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Abstract

In this thesis, we study photon production and photon-hadron correlations at

next-to-leading order (NLO) in proton-proton collisions, in both the cases of iso-

lated and non-isolated photons. To begin, fundamentals of perturbative Quantum

Chromodynamics (pQCD) are reviewed, with an emphasis on describing how to

compute spectra for single particle production and correlated pairs at both lead-

ing order (LO) and NLO in hadronic collisions. In particular, a discussion of

infrared and collinear singularities at NLO will provide a natural introduction to

the concept of factorization. These results are then specifically applied to the

case of computing photon and pion single-particle cross-sections in proton-proton

collisions at Relativistic Heavy-Ion Collider (RHIC) and Large Hadron Collider

(LHC) energies, and compared to experimental data from the PHENIX and CMS

experiments respectively. Included in this will be a short study of the theoret-

ical systematic uncertainty generated by the dependence on factorization scales,

and a discussion of the modifications needed when moving from inclusive to iso-

lated observables. Following this, double inclusive cross-sections for production

of photon-tagged hadrons are computed and compared to data from PHENIX.

Once again, a full NLO treatment is given, and the effects of isolation are imple-

mented. We will conclude with a final section on the application of photon-hadron

correlations to the tomographic mapping of energy loss in heavy-ion collisions.



Résumé

Dans cette dissertation, nous étudions la production au seconde ordre (NLO) de

photons ainsi que la corrélation entre photons durs et hadrons dans les collisions

proton-proton. Dans les deux cas est inclus l’effet de l’application de critères

d’isolement sur les photons. Nous commençons par une synthèse des résultats fon-

damentaux de la chromodynamique quantique perturbative (pQCD), dans laquelle

nous résumons les méthodes principales pour calculer des sections efficaces aux pre-

mier et second ordres. En particulier, nous discutons des singularités infrarouges

et colinéaires qui se produisent au seconde ordre, ce qui nous amènera à introduire

la théorie de la factorisation. Ces outils sont par la suite utilisés pour calculer

les section efficaces pour la production de photons et de pions dans les collisions

proton-proton aux énergies atteintes au Relativistic Heavy Ion Collider (RHIC)

et au Grand collisionneur de hadrons (LHC). Ces résultats sont comparés aux

données des expériences PHENIX et CMS respectivement. Nous étudions aussi

l’incertitude théorique due aux choix des échelles de factorisation et la différence

entre les sections efficaces inclusives et isolées. Finalement, nous calculons les sec-

tions efficaces pour les paires photon-hadron corrélées et comparons les résultats

aux données de PHENIX, tout en incluant les effets de second ordre et d’isolement.

Nous concluons avec une description qualitative de l’application des corrélations

pour établir une tomographie des collisions d’ions lourds.
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Résumé 1
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Notation and Units

So that consistent notation is used throughout the entire thesis, we mention the

important conventions that are used. The metric for Minkowski space-time is given

by:

ηµν =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

 (1)

Three-vectors will be denoted by boldface (e.g.: p) while four-vectors will be

denoted with greek indices (pµ) or in plain type (p) when the context is clear. As

usual, slash notation is just defined as /p = γµp
µ.

The Einstein summation convention is employed. If indices are both subscript

or both superscript (e.g.: for flavor or color indices), the sum is to be done in

Euclidean metric; if one index is subscript and the other superscript (this will only

occur for Lorentz indices) the sum is to be done in Minkowskian metric.

We make use of the system of natural units in which ~ = c = kb = 1 for most

of our calculations. The units will often be subtly restored when comparing theo-

retical results to experimental data given in SI units. While we denote the strong

coupling constant as αs, we denote the electromagnetic coupling as α, without any

subscript.

When there are variables that are defined for both the hadronic and partonic

case (e.g.: the Mandelstam variables s, t, u), we will denote the latter with a caret

(s for hadronic process, ŝ for partonic process).

Finally, Feynman diagrams are always drawn with the time direction extending

from left to right.
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Chapter 1

Introduction

1.1 The Standard Model

The goal of small-distance physics today is incredibly broad and far-reaching: We

seek to have a complete picture of no less than the entire set of fundamental

constituents that make up the universe, and the interactions between these con-

stituents. While, for a long time, the experimental energies necessary for exploring

the desired regimes was simply not attainable, the advent of a new generation of

particle colliders – most recently the Large Hadron Collider (LHC) – has provided

a new testing ground for this area of physics.

The current accepted model to which data is compared is known as the Standard

Model of particle physics [1, 2, 3], which provides a description of the electromag-

netic force as well as both the weak and strong nuclear forces. Though much of

high-energy physics today is centered around the belief that the Standard Model

(SM) is merely part of a larger physical framework, such as string theory or other

models that incorporate supersymmetry, there are very few contradictions between

the model’s predictions and the vast majority of available data.

The SM is a quantum field theory described by the gauge group SUC(3) ⊗
SUW (2) ⊗ UY (1), in which the SUC(3) group Quantum Chromodynamics (QCD)

describes the strong nuclear force, and the SUW (2) ⊗ UY (1) theory describes the

electroweak force. The matter content of QCD consists of spin-1
2

particles called

quarks and antiquarks, whose existence was first proposed in the earlier Quark

Model [4, 5], while the strong force is mediated by gauge bosons known as gluons.
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Because in this thesis we only deal with problems involving the physical interac-

tions of hadrons and nuclei, which are entirely composed of quarks and gluons, it is

principally the interactions described by QCD that will be important for us. In ad-

dition, the interaction of photons with matter is described by the electromagnetic

force, described by the Uem(1) gauge theory Quantum electrodynamics (QED).

This theory arises out of the spontaneous symmetry breaking process in the elec-

troweak gauge theory, and, for our purposes, can be considered independently of

the purely weak interactions.

1.2 The Importance of Collider Physics

Probing distances at the scale of interest requires particles that are energetic

enough to “resolve” the physics at that scale. For the strong interaction, which has

a range of r ∼ 1fm, the uncertainty principle dictates that we need to be looking

at particles with energies of the order E ∼ ~c
r
∼ 0.1 − 1 GeV . To probe smaller

distances requires yet high energies. The experimental fact is this : The only such

particles that we are currently able to observe come from a) atmospheric phenom-

ena, and b) colliders. The former offers a testing ground that, while attaining the

necessary energies, is not a controllable setting in which specific reactions can be

reproduced at will. Today’s particle colliders do have energy limitations, but offer

a controlled setting to the experimentalist.

With regard to both proton-proton and nuclear collisions, the current state of

the art is achieved at the Relativistic Heavy-Ion Collider (RHIC) at Brookhaven

National Laboratory (BNL), which can accelerate proton pairs to a center-of-

mass energy of 200 GeV , and the Large Hadron Collider (LHC) at the European

Organization for Nuclear Research (CERN), which can achieve energies of 7 TeV .

Although it only deals with hadronic collisions, the Fermilab Tevatron is able to

accelerate both protons and anti-protons up to energies of 1 TeV .

Typical high-energy hadronic collisions produce a large number of final-state

particles. At lower collision energies, the majority of produced particles have low

transverse momenta – so-called “soft” collisions – while the higher pT final states

are generally the result of “hard” interactions between the hadronic constituents,

which we know today to be quarks, antiquarks, and gluons. As one of these hard
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final-state constituents propagates outward from the collision, the confining prop-

erty of QCD (Section 2.4) will bring about the fragmentation and hadronization

processes (Section 2.5), in which the parton transforms into a collimated ”jet”

of hadrons (and possibly other particles) that can be observed by the detector.

This is generally accomplished through the use of calorimeters and spectrometers,

which can, for example, differentiate particles based on charge, spin, mass and

other properties.

Nuclear collisions offer a very different scenario. For heavy ions like gold or

lead, there are sufficient degrees of freedom interacting so that the medium actually

thermalizes, and we can apply a statistical mechanical treatment to the system.

This allows for an experimental way of analyzing the phase diagram of QCD.

In particular, the phase transition from a hadronic gas to a quark gluon plasma

(QGP), predicted by lattice QCD models [6], was experimentally observed at RHIC

several years ago [7] and is currently one of the most studied topics in high-energy

nuclear physics.

Inversely related to the energy of the interaction is the time scale over which the

interactions take place. When hadronic or nuclear collisions are performed, there

is simply no time to send in external probes to analyze the system – the system

can only be studied through the “probes” that it creates itself. In this light, what

becomes important is the ability to define meaningful observables through these

signatures, and determining what the observables have to say about the specific

physical processes underlying each event.

1.3 Photon Production and Photon-Hadron Cor-

relations

Because of the presence of a quark-photon interaction vertex in the SM, there is

a source of hard photon production in both hadronic and nuclear collisions that

arises directly from QCD interactions and which can therefore probe the strong

interaction in a direct way. In the hadronic case, this observable can be exploited

to constrain the gluon distribution of the proton at various energies [8], as well

as being one of many processes that are able to put constraints on the value of

the strong coupling αs [9]. In the case of nuclear collisions, observing the thermal
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photon signature – produced via soft interactions of the constituents of the thermal

medium – in theory offers one way of measuring the temperature of the medium.

In both the hadronic and nuclear cases, there are multiple mechanisms of pho-

ton production, requiring careful calculations to take into account each individual

signature. For example, in pp collisions, we observe “direct” hard photons origi-

nating from fundamental processes with a quark-γ vertex, as well as a contribution

from the decay of long-lived mesons produced in the collision. In addition, it was

shown in the mid-1980s that there was an additional source of production in which

the photon acquired a “hadronic” structure and could actually fragment from an

outgoing jet. The framework of the factorization theorem, outlined in Section 2.5,

describes the theoretical relation between these two “direct” and “fragmentation”

contributions.

In the case of nuclear collisions, we in addition observe photons originating

from jet-medium interactions (“hard-soft” interactions) and thermal contributions

(“soft-soft” interactions) from both the quark-gluon plasma phase and the hadronic

phase. In light of the large number of production mechanisms, it is clear that

having a good control over the “baseline” measurements obtained in pp collisions

is a prerequisite for understanding the nuclear case.

Aside from the various applications of measuring single-γ spectra just men-

tioned, it turns out that two-particle spectra in which one or both particles are γ’s

are very useful as well. A contemporary application has to do with the decay of

the Higgs boson via H → γγ, which is expected to be a dominant channel at the

LHC [10]. Being able to measure the γ pair production via pure QCD processes

is a necessary step in discriminating between background processes and real Higgs

events.

Another important application is the tagging of jets or hadrons with photons

in heavy-ion collisions, first suggested in [11]. While photons remain unaffected at

LO while traversing the QGP [12], this is not true of strongly-interacting partons,

which lose energy via interactions with the soft components of the medium [13,

14], giving rise to so-called “jet-quenching”. One of the most frequently cited

experimental observables to confirm the existence of the QGP is given by RAA,

defined as the overall factor by which a particular observable was suppressed in

nuclear collisions with respect to scaled pp collisions. Unfortunately, as discussed
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in Section 4.4, this observable cannot discriminate to a large degree between a

wide variety of models for jet quenching. For this reason, it has been suggested

that we instead observe the suppression of photon-tagged jets and hadrons. Such

an observable is much more sensitive to the initial jet energy profile, and so can

say more about energy loss in the medium as a function of the path length of the

outgoing jet. And just as single γ production in nuclear collisions requires good

control of the pp case, an understanding of γ-jet pair suppression necessitates a

good control over the baseline prediction for these pairs in pp collisions.

For all of these reasons, both single-particle and two-particle spectra involving

photons in hadronic collisions are of essential importance, and it is the goal of this

thesis to compute these observables with the highest level of precision possible and

compare them, when possible, to existing experimental data.

1.4 Next-to-leading Order Computations

While it is often sufficient to calculate leading-order (LO) cross-sections, it has

become very clear in recent years that certain processes have substantial correc-

tions from next-to-leading order (NLO) and sometimes even higher-order pro-

cesses. This phenomenon is often encoded in a so-called “K-factor”, which is

defined as the ratio of the NLO to LO calculations for a given cross-section com-

putation. For instance, in the case of inclusive jet production, when one chooses

typical scales for the computation, a K-factor of 2.8 is prescribed [15] – the NLO

corrections are more important than the LO contribution itself! Fortunately, in

many cases, K is often constant over a wide pT range, so that it is legitimate to

merely weigh the entire LO calculation with this single factor.

However, for more complicated observables, such as di-particle correlations,

this method becomes ineffective. There is new physics that manifests at NLO that

no value of K can describe. For instance, in the case of a di-jet cross-section, 2→ 2

kinematic constraints give that pj1
T = −pj2

T , so that the azimuthal angle between

jets must be ∆φ = π. In experiment, we observe a more spread-out distribution,

centered around π, but with non-zero contributions spanning the entire azimuth.

This is due almost entirely to NLO final-state emission of an extra parton, which

allows both the magnitude and the direction of the jet momenta to differ.
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In this thesis, we will develop the formalism for both LO and NLO compu-

tations, and, in particular, will see that several types of complications arise at

NLO:

• 2→ 3 phase space involves more complex kinematic relations, as touched on

above.

• NLO matrix elements contain divergences, and so must be computed in d

dimensions, with the idea of applying dimensional regularization and ultra-

violet (UV) renormalization.

• 2 → 2 diagrams containing a virtual gluon must be taken into account, so

as to eliminate the infrared (IR) divergences in the real diagrams.

• In the examined case of hard γ production, there is no longer a concrete dis-

tinction between “direct” and “fragmentation” photons, so that more com-

plicated scale dependences arise.

• We will need to come up with new observables (see, for example, Section

4.3.1) to illuminate the relevant higher-order effects that come about.

Overall, the results presented in Chapters 3 and 4 will show the significant

increase in accuracy achieved when going to higher order in αs, and the interesting

physical problems it allows us to examine which would not be accessible at LO.

1.5 Outline of Thesis

The thesis will be outlined as follows: In Chapter 2, we will briefly discuss the

theoretical ideas underpinning pQCD, including the central notions of asymptotic

freedom and confinement. A discussion of higher-order divergences will lead to a

presentation of the factorization theorem. For the sake of completeness, we will

then discuss the kinematical aspect of such calculations, which will allow us to

reach our final goal of calculating full hadronic cross-sections at LO and NLO.

In Chapter 3, we will use our new theoretical tools to actually compute the

LO and NLO cross-sections for production of hard photons and pions in p + p

collisions at RHIC and LHC energies. Here, we will take a more in-depth look
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at how these cross-sections depend on the extra “scales” that come out of the

factorization assumption, and we will compare our results to experimental data

from the PHENIX and CMS experiments. Since some of the data is obtained using

experimental isolation criteria, we will devote a section to describing the theoretical

modifications necessitated due to isolation, and compare results obtained with and

without these modifications.

Finally, in Chapter 4, we will come to the meat of the thesis, in discussing

photon-hadron correlation cross-sections in p + p collisions. As in the preceding

chapter, we will compare the LO and NLO computations, and will motivate the

need to construct new observables to take into account higher-order effects. The

effects of applying isolation criteria to one or both outgoing legs will be considered

as well. The chapter will conclude with a qualitative discussion of the usefulness of

photon-hadron correlations in nucleus-nucleus collisions, and, in particular, their

use in developing a spatial “tomography” of jet energy loss throughout the nuclear

medium. This will finally be followed by an overall summary in Chapter 5.
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Chapter 2

Perturbative QCD

2.1 Introduction

This chapter will be concerned with an exposition of the fundamental tools needed

to compute leading order (LO) and next-to-leading order (NLO) cross-sections for

both single-particle and multi-particle spectra. After reviewing basic elements of

the scattering-matrix formalism and fundamentals of perturbative QCD (pQCD),

we will discuss the running of the strong coupling αs, including asymptotic freedom

and color confinement. Following this, we’ll introduce the factorization theorem,

and conclude the chapter by discussing LO and NLO kinematics at colliders, set-

ting the stage for a full cross-section computation.

Theoretical discussions more specific to the research content of the thesis are

left for the following chapters, including discussions of the modification of en-

ergy scales (Subsection 3.2.2), computing isolated cross-sections (Section 3.4), and

defining observables for two-particle spectra (Section 4.3.1).

In the interest of maintaining brevity, we relegate discussions of field theory

fundamentals to a very short background summary in Appendix A. For a more

extensive discussion of the basics of QFT and Feynman diagrams, the reader is

referred to [16] or [17]. For more application-oriented reviews of pQCD, [18], [19],

and [20] are excellent resources. A more contemporary review article centered

around LHC phenomenology is given by [21].
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2.2 Cross-sections

Before we start computing pQCD amplitudes in the next section, we want to begin

to think about how we’ll be relating these to actual physical observables. In fact,

most of the theoretical difficulties in QCD have to do with this seemingly “simple”

problem of relating theoretically well-defined quantities to experimentally observed

ones! It is a problem we will come back to again and again.

In this section, we won’t bridge this gap entirely, but we’ll come a long way by

introducing the scattering-matrix (“S-Matrix”) formalism for partonic variables.

Our dicussion will closely follow the methodology found in several field theory

textbooks such as [16, 17].

If we consider two beams of particles of types P and Q that have respective

densities ρP and ρQ, lengths lP and lQ, and cross-sectional area A, then we can pro-

vide a general definition for the cross-section of an interaction. Given n scattering

events, we define:

σ =
n

ρPρQlP lQA
(2.1)

In the case of two beams of constant density, the number of available particles

in each beam is given by Ni = ρiliA, and we can rewrite (2.1) as:

σ =
nA

NPNQ

(2.2)

We can think of the cross-section as a method of separating the information

about the nature of particle interactions themselves – which should be the same

regardless of the experimental setup – with the information about the beam, par-

ticle density, and other properties of the apparatus being used. For our purposes,

it is also useful to define the notion of the differential cross-section, d3σ
d3pi

which

represents the infinitesimal cross-section for observing particle i with momentum

pi. Integrating this quantity over a certain region in momentum space will return

the total cross-section for this region, which, in conjunction with (2.1), provides in-

formation about the total number of observed final-state particles within a certain

momentum range in a collision.

If we consider the collision of a single particle A with a beam of particles

B whose cross-sectional density is constant and given by nB, and in which each
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particle approaches A at impact parameter b, then we have that the number of

scattering events is given by:

n = nB

∫
d2bP(b) (2.3)

where P(b) is the probability of interaction as a function of impact parameter.

Substituting (2.3) into (2.2) and setting NA = 1, we obtain:

σ =

∫
d2bP(b) (2.4)

To obtain the form of P(b), we can consider two general initial wavepackets

φA and φB, and N final-state wavepackets given by φi, i = 1...N , The squared

scattering amplitude is given by:

P = |〈φ1φ2...φN | φAφB〉|2 (2.5)

We note a couple of things: a) We are operating in the Heisenberg picture, in

which the operators rather than the states evolve in time; b) In this expression,

we take each φi to be spatially localized, since otherwise the wavepackets would

have non-zero correlations with one another. If we take the final state to be in

the distant future with the respect to the interaction timescale, and the initial

state to be in the distant past, then we can express our states as superpositions of

momentum eigenstates:

〈φ1...φN |=

(∏
f

∫
d3pf
(2π)3

φf (pf )√
2Ef

)
〈p1...pN | (2.6)

| φAφB〉 =

( ∏
i=A,B

∫
d3pi

(2π)3

φi(pi)√
2Ei

)
e−ib·pB | pApB〉 (2.7)

Note that we’ve made the spatial translation b between A and B explicit in

(2.7).We see that the problem is reduced to computing the correlation amplitudes

of these idealized momentum eigenstates, where a large amount of time has elapsed

in between initial and final states:

lim
T→∞

.(T )〈p1...pN | pApB〉(−T ) = 〈p1...pN | lim
T→∞

e−i2ĤT | pApB〉

≡ 〈p1...pN | Ŝ | pApB〉 (2.8)
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We can further separate out the interacting portion of our “S-matrix” operator

Ŝ by defining a “T-matrix” such that Ŝ ≡ 1 + iT̂ . Knowing that Ŝ (and therefore

T̂ ) must express conservation of 4-momentum, we can rewrite T̂ ’s action on the

states as:

〈p1...pN | T̂ | pApB〉 = (2π)4δ(4)(pA + pB − p1 − ...− pN)M(pA, pB → p1, ..., pN)

(2.9)

Accordingly, we have reduced the problem to computing the quantityM, which

for a given process depends only the dynamics described by the interaction Hamil-

tonian. Returning to Equation (2.4), and considering the case in which all of

our final-state particles are momentum eigenstates contained within the region of

phase space d3p1...d
3pn, we can write:

P(b) =

(∏
f

d3pf
(2π)32Ef

)
|〈p1...pN | φAφB〉|2 (2.10)

Substituting our expression (Eq. (2.7)) for | φAφB〉 into (2.10), and in turn

substituting this into (2.4), we finally obtain:

dσ =

(∏
f

d3pf
(2π)32Ef

)∫
d2b

( ∏
i=A,B

∫
d3pid

3kiφi(ki)φ
∗
i (pi)

(2π)6
√

4k0,ip0,i

)
eib·(pB−kB)〈pf | ki〉〈pf | pi〉∗

(2.11)

It is then simple to perform the integration over b, substitute in (2.9) to relate

our expression toM, and simplify the kinematics contained in the resulting delta

functions. This gives us:

dσ =

(∏
f

d3pf
(2π)32Ef

)∫
d3pAd

3pB
(2π)64EAEB

|M|2

|vA − vB|
|φA|2|φB|2

× (2π)4δ(4)(pA + pB − p1 − ...− pf ) (2.12)

Here, we’ve obtained a dependence on the magnitude of the relative beam

velocity |vA − vB|, which we expect for a frame-dependent quantity. We can

further perform the pA and pB integrals by exploiting the limited resolution of the

experimental detector to take these at their average value. Our final expression is

given by:
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dσ =
1

2E2
CM

(∏
f

∫
d3pf
(2π)3

1

2Ef

)
|M|2(2π)4δ(4)(pA + pB −

∑
f

pf ) (2.13)

This is our fundamental equation for computing a partonic differential cross-

section given the simplifying laboratory conditions which we’ve exploited. In Sec-

tion 2.5, we’ll come a bit further and see how this comes into computing an exper-

imentally observable hadronic cross-section. In the meanwhile, though, there are

already a few interesting things we can find by considering some basic processes

in pQCD.

2.3 pQCD Processes

2.3.1 Leading-order amplitudes

The language used to describe the strong interaction at high energies is pertur-

bative Quantum Chromodynamics (pQCD) [22, 23], which can be described at a

phenomenological level by the QCD Feynman diagrams for the relevant particles

and their interactions. Before QCD was known to be the fundamental theory of

the strong interaction, there was still evidence of a substructure in the nucleons

and other observed hadrons. This was described by the Parton Model [24, 25, 26],

where the label “parton” was used to denote the unknown constituent particles,

and is still commonly used to collectively refer to quarks, antiquarks and gluons.

Although, as we’ll see in Section 2.4, partons themselves are never directly ob-

served, we’ll nevertheless spend this section computing partonic amplitudes and

cross-sections, and seeing the interesting physical problems that arise at this level.

It is only in subsequent sections that we’ll worry about how to relate these “un-

observable” amplitudes to actual physical observables.

Fundamental to the parton model is the convention that all quarks and gluons

are taken to be pointlike and massless, so that the relation Ei = |pi| always holds

for each component i. This is analogous to considering the frame in which the

incoming hadrons have infinite momentum, which is a reasonable assumption to

make at high energies.

At LO in QCD, the simplest processes we can consider are 2 → 2 tree-level
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Figure 2.1: The only tree-level Feynman diagram contributing to the process q + q′ →

q + q′. Here, and in ensuing diagrams, the time direction extends from left to right.

processes, which are relatively well-behaved. For example, if we consider the tree-

level contribution to the process q(p1) + q′(p2) → q(p3) + q′(p4), where q and q′

represent two distinct flavors of quark, then there is only a single contributing

diagram, given in Figure 2.1. Using the Feynman rules of Appendix A, we can

write the corresponding amplitude as:

M = ū(p3; s3, j)(−igγµ(ta)ji )u(p1; s1, i)(
−iηµν
k2

)ū(p4; s4, l)(−igγν(ta)lk)u(p2; s2, k)

(2.14)

Here, k ≡ p1 − p3, and we’ve explicitly written out the fermion wavefunctions

as a function of their momenta pi, spins si, and flavors i. Taking the amplitude

squared and averaging (summing) over initial (final) spin and color, we can simplify

this as:

|M|2 =
16g4

9k4
((p3 · p4)(p1 · p2) + (p3 · p2)(p1 · p4)) (2.15)

Substituting this into Equation (2.13), we can simplify the 2→ 2 phase space

and write the differential cross-section as:

dσ

d(cos θ)
=

2

9

πα2
s

E2
CM

4 + (1 + cos θ)2

(1− cos θ)2
(2.16)

In this derivation, we have used the fact that all of the partons are massless,

and we have defined θ as the center-of-mass angle between q(p1) and q(p3). We can

immediately note that, even at LO, this expression is singular: as θ → 0, dσ
d(cos θ)

19



(a) Mq (b) Mq′

Figure 2.2: Possible tree-level Feynman diagrams for the process q + q′ → γ + q + q′,

separated into two classes.

diverges. However, we can be comforted by the fact that this result is not unique

to QCD – the same singularity will occur in the analogous QED scattering process

e− + µ− → e− + µ− and arises from the emission of a nearly on-shell photon (or

gluon in our case).

2.3.2 Divergences at Next-to-leading order

It is well-known however that at higher orders – either in loop diagrams, or in

diagrams with a larger number of final-state particles – more complicated diver-

gences arise in certain regions of phase space. To illustrate this, we can consider

the tree-level process q(p1) + q′(p2) → q(p3) + q′(p4) + γ(q), which contributes to

photon production at NLO. More detailed discussions of this process can be found

in [27] and [28].

Considering the case in which q and q′ are distinct quark flavors, there are

four diagrams that need to be taken into account, given in Figure 2.2. We’ve

separated the diagrams into two in which the radiation is emitted from flavor q

and two in which it is emitted from flavor q′. To simplify the calculation, we’ll

neglect the interference between these two types of diagram (as in [27]; complete

treatments of this subprocess, including interference, are given in [28] and [29]),

so that |M|2 ≈ |Mq|2 + |Mq′ |2. To begin, we can writeMq as the sum of the two

diagrams in 2.2a:

20



Mq =
ieeqg

2

(p4 − p2)2
ε∗µ(q)[(ta)ij(ta)kl][ū(p4)γνu(p2)][ū(p3)

×
(
γµ(/p3

+ /q)γν

(p3 + q)2
+
γν(/p1

− /q)γµ

(p1 − q)2

)
u(p1)] (2.17)

For brevity, we’ve omitted the spin and flavor indices in this expression. As

before, we can square this amplitude and use the rules for averaging and summing

over states as needed. We obtain:

|Mq|2 =
2

9

(
1

4

)
e2e2

qg
4

(p4 − p2)4
Tr[/p4

γα/p2
γβ]

×Tr

[
/p3

(
γα

(/p1
− /q)

(p1 − q)2
γµ + γµ

(/p3
+ /q)

(p3 + q)2
γα

)
/p1

(
γµ

(/p1
− /q)

(p1 − q)2
γβ + γβ

(/p3
+ /q)

(p3 + q)2
γµ

)]
(2.18)

We can see by symmetry that the termM2
q′ will have the same form as (2.18),

with the exchanges p1 ↔ p2 and p3 ↔ p4. As in the previous section, we can

simplify the expression (2.18), substitute it into (2.13), and simplify the 2 → 3

partonic phase space. We choose the frame in which p3 + p4 = 0. We note that,

in this case, both the phase space and matrix element should be evaluated in

d-dimensions, before applying dimensional regularization to the result.

Before even considering the final expression, we can see immediately that the

integrand (2.18) will diverge for the kinematic configurations in which (p4−p2)2 =

2E4E2(1− cos θ2,4) = 0 and (p3 + q)2 = 2E3Q(1− cos θq,3) = 0. These correspond

respectively to the cases in which θ2,4 → 0 – the initial-state collinear emission

of a gluon from flavor q′ – and θ3,q → 0 – the final-state collinear emission of the

photon from flavor q. The resulting regularized terms are known as mass/collinear

singularities or anomalous components of the cross-section for the process.

Although the explicit result is lengthy, we shall write it in its entirety here,

as it will be extremely relevant when we get to our central goal of explaining the

factorization theorem. Rather than writing the result in terms of Ei and θi, it turns

out to be much more useful to describe it in terms of the variables k ≡ p2 − p4,

xi = k2

2pi·q , z = x2

1−x1
and z̃ = x1 + x2, as in [27]. We have:
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dσq
d4q

= 2
e2
qαα

2
s

πk4

2

9

(
4πe−γEµ2

Q2

)ε
x1x2

(
−1

ε

x1

1− x1

[1 + (1− x1)2]
1 + (1− z)2

z

−2
x1

x2

[2 + (1− x1)2 + (1− x1 − x2)2 log
(1− x1)(x1 + x2)

x2

+
2x2

1

(x1 + x2)2
− (x1 + x2)x1

1− x1

+4
x1

x2

(x2
1 + x1x2 + x2

2)− 1

ε

x1x2

x1 + x2

(x1 + x2)2 + x2
1

x2
2

1 + (1− z̃)2

z̃

)
(2.19)

In this expression, we’ve defined Q ≡ (1−z̃)k
2

x2
, and ε ≡ 4−d, so that evaluating

the expression in four spacetime dimensions requires taking ε→ 0, and we’ve had

to introduce a new energy scale µ2 to preserve the correct energy dimensions in

d-dimensional spacetime. The expression for
dσq′

d4q
will have the same form, with

the exchange x1 ↔ x2.

The merit in writing the result (2.19) down explicitly will become evident

in Section 2.5, where we illustrate how the 1
ε

divergences are absorbed into the

hadronic distribution functions. Although we judiciously chose a process in which

we did not need to consider loop corrections, these will in general bring about UV

divergences that need to be treated through renormalization, which we discuss in

the following section.

2.4 Asymptotic Freedom and Color Confinement

2.4.1 The running of the coupling constants

As with the other field theories that are part of the SM, a renormalization proce-

dure needs to be applied to QCD to deal with the UV divergences that arise in

the theory. Initial proofs of renormalizibility were given by [30, 31, 32]. In general,

renormalizing a field theory results in all the free parameters in the Lagrangian

acquiring a dependence on the energy scale of the measurement. In addition, re-

gardless of which procedure is used to regulate and renormalize the theory, a new

“renormalization scale” µ with the dimensions of energy needs to be introduced

into the theory. In the case of QCD, our parameters are the quark masses mf and

the coupling constant αs, which we rewrite as mf (µ
2) and αs(µ

2), respectively.

Since we are dealing with massless QCD, the only constant in our theory that

requires renormalization is αs, which should satisfy the RG equation:[33]
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µ2dαs
dµ2

= β(αs) = −α2
s(β0 + β1αs + β2α

2
s + ...) (2.20)

For the purposes of this thesis, we will only require the first term on the right-

hand side for LO calculations, and the first two terms for NLO calculations. In

the MS renormalization scheme, we can calculate β0 = 1
4π

(11 − 2
3
nf ) and β1 =

1
(4π)2 (102− 38

3
nf ), obtained from the one-loop and two-loop corrections to the qq̄g

vertex respectively [22]. In these expressions, nf refers to the number of flavors

being considered. If we take equation (2.20) at leading-order, we can solve the

differential equation with initial conditions µ = µ0, αs(µ
2) = αs(µ

2
0) to get:

αs(µ
2) =

αs(µ
2
0)

1 + β0αs(µ0) log
(
µ2

µ2
0

) (2.21)

If we define a value Λ2
QCD = µ2

0e
− 1

β0αs(µ2
0) (known as the QCD Scale), and

substitute in our value for β0, we can reexpress our coupling constant as:

αs(µ
2) =

12π

(33− 2nf ) log
(

µ2

Λ2
QCD

) (2.22)

The value of ΛQCD cannot be obtained theoretically, and must, in fact, be

extracted from experimental data. The current standard is to evaluate αs for the

value µ = MZ , where MZ is the mass of the Z-boson, and then extrapolate to

obtain a value for ΛQCD. In practice, we also choose nf , depending on whether

our energy scale exceeds the mass of a given species of quark. The value of Λ for

a given nf is obtained by requiring αs to be a continuous function of µ as one

“crosses” between energy scales. For instance, when crossing the threshold for the

production of bottom quarks, we would take αs(µ = mb, nf = 5,Λ5) = αs(µ =

mb, nf = 4,Λ4).[34]

We can notice immediately that, independent of our unknown scale, we will

have αs going to 0 as µ→∞ : this is the property known as asymptotic freedom.

At large energies, the coupling constant of QCD becomes small enough to enable

us to use perturbation theory to describe the interactions of quarks and gluons.

It is, on the contrary, at lower energy scales that perturbative QCD fails, and

numerical methods such as lattice QCD must be used to be able to make any

computations.
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At NLO, we must solve the differential equation:

log

(
µ2

µ2
0

)
= −

αs(µ)∫
αs(µ0)

dα

α2(β0 + β1α)
(2.23)

which is done by performing an elementary integration of the right-hand side,

resulting in:

log

(
µ2

µ2
0

)
=
β1

β2
0

logαs +
1

β0αs
− β1

β2
0

log(αs +
β0

β1

) + c (2.24)

By once again defining an appropriate Λ that can absorb the integration con-

stant c containing information about some reference scale (µ0, αs(µ
2
0)), we obtain

a final two-loop implicit expression for our coupling:

log

(
µ2

Λ2

)
=

1

β0αs
− β1

β2
0

log

(
β1

β2
0

+
1

β0αs

)
(2.25)

Obviously, it requires numerical or iterative techniques to make this implicit

expression explicit. We will note that, when we do actual computations in sub-

sequent chapters, the JETPHOX [35, 36] and DIPHOX [10] programs used to

compute cross-sections are able to internally evaluate the strong coupling at both

LO and NLO. In single particle spectra, we will generally take the renormalization

scale µ to be the transverse momentum pT of the outgoing particle, although we

will do a brief examination of how an alteration of this scale affects the calcula-

tion in Chapter 3. In Figure 2.3, we plot αs(µ) (where a numerical method [33]

has been used to approximate the NLO expression (2.25)) for the energy regime

explored in later calculations, and note that there can be a significant difference

between the LO and NLO results.

We finally note that, in the case of QED, for LO computations we will take the

coupling α to be a constant of order ∼ 1/137, and in the NLO case, we calculate

it to one-loop, using the same renormalization prescription as above. As before, in

the massless limit only the running of the coupling α(µ) is relevant, and is obtained

by solving (2.20) at leading-order with β0 = −2/3π.[16]
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Figure 2.3: αs plotted at LO and NLO as a function of the energy scale µ. The NLO

curve is an approximate solution to Equation (2.25).

2.4.2 Color Confinement

The running of the strong coupling does not only imply asymptotic freedom for

high energies – the fact that our coupling becomes non-perturbative at low energy

implies that the force between two colored objects would in theory diverge as they

were separated to an arbitrarily large distance. Fortunately, we do not observe

this property in, for example, atomic nuclei, which are fundamentally composed of

color-charged quarks and gluons. Why not? It turns out that protons, neutrons,

and all other currently observed baryons and mesons are composed of combinations

of quarks whose sum is color neutral. This is the property of color confinement,

which can be heuristically depicted as in Figure 2.4, borrowed from [37].

In QCD as in other quantum field theories, the vacuum is a dynamic entity,

constantly creating and annihilating virtual particles on a time-scale permissible

by the Heisenberg uncertainty principle t ∼ ~/E. As a force is applied to separate

the quark and anti-quark from one another, the gluon-mediated force between

them increases as a result of the increase in αs at larger distances. At a certain

threshold distance, there is actually enough energy in the system so that it is

energetically possible to create a new real q− q̄ pair. Instead of splitting the meson
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Figure 2.4: A heuristic illiustration of color confinement. As the meson is pulled apart,

enough energy is added to the system to create a new real quark-antiquark pair. The

cartoon is borrowed from [37].

in two, we have only succeeded in creating a new one. Although this explanation is

purely qualitative, it serves as the intuitive basis for understanding the processes

of fragmentation and hadronization, which we now examine in a more quantitative

framework.

2.5 The Factorization Theorem

2.5.1 Introduction

At first glance, we might consider ourselves lucky that the current available col-

lider energies fall well into the perturbative regime, so that we can get away with

using the pQCD formalism as described in the preceding sections, and not worry

much about low-energy divergences. While it is true that, as per Figure 2.3, αs

is much less than 1 at RHIC and LHC energies, the phenomenon of color confine-

ment prohibits us from actually “seeing” the final-state quarks and gluons in our

detectors, despite the fact that these are the entities we are actually dealing with

in our Feynman diagrams. Accordingly, we need a formal way of relating the par-

tonic variables to our experimental observables, which are in fact confined hadronic

states. This problem is de facto non-perturbative, and is solved by implementing

what is known as the factorization theorem [38, 39].

Considering a collision between two hadrons A and B, and the corresponding

production of hadrons h1 and h2, we have two similar problems to solve: 1. How do

we mathematically describe the distributions of our initial partons within the col-
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Figure 2.5: A schematic of the collision of two hadrons A and B, the ensuing partonic

interaction ab → cd, and final-state fragmentation of jets into observed hadrons. The

diagram is borrowed from [40].

liding hadrons? and 2. How do we relate the phase space distribution of observed

final-state hadrons to final-state partons? These issues are treated by the respec-

tive introduction of initial-state Parton Distribution Functions (PDFs) and final-

state Fragmentation Functions (FFs) that contain the relevant non-perturbative

information. We define our PDF Gi/I(xi) as the probability distribution for find-

ing parton i with momentum fraction xi in hadron I. We similarly define our FF

Dh/j(zh) as the distribution for obtaining hadron h with momentum fraction zh

from parton j. At the most basic level, we expect that convolving the partonic

cross-section with the PDFs for both incoming partons and the FFs for the out-

going ones should gives us a total cross-section for the process A + B → h1 + h2.

We give a schematic for this idea in Figure 2.5, borrowed from [40].

In fact, this cannot be exactly true, since the partonic physics and hadronic

physics must be interrelated – it is necessary for us to introduce an unphysical scale

Q in the initial-state (and a second scale QF in the final-state) at which to separate

the small-distance and large-distance effects. More quantitatively, Q (QF ) is a scale

at which we begin to factor out our initial-state (final-state) collinear divergences

at all orders in perturbation theory, and absorb them into the non-perturbative

distributions.

In the following subsection, we will consider in a more rigorous manner the

27



relevant case of initial-state and final-state factorization in high-pT γ production.

This will in fact form the basis of our theoretical computations in Chapter 3.

2.5.2 Factorization in photon production

As in the case of hadronic production, there is a probability distribution for an

outgoing parton to fragment into a photon with momentum fraction z, denoted by

Dγ/c(z). If we consider the process p + p → γ + X at fixed-order in αs, where X

represents any other particles produced in the process, then we can mathematically

express the factorization theorem for this process as follows :

dσ(F )(p+ p→ γ+X) =
∑
a,b,c,d

Ga/p(xa)dxaGb/p(xb)dxbDγ/c(zc)dzcdσ̂(a+ b→ c+ d)

(2.26)

Here, Gi/p(xi) and Dγ/c(zc) are respectively PDFs and FFs defined as in the

previous subsection, and σ̂ is a partonic cross-section for process ab→ cd. At the

most basic conceptual level, the equation states that the probability of observing

a hard photon in a p+p collision is the probability that a parton c is produced via

any permitted Feynman diagram, weighted by the PDFs for each initial parton

and by the FF for obtaining a γ in the fragmentation jet of c. The (F ) superscript

denotes the fact that this is a “fragmentation photon”.

Although the FFs are in general non-perturbative, because of the pointlike

coupling of the quark and γ it is actually possible to perturbatively derive the LO

expression for Dγ/q(z) [27], which is given by:

D
(0)
γ/q(z) =

α

2π
e2
q

(
1 + (1− z)2

z

)
log

(
Q2

Λ2

)
(2.27)

Because there is no gluon-photon vertex, D
(0)
γ/g(z) = 0. As we expect from

our earlier argument, these expressions contain a dependence on a new energy

parameter Q. We will discuss the higher-order non-perturbative corrections to

these in Subsection 2.5.4.

We can also note that, unlike in the case of hadrons, there is also a “direct”

method of photon production, due to the qq̄γ vertex in QED. This cross-section

can be expressed as:
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dσ(D)(p+ p→ γ +X) =
∑
a,b,d

Ga/p(xa)dxaGb/p(xb)dxbdσ̂(a+ b→ γ + d) (2.28)

While the LO contribution of (2.28) will be finite, higher-order corrections will

suffer from ultraviolet (UV), infrared (IR), and collinear divergences, as illustrated

in Section 2.3. The UV divergences are taken care of with the renormalization pro-

cedure, and, for sufficiently inclusive processes, the IR divergences are cancelled

exactly when summing the virtual correction diagrams of a given order with the

higher-order real production diagrams. The factorization theorem comes in when

we attempt to deal with collinear divergences. In this case, it states that, at a

given order in αs, the sum of (2.26) and (2.28) will be infrared safe – the diver-

gences arising from the “direct” production of two collinear partons can always be

absorbed into the non-perturbative “fragmentation” contribution. For instance,

at O(αs), this gives us:

dσ(1) = dσ
(1)
(D)(ab→ γd) +

∑
c

dσ
(0)
(F )(ab→ cd)⊗D(1)

γ/c (2.29)

The factorization theorem implies that this quantity will be finite. To provide

a specific illustration of this, we can go back to our final expression (2.19) for the

process qq → qqγ. If we look at the final term, which was divergent due to a

1
ε

dependence, we can show that this term in fact corresponds precisely to our

cross-section (2.16) for qq → qq (reexpressed in terms of the variables x1 and x2),

multiplied by the LO FF given in (2.27). This means that part of the anomalous

direct cross-section can be exactly absorbed into the fragmentation cross-section of

a given order !

To explain the other anomalous term (the first term in (2.19)), we invite the

reader to check that this corresponds precisely to the LO result for the process

qg → γq, multiplied by the anomalous probability function Pqg(z) (known com-

monly as an Altarelli-Parisi splitting function [41]) for the inital-state quark to

emit a collinear gluon.

In this way, these two terms are no longer taken to form part of the “direct”

cross-section for qq → qqγ, but are now subtracted and taken as respective correc-

tions to the LO final-state and initial-state distribution functions. We heuristically

illustrate this result in Figure 2.6.
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Figure 2.6: A heuristic depiction of how the singularities in qq → qqγ are factorized and

absorbed into the relevant initial-state and final-state distribution functions.

2.5.3 Fitting PDFs and FFs

Because the PDFs and FFs cannot be calculated perturbatively to arbitrary order,

they must be determined from experimental data fits to various processes (Deep

Inelastic Scattering (DIS), di-lepton production, jet production, etc.) at a given

energy scale. Traditionally, DIS processes (i.e.: e− + p → e− + X) in which a

virtual photon probes the internal structure of the proton, were considered to be

ideal for resolving the distribution functions. However, it was found that the DIS

data did not offer sufficient sensitivity to the gluon PDF, which led to the need

for global data fits that exploited data from multiple complementary processes.

With respect to the PDFs, several different parameterizations from different

groups [42, 43, 44] are in common usage, so, in the following chapters, we will

always specify the dataset being used. In general, the convention in fitting a given

PDF is to assume a set of functional forms like [43]:

xuv(x) = Aux
η1(1− x)η2(1 + εu

√
x+ γux)

xdv(x) = Adx
η3(1− x)η4(1 + εd

√
x+ γdx)

xS(x) = ASx
δS(1− x)ηS(1 + εS

√
x+ γSx)

x∆(x) = A∆x
η∆(1− x)ηS+2(1 + γ∆x+ δ∆x

2)

xg(x) = Agx
δg(1− x)ηg(1 + εg

√
x+ γgx) + Ag′x

δg′ (1− x)ηg′

(2.30)

In (2.30), qv ≡ q − q̄ is the valence quark distribution, S ≡ 2(ū+ d̄) + s+ s̄ is

the sea quark distribution, and ∆ ≡ d̄ − ū. We have omitted an additional pair
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of equations parameterizing the strange and anti-strange distributions, as well

as those of the heavier quarks, which are generally neglected at lower energies.

Including the s and s̄ distributions, there are 34 parameters to be fit. In the case

of the proton, composed of valence quarks uud, four of these are eliminated by

invoking the number sum and momentum sum rules [45]:

Nu =

1∫
0

dxuv(x) = 2 Nd =

1∫
0

dxdv(x) = 1 Ns =

1∫
0

dxsv(x) = 0

1∫
0

dxx(u+ ū+ d+ d̄+ s+ s̄) = 1

(2.31)

This leaves a total of 30 parameters to be fit using experimental data. The

numerical values of the parameters for the MRST group can be obtained in [43]. In

general, these parameters are calculated at a reference scale of Q2
0 = 1GeV 2. How-

ever, as we’ve established, the PDFs cannot possibly be fixed scale-independent

distributions, since they depend on an unphysical chosen scale Q that separates

the “hadronic physics” from the “partonic physics”. We will explore this scale

dependence in the following subsection.

For the sake of brevity, we won’t go through the parameterization schemes for

the FFs for hadrons and photons, although it suffices to say that these fitting pro-

cedures are very similar to the one described above for the PDFs : 1. Functional

forms for the distributions are assumed, with a fixed number of unknown param-

eters; 2. Certain symmetry arguments can be employed to reduce the number of

parameters; and 3. The remaining parameters are “globally” fit using experimen-

tal data from multiple processes. For fragmenting hadrons, the current standard

is to employ the BKK [46] or newer KKP [47] FFs, and for photons there are two

parameterizations both described in [48]. Specific information on the functional

forms of these distributions can be found contained within these references.

2.5.4 Scale Dependences

As already mentioned, PDFs and FFs necessarily acquire a dependence on a pair

of new scaling parameters, respectively called the factorization and fragmentation
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scales Q and QF . In the case of the PDFs, once the distributions (2.30) are

parameterized at scale Q2
0, the evolution to an arbitrary scale Q2 is given by the

DGLAP equations [41, 49, 50] for the quark and gluon PDFs:

dGq/A(x,Q)

d logQ2
=
αs
2π

1∫
x

dz

z
[Gg/A(x,Q)Pqg(x/z) +Gq/A(x,Q)Pqq(x/z)] (2.32)

dGg/A(x,Q)

d logQ2
=
αs
2π

1∫
x

dz

z
[Gg/A(x,Q)Pqg(x/z) +

∑
qj

Gqj/A(x,Q)Pgqj(x/z)] (2.33)

where Pab are the Altarelli-Parisi splitting functions [41] from parton a to parton b.

We can physically interpret these as the perturbatively calculable probability dis-

tributions for obtaining parton b from parton a. There is a similar set of equations

that can be derived for the scale evolution of the FFs [51, 52]. For instance, in the

case of Dγ/c(z,QF ), using the shorthand ⊗ to describe the convolution integrals

as in (2.32) and (2.33), we can write:

dDγ/q(Q
2)

d logQ2
=

α

2π
Pq→γ +

αs(Q
2)

2π
[Pq→g ⊗Dγ/g(Q

2) + Pq→q ⊗Dγ/q(Q
2)] (2.34)

dDγ/g(Q
2)

d logQ2
=
αs(Q

2)

2π
[Pg→q ⊗Dγ/q(Q

2) + Pg→g ⊗Dγ/g(Q
2)] (2.35)

In particular, we can note the interesting fact that since the γ FFs are propor-

tional to α
αs(Q2)

, and 2→ 2 parton processes go as α2
s, the convolution of these two

should go roughly as ααs. So we have every right to expect that the LO fragmen-

tation γ contribution is in fact of the same order as the direct contribution.

Unfortunately, there is no way of knowing the precise scales Q, QF (or the

renormalization scale µ) to choose in a given calculation, since they are unphysical

scales that are really artifacts of cutting off the perturbative expansion. Fortu-

nately, a quick trick [40] shows us that all scales must be at least of the same order

of magnitude. Supposing that we have two large scales Q2
1 and Q2

2 = kQ2
1, we can

note that:

logQ2
2 = log(kQ2

1) = logQ2
1(1 +

log k

logQ2
1

) ≈ logQ2
1 (2.36)
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where we’ve used the fact that Q1 is a “large” scale to drop the second term in

parentheses, which is logarithmically nonleading. Even following this argument,

we are still forced to decide how we want to define our single large energy scale

: we are obliged to select a factorization prescription. Although this is by no

means an obvious procedure, and various methods to do this have been proposed

[53, 54], we will adopt the convention most in use currently: 1. PDFs and FFs are

experimentally defined using some reference processes (as in Subsec. 2.5.3); and

2. The factorization scales are taken to be a function of the kinematic variables of

the process being examined.

Most often we will select the scales such that µ = Q = QF = pT , where pT

is the transverse momentum of the fragmenting particle, although in Subsection

3.2.2, we briefly examine the effect of modifying these parameters. The choice of

which kinematic variables to use becomes a bit more ambiguous when considering

double inclusive processes, in which we are observing two final-state particles with

unequal transverse momenta. Possible choices in this case include taking scales to

be equal to pT,1 + pT,2, max(pT,1, pT,2), or M1,2 (the invariant mass of particles 1

and 2), though these choices are by no means exhaustive.

For any calculation at a given order, we can consider the result’s variation with

respect to these parameters to be a theoretical systematic uncertainty. As one

goes to higher order, the dependence on these parameters becomes less important,

which offers another important benefit of going to NLO.

As a final note, we mention that, in sections to follow, we will often not ex-

plicitly write out the Q or QF dependences of the PDFs or FFs respectively, but

remind the reader that they are always there.

2.6 Hadronic Kinematics

2.6.1 Leading order

Keeping track of the kinematic relationships in a hadronic cross-section calculation

is necessary to determine both the range of integration as well as the appropriate

Jacobian that arises through simplification of delta functions. This is slightly more

complicated than in the partonic case, since we now operate in the hadronic CM
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Figure 2.7: A schematic of the collision of two hadrons A and B, the ensuing partonic

interaction ab→ cd, and final-state production of a fragmentation photon γ and a jet d.

frame rather than the partonic one. To conclude this chapter, we will briefly work

through an example of this type of manipulation here, in which we consider the

calculation of the leading-order double inclusive cross-section of a fragmentation

photon with an away-side jet in the collision of two hadrons A and B. Note

that this result would also describe, for example, the double inclusive cross-section

of an away-side direct photon with a fragmenting hadron, when the appropriate

substitutions are made. A schematic diagram of this type of process is shown in

Figure 2.7.

Defining the partonic four-momenta as pa, pb, pc, and pd, and combining equa-

tions (2.26) and (2.13), we can write down the expression for the differential cross-

section for this process:

dσ(AB → cd) =
∑
abcd

Ga/A(xa)dxaGb/B(xb)dxbDγ/c(z)dz
|M|2
2E2

CM

× (2π)4δ(4)(pa + pb − pc − pd)
d3pc

(2π)32Ec

d3pd
(2π)32Ed

(2.37)
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Here, |M|2 is the matrix element for a given subprocess, averaged over initial-

state color and spin, and the PDFs and FFs are as defined previously. We also

define
√
s as the hadronic center-of-mass (CM) energy, and we introduce the vari-

able yi ≡ log(cot θi/2), referred to as the pseudorapidity of parton i. From here

on out, we will need to choose a frame to work in, and the one that makes the

most sense is the hadronic CM frame, since this is identical to the lab frame for

colliders like RHIC or LHC. In this case, we can write down explicit expressions

for all of the pi in terms of external hadronic variables:

pa =
xa
√
s

2
(1, 0, 0, 1)

pb =
xb
√
s

2
(1, 0, 0,−1)

pc = (pcT cosh yc,p
c
T, p

c
T sinh yc)

pd = (pdT cosh yd,p
d
T, p

d
T sinh yd)

(2.38)

It is also convenient to define an additional set of variables – the partonic

Mandelstam variables – which are defined as:

ŝ = (pa + pb)
2 = xaxbs

t̂ = (pa − pc)2 = −xapT
√
se−yc

û = (pb − pc)2 = −xbpT
√
seyc

(2.39)

For instance, Equation (2.15), which would describe a relevant subprocess in

this example, would be more conventionally written as |M|2 = 16π2α2
s

4
9
ŝ2+û2

t̂2
.

After writing all squared matrix elements in terms of the variables ŝ, t̂, and û, the

relations (2.39) can be used to express them in terms of the integration variables.

We are now prepared to simplify equation (2.37), by noting:

• d3pi
Ei

=
d2piT dp

i
z

E
= d2piTdyi.

• δ(4)(pa + pb − pc − pd) = δ(xa
√
s

2
+ xb

√
s

2
− pcT cosh yc − pdT cosh yd)× δ(xa

√
s

2
−

xb
√
s

2
− pcT sinh yc − pdT sinh yd)× δ(2)(pc

T + pd
T)

• dσ
dt̂

= 1
16πŝ2
|M|2

Before substituting all of this in, we note that the four δ-functions will be able

to eliminate four integration variables in our expression. Naturally, since we are
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looking for the double inclusive cross-section for a jet and a fragmentation photon,

we would like to have our differential cross-section as a function of yγ = yc, yd, pd
T,

and z. Accordingly, we choose to eliminate xa, xb, and pc
T, which will give us our

“kinematic constraints” for the problem. Putting this all together, we get:

dσ(A+B → γ+jet+X) = 2
∑
abcd

Ga/A(xa)Gb/B(xb)Dγ/c(z)
dσ

dt̂
(ab→ cd)dzdyγdydp

d
Tdp

d
T

(2.40)

Our constraints are given by xa,b =
pdT√
s
(e±yγ + e±yd) and pd

T = −pc
T = −pγT/z.

The latter of these confirms that, at LO, the two final-state jets must have opposite

transverse momenta, as expected. The ranges of integration for the two rapidities

will be set by the detector in question, while z will range from some kinematically

specified minimum value zmin to 1. To obtain the single inclusive cross-section for

fragmentation γ production, the most natural way would have been to eliminate

the variables yd, pd
T, and z, leaving the cross-section as an integral over the xa and

xb variables, which could then be numerically evaluated.

2.6.2 Next-to-leading order

As a last point for this chapter, let us consider the type of kinematic expressions

we would deal with for a higher-order (i.e.: 2 → 3) process, which are necessary

to compute when going to higher order in αs. We expect a priori from our earlier

discussion that there will be soft or collinear divergences for the relevant partonic

cross-sections, so we must write our expression in n = 4− 2ε dimensions, with the

idea of later applying dimensional regularization to our expression.

Considering the general process A+B → c+ d+ e, we have:

dσ(AB → cde) =
∑
abcde

Ga/A(xa)dxaGb/B(xb)dxb
¯|M|2

2ŝ

× (2π)nδ(n)(pa + pb − pc − pd − pe)
dnpcδ(p

2
c)

(2π)n−1

dnpdδ(p
2
d)

(2π)n−1

dnpeδ(p
2
e)

(2π)n−1
(2.41)

In general, partons c and d can be considered to be well-separated in phase

space, and have a certain minimum pT , so that they do not introduce any infrared

divergences. In this case, parton e can be taken to branch off from either c or d, and
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potentially introduce divergences as a result. We can control the divergences by

introducing two unphysical parameters pmT and Rh
T that separate phase space into

four distinct regions. This method is in fact the numerical basis of the programs

JETPHOX [35, 36] and DIPHOX [10], used in the following chapters for NLO

computations. The four regions are given by:

• peT < pmT . This region contains the soft and initial-state collinear singularities.

• peT > pmT and pe is contained in a cone around c given by {(ye− yc)2 + (φe−
φc)

2 < R2
T . This region contains singularities arising from e being collinear

to c.

• peT > pmT and pe is contained in a cone around d given by {(ye− yd)2 + (φe−
φd)

2 < R2
T . This region contains singularities arising from e being collinear

to d.

• peT > pmT and peT is not contained in either of the two defined cones. This

defines the non-singular contribution that does not need to be factorized.

In this way, a well-defined numerical method exists with which to compute

NLO cross-sections. Ideally, the routines used within a given program are such

that the theoretical dependence on the parameters pmT and Rh
T is minimized.

We have now built up all of the tools we need to explicitly calculate single

and multi-particle spectra, for which we display our results in Chapter 3 and 4

respectively.
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Chapter 3

Photon Production

3.1 Introduction

The observation of electromagnetic signatures in hadronic and heavy-ion collisions

is of fundamental importance in probing these media. In the hadronic case, for

instance, hard photon production is very sensitive to the initial gluon distributions

[8], as a result of the dominance of the QCD Compton process q + g → q + γ

at LO. An analysis of γ production in p + p and p + p̄ collisions also offers an

important method of computing the strong coupling constant αs [9]. Additionally,

having precise predictions for γ cross-sections is also very important with regards

to detection of the Higgs boson: one of the primary Higgs decay channels is via

H → γγ [10], which can only usefully be measured if one has control over the

background of γ pairs with large invariant mass.

In the case of nucleus-nucleus collisions, photon-jet or photon-hadron correla-

tions offer insight into the mechanism of jet quenching in the thermal medium by

constraining the initial jet energy profiles before energy loss [55, 56]. This will

be explored to a greater extent in the final section of Chapter 4. Additionally, in

both hadronic and nuclear cases, photon measurements allow one to avoid having

to deal with either jet reconstruction algorithms or jet fragmentation functions in

the leading-order (LO) case, unlike in computations of jet or hadron cross-sections

respectively.

Following the standard convention, in this chapter we use the term “prompt

photon” to denote those photons produced in a collision that are not the result of

38



the decay of mesons. Accordingly, the study of prompt photons involves processes

where the initial state is actually composed of quarks and gluons, and QCD is

needed to compute the relevant matrix elements. It is this electromagnetic signa-

ture which is generally considered to be useful in collider experiments at RHIC or

LHC, as meson decay photons overwhelm the total contribution by several orders

of magnitude, and are often suppressed by applying isolation cuts.

In the next section, we will first perform the LO computation for γ production

from both direct and fragmentation mechanisms, followed by a discussion of how

the choice of energy scales affects the computation. We will then proceed to discuss

the complications arising at NLO, before devoting a section to the theoretical

modifications necessitated by the implementation of isolation criteria. This will

be followed by a presentation of the results for the isolated NLO cross-section,

compared to experimental data from the LHC. In the final section, we will extend

our results to the computation of hadronic cross-sections. The interested reader

can find further background material on prompt photon production in [40], or,

more recently, in [57].

3.2 Leading-Order Photon Production

3.2.1 Computing the LO cross-section

The most natural way to begin is to enumerate the possible processes that con-

tribute to photon production at leading order (i.e.: order αsα). These are given

by q+ q̄ → γ+g and q(q̄)+g → γ+q(q̄) and diagrammed in Figure 3.1. Although

we will see that the LO contribution lacks precision, it serves as a good starting

point to understand the more subtle aspects of the NLO calculation.

The corresponding amplitudes for the LO diagrams are computed using the

QCD Feynman rules described in Appendix A, and are given by:

dσ̂a

dt̂
=
πααs
ŝ2

8

9
e2
q

(
û

t̂
+
t̂

û

)
(3.1)

dσ̂c

dt̂
= −πααs

ŝ2

1

3
e2
q

(
û

ŝ
+
ŝ

û

)
(3.2)

In these expressions, e2
q refers to the fractional quark charge, −1

3
for d and
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Figure 3.1: LO partonic processes for photon production. The top two diagrams rep-

resent quark-antiquark annihilation; the bottom diagrams represent the QCD Compton

process

s quarks, and +2
3

for u quarks. The coupling αs is running and given by Eq.

2.22. There is a third permitted tree-level process that generates γ’s, given by

q + q̄ → γ + γ, but, since it scales as α2 ∼ 1
10
αsα, it is significantly suppressed in

comparison, so we do not take it into consideration.

To obtain the total direct cross-section, we convolve these expressions about

the proton PDFs, and note that no FFs will play at role at leading order, since we

are considering the contribution arising from the pointlike coupling of quarks and

photons, which is described exactly by the qq̄γ QED vertex. Accordingly, we can

use our discussion of kinematics from Section 2.6 to simplify (2.28) as:

dσ
(D)
LO

d2pTdy
=
∑
a,b

∫
dxaGa/p(xa, Q)Gb/p(xb, Q)

1

π

2xaxb
2xa − xT ey

dσ̂ab→γd

dt̂
(3.3)

where xT ≡ 2pT√
s

is the fraction of the hadronic center-of-mass energy carried away

by the outgoing photon. Ga/p(xa) is the proton PDF for parton a with momentum

fraction xa. The factor 1
π

2xaxb
2xa−xT ey

comes about when eliminating the delta functions

to express the right-hand-side as an integral over xa, which also results in the
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Figure 3.2: LO high-pT photon spectrum in pp collisions at
√
s = 200GeV . The data

points and error bars are taken from PHENIX.[58] The dashed and solid curves respec-

tively correspond to LO direct and fragmentation γ, and the dotted line is the sum of

both contributions. µ = Q = QF = pγT .

kinematic relation xb = xaxT e
−y

2xa−xT ey
. Setting xb = 1 in the previous expression, we

obtain xa,min = xT e
y

2−xT e−y
, which fixes our integration range. Note that here the

final-state parton d is fixed exclusively by a and b in each process, whereas this is

generally not the case (hence the sum over only a and b).

In addition to the direct contribution, we must still compute the LO contribu-

tion from the fragmentation of a photon from an outgoing hard parton, which we

will denote by σ
(F )
LO . A similar expression can be derived for it:

dσ
(F )
LO

d2pTdy
=
∑
a,b,c,d

∫
dxadxbGa/p(xa, Q)Gb/p(xb, Q)Dγ/c(z,Qf )

1

πz

dσ̂ab→cd

dt̂
(3.4)

with the kinematic constraint z = xT
2

(
e−y

xb
+ ey

xa

)
. Here, Dγ/c(z,QF ) is the ap-

propriate photon fragmentation function, dependent on the fragmentation scale

QF , and the momentum fraction z of the photon with respect to the fragmenting

parton. As before, the integration boundaries are also fixed by kinematics and are

given by: xa,min = xT e
y

2−xT e−y
and xb,min = xaxT e

−y

2xa−xT ey
. It is interesting to note that,

even at LO, the expression (3.4) contains a whopping 127 terms when using three
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flavors of quark, since the photon FF can be convolved with any partonic process

of order α2
s.

In this case, we have numerically evaluated the results of Equations (3.3) and

(3.4) at midrapidity (y = 0), as well as the total LO cross-section, which is simply

their sum, and plotted these as a function of pT in Figure 3.2. The proton PDFs

used here are obtained from the CTEQ5 LO parameterization [42], while the γ

FFs are extracted from data from e+ + e− collisions using the Vector Dominance

Model (VDM) approach [48]. We have set the energy scales as µ = Q = QF = pγT .

The CM energy is taken to be
√
s = 200GeV , corresponding to RHIC settings, and

experimental error bars from current PHENIX data is overlaid on the theoretical

plot. It is clear upon examination that the bare LO result is not entirely sufficient

to describe experimental data – for most of the pT range, the observed cross-section

is approximately 2-3 times greater than what has been calculated.

Since the LHC performs measurements of isolated photons, which are only

introduced in Section 3.4, we will postpone a comparison to these results for that

section. Before moving to the NLO computation, we now briefly consider if altering

the various scale dependences in the LO calculation can affect the result in any

meaningful way.

3.2.2 Modifying our scale dependences

The reader may have noticed that we “cheated” a bit by arbitarily choosing the

relevant scales in the calculation to all be equal to pT . As detailed in Section 2.5,

although these scales must formally be of the same order of magnitude, they can

still vary by a constant of order 1. In practice, this can allow for a significant

variation in the computed cross-sections.

To illustrate this, in Figure 3.3 we compare our LO result for the cases in

which we set our scales Q, QF and µ all to be equal to pT/2, pT , and 2pT . This

is of course not an exclusive choice, as there is the possibility to modify the scales

independently of one another as well. In-depth studies of different factorization

prescriptions can be found in [53, 54] and references therein. In Figure 3.3d, we

present the ratio of curves with scales set to pT/2 and 2pT to the original curve

whose scales are set to pT .

Most importantly, we note in Figure 3.3d that modifying the scales by an O(1)

42



(a) pT /2

(b) pT (c) 2pT

(d) Effect of modifying scales

Figure 3.3: LO high-pT photon spectrum in pp collisions at RHIC, calculated at various

scales. The data points and error bars are taken from PHENIX.[58] The bottom subfigure

plots the ratio of the curves with scales pT /2 and 2pT to the curve with scales set to pT .
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constant can affect the original result in Fig. 3.2 by an approximate factor of

0.8-1.4. In other words, going from scale settings of 2pT to pT/2 at LO induces a

multiplicative correction of almost 2 – the theoretical uncertainty due to scales is

almost as large as the value of the cross-section itself! This in itself offers one of

the most important reasons for going to NLO : we expect theoretically that when

NLO terms are retained, these scale dependences will be reduced, since any such

factorization scale alteration is compensated for by the inclusion of NLO “direct”

terms which contain subleading logarithms.

We can also note that the results with scales set to pT/2 (Fig. 3.3a) seem

to give the best results, with a curve that generally fits into the error bars. It

is too optimistic for us to claim that this implies the success of LO pQCD for

this calculation, in light of the aforementioned factor of 2 that can be induced by

modifying the scale – this factor is of the same order as the K-factor that we would

expect from including the NLO correction. We can also note that the experimental

data from PHENIX is somewhat poorly constrained – when we later look at LHC

results, we will see that the LO result is quite far off from accurately reproducing

the experimental data.

3.3 NLO Photon Production

At NLO in αs, there are a significantly larger number of QCD diagrams that

produce direct photons than at LO. Essentially, for any parton-parton tree diagram

of order α2
s which has a quark or antiquark leg, we are able to attach a photon.

In addition, we must consider the interference of one-loop diagrams of order g3e

with our Born diagrams (the product of which gives a cross-section contribution

of order α2
sα), in order to cancel the soft divergences in our cross-sections. A few

examples of these types of diagrams are illustrated in Figure 3.4, borrowed from

[59].

The reader should recall that we explicitly computed this type of NLO correc-

tion Chapter 2 for the process qq → qqγ. It is useful to refer back to this if one

wishes to calculate the specific functional forms that the matrix elements and the

phase space will take at NLO.

In addition to the direct contribution, there are NLO fragmentation photons
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(a) 2→ 3 processes

(b) One-loop corrections

Figure 3.4: A few examples of NLO photon production diagrams. Both tree-level pro-

cesses with an extra final-state particle as well as 2→ 2 one-loop processes must be taken

into account to eliminate soft divergences. The diagram is modified from an illustration

in [59].
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Figure 3.5: On the left, we have a typical NLO diagram for “direct” γ production, while,

on the right, we have a typical diagram for the LO fragmentation γ contribution. The

grey circles represent non-perturbative processes, given by the PDFs and FFs in the

initial state and final state respectively. Both diagrams are of order α2
sα.

arising from the 2→ 3 parton-parton processes in which one of the final-state par-

tons fragments into a γ. Again, because of the fragmentation vertex’s anomalous

dependence on αs, we expect this contribution to be of the same order as the NLO

direct γ’s. To arbitrary order, we are able to write out the generalized version of

Equation (2.29) for the total hard photon cross-section:

dσ

dpγTdyγ
=

dσγ
dpγTdyγ

(pγ;µ,Q,QF )+
∑
c

1∫
0

dz

z

dσc
dpγTdyγ

(
pγ
z

;µ,Q,QF )Dγ
c (z;QF ) (3.5)

where σγ is the total “direct photon” cross-section and σc is the cross-section for

producing final-state jet c, whose convolution about the γ FF gives the “fragmen-

tation” cross-section. Our liberal use of quotation marks here is not solely for

sarcastic effect: in fact, it is important to remember that, although we have made

an obvious distinction between these two contributions – direct and fragmenta-

tion – at LO, at arbitary order it is only the sum of these contributions that is a

physical observable. This can be intuitively illustrated by considering Figure 3.5.

Although the hard photon is produced through two different processes, they both

contribute at the same order in the expansion in αs, and the only reason they are

“drawn differently” has to do with an arbitrary choice we made about the scale
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Figure 3.6: NLO High-pT photon spectrum in pp collisions at
√
s = 200GeV . The

data points and error bars are taken from PHENIX.[58] The dashed and solid curves

respectively correspond to NLO direct and fragmentation γ, computed in JETPHOX,

and the dotted line is the sum of both contributions. µ = Q = QF = pγT .

QF .

Using JETPHOX [35, 36], we’ve evaluated (3.5) at order α2
sα. In the com-

putation, we used the NLO CTEQ6 PDFs [42], calculated in the MS factoriza-

tion scheme, and Set II of the photon FFs from Bourhis, et al [48]. We’ve once

again selected the scales µ = Q = QF = pγT , and chosen the kinematic range

−0.35 < y < 0.35 and 4GeV < pγT < 15GeV . The results are plotted in Figure

3.6, and the K-factor obtained by taking the quotient of the NLO and LO results

is given in 3.7a.

We are able to observe that the obtained K-factor does not vary significantly

over the kinematic range – the values range from 1.56 to 1.69. One can also

consider two separate K-factors for the direct and fragmentation components,

as in Figure 3.7b, in which case one obtains values that are also approximately

constant. Although we’ll later see that these factors are not completely sufficient

in describing NLO corrections to two-particle correlations, it is still remarkable

that they should work as well as they do in the single-γ case – both the phase

space and matrix elements obtained in the LO and NLO computations take on

completely different forms, so it is not at all evident that the final result should

possess the same functional form for the given kinematic range.
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(a) Total K-factor (b) Separate K-factors

Figure 3.7: K-factors for photon production in the kinematic range 4GeV < pγT <

15GeV . The left diagram is the total ratio of NLO to LO computations, while the right

diagram contains separate K-factors for direct and fragmentation contributions.

Although we are now prepared to extend our NLO formalism to LHC energies,

the CMS detector does not in fact detect inclusive cross-sections – experimental

isolation criteria are applied which alter the computation. Accordingly, we take a

brief detour to discuss these effects.

3.4 Isolation Criteria

3.4.1 Introduction

Ideally, we could just numerically evaluate the NLO expressions for the direct and

fragmentation cross-sections to obtain a reasonably precise prediction for hard

photon production in pp collisions. Experimentally, however, there is also an

enormous γ background from meson decay processes (most commonly π0 → γγ or

η → γγ) that overwhelms the prompt signal by several orders of magnitude. It

is particularly difficult to experimentally discriminate between prompt and decay

photons owing to the fact that the outgoing decay-γ pair is often severely Lorentz

contracted, so that it registers in the detector as a single γ.

Accordingly, experimentalists need to apply certain isolation criteria that can

selectively remove these unwanted signatures from the experimental data. Un-

fortunately, one cannot apply these isolation cuts without removing part of the

prompt photon cross-section, so that the theoretical calculation needs to be cor-
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respondingly modified. We can understand this better by actually describing one

of the main isolation algorithms used. When a photon with rapidity yγ and az-

imuthal angle φγ is detected, we define an isolation cone in φ − y space around

the photon, which is described by the volume:

(y − yγ)2 + (φ− φγ)2 ≤ R2 (3.6)

where R is the cone radius. Inside the cone, we require that the total hadronic

energy satisfies:

Ehad
T ≤ Emax

T (3.7)

where Emax
T is some limiting tranverse energy that can either be constant, or a

fraction εh of the photon’s transverse momentum. This criterion is not unique – for

example, another common choice is given in [60]. While the signal from meson-

decay photons will be removed for a good choice of parameters, fragmentation

photons also emerge as part of a collimated jet of hadrons and so will be largely

suppressed by the imposed criterion. Direct photons will usually emerge in a region

of low hadronic density and so will not be removed, although NLO effects do bring

about a slight suppression.

In the following subsections, we more quantitatively examine how theoretical

cross-sections for both fragmentation and direct γ’s need to be modified when

an isolation criterion is applied, and then use these results to compute the NLO

isolated prompt photon cross-section, which we then compare to CMS data.

3.4.2 Isolated fragmentation photons

It is important to recognize that not all fragmentation photons will be suppressed

by the criterion given in (3.6) and (3.7). If we consider a LO process in which

a final-state parton fragments into a γ, as in Figure 3.8a, then the total energy

in the cone will be given by Eγ + Efrag. We can combine Eγ = zEc and Ehad =

Efrag = (1− z)Ec with the criterion (3.7) to obtain:

z > zc ≡
1

1 + εh
(3.8)
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(a) Ehad from fragmentation (b) Ehad from final-state partons

Figure 3.8: A schematic of how final-state hadronic energy may originate from the

fragmentation process at LO (left), and from extra final-state partons at NLO (right).

The pictures are adapted from one used in [61].

In plain language, if the γ emerges carrying away almost all of the energy of the

fragmenting parton (more precisely, carrying momentum fraction z > zc), it will

avoid suppression. Nevertheless, for a choice of order εh = 0.1, all contributions

with z < 0.91 – a significant majority – will be removed. Accordingly, although the

isolation criteria requires that we modify our theoretical calculation, we observe

that it has the added benefit of removing a great deal of the uncertainty due to the

theoretical uncertainty in the FFs Dq/γ and Dg/γ. The cross-section (Eq. (3.5)) is

correspondingly modified as:

dσiso

dpγTdyγ
=

dσγ
dpγTdyγ

(pγ;µ,Q,QF )+
∑
c

1∫
zc

dz

z

dσc
dpγTdyγ

(
pγ
z

;µ,Q,QF )Dγ
c (z;QF ) (3.9)

It’s important to note that this simple treatment relied on the fact that the

“fragmentation cone” (i.e.: the cone determined by QF which describes the bound-

ary in phase space within which collinear partons are absorbed into the relevant

FFs) lies entirely within the isolation cone. In this analysis, when numerically eval-

uating results using the PHOX programs, a value of RT = 0.1 was always selected,

while the experimentally defined isolation cones were of the order R ∼ 0.3 − 0.4,

rendering such a treatment acceptable.
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3.4.3 Isolated direct photons

While at LO the only possible source of hadronic energy in the isolation cone could

be from the fragmentation process, at NLO we must take into account the fact

that in 2→ n processes, with n ≥ 3, the extra final-state partons carry their own

hadronic energy contribution. If any of the extra partons are sufficiently collinear

to the photon so that they fall within the isolation cone (but are still well-separated

enough that the process is part of the “direct” perturbative contribution), then

the criterion will be violated if Eparton > εhEγ. This is heuristically illustrated in

Figure 3.8b.

Although the PHOX programs take isolation effects into account internally,

the programs are unable [62] to compute two-particle cross-sections with a single

isolated leg. In theory, this does not affect the computations for this chapter, since

we are dealing with single-particle cross-sections here; however, we will need an

alternate method for Chapter 4, which deals with two-particle spectra. Accord-

ingly, we adopt here an approximate method outlined in [61] which gives an order

of magnitude estimate for the effect of isolation on direct γ’s. We will ultimately

find that this effect is negligible for the set of experimental parameters in usage

here.

Firstly, we can separate our direct cross-section into LO and higher-order (HO)

terms, the former of which is unaffected by isolation, and the latter of which we

write as the difference of an inclusive term and a subtraction term:

dσisoγ = dσLO,inclγ + [dσHO,inclγ − dσHO,subγ ] (3.10)

The phase space for the subtraction term corresponds to the phase space for

finding one of the final-state partons in the isolation cone with energy between

εhEγ and some maximum energy E fixed by kinematics:

d3k

(2π)32E
=

1

(2π)3

∫
δ

dΩ

E∫
εhEγ

EdE

2
(3.11)

Here, we’ve adopted the convention that, for computations at midrapidity (for

which yγ ≈ y = 0), we can describe the isolation cone in terms of its half-angle

opening δ in φ-space, so that R ≈ δ.
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Next considering the change in the appropriate squared matrix elements, we

can foresee a possible issue before even writing anything down: the elimination

of IR divergences depended on the precise cancellation of 2 → 3 inclusive terms

and 2 → 2 loop diagrams. Since the isolation cut restricts the phase space of the

former (but not of the latter), we cannot expect this cancellation to occur in the

same way. Accordingly, we want to specifically consider the case in which εh is

very small, so we can isolate the case in which a soft gluon enters the isolation

cone and consider what effect this might have.

When we consider the limit in which εh → 0, under the soft gluon approxima-

tion [63, 64] we can approximate our 2→ 3 matrix element as a convolution over

the Born expression :

dσHO,subγ ≈ g2 1

(2π)3

∫
δ

dΩ

E∫
εhEγ

EdE

2

(
1

E2

)
C(pγ, x1, x2)dσLO,inclγ (3.12)

where C(pγ, x1, x2) is a function of the color factors and the momenta of the

incoming and outgoing partons (excluding the gluon itself). The 1/E2 factor is a

general factor present in the squared matrix element for soft gluon emission. We

can easily perform this integral to obtain:

dσHO,subγ ≈ Γ(pγ, x1, x2, δ, ε)dσ
LO,incl
γ (3.13)

with:

Γ(pγ, x1, x2, δ, ε) ≡
(αs
π

)
sin2

(
δ

2

)
log

(
1

εh

)
C(pγ, x1, x2) +O(ε0) (3.14)

We are now able to use (3.13) and (3.14) to modify (3.9), giving us the final

expression for the NLO prompt photon cross-section, taking into account the effect

of the isolation criterion on both direct and fragmentation components:

dσiso

dpγTdyγ
= [1− Γ(pγ, x1, x2, δ, ε)]

dσLOγ
dpγTdyγ

(pγ;µ,Q,QF )

+
dσHOγ
dpγTdyγ

(pγ;µ,Q,QF ) +
∑
c

1∫
zc

dz

z

dσc
dpγTdyγ

(
pγ
z

;µ,Q,QF )Dγ
c (z;QF ) (3.15)

52



While, in the following section, JETPHOX will be used to numerically evaluate

dσNLOγ , so that the approximation (3.12) is unnecessary, our final result (3.15) will

be used directly in Chapter 4 since in this case DIPHOX is no longer able to

evaluate the exact result.

3.4.4 Results

In this section, we are finally prepared to present results for the isolated NLO cross-

section, as compared to CMS data. In this case, the experimental cone energy is

given as a constant, rather than a multiple of Eγ, which in our earlier treatment

simply requires the substitution εh →
EmaxT

Eγ
in Equation (3.8). Specifically, the

CMS isolation criteria are given by R = 0.4 and Emax
T = 5GeV .

For our computation, we once again use the NLO PDFs given by the CTEQ6

collaboration, obtained in the MS scheme, and the photon FFs from the Bourhis

set. We choose our scales so that µ = Q = QF = pγT , and set
√
s = 7000GeV ,

corresponding to the current LHC operating energy. We apply the constraints

−2.5 < yγ < 2.5 and 21GeV < pγT < 300GeV , corresponding to the kinematic

cuts used in the study [65]. The results are plotted in Figure 3.9.

We observe in Figure 3.9a that even once the isolation criterion is applied, the

LO result for prompt photon production at
√
s = 7000GeV does not sufficiently

account for experimental results. It is approximately half of the observed cross-

section. In Figure 3.9b, we add in the NLO contribution, and observe a much

better agreement with data.

In contrast to the RHIC data for inclusive photon production, for which the

fragmentation and direct contributions were approximately the same for the ma-

jority of the kinematic range, we observe that here the experimental isolation cri-

terion suppresses the fragmentation contribution by almost an order of magnitude

at both LO and NLO.

As before, we can also briefly study the effect of modifying the scales at NLO,

illustrated in Figure 3.10. Here, we’ve plotted the same cross-section as in Figure

3.9b in both the cases where the scales have been doubled and halved, as well as

the ratio of these cross-sections with respect to our earlier result. We see that, in

general, the modified results are within 10% of the original result, although, not

surprisingly, for the larger pT bins the difference becomes much larger.
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(a) LO pQCD Result

(b) NLO pQCD Result

Figure 3.9: High-pT isolated photon spectrum in pp collisions at
√
s = 7TeV . The data

points and error bars for each bin are taken from CMS.[65] The green and red crosses

respectively correspond to isolated direct and fragmentation γ’s for each bin, computed

in JETPHOX, and the stars are the sum of both contributions. µ = Q = QF = pγT
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(a) µ = Q = QF = 2pT , 0.5pT (b) Effect of modifying scales

Figure 3.10: High-pT isolated photon spectrum in pp collisions at
√
s = 7TeV , calculated

at NLO, with scales set to µ = Q = QF = 2pγT . On the right, we take the ratio of the

result with the new scale to the result from Figure 3.9b.

3.5 Hadron Production

Before concluding this chapter, we will give some of the quantitative results for

the production of hadrons in pp collisions, and in particular the differential cross-

sections of neutral pion production. These are relevant in the context of the γ−π
correlation cross-sections computed in Chapter 4. Since the theoretical basis of

these calculations is virtually the same as in the case of photons, we will focus

principally on the comparison of theory to experimental results.

In fact, the only differences to note with respect to our earlier cross-section

computations with photons are:

• The lowest order partonic diagrams are of order α2
s (instead of αs) in the

strong coupling. Therefore, our LO computation will emulate the LO cal-

culation of fragmentation γ’s (i.e.: Equation (3.4)), with the pion FF Dπ0/c

substituted for Dγ/c.

• There is now a little more ambiguity in the choice of scales, since we can

consider either the pT of the jet or the fragmented pion, which can vary by

up to an order of magnitude.

• Pion events generally have a very low background signal, so that no isola-

tion or other selection criteria need to be imposed that could modify the

theoretical calculation.
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(a) pQCD Result

(b) K-factor

Figure 3.11: High-pT pion spectrum in pp collisions at RHIC, calculated at LO and

NLO. The data points and error bars are taken from PHENIX.[58] µ = Q = QF = pπT .

The bottom subfigure gives the K-factor.
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With these points in mind, we plot in Figure 3.11 the LO and NLO results for

inclusive π0 production in p + p collisions at
√
s = 200GeV . The energy scales

are taken as µ = Q = QF = pπT , and the PDFs are taken as previously from the

CTEQ6M set. The pion FFs are obtained using the KKP parameterization [47]

at NLO.

We can note that the experimental data bars are much more constrained than

in the case of photon production. One reason for this is the lack of substantial

background events to take into consideration, as was the case with γ’s due to meson

decay. In this way, we’re able to appreciate much more the level of precision to

which an NLO computation reproduces experimental results. In particular, we

note that in the LO case, there is generally a substantial contribution missing. As

in the case of photon production, it is useful to calculate the resultant K-factor,

which is plotted in 3.11b. Throughout the pT range, this is mostly constant in

the range 1.8-1.9, although at very low pT the computed correction extends to a

value of 2.21. In general, even the NLO result slightly underpredicts the data in

this lower range, a phenomenon that can be attributed to the production of softer

pions from non-pQCD processes.

Ultimately, in both the case of photon production and pion production, we

see that NLO pQCD generally provides excellent agreement with data. In the

case of photons, it is clear that both the direct and anomalous contribution need

to be taken into account to explain the high-pT spectrum, and that a full NLO

treatment reduces the theoretical uncertainty due to scale choice. In addition, a

working formalism exists to modify calculations in the presence of an experimental

isolation criterion. In the following chapter we continue treating these issues in

the context of two-particle correlations.
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Chapter 4

Photon-Hadron Correlations

4.1 Introduction

The measurement of two-particle correlations complements and enhances data ob-

tained from single-particle spectra. At the very least, we can use such observables

as complementary tests of the validity of NLO pQCD, since these correlations

generate new observables that manifest entirely as a result of higher-order effects.

We will define, for example, the γ-triggered momentum imbalance parameter xE,

whose experimental distributions can only be accounted for by higher-order pro-

cesses. Recent PHENIX data [66] actually measures this parameter, so that we

can actually contrast the accuracy of our LO and NLO predictions.

In addition, it turns out that there are a wealth of specialized applications for

two-particle correlations as well. We will take a short look at the γ-γ and γ-π0

final-state distributions at LHC energies, which characterize part of the reducible

background for the Higgs boson, which frequently decays via H → γγ.[10]

There is also a major application with regard to nuclear collisions : Tagging

in-medium jets and hadrons with away-side γ’s allows one to constrain the initial

jet energy distributions before interaction with the QGP medium, since the γ’s

do not experience any energy loss [12]. This allows for a much more constrained

measurement of the redistribution in phase space of the initial jet momenta, which

could enable one to use experimental data to write down a medium-modified FF

for various hadron species.
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4.2 Leading-order Photon-pion Cross-section

Applying the formalism of Chapter 2, the LO double inclusive differential cross-

section for the production of two jets can be obtained as:

dσ

dy1dy2d2pT,1d2pT,2
=
∑
a,b

Ga/p(xa, Q)Gb/p(xb, Q)|M̄ |2

16π2xaxbs2
δ2(pT,1 − pT,2) (4.1)

To obtain a photon-hadron cross-section, we treat one jet as our direct γ and

consider the fragmentation of the other jet into a given hadron species. Accord-

ingly, we must convolve the above expression about the relevant FF. Substituting

in the relevant matrix elements from the processes in 3.1, and making the change

of variables z ≡ ph/pγ, we obtain:

dσ
(D)
γh

d2pTdydz
=
∑
a,b

∫
dxaGa/p(xa, Q)Gb/p(xb, Q)Dh/d(z,QF )

1

π

2xaxb
2xa − xT ey

dσab→γd

dt̂

(4.2)

We can note that, as expected, this is the same as the expression (3.3) for LO

direct γ’s, convolved about the FF for the away-side hadron Dh/d. This expression,

integrated over the ranges 5GeV < ptrigT < 7GeV , 7GeV < ptrigT < 9GeV , and

9GeV < ptrigT < 12GeV is plotted in Figure 4.1. In every case, the rapidity ranges

of all produced particles are taken to be −0.35 < y < 0.35, corresponding to

the area subtended by the central arms of the PHENIX detector. The scales are

given by µ = Q = Qf = pγT , and the PDFs and FFs are taken from the CTEQ5L

and KKP LO sets respectively. The plots are normalized by dividing by the total

inelastic cross-section for direct γ’s in the respective kinematic ranges.

We are clearly able to see that, although the data is qualitatively reproduced

in all the diagrams for the z < 0.8 region, the curve doesn’t always fall within

accepted error. In addition, at LO it is kinematically impossible to reproduce

any results in the regime z > 1, since the hadron fragments from a jet whose

momentum is the same as the photon’s, and therefore has less energy than the

photon. The experimental bars in this “LO forbidden” region can almost entirely

be attributed to NLO effects, which are discussed in the following section.

We can also see that there is yet another source of imprecision in our calcula-

tion: we have made the approximation that applying isolation cuts allows us to
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(a) 5 < ptrigT < 7GeV/c

(b) 7 < ptrigT < 9GeV/c

(c) 9 < ptrigT < 12GeV/c

Figure 4.1: The LO away-side charged hadron yield per isolated direct photon trigger as

a function of z for the ranges 5 < ptrigT < 7GeV/c, 7 < ptrigT < 9GeV/c, and 9 < ptrigT <

12GeV/c. The data points and error bars are taken from PHENIX [66] and the curve is

calculated using LO pQCD.
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considering only the direct γ contribution, and omit any contribution from the

channel where both the γ and the hadron fragment. However, from our discussion

in Section 3.4, we know that there is a remaining fragmentation contribution in

the precise kinematic region where z is large. In the following section, we will

attempt to rectify these various inaccuracies and improve upon our results here.

For the sake of completeness, in Figure 4.2, we show the corresponding LO plot

calculated at the LHC energy
√
s = 7TeV . We choose all of the same parameters

and kinematic constraints as in Subsection 3.4.4, and have separated the results

into pγT bins as in [65]. No data currently exists with which to compare these

results.

4.3 NLO Cross-section

4.3.1 NLO Observables

Before presenting our NLO result, we will introduce useful new parameters, and

revisit the role of isolation algorithms in the case of two-particle spectra.

At LO, in the case of a direct photon-tagged jet, the parameter xh ≡ pj1T /p
γ
T

must be equal to 1, as derived in Section 2.6. Accordingly, the momentum fraction

of a fragmented hadron is given by z = phT/p
γ
T . At NLO, we expect that final-state

emission will generate an imbalance in the energies of the outgoing particles, as

well as introduce additional transverse momenta components. With this mind, we

write down the momentum-imbalance parameter for a γ trigger, first defined in

[67]:

xE ≡ −
pT,γ · pT,h

p2
T,γ

= −pT,h
pT,γ

cos(∆φ) (4.3)

In the case ∆φ = π, as at LO, (4.3) just reduces to the expression for z.

Experimentally, xE is easy to measure, as it depends only on the magnitude and

direction of the momenta of the outgoing pair. It is, of course, also possible

to use triggers other than photons. In [66], for instance, they also measure the

experimental yield of π0-h pairs with respect to xE.

We should also note that there are additional reasons a particle pair can gain

a non-zero transverse momentum with respect to their outgoing paths. In partic-
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(a) 21 < ptrigT < 45GeV/c

(b) 45 < ptrigT < 300GeV/c

Figure 4.2: The LO away-side charged hadron yield per direct photon trigger as a

function of z for various pγT bins at the LHC.
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ular, we mention the so-called “intrinsic kT effect”, which assumes that the initial

colliding partons can have an initial transverse momentum with respect to the

colliding hadrons, due to Fermi motion with those hadrons. In general, this effect

will be of order ≈ 500MeV [68], and so at higher energies can be almost entirely

neglected, as we will do here.

A second useful observable is defined as the vector pout, whose direction is

perpendicular to pγT and whose magnitude is given by:

pout = pγT sin(∆φ) (4.4)

We can note that pout must purely reflect higher order effects, as LO kinematics

ensure that it is always equal to 0. For this reason, this variable is extremely

sensitive to the intrinsic kT effect, which isn’t accounted for in our standard NLO

pQCD formalism. At lower energies, it has been shown that NLO pQCD cannot

entirely account for this distribution, which requires a resummation of initial-state

gluon emission [69].

4.3.2 Isolation revisited

As a quantitative example of the extent to which an isolation criterion can affect a

two-particle correlation, we consider the two plots in Figure 4.3. In these figures,

we’ve plotted the NLO differential cross-section dσ
dMγπ0

against the invariant mass

Mγπ0 of a correlated photon-pion pair. This calculation follows a similar study

done in [10]. In both subplots, we take the MRST02 PDFs and KKP FFs, and

choose our scales as µ = Q = QF = Mγπ0/2. Using the criterion outlined in

Section 3.4, we take the radius of the isolation cone as R = 0.4. In the top plot,

we’ve taken Emax
T in the isolation cone to be 100GeV , and in the bottom plot to

be 10GeV .

What must be made clear here is that the isolation criterion is being applied

to both outgoing legs, with the goal of examining how effective the criterion is in

removing the background signal caused by the π0 decay. It is clear that the isolation

cut suppresses a substantial contribution from the total γ−π0 signal – it is cut by

almost 2 orders of magnitude. As usual, we note that at NLO, the subdivision into

“direct” and “fragmentation” components is explicitly scale-dependent – however,
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(a) Emax
T = 100GeV

(b) Emax
T = 10GeV

Figure 4.3: Invariant mass distribution for γ − π0 pairs in the 80 − 140GeV range at
√
s = 14TeV , with isolation criteria R = 0.4 and varying EmaxT .
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the isolation cone is large enough so that, for any reasonable choice of Qf , the

entire fragmentation component lies in the cone. Meanwhile, in Figure 4.4, we

study the effect of isolation on final-state γ − γ pairs and see that this is affected

much less when going to the stronger isolation criterion. The cross-section of direct

γ − γ pairs is virtually unchanged between the top plot (Emax
T = 10GeV ) and the

bottom plot (Emax
T = 100GeV ), while the contributions from fragmentation γ-

direct γ pairs are reduced by a factor of 0.6-0.8. Fragmentation γ-fragmentation γ

pairs are suppressed by 1-2 orders of magnitude so that their contribution to the

total cross-section becomes almost negligible.

Although this calculation offers an interesting theoretical analysis of the effect

of altering Emax
T , it also has a practical purpose, as it helps quantize the back-

ground signal for the process H → γγ which is expected to be a dominant decay

mechanism for the Higgs at the LHC. By generating a quantitative prediction for

π0 − π0 and π0 − γ events, which will mimic γ − γ events due to the decay of the

pion, we are able to form a basis for experimentally subtracting these backgrounds.

This study is developed in more detail in [10].

4.3.3 Results

We are finally prepared to present the final results for the NLO isolated photon-

pion cross-section, as calculated using Equation (3.15). Although a NLO treatment

of this cross-section has already been completed in [55], this study did not fully

implement the PHENIX isolation criterion, having assumed that the cross-section

could be approximated by computing only the direct inclusive contribution. Al-

though this is roughly the case in the low-mid-xE range, the range 0.9 < xE < 1.3

could not be reproduced under this assumption.

Substituting the experimental isolation values δ = 0.3 and εh = 0.1 into our

expression (3.14), we obtain Γ ≈ 0.003. For this reason, we can effectively con-

sider the isolated NLO direct contribution to be virtually identical to the inclusive

contribution, given this set of parameters. As per Equation (3.8),we include the

fragmentation contribution for the region z > 1
1+εh

= 0.91.

We plot our results in Figure 4.5, with the same choice of scales, PDFs and FFs

as in Section 4.2. Unfortunately, with the exception of the kinematic range 5GeV <

pγT < 7GeV , the PHENIX data does not explore the high xT kinematic range,
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(a) Emax
T = 100GeV

(b) Emax
T = 10GeV

Figure 4.4: Invariant mass distribution for γ − γ pairs in the 80 − 140GeV range at
√
s = 14TeV , with isolation criteria R = 0.4 and varying EmaxT .
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which is primarily where the isolation method used would be tested. Nevertheless,

in Figure 4.5a, we are able to see that including the fragmentation contribution

does help describe data in this kinematic region, which was uninhabited in our

LO plot 4.1a. In addition, for Figures 4.5b and 4.5c, the shape of the theoretical

distribution fits the data more closely than in our LO calculation.

In Figure 4.6, we have also plotted the analogous result for the LHC, for the

pγT bin given by 85 < pγT < 120GeV . As we’ll discuss in the following section,

it is principally in higher-pT bins such as this one that we are interested when

comparing γ-hadron spectra in p + p versus nuclear collisions. This is due to the

fact that jet resolution is often only possible in nuclear collisions for pjetT > 50GeV

[70].

Additionally, in these pT ranges we expect that our plots reproduce experimen-

tal data to an even greater accuracy than in the case of the PHENIX data, since

the aforementioned initial-state “intrinsic” kT effect is now trivial compared to the

energies of the outgoing particles.

4.4 Applications to Nucleus-Nucleus Collisions

One of the most important results in modern nuclear theory is the prediction of the

formation of a state of hot dense matter, the quark-gluon plasma (QGP), at high

enough temperatures or energy densities [6]. The existence of this medium has

been experimentally corroborated with various results from PHENIX [7]. Observ-

ables such as the cross-sections of emitted photons and hadrons serve as important

probes of the QGP, as they reveal information about the temperature and energy

density of the medium, which does not exist long enough to be probed by external

means. The task is not entirely simple, however. Photons, for instance, are pro-

duced through a plethora of mechanisms : initial hard processes, fragmentation

of hard partons, jet-medium interactions, thermal processes, and meson decay.

Separating out these various signatures requires precise theoretical predictions for

each signature individually. Accordingly, a large part of the recent heavy-ion

programme at RHIC has been centered on establishing very good control on the

so-called ”baseline” measurements obtained in p+ p collisions.[71, 72, 73]

In particular, early results from RHIC [13, 14] showed a clear suppression of
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(a) 5 < ptrigT < 7GeV/c

(b) 7 < ptrigT < 9GeV/c

(c) 9 < ptrigT < 12GeV/c

Figure 4.5: The NLO away-side charged hadron yield per isolated photon trigger as

a function of xE for the ranges 5 < ptrigT < 7GeV/c, 7 < ptrigT < 9GeV/c, and 9 <

ptrigT < 12GeV/c. The data points and error bars are taken from PHENIX [66] and the

histograms are calculated using NLO pQCD.
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Figure 4.6: The NLO away-side charged hadron yield per isolated photon trigger as

a function of xE for the range 85 < ptrigT < 120GeV/c at LHC energies. The data is

calculated using isolated NLO pQCD.

high-pT hadrons in Au + Au collisions with respect to p + p collisions, the result

known as “jet quenching” produced via interactions between the hard partons and

the surrounding color-charged medium. This result has typically been character-

ized by the so-called nuclear modification variable RAA for a given particle type h,

defined by :

Rh
AA =

1

Ncoll

d2Nh
AA/dptdy

d2Nh
pp/dptdy

(4.5)

Here, Ncoll is a normalizing factor which is equal to the expected number of bi-

nary collisions occuring within the nuclear collision. As shown in Figure 4.7, taken

from an early PHENIX publication [14], the RAA for neutral pions in central colli-

sions is approximately 0.2-0.4 in the observed pT range. Meanwhile, in peripheral

collisions, such a suppression is not apparent. In the case of photons, it has been

observed that there is virtually no suppression for any centrality class [12] : we can

conclude that the observed jet quenching only applies to color-charged particles,

supporting the theory that this effect is due to interactions with a color-charged

medium.

While RAA is useful in qualitatively establishing the existence of the thermal
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Figure 4.7: High-pT pion RAA in Au+Au collisions, as measured by PHENIX.[14]

medium, we can see that in certain respects it is not a very “differential” observ-

able. In fact, as shown in Figure 4.8, taken from [74], there are a multitude of

various models with very different jet energy loss mechanisms that all predict ap-

proximately the same values for RAA. Ideally, what we would prefer to have is

the specific re-distribution in phase space of a given particle species after having

interacted with the medium, which can be obtained by comparing the vacuum FF

to the medium-modified FF.

This is not a simple task, though, since this would require a measurement of

the jet energy profile in the medium, which is done by experimentally summing all

the hadrons falling within a certain jet cone radius. In nuclear collisions, these jet

reconstruction techniques simply do not work at energies below 50GeV , as a result

of the high background of particles created as a result of medium interactions.[70]

As shown in Section 2.6, at LO (i.e.: in 2 → 2 processes), two final-state

partons will have equal and opposite momenta as they emerge from the collision.

This means that, at LO, if we are able to observe a final-state photon-hadron pair,

the photon will exactly determine the initial momentum of the parton from which

the hadron fragmented, and correspondingly we can observe very specifically how

the phase space of outgoing jets is modified in the medium – in effect, a “medium-
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Figure 4.8: High-pT pion RAA in Au+Au collisions. The diagram is taken from [74].

modified fragmentation function”. In reality, we know that NLO effects form

a significant contribution, but our newly-defined xE should correspond precisely

to the momentum fraction of the hadron with respect to the jet from which it

fragments at NLO. This is exactly the variable with respect to which we should

be computing the hadron’s FF.

In this way, a new nuclear modification factor IAA can be defined as the scaled

ratio of the γ-triggered FF in nuclear collisions with respect to p+p collisions. For

a given range in pγT , we can write this as:

IAA(z, φ) ≡ PAA(z, φ)

Ppp(z)
(4.6)

In this case, Ppp(z) is simply the number of γ-h pairs plotted as a function of

z, normalized by the total number of γ’s observed – this is in fact the quantity

we have already plotted for various pT bins in Figure 4.5 for RHIC and Figure

4.6 for the LHC. Accordingly, an experimental measurement of IAA corresponds

to a measurement of the medium-modified FF, and hence to a measurement of the

redistribution of photon-tagged hadrons in phase space due to jet quenching.

Ultimately, this provides yet another example of the use of measuring photons

in high-energy collisions. Given that experimental detectors are currently refined

enough to detect correlated pairs of particles, it seems like a given that these
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should be measured extensively to complement single-particle spectra. In addi-

tion, the huge backgrounds that originate in nuclear collisions suggest that those

calculations over which we do have control – higher-order direct and fragmentation

γ spectra, in this case – should be computed with the greatest level of precision

possible.
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Chapter 5

Conclusion

Cross-sections for both single-particle cross sections and photon-hadron cross sec-

tions have been computed up to NLO in αs, with results broadly matching the

current available experimental data from experiments at both RHIC and LHC. In

particular, we have examined in detail the role of photons in hadronic collisions,

and the physics which describes their various modes of production.

In Chapter 2, we presented a broad review of the theoretical ideas needed

to perform cross-section computations at both LO and NLO. In particular, we

saw how collinear divergences in higher order Feynman diagrams necessitated the

introduction of PDFs and FFs which could absorb the non-perturbative pieces in

the computation. After introducing the S-Matrix formalism and the running of

αs, we were able to simplify the kinematics in our expressions to obtain final forms

for our single-particle and multi-particle spectra.

In Chapter 3, this formalism was applied in the case of single-photon and single-

pion production at RHIC and LHC energies, with wide agreement with experimen-

tal results from PHENIX and CMS data respectively. A comparison between LO

and NLO computations in each case showed the substantive corrections that re-

sulted in the latter case. In addition, we were able to briefly examine the effect

of altering our factorization energy scales, as well as the theoretical modifications

needed in the presence of γ isolation cuts.

Chapter 4 allowed us to extend our formalism to the case of two-particle corre-

lations. In particular, we examined the spectrum of charged hadrons tagged with

photons as compared to PHENIX data, and found a remarkable agreement. Again
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effects due to isolation needed to be taken into account to accurately reproduce

the data. It was found that only by including effects from fragmentation and from

NLO processes that we could explain the cross-section in certain kinematic regions

for which no LO component existed.

It’s perhaps not surprising that it has taken such a long time for both theoretical

and experimental techniques to be sufficiently refined so that we have a high-

precision framework in which to test predictions of pQCD. On the side of theory,

one is forced to admit that, due to the asymptotically free nature of the SU(3)

theory, there is a fundamental barrier to making predictions at the same level

of precision as in QED. Though at high energies we are in principle able to use

perturbation theory, and at low energy, effective theories give reliable predictions,

the normal techniques simply cannot be applied in the ΛQCD range. On top of it,

the fact that we observe bound states rather than free quarks means that every

computation we make that we wish to compare with experiment must deal with

long distance non-perturbative physics. It is as if these two fundamental properties

of QCD – asymptotic freedom and color confinement – are working hand in hand

to obscure reality from us, and to diminish the predictive power of our theory.

Though the factorization theorem salvages this somewhat, we are still forced

to use distribution functions parameterized by experimental data, and introduce

unphysical scales into our problem, resulting in an inherent source of theoretical

uncertainty. On the other hand, there has not yet been observed any contradic-

tion between theory and experiment, so that pQCD seems indeed to be the correct

theory of the strong interaction at high energies. In addition, these issues have

resulted in the development of a rich theoretical basis for non-perturbative cal-

culations, including lattice methods and, more recently, methods related to the

AdS/CFT correspondence.

For the next couple of decades, data from the LHC and other operating colliders

should provide a wealth of opportunities to continue testing the Standard Model

as well as models containing new physics. There is still much work to be done –

we are approaching the threshold of what it is possible to engineer, so that soon

entirely new experimental and theoretical methods may be needed to continue

making progress. Optimistically, one can construct an analogy with the state of

physics as it was at the end of the 19th century, when it was believed that almost
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everything “had been done.” Now, after over a century of relativity, quantum

mechanics, and all the ensuing developments, we know that the physical world is

far richer and more subtle than we ever could have imagined. It may be that we

just need a few new creative, paradigm-altering ideas to keep us moving on the

road forward.
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Appendix A

QCD Feynman Rules

In this appendix, we briefly list the Feynman rules used in computations in the

thesis. The conventions are such that Roman letters a and b refer to color indices

in the adjoint representation, i and j are color indices in the fundamental repre-

sentation, f refers to flavor indices, and Greek letters µ and ν refer to the Lorentz

structure of the expressions. The forms of the propagators and the vertices are

obtained using the QCD Lagrangian, given by [75, 22]:

LQCD = −1

4
F a
µνF

µνa + ψf,i(iγ
µDµ,ij −mfδij)ψf,j (A.1)

Here, F a
µν ≡ ∂µA

a
ν − ∂νAaµ − gfabcAµ,bAν,c is the field tensor for the gluon field

Aaµ, and Dµ,ij ≡ ∂µδij + ig(ta)ij is the relevant covariant derivative, which acts on

the quark fields ψf . The set of matrices ta must satisfy the Lie algebra binary

operation:

[ta, tb] = ifabctc (A.2)

where fabc are the structure constants of the Lie algebra. For QCD, described by

the Lie group SU(3) [22, 76], the range of the sum over color indices is given by

i, j = 1, 2, 3 and a, b = 1, ..., 8. It is a simple matter to verify that (A.1) is gauge

invariant under the relevant group transformations. Because of the difficulty in

quantizing a gauge-invariant Lagrangian, it is typical to add a “gauge-fixing” term,

conventionally given by:

Lgauge = − 1

2ξ
(∂µA

µ
a)(∂νA

ν
a) (A.3)
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Furthermore, now having fixed ourselves in the so-called covariant gauge, we

also need to introduce new “ghost” fields ca and c̄a to preserve the unitarity of

the scattering matrix in QCD. These additional terms in the Lagrangian take the

form:

Lghost = (∂µc̄a)(∂
µδad − gfabdAµb )cd (A.4)

Taking into account all of the interaction terms in (A.1), (A.3) and (A.4), we

see that there must be vertices corresponding to the q̄gq, ggg, gggg, and c̄gc terms.

We list the Feynman diagrams for these interactions in Figure A.2, as well as all

of the particle propagators in Figure A.1.

We note that, in addition to the listed Feynman rules, there is another similar

set of diagrams not listed that arise from the renormalization counterterms in the

renormalized Lagrangian. These can be found, for example, in [22].

Finally, we will also need one additional diagram from QED, namely that of

the quark-photon interaction, obtained from the QED Lagrangian:

LQED = −1

4
FµνF

µν +
∑
f

ψf (iγ
µDµ −mf )ψf (A.5)

where Fµν ≡ ∂µAν − ∂νAµ and Dµ ≡ ∂µ − ieAµ. Once again, contained in our

covariant derivative is the term which couples the quark fields to the electromag-

netic field, whose diagrammatic representation is given in Figure A.3. Incoming

and outgoing fermionic particles are given by the Dirac wavefunctions u(p, s) and

ū(p, s) respectively, and incoming and outgoing antiparticles are given by v̄(p, s)

and v(p, s) respectively. Incoming and outgoing vector particles are given by the

polarization tensor wavefunctions εµ(k, λ) and ε∗µ(k, λ).

The prescription for computing a matrix element is : 1. Multiply all of the

relevant expressions for the propagators, vertices, and external legs, taking care to

uniquely assign all momenta, color, spin, and flavor indices; 2. In the case of higher-

order diagrams, integrate over undetermined loop momenta; 3. Sum all diagrams

containing the initial and final states in question. Under this prescription, one

need not worry about momentum conservation, which is dealt with entirely within

the relevant delta functions in the expression for the cross-section (See Section

2.2).
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(a) Gluon propagator

(b) Ghost propagator

(c) Quark propagator

Figure A.1: Propagator rules in QCD

When dealing with the squared matrix element in the case of an unpolarized

cross-section, it is generally necessary to average over initial state spin and color,

and sum over final state spin and color. The following polarization sums are almost

always useful in simplifying the resulting expressions:

∑
s,s′

u(p, s)ū(p, s′) = /p+m
∑
s,s′

v(p, s)v̄(p, s′) = /p−m (A.6)

∑
λ,λ′

ε∗µ(k, λ)εν(k, λ
′)→ −ηµν (A.7)

It is important to note that the expression for the sum over vector polariza-

tions (A.7) is not a strict equality, but merely a replacement that one is permitted

to make as a result of the Ward identity. Once one makes these substitutions,

there are other useful tricks that are commonly used in manipulating the gamma

matrices and evaluating the resulting traces, for which the reader can find a com-

prehensive list in [16]. In the examples computed in Chapter 2, the following

identities were sufficient:

γµγµ = d γµγνγµ = (2− d)γν γµγνγργµ = 4ηνρ + (d− 4)γνγρ (A.8)
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(a) Quark-gluon vertex

(b) Three-gluon vertex

(c) Four-gluon vertex

(d) Ghost-gluon vertex

Figure A.2: Vertex rules in QCD
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= ieeqγ
µ

Figure A.3: Quark-photon vertex

Tr(1) = 4 Tr(γµ1 ...γµ2n−1) = 0 n ∈ N

Tr(γµγν) = 4ηµν Tr(γµγνγργσ) = 4(ηµνηρσ + ηµσηνρ − ηµρηνσ) (A.9)

In particular, we use the d-dimensional expressions in the case of higher-order

diagrams for which dimensional renormalization is prescribed. For LO diagrams,

it is sufficient to use d = 4.

The final step in evaluating the pQCD squared matrix elements involves com-

puting the so-called “color factor” for the process, for which one needs to evaluate

products of the SU(3) group generators ta. For the color transformations of quarks,

these are represented by the Gell-Mann matrices λi, i = 1, ..., 8, a list of which can

be found in [18], along with commonly applied mathematical identities that relate

them to one another. The identities used in Chapter 2 are given by:

Tr(tatb) =
1

2
δab (ta)ik(t

a)lj =
1

2
δijδlk −

1

6
δikδlj (A.10)

Although this account has been very cursory, the rules and identities here

should be sufficient for the beginning reader to follow along with the computations

in the thesis. Further details can be found in [16, 17, 18, 19, 21].
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