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ABSTRACT 
This paper presents a matrix-based procedure to characterize the specific stiffness 
properties of 2D lattice materials with any arbitrary cell topology. Unlike previous works, 
the current study automates the analysis process to include lattice materials whose unit 
cell has elements extending between adjacent cells and thus intersecting their envelopes. 
The main challenge in the analysis of this periodic lattice structures is that the unit cell 
does not have the full information concerning its nodal kinematic and static periodicity. 
For this reason, we introduce the Dummy Node Scheme, which enables the analysis of 
lattice material with any cell topology.  
The lattice material is modelled here as a pin-jointed infinite micro-truss structure. The 
results of the determinacy analysis are used to distinguish between the bending-
dominated and the stretching-dominated behaviours of the material. The Cauchy Born 
Hypothesis is used to homogenize the lattice material properties by formulating the 
microscopic lattice nodal deformations in terms of the material macroscopic strain field. 
This formulation, in turn, is used to express the microscopic element deformations in 
terms of the macroscopic strain field, from which the material macroscopic stiffness 
properties are derived. In this process, the Dummy Node Scheme is a necessary step to 
construct the nodal periodicity within the unit cell, which is used to apply the Cauchy 
Born kinematic boundary condition to the nodal deformation wave functions. The 
procedure introduced in this paper is applied to 10 lattice topologies, five of which have 
unit cells with a square Bravais lattice symmetry and the other five have unit cells with a 
hexagonal Bravais lattice symmetry. Finally, charts representing the relative elastic 
moduli of the lattice material versus its relative density are developed. These charts assist 
the selection of the best topology of a stretching-dominated lattice material for a given 
application that requires a material with specific stiffness properties.  

 
KEYWORDS: Lattice Material, Micro-truss, Bloch’s Theorem, Dummy Node Scheme, 
Stretching-Dominated Lattice Material. 
 
I. INTRODUCTION 
A lattice material is a type of cellular material with periodic microstructure. The unit cell 
is the building block used to tessellate the space into a periodic modular pattern. An 
important condition to generate a consistent tessellation is that the unit cell should have a 
minimum level of symmetry, as defined by the Bravais lattice symmetry [1]. There are 
five Bravais lattice symmetries in 2D. In the current study, we consider only lattice unit 
cells with hexagonal and square Bravais lattice symmetries. Several 2D lattice materials 
with hexagonal as well square Bravais lattice symmetry have been introduced in literature 
[2- 5]. The former includes the regular fully triangulated lattice, the regular hexagonal 
lattice and the semi-regular Kagome’ lattice, which have the modified Schläfli symbols of 
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36, 63 and 3.6.3.6, respectively. The latter consists of the regular square lattice, the 
rectangular lattice and the double braced square lattice.   
A lattice material can be classified into bending and stretching-dominated materials with 
respect to the microscopic failure mode of the unit cell elements. Microscopic structural 
analysis shows that the bending-dominated lattice material has a low nodal connectivity 
at the cell vertices, which results in a microscopic bending-dominated failure mode, 
where the cell elements collapse by bending stresses. This feature generates non-optimal 
mechanical properties where the element solid materials are not fully employed in the 
microscopic loading resistance. On the contrary, the stretching-dominated lattice material 
has a high nodal connectivity at the cell vertices, which results in microscopic stretching-
dominated failure mode where the cell elements collapse by axial stresses, giving a much 
higher stiffness and strength per unit mass. For instance, the structural analysis of 
stretching-dominated lattice material shows that its stiffness and strength scale up with 
the density ratio of the lattice material to the solid material,⎯ρ; on the other hand, the 
stiffness and the strength of the bending-dominated material are governed, respectively 
by⎯ρ2 and⎯ρ3/2 [6]. The different scaling laws have a strong impact on the strength and 
stiffness of the material. For example, at ⎯ρ =0.01, the stretching-dominated lattice 
material has superior static performance because it is a hundred times stiffer and ten 
times stronger than the bending-dominated material.  
To distinguish between bending and stretching-dominated lattice materials, we resort to 
the analysis of the kinematic determinacy of the pin-jointed version of the lattice micro 
structure. Maxwell (1864) [7] set a rule for the minimum number of bars necessary for a 
pin jointed framework to be kinematically determinate; these minimum numbers of bars 
are, (2j-3) and (3j-6) in 2D and 3D frameworks, respectively, where j is the number of 
joints within a finite framework. A framework with less number of bars than the 
minimum condition of Maxwell is a mechanism, unless its joints are set to be rigid; in 
this case the framework behaviour is bending-dominated. Calladine [8] and Pellegrino [9, 
10] reviewed the linear-algebraic basis of Maxwell’s rule using the fundamental 
subspaces of the equilibrium and the kinematic matrices of a pin jointed framework. As a 
result, they reformulated the problem to obtain the generalization of Maxwell's rule, 
which includes information about the states of self-stress and the states of internal 
mechanisms within the framework. A state of self-stress is the vector of element forces 
generated within an unloaded framework; on the other hand, a state of internal 
mechanism is the vector of joint displacements corresponding to non-deforming 
elements. The generalized Maxwell’s rule can be used to obtain an accurate prediction of 
the determinacy state of finite lattice structures in the form of a unit cell or a finite cluster 
of cells. Since the lattice material is structured at the microscale while its effective 
properties are homogenized at the macroscale, the analysis of the lattice material assumes 
a periodicity of the unit cell in an unbounded space. Therefore a complete determinacy 
analysis of lattice materials requires extending the analysis to the infinite lattice structure. 
Such an extension was proposed by Deshpande et al. (2001) [11] who examined the pin-
jointed mechanics of a restricted set of infinite-periodic lattice topologies. They 
considered only topologies wherein the joints are similarly-situated, i.e. the framework 
appears the same and in the same orientation regardless of the viewpoint. In 2D, these are 
the regular square and triangular lattices; in 3D, this set includes the regular octet-truss. 
The generalized Maxwell’s rule, was used to prove that the necessary but not sufficient 
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nodal connectivity, Z, of a structure to be stretching-dominated is Z=4 and Z =6 in 2D 
and 3D, respectively. On the other hand, the sufficient nodal connectivity was proven to 
be Z=6 and Z =12 in 2D and 3D, respectively. More recently, Hutchinson (2004) [4] used 
the Bloch’s theorem for modeling periodic waves in an infinite lattice structure with any 
Bravais symmetry. His analysis focused mainly on the case where the cell elements of the 
lattice share their end points with those of the cell envelope. However, a procedure to 
analyze lattice materials whose unit cells cell elements intersect their envelopes need to 
be formulated.  
In this work, the analysis of lattice materials is extended to consider the case where some 
of the cell elements do not intersect the cell envelope at their end joints. For this purpose, 
we introduce the Dummy Node Scheme, which consists of adding dummy nodes at the 
points of intersection between the microscopic cell elements and the cell envelope. These 
dummy nodes are used to generate the kinematic and the equilibrium matrices of the unit 
cell finite microstructure. In addition, they are also used to generate an explicit 
expression for the microscopic nodal deformations in terms of a macroscopic 
hypothetical homogeneous strain field, as assumed by the Cauchy-Born hypothesis [12]. 
The degrees of freedom associated with the hypothetical dummy nodes are later removed 
from the generated matrix systems. This procedure is integrated in a matrix formulation 
for a comprehensive structural analysis of different lattice topologies. The results are then 
plotted in design charts that help to gain insight into the stiffness generated by the 
considered cell topology. 
Organized in five sections, the paper introduces the theoretical analysis and the 
description of the systematic procedure in section two. In the third section, this procedure 
is applied to the different topologies with hexagonal and square Bravais lattice 
symmetries. The forth sections section compares the characterized stiffness properties 
before presenting the concluding remarks in the last section. 
 
II. ANALYSIS 
Notions of solid-state physics can help in solid mechanics to examine the characteristics 
of lattice materials. Principles of symmetry, for example, are often used in solid-state 
physics to simplify the formulation of the governing law of crystals. In this paper, we 
adopt the classical notion of a crystal structure, which can be described by introducing 
two characterizing parameters as [1]:  
 

  Crystal = Lattice + Bases     (1) 
 

The lattice is defined as a translational infinitely periodic arrangement of points [13, 14]. 
When periods of the unit cell are perfectly stacked in two or three dimension, the space is 
told to be tessellated. The bases are the mathematical representation for the physical 
constituents that are repeated in every cell translation.  
In continuum mechanics, a lattice material can be characterized by adopting the above 
definition. The cell envelop, which defines the structure periodicity, is described in 

mathematical terms by the lattice translational symmetry primitive bases, ka
→

, where 
{ }nk ,..,1∈ and n=2 or n=3 in 2D or 3D, respectively. The set of bases, representing the 

physical structure, contains two groups, namely, the joint bases group and the bar bases 
group. 
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Fig (1) 2D Square Lattice Structure 

 
Figure (1) illustrates this concept, as applied to the square lattice. Fig (1-a) shows the 
microscopic crystal structure of the lattice material, where two candidate unit cells (A) 
and (B) are shown (within the dotted envelope). Fig (1-b) shows the lattice translational 

symmetry primitive bases 1
→
a and 2

→
a . Figures (1-c) and (1-d) illustrate the physical 

structure bar position vectors, mb
→

, and joint position vectors, lj
→

, of the candidate unit 
cells, (A) and (B), respectively, where { }bm ,...2,1∈  and { }jl ,...2,1∈ . b and j are the total 
number of bars and joints within the unit cell structure, respectively.  
 
II.1 Unit Cell Determinacy Analysis 
Following the approach by Calladine and Pellegrino [8-10], we consider a finite truss 
structure that consists of j total joints connected by b bars. The b bar tension forces and 
displacement deformations are assembled into vectors t and e, respectively. On the other 
hand, the nj components of external force and joint displacements are assembled into 
vectors f and d, respectively. The equilibrium and the kinematic systems of the truss 
structure are expressed as: 
 

ft =A.       (2a) 
    ed =B.       (2b) 

 
where ( ) bnjR ×∈A  is the equilibrium matrix and ( )njbR ×∈B is the kinematic matrix. The 
formulation of the equilibrium and the kinematic matrices for the unit cell shown in Fig 
(1-c) is straightforward. However, to generate the equilibrium and the kinematic matrices 
of the unit cell illustrated in Fig (1-d), we need to introduce an alternative procedure, as 
explained in the following. 
 
A. Dummy Node Scheme 
The dummy node Scheme is introduced to deal with lattice structures containing structural 
elements extending between adjacent unit cells. The derivation and theoretical analysis of 
the dummy nodes is detailed in appendix A. Here, we describe the steps required to apply 
the dummy node Scheme. 
Step 1: Hypothetical dummy nodes are introduced at the intersection points between the 
microscopic cell elements, extending between neighbouring unit cells, and the cell 
envelope. The kinematic and the equilibrium matrices of the finite microstructure are then 
reformulated to take into account the dummy nodes.  
Step 2: Once the kinematic and the equilibrium systems are formulated, the degrees of 
freedom associated with the dummy nodes are eliminated from the generated matrices. 
The degrees of freedom associated with the dummy nodes are expressed in the row space 
of the equilibrium matrix, given in eqn (2a), as well as in the column space of the 
kinematic matrix, given in eqn (2b). To eliminate the degrees of freedom associated with 
the dummy nodes, all modes in the row space of the equilibrium matrix and the column 
space of the kinematic matrix that are associated with the dummy nodes are eliminated. 
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The same elimination technique is applied to the nodal force and the nodal displacement 
vectors. 
 
As an example, consider the unit cell, (B), shown in Fig (1-d). The above steps are 
applied as follows: 
Step 1: Four dummy nodes are defined for the unit cell (B) as shown in Fig (2). It should 
be noted that in this case the dummy node position vectors are coincident with the 
position vectors of the bars that intersect with the cell envelope and the total group of 
joint position vectors now includes also the dummy nodes position vectors. Using this 
new group of joint position vectors along with the group of bar position vectors, the 
equilibrium and the kinematic matrices of the unit cell structure can be formulated as:  
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where df and dd are dummy node forces and deformations, respectively. 
Step 2: the degrees of freedom associated with the dummy nodes are now eliminated 
from the matrix systems of eqn (3), which results in: 
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Equation (4) shows, respectively, the equilibrium and the kinematic systems of the unit 
cell shown in Fig (1-d).  
For the determinacy analysis of the structure, we resort to the classical four fundamental 
vector subspaces of the kinematic and the equilibrium matrices [9].  

 
Fig (2) Dummy nodes (■) added to the unit cell 

 
It should be noted that, for the determinacy analysis of the unit cell finite structure, the 
computation of the four fundamental subspaces must be applied to the equilibrium and 
the kinematic matrices that include the degrees of freedom associated with the dummy 
nodes, e.g. the matrices given in eqn (3) for the square lattice. The reason for this is that 
the elimination of the dummy nodes from the matrix system of the finite structure acts as 
the application of boundary conditions that fix the finite structure into a foundation which 
results in inaccurate results. However, for the determinacy analysis of the infinite lattice 
structure, the reduced forms of the kinematic and the equilibrium matrices, e.g. the 
matrices given in eqn (4) for the square lattice, are used.   
II.2 Infinite Structure Determinacy Analysis 
Hutchinson [4] first applied the Bloch’s theorem to the determinacy analysis of the 
infinite lattice structure. The Bloch’s theorem requires the definition of a set of parameters 
to describe a wave- function over the infinite lattice structure. The same approach is used 
in this work and the relevant lattice parameters are briefly defined here. 
 
A. Direct Translational Bases 

The lattice translational symmetry primitive bases, ka
→

, are referred to as the direct 
translational bases, which govern the process of the cell tessellation.  
 
B. Direct Translational Vector 
A direct translational vector is formulated as a linear combination of direct translational 
bases; this vector is used to translate the reference unit cell to any other cell in the space 
of the lattice. The direct translational vector is formulated as: 

∑
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k
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     (5) 
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Where km  is any set of integers and n is the dimensional space of the lattice. It should be 
noted that the direct translational vector is the Bravais lattice vector spanned over a set of 
cells in the lattice space. 
 
C. Position Vectors 
By using the definition of bar and joint bases of the reference unit cell envelope, along 
with the definition of the direct translational vector, the position vectors of bars and joints 
of the whole crystal structure can be formulated as: 
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where pl and qm are the joints and the bars position vectors, respectively. J and B are, 
respectively, the number of independent joints and the number of independent bars, 
within the reference unit cell envelope. 
 
D. Direct Lattice 
The direct lattice contains the set of independent bar and joint bases, over the reference 
unit cell envelope, spanned over the infinite periodic lattice structure by their position 
vectors. This set of infinite bases is called the direct lattice. To determine the independent 
set of bar and joint bases over the reference unit cell, we verify the dependency of the 
bases within the reference unit cell through the relation: 

∑
=

→

− +=
n

k
kkii axVV

1

^
1      (7) 

where { }1,0,1
^

−∈kx  is a unit translation vector, If Vi-1 and Vi belong to the joint position 
vectors, then { }JlijV li ,...,1& ∈≡≡  and if they belong to the bar position vectors, then

{ }BmibV mi ,...,1& ∈≡≡ . The dependency information is used later to modify the wave- 
function over the reference unit cell to generate the periodic wave- function over the 
infinite lattice. 
 
E. Reciprocal Lattice 
The reciprocal lattice is itself a Bravais lattice introduced to describe the lattice in terms 
of primitive vectors. The advantage of resorting to the reciprocal lattice is to discretize 
the continuous space of the lattice into a discrete summation of modes at which the lattice 
performance can be examined. The reciprocal lattice can be represented by the primitive 

vectors 1

→

b and 2

→

b , which are defined as: 
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ijji ab πδ2=•
→→

      (8) 
 

where ja
→

 and ib
→

 are the direct and the reciprocal lattice bases, respectively, and 
{ }2,1, ∈ji  in 2D. ijδ  is the Kronecker delta symbol that satisfies:     
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Thus, the translational vectors of the reciprocal lattice are defined as: 
 

[ ) Qbb ⊂∈∀+=
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1,0, 212211 ωωωωω     (10) 

where 1ω  and 2ω  are the covariant components of ω  with respect to the basis 1

→

b  and 2

→

b  
and Q is the set of all rational numbers. 1ω  and 2ω are defined over the open subset of Q 
from zero to near unity in agreement with the Bloch's theorem [4], described in the 
following section.  
 
F. Bloch's theorem 
The Bloch’s theorem is used to extend the determinacy analysis of the unit cell to the 
unbounded periodic lattice.  
 
F.1 Bloch-wave mechanisms and States of Self Stress 
The Bloch’s theorem is applied to define the propagation of a wave function over the 
infinite lattice structure. For nodal deformation functions, the generalized nodal 
displacement vectors ( ) 2, Cpd l ∈ω  can be expressed over the entire lattice as a wave 
function of the form: 
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where J is the number of independent nodes within the unit cell envelope, 
→

+= Rjp ll  is 

the position vector of any node throughout the lattice and 
→
R  is the Bravais cell vector of 

any unit cell through the entire lattice.  
Similarly, for bar deformation functions, the generalized bar deformation vectors 
( ) 2, Cqe m ∈ω  can be expressed over the entire lattice as a wave function of the form: 
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where B is the number of independent bars within the unit cell envelope and
→

+= Rbq mm  
is the position vector of any bar throughout the lattice. 
To reduce the forms of the kinematic and the equilibrium matrices, we define 
transformation matrices for both bars and joints. This procedure makes use of the 
periodic boundary conditions defined over the unit cell [16, 17].  
 
F.2 Bars and Joints Transformation Matrices 
Consider the generic unit cell shown in Fig (3), by using the Bloch’s theorem, the 
following relations can be obtained 

 
Fig (3) generic unit cell with its periodic displacement boundary conditions 

 

LR qeq xμ= , BT qeq yμ= , LBRB qeq xμ= ,       

LBLT qeq yμ= , LBRT qeq yx μμ +=                  (12) 
 

Where q is a generic nodal or element deformation functions, and T, B, L and R denote 
top, bottom, left and right, respectively. xμ  and yμ  are the wave numbers, derived from 
the reciprocal space of the lattice along with the dependency relations of the joints and 
elements bases, which are expressed as: 
 

ix 12πωμ = , iy 22πωμ =       (13) 
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where T is the transformation matrix from the primitive cell degrees of freedom to the 
reduced cell degrees of freedom. The transformation matrices for the element 
deformations and the nodal displacements wave-functions are obtained such that: 
 

~
eTe e=       (15a) 
~
dTd d=       (15b) 



10 
 

 

where 
~
e  and 

~
d are the element deformations and the nodal displacements reduced 

vectors (periodic wave-function), respectively. eT  and dT  are the matrices that 
transforms respectively the full vectors of the periodic element deformations and nodal 
displacements to their respective reduced periodic vectors. 
The technique described above to generate the transformation matrices is applied to the 
generic unit cell shown in Fig (3). The transformation matrices are generated taking into 
account the dependency relations of the bars and the joints bases. These dependency 
relations are computed by eqn (7). The key parameter in eqn (7) is the direct translational 

bases, ka
→

, which is formulated through the lattice symmetry and the unit cell geometry. 
Details about the technique used to formulate the transformation matrices are given in 
appendix B.  
Substituting eqns (15) into the kinematic matrix of the finite truss, eBd = , gives  
 

~~
eTdBT ed =      (16) 

 
The transformation matrix eT is a complex non-square matrix, which can be inverted by 

multiplying eT  by its conjugate transpose (the Hermitian transpose), H
eT , such that: 

 
~~
eTTdBTT e

H
ed

H
e =       (17) 

 
The multiplication of a complex matrix by its Hermitian transpose generates a block real 
matrix, Be as follows: 

ee
H

e BTT =      (18) 
Substituting eqn (18) into eqn (17) and inverting the real block matrix Be results in 

 
~~

1)( edBTTB d
H

ee =−     (19) 
 

From eqn (19), the reduced kinematic matrix is expressed as: 
 

d
H

ee BTTBB 1
~

)( −=     (20) 
 

The reduced kinematic and equilibrium matrices are fundamental to the determinacy state 
of the infinite lattice, which in turn can be analyzed by computing their four fundamental 
subspaces. This procedure enables to determine the independent sets of periodic 
mechanisms and periodic states of self-stress for the different wave vectors ( )21,ωω  that 
are obtained from the irreducible first Brillouin Zone of the reciprocal lattice [18].  
 
II.3 Macroscopic Strain Generated by Microscopic Mechanisms 
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The Bloch’s theorem allows characterizing mechanisms corresponding to periodic joint 
displacement fields. To examine the macroscopic strain field generated by periodic 
mechanisms, we resort to the Cauchy-Born hypothesis [19- 22].  
 
A. Cauchy- Born Hypothesis 
From the definition of the Cauchy-Born hypothesis [4], the infinitesimal displacement 
field of a periodic joint in a lattice structure can be formulated as: 
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where )0,( =
−
εlJd  is the periodic displacement field of joint lj . Assume that the 

periodic joints defined by the position vectors lj and 
→

+ Rjl , are the two periodic joints i 
and j within a lattice structure, then, eqn (21) can be formulated in matrix form as:   
 

⎥
⎥

⎤
⎢
⎢

⎡
−
−

⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎥

⎤
⎢
⎢

⎡
=⎥

⎥

⎤
⎢
⎢

⎡

ji

ji

j

j

i

i
yy
xx

v
u

v
u

2221

1211

εε
εε

 in 2D   (22) 

 
where u and v are the joint displacement field components in the x and y directions, 
respectively, and joint i is the dependent joint, while joint j is the independent joint. In 
terms of the engineering strain [23], eqn (22) can be reformulated as: 
 

⎥
⎥

⎤
⎢
⎢

⎡
−
−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+⎥
⎥

⎤
⎢
⎢

⎡
=⎥

⎥

⎤
⎢
⎢

⎡

ji

ji

j

j

i

i
yy
xx

v
u

v
u

2221

1211

2
1

2
1

εε

εε
 in 2D  (23) 

 
which in turn can be expressed as: 
 

−
Ε+=

⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢

⎢

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−

−−
+⎥

⎥

⎤
⎢
⎢

⎡
=⎥

⎥

⎤
⎢
⎢

⎡

ε

ε
ε
ε

ji

jiji

jiji

j

j

i

i

ddor

xxyy

yyxx

v
u

v
u

21

22

11

)(
2
1)(0

)(
2
10)(

  (24) 

 
Equation (24) is the kinematic boundary condition of the Cauchy-Born Hypothesis. 
Applying this boundary condition to the unit cell joint displacement vector, d, results in: 
 

−

Ε+= ε
~
dTd d      (25) 
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Substituting eqn (25) into the kinematic system of the unit cell (eqn (2b)) results in: 
 

edTB d =
⎭
⎬
⎫

⎩
⎨
⎧ Ε+

−

ε
~

     (26) 

 
Substituting eqn (15a) into eqn (26) and inverting Te, results in: 
 

~~~~
edB =Ε+

−

ε      (27) 
 

Where d
H

ee BTTBB 1
~

)( −=  and Ε=Ε − BTB H
ee

1
~

)( . 
From eqns (25) and (26) one can realize that the Cauchy-Born kinematic boundary 
condition is applied to the kinematic compatibility system of the lattice microstructure to 
express an explicit relation between the microscopic nodal displacements and a 

homogeneous averaged macroscopic strain field, 
−

ε . A key parameter to establish this 
relation is the existence of the complete nodal periodicity information within the unit cell 
envelope. The Cauchy-Born hypothesis cannot be applied to the kinematic compatibility 
relation of the unit cell shown in Fig (1-d) without resorting to the Dummy Node Scheme. 
This is described by the steps below.  
 
Step 1: Hypothetical dummy nodes are introduced at the intersection points between the 
microscopic cell elements that extend between neighbouring unit cells, and the cell 
envelope. These dummy nodes are used to generate the kinematic and the equilibrium 
matrices of the finite microstructure, as described previously.  
Step 2: Equation (7) is applied to the total group of joint bases (including the dummy 
nodes) to determine the dependent and the independent set of joints. 
Step 3: the dependency relations generated in step 2, is now used to apply the Cauchy-
Born kinematic boundary condition to the kinematic system of the unit cell generated in 
step 1. This results in a formulation similar to eqn (26). Distributing the bracket in eqn 
(26), results in: 

{ eBdBTd =Ε+
−

21

~
ε

321
     (28) 

where )dim()dim(
~ ~

de
d RdBT ×∈ and 3)dim( ×

−
∈Ε eRB ε . The first term in eqn (28) left hand 

side includes the degrees of freedom associated with the dummy nodes.   
Step 4: the degrees of freedom associated with the hypothetical dummy nodes, in term 
(1) of eqn (28), are eliminated from the matrix systems in the same manner as described 
in section II.1.A.  
Step 5: Substituting eqn (15a) into eqn (28) and inverting Te, results in: 
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( ) ( )

{ ( )
~

2

1

1

~~

~

2

1

1

~1

eBTBdBor

eBTBdBTTB

H
ee

H
eed

H
ee

=Ε+

=Ε+

−
−

−
−−

44 344 21

44 344 2144 344 21

ε

ε

   (29) 

Equation (29) is the complete reduced kinematic system representing the infinite lattice 
structure. 
 
B. Macroscopic Strain in Terms of Microscopic Element Deformations  
Equation (29) is a matrix system that expresses the periodic element deformations in 

terms of the macroscopic strain field,
−
ε , and the periodic nodal displacements, 

~
d . This 

matrix system is rearranged to express the macroscopic strain in terms of the periodic 

element deformations and as independent of the periodic nodal displacement field, 
~
d . 

This is done by generating the following augmented matrix: 
 

 ( )( ) ( )( ) ( ){⎥
⎥
⎦

⎤
Ε

⎢
⎢
⎣

⎡
−−

32

1

1

1 IBTBBTTB H
eed

H
ee 443442144 344 21

    (30) 

 

In (30), I is a unit square matrix with dimension equal to dim(
~
e ). The next step is to find 

the reduced row echelon form of the matrix expressed in (30) and collect the rows in the 
sub matrices (2) and (3) that correspond to zero rows in the sub matrix (1). This process 

generates the two matrices  

~
~

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Ε  and

~
I , which are used to write the following expression: 

[ ]
~~

~
~~~

~
~~

0 eIoreId =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Ε=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
Ε+

−−
εε    (31) 

 
The matrix system generated in eqn (31) is used to find an explicit expression of the 
element deformations in terms of the macroscopic strain field. This can be obtained by 

inverting the matrix 
~
I . To invert the matrix 

~
I , we resort to the Moore-Penrose pseudo-

inverse technique that depends on generating the Singular Value Decomposition [10, 24- 

26] of the matrix
~
I as: 

 
HDVSI ..

~
=       (32) 

 

For a nmRI ×∈
~

, the singular value decomposition generates the diagonal matrix nmRV ×∈ , 

which contains the non-negative Eigenvalues of matrix 
~
I ; the square unitary matrix  
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mmRS ×∈ and the conjugate transpose matrix HD . The Moore-Penrose pseudo-inverse of 

the matrix 
~
I , is formulated as: 

 

( ) ( )HSVDI
1~1~ −−

⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛      (33) 

where the term 
1~ −

⎟
⎠
⎞

⎜
⎝
⎛V is formulated by eliminating the rows and the columns of matrix V 

that have zero diagonal values, and then obtaining the reciprocal of the left diagonal 
entries.  Multiplying eqn (33) to both sides of eqn (31), results in the following 
expression of the element deformations in terms of the macroscopic strain field: 

−−−

=
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛Ε⎟

⎠
⎞

⎜
⎝
⎛= εε MeorIe

~
~
~1~~

       (34) 

 
Computing the null space of matrix M, gives the independent modes of macroscopic 
strain field generated with inextensional microscopic element deformations. An empty 
null space of matrix M indicates that the lattice material can support all macroscopic 
modes of strain fields. In other words, the material does not fail by periodic mechanisms 
or any special modes of macroscopic loading.  
Finally, the deformations of all elements in the unit cell can be expressed by substituting 
eqn (34) into eqn (15a) as: 

−

= εMTe e        (35) 
 

II.4 Macroscopic Strain Energy Density (Material Macroscopic Stiffness Matrix) 
The macroscopic strain energy density of a lattice unit cell with b bars is defined as [2]: 
 

∑
=

−−

Υ
==

b

k
kk etW

12
1:

2
1 εσ     (36) 

 

where Υ  is the unit cell area, kt  is the tension force in the bar element.⎯
−

σ  and 
−

ε  are the 
macroscopic stress and strain fields, respectively. Since the lattice structure considered in 
the current analysis is a pin-jointed structure, then, the bar elements of the unit cell carry 
only axial loads. Accordingly, the tension force in a bar element, k, can be expressed as 
 

 ( ) kk eLEAt /=      (37) 
 

where E is the Young’s modulus of the solid material, A is the cross-sectional area of the 
bar element, and L is the bar length. Substituting eqn (37) into eqn (36) results in: 
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 ∑
=

−−

Υ
==

b

k
ke

L
EAW

1

2
2

:
2
1 εσ     (38) 

 
Substituting eqn (35) into eqn (38) results in: 
 

( )∑
=

−−−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Μ

Υ
==

b

k
k

L
EAW

1

2

:,
2

:
2
1 εεσ     (39) 

 
where ( ):,kΜ  is the kth row in the matrix M. Using eqn (39), the macroscopic fourth 
order stiffness tensor of the lattice material can be computed as: 
 

jjii

iijj
Wk
−−

∂∂

∂
=

εε

2
     (40) 

 
where i and j ∈{1,..,n} and n=2 or n=3 in 2D or 3D, respectively. 
Once the macroscopic stiffness tensor is computed, the macroscopic compliance matrix 
can be obtained by inverting the stiffness matrix, where CL=KL

-1 is the linearly elastic 
fourth order compliance tensor of the lattice material. For a general anisotropic material 
the compliance tensor is given by: 
 

−−

=
⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢

⎢

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢

⎢

⎡

σε
σ
σ
σ

ε
ε
ε

L

xy

yy

xx

xyxyxyyyxyxx

yyxyyyyyyyxx

xxxyxxyyxxxx

xy

yy

xx

Cor
CCC
CCC
CCC

    (41) 

 
The compliance tensor can be used to compute the lattice material elastic moduli as: 
 

 

( )

( )

( )

( )

xyxy
L

yyxx

yyyy
xyL

xxyy

xxxx
yxL

yyyy
yyL

xxxx
xxL

C
G

C
C

C
C

C
E

C
E

1

1

1

=

−=

−=

=

=

υ

υ       (42) 
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Where (EL)ij and ijL)(υ are, respectively, the material Young’s modulus and Poisson’s ratio 
in the ij direction, and ݅, ݆ א ሼݔ,  .ሽ, and G is the shear modulus of the materialݕ
 
III. CHARACTERIZATION OF 2D LATTICE MATERIALS  
III.1 Lattice Materials with Hexagonal Bravais Lattice Symmetry 
In this study, we consider two cell topologies (Fig (4)) with hexagonal Bravais lattice 
symmetry that so far have not been characterized in literature. The hexagonal symmetry 
is illustrated by the cell envelope in each lattice. Lattice materials with hexagonal Bravais 
lattice symmetry available in literature [2- 4] are shown in Fig (5). We use the method 
described in the previous sections to determine the elastostatic stiffness properties of the 
lattice materials shown in Figs (4) and (5).  
  
A. 34.6 Lattice Material 
A.1 Analysis of Unit Cell Finite Structure 
The unit cell of the 34.6 lattice contains 6 real joints and 24 bars, as shown in Fig (4). 
Since there are 18 intersection points between the cell envelope and the bar elements that 
extend between adjacent cells, we introduce a dummy node for each intersection. The 
groups of bar and joint position vectors are used to formulate the kinematic and 
equilibrium matrices of the unit cell structure.  
The determinacy analysis of the unit cell structure reveals that the cell is statically 
determinate since it does not include any states of self-stress; however, 21 internal 
mechanisms make it kinematically indeterminate. 
 
A.2 Determinacy Analysis of Infinite Structure  
(1) The Direct Lattice 
From the geometry of the unit cell envelope, the direct translational bases can be 

formulated as 
^^

1 866.05.2 jia +−=
→

, 
^^

2 7321.12 jia +−=
→

, where 
^
i and 

^
j  are the 2D 

Cartesian space unit vectors. To determine the direct lattice bases, the dependency 
between the unit cell bar and joint position vectors is verified on a unit cell bases using 
(eqn (7)). This test reveals that all the joints are independent whereas the bars exhibit 
dependencies, as shown in Table (1). 

Table (1) Unit Cell Bars Dependency Relations 
 
 

Fig (4) New Cell Topologies with Hexagonal Bravais Lattice Symmetry 
 

Fig (5) Cell Topologies with Hexagonal Bravais Lattice Symmetry available in the 
literature 

 
The numeric tags of the cell elements (table (1)) are used in Fig (4) to label the elements 
of the unit cell of the 34.6 lattice. The dependency relations are used to generate the bars 
and the joints transformation matrices, which are necessary to reduce the kinematic and 
the equilibrium systems to their periodic forms.  
 
(2) The Reciprocal Lattice 
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After the reciprocal lattice and the first Brillouin Zone [1] are determined, point group 
symmetry [27-29] is used to determine the irreducible first Brillouin Zone which is used 
to generate the critical k-points (wave vectors), as illustrated in Fig (6). The values of the 
critical k-points are shown in Table (2). 

 
Fig (6) First Brillouin Zone and Irreducible Brillouin Zone of the 34.6 Lattice 

 
Table (2) The critical k-points in the Irreducible Brillouin Zone 

 
The reduced equilibrium and kinematic matrices are computed at each critical k-point 
vector and the determinacy state of the infinite structure is computed. The determinacy 
analysis shows that the infinite structure of the 34.6 lattice is always kinematically 
determinate and statically indeterminate.  
 
(3) Macroscopic Strain Generated by Microscopic Mechanisms (Cauchy Born 
Hypothesis) 
Since the infinite structure does not contain any microscopic mechanisms, then it is 
known that there are no periodic mechanism failure modes. However, the analysis using 
the Cauchy-Born hypothesis is carried out to verify that no special macroscopic strain 
fields at which the lattice looses stiffness are present. As explained previously, the 
Dummy Node Scheme is used to generate the matrixΕ , which is necessary to formulate 
the kinematic boundary condition of the Cauchy Born Hypothesis. The singular value 
decomposition is used to formulate the microscopic element deformations in terms of the 
macroscopic strain field through the transformation matrix, M. The null space of the 
matrix M is finally computed to identify any special failure modes of macroscopic strain 
fields. The analysis shows that the 34.6 lattice is stable under all macroscopic strain 
fields.     
 
(4) Macroscopic Stiffness 
The element deformations in (3) are used to determine the strain energy density (eqn 
(39)) and then to compute the macroscopic stiffness (eqn (40)) of the lattice. Finally, the 
compliance matrix of the material and the material elastic moduli (eqn (42)) can be 
derived. For a lattice material with a unit out of plane thickness, the stiffness and the 
density are written as: 
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

−

1015.000
04445.02415.0
02415.04445.0

2511.000
00998.15976.0
05976.00998.1

LL E
L

EHK ρ , 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
==

−−

1015.000
04445.02415.0
02415.04445.0

L
L

L
E

KK ρ , ⎟
⎠
⎞

⎜
⎝
⎛=

−

L
H

L 4744.2ρ  

where L

−

ρ , LK  and LK
−

 are the lattice material relative density, stiffness matrix and 
relative stiffness matrix, respectively. While E and H are the solid material Young’s 
modulus and cell element in the plane thickness, respectively.  
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Once the stiffness tensor is computed, the compliance tensor can be computed as: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

−
= −

8522.900
01919.37342.1
07342.11919.3

1

L

L

E
C

ρ
 

This compliance tensor is used to compute the material elastic moduli as: 
( )

L
xxL

xx
L

E
E

E
−−

==⎟
⎠
⎞

⎜
⎝
⎛ ρ0.3133  , 

( )
L

yyL

yy
L

E
E

E
−−

==⎟
⎠
⎞

⎜
⎝
⎛ ρ0.3133 , L

L
L

E
GG

−−

== ρ0.1015  

The same analysis is carried out for the other lattices shown in Figs (4) and (5). The final 
results are shown below. 
 
A. Double Hexagonal Triangulation (DHT) 

  
⎥
⎥
⎥

⎦

⎤

⎢
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⎣

⎡
=

⎥
⎥
⎥

⎦
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⎢
⎢
⎢

⎣

⎡
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03431.01391.0
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L

EHK ρ

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
==

−−
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01391.03431.0

L
L
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E
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⎠
⎞

⎜
⎝
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−

L
H
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( )
L

xxL

xx
L

E
E

E
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==⎟
⎠
⎞

⎜
⎝
⎛ ρ0.2659  , 

( )
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yyL

yy
L

E
E

E
−−

==⎟
⎠
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⎜
⎝
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L
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E
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== ρ0.0878  

 
 
B. Full Triangulation (36) 
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⎥
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⎢
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⎣
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=
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⎥
⎥
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L
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( )
L

xxL

xx
L

E
E

E
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⎠
⎞

⎜
⎝
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( )
L

yyL
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E
E

E
−−
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⎠
⎞

⎜
⎝
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L
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E
GG
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C. Hexagonal Honeycombs 
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⎥
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⎥
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L
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L
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Since this lattice structure is bending-dominated, the stiffness matrix of its pin jointed 
lattice version is singular. Therefore, the compliance matrix and elastic moduli loose their 
significance. We do not present them here, as this paper focuses on stretching-dominated 
lattice material and the modeling of rigid-jointed lattice is out of the scope. 
 
 
D. Kagome’ 
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( )
L

xxL

xx
L

E
E

E
−−

==⎟
⎠
⎞

⎜
⎝
⎛ ρ0.3333  , 

( )
L

yyL

yy
L

E
E

E
−−

==⎟
⎠
⎞

⎜
⎝
⎛ ρ0.3333 , L

L
L

E
GG

−−

== ρ0.125  

 
III.2 Lattice Materials with Square Bravais Lattice Symmetry 

A. Determinacy Analysis 
Figure (7) shows five lattice topologies with square Bravais lattice symmetry examined in 
this paper. For these topologies, we follow the previous procedure; our goal is to 
determine stiffness properties and static performance, i.e. specific stiffness.  
The determinacy analysis of the finite structures of the unit cells of the five lattice 
topologies reveals that unit cell (a) is kinematically indeterminate and statically 
determinate; on the other hand, unit cells (b), (c), (d) and (e) are kinematically and 
statically determinate. Extending the analysis to the infinite lattice structures using the 
Bloch’s theorem, reveals that lattices (a) and (b) are kinematically and statically 
indeterminate; on the other hand, lattices (c), (d) and (e) are kinematically determinate 
and statically indeterminate.  
 

Fig (7) Cell Topologies with Square Bravais Lattice Symmetry  
 
Using the Cauchy- Born hypothesis, we search macroscopic strain fields generated by 
inextensional microscopic mechanisms; we find that lattice (a) has one shear macroscopic 
strain field associated with the inextensional microscopic mechanisms. On the contrary, 
lattice (b) does not have any macroscopic strain field associated with microscopic 
mechanisms, for its microscopic mechanism vanishes on the macro scale. For lattices (c), 
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(d) and (e) there are no failure macroscopic strain fields. This analysis indicates that 
lattice (a) is a bending-dominated lattice material and lattices (b), (c), (d) and (e) are 
stretching-dominated lattice materials.  
 

B. Stiffness Properties 
The strain energy density is formulated and used to derive the averaged stiffness 
properties of the five lattices shown in Fig (7) as: 

- Lattice (a) 

⎥
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The computation of the compliance matrix and the elastic moduli are not presented as the 
material is bending-dominated.

  
- Lattice (b) 
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V. CONCLUDING REMARKS 
This paper has described a systematic matrix-based procedure for the specific stiffness 
characterization of lattice materials with any arbitrary topology. This procedure is 
efficient for the automation of the characterization process of complex microscopic 
topologies. A scheme based on the concept of dummy nodes has been introduced to deal 
with lattice materials that consist of unit cell elements intersecting their cell envelopes. 
The procedure has been applied to lattice materials with hexagonal and square Bravais 
symmetries. The results have been plotted on design charts that can help in the selection 
process of lattice topologies for given stiffness requirements. It is found that the lattice 
materials with cell topologies shown in Fig (7-b) and (7-c) exhibit 11 % increase of the 
specific stiffness compared to the Kagome’ and the full triangulation lattice materials. On 
the other hand, the lattice material with cell topology shown in Fig (7-e) shows 17 % 
improvement in the specific shear modulus compared to the Kagome’ and the full 
triangulation lattice materials. 

 
Fig (8) Relative Young's modulus in the x direction (see Figs. 4,5, 7) versus relative 

density of selected 2D lattice materials 
 
 

Fig (9) Relative Young's modulus in the y direction (see Figs. 4,5, 7) versus relative 
density of selected 2D lattice materials 

 
Fig (10) Relative Shear modulus versus relative density of selected 2D lattice 

materials 
 
Appendix A: The dummy Node Scheme 
Consider the sequence of three unit cells describing the periodicity of the lattice structure 
shown in Fig (11). We specify two elements, a and b, of lengths La and Lb. Element a is 
connected between node n1, located on the borders between unit cells I and II, and node 
n2 that belongs to unit cell III. Element b is connected between node n3, belongs to unit 
cell I, and node n4 which belongs to unit cell II.  
 
Fig (11) Lattice structure (left) and zoom on three unit cells (right) tessellated in the 
direction of the horizontal translational basis.  
Legend: Continuous lines: structural elements; Dashed lines: cell envelopes; O: Real 
structural nodes; : Dummy nodes  

 
The envelope of unit cell II intersects elements a and b respectively at nodes n5 and n6, 
which are dummy nodes introduced at intersection points between envelope and unit cell 
elements. Node n5 splits element a into two segments a1 and a2 of length La1 and La2, 
respectively. On the other hand, node n6 divides element b into two segments b1 and b2 
of length Lb1 and Lb2, respectively. Elements a and b carry internal tension forces ta and tb, 
respectively. Thus, the portions of the nodal forces that are in balance with the tension 
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forces in elements a and b are specified by a two dimensional vector fni that has two 

components in the x and the y directions of the Cartesian coordinates. If nir
→

 is the 
position vector of node ni and { }6,5,4,3,2,1∈i , then a unit vector in the direction of elements 
a and b can be written as: 
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A.1 Equilibrium Analysis 
The static equilibrium system of a structure that has b elements connected between j 
nodes is represented as: 
 

 fAt =       (A3) 
 
where bnjRA ×∈ , n=2 in 2D, is a Jacobian matrix with entries of direction cosines that 
transforms the vector of tension forces of the structural elements bRt∈  to the vector of 
the nodal forces njRf ∈ [30, 31]. 
Consider the segment a1 of element a; the static equilibrium of forces at nodes n1 and n5 
with the tension force in the element ta can be written as: 
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Similarly, consider the segment a2 of element a, the static equilibrium of forces at nodes 
n5 and n2 with the tension force in the element ta is given by: 
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The assembly of eqns (A4) and (A5) into one matrix system results in: 
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From eqn (A6) one can realize that the coefficients of the dummy node, n5, can be set to 
zero to eliminate the node from the matrix system, which results in:   
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The same reasoning can be applied to element b, where the equilibrium of the nodal 
forces at nodes n3, n4 and n6 with the element tension force tb can be expressed 
respectively in eqns (A8) and (A9) as: 
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The assembly of eqns (A8) and (A9) in one matrix system results in: 
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Now, we consider only the equilibrium of the portions of elements a and b enclosed 
within the envelope of cell II. Those are the segment a1 of element a and the segment b2 
of element b. It is noted that the existence of a dummy node nd1 implies always the 
existence of a dummy node nd2 where node nd1 is dependent on node nd2, or vice versa, 
as a result of the translational symmetry. If we assume that a pair of dummy nodes 
consists of nodes nd1 and nd2, then a number of properties can be identified. 
 
1) The dependency relationship between nodes nd1 and nd2 can be expressed through 

their position vectors 1ndr
→

 and 2ndr
→

 as: 
 

kndnd arr
→→→

±= 21       (A11) 
 
where { }2,1∈k  in 2D.  
2) Within the unit cell envelope, if node nd1 is located on element e1 and node nd2 is 
located on element e2, then element e1 is the complementary of element e2 for the 
portion of e2 that is not included within the cell envelope. Similarly, e2 is the 
complementary of element e1 for the portion of e1 that is not included within the cell 
envelope. Also, the static wave functions, associated with nodes nd1 and nd2 as well as 
those associated with elements e1 and e2, follow the anti-periodic constraints, necessary 
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for the static equilibrium of the lattice. These properties are expressed by the following 
static conditions: 
 a) Tension forces of elements e1 and e2 are equal in magnitude and opposite in 
direction.  
 b) Nodal forces at nodes nd1 and nd2 are equal in magnitude and opposite in 

direction. 
In addition to the geometrical condition that: 
 c) Unit vectors in the directions of elements e1 and e2 are parallel. 
 
Fig (1) shows that nodes n5 and n6 are two dependent dummy; thus they must satisfy the 
following properties: 
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Now, consider the equilibrium of portion a1 of element a, formulated in eqn (A4), and 
the equilibrium of portion b2 of element b that is formulated in eqn (A9). The assembly 
of eqns (A4) and (A9) in one matrix system results in: 
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Applying the conditions of eqn (A12), results in: 
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where the subscript denotes the applied condition. Finally the matrix system of eqn (A14) 
is reduced to: 
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which is equivalent to the elimination of the degrees of freedom of dummy nodes n5 and 
n6 from the matrix system. It should be noted that the matrix system obtained in eqn 
(A15) is identical to the results obtained in eqn (A7) and eqn (A10). 
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A.2 Kinematic Analysis 
Similar to the Equilibrium Analysis, the kinematic system of a structure that has b 
elements connected between j nodes is represented as: 
 

 eBd =       (A16) 
 

where njbRB ×∈ , n=2 in 2D, is a Jacobian matrix of entries of direction cosines that 
transforms the vector of nodal displacements njRd∈  to the vector of element 
deformations bRe∈ [30, 31]. 
 
Consider the segment a1 of element a, the kinematic compatibility of displacements of 
nodes n1 and n5 with the deformation of the element portion, 1ae  can be written as: 
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Similarly, consider the segment a2 of element a, the kinematic compatibility of 
displacements of nodes n5 and n2 with the deformation of the element portion, 2ae  can 
be written as: 
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The assembly of eqns (A17) and (A18) into one matrix system results in: 
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From eqn (A19) one can realize that the coefficients of the dummy node, n5, can be set to 
zero to eliminate the node from the matrix system, which results in:   
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The same reasoning can be applied to element b, where the kinematic compatibility of the 
displacements of nodes n3, n4 and n6 with the element deformation, be  can be expressed 
respectively in eqns (A21) and (A22) as: 
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The assembly of eqns (A21) and (A22) in one matrix system results in: 
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Now, we consider only the kinematic compatibility of the portions of elements a and b 
enclosed within the envelop of cell II. Those are segment a1 of element a and segment b2 
of element b.  
Also in this case, due to the translational symmetry of lattice structures, if nodes nd1 and 
nd2 are two dependent dummy nodes, and if node nd1 is located on element e1 and node 
nd2 is located on element e2, then element e1 is the complementary of element e2 for the 
portion of e2 that is not included within the cell envelope; and vice versa, e2 is the 
complementary of element e1 for the portion of e1 that is not included within the cell 
envelope. This feature imposes the following compatibility conditions: 

 a) The total deformation of element e1 (total deformation is equal to the 
deformation of the portion included within the cell envelope and the portion 
external to the cell envelope) and the total deformation of element e2 are equal. 

 b) The summation of the deformations of the two element parts enclosed within 
the cell envelope is equal to the total deformation of element e1 or e2. 

 c) The displacement of nodes nd1 and nd2 are equal. 
 
From Fig (11), it can be realized that nodes n5 and n6 are two dependent dummy nodes, 
i.e. they impose the following kinematic properties: 
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Now, consider the kinematic compatibility of segment a1 of element a, formulated in eqn 
(A17), and the kinematic compatibility of segment b2 of element b that is formulated in 
eqn (A22). The assembly of eqns (A17) and (A22) in one matrix system results in: 
 

21

4

6

5

1

^^^^

ba

n

n

n

n

bbaa ee

d
d
d
d

nnnn +=

⎥
⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢
⎢

⎢

⎡

⎥⎦
⎤

⎢⎣
⎡ −−    (A25) 

 
Applying the conditions of eqn (A24), results in: 
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where the subscript denotes the applied condition. Finally the matrix system of eqn (A26) 
is reduced to: 
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which is equivalent to the elimination of the degrees of freedom of nodes n5 and n6, i.e. 
the dummy nodes, from the matrix system.  
From this analysis, it is noteworthy that the Dummy Node Scheme is an adequate 
technique to simplify the matrix computation of lattice structures. Since in the kinematic 
determinacy analysis the lattice structure is considered as pin-jointed, failure of 
eliminating the degrees of freedom associated with the dummy nodes results in inaccurate 
results. Furthermore, the above analysis is concerned with the derivation of the kinematic 
and the equilibrium systems of the unit cell finite structure, which implies that the 
translational periodicity applied to the unit cell envelope is formulated at the wave 
number )0,0(=ω , as defined by the Bloch's theorem.   
 
Appendix B Transformation Matrices 
The procedure to obtain the transformation matrix, T, for a set of vectors, nRV ∈ , 
depends on the dependency relation of the vectors. If all vectors are independent, then V 
can be written as: 
 

V=IV       (B1) 
 

where nnRI ×∈  is a unit square matrix.  
On the other hand, if some vectors are dependent vectors, then Equation (B1) can be 
modified as: 
 

V=TVind       (B2) 
 

where Vind is the set of independent vectors. Here, T is a modification of I.  
If we assume that the vector with order n1 of the set, V, is dependent on the vector with 
order n2, then we can modify I to generate T; the column number n1 in I is to be 
eliminated and the element with index T(n1,n2) modified to: 
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where { }1,0,12

^
,1

^

−∈xx  with respect to the vectors dependency relation expressed by eqn 
(7). This process requires that the dependent vectors are arranged in a descending order 
during the column elimination process to avoid column order swap. 
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