Step II b.1

: Line no has changed (from 2 to 3)

page 55

" " IT b.2 Update lineno

s

" L B < | : Number of lines on page ==>
currentpageht - 1 =4 - 1 = 3
" " 11 e : There are more lines on page

At Step IIT a Go to Step II b

At Step II c Tuple 10 is a reference to a table

" " IT c.1 : Most appropiate page = 2
(since tabheight > currentpageht)
" " 11 c.2 : Add new tuple to TABLES
TABL ES
Tna me Tsize Twidth Tpage Tflag TIraax
| tab1l 1 20 1 ee 1 1 1 B 1 1 i
| —— ===] e e e e
| tab2 i 15 | .e { 2 | T 1| 1
TS BRI ES NECIEEIELN NN PRy Ny
At Step ITI c.3 : Add pageno to page attribute in INPUT relation

page 56

INPOUT

dord seq Wordleng Line Page

|~ *Ttabl 1 1 I 11 1
| === ———— B j-——— - |======- j==-==-- l
| Tablel 1 1 { 6 | 2 | 1
| === | m e | e | e m e e e -]
| is] 2] 2 i 2 | 1 i
Ittt Eainteiebnill Entindetedutedebiidl Andeintedndded Rebbeb b
{ an | 3 i 2 i 2 i L
Bttt i il Ratubeiesibdedeteind Retaleintiednd Ratadedabeteted |
| example | 4 i 7 | 2 |
=== | === =~ | === i
{ of i 5] 2 | 2 | LI |
ettt Sttt Rttt heietndeietudetbed e Rifntutntuiied Rdeddettded |
| the] 6 | 3 | 2 | 1
|| | e e e e e
| INPOT | 7] 5 | 2 | 1
e - -1 pumindl hetatetetedebbd S0 Ruinbininbd Raubdbedabad |
{ Relation | 8 | 8] 2 | L I |
B bttt Eetatebedtndell hatnbeteinbobaindnt el hied S S A Rt |
| *Ttab?2] { i 3 i 2 |
it Rl Eatietetsisiededeteied Entadetb b it
{

At Step II c.4 There are more tuples in relation INPUT

2]

==> Get the next tuple

LA] " IX d

No update on the number of lines on currznt pag

" n IT e There are more lines on current page

E 2]

At Step III a Go to II b

a8

At Step II b.1 Tuple 11 is not a reference to a table

(2]

" " II b.l.a

én

Add page number to page attribute in INBJI

Tuple 11 becomesS. ..

page 57

INPUT {(tuple 11)

Hord Seg ¥wordleng Line Paje
{_ Table2 1 1 | 6 1 271771
(RN IS NIt SRl IRty

At Step II b.1.Db : There are more tuples

Get tuple 12; go to Step II b.1

After several iterations on line 4

S SE I IEIIA |

The INPUT relation is as follows:

page 58

INPUT

Page

Seq Wordleng Line

Word

T WD W W T VXD S I A X3 W D M BT W N D TR W W W W W W W

. KD R ACHVI WD AP WS WS S VD s

i
i
i

1

1
B Rt Bl

1

|
|
|

1

il ot Rty
2

2

|
i
|

6
2

{ |

! !

{ !

= 1™

i {

] I

! \

t {

| i

i i
bl
St e
o
£t al
Hl ool
* B}

] '

' !

— — T — T ey T

TR N oy N coupy R oy
[[| [1
[}] L] [}]
V= § ™ | ™ | =
] t] []
] | i]]
] [} !] L}
! 1 [['
[| 1) 1
[i |]]
TN Nt NN
' | | 1 !
| | | } t
] | |) i
' | } 1 t
T Ty W v Y . ———
[} ! | I i
1 i 1 [}]
] 1 |) |
PN~ N M
] | |]]
1 ! [i t
[} [} |]]
f] | 1 |
§ 1} | 1 !
| | 1 1 |
] | | t |
f | § | f
i [| ! |
1 I 1 | 1
“3.3.5.6.
! { { !
| ! ! | |
[t | ! |
} f {]]
i 1 i ! 1
i 1 O | |
| | ~ § |
1 [=TI t 1
| | =21 1 _
[} | ™y R
P A "% ow) s
ol @ O0F) &)
] 1 t [} [}
1 } t 1 |

i

. — VT ey T vy vmme T R S ggugy T awyy T ooy W ow—

— R v TN T omyy T
1] \] 1
) ']] !
b e N e) e
[} t { 1]
} } 1 | |
t [| 1 |
} [{ | t
[! } } |
] [i 1 !
N M) x| 2>
]] } | !
| i t) |
t 1 | i §
1 | | | |
| 1 y t |
\ | i | |
| | | | |
| © [- e I |
] i) | |
f)) | '
] 1 ! ! !
[| | ! |
| | | | f
| ! ' | 1
§ 1 ! | }
S e Y o e, TR ey

{ f 1 i f
[1]) |
[}] ¥ [} '
| © P TN
{ |] 1 |
f | 1 | |
{ !) t '
{ { I [} [}
[~ { !)
1t 01 | 1 |
Pl N Ny 1
P+t @ !
I ot) e~ \
fed 1 1 2t |
I @ et @y oW
{2 - -T IR - I TP O |
| 1 |]]
| [f t)

lllll — T
] | L} 1
' | i 1
1 =] v | = | =
t] [} !
1 {] |
') 1 !
[} [} ' 1
TR AR oy W - Y a—
!] 1 i
] |]]
[A - A - g -
} ! | 1
1 1 | |
| | § |
' ! | !
| i } |
1 | | |
] |] |
1N N W
[}] | i
)) | 1
| § | '
[}] |]
] { | i
1 { | !
[} []
| { i |
) [}] }
[}]] i
TR 2NN TV~ 2 T o T -+
] 1 1 I
I [} ! [}
|] i 1
WPNR e g RN amtge W —
t ! ! !
| t]) =
{ \ i t O
| i) 1)
! | B oW
_ “ -l

Q) Mt~
=1) = 9
1 O) #))&
] | t [
1 1 1 t

ey

.

md

T D A T T 19 T A e

page 59

and the TABLES relation is

TABLES

Tname Tsize Twidth Tpage Tflag Trank

1 tabl 1 20 1| . 11 1 B 1 1 i
|========]=======} = =m====f m==m-=|~om=| = mm =
| tab 1 15 | e 1 2 1 T i 1 4
1‘;. . . '-- - ‘) i ‘ Lo ' . ;“,-.-:-‘.-.b,i

page 60

CCCCC
ccC
cC
cC
CCCCC

HH HH
HH HH
HHHHHHHA
HH HH
HH HH

AAAAAAR
AA AR
AAARAAA
Al AlA
Aa AA

444y
4444
oy
4444

4444
ugqn
444444404 4445404444444
4ui4susaguyuugunynnuny

PPPPPPP
PP PP
PPPPPPP
pP
PP

4444
45344
4444
4444
4444
4444

4ygy
4444

TTITITIT
TT
7T
TT
T

EEEEEEEE
EE

EEEEE

EE
EEEEEEEE

page 61

RRRRBRR
RR RR
BERERRRR
RR RR

RR BR

4.1 The Program "TABSINTE XT"

4,2 Setting up the Input for "TABSINTEXTY

page 62

4.1 The Program "TABSINTEXT®

The program "TABSINTEXT" is a series of Pascal
procedures, which alongside with its internal routines,
calls upon several MRDSA procedures . The main program

is embodied in the following lines of code

begin (* TABSINTEXT *)
setup('N"*, "TDATA');
TABLEPROGRAN;
promgtboct;

end. (* TABSINTEXT ¥)

The second 1line is a call to the MRDSA procedure
SETUP and is the first executable statement in the
program. The relations which are used by the program are
stored in the database€ TDATA which 1is set up before the
program is executed. Since the database already exist
the first parameter in SETUP must be 'N°'.

The third linme is a call to the routine TABLEPROGRBAHM
which controls all the frocessing done by TABSINTEXT.
Specifically TABLEPROGRAM initializes the data
{(attribute names, sizes etc.), it calls the routine
which processes the information in the relation INPUT,
and finally it prints the INPUT and TABLES relations.

The MRDSA procedure PROMPTBOOT is called at 1line

page 63

number four and it request the user to put back the boot

diskette in the boot drive.

The procedure TABRLEPFOGRAM and

indeed the overall

flow of the program is shcown by the flowchart below.

LA T I |

: START
|

l
v

* W DS ¢ 9SS SO WSS

-
»
»
»

INITIALIZE :
{

|
v

» OB S 6 S BLDS DS BSOS

FROCESSWORDS 2

-
® B OO D SIBES OB PO B

|
v

. 8 59 2 9 5SS B 9

PRI NTRELS :
|

]
v

: RETURN:

» »
. T 9 59 S0 0

page 64

The hierarchy of procedure calls within TABLEPROGRAM is

shown in the diagram shich follovs.

page 65

I'ABLEPRQGRAM I

‘page 66

FNITLALY 2E

FINDRO

|puocEss WOR DS |

1

CHARINTTRANSFORM

GET UPLE

PROCESSYUP ES l

PRIN TREL S

r|N°“kL

GEYNEXTPAGE

P ROCTABLES

FINDREF

LOOP ON

LINE

INTCHARTRANSFORM

CONSTRUCTI 4P E l [CHARINTTRANSF ORM

| I I I T 1 |
UPDATE Ta B
FINDREF QETYPLE Icousrnuc"unne | ERROR PROC | FINDRE L | o ves FINDAPPROPAGE
0
ERROUPROC ADTUPLE INTCHARTRANSFORM

PROCEDURE CALLS

WITHIN
TABLEPROGRAM

ICONSVRUCV TUPLE

INITIALIZE

This internal procedure specifies the names of the
attributes in the relaticns INPUT and TABLES and then
locates {using the MRDSA function FINDRD and the systenm
relation RD) the starting rpositions of each of the
attributes in the tuples of the corresponding relations.
From this is deduced the length of each attribute. These
values are useful when it comes to adding specific
atributes into these tuples since the tuple itself is

but a string of characters.

PRINTRELS

PRINTRELS generates the final output from the
program, It uses the MRDSA fanction FINDREL and
procedure PRTREL to locate and print out the updated
versions of both the INPUT and TABLES relations. Before
printing occurs the RINDX field of the system relation
REL has to be set to zero since during the course of
processing this field would have been used by GETUPLE to
record the next tuple to be read in sequential manner.
Setting RINDX to zero would in effect set the pointer to
the first tuple so that reading and hence printing could

commence from the top of the relation.

page 67

PROCESSWORDS

As the name would indicate this routine processes
the words 4in the text. Since the text is held 1in
relational format, these operations are implemented by a
call to the procedure PROCESSTUPLES which in turn
operates on each tuple in the relation INPUT.
PROCESSWORDS begins by finding the first tuple 1in this
relation and thereupcn derives the starting line number
value. To obtain these, calls are made to the MBDSA
function FINDREL and to the procedure G ETUPLE as well as
to the internal routine CHARINTTRANSFORM which
transforms a character string into its equivalent

numeric value.

INTCHARTRANSFORN

Because all elements of the relations in the
database are stored as characters it is necessary to
transform integers into their equivalent character
format. This procedure accomplishes this task for

integer of eight digits or less.

CHARINTRANSFORM

CHARINTTRANSFORH accomplishes the opposite of
INTCHARTRANSFORM in that it converts a string of
characters between 0 and 9 into its pumeric equivalent.
This is necessary so as to retrieve numeric value data

from the relation INPUT.

page 68

CONSTRUCTTUPLE
This routi

in a single
parameters for

pl =

p2 =

X

0

4

str=

ne is used to construct a tuple by filling
attribute each time it 1is called. The
this rcutine are as fo0llows «.eee
Integer pointer to buffer containing the page.
n " " position of tuple in page.
length of attribute in tuple.
position of attribute in tuple.

string holding attribute value.

The routine proceeds by £filling each character of

the string 4into the text field of +the record £for the

work file of the particular relation.

PROCESSTUPLES

Before the

processing of the tuples of the INPUT

relation begins, PROCESSTUPLES initializes the program

variables which are to be used in this phase. These

include the following

tabnum ------—- table number; initially set to 0
pageno ——--—----- page number; initially set to 1
numtuples ----- number of tuples; set at 1

since tuple 1 has already been obtained

currentpageht -- current page height; set to stdheight

numtblsonpg

»

---- number of tables on page; initially set to

inputsize —=--=- number of tuples in INPOUT

page 69

http:PROCESSTUPL.ES

For each line of text PROCESSTUPLES operates on all
tuples with data pertaining to that specific line. When
a new line is encountered the first word of that line is
checked for a table reference. This is done by checking
the first two positicns c¢f the WORD attribute for the
characters *'*' and 'T'., If a reference to a table is
indicated the procedure PROCTABLES is called else a
loop is entered in which all tuples pertaining to that
line are processed until a new 1line is found. For each
line that is processed the current page height |is
appropiately adjusted. ¥W¥hen this height becomes zero a
call is made to the procedure GETNEXTPAGE which finds

the next page unto which processing can resume.

GETNEXTPAGE

when all the lines on the current page have been
used, this routine is called to find the next page as
well as to obtain the relevant information pertaining to
that page. In order to achieve this objective,
GEINEXTPAGE attempts to access the next-page list
{discussed in sectior 3.1). If the 1list is empty then
the page number 1is increased by 1, the current page
height is set to stdheight, and there would be no tables
on the apcoming page. If the 1list is not empty however,
the top element is removed and the page number and other
relevant information are obtained from fields in this

record. The subsequent record now becomes the top record

page 70

of the list.

LOOP_ON_1INE

If the first word on a 1line does not refer +to a
table then this procedure is invoked. It is this routine
that processes the tugles which pertain to an individual
line of text. This includes the addition of the page
number to the PAGE attribute of the relation INBOT, and
if the tuple number is less that the total number of
tuples in the relation then the next +tuple is obtained
and the line number is deduced frecm that tuple. In
order to accomplish +these tasks LOOP_ON_LINE calls
INTCHARTRANSFORM, CHARINTRANSFORM, CONSTRUCTTUPLE and

the MRDSA routine GETUPLE.

PROCTABLES

This procedure is called whenever a reference +to a
table is made. It begins by finding the indices in the
system relation REL of the relations TABLES and of the
tables to be referenced. The latter 1s accomplished by
the procedure FINDREF., PROCTABLES then checks the
height and width of the referenced table to determine if
it can fit on a page. If it cannot an error message is
printed by the procedure ERRORPROC and the program is
halted. If the table can fit and can do so on the
current page being processed then the number of tables

on the page is increased by one, the table is flagged to

page 71

be put at the bottom of the page, the sequence of the
table on the page is found, the current page height is
adjusted to reflect the placement of the table onto that
page, and the relaticns INPUT and TABLES are
appropiately adjusted by calls to UPDATE_TABLES 1in the
case of the TABLES relation and CONSTRUCTTUPLES in the
case of the INPUT relation. If the table is not able to
fit on the current page ther it 1is placed at the top of
the next page if there are no tables on the upcoming
“next" pages, or is placed in sequence (by rank) on the
most appropiate page. Finally PROCTABLES checks if there
are more tuples in INPUT and if so then it gets the

next tuple so that further processing can take place.

FINDREF

FINDREF locates the index in the system relation REL
of the tables which are referenced. The routine makes
use of the MRDSA function FINDREL to accomplish this.
The table names must be specified by the user as the
parameter +to FINDREL and the tables must bLe 1listed
within the 'case' statemernt in the exact order in whicﬁ
they appear 1in the text. This is because the "tabnunm®
variable keeps track cf the number of tables referenced
and in order to f£ind the correct index in REL, "tabnum”
must match the case label. If the user does not specify
all the tables within the routine then a call is made to

ERRORPROC and a message 1s signalled that a table has

page 72

been excluded from the 1list before the program halts

processing.

UPDATE_TABLES

Having derived all the necessary information for a
particular table that has been referenced, a tuple is
now compiled (attribute Ly attribute) and added to the
relation TABLES. Calls are made to the MRDSA procedure
ADTUPLE and to CONSTRUCTTUPLE, INTCHARTRANSFORN, and

CHARINTTRANSFORM.

FINDAPPROPAGE

In the event that a table cannot fit on a page this
routine is called to find +the most appropiate page onto
wvhich that table can te placed. This is done by
searching down the rext-page list until a record is
found where the pageheight field is greater than the
height of the table. At this point the table is
effectively placed on that page by updating the
pageheight, tblsonpg (tables on page), pnum {page
number) and rank fields of that record. If the end of
the list 1is reached and no such record has been found
then a new record 1is created and the necessary
information are placed into the fields of that record.

This is then added to the bottom of the next-page list.

page 73

ERRORPROC
This routine is called whenever the program
recognizes an error in the data. Three errors have been
specified and include
1. A table being toc long to fit on a page,
2. A table being excluded from the list in the
procedure FINDREF, and
3. A table being too wide to fit on a page.
After printing the aprropiate message, execution is
halted so that the user can take whatever corrective

measures that are necessary.

4.2 Setting-up-the-Data-for "IABSINTEXT"

The data for the relations which are input to
TABSINTEXT are set up using the Relational Editor. In
order to use the Editor a MRDSA program must be written
to call the user procedure EDIT, which in turn invokes
the Editor. The Editcr was designed tc¢ provide a high
level interface for the end user.

The program SETUP_INPUT is typical of how the input

should be set up. The variables "Jomlisti® and

page 74

"qomlist2" refer to the INPUT and TABLES relations
respectively, vwhereas "tabl1" to “tabn" refer to the
first to the n-th table tc be referenced.

The procedure EDIT is invoked so that the relations
could be created and edited. PRTREL is subsequently
called to print out the relations whilst SAVE
permanently saves thes on the database.

Appendix C gives a listing of the progran
SETUP_INPUT and Appendix D gives a sample of the data
used by the relation INPUT and TABLES as well as for the
tables to be referenced. It should be noted, in the case
of the TABLES relation, that ideally this relation
should initially have no tuples. However MRDSA does not
appear to recognize and save null relations. This
problem is resolved by having the first tuple of TABLES
be a series of zeroes or "don't care" characters and
this tuple 1is disregarded in subsegquent dealings with
this relation,

The INPUT and TABLES relations which are output from

the program are given in Appendix E.

page 75

http:relatio.ns

p
P

AAAAAA PPPPP
A A P
A A P ,
AAAAAA PPPPP
a A P
A A P
A A P

pPpPPPP
£
p
pPPPPP
P
P
p

P
E

EFEEEE N

E NN

E NN

EEEE N N

E N N

E N

EEEEEE N

AAAAAAAA

AA AA
AA AA
AAAAAAAAAA
AR AA
AA AA
Al AAd

-~ -~ 1

D
D
D
D
D
D
D

DDD

DDD

D

D

D
D
D

JITITIIIIL X
I
I
I
I
1
ITITITIII X

The following 1is a list of standard coventions for

coping with figures, tables, footnotes, etc in text.

1) The purpose of tabulation is to present data more
vividly and concisely than is possible in the text.
Tables can often be condensed:- a factor common to all
elements in a <column can be incorporated into a coluama
heading; a variable pertaining to only one or a few
entries in a large series can be indicated in a footnote

{Table 2).

2) Table titles should be brief. Explanation, if needed,

should be given in a footnote.

3) when tables are referred to in the text, they should
be numbered consecutively throughout the work, not
beginning a nev series of numbers with each new chapter.
Reference in the text should be to table number, not to
a specific page. The table number may be either Roman or
Arabic numerals and may either be set on a separate line

or run in with the caption.

APPENDIX A

Example: TABLE II

Marsh Herbs

Table 2: Immigrant Aliens Admitted to the

nited States

4) Table numbers and captions are usually set above the

table itself.

5) Short tables are clearer and more forceful than long
ones. A large, unwieldly table, therefore, should be
broken up into separate smaller tables if the data will

allow.

6) Use zero to indicate "none" in answer to the implied

question "how much?" or "how many?" (Table 2).

7) Use ellipses to indicate that no data were available

or that a specified category of data is not applicable.

8) If all entries in any one column are expressed in
decimal fractions 1less than one, zeroes must be used

before the cipher. Decimal points should be aligned.

9) In Stubs (first entry in horizontal columns) and

their subdivisions, «capitalize only the first word

(Table 2).

APPENDIX A

TS S T VR WD TWS D TR e TER R WD WY WER T SAe TR BN W WL TYW M B8 e e T . W W W WY S W W

|
TABLE 2 -— COMNMON MANIFESTATIONS ON COLRECTAL CANCER |
|

i Hanlfectatlons -{ Cattel | Hallstand | Palumho 1 ull hfl:t
I_;”;’ ______________ ‘ . . P l - ‘

- i - ““w’w---—
|Changes in bowel hablts | 69.3 | PR | 72. 75 i 5043

[

[
e Bl B Rt IR L e LRty
[

| Pain] 68.0 | 69.96 {} 81.25 | 2449

i e Antindndntesnbet teebatetdatbedt Ratetadebeieieieshal Iy
{Anenia | 20.56 | 4,35 | 0.0 | 12.0 |
e bttt e ininind Ebeieetidteit Iaettedetetetied Batebehetindetnbuttl
| Feight Loss i 50.6 | 716.28 | 66.25 | 6.0 ¥ |
ittt Eedebaieteibatd Rtb b i Aatriisiieited btttk |
jObstruction] O i 10.27] 25.00 | 13.9 {
Bttt bbbt bt R it Eeetetadedintiesndall Ruindeteintebeidedf Rt S |

{Asymptomatlc { O 1 0] ese i 7.9 i
| A A | AR | IR IR -

APPENDIX A

ARAAAA
A A
A A
AAAAAA
A A
A A
A A

EPPPP
P
P
EPPPP
P
P
P

PPPPP
P P
P P
PPPPP
P
P
P

P
E

EEEEEE N

E NN

E NN

EEEE N

E N

E N

EEEEEE N
BBBBBEB
BB BB
BB BB
BBBBBBB
BB BB
BB BB

BBBBBBB

N D
N D
N D
N D
N D
N D
N D

DDD

DDD

D

IITIIITIIT X
I
I
I
I
I
JITIITIIII X

The following is a listiny of the program "TABSINTEXTY.

CERad e, b

Foaram tebsintest dinput.outputs s

vees olobhalerr. soresnops. svsoro. sorb. insavedump, algebrag

const stdheilobht = 243 {1 max. number of lines oer page r
stdwidth = 7 1 omax. number of characters per line ¥

v e arravll..g81 of chars

pacsnum. pageheight . tbhlsonpg @ integer:
medtpage 3 tablinks
ends:

strrngB = arrav [1..81 of charg

v pword,peeg. pwordlength,pline,
ppaoe,ptnamne.ptsire,ptwidth,ptpage,ptflag.ptrank,
Lword,lseq. luwordlength,.llinelpage.ltname,lteize,ltwidth,
itpage.ltflac.ttrank,tabnun.nuntuples,innputsize,
rptrl,ptrl s tpted H integer:s
chrchars

.

Frocedure intchartransftorminum,numdigits :rinteger:; var s:domstr)g
var indw.trem @ integer:

(x THIE ROUTIMNE THQHSFDRMS AN INTEGER INTO & CHARACTER STRIMG.
THIS 15 BECAUSE ALL ELEMEMTS OF THE RELATION ARE STORED
éié IM CHARACTER FORMAT. %)

begin (# infchartransform %
for dindx = 1 to 8 do slingx] o=
for indx = nuamdigits downto 1 do
beain
rem = num mod 103
case rem of
slindul:z=
slindxle="
slindxl:
slindxds
slindxls="
shindxl:
s=lindx]:
slindx 1
slinduds
slindxl:=
and:
num 3= num div 103
end:
ends % intochartranstorm ¥

13

~

-~
-

R s BN 5 S 1 I R E N

~
~

-am x4 CEE R ‘82 2E A% -y ‘RE -8

il

IS
.

it

.
-

T
SONU KUK = O

~

.
.

APPENDIX B

r]ﬂ]

T3 ssoiomsthr s

TreInls OF CHARSD

ECIIVALENT)

beain

SLUHTIE =0 g

+

indxls
S othen
hegin

[y
ne

M a
e v
-

L 3
D) ”

+ vsEeund
+ (GEexply
CoREHn)

+
-\
~

.
il
el
o
<

“am 8E

+ o+
ST
%k
ha
o’

APPENDIX B

prtegers war st o rdomste e

By FILLTHRG

THE

T vUFFER CONT
pE = " Sooe "OROSTT IO
OF ATTRIBEUTE IN THE TURLE
CTTON OF ATTRIRBUTE IN TH TURLE
HOLDING ATTRIBUTE YaLUE *3

telnt enter constructtuple)

-t
!
2
%
'
H
)
.
1)
ey

o indxl 2= 1 to v do
heain
ufptripliitidatalindu+y—11 1= striindslds

inddy = dndu+ls

Frcl (% constructtuple #3

Frocedure errororocte2re tintegeritabname sdomstr) g
bGeoin (¥ Srrorproc ¥

Cazse e of

1: begin
writelnrwritelniwriteln:
writslinttabname, " is to long to Fit aon page.)
writelnrwitelnd
hralts:

writalnrwritelniwitelns
writeinitabname, i1is excluded from list in proc FINDREF) ;
writslnswriteln:
halts
Cends

Zr beain
cwritelnswritelniwritelns
writeln(tabname,’ is to wide to fit on page.)3
writelnrwritelny
halts

el s

=l (% Srrorproc ®)

APPENDIX B

il

0

ChLreinte L err L pniim L mank r integers

voTerdhuwe findapmronace RE
waro oy hooleans:
o o tabliriss

. o ey of
LIRS I

"
-

i 3
st belnd snter 2
REICRE ety B
s =honpnage:
ba=irues
while fpo <> il and (b = frue’ i
Beain

helahti=pgr.pagshsight then
beain
po.paosheiaghti=pg . pagehel
T f?lemﬁpmi=nq”“tblsmﬁﬁg
ELme = 3o RSN,
rark s pa~.thilsonpg:
bew false:

Bt - tabbheights

Q
+ 13

l

ii

end

it paT.onextpage=nil thsn
beain
hr=false:
rEwinpo s
MpET. pARgenRUmE =R . pagenums L
npu“ pageheight:r=stdheight-tabheights:
npgT.thisonpgr=1;
npg” -nPA.HdQE- =nils
ranks=1
B “r"_“.ndmenum.
pogT.nexrtpage: =npas

pg:=pgr.nextpage:
ends
if (po = nil) and (h = true) then pnuwn 1= Of
end: (¥ findaporopage ¥)

APPENDIX B

drEche e

ki
A .
‘thmidth.}tw
tptrE. lihw

cqn5+rv
r‘i_. F'L 11

o
{9

ot
it ELhptr2. Liflag.s

o nstrlin !

&)

e

fincreds

Meain
STah I R s R
ratplrs =g

“mnt e

-
q

Fimchred)

rfw1afh3—

Case

tabhn
refotr

of

=f{indrel (

vim

H s TIRDER s
: retptrr=+indrel { ORDERG)@
K H r@%ﬁtF::{ind!mlf’MﬁFF“ﬁ;
4 s retotre=findrel T FIMAL)
- BT refptra=+indrel (TREGSTR)
& 3 Fetphrr=+indrel ("TRI.EX };
endci:
i+ retfptr=0 then
begin
errr=2s
errorproc {arr . tabname) s
erids
ety (% Findref ¥}

O

APPENDIX B

http:cons+-n.l.ct

-t; .f:

rimtup s

{5

edfptrlewidthsg
chas odth then
aoterr s habrame) g

Cwyrrentpageht then

STV

ranstorminsges

b Kov!

= il then
toppage™ do

panentun: =pagenn + s
raageheighti= stdheiohts

@ tpagss=nilg

(pnum) 3

rtransform(pnum, Ipage.postir) s
! | o stlkir=pgstriill;
constructtuple(ptyl tptrilpage..ppage st

W

i s
numtuples 4 inputsize then
bel=Ta R Y

b R S

tnpledrptrl,o.pteri-tpbriy
et

= =numtupl es+l s

proctables ¥

APPENDIX B

APPENDIX B

=
»
W
i

Tl
ptrl,tpterl)
i

L
L B

— e

i -
+4 LB i

Y +4

i ot
- : L

.,x;‘é

O

getupl
o
pt
1]

1 rie

rhimndul Js

i
A,
t

A g
{

=

—e then
Inst
=i b
= hyf
Y, L
no =

do
i

+
<

R

it . o
44] ™3

] A - -

o

‘lin

-
rl....- "

{ ™o ...l
S T
ot i o —r
e o i L o~
- -k
Lo

- L
+

meformiline
r
1

r=niumtuples+]
+

[H I ot

cummy 2 =dunmyve L

+
In

I ee {2 Lo -t
. o A e ;
v e T o o
w“.n m [" C
i B~ :
PR [P [u}
.- i e O
R O]
U O GE
-
T
£

| | il :

APPENDIX B

APPENDIX B

11 tuplaes wir ata pertaining to &
L Ine.

current

lingcount and

tiret word o thire new lTine 408 a table

doammy 2= fTntrils
L i ot styring o the +irst word of the
birme
faor inddwlie= 1 to oo da
by
st tedincinds)
werdestriinds] Je= :

= pufptriptrllicodeacalidummyroword-11:

s

aordetriinds]
dummve =cummy o+

(% checlk +tor tabhle reterence %3

writelnrwriteln:

write ! T

ftor indel:=1 to 8 do write(wordstriindslldl
writelnrwritelnireadich):

APPENDIX B

At pacer

£13

=
B

it or= cwrrsntpanesht -

S

that can bhe ouwtput

APPENDIX B

-
s

[

Tinme

gy

wia

eyt v

1
4

2 e
T

b4

{ damms

=

t.

e
o Lt

1o
o4

tptrld

e

pline-l

Y

- g
g ti

line

)

M\U
et
o

°L
i
sod

N

] oy
i

HE F

i,

4

\‘} ‘

FetaT I

[

=
o

3

VB

s,
ul

ey

e

e

+1ncie

ep—

e}

,
"

R

i
t..

ABELES RELATI

8. THE T

CTRELE

,
H

= 1

i printrels %)

APPENDIX B

rdntr g

N

a
#

STl rdp iy

‘uz

ryt vei bt
phoaoes:
ptflangs: i

ptrankr=rdlrdotrZis

sl mpeeq-pword:

~alenaths=pline-pwordlengths
=pmane-nlines

1 n
* 4
]
H

APPENDIX B

et
I ow

SEwnrads

e

ol

e
H

APPENDIX B

AAAAAA
A A
A A
AAARAA
A A
A A
A A

pPPPPP
p
P
EPPPP
p
p
P

p
P

PP2PP
P
P
pppPPP
p
p
P

P
P

EEEEEE N
E NN
E N X
EFEE N N
E N
E N
EEEEEE N
cccccece
ceececceece
CcC
cC
CcC
CCCCCCCCC
cccccece

\

D
D
D
D
D
D
D

DDD

DDD

IITIXIIIII X

IIIITIIITI X

O

cabd, tabs,

4 e

otahileni, tablend,

Bigcliom

La i

R
i
ot

°r
3

2= el domlenl
HEIE- 1= I B
ool eng o

Time "y

»—'
Bl

g

“trhame 3
=‘teizre 1
i odth e
Ttpage
et laa”

s ank Ty

1
oo
2=
e
e Bk
o
S e

S Tatich

~nn

1)

APPENDIX C

S semb

enitil]

1

s

£

=

foiml

r3
e 1t 4

DER

g

[
woala

.]

bt

1 .

TRE

4
Wy

len

- ats

4
.

=4 o

APPENDIX C

http:0:<.1:'.11

@)

it

. ?h”‘"!J f‘ y

ii

E1]

ii

ot Bt e

prieel O IRPUT L CTHE THFUT RELATION , ‘prioter: ")
prhtrel (CTARLES . 1HL Tﬁ LES RELATION . orinter: ")
privel £ = AR [P T printer:)

s

Tt

. Drintars

1]

mrtreli’ﬁ'” R4 L
mrtyel RS i’n‘”*PiF 3 o n o p inter: ")
pricel (CFTRMAL . ‘ﬂ B4 ... ”INML . printar:)
prtrel (TREGETRS, " Tr F Zoew.. FREGISTER', printer: i3
POTTRLEX S, "TAE S voww TABLE -—— Example’, printers:’

F

15-
4

mr‘

L Ll ol T it

!v ER) we ¥ Lyard
cavelrellist &)

oy (¥ setup data #?

Fegin % ey *)
{$¥r mvERro*)
sgtup{ 'Y . TDETA 7}

sptun data:

13

APPENDIX C

AAAAARA
A A
A A
AAAAAA
A A
A A
A A

PPPPP
P
P
EPPPP
p
P
P

P
p

PPPPP
P
p
- ppppP
P
2
P

P
E

EEEEEE N

E NN

E N N

EEEE N N

E N

E N

EEEEEE N
DDDDDDD
DDDDDDDDD
DD DD
DD DD
DD DD
DDDDDDDDD
DDDDDLCD

=z

=
2B EZ

D
D
D
D
D
D
D

DDD

DDD

D

D

D
D
D

IITIIIIITI X
I

I
I :
ITITIITITIT X

el ation
Order
ETORDER

&

oermuated
protjection
ot
Thi
relat:on

1e

j=3

i

oy g

follous
#TORDERY
The

0

APPENDIX D

Falatian

i oo

THE TAEBLES RELATION @ BEFORE EAECUTION OF TORSINTEXT
RELATION = VARLES
trname tTsizs twidth tTpage tflag trank

[RINTOIRININ RIS

RIS

APPENDIX D

embly quantity

@t Lrmadd

i i

L.ocomohive

Tivw Train 7

Rl a1

Canada Matzacha Enginser

enbly quantity

it

Hannah Tratnman
Hamnabh Trainman oy Train 11

student? asst exam

S man
i

APPENDIX D

R NI o 7 1 RN
MELE 4 L L0 BRI

s TEdd ¢ B 1R
siurent coursaemls

e Tl nlttin]
Mo

Maman

Course

B mwsn Aldat
Erown Fascal
“Hung Slonl &8
Jones Hldat
Jones AlooleB
Smith BEL
Smith Fascal

e pe

Tk : .
FELASTION =
trname tsize tuxdth tpnage tflao trank

ELE - EXAMFLE

H%hFh 15 &6 00l B OZ
e L4 001 B o0l
05 EZD o2 B Ol
0% 18 004 B O}
07 18 004 17 02

APPENDIX D

http:Par:;c.al

AARAAA
a A
A A
AAAAAA
A A
A A
A A

EPPPP
p

p
EPPPP
P
P
p

p
P

pPppPPP
p

P
-PPPPP
P

P

P

B
P

EEEEEE N
E NN
E N N
EEEE N N
E N N
E N
EEEEEE N
EEEEEEEEE
EE
EE
EEEEEEEEE
EE

EE
EEEEEEEEE

=%
R A -

D
D
D
D
D
D
D

DDD

DDD

D

D

D
D
b

IITIIIIII
I

I
I
ITITITIITX

X

o iection
af
t e
F31 1 owinag
et ation
Example:
orisi der
Fre
4

O
Q..
relation
hroer
*TORDER

prer muted
vrodection
of

This
relation

follows

* (W= OER4

L Y

[

[T T T L T L T ' NI

e i o T ol e R T S S e N

T

e

-
~
It

APPENDIX E

o1

3

e ved
THORE

el i nn Ly
"Tables" 07 08

i

1

1

1

1

LA
relation o4 g {3

L

1

1

|

]

-7)

&

el

vt prn

wioaal d 05 035 13 =
1 0s 4 1 E 2
& 07 02 &
+ol tows: og 08 i
#TTRLEX 00 Q0 &

THE TaslEs RELATTON

FELATION ¢ TaARLES

trname tsize twidbth tpage tflag trank
OO0 00
OFDER
OFRDER4S
MRk

- IMEGL S

g
b}
!

-

RIS ENSINIS

o
g

b
O o
§ e e o

N

REGSTH
TELEX 5

T Iror
s b

bt e b ()
o 20

D B R

APPENDIX E

1. Chiu G., "MRDSA-User!'s Manual", Technical Report

S0CS 82.7, May 82.

2, HMerrett T. H., "Relational Lnformati

)
Kk
]
n
ot
io
|4
i
.h

Reston Publishing Inc, 1983.

3. derrett T. H., Kazem Zaidi S. H.; "MRDS

o

- User
Manaal®, Technical Report SOCS-81-27, Aug. 81.

4, sSkillin, M. E., Gay R. M., "Words Into Type", 3rd
Edition, Prentice-Hall Inc, Englewood Cliffs, New

Jersey, 1974.

5. Van Rossum T., "Implementation-of a Domain Algebra-

and-a - Fungtiomal-Symtax", Technical Report SOCS-83-18,

