Flexibility-Driven Operation for Low-Carbon

Power and Energy Systems

Yuchong Huo

Department of Electrical & Computer Engineering
McGill University
Montréal, Québec, Canada

August 2021

A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of
Doctor of Philosophy.

©2021 Yuchong Huo



Abstract

The integration of higher shares of renewable generation is essential for decarbonizing
electricity generation. However, the main challenge of integrating renewable energy sources
into a power system is the management of the increased disturbances in power balancing.
These disturbances are caused by the inherent variability and uncertainty of renewable
energy sources, which can put significant stress on reserve requirements in the system.
Traditional power system operation paradigms are becoming less capable of handling this
challenge, and this has spurred interest in studying the concept of power system flexibility.
Flexibility-based operational planning algorithms typically rely on robust optimization
to offer guarantees on the ability of the operator to meet a wide array of possible scenarios.
The main downside of these approaches is their conservative results whose operating costs
and/or carbon footprint may be sub-economical. Such results come by because these
approaches immunize their solutions for the required level of security against realizations of
potential events within their uncertainty set. Moreover, these approaches also often ignore
the inherent time and spatial couplings of wind and solar generation variability. To tackle
this issue, this thesis proposes a modeling technique for uncertainty sets which is called the
spatio-temporal flexibility requirement envelope. It reduces the over-conservatism of the
robust solution by comprehensively capturing and representing the temporal trends and
spatial correlation of multisite renewable generation and load demand. A mathematical
program is also developed for applying this envelope to power system unit commitment
and dynamic dispatch through projections of the spatio-temporal envelopes, where we
mainly focus on microgrid type power systems. We illustrate the effectiveness of the
spatio-temporal flexibility requirement envelopes through several case studies.
Furthermore, flexibility-based operational planning approaches are usually formulated

based on model predictive control paradigms, which requires the online solution of a mixed-
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integer optimization problem at each sampling time. Such approaches are not amenable
to most remote microgrid and practical field microgrid implementations, where controls are
typically implemented by industrial controllers with limited computational power and the
dispatch algorithm faces stringent execution time for real time operation. To tackle this
challenge, in this thesis we also develop rigorous machine learning approaches for simplifying
and accelerating the flexibility-based microgrid dispatch algorithms, so that they can be
implemented in practical settings for real time operation. The proposed machine learning
approaches are able to preserve as much as possible the control performance obtained by full
mixed-integer optimization. At the same time, they can provide feasible dispatch decisions.
We conduct comprehensive performance evaluations to demonstrate the effectiveness of the

proposed machine learning approaches.
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Abrégé

L’intégration de parts plus élevées de production d’énergie renouvelable est essentielle pour
décarboner la production d’électricité. Cependant, le principal défi de l'intégration des
ressources d’énergie renouvelable dans un systeme électrique est la gestion des
perturbations accrues dans ’équilibrage de la puissance. Ces perturbations sont causées
par la variabilité et lincertitude inhérentes aux ressources d’énergie renouvelable, qui
peuvent exercer une pression considérable sur les besoins en réserves du systeme. Les
paradigmes traditionnels de fonctionnement des systeémes électriques sont de moins en
moins capables de relever ce défi, ce qui a suscité l'intérét pour I'’étude du concept de
flexibilité du systeme électrique.

Les algorithmes de planification opérationnelle basés sur la flexibilité reposent
généralement sur une optimisation robuste pour offrir des garanties sur la capacité de
Iopérateur a répondre a un large éventail de scénarios possibles. Le principal inconvénient
de ces approches est leurs résultats prudents dont les cofits d’exploitation et / ou
I’empreinte carbone peuvent étre sous-économiques. De tels résultats viennent du fait que
ces approches immunisent leurs solutions pour le niveau de sécurité requis contre la
réalisation d’événements potentiels dans leur ensemble d’incertitudes. De plus, ces
approches ignorent souvent les couplages temporels et spatiaux inhérents a la variabilité de
la production éolienne et solaire. Pour aborder ce probleme, cette these propose une
technique de modélisation des ensembles d’incertitudes qui est appelée enveloppe
d’exigence de flexibilité spatio-temporelle. Il réduit le sur-conservatisme de la solution
robuste en capturant et en représentant de maniere exhaustive les tendances temporelles et
la corrélation spatiale de la production renouvelable multisite et de la demande de charge.
Un programme mathématique est également développé pour appliquer cette enveloppe a

I’engagement des unités de réseau électrique et a la répartition dynamique via des
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projections des enveloppes spatio-temporelles, ot nous nous concentrons principalement sur
les systemes d’alimentation de type microréseaux. Nous illustrons lefficacité des
enveloppes d’exigence de flexibilité spatio-temporelle a travers plusieurs études de cas.

En outre, les approches de planification opérationnelle basées sur la flexibilité sont
généralement formulées sur la base de paradigmes de contrdle prédictif de modele, ce qui
nécessite la solution en ligne d’un probleme d’optimisation en nombres entiers mixtes a
chaque pas de temps. De telles approches ne se prétent pas a la plupart des
implémentations de microréseaux isolés et de microréseaux de terrain pratiques, ou les
controles sont généralement mis en oeuvre par des controleurs industriels avec une
puissance de calcul limitée et 'algorithme de répartition fait face a un temps d’exécution
strict pour un fonctionnement en temps réel. Pour relever ce défi, dans cette theése, nous
développons également des approches d’apprentissage automatique rigoureuses pour
simplifier et accélérer les algorithmes de répartition des microréseaux basés sur la
flexibilité, afin qu’ils puissent étre mis en ceuvre dans des parametres pratiques pour un
fonctionnement en temps réel. Les approches d’apprentissage automatique proposées sont
capables de préserver autant que possible les performances de contrdle obtenues par
loptimisation complete des entiers mixtes. En méme temps, ils peuvent fournir des
décisions d’expédition réalisables. Nous effectuons des évaluations completes des
performances pour démontrer lefficacité des approches d’apprentissage automatique

proposées.
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Chapter 1
Introduction

Today, the installation of renewable energy source (RES) is growing at fast rate globally.
The International Energy Agency (IEA) forecasts that renewable capacity additions are on
track for a record expansion of nearly 10% in 2021 worldwide. In the next five years, the
generation of renewable electricity will expand almost 50% to almost 9745 TWh globally,
which is equivalent to the combined demand of China and the European Union. By 2025, the
share of renewable electricity in total electricity generation is forecast to be 33%, surpassing
the coal-fired electricity generation [1].

However, many problems can arise from the integration of large quantities of renewable
generation into the grid. Most RES such as wind generators and photovoltaics (PVs)
cannot be predicted with perfect accuracy because of their intermittent and stochastic
nature originating from weather conditions [2]. These inherent characteristics of renewable
generation inevitably increase the variability and uncertainty in power systems and
threaten the secure and reliable operation of the system. Consequently, this prompted the
recent emergence of the studies of power system operational flexibility in both academia
and industry [3], [4].

Nowadays the implementation of microgrid (MG) is recognized as an attractive and
cost effective way of managing flexibility in power systems [5]. It provides a platform for
leveraging the inherent flexibility in distributed energy resources (DERs) and meeting the
flexibility requirement arising from increased RES penetration. In this thesis, we mainly
focus on MG type power systems, while the transmission systems are also included.

Traditionally, energy dispatch in practical MG is executed using rule-based strategies.
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Although rule-based strategies are effective at providing feasible dispatch instructions, they
are inadequate in handling the volatility brought about by renewable generation, while also
they cannot exploit flexible dispatchable assets, like energy storage, to their fullest
capacity. Moreover, the statistical characteristics such as spatial correlation and diurnal or
seasonal trends of renewable generation are usually ignored when managing flexibility in
MGs, which could result in overly conservative scheduling results. To tackle these
challenges, in this thesis we develop new paradigms for (1) short-term flexibility
requirement assessment induced by variable demand and renewable generation, and (2)
systematic approaches for MG dispatch capable of optimizing MG dispatchble asset

flexibility and maximize variable renewable generation intake.

1.1 Characterization of Operational Flexibility

1.1.1 Definition of Power System Operational Flexibility

The concept of power system operational flexibility has been introduced formally only
recently. Therefore, there is still no universal and common definition for operational
flexibility yet [6]. Different academic and industrial researchers are proposing definitions
based on different context and perceived challenges, which we discuss shortly here.

From the point of view of power system operation, operational flexibility is defined as “the
capability of the power system to follow a schedule that continuously attains active power
balance and to contain injection deviations from this schedule in order to maintain a secure
operating state” [7]. In this context the security of a power system refers to “the degree of
risk in its ability to survive imminent disturbances (contingencies) without interruption of
customer service” [7]. A definition in [8] states that operational flexibility is the “the capacity
of the electricity system to respond to changes that may affect the balance of supply and
demand at all times”. In [9], operational flexibility is also described as “the capability of a
power system to cope with the variability and uncertainty that variable renewable energy
generation introduces into the system in different time scales, from the very short term to
the long term, avoiding curtailment of variable renewable energy and reliably supplying all
the demanded energy to customers”.

From the technical side, operational flexibility is required to modify the electricity
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production and consumption of a power system in response to variability, expected or
otherwise [10].

A techno-economic definition by [11] states that, “flexibility is the ability of a power
system to cope with variability and uncertainty in both generation and demand, while
maintaining a satisfactory level of reliability at a reasonable cost, over different time
horizons”. Reference [12] also defines operational flexibility as “the relevant characteristics
of a power system that facilitates the reliable and cost-effective management of variability
and uncertainty in both supply and demand” from the the economic viewpoint.

According to the above definitions, a power system should have sufficient operational
flexibility to maintain economic and secure operation while coping with increasing levels of

intermittency imposed by the wider integration of non-dispatchable renewables.

1.1.2 Flexibility Requirements

The expression “flexibility requirement” is used in this thesis to denote the generalized reserve
requirements induced by the intermittent renewable generation and uncertain load in power
system. Generally, the flexibility requirement of a power system is dictated by the amount
of variability and uncertainty in net load (i.e. load less RES output) [4].

Variability arises because the net load has a maximum output limit that changes with
time [6]. Historically, grid operators only need to adjust the production of the generators
to follow the load demand. With the growing grid integration of RES, their intermittent
nature introduces additional variability, which increases the flexibility requirements in the
power system.

Uncertainty arises because this maximum limit of the net load cannot be predicted with
perfect accuracy [6]. Operational flexibility is required to compensate these uncertainties
and real time generation-demand mismatches. Large forecast uncertainties could lead to
extra charges as generation capacities might have to be reserved or costly re-dispatches are
needed [7].

Moreover, because of the variability and uncertainty of renewable generation and
uncertain loads in power system, transmission line flows can deviate largely from their
scheduled flow. If the transmission grid is operating close to the limit, enough operational

flexibility will be required to alleviate possible congestion.
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1.1.3 Resources of Operational Flexibility

The flexibility requirements described above have to be properly handled using a variety
of flexibility resources, such as conventional controllable power plants, energy storage, and

other sources of operational flexibility, as illustrated in Figure 1.1.

Demand Energy
Response Storage

Figure 1.1: Sources of operational flexibility in a power system.

The operational flexibility that can be derived from a conventional controllable power
plant (e.g., coal-fired, hydroelectric and nuclear power plants) is mainly determined by its
capacity, ramp rate, and startup/shutdown time [13]. Generators with different levels of
operational flexibility play different roles in meeting demand. For example, nuclear power
plants may take many hours to start up and shut down and are usually built to operate
at rated power as base load, while hydroelectric and gas turbine power plants have greater
flexibility and can operate as load following or peaking power plants [7]. Manufacturers are
always exploiting more flexible units such as those with improved ramping capabilities, low
minimum generation constraints and high efficiencies [2], [13].

Storage is another important source of operational flexibility. Integrating energy storage

system with the high penetration of renewable generation provides many benefits. Energy
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storage can absorb the surplus renewable generation and then redistribute it during periods
of high electricity demand, which reduces the curtailment of renewable generation and allows
the energy to be utilized when needed [2]. Different types of energy storage technologies can
be chosen in different situations. For example, batteries, ultracapacitors, superconducting
inductors, flywheels and compressed air can be used for regulation, while pumped hydro can
be used for day-night arbitrage [13]. A comparison of different energy storage technologies in
terms of discharge time and nominal capacity can be found in [14]. Moreover, it is anticipated
that the capital costs of storage will fall rapidly in the future, as storage technology develops
2].

There are many other types of flexibility resources such as demand response [15-17],
new electricity market design [18-20], and advanced control techniques of RES [21]. These
technologies will not be discussed in this thesis. A comprehensive overview of these

technologies can be found in [2] and [3].

1.2 State of the Art on the Management of Operational
Flexibility

Managing flexibility can be seen as a process that optimally matches flexibility resources
with flexibility requirements. It is worth noting that studies on management of operational
flexibility can be classified into two types: short-term flexibility planning and long-term
flexibility planning. The objective of short-term flexibility planning is to ensure economical
and secure operations of a power system by committing the right flexibility resources and
prepositioning them properly ahead of time [13], as shown in Figure 1.2. This is generally
done through unit commitment and dynamic economic dispatch.

On the other hand, long-term flexibility planning [22-25] focuses on the changes in the
generation mix, legislation policies, and consumption patterns over several months or years
[2]. In this thesis, we only discuss short-term planning of operational flexibility. The long-
term flexibility planning is left for future research.

Previous studies used stochastic optimization methods and robust optimization
approaches for short-term planning of operational flexibility [3]. The former models the

flexibility requirements with probability distributions, which can effectively reduce
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Flexibility
requirements
Short-term .
t Economical and
planning of .
: — secure operation of
operational el
flexibility P y
Flexibility
resources

Figure 1.2: Illustration of short-term flexibility planning in power system.

operational costs. On the other hand, stochastic methods do suffer from computational
intractability caused by having to consider increasingly large numbers of
scenarios [26], [27]. In response to the shortfalls of stochastic optimization, robust
optimization approaches have gained more attention and been used extensively in
short-term planning of operational flexibility for their tractable computational costs and

1

their ability to provide certainty to operators. Therefore, we mainly consider robust

approaches for the short-term planning of operational flexibility in this thesis.

1.2.1 Quantification of Flexibility Requirements

When carrying out short-term planning of operational flexibility, we need to first quantify
the flexibility requirements in the system. The robust approaches use uncertainty sets to
describe the flexibility requirements of a power system [28]. Usually, uncertainty sets consider
worst-case or highly conservative realizations of uncertain renewable generation and load.

Many different modeling techniques for uncertainty sets have been proposed in last few
years. References [6], [29] proposed the concept of the flexibility requirement envelopes to
capture the intra-hourly spectrum of reserve requirements entailed by variable renewable
generation. Box shaped envelopes were developed in [30] and [31] to quantify flexibility
requirements for a range of intra-hourly duration.

However, the studies presented above only built uncertainty sets for the univariate system
net load. When modeling geographically-distributed renewable generation or load demand,

the uncertainty sets take the form of a multivariate envelope. The authors of [32] and [33]

LA detailed comparison of robust and stochastic approaches can be found in [26].



1. Introduction 7

focus on capturing the spatial correlation of multisite renewable generation with ellipsoidal
uncertainty sets. Jiang et al. [34] describes the uncertainty set by a parallelotope which
is constructed by the intersection of a family of ellipsoids. Frameworks for generating and
evaluating uncertainty sets in the form of multivariate polytopes were developed by [35]

and [5]. A multivariate prediction interval was studied in [36] for multisite wind generation.

1.2.2 Flexibility Management in Bulk Power Systems

In order to properly match flexibility resources with flexibility requirements, the system
operator must validate whether the flexibility resources are capable of providing power
setpoint adjustments (both upward and downward), within the time scales and power
volumes entailed by the realization of the net load variability and uncertainty, and within
the transmission capacity of the network [13]. The related costs of dispatching flexibility
resources are also optimized in this process.

Flexibility management in bulk power systems is a complex optimization problem
which involves unit commitment and dynamic dispatch. The typical inputs of the
optimization model include the quantified flexibility requirements and the parameters of
flexibility resources (e.g., capacity, ramp rate and startup/shutdown time).

References [6] and [29] first characterized the flexibility potential dynamics of each
flexibility resource by maximizing its upward and downward deviation from a scheduled
output, subject to power capacity, ramping and energy constraints. Then, the short-term
planning of operational flexibility was carried out by ensuring that the aggregate flexibility
potential of all the resources is able to enclose the flexibility requirement envelope over the
planning horizon. The authors of [37] studied the coordination of available operational
flexibility between different T'SOs in a multi-area power system. The short-term planning
of operational flexibility was formulated as a mixed-integer linear programming (MILP)
and calculated based on computational geometry which considers location and availability
of reserves, transmission constraints, interdependencies of tie-line flows between different
areas, and the N — 1 security criterion.

A framework for developing a composite metric that assesses the flexibility of conventional
generators was proposed in [38]. Six technical characteristics of conventional generators were
used as indicators in the assessment. These indicators were weighted using a fuzzy analytic

hierarchy process in order to reflect their relative importance in the supply of flexibility. A
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similar framework was also proposed in [39]. Other works, for example [40] and [41], modeled
the flexibility that can be derived from the emerging renewable generation technologies to

enhance the system’s flexibility and to gain higher profits for the system operator.

1.2.3 Flexibility Management in Microgrids

MGs are electricity distribution systems containing loads and DERs that can be operated
in a controlled, coordinated way either while connected to the main power network or while
islanded [42]. The key feature of a MG is its ability to utilize available DERs to attain
certain goals or objectives through a MG controller which belongs to the operator of that
MG [42], as is shown in Figure 1.3. The energy management system (EMS) is the central
part of the MG controller.

Ut|||ty Grid

' Storage
Microgrid Controller
m, \%g |||u|||
L S
Renewable Generation Diesel Generator

Figure 1.3: An example of MG structure.

Renewable generation is prevalent in MG [43]. The RES in MG will create large and
sudden ramping events and reduce the available lead-time of operational planning [5]. This

has increased flexibility requirements in MG.
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The main responsibility of the MG controller is to manage the flexibility available from
DERs and controllable loads so as to balance the power production and energy
consumption. Reliable and cost effective solutions can be found through short-term
planning of operational flexibility, which consists of MG unit commitment and economic
dispatch. For example, Holjevac and others [44] provided a centralized framework for
comprehensive operational flexibility evaluation of multi-energy MG. This was done by
incorporating MILP model for annual simulations and expanding it with model predictive
control (MPC) algorithm for short-term daily operational analyses. A rolling-horizon
algorithm for management of operational flexibility in MG was proposed in [45], where unit
commitment (UC) is solved repeatedly to adjust the set points of energy resources based
on updated information of load and renewable generation. The authors of [46] developed a
rolling horizon scheme which simultaneously exploits the operational flexibility of energy
production and energy demand. A two-layer model predictive controller was proposed
in [47] to schedule and extract the existing flexibility in the energy resources of MG. A
MPC-based framework for calculating the optimal economic dispatch of combined heat and
power MG was developed in [48], which used affine arithmetic to model the flexibility
requirement of renewable generation. The authors of [49] and [50] developed MPC-based
approaches for real-time flexibility management in the context of a MG, while taking into
account the uncertainties of electricity prices. A MPC strategy for extracting flexibility in
battery energy storage systems in a DC microgrid was presented in [51]. The authors
of [52] studied the flexibility requirement of aggregated electric vehicles and proposed a
two-layer MPC approach for the management of operational flexibility in a MG containing
electric vehicles. A MPC-based approach for managing distributed energy resources of a
MG was presented in [53], where the flexibility requirements arising from uncertain
electricity prices, uncertain loads and fluctuating renewable energy were taken into
consideration. In [54], a MPC-based strategy was developed to perform real-time flexibility
management of an isolated microgrid to maximize the power delivery from renewable
generation to commercial buildings. A reserve assessment method was developed in [5] for
distribution system, where the flexibility of dispatchable generators and the power
exchange with the utility grid were modeled as polytopes. The operational cost of the
system was minimized by allocating the polytopes while considering the resource location

and the network constraints. A systematic approach for harnessing the flexibility benefits
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of MG business cases was provided in [55]. Reference [42] designed a centralized EMS
considering different objectives of M@G, such as minimized cost, reduction in peak power,
power smoothing, greenhouse gas emission reduction, and increased reliability of service.
Multi-objective optimization technique was employed to solve the power dispatch
optimization problem.

Energy storage plays an integral role in the management of generation and loads in
a MG and thus is a critical component in the development of MG dispatch algorithms.
Storage can provide services like demand shift and peak load shaving, which increases the
flexibility in MG operation. It can also delay the startup of expensive generation sources
such as diesel generators, which reduces the operation cost of MG. Reference [56] proposed
an model employing a backcasting algorithm to estimate the net value of stored energy in
an energy storage system. The current cost of energy was then compared against this net
value to determine how the energy storage could perform arbitrage in MG. A model that
facilitated the seamless integration of energy storage systems with conventional generators
was developed in [29]. It allowed the energy levels of storage systems to be prepositioned

beforehand to optimize their potential deployment over a forward-looking horizon.

1.3 (Gaps in the State of the Art

The robust optimization approaches are employed by the various flexibility management
methods presented above. Although robust approaches secure the system according to very
stringent reserve requirements, it is easy to have sub-economical results due to having to
hedge against highly improbable potential events [57]. Intensive research activity is
investigating solutions to alleviate this problem. It is found that the conservativeness of a
robust solution is directly linked to the size of the uncertainty set [35]. In addition, [33]
suggests that considering statistical characteristics such as spatial correlation and diurnal
or seasonal trends of renewable generation can effectively improve the accuracy of
uncertainty sets and reduce its size while keeping the predefined coverage rates. However,
existing works such as [37] and [27] overlook these statistical properties, while works such
as [34] and [5] only consider spatial correlation. At the same time, other existing works
such as [33], [35] and [32] merely build mathematical models for uncertainty sets. The

authors did not discuss how to apply these models to the security-constrained unit
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commitment and dynamic dispatch problems in power systems, which are the central parts
of the short-term flexibility planning.

Moreover, when we implement flexibility-based operational planning paradigms in MG,
another problem arises. Controls in MG are typically implemented by programmable logic
controller (PLC) or other industrial controllers. Figure 1.4 shows an example of PLC which
is adopted from [58]. PLCs are programmable using ladder logic which very much looks like
decision tree (DT). Usually, PLCs have limited computational power in terms of memory

and speed capabilities [59].

Figure 1.4: An example of PLC [58].

At the same time, the MG dispatch algorithm faces stringent execution time for real
time operation, often in remote locations. Although existing studies such as [5,44-47] have
shown that flexibility-based operational planning paradigms can contribute a great deal to
the economic and secure operation of MG, their models are usually formulated based on
MPC paradigm (or receding horizon scheme), which requires the online solution of a mixed
integer programming (MIP) at each sampling time of the controller. Traditional methods
for solving MIP problems require advanced iterative optimization algorithms and significant
computational power in terms of CPU and memory [60], which may be difficult for real time
implementation in a MG controller with limited computational power. Resolving these issues
calls for approaches capable of simplifying and accelerating the traditional flexibility-based
operational planning paradigms so that they can be implemented in a practical industrial

controller for real time operation.
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1.4 Thesis Contribution

This thesis contributes to filling the research gaps presented above. We first propose a
modeling technique for uncertainty sets which we call spatio-temporal flexibility requirement
envelopes as a natural extension of the original proposal of [6]. It seeks to model uncertainty
sets in a more precise manner by representing the temporal trends and the spatial correlation
of multisite renewable generation and load demand. We then propose a robust optimization
based framework for applying this envelope to power system unit commitment and economic
dispatch. Compared to previous work, our proposed method has the following features.
First, it extends the notion of flexibility requirement envelopes proposed in [6] and [29] by
comprehensively capturing the temporal trends and correlation of multiple site renewable
generation and loads in power system. Second, this approach is applied in robust security-
constrained unit commitment and dynamic dispatch problems in power systems, capturing
the effects of space-correlated renewable generation assets on the transmission network and
its constraints. The energy scheduling framework is formulated as a mixed integer program.

Furthermore, this thesis attempts to implement the flexibility-based operational planning
paradigms in a MG controller with limited computational power for real time MG energy
management. This is realized by leveraging the power of machine learning (ML) techniques.

We first study a simple case where the MG has a maximum of one dispatchable
generator.  We formulate the MG dispatch problem with the concept of flexibility
requirement envelopes, which is in the form of a MPC problem and requires the solution of
a MIP at each time step. A rigorous DT-based learning framework is constructed to
approximate the mapping between the inputs and outputs of the MIP, where the operating
constraints of MG, uncertainties in net load, the commitment status (ON/OFF) of a
dispatchable generator, and an energy storage system are considered systematically. We
then directly apply the trained DT to predict dispatch decisions for the MG with given
inputs, which is an open-loop process and thus computationally light and promising to
enable real time implementation in a computationally limited MG controller. Also, the
DT-based MG dispatch strategy is capable of maintaining adequate performance even in
cases where MG assets are down or degraded.

Moreover, we consider the general case where the MG has multiple dispatchable
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generators 2. The UC problem of MG is again formulated with the concept of flexibility
requirement envelopes.  We develop a rigorous approach which combines k-means
clustering, deep neural network (DNN) classification and explicit model predictive control
(EMPC) for implementing the flexibility-based UC paradigms in a MG controller with
limited computational power. The computational complexity of the proposed approach can
be adjusted to meet the hardware limitations of any given MG controller, while preserving
as much as possible the optimality of the full-fidelity EMPC. This enables the online real
time implementation of the proposed approach. Moreover, the proposed approach is able to
handle the variables and constraints of the original UC problem systematically, which

guarantees the feasibility of its output UC schedules.

1.5 Claim of Originality

This thesis establishes the following distinct contributions to the field of operational flexibility

management in power systems.

1. This thesis proposes the “spatio-temporal flexibility requirement envelope” that
comprehensively captures the temporal trends and correlation of multiple site
renewable generation and loads for short-term planning of operational flexibility in
power system. We also propose a robust optimization based framework for applying

this envelope to power system unit commitment and economic dispatch.

2. A rigorous DT-based learning framework for real time implementation of
flexibility-based MG dispatch paradigm in a computationally limited MG controller is
developed. Here, we assume that the MG has a maximum of one dispatchable
generator. In this framework, the operating constraints of MG, uncertainties in net
load, the commitment status (ON/OFF) of a dispatchable generator, and an energy

storage system are considered systematically.

3. A rigorous approach for implementing flexibility-based UC on multiple dispatchable

generators in a MG controller with limited computational power is developed for real

2MGs can have various sizes ranging from small residential MGs (e.g., a building, a hospital) to large-scale
MGs (e.g., a city). For large-scale MGs, it is possible that they have multiple dispatchable generators.
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time MG operation. This approach is able to handle the variables and constraints of the
original UC problem systematically. At the same time, the computational complexity

of this approach is tunable by accepting a certain level of suboptimality.

1.6 Thesis Outline

Chapter 2: Spatio-Temporal Flexibility Management in Power Systems

In this chapter, the spatio-temporal flexibility requirement envelope is modeled. This
chapter first introduces the modeling methodology of spatio-temporal flexibility
requirement envelopes. Next, the projection of this envelope is presented. Afterwards, we
introduce the energy scheduling framework for deploying operating reserves to satisfy
quantified flexibility requirements. We showcase the use and advantages of spatio-temporal
flexibility requirement envelopes and their associated scheduling approach in a microgrid
and on a modified IEEE Reliability Test System.

Chapter 3: Decision tree-based Flexibility Management for Microgrids

In this chapter, a rigorous DT-based learning framework for implementing flexibility-based
MG dispatch paradigm in a MG controller is modeled. This chapter first formulates the MG
dispatch problem with the concept of flexibility requirement envelopes. Here, we assume
that the MG has a maximum of one dispatchable generator. Next, the method for building
training data set is presented. From the training data generated, we first grow a large
DT, and then prune it back in order to obtain a subtree, whose size is more reasonable for
a practical implementation. We also introduce the method for testing the DT-based MG
dispatch algorithm. A comprehensive performance evaluation is conducted to demonstrate

the effectiveness of the proposed DT-based approach under various scenarios.

Chapter 4: Integrating Learning and EMPC for UC in Microgrids

In this chapter, a rigorous approach which combines k-means clustering, DNN classification
and EMPC for implementing the flexibility-based UC paradigms in a MG controller is
modeled. This chapter first formulates the UC problem of MG with the concept of

flexibility requirement envelopes. The MG has multiple dispatchable generators. We also
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develop the EMPC formulation of the original UC problem. Next, the method for
preparing training data set is presented. A two-stage learning based approach is developed
afterwards. In this approach, the first stage performs k-means clustering and the second
stage performs DNN classification. The testing method of the proposed approach is also
introduced. A case study is conducted to demonstrate the effectiveness of the proposed

approach under various scenarios.

Chapter 5: Conclusion

In this chapter, we summarize the key achievements of this thesis and discuss several research

directions for future research.

Appendices

Appendix A provides detailed information of time series Gaussianization and principal
component analysis (PCA), which is used when we build the spatio-temporal flexibility
requirement envelopes in Chapter 2.

Appendix B summarizes the method for building flexibility requirement envelopes previously
proposed in [6].

Appendix C formulates the microgrid dispatch problem (with one dispatchable generator
only) based on the concept of flexibility requirement envelope.

Appendix D gives a brief introduction about how to grow large decision trees with training
data. It also introduces briefly the cost complexity pruning method, which is used for pruning
large decision trees.

Appendix E formulates the microgrid UC problem (with multiple dispatchable generators)
based on the concept of flexibility requirement envelope.

Appendix F gives a brief introduction of the “adaptive contextual learning based microgrid

UC strategy” which was previously proposed in [61].
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Chapter 2

Spatio-Temporal Flexibility

Management in Power Systems

The deepening penetration of renewable power generation is challenging how the minute
balancing of supply and demand is carried out by power system operators. In Chapter
1, we reviewed the state of the art on short-term planning of operational flexibility. To
summarize, short-term flexibility planning algorithms typically rely on robust optimization
to offer guarantees on the ability of the operator to meet a wide array of possible scenarios.
The main drawback of these approaches is their conservative results whose operating costs
and/or carbon footprint may be sub-economical.

In this chapter, we seek to reduce the conservativeness of the robust solution by
proposing the concept of spatio-temporal flexibility requirement envelopes. Please note that
the spatio-temporal flexibility requirement envelope developed in this chapter is a natural
extension of the flexibility requirement envelope proposed in [6]. In [6], the spatial
correlation between different renewable energy resources was ignored. Moreover, the output
of renewable generation was assumed to be a stationary random process. Although the
original proposal of [6] can secure the system according to very stringent reserve
requirements, it is easy to have sub-economical results due to having to hedge against
highly improbable potential events. It is found in [35] that the conservativeness of a robust
solution is directly linked to the size of the uncertainty set. Moreover, [33] suggests that
considering statistical characteristics such as spatial correlation and diurnal or seasonal

trends of renewable generation can effectively improve the accuracy of the uncertainty set
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and reduce its size while keeping the predefined coverage rates. Therefore, the
spatio-temporal flexibility requirement envelope proposed in this chapter seeks to model
the flexibility requirements in a more precise manner and reduce the over-conservatism of
the energy scheduling results by representing the temporal trends and the spatial
correlation of multisite renewable generation and load demand. A mathematical program
for energy scheduling is also developed using the projections of this envelope. We showcase
the use and advantages of spatio-temporal flexibility requirement envelopes and their
associated scheduling approach in a microgrid and on a modified IEEE Reliability Test

System. An overview of our proposed method is shown in Figure 2.1.

r— | pr——— |
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| ::::;iioz uncertainty| Flexibili 1] ﬂe".‘b‘l‘ty Projected || Power system unit
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| [ Section 2.1.1 | Power balancing
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Figure 2.1: Overview of the method proposed in this chapter.

2.1 Modeling of Spatio-temporal Flexibility

Requirements

2.1.1 Spatio-temporal Flexibility Requirement Envelope

The procedure for building a spatio-temporal flexibility requirement envelope from the
current time ¢, is introduced next. The inputs of the process are time series of wind speed,
solar power and uncertain load demand which contain their current and historical data. All
the input time series have the same length of T (e.g., one year), and they are synchronized

and evenly spaced in time (e.g., five-minute intervals).

Step 1: (Temporal Detrending): For the input solar power time series {85 (¢)}2,, 7,41 at bus
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Step 2:

Step 3:

n during daytime, we compute §2'(¢), the detrended solar power time series [62]

o, (t) = 2.1
10 = s 21)
where 699(t) is the output of solar power under the clear-sky irradiance (theoretical
and deterministic maximum of solar power caused by the periodical movements of the
Earth and the Sun) at bus n at time t. Similarly, we calculate ] (), the detrended

wind speed or uncertain load demand time series at bus n [63]:

) (2.2)

where w, (t) (t = to,to—1,...,to—Ts+1) is the input original wind speed or uncertain
load demand time series, and p(t) and oM (t) are its estimated mean and standard

deviation calculated following the method used in [64]:

N~ ot k) (2.3)

1
M
M k=0

| M-l
o2 (1) = J S (= ) i () (2.4)
k=0
where M is the length of the moving time window for calculating p (¢) and o (t).

(Spatial Decorrelation): In this step, the detrended time series w/ (t) and 07/ (t) are
transformed into Gaussian time series onto which principal component analysis
(PCA) is performed. The goal here is to decompose the factors driving the variability
processes into independent variability components. The details of the transformation

are provided in Appendix A.

(Principal Component-Wise Flexibility Requirement Envelope Construction): For
each principal component (PC), we build a flexibility requirement envelope
{ek(7),el(7) }rez,, using the method presented in [6]. Here {eX(7),el(7)},ez,, is the
flexibility requirement envelope for the rth (1 < r < R) PC. The details of the
procedure for building {&}(7),el(7)},c=,, is explained in Appendix B.



2. Spatio-Temporal Flexibility Management in Power Systems 19

Step 4: (Envelope Construction in the PC Domain): Construct a R-dimensional hypercube
E(to, 7) at present time ¢, for all the forward-looking times 7 € Zy using the flexibility
requirement envelope of all the R PCs generated in Step 3. Because the PCs are

independent from each other, we use the Cartesian product:

E(to, 7) = {Z1(to) + €1 (1), Z1(to) + €1(7)} %

1 b X
{Za(to) + €3(7), Za(to) + e3(7)} (2.5)

x{Zg(to) + ex(T), Zr(to) + 5 (1)}

where Z,.(ty) (1 <r < R) is the value of the time series of rth PC at current time ¢,
which was obtained in Step 2.

Step 5: (Re-Inserting Spatial Dependence): Reconstruct the hypercube E(ty,7) (7 € Zg) by
inverting the PCA transform using (A.3), following by reverting (A.1).

Step 6: (Re-Trending): Reconstruct the E(t, 7) (7 € Zp) obtained in the last step by inverting
the transform in (2.1) and (2.2) using 65 (to), 2 (to), and oM (to).

Step 7: (Wind Power Curve): Transform the wind speed into its corresponding wind power
generation. We follow the method in [33] and [63]. The aggregate power curve for each
wind farm is used moving forward; this curve can be estimated using observed wind

power-wind speed pairs from wind farms.

2.1.2 Discussion of the Methodology

The output of the procedure described above is a multidimensional envelope, E(to, 7) (7 €
Zg). It encompasses the vast majority of possible joint realizations of wind power, solar
power, and uncertain load looking ahead 7 units of time later, as seen from the current
time 5. Connecting the elements of E(ty, 7) at all 7 results in the spatio-temporal flexibility
requirement envelope E(ty). Its shape may change when ¢, moves forward due to the non-
stationary nature of renewable generation and load.

The envelopes in Figure 2.2 show an example where y,,, and y,, represent the power

outputs of two uncertainty sources located at buses n; and ns. They could be wind power,
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Figure 2.2: Spatio-temporal flexibility requirement envelope obtained at t.

solar power or uncertain load. The envelope is computed at present time to (7 = 0) over a
forward-looking horizon of length Ty future time steps. The time window with length M
for detrending is located ahead of ty. By inspection of E(ty, 1) and E(tg, 72) in Figure 2.2,
we can find that the size of the envelope increases with 7. This is because the uncertainty
in forecast increases with the look-ahead time.

In the proposed methodology, Step 1 extracts and removes the temporal trends of the
input time series. The temporal trends are removed because the application of PCA in Step
2 requires that the input time series be stationary. The removed trends are re-incorporated
into the envelope in Step 6.

With (2.2), wind power and load may display diurnal, seasonal and other cyclical trends.
The resulting stationarity of the detrended time series w/ (t) is assessed by the augmented
Dickey-Fuller (ADF) test [63]. A proper value of the window size M should be determined so
that the resulting time series pass the ADF and resulting time series are stationary. Empirical
results (see Section 2.3.2) show that M has an impact on the predictive performance of the
spatio-temporal envelope and its performance in power system energy management.

Step 2 captures the spatial correlation of all the input time series. The spatial dependency
is removed in this step, and the resulting principal components are independent of each

other. Thus, there is no need to consider the impact of other PCs when we build flexibility
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requirement envelopes for each PC in Step 3, and when we combine them in Step 4. This is a
feature which greatly simplifies the process. The spatial dependency structure is re-inserted
into the envelope in Step 5. This guarantees that the spatio-temporal flexibility requirement

envelopes capture the spatial correlation between all of the input time series.

2.1.3 Projection

Maximum value of projection @
Minimum value of projection @
Value of projection [ ]

";(T()eT) N \ Projection along
450\ N Yt + Yn2

(2)

nl

. <« Projection along
CFl(t["T) Sso \hlnlynl +h

T, S~
Ci‘](tn‘T) )

~ <
~
~ .

In2 yn2

' (b)

Time

Figure 2.3: Projection of spatio-temporal flexibility requirement envelope. Connecting the
maximum (red point) and minimum (blue point) values of the projection at all 7 and we
will get the upward branch (red line) and downward branch (blue line) of a two dimensional

projected envelope.

When carrying out power system unit commitment and dynamic dispatch, we are
interested in quantifying the impact of the uncertainties of renewable generation and loads
on the system net load and on the flows in transmission lines. This information is
necessary to pre-position dispatchable resources to guarantee secure and economic
operation. In this section, we show that the impact of uncertainties on the net load, which
translates to transmission line flows, can be quantified by projecting spatio-temporal
flexibility requirement envelopes. This idea is illustrated schematically in Figure 2.3.

From Figure 2.3 (a), we find that the maximum and minimum values of the aggregate

output of y,, and y,, can be obtained by maximizing and minimizing the projection of
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E(ty, ) onto the vertical axis along the direction of y,,, + yn,. If we connect the maximum
and the minimum of the projection at all 7, we will get a two-dimensional envelope
{el\(to, ), €4 (to, T) }rez,, which encompasses the vast majority (e.g., 95 %) of possible
realizations of y,, + yn, for 7 € =y, as seen from the present time t,. Mathematically, the

projected envelope {e'y(ty,7), €% (to, 7)}rez, is obtained moving forward in 7 € Zy by

solving:
J - .
ealto,7) = max (1Y) (2.6)
! o ,
ealto, 7) = yain | (1-Y) (2.7)

Here, Y is the column vector consisting of active power injections from the uncertainty
sources (including wind power, solar power and uncertain loads) at each bus. 1 is a row
vector of ones of the same length as Y.

At the same time, the impact of y,, and y,, on the power flow in transmission line
[ is found by calculating hy,, Yn, + hinyYn, Whose maximum/minimum values can also be
quantified by projection (along the direction of hy,, yn, + RinyYn,), as is shown in Figure2.3
(b)). Here, hy,, and hy,, are Power Transfer Distribution Factors (PTDF) describing the
sensitivities of power flow on line [ to the changes of active power injection at buses n; and
ny. Again, by connecting the maximum and the minimum values of the projection at all 7,
we can get a two-dimensional envelope {e}l (to, T), eﬁﬂl (to, 7)}re=, that encompasses the vast
majority of possible realizations of hy,, yn, + Rin,Yn, for the forward-looking horizon, as seen
from tg. The projected envelope {e}l (to,7), eﬁwl (to, 7)}rez, is computed moving forward in

T € =g as follows

1 - .
e (to, 7) = yahax (H,-Y) (2.8)
er (to, ) = yomin (H;-Y) (2.9)

The row vector H; consists of PTDFs that describe the change of the power flow in line [
with respect to the active power injection at each bus.

Figure 2.4 shows the projected envelope {eZ(tO,T),ej(to,T)}TegH. It aggregates the
output uncertainty arising from each uncertainty source and encompasses the vast majority

of their possible realizations moving forward from present time t;. The slope of this
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Figure 2.4: Schematic illustration of the projected envelope {€l,(to, 7), €% (to, ) }rez,, -

envelope encompasses the vast majority of possible transitions of the aggregate output
trajectory of all the uncertainty sources, which is associated with reserve ramping
requirements. At the current time ¢y where 7 = 0, the envelope collapses to the current
operating point: el(to,0) = €%(to,0) = X, (dn(to) — 0¥ (tg) — 0%(ty)). Also, the area
between the envelope and the time axis implicitly indicates the operating reserve needed in
the form of energy.

It is worth noting that {e}l (to, 7), efpl (to, 7)}re=, has a shape similar to the envelope in
Figure 2.4. Because of the variability and uncertainty of renewable generation and loads,
transmission line flows can deviate from their scheduled flow. The flexibility requirement
envelope associated with transmission lines {e}l (to,7), efal (to, 7)}re=, encompasses the vast
majority of possible transmission line flow deviations from the scheduled power flows at the
current time ¢y. Because transmission lines all have limited capacities, the system operator
needs to procure enough operating reserve (from dispatchable generation and responsive
demand) to hedge also against possible future congestion. Moreover, at ty (7 = 0), we also
find that e}, (to,0) = €}, (to,0) = X hun (dn(to) — 62(to) — 85 (t0)), the line flow in line I at
the current time t,.
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2.2 Spatio-temporal Operational Planning of

Operating Reserve

2.2.1 Mathematical Program

The following mathematical program is developed for receding-horizon power system unit
commitment and dynamic dispatch where the envelopes quantifying spatio-temporal
flexibility requirements are used to drive the current and forward-looking decisions. The
variables (-)(1,q) (1 € Zg, ¢ € {1,]}) are forward-looking decisions, as driven by the

flexibility requirement envelopes {e)(to, 7), €% (to, 7) }rez,, and {e}l (to,7), efpl (to, 7)}rezy-

Objective

The objective (2.10) is to minimize the cost of dispatchable generation (C;(:)) at the
current time to (7 = 0), while considering the forward-looking horizon ¢, + 7 for
=y = {0,1,2,--- Ty}, where Ty is the length of horizon. We perform this minimization
also considering the flexibility requirement envelope directions, =, = {1,l}, penalties for
load and renewable generation curtailment 7¢ and 7° and a discounting factor v(7) < 1
which weighs the forward-looking steps against the current-time costs. (1) also reflects

that near-term flexibility is more valuable than long-term flexibility [6].
min Y )| D Cilpl(,q),ul(T.q) —|—Z<dd"7q +7T‘55”(7'q)> (2.10)
TEEH,qE-—q 1€8g nEZy
The optimization is subject to:
Power balance for up-going and down-going envelopes ¢ € =, and all forward-
looking times 7 € =y

Gt ) = Y by a) = X (P () =P (r9) + X (G2 g) — di(r,9) =0 (2.11)

1€8g JEE. neE=n,

Transmission capacity constraints of line [ for up-going and down-going envelopes

q € 2, and all forward-looking times 7 € =y

— " = e (to, ) < filr,q) < ™™ = ef (to, T) (2.12)
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where

flra) =3 hzn{ > pina+ Y (W) P (re) H i) - 6 (na)| (213)

nes, €N (n) JEN (n)
and f/** is the maximum allowed power flow in line [. The summations over A/(n) are used

to map the locations of generators and storage assets onto nodes of the network.

Bounds on load and renewable generation curtailment at bus n € =, for ¢ € 5,

and 7 € =y
0 < d*(r,q) < da(to) (2.14)

0 < 87 (r.q) < 8(t0) + &5(to) (2.15)

Consistency of dispatch decisions and envelope tracking at current time ¢, (7 = 0)

We note that at the current time %y, by necessity, we require

Py(to) = py(0,1) = pg(0, 1) (2.16)
pé(t()) = péJr(O’ T) - pgi(oa T) = p£+(07 \L) - pgi(oa \l/) (217>
si(to) = s1(0,1) = s1(0,4) (2.18)

Capacity and ramp constraints on dispatchable generation i € =, for ¢ € =, and

TEZY

uy (T, q)py < po(7,q) < ug(7,q)p, (2.19)

Po(r—1,q) = pl(7,q) < Thanty (T, q) +rheq(ul (T —1,¢) —ul (T, q)) +p, (1 —ui(t—1,q)) (2.20)

pz(Ta Q)_p;(T_LQ) < T;upu;(T_laq)+r;su(u;(T7 q)—U;(T—l,q))+ZE(1—U;(T, Q)) (221)

Capacity and energy constraints on storage j € =, for ¢ € 5, and 7 € Zy

0 < pl*(r.q) < ul*(r, q)pl (2.22)

0<pl (1.q) < —ul (1,9)p] (2.23)
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sl < si(r,q) < st (2.24)
si(r,q) = si(t = 1,q) — I (T, Q) Ta () ™" + P2~ (7, q)Tan] (2.25)
ult(r,q) +ul (r,q) =1 (2.26)

2.2.2 Discussion
Receding horizon operation

At the current time, tg, the spatio-temporal flexibility requirement envelope and its projected
envelopes are refreshed when the random process of renewable generation or uncertain load
are observed. The energy scheduling problem in (2.10)—(2.26) is solved looking forward in
time 7 € Zp. Although we are looking forward in time, only the scheduling decisions for the
current time step ¢y (i.e., 7 = 0) is applied, while the forward-looking decisions, as driven by
the flexibility requirement envelopes, are there to ensure the current-time decisions will be
consistent with what may happen moving forward. The scheduled trajectory of dispatchable
units is assumed to remain constant between each time step tg — tg + 1.

If the system does not have enough flexibility to satisfy all the flexibility requirements
envelopes at tg and the various look ahead time steps 7 € Zg, the system operator may have
to deploy slack resources (i.e., d? and 07). Slack resources are priced much higher than other
dispatchable resources. Thus, these are used as the last resort when the energy scheduling
problem becomes infeasible. At the beginning of next time step t; + 1, the above process is
repeated, with a re-calculation of the envelopes using the latest observations of the load and

renewable generation.

Quantifying the flexibility of dispatchable units

In this chapter, we consider two kinds of system flexibility sources: conventional generators
and energy storage. Constraints (2.19)—(2.21) characterize the flexibility of each conventional
generator in terms of power capacity and ramp rate limits. The power and energy capacity
limit of storage are modeled in (2.22)-(2.23) and (2.24)-(2.26), respectively.
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Deploying operating reserves

The operating reserves are planned implicitly in (2.11) and (2.12) by satisfying the
flexibility requirements with flexibility sources. Specifically, (2.11) deploys the flexibility
from each dispatchable unit to maintain power balance for all 7 € Zy and ¢ € Z,. As
described in (2.11), power balancing will be maintained when the aggregate response of
dispatchable units is capable of tracking all the possible realizations of net load trajectory
in the forward-looking horizon, which in bounded in the envelope {e,(to,7), €% (to, 7)}rez,,-
Constraints in (2.12) take the transmission limits into account. Similarly, the system
security will be guaranteed if the aggregate response of dispatchable units can handle all
the possible transmission line flow deviations in the forward-looking horizon, which is
bounded in the envelope {e}l (to, 7), e%l (to, T)}rezy-

The spatio-temporal flexibility requirement envelope addresses the secondary and
tertiary reserve in the power system. Specifically, the first 10 minutes of the envelope in
the forward-looking horizon quantifies the requirements of secondary reserve, while the rest

of the envelope addresses the tertiary reserve.

2.3 Case Studies

2.3.1 Simulation Setup

We illustrate the application of the spatio-temporal flexibility management approach and its
use in generation scheduling problems in a microgrid and a larger transmission system.
Time Resolution

The length of each forward-looking time step is 7o = 5 minutes, and the length of the receding
horizon Ty = 12 (for a total forward-looking time of 60 minutes) at every scheduling time
to.

!Please note that the spatio-temporal flexibility requirement envelope is not addressing the primary
reserve or the contingency services.
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Energy Scheduling Strategies

The mathematical program described in (2.10)—(2.26) is used to simulate our proposed energy
scheduling strategy, which is a robust approach. The proposed spatio-temporal flexibility
requirement envelope (STFRE) is used to model the uncertainty set.

We compare the proposed method with three robust methods, which have different

uncertainty set characterization approaches

o Polyhedral uncertainty set (POLYH): The first uncertainty set is the prediction
polyhedron proposed in [35].

e FEllipsoidal uncertainty set (ELLIP): The second uncertainty set is the ellipsoidal

prediction region in [32].

o Multivariate Prediction Intervals (MPI): We also compare our proposed method with
the MPI, which is a box shaped uncertainty set discussed in [35] and [36]. 2

In [32] and [35] the parameters of POLYH and ELLIP are also updated using a moving
window-based method to identify the trends of the input data, whereas the temporal trends
are ignored in MPI. The authors of [32], [35] and [36] did not apply these uncertainty sets
to power system energy scheduling. Thus, they will also be simulated using (2.10)—(2.26).

Performance Metrics

The energy scheduling results are assessed by three performance metrics: total generation
cost (TGC), energy not served (ENS) and energy curtailed (EC)

TGO=Y Y Cilw(t), uy (1)) (2.27)

ENS=TA> > d(¢) (2.28)
EC=TxY > 62(t) (2.29)

2The benchmark method “Multivariate Prediction Intervals (MPI)” is the multivariate version of the
work proposed in [6]. In each dimension of MPI, the boundaries are obtained using the method presented
in [6].
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Moreover, the predictive performance of STFRE, POLYH, ELLIP and MPI are examined

for different look-ahead time 7 based on two metrics [33], [35]:

o Calibration: This measures the deviations between the observed and nominal coverage
rates of the uncertainty set at look ahead time 7. In this chapter, the nominal coverage
rates are all set to 95%. The observed coverage rate at 7 is obtained by calculating
the ratio of realizations after 7 time steps which fully lie within the uncertainty set in

the whole simulation period.

o Volume: The volume (size) of the uncertainty set V; at different look-ahead time 7 is
obtained using the Monte Carlo based method from [35]. The idea is to generate N’
uniformly distributed random samples in a hyper-cube with edges of length equal to
the maximum capacity of all the wind power /solar power /uncertain load. Then count
the number of samples N” that lie in the uncertainty set at 7. The volume of the
uncertainty set at 7 is calculated by V;, = N"Vo/N', where V¢ is the volume of the

corresponding hyper-cube.

Computing Platform

All the models are solved using CPLEX on a GAMS platform [65]. The computer used is
equipped with an Intel Core i5/ 3.10 GHz processor and 8 GB RAM. 3

2.3.2 Microgrid

This first case study showcases our proposed approach in a simple grid-connected microgrid,
whose single-line diagram is shown in Figure 2.5. This microgrid includes a critical load, a
curtailable load, a wind farm, a solar farm, a diesel generator and storage.

For the diesel generator: p, = 600 kW, p, = 60 kW, 74, = 100 kW/5min, ryq = 600
kW/bmin, rgpyp = 74n = 100 kW/5 min. We assume quadratically-varying costs
Clpy(t),ug(t)) = agpy(t)” + bypy(t) + cyuy(t). From [42], we take a, = 1.52 x 1075 1/kW?h,
by = 0.02186 1/kWh and ¢, = 41.6 1/h. Cost of diesel fuel = $1.30/1. For the storage:

3Please note that most of steps associated with constructing the spatio-temporal flexibility requirement
envelope (e.g., Step 1 — Step 4 in section 2.1.1) can be done offline using a computer. The online operation
of the spatio-temporal envelope only includes Step 5 — Step 7, which is computationally light and can be
easily implemented in a MG controller with limited computational power.
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Figure 2.5: Diagram of microgrid under study.

Pe = 100 kW, p. = —100 kW, 5. = 90 kWh, s, = 10 kWh, 1. = ng = 0.963, 7¢ = 7° = 100
$/kWh. The minimum and maximum values of curtailable load are 150 kW and 450 kW,
respectively. The critical load is constant at 50 kW. The maximum power output of the
wind farm and the solar farm are both 125 kW. The power exchange requirement at the
point of interconnection (POI) is kept constant throughout the year. We set this
requirement to be the minimal net load of any given day.

Uncertainties come from wind generation, solar generation and curtailable load, for which
we consider a full year worth of data records. The curtailable load data comes from a village
in the Canadian province of Quebec. The wind and solar power data is taken from [66].
Network constraints are ignored here. The length of the time window M of curtailable
load and wind power are set to be one hour and 24 hours, respectively. The discount rate
v(7) is assumed to be one for all 7. Figure 2.6 shows the evolution of curtailable load,
wind generation and solar generation in the first two weeks of January, which displays their
periodic patterns. The time series are geographically independent from each other. Thus,
in this case study we only focus on the temporal trends of wind power, solar power and
curtailable load.

Figure 2.7 (a) and (b) shows the projected envelopes for the load generated by different
uncertainty sets on two different days and times (marked with L; and Ly in Figure 2.6
(a)). We observe that the envelopes generated by MPI are identical. This is because MPI
ignores the temporal trends of curtailable load. However, the envelopes generated by STFRE,
POLYH and ELLIP on January 1lst have much smaller sizes than those of MPI, while on

January 6th they have similar sizes. The reason behind this observation can be found in
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Figure 2.6: Power profile of (a) curtailable load, (b) wind generation and (c) solar

generation in the first two weeks of January.

Figure 2.6 (a). The curtailable load is more fluctuating on January 6th than on January 1st.
The STFRE, POLYH and ELLIP capture this feature and adjust the size of their envelopes.
Though the projected envelopes generated by STFRE, POLYH and ELLIP are sometimes
smaller in size, it can be found that the load trajectory always stays inside their envelopes.
Similar phenomena can be observed for wind power in Figure 2.7 (c¢) and (d). The projected
envelopes for solar power at two different times (marked with S; and S, in Figure 2.6 (c)) are
shown in Figure 2.7 (e) and (f). It can be observed that the envelopes generated by STFRE
are always kept under the theoretical maximum of solar power (solar power under clear-sky
irradiance), which is changing all the time. However, the envelopes generated by POLYH,
ELLIP and MPI cannot capture this feature, and their envelopes go beyond the theoretical
maximum at 11:45 in Figure 2.7 (f), which should be impossible for solar power.

Figure 2.8 (a) reports the deviations between the observed coverage rates and nominal
coverage rates of different uncertainty sets for different forward-looking times. We can see
that STFRE, POLYH and ELLIP maintain a coherent calibration for all the look-ahead
times, while the deviation associated with MPI is higher. Figure 2.8 (b) compares the
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Figure 2.7: Projected envelopes for load/wind/solar generated by STFRE, ELLIP, POLYH
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volumes of different uncertainty

sets. As expected, MPI has the highest volume, while

STFRE has the lowest volume, which all increase with the look-ahead time.

140

120

100

80

B0

Wind power (kW)

100 200 300
Load (kW)

(a)

1o

Wind power (KW)

400 500

100

90

80

o

G0

50

40

30

20
200

A

| =

STFRE
ELLIP
POLYH

MPI

220 240 260
Load (kW)
(b)

280

300 320

Figure 2.9: (a) Scatter plot of load and wind power. (b) The projection of uncertainty
sets in the load-wind plane (generated at 21:20 on January 1st). The STFRE, ELLIP and

POLYH are zoomed in a windnow on the right.

We can see that STFRE shows little advantage in comparison to POLYH and ELLIP in
this case study. This can be explained by Figure 2.9. The scatter plot clearly illustrates the

spatial independence between load and wind power. STFRE has a shape similar to POLYH.
The size of STFRE, POLYH and ELLIP are well adjusted using a moving window, while

MPI has a much larger size by ignoring temporal trends.

Table 2.1: Microgrid Dispatching Strategies’ Performance

Uncertainty Sets

Performance metrics

TGC (k$) | ENS (kWh) | EC (kWh)
STFRE 334.1 0.03 0
POLYH 336.4 (+0.69%) 0.03 0
ELLIP 338.3 (41.26%) 0.02 0
MPI 349.6 (+4.64%) 0.02 0

Next we look into the performance of the different uncertainty set characterizations when
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carrying out energy dispatching for the microgrid. Table 2.1 displays the performance of
energy scheduling based on the different uncertainty sets for an entire year of operation.
The percentage changes in cost are taken with respect to the STFRE. All strategies have a
good performance in terms of ENS and EC, but there are cost differences across strategies.
The proposed STFRE has the lowest cost, while MPI has the highest one.
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Figure 2.10: Daily evolution of the energy scheduling results associated with (a) STFRE,
(b) MPI. Blue areas indicate load supply by storage, and yellow areas indicate load supply
by the diesel generator. Red areas indicate diesel generator use to charge the storage asset.

(c) Daily evolution of energy holding in storage.

A daily evolution of the energy scheduling results associated with STFRE and MPI on
January 2nd can be seen in Figure 2.10. It can be observed that the diesel generator tends to
charge the storage under STFRE. The storage is dispatched to serve the net load alone when
its energy holding is high and the diesel generator is turned off. This leads to significant
decrease in TGC. We can also find that the storage under MPI is not charged as frequently
as with STFRE. As a result, the storage energy holding under MPI is always lower than with
STFRE. Thus, the flexibility of the storage is not exploited as well by MPI in comparison
to STFRE. This contributes to drive the cost higher. The cost associated with POLYH and
ELLIP are just slightly higher than with STFRE.
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Figure 2.11:
of STFRE at 60 minute look-ahead time (x10* kW?) and (c¢) TGC (k$) of STFRE

Effect of Mjpuq and Mg on the (a) calibration errors (%) (b) Average volume

Figure 2.11 shows how the calibration, volume and TGC of STFRE varies with the
moving window size of load (Mjpaq) and wind (Mnqg). We observe that these performance
metrics are more sensitive to Mj,q.q. Initially, TGC has a sharp decline with the increasing of
M p0q until M,.q is equal to one hour, where the calibration errors also become quite small.
The subsequent increase in TGC as M;,,q grows is indicative of the fact that the volume
of STFRE keeps increasing rapidly while the observed coverage rate saturates. Finally, we
choose Mjyaq and My,nq to be one hour and 24 hour, where the TGC is minimal and the
calibration error is close to zero. The corresponding detrended time series of load and wind
all pass the ADF test with these window length choices.

In Figure 2.12 we validate the effectiveness of the proposed STFRE with one minute
resolution datasets of renewable sources, which are taken from [67] and [68]. In general,

datasets with higher resolution are able to capture the more volatile and rapid changes in
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Figure 2.12: Power profile of (a) solar generation and (b) wind generation on January
1st with one minute resolution. Projected envelope for (c¢) solar power and (d) wind power
generated by STFRE.

solar and wind power generation. For example, in Figure 2.12 (¢) and (d) the solar power and
wind power have dropped by 20% and 30% of their installed capacities within one minute.
Still the STFRE is able to capture these extreme variabilities successfully and bound the
actual power trajectories inside the envelope. Here the forward-looking time step is set to
one minute. Also, we only show a look-ahead horizon of 15 minute because the envelope
saturates early. The calibration error for one, 15 and 60 minute look-ahead times are —1.05%,
—3.16% and —4.21% respectively. These are within high and acceptable levels of accuracy.

Fig. 2.13 shows how the discounting factor v(7) of STFRE influences the dispatch
performance of our proposed strategy. It is assumed that ~(7) = I'". The proposed STFRE
gets the lowest cost when T' is between 0.9 and 1. However, there is ENS and EC when T is

lower than 1. Finally, we choose I' = 1 considering all the three performance metrics.
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Figure 2.13: Sensitivity of the TGC, ENS and EC associated with the STFRE to the
discounting factor I'. The blue line represents the TGC. The red line and the magenta line
correspond to the ENS and EC, respectively.
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Figure 2.14: Diagram of the modified IEEE RTS system. The units of power, ramp and
energy in this system are MW, MW /5min and MWh.
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2.3.3 Transmission System

Next, our proposed approach is tested on a modified IEEE Reliability Test System (RTS),
as shown in Figure 2.14. The data of the network, the load profile, generating unit ramp
rates, minimum and maximum power outputs, minimum up and down times are all found
in [69]. For convenience, start-up and shut-down ramps of units are set to be their minimum
and maximum power outputs over 5 minutes, respectively. We also assume that the nuclear
(U400) and hydro (U50) generators are must-run units as in [19]. The value of lost load or
curtailing renewable generation is equal to $2000 per megawatt-hour. There are three wind
farms each with the same power capacity, and they are installed at buses 16, 17 and 18.
Wind data is taken from [66]. In Figure 2.14 we ignore the uncertainty of loads, and we
assume that there are no storage assets present.

We run the energy scheduling strategies with different uncertainty sets for comparison.
Here, the moving windows for all the wind sources have the same length set to 24 hours.
Since temporal trends have already been discussed in the last section, here we focus more
specifically on the spatial correlation between the wind farms. In this section, a whole year
of operation is considered. A unit commitment for the next 24 hours is executed at the
beginning of each hour. The unit commitment is held fixed for each hour, and a receding

horizon economic dispatch runs for every Tao = 5 minutes.
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Figure 2.15: TGC and ENS of energy scheduling strategies with different uncertainty sets

in one year’s operation with different wind farms capacities.

Figure 2.15 displays the TGC and ENS of energy scheduling strategies as we vary
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simultaneously the three wind farm capacities. As expected, STFRE always has the lowest
TGC, while MPI has the highest costs again. At the same time, the differences in terms of
ENS between the strategies are negligible. Please note that none of the strategies use wind

curtailment; therefore, no results for EC are given.
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Figure 2.16: (a) and (b) are scatter plots of power outputs of three wind farms. (c) and
(d) Projections of different uncertainty sets in the wind farm 1-wind farm 2 and the wind

farm 2-wind farm 3 plane.

Scatter plots of the power outputs of the three wind farms (when their respective
capacities are of 240 MW) are shown in Figure 2.16 (a) and (b); these clearly show their
spatial correlation. In Figure 2.16 (c) and (d), we project the 60-minute uncertainty sets
generated by STFRE, ELLIP, POLYH and MPI onto two planes. For each strategy, the
projection is made at 8:10 AM on January 1st. By inspection of Figure 2.16, we find that
STFRE can effectively capture the spatial correlation between the three wind farms. Also,
it can adjust its shape according to the scatter plot region of the correlated wind power
outputs, while other uncertainty sets have fixed shapes (i.e., polyhedron, ellipsoid or box).
As a result, STFRE has the lowest volume among all the uncertainty sets (see Figure 2.17).

Moreover, in Figure 2.18 (a) and (b) we can see that the transmission line envelopes {e}1 o
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Figure 2.17: (a) Calibration results (b) Average volume of uncertainty sets at different

look-ahead times over the entire simulation period (transmission system).

0 0

s - — ; 3
2 50 —0 X X =
@ K Y]
— V== ™
g 100, =" - é
£ k=
2 -150 2
o o
2 200 g
[e] - } o
a % a

-250

12
-50

N g
g -100 \2_,
@ ©
— -150 ™
[} [
£ £
= -200 =
2 2
2 -250 2
g-
 -300 2
a o

-350 - . -150 . .

Jan 1st 0:00 Jan 1st 12:00 Jan 2nd 0:00 Jan 1st 0:00 Jan 1st 12:00 Jan 2nd 0:00

© @
Figure 2.18: (a) Projected envelopes for transmission line {e}ls, 6%18}. (b) Projected
envelopes for transmission line {e}%, 6%36}. The dashed lines are actual trajectories. (c)
Power flow in line 18 on Jan 1st. (d) Power flow in line 36 on Jan 1st.

6%“18} and {e}%, 6%36} generated by STFRE also have smaller sizes than those generated by

other uncertainty sets. Though the projected envelopes produced by STFRE in Figure
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2.18 are smaller in size, it can be observed that the actual power trajectories remain inside
respective envelopes. Figure 2.18 (c¢) and (d) show the power flows in lines 18 and 36
on January 1st when all three wind farms have a capacity of 240 MW. The power flows
in line 18 and line 36 under ELLIP, POLYH and MPI are always lower than that under
STFRE (negative represents the direction of power flow). This is because the larger projected
envelopes produced by ELLIP, POLYH and MPI in Figure 2.18 (a) and (b) make them
overestimate the potential risk of flow violations in transmission lines. Therefore, they lead
to a larger reservation for safety margins. Hence, the available transmission line capacities

are better exploited by STFRE than other uncertainty sets, which contributes to drive down

1ts cost.
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Figure 2.19: Cost performance of different strategies in one year’s operation under different

degrees of transmission limits and system ramp capacities.

Figure 2.19 shows the cost performance of different energy scheduling strategies under
different degrees of transmission limits and system ramping capacities. The transmission
capacity of each branch or the ramp capacity of each generator is set as a certain percentage
of its original capacity. In the ‘No case’, no transmission limit or ramp limit is considered.
By inspection of Figure 2.19 (a), we see that all the strategies will perform better when there
are higher transmission limits. When there are no transmission limits, all strategies have
similar performances. In Figure 2.19 (b), we see that lower ramp limits will lead to higher
operating costs. However, in all cases the proposed STFRE leads to the most cost efficient

decisions.
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Figure 2.20: Structure of two interconnected IEEE RTS systems.

Finally, in order to evaluate the effects of the system size on the performance of the
proposed approach, two IEEE RTS system are interconnected to form the larger system
shown in Figure 2.20. Three transmission lines (500 MW each) are added to connect the
two systems. Area 1 is the same system as the one shown in Figure 2.14. In Area 2, we
replace the loads at buses 6, 7 and 8 with three correlated uncertain loads. The uncertain
load data is taken from [70], and the load curves are scaled to match the maximum load
at corresponding buses. Other generation and transmission parameters in each area are the
same with the settings in Figure 2.14. The performance metrics of different energy scheduling
strategies along with their computational complexities are listed in Table 2.2.

The proposed STFRE still has the lowest TGC 4. All the strategies have similar good
performances in terms of ENS and EC. Table 2.2 also shows the computational complexities

of the different strategies, which are evaluated based on the average CPU time required to run

4Although the STFRE only saves 3.2% of TGC compared with POLYH, in a large power system (e.g.,
the system in Figure 2.20) 3.2% of TGC still means that significant generation costs and carbon emissions

have been reduced.
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Table 2.2: Energy Scheduling Strategies’ Performance (One Month)

Average CPU
Uncertainty TGC ENS EC .
time per step
Sets (MS$) (MWh) | (MWh) ©)
S
STFRE 21.9 0.37 0 1.02 (0.43)
POLYH 22.6 (+3.2%) 0.37 0 1.01 (0.42)
ELLIP 23.0 (+5.0%) 0.36 0 1.02 (0.41)
MPI 23.5 (+7.3%) 0.36 0 1.02 (0.43)

each dispatch step (the number in brackets is the computational time for the single-area IEEE
RTS system in Figure 2.14). It can be seen that all the strategies have similar computational
complexities. At the same time, as all these strategies are essentially robust optimization
approaches, their computational complexity increases with the size of the system. However,
for both the single- and two-area test systems, the computational time of our approach is
still far bellow the length of the forward-looking time step (five minutes) necessary for an

eventual real-time implementation.

2.4 Summary

In this chapter, we proposed spatio-temporal flexibility requirement envelopes for managing
flexibility and scheduling energy in power systems with significant variable renewable
generation. Using historic generation and demand data, it can comprehensively capture
and represent the temporal trends and spatial correlation of multisite renewable generation
and load demand. A mathematical program is also developed for applying the proposed
variability modeling approach into power system energy scheduling through projections of
the spatio-temporal envelopes.

We conducted case studies to showcase the effectiveness of our approach both in microgrid
context and in a larger transmission system. Results show that spatio-temporal flexibility
requirement envelopes can effectively capture the temporal trends and spatial correlation
of input power profiles by adjusting its shape and size, which effectively reduces the over-

conservatism of the energy scheduling solution. We observed that, as a result, the flexibility
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of storage in a microgrid and the full capacity of transmission lines in a transmission system
can be better exploited. This leads to a decrease in total energy scheduling cost in the
long run, while not incurring more load shedding or renewable generation curtailment as
compared to other uncertainty set characterization methods (i.e., ellipsoidal, polyhedral and
box uncertainty sets).

In the next chapter, we develop a rigorous DT-based learning framework for implementing
flexibility-based MG dispatch paradigm (the MG has one dispatchable generator only) in a

MG controller with limited computational power.
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Chapter 3

Decision Tree-Based Flexibility

Management for Microgrids

In this chapter, we apply a flexibility-based operational planning paradigm to MG energy
dispatch. Here, the MG has a maximum of one dispatchable generator. As is discussed
in Chapter 1, the classic energy dispatch problem with energy storage and dispatchable
thermal generation assets requires the solution of mixed-integer optimization problems. Such
approaches are not amenable to most remote MG and practical field MG implementations,
where controls are rule-based and typically implemented by PLC. Albeit such rule-based
dispatch controls are always feasible, they cannot optimize fully over the availability of
renewable generation and asset capacities of MGs, especially energy storage. In this chapter
we propose a systematic method to generate the MG dispatch rule base with the objective
of matching as much as possible the control performance obtained by full mixed-integer
optimization. To achieve this we develop a rigorous control mapping method based on DTs.
The numerical results demonstrate that the DT-based dispatch strategy can provide feasible
and near optimal dispatch decisions for MG. Its computational efficiency is very high, a

feature promising for real time in field implementation.

3.1 Introduction

The implementation of MG is envisioned to be an effective way of integrating renewable

resources to the grid. The MG controller is considered as a key element to realize this
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vision [71], as it coordinates different distributed energy resources to maintain the
economic and secure operation of a MG. In practice, to fully cater to the requirements of
the dispatch function of a MG controller suggested in [71] and [72], a number of challenging
issues arise. For example, traditional rule-based dispatch functions are becoming less
capable of handling the volatility brought by increasing levels of renewable generation and
handling systematically the capacities of energy storage assets; at the same time, controls
in MG are typically implemented by PLC or other industrial controllers with limited
computational power and the dispatch algorithm faces stringent execution time for real
time operation, often in remote locations. Resolving these issues calls for alternative
operational planning approaches capable of bridging the need for higher control
performance and simplicity of field implementation and execution.

For years, the concept of flexibility [6] has played a crucial role in MG dispatch operations
for accommodating more intermittent renewable generation. In Chapter 1, we reviewed the
state of the art on the flexibility management in MGs. To summarize, recent literature has
shown that flexibility-based operational planning paradigms can contribute a great deal to
the economic and secure operation of MG. However, such paradigms usually require the
online solution of MIP. Traditional methods for solving MIP problems require advanced
iterative optimization algorithms and significant computational power in terms of CPU and
memory [60], which may be difficult for implementation in practical settings.

Recently, ML techniques are beginning to emerge as promising tools for reducing the
computational complexity of traditional optimization algorithms [73]. In energy scheduling,
the same optimization problem is solved repeatedly, differing only in the input data,
corresponding to the current and forecasted demand and renewable generation. Thus, there
exists an opportunity for ML to learn and approximate the mapping between the input
data of an optimization-based dispatch algorithm and its solution. The resulting ML
models, once well-trained, are able to map inputs to dispatch decisions at a fraction of the
computational effort of the original optimization problems [74]. Previous studies [60], [75]
designed model-free reinforcement learning to represent this mapping in MGs which are
partially observable.

In our study the MG controller is assumed to have full knowledge of the system, and
the underlying MG dispatch optimization problem is perfectly known. The model-free

reinforcement learning method cannot fully leverage the pre-existing knowledge about the
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optimization model, which may result in solutions that violate system operating
constraints [73], [74]. To better exploit any known structures of the energy scheduling
problem, supervised learning methods were used in [76], [77] and [78]. In these papers,
learning components are embedded in the traditional iterative algorithms to accelerate the
optimization process. Although the complexities of the proposed algorithms have been
reduced significantly, they still rely on iterative procedures to obtain optimal solutions,
which still could be time-consuming and resource-consuming in low-power computing
field-based applications. To further reduce the computational complexity, the authors
of [79] formulated the MG dispatch as a dynamic programming problem and employed
DNN to approximate the optimal value function in a one step process. Though the
efficiency of the proposed algorithm is promising for real time implementation, the authors
assume the generators are always kept online, which may not always be economical in
practice as significant savings can be derived by decommitting generators in low net load
(i.e., load less renewable generation) scenarios [80]. Reference [81] developed neural
network-based method for accelerating the convergence of existing distributed demand
response algorithm in MG. A reinforcement learning approach was proposed in [82] for
establishing computationally efficient dispatching rules for battery energy storage systems
in MG. However, the authors of [81] and [82] also did not consider the ON/OFF statuses of
generators in their models.

Papers [83] and [84] used DT to approximate their MG dispatch algorithm. The
dispatch decisions are predicted by directly passing the inputs through the DT, which is
quite economical in terms of computation. However, the method in [83] relies on day-ahead
scheduling results to satisfy the operating constraints, which may not always be available
in practice. The authors of [84] used a single DT to approximate their MG dispatch
algorithm. However, the direct output of the single DT is not guaranteed to be feasible in
light of the original optimization problem constraints [73]. Thus, none of the existing works
has provided a rigorous learning framework for implementing an optimization algorithm in
a low-power computing MG controller either because the feasibility of the solution cannot
be guaranteed, ON/OFF statuses of generators are not considered, or the algorithm relies
on complex iterative procedures.

Inspired by previous works, in this chapter, the power of ML and flexibility-based

operational planning paradigms are combined to design a computational efficient and high
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quality solution for real time MG dispatch. Specifically, our work is based on DT. There
are two reasons why DT are adopted in the context of this work: 1) DT can be efficiently
programmed in a PLC-based MG controller. Although previous studies [79], [85] show the
effectiveness of DNN in designing real time MG dispatch algorithms, such ML techniques
are difficult to implement in a practical industrial controller; 2) Though the approximation
abilities of DT are not on par with more advanced ML techniques, like DNN, a DT
approach leads to highly interpretable dispatch rules [77], which is essential in
mission-critical industries like power and energy.

Compared to the learning based approach for simplifying and accelerating optimization

algorithms in existing literature, our DT-based framework has the following advantages.

o It is a rigorous framework where the operating constraints of MG, uncertainties in net
load, the commitment statuses (ON/ OFF) of dispatchable generators, and the energy

storage system are considered systematically.

e The pre-existing knowledge regarding the original MIP problem is well exploited to
guarantee the feasibility and the optimality of the predicted dispatch decisions. The
first improvement comes through a systematic partitioning of the feature space into
different non-overlapping regions according to the flexibility limits of energy storage
asset. Different DTs are built for different regions to guarantee the strict enforcement
of the power balance. Second, the outputs of DT are post-processed using the
operating constraints of individual units. Third, a metric for pruning DT is designed
according to the objective function of the MIP instead of conventional error metics,

which contributes to improve the optimality of the predicted dispatch decisions.

3.2 MG Economic Dispatch

A MG typically contains dispatchable generators, energy storage, renewable generation
(wind and solar generators) and loads. In this chapter, we make the following simplifying

assumptions.
o The network constraints of the MG are ignored;

o As is the case with [71], the interaction between the MG and the distribution network



3. Decision Tree-Based Flexibility Management for Microgrids 49

is not considered in this chapter. Thus, the power exchange pp.i(t) is taken as a

parameter;

o We assume that the MG has a maximum of one dispatchable generator. If there were

multiple generators, they would be started up and shut down simultaneously.
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Figure 3.1: Illustration of the receding horizon operation using flexibility requirement

envelopes. The forward-looking horizon is shifted at each time step.

The MG dispatch problem is formulated with the concept of flexibility requirement
envelopes. First, the flexibility requirement envelope of the net load {el(7), €% (7)}rez,, is
constructed using time series of {d(¢)}L, and {6(¢)}L ,, where T is the length of the time
series. In this chapter, we assume that the envelope {e'\(7), €4 (7)}rez, is a function of 7
only (i.e., it is time invariant and thus assumes that renewable generation variability
looking 7 units of time in the future is essentially the same at all time ¢). We refer readers
to [6] for further details about quantifying the envelope !. The envelope has an up-going
(1) and a down-going () branch, as shown in Figure 3.1. The MIP of MG dispatch (with
one dispatchable generator only) is presented in (C.1) — (C.9) in Appendix C.

We can see that the MIP is solved repeatedly at each time step ¢, differing only in two

input parameters. They are the residual net load (i.e., d(t) — 0(t) — ppoi(t)) and the energy

!Please note that the envelope {62(7‘)762(7)}7—6511 used in this chapter can also be constructed using
the approach we proposed in Chapter 2. However, it is more convenient to construct the envelope
{e (1), €4 (1)} rez,, directly using the method in [6] because this flexibility requirement envelope is assumed
to be time invariant in this chapter.
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level of the storage asset at the end of last time step (i.e., s.(t — 1)).

At the current time, tg, the energy scheduling problem (C.1) — (C.9) is solved, which
requires dispatch decisions to consider a forward-looking “envelope” containing potential
trajectories for net load for all 7 € =Zp. However, only the scheduling decisions for the
current time step ¢y (i.e., 7 = 0) are applied. The scheduled trajectories of dispatchable
units are assumed to remain constant between each time step to — to+ 1. At the beginning
of the next time step ty + 1, the above process is repeated. This procedure, known as the
receding horizon operation, is shown in Figure 3.1.

The computational burden of the MIP (C.1) — (C.9) is quite high given that it needs to
optimize over the forward-looking horizon and multiple branches of the envelope. Direct
implementation of the MIP in a MG controller requires running online optimization
algorithms to solve the problem at each time step. Traditional optimization algorithms rely
on iterative procedures to obtain optimal solution [73]. Solving the MIP using such
algorithms within the sampling time requires intensive computational power, which is
difficult for implementation in practical MG where controllers usually have limited
processing power. Thus, in this chapter we will construct an approximate DT-based solver
capable of replacing the traditional computationally expensive optimization algorithms for
real time MG dispatch.

3.3 Systematic Mapping of MIP-Based Dispatch onto

Decision Trees

The overall workflow of the DT-based approach is shown in Figure 3.2, which is divided into
the training phase and the testing phase. The details of each phase are presented below.
We note that both the training and testing phases require offline simulation runs of the
MIP-based MG dispatch problem (C.1) — (C.9) based on realistic field data (renewables and
load). The collection of input data/simulated output dispatch instructions constitute the

raw materials of the training and testing steps.
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Figure 3.2: Overview of the DT-based optimization approach.

3.3.1 Training Data Generation

Conventionally, DT can perform both classification and regression tasks. In classification,
the training data set is organized as a collection of T" instances {(x;, y;)}{_,. The tth instance
is described by a vector of N, input features &, = (z},...,27") and a discrete output value
y;. In regression, the data is organized as {(x;, 2¢) }._,, where the output 2 is continuous.
In order to build a training data set for creating DT, we first define a Training Scenario
(TAS). In the context of this chapter, where we seek to build a DT which maps MG states

to MIP dispatch decisions, a TAS contains the following information:
1. The length of the offline dispatch simulation 7T
2. Time step length Th;
3. The parameters of dispatchable generation;

4. The parameters of storage;
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5. Time series of {d(¢)}/_,, {6(t)}_; and {ppei(t) }_;.

The optimized dispatch decisions at time ¢ (denoted with an asterisk) py(t), pi(t), di(t),
and d%(t) (t =1,2,---,T) are obtained by solving (C.1) — (C.9) with a MIP solver. These
MIP outputs are tabulated along the residual net load d(t) — §(¢) — ppei(t) at time ¢ and the
previous time step energy storage state of charge s*(t — 1) as mentioned previously.

We note that DT are approximations of an input/output relationship. Thus, the input
features of the DT need to be transformed from the two original inputs of the MIP as follows
(t =1,2,---,T). Here we perform feature scaling [86] to make the input features have

similar scales.
x% = (d(t) —o(t) — pp0i<t))/]Te-
a7 = (si(t — 1) = se)/(5c — se)-

The outputs of the DTs need to be transformed from the outputs of the MIP, i.e., the
optimized dispatch decisions pj(t), p;(t), di(t), and d;(t). Specifically, we take advantage of
the dependency induced by the power balance equation (3.1) and define the dispatch options
shown in Table 3.1

Py(t) + Pe(t) = d(t) = 6(t) — Ppoi(?) (3.1)

In doing so, we reduce the number of decision variables to be predicted. Note that the
storage can be either charged or discharged in options Opt, and Opts. Options Opt, and
Opts are used as in last resort to maintain the power balance. The output y; (discrete) is
defined as follows (t =1,2,--- | T).

y: Depending on the values of p(t), pi(t), d:(t) and §%(t), y: maps to one of the dispatch
options in Table 3.1.

The free variables in options Opt; and Opty can be further determined using (3.1).
However, it becomes further complicated with option Opts when both generation and
storage are dispatched. The power balance (3.1) does not suffice. Therefore, we introduce
another set of DT, whose output z; (continuous) is defined below, to completely determine

the output power of generator and storage for option Opts.

2z =pi(t)/pe (t=1,2,---,T).
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Table 3.1: Dispatch options of the MG

Index | Description

Opt1 | Generator only (py(t) > 0 and p;(t) = 0)

Opty | Storage only (py(t) = 0 and p;(¢) # 0)

Opts | Generator + Storage (p;(t) > 0 and p;(t) # 0)
Opty | Curtail excess power (0 (t) > 0)

Opts | Load shedding (d(t) > 0)

3.3.2 Method for Building DT

From the data generated in the previous subsection, we first grow a large decision tree, and
then prune it back in order to obtain a subtree, whose size is more reasonable for a practical

implementation.

Stage 1: Growing Large DT

We define CT as a large classification tree (to represent y;) and RT as a large regression tree
(to represent z;). They are grown as follows:

Step 1. Preparation of Training Data Set: First, a TAS for the MG is defined. The
training data sets {(zs, y;:)}_; and {(=¢, ;) }._, are built as aforementioned.

Step 2. Partitioning of the Space of Features: The space of z} and z? (t =1,2,---,T)
is divided into the four non-overlapping regions which are described in Table 3.2.

In Table 3.2, the space of features is partitioned according to the flexibility limits of the
storage in terms of power capacity and energy storage level. In Reg; the residual net load
stays within the power and energy limits of the storage. The generator can be kept off in
this region. In Reg, the residual net load goes beyond the power capacity of the storage,
whereas the energy holding of the storage is insufficient in Regs. The generator has to be
dispatched in the two regions. There is surplus renewable generation in Regy.

Step 3. Building Large DT: Different large DT are built for different regions in Table
3.2.

Step 3.1: For each region Reg, (r = 1,2,3), a large classification tree C7T, is created
using { (@, Yt) }rereg, as the training data, which is the subset of the whole training data set
corresponding to region Reg.. Next, a large regression tree RT, is grown using

{(@4, 2¢) bieRegon{tlye=0pts) as the training data. A brief introduction about how to grow
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Table 3.2: Different regions of the space of x} and z?

Index | Description
Regi | {t|0<a! <1andz?/z} > PTa/(5c — sc)}
Regy | {t|x} > 1}
Regs | {t|0<a! <1and2?/z} <PTA/(5c — sc)}
Regy | {t |z <0}

large classification tree and large regression tree from the training data is provided in
Appendix D

Step 3.2: The dispatch in region Reg, is very simple. It represents the case where the
MIP (C.1) - (C.9) simply stores the excess electricity in storage (option Opty). After the
storage is full, the excess electricity is curtailed (option Opty). Therefore, the dispatch in

region Reg, requires no distinct decision tree.

Stage 2: Pruning of DT

The best substrees of C'T, and RT, (r = 1,2,3) will be determined. However, evaluating
every possible subtree would be cumbersome. Thus, the cost complexity pruning method
[87] is used. We define nonnegative tuning parameters «, and f, for each CT, and RT,,
respectively. The pruned DT are denoted as CT and RT’r, which are functions of a, and
B, respectively. The larger the tuning parameter is, the smaller the pruned DT will be. The
cost complexity pruning method is introduced briefly in Appendix D.

Step 4. Determining the Best Tuning Parameters: First, for each large tree CT, (or

0
T

RT,, r = 1,2,3), a K-fold cross-validation [87] is performed. The tuning parameter a; (or
0 r =1,2,3) that minimizes the cross-validation error is found.
Next, we explore all the combinations of {a,,(,}3_; for o < a, < o™ and
0 < B, < M where o™ and 7% are the maximum values for the tuning parameters.
The total number of combinations of tuning parameters explored is
o (@™ —ad + 1) (B = B) + 1).
For each combination, the corresponding subtrees are applied to MG dispatch following
Algorithm 1, where the parameters and input time series of the MG are set according to

the TAS defined in Step 1. Note that the variables €5 and es represent respectively the
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maximum power that can be discharged from and charged into storage at the current time
step. They take into account both the power and the energy limits of the storage. The
Total Cost (T'C') is calculated based on the corresponding dispatch results for the full offline

dispatch simulation T, as a function of the combination {a,., 3, }3_,

TC({ar, B, }720) = Zj:l (%pg(ﬂ2 + bgpy(t) + cqug(t) + wld,(t) + 77550@)) (3.2)

Then the tuning parameters that have the minimal T'C' are the best tuning parameters,
which are denoted as {a, 3*}3_,. Please note that all the operating constraints of MG have
been respected in Algorithm 1 when we optimize the tuning parameters of DT.

The final optimal DT are denoted by CT* and RT’r (r = 1,2,3). Algorithm 1 along
with the corresponding optimal DT constitute the DT-based MG dispatch strategy which
can be ported to a practical general-purpose industrial controller. It is worth noting that the
loop in line 1 of Algorithm 1 applies only when we are tuning «, and 5,. When in operation,

the algorithm is done in open-loop.

Discussion

Training data set {(x,, yt)}tT:1

¥ y o0 BN //

|

G, )}teRegl (e )}teRegz {Gxes e )}teRegS

Figure 3.3: All the training samples {(x;,y;)}._, are sorted by region (Table 3.2). Each
square block represents an instance (x;, y;). The red, blue, green and yellow blocks represent

instances in region Reg;, Regs, Regs and Reg,, respectively.

To guarantee that the dispatch decisions made by the DT-based MG dispatch strategy
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Algorithm 1 DT-Based MG Dispatch Algorithm

Input: CT% and RT? (r =1,2,3)

Output: Dispatch decisions {p,(t), pe(t), d.(t), .(t)}.
1: fort =1to T do

2 @ (dt) — 6(t) — ppot)) /e
3 ah 4 (Se(t —1) = 5e)/(5c — Se)
4: if 2] <0 (region Reg,) then
5. pl(t) = 0, pe(t) = d(t) = 5(t) — ppoi(t)
6: else
7 xy and 2, are in region Reg, (r =1,2,3).
8: Predict the dispatch option ¢’ using CT with 2| and 2, as inputs.
9: if 4/ = Opt1 then
10: Pg(t) <= d(t) — 6(t) — pPpoi(t), pe(t) <0
11: else if ¢y = Opt3 then
12: Predict 2’ using RT? with 2} and z, as inputs
13: pe(t) < 2'Pe
14: pg(t) — d<t) - 5(t) - ppoi(t) - pe(t)
15: else
16: Pg(t) <=0, pe(t) <= d(t) — 6(t) — ppoi(t)
17: end if
18:  end if
19: if py(t) > 0 then
20: py(t) min{max{pg(t),&},@}
21:  end if
22: @5 < min{pe, (Se(t) — se)na/Ta}
2 es  max{po, (5.(t) — 5)/(n.Ta)}
24:  pe(t) < min{max{d(t) — 6(t) — ppoi(t) — py(t),es}, €s}

25:  Calculate s.(t)
26: end for

can always satisfy the operating constraints, we use the following methods.

o Add a post-processing stage in Algorithm 1 (lines 19 — 24) to satisfy the operating

constraints of dispatchable generation and storage.

o Asis discussed in Step 2, the different regions in Table 2 have different feasible dispatch
options. It is for this reason that in Step 3.1 all the training samples {(x;, y:)}L, are

first sorted by region, as shown in Figure 3.3. The dispatch options in the sorted
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instances { (2, Y¢) }repeq, for regions Reg, (r = 1,2,3) are guaranteed to be feasible in
their respective regions. Therefore, the resulting classification tree for region Reg, (r =
1,2,3) is trained by using only strictly feasible instances, and the dispatch decisions

predicted by Algorithm 1 are guaranteed to satisfy the power balance constraint.

The tuning parameters {a,, ,}>_, address the optimality of the model for dispatch.
In Step 4, the best tuning parameters are determined based on the metric T'C' instead of
conventional error metrics used in the ML literature (e.g., mean square error). The T'C' is
designed according to (C.1), which directly measures the optimality of the dispatch results
including the generation costs and the penalties of load shedding and wind curtailment.
Later in our case study, we will show that conventional error metrics used to train DT are
not necessarily related to their performance in dispatch. A similar idea was also proposed
in [73]. A possible reason of this phenomena is that the optimal solution to a problem is not
always unique.

Nonetheless, in Step / conventional error metrics used for DT are still used to calculate o
and Y. The purposes of determining af and 3° are to: 1) reduce the risk of DT overfitting,
which unnecessarily increases their sizes; 2) reduce the search space in Step 4 when we
determine the best tuning parameters. For example, if we consider one year’s dispatch with
a 5-minute time step when creating the training data set, then 7T is approximately 10° and
the total number of possible combinations of tuning parameters in the search space can be
up to 2 x 10 if there is no reduction, while the total number of combinations explored is
only approximately 3600 when the searching space is reduced. Thus, reducing the search
space is clearly essential.

We can see from Algorithm 1 that the DT-based dispatch predicts dispatch decisions in a
open-loop process. Compared with traditional iterative algorithms for solving the MIP, the
DT-based method is much more computationally efficient and promising to enable real-time
implementation in a industrial controller with limited computational power.

In Section 3.2 we ignore the network constraints of the MG. This is because the physical
network constraints of a MG or distribution system are mainly concerned with node voltage
constraints [88]. Voltage management in a MG or a distribution system is mostly concerned
with reactive power management and the control of voltage compensation devices [89] (e.g.,
capacitors, reactors, static VAR compensators, etc), which all go beyond the scope of this

chapter.
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If the power exchange with the utility grid pp.(t) is allowed to deviate from the pre-
determined transaction schedules, we would need to add an input feature in the DT, which
would be the electricity price associated with py,;(t). The first feature of the DT should
be modified to become z} = (d(t) — 8(t) — Ppoi)/Pe, Where Ppo; is the upper limit of power
exchange. Then, in each region of Table 3.2 (including region Regs), we would build a
classification tree and regression tree following the same procedure as in Step 3 and Step 4.
Moreover, for each region we would need to construct another regression tree whose output
is the grid power exchange p,.i(t). As a result, there would be 12 DT in total instead of
the original six. Therefore, in this case the complexity of the proposed DT-based dispatch
would still not increase much.

Nonetheless, please note that in practice distribution systems usually require MG to
“maintain synchronization at the POI with constant power exchange, following
pre-arranged transaction schedules with minimum deviation and minimum accumulated
inadvertent energy exchange” [90]. The MG controller is responsible for managing the
intermittency of its internal distributed energy resources and respond quickly to the
internal load and generation changes or disturbances. This way, there are minimum
impacts on the distribution grid at the POI.

3.3.3 Testing of the DT-Based MG Dispatch

In order to test the proposed DT-based MG dispatch strategy, we first define a Testing
Scenario (TES) which could have different time series of demand and renewable generation,
or different dispatchable asset limitations and parameters compared to the TAS. Then, the
proposed DT-based MG dispatch strategy is tested under the TES to evaluate its dispatch

performance against unseen conditions.
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3.4 Case Study

3.4.1 Test System Description

The approach proposed in this chapter is tested on a MG (shown in Figure 3.4) which includes

one critical load, one priority load 2, one wind farm, one diesel generator and storage.

Priority
Load

Critical
Utility Grid Load

—oig'm 4
! II ]

S
Storage  Wind Farm

Figure 3.4: MG system structure. The controls in MG are typically implemented by PLC

or other industrial controllers with limited computational power.

Scenarios Studied

We construct 10 scenarios for training and testing of the DT-based dispatch approach. In
simulation, T is set to be 5 minutes and 7' is one year. Our overall objective here is to
demonstrate how well the DT-based approach is able to generalize over a very wide array of
MG operating conditions (i.e., not require re-training).

S (Base Scenario): For storage: p. = 100 kW, p, = —100 kW, 5. = 90 kWh, s, = 10
kWh and 7. = ng = 0.963. The state-of-charge (SOC) of storage is initialized at 50%. For
the diesel generator: p, = 360 kW, p, = 45 kW, a, = 1.98 x 107° $/kW?h, b, = 0.02842
$/kWh and ¢, = 54.1 $/h. The operaEng cost of diesel generation is adapted from the data
found in [42]. The data of aggregate load {d(t)}L_, is obtained by adding the critical load
and the priority load together. The critical load is kept constant at 50 kW. The maximum

2 According to [71], critical loads are the loads that must be served in all normal operating modes of the
microgrid. They typically cannot be curtailed. Priority loads are the loads that may be curtailed if necessary,
but should be satisfied if possible.
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and minimum values of the priority load are 350 kW and 50 kW, respectively. The data for
the priority load comes from an isolated village in the Canadian province of Quebec. The
capacity of the wind farm is 100 kW, and the temporal wind generation data {5(t)}L, is
taken from NREL’s database [66]. The MG is grid-connected; the contractual value of the
power exchange at POI p,,;(t) is kept constant for each day of the year, which is set to be
the minimal net load of any given day. Penalties of load shedding and wind curtailment are
set to be ¢ = 7% = 1000 $/kWh.

The remaining scenarios Sy — Sj¢ represent cases where there might have been original
MIP dispatch model calibration errors (e.g., So—S4), possible asset performance degradation
(e.g., S5—Ss) or different wind power capacity and different utility energy exchange scenarios
(Sg, S10)-

Ss: The maximum value of each priority load is 450 kW.

S3: Next year’s time series of priority load is used.

S4: Next year’s time series of wind power is used.

Ss: De = 150 kW, p, = —150 kW.

Se: De = 75 kW, p, = =75 kW.

Sz 5. = 140 kWh.

Sg: 5. = 65 kWh.

Sg: The capacity of each wind farm is 150 kW. p,;(t) is kept constant at 40 kW for the
whole year.

S10: The capacity of each wind farm is 150 kW. p,;(t) is kept at 0 kW in the whole year
(islanded).

Other parameters and time series in Scenarios Sy — Sig are same as those in the Base

Scenario, S7.

MG Dispatch Strategies
Three MG dispatch strategies are calculated for comparison purposes.
e DT-MGDS: This is the proposed DT-based MG dispatch strategy.

o DT™I1_MGDS: This is the single DT-based MG dispatch strategy proposed previously
in [84]. In DT"P-MGDS, the space of features is not divided. A single DT is built
using the training data set and is then applied directly to perform MG dispatch.
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o Rule-MGDS: This is a traditional human-engineered rule-based MG dispatch
strategy, as proposed in [85].%> The Rule-MGDS uses a simple priority list to perform
MG dispatch. The distributed energy resources are dispatched in the following order:

renewable generation, storage and diesel generation.

Performance Metrics

The dispatch strategies are mainly assessed by comparing their respective Total Generation
Cost (TGC) when facing the same operating scenarios. We also consider Energy Not Served

(ENS) and Energy Curtailed (EC) as further performance metrics.

TGO =", agpy(t) + by, (t) + cyuy(t) (3.3)
ENS=TaY, ddt) (3.4)
EC=TyY,  6.() (3.5)

Analysis Tools

The model (C.1) — (C.9) is solved using the commercial MIP solver CPLEX. The proposed
approach is carried out with ML software MATLAB [91] for validation.

3.4.2 Testing of the Proposed DT-Based MG Dispatch Strategy

First, the performance of the DT-MGDS is compared with the Rule-MGDS. The DT-MGDS
algorithm is set up under TAS S} and its performance in MG dispatch is tested under TES S,,
(m=1,2,---,10). The resulting TGC is compared with the TGC of Rule-MGDS calculated
under S,,,. The corresponding percentages of TGC saved by DT-MGDS are presented in
Figure 3.5 (a). We can see that DT-MGDS saves an average of 30% of TGC compared with
Rule-MGDS over the 10 test scenarios. Also, ENS is nil for both dispatch strategies, and
differences in EC are under 1%. In fact, the Rule-MGDS uses a simple priority list in MG

3Though this dispatch strategy was called the “decision tree approach-based dynamic energy management
system” in [85], it is not based on ML techniques. It is a traditional rule-based MG dispatch strategy in
essence. In addition, please note that [85] proposed two sets of MG dispatch algorithms. The first one is the
simple rule-based method mentioned above, while the second one is based on DNN. This second method is
not used here.
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Figure 3.5: (a) Percentage of TGC saved by DT-MGDS compared with Rule-MGDS, (b)
TGC optimality loss for DT-MGDS.

dispatch. The distributed energy resources are dispatched in the following order: renewable
generation, storage and diesel generator. Although such a simple priority listing method can
respect the technical constraints, it is not capable to use optimally the renewable generation
and other MG assets, as evidenced by its poor TGC values.

Next, we compare DT-MGDS with dispatch results which would have been obtained by
solving the full MIP (C.1) — (C.9). As before, DT are created with the data set of TAS S,
and tested in MG dispatch under TES S,, (m =1,2,--- ,10). The percentage of optimality
loss (taken with respect to the TGC calculated by the MIP solution under S,,) is shown in
Figure 3.5 (b). The approximate average percentage optimality loss of DT-MGDS is only
1.5% over the 10 test scenarios. Therefore, DT-MGDS sacrifices little optimality in terms of
TGC, yet its online dispatch calculations are significantly simpler. Both the DT-MGDS and
the dispatch decisions calculated by MIP have no ENS at all times, and their differences in
EC are negligible. As can be seen from Figure 3.5 (b), DT-MGDS still loses little optimality
in TGC when its TES is different from its TAS (i.e., when the TES is Sy — Sjg). Thus, DT-
MGDS is capable of generalizing beyond its TAS and achieving good dispatch performance

in a MG with different parameters, load profiles, wind data or other operating conditions.
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3.4.3 Comparison of Different DT-Based Dispatch Strategies
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Figure 3.6: TGC and ENS of DT MGDS and DT-MGDS tested under all 10 test
scenarios. The dispatch results calculated by MIP is also provided (MIP and DT-MGDS
results have no ENS).

Next, the proposed DT-MGDS is compared against DT“"P*-MGDS. Here, DT in DTe™PL.
MGDS are created with the data set of TAS S; and its performance in MG dispatch is tested
under all the 10 scenarios.

The results are presented in Figure 3.6. We see that the TGC of DT*"PL-MGDS are even
lower than the TGC calculated by MIP. However, DT“"PL_MGDS incurs significant ENS,
whereas the results by MIP and DT-MGDS have no load curtailment at all time. A daily
evolution of the dispatch results of DT“PL_MGDS on January 1st can be seen in Figure 3.7
(a). Here, DT“"PL.MGDS was tested under TES S;. The system started shedding load at
7:00 AM and 8:20 PM because DT“"PL_MGDS still tries to discharge the storage (option
Opts, Storage only) when the energy holding of storage reaches its minimum (see Figure
3.7 (b)). This indicates that DTP.-MGDS fails to sense the operating constraints of the
storage and maintain power balance in the system.

In general, the ML techniques cannot guarantee the feasibility of its output (i.e., satisfying
constraints) when it is used to output solutions to an optimization problem [73]. Figure 3.7
(c) shows the dispatch options obtained by solving (C.1)—(C.9) in the different operating

condition regions (Table 3.2). The statistics are calculated according to the corresponding
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Figure 3.7: (a) Outputs of diesel generation and storage calculated by DT“"PL-MGDS on
Jan 1st. Blue and red regions indicate that the storage and the diesel generator supply power
to the load, respectively. The energy in grey is curtailed. (b) Energy hold in storage and
dispatch options chosen by DT™PL.MGDS. (c) The dispatch options (Table 3.1) chosen by
MIP in the different operating condition regions (Table 3.2).

dispatch results under all of the 10 scenarios. It can be found that the operating condition
regions in Table 3.2 have a clear impact on the feasibility of different dispatch options. The
problem with DT“™PL_MGDS is that it uses a single DT to represent vastly different operating
conditions. Therefore, this makes it much harder to satisfy all operating constraints.

On the other hand, the proposed DT-MGDS prevents ENS much better by building
different DTs for the different operating condition regions. The dispatch options in the
training data corresponding to each region are prefiltered (as shown in Figure 3.7 (c)), which
are guaranteed to be feasible in that region. Also, it adjusts the dispatch decisions made
by DT to make sure that diesel generation and storage stay inside their technical limits.

As a result, the power balance and the operating constraints of individual units are always
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satisfied and no load is curtailed.

3.4.4 Comparison of Different Methods of DT Pruning

The way DT pruning is executed can have a significant effect on their performance. We now
consider another DT-based MG dispatch strategy denoted as DT™P2-MGDS. DT“"P2-MGDS
has the same six large DT as DT-MGDS, but the final DT in DT*®P2-MGDS are obtained by
pruning the six large DT with o and 8° (r = 1,2,3). DT“*P2MGDS is set up by inputting
CT" and RT® into Algorithm 1. Note that o and 3° are obtained by minimizing the cross-
validation error, which is the traditional method recommended for tuning hyper-parameters
of a ML model [86].

First, we measure the Classification Error (CE) or the Regression Error (RE) of the
pruned DT from DT-MGDS and DT"P2-MGDS. The CE and RE are defined as follows [86].

CE= 37 I # w) (3.6)
RE = iZZ; (2 — z) (3.7)

where & is the number of test samples and I{-} is the indicator function. g is the class label
predicted by the classification tree, and y; is the desired class label. Z; is the value predicted
by the regression tree, and z; is the desired output value. DT-MGDS and DT“*P2-MGDS
are generated with the same TAS S; in MATLAB.

All the training data of Scenarios S, — Si are combined together and used as test samples.
We test for CE or RE of each existing DT in the two dispatch strategies using these test
samples. Figure 3.8 (a) displays the results. Note that CE and RE calculated here estimate
the generalization error of the DT as they measure the error rates on unseen cases. We can
see that the DT of DT™P2.MGDS all have lower error rates. Next, we compare the TGC
of DT™P2_MGDS with Rule-MGDS. DT<™P2-MGDS is created under TAS S; and tested
for MG dispatch under all 10 scenarios. Figure 3.8 (b) shows the corresponding percentage
savings compared with Rule-MGDS. We can find that DT“*P2-MGDS has much higher TGC
than DT-MGDS. DT*"P2_MGDS saves only 9.8% on average in terms of TGC across the 10
scenarios, whereas the proposed DT-MGDS saves 30% on average.

It can be seen that the approximation ability (e.g. classification or regression errors)
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Figure 3.8: (a) Error rates of all the final pruned DT in DT*"P2-MGDS and DT-MGDS. (b)
Percentage of TGC saved by DT™P2_MGDS and DT-MGDS compared with Rule-MGDS.

of a ML technique does not necessarily have a direct effect on its dispatch performance.
Therefore, the best tuning parameters of a large DT in DT-MGDS are determined based on
TC, where TC, as calculated in (3.2), measures the quality of dispatch results. Unlike in
classical DT training algorithms, here the focus is on dispatch performance, not classification

or regression accuracy.

3.4.5 Scalability Test

In order to evaluate the effects of the system size on the performance of the DT-MGDS, we
test it on a modified CIGRE LV benchmark MG in Figure 3.9. The original benchmark MG
can be found in [92].

The DT-MGDS is set up under TAS S;. The parameters of each diesel generator, storage
system, priority load, critical load and wind farm are same as those defined in Figure 3.4. All
the three diesel generators will be started up and shut down simultaneously. The performance
of DT-MGDS is tested under TES S,, (m = 1,---,10). The percentages of TGC saved
by DT-MGDS compared with the Rule-MGDS are presented in Figure 3.10 (a) and the
percentages of optimality loss (compared with the TGC of full MIP solution) are shown in
Figure 3.10 (b). The DT-MGDS saves 25% of TGC on average compared with Rule-MGDS.
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Figure 3.9: Modified CIGRE LV benchmark MG.
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Figure 3.10: (a) Percentage of TGC saved by DT-MGDS compared with Rule-MGDS, (b)
TGC optimality loss for DT-MGDS.

At the same time, the optimality loss of DT-MGDS is 2% on average, which means the
DT-MGDS still sacrifices little optimality in terms of TGC on a more complicated MG.
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3.4.6 Hardware-in-the-Loop (HIL) Validation Results

As is suggested in [93], it is highly relevant to validate the proposed DT-MGDS with real
time HIL testing. The real time HIL setup is comprised of one real time simulator, which
emulates the MG under study in Figure 3.4 and provides an analog interface to a FPGA-
based controller (Xilinx Zynq-7020 platform), in which we implement the DT-MGDS. The
analog ports of the simulator output the real time system states of the microgrid. At the

other end, the FPGA controller receives the data and sends dispatch decisions back.
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Figure 3.11: Dispatch results achieved by real time HIL simulation and MATLAB
simulation on January 1st (TES Sy).

The DT in DT-MGDS are generated with the data set of TAS S; in MATLAB. It is
tested in real time MG dispatch under TES Sy and Sj¢ from January 1st, 0:00 AM to
January 2nd, 0:00 AM. Figure 3.11 and Figure 3.12 illustrate the power profiles of diesel
generation and storage achieved by real time HIL and MATLAB simulation. As it can
be seen, the power profiles of HIL simulation follow the evolution obtained in MATLAB
simulation under both of the scenarios, which confirms the correct behavior of the proposed
DT-MEMS. A comparison of the TGC computed for both the real time HIL and MATLAB
simulation is listed in Table 3.3. We can see that the TGC obtained from the real time HIL
and MATLAB simulation are in accordance, both of which lose little optimality compared
with the results obtained by solving the full MIP. Thus, the proposed method can work near

optimality in real time operation.
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Figure 3.12: Dispatch results achieved by real time HIL simulation and MATLAB
simulation on January 1st (TES Sio).

Table 3.3: TGC ($) in different simulations on Jan 1st.

TES | HIL MATLAB | MIP
So 817.1 | 812.3 807.5
S1o 1143.7 | 1121.7 1115.2

The average computational time of each dispatch step of DT-MGDS measured on the
FPGA platform is 0.32 second in both test scenarios, which is far below the length of a typical
dispatch time step of five minutes. This is because the dispatch decisions are predicted by
DT-MGDS in a open-loop process with no iterations, which is quite computationally efficient.
Thus, the successful real time implementation highlights the computational efficiency of the
proposed DT-MGDS, as it can be programmed into a FPGA platform with limited computing
power and memory. The dispatch decisions are generated in a reasonable time to enable
eventual online implementation.

Though we have demonstrated that the DT-MGDS can generalize beyond its TAS and
achieve high level dispatch performance in a MG with different operating conditions (e.g.,
dispatchable asset limitations, load profile or renewable generation profile), it is still
recommended to monitor the performance of DT-MGDS online when the operating
conditions have changed significantly. If the optimality loss exceeds the desired range, it is
time to re-train the DT.
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3.5 Summary

In this chapter we proposed a decision tree-based optimization approach for implementing
flexibility-based operational planning paradigm in real time MG dispatch. The MG in this
chapter has a maximum of one dispatchable generator. The verified results have shown that
recognizing and partitioning the operating space of the MG dispatch control is essential
for providing feasible dispatch decisions. The proposed approach effectively reduces the
total generation cost in MG compared with a traditional rule-based dispatch strategy. It
also loses little optimality in terms of generation cost compared with the dispatch results
obtained by solving the MIP with a state-of-the-art optimization solver. At the same time,
the DT-based approach is capable of generalizing beyond its training scenario and achieving
high level dispatch performance in a MG with different parameters, load profiles, renewable
generation profiles, or other operating conditions. Moreover, the proposed approach is tested
on a FPGA platform with limited computing power and memory in the laboratory real-time
HIL simulation, which validates its computational efficiency and that it is capable of enabling
eventual online real time implementation.

In the next chapter, we consider the general case where the MG has multiple
dispatchable generators. A rigorous approach for implementing flexibility-based UC on
multiple dispatchable generators in a MG controller with limited computational power is

developed.
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Chapter 4

Integrating Learning and EMPC for
UC in Microgrids

In this chapter, we consider the general case where the MG has multiple dispatchable
generators. We apply our flexibility-based operational planning method to microgrid unit
commitment. The problem is formulated based on MPC paradigm. As is discussed in
Chapter 1, such paradigm requires the online solution of a mixed-integer optimization
problem, which faces difficulties in practical field implementations in a low-power
computing MG controller. The EMPC can address this this problem of MPC by computing
the control laws of MPC in an explicit form offline to enable fast online computation.
However, the complexity of the explicit control laws usually grows exponentially with the
dimension of the problem, which hinders the application of EMPC in larger systems.

In this chapter, we integrate learning and EMPC to develop a computationally efficient
and rigorous approach for implementing flexibility-based UC paradigms in a microgrid
controller with limited computational power. The computational complexity of the
proposed approach can be adjusted to meet the hardware limitation of any given microgrid
controller, while preserving as much as possible the optimality of the full-fidelity EMPC.
This overcomes the drawbacks of traditional EMPC. Moreover, compared to the existing
learning-based methods for accelerating optimization algorithms, the proposed approach is
able to handle the variables and constraints of the original unit commitment problem
systematically, which guarantees the feasibility of its output unit commitment schedules.

We conduct case studies to demonstrate the effectiveness of the proposed approach.
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4.1 Introduction

The deepening penetration of renewable generation brings new challenges to the energy
management of MG [55]. Traditionally, a simple priority list is used for making UC schedules
in MG [94], [95]. Although such kind of method can achieve fast computing and respect the
operating constraints, it is becoming less capable of tackling the volatility brought by the
increasing levels of renewable generation and guaranteeing the optimality of its generation
schedules. In practice, UC algorithms are usually implemented in an industrial controller
with limited computational power. At the same time, it must respond within specified
time constraints for real time operation [71]. To overcome these challenges, alternative UC
approaches capable of reaching a satisfactory trade-off between the computational efficiency
and the optimality of solutions need to be developed.

For years, the concept of flexibility is acknowledged as a key resource for dealing with
power fluctuations in microgrid UC. In Chapter 1, we reviewed the state of the art on
the flexibility management in MGs. To summarize, the flexibility-based UC algorithms are
usually formulated based on a MPC scheme (or receding horizon scheme), which requires the
online solution of a mixed integer programming problem at each time step. Although recent
literature has shown that flexibility-based UC paradigms can ensure the optimality of the UC
schedules without violating operating constraints, running online optimization algorithms
requires intensive online computational power and thus prevents the direct implementation
of such MPC based UC algorithms in a practical MG where controllers usually have limited
computational capabilities.

Recently, a large research effort has been devoted to simplify and accelerate the traditional
optimization algorithms for MG energy management using ML techniques. By learning an
effective and fast approximation of some underlying heavy computations, the resulting ML
models, once well-trained, are computationally amenable to MG controllers with limited
computational power. In Chapter 3, we reviewed the state of the art on the application of ML
in accelerating MG energy management algorithms. To summarize, though the efficiencies of
the proposed ML based algorithms in the existing literature are all promising, none of these
has provided a rigorous solution for implementing flexibility-based UC algorithms in a MG
controller either because the feasibility of the solution cannot be guaranteed, the commitment

statuses of generators are not considered, or the algorithm still relies on complex iterative
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procedures.

Another approach to extend the application of MPC-based algorithms to low-power
computing applications reported in literature is usually called EMPC [96]. By exploring
multi-parametric programming techniques, EMPC partitions the system’s state space into
different critical regions (CRs). For each CR, the optimal MPC control law is computed in
an explicit form offline [97], [98]. In this process, all the variables and constraints of the
original optimization problem are handled in a systematic manner, and the feasibility and
optimality of the explicit control law are all guaranteed. The online operation of EMPC
reduces to finding the CR where the system state is located (this problem is referred to as
the point location problem) instead of solving optimizations, which significantly reduces the
online computational burden in theory. However, in practice the total number of CRs can
still grow exponentially with the number of constraints and with the length of the
forward-looking horizon [99]. The inherent growth in the complexity of the point location
problem and of the memory footprint limits the application of EMPC to small toy systems
with short forward-looking horizons only (typically up to three or four time steps [96]).
Such a property is a significant limitation in UC problems, where the number of variables is
large and the forward-looking horizons are long (can be several hours with a 5-minute time

step). A more detailed description of EMPC is presented in Section 4.2.2 of this chapter.

Table 4.1: Comparison of EMPC and ML

Property EMPC ML

Paradigm model-driven | data-driven

Handling of constraints and variables
of the optimization problem

mature \/ immature X

Online C(?mputatlonal complexity high X low v
in large systems
Insights into the structure of the ves 4 no X

optimal control laws

Guaranteeing the feasibility of solution | mature v’ | immature X

As the above discussion shows, the properties of EMPC and ML are clearly
complementary (see Table 4.1). Therefore, in this chapter we integrate ML and EMPC to
develop a computationally efficient and rigorous solution for implementing flexibility-based

UC paradigms in a MG controller with limited computational power. We aim to fully
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leverage the benefits of both techniques, while overcoming their respective drawbacks.

We first formulate the UC problem with the concept of flexibility requirement envelopes
[6], which is in the form of a MILP and operates in a MPC fashion. The corresponding
EMPC model is also formulated. Next, a two-stage learning based approach is developed
to approximate the EMPC law of the original UC problem with tunable computational
complexity, by accepting a certain level of suboptimality. Specifically, the first stage of the
approach uses k-means clustering to group all the CRs in the state space into K clusters.
In the second stage, we partition the state space into K disjoint regions, where each region
consists of the CRs associated with one of the clusters obtained in the first stage. We train
a DNN to identify the K regions in the state space, which is modeled as a classification
problem. Finally, we build K ranking lists of the UC options for the K regions in the state
space. A UC algorithm is developed using the trained DNN and the K ranking lists, which
can be ported to the MG controller to make UC schedules online. The main benefit of our

work proposed in this chapter is summarized as follows.

e The proposed approach allows the MG operator to adjust the computational
complexity of the final online UC algorithm by accepting a certain level of
suboptimality with respect to the original UC problem. It is achieved by tuning the
hyper-parameter K, which is the tuning knob to trade-off between the optimality and
the computational complexity of the final online UC algorithm. When K is increased,
the UC algorithm has higher degree of optimality at the price of higher
computational complexity. When the proposed UC algorithm is implemented, the
parameter K can be tuned to meet the hardware limitation of the given MG
controller, while preserving as much as possible the optimality of the full-fidelity
EMPC.

o Compared to the existing ML based methods for accelerating optimization
algorithms, the proposed approach is able to leverage the fundamental knowledge of
the UC problem, including its variables and constraints, to guarantee the feasibility
of the output UC schedules.
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4.2 Modelling of Microgrid Unit Commitment

4.2.1 Flexibility Requirement Envelope Based Unit Commitment

We consider a MG with multiple dispatchable generators, energy storage systems, loads and
renewable generation. In this chapter, the UC is formulated based on the concept of flexibility
requirement envelope which requires UC decisions to consider a forward-looking “envelope”
of potential trajectories for net load. Its overall objective is to achieve UC decisions which
are cognizant of typical upcoming variability of net load.

First, we construct the flexibility requirement envelope of the net load {ef(7), €% (1) }rez,,
using the time series of renewable generation and load demand which contain their historical
data. Ty is the length of the forward-looking horizon. Further details about calculating
the envelope can be found in [6] !. The envelope has an up-going (1) and a down-going ({)

branch, as shown in Figure 4.1 (a).
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Figure 4.1: (a) Flexibility requirement envelope encompassing the actual net load
trajectory. (b) Predicted optimal trajectory of the aggregate output of generators and
storage, as driven by the envelope. Only the scheduling decisions for current time step

to are implemented.

To formulate the UC, we make the following simplifying assumptions:

! Again, please note that the envelope {eL(T), eﬁl(T)}TeE » used in this chapter can also be constructed
using the approach we proposed in Chapter 2. However, it is more convenient to construct the envelope
{e (1), €4 (1)} rex,, directly using the method in [6] because this flexibility requirement envelope is assumed
to be time invariant in this chapter.
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o We do not consider the network constraints of the MG;

o The cost functions of generators are assumed to be piecewise linear;

o There is no operating cost associated with storage systems;

 As is the case with [71], the interaction between the MG and the distribution system

is not considered and p,;(t) is treated as a parameter.

We also assume that the envelope {€},(7), €% ()} ez, is time invariant (i.e., it is a function
of the look-ahead time parameter 7 only) and thus assume that the variability of net load
looking 7 units of time in the future is essentially the same at all time ¢. The resulting MILP
of UC (with multiple dispatchable generators) is presented in (E.1) — (E.12) in Appendix E.

At the current time to, the UC problem (E.1) — (E.12) is solved. However, only the
scheduling decisions for current time step ¢y (i.e., 7 = 0) are implemented, as shown in Figure
4.1 (b). The scheduled trajectories of dispatchable generators and storage are assumed to
remain constant between to — to+1. At the beginning of next time step, to+1, the procedure
is repeated over a shifted forward-looking horizon with the updated operating conditions. In
this way, the power fluctuations in MG can be handled effectively, thanks to the foresight
and self-correcting capabilities of the flexibility-based method.
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Figure 4.2: (a) Three-segment piecewise linear cost of generator ¢ € Z,. (b) Piecewise

linear cost of generator ¢ expressed as the maximum of three linear functions.

The cost function of generator i € =, is represented using a piecewise linear function
with W; segments. An example is shown in Figure 4.2 (a) where there are W; = 3 segments.
bgw and cg’“’ (w=1,2,--- ;) are the cost parameters of the wth segment associated with

generator 7. It is worth noting that usually the cost function of a generator is convex [80].
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Thus, it can be expressed as the maximum of W; linear functions, as shown in (E.9) and
Figure 4.2 (b). Ahmadi and others [100] provides general discussions about how to choose
the best W; and determine the length of each segment. However, please note that the
cost function of a diesel generator, which is widely used in practical MG, can usually be
approximated quite well using a straight line (i.e., W; = 1) [101], [102].

For the sake of generality, the upward, downward, start-up and shut-down ramping limits
of generators are described in (E.7) and (E.8). However, in practice diesel generators usually
have high levels of flexibility in terms of ramping. They can start and supply the load within
10 seconds [103] and ramp up to full capacity within 1 minute [104]. Therefore, the inequality
constraints in (E.7) and (E.8) are usually inactive in MG unit commitment. 2

The network constraints of the MG are ignored in this chapter. This is because in
a MG or distribution system the physical network constraints are mainly concerned with
node voltage constraints [105]. After the optimal active power outputs of generators and
storage systems are obtained by solving (E.1) — (E.12), the controller of the MG will check if
there are voltage violations and perform voltage management. The voltage violations can be
eliminated by dispatching voltage compensation devices [89] (e.g., capacitors, reactors, static
VAR compensators, etc) and correcting the set-points of generators and storage systems (as
a last resort) [105], [106]. This process is mostly concerned with reactive power management

which goes beyond the scope of this chapter.

4.2.2 Explicit Model Predictive Control Based Formulation

The flexibility-based UC presented above works in a MPC fashion and needs the online
solution of the MILP (E.1) — (E.12) at each time step. The significant computational cost
of online optimization prevents the implementation of such method in a MG controller with
limited computational power.

Alternatively, EMPC can help alleviate this problem. The key observation is that the
UC model (E.1) — (E.12) solved repeatedly is fully known except for the upcoming operating

2In addition, please note that the minimum uptime and minimum downtime of diesel generators are
usually less than 5 minutes [104]. The time step length used in this chapter is 5 minutes. Therefore, the
constraints of minimum uptime and minimum downtime associated with diesel generators are not considered
in this chapter.
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conditions, which are updated at every time step ¢

0, = (d(t) — ppos(t) se(t = 1)')’ (4.1)

The state vector @, consists of the residual net load d(t) — ppe:(t) and the vector s.(t — 1)
that contains the energy level si(t — 1) of each storage system j € Z,. d(t) = d(t) — d(t) is
the net load in the system. Please note that the envelope {e};(7), €% (7)}rez,, is not included
because it is time invariant. The space of 6, is denoted as @. The MILP (E.1) — (E.12) can

be expressed by the following compact matrix form

* . T
v =min  clx. + clxy (4.2)

s.t. ACCL'C + Admd S b + BOt (43)

where x.. is the vector consisting of the continuous variables pg(r, q) and p (7, q), while , is
the vector containing the discrete variables u(7,q) (i € 2y, j € Z¢, 7 € 2y and q € {1,1}).
The coefficient matrices and vectors in the above matrix formulation are constant and can

be obtained from the parameters in (E.1) — (E.12). To save space, we omit them here.
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Figure 4.3: Schematic illustration of the idea of EMPC method. For illustrative purpose,
the state space consists of seven CRs only. However, please note that the number of CRs in

the state space for a UC problem is usually quite large.

Figure 4.3 illustrates the idea of EMPC. The EMPC treats 6; as a vector of input
parameters, and the MILP (4.2) — (4.3) becomes a multi-parametric mixed-integer linear

programming (mp-MILP) problem [96]. Through mp-MILP, one can obtain the variables of
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the original MILP problem (4.2) — (4.3) as an explicit function of the vector 6, [107]. This
is achieved by partitioning the state space © into different CRs [96]. A CR is the region in
the state space ® where the optimal integer variables «; and the active constraints of (4.3)
(for determining the optimal continuous variables x’) are the same. CRs can be
determined using a variety of approaches. For example, the authors of [97] decomposed the
mp-MILP problem into two subproblems (a MILP problem and a multi-parametric linear
programming problem) and then iterated between them to obtain the final CRs
analytically. An alternative approach was taken in [108], [109] and [110], where the authors
employed ML approaches (e.g., DNN or support vector machine) to identify the CRs in the
state space. Specifically, the identification of CRs was formulated as a classification
problem, where a DNN or support vector machine was trained to learn the mapping
between the state vectors and the CRs. Please note that the calculations of CRs are all
performed offline in the literature we discussed above.

In addition, V/(8;) is the value function (VF) [96] which associates with every state vector
0, the corresponding optimal value v; of (4.2). According to the theory of mp-MILP, V' (6;)
is piecewise polyhedral [107,111,112]. Each CR maps to a distinct hyperplane, as is shown
in Figure 4.4.

[ Hyperplanes of the VF

L2270 CRs

Figure 4.4: Illustration of the piecewise polyhedral VF v; = V(6,).

The EMPC stores each CR along with its corresponding optimal integer variables,
active constraints and VF precomputed offline in a lookup table. Consequently, the online

operations of EMPC are reduced to a simple location problem of the state 6; in the lookup
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table at each time step (see Figure 4.3) instead of solving the full MILP, which greatly
reduces the online computational burden in theory. However, in practice, the exponential
growth in the number of CRs and the possible explosion in the need for memory and CPU

requirements still hinder the application of EMPC method in UC problems.

4.3 Methodology

To address the limitations of the traditional EMPC method, in this section we integrate ML
techniques with it to design a high quality approximate UC solver that is implementable
in practical settings. The overall workflow of the proposed method is shown in Figure 4.5,
which is divided into the training phase and the testing phase. Both the training and testing
phases require offline simulation runs of the UC problem (4.2) — (4.3) based on realistic
renewable generation and load data. The collections of input data and simulated UC results

are the raw materials of the training and testing phases.
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Figure 4.5: Overall workflow of the proposed learning based method.

4.3.1 Data Set Preparation

For the application of ML techniques we first create a training data set of pre-solved UC

problems. In order to do this, we need to define a Training Scenario (TAS) as follows.
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(1) The length of the offline simulation 7" and the length of each time step Th;

(2) All the parameters of each dispatchable generator ¢ € =, and energy storage system
J € Ee;

(3) Time series of {d(t)}_;, {6(t)}; and {ppi(t)};.

The TAS contains the historical data and MG parameters that will be fed into a
state-of-the-art MILP solver to generate the corresponding optimal UC solutions
{ug () Hor, Apy (OHoy, (P (O}, and {sI*(H)}, (i € g, j € Ec). Here we only record
the first step of all the scheduling decisions obtained by solving (4.2) — (4.3) for each time ¢
according to the principle of MPC. The time series of {6}, and {v;}L, are also

obtained.

Table 4.2: Dispatch Options in the MG

Index Description Index Description
L oprw=pT | 2 | ptw =g
3|yt = x| 4 | X=X
JEZe JEZe JEZe JEZe
5| Sl =xsl| 6 |y slit)= 3 sl
jEEe JEE. JEEe =

Instead of storing the optimal UC solutions directly in the training data set, we define

the following UC option a, for each time step ¢ 3.

ar = {ug(t), ye } (4.4)

It consists of the vector w;(t) that contains the optimal commitment status u*(t) of each
generator ¢ € =, and a dispatch option y,. The dispatch option is used to characterize the
optimal power outputs of all the generators and storage. Depending on the patterns of the
active constraints in (4.3), y; maps to one of the six options in Table 4.2. Note that we

only focus on the marginal generator and the total output of all the storage systems. This

3The UC option is only used to characterize the first control step of all the scheduling decisions obtained
by solving (4.2) — (4.3). Thus, a UC option is insufficient for characterizing a CR. Because we need the
scheduling decisions of the entire forward-looking horizon for defining a CR.
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is because there is only one marginal generator (a marginal generator is the generator that
serves the next unit incremental load [113], its output is denoted as p_f]” ) in the MG given the
piecewise linear operating cost functions. Other committed generators will simply operate
at their maximum or minimum generation limits. At the same time, none of the storage
systems have operating costs, and thus we only need to know the total power output of the
storage systems. The power output of each storage system can be further determined using
a pre-determined power sharing method (e.g. [114]). Therefore, the power outputs of all the
committed generators and storage can be fully determined using one of the dispatch options
in Table 4.2 and the power balance equation (E.2) *. The UC option a; thus constitutes
the minimal information required to recover the corresponding full optimal UC solution,
which reduces the number of variables to be handled in our learning task by exploiting the
pre-existing knowledge of the UC problem.

In addition, we fix the integer variables x, = } after solving (4.2) — (4.3) and the MILP
becomes a linear programming (LP) problem. We also record the vector of shadow prices
A; associated with (4.3) for every time step ¢, which can be obtained by performing LP

sensitivity analysis.

4.3.2 The Proposed Learning Based Approach

In this section, we develop a two-stage learning based approach whose framework is shown
in Figure 4.5, which exploits the combined use of clustering and classification techniques.

Details of each stage are introduced below.

Stage 1. Clustering

In this stage, we divide all the CRs in the state space into K clusters. The CRs will be
clustered based on the similarities of their corresponding hyperplanes of the VF.

We first identify the parameters of the hyperplanes of the piecewise polyhedral VF from
the time series {6;}7, and {v;}L,. Each data point (8;,v}) is located on one of the

hyperplanes of the VF, as shown in Figure 4.6 (a). Therefore, the optimal objective

4Although the term ‘dispatch option’ is used both in Table 4.2 and Table 3.1, it has different meanings.
The dispatch options in Table 4.2 consist of the active constraints that are used to determine the optimal
power outputs of all generators and storage (i.e., continuous variables), whereas the dispatch options in Table
3.1 are mainly used to characterize the ON/OFF status of the dispatchable generator (i.e., integer variable).
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Figure 4.6: (a) Hyperplanes of the piecewise polyhedral VF and the corresponding CRs.
(b) Projections of the hyperplanes of the VF, which are grouped into K = 3 clusters. (c¢) All
the data points are also grouped into 3 clusters. The CRs are also divided into 3 clusters
implicitly. (d) Maps among the data point (8;,v;), the feature vector 8, and the cluster (;.
(e) General structure of the DNN classifier. (f) Illustration of the classification process. (g)
The three regions in the state space consist of the CRs associated with the three clusters in

(c), respectively.
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function value vy can be expressed in the following form
— 16, + [ (4.5)

ft; is the parameter vector associated with 6;, which can be calculated using the

corresponding vector of shadow prices A;.
(i, = BT\, (4.6)

where B is the constant parameter matrix in (4.3). /¥ is a scalar which can be determined
using (4.5) after fi, is calculated. It is worth noting that (4.6) assumes the optimal integer
variables do not change in a small neighbourhood of 6;.

To illustrate our clustering procedure efficiently, we define

o= (70, )’ (4.7)

w; is the vector of parameters that fully characterizes the hyperplane of the VF containing
the data point (6;,v;). Then, all the data points on the same hyperplane of the VF are
projected onto the same point in the space of p;, as shown in Figure 4.6 (b). To effectively
perform clustering, we apply min-max scaling [86] to each component of the vector in the
time series {p;}L; so that they end up ranging from 0 to 1. The min-max scaling is done by
subtracting the minimal value and dividing by the maximal value minus the minimal value.

In this chapter, the similarity between any two hyperplanes of the VF is measured by
the Li-distance between their projections in the space of pu;. For example, the hyperplanes
containing the data points (8;,,v;,) and (0y,,v},) in Figure 4.6 (a) are projected onto two
different points p;, and py, in Figure 4.6 (b). The similarity between the two hyperplanes
of the VF is measured by

D y’tu “tz Z ‘“’tz - /J’tl
+ 3, |, - i,

(4.8)

- lutl

where D (-, ) is the Li-distance and (-)! is the Ith component of the vector.

Next, we perform k-means clustering on the data {u;}2_,. k-means clustering is selected
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because of its efficiency and simplicity in dealing with large data sets [87]. To perform k-
means clustering, we need to first specify the desired number of clusters K. Then the T
observations {p}_, will be grouped into K clusters {C,}X , using the distance metric in
(4.8). An example is shown in Figure 4.6 (b), where there are K = 3 clusters. The detailed
procedure of k-means clustering can be found in [87].

At the end of this stage, each data point (6;,v;) is associated to a cluster, which is
denoted as ¢; (¢; € {C.}K,), see Figure 4.6 (c). At the same time, all the CRs in the state
space © are also grouped into K clusters implicitly, because of the maps between the data

points and the CRs, as is shown in Figure 4.6 (c).

Stage 2. Classification

K

~ 1, where O,

In this stage, we partition the state space © into K disjoint regions {0, }
consists of the CRs associated with cluster C, (r =1,2,--- , K).

The identification of {©,}X | in the state space underlies a classification problem, where
the K clusters {C,}/ | can be regarded as K classes. 6, is the feature vector and each feature
vector is associated to a class label ¢; (¢; € {C,},), as is shown in Figure 4.6 (d). Again, we
first apply min-max scaling to each component of the feature vector in time series {6;}7_;.

We use a fully connected feedforward DNN for our classification task. DNN has strong
approximation abilities and scales well with massive data sets >. The DNN has an input
layer, multiple hidden layers and an output layer. Figure 4.6 (e) shows the general structure
of the DNN classifier. In this study, the rectifier linear units (ReLU) function is used as
the activation function [115]. The number of hidden layers and the number of neurons in
each hidden layer are hyper-parameters which should be selected according to the number of
regions in the state space (i.e., K). Details about tuning the hyper-parameters and training
the DNN can be found in [115]. ©

The well-trained DNN can identify the regions {0, }X | of the state space @ by learning

the separating boundaries between different classes from the training data {(6;,¢;)}_;. An

5In this chapter, decision trees are not used because the state space partition generated by a decision tree
is always orthogonal. However, the boundaries of CRs can be general. Moreover, for a given architecture
of DNN, we can compute the lower bound on the maximal number of regions in the state space that this
architecture can represent (details will be described later in this chapter).

6Please note that the DNN is trained using batch learning [86] (i.e., the DNN is trained using the entire
data set, which is done offline). First the DNN is trained, and then the well-trained DNN is launched into
production and runs without learning anymore.
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example is shown in Figure 4.6 (f) where the state space @ is divided into K = 3 regions
(classes). Moreover, the three regions in the state space consist of the CRs associated with
the three clusters in Figure 4.6 (c), respectively, as shown in Figure 4.6 (g). Note that the
seven CRs in Figure 4.6 (g) are the same as those in Figure 4.3.

After all the K regions {©, }X | are identified, we calculate the estimated cost of any UC

option a in each region O, (r =1,2,--- | K), C(a,©,.), as follows

_ 1
C(a,0,) = =~ v (4.9)
N<a7 @"') tE{tat:(Al%d 9t€®r} :

where N(a,©,) is the number of times that @ is chosen in region ©, in the training data
set. C(a,O,) represents the sample mean of the total operating cost for the forward-looking
horizon after choosing UC option @ at current time step in region ©,. Thus, it measures the
direct operating cost associated with a, while taking into account the “potential” impact of
a on the operating cost of future time steps.

For each region ©, (r = 1,2,---, K), we make a ranking list RL, by sorting each UC
option @ in ascending order of its corresponding estimated cost C(a,©,). Thus, the first
option in the list is the one with the lowest estimated cost. Note that if a UC option has

never been chosen in region ©, in the training data set, it will not be included in RL,.

4.3.3 Testing of the Learning Based Approach

In order to test the proposed learning based approach for UC, we first define a Testing
Scenario (TES). A TES could have different time series of demand, renewable generation,
or power exchange at the POI compared to the TAS. The final output of the learning based
approach (i.e., the DNN and the K ranking lists {RL,}% ) will be used to perform a
simulation of UC under the TES. Figure 4.7 (a) shows the flowchart of the proposed online
UC algorithm using the DNN and the ranking lists. At each time step t, the system updates
the feature vector 6; according to the updated operating conditions in the MG. It then
classifies the updated 6, with the DNN. It determines in which region O, (r =1,2,--- | K)
that 0; belongs to. The corresponding ranking list RL, is retrieved afterwards.

Then the first UC option in RL, is analyzed to see if it is a feasible UC option for
the MG at time ¢t. In this chapter, the following method is used to ensure the feasibility.
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of the flexibility requirement envelope.

We first calculate the envelope of the aggregated available operating reserve of dispatched
generators and storage using the method in [29]. Then we check if the envelope of the
aggregated available operating reserve is able to enclose the flexibility requirement envelope
{el(7),€4(T)}rez, of net load constructed using the data in the TES, as illustrated in
Figure 4.7 (b). The proper enclosure of the flexibility requirement envelope guarantees that
the power balance (E.2) and the operating constraints of individual units (E.3) — (E.6) can
all be satisfied in the forward-looking horizon. If the current UC option cannot ensure the
enclosure of the flexibility requirement envelope, we then go to the next UC option in the list
RL, until the feasibility of the UC option is guaranteed 7. Finally, the performance of the
proposed online UC algorithm in Figure 4.7 (a) will be assessed based on its UC schedules

produced in simulation.

"If all the UC options in the ranking list are exhausted, load shedding or generation curtailment can be
used as the last resort.
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4.3.4 Discussion

As mentioned before, the main drawback of traditional EMPC is its exponentially increasing
number of CRs and the possible explosion in the need for memory and CPU requirements,
which makes the implementation intractable for a MG controller with limited computational
power.

To tackle this problem, our proposed learning-based approach first clusters the CRs based
on the similarities of their corresponding hyperplanes of the VF. The CRs associated with
the same cluster are merged, so that the state space is partitioned into a pre-specified number
(i.e., the number of clusters K, see Figure 4.6 (g)) of regions. Note that usually K is far less
than the total number of CRs in the state space. Thus, our approach is able to eliminate
the problem of excessive partitioning in traditional EMPC.

However, reducing the number of partitions of the state space may introduce
suboptimality to the UC schedules produced by the algorithm in Figure 4.7 (a). An
example is shown in Figure 4.8, where we select two hyperplanes of the VF and two data

points on them in Figure 4.6 (a) for illustration.

Figure 4.8: The optimality loss of the UC schedule after merging different CRs.

We can see from Figure 4.6 (g) that CR; and C'Rg are merged into region O,. If the
estimated of ay, is lower than that of a;, (i.e., C(ay,, ©2) < C(ay,,02)), ar, will have a higher
priority than a;, in the ranking list of region Os.

Then, the algorithm in Figure 4.7 (a) may choose UC option a;, under state 6;, (if it is

still feasible) since a;, has higher priority in region ©,. However, a;, is suboptimal under
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0;,, as can be seen from the blue plane in dotted frame in Figure 4.8 8. The optimality loss

of choosing a;, under state 6;, is denoted by Av*, which has the following property.

Avt = |(pg, — i) + >, 04, (A, — )
< th_:“tl "‘Z ’ail (A, — All)
= |ag, — 0|+ >, (|64 ﬂtQ—ﬂL)
< |ag, — i |+ X, |, —

=Dy (I‘l’tu /J’t2) (410)

Note that the value of each component of 6y, is between 0 and 1 because of the min-max
scaling applied. We can see that the optimality loss Av* is bounded by the Li-distance
D1 (e, pr,) between the two hyperplanes of VF in Figure 4.8. ?

When the number of clusters K becomes larger, the maximum pairwise L;-distance
between the hyperplanes of VF in each cluster C, (r = 1,2,---, K) will be smaller. The
upper bound of the optimality loss of the UC schedules produced by the proposed UC
algorithm in Figure 4.7 (a) is thus expected to be smaller. However, in such cases, the state
space is divided into more regions and there are more ranking lists. Then the computational
complexity of the UC algorithm is expected to be higher. Thus, K is a tuning knob to
trade-off between the optimality and the computational complexity of the proposed UC
algorithm.

The proposed UC algorithm in Figure 4.7 (a) is promising to enable real-time
implementation in a computationally limited MG controller because its computational
complexity is tunable. For any given MG controller, K can be pre-specified, which is equal
to the value that the memory or any other online computational bound is met. This value
of K also allows the proposed UC algorithm to preserve the optimality of the full-fidelity
EMPC to the maximum possible extent.

8The blue plane in dotted frame is obtained by extending the hyperplane of VF corresponding to C'Rg.

9Please note that this is just an illustrative example showing how our proposed algorithm can introduce
suboptimality to its output UC schedules. If C(as,,©02) > Cl(ay,,O2) or if a4, is not feasible under 6,
then the proposed algorithm will still choose as, at time ¢; and no suboptimality will be introduced in this
example. However, the suboptimality can still be introduced by other data points and hyperplanes in Figure
4.6 (a) in a similar way.
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4.4 Case Study

4.4.1 Test System Description

The proposed learning based approach is tested on a modified CIGRE LV benchmark MG.
The diagram of the original benchmark MG can be found in [92]. The modified MG has

priority loads, one wind farm, three diesel generators, one centralized storage system and

Utility Grid é

one critical load.

POI \ Microgrid
Controller
WE ..o
Diesel Generator 1 ;
Diesel\ G\en\erator 2 Critical Load e
/l\/ivr Diesel Generator 3
Wind Farm | -**
-~ Storage

.
-~

Priority Loads

Figure 4.9: Modified CIGRE LV benchmark MG under study.

Scenarios Studied

We construct the following four scenarios S; — Sy4 for training and testing of the proposed
learning based approach 1°. In simulation, Tx is set to be 5 minutes and 7T is one year (i.e.,
105120 5-minute time intervals). The length of the forward-looking horizon T} is one hour.
Our overall objective here is to demonstrate how well the proposed learning based approach
is able to generalize over various testing scenarios (i.e., not require re-training when faced
with new operating conditions).

S1: For the three diesel generators: ]751, = 400 kW, p?, = 280 kW and ]73 = 200 kW. The

minimum power output of each generator is set to be 30% of their corresponding maximum

10Please note that each scenario requires a new data set. Moreover, when the configuration of MG has
changed (e.g., Section 4.4.5), a new data set is also required.
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power limit. The cost parameters of each generator can be found in [116]. The cost functions
of the diesel generators are represented using straight lines (i.e., W; = 1,4 = 1,2,3). The
cost of diesel fuel is set to $1.30/1 [42]. The upward, downward, start-up and shut-down
ramping limits of each generator are all set to be 100% of its capacity in 5 minutes . For
storage: p. = 100 kW, p. = —100 kW, 5., = 90 kWh, s, = 10 kWh and 7. = 14 = 0.963. The
state-of-charge (SOC) of storage is initialized at 50% of maximum capacity. The maximum
and minimum values of the aggregate priority load are 750 kW and 150 kW, respectively. The
data for the priority loads are taken from a village in the Canadian province of Quebec. The
critical load is kept constant at 50 kW. The capacity of wind farm is set to be 150 kW, and
the data of wind generation come from NREL’s database [66]. The MG is in grid-connected
mode. The contractual value of the power exchange at POI p,,; () is kept constant for each
day of the year, which is set to be the minimal net load of any given day.

Sy: Next year’s time series of priority loads are used.

S3: Next year’s time series of wind generation is used.

Sy The MG is in islanded mode for the whole year.

Other parameters and time series in Scenarios Sy — S4 are same as those in Scenario S;.

UC Strategies

Three microgrid UC strategies are simulated for comparison purposes.

o LB-MGUC: This is our proposed learning based microgrid UC strategy in Figure 4.7
(a).

e PL-MGUC: This is a traditional simple priority list based microgrid UC strategy
previously proposed in [95].

o AP-CLUC: This is the adaptive contextual learning based microgrid UC strategy
previously proposed in [61]. A brief introduction of this UC strategy is provided in
Appendix F.

Performance Metrics

The UC strategies are mainly evaluated by comparing their respective Total Generation Cost

(TGC) when facing the same operating scenarios. Energy Not Served (ENS) and Energy

Remember that diesel generators can start and supply the load within 10 seconds and ramp up to full
capacity within 1 minute [103], [104]. The length of each time step here is 5 minutes.
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Curtailed (EC) are also considered as further performance metrics.

TGC = Z Z blph () + chul(t) (4.11)
ENS =Ta Zt L de(t) (4.12)
EC =Ta Zt L0c(t) (4.13)

Analysis Tools

The model (E.1) — (E.12) is solved using the commercial MILP solver CPLEX. The
proposed learning based approach is validated using the ML software from MATLAB [91].
The computer used is equipped with an Intel Core i5 2.70 GHz processor and 8 GB RAM.

4.4.2 Testing of the Proposed Learning Based UC Strategy

First, the proposed LB-MGUC is compared against the PL-MGUC. Here, the LB-MGUC is
set up and trained under TAS S;. The number of regions in the state space K is set to be
six. We use a DNN which has three hidden layers and each hidden layer has six neurons 2
Afterwards, the performance of the LB-MGUC is tested under TES S,, (m =1,2,3,4). We
first compare the TGC of LB-MGUC with the TGC of PL-MGUC calculated under TES S,,,.
The percentages of TGC saved by LB-MGUC are shown in Figure 4.10 (a). We see that the
LB-MGUC saves 23% on average in terms of TGC compared with PL-MGUC over the four
TES. Then, the AP-CLUC is set up under TAS S; '? and its TGC calculated under TES
Sm (m = 1,2,3,4) is compared with LB-MGUC. The results are presented in Figure 4.10
(b). The proposed LB-MGUC saves an average of 3.3% of TGC compared with AP-CLUC
across the four TES. Next, we compare the LB-MGUC with the UC results which would

12 According to [115], a lower bound on the maximal number of regions that a DNN (with ReLUs as

Np—1 No\ N
activation functions) can represent is given by the equation ( I {]J\\]/AfJ ) z_: (ALL)’ where Np, is the

number of hidden layers, N, is the number of inputs and N, is tﬁe 1number of neurons in each hidden layer.
Thus, this DNN configuration can represent at least 567 regions. Note that the state space is divided into
256 regions at maximum in all the numerical examples of this chapter. Therefore, this DNN configuration
will be used throughout the rest of this chapter.

13We tune the parameter of AP-CLUC so that it has the same number of regions in the state space as
LB-MGUC.
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Figure 4.10: (a) Percentages of TGC saved by LB-MGUC compared with PL-MGUC, (b)

Percentages of TGC saved by LB-MGUC compared with AP-CLUC, (¢) TGC optimality
loss for LB-MGUC.

have been obtained by solving the full MILP (E.1) — (E.12) using CPLEX . As before, the
LB-MGUC is set up with TAS S; and tested under TES S,, (m = 1,2,3,4). The percentage
of optimality loss (compared with the TGC obtained by solving the full MILP under S,,)
is shown in Figure 4.10 (¢). We can see that the average percentage optimality loss of the
LB-MGUC is only 1.1% across the four TES. Therefore, the proposed LB-MGUC sacrifices
little optimality in terms of TGC.

In addition, the proposed LB-MGUC has no ENS or EC under the four TES, which
means it can guarantee the feasibility of its outputs (i.e., satisfying the operating constraints

of MG).
In fact, the PL-MGUC uses a fixed ranking list of generators in UC for the whole state

14The UC solutions obtained by solving the full MILP (implicit MPC) and the UC solutions produced by
the full-fidelity explicit MPC are the same.
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space, which is usually made according to the average costs of generators at certain fixed
production points. However, the optimal production points of generators can change in
different regions of the state space and the ranking order of these generators will change
accordingly. This explains why the PL-MGUC gives UC schedules with much higher
operating costs. In contrast, our proposed LB-MGUC builds different ranking lists for
different regions of the state space, which helps mitigate the possible bias of a single
ranking list and reduce the resulting operating costs effectively.

In AP-CLUC, the state space is partitioned into different square regions simply based on
the number of feature vectors in the training data set they contain. Consequently, CRs where
the corresponding hyperplanes of the VF have very different parameters could be merged,
which may increase the optimality loss of the resulting UC schedules (see the analysis we
provided in Section 4.3.4). In contrast, our proposed LB-MGUC identifies and merges the
CRs where the hyperplanes of VF have similar parameters by leveraging the knowledge
derived from the EMPC model of the UC problem, which contributes to a further reduction
of the operating costs.

Moreover, we can see from Figure 4.10 (b) that the proposed LB-MGUC still loses little
optimality in terms of TGC when its TES is Sy — Sy (i.e., when the TES is different from
its TAS). Hence, our proposed LB-MGUC is capable of generalizing beyond its TAS and
achieving good performance in UC in a MG with different load profile, renewable generation

profile, or utility energy exchange schedules.

4.4.3 Impact of the Number of Regions in the State Space

We study the impact of the number of regions in the state space (i.e., the parameter K in
Section 4.3.2) on the operating costs and computational complexity of the proposed LB-
MGUC. Here, the LB-MGUC is created with the data set of TAS S and its performance in
UC is also tested under 5;.

Figure 4.11 (a) shows how the percentage optimality loss of LB-MGUC (taken with
respect to the TGC calculated by the full MILP solution under S;) varies with K. We
observe that the percentage optimality loss decreases with the increase of K. Moreover, the
percentage optimality loss decreases more sharply when K is less than six. In Figure 4.11
(b), we can see that the computation time of each dispatch step associated with LB-MGUC

increases with K. At the same time, we also record the memory footprint associated with
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Figure 4.11: (a) Effect of the hyper-parameter K on TGC optimality loss of LB-MGUC, (b)
Effect of the hyper-parameter K on the computational time and memory footprint associated
with LB-MGUC.

LB-MGUC (i.e., the amount of memory that LB-MGUC uses while running) when K has
different values. It can be seen that the memory footprint increases exponentially with K.

If the full-fidelity EMPC is applied to solve the UC problem in Figure 4.11, the total
number of regions in the state space can be up to 272. This astronomical number makes it
difficult to measure the computational complexity of the full-fidelity EMPC directly.
However, please note that the full-fidelity EMPC is nothing but the limiting case of
LB-MGUC as K tends to the total number of regions that form the full-fidelity EMPC.
Given that the memory footprint of LB-MGUC grows exponentially with K in Figure 4.11
(b), the memory footprint of the full-fidelity EMPC can easily violate the memory limit of
any hardware controller.

Moreover, we also measure the computation time and memory usage when traditional
MPC is used to solve the UC problem. Here, the optimal solution is obtained using a
branch-and-bound algorithm (see [117] for further details) implemented in MATLAB. The
corresponding computation time of each dispatch step is 160.3 s and the memory footprint is

89.8 kilobyte. We can see that the computation time of traditional MPC is much longer than
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that of LB-MGUC. This is because the optimal solution is obtained by complex iterative
procedures in traditional MPC, which could take a long time to converge. Furthermore,
in practice the online optimization algorithm is implemented in a computationally limited
industrial controller, which will make it even more intractable to solve the optimization
problem within the specified time period.

Therefore, both traditional MPC and EMPC face difficulties in implementations in a low-
power computing microgrid controller. In contrast, our proposed LB-MGUC is promising
to enable real-time implementation in a MG controller with limited computational power.
This is because the computational complexity of the proposed LB-MGUC is tunable by
accepting a certain level of suboptimality, as is shown in Figure 4.11. When the LB-MGUC
is implemented in a MG controller, the maximum possible value of K can be pre-specified,
which is equal to the value that the memory, the computational time, or any other online
computational bound of the MG controller is met 1°. Since the percentage optimality loss
decreases with the increase of K, this maximum K also allows the LB-MGUC to preserve
the optimality of the full-fidelity EMPC to the maximum possible extent.

In Section 4.4.2, the hyper-parameter K was set to be six. We can see from Figure
4.11 (b) that the computational cost of LB-MGUC is very low at this time. Nonetheless,
the corresponding TGC optimality loss is only approximately 1%. Thus, the proposed LB-
MGUC is able to have excellent performance in optimality approximation with very low

computational cost.

4.4.4 Sensitivity of the Total Generation Cost to the Length of

the Forward-looking Horizon

Figure 4.12 shows how the length of the forward-looking horizon Ty influences the TGC of
the UC solutions obtained by solving the full MILP (E.1) - (E.12). The parameters of the
MG was set up in Section 4.4.1. We can see that the TGC decreases with the growth of T}.
However, the TGC changes very little when T} is greater than one hour. If the T} is set
to be 20 — 30 minutes, we can see from Figure 4.12 that the corresponding TGC obtained
by solving the full MILP is approximately 10% higher than the TGC when Ty is 1 hour.

15 At this time, the computation time and memory footprint in Figure 4.11 (b) can be obtained based on
simulation using the given MG controller.
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Thus, in Section 4.4.1 the length of the forward-looking horizon T} is set to be 1 hour. This
is because a smaller Ty will degrade the optimality of the UC solutions in the training data

set, which will also degrade the performance of our proposed LB-MGUC.
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Figure 4.12: Sensitivity of the TGC associated with the UC solutions obtained by solving
the full MILP to the forward-looking horizon length T%.

In fact, the choice of T is system dependent, which is mainly affected by the energy-to-
power ratio of the storage (i.e., the ratio of the energy capacity to the power rating of the
storage) in MG. When the MG controller is designed, the MG operator should perform a

sensitivity analysis to determine the proper length of the forward-looking horizon T}.

4.4.5 Scalability Test

We consider that the MG has more loads, wind turbines and diesel generators compared
with the MG studied previously. In Scenario S;, there are now eight diesel generators, where
py = p? = 640 KW, p3 = p! = 400 kW, p> = pb = 280 kW, and p] = p¥ = 200 kW. The power
limits of storage are p. = 300 kW and p. = —300 kW. The maximum and minimum values
of the aggregate priority load are 2450 kW and 650 kW. The critical load is kept constant
at 150 kW. The capacity of wind farm is 500 kW. Other parameters are same as those in
Section 4.4.2.

As before, the two learning based UC strategies LB-MGUC and AP-CLUC are set up
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Figure 4.13: (a) Percentages of TGC saved by LB-MGUC compared with PL-MGUC, (b)

Percentages of TGC saved by LB-MGUC compared with AP-CLUC, (¢) TGC optimality
loss for LB-MGUC.

under TAS 57, and the performances of all the three UC strategies are tested under TES
Sy (m =1,2,3,4). Here the parameter K of LB-MGUC is set to be 15. The percentages
of TGC saved by LB-MGUC compared with the PL-MGUC and AP-CLUC are presented
in Figure 4.13 (a) and (b), respectively. Figure 4.13 (c) shows the percentages of optimality
loss (compared with the TGC of the full MILP solution). The LB-MGUC saves 32.3% and
3.8% on average in terms of TGC compared with PL-MGUC and AP-CLUC, respectively.
At the same time, the optimality loss of LB-MGUC is 1.3% on average, which shows that
the proposed LB-MGUC is still applicable to a more complicated MG.

When the LB-MGUC is tested under TES 57, the computation time of each dispatch step
and the memory footprint (K = 15) are shown in Table 4.3. Remember that the computation
time is 0.24 s and the memory footprint is 99.2 kilobyte when there are three generators and

the state space has a similar number of regions. We can see that the computation time
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of each step is almost unchanged when there are more generators. However, the memory
footprint increased significantly. This is because the possible combinations of the generator
statuses increase exponentially with the number of generators in the MG. As a result, the
ranking list in each region of the state space will have many more UC options. Therefore, a
larger MG will put higher requirements on the memory size of its MG controller. We also
measure the computation time and memory usage when traditional MPC is used to solve
the UC problem in the larger MG, which is also presented in Table 4.3. We can see that
the computation time of each dispatch step associated with traditional MPC is even longer
than the length of each time step (5 minutes), which indicates that the online optimization
algorithm failed to converge within the specified time period. This again highlights the
difficulty of applying traditional MPC in low-power and real-time computing applications.

Table 4.3: Computation time and memory footprint associated with LB-MGUC and
traditional MPC

Computation time of each | Memory usage
Method dispatch step (s) (kilobyte)
LB-MGUC (K = 15) 0.27 450
MPC 372.4 420

In addition, although we have demonstrated that the LB-MGUC can generalize beyond
its TAS and achieve high level performance in UC in a MG with different load profiles,
renewable generation profiles, or utility energy exchange schedules, it is still recommended
to monitor the performance of LB-MGUC online when the operating conditions have changed
significantly. If the optimality loss exceeds the desired range, it is time to re-train the DNN
and update the ranking lists.

4.5 Summary

In this chapter we integrated ML and EMPC to design a rigorous and computationally
efficient solution for implementing flexibility-based UC paradigms in a MG controller with
limited computational power. A two-stage learning based approach has been developed to
approximate the EMPC control laws of the original UC problem with tunable complexity by

accepting a certain level of suboptimality. When the proposed approach is implemented in a
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MG controller, its computational complexity can be tuned to meet the hardware limitation
of the given MG controller, while preserving as much as possible the optimality of the full-
fidelity EMPC. This entirely eliminates the excessive partitioning problem of traditional
EMPC and enables eventual online real time implementation of the proposed approach.
The verified results have shown that the proposed approach effectively reduces the total
generation cost in MG compared with a simple priority list based UC strategy. By
leveraging the knowledge derived from the EMPC model of the UC problem, this approach
provides feasible UC decisions and outperforms another learning based UC strategy. When
the percentage optimality loss of the proposed approach compared with the full-fidelity
EMPC is approximately 1% in terms of generation cost, its computational burden is still
very low. The proposed approach is also capable of generalizing beyond its training
scenario and achieving high level performance in UC in a MG with different load profiles,
renewable generation profiles, or utility energy exchange schedules. Finally, the proposed

approach also scales easily well with the size of the MG.
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Chapter 5

Conclusion

5.1 Thesis Overview

The increasing renewable generation in power systems has posed critical challenges to its
energy management. The reason is that renewable generation is dependent upon variable
weather conditions, which introduces increased variability and uncertainty in power
balancing and raises the flexibility requirements in the system. In this environment, there
is a need for appropriate approaches capable of quantifying a power system’s flexibility
requirements in an accurate manner. Moreover, there is an increasing need for approaches
capable of simplifying and accelerating traditional flexibility-based operational planning
paradigms so that they can be implemented in practical controllers in power system with
limited computational power, especially in microgrid.

Chapter 2 first proposed the modeling approach called “spatio-temporal flexibility
requirement envelope”. It seeks to model the flexibility requirements in a power system in a
more accurate manner by comprehensively capturing and representing the temporal trends
and spatial correlation of multisite renewable generation and load demand using historic
generation and demand data. A robust optimization based framework is also developed for
applying this envelope to power system unit commitment and dynamic dispatch through
projections of the spatio-temporal envelopes. The case study provided illustrated the
effectiveness of the spatio-temporal envelopes both in microgrid and in transmission
system. It is revealed that spatio-temporal envelope can effectively capture the temporal

trends and spatial correlation of RES and uncertain loads by adjusting its shape and size,
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which can effectively reduce the over-conservatism of the energy scheduling results.
Compared to other modeling methods for flexibility requirements (i.e., ellipsoidal,
polyhedral and box shaped methods), we demonstrated that the proposed approach leads
to a decrease in total operating cost in the long run, while not incurring more load
shedding or renewable generation curtailment.

In Chapter 3 we proposed a rigorous DT-based learning framework for real-time
implementation of flexibility-based MG dispatch paradigm in a MG controller with limited
computational power. Here, we assume that the MG has a maximum of one dispatchable
generator. The proposed DT-based framework is able to consider the operating constraints
of MG, uncertainties in net load, the commitment status (ON/OFF) of a dispatchable
generator, and the energy storage system systematically. It is shown through illustrative
examples that the proposed DT-based approach can provide feasible dispatch decisions. It
also has satisfactory performance in optimality approximation. At the same time, the
DT-based approach is capable of generalizing beyond its training scenario and achieving
high level dispatch performance in a MG with different parameters, power profiles, or other
operating conditions. Moreover, HIL simulation shows that the computational efficiency of
the DT-based approach is very high and that it is capable of enabling eventual online real
time implementation.

Moreover, in Chapter 4 we considered the general case where the MG has multiple
dispatchable generators. We developed a rigorous approach which combines k-means
clustering, DNN classification and EMPC for implementing flexibility-based UC paradigms
in a MG controller with limited computational power. The proposed learning based
approach is able to handle the variables and constraints of the original UC problem
systematically. At the same time, it introduces a tuning parameter that allows the MG
operator to adjust the computational complexity of the approach to meet the hardware
limitation of the given MG controller, while preserving as much as possible the optimality
of the full-fidelity EMPC. This entirely eliminates the excessive partitioning problem of
traditional EMPC and enables eventual online real time implementation of the proposed
approach. The effectiveness of the proposed approach was demonstrated through several
illustrative examples. It is shown that the proposed approach can provide feasible UC
schedules. It is able to have excellent performance in optimality approximation with very

low computational costs. The proposed approach is also capable of generalizing beyond its
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training scenario and achieving high level performance in UC in a MG with different load

profile, renewable generation profile, or utility energy exchange schedules.

5.2 Recommendations for Future Work

We summarize several key open questions and recommendation for future work here, which

could contribute to advancing the state of the art further.

1. Develop online envelope updating approaches. The parameters of the spatio-temporal
flexibility requirement envelope in Chapter 2 can be adjusted online according to the
system state and the operation history, so that the approach can be less conservative
further and the decisions made can be more cost-efficient. The best parameter can
be obtained by optimization. Machine learning can be used here to accelerate the
optimization process. Also the parameter in system forecast (interval forecast) can be

adjusted according to operation history.

2. In Chapter 4, we assumed that the flexibility requirement envelope used in MG unit
commitment is time invariant. However, this envelope could be time varying (e.g.,
when there is solar generation). Then the flexibility requirement envelope used should
be generated by the projection of the spatio-temporal flexibility requirement envelope
in Chapter 2 instead of the time invariant envelope in [6]. At a result, the state vector
0, should include the envelope and it will have many more dimensions. Dimension

reduction methods such as PCA can be used.

3. Incorporate the learning-based model we developed in Chapter 3 and Chapter 4 into the
long-term investment planning of MG. Usually long-term planning is computationally
time-consuming because the optimal operation of the MG needs to be calculated for
a large number of samples. Our proposed model can provide a fast and high quality
approximation of the MG dispatch or unit commitment, which can accelerate the

calculation of the long-term investment planning.

4. Incorporate the network constraints into the learning-based framework we developed

in Chapter 4. Then the nodal injection and line flows will have to be considered.
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5. If a market existed, the interaction between the MG and the utility grid can be taken

into consideration in the optimization formulation in Chapter 2.

6. Incorporate demand response into the spatio-temporal flexibility requirement envelope
in Chapter 2.

7. Another important area for future research is the application of the spatio-temporal
flexibility requirement envelope for short-term operational planning or long-term
investment planning studies in a power system with high penetration of electric

vehicles.
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Appendix A

Time Series Gaussianization and PCA

The detrended time series are transformed into corresponding Gaussian time series. We use
y! (t) to represent w! (t) for wind speed/load time series or 62 (¢) for solar power time series
at bus n. The transform is shown as follows for t = to,to — 1,...,t0 — Ts + 1 [62], [63]

yi(t) = @7 [FY (y,(1))] (A1)

where FY is the estimated cumulative distribution function (CDF) of time series 1/, (t) (t =
to,to — 1,...,to — Ts + 1), while ®(-) is the CDF of the standard normal distribution. The
Gaussianized time series are assembled into the R x T matrix Y”, whose rows are time series
y"'(t) and R is the number of separate location-specific time series. It is further approximated
that all the rows of Y” are also jointly Gaussian distributed as seen in [63] and [118]. We
define ¥, the R x R covariance matrix of Y”. Letting p; > ps > - -+ > pr be the eigenvalues
of ¥ and their corresponding eigenvectors Uy, Us, - - - , Ug, the rows of Y” can be decorrelated
using the following PCA transform [63], [119]:

Z=[U, U, --- Ug)'Y" (A.2)

The rth (1 < r < R) row of Z is the rth PC of Y”. All the PCs are uncorrelated and
Gaussian distributed. Thus, they are independent of each other. Moreover, as the PC index
r increases, the relevance of the components decreases in capturing the variability of the time

series (as seen with the decreasing values of the corresponding p,). The PCA transformation
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in (A.2) can be inverted back through:

Y// - [Ul U2 et UR]Z (A3)
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Appendix B

Flexibility Requirement Envelopes for
PCs

The method in [6] based on persistence forecast is applied to construct the flexibility
requirement envelope for each PC. For the time series of the rth (1 < r < R) PC, Z.(t)
(t = to,to — 1,...,t9g — Ts + 1), the intra-hourly deviations are modeled as step changes,
which are defined as AZ,.(t,7) = Z,(t + 7) — Z,.(t), where 7 is the look ahead time. For
example, if the length of each time step is five minutes and the length of the forecast
horizon is set to be one hour, then 7 € Z5 = {0, 5, 10, 15, ..., 55,60} minutes.

Note that AZ,.(t, 7) is a stationary time series indexed by ¢, whose probability distribution
function (PDF) is a function of 7 only. The PDF of AZ,.(¢,7) can be computed empirically
for every 7 using a relative frequency plot. The interval [e}(7),el(7)] enclosing v% of the
probability of the empirical PDF of AZ,.(t,7) is defined as follows

Lir

+0c0 57'( ) 1 —
/T( )gpr(T, 2)dz = / or(T, 2)dz = 2V% (B.1)

where ¢,.(7, 2) is the empirical PDF of AZ,(t,7). Connecting the &%(7) and e!(7) at all 7
and we obtain the flexibility requirement envelope {&}(7),&l(7)},cz,, for the rth PC Z,(t).
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Appendix C

MIP for MG Dispatch

This Appendix presents the MIP formulation for the MG dispatch (with one dispatchable
generator only) based on the flexibility requirement envelope {ely(7),e%(7)}rez,. The
variables (+)(7,q) (7 € 2y, ¢ € 2, = {1,{}) are forward-looking decisions, as driven by the
envelope.

1) Objective function:

min > (agpg(T, Q)% + bypy(T,q) + cquy(T, q)) + 7, (1, q) + 7°6.(1,q)  (C.1)
T€EEH qE{1}
Equation (C.1) minimizes the cost of dispatchable generation at current time ¢, (7 = 0),
while considering the forward-looking horizon t; + 7 for each 7 € Zy. Parameters ag, by
and ¢, are the cost parameters of generator, while 7¢ and 7° are penalties associated to load
shedding and renewable generation curtailment.
2) Power balance for T € =g and q € {1,1}:

d(tO) - 5(t0) - ppoi(tO) = pg(Ta Q) +pe(7—a Q> + dc(Ta Q> - 50(7—’ Q) - 6(114(7—) (02)
3) Capacity limits of generator for T € Eg and q € {1,1}:
ug(7,4)pg < Pg(7, ) < uy(7,9)Py (C.3)

ug(T,q) € {0,1} (C4)
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4) Capacity limits of storage for T € =g and q € {1,1}:
Se < Se(to—1) = Ta > pelt,q)n <5 (C.5)

Pe < pe(7,q) < Pe (C.6)
n is the efficiency of storage. n = 7. when the storage is charging and n = 1/n; when it is
discharging.

5) At current time ty (T = 0), we also require the consistency of dispatch decisions as follows:

py(to) = pg(O,T) = pg(O,i) (C.7
pe(to) (0, 1) = pe(O, 1) (C.9)
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Appendix D

Decision-Tree Construction

The large classification trees C'T, (r = 1,2,3) and the large regression trees RT, are built
using the CART (Classification And Regression Tree) algorithm [87]. The CART algorithm
first uses recursive binary splitting to grow the large classification tree or the large regression
tree based on the corresponding training data.

For classification, the Gini index or cross-entropy [87] are used as criteria for making
binary splits over features. For regression, the sum squared error can be used as the splitting
criterion [87]. The tree stops growing only when the number of observations in each leaf
node reaches a pre-specified minimum value.

The large trees are pruned using the cost complexity pruning method. For the large
classification trees CT, (r = 1,2, 3), each value of the tuning parameter a, corresponds to a

subtree C'T"" such that the following cost complexity measure is minimized
CCM(CT*) =CE + «, |CT| (D.1)

where CCM (CT?7) is the cost complexity measure of subtree CT*". The classification error
CFE is associated with CT*" defined in (3.6). The term |C'T"| indicates the number of
terminal nodes of the subtree CT. When «, = 0, then the subtree is simply equal the
large classification tree C'T,.. As «, increases, the branches are pruned from the tree in a
nested and predictable fashion. The cost complexity pruning for large regression trees is
similar to that of the classification trees.

Further details about the CART algorithm and cost complexity pruning can be found
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in [87].



112

Appendix E

MILP of Microgrid Unit Commitment

This Appendix presents the MILP for the UC (with multiple dispatchable generators) at
current time to. The variables (-)(7,¢) (7 € Zu, ¢ € Z;, = {1,}) are forward-looking
decisions, as driven by the flexibility requirement envelope {62(7), ej(T)}TegH. Here, 25 =
{1,2,--- ,Ty}.

1) Objective function: The objective function minimizes the total cost of using
dispatchable generators at current time ¢, (i.e., 7 = 0), while considering the
forward-looking horizon to + 7 (7 € Zp) and each branch (¢ € {1,]}) of the envelope. z}
represents the operating cost of generator ¢, which will be introduced in detail later in this
section. 7 and 7° are penalties associated to load shedding and renewable generation

curtailment.

vy = min Z Z;(T, q) + Z (ﬂ'ddC(T, q) + 7r5(5c(7-7 q)) (E.1)

TEEH {1 },i€E, TEEH, {14}

The optimization is subject to:
2) Power balance constraint for ¢ € {1,1} and 7 € Ep:

d(to) = ppoi(to) = > py(7.a) + 3 plT.q) + de(7,q) = 0cl7,q) = €h(r)  (E2)

€2, jEEe

3) Technical limits of storage j € Z. for ¢ € {1,1} and 7 € Zg: 1’ represents the

efficiency of storage j. 77 = 7/ when the storage is charging and 7/ = 1/1, when it is
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discharging. 7/ and né are the charging and discharging efficiency of storage j.

pl < pi(r.q) <pl (E.3)

s <sl(to—1) = Ta Y pi(t,q)n < s (E.4)
t=0

4) Technical limits of generator i € =, for g € {1,1} and 7 € Zp:

(7, )Py < py(T,a) < ug(r, q)pf (E.5)
ui(r,q) € {0,1} (E6)
Py(T = 1,0) = Py(7,0) < rhantil (7, @) + rhea (0 (7 = 1,0) — wi(7,9)) + 2 (1 — uj(r — 1,9))

(E.7)
Py(7,0) = py(r = 1,q) < rpuul (7 = 1,9) + i (ul (7, 0) — (7 = 1,9)) +pj, (1 = wi(7,9))

(E.8)
5) Auziliary constraint of generator i € =, forqe {1,1}, T € Eg andw =1,2,--- | W;:

W, represents the total number of segments of the piecewise linear cost function of generator

1. w is the index of the segment.
2g(T.0) = b5 py(7,q) + ;" uy (7, q) (E.9)

6) The consistency of UC decisions for generator i € =, and storage j € E. at current
time ty (1 =20):

ui(to) = 1 (0,1) = uf(0.) (B.11)
Pi(te) = pi(0,1) = pi(0, 1) (5.12)
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Appendix F

A Brief Introduction of AP-CLUC

We give a brief introduction of the adaptive contextual learning based microgrid UC strategy
(AP-CLUC) previously proposed in [61].

The AP-CLUC first partitions the state space into different square regions. It then
builds a priority list for different generators for each region, which will be used for making
UC decisions online (please note that storage systems are not considered in [61]). The

partitioning of the state space in AP-CLUC is briefly introduced as follows.

Figure F.1: Illustration of the partitioning process of AP-CLUC, which is adapted from
[61].

The algorithm first sets a threshold for the number of state vectors 8,. If the total
number of state vectors in a square region exceeds this threshold, then this square region
will be divided into four smaller square regions with the same size. This process repeats
until the number of state vectors in each square region of the state space is lower than the
pre-determined threshold.

Figure F.1 illustrates the partitioning process of AP-CLUC. The threshold of the number
of state vectors in this figure is four. When the state space has only one state vector, it is not

partitioned. When the state space has five state vectors, it is partitioned into four smaller
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square regions, so that the number of state vectors in each square region is less than the
threshold (four). Finally, if one of the smaller square regions still has more than four state
vectors, it is further divided into four smaller square regions until the number of state vectors

in each square region is less than the threshold (four).
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