
Survey of techniques for improving performance 
of organic transistors 

by 

Yu-Mo Chien 

A thesis submitted to the Faculty of Graduate Studies and Research in partial 
fulfillment of the requirements for the degree of Master of Engineering 

Department of Electrical Engineering 
McGiII University 

Montreal, Quebec 
Canada 

August, 2007 



1+1 Libraryand 
Archives Canada 

Bibliothèque et 
Archives Canada 

Published Heritage 
Branch 

Direction du 
Patrimoine de l'édition 

395 Wellington Street 
Ottawa ON K1A ON4 
Canada 

395, rue Wellington 
Ottawa ON K1A ON4 
Canada 

NOTICE: 
The author has granted a non
exclusive license allowing Library 
and Archives Canada to reproduce, 
publish, archive, preserve, conserve, 
communicate to the public by 
telecommunication or on the Internet, 
loan, distribute and sell theses 
worldwide, for commercial or non
commercial purposes, in microform, 
paper, electronic and/or any other 
formats. 

The author retains copyright 
ownership and moral rights in 
this thesis. Neither the thesis 
nor substantial extracts from it 
may be printed or otherwise 
reproduced without the author's 
permission. 

ln compliance with the Canadian 
Privacy Act some supporting 
forms may have been removed 
from this thesis. 

While these forms may be included 
in the document page count, 
their removal does not represent 
any loss of content from the 
thesis. 

• •• 
Canada 

AVIS: 

Your file Votre référence 
ISBN: 978-0-494-38481-7 
Our file Notre référence 
ISBN: 978-0-494-38481-7 

L'auteur a accordé une licence non exclusive 
permettant à la Bibliothèque et Archives 
Canada de reproduire, publier, archiver, 
sauvegarder, conserver, transmettre au public 
par télécommunication ou par l'Internet, prêter, 
distribuer et vendre des thèses partout dans 
le monde, à des fins commerciales ou autres, 
sur support microforme, papier, électronique 
et/ou autres formats. 

L'auteur conserve la propriété du droit d'auteur 
et des droits moraux qui protège cette thèse. 
Ni la thèse ni des extraits substantiels de 
celle-ci ne doivent être imprimés ou autrement 
reproduits sans son autorisation. 

Conformément à la loi canadienne 
sur la protection de la vie privée, 
quelques formulaires secondaires 
ont été enlevés de cette thèse. 

Bien que ces formulaires 
aient inclus dans la pagination, 
il n'y aura aucun contenu manquant. 



Abstract 

Organic field-effect transistors (OFETs) with region-regular poly(3-

hexylthiophene) (rr-P3HT) as active semiconductor were fabricated and 

characterized. Various methods for improving device performance were 

investigated. These methods include: the use of dip coating technique (rather 

than spin coating), thermal annealing, polymer doping with iron chloride (FeCI3), 

and stamping of "dry" poly(dimethylsiloxane) (PDMS) stamp before polymer 

deposition. 

Through experimental results, it is clear that thermal annealing increases charge 

carrier mobility of P3HT OFETs. On average an increase of four times in charge 

mobility was observed after thermal annealing was performed. Dip coated 

samples also resulted in higher mobility values than spin coated samples. 

Highest charge mobility value achieved were was ~0.02 cm2/Vs for dip coated 

samples, where as the highest value for spin coated devices was around 6e-3 

cm2jVs. 

"Dry" stamping of a PDMS devices yielded devices with higher mobility values by 

around 100% compared to unstamped counterparts. These devices also 

exhibited lower parasitic leakage currents. 

Deviees doped with FeCI3 did not perform very weil. It is suspected that it was 

increased so much that it became impossible to turn off the devices. 



Résumé 

Des transistors à effet de champ organiques (OFETs) avec le poly(3-

héxylthiophène) régio-régulier (rr-P3HT) comme semi-conducteur actif ont été 

fabriqués et caractérisés. De diverses méthodes pour améliorer la performance 

du dispositif ont été examinées. Ces méthodes incluent : l'utilisation de la 

technique de l'enduit à immersion (plutôt que l'enduit à rotation), du recuit 

thermique, du polymère dopé de chlorure ferrique (FeCI3), et de l'emboutissage 

"sec" du poly(dimethylsiloxane) (PDMS) avant la déposition du polymère. 

Selon des résultats expérimentaux, il est clair que la méthode du recuit 

thermique augmente la mobilité des porteurs de charge des OFETs P3HT. En 

moyenne, une augmentation de la mobilité de charge de quatre fois est 

constatée après que la technique du recuit thermique ait été accomplie. Les 

échantillons enduits par immersion ont aussi résulté avec une mobilité de charge 

plus élevé que les échantillons enduits par rotation. La meilleure mobilité de 

charge réalisée était autour de 0.02 cm2/Vs pour les échantillons enduits par 

immersion, tandis que le mieux résultat pour les dispOSitifs enduits par rotation 

était de 6e-3 cm2/Vs. 

Les dispositifs qui ont été "sèchement" emboutis avec une étampe PDMS avant 

ont rapporté une mobilité de charge autour de 100% plus élevé que les parties 

non-embouties. Ces dispositifs ont également démontré moins de courants de 

fuite parasites. 

Les dispositifs dopés de FeCI3 n'ont pas fonctionné très bien. La conductivité 

avait était augmentée tellement, qu'il était impossible d'atténuer les transistors. 

Il 
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1 Introduction 

Organic semiconducting devices are rapidly becoming part of our daily life. As 

such, it is possible that the organic semiconductor industry will experience an 

even faster growth than what the inorganic semiconductors experienced. 

The first generation of organic light emitting displays is already being mass 

produced and commercialized. On the other hand, circuits implemented using 

organic semiconductors are not publicly available to the end users veto They are 

nonetheless already present in research laboratories around the world in the 

form of prototypes. This suggests that a lot more effort is required to introduce 

organic semiconductors into circuit applications for consumer products. 

Organic small molecules and polymers promise for inexpensive, disposable and 

flexible electronics will not be possible unless the performance of organic field

effect transistors is improved to be on par with amorphous silicon (a-Si). 

However, performance is not the only requirement. Single crystal small 

molecules transistor devices have already surpassed a-Si in terms of reported 

charge carrier mobility but are not suitable for commercialization because of the 

fabrication costs involved. Cost of fabrication is of prime importance for a 

technology to survive in the industry; therefore, unless there are ways to 

fabricate small molecule devices at low cost, improving performance of organic 

polymer devices is a more viable option. 
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Therefore, this study will involve the survey of various techniques for improving 

the performance of organic transistors. Deposition techniques such as spin 

coating and dip-coating will be compared. Sorne performance improvement 

techniques are also investigated, these include: annealing step after deposition, 

polymer doping with iron chloride, and stamping of a "dry" elastomer before the 

active organic polymer de position step. 
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2 Organic Semiconductor Theory 

2.1 Background 

Organic semiconductors are not a recent discovery. In fact, anthracene crystals 

were first studied for their dark and photoconductivity back in the early 20th 

century. A few decades later, electroluminescence of single crystal anthracene 

was discovered in the 1960s [1]. This discovery triggered a large body of 

researchers to investigate further and established the basics of optical excitation 

and charge carrier transport theory in organic crystals. However, several 

drawbacks prevented organic semiconductors from making into practical 

applications in these early days. High operating voltage, instability and low 

current densities were the main drawbacks. Mean while, conjugated organic 

polymers were made conductive by controlled doping by Chiang et al [2], whom 

part of the group members were awarded the Nobel Prize in Chemistry in 2000 

for their work in the field. A decade later, ongoing research efforts in organic 

semiconductors reached a breakthrough when the first high efficient organic 

photovoltaic cell was demonstrated [3]. And around the same period, the same 

group also demonstrated low voltage organic electroluminescent diodes [4]. By 

the end of the 19805, organic thin film transistors (OTFTs) were fabricated [5-8]. 

These series of advancements in the field of organic semiconductors fueled an 

even larger interest in the subject that is growing to this date. The domain of 

organic semiconductors has advanced so rapidly in the last decade, that 
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commercial products have already become reality. Notably, the presence of 

organic light emitting devices (OLEDs) in car audio equipment displays and 

portable electronic displays is commonly seen. Other applications such as 

organic photovoltaic solar cells and integrated circuits utilizing organic field 

effect transistor (OFETs) should also be making its appearance in the market 

soon. 

2.2 Organic Materials 

Organic semiconductor materials are divided into two major classes: oligomers 

(small molecules or short chains) and polymers (long chains). From a processing 

point of view, these two classes of materials are different. In order to obtain 

films, small molecule materials are usually deposited by vacuum evaporation or 

sublimation. On the other hand, polymerie materials are synthesized into a 

solution and cast into thin films by spin coating, dip coating or printing 

techniques. From a chemistry perspective however, both types of organic 

semiconductors are similar. 

The basics of organic semiconductors lie in the particular bonding configuration 

of carbon atoms: the sp2-hybridized C-atoms. Two bonding structures are 

present in sp2-hybridized C-atom bondings. First, a very strong a-bond between 

carbon atoms is present on plane of Sp2 orbitais. And then, perpendicular to this 

plane, a pair of conjugated Tt-electron systems formed by pz-orbitais can be 

found (Figure 2-1a). It is thanks to these Tt-bonds that we are seeing the 
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semiconducting properties of these organic material systems. Compared to a

bonding, Tt-bonding is much weaker; thus, it can give or take energy much easier. 

light absorption (photovoltaic) or emission in the visible spectra can be observed 

in such transitions between Tt-orbital (bonding) to Tt*-orbital (anti-bonding) 

energy levels. 

Bonding and anti-bonding orbitais can be thought as the valence and conduction 

bands equivalent of inorganic semiconductors. In organic semiconductors, these 

bands are more often referred to as the highest occupied molecular orbital 

(HOMO) and lowest unoccupied molecular orbital (lU MO). The energy gap 

between the HOMO and LUMO for Tt-orbitais is usually in the order 1.5 to 3 eV 

for organic materials, which is much smaller than the a-orbitais (Figure 2-1b). 

Ethene or ethylene is the simplest of such organic molecules consisting of a 

single pair of C-atoms as iIIustrated in Figure 2-1. This configuration is present in 

both oligomers and polymers. 
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2.2.1 Organic Small Molecules 

Benzene rings are the basic unit in oligomers, consisting of six C-atoms and six H

atoms (C6H6) bonded in a ring fashion. In this kind of system, the Tt-bonds 

become delocalized; electrons in such bonds are no longer associated to any 

particular atom or covalent bond. Delocalized electrons are sim ply contained 

wthin an orbital that extends over several adjacent atoms. The direct result of 

these delocalizations is that the energy gap between the lUMO and HOMO of 

the molecular system becomes smaller; th us giving ri se to properties such as 

conductivity (charge transport). 

H 

H 

H 

H 

H 

H o 
Figure 2-2. Benzene Ring. 

Through vacuum sublimation and physical vapor growth techniques [9, 10], it is 

possible to obtain fairly large single crystals from organic molecular 

semiconductors (SCO). These crystals exhibit relatively high charge mobility and 

even show a band like carrier transport due to the highly ordered nature of 

single crystals; molecules are closely cou pied together, allowing the transport of 
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charge carriers with ease. However, seos are not suitable for industrial 

applications because of the costs and time involved in the fabrication of such 

crystalline materials. Nevertheless, they are essential for carrying out research 

to investigate the fundamentals governing charge transport in organic 

conjugated materials. Time-of-flight (TOF) measurements of single crystal 

organic semiconductors have yielded carrier mobility as large as 400 cm2/Vs [11], 

which is similar to electron mobility in Si at room temperature. These results 

suggest two important facts: organic semiconductors can exhibit band-like 

carrier transport characteristics; and, the performance of thin-film polycrystalline 

devices of organic materials is strongly dependent on the purity, or 

imperfections of the semiconductor itself. Single crystal organic small molecules 

have also been used to fabricate field-effect devices, and field-effect mobility 

values obtained range from 0.1 to 20 cm2/Vs [12] depending on the material and 

device structure used. These numbers largely exceed even the highest mobility 

reported for hydrogenated amorphous silicon (a-Si:H) devices. 

Figure 2-3 shows sorne of the most studied organic small molecule 

semiconductors. As mentioned earlier, anthracene was one of the first organic 

semiconductors to be studied; however, other molecules in the oligoacene 

family have been more extensively studied in recent years. Pentacene and 

tetracene have received particular attention for their higher mobility. Sorne of 

their derivatives are also of equal interest such as rubrene, which holds the 
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highest organic semiconductor field-effect mobility value ever reported to date 

(-20 cm2jVs) [13, 14]. 

For more practical applications, molecular organic semiconductors can also be 

evaporated in high vacuum to form uniform polycrystalline thin-films. Compared 

to single crystal organic devices, the thin-film counter parts not only have lower 

field-effect mobility due to structural defects, but also have a gate voltage 

dependent mobility. Polycrystalline thin-films do not possess band-like 

conductivity like SCOs, the transport of carrier is rather accomplished through 

"hopping". Clearly, organic semiconductor technology has the potential to 

replace inorganic semiconductors in sorne areas. 

CCC) 
Anthracene 

CCCO e60 

Tetracene 

COXO 
Pentacene 

Rubrene 

Oligothiophene 

Tetrathiafulvalene (TIF) Phthalocyanine 

Figure 2-3. Some of the most studied organic small molecule semiconductors. 
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2.2.2 Organic Polymers 

As discussed above, conjugated organic polymers are long chains of carbon 

atoms. A polymer chain is said to have a one-dimensional electronic system 

because the delocalization of rr-bonds resides along the chain. Unlike organic 

small molecules, polymerie chains cannot form highly ordered crystals; therefore, 

charge transport in organic polymers relies on defects along the chains or 

"hopping" across other polymerie chains. Figure 2-4 shows some of the most 

commonly studied organic polymers. The depicted chemical structures are 

single molecules, which can be bonded repetitively n times to form the actual 

polymerie chain. Polyparaphenylenevinylene (PPV), polyparaphenylene (PPP) 

and polyfluorene (PF) family of polymers are most often used in light emitting 

applications where charge carrier mobility is not as crucial as in a high 

performance OFET. On the other hand, polythiophenes (PT) exhibit the highest 

charge carrier mobility values among ail organic polymers [15]. Field-effect 

mobility of up to 0.6 cm2/Vs has been reported for a new semiconducting liquid

crystalline polythiophene polymer [16]. It is known that polythiophenes have a 

strong tendency to form crystallites through self-assembly when cast into thin 

films; thus, increasing their charge transport abilities. 

Page 10 



Polyparaphenylenevinylene 
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n 

n 
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Figure 2-4. Some of the most studied organic polymer semiconductors. 

The main advantage of organic polymers over small molecules is their relatively 

simple fabrication process. Organic polymers are easily dissolved in organic 

solvents; thus, a solution process can be used for applying organic 

semiconductors over large areas and flexible substrates with little time and 

effort. 

2.3 Charge Transport in Organic Semiconductors 

There is still a lot of controversy for describing charge transport in organic 

semiconductors. For inorganic semiconductors, charge transport is governed 
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through delocalized states and limited by scattering of the carriers induced by 

crystallattice deformations (or phonons) caused by heat. However, if one were 

to apply this model to low conductivity amorphous organic semiconductors, the 

estimated mean free path of charge carriers would become smaller than the 

mean atomic distance, which does not make sense. One the proposed models 

for describing charge transport in such materials is based on "hopping" of charge 

carriers between localized states. In this case, the transport is rather assisted 

and not limited by photons; thus thermally activated. 

polaron is another term used in the description of localized "hopping" of charges. 

ln conjugated organic polymers, localization is caused by polarons, which are the 

result of a deformation in the polymer chain caused bya charge carrier. Because 

polymer chains are simply repetitions of monomers in one direction (10), if a 

charge carrier is thrown into such structure, the one-dimensional character of 

the polymer chain could easily be deformed. The model describing transport 

mechanism of polarons was developed by Holstein in the late 1950s [17, 18]. 

Another model that attempts to describe charge transport of organic 

semiconductors is the multiple trapping and release (MTR) model [19]. In this 

mode 1, a high concentration of localized states, also called "traps", is present in a 

narrow delocalized band. The transport of charge carriers through delocalized 

states is then influenced by localized traps. Localized states will trap incoming 

charges carriers and release them through thermal excitation. This model is 

currently widely employed for describing charge transport in amorphous silicon. 
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Besides the temperature dependence of charge transport mechanisms, electric 

field also becomes important when it exceeds ~105 V lem. The dependence can 

be described by the Poole-Frenkel mechanism [20]. 

It is worth noting that these latter factors affecting charge transport will have 

different effects on single crystals and amorphous materials. For instance, in 

seos, the mobility will generally decrease as temperature increases; whereas for 

an amorphous polymer film, it will have a tendency to increase. 

2.4 Charge Carrier Mobility 

The figure of merit that characterizes the charge transport is the carrier mobility. 

There are usually two types of carrier mobility that can be found in the literature: 

intrinsic mobility and the field-effect mobility; the latter is measured when the 

semiconductor is operated under an electric field (gated device). There are 

several methods available for estimating these two figures of merit and will be 

discussed later. 

Over the past several years, different organic semiconductor materials have 

been classified into hole transport (p-type) or electron transport (n-type) 

materials. Worth noting however, this classification does not necessarily reflect 

the intrinsic properties of the materials to prefer the transport of either type of 

carriers. The carrier mobility reported for the organic materials are most likely 
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limited by the charge injection at the electrodes [21] (eg. How weil the electrode 

work function matches with the organic semiconductor.) 

2.4.1 Intrinsic Mobility 

Intrinsic carrier mobility quantifies with how much ease charge carriers inside 

the semiconductor are able to move from molecule to molecule with no 

disturbance. The most employed methods for extracting this value include time-

of-flight (TOF), diode configuration, and pulse-radiolysis time-resolved 

microwave conductivity (PR-TRMC) [21]. 

For TOF measurements, an organic material layer is sandwiched between two 

electrodes. First, an optical pulse from a light source or a laser is directed at the 

organic material close to one of the electrodes. A layer of charge carriers is then 

photo-generated by this optical pulse and travels through the sample to the 

other electrode depending on the bias applied. This response can be measured 

as a function of time. And the carrier mobility can be calculated using the 

following equation, 

(2-1) 

where dis the organic layer thickness, ris the transit time of the charges and Vis 

the applied bias voltage. 
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The diode configuration [22] can be used with the condition that the charge 

transport is bulk limited and not contact limited. The structure for such 

configuration is similar to TOF with a layer of organic material sandwiched 

between two electrodes. Additionally, the electrodes are most often chosen so 

that only holes or electrons are injected into the bulk at low voltages. When 

these conditions are met, space-charge limited current will be shown in the J-V 

transfer curve; the current density will scale with the voltage quadratically. The 

current density can be expressed with Equation 2-2, 

(2-2) 

where, L is the thickness and Er is the dielectric constant of the organic layer. 

Also, the above equation assumes a trap-free medium, since the transfer curve 

would be much more complex in the presence of traps. 

PR-TRMC is a contact free and the most accu rate method for measuring the 

intrinsic properties of organic semiconductors. The samples are first excited bya 

pulse of high energy electrons (MeV range), which creates a low density of free 

carriers in the bulk of the semiconductor. A change in electrical conductivity can 

then be induced by measuring the change in microwave power reflected fram 

the sample. Equation 2-3 expresses the change in conductivity (6a) as a function 

the sum of electron and hole mobilities and the density of generated electron-

ho le pairs (Ne-h)' 
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(2-3) 

The above discussed methods for extracting carrier mobility do not guarantee 

that the results will reflect the intrinsic mobility of the material. The organic 

material itself needs to be as pure and as ordered as possible. Organic materials 

where it is possible to make defect-free crystals out of will have the most 

accu rate results, which further emphasizes the importance of the study of small 

molecule seos. 

2.4.2 Field-effect Mobility 

While the intrinsic mobility value characterizes the maximum mobility an organic 

semiconductor has, the field-effect mobility represents the actual performance 

of the semiconducting material under an electric field perpendicular to the 

direction of transport, which is generally much smaller than the intrinsic mobility. 

To extract field-effect mobility, OFETs are fabricated and transfer curves are 

measured. In 2004, the institute of electrical and electronics engineers (IEEE) 

defined a standard for testing and characterizing organic field-effect transistors 

(IEEE Std 1620) [23]. IEEE Std 1620 also includes a standard way of extracting 

and reporting field-effect mobility for OFET devices. The following is a brief 

description of the proposed methodology for extracting field-effect mobility. 

For the extraction of mobility in the saturation regime of the OFET, Equation 2-4 

is used, 
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(2-4) 

where los is the current through the drain and source electrodes; W and L are the 

width and length of the transistor channel; Ci is the gate capacitance per unit 

area; VGs and Vr are the gate voltage and Vr the threshold voltage respectively; 

and finally, Jl. is the field-effect mobility. Typically, the most common approach 

for approximating the mobility value is to plot 10//
2 vs. VGS (with VGS at 

saturation), finding the slope m, and solving for Jl.. In such case, Jl. will be given 

by Equation 2-5, 

(2-5) 

For the linear operation regime, Equation 2-6 is used for the approximation, 

(2-6) 

where Vos (drain to source voltage) has to be «(VGS-Vr). Measuring the transfer 

los vs. VGS in the linear region and ta king the slope of the curve, one can use the 

derivative of Equation 2-6 for solving for the mobility. 

Although most research groups follow the IEEE standard for reporting field-effect 

mobility, there are nevertheless many different results for the same polymer 

among the different laboratories. This is in fact expected, since the charge 
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transport properties of organic polymers depend greatly on the morphology of 

the material; and morphology itself is influenced by process conditions. 
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2.5 Organie Field-Effeet Transistors 

The field-effect transistor (FET) has been the reason behind the success of the 

semiconductor industry for the past few decades. FETs are simple four terminal 

devices. Usually, one of the terminais is kept at a constant bias (bulk or 

substrate). And another terminal (gate) is used to control the current flow 

through the two remaining terminais (drain and source) by varying the voltage 

applied. There are several device configurations available for building a FET. The 

most important one is the MISFET (metal-insulator-semiconductor FET) structure 

(Figure 2-5). On a MISFET, the gate is isolated from the semiconductor channel 

by an insulator layer. When a voltage is applied at the gate, an inversion layer is 

created at the insulator-semiconductor interface, resulting in a conducting 

channel connecting the source and drain terminais. The current flowing 

between the drain and source electrodes can be modulated by varying the gate 

voltage. Part of the MISFET family is the MOSFET (metal-oxide-semiconductor 

FET) which is built on the CMOS technology, and is what most of the 

semiconductor industry is about. 
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Substrate 

Figure 2-5. MISFET Structure 

Another FET device structure of interest is the thin-film transistor (TFT). TFTs, 

first described by Wei mer in 1962 [24], are more suitable for large area 

applications where it is hard to obtain single crystal cuts of such dimensions. 

Materials used for such structures are polycrystalline and amorphous silicon, 

which are deposited as thin films. Organic semiconductors can also be deposited 

as thin films by using various coating techniques and evaporation. Although 

charge carrier mobility is lower for inorganic TFTs due to the non-single 

crystalline active regions, there are applications were their performance is quite 

sufficient. Also, instead of operating in the inversion regime, TFTs operate in 

accumulation mode. 
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Semiconductor Film 

Drain 
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Source 

/ 

Gate 

Figure 2-6. Thin Film Transistor (TFT) Structure. 

Severa 1 device configurations are available for the fabrication of OFETs. Figure 

2-7 shows the most commonly used structures: top-contact, bottom-gate; 

bottom-contact, bottom-gate; and bottom-contact, top-gate. 

top-contact, 
bottom-gate 

bottom-contact, 
bottom-gate 

bottom-contact, 
top-gate 

Gate 

Organic semiconductor 

Metal (source/drain) 

ŒJ 
Substrate 

D 
Figure 2-7. Cross-section of commonly used OFET structures. 
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Both organic small molecules and polymers can be used to fabricate OFETs. As 

mentioned earlier, small molecules offer higher performance at a higher 

processing cost, through vacuum deposition. Organic polymers are most often 

spin casted, drop casted, dip coated; or selectively deposited through direct 

printing. However, their mobility trails about one order of magnitude behind 

small molecules. Thus, in order to improve performance of organic polymer 

devices, extensive microstructure characterization has been done on polymer 

thin-films. Given that the highest mobilities are obtained by seo OFETs, 

structural order of polymer chains holds the key for improving its performance. 

Page 22 



3 Pattering Techniques for Organic Semiconductor 

3.1 Soft Lithography 

For several decades, optical photolithography has been the patterning technique 

of choice for large area and mass production applications. This lithographie 

technology is a relatively simple process that creates very high resolution 

patterns reliably at a moderate priee cost. Thanks to continuous improvements 

of this technology, the semiconductor industry was allowed to prosper at a 

phenomenal rate and even keep up with Moore's Law. Moore's Law, an 

observation, stated that the number of transistors on an integrated circuit for 

minimum component cost would double every two years. Thus, 

photolithographie technology enabled the reduction of the overall co st of 

fabrication, while improving device performance over several decades. 

More recently, organic polymer semiconducting materials have found their way 

into the microelectronics industry. Low-cost and high efficiency are the main 

application targets for these new materials. Polymers are typically applied over 

large areas by spin coating or dip coating. These material deposition methods 

are of very low co st; however, in order to obtain functional integrated circuits, 

being able to pattern polymers and isolate individual devices is a must. The 

successful fabrication of functional all-polymer integrated circuit devices would 

be the ultimate goal leading to the production of truly low-cost and disposable 

electronics. 
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Given the success of optical photolithography in the domain of inorganic 

semiconductors, it is natural to be inclined towards adapting this technology to 

use with organic materials. However, this process is not suitable for patterning 

organic materials directly for a number of reasons. Sub-micron photolithography 

degrades active polymers due to solvents used and sometimes, their complexity 

increases the costs of fabrication so much that it defeats the low-cost target of 

polymer devices. In order to remain in the realm of low-cost manufacturing, soft 

lithography family of patterning techniques were developed to tackle the 

difficulties associated to the printing of weil defined organic material structures 

with ease and simplicity. Soft lithography includes techniques such as 

microcontact printing (~CP), microtransfer molding (~TM), micromolding in 

capillaries (MIMIC), replica molding (REM) and solvent-assisted micromolding 

(SAMIM). The common key element present in this family of patterning methods, 

extensively researched by Whitesides' group [25], is the use of a 

poly(dimethylsiloxane) (PDMS) stamp, a IIsoft" elastomeric material. Inkjet 

printing of organic materials is also another promising technology in this field. 

Several research groups have successfully printed functional organic devices 

using slightly modified consumer inkjet printers and there have been reports of 

working display panels fabricated with inkjet printing. 
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3.1.1 Poly(dimethylsiloxane) (PDMS) 

Soft lithography are techniques that make use of a "soft" rubber to shape, mold 

or pattern desired materials on a substrate. Several rubber materials have been 

used by research groups to carry out their experiments. These materials include 

polyurethanes, polyimides, PDMS and other cross-linked resins. 

Poly(dimethylsiloxane) is one of the most widely used stamp or mold materials 

among soft lithography researchers. PD MS is a silicone rubber that is in liquid 

form at room temperature and can be easily converted into solid form by cross

linking. In order to create patterned relief microstructures, the elastomer 

precursor is poured over a mastermold, cured through heat and separated. The 

master can be made of Si, photoresist or any other materials on which 

micropatterns can be created using conventional photolithography. Given the 

properties of the PDMS, stamps can be reused several times without inducing 

noticeable structural defects and several stamps can be prepared from one 

master, which renders soft lithography techniques cost effective and fabrication 

efficient. Additionally, the elasticity of PDMS allows for patterns to be created 

over planar as weil as non planar surfaces. More intimate contact can be made 

between the substrate and the protruding regions of the stamp due to its 

softness. However, the aspect ratio of the features on a PDMS stamp needs to 

be controlled carefully in order to avoid the collapsing of roofs. PDMS stamps 

with reinforced structures have been studied as an attempt to overcome this 

problem and enhance the resolution of the patterns. 
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3.1.2 Microcontact Printing 

ln Microcontact Printing (Ilep), a PDMS stamp is wetted with an "ink" using 

either one of the several methods available (spin coating, dip coating, etc.) and 

put in conformai contact with the desired substrate. Raised features of the 

stamp come into contact with the substrate, and when they are released, a thin 

layer of the "inked" material becomes printed on the surface of the substrate. 

Features ranging from less than one micron to several hundred microns can be 

printed with relatively ease and good reproducibility. This is a promising 

technique that can be adapted to a roll-to-roll process in the future for mass 

production capabilities. 

3.1.2.1 Self-Assembled Monolayers 

As the name implies, self-assembled monolayers are molecules that self-align in 

an ordered fashion to form an ultra thin film. SAMs have amphiphilic molecular 

structures. Amphiphilicity refers to compounds that have a water-soluble, 

hydrophilic, group attached to another water-insoluble, hydrophobic, group. 

Because of this property, such molecules can spontaneously "self-assemble" into 

an orderly structured array when chemically bound to a specifie type of surface; 

thus forming a monolayer. These structures are very interesting for the fact that 

they can modify surface properties easily, either physically or chemically. 

Properties su ch as wetting, conductivity, adhesion and chemical reactivity can be 

modified at will. 
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Two factors determine how weil SAM structures are formed. Firstly, the nature 

of the chemical interaction between the surface of the substrate and the 

adsorbate controls the "binding" of the molecules to the surface. Typical surface 

"binding" can occur through physiosorption (eg. Van der Waals forces) or 

chemisorption (eg. Hydrogen bonding, ion pairing and covalent bonding). The 

latter is the most desirable to obtain stronger bonds. Secondly, the type and 

strength of the intermolecular interaction between the adjacent adsorbates of 

individual molecules plays a major role in holding the assembly together. 

SAM systems of particular interests are the assembly of trialkyl-,trichloro-, or 

trialkoxysilanes bound to silicon dioxide surfaces, and n-alkanethiols to gold 

surfaces. These can be used as resists for wet etching [25]. 

Systems of n-alkanethiols with bounds to transition metal (eg. gold, silver and 

copper) surfaces has been extensively studied because it is one of the most 

stable and easily achieved SAM structures [26-29]. 

3.1.2.2 Microcontact Printing ofSAMs 

Pattered SAM layers are deposited on surfaces with a PDMS stamp and have 

mainly two functionalities: (a) they can be used as ultra thin resist layers for 

selective wet etching and patterning various materials depending on the type of 

SAM; (b) it can also modify surface properties (chemical or physical), which can 
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be useful in certain applications. Because SAM systems of hexadecanethiols and 

gold are understood the most, IlCP of SAMs on Au will be discussed. 

Typically, the molded PDMS stamp with relief structures is wetted with a solution 

of hexadecanethiol in ethanol (~2 mM). Then it is brought in contact with a 

substrate evaporated with a thin layer (10-200 nm) of Au. The Hexadecanathiol 

(CH3(CH2hsSH) forms patterns of hexadecanethiolate (CH3(CH2hsS") on gold upon 

contact. It does not take long for alkanethiolates to form on gold; usually, within 

seconds a highly ordered SAMs layer is formed for a microcontact printing 

process. Whitesides group have developed three different IlCP configurations 

for printing SAMs (Figure 3-1). Figure 3-1a illustrates the most common 

approach for printing on planar surfaces with a planar stamp. In Figure 3-1b, a 

rolling stamp is used for printing on a planar surface; and finally Figure 3-1c, a 

non planar surface is being printed by a planar stamp by rolling the surface on it. 
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PDMS stamp 
inked with 

thiol solution 

Figure 3-1. Microcontact Printing of hexadecanethiol on gold surface. 
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3.1.2.3 Microcontact Printing of Polymers 

Microcontact printing was originally developed for, but not limited to, the use of 

printing self-assembled monolayers (SAMs). Polymer inking and stamping was 

demonstrated by Li et al [30] where functional organic TFTs were fabricated with 

patterned poly(3,4-ethylenedioxythiophene)jpoly(4-styrenesulphonate) (PEDOT) 

as source and drain electrodes. Field-effect mobilities obtained were as large as 

0.7 cm2/Vs and on/off current ratios in the order of 106
• Patterning of PEDOT by 

Ilep has also been reported by Granlund et al [31]. In their publication, they 

described the fabrication of several arrays of passively addressed polymer light

emitting diodes (PlEDs). The substrates used were glass coated with a thin layer 

of Au or ITO. Stripe lines of PEDOT of 100 Ilm in width were printed ante the 

substrates using a PDMS stamp with relief patterns (Figure 3-2). The basic 

stacked structure of the PlED comprises of a light-emitting polymer material 

(red-emitting poly(3-(2-butyloxy-S-octyphenyl)thiophene (PBOPT)) sandwiched 

between a cathode (AI) and an anode (Au or ITO). A layer of PEDOT is placed 

between the anode and the active polymer to increase the carrier injection. 

Interestingly, Granlund et al used the printed layer of PEDOT as etch resist for 

substrates coated with Au, for isolating the PlED stripes. However, for ITO 

substrates, PEDOT could not be used as resists for etching the ITO; nevertheless, 

electroluminescence could only be observed in regions where PEDOT was 

present. This is most likely due to better carrier injection in those areas. 

Page 30 



Substrate 

Heat 80 Oc 

Stamp wetted 
with PEDOT 

Stamp and 
substrate in 
conformai 

contact for 30 s 

Printed PEDOT 
patterns 
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Figure 3-3. PLED Structure 
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3.1.3 Micromolding Techniques 

3.1.3.1 Replica Molding (REM) 

Replica molding is a simple and efficient method used for replicating structures 

on a surface. Traditionally, this technique uses a rigid mold to tlshape" UV or 

thermally curable prepolymers. Compact dises [32, 33], microparts [34, 35], 

optical diffractive elements[36] and other plastics products are often mass

produced by such technique. 

REM can be easily carried out sim ply by applying a curable prepolymer to a mold 

containing desired relief microstructures and curing it either by iIIuminating or by 

heating. The mold and the cured prepolymer are separated, and 

microstructured polymer shapes are obtained. Whitesides' group has extended 

REM by using soft PDMS molds instead of rigid molds. One of the advantages 

claimed by using a soft mold is that it facilitates the release of smaller and more 

fragile structures from the mold. Furthermore, the elasticity of PDMS molds 

allows for the manipulation of the shapes and sizes of the final polymerie 

structures by mechanical approaches such as, compression, bending or 

stretching [25, 37, 38]. By applying a mechanical bending of the PDMS mold, 

features of 30 nm were fabricated with ease [37]. 
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3.1.3.2 Microtransfer Molding (pTM) 

Unlike REM, j.lTM does not only shape prepolymers, it actually creates patterns 

on a substrate. A thermally or UV curable liquid prepolymer is applied ante a 

PDMS mold and the excess is removed by "scraping" with a fiat PDMS block or by 

blowing off with a stream of nitrogen. The mold filled with the desired material 

is then placed in contact with a substrate. The prepolymer is cured by heat or 

illumination and the soft mold is then peeled off carefully, leaving a patterned 

microstructure of the polymer on the surface of the substrate. Using the 

method described above, j.lTM usually leaves a very thin layer of about 100 nm 

on a fiat surface between raised features. If these pattered structures are to be 

served as resists for subsequent etching steps, this thin film must be removed by 

oxygen plasma etching or reactive ion etching (RIE) [25J. Another way for filling 

those voids on the mold without leaving a thin layer of polymer between the 

raised features is to use printing to dispense the appropriate amount of liquid 

prepolymer into the PDMS recessed regions [39J. 

Microtransfer molding is capable of fabricating arrays of structures in the order 

of micrometers across relatively large areas (10 mm x 10 mm). Additionally, this 

technique allows the transfer of patterns ante non planar and flexible substrates. 

Many research groups have studied the feasibility of photonic band gap 

structures [40], optical wave guides, couplers, and interferometers [41J, polymer 

flip chips [39J, and Schottky diodes [42J using j.lTM techniques. 
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Figure 3-4. Microtransfer Molding Process 
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3.1.3.3 Micromolding in Capillaries (MIMIC) 

MIMle is another soft lithographie technique that makes use of a PDMS soft 

stamp. The bare PDMS stamp containing relief patterns is placed in conformai 

contact with a substrate. One of the requirements for MIMle is that the relief 

patterns need to form a continuous network of capillaries. This requirement 

eftectively limits the applicability of this technique. The empty network of 

capillaries is then filled with low viscosity prepolymer or any other liquid systems 

via capillary forces. The penetrating material is applied at one end and drawn 

slowly into the channels filling up the voids. The speed at which the channels are 

filled up is dependent on the viscosity of the penetrating material, the length of 

the channels and radius of the capillaries. Sometimes, a vacuum is used to help 

speed up the filling process. 

Several research groups have demonstrated potential applications where MIMle 

might be used. Jin et al [43] have used MIMle to define arrays of image sensors 

on a curved substrate, a perfect example of soft lithography on non planar 

surfaces. On the other hand, Zhang et al [44] have fabricated conducting 

polymer nanowires and nanodots using the same technique on glass and Si 

substrates. The periodicity of the nanowires fabricated by the group was 278 nm. 

Blümel et al [45] also showed the applicability of MIMle by fabricating source 

and drain electrodes of organic field-eftect transistors (OTFTs) made of silver 

nanoparticles. The devices showed improved carrier inject into the active 

organic semiconductor, th us, reduction the contact effects. 
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3.2 Inkjet Printing 

Inkjet printing of organic polymers is not a lithographie technique but rather a 

direct writing and patterning method. Most materials which can be synthesized 

into a solution can be printed; even nanoparticles can be printed. Several 

research groups have demonstrated the possibilities of inkjet printing for various 

applications [46-54]. These include the fabrication of simple devices such as 

capacitors, polymer diodes and all-organic polymer TFTs, and more complex 

device circuits like high resolution organic light emitting displays (OlEDs). The 

only drawbacks lie in the uniformity and smoothness of the films printed, and 

the speed of the printing process for large area patterns. However, inkjet 

printing still remains as a very effective process. Only the necessary amount of 

material is used since patterns are created drop by drop without wasting any 

material. There are two classes of inkjet technology available: "continuous" and 

"drop-on-demand". 

At first glance, inkjet printing of polymer solutions looks simple. However, many 

complications can arise if the solvent system is not carefully chosen. It is 

imperative to ensure that the inks do not interact or damage ail the components 

inside the print head. Furthermore, the ink properties should not be modified by 

the mechanical shear of a piezo-electric print head or the extreme temperature 

conditions of a thermal print head. Besides the ink formulation, the droplet 
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behavior once ejected from the nozzles has to be predicted with precision to 

ensure desired printing results are achieved. 

3.3 Continuous Inkjet 

Continuous inkjet technology was first developed by R. G. Sweet from Stanford 

University in the 19605. Sweet showed that by applying a pressure wave pattern 

to an ink stream, it is possible to break it into droplets of uniform size and 

interval. Droplets formed are to be subjected to a charging electrode, which 

then pass through a deflection plate a"owing the ink droplets to be either fired 

through or to be co"ected by a gutter (Figure 3-6a). Continuous inkjet 

technology is especia"y suitable for the use of ink systems based on highly 

volatile solvents. There are no chances of ink drying and clogging the inkjet 

nozzles since they are operated in a continuous mode. Additiona"y, the 

evaporation of the solvents can be compensated by adding more solvent to the 

ink co"ected by the gutter and recycling it into the system. 

3.4 Drop-on-Demand Inkjet 

Unlike continuous inkjet technology, drop-on-demand inkjet only ejects ink 

droplets when needed. Inherently, there are higher chances of having clogged 

nozzle using this technology. However, drop-on-demand inkjet systems are 

much simpler and cheaper to fabricate versus its continuous counterpart. There 
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are two main technologies available for drop-on-demand, one uses a thermal 

inkjet head (Figure 3-6b), while the other uses a piezoelectric head (Figure 3-6c). 

3.4.1 Thermal Inkjet 

Thermal inkjet technology was originally developed by Canon in the late 19705. 

The principles behind this technology are simple. Micro-chambers filled by 

capillary through ink channels each contain a small heating element. Electrical 

pulses are sent to this heater. During each pulse cycle, the ink in the area is 

superheated instantly to the point where a small air bubble forms. The air 

bubble grows and pushes the ink towards the nozzle opening up to a point 

where sorne ink separates from the orifice, forming a droplet and is purged 

towards the substrate. At this moment, the electrical pulse is in low, thus, no 

longer in the heating state. The air bubble collapses and the chamber is refilled 

with ink by capillary action. Thermal inkjet is limited by the type of polymers 

that can be used for printing. Most likely, only solutions that have a higher 

boiling point can be used for thermal inkjet printers. On the other hand, 

piezoelectric printer heads have a wide choice of materials that can be printed. 

3.4.2 Piezoelectric Inkjet 

Piezoelectric inkjet is the corn mon inkjet technology in the consumer market 

today for graphies and arts applications. Instead of using a heating element in 

the print head chamber, a piezo ceramic element is used in conjunction with a 

Page 39 



diaphragm. When an electric pulse is sent to the piezo element, it induces a 

deformation of the diaphragm, which in turn pressurizes the chamber filled with 

ink and ejects a droplet. The main advantage of this print head technology is 

that it allows for a wider range of solvents to be used. 
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Figure 3-6. Inkjet printing technologies a) Continuous inkjet b) Piezo head c) Thermal head 
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4 Organie Field-Effeet Transistor Fabrication 

Organic thin film transistors were fabricated and characterized for this study. 

The organic polymer was used for the active semiconductor region was regio

regular poly(3-hexylthiophene) (RR-P3HT). A series of experiments was carried 

out in order to study the impact of several processing conditions on device 

performance. An attempt was also made to fabricate OFETs with patterned and 

weil defined active regions with the help of a PDMS stamp. The fabrication of 

such devices can be described in four steps discussed in the following sections: 

substrate fabrication, stamp fabrication, preparation of organic polymer solution, 

and deposition of the active semiconductor to the substrate. The experiments 

were carried out in a laboratory with non-controlled environment. The ambient 

temperature was around 24°C with relative humidity around 35% during the 

whole fabrication and measurement process. Figure 4-1 shows a photograph of 

a sample containing several OFET devices. 
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Figure 4-1. Sample containing 32 OFET devices 

4.1 Fabrication of substrates 

The first step towards the fabrication of OFET samples is the fabrication of the 

substrate. By substrate, we refer to an almost completed sample with just the 

last polymer deposition step remaining. The fabrication procedure for the OFET 

substrate includes the fabrication of the gate dielectric and the definition of 

source and drain metals. The TFT structure that was chosen for this experiment 

was the bottom contact TH. This structure was chosen because the polymer 

semiconductor is only applied during the last step of the fabrication; thus 

reducing the risks of damage or contamination compared to a top contact for 

example. However, sorne research groups suggested that top contact OFETs 

offer better performance that the bottom contact counterpart. 
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The substrates were designed in su ch way that each sample could contain 16 

devices. Figure 4-2 shows and overlay of the masks used for OFET fabrication. 

Ali devices have a corn mon gate contact and 32 individual source and drain 

contacts. 

Figure 4-2. Mask layout of one OFET sample containing 16 individual devices 
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Figure 4-3. OFET fabrication individual masks 

4.1.1 Gate Dielectric 

Ali metals evaporated for this experiment were accomplished in as Edwards 

E306A coating system (Figure 4-5). The chosen gate dielectric for this 

experiment was aluminum oxide (Ab03). Aluminum was evaporated on 1 mm 
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thick glass substrates and patterned using standard photolithographic process. 

Shipley 1827 photoresist was then spun onto the glass substrates with 

evaporated aluminum, exposed and developed using mask 1 (Figure 4-3) and 

etched in order to define the gate electrodes. The samples were then anodized 

to form the aluminum oxide. The anodization procedure is relatively simple. The 

patterned AI samples were placed in an acid electrolyte; using the AI as the 

anode and another metal as the cathode (Pt), a voltage is applied between the 

terminais inducting a current through the AI and triggering the formation of an 

anodic oxide. 

Ethylene glycol (HOCH2CH20H) + Tartaric acid (HOOC(CHOHhCOOH) 

Figure 4-4. AI Anodization Setup. 
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Detailed gate dielectric fabrication procedure is as follow: 

1) Cut Glass slides into 1x1 inch square. 

2) Clean glass substrates in acetone in ultra sonie bath for 5 mins. 

3) Rinse with deionized water and clean in DI water in ultra sonic bath for 5 

mins. 

4) Rinse and bake dry in oven at 115°C for 10 mins. 

5) load samples into vacuum chamber for AI evaporation. 

6) Evacuate vacuum cham ber for two hours and evaporate AI (~0.8 um). 

7) Remove from vacuum chamber and spin on Shipley 1827 photoresist at 

3000 rpm for 30 secs. 

8) Prebake in oven for 10 mins. 

9) Expose under UV lamp for 5 mins using mask 1. 

10) Develop using 1:1 diluted concentrated developer and DI water. 

11) Rinse in DI water 1 min and blow dry. 

12) Etch aluminum using AI etchant on hot plate set to 60°e. 

13) After etching, rinse with DI water for 30 secs and immerge in acetone for 

3 mins to remove the photoresist. 

14) Rinse with DI water and immerge in new acetone for another 5 mins. 

15) Rinse with DI water and submerge DI water for 10mins. 

16) Blow dry and bake in over for 10 mins at 115°C. 

17) Mount samples for anodization and anodize for 1.5 hours. 

18) Remove from anodization bath and submerge in glycerin for 15 mins. 
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19) Rinse with DI water for 1 min. And submerge in DI water for 15 mins by 

changing the DI water every 5 mins. 

20) Blow dry and bake in over for la mins at 115°C. 

Figure 4-4 shows the setup using for carrying out the anodization of the 

aluminum. The electrolyte used is an ethylene glycol (HOCH2CH20H) solution 

mixed with a tartaric acid (HOOC(CHOHhCOOH) and some ammonia hydroxide 

to bring the pH to about 7. Details of the anodization of AI procedure for gate 

dielectrics are be found at [55]. The thickness of (AI20 3) obtained for this 

experiment was approximately 150 nm with a capacitance per unit area of ~40 

nF/cm2
• 

Figure 4-5. Edwards E306A Coating System. 
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4.1.2 Source and Drain Electrodes 

The material used for the source and drain electrodes were gold (Au). Gold is 

known to be one of most suitable metals for ma king contact with organic 

polymers. Since most organic semiconductors are p-type, which is the case for 

P3HT, a high work function electrode is desirable in order to establish an ohmic 

contact with the semiconductor. Good ohmic contacts, also implies that the 

carrier injection will be efficient and not limited by a high contact resistance. 

The contact barrier between Au and P3HT is known to be in the order of 0.2 to 

0.3 eV [56J. 

Mask 2 (see Figure 4-3) was used to define the source and drain metals. 

Patterning of the metal was carried out by a lift-off process detailed as follow: 

1) Spin coat a thin layer of photoresist on substrate with gate lines prepared. 

(Shipley 1827 at 4000 rpm for 30 secs). 

2) Prebake samples at 80°C for 5 mins. 

3) Load samples in vacuum chamber for AI evaporation. 

4) Evaporate a thin layer of AI (~70nm). 

5) Remove samples from vacuum chamber and spin coat another layer of 

photoresist (Shipley 1827 at 4000 rpm for 30 secs). 

6) Prebake samples at 80°C for 5 mins. 

7) Expose the samples under UV light for 5 mins using mask 2. 
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8) Develop the photoresist with 1:1 concentrated developer diluted with DI 

water. 

9) Wet etch the exposed AI with etchant on hot plate set to 60°C. 

10) Rinse samples with DI water for 1 min and blow dry. 

11) Expose samples under UV light for 5 mins. 

12) Develop the exposed photo resist 

13) Rinse samples with DI water for 30 secs and submerge in DI water for 3 

mins. 

14) Blow dry samples and bake in over at 80°C for 3 mins. 

15) Load in vacuum cham ber for Au evaporation. 

16) Evaporate Cr to improve Au adhesion, then evaporate Au. 

17) Lift-off of Au by submerging in acetone for 20 mins. 

18) Rinse samples with DI water for 30 secs. 

19) Submerge in acetone for 10 mins. 

20) Rinse samples with DI water for 30 secs and submerge in DI water for 10 

mins. 

21) Blow dry and bake dry in oven at 115°C for 10 mins. 

The additional AI deposition/patterning step was not necessary but preferable 

for performing a gold lift off process. The AI layer ensures the presence of an 

overhang structure (Figure 4-6); thus, resulting in a discontinuous gold film after 

the evaporation and facilitating the lift off process. If no overhang is present, the 

Au film would be continuous across the pattern and no lift off wou Id be possible. 
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Figure 4-7 shows a micrograph of one of the bottom-contact, bottom-gate 

devices fabricated for this study. 

Au ready for lift off l 
Thl" Allay., 0 
Photoresist 

Au deposition 

Figure 4-6. Overhang Structure for lift off process. 

Figure 4-7. Micrograph of one of the OFET devices fabricated, ready for polymer deposition. 

4.2 PD MS Stamp 
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ln order to pattern or isolate individual devices an attempt was made to create 

patterns of P3HT polymer in the active regions of the devices only. According to 

Briseno et al [57], it is possible to create "islands" of hydrophilic materials on 

surfaces by using a "dry" PDMS stamp. This method for patterning organic 

semiconductors will be discussed in more detaillater on. 

PDMS stamp fabrication was carried out by molding and curing the silicone 

precursor in a patterned photoresist mold. The photoresist was patterned using 

conventional photolithography and coated with a release agent to prevent the 

elastomer from bonding to mold. The release agent used for this purpose, 

Fluoropel 1602, was provided by Cytonix Corporation. The PDMS elastomer, 

Sylgard 184, was obtained from Dow Corning as a two part, a base and a curing 

agent, solution. The two parts were mixed with a ratio of 10:1(base to curing 

agent) as per recommendations from Dow Corning and cured. The detailed 

procedure for stamp fabrication follows in the next section. 

4.2.1 Master Mold fabrication 

1) Cut and clean lxl inch glass substrates. 

2) Spin coat Shipley 1827 photoresist at 500rpm on glass substrate. 

3) Prebake at 115°C for 10 mins. 

4) Expose sample to UV lamp for 10 mins. 

5) Develop photoresist using concentrated developer. 

6) Rinse with DI water and submerge in DI water for 2 mins. 
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7) Hard bake in oven for 10 mins at 120 Oc and let cool. 

8) Spin on release agent, Fluoropel1602, at 1000 rpm for 20 secs. 

9) Bake in over for 10 mins at 95 Oc. 

The resulting master mold on glass substrate can be seen in Figure 4-8. 

Figure 4-8. A master mold fabricated by photolithography of photoresists. 

4.2.2 PDMS Stamp Molding 

1) Cut and clean lxl inch glass substrates. 

2) Make 10:1 mixture of Sylgard 184 base to curing agent in a small 

petridish. 

3) Stir for 3 mins. 

4) let mixture sit for 10 mins until no bubbles can be seen. 

5) Use pipet to put six drops of PDMS mixture on clean glass substrates. 
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6) Slowly put the master mold over the glass substrate with PDMS. 

7) Let cure in oven for two hours at 75 Oc. 

8) Let sample cool and slowly separate the stamp and the master mold. 

4.2.3 "Dry" Stamping ofPDMS 

As mentioned above, there has been a report on functional devices fabricated by 

patterning of P3HT and other polymers, by simply using a bare PDMS stamp. 

This technique makes use of selective wetting [57]. It has been reported in 

several publications that when PDMS cornes into contact with a hydrophilic 

surface, it releases low molecular weight siloxane oligomers [58-60]. This may 

not be desirable in some cases when direct printing of organic mate rials is being 

carried out as it may contaminate the functional film. However, this technique is 

useful in creating high definition (in the order of 10-100um) hydrophobic 

patterns on hydrophilic surfaces. Stamped surfaces can then be coated with the 

desired polymer and areas where the PDMS stamp came into contact before will 

be "de-wetted", thus leaving a film on non-contacted regions only. 

This process is best employed on water based polymer solutions such as PEDOT 

dispersion in water, where the contact angle to hydrophic surfaces is very high 

th us facilitating the formation of those polymeric "islands". 
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4.3 Polymer Solution 

The semiconducting polymer that was used for the experiments was 98% regio

regular poly(3-hexylthiophene) (rr-P3HT) purchased from Aldrich chemicals 

(Figure 4-9). The polymer powder was used as received; no further purification 

process was carried out. The P3HT was dissolved in toluene 0.3% wjw 

concentration. It has been reported in the literature that higher boiling point 

solvent is preferred over low boiling point alternatives for the fabrication of 

P3HT devices [61]. Low boiling point solvents such as chloroform evaporate too 

fast, thus, limiting the time in which P3HT tried to self assemble into crystalline

like structures. Therefore, toluene was chosen for this study. 

The solution was prepared on a hotplate at 60 Oc and stirred at 600 rpm for two 

hours to help the dissolution of the polymer powder. Solutions of rr-P3HT doped 

with iron chloride in chloroform were also prepared with weight ratios between 

P3HT and FeCh of 20:1 and 40:1. rr-P3HT films doped with iron chloride (FeCI3) 

have been reported in the past to increase field effect mobility by two orders of 

magnitude [62]. 
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Figure 4-9. Poly(3-hexylthiophene) (P3HT). 

4.4 Polymer Deposition 

Organic polymer deposition is much simpler that small molecules. They can be 

dissolved in using organic solvents and spin coated or printed using various 

methods. There is no need for vacuum evaporation. The methods compared in 

this experiment are the spin coating and dip coating techniques. Microcontact 

printing was also attempted; however, no actual complete devices were 

fabricated. 

4.4.1 Spin Coating 

Spin coating of samples were performed using a Laurell WS-400B spin processor 

(Figure 4-10). This technique for casting polymer films on fiat surfaces is one of 

the most popular choices. Several factors can be identified that will influence 

the properties of spin coated films. First, the solution needs to be able to 

perfectly wet the surface to be coated. Very often, the surfaces are treated 
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through oxygen plasma or with other solvents before dispensing the desired 

material. Second, the final thickness of the film is determined by the 

acceleration final spin rate and the viscosity of the substance being used. 

Furthermore, the vapor pressure or evaporation rate of the solvents used in the 

solutions will also influence the final thickness. For very volatile solvents, if the 

ambient vapor pressure is not controlled, the final films will not be uniform; and 

some "spin-off" patterns will be visible in the resulting film. Figure 4-11 is a 

micrograph of an OFET substrate spun-on with P3HT in chloroform. Chloroform 

has a very low vapor pressure, thus, as it can be seen, the resulting film is not 

very uniform and the "spin-off" pattern are clearly visible. In the ideal case, the 

spin coating chamber should be sealed; and the spin coating should be 

performed in a controlled environ ment at a higher pressure when volatile 

solvents are used. The spin coating procedure in this study was accomplished in 

an environ ment with no pressure control, and the speeds used were 1500 rpm 

and 500 rpm. The films showed no signs of "spin-off" pattern however; this is 

most likely because toluene was used instead of chloroform, which have boiling 

points of 110.6°C and 61.2 oC respectively. 

It is weil known that organic materials are very sensitive to the environ ment at 

which they are exposed to; particularly in an oxygen rich environment. In the 

case of P3HT, oxygen can weakly bind to the polymer chains and form a charge 

transfer complex increasing the carrier concentration and conductivity while 

decreasing mobility [63]. Although, this process is reversible, it is still desirable 
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to minimize exposure to air during the fabrication process. Therefore, during the 

spin coating of the samples with P3HT, care was taken to purge the spinner 

cham ber with nitrogen before dispensing the P3HT solution. 

Figure 4-10. Laurel! WS-400B Sping Coating System 

Figure 4-11. "Spin-off" patterns on spin coated substrate (P3HT in chloroform). 
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4.4.2 Dip Coating 

It has been demonstrated that OFETs fabricated by dip coating of P3HT polymer 

yield higher field-effect mobilities in general, when compared to spin coated [64-

66] counter parts. Mobilities in the range of ~0.2 cm2/Vs reported in the latter 

references are the highest numbers reported for P3HT to date; and those devices 

were fabricated through dip coating. Dip coating of those samples were carried 

out at a speed of 0.2-0.5 mm/s, which yielded in ultra thin-films of 20 to 40 Â in 

thickness [65]. This thickness translates to only two to three monolayers of the 

polymer. Therefore, it is possible to conclude that high mobility only requires 

highly ordered structures very close to the dielectric interface. 

For this study, dip coating was also used for coating P3HT on OFET substrates. 

The coating procedure was performed in a sealed container saturated with the 

solve nt used to prepare the P3HT solution. Figure 4-12 shows a sketch of the 

setup used for dip coating. The sealed nature of the dip coating chamber is 

necessary in order to achieve uniform drying of the film. Since the solvents used 

are very volatile by nature, a slight ambient gas pressure variation in the coating 

environment will result in a faster or slower evaporation rate of the solvent from 

the film, which would make a non-uniform film. Furthermore, the pulling speed 

of the substrate out of the solution bath was kept constant using a stepper 

motor puller rod controlled by computer. Two pulling speeds were used for this 

experiment: 0.25 mm/s and 2mm/s. 
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Also, the time elapsed at which the chamber is opened to remove the samples 

after dip coating is important. Given that it is a sealed cham ber, the 

environment inside is filled with the vapors of the solvent; thus, the polymer film 

will not dry right away. This factor was also studied by letting the sample hang in 

the chamber after dip coating for either 20 mins or 0 mins. 

Unfortunately, none of the literatures surveyed discussed in detail how their dip 

coating was carried out. Therefore it is not possible to verify the results obtained 

in this study. 

One of the setbacks of the dip coating process is that usually both sides of 

substrates are coated with the film, which may not be desirable in sorne 

situations. Also, the substrate needs to be very clean, in order to prevent 

contaminations in the solution bath, which is not desirable if the same bath is to 

be used for multiple coatings. 
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\ 
Computer controlled 

Solvent 

Figure 4-12. Dip coating setup. 

4.5 Experimental Setup 

As mentioned in the previous sections, OFETs were fabricated under different 

processing conditions and characterized to investigate the influence of such 

variations on device behavior. 

Ali measurements of I-V transfer curves were measured using an HP 414SA 

parameter analyzer and a Wentworth Labs probing station (Figure 4-13). 
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Figure 4-13. HP 4145A Semiconductor Parameter Analyzer and Wentworth labs Probing Station. 

Table 4-1 shows ail the different parameter combinations for which the 

experiment was completed. 
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Experiment Parameter 

la Heat Treatment 

lb Heat Treatment 

2 
Doping with FeCI3 

(P3HT:FeCI3) 

3 Substrate reuse 

4 Dip Coating Speed 

5 
Oip coating Wait after 

pulling 

Table 4-1. Experiment parameters. 

Solution Stamping Film Deposition 
Heat Treatment (5 

Substrate 
minsin N) 

none 

P3HT in Toluene Spin Coating (1500 rpm) 
90·C 

no 

130·C 

170·C 

none 

P3HT in Toluene yes Spin Coating (1500 rpm) 

120·C 

P3HT in Toluene 

P3HT in Toluene (40:1) yes Spin Coating (1500 rpm) 120·C 

P3HT in Toluene (20:1) 

new 
P3HT in Toluene yes Spin Coating (1500 rpm) none 

Reused 

Dip Coating (0.25 mm/sI 
P3HT in Toluene yes none 

Dip Coating (2 mm/sI 

Dip Coating (2 mm/sI no wait 

P3HT in Toluene yes none 

Dip Coating (2 mm/sI 20 mins 

.. 



5 Results & Discussion 

The results of the experiments in this chapter will be presented according to the 

experiment number on Table 4-1. 

Ali the samples that were fabricated for this study had 32 OFET devices on each, 

where half of them (16) were stamped overnight (-12 hours) using a fresh PDMS 

stamp with the exception of the substrates used for experiment la. 

The PDMS stamp had recesses structures that allowed the active regions of the 

devices to remain untouched as seen Figure 5-1. Fortunately, the PDMS stamp 

was supported by a transparent glass substrate, and PDMS itself is also 

transparenti both of which permitted the alignment between the stamp features 

and the OFET substrate with relative easy. 

Figure 5-1. Photograph of a substrate being stamped with a "dry" PDMS stamp. 
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Figure 5-2. Roof collapse of PD MS recess coming into contact with the active region surface. 

One of the important aspects of microcontact printing is the rigidity of the stamp 

material, which needs to be strong enough to prevent deformation of stamp 

microstructures during the printing process, as weil as soft enough to promote a 

conformai contact between the stamp and the substrate. As it can be seen, 

sometimes when the "roof" of the recesses regions on the stamp are no deep 

enough, the PDMS mate rial touches the active region of the FET as weil. 

As stated previously, prior to executing this dry stamping technique, the surface 

needs to be hydrophilic. In order to satisfy this condition and at the same time 

clean the used wafer, the bared samples were exposed to oxygen plasma for 30 

seconds at the lowest power setting of a Plasma-preen Il system (Figure 5-3). 
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Figure 5-3. Plasma-preen Il 862 plasma treatment system. 

Finally, the extraction of mobility values was carried using the same method 

described in section 2.4.2. 

5.1 Leakage Currents 

The bare substrates without any polymer applied have been tested for leakage 

current to ensure the quality of the oxide. Figure 5-4. Gate leakage current as a 

function of applied gate bias.Figure 5-4 shows gate leakage current as a function 

of applied gate bias. Maximum gate leakage currents of a typical bare device 

remained in the order of 40 to 60 pA, which is quite acceptable. The leakage 

from gate to drain, as drain voltage is varied, is higher for a positive drain bias, 

suggesting a weak gate insulation in that direction (Figure 5-5). For drain to 

source, leakage is kept low « 100 pA) as expected from an insulating gate 

dielectric (Figure 5-6). 
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Figure 5-4. Gate leakage current as a function of applied gate bias. 
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Figure 5-6. Drain current as a function of drain voltage 

When polymer films are applied over the whole surface of an array of devices 

sharing the same gate electrode, there are inevitably maybe other paths for 

which current can flow. These parasitic leakages can be greatly reduced through 

the stamping of a "dry" PDMS stamp. Figure 5-7 and Figure 5-8 show the 

performance increase of stamped device versus unstamped. Since leakage 

current is decreased by about an order of magnitude the on/off ratio is also 

increased by as much. 
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Figure 5-7. Typical gate leakage of an OFET, stamped vs. unstamped device. 
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Figure 5-8. TypicallD vs. VG curve showing the difference in On/Off current of 
stamped vs. unstamped devices. 
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5.2 Heat Treatment 

According to the literature, heat treatment, or annealing, of samples after 

de position of P3HT as active semiconductor is important. It has been stated that 

thermal annealing increases the degree of crystalinity [15] and reduces the 

threshold voltage Vr through the partial de-doping of P3HT from residual 

impurities (dopant ions) [65] as weil as an increase of the on/off ratio of the 

device. 
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Figure S-9. Experiment la, mobility vs. heat treatment temperature. 

ln experiment la, devices were fabricated by spin coating P3HT in toluene and 

then annealed three times: at 900 e, 1300 e, and 170°C. The transfer curves were 
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measured in between treatments. Figure 5-9 summarizes the results of six 

typical samples. It is clear that heat treatment increase the charge mobility in 

general. Taking sample 1 as an example, it can be seen that mobility increased 

as much as four times after annealing twice to 130°e. The differences in the 

increase of mobility between samples can be explained by the inherent non 

uniformity of the spin coating for the samples. On average, the field-effect 

mobility doubles after annealing compared to non treated samples. Another 

interesting observation is that the increase in mobility is not always positive. 

This implies that there exists an optimum annealing temperature and time. If 

treated for too long or at too high temperature, performance begins to decrease. 

For Experiment lb, the procedure was repeated as in experiment la; however, 

this time, half of the devices were stamped using a fresh "dry" PDMS stamp for 

12 hours. Also, samples with annealing at 120°C (5 mins) and without annealing 

were compared. Table 5-1 summarizes the results for this experiment. Again, 

the device performance is improved after annealing the samples. But this time, 

the improvement is only about 30% on average. Additionally, it can also be seen 

that stamped devices also show higher mobility values. 

Table 5-1. Comparison of mobility (cm2/Vs) values between stamped/not stamped and 

annealed/not annealed sampi es. 

Samples Annealing Sample 1 Sample2 Sample3 Sample4 SampleS 

Unstamped 
no 2.2SE-OS 2.92E-OS 2.16E-05 2.19E-OS 2.81E-OS 

120o( 2.70E-OS 3.63E-OS 2.80E-OS 2.61E-OS 3.44E-OS 

Stamped 
no 3.29E-OS 3.62E-OS 3.84E-OS 3.68E-OS 3.40E-OS 

120o
( 3.90E-OS 4.48E-OS S.12E-OS 4.S8E-OS 4.20E-OS 
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5.3 Doping of P3HT with Iron Chloride 

Samples fabricated using P3HT solutions doped FeCI3 were measured in 

experiment 2. The doping ratios used were 20:1 and 40:1 (P3HT:FeCI3). Deviees 

fabricated without doping were also compared. 

The field-effect mobility values extracted for non-doped, lightly doped and by 

heavily doped were 2.89E-03 cm 2/Vs, 2.83E-03 cm2/Vs, and 6.48E-04 cm2/Vs 

respectively. From these results, undoped and lightly doped (40:1) have roughly 

the same mobility; whereas, for heavily doped it decreases dramatically. The 

decrease in mobility can be attributed to the increase of too many charged 

carriers that in fact leads to a decrease in mobility as was discussed in previous 

chapters. 

Although, lightly doping does not affect the charge mobility by a lot, the film still 

exhibits higher conductivity, which leaded to the inability to turn off the device 

(poor on/off) ratio. 
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Figure 5-10. Ids vs. Vds curve of typical undoped P3HT device fabricated by spin coating. 
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Figure 5-11. Ids vs. Vds curve of typical doped (with FeCI3) P3HT device (40:1) fabricated by spin 
coating. 
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Figure 5-12. Ids vs. Vds curve of typical doped (with FeCI3) P3HT device (20:1) fabricated by spin 
coating. 

5.4 Dip Coating of P3HT OFETs 

Several dip coating factors affect the final polymer film morphology and its 

electrical properties. Sorne of these factors were studied. First, the pulling 

speed during dip coating was investigated in experiment 4. Then, devices with 

two different wait times after pulling were compared in experiment S. 
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Table 5-2. Different dip coating speed and stamped/unstamped devices. 
(Mobility cm2jVs). 

Dip Coating Pull Speed 

O.2Smm/s 2mm/s 

Stamped Unstamped Stamped Unstamped 

4.75E-03 2.50E-03 1.92E-02 7.13E-03 

5.24E-03 2.82E-03 1.33E-02 8.39E-03 

5.94E-03 3.67E-03 1.16E-02 6.78E-03 

4.46E-03 2.85E-03 1.13E-02 6.91E-03 

6.04E-03 3.30E-03 1.75E-02 7.02E-03 

6.64E-03 3.63E-03 1.02E-02 7.38E-03 

Results for experiment 4 are summarized in Table 5-2. A few conclusions can be 

draw from this experiment. First, comparing dip coating speed, devices 

fabricated at 2mm/s seem to offer the highest mobility recoded in the study. 

The highest field-effect mobility resulting from this experiment is ~0.02 cm2Ns. 

Samples coated at 2mm/s versus 0.25mm/s definitely perform better at almost 

one order of magnitude of difference. 

Also, from this experiment it is possible to see again that stamping of devices 

with PDMS increases the performance (the increase in mobility is close 100%). 
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Figure 5-13. Typical 511 device (dip coated at O.25mmfs wait 20min, stamped) 

Figure 5-14. Typical 511 device (dip coated at O.25mmfs wait 20min, unstamped) 

It is interesting to note that from Figure 5-13 and Figure 5-14, not much 

difference can be noticed between stamped or unstamped device, except that 

the stamped device seems to have a little bit thicker film in the active region. 

The inability to create a pattern of P3HT just on the active region in this case can 

probably be explained by the very slow pulling speed (0.25 mm/s), which have 

caused the mono layer of siloxane oligomers to be washed away in the solvent. 
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For the devices that were pulled at a faster rate (2mm/s) Figure 5-15, a very clear 

definition of P3HT pattern is visible on top of the active region. 

Table 5-3. Comparison of waiting time after pulling 
(Mobility cm2/Vs). 

Nowait Wait of 20 mins 

5tamped Unstamped 5tamped Unstamped 

3.G5E-03 1.34E-03 l.92E-02 7.l3E-03 

4.47E-03 2.00E-03 l.33E-02 8.39E-03 

G.93E-03 1.55E-03 l.lGE-02 G.78E-03 

4.55E-03 1.38E-03 1. 13E-02 G.9lE-03 

4.20E-03 1.03E-03 l.75E-02 7.02E-03 

Figure 5-15. Typical 512 device (dip coated at 2mm/s wait 20min, stamped) 
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Figure 5-16. Typical 512 device (dip coated at 2mm/s wait 20min, unstamped) 

Figure 5-17. Typical 57 device (dip coated at 2mm/s, no wait, stamped) 

Figure 5-18. Typical 57 device (dip coated at 2mm/s, no wait, unstamped) 
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Comparing devices that were dip coated and removed from the chamber with 

waiting or without waiting time confirms that without waiting the film seems to 

be much thicker (darker film). From Table 5-3, it can be seen that without 

waiting performance is lower. This might not be caused by the thicker film, but 

rather, by a less crystalline structure of the P3HT. As stated earlier, P3HT 

polymer tends to self assemble in an ordered fashion to a certain extent after 

being deposited through a solution. 

Another interesting observation that can be seen is that, although some stamped 

devices do not show a visible pattern; they still perform better than their 

unstamped counterparts. A possible expia nation for this phenomenon is that 

although the surface tension is not high enough to "de-wet" the P3HT solution in 

toluene, it is very probable that the monolayer of siloxane oligomers is acting as 

an insulator and stops sorne of the parasitic leakage current increasing the 

overall performance of the OFETs. In fact, there have been reports about the 

possible use of PDMS as gate dielectric in sorne OFETs [67]. 

5.5 Reuse of Substrate 

For spin coating, parameters that were investigated were the influence of 

reusing a substrate (experiment 3) and the speed of the spin coating (experiment 

6). 
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One of the substrates that was coated in a previous experiment was reused after 

thoroughly cleaning with toluene and rubbing with a cotton swab. The cleaning 

was followed by dry baking at 900e for 10 mins. The results showed no 

significant degradation in performance of the reused device. This indicated that 

the gate dielectric is strong enough to withstand the stressed caused by the 

cleaning process. 

Table 5-4 shows the mobility values extracted for devices that are on a substrate 

that was previously used. Oddly, the results are similar for stamped and 

unstamped devices. The only possible expia nation for this to happen is that the 

stamp was maybe over cured thus, became depleted of siloxane oligomers. 

Table 5-4. Mobility values (cm2jVs for a reused sample that 
was spin coated at 1500 rpm 

Reused Sample (spin coated at 
1500rpm) 

Stamped Unstamped 

3.33E-03 5.31E-03 

6.72E-03 3.73E-03 

4.99E-03 6.68E-03 

5.08E-03 6.13E-03 

4.06E-03 3.55E-03 

2.92E-03 3.47E-03 

Looking at Figure 5-19 and Figure 5-20 concludes that in fact, there seems to be 

no different at ail between stamped and unstamped devices. 
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Figure 5-19. Typical 59 device (spin coated at 1500rpm, stamped) 

Figure 5-20. Typical 59 device (spin coated at 1500rpm, unstamped) 

Page 80 



6 Conclusion and Summary 
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Figure 6-1. Best P3HT device IV-ID curve fabricated in this study by dip coating 
and dry stamping of PDMS. 

ln conclusion, various processing conditions of P3HT OFET devices were 

investigated. Results show good match with the literature. Namely, annealing of 

P3HT devices after deposition the active polymer generally, improves the 

performance (increase in carrier charge mobility). Also, dip coating deposition 

technique of P3HT polymer layer offer higher performance compared to spin 

coating techniques (Figure 6-1 and Figure 6-2). This is attributed to the increase 

in structural order of the polymer chains in the film and also to the improvement 

of the ove ra Il uniformity of the film. 
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ID-VD (Unstamped Substrate) 
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Figure 6-2. Best P3HT device IV-ID curve fabricated in this study 
by spin coating and unstamped. 

tlDry" stamping of PDMS before de position of the active semiconductor polymer 

offers improvements in device performance such as: a reduction in parasitic 

leakage currents across an array of P3TH OFET devices sharing the same gate 

electrode, an increase in charge carrier mobility of OFETs, and device isolation 

for devices fabricated on a same substrate through a single de position of the 

organic semiconductor polymer. 

6.1 Future Work 

Although great progress has been made in improving organic device 

performance over the last few years, there is still a great deal of work to do. 

Organic semiconducting technology is still in its infancy and there are many 
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questions that remain unanswered or debated. Possible directions to take for 

the continuation of this topic are: the use of plastic flexible substrates, the 

investigation on use of spin-on gate dielectrics, the use of conductive polymers 

as drain and source electrodes (for ail organic devices), and finally, the 

optimization of the dip coating process by varying the coating speed, angle and 

environment. Also, OFETs are in fact most of the time thin-film transistors; thus, 

it is desirable to investigate film thickness properties during the study of 

processing techniques. 
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