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Abstract

We introduce several data assimilation techniques for the Navier-Stokes equations and, in

the last chapter of this thesis, focus on a coupling scheme for the Navier-Stokes equations

in two dimensions, employing mesh measurements of only one component in the velocity

field. To do so, we start by using classical physical laws to derive the equation itself in the

case of incompressible flows. We then work within the n-dimensional torus to present in

details some classical results related to Fourier spaces, which we then employ to discuss

the Leray projector and how to recover a solution from within the divergence-free space.

In a second chapter, we provide a detailed analysis of two classical data assimilation

techniques on the Lorenz equation. Finally we present a thorough proof of the final result

of this thesis in which we provide conditions on the resolution of the measured data

which are sufficient for the coupling algorithm to converge to the unique exact unknown

two dimensional Navier-Stokes system at an exponential rate asymptotically in time.

i



Abrégé

Nous introduisons plusieurs techniques d’assimilations de données pour les équations de

Navier-Stokes et, au cours du dernier chapitre de cette thèse, nous nous concentrons sur

une méthode de couplage pour les équations de Navier-Stokes en deux dimensions, util-

isant des mesures de maillage pour une seul composante du champ de vélocité. Pour

ce faire, nous commençons par dériver les équations de Navier-Stokes (en nous limi-

tant aux fluides incompressibles) en utilisant des lois fondamentales de physique. Par

la suite, nous nous déplaçons vers le torus de dimension n pour y présenter quelques

résultats classiques ayant rapport aux espaces de Fourier. Nous employons ensuite ces

outils pour étudier le projecteur de Leray nous permettant ainsi de récupérer une solu-

tion aux équations de Navier Stokes à partir de l’espace de zéro-divergence. Dans un

second chapitre, nous fournissons une analyse détaillée de deux techniques majeures

d’assimilations de données, que nous appliquons à l’équation de Lorenz. Pour conclure,

nous présentons le résultat final de ce texte dans lequel nous développons des condi-

tions sur le niveau de résolution des données mesurées qui sont suffisantes pour que

l’algorithme de couplage converge à l’unique solution inconnue du système de Navier-

Stokes en two dimensions, à un taux exponentiel dans le temps.
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Introduction

When studying partial differential equations, it becomes quickly clear that in some cases,

one will not be able to find a closed form solution to a given problem. That is why the

topic of numerical approximations gains all its importance when confronted with PDEs

such as the Navier-Stokes equations, which to this day cannot always be solved in three

dimensions. In this thesis, we will discuss the subject of data assimilation techniques,

which differs from other types of numerical approximation schemes in that it relies on a

mathematical model on top of measured data. These data assimilation schemes have been

proven to perform better than others when modeling chaotic (Stochastic) PDEs. This is

due to the fact that, for example when dealing with weather forecasting models, a slight

error in measured data can lead to a much larger error in the predicted state of the system.

Such methods are widely implemented in meteorology or oceaonography, for example

([7]).

We distinguish two main types of data assimilation schemes. First we have the prob-

abilistic approach, which includes the well known Kalman filter and all subsequent fil-

tering methods ([4]). These usually rely on the assumption that the noise observed in

the measured data is normally distributed and a careful study of the covariance quantity

is required to understand the efficiency of this technique. One of the downside of these

filters is that for most relevant applications, the generated systems can be as big as O(19),

in global weather forecasting for example. Thus these can be expensive methods to im-

plement. On the other side of filtering methods, one finds variational techniques, such as

coupling methods, which will be the focus of this thesis ([3]). Classical methods of con-
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tinuous data assimilation work by directly inserting measured data into a mathematical

model before integrating with respect to time ; then with the use of finite Fourier modes,

one is able to compute a good approximated solution. However in this thesis, we will be

leading towards a result on couplings methods, which differs from other variational tech-

niques in the fact that it introduces a feedback control term that forces the model towards

the reference solution. Because we do not currently have set conditions for a global at-

tractor to exists for the Navier Stokes Equation in n > 2 dimensions, we will focus on the

two dimensional case, where the Navier-Stokes equations are known to have solutions

(global in time) and a finite-dimensional global attractor.

However since this thesis is also meant to introduce the Navier-Stokes equations and

some general ideas in data assimilation, we will dedicate Chapter 2 to the study of pro-

jection techniques onto the divergence free space, which is one the classical tool used to

show existence and uniqueness of solutions in the n-dimensional torus. Then in Chapter

3, we will spend some time explaining the inner workings of two common types of data

assimilation techniques (chaos synchronisation and the Kalman filter), however for sim-

plicity we will work on the Lorenz equation as to avoid the convection term present in

the Navier-Stokes equation.
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Chapter 1

Derivation of the Navier Stokes Equation

and the Leray Projector

This first chapter is dedicated to setting up the framework within which much of this

thesis operates. We will first derive the Navier Stokes Equation, in an effort to better un-

derstand the physical phenomenon it models. Then we will define appropriate notation

for norms and inner products that will be used throughout this discussion. Finally we

will introduce Leray projections and show what role it plays in solving the Navier-Stokes

equation.

1.1 Derivation of the PDE

The Navier-Stokes equation describes conservation of mass and momentum for Newto-

nian fluids (ie. certain models of fluids that accounts for viscosity). In this derivation we

will restrict our attention to incompressible and isotropic fluids, which lets us assume con-

stant fluid volume and orientation independence. Recall the Cauchy Momentum Equa-

tion :
D

Dt
u =

1

ρ
∇ · σ + f
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where the operator D
Dt

is the material derivative, which leads to

D

Dt
u =

∂

∂t
u+ u · ∇u.

The fluid density is denoted by ρ, ∇·σ is the stress tensor and f is the acceleration vector.

The stress σ can be decomposed into the sum of the volumic and deviatoric stress :

σ = τ − pI.

In the case of incompressible flows, the stress tensor is a variable of ∆u only and the

isotropy assumption lets us rewrite ∇τ = µ∆u, hence

1

ρ
∇ · σ =

1

ρ

(
µ∆u−∇p

)
.

Therefore, letting ν = µ
ρ
, we find that the Cauchy Momentum Equation leads to :

∂

∂t
u+ u · ∇u = −1

ρ
∇p+ ν∆u+ f.

For simplicity, we will assume ν = 1 and f ≡ 0 throughout this chapter. The incompress-

ible flow assumption also leads to u being divergence free. This constraint together with

the previous equation and an IVP form the Navier-Stokes Equation PDE :



∂
∂t
u+ u · ∇u = −1

ρ
∇p+∆u

∇ · u = 0

u(0, t) ≡ g

∇ · g = 0

(1.1)

Of course solving this equation is much harder than deriving it, but some settings are

well studied (see [2], [1]).
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1.2 The Fourier Space and some Preliminary Results

We will use some Fourier Analysis results throughout this thesis, simply because the lin-

ear structure and invertibility properties it offers will simplify some arguments.

Let us start by defining T = R/2πZ such that the points 0 and 2π are identified with

one another in T. Then by letting the default norm in this chapter be the L2-norm, for

some function v defined on T we have :

∥v∥2 := ∥v∥2T =

∫ 2π

0

|v(x)|2dx.

Recall the associated inner product

⟨u, v⟩ := ⟨u, v⟩T =

∫ 2π

0

u(x)v̄(x)dx.

Then for a function v ∈ L2(T), define its Fourier coefficients as

v̂(k) =
1

2π
⟨v, ek⟩ =

1

2π

∫ 2π

0

v(x)e−ikxdx, k ∈ Z,

with the representation

v(x) =
∑
k∈Z

v̂(k)ek.

Then we define the Sobolev space Hs(T):

Hs(T) = {v ∈ L2(T) : v̂ ∈ l2s},

where

l2s = {v ∈ l2 : (|k|sv̂k)k ∈ l2},
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And the norm

∥(v̂k)k∈Z∥l2 =
(∑

k∈Z

|v̂k|2
) 1

2
.

Then for f, g ∈ Hs, we have

⟨f, g⟩s = 2π
∑
k∈Zn

(1 + |k|2s)f̂(k)¯̂g(k),

which is equivalent to

⟨f, g⟩s = ⟨f, g⟩+
〈
f (s), g(s)

〉
,

when s in an integer, where f (s), g(s) are the sth derivatives of f and g.

Now, let h be the weak derivative of g and let us compute

ĥ(k) =
1

2π
⟨h, ek⟩ =

1

2π

∫
T
h(x)e−ikxdx.

By integration by parts, we get

=
1

2π

(
g(x)e−ikx

)∣∣∣∣
T
+

1

2π

∫
T
g(x)ike−ikxdx

And by our definition of T as an equivalence class, the first term becomes

g(0)× 1− g(0)× 1 = 0

Hence we have

ĥ(k) = ik
1

2π

∫
T
g(x)e−ikxdx = ik ⟨g, ek⟩ = ikĝ(k),

And so

g(1)(x) =
∑
k∈Z

ˆg(1)(x)ekx =
∑
k∈Z

ĥ(x)ekx =
∑
k∈Z

ikĝ(x)ekx.
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Thus for l ∈ N, we find

g(l)(x) =
∑
k∈Z

(ik)lĝ(x)ekx,

which leads to the inequality :

|g(l)(x)| =
∣∣∑

k

(ik)lĝ(k)eikx
∣∣ ≤ ∑

k

|klĝ(k)|

Finally we will state Bernstein’s Theorem as it will be useful in the final sections of

this thesis.

Theorem 1. (Bernstein) Let s ∈ R and r ∈ N0 be such that s > r + n
2
. Then Hs(Tn) is

continuously embedded in Cr(Tn). That is, we have Hs(Tn) ⊂ Cr(Tn) and there exists a constant

c such that ∥g∥Cr ≤ c ∥g∥s for all g ∈ Hs(Tn).

A complete proof can be found in ([13]).

1.3 The Leray Projector

The goal of this section is to establish conditions on u, p and n such that the existence

of a global solution to (3.1) is guaranteed on Tn. More precisely, we will now develop

a strategy to use global existence results from the Heat Equation in order to solve the

Navier-Stokes equations problem. Let u ∈ Tn × [0, T ) 7→ Rn and p :∈ Tn × [0, T ) 7→ R,

0 < T ≤ ∞.

Consider the following quantity :

ˆ∂juk(ξ) = F(∂ju)k(ξ) =
1

(2π)n

∫
Tn

∂ju(ξ)e
−ik·ξdξ

= (2π)−n
(
u(ξ)e−ik·ξ

)∣∣∣∣
Tn

− 1

(2π)n

∫
Tn

u(ξ)∂je
−ik·ξdξ

7



= 0− 1

(2π)n

∫
Tn

u(ξ)(−iξj)e
−ik·ξdξ = (iξj)ûk(ξ),

where the second line simply comes from integration by parts, using the periodicity con-

ditions on u together with the Dirichlet initial value problem. We thus find, in vector

notation :

∇̂ · u(ξ) = iξ · û(ξ)

So in Hs, the divergence is component wise proportional to ξ, which is the radial com-

ponent of the vector field. Hence if a vector field is divergence free then û · ξ = 0. For a

scalar field we find :

∇̂p(ξ) = iξp̂(ξ)

So the gradient is purely radial. Keeping these observations in mind, let us now define

the Leray Projector [6] P : Hs 7→ Hs :

P̂u(ξ) =
(
I − ξ ⊗ ξ

|ξ|2
)
û(ξ)

Where ξ ⊗ ξ is notation for the matrix with entries {ξiξj}i,j≤n. We claim that this operator

acts as a projection onto the divergence free space . Indeed, if we assume u is divergence

free except for its kth component, then

P̂u(ξ) =
(
I − ξ ⊗ ξ

|ξ|2
)
⟨ûj(ξ)⟩j≤n

Where the radii ξi = 0 for all i ̸= k by the previous observations, so the divergent free

components of u are only hit by the identity operator and thus remain unchanged. For

i = k on the other hand, the tensor term clearly cancels out with the identity operator

thus removing the purely divergent component of u.

We therefore have the following properties :

P2 = P, ⟨u− Pu,Pu⟩ = 0, ∇ · Pu = 0

8



P : Hs 7→ Hs is continuous and bounded.

Let us now restrict our solution space to pairs (u, p) such that :


u ∈ C1(Tn × (0, T )) and ∂i∂ju ∈ C(Tn × (0, T ))

p ∈ C(Tn × (0, T )) and ∂ip ∈ C(Tn × (0, T ))

(1.2)

We will now apply P to the Navier-Stokes equations equation and show that solving

the projected problem is equivalent to solving the Navier-Stokes equations (1.1).

⇒ : Let u and p, satisfying the assumptions above, be such that the Navier-Stokes

equations hold true, ie : 
∂
∂t
u+ u · ∇u = −1

ρ
∇p+∆u

∇ · u = 0

Let us apply P to the Navier-Stokes equations :

P
∂

∂t
u+ Pu · ∇u = −1

ρ
P∇p+ P∆u

Clearly since ∇ · u = 0, Pu = u. Then since the Laplacian commutes with isometries

(ie; Fourier transforms), P∆u = ∆Pu = ∆u. It is also straightforward to see that P∇p = 0

since ∇p is a purely divergent term. Now for the time partial, consider

U(t) := u(·, t) then P
∂

∂t
u = PU ′(t)

And since we have assumed u ∈ C1, by continuity we have

PU ′(t) = (PU)′

⇐⇒ P
∂

∂t
u =

∂

∂t
Pu =

∂

∂t
u

9



Finally we will rewrite the convection term as Pu · ∇u := Pdiv(u ⊗ u). Collecting terms,

we find the projected NSE :
∂

∂t
u+ Pdiv(u⊗ u) = ∆u (1.3)

⇐ : We will now show that solving the projected equation (1.3) is equivalent to solving

the original Navier-Stokes equations (1.1). To this end let us consider u : Tn× (0, T ) 7→ Hs

such that the projected NSE is satisfied and u(t)
t−→0−−−→
L2

g for some g ∈ L2 with Pg = 0. Let

us apply P to (1.3) :

P
∂

∂t
u+ P2div(u⊗ u) = P∆u

By the same arguments as before we find P ∂
∂t
u = ∂

∂t
Pu and P∆u = ∆Pu (note that we

have not assumed that ∇ · u = 0). Also since P2 = P we find :

∂

∂t
Pu+ Pdiv(u⊗ u) = ∆Pu (1.4)

Now consider (1.3)-(1.4) :

(u− Pu)T = ∆(u− Pu)

which is the Heat Equation for (u − Pu). The goal now is to apply the existence and

uniqueness result we know hold for the Heat Equation. In particular since u(t)
t−→0−−−→
L2

g

for some g ∈ L2 with Pg = 0, then by uniqueness of the solutions of the Heat Equation,

u = Pu on (0, T ]. This automatically gives us the divergence free constraint of the Navier-

Stokes equations (ie : ∇ · u = 0).

We are now left with showing that such a function u solves the original Navier-Stokes

equations (1.1). To this end, let v ∈ L2 and q a scalar field defined in the following way :

q̂(ξ) =


−iξ · v̂(ξ)

|ξ|2 ξ ̸= 0

q̂(0) = 0 else

10



This function is designed to pick up the purely divergent components of v such that we

find the following decomposition :

v = P+∇q

If div(u⊗ u) ∈ L2, then there exists a scalar field q such that

div(u⊗ u) = Pdiv(u⊗ u) +∇q

So going back to (1.3) :

ut + div(u⊗ u)−∇q = ∆u

And if we further assume that div(u⊗ u) is smooth then we find :

⇒ ut + u · ∇u = ∇q∆u

Thus the Navier-Stokes equations is satisfied. We have then showed that for some func-

tion such that u(t) t−→0−−−→
L2

g for some g ∈ L2 with Pg = 0 and div(u ⊗ u) is smooth then

solving the Navier-Stokes equations (1.1) is equivalent to solving (1.3). Such a solution is

called a strong solution to the Navier-Stokes equations.

On the other hand, one can define, using Duhamel’s Principle (see appendix 5.1), a mild

solution to the NSE by :

u(t) = et∆g +

∫ t

0

e(t−τ)∆f(u(τ))dτ 0 < τ < T

where f(u) ≡ div(u ⊗ u). Therefore by Duhamel’s Principle (part (a)), if f(u) ∈ C(Tn) ×

(0, T ] then u is a strong solution to the Navier-Stokes equations. Note that then if u is a

continuous mild solution, then u satisfies the Navier-Stokes equations classically.

11



We note that this projection is the basis for many well-posedness proofs and enabled to

show local existence of solutions of the Navier-Stokes equations. For example, the global

well-posedness of solutions for small data and local well-posedness for large data was

demonstrated in [9].

12



Chapter 2

Data Assimilation schemes for the

Lorenz Equation

Now that we have some knowledge about the Navier-Stokes equations, we can start to

ask ourselves how to implement data assimilation techniques on that system. However,

since these schemes are non-trivial to understand and that the convection term in the

Navier-Stokes equations complicates matters even more, we would like to start on a sim-

pler model, the Lorenz Equations :


ẋ = σ(y − x)

ẏ = x(ρ− z)− y

ż = βz + xy

(2.1)

These equations were developed from the Navier-Stokes equations and the equation de-

scribing thermal energy diffusion, and they describe the motion of a fluid under Rayleigh-

Bénard flow conditions. Thus this model has limitations and will not provide accurate

results for all settings, it is however sufficient to get useful insight into fluid mechanics.

Unfortunately, we will not be including a derivation of the Lorenz system in this thesis, as

it involves a lot of additional concepts in fluid mechanics and physics. This chapter will

13



be focused on studying the theory behind two of data assimilation methods : the Kalman

Filter and Synchronisation of Chaos ; and we will end by an analysis of the results of an

implementation of these techniques on the Lorenz equations.

2.1 The Kalman Filter

Originally more of a statistical tool rather than a numerical analysis method, the Kalman

Filter is a predictor-corrector type estimator that optimises the estimated error covariance

matrix at each time step of the scheme. It relies on properties of Gaußian random vari-

ables to understand the behavior of the noise generated from both the measurements and

the process [14]. It has various practical applications in robotics, economics and trajectory

estimations. In this section we’ll study the basic principles behind the Kalman Filter in

order to later apply it to a non-linear system.

2.1.1 The discrete Kalman Filter

For a system ruled by the matrix A ∈ Rn×n, let the vector xk ∈ Rn represent the state of

the system at time step k. We introduce the following system :


xk+1 = Axk +Buk + ωk+1

zk = Hxk + vk

(2.2)

Where Buk ∈ Rn is the control input (that we will take ≡ 0 going forward), ωk ∈ Rn is the

process noise, νk ∈ Rn is the measurement noise, zk ∈ Rn is the ”true” measured value at

time step k and H ∈ Rn×n represents how the measurements affect the state of the system.

In practice the exact values of ωk ∈ Rn and νk ∈ Rn are inaccessible, but we assume

that they are both drawn from normally distributed random variables W ∼ N(0, Q) and

V ∼ N(0, R), which are pairwise independent.

14



We define x̂k and x̃k to be vectors in Rn that respectively describe the a priori estimate

(given by the state update) and the a posteriori estimate (given by the measurement) at

time step k. We also define the a priori and a posteriori errors as :

êk = xk − x̂k and ẽk = xk − x̃k

Then the a priori and a posteriori estimated covariance matrices become respectively :

P̂k = E[êkêTk ] and P̃k = E[ẽkẽTk ]

The goal of the Kalman filter is to compute an a posteriori estimate that minimizes the

a posteriori estimated covariance matrix P̃k, knowing both x̂k, x̃k and zk. We therefore

claim there exists a matrix K ∈ Rn×n, the Kalman Gain, such that the following iteration

minimises P̃k :

x̃k = x̂k +K(zk −Hx̂k) (2.3)

By taking the derivative with respect to K of tr(P̃k) one finds that

K = P̃kH
T
(
HP̃kH

T +R
)−1 (2.4)

Where we recall that R is the covariance matrix of the measurement noise. Observe that

K has some interesting behaviors as R and P̃k vary. If R tends to 0 :

lim
R−→0

K = P̃kH
THP̃ T

k H
−1 = H−1

If we use K = H−1 in (2.3) we see that the update schemes becomes

x̃k = x̂k +H−1(zk −Hx̂k) = H−1zk = xk +H−1vk by (2.1) .
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We recall that H is the matrix that expresses how the measurements affect the state update

and that vk is a sample point drawn from the RV representing the measurement noise so

this means that the gain is going to favor the experimental measurement input rather than

the iterative method’s prediction. On the other hand if P̃k tends to 0 we have :

lim
P̃k−→0

K = 0

Therefore (2.3) becomes :

x̃k = x̂k +K(zk −Hx̂k) = x̂k

We clearly see that in this case the filter trusts the expected value over the experimental

input.

Another observation worth making is that the Kalman Filter maintains the expectation

and variance of the state distribution :

E[xk] = x̃k and E[(xk − x̃k)(xk − x̃k)
T ] = Pk

Note that in a situation where W and V are indeed centered random variables then

E[xk] = 0. We conclude that the random variable Xk|Zk ∼ N(E[xk], Pk) = N(x̃k, Pk).

We are now ready to state the full iterative scheme. The Kalman filter works through

feedback control and therefore it has a dual structure. The first part of the algorithm,

the predictor, projects the process in time given knowledge of the state up to time step

k − 1 and the second part, the corrector, gives feedback on that estimate by means of

noisy measurement in order to possibly refine the prediction. Given initial x0 and P0, the

complete scheme can be summarized by the following two systems :


x̂k = Ax̃k +Buk

P̂k = APk−1A
T +Q

(2.5)
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
Kk = P̂kH

T (HP̂kH
T +R)−1

x̃k = x̂k +Kk(zk −Hx̂k)

Pk = (I −KkH)P̂k

(2.6)

Where (2.5) would be the predictor and (2.6) the corrector. This recursion format is inter-

esting for a number of reasons, one of them being that both loops run in simultaneously

which makes it practical to implement, see Section 4 for more.

2.1.2 The extended Kalman Filter

Recall that the previous derivations held under the assumption that A was a linear sys-

tem. However most dynamical systems are some shade of non-linear, therefore our the-

ory requires adjustments. One simple way of solving this problem would be to linearise

our dynamical system, for example by means of Taylor Expansion. Thus consider the

following system : 
xk = f(xk−1, uk, ωk)

zk = h(xk, vk)

(2.7)

Which is the equivalent of 3.1 for general f, h that we will assume non-linear going for-

ward. We can then define the a priori estimates as :

x̂k = f(x̃k, uk, 0) and ẑ = h(x̂, 0)

And we can now use these to Taylor expand (2.7) around the current estimate xk−1 :


xk ≈ x̂k + A(xk−1 − x̃k−1) +Wωk

zk ≈ ẑk +H(xk − x̂k) + V νk

(2.8)
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Where xk and zk represent the truth of the system and of the measurement. We also have

A ∈ Rn×n such that ∀i, j ≤ n :

A(i,j) =
∂

∂xj

fi(x̃k, uk, 0) the Jacobian of f

and H ∈ Rn×n satisfies :

H(i,j) =
∂

∂xj

hi(x̂, 0)

The noise sample points ωk and νk are as in (2.2) and W,V ∈ Rn×n are such that :

W(i,j) =
∂

∂ωj

fi(x̃k, uk, 0) and V(i,j) =
∂

∂νj
hi(x̂, 0)

Note that the expression for the noises is not as nice as in the linear case because the

Taylor expansion does not allow us to recover the covariance matrices.

We define the new estimated errors :

exk
≈ xk − x̂k and ezk ≈ zk − ẑk

In practice we do not have access to xk, but we can get our hands on zk. Using (2.8), these

can be rewritten as : 
exk

≈ A(xk−1 − x̃k−1) + ϵk

ezk ≈ H(exk
) + ηk

Where ϵk and ηk are sample points drawn from new centered RVs with covariance matri-

ces WQW T and V RV T respectively. Note that these expressions are linear, and that one

can write :

xk ≈ x̂k + exk
= x̃k (2.9)
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So now going back to the linear Kalman Filter scheme, we can use the second equation in

(2.6) : x̃k = x̂k +Kk(zk −Hk̂) and write :

exk
= Kkezk

Then using (2.9), the first equation of that system becomes :

Kkezk + x̂k = x̃k

And the last line reads :

x̃ = Kk(zk − ẑk) + x̂k

We now have our full non-linear scheme :
x̂k = f(x̃k−1, uk, 0)

P̂k = APk−1A
T +WQW T

(2.10)


Kk = P̂kH

T (HP̂kH
T + V RV T )−1

x̃k = x̂k +Kk(zk − h(x̂k, 0))

Pk = (I −KkH)P̂k

(2.11)

We note that these need initial x̃0 and P0. We also mention that A,W, V,Q,R and H could

change at each time step k, but the subscript is dropped here for lighter notation.

2.2 Synchronisation of Chaos

Synchronisation expresses a notion of strong correlation between coupled systems. Chaos

normally arises when dynamical behaviors have locally dispersing characteristics. One

tool for better understanding how chaotic of a particular system is called the Lyapunov
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exponent. In this section we will derive a method for coupling two dynamical systems

and see that synchronisation is guaranteed provided the coupling strength is chosen

above a certain threshold [5].

2.2.1 Synchronisation of Linear Systems

We start this exercise by considering two linear systems, with the elementary y′ = λy

example in mind. Let us define for some constant a ̸= 0 :


ẋ1 = ax1

ẋ2 = ax2

such that these have solution : xi(t) = xi(0)e
at. Now let α be the coupling force, consider :


ẋ1 = ax1 + α(x2 − x1)

ẋ2 = ax2 + α(x1 − x2)

(2.12)

Our goal will be to find values of α such that z := x1 − x2 converges to zero as t −→ ∞.

Using (2.12) we get :

ż = ax1 − ax2 + 2α(x2 − x1) = z(a− 2α)

Which has solution z(t) = z(0)e(a−2α)t. Let us evaluate its behavior at infinity:

lim
t−→∞

z(0)e(a−2α)t = 0 ⇐⇒ a− 2α < 0 ⇐⇒ α >
a

2

Hence we define αc := a
2

to be the critical coupling value such that synchronisation is

guaranteed provided we use a coupling strength α > αc. This method is straight forward

for linear systems, but will not be adaptable to the Lorenz system. In order to find a more

robust model, let us rewrite the previous problem in vector form. If x = (x1, x2)
T then
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(2.12) becomes :

ẋ = [aI − αL]x (2.13)

Where L is the Laplacian operator. Then the solution to (2.13) is x(t) = exp{(aI−αL)t}ẋ(0).

In this simple example, I the identity matrix and L commute, so exp{(aI − αL)t} =

eatIe−αLt. To fully use the underlying linear structure of this problem we compute the

eigenvalues and corresponding eigenvectors of

L =

1− 1

−1, 1

 det(|λI − L|) = (λ− 1)2 − 1 = λ(λ− 2)

So the eigenvalues of L are λ1 = 0 and λ2 = 2, with eigenvectors v1 = (1, 1) and v2 =

(1,−1). Since {v1, v2} forms a basis for R2, we can rewrite x(0) = c1v1 + c2v2, ci ∈ R and

thus since λi = Lvi we can write :

x(t)e−αLt = c1v1 + c2e
−αλ2tv2

Therefore the solution x can be expressed as :

x(t) = eaI−αLtx(0) = c1e
atv1 + c2e

(a−αλ2)tv2 (2.14)

Recall that our goal was to have the coupled systems converge to each other, so we want

x to converge to the synchronisation space generated by v1 alone. Since v1 and v2 are

independent this only happens when

lim
t−→∞

c2e
(a−αλ2)tv2 = 0 ⇐⇒ α >

a

λ2

Letting αc := a
λ2

= a
2
, we see that we recover our previous solution. Having made this

link to eigenvalues and synchronisation subspaces, we are now ready to study non-linear

cases.
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2.2.2 Complete Synchronisation of a non-linear system

Keeping in mind that the goal of this chapter is to study the Lorenz system, we consider

f a non linear map from Rn to Rn and H a smooth coupling function also from Rn to Rn

with H(0) = 0, then we study the following system :


ẋ1 = f(x1) + αH(x2 − x1)

ẋ2 = f(x2) + αH(x1 − x2)

(2.15)

We want to find αc such that any coupling strength α > αc will ensure limt−→∞ x1(t) −

x2(t) = 0. Consider H = I , then αH(x2 − x1) = α(x2 − x1) so just as before we will let

z := x1 − x2. The system 3.17 implies :

˙z(t) = f(x1) + αH(x2 − x1)− f(x2)− αH(x1 − x2) = f(x1 − x2)− 2αz (2.16)

Now in order to use some of the arguments from the previous section, we will need to

linearise f . Similarly as in the 2.2, we will use a Taylor expansion on f(x2(t)) around

f(x1(t)) :

f(x2(t)) = f(x1(t))−Df(x1(t))(x1 − x2) +O(∥x1 − x2∥2) = f(x1(t))− zDf(x1(t)) +O(∥z∥2)

⇐⇒ 0 = f(x1(t))− f(x2(t))− zDf(x1(t)) +O(∥z∥2)

Now by (2.16) ż + 2αz = f(x1)− f(x2) therefore :

⇒ 0 = ż + 2αz − zDf(x1(t)) +O(∥z∥2)

⇐⇒ ż = z(Df(x1 − 2αI))−O(∥z∥2) (2.17)

After dropping the O(∥z∥2) term, we will call (2.17) the first variational equation, and we

note that unfortunately it is not autonomous. Thus to simplify analysis we will consider
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w(t) = e2αtz(t), then

ẇ(t) = 2αe2αtz(t) + ż(t)e2αt = [2αz(t) + ż(t)]e2αt = [2αIz + zDf(x1)− 2αIz]e2αt

= ze2αtdf(x1) = w(t)Df(x1)

Now it’s clear that we can apply a similar argument as in 2.2 to w. Let Φ(x1(t)) := Φ1

be the fundamental matrix for (2.17), such that any solution to (2.17) can be written as

Φ(x1(t))z(0). Now let {λj(x1(t))}nj=1 be the set of positive square roots of eigenvalues of

ΦT
1Φ1 and define :

Λ := max
j

lim
t−→∞

1

t
λj(x1(t))

Then we call Λ the Lyapunov exponent of the orbit x1(t). It measure the infinitesimal

divergence rate near the trajectory x1(t). Our claim is now that if x1(t) has Lyapunov

exponent Λ then there exists C > 0 such that ∥w(t)∥ ≤ CeΛt. So if we substitute back in

terms of z :

∥z(t)∥ ≤ CeΛ−2α)t

Therefore we can take a limit on both side to get our synchronisation condition :

lim
t−→∞

∥z(t)∥ ≤ lim
t−→∞

CeΛ−2α)t = 0 ⇐⇒ Λ− 2α < 0 ⇐⇒ α >
Λ

2

So we conclude that for a non-linear system, we need to apply a coupling force stronger

than Λ
2
:= αc in order to get full synchronisation. Before moving on to the implementation

part of this chapter, we’ll note that we made the assumptions that Λ and C were constant

with respect to x1. The first statement is often the case for almost every trajectory x1 by

ergodicity. However C always depends on where the system starts. Thus we’ll observe

non-uniform convergence, which implies potentially large difference in synchronisation

times when varying initial data.
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2.3 Implementation and study of the Lorenz System

In this section we’ll review implementation techniques for both the Kalman Filter and

Synchronisation of Chaos applied to a fully non-linear chaotic ODE : the Lorenz System

([12]). Thus let us start by defining the problem, let x = (x, y, z) ∈ R3 and σ, β, ρ ∈ R such

that : 
ẋ = σ(y − x)

ẏ = x(ρ− z)− y

ż = βz + xy

(2.18)

For consistency we fixed σ = 10, β = 28 and ρ = 8
3
, which are parameters under which

the system has been extensively studied and is known to show chaotic behavior [15].

In the next two sections we will discuss some python codes taken from my GitHub :

https://github.com/LelandaisPauline/MATH578 in the Data Assimilation notebook.

2.3.1 The Kalman filter for sparse measurements

Recall from section 2.2, (2.9) and (2.10), that we want to implement :


x̂k = f(x̃k−1, 0, 0)

P̂k = APk−1A
T +WQW T


Kk = P̂kH

T (HP̂kH
T + V RV T )−1

x̃k = x̂k +Kk(zk − h(x̂k, 0))

Pk = (I −KkH)P̂k

In order to study the efficiency of the Kalman Filter, one needs to generate the random

measurements that will be fed in the filter. However we note that in section 2 we have

assumed that measurements were taken at every time step. In practice, it would be more

convenient if the measurements were taken sparsely. With this argument in mind we set
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up our filter to run over 2000 time steps and generate a ”truth” array using a fourth order

Runge-Kutta Method. Then we randomly chose 50 of these points and added normally

distributed perturbations to them in order to simulate an array of 50 noisy measurements

that we will later feed our filter. The following function takes in nombre=50, length=2000

and X list, the array containing the ”true” state of the system. It outputs the list of (ti, z̃i),

the noisy measurements and their time stamps [11].

def gen meas ( nombre , length , X l i s t ) :

m e a s l i s t =[ rd . randint ( 0 , length ) for i in range ( nombre ) ]

m e a s l i s t . s o r t ( )

X 2 l i s t = [ ]

t 2 l i s t =[ i *h for i in m e a s l i s t ]

for i in range ( len ( m e a s l i s t ) ) :

temp = [ ]

for j in range ( 3 ) :

x=gauss (mu, sigma )

temp . append ( X l i s t [ m e a s l i s t [ i ] ] [ j ]+ x )

X 2 l i s t . append ( temp )

return [ t 2 l i s t , X 2 l i s t ]

Next, we’ll recall that we need to find the matrix A such that :

A(i,j) =
∂

∂xj

fi(x̃k, 0, 0)

However for faster convergence we actually implemented a three dimensional Forward

Euler method :

def FE (X ) :

matrix =[[1 −h* param [ 0 ] , h* param [ 0 ] , 0 ] ,

[ h* param [ 1 ] , 1−h , −h*X [ 0 ] ] ,

[ h/2*X[ 1 ] , h/2*X[ 0 ] , 1−h* param [ 2 ] ] ]
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return np . array ( matrix )

Where h is the time step (h = 0.01 throughout the notebook), param is an array con-

taining σ, β and ρ and X is the state of the system at time step k. Note that this returns a

map, not a vector. We are now ready to implement the filter itself. Because we are dealing

with sparse measurements, we implemented an extra if-statement to only run the mea-

surement update part of the filter if that particular time step has a measurement input.

The function reads :

for i in range ( n ) :

EKF=0

index=−2

for j in range ( len ( Z l i s t ) ) :

i f i *h == Z l i s t [ j ] [ 0 ] :

EKF=1

index= j

omega=np . array ( [ gauss ( 0 , Q eps ) for i in range ( 3 ) ] )

Xnxt time=RK4 mat ( X l i s t [ i ] ) + omega

a=FE ( Xnxt time )

Pnxt t ime=np . matmul ( np . matmul ( a , P ) , np . transpose ( a ) ) +Q

i f EKF :

# meas u pd a t e

K=np . matmul ( Pnxt time , np . l i n a l g . inv ( Pnxt t ime+R ) )

Xnxt meas=Xnxt time+np . matmul (K, Z l i s t [ index ] [ 1 ] − Xnxt time )

Pnxt meas=np . matmul ( np . i d e n t i t y (3) −np . matmul (K, H) , Pnxt t ime )

X l i s t . append ( Xnxt meas )

P=Pnxt meas
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e lse :

X l i s t . append ( Xnxt time )

P=Pnxt t ime

Where the first for-loop is just assessing whether or not to run the measurement up-

date. The resulting graphs showed very fast convergence (full convergence after 250 time

steps). Occasionally however the model system started to diverge from the truth, but got

redirected towards the truth by the measurement input sufficiently fast to keep a satisfac-

tory convergence behavior

2.3.2 One-way Coupling

Finally we used the theory derived in section 3 to implement a one way coupling scheme.

The system we are considering is a variation of (2.15) :


ẋ1 = f(x1)

ẋ2 = f(x2) + αH(x1 − x2)

In practice we will study a model system that we have access to (here x2), and try to

synchronise it with a ”true” dynamical system that is out of our control (here x1). One-

way coupling is more useful than the two-way coupling approach studied earlier.

Our first goal is to estimate the Lyapunov exponent of the Lorenz system for our choice

of parameter. Now recall that the definition reads :

Λ = max
j

lim
t−→∞

1

t
λj(x1(t))

Which is not very practical in terms of numerical approximation. Instead of using this,

we recalled that the Lyapunov exponent measured the change in divergence around tra-

jectories x. So we generated 30 random (normally distributed around x0 = (−10, 10, 25))

initial conditions and plotted the trajectories. Then we computed log(∥x0 − x̃∥) for each
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sample and at each time step. Then by taking an average and using a least squares ap-

proximation, we estimated the slope of that change to be Λ = 0.9108. This is consistent

with the known value of the Lyapunov exponent for this particular choice of parameters.

Finally in the last few cells of this notebook we implemented one-way coupling for

two values of α, the coupling parameter, first for α = 0.4 < 0.9108
2

which did not lead to

synchronisation, and then for α = 7.5, which did lead to full synchronisation. Weaker

coupling forces also worked but due to the non-uniform property of this system, they

converged only after a long amount of time for this initial value.

We used a 4-5 Runge-Kutta scheme [10] on the following problem :

def Coupled ( t , X ) :

x1=param [ 0 ] * ( X[1] −X [ 0 ] )

y1=X [ 0 ] * ( param[1] −X[ 2 ] ) −X[ 1 ]

z1=−1*param [ 2 ] * X[ 2 ] +X [ 0 ] * X[ 1 ]

x2=param [ 0 ] * ( X[4] −X[ 3 ] ) + alpha * ( X[0] −X [ 3 ] )

y2=X [ 3 ] * ( param[1] −X[ 5 ] ) −X[ 4 ]

z2=−1*param [ 2 ] * X[ 5 ] +X [ 3 ] * X[ 4 ]

return np . array ( [ x1 , y1 , z1 , x2 , y2 , z2 ] )
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Chapter 3

Convergence Analysis for Coupling

Methods

We will now move from the simplified ODE case to the more challenging Navier-Stokes

equations. The goal of this chapter is to establish bounds on the coupling parameter µ

such that the slave system is guaranteed to synchronise with the master state.

3.1 Preliminaries

In this chapter we work within Ω ⊂ R2 an open, bounded and connected set with a C2

boundary. Let us denote by V the set of all divergence free and compactly supported C∞

vector fields F : Ω 7→ R2. We recall the Sobolev space Hs(Ω) := W s,2(Ω) and denote

H := V̄L2(Ω), the closure of V with respect to the L2 norm , and V := V̄H1(Ω), the closure of

V with respect to the H1 norm.

Recall the Navier-Stokes equations in 2 dimensions, coordinate-wise :
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

∂
∂t
u1 − ν∆u1 + u1∂xu1 + u2∂yu1 + ∂xp = f1

∂
∂t
u2 − ν∆u2 + u1∂xu2 + u2∂yu2 + ∂yp = f2

∂xu1 + ∂yu2 = 0

u1(0, x, y) = u0
1(x, y), and u2(0, x, y) = u0

2(x, y)

(3.1)

Where ν > 0 the kinematic viscosity is a positive constant determined by the target

fluid.

Suppose that we can construct an approximated solution U(t, x, y) from some interpo-

lation operator Ih(u2(t)) then we find :



∂
∂t
U1 − ν∆U1 + U1∂xU1 + U2∂yU1 + ∂xP = f1

∂
∂t
U2 − ν∆U2 + U1∂xU2 + U2∂yU2 + ∂yP = f2 − µ

(
Ih(U2)− Ih(u2)

)
∂xU1 + ∂yU2 = 0

U1(0, x, y) = U0
1 (x, y), and U2(0, x, y) = U0

2 (x, y)

(3.2)

Where µ is the nudging parameter, which has the same role as α is Section 2.2.

As in Chapter 1, we work with the usual inner product on L2(Ω) and H as

⟨u, v⟩ =
2∑

i=1

∫
Ω

uiwidxdy

And we denote by ∥·∥ the naturally induced norm

∥u∥L2(Ω) =
√
⟨u, u⟩ =

√√√√ 2∑
i=1

∫
Ω

u2
i dxdy
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In this chapter, we will work with linear interpolants of Ih : H1(Ω) 7→ L2(Ω) that

satisfy the following property :

∥ϕ− Ih(ϕ)∥ ≤ Ch ∥ϕ∥H1(Ω) , (3.3)

where C is a positive constant and h > 0 represents the spatial resolution of the observa-

tional measurements. We note that quite a few interpolation methods meet this require-

ment, a good example is found in finite elements methods ([8]).

We will also use the following logarithmic estimate for the convection term of the

Navier-Stokes equations in two dimensions : For all u, v, w ∈ H1
0 (Ω) with w ̸= 0, the

following inequality holds true,

∣∣∣∣ ∫
Ω

u∂ivwdxdy

∣∣∣∣ ≤ cT ∥∇u∥ ∥∇v∥ ∥w∥
(
1 + log

( ∥∇w∥

λ
1
2
1 ∥w∥

)) 1
2

Where ∂i refers to differentiation with respect to the i-th component and cT is a positive

dimensionless constant.

Next recall the Poincaré Inequality for u ∈ V :

∥u∥2 ≤ λ−1
1 ∥∇u∥2

where λ1 is the smallest eigenvalue of A, the stokes operator.

Additionally, we will need the Ladyzhenskaya inequality for u ∈ V :

∥u∥2L4 ≤ cL ∥u∥ ∥∇u∥

where cL is also a positive dimensionless constant.
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Finally, because they play a more structural role in this chapter’s convergence analysis,

we will state and prove the following three results.

Lemma 1. Let ϕ(r) = r − γ(1 + log(r)), where γ > 0. Then

min{ϕ(r) : r ≥ 1} ≥ −γ log(γ)

Proof. We proceed by simply taking the derivative of ϕ with respect to r and setting it

equal to zero :
d

dr
ϕ = 1− γ

1

r
= 0 ⇐⇒ r = γ

Thus

minϕ(r) = ϕ(γ) = −γ log(γ)

And since the minimiser of the unconstrained problem is always smaller or equal to any

constrained problem

min
r≥1

ϕ(r) ≥ minϕ(r) = −γ log(γ)

And we are done.

Lemma 2. (Uniform Gronwall’s inequality) Let τ > 0 be arbitrary but fixed. Suppose that Y (t)

is an absolutely continuous function which is locally integrable and that it satisfies the following :

d

dt
Y + β(t)Y ≤ 0, almost everywhere on (0,∞)

And

liminft−→∞

∫ t+τ

t

β(s)ds ≥ C, and limsupt−→∞

∫ t+τ

t

β−(s)ds < ∞

for some C > 0, where β− := max{−β, 0}. Then Y (t) −→ 0 at an exponential rate as t −→ ∞.

Proof. First note that if d
dt
Y + β(t)Y ≤ 0 then equivalently

Y ′(t) ≤ −β(t)Y (t)
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Let a ∈ R and define X(t) = exp
{∫ t

a
−β(s)ds

}
on [a, t] then by the chain rule and differ-

entiating under the integral sign

d

dt
X(t) = −β(t) exp

{∫ t

a

β(s)ds
}
= −β(t)X(t)

Notice that X(a) = 1 and X(t) > 0. Now by the quotient rule

d

dt

Y (t)

X(t)
=

Y ′(t)X(t)−X ′(t)Y (t)

X2(t)
=

Y ′(t)X(t) + β(t)X(t)Y (t)

x2(t)
=

Y ′(t) + β(t)Y (t)

X(t)

By assumption we have

≤ −β(t)Y (t)

X(t)
= 0

Thus the function Y
X

is decreasing on its domain. Thus

Y (t)

X(t)
≤ Y (a)

X(a)
= Y (a) ⇐⇒ Y (t) ≤ Y (a)X(t)

Denote Y (a) := k then

Y (t) ≤ k exp
{∫ t

a

−β(s)ds
}

And by the assumptions on the limsup and liminf of exp
{∫ t

a
−β(s)ds

}
we have

lim
t−→∞

∣∣∣∣ exp{∫ t

a

−β(s)ds
}∣∣∣∣ ≤ keγ

So Y (t) is bounded by an exponential thus it decays to zero at an exponential rate.

To conclude we will state the following bounds on solutions u of the Navier-Stokes

equations in two dimensions. First we denote by G the Grashof number in two dimension

i.e. :

G =
1

ν2λ1

∥f∥
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Now, let τ > 0 and suppose that u is a solution to (3.1) subject to no-slip Dirichlet bound-

ary conditions, then there exists a time t0 > 0 such that for all t ≥ t0 :

∫ t+τ

t

∥∇u(s)∥2 ds ≤ 2(1 + τνλ1)νG
2, and ∥∇u(t)∥2 ≤ c̃ν2λ1G

2eG
4

where c̃ is some positive dimensionless constant.

3.2 Convergence Analysis

We now state and prove the main of this thesis :

Theorem 2. Suppose Ih satisfies (3.3), let u(t, x, y) =
(
u1(t, x, y), u2(t, x, y)

)
be a strong so-

lution to the two dimensional Navier-Stokes Equations with Dirichlet boundary conditions. Let

U(t, x, y) be a strong solution to ((3.2)), also with Dirichlet boundary conditions. If µ > 0 is

chosen such that

µ ≥ 8cνλ1(1 + log(G) +G4)G2

and h > 0 is chosen such that µc20h2 ≤ ν then ∥u(t)− U(t)∥22 −→ 0 as t −→ ∞ at an exponential

rate.

Proof. Let us define ũ = u− U and p̃ = p− P then we find that



∂
∂t
u1 − ∂

∂t
U1 − ν∆u1 + ν∆U1 + u1∂xu1 + u2∂yu1 − U1∂xU1 − U2∂yU1 + ∂xp− ∂xP = 0

∂
∂t
u2 − ∂

∂t
U2 − ν∆u2 + ν∆U2 + u1∂xu2 + u2∂yu2 − U1∂xU2 − U2∂yU2 + ∂yp− ∂yP = µ

(
Ih(U2)− Ih(u2)

)
∂xu1 + ∂yu2 − ∂xU1 − ∂yU2 = 0

u1(0, x, y)− U1(0, x, y) = u0
1(x, y)− U0

1 (x, y), and u2(0, x, y)− U2(0, x, y) = u0
2(x, y)− U0

2 (x, y)
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Which reduces to

∂
∂t
ũ1 − ν∆ũ1 + u1∂xu1 + u2∂yu1 − U1∂xU1 − U2∂yU1 + ∂xp̃ = 0

∂
∂t
ũ2 − ν∆ũ2 + u1∂xu2 + u2∂yu2 − U1∂xU2 − U2∂yU2 + ∂yp̃ = µ

(
Ih(U2)− Ih(u2)

)
∂xũ1 + ∂yũ2 = 0

ũ1(0, x, y) = ũ0
1(x, y), and ũ2(0, x, y) = ũ0

2(x, y)

(3.4)

We want to work on the first component equation and rewrite the mixed partial terms.

Note that :

u1∂xu1 + u2∂yu1 − U1∂xU1 − U2∂yU1 = u1∂xu1 + u2∂yu1 − U1∂xU1 − U2∂yU1+(
U1∂xu1 − U1∂xu1 + U2∂yu1 − U2∂yu1

)

= u1∂xu1 − U1∂xu1 + u2∂yu1 − U2∂yu1 + U1∂xu1 − U1∂xU1 + U2∂yu1 − U2∂yU1

= ũ1∂xu1 + ũ2∂yu1 + U1∂xũ1 + U2∂yũ1

The first line of (3.4) becomes

∂

∂t
ũ1 − ν∆ũ1 + ũ1∂xu1 + ũ2∂yu1 + U1∂xũ1 + U2∂yũ1 + ∂xp̃ = 0 (3.5)

Now consider the inner product of ũ1 and (3.5) :

〈
∂

∂t
ũ1, ũ1

〉
−ν ⟨∆ũ1, ũ1⟩+⟨ũ1∂xu1, ũ1⟩+⟨ũ2∂yu1, ũ1⟩+⟨U1∂xũ1, ũ1⟩+⟨U2∂yũ1, ũ1⟩+⟨∂xp̃, ũ1⟩ = 0

(3.6)

We use integration by part and the divergence free condition of u, U and ũ to find

bounds for each of these terms.

First consider 〈
∂

∂t
ũ1, ũ1

〉
=

∫
Ω

( ∂
∂t

ũ1

)
ũ1dxdy
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Note that ∂
∂t
ũ2
1 = 2ũ1

∂
∂t
ũ1. Hence

〈
∂

∂t
ũ1, ũ1

〉
=

1

2

∫
Ω

∂

∂t

(
ũ2
1

)
ũ1dxdy =

1

2

∂

∂t

∫
Ω

(
ũ2
1

)
ũ1dxdy =

1

2

∂

∂t
⟨ũ1, ũ1⟩ =

1

2

∂

∂t
∥ũ1∥2 (3.7)

Next we have

⟨∆ũ1, ũ1⟩ =
∫
Ω

(
∆ũ1

)
ũ1dxdy = (∇ũ1)ũ1

∣∣∣∣
∂Ω

−
∫
Ω

∇ũ1∇ũ1dxdy

By integration by parts, now by the Dirichlet boundary conditions, the first term is zero.

Thus we are left with

⟨∆ũ1, ũ1⟩ = −∥∇ũ1∥2 (3.8)

We deal with the mixed partials next, consider

⟨U1∂xũ1, ũ1⟩+ ⟨U2∂yũ1, ũ1⟩ =
∫
Ω

U1(∂xũ1)ũ1dxdy +

∫
Ω

U2(∂yũ1)ũ1dxdy

Using integration by parts in the x component for the first term, one finds

∫
Ω

U1(∂xũ1)ũ1dxdy =

∫
Ωy

(
U1

(∫
Ωx

∂xũ1ũ1dx
)∣∣∣∣

∂Ωx

−
∫
Ωx

∂xU1

(∫
Ωx

∂xũ1ũ1dx
)
dx

)
dy

Because U1 is assumed to satisfy Dirichlet boundary conditions, the first term is zero,

hence

= −1

2

∫
Ωy

(∫
Ωx

∂xU1ũ
2
1dx

)
dy = −1

2

∫
Ω

∂xU1ũ
2
1dxdy

Similarly, using integration by parts in the y component on the second term, we com-

pute

∫
Ω

U2(∂yũ1)ũ1dxdy =

∫
Ωx

(
U2

(∫
Ωy

∂yũ1ũ1dy
)∣∣∣∣

∂Ωy

−
∫
Ωy

∂yU2

(∫
Ωy

∂yũ1ũ1dy
)
dy

)
dx

= 0− 1

2

∫
Ωx

(∫
Ωy

∂yU2ũ
2
1dy

)
dx =

∫
Ω

∂yU2ũ
2
1dxdy
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Therefore by adding both quantities together we conclude

⟨U1∂xũ1, ũ1⟩+ ⟨U2∂yũ1, ũ1⟩ = −1

2

∫
Ω

(∂xU1 + ∂yU2)ũ
2
1dxdy

And by the divergence free condition imposed on U , we know ∂xU1 + ∂yU2 = 0 thus

⟨U1∂xũ1, ũ1⟩+ ⟨U2∂yũ1, ũ1⟩ = 0 (3.9)

We still have two terms to work on, denote

J1a := ⟨ũ1∂xu1, ũ1⟩ and J1b := ⟨ũ2∂yu1, ũ1⟩

Using integration by parts on J1a, we find

J1a =

∫
Ω

ũ2
1∂xu1dxdy = ũ2

1u1

∣∣∣∣
∂Ω

−
∫
Ω

u1(2ũ1∂xũ1)dxdy = −2 ⟨u1ũ1, ∂xũ1⟩

By the divergence free condition assumed on ũ, we find that −∂xũ1 = ∂yũ2 thus

= 2 ⟨u1ũ1, ∂yũ2⟩

And using integration by parts again

= 2

∫
Ω

u1ũ1∂yũ2dxdy = 2(u1ũ1ũ2)

∣∣∣∣
∂Ω

− 2

∫
Ω

ũ2∂y(u1ũ1)dxdy = 0− 2

∫
Ω

ũ2

(
ũ1∂yu1 + u1∂yũ1

)
dxdy

= 2

∫
Ω

u1ũ1∂yũ2dxdy = 2(u1ũ1ũ2)

∣∣∣∣
∂Ω

− 2

∫
Ω

ũ2∂y(u1ũ1)dxdy = 0− 2

∫
Ω

ũ2

(
ũ1∂yu1 + u1∂yũ1

)
dxdy

Where the first term disappears due to the Dirichlet boundary conditions. We may split

the integral into two terms :

J1a = −2

∫
Ω

ũ2ũ1∂yu1dxdy − 2

∫
Ω

ũ2u1∂yũ1dxdy = −2 ⟨ũ2, ũ1∂yu1⟩ − 2 ⟨ũ2, u1∂yũ1⟩ := −2
(
J1a1 + J1a2

)
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Now recall the log estimates and apply to |J1a1| :

|J1a1| = | − 2

∫
Ω

ũ1∂yu1ũ2dxdy| ≤ cT ∥∇ũ1∥ ∥∇u1∥ ∥ũ2∥
(
1 + log

( ∥∇ũ2∥

λ
1
2
1 ∥ũ2∥

)) 1
2

Now by Young’s inequality :

|J1a1| ≤
c2T
2
∥∇ũ1∥2 +

1

2
∥∇u1∥2 ∥ũ2∥2

(
1 + log

( ∥∇ũ2∥

λ
1
2
1 ∥ũ2∥

))

Fix cT and c such that
c2T
2

≤ ν

64
and 1 ≤ c

8ν

Then

|J1a1| ≤
ν

64
∥∇ũ1∥2 +

c

16ν
∥∇u1∥2 ∥ũ2∥2

(
1 + log

( ∥∇ũ2∥

λ
1
2
1 ∥ũ2∥

))
Similarly for |J1a2 | :

| ⟨u1∂yũ1, ũ2⟩ | ≤ cT ∥∇u1∥ ∥∇ũ1∥ ∥ũ2∥
(
1 + log

( ∥∇ũ2∥

λ
1
2
1 ∥ũ2∥

)) 1
2

≤ ν

64
∥∇ũ1∥2 +

c

16ν
∥∇u1∥2 ∥ũ2∥2

(
1 + log

( ∥∇ũ2∥

λ
1
2
1 ∥ũ2∥

))

Therefore

|J1a| = 2
∣∣J1a1 + J1a2

∣∣
≤ 2|J1a1|+ 2|J1a2|

≤ ν

16
∥∇ũ1∥2 +

c

4ν
∥∇u1∥2 ∥ũ2∥2

(
1 + log

( ∥∇ũ2∥

λ
1
2
1 ∥ũ2∥

)) (3.10)

The J1b term is a little easier to estimate since it is already written in terms of the

targeted quantities (ũ1, ũ2). We use the log estimates directly :

|J1b| = | ⟨∂yu1ũ1, ũ2⟩ | ≤ cT ∥∇ũ1∥ ∥∇u1∥ ∥ũ2∥
(
1 + log

( ∥∇ũ2∥

λ
1
2
1 ∥ũ2∥

)) 1
2
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By Young’s inequality again :

≤ c2T
2
∥∇ũ1∥2 +

1

2
∥∇u1∥2 ∥ũ2∥2

(
1 + log

( ∥∇ũ2∥

λ
1
2
1 ∥ũ2∥

))

Note that :
c2T
2

≤ ν

32
≤ ν

16
, and 1 ≤ c

8ν
≤ c

4ν

Thus :

|J1b| ≤
ν

16
∥∇ũ1∥2 +

c

4ν
∥∇u1∥2 ∥ũ2∥2

(
1 + log

( ∥∇ũ2∥

λ
1
2
1 ∥ũ2∥

))
(3.11)

Therefore using (3.6) we can establish the following estimate :

〈
∂

∂t
ũ1, ũ1

〉
− ν ⟨∆ũ1, ũ1⟩+ J1a + J1b + 0 + ⟨∂xp̃, ũ1⟩ = 0〈

∂

∂t
ũ1, ũ1

〉
− ν ⟨∆ũ1, ũ1⟩ ≤ −J1a − J1b − ⟨∂xp̃, ũ1⟩

1

2

∂

∂t
∥ũ1∥2 + ν ∥∇ũ1∥2 ≤ |J1a|+ |J1b| − ⟨∂xp̃, ũ1⟩

(3.12)

⇐⇒ 1

2

∂

∂t
∥ũ1∥2 + ν ∥∇ũ1∥2 ≤

ν

8
∥∇ũ1∥2

+
c

2ν
∥∇u1∥2 ∥ũ2∥2

(
1 + log

( ∥∇ũ2∥

λ
1
2
1 ∥ũ2∥

))
− ⟨∂xp̃, ũ1⟩ (3.13)

Now we need to establish a similar result for the second component of ũ = (ũ1, ũ2).

Recall from (3.4) :

∂

∂t
ũ2 − ν∆ũ2 + u1∂xu2 + u2∂yu2 − U1∂xU2 − U2∂yU2 + ∂yp̃ = µ

(
Ih(U2)− Ih(u2)

)
We add and subtract the relevant quantities to rewrite the mixed partials :

u1∂xu2 + u2∂yu2 − U1∂xU2 − U2∂yU2 + U2∂yu2 − U2∂yu2 + U1∂xu2 − U1∂xu2
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= ũ2∂yu2 + ũ1∂xu2 + U1∂xũ2 + U2∂yũ2

Hence ũ2 satisfies

∂

∂t
ũ2 − ν∆ũ2 + ũ2∂yu2 + ũ1∂xu2 + U1∂xũ2 + U2∂yũ2 + ∂yp̃ = −µ

(
Ih(ũ2)

)
(3.14)

Now we consider the inner product of (3.14) and ũ2 :

〈
∂

∂t
ũ2, ũ2

〉
−ν ⟨∆ũ2, ũ2⟩+⟨ũ2∂yu2, ũ2⟩+⟨ũ1∂xu2, ũ2⟩+⟨U1∂xũ2, ũ2⟩+⟨U2∂yũ2, ũ2⟩+⟨∂yp̃, ũ2⟩

= −µ ⟨Ih(ũ2), ũ2⟩ (3.15)

Using the same techniques as before we find

〈
∂

∂t
ũ2, ũ2

〉
=

1

2

∂

∂t
∥ũ2∥2 (3.16)

And

⟨∆ũ2, ũ2⟩ = −∥∇ũ2∥2 (3.17)

The U, ũ cross term also vanishes, ie:

⟨U1∂xũ2, ũ2⟩+ ⟨U2∂yũ2, ũ2⟩ = 0 (3.18)

Denote

J2a := ⟨ũ1∂xu2, ũ2⟩ and J2b := ⟨ũ2∂yu2, ũ2⟩

Since J2a is already written in terms of the desired quantities, we directly apply the

log estimates to its absolute value :

|J2a| ≤ cT ∥∇ũ1∥ ∥∇u2∥ ∥ũ2∥
(
1 + log

( ∥∇ũ2∥

λ
1
2
1 ∥ũ2∥

)) 1
2
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Then by applying Young’s Inequality with c2T
2
≤ ν

64
and 1 ≤ c

8ν
:

≤ ν

64
∥∇ũ1∥2 +

c

16ν
∥∇u2∥2 ∥ũ2∥2

(
1 + log

( ∥∇ũ2∥

λ
1
2
1 ∥ũ2∥

))

Hence we can take a more convenient upper bound :

|J2a| ≤
ν

32
∥∇ũ1∥2 +

c

2ν
∥∇u2∥2 ∥ũ2∥2

(
1 + log

( ∥∇ũ2∥

λ
1
2
1 ∥ũ2∥

))
(3.19)

The J2b term is more problematic because we are not able to make ũ1 appear then. In-

stead we use Ladyzhenskaya’s inequality to bound the inner product. We need to rewrite

the term slightly first :

|J2b| = | ⟨ũ2∂yu2, ũ2⟩ | = |
∫
Ω

ũ2
2∂yu2dxdy| = |

〈
ũ2
2, ∂yu2

〉
|

By Cauchy-Schwartz

|J2b| ≤
∥∥ũ2

2

∥∥
2
∥∂yu2∥2 =

(∫
Ω

ũ4
2dxdy

) 1
2 ∥∂yu2∥2 = ∥ũ2∥24 ∥∂yu2∥2

Thus by Ladyzhenskaya’s inequality

|J2b| ≤ cL ∥ũ2∥2 ∥∇ũ2∥2 ∥∂yu2∥2

Now, applying Young’s inequality yields

|J2b| ≤
c2L
2
∥∇ũ2∥2 +

1

2
∥ũ2∥2 ∥∂yu2∥2

Hence after defining the relevant constants

|J2b| ≤
ν

32
∥∇ũ2∥2 +

c

ν
∥ũ2∥2 ∥∂yu2∥2 (3.20)
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Finally, we need to estimate the term containing the interpolant : ⟨Ih(ũ2), ũ2⟩. Recall

that by assumption µc20h
2 ≤ ν and that Ih satisfies (3.3). We compute

−µ ⟨Ih(ũ2), ũ2⟩ = −µ

∫
Ω

Ih(ũ2)ũ2dxdy = −µ

∫
Ω

Ih(ũ2)ũ2 + (ũ2
2 − ũ2

2)dxdy

= −µ

∫
Ω

(
Ih(ũ2)− ũ2

)
ũ2dxdy − µ

∫
Ω

ũ2
2dxdy = −µ ⟨Ih(ũ2)− ũ2, ũ2⟩ − µ ∥ũ2∥2

≤ µ| ⟨Ih(ũ2)− ũ2, ũ2⟩ | − µ ∥ũ2∥2

Thus applying Cauchy-Schwartz

−µ ⟨Ih(ũ2), ũ2⟩ ≤ ∥Ih(ũ2)− ũ2∥ ∥ũ2∥ − µ ∥ũ2∥2

Thus clearly

−µ ⟨Ih(ũ2), ũ2⟩ ≤ ∥Ih(ũ2)− ũ2∥
1
2
×2 ∥ũ2∥ − µ ∥ũ2∥2

Hence by applying (3.3),

≤ µc0h ∥∇ũ2∥ ∥ũ2∥ − µ ∥ũ2∥2

Now by Young’s inequality

≤ µc20h
2

2
∥∇ũ2∥2 +

µ

2
∥ũ2∥2 − µ ∥ũ2∥2

And finally by the assumptions on µ :

− µ ⟨Ih(ũ2), ũ2⟩ ≤
ν

2
∥∇ũ2∥2 −

µ

2
∥ũ2∥2 (3.21)

Thus (3.15) yields

1

2

∂

∂t
∥ũ2∥2 + ν ∥∇ũ2∥2 + J2a + J2b + 0 + ⟨∂yp̃, ũ2⟩ = −µ ⟨Ih(ũ2), ũ2⟩

⇐⇒ 1

2

∂

∂t
∥ũ2∥2 + ν ∥∇ũ2∥2 ≤ |J2a|+ |J2b| − ⟨∂yp̃, ũ2⟩ − µ ⟨Ih(ũ2), ũ2⟩ (3.22)
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We are now ready to add (3.12) and (3.22) together :

1

2

∂

∂t

(
∥ũ1∥2+∥ũ2∥2

)
+ν

(
∥∇ũ1∥2+∥∇ũ2∥2

)
≤ |J1a|+|J1b|+|J2a|+|J2b|−⟨∂xp̃+ ∂yp̃, ũ1⟩−µ ⟨Ih(ũ2), ũ2⟩

⇐⇒ 1

2

∂

∂t
∥ũ∥2 + ν ∥∇ũ∥2 ≤ |J1a|+ |J1b|+ |J2a|+ |J2b| − ⟨∇ · p̃, ũ1⟩ − µ ⟨Ih(ũ2), ũ2⟩ (3.23)

Recall that the pressure p̃ is assumed to be divergence free, hence ⟨∇ · p̃, ũ1⟩ = 0.

Using (3.10) and (3.11) we find

|J1a|+ |J1b| ≤
ν

8
∥∇ũ1∥2 +

c

2ν
∥∇u1∥2 ∥ũ2∥2

(
1 + log

( ∥∇ũ2∥

λ
1
2
1 ∥ũ2∥

))

Using (3.19) and (3.20) :

|J2a|+ |J2b| ≤
ν

32
∥∇ũ1∥2 +

c

2ν
∥∇u2∥2 ∥ũ2∥2

(
1 + log

( ∥∇ũ2∥

λ
1
2
1 ∥ũ2∥

))
+

ν

32
∥∇ũ2∥2 +

c

ν
∥ũ2∥2 ∥∂yu2∥2

≤ ν

32
∥∇ũ∥2 + c

2ν
∥∇u2∥2 ∥ũ2∥2

(
1 + log

( ∥∇ũ2∥

λ
1
2
1 ∥ũ2∥

))
+

c

ν
∥ũ2∥2 ∥∂yu2∥2

Therefore

|J1a|+ |J1b|+ |J2a|+ |J2b| − µ ⟨Ih(ũ2), ũ2⟩ ≤
ν

8
∥∇ũ1∥2 +

ν

32
∥∇ũ∥2 + ν

2
∥∇ũ2∥2

+ ∥ũ2∥2
[
c

2ν

(
∥∇u∥2

(
1 + log

( ∥∇ũ2∥

λ
1
2
1 ∥ũ2∥

))
+ ∥∂yu2∥2

)
− µ

2

]

Now, the first term can be bounded as follows :

ν

8
∥∇ũ1∥2 +

ν

32
∥∇ũ∥2 + ν

2
∥∇ũ2∥2 =

ν

8
∥∇ũ∥2 + ν

32
∥∇ũ∥2 + ν

2
∥∇ũ∥2 − ν

8
∥∇ũ2∥2 −

ν

2
∥∇ũ1∥2

=
21ν

32
∥∇ũ∥2 − ν

8
∥∇ũ2∥2 −

ν

2
∥∇ũ1∥2

≤ 21ν

32
∥∇ũ∥2
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Also notice that since ∥∂yu2∥2 ≥ 0, we can bound the log term :

∥ũ2∥2
[
c

2ν

(
∥∇u∥2

(
1 + log

( ∥∇ũ2∥

λ
1
2
1 ∥ũ2∥

))
+ ∥∂yu2∥2

)
− µ

2

]
≤ ∥ũ2∥2

[
c

2ν
∥∇u∥2

(
1 + log

( ∥∇ũ2∥

λ
1
2
1 ∥ũ2∥

))
− µ

2

]

Therefore (3.23) leads to

1

2

∂

∂t
∥ũ∥2 + ν ∥∇ũ∥2 ≤ 21ν

32
∥∇ũ∥2 + ∥ũ2∥2

[
c

2ν
∥∇u∥2 ∥ũ2∥2

(
1 + log

( ∥∇ũ2∥

λ
1
2
1 ∥ũ2∥

))
− µ

2

]
⇐⇒ 1

2

∂

∂t
∥ũ∥2 + ν

4
∥∇ũ∥2 ≤ 1

2

∂

∂t
∥ũ∥2 + 11

32
ν ∥∇ũ∥2 ≤ ∥ũ2∥2

[
c

2ν
∥∇u∥2

(
1 + log

( ∥∇ũ2∥

λ
1
2
1 ∥ũ2∥

))
− µ

2

]

Thus we reach

∂

∂t
∥ũ∥2 + ν

2
∥∇ũ∥2 ≤ ∥ũ2∥2

[
c

ν
∥∇u∥2

(
1 + log

( ∥∇ũ2∥

λ
1
2
1 ∥ũ2∥

))
− µ

]

Adding and subtracting positive quantities from the right and the left respectively yields

∂

∂t
∥ũ∥2 + ν

4
∥∇ũ∥2 + ν

4
∥∇ũ2∥2 ≤ ∥ũ2∥2

[
c

ν
∥∇u∥2

(
1 + log

( ∥∇ũ2∥2

λ1 ∥ũ2∥2
))

− µ

]
(3.24)

Applying the Poincaré inequality on ∇ũ next leads to :

ν

4
∥∇ũ∥2 ≥ νλ1

4
∥ũ∥2

Thus (3.24) is equivalent to

∂

∂t
∥ũ∥2+νλ1

4
∥ũ∥2+νλ1

4

∥∇ũ2∥2

λ1 ∥ũ2∥2
∥ũ2∥2 ≤ ∥ũ2∥2

[
c

ν
∥∇u∥2

(
1+log

( ∥∇ũ2∥2

λ1 ∥ũ2∥2
))

−µ

]
(3.25)
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Let us define the following quantities

r(t) :=
∥∇ũ2∥2

λ1 ∥ũ2∥2
, γ(t) := 4

c

ν2λ1

∥∇u∥2 , and ϕ(r(t)) := r(t)− γ(t)
(
1 + log(r(t))

)
We are now able to rewrite (3.25) in terms of these new quantities :

∂

∂t
∥ũ∥2 + νλ1

4
∥ũ∥2 + νλ1

4
r(t) ∥ũ2∥2 ≤ ∥ũ2∥2

[
νλ1

4
γ(t)

(
1 + log

(
r(t)

))
− µ

]
⇐⇒ ∂

∂t
∥ũ∥2 + νλ1

4
∥ũ∥2 + νλ1

4
∥ũ2∥2

(
r(t)− γ(t)

(
1 + log

(
r(t)

))
+

4

νλ1

µ
)
≤ 0

⇒ ∂

∂t
∥ũ∥2 + νλ1

4
∥ũ∥2 + νλ1

4
∥ũ2∥2

(
ϕ(r(t)) +

4

νλ1

µ
)
≤ 0 (3.26)

Recall lemma 2.3, which applies since γ(t) = c
ν
∥∇u∥2 > 0 (λ1, c > 0) then

min{ϕ(r(t)) : r(t) ≥ 1} ≥ −γ log(γ)

Hence

ϕ(r(t)) ≥ −γ log(γ) = − 4c

ν2λ1

∥∇u∥2 log
( 4c

ν2λ1

∥∇u∥2
)

Now let us define

β(t) := µ− c

ν
∥∇u∥2 log

( 4c

ν2λ1

∥∇u∥2
)

(3.27)

Thus we have
νλ1

4
ϕ(r(t)) + µ ≥ β(t)

We’ll apply Gronwall’s lemma to this quantity. Substituting β in (3.26) leads to

∂

∂t
∥ũ∥2 + νλ1

4
∥ũ∥2 + ∥ũ2∥2 β(t) ≤ 0

⇐⇒ ∂

∂t
∥ũ∥2 + νλ1

4
∥ũ1∥2 +

νλ1

4
∥ũ2∥2 + ∥ũ2∥2 β(t) ≤ 0
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And note that

min{νλ1

4
, β(t)} ≤ 2min{νλ1

4
, β(t)} ≤ νλ1

4
β(t)

Thus we find
∂

∂t
∥ũ∥2 + νλ1

4
∥ũ1∥2 +min{νλ1

4
, β(t)} ∥ũ2∥2 ≤ 0 (3.28)

Now we set τ := 1
νλ1

and consider

∫ t+τ

t

c

ν
∥∇u(s)∥2 log

( 4c

ν2λ1

∥∇u(s)∥2
)
ds

By Prop 2.5, ∥∇u∥2 ≤ c̃ν2λ1g
2eG

4 thus

c

ν

∫ t+τ

t

∥∇u(s)∥2 log
( 4c

ν2λ1

∥∇u(s)∥2
)
ds ≤ c

ν

∫ t+τ

t

∥∇u(s)∥2 log
(
G2eG

4
)
ds

=
c

ν

(
1 + log(G) +G4

) ∫ t+τ

t

∥∇u(s)∥2 ds

Still by Prop. 2.5, we know that

∫ t+τ

t

∥∇u(s)∥2 ds ≤ 2(1 + τνλ1)νG
2

Thus

⇒ c

ν

(
1 + log(G) +G4

) ∫ t+τ

t

∥∇u(s)∥2 dd ≤ c

ν

(
1 + log(G) +G4

)
· 2(1 + 1)νG2

Hence we found that

c

ν

∫ t+τ

t

∥∇u(s)∥2 log
( 4c

ν2λ1

∥∇u(s)∥2
)
ds ≤ 4c

(
1 + log(G) +G4

)
G2 (3.29)

Recall that by assumption µ ≥ 8cνλ1

(
1 + log(G) +G4

)
G2 which implies

µ

2νλ1

≥ 4c
(
1 + log(G) +G4

)
G2
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Thus we are ready to check that Gronwall’s lemma indeed applies :

liminft−→∞

∫ t+τ

t

β(s)ds = liminft−→∞

∫ t+τ

t

µ− c

ν

∫ t+τ

t

∥∇u(s)∥2 log
( 4c

ν2λ1

∥∇u(s)∥2
)
ds

≥
∫ t+τ

t

µds− 4c
(
1 + log(G) +G4

)
G2 =

µ

νλ1

− 4c
(
1 + log(G) +G4

)
G2

≥ µ

νλ1

− µ

2νλ1

=
µ

2νλ1

> 0

We also need to check that the limsup is finite :

limsupt−→∞

∫ t+τ

t

β(s)ds = limsupt−→∞

∫ t+τ

t

µ− c

ν

∫ t+τ

t

∥∇u(s)∥2 log
( 4c

ν2λ1

∥∇u(s)∥2
)
ds

≤
∫ t+τ

t

|µ|ds+ c

ν

∫ t+τ

t

∥∇u(s)∥2 log
( 4c

ν2λ1

∥∇u(s)∥2
)
ds

≤ µ

νλ1

+ 4c
(
1 + log(G) +G4

)
G2 ≤ µ

νλ1

+
µ

2νλ1

=
3µ

νλ1

< ∞

Therefore if we define β̃(t) := min{νλ1

4
, β(t)}, we see that β̃(t) satisfies the conditions

of Gronwall’s lemma, thus

∥ũ∥2 = ∥u− U∥2 −→ 0 at an exponential rate as t −→ ∞.
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Appendix

4.1 Duhamel’s Principle

The following Theorem considers u, f such that

u′(t) = ∇u(t) + f(t), 0 < t < T (4.1)

and is therefore not specific to the Navier Stokes Equation.

Theorem 3. (Duhamel’s Principle)

1. Let u ∈ C([0, T ), L2(Tn)) and f ∈ C((0, T ), L2(Tn)) satisfy (3.27) and u(0) = g. Assume

that for each each t ∈ (0, T ), u′(t) and ∆u(t) both exist in L2(Tn), also assume that

lim
ϵ−→0

∫ a

ϵ

|f(t)| dt < ∞, for some 0 < a < T (4.2)

Then we have

u(t) = et∆g + lim
ϵ−→0

∫ t

ϵ

e(t−τ)∆f(τ)dτ, 0 < t < T,

Where the limit ϵ −→ 0 can be replaced by the evaluation ϵ = 0 if f ∈ C([0, T ), L2(Tn)). We

also have that the solution to (3.27) is unique.
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2. Let g ∈ Hα(Tn) and let f ∈ C((0, T ), Hσ(Tn)) with 0 ≤ α ≤ σ. Also assume (3.26). Then

the function

u(t) = et∆g + lim
ϵ−→0

∫ t−ϵ

ϵ

e(t−τ)∆f(τ)dτ, 0 < t < T,

is in C((0, T ), Hs(Tn)) for all α ≤ s < σ + 2, and satisfies the estimate :

|u(t)|s ≤ C(1 + t−
s+α
2 ) |g|α + Cβ(t), 0 < t < T,

Where the constant C depends only on s, αandσ and

β(t) = lim
ϵ−→0

∫ t−ϵ

ϵ

(1 + |t− τ |−
s+σ
2 ) |f(t)|σ dτ < ∞, 0 < t < T

Finally we have that limt−→0 u(t) = g in Hα, and u is a strong Hs solution of (3.27) for

s < σ.

4.2 Local Well Posedness

In the following theorem we consider X a Banach space and the following operators :

L : X 7→ Φ∞, NT : ΦT 7→ ΦT

with ΦT = Cb([0, T ), X) for 0 < T ≤ ∞. We consider the IVP :

u = Lg +NTu (4.3)

And make the following assumptions :

Lg(0) = g for g ∈ X, and NT (u)(0) = 0 for u ∈ ΦT , (4.4)

∥Lg∥Φ∞
≤ ∥g∥X for g ∈ X, (4.5)
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And finally assume that there exists CR,T
T−→0−−−→ 0 for any fixed R > 0 such that

∥NT (u)−NT (v)∥ΦT
≤ CR,T ∥u− v∥ΦT

for all u, v ∈ ΦT s.t ∥u∥ΦT
, ∥v∥ΦT

≤ R. (4.6)

We are now ready to state the Local Well posedness Theorems for IVPs of the type (3.24).

Theorem 4. Local Well posedness For any r > 0 there exists T > 0 such that as long as the initial

datum satisfies ∥g∥X ≤ r, the IVP (3.24) has a solution in ΦT . Moreover, this solution is unique

in Φt and the solution map is locally Lipschitz in the sense that if ui ∈ ΦT is the solution with

ui(0) = gi and ∥gi∥X ≤ r, i = 1, 2 then there exists a constant c such that

∥u1 − u2∥ΦT
≤ c ∥g1 − g2∥X

4.3 Uniqueness Result

In order to have uniqueness for the problem (3.24), we need to make a few more assump-

tions on the operators NT and L :

NT (u
∣∣
[0,T ]

) = NT ′(u)
∣∣
[0,T ]

for any u ∈ ΦT ′ and 0 < T < T ′. (4.7)

LtLsg = Lt+sg for g ∈ X and s, t ≥ 0, (4.8)

and finally

NT+t(u) = LtNT (u) +N t(u(·+ T )), for any u ∈ ΦT ′ with 0 < T < T ′ and 0 ≤ t < T ′ − T.

(4.9)

Then we find that the following holds :

Theorem 5. Uniqueness If u1 ∈ ΦT and u2 ∈ ΦT ′ are solutions of (3.24) with 0 < T < T ′, then

u1 = u2 on [0, T ).
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4.4 Blow-up Criterion

Let us first define the maximal interval of existence :

Definition : For some fixed initial data g ∈ X , let us collect all Tα > 0 such that there

is a solution uα ∈ ΦTα for the IVP (3.24). Then the maximal interval of existence of (3.24) is

defined by I = I(g) = ∪α[0,Tα) and the maximal solution is given by

u(t) = uαt(t), t ∈ I,

where αt ∈ {α : t ∈ Iα} for each t ∈ I .

Then the following holds true :

Theorem 6. Blow-up Criterion For an IVP of the type (3.24), the maximal interval of existence

is necessarily of the form I = [0, T ) for some 0 < T ≤ ∞. If T < ∞ then

∥u(t)∥X
t−→T−−−→ ∞

4.5 Existence and Uniqueness of Mild Solutions

In this final section of the appendix, we will state the follwing existence and uniqueness

result ; under the assumption that f(u) is locally Lipschitz, then it is a mild unique solu-

tion to the NSE.

Consider the IVP : 
u(t) = et∆g +

∫ t

0
e(t−τ)∆f(u(τ))dτ

u(0, t) ≡ g

(4.10)

Theorem 7. Let s ≥ 0, δ < 2, f : Hs 7→ Hs−δ be locally Lipschitz, then the IVP (4.10) with

g ∈ Hs has a unique maximal solution u ∈ C((0, T ], Hs) for 0 < T ≤ ∞.
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In addition if T < ∞ then |u(t)|s −→ ∞ as t −→ T .

Finally if f : Hs′ 7→ Hs′−δ is locally Lipschitz for all s′ > s then u ∈ C∞(Tn)× C1((0, T )).

The proof relies heavily on the Duhamel Principle and the Local Well-Posedness prin-

ciple presented in the previous sections.
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