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Here, after recalling the expression of the dimensionless equations of motion of the cantilevered

cylinder in the inextensible and extensible cases, the equations are discretized via Ritz-Galerkin

procedure. Typical results by linear analysis show that the system loses stability by divergence in

the first mode, and then by flutter in the second and higher modes. Variations of the critical flow

velocity for onset of divergence (buckling) and flutter through a Hopf bifurcation show that

decreasing the slenderness parameter f and increasing the normal viscous parameter ε cN

stabilizes the system. Nonlinear bifurcation diagrams show that, typically, the system is

restabilized after divergence and, after that, flutter develops with increasing, then decreasing

amplitude with increasing flow velocity; a secondary bifurcation then leads to flutter in a higher

mode. Near this secondary bifurcation, interesting dynamics may be observed, namely

quasiperiodicity, and over a narrow-flow range, weak chaos.

1. INTRODUCTION

Slender cylinders in axial flow are found in certain regions of heat exchangers in the form of

clusters of tubes, as reactivity-monitoring and control rods or as clustered fuel-element bundles in

nuclear reactors, as towed bags for fresh-water and oil transport by sea, in-flight refuelling lines

for aircraft, towed arrays of very long cylinders equipped with hydrophones for oil exploration,

and many other applications.

All the theoretical work on this topic has been based on linear theory. Hence, such

important issues as transition from one linear instability mode to another cannot truly be

addressed (if in fact it occurs at all), limit-cycle amplitudes, and the rest of the rich kaleidoscope
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of dynamical behaviour that may be revealed by nonlinear theory. This situation is being partly

redressed for the first time by this first attempt to study the nonlinear dynamics of the system.

Based on the equations of motion derived and presented in detail in Lopes et al. [1] for

the inextensible and extensible cantilevered cylinder immersed in axial flow, the methods of

solution are briefly reviewed (Section 3); then, some classical linear analysis is undertaken in

order to study the stability of the system and to investigate the effects of the variation of some

parameters on the stability, namely the slenderness parameter f, the viscous parameter ε cN  and

the mass ratio parameter β  (Section 4); finally, nonlinear analysis is conducted by means of

bifurcation, phase-plane, and time versus flow-velocity diagrams, showing amplitudes of the

displacement of the tip, as well as transitions from one mode to another.

2. EQUATIONS OF MOTION

The system under consideration consists of a cylinder of length L, cross-sectional area A, mass

per unit length m and flexural rigidity EI, contained in a rigid channel within which a fluid of

density ρ flows with mean flow velocity U parallel to the channel centreline and to the position of

rest of the cylinder. The cylinder is assumed to initially lie along the X-axis (in the direction of

gravity, coincident with the channel centreline) and to oscillate in the (X,Y) plane. The system can

be either cantilevered or supported at both ends. When the cylinder is cantilevered, it is assumed

to be terminated by a tapering end, the cross-sectional area of which varies smoothly from S to 0

in a distance l, where l L/ << 1. The equations of motion have been derived using Hamilton’s

principle by Lopes et al. [1].
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For a cantilevered cylinder, the equation of motion may be written in nondimensional

form as follows:
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where η ξ τ,	 
  represents the lateral deflection of the cylinder. Dots and primes denote

respectively derivatives with respect to the nondimensional time, τ , and the nondimensional

curvilinear co-ordinate along the centreline of the cylinder, ξ . The nondimensional parameters in

(1) are defined by
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where s is the curvilinear co-ordinate along the cylinder, C f  is a frictional coefficient associated

with the mean flow over the cylinder, CDP  is a frictional coefficient for motions in stagnant fluid

and Dh  is the hydraulic diameter. [Note that the frictional coefficient C f  might be replaced by
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CN  and CT , the coefficients associated with friction in the normal and tangential directions

respectively, and in general not equal (refer to [1])].

For a cylinder fixed at both ends, the motion is governed by the following two

nondimensional equations:
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u and v represent the nondimensional longitudinal and transverse displacements respectively,

u u L= ∗ /  and v v L= ∗ / , the starred quantities being the dimensional displacements. Here, the

prime denotes the derivative with respect to the nondimensional co-ordinate, ξ , with ξ = X L ,

X being the Lagrangian co-ordinate. In addition to the parameters in equation (2), in this case the
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dimensionless tension at the downstream end Γ , the externally imposed uniform tension Γ , and

axial flexibility Π 0 ,  need to be defined,

Γ Γ Π= = =T L L EI T L EI EAL EI	 
       2 2
0

2/ , / , / .

(5)

3. METHODS OF SOLUTION

To obtain solutions of the equation of motion, the system is discretized by the Ritz-Galerkin

technique, making use of the modal shapes of a freely vibrating beam satisfying the same

boundary conditions as the cylinder, as a suitable set of base functions. These latter, satisfying

both geometric and natural boundary conditions, are the so-called comparison functions.

3.1 CANTILEVERED CYLINDERS

In the case of a cantilevered cylinder, the boundary conditions at s = 0 are y y0 0 0� � � �= ′ = ;

furthermore, at s L= , ′′ =y L� � 0. Moreover, a special boundary condition properly accounting

for the presence of the tapering-end has been determined [1], namely
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 , A being the cross-section area, and where

the parameter f is a measure of the departure from ideal slender-body, inviscid flow theory arising

from (i) the lateral flow not being truly two-dimensional across the tapered end-piece, and (ii)

boundary layer effects [2-3]. Thus, normally 0 1≤ ≤f ; for f = 1  we have an ideally streamlined
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free end, and for f = 0  a blunt free end. The nondimensional form of the tapering-end boundary

condition is
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where χ e es L= / ,  and χ e es L= / .

For simplicity, let us write equation (1) in the form F η	 
 = 0 , where η  is the

dimensionless displacement. Then, adding the boundary conditions, the problem can be

formulated in the form
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where B η	 
  in (7) represents the term that counterbalances the shear force in the tapering-end

boundary condition (6); δ ξ −1	 
  is the Dirac delta function. Proceeding in this way, the tapering-

end boundary condition is taken into account in the formulation of an expanded boundary value

problem. The reader should refer to Appendix A, where an extensive discussion dealing with two

methods to account for this boundary condition is given.

Let us write the nondimensional displacement, η , in the form

η ξ τ φ ξ τ, ,	 
 	 
 	 
=
=

∞

∑ r
r

rq
1
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(9)

where φ ξr 	 
  represents the cantilevered beam eigenfunctions and qr τ	 
  the generalized co-

ordinates. These eigenfunctions satisfy both geometric and natural boundary conditions of the dry

cantilevered-cylinder without a tapering-end, and are defined by

φ ξ ξ ξ σ ξ ξr r r r r r	 
 � � � � � � � �	 
= − − −cosh cos sinh sin ,Λ Λ Λ Λ

where the eigenvalues Λ r  satisfy the corresponding characteristic equation,

cos coshΛ Λr r + =1 0 ; σ r r r r r= + +cos cosh / sin sinh .Λ Λ Λ Λ� � � �

Then, truncating the solution vector (9) to the lowest N terms, substitution of the resulting

expression into (1), multiplication by φ ξi 	 
  and integration from 0 to 1 leads to

M q C q K q r q q s q q s q q t q q q q qij j ij j ij j ijk j k ijk j k ijk j k ijk j k ijkl j k l�� � � ~ � � �+ + + + + + +α

+ + + + =β γ η µijkl j k l ijkl j k l ijkl j k k ijkl j k lq q q q q q q q q q q q� � � � � � �� ,0

(10)

where M C Kij ij ij, , and  represent respectively the mass, damping and stiffness matrices, of the

linear system. These, as well as α β γ η µijkl ijkl ijkl ijkl ijkl ijk ijk ijk ijkr s s t, , , , , , , ~ , and , are defined in

Appendix B.

3.2 CYLINDERS FIXED AT BOTH ENDS

In the case of a cylinder fixed at both ends, we need to consider comparison functions, ψ ξr 	 


and φ ξr 	 
 , and generalized co-ordinates, pr τ	 
  and qr τ	 
 , in the longitudinal and transverse

direction. Thus,
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u pr r

r

ξ τ ψ ξ τ, ,	 
 	 
 	 
=
=

∞

∑
0

(11)

v qr r

r

ξ τ φ ξ τ, ,	 
 	 
 	 
=
=

∞

∑
0

(12)

where ψ ξ π ξr r	 
 	 
= 2 sin  and φ ξ π ξr r	 
 	 
= 2 sin  for a simply supported cylinder, or

φ ξ ξ ξ σ ξ ξr r r r r r	 
 � � � � � � � �	 
= − + −cosh cos sinh sin ,Λ Λ Λ Λ  for a cylinder clamped at both ends.

In the latter case, we have σ r r r r r= + −sin sinh / cos cosh ,Λ Λ Λ Λ� � � �  and the eigenvalues Λ r

satisfy the characteristic equation cos cosh .Λ Λr r − =1 0

Then, again, truncating the solution vectors (11) and (12) at N and M, respectively,

substitution of the resulting expressions into (3) and (4), multiplication by ψ ξi 	 
  in (3) and by

φ ξi 	 
  in (4, and integration from 0 to 1 leads to

M p K p A q q A q q A q q A q q B q q q B q q qij
u

j ij
u

j ijk j k ijk j k ijk j k ijk j k ijkl j k l ijkl j k l�� � � � �� �+ + + + + + +1 2 3 4 1 2

+ + =B q q q B q q qijkl j k l ijkl j k l
3 4 0� � � ,

(13)

M q C q K q D p q D p q D p q D p q D p q E q q E q qij
v

j ij
v

j ij
v

j ijk j k ijk j k ijk j k ijk j k ijk j k ijk j k ijk j k�� � � � � � �� �+ + + + + + + + +1 2 3 4 5 1 2

+ + + + + + + =E q q E q q F q q q F q q q F q q q F q q q F q q qijk j k ijk j k ijkl j k l ijkl j k l ijkl j k l ijkl j k l ijkl j k l
3 4 1 2 3 4 5 0� � � � � � � � � �� .

(14)

M Kij
u

ij
u, and  represent the mass, and stiffness matrices in the u-direction, whereas

M C Kij
v

ij
v

ij
v, , and  represent the mass, damping and stiffness matrices in the v-direction. These, as
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well as Aijk
1 , Aijk

2 , Aijk
3 , Aijk

4 , Bijkl
1 , Bijkl

2 , Bijkl
3 , Bijkl

4 , and Dijk
1 , Dijk

2 , Dijk
3 , Dijk

4 , Dijk
5 , Eijk

1 , Eijk
2 , Eijk

3 , Eijk
4 ,

Fijkl
1 , Fijkl

2 , Fijkl
3 , Fijkl

4 , Fijkl
5 , are defined in Appendix C.

4. LINEAR DYNAMICS

4.1 DYNAMICAL BEHAVIOUR OF INEXTENSIBLE AND EXTENSIBLE

CANTILEVERED CYLINDERS

Here the effects of purely axial and steady flow on stability of the cantilevered cylinder are

discussed. To this end, solutions of the linear part of equation (10) of the form

q τ λτ	 
 = e

are considered, λ  being a complex dimensionless eigenvalue. If the real part of λ  is negative,

motions are damped, while if Re λ	 
 > 0  motions are amplified, i.e., the system is unstable.

Figure 1 shows the complex eigenvalue λ  plotted as an Argand diagram, with the

dimensionless flow velocity �  as parameter, for the lowest three modes of an isolated

cantilevered cylinder with a fairly well streamlined free end. For this system, the mass ratio

β = 05. , ε c f = 1,  cd = 0,  γ γC F= = 0  (horizontal system), the free end is considered to be

fairly well streamlined, with f = 0 8. ,  χ e = 0 01. ,  χ e = 0 01. ,  cb = 0,  and the outer channel to be

large, with χ = 1,  h = 0. Small axial flow velocities generate Re λ� � < 0 , i.e., flow-induced

damping; at sufficiently high flow velocities, however, the cylinder first loses stability by

divergence (buckling) in its first mode Im , Reλ λ	 
 	 
� �= >0 0  and then by flutter through a Hopf

bifurcation in its second and third modes Im , Reλ λ	 
 	 
� �≠ >0 0 .
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These calculations, carried out with an 8-mode discretisation, and for the same parameters

as considered in Ref. [3], give the same flow velocities for divergence (�cd = 2 06. ) and for

regaining of stability (� = 4 94. ), and somewhat higher flutter velocities in the second and third

modes (� = 5 25.  and 8.45, versus 5.17 and 8.28, respectively); the discrepancies arise from the

tapering-end boundary condition being slightly different from that in Ref. [3].

The calculations in this figure were carried out to sufficiently high �  in all three modes

to enable one to observe that (i) the loss of stability in the second mode is preceded by regaining

of stability in the first mode, and (ii) in analogous manner, the regaining of stability in the second

mode occurs at a slightly higher �  (� = 8 65. ) than is necessary for the onset of third-mode

flutter. This seems to predict a range of velocity, after the regaining of stability in the first mode

and before flutter in the second mode where the system is stable. This will be confirmed by the

nonlinear theory for another set of parameters. However, such a phenomenon was observed in

previous experiments conducted by Païdoussis.

These results are obtained with the assumption that the cylinder is inextensible. We may

also consider the cantilevered cylinder to be extensible, and make use of the equations of motion

derived in the case of a cylinder fixed at both ends (equations (13)and (14)), but subject to to

them the cantilever boundary conditions (refer to Appendix D for further details concerning the

definition of the matrices).

In this case we need to consider motions in both the longitudinal and transverse

directions. Since the linear equations are not coupled, the stability of the system can be studied

separately in each direction. The parameters correspond to those defined previously.

Considering the linear equation of motion in the longitudinal direction (equation (13)), we
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notice that there is no damping matrix, and, moreover, the stiffness matrix is independent of the

fluid velocity. Consequently, the eigenvalues are constant and purely imaginary, which leads to a

stable motion with undamped longitudinal oscillations. Hence, some damping should be added to

the longitudinal equation of motion in order obtain a more physical behaviour.

In the transverse direction (equation (14)), it has been shown in Ref. [1] that neglecting

the axial tension Γ  at the downstream, and with the requirement δ = 0  for an end free to slide

axially, we obtain the same linear equation governing the motion of the cylinder and hence the

same dynamics as in the inextensible case, which is indeed reasonable.

4.2 EFFECTS OF SOME SYSTEM PARAMETERS ON STABILITY OF

CANTILEVERED CYLINDERS

Here the effects of the slenderness parameter f, the normal and tangential viscosity parameters

ε cN  and ε cT , and the mass ratio β ,  are investigated. We also consider the tapering-end shape to

be ellipsoidal (refer to [1]) and its length to represent 1% of the total length of the cylinder, i.e.,

l L/ . ,= 0 01  this leading to χ e = 0 00667. ,  χ e = 0 00785. .  All the results were obtained using a 4-

mode Galerkin approximation.

4.2.1 Effect of f on stability

The dimensionless critical flow velocity for first-mode divergence �cd  is shown in Figure 2. We

actually observe the velocities for loss of stability (the lower part of each curve) and for regaining

of stability (the upper part). It may be seen that divergence depends strongly on the free end
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streamlining parameter. The system seems to be stabilized as the tapering free-end progressively

becomes less than ideally streamlined: for f = 0 6. , divergence occurs at �cd = 3; and for

f ≤ 0 49. , �cd >14 . However, in the range 0 6 1 0. .< <f  the effect on the lowest �cd  is not very

pronounced: �cd  varies between 3 and 1.8 approximately.

The dimensionless critical flow velocity for flutter �cf  through a Hopf bifurcation is

shown in Figure 3. The evolution of �cf  with decreasing f is quite intricate: the curves shown

actually represent critical flow velocities for loss, regaining and new loss of stability. To clarify

the dynamical behaviour in Figure 3, Argand diagrams for f = 01. ,  0.4, 0.5, and 0.7 are

presented in Figure 4(a-d). In these cases, flutter always occurs in stable or restabilized systems;

hence, the linear theory is still valid.

For f = 0 7.  (Figure 4(a)), starting from a restabilized solution (first-mode restabilization

occurs at � = 4 63. ) second-mode flutter occurs at � = 5.48; then, the system loses stability in

the third mode at � = 8 56. , before regaining stability in the second mode at � = 8 62. ; finally,

the system loses stability once again in the second mode at � = 14 70.  (actually, we observe that

the second mode reaches the real axis after the regaining of stability, remains on it for a while,

and then, leaves it just before becoming again unstable).

For f = 0 5.  (Figure 4(b)), starting from a stable solution third-mode flutter occurs at

� = 917. ; (here, first-mode divergence occurs at � = 11 23.  and first-mode restabilization at

� = 12 06. ); then, the system regains stability in the third mode at � = 15 04. ; finally, flutter

occurs in the second mode at � = 1518.  (same comments as before), and, again, in the third

mode at � = 15 24. .
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For f = 0 4.  (Figure 4(c)), starting from a stable solution third-mode flutter occurs at

� = 9 77. ; then, the system regains stability in the third mode at � = 14 77. ; finally, flutter

occurs in the fourth mode at � = 15.47, and then, in the second mode at � = 15 54. .

For f = 01.  (Figure 4(d)), starting from a stable solution the system loses first stability by

third-mode flutter at � = 16 37. , and then by second-mode flutter at � = 20 59. . (Here, it should

be recalled that the modes are identified by continuity of locus as �  is increased from � = 0. In

fact, a second mode, say for � > 0 does not necessarily look at all like a second dry-beam mode,

but generally contains higher dry-beam components (refer to [4])).

These Argand diagrams make Figure 3 more comprehensible. Here, the main finding

perhaps is that with decreasing f the flow velocities for flutter increase sharply (note scale) and

discontinuously. However, we shall keep in mind that a four-mode computation does not

efficiently apply for velocities higher than 12, in which case using further modes seems

appropriate in order to obtain more accurate results.

Collecting the effects of f on divergence and flutter, it is interesting to note that the system

may lose stability by flutter first and then by divergence, for some values of the slenderness

parameter (e.g. f = 0 5.  or less). Hence, depending on the shape of the tapering free-end, we can

either obtain instabilities through buckling or flutter first, or even render the system more stable

(when decreasing f drastically).

4.2.2 Effects of ε cN , ε cT  and f  on stability

Here, we recall that the equation of motion (1) was obtained using the assumption that the

coefficients associated with friction in the normal and tangential directions, cN  and cT
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respectively, are equal; hence, they were replaced by the friction coefficient c f , and all the

matrices were defined using ε c f .  Thus, in order to study the effects on stability of the normal

and tangential viscous parameters, ε cN  and ε cT  respectively, the mass, damping and stiffness

matrices need to be defined again (refer to Appendix E).

The calculations were carried out with ε = 20 in order to consider a slender cylinder. The

dimensionless critical flow velocities for first mode divergence (buckling) and second mode

flutter through a Hopf bifurcation were investigated for two different ratios c cN T/ , and for

different values of the slenderness parameter f.

Figure 5(a,b) shows the evolution of the dimensionless critical flow velocity for

divergence, for c cN T/ .= 0 5 and c cN T/ = 2. In both cases we note that the critical flow velocity

increases with the parameter ε cN , leading to a more stable system. Furthermore, if ε cN  is fixed

to a certain value, say ε cN = 8  for c cN T/ .= 0 5  and ε cN = 05.  for c cN T/ = 2 , decreasing f will

stabilize the system. In some other ranges, however, e.g. for 0 5< <ε cN  for c cN T/ .= 0 5

(Figure 5(a)), the effect can be rather weak. Generally, however, a less well streamlined free end

has a stabilising effect in both cases.

In the case of c cN T/ .= 0 5 , we notice that each f-curve converges to a limit value of

ε cN . Thus, for instance, if ε cN ≥ 13  divergence will only occur for f ≥ 0 9. .  Moreover, first

mode restabilization is predicted only for ε cN < 35. , approximately. In contrast, for c cN T/ = 2

each f-curve ( f ≠ 1) is composed of a lower branch and an upper branch that coalesce,

corresponding respectively to the loss and the regaining of stability. The curve for f = 1,

compared to the others, seems to be a degenerate case, since the upper and lower branches
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diverge from each other. Finally, and most importantly, divergence for c cN T/ = 2  occurs at

higher flow velocities.

Figure 6(a,b) shows the critical flow velocities for second mode flutter through a Hopf

bifurcation, for c cN T/ .= 0 5  and c cN T/ = 2 . Here also, increasing the parameter ε cN  stabilizes

the system. However, we observe two definitely different types of evolution.

For c cN T/ .= 0 5  we notice in Figure 6(a) that the longest stability curves correspond to

the lowest f; e.g., for ε cN > 1 flutter only occurs for f < 0 8. .  Actually, increasing the slenderness

parameter f reduces the interval of ε cN  over which flutter is possible. Hence, a well streamlined

free end and a high viscous parameter, e.g. f > 08.  and ε cN > 1, will also stabilize the system -

as well as a very small f.

We should also mention that the stability curves cross one another for small flow

velocities. Actually, for f < 08.  we notice that the stability curves behave in a peculiar manner,

e.g. that for f = 0 9.  is lower than the branch for f = 0 8.  and still lower than the branch for

f = 0 97. . No particular reason for this behaviour has been found.

In the case of c cN T/ = 2  (Figure 6(b)), a similar phenomenon is observed, but it is less

prominent. Here, we observe that the longest curves correspond to the highest f, e.g. for ε cN > 3

flutter only occurs for f ≥ 08. .  Moreover, the upper branch in each f-curve shows that stability

can be regained. Ultimately, we may notice that there are some qualitative similarities between

Figures 5(b) and 6(b).

The conclusion is that if c cN T≠ , quite different results are obtained for c cN T>  and

c cN T< .
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4.2.3 Effects of β  and f  on stability

The mass ratio parameter, β ,  has no effect on the critical flow velocity for divergence. Hence,

only its effect on critical flow velocities for flutter is investigated. These results were obtained for

ε εc cN T= = 1.

Figure 7 shows that increasing β  stabilizes the system but not drastically; it is recalled

that β  cannot be larger than 1. We also observe that a blunt end, i.e., a less well streamlined free

end, has a stabilising effect.

Following a curve, for instance the curve corresponding to f = 0 6. , we notice that loss,

regaining and even new loss of stability are possible. This does not occur for f ≥ 0 7. , since the

limit point where instability and restabilization become coincident occurs for β > 1,  which is not

physical. Moreover, with the aid of the results obtained when we investigated the effects of f by

itself (see Figure 3), we can add here that no regaining of stability is predicted for f > 083.

approximately. This is why, in the curve corresponding to f = 0 9. , we just observe one branch.

Furthermore, it should be mentioned that the curve corresponding to f = 0 9.  crosses the

other curves at β ≤ 0 5. ; i.e. a larger f, e.g. f = 0 9. , seems to stabilize the system compared to a

smaller one e.g. f = 0 8. . This peculiar behaviour seems to occur only for f > 0 8. .

The stability of the cantilevered cylinder has been widely investigated. Apart from some

peculiar results, especially concerning flutter instabilities, we can conclude that a blunt free end, a

large viscosity parameter ε cN  as well as a high mass ratio β , all have stabilising effects.
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Now, it is of interest to study the nonlinear dynamics and observe the behaviour of this

system after the loss of stability. Emphasis is put mainly on peculiar types of dynamical

behaviour.

5. NONLINEAR DYNAMICS

5.1 NUMERICAL METHODS

Here, two methods are used in order to solve the equations of motion and obtain accurate

numerical solutions: a finite difference method (FDM) and a collocation method (the software

package AUTO [5]), the latter being very efficient in continuation and bifurcation problems in

ordinary differential equations.

A fourth-order finite difference method (FDM4), known also as Houbolt’s finite

difference method [6], is employed. The derivatives at time τ + ∆τ  are replaced by backward

difference formulae using, in this case, values at three previous time steps ∆τ , respectively. The

fourth order scheme is commonly defined by
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with n = 3, and where α p  and β p  are defined in Table 1.

Substitution of (15) into (10) leads to a set of nonlinear algebraic equations of the type

F q q q q i j Ni j j j jτ τ τ τ+ − − = ≤ ≤∆τ ∆τ ∆τ	 
 	 
 	 
 	 
, , , ,.... , , ,2 0 1
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(16)

in which q j τ + ∆τ	 
  are the unknowns. In order to solve equation (16) the Newton-Raphson

method is employed, taking as initial guess for q j τ + ∆τ	 
  the value of its predecessor, q j τ	 
 .

Note that the Newton-Raphson method requires the computation of the Jacobian of F,

∂ ∂ τF qi j/ + ∆τ	 
 . This can be obtained easily from (16); (refer to Semler et al. [7]).

5.2 NONLINEAR DYNAMICAL BEHAVIOUR OF CANTILEVERED CYLINDERS

We shall use the numerical methods afore-mentioned in order to study the nonlinear dynamics by

means of bifurcation, phase portrait, power spectrum and displacement-versus-time diagrams.

These diagrams will enable us to have a kaleidoscopic view of the behaviour of the system under

consideration.

We shall first here consider a set of parameters modeling a system close to one studied in

an experiment conducted by Païdoussis et al. [8], then discuss briefly other sets of parameters

leading to results that deserve to be mentioned.

5.2.1 Comparison with an experience

The parameters are set at f = 0 7. , β = 0.47, ε c f = 0 5. ,  cd = 0,  γ C = 14 35. , γ F = 12 51. ,

χ e = 0 00667. ,  χ e = 0 00785. ,  c fb = − =( ) . ,1 0 3  χ = 1,  and h = 0, which are close to an

experimentally studied system [8]. Two different Galerkin approximations are here used showing

that increasing the flow velocity requires further modes in order to describe the behaviour of the

system.
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4-mode approximation

A typical bifurcation diagram of the system is shown in Figure 8, computed with AUTO using a

4-mode Galerkin approximation. The bifurcations of the zero solution correspond to the critical

velocities for the onset of instabilities obtained with the linear theory, and are as follows: the

critical flow velocity for first-mode divergence, �cd = 2 29.  (BP1); for first-mode restabilization,

� = 5 33.  (BP2); for second- and third-mode flutter via a Hopf bifurcation, �cf 1 5 62= .  (HB1)

and �cf 2 917= .  (HB2), respectively; for second-mode restabilization, � = 914.  (HB3).

The branch corresponding to the position of rest of the system is labelled in Figure 8 as

“initial equilibrium”. This branch is stable for � �≤ cd . Small axial flow velocities generate

flow-induced damping; hence, after some transients, the system converges to the initial stable

state (see Figure 9(a) for � = 2 0. ). Then, at � �= cd  (BP1) the initial equilibrium state

becomes unstable and the system diverges in its first mode. From thereon develops a stable static

branch, labelled “1st mode”, which actually represents a set of successive fixed points (each

dependent on the actual � ). The mirror image of this branch, also drawn in Figure 8, represents

divergence on the other side of equilibrium. This is illustrated with Figure 9(b) for � = 4, where

the system converges to a stable fixed point. We observe that the displacement of the tip does not

exceed 40% of the total length of the cantilever, which is reasonable and in agreement with the

experiments conducted by Païdoussis et al. [8]. Moreover, we notice that the first-mode locus is a

closed curve, showing that the amplitude increases first and then decreases to zero.

At � = 5 33.  (BP2), the first mode regains stability as predicted by the linear theory in

Section 4.1. Furthermore, Figure 8 shows that, actually, the system itself recovers stability, i.e.,

for velocities slightly higher than 5.33 any perturbation will die out and lead the system to its
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position of rest. See, for instance, Figure 10 for � = 5 55.  where the displacement converges to

zero, and notice the trajectory, which is representative of damped oscillatory motion. Actually,

this behaviour shows influence of the second-mode flutter in the waviness of the large

oscillations, which follows at higher � .

At � = 5 62.  (HB1), second-mode flutter occurs through a Hopf bifurcation. The initial

equilibrium state loses again stability and a new branch, labelled “2nd mode”, emerges from the

Hopf bifurcation point: these are “dynamic” solutions, representing periodic motions of the

system. Figure 11(a-f) show periodic displacement of the tip with respect to time at � = 6 and at

a higher flow velocities � = 6 5.  and � = 7 5. , supplemented by phase-plane plots at same

velocities, which show symmetric limit cycle oscillations. We notice that the amplitude of the

oscillations is of the same order of magnitude as the amplitude for divergence.

Eventually, the second-mode locus loses stability through a torus at � = 8 51.  (T), while

the branch emerging from the third-mode Hopf bifurcation at � = 917.  (HB2), labelled “3rd

mode”, is unstable all along (except in a very narrow range around � = 8 5. ). Hence, from

thereon, according to this 4-mode approximation, there is no possible new stable solution, which

is not physically acceptable.

Furthermore, an experiment conducted by Païdoussis et al. [8] corresponding to this set of

parameters showed that second-mode flutter is followed by third-mode flutter at higher flow

velocities. Therefore, in order to capture this dynamical behaviour, the Galerkin discretisation is

now undertaken with a 5-mode approximation.

5-mode approximation

Figure 12 shows the bifurcation diagram of the system, computed with AUTO using a 5-mode

Galerkin approximation. Again, the bifurcations of the zero solution correspond to the critical
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velocities for the onset of instabilities obtained with the linear theory (the same as afore-

mentioned, but with slightly differences), and are as follows: the critical flow velocity for first-

mode divergence, �cd = 2 29.  (BP1); for first-mode restabilization, � = 5 3.  (BP2); for second-

and third-mode flutter via a Hopf bifurcation, �cf 1 5 6= .  (HB1) and �cf 2 9 06= .  (HB2)

respectively; for second-mode restabilization, � = 914.  (HB3).

Using this 5-mode approximation, the second-mode locus still loses stability through a

torus at � = 8 53.  (T) but, just before that, the third-mode locus, which arises from a subcritical

Hopf bifurcation at � = 9 06. , becomes stable at � = 8.46 leading to third-mode flutter. Hence,

adding one mode in the Ritz-Galerkin solution enables one to obtain stable solutions for higher

flow velocities, namely third-mode flutter in this case.

We notice that the amplitude of the oscillations in third mode is lower than in second

mode, this also being in agreement with the experiments conducted by Païdoussis et al. [8].

Moreover, for 8 8 53.46 .≤ ≤�  there coexist competing attractors corresponding to second- and

third-mode flutter (here it is noted that the mode nomenclature simply follows continuity of locus

from � = 0 to higher � ). This indicates that in the vicinity of � = 8 5.  interesting nonlinear

dynamical behaviour may be expected.

Figure 13(a) shows a phase-plane diagram for � = 8 5.  with quasiperiodic-looking

trajectories. However, the behaviour of the system for this flow velocity seems slightly chaotic.

We see that the power spectrum in Figure 13(b) shows at least four irrationally-related

frequencies; actually, as pointed out by Ruelle & Takens [9], a chaotic attractor may be observed

after the birth of a three-period quasiperiodic attractor. Moreover, the Poincaré map in Figure

13(c), obtained with trigger that the generalized displacement q2 be zero, is representative of a

weakly chaotic regime by its definite structure and finite-banded width, in contrast to a random
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process. Therefore, we may conclude that, in the vicinity of the transition from second- to third

mode-flutter, quasiperiodic oscillations leading to chaotic motions may occur. This is to be

contrasted to the clearly quasiperiodic phase-plot of Figure 14 at � = 8 529. .

At � = 9 75. , the third mode locus becomes unstable through a transcritical bifurcation,

and the q1 versus �  curve displays a discontinuity leading to another stable solution.

An unstable divergence solution begins at � = 9 66.  (BP3), sharply increases in

amplitude, then decreases, and eventually ceases at � = 12 86.  (BP4). From this unstable

solution, a stable oscillatory solution branch is generated via a Hopf bifurcation at � = 9 98. , and

exists briefly, before itself becoming unstable through a torus at � ~ .9 9.

After � ~ .10 8, there appears to exist no stable solution. This does not signal the onset of

generalized chaos. It more likely means that the 5-mode Galerkin approximation is insufficient to

properly model fourth-mode behaviour; providing enough modes are used, some new stable

solutions could then be found. Again, it is noted that the mode nomenclature simply follows

continuity of locus from � = 0 to higher � ; but, for � �~ 10� �, the third mode for instance

contains considerable amounts of fourth and fifth beam-mode content, the latter of which is

probably inadequately predicted [4].

5.2.2 Further discussions

The nonlinear dynamics are also investigated for some other sets of parameters, namely modeling

systems close to the previous one (studied in Section 5.2.1), but with a more or less well

streamlined free end and higher or lower viscous parameters. A 5-mode Galerkin approximation

is used in all cases.
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Figure 15 shows a bifurcation diagram of the system for f = 0 6. , ε c f = 0 25. ,

c fb = − =( ) .41 0  the other parameters keeping the same values as in Section 5.2.1 (the

nomenclature of the branches and points follows that of Figure 8). In this case, we notice that the

second-mode locus is stable all the way from �cf 1 5 77= .  (HB1) to � = 9 02.  (HB2).

Furthermore, the third-mode locus, which arises from a subcritical Hopf bifurcation point at

�cf 2 914= .  (HB3), is preceded by the restabilization of the initial equilibrium state. Here, the

transition from second- to third-mode flutter is not as significant as in the previous case.

However, competing attractors corresponding to second- and third-mode flutter and even to the

initial equilibrium state still coexist over a narrow-flow range.

Increasing the slenderness parameter f to 0.7 (changing cb  to 0.3) with the other

parameters remaining unchanged provides a bifurcation diagram – see Figure 16 - similar to the

one in Figure 12, including the development of third-mode flutter and transition from second- to

third-mode flutter. However, in this case the second mode locus is not continuous all along, but

undergoes a “burst” around its maximum, dividing the second-mode locus into two disjoint

branches. The physical nature of this phenomenon is not clear.

Similar odd results are also obtained when setting f equal to 0.8 (and cb  to 0.2) and

increasing ε c f  to 0.5. Here, the second-mode locus which arises from a subcritical Hopf

bifurcation is unstable and strongly perturbed by the “burst”. Consequently, there is no stable

solution immediately after first-mode restabilization and, due to the “burst”, second-mode flutter

only develops in the second branch. Finally, third-mode flutter only materializes over a narrow-

flow range.
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These last two results contrast with those described in Section 5.2.1 which are in

agreement with some experiments conducted recently. Unfortunately, we are not presently able to

provide any explanation to this peculiar behaviour.

6. CONCLUSION

The equation of motion derived enabled us to study for the first time some aspects of the

nonlinear dynamics of a cantilevered cylinder in axial flow. The stability of the system as well as

the influence of some parameters were investigated; this was followed by a modest exploration of

the nonlinear dynamics of the system.

Some good qualitative agreement was found with the experiments, especially concerning

the amplitude of the oscillations, and whether restabilization ranges exist between the various

zones of linear unstable behaviour. Moreover, with the aid of a 5-mode Galerkin approximation,

interesting nonlinear behaviour was observed in the vicinity of the transition from second- to

third-mode flutter, showing quasiperiodic and weakly chaotic motion. The possible existence of

chaos in that vicinity was also remarked in the experiments (and is evident in available videos),

but was never proved.

Finally, it was found that higher flow velocities require more accurate Galerkin

approximations in order to obtain stable solutions. In particular, it is expected that the non-

physical finding that no stable solution exists beyond a certain value of flow velocity is due to an

insufficient number of terms in the Galerkin expansion.

This is mainly a first step in the study of the nonlinear dynamics of a cylinder immersed

in flowing fluid. A great deal of calculations remain to be done, to exploit the model developed in
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this report. Another studies for different sets of parameters for inextensible cantilevers are likely

to be investigated and compared to results obtained with the extensible model and also to some

new experiments. It is hoped that they will be done in the near future.
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TABLES

Table 1: The coefficients of the fourth order finite difference method

Acceleration coefficients Velocity coefficients

               α 1 2=                β 1 11 6= /
               α 2 5= −                β 2 18 6= − /
               α 3 4=                β 3 9 6= /
               α 4 1= −                β 4 2 6= − /
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APPENDIX A: METHODS TO ACCOUNT FOR TAPERING-END

BOUNDARY CONDITIONS

Two different methods are presented and developed in order to obtain the eigenfunctions and to

analyze the stability of a cantilevered cylinder with a tapering end in axial flow. Since the

boundary conditions are not as simple as when considering a cantilevered cylinder with no end-

piece, we shall present in detail two methods suitable to take them into account.

6.1 A.1 PRESENTATION OF THE PROBLEM

The equation of motion of the cantilevered cylinder as derived in [1] is of third-order magnitude

and hence nonlinear; furthermore, the boundary conditions are time- and flow velocity-

dependent.

Let us write for simplicity the equation of motion in the form F η,�� � = 0, where η  is

the dimensionless displacement and �  the flow velocity parameter. Then, with the boundary

conditions added, the boundary value problem may be formulated as

F η ξ τ, , ,	 
� �� = 0

(A.1)
η τ η τ0 0 0, , ,	 
 	 
= ′ = ′′ = − ′′′ + =η τ η τ η τ1 1 1 0, , , , ,� � � � � �	 
B �

(A.2)
where B η,�� �  represents a complementary term in the end-shear boundary condition due to the

tapering end. An alternative way of formulating the problem is the following:

F Bη ξ τ δ ξ η ξ τ, , , , ,	 
� � 	 
 	 
� �� �+ − =1 0
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(A.3)
η τ η τ0 0 0, , ,	 
 	 
= ′ = ′′ = ′′′ =η τ η τ1 1 0, , ,	 
 	 


(A.4)
where δ ξ −1	 
  is the Dirac delta function. With these two formulations in mind, three methods

may be proposed to decouple the equations, as follows.

Method (a) consists of utilizing the eigenfunctions Φ j ξ	 
 of the problem ′′′′ + =η η�� 0 ,

i.e., the dry cantilevered-cylinder equation of motion, subject to boundary conditions (A.2) to

discretize the system and apply them to the problem (A.1). In Method (b), the same

eigenfunctions Φ j ξ	 
 are used, but they are applied to an ‘expanded domain’ of the problem,

which effectively means that the time-dependent boundary condition, i.e. the last of (A.2), is

added to the equation of motion, i.e., the expression − ′′′ +η τ η τ1 1, , ,� � � �	 
B �  is added to the

left-hand side of (A.1) via a Dirac delta function. Finally, in Method (c), the cantilever beam

eigenfunctions ( )φ ξj  satisfying (A.4) are used directly to decouple equation (A.3).

In the following we shall put the emphasis on the development of Methods (b) and (c)

which for time-dependent boundary conditions give more accurate results than Method (a) (see

Païdoussis [4], Section 4.6.2), which, henceforth, will not be discussed here.

6.1.1.1.1 A.2 DEVELOPMENT OF THE METHODS

6.1.1.1.1.1 A.2.1 GENERAL CONSIDERATIONS
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Making use of the Ritz-Galerkin method in order to decouple the problem, we shall assume the

non-dimensional displacement to be of the form

η ξ τ ξ τ, ,	 
 	 
 � �=
=

∞

∑Φ j
j

jq
1

(A.5)
where Φ j ξ	 
 are said to be comparison functions and satisfy both geometric and natural

boundary conditions.

Considering the problem at hand and the non-dimensional parameters introduced for time,

space, etc. [1], the equation of motion of a dry cantilevered beam is of the form

′′′′ + =η η�� .0

(A.6)
Then, introducing η ξ τ ξ τj j jh,	 
 	 
 � �= Φ  and assuming the time function to be of the form

h hj j
jτ λ τ� � = 0 e  thus satisfying �h hj j jτ λ τ� � � �= , where λ j  is a complex eigenvalue, equation

(A.6) gives

′′′′ + =Φ Φj j j j jh hλ 2 0,

⇒ ′′′′ + =Φ Φj j jλ 2 0,

⇒ ′′′′ − =Φ Λ Φj j j
4 0,

(A.7)
where Λ j j

4 2= −λ , and Λ j  is a complex dimensionless eigenvalue. We notice that four different

eigenvalues Λ j , namely Λ j , −Λ j , iΛ j , −iΛ j , are possible. This is due to the fact that the

differential equation is linear and of fourth-order and so that its solution can be written in terms

of four independent functions. Hence, the modal shape Φ j ξ	 
 can be written in the form

Φ Λ Λ Λ Λj j j j j j j j ja b c d jξ ξ ξ ξ ξ	 
 � � � � � � � �= + + + = ∞cos sin cosh sinh , , .1 �

(A.8)
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Then, the next step is to determine these four coefficients by making use of the complete

boundary conditions, equation (6). Actually, since Λ j  is also unknown, a fifth equation is

required, taken to be a normalizing condition. Thus, the mode shape of this freely vibrating beam

should also satisfy Φ Φi j ijd
0

1� =ξ ξ ξ δ	 
 	 
 , where δ ij  represents Kronecker delta function.

We see that these five constants generally depend on the boundary conditions, and hence

on the flow velocity � . Furthermore, concerning Λ j , some problems may arise when

introducing time-dependent boundary conditions as will be studied later (Section A.2.4).

In what follows, in Sections A.2.2, A.2.3 and A.2.4, we present the analysis for

determining appropriate comparison functions, i.e. solutions to the dry-beam equation, subject to

whatever boundary conditions are appropriate for either Method (b) or Method (c). For sake of

clarity we shall begin with Method (c).

The solution of the full problem of a cylinder subject to axial flow is presented  in Section

A.3.

A.2.2 METHOD (c)

In this case, the equation to be solved is the Euler-Bernoulli beam equation, equation (A.6),

subject to the classical cantilevered beam boundary conditions,

φ φ ξ

φ φ ξ
j j

j j

= ′ = =

′′ = ′′′= =

�
��
��

0 0

0 1

at

at

,

.

(A.9)
After some manipulations, we obtain the characteristic equation cos cosh ,Λ Λj j + =1 0  with

eigenvalues Λ1 1875= . , Λ 2 4 694= . , etc. [10], and eigenfunctions
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φ ξ ξ ξ σ ξ ξj j j j j j	 
 	 
 	 
� � 	 
 	 
� �= − − −cosh cos sinh sin ,Λ Λ Λ Λ

(A.10)
where σ j j j j j= + +cos cosh / sin sinh .Λ Λ Λ Λ	 
 	 
  In this method the eigenvalues Λ j  and the

eigenfunctions φ j  are not dependent on system parameters (e.g., they do not change with the flow

velocity), and need thus to be computed only once.

Then, expressing the solution as in (A.5) and truncating it to the first N comparison

functions (say N = 8 ), substituting it into equation (A.3), pre-multiplying by φ i , and integrating

over the interval [0,1] in order to use the orthogonality of the beam modes, we obtain the

resulting equation of motion in terms of the generalized coordinates, which takes the

complementary term of the tapering-end boundary condition into account.

Before proceeding any further and presenting the comparison functions to be used in

Method (b) in detail, let us first consider a special, simplified form of Method (b) in which the

coefficients involving time dependency are set to zero in which case real eigenvalues are

obtained.

6.1.1.1.1.2 A.2.3 SPECIAL, SIMPLIFIED FORM OF METHOD (b)

The comparison functions used in Method (b) are the eigenfunctions of the dry beam equation,

equation (A.6), subject to the actual boundary conditions (i.e., the boundary conditions for a

cylinder in axial flow). These boundary conditions are functions of �  (and other parameters),

and hence so will be the comparison functions and the eigenvalues Λ j . For simplicity, let us first

examine the time-independent boundary conditions:
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− ′′′− − ′ + + − ′ = ′′ =

= ′ =

�
��

��

η χ ε χ η ε γ γ χ η η ξ

η η ξ

j e f j f C F e j j

j j

c f c h1
2

1
2

2 0

0

� � � �� �
2   at  = 1,

  at  = 0.

(A.11)
Then, substituting η ξ τj ,	 
  by Φ j jhξ τ	 
 � � into (A.11), and considering a modal shape

expression of the form (A.8), we obtain after some simplifications the following system of

equation:

a b

a

c f c h

b

c f c h

j j j j j j

j j j j

j e f f C F e j j

j j j j

j e f f C F e j j

cos cosh sin sinh ,

sin sinh

sin sinh

cos cosh

cos cosh ,

Λ Λ Λ Λ

Λ Λ Λ

Λ Λ Λ

Λ Λ Λ

Λ Λ Λ

+ + + =

− − +�
��

− + + − − − �
��

+ − − − +�
��

− + + − − �
�� =

�

�

�
�
�
�
��

�

�
�
�
�

0

0

3

2

3

2

1
2

1
2

1
2

1
2

� �

� � � �� � � �

� �

� � � �� � � �

χ ε χ ε γ γ χ

χ ε χ ε γ γ χ

� �

� �

2

2

 

 �
�

(A.12)
where the unknowns, which are real, are a bj j, , and Λ j  [c aj j= −  and d bj j= − ].

For non-trivial solutions, the associated determinant (i.e., the characteristic equation) must

be zero. So, we seek eigenvalues Λ j  that give a null determinant. We notice that the eigenvalues

depend on several physical parameters. Here, all parameters (f, χ, h, ε c f , χ e ,  χ e ,  γ γC Fand )

are fixed except the flow velocity � , leading to eigenvalues that are � -dependent.

For f = 0 8. , χ = 1, h = 0, ε c f = 1, χ e = 0 00667. , χ e = 0 00785.  and γ γC F= = 0  the

evolution of the 1st and 2nd eigenvalue with respect to the fluid velocity �  is shown in Figure

A.1(a-b).

We notice that for � = 0 both eigenvalues are close to those of a dry beam subject to the

classical cantilevered beam boundary conditions (see Section A.2.2). However, with increasing
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� , it appears that the 1st eigenvalue behaves in a peculiar manner. In fact, all eigenvalues except

the 1st seem to converge to a non-null fixed value when increasing the flow velocity; for

instance, the 2nd eigenvalue decreases from 4.6 to 3.2 approximately and appears to level out as

�  is increased to � ~ 20 . In contrast, the 1st eigenvalue converges abruptly to zero for

� ~ 1.58,  and then, remains equal to zero when increasing �  further.

Before closing this section, we should add that the phenomenon mentioned above seems

to predict buckling instability for the dry cantilevered cylinder with wet boundary conditions, i.e.,

the cylinder may diverge for � ~ 1.58. This observation is of particular interest since buckling is

found to occur at � ~ 2.05 (a definitely higher flow velocity) as will be seen in Section A.3.2

when studying the complete problem of the cylinder immersed in an axial steady flow with

tapering-end boundary conditions. However, we notice that this simple system, a dry beam with

wet boundary conditions, is close to the complete system, at least as far as first-mode divergence

is concerned.

A.2.4 METHOD (b)

Method (b) is now examined in its general form in order to confirm these results. The time-

dependent terms are replaced in the boundary condition leading then to complex eigenvalues.

Here, we have a more intricate situation since the eigenvalues are not only velocity-

dependent but also time dependent. In this case, the equation of motion is again (A.6), and the

boundary conditions are of the form
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− ′′′+ + − − − ′

+ ′ + + + − ′ = ′′ =

= ′ =

�

�

�
��

�

�
�
�

+η χ β χ η χ ε χ β η χ η

χ β χ η ε χ χ γ γ χ η η ξ

η η ξ

j e j e f j j

e j f e e C F e j j

j j

f c f f

f c h

1 1

0

0

1
2

1
2

2

� �� � � �

	 
 	 
� �

�� �

�

� �

� �

2

    at   = 1,

   at   = 0.

(A.13)
Substituting η ξ τj ,	 
  by Φ j jhξ τ	 
 � � in (A.13) and assuming as in Section A.2.1 a time function

evolution of the form h hj j
jτ λ τ� � = 0 e , we finally obtain the following boundary conditions

− ′′′+ + − − − ′

+ ′ + + + − ′ = ′′ =

= ′ =

�

�

�
��

�

�
�
�

+Φ Φ Φ Φ

Φ Φ Φ

Φ Φ

j e j j e f j j j

e j j f e e C F e j j

j j

f c f f

f c h

1 1

0

0

2

2

1
2

1
2

χ β χ λ χ ε χ β λ χ

χ β χ λ ε χ χ γ γ χ ξ

ξ

� �� � � �

	 
 	 
� �

� �

� �

2

   at   = 1,

   at   = 0.

(A.14)
Then, considering a modal shape expression of the form (A.8), we obtain after some

manipulations the following system:

a b

a

f c f

f f c h

b

f

j j j j j j

j j j j

e j e f j j j

j e j f e e C F e j j

j j j j

e j

cos cosh sin sinh ,

sin sinh

cos cosh

sin sinh

cos cosh

Λ Λ Λ Λ

Λ Λ Λ

Λ Λ

Λ Λ Λ

Λ Λ Λ

+ + + =

− −

+ − + − − −

+ − + + + + − − − �
��

+ − − −

+ − + −

+

+

0

1 1

1 1

3

2

2 2

3

2

1
2

1
2

1
2

� �

� �� � � �� � � �

	 
 	 
� � � �

� �

� �� �

χ β χ λ χ ε χ β λ

χ χ β χ λ ε χ χ γ γ χ

χ β χ λ

�

� � �

χ ε χ β λ

χ χ βχ λ ε χ χ γ γ χ

e f j j j

j e j f e e C F e j j

c f

f f c h

− −

+ − + + + + − − �
�� =

�

�

�
�
�
�
�
�
��

�

�
�
�
�
�
�
��

� �� � � �

	 
 	 
� � � �

�

� � �

sin sinh

cos cosh .

Λ Λ

Λ Λ Λ  2 1
2

2 0

(A.15)
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Here, we notice the presence of the eigenfrequency λ j  (we shall recall that Λ j j
4 2= −λ ). Hence,

the equations can either be written in frequency or eigenvalue form, even if the latter one is

easier.

Again, for non-trivial solutions we look for eigenvalues Λ j  or frequencies λ j  that give a

null determinant to this system. This is a transcendental system equation with two possible

solutions λ j  and λ j , each leading to four possible eigenvalues Λ j ; hence, we obtain eigth

possible eigenvalues Λ j , −Λ j , iΛ j , −iΛ j  and their conjugates. According to the statement below

equation (A.7), the solutions to the transcendental equation can then be written in terms of eight

independent functions. Hence, we obtain two possible eigenfunctions, i.e., the mode shape Φ j ξ	 


and its conjugate Φ j ξ	 
.

This complex solution finally leads to a non-dimensional displacement of the form

η ξ τ ξ τ ξ τ, .	 
 	 
 � � 	 
 � �� �= +
=

∞

∑ Φ Φj j j j
j

h h
1

(A.16)
For f = 0 8. , β = 05. , χ = 1, h = 0, ε c f = 1, χ e = 0 00667. , χ e = 0 00785.  and γ γC F= = 0  we

have solved the system (A.15) for increasing values of the flow velocity � . Moreover, since the

eigenvalues are now complex we need to observe both real and imaginary parts. In what follows,

we will essentially focus on the first eigenvalue in order to shed light on its behavior.

6.1.1.1.1.3 A.2.4.1 Evolution of the eigenvalues

To overcome numerical problems while solving the system (A.15), we used two different

routines in order to find the roots of the eigenvalue problem. We first began using Müller's

method, which is part of the IMSL Library software package. Then, we found some peculiar
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problems regarding the first eigenvalue when increasing the fluid-velocity increment δ� ,

whereas no problem occurred with the other eigenvalues. Therefore, we also used the secant

method in order to make some comparisons.

In the light of Figure A.2 which shows the real part of Λ 1  versus �  for the secant

method and Müller’s method, we notice that something occurs for � ~ 1.27: the first method

predicts convergence of Λ 1  to zero for � ~ 1.58 (implying instability (buckling) for the dry

cantilevered cylinder with wet boundary conditions), whereas the second method seems to predict

divergence to infinity of the first eigenvalue after � ~ 1.27. Hence, the secant method is in

complete agreement with the conclusions in Section A.2.3.

The only way to render these discrepancies a little more comprehensible is to consider

also the evolution of the imaginary part of the first eigenvalue. However, before doing so, we

should note that there is a singular point in both cases at � ~ 1.27 (in principle, this could be

responsible for some numerical problems, but it is not the case). However, when investigating the

imaginary part versus the real part (which is not presented here for sake of brevity), we find that

for both methods and for � ≥ 1.27, Re Im .Λ Λ1 1	 
 	 
=  Even if at first sight this does not provide

a complete explanation of the discrepancy obtained through the two methods, it encourages us to

proceed in this direction.

So, let us consider solutions of the form Λ Λ1 1= + i� � for the system (A.15), with Λ  real,

and Λ Λ1 2=  . We have of course Re ImΛ Λ1 1	 
 	 
= . The aim is to verify if such solution does

really exist and, if it does, what happens when increasing � .

Figure A.3 shows the evolution of the real part of the determinant of the system (A.15)

(which in fact is the exact opposite in sign to the imaginary part) versus Λ  for two values of � .
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It can be concluded that there is no such solution for � ≤ 1.27. The first solution of that

kind occurs for � ~ 1.27 and is a double point. In fact, as �  is increased beyond 1.27, two

solutions arise as can be observed for � ~ 1.3. So, undoubtedly there are two kinds of solutions

when increasing � : we notice that the smallest one converges to zero whereas the largest one

seems to diverge to infinity. Hence, it is understood that the secant method is able to find the first

one (whatever the increment in �  is, up to 0.2, which should be large enough), whereas

Müller’s method finds the second one (at least for an increment in �  up to 0.05).

The numerical problem being clarified, we need to find the solution that ought to be kept in the analysis, if

not both? Actually, we cannot keep the solution found by Müller’s method leading to a 1st eigenvalue which

diverges as �  increases. Physically, this solution does not make sense (even if mathematically it does exist),

because when increasing �  the modulus of the 1st eigenvalue becomes larger than any expected higher eigenvalue.

[Furthermore, solving the final linearized system of the cantilevered cylinder immersed in steady flow with this kind

of eigenvalue would lead to suspicious results.] So, definitely, we should keep the solution found by the secant

method.

A.2.4.2 Further discussion

The physical reason for the difficulties already discussed is now clear. A cantilevered cylinder

subjected to flow over its tapering end only (whereas the cylindrical part remains “dry”) develops

divergence (buckling) at sufficiently high flow velocity; i.e., the axial flow over an inclined

tapering end leads to a lift force, which eventually overcomes the flexural restoring force.

Buckling being a static instability, the same behaviour is obtained, whether time-dependent terms

are eliminated or retained in the boundary conditions.

Since buckling instability is predicted for the dry beam with the wet tapering-end

boundary conditions, it is useful to study (say to verify) what happens when varying the
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parameter f (which is a measure of the departure from ideal slender-body, inviscid flow theory,

arising from (i) the lateral flow not being truly two-dimensional across the tapered end-piece, and

(ii) boundary layer effects). Thus, f = 1  represents the ideally slender case, while normally

0 1≤ ≤f : for f = 1  we have an ideally streamlined free end, and for f = 0  a blunt free end.

Let us now see what happens for a small value of f. Figure A.4 represents the real part of

Λ 1  for f = 0 01.  (there is in fact no use to represent the imaginary part), and we notice that it is

qualitatively similar to what was predicted when considering real eigenvalues (see Figure

A.1(a)), i.e., the Λ 1  converges to zero abruptly. When decreasing f, we noticed from results not

presented here that the convergence to zero becomes more and more abrupt, i.e., beyond a certain

� , Λ1 reaches zero very precipitously. However, we also noticed that the velocity for buckling

increases drastically, and actually, the buckling velocity tends to infinity when the parameter f

decreases to zero.

Hence, if we consider the extreme situation with f = 0 , i.e., a blunt free end, there will be

no buckling instability for the dry cantilevered cylinder with wet boundary conditions. This is

indeed obvious since setting f to 0 removes the only forces that can overcome the flexural

restoring force. [This is in agreement with the experiments conducted by Païdoussis et al. [8] for

the cantilever immersed in steady axial flow].

Since we completely developed the two methods we proposed at the outset, it is time now

to compare them in the process of finding the eigenvalues of the complete linearized system

representing the cantilevered cylinder immersed in an axial flow.
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6.1.1.1.2 A.3. COMPARISON BETWEEN THE TWO METHODS

6.1.1.1.2.1 A.3.1 INTRODUCTION TO THE LINEARIZED PROBLEM

Once we have found the eigenvalues Λ j  by either method, the comparison functions Φ j  to be

used in the analysis of the cylinder in flow become obvious. So, it is then possible to discretize

the nonlinear equation of the complete problem at hand, following step-by-step the Ritz-Galerkin

procedure.

Attention is nevertheless required here since for Method (b) (as stated previously) the

non-dimensional displacement is of the form (A.16) while for Method (c) it is of the form (A.5).

So, the matrices will not be of the same order, even for the same number of comparison

functions.

Furthermore, before proceeding any further, concerning Method (b) it happens that having

Re ImΛ Λ1 1	 
 	 
=  for � ≥ 1.27 implies that there are no longer eight solutions as predicted in

Section A.2.4 but only four, since Λ Λ1 1= i , − = −Λ Λ1 1i , iΛ Λ1 1= − , − =iΛ Λ1 1. Hence, in the

end, we need to consider Φ1  and Φ1  for � ≤ 1.27, and only Φ1  for � ≥ 1.27 (i.e., when

increasing �  the order of the matrices may also change, but only once!).

Finally, when the procedure of discretisation is complete we find by both methods an

equation of the form of equation (10) with only one major difference being that the two methods

lead to different matrices (since the comparison functions are different).

Considering now only the linearized part of equation (10), M q C q K qij j ij j ij j�� �+ + = 0 , it is

of interest to study the stability of the real system through Argand diagrams.
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To this end, solutions of the form q τ λτ	 
 = e  are considered, λ  being a complex

dimensionless eigenvalue. If the real part of λ  is negative, motions will be damped, while if

Re λ	 
 > 0  motions will be amplified, i.e., they will be unstable.

The system to solve is as follows:

� ,Y
O I

M K M C
Y=

− −
�
��

�
��− −1 1

where Y q q= , � .� �T

Here, we shall restrain ourselves to flow velocities for the onset of divergence in the first

mode, the regaining of stability in the first mode, flutter in the second mode, flutter in the third

mode and the regaining of stability in the second mode (in a range of velocities between 0 and

10), and then, compare the values obtained by the two methods.

6.1.1.1.2.2 A.3.2 RESULTS

The results are obtained for different modes in order to compare the critical flow velocities for

the different phenomena mentioned above. The results are also compared to an eight-mode

computation, which, whatever the method, should give fairly good accuracy.

The results are summed up in Table A.1 and they have been conducted for f = 0 8. ,

β = 05. , χ = 1, h = 0, ε c f = 1, χ e = 0 00667. , χ e = 0 00785. , cb = 0  and γ γC F= = 0 .

We observe that Method (b) is more accurate since with two modes, almost all of the

information is obtained, even flutter in the 3rd mode; furthermore, Method (c) requires at least

four modes to obtain this 3rd mode flutter. Finally, with three modes Method (b) gives results

very close to those with eight modes.
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What renders Method (b) more powerful is of course the fact that, in obtaining the

comparison functions, we already go part of the way to solving the problem completely, since for

each flow velocity �  the comparison functions satisfy the true boundary conditions, and thus are

closer to the eigenfunctions of the real system. Furthermore, what is here of interest is the

presence of the added conjugate modes that enable this method to achieve greater accuracy faster.

Nevertheless, provided enough modes are used, Method (c) is also accurate, even if the

comparison functions are not flow-velocity dependent.

In order to illustrate what happens for these two methods (and to have a broader view), we

present the Argand diagram of the linearized problem with two modes and using both methods in

Figure 5.

Comparing Figure 5(a) and Figure 5(b) (and restraining ourselves to one side of the

imaginary axis) it is seen that Method (b) provides four branches for two modes whereas only

two branches are obtained with Method (c). We also notice in Figure 5(a) that Method (b) is able

to predict 1st mode buckling instability, the regaining of stability in the 1st mode, flutter in the

2nd mode, and also the regaining of stability in the 2nd mode, and moreover flutter in the 3rd

mode. The last two phenomena are not found by Method (c) (see Figure 5(b)). Method (b) seems

at least to be ahead of Method (c), in terms of convergence/accuracy, by one mode.

So, it has been proved that Method (b) is a powerful tool, which requires fewer modes to

achieve extremely good accuracy, compared to Method (c). Nevertheless, if the number of modes

is increased sufficiently, Method (c) also leads to very good results. In fact, this is the purpose of

the Ritz-Galerkin method: provided enough modes are used, good accuracy should be reached

sooner or later, whatever the form of the comparison functions chosen. So, we have here a

dilemma: reaching better accuracy with good but fewer comparison functions and performing
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long calculations (up to ten minutes for Method (b) for three modes), or using more comparison

functions of inferior quality, but saving time in the calculations (almost instantaneous even for

eight modes)?

6.2 A.4 CONCLUSION

Despite the fact that Method (b) is more accurate, we have throughout this work noticed that there

are more problems to be circumvented when used this method, compared to Method (c).

Furthermore, the time needed to perform calculations is likely to discourage anyone. This is

especially true when solving nonlinear problems where fourth-order tensors that depend upon

comparison functions need to be computed numerically. Therefore, unless computers increase

their performance exponentially, Method (c) is to be recommended. However, attention is

required as far as the number of comparison functions needed to reach the desired accuracy is

concerned.

In the light of this work, the study of the nonlinear equation of the cylinder immersed in

an axial flow will be undertaken using Method (c) exclusively.
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7. TABLES

Table A.1: Critical flow velocities using Method (b) and (c) for a different number of modes.

1 mode 2 modes 3 modes 8 modes
Instabilities Method

(b)
Method

(c)
Method

(b)
Method

(c)
Method

(b)
Method

(c)
Both

methods
1st mode

divergence
2.07 2.13 2.06 2.05 2.06 2.05 2.06

1st mode
restability

4.93 5.56 4.93 5.05 4.94

2nd mode
flutter

5.29 5.78 5.24 5.27 5.24

3rd mode
flutter

8.97 8.45 8.41

2nd mode
restability

8.95 8.62 8.64
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APPENDIX B: MATRIX AND TENSOR COEFFICIENTS FOR THE

INEXTENSIBLE CANTILEVERED CYLINDER

The equation of motion for the inextensible cantilevered cylinder is

M q C q K q r q q s q q s q q t q q q q qij j ij j ij j ijk j k ijk j k ijk j k ijk j k ijkl j k l�� � �
~

� � �+ + + + + + +α

+ + + + =β γ η µijkl j k l ijkl j k l ijkl j k k ijkl j k lq q q q q q q q q q q q� � � � � � �� .0

The mass, damping and stiffness matrices are defined by

M fij e i j ij= + − + + −1 1 1 1 1 1χ β χ φ φ χ β δ	 
� � 	 
 	 
 	 
� � ,

C c f f b cij e f i j e i j ij f ij= − + ′ + +1
2

1
2

1 1 1 1 2χ ε χ β φ φ χ β χ φ φ χ β ε β δ� � � � � � � � � �� � � � ,

K c h f c

c h b d c c c

ij C F e f e e i j ij

C F f ij ij ij j ij b ij

= − + + − ′ +

− + + + − + −

γ γ χ ε χ χ χ φ φ χ

γ γ ε λ δ
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1
2

1
2

1 1

1

2

2 4 2

� � �
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2 2   +

 ;

δ ij  is Kronecker’s delta, λ j  are the dimensionless eigenvalues of a cantilever beam and the

constants,bij , cij , dij , introduced by Paidoussis & Issid (1974), are given by

b d c d d dij i j ij i j ij i j= ′ = ′′ = ′′� � �φ φ ξ φ φ ξ ξ φ φ ξ
0

1

0

1

0

1

, , .

The coefficients α β χ γ η µijkl ijkl ijkl ijkl ijkl ijkl ijk ijk ijkr s t, , , , , , , , , are computed numerically from the

integrals of the eigenfunctions, φ ξi 	 
 ; their definition is more complicated:

α χ φ φ φ φ ξ ε γ φ φ φ φ ξ ξ φ φ φ φ ξ
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+ ′

� � �
� � �
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3
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3
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3
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2

0

1
2

0

1

0

1

2

0

1

0

1

0

1

1

1

4

� �

� �

� � 	 


� � 	 


  

  2

φ φ φ ξ φ φ φ φ ξ φ φ φ φ ξ χ φ φ φ φ ξ ξ
ξ

j k l i j k l i j k l i j k ld d d d d′′ ′′′ + ′′ ′′ ′′ + ′′′′ ′ ′ − ′′ ′′ ′�
�

�
�� � � ��0

1

0

1

0

1
2

1

0

1

�
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           2

− − ′′ ′ ′�
�

�
� − ′′ − ′ ′′�

�
�
�

�
�
�

�
�
 

+ ′′ ′ ′′�
�

�
�

�� � �
��

1
2

1
2

1
2

2
1

0

1

0

1 1

1

0

1

1�

�

ε γ φ φ φ φ ξ ξ φ φ ξ φ φ ξ ξ

φ φ φ φ ξ ξ

ξ ξ

ξ

c h d d d d

c d d

f F i j k l i j k l

b i j k l

� � 	 


,

β χ β φ φ φ φ ξ φ φ φ φ ξ φ φ φ φ ξ ξ

φ φ φ φ ξ ξ β ε φ φ φ φ ξ

ξ

ξ

ijkl i j k l i j k l i j k l

i j k l f i j k l

d d d d

d d c d

= ′ ′ ′ − ′′ ′ − ′′ ′ ′�
�

�
�

�
�
�

+ ′′ ′ ′�
�

�
�

�
�
 
− ′ ′

� � ��
� � �
�

�

7
2

3
2

1

4

0

1

0

1 1

0

1

0

1

0 0

1

2

2

 

 ,

γ β φ φ φ φ ξ β φ φ φ φ ξ ξ ξ

χ β φ φ φ φ ξ ξ χ β φ φ φ φ ξ ξ

β ε φ φ φ φ ξ ξ β ε φ φ φ

χ
ξ

ξ

ξ ξ

ξ

ijkl i j k l i j k l

i j k l i k j l

f i k j l f i j k

d d d d

d d d d

c d d c

= ′ ′ − − ′′ ′ ′
�
�


�
��

+ + − ′ ′ ′
�
�


�
�� + ′ ′ ′

�
�


�
��

′ ′
�
�


�
��

− ′

−

−

� � ��
� � ��
��

3
2

1
2

1
4

0

1

0

1

0

1

0

1

0 00

1
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1

1
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� �

� �� �

φ ξ β ε φ φ φ φ ξ ξ
ξ

l f i j k ld c d d
0

1

0

1 1
1
4� � �+ ′′

�
�


�
�� ,

η
β ε

φ φ φ φ ξijkl i j k l

c
d

f= − �1
4

3 2

0

1/

,
�

µ β φ φ φ φ ξ ξ ξ χ β φ φ φ φ ξ ξ

χ β φ φ φ φ ξ ξ

ξ

ξ ξ

ξ

ijkl i j k l i j k l

i j k l

d d d d d

d d

= − − ′′ ′ ′�
�

�
� − ′′ ′�

�
�
�

+ + − ′ ′ ′�
�

�
�

� �� � �
� �

1

1 1

0

1

0

1

0

1 1

0

1

0

	 


	 
� � ,

r c dijk d i j k= ′ ′�1
2

2

0

1

� ε φ φ φ ξ, s c dijk d i j k= ′�1
2 0

1

� β ε φ φ φ ξ,

~ ,s c dijk d i j k= ′�1
2 0

1

� β ε φ φ φ ξ t c dijk d i j k= �1
2 0

1

β ε φ φ φ ξ.
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APPENDIX C: MATRIX AND TENSOR COEFFICIENTS FOR THE

EXTENSIBLE CYLINDER FIXED AT BOTH ENDS

For the extensible cylinder fixed at both ends, the equation of motion in the u-direction is

M p K p A q q A q q A q q A q q B q q q B q q qij
u

j ij
u

j ijk j k ijk j k ijk j k ijk j k ijkl j k l ijkl j k l�� � � � �� �+ + + + + + +1 2 3 4 1 2

+ + =B q q q B q q qijkl j k l ijkl j k l
3 4 0� � � .

The mass and stiffness matrices are defined by

M dij
u

i j= − �1
0

1

β ψ ψ ξ	 
 , K dij
u

i j= − ′′��0
0

1

ψ ψ ξ.

The coefficients A A A A B B B Bijk ijk ijk ijk ijk ijk ijk ijk
1 2 3 4 1 2 3 4, , , , , , ,  are computed numerically from the integrals

of the eigenfunctions φ ξi 	 
  and ψ ξi 	 
 . They are defined by

A d d d

c h d d

d c

ijk i j k i j k i j k

f C F i j k i j k

i j k f C i j

1

0

1

0

1

0

1

0

1

0

1

0

1

1
2

1
2

1
2

1
2

1 1

= − ′′ ′ − ′′ ′′′ − ′ ′′′′

− + + − ′ ′ − ′ ′′
�
�


�
��

+ − + ′ ′′ + + + −�
�

�
� ′ ′′

� � �
� �

�
−

−

χ ψ φ φ ξ ψ φ φ ξ ψ φ φ ξ

ε γ γ ψ φ φ ξ ξ ψ φ φ ξ

ψ φ φ ξ δ ε γ ψ φ φ

�

�

�

2

2

2

    

 

� � 	 
� � 	 


	 
 � �Γ Π Π Γ Γ0 k dξ
0

1� ,

A dijk i j k
2

0

1

2= − ′ ′�χ β ψ φ φ ξ� ,

A c dijk f i j k
3

0

1
1
4

= �β ε ψ φ φ ξ , A dijk i j k
4

0

1

= − ′�χ β ψ φ φ ξ ,

B c dijkl d i j k l
1

0

1
1
2

= − ′ ′ ′��
2ε ψ φ φ φ ξ, B c dijkl d i j k l

2

0

1
1
2

= − ′ ′�� β ε ψ φ φ φ ξ,

B c dijkl d i j k l
3

0

1
1
2

= − ′ ′�� β ε ψ φ φ φ ξ, B c dijkl d i j k l
4

0

1
1
2

= − ′�β ε ψ φ φ φ ξ.
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The equation of motion in the v-direction is

M q C q K q D p q D p q D p q D p q D p q E q q E q qij
v

j ij
v

j ij
v

j ijk j k ijk j k ijk j k ijk j k ijk j k ijk j k ijk j k�� � � � � � �� �+ + + + + + + + +1 2 3 4 5 1 2

+ + + + + + + =E q q E q q F q q q F q q q F q q q F q q q F q q qijk j k ijk j k ijkl j k l ijkl j k l ijkl j k l ijkl j k l ijkl j k l
3 4 1 2 3 4 5 0� � � � � � � � � �� .

The mass, damping and stiffness matrices in the v-direction are defined by

M dij
v

i j= + − �1 1
0

1

χ β φ φ ξ	 
� � ,

C d dij
v

i j f i j= ′ +� �2
0

1

0

1
1
2

χ β φ φ ξ ε β φ φ ξ� � c ,

K d c h d d

d d c d

ij
v

i j f C F i j i j

i j i j f C i j

= ′′ + + + − ′ − − ′′�
�


�
��

+ ′′′′ − + ′′ − + + −�
�

�
� ′′

� � �
� � �−

χ φ φ ξ ε γ γ φ φ ξ ξ φ φ ξ

φ φ ξ φ φ ξ δ ε γ φ φ ξ
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1 1� � 	 
� � 	 


� � � �Γ Π Γ Γ .

The coefficients Dijk
1 , Dijk

2 , Dijk
3 , Dijk

4 , Dijk
5 , Eijk

1 , Eijk
2 , Eijk

3 , Eijk
4 , Fijkl

1 , Fijkl
2 , Fijkl

3 , Fijkl
4 , Fijkl

5  are

computed numerically from the integrals of the eigenfunctions φ ξi 	 
  and ψ ξi 	 
 . They are

defined by:

D d d d d

c d d

d

ijk i j k i j k i j k i j k

f C i j k i j k

i j k i j

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

3 4 2

2 2

1
2

1
2

= − ′′′ ′′ − ′′ ′′′ − ′ ′′′′ − ′′′′ ′

+ − + + + −�
�

�
�

�
�

�
� ′ ′′ + ′′ ′�
�

�
�

+ − ′ ′′ + ′′ ′

� � � �
� �

�
−

φ ψ φ ξ φ ψ φ ξ φ ψ φ ξ φ ψ φ ξ

δ ε γ φ ψ φ ξ φ ψ φ ξ

χ φ ψ φ ξ φ ψ φ

Γ Π Γ Γ

Π

0   

    

2

2

�

�

� �

� � k

f C F i j k i j k

f C F i j k

d

c h d d

c h d

ξ

ε γ γ φ ψ φ ξ ξ φ ψ φ ξ

ε γ γ ξ φ ψ φ ξ

0

1

0

1

0

1

0

1

1
2

1
2

1 2 2 1

1 1

�
� �

�

�
�

�
�

− + + − ′ ′ − − ′ ′′�
�


�
��

+ + − − ′′ ′

�

�

2

2

   

 +  

� � 	 
� � 	 


� � 	 
� � 	 
 ,

D d dijk i j k i j k
2

0

1

0

1

3 2= − ′ ′ + ′′�
�

�
�� �χ β φ ψ φ ξ φ ψ φ ξ�   ,
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D d c dijk i j k f i j k
3

0

1

0

1

4 1
2

= − ′ ′ + ′� �    χ β φ ψ φ ξ βε φ ψ φ ξ� � ,

D d c dijk i j k f i j k
4

0

1

0

1

2 1
2

= − ′ +� �     χ β φ ψ φ ξ β ε φ ψ φ ξ,

D dijk i j k
5

0

1

= − ′�χ β φ ψ φ ξ,

E c dijk d i j k
1

0

1
1
2

= ′ ′��
2ε φ φ φ ξ, E c dijk d i j k

2

0

1
1
2

= ′�� β ε φ φ φ ξ,

E c dijk d i j k
3

0

1
1
2

= ′�� β ε φ φ φ ξ, E c dijk d i j k
4

0

1
1
2

= �β ε φ φ φ ξ,

F d d d d

c h d d

ijkl i j k l i j k l i j k l i j k l

f C F i j k l i j k l

1
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1
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1
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1
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2 8 2

1 1
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= − ′ ′ ′′′′ − ′ ′′ ′′′ − ′′ ′′ ′′ − ′′ ′ ′

+ + + − ′ ′ ′ + − ′ ′ ′′�
�


�
��

− + +

� � � �
��−

−

φ φ φ φ ξ φ φ φ φ ξ φ φ φ φ ξ χ φ φ φ φ ξ

ε γ γ φ φ φ φ ξ ξ φ φ φ φ ξ

δ

�
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Γ Π Π0
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1

�
2   ε γ φ φ φ φ ξc df C i j k l+ + −�

�
�
�

�
�

�
� ′ ′ ′′�� � Γ Γ ,

F d dijkl i j k l i j k l
2

0

1

0

1
7
2

3
2

= − ′ ′ ′ + ′ ′′�
�


�
��� �χ β φ φ φ φ ξ φ φ φ φ ξU    ,

F dijkl i j k l
3

0

1
3
2

= − ′ ′�χ β φ φ φ φ ξ, F
c

dijkl
f

i j k l
4

3 2

0

1
1
4

= − �β ε
φ φ φ φ ξ

/

,
�

F dijkl i j k l
5

0

1

= − ′ ′�χ β φ φ φ φ ξ.
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APPENDIX D: MATRIX AND TENSOR COEFFICIENTS FOR THE

EXTENSIBLE CANTILEVERED CYLINDER TERMINATED IN A

TAPERING FREE-END

When the cantilevered cylinder is considered to be extensible and terminated by a tapering free-

end, we shall define the mass, damping and stiffness matrices in the v-direction as follows

M f dij
v

e i j i j= + − + + − �1 1 1 1 1 1
0

1

χ β χ φ φ χ β φ φ ξ	 
� � 	 
 	 
 	 
� � ,

C c f f

d d

ij
v

e f i j e i j

i j f i j

= − + ′ +

′ +� �
1
2

1
2

1 1 1 1

2
0

1

0

1

χ ε χ β φ φ χ β χ φ φ

χ β φ φ ξ ε β φ φ ξ

� � � � � � � � � �� �

� � c ,

K c h f d

c h d d d

d c

ij
v

C F e f e e i j i j

f C F i j i j i j

i j f C i

= − + + − ′ + ′′

+ + + − ′ − − ′′�
�


�
�� + ′′′′

− + ′′ − + + −�
�

�
� ′′

�
� � �

−

γ χ γ χ ε χ χ χ φ φ χ φ φ ξ

ε γ γ φ φ ξ ξ φ φ ξ φ φ ξ

φ φ ξ δ ε γ φ

	 
 	 
� � � � � �

� � 	 
� � 	 


� � � �

1
2

1
2

1
2

1
2

1 1

1 1

0

1

0

1

0

1

0

1

� � �

�

�

2 2 2

2

2

   

 

 Γ Π Γ Γ φ ξj d
0

1

0

1

�� .

Actually, the mass and stiffness matrices in the u-direction remain as defined in Appendix C.
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APPENDIX E: ALTERNATIVE FORM OF MATRIX COEFFICIENTS FOR

CANTILEVERED CYLINDER

Introducing the normal and tangential viscous parameters in the equation of motion of the

inextensible cantilevered cylinder, ε cN  and ε cT  respectively, the mass, damping and stiffness

matrices are then defined as follows

M fij e i j ij= + − + + −1 1 1 1 1 1χ β χ φ φ χ β δ	 
� � 	 
 	 
 	 
� � ,

C c f f b cij e N i j e i j ij N ij= − + ′ + +1
2

1
2

1 1 1 1 2χ ε χ β φ φ χ β χ φ φ χ β ε β δ� � � � � � � � � �� � � � ,

K c c h f cij C F e N e T e i j ij= − + + − ′ +γ γ χ ε χ ε χ χ φ φ χ	 
 	 
� � � � � �1
2

1 1 2
� � �

2 2 +

γ γ ε ε ε λ δC F T ij ij ij T ij ij N ij j ij b ijc h b d c c d c c b c c− + + − + − + + −1
2

1
2

1
2

1
2

2 2 2 4 2
� � � �� �� � � � ;

δ ij  is Kronecker’s delta, λ j  are the dimensionless eigenvalues of a cantilever beam and the

constants, bij , cij , dij  are defined in Appendix B.


