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ABSTRACT  

The present work addresses the potential applicability of attenuated total 

reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy in routine microbiology 

for the identification of bacteria and yeasts. The infrared (IR) spectrum of microorganisms 

acquired directly from initial culture is representative of their biochemical composition and 

is referred to as a whole-organism fingerprint. However, identifying the species of a 

microbial isolate by matching its IR spectrum against spectra of reference strains in a 

spectral database becomes increasingly unreliable as the number of candidate species 

represented in the database increases. “Spectrotyping” is a novel approach centered on 

the process of determining the differences between spectra (of microorganisms) based 

on the absence or presence and relative intensities of particular IR absorption bands and 

was assessed in the present work for differentiation of microorganisms at the species 

level. At the outset of this work, a standardized operating protocol was elaborated and 

tested with diverse microbial strains to ensure that the methodologies developed in the 

subsequent research would be directly transferable to external sites for validation and 

potentially routine implementation. Clinical and food isolates of bacteria (n=2619) and 

yeasts (n=391) obtained from the frozen collections of 9 microbiology laboratories were 

cultured in accordance with the standardized operating protocol, and their ATR-FTIR 

spectra were acquired in triplicate by directly transferring colonies from the culture plate 

onto the ATR sampling surface. For the spectrotyping of bacteria, averaged triplicate 

spectra of the 2619 bacterial isolates were divided into training and test sets where 

isolates in the test set were selected based on stratified random sampling of ~30% of the 

total isolates in each group (species). A multitude of multivariate spectral analysis 

methods were investigated in the development and validation of the prediction models. 

Predictions of Gram-stain type, genus, and species were then obtained from this model 

for the spectra in the test set. The prediction model yielded 99.3% and 99.4% correct 

Gram-stain type identification for Gram-negative (n=272) and Gram-positive bacteria 

(n=312), respectively. At the genus level, 100% correct identification was achieved for 

clinically relevant microorganisms. Moreover, at the species level, 92.6% and 99.1% 

correct identification were obtained for Gram-negative and Gram-positive bacteria, 

respectively. An external validation study of the ATR-FTIR spectroscopy-based bacteria 
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identification method employing this prediction model was conducted in a hospital clinical 

microbiology laboratory over a 3-month period. Among 391 bacterial isolates identified by 

the ATR-FTIR spectroscopy-based method in parallel with the laboratory’s routine 

identification methods, 363 isolates belonged to species represented in the training set, 

and 98.7%, 91.3% and 98.4% were correctly identified at the Gram-stain type, genus, 

and species level, respectively. For yeast identification, a sequential pairwise multitier 

prediction model was developed with a training set consisting of 261 frozen isolates 

(previously identified by reference methods) encompassing 12 genera and 65 species. 

The ATR-FTIR spectroscopy-based method for yeast identification employing this 

prediction model was ultimately evaluated in a multicenter study (unsupervised) 

encompassing 6 clinical microbiology laboratories resulting in 98.3% correct species 

identification with no misidentification of 534 collected isolates. The validation studies of 

the ATR-FTIR spectroscopy-based methods for bacteria and yeasts based on the 

prediction models developed in this research demonstrated comparable results to well-

accepted matrix-assisted laser desorption ionization–time of flight mass spectrometry, 

paving the way for future accreditation as a routine tool for microbial identification.  
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RÉSUMÉ 

Le présent travail aborde l'applicabilité potentielle de la spectroscopie infrarouge 

à réflectance totale atténuée par transformée de Fourier (ATR-FTIR) en microbiologie de 

routine pour l'identification des micro-organismes. Le spectre infrarouge (IR) des micro-

organismes, acquis directement à partir de la culture initiale, est représentatif de leur 

composition biochimique et est appelé empreinte digitale de tout l'organisme. Cependant, 

l'identification de l'espèce d'un isolat microbien en faisant correspondre son spectre IR 

avec des spectres de souches de référence dans une base de données spectrale devient 

de moins en moins fiable à mesure que le nombre d'espèces candidates représentées 

dans la base de données augmente. Le « spectrotyping » est une nouvelle approche 

centrée sur le processus de détermination des différences entre les spectres de micro-

organismes en fonction de l'absence ou de la présence et des intensités relatives de 

bandes d'absorption l’IR particulières et a été évaluée dans le présent travail pour la 

différenciation des micro-organismes au niveau de l’espèce. Au début de ce travail, un 

protocole opératoire normalisé (SOP) a été élaboré et testé avec diverses souches 

microbiennes pour s'assurer que les méthodologies développées dans la recherche 

ultérieure seraient directement transférables à des sites externes pour validation et 

éventuellement mise en œuvre de routine. Des isolats cliniques et alimentaires de 

bactéries (n=2619) et de levures (n=391) obtenus à partir des collections congelées de 9 

laboratoires de microbiologie ont été cultivés conformément au SOP, et leurs spectres 

ATR-FTIR ont été acquis par transfert direct des colonies de la plaque de culture. Pour 

le spectrotypage bactérien, un échantillonnage aléatoire stratifié d'environ 30 % du total 

des isolats dans chaque groupe (espèce) des 2619 isolats a été divisé pour un ensemble 

de tests. De nombreuses de méthodes d'analyse spectrale multivariée ont été étudiées 

dans le développement et la validation des modèles de prédiction. Les prédictions du 

type Gram-stain, du genre et des espèces ont ensuite été obtenues. Le modèle de 

prédiction a donné 99,3 % et 99,4 % d'identification correcte du type Gram-stain pour les 

bactéries Gram-négatives (n=272) et Gram-positives (n=312), respectivement. Au niveau 

du genre, une identification correcte à 100 % a été obtenue et au niveau de l'espèce, 

92,6 % et 99,1 % d'identification correcte pour les bactéries Gram-négatives et Gram-

positives, respectivement. Une étude de validation externe de la méthode d'identification 
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des bactéries basée sur la spectroscopie ATR-FTIR utilisant ce modèle de prédiction a 

été menée dans un laboratoire de microbiologie clinique d'un hôpital pendent 3 mois. 

Parmi 391 isolats bactériens identifiés par la spectroscopie ATR-FTIR en parallèle avec 

les méthodes d'identification de routine du laboratoire, 363 isolats appartenaient à des 

espèces représentées dans l'ensemble d'apprentissage, et 98,7 %, 91,3 % et 98,4 % ont 

été correctement identifiés au type Gram-stain, le genre et l'espèce, respectivement. Pour 

l'identification des levures, un modèle de prédiction a été développé avec un ensemble 

d'apprentissage composé de 261 isolats congelés. La méthode basée sur la 

spectroscopie ATR-FTIR pour l'identification des levures utilisant ce modèle de prédiction 

a finalement été évaluée dans une étude multicentrique englobant 6 laboratoires de 

microbiologie clinique, aboutissant à 98,3 % d'identification correcte des espèces sans 

erreur d'identification de 534 isolats collectés. Les études de validation des méthodes 

basées sur la spectroscopie ATR-FTIR pour les micro-organismes basés sur les modèles 

de prédiction développés dans cette recherche ont démontré des résultats comparables 

aux méthodes d'identification de routine, ouvrant la voie à une future accréditation en tant 

qu'outil de routine pour l'identification microbienne.  
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The overall goal of the thesis was to advance the development of ATR-FTIR 

spectroscopy as a rapid and cost-effective technique for both microbial identification and 

strain typing of bacteria and yeasts. Extensive research on microbial analysis by FTIR 

spectroscopy has been reported but limited studies have employed the ATR mode of 

spectral acquisition. ATR-FTIR spectroscopy was evaluated as part of the work of the 

thesis to reduce time and cost of microbial analysis. The work of the thesis aimed at the 

development and evaluation of the ATR-FTIR-based method for microbial identification 

at the gram-type, genus, species, serotype, and strain-type level for both clinically- and 

food-relevant microorganisms. The major contributions to knowledge resulting from this 

work are summarized below. 

1. Standardized microbial sample preparation, spectral acquisition parameters 

and spectral quality checks for the ATR-FTIR-based microbial identification 

technique for clinically and food-relevant bacteria and yeasts 

A standard operating procedure was developed to address limitations of the ATR-

FTIR-based microbial identification technique such as, sample preparation, polymicrobial 

culture plate assessment, spectral heterogeneity, and varying moisture content of 

samples, to generate highly reproducible spectra of microorganisms by ATR-FTIR 

spectroscopy. This work eliminated major environmental and sample preparation 

variances between spectra of same-species, thereby generating reliable and consistent 

ATR-FTIR spectra of intact microbial cells. 

2. Developed and evaluated a multilevel classifier technique with multivariate 

statistical analysis and machine learning for Gram-stain type, genus, species, 

and serogroup microbial identification and discrimination 

The thesis’s work encompasses the largest ATR-FTIR spectral collection (collected 

retrospectively and prospectively) of over 7000 well-characterized isolates from both 

clinical and food microbiology laboratories. Various advanced mathematical classification 

algorithms were evaluated to produce multivariate discrimination models for the 

identification and typing of microorganisms solely based on differences in their ATR-FTIR 

spectra (spectrotyping). Through central (bacteria and yeasts), multicentral (yeasts) and 

international (yeasts) evaluation, over 95% correct identification was achieved for Gram-
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stain type, genus, species, and serogroups in comparison to current identification 

methods (including carbon assimilation tests, MALDI-TOF MS, molecular-based typing 

techniques and WGS).  

3. Developed a technique for strain-typing of highly clonal C. parapsilosis isolated 

from a hospital outbreak  

The genome of yeasts is greater than 10 Mb, making whole genome sequencing both 

costly and time-consuming and requires highly trained laboratory technicians and 

bioinformatic experts. Microsatellite molecular strain-typing of C. parapsilosis lacks 

sensitivity of WGS and results are not always reproducible. This work has demonstrated 

the potential of ATR-FTIR spectroscopy as a rapid (1-minute), easily implemented and 

sensitive method for identifying potential outbreaks and act as a tool for infection control. 

The ATR-FTIR method offers real-time analysis for surveillance and outbreak control.  

4. Provided multiple feasibility studies to further advance FTIR spectroscopy in 

clinical and food microbiology 

In addition to the other contribution to knowledge, FTIR spectroscopy was applied to 

multiple feasibility studies such as ATR-FTIR spectroscopy for mold identification and 

evaluating FTIR spectroscopy for batch screening, surveillance of patient health status, 

antimicrobial resistance discrimination and correlating phenotypic, genotypic 

characteristics to spectrotypic characteristics. It is important to determine the cause of 

failure and success to truly appreciate and understand the extent of what can be extracted 

from ATR-FTIR spectra of microorganisms. As such, the work has laid the path for future 

researchers to advance FTIR spectroscopy for multiple applications of strain typing. 
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CHAPTER 1.  INTRODUCTION 

1.1. General introduction 

Microorganisms causing infections and illnesses are acquired from hospitals, 

contaminated foods, person-to-person transmission and can also be acquired from the 

environment. Staphylococcus aureus, Enterococcus species, Escherichia coli, Shigella 

species, Candida albicans, and more recently Candida auris are examples of 

microorganisms that cause infections in both healthy and immunocompromised 

individuals. Conventionally, for screening and identification, microorganisms are grown 

on culture agar media and broths. These methods are based on monitoring the 

biochemical and metabolic profiles of microorganisms during their growth cycle over a 

16-48 h period. Although sensitive and inexpensive, conventional methods are time 

consuming and are not always conclusive – requiring the use of additional identification 

methods for achieving conclusive results. Precision, accuracy, rapidness, and cost are 

major considerations for the development of new microbial identification methods. With 

the advancement in microbial identification tools, immunologically based methods have 

been developed that are more rapid than conventional techniques. Limitations of 

immunological-based methods include lower specificity, generation of antibodies to select 

antigens specific to species and are available to a limited selection of species. 

Furthermore, identification sensitivity varies between genera and species, and therefore 

various factors should be considered when developing new methods for species 

identification. In addition, some microorganisms share genotypic and phenotypic 

attributes, contributing to the difficulties in species identification. For instance, E. coli and 

Shigella spp. are phylogenetically similar but are phenotypically dissimilar where Shigella 

spp. are non-lactose fermenting whereas E. coli are lactose fermenters (rarely non). 

Conventional biochemical identification methods heavily rely on specific characteristics 

of microorganisms and therefore may lack sensitivity for species with overlapping 

characteristics. Molecular-based methods [such as polymerase chain reaction (PCR) and 

whole genome sequencing (WGS)] are more precise for species identification and are 

used to identify the presence of the antimicrobial resistance gene(s). While WGS is 

becoming the new gold standard for microbial identification and typing, it is expensive, 
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time consuming and requires highly trained personnel, making it currently unsuitable for 

routine use in microbiology laboratories.  

The past decade witnessed the emergence and global adoption of new microbial 

identification techniques based on the use of matrix-assisted laser desorption/ionization 

time of flight (MALDI-TOF) mass spectrometry (MS). MALDI-TOF MS provides rapid, 

accurate and cost-efficient microbial identification compared to current molecular 

methods. However, MALDI-TOF MS requires a high initial investment cost, making it 

unsuitable for small clinical microbiology laboratories and the food industry (quality control 

and assurance).  

The adoption of MALDI-TOF MS as part of the workflow of a clinical microbiology 

laboratory opened doors to spectroscopy-based methods for clinical in vitro diagnostics 

such as Raman and Fourier transform infrared (FTIR) spectroscopy. The infrared 

spectrum of a microorganism can be acquired directly from intact cells (referred to as a 

whole-organism fingerprint) taken from a culture plate and is representative of their 

biochemical composition (i.e., lipids, proteins, carbohydrates, etc.), and as such is 

considered as the most characteristic physical property of the microorganism. Like 

MALDI-TOF MS, microbial identification employing FTIR spectroscopy is based on 

spectral fingerprint recognition by comparison of the FTIR spectrum of an unknown isolate 

with FTIR spectra in a reference library of well characterized microbial strains. While most 

of the published research to date has involved FTIR spectral acquisition in the 

transmission mode, which requires several sample processing steps prior to spectral 

acquisition, the use of attenuated total reflectance (ATR) mode of FTIR spectral 

acquisition of microorganisms directly acquired from the culture media is more practical 

for implementation for routine laboratory use. Furthermore, an ATR-FTIR-based 

spectroscopic method does not require the use of any reagents making it more cost-

effective to resource-limited laboratories. The current research will evaluate the specificity 

and sensitivity of ATR-FTIR spectroscopy for identification and typing of selected 

microorganisms in comparison to other current identification techniques.  
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1.2. Research objectives 

The research objective of the thesis entails the examination of the applicability of 

ATR-FTIR spectroscopy for identifying clinical and food relevant microorganisms, and to 

advance the development of FTIR spectroscopy as a rapid and cost-effective technique 

for strain-typing of outbreaks.  

The specific research objectives are as follows:  

i. To develop a standardized protocol for ATR-FTIR spectral acquisition for microbial 

identification for selective (clinically and food relevant) non-fastidious, aerobic, and 

facultative anaerobic bacteria and yeasts. Standardization of the ATR-FTIR-based 

microbial identification method entails defining culturing conditions, spectral 

acquisition parameters (e.g., number and frequency of background scans, number 

of sample scans and spectral resolution), spectral processing and pre-processing, 

and to develop a multilevel classification spectral search technique that will further 

advance ATR-FTIR spectroscopy as a tool for microorganism identification. 

ii. To define, investigate and explore spectrotyping and support vector machine 

algorithms as a method of classifying selective (clinically and food relevant) non-

fastidious, aerobic, and facultative anaerobic microorganisms based on their ATR-

FTIR spectral fingerprints. 

iii. To use information observed in the ATR-FTIR spectral fingerprints of 

microorganisms to develop a microorganism identification tool by creating a 

multitier (based on pairs or multiple groups of spectra) spectral search database 

based on their spectrotypes of well-characterized bacteria and yeasts. 

iv. To evaluate the potential of ATR-FTIR spectroscopy-based microorganism 

identification for routine species identification of food and clinically relevant species 

in prediction accuracy at the genus, species, and serogroup level; retrospectively 

and prospectively identify microorganisms based on differences in their infrared 

spectra.  
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v. To multicentrally evaluate the intra- and inter- laboratory data transferability of the 

ATR-FTIR spectroscopy-based microorganism identification method to advance 

validation studies for potential implementation. 

vi. To compare the efficacy of microbial strain typing by ATR-FTIR spectroscopy in 

reference to gold standard genotyping methods such as WGS and PCR genetic 

sequencing for outbreak detection of yeasts to explore and evaluate the ATR-

FTIR-based strain typing method. 

vii. Lastly, the listed objectives aim at advancing research for ATR-FTIR spectroscopy 

in clinical and food microbiology, however, there are multiple gaps in which the 

final objective of the thesis is to address prospective future work to further advance 

the current field of research. 
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CHAPTER 2. LITERATURE REVIEW 

2.1. Overview of microbial classification of clinical and food-related 
microorganisms 

Since the 1680s, scientists were interested in classifying organisms based on 

similarities observed physically under the microscope. The work was originally part of 

Anthonie Van Leeuwenhoek’s discovery on living microorganisms, subsequent to 

developing microscopes (1). With the discovery of microorganisms, biologists naturally 

navigated towards classification of all newly discovered strains. Classification was 

originally achieved by categorizing bacteria based on morphology observed under the 

microscope and was later advanced to lipid extraction and analysis by gas 

chromatography to group differences in lipid profiles as new species (2). As such, 

microorganisms were classified by phenotype (genotypic expression that can be 

observed in various environmental conditions) – with no linkage to previous ancestors. In 

the recent past decades, many scientists explored classification methods based on 

varying characteristics of microorganisms, (e.g., colorimetric testing, pulsed-field gel 

electrophoresis (PFGE), electron microscopy, x-ray diffraction, mass spectrometry (MS), 

DNA base sequence, rRNA protein profiles and more recently by whole genome 

sequencing (WGS) (3-6). Through phenotypic and genotypic information, microbiologists 

were able to develop various classification methods and harvest data to determine 

relatedness between genera and species. 

Although classification of microorganisms is yet to be definitive, WGS is emerging as a 

standard method for determining phylogeny of microorganisms - resulting in 

reclassification of existing species to different genera or reclassification of existing genera 

to other genera [e.g., Pantoea genus is now considered to be Enterobacter and 

Enterococcus was separated from the Streptococcus genus and are classified as its own 

genus (7-9)].  

2.2. Overview of classification of microorganisms 

Based on phenotypic classification, for routine identification, bacteria are 

categorized by their ability to retain crystal violet dye in the cell wall during Gram-staining. 

Gram-negative (GN) bacteria are microorganisms that do not retain the dye as a result of 
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having a thin peptidoglycan layer and an inner cell membrane. Within the GN group, there 

are serval families of clinical and food relevant microorganisms, of which the most 

significant family is the Enterobacteriaceae family. These microorganisms are found 

naturally in the human and animal microflora and can be isolated from the environment; 

not all are pathogenic. Enterobacteriaceae are bacilli (rod-shaped) or cocci (round), they 

are mainly motile, are non-spore forming and produce lactic acid by fermenting sugars. 

Within the Enterobacteriaceae family, Escherichia coli, Klebsiella spp. and Enterobacter 

spp., account for 80-95% of all GN bacteria isolated in clinical practice (10, 11). They are 

responsible for hospital acquired infections and causes respiratory tract, urinary tract, and 

bloodstream infections (7). Of food relevance, Citrobacter spp., Salmonella enterica and 

Shigella spp. are also part of the Enterobacteriaceae family and can also cause human 

infections.  

Gram-positive (GP) bacteria retain the crystal violet dye due to the absence of an outer 

membrane (compared to GN bacteria) where the dye is trapped below the thick 

peptidoglycan layer. GP bacteria such as staphylococci are found commensally living on 

the surface of human skin and in the environment. Staphylococci can be opportunistic 

pathogens and are commonly associated with bacteremia and have a high prevalence of 

antibiotic resistance (e.g., methicillin-resistant Staphylococcus aureus, MRSA) (12). Two 

other GP bacteria genera of importance include Listeria (a major concern in the food 

industry) and vancomycin-sensitive enterococci and vancomycin-resistant enterococci 

(VRE) which are prevalent in a clinical setting.  

Similar to bacteria, yeasts were once originally classified by their ability to mate (genetic 

similarity), their physical characteristics (morphology) and differences in metabolic 

activity. More recently, microbiologists are classifying yeasts by phylogenetics which is 

reliant on genetic evolution and ancestry. Yeasts can be opportunistic pathogens that are 

found naturally on our skin, body and contributes to good health. However, yeast 

infections are the third leading cause of serious bloodstream infection to potentially cause 

death. Yeasts belonging to Candida, Trichosporon and Cryptococcus genera are known 

to cause majority of yeast infections. Most common yeast infections come from Candida 

spp. which encompasses approximately 200 species that are expected to be reclassified 



7 

 

into new genera with the advancement of classification tools like WGS. C. albicans is 

associated with approximately 50% of all yeast infections followed by C. glabrata. Other 

clinically relevant Candida species includes C. auris, C. dubliniensis, C. guilliermondii, C. 

haemulonii, C. kefyr, C. krusei, C. lusitaniae, C. parapsilosis and C. utilis. Some Candida 

spp. are morphologically identical but are phylogenetically closely related and are near-

distinguishable. An example of such phenomenon is between C. bracarensis, C. 

nivariensis and C. glabrata which are phenotypically indistinguishable but can also be 

phylogenetically distinguished. Species identification of phylogenetically related C. 

albicans and C. dubliniensis is important due to C. dubliniensis gaining resistance to the 

antifungal, fluconazole (13). C. glabrata and C. krusei species identification is needed as 

they are both resistant to fluconazole and fluconazole is a front-line therapy drug (14).  

Although speciation is not necessary for all species for appropriate treatment and care, 

identification of potential pathogenic microorganisms by genera and/or antimicrobial 

resistance profile is sufficient for rapid screening and will be cost and time efficient. If 

speciation is necessary, additional methods are available for species identification. 

2.3. Current methods for microorganism identification 

2.3.1. Biochemical assimilation techniques for microbial identification 

Conventional microorganism identification methods include colony morphology, 

coagulase production, agglutination assays and biochemical tests (fermentation, 

oxidation, degradation, and hydrolysis of various substrates) (7, 9, 12). Biochemical tests 

are commercially available and are usually automated to reduce the cost and time of each 

test. Phenotypic classification is based on morphology, cell structure, cellular metabolism 

and differences in cellular components such as proteins, DNA, fatty acids, pigments, 

quinones and surface antigens (15). 

Commercially available phenotypic classification techniques utilize the assimilation of 

various organic compounds such as selected sugars as a carbon-source for microbial 

growth. Various carbon sources are added to culture media with varying pH that favors 

growth of specific microorganisms (16). Incubation temperatures, culture media 

composition and time under aerobic and anaerobic conditions are modulated to inhibit the 
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growth of certain organisms while favoring the growth of others. For example, species 

belonging to the Enterobacteriaceae family are tentatively identified by the production of 

indole, ornithine decarboxylase, malonate and acids from sucrose, dulcitol, melibiose and 

adonitol under defined growth conditions. The Enterobacteriaceae family is considered 

the most prominent group of microorganisms to cause GN bacteria-related infections. 

Species identification of Enterobacteriaceae is vital, as certain species have developed 

resistance to the following antibiotics: extended-spectrum beta-lactamases, 

cephalosporinases and/or carbapenems.  

Traditionally, Gram-staining and morphology observations can be used to screen the 

samples, and the use of selective media such as MacConkey agar (MAC) can improve 

the accuracy of identifying Enterobacteriaceae species. In addition to biochemical 

reaction-based methods, serotyping is another method to phenotypically identify 

microorganisms (e.g., for E. coli, S. enterica, Streptococcus spp. and Staphylococcus 

spp.). Microscopic characteristics (commonly for yeasts), macroscopic characteristics 

(morphology) and lack of coagulase production are among other commonly used 

phenotyping techniques (14). Detailed accepted phenotypic techniques can be found in 

the global guidelines through the Clinical and Laboratory Standards Institute (17). 

Conventionally, biochemical techniques such as multiple carbon assimilation and 

enzymatic tests are utilized in routine for microbial identification (18, 19). Although 

different species share similar biochemical test results, the pattern of the results are not 

identical, as the species do not share identical intracellular enzymes and therefore will 

not have the same metabolic pathways (20). The difference in biochemical test results of 

the different species will result in different “biochemical fingerprints” that are unique to 

identify/discriminate over/between 300 microorganisms of clinical, food and 

environmental relevance using commercially available test kits or are performed manually 

(21). 

To date, there are hundreds of biochemical tests available, but only a combination of 

biochemical tests is used to speciate unknown microorganisms (22-26). Currently, 

VITEK® 2 ID/AST (bioMérieux, Marcy-l'Étoile) is an automated commercially available 

multiple biochemical testing system based on enzymatic activity, acidification, carbon 
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assimilation and whether certain biochemical components are present or not (21). For 

example, from the three available test cards for microbial identification available for the 

system (GN bacteria, GP bacteria, and yeasts), the GN bacteria card performs 47 

different biochemical tests in microdilution wells for the identification of approximately 150 

GN species. Each microwell is filled with 0.002-0.300 mg of substrates (some 

chromogenic and others not) where a 3 mL 0.50-0.63 McFarland suspension of the 

microorganism (and sometimes filled with a color indicator such as bromocresol purple, 

phenol red or methyl red) is automatically distributed to the microdilution wells where it is 

incubated to facilitate the biochemical reactions. Colorimetric measurements are acquired 

every 15 minutes until completion; in approximately 10 hours or less to obtain a 

biochemical profile (set of positive and negative results) to match to known biochemical 

profiles in a database for the identification of the microorganism (21, 24).  

Comparing the performance of VITEK 2 ID/AST (bioMérieux, Marcy-l'Étoile) to 

molecular and other phenotypic identification methods, VITEK 2 ID/AST (bioMérieux, 

Marcy-l'Étoile) resulted in higher accordance rates (+4%) compared to other phenotypic 

methods than genotypic methods (Table 2.1). Slow metabolic rates and high phenotypic 

diversity of certain species such as coagulase-negative staphylococci (CoNS) can result 

in lower rates of correct identification at the species-level (27). Enterobacteriaceae are 

GN bacteria that are commonly routinely isolated and requires species identification for 

appropriate treatment, however, correct species identification ranges between 48-89% 

relative to molecular methods. The low performance of the technique for GN bacteria 

species identification requires the use of additional methods to obtain conclusive results. 

In addition to automated biochemical testing for species identification using the 

automated VITEK 2 ID/AST (bioMérieux, Marcy-l'Étoile) system, it also has the ability 

to perform antimicrobial susceptibility testing (AST). AST is based on the assimilation of 

various organic compounds such as selected sugars as a carbon-source for microbial 

growth in the presence of target antimicrobials. These tests are routinely carried out for 

Burkholderia cepacia complex (BCC) species (resistant to aminoglycoside and 

polymyxin), MRSA, VRE and C. krusei. AST is normally carried out after species 

identification (14).  
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Table 2.1. General summary of meta-analyses for the performance of VITEK 2 ID/AST 
(bioMérieux, Marcy-l'Étoile), an automated microbial biochemical reaction-based 

phenotypic identification technique 

 
Comparative method Correct identification in % 

Gram-stain type 
  

Negative Gram stain 94.37–99.04 

Positive Gram stain 95.48–99.72 

Genus 
  

Gram negative Molecular 74.85–98.84 
Gram positive Molecular 84.09–99.48 
Species 

  

Gram negative  Molecular 48.06–89.23 
Conventional 92.74–97.70 

Gram positive  Molecular 72.65–91.14 
Conventional 94.06–98.11 

Yeasts Molecular 83.0-97.0 

Conventional 89.0-98.0 

References (28-33) 

2.3.2. Matrix assisted laser desorption ionization time of flight mass spectrometry 

as a tool for microorganism identification 

Over the past decade, the use of phenotypic methods has been replaced or 

supplemented by the application of matrix assisted laser desorption ionization time of 

flight (MALDI-TOF) MS for the identification of microorganisms. Briefly, microbial samples 

are smeared over a small area (3-6 mm in diameter) on a target MALDI-TOF MS plate 

and allowed to dry. A small aliquot (~1 µL) of an organic solvent containing α-cyano-4-

hydroxycinnamic acid is added to the sample and is also allowed to dry on the benchtop. 

The target plate is placed under high vacuum in the mass spectrometer and the sample 

is irradiated with a high energy nitrogen laser light. Ionization of the organic matrix results 

in the generation of high energy fragments of α-cyano-4-hydroxycinnamic acid that acts 

as an intermediary for energy absorption (Figure 2.1). Subsequently, the energy 

absorption leads to the rupture of the microorganism, then releasing charged proteins 

which are accelerated under vacuum through a fixed potential - allowing for the separation 

of ions according to their mass to charge ratios. These ions are then analyzed using a 

TOF analyzer, which measures the duration of time an ion takes to travel the length of 

the flight tube of the mass spectrometer (Figure 2.1). Data derived from the TOF analyzer 
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is used to form a peptide mass fingerprint (PMF) spectrum. In the case of microbial 

identification, the spectrometer uses the mass ranges from 2-20 kDa which represents 

60-70% of all ribosomal proteins in the dry weight of the microorganism. The PMF 

spectrum (acquired in ~60-90 seconds per sample) of the unknown sample can then be 

compared to known PMF spectra in a database (34). A reference microorganism (e.g., 

an ATCC E. coli strain) is used to verify the performance of the system.  

Comparing with conventional phenotypic microorganism identification techniques, which 

takes 8-16 hours to obtain a result after initial culture, many researchers are favoring the 

use of MALDI-TOF MS for its speed of analysis (~3 minutes per sample in duplicates) 

and lower cost-per-test. There is however, a very high initial capital cost of the equipment 

which may not be suitable for resource-limited microbiology laboratories.  
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Figure 2.1. Standard laboratory workflow for MALDI-TOF MS-based microbial identification 
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2.4. Current strain typing methods for bacteria and yeast  

Microorganism strain typing is typically performed to gather information on the 

phylogenetic descendants (microbial evolution) for use in epidemiological investigations 

(35). From the 1930s until the 1980s, phenotyping was widely used (serotyping, phage 

typing, biotyping and colicin typing). Subsequently, genomic-based typing methods such 

as PFGE, rep-Polymerase chain reaction (PCR), multilocus sequence typing (MLST) and 

WGS became more widespread. Attempts to develop infrared spectroscopy-based strain 

typing methods were first reported in 1988 (36, 37) and is slowly gaining momentum 

(Table 2.5, Table 2.6, Table 2.7, Table 2.8 and Table 2.9).  

A brief overview of the advantages and disadvantages of selected genomic-based strain 

typing methods are presented in the following subheadings:  

2.4.1. Pulsed field gel electrophoresis 

PFGE is the “gold standard” for many public health agencies such as Center of 

Disease Control and Prevention (CDC) and Health Canada (38). A reported disadvantage 

of PFGE is associated with the use of non-standardized methods which leads to low inter-

laboratory reproducibility (39, 40). PulseNet was created to standardize protocols for 

subtyping foodborne pathogens, where participating laboratories results are documented 

and placed in a global database which can be accessed globally and referenced to. PFGE 

requires extensive training, use of reagents and is highly laborious. The method is 

suitable for detecting and preventing foodborne outbreaks on a national level, but, in a 

hospital setting, it is too costly and time consuming. It takes approximately 24 hours for 

the full analysis and up to 3 or 4 days for robust results (41).  

2.4.2. Polymerase chain reaction-based identification technique 

PCR is the amplification of DNA fragments subsequent to the treatment with 

specific enzymes that cleave DNA at designated sites followed by the isolation of the DNA 

fragments using a primer sequence and amplification by a DNA polymerase (42). While 

PCR-based methods proved to be sensitive and accurate, PCR requires reagents that 

are specific to the gene of interest for amplification, and it is also time-consuming, taking 
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roughly 6 to 48 hours for complete analysis (43-46). For microbial identification, PCR is 

used to determine whether a target gene (species-specific or an antimicrobial resistance 

gene) is present or not. For non-targeted identification applications, PCR is coupled with 

16S rRNA/rDNA gene sequencing to identify a limited number of species by matching the 

gene sequence obtained with those from a 16S rRNA/rDNA gene sequence database of 

microorganisms (43). 

Moreover, with advancement of PCR technology, MLST was developed for detecting (the 

presence of/or absence of) antimicrobial resistant genes and identifying bacterial clones 

(47-50). These advancements did not completely close the gap between high 

discriminatory power between all relevant species and the detection of important 

phenotypic variation of the cell surface resulting from genetic changes (35). WGS is 

increasingly applied to strain-typing and efforts are underway to elucidate how changes 

in the genome of a microorganism affect its phenotypic attributes using bioinformatics 

(51, 52).  

2.4.3. MALDI-TOF MS for strain typing of microorganisms 

The increasing prevalence of MALDI-TOF MS instruments for microbial 

identification has led researchers to evaluate its potential use for strain-typing, but the 

commercially available MALDI-TOF MS spectra are based on the use of a limited mass 

range of proteins (mainly ribosomal proteins), may not be suitable for strain typing (34). 

Furthermore, there currently is a lack of method standardization for strain typing analysis, 

yielding results that are inconsistent relative to other bacterial typing techniques (e.g., 

Salmonella serovars and clonal Klebsiella oxytoca and Acinetobacter baumannii) (53-55). 

Despite these limitations, some studies have reported success for selected species of 

GN and GP bacteria (56).  
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2.5.  Potential use of Fourier transform infrared spectroscopy for microorganism 
identification and strain-typing 

2.5.1. Development overview of Fourier transform infrared spectroscopy-based 

techniques for microorganism identification and strain-typing 

Fourier transform infrared (FTIR) spectroscopy is a well-established technology 

that has been highly researched in various fields of science including chemistry, forensics, 

environmental sciences, pharmaceuticals and food science, and in the recent decades, 

microbiology (57-59). FTIR spectroscopy probes molecular vibrations of chemical bonds 

possessing a dipole moment. These bonds vibrate at a specific vibrational frequency 

which can be observed in the infrared spectral region of the electromagnetic spectrum 

(60). To acquire an infrared spectrum, the infrared beam generated by heating a ceramic 

element passes through an interferometer producing a modulated infrared beam. A 

sample placed in the path of the modulated beam absorbs selected wavelengths 

(dependent on the chemical or biochemical composition of the sample) and the remaining 

unabsorbed energy impinges on an infrared detector. The absorption frequencies are 

identified by ratioing the spectrum of the sample by the spectrum of the modulated 

infrared beam in the absence of the sample.  

In microbiology, FTIR spectroscopy has been employed in the study of examining 

microbial biofilms such as extracellular polymeric substances (EPS). In a study, over a 

20-day period, FTIR spectra of live Pseudomonas spp. were acquired, and the biofilm 

formation of the bacteria was physically and spectrally observed. FTIR absorption bands 

were observed between 1200-900 cm-1 were assigned to EPS (61). Moreover, cell wall 

structural changes may also be examined by FTIR spectroscopy and can be useful in the 

study of drug resistance mechanism of the bacterium (62). Interestingly, the changes in 

the chemical composition of lipopolysaccharides (LPS) between different species (e.g., 

changes in the number of glucosamine disaccharide with six or seven acyl chains) can 

be used to develop antigens to generate antibodies specific to species resulting in the 

development of rapid FTIR spectroscopy-based serotyping (63).  

The ability to non-destructively record infrared spectra of intact microorganisms has 

allowed for the identification of major and minor cellular components. A summary of 
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various infrared absorption bands assigned to various compounds found in 

microorganisms (64-67). 

Table 2.2. Infrared band assignment of functional groups of biochemical 

 constitutes of microbial cells 

Region (cm-1) Biochemical attribute 

3500 O-H stretch of hydroxyl group 
3200 N–H str (amide A) of proteins 
3050-2800 Fatty acid 
2955 C–H str (asym) of –CH3 in fatty acids 
2930 C–H str (asym) of >CH2 
2918 C–H str (asym) of >CH2 in fatty acids 
2898 C–H str of C–H in methine groups 
2870 C–H str (sym) of –CH3 
2850 C–H str (sym) of >CH2 in fatty acids 
1800-1500 Amide region 
1750-1500 Protein and peptide bonds 
1740 >C=O str of esters 
1715 >C=O str of carbonic acid 
1695, 1685, 1675 Amide I band components resulting from antiparallel pleated 

sheets and β-turns of proteins 
1695, 1637 Amide I (α-helix and β -sheet structures of proteins) 
1680–1715 >C=O in nucleic acids 
1655 Amide I of α-helical structures 
1637 Amide I of β-pleated sheet structures 
1550–1520 Amide II 
1520 Amid II (peptide bond) 
1515 “tyrosine” band 
1500-1400 Lipids and proteins 
1500-1200 Mixture of fatty acids, proteins and polysaccharide 
1468 C–H def of >CH2 
1400 C=O str (sym) of COO− 
1310–1240 Amide III band components of proteins 
1250 P=O stretching in phospholipids 
1250–1220 P=O str (asym) of >PO2− phosphodiesters 
1200–900 C–O, C–C str, C–O–H, C–O–C of carbohydrates, Polysaccharide 

(O-C and C-O vibrations) – specific to cell membrane 
1090–1085 P=O str (sym) of >PO2− 
1000-970 Lipopolysaccharides (O-antigen in Salmonella) 
900–600 “Fingerprint region” 

Different microorganisms will have different microbial cell components and accordingly, 

these differences are used for FTIR-based phenotypic discrimination between different 

strains. As the FTIR spectrum reflects the complete biochemical profile of a given 
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microorganism, it can also be employed for the discrimination between microorganisms 

of different taxa. 

2.5.1.1. Cell wall composition of intact bacteria and yeast  

The cell envelop of GN bacteria consists of an outer membrane, peptidoglycan cell 

wall [2-3 nm comprising of 10% by dry weight of the cell wall (68, 69)] and an inner 

membrane. The outer membrane is composed of a lipid bilayer composed of 

phospholipids, glycolipids and LPS. The outer membrane is bound to the peptidoglycan 

cell wall and is commonly termed the periplasm (densely packed with proteins). All three 

layers of the cell envelop is typically 4-10 nm thick and encloses the cytoplasm which is 

approximately composed of 80% water (62, 70) (Table 2.3 and Figure 2.2). Due to the 

double cell membrane, GN bacteria are inherently more resistant to antibiotics than GP 

bacteria as their efficacy is dependent on their ability to permeate the cell wall (70-72). In 

addition, these microorganisms are known to have additional resistance mechanisms 

such as, production of enzyme that hydrolyze or modifies the antibiotic, efflux pumps or 

have the ability to lose outer membrane proteins and porins to cause multi-drug 

resistances (MDR). Changes in the LPS composition can alter the structure of the outer 

membrane and is responsible for endotoxic shock associated with sepsis (72).  

Unlike GN bacteria, GP bacteria do not have an outer membrane, but possess a thick 

peptidoglycan layer encompassing up to 95% of the cell wall making approximately 40-

80% of the dry weight of the cell wall (depending on the species) [Table 2.3; (69)]. The 

surface features mediate interactions between antibiotics and the environment during an 

infection. This is especially observed for S. aureus where the proteins in the cell envelope 

drastically change dependent on environmental changes – easily changing in the 

structure of the outer cell surface. Within the peptidoglycan layer, teichoic acid (absent in 

GN bacteria) and lipoteichoic acids account for 60% of the cell wall’s total mass (62). The 

cell wall of GP bacteria is approximately 15-80 nm thick depending on the microorganism 

and growth phase (68) (Table 2.3). 

Yeasts are GP fungi with a cell wall that is 20-30% of the total weight of the cell with 85% 

of the cell wall being carbohydrates and 10-15% proteins. It has a bi-layer structure that 
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is composed of polysaccharides (alkali-soluble and insoluble β-glucans), mannan and 

minor chitin (73) with a cell wall thickness of 100-350 nm (74-76). 

 

Table 2.3. Cell wall components of Gram negative and positive bacteria 

 
Components 

Gram negative 
bacteria 

Gram positive 
bacteria 

Cell wall Cell wall thickness 4-10 nm 15-80 nm 

Lipids Lipid content 15-20% 2-5% 

Carbohydrate/Lipids Lipopolysaccharide 
content 

13% 0% 

Carbohydrate/glycerol 
phosphate 

Lipoteichoic acid Absent Present 

 

Number of 
membranes 

2 (7.5-10nm thick 
outer membrane) 

1 

Carbohydrates/amino 
acids 

Peptidoglycan 
content 

10-20%  >50% 

Protein Porin proteins Present Absent 

Protein/Lipid Protein/lipoprotein 
content 

>50% 0-3% 

Carbohydrate/glycerol 
phosphate 

Teichoic acid Absent  Present 

(Table adapted from Hancock, 1998; McGowan Jr, 2006; Poole, 2001; Burattini et al., 
2008; Beveridge & Matias, 2006; Davis & Mauer, 2010; Luo et al., 2015; Scorzoni et al., 
2017) 

Phenotypic diversity of genera and species of yeasts and bacteria are expected to be 

reflected in differences in their infrared spectra and will be discussed more thoroughly in 

CHAPTER 4 for relevant species under investigation for the current work. 
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Figure 2.2. Cell wall diagram of (a) Gram-negative bacteria, (b) Gram-positive bacteria 
and (c) yeast 

Accordingly, the cell wall macromolecules contribute to a significant amount of the dry 

mass of the cell and is the basis for serotyping and species identification based on fatty 

acid profiles by gas chromatography. While taxonomy undergoes constant changes, 

infrared spectra of microorganisms recorded under defined growth conditions can be 

constant. Consistent and repeatable data allows for the development of FTIR spectral 

libraries for use in microbial identification based on typing through spectral similarities. 
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Many researchers have successfully investigated the use of FTIR spectroscopy for 

microorganism identification, classification and strain-typing with the help of chemometric 

and spectral match (37, 58, 67, 77-86). Although the numerous articles have reported on 

the applicability of the FTIR spectroscopy-based method for rapid identification of 

microorganisms, to-date, no study has documented its use in routine microbial 

identification or have large sample set validation studies. 

2.5.2. Significance of changes in biochemical and structural differences of 

microorganisms as a basis for their identification and discrimination by 

infrared-based spectroscopic methods 

One of the most important criteria for the study of microorganism by FTIR 

spectroscopy is the acquisition of highly reproducible infrared spectra. For high quality 

spectral data, spectra acquired consecutively from the same agar plate, from the same 

strain on multiple days, on different instruments and at different laboratories should be 

reproducible. This step is crucial as minimal spectral differences from the same strain 

increase the potential of identifying strains from the same species. High spectral 

reproducibility also allows the development of shared spectral databases among different 

laboratories. Spectral reproducibly is dependent on: (i) the signal-to-noise (SNR) of the 

infrared absorption bands achieved for a given spectrometer, wavenumber (x-axis 

accuracy), photometric linearity (y-axis), instrument-line-function from different models 

from the same and different FTIR manufactures, (ii) FTIR spectral profiles of the same 

strain are affected by culture conditions including media composition, culture time, and 

incubation environments. Difference in the composition of growth media was found to 

have the greatest influence on spectral heterogeneity (87, 88). Accordingly, FTIR-based 

microbial identification methods requires standardization of the growth media 

composition, maintaining consistent incubation temperature and growth time to achieve 

highly reproducible metabolic status and (iii) Minimize the effect of sample manipulation 

and degree of microbial inactivation. Sample inactivation by use of a disinfectant can 

result in protein denaturation and loss of cell integrity, both of which can alter the spectral 

profile and potentially remove important components for microbial identification and 

strain-typing.  
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Microorganisms are typically grown on agar plates containing defined nutrient 

compositions for microbial growth. The use of nutrient broth for microbial enrichment is 

also widely utilized, followed by culturing on nutrient agar plates to confirm microorganism 

purity. Isolated colonies are acquired from the agar plate for subsequent analysis by most 

conventional methods and for FTIR-based methods. With regards to the latter, direct 

analysis of intact microbial cells directly from the agar plate can be carried out. 

Alternatively, sample treatments can be employed prior to acquiring the FTIR spectrum 

which include making a microbial suspension, followed by spinning, washing, inactivation 

of the microorganism and heating subsequent to depositing the sample onto the FTIR 

sampling surface to form a thin microbial film. Table 2.5 to 2.9 summarizes some of the 

studies aimed at characterization and differentiation of microorganisms from diverse 

genera and species by FTIR spectroscopy. It should be noted that sample pre-treatment 

can have significant effect on the reproducibility of the FTIR spectra.  

Once a definitive protocol is established for obtaining highly reproducible spectra of 

microorganisms, the next step is for the development of robust spectral analysis 

algorithms to identify spectral features in the infrared spectra. Selective spectral features 

are characteristic to each strain within a given species that can allow for the differentiation 

between strains from Gram-stain types, different genera within the Gram type, differences 

between different species within the same genus and differences between strains within 

the same species. Accordingly, differences between the strains within the same species 

allow for the potential utility of FTIR spectroscopy for strain typing. The underlaying 

changes in the FTIR spectra can reflect a myriad of differences in the strain under 

investigation. For instance, differences between haemolytic Bacillus cereus and non-

haemolytic strains can be observed in the FTIR spectra. The question remains in the 

assignment of the spectral differences between the two groups to biochemical changes 

reflecting the lack of toxin-producing genes (ces and hbl) which causes B. cereus to 

become haemolytic (89).  

The effect of changing growth media was demonstrated by growing 9 isolates of 

Streptococcus spp. onto two different growth media agar [blood agar (BAP) and tryptone 

yeast extract agar (TY)] and recording the FTIR spectra of colonies isolated from each 
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agar growth medium. Examination of the spectra revealed that Streptococcus spp. grown 

on TY, exhibited stronger absorbance bands in the FTIR spectral region between 3000 

and 2800 cm-1 compared to the spectra of colonies grown on BAP. These bands were 

tentatively assigned to the presence of amphiphilic molecules from either the cell 

membrane or cytoplasm (or both) and demonstrates the importance of using a consistent 

growth medium for microbial identification and strain-typing by FTIR spectroscopy (90, 

91). Similar situation was also observed for the use of PFGE for strain typing which initially 

suffered from lack of standardization and reproducibility, but also became the gold-

standard for strain-typing as a result of the development of a highly standardized method 

for use by microbiology laboratories. Prior to undertaking an extensive evaluation of the 

capability of FTIR spectroscopy for typing, it is thus essential to develop a standard 

protocol. Once developed, the true potential of FTIR-based typing method would need to 

undergo validation studies prior to routine implementation. Furthermore, as FTIR spectral 

absorptions stem from the biochemical constituents of microorganism (Figure 2.3), 

fundamental knowledge of species-specific cell composition may aid in the identification 

of biomarkers that are key to the identification of microorganisms by FTIR spectroscopy. 

The extensive overlap of infrared bands of the biochemical components, however, makes 

it highly challenging to assign infrared bands to specific cellular components serving as 

biomarkers associated with microbial identification or differentiation. None-the-less, it is 

possible to identify spectral regions within the FTIR spectra with significant information 

content that facilitate the discrimination of isolates from family to the serotype level. For 

example, Salmonella serovars (employing O-antigen classification) can be differentiated 

between each other based on spectral differences in the phospholipid absorption region 

between 1200 and 900 cm-1, while the use of broader spectral regions was less effective 

(65). Employing the same spectral region, complete discrimination was also achieved 

using FTIR spectra of LPS extracts from the same bacteria – demonstrating the 

importance of their spectral contribution in serotyping by infrared spectroscopy (65). A 

similar approach was also utilized in serotyping K. oxytoca (92). Table 2.4 summarizes 

the results of additional examples of serotype differentiation by FTIR spectroscopy.  
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Figure 2.3. Typical FTIR spectra of a wet microorganism and biochemical components 
associated with the mid-infrared wavenumbers 
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Table 2.4. Summary of studies for FTIR spectroscopy in microbiology for species identification and strain typing by 
macromolecule extraction 

Description 
Sample 

size 
Biochemical key 

components 
Data 

processing 
Regions 

Data 
analysis 

Results Ref. 

Staphylococcus 
aureus 
serotyping by 
capsule 
extraction  
 
Capsular 
polysaccharides 
are important 
virulence 
factors 

Capsule 
serotypes: 
CP5 (23) 
CP8 (27) 
NT (37) 
Total: 87 

Polysaccharides 
(1200-900 cm-1: C-
O-C and C-O-P 
stretching) 

2nd derivative 
(Savitzky-
Golay) 
Vector 
normalization 

Feature 
selection 
(COVAR 
algorithm) 
of spectral 
windows 
(3000-2800 
cm-1, 1800-
500 cm-1) – 
actual 
regions not 
disclosed 

HCA 
 
ANN with 
classification 
by WTA 
(winner 
takes all) 

98.2% correct 
serotype 
identification by 
ANN 

(93) 
 

Listeria 
monocytogenes 
serotype 
identification 
(12 serovars) 

Database 
(106) 
External 
validation 
(166) 

O-antigen 
(polysaccharide of 
the LPS structure), 
teichoic acids, H-
antigen 

1st Derivative 
Savitzky-
Golay 
 

1200-900 
cm-1 and 
1800-1400 
cm-1 

HCA 
 
ANN 

98.8% correct for 
O-antigen 
(serogroup) 
91.6% H-antigen 
(serovar) and 40 of 
41 epidemic 
serovar 4b were 
identified (outbreak) 

(63) 
 

 

Salmonella 
enterica 
serotyping by 
LPS extraction 
(6 serotypes) 

6 Lipopolysaccharides 
(also known as 
glycolipids and LPS) 

No 
preprocessing 
techniques 
used 

1200-900 
cm-1 

CVA 
PCA 

100% classification 
with LPS extract 
and 47% for intact 
cells 

(65) 

Abbreviations: HCA: hierarchical cluster analysis; ANN: artificial neural network; CVA: canonical variate analysis; PCA: 

principal component analysis 
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2.5.3. Sample preparation of microorganisms for FTIR spectral acquisition  

Traditionally, colonies are removed from an agar culture plate (after a 16-24 h 

incubation period at a defined temperature) transferred into a vial, rinsed, and inactivated 

prior to smearing on an infrared (IR) transmitting substrate (ZnSe or Si), left to dry at room 

temperature or heated to expedite drying. More recently, the use of attenuated total 

reflectance (ATR)-FTIR spectroscopy and specular reflectance FTIR spectroscopy for 

acquiring spectra of microorganisms has been reported. Figure 2.4 shows three different 

modes of acquiring spectra from different FTIR sampling accessories; for transmission 

measurements, ZnSe or Si are used as an IR optical window, specular reflectance uses 

a silver or gold-coated glass slide and, by ATR using a diamond or Si ATR internal 

reflection crystal. Not as common, diffuse reflectance mode of spectral acquisition have 

been studied (Table 2.5), samples are freeze-dried and mixed with KBr (transparent to IR 

light) and placed in a diffuse reflectance accessory where the IR energy undergo 

absorption-reflection. Distortion of the spectral bands can result from the use of this 

method to acquire IR spectra of microorganisms to the sample and measures the 

absorption energy to reflect it back over a large angle (69).The use of each of these 

sampling methods for recording FTIR spectra of microorganisms are summarized in 

Table 2.5 to Table 2.9. The diversity of sampling methods coupled with the use of different 

growth media and growth parameters makes it difficult to evaluate the performance of an 

FTIR-based microbial analysis approach. 

2.5.4. Modes of FTIR spectral acquisition for microorganisms 

Traditionally IR spectra are recorded between 4000 and 650 cm-1, the spectral 

region with substantive information related to the differences in biochemical composition 

and water content are 3800-2800 and 1800-650 cm-1. IR spectra recorded using FTIR 

spectroscopy in the transmission mode (most commonly used), require ~10-60 µg of cells 

(based on wet weight) (69) spread uniformly as a thin-dried film over an area of ~3x3 mm 

onto an IR-transparent window where the IR beam passes through the sample to reach 

the detector to produce a spectrum. Although many studies have successfully utilized this 

method as it offers a high SNR, there are reported variation between spectra due to 
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variability in sample thickness, uniformity, and sample pre-treatment procedures used to 

prepare the microbial films (Table 2.5).  

Specular reflectance (Figure 2.4) has a similar sample preparation protocol used for 

recording transmission-based FTIR spectra. The sample is placed on an IR reflective 

substrate (or window) and the IR beam effectively passes through the sample, is reflected 

back prior to recording the FTIR spectrum. Accordingly, sample thickness must be ½ of 

that employed for transmission measurements.  

Due to ATR-FTIR spectroscopy’s independence of sample thickness (after coverage of 

the crystal with ~1-2 µm-thick sample), it is the most versatile method of spectral 

acquisition of intact cells of microbes. Most ATR-FTIR-based studies deposit the microbial 

colonies directly onto the ATR crystal (or element), wait for the water in the sample to 

evaporate (~10-30 minutes) to form a dry film on the crystal, then record the ATR-FTIR 

spectrum with very high SNR. ATR-FTIR spectra of microbial cells can also be recorded 

without the need of drying, however, sample dilution by water in the colony was observed.  

2.5.5. FTIR spectral processing 

Spectral processing of highly reproducible FTIR spectra of microorganisms facilitates 

identification of spectral features responsible for discriminating among different strains. 

Various processing techniques can be carried out such as, baseline correction to 

compensate for baseline drift between a set of spectra, spectral smoothing and 

transformations. The most common processing technique is by calculating the 1st or 2nd 

derivatives of spectral sets. Derivative spectra yield a mathematically based resolution 

enhancement that helps delineate spectral features of overlapping bands. It should be 

noted that derivative spectra can produce some increase in spectral noise and should be 

applied when the absorbance spectra (raw spectra) have high SNR. IR spectra recorded 

from microbial films using transmission or specular reflectance spectroscopy can have 

widely different absorbances due to variability in film thicknesses.  



27 

 

 

Figure 2.4. Three different modes of FTIR spectral acquisition illustrated for spectral acquisition of microorganisms from 
culture agar media. Spectral acquisition modes: (2a) Transmission, (2b) attenuated total reflectance (ATR), and (2c) 

specular reflectance 
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This can be compensated by employing a spectral normalization algorithm. Film thickness 

heterogeneity and dryness can also result in significant light scattering that can produce 

optical artifacts. Several algorithms are also routinely employed to compensate for this 

(e.g., scattering correction). 

In the case of ATR-FTIR spectra of microbial colonies directly placed on the ATR 

sampling surface, 1st derivative calculation is employed for baseline correction and 

resolution enhancement of the absorbance bands followed by vector normalization to 

compensate for the variability in colony cell density among the samples (69).  

2.5.6. Data mining and analysis (chemometrics) of FTIR spectra for identification 

and strain typing of microorganisms 

2.5.6.1. Spectral library search approach 

Spectral libraries are created comprising of spectra of pure and well characterized 

microorganisms and serve as a reference database by which a spectrum of an “unknown” 

microorganism can be compared against. Several algorithms can be utilized individually 

or in tandem to measure the degree/extent of spectral similarity of the spectrum of the 

“unknown” microorganism to one or more of the spectra in the reference database. 

Spectral similarity can be expressed in terms of cosine, Pearson or Euclidean distances. 

Distance is defined by the dissimilarity of the spectra and is represented as a 

dimensionless measurement (or the area between two overlay spectra of the spectral 

library/reference database and spectra of unknown isolate). Each distance equation 

computes a number that is interpreted differently, for example, Pearson’s product 

distance is a value between 0 and 2000 where 0 is 100% match to a spectrum in the 

spectral library and cosine ranges from -1 to 1 where 1 is 100% match (87, 94). Detailed 

mathematical explanation, examples and references therein can be found in (95). It is 

important to note that spectral distance can also help in the identification of spectral 

artifacts among replicate infrared spectra of the same strain (96). 

In an early study conducted by D. Helm et al. (94), using the Pearson’s product moment 

covariance distance match search, they concluded that increased spectral representation 

of each species in the spectral library is required for improved identification rates. The 
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researchers also considered that while populating the spectral library, more spectral 

overlap will take place among different species, making it difficult to identify an unknown 

based on its IR spectrum. This drawback can be addressed by calculating mean spectra 

for each species revealing subtle features between different species (60). Although some 

success was achieved by this approach (61), many of these studies have limited number 

of spectra from multiple species in the spectral libraries (66). Furthermore, these 

approaches have not been subjected to extensive internal or external validation studies.  

2.5.6.2. Principal component analysis (PCA) (unsupervised) 

PCA is a visualization method of displaying large and complex data contained in a 

matrix (e.g., spectral groups representing different microbial species) where natural 

clustering is observed in a 2-dimentional or 3-dimentional space. PCA evaluates the 

differences between the data in addition to identifying which variables contribute to the 

major differences between the data and whether there is a correlation between the groups 

or not. The principal component (PC) scores explain the variabilities in the data. This 

method of analysis is commonly used in the analysis of FTIR spectra of microorganisms. 

H. Haag et al. (87) demonstrated that the use of PC scores that accounts for 90% of 

variances in the spectral data yielded discrimination of species and 89% correct 

identification of unknowns. Other studies have also used selected spectral regions as an 

input for PCA to identify microorganisms (97). It is possible that subtle variability between 

FTIR spectra of certain microorganisms may not contain all the information needed to 

discriminate between them. Additional approaches to data mining may be required and 

this will be further investigated in the thesis.  

2.5.6.3. Hierarchical cluster analysis (unsupervised) 

HCA is an unsupervised clustering method to determine the relationship between 

spectral groups and is visualized by plotting the similarity distance in the form of a 

dendrogram and distance (95).  

For example, using HCA, an FTIR spectral data set of 332 yeasts (food origin) belonging 

to 12 genera was separated into 22 major clusters. However, HCA was not effective to 

completely separate the 12 genera from one another (66). This example demonstrates 
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the need for alternative spectral analysis approaches to determine if additional spectral 

information can be found to discriminate between all 12 genera.   

Additional studies have utilized FTIR spectroscopy and HCA to correctly strain-type 

different microorganisms (97-99). A high discriminatory power of 0.983 [based on 

Simpson’s index of diversity (SID)] for unrelated S. aureus strains was achieved based 

on differences in their FTIR spectral profiles where spa typing and PGFE (gold standard) 

obtained roughly 0.976 SID discriminatory power (99). This study encompassed 70 

isolates and demonstrated the applicability of FTIR spectroscopy as a potential tool for 

outbreak investigation. Unlike genotypic techniques such as PFGE, FTIR spectroscopy 

discrimination among isolates is based on changes in the biochemical constituent on 

surface glycopolymers, capsular serotypes and major cell-wall constituents (65, 99). 

Moreover, differences in the FTIR spectra of a microorganism can be indicative of 

changes in the metabolomic status of each isolate.  

2.5.6.4. Discriminant Analysis (supervised) 

Chemometrics is a word primarily used for spectral data to qualify and/or quantify 

chemical data mathematically (linear algebra). Data are typically used for exploratory 

analysis, regression, and classification. The following sections will discuss various 

chemometric techniques for identification and strain-typing of microorganisms from FTIR 

spectra. 

Partial least squares (PLS) discriminant analysis (DA) is a supervised method performed 

in junction with PCA (unsupervised) to enhance the discrimination between natural 

clusters observed by rotating between the PC. This method of DA is commonly used to 

group the spectra of unknowns with defined classes and assigning it to one of the classes. 

A drawback of this method stems from the possibility of assigning a spectrum of an 

unknown microorganism (not present in the database) to one of the defined classes. The 

“outlier” samples, defined as samples whose identity may not be accurate or is not 

represented in the model, will be classified into one of the defined classes. Interestingly, 

various studies have successfully applied PLS-DA for identifying microorganisms and 

claimed to have higher classification power than other models such as Soft Independent 

Modeling of Class Analogy (SIMCA) (82, 100).  
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By comparison, using SIMCA algorithms coupled with PCA differs from PLS-DA by either 

classifying the unknowns into predefined classes achieved by high probability or as an 

outlier (low probability). SIMCA takes the average residual variance of the data of a 

defined class to the residual variance of the data from the spectrum of the unknown 

(goodness-to-fit of the PCA model). If the spectrum of unknown is not represented in one 

of the defined classes, it will be predicted as an outlier or class-not-defined. In addition, 

SIMCA allows for data quality assessment as the discriminatory power of this approach 

is highly sensitive to the raw data (microorganism spectra). The approach is also not 

limited to the number of defined classes, which makes it desirable for microorganism 

classification using spectral data of many species and does not contribute to collinearity 

and chance classification.  

Various studies have applied SIMCA for identifying microorganisms and strain-typing 

(64). In a study, 100% classification of Salmonella serovars (Enteritidis, Typhimurium, 

Heidelberg, Kentucky and Anatum) was achieved using the SIMCA approach by 

employing a narrow spectral region between 1000 and 970cm-1 (tentatively assigned to 

variability in LPS composition). The study explored the effects of using different growth 

media; plate count agar, xylose lysine deoxycholate agar (XLD – inhibits GN bacteria and 

selects for Salmonella) and Miller-Mallinson agar (MMA – selective for non-salmonellae 

lactose fermenters). Although successful serotype classification of Salmonella serovars 

was achieved; selective media such as MMA performed the poorest with plate count agar 

and XLD performing similarly. This study further proves the effects of culture media on 

the microorganism’s biochemical composition and its distinctive effects on the FTIR 

spectra of the microorganisms (64). It should be noted that the use of SIMCA requires 

many classes (>10) where R. G. Saraiva et al. (101) attempted the use of SIMCA for 

discrimination between 3 different species, however this approach failed to get adequate 

results. 

Other analysis method such as k-nearest neighbors, artificial neural networks (ANNs), 

support vector machines (SVM) and canonical variate analysis (CVA) are also widely 

used for spectral analysis. The methods are well described elsewhere and all references 

therein (Ghetler, 2010). 
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2.5.7. Summary of current studies in literature for FTIR spectroscopy-based 

microorganism identification, strain-typing and differentiation 

 L. Mariey et al. (83) have summarized many of the studies that have employed 

FTIR spectroscopy from before 2001, almost 2 decades have passed since the literature 

review where more recent studies are presented in Table 2.5 and were discussed 

throughout the current review. Most studies (n=26) have employed FTIR spectroscopy in 

the transmission mode of spectral acquisition with 5 studies using ATR, 4 using diffuse 

reflectance, 1 for specular reflectance and 2 for microscopy. In all 33 published FTIR 

spectroscopy work presented in Table 2.5 through Table 2.9, only 8 were for classification 

and identification of microorganisms, while the remaining published work employed FTIR 

spectroscopy for discriminating among a limited selection of microorganism at the species 

level.  
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Table 2.5. (Part 1 of 5 tables) Summary of current studies (past 2 decades) in literature for FTIR spectroscopy for 
microbial identification, strain-typing and differentiation 

Research 
details (no. 
species) 

No. of isolates  
Reference/Unkn

own 

Sample 
cultivation  

Spectral processing 
Data analysis 

method 
Results Ref. 

Species identification 
ATR mode of spectral acquisition 

S. aureus, 
CoNS, Non-
Staphylococcus 

35/58 
(Staphylococcus 
only) 

Culture plate, 
wash, spin, 
wash, spin, 
vacuum dried 
with desiccant 

Vector normalized, 
Savitzky-Golay, 1st 
Derivative  

HCA, PLSR, 
SIMCA 

65.5% correct 
species by HCA, 
98.3% correct 
species by PLSR 

(102) 

S. aureus 1/N/A Direct from 
spiked blood 

Baseline corrected, 
1st derivative 
(Savitzky-Golay) 

SPA-LDA, GA-
LDA 

Successful 
exploratory study 

(79) 

Cryptococcus 
species (2 
species) 

22/6 Culture plate, 
covered with 
aluminum foil 

Baseline correction PCA, LDA, 
QDA, SPA-
LDA, SPA-
QDA, GA-LDA, 
GA-QDA 

Species 
discrimination and 
classification was 
achieved, best 
results with GA-QDA 

(103) 

Candida 
species (5) 

NA/82 Direct culture 
plate 

Standard normal 
variate, 3rd derivative, 
Savitzky-golay (37-
point) smoothing 

PCA, PLSDA 99.6% (104) 

Listeria species 
(2 species) and 
Salmonella 
enterica 
serovars (3 
serovars) 
(Food) 

14/NA Culture plate, 
airdried (10 
seconds) 

Standard normal 
deviate 

PCA Successful 
discrimination 
between species 
and serovars 

(105) 

Yeasts (12 
genera and 65 
species) 

263/318 Direct from 
culture plate 

1st Derivative, Vector 
normalize 

HCA, PCA, 
Forward search  

99.7% (81) 
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Table 2.6. (Part 2 of 5 tables) Summary of current studies (past 2 decades) in literature for FTIR spectroscopy for 
microbial identification, strain-typing and differentiation 

Research details 
(no. species) 

No. of isolates  
Reference/Unk

nown 
Sample cultivation  Spectral processing 

Data analysis 
method 

Results Ref. 

Species identification 
Transmission mode of spectral acquisition 

Coryneformbacteria 
(46 genera and 220 
species) 

730/544 Culture plate, distill 
water suspension, 
42⁰C heat dried (1 h) 

1st Derivative Spectral library 
search 

95.4% genus, 
87.3% species 

(106) 

Listeria (5 species) 243/277 Culture plate, distill 
water suspension, 
42⁰C heat dried (1 h) 

Savitzky-Golay, 1st 
Derivative 

HCA, ANN, 
Univariate 

96.3% (ANN), 
88.9% 
(Univariate) 

(107) 

Listeria (5 species) 25/NA Culture plate, distill 
water suspension, 
42⁰C heat dried (1 h) 

1st Derivative Spectral library 
approach 

92.8% (108) 

BCC 185/10 Plate cultures, 
suspension, 55⁰C 
heat dried (45mins) 

SNV, Savitzky-
Golay, 1st 
derivative 

PCA, SIMCA, 
PLSDA, ANN 

90.0% (109) 

Lactic acid bacteria 
(9 genera and 92 
species) 

379/85 Plate cultures, 
suspension, 40⁰C 
heat dried (45mins) 

1st Derivative, 
Vector normalize 

ANN 93.2% species, 
97.1% strain 

(110) 

Bacteria (93 
species in 4 
taxonomic groups) 

In-house 
database 
(3502 
spectra)/40 

Suspension, 42⁰C 
heat dried (45 mins) 

1st derivative 
(Staphylococcus) 
and 2nd derivative 
for other 

Spectral library 
approach 

75.0% (91) 
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Table 2.7. (Part 3 of 5 tables) Summary of current studies (past 2 decades) in literature for FTIR spectroscopy for 
microbial identification, strain-typing and differentiation 

Research details 
(no. species) 

No. of 
isolates 

Reference/U
nknown 

Sample 
cultivation 

Spectral processing 
Data analysis 

method 
Results Ref. 

Species identification 
Transmission mode of spectral acquisition 

Filamentous fungi 
(43 genera and 140 
species) 

288/105 Extraction of 
mycelial by 
washing and 
centrifugation, 
resuspension, 
dried under mild 
vacuum (1 h) 

Baseline corrected (64 
points), 2nd derivative (9-
point Savitzky-Golay), 
vector normalized 

PLS-DA 99.17% genus, 
92.3% species 

(82) 

Bacteria: GP (3 
genera, 3 species), 
GN (3 genera, 4 
species); Yeasts: 
(Candida – 6 
species) 

121/121 Positive blood 
culture, dilute and 
cultured on agar 
(6-8h), stamped 
and airdried 
(15mins) 

1st and 2nd derivatives HCA, LDA, 
ANN 

98.3% species (67) 

Transmission-microspectroscopy mode of spectral acquisition 
Candida species (3 
species) 

30/NA Culture plate, 
Dried by 
desiccant and 
vacuum 

Elastic correction, 2nd 
Derivative, Vector 
normalized 

HCA Successful 
discrimination 
between species 

(96) 

Diffuse reflectance mode of spectral acquisition 
E. coli, S. aureus, 
C. albicans 

NA/3 Culture plate, 
dried and 
homogenized 
with KBr 

Baseline corrections, 
normalized, smoothed, 
2nd derivative 

HCA Successful 
discrimination 
between species 

(111) 

Specular reflectance mode of spectral acquisition 
Candida species (3 
species) 

169/45 Culture plate, 
suspension, dry 
under hot air 
60⁰C for 3 mins. 

Baseline corrected, 
Normalized, 1st Derivative 

PA, SIMCA 93.4% (112) 
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Table 2.8. (Part 4 of 5 tables) Summary of current studies (past 2 decades) in literature for FTIR spectroscopy for 
microbial identification, strain-typing and differentiation 

Research details 
(no. species) 

No. of 
isolates  
Referen
ce/Unkn

own 

Sample cultivation  Spectral processing 
Data 

analysis 
method 

Results Ref. 

Strain typing 
ATR mode of spectral acquisition 

Candida species 
(5 species) 

5/20 Direct from culture 
plate 

Normalized PCA Strain-typing of samples 
to patients were not 
consistent for some 
patients going through 
antifungal treatment, 
some patients displayed 
similar clustering as 
PFGE 

(113) 

Salmonella 
serovar (6 
serovars) 

6/8 Culture plate, 
suspension, dried 
with 50% EtOH under 
vacuum (25⁰C for 3-5 
mins) 

2nd Derivative Savitzky-
Golay, Normalized 

SIMCA, 
PCA 

100% (114) 

Single porin E. coli 8/NA Direct from culture 
plate and air dried for 
20-30 mins 

Standard normal 
variate, 2nd Derivative 
Savitzky-Golay 

PCA, HCA Successful intra-species 
discrimination of porin 
expression profile 

(101) 

Specular reflectance mode of spectral acquisition 
E. coli O157:H7 30/30 Culture plate, wash, 

suspend, wash, 
suspend and placed 
onto gold slide 

Baseline corrected, 
Smoothed, 1st/2nd 
derivative (9-point 
Savitzky-Golay), 
Normalized 

HCA, CVA 97% (115) 
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Table 2.9. (Part 5 of 5 tables) Summary of current studies (past 2 decades) in literature for FTIR spectroscopy for 
microbial identification, strain-typing and differentiation 

Research details 
(no. species) 

No. of 
isolates 
Referen
ce/Unkn

own 

Sample cultivation 
Spectral 

processing 

Data 
analysis 
method 

Results Ref. 

Strain typing 
Transmission mode of spectral acquisition 

Patient cluster of 
yeast isolates 

79/NA Dried by desiccant 
and vacuum 

2nd derivative (9-
point Savitzky-
Golay) 

HCA, 
Feature 
selection 

9 patients, 1 of 79 isolates 
misclassified with a different 
patient 

(116) 

Candida species 
(C. albicans, C. 
glabrata, C. 
parapsilosis) 

40/NA Culture plate, Dried 
by desiccant and 
vacuum 

Elastic correction, 
2nd Derivative, 
Vector normalized 

HCA Successfully discriminated 
between 12 patients based 
on the 3 species 

(96) 

S. aureus NA/70 Culture plate, distill 
water suspension, 
40⁰C heat dried (40 
mins) 

Vector normalized, 
Pearson’s product 
moment 
correlation 
coefficient 

HCA, PCA, 
ANN, LDA, 
SVM 

Comparable discriminatory 
power for gold standard 
PFGE 

(99) 

Klebsiella spp. NA/10 Plate cultures, 
suspension, dried 
via desiccator over 
a drying agent 

2nd derivative (9-
point Savitzky-
Golay), Vector 
normalized 

HCA Successful discrimination 
between strains 

(98) 

Klebsiella spp. 68/NA Culture plate, EtOH 
suspension, water 
suspension, dried 
(37⁰C for 20 mins) 

Vector normalized HCA 92.6% agreeance with WGS 
clusters 

(92) 

P. aeruginosa, K. 
pneumoniae, E. 
cloacae., A. 
baumannii 

156/NA Culture plate, EtOH 
suspension, water 
suspension, dried 
(35⁰C for 25 mins) 

Vector normalized, 
2nd Derivative 

HCA Successful discrimination 
between species and those 
belonging to the same clones 

(117) 
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2.6. Future use of ATR-FTIR spectroscopy in microbiology 

MALDI-TOF MS has changed the clinical microbial identification landscape leading 

to future acceptance of spectroscopic methods as alternatives to conventional 

identification methods such as carbon assimilation tests. With a simpler sample 

preparation compared to MALDI-TOF MS, FTIR spectroscopy is poised for expanding the 

current array of studies including identification of microorganisms from biofluids, positive 

blood culture and mixed colonies (65).  

2.6.1. Identification of microorganisms isolated from positive blood cultures  

Rapid microbial identification directly from blood is highly sought out and is the 

subject of extensive research. Kits for rapid recovery of microorganisms from positive 

blood cultures for identification by MALDI-TOF MS have been developed recently. Some 

success has been achieved for the isolation of microorganisms from positive blood 

cultures, urine and other bodily fluids analysis by MALDI-TOF MS. The MBT Sepsityper 

® kit (Bruker Daltonik GmbH, Bremen, Germany) requires trained laboratory technicians 

to extract 1mL of fluid from a positive blood culture tube and transferring the aliquot to a 

sterile 2ml tube and adding 200µL of lysing buffer. The sample is then vortexed for 30 

seconds and centrifuged for 1 minute at 13000 rpm; the supernatant is then removed 

followed by a washing step. The remaining pellet is washed with 1mL of washing buffer 

and centrifuged for 1 minute at 13000 rpm followed by the removal of the supernatant 

(118). Based on published literature, the MBT Sepsityper ® kit (Bruker Daltonik GmbH, 

Bremen, Germany) has reported low accuracy readings for anaerobic bacteria and yeasts 

(119), additional washes may be needed to obtain reliable species identification for yeasts 

(Table 2.10). 

MALDI-TOF MS (Bruker Daltonik GmbH, Bremen, Germany) identification scores 

(reflecting the accuracy of microorganism identification) are highly dependent on the 

concentration of bacteria and yeasts being spotted on the target plate. Less bacteria 

present was observed to have lower scores of <1.7 on the Bruker system, meaning a 

smaller number of mass peaks produced by the sample, making the result less reliable. 
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From the observations of T. J. Gray et al. (120), a minimum of 106 CFU is needed to 

obtain a reliable spectral score especially for the Streptococcus viridans group (121-123). 

Table 2.10. MALDI-TOF MS-based species identification performance from positive 
blood culture using in-house methods and the MBT Sepsityper ® kit (Bruker Daltonik 

GmbH, Bremen, Germany) kit 

   Results 

Reference Protocol starting from positive 
blood culture 

Sample 
size 

Genus Species 

(Gray, 
Thomas, 

Olma, 
Iredell, & 

Chen, 2013) 

5ml placed into a blood serum 
separator (15mins), decant-

wash-centrifuge (5mins), spot, 
dry 

292/318 
(poly 

colonies) 

(Enterobacteriaceae) 
NFGNB (93.3) 
NFGNB (84.0) 

Other GN (75.0) 
Overall: 91.8 

(Enterobacteriaceae) 
NFGNB 90.9% 

NFGNB (80.0%) 
Other GN (75%) 

Overall: 89.4 
(Schieffer et 

al., 2014) 
SepsiTyper kit 325/411 

(No ID - 
poor 

protein 
extraction - 

mixed 
organisms) 

 Enterobacteriaceae 
98.9 

Other GN   
GN (98.9) 
GP: 82.9 
YT: 50.0 
AN: 0.00 

Overall: 92.6 
(Stevenson, 

Drake, & 
Murray, 
2010) 

Laboratory developed method: 
Serum separator, centrifuge, 

wash to remove red blood cells, 
resuspend, wash, lysed, 

incubated for 10 mins, washed, 
resuspend, wash, ethanol 

138/212  Overall: 96.2 

(La Scola & 
Raoult, 
2009) 

A: spin, decant, resuspend, 
spin, add acetonitrile, 

trifluoroacetic, incubate, spine, 
spot 

B: spine, decant, resuspend, 
spin, add formic acid to pellet, 

incubate, add acetonitrile, 
vortex, spin, decant, spot 

599/621 
(mixed 
culture) 

 A: GN: 94.0 
GP: 37.0 

Overall: 59% 
B: GN: 87 

GP: 67 
Overall: 76% 

(Verroken et 
al., 2015) 

Positive blood culture, culture 
for 5h on Columbia blood agar 

or brucella (AN), spot target 
plate as usual 

896/913 GN: 25 
GP:61 

GP:82.2 
GN:90.4 

Enterobacteriacea 92.7 
Non-fermenters: 94.1 

AN: 20 
YT: 0 

Overall: 81.1 
(Juiz et al., 

2012) 
Sepsityper 85 GN: 96 

GP:96.7 
Overall:96.5 

GN:96 
GP:86.9 

Overall:85.2 
(Buchan, 
Riebe, & 

Ledeboer, 
2012) 

Sepsityper 146 GN: 97.6 
GP: 98.1 

YT: 0 (polymicro) 

GN:95.1 
GP:93.3 

YT: 0 (polymicro) 

Moreover, MALDI-TOF MS requires pure colonies and discrepant results were reported 

in various studies and attributed to inadequate sample rinsing. Those studies 

recommended carrying out a Gram stain prior to MALDI-TO MS analysis from direct blood 

cultures – adding an additional step to an already lengthy protocol (119, 121, 124). 
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Additional studies revealed that 3 and 4 h incubation periods of blood cultures had poor 

results for the identification of species belonging to GP bacteria and sub-par results for 

GN bacteria (123, 125). According to A. Verroken et al. (123), with an addition step of 

culturing positive blood cultures onto growth medium for 9 h, resulted in sufficient 

identification for GP bacteria while 2 h incubation time is acceptable for GN bacteria. 

Another drawback of microbial identification obtained from positive-blood culture is the 

possible presence of polymicrobial strains (126). 

Overall, direct isolation of microorganisms from positive blood cultures still requires at 

least 30 minutes of washing and is labor intensive, making it impractical for clinical routine 

workflow analysis (unless it is automated). As stated above, it may also require an 

additional culturing and incubation step (2 and 9 hours) from blood culture to yield enough 

biomass for MALDI-TOF MS analysis.  

Our laboratory was the first to demonstrate the utility of FTIR spectroscopy as a method 

of identification for bacteria isolated from positive blood cultures (unpublished work). This 

work is in its early stages of development and will require standardization. An FTIR-based 

method should greatly reduce time, consumables and costs for large and small 

laboratories, and could be easily integrated into the laboratory workflow. Microcolonies of 

bacteria isolated after incubation (for ~4 hours on agar culture medium) of 

microorganisms isolated from positive blood cultures could shorten the analysis time and 

have sufficient microbial mass for FTIR analysis (11, 67). The issue with microcolonies is 

that not all microorganisms grow at the same rate, yeasts for example are slow growers 

(11, 67). Studies have shown that bacteria grown after 8 h of incubation on agar culture 

media yielded 98.3% correct species identification for 121 samples of common bacteria 

and yeast isolates by FTIR microscopy (59). It is also the only reported available study 

for the positive blood culture and subculture onto agar for a short period of time to obtain 

microcolonies. L.-P. Choo-Smith et al. (59) conducted a study using the linear 

discriminant analysis and ANNs with leave-one-out validation and achieved 98.3% 

(119/121) correct species identification of 14 species and discriminating out the CoNS 

group (a total of 6 genera encompassing both bacteria and yeasts of clinical relevance) 

(59). 
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Other studies have reported substantial variability in the FTIR spectra between 

microcolonies of species within the genus Listeria – limiting the identification of the 

microorganism (108). Intra-species variability has been attributed to variability of cell 

growth phase of each cell (98, 127) and D. Toubas et al. (96) demonstrated that for the 

conventional culturing method, the spectral distances between replicate spectra of 

Listeria species were 0.15, whereas, using spectra from microcolonies of the same 

samples (with reduced culturing time) resulted in an increase in spectral and colony 

heterogeneity of 0.45 and 0.85. FTIR-based microbial identification by microcolonies may 

be feasible for routine identification but may be limited to specific species. 

Although studies on microcolonies have been discussed, no study have truly evaluated 

or standardized this approach for rapid microbial identification by FTIR spectroscopy. It is 

possible that the heterogeneity of the replicate spectra can be reduced by increasing the 

spectral databases and employing different data-mining techniques such as ANNs.  

2.7. GENERAL SUMMARY OF LITERATURE REVIEW 

The purpose of the current review is to demonstrate the multidisciplinary research 

approach which encompasses the use of vibrational spectroscopy, microbiology, 

microbial epidemiology, molecular biology, biochemistry, genetics, multivariate statistics, 

chemometrics and microbial isolation techniques to establish a reliable ATR-FTIR 

spectroscopy-based workflow for use by clinical and food microbiology laboratories. In 

this multi-faceted field of study, spectral acquisition requires microbial culture and spectral 

processing standardization to ensure inter and intra-laboratory reproducibility.  
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Connecting statement 1 

The literature review indicates the applicability of FTIR-based methods for 

microbial identification that have gained momentum over the past two decade, but even 

with the numerous successful studies, there is a lack of validation studies that support the 

robustness of FTIR-based methods for routine use. 

Chapter 3 examines the standardization of an attenuated total reflectance (ATR) Fourier 

transform infrared (FTIR) spectroscopy-based method for culture, spectral acquisition, 

spectral preprocessing, database construction and optimization of spectral analysis 

algorithms to advance the field of study for potentially implementing an ATR-FTIR use in 

clinical microbiology and identification of foodborne microbial pathogens.  
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CHAPTER 3.  WORKFLOW DEVELOPMENT AND STANDARDIZATION OF AN ATR-

FTIR SPECTROSCOPY-BASED TECHNIQUE FOR MICROORGANISM 

DISCRIMINATION APPLICATIONS 

3.1. ABSTRACT 

Through decades of research, standardization and validation, matrix assisted laser 

desorption/ionization time of flight (MALDI-TOF) mass spectrometry (MS) has 

revolutionized clinical microbiology and is cited as the first spectroscopic-based technique 

introduced for rapid and accurate microorganism identification. Although MALDI-TOF MS 

has many benefits, the initial investment of a commercial system is costly for resource-

limited microbiology laboratories and has some drawbacks in differentiating between 

closely related microorganisms such as Escherichia coli and Shigella species. Like 

MALDI-TOF MS, research for the use of Fourier transform infrared (FTIR) spectroscopy 

in clinical microbiology requires the construction of spectral databases of well 

characterized microorganisms for the identification of unknown isolates and has been 

undertaken. Preliminary studies have demonstrated the successful use of FTIR 

spectroscopy in microbial identification including the discrimination between E. coli and 

Shigella species. Unlike MALDI-TOF MS, there is a lack of studies focusing on 

standardization and validation of the FTIR spectroscopy-based microorganism 

identification technique, limiting its implementation in routine clinical microbiology usage. 

The current work presented herein focuses on the development of a standard operating 

procedure for the use of attenuated total reflectance (ATR) mode coupled to an FTIR 

spectrometer for infrared spectral acquisition of microorganisms and data analysis for 

microorganism identification. The use of ATR-FTIR spectroscopy reduces sample 

preparation and simplifies spectral acquisition while yielding high quality spectral data. 

The spectral data are then subjected to spectral filtration, data preprocessing prior to the 

construction of a spectral database of well-characterized microorganisms. As part of the 

evaluation, the database will provide confidence limits to ensure accuracy and reliability 

of the results for potential future implementation in both large and resource limited clinical 

microbiology laboratories. 
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3.2. INTRODUCTION 

Matrix assisted laser desorption/ionization time of flight mass spectrometry (MALDI-

TOF MS) has revolutionized clinical microbiology and is the first spectroscopic technique 

introduced for rapid diagnostics (1). MALDI-TOF MS offers rapid microbial identification 

after initial culture, it can be completely automated, is low cost per sample and achieves 

high accuracy by comparing the peptide mass profile of an isolate to peptide mass profiles 

in database of well characterized microorganisms. To date, the technology is used 

worldwide and has been implemented for clinical routine microorganism identification of 

both bacteria and fungi. The implementation of MALDI-TOF MS in large clinical 

microbiology laboratories has reduced usage of conventional assays, leaving rapid 

biochemical tests for confirmation (2). Prior to MALDI-TOF MS being widely accepted and 

entering the clinical microbiology world for implementation, extensive work had to be 

carried out for its standardization, evaluation, and validation in multicentre trials. Similarly, 

the potential use of Fourier transform infrared (FTIR) spectroscopy-based methods for 

microbial identification will require standardization as the first step, followed by evaluation 

and validation. To date, most of the reported studies employed transmission based FTIR 

methods as a means of microbial identification (refer to references in Table 2.5 to 2.9). 

The use of attenuated total reflectance (ATR) mode for spectral acquisition however, 

compared to the other modes of spectral acquisition, reduces the sample preparation time 

greatly by not requiring the need for forming a dry film required in the use of transmission 

based FTIR spectroscopy studies. The current chapter and thesis focus on the 

development of a standardized method for the ATR-FTIR spectroscopy-based 

microorganism identification technique as a prelude to the development of an ATR-FTIR 

based infrared spectral database. The establishment of a robust spectral database must 

address the need for standardized culture conditions and spectral reproducibility of 

spectra acquired using spectrometers from different instruments manufacturers. Lastly, 

the chapter aims at providing a means of constructing an infrared spectral database with 

defined confidence limits of the isolate identification. This latter effort will require the 

evaluation of multiple multivariate algorithms for data mining and their use in the 

discrimination between isolates based solely on their infrared spectral profiles (termed 

spectrotyping). The aim of the chapter is to provide a comprehensive standard operating 
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procedure that may bring researchers and industry closer to carrying further evaluation 

and if warranted, validation of the ATR-FTIR based microbial identification method, 

paving the way for its implementation as routine in clinical microbiology laboratories.   

3.3. CLINICAL MICROBIOLOGY VARIABLES FOR STANDARDIZATION 

Standardization of the microorganism culture methodology and spectral acquisition 

parameters are extremely important for obtaining reproducible spectra of 

microorganisms. The following section outlines various variables investigated for 

standardization. 

3.3.1. Sample collection method 

Samples collected from hospitals or clinical reference laboratories are generally 

isolated from urine, sputum, positive blood cultures, pus, wounds and swabs from various 

parts of the body while food-related microorganisms are isolated from animal feed, 

contaminated food products and water. Samples can also be acquired from microbial 

samples stored in long-term frozen storage (stored in 10% glycerol at -80°C).  

3.3.2. Sample culturing method 

Frozen samples are cultured on media of choice and are subcultured once to ensure 

purity of the isolates, while samples collected from routine (freshly cultured from the 

source) are analyzed as-is. Subculturing of the routine plates may also be required to 

ensure purity of the isolates; this is decided by the microbiologist. The use of the 4-streak 

quadrant method to obtain isolated colonies and visually assess the purity of the sample 

in question is the current recommended practice. If the sample is impure (multiple colony 

morphologies; Figure 3.1), additional subculture of the sample may be undertaken. 

According to Clinical & Laboratory Standards Institute Guidelines (3), aerobic bacteria are 

cultured and incubated for 18-24 h at 35°C ± 2°C and 24-48 h at 30°C ± 2°C for yeasts 

(please refer to Table 3.2 for agar culture media used in this work).  
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Figure 3.1. Example of mixed morphology culture on Columbia blood agar with 5% 
sheep blood obtained from routine to be subcultured 

3.3.2.1. Effects of culture media composition on ATR-FTIR spectra of 

microorganisms 

Different ATR-FTIR spectral profiles of the same strain can be observed as a 

consequence of growing the strain on different agar composition or on a specific agar 

produced by different manufacturers. For example, Sabouraud dextrose agar (SAB) is 

used while modified SAB (increased pH and reduced sugar composition) have been 

widely used to enhance yeast cell growth and to inhibit molds and bacteria. For the 

evaluation of the effects of growth media on the same strain, three pre-made SAB agar 

plates were acquired from (a) Difco™ Sabouraud Dextrose Agar (BD, Sparks, MD), (b) 

Difco™ Sabouraud Dextrose Agar Emmons (SABE) (BD, Sparks, MD) and (c) OXOID 

SAB (Thermo Fisher Scientific, Nepean, ON). One of the 3 agar media plates was a 

modified SAB plate (SABE) and the other 2 were general SAB plates (Table 3.1).  

Firstly, to observe the difference in the chemical composition, the agar from each vendor 

was dehydrated and their infrared spectra were recorded by ATR-FTIR spectroscopy in 

triplicate. Triplicate ATR-FTIR spectra of each dried agar film was acquired and compared 

to each other by taking the average of the triplicate spectra. Figure 3.2 shows the overlaid 

2nd derivative spectra and shows that the SABE spectral profile was distinct from the other 

2 SAB formulations, where SABE had lower relative band intensities between 1200-900 

cm-1 which is associated with carbohydrate absorptions. The chemical formulation of the 

agar (Table 3.1) provided by the manufacturer also showed SABE had 50 reduced 

polysaccharide content (dextrose).  
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Table 3.1. Composition and pH of Sabouraud dextrose agar from different manufacturer 
used in clinical microbiology laboratories 

Media (final pH) Manufacturer Ingredients (g/L) 

Sabouraud Dextrose Agar 

(SAB) 

(pH 5.6 ± 0.2 @ 25°C) 

Difco 

(BD, Sparks, MD) 

Peptic digest of Animal Tissue 5 

Pancreatic digest of Casein 5 

Dextrose 40 

Agar 15 

    

Sabouraud Dextrose Agar 

(SAB) 

(pH 5.6 ± 0.2 @ 25°C) 

Oxoid 

(Thermo Fisher 

Scientific, Nepean, ON) 

Mycological peptone 10 

Dextrose 40 

Agar 15 

    

Sabouraud Dextrose Agar 

Emmons (SABE) 

(pH 6.9 ± 0.2 @ 25°C) 

Difco 

(BD, Sparks, MD) 

Peptic digest of Animal Tissue 5 

Pancreatic digest of Casein 5 

Dextrose 20 

Agar 17 

Moreover, it should be noted that 2 average spectra of OXOID SAB dried agar film were 

obtained from 2 different lots that were manufactured a few months apart, were visually 

dissimilar in composition (one was more yellow in color than the other). The infrared 

spectra of dried agar films from the two lots were also found to be dissimilar in composition 

within the range of 1060-1020 cm-1 that may be due to the C=O stretching of 

carbohydrates (4-7). 

The agar powder composition of Difco™ SAB and OXOID SAB are comparable, however 

OXOID does not define the exact “mycological peptone” components (could be animal or 

plant peptones in varying proportions) (Table 3.1). The undefined source and amount of 

peptone used in OXOID SAB agar may be attributed to the difference in color and their 

ATR-FTIR spectra. 

The agar composition of the same culture media type (different brands) is evidently 

dissimilar from one another – which may have a major or minor affect on the metabolism 

of the microorganism. To evaluate the variability in the media composition on the spectral 

profiles of microorganisms, one isolate of Candida glabrata was cultured onto the 3 

different prepared agar media using the same growing conditions (30°C ± 2°C for 48 h) 

before ATR-FTIR spectra were acquired in triplicates. A stacked view of the averages of 

the triplicate spectra of C. glabrata (Figure 3.2) demonstrates the spectral variability 

stemming from the differences in the agar composition of the same agar-type on the same 

strain.  
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Figure 3.2. Stacked 2nd derivative of spectra of Candida glabrata cultured on 2 general 
Sabouraud dextrose agar (SAB) manufactured by Difco™ and OXOID and 1 Difco™ 

SAB Emmons (SABE) manufactured by Difco™ 

Accordingly, a standardized culture media will be recommended for optimal consistency 

when creating ATR-FTIR spectral databases for species identification and strain-typing 

of microorganisms based on FTIR spectroscopy.  

Table 3.2. Selected standard growth media for culturing clinical and food 
microorganisms 

 
Clinical microbiology Food microbiology 

General growth 
media 

Selective 
media 

General growth 
media 

Selective 
media 

Gram-
negative 
bacteria 

BAP MAC 
BHI 
TSA 

TSAYE 

XLD 
HEA 
MAC 

Gram-
positive 
bacteria 

BAP CHROMagar 
BHI 
TSA 

- 

Yeasts 
SAB 
PDA 
BAP 

IMA 
CHROMagar 

- - 

Abbreviations 

BAP: 5% Sheep blood agar 
BHI: Brain heart infusion 
HEA: Hektoen enteric agar 
IMA: Inhibitory mold agar 
MAC: MacConkey agar 

PDA: Potato dextrose agar 
SAB: Sabouraud dextrose agar 
TSA: Tryptic soy agar 
TSAYE: Tryptic soy agar 0.6% yeast extract 
XLD: Xylose Lysine Deoxycholate agar 

To further assess the effects of different culture media composition on the ATR-FTIR 

spectra of microorganisms, the same Candida albicans strain was grown on Difco™ SAB 

(BD, Sparks, MD) and used as reference spectra, in order to evaluate changes in the 

spectral profiles of the same strain grown on the following media: OXOID Columbia Blood 

Agar with 5% Sheep Blood (Thermo Fisher Scientific, Nepean, ON), CHROMagar™ 
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Candida Chromogenic Media (CHROMagar, Springfield, NJ), BBL™ Inhibitory Mold Agar 

(BD, Sparks, MD) and BBL™ Potato Dextrose Agar (BD, Sparks, MD); now referred to 

as blood agar (BAP), Chrome agar (CHRM), inhibitory mold agar (IMA) and potato 

dextrose agar (PDA). The C. albicans strain grown on all culture media agar were split 

into 2 sets (different incubation times), set 1, incubation conditions: 30°C ± 2°C for 24 h 

and set 2, incubation conditions: 30°C ± 2°C for 48 h.  

 

Figure 3.3. Graph illustrating the standard deviation of Candida albicans spectra grown 
on 5 different culture agar media (SAB, Blood agar, Chrome agar, IMA and PDA) from 
the reference C. albicans mean spectrum and spectral similarity distance between the 

test spectrum (5 replicates: A to F) and nearest reference spectrum from isolated 
incubated for 24 h and 48 h at 30°C ± 2°C 

Per set, 5 ATR-FTIR spectra of the C. albicans were collected from colonies grown on 

the reference SAB agar plates (Difco™ SAB (BD, Sparks, MD) while C. albicans grown 

on the other plates are referred to as the test set where 5 spectra were also collected 

from 5 different colonies on the culture media agar plate at different incubation periods 

(24 h and 48 h). 

To assess spectral heterogeneity between the reference spectra and test spectra, an 

inhouse software (developed by Dr. Andrew Ghetler; a McGill IR Group alumnus) was 
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utilized to calculate the standard deviation (SD) from the mean of the reference 

C. albicans and the spectral distance from the test spectrum to the nearest reference 

spectrum (details in later sections of the chapter). C. albicans grown on Difco™ SAB (BD, 

Sparks, MD) as the reference (main agar type used in clinical microbiology for culturing 

yeasts), has a SD and spectral similarity distance when incubated at 24 h comparable to 

growth at the 48 h mark (Figure 3.3). Isolates grown on PDA provided comparable results 

(Figure 3.3) at both incubation times, suggesting the composition of PDA allows for similar 

metabolism as C. albicans grown on Difco™ SAB (BD, Sparks, MD) for the C. albicans 

strain. Interestingly, upon further investigation, PDA has half the carbohydrate content 

compared to Difco™ SAB (BD, Sparks, MD) and does not contain any other nutrient 

source other than potato starch (Table A.4). 

Moreover, the results obtained for IMA were highly heterogenous with extremely variable 

SD values from the reference mean and inadequate spectral similarity distances. This 

may be attributed to multiple ingredients in the agar which includes sodium chloride, 

manganese sulfate, sodium phosphate, magnesium sulfate and ferrous sulfate, which are 

used to inhibit mold growth and promote yeast growth (Table A.4). Nutrient depletion may 

be inconsistent during incubation causing some cells to metabolize more or faster than 

other cells resulting in changes in the metabolic profiles of the microorganisms yielding 

differences in the ATR-FTIR spectral profiles. To a lesser extent, CHRM agar exhibited 

spectral heterogeneity (Figure 3.3); CHRM agar is also a selective media which selects 

for Candida species.  

Furthermore, Figure 3.4 demonstrates spectral heterogeneity of Escherichia coli 

(expressed as difference in the variance between replicates grown on two different agar 

media, BAP and MacConkey agar). E. coli grown on MacConkey agar (MAC) have more 

spectral variability in the spectral region between 1200 and 900 cm-1 compared to spectra 

of colonies grown on BAP. MAC agar is selective to lactose fermenting Gram-negative 

bacteria and contains significant amount of lactose (~20% of the media) compared to 

BAP which does not contain lactose. Accordingly, spectral variability may be attributed to 

variation in lactose metabolism during incubation.  
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As such, selecting a culture media for developing a spectral database will require the 

consistent use of the same culture media throughout the entirety of the work. To ensure 

spectral reproducibility, all microorganisms should be grown on a consistent agar media 

(ideally from the same media manufacturer as discussed above). 

 

Figure 3.4. Spectral variance of triplicate spectra of three E. coli samples (1, 2 and 3) on 
BAP (dark green, dark blue and pink) and MAC agar (red, light green and light blue)  

Although incubation time has little affect on the SD from the reference mean spectrum 

and the spectral similarity distances, not all yeasts species grow at the same rates. With 

the majority of clinically relevant microorganisms displaying optimal growth at 48 h, for 

the thesis’s work, all yeast strains are grown for 48 h for consistency and are grown solely 

on Difco™ SAB (BD, Sparks, MD); while bacteria are grown on BAP for 24 h. 

3.4. ATR-FTIR SPECTROMETERS 

3.4.1.  ATR-FTIR spectral deposition and acquisition parameters 

After obtaining isolated colonies, 1-3 colonies are directly deposited on a 2-mm 

diamond using a 1 µL disposable loop. The diamond is an integral part of an ATR 

sampling accessory which is placed in an FTIR sampling compartment. Triplicate spectra 

are recorded from 3 different independent colonies acquired from the sample culture 

plate. Spectral acquisition parameters are pre-set where a background spectrum is 

recorded from a clean diamond surface prior to deposition of the microbial colonies. Upon 

sample deposition a spectrum of the intact colonies is immediately acquired (less than 1-

2 minutes). A total of 64 co-added scans at 8 cm-1 resolutions over a spectral range 
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between 4000 and 650 cm-1 for the background and sample spectra. The spectrum of the 

sample is ratioed against the background spectrum (after Fourier transformation of the 

interferograms) to yield a transmittance spectrum which is converted to an absorbance 

spectrum. Using these parameters, an ATR-FTIR spectrum is collected in about ~1 

minute per replicate, or ~3 minutes per sample (3 replicates). For traceability purposes, 

the spectral file name is standardized by indicating various information in the filename 

such as, Gram-stain type, genus, species, strain, culture media, time of incubation, date, 

isolate identification number, date of spectral acquisition, instrument model and operator 

responsible for acquiring the spectrum. 

3.4.2. Performance of spectrometers 

3.4.2.1. Instrument-to-instrument variability from the same vendor and 

instrument model  

Little to no instrument-to-instrument spectral variability (of the same make and model) 

is essential for reproducibility of microorganism identification by the ATR-FTIR 

spectroscopy-based using a spectral database approach. To date, our group has 

reviewed multiple ATR-FTIR spectrometers of the same make and model for the Cary 

630 FTIR (Agilent Technologies, CA), a Summit Pro Everest™ (Thermofisher Scientific, 

WI) and the Spectrum Two™ (Perkin Elmer, MA).  

ATR-FTIR spectra were recorded (in triplicate) from 25 isolates of Staphylococcus aureus 

and 25 isolates of C. albicans on two Summit Pro Everest™ (Thermofisher Scientific, WI) 

ATR-FTIR spectrometers. Principal component analysis (PCA) score plots (Figure 3.5), 

show complete discrimination between isolates of S. aureus and isolates of C. albicans 

based solely on differences in the spectral absorption region between 1480 and 980 cm-

1 using spectral data recorded on either one or both spectrometers. Using the same 

feature selection algorithm to attempt discrimination of the species based on the individual 

spectrometer proved ineffective, signifying equivalence of both spectral sets acquired 

from the two spectrometers. Similar results were obtained from the 2 Spectrum Two™ 

(Perkin Elmer, MA) spectrometers (Figure 3.6).  
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Unlike the two sets of spectrometers tested above, the Cary 630 ATR-FTIR (Agilent 

Technologies, CA) spectrometers did not perform as well when performing a region 

selection to ascertain if the spectral data can be assigned to a specific spectrometer. 

Again, using a broad region between 1480 and 980 cm-1 to generate the PCA plot (not 

shown) the S. aureus and C. albicans isolate groups can be effectively separated using 

either of both spectrometers. Instrument-to-instrument variability were not observed, as 

such, regions selection for groups of spectra, instrument-to-instrument variability was also 

not observed.  

 

Figure 3.5. Principal component score plot of same strain of Staphylococcus aureus and 
Candida spp. collected on 2 spectrometers (Summit Pro Everest™ (Thermofisher 

Scientific, WI)) to evaluate spectral variability between instruments where (A) is broad 
region and (B) is generated with regions selected with a feature selection algorithm to 

delineate the lack of significant differences between the two spectrometers  
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For microorganism identification applications, instrument-to-instrument evaluations 

should be performed to assess spectral reproducibility to ensure reproducible results 

between different microbiology laboratories using the same spectral reference databases.  

 

Figure 3.6. Principal component score plot of same strain of Staphylococcus aureus and 
Enterococcus faecium. collected on 2 spectrometers (Spectrometer Two™ (Perkin 
Elmer, MA)) of the same make and model to evaluate spectral variability between 

instruments where (A) is broad region and (B) is generated with regions selected with a 
feature selection algorithm between the two different spectrometers 

3.4.2.2. Different make and model instrument-to-instrument variability 

There are multiple manufacturers of FTIR spectrometers, each with their own unique 

optical and electronic components such as the interferometer, detector, amplifier, and 

analog-to-digital leading to differences in spectral range coverage, spectral resolution and 

signal-to-noise ratios (SNR). With advancement of modern technology, FTIR 

spectrometers have been reduced in size while maintaining or improving SNR of the 

instrument. 
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The SNR is measured without any sampling module (or accessory) and therefore 

provides a spectrum when the highest energy reaching the detector affording the optimal 

SNR as a defined spectral measuring time (e.g., 30 seconds spectral acquisition time or 

to the number of co-added scans, 64 scans), and at a specified spectral resolution (e.g., 

8 cm-1). Placing an ATR sampling accessory in the optical path can result in substantial 

drop in energy throughput (>50% reduction) with the consequence of reducing the SNR. 

In order to improve the SNR, increasing the spectral measurement time (increasing 

number of co-added scans) will be needed at the same specified spectral resolution.  

 

Figure 3.7. Overlay spectra of 100% lines acquired from 4 different spectrometers to 
demonstrate the relative SNR in the infrared spectral absorption region between 1480 
and 880 cm-1. Spectra were collected with 64 co-added background scan and 64 co-

added sample scans in the absence of sample at 8 cm-1 spectral resolution. It should be 
noted that the lower SNR of the Czitek SurveyID is an integrated FTIR microscope with 

a more limited energy throughput.   

To date, our group has assessed multiple ATR-FTIR spectrometers (same model) from 

four different manufacturers [Cary 630 FTIR (Agilent Technologies, CA), a Summit Pro 

Everest™ (Thermofisher Scientific, WI), SurveyIR™ (Czitek, CT) and a Spectrum Two™ 

(Perkin Elmer, MA)]. Observing the residual noise between the 4 spectrometers (Figure 

3.7 and Figure 3.8), there are clear sensitivity differences between the spectrometers. In 

order of increasing sensitivity, SurveyIR™ < Cary 630 FTIR < SummitPro Everest™ < 
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Spectrometer Two™. Considering the Czitek SurveyIR™ spectrometer has a removable 

ATR accessory (has to be removed to deposit the microbial sample and replaced on 

repeatedly per sample), the variance between triplicate replicate spectra of one sample 

is high compared to the other spectrometers (Figure 3.9), it is therefore not suited for the 

application of microorganism identification and should not be considered at this time for 

use. 

 

 

Figure 3.8. Overlay of 2nd derivative spectra obtained from 4 different spectrometers to 
demonstrate noise level in the infrared spectral absorption region of 1480 and 880 cm-1. 

Spectra were collected with 64 co-added background scan and 64 co-added sample 
scans in the absence of sample at 8 cm-1 resolution. 

The effects of different spectrometer models may contribute to the overall performance 

of the ATR-FTIR spectroscopy-based microorganism identification method, such that a 

spectral reference database may consist of spectra belonging to one model, while spectra 

being collected for microbial identification are acquired from multiple models (and 

manufacturers). If the spectral reference database is created without the representation 

of all make and models and an end-user collect spectra for microorganism identification 

from one that is not represented in the spectral reference database, then the performance 
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of the microbial identification technique will be reduced compared to if there were 

representation of all possible spectrometers being used. 

 

Figure 3.9. Overlay variance of triplicate replicate spectra of the same-strain 
Staphylococcus aureus (MRSA NS051) on three different ATR-FTIR spectrometers: 

Czitek IRSurvey, Thermofisher Summit Pro and Agilent Technologies Cary 630 

For example, ATR-FTIR spectra (in triplicate) of 50 different strains of Gram-positive 

bacteria belonging to S. aureus, Enterococcus faecalis and Enterococcus faecium, were 

collected (using the same spectral acquisition and preprocessing parameters) using 3 

different spectrometers acquired from 3 different FTIR manufacturers; Cary 630 FTIR 

(Agilent Technologies, CA), a Summit Pro Everest™ (Thermofisher Scientific, WI), and a 

Spectrum Two™ (Perkin Elmer, MA). The PCA score plots were generated from the 

differences in the spectral profiles of the microorganisms in the region between 1480 and 

980 cm-1, show that S. aureus, E. faecalis and E. faecium can be separated effectively 

from each other (Figure 3.10). Furthermore, the PCA score plot also reveals the spectral 

equivalence between spectra recorded on the Summit Pro Everest™ (Thermofisher 

Scientific, WI), and a Spectrum Two™ (Perkin Elmer, MA) versus the spectral group 

recorded on the Cary 630 FTIR spectrometer (Agilent Technologies, CA), (Figure 3.10, 

dashed line). In addition, spectra of S. aureus acquired using the Agilent ATR-FTIR 

demonstrates more spectral variability within the species compared to the other two 
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spectrometers. The use of region selection algorithms, regions that contribute to 

spectrometer variability can be omitted. Figure 3.11 shows the discrimination between 

S. aureus, E. faecalis and E. faecium is possible without the observed separation 

between the 3 systems shown in Figure 3.10 using a broad spectral region. Accordingly, 

a database that is independent of instrument manufacturer maybe possible with using a 

limited spectral region(s).  

 

 

Figure 3.10. Principal component analysis score plot (PC 3 and PC 2) of 50 strains of 
Staphylococcus aureus, Enterococcus faecium and Enterococcus faecalis each on 3 

different spectrometers (Cary 630 FTIR (Agilent Technologies, CA), a SummitPro 
Everest™ (Thermofisher Scientific, WI), and a Spectrometer Two™ (Perkin Elmer, MA)) 

This is an extremely important note to consider for when developing spectral reference 

databases for the intent of microorganism identification using the current outlined method. 

Creating reference spectral database using one spectrometer model will result in poor 

microorganism identification performance if a different spectrometer model is used to 

collect routine isolates for spectral database interrogation. Only spectrometer models 

used to collect spectra for the construction of the spectral reference database may be 

used for microbial identification. 
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Using region selection algorithms, the data collected from the 3 spectrometers may be 

combined to generate a spectrometer independent database. In the current work, due to 

availability of multiple spectrometers from one model at the time of the research, only the 

Cary 630 FTIR (Agilent Technologies, CA) was used in the following chapters or as stated 

otherwise. 

 

Figure 3.11. Principal component analysis score plot (PC 2 verses PC 1) of 50 strains of 
Staphylococcus aureus, Enterococcus faecium and Enterococcus faecalis recorded on 

3 different spectrometers (Cary 630 FTIR (Agilent Technologies, CA), a Summit Pro 
Everest™ (Thermofisher Scientific, WI), and a Spectrum Two™ (Perkin Elmer, MA)). 

The spectral regions for the PCA plot spectral regions identified with the use of a feature 
selection algorithm for the discrimination between the three species.  

 

3.5. EFFECTS OF SAMPLE DEPOSITION PROTOCOL ON ATR-FTIR SPECTRAL 
REPRODUCIBILITY 

The spectra of microorganisms cultured on agar plates are acquired by placing 1-2 

isolated intact colonies onto the diamond surface of an ATR-FTIR sampling surface. No 

sample preparation after incubation is needed and no extraction step is required; the 

outlined method is a direct colony analysis method.  
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3.5.1.  Sample moisture control as a criterion for achieving reproducible spectra  

Direct colony analysis from culture agar plates without drying the sample to create a 

film will require standardization of moisture content. Based on our studies, we have 

observed that moisture loss/retention differs from genus to genus. Accordingly, spectral 

reproducibility of microorganisms can be affected by rapid water evaporation during data 

collection or upon deposition onto the ATR sampling surface. The water has strong 

absorptions in the infrared spectrum, varying moisture content of the microorganism will 

be observed in the spectra. Beyond the spectral contribution of water, the biochemical 

components, such as proteins and polysaccharides participate in creating an H-bond 

network that stabilizes superstructure of microorganisms, such as the cell wall, 

ribosomes, cytoplasm and other components. Desiccation (or partial desiccation) of the 

microorganism will result in changes in band intensities and bandwidths in the spectra 

(Figure 3.13).  

 

 

Figure 3.12. Twenty-five spectra of Staphylococcus aureus over a time frame of 12 
minutes (30 seconds between each spectral acquisition) 

For instance, Figure 3.12 illustrates 25 superimposed spectra (32 scans each) of 1 

sample (S. aureus) drying over a 12.5-minute period (30 seconds between each scan) at 

room temperature of the surface on an ATR sampling surface. After the first scan (30 

seconds), the sample began to dry and by ~1.5 minutes from the initial sample deposition, 

there was a significant loss in moisture. Spectral variability between the spectra of the 

Time = 0 min 

Time = 12 min 
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same species (e.g., different strains of S. aureus) may affect the efficacy of 

microorganism identification by the ATR-FTIR spectroscopy-based method. 

 

Figure 3.13. Superimposed second derivative ATR-FTIR spectra of Staphylococcus 
aureus of wet colonies (red) and air-dried colonies (orange) illustrating peak shifts 

between 1800-1000 cm-1 

To overcome rapid moisture loss, an agar cap was developed to enclose the freshly 

deposited colonies on the ATR sampling surface. The water activity (Aw) of the agar in 

the agar cap in water was obtained at room temperature (RT) for 6 different formulations 

(Table 3.3). As a result, the formulation of 1% agar in water with a water activity of 0.999 

was selected first for the experiment and the formulation with 0.5% agar was rejected due 

to being too wet and unstable.  

Using the selected formulation, three 1% agar in water caps were made with 3 different 

headspace volumes, 1060.29 mm3, 176.71 mm3 and 0 mm3 or, 6-mm, 1-mm and 0-mm 

(agar in contact with the colony) distance from the ATR sampling surface to the surface 

of the agar of the agar cap, respectively. Evaluating the difference in headspace volumes 

for the formulation, using the same S. aureus strain as above, a total of 25 spectra (32 
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scans each) were collected over a 12.5-minute period at RT. The collected spectra (n=75) 

were compared to reference S. aureus spectra (n=100) previously collected immediately 

after sample deposition (Figure 3.14).  

Table 3.3. Water activity of different agar and salt composition for the development of a 
microbial colony moisture control cap 

Water activity at RT Agar composition (%) NaCl composition (%) 

1.000 0.5 0 
0.999 1 0 
0.996 1.5 0 
0.977 2 0 
0.972 1.5 7.5 
0.956 2 7.5 

From the plotted area in (Figure 3.14), any SD value from the reference mean below the 

shaded area is significant and spectral similarity distances above the shaded area are 

significant – any value within the shaded area is insignificant, relative to the reference 

spectra. As observed in Figure 3.14, the largest volume of headspace is the least 

performant, and the spectral quality diminishes after 30 seconds (sample started to dry 

on the ATR-FTIR sampling surface). The headspace humidity of 6-mm distance from the 

ATR sampling surface to the agar surface of the agar cap is insufficient to maintain colony 

moisture or maintain the spectral quality over time (soon after sample deposition). With 

the cap with the 1-mm distance from the ATR sampling surface to agar surface, minimal 

spectral quality was lost, and spectral acquisition after 4 minutes was still consistent 

(comparable) to the spectra acquired immediately after sample deposition. Lastly, with 

zero headspace volume, the least spectral variation was observed but due to safety 

concerns (microorganism transfer to the agar cap), the design is not practical, and 

hydration of the cells may weaken absorption bands that may be vital for species 

identification or strain-typing. The 1% agar in water (0.99 Aw) cap design with a 176.71 

mm3 headspace volume (or 1-mm distance) between the ATR sampling surface and the 

agar surface is therefore an optimal design in maintaining moisture content for fast-drying 

microbial colonies (Figure A.3). 
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Figure 3.14. Evaluation of the effects of headspace volume humidity (simplified by 
height between agar and sampling surface) from 1% agar in water on the spectra of  

S. aureus as a function of time. The standard deviation from the mean and similarity 
distance is relative to a set of S. aureus spectra previously collected after immediate 

deposition of the sample 

Multiple studies have followed the sample drying methods for microorganism identification 

by transmission FTIR spectroscopy (references in Table 2.5, Table 2.6, Table 2.7, Table 

2.8 and Table 2.9); the current study is focused on standardizing ATR-FTIR spectroscopy 

from direct culture agar plate without any sample processing steps (wet analysis, no 

drying). With ATR-FTIR spectra being highly affected by microbial hydration, it is 

important to standardize the moisture content of microorganisms on the ATR sampling 

surface to maintain consistency throughout analysis. As drying samples on an ATR 

sampling surface requires additional time (varies from 5 to 30 minutes for complete 

drying), it would not be practical for implementation in high volume microbiology 

laboratories. As such, the developed agar cap would maintain moisture for fast-drying 

microorganisms (e.g., Enterococcus species and Streptococcus species) however, it may 

be used throughout all spectral acquisition to maintain spectral consistency. 
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3.6.  DATA ANALYSIS  

Our lab group have previously created an in-house software DataAnalysis (McGill 

University, QC) which is used to process and analyze FTIR spectra with feature selection, 

PCA and hierarchical cluster analysis (HCA). Dr. Andrew Ghetler (graduated from the 

McGill IR group) created the software to include a feature selection algorithm which 

performs a grid-greedy search of the spectral features to determine the spectral regions 

which contribute to the highest discrimination between defined spectral groups (or 

classes). As such, the software is used for both supervised and unsupervised analysis. 

Besides using a broad spectral region for HCA and PCA (unsupervised analysis), the 

obtained regions from a feature selection can be used with HCA or PCA and would 

therefore be considered a supervised analysis. 

In addition to the in-house software, JMP® Pro 15 (SAS Institute Inc, NC) is also utilized 

for data analysis. JMP® Pro 15 (SAS Institute Inc, NC) is a general statistical software 

with multiple unique features such as creating visual representation of datasets, cluster 

analysis, multivariate analysis while various machine learning algorithms are also 

available such as neural net and support vector machines (SVM) analysis.  

Data analysis has been optimized using the software mentioned above and are used 

throughout the thesis and current sub-section. 

3.6.1.  Spectral filtration and pre-processing 

Through DataAnalysis (McGill University, QC), spectral quality (SQ) checks are 

completed through visual inspection of the infrared spectral profiles or, by using peak 

height measurement of selected peaks (e.g., the magnitude of the water absorption band 

at ~3400 cm-1 or amide II band (~1550 cm-1) or PO2
- (~1080 cm-1) absorption bands in 

the infrared spectrum). The spectral filtration process is aimed at removing spectra of 

microorganisms displaying low biomass (based on the low absorbance in the 

lipopolysaccharide absorption region ~1085 cm-1) or a weak amide II band intensity, or 

loss of moisture samples (due to partial inadvertent sample drying) assessed by low 

absorption of the water band centered at 3333 cm-1). HCA and PCA can also be an 
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effective process to detect outliers (extreme spectral distances away from most of the 

spectra). 

If any spectrum fails at least one of the 3 SQ checks, then the spectrum will be removed 

from the analyses as it does not meet the spectral quality criteria. The three SQ checks 

are described in detail below and must be followed when constructing spectral reference 

databases and/or during real-time analysis. 

SQ check 1:  

After calculating the absorption differences between the peak height (center of major 

water absorption band at 3333 cm-1) and a single baseline point at 1633 cm-1 (amide I 

absorption band that is highly affected by water absorption), any spectra outside the peak 

height limits of [0.05-0.22] absorbance intensity from a baseline point of 2500 cm-1 are 

eliminated as they signify loss of water content from the microbial cells (i.e., the sample 

has partially or completely dried). Figure 3.15 demonstrates the SQ1 check with two 

spectra of the same bacterial sample with different water content where the first spectrum 

is acceptable and the second is not. 

 

Figure 3.15. Spectral Quality check 1 example of a good spectrum with a peak height 
difference within the range of [0.05-0.22] absorbance intensity from a baseline point of 

2500 cm-1 for peaks at 3333 cm-1 ((O-H)) and 1633 cm-1 ((amide I and H-O-H bend)) 
and a bad spectrum that does not fall in peak height range in those peaks 

SQ check 2:  

After calculating the absorption differences between the peak height at 1085 cm-1 and a 

single baseline point at 1200 cm-1, any spectra falling outside of the peak height limits of 

[0.013-0.07] are also omitted as they signify the absence of significant biomass in the 

sample. 
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SQ check 3:  

Calculating the peak area between 1480-980 cm-1 (baseline correction covering the 

region between 1800 and 980 cm-1), all samples not within the limits of [4.0-21] will also 

be eliminated due to low biomass of the sample.  

After spectral filtration, the 1st derivative and vector normalization at 1480-980 cm-1 are 

calculated for the remaining spectra. Although taking the first derivative of a spectrum 

results in an increase in spectral noise, it removes any baseline offsets or tilts in addition 

to enhancing the peak separation. Vector normalization of the first derivative is taken to 

compensate for remaining variabilities (biomass and to a lesser extent water content) in 

the filtered spectral set. 

3.6.2. ATR-FTIR pairwise spectrotyping of microorganisms: a first step in the 

construction of a spectral database for microorganism identification 

Spectrotyping is a word coined by the McGill IR Group, which is defined as the 

process of determining the differences between spectra of microorganisms based on the 

absence or presence, and relative intensities of infrared absorption bands. Spectra with 

similar absorption bands and relative intensities are therefore classified as a spectrotype. 

The words spectrotyping and spectrotype will be used in the current and following 

chapters of the thesis. 

Two microorganism identification methods based on the use of ATR-FTIR spectroscopy 

are presented in the following section. Both methods are based on constructing a decision 

tree-like (or sequential multitier) spectral search databases (often used interchangeably 

with “library”) where method (I) is based on microorganism identification by selecting 

spectral features (spectrotyping) and k-nearest neighbor(s)  (k-NN) while the second 

method (II) is based on the use of SVM learning algorithm for microbial classification. Two 

different techniques evaluated are meant to act as a stand-alone or combined method for 

microorganism identification depending on the spectral database structure, to be 

discussed in the following subsections. 
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3.6.2.1. I: Application of multivariate statistical analysis for the spectrotyping 

approach of microorganism identification 

Spectrotyping as a method for microorganism identification consists of 2 parts, (i) 

determining spectral regions specific to two groups (or classes) of spectra (e.g., between 

families, genera, species, strain-type, serogroup and/or spectrally similar groups; E. coli 

versus Shigella species) through the application of HCA, PCA in combination with the 

feature selection algorithm; and (ii) database construction based on findings of part (i) 

and classification by k-NN. PCA and HCA are used to visualize relationships between 

clusters. PCA is a method that is used to reduce dimensionality of large datasets such as 

FTIR spectral data by transforming spectral data into smaller sets of variables (principal 

components or PC) to reduce computation time and reduce redundant information. The 

highest percentage of explained variances in the dataset are found in PC 1 and reduces 

with PCs 2, 3 and 4 and so on. PCA is often visualized by a PC score plot and will be 

presented in the current section.  

HCA on the other hand is a clustering method that groups similar objects (or spectra) 

together. In terms of a spectral dataset, HCA starts with identifying 2 of the closest spectra 

(spectral similarity through cosine similarity distance metric, or other distance metric of 

choice) and iteratively continue to cluster the similar spectra and/or merge similar clusters 

until no more spectra or clusters are available. The data can be presented in terms of a 

distance matrix or a dendrogram, of which, the latter is the visual representation 

commonly used for HCA. In our work we have opted to utilize the cosine similarity 

distance and ward linkage in the generation of the dendrogram. 

Both PCA and HCA can be computed using unsupervised methods based on the use of 

broad spectral regions or supervised where specific regions are identified using a feature 

selection algorithm to differentiate between two or more user defined classes, followed 

by the use of selected datapoints to generate the PCA and HCA plots. The feature 

selection algorithm (termed grid-greedy search) can reduce the number of spectral 

datapoints significantly. The grid search starts by searching wavenumbers in increments 

of 6-20 cm-1 over a user-defined spectral range(s) to produce sets of wavenumbers that 

maximized the spectral differences between two or more user-defined classes using k-
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NN, achieving the narrowest spectral region with the highest classification score (CS) 

between the sets of regions from the grid search. Where CS is calculated as CS – N/k 

where N is the number of strains (spectra), and k is the k-NN. Further details are 

described elsewhere (8, 9). 

3.6.2.1.1. Example of spectrotyping methodology for spectral database 

construction 

HCA and PCA plots generated using defined spectral regions that optimize the 

separation of two distinct classes are employed in the development of a multitier decision-

like tree structure for classification of microorganisms. For example, a pool of spectra 

belonging to 4 Staphylococcus species: S. aureus, S. hominis, S. epidermidis and S. 

lugdunensis; the latter 3 species can be grouped into one group (classified as coagulase 

negative staphylococci (CoNS)) while, the second group can be assigned to S. aureus (a 

coagulase-positive staphylococci). The first implicit assumption is that the CoNS class will 

differ in its biochemical profile from the biochemical profile of S. aureus. Furthermore, 

these differences are more significant than differences between CoNS species. The 

second assumption is that the biochemical changes are reflected in the spectral 

differences between the two groups (CoNS versus S. aureus). Unless these two 

conditions are met, the use of infrared spectroscopy as a technique for the identification 

of microorganisms would not be possible. To test this hypothesis, the two spectral data 

sets (belonging to S. aureus and CoNS groups) were used to generate PCA and HCA 

plots using the fingerprint region of their respective infrared spectra. Figure 3.16 shows 

PCA plots generated using different spectral regions of the two groups illustrating an 

effective separation between the two groups. Similarly, Figure 3.17 illustrates the HCA 

plots also showing that the same spectral region can generate two principal and distinct 

clusters belonging to S. aureus and CoNS. It is also of interest to note that HCA was also 

effective at illustrating the discrimination between the three species belonging to the 

CoNS group (S. hominis, S. epidermidis and S. lugdunensis). The selected regions, 1023-

1034, 1060-1066, 1070-1075, 1329-1334, 1349-1355 cm-1, were the best for complete 

discrimination (Figure 3.16 (B) and Figure 3.17, (B)). The 2 classes CoNS and S. aureus 

are then considered as a pair where the next pair would be searched for in the CoNS 
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group of spectra while S. aureus is a single species and is the final group for 

microorganism identification. 

In the given example, the CoNS group has 3 species in which, using the same approach, 

the second pair of groups of spectra are S. epidermidis/S. hominis and S. lugdunensis 

observed using spectral regions 1085-1090, 1092-1101, 1120-1128, 1318-1323 cm-1. 

The third set (consiting of two pairs) is S. epidermidis and S. hominis which can be 

differentiated from each other using the spectral regions 1032-1040, 1042-1047, 1241-

1247, 1277-1284, 1321-1327, 1446-1454 cm-1 (Figure 3.16 and Figure 3.17, PC score 

plots (C) and (D)). The three sets are then stringed together to create the decision tree-

like spectral database structure (Figure 3.18).  

It should be noted that this is a spectrotyping technique and selection of pairs are not 

necessarily reflective of current taxa of microorganisms. Current taxonomy classification 

aids in pre-selecting the pairs, however, there are times where the microoroganism’s 

spectral fingerprint does not relate to its current taxa. Classification of microorganisms is 

influenced by phenotype and today, are moving towards classification by genetic 

relationship based on previous ancestors. An FTIR spectrum is a snapshot of the current 

biochemical composition and metabolomic status. As such, using a feature selection 

algorithm may descibe more of the differences and similarities between the pairs (relative 

to carbohydrate, protein and lipid composition). 

Once the spectral pairs are strung together as depicted in Figure 3.18, it is interesting to 

note the increase in spectral similarity between pairs with increasing levels (based on 

cosine distances). For example, the spectral similarity between CoNS and S. aureus is 

smaller than the spectral similarity between S. epidermidis and S. hominis. When 

developing the multitier spectral database, considering that taxa of microorganisms may 

be a thing of the past when developing identification models using spectroscopic 

techniques, it can be used as a template for developing the structure. As such, datamining 

can be greatly simplified by classifying microorganisms by their cell wall composition (O-

antigen, H-antigen, polysaccharides, lipids, and proteins) yielding a spectrally based 

classification method commensurate with the biochemical composition of the 

microorganism.  
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Figure 3.16. Principal component analysis’ principal component score plots of ATR-FTIR spectral groups in pairs: (A) 
broad region observation of 4 Staphylococcus species naturally clustering in 2 groups, (B) after region selection, optimal 

regions were obtained for the discrimination of S. aureus and coagulase negative staphylococci (CoNS), (C) 
discrimination of CoNS species and (D) final discrimination between CoNS species, S epidermidis and S. hominis 
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Figure 3.17. Hierarchical cluster analysis dendrogram (cosine similarity distance and ward linkage) of ATR-FTIR spectral 
groups in pairs: (A) using a broad spectral region (1480-980 cm-1) to differentiate the 4 Staphylococcus species into 2 
groups, (B) Using optimal spectral regions for the discrimination of S. aureus and CoNS, (C) discrimination of CoNS 

species and (D) final discrimination between CoNS species, S epidermidis and S. hominis 



87 

 

 

 

 

Figure 3.18. Example of sequential multitier pairwise structure for ATR-FTIR spectral database construction for 
microorganism identification where each pair in each Tier requires a specific spectral region (generated from a feature 
selection algorithm) for discriminating between each pair into two distinct groups. Pairs of spectra closest to Tier 0 has 

higher spectral dissimilarity compared to those pairs at a higher Tier level. 
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3.6.2.2. II: Application of K nearest neighbor (k-NN) algorithm for species 

identification 

Once the spectral database structure is determined with the use of optimized spectral 

regions, the decision-like tree is implemented using the spectral pairs and their respective 

spectral regions using an in-house written software; MultiLevel Classifier (MLC). The MLC 

software holds the spectral database which is constructed to split into multiple folders 

representative of each tier as shown in Figure 3.18. The software executes a stepwise 

separation, where a spectrum of an unknown isolate is used as an external input and is 

assigned to one of the groups in Tier 1. Subsequently, the assigned group from Tier 1 is 

used as an input for Tier 2 group separation and so on until the spectrum of the unknown 

isolate is assigned to a single group (e.g., Gram-stain type, genus, species, serotype or 

serovar). 

 

Figure 3.19. Example of classification of an unknown spectrum between two predefined 
sets of spectra (Class 1 and Class 2). (A) k-NN plot of spectral reference database of 

Class 1 and Class 2, and the unknown spectrum based on the predetermined features. 
Subsequently, (B) is the visual representation of the Euclidean distance from the 

unknown point to the different spectra in each class. Lastly, (C) represents the k-NN 
when k=1, as such the unknown has the shortest distance to one spectrum in Class 2; 

classifying the unknown as CoNS 
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In summary and using the tier wise structure in Figure 3.18, the first pair, S. aureus and 

CoNS are discriminated using the spectral region 1023-1034, 1060-1066, 1070-1075, 

1329, 1334, 1349-1355 cm-1, and employing the MLC software, predictions are achieved 

by loading the spectral reference database and selecting a spectrum or spectral directory 

of unknowns for prediction, within seconds a spreadsheet is exported with the top three 

closest match, along with the spectral similarity distance to the matched spectrum and 

the SD from the reference mean of the predicted (Figure 3.20). 

 

Figure 3.20. Screenshot of prediction output using the Multilevel Classifier application 
illustrating the spectral filenames, top 3 hits, cosine distance similarity from top hit, 
standard deviation from mean spectrum of top hit and the confidence of the top hit 

Each of three triplicate spectra of an unknown sample are analyzed using the multilevel 

spectral reference database until there are no more tiers to interrogate (terminal folder). 

Again, in reference to Figure 3.18, the unknown spectrum enters the spectral reference 

database at Tier 0 and moves onto Tier 1 with the decision of choosing between (A) 

S. aureus or (B) CoNS. Figure 3.19 illustrates the process of determining which group the 

unknown spectrum is assigned by the k-NN algorithm. First, spectra in Class (A) and 

Class (B) are plotted using spectral features in the 1023-1034, 1060-1066, 1070-1075, 

1329, 1334, 1349-1355 cm-1 spectral ranges, second, the unknown spectrum is 

introduced into the plot where the Euclidean distance is calculated between each point to 

the unknown spectrum. With a set parameter of k=1, the k-NN is determined by the lowest 

Euclidean distance. As such, the unknown spectrum has the shortest distance to a 

spectrum in Class 2, therefore, the unknown spectrum is classified as (B) or CoNS and 

will proceed into Tier 2 where the same analysis is continued until there are no more tiers 

to interrogate. If the k-NN, (k=1), has a closest distance to Class 1, then the unknown 



90 

 

spectrum would have been classified as (A) S. aureus; no further Tiers are interrogated 

(terminal folder).  

3.6.2.3. Confidence limits parameters for spectrotyping-based predictions 

Once a classification/prediction is determined, confidence of the classification is 

essential to validate whether the results are reliable or are non-reportable. The confidence 

is determined by 2 factors, the cosine similarity distance, and the SD of the classified to 

the mean of those spectra in the reference database. In Figure 3.21, the unknown 

spectrum has a SD <1 and the cosine similarity distance, range between -1 and 1, where 

values closest to -1 or 1 is the closest distance to one group or the other. Values closest 

0 means (orthogonal), provide unreliable assignment to either group. Empirical 

confidence limits (based on the analysis of ~18,000 spectra acquired from ~6,000 

isolates) of SD values >3 and/or cosine distances close to 0 are considered inconclusive. 

The spectrum of an unknown microbial sample is compared in a sequential manner (left-

right or top-down) between the pairs until it reaches the best match, outputting a report 

with the spectral distance, SD from the mean and the confidence of the match.  

 

Figure 3.21. Demonstration of the Multilevel Classifier confidence level of classification 
through the standard deviation (SD) of the unknown spectrum from the mean spectrum 

of the predicted  

Confidences are based on pre-defined acceptance limits of SD from the reference mean 

spectra of the predicted and spectral similarity distances and are outputted as either 

inconclusive (not providing a sample identification), high, medium or low confidences. 

Based on the assigned confidence limits for the species, the output result will be reported 
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as inconclusive (following rules 2 and 3 in Table 3.4) rather than reporting a wrong species 

identification (i.e., false identification). 

Table 3.4. Example of confidence limit determination for the ATR-FTIR spectroscopy-
based technique 

Example of Validation and Confidence Determination Table 
Rule* Confidence Confidence limits 
1 Inconclusive If all predictions are different (of three replicates) 
2 Inconclusive SD > 3 
3 Inconclusive Distance < 0.5 
4 High SD ≤ 0.1.5 and distance ≥ 0.78 
5 Medium SD > 1.5 and ≤ 3 AND distance < 0.8 and ≥ 0.6 
6 Low SD > 3 AND distance < 0.6 and ≥ 0.5 

* Rules are applied in sequential order 

Any isolate reporting as inconclusive will be further investigated and re-identified by ATR-

FTIR spectroscopy and the routine method of microorganism identification, either 

commercially available in vitro MALDI-TOF MS diagnostic system or VITEK® 2 ID/AST 

(bioMérieux, Marcy-l'Étoile). If results are discordant after reanalysis on both methods, it 

is necessary to identify the microorganism based on a third method (i.e., gene 

sequencing) to ascertain the true identification to evaluate the performance of the ATR-

FTIR-based method. 

3.6.3. Support vector machine as a tool for ATR-FTIR spectral database 

construction for microorganism identification 

Spectrotyping through the feature selection algorithm may not be adequate for certain 

levels of pairwise discrimination such as between various pairs of Gram-negative bacteria 

(especially for those species belonging to the Enterobacteriaceae family), where they are 

biochemically similar. Other machine learning algorithms such as artificial neural network 

may also be explored, but they have the drawbacks of not providing specific spectral 

regions that may be useful for discovering biomarkers responsible for the discrimination 

of groups of microorganisms. As such, an SVM algorithm has been employed and 

evaluated for microorganism identification based on ATR-FTIR spectral data.  

SVM algorithms provide accurate results with low computational power and time, 

however, unlike spectrotyping, they require large datasets to ensure enough 
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data/representation for both the training and validation sets. As a result of the machine 

learning algorithm, it is an extremely powerful and elegant tool for rapid classification. The 

purpose of SVM is to determine the most optimal hyperplane (largest distance/margin 

between classes) that can successfully segregate 2 or more sets of data. The hyperplane 

is also known as the decision boundary where the unknown(s) will be classified as either-

or classes dependent on which side of the decision boundary it falls into. As such, SVM 

without further datamining does not provide unclassified responses. 

3.6.3.1. Method for SVM prediction model construction 

JMP® Pro 15 (SAS Institute Inc, NC) software was employed for SVM model 

development. After spectral filtration and preprocessing, the spectral data (both database 

and unknowns (test set)) are imported into JMP® Pro 15 (SAS Institute Inc, NC) as a 

spectral data matrix. For preparation of the SVM model, the data must be separated into 

training, validation and test sets where validation and test sets are external from the 

training set. For example, there are 327 spectra of C. albicans and 109 spectra of C. 

glabrata that will be used to train and validate the spectral reference database. External 

from both the training and validation sets, there are 60 spectra of each species (totalling 

to 120 spectra) reserved for the testing set (typically, the testing would be the unknown 

samples collected in routine). Between the training and validation sets, there will be a 

75:25 stratified validation split to compensate the imbalance of spectra per species.  

Unlike the MLC method which uses a region selection, SVM uses the broad spectral 

region 1480-980 cm-1 as the features, linear kernel function (creates a linear hyperplane 

to separate the classes) and a cost value of 1 (where cost is defined as a value greater 

than 0, where increasing the cost value increases the trade-off values between variance 

and bias which may lead to overfitting the data). The results are reported as the predicted, 

most likely predicted, in a confusion matrix, misidentification rate of the training, validation 

and test sets, and the fit details (Figure 3.22).  
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Figure 3.22. Screenshot of JMP® Pro 15 (SAS Institute Inc, NC) support vector 
machine model output for the classification of Candida albicans and Candida glabrata. 
Details for Model Summary (panel 1), Estimation Details (panel 2), Fit Details (panel 3) 

and Confusion Matrix (panel 4) are further explained in Table 3.5 

By default, the misclassification rate is calculated at the probability cut-off of 0.5. In a 

binary response SVM model, the probability threshold can be manipulated, however, 

manual recalculation of the misidentification rates is required. The SVM predicted class 

is determined by where the test spectra are being classified in either-or class, while the 

likely predicted class is based on a probability cut-off of 0.5. In addition, SVM also allows 

for multiclass classification, where the SVM predicted class is based on a pairwise 

combination of the classes and the class that is predicted the most between the pairwise 

combination of classes is the SVM predicted class. 
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Table 3.5. Detailed description of numbered panels in Figure 3.22. Screenshot of JMP® 
Pro 15 (SAS Institute Inc, NC) support vector machine (SVM) model output for the 

classification of Candida albicans and Candida glabrata 

Panel number Description 

1: Model 
summary 

General summary of the SVM model in terms of displaying 
information on the selected “Response” (e.g., species which 
consists of Candida albicans and Candida glabrata), the validation 
method and the type of kernel function selected. JMP® Pro 15 is 
based on data within a matrix where each row is a different sample, in 
this case, a spectrum associated with an isolate. As such, the model 
summary summarizes how the data was divided into the training, 
validation and test sets along with the misidentification rates in each 
set and the number of support vectors generated for classification 
between the responses. 

2: Estimation 
details 

Panel with the details and parameters used in the model such as 
the cost where cost is defined the value which is associated with 
margins of the SVM model which attributes to training errors. A 
larger cost value is associated with narrow margins for a 
conservative model with few misclassifications while a small cost 
value is associated with a larger margin, allowing for more 
misclassification. 

3: Fit Model The Fit Model panel provides the following statistics for the training 
set, and for the validation and test sets if they are specified 
(definitions were taken from SAS Institute Inc., Cary, NC online 
resources): 
Entropy RSquare: Is a range between 0 to 1, where a value closer to 
1 represents the best fit of the model in comparison to the goodness 
to fit (log-likelihood) of the fitted model to the constant probability 
model. Generalized RSquare: Measure simplifies to the traditional 
RSquare for continuous normal responses in the standard least 
squares setting. Values closer to 1 indicate a better fit. 
Mean -Log p: The average of -log(p), where p is the fitted probability 
associated with the event that occurred. Smaller values indicate a 
better fit. RASE (Root Average Square Error): The square root of the 
mean squared prediction error. Mean Abs Dev: Smaller values 
indicate a better fit. The average of the absolute values of the 
differences between the response and the predicted response. The 
differences are between 1 and p, the fitted probability for the 
response level that actually occurred. Misclassification Rate: The rate 
for which the response category with the highest fitted probability is 
not the observed category. 
N: The number of observations. 

4: Confusion 
Matrix 
 

A confusion matrix is shown for the training, validation, and test of the 
specified model and represents a two-way classification of actual and 
predicted responses to evaluate the misclassification rates to 
evaluate your model. 
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Although the probability cut-off can be manipulated (increased or decreased), through 

evaluation, the microbial identification by the ATR-FTIR spectroscopy-based method, 

would require species specific cut-offs. With that in mind, the spectral reference database 

may continuously be changing and modified, where the species-specific cut-offs are 

therefore fluid and inconsistent. However, the probability may be an excellent indicator of 

confidence levels, whether a prediction is reliable or not; being classified as misidentified 

or inconclusive. 

 

Figure 3.23. Example of SVM model construction based on ATR-FTIR spectra where 
(A) depicts a single SVM model for the classification of 4 species and (B) depicts a 

combination of pairwise and multiclass SVM models for the classification of 4 species 
(the same as in (A)) 

Similar to the MLC method, multiple SVM models can be stringed together, however, it 

differs from MLC as it is not limited to pairwise classification, and it is a much more 

powerful tool compared to MLC in combination with feature selection. The final SVM 

reference model can therefore be constructed with multiple SVM models in pairwise 

(binary) or multiclass or a combination of the two (Figure 3.23). 

3.6.3.2. Confidence limits parameters for SVM-based predictions 

SVM is a model where unknowns are classified into one of the classes defined in the 

training set. For microorganism identification, there is a need for determining whether a 

prediction is reliable or not and why is it not reliable – was it misidentified? Or is it 

inconclusive (not represented in the model, spectra from mixed culture, or the quality of 
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the spectra are abnormal). The final outputs therefore require confidences levels (or 

values) to assess the significance of the predictions.  

As part of the thesis’s work, confidence limits were investigated for the SVM models, 

where the limits are dependent on a multitude of factors such as: final prediction of the 

SVM model, the details of the final predictions which includes the predicted class (based 

on the either-or classification), most likely predicted (based on a probability cutoff of 0.5) 

and the threshold predicted (based on a self-assigned probability cutoff; variable 

depending on the model). While the SVM models output predictions as both “Predicted” 

and “Most Likely”, there can be multiple predictions within the Predicted output. For 

example, a test spectrum can result in Predicted and Most Likely as Class A from a 

training set that has Class A, Class B and Class C. For the Predicted output, it is based 

on the prediction results between the combinations: Class A/Class B, Class A/Class C 

and Class B/Class C, and the Most Likely is based on the highest probability between 

prob(Class A), prob(Class B) and prob(Class C). As such, for the sake of the example, 

the test spectrum is predicted as Class A, Class B and Class C in respective order to the 

pairs in the previous sentence. For the Most Likely predicted class, the SVM model output: 

prob(Class A)=0.83, prob(Class B)=0.24 and prob(Class C)=0.61. Based on the results, 

the Predicted and Most Likely predicted is Class A. In an event where there is a prediction 

of a third class (i.e., Class B) in the multiclass SVM model, the prediction is by default, 

inconclusive and should not be reported. Spectral investigation of the unknown spectra 

will be required to ascertain the inconclusive result.  

In creating a confidence limit chart consideration of the SVM predicted outputs, predicted 

probability and threshold predicted probability must be undertaken using 2 different 

confidence limits charts, (1) for pairwise SVM and (2) for multiclass SVM models. 

3.6.3.2.1. Pairwise confidence limits 

In both pairwise and multiclass SVM models, the validation set determines the 

probability threshold of the spectral group (class) and is generally over 0.5. The spectral 

database developer will have to set probability threshold based on previous experience 

and discretion to avoid overfitting or underfitting the data. The use of the probabilities of 

the other groups of spectra may aid in selecting a probability threshold.  
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Table 3.6 lists 6 genera and 2 species of microorganisms. These 8 spectral groups can 

be paired as one genus (or species) versus the 7 others (defined as the 2nd group). For 

example, SVM model 1 is a pair consisting of spectra belonging to Achromobacter and 

the combined remaining groups of the second tier (i.e., Kingella, Salmonella, Serratia, 

Shigella, Stenotrophomonas, NFGNB and Enterobacteriaceae). The SVM model 2 is then 

Kingella versus the other groups in tier 2, including Achromobacter, and so on and so 

forth. The details of the example and database is further described in CHAPTER 4. The 

probability thresholds based on the results of the SVM validation are reported in Table 

3.6 and are used to determine the prediction confidences. 

Table 3.6. Example of support vector machine (SVM) probability threshold for pairwise 
models between the microorganism/group and the combined spectra of the remaining 

groups of the spectral database  

Microorganism/Group SVM probability threshold  
(p-value) 

Achromobacter 0.8043 
Kingella 0.9022 

Salmonella 0.9022 
Serratia 0.6739 
Shigella 0.8043 

Stenotrophomonas 0.8261 
NFGNB 0.8043 

Enterobacteriaceae 0.5761 

 

The prediction confidences are based on a scoring system ranging from 0 to 100 where 

the points are based on weighted values of the SVM model outputs (predicted, most likely 

predicted and threshold predicted). For those predicting the same class for both the 

Predicted and Most Likely Predicted, a high confidence score is from 87.5 to 100, medium 

ranges from 70 to 78.4, low ranges from 52.5 to 65 and inconclusive results ranges from 

0 to 52. Table 3.7 and Table 3.8 detail the weights provided to the type of output obtained 

from the SVM model, the global output (Predicted and Most Likely) and the SVM 

prediction breakdown (Predicted, Most Likely and Threshold Predicted). Fraction 

predicted simply indicates how many of the same prediction in the SVM prediction 

breakdown was obtained for the predicted. For example, the SVM model global output 

(for a pair; 2 outputs; class A and B), results for Predicted and Most Likely predicted as 
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class A, however, in the detailed SVM prediction breakdown (3 outputs), class A was 

predicted for Predicted and Most Likely, but was not predicted for the Threshold 

Predicted; it was only predicted as class A two out of three times (2/3; fraction predicted). 

Moreover, in continuation of the example and in reference to Table 3.7, the SVM 

prediction breakdown (row 6) also resulted in B being Predicted and Most Likely Predicted 

as Class B. As such, a total score of 70 (50 for global A prediction and 20 points total for 

predicting A and B; score is out of 100) is obtained for the confidence of the unknown 

being predicted as A (medium level of confidence) and a score of 20 for the unknown 

being predicted as B (inconclusive prediction). As such, for the given example, the better 

of the two predictions is A with medium level of confidence. 

Moreover, Table 3.8 describes prediction confidences for SVM models with prediction 

outputs for Predicted and Most Likely predicted are not the same. Unlike those with 

prediction outputs that are the same, there are no high confidence predictions for those 

that are not the same. In reference to Table 3.8, medium confidence scores range from 

70-75, low confidence level scores from 53-65 and inconclusive results range from scores 

of 10-50.  In both tables, the prediction confidence scores are color coordinated by the 

level of confidence, red for inconclusive, yellow for low confidence, blue for medium 

confidence and green for high confidence. Typically, only medium and high confidence 

scores should be reported while low confidence scores should be revisited as well as 

inconclusive results. 
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Table 3.7. Assigned weights for pairwise SVM model for the confidences of microorganism identification by the ATR-FTIR 
spectroscopy-based method predictions: Global SVM predicted as A and is most likely A 

SVM prediction output SVM prediction breakdown Prediction 
Confidence 

score 
A A Predicted A  Predicted B 

Predicted Most Likely Predicted Most 
Likely 

Threshold 
Predicted 

Fraction 
predicted 

Predicted Most 
Likely 

Threshold 
Predicted 

Fraction 
predicted 

A B 

25 25 8.25 8.25 8.5 3/3 8.25 8.25 8.5 3/3 75 25 

25 25 10 10 10 3/3 10 10 -5 2/3 80 15 

25 25 12.5 12.5 12.5 3/3 12.5 -5 -5 1/3 87.5 2.5 

25 25 16.65 16.65 16.7 3/3 - - - 0/3 100 0 

                        

25 25 10 10 -5 2/3 10 10 10 3/3 65 30 

25 25 12.5 12.5 -5 2/3 12.5 12.5 -5 2/3 70 20 

25 25 16.7 16.7 -5 2/3 16.6 -5 -5 1/3 78.4 6.6 

25 25 25 25 -5 2/3 - - - 0/3 95 0 

                        

25 25 12.5 -5 -5 1/3 12.5 12.5 12.5 3/3 52.5 38 

25 25 16.6 -5 -5 1/3 16.7 16.7 -5 2/3 56.6 28 

25 25 25 -5 -5 1/3 25 -5 -5 1/3 65 15 

25 25 50 -5 -5 1/3 - - - 0/3 90 0 

                        

25 25 -5 -5 -5 0/3 16.65 16.65 16.7 3/3 35 50 

25 25 -5 -5 -5 0/3 25 25 -5 2/3 35 45 

25 25 -5 -5 -5 0/3 50 -5 -5 1/3 35 40 

25 25 -5 -5 -5 0/3 - - - 0/3 35 0 

            

25 25 16.65 16.65 16.7 3/3 - - - 0/3 100 - 

25 25 16.65 16.65 -5 2/3 - - - 0/3 78.3 - 

25 25 16.65 -5 -5 1/3 - - - 0/3 56.7 - 

25 25 -5 -5 -5 0/3 - - - 0/3 35 - 
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Table 3.8. Assigned weights for pairwise SVM model for the confidences of microorganism identification by the ATR-FTIR 
spectroscopy-based method predictions: Global SVM predicted as A and is most likely B 

SVM prediction output SVM prediction breakdown Prediction 
Confidence 

Scores 
A B Predicted A  Predicted B 

Predicted Most Likely Predicted Most 
Likely 

Threshold 
Predicted 

Fraction 
predicted 

Predicted Most 
Likely 

Threshold 
Predicted 

Fraction 
predicted 

A B 

25 25 8.25 8.25 8.5 3/3 8.25 8.25 8.5 3/3 50 50 

25 25 10 10 10 3/3 10 10 -5 2/3 55 40 

25 25 12.5 12.5 12.5 3/3 12.5 -5 -5 1/3 62.5 28 

25 25 16.65 16.65 16.7 3/3 -5 -5 -5 0/3 75 10 

                        

25 25 10 10 -5 2/3 10 10 10 3/3 40 55 

25 25 12.5 12.5 -5 2/3 12.5 12.5 -5 2/3 45 45 

25 25 16.7 16.7 -5 2/3 16.6 -5 -5 1/3 53.4 32 

25 25 25 25 -5 2/3 -5 -5 -5 0/3 70 10 

                        

25 25 12.5 -5 -5 1/3 12.5 12.5 12.5 3/3 27.5 63 

25 25 16.6 -5 -5 1/3 16.7 16.7 -5 2/3 31.6 53 

25 25 25 -5 -5 1/3 25 -5 -5 1/3 40 40 

25 25 50 -5 -5 1/3 -5 -5 -5 0/3 65 10 

                        

25 25 -5 -5 -5 0/3 16.65 16.65 16.7 3/3 10 75 

25 25 -5 -5 -5 0/3 25 25 -5 2/3 10 70 

25 25 -5 -5 -5 0/3 50 -5 -5 1/3 10 65 

25 25 -5 -5 -5 0/3 -5 -5 -5 0/3 10 10 
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3.6.3.2.2. Multiclass confidence limits 

Unlike pairwise confidence levels, multiclass confidence limits are based solely on 

the SVM model outputs (Predicted and Most Likely Predicted) and the threshold 

probability. Similar to pairwise SVM models, per class, a probability threshold based on 

the validation set of the multiclass SVM model is determined. The Most Likely Predicted 

is the class with the highest probability from all class’s prediction probabilities. As such, 

to determine the confidence of the prediction, the Predicted class, the Most Likely 

predicted class and the threshold probability are examined.  

Table 3.9. Assigned confidence levels for multiclass SVM models for microorganism 
identification by the ATR-FTIR spectroscopy-based method predictions where global 

SVM predicted as A and varying most likely predicted 

Predicted Most Likely Predicted  Confidence level 

A A and p > probability threshold High 

A A and p < probability threshold Medium 

A B and p > probability threshold Low 

A B and p < probability threshold Inconclusive 

 

Based on Table 3.9, if the Predicted class is A (from multiple classes, A, B, C, D, E…etc.) 

and the Most Likely Predicted is A and the prob(Class A) is greater than the probability 

threshold, than the confidence is high; if the Most Likely Predicted is A and the prob(Class 

A) is less than the probability threshold, than the confidence of the prediction is medium. 

Moreover, still with the Predicted as class A, if the Most Likely Predicted is B (or any other 

class) with a prob(Class B) greater than the probability threshold, than the confidence 

level is low. If the Most Likely Predicted is B with a prob(Class B) less than the probability 

threshold, than the result is non-reportable – inconclusive. 

3.7. CONCLUSION 

The current chapter demonstrates the process of analysis of clinical microbial 

samples-based ATR-FTIR spectroscopy for microorganism identification. The outlined 

method is easily implementable in clinical routine and uses already used isolation and 

culture media found in the clinical microbiology laboratory. Multiple manufacturers of 

ATR-FTIR spectrometers are available and through the studies presented in the chapter, 
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instrument-to-instrument variability from the same model are insignificant when creating 

a spectral database for microorganism identification. Though instrument-to-instrument 

variability of different models from the same of different manufacturers are more 

significant than from instruments of the same model, again, the outlined method for 

spectral database construction eliminates most of the variability. The proposed method 

also standardizes the operating procedure for reproducible high-quality spectra of 

microorganisms and outlines available methods for spectral preprocessing and creation 

of spectral databases using selected algorithms to identify unknown microorganisms. The 

combined use of a novel spectrotyping and machine learning results in a technique with 

high computation power, strain identification and typing capabilities. As such, the 

proposed standardized operating protocol is practical, simple, cost-effective, transferable 

between laboratories and has great potential to provide microbiology laboratories with a 

new in vitro diagnostic microbial tool. 
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Connecting statement 2 

The outline proposed in the previous chapter requires a standardized method and 

protocol for spectrotyping and datamining of ATR-FTIR spectra (from clinical sample with 

confidence of identification/classification) for various applications such as bacterial and 

yeasts species identification, strain typing and classification of various microorganism 

complexes. 

The standardized protocol is implemented in the following chapter to evaluate the 

applicability of ATR-FTIR spectroscopy, spectrotyping and SVM as a tool for 

microorganism identification. 
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CHAPTER 4. DEVELOPMENT AND EVALUATION OF SPECTROTYPING METHOD 

FOR MICROBIAL IDENTIFICATION AND TYPING 

4.1.  ABSTRACT 

Fourier transform infrared (FTIR) spectroscopy is a well-established analytical 

technology that has been used in various fields of study, chemistry, forensics, ecology, 

medicine, astronomy and more. The mid-infrared region (4000-400 cm-1) is extremely 

useful for quantifying biochemical composition and identifying chemical bonds by their 

molecular vibrational bond energy absorption to generate unique spectroscopic 

“fingerprints”. Infrared (IR) spectral acquisition can be simplified by using an attenuated 

total reflectance (ATR) accessory. For microbiology, an IR spectrum of intact bacterial 

cells taken from a pure colony from a culture plate, represents the biochemical 

constituents of the microbial cells (i.e., proteins, lipids, polysaccharides, DNA and RNA, 

etc.), it has been termed a “whole-organism fingerprint” technique. Given the biochemical 

differences between different microorganism, ATR-FTIR spectroscopy is capable of 

differentiation and identification upon creating spectral databases. Clinical isolates were 

collected over a 3-year period from 9 centers related to clinical microbiology and food 

surveillance microbiology laboratories in Canada, a research center in Australia and a 

hospital in the United Kingdom. A total of 7344 isolates were collected where at least 

triplicate ATR-FTIR spectra of each isolate were acquired using a defined culturing and 

spectral acquisition method directly from cultured plates. Spectrotyping, the analysis of 

relative IR absorbance intensities between groups of spectra was achieved for selecting 

pairs of dissimilar spectral groups in order to construct a multitier pairwise spectral library 

search database for microorganism identification at the genus and/or species level. 

Where spectrotyping strained (for those spectra collected from the Enterobacteriaceae 

family), powerful machine learning algorithms such as support vector machines were 

employed to complete the construction of the search database. The validation of the 

spectral database’s performance resulted in an overall 94.3% and 95.9% correct genus 

and species identification for those microorganisms represented in the spectral reference 

database. For the prospective 3-months evaluation in a routine clinical setting, the ATR-

FTIR spectroscopy method and microorganism identification technique resulted in 97.2% 

and 98.4% correct genus and species identification in respective order. As such, the 



106 

 

proposed technique has many benefits such as being compact, easy-to-use, reagent-

free, rapid and may be a useful tool for rapid screening to assist current methods. 

4.2. INTRODUCTION 

Rapid identification of bacteria in hospitals are vital for improving patient outcomes 

and to improve the efficiency of the current health care system. Nosocomial infections by 

Clostridium difficile and methicillin-resistant Staphylococcus aureus (MRSA) may lead to 

complications and deaths (1). Moreover, non-fermenting Gram-negative bacilli (NFGNB) 

are a group of GN bacteria that are unable to catabolize glucose and therefore have the 

inability to ferment sugars. Currently, Acinetobacter, Bordetella, Burkholderia, Legionella, 

Moraxella, Pseudomonas and Stenotrophomonas are classified as NFGNB and account 

for 15% of all microorganisms identified in clinical routine (2). These microorganisms are 

challenging to identify and are intrinsically resistant to antibiotics (3). NFGNB lacks 

distinct phenotypic characteristic for differentiating from one species to another. Unlike 

the others, Pseudomonas aeruginosa are the most phenotypically dissimilar ones from 

the other species. Identification of NFGNB by conventional biochemical techniques 

include, colony morphology, glucose fermentation, carbon source, gelatin hydrolysis and 

others and may be inconclusive, unreliable, time-consuming and require up to several 

days for results (4). In addition, the biochemical activity of the NFGNB are low where 

commercial identification methods are reported to produce misidentifications (5). 

Cystic fibrosis (CF) is an inherited autosomal recessive chronic genetic disorder of the 

secretory glands with over 70,000 affected worldwide (6). CF is caused by a mutation in 

the cystic fibrosis transmembrane conductance regulator (CFTR) gene which is inherited 

by both faulty CFTR gene carriers’ parents. As a result of the gene mutation, CF patients 

suffers from insufficient movement of water in and out of the epithelial cells. With the poor 

movement of water between cells, CF patients suffer have very thick and sticky mucus 

which inevitably obstruct airways and glands. Individuals affected by the disease have a 

low life expectancy of approximately 37 years with a mortality rate of approximately 80% 

due to obstructive lung disease and infections (7). Over the recent decades, there has 

been an emergence of opportunistic NFGNB to cause serious infections in CF patients 

and with the rise in antibiotic resistance of the microorganisms of these NFGNB - 



107 

 

treatment and diagnosis is also difficult (3). A single drug is incapable of treating all 

infections and therefore necessitating the need for appropriate, rapid and reliable 

microorganisms identification (4). Conventionally, P. aeruginosa and Stenotrophomonas 

maltophilia are accurately identified by traditional methods, however, species withing the 

genus Burkholderia proved to be more difficult for identification (5).  

Furthermore, clinical microbiology laboratories currently identify bacteria via carbon 

assimilation system such as VITEK® 2 ID/AST (bioMérieux, Marcy-l'Étoile) and traditional 

manual biochemical methods. In some circumstances, these phenotypic techniques are 

unable to provide a reliable identification where genotypic methods such as polymerase 

chain reaction (PCR)-based methods become necessary. The latter techniques are 

currently carried out at provincial or national microbiology reference laboratories level; 

however, genotypic methods are time consuming, require skilled technicians and are 

costly for routine analysis. More recently, matrix assisted laser desorption ionization-time 

of flight mass spectrometry (MALDI-TOF MS) has been proven to be more cost-efficient 

and rapid than the conventional phenotypic methods (8-10). The MALDI-TOF MS mass 

spectrum is compared to other spectra in the commercial MALDI-TOF MS spectral 

database to identify the unknown microbial sample. Although MALDI-TOF MS has 

recognizable benefits, it requires harsh reagents, is unable to differentiate Shigella 

species from Escherichia coli, requires skilled technicians and is a costly investment for 

small hospitals, clinics and research centers.  

Fourier transform infrared (FTIR) spectroscopy is another spectroscopic technique that 

may also provide the means of microbial identification. FTIR spectroscopy is a well-

established analytical technology that has been used in various fields of study: chemistry, 

forensics, ecology, medicine, astronomy, and more. The mid-infrared region (4000-400 

cm-1) is extremely useful for quantifying biochemical composition and identifying chemical 

bonds by their molecular vibrational bond energy absorption to generate unique 

spectroscopic “fingerprints”. Infrared (IR) spectral acquisition can be simplified by using 

an attenuated total reflectance (ATR) accessory. For ATR-FTIR spectroscopy, the IR 

beam from the IR source is launched at a defined critical angle into an IR transparent 

crystal (e.g., ZnSe, Ge, Si or a diamond) where total internal reflectance occurs within the 
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crystal forming an evanescent wave perpendicular to the transmitting IR beam above the 

sampling crystal. With the sample on the sampling surface, partial attenuation of the 

evanescent wave by the sample takes place and travels to the detector. An IR spectrum 

is achieved by taking the ratio between the spectrum of the sample and the spectrum of 

the crystal in the absence of the sample. For microbiology, an IR spectrum of an intact 

bacterial cells taken from a pure colony represents the biochemical constituents of the 

cells (i.e., proteins, lipids, polysaccharides, DNA and RNA, etc.), it has been termed a 

“whole-organism fingerprint” (11, 12). Given the biochemical differences between 

different microorganisms, FTIR spectroscopy is capable of differentiation and 

identification upon creating spectral databases. When FTIR spectroscopy is coupled with 

the ATR mode of spectral acquisition, FTIR spectroscopy is a low-cost, reagent-free 

technique that provides results within minutes after initial growth of bacteria in culture. 

Not all clinical laboratories have the financial capacity to invest in robust technologies 

such as MALDI-TOF MS for microbial identification. For example, to-date, Canada’s 

largest mother and child center, the Centre hospitalier universitaire Sainte-Justine 

(CHUSJ) which specializes in children diagnosed with CF, is unfortunate to not own a 

MALDI-TOF MS system. Those microorganisms associated with the genetic disease such 

as those belonging to the Burkholderia cepacia complex are difficult to identify and require 

outsourcing to identify the microorganism to the species level – taking up to weeks to 

receive results; in turn, delaying appropriate treatment for these patients. As such, the 

aim of this chapter is to examine the spectral features (spectrotyping) of commonly 

isolated and difficult to identify microorganisms (e.g., E. coli and Shigella; 

Enterobacteriaceae family; and species of the Burkholderia cepacia complex) to 

determine spectral similarities between genus, species and complexes.  

To the best of the author’s knowledge, at the current time, this is the first ever evaluation 

of ATR-FTIR spectroscopy as a tool for a large spectral set of clinically and food relevant 

microorganisms and it is the first to prospectively evaluate the developed ATR-FTIR 

spectroscopy-based microorganism technique in a clinical microbiology laboratory over a 

3-month period. Results of this chapter will outline the applicability for a cost-effective 

alternative to current methodologies without compromising the reliability of the results. 
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4.3. MATERIALS AND METHODS 

4.3.1. Sample collection 

All samples for the spectral reference database construction were collected from a 

total of 9 microbiology laboratories; 5 clinical, 2 clinical reference and 2 food microbiology 

laboratories stored in 10% glycerol vials stored at -80°C. A total of 7344 isolates were 

isolated from a wide variety of sources, such as, blood, pus, sputum, urine, stool, wounds, 

nasal swabs, skin swabs, animal feed, chicken, fruits, and vegetables. Of the clinical 

isolates (bacteria and yeasts), the isolates were isolated from neonates to seniors, 

healthy and/or living with a medical condition and/or suffering from current infections.  

For the prospective set of spectral data, a total of 391 bacterial isolates were collected 

directly from routine that were cultured on OXOID Columbia Blood Agar with 5% Sheep 

Blood (Thermo Fisher Scientific, Nepean, ON) (BAP) over a consecutive 3-month period 

at the Centre hospitalier universitaire Sainte-Justine hospital in Montreal, Quebec. 

Detailed collection of isolates collected for the following chapter are described in Table 

4.1, and Table A.6. 

4.3.2. Sample preparation 

In reference to CHAPTER 3 section 3.3.2, all frozen samples used for the evaluation 

study were cultured and subcultured on BAP and incubated for 18-24 h at 38 ± 2°C. 

Isolates are cultured using the 4-quadrant streak plate method for colony isolation. While 

prospective isolates were cultured on BAP in routine from clinical specimen and incubated 

with the same conditions as those cultured from frozen. 

4.3.3. ATR-FTIR spectral acquisition 

Following the protocol outlined in CHAPTER 3 and Table A.5, all spectra (otherwise 

stated) were collected on a Cary 630 FTIR (Agilent Technologies, CA) spectrometer 

through direct colony picking with a 1 µL loop and deposition onto the diamond ATR 

sampling surface. Per sample plate, at least triplicate spectra (different colonies) were 

acquired using the following spectral acquisition parameters: 64 co-added background 

scans per spectrum, 64 co-added sample scans, spectral region of 4000-650 cm-1, and 
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Happ-Genzel apodization with 2 levels of zero filling. After each spectrum that was 

collected, a lint-free tissue was moistened with 70% ethanol and used to wipe the ATR 

sampling surface. 

 

Table 4.1. Summary of collected isolates from clinical microbiology laboratories and 
clinical and food reference microbiology laboratory 

Institution 
Gram-stain 

type 

No. 

genera 

No. 

species 

No. isolates 

collected 

Clinical microbiology laboratories 

McGill University Heath Center (MUHC) 

GN 26 53 830 

GP 15 66 1151 

YT 1 8 349 

Centre hospitalier Sainte Justine (CHUSJ) 

GN 30 47 902 

GP 11 20 679 

YT 1 3 86 

Maidstone Hospital (MAID)1 

GN 3 3 25 

GP 3 5 40 

YT 1 3 20 

Centre hospitalier Sherbrooke (CHUS) 

GN 9 7 31 

GP 3 3 10 

YT 1 9 93 

Queensland Institute of Medical Research 

(QIMR) 

GN 4 4 12 

GP 7 14 96 

TOTAL    4324 

Clinical Microbiology Reference Laboratory 

Laboratoire de Santé Publique du Québec 

(LSPQ) 

GN 3 3 5 

GP 2 10 181 

YT 3 15 454 

National Microbiology Laboratory 

(NML) 
GP 2 3 263 

TOTAL    903 

Food Microbiology Reference Laboratory 

Health Canada (HC) 
GN 3 4 108 

GP 2 7 24 

Canadian Food Inspection Agency (CFIA) 
GN 7 6 1812 

GP 4 15 173 

TOTAL    2117 

TOTAL No. collected isolates    7344 

1Isolates collected at MAID were acquired on SummitPro Everest™ (Thermofisher Scientific, WI) while the 

spectra collected on the other institutions were collected on a Cary 630 FTIR (Agilent Technologies, CA) 
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Spectral quality check, filtration and preprocessing follows those steps outlined in 

CHAPTER 3 section 3.6.1. In brief, spectra with low biomass, displaying moisture loss 

(dried samples) and/or exhibiting spectral anomalies were filtered out and each spectrum 

was preprocessed by vector normalization and the 1st derivative was calculated to 

increase resolution prior to data analysis for the construction of the spectral database 

construction. Additionally, after spectral filtration and preprocessing, triplicate spectra per 

sample analyzed were averaged, resulting in 1 spectrum per sample (or also termed as 

isolate). 

4.3.4. Spectral database construction 

The spectral reference database for genus and species identification were constructed 

using an inhouse software DataAnalysis (McGill University, Quebec) and JMP® Pro 15 

(SAS Institute Inc, NC). Spectrotyping is a technique used to determine significant 

spectral data responsible for differences between two or more groups. In the study, 

spectrotyping is accomplished with a feature selection algorithm which uses a grid-greed 

search to determine spectral features responsible (region selection) for discriminating 

between pairs of similar groups of ATR-FTIR spectra obtained from microorganisms. 

Pairs of groups of ATR-FTIR spectra are determined with the region selection and the 

pairs are then stringed together to create a decision-like tree multilevel (or multitier) 

sequential spectral reference database. Details were previously described in CHAPTER 

3 section 3.6.2. 

In addition to the spectrotyping method, support vector machine (SVM) algorithm is also 

employed for genus and species identification where spectrotyping proved to be difficult. 

SVM algorithms are employed to ascertain that the spectral information is available for 

datamining using alternative powerful computational tools. Unlike the spectrotyping 

technique, SVM has a generalization error (or out-of-sample error) which is defined as 

how accurately the SVM model can predict outcomes for unseen data. Thus, spectral 

regions are not determined associated with the discrimination and therefore is not 

considered a spectrotyping method for detecting biochemical differences between 

spectral groups. 
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4.3.5. Training, validation, and test sets  

Of the total spectra collected from 7344 isolates collected (Table 4.1), 6342 isolates 

represent bacteria and only 3288 isolates were cultured on identical culture media agar, 

incubated using the same conditions and were collected on spectrometers of the same 

make and model. With the spectra collected from 3288 isolates, the data were split into a 

training set (also referred to as the spectral reference database), evaluation set (a set 

used to validate the training set) and a test set (independent from the development and 

validation of the spectral reference database). The evaluation set is a subset of the 

spectra represented of the training set but is external from the training set. The test set is 

also external from both the training and evaluation set, however, spectra collected for the 

test set represents isolates collected in clinical routine over a 3-month period. 

Spectra collected from a total of 2619 isolates were used to construct/train and evaluate 

the spectral reference database, which represents 20 genera of bacteria (13 Gram-

negative and 7 Gram-positive bacteria). Of the 20 genera, there are 86 unique species, 

however, only 27 species are considered represented (at least 14 unique isolates of the 

species were acquired). Fourteen is the representation cut-off and thus, any species with 

less than 15 isolates are omitted from obtaining species identification for the evaluation 

of ATR-FTIR spectroscopy as a tool for microorganism identification. Of the 27 species 

that are represented, 14 belongs to Gram-negative bacteria and the remaining 13 are 

Gram-positive bacteria. 

In addition to the spectra of bacteria, fungal spectra were also acquired and employed in 

the initial database construction. Further details of fungal identification by the ATR-FTIR 

spectroscopy method will be described in CHAPTER 5. For the current chapter, a random 

group of spectra of yeasts (spectra belonging to 1000 isolates with a wide variety of 

genera and species) and mold (only 19 isolates were collected for spectral acquisition) 

were set aside as a set for screening between bacteria and fungi during the evaluation. 

From the 3-month prospective collection of spectra of routine isolates, a total of 391 were 

collected belonging to 31 species where 12 are not represented in the training set.  
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4.4. RESULTS AND DISCUSSION 

4.4.1. ATR-FTIR spectral database construction  

Through spectrotyping by region selection, various pairs of spectral groups of 

microorganisms were selected for the pairwise multitier spectral reference database 

construction. As such, all spectra from the reserved 2619 isolates were discriminated from 

fungi spectra using a broad spectral region of 1480-980 cm-1. With the region selection, 

1116-1122,1286-1292,1346-1357,1372-1383,1441-1446 cm-1 were selected for an 

optimized discrimination between the two groups. These regions are associated with the 

C-O stretch of the C-O-C glycosidic linkage and carbohydrates of microorganisms, the 

amide III component of proteins and, CH2 and CH3 bending associated with lipids and 

proteins (Table 2.2). Continuing the search for the next pair of spectral groups of 

microorganisms, the first pair of spectral groups were determined, then the second, the 

third, forth and so on. Upon completion of selecting pairs of spectral groups of 

microorganisms, the pairs were stringed together to create the spectral reference 

database structure, but for simplicity, it was separated into three different sets, now 

referred to as Set A, Set B and Set C (Figure 4.15). 

4.4.1.1. Set A: Construction of ATR-FTIR multitier pairwise spectral database 

for the discrimination of Gram-stain variable, positive and negative bacteria 

Set A consists of 6 pairs distributed into 4 tiers, where increased in tier levels are 

associated with an increase in spectral similarity (Table 4.2 and Figure 4.15). For 

example, tier 1 is for the discrimination between the domain of bacteria and fungi, which 

can also be classified on a broader term as the difference between prokaryotic and 

eukaryotic organisms.  

The difference between the two domains narrows down to the biochemical compositional 

differences such as the cell membrane structure, RNA, DNA, proteins, lipids and 

carbohydrate composition. The major biochemical differences between the two domains 

are also observed in the ATR-FTIR spectra in regions associated with the listed 

biomolecules. While tier 1 demonstrates the most dissimilar groups of spectra, tier 4 of 

Set A exhibits the most spectrally similar groups of spectra. The final pair of groups of 

spectra in Set A belongs to Corynebacterium spp. and Micrococcus spp., which are 
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Gram-stain variable microorganisms, however, they are classified as Gram-positive 

bacteria due to the presence of a peptidoglycan layer. 

Table 4.2. Set A: Selected regions through a feature selection algorithm for the 
discrimination between pairs of groups of spectra for the construction of an ATR-FTIR 

spectral reference database for identifying fungi and Gram-stain variable, Gram-
negative and Gram-positive bacteria 

Tier Group Pair Spectral region for discrimination (cm-1) 

1 

a Bacteria 1116-1122,1286-1292,1346-1357,1372-
1383,1441-1446 b Fungi 

2 

c Yeast 1239-1245,1299-1306,1338-1344,1346-
1351,1388-1394,1400-1405,1415-
1422,1446-1454 d Filamentous fungi1 

2 

a Gram-negative bacteria 1090-1096,1114-1120,1137-1142,1230-
1267,1323-1342,1353-1360,1409-
1415,1450-1456 b 

Gram-stain variable 
bacteria2 

3 

a Gram-positive bacteria 1221-1226,1286-1292,1299-1310,1355-
1360,1370-1375,1415-1420,1429-
1437,1476-1480 b Gram-negative bacteria 

3 

c Bacillus spp. 990-995,1116-1122,1154-1159,1185-
1191,1258-1267,1278-1284,1286-
1292,1295-1305,1347-1355,1385-
1390,1407-1415,1469-1474 d 

Corynebacterium spp. & 
Micrococcus spp. 

4 

a Corynebacterium spp. 990-1005,1057-1088,1137-1169,1180-
1196,1230-1383,1385-1401,1403-
1416,1437-1457,1459-1470 b Micrococcus spp. 

1 Molds 
2 Bacillus spp., Corynebacterium spp., Micrococcus spp.  

 

Of the Gram-stain variable microorganisms, Corynebacterium spp. belonging to a 

suborder of microorganisms within the Actinomycetales family, which are known for 

having a unique cell wall structure (13, 14). Corynebacterium spp. and others belonging 

to the suborder have an additional lipid bilayer (two in total) where the second lipid bilayer 

consists mainly of mycolic acid; long-chain α-alkyl, β-hydroxy fatty acids (15). While 

Micrococcus spp. does not have the second lipid bilayer and therefore has less 

phospholipids present in the cell wall structure. With the feature selection algorithm, 990-

1005, 1057-1088, 1137-1169, 1180-1196, 1230-1383, 1385-1401, 1403-1416, 1437-

1457, 1459-1470 cm-1 were selected for optimal discrimination between the two groups 

of spectra. It is noteworthy to mention through visual inspection of the averages of the 
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two groups of spectra, there were 3 distinct wavenumbers in the variance spectrum 

calculated from the spectral average of each of the two groups: 1085, 1380 and 1401 cm-

1 (Figure 4.1).  

 

Figure 4.1. Variance spectrum of 2nd derivative spectra calculated from the spectral 
average of each of the two groups belonging to Corynebacterium spp. and Micrococcus 

spp. 

These three peak positions are associated with the P=O symmetric stretching of 

phosphates (1085 cm-1) and COO− symmetric stretching associated with amino acid side 

chains and fatty acids (1380 and 1401 cm-1) were among the selected wavenumbers 

found using the feature region selection algorithm. The intense spectral variance between 

Corynebacterium and Micrococcus spp. at 1085 cm-1 may be attributed from the second 

lipid bilayer present in Corynebacterium spp. and absent in Micrococcus spp.  

To recap, the pairs located at a higher-level tier such as tier 4 are more spectrally similar 

compared to pairs at a lower tier level such as tier 1. The spectral variance between 

Corynebacterium spp. and Micrococcus spp. are much less than the spectral variance 

between tier 1 pairs such as the pair consisting of spectra acquired from bacteria and 

fungi (Figure 4.2).  
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Figure 4.2. Variance spectra of 2nd derivative spectra of average spectra of bacteria and 
fungi spectra (red), and of average spectra of Corynebacterium spp. and Micrococcus 

spp. (green) 

Set A of the spectral reference database was constructed to predict Gram-stain variable 

microorganisms (i.e., Bacillus spp., Corynebacterium spp. and Micrococcus spp.) from 

Gram-negative and Gram-positive bacteria. Additionally, the spectral reference database 

structure Set A also discriminates (screens out) spectra belonging to fungi before 

continuing to bacterial identification. More details on the construction of the yeast spectral 

database are described in CHAPTER 5. At the completion of Set A, Sets B and C spectral 

reference database structures are for the genus and species level for bacterial 

identification from spectra belonging to Gram-positive and Gram-negative bacteria 

respectively.  

4.4.1.2. Set B: Construction of ATR-FTIR multitier pairwise spectral database 

for the discrimination of genus and species belonging to Gram-positive 

bacteria 

Employing the same method of spectrotyping in Set A to Set B, spectra belonging 

to Gram-positive bacteria were separated into 8 pairs across 5 different tiers (Table 4.3 

and Figure 4.15). The Set B model allows for the genus identification of Enterococcus 
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spp., Staphylococcus spp. Streptococcus spp. and Listeria spp. At a higher (more 

specific) taxonomic level such as the species level, Set B allows for species identification 

of Enterococcus faecium, Enterococcus faecalis, Enterococcus gallinarum, S. aureus and 

Listeria monocytogenes.  

Table 4.3. Set B: Selected regions through a feature selection algorithm for 
discrimination between two pairs of spectral groups of Gram-positive bacteria for the 

construction of an ATR-FTIR spectral reference database for microorganism 
identification 

Tier Group Pair Region (cm-1) 

1 a Enterococcus spp. and 
Streptococcus spp. 

1180-1185,1314-1319 

b Listeria spp. and 
Staphylococcus spp. 

2 a E. faecalis, E. gallinarum 
and Streptococcus spp. 

980-1051,1053-1480 

b E. faecium 

2 c CoNS 999-1005,1025-1031,1064-1079,1362-
1368,1469-1474 d S. aureus and Listeria spp. 

3 a Enterococcus spp. 1090-1100,1146-1152,1271-1277,1340-
1346,1349-1355 b Streptococcus spp. 

3 c Listeria spp. 1096-1105,1236-1241,1364-1370 

d S. aureus 

4 a E. faecalis 1480-980 

b E. gallinarum 

4 c Listeria monocytogenes 990-995,1008-1029,1055-1070,1120-
1133,1150-1155,1165-1174,1206-
1221,1254-1267,1277-1293,1351-1357 

d Listeria monocytogenes and 
non-Listeria monocytogenes 

5 a Listeria monocytogenes 1310-1000 

b non-Listeria monocytogenes 

Following the same workflow as Set A, the least spectral similarity is at a lower tier level 

and increasing in tier level will increase in spectral similarity. However, it should be noted 

that multiple genera can be grouped together, for example, Enterococcus spp. and 

Streptococcus spp. are grouped together before being discriminated; and they are being 

discriminated between Staphylococcus spp. and Listeria spp. Based on spectrotyping, it 

was found that the spectral similarity between the two pairs (pair 1: Enterococcus spp. 

and Streptococcus spp.; pair 2: Staphylococcus spp. and Listeria spp.) are more similar 

to than between the two pairs, as such, the two pairs make up the single pair at Tier 1 of 

Set B.  
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Figure 4.3. Dendrogram of unsupervised hierarchical cluster analysis of averaged 
reference ATR-FTIR spectra of Gram-positive bacteria using the spectral region 

between 1370 and 1000 cm-1  

Interestingly, Enterococcus was once classified as belonging to the streptococci group 

based on serological classification based on the Lancefield classification system, 

however, based on 16S rDNA sequencing and DNA-DNA/DNA-rDNA hybridization, the 

species were reclassified into the new Enterococcus spp. genus (16). With that note, it is 

interesting to observe similar clustering through HCA of ATR-FTIR spectra within the 

regions of 1370-1000 cm-1 (Figure 4.3). Figure 4.3 illustrates the HCA of the average 

spectra of those Gram-positive bacteria used to create the spectral reference database 

for microbial identification without a region selection, unsupervised spectrotyping of the 

Gram-positive bacteria resulted in Enterococcus and Streptococcus clustering in the 

same arm of the dendrogram - displaying high spectral similarity (>90%). Spectra 

collected from these two genera are therefore more related to the genotypic 16S rDNA 

and DNA-DNA/DNA-rDNA hybridization classification compared to their phenotypic 

serological classification. 

As observed with Enterococcus and Streptococcus spp., spectrotyping for the selection 

of pairs for the construction of the spectral reference database is not limited to current 

nomenclature and/or taxa classification. At the end of Set B, spectra belonging to 

L. monocytogenes are broken up into two different pairs and tiers (Table 4.3 and Figure 

4.15). Spectrally, L. monocytogenes isolates were clustering in two separate groups and 

therefore could not be grouped into one as observed for the other genera. 

L. monocytogenes spectra may be clustering into two separate spectral groups of 
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L. monocytogenes, due to differences in serovars and further classification of the strains 

would be needed, however, strain typing of the isolates were not completed for the current 

study. Other studies have however successfully classified serovars of L. monocytogenes 

by FTIR spectroscopy-based methods and analysis tools (17-19).  

 

Figure 4.4. Spectrotyping as a method for constructing a pairwise multitier structure 
ATR-FTIR spectral search database for Streptococcus serotypes 

Moreover, through spectrotyping of streptococci, capsular serotypes groups A, B, C, D 

and Viridans groups can be identified, however, species within the groups are not 

spectrally distinguishable through the outlined spectrotyping method (Figure 4.4). Similar 

capsular serotyping for Streptococcus results were also achieved by transmission mode 

FTIR spectral acquisition and HCA using the spectral region between 1300 and 800 cm-

1 (20). 

Current spectroscopy-based microorganism identification methods such as MALDI-TOF 

MS have reported 80-97% correct Streptococcus species identification, however, upon 

further investigation by mass peak analysis (not available for clinical routine use), higher 

correct identification rates were achieved (21). In the current study, there are limited 

representation of streptococci species per serogroup and may be the cause of 

unsuccessful species discrimination through spectrotyping, additional spectral data are 

required to fully assess the potential. The result of the current study suggests that 

spectroscopic analysis of streptococci species may be unreliable but for serotyping, may 

be more appropriate. 
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Figure 4.5. Feature selection and hierarchical cluster analysis using cosine similarity 
distance and ward linkage of ATR-FTIR spectra of 5 coagulase negative staphylococci 

species 

Moving forward, although there were ATR-FTIR spectra collected from multiple species 

belonging to Staphylococcus, the spectral reference database structure does not include 

the staphylococci species other than S. aureus, which is the most clinically relevant 

Staphylococcus species. The remaining staphylococci species are grouped based on the 

absence of the coagulase enzyme and are classified/known as coagulase negative 

staphylococci (CoNS). Additionally, discrimination of staphylococci species by FTIR 

spectroscopy has already been explored and successfully demonstrated its ability to 

differentiate between 39 difference species (e.g., Staphylococcus capitis, Staphylococcus 

caprae, Staphylococcus cohnii, Staphylococcus epidermis, Staphylococcus hominis, 

Staphylococcus haemolyticus, Staphylococcus warneri, etc.) (22). Furthermore, species 

within CoNS can be discriminated from one another according to Guliev’s group without 
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the need for the outlined pairwise multitier approach. Guliev’s group collected FTIR 

spectra in transmission mode and processed the microbial samples by inactivating the 

microorganisms in ethanol. The current work re-valuated the previously mentioned study 

to apply it to the proposed whole organism ATR-FTIR microbial identification technique 

(without the need for inactivation). Utilizing the feature selection algorithm on a selected 

few CoNS species, S. capitis, S. epidermidis, S. hominis, Staphylococcus lugdunensis 

and S. warneri (opposed to selecting pairs of CoNS species for pairwise multitier 

discrimination), a dendrogram was generated by HCA (Figure 4.5). The feature selection 

region selection and HCA resulted in successful discrimination between the selected 

CoNS species, confirming that the ATR-FTIR spectra without ethanol treatment and 

drying, was also feasible for complete discrimination between of selected species. 

Moreover, Figure 4.5 illustrates that S. capitis and S. warneri are spectrally the most 

similar relative to the other species, then comes S. epidermidis, S. hominis then S. 

lugdunensis in decreasing similarity.  

Multiple studies have evaluated conventional biochemical (or phenotypic) methods for 

CoNS species identification using commercial systems such as API® ID 32 STAPH 

(bioMérieux, Marcy-l'Étoile), VITEK® 2 ID/AST (bioMérieux, Marcy-l'Étoile), MicroScan 

Pos ID (Baxter Diagnostics Inc., CA) and Phoenix 100 ID/AST (Becton Dickinson, MD) 

which produced a wide variety of accuracy performances of as low as 75.2% to as high 

as 96.8% correct species identification (23-27). With CoNS increasing in prevalence in 

hospital acquired infections, adequate identification methods are necessary for 

appropriate diagnostic and treatment (28) and information in the ATR-FTIR spectra may 

contribute to advancing rapid microorganism identification.  

Today, phenotyping methods are complimented with genotyping methods to reassign 

species designation based on genetic relatedness (29). Genotypic methods have 

however, been used to identify CoNS species using methods such as PCR using 

sequences obtained from selected DNA target sites such as 16S ribosomal DNA (rDNA). 

Although 16S rDNA have been successful for species identification of various 

microorganisms such as Brucella spp. and Acinetobacter spp. (30, 31) and has been used 

to study bacterial genetic relatedness (32), for species belonging to the CoNS group, 
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some of the species may have identical 16S rDNA sequences and in turn would not be 

applicable for species identification. As such, PCR sequencing of other genes such as tuf 

and sodA have been explored (23, 33-35). The sodA gene have been previously reported 

to be responsible for encoding for the manganese-dependent superoxide dismutase in 

Gram-positive cocci (33, 36, 37). While PCR gene sequencing of the sodA gene of various 

strains of CoNS has provided researchers with the relationship between the different 

strains through a phylogeny tree.  

In two studies performing PCR gene sequence of the sodA gene of S. capitis, 

S. epidermidis, S. hominis and S. lugdunensis, based on the obtained phylogeny tree, 

reported agreeance with S. capitis being closely related to S. warneri followed by 

S. epidermidis, S. hominis and lastly, S. lugdunensis (33, 35). Moreover, ATR-FTIR 

spectra of those mentioned CoNS species, using the feature region selection algorithm 

and HCA, also resulted in similar trends using spectral data (Figure 4.5). Based on the 

cosine similarity distance between the spectra of the 5 CoNS species, the ATR-FTIR 

spectra has some correlation with the expression of the sodA gene. This example further 

describes the simplicity of datamining the complex information found in ATR-FTIR 

spectra. Not only can the spectrotyping method be utilized for creating ATR-FTIR spectral 

references databases (multitier pairwise), but it can also be used to potentially strain type 

microorganisms. 

4.4.1.3. Set C1: Gram-negative ATR-FTIR multitier pairwise spectral reference 

database construction 

Set C deals with pairs of spectra belonging to Gram-negative (GN) bacteria 

separated into Set C1 (spectrotyping set) and Set C2 (SVM set). Unlike Gram-positive 

(GP) bacteria, spectra belonging to GN bacteria proved to have more difficulties with 

spectrotyping for discriminating between the species for identification and required 

additional powerful analysis tools such as SVM. Again, Set C follows the same logic as 

Sets A and B where increasing tier levels are associated with increasing spectral similarity 

between spectral groups.  
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Table 4.4. Set C1: Selected regions through a feature selection algorithm for 
discrimination between two pairs of spectral groups of Gram-negative bacteria for the 

construction of an ATR-FTIR spectral reference database for microorganism 
identification 

Tier Group Pair Region (cm-1) 

1 a Remaining GN bacteria1 1006-1012,1049-1055,1148-
1154,1239-1245,1277-
1282,1295-1301,1303-
1314,1400-1405 

b Mucoid Pseudomonas aeruginosa 

2 a Burkholderia gladioli and Burkholderia 
cepacia complex (BCC) 

1318-1174 

b Remaining GN  

3 a Burkholderia gladioli 1001-1006,1021-1034,1226-
1237,1277-1282,1349-1355 b2 BCC 

3 c Acinetobacter spp. + non-mucoid P. 
aeruginosa and Enterobacteriaceae3 

1081-1087,1146-1152,1165-
1176,1273-1278,1290-1303 

d2 NFGNB (Stenotrophomonas spp., 
Achromobacter spp.) and Kingella 
spp., S. sonnei 

4 c Acinetobacter 999-1005,1098-1103,1306-
1312,1381-1387,1463-1469 d2 Enterobacteriaceae3 and P. 

aeruginosa 
1Reamaining GN bacteria refers to all genera and species in the table that are not mucoid P. aeruginosa 

2Group of spectra used for SVM (difficulties to spectrotype) 

3Enterobacteriaceae: Escherichia, Shigella, Salmonella, Citrobacter, Enterobacter, Klebsiella 

A total of 5 pairs were selected spanning over 4 tiers, however, through spectrotyping, 

only mucoid P. aeruginosa, Burkholderia gladioli, Burkholderia cepacia complex (BCC) 

and Acinetobacter spp. were identified, and the remaining genera and species were 

reserved for Set C2 for analysis with SVM (Table 4.4).  

Upon group selection for a pair at the start of Set C1, a group of spectra belonging to 

P. aeruginosa were significantly dissimilar from all the other spectra. The dissimilar 

P. aeruginosa is considered group 1 while the other GN bacteria (also including some 

spectra belonging to P. aeruginosa) is considered group 2. Group 1 spectra of 

P. aeruginosa without preprocessing demonstrates lower absorbances between 3000-

2836 cm-1 and 1576-950 cm-1. These regions are associated with all biomolecules within 

the microorganism and with a common scale, the average spectrum of Group 1 (lower 

absorbance signals) displays lower signals in those mentioned regions (Figure 4.6). This 
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is therefore associated with lower biomass and was confirmed with additional strain 

information. Those spectra belonging in Group 1 were collected from P. aeruginosa 

grown on blood agar with a mucoid phenotype coming from children diagnosed with CF.  

 

Figure 4.6. Superimposed spectra of unprocessed average spectra of Group 1 
Pseudomonas aeruginosa (mucoid) and Group 2 P. aeruginosa (non-mucoid) 

Mucoid strains of P. aeruginosa are due to the increased synthesis of alginate 

exopolysaccharides due to the overexpression of the algD gene among others. The algD 

gene encodes for an enzyme (guanosine diphosphate mannose dehydrogenase) which 

acts as a catalyst in the synthesis process of alginate precursors (38). Interestingly, 

mucoid P. aeruginosa have the ability to revert to non-mucoid phenotype and back to 

mucoid spontaneously, indicating environmental factors are responsible for the 

expression of algD gene and that these strains are the same and are not mutants, but are 

variants (39). Studies have determined that the extracellular polymeric substance (EPS) 

of P. aeruginosa are mainly composed of different polysaccharides [alginate, Psl (mainly 

of mannose and galactose polysaccharides) and Pel (glucose-rich polysaccharides), 

proteins, lipids, and DNA (with varying proportions) (40-44). Observing the only spectral 

variation between average spectra of non-mucoid P. aeruginosa and mucoid P. 

aeruginosa, there are high spectral variances in the lipid associate region (C-H stretching 

of lipids at 3000-2800 cm-1) predominantly at 2923 and 2852 cm-1; protein region with the 

amide II band at 1543 cm-1 being the highest variance band followed by high variances 
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at 1085 cm-1 which is associated with carbohydrates and/or phospholipids (Figure 4.7). 

As such, this suggests the difference in protein and lipid profiles between the two groups 

of average spectra. Moreover, the lack of biomass absorbance may be due to increase 

is mucoidal material which is of higher content than the biomass of the bacteria and 

results in relative weaker infrared absorbances. 

With the major spectral differences between mucoid P. aeruginosa and the remaining GN 

bacteria (including non-mucoid P. aeruginosa), discrimination between the two groups of 

spectra is first in the GN Set C1 of the spectral reference database (Table 4.4). 

Unlike Sets A and B, Set C groups of spectra are less related to current taxonomy of the 

microorganisms. For example, NFGNB (Acinetobacter, Bordetella, Burkholderia, 

Legionella, Moraxella, Pseudomonas and Stenotrophomonas) are a group of bacteria that 

are unable to catabolize glucose and therefore have the inability to ferment sugars and 

do not belong to the Enterobacteriaceae family. NFGNB, similar to Enterobacteriaceae, 

are also challenging to identify and are intrinsically resistant to antibiotics (45). Although, 

Pseudomonas spp. are classified as NFGNB, they show species diversity and multiple 

strain variants which are observed in the ATR-FTIR spectra and are grouped into multiple 

pairs (Table 4.4).  

Moreover, NFGNB are slow growers and are biochemically weak (low biochemical activity 

during biochemical assimilation tests) making the use of conventional media unsuitable 

for identification (46). These microorganisms are found mainly in the environment and 

cause infections to those who are immunocompromised, such as those diagnosed with 

CF. NFGNB also lack distinct phenotypic characteristic for differentiating between one 

NFGNB species to another (e.g., isolates being identified as Stenotrophomonas by 

conventional phenotypic methods while by partial 16S rRNA sequencing suggests genus 

identification of Pseudomonas (47)). Current methods of identifying NFGNB include 

colony morphology, glucose fermentation, carbon source, and gelatin hydrolysis. These 

identification methods may be inconclusive, unreliable, time-consuming and require up to 

several days for results (4).  
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Figure 4.7. Variance spectrum of 2nd derivative, vector normalized and averaged Group 
1 (mucoid Pseudomonas aeruginosa) and Group 2 (non-mucoid P. aeruginosa) in 

regions (A) 3100-2800 cm-1 (B) 1700-1350 cm-1 and (C) 1275-900 cm-1 

In addition, the biochemical activity of the NFGNB are low where commercial identification 

methods are reported to produce misidentifications (5). Although they are biochemically 

weak, the differences between the NFGNB microorganisms are spectrally dissimilar from 

each other and spectrotyping is achievable for those genera (Figure 4.8). 

While discrimination between CF-related NFGNB is possible with HCA and region 

selection relative to each other (Figure 4.8), spectra belonging to NFGNB bacteria 

combined with the other GN bacteria spectra, pairwise selection of groups were not 

achievable through spectrotyping – resulting in similar difficulties for identification as 
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current biochemical methods. NFGNB groups of spectra had to be separated into various 

tiers and pairs for the construction of the spectral database. With region selection, 

Burkholderia spp. (species within BCC and B. gladioli) separation between the two groups 

were possible within 1318-1174 cm-1, which are associated with amide III band 

components of proteins, P=O stretching (symmetrical and asymmetrical) of phospholipids 

and phosphodiesters respectively and various vibrations associated with carbohydrates 

in the cell wall and differences in glycosidic linkage configurations (48-51). 

It is interesting to note that Burkholderia spp. are well-known for developing biofilms with 

EPS. The polysaccharides within the biofilms (cell-bounded or un-bounded) have been 

widely studied and characterized; containing galactose, glucose, mannose, rhamnose 

and glucuronic acid; however, EPS also does contain DNA, proteins and lipids (52-54). 

Unlike the other GN bacteria present in the spectral reference database, Burkholderia 

spp.’s biofilm and biochemical composition are significantly dissimilar from the others and 

are observed in the ATR-FTIR spectra. Additionally, the NFGNB species (excluding P. 

aeruginosa) are spectrally similar relative to spectra belonging to those species in the 

Enterobacteriaceae family.  
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Figure 4.8. Dendrogram illustrating complete discrimination of cystic fibrosis related 

non-fermenting Gram-negative bacteria based on hierarchical cluster analysis and 

region selection (region: 1051-1057, 1146-1157, 1159-1165, 1167-1174, 1182-1187, 

1275-1293, 1336-1342, 1346-1353, 1355-1360, 1450-1456 cm-1) 

Other difficult to identify microorganisms in routine also include species within the 

Enterobacteriaceae family (e.g., Escherichia, Shigella, Salmonella, Citrobacter, 

Enterobacter, Klebsiella). The difficulty to identify microorganisms arises from their high 

similarities in their 16S rRNA genes (>99.5% relatedness) but low relatedness (23-50%) 



129 

 

from their whole genome sequence (32). Carbon assimilated tests demonstrates 

difficulties between various genera and species of the Enterobacteriaceae family (59). 

 

 

Figure 4.9. Dendrogram generated from hierarchical cluster analysis for the 
discrimination of Burkholderia cepacia complex species relating to cystic fibrosis 

infections; B. multivorans, B. cenocepacia, B. anthina and B. vietnamensis  

Aside from conventional biochemical identification techniques, 16S rRNA gene 

sequencing have been widely accepted for species classification and identification but 

have difficulties differentiating between phylogenetically similar genera including those 

belonging to the Enterobacteriaceae family with Enterobacter being one of the most 

difficult to differentiate species (32, 60, 61). Currently, MALDI-TOF MS has been widely 

used to rapidly identify GN bacteria, overcoming the difficulties found in gene sequencing 

(62). As such, spectrotyping may be the linkage between both phenotypic and genotypic 

classification and be used as a tool to aid classification of microorganisms for the sole 

intent of identification.  
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Figure 4.10. Hierarchical cluster analysis of ATR-FTIR spectra of averages of Gram-
negative bacteria depicted using relative cosine similarity distance, ward linkage and a 

broad spectral region of 1660-900 cm-1 

For the construction of the ATR-FTIR spectral reference database, discrimination 

between spectra belonging to strains of the Enterobacteriaceae family proved to be 

challenging due to the high spectral similarity between E. coli, Citrobacter spp. and 

Enterobacter. The proposed spectrotyping method has limitations when it comes to GN 

bacteria, which may be due to the thinner cell wall compared to GP bacteria where there 

are less IR absorption signals and low spectral variances between species. As such, the 

feature selection algorithm is not powerful enough for creating a model for GN species 

identification. Although the ability to select pairs is limited with the outlined model to 

construct the multitier pairwise spectral database, the method and algorithm have proven 

successful in various levels of strain-typing within a closed model such as, species 

discrimination of CoNS species (Figure 4.5), BCC species (Figure 4.9), E. coli O157 

versus non-E. coli O157:H7 (Figure A.7), serogroup discrimination of Salmonella enterica 

(Figure 4.13) and discriminating between L. monocytogenes versus non-

L. monocytogenes (Table 4.3) and Shigella versus E. coli (Figure A.6). The feature 

selection algorithm is not limited to the suggested multitier pairwise database structuring 

method, but it can also be used to create single models for pairwise discrimination.  

Looking closely at the averaged spectra of all GN bacteria presented in the database and 

performing unsupervised HCA (Figure 4.3), although phylogenetically similar, the spectral 

distances between E. coli and Shigella flexneri were smaller than the spectral distance to 
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Shigella sonnei. The larger spectral distance from S. sonnei from the other two may be 

attributed from their differences in cell wall structure and configuration of the 

lipopolysaccharide (LPS) O antigens, where Shigella and E. coli share multiple O-

antigens except for S. sonnei which only has 1 O-antigen (63-65). As such, the major 

differences in cell wall structure are displayed in their ATR-FTIR spectra, which does not 

relate to their ancestry. ATR-FTIR spectrotyping may therefore be argued to be more 

related to phenotypic attributes rather than genotypic variability.  

While species discrimination (e.g., CoNS and BCC species) through non-pairwise 

spectrotyping, pairwise is optimal for the reduction of interference of overlapping of 

spectral data when creating a search database for microorganism identification (Figure 

A.4). The discrimination between non-O157:H7 E. coli, E. coli O157:H7, S. sonnei and S. 

flexneri using the feature selection algorithm is achievable (Figure A.6), however, 

increasing the spectral data to increase spectral representation of the groups of spectra 

using the same spectral region will then increase the data points and display overlaps 

between the 4 groups of spectra (Figure A.4). Such that when all 4 groups are analyzed 

with HCA and the feature selection algorithm, there is at least 45% spectral similarity 

between 2 clusters (Figure A.5). However, reducing the 4 groups to only two groups of 

spectra based on genera (E. coli and Shigella), the spectral similarity increased to 67% 

(Figure A.6), becoming more specific. As such, multiclass spectrotyping may be utilized 

to discriminate between difficult to identify microorganism based on strain, serotype and 

others while pairwise discrimination is optimal for rapid screening of microorganisms.  

Towards species discrimination, known differences between S. sonnei and S. flexneri are 

associated with the differences between their cell wall polysaccharide composition. The 

major difference between two species is the O-polysaccharide side chain of the LPS 

where S. sonnei has a small chain and S. flexneri has a long repeating chain (66). Unlike 

S. sonnei, S. flexneri has glycogen synthase (encoded by the gene glgA) that is 

responsible for the production of α-1,4-glucan chains from glucose (of the cell wall) (67).  

The O-antigen is the major component of the LPS of the cell wall and is responsible for 

cell surface interaction (responsible for resistance to antibiotics) and accounts for 13% of 
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the dry cell weight. The O-antigen within species of Shigella displays enough structural 

diversity and functionality for serotyping (68). 

 

Figure 4.11. Dendrogram generated from unsupervised hierarchical cluster analysis of 
ATR-FTIR spectra of Shigella sonnei and Shigella flexneri using a broad region of 1480-

980 cm-1 

As such, the O-antigen in S. flexneri and S. sonnei have been reported to be extremely 

dissimilar from one another and may be the cause for effective discrimination between 

the species by ATR-FTIR spectroscopy resulting from significant spectral difference and 

significant variance between the spectra from the two species (Figure 4.11). It is also of 

interest to note that Shigella are non-lactose fermenting, however, only S. sonnei has the 

3 genes responsible for lactose fermentation, but it lacks permease activity and therefore 

does not ferment lactose (69). Major phenotypic and genotypic differences between S. 

sonnei and S. flexneri have been well documented, however, the biomolecules 
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associated with differences in the spectral profiles of each species are undocumented 

and should be further investigated.  

For example, a major spectral difference at 1022-1024 cm-1 may be directly related to the 

longer LPS O-polysaccharide side chain (associated with the O-C and C-O vibrations 

specific to cell wall structure) relative to S. sonnei (Figure 4.12). 

 

Figure 4.12. Superimposed 2nd derivative and vector normalized averaged ATR-FTIR 
spectra of Shigella sonnei and Shigella flexneri displayed in the spectral region of 1250-
900 cm-1. *Marks the 1022-1024 cm-1 regions possibly associated with carbohydrates of 

the lipopolysaccharide 

Shigella and Salmonella are almost always pathogenic (with exception to Salmonella 

bongori) unlike the other genera of the same family (Enterobacteriaceae), as such it is 

extremely important to rapidly screen for these two microorganisms (70). Over the course 

of the study, only S. enterica were spectrally acquired and available and it is the most 

common and important species (of two species – S. enterica and Salmonella bongori). 

With limited species collected, for the construction of the ATR-FTIR spectral database, 

Salmonella is only identified to the genus level. Clinically, Salmonella species are 

classified based on their serovar and was investigated in the current chapter. 

Figure 4.13 illustrates the results obtained from ATR-FTIR spectral analysis by HCA for 

Salmonella serogroup typing based solely on the differences in their ATR-FTIR spectra. 
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S. enterica Enteritidis and Thomson serovars belonging to serogroups D1 and C1 were 

effectively separated, while the serovars within serogroups B and C2 clustered together.  

 

Figure 4.13. Dendrogram of Salmonella enterica serovar and serogroup discrimination 
through HCA and region selection of the top 6 serovars collected from food and animal 

feed in Canada 

Serotyping is based on the O-antigen of the LPS and constitute a large portion of the 

bacterial cell wall. In this feasibility study, ATR-FTIR spectroscopy can distinguish groups 

of serovars with common antigens but are not able to distinguish biochemical differences 

between serovars of the same serogroup. The differences between serovars are based 

on the H-antigen (protein content of the flagella) composition and through the outlined 

spectrotyping technique, was unable to detect the differences in H-antigen variation within 

the serogroup. 

Serogroups are referred to as the groups of O-antigens that are present and are further 

divided into serovars which are determined by the H-antigens. The ATR-FTIR spectra 

has the ability, under supervised conditions, discriminate between serogroups, however, 

does not have the ability to differentiate between the serovars. This suggests that for 

Salmonella serovars, spectral information using the current parameters are insufficient, 

however, based on the O antigen repeating polysaccharides units (commonly glucose, 

galactose, rhamnose and mannose (72)) is adequate for discriminating by the serogroups 

of Salmonella. Using the feature selection algorithm solely on the serovars of Salmonella 
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serogroup C2, regions were obtained and through HCA and PCA (Figure 4.11), 

discrimination between the two serovars were negative, further confirming lack of spectral 

information for the discrimination of Salmonella serovars. 

Table 4.5. Salmonella serogroup, serovar and relating O antigen polysaccharide 
repeating unit structure 

Serogroup Serovar O antigen polysaccharide repeating unit 

B1 Heidelberg and 
Typhimurium 

α1, 2[D-Man*-(α1→4)-L-Rha-(α1→3)-D-Gal] 
*Abe(α1→3) 

C1 Thompson α1, 2[D-Man-(β1→2)-D-Man-(α1→2)-D-Man-(β1→3)] 

C2 Hadar and 
Newport 

α1,4[L-Rha*-(α1→2)-L-Man-(α1→2)-D-Man-(α1→3)-
D-Gal] 
* Abe(α1→3) 

D1 Enteritidis α1, 2[D-Man*-(α1→4)-L-Rha-(α1→3)-D-Gal] 
*Tyv(α1→3) 

Man: mannose; Rha: rhamnose; Gal: galactose; Abe: abequose; Tyv: Tyvelose. Table 

adapted from (71) (72).  

After closer examination, the spectral differences between the different serogroups may 

likely be attributed to the difference in LPS O-antigen polysaccharide repeating units 

where serogroups B and D1 has a difference of 1 carbohydrate and linkage (Table 4.3). 

What is more, serogroup C1 is more different than the other 3 serogroups with differences 

in linkages and carbohydrates. The cosine similarity distances in Figure 4.13 also ranked 

spectral similarity of the serogroup’s similarity to the similarities of the polysaccharide 

repeating units of the O-antigen.  

 

Figure 4.14. Feature selection and principal component analysis score plot for the 
discrimination of Salmonella serogroup C2 serovars Hadar and Newport 
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Although the outlined spectrotyping method is insufficient as a complete microorganism 

identification tool, combining other powerful tools such as SVM is another strategy that 

was examined. Through the multitier approach, Gram-stain variable, GN, GP and fungi 

were identified in Set A, then Set B identified various GP bacteria such as S. aureus, 

E. faecalis, E. faecium, Streptococcus species and the CoNS group. Lastly, Set C is 

incomplete and only mucoid P. aeruginosa, B. gladioli and Acinetobacter spp. where 

identified. Burkholderia species belonging to the BCC were also identified, but only to the 

complex level. While Set C1 is incomplete, through the spectrotyping method, individual 

models were studied and discrimination of species (e.g., BCC species, discrimination of 

E. coli and Shigella, CoNS species), serotype (e.g., discrimination between E. coli 

O157:H7 and non-O157 E. coli) and serogroups (e.g., Salmonella serogroups) were 

achievable. As such, there are significant information for discrimination in the ATR-FTIR 

spectra, however, in combination between other spectra belonging to other 

microorganisms, the model becomes weak with overlapping spectral data. The remaining 

species: Burkholderia ambifaria, Burkholderia anthina, Burkholderia cenocepacia, B. 

cepacia, Burkholderia multivorans, Burkholderia vietnamensis, non-mucoid P. 

aeruginosa, S. maltophilia, Achromobacter spp., Kingella kingae, S. sonnei, S. flexneri, 

E. coli, Citrobacter spp., Enterobacter spp., S. enterica, Klebsiella spp., and Serratia spp. 

require additional methods for identification using ATR-FTIR spectral data. To complete 

the identification model, SVM is introduced in Set C2 to complete the identification of the 

above listed microorganisms and the ATR-FTIR spectrotyping-based strategy pairwise 

multitier spectral database is summarized below in Figure 4.15 for reference of the work. 
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Figure 4.15. Summary of ATR-FTIR spectral reference database constructed structure 
for bacterial identification. (A) Set A pairwise structure for classifying Gram-stain type 

such as Gram-positive, Gram-negative and Gram-stain variable bacteria. (B) depicts the 
spectral reference database structure for Gram-positive bacteria and (C) or Set C1 

illustrates the spectral reference database for Gram-negative classification and 
highlighting groups of spectra for SVM algorithms to classify the remaining Gram-

negative bacteria. 
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4.4.1.4. Set C2: SVM models for continual GN bacteria classification by the 

ATR-FTIR-based technique for microorganism identification 

 Set C2 is the continuation of Set C1 where the spectrotyping technique was 

insufficient. As such SVM was employed for the identification of those genera and species 

where spectrotyping was unsuccessful. Those genera and species are: Achromobacter, 

Kingella, Salmonella, Serratia, Shigella, Stenotrophomonas, Burkholderia, Citrobacter, 

Enterobacter, Klebsiella, E.coli and P. aeruginosa. Using a similar approach as the 

multitier pairwise spectrotyping method to create the spectral database, for the SVM 

models, multiple SVM models were created and coupled together to create a full spectral 

database. The kernel function for all SVM models used was Linear with a cost value of 1 

using the spectral features of a broad region 1480-980 cm-1. As a result of the model 

construction, 3 tiers (or levels) were the most optimal for genus bacterial identification 

application. Tier 1 is a single SVM model for the classification of multiple classes, in this 

case, the spectral groups were separated into those classes found in Tier 2; 

Achromobacter, Kingella, Salmonella, Serratia, Shigella, Stenotrophomonas, Group 1 

and Group 2. Group 1 of spectra belongs to those belonging to selected 

Enterobacteriaceae bacteria (Citrobacter, Enterobacter, Escherichia coli and Klebsiella) 

and Group 2 consists of spectra belonging to P. aeruginosa and Burkholderia. As an 

output of Tier 1, the SVM model provides a [1] predicted class and [2] most likely class. 

As mentioned earlier, the predicted class is based on predictions between pairs (e.g., 

Achromobacter vs. Kingella; Achromobacter vs. Salmonella; Salmonella vs. Kingella) 

while Most Likely predicted is based on the probability cut-off value of >0.5 (a default 

value). In reference to Figure 4.16, Tier 1 is defined as the “global multiclass SVM model”. 

Tier 2 consists of 7 pairwise SVM models where each class (genus) is compared against 

the other genera. For example, SVM1 model consists of 2 classes, first class contains the 

spectra belonging to Achromobacter while the second class contains spectra belonging 

to the “Others” spectra in Tier 2. The “Others” spectra in SVM1 are therefore spectra 

belonging to Kingella, Salmonella, Serratia, Shigella, Stenotrophomonas, Group 1 and 

Group 2. The same logic applies to the other SVM models (Figure 4.16). 
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Figure 4.16. Global SVM spectral reference database structure for the classification of Set C2 Gram-negative bacteria 
where unknown spectra interrogate all SVM model(s) in Tiers 1 and 2 where SVM models are indicated in white 

rectangles and outputs are indicated by grey rectangles
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Unlike multiclass SVM models, in addition to Predicted and Most Likely class output 

predictions, pairwise SVM models outputs a “threshold predicted” class, which is based 

on a threshold probability cutoff that is self-set (further details are found in CHAPTER 3). 

Moreover, in Tier 2, SVM5 – Shigella vs. Others model consists of only two species, 

S. sonnei and S. flexneri, which by the spectrotyping technique, displays high 

discriminatory power (Figure 4.11). As such, once the unknown spectrum is predicted as 

Shigella, spectrotyping techniques are then employed as described for Set C1. Similarly, 

Tier 3 is also further broken down into Tier 4, for species identification of Burkholderia 

spp. (SVM8b-i) and Klebsiella spp. (SVM7c-i). For both SVM8b-i and SVM7c-i, the SVM 

models are multiclass to accommodate all species within the genus. Some species are 

not represented spectrally and therefore were omitted from the study along with those 

with limited number of spectra (SVM requires large data per class, at least triplicate 

spectra of 50 isolates per class).  

For the creation of the SVM models, it should be noted for SVM7: Group 1 vs. Others, the 

training set had a 1.5% misclassification rate and a 9.3% misclassification rate during 

validation (Table 4.6). In addition, the validation set generalized R2 is 0.57702 where 

closer to 1 is more significant. Spectra in Group 1 belongs to genera of the 

Enterobacteriaceae family; Citrobacter, Enterobacter, Escherichia and Klebsiella. It 

should be noted that these spectra were difficult to discriminate pairwise using the 

spectrotyping technique and SVM demonstrating the difficulty associated with classifying 

these microorganisms from the others in the SVM model. While SVM algorithms are more 

powerful than the feature selection algorithm used in the study, both methods suggest 

high spectral similarities between genera and species of the Enterobacteriaceae family 

and those that are Gram-negative. Compared to the other SVM models in Tier 2 (Figure 

4.16) with less than 0.8% misclassification rates and a generalized R2 values of >0.90 of 

the validation models, both SVM7 Group 1 and SVM8 Group 2 models were the least 

performing with 3.5-9.3% misclassification rates and a generalized R2 values of <0.79  

(Table 4.6). These results are not surprising as the genera within each of the groups are 

biochemically weak and are similar to the other GN bacteria and may be reflected in the 

ATR-FTIR spectra. As powerful as SVM algorithms are, it is limiting for those groups as 
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the data for differentiation are not unique enough in the spectra employed in training the 

models. 

Moreover, within Group 1 for genus identification of those genera belonging to the 

Enterobacteriaceae family, the misclassification rates are approximately 6.0-9.0% with 

generalize R2 values in the range of 0.50 to 0.86 (Table 4.6). With the removal of the 

other GN-negative bacteria (other genera that is not in Group 1), the SVM models did not 

improve, further agreeing the fact that with perhaps, not enough spectral information for 

high confidence discrimination between various GN bacteria genera. There is a chance 

where current biochemical identification methods have not identified the microorganisms 

correctly and the SVM models are training models on inaccurately identified samples. 

Further studies with absolute identification of the microorganisms will necessitate further 

conclusion of the spectral database for these 4 species. 

To this end, a final ATR-FTIR spectral database was constructed with the use of 

combining both spectrotyping and SVM techniques. The second part of the study is to 

evaluate the performance of the developed ATR-FTIR spectra database on a subset of 

spectra that were not used in the spectral database but were coming from the same 

repository of spectra collected over the three years of the study.   
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Table 4.6. Global and pairwise SVM models (linear; cost=1) performances for genus identification 

Tier 1: Global multiclass SVM model (training: 1031; validation: 258) 
SVM Model - Genus (support vectors; total no. 
isolates for validation) 

Training 
misclassification 

Validation 
misclassification 

Validation 
Generalized R2 

Test misclassification 
(p=0.05) 

 Multiclass (#SV=339; n=258; test = 94) 0.0000 0.03488 0.98733 0.02128 

Tier 2: Pairwise SVM models 1 through 8 (training: 1031; total validation: 258) 
SVM Model - Genus (support vectors; total no. 
isolates for validation) 

Training 
misclassification 

Validation 
misclassification 

Validation 
Generalized R2 

(Probability) and threshold 
misclassification 

SVM1 - Achromobacter (#SV=41; n=25) 0.00000 0.00390 0.94100 (0.8043) 0.00390 
SVM2 - Kingella (#SV=18; n=7) 0.00000 0.00775 0.93503 (0.9022) 0.00775 
SVM3 - Salmonella (#SV=59; n=42) 0.00000 0.00775 0.92221 (0.0922) 0.00301 
SVM4 - Serratia (#SV=51; n=6) 0.00000 0.00775 0.89640 (0.6739) 0.00388 
SVM5 - Shigella (#SV=44; n=18) 0.00000 0.00388 0.97005 (0.8043) 0.00388 
SVM6 - Stenotrophomonas (#SV=47; 
n=24) 

0.00000 0.00388 0.95618 (0.8261) 0.00388 

SVM7 - Group 11 (#SV=140; n=74) 0.01455 0.09302 0.57702 (0.5761) 0.08915 
SVM8 - Group 22 (#SV=87; n=62) 0.00000 0.03488 0.78748 (0.5109) 0.03101 

Tier 3: Pairwise SVM models 7a through 7d (training: 315; validation: 70) 

SVM7a - Citrobacter (#SV=52; n=7) 0.00000 0.05714 0.50102 (0.7826) 0.04286 
SVM7b - Enterobacter (#SV=54; n=12) 0.00000 0.08571 0.62723 (0.9022) 0.05714 
SVM7c - Escherichia (#SV=56; n=30) 0.00000 0.05714 0.85870 (0.7283) 0.08710 
SVM7d - Klebsiella (#SV=41; n=21) 0.00000 0.07143 0.80555 (0.8261) 0.07143 

Tier 4: Pairwise SVM models 8a and 8b (training: 272; validation: 57) 

SVM8a - Pseudomonas (#SV=81; n=38) 0.00000 0.03509 0.95577 (0.8043) 0.00000 
SVM8b - Burkholderia (#SV=81; n=19) 0.00000 0.03509 0.95577 (0.8043) 0.05300 

1 Group 1: Enterobacteriaceae consisting of Citrobacter, Enterobacter, Escherichia and Klebsiella  

2 Group 2: NFGNB consisting of P. aeruginosa and Burkholderia species 
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4.4.2. Evaluation of the constructed ATR-FTIR spectral database 

Combining all spectral databases (Set A, Set B, Set C, SVM 1-7, SVM 7a-c and SVM 

8a-b), an evaluation set of spectra was set aside for evaluating the spectral reference 

database as a whole. A total of 584 averaged spectra (averages of triplicate spectra 

collected from an isolate) were employed for the evaluation at the Gram-stain type level 

and achieved 99.3% correct identification with 0.17% misidentification and 0.52% no 

identification rates (Table 4.7). Breaking down the stats in reference to Table 4.7, the 

performance between GN and GP gram-type identification were similar, however, there 

were no misidentification observed for GP bacteria while GN bacteria had 1 spectrum 

from 1 isolate with a major misidentification (as GP bacteria). At the genus level, the 

misidentified spectrum is actually a Pseudomonas that is predicted as Staphylococcus; 

at the Gram-stain level, predicting with 98% confidence (based on the absolute cosine 

spectral similarity x 100) with a standard deviation from the mean of the reference GP 

spectra of -0.62169 (high confidence misidentification). According to the outlined 

confidence limits of CHAPTER 3, this result is conclusive and is a true misidentification. 

The 3 inconclusive results however, all predicted as the opposite Gram-stain type with 

low spectral similarity and are considered inconclusive.  

Table 4.7. Performance evaluation of Gram-type from the developed ATR-FTIR spectral 
reference database 

 No. of isolates  

Gram-
stain type 

Database Collected Correct 
(%) 

Misidentified (%) Inconclusive (%) 

GN 1226 272 270 (99.3) 1 (0.37) 1 (0.37) 
GP 1358 312 310 (99.4) 0 (0.00) 2 (0.64) 

Total 2584 584 580 (99.3) 1 (0.17) 3 (0.52) 

 

Upon further spectral investigation, spectral variance between the average GN spectrum 

and misidentified spectrum obtained a higher variance compared to the average GP 

spectrum and the misidentified spectrum. Although the misidentified spectrum is 

confidently wrong, further investigation of the isolate is needed as spectral variances 

between GN and GP bacteria are extremely different in the multiple regions due to major 

cell wall biochemical differences. Due to limited resources, the isolate was not further 
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investigated by Gram staining or re-identified and is reported as misidentified in the 

current thesis.  

The combined spectrotyping and SVM models also achieved an overall of 94.3%, 2.25% 

and 3.45% rates for correct, misidentified and no identification results at the genus level 

respectively (Table 4.10). A total of 583 isolates were utilized for the evaluation where 

only 579 isolates were represented with spectra from at least 10 unique strains; 

Micrococcus spp. is therefore omitted from the evaluation as there are only spectra from 

6 isolates. For genus identification of GN bacteria, the constructed spectral reference 

database achieved 92.3%, 2.94% and 4.78% correct, misidentified and no identification 

results at the genus level respectively (Table 4.10). GP bacteria performed significantly 

better at the genus level with 96.1% correct identification, 1.63% misidentification rates 

and 2.28% inconclusive (no identification results) (Table 4.10). 

In all inconclusive/no identification results, the standard deviation from the predicted 

reference mean were above 3 and therefore the predictions were non-reportable. It is 

interesting to note that the no identification rates are higher than the misidentification rates 

which suggests the ability to identify non-represented microorganisms rather than to 

misidentifying those that are not represented or utilized for the construction of the spectral 

reference database. Moreover, in data not shown, the latter statement was confirmed by 

interrogating spectra belonging to species not represented in the spectral reference 

database, resulted in a combination of low spectral similarity and high standard deviation 

from the predicted reference mean spectrum. 

Additionally, species diversity within a genus may also be attributed to the high 

misidentification rates of Citrobacter, Klebsiella, Bacillus and Streptococcus spp. These 

genera have multiple species represented in the spectral reference database but, lack 

representation of each species to further the identification at the species level. For 

example, there are 24 isolates of Bacillus in the spectral reference database, however, 

there are 4 species within the Bacillus genus represented. The 4 species are Bacillus 

cereus complex: B. circulans, B. megaterium and B. thuringiensis with 13, 1, 7 and 3 

isolated represented respectively. Through spectral analysis, these 4 species have low 

spectral similarities and 3 of the 4 species would be considered underrepresented. The 



145 

 

same can be said for Streptococcus spp.; there are 20 group/species of Streptococcus 

where all but 2 species have over 10 isolates represented. If the cutoff of isolates 

represented in the spectral database is based on species within the genus, then the 

misidentification rates would be reduced. 

Table 4.8. Genus-misidentified isolates and the predictions obtained from the ATR-FTIR 
spectroscopy-based microorganism identification technique and the confidences of the 

predictions 

ID no. Actual Predicted Confidence1 

F_E002 Citrobacter Enterobacter 65.0% 

K_E002 Citrobacter Escherichia 100% 

O_E006 Klebsiella Enterobacter 100% 

P_E004 Klebsiella Escherichia 75.0% 

PA_E016 Pseudomonas Achromobacter 100% 

PA_E024 Pseudomonas Staphylococcus2 98.0% 

GD_E001 Salmonella Shigella 70.0% 

SM_E017 Stenotrophomonas Kingella 70.0% 

S_002 Bacillus Staphylococcus 99.5% 

E_047 Enterococcus Streptococcus 99.5%  

VG_002 Streptococcus Staphylococcus 99.6% 

VG_004 Streptococcus Staphylococcus 99.7% 

VG_006 Streptococcus Enterococcus 99.3% 
1Confidence based on the absolute cosine spectral similarity x 100 
2Major error at Gram-stain level; high confidence misidentification based on high spectral similarity 
(confidence) and low standard deviation from the reference mean spectrum (-0.62169) 

Upon closer inspection, a total of 13 isolates were misclassified, where 5 

Enterobacteriaceae were misidentified as other genera within the Enterobacteriaceae 

family. Two isolates of NFGNB bacteria were misidentified as others within NFGNB, and 

2 isolates were misidentified between closely related genera (Enterococcus and 

Streptococcus), while the remaining 4 isolates were misidentified without known 

relationship between the actual and predicted. The spectra of the 4 isolates were of good 

spectral quality and a third method of microorganism identification may be required to 

elucidate the reason for misidentification.  

In reference to Figure 4.15 (database structure), employing the developed prediction 

model, the genus misidentified Enterococcus spp. isolate was erroneously misidentified 

between the pair of genera Enterococcus spp. and Streptococcus spp. The regions of 

discrimination selected through the feature selection algorithm for the two genera are 
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1090-1100,1146-1152,1271-1277,1340-1346,1349-1355 cm-1. Through optimization, by 

restricting, but broadening the region to 1090-1355 cm-1, the misidentified isolate was 

correctly identified as Enterococcus through HCA (Figure 4.17). As such, the current 

model does not make no mistakes; optimization of selected regions may be further 

investigated to improve the performance of the prediction model. Although the current 

model did not correctly identify the genus identification of the microorganism, through 

spectral analysis, the information to discriminate between the two genera is available and 

can successfully differentiated spectra belonging to Enterococcus spp. and 

Streptococcus spp. 

 

Figure 4.17. Further investigation of genus misidentified Enterococcus spp. isolate 
E_047 using a restricted broad region demonstrating correct genus clustering between 

predicted genus (Streptococcus) and actual genus 

Moving forward to evaluating the constructed ATR-FTIR spectral database for species 

identification, only species with spectra represented with over 10 unique isolates were 

used for the evaluation. After filtration, a total of 14 genera (10 GN bacteria and 4 GP 

bacteria) and 25 species (14 GN bacteria and 11 GP bacteria) were remaining from the 
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previous spectral dataset (Table 4.11). In terms of isolates, there are a total of 1421 

isolates represented of which, 699 belonging to GN bacteria and 722 from GP bacteria. 

The overall performance rates for correct, miss and no identification are 95.9%, 1.37% 

and 2.75% respectively (Table 4.11). Once again, species identification of GP bacteria 

using the spectral reference database is performing significantly higher than GN bacteria 

by 6.5%.  

Table 4.9. Species-misidentified isolates and the predictions obtained from the ATR-
FTIR spectroscopy-based microorganism identification technique and the confidences 

of the predictions 

ID no. Actual Predicted Confidence Misidentification Class 

KO_E006 K. oxytoca Enterobacter species 100% Class V 
KP_E004 K. pneumoniae E. coli 77% Class V 
KP_E005 K. pneumoniae E. coli 60% Class V 
PA_E024 P. aeruginosa S. aureus 98% Class IV 
SGD_E001 Salmonella enterica Shigella species 70% Class IV 
SM_E017 S. maltophilia K. kingae 70% Class IV 

Of the 6 misidentified isolates, similar to the genus misidentifications, those species 

belonging to the Enterobacteriaceae family were being misidentified as other species 

within the same family, the same goes for those bacteria NFGNB, with the exception of 

isolate PA_E024 (Table 4.9). Isolate PA_E024 was also incorrect at the genus level. 

Misidentification/classifications are further detailed in Table 4.12. Increasing the spectral 

representation of species such as Citrobacter freundii, species of Klebsiella and 

P. aeruginosa may facilitate higher performance of the database for GN species 

identification. P. aeruginosa is an extremely diverse species and representation of the 

species was not examined in this thesis. Other methods of species’ identification may be 

required to ascertain the identity of the microorganisms such as with the use of whole 

genome sequencing. 

Overall, the construction of the ATR-FTIR spectral database was evaluated and achieved 

95% correct genus identification and 94.3% correct species identification. As such, the 

ATR-FTIR spectral reference database was further evaluated in a clinical setting over a 

3-month period to determine the robustness of the standardized technique and method. 
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Table 4.10. Evaluation table for the performance of the combined spectrotyping and SVM models for the ATR-FTIR 
spectroscopy-based method for genus identification 

    No. of isolates (%) 

Gram-stain 
type 

Genus Database Collected Correct ID Misidentification No identification 

GN Achromobacter 72 25 25   0   0   
 Acinetobacter 14 5 5   0   0   
 Burkholderia 100 24 23 (95.8) 0   1 (4.17) 
 Citrobacter 19 8 4 (50) 2 (25) 2 (25) 
 Enterobacter 54 13 11 (84.6) 0   2 (15. 4) 
 Escherichia 164 31 30 (96. 8) 0   1 (3.23) 
 Kingella 14 7 7   0   0   
 Klebsiella 77 22 17 (77. 3) 2 (9.09) 3 (13.6) 
 Pseudomonas 292 47 44 (93.6) 2 (4.26) 1 (2.17) 
 Salmonella 145 42 39 (92. 9) 1 (2.38) 2 (4.76) 
 Serratia 25 6 5 (83.3) 0   1 (16.7) 
 Shigella 59 18 18   0   0   
 Stenotrophomonas 118 24 23 (95.8) 1 (4.17) 0   

GP Bacillus 24 15 13 (86. 7) 1 (6.67) 1 (6.67) 
 Corynebacterium 10 6 6   0   0   
 Enterococcus 171 50 49 (98) 1 (2.00) 0   
 Listeria 68 20 20   0   0   

  Micrococcus 6 4 4   0   0   
 Staphylococcus 502 164 164   0   0   

  Streptococcus 102 52 44 (84.6) 3 (5.77) 5 (9.62) 

Total Total isolates  2036 583 551 (94.5) 13 (2.23) 19 (3.26) 

  Total isolates represented 2030 579 547 (94.5) 13 (2.25) 19 (3.28) 

GN Total isolates represented 1153 272 251 (92.3) 8 (2.94) 13 (4.78) 

GP Total isolates 883 311 300 (96.5) 5 (1.61) 6 (1.93) 

  Total isolates represented 877 307 296 (96.4) 5 (1.63) 6 (1.95) 
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Table 4.11. Evaluation table for the performance of the combined spectrotyping and SVM models for the ATR-FTIR 
spectroscopy-based method for species identification 

  No. of isolates (%) 

Gram-stain 
type Genus Database Collected Correct  

Misidentificatio
n No identification 

GN Burkholderia gladioli 26 5 5   0   0   
 Burkholderia multivorans 27 6 6   0   0   

 
Burkholderia species cepacia-
complex 19 4 4   0   0   

 Citrobacter freundii 13 6 4 (66.7) 0   2 (33.3) 
 Escherichia coli 141 31 31   0   0   
 Kingella kingae 14 7 7   0   0   
 Klebsiella oxytoca 18 6 4 (66.7) 1 (16.7) 1 (16.7) 
 Klebsiella pneumoniae 52 13 8 (61.5) 2 (15.4) 3 (23.1) 
 Pseudomonas aeruginosa 42 47 44 (93.6) 1 (2.13) 2 (4.26) 
 Salmonella enterica 145 42 40 (95.2) 1 (2.38) 1 (2.38) 
 Serratia marcescens 25 6 5 (83.3) 0   1 (16.7) 
 Shigella flexneri 25 6 6   0   0   
 Shigella sonnei 34 12 12   0   0   
 Stenotrophomonas maltophilia 118 24 23 (95.8) 1 (4.17) 0   
GP Bacillus cereus 13 8 8   0   0   
 Enterococcus faecalis 77 26 24 (92.3) 0   2 (7.69) 
 Enterococcus faecium 94 22 22   0   0   
 Listeria monocytogenes 57 13 13   0   0   
 Staphylococcus aureus 333 110 110   0   0   
 Staphylococcus capitis 20 5 5   0   0   
 Staphylococcus epidermidis 44 13 13   0   0   
 Staphylococcus haemolyticus 16 6 6   0   0   
 Staphylococcus hominis 29 8 8   0   0   
 Staphylococcus lugdunensis 24 6 6   0   0   
 Staphylococcus warneri 15 5 5   0   0   

TOTAL Total isolates represented (%) 1421 437 419 (95.9) 6 (1.37) 12 (2.75) 

GN Total isolates represented (%) 699 215 199 (92.6) 6 (2.79) 10 (4.65) 

GP Total isolates represented (%) 722 222 220 (99.1) 0   2 (0.90) 
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Table 4.12. Classification and description of misidentification results 

Misidentification class 

Class Description 

Class I1 True misidentification: routine and gold standard microbial identification 
methods have been executed and reanalysis of the isolates with routine and 
ATR-FTIR spectroscopy are completed and resulting similar results to initial 
results. In addition, results by spectral analysis of the misclassified bacteria 
by HCA must agree with the results from spectral database search in 
comparison to the averages of genus/species spectra in the spectral 
database. Isolates in Class 1 are eligible for additional experiments to 
ascertain biochemical differences (as observed in the ATR-FTIR spectra) 
from other strains used for the creation of the ATR-FTIR spectral database. 

Class II1 Database misidentification: routine and gold standard microbial identification 
are in agreeance, reanalysis by routine and the ATR-FTIR microbial based 
method results are similar to those of initial analysis. However, upon further 
spectral analysis by HCA and PCA between those spectra in the spectral 
database and misidentified spectra, results coincide with routine and gold 
standard microbial identification methods. Isolates in Class II indicated the 
need for ATR-FTIR spectral reference database optimization by (i) 
increasing spectral representation of the pairs where misidentification is 
occurring (ii) restructuring/reselecting pairs of the multitier spectral database 
and/or (iii) improving feature selection between pairs where misidentification 
is occurring. 

Class III1 Spectral similarity misidentification; known limited spectral dissimilarities 
between actual and predicted species. Class III misidentification indicates 
limitation of the outlined ATR-FTIR spectroscopy-based microbial 
identification method. Optimization of the spectral reference database may 
be explored to improve (or not) the prediction of the misidentified, however, 
external methods not discussed in the thesis may have to be explored for 
further work. 

Class VI Inconclusive misidentification: routine and ATR-FTIR spectroscopy-based 
microorganism identification is not in concordance, however, no tie breaker 
(gold standards) and/or reanalysis by standard routine methods were 
completed. Class VI misidentification are misidentifications that were not 
resolved and does not fully explain the inaccuracy of the method as 
conventional methods are known to also not produce 100% correct species 
identification.  

Class V Spectral similarity and inconclusive misidentification; a combination of both 
Class III and Class VI misidentification where there are known high spectral 
similarities however, no tie-breaker identification method was carried out to 
conclude the results. 

1Class I, II and III are not presented in the study due to limitations: gold standard 
identification methods, access to laboratories and samples were no longer available 
during the course of the study. 
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4.4.3. 3-month clinical routine prospective evaluation of the constructed ATR-FTIR 

spectral reference database 

The performance of the constructed database provided a 98.4% correct species 

identification for various common and clinically relevant GN and GP bacteria. Over a 

course of 3 months, a spectrometer was placed at Centre hospitalier Sainte Justine 

(CHUSJ) where ATR-FTIR spectra were collected on all routine isolates that were 

identified by VITEK® 2 ID/AST (bioMérieux, Marcy-l'Étoile), VITEK® MS (bioMérieux, 

Marcy-l'Étoile) and/or through gene sequencing of targeted genes (e.g., recA for 

Burkholderia species). A total of 391 isolates were collected where 363 were represented 

in the spectral reference database. Overall, the prospective study resulted in 97.2% and 

98.4% correct identification; 1.38% and 0.32% misidentification for genus and species 

respectively and a 1.34% no identification rate.  

In routine, the spectral reference database performed greater than the evaluation 

especially for those genera and/or species within the Enterobacteriaceae family. Of the 

363 isolates represented, 125 were GN bacteria with the remaining 238 identified as GP 

bacteria. For the GN bacteria, the prospective study achieved 100%, 95.2% and 97.5% 

correct Gram-stain type, genus, and species identification respectively with 2.40% 

misidentification rate at the genus level and 1.23% at the species level, and 2.40% no 

identification rate. While GP bacteria achieved 98.7%, 98.3%, 98.7% correct Gram-stain 

type, genus and species identification respectively; 0.42% and 0.84% misidentification 

rates at the Gram-stain type and genus respectively (no misidentification at the species 

level), and a 0.84% no identification rate.  

In comparison to the evaluation set, the prospective set performed poorly for genera of 

species belonging to the Enterobacteriaceae family, in particular, Citrobacter and 

Klebsiella. Misidentification only occurred for Acinetobacter species, K. oxytoca and 

S. sonnei. It should be noted that both isolates that were misidentified belong to the 

Enterobacteriaceae family and were misidentified as other species within the same family. 

Similar to the evaluation set, all misidentified Klebsiella were identified as E. coli. Although 

belonging to the same family, E. coli and Klebsiella phenotypically differ in motility 
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(Klebsiella being non-motile while E. coli is motile) (73). Spectrally, these two spectral 

groups are not the closest neighbor from one another (Figure 4.10). 

Table 4.13. 3-month prospective study species-misidentified isolates and the predictions 
obtained from the ATR-FTIR spectroscopy-based microorganism identification 

technique and the confidences of the predictions 

Sample ID Actual Predicted Confidence Misidentification 
class 

ABC_P001 Acinetobacter 
species 

Enterobacter species 85% Class IV 

KO_P003 K. oxytoca E. coli 65% Class V 

SS_P003 S. sonnei E. coli 100% Class V 

BS_P001 Bacillus 
species 

Corynebacterium 
species 

100% Class IV 

SA_P121 S. aureus Achromobacter 
species 

100% Class IV 

Moreover, E. coli and Shigella differ phenotypically in many aspects though they are 

phylogenetically similar where Shigella is said to have diverged from E. coli. Shigella is 

non-capsulated, motile and does not ferment lactose (73). Conventionally, for 

differentiation between the two microorganisms, one would look for whether the isolate 

contains lysine decarboxylase and lactase, motility and/or utilizes L-serine, D-xylose and 

sodium acetates as nutrient sources (74). Other studies have successfully discriminated 

between the two by PCR gene amplification of the uidA gene (encodes for B-

glucuronidase) and the lacY (encodes for lactose permease) gene (75). As observed in 

Figure A.6, the spectral dissimilarities between the two species are significant for species 

differentiation. E. coli and Shigella are phylogenetically similar (from 80-90% nucleotide 

similarity (76)), if not, Shigella to some microbiologists are variants of E. coli, however, in 

clinical practice, Shigella are biochemically dissimilar to E. coli (73).  

MALDI-TOF MS, which identifies microorganisms based on protein mass fingerprints has 

revolutionized clinical microbiology with its rapid microorganism identification technique, 

however, the widely used technology has the inability to accurately discriminate between 

E. coli and Shigella (77). Unsuccessful discrimination between the two microorganisms 

by MALDI-TOF MS may be due to the fact that they share similar protein profiles and also 

cannot be discriminated by 16S rRNA gene sequencing (78). Recent findings have 

however, differentiated between the two species with whole-genome sequencing, 
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suggesting that a protein-specific method is not sufficient for species differentiation while 

whole organism analysis is more reliable (65).  

In summary, the prospective study shows that 1 isolate of S. sonnei (isolate SS_P003) 

collected in routine was incorrectly identified as E. coli (Table 4.13). Upon further spectral 

analysis, utilizing the region for discriminating between E. coli and Shigella (997-1003, 

1025-1036, 1165-1174, 1178-1187, 1467-1472 cm-1) and the average spectra of E. coli 

and Shigella from the spectral database achieved 99.9% spectral similarity with the 

nearest neighbor E. coli with the misidentified S. sonnei. However, at a broader region 

(which still discriminates between E. coli and Shigella of the spectral reference database), 

1380-980 cm-1, there is a reduction in spectral similarity between E. coli and the 

misidentified SS_P003 isolate of 62% spectral similarity and 51% spectral similarity to 

Shigella genus. Moreover, using the broad region, the spectral similarity between E. coli 

and non-O157 E. coli is 98%. As such, it is possible that based on the spectra 

accumulated for both species (database and evaluation sets), the observed misidentified 

S. sonnei, is either a unique strain that is not represented in the spectral database that is 

closer to E. coli or the isolate is a mixed culture displaying identical colony morphology 

on the culture media plate. Based on the spectral analysis, an additional method of 

species identification is needed to ascertain the discrepancy and further phenotypic 

analysis (antimicrobial susceptibility testing (AST), biochemical tests, cell morphology, 

serotyping, etc.). The misidentified isolates were not reanalyzed by gold standard 

methods to resolve the discrepancies or to settle the predictions between conventional 

methods and the ATR-FTIR spectroscopy-based method. 

Additionally, of the 216 collected routine S. aureus, 1 isolate was misidentified at the 

gram-level (therefore genus and species levels as well) and 1 isolate provided no 

identification (Table 4.13). The misidentified SA_P121 isolate was identified as a Gram-

negative Achromobacter species (this genus does not have identification output past the 

genus level). Upon further spectral investigation, sample SA_P121’s closest neighbor by 

HCA at the Gram-stain level is Gram-negative bacteria with 98% spectral similarity using 

a broad region of 1380-980 cm-1 ((A) of Figure 4.18). Using only the average spectra of 

the reference Gram-negative bacteria and the spectrum SA_P121, sample SA_P121’s 
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closest neighbor with ~98% spectral similarity is Achromobacter species utilizing a broad 

spectral region ((B) of Figure 4.18).  

Through spectrotyping, SA_P121 was misidentified in Set A (Gram-stain type) of the 

spectral database and water fell from there (Table 4.13). Further investigation of the 

isolate in an SVM pairwise model for the classification of Gram-stain type (Gram-negative 

and Gram-positive bacteria; omitting Gram-stain variable bacteria), resulted in the same 

misidentification.  

 

Figure 4.18. Investigation of SVM model misidentification of routine identified 
Staphylococcus aureus (SA_P121) through spectrotyping using the region 1380-980 

cm-1. Dendrogram represents HCA of (A) SA_P121 clustering closest to average 
reference spectrum of Gram-negative bacteria and (B) SA_P121 clustering closest with 

average reference spectrum of Gram-negative bacteria species 

Through spectrotyping and being identified as Gram-negative bacteria, the SA_P121 

spectrum then went through the interrogation of the SVM models described in section 

4.4.1.4 – resulting in the misidentification of the isolate as Achromobacter. Using the 

same method of spectral investigation through spectrotyping of the SVM-misidentified 

sample, the misidentified S. sonnei (isolate SS_P003) also resulted in similar results, 

therefore the misidentification by the SVM model was also observed for the spectrotyping 

technique and vice versa.  
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Furthermore, 1 isolate of routine identified S. aureus (SA_P073) resulted in no 

identification by spectrotyping as displayed in Figure 4.19-(A), no spectral similarities 

were observed between the averages of Gram-positive and Gram-negative bacteria 

through HCA. In Figure 4.19-(B), the HCA between those Gram-positive bacteria and the 

SA_P073 spectrum also indicates no spectral similarities with the Gram-positive species 

represented in the spectra database. 

 

Figure 4.19. Investigation of spectrotyping-based spectral database of non-identified 
spectrum, of routine identified Staphylococcus aureus (SA_P073) through spectrotyping 

using the region 1380-980 cm-1. Dendrogram represents HCA of (A) SA_P073 
clustering with neither of the average reference spectrum of Gram-negative bacteria 

and Gram-positive bacteria, (B) SA_P073 clustering with none of the average reference 
spectrum of Gram-positive bacteria species and (C) illustrates ATR-FTIR spectroscopy-
based microorganism in agreeance with routine identified S. aureus (P170 and P171) 

clustering closest with S. aureus in the spectral database 

While (C) of Figure 4.19 illustrates high spectral similarity between the 2 (isolates P170 

and P171) correctly identified prospective isolates (relative to routine identification results) 

using the spectrotyping method. Moreover, average spectra of yeasts and molds were 

introduced to the Gram-positive and Gram-negative averages and sample SA_P073 
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resulted in ~80% spectral similarity between the fungi versus bacteria (Figure 4.20). The 

lack of an identification result for SA_P073 isolate is based on the low cosine similarity 

distances and a high standard deviation from the reference predicted spectrum mean as 

described in detail in CHAPTER 3. 

Moreover, all non-represented species were correct at the Gram-stain level and no-

identification is defined as not being identified as anything that is represented in the 

spectral reference database. As such, the outlined method seldom (relative to the 

evaluation set) misidentifies non-represented microorganisms. Unfortunately for both the 

erroneous misidentification and no identification results of the study, no further analysis 

was carried out to ascertain the discrepant results between the two methods of 

identification (routine and ATR-FTIR spectroscopy-based). 

 

Figure 4.20. Dendrogram generated from hierarchical cluster analysis for the 
investigation of spectrotyping-based spectral database of non-identified spectrum of 
routine identified Staphylococcus aureus (SA_P073) through spectrotyping using the 

region 1380-980 cm-1 of average groups of reference spectra 

Although some results by the ATR-FTIR spectroscopy-based method of microorganism 

identification were originally discordant with reference methods, upon further 

investigation, identification by ATR-FTIR spectroscopy was proven to be correct. For 

example, Figure 4.21 illustrates isolate NS115 provided by one of the participating 

institutions and labelled as E. faecium, however, through spectrotyping, it was closely 

clustering with S. aureus from the same set of samples. Upon further investigation, the 

institution made a human-error of mislabelling the identification of isolate NS115, when in 

fact, it is a S. aureus isolate. Several similar instances were observed through the course 

of the thesis preparation and isolates that were mislabelled by the institution were omitted. 

Spectrotyping in this case offers rapid screening of various microorganisms and can flag 
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samples to be further investigated. Human-error may be due to mislabelling and/or 

placing the wrong sample in the storage tube, as such, reporting these errors are not part 

of the thesis, however, it does highlight the application of the technique and was used 

when filtering the data. 

 

Figure 4.21. Example of participating institution-mislabeled sample N115 as 
Enterococcus faecium and correctly identified (and validated) as Staphylococcus aureus 

by the ATR-FTIR spectroscopy-based microorganism identification technique 

Although Micrococcus species are underrepresented in the spectral reference database 

(with spectral representation from 6 isolates), the one isolate that was collected in routine 

was correctly identified. As such, this suggests the potential need for species-specific 

reference database cut-offs in terms of how many isolates are needed to be considered 

representative for each species. As observed in the evaluation set, there are spectra 
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belonging to 52 isolates of Klebsiella pneumoniae, however, there are 2 isolates from the 

evaluation set that were misidentified. Species within the genera Klebsiella exhibit higher 

intra species diversity and may need more than 52 isolates (of varying diversity) to be 

representative. Conversely, the current 52 isolates may not be diverse in phenotype and 

if isolates of K. pneumoniae were carefully selected to represent the common 

phenotypes, it may only need fewer isolates for complete spectral representation of the 

species.  

Additionally, average spectra were utilized for the prospective study, however, non-

averages were also evaluated and achieved identical results (with the exception of 

confidence values, however, they are within range) with a slightly different approach. As 

there are triplicate spectra per sample, no identification is attributed to triplicate spectra 

all having different identifications and/or low cosine similarity distance and high standard 

deviation from predicted mean reference spectrum of 2 or more spectra. The confidence 

(absolute cosine similarity distance x 100) are the averages of the replicates that fit the 

no-identification criteria.  
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Table 4.14. 3-month clinical routine prospective evaluation table for the performance of the combined spectrotyping and 
SVM models for the ATR-FTIR spectroscopy-based method for bacterial identification 

  No. of isolates (%) 

  
Database 

Collecte
d 

Correct (%)  Misidentification  No ID 

Gram-stain type Microorganism Gram Genus Species4  Gram Genus Species4   
GN Acinetobacter species1 14 4 4   3 (75) - 0   1 (25) - 0   
 Bacteroides fragilis 0 2 2   0   - 0   0   - 2   
 Burkholderia species 102 1 1   1   - 0   0   - 0   
 Citrobacter farmeri 0 1 1   1   - 0   0   - 0   
 Citrobacter freundii 13 3 3   1 (33.3) - 0   0   - 2 (66.7) 
 Citrobacter youngae 0 3 3   0   - 0   0   - 3   
 Enterobacter species2 54 25 25   25   - 0   0   - 0   
 Escherichia coli3 24 9 9   9   9   0   0   0   0   
 Escherichia coli 141 26 26   26   26   0   0   0   0   
 Klebsiella oxytoca 18 8 8   7 (87.5) - 0   1 (12.5) - 0   
 Morganella morganii 0 7 7   0   - 0   0   - 7   
 Pantoae species 0 4 4   0   - 0   0   - 4   
 Paracoccus yeei 0 2 0   0   - 0   0   - 2   
 Proteus hauseri 0 1 1   0   - 0   0   - 1   
 Proteus mirabilis 0 2 2   0   - 0   0   - 2   
 Salmonella enterica 145 10 10   10   10   0   0   0   0   
 Serratia marcescens 25 2 2   2   2   0   0   0   0   
 Shigella flexneri 25 9 9   9   9   0   0   0   0   
 Shigella sonnei 25 7 7   6 (85.7) 6 (85.7) 0   1 (14.3) 1 (14.3) 0   
 Shigella species 50 3 3   3   - 0   0   - 0   
 Stenotrophomonas maltophilia 118 18 18   17 (94.4) 17 (94.4) 0   0   0   1 (5.56) 
GP Bacillus species 24 1 1   0   - 0   1   - 0   
 Enterococcus faecalis 77 19 19   19   19   0   0   0   0   
 Enterococcus faecium 47 1 0   0   0   0   0   0   1   
 Lactococcus species 0 1 1   0   - 0   0   - 1   
 Micrococcus luteus 6 1 1   1   - 0   0   - 0   
 Micrococcus lylae 0 2 2   2   - 0   0   - 0   
 Rhodococcus equi 0 1 1   0   - 0   0   - 1   
 Rothia mucilaginosa 0 1 1   0   - 0   0   - 1   
 Staphylococcus aureus 334 216 214 (99.1) 214 (99.1) 214 (99.1) 1 (0.46) 1 (0.46) 0   1 (0.46) 
 Streptococcus mitis 11 1 1   1   - 0   0   - 0   

Total Total isolates (%) 1253 391 386 (98.7) 357 (91.3) 312 (98.4)5 1 (0.26) 5 (1.28) 1 (0.32)5 29 (7.42) 
 Total isolates represented (%) 1247 363 360 (99.2) 353 (97.2) 312 (98.4)5 1 (0.28) 5 (1.38) 1 (0.32)5 5 (1.34) 

GN Total isolates (%) 754 147 145   120 (82.8) 79 (97.5)6 0 (0.00) 3 (2.07) 1 (1.23)6 24 (16.6) 

 Total isolates represented (%) 754 125 125   119 (95.2) 79 (97.5)6 0 (0.00) 3 (2.40) 1 (1.23)6 3 (2.40) 

GP Total isolates (%) 499 244 241 (98.0) 237 (96.3) 233 (94.7)7 1 (0.41) 2 (0.81) 0 (0.00)7 5 (2.03) 

 Total isolates represented (%) 493 238 235 (98.7) 234 (98.3) 233 (98.7)7 1 (0.42) 2 (0.84) 0 (0.00)7 2 (0.84) 
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Note: Footnotes associated with the table are located on the following page 

1Species all belongs to the Acinetobacter calcoaceticus-baumannii complex  

2Species belonging to the Enterobacter cloacae-complex 

3E. coli identified to the serotype level as E. coli O157:H7 

4Not all genera are predicted to the species level, those that are not predicted to the species level are indicated with a 
hyphen in the cell of the table 

5A total of 317 isolates were represented at the species level 

6A total of 81 isolates were represented at the species level for Gram-negative bacteria 

7A total of 236 isolates were represented at the species level for Gram-positive bacteria 
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4.5. CONCLUSION 

The current classification of microorganisms (classical taxonomy) greatly aids in the 

selection of groups of spectra to form pairs for the pairwise multitier spectral database 

structure. Although current classification of microorganisms aids the database structure, 

there are some exceptions where it is not useful such as for those species with great 

biochemical diversity (P. aeruginosa) or other species displaying extremely similar 

spectral fingerprints (genera within the Enterobacteriaceae family) where powerful 

methods such as SVM models are employed to assist in species identification. As such, 

using the pairwise multitier method, the database construction is predominantly based on 

spectrotyping and machine learning. It should be interesting to note that SVM may be 

used to confirm spectrotyping-based results or even be used to construct the entire 

spectral reference database, however, spectrotyping offers additional spectral 

information and rapid screening capabilities based on nothing more than the comparison 

of the absorbance bands and relative intensities between groups of spectra. 

Based on the results of the study, there is a high correlation between taxonomy 

classification and spectrotyping such that current taxa is based on phenotypic 

characteristics and ATR-FTIR spectra of microorganisms are associated with biochemical 

diversity which can be considered to be a phenotypic method. However, species 

classification is fluid and is ever changing with increased interest in classifying 

microorganisms based on genetic relatedness; while in the current study, classification of 

microorganisms was based on their spectral profiles. ATR-FTIR spectrotyping may have 

opened doors to applying such method for strain-typing microorganisms with spectral 

region selection and be used as a classification, pre-screening and strain-typing tool. 

Although predictions at both a retrospective and prospective evaluation of the spectral 

reference database were >90% correct, there are limitations for various GN bacteria 

species belonging to the Enterobacteriaceae family. For future developments, isolates 

collected to construct the spectral reference database will require to have the complete 

pedigree of isolates such as the AST profiles, geographical origin of isolation, strain-type, 

serotype, source of isolation, biochemical tests profiles and others. In addition to requiring 

the listed (and more) information, the isolates would have to be carefully selected when 
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creating a spectral database to limit redundant representation. This will allow for the 

development of species-specific representation cut-offs, or how many isolates are needed 

of a specific species to represent the species in complete. The additional information may 

also become useful for datamining and exploring ATR-FTIR spectra for typing of various 

features such as the AST profiles to discriminate between antimicrobial susceptible and 

resistant microorganisms. It may also be possible to extenuate difference between closely 

related species by growth of these microorganisms on selective media.  

With the limitation of being unable to reanalyze the misidentified and no identification 

isolates by conventional, gold standard and the ATR-FTIR spectroscopy-based method, 

an overall 97.2% correct genus identification, 98.4% species identification and no 

misidentification of non-represented microorganisms in routine, the study may be 

considered a success and may potentially be further explored for routine use. It is a rapid 

(1-minute analysis after initial culture) which is reagent-free, easy-to-use, specific, easy-

to-train, compact and is cost effective compared to currently available non-spectroscopy-

based methods. Although it is incomplete for species identification on a routine basis with 

the lack of representation of various species, it may be useful for screening and 

discriminating between difficult to differentiate E. coli and Shigella, and for serotyping 

while building a larger database.  

The technology and technique will greatly benefit resource limited microbiology laboratory 

without compromising the specificity of the identification of microorganisms and can be 

used side-by-side with current identification techniques to confirm species identification. 
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Connecting statement 3  

The developed ATR-FTIR spectral database was constructed based on spectral 

similarity of various groups of spectra and multiple support vector machine models for 

bacterial identification based on spectral fingerprints. The following chapter examines the 

same spectrotyping spectral database construction technique for the development of a 

yeast specific ATR-FTIR spectral database. 
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CHAPTER 5. DEVELOPMENT OF SPECTROTYPING METHOD FOR CLINICALLY 

RELEVANT YEASTS 

5.1.  ABSTRACT 

Invasive fungal infections by opportunistic yeasts have increased concomitantly with 

the growth of an immunocompromised patient population. Misidentification of yeasts can 

lead to inappropriate antifungal treatment and complications. Attenuated total reflectance 

Fourier transform infrared (ATR-FTIR) spectroscopy is a promising method for rapid and 

accurate identification of microorganisms. ATR-FTIR spectroscopy is a standalone, 

inexpensive, reagent-free technique that provides results within minutes after initial 

culture. In this study, a comprehensive spectral reference database of 65 clinically 

relevant yeast species was constructed and tested prospectively on spectra recorded 

(from colonies taken from culture plates) for 318 routine yeasts isolated from various body 

fluids and specimens received from 38 microbiology laboratories over a 4-month period 

in our clinical laboratory. ATR-FTIR spectroscopy attained comparable identification 

performance with matrix-assisted laser desorption ionization-time of flight mass 

spectrometry (MALDI-TOF MS). In a preliminary validation of the ATR-FTIR method, 

correct identification rates of 100% and 95.6% at the genus and species levels, 

respectively, were achieved, with 3.5% unidentified and 0.9% misidentified. By expanding 

the number of spectra in the spectral reference database for species for which isolates 

could not be identified or had been misidentified, we were able to improve identification 

at the species level to 99.7%. Thus, ATR-FTIR spectroscopy provides a new standalone 

method that can rival MALDI-TOF MS for the accurate identification of a broad range of 

medically important yeasts. The simplicity of the ATR-FTIR spectroscopy workflow favors 

its use in clinical laboratories for timely and low-cost identification of life-threatening yeast 

strains for appropriate treatment. 

5.2.  INTRODUCTION 

Invasive fungal infections (IFIs) by opportunistic yeasts in humans have increased 

over the years largely due to the concomitant growth of an immunocompromised patient 

population (1). Although Candida albicans is the leading cause of IFIs, emerging rare and 

non-albicans Candida (NAC) species are on the rise (1, 2). Candida albicans accounts 
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for approximately 50% of all IFIs followed by NAC: Candida glabrata, Candida 

parapsilosis, Candida tropicalis and Candida krusei, in decreasing order of frequent 

infection (1, 3, 4). Other yeasts like Cryptococcus spp., Rhodotorula spp., Trichosporon 

spp. and Saccharomyces spp., are also increasingly reported to cause infections, but are 

far less common (5). The problem of IFIs is compounded furthermore, with the spread of 

multidrug resistant yeasts, such as Candida auris, which has emerged rapidly worldwide 

and now poses a threat to public health (6-8). The correct identification of those rare and 

emerging yeast species is necessary for adequate antifungal therapy. The latter can be 

challenging with conventional identification systems used in most clinical microbiology 

laboratories.  

Routine identification of clinical yeasts most often relies on the use of manual or 

automated commercial carbon assimilation identification systems such as the API 20C 

gallery (bioMérieux, Marcy-l'Étoile), VITEK® 2 ID/AST (bioMérieux, Marcy-l'Étoile) and 

Phoenix 100 ID/AST (Becton Dickinson, MD), which are used in conjunction with 

conventional biochemical and phenotypic assays. While gene sequencing methods are 

considered the gold standard and the future of infection control in clinical microbiology, 

they are costly, time consuming and not readily available for routine identification in most 

clinical sites (9). More recently, matrix assisted laser desorption ionization-time of flight 

mass spectrometry (MALDI-TOF MS) has proven to be the most rapid and cost-efficient 

method for the identification of rare and cryptic yeast species (5, 10, 11).  

Fourier transform infrared (FTIR) spectroscopy is a well-established analytical technology 

that has been used in various fields of study, including chemistry, forensics, ecology, 

medicine, astronomy and more (12-14). In microbiology, the infrared (IR) spectrum for 

microorganisms is representative of all compounds comprising the microorganism, and 

as such, IR spectroscopy is referred to as a whole-organism fingerprinting technique (15). 

The acquisition of infrared spectra of microorganisms can be simplified using an 

attenuated total reflectance (ATR) accessory to acquire IR spectra. The IR beam from the 

IR source is launched at a defined angle (known as the critical angle) into an IR 

transparent crystal (e.g., ZnSe, Ge, Si or a diamond) whereby, total internal reflection 
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occurs within the crystal forming an evanescent wave (perpendicular to the propagating 

IR beam) above the sampling surface (Figure 5.1). Partial attenuation of the evanescent 

wave produced by the sample placed on the crystal takes place (Figure 5.1). An IR 

absorption spectrum is achieved by taking the ratio between the spectrum of the sample 

and the spectrum of the crystal in the absence of the sample (14).  

A number of studies have demonstrated the capabilities of FTIR spectroscopy for clinical 

bacterial identification with promising results up to the species and strain-level, including 

having potential for antimicrobial susceptibility determination (16-20). For fungal 

identification, utilizing FTIR spectroscopy has mostly been restricted to applications in 

food and environmental microbiology rather than clinical microbiology (21, 22). A few 

studies have investigated the use of FTIR spectroscopy for the discrimination of yeast 

species, but those have relied on limited number of clinical isolates and species and were 

mostly aimed towards a general exploration of FTIR technology for identification purposes 

(13, 15, 23, 24). 

The objective of this prospective study was to evaluate the sensitivity and specificity of 

an ATR-FTIR spectroscopic-based method for routine identification of medically 

important clinical yeasts. This necessitates construction of a comprehensive ATR-FTIR 

reference spectral database of clinically relevant yeasts. Identification of routine yeast 

samples was based on the spectral similarity between the clinical isolates to the reference 

spectra in the ATR-FTIR spectral database. The ATR-FTIR based method was validated 

prospectively by acquiring ATR-FTIR spectra of clinical yeasts obtained from 38 hospitals. 

The overall performance of our ATR-FTIR spectroscopic method was then compared to 

results obtained by the MALDI-TOF MS identification system of all clinical isolates. 

5.3.  MATERIALS AND METHODS 

5.3.1. Construction of the ATR-FTIR reference spectral database of clinically 

relevant yeast species 

One hundred and ninety-nine pure yeast isolates stored in 10% glycerol at -80°C 

were obtained from the Laboratoire de Santé Publique du Québec (LSPQ). The 

identification of all isolates was confirmed by gene sequencing and/or MALDI-TOF MS at 
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LSPQ by employing rDNA D1/D2 or ITS sequencing (using NL1-NL4 ITS1-ITS4 primers 

respectively) regions by comparing sequence similarity to that of sequences in Genbank, 

ISHAM ITS and Westerdjik Fungal Biodiversity Institute’s nucleotide databases. Each 

sample was thawed and subcultured onto Sabouraud dextrose agar (SAB) (BD Difco, 

Franklin Lakes, NJ) and incubated at 30C for 48 h followed by subculturing using the 

same parameters prior to spectral acquisition. Samples that displayed varying 

morphologies on culture plates were omitted from the study due to suspected 

contamination or being a mixed culture to avoid identification errors. An initial spectral 

database of commonly obtained routine opportunistic yeast species was constructed 

using a minimum of 8 or more isolates (e.g., C. albicans, C. glabrata, C. parapsilosis, C. 

tropicalis). For uncommon species (e.g., C. auris, Candida haemulonii, Cryptococcus 

laurentii, Trichosporon inkin) a minimum of 1-6 isolates per species were added to the 

initial spectral database. Subsequently, an expanded spectral reference database was 

created comprising a total of 789 ATR-FTIR spectra (263 isolates) from 65 species 

belonging to 12 genera of yeasts (Table A.9).  

5.3.2. Identification of routine clinical yeast isolates  

Three hundred and eighteen fresh routine clinical isolates (from skin, blood, urine and 

others) were collected from 38 clinical microbiology laboratories over a 4-month period 

and sent to LSPQ for identification by MALDI-TOF MS (VITEK MS, bioMérieux, Marcy-

l’Étoile, France) using the clinical knowledge database (V3.0). These samples are 

independent from the created spectral database and were simultaneously identified by 

the ATR-FTIR based method developed in this study. All routine isolates identified by 

MALDI-TOF MS and ATR-FTIR spectroscopy were acquired from colonies obtained from 

the same agar plate. When a sample is suspected of contamination, it was subcultured 

and the ATR-FTIR spectra were reacquired in triplicate and reanalyzed by MALDI-TOF 

MS. In the case of discordant results between the ATR-FTIR and MALDI-TOF MS 

identification, the samples were further analyzed by rDNA D1/D2 or ITS sequencing using 

the same primers as mentioned above.  
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5.3.3. ATR-FTIR spectral acquisition 

A single colony was isolated using a sterile disposable loop and deposited directly 

onto the sampling surface of an ATR-FTIR spectrometer (Cary 630, Agilent Technologies, 

Santa Clara, CA) (Figure 5.1). The spectra were acquired using a spectral resolution of 8 

cm-1 with 64 co-additions for the background and sample scan in the spectral range 

between 4000 and 650 cm-1. After spectral acquisition, disinfection of the sampling 

surface was achieved by wiping the ATR surface with lint-free paper moistened with 70% 

ethanol. Triplicate spectra were acquired from three individual colonies per agar plate to 

demonstrate spectral reproducibility and sample purity. The triplicate spectra were 

employed for the construction of the reference spectral database or the identification of 

clinical routine yeast isolates. 

 

 

Figure 5.1. Experimental workflow of the ATR-FTIR spectroscopic-based method for 
yeast analysis. A single colony is directly transferred from the agar plate (without prior 
treatment) onto the ATR sampling surface of the ATR-FTIR spectrometer. An infrared 
(IR) beam is directed into the ATR crystal resulting in the generation of an evanescent 
wave perpendicular to the propagating IR beam within the crystal. Attenuation of the 

evanescent wave by the sample yields the ATR-FTIR spectrum in ~1 minute. 
Identification of the sample is based on its spectral similarity to that of an infrared 

spectrum of an isolate in the ATR-FTIR reference spectral database. 

5.3.4. Spectral quality assessment, processing and analysis 

All ATR-FTIR spectra underwent a spectral quality check (prior to incorporation into 

the spectral reference database or for identification) by employing hierarchical cluster 

analysis (HCA) as a measure of similarity between the triplicate spectra (i.e., how close 

they cluster together in a dendrogram comprising spectra from the same species). The 

spectra were then subjected to vector normalization and their 1st derivative computed by 
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an in-house written software or with commercially available spectral analysis software 

(OMNIC, Thermo Fisher Scientific, Madison, WI). Principal component analysis (PCA) 

was used in conjunction with a forward region selection algorithm to discriminate among 

classes (genera, species) based on specific spectral regions in the ATR-FTIR spectra for 

each class (25). 

5.3.5. ATR-FTIR spectroscopy-based identification strategy 

The reference spectral database was constructed with 789 spectra acquired from 

65 species belonging to 12 genera. Hierarchical database structure was employed, 

whereby identification is performed in two stages: (i) classification at the genus level, and 

(ii) at the species level, employing spectral features appropriate for differentiating 

between strains at each stage of the process. Using the same approach, the identification 

of the spectral regions for the discrimination between the different genera and species 

(within each genus) is carried out in two stages: a grid search followed by a “greedy” 

search, with the grid search filtering through large spectral regions and providing starting 

points for the greedy. The details of this algorithm are beyond the scope of this article and 

is presented elsewhere (26).  

Differentiation between the species within each genus is based on spectral differences 

and similarities (reflecting differences in the biochemical and metabolic profiles) of the 

microorganisms. A multitier spectral database was constructed using pair-wise spectral 

groups representative of different genera or species within a genus. The pair-wise 

grouping in each tier is based on the relative spectral distance computed by PCA. In the 

identification step, the ATR-FTIR spectrum of a routine isolate is assigned to either group 

within a given tier or, flagged as an outlier based on spectral dissimilarity to the spectra 

in the pair-wise group and is not identified. This process is iterated in a stepwise fashion 

for all tiers until identification (or no identification) of the isolate at the species-level is 

achieved. Comparable results can also be achieved with the use of the discriminate 

analysis routines in commercially available multivariate statistical software, JMP® Pro 

(SAS, Cary, NC). Details of the ATR-FTIR spectral database structure can be found in 

Figure 5.2. 
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5.4.  RESULTS 

5.4.1. Identification of clinical yeasts by ATR-FTIR spectroscopy  

Using a preliminary ATR-FTIR spectral reference database of 199 isolates belonging 

to 5 genera and 14 species, the database yielded a 95.6% correct species identification 

(n=304) of 318 routine clinical yeast isolates (in concordance with MALDI-TOF MS and 

rDNA D1/D2 sequencing). One hundred percent correct species identification was 

achieved for all routine samples belonging to Candida dubliniensis, C. krusei, Candida 

lusitaniae, Candida orthopsilosis, C. parapsilosis, Cryptococcus neoformans, 

Rhodotorula mucilaginosa and Saccharomyces cerevisiae. The remaining 4.4% (n=14) 

routine isolates were either unidentified (n=11) due to the lack of representation in the 

reference spectral database or misidentified (n=3) (Table 5.1).  

5.4.2. Expansion and re-validation of the ATR-FTIR spectral reference database 

To address the limited representation of clinical yeasts from additional genera and 

species, the ATR-FTIR spectral reference database was expanded by adding spectra 

from 7 new genera and 51 species (Table A.9). Re-analysis of the spectra from the 318 

isolates with the expanded spectral database yielded a 99.7% correct species 

identification of routine clinical isolates (Table 5.1). It should be noted that one of the 

isolates identified by ATR-FTIR spectroscopy as Meyerozyma caribbica, was discordant 

with MALDI-TOF MS which identified it as Candida guilliermondii with 99.9% confidence. 

This sample was re-cultured a second time and yielded the same results by both ATR-

FTIR spectroscopy and MALDI-TOF MS analysis. The isolate was identified by rDNA 

D1/D2 sequencing (NL1-NL4 primers) as M. caribbica. Ultimately, one isolate, C. 

tropicalis, was misidentified as C. lusitaniae (confirmed by rDNA D1/D2 sequencing) 

resulting in an overall misidentification rate of 0.3%.  

The spectra acquired from the 318 isolates were further added to the expanded database 

and employed in an external prospective validation of an additional 143 isolates to re-

validate the newly enhanced spectral database (comprising a total of 1743 spectra) 

yielding a 100% correct species level of identification of 142 isolates represented in the 

spectral database (Table 5.2). One isolate remained unidentified yielding an overall 
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99.3% correct identification. The identity of the unidentified isolate was established as 

Saprochaete clavata by gene sequencing. It is of interest to note that MALDI-TOF MS 

also provided no identification of the unidentified isolate due its absence in the VITEK MS 

database (V3.0). 

 

Table 5.1. Identification of routine clinical yeast isolates obtained using a preliminary 
ATR-FTIR spectral reference database 

  No. (%) of isolates 

 Routine isolates 

Microorganism Total Identified Unidentified Misidentified 

Candida spp.        
C. albicans 130 128 (98.5) 0 2 
C. dubliniensis 13 13   0 0 
C. glabrata 68 67 (98.5) 1 0 
C. guilliermondii 2 0 (0.00) 2a 0 
C. kefyr 2 1 (50.0) 1 0 
C. krusei 8 8   0 0 
C. lipolytica 1  0 (0.00) 1 0 
C. lusitaniae 16 16   0 0 
C. orthopsilosis 4 4   0 0 
C. parapsilosis 32 32   0 0 
C. pararugosa 1  0 (0.00 1 0 
C. pelliculosa 1  0 (0.00) 1 0 
C. tropicalis 23 21 (91.3) 1 1 
C. utilis 3  0 (0.00) 3 0 

Cryptococcus neoformans 7 7   0 0 
Rhodotorula mucilaginosa 1 1   0 0 
Saccharomyces cerevisiae 5 5   0 0 
Trichosporon spp. 1 1  b 0 0 

Total 318 304 (95.6) 11 (3.5) 3 (0.9) 

a1 of the 2 unidentified isolate of C. guilliermondii was later identified as Meyerozyma 

caribbica by gene sequencing. This isolate was omitted from calculation. 

bTrichosporon spp. are underrepresented with less than 5 isolates per species. The 

isolate correctly identified at the genus level and later identified as Trichosporon 

mycotoxinivorans by rDNA sequencing. 
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Table 5.2. Identification results obtained with the expanded spectral database  

  No. (%) of isolates 

 Routine isolates 

Microorganism Total Identified Unidentified Misidentified 

Candida spp.        
C. albicans 130 130   0 0 
C. dubliniensis 13 13   0 0 
C. glabrata 68 68   0 0 
C. guilliermondii 1 1   0 0 
C. kefyr 2 2   0 0 
C. krusei 8 8   0 0 

C. lipolytica 1 1   0 0 
C. lusitaniae 16 16   0 0 
C. orthopsilosis 4 4   0 0 
C. parapsilosis 32 32   0 0 
C. pararugosa 1 1   0 0 
C. pelliculosa 1 1   0 0 
C. tropicalis 23 22 (95.7) 0 1a 
C. utilis 3 3   0 0 

Cryptococcus neoformans 7 7   0 0 
Meyerozyma caribbica 1 1   0 0 
Rhodotorula mucilaginosa 1 1   0 0 
Saccharomyces cerevisiae 5 5   0 0 

Trichosporon spp. 1 1   0 0 

Total 318 317 (99.7) 0  1 (0.3) 

aSame isolate of C. tropicalis in Table 5.1 was misidentified as C. lusitaniae. 

5.5.  DISCUSSION 

A preliminary ATR-FTIR spectral reference database of 199 isolates belonging to 5 

genera and 14 species was constructed. The database (constructed with DataAnalysis 

and MLC) yielded a 95.6% correct species identification (n=304) of 318 routine clinical 

yeast isolates (in concordance with MALDI-TOF MS and rDNA D1/D2 sequencing). 100% 

correct species identification was achieved for all routine samples belonging to 

C.  dubliniensis, C. krusei, C, lusitaniae, C. orthopsilosis, C. parapsilosis, C. neoformans, 

R. mucilaginosa and S. cerevisiae. The remaining 4.4% (n=14) routine isolates were 

either unidentified (n=11) due to the lack of representation in the reference spectral 

database or misidentified (n=3) (data not shown).  
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Figure 5.2. Pairwise multitier ATR-FTIR spectral database structure for the species identification of clinically relevant 
yeasts 
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To address the limited representation of clinical yeasts from additional genera and 

species, the ATR-FTIR spectral reference database was expanded by adding spectra 

from 7 new genera and 51 species. Using the expanded spectral reference database 

comprising of 65 species from 12 different genera, the expanded database yielded a 

99.7% correct species identification of the routine clinical isolates (n= 318) (Table 5.2). It 

should be noted that one of the isolates identified by ATR-FTIR spectroscopy as 

Meyerozyma caribbica was discordant with MALDI-TOF MS which identified it as 

C. guilliermondii with 99.9% confidence. This sample was re-cultured a second time and 

yielded the same results by both ATR-FTIR spectroscopy and MALDI-TOF MS analysis. 

The isolate was identified by rDNA D1/D2 sequencing (NL1-NL4 primers) as Meyerozyma 

caribbica. Ultimately, only one isolate, C. tropicalis, was misidentified as C. lusitaniae 

(confirmed by rDNA D1/D2 sequencing) resulting in an overall misidentification rate of 

0.3%. 

To our knowledge, no prior study has utilized ATR-FTIR spectroscopy for routine 

identification of clinical yeasts. Our group is the first to create a comprehensive clinical 

yeast ATR-FTIR spectral reference database comprising of 263 reference strains of 65 

species belonging to 12 genera encompassing both rare and emerging strains such as 

C. auris and Trichosporon asahii. As with any method used for fungal identification for 

diagnostic purposes, misidentification is a major concern for appropriate species-specific 

antifungal therapy; it is more desirable to obtain an unidentified isolate result opposed to 

a false identification. The higher rate of unidentified (3.5%) than misidentified (0.9%) 

species was observed in our initial spectral database study where it did not include 

enough isolates for rare species such as Candida utilis, Candida pararugosa and 

Trichosporon mycotoxinivorans. This limitation was addressed by expanding the spectral 

database to encompass a larger number of species from additional genera. By employing 

the expanded ATR-FTIR database for the analysis of 318 routine clinical isolates, 100% 

and 99.7% correct identification at the genus level and species was achieved 

respectively. Accordingly, the single-step protocol employed for the analysis of clinical 

isolates by ATR-FTIR spectroscopy makes it both superior and more cost effective than 

any currently available identification platform. For example, correct identification of 

medically important yeasts reported for VITEK 2, API ID32C, Phoenix ID and AuxaColor 
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and VITEK MS ranges from 72.7-97.1% with misidentification ranging from 0.4-33.3% 

(27-31). MALDI-TOF MS has overcame difficulties of identifying closely related 

complexed yeasts such as C. albicans/C. dubliniensis, and C. parapsilosis/C. 

orthopsilosis in comparison to conventional biochemical techniques (29). Likewise, ATR-

FTIR-based results from this study also demonstrated that the IR spectra contained 

enough information to allow discrimination between C. albicans, C. dubliniensis, C. 

parapsilosis and C. orthopsilosis.  

To improve the ATR-FTIR-based method for identification of routine isolates, the inclusion 

of the five species not initially present in the IR spectral database resulted in correct 

identification of all 7 initially unidentified isolates. Similarly, species that had initially 

resulted in either a misidentification or no identification, resulted in correct identification 

of 5 out of 6 routine isolates using the expanded spectral database. Overall, only 1 C. 

tropicalis remained erroneously identified as C. lusitaniae by ATR-FTIR spectroscopy with 

the expanded infrared spectral database. The misidentified C. tropicalis’ colonies were 

typical and by visual identification is in accordance with what is known, and 

misidentification of the species as C. lusitaniae is not common and are phenotypically 

dissimilar – further investigation is needed. It should be noted that one isolate identified 

as Meyerozyma caribbica by rDNA sequencing, was misidentified as C. guilliermondii 

(with 99.9% confidence) using the VITEK MS system. As both species are part of same 

species complex and are genetically similar (32), the MALDI-TOF MS misidentification 

error is considered minor. This error maybe attributed to the absence of a mass 

spectrometric spectral representation of M. caribbica in the VITEK MS database (clinical 

knowledge database V3.0). Similarly, the initial ATR-FTIR spectral database did not 

include IR spectra representative of M. caribbica, however, unlike MALDI-TOF MS, the 

sample was unidentified rather than misidentified. Inclusion of IR spectra of M. caribbica 

to the expanded IR spectral database of the clinical yeast isolates resulted in its correct 

identification by ATR-FTIR spectroscopy. Additionally, two isolates identified as C. 

lusitaniae by rDNA sequencing, were unidentified by MALDI-TOF MS where they were 

both correctly identified by ATR-FTIR spectroscopy. Based on these findings, ATR-FTIR 

spectroscopy thus offers several advantages over MALDI-TOF MS, being an inexpensive, 
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reagent-free, and one-step procedure – obviating the need for consumables, or the need 

for an extraction step with the use of harsh acids (e.g., formic acid). In addition, the 

method is free from interruption associated with time delays related to drying of the 

chemical matrix (and acid) and achieving a high vacuum prior to MS spectral acquisition.  

The minimum number of reference strains required for inclusion in the IR spectral 

reference database may be species specific and dependent on the variability between 

the biochemical composition of the entire microorganism for a given genus or species. 

For example, the spectral differences between Candida pelliculosa and the other species 

were substantial and spectral representation from only two C. pelliculosa isolates in the 

spectral database was sufficient for complete discrimination. Other species, such as C. 

albicans and C. dubliniensis were more difficult to discriminate between each other and 

required additional ATR-FTIR spectra resulting in >13 reference strains per species for 

complete discrimination. Likewise, the inclusion of ATR-FTIR spectra of newly discovered 

and emerging species in the IR spectral database is expected to enhance the predictive 

performance of the ATR-FTIR spectroscopy-based method. Furthermore, inclusion of the 

correctly identified routine samples in this study to the expanded database should 

increase its specificity for future analysis of routine clinical isolates. 

5.6.  CONCLUSION 

Overall, our central study demonstrates a strong potential for ATR-FTIR 

spectroscopy for rapid-routine analysis of clinical yeasts with an overall 99.7% correct 

species-level identification. ATR-FTIR spectroscopy demonstrated advantages over 

current conventional biochemical, MALDI-TOF MS and gene sequencing identification 

methods. ATR-FTIR spectroscopy requires no sample preparation after incubation, is a 

standalone method, as little as a single colony is needed, is reagent-free and complete 

data acquisition and analysis for the identification at the species level is completed in less 

than 2 minutes per sample. These advantages make our ATR-FTIR-based method the 

fastest and lowest costing technology developed to date for microorganism identification. 
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Connecting statement 4 

The following chapter is a multicenter evaluation study between 6 clinical 

microbiology laboratories across Quebec. The study aims at evaluating the standardized 

method and ATR-FTIR spectral reference database developed in the previous chapter 

for the identification of clinically relevant yeasts and to discuss the limitations in hopes of 

advancing the technology and technique for routine use. 
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CHAPTER 6.  MULTICENTER EVALUATION OF ATTENUATED TOTAL 

REFLECTANCE FOURIER TRANSFORM INFRARED SPECTROSCOPY-BASED 

METHOD FOR RAPID IDENTIFICATION OF CLINICALLY RELEVANT YEASTS  

6.1.  ABSTRACT  

Fourier transform infrared (FTIR) spectroscopy has demonstrated applicability as a 

reagent-free whole-organism fingerprinting technique for both microbial identification and 

strain typing. For routine application of this technique in clinical microbiology laboratories, 

acquisition of FTIR spectra in the attenuated total reflectance (ATR) mode simplifies the 

FTIR spectroscopy workflow, providing results within minutes after initial culture without 

prior sample preparation. In our previous central work, 99.7% correct species 

identification of clinically relevant yeasts was achieved by employing an ATR-FTIR-based 

method and spectral database developed by our group. In this prospective study, ATR-

FTIR spectrometers were placed in 6 clinical microbiology laboratories over a collective 

16-month period and were used to collect spectra belonging to yeasts for identification. 

The identification results were compared to those obtained from conventional biochemical 

tests and/or a matrix-assisted laser desorption/ionization time of flight mass spectrometry 

obtained from the participating laboratories. Discordant results were reanalyzed by 

routine identification methods, ATR-FTIR spectroscopy and PCR gene sequencing of the 

D1D2/ITS regions. Among the 534 routine clinical yeast isolates collected and identified 

by the ATR-FTIR-based method, 525 (98.3%) isolates were correctly identified at the 

species level while the remaining isolates were inconclusive with no misidentifications. 

Additional randomly selected yeasts (n=39) and Candida auris (n=24) isolates were also 

evaluated and resulted in 100% correct identification. Our data suggest that ATR-FTIR 

spectroscopy demonstrates a reliable, cost-effective yeast identification technique that 

provides accurate and timely species identification promptly after the initial culture 

multicentrally using multiple spectrometers in different laboratories with multiple system 

operators.  

6.2.  INTRODUCTION 

Fungal infections affect over a billion people worldwide, resulting in an estimated 

1.5 million deaths each year (1). It is also estimated that there are approximately 700,000 
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global cases of invasive candidiasis and over 220,000 cases of fungal disease due to 

Cryptococcus neoformans associated with HIV/AIDs complication (2, 3). Over the past 

few decades, there has been a reported increase in nosocomial candidiasis where 

candidemia is associated with mortality rates of over 40% of those infected (4-6). 

Furthermore, Candida spp. in many developed countries are the 3rd or 4th leading cause 

of nosocomial bloodstream infections. These opportunistic microorganisms pose the 

greatest risk to the elderly population, neonates and those who are immunocompromised 

(6). Although Candida albicans accounts for over 40% of all yeast infections, there is an 

increasing prevalence of non-C. albicans species infections. For example, the increase 

in incidences of Candida auris is troublesome due to its ability to acquire antifungal 

resistance and is easily transmitted from person-to-person – complicating treatment 

and/or resulting in poor patient outcomes (6-8). 

Rapid identification of yeasts is necessary for appropriate patient care and to reduce the 

spread of antifungal resistance. Matrix-assisted laser desorption/ionization time of flight 

mass spectrometry (MALDI-TOF MS) has revolutionized microbial identification in both 

bacteriology and mycology in the past decade owing to its simplicity, rapidness, and 

reliability for speciating microorganisms relative to conventional biochemical techniques 

(9-12). It is also the first commercially available and widely accepted spectroscopic 

technique for in vitro diagnostics. Although it has revolutionized clinical microbiology, 

there is a high initial capital cost associated with the technique along with expenses for 

reagents, the requirement for additional pre-treatment steps for fungi, disposable target 

plates and maintenance (13), has limited the implementation of international surveillance 

programs aimed at tracking fungal infections. 

Within the realm of molecular spectroscopy, Fourier transform infrared (FTIR) 

spectroscopy has been widely applied for the investigation of cell metabolism, microbial 

identification, and strain-typing (14-23). However, there is a lack of standardization and 

spectral database evaluation studies in the clinical setting. When coupled with the 

attenuated total reflectance (ATR) mode of spectral acquisition, ATR-FTIR spectroscopy 

becomes a rapid, reagent-free, and low maintenance technique that does not require 
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sample preparation with harsh chemicals after culture nor drying or vacuum-related 

downtime.  

Our group, in previous work has created and developed an ATR-FTIR spectroscopy-

based microbial spectrotyping (defined as the process of determining the differences 

between spectra obtained from microorganisms based on the absence or presence, and 

relative intensities of infrared absorption bands) technique for rapid identification of 

clinically relevant yeasts (14). Spectrotyping entails the implementation of a standardized 

culturing methods and well-defined ATR-FTIR spectral acquisition and preprocessing 

techniques to construct a spectral database of highly reproducible ATR-FTIR spectra of 

well characterized clinical yeasts isolates. Through spectrotyping, a database was 

created consisting of 65 species and 23 genera and was subsequently evaluated centrally 

by acquiring 318 routine yeasts isolates, resulting in 100% correct genus and 99.7% 

correct species identification (14).  

The results of the latter study warranted the undertaking of a prospective multicenter 

evaluation study as a first step in the implementation of ATR-FTIR spectroscopy for 

routine yeast identification. The following study aims at prospectively evaluating the 

performance of our ATR-FTIR reference spectral database for rapid identification of 

routine yeasts on-site in multiple clinical microbiology laboratories. Results obtained from 

the ATR-FTIR spectroscopy-based identification results were compared to standard 

identification techniques for diagnostics (conventional biochemical tests, MALDI-TOF MS 

and/or rDNA gene sequencing) implemented by the participating laboratories.  

6.3.  MATERIALS AND METHOD 

6.3.1. Sample collection 

In routine, microorganisms were isolated from clinical specimens (i.e., blood, urine, 

respiratory specimen) onto culture agar media (i.e., Sabouraud dextrose agar (SAB), 

Sabouraud dextrose agar Emmons or inhibitory mold agar). A total of 534 isolates [17 

genera and 29 species (Table 6.1)] were collected from Centre hospitalier universitaire 

de Sherbrooke (CHUS) (n=93), Centre hospitalier universitaire Sainte Justine (CHUSJ) 

(n=12), Laboratoire de santé publique du Québec (LSPQ) (n=132), Hôpital Maisonneuve-
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Rosemont (HMR) (n=100), Centre universitaire de santé McGill (CUSM) (n=100) and 

Centre hospitalier de l'Université de Montréal (CHUM) (n=97) over a cumulative 16-month 

period. 

Isolates collected from LSPQ and CHUSJ were analyzed in real-time while those 

collected from CHUS, HMR, CUSM and CHUM where prospectively collected and stored 

at -80C and re-cultured from frozen for ATR-FTIR spectral acquisition to facilitate batch 

testing due to limited available spectrometers and technicians. All centers’ isolates were 

collected to be representative of routine isolates over a given time frame to accumulate 

approximately 100 isolates.  

CHUSJ (children’s hospital) provided 12 isolates from routine over a 2-month period (in 

2019). An additional 39 isolates (non-routine) were randomly collected at CHUSJ in 2020, 

belonging to 8 Candida species (Table A.10) isolated from children from sterile sites 

and/or that were difficult to identify in routine, were included in the evaluation study 

(results were not included with multicenter evaluation results). Additionally, due to the low 

prevalence of C. auris (n=1) in routine for the multicenter study (but high importance for 

accurate identification), it was necessary to obtain additional isolates of C. auris. Twenty-

four well characterized (by whole genome sequencing and PCR) C. auris isolates (Clade 

I to IV) were provided by the Centers for Disease Control and Prevention (CDC) (Atlanta, 

GA). 

6.3.2. Standard routine species identification and antimicrobial susceptibility 

testing 

Isolates collected from CHUS, CUSM, CHUM, HMR and LSPQ were identified by 

MALDI-TOF MS (VITEK MS, bioMérieux, Marcy-l'Étoile, France) using the clinical 

knowledge database (V3.2), while isolates collected from CHUSJ were identified by 

VITEK 2 version 8.01 (bioMérieux, Marcy-l'Étoile, France) or were sent to LSPQ for 

definitive identification. Supplemental isolates of C. auris (n=24) received from CDC were 

further confirmed by MALDI-TOF MS and ITS and D1D2 rDNA gene sequencing at LSPQ. 

Broth microdilution antimicrobial susceptibility testing following the Clinical and 

Laboratory Standards Institute guidelines M60 (Performance Standards for Antifungal 
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Susceptibility Testing of Yeasts) were completed at LSPQ on select isolates as part of 

routine and in one instance, the results of the test were used for supplemental observation 

for discussion. 

6.3.3. Sample preparation for ATR-FTIR spectral acquisition 

Following the same protocol of our previous study (14), all isolates that were not 

routinely cultured onto Sabouraud dextrose agar (SAB, 40 g/L dextrose, pH = 5.6±0.2 at 

room temperature) (BD Difco, Franklin Lakes, NJ) for real-time analysis at LSPQ and 

CHUS were subcultured onto SAB and incubated at 30C for 48 h prior to ATR-FTIR 

spectral acquisition. All other routine isolates collected from the remaining institutions 

from frozen were cultured and subcultured onto SAB and incubated at 30C for 48 h. 

6.3.4. ATR-FTIR spectroscopy-based identification 

Species identification by ATR-FTIR spectroscopy was achieved by employing a 

previously created ATR-FTIR spectral database (referred herein as the “reference 

database”) for identifying clinically relevant yeasts. The reference database was 

constructed with spectra belonging to 263 reference strains (made available by LSPQ) 

that encompasses 65 species belonging to 23 genera of clinically relevant yeasts (14) 

(Table A.9) Briefly, the reference database was constructed with averaged triplicate 

spectra of yeast strains. Identification of an unknown spectrum belonging to an isolate of 

yeast was achieved by the interrogation of a sequential multitier pairwise search 

reference database by comparing it’s ATR-FTIR spectrum to those in the reference 

spectral database (14). It should be noted that species of the genus Trichosporon were 

identified only to the genus level by the ATR-FTIR spectroscopy-based method due to 

low representation (less than 4) within individual species but significant representation at 

the genus level (n=7). 

Confidences of the identification of unknowns were based on the standard deviation (SD) 

from the spectral similarity of the unknown spectrum from the mean spectrum of the 

reference spectra in the reference database (that it is being predicted as) and the closest 

spectral similarity match to those spectra in the reference database. A SD from the mean 
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spectrum of greater than 3 and low spectral similarity (<70%) indicates no identification 

(i.e., no spectral match between the spectrum of the unknown isolate to those 

represented in the reference database). Additionally, different species (or genus) 

identification from each of the triplicate spectra collected from one strain (grown on one 

SAB plate) was also considered inconclusive (i.e., no identification is reported), and 

possibly indicating the presence of a contaminating microorganism. 

Discordant identification results between ATR-FTIR spectroscopy and standard routine 

identification methods were addressed by re-culturing the isolate and re-acquiring the 

ATR-FTIR spectra along with re-analyzing the isolate by VITEK MS (bioMérieux, Marcy-

l’Étoile, France). If results remain discordant, definitive identification was achieved at the 

LSPQ by PCR rDNA gene sequencing of the D1/D2 (NL1 and NL4 primers (24)) and ITS 

regions (ITS1 and 4 primers (25)) from the same re-culture plates.  

6.4.  RESULTS 

A total of 534 routine clinical yeast isolates were collected from 6 clinical 

microbiology laboratories and were identified by the ATR-FTIR-based method developed 

in our previous work (14). A 100% correct identification of all isolates at the genus level 

was achieved. A total of 525/534 (98.3%) of the isolates were correctly identified to the 

species level (Table 6.1). The 9 remaining isolates were not identified (i.e., results were 

inconclusive). Inconclusive results are those with less than 70% spectral match from the 

reference spectra with SD greater than 3 of the spectral similarity from the reference 

predicted mean spectrum of its closest spectral match. Re-culturing the isolates a second 

time and their analysis by MALDI-TOF MS and ATR-FTIR spectroscopy did not resolve 

the discrepancy. Further analysis by rDNA/gene sequencing showed agreeance with the 

MALDI-TOF MS results while species identification based on ATR-FTIR spectroscopy 

remained inconclusive. Four of the 9 isolates belonged to 4 different species (Candida 

metapsilosis, Saprochaete clavata (Geotrichum clavatum), Starmerella (Candida) 

magnoliae, Torulaspora delbrueckii (Candida colliculosa)) that were underrepresented in 

the spectral database (i.e., the database had <5 isolates present in the spectral reference 

database; Table 1). The 5 remaining isolates belonged to 4 species (Candida dubliniensis 

(n=1), Candida glabrata (n=1), Candida orthopsilosis (n=1) and Meyerozyma 
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guilliermondii (n=2)) which had higher spectral representation in the reference spectral 

database (>9 isolates per species). Thirteen isolates (Cyberlindnera jadinii (Candida 

utilis), Naganishia (Cryptococcus) diffluens, Pichia cactophila (Candida inconspicua), 

Rhodotorula mucilaginosa, Wickerhamiella (Candida) pararugosa, Wickerhamomyces 

anomalus (Candida pelliculosa)) were correctly identified even though they were also 

underrepresented (<5 isolates per species) in the reference spectra database. 

In addition to the 534 isolates included in this prospective evaluation study, an additional 

evaluation of the performance of the ATR-FTIR-based method for the identification of C. 

auris was undertaken. Since this species was rarely found in routine (n=1) during this 

study period, an additional 24 C. auris isolates were solicited from the CDC to test the 

performance of the ATR-FTIR-based identification method. Employing the reference 

database, all 24 isolates were correctly identified to the species level with high 

confidence. In addition, the supplementary 39 randomly selected isolates belonging to 8 

species of Candida (Table A.10) provided by CHUSJ children’s hospital were also all 

correctly identified to the species level.  
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Table 6.1. Performance of centrally created ATR-FTIR spectral reference database in a prospective multicenter evaluation 
study for the identification of clinical yeasts 

 No. of isolates (%) 

Microorganism (previous name) In database Collected Correct ID Misidentified No identification1 

Candida albicans 16 242 242   0   0   
Candida auris 11 1 1   0   0   
Candida dubliniensis 13 25 24 (96) 0   1 (4.00) 
Candida (Nakaseomyces) glabrata 17 76 75 (98.7) 0   1 (1.32) 
Candida metapsilosis 1 1 0   0   1   
Candida orthopsilosis 9 3 2 (66.7) 0   1 (33.3) 
Candida parapsilosis 12 79 79   0   0   
Candida tropicalis 15 36 36   0   0   
Clavispora (Candida) lusitaniae 10 18 18   0   0   
Cryptococcus neoformans 9 2 2   0   0   
Cyberlindnera jadinii (Candida utilis) 4 1 1   0   0   
Kluyveromyces marxianus (Candida kefyr) 17 2 2   0   0   
Meyerozyma caribbica (Candida fermentati) 5 1 1   0   0   
Meyerozyma (Candida) guilliermondii 15 6 4 (66.7) 0   2 (33.3) 
Naganishia (Cryptococcus) diffluens 2 1 1   0   0   
Pichia cactophila (Candida inconspicua) 1 1 1   0   0   
Pichia kudriavzevii (Candida krusei) 10 17 17   0   0   
Rhodotorula mucilaginosa 3 2 2   0   0   
Saccharomyces cerevisiae 13 2 2   0   0   
Saprochaete clavata (Geotrichum clavatum) 1 1 0   0   1   
Starmerella (Candida) magnoliae 1 1 0   0   1   
Torulaspora delbrueckii (Candida colliculosa) 0 1 0   0   1   
Trichosporon asahii2 4 2 2   0   0   
Trichosporon (Cutaneotrichosporon) dermatis2 1 1 1   0   0   
Trichosporon inkin2 1 1 1   0   0   
Trichosporon (Apiotrichum) mycotoxinivorans2 1 1 1   0   0   
Wickerhamiella (Candida) pararugosa 4 3 3   0   0   
Wickerhamomyces anomalus (Candida pelliculosa) 2 5 5   0   0   
Yarrowia (Candida) lipolytica 7 2 2   0   0   

TOTAL 205 534 525 (98.3) 0   9 (1.7) 
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1No identification is defined by having the triplicate spectra of the single (unknown) isolate predicting as 3 different organisms 
in the spectral database, and/or having a large standard deviation of the spectral similarity from the mean spectrum (>3.0) 
of the predicted yeast and/or a spectral similarity of less than 70%. 

2Species of the genus Trichosporon were identified only to the genus level by the ATR-FTIR spectroscopy-based method.
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6.5. DISCUSSION 

Employing the previously constructed ATR-FTIR spectral database representing 65 

yeast species from 23 genera, this prospective multicenter evaluation study resulted in 

98.3% correct species identification with no misidentification at the genus level, and 1.7% 

reported as inconclusive at the species level. While 4 isolates in this multicenter 

evaluation study were not identified as a result of being underrepresented in the reference 

database (<5 isolates per species), 5 isolates were not identified while they were 

represented (>9 isolates per species) in the reference spectral database. The latter 

finding illustrates the need for augmentation of the spectral database for certain species 

that likely exhibit a larger spectral variability stemming from a broader range of 

phenotypic/metabolomic diversity and highlights the limitation of selecting an arbitrary cut-

off of the minimum number of isolates that must be included in the database. This can be 

rationalized in terms of spectral diversity inherit to a given genus and its species within. 

The spectral similarity/dissimilarity (under standardized culture conditions) reflects the 

biochemical diversity of the whole organism for a given species. Species that have 

minimal fluctuation in their biochemical composition under specified growth conditions will 

be well represented with fewer spectra in the reference spectral database, while those 

that have a larger fluctuation in their metabolome/biochemical products produced will 

require a greater number of spectra to be included in the spectral database. 

For example, C. glabrata is well known for its great intra-species diversity (26) and is most 

notably known for its reduced susceptibility to fluconazole and increasing reported cases 

of echinocandin resistance (5, 27). Although C. glabrata is subjectively adequately 

represented in the spectral reference database (n=17) and yielded 75/76 (98.7%) correct 

identification, 1 isolate of C. glabrata was not identified due to its lack of similarity (SD of 

spectral similarity from mean of closest match = 16; spectral similarity to closest match = 

30.4%) to the reference C. glabrata spectra in the reference spectral database. Through 

observations, the unidentified C. glabrata strain relative to those represented in the 

reference spectral database, exhibited slower growth (smaller colonies) after incubation 

for 48 h at 30C, and through broth microdilution, the isolate in question was found to be 

resistant (64 µg/mL) to fluconazole, while those in the reference database are all 
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susceptible-dose dependent to fluconazole (or non-resistant). Both observations may 

have impacted the spectral profile of the isolate and resulted in no identification due to 

being relatively phenotypically atypical to those in the reference spectral database. 

Further spectral investigation of the unidentified C. glabrata with antimicrobial 

susceptibility testing using the Clinical and Laboratory Standards Institute guidelines M60 

(Performance Standards for Antifungal Susceptibility Testing of Yeasts) resulted in the 

minimum inhibition concentration of 64mg/L to fluconazole and is interpreted as being 

resistant to fluconazole. With that note, isolates in the reference database are all 

susceptible-dose dependent to fluconazole (or non-resistant) – suggesting ATR-FTIR 

spectral information may discriminate between difference in antifungal resistance for 

C. glabrata. C. glabrata resistance to azoles such as fluconazole have been linked but 

not limited to the upregulation and overexpression of the ATP-binding cassette (ABC) 

transporter genes CgCDR1 and CgCDR2 (28). Upregulation of ABC transporters (the 

predominant protein embedded throughout the cell membrane) results in increased efflux 

activity while overexpression of the gene increases the presence of the ABC transporters 

(29). Both mentioned activities may greatly affect the biochemistry (change in cell wall 

composition and structure as well as intercellular composition) of yeast cells and may be 

observed in the ATR-FTIR spectra (Figure 6.1). Figure 6.2 illustrates high variance 

between the inconclusive isolate with the C. glabrata where variances are associated with 

C-OH, C-O-C, C-C and P=O bonds of various biomolecules such as carbohydrates found 

in the cell wall. 

Even with quantifiable success of the multicenter study, few hindrances have been 

observed throughout the course of the research such as varying results with different 

isolates cultured onto different culture media. For example, LSPQ uses Difco SAB (5.6 ± 

0.2 @ 25°C) while CHUS and HMR uses the modified agar Difco SAB Emmons (pH 6.9 

± 0.2 @ 25°C) where the differences mainly lie in the level of acidity and dextrose content; 

and, ATR-FTIR spectra of a single strain cultured onto both culture media exhibited 

significantly distinguishable absorbances in several spectral regions including those 

associated with carbohydrates (Figure 6.2). Accordingly, high species level 

misidentification rates were observed for various species when the spectra were not 



202 

 

acquired on the same growth media formulation (30-33). The use of standardized culture 

media and growth conditions is therefore required to achieve the high specificity and 

sensitivity reported in this study. Future work can address expanding the reference 

spectral database of reference isolates grown on different culture media or construction 

culture-medium specific spectral databases. 

 

Figure 6.1. (A) Second derivative superimposed spectra belonging to reference C. 
glabrata (red) and the inconclusive identification (blue) sample by the ATR-FTIR 
spectroscopy-based method (identified as C. glabrata by MALDI-TOF MS). (B) 

represents the variance spectra of the triplicate spectra of the inconclusive result-isolate 
(purple) and the variance spectrum between the average of the inconclusive result-

isolate and reference C. glabrata spectrum.  

Implementation of the ATR-FTIR-based method must include a highly consistent standard 

operating procedure, in particular, the use of a consistent growth medium, growth and 

temperature (14, 34). The use of standardized culture media and growth conditions is 

therefore required to achieve the high specificity and sensitivity reported in this study. 

Future work should address expanding the reference spectral database of reference 

isolates grown on different culture media or the construction of culture-medium specific 

spectral databases for more robustness and flexibility of this identification method. 

Without the representation of several culture media, culture conditions, the end user 

would have to make changes in their routine workflow to conform to the growth media 
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and conditions utilized in the construction of the reference spectral database. Likewise, 

ATR-FTIR spectra representative of species diversity can likely be improved by acquiring 

isolates from varying geographical locations (30, 35, 36).  

 

Figure 6.2. (A) Second derivative overlay spectra demonstrating spectral reproducibility 
of two spectra (replicates) of a strain of Candida albicans. (B) Second derivative overlay 
spectra demonstrating spectral variances between a Candida albicans strain grown on 

Sabouraud dextrose agar (SAB) and modified SAB (SAB Emmons). (C) Variance 
spectra of second derivative overlay spectra demonstrating higher variance between a 
strain of Candida albicans grown on different agar compared to replicates of the strain 

MALDI-TOF MS, which also uses spectral references databases, are constructed with 

mass spectral profiles of microorganisms representing intra species diversity (i.e., atypical 

strains, typical strains, isolated from different regions, source of isolation) and varying 

culturing conditions by having isolates cultured on several culture media and grown in 

different atmospheric conditions (37).  
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Lastly, in unpublished work by our group in an exploratory study, the spectral database 

of yeast developed in Quebec at LSPQ was reconstructed using a different spectrometer 

(SummitPro, Thermofisher Scientific, MA) was utilized to prospectively identify 41 routine 

yeasts isolates (belonging to C. albicans, C. dubliniensis, C. glabrata and C. parapsilosis) 

cultured on SAB incubated and 30°C for 24-48 h from an England-based hospital 

(Maidstone, UK). As a result, 100% correct species identification was achieved. In 

addition to the success of the multicenter prospective study, the exploratory study has 

demonstrated the potential applicability of the current spectral database for use globally. 

6.6. CONCLUSION 

Like MALDI-TOF MS, the ATR-FTIR spectral reference database will need to be 

constructed to represent species cultured under varying incubation conditions (i.e., time 

and temperature), use of different culture media, and to include isolates from varying 

geographical locations, atypical strains, source of isolation, and antimicrobial 

susceptibility profiles. Additional strains are therefore being solicited from different 

laboratories to increase species representation in our spectral reference database of 

yeasts. With 99.0% correct identification and low misidentification rates, our study does 

however demonstrate the applicability and utility of the ATR-FTIR spectroscopy-based 

method of reliable species identification of clinically relevant yeasts multicentrally cross 

province. This is achieved by establishing a well-defined standard operating protocol. 

The result from this study delineates further the performance of the first rapid ATR-FTIR-

based method for accurate identification of clinical yeasts. The use of a highly 

standardized ATR-FTIR-based method has been evaluated in a multicentre study 

demonstrating the reliability of ATR-FTIR spectroscopy for species-level identification of 

clinically relevant yeasts. This is the first study to demonstrate the robustness of the 

constructed reference database to achieve >98% correct identification using multiple 

ATR-FTIR spectrometers at 6 distinct clinical microbiology laboratories and with multiple 

system operators. Accordingly, the ATR-FTIR based method should be considered for 

further validation and diagnostic method accreditation as it offers a new reagent-free, 

cost-effective method and provides species identification within minutes after initial 

culture. Additionally, it is highly affordable and may be used as an alternative (without 
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compromising accuracy of results) to costly molecular techniques and, low-accuracy and 

difficult-to-identify-rare-yeasts biochemical techniques for small and mid-size 

laboratories. The next step is to incorporate more clinical organisms such as bacteria, 

mycobacteria and molds to the reference spectral database and the pursuit of the ATR-

FTIR-based method accreditation as an in vitro diagnostic device facilitating its 

acceptance and implementation in a clinical setting.  
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Connecting statement 5 

ATR-FTIR spectroscopy in microbiology may be applicable for investigating 

phenotypic attributes of microorganisms and/or may be a useful tool for classifying 

microorganisms and it can also achieve identification to genotypic methods if the gene 

variability can be associated with unique phenotypic attributes. As such, the following 

chapter will investigate phenotypic and genotypic characteristics of a potential Candida 

parapsilosis outbreak in Chile relative to ATR-FTIR spectral data and evaluate the method 

for epidemiological strain-typing for potential outbreak detection. 
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CHAPTER 7. CASE STUDY: RETROSPECTIVE OUTBREAK INVESTIGATION AND 
COMPARISON OF CANDIDA PARAPSILOSIS SENSU STRICTO OBTAINED IN 
CHILE BY MOLECULAR SPECTROSCOPY AND PHENOTYPIC TECHNIQUES 

7.1.  ABSTRACT 

Candida is the fourth leading causative agent of hospital-acquired bloodstream 

infections and is associated with high mortality rates. Among Candida spp., Candida 

parapsilosis is frequently implicated in outbreaks owing to its ability to form biofilms, 

binding to and surviving on venous catheters. Current epidemiological methods such as 

multi-locus sequence typing, microsatellite molecular typing (MSMT), and whole genome 

sequencing (WGS) are labor-intensive, require highly trained personnel, and are costly, 

making it impractical to employ these methods for routine typing of suspected outbreak 

isolates. Previous studies performed by our group have successfully employed 

attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy as a 

non-destructive, rapid, and reagent-free technique for yeast identification. In the present 

study, the potential application of this inexpensive whole-organism fingerprinting 

technique as a reagent-free typing method was evaluated with a set of 41 C. parapsilosis 

isolates obtained from 17 hemodialysis clinics belonging to 9 Chilean hospitals from 

suspected outbreaks in 2012 and 2013. MSMT of C. parapsilosis was achieved by 

selecting 5 polymorphic microsatellite markers (B, G, CP1α, CP4α and CP6α). 

Additionally, a subset of the isolates was selected for WGS and 1H high resolution magic 

angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy to compare to 

ATR-FTIR spectroscopy and MSMT results. As a result, MSMT of the 41 C. parapsilosis 

isolates resulted in 6 genotypes encompassing >2 isolates sharing the same 

microsatellite profiles (clusters identified as CL1 through CL6) – suggesting a multicenter 

polyclonal outbreak. CL1-CL2 and CL3-CL4 are closely related (with a difference of one 

and two alleles, respectively), with CL5 and CL6 being the most dissimilar from the others. 

ATR-FTIR and HR-MAS NMR spectroscopy and WGS were in agreeance with for 3 of 

the 2 evaluated MSMT clusters. This study demonstrates that ATR-FTIR spectroscopy 

provides comparable discriminatory power to MSMT and WGS for outbreak detection, 

however, additional research for additional cases will make the technique a potentially a 
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useful tool for prospective outbreak surveillance. NMR spectroscopy may also aid in 

biomarker discovery. 

7.2.  INTRODUCTION 

While Candida albicans is the leading cause of candidemia worldwide [high mortality 

rate of ~40% in developed countries (1)], the prevalence of non-albicans species such as 

Candida glabrata have risen in Northern Europe and the United States of America in the 

recent decades. In Latin America, Southern Europe and Asia, Candida parapsilosis and 

Candida tropicalis are the leading cause of non-albicans species candidemia (2-4). C. 

parapsilosis is a natural skin colonizer and is one of the most frequently isolated yeast on 

the hands of healthcare workers and is found ubiquitously in nature (animals, aquatic 

environment, soils and insects) (5). The transmission of C. parapsilosis from healthcare 

worker-to-patient is often from the installation and maintenance of intravascular catheters 

commonly effecting neonates and surgical intensive care unit patients (6). Due to its 

capacity to bind and survive on catheters and other indwelling plastic medical devices, C. 

parapsilosis to is a common causative agent of bloodstream hospital-acquired infections. 

This microorganism is also well known for its capacity to form biofilms on medical implants 

and once embedded, C. parapsilosis is particularly resistant to antifungal treatment (7). 

Moreover, C. parapsilosis is horizontally transmitted and therefore can easily cause 

outbreaks and several centers have reported an increase in invasive C. parapsilosis 

infections (1, 3, 8). One study determined that 72% of 1240 isolates collected were clonal 

(3), suggesting the need for rigorous infection control and rapid strain identification 

techniques. For example, although China has few cases of C. parapsilosis outbreaks, 17 

candidemia cases were observed in the neonate intensive care unit in Beijing where 2 

cases were fatal. After random amplified polymorphic DNA (RAPD) typing, all isolates 

were identical and infection control measures were implemented to successfully control 

the outbreak (9). Rapid strain-identification is therefore needed to control outbreaks in 

hospitals. 

Currently, molecular genotyping methods [RAPD, microsatellite genotyping and DNA 

sequencing of the internal transcribed spacer (ITS) and D1/D2 regions of the 18S and 

28S rRNA gene by polymerase chain reaction (PCR)] are successfully employed to strain 
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type C. parapsilosis (3, 9-13). Although molecular methods achieve higher identification 

and strain-typing sensitivity compared to serologic and phenotypic methods which are 

considered to be the gold standards for identifying invasive fungal microorganisms (14), 

they are not financially feasible for resource limited laboratories, are time consuming for 

routine diagnostics and require expertise to perform the assays (15).  

Interestingly, in 2009, the complete WGS of C. parapsilosis was achieved (4). Although 

WGS has gained popularity and is becoming more affordable for research laboratories, 

WGS is still not an alternative for routine use or resources limited laboratories and 

requires highly trained personnel for data acquisition and analysis. In addition, WGS may 

not be the solution to strain-type certain species for outbreak investigation as some 

species such as C. albicans display genetic plasticity under different types of stresses 

(i.e., presence of antifungal, heat shock, growth in host) (16). Moreover, WGS of 

emerging multidrug resistance Candida auris results in low genetic diversity between 

strain for the same geographical clade (i.e., Africa, East Asia, South Asia and South 

America) with a difference of less than 60 single nucleotide polymorphism (SNP) and tens 

of thousands of SNPs differences between geographical clades (17). Unlike C. auris, 

WGS of C. parapsilosis shows low genetic variation between strains of different 

geographical origins such as Europe and North America, while major genetic variations 

are due to genes that are responsible for differences in cell surface glycoproteins 

associated with host-pathogen interactions (4). With varying strain-typing results for 

different species, it is suggested that WGS for some yeast species may be more useful 

to analyze antifungal resistance profiles rather than for epidemiology of nosocomial 

outbreaks (18). 

The applicability of Fourier transform infrared (FTIR) spectroscopy for microbial 

identification has gained momentum over the past decade (19-25). Even with numerous 

successful studies, there is a lack of robustness of the models developed for 

implementation for routine use. Unlike molecular genotypic methods which require 

analysis of RNA/DNA sequences to those in a reference database or by the sequence 

similarity relative to each other, the infrared spectrum of a microorganism (whole-

organism fingerprint) can be acquired directly from intact cells taken from a culture plate 
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and is representative of their complete biochemical composition (i.e., lipids, proteins, 

carbohydrates, etc.) (26). In addition to successfully identifying a wide range of species, 

FTIR spectroscopy has also been widely studied for strain-typing (i.e., patient-to-patient, 

outbreak investigation, source of isolation) (27-36). The use of attenuated total 

reflectance (ATR) mode for acquiring FTIR spectra makes it a rapid, reagent-free and 

affordable alternative to existing microbial identification and strain-typing techniques. 

Similar to ATR-FTIR spectroscopy, high-resolution magic-angle spinning nuclear 

magnetic resonance (HR-MAS NMR) spectroscopy is a non-targeted whole organism 

fingerprinting technique. In microbiology, most commonly, NMR spectroscopy is used to 

observe in vivo metabolic profiles of microorganisms in the presence of stress factors 

such as antimicrobials, metabolite discoveries and cell wall structural characterization 

(37-41). HR-MAS NMR spectra collected from intact microorganism illustrates the 

complete biochemical components (i.e., lipids, proteins, carbohydrates, etc.) that are 

associated with the observed nuclei (i.e., 1H, 13C, 31P). Various studies have evaluated 

HR-MAS NMR spectroscopy for microbial identification and strain typing with successful 

results compared to conventional methods both in our laboratory and others (42-44). Both 

ATR-FTIR and HR-MAS NMR spectroscopy are non-destructive and reagent-free 

techniques with high discriminatory power. Comparing NMR and FTIR spectroscopy for 

differentiating phylogenetically similar yeasts such as C. albicans and Candida 

dubliniensis provided similar results (42, 45). Combining information collected from both 

HR-MAS and ATR-FTIR spectroscopy may allow for high discrimination power of species 

and potentially aid in strain typing for the investigation of outbreaks and biomarker 

discovery. 

In this study, Chilean outbreak strains of C. parapsilosis sensu stricto were collected from 

Chile’s public health reference laboratory and analyzed and compared by microsatellite 

genotyping, WGS and, ATR-FTIR and HR-MAS NMR spectroscopy. Evaluation of the 

spectroscopic methods with the currently accepted microsatellite genotyping techniques 

will determine the most sensitive and rapid strain-typing method for C. parapsilosis 

complex and C. parapsilosis sensu stricto, allowing for early detection, rapid identification 

thereby reducing mortality rates during outbreak and epidemiological investigations. 
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7.3. MATERIALS AND METHODS 

7.3.1. Sample collection 

A total of 42 in situ C. parapsilosis (Table A.10) were retrospectively collected from 

Chilean hospitals of a suspected outbreak and sent to Quebec’s microbiology reference 

laboratory, Laboratoire de Santé Publique du Québec (LSPQ) for the evaluation. The 

isolates were collected from 9 hospitals and 17 dialysis centers from frozen cultures 

between 2012-2013 from infected patients or probable carriers (Table A.10). 

7.3.2. Purity assessment 

To assess for the presence of mixed isolates, all specimens were re-streaked onto 

Sabouraud dextrose agar (SAB; BBL™) and BBL™ CHROMagar™ Candida (Becton 

Dickinson, Sparks, MD, USA) plates. Any heterogenous colonies-looking plates were re-

streaked onto both SAB and CHROMagar™ Candida from an isolated colony. 

7.3.3. Antimicrobial susceptibility testing 

The selected 10 isolates (Table 7.1) that were used for WGS, ATR-FTIR 

spectroscopy, NMR spectroscopy, microsatellite molecular strain typing (MSMT), and 

antimicrobial susceptibility testing (AST) was achieved by following the Clinical and 

Laboratory Standards Institute (CLSI) reference method for broth dilution antifungal 

susceptibility testing of yeasts (M27Ed4). In brief, antifungals such as amphotericin B, 

flucytosine, echinocandins and azoles of varying concentrations (0.008-128 µg/mL) were 

dehydrated into a 96-well microtiter plate suspended in 100 µL specialty microbiology 

RMPI-1640 broth as indicated in  

Table A.12. Per each sample that was cultured onto SAB and incubated for 24 h at 

35°C, 0.5 MacFarland standards in 0.85% saline and confirming a 0.76% transmittance 

using a spectrophotometer at 530 nm to create a 1-5x106 cells/ mL suspension. The 

suspension is diluted in RMPI-1640 culture medium to create a final 0.5x103 to 2.5x103 

CFU/mL solution. In the 96-well plate (Table A.12), 100 µL of the suspension was 

inoculated into each well and incubated for 24 h at 35°C. 
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Table 7.1. Selected details of isolates of varying microsatellite clusters for strain typing 
analysis by ATR-FTIR spectroscopy, HR-MAS NMR spectroscopy and WGS 

LSPQ ID2 MST Cluster Hospital Center Date of isolation Halotype 

MY076475 CL1 Aguirre Aguirre 04-11-2012 AB[AC]E[AC] 

MY077970 CL1 Hurtado San Gabriel 02-20-2013 AB[AC]E[AC] 

MY077968 CL2 Hurtado CD4 12-07-2012 AB[AC]EC 

MY077962 CL2 Pto Montt Pto Montt 04-30-2013 AB[AC]EC 

MY077956 CL3 Hurtado CD3 12-06-2012 ABA[AB]A 

MY077961 CL3 Hurtado La Serena 01-25-2013 ABA[AB]A 

MY077958 CL4 Hurtado Rosita 03-05-2013 ABAB[BC] 

MY077959 CL4 San Borja San Borja 01-25-2013 ABAB[BC] 

MY077952 CL5 San Borja San Borja 11-08-2012 BA[AB]C[DE] 

MY077954 CL5 San Borja San Borja 03-09-2013 BA[AB]C[DE] 

7.3.4. Microscopic assessment 

Of the 10 isolates used for WGS, MSMT, AST, ATR-FTIR spectroscopy, and NMR 

spectroscopy, the isolates were also grown on cornmeal agar with tween 80. The agar 

was scratched with a sample-inoculated pick where the surface of the scratched agar was 

covered with a sterile cover slip and incubated for 48 h at 30°C. Microscopic images were 

collected using an Olympus microscope with the 10x and 40x magnification to capture 

the cellular morphology of the samples grown on the plate. 

7.3.5. Species identification 

7.3.5.1. Ribosomal DNA sequencing for confirmation of C. parapsilosis 

designation.  

All strains were PCR amplified and sequenced at the commonly used loci for 

C. parapsilosis complex species discrimination (D1/D2 and ITS regions at the 5' end of 

the 18S rDNA). Identification was obtained by BLAST similarity searches against those 

found GenBank nr nucleotide database at the National Center for Biotechnology 

Information and that of CBS-KNAW Fungal Biodiversity Centre.  

7.3.5.2. MALDI-TOF MS species identification 

All isolates were identified by MALDI-TOF MS using manufacturer guidelines. In brief, 

after a C. parapsilosis isolates are grown on a culture media agar, a sample is deposited 

and treated with 0.5 µL formic acid onto a target plate, air-dried then treated with 1 µL α-
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cyano-4-hydroxycinnamic acid, air-dried and inserted into the MALDI-TOF MS system 

which is placed under vacuum. A nitrogen laser is utilized to vaporize the biomolecules 

within the microorganisms to yield a mass profile of the biomolecules unique to the given 

species to which the microorganism belongs. The MALDI-TOF mass spectrum is then 

compared to other spectra in the commercial MALDI-TOF MS spectral database to 

confirm the identity of the isolate as C. parapsilosis. 

7.3.5.3. ATR-FTIR spectroscopy-based species identification  

In addition to rDNA sequencing for species confirmation of the isolates, all strains 

where interrogated in a previously created ATR-FTIR spectral database (19). Sample 

preparation and spectral acquisition procedure follow the one previously described in the 

thesis. In brief, colonies were picked directly from 48 h incubated plates (at 30°C) and 

deposited onto the ATR sampling surface per sample in triplicate. Sixty-four background 

co-added scans were acquired before every 64 co-added sample scans taken at 8 cm-1 

spectral resolution. 

7.3.6. Strain typing techniques  

7.3.6.1. ATR-FTIR spectroscopy strain-typing method 

Spectra collected using the methodology described in section 7.3.5.3 were assigned 

individual class designation and subjected to a feature selection algorithm to determine 

the spectral regions associated with the highest discrimination between all “classes”, with 

the assumption that each individual C. parapsilosis isolate is different from the others. 

The triplicate spectra (per sample) were then averaged and analyzed by hierarchical 

cluster analysis (HCA) to determine relative spectral similarity distances between the 

observed replicates and the different classes.  

7.3.6.2. NMR spectroscopy 

NMR spectra were collected on a Bruker Ascend™ 600 MHz NMR spectrometer. The 

microorganisms were cultured using the same methods for MALDI-TOF MS and ATR-

FTIR spectroscopy-based techniques for microorganism identification. Colonies on the 

culture plate were harvested with a sterile needle and transferred into and NMR insert, 



219 

 

sealed, and placed into a rotor containing an NMR spectroscopy reference compound 

(trimethylsilylpropanoic acid) dissolved in D2O. Spectra were collected using a 1H probe, 

the 1H NMR acquisition parameter are as follows: frequency 600 MHz, pulse angle 54.7⁰ 

and centered a 0 ppm in the 0-6 ppm spectral region. One spectrum was acquired per 

isolate (10 selected) where they were analyzed by HCA to determine relative spectral 

similarity distances between the observed 10 isolates.  

7.3.6.3. Microsatellite genotyping 

Five polymorphic microsatellite markers were selected: markers B, G, CP1α, CP4α 

and CP6α. These markers have successfully been used for molecular typing of 

C. parapsilosis strains (46, 47). Each of these markers can be mapped to a distinct 

genetic locus found at least 200 kilobases from one another. The markers B, G and CP6α 

are found, likely, on the same chromosome (46, 47). 

Microsatellite PCR reactions of 50 µL were composed of: 5X Phusion HF buffer (1X), 200 

nM of each primer, 200 nM de dNTP, 1 U of Phusion HF DNA polymerase and 2 µL of C. 

parapsilosis DNA prepared according to PR-MY-038 method. The following PCR cycle 

was used: 95°C for 3 min followed by 35 amplification cycles (95°C 30 sec, 58°C 30 

seconds and 72°C for 1 min). The amplified fragments were then separated on a 3% 

agarose gel (2% Nusieve GTG and 1% Seakem GTG). The amplified DNA bands were 

visualized under UV light after ethidium bromide staining (Figure A.8) (PCR primers used 

data is not shown). 

7.3.6.4. Whole genome sequencing 

Gene extraction was achieved by preparing a 2 McFarland sample with glass beads 

in a 2 ml Eppendorf tube with 1 mL buffer solution. DNA was automatically extracted with 

NucliSense EasyMag 2.1 (BioMérieux, Marcy L’Étoile). Amplification of the DNA is 

achieved by PCR and pulsed field gel electrophoresis to validate the DNA have been 

extracted. WGS is completed by Illumina and cleaning of reads was achieved with 

Trimmomatic (http://www.usadellab.org/cms/?page=trimmomatic) and quality control 

(before and after cleaning of reads) of the reads was completed with FastQC 

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Epidemiological analysis 

http://www.usadellab.org/cms/?page=trimmomatic
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/


220 

 

[core single nucleotide variants] was achieved by mapping of the reads, variant calling, 

to a reference C. parapsilosis strain CDC317 (957321 bp genomic sequence, reference 

in NCBI: HE605209.1) and construction of a pseudo-alignment with SNVPhyl 

(https://snvphyl.readthedocs.io/en/v1.0/install/versions/).  

7.4. RESULTS AND DISCUSSION 

7.4.1. Purity assessment 

All the colonies, apart from two, displayed a uniform purple-pink color on 

CHROMagar™ Candida media and smooth white color on SAB; consistent with a pure 

culture of C. parapsilosis. The two strains that displayed mixed coloration from cream to 

purple-pink on CHROMagar™ Candida were re-streaked (single colony) onto another 

CHROMagar™ Candida plate and mixed coloration was observed when an isolated 

colony from both strains was streaked once again on CHROMagar™ Candida, concluding 

that these isolates are pure but naturally show differential coloration on CHROMagar™ 

Candida. 

7.4.2. Species identification  

C. parapsilosis (sensu stricto) can possibly be mistaken for Candida orthopsilosis and 

Candida metapsilosis. Both of these species were formerly classified under 

C. parapsilosis groups II and III (48) and are considered part of C. parapsilosis complex. 

To confirm that the isolates received from Chile Public Health Institute were bona fide 

C. parapsilosis strains, the D1/D2 and ITS regions of the ribosomal DNA were 

sequenced. The DNA sequences of 41 strains were found to be the same and bear 100% 

identity to C. parapsilosis nucleotide records found listed on both the NCBI Genbank (e.g., 

AB741060.1 Genbank record) and CBS-KNAW Fungal Biodiversity Centre databases. 

However, one isolate was identified as C. orthopsilosis (strain MY077963). MALDI-TOF 

MS, WGS and ATR-FTIR spectroscopy method of microorganism identification all were 

in agreeance with the PCR gene sequencing identification. The one strain of C. 

orthopsilosis collected was omitted from the study. 

https://snvphyl.readthedocs.io/en/v1.0/install/versions/
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Interestingly, the C. parapsilosis were correctly identified by the ATR-FTIR spectroscopy-

based method. The current ATR-FTIR spectral database only consists of Canadian 

yeasts and a handful of yeasts from the United Kingdom, however, all the Chilean isolates 

were correctly identified, even though C. parapsilosis has genetic plasticity and varies 

geographically, but the genetic differences did not hamper its identification by ATR-FTIR 

spectroscopy.  

7.4.3. Microsatellite molecular typing  

MSMT of the 41 C. parapsilosis isolates resulted in 6 genotypes encompassing >2 

isolates sharing the same microsatellite profiles (clusters identified as CL1 through CL6 

and are color coordinated throughout the current chapter) – suggesting a multicenter 

polyclonal outbreak (Table 7.2). CL1-CL2 and CL3-CL4 are closely related (with a 

difference of one and two alleles, respectively), with CL5 and CL6 being the most 

dissimilar from the others (Table 7.2). Details per isolate can be found in Table A.10. Of 

the 41 isolates, 26 isolates were part of the potential polyclonal outbreak while the other 

isolates exhibited halotypes that were unique (one of a kind).  

Table 7.2. MSMT clusters assignments based on selected microsatellite markers and 
alleles determined by gel electrophoresis with ATR-FTIR cluster assignment relative to 

MSMT clusters. 

CLUSTERS MICROSATELLITE MARKERS AND ALLELES 

MSMT clusters B G CP1α CP4α CP6α 

CL1 A B AC E AC 

CL2 A B AC E C 

CL3 A B A AB A 

CL4 A B A B BC 

CL5 B A AB C DE 
CL6 D A A F C 

The study is focused on strain typing between the MSMT clusters and how other strain 

typing techniques correlate with the standard method for strain typing. While there are 6 

clusters of potential outbreak strains, CL6 through further investigation consists of 2 

isolates which were obtained from the same hospital and same patient 19 days apart. 

Since the isolate was isolated from the same patient, it is not of interest for comparison 

with the other strain typing methods. 
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As such, due to limited resources, only 10 isolates of the 24 isolates belonging to MSMT 

clusters CL1-CL5 were examined by WGS, AST, ATR-FTIR spectroscopy, and NMR 

spectroscopy. Two isolates of each MSMT cluster were selected and details of the 

isolates can be found in Table 7.1. 

7.4.4. Antibiogram phenotypes of selected isolates 

None of the 10 isolates selected had the same antimicrobial susceptibility profiles. 

Isolate MY076475 (CL1) and MY077957 (CL2) has a difference of 1 reading of minimum 

inhibition concentration (MIC) of caspofungin and isolate MY077970 (CL1) and 

MY077962 (CL2) also has a difference of 1 reading of MIC, also for the drug caspofungin. 

Additionally, the 2 isolates from MSMT CL3 also have differences of 1 reading, but for a 

different antifungal, micafungin.  

Table 7.3. Minimal inhibitory concentrations of antifungals in µg/mL of 10 Candida 
parapsilosis isolates and 2 reference isolates and microsatellite strain type (MSMT) 

 MSMT Minimal inhibitory concentrations of antifungals in µg/mL 

Isolate # Cluster 5FC1 AMP2 ANI3 CAS4 MIC5 FLU6 ITR7 POS8 VOR9 

LSPQ-01609 REF 8 1 0.06 0.12 0.12 16 0.12 0.03 0.12 

LSPQ-01610 REF 2 0.25 1 0.25 0.5 4 0.12 0.06 0.06 

MY076475 CL1 2 0.25 1 0.5 1 0.5 0.03 0.016 0.016 

MY077952 CL5 2 0.25 1 0.25 0.5 2 0.12 0.03 0.03 

MY077954 CL5 2 0.05 2 0.25 1 2 0.12 0.06 0.06 

MY077956 CL3 2 0.5 2 0.5 2 0.5 0.06 0.016 0.016 

MY077957 CL2 2 0.25 1 1 1 0.5 0.03 0.016 0.016 

MY077958 CL4 2 0.25 2 0.25 0.5 0.5 0.03 0.016 0.016 

MY077959 CL4 2 0.5 2 0.25 1 0.5 0.016 0.016 0.016 

MY077961 CL3 2 0.5 2 0.5 1 0.5 0.06 0.016 0.016 

MY077962 CL2 2 0.12 1 1 1 0.5 0.016 0.016 0.016 

MY077970 CL1 2 0.12 1 0.5 1 0.5 0.016 0.016 0.016 

1Flucytosine, 2Amphotericin B, 3Anidulafungin, 4Caspofungin, 5Micafungin, 6Fluconazole, 
7Itraconazole, 8Posaconazole, 9Voriconazole 

Although through MSMT and achieving like-halotypes of at least 2 isolates, their 

antifungal susceptibility profiles are different. As such, AST for strain-typing is not a 

reliable method to ascertain isolates are of the same strain type. Phenotypic characteristic 

such as the MIC of various antifungal varies with the environment and several stress 
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factors and therefore are actively changing. Although not a good method for strain-typing, 

it may be useful for determining clustering patterns based on spectrotyping techniques to 

be discussed in the following sections. 

7.4.5. Microscopic phenotype of selected isolates 

Like the antibiogram of the 10 selected potential outbreak strains of C. parapsilosis, 

additional phenotypic analysis such as the cell morphology were analyzed to provide 

additional information to aid in describing relationships of the strains as a prelude to 

spectroscopic analysis. As a result of observing the strains under the microscope at 10x 

and 40x magnification, 6 different morphologies were observed (Figure A.9). Table 7.4 

indicates which cell morphology was observed for the 10 selected isolates relative to the 

MSMT clusters. 

Table 7.4. Classification of potential Chilean Candida parapsilosis isolates by cell 
morphology grown on corn meal agar 

Isolate MSMT cluster Cell morphology classification 

MY076475 CL1 CM1 

MY077952 CL5 CM2 

MY077954 CL5 CM3 

MY077956 CL3 CM4 

MY077957 CL2 CM5 

MY077958 CL4 CM3 

MY077959 CL4 CM3 

MY077961 CL3 CM5 

MY077962 CL2 CM6 

MY077970 CL1 CM3 

 

The cell morphology of both isolates belonging to MSMT CL4 were observed to have the 

same cell type/growth, however, two other isolates not belonging to the CL4 clusters were 

also demonstrated the same cell type. As such, for obvious reasons, cell morphology is 

an inefficient tool for strain typing, but is traditionally standard for mycologists to identify 

species through microscopy. 
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7.4.6. Comparison of alternative strain typing techniques methods to 

microsatellite molecular strain typing 

7.4.6.1. Whole genome sequencing 

Though MSMT is widely used to strain type C. parapsilosis, it is not a standardized 

method for epidemiological studies, WGS is much more specific than MSMT and standard 

for surveillance but has yet to be implemented due to high cost, requiring experts, long 

result turn around time (yeasts has genome that is approximately 37 Mbp, bacteria is 

approximately 3.7 Mbp for comparison) and gap in research knowledge on gene function 

of multiple genes. Clusters generated from WGS differences of the 10 selected C. 

parapsilosis isolates were compared to clusters obtained from MSMT. WGS obtained 4 

clusters as opposed to 5 clusters by MSMT (Figure 7.1). WGS clusters are labeled as 

W1, W2, W3 and W4. 

 

Figure 7.1. Core single nucleotide variant whole genome sequencing (WGS) analysis 
illustrated in a Newick phylogenetic tree of selected C. parapsilosis outbreak strains – 
colors resemble microsatellite molecular strain typing clusters in the current chapter. 

WGS clusters are labeled as W1, W2, W3 and W4  

MSMT clusters CL1 and CL2 were grouped into one cluster with <1% genetic variation 

and 13-34 SNPs difference (W3), suggesting clonality between the two MSMT clusters 

(Table A.14). Moreover, the isolate in CL5 (W4) by WGS were clustered together with a 

single SNP difference and those isolates in CL4 (W2) also clustered together but with a 

SNP difference of 4. Lastly, isolates of CL3 (W1) also were in agreeance with MSMT and 

clustered together with a SNP difference of 31 (Table A.14). As such, based on WGS 

results, CL3 and CL4 are least similar to the other MSMT cluster (~81% genetic variation), 
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CL1 and CL2 are the same strains, and CL3 is more similar to CL1-CL2 than CL3-CL4 

(this pair has ~14% genetic variation) (Figure 7.1).  

7.4.6.2. ATR-FTIR spectroscopy 

ATR-FTIR spectra was acquired from all 41 isolates. Through the spectrotyping 

technique described in the previous chapters, each ATR-FTIR was labelled based on 

MSMT classification. Feature selection was performed and used to generate HCA 

dendrograms (Figure 7.2), depicting the spectral similarity between MSMT clusters. 

Isolates making up the MSMT clusters CL2 and CL3-CL4 being combined into one cluster 

by ATR-FTIR spectroscopy. While CL1 derived from MSMT data contained 14 isolates, 

HCA of the ATR-FTIR data placed these 14 isolates in multiple smaller clusters, 

highlighting additional phenotypic differences among the isolates.  

 

Figure 7.2. Comparison between Chilean C. parapsilosis suspected outbreak isolates 
using microsatellite (MSMT) markers and ATR-FTIR spectroscopy spectra by 

hierarchical cluster analysis using the spectral. (A) shows the MSMT-derived cluster is 
divided with CL2 cluster, (B) Isolates clustering with like-hospital within 2 months. (C) 
Isolates clustering with different hospitals within 4 months, (D) MSMT-derived clusters 

CL3 and CL4 clustered together and (E) Same clustering as MSMT. MSMT-derived CL5 
is not observed by ATR-FTIR spectroscopy 
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From Figure 7.2, using a threshold of 65% similarity for ATR-FTIR analysis, section (A) 

shows the MSMT-derived cluster is divided with CL2 cluster, (B) Isolates clustering with 

like-hospital within 2 months. (C) Isolates clustering with different hospitals within 4 

months, (D) MSMT-derived clusters CL3 and CL4 clustered together and (E) Same 

clustering as MSMT. MSMT-derived CL5 is not observed by ATR-FTIR spectroscopy. 

Utilizing only the selected 10 isolates, similar clustering is observed and described in 

section 7.4.7. 

7.4.6.3. 1H HR-MAS NMR spectroscopy 

Non-destructive, whole-organism fingerprinting 1H HR-MAS NMR method was 

employed to provide spectra of 10 potential C. parapsilosis outbreak strains that were 

typed by WGS and ATR-FTIR spectroscopy.  

 

Figure 7.3. 1H HR-MAS NMR spectra of outbreak C. parapsilosis isolates labeled by 
MSMT cluster and last 2 digits of their isolate identification number. Spectrum of 

Candida auris is present for visualization purposes of difference in species by HR-MS 
NMR spectroscopy.  

Through HCA analysis, MSMT clusters CL3, CL4 and CL5 were also observed by 

analysis of the NMR spectra using region between 0 and 3.0 ppm and 4.2 to 5.4 ppm. 

These spectral regions are associated with multiple metabolites such as lipids, and amino 

acid (e.g., arginine, serine, threonine), ethanol, glucose and more (Figure 7.4). 1H HR-

MAS NMR is an extremely powerful technique that can help elucidate the nature of the 

chemical compounds responsible for the discrimination of the C. parapsilosis isolates by 

FTIR spectroscopy. This approach should be vigorously pursued in the future and is 

beyond the scope of the current thesis work.  
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7.4.7. Comparison of all strain-typing methods 

By comparing MSMT and ATR-FTIR clusters to the Newick phylogeny tree generated 

from the WGS data, WGS clusters are agreeing with both MSMT and ATR-FTIR clusters 

(Figure 7.4). Interestingly, CL1 and CL2 in the WGS Newick tree, corresponds to those 

generated by the ATR-FTIR-based typing method (grouped together) while MSMT 

clustered into two different genotypes. Furthermore, by ATR-FTIR spectroscopy, MSMT 

CL5 is clustering with CL1 and CL2 while the two (CL5 and CL1-CL2) MSMT genotypic 

profiles share no common alleles. By WGS, the MSMT clusters of CL1 and CL2 are in 

the same clusters and the two clusters and closely related to CL5 (agreeing with ATR-

FTIR spectroscopy). 

 

Figure 7.4. Summary of strain typing techniques; (A) microsatellite strain typing (MST), 
(B) whole genome sequencing (WGS), (C) high resolution magic angle spinning nuclear 
magnetic resonance (NMR) spectroscopy and (D) attenuated total reflectance Fourier 

transform infrared (ATR-FTIR) spectroscopy. Results are displayed using a dendrogram 
generated from hierarchal cluster analysis of microsatellite markers, SNPs difference, 

1H shifts and selected wavenumbers from the ATR-FTIR spectra. 

Results so far are promising for ATR-FTIR spectroscopy for strain-typing C. parapsilosis 

(a highly clonal microorganism) and WGS have so far validated close clustering of certain 

clusters. Moreover, increasing the microsatellite markers to more than the 5 used in the 

study may increase the differences between isolates within the current MSMT clusters. 

For example, the 2 isolates of CL1 currently have the halotype AB[AC]E[AC] using the 5 
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microsatellite markers, however, increasing to more markers may give rise to different 

halotypes from the 2 isolates. If this were true, then clustering would be in agreeance with 

the 2 spectroscopic techniques, suggesting the difference in phenotype of the isolates, 

however, by WGS, they are certainly related. Also, it should be noted that isolate 

MY077970 (CL1) and MY077962 (CL2) in Figure 7.4 are closely clustering together and 

have similar AST profiles though by 1H HR-MAS NMR spectroscopy, the same clustering 

was not observed. Perhaps 13C HR-MAS NMR may provide insight than 1H for the CL1 

and CL2 isolates. For all 4 strain typing methods investigated in the current chapter, 

MSMT clusters CL3, CL4 and CL5 were the same while WGS grouped CL1 and CL2 

together and by both whole organism fingerprinting techniques, CL1 and CL2 where 

mixed.  

Table 7.5. Summary of strain typing techniques; microsatellite strain typing, whole 
genome sequencing (WGS), high resolution magic angle spinning nuclear magnetic 
resonance (NMR) spectroscopy and attenuated total reflectance Fourier transform 

infrared (ATR-FTIR) spectroscopy results of clustering 

MSMT halotype and cluster Other strain typing techniques 

Halotype MSMT WGS ATR-FTIR cluster NMR cluster 

AB[AC]E[AC] CL1 W3 A1 A2 Mix 

AB[AC]EC CL2 W3 A1 Mix 

ABA[AB]A CL3 W1 A3 N2 

ABAB[BC] CL4 W2 A4 N3 

BA[AB]C[DE] CL5 W4 A5 N4 

DAAFC CL6 - A6 - 

C. parapsilosis grown on SAB has multiple morphological forms compared to other 

commonly isolated yeasts such as C. albicans, C. dubliniensis and C. tropicalis. Only 

C. albicans compared to the other Candida species forms true hyphal forms (49). Unlike 

C. albicans, not all strains of C. parapsilosis have the capability of forming biofilms 

(extracellular polymeric substances) as they do not form true hyphal. Also compared to 

other Candida spp., C. parapsilosis produces minimal extracellular matrices (high levels 

of carbohydrates and low levels of protein) (7). As such, it may be interesting to examine 

biofilms of C. parapsilosis and how it related to the ATR-FTIR spectra. Glucose 

concentrations in the cells are directly related to biofilm formation and the increase in 

glucose metabolism, increases the upregulation of the pathways associated with glucose 
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metabolism which in turn may increase the biofilm formation and antifungal resistance 

(50, 51).  

7.5. CONCLUSION 

While ATR-FTIR spectroscopy did not provide identical results to MSMT, it was the 

first evaluation for whole organism fingerprinting strain typing of C. parapsilosis. The 

results of the study suggest discrimination of potential outbreak strains may be possible 

through spectrotyping and how ATR-FTIR spectra of microorganisms may be based on 

both phenotypic and genotypic information. The current study is considered as a 

preliminary work to explore relationship between different typing methods. More work is 

required to conclude on the feasibility of the method for strain typing for tracking potential 

outbreaks, however, if validated, the technology and technique will improve turnaround 

time compared with genotyping and provide resource limited laboratories with an 

inexpensive tool for strain typing.  
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Connecting statement 6 

The following section discusses the major findings of the previous chapters and 

implications for the implementation of the ATR-FTIR spectrotyping technique for microbial 

analysis. 
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CHAPTER 8.  GENERAL DISCUSSION  

The research work presented in this thesis is aimed at the development, 

standardization, and evaluation of a novel spectrotyping approach using attenuated total 

reflectance Fourier transform (ATR-FTIR) spectroscopy as a microbial identification and 

strain-typing technique. In this work, ATR-FTIR spectrotyping of over 200 species (from 

over 70 genera) isolated from clinical specimens and food sources was conducted. The 

results of this work successfully demonstrated the potential applicability of ATR-FTIR 

spectrotyping for microbial identification at the Gram-stain type, genus, species, strain, 

and serotype levels.  

Beyond providing evidence supporting these potential applications, the research work 

presented in this thesis has demonstrated that the ATR-FTIR spectrotyping technique 

can be readily integrated in current clinical and food microbiology lab workflows. 

Conventional biochemical techniques for species identification may not work for all 

microorganisms and may require that genetic sequencing be performed to confirm 

species identification. The ATR-FTIR spectrotyping technique may potentially be used to 

speciate various organisms once conventional biochemical techniques have been used 

to determine the genera. This type of application will greatly improve time-to-result and 

requires no reagents. Furthermore, the methodology is extremely simple and can easily 

be implemented in laboratories of all sizes. The ATR-FTIR spectrotyping technique may 

also have a potential role as an adjunct to matrix-assisted laser desorption/ionization time 

of flight mass spectrometry (MALDI-TOF MS), which is well known for its inability to 

differentiate between phylogenetically similar microorganisms (such as Shigella spp. and 

Escherichia coli) using the mass range relating to ribosomal proteins. The ATR-FTIR 

spectrotyping technique may also potentially serve as a rapid screening tool for outbreak 

detection.  

For the advancement of ATR-FTIR spectroscopy in clinical microbiology, the current 

thesis provides standardized operating procedures for the growth of the microorganisms. 

Slight formulation differences of the same type of agar culture media may affect spectral 

reproducibility and result in low confidence or misidentification of the microorganism. 

Standard reference strains may be used as a quality control check to ensure the spectral 
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profile of the microorganism is similar to the spectrum of the identical reference strain in 

the spectral database. To provide a more robust methodology, it may be possible to 

construct spectral databases to represent microorganisms grown on various agar culture 

media and/or grown under various culturing conditions. Another factor to consider for 

implementation of the methodology would be to validate different makes and models of 

spectrometers. Not all spectrometers are built the same and the spectra may vary in 

wavenumber alignment and signal-to-noise ratio. A spectral database constructed using 

a single spectrometer may not provide accurate results from spectra collected from a 

spectrometer of a different model. Similar to the culture media effect, it may be possible 

using machine learning algorithms to train the prediction model using spectra from 

multiple spectrometers.  

The novel spectrotyping method employed a myriad of multivariate analysis techniques 

such as principal component analysis, hierarchical cluster analysis and support vector 

machine in combination with the use of targeted spectral regions. For microbial 

identification, multiple multivariate models may be combined to create a single-step 

microbial identification method at all the taxonomic levels listed above. Numerous studies 

published in the literature have explored various multivariate statistical analysis tools but 

have yet to directly compare various software and data analysis methods using a large 

set of infrared spectral data of diverse bacteria and yeasts. Evaluation of the 

performances of different algorithms will go towards the development of an expert artificial 

intelligence-based microbial identification system by combining the results of each 

algorithm and by consensus to achieve an accurate microbial identification platform. 

Further work can be pursued for the evaluation of different multivariate analysis 

algorithms and combine selected algorithms to improve predictive accuracy of the ATR-

FTIR spectroscopy-based method for microbial identification and strain typing.  

Phenotypic properties of microorganisms are dependent on multiple environmental 

factors such as the atmospheric conditions, carbon and/or nitrogen source, presence of 

antimicrobials, salts, and metal ions in the surrounding medium, and pH. With changes in 

the surrounding environment, changes in the microorganism’s metabolism as well as 

changes in cell wall composition may take place in order for the microorganism to adapt 
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to the new environment (reiterating the importance of a standard agar culture media). The 

adaptation to the new environment is the result of changes in gene expression such as 

turning on or off genes to produce certain proteins and/or make changes to the cellular 

structure (especially the cellular membrane). That is to say, the genetic code stays the 

same while the phenotype changes. Spectrotyping is a unique spectral classification 

technique solely based on the biochemical composition of a microorganism. As such, the 

evolution of microorganisms (as well as changes in their classification based on genotypic 

data) may impact the performance of the spectrotyping technique for microbial 

identification. Accordingly, spectral databases will also have to evolve over time. 

Increasing the spectral representation of microorganisms from various geographical 

locations and current strains will have to be done. With the need for continual spectral 

database updates, it is uncertain how many isolates are needed for adequate spectral 

representation of one class (i.e., genus, species, serotype). Based on the results of the 

present study, some species may need spectral representation of 5 isolates to provide 

accurate results while other species require more than 20. Adequate spectral 

representation may be species dependent, and phenotypic and genotypic attributes may 

aid in determining the extent of spectral diversity within a given species. For example, if 

a species is known to rapidly evolve and displays varying phenotypes when grown on 

different agar culture media, many more than 20 isolates may be required for adequate 

spectral representation of this particular species.  

For epidemiology, pulsed-field gel electrophoresis is the current gold standard for 

genotyping and detecting outbreaks, but it can be time-consuming and costly, requiring 

intensive training and experience, and sometimes may not be fully transferable between 

laboratories. ATR-FTIR spectrotyping can potentially provide resource-limited 

laboratories with the ability to strain-type microorganisms for surveillance purposes. As 

such, correlation between genotypic and phenotypic attributes between microorganisms 

will need to be further investigated in relation to the observed differences in the ATR-FTIR 

spectra of closely related strains. In this regard, it may be noted that there are many 

factors to consider when trying to relate whole genome sequencing data with phenotypic 

data as some loci on the genome are non-coding with no significant functional 

significance (need to validate regions), multiple genes working together to produce a 
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phenotype, one single nucleotide polymorphism (SNP) causing extreme or no phenotypic 

changes, combination of SNPs to alter phenotypic expression, and SNP altering the 

expression of another gene.  

Spectrotyping can shed light on the nature of the biochemical differences between 

species or strains; however, additional analytical techniques that provide superior 

chemical specificity will be required to identify specific biomarkers. Elucidation of the 

chemical structure of biomarkers responsible for the spectral differences on which 

discrimination between particular species or strains is based, through the application of 

MALDI-TOF MS, liquid chromatography-tandem mass spectrometry and nuclear 

magnetic resonance spectroscopy, may play an important role in increasing confidence 

in ATR-FTIR spectrotyping as a rapid technique for microbial identification and strain 

typing. 
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CHAPTER 9.  CONCLUSION AND SUMMARY 

Fourier transform infrared (FTIR) spectroscopy is a well-established analytical 

technology that has been used in various fields of study such as chemistry, forensics, and 

medicine. In microbiology, the infrared (IR) spectrum of microorganisms acquired directly 

from initial culture is representative of their biochemical composition and is referred to as 

a whole-organism fingerprint. FTIR spectroscopy coupled with the attenuated total 

reflectance (ATR) mode of spectral acquisition greatly simplifies spectral acquisition, thus 

offering an easy-to-use, cost-effective, and sensitive analytical technology.  

The present work addresses the potential applicability of ATR-FTIR spectroscopy in 

routine microbiology for the identification and typing of bacteria and yeasts. At the outset 

of this work, the elaboration of a standardized operating protocol was necessary to ensure 

that the methodologies developed would be directly transferable to external sites for 

validation and potentially routine implementation. This part of the work entailed 

assessment of instrument-to-instrument (make and models) spectral variability, microbial 

sample preparation (effects of culture media and incubation conditions), sample 

deposition approach that ensures controlled and consistent sample humidity, and spectral 

acquisition parameters impacting signal-to-noise ratio. In addition, spectral pre-

processing steps compensating for variability in ambient atmospheric moisture were 

established.  

Following development of a standardized operating protocol, ATR-FTIR-based 

“spectrotyping” was undertaken. Spectrotyping is a novel approach centered on the 

process of determining the differences between spectra (of microorganisms) based on 

the absence or presence and relative intensities of IR absorption bands and was 

assessed in the present work for differentiation of microorganisms at the species level. 

For this purpose, food, and clinical isolates of bacteria (n=2619) and yeasts (n=391) were 

obtained from the frozen collections of 9 microbiology laboratories. These isolates had all 

been identified by matrix-assisted laser desorption ionization–time of flight mass 

spectrometry (MALDI-TOF MS) and conventional biochemical identification techniques 

and belonged to 20 genera of bacteria and 12 genera of yeasts, accounting for a total of 

92 species of Gram-negative (n=14) and Gram-positive bacteria (n=13) and yeasts 
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(n=65). In accordance with the standardized operating protocol, ATR-FTIR spectra of the 

bacterial isolates were acquired in triplicate by directly transferring colonies from the 

culture plate onto the ATR sampling surface. Averaged triplicate spectra of the 2619 

isolates were divided into training and test sets where isolates in the test set were selected 

based on stratified random sampling of ~30% of the total isolates in each group (species). 

Applying a multitude of multivariate spectral analysis methods to the ATR-FTIR spectra 

in the training set (e.g., k nearest neighbor in conjunction with hierarchical cluster 

analysis, principal component analysis) and support vector machine (SVM), a sequential 

pairwise multitier prediction model was constructed. Predictions of Gram-stain type, 

genus, and species were then obtained from this model for the spectra in the test set. The 

prediction model yielded 99.3% and 99.4% correct Gram-stain type identification for 

Gram-negative (n=272) and Gram-positive bacteria (n=312), respectively. At the genus 

level, 100% correct identification was achieved for clinically relevant microorganisms such 

as Shigella spp., Enterococcus spp., Listeria spp., and Staphylococcus spp.; overall, 

94.3% correct genus-level identification was achieved for all genera represented in the 

training set (at least 14 strains per species within each genus). Moreover, at the species 

level, 92.6% and 99.1% correct identification was obtained for Gram-negative and Gram-

positive bacteria, respectively. Importantly, within the Gram-negative group, 100% correct 

species identification was achieved for E. coli (n=31), Pseudomonas aeruginosa (n=47), 

Salmonella enterica (n=42), Shigella flexneri (n=6) and Shigella sonnei (n=12). All 

isolates belonging to major Gram-positive species [Enterococcus faecium (n=22), 

Enterococcus faecalis (n=26), Listeria monocytogenes (n=13), Staphylococcus aureus 

(n=110) and species within coagulase-negative staphylococci (n=43)] were correctly 

identified.  

An external validation study of the ATR-FTIR spectroscopy-based bacteria identification 

method employing the prediction model developed in this work was conducted at one of 

the participating hospitals. Over a 3-month period, a total of 391 bacterial isolates were 

collected directly from culture plates in the routine microbiology laboratory (representative 

of typical species distribution on a daily basis) and were identified by the ATR-FTIR 

spectroscopy-based method in parallel with automated conventional biochemical 

techniques and/or MALDI-TOF MS. Among the 31 species identified by the routine 
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methods, 19 species were not represented in the training set employed to develop the 

prediction model but accounted for only 28 isolates. Among the other 363 isolates, 

belonging to species represented in the training set, 98.7%, 91.3% and 98.4% were 

correctly identified at the Gram-stain type, genus, and species level, respectively. 

Furthermore, the 28 isolates belonging to the non-represented species all gave a result 

of “inconclusive” rather than being misidentified. The development of a sequential 

pairwise multitier prediction model based on spectrotyping of yeasts was undertaken with 

a training set initially consisting of 199 frozen isolates (previously identified by reference 

methods) encompassing 5 genera and 14 species. The performance of the prediction 

model developed with this training set was evaluated in a 4-month external validation 

study in which fresh isolates (n=318) from routine clinical specimens were collected 

directly from culture plates and identified by the ATR-FTIR spectroscopy-based method 

in parallel with MALDI-TOF MS and/or target PCR gene sequencing. Correct species 

identification of 95.6% of the isolates was obtained; the misidentification rate was 0.9% 

(n=3) while 11 isolates, gave a result of “inconclusive”. Following optimization of the 

prediction model with the addition of 62 isolates to the training set, resulting in 

representation of 12 genera and 65 species, re-analysis of the spectra of the 318 routine 

isolates resulted in 99.7% correct species identification with a reduced misidentification 

rate of 0.3% (n=1). Subsequently, the ATR-FTIR spectroscopy-based method for yeast 

identification employing the optimized prediction model was evaluated in a multicenter 

study (unsupervised) encompassing 6 clinical microbiology laboratories using 3 different 

spectrometers of the same model, resulting in 98.3% correct species identification with 

no misidentification of 534 collected isolates.  

Strain typing of yeasts based on infrared spectral profiles was also examined in the 

present work in relation to a retrospective investigation of a potential Candida parapsilosis 

outbreak in Chile. This study entailed typing of 41 isolates from the suspected outbreak 

and enabled a direct comparison between the results obtained by the ATR-FTIR 

spectroscopy-based technique and those obtained by whole-genome sequencing and 

microsatellite molecular typing.  
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The research work presented in this thesis established the potential of employing ATR-

FTIR spectroscopy as a routine technique for microbial identification. The validation 

studies of the ATR-FTIR spectroscopy-based methods for bacteria and yeasts based on 

the prediction models developed in this research demonstrated comparable results to 

well-accepted MALDI-TOF MS, paving the way for future accreditation. The 

implementation of this reagent-free and rapid technique could be of particular benefit to 

smaller-scale microbiology laboratories as a cost-effective alternative to MALDI-TOF MS.  
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APPENDIX 

Table A.1. Table of classification levels of Gram-negative bacteria commonly isolated 
from clinical and food microbiology for the evaluation of ATR-FTIR-based identification 

and discrimination method 

Microorganism Bacteria 

Gram-stain Gram-negative 

Genus Salmonella Escherichia Klebsiella Shigella 

Species S. enterica E. coli K. pneumoniae 

K. oxytoca 

S. sonnei 

S. flexneri 

Serotype Heidelberg 

Typhimurium 

Thompson 

Hadar 

Newport 

Enteritidis 

O157:H7 

non-O157:H7 

  

 

Gram-stain Gram-negative 

Genus Citrobacter Enterobacter Achromobacter Acinetobacter  

Species C. braakii 

C. freundii 

C. koseri 

E. cloacae 

E. kobei 

A. denitrificans 

A. xylosoxidans  

A. baumannii 

 

Non-fermenting Gram-negative bacilli 

Genus Burkholderia Stenotrophomonas Pseudomonas 

Group Non-BCC BCC   

Species B. gladioli B. ambifaria 

B. anthina 

B. cenocepacia 

B. cepacia 

B. multivorans 

B. vietnamensis 

S. maltophilia P. aeruginosa 

 

  



247 

 

Table A.2. Table of classification levels of Gram-positive bacteria commonly isolated 
from clinical and food microbiology for the evaluation of ATR-FTIR-based identification 

and discrimination method 

Microorganism Bacteria 

Gram-stain Gram-positive 

Genus Staphylococcus Enterococcus Listeria 

Group Non-CoNS CoNS 
  

Species S. aureus S. capitis 

S. epidermidis 

S. 

haemolyticus 

S. hominis 

S. lugdunensis 

S. warneri 

E. faecium 

E. faecalis 

E. gallinarum 

L. 

monocytogenes 

L. innocua  

L. ivanovii 

L. marhii 

L. seeligeri 

L. welshimeri 

Antimicrobial 

resistance 

MRSA MSSA 
 

VRE VSE 
 

 

Genus Streptococcus Bacillus 

Group Group A Group B Group G S. viridans grp. 
 

Species S. 

pyogenes 

S. 

agalactiae 

S. 

dysgalactiae 

S. anginosus 

S. mitis 

S. sanguinis 

S. salivarius 

S. mutans 

B. cereus 

B. 

thuringiensis 
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Table A.3. Table of classification levels of yeasts commonly isolated from clinical and 
food microbiology for the evaluation of ATR-FTIR-based identification and discrimination 

method 

Kingdom Fungi 

Microorganism Yeast 

Genus Candida Cryptococcus 

Species C. albicans 
C. auris 
C. dubliniensis 
C. duobushaemulonii 
C. glabrata 
C. guilliermondii 
C. haemulonii 
C. kefyr 
C. krusei 
C. lipolytica 
C. lusitaniae 
C. orthopsilosis 
C. parapsilosis 
C. pararugosa 
C. pelliculosa 
C. tropicalis 
C. utilis 

C. neoformans 

Antimicrobial 
resistance 

Fluconazole 
resistance 

Fluconazole 
sensitive 

 

C. auris 
 

Epidemiology 
strain-typing 

C. parapsilosis 
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Table A.4. Composition of various culture media agar for the evaluation of spectral 
variation of Candida albicans 

Media/manufacturer/final pH Ingredients (g/L) Notes: 

Sabouraud Dextrose Agar 

(SAB)/Difco/5.6+/-0.2 @ RT 
Peptic digest of 

Animal Tissue 
5 Standard yeast nutrient 

agar 
Pancreatic digest of 

Casein 
5 

Dextrose 40 
Agar 15 

TSA 5% Sheep blood 

(Blood)/Oxoid/7.3+/-0.2 @ 25C 
Agar 12 General nutrient agar 
Tryptone 14 
Peptone Neutralized  4.5 
Yeast extract 4.5 
Sodium chloride 5 

Candida chromogenic agar 

(CHROME)/CHROMagar/6.1+/

-0.2 @15-30C 

Agar 15 C. albicans = green 

colonies 
C. tropicalis = metallic blue 
C. krusei = pink, fuzzy 
Other species = white to 

mauve 

Peptone 10.2 
Chromogenic mix 22 
Chloramphenicol 0.5 

Inhibitory Mold Agar (IMA)/BD-

BBL 
Pancreatic Digest of 

Casein 
3 Inhibits mold and bacterial 

growth to promote yeasts 
Peptic Digest of 

Animal Tissue 
2 

Yeast Extract 5 
Dextrose 5 
Starch 2 
Dextrin 1 
Sodium Phosphate 2 
Magnesium Sulfate 0.8 
Ferrous Sulfate 0.04 
Sodium Chloride 0.04 
Manganese Sulfate 0.16 
Agar 15 
Chloramphenicol 0.125 

Potato Dextrose Agar 

(PDA)/Difco/5.6+/-0.2 @ RT 
Potato starch (from 

infusion) 
4 General nutrient for mold 

agar 

Dextrose 20 
Agar 15 
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Figure A.1. DataAnalysis PCA, HCA and forward search methodology descriptions 

 

 

 

Figure A.2. Spectral variances (at 1480-980 cm-1 of the 1st derivative spectra) between 
6 C. albicans isolates (averaged 3 spectra per isolate) grown on 5 different growth 

media 
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Figure A.3. Optimal 1% agar in water (0.99 Aw) cap design with a 176.71 mm3 
headspace volume between the ATR sampling surface and the agar to maintain 

moisture content of colonies 
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Table A.5. Example Standard operating procedure for ATR-FTIR spectroscopy spectral 

collection 
Clinical Microbiology Laboratory 

Standard operating procedure for bacteria and yeast identification by the attenuated total reflectance Fourier transform infrared 
(ATR-FTIR) spectroscopy-based method 

Document No.: ###-###-### Version: YYYY-MM-DD 

Manual: Status: DRAFT 

 Name(s) Signature(s) Date (YYYY-MM-DD) 

Written by    

Revised by    

Approved by    

Document revision history 

Version Effective date Approved by Description of revision 

    

1. PRINCIPLE 
Vibrational spectroscopic techniques provide complementary information on the chemical composition of a biological sample 
without sample processing. Traditionally associated with chemical laboratories, infrared spectroscopy is a well-established and 
relatively simple technique for the study and analysis of virtually any type of sample or material. With the development of Fourier 
transform infrared (FTIR) technology, infrared spectroscopic examination of intact cells, biological tissues, and biofluids (blood, 
serum, urine, and saliva) with minimal sample preparation became feasible, opening the door to biomedical applications of this 
spectroscopic technique.  

2. PURPOSE 
This protocol describes the use of an FTIR Spectrometer (Summit™, operating under OMNIC™ Paradigm™ Software provided by 
Thermo Scientific Inc.), procedures to prepare saliva samples for deposition onto the FTIR sampling surface, how to use the 
OMNIC™ Paradigm™ Software to acquire spectra and how to export spectra for data analysis using TQ Analyst software (Thermo 
Scientific Inc.). Spectrometer is CE marked and the software is 21 CFR Part 11 compliant and includes the data security suite 
(Thermo Scientific Inc.). 
The procedures outlined in the document is strictly for the sample preparation and FTIR spectral acquisition of saliva samples.  
Data analysis is not covered in this manual and can be referred to in a separate SOP manual.  

3. EQUIPMENT AND REAGENTS 
Equipment 

▪ ATR-FTIR spectrometer placed on a laboratory benchtop 
Require access to: 
▪ Containment level 2 and 3 laboratories with biosafety cabinet (BSC) 

Materials 
▪ Disposable 1 µL 
▪ Lint-free tissue 

Reagents 
▪ 70% ethanol (general disinfectant for the ATR sampling surface) 
▪ and/or 0.5% hypochlorite (to disinfect ATR sampling surface for spore forming microorganisms) 

4. SAMPLE COLLECTION 
Samples can be collected from hospitals, food and/or clinical reference laboratories are generally isolated from urine, sputum, 
positive blood cultures, pus, wounds, and swabs from various parts of the body while food-related microorganisms are isolated 
from animal feed and contaminated food products.  
Samples for spectral acquisition can be acquired from samples collected in routine (and cultured onto culture agar media) or from 
long-term frozen storage samples (stored in 10% glycerol at -80°).  

5. SAMPLE PREPARATION (culturing) 
Frozen samples are cultured on media of choice and are subcultured once to ensure purity of the isolates, while samples 
collected from routine (freshly cultured from source) are analyzed as-is. Subculturing of the routine plates may also be required 
to ensure purity of the isolates; however, it is up to the discretion of the microbiologist. It is suggested to use the 4-streak 
quadrant method to obtain isolated colonies and visually assess the purity of the sample in question. If the sample obviously 
impure, additional subculture of the sample may be completed. According to Clinical & Laboratory Standards Institute Guidelines 
(CLSI, 2008), aerobic bacteria are cultured and incubated for 18-24 h at 35 ⁰C ± 2 ⁰C and 30 ⁰C ± 2 ⁰C for 24-48 h for yeasts 

6. SAMPLE DEPOSITION 
Sample are directly isolated from the culture agar plates using a 1 µL disposable loop and deposited onto the ATR sampling 
surface (diamond crystal). Per sample plate, 3 or more spectra are collected from different isolates.  

7. SPECTRAL COLLECTION 
A background and sample scans of 64 co-added scans at an 8 cm-1 resolution between 4000 and 650 cm-1 using the Happ-
Genzel apodization function. The spectrum of the sample is ratioed against the background spectrum to yield a transmittance 
spectrum which is converted to an absorbance spectrum. Using these parameters, an ATR-FTIR spectrum is collected in about 1 
minute, about 3 minutes per sample (3 replicates). 

8. DISINFECTION 
Clean the crystal with 70% ethanol (do not spay directly spray on the spectrometer – will cause aerosol. Moisten tissue with 
ethanol and clean the crystal) 
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Table A.6. Summary table of total number of collected isolates by gram-type, genus, 
species, and strain-type 

Gram-type Genus Species Strain No. isolates collected 

GN Achromobacter denitrificans  2 

GN Achromobacter species  81 

GN Achromobacter xylosoxidans  1 

GN Acinetobacter baumannii-complex  10 

GN Acinetobacter lwoffii  4 

GN Acinetobacter radioresistens  2 

GN Acinetobacter species  3 

GN Acinetobacter ursingii  2 

GN Aeromonas caviae  1 

GN Aeromonas caviae-hydrophila  12 

GN Aeromonas hydrophila  1 

GN Aeromonas sobria-veronii  9 

GN Aureimonas altamirensis  1 

GN Bacteroides fragilis  2 

GN Brevundimonas diminuta  1 

GN Brevundimonas species  1 

GN Burkholderia cepacia  55 

GN Burkholderia gladioli  16 

GN Burkholderia multivorans  1 

GN Burkholderia species  30 

GN Chryseobacterium indologenes  2 

GN Chryseobacterium meningosepticum  1 

GN Chryseobacterium species  1 

GN Citrobacter amalonaticus  5 

GN Citrobacter braakii  15 

GN Citrobacter farmeri  1 

GN Citrobacter freundii  54 

GN Citrobacter koseri  6 

GN Citrobacter sedlakii  1 

GN Citrobacter species  26 

GN Citrobacter youngae  4 

GN Cupriavidus species  2 

GN Delftia acidovorans  1 

GN Edwardsiella tarda  1 

GN Enterobacter aerogenes  15 

GN Enterobacter cloacae complex  44 

GN Enterobacter hormaechei  3 

GN Enterobacter kobei  25 

GN Enterobacter species  54 

GN Erwinia rhapontici  1 
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Continued 

Gram-type Genus Species Strain No. isolates collected 

GN Escherichia coli O157H7 94 

GN Escherichia coli  595 

GN Escherichia fergusonii  4 

GN Escherichia hermannii  1 

GN Escherichia species  29 

GN Escherichia vulneris  2 

GN Haemophilus influenzae  4 

GN Hafnia alvei  29 

GN Hafnia species  14 

GN Kingella denitrificans  1 

GN Kingella kingae  23 

GN Klebsiella aerogenes  1 

GN Klebsiella oxytoca  20 

GN Klebsiella pneumoniae  82 

GN Klebsiella species  20 

GN Moraxella catarrhalis  4 

GN Morganella morganii  15 

GN Neisseria gonorrhoeae  20 

GN Ochrobactrum anthropi  9 

GN Pantoea agglomerans  3 

GN Pantoea species  7 

GN Pasteurella canis  1 

GN Pasteurella multocida  1 

GN Pasteurella species  1 

GN Plesiomonas shigelloides  4 

GN Proteus hauseri  1 

GN Proteus mirabilis  15 

GN Proteus pennei  1 

GN Proteus vulgaris  5 

GN Providencia rettgeri  2 

GN Providencia stuartii  2 

GN Pseudomonas aeruginosa  282 

GN Pseudomonas alcaligenes  1 

GN Pseudomonas chlororaphis  1 

GN Pseudomonas fluorescens  9 

GN Pseudomonas fragi  2 

GN Pseudomonas luteola  1 

GN Pseudomonas mendocina  2 

GN Pseudomonas putida  8 

GN Pseudomonas stutzeri  1 

GN Rahnella aquatilis  1 
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Continued 

Gram-type Genus Species Strain No. isolates collected 

GN Raoultella ornithinolytica  3 

GN Raoultella planticola  1 

GN Roseomonas genomospecies  1 

GN Salmonella bongori Brookfield 2 

GN Salmonella bongori  3 

GN Salmonella enterica Abaetetuba 1 

GN Salmonella enterica Abony 1 

GN Salmonella enterica Adelaide 1 

GN Salmonella enterica Agona 21 

GN Salmonella enterica Alachua 1 

GN Salmonella enterica Amsterdam 1 

GN Salmonella enterica Anatum 2 

GN Salmonella enterica Antum 2 

GN Salmonella enterica Arizonae 1 

GN Salmonella enterica Babelsberg 1 

GN Salmonella enterica Bareilly 1 

GN Salmonella enterica Bleadon 1 

GN Salmonella enterica Bovismorbificans 4 

GN Salmonella enterica Braenderup 13 

GN Salmonella enterica Cerro 1 

GN Salmonella enterica Chester 1 

GN Salmonella enterica cholera-suis 1 

GN Salmonella enterica Cubana 13 

GN Salmonella enterica Durban 1 

GN Salmonella enterica Ealing 1 

GN Salmonella enterica Enteritidis 43 

GN Salmonella enterica Freetown 1 

GN Salmonella enterica Gaminara 1 

GN Salmonella enterica groupB 20 

GN Salmonella enterica groupC1 6 

GN Salmonella enterica groupC2 2 

GN Salmonella enterica groupC2-C3 3 

GN Salmonella enterica groupC3 2 

GN Salmonella enterica groupD 12 

GN Salmonella enterica groupE 2 

GN Salmonella enterica Hadar 73 

GN Salmonella enterica Halle 1 

GN Salmonella enterica Hartford 1 

GN Salmonella enterica Havana 10 

GN Salmonella enterica Heidelberg 94 

GN Salmonella enterica Infantis 12 
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Continued     

Gram-type Genus Species Strain No. isolates collected 

GN Salmonella enterica Johannesburg 7 

GN Salmonella enterica Kentucky 60 

GN Salmonella enterica Kiambu 2 

GN Salmonella enterica L-8,20-i- 1 

GN Salmonella enterica Larochelle 1 

GN Salmonella enterica liib-61-k-1.5 1 

GN Salmonella enterica Lille 5 

GN Salmonella enterica Livingstone 12 

GN Salmonella enterica London 3 

GN Salmonella enterica Mbandaka 1 

GN Salmonella enterica Meleagridis 1 

GN Salmonella enterica Minnesota 1 

GN Salmonella enterica Mishmar 1 

GN Salmonella enterica Mishmar-Haemek 1 

GN Salmonella enterica Molade 10 

GN Salmonella enterica Montevideo 10 

GN Salmonella enterica Muenchen 9 

GN Salmonella enterica Ndolo 1 

GN Salmonella enterica Newport 67 

GN Salmonella enterica Ohio 16 

GN Salmonella enterica Oranienburg 7 

GN Salmonella enterica Orion  6 

GN Salmonella enterica Othmarschen 1 

GN Salmonella enterica Panama 9 

GN Salmonella enterica Paratyphi 1 

GN Salmonella enterica Pollorum 1 

GN Salmonella enterica Pomona 5 

GN Salmonella enterica Poona 1 

GN Salmonella enterica Putten 1 

GN Salmonella enterica Rissen 1 

GN Salmonella enterica Saintpaul 3 

GN Salmonella enterica Sandiego 1 

GN Salmonella enterica Schwarzengrund 34 

GN Salmonella enterica Senftenberg 17 

GN Salmonella enterica Soerenga 1 

GN Salmonella enterica Tennessee 1 

GN Salmonella enterica Thomasville 1 

GN Salmonella enterica Thompson 59 

GN Salmonella enterica Tumodi 1 

GN Salmonella enterica Typhimurium 120 

GN Salmonella enterica Vom 1 
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Continued     

Gram-type Genus Species Strain No. isolates collected 

GN Salmonella enterica Zwickau 1 

GN Salmonella enterica  87 

GN Serratia fonticola  1 

GN Serratia marcescens  32 

GN Shigella boydii  2 

GN Shigella dysenteriae  2 

GN Shigella flexneri  70 

GN Shigella sonnei  80 

GN Shigella species  6 

GN Stenotrophomonas species  55 

GN Vibrio cholerae  2 

GN Vibrio fluvialis  1 

GN Vibrio parahaemolyticus  7 

GN Vibrio vulnificus  1 

GN Yersinia enterocolitica  2 

GN Yersinia frederiksenii  3 

GN Yersinia intermedia  3 

GP Aerococcus urinae  2 

GP Bacillus amyloliquefaciens  1 

GP Bacillus cereus  24 

GP Bacillus circulans  2 

GP Bacillus lichenformis  1 

GP Bacillus megaterium  11 

GP Bacillus species  18 

GP Bacillus subtilis  2 

GP Bacillus thuringiensis  6 

GP Clostridium difficile  19 

GP Corynebacterium amycolatum  2 

GP Corynebacterium aurimucosum  3 

GP Corynebacterium bovis  1 

GP Corynebacterium ihumii  2 

GP Corynebacterium imitans  1 

GP Corynebacterium jeikeium  2 

GP Corynebacterium riegelii  1 

GP Corynebacterium species  2 

GP Corynebacterium striatum  4 

GP Corynebacterium tuberculostearicum  1 

GP Dermabacter hominis  4 

GP Enterococcus avium  1 

GP Enterococcus casseliflavis  8 

GP Enterococcus faecalis VRE 21 
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Continued     

Gram-type Genus Species Strain No. isolates collected 

GP Enterococcus faecalis VSE 20 

GP Enterococcus faecalis  47 

GP Enterococcus faecium VRE 220 

GP Enterococcus faecium VSE 24 

GP Enterococcus faecium  4 

GP Enterococcus gallinarum  3 

GP Enterococcus species VRE 11 

GP Gemella haemolysans  1 

GP Gordonia bronchialis  1 

GP Kocuria kristinae  2 

GP Kocuria marina  1 

GP Kocuria rhizophila  1 

GP Kytococcus sedentarius  1 

GP Lactobacillus fermentum  1 

GP Lactobacillus species  3 

GP Listeria grayi  4 

GP Listeria innocua  9 

GP Listeria ivanovii  6 

GP Listeria monocytogenes  89 

GP Listeria murrayi  1 

GP Listeria seeligeri  6 

GP Listeria welshimeri  12 

GP Micrococcus luteus  16 

GP Micrococcus lylae  2 

GP Micrococcus species  1 

GP Micrococcus yunnanensis  1 

GP Paracoccus yeei  2 

GP Rhodococcus equi  1 

GP Rothia amarae  1 

GP Rothia mucilaginosa  3 

GP Staphylococcus aureus CMRSA 102 

GP Staphylococcus aureus MRSA 176 

GP Staphylococcus aureus MSSA 330 

GP Staphylococcus aureus  458 

GP Staphylococcus capitis  33 

GP Staphylococcus caprae  10 

GP Staphylococcus carnosus  1 

GP Staphylococcus caseolyticus  1 

GP Staphylococcus cohnii  4 

GP Staphylococcus epidermidis  16 

GP Staphylococcus equorum  1 
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Continued     

Gram-type Genus Species Strain No. isolates collected 

GP Staphylococcus haemolyticus  19 

GP Staphylococcus hominis  41 

GP Staphylococcus lugdunensis  18 

GP Staphylococcus pasteuri  9 

GP Staphylococcus saccharolyticus  3 

GP Staphylococcus sciuri  1 

GP Staphylococcus simulans  6 

GP Staphylococcus species  18 

GP Staphylococcus vitulinus  1 

GP Staphylococcus warneri  24 

GP Staphylococcus xylosus  2 

GP Streptococcus agalactiae  12 

GP Streptococcus anginosus  15 

GP Streptococcus canis  3 

GP Streptococcus constellasus  10 

GP Streptococcus cristatus  2 

GP Streptococcus dysgalactiae  5 

GP Streptococcus gallolyticus  2 

GP Streptococcus gordonii  2 

GP Streptococcus groupA  13 

GP Streptococcus groupB  12 

GP Streptococcus groupC  4 

GP Streptococcus groupG  10 

GP Streptococcus infantarius  3 

GP Streptococcus intermedius  5 

GP Streptococcus mitis  5 

GP Streptococcus mitis-group  1 

GP Streptococcus mitis-oralis  10 

GP Streptococcus mutans  2 

GP Streptococcus parasanguinis  10 

GP Streptococcus pneumoniae  20 

GP Streptococcus pyogenes  14 

GP Streptococcus salivarius  17 

GP Streptococcus sanguinis  6 

GP Streptococcus species  6 

GP Streptococcus viridans  6 

GP Streptococcus viridans-group  2 

GP Streptomyces carnosus  1 

GP Turicella otitidis  2 

MD Penicillium roqueforti  9 

YT Candida albicans  171 
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Continued     

Gram-type Genus Species Strain No. isolates collected 

YT Candida auris  20 

YT Candida bracarensis  1 

YT Candida dubliniensis  12 

YT Candida duobushaemulonii  6 

YT Candida famata  1 

YT Candida glabrata  70 

YT Candida guilliermondii  12 

YT Candida haemulonii  4 

YT Candida inconspicua  1 

YT Candida kefyr  9 

YT Candida krusei  17 

YT Candida lambica  1 

YT Candida lipolytica  1 

YT Candida lusitaniae  16 

YT Candida norvegensis  1 

YT Candida orthopsilosis  7 

YT Candida palmioleophila  2 

YT Candida parapsilosis  69 

YT Candida pararugosa  3 

YT Candida pelliculosa  1 

YT Candida rugosa  1 

YT Candida species  48 

YT Candida sphaerica  1 

YT Candida tropicalis  22 

YT Candida utilis  3 

YT Candida zeylanoides  1 

YT Cryptococcus albidus  6 

YT Cryptococcus diffluens  23 

YT Cryptococcus gatti  8 

YT Cryptococcus laurentii  6 

YT Cryptococcus magnus  1 

YT Cryptococcus neoformans  17 

YT Cryptococcus terreus  1 

YT Cryptococcus uniguttulatus  4 

YT Exophiala  dermatitidis  9 

YT Geotrichum candidum  1 

YT Malassezia furfur  1 

YT Malassezia pachydermatis  1 

YT Meyerozyma  caribbica  1 

YT Prototheca wickerhamii  2 

YT Rhodotorula glutinis  2 
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Continued     

Gram-type Genus Species Strain No. isolates collected 

YT Rhodotorula minuta  1 

YT Rhodotorula  mucilaginosa  4 

YT Saccharomyces cerevisiae  16 

YT Saprochaete capitata  1 

YT Sporobolomyces salmonicolor  1 

YT Trichosporon asahii  4 

YT Trichosporon dermatis  1 

YT Trichosporon faecale  1 

YT Trichosporon inkin  1 

YT Trichosporon mucoides  2 

YT Trichosporon mycotoxinivorans  1 

 

 

 

Figure A.4. Visual representation of (A) complete separation of four groups of spectra 
(Class A, B, C and D) while (B) represents the same groups in (A), however, there is an 

increase in representation of each class and (C) represents grouping of Classes A, B 
and C to obtain a well-separated pair of the increased in representation classes 
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Figure A.5. Dendrogram generated from hierarchical cluster analysis and feature 
selection of ATR-FTIR spectra of non-O157 Escherichia coli, E. coli O157:H7, Shigella 

flexneri and S. sonnei depicting 45% spectral similarity between the two genera  
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Figure A.6. Dendrogram generated from hierarchical cluster analysis and feature 
selection of ATR-FTIR spectra of Escherichia coli and Shigella species depicting 67% 

spectral similarity between the two genera  
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Figure A.7. Dendrogram generated from hierarchical cluster analysis and feature 
selection of ATR-FTIR spectra of Escherichia coli O157:H7 and non-O157 E. coli  
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Table A.7. Clinical microbiology laboratories and isolation sources of isolates collected 
in CHAPTER 5 

Code Clinical microbiology laboratory  Code Isolation source 

A Centre de SSS D'Arthabaska-et-de-l'érable Hôtel-Dieu a Abscess 
B Centre de SSS de Trois-Rivières b Aspiration 

C Centre hospitalier régional du Grand Portage c Tissue 

D CHU Sainte-Justine d Bile 

E CSSS Haut-Richelieu/Rouville (Hôpital) e Bronchoscopy 

F Hôpital Charles-LeMoyne f Tonsil swab 

G Hôpital de Gatineau g Caterer 

H Hôpital de Hull j Drain 

I Hôpital de Rouyn-Noranda i Blood 

J Hôpital du Centre-de-la-Mauricie j Bronchial wash 

K Hôpital du Sacré-Cœur de Montréal k Ascite fluid 

L Hôpital Fleurimont l Lung fluid 

M Hôpital général du Lakeshore m Gastric fluid 

N Hôpital Honoré-Mercier n Pus 

O Hôpital Pierre-Boucher o Wound 

P Hôpital régional de Rimouski p Secretion 

Q Hôpital régional de Saint-Jérôme q Urine 

R Hôpital Saint-Luc du CHUM - Microbiologie r Phlem/mucus 

S Hôpital Sainte-Croix s Secretion 

T Laboratoire médical Biron inc. t Skin 

U Laboratoires médicaux CDL inc. u Other 

V Pavillon Hôtel-Dieu 
  

W Hôpital Santa Cabrini 
  

X Site Glen - LAB Microbiologie 
  

Y Centre de SSS de la Haute-Yamaska 
  

Z Centre hospitalier Anna-Laberge 
  

AA Hôpital Brôme-Missisquoi-Perkins 
  

BB Hôpital du Suroît 
  

CC Inst. Univ. de cardiologie et de pneumologie de QC 
  

DD Centre Hospitalier Régional de Lanaudière 
  

EE Hôpital Maisonneuve-Rosemont 
  

FF Hôpital de Verdun 
  

GG Hôpital Notre-Dame du CHUM 
  

HH Hôpital de l'Enfant-Jésus 
  

II Hôpital de Papineau 
  

JJ Hôpital de Chicoutimi 
  

KK Hôpital régional de Rimouski 
  

LL Hôpital général Juif 
  

 



266 

 

Table A.8. Tabulation of Source and origin of routine clinical isolates collected in 
CHAPTER 5 (refer to Table A.7 for letter codes associated with clinical microbiology 

laboratories and isolation source) 

Microorganism 
No. 
isolates 

No. of different clinical 
microbiology 
laboratory (clinical 

microbiology laboratory) 

No. of different 
isolation source 
(Isolation source) 

Candida spp.      
C. albicans 130 22(A-V) 17(a-q) 

C. dubliniensis 13 5(G, M, R, W, X) 6(d, j, l, n, q, u) 

C. glabrata 68 18(B, D-I, K, L, N, R, V, X-CC)  
13(a-c, e, g, j, k, l, n, o, r, q, 

u) 

C. guilliermondii 1 1(Q) 1(u) 
C. kefyr 2 1(X 1(g) 
C. krusei 8 6(D, R, X, CC-EE) 4(u, r, I, q) 
C. lipolytica 1   
C. lusitaniae 16 4(R, X, GG, C) 6(a, b, n, q, r, u) 
C. orthopsilosis 4 4(D, M, R, X) 3(i, q, r) 

C. parapsilosis 32 
12(D, G, H, J, L, M, R, V, CC, 

EE, HH, II) 8(c, e, I, n, o, q, t, u) 
C. pararugosa 1 1(X) 1(c) 
C. pelliculosa 1 1(JJ) 1(i) 
C. tropicalis 23 8(D, H, L, R, BB, CC, GG, KK) 8(a, c, e, I, n, p, q, u) 
C. utilis 3 2(D, R) 1(q) 

Cryptococcus neoformans 7 7(D, K, L, N, R, X, DD) 2(c, j) 
Meyerozyma caribbica 1 1(D) 1(a) 
Rhodotorula mucilaginosa 1 1(LL) 1(u) 
Saccharomyces cerevisiae 5 4(F, R, W, LL) 4(a, I, s, u) 
Trichosporon spp. 1 1(CC) 1(r) 
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Table A.9. Complete list of species represented in the ATR-FTIR reference spectral 
database by microorganism name and total isolates present 

Microorganism Total  Microorganism Total 

Candida spp. 
 

Malassezia spp. 
 

C. albicans 16 M. globosa 1 

C. auris 11 M. furfur 1 

C. bracarensis (Nakaseomyces 
bracarensisa) 

1 M. pachydermatis 2 

C. dubliniensis 13 M. sympodialis 1 

C. duobushaemulonii 3 M. slooffiae 1 

C. ciferrii 1 Meyerozyma spp. 
 

C. (Nakaseomyces) glabrata 17 M. caribbica (Candida fermentati) 5 

C. inconspicua (Pichia cactophila) 1 M. (Candida) guilliermondii 15 

C. intermedia 1 Naganishia spp. 
 

C. metapsilosis 1 N. albida (Cryptococcus albidus) 3 

C. melibiosica 1 N. (Cryptococcus) diffluens 2 

C. nivariensis (Nakaseomyces 
nivariensisa) 

1 Pichia spp. 
 

C. orthopsilosis 9 P. fermentans (Candida lambica) 1 

C. parapsilosis 12 P. kudriavzevii (Candida krusei) 10 

C. palmioleophila 1 P. membranifaciens (Candida valida) 1 

C. (Metschnikowia) pulcherrima 1 P. (Candida) norvegensis 1 

C. (Starmerella) sorbosivorans 1 Prototheca wickerhamii 2 

C. tropicalis 15 Rhodotorula spp. 
 

C. viswanathii 1 R. mucilaginosa 3 

C. zeylanoides 1 R. glutinis 1 

Clavispora (Candida) lusitaniae 10 R. minuta 1 

Cryptococcus spp. 
 

Saccharomyces cerevisiae 13 

C. gattii 5 Saprochaete clavata (Geotrichum clavatum) 1 

C. (Papiliotrema) laurentii  3 Sporobolomyces salmonicolor 1 

C. (Filobasidium) magnus 1 Starmerella (Candida) magnoliae 1 

C. neoformans 9 Trichosporon spp. 
 

C. terreus (Solicoccozyma terrea) 1 T. asahii 4 

C. uniguttulatus 1 T. (Cutaneotrichosporon) mucoides 2 

Cyberlindnera jadinii (Candida utilis) 4 T. (Cutaneotrichosporon) dermatis 1 

Debaryomyces hansenii (Candida famata) 1 T. faecale 1 

Diutinia spp. 
 

T. inkin 1 

D. (Candida) catenulata 1 T. (Apiotrichum) mycotoxinivorans  1 

D. (Candida) rugosa 1 Wickerhamiella (Candida) pararugosa 4 

Exophiala dermatitidis 9 Wickerhamomyces anomalus (Candida 
pelliculosa) 

2 

Geotrichum candidum 1 Yarrowia (Candida) lipolytica 7 

Kluyveromyces spp. 
   

K. marxianus (Candida kefyr) 17 
  

K. lactis (Candida sphaerica) 1 
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Table A.10. Additional isolates collected at Centre hospitalier Sainte-Justine for the 
evaluation (retrospective) of the ATR-FTIR spectroscopy-based microorganism 

identification technique 

Microorganism Isolates 
collected 

Correct species 
identification (%) 

Candida 
 

 

C. albicans 12 12   

C. (Nakaseomyces) glabrata 4 4   

C. (Clavispora) lusitaniae 7 7   

C. orthopsilosis 1 1   

C. parapsilosis 11 11   

C. tropicalis 1 1   

Kluyveromyces marxianus (Candida 
kefyr) 

1 1   

Pichia kudriavzevii (Candida krusei) 2 2   

Total 39 39   
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Table A.11. Detailed information on Chilean outbreak strains of Candida parapsilosis 
(hospital, center, infection date and halotype through microsatellite strain typing) 

MY### ID Hospital Center Infection-date HALOTYPE 

MY076471 Aguirre Aguirre 2011-10-07 AB[AC]E[AC] 

MY076472 Aguirre Aguirre 2012-05-04 AB[AC]E[AC] 

MY076473 Aguirre Aguirre NA CBDEA 

MY076474 Juan de Dios Juan de Dios 2012-08-09 BA[AB]D[DE] 

MY076475 Aguirre Aguirre 2012-04-11 AB[AC]E[AC] 

MY076476 Juan de Dios Cerro Navia 2012-07-19 AB[AC]E[AC] 

MY076477 Juan de Dios Juan de Dios 2012-08-09 AB[AC]E[AC] 

MY076478 Aguirre Aguirre 2012-05-05 AB[AC]E[AC] 

MY076479 Juan de Dios Mendoza 2012-07-03 BC[AE]CC 

MY076480 San Jose Aguirre 2012-04-10 AB[AC]E[AC] 

MY076481 Juan de Dios Juan de Dios 2012-07-31 BC[AE]DC 

MY076482 H.FACH Alfa Dial 2012-07-27 BA[AB]A[DE] 

MY076483 San Jose Saint Joseph 2011-09-16 AB[AC]EB 

MY076484 San Jose Dialisis Norte 2012-06-30 DAAFC 

MY076485 Aguirre Aguirre 2011-04-26 AB[AC]E[AD] 

MY076486 Aguirre Aguirre 2012-05-04 BAAAB 

MY076487 Aguirre Aguirre 2012-06-26 BA[AC]DC 

MY076488 Aguirre Aguirre 2010-05-05 ABAE[D] 

MY076489 San Jose Aguirre 2012-05-01 AB[AC]E[AC] 

MY076490 C Indisa La Pintana 2012-08-04 AB[AC]E[AC] 

MY076491 San Jose San Jose 2012-05-19 AB[AC]E[AC] 

MY076492 San Jose Dialisis Norte 2012-06-11 DAAFC 

MY077951 San Borja San Borja 2013-01-14 ABAB[BC] 

MY077952 San Borja San Borja 2012-11-08 BA[AB]C[DE] 

MY077953 Pto Montt Pto Montt 2013-03-08 AB[AC][DE]C 

MY077954 San Borja San Borja 2013-03-09 BA[AB]C[DE] 

MY077955 Hurtado San Gabriel 2013-02-13 AB[AC]E[AC] 

MY077956 Hurtado CD3 2012-12-06 ABA[AB]A 

MY077957 San Borja San Borja 2012-12-31 AB[AC]EC 

MY077958 Hurtado Rosita 2013-03-05 ABAB[BC] 

MY077959 San Borja San Borja 2013-01-25 ABAB[BC] 

MY077960 Hurtado San Gabriel 2013-03-06 ABCE[AC] 

MY077961 Hurtado La Serena 2013-01-25 ABA[AB]A 

MY077962 Pto Montt Pto Montt 2013-04-30 AB[AC]EC 

MY077963 HCUCH CDQ 2013-03-06 - 

MY077964 HCUCH CDQ 2013-03-05 ABA[DE]C 

MY077965 Hurtado CD4 2013-01-04 AB[AC]E[AC] 

MY077966 Hurtado CD4 2013-01-14 AB[AC]EA 

MY077967 Hurtado CD4 2013-01-21 AB[AC][DE][AC] 

MY077968 Hurtado CD4 2012-12-07 AB[AC]EC 

MY077969 Hurtado San Gabriel 2013-03-04 AB[AC]E[AC] 

MY077970 Hurtado San Gabriel 2013-02-20 AB[AC]E[AC] 
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Table A.12. Concentration in µg/mL of dehydrated antifungal in a 96-well microtiter plate 
for antimicrobial susceptibility testing 

 

Antifungal  5FC9            

Antifungal  1 2 3 4 5 6 7 8 9 10 11 12 

AMP1 A 2 0.016 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 

ANI2 B 4 0.008 0.016 0.03 0.06 0.12 0.25 0.5 1 2 4 8 

CAS3 C 8 0.008 0.016 0.03 0.06 0.12 0.25 0.5 1 2 4 8 

MIC4 D 16 0.008 0.016 0.03 0.06 0.12 0.25 0.5 1 2 4 8 

FLU5 E 32 0.12 0.25 0.5 1 2 4 8 16 32 64 128 

ITR6 F 0 0.016 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 

POS7 G 0 0.016 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 

VOR8 H 0 0.016 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 

1Amphotericin B, 2Anidulafungin, 3Caspofungin, 4Micafungin, 5Fluconazole, 6Itraconazole, 
7Posaconazole, 8Voriconazole, 9Flucytosine 

 

 

 

Figure A.8. Example of the gel electrophoresis profile obtained with B, G, CP1α, CP4α 
and CP6α microsatellites on the C. parapsilosis isolates received in 2013 
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Figure A.9. Pictures of 10 potential Chilean Candida parapsilosis outbreak isolates 
grown on cornmeal agar captured at (a) 10x and (b) 40x 

 

Table A.13. Good coverage for accurate variant calling and number of reads relating the 
microsatellite molecular typing (MSMT) clusters (chromosome length 14618400 bp) 

 

MSMT cluster Strain No. of reads Coverage 
CL5 MY077952 5932630 119 
CL5 MY077954 5806980 116 
CL2 MY077962 6379038 128 
CL2 MY077968 7289986 146 
CL1 M4076475 7721802 154 
CL3 M4077956 2868561 57 
CL4 M4077958 6325474 127 
CL4 M4077959 8280804 166 
CL3 M4077961 7219860 144 
CL1 M4077970 6026720 121 
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Table A.14. SNP difference matrix between Candida parapsilosis isolates from a 
potential outbreak in Chile based on core single nucleotide variant whole genome 

sequencing for epidemiological analysis 

 

 

 

 

Table A.15. Example of an inconclusive result by the ATR-FTIR spectroscopy-based 

method for a C. dubliniensis MALDI-TOF MS-identified microorganism. Isolate was 

passaged multiple times to ensure purity and grown on chromogenic agar 

Unknown isolate filename Genus Species 
Spectral 
similarity (%) 

Standard deviation 
from the mean 

YT_SAB_GLEN_009_ATRC3_20201008_L1 Candida albicans 38.5 2.57 

YT_SAB_GLEN_009_ATRC3_20201008_L2 Candida dubliniensis 88.7 0.604 

YT_SAB_GLEN_009_ATRC3_20201008_L3 Candida albicans 46.3 2.634 

YT_SAB_GLEN_009_ATRC3_20201008_L4 Candida albicans 30.0 1.837 

YT_SAB_GLEN_009_ATRC3_20201008_L5 Candida albicans 22.3 2.579 

YT_SAB_GLEN_009_ATRC3_20201008_L6 Candida dubliniensis 90.5 0.269 

YT_SAB_GLEN_009_ATRC3_20201008_L7 Candida dubliniensis 88.9 -0.116 

YT_SAB_GLEN_009_ATRC3_20201008_L8 Candida albicans 41.0 2.209 

YT_SAB_GLEN_009_ATRC3_20201008_L9 Candida dubliniensis 91.3 0.269 

YT_SAB_GLEN_009_ATRC3_20201008_L10 Candida dubliniensis 93.0 0.558 

 

 

 


