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Abstract 

Background: Infectious diseases remain a major public health problem worldwide. 

Hence, infectious disease surveillance is crucial for public health professionals to make 

more informed emergency response decisions and implement effective 

countermeasures. Event-based surveillance (EBS) was developed to allow more 

timely detection of infectious disease outbreaks. However, these systems have not 

been evaluated on a global scale in terms of their outbreak detection performance.  

Objective: The objective of this thesis is to evaluate the ability of EBS to detect 

epidemic outbreaks of influenza in 24 countries worldwide. Additionally, factors 

influencing system performance will be identified. 

Methods: Data on influenza-related events from online media were obtained from two 

EBS systems, HealthMap and EIOS. Publicly available weekly virological influenza 

data were gathered from the FluNet platform as gold standard data. Bayesian change 

point analysis was used to detect the beginning and end of epidemics. Then, 

sensitivity, timely sensitivity, specificity, positive predictive value, timeliness of 

outbreak detection, and the combined metrics accuracy and F1 score of both systems 

were calculated for both. The main outcome of interest was timely sensitivity, i.e. 

outbreak detection within the first two weeks after onset. Finally, linear regressions 

were performed to assess the influence of various country-specific covariates on the 

performance metrics. 

Results: Detection performance varied widely between countries and systems. Timely 

detection of outbreaks was poor in both systems. HealthMap showed a consistently 

better performance than EIOS. Data abundance influenced the performance of both 

systems. The human development index was more influential for HealthMap than 

EIOS, whereas EIOS performance was dependent on a country’s geographical 

location.  

Conclusions: Application of biosurveillance methods to the frequency of online media 

reports about influenza from two EBS was not able to detect seasonal influenza 

outbreaks in a timely manner. Thus, using event counts as the only unit of analysis 

does not contribute to timely outbreak detection, the goal of EBS. Extraction and 

analysis of additional information from online media and the integration of EBS with 

other data sources may help to attain this goal. 
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Resumé 

Contexte: Les maladies infectieuses restent un problème majeur de santé publique. 

Par conséquent, la surveillance des maladies infectieuses est essentielle afin de 

permettre aux professionnels de la santé publique de prendre des décisions 

d'intervention d'urgence plus éclairées. La surveillance basée sur les événements 

(EBS) a été développée pour permettre une détection plus rapide des épidémies 

infectieuses. Cependant, ces systèmes n'ont pas été officiellement évalués en termes 

de capacités de détection des épidémies. 

Objectif: Cette thèse évalue les systèmes de surveillance HealthMap et EIOS pour 

leur capacité à détecter les épidémies de grippe dans 24 pays du monde. De plus, les 

facteurs influençant les performances du système seront identifiés. 

Méthodes:  

Les données ont été obtenues à partir de deux systèmes EBS, HealthMap et EIOS. 

Des données virologiques sur la grippe ont été recueillies à partir de la plateforme 

FluNet comme données de référence. L'analyse du point de changement bayésien a 

été utilisée pour détecter les épidémies. Ensuite, plusieurs paramètres d'évaluation ont 

été calculés avec sensibilité en temps opportun comme principal résultat d'intérêt. 

Enfin, des régressions linéaires ont été effectuées pour évaluer l'influence de divers 

facteurs sur les paramètres de performance. 

Résultats: Les performances du système variaient considérablement d'un pays et 

d'un système à l'autre. Bien que la détection en temps opportun des épidémies ait été 

médiocre dans les deux systèmes, HealthMap a montré une performance 

constamment meilleure que l'EIOS. L'abondance des données a influencé les 

performances des deux systèmes. L'indice de développement humain était plus 

influent pour HealthMap que pour EIOS, tandis que les performances de l'EIOS 

dépendaient de la situation géographique d'un pays. 

Conclusions: L'évaluation de la capacité de HealthMap et d'EIOS à détecter les 

épidémies saisonnières de grippe a montré qu'aucun des deux systèmes n'est en 

mesure de les détecter en temps opportun. Ainsi, l'utilisation du nombre des 

événements comme seule unité d'analyse ne contribue pas à une détection rapide de 

l'épidémies, l'objectif de l'EBS. La sortie des systèmes EBS doit être combinée avec 

d'autres sources de données pour atteindre cet objectif à l'avenir.  
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1 Introduction 

1.1 Infectious disease surveillance and biosurveillance systems 

1.1.1 Why do we need infectious disease surveillance? 

Even in the 21st century, infectious diseases continue to threaten populations 

worldwide. Newly emerging and re-emerging pathogens, microbial drug resistance, 

and increased opportunities for pathogens to spread through demographic explosion, 

massive urbanization, and growing global mobility represent new challenges for a 

global, interconnected community [1]. As diseases affect not only individuals, but also 

have detrimental effects on whole societies and economies, the prevention and control 

of infectious diseases is of utmost importance. The ongoing novel coronavirus (SARS-

CoV-2) pandemic demonstrates clearly our susceptibility to emerging pathogens. 

To respond to the changing environment, the World Health Organization (WHO) 

released the third edition of the International Health Regulations (IHR) in 2005 in order 

to strengthen international disease surveillance and control disease outbreaks before 

they spread [2]. The revised IHR provide an international legal framework for early 

detection of infectious disease outbreaks by biosurveillance and timely response to 

them. Early detection is critical to alert health services in a timely manner, and thus to 

mitigate the impact on morbidity and reduce mortality and economic costs. In this 

context, public health surveillance is defined by the IHR as “the systematic on-going 

collection, collation and analysis of data for public health purposes and the timely 

dissemination of public health information for assessment and public health response 

as necessary” [2].  

1.1.2 Traditional public health surveillance 

Traditionally, disease surveillance is carried out by national or supranational public 

health networks using test results from laboratories [3], [4]. This type of surveillance is 

also called indicator-based surveillance (IBS). It is based on reporting of individual 

cases or counts of diseases by sentinel physicians, general practitioners, hospitals, 

and clinical laboratories. Thus, IBS results in formal and structured data for only a few 

diseases. The Canadian Chronic Disease Surveillance System (CCDSS) and 

HIV/AIDS Surveillance System, the American National Tuberculosis Surveillance 

System (NTSS), and the LaboVIH by Santé Publique France (the French National 

Institute for Public Health) are all examples of traditional surveillance systems. While 
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these systems are very specific and allow for the estimation of incidence and 

prevalence, they are resource-heavy, can have a considerable reporting time lag, and 

lack sensitivity, especially for novel pathogens. For example, the official influenza 

surveillance data collected by governmental agencies and published by the WHO on 

the FluNet platform lag behind current flu activity for approximately 2 weeks [5], [6]. 

1.1.3 Event-based biosurveillance 

Due to the limitations of IBS, a multitude of event-based surveillance (EBS) 

approaches have been developed in recent years, with the goal of near real-time 

detection of infectious disease outbreaks. A “health event” is defined as any sign of a 

disease outbreak or other occurrence of public health concern [7]. By broadening the 

focus from specific diseases and counting cases to health events, more timely and 

complete disease surveillance is possible. EBS has been made possible by two 

technological advancements in surveillance capacity during the past two decades, 

namely syndromic surveillance and digital disease surveillance. In order to identify 

possible outbreaks, syndromic surveillance attempts to detect unusual patterns of 

health-related events that precede disease confirmation or reporting to official entities 

[7], [8]. For this purpose, it uses both official and unofficial data such as ICD codes [9], 

physician billing [10], nurse calls [5], or drug sales [11]. Digital surveillance relies on 

internet and computer technologies to identify health-related events. For example, 

Google search queries have been exploited to monitor infectious diseases such as 

influenza [5], dengue [12], viral gastroenteritis [13], [14], Methicillin-

resistant Staphylococcus aureus (MRSA) [15], and tuberculosis [16], and Twitter has 

been used to track influenza [17]–[19] or dengue outbreaks [20]. Syndromic and digital 

surveillance are not mutually exclusive, but their applications often overlap and 

complement each other. A key feature of all EBS inputs is that their initial purpose was 

not biosurveillance. EBS has not been developed to replace IBS, but rather 

complement it in detecting and identifying health threats [21], a process also called 

“epidemic intelligence” (EI). However, so far EBS is only used in an informal manner, 

as the data originating from it have yet to be meaningfully integrated in a formal, 

quantitative manner. 

Approaches to digital disease surveillance vary according to the targeted streams of 

information, and differ between various biosurveillance systems. Several web-based 

biosurveillance systems have been developed in recent years by public health 
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organizations and academic institutions [22], [23], such as ProMed Mail [24], GPHIN 

by Health Canada [25], [26], HealthMap [27], BioCaster [28], MediSys [29], and EIOS 

by the WHO [30]. The focus in this project will be on data from HealthMap and EIOS 

due to their availability from public sources and through existing collaborations.  

In addition to rapid disease activity detection, internet biosurveillance provides the 

benefit of greater coverage in regions with fewer medical centers or lower health-

seeking behaviors [31]. Moreover, it is cost-efficient because it requires less human 

curation. Several examples confirm that internet biosurveillance systems are indeed 

capable of timely disease detection: GPHIN was the first system to detect unusual 

activity of respiratory illness in the Guangdong Province in China, which later proved 

to be Severe Acute Respiratory Syndrome (SARS) [25], as well as the 2012 outbreak 

of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) [32]. Likewise, 

ProMed Mail reported the first information on the 2014 Ebola epidemic [33], and 

monitoring Twitter in Nigeria during the Ebola outbreak in West Africa helped to identify 

an outbreak three days prior to a news alert and seven days before an official WHO 

announcement [34].  

However, digital disease surveillance systems face their own unique challenges: First, 

their sources might not be reliable, thus creating false positive signals. Moreover, the 

sources’ signal-to-noise ratio is normally very low, so non-specific information 

complicates signal detection [35], [36]. Second, the sources may not be sensitive 

enough to pick up specific disease outbreaks because some diseases are not 

newsworthy enough. Third, as all systems rely on data from the internet, they are highly 

dependent on internet coverage and adaption in the countries of operation. Fourth, 

most systems are heavily language-dependent. For example, HealthMap mainly scans 

news articles in Arabic, Chinese, English, French, Portuguese, Russian, and Spanish, 

thus, signals in other languages are missed [37]. Furthermore, since most systems are 

developed in English, the signal detection sensitivity is greatest in English [38]. Fifth, 

great media attention for certain diseases or rumors can create false positive signals. 

Redundancy of information can lead to overestimation of importance, as many news 

sources report the same events [39]. Sixth, most of the time, the data is not detailed 

and reliable enough to provide epidemiological parameters like incidence [40]. Thus, it 

is necessary to evaluate the EBS systems’ performance in general and for specific 

diseases.  



4 
 

1.2 Influenza surveillance 

1.2.1 Influenza as a test case for other diseases 

To evaluate how sensitive the systems are in picking up signals on developing 

infectious disease outbreaks and how timely they are in detecting these outbreaks, 

seasonal influenza was used as a test case in this project. Influenza was chosen 

because of its occurrence in multiple countries worldwide, its potential to cause severe 

epidemics or even pandemics, and its close surveillance and ongoing modeling efforts 

mostly in rich Western countries [41]. Furthermore, the WHO provides publicly 

available laboratory-confirmed virological influenza data on a country level on the 

FluNet platform [42], which can be used as gold standard data for comparisons.  

Influenza is tightly monitored because seasonal influenza epidemics are a serious 

global health threat, causing an estimated annual 3 to 5 million of severe disease 

cases, and 290,000 to 650,000 respiratory deaths worldwide each year [43]. Moreover, 

potential emerging influenza strains are a major public health concern, as they could 

cause influenza pandemics with millions of fatalities.  

1.2.2 Virological characteristics 

Influenza viruses belong to the family of Orthomyxoviridae, which possess a 

segmented, single-stranded, negative-sense RNA genome. Because the genome is 

arranged in segments, RNA strands from multiple viral subtypes can be re-assorted, 

thus generating viruses with novel genetic combinations. This process is called 

antigenic shift, and can lead to emergence of new viral variants. The other driving factor 

of emergence of new influenza viruses are frequent mutations, a virological concept 

also known as antigenic drift [44]. Based on their molecular properties, influenza 

viruses are subdivided into types A, B, and C. Seasonal epidemics are caused by 

influenza A and B viruses, whereas type C viruses only cause mild symptoms [44]. 

Influenza A subtypes are further classified by their hemagglutinin (HA) and 

neuraminidase (NA) surface protein combination (e.g. H7N9), and B viruses are not 

further classified, but broken down into lineages (e.g. Victoria). So far, pandemics have 

only been attributed to influenza type A viruses [43]. Additionally, influenza A infections 

of poultry, swine, and horses have zoonotic potential [44].  

In humans, influenza viruses are rapidly transmitted through infectious droplets or 

virus-containing aerosols. Once a person is infected, they usually experience a sudden 
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onset of upper respiratory tract illness. Based on the major symptoms, influenza-like 

illness (ILI) is defined by the CDC as a fever of 100°F (37.8˚C) or greater, cough and/or 

a sore throat in the absence of a known cause other than influenza [45]. While most 

people recover from their illness within a week without requiring medical attention, 

influenza infections can be severe or even fatal in individuals at high risk, such as the 

elderly, children, pregnant women, and individuals with chronic medical conditions [43].  

Influenza infections in temperate regions follow a strong seasonal pattern, where viral 

activity is centered at one epidemic during the respective winter months. In contrast, 

in regions close to the equator, influenza infections are endemic. Based on these 

seasonal patterns, the WHO has defined 18 global influenza transmission regions [46].  

1.2.3 Influenza forecasting 

IBS data on influenza are predominantly used for monitoring the influenza disease 

burden, planning and implementation of prevention programs, providing candidate 

viruses for vaccine production, and resource allocation [42], [47], [48]. Additionally, IBS 

data are combined with EBS data in models for nowcasting and forecasting influenza 

activity. Predicted measures typically include season onset, peak week timing, peak 

intensity, and influenza activity in the next weeks in order to detect unusual or 

unexpected influenza activity and to prepare the health system for epidemics [41], [49], 

[50]. Most of the efforts are focused on either North America or Europe [41], [51], [52], 

such as the CDC flu forecasting challenge [49]. Another example is HealthMap Flu 

Trends, which publishes real-time estimates of influenza activity in the USA on a freely 

available website [53], [54]. HealthMap has also been used as one of seven data 

sources for short-term forecasting of ILI case counts in South America [55].  

1.3 Similar studies 

1.3.1 Usage of HealthMap and EIOS 

As one of two EBS systems of interest in this work, HealthMap has been used as an 

EBS data source for surveillance and forecasting of hantavirus in South America [56], 

tracking Ebola spread during the West African Ebola epidemic [57] and MERS during 

the 2012 outbreak [58], and estimating and forecasting Zika virus incidence in South 

America [59], [60], amongst others. During the ongoing SARS-CoV-2 pandemic, 

HealthMap provides an interactive map with near real-time updates of geolocated case 
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counts1, and sounded one of the first alarms of unusual respiratory disease activity in 

Wuhan on December 30th, 2019, although it was initially dismissed as non-significant 

[61].  

The other EBS system of interest in this work, EIOS, has only been implemented in 

2017 and is not publicly available. Thus, only very few publications using EIOS as a 

data source exist, such as a study by Garten et al, who found that a quarter of infectious 

disease outbreaks in Africa in 2018 were detected by media monitoring, partly through 

EIOS [48]. Nevertheless, the EIOS platform is hosted by the WHO and used by public 

health agencies worldwide [62].  

1.3.2 Evaluation of EBS systems 

Despite their widespread use, there is not much published evidence about the 

performance characteristics of EBS systems in terms of disease outbreak detection. 

Rather, the focus of most of the available literature is on the adequate classification of 

health-related events from online sources or on the implementation of innovative 

functionalities [63]. Whereas to my knowledge not a single evaluation or proof of 

principle of outbreak detection has been published for EIOS, there are a few studies 

regarding the use of HealthMap for disease surveillance and forecasting. In the first 

publications about the development of HealthMap, the filtering workflow was described 

and the accuracy of event classification was assessed, but no validation studies of 

outbreak detection performance were conducted [64], [65]. Similarly, Dion et al. 

described the ability of GPHIN to early detect outbreaks of H1N1 and MERS and 

provide situational awareness (such as information on flight cancellations, border 

closures, and trade bans) during Ebola and H1N1 epidemics, but did not conduct a 

formal performance evaluation of GPHIN [32]. This is even more surprising regarding 

the fact that GPHIN supplied approximately 40% of the WHO’s early warning outbreak 

information in the early 2000s [66].  

Several authors have criticized the lack of evaluative studies, asking for performance 

assessment of EBS systems in terms of standardized evaluation criteria against a gold 

standard [23], and research on the impact of these systems on public health response, 

epidemic control, and clinical care [67]. In one of these rare studies, Lyon et al. 

                                            

1 https://www.healthmap.org/covid-19/ 

https://www.healthmap.org/covid-19/
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compared the performance of the EpiSPIDER, BioCaster and HealthMap systems in 

terms of event numbers and distribution, but did not conduct an analysis of outbreak 

detection functionality [37]. Barboza et al. compared and evaluated six EBS systems 

operating worldwide, among them HealthMap, in two articles [63], [68]. The first study 

was focused on the user perspective with a qualitative assessment of metrics such as 

representativeness, completeness, ease of use, and overall usefulness. Additionally, 

the authors conducted a quantitative analysis based on detection of H5N1 events in 

March 2010, in which the detection rate, positive predictive value, sensitivity and 

timeliness were evaluated [68]. In the second study, the six EBS systems were 

compared to a gold standard in their ability to detect 23 infectious disease outbreaks, 

and characteristics associated with detection ability, such as filter languages, types of 

disease, and regions of occurrence, were identified [63].  

Correlations are a frequently used metric to compare surveillance data from multiple 

sources, but are easily biased and have limited meaning from a user perspective (see 

section 4.2) [67]. In contrast, sensitivity and positive predictive value are performance 

metrics of high interest for EBS system users. Their relative importance ultimately 

depends on the user’s preferences and the disease under surveillance. Since one of 

the main reasons for the application of EBS is improving timely outbreak detection, 

evaluation of timeliness is essential when investigating a new EBS approach. One 

metric which has never been used in EBS evaluation is timely sensitivity, which reflects 

outbreak detection by EBS around the first weeks of outbreak onset, despite the fact 

that this metric tests exactly what EBS systems have been designed for. 

In contrast to EBS systems developed by public health agencies, other web-based 

sources, such as Google search queries, health-related tweets, or Wikipedia article 

views, employed by researchers for timely disease detection, are frequently evaluated 

against traditional surveillance systems regarding their correlation, sensitivity, 

timeliness, positive predictive value, or forecasting error [19], [67], [69]–[73]. This leads 

to the paradoxical situation where there is more evidence about experimental data 

sources and models than about the EBS systems used by official public health entities 

to guide public health responses and clinical care.  

1.4 Objectives 

Therefore, as a first objective, this work aims at evaluating the performance of the 

HealthMap and EIOS systems regarding their ability to detect infectious disease 
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outbreaks. This evaluation is narrow in a sense that it covers only one aspect in which 

EBS can be used to detect outbreaks. Other approaches like human searching and 

review of articles are used too, but not covered in this work. Twenty four countries 

worldwide were chosen to appraise the systems on a global scale and to shift the focus 

away from rich Western countries, in which most of the disease detection efforts have 

been concentrated so far. As a test case for other diseases, influenza will be the agent 

of interest because it occurs in multiple countries worldwide, albeit with different 

seasonal patterns, and because laboratory-confirmed influenza counts are available 

as an accurate gold standard. 

As the relative performance of the EBS systems across influenza regions and countries 

has not been documented, the gold standard and EBS data will be analyzed for 

seasonal influenza outbreaks, and the outbreak detection capabilities of HealthMap 

and EIOS will be assessed in terms of sensitivity, specificity, positive predictive value, 

and timeliness. The metrics will be compared across systems and countries with timely 

detection as the most important evaluation metric, as this is the reason EBS systems 

have been developed.  

As a second objective, factors influencing the detection ability, such as a country’s 

language, wealth, or geographical location, will be identified. The strength of 

associations of various country-specific characteristics with the evaluation metrics will 

be assessed in univariable and multivariable regressions.  

The results will be of value for the developers of the systems to guide technical 

improvements. This is especially important for EIOS, since it is still in the development 

phase. Additionally, the results can guide public health professionals in deciding how 

the systems can be reliably used for timely detection of influenza epidemics, and 

potentially epidemics of other infectious diseases.  
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2 Methods 

2.1 Data 

2.1.1 Countries 

Twenty four countries from 15 influenza transmission zones were chosen to evaluate 

the performance of event based surveillance (EBS) on a global scale: Argentina, 

Australia, Brazil, Bulgaria, China, Costa Rica, Ecuador, Egypt, France, Germany, 

Greece, India, Iran, Mexico, Nigeria, Russia, Saudi Arabia, South Africa, Sweden, 

Thailand, United Kingdom, United States, Uruguay, and Vietnam. These countries 

were selected to represent a broad spectrum of geographical locations, languages, 

and developmental stages.  

2.1.2 FluNet: the reference 

FluNet is a web-based tool for virological influenza surveillance created by the WHO, 

and will serve as the reference to evaluate EBS systems. On the FluNet website2, the 

WHO provides weekly data on influenza activity by country to the public. These data 

are gathered from all participating Global Influenza Surveillance and Response System 

(GISRS) countries, other national influenza reference laboratories which are 

collaborating with GISRS, and from WHO regional databases [42]. For GISRS, 140 

National Influenza Centres around the world collect and test clinical specimens on 

influenza positivity and submit their results and a sample of these specimens to WHO 

Collaborating Centres for further characterization [74]. FluNet is used as a tool to 

explore influenza activity patterns worldwide and guide vaccination programs [42], [47], 

[75], [76]. 

FluNet provides publicly available graphs of lab-confirmed influenza cases per country 

and corresponding csv files since 1997. The csv files include country-specific 

information such as the WHO region and influenza transmission region, the date and 

number of received and processed specimen, total number of influenza-positive and 

negative samples, and a breakdown of these numbers by influenza strain. For the 

analyses, csv files for 23 countries providing influenza data from January 2013 to 

December 2019 were downloaded. The only exception was Saudi Arabia, where 

FluNet data were only available as of January 2017. FluNet measurements are highly 

                                            

2 https://www.who.int/influenza/gisrs_laboratory/flunet/en/ 

https://www.who.int/influenza/gisrs_laboratory/flunet/en/
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specific, meaning that they include only laboratory-confirmed influenza cases. Thus, 

these counts were used as a gold standard against which the EBS system counts were 

evaluated because they accurately reflect the beginning and end of epidemics.  

2.1.3 HealthMap 

The HealthMap system was developed by researchers at the Boston Children’s 

Hospital, launched in 2006, and provides real-time surveillance on infectious diseases 

[15]. It collects data from online news aggregators, expert-moderated systems such as 

ProMed Mail, and validated alerts from official sources such as the WHO. Through 

automated text processing algorithms in 15 languages, the system filters for disease 

and location, and publishes the results on a freely available website3 [12], [20]. 

Csv files with event data dating from January 2013 to July 2019 were provided by 

researchers from the HealthMap project group. Any news article which has passed 

through HealthMap’s filtering algorithm and relates to the “human influenza” keyword 

is referred to as an event. The data files include information about the event’s location, 

the news article headline, a link to the full article, a short article snippet, the news 

source, and the issue and load date of the article onto the HealthMap platform.  

Since every event was identified with a unique HealthMap ID, duplicate events (i.e. 

articles with exactly the same content, but not different articles about the same event) 

were removed using this ID information (9012 out of 31796 total events were removed). 

Additionally, events concerning countries’ overseas territories (such as Bermuda, 

Guadeloupe or Guam) were also discarded, resulting in a total of 22722 unique events 

in the 24 countries of interest. Since the FluNet gold standard data are only available 

in weekly intervals, the daily event counts from HealthMap were also aggregated into 

a weekly format, resulting in a total of 341 weekly data points spanning 6.5 years.  

2.1.4 EIOS 

Recently, the WHO implemented the Epidemic Intelligence from Open Sources (EIOS) 

system as a collaboration between multiple public health organizations, acting on a 

global scale. Its purpose is to integrate data from multiple EBS systems and thus to 

provide a “unified, all-hazards, One Health approach by using open source information 

for early detection, verification and assessment of public health risks and threats” [30]. 

                                            

3 www.healthmap.org 

http://www.healthmap.org/
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Amongst others, GPHIN, Eurosurveillance, various ministries of health, and big news 

aggregators are sources for EIOS. Notably, one of the input sources of EIOS is 

HealthMap, so HealthMap is a proper subset of EIOS. Again, every article that passes 

through the filtering algorithm and is published on the EIOS platform is referred to as 

an event. Event de-duplication is performed before the events are uploaded to the 

website. The EIOS platform is not open to the public, but access was made available 

through collaborations with the EIOS team. They provided data for every day from 

November 11, 2017 (the day of EIOS implementation) to December 2019, totaling 109 

weeks.  

All EIOS events with the following keywords were retrieved and compiled into one file: 

“Influenza virus not identified” (includes unspecified influenza A), “H1N1”, “H1N1v”, 

“H1N2”, “H1N2v”, “H2N1”, “H2N2”, “H3N2”, and “H3N2v”. The EIOS file provided 

already de-duplicated data on fetch and import dates of each event, the title, URL and 

full text of each news article, and information about the news source such as name, 

country, language, disease category, and mentioned countries. Additionally, an EIOS 

ID was used as a unique identifier for each event. Since most events mentioned 

multiple countries, the reports were duplicated so that each row contained only a single 

country, and then filtered for the 24 selected countries of interest. Additionally, all 

events without a date stamp were removed from the analysis (320 out of 81133 total 

events). Like the HealthMap events, EIOS events were aggregated to counts per week 

per country in order to be able to compare them to the gold standard. 

2.1.5 Predictors for regression analysis 

Predictors for regression analysis were chosen based on data availability and expert 

opinion. Most predictor variables for regression analysis were inherent to the data, 

such as total counts, geographical locations, and languages. Other predictors were the 

Human Development Index (HDI) of each country, the total number of internet users 

(TIU) per country, and the Press Freedom Index (PFI) of each country. HDI rankings 

from 2018 and the TIU per country in 2017 were obtained from the United Nations 

Development Programme [77]. Since all three predictors did not change significantly 

over the study period, the most recent available data were used.  

TIU is expressed as the percentage of a country’s population having access to the 

internet. The HDI is a composite measure taking into account three dimensions of 

human development – life expectancy, education, and wealth. It ranges from 0 to 1, 
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with a HDI of less than 0.550 for low human development, 0.550–0.699 for medium 

human development, 0.7–0.799 for high human development and 0.8 or greater for 

very high human development. PFI data were downloaded from Reporters without 

Borders [78]. The PFI compiles a number of indicators about freedom of journalism, 

such as media independence, censorship, and acts of violence against journalists. It 

ranges from 0 to 100, with higher rankings representing lower press freedom.  

2.2 Outbreak detection 

2.2.1 Methodological requirements 

Outbreak detection had to be performed in the gold standard data as well as in 

HealthMap and EIOS data because FluNet did not provide a consistent epidemic 

indicator. Outbreaks were analyzed retrospectively, i.e. the detection method was 

applied on the whole dataset. The challenge with selecting a method was that for most 

historical limit approaches, a predefinition of epidemic and non-epidemic phases is 

needed, which is exactly the desired outcome [79], [80]. In addition to that, the outbreak 

detection method must not require a long training period, as data are limited, especially 

for the EIOS system (only 2 years). Moreover, the method should not attempt to model 

seasonality, as this might mask outbreaks, and will certainly pose problems for 

application on a global scale, since tropical countries do not show a clear seasonality. 

Also, influenza seasons are in different months for Northern and Southern hemisphere 

countries, and some countries have two or more epidemic seasons per year.  

2.2.2 Bayesian change point analysis 

Therefore, Bayesian change point analysis was the method of choice for outbreak 

detection. A visual example workflow of the outbreak detection which is described in 

the following section can be found in figure 1. Although not initially developed for 

infectious disease outbreaks [81], [82], change point analysis has been used before to 

determine start points of influenza epidemics [69], [83]. Essentially, change point 

methods examine when a change occurs in a series of observations by detecting time 

points before and after which statistical properties differ. BCP analysis was initially 

developed by Barry and Hartigan [82] and implemented in R as the package bcp by 

Erdman and Emerson [81], [84]. An excellent theoretical description of the method is 

provided in those papers. 
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In BCP analysis, it is assumed that a series of observations is divided into a partition 𝜌. 

Each 𝜌 consists of an unknown number of blocks with equal parameter values (figure 

1 top left). Because the implementation in the R package bcp assumes a Normal 

distribution of observation values, the parameters used in this instance are the mean 

and variance. In order to detect changes, BCP analysis examines the mean of the 

observations (i.e. weekly number of positive influenza samples for FluNet and weekly 

number of events for HealthMap and EIOS) before and after a potential change point 𝑖. 

Thus, the time series of observations is divided into 𝑏 blocks, with the last observation 

before each block being referred to as a change point. Consequently, a block starts at 

observation 𝑖 + 1 and ends at observation 𝑗.  

With the Bayesian approach, the objective is to estimate the posterior probability of 

point 𝑖 being a change point (𝑝𝑖), as well as the posterior mean and variance at each 𝑖. 

The prior for the distribution of 𝜇𝑖𝑗(the mean for each block) is chosen as 𝑁(𝜇0,
𝜎0

2

𝑗−𝑖
). 

This choice of prior requires larger deviations from 𝜇0 for shorter blocks in order for a 

change point to be flagged at position 𝑖.  

Although Barry and Hartigan presented an exact calculation of the parameters, the 

calculation time for the parameters is O(n³). Therefore, the parameters and positions 

of change points are estimated with a Markov Chain Monte Carlo (MCMC) 

approximation, which is only O(n). For each observation 𝑖, the following formula is 

applied:  

𝑝𝑖

1 − 𝑝𝑖
=  

𝑃(𝑈𝑖 = 1|𝑋, 𝑈𝑗 , 𝑗 ≠ 𝑖)

𝑃(𝑈𝑖 = 0|𝑋, 𝑈𝑗 , 𝑗 ≠ 𝑖)
=  

[∫ 𝑝𝑏(1 − 𝑝)𝑛−𝑏−1𝑑𝑝
𝑝0

0
] [∫

𝑤
𝑏
2

(𝑊1 + 𝐵1𝑤)
𝑛−1

2

𝑑𝑤
𝑤0

0
]

[∫ 𝑝𝑏−1(1 − 𝑝)𝑛−𝑏𝑑𝑝
𝑝0

0
] [∫

𝑤
𝑏−1

2

(𝑊0 + 𝐵𝑜𝑤)
𝑛−1

2

𝑑𝑤
𝑤0

0
]

 (1) 

where 𝑈𝑖 = 1 indicates a change point at position 𝑖 + 1, and 𝑈𝑖 = 0 indicates no change 

point. P is the probability of a change point. 𝑝0 and 𝑤0 are the priors on the probability 

of a change point at each position and the signal-to-noise ratio, respectively. 𝑏 is the 

number of blocks found if 𝑈𝑖 = 0. 𝑊1 and 𝑊0 are the within-block sum of squares when 

𝑈𝑖 = 1 and 𝑈𝑖 = 0, respectively. Likewise, 𝐵1 and 𝐵0 are the between-block sum of 

squares. 𝑤 =
𝜎2

𝜎0
2+𝜎2 where 𝜎0

2 is the overall variance and 𝜎2 is the variance of the block 



14 
 

observations, so 𝑤 represents the signal-to-noise ratio. Intuitively, 𝑝𝑖 is larger when 𝑊1 

small and 𝐵1 is large. 

At each step of the Markov chain, a value for 𝑈𝑖 is drawn from the conditional 

distribution of 𝑈𝑖, given the data and the current segmentation of observations into 

blocks. Based on these values, 𝑝𝑖 is calculated with (1). After every MCMC iteration, 

𝑝𝑖 and the posterior mean of each block are updated. The posterior mean for every 

block is calculated with the formula �̂�𝑖𝑗 = (1 − 𝑤)�̅�𝑖𝑗 + 𝑤𝜇0, where 𝑤 =
𝜎2

𝜎0
2+𝜎2 and �̅�𝑖𝑗 is 

the mean of the observations in the block 𝑏𝑖𝑗.  

All analyses were conducted using the R package bcp, version 4.0.3 [84]. Assumptions 

of bcp are that observations are distributed independently 𝑁(𝜇𝑖, 𝜎2) in different blocks, 

given the parameters, and that 𝑝𝑖 is independent at each observation, conditional on 

the partition. In contrast to the assumptions, influenza case counts and EBS event 

counts followed an over-dispersed Poisson rather than a Normal distribution. However, 

counts during epidemic and non-epidemic periods obviously have different means, so 

BCP analysis is able to clearly separate them from each other. In the FluNet and EBS 

datasets, BCP generally detected several changes in mean during epidemic periods, 

so 𝑝𝑖 was high for many points during rising and falling epidemic curves.  

The posterior means �̂�𝑖𝑗 and the posterior probabilities of a change point 𝑝𝑖 were 

estimated with 600 MCMC iterations, where the first 100 MCMC iterations were 

discarded as burn-in (figure 1 top right). The tuning parameters of the priors p0 (change 

point probability) and w0 (signal-to-noise ratio) were kept at their default value of 0.2. 

These values have been found to work well in the past [82], and neither HealthMap 

nor EIOS data were sensitive to changing priors (see figures 9 + 10 in the appendix). 

2.2.1 Determination of start and end points of epidemics 

As multiple change points were flagged during outbreaks (figure 1 bottom left), criteria 

were established to determine the start and end points of influenza outbreaks. The 

criteria were as follows: 

 Start points: rising count curve, no outbreak start flagged during previous 15 

weeks, transition from p < 0.5 to p > 0.5 (i.e. first change point after a non-

epidemic period).  
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 End points: falling count curve, no outbreak end flagged during following 15 

weeks, transition from p > 0.5 to p < 0.5 (i.e. last change point of an epidemic 

period) 

0.5 is the intuitive and widely used posterior probability threshold for determining 

change points. Nevertheless, receiver operating characteristic (ROC) curves of a 

sequence of thresholds were plotted to check for the best threshold. For low-count 

countries, thresholds did not matter at all, while for higher count countries, 0.5 was a 

good compromise between all countries (see table 7 in appendix). For reasons of 

simplicity and generalizability, cutoffs at the optimal thresholds for each country were 

not established.  

 

Figure 1: Workflow of outbreak detection with BCP exemplified for one country. (A) The time series of weekly 
aggregated influenza cases for the USA is plotted. This is the raw data. (B) The observations are colored according 
to the posterior probability of a change point at each observation. This step is after running the BCP analysis. (C) 
The position of all change points (posterior probability > 0.5) is visualized with vertical dashed lines. (D) After 
applying criteria for start and end points of epidemics, the time series is divided into epidemic (red) and non-
epidemic (grey) seasons. Start points of epidemics are plotted as orange vertical lines, end points as green vertical 
lines.  

In order to disregard local spikes or drops in the count data, rising and falling curves 

were determined by smoothing the time series with Loess smoothing. The window size 

used for smoothing of FluNet and HealthMap data was chosen as 10%, i.e. 10% of the 

whole dataset were taken into account, which corresponded to 36 and 34 weeks, 
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respectively. Since the EIOS dataset comprised only 109 weeks, a window size of 15% 

(16 weeks) was chosen. These time intervals showed a good compromise between 

smoothing over local spikes or drops in the counts and overall variation in counts.  

The 15 week period of no start points before a start point was chosen so that the 

algorithm would not flag epidemic starts during an ongoing outbreak. On average, 

influenza epidemics were found to be 3.9 months long, irrespective of climatic regions, 

with a range of 3-5 months [75]. Regarding the length of the epidemic period and 

assuming that there is some amount of non-epidemic time between two outbreaks, the 

period between to ‘ends’ was chosen to be at least 15 weeks as well (figure 1 bottom 

right).  

When detecting spikes, the algorithm usually flagged an epidemic start point, but often 

no end point. In order to allow detection of spikes as single outbreak weeks, an ‘end’ 

was inserted after every ‘start’ that was not followed by an ‘end’ within a period of 30 

weeks (which is safely over the 5 months maximum epidemic period found in by Azziz-

Baumgartner et al. in [75]).  

2.3 Performance evaluation metrics 

The EBS system performance was evaluated regarding sensitivity, specificity, positive 

predictive value, and timeliness. Sensitivity was measured in three ways: Sensitivity 

per outbreak to evaluate overall detection of outbreaks (equation (2), sensitivity per 

week to be able to calculate composite metrics (equation (3), and timely sensitivity to 

combine timeliness and sensitivity for detection of outbreaks within two weeks of the 

start of an epidemic (equation (4). This last metric is the most relevant because the 

timely detection of outbreaks is what the EBS systems were designed for. A window of 

two weeks before and after an outbreak was detected in the gold standard data was 

chosen so that an alarm would be raised before or at the time a traditional surveillance 

system would detect an anomaly. In all equations, “outbreak” refers to a detected 

outbreak in the gold standard data and “alarm” refers to a detected outbreak in the 

EBS system data. 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑝𝑒𝑟 𝑜𝑢𝑡𝑏𝑟𝑒𝑎𝑘 =  
𝑛(𝑎𝑙𝑎𝑟𝑚 𝑎𝑡 𝑎𝑛𝑦 𝑡𝑖𝑚𝑒 𝑑𝑢𝑟𝑖𝑛𝑔 𝑜𝑢𝑡𝑏𝑟𝑒𝑎𝑘)

𝑛(𝑜𝑢𝑡𝑏𝑟𝑒𝑎𝑘)
 

 

(2) 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑝𝑒𝑟 𝑤𝑒𝑒𝑘 =  
𝑛(𝑎𝑙𝑎𝑟𝑚 = 1,  𝑜𝑢𝑡𝑏𝑟𝑒𝑎𝑘 = 1)

𝑛(𝑜𝑢𝑡𝑏𝑟𝑒𝑎𝑘 = 1)
 (3) 
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𝑡𝑖𝑚𝑒𝑙𝑦 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑛(𝑎𝑙𝑎𝑟𝑚 𝑎𝑡 ± 2 𝑤𝑒𝑒𝑘𝑠 𝑜𝑓 𝑜𝑢𝑡𝑏𝑟𝑒𝑎𝑘 𝑜𝑛𝑠𝑒𝑡)

𝑛(𝑜𝑢𝑡𝑏𝑟𝑒𝑎𝑘)
 

(4) 

 

Timeliness was calculated as the mean of prevented fraction of outbreaks to 

circumvent the problem of non-detected outbreaks. The prevented fraction is the 

proportion of time of an outbreak saved by detection by the EBS system relative to the 

onset of the outbreak [85]. If an outbreak is detected, it is calculated as:  

𝑡𝑖𝑚𝑒𝑙𝑖𝑛𝑒𝑠𝑠 (𝑝𝑟𝑒𝑣𝑒𝑛𝑡𝑒𝑑 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛) = 1 −
𝑡𝑎𝑙𝑎𝑟𝑚 − 𝑡𝑜𝑛𝑠𝑒𝑡

𝑜𝑢𝑡𝑏𝑟𝑒𝑎𝑘 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛
 

 

 

(5) 

where 𝑡𝑜𝑛𝑠𝑒𝑡 is the onset time of the outbreak, 𝑡𝑎𝑙𝑎𝑟𝑚 is the time of detection by the EBS 

system and 𝑜𝑢𝑡𝑏𝑟𝑒𝑎𝑘 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 is the number of weeks for which an outbreak 

continues. Thus, timeliness will be 1 if an alarm is raised by the EBS system in the 

onset week and 0 if an alarm is raised at the end of an outbreak or if the outbreak is 

not detected by the EBS system at all. As all datasets are comprised of multiple 

outbreaks, the arithmetic mean of all prevented fractions for each system and country 

were reported.  

Specificity was calculated per week (equation (6), as was the positive predictive value 

of alarms (equation (7). Additionally, sensitivity and specificity per week were 

combined into an accuracy metric, which is the sum of all correctly assigned weeks 

over the total number of weeks (equation (8). Moreover, the F1 score was calculated 

as the harmonic mean of sensitivity per week (i.e. precision) and positive predictive 

value (i.e. recall) (equation (9).   

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 𝑝𝑒𝑟 𝑤𝑒𝑒𝑘 =  
𝑛(𝑎𝑙𝑎𝑟𝑚 = 0,  𝑜𝑢𝑡𝑏𝑟𝑒𝑎𝑘 = 0)

𝑛(𝑜𝑢𝑡𝑏𝑟𝑒𝑎𝑘 = 0)
 

 

(6) 

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑣𝑎𝑙𝑢𝑒 (𝑃𝑃𝑉) =
𝑛(𝑎𝑙𝑎𝑟𝑚 = 1,  𝑜𝑢𝑡𝑏𝑟𝑒𝑎𝑘 = 1)

𝑛(𝑎𝑙𝑎𝑟𝑚 = 1)
 

 

(7) 

 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑛(𝑎𝑙𝑎𝑟𝑚 = 1,  𝑜𝑢𝑡𝑏𝑟𝑒𝑎𝑘 = 1) +  𝑛(𝑎𝑙𝑎𝑟𝑚 = 0,  𝑜𝑢𝑡𝑏𝑟𝑒𝑎𝑘 = 0)

𝑛(𝑤𝑒𝑒𝑘𝑠)
 

 

(8) 

𝐹1 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃𝑃𝑉) × 𝑟𝑒𝑐𝑎𝑙𝑙 (𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑝𝑒𝑟 𝑤𝑒𝑒𝑘)

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃𝑃𝑉) +  𝑟𝑒𝑐𝑎𝑙𝑙 (𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑝𝑒𝑟 𝑤𝑒𝑒𝑘)
 

 
(9) 
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95% confidence intervals for the evaluation metrics were calculated as exact binomial 

confidence intervals, with the exception of timeliness. Since timeliness was calculated 

as the mean of the prevented fractions per outbreak, a binomial procedure was not 

possible. Thus, similarly to the procedure of calculating confidence intervals for odds 

ratios, the point estimates were logit-transformed, and the standard deviation was 

determined as √
𝑝𝑟𝑒𝑣.𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 × (1−𝑝𝑟𝑒𝑣.𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛)

𝑛(𝑜𝑢𝑡𝑏𝑟𝑒𝑎𝑘𝑠)
. The 95% confidence intervals were then 

calculated on the logit scale and back-transformed to the linear scale, thus being 

bounded between 0 and 1.  

2.4 Regressions 

Country-specific variables examined as predictors in regressions to test their influence 

on EBS system performance were: total counts over the data collection period, 

maximum counts per week, global region (temperate Northern hemisphere, temperate 

Southern hemisphere or tropical), language (English yes/no), latitude, longitude, 

human development index, press freedom index, total numbers of internet users and 

HealthMap filter language (yes/no). No variable for EIOS filter language was set up 

because EIOS filters in the language of each test country. All raw values of regression 

predictors can be found in table 11 in the appendix. The logarithm of total and 

maximum counts was used in regression analysis to ensure linearity between outcome 

and predictor. The absolute value of latitude was used as a proxy for a country’s 

climate. All regressions were fit in the software R (version 3.6.3) [86], using the 

packages base, MASS (version 7.3-51.6) [87], and glmnet (version 4.0) [88]. Additional 

diagnostic plots were created with car package version 3.0-7 [89]. 

First, to determine the influence of certain country-specific factors on the EBS system 

performance, univariable regressions were performed with each evaluation metric as 

outcome and each covariate as a predictor. All assumptions of linear regressions were 

checked with diagnostic plots. These are: histograms of the residuals to check the 

Normality assumption, plotting of fitted values against residuals for checking for a linear 

relationship and homoscedasticity, QQ-plots of the residuals to check for Normality, 

and leverage plots for outliers. The assumptions of normally distributed errors and 

linearity between outcome and predictor were not met for timely sensitivity, as zeros 

were overrepresented in the values. Thus, logistic regressions were performed to see 

which factors influenced if timely sensitivity was 0 or above 0.  
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Next, predictors with a p-value below 0.2 in univariable regressions were included in 

multivariable linear regressions for each evaluation metric, and the variance inflation 

factors were checked with the R package car (version 3.0-7) [89]. Highly correlated 

variables were removed from the models until the variance inflation factors were below 

4, which is a conservative threshold [90]. Then, for each outcome, influential variables 

were selected among those meeting the 0.2 significance threshold into a final model 

by a forward selection process, which was based on the models’ Akaike information 

criterion (AIC).  

To see if the variable selection process by AIC was valid, the selection process was 

repeated using least absolute shrinkage and selection operator (LASSO) regression. 

However, only the coefficients from the AIC models were reported, since the LASSO 

coefficients are biased due to shrinkage. LASSO regression was carried out with the 

glmnet package. The parameter for the amount of the coefficient shrinkage 𝜆 was 

optimized to the value that minimized the cross-validation prediction error rate. The 

subset of variables whose coefficients were not shrunk to 0 was then compared to the 

set of variables obtained through selection with the AIC criterion. 
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3 Results 

3.1 FluNet Data 

Confirmed virological influenza case counts from over 7 years were collected from 

FluNet, a traditional influenza surveillance platform. In most countries, the numbers of 

tested and positive specimen were high enough to allow a good distinction between 

epidemic and non-epidemic periods, although the absolute number of counts varied 

greatly across countries, reflecting varying testing capacities. While countries fully 

situated in temperate regions showed one distinct epidemic per year in their respective 

winter months, some countries spanning multiple climate zones such as India and 

China showed, two epidemic peaks in some years (figure 2). Countries situated in 

tropical regions such as Costa Rica and Ecuador displayed more irregular patterns 

with missing one season or multiple outbreaks per season. In three tropical countries 

with no clear seasonality (Nigeria, Thailand, and Vietnam), FluNet data were of low 

quality, meaning that the total number of tested individuals and thus positive influenza 

cases was very low and the background noise was so high that almost no outbreaks 

were discernible. 

Plotting FluNet counts over time revealed an interesting interplay between influenza 

subtypes A and B. In general, influenza B cases peaked at a slightly different time than 

influenza A and case counts were lower, except in the European countries in the 

season 2017/2018. In some years, influenza B cases preceded or lagged behind the 

peak of influenza A cases greatly, leading to bimodal peaks of total influenza counts, 

with one peak for influenza A and one peak for influenza B. Another insight from the 

FluNet data is that influenza cases have a high year-to-year variability: they do not 

always peak at the same time of the year, nor do the peaks always have the same 

height, indicating that influenza epidemics are worse in some years than in others. 

Despite data limitations in three countries, total influenza counts were used as gold 

standard for the following analyses of event-based surveillance (EBS) system 

performance. Influenza A and B could not be regarded separately because news 

articles rarely distinguish between influenza subtypes.  
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Figure 2: Positive case counts for influenza types A, B and total from the FluNet platform plotted as a 
function of time for 7 years. 6 representative countries from different influenza transmission zones were chosen 
to visualize a broad spectrum of seasonal influenza patterns, testing capacities, and data quality. 

3.2 EBS total count data  

Influenza events were gathered from HealthMap for 6.5 years and from EIOS for 2 

years. The average annual number of HealthMap events was lower than the average 

annual number of events produced by the EIOS system in every country (figure 3). 

This difference can be explained by the fact that EIOS receives a great deal more input 

than HealthMap by not only scraping news aggregators, but also aggregating multiple 

EBS systems (HealthMap and GPHIN amongst others).  

In both systems, the USA was an outlier with the highest number of events by far. 

Twelve countries had only very sparse event data in HealthMap (Bulgaria, Costa Rica, 

Ecuador, Germany, Greece, Iran, Nigeria, Saudi Arabia, South Africa, Sweden, 

Thailand, and Uruguay). Surprisingly, these low count countries were not all 

developing countries with low internet usage and poor health systems, but also 

included rich, Western countries. However, this observation can be explained by the 
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fact that HealthMap does not filter for news articles in the official languages of these 

countries. In contrast, EIOS filters for all the official languages of the 24 countries 

evaluated, thus filtering language cannot be a factor affecting EIOS count numbers. 

Nevertheless, EIOS also shows large differences in total counts between countries, 

with low count countries mostly situated in tropical regions.   

 

Figure 3: Average annual counts per country of EIOS and HealthMap systems over 2 and 6.5 years, 
respectively. Every news article picked up by the systems is counted as an event.  

3.3 Visual correlation between EBS systems and gold standard over time 

The EBS systems reflect the seasonal influenza outbreaks detected in FluNet counts 

to some extent. Figure 4 exemplifies the visual correlation between FluNet, HealthMap 

and EIOS counts for a set of countries with very different numbers of events.  

Countries with very low event counts in HealthMap show only scattered spikes of a few 

events. However, most of these spikes occur when confirmed influenza cases are high, 

hinting at some degree of correlation (such as Bulgaria and Germany), but they can 

also occur seemingly at random (such as Nigeria). On the other hand, HealthMap 

events in countries with higher event counts generally coincide with influenza 

epidemics in FluNet data, as in Argentina, India and the USA.  
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In contrast, EIOS events seem to be less synchronized with FluNet counts and have a 

lower signal-to-noise ratio. Additionally, event count patterns are less clearly visible, 

as EIOS provided event data for only 2 years. Exceptions are only countries with a 

very high number of EIOS events, such as Bulgaria and the USA, which show a distinct 

seasonal pattern.  

 

Figure 4: Time series correlations for EIOS, FluNet and HealthMap. Weekly events relating to influenza from 
every system are plotted over the time that data are available. EIOS events are on top, confirmed influenza counts 
from FluNet in the middle, and HealthMap events at the bottom. Epidemic periods found with Bayesian change 
point analysis are highlighted in red, non-epidemic periods are shown in grey. 

There are also noteworthy differences in number of events for the two systems 

between different countries. For instance, in Bulgaria, HealthMap collected only very 

few events, whereas EIOS found many events that were well-correlated with the gold 

standard. Looking only at the visual correlations, it is already clear that the two EBS 



24 
 

systems operate with very different characteristics, which lead to different distributions 

of event counts: EIOS data were more abundant, but more variable and were less 

synchronized with lab-confirmed influenza cases. In contrast, HealthMap generally did 

not produce any events at all during non-epidemic periods and produced spikes or 

curves of only moderate height during epidemic periods. 

3.4 Outbreak detection  

To go beyond the visual correlation, start and end points of influenza epidemics were 

determined retrospectively by Bayesian change point (BCP) analysis in all three 

datasets. Based on the detected start and end points, the time series were divided into 

‘epidemic’ and ‘non-epidemic’ periods.  

3.4.1 FluNet 

Regular seasonal epidemics were discovered in all countries except in Nigeria, 

Thailand and Vietnam, for which FluNet provided only sparse data and which, due to 

their tropical climate, inherently show no clear seasonality. In line with the observations 

made by Azziz-Baumgartner [75] and Newman [47], Brazil, China, Costa Rica, 

Ecuador, Egypt, India, and Mexico experienced a second epidemic in some years, and 

Nigeria, Thailand and Vietnam showed year-round activity. Most countries had 

between 7 and 9 outbreaks during the whole study period. The maximum number of 

outbreaks detected was 11 (in India and Nigeria), and the minimum number was 4 in 

Saudi Arabia, since data were only available as of January 2017. The minimum number 

of outbreaks in countries with complete data was 6 outbreaks in France. The peak 

height for outbreaks varied significantly between countries, but also between outbreaks 

within countries. The countries with the highest number of confirmed cases per 

outbreak were the USA, China, and France, while the countries with the lowest peaks 

were Nigeria, Uruguay, and Vietnam. However, these numbers do not necessarily 

reflect true differences in case counts, but rather differing testing capacities (see 

section 4.4) 

The epidemic periods of the FluNet counts displayed in figure 4 confirmed the visual 

detection of outbreaks in the timeline very well. BCP analysis detected a change early 

in rising curves and at the end of dropping curves. For Nigeria, Thailand and Vietnam, 

the epidemic periods detected by BCP are less well-defined due to the high signal-to-

noise ratio of influenza counts in these countries (figure 5). Therefore, epidemic 
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indicators cannot be fully trusted and performance metrics which are calculated later 

may be questionable for these countries.  

 

Figure 5: FluNet data with epidemic period indicator for the three countries with low data quality. Epidemic 
periods, as defined by Bayesian Change Point approach, are colored in red, non-epidemic periods in grey.  

3.4.2 EBS systems 

Twelve countries had very low HealthMap event counts and thus only showed spikes 

of a few events at a time. BCP analysis detected all of these spikes as outbreaks (see 

data for Bulgaria, Germany, and Nigeria in figure 4). Detecting these spikes as 

outbreaks increased sensitivity compared to ignoring them (see section 3.5.3). In line 

with observations from FluNet, outbreaks detected by the BCP algorithm in HealthMap 

data corresponded well with visual outbreak detection.  

Due to the low signal-to-noise ratio and the short data collection period of EIOS, a clear 

baseline could not be discriminated from an epidemic phase for this system. Therefore, 

it seems that BCP analysis did not work as well as in HealthMap. Most outbreaks are 

still recognized as they would with the naked eye, but sometimes the algorithm did not 

detect spikes (see Nigeria in figure 4) or flagged outbreaks at unexpected time points 

(see Argentina in figure 4). Moreover, EIOS counts peaked at times when gold 

standard counts were still low, for example in Germany in the fall of 2018 and 2019 or 

in the USA in the summer/fall of 2018.  

3.5 Evaluation of outbreak detection performance 

Datasets were first divided into epidemic and non-epidemic periods. Influenza outbreak 

detection performance was evaluated separately for each EBS system because both 

have their unique characteristics and biases. To obtain a complete picture of the 

performance, three different metrics of sensitivity were evaluated along with specificity, 
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positive predictive value, and timeliness of detection. Additionally, accuracy and F1 

scores were calculated as two composite measures of performance.  

In general, system performance varied widely across countries, and there was seldom 

a discernible concordance between EIOS and HealthMap. Of note, EIOS metrics were 

less precise than HealthMap metrics because the former are calculated from only two 

years of data, whereas HealthMap calculations are based on 6.5 years of data. Hence, 

the 95% confidence intervals of all EIOS metrics are wider than their respective 

HealthMap counterparts (table 8 in appendix).  

3.5.1 Performance measured in simple metrics 

Sensitivity per outbreak was over 50% for most countries in HealthMap, except for 

Egypt and Nigeria, and over 75% for 13/24 countries (figure 6). That is to say, in 13/24 

countries HealthMap detected ¾ of all outbreaks. In comparison, EIOS detected ¾ of 

all outbreaks in only 9/24 countries and did not detect a single outbreak in Costa Rica. 

Sensitivity per outbreak was the evaluation metric which had the highest number of 

countries scoring 100%, that is, 6 in HealthMap and 9 in EIOS. Remarkably, EIOS thus 

had very high inter-country variations in this metric.  

Sensitivity per week was lower in both systems for every country, except obviously for 

Costa Rica in EIOS, which was again 0%. For example, while HealthMap achieved a 

sensitivity per outbreak of 86% in Argentina, the country’s sensitivity per week was 

only 63%. In EIOS, the discrepancy for Argentina was even higher, with a sensitivity 

per outbreak of 100% and a sensitivity per week of 39.5%. Since the main reason for 

the calculation of this metric was the usage in composite measures, the scores of 

individual countries will not be discussed.  

Neither of the EBS systems achieved a good score for timely sensitivity on average, 

which was the main outcome of interest. HealthMap detected 0% of all outbreaks within 

2 weeks of outbreak onset in 13/24 countries, and EIOS failed to detect outbreaks in a 

timely manner in 19/24 countries (figure 6). The countries in which HealthMap detected 

the most outbreaks on time were Bulgaria, the UK and the USA with a timely sensitivity 

of 28.6%. This corresponds to 2 outbreaks out of 7 which were detected within 2 weeks 

of outbreak onset. For EIOS, the timely sensitivity of France and Vietnam was 50%, 

corresponding to 1 outbreak out of 2 detected within two weeks, and 1 out of 3 

outbreaks was detected in Brazil, Sweden, and the UK.  
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The specificity of both systems did not vary substantially between countries and was 

generally very high, with 22 countries having a specificity larger than 75% in HealthMap 

and 17 in EIOS. Iran in EIOS was the only country which had a specificity of 100%, 

meaning that all weeks in which an alarm was raised were classified as outbreak weeks 

in the gold standard, too.  

 

Figure 6: EIOS and HealthMap performance metrics. All metrics were calculated with FluNet data as reference. 
Sensitivity per outbreak is the sum of all detected outbreaks (alarm during the outbreak) over the total number of 
outbreaks. Sensitivity per week is the sum of correctly classified epidemic weeks over the total number of epidemic 
weeks. Timely sensitivity is the sum of all outbreaks detected within 2 weeks of the onset date in FluNet divided by 
the total number of outbreaks. Specificity is the sum of all correctly classified non-epidemic weeks over the total 
number of non-epidemic weeks. Positive predictive value is the number of weeks correctly classified as epidemic 
divided by all epidemic weeks. Timeliness or prevented fraction is defined as the difference between the outbreak 
onset and the time of detection by the system, divided by the length of the whole outbreak. If an outbreak is not 
detected by the system, the prevented fraction is set to zero. 

Calculation of the positive predictive value produced more heterogeneous results. In 

HealthMap, 4 countries had a PPV below 50%, 11 between 50% and 75%, and 9 above 
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75%. For example, this means that the probability of a week being classified as an 

outbreak in HealthMap also being classified as an outbreak week in the gold standard 

data was less than 50% for France, Nigeria, Saudi Arabia, and Thailand. In EIOS, the 

PPV ranged from 0% in Costa Rica to 100% in Iran, with 8 countries below 50%, 7 

between 50% and 75%, and 8 above 75%. 

Timeliness was calculated as the mean of prevented fractions of outbreaks to 

circumvent the problem of non-detected outbreaks. For both systems, the mean 

prevented fraction was rarely over 75%, and especially low in EIOS with 15 countries 

below 50%. This means that the systems usually detected outbreaks late after their 

onset, which corresponds well to the low scores of timely sensitivity. Countries in which 

the prevented fractions are high are Argentina, the United States, and Vietnam for 

HealthMap, and Argentina, China, France, Sweden, and the UK for EIOS. 

3.5.2 Performance measured in composite metrics 

In addition to these simple metrics, two composite measures were calculated: accuracy 

is the number of correctly classified weeks over the total number of weeks, so it 

combines sensitivity per week and specificity. For HealthMap, accuracy was 75% or 

higher in 7 countries and 50% or higher for all countries except Saudi Arabia and 

Vietnam (figure 7). Countries for which HealthMap was over 75% accurate were the 

United States, Ecuador, Brazil, Argentina, Mexico, India, and Germany. In EIOS, 

accuracy was over 70% for Brazil, Russia, Bulgaria, and Ecuador, and the countries 

with the lowest accuracy were Saudi Arabia and Vietnam. 

 

Figure 7: EIOS and HealthMap composite performance metrics. All metrics were calculated with FluNet data 
as reference. Accuracy is the sum of all correctly classified weeks over the total number of evaluation weeks. The 
F1 score is the harmonic mean of sensitivity per week (recall) and positive predictive value (precision).  
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The F1 score was calculated as the harmonic mean of sensitivity and PPV, and was 

higher most of the time in HealthMap than in EIOS. In HealthMap, the USA and 

Argentina had the highest F1 score with 75% and 69%, respectively, and Nigeria and 

France had the lowest scores with 9% and 6%, respectively. Sweden, the UK, and 

Brazil were the only countries which scored over 60% in EIOS. The countries with the 

lowest scores in EIOS were South Africa, Nigeria, and Costa Rica with F1 scores of 

9.7%, 8.3% and 0%, respectively. Costa Rica had a F1 score of 0%, since its sensitivity 

was 0%. In general, these results suggest that HealthMap performed consistently 

better than EIOS, with higher average values in all performance metrics (table 1).  

 Sensitivity 
per 
outbreak 

Timely 
sensitivity 

Sensitivity 
per week 

Positive 
predictive 
value 

Specificity Prevented 
fraction 

Accuracy F1 score 

HealthMap 
>  EIOS 

11 8 19 13 11 15 20 20 

HealthMap 
= EIOS 

3 11 0 0 0 0 0 0 

EIOS >  
HealthMap 

10 5 5 11 13 9 4 4 

HealthMap 
average 

0.753 0.093 0.359 0.657 0.869 0.535 0.677 0.433 

EIOS 
average 

0.733 0.083 0.254 0.596 0.850 0.449 0.591 
 

0.338 

Table 1: Summary of EIOS and HealthMap performance. The first three rows detail numbers of countries, the 
last two rows display means of the various metrics. 

3.5.3 Comparison system performance with a count limit  

In order to check if classifying single spikes of very few events as outbreaks increases 

system performance, an analysis was conducted in which an outbreak was only 

flagged with a minimum of 5 weekly counts. This analysis was only carried out for 

HealthMap data, as EIOS did not show such spikes. Introducing an event count limit 

for outbreak detection reduced the average specificity and PPV, but increased 

sensitivity per week and timeliness (figure 8). Timely sensitivity and sensitivity per 

outbreak were unchanged. On average, the limit also decreased the F1 score 

significantly and had no effect at all on the accuracy. Therefore, it can be concluded 

that a count limit is not a useful method to improve detection of influenza outbreaks. 
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Figure 8: Comparison of mean evaluation metrics for HealthMap with and without an outbreak detection 
limit of at least 5 weekly counts. All metrics were calculated with FluNet data as reference. 

3.6 Detection of country factors influencing system performance 

3.6.1 Correlations between outcomes and predictors 

Before country-specific factors that influence HealthMap and EIOS performance could 

be identified, scatter plots of all predictors and all evaluation metrics were examined. 

Not surprisingly, most of the evaluation metrics were correlated with each other (figures 

11 + 12 in appendix). All sensitivity metrics were moderately positively correlated with 

each other, as were sensitivity and prevented fraction. Moreover, specificity was 

positively correlated with PPV and negatively correlated with sensitivity per outbreak, 

sensitivity per week, and prevented fraction. However, specificity was not correlated 

with timely sensitivity, as the latter was comprised of too many zeros.  

Some predictors were strongly positively correlated with each other, such as total and 

maximum counts of each EBS system, or HDI and total internet users (figure 13 in 

appendix). Moderate correlations existed between HDI and latitude, total internet users 

and latitude, HDI and PFI, and latitude and EIOS counts. HDI was moderately 

correlated with EIOS event counts but not with HealthMap event counts. HealthMap 

and EIOS counts were correlated with each other. Because of the high degree of 

correlation, some variables were removed from the multivariable regression models. 

Variance inflation factors were lowest when total counts (as categorical variable), 
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maximum counts, global region (as categorical variable), and total number of internet 

users were removed from the models. 

3.6.2 Linear regressions 

The coefficients from univariable linear regressions of each performance metric with 

every predictor can be found in tables 9 + 10 in the appendix. Checking for pairwise 

interactions of all predictors for all outcomes resulted in no statistically significant 

interactions. The variables selected into the multiple regression models can be seen 

in tables 2 + 3. Of note, the predictors for the same metrics barely overlapped between 

both systems. The only predictor that was selected equally often for both systems was 

total counts. HDI appears to be more important for HealthMap than for EIOS 

performance, as it was selected for three outcomes for HealthMap, but only for one 

outcome for EIOS. In contrast, global region or latitude was selected for every single 

variable in EIOS, but not a single time in HealthMap. Neither a country’s official 

language nor HealthMap filter language played a big role for the performance of both 

systems, as they were selected only once each.  

Increasing the HDI increased sensitivity and prevented fraction but decreased 

specificity. For instance, sensitivity per outbreak increased on average by 11.5%, and 

specificity decreased on average by 4.3% with every 0.1 increase in HDI. Likewise, 

going from tropical to temperate climates in EIOS increased sensitivity per outbreak 

(0.7% per 1° increase) and prevented fraction, (0.9% per 1° increase) but decreased 

positive predictive value (-1% per 1° increase). Latitude is a proxy for influenza 

seasonality, with countries further away from the equator having clear seasonal curves, 

and countries closer to the equator having more irregular influenza outbreaks. 

Therefore, the background noise was higher in the latter countries, which complicated 

outbreak detection.  

Moreover, total counts were only selected for sensitivity and timeliness, with higher 

number of counts increasing the metrics. In HealthMap, an increase of 1 logarithmic 

unit in counts increased sensitivity per outbreak by 3.9% and the prevented fraction by 

5.2%. An increase by the same magnitude in EIOS lead to an increase in sensitivity 

per week by 0.7% and an increase in prevented fraction by 7.8%. The higher a country 

ranked on the PFI (i.e. the worse the media freedom), the lower was the specificity in 

HealthMap (0.3% decrease with every 1 score increase) and the PPV in EIOS (0.4% 

decrease with every score increase). 
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For PPV in HealthMap, none of the predictor variables were chosen into the final 

model, although PPV varied considerably between countries. Specificity had a low 

number of predictors and low R² values in both systems. The adjusted R² values 

ranged from 0.14 to 0.63 and were highest for sensitivity per week in HealthMap and 

PPV in EIOS. However, these high values can indicate overfitting because the models 

with the highest R² values are using 5 and 7 degrees of freedom on only 24 data points, 

respectively. 

Outcome Predictor Category/ 
Increment 

Coefficient [95% CI] p-value Adjusted 
R² 

Sensitivity per 
outbreak 

log(Total counts) 1 log 0.039 [-0.0069 - 0.0845] 0.0920 0.317 

HDI 1 score 1.148 [0.3224 - 1.9733] 0.0087 
 

Sensitivity per 
week 
  
   

log(Total counts) 1 event 0.095 [0.0547 - 0.1358] 0.0001 0.557 

HDI 1 score 0.418 [-0.1667 - 1.0033] 0.1514   

HealthMap filter 
language 

False reference     

True -0.096 [-0.2465 - 0.0551] 0.2005   

PPV -         

Specificity 
  

HDI 1 score -0.429 [-0.9553 - 0.0978] 0.1052 0.141 

PFI 1 score -0.003 [-0.0056 - -
0.0003] 

0.0324   

Prevented 
fraction 

log(Total counts) 1 log 0.052 [0.0136 - 0.0896] 0.0101 0.304 

HDI 1 score 0.566 [-0.1196 - 1.2523] 0.1007   

Table 2: Effect of country-specific predictors on HealthMap performance. 

Outcome Predictor 
Category/ 
Increment Coefficient [95% CI] p-value 

Adjusted 
R² 

Sensitivity per 
outbreak 
  
  

HDI 1 score 1.045 [-0.2206 - 2.310] 0.1004 0.443 

Latitude 1° 0.007 [0.000 - 0.0143] 0.0494   

PFI 1 score 0.007 [0.0019 - 0.0121] 0.0096   

Sensitivity per 
week 
  

log(Total counts) 1 log 0.051 [0.0029 - 0.0997] 0.0389 0.358 

Latitude 1° 0.003 [-0.0004 - 0.0071] 0.0792   

PPV 
  
  
  
  
  

log(Total counts) 1 log 0.037 [-0.0209 - 0.095] 0.1964 0.626 

Global region Temp. Northern reference      

   Temp. Southern 0.03 [-0.166 - 0.2262] 0.7507   

   tropical 0.452 [0.2622 - 0.642] 0.0001   

Latitude 1° 0.01 [0.0046 - 0.0157] 0.0012   

PFI 1 score 0.004 [-0.0001 - 0.0071] 0.0546   

Specificity 
  
  

Global region Temp. Northern reference      

   Temp. Southern -0.017 [-0.145 - 0.1101] 0.7783 0.273 

   tropical 0.153 [0.0479 - 0.2571] 0.0063   

Prevented 
fraction  
  
  

log(Total counts) 1 log 0.078 [-0.0084 - 0.1649] 0.0742 0.489 

Official language not English reference     

English -0.258 [-0.5566 - 0.0403] 0.0863   

Latitude 1° 0.009 [0.0035 - 0.0146] 0.0028   

Table 3: Effect of country-specific predictors on EIOS performance. 
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3.6.3 Logistic regressions 

Logistic regression to identify factors influencing the timeliness of outbreak detection 

was problematic because some of the variables showed perfect separation. For 

example, all countries with English being the official language (Australia, UK, and USA) 

had a timely sensitivity greater than 0 in HealthMap, so fitted probabilities were 1. 

Similarly, none of the countries with a timely sensitivity greater than 0 in EIOS are 

located in the Southern temperate hemisphere. As a consequence, the coefficients 

and their confidence intervals were inflated. An additional problem was that only 24 

data points were available to estimate the coefficients and that the ‘English’ category 

of the ‘Official language’ variable was underrepresented with only 3 countries. For 

these reasons, logistic regression was not feasible, so the categorical variables with 

the percentage of successes per stratum are shown (table 4). 

HealthMap EIOS 

Official 
language Timely sensitivity Geographical region Timely sensitivity 

 zero > zero  zero > zero 

not English 11 (45.8%) 10 (41.7%) Temp. Northern hemisphere 10 (41.7%) 3 (12.5%) 

English 0 3 (12.5%) Temp. Southern hemisphere 4 (16.7%) 0 

   tropical 5 (20.8%) 2 (8.3%) 

Table 4: Variables with perfect separation of timely sensitivity categories in HealthMap and EIOS. The 
number of countries in each category are shown in the table, along with the percentages in each category. 

3.6.4 Robustness analysis of variable selection 

In order to check the validity of the variable selection, LASSO regressions were 

performed for every evaluation metric. The variable selection was very similar to 

selection by AIC, which means that the overall predictor selection process was valid 

(table 5). The most striking difference was that LASSO did not select any variables into 

the specificity model for HealthMap. Additionally, LASSO did not choose any variables 

to predict timely sensitivity for either system, thus supporting the fact that logistic 

regression for timely sensitivity is not feasible.  

In a second robustness analysis, the variable selection process was repeated, 

excluding the three countries with low FluNet data quality (Nigeria, Thailand and 

Vietnam). Overall, the selected sets of important predictors for each metric were very 

similar between the full and the reduced datasets. The most striking difference was 

that in the reduced dataset, three variables were selected as predictors for HealthMap 

PPV, which had no significant predictors in the full dataset. The regression coefficients 

for PPV suggest that the PPV might be lower with higher HDI and HealthMap filter 
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language (regression coefficients in appendix table 9). However, this might also be an 

artifact because 3 countries with low HDI are deleted. In EIOS, variable selection 

remained almost unchanged. Overall, this sensitivity analysis shows that the FluNet 

data problems did not influence variable selection to a high degree. 

 
HealthMap EIOS 

Outcome AIC predictors LASSO predictors AIC predictors LASSO predictors 

Sensitivity per 
outbreak 
 

Total counts Total counts HDI HDI 

HDI HDI Latitude Latitude  
Global region PFI PFI    

Global region 

Sensitivity per 
week 
 

Total counts Total counts Total counts Total counts 

HDI HDI Latitude Latitude 

HM filter language 
   

PPV 
 
 

- - Total counts Total counts   
Global region Global region   
Latitude Latitude   
PFI PFI 

Specificity 
 

HDI - Global region Global region 

PFI 
  

HDI 

Prevented 
fraction 
 

Total counts Total counts Total counts Total counts 

HDI HDI Latitude Latitude 
  

Official language 
 

Timely 
sensitivity 

- - - - 

 
Table 5: Comparison of variable selection with AIC and LASSO. 

 
HealthMap EIOS 

Outcome Full dataset 
predictors 

Reduced dataset 
predictors 

Full dataset 
predictors 

Reduced dataset 
predictors 

Sensitivity 
per outbreak 

Total counts Total counts HDI HDI 

HDI HDI Latitude Latitude   
PFI.2018 PFI.2018 

Sensitivity 
per week 

Total counts Total counts Total counts Total counts 

HDI 
 

Latitude Latitude 

HealthMap filter 
language 

 
  

PPV - Official language Total counts  

HDI.2018 Global region Global region 

HealthMap filter 
language 

Latitude  
PFI 

Latitude 
PFI 

Specificity HDI HDI Global region 
 

PFI Official language 
  

 
Total counts 

  

Prevented 
fraction 

Total counts Total counts Total counts Total counts 

HDI HDI Official language Official language   
Latitude Latitude 

Table 6: Comparison of variable selection between the full dataset and the reduced dataset. In the reduced 
dataset, countries with low FluNet data quality (Nigeria, Thailand, and Vietnam) were excluded. 
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4 Discussion 

4.1 Principal findings 

4.1.1 How did the systems perform?  

This study assessed one way in which EBS systems can be used to detect disease 

outbreaks. In this work, in order to formally evaluate the performance of HealthMap 

and EIOS, their ability to detect seasonal influenza outbreaks in 24 countries worldwide 

was compared with a gold standard based on FluNet. Outbreaks were detected by 

Bayesian change point (BCP) analysis both in the EBS event data and in the lab-

confirmed cases from FluNet. It is important to note that all analyses were done 

retrospectively on the complete datasets, and not prospectively like in real-time 

surveillance. Performance metrics varied widely between the 24 countries and the two 

systems.  

Sensitivity per outbreak was used to analyze the crude detection of outbreaks and was 

over 75% for most countries. EIOS detected all outbreaks in 7 countries, but also 

detected none of the outbreaks in one country, namely Costa Rica. Specificity was the 

evaluation metric in which both systems were found to have the most similar values 

across countries. In contrast, positive predictive value (PPV) and timeliness differed 

greatly between countries and systems. While all the above metrics measure some 

characteristic of the EBS system, they are only meaningful if the systems’ users are 

interested in improving one metric at a time or focusing on one metric only. For 

example, users might want to have a system alerting with high specificity if the 

resources to respond to alerts are constrained. In contrast, they might want high 

sensitivity if other information suggests that the likelihood of a disease outbreak is high. 

However, to my knowledge, the user perspectives on the functionalities of EBS 

systems have not been described in the literature.  

In reality, users would want to work with a system that detects outbreaks both timely 

and accurately. This is why composite metrics were evaluated, namely accuracy and 

F1. Accuracy combines sensitivity and specificity, and the EBS systems showed an 

accuracy between 45% and 75%for the majority of countries. The F1 score is more 

often used in information retrieval, machine learning, and natural language processing 

than in diagnostic testing. However, since it combines sensitivity and positive predictive 

value into one measure, it is also a useful evaluation metric for the performance of 
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HealthMap and EIOS. The F1 metric showed more variability across countries. While 

EIOS rarely achieved an F1 score over 50%, HealthMap had a score of over 50% in 

almost half of the countries. Since the user perspectives on the functionalities of EBS 

are underrepresented in the literature, there is no clear cutoff value above which a 

system’s performance is deemed acceptable or good. In summary, HealthMap showed 

a consistently higher accuracy and F1 score than EIOS. What was surprising was the 

high accuracy of HealthMap in Ecuador and Germany, since the events from these 

countries are only spikes of few counts. This provides even more evidence that 

counting spikes of a few events as influenza outbreaks is useful. 

Accuracy and the F1 score are valuable to obtain a combined picture of sensitivity and 

specificity or PPV, but not about timeliness. Therefore timeliness and sensitivity were 

combined into a timely sensitivity metric, which is the most important metric for 

evaluation an EBS system (see sections 1.3.2 and 2.3). Timely sensitivity provides an 

estimation of the systems’ ability to detect infectious diseases outbreaks in a timely 

manner, i.e. before traditional surveillance systems, which is the main reason why EBS 

was developed. The aggregation of daily event counts into weekly counts contradicts 

this timeliness idea, but otherwise event counts would have been too low for a 

meaningful analysis in some countries, and the comparability with FluNet would not 

have been given. The ability of systems to timely detect outbreaks was disappointing: 

EIOS had only 5/24 countries in which the timely detection of outbreaks was over 0%. 

The highest number for any country for HealthMap was 2/7 outbreaks detected in a 

timely manner in three countries, and in 10/24 countries, one outbreak was detected 

on time. A first conclusion is therefore that caution should be exercised when using the 

evaluated systems alone in the manner used in this study for infectious disease 

surveillance, and specifically, outbreak detection, as an analysis of event frequency 

has shown non-satisfactory results for influenza surveillance. HealthMap and EIOS 

might prove useful in combination with other sources such as social media or 

environmental data, however, or they may also give better results if the online media 

are manually filtered and examined qualitatively (e.g. by human analysts).  

4.1.2 Which factors influenced system performance? 

As many determinants affect the performance of outbreak detection in EBS, 

discovering how these factors influence the detection ability can help to improve these 

systems. An analysis of determinants of performance also helps to understand in which 
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contexts and why using event frequency is useful. Therefore, the relationship of the 

detection performance with various country-specific factors was examined in 

regressions.  

Data abundance, measured by total counts per country, was a factor influencing both 

HealthMap and EIOS performance. It was selected as an influential variable for 

sensitivity, PPV, and timeliness, with higher count numbers leading to an increase in 

all these metrics. The human development index (HDI) was more influential for 

HealthMap than EIOS, as it was chosen for 4 out of 6 metrics in HealthMap models 

and only once for EIOS models. An increase in HDI improved sensitivity and timeliness, 

but decreased the positive predictive value. The HDI was strongly correlated with total 

number of internet users, but surprisingly not with HealthMap event numbers and only 

moderately with EIOS event numbers. So the influence of HDI on the performance 

metrics was most likely not mediated through event numbers, although this was not 

formally tested. In contrast, HealthMap filter language was only chosen as a predictor 

once, and highly correlated with HealthMap event counts. Likewise, English as a 

country’s official language increased event numbers. This is in line with a previous 

observation that HealthMap received its vast majority of events from English sources 

[37]. Due to their high correlation with total counts, the language variables were 

probably acting on sensitivity only indirectly. The predictor which was chosen most 

often for EIOS performance was a country’s geographic location, either as global 

region or latitude. These variables were associated with influenza seasonality, but also 

with EIOS event counts and HDI. For countries further away from the equator, EIOS 

showed higher sensitivity, timeliness and PPV, but reduced specificity. However, there 

was no obvious threshold effect for any of the predictors.  

Looking at the R² values of predictors in univariable regressions, total counts had on 

average the largest influence on HealthMap performance. In EIOS, the results were 

less obvious, with geographical location having the largest influence on timeliness, 

specificity, and PPV, and total counts playing a less important role.   

Even after regressing the performance metrics on the predictors, a high degree of 

variability between the countries was still present. Especially the specificity models had 

very low R² values, indicating that there are other sources of variability that have not 

yet been identified. Such sources of variability might be a country’s health system 

performance, news structure, or language (language was only assessed as English vs 
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non-English and as HealthMap filter language). Furthermore, no suitable predictors for 

HealthMap PPV could be found. In contrast, the models for HealthMap sensitivity by 

week and EIOS PPV showed high R² values. This indicates potential overfitting, as 

from only 24 degrees of freedom, the models took 5 and 7, respectively. The same 

problem was present for the logistic regression with timely sensitivity as outcome. The 

very low number of data points, even lower number of ‘successes’ in EIOS, and low 

counts in certain categories led to unstable and unreliable estimates, so no meaningful 

logistic regression was feasible. 

4.1.3 Differences between HealthMap and EIOS 

Overall, HealthMap performed consistently better than EIOS, based on the mean of all 

performance metrics. This highlights the differences in conceptual design and 

functionality of the two systems. While EIOS data could only be collected over 2 years, 

HealthMap contributed 6.5 years of data. However, EIOS provided considerably more 

event data than HealthMap (80813 vs. 22722 events after de-duplication). This shows 

that more events do not necessarily lead to a better performance, but can dilute or hide 

important signs of infectious disease outbreaks. In a comparison study of three EBS 

systems, Lyon et al. noted HealthMap had less events detected than other evaluated 

systems, which were BioCaster and EpiSPIDER [37]. However, HealthMap had far 

more “quality” reports than the other two systems. The authors hypothesized that 

HealthMap’s data are less noisy and more informative because a significant 

percentage of HealthMap’s reports came from its community of users.  

The conceptual differences between HealthMap and EIOS are shown even clearer by 

the fact that a different set of predictors resulted for both systems. Whereas HDI played 

an important role for HealthMap performance, EIOS was more influenced by a 

country’s geographical location. 

HealthMap data structure was different from EIOS in another aspect: In lower count 

countries, spikes of a few events per week were visible. Introducing a count cutoff of 

minimum 5 counts for outbreak detection increased sensitivity per week and 

timeliness, but did not change sensitivity per outbreak, and even decreased PPV and 

specificity. As it decreased the composite metrics, too, it was concluded that a count 

limit for raising an alarm does not improve HealthMap performance. However, it is 

questionable if in practice users of EBS systems will raise an outbreak alarm based on 
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only one or a few events. Moreover, these few events might go unnoticed, and so initial 

signs of outbreaks will be missed. 

Since EIOS uses HealthMap alerts in addition to other online data sources, HealthMap 

represents the more restricted data source between the two. Unfortunately, it was not 

possible to identify which input was contributed to EIOS by HealthMap and which by 

other sources because this information was not supplied in the data. However, it is 

clear that at least some of these sources contribute noisy information, as EIOS 

generally performed worse than HealthMap.  

4.2 Comparison with other studies 

Scientists have long stressed the need for analyzing and quantifying the output of 

biosurveillance systems [23]. In one of the few available studies about the differential 

performance of EBS systems, Barboza et al. analyzed six biosurveillance systems and 

compared their detection rate, PPV, F1, sensitivity and timeliness of detection of H5N1 

outbreaks [68]. In a qualitative survey, end users reported using HealthMap as a 

complementary source of biosurveillance. In the quantitative section, HealthMap 

detected outbreaks on average 12 days before the gold standard, so a much earlier 

outbreak detection than in this work. However, the detection rate was only 43% 

(compared to an average outbreak sensitivity across countries of 75% in this work), 

and a PPV of 12% (compared to 66% in this work). These striking differences are likely 

to stem from discrepancies in study design: Barboza et al. did not attempt an outbreak 

detection based on event counts, but counted the first event relating to a respective 

H5N1 outbreak as a true positive. This approach is debatable, as it is unlikely that an 

outbreak alarm is raised based on only one event. Additionally, the authors of this study 

used WHO reports on H5N1 as a gold standard. These reports require official 

notification by a national authority, a process that can take time, and are thus not very 

accurate in timing [68], which assures an advantage in timeliness for EBS.  

In another study, Barboza et al. compared the same six systems for their ability to 

detect various infectious disease outbreaks, while using the weekly international 

epidemiological bulletin from the French Institute for Public Health Surveillance (InVS) 

as a gold standard [63]. Additionally, they identified factors which influenced system 

performance, such as types of system, languages, regions of occurrence, and types of 

infectious disease. However, they did not compare country-specific characteristics. 

Interestingly, they stress the importance of developing a common biosurveillance tool 
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for aggregating system outputs, which was later realized with the development of 

EIOS, with Dr. Barboza as project lead. In a previous study, they had indeed 

constructed a virtual combined system from six sources and assessed its performance 

[68]. This combined system achieved a 93% detection rate of human H5N1 outbreaks, 

but only a 7% PPV and a 13% F1 score. Compared to that, EIOS had a mean sensitivity 

per outbreak of 73%, a PPV of 60%, and an F1 score of 34% in this work, so EIOS as 

the realized aggregate system is less sensitive, but has a higher PPV. Nevertheless, 

this example illustrates that event data get more heterogeneous when combined, as 

there is more available information, but also more noise.  

Hoen et al. determined the sensitivity and specificity of HealthMap in detecting new 

Dengue virus (DENV) circulation in previously DENV-non-endemic regions in Latin 

America, using the CDC’s Yellow Book as a reference [91]. HealthMap’s timeliness far 

outperformed the traditional system, which is most likely due to limitations of traditional 

system using passive case reports. The authors of the study concluded that in this 

setting, EBS can enhance timely detection of disease spread. The overall sensitivity of 

HealthMap for detecting DENV outbreaks was 74%, and the specificity was 85%. While 

these values are more similar to the ones found in this work, all the above examples 

clearly demonstrate the lack of a reliable gold standard for comparing the performance 

of EBS systems, an issue which has been criticized by other authors as well [23], [67]. 

This not only leads to differential results in evaluation metrics for multiple systems, but 

also creates problems when comparing the same system across diseases and regions. 

When analyzing factors influencing influenza detection in South America with Google 

Flu Trends (GFT), Pollett et al. found that countries further away from the equator had 

a better correlation with FluNet data, probably due to more regular seasonality [92]. 

While this observation was replicated with EIOS events in this work, it might have been 

an artifact of the GFT algorithm in Pollett’s study. GFT has been shown to fit structurally 

unrelated search terms, thus just predicting seasonality and not influenza counts [93].  

Nevertheless, this study highlights another difference which complicates EBS 

performance comparisons across studies: The metric to compare novel biosurveillance 

approaches with gold standards which is used in a lot of studies is the Pearson 

correlation coefficient [18], [59], [94]–[96].  While it allows for easy computing of a 

comparison metric, it is highly susceptible to influential data points and assumes that 

infectious disease counts from adjacent points in a time series are independent [67]. 
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Moreover, correlation coefficients are biased by low-frequency patterns in the data 

[97]. Furthermore, correlation coefficients are less meaningful from a user perspective 

than timeliness, sensitivity, and specificity. Therefore, more user-centered evaluation 

metrics have been chosen for this work.  

Because of the restrictions of choosing an outbreak detection method (see section 

2.2.1), several established methods had to be discarded: Serfling regression models 

seasonality and requires knowledge of a “baseline” period [98], [99]. Threshold 

methods developed by Cowling [100] or Neuzil [101] are impractical because choosing 

thresholds is an arbitrary process and thresholds would have to be adapted to each 

country separately. Moreover, setting an appropriate threshold requires pre-existing 

knowledge of epidemic and non-epidemic periods. Poisson or linear regression 

methods adjust for seasonality and require long training periods [99], [102], as does 

the widely used Farrington algorithm [103]. EARS algorithms are very basic and are 

heavily dependent on the choice of length of the baseline period [104], [105]. The 

outbreakP method was specifically designed to detect influenza outbreaks [106], but 

since it is limited to detecting only one outbreak in a time series, it was not applicable 

to the data sets in this project. The exponentially weighted moving average (EWMA) 

method requires individual baseline calculation for each country [107]. Lastly, times 

series models require years of training data and modeling of seasonality [108]. 

Machine learning (ML) methods have so far been applied to infectious disease 

outbreak detection mostly to combine multiple large datasets such as social media 

data, weather data, and traditional surveillance data [109]–[111]. Therefore, no 

additional use of ML methods was considered for this study. Bayesian change point 

(BCP) analysis was used as it is not based on arbitrary thresholds or baselines, nor 

does it require a training period or seasonality indicators.  

4.3 Strengths 

This work is the first study rigorously evaluating EBS against a clear gold standard on 

a global scale, permitting the identification of country-specific external factors that 

influence performance. Moreover, consideration of the utility of biosurveillance was 

broadened from mostly rich Western countries to a worldwide data analysis through 

this study. Multiple outbreak patterns of seasonal influenza could be studied by 

including countries from 15 influenza transmission zones into this study. Moreover, the 
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study has high generalizability because a broad spectrum of countries has been 

chosen for evaluation. 

Another strength was that the method of outbreak detection used was easy, intuitive, 

and reproducible. BCP analysis is not traditionally used in infectious disease outbreak 

detection, but it performed well in detecting the beginning of rising curves. Shmueli and 

Burkom remark: "The task [of outbreak detection] is one of anomaly detection rather 

than signature identification." [112], and this is precisely why BCP has been developed. 

Since the same method was applied to all three datasets, biased conclusions based 

on differential outbreak detection were avoided.  

As discussed before, the choice of gold standard greatly influences the results of 

performance evaluations. With FluNet, a very accurate gold standard was chosen for 

this study, which has been used for studying influenza epidemic patterns worldwide 

[47], [75], [92]. The lab-confirmed influenza cases are reported with about 2 weeks 

delay, but assigned the correct date, unlike reports from other gold standards, which 

rely on passive case reporting.  

Another strength of the study is the robustness of the influential variable selection. 

Variable selection through LASSO resulted in almost the same predictors as through 

the AIC criterion. The subsets of influential variables chosen on the full dataset and on 

the dataset excluding countries with low FluNet data quality were very similar as well. 

This result is even more remarkable regarding the fact that the whole sample consisted 

of only 24 countries. 

4.4 Limitations 

However, the study also had limitations, which will be discussed in the next 

paragraphs. First, this work was focused on only one way EBS could be used for early 

detection. There may be other approaches, which draw on human analysts manually 

classifying events or other data sources, which would potentially perform better.  

Second, gold standard data were not labeled according to epidemic periods, so 

influenza outbreaks had to be detected with the same method as in the EBS data. 

While this approach was valid for most countries and the same bias – if any – would 

apply to all three datasets, FluNet outbreak detection was not optimal in Nigeria, 

Thailand, and Vietnam due to the low number of reported cases and the inherently 

more irregular influenza activity. Therefore, the labeling of epidemic and non-epidemic 
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periods in these countries might not have been reliable. However, in a robustness 

analysis, the selection of system performance predictors was found to be very similar 

between the whole dataset and the reduced dataset without Nigeria, Thailand, and 

Vietnam.  

FluNet data suffer from three additional shortcomings: Firstly, the counts of influenza-

infected people stem from people who have sought healthcare and have had a swab 

taken, thus underestimating the total amount of influenza activity in a country. In other 

words, the sensitivity of FluNet is not very high. However, since the interest of this 

study was the start and end of epidemics, the absolute counts are secondary. 

Secondly, surveillance activities are not uniform across countries, so the number of 

swabs taken is highly dependent on healthcare system capacity with a lot of testing in 

developed countries and lower testing efforts in developing countries. This is why it 

cannot be directly inferred that the countries with the highest number of confirmed 

cases per outbreak (USA, China and France) had the largest influenza case counts 

and the countries with the lowest case counts (Nigeria, Uruguay and Vietnam) have 

the least influenza cases. Additionally, some countries show reduced interest in post-

peak activities [113]. For instance, France only reports influenza cases from the 

beginning of October to the beginning of May. Thirdly, FluNet publishes the counts with 

a time lag of at least one week in developed countries and at least two weeks in other 

countries. Moreover, numbers can be revised after the initial upload. Therefore, these 

data cannot be used for timely detection of influenza outbreaks, which highlights the 

need for fast outbreak detection by EBS. Nevertheless, they are highly specific and 

have a high positive predictive value because the number of false negative laboratory 

tests is very low. Therefore, lab-confirmed case counts accurately reflect the start and 

end points of epidemic periods, which are the outcomes of interest.  

Third, the event-based data sources may have limitations: HealthMap events were 

very sparse in some countries, so that every event was classified as an outbreak. 

Raising an alarm for only a single instance of influenza reporting is not practical in real-

life disease surveillance. EIOS had collected many more events than HealthMap, but 

only over a span of 2 years, and the data were much noisier. Thus, BCP analysis did 

not work optimally, and did not recognize some of the spikes or lower peaks as 

outbreaks. Unfortunately, it was not possible to separate the EIOS input according to 

source in order to identify which sources contribute signal and which create only noise. 
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Another related issue is that EIOS usually mentions several countries per event, either 

because an event really affects multiple countries or, more problematically, because 

of structural defaults. For example, all events reported by GPHIN are classified as 

mentioning Canada, even if the disease is located in another part of the world. 

Furthermore, EIOS erroneously assigns events to broad disease categories. For 

instance, a lot of COVID-19 reports on the EIOS platform are also classified as 

“influenza not specified” (observation from May 21st, 2020, data not shown). While 

SARS-CoV-2 had not yet emerged at the time of data collection, other diseases might 

have been falsely categorized as influenza. A qualitative analysis of all disease 

categories contained in the reports was not conducted.  

Another limitation of EBS is that multiple influenza strains and respiratory infections 

are aggregated into one category. Such aggregation poses difficulties in modeling 

because different strains of the flu exhibit different seasonal characteristics. As the 

EBS data in this study are aggregated per country, they do not capture any regional 

diversity within countries. This is especially problematic for noncontiguous land 

masses and large countries spanning diverse climatic regions such as China, Brazil, 

and the USA, with different epidemic properties of influenza [113]. In the analysis of 

influential performance predictors, latitude was just assigned as one value in the 

midpoint of a country. As HealthMap provides the putative latitude and longitude of 

each event, it would be possible to analyze events at a more granular spatial resolution. 

However, to my knowledge the accuracy of this geographical allocation has never been 

examined. 

Another problem of EBS was the aggregation of daily counts into weekly units. While 

this aggregation is an important limitation affecting your capacity to ascertain timely 

sensitivity, it was necessary in order to guarantee comparability with the gold standard 

data. 

Moreover, all EBS data face some inherent challenges (see section 1.1.3). Some of 

these, such as false positive signals, could be observed in both EBS datasets. 

Dependency on internet coverage was identified only in HealthMap data because they 

were dependent on the HDI and thus on percentage of internet users per country. A 

language dependency could not be detected in either dataset according to the selected 

predictors, although language variables might have been missed because of the small 

sample size and the low numbers of countries in the language categories. 
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Frontloading, i.e. the uneven distribution of events to the start of epidemics, was not 

obvious from the visual correlations. Even if it occurred, it could not have influenced 

the timeliness and timely sensitivity variables. Crowding-out phenomena, that is, 

certain diseases and epidemics temporarily suppressing the reporting of others, could 

have happened during the study period. Certainly, the current SARS-CoV-2 pandemic 

right now and the worldwide H1N1 outbreak in 2009 temporarily led to less media 

coverage of other diseases [114]. Monitoring news articles can also be affected by 

significant day-of-the-week effects, with less reporting on weekends and holidays. 

Since EBS data were aggregated per week, this was not an issue in this study. 

However, by aggregating counts per week, the potential benefit of daily available data 

for timely outbreak detection was lost. 

Fourth, a significant limitation of this study is the small sample size. Since data was 

only available for 24 countries, the regressions had to be performed with a small 

number of degrees of freedom and low numbers of countries per category in 

categorical variables. Therefore, confidence intervals were very wide, and perfect 

separation occurred in the logistic regressions, so that coefficients were no longer 

interpretable. 

Fifth, BCP was used as the method to detect influenza outbreaks despite probably not 

meeting the distributional assumption of Normality. This is a limitation because BCP 

might have missed or wrongly classified some change points in the datasets. However, 

as explained in section 2.2.2, BCP should be able to separate counts during epidemic 

and non-epidemic periods due to their very different means. Another inherent 

disadvantage of BCP is that it cannot be used as a technique to analyze real-time data 

because it relies on calculating the means of each block. In this study, BCP was used 

to retrospectively detect influenza outbreaks, and so the outbreak detection algorithm 

cannot be directly applied to prospective surveillance. Barboza et al. found in a study 

that the prospective sensitivity of EBS systems was 17% lower than the retrospective 

sensitivity [68], which highlights even more the differences between retrospective and 

prospective disease surveillance. Since BCP was applied retrospectively on all 

datasets, the evaluation results likely overestimate the true performance of EBS 

systems. 
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4.5 Future research 

This study has laid the foundation for evaluating the performance of HealthMap and 

EIOS. Since EIOS data was limited to 2 years, it would be interesting to see if the 

evaluation metrics remain stable with a larger dataset. EIOS is still in its development 

phase, hence its performance could be greatly improved by updates in the near future. 

The analysis of important predictors of performance was only exploratory and 

hypothesis-generating due to the small sample size. A study including more countries 

would result in a more definitive and relevant set of influential variables.  

Another aspect that warrants more research is the exploration of EIOS sources in order 

to identify which contribute valuable and accurate input and which generate unspecific 

noise. Timely sensitivity was the most important evaluation metric in this study, yet 

especially EIOS failed to detect outbreaks on time. Therefore, more research should 

be done to increase EIOS’ timely disease detection capabilities. Additionally, after the 

system’s improvement, evaluations of the effects of these improvements on system 

performance should be conducted. Another feature which would be helpful for users of 

EBS is the automatic extraction of case counts from articles, which requires more 

research in natural language processing.  

Moreover, input from HealthMap and EIOS could be used along with other data 

sources such as IBS, meteorological data, social media, and Google or Wikipedia 

searches to forecast influenza counts in various countries. It would be interesting to 

see if EBS systems improve forecasts, as EIOS has never been used for forecasting, 

or at least no such studies have been published so far. 

4.6 Conclusions and recommendations 

To my knowledge, this is one of the first studies to rigorously evaluate the performance 

of HealthMap and EIOS on a global scale. The study was done across 24 countries 

and assessed their ability to detect influenza outbreaks. To divide the two EBS data 

sets and the gold standard into epidemic and non-epidemic periods, Bayesian change 

point analysis was used. While outbreak detection and specificity were generally high 

in both systems, positive predictive value and timeliness varied considerably across 

countries and systems. In contrast, both systems failed to detect outbreaks in a timely 

manner in many countries and only detected few outbreaks on time in the others.  
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This means that event counts alone are not a very good method to detect influenza 

outbreaks in a timely manner, and so any useful analysis has to combine event 

frequency from EBS with a contextual analysis, extracted either from media reports or 

obtained from other systems, and historical or environmental data. The countries for 

which HealthMap worked best were the USA, and EIOS had the best performance in 

the UK and France.  

Identification of influential country-specific factors on performance revealed that 

influenza outbreak detection by EBS systems is better in countries with higher HDI, 

countries further away from the equator, and in countries for which the systems had 

generated more events. However, no threshold effects indicating that a system works 

well in a country with a certain number of events or a certain geographical location 

were found. Therefore, and in order to avoid over-fitting to the disease and the limited 

data in some countries, no recommendation will be made regarding for which countries 

to use HealthMap or EIOS. Two sensitivity analyses confirmed a robust predictor 

selection. 

Feedback from the end users will be essential in order to improve certain 

characteristics of the systems, such as timeliness or specificity. Additional research 

that should be done on EIOS to determine how diseases can be classified into more 

meaningful categories and how countries can be properly allocated in the events. An 

automatically generated relevancy score for each news article could help users to 

identify important events. Additionally, acquiring more sources to increase event 

counts pertaining to low-resource countries will improve overall system performance. 
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6 Appendix 

 

Figure 9: Testing of bcp priors for HealthMap. 

  

Figure 10: Testing of bcp priors for EIOS.  
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 HealthMap best cutoff EIOS best cutoff 

country sensitivity + FAR timeliness + FAR sensitivity + FAR timeliness + FAR 

Argentina 0.1 0.45 - 0.6 0.25 0.6 - 0.7 

Australia 0.1 0.15 0.2 0.2 

Brazil 0.1 0.1 0.3 - 0.35 0.3 - 0.65 

Bulgaria 0.1 - 0.9 0.1 - 0.9 0.2 - 0.25 0.45 - 0.9 

China 0.3 0.7 - 0.75 0.35 - 0.4 0.45 - 0.7 

Costa Rica 0.1 - 0.9 0.1 - 0.9 0.2 0.2 

Ecuador 0.1 - 0.9 0.1 - 0.9 0.45 - 0.8 0.45 - 0.9 

Egypt 0.1 - 0.45 0.6 - 0.75 0.15 - 0.9 0.15 

France 0.9 0.15 0.1 0.45 - 0.65 

Germany 0.1 - 0.9 0.1 - 0.9 0.3 0.1 

Greece 0.1 - 0.9 0.1 - 0.9 0.75 - 0.9 0.75 - 0.9 

India 0.55 0.8 0.75 - 0.8 0.75 - 0.8 

Iran 0.1 0.1 0.1 0.1 

Mexico 0.3 0.3 0.25 0.1 

Nigeria 0.1 - 0.9 0.1 - 0.9 0.15 0.1 

Russia 0.1 0.3 - 0.35 0.2 - 0.25 0.2 - 0.3 

Saudi 
Arabia 

0.1 - 0.9 0.1 - 0.9 0.75 - 0.9 0.15 - 0.45 

South 
Africa 

0.1 - 0.9 0.1 - 0.9 0.1 0.15 

Sweden 0.1 - 0.9 0.1 - 0.9 0.45 - 0.65 0.45 - 0.65 

Thailand 0.1 - 0.9 0.1 - 0.9 0.2 - 0.25 0.2 - 0.25 

United 
Kingdom 

0.2 0.25 - 0.5 0.25 - 0.5 0.1 - 0.65 

United 
States 

0.5 0.5 0.15 0.8 - 0.9 

Uruguay 0.1 - 0.9 0.1 - 0.9 0.15 0.15 

Vietnam 0.35 - 0.4 0.9 0.15 - 0.2 0.15 - 0.2 

Average 
cutoff 

0.48 0.50 0.45 0.49 

Table 7: Best cutoffs of posterior probability for outbreak detection in HealthMap and EIOS. The best cutoff 
point was determined by plotting ROC curves and determining the point with the least Euclidean distance from the 
optimal point (sensitivity/timeliness = 100%, false alarm rate (FAR) = 0%).  
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Figure 11: Correlation of HealthMap evaluation metrics.  

 

Figure 12: Correlation of EIOS evaluation metrics. 
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Figure 13: Pairwise correlation of predictor variables. In case of categorical predictors, boxplots and faceted 
histograms were plotted, in case of continuous predictors, scatterplots were drawn.  

 

Table 8: 95% confidence intervals of all simple evaluation metrics.  

Country EBS 
system 

Sensitivity 
per outbreak 

Timely 
sensitivity 

Sensitivity 
per week 

Positive 
predictive 
value 

Specificity Prevented 
fraction 

Argentina HealthMap 0.753 - 1 0 - 0.247 0.57 - 0.727 0.685 - 0.837 0.781 - 0.89 0.708 - 0.819 

Argentina EIOS 0.398 - 1 0 - 0.602 0.282 - 0.568 0.506 - 0.853 0.73 - 0.928 0.648 - 0.856 

Australia HealthMap 0.419 - 0.916 0.018 - 0.428 0.22 - 0.387 0.661 - 0.906 0.923 - 0.981 0.54 - 0.706 

Australia EIOS 0.284 - 0.995 0 - 0.522 0.067 - 0.276 0.215 - 0.692 0.666 - 0.888 0.124 - 0.252 

Brazil HealthMap 0.524 - 0.936 0.014 - 0.347 0.601 - 0.763 0.622 - 0.782 0.748 - 0.86 0.608 - 0.741 

Brazil EIOS 0.223 - 0.957 0.004 - 0.641 0.397 - 0.67 0.648 - 0.92 0.712 - 0.922 0.494 - 0.745 

Bulgaria HealthMap 0.519 - 0.957 0 - 0.218 0.225 - 0.389 0.625 - 0.872 0.903 - 0.97 0.488 - 0.655 

Bulgaria EIOS 0.223 - 0.957 0 - 0.459 0.216 - 0.52 0.586 - 0.964 0.878 - 0.991 0.333 - 0.607 

China HealthMap 0.617 - 0.984 0 - 0.206 0.519 - 0.675 0.651 - 0.808 0.739 - 0.86 0.599 - 0.741 

China EIOS 0.541 - 1 0.004 - 0.641 0.136 - 0.396 0.34 - 0.782 0.746 - 0.933 0.648 - 0.83 

Costa 
Rica 

HealthMap 0.384 - 0.882 0 - 0.218 0.19 - 0.342 0.537 - 0.801 0.869 - 0.95 0.32 - 0.482 
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Country EBS 
system 

Sensitivity 
per outbreak 

Timely 
sensitivity 

Sensitivity 
per week 

Positive 
predictive 
value 

Specificity Prevented 
fraction 

Costa 
Rica 

EIOS 0 - 0.522 0 - 0.522 0 - 0.088 0 - 0.842 0.88 - 0.991 0.025 - 0.025 

Ecuador HealthMap 0.419 - 0.916 0.018 - 0.428 0.335 - 0.512 0.761 - 0.943 0.927 - 0.984 0.431 - 0.613 

Ecuador EIOS 0.043 - 0.777 0 - 0.459 0.138 - 0.441 0.419 - 0.916 0.867 - 0.985 0.155 - 0.322 

Egypt HealthMap 0.073 - 0.524 0 - 0.206 0.103 - 0.224 0.749 - 0.991 0.962 - 0.999 0.223 - 0.349 

Egypt EIOS 0.223 - 0.957 0 - 0.459 0.1 - 0.337 0.211 - 0.613 0.616 - 0.85 0.199 - 0.41 

France HealthMap 0.546 - 0.981 0 - 0.247 0.034 - 0.133 0.072 - 0.27 0.708 - 0.824 0.178 - 0.287 

France EIOS 0.398 - 1 0.006 - 0.806 0.221 - 0.474 0.329 - 0.649 0.432 - 0.718 0.889 - 0.944 

Germany HealthMap 0.492 - 0.953 0 - 0.232 0.503 - 0.673 0.609 - 0.782 0.767 - 0.876 0.563 - 0.723 

Germany EIOS 0.29 - 0.963 0.004 - 0.579 0.187 - 0.463 0.291 - 0.653 0.592 - 0.829 0.421 - 0.659 

Greece HealthMap 0.572 - 0.982 0.002 - 0.339 0.279 - 0.44 0.507 - 0.723 0.776 - 0.885 0.617 - 0.762 

Greece EIOS 0.398 - 1 0 - 0.602 0.066 - 0.271 0.203 - 0.665 0.67 - 0.896 0.583 - 0.829 

India HealthMap 0.34 - 0.782 0.001 - 0.238 0.453 - 0.633 0.607 - 0.797 0.818 - 0.912 0.427 - 0.573 

India EIOS 0.157 - 0.843 0 - 0.369 0.246 - 0.501 0.688 - 0.975 0.786 - 0.967 0.309 - 0.541 

Iran HealthMap 0.073 - 0.524 0.002 - 0.302 0.077 - 0.211 0.698 - 0.998 0.976 - 1 0.101 - 0.151 

Iran EIOS 0.223 - 0.957 0 - 0.459 0.07 - 0.286 0.631 - 1 0.94 - 1 0.136 - 0.279 

Mexico HealthMap 0.323 - 0.837 0.002 - 0.319 0.296 - 0.467 0.868 - 0.995 0.966 - 0.999 0.427 - 0.598 

Mexico EIOS 0.349 - 0.968 0 - 0.369 0.236 - 0.51 0.476 - 0.841 0.73 - 0.928 0.327 - 0.562 

Nigeria HealthMap 0.061 - 0.456 0 - 0.176 0.034 - 0.135 0.18 - 0.575 0.884 - 0.958 0.153 - 0.226 

Nigeria EIOS 0.032 - 0.651 0 - 0.369 0.013 - 0.169 0.194 - 0.994 0.887 - 0.996 0.127 - 0.234 

Russia HealthMap 0.64 - 0.998 0 - 0.247 0.318 - 0.486 0.473 - 0.677 0.734 - 0.849 0.584 - 0.738 

Russia EIOS 0.223 - 0.957 0 - 0.459 0.204 - 0.484 0.653 - 0.986 0.89 - 0.996 0.438 - 0.705 

Saudi 
Arabia 

HealthMap 0.541 - 1 0 - 0.459 0.236 - 0.384 0.314 - 0.494 0.521 - 0.669 0.416 - 0.686 

Saudi 
Arabia 

EIOS 0.421 - 0.996 0 - 0.41 0.126 - 0.311 0.406 - 0.785 0.423 - 0.793 0.32 - 0.554 

South 
Africa 

HealthMap 0.462 - 0.95 0 - 0.247 0.144 - 0.272 0.651 - 0.912 0.913 - 0.98 0.287 - 0.452 

South 
Africa 

EIOS 0.068 - 0.932 0 - 0.602 0.023 - 0.2 0.068 - 0.499 0.663 - 0.881 0.097 - 0.224 

Sweden HealthMap 0.386 - 0.909 0 - 0.247 0.187 - 0.325 0.387 - 0.613 0.701 - 0.829 0.327 - 0.502 

Sweden EIOS 0.541 - 1 0.004 - 0.641 0.472 - 0.724 0.667 - 0.909 0.674 - 0.911 0.784 - 0.892 

Thailand HealthMap 0.299 - 0.802 0 - 0.206 0.276 - 0.506 0.239 - 0.447 0.731 - 0.833 0.413 - 0.584 

Thailand EIOS 0.157 - 0.843 0 - 0.369 0.06 - 0.313 0.234 - 0.833 0.812 - 0.961 0.174 - 0.328 

United 
Kingdom 

HealthMap 0.681 - 0.998 0.002 - 0.319 0.466 - 0.621 0.817 - 0.945 0.888 - 0.968 0.589 - 0.734 

United 
Kingdom 

EIOS 0.541 - 1 0.043 - 0.777 0.468 - 0.707 0.659 - 0.892 0.561 - 0.854 0.822 - 0.908 

United 
States 

HealthMap 0.753 - 1 0.251 - 0.808 0.782 - 0.912 0.616 - 0.766 0.721 - 0.836 0.749 - 0.844 

United 
States 

EIOS 0.053 - 0.853 0 - 0.522 0.27 - 0.541 0.374 - 0.693 0.522 - 0.782 0.206 - 0.424 

Uruguay HealthMap 0.386 - 0.909 0.05 - 0.538 0.147 - 0.301 0.567 - 0.875 0.924 - 0.981 0.402 - 0.585 

Uruguay EIOS 0.068 - 0.932 0 - 0.602 0.115 - 0.36 0.18 - 0.518 0.491 - 0.75 0.2 - 0.478 

Vietnam HealthMap 0.794 - 1 0.002 - 0.302 0.288 - 0.427 0.42 - 0.594 0.46 - 0.626 0.773 - 0.853 

Vietnam EIOS 0.478 - 1 0 - 0.522 0.109 - 0.301 0.566 - 0.962 0.786 - 0.983 0.235 - 0.474 
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Table 9: Regression coefficients from univariable regressions for HealthMap. Predictors with p < 0.2 are 
highlighted in orange. 

outcome predictor Coefficient p-value 95% confidence 
interval 

R² value diagnostic 
criteria violated 

sensitivity 
per 
outbreak 

total counts (categorical, 
linear effect) 

0.059 0.4549 -0.102 - 0.2194 0.041 
 

total counts (categorical, 
quadratic effect) 

-0.033 0.6958 -0.2091 - 0.1423 0.041 
 

total counts 0.028 0.2710 -0.0238 - 0.0805 0.057 
 

maximum weekly counts -0.002 0.9617 -0.0722 - 0.0689 0.000 influential outlier 

global region: 
temp.Southern  

0.007 0.9533 -0.2417 - 0.2559 0.094 
 

global region: tropical -0.141 0.1864 -0.3556 - 0.0739 0.094 
 

english: TRUE 0.151 0.2527 -0.1159 - 0.4176 0.062 
 

HDI.2018 0.889 0.0870 -0.1406 - 1.9177 0.133 
 

latitude 0.003 0.2287 -0.0023 - 0.0091 0.068 
 

longitude 0.000 0.7748 -0.0015 - 0.0011 0.004 
 

PFI.2018 -0.001 0.6638 -0.0056 - 0.0037 0.009 
 

total internet users 0.006 0.0211 0.0011 - 0.0117 0.228 
 

HM filter language: TRUE 0.056 0.5503 -0.1367 - 0.2494 0.017 
 

timely 
sensitivity 

total counts (categorical, 
linear effect) 

0.060 0.1623 -0.0262 - 0.1464 0.099 Normality 

total counts (categorical, 
quadratic effect) 

0.032 0.4902 -0.0632 - 0.1276 0.099 Normality 

total counts 0.026 0.0469 0.0004 - 0.0524 0.168 Normality 

maximum weekly counts 0.038 0.0281 0.0045 - 0.0717 0.201 Normality 

global region: 
temp.Southern  

0.036 0.6114 -0.1099 - 0.1823 0.013 Normality 

global region: tropical 0.004 0.9484 -0.116 - 0.1236 0.013 Normality 

english: TRUE 0.211 0.0018 0.0882 - 0.3347 0.365 Normality 

HDI.2018 0.299 0.2267 -0.1994 - 0.7968 0.066 Normality 

latitude -0.001 0.7357 -0.0037 - 0.0027 0.005 Normality 

longitude -0.001 0.0564 -0.0013 - 0 0.156 Normality 

PFI.2018 -0.001 0.3009 -0.0039 - 0.0013 0.049 Normality 

total internet users 0.002 0.2481 -0.0013 - 0.0049 0.060 Normality 

HM filter language: TRUE 0.068 0.1779 -0.0333 - 0.1693 0.081 Normality 

sensitivity 
per week 

total counts (categorical, 
linear effect) 

0.202 0.0031 0.076 - 0.3277 0.351 
 

total counts (categorical, 
quadratic effect) 

0.072 0.2948 -0.0673 - 0.211 0.351 
 

total counts 0.082 0.0000 0.0488 - 0.1149 0.545 
 

maximum weekly counts 0.086 0.0026 0.0333 - 0.1381 0.344 influential outlier 

global region: 
temp.Southern  

-0.048 0.6949 -0.2999 - 0.2036 0.008 
 

global region: tropical -0.019 0.8530 -0.225 - 0.1878 0.008 
 

english: TRUE 0.216 0.0840 -0.0315 - 0.4644 0.130 
 

HDI.2018 0.533 0.2091 -0.321 - 1.3864 0.071 
 

latitude 0.001 0.6176 -0.0041 - 0.0068 0.012 
 

longitude -0.001 0.3120 -0.0019 - 0.0006 0.046 
 

PFI.2018 0.000 0.9339 -0.0047 - 0.0043 0.000 
 

total internet users 0.003 0.3224 -0.0028 - 0.008 0.045 
 

HM filter language: TRUE 0.131 0.1272 -0.0405 - 0.3035 0.103 
 

positive 
predictive 
value 

total counts (categorical, 
linear effect) 

0.062 0.4235 -0.0956 - 0.2191 0.031 
 

total counts (categorical, 
quadratic effect) 

0.010 0.9059 -0.164 - 0.184 0.031 
 

total counts 0.025 0.2971 -0.0237 - 0.0741 0.049 
 

maximum weekly counts 0.051 0.1003 -0.0107 - 0.1134 0.118 
 

global region: 
temp.Southern  

0.118 0.3383 -0.1326 - 0.3689 0.059 Normality 
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outcome predictor Coefficient p-value 95% confidence 
interval 

R² value diagnostic 
criteria violated 

global region: tropical -0.029 0.7709 -0.2347 - 0.1764 0.059 Normality 

english: TRUE 0.142 0.2765 -0.1222 - 0.4068 0.054 
 

HDI.2018 0.044 0.9207 -0.8617 - 0.9496 0.000 influential outlier 

latitude 0.000 0.9132 -0.0059 - 0.0053 0.001 
 

longitude -0.001 0.2161 -0.002 - 0.0005 0.069 
 

PFI.2018 0.000 0.9930 -0.0046 - 0.0046 0.000 
 

total internet users -0.001 0.7433 -0.0065 - 0.0047 0.005 
 

HM filter language: TRUE 0.093 0.2968 -0.0878 - 0.2744 0.049 
 

specificity total counts (categorical, 
linear effect) 

-0.022 0.6207 -0.1117 - 0.0682 0.019 homoskedasticity 

total counts (categorical, 
quadratic effect) 

0.014 0.7665 -0.085 - 0.1138 0.019 homoskedasticity 

total counts -0.010 0.4567 -0.0384 - 0.0178 0.025 homoskedasticity 

maximum weekly counts 0.003 0.8686 -0.0345 - 0.0406 0.001 homoskedasticity 

global region: 
temp.Southern  

0.086 0.2204 -0.0554 - 0.2268 0.077 
 

global region: tropical -0.001 0.9883 -0.1165 - 0.1149 0.077 
 

english: TRUE 0.041 0.5895 -0.1129 - 0.1939 0.013 homoskedasticity 

HDI.2018 -0.163 0.5152 -0.6721 - 0.347 0.020 homoskedasticity 

latitude -0.001 0.7400 -0.0037 - 0.0027 0.005 homoskedasticity 

longitude -0.001 0.1474 -0.0012 - 2e-04 0.093 homoskedasticity 

PFI.2018 -0.002 0.1162 -0.0044 - 5e-04 0.108 homoskedasticity 

total internet users -0.002 0.3014 -0.0047 - 0.0015 0.048 
 

HM filter language: TRUE 0.023 0.6558 -0.0821 - 0.1279 0.009 homoskedasticity 

prevented 
fraction 

total counts (categorical, 
linear effect) 

0.112 0.0916 -0.0198 - 0.2435 0.140 Normality 

total counts (categorical, 
quadratic effect) 

-0.004 0.9526 -0.1482 - 0.1399 0.140 Normality 

total counts 0.047 0.0286 0.0054 - 0.0881 0.208 
 

maximum weekly counts 0.028 0.3384 -0.0316 - 0.0879 0.044 
 

global region: 
temp.Southern  

0.017 0.8791 -0.2089 - 0.2422 0.006 
 

global region: tropical -0.023 0.8041 -0.2182 - 0.1712 0.006 
 

english: TRUE 0.177 0.1154 -0.0472 - 0.4016 0.114 
 

HDI.2018 0.378 0.4133 -0.5634 - 1.319 0.032 
 

latitude 0.001 0.7940 -0.0045 - 0.0058 0.003 
 

longitude 0.000 0.9953 -0.0011 - 0.0011 0.000 
 

PFI.2018 0.000 0.8238 -0.0036 - 0.0045 0.002 
 

total internet users 0.003 0.3060 -0.0025 - 0.0077 0.050 
 

HM filter language: TRUE 0.042 0.6104 -0.1258 - 0.2091 0.013 
 

 

Table 10: Regression coefficients from univariable regressions for EIOS. Predictors with p < 0.2 are 
highlighted in orange. 

outcome predictor Coefficient p-value 95% confidence 
interval 

R² value diagnostic 
criteria violated 

sensitivity 
per 
outbreak 

total counts (categorical, 
linear effect) 

0.106 0.2905 -0.097 - 0.3083 0.086 
 

total counts (categorical, 
quadratic effect) 

-0.074 0.4980 -0.2983 - 0.1497 0.086 
 

total counts 0.069 0.1273 -0.0213 - 0.1596 0.102 influential outlier 

maximum weekly counts 0.074 0.1141 -0.0194 - 0.1681 0.110 influential outlier 

global region: 
temp.Southern  

-0.048 0.7637 -0.3742 - 0.2786 0.093 
 

global region: tropical -0.188 0.1582 -0.4559 - 0.0793 0.093 
 

english: TRUE 0.055 0.7527 -0.3043 - 0.4149 0.005 
 

HDI.2018 1.165 0.0364 0.0806 - 2.2502 0.184 
 

latitude 0.009 0.0048 0.0032 - 0.0155 0.309 
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outcome predictor Coefficient p-value 95% confidence 
interval 

R² value diagnostic 
criteria violated 

longitude 0.001 0.0979 -3e-04 - 0.003 0.120 
 

PFI.2018 0.003 0.2904 -0.0029 - 0.0091 0.051 homoskedasticity 

total internet users 0.007 0.0613 -3e-04 - 0.0135 0.150 
 

timely 
sensitivity 

total counts (categorical, 
linear effect) 

0.079 0.0160 0.0162 - 0.1409 0.296 Normality 

total counts (categorical, 
quadratic effect) 

-0.031 0.3638 -0.0997 - 0.0382 0.296 Normality 

total counts 0.035 0.0239 0.0051 - 0.0646 0.211 Normality 

maximum weekly counts 0.029 0.0776 -0.0035 - 0.0613 0.135 Normality 

global region: 
temp.Southern  

-0.082 0.1458 -0.1937 - 0.0307 0.129 Normality 

global region: tropical -0.058 0.2063 -0.1497 - 0.0343 0.129 Normality 

english: TRUE 0.069 0.2590 -0.0542 - 0.1914 0.058 Normality 

HDI.2018 0.382 0.0521 -0.0038 - 0.7681 0.161 Normality 

latitude 0.003 0.0177 5e-04 - 0.0051 0.230 Normality 

longitude 0.000 0.8947 -6e-04 - 6e-04 0.001 Normality 

PFI.2018 -0.001 0.3188 -0.0031 - 0.0011 0.045 Normality 

total internet users 0.003 0.0235 4e-04 - 0.0051 0.212 Normality 

sensitivity 
per week 

total counts (categorical, 
linear effect) 

0.145 0.0035 0.0533 - 0.2359 0.443 
 

total counts (categorical, 
quadratic effect) 

-0.088 0.0836 -0.1892 - 0.0128 0.443 
 

total counts 0.070 0.0041 0.0248 - 0.1159 0.318 
 

maximum weekly counts 0.068 0.0086 0.0191 - 0.1168 0.274 
 

global region: 
temp.Southern  

-0.097 0.3016 -0.2887 - 0.0939 0.067 
 

global region: tropical -0.067 0.3820 -0.2242 - 0.0895 0.067 
 

english: TRUE 0.115 0.2496 -0.0868 - 0.317 0.060 
 

HDI.2018 0.664 0.0394 0.0353 - 1.2925 0.179 
 

latitude 0.005 0.0081 0.0015 - 0.0088 0.278 
 

longitude -0.001 0.2821 -0.0015 - 5e-04 0.052 
 

PFI.2018 -0.002 0.3406 -0.0051 - 0.0018 0.041 homoskedasticity 

total internet users 0.004 0.0246 6e-04 - 0.0083 0.209 
 

positive 
predictive 
value 

total counts (categorical, 
linear effect) 

0.085 0.3194 -0.0887 - 0.2593 0.093 
 

total counts (categorical, 
quadratic effect) 

-0.080 0.3987 -0.272 - 0.1127 0.093 
 

total counts 0.059 0.1331 -0.0194 - 0.1368 0.100 Normality 

maximum weekly counts 0.085 0.0315 0.0083 - 0.1621 0.194 Normality 

global region: 
temp.Southern  

-0.148 0.2305 -0.3978 - 0.1014 0.286 
 

global region: tropical 0.213 0.0424 0.008 - 0.4173 0.286 
 

english: TRUE -0.026 0.8643 -0.3364 - 0.2846 0.001 
 

HDI.2018 -0.293 0.5597 -1.3205 - 0.7338 0.016 
 

latitude 0.002 0.4393 -0.0039 - 0.0087 0.027 
 

longitude 0.001 0.2606 -6e-04 - 0.0023 0.057 
 

PFI.2018 0.005 0.0543 -1e-04 - 0.0096 0.158 
 

total internet users -0.001 0.7533 -0.0074 - 0.0055 0.005 
 

specificity total counts (categorical, 
linear effect) 

-0.023 0.6304 -0.1184 - 0.0734 0.020 
 

total counts (categorical, 
quadratic effect) 

0.017 0.7429 -0.0891 - 0.123 0.020 
 

total counts -0.018 0.3982 -0.0607 - 0.0251 0.033 
 

maximum weekly counts -0.016 0.4756 -0.0605 - 0.0292 0.023 
 

global region: 
temp.Southern  

-0.017 0.7783 -0.145 - 0.1101 0.337 
 

global region: tropical 0.153 0.0063 0.0479 - 0.2571 0.337 
 

english: TRUE -0.107 0.1739 -0.2647 - 0.0509 0.082 
 

HDI.2018 -0.641 0.0097 -1.1112 - -0.1715 0.267 
 

latitude -0.003 0.0778 -0.006 - 3e-04 0.135 
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outcome predictor Coefficient p-value 95% confidence 
interval 

R² value diagnostic 
criteria violated 

longitude 0.000 0.2959 -4e-04 - 0.0012 0.050 
 

PFI.2018 0.002 0.1844 -9e-04 - 0.0045 0.079 
 

total internet users -0.004 0.0127 -0.0068 - -9e-04 0.251 
 

prevented 
fraction 

total counts (categorical, 
linear effect) 

0.149 0.0844 -0.022 - 0.3193 0.270 
 

total counts (categorical, 
quadratic effect) 

-0.160 0.0918 -0.3489 - 0.0284 0.270 
 

total counts 0.089 0.0319 0.0085 - 0.1701 0.193 Normality 

maximum weekly counts 0.075 0.0909 -0.0129 - 0.1622 0.124 Normality 

global region: 
temp.Southern  

-0.196 0.1757 -0.4875 - 0.095 0.187 
 

global region: tropical -0.232 0.0563 -0.4708 - 0.0068 0.187 
 

english: TRUE 0.001 0.9970 -0.339 - 0.3402 0.000 
 

HDI.2018 1.143 0.0287 0.1302 - 2.1552 0.199 
 

latitude 0.011 0.0003 0.0056 - 0.0159 0.459 
 

longitude 0.000 0.9399 -0.0016 - 0.0017 0.000 
 

PFI.2018 -0.001 0.7792 -0.0066 - 0.005 0.004 homoskedasticity 

total internet users 0.007 0.0337 6e-04 - 0.0133 0.189 
 

 

Table 11: Regression predictor variables 

Country HM 
total 
counts 

HM 
max 
counts 

EIOS 
total 
counts 

EIOS 
max 
counts 

HDI latitude longitude PFI Total 
internet 
users 

HM 
filter 
lang. 

Argentina 498 34 662 27 0.83 -38.416 -63.617 26.05 74.3 Yes 

Australia 447 20 5635 272 0.938 -25.274 133.775 15.46 86.5 Yes 

Brazil 3811 97 4130 203 0.761 -14.235 -51.925 31.2 67.5 Yes 

Bulgaria 18 2 4392 421 0.816 42.734 25.486 35.22 63.4 No 

China 1814 40 7318 345 0.758 35.862 104.195 78.29 54.3 Yes 

Costa Rica 83 20 245 9 0.794 9.749 -83.753 14.01 71.4 Yes 

Ecuador 83 8 378 65 0.758 -1.831 -78.183 30.56 57.3 Yes 

Egypt 220 64 506 21 0.7 26.821 30.802 56.72 45 Yes 

France 246 17 4082 133 0.891 46.228 2.214 21.87 80.5 Yes 

Germany 107 5 2998 144 0.939 51.166 10.452 14.39 84.4 No 

Greece 92 8 863 56 0.872 39.074 21.824 29.19 70.5 No 

India 3143 199 4049 170 0.647 20.594 78.963 43.24 34.5 Yes 

Iran 37 12 788 150 0.797 32.428 53.688 60.71 64 No 

Mexico 1441 59 2098 103 0.767 23.635 -102.553 48.91 63.9 Yes 

Nigeria 11 2 495 21 0.534 9.082 8.675 37.41 42 No 

Russia 567 28 3218 86 0.824 61.524 105.319 49.96 76 Yes 

Saudi Arabia 68 5 660 83 0.857 23.886 45.079 63.13 82.1 Yes 

South Africa 52 14 499 22 0.705 -30.559 22.938 20.39 56.2 No 

Sweden 22 2 1248 55 0.937 60.128 18.644 8.31 95.5 No 

Thailand 63 7 634 20 0.765 15.87 100.993 44.31 52.9 No 

United Kingdom 415 28 7997 350 0.92 55.378 -3.436 23.25 94.6 Yes 

United States 9242 393 27359 1208 0.92 37.09 -95.713 23.73 87.3 Yes 

Uruguay 19 5 187 16 0.808 -32.523 -55.766 15.56 68.3 Yes 

Vietnam 223 13 692 55 0.693 14.058 108.277 75.05 58.1 No 

 


