
Ab initio modelling of adiabatic polaron dynamics in
transition metal oxides

Zi Wang
Materials Engineering

Department of Mining and Materials Engineering

McGill University
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Abstract

Many novel materials considered for applications in renewable energy technologies are

transition metal (TM) oxides and are known to exhibit polaronic behaviour. In many

such TM oxides, the strong on-site correlation effects localize the d shell electrons

and open an energy gap in the material, effecting a transition to semiconducting

behaviour. Furthermore, the localization of d shell electrons to atomic-like orbitals

leads to electrostatic interactions that distort the surrounding lattice, resulting in a

self-trapped state which we call a polaron. In many cases, the self-trapped nature

of polarons can dramatically lower the conductivity of the material. As TM oxides

are found in many applications including lithium ion battery cathodes, photovoltaic

materials, and catalysts, a low conductivity can have large impacts on their efficiencies

as renewable energy materials. On the other hand, beneficial cases also exist where

polarons can contribute to device functionality, for instance by creating a strong

TM redox potential which increases operating voltage, or by providing a conduction

pathway when the band gap is too wide for regular conduction to occur. It is therefore

essential, in all of these cases, to study polaronic behaviour in such materials in order

to accurately predict and engineer their properties.

In this thesis, I have conducted a comprehensive first principles study of polaronic

behaviour in TM oxides through a combination of density functional theory (DFT)

with a theoretical polaron hopping model. The selection of relevant TM oxides that

I have investigated includes battery cathode materials (LiMn2O4 and LiFePO4), pho-

tovoltaic materials (TiO2 and Fe2O3), catalytic materials (MgFe2O4 and LaCrO3),

and other materials of importance (LaMnO3 and KCuF3). I use DFT to calculate

the polaronic states and optimize the structures in these materials, and then use my

hopping model to analyse the results in greater detail.

By considering the variety of different material compositions and crystal structures

of TM oxides that exhibit polaronic behaviour, I have developed a set of guidelines

that can qualitatively predict the polaronic properties in a TM oxide based on just

the crystal structure and chemical composition of the material. My calculations on

LiMn2O4, LiFePO4, TiO2, and Fe2O3 are more detailed in nature, and the results for

TiO2 and Fe2O3 in particular agree well with experimentally measured values. I have
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included the other materials for their different structural properties, and the focus

here was on finding qualitative trends for all the studied materials.

From a computational materials design perspective, my work provides several in-

sights that will allow for more consistent predictions of polaronic properties in tran-

sition metal oxides. I have improved upon the quantitative calculations of polaron

properties within existing ab initio methods, and I have achieved a better qualitative

understanding of polaron dynamics from basic structural principles.



Résumé

Beaucoup de nouveaux matériaux considérés pour les applications dans les technolo-

gies d’énergie renouvelable sont des oxydes de métaux de transition (MT) et sont

connus pour présenter un comportement polaronique. Dans de nombreux oxydes de

MT, les forts effets de corrélation sur chaque site localisent les électrons de couche

d et créent une bande interdite dans le matériau, ce qui entrâıne une transition vers

un comportement semiconducteur. En outre, la localisation des électrons de couche

d en orbitales atomiques conduit à des interactions électrostatiques qui déforment le

réseau environnant, ce qui entrâıne un état auto-piégé que nous appelons un polaron.

Dans de nombreux cas, la nature auto-piégée des polarons réduit considérablement la

conductivité du matériau. Comme les oxydes de MT sont utilisés dans de nombreuses

applications, y compris les cathodes de batteries au lithium-ion, les matériaux photo-

voltäıques et les catalyseurs, une faible conductivité peut avoir un grand impact sur

leur efficacité en tant que matériaux d’énergie renouvelable. Par contre, il y a aussi

des cas bénéfiques dans lesquels les polarons peuvent contribuer à la fonctionnalité

du dispositif, par exemple la création d’un fort potentiel d’oxydo-réduction de MT

pour augmenter la tension de fonctionnement, ou l’ouverture d’une voie de conduc-

tion lorsque la bande interdite est trop large pour avoir lieu la conduction régulière.

Dans tous les cas, il est donc essentiel d’étudier le comportement polaronique de tels

matériaux afin de prédire et de modifier leurs propriétés avec précision.

Dans cette thèse, j’ai mené une étude exhaustive des premiers principes du com-

portement polaronique dans les oxydes de MT en utilisant une combinaison de la

théorie fonctionnelle de la densité (DFT) et d’un modèle théorique de sauts tunnel

des polarons. La sélection d’oxydes de MT pertinents que j’ai étudiés comprend

les matériaux de cathode de batterie (LiMn2O4 et LiFePO4), les matériaux pho-

tovoltäıques (TiO2 et Fe2O3), les matériaux catalytiques (MgFe2O4 et LaCrO3), et

d’autres matériaux d’importance (LaMnO3 et KCuF3). J’utilise la DFT pour calculer

les états polaroniques et optimiser la structure de ces matériaux, et j’utilise ensuite

mon modèle de sauts tunnel pour analyser les résultats plus en détail.

En considérant la variété des différentes compositions de matériaux et des struc-

tures cristallines des oxydes de MT qui présentent un comportement polaronique, j’ai
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développé un ensemble de lignes directrices qui permettent de prédire qualitative-

ment les propriétés polaroniques dans un oxyde de MT basé uniquement sur la struc-

ture cristalline et la composition chimique du matériau. Mes calculs sur LiMn2O4,

LiFePO4, TiO2 et Fe2O3 sont les plus détaillés, et les résultats pour TiO2 et Fe2O3 en

particulier correspondent bien aux valeurs mesurées expérimentalement. J’ai inclus

les autres matériaux pour leurs différentes propriétés structurelles, et l’accent a été

mis sur la découverte de tendances qualitatives pour tous les matériaux étudiés.

Du point de vue de la conception numérique des matériaux, mon travail fournit

plusieurs idées qui permettront des prédictions plus cohérentes des propriétés pola-

roniques dans les oxydes de métaux de transition. J’ai amélioré les calculs quantitat-

ifs des propriétés polaroniques dans les méthodes ab initio existantes, et j’ai obtenu

une meilleure compréhension qualitative de la dynamique des polarons à partir de

principes structurels de base.



Statement of Originality

In this thesis I report a comprehensive study on polaron properties in a wide variety of

transition metal (TM) oxides. The theoretical framework is based on existing theory,

combining density functional theory (DFT) with an existing two-site hopping model

which has been adapted to the situation of polarons in TM oxides. I have applied

and adapted these models and techniques to the situation of polarons in TM oxides,

improved existing relaxation techniques specific to polarons, and I have investigated

the particular effect of DFT+U projection on these polaronic properties. My original

contributions to this work include:

Chapter 3 Investigation of DFT+U projection and semicore electron effects on po-

laronic properties.

Chapter 4 Application of the NEB method to polaronic transition states (TS). NEB

is widely used to calculate ionic pathways and barriers, but is not systematically

applied to calculating polaronic TS. Using NEB, we typically improve the bar-

riers by 20 - 100 meV compared to calculations done using unrelaxed linearly

interpolated structures.

Chapter 4 Application of ab inito molecular dynamics (AIMD) to studying polaron

hopping in FePO4. While molecular dynamics is another widely used tool to

study dynamics, here I use it explicitly to quantitatively analyse temperature-

dependent polaron hopping.

Chapter 5 Combining elements of exchange theory and crystal symmetry to predict

general trends in polaronic properties in spinel and perovskite structures, and

comparing the predicted trends with calculated properties in these structures.

The work in Chapter 3 was done in collaboration with Casey Brock and Amina

Matt, and is published in a peer-reviewed journal [1]. Casey Brock has performed all

supporting Abinit calculations, and Amina Matt has performed the initial relaxation

work in Fe2O3. I have performed all other work in this thesis. The work in Chapter 4 is

also published in a peer-reviewed journal [2]. Chapter 5 is currently under preparation

as a manuscript for submission to a peer-reviewed journal.
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Physical Constants and Units

1 Å = 10−10 m

a0 (Bohr radius) = 0.5292 Å

me (electron mass) = 9.1096× 10−31 kg

mp (proton mass) = 1.6726× 10−27 kg

e (electron charge) = 1.6 ×10−19 C

h (Planck’s constant) = 6.626× 10−34 J s

kB (Boltzmann’s constant) = 1.38× 10−23 K

kBT (at 1 K ) = 8.616× 10−5 eV

c (speed of light) = 2.9979× 108 m/s

G0 (quantum unit of conductance) = 7.75 ×10−5Ω−1 = 1

12.9kΩ

Atomic units are used throughout this thesis unless otherwise indicated. In this

system of units, e = me = h̄ = 1.

1 unit of Length = a0 = 0.5292 Å

1 unit of Mass = me = 9.1096 ×10−31 kg

1 unit of Charge = e = 1.6 ×10−19 C

1 unit of Angular momentum = h̄ = 1.0546 ×10−34 J s

1 unit of Energy = 1 Hartree = 27.2 eV

1 unit of Time = h̄

1 Hartree = 2.4189 ×10−17 s
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Introduction

In the rapidly evolving field of renewable energy technology, many of the novel ma-

terials considered for applications in energy generation [3, 4, 5, 6], storage [7, 8, 9],

and catalysis [10] are transition metal oxides (TM oxides). The strong on-site elec-

tron correlation effects in many TM oxides [11, 12, 13] tend to localize d or f shell

electrons into atomic-like orbitals and result in the opening of an energy gap, and the

localized spatial distribution of these electrons leads to further self trapping through

interaction with the surrounding lattice, turning them into polaronic states.

A polaron is the term for a localized charge carrier together with its induced

distorted surroundings. Quantum mechanically, a polaron can be described as a

quasiparticle consisting of an electron surrounded by a cloud of optical phonons [14]

described by electron-phonon interactions [15, 16]. If this interaction is stronger

than the average lattice thermal energy, the electron becomes self-trapped in its own

potential well. Other effects aside from electron-phonon interaction could also lead

to self-trapping of electrons. In particular, strong electron correlation effects [11, 12]

can localize charge carriers to atomic sites, and the additional charge will then impart

its effects on the surrounding lattice, causing a local distortion [13, 17, 18]. Fig. 1.1

illustrates the concept of structural distortion induced by a localized electron. In an

ionic crystal, it pushes the nearby anions away and pulls the nearby cations closer.

Similarly in a metal-oxygen coordination complex, it localizes on the metal d shell and

pushes away the negatively charged oxygen anions, increasing the M-O bond lengths

as a result.

1
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Figure 1.1: Schematic of lattice distortion due to electrostatic effects from a localized electron in (a)

an ionic lattice, and (b) a metal-O6 octahedral complex.
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Figure 1.2: (a) Band conduction versus (b) hopping conduction. In (a), electrons in the conduction

band (holes in the valence band) are delocalized and free to contribute to conductivity, spatial

localization of charge carriers in (b) prevent them from moving around unobstructed.

Apart from polarons in TM oxides, there are many other materials that exhibit

polaronic behaviour including ionic systems, π-conjugated polymers [19, 20, 21], as

well as electron transfer processes in ion-aqueous solutions [22]. Moreover, polaron

theory is closely related to electron transfer (ET) theory [23, 24] in electrochemistry.

We can establish links between the concept of reorganization energy λ with the lo-

cal structural distortions in the polaronic case, and adiabaticity and the electronic

coupling parameter J plays a large role in both fields.

Electronically, the effects of self-trapping are depicted schematically in Fig. 1.2.
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In typical semiconductors (Fig. 1.2a), injected charge carriers are inserted either in

the conduction band (electrons) or the valence band (holes). These charge carriers

are delocalized and contribute to the conductivity of the material. In contrast, a self-

trapped state (Fig. 1.2b) cannot move out of its potential well unless it overcomes

an activation energy Ea required to do so. As a result, hopping conduction is the

main mechanism for polarons to move around in the material, and this drastically

changes the conduction behaviour of polaronic materials. Hopping conductivity is an

Arrhenius type activated process, and is typically many orders of magnitude lower

than regular band-like conductivity. The picture that we have presented so far is

valid for small polarons (also called Holstein polarons [16]), where the extent of the

localization and structural distortion is limited to one lattice site or unit. On the

other hand, it is also possible for the localization to spread out among many lattice

sites, in which case the particle is called a large polaron (or Fröhlich polaron [25]).

The concept and theory of polaronic self-trapping has been extensively studied in

literature [15, 16, 25]. A concept developed in the 1960s, it has seen a resurgence of

interest due to the search for novel materials with applications in clean renewable tech-

nologies [5, 9, 10], and many of these materials have been found to exhibit polaronic

behaviour. Additionally, the rapid increase in computational power and simultaneous

development of more powerful computational methodologies [26, 27, 28, 29] over the

past twenty years has provided us with the tools to accurately and efficiently study

polaronic properties from first principles.

There are many examples of TM oxides in battery materials [30, 31, 32, 33, 34, 35,

36], photovoltaics [6, 37, 38], and catalysts [10, 39]. What separates TM oxides from

regular semiconductors is the strongly correlated behaviour arising from the localized

TM d (or f) shells. This leads to a split between the occupied and unoccupied levels

of the d electrons and the opening of a gap. If this gap is purely d-like (i.e. both the

valence and conduction band consist of d-level states), the material is called a Mott-

Hubbard insulator [11, 12] as the gap arises purely from on-site electron correlation.
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If the valence band consists of oxygen 2p states and the conduction band is of d

character, the material is called a charge transfer (CT) insulator. The existence of

polarons in TM oxides has been evident in many cases [9, 20, 40, 41, 42, 43], and

many such materials have been extensively studied from first principles [30, 31, 44,

45, 46, 47].

The purpose of this thesis is to achieve a systematic understanding of adiabatic

small polaron dynamics in transition metal oxides, using the powerful first principles

method of density functional theory (DFT). As such, my contributions to existing

literature are in the application of existing first principles methodologies to pola-

ronic systems to improve the quantitative consistency of polaron calculations on one

hand, and on the other hand through improving our fundamental and qualitative

understanding of adiabatic polaron dynamics by combining elements from different

theories. From a computational materials design perspective, my work provides sev-

eral insights that will allow for more consistent predictions of polaronic properties in

transition metal oxides using existing ab initio methods.

The main quantity determining polaron dynamics is the activation energy, or hop-

ping barrier, Ea. By calculating the system in two states, the polaronic ground state

(“POL”) and the adiabatic transition state (“TS”), a state that is defined as the highest

energy point on the polaron migration pathway between two ground states (and lies

on the halfway point in symmetric pathways), we can extract the activation energy

from the total energy difference of the two states (Ea = ETS −EPOL). It is crucial to

accurately calculate the TS, as any inconsistencies will lead to an exponential error in

the dynamics. Aside from Ea, the polaron formation energy Eform, the position of the

gap state inside the band gap Ep, and the adiabatic coupling parameter J are also

key quantities determining the polaron characteristics of the system, and can also be

calculated from the POL and TS configurations. In most materials we can compare

the calculated band gap Eg with existing measurements, whereas measurements for

Ep [40, 48] and Ea [48] are available for a smaller selection of materials. As such, I
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will study these other quantities as well, providing a more comprehensive overview of

polaron properties for several materials in Chapter 3.

My improvements in methodology include the successful application of the nudged

elastic band (NEB) method [49] to calculating polaronic transition states. Typi-

cally, using NEB to relax the TS will result in a 20 - 100 meV improvement of the

calculated energy compared to the more commonly used approximation of linearly

interpolating the coordinates. This is significant as dynamics depend exponentially

on Ea. Additionally, I will employ ab initio molecular dynamics to study the hopping

dynamics of polarons, and show that they are largely consistent with our predictions

from NEB, demonstrating that ab initio MD could be used to study other dynamic

polaron properties as well. Furthermore, I investigate the effect of DFT+U projec-

tion [50] on the calculated polaron properties, and find that one must be careful

not only to provide a U-value which is chosen either through a self-consistent calcula-

tion [50, 51, 52, 53, 54, 55] or by fitting to experimentally measured properties [44, 56]

with valid arguments for both choices, but must also ascertain the consistency of the

projection scheme.

Using elements from a two-site hopping model (Chapter 2), we will establish a

fundamental link between the adiabatic TS and the coupling term J , which is a mea-

sure of the degree of adiabaticity. We show that a nonzero J is required to accurately

calculate an adiabatic TS in DFT, as DFT is inherently an adiabatic, ground state

theory. We then combine this observation with elements from crystal field theory,

taking into account the structural properties of typical TM oxide structures, and find

that we can make qualitative predictions of polaron behaviour and adiabaticity using

just the crystal structure and the electron configuration on the TM atoms as inputs.

My work focuses on TM-centered electron polarons, noting that TM-centered hole

polarons are conceptually the same but with an electron removed, and hopping of hole

polarons involves the transfer of an electron travelling the opposite direction. Polaron

hopping on other sites, in particular hole polarons centered on O sites [42, 47, 57] is
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another important conduction mechanism but beyond the scope of this thesis.

This thesis is organized as follows. In Chapter 2, I review the theoretical framework

used to study polaronic behaviour in transition metal oxides, combining the ab initio

tool of DFT with a two-site hopping model which provides a good starting basis to

quantify the properties specific to polaron hopping. I also review important elements

of crystal field theory, taking into account the structural properties and symmetries

common to TM oxides. Following this, I discuss the practical implementation of this

theory, describing the techniques used to calculate polarons in TM oxides in DFT,

and how to analyse and calculate polaronic properties from the results.

Chapter 3 investigates the effects of DFT+U projection on a selection of novel

materials with applications in renewable energy generation, calculating all the afore-

mentioned polaronic properties in these materials for a comprehensive study. This

chapter has been published and is presented in modified form [1].

Chapter 4 applies my methodology to a particular system: the battery cathode

material LiFePO4. This chapter has also been published [2] and is presented in

modified form. In this chapter, I study the hopping characteristics in the delithiated

form, FePO4, using both static relaxation methods as well as first principles molecular

dynamics.

In Chapter 5, I combine elements of electron exchange theory with crystal structure

properties of typical TM oxides and explain qualitatively the conditions required to

calculate adiabatic polaron transition states.

Finally, I summarize my findings in Chapter 6, and provide an outlook and con-

clusion.
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Theory

2.1 The solid state Hamiltonian

At the heart of any quantum mechanical problem lies the Schrödinger equation (SE),

for which the Hamiltonian is given, in atomic units and for N electrons andM nuclei,

as:

Ĥ =
1

2

N∑
i

∇2
i −

N,M∑
i,j

Zj

|ri −Rj |
+

1

2

∑
i �=j

1

|ri − rj|

+
1

2

M∑
i

∇2
i

Mi
+

1

2

∑
i �=j

ZiZj

|Ri −Rj|
(2.1.1)

= T̂e + V̂ext + V̂ee + T̂n + V̂nn, (2.1.2)

where T̂e and T̂n are kinetic energy operators for the electrons and nuclei, V̂ext is the

electron-nuclear potential operator, also known as the external potential operator, V̂ee

is the electron-electron potential operator, and V̂nn is the nuclear-nuclear potential

operator. ∇2
i is the Laplacian acting on the i-th particle, and Mi and Zi are the

atomic masses and charges, respectively. The full wavefunction for this Hamiltonian

is of the form

Ψ = Ψ (r1, r2, . . . , rN ;R1,R2, . . . ,RM) , (2.1.3)

a quantity that depends on 3N +3M spatial variables excluding spin. In a solid state

system, the number of variables will be on the order of 1023 and becomes intractable

7
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to handle directly.

The first approximation we can do is to assume that the nuclei move slowly com-

pared to the electrons due to their much higher mass, separate the ionic and electronic

variables and solve the SE in two steps. In the electronic step we keep the ionic po-

sitions fixed and solve for the electronic wavefunction, and in the ionic step we use

the electronic wavefunction to calculate the interatomic forces and evolve the ionic

positions. In other words,

Ψ = Ψe ×Ψn = Ψ (r1, r2, . . . , rN)×Ψ (R1,R2, . . . ,RM) . (2.1.4)

This is called the Born-Oppenheimer (BO) approximation, an adiabatic approxima-

tion. We have already decoupled the electronic and ionic motions at this level of

approximation, and as a result we cannot explicitly calculate electron-phonon terms

anymore. Therefore, all of this work is based on an approach where we do not con-

sider electron-phonon interactions explicitly but treat it indirectly as an effect from

structural distortions induced by the electronic configuration (e.g. when calculating

polaronic ground states). Conversely, we can also alter the electronic configuration by

changing the structural distortions (e.g. when calculating polaronic transition states

and aligning the electronic levels according to the Franck-Condon principles).

Within the BO approximation, the electronic part of the Hamiltonian remains as

the starting point for electronic structure calculations:

Ĥ =
1

2

N∑
i

∇2
i −

N,M∑
i,j

Zj

|ri −Rj |
+

1

2

∑
i �=j

1

|ri − rj|
(2.1.5)

= T̂e + V̂ext + V̂ee. (2.1.6)
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2.2 Density Functional Theory

The main accomplishment of Kohn-Sham (KS) density functional theory (DFT) [58,

59, 60] is that it maps the complicated many-body interacting problem to a simpler

system of non-interacting electrons moving in an effective KS-potential VKS(r). The

general idea is thus to reformulate the wavefunction problem, a quantity depending

on 3N spatial variables, as an electron density problem, a quantity with only three

spatial variables:

n(r) = N

∫
|Ψ (r, r2, . . . , rN)|2 dr2 . . .drN . (2.2.1)

The goal is to express quantities in terms of the electron density and operators in

terms of density functionals as follows:

E[n] = 〈Ψ[n] |T̂ + V̂ee + V̂ext|Ψ[n] 〉 (2.2.2)

≡ T [n] + Vee[n] +

∫
Vext(r)n(r)dr. (2.2.3)

The Hohenberg-Kohn (HK) theorems [58] state that it is possible to uniquely de-

termine all ground state properties of a system with the electron density as input,

and that the correct ground state density minimizes the total energy functional of

Eq. (2.2.3). In principle this is an exact map of the wavefunction problem with 3N

variables to a density problem with only 3 variables, but in practice the analytical

expressions for T [n] ≡ 〈Ψ[n] |T̂ |Ψ[n] 〉 and Vee[n] ≡ 〈Ψ[n] |V̂ee|Ψ[n] 〉 are not known.

Kohn and Sham [59] (KS) replaced the full system of Eq. (2.2.3) with an auxiliary

system of non-interacting quasiparticles ψi(r) that sum up to the same density as the

original system:

n(r) =

N∑
i

|ψi(r)|2 . (2.2.4)

This leads to an exact expression for the non-interacting kinetic energy functional,

TKS[n]. Additionally, we can pull out the Hartree energy from Vee[n] and obtain the
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KS energy functional:

EKS[n] = TKS[n] +

∫
Vext(r)n(r)dr+

1

2

∫
n(r)n(r′)
|r− r′| drdr′ + EXC[n]. (2.2.5)

We have now replaced all the unknown terms within EXC[n], the energy functional

that describes the complicated quantum mechanical exchange and correlation effects

of the system. The resulting KS equations for the one-electron KS wavefunctions are

given as

ĤKSψi(r) =

[
−1

2
∇2 + VKS(r)

]
ψi(r) = εiψi(r). (2.2.6)

where

VKS(r) = Vext(r) + VH(r) + VXC(r), (2.2.7)

VXC(r) ≡
δEXC[n]

δn(r)
, VH(r) ≡

δEH[n]

δn(r)
=

∫
n(r′)
|r− r′|dr

′. (2.2.8)

The mapping of Eq. (2.2.3) to Eq. (2.2.5) is exact provided we know the exact form

of EXC[n], so in principle no approximations have been made so far. The limitations

of DFT is firstly that it is a ground state theory, i.e. higher energy states calculated

in DFT have no physical meaning. Additionally, the KS wavefunctions do not rep-

resent true interacting many-body electrons, and the corresponding KS eigenvalues

therefore do not have a formal physical meaning [61]. In practice, we treat this as an

approximation and possible source of error.

To solve the KS equations in practice, we note that this is a self-consistent problem.

More specifically, the density n(r) depends on the KS orbitals ψi(r) (Eq. 2.2.4), which

are obtained by solving the KS Hamiltonian (Eq. 2.2.6). However, the KS potential

VKS(r) is calculated from the density n(r) (Eq. 2.2.7), resulting in a self-consistent

cycle. Typically, we start with an initial guess for n(r) and iteratively improve our

solutions until self-consistency is reached, i.e., nnew(r) ≈ nold(r).
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2.2.1 Exchange and correlation

Although unknown in exact form, the exchange-correlation (XC) energy EXC includes

all the quantum mechanical effects that are crucial for describing the correct physics

of a system. Technically, we can further separate this term into its exchange and

correlation energies

EXC = EX + EC, (2.2.9)

where the exchange term EX describes the exchange interactions arising from the

Pauli exclusion principle and the correlation term EC represents the complicated

many-body electron-electron Coulomb interactions not included in the Hartree term.

The development of accurate XC functionals is an active field of research but is beyond

the scope of this work. Instead, we shall briefly outline a few examples of common

XC functionals and state how these approaches fail to predict the correct behaviour

in materials with band gaps and strongly correlated materials.

The local density approximation (LDA) uses only the density as input and uses

the properties of the analytically solvable homogeneous electron gas (HEG) to ap-

proximate the actual, inhomogeneous system:

ELDA
XC [n] =

∫
εHEG
XC [n(r)]dr. (2.2.10)

The functionals created by von Barth and Hedin (VBH) [62] and Ceperley and Alder

(CA) [63] are examples of LDA functionals.

Generalized gradient approximations (GGA) seem to be more sophisticated by

including the gradient of the density as input:

EGGA
XC [n] =

∫
F [n(r),∇n(r)] dr, (2.2.11)

although it is not a guarantee that they will do better than LDA functionals as

both are still approximations to the true XC energy. Examples of GGA functionals
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include the Perdew-Wang 91 (PW91) [64] and Perdew-Burke-Ernzerhof (PBE) [65]

functionals. The PBE functional is currently the most widely used functional in

DFT calculations. These functionals work remarkably well for most “well-behaved”

materials whose properties do not deviate much from the HEG, and LDA/GGA DFT

has been highly successful in predicting bulk properties of most materials.

However, standard LDA/GGA suffers from a number of deficiencies, and it system-

atically underestimates band gaps of strongly correlated systems such as transition

metal oxides. We will not elaborate on the exact mechanisms behind these phenom-

ena but we will briefly outline two popular methods that we have applied in this work

and have seen successes in handling such strongly correlated materials.

2.2.2 DFT+U

In strongly correlated systems, in particular the d and f transition metal oxides, the

strong on-site Coulomb interaction leads to localization of the d (or f) electrons onto

atomic-like orbitals centered on the transition metals. The DFT+U method [28, 66,

67, 68, 69] attempts to capture this interaction by separating the electrons into a set of

delocalized electrons (typically the s and p electrons) on which standard LDA/GGA

is applied, and a separate set of electrons considered localized (typically the d or f

electrons) treated in a Hubbard-like fashion. Originally coined LDA+U , it has since

been extended to other semilocal functionals such as GGA and we therefore group

these together under the general term DFT+U .

Our focus is on d electrons, although the process is similar for other orbitals con-

sidered to be localized (f orbitals, and in some cases, p orbitals). The energy contri-

butions of these localized d electrons are, in the rotationally invariant scheme, of the

form

EU =
1

2
U
∑
i �=j

ninj, (2.2.12)

where ni denotes the d orbital occupancies. U is the on-site screened Coulomb energy,
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the main parameter that enters in this theory. We now include this energy term in

the total energy and subtract from it the so-called double counting term Edc which

represents the contributions of the same d electrons that already exist in LDA/GGA:

Edc =
1

2
UNd(Nd − 1), (2.2.13)

where Nd =
∑

i ni is the total number of d electrons. Summed together, the LDA+U

energy becomes

ELDA+U = ELDA − 1

2
UNd(Nd − 1) +

1

2
U
∑
i �=j

ninj. (2.2.14)

This expression for the general DFT+U energy implies a quadratic relation of the

DFT+U energy with respect to orbital occupation ni, and the implications will be

discussed in more detail in Chapter 3. The eigenenergies εi can be expressed as

εi =
∂E

∂ni
= εLDA + U

(
1

2
− ni

)
, (2.2.15)

and result in a downward shift in energy for occupied orbitals by U/2 and an upward

shift by the same energy for empty orbitals. In Mott-Hubbard insulators, this results

in the opening of a gap in cases where standard LDA/GGA fails to predict a gap

between TM d states. Similarly, the on-site orbital dependent potential Vi(r) is given

as

Vi(r) =
δE

δni
= VLDA(r) + U

(
1

2
− ni

)
, (2.2.16)

which implies a repulsive Hubbard potential for ni < 1/2, and an attractive potential

otherwise. The physical interpretation is that the system is driven towards integer

occupation of the ni sites, thereby favouring localization of the d electrons.

Implementing the DFT+U method requires a more concrete definition of ni as

we need to identify the localized states that the orbital-dependent potential is to

act upon. This can be done most consistently for d and f electrons as they tend
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to retain their atomic character when localized to their respective TM sites. In the

projector augmented wave (PAW) method [26, 27] as well as in the augmented plane

wave (APW) method [70], two widely used methods in DFT, the on-site occupancy

is defined as a projected orbital density matrix:

nt,σ
m,m′ =

∑
n,k

fσ
n,k

〈
Ψσ

n,k|P t
m,m′ |Ψσ

n,k

〉
, (2.2.17)

where Ψσ
n,k is the crystal wavefunction, fσ

n,k is the Fermi distribution, t is the site

index, σ is the spin, and m and m′ are the orbital magnetic quantum numbers.

The operator P t
m,m′(r, r′) projects the crystal wavefunction onto spherical harmonics

Yl,m(r̂):

P t
m,m′(r, r′) = θΩt(r)δ (|r′ −Rt| − |r−Rt|) Yl,m(r̂)Y ∗

l,m′(r̂′). (2.2.18)

Importantly, θΩt(r) is a step function and equals 1 for r < rc and zero everywhere

else. The implications of this hard cutoff are discussed in Chapter 3. In general, any

basis set requires a definition for the projection operator as the local atomic orbitals

need to be defined, although this definition is more straightforward for local basis sets

compared to plane wave basis sets. Additionally, the projection method is ambiguous

as other definitions are also available [71].

To summarize, DFT+U is a local method that requires only a projection to

on-site orbitals and therefore has no computational penalty compared to standard

LDA/GGA. As such it is a computationally efficient method to treat strong on-site

Coulomb correlations. The disadvantage is that it is orbital dependent, and there-

fore projection dependent, which could potentially lead to unpredictable results if the

projection is inconsistent or if the electrons prefer to localize on orbitals less atomic

in character, e.g. if they hybridize with the neighbouring ligands while remaining lo-

calized within the MO6 complex. Chapter 3 will discuss the implications of different

projections as well as the quadratic dependence of EU on the orbital occupation ni.
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2.2.3 Hybrid functionals

Hartree-Fock (HF) theory describes the electronic exchange through a four-point ex-

change integral over individual orbitals in a Slater determinant. This allows us to

calculate the exact electron exchange by construction. In the absence of any electron

correlations, this leads to large errors and overestimation of band gaps [72]. Hybrid

functionals [29, 73] include a fraction of the exact exchange in the energy calculated

by GGA as a compromise between the overbinding in HF and underbinding of GGA.

The HF wavefunction is defined as a Slater determinant,

Ψ(r1, r2, . . . , rN) ≡
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣

φ1(r1) φ2(r1) · · · φN(r1)

φ1(r2) φ2(r2) · · · φN(r2)
...

...
. . .

...

φ1(rN) φ2(rN) · · · φN(rN)

∣∣∣∣∣∣∣∣∣∣∣∣
, (2.2.19)

which is antisymmetric by construction and therefore always satisfies the Pauli exclu-

sion principle. The Fock exchange energy is given by

EX = −1

2

∑
i,j

fifj

∫
φ∗
i (r)φ

∗
j(r

′)φi(r
′)φj(r)

|r− r′| drdr′, (2.2.20)

which is a four point integral over the orbitals φi. The corresponding Fock exchange

potential is given by

VX(r, r
′) = −1

2

∑
i

fi
φ∗
i (r

′)φi(r)

|r− r′| (2.2.21)

Pure HF includes only the Fock exchange energy without any electron correlation.

Therefore, a sensible compromise is found within the hybrid functionals which com-

bine a fraction of exact exchange EX with the exchange and correlation energies

calculated in LDA/GGA. An example of a hybrid functional typically used in solid

state problems is PBE0 [29] which sets the fraction of exact exchange to α = 0.25:

EPBE0,XC =
1

4
EHF,X +

3

4
EPBE,X + EPBE,C. (2.2.22)
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Figure 2.1: Energy levels calculated from the two site hopping model in the (a) adiabatic and (b)

diabatic (non-adiabatic) case.

This fraction α ≈ 1/4 was shown [29, 74] to best reproduce the atomization energies

of most molecular systems. The screened variant, called the Heyd-Scuseria-Ernzerhof

(HSE) [73] functional, replaces the 1/r long range Coulomb interaction with a more

rapidly decaying error function to improve computational efficiency, and has seen

widespread success in many systems. Additionally, it can be shown [75] that hybrid

functionals and DFT+U can have similar effects on localized orbitals within the on-

site regions.

In summary, the advantage of hybrid functionals is that exact exchange is non-

local and acts on all orbitals independent of projection. Therefore, the method is seen

to be more robust compared to DFT+U in treating strong correlation effects. The

disadvantage is that we require calculation of the non-local Fock exchange energy EX,

and this is computationally expensive. In practice, hybrid functional calculations are

one to two orders of magnitude slower than comparable DFT/DFT+U calculations.
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2.3 The two-site polaronic transfer model

In second quantization formalism, the model Hamiltonian for a two site hopping

system may be written as [76, 77]

H =
M

2

(
v2A + v2B

)
+
M

2
ω2

(
x2A + x2B

)

+A (xA−xB)
(
â†AâA−â

†
B âB

)
+J

(
â†AâB+â

†
BâA

)
, (2.3.1)

where M is the polaron effective mass, A is an electron-phonon coupling parameter,

and J denotes the inter-site exchange coupling parameter. The annihilation and

creation operators are given as â1,2/â
†
1,2. In the original model [76, 77], xA/B and

vA/B represent the coordinates and velocities of the two ions near their respective

sites. In this work, we define xA/B as the “polaron coordinate”, which is taken to be

a single, averaged description for the distortion of local bonds around the polaronic

site. We will further elucidate this definition in Section 2.5. The harmonic oscillation

frequency in each polaronic well as sketched in Fig. 2.1 is defined as ω and is typically

approximated as a single characteristic optical phonon frequency ωop [77].

We now introduce a further simplification of the polaron coordinates xA/B and

only look at their difference x = xA−xB . Ignoring center of mass (xA+xB)/2 terms,

we can simplify Eq. (2.3.1) to

H =
M

2
v2 +

M

2
ω2x2 +Ax

(
â†AâA−â

†
B âB

)
+J

(
â†AâB+â

†
BâA

)
, (2.3.2)

where we now have a single coordinate and velocity v = dx/dt for the system. To

find the energies of this Hamiltonian, we apply the Heisenberg equation of motion,

d
dt
âi(t) =

i
h̄
[H, âi], and note the time evolution of âi as âi(t) = âi exp iEt/h̄. We also

approximate x to vary slowly over time (dx/dt = v = 0). Solving for the energies, we

then obtain

E±(x) =
ω2M

4
x2 ±

√
A2x2 + J2, (2.3.3)
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with lower E− and upper E+ energy branches as shown in Fig. 2.1. We now further

rewrite this expression by introducing the following substitutions, λ = A2/Mω2 and

y = (Mω2/4A)x:

E±(y) = λy2 ±
√
λ2y2 + J2. (2.3.4)

As shown in Fig. 2.1, this substitution introduces the reorganization energy λ in terms

of the other parameters of the model. This is advantageous as λ is a well defined

concept in electron transfer theory [23] and a more tractable quantity compared to

the other parameters A, M , and ω.

Analyzing this function in greater depth, we first shift the energies so that the two

minima are at zero energy by adding a constant to Eq. (2.3.4) (as is done in Fig. 2.1):

E ′
±(y) = λy2 ±

√
λ2y2 + J2 + C ≡ E±(y) + ΔEdia, (2.3.5)

where we define the constant ΔEdia as the diabatic (non-adiabatic) crossover energy.

Solving for this constant, we obtain ΔEdia = λ
4
+ J2

λ
. The two minima of E− are

given by y0 = ±
√

1
4
− J2

λ2 . We can define the adiabatic crossover energy, ΔEad, as the

value of the lower energy branch E ′
− at the crossover point y = 0: ΔEad ≡ E ′

−(0) =

ΔEdia − J . Further simplifying these quantities by neglecting the higher order terms

in J , we then obtain:

ΔEdia ≈
λ

4
, (2.3.6)

ΔEad ≈ λ

4
− J, (2.3.7)

y0 ≈ ±1

2
=⇒ x0 ≈ ± 2A

Mω2
. (2.3.8)

From this, we can see that this model reproduces Marcus ET theory [23], expressing

the diabatic (non-adiabatic) crossover energy ΔEdia as a quarter of the reorganization

energy λ. We can also see the effect of the coupling parameter J , which acts to split

the energy levels of the lower and upper branches at the crossover point (x = 0)
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by 2J and relates the adiabatic crossover energy through ΔEad = ΔEdia − J . The

importance of J is such that a significant part of this work revolves around it, and I

will discuss this in more detail in the following section.

2.3.1 Adiabaticity and the exchange parameter J

The original adiabatic theorem states [24, 78] that a system undergoing a pertur-

bation will remain in its eigenstate as long as the perturbation happens gradually.

An adiabatic process thus describes a system whose external conditions vary slowly

over time, so that we can solve for its state while keeping the external conditions

fixed. A particular example of an adiabatic approximation is the Born-Oppenheimer

approximation, which assumes the ions to be at rest initially, solves for the electronic

structure of this system, and then uses this solution to derive the properties of the

system. In other words, it decouples the ionic and electronic wavefunctions by virtue

of the ions having much higher mass compared to the electrons. In contrast, a dia-

batic or non-adiabatic process is a process where the external conditions change so

fast that the system has had no time yet to relax to its new ground state.

The concept of adiabaticity is inherently coupled to the exchange term J , which

describes the splitting due to inter-site exchange interaction. If φA and φB describe

the state of an electron located at site A and B respectively, a generic expression for

J is given as follows [79]:

J =

∫
φ∗
A (H− ε0)φBdτ, (2.3.9)

where H is the Hamiltonian of the system, ε0 is the energy of φA and φB, and the

integral extends over all relevant coordinates (and spins). When the two degenerate

states φA and φB are brought together, their interaction will lift the degeneracy and,

due to symmetry, combine the two states together in “bonding” (φ+ = φA + φB) and

“antibonding” states (φ− = φA−φB) in much the same way as in a molecular two-site

system (see Fig. 2.2a). The energy difference between these two states is equal to 2J .
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Figure 2.2: Energy diagrams for a two-site system in the (a) adiabatic and (b) non-adiabatic cases.

In the presence of an interaction J , the two initially degenerate states (φA and φB) combine into

bonding (φ+) and antibonding (φ−) states, while they remain degenerate in the non-adiabatic case.

Note that the energies corresponding to φ± are defined as ε∓.

The electronic oscillation frequency between these two states can be given as

ωel ≈
2J

h̄
. (2.3.10)

This is not valid for the polaronic case where we also need to consider phonon in-

teractions, but it can still give us an order of magnitude estimate. We can directly

relate the situation depicted in Fig. 2.2a with the crossover point in Fig. 2.1a, also

called the adiabatic transition state (TS).

We can now establish a connection between adiabaticity and J by comparing the

situation for J > 0 in Figs. 2.2a and 2.1a with the situation for J ≈ 0 in Figs. 2.2b

and 2.1b. If J > 0, there is a clearly defined lower energy branch (E−) in Fig. 2.1a

that the system can follow adiabatically when transitioning from site A to site B. If

J ≈ 0 however (Fig. 2.2b), there is almost no interaction between φA and φB and the

two sites remain degenerate in energy. The energy curves VA and VB in Fig. 2.1b also

remain separate with one curve for each site, and there is no mechanism for the system



2.3 The two-site polaronic transfer model 21

to transition adiabatically from one curve (VA) to another (VB). Hence, if J ≈ 0, the

only possible transition mechanisms are diabatic (e.g. tunneling vertically from VA to

VB without changing the x-coordinate in Fig. 2.2b), leading to the connection between

adiabaticity and J . A more specific criterion for adiabaticity in the two-site model is

given in the next section.

The J > 0 and J ≈ 0 cases have particular implications on DFT calculations on

the TS. Again, if J is nonzero then the coupling combines the two separate states

φA and φB into “bonding” (φ+) and “antibonding” (φ−) states (Fig. 2.2a), with their

energetic difference E+ − E− equal to 2J . As the lowest state φ+ is a single state

that encompasses both sites, the density configuration of this state will be
(
1
2
, 1
2

)
, a

notation depicting both sites as having half of the electron density. This configuration

is stable against small perturbations, as even if φA and φB differ slightly in energy,

their coupling remains intact and the single bonding state will persist. However,

in the nonadiabatic case when J ≈ 0 (Fig. 2.2b), there is no coupling and the two

states φA and φB remain spatially separate and degenerate in energy. If they are

perfectly symmetric, a DFT calculation will still result in a
(
1
2
, 1
2

)
distribution of the

density. However, in this case any perturbation will break the symmetry and change

the energy of φA with respect to φB. This will result in the complete filling of one site

over the other (1, 0) or (0, 1). In any DFT calculation, the result will be a (1, 0) or

(0, 1) configuration, as φA and φB are never identical due to numerical inaccuracies

(typically, one POL state is 1-5 meV higher or lower in energy compared to another

POL state).

2.3.2 Polaron characteristic scales and hopping rates

From the derivations shown in more detail in Ref. [77], there are three resulting

characteristic polaron parameters which can be utilized to understand how hopping
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should be treated in a given system:

η1 = J/Ea (Polaron size) (2.3.11)

η2 =
J2

h̄ω
√
EakT

(Adiabaticity) (2.3.12)

η3 = J2/EakT (Nearest-neighbour), (2.3.13)

where η1, η2, and η3 describe, respectively, the polaron size, adiabaticity, and the

validity of the nearest-neighbour approximation. If η1 � 1, the polaron size is small,

giving us a rough guideline on the relative magnitude of J compared to the activation

energy Ea. η3 determines the validity of the two-site model. If η3 � 1, then only

nearest-neighbour hopping needs to be considered, in which case the usage of a two-

site model is justified.

The hopping rate Γ derived from this two-site model is divided into adiabatic and

diabatic regimes depending on the value of the adiabaticity parameter η2 [77]:

Γ =
ω

2π
e−Ea/kT ×

⎧⎪⎨
⎪⎩
1 (η2 > 1)

π3/2η2 (η2 � 1).

(2.3.14)

Importantly, this parameter allows one to determine the applicability of ground-state

adiabatic DFT to a problem that is inherently diabatic. For η2 > 1, we are in the

adiabatic regime. If however η2 � 1, the adiabatic approximation will no longer be

valid. Either case of the resulting expression in Eq. (2.3.14) gives an exponential

relationship between the hopping rate and the activation energy Ea. This energy Ea

is the difference in total energy between the transition state and the ground states

Ea = ETS − EGS. Such total energies can be extracted from ab initio calculations

– where ETS is the total energy at the transition state and EGS is the total energy

at the ground state. I shall discuss the adiabatic and diabatic (nonadiabatic) cases

separately.
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The adiabatic case

If η2 > 1, Eq. (2.3.14) reduces to

Γ =
ω

2π
e−Ea/kT , (2.3.15)

where Ea ≡ Ead ≈ Edia − J . This is a typical Arrhenius-like behaviour where the

hopping rate, conductivity, and mobility all depend exponentially on the activation

energy and the temperature.

The diabatic (non-adiabatic) case

If η2 � 1, Eq. (2.3.14) becomes

Γ =
2π

h̄
J2 1√

4πλkT
e−Edia/kT , (2.3.16)

where the activation energy is now Ea ≡ Edia. Importantly, the hopping prefactor

now has an explicit dependence on J2. As J is small for diabatic cases, we can

expect non-adiabatic hopping to be far less frequent compared to the adiabatic case.

We note that Eq. (2.3.16) is the same as the relation derived from electron transfer

theory [23, 24], indicating a relation between diabatic hopping in this model and

electron transfer reactions in, for example, molecular systems.

2.4 Crystal Field Theory

I briefly review the main elements of crystal field theory [80, 81], a basic model

describing the behaviour of localized transition metal d (or f) states surrounded by a

regular configuration of anions (typically O atoms) as is the case in TM oxides. We can

extend the same view to TM-centered polarons as they can be treated as adding one

more electron (or hole) to the TM with a distortion and possible reduction of the local

symmetry. Crystal field theory, as its name implies, describes the symmetry breaking
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due to the crystal field or ligand field of the anions surrounding the metal cation. In

TM oxides, the metal ion typically either has four (tetrahedral coordination) or six

(octahedral coordination) neighbouring anions, the latter being the most common.

This work is focused on octahedral MO6 configurations.

A freestanding metal cation (such as Fe3+) has perfect spherical symmetry, and its

five (half-filled) 3d orbitals therefore have the same energy as shown on the left side of

Fig. 2.3. However, when the atom is surrounded by six anions ([O2−]6) with octahedral

symmetry, the degeneracy of the 3d orbitals is lifted by the resulting octahedral ligand

field (see Fig. 2.3). A qualitative explanation is that the O2− anions are negatively

charged and therefore tend to repel the nearby 3d electrons. This increases the energy

of the 3d orbitals pointing towards the anions (i.e. the dz2 and dx2−y2 orbitals) with

respect to the 3d orbitals that are pointing towards directions in between the anions

(i.e. the dxy, dyz, and dxz orbitals). In the octahedral case, the three orbitals with

lower energy are called t2g orbitals, and the two orbitals higher in energy are called

eg orbitals. The splitting energy, which is the energy difference between the two,

is called ΔO. The magnitude of ΔO depends on the configuration of the metal ion

(oxidation state and position in the periodic table) and the ligands around it and will

be greater when the oxidation state is higher and when the surrounding ligand field

is stronger, as well as when the metal ion is further down the periodic table (ΔO is

typically higher in 4d transition metals compared to their 3d predecessors).

2.4.1 High and low spin complexes

The common occurrence of octahedral complexes combined with this splitting has

large implications on the spin state of such complexes. When all d (or f) orbitals

have the same energy, filling of these orbitals is straightforward and goes according

to Hund’s rule. However, when the orbital degeneracy is lifted and the t2g orbitals

are filled with three electrons, the next eg orbital will be ΔO higher in energy. If ΔO

is lower than the energy required to place the electron into one of the other singly
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Figure 2.3: Splitting of the d orbitals by an octahedral crystal field. Initially, on the left, all d

orbitals are degenerate due to spherical symmetry, but when the metal atom is placed inside an

octahedral MO6 complex, the orbitals split into a set of lower energy (t2g) and higher energy (eg)

orbitals, with ΔO the difference between the energy levels. Note: these orbitals are taken from a

DFT+U calculation in an example perovskite material. As such, the orbitals are similar, but not

identical, to pure atomic orbitals.
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Figure 2.4: The Jahn-Teller effect most visible to odd eg occupancies. The degeneracy of the dz2

and dx2−y2 orbitals is lifted once a geometric distortion acts to either compress or elongate the MO6

octahedron, lowering the energy level of one orbital compared to the other.

occupied t2g orbitals (ΔH) then the eg orbitals will be filled next as shown in Fig. 2.3

where all five 3d electrons of the example Fe3+ ion are unpaired. This configuration

is also called high spin (HS) as it maximizes the total spin based on the number

of electrons in the d shell. If however ΔO is higher than the intraorbital repulsion

energy ΔH , the system will favour completely filling the t2g orbitals first before placing

electrons into the eg orbitals. This configuration is also called low spin (LS). A few

examples of such HS and LS configurations are shown on the left in Fig. 2.4.

2.4.2 The Jahn-Teller effect

An additional corollary to crystal symmetry breaking is the so-called Jahn-Teller (JT)

effect [82, 83], whose eponymous theorem states that a system with spatially degen-

erate ground states will distort and break its symmetry and lower the energy of one

of these states [82, 83]. This effect is illustrated in Fig. 2.4 where all three electronic

configurations displayed have a degeneracy in the eg orbitals. These orbitals (dz2 and

dx2−y2) have the same energy, although from their different spatial configurations (as

shown on the right in Fig. 2.4) we can see that electrostatic interactions arising from

the charge distribution prefer either pushing the opposing z-ligands outwards (dz2

configuration), or pushing the x- and y- ligands outwards (dx2−y2 configuration). In



2.5 Computational details 27

both cases this will lower the total energy and thereby lift the degeneracy. Thus,

JT distorted octahedral complexes are either elongated or compressed depending on

which eg orbital is singly occupied. JT effects are particularly strong in the eg orbitals

(for octahedral complexes), as they both point toward the ligands. The effect also

exists in t2g orbitals but is much smaller as the t2g orbitals do not point toward the

ligands.

2.5 Computational details

2.5.1 Definition of the reaction coordinate

The reaction coordinates xA and xB discussed in the two-site model in Chapter 2 are

of special importance. Originally, this model was devised for a one dimensional chain

of ions [76, 77] in which the meaning of xA/B is straightforward, as is the harmonic

potential dependence based on deviations of this coordinate from equilibrium. I have

translated this to my case of MO6 octahedron-centered polarons by noting that this

harmonic behaviour is approximately similar if we take xA to be the average of the

six MA-O6 bond lengths:

xA ≡ 〈d (MA, O)6〉 . (2.5.1)

Our “reaction coordinate” can thus be seen as a measure for the local structural

distortion. This approximation loses information on the individual bond lengths,

however it retains the general picture. The harmonic potential is then expressed as a

function of the “breathing mode” of the MO6 octahedron. The difference x = xA−xB
is calculated in a similar fashion:

x = xA − xB ≡ 〈d (MA, O)6〉 − 〈d (MB, O)6〉 . (2.5.2)
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2.5.2 Calculating the polaronic states (“POL” and “TS”)

A polaron can be seen as a form of crystalline defect, and the typical way of treating

defects in a periodic calculation is to include more unit cells to contain the defect,

creating a supercell calculation. The size of the supercell must be chosen to minimize

the amount of interaction between the defect and its images located on adjacent

supercells. The procedure to localize an electron into a polaronic state is as follows.

First, we take a fully relaxed intrinsic structure. Then we create the supercell and

introduce an additional electron, compensated by a homogeneous positive background

charge. As the initial perfect symmetry does not allow the system to localize the

electron, we manually apply a small distortion on one of the TM sites before relaxing

the supercell. This is done by elongating all six M-O bonds by a certain fraction,

usually by 5%. This procedure is similar for hole polarons, where we instead remove

an electron from the supercell and compress the bonds.

The procedure of introducing an extra charge together with a homogeneous back-

ground charge to maintain charge neutrality is a simple approximation while ensuring

that the net charge does not diverge (as the system is periodic). The addition of this

background charge results in a small shift in the potential, and the calculated eigen-

values are therefore also slightly shifted. This should be of no concern, as the shift

is small for a single charge smeared out over a large supercell, and relative energies

remain unchanged.

An issue frequently encountered in systems with localized charge is the existence

of many local minima arising from the many different possible configurations. Differ-

ent local orbitals (e.g. the five d orbitals) can have slightly different energies due to

subtle symmetry distortions from the lattice. Inclusion of the Hubbard U parameter

can further exacerbate this issue, giving rise to configurations that are separated in

energy on the order of hundreds of meV. This leads to self-consistent solutions that

are highly sensitive to small variations in geometry, volume, and even numerical algo-

rithms and mixing parameters [84]. Furthermore, these solutions are not guaranteed
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to have the lowest possible energy of that particular system [84]. There are a few

methods to systematically improve convergence to the true polaronic ground state in

calculations such as those shown in Fig. 4.4 in Ch. 4. One of which is to slowly turn

up the U-parameter instead of immediately applying the full U-correction, starting

from a ground state calculation at U = 0 eV and then gradually increasing U until

the desired value for U has been reached [84]. At that point, it is more likely that

the self-consistent solution has been nudged to the true ground state. I found that

ramping up U by 1 eV per iteration enabled us to consistently obtain accurate ener-

gies, especially for images near the transition state. For JT-distorted polarons, this

might still not give us the lowest energy orbital occupancy, and in these cases we can

add an additional elongation or compression of two opposite O atoms to lift the JT

orbital degeneracy. In some cases it is necessary to apply this elongation or compres-

sion along all three octahedral ligand-metal-ligand axes and compare the calculated

ground state energies of all the configurations to find the one that is lowest in energy.

The polaronic transition state (TS) lies in the middle of the polaronic reaction

pathway between two sites. As the exact path is not known beforehand, we typically

approximate this state by linearly interpolating all ionic positions, i.e. {qTS,linear} =

({qA} + {qB})/2 where {q} is the set of all ionic coordinates. Most studies typically

take this as their approximation to the TS, although I have found that relaxing the

TS using a nudged elastic band method (NEB) [49] can improve the results by 20 -

100 meV compared to using an unrelaxed configuration that is linearly interpolated

between the two end points. While NEB is typically used for ionic diffusion and

chemical reactions, I find that it can also be used to calculate the transition state

for an adiabatic electron transfer process. As long as we can find an adiabatic TS (if

J > 0) that consists of a
(
1
2
, 1
2

)
electron configuration, a force-based relaxation will

remain electronically in this configuration allowing the system to structurally relax.

If the TS is not adiabatic then the electronic configuration will be either (1, 0) or

(0, 1), and an NEB force-based relaxation will quickly fall to whichever POL ground

state the electron density is localized on.
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Figure 2.5: Schematic of the projected DOS for a polaronic ground state (POL). The polaron

eigenstate εPOL is projected to atomic d orbitals on the TM site it is localized on.

2.5.3 Calculating dynamics: ab initio molecular dynamics

Born-Oppenheimer molecular dynamics (AIMD) is a straightforward extension from

DFT, using the Hellmann-Feynman theorem to calculate interatomic forces from the

electron density. We can evolve the system over time using these forces, recalculating

the electron density after each ionic step. Additionally, we can include a thermostat,

i.e. connect the system to an external heat bath to apply a temperature to the

system [85] and study temperature-based dynamics. In the case of polarons, we can

thus study the exponential relation between hopping rate and temperature. Analysis

of the MD results takes into account both properties of the polaron: a change in bond

lengths Δr (see Eq. 2.5.1) together with a change in local charge Δρ. Plotting the

product of these two (Δr(t)×Δρ(t)) for each TM site over time allows us to identify

the location of the polaron based on the TM site with the largest Δr(t)×Δρ(t) value,

as well as track the movement of this polaron over time. More details are shown in

Section 4.3.2 of Chapter 4.
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Figure 2.6: Schematic of the projected DOS for a polaronic transition state (TS). The polaron

eigenstates ε± are projected to atomic d orbitals on the two TM sites sharing the transition state.

2.5.4 Density of states

In this section, I briefly discuss how to calculate the relevant polaron properties from

the density of states (DOS) and total energies of the POL and TS configurations. As

mentioned in the introduction, the activation energy Ea follows from the total energy

difference (Ea = ETS−EPOL). The polaron formation energy, Eform is calculated from

the total energy difference of a polaronic ground state with an intrinsic configuration

where the electron is placed in an undistorted supercell to prevent it from localizing

(Eform = EPOL − EINT). The other quantities are all obtained from the projected

DOS as shown in Figs. 2.5 and 2.6, with the band gap Eg = EC − EV , the polaron

state Ep = EC − εPOL, and the coupling term 2J = ε+ − ε−. The polaronic states are

projected both orbitally (onto atomic d states) and spatially (on the polaronic sites)

and works best if these states are sufficiently atomic in character. If the states are more

hybridized, the peaks will be less pronounced and it might be less straightforward to

extract these quantities from the DOS plots.
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2.6 Summary

In this Chapter, I have outlined the theoretical framework with which I will study

adiabatic polaron transport with a focus on transition metal oxides in the context

of novel energy materials. As polarons arise inherently from quantum mechanical

interactions, we require the versatility of DFT to handle such interactions atomisti-

cally with high computational efficiency. I have also reviewed the general techniques

used to calculate the desired polaronic quantities in DFT. I have developed my own

interpretation for the reaction coordinate in the two-site model that is applicable to

M-O6 polarons, a rough approximation which retains the harmonic principle of the

model, and included this definition in my combined charge-bond length metric to en-

able analysis of the MD hopping results. Additionally, I have developed a specialized

toolset to induce an approximate initial polaronic ground state in a controlled fashion,

improving computational efficiency of the subsequent DFT calculation.

I will now use these techniques to set up a comprehensive study of the limita-

tions set by the DFT+U method (Chapter 3) on polaronic properties, and use the

framework of the two-site hopping model to analyse the results of my calculations

of polaron dynamics in FePO4 (Chapter 4). As many transition metal oxides share

common properties and symmetries from a structural perspective, I use elements from

crystal field theory to deepen my analysis and combine these approaches to provide

qualitative assessments on the properties of adiabatic polaron transport based on the

specific crystal structure (Chapter 5).
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Implications of the DFT+U method on polaron properties

3.1 Introduction

Many novel materials used in clean energy applications such as lithium ion batter-

ies [8], photovoltaics [6], and catalysts [10] are transition metal oxides (TMO) and are

known to exhibit polaronic behavior [15]. In many such TMOs, the strongly corre-

lated interactions of the d shell electrons open a gap and localize d state conduction

electrons into atomic-like orbitals. The localized spatial distribution of these elec-

trons leads to further self trapping through interaction with the surrounding lattice,

turning them into polaronic states. Typical local density approximations and gener-

alized gradient approximations (LDA and GGA) calculations greatly underestimate

these correlation effects [28, 29] leading not only to incorrect predictions for the band

gap [56], but also an inability to form polarons on transition metal (TM) sites that

arise from these strongly correlated interactions [30]. As such, we require additional

corrections to account for these deficiencies in standard LDA/GGA to accurately

study polaronic behavior in TMOs. Therefore, in order to further our understand-

ing of such materials for existing and future energy applications, we should strive to

accurately model this polaronic behavior.

Density functional theory with on-site Hubbard corrections (DFT+U) [66, 67, 68]

is widely used to calculate the electronic properties of, amongst other materials, tran-

sition metal oxides where correlation plays a large role in its electronic structure.

33



34 3 Implications of the DFT+U method on polaron properties

The missing correlation effects in standard LDA/GGA are accounted for by adding

an on-site Coulomb repulsion term to specific projected atomic orbitals. Typically,

the value of U is either chosen to match an experimental property such as the band

gap [56], or obtained from constrained LDA/GGA calculations [51, 86]. Coupled

with plane wave pseudopotential formalisms, most notably the highly popular projec-

tor augmented wave (PAW) [26, 27] method, DFT+U has been highly successful in

reproducing many properties of such correlated materials at minimal added computa-

tional cost. While in principle, DFT+U may add a single parameter to an otherwise

ab initio calculation in much the same spirit as the fraction α of exact exchange in

hybrid functionals [87], its local orbital dependent functional necessitates further pa-

rameters, most notably the projection radius, when transforming to on-site atomic

orbitals. It has been shown before that this projection radius can significantly af-

fect the system, especially in self-consistent calculations of U [50, 51, 52, 53, 54, 55].

Effects on localized electronic properties such as polaronic properties are less well

studied.

In the PAW formalism, the DFT+U projection radius is conveniently equated to

the augmentation radius (rPAW) [50]. Typically, there are multiple ways to construct

a PAW potential depending on how many semicore electrons to include in the valence,

and it is physically justified for the PAW core radius to also vary based on the valency

(more electrons in the core lead to a larger core radius). In principle, one would

always use a small core PAW potential with semicore electrons included in the valence

for higher precision, although this incurs a computational cost from the additional

electrons and larger basis set. However, the DFT+U projection radius changes as

well, impacting electronic properties that are dependent on the U-term. This makes

the choice of U more ambiguous [50, 51, 52, 53, 54, 55].

In this work, we investigate the effects of DFT+U projection radius and semicore

electrons in a set of energy materials that are known to exhibit polaronic behavior

and focus on polaronic properties in these materials as illustrated in Fig. 3.1. The
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Figure 3.1: Schematic of the radial charge density distribution (ρ) of a polaronic state taken from

Fe2O3, centered at the TM site on which the polaron is localized at. rO is the average metal-oxygen

bond length, while in this example, rFe8 and rFe16 correspond to two different cutoff radii (rPAW)

of a large core Fe potential (rPAW = 2.3 a0) with 8 valence electrons, and a small core Fe potential

(rPAW = 1.9 a0) with 16 valence electrons, respectively. These are also drawn approximately on

the MO6 octahedral complex, which is cut out from the Fe2O3 solid. Other materials show similar

behavior.

materials studied are rutile TiO2, Fe2O3 (hematite), LiFePO4 and its delithiated form

FePO4, and spinel MnO2. TiO2 and Fe2O3 are materials considered for photocatalytic

applications [6, 38], while LixFePO4 and LixMn2O4 are amongst the current and next

generations of lithium ion batteries [8, 88].

My DFT+U work on FePO4 in Chapter 4 will show that the choice of PAW poten-

tial significantly affects the calculated polaron activation energy [2]. In this chapter,

we expand on this work by not only studying additional materials, but also by in-

cluding additional comparative HSE06 calculations [29, 73, 87]. We can separate the

contributions from the projection radius and semicore electrons by comparing the

results of both DFT+U and HSE06 methods, as the exact exchange is calculated ev-

erywhere in HSE06 calculations as opposed to the local U-term which acts only within

the projection radius in DFT+U calculations. By conducting such a comprehensive

study, we hope to establish a precedent on how to approach polaronic calculations in

such a way that consistent results and predictions become more attainable.
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3.2 Theory

Naturally, the main question of any DFT+U implementation is determining a value

of U that is appropriate for the particular system being studied. In theory, this is

a single parameter (two if the screened exchange term J is included in higher or-

der implementations [66, 67, 68]); but as shown previously, the implementation of

a local orbital dependent functional necessitates further parameters that are mostly

numerical in nature. In our case, this additional parameter would be the projection

radius rPAW. As shown before in previous studies [50, 51, 52, 53, 54, 55], the de-

pendence on other parameters leads to ambiguities when utilizing constrained DFT

techniques [51, 86] to self-consistently calculate a value for U , as the resulting value

was shown to vary greatly depending on both the projection radius and the basis set

used. These ambiguities therefore lend more credence to the contrasting viewpoint of

U as an empirical parameter that we can use to fit experimentally measured proper-

ties [44, 52, 53, 56], most commonly the band gap. Apart from the band gap, there

are of course many other quantities that we can fit U on, with examples being unit

cell volumes/bulk moduli, reaction enthalpies, and polaronic properties such as the

location of the polaronic gap state within the band gap.

Hybrid functionals [73, 87] could be seen as more versatile and consistent as the

fraction of exact exchange α is less system dependent and applies to all orbitals

as opposed to DFT+U which only treats a selected on-site orbital. This allows for

treatment of correlation effects in orbitals that are more hybridized and do not project

adequately onto pure atomic states [89] as well as an “occupancy agnostic” treatment

for systems that are more CT-like such as TiO2 [90]. This is in contrast to DFT+U ,

where the effect of the functional and hence the value for U depends on the occupancy

of the on-site orbital [51]. These advantages are at the expense of a one to two orders

of magnitude increase in computational effort required.

Analogous to the DFT+U method, hybrid functionals rely on a single parameter α
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which is the fraction of exact exchange that is mixed together with the LSDA/GGA

semilocal exchange energy. The effect on strongly correlated materials can be seen

as an effective “U-term” acting indiscriminately on all orbitals, both local and non-

local [87]. On one hand this can be seen as more elegant and closer to the spirit of

ab initio calculations, requiring a single parameter that is typically set at a system

independent value (typically 25% for the PBE0 functional [29] and its screened variant

HSE06 [73]), but on the other hand it is not a perfect functional, and there are systems

where the higher tunability of DFT+U leads to results that are in better agreement

with experiments [45, 91], an example of which (hematite) will be further investigated

in this study. A link between DFT+U and hybrid functionals, as the projected on-

site part of the exact exchange has been shown earlier [75]. In this work, we mainly

utilize the HSE06 functional as a means to circumvent the dependence on rPAW as both

local and non-local exact exchange are treated equally, so we can study the influence

of semicore electrons as an independent variable. Assuming that these effects are

comparable in DFT+U and subtracting them from our DFT+U results, we can then

in turn study solely the effects of changing rPAW in DFT+U .

3.3 Method

All calculations were done in the Vienna Ab-initio Software Package (VASP) [92,

93, 94, 95] using the PBE-GGA semilocal functional [96, 97] within the PAW for-

malism [26, 27]. We utilized this package for our study because its PAW potentials

are generally the most utilized by the ab initio strongly correlated electronic struc-

ture community. However, the general trends explored should be applicable to all

DFT+U implementations. Correlations were treated with both DFT+U [50, 67, 98]

and HSE06 [73, 87] methods. The set of PAW potentials [27] studied was provided and

included within VASP. All ionic positions were relaxed until interatomic forces were

smaller than 0.005 eV / Å for volume and intrinsic structure calculations, and 0.01 eV

/ Å for polaron supercell calculations. For structural relaxations, the PAW potential
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with the smallest radius was used except for LiFePO4 (see Table 3.1), in which case

the large core Fe potential was used due to issues described in the LiFePO4 results

section. We calculated separate sets of structures for both DFT+U and HSE06. Typ-

ically, an HSE06 relaxation leads to approximately 5% smaller volumes and therefore

2− 3% shorter bond lengths compared to a DFT+U relaxation, and these structural

discrepancies lead to errors in the calculated properties of around 50-100 meV when

using a DFT+U structure in an HSE06 calculation and vice versa.

We performed polaron calculations in supercells deemed large enough to contain

the defect, and all polaron hopping barriers were calculated by relaxing the transition

state with the CI-NEB method [49]. A Gaussian smearing of 0.02 eV was used in

all cases, but increased to 0.05 eV for displaying density of states (DOS) results.

For rutile TiO2, a 2 × 2 × 3 supercell (24 formula units) was used for the polaron

calculations with a 2 × 2 × 2 Monkhorst-Pack k-point scheme. For Fe2O3, we used

a supercell consisting of 2 × 2 × 1 hexagonal unit cells (24 formula units), with only

Γ-point sampling in the reciprocal space. A 1 × 2 × 2 supercell (16 formula units)

with Γ-point sampling was used for FePO4 and LiFePO4, and for spinel MnO2 the

cubic cell with 16 formula units was used with a 2 × 2 × 2 Monkhorst-Pack k-point

scheme. Values used for Ueff are 4.2 eV for TiO2 [44], 4.3 eV for FP/LFP [30] and

Fe2O3 [45], and 4.5 eV for MnO2 [46]. These values were calculated self-consistently

for FP/LFP, Fe2O3, and MnO2 [56], whereas the value for TiO2 was fitted to reproduce

the experimental band gap [44].

After relaxing all the required structures, we then calculated the properties with a

set of PAW potentials supplied by VASP [27], of which the valencies and augmentation

radii are listed in Table 3.1. These include the standard potentials without semicore

electrons (labeled “X”), potentials with 3p electrons (labeled “X pv”), and potentials

with 3s and 3p electrons (labeled “X sv”). For Ti, we included an additional hard

potential (“Ti h”) with an even smaller core radius. We also included the latest (2015)

PAW potentials that are optimized for GW calculations (labeled “X sv GW”) but are
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also seen as generally more accurate [99]. Results with these potentials might deviate

slightly from the expected trends due to their different construction as they have more

projectors and empty valence states [99].

The properties that we have studied are the band gap Eg, the polaron gap state

Ep, the polaron formation energy Eform, and the bulk polaron hopping barrier (acti-

vation energy) Ea. We define the band gap Eg = EC −EV as the difference between

the conduction band minimum (CBM) and valence band maximum (VBM). We take

the polaron gap state energy Ep relative to the CBM. The formation energy is cal-

culated as the difference between the localized polaronic ground state and the initial,

undistorted state Eform = EPOL − EINT, and the activation energy Ea is the hopping

barrier which is the difference between the transition state (TS) and ground state

total energies Ea = ETS − EPOL.

For additional comparison, we also performed polaron hopping barrier Ea calcu-

lations with the plane-wave DFT code Abinit [100, 101], using the same structures

and parameters as in the VASP calculations. The DFT+U projection scheme in

Abinit [71] differs slightly from the one used in VASP [50], leading to different calcu-

lated trends. For further details we refer to the appendix in Sec. A.

3.4 Results

In this section we list our computed properties for each material (rutile TiO2, Fe2O3,

(Li)FePO4, and spinel MnO2) in its own subsection, comparing them to earlier calcula-

tions and experimental measurements if available. We also provide extensive analysis

on the calculated trends in these materials, followed by a more in-depth analysis of

the projection radius in Sec. 3.5. We then recap our analysis and provide a general

assessment of these trends in Sec. 3.6. Full datasets of our calculations are included

in the appendix in Sec. A.
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Zval rPAW (a.u.)

Ti 4 2.8

Ti pv 10 2.5

Ti sv 12 2.3

Ti sv GW 12 2.0

Ti h 12 1.9

Mn 7 2.3

Mn pv 13 2.3

Mn sv GW 15 2.0

Mn sv 15 1.95

Fe 8 2.3

Fe pv 14 2.2

Fe sv GW 16 2.0

Fe sv 16 1.9

Table 3.1: List of the potentials used in this study with their different valencies and PAW augmen-

tation radii rPAW. Other differences in PAW construction which are most notably between GW and

non-GW potentials are not shown here.

3.4.1 TiO2

Titanium dioxide in its rutile form (Fig. 3.2) has a measured band gap of 3 eV [102].

Further experimental results [40] indicate a polaronic surface state in the band gap

that is approximately 0.7 ± 0.1 eV below the CBM. While we cannot directly relate

a surface state to one calculated in the bulk material, they still arise from the same

physical origin of strong d-orbital correlations and we should be able to connect the

two qualitatively.

From a chemical point of view, the Ti atoms are stripped of all their valence

electrons leaving them in a d0 state. This leads to TiO2 being a strong CT insulator,

with the valence band dominated by completely filled O 2p states, and the conduction

band having Ti 3d character as shown in the projected DOS plot in Fig. 3.3. From

this alone we can already argue that the DFT+U formalism should be insufficient

as the U-term acts upon localized electrons with atomic-like d-character, of which

there are formally none in this material. Its resulting effect on the band gap should

therefore be small, as has been calculated in previous DFT+U works [90, 103]. As the
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Figure 3.2: Structure of rutile TiO2.

projected 3d occupations inside the Ti spheres are still non-zero due to hybridization

and non-orthogonality of other states entering the sphere (and can even be larger

than 2 for large spheres [103]), the orbital dependent U-term will still act on these

unphysical non-zero occupations, and this could lead to uncontrollable results [53].

We therefore expect that a hybrid functional such as HSE06 would fare better here

as it is independent of both orbitals and their occupancies.

Fig. 3.3 shows the projected DOS of TiO2, with one additional electron localized

in a polaronic state. Calculations with DFT+U and HSE06 are qualitatively very

similar, so we only show the DFT+U calculations here. The valence band consists

entirely of p states, while the conduction band is fully d-like. The band gap Eg is

defined as the energy difference between the lowest unoccupied state (CBM) and the

highest occupied state (VBM), and the polaronic state Ep is defined relative to the

CBM. According to the PDOS, this polaronic state is almost entirely of d-orbital

character, which is also confirmed by the radial charge density plot in the inset of

Fig. 3.3, showing behavior that is similar to an atomic 3d orbital.

Fig. 3.4 shows the band gap and polaron properties calculated with both DFT+U
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Figure 3.3: TiO2 orbital projected DOS of the polaronic ground state. Inset: real space radial charge

distribution of the polaronic state. This particular example was calculated with DFT+U and the

“Ti sv” potential.

(U = 4.2 eV [44]) and HSE06 (α = 0.25) methods while varying the Ti PAW potential.

From the HSE06 plot in Fig. 3.4a which does not depend on projection radius, we see

that the band gap incurs a slight increase with an increase in valence electrons (4 for

rPAW = 2.8, 10 for rPAW = 2.5, and 12 for 4 for rPAW ≤ 2.3). The different rPAW of the

three 12 electron potentials do not seem to affect the HSE06 results in any significant

way. In comparison, the DFT+U plot in Fig. 3.4a shows a smaller increase of the gap

with an increase in valence electrons, peaking at rPAW = 2.3 and then decreasing as

we further decrease rPAW. We can see that increasing the number of valence electrons

has an effect similar to the HSE06 results, while there is an additional superimposed

contribution from the different DFT+U projections, however it is not as drastic as

the theory would suggest. We attribute this to the valence band being entirely of

O 2p character, where the splitting from the DFT+U 3d projection has little effect.

Furthermore, the increase in the number of semicore electrons leads to a slight increase

of the gap, and the two effects somewhat cancel each other out. However, the position

of the polaron state is influenced dramatically as seen in Fig. 3.4b. As rPAW decreases,

the distance between the polaron state and the CBM becomes smaller and smaller
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Figure 3.4: Calculated electronic properties of TiO2 with DFT+U and HSE06 as function of different

PAW potentials. (a) band gap Eg, (b) polaronic gap state Ep, (c) formation energy Eform, (d)

polaronic hopping barrier Ea.
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for DFT+U , while the HSE06 results are insensitive to the choice of rPAW. This can

be attributed to the DFT+U projection of the polaron state which is almost entirely

of Ti 3d character and therefore is highly sensitive to the projection radius. Similar

trends can be seen from the formation and activation energies in Fig. 3.4c and 3.4d,

with the DFT+U results being highly sensitive to rPAW and the HSE06 results being

affected mostly by the difference in valence electrons, but relatively less so. From the

DFT+U results in Fig. 3.4, we can see a relationship between the polaronic properties

(formation and activation energies) and the position of the polaron within the band

gap (vs. CBM). Qualitatively this makes sense, as the distance to the conduction

band will determine how strong the self-trapping and hopping energies are.

For TiO2, it seems that HSE06 results are much more consistent as function of

varying PAW potential, and that there is a wide variance in our DFT+U results

depending mainly on which projection radius is used. Combined with the unphysical

behavior of DFT+U in d0 materials, we conclude that HSE06 obtains more consistent

results for TiO2. Finally, comparing to experimental measurements, the HSE06 results

for the band gap (expt. 3 eV) and polaron state (expt. 0.7 eV from CBM) seem to

be about 0.6 eV and 0.3 eV off, respectively. In order to obtain a better quantitative

prediction of the polaron hopping barrier, it seems plausible to slightly reduce the

mixing factor α to better match the band gap and polaron state with experimental

results for TiO2, as the value of α was originally tuned to reproduce the energies of

molecular systems [74], and might not be universally applicable to all solids.

3.4.2 Fe2O3 (Hematite)

For hematite (Fig. 3.5), experimental data is available for three relevant character-

istics, with the band gap measured at 2 eV [104], the polaron state with respect to

the CBM at 0.7 eV [48], and the polaronic activation energy at 120 meV [48]. Ad-

ditionally, the activation energy has been calculated at 130-150 meV in a previous

DFT+U study [45], showing close correspondence to the experimental value. This
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Figure 3.5: Structure of Fe2O3, also known as hematite.

makes hematite an ideal case to focus our computational study on.

Fig. 3.6 shows the projected DOS as well as the real space radial charge density plot

of the polaronic state. As Fe3+ is in a high spin d5 state, adding an extra electron will

send it to the minority spin channel turning it into d6 Fe2+. The electronic properties

in Fig. 3.7 show that DFT+U calculations with all potentials reproduce the band gap

quite well, although the polaronic properties vary wildly per potential. These trends

are quite comparable to the situation in TiO2. The potential that achieves the best

comparison of the activation barrier to experiment is the large core potential (rPAW

= 2.3 a0) with 8 valence electrons largely due to its larger projection radius, although

the rPAW = 2.0 a0 potential with 16 valence electrons comes closest to reproducing

the polaron gap state.

In contrast to our TiO2 results, the HSE06 method does not reproduce experi-

mental values as well as DFT+U . While the results are more consistent between

different potentials and show expected trends with respect to semicore electrons, the

standard mixing fraction of 25% overestimates the band gap to 3.5 eV in all cases

as shown in Fig. 3.7a. When setting α to 12% to obtain a better band gap compared
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Figure 3.6: Fe2O3 orbital projected DOS of the polaronic ground state. Inset: real space radial

charge distribution of the polaronic state. This particular example was calculated with DFT+U and

the “Fe” potential.

with experiment [91], we were unable to localize a polaron in Fe2O3, contrary to

experimental evidence. Using the standard α = 25% for polaron calculations which

does allow polaron formation, we then obtained very low activation energies of 15

meV at rPAW = 1.9 a0, going down to almost 0 meV for the rPAW = 2.3 a0 potential.

Therefore, it seems that for this material, DFT+U reproduces experimental results

better, although careful attention is required concerning the projection radius.

3.4.3 FePO4 and LiFePO4 (LFP)

As it is challenging to synthesize a fully delithiated sample of LiFePO4 (Fig. 3.8), we

will compare our results to a previous computational study [30, 89], reproducing their

results with the large core Fe potential (rPAW = 2.3 a0) while adding more insight by

including the other potentials as well as the HSE06 method. Fig. 3.10 shows the results

of this study, with all results following the trends as noted before; HSE06 results being

dependent on mostly the number of electrons and DFT+U results showing a mostly

downward trend with decreasing radius. The two main differences are that HSE06

calculations lead to a much larger band gap and a smaller polaron formation energy.
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Figure 3.8: Structure of LiFePO4. FePO4 has the same structure without the intercalated Li atoms.
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charge distribution of the polaronic state. This particular example was calculated with DFT+U and

the “Fe” potential.

For LiFePO4 in its fully lithiated phase, the experimental band gap has been

measured at ∼ 4 eV [56], while not much polaron information is available as the

mobile Li+ ions seem to form the rate limiting factor for conductivity measurements

with their significantly higher diffusion barriers [30, 105, 106]. From the projected

DOS in Fig. 3.11 we can see a significant qualitative difference between this material

and the other materials studied. The Fe2+ peak is the highest occupied state, but it

is localized and separated from the usual delocalized O 2p / Fe 3d hybridized valence

band present in FePO4 as shown in Fig. 3.9, making this material a true Mott-

Hubbard insulator. From a FePO4 perspective, LiFePO4 could also be described as

being fully saturated with polarons that are charge transferred from the Li+ ions.

We therefore have two definitions of a band gap in this material, depending on how

we define this Fe2+ state. One definition is the delocalized CBM - delocalized VBM

(labeled “CB - VB” in Fig. 3.12a), and the second one will be the traditional CBM -

zero temperature EF definition (labeled as “C - 2+” in Fig. 3.12a). We can see how

the DFT+U projection comes into play for these two definitions in Fig. 3.12, with

the “CB - VB” gap near constant and the traditional “CB - 2+” gap being strongly
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charge distribution of the polaronic state. This particular example was calculated with DFT+U and

the “Fe” potential.

dependent on the potential used. This further clarifies our definition of the “2+”

state as being polaron-like, as it is a pure Mott-Hubbard state and therefore highly

sensitive to the projection radius. Furthermore, the empty hole polaron state above

the Fermi energy retains the same position from both the CBM and the delocalized

VBM. Thus, the only state that moves when changing the DFT+U projection radius

is the 2+ state. For HSE06, both gaps remain unchanged which again shows that

the polaron state is preserved in HSE regardless of which PAW radius we choose as

shown in Fig. 3.12a. Here once again, HSE produces much more consistent gap states

and barriers solely due to the fact that it is not dependent on a projection radius,

although it again consistently calculates much higher band gaps.

The FePO4 results are quite in line with the other materials. While LiFePO4 is

strongly Mott-Hubbard like, subsequently leading to stronger rPAW effects in even the

DFT+U calculated band gap. Also uniquely for LiFePO4, we were unable to localize

a hole polaron in DFT+U with the 16-electron small core potential (rPAW = 1.9 a0),

and as such all structural calculations were done with the 8-electron, rPAW = 2.3 a0

potential. This can be clearly explained from the formation energy in Fig. 3.12, which
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Figure 3.13: Structure of spinel MnO2.

becomes nearly zero (20 meV) as well as lower than the activation barrier as rPAW is

lowered. This 20 meV formation energy would lead to thermal excitations being able

to easily delocalize the state, as well as band conduction being favored over hopping

conduction as it would cost less energy to excite the electron into the conduction

band. This shows once more the importance of setting a realistic projection radius,

especially for calculations of polaron properties.

3.4.4 MnO2

Band gap measurements have been done on LiMn2O4, which has half a Li for each

formula unit of MnO2 (Fig. 3.13). These additional Li atoms add electrons which

relax further into polaronic states. Therefore, the measured d-d band gap of 1.2

eV [107] would correspond to the polaron gap state Ep as opposed to the Mn 3d -

O 2p gap, which was measured to be around 3 eV [108] – this study also measured

additional d-d transition energies of 1.63 eV and 2.00 eV. DFT+U calculations have

been performed earlier [46] and have resulted in a calculated barrier of 0.22 eV for

free polarons.

Fig. 3.14 shows the projected DOS for MnO2 and its polaron real space radial



3.4 Results 53

−2 −1 0 1 2
0

10

20

30

E−E
F
 (eV)

D
en

si
ty

 o
f s

ta
te

s 
(/

eV
)

 

 

Total DOS
Total s
Total p
Total d

0 1 2 3 4 5
0

0.01

0.02

0.03

0.04

r – rpol (a.u.)

ρ
 (

e 
/a

.u
.)

Eg

Ep

MnO2
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charge distribution of the polaronic state. This particular example was calculated with DFT+U and

the “Mn pv” potential.

density calculated in DFT+U . In contrast to the other materials studied, the MnO2

projected DOS shows significant hybridization of the polaronic state, which is of

approximately half p and half d character. This can also be clearly inferred from

the inset, which shows a real space density that is shared between the Mn site and

the O atoms, with a minimum at around 2.2 a0. The physical implications of a

more hybridized polaron state is that it is less sensitive to DFT+U parameters as it

projects far less onto purely atomic d states. Additionally, the increased hybridization

could be more general to other Mn-O compounds, where for example in MnPO4 it

was shown that DFT+U could not localize a polaron at all due to the increased

hybridization [89].

The electronic properties of MnO2 are shown in Fig. 3.15. At first glance, there

are only quantitative differences between DFT+U and HSE06 here, with HSE06 cal-

culations resulting in higher energies over all projection radii. Both the 7-electron

(3d54s2) and 13-electron (3p63d54s2) potential of Mn have the same radius of 2.3 au,

allowing us to do a direct study of 3p semicore effects in Mn while keeping rPAW the

same. Those results are similar to the other materials, with more electrons leading
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to slightly higher energies. However, the DFT+U results are in contrast to the other

materials, showing little effect of rPAW and being qualitatively similar to the HSE06

results. The calculated activation energies Ea in Fig. 3.15d follow the same trend

as the formation energies Eform and gap state energies Ep, showing relatively little

dependence on rPAW.

Thus, for spinel-type MnO2, DFT+U calculated properties depend very little on

rPAW. This is explained through two physical properties. Qualitatively, as shown in

the projected DOS in Fig. 3.14, the MnO2 polaron state is strongly p-d hybridized and

is therefore relatively insensitive to rPAW in DFT+U , as there will be little projection

onto atomic-like d states regardless of projection radius. Also, we can look at the real

space density in Fig. 3.14 which drops to almost zero at around 2.2 a0. This means

that if we vary the projection radius between 1.95 and 2.3 a0, the integrated value

would likely vary little even if the state were of pure atomic 3d character.

3.5 DFT+U projection analysis

To study the effects arising from changing the projection radius, we plot the real space

charge distribution of a polaronic state centered radially on its transition metal site

in Fig. 3.16, taking Fe2O3 as our case material. Polaron charge densities in the other

materials are very similar as seen in the insets of the separate DOS figures so our

analysis here will be general, with the exception of MnO2 which is treated separately

due to its hybridization. The two black dashed lines represent the projection radius of

the smallest core (rPAW = 1.9 a0) and the largest core (rPAW = 2.3 a0) PAW potential.

The integrated charge density with rPAW = 1.9 a0 is 0.6698 compared to 0.7145 for

rPAW = 2.3 a0, leading to a difference in projection of approximately 0.05 electrons.

We can see that both radii are approximate as they are both relatively far up the

tail and neither projection encompasses even 90% of the electron density. For half an

electron on a TM site in the Fe2O3 “TS” state, these numbers are 0.3481 and 0.3749

respectively, a difference of approximately 0.025 electrons.



56 3 Implications of the DFT+U method on polaron properties

0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

r−r
pol

 (a.u.)

ρ 
(e

 /a
.u

.)

 

 

POL Site 1
TST Site 1

rFe16 rFe8

Figure 3.16: Real space radial charge distribution around a polaronic Fe site in Fe2O3. This partic-

ular calculation was done in DFT+U with the “Fe” potential. The blue curve and area corresponds

to the polaronic ground state (“POL”). The red curve and area corresponds to the transition state

(“TS”), where half of the electron density is centered on this site and the other half is centered on a

neighboring site. The PAW radii shown correspond to the large (rPAW = 2.3a0, 8 valence electrons)

and small core Fe (rPAW = 1.9a0, 16 valence electrons) potentials.
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The magnitude of these differences directly influences the energy term of Eq. (2.2.14)

and affects the d-d splitting as seen in the differences of the locations of the polaron

gap states for all the materials studied including Fe2O3, as well as the CBM - VBM

gap in LiFePO4. For the formation and activation energies, the effect is more subtle as

it relies on an energy difference between the U-term energy contributions. However,

in both cases this can be traced back to the quadratic dependence on the occupancy

of the U-term. We first rewrite Eq. (2.2.14) as a sum of on-site U-term energy con-

tributions:

EDFT+U = EDFT + EU ≡ EDFT +
∑
t

EU
t (N), (3.5.1)

where the sum goes over all sites t, and N is the (projected) occupancy of local

electrons at site t. The activation energy Ea = ETS − EPOL is defined as the total

energy difference between the transition state configuration (“TS”) where the electron

is shared between two neighboring sites (labeled tA and tB) and the polaronic ground

state configuration (“POL”) where the electron is localized on one site (labeled tA)

only. Focusing on the projection-dependent U-term contributions and separating out

the other terms (that we assume depend negligibly on the projection), we rewrite Ea

as:

Ea = ETS − EPOL = EU
TS −EU

POL +ΔEother, (3.5.2)

EU
POL = EU

tA(N + 1) +
∑
t�=tA

EU
t (N), (3.5.3)

EU
TS = EU

tA(N + 1/2) + EU
tB (N + 1/2) +

∑
t�=tA,tB

EU
t (N). (3.5.4)

To first order EU
tA(N + 1/2) = EU

tB(N + 1/2) = EU
t (N + 1/2) and assuming that,

in a linear approximation, we can write EU
t (N + x) ≈ EU

t (N) + EU
t (x), the relevant

U-term energy difference becomes

EU
a ≈ 2EU

t (1e/2)−EU
t (1e), (3.5.5)
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as all other on-site differences within EU
t,TS(N) − EU

t,POL(N) are approximately zero.

Fundamentally, this is the difference between the on-site energy of two half polarons

and one whole polaron. As the energy terms are quadratically dependent on the

projected charge (see Eq. (2.2.14)), changing this projection will lead to a change in

this energy difference, as seen in our calculations. The argument for the formation

energy follows in a similar fashion, with the higher energy configuration in this case

being the intrinsic, delocalized solution which has the relevant energy difference of

EU
form = nEU

t (e/n)− EU
t (1e), (3.5.6)

where n is the number of polaronic sites (which is equal to the number of TM sites)

in a supercell calculation. When the projection radius changes, the amount of charge

ascribed to +U interactions varies from the idealized fractions presented in the above

equations. Since the +U is correction is quadratic with the total number of projected

electrons, this often leads to a particularly acute polaronic energy dependence on

the projection radius that is manifest in nearly all polaronic properties (the major

exception being MnO2, which projects far less onto d-states, as discussed in the

previous section).

3.6 Discussion

We have calculated four different electronic properties in five different materials. Not

only have we calculated the band gap, we have also studied the three additional

polaronic properties of these materials. From these results, we can establish a few

trends as well as understand cases where these trends do not seem to hold. First

of all, from our HSE06 calculations, we can see that in almost all cases, including

semicore electrons leads to a band gap widening of up to 0.3 eV, and an increase in

the activation energy of up to 30 meV. Formation energies can increase by up to 0.1 eV

in LiFePO4, but are relatively flat in the other cases. The polaron state is similarly
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unchanged in HSE06 calculations. We can then eliminate the variable of semicore

electrons by comparing these results with our DFT+U calculations. Assuming that

these effects are similar for both HSE06 and DFT+U calculations, we can begin

to understand the effects of changing rPAW on our DFT+U results. The general

trend seems to be that all investigated polaron properties (Ep, Eform, and Ea) for

sufficiently atomic-like polaron states (this excludes Mn2O4) decrease in magnitude

with decreasing rPAW when the DFT+U method is employed (in a manner that is

dependent on rPAW). This trend is much less observable in the calculated band gaps,

and using the band gap as sole criterion for fitting U therefore does not seem sufficient

for calculations predicting polaronic properties.

The band gap (with the important exception of LiFePO4 as shown in Fig. 3.12a)

remains relatively flat when varying rPAW, and our results indicate that this arises

from a cancellation of errors. Adding semicore electrons will increase the gap, but the

simultaneous decrease of rPAW leads to less projected on-site charge and therefore a

smaller d-d separation. The decrease in the band gap is not as dramatic as one would

expect from the projection onto rPAW, as the occupied d states are typically far below

EF leading to an O 2p dominated valence band which is more CT-like in behavior.

The important exception to this is LiFePO4, whose VBM is strongly localized and d-

like. In that case we can clearly see the effect of changing rPAW on the d-d separation,

as the HSE06 results remain flat here as well.

The three polaronic properties (Ep, Eform, and Ea) show remarkably similar be-

havior and trends, and unlike the band gap Eg, all depend strongly on the potential

being used, with MnO2 being the exception. The energy of the polaron state inside

the band gap Ep is a better measure of the effects of changing rPAW, as it is localized

and strongly d-like, while relatively unaffected by semicore interactions. This is where

we can see the clearest trends in all materials, except for MnO2, with Ep depending

monotonically on rPAW. The polaron state in MnO2 is much more hybridized with

neighboring O 2p orbitals and is therefore largely unaffected by the projection onto
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pure 3d atomic orbitals as shown in Fig 3.15. This is an important property as polaron

gap states can be experimentally measured, giving perhaps a better benchmark to fit

the value of U on as the d-d character is more consistent with the spirit of DFT+U

compared to the band gap which in many cases is more CT-like.

The formation and activation energies Eform and Ea are more direct indicators of

polaron dynamics in a material. Here again, the DFT+U values are highly dependent

on rPAW, while the HSE06 results are much flatter. As energies calculated here have an

exponential effect on the predicted dynamics, it raises a clear ambiguity for DFT+U

results. Which potential is the one that we can trust? The best current comparison

to experiment is hematite [48], where the activation energy calculated with the Fe

potential with 8 valence electrons and rPAW = 2.3 a0 comes closest to reproducing the

measured value of 130-150 meV (see Fig. 3.7d). This is at variance with the traditional

guidelines of smaller core and more electrons always leading to better results. Another

example, related to the formation energy, is seen in LiFePO4, where we were only

able to localize a polaron with the large core Fe potential (rPAW = 2.3 a0). Further

analysis showed the reason behind this; the formation energy decreased sharply with

decreasing rPAW with the smallest core (rPAW = 1.9 a0) having a formation energy

of 20 meV. This not only lead to computational issues in finding such a shallow

energy well, but, being lower than the activation energy, also lead to the qualitatively

erroneous prediction that the hole polaron preferred delocalized band conduction over

hopping.

The implementation of the on-site projection in Abinit [71] differs slightly from the

implementation in VASP [50], and the Abinit results (see the appendix in Sec. A) ap-

pear to show less potential dependent variation. However, further potential database

development is required to verify such improvements.



3.7 Conclusion 61

3.7 Conclusion

We have conducted an extensive study on the calculation of polaronic properties in

several materials (rutile TiO2, Fe2O3, FePO4/LiFePO4, and spinel MnO2) with both

DFT+U and HSE06 methods. We have studied the influence of both semicore elec-

trons and projection radii on the calculated band gaps, polaron gap states, formation

energies, and activation energies by varying the PAW potential for the transition

metal, and have shown that the HSE06 method in almost all cases is more robust

and more consistent (when the DFT+U PAW implementation depends on rPAW).

However, HSE06 does not give universally better results compared to the DFT+U

method. While being more consistent, the drawback of hybrid functionals is the one

to two orders of magnitude higher computational expense, making DFT+U methods

still a very advantageous approach to studying polaronic properties.

Our calculations have shown that semicore electrons have a small effect on pola-

ronic properties, increasing the calculated band gap by up to 0.3 eV, and activation

energies by up to 30 meV. The effects of different projection radii on DFT+U calcula-

tions are, apart from the band gap, dramatically more significant. This directly arises

from the U-term energy contribution which is quadratically dependent on the locally

projected density matrix, and we believe that, since the band gap remains often rel-

atively unaffected due to reasons discussed in this work, the impact of the projection

radius on other properties is not generally emphasized in the literature. In particular,

when studying polaronic properties with the DFT+U method, extensive care must

be taken to remain consistent with not only the band gap but also properties such

as the gap state, while taking the projection radius into account as an additional

variable apart from the value for U . In general, one may extend these insights to

other Mott-Hubbard influenced properties as well, as they might also be impacted if

the projection radius were inconsistent between comparative DFT+U calculations.

To further progress in the analysis of polaronic properties predicted, more ex-
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perimental measurements of polaron activation energies and gap state positions are

needed. As polaronic properties are one of the factors determining the performance

of energy and catalytic materials, having consistency in first principles calculations

allows us to better compare them with measured values, as well as make more confi-

dent predictions in novel materials. Future work should focus on coupling theory and

experiment in this manner.



4

Adiabatic polaron dynamics in FePO4

4.1 Introduction

In the rapidly evolving field of clean energy materials, many emerging and estab-

lished materials exhibit polaronic behavior [9, 20, 40, 41, 42]. In particular, polaronic

hopping conduction is understood to contribute to the low conductivity suffered by

many of the transition metal (TM) oxides and phosphates typically utilized in bat-

teries [30, 31, 32, 33, 34, 35] and artificial photosynthesis [5]. Low conductivity often

hampers the ability of these materials to harvest, store, or deliver energy. This usu-

ally occurs because d-shell electrons open a gap that localizes conduction electrons

into small polaronic states [13, 18]. In fact, there are many more materials with sim-

ilar correlated mechanisms that produce localized carrier behavior, including ionic

systems, π-conjugated polymers [20, 21], as well as electron transfer processes in ion-

aqueous solutions [22]. In order to engineer and improve the electronic performance

of this important class of materials, it is necessary to investigate and understand the

fundamental mechanisms that determine their polaronic hopping behavior.

It is usually assumed that the primary factors contributing to the hopping ac-

tivation energy (Ea) arise form the nuclear reorganization of bonds between neigh-

boring atoms during a polaronic transition [32, 33, 34, 35]. For example, a TM ox-

ide/phosphate atom possessing a small electron polaron will typically experience an

expansion of bonds with neighboring oxygen atoms (sketched as a larger “expanded”

63
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red circle in Fig. 4.1) due to electron-electron repulsion, compared to those TM atoms

lacking an extra electron (sketched as smaller “contracted” blue circle Fig. 4.1). Like-

wise, the intermediate transition state is represented by a midsize magenta circle in

Fig. 4.1, due to the midway extension of nuclear coordinates in this state. In the

case of a hole polaron localized at a TM site, the process is described in an analogous

fashion but with the situation reversed (i.e., there will be a contraction of TM-O

bonds at the site of the hole polaron).

Such nuclear reorganization is, understandably, associated with the stretching

of bonds and the corresponding relaxation of valence electron states. So logically

one might assume that core electrons (both deep-core and semi-core as sketched in

Fig. 4.1) play a negligible role in determining the polaron hopping barrier (Ea) [32,

33, 34, 35]. From this follows the treatment of core electrons as “frozen”, i.e., not

relaxing during a hopping event. This would appear to be a fair approximation for

well shielded deep-core levels [32, 33, 34, 35]. However, the delineation is not so clear

for semi-core levels in transition metals (sketched in green in Fig. 4.1), even those

situated many tens of eV below valence electrons [109]. Though core electrons do not

participate in bonding, they can “electronically relax” during a hopping process and

may contribute substantially to the overall hopping barrier (Ea).

The impact of core-level relaxation is a subtle and important question which goes

back to the development of computational methods in quantum chemistry and con-

densed matter physics [109, 110]. The most famous of these is Koopmans’ theorem

[and its density functional theory (DFT) variants] [72, 111], which allows us to esti-

mate the ionization and affinity energies of systems in terms of their single particle

eigenstates (ε). This is accomplished by assuming the orbitals are “frozen” during

the ionization process. While this would appear to be a fair approximation when a

charge state change occurs very rapidly relative to the time scale of electrons (e.g.,

optical excitations) [109, 112]. When ionization occurs on adiabatic (slow) time scales

from the perspective of electrons, it is not clear which orbitals may be assumed to be
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Figure 4.1: Two site electron polaron picture. Nuclear and electronic reorganization must occur to

enable a polaron to reach the activation energy Ea, which represents the total energy (E) change

that must be contributed by the system to move from a polaron localized on one atom (larger red

circles) to another atom (smaller blue circles). At the intermediate transition state the electron is

shared by both sites (equally sized purple circles). During this transition valence (vb), semi-core

(sc, in green), and deep-core (dc) levels (ε) may electronically reorganize/relax and contribute to E.

Electronic coupling between polaronic sites is represented by J .

“frozen” [109]. Small polarons provide an interesting framework to study the ques-

tion of what orbitals can be viewed as “frozen”, because hopping sites are often being

ionized adiabatically/slowly (from the perspective of the much faster electrons) as an

electron moves from one site to the next.

Due to computational limitations, in first-principles pseudopotential (PP) calcula-

tions on polaronic systems we often relax this “frozen orbital” assumption for valence

electrons, but not for core electrons [27, 32, 33, 34, 35, 112, 113, 114]. To shed light

on this more general “slow ionization” problem in first-principles electronic structure

theory [72, 109, 110], we address the question: what is the impact of semi-core level re-

laxation upon the activation barrier of small polarons? As our model system we have

chosen to study the delithiated form of LiFePO4 (FePO4, as shown in Fig. 4.2) [35],
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Figure 4.2: The atomic structure of FePO4. A polaron located on one site (labeled Fe1), with an

isosurface of the real space charge density shown in grey. Its nearest neighbor is labeled Fe2, and

its neighbor in the out of plane direction is labeled Fe3. Consequently, we study both the common

in-plane nearest neighbor pathway (NN) as well as the closest inter-layer pathway (IL).

due to the known subtle interaction between the Fe d-shell and semi-core states and

the immense practical importance of this material in Li-ion batteries [9, 27, 35]. In

this system we show that semi-core level relaxation can alter the estimated polaronic

hopping rate by an order of magnitude or more. While the focus of this study is on

electron polarons in FePO4, we find a similar effect for hole polarons in LiFePO4 (see

Appendix B). In general, it is expected that these results will have broad implica-

tions for first-principles polaronic hopping estimates in many TM compounds. The

remainder of this chapter is organized as follows: in Sec. 4.2 we outline the relevant

concepts in polaron theory (Sec. 4.2.1) followed by the computational details of this

work (Sec. 4.2.2); then, we present the first-principles results in Sec. 4.3 in Secs. 4.3.1

and 4.3.2; lastly, we discuss the general implications of our results in Sec. 4.3.3 fol-

lowed by a summary conclusion in Sec. 4.4.



4.2 Method 67

4.2 Method

The physical properties of small polarons in solids closely resemble those of localized

electrons on molecular sites, and as such polaronic theory borrows many concepts

from molecular electron transfer (ET) theory (and vice versa) [13, 17, 23]. The reor-

ganization energy (λ in Fig. 4.1) due to bond relaxation from the change in oxidation

state can also be seen as similar to the molecular picture, where in this case it is the

relaxation of TM-oxygen bond lengths on the TM site where the additional electron is

localized. Small polaron hopping is therefore also analogous to ET theory, where the

Franck-Condon principle requires that the electronic levels of the two sites are brought

close enough together in order for hopping to occur, which can be accomplished by

arranging the TM-oxygen shells to have the same bonding coordination (see Figs. 4.1

and 4.2). We refer to Sec. 2.3 for a comprehensive discussion on these fundamental

concepts and theoretical considerations in polaronic hopping, and discuss the details

of ab-initio core relaxation and polaron hopping approaches below in Sec. 4.2.1 and

elaborate on the computational method that we have adopted in Sec. 4.2.2.

4.2.1 Ab-initio Approaches in Modeling Polaronic Hopping

Within DFT, the total energy expression (from which we extract polaron activation

energies) may further divided into electronic and ionic terms:

E =
∑

εi −
1

2
EH − δExc + Eionic, (4.2.1)

where the electronic contribution is composed of a summation over the electronic

eigenstates (εi), less one-half the Hartree energy EH and an exchange-correlation

(XC) correction (δExc) [110]. Moreover, within the local spin density approximation

(LSDA) and general gradient approximation (GGA) XC frameworks, the techniques

of pseudopotentials [115] and more recently projector augmented wave (PAW) [27]

potentials are amongst the most popular and widely used methods to approximate
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the all-electron (AE) scheme accurately for a wide variety of atoms and systems.

The central idea of these methods is to separate the electrons into an inner core and

an outer valence shell, with the assumption that outside a certain core radius the

tightly bound core electrons have no significant overlap with the valence electrons

and can therefore be frozen within the potential. For most applications this is an

excellent approximation. However, there is no fundamental reason why core levels

must always remain frozen and cannot provide significant corrections to the total

energy as formulated by Eq. (4.2.1). For atoms such as transition metals where

the valence d states are more strongly bound to the core, this approximation might

not be sufficient and could result in significant discrepancies in energies (that is,

core levels within
∑
εi and thereby E) [27, 113]. Moreover, the inclusion of spin

polarization leads to localized spin densities that may have subtle interactions with

the core electron density.

For PP and PAW methods, one can construct a potential which treats semi-core

states as valence states [27, 114]. This allows for the adiabatic relaxation of semi-core

states during hopping calculations at a slightly increased computational cost. For iron,

in our model system of FePO4, this means that we should place at least the 3p states

and likely also 3s states in the “valence shell”. Additionally, to fully capture polaron

localization it is necessarily to incorporate onsite TM electron-electron interactions

(see Fig. 4.2). In this work we have utilized the Hubbard DFT+U formalism [67],

which leads to further localized d states and more spin interaction [30, 31, 116], further

motivating the need to verify the accuracy of frozen core calculations by comparing

them with the inclusion of semi-core valence states. From hereon, we label Fe 3d64s2

results with Fefc and Fe 3s23p63d64s2 results with Fesc during the course of our study

on FePO4.

To calculate activation barriers (Ea as shown in Fig. 4.1) between polaronic sites

from first-principles, one usually assumes a nearest-neighbor (NN) pathway and inter-

polates coordinates between the two endpoints as a good initial estimate [30, 31, 116],
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and might apply the climbing image nudged elastic band (CI-NEB) [31, 49] method

to further relax the pathway – hereafter simply abbreviated as the nudged elastic

band (NEB) method. In most situations, this initial pathway estimate is well justi-

fied and results in a realistic barrier height, after relaxing this pathway using NEB.

Additionally, it is assumed that hopping is adiabatic. In this work, we investigate

in more detail where and why the adiabatic assumption is justified for our FePO4

model system (as shown in Fig. 4.2). We do this by not only looking at the typical

in-plane, nearest neighbor (nn) pathway, but also by considering a hypothetical path-

way between layers (inter-layer). In this manner, we are able to study the validity

of the adiabatic approximation on both pathways using a simple two-site polaronic

transfer model [76, 77] within the context of the general criteria given by Eqs. (2.3.12)

and (2.3.14) [23]; and the impact of semi-core level relaxation on the NEB computed

polaron hopping barriers.

However, NEB calculations do not provide any information regarding attempt fre-

quency ω/2π (as expressed by Eq. (2.3.14)). Molecular dynamics (MD) calculations,

both analytical and quantum mechanical (ab-initio, AIMD), are typically used to

study dynamic processes such as surface diffusion [117, 118] and more specifically

ionic diffusion through battery materials [119, 120]. In our model FePO4 system, we

use AIMD to study polaron dynamics, as polarons diffuse through the collective mo-

tion of its nearby atoms. The advantage of MD calculations is that it allows us to treat

the system in a dynamic fashion while including the effects of thermal fluctuations, as

well as extract both the activation energy and the hopping attempt frequency (ω/2π)

simultaneously through the Arrhenius relation,

Γ = ν0 exp (−Ea/kT ) , (4.2.2)

which repeats Eq. (2.3.15). Here, ν0 = ω/2π is the frequency prefactor (hopping

attempt frequency) and Ea is the activation energy. Similar work has been done

previously on TiO2 [40]. We can then relate these results to the barriers obtained
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from static (NEB) calculations, to both verify the static results and provide more

detailed information on the hopping physics.

4.2.2 Computational Approach

Calculations were done utilizing the GGA functional by Perdew, Burke, and Ernzerhof

(PBE) [96, 97] using projector augmented wave (PAW) [27] potentials as implemented

in the Vienna ab-initio simulation package (VASP) [92, 93, 94, 95]. The on-site

Hubbard term (U) was added to the functional (GGA+U) to incorporate the strong

electron correlation in the Fe 3d orbitals and has been set to Ueff = 4.3 eV according

to previous calculations [30]. Static calculations were done using 1× 2× 2 supercells

with an energy cutoff of 500 eV and a k-point grid such that energies were converged

to within 1 meV per unit cell. The ionic positions and supercell dimensions are

fully relaxed, with interatomic forces lower than 0.01 eV/Å. Ferromagnetic ordering

was assumed throughout. An electron polaron localized in FePO4 turns an Fe3+

site into Fe2+. The orbital and spin configuration thus changes from d5(t32ge
2
g) to

d6(t42ge
2
g) as both oxidation states of Fe are in high spin (HS) configurations. These

HS configurations are maintained throughout this chapter.

The Fe PAW potentials Fefc and Fesc used in this study have 8 and 16 valence

electrons, respectively. Additionally, the potentials have different core radii (2.3 a.u.

and 1.9 a.u., respectively). A smaller core radius leads to a potential that is “harder”,

i.e., it leads to more accurate results at the expense of requiring a larger basis set [27].

However, the on-site Hubbard term applies to a projected on-site density matrix that

is defined only inside the PAW sphere [50, 98]. A smaller core radius will therefore

have a different on-site projection, and might lead to different results. To investigate

this in more detail, we first note that the band gap in both FePO4 and LiFePO4 does

not change significantly depending on which Fe potential was used (see Appendix B).

Additionally, we have performed all-electron (AE) calculations according to the
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APW+lo method as implemented within the WIEN2k software package [121]. Very

briefly, the APW method separates the wave function into spherical harmonics inside

the muffin-tin (MT) spheres and plane waves outside, with full relaxation of all core

states. Within this method, DFT+U is similarly defined only inside the MT spheres.

If we then take the MT sphere radii to be the same as the respective PAW core radii,

we can separate the contribution of semi-core states from possible artifacts arising

from DFT+U implementation specifics, especially in the case of our Fefc results.

That is, we can use an MT sphere radius of 2.3 a.u., and yet allow full relaxation

of semi-core states within the APL+lo method in a straightforward fashion without

having to construct a specific PAW potential. We label AE results as AE2.3 and

AE1.9, respectively, with the subscript number corresponding to the Fe MT sphere

radius used (atomic units). Details of the WIEN2k calculations are provided in

Appendix B.

MD calculations were performed with an energy cutoff of 500 eV and Γ-point

sampling. The Nosé-Hoover thermostat [85] was used to control the temperature in

an NVT-ensemble. Multiple calculations were run at various temperatures for 20 ps

per run with a time step of 1 fs. Initial conditions were set by adding a random velocity

to each atom in an intrinsic supercell, distributed according to Maxwell-Boltzmann

statistics corresponding to the required temperature.

For our MD analysis we record individual hopping times Δti for all such events, af-

ter which the average temperature-dependent hopping rate is calculated as the mean

of the individual rates. We then plot these averaged rates as function of temperature,

and extract the hopping barrier according to the Arrhenius equation of Eq. (2.3.15).

This way, we can obtain both the activation energy and the prefactor (hopping at-

tempt rate) from the same set of MD calculations. It should be noted that this

method of hopping statistics is different from classical methods [117, 118], where it is

more common to calculate diffusivities from mean square displacements of the system

at the end of the run, for many runs. The current method takes each hopping event
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individually and thus exhibits a larger statistical variance, however this is unavoidable

due to the significant computational cost of running long ab-initio MD simulations.

4.3 Results

Before delving into detailed activation barrier (Ea) and rate (ω) calculations, let us

start from the outset by addressing the question: is there any noticeable relaxation

amongst semi-core levels during the polaronic hopping process? To address this we

have fully relaxed the transition state barrier for a polaron hopping between two NN

sites as sketched in Figs. 4.1 and 4.2, utilizing the NEB method with the inclusion of

Fe 3s and 3p semi-core sates (Fesc). Comparative transition state activation energies

will be presented shortly, but let us first turn our attention to Fig. 4.3a which shows

the projected density of states (PDOS) of the Fesc atomic orbitals in the intrinsic

FePO4 configuration (i.e., without a polaron present). As expected due to symmetry,

all the Fe 3s states have the same energy. Similarly, there are three peaks for the

identical 3px, 3py, and 3pz states. They lie deep below EF and therefore do not

influence the bonding properties of the system. This is further elucidated by their

real space distribution (inset of Fig. 4.3a), showing that these semi-core states are

spatially confined to their respective Fe centers. The 3d states are part of the valence

and conduction bands, and the band gap is 1.9 eV which is in good agreement with

earlier calculations [56].

Adding an electron in Fig. 4.3b leads to the formation and occupation of a pola-

ronic state as shown by the sharp 3d peak at the Fermi energy. However, this also

breaks the symmetry and lifts the degeneracy of the Fe 3s and 3p semi-core states

between different ions, separating them in energy. In other words, there is significant

polaron induced electronic relaxation of the deeper lying states, an effect that would

not be present if those states were kept frozen. Moreover, electronic relaxation of

the semi-core states is pronounced when we move from the polaronic ground state

configuration “POL” in Fig. 4.3b to the polaronic transition state “TST” in Fig. 4.3c
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Figure 4.3: Projected density of states (PDOS) for the two Fe atoms taking part in the electron

transfer process for three relevant configurations represented by the schematic images of FeO6 co-

ordinations as introduced in Fig. 4.1. The PDOS for majority and minority spin are plotted on the

positive and negative vertical-axis, respectively. The semi-core 3s (green peaks, left) and 3p (blue

peaks, center) states lie deep below the Fermi energy, while the 3d (red curves, right) valence states

contribute to the chemistry of the system. (a) PDOS of the intrinsic ground state configuration

(“GS”) without additional electrons introduced. (a, inset) Real space distribution of the Fe 3s semi-

core states. (b) PDOS of the polaronic ground state (“POL”), i.e., the electron is fully localized on

one Fe site. (c) PDOS of the transition state (“TST”), where both Fe sites have similar coordination

and share the additional electron.
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(e.g., coordinates 0 and 1 in Fig. 4.1, respectively), where the electronic levels undergo

a non-trivial shift and splitting between their relative energies. While the bonding

chemistry is accurately described by the polaronic state at EF and surrounding 3d

states (red in Fig. 4.3), the electronic relaxation of semi-core states between the“POL”

and “TST” configurations can lead to different total energies (and thereby activation

energies Ea) depending on whether a semi-core (Fesc) or frozen-core (Fefc) potential is

used in the calculation as expressed by Eq. (4.2.1). A similar relaxation of semi-core

states was calculated in LiFePO4 (provided in the Appendix B).

In the subsequent sections we investigate the effects of semi-core relaxation by

comparing results with a Fefc potential which keeps the 3s and 3p states frozen and a

Fesc potential which allows these semi-core states to fully relax. It follows that there

is a significant difference in polaron activation energies and dynamics depending on

which potential is used. Our results show similar trends in both cases, that dynamic

barriers obtained from MD are comparable to static (NEB) barriers, and that non-NN

hopping is significant. Using a basic two-site hopping model, we then show that only

the NN pathway is within the adiabatic regime, validating both assumptions in the

case of FePO4. We argue that it is necessary to verify these conditions when modeling

similar polaronic materials.

4.3.1 Calculating transition states

Fig. 4.4 shows our calculated hopping barrier (Ea) for electron polarons in FePO4,

whose NN value in Fig. 4.4a for the Fefc case (blue triangles) is comparable to pre-

viously calculated results (see also Fig. 4.2) [30, 31]. Fig. 4.4b shows the calculated

barrier for the non-NN inter-layer (IL) pathway (see also Fig. 4.2). The energies for

the Fesc study are shown as red squares.

Overall, in Fig. 4.4 we can clearly observe the energetic differences between the

two potentials: using the Fesc potential leads to barriers that are roughly 100 meV
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Figure 4.4: Activation energies (a) and (b) calculated with the CI-NEB method using both 8-valence

3d64s2 (Fefc blue upright triangles) and 16-valence 3s23p63d64s2 (Fesc red squares) Fe potentials,

together with the level splitting at the transition state arising from the site coupling in (c) and (d),

respectively. (a) and (c) nearest neighbor (NN) barrier. (b) and (d) inter-layer (IL) barrier.

lower than the barriers obtained with the Fefc potential.

We attribute this discrepancy to the localized electron inducing additional elec-

tronic relaxation and spin interactions with lower lying semi-core states on the Fe

sites (as illustrated in Fig. 4.3). Moreover, we can compare the results with those

obtained from AE calculations (Appendix B). For the Fefc potential, the barrier is

142 meV compared to a barrier of 77 meV for the AE2.3 calculation. The barrier for

the Fesc potential is 52 meV, compared to the AE1.9 barrier of 46 meV. The significant

difference between the Fefc and the AE2.3 barrier, combined with the smaller differ-

ence between Fesc and AE1.9, underscores that semi-core relaxation is the main cause

of the lowering of the barrier. It is known that having semi-core valence electrons

leads to more accurate results for magnetic transition metals such as iron [27]. In the

case of polaronic hopping barriers in FePO4, this leads to a significant lowering of the

barrier, and predicted room temperature mobilities that are one or even two orders

of magnitudes above that when using the more common Fefc potential (as outlined in
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Table 4.1 and to be discussed shortly). A similar trend was computed in LiFePO4,

with the Fefc barrier at 257 meV and the Fesc barrier at 79 meV (see Appendix B).

We argue that this might affect hopping barriers in other transition metal polaronic

materials such as hematite and titanium dioxide in a similar fashion and recommend

that energy calculations be done using potentials that incorporate semi-core electrons

in the valence states.

Furthermore, it is commonly understood [30, 31] that electronic transport in

FePO4/LiFePO4 is primarily two-dimensional, staying within the plane due to Fe

sites being separated by just O atoms in between (e.g., hopping between Fe1 and Fe2

in Fig. 4.1). The inter-layer pathway has phosphate groups isolating the Fe sites,

obstructing conductivity in the third dimension (e.g., hopping between Fe1 and Fe3

in Fig. 4.1). However, our calculations in Fig. 4.4b show that this IL pathway is

energetically higher, but still within the range where hopping events could theoret-

ically still be observed, in particular, for the low Ea estimate provided by the Fesc

potential. To verify how realistic this predicted pathway is, we have conducted a

more in-depth study of adiabaticity and the validity of the adiabatic approximation

for both pathways.

Figs. 4.4c and 4.4d show the Fesc and Fefc PDOS close to the Fermi energy EF

at the charge transfer transition state (polaron coordinate 0.5 in Figs. 4.1 and 4.4).

In this state there is an equal probability of finding the electron on either site, and

therefore a twofold degenerate polaronic state at EF . Electronic coupling (J) then

lifts this degeneracy and splits the two states into a “bonding” and “antibonding”

state. We take this separation between the bonding and antibonding state to be our

approximation to the site coupling term J as 2J = EAB − Ebonding as sketched in

Fig. 4.1 and discussed in Sec. 2.3 [45].

For the NN transition state 2J  200 meV for Fesc and 2J  280 meV for Fefc.

This indicates that there is sufficient electronic coupling through the Fe-O-Fe bonds

such that the NN transition may be regarded as adiabatic, as we shall evaluate shortly.
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For the inter-layer transition state however, there is a much weaker electronic coupling

2Jinter  20 meV between the two sites regardless of the potential utilized, and both

states remain at EF . This can be attributed to the phosphate groups isolating the

sites electronically (as shown in Fig. 4.2). Since the adiabaticity parameter η2 as

given by Eq. (2.3.12) depends strongly on J , we predict the inter-layer transition to

be highly diabatic and thus very unlikely to occur. It also implies that our results for

the non-NN transition are unrealistic, as DFT is a ground state theory and therefore

inherently adiabatic – although time dependent (TD) DFT should be able to capture

such diabatic transitions.

To compute η2 using Eq. (2.3.12) and fully evaluate adiabaticity, a frequency factor

ω is required. As discussed back in section 2.3, this is usually taken as the optical

phonon frequency of the system. Our approximation is to use the frequency prefactor

of Eq. (2.3.15) obtained from MD calculations to estimate ω = 2πv0 as described in

the next section [see also the discussion around Eqs. (2.3.14) and (2.3.15)]. Before

detailing our MD results, let us briefly state the impact of the obtained frequencies

on the adiabaticity parameter (η2). For the nearest-neighbor pathway, we obtained

η2  0.35 for Fefc and η2  2.6 for Fesc, concluding that the NN electron transfer

process can be seen as reasonably adiabatic (η2 > 1). However, for the inter-layer

pathway η2  0.002 and η2  0.01, respectively, indicating that this is a highly

diabatic process. Therefore, we argue that the nearest-neighbor pathway can be well

approximated with the adiabatic relation of Eq. (2.3.15), but that we must use the

non-adiabatic approach [Eq. (2.3.16)] for the inter-layer pathway instead.

4.3.2 Polaron hopping dynamics

To compute the frequency prefactor v0 = ω/2π and further verify the NEB computed

activation barriers (Ea), the hopping of electron polarons in FePO4 was calculated in

the temperature range of 300 K – 500 K for Fefc, and 143 K – 300 K for Fesc calcu-

lations, with more hopping occurring at higher temperatures. Fig. 4.5 shows a few
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Figure 4.5: Correlation analysis on a sample MD run. We calculate the average Fe-O6 bond lengths

of all 16 Fe sites scaled to unity, and multiply these values with their respective projected 3d electron

occupations (also scaled to unity). The resulting charge-lattice correlation statistic should give a

reasonable indication of the current polaron location.
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Figure 4.6: Polaron AIMD hopping statistics. log Γ is defined as the natural logarithm of Γ, where Γ

is given in units of s−1. Left: (a) nearest-neighbor hopping. Right: (b) nearest inter-layer hopping.

Red line: linear fit of semi-core calculations at T = 143 K, 166 K, 200 K, 250 K, and 300 K. Blue

line: linear fit of frozen core calculations at T = 300 K, 350 K, 400 K, 450 K, and 500 K. Inset:

exponential Poisson distribution of hopping times shown for one temperature point. The mean of

this distribution was taken to be the mean hopping rate at that particular temperature. Similar

statistics were done for each temperature point on these Arrhenius plots.

characteristics of this hopping process (using the correlation methodology discussed

in Sec. 4.2.2). While most of the iron sites and their oxygen bond lengths are in the

Fe3+ ionic state [Δρ(t)Δr(t) ∼ 0], there is one site with high correlation, indicat-

ing that the polaron is currently located at that specific site. We can thus say that

hopping occurs whenever another site takes over as the site with the highest polaron

correlation.

As shown in Fig. 4.5, polaron transitions between sites are well distinguishable as

transitions between curves with the highest charge-lattice correlation [Δρ(t)Δr(t)].

The oscillations over time show the effects of adding thermal fluctuations, and hopping

will take place whenever the random fluctuations align to push the polaron over the

energetic barrier, allowing both the distortion configuration and the extra charge to

migrate to another location. We record the times of each such transition, and take

the time between each transition Δti as their respective hopping time.
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Theory [77] suggests that small polaron hopping exhibits Markovian behavior,

i.e., hopping events occur independently from each other at a constant average rate

determined by the system temperature. We therefore expect our hopping events to be

exponentially distributed (see inset of Fig. 4.6), and take the calculated average time

between hopping events τ(T ) to be our typical rate ν(T ) = 1/τ(T ). Calculating rates

at different temperatures then allows us to view the relationship between temperature

and average hopping rates, as shown in the Arrhenius plots of Fig. 4.6.

The numerical results are summarized in Table 4.1. Diffusivities and mobilities

were obtained from the typical relations [122]:

D =
l2

2d
Γ, μ =

e

kT
D, (4.3.1)

where d = 2 is the dimensionality of the system, e is the elementary charge, and

l  3.86 Å is the nearest neighbor distance between polaron sites (i.e., Fe atoms).

Here we can see very clearly the impact of including semi-core states. Not only does

it change the barriers drastically, it also raises the hopping frequency accordingly

due to these lower barriers. Whereas we can simulate T = 500 K within reasonable

accuracy for Fefc, the average frequencies for Fesc are already nearing the numerical

resolution of the 1 fs timestep at T = 300 K. Our MD results are consistent with the

predictions from our NEB calculations for the Fefc case, although the values for the

Fesc MD results are consistently off by roughly 20 meV. This result casts into doubt

the validity of the Markovian assumption, as hopping rates are so high (Fig. 4.5b)

that the system might not have enough time to relax into its new polaron ground

state before attempting another hop [77]. This might result in hops that are slightly

correlated with each other inducing a slight memory effect, resulting in the lower

calculated activation barrier. However, overall transition state theory (NEB) and the

MD results agree fairly well.

Nevertheless, one could argue that there might be room to further improve the vari-

ance in the computed MD results, as exhibited within the inset of Fig. 4.6. However,
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Frozen core Semi-core

Nearest Neighbor

Ea,NEB (meV) 142 52

Ea,MD (meV) 151 28

ν0 (1013 Hz) 14.75 5.26

D (cm2/s) 6.41× 10−4 2.66× 10−2

μ (cm2/V s) 0.03 1.03

Inter-layer

Ea,NEB (meV) 174 59

Ea,MD (meV) 143 26

ν0 (1013 Hz) 14.19 4.92

Table 4.1: Barrier and frequency prefactors obtained from AIMD calculations. The advantage of

using AIMD is that it enables us to calculate both barriers and prefactors simultaneously. Using

these results, the diffusivities and mobilities were calculated at a temperature of 300 K. There is a

∼20 meV discrepancy between MD and NEB computed barriers for both Fesc and Fefc potentials.

we maintain that our results are statistically significant by noting that the barrier is

exponentially related to these statistics. For example, a 20 meV increase in the MD

computed barrier (in line with the NEB results in Fig. 4.4) would lead to a doubling

of the mean and width of the distribution (in the inset of Fig. 4.6). Such a drastic

change would not be achievable by sampling more points to reduce the variance.

4.3.3 Discussion

It is important to note that this analysis was done without considering the significant

effects of DFT+U projection as I have detailed in Chapter 3. This does not change

the assertion that semi-core states have a significant effect on polaron dynamics in

FePO4 (as was partially shown in Chapter 3). However, the present analysis would

be greatly improved by an additional study which does incorporate the effects of

projection, e.g., by constructing additional PAW potentials with rPAW = 1.9 a0 and

Zval = 8 on one hand, and rPAW = 2.3 a0 and Zval = 16 on the other hand and including

additional comparisons using these potentials, as only then could we comprehensively

eliminate projection as a second variable. Including additional HSE06 calculations

would be another approach, although the additional computational costs associated



82 4 Adiabatic polaron dynamics in FePO4

with hybrid functionals combined with the long simulation times of MD calculations

could prove to be practically infeasible.

Overall, the results of our combined NEB and MD study (summarized in Table 4.1)

indicate a sizeable ∼100 meV energy difference between Fesc and Fefc calculations of

the polaronic hopping barrier (Ea). We attribute this to the electronic relaxation of

semi-core states, including spin interactions, that are hard to capture within the frozen

core approximation [as summarized by Eq. (4.2.1) and displayed in Fig. 4.3]. The

activation barriers obtained with all-electron calculations further emphasize the effect

of semi-core relaxation in this material. A 100 meV discrepancy may be tolerable

in some instances, however in FePO4 it leads to drastically different barriers and

therefore a qualitative difference in diffusion analysis (as shown in Table 4.1). With

our lower barriers, the calculated diffusion constant and mobility are two orders of

magnitude higher than what was previously predicted. More practically, this opens

up an interesting avenue of theoretical investigation in polaronic hopping during the

charging and discharging of LiFePO4 [9, 35]. In particular, it indicates that the

exceptionally low conductivity observed during LiFePO4 intercalation might be due

to correlated motion between polarons and Li-ions. It also supports the notion that

the rate-limiting factor in LiFePO4 intercalation is the diffusion of Li+ ions.

More generally, we argue that within the scope of polaronic materials and transition

metal redox-type cathodes with strong spin-polarized d orbital correlation effects, the

p (and perhaps also s) semi-core states should always be included in the“valence”shell

to capture and explore electronic relaxation and spin interactions. These interactions

might even be significant for mid-to-late transition metals, which have larger d shells.

Furthermore, to evaluate adiabatic assumptions common in transition state theory

based polaron hopping calculations: we have done an extensive molecular dynamics

study on free polaron hopping in FePO4 to sample the available diffusion pathways

in a dynamic fashion, incorporating both the typical nearest-neighbor pathway as

well as the most likely nearest inter-layer transition adiabatically. Our results show
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reasonable agreement within 10 meV compared with the NEB results for both the

frozen core and semi-core calculations. This remains within the precision of both

NEB and MD methods. Though our adiabatic DFT calculations show a similarity

in activation energies between the nearest-neighbor and nearest inter-layer pathways,

however by looking at the interaction parameter J we have demonstrated that only

the nearest-neighbor transition can be treated realistically within the adiabatic ap-

proximation typically inherent in Born-Oppenheimer based DFT. For the nearest

inter-layer transition there is a phosphate group between the sites which lowers this

J coupling to almost 0, indicating that such transitions are highly non-adiabatic and

as such are far less likely to occur in reality. With this part of our study, we conclude

that the nearest-neighbor assumption is well justified for FePO4, but we argue that

this condition should be verified for electronic transitions in all polaronic materials.

4.4 Summary & Conclusion

In this chapter, we have looked at a few important concepts and ab-initio specifics

of polaronic behavior in TMOs using FePO4 as our model system. Our ab-initio

computations were performed within the Hubbard DFT+U formalism, utilizing U-

ramping [84], applied to the conventional GGA DFT functional. In this model sys-

tem, it was determined that interactions between spin-polarized d-electrons and the

semi-core p- and s-electrons might significantly lower small polaronic hopping barrier

estimates by up to ∼100 meV. While semi-core levels do not participate in bonding,

they can affect small polaron activation energies through electronic relaxation and

spin interactions. As such, TMOs are interesting systems to study these effects due

to the significant interaction between polaronic states and on-site core electrons. We

argue that semi-core relaxation might generally influence the properties of similar

polaronic materials, and the impact of deep core-level interactions should thus be

examined for these materials as well.

Furthermore, we have evaluated the adiabaticity of polaronic barriers in FePO4.
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We have considered additional diffusion pathways, as well as sampled the stochastic

nature of this system in a thermally fluctuating environment by means of AIMD. Our

results have shown that, while there are indications of multiple pathways utilized by

the system, only the nearest neighbor pathway lies well within the adiabatic regime.

Therefore, our adiabatic transition state theory is insufficient in treating the other,

non-adiabatic pathways accurately. Since polaronic hopping can be described as elec-

tron transfer events, we argue that the assumption of adiabaticity should always be

verified in similar polaronic materials. Moreover, we have shown that AIMD could be

a useful tool in sampling pathways without prior assumptions, as well as obtaining

the frequency prefactor without needing to resort to phonon calculations.

Lastly, on a more practical note, based on these lower polaron activation barrier

results: we expect the rate-limiting factor in LiFePO4 intercalation to be the hopping

of Li+ ions, having activation energies of more than four times that of free polarons [30,

31, 32, 33, 34, 35]. Exploring correlated polaronic and Li+ ion diffusion, in the context

of semi-core level relaxation, would be an interesting topic of future investigation.
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Crystal structure and adiabatic polaron transfer

5.1 Introduction

The previous chapters have focused on applying first principles methods to study

polaronic properties in a selection of novel energy materials (LixFePO4 in Chapter 4,

and TiO2, Fe2O3, and LixMn2O4 in Chapter 3), as well as the impact of different

DFT+U projection schemes on calculating these polaronic properties (Chapter 3).

In this chapter, we will focus on fundamental properties of polaron transport in TM

oxide crystals in a more qualitative fashion. While small polaron transport in a crystal

lattice occurs mostly between nearest neighbours, the specific crystal structure and

its associated symmetries greatly influence the polaron transfer characteristics, in

particular within the adiabatic regime. A particular example is when one attempts

to calculate the polaronic transition state between two TM sites in SrTiO3 compared

to that in LaMnO3. Both materials have the (distorted) perovskite structure, but

we can calculate an adiabatic TS in LaMnO3 (d5 polaron) while we cannot do the

same in SrTiO3 (d1 polaron). This arises from qualitative differences between a t2g

polaron in SrTiO3 and an eg polaron in LaMnO3 within the perovskite structure.

Another example is the relatively high inter-site coupling (J = 0.42 eV) for a polaron

in spinel-type MgFe2O4 compared to that in MnO2 with the same structure (J =

0.08 eV), where this difference arises again from t2g and eg polarons having different

properties. More generally, we will argue that a qualitative trend exists where the

specific nature of the orbital (t2g or eg) [80, 81] occupied by the polaron combined

85
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with specific properties of the crystal structure determines both the existence of an

adiabatic transition state as well as the relative degree (J) of its adiabaticity.

In this chapter, focusing on structures with octahedral coordinated metal cations

(MO6), we first describe a fundamental difference between crystal structures where

the MO6 octahedra are connected through shared edges (rutiles, spinels, and other

structures), and structures where they share common vertices (most commonly per-

ovskites). We then highlight certain elements of exchange theory [79, 123, 124, 125,

126, 127, 128], and more specifically the dependence of the inter-site coupling term

J on the inter-site orbital overlap [79, 81, 129]. As electronically, a TM-centered

polaron can be seen as an extra electron occupying a TM site, we can apply the

same principles to this extra electron when studying the polaronic TS in a similar

fashion while treating the polaronic structural distortions in an indirect way through

the requirement of energy level alignment according to the Franck-Condon principle.

We are then in a position to elaborate on the aforementioned trends after combining

these exchange principles with the crystal structure connection properties, and we

demonstrate these trends by calculating the exchange properties (J) in several exam-

ple materials. The results of these calculations are in line with our hypothesis that

the crystal structure can strongly determine the degree of adiabatic polaron hopping

transport.

5.2 Structure dependent orbital exchange

Fig. 5.1 shows three important families of crystal structures, namely the rutiles

(Fig. 5.1a), spinels (Fig. 5.1b), and perovskites (Fig. 5.1c). All three structures have

important applications in novel energy materials [37, 38, 130, 131, 132, 133, 134].

Many TM oxides with these structures exhibit polaronic behaviour [43, 44, 46], and

as such we can use them both for practical calculations as well as models for qualita-

tive investigations.
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(a) (b) (c)

Rutile (MO2) Spinel (AM2O4) Perovskite (AMX3)

Figure 5.1: (a) Rutile, (b) spinel, and (c) perovskite structures. The rutile structure is adopted by

many binary TM dioxides. The spinel and perovskite structures are both ternary compounds, with

the A atom typically a large alkali (A), alkaline earth (AE), or rare earth (RE) metal, and the B

atom a smaller transition metal ion.

For electron (and polaron) transfers between nearest neighbours, there is one fun-

damental property of these (and other) structures, i.e. how the MO6 octahedral

complexes are connected to each other. This is typically through either a shared (O)

ligand, which we will call a single ligand (“1L”) connection, a shared edge (two ligand

connection, “2L”), or a shared face (“3L”) which is more rare. Most structures are

connected through octahedral edges (2L) including the rutile (Fig. 5.1a, down the

c-axis) and spinel (Fig. 5.1b) structures. Perovskites (Fig. 5.1c) are different in that

the octahedra are 1L-connected. This fundamental difference becomes apparent in

Fig. 5.2 where we have plotted example transition states for both configurations.

In the 1L case (Fig. 5.2a) there is a shared O atom between the TM sites, and

electron transfer must therefore also involve this shared O atom. This particular

process falls under the double exchange mechanism [79, 123], and has been studied

extensively in literature [79, 81, 123, 124, 135, 136, 137]. In contrast, the TM sites

are closer together in the 2L case (Fig. 5.2b) and direct cation-cation interaction can

occur [124]. 3L cases are rare but direct transfer can occur in these cases through

linear combinations of t2g orbitals.

As we are describing exchange interactions [81] between sites, the importance of

the exchange parameter J becomes apparent. Mentioned before in Chapter 2 through
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 M–O–M (~180˚)  M–  –M
 M–O–M (~90˚)

(a) (b)

Figure 5.2: Showing the difference between (a) octahedra connected through shared corners, also

labelled as “1L”, and (b) octahedra connected through shared edges, also labelled as “2L”. The TM-

TM distance in (a) is large, and the resulting interaction between TM sites needs to go through

the shared O atom (M-O-M). In contrast, the TM-TM distance in the 2L is much smaller, and

interaction can take place directly between the TM sites. Here, an additional indirect interaction is

possible through the two M-O-M bonds that are angled at close to 90◦, although this interaction is

typically much smaller in magnitude.

Eqns. (2.3.9) and (2.3.10), as well as from the two-site model described in Sec. 2.3, we

have established a relation for J as a measure for adiabaticity of the transfer process.

As Eq. (2.3.9) describes J as an overlap between the two states, the strength of J will

be determined in both cases in Fig. 5.2 by the amount of overlap between the two

local orbitals. In our case of neighbouring d orbitals (and similarly for f orbitals),

the overlap is greatest when the lobes of the d (f) orbitals face each other. If there

is little to no overlap–i.e. if the lobes are not facing each other, or if the interatomic

distance is too large for direct interaction, then J will be very small and adiabatic

transfer is not likely to occur for this process. Small polarons form a convenient tool

with which to study such exchange interactions as they are inherently localized to

specific sites.

As a result for the 1L case (Fig. 5.2a), the orbital overlap will be greatest when

both orbitals are of dz2 form and face the 2p orbitals of the shared O atom (M-O-M

interaction, see Ref. [79, 123]), and could lead to stronger hybridization with these

2p orbitals. Facing dx2−y2 orbitals will achieve a similar situation with slightly less

overlap [81, 129]. Both cases correspond to eg orbitals that face the O ligands [47],
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and combined with the observation that the lobes of t2g orbitals do not face each

other and and therefore will have very little overlap (also from the large cation-cation

distance), we can conclude that adiabatic TM-TM polaron transfer in 1L systems can

only occur for eg polaron configurations–e.g. a d4 HS polaron can couple adiabatically

to another site whereas a d1 or d4 LS polaron cannot. The 1L case corresponds largely

to the perovskite structure as well as certain directions in structures with both 1L

and 2L connections. These observations suggest that we can calculate adiabatic TS

for polarons in LaCrO3 (d
4 polaron) and LaMnO3 (d

5 polaron) as well as KNiF3 and

KCuF3 (d9 and d10 minority spin polarons, respectively), but not for other materials

such as SrTiO3 (d1 polaron), or for directions other than the c-axis in rutile TiO2.

The 2L case is different as the octahedra in these systems share edges. This

means that the lobes of t2g orbitals can now face each other and contribute to the

coupling strength J . Additionally, the metal cations are much closer to each other

(∼ 3 Å) compared to 1L materials (> 4 Å) which can lead to much stronger direct

orbital interactions [124]. In some cases (see Fig. 5.8 for our calculation in MgFe2O4)

when the orbitals closely resemble true atomic orbitals, we can see Slater-Koster

tight-binding behaviour [138] of the polaron TS, where the coupling term J varies as

1/d5M−M [81, 129]. As most TM oxides are of the 2L kind, this is the most prevalent

situation. In this configuration, apart from such direct M- -M interactions (adopting

the nomenclature used by Goodenough [124]), there can also be M-O-M interactions

where the M-O-M angle is approximately 90◦ (see Fig. 5.2b). This explains that,

while the TS and J in rutile TiO2 (d
1 polaron) and spinel MgFe2O4 (d

6 minority spin

polaron) suggest high adiabaticity, it is also possible to calculate an adiabatic TS

in spinel MnO2 despite the polaronic configuration in this material being d4. In this

particular case, the TS shows (Fig. 5.9) two dx2−y2 orbitals that do not face each other,

but the lobes point towards the two shared O atoms. As shown in Ref. [124], this 90◦

M-O-M interaction is relatively small, and the corresponding J should therefore be

significantly smaller.
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Crystal orbital Coupling Example materials

Single ligand (1L) Perovskites

d1−3 (HS) SrTiO3, LaVO3

t2g d6−8 (HS) J � 1 meV LaFeO3

d4−6 (LS) LaMoO3 (LS)

d4−5 (HS) LaCrO3, LaMnO3

eg d9−10 (HS) J > 100 meV KNiF3, KCuF3

d7−8 (LS) LaMoO3 (HS), LaRhO3

Double ligand (2L) Rutiles, spinels

d1−3 (HS) TiO2

t2g d6−8 (HS) J > 100 meV Fe2O3, MgFe2O4

d4−6 (LS) MgMo2O4 (LS)

d4−5 (HS) MnO2 (spinel), MgCr2O4, MgMo2O4 (HS)

eg d9−10 (HS) J ∼10 meV

d7−8 (LS)

Table 5.1: Summary of the qualitative predictions based on exchange interactions in 1L and 2L

structures. Approximate energy scales for the coupling strength J are shown for each configuration,

with J � 1 meV, J > 100 meV, and J ∼10 meV indicating zero effective coupling, strong coupling,

and weaker coupling through unfavourable angles, respectively. Also listed are a few examples of

typical materials per orbital configuration. Note: the orbital configurations shown in this table as-

sume that the polaron has already been added. For example, SrTiO3 has a d1 polaron configuration,

which is one more electron than its Ti4+ intrinsic electron configuration (d0).

Another qualitative difference that we can expect to see is a stronger degree of

hybridization for eg polarons with the 2p orbitals of the O ligands compared to t2g

polarons whose orbitals are pushed away from these O ligands. We have seen this

already in our MnO2 spinel calculations in Chapter 3, while here it is apparent in

the case of LaMnO3 as well. Whether this is a more general trend or more specific

to Mn-O bonds [89] is beyond the scope of this work, but could be interesting to

investigate in future studies.

A summary of our predictions is shown in Table 5.1. We will verify these pre-

dictions on a selected set of materials with these three structures in the following

section. Our results will show that, while our calculations are consistent with the

general trends predicted here, the assumptions we have made are elementary and

do not include the plethora of complex interactions (including orbital ordering, geo-
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metrical distortions, and many more) that are invariably different for each individual

material. However, we can now offer first order qualitative predictions on the rela-

tive coupling strength and adiabaticity (J) of polaron transport with just the crystal

structure and the orbital configuration as input information.

5.3 Method

Calculation details for TiO2 and Mn2O4 are as mentioned in Chapter 3. For MgFe2O4,

we used UFe = 4.5 eV. This same value for U was also chosen for the model materials

MgMo2O4 and LaMoO3, as well as the perovskites LaMnO3 and LaCrO3. For KCuF3

and KNiF3, a higher value of U = 6.6 eV was used [139]. We used a 2 × 2 × 2

k-point grid for the 2 × 2 × 3 supercell of TiO2 (24 Ti sites), a 3 × 3 × 3 grid for

the cubic or orthorhombic spinel unit cells (16 TM sites), and a 2 × 2 × 2 grid for

the 2× 2× 1 supercell of orthorhombic perovskites (16 TM sites). Relaxation of the

polaron ground state and transition state and calculation of the relevant properties

Ea and (2)J was done according to our previously stated techniques 2.5.

TiO2 is nonmagnetic as it has zero available spin-polarizable electrons. The octa-

hedral sites in spinels are typically antiferromagnetic with spin alignment along the

1D chains (each octahedral site has two same-spin and four opposite-spin neighbours).

For the G-type AFM configuration in perovskites (see Fig. 5.10) it is not possible to

calculate an adiabatic TS as the spins between neighbouring sites are opposite in sign.

For these configurations we have used an approximate magnetic configuration which

is detailed in the perovskite section below.
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e–

σi = +3
∑σ = 0

σi = +4
∑σ = +1

σi = +2
∑σ = –1

Figure 5.3: Local on-site (σi) spin configurations vs. net magnetic moment (
∑

σ) in an example

system consisting of sites arranged in antiferromagnetic t32g configurations. We only show the site

where we plan to localize an additional electron on, which has an initial local magnetic moment of +3

(μB). After adding the extra electron on this site, it can either go to the spin up, eg orbital to create

a HS configuration, or it can go to the spin down t2g orbital resulting in a LS configuration. If we

constrain the net magnetic moment to either +1 or −1, and the difference in energy between the HS

and LS configurations is not too large, we can force the electron into a particular spin configuration.

5.4 Results

5.4.1 MgMo2O4 and LaMoO3: models for HS and LS polarons

We first start with two materials, spinel MgMo2O4 and perovskite LaMoO3 that are

somewhat hypothetical as there is little experimental evidence for their existence.

The motivation behind investigating these two materials is that both have the same

Mo3+ cations in the t32g configuration, but the way that their MoO6 octahedra are

connected are different (1L in LaMoO3 vs. 2L in MgMo2O4). Adding an electron

polaron then results in a d4 configuration on the polaronic site. While molybdenum

is a 4d TM and favours low spin configurations due to the higher crystal field splitting,

the energy difference is such that it is still possible to force metastable HS states by

carefully imposing certain constraints, and as such these materials can function as

model materials to illustrate our theory by comparing different spin configurations in

the same materials.

The high spin d4 configuration is t32ge
1
g with a net local magnetic moment of 4,
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while the low spin configuration is t42g with a net moment of 2. The procedure to

force a higher energy spin state is thus to constrain the net spin to the desired value.

For example, as illustrated in Fig. 5.3, if the polaronic site in an AFM system (net

intrinsic spin of zero) is spin up (t32g in our case), the net spin when adding the electron

will be +1 for a HS configuration and −1 for a LS configuration. Constraining the

net spin to +1 will then force the extra electron to the e1g state as long as the electron

still prefers to localize on the same site. When this is successful, we can additionally

induce JT distortions to make the electron go into either the dz2 or dx2−y2 orbital if

they are not too far apart in energy.

Fig. 5.4 illustrates this procedure in MgMo2O4. The polaronic ground state is in

a t2g configuration where the extra electron goes to the first spin down channel in a

LS configuration. By constraining the net spin, we can force this electron to go into

either the dz2 orbital (which is 0.22 eV higher in energy) or the dx2−y2 orbital (0.36

eV higher in energy). Calculating the low spin t2g TS gives us an activation energy of

97 meV and a relatively large coupling energy J = 0.6 eV. We can also calculate the

TS for a polaron in the dz2 state although we cannot further relax the initial linearly

interpolated state. This TS has a much higher activation energy of 0.55 eV, as well as

a much lower J ≈ 30 meV. It is straightforward to explain the much lower coupling

as the plotted charge density shows the dz2 orbitals parallel to each other leading to

little orbital overlap (Fig. 5.4).

For the LaMoO3 perovskite in Fig. 5.5, the situation is very different. As out-

lined above, this is a 1L system where significant overlap can only be achieved by

pointing the lobes of the d orbitals towards the shared O atom. The lowest energy

polaronic state is again a t2g state, but because there is little overlap (J ≈ 0) between

neighbouring t2g states, we cannot calculate a clear transition state in DFT for this

configuration. However, we can constrain the spin again and calculate a dz2 HS po-

laronic state which is significantly higher in energy (ΔE = 0.5 eV) but which does

allow us to calculate a (linearly approximated) TS with an activation energy of E ′
a
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POL TS

ΔE = 0

ΔE = 0.22 eV

ΔE = 0.36 eV

t2g

dz²

dx² – y²

Ea = 97 meV
J = 0.6 eV

Ea, lin = 0.55 eV
J = 30 meV

MgMo2O4 Spinel

d4 HS

d4 LS

d4 HS

Figure 5.4: MgMo2O4 used as a model material to study both low spin (LS) and high spin (HS)

orbital configurations in a 2L material. The top row shows the lowest energy configuration, which is

low spin t42g. However, it is possible to constrain the magnetic moment and obtain HS configurations

that are higher in energy, as shown in the middle row (dz2 orbitals) and bottom row (dx2−y2). The

t2g and dz2 transition states show remarkable differences in both their activation energies (Ea) and

their adiabatic coupling (J).
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t2g, hyb.

dz²

E’a, lin = 0.3 eV
J = 1.4 eV

POL TS
LaMoO3 Perovskite

ΔE = 0

ΔE = 0.5 eV

ΔE = ΔO – ΔH ≈ 0.5 eV

E’a ≈ 0.3 eV

Ea ≈ 0.8 eV

t2g

eg

t2g

TS

Figure 5.5: LaMoO3, comparing the lowest energy (LS t42g) configuration to the higher energy, dz2

configuration. In contrast to MgMo2O4, we can only calculate an adiabatic TS with the higher

energy dz2 configuration, as the alignment of the dz2 orbitals is required for electronic coupling

between the sites (J > 0). However, an additional energy needs to be overcome to promote the

polaron from the LS t2g orbital to the HS eg orbital in a LS material, as shown in the bottom right

energy diagram, where ΔO corresponds to the crystal field splitting and ΔH is the Hund intrasite

exchange energy.
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= 0.3 eV and a high coupling energy of 1.4 eV. We argue that in order for adiabatic

polaron transfer to occur in this material the polaron needs to be excited to the HS

state first before it can overcome the HS adiabatic barrier E ′
a, resulting in a total

activation energy Ea = E ′
a+ΔE = 0.8 eV. In general, we suspect that polarons in t2g

perovskites (and other materials in 1L directions) might have to overcome this ΔE

on top of E ′
a before they can adiabatically transfer from one site to another. For per-

ovskites this could be the case in any direction, whereas for other crystal structures it

could lead to a strong anisotropy for polaronic hopping. As the calculated energies in

MgMo2O4 and LaMoO3 are not all from relaxed structures, we do not include these

results in the final analysis but leave them here to outline the ideas discussed in this

chapter.

5.4.2 Rutile: TiO2

The rutile structure (Fig 5.1a) is a common structure for MX2 (X = O or F) ma-

terials. The most common material with this structure is TiO2 which is a wide

bandgap semiconductor, while most other rutile compounds (VO2, CrO2, RuO2) are

either metallic [140] or have a metal-insulator transition at relatively low tempera-

tures [141]. Focusing on the two types of octahedral connections, the rutile structure

is characterized by MO6 octahedra sharing edges (2L) along the c-axis and connect

through the corners (1L) in other directions. Within this picture, we can understand

qualitatively how TiO2 is a semiconductor as the valence shell of Ti4+ cations is com-

pletely empty resulting in a distinct separation between the O 2p valence band and

the Ti 3d conduction band. When we introduce electrons in the 3d orbitals as in VO2,

they will start interacting through their strong overlap along the c-axis.

Fig. 5.6 shows the POL and TS state in rutile TiO2, in which the polaron assumes

a d1 (t12g) occupancy. We have previously already done extensive calculations on

polaronic properties in TiO2, for which we refer to Chapter 3. Specific to this chapter,

we note that the 2L connected c-direction is also the only direction in which we can
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TiO2

POL TS

Figure 5.6: The polaron ground state (POL) and transition state (TS) in rutile TiO2, and a diagram

of the orbital configuration of its polaron (t12g).

calculate an adiabatic TS for a t2g polaron. This is in line with our predictions as the

other directions are 1L connected. The calculated coupling energy in TiO2 is 0.39 eV.

5.4.3 Spinels: MgFe2O4 and Mn2O4

Spinels (Fig 5.1b), generally formulated as AB2X4, are common structures for ternary

oxides characterized by a cubic unit cell (there can be slight orthogonal distortions in

practice) in which the X anions are in an FCC configuration, and the A (typically a

large, alkali or alkaline earth element) and B (typically a transition metal) cations fill a

fraction of the tetrahedral and octahedral holes, respectively. Typical applications for

spinels include magnetic oxides (e.g. Fe3O4 [142]), catalysts (e.g. Co3O4 [39, 143]),

and secondary batteries [36, 88, 107, 131, 144], one of which (LixMn2O4) we have

investigated in Chapter 3.

Similar to rutile, the octahedra in spinels connect through common edges (2L).

The specific tetrahedral arrangement of these octahedra lead to frustration in orbital

ordering for partially filled t2g configurations [145, 146] for which the details are

beyond the scope of this work. As a result, we focus on either empty or half-full t2g

configurations in our two materials to simplify our calculations. MgFe2O4 [130] has

Fe in its +3 oxidation state, i.e. it is in a t32ge
2
g configuration. Mn2O4, which does

not have cations on the A site, has Mn4+ ions that are in a t32g configuration. As a
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MgFe2O4

POL TS

Figure 5.7: The polaron ground state (POL) and transition state (TS) in spinel MgFe2O4, and a

diagram of the orbital configuration of its polaron (t42ge
2
g).

2L structure, we expect strong inter-site coupling between t2g polarons. However, in

the case of eg polarons, there is still an adiabatic pathway through the M-O-M bonds

angled at approximately 90◦. We conduct a qualitative analysis on one example

material for each of these situations.

Fig. 5.7 shows the POL and TS states for spinel MgFe2O4 (formal oxidation Fe3+,

t32ge
2
g) as well as the polaronic configuration (t42ge

2
g). Calculated energies are Ea =

0.18 eV, J = 0.42 eV. This is a prime example of a 2L t2g adiabatic connection

where the polaronic states are very atomic-like in nature. Furthermore, if we change

the Fe-Fe distance by applying a uniform strain on the unit cell we can calculate

the coupling parameter J to vary linearly with respect to the fifth power of the

inverse Fe-Fe distance as shown in Fig. 5.8. This is a specific relation arising from

the Slater-Koster two-center overlap integrals [81, 129] of atomic orbitals whose d

atomic overlap should scale as 1/d5M−M . This relation only applies to atomic orbitals,

and thus we can conclude that the electronic state of the MgFe2O4 polaron is nearly

atomic-like. In contrast, we could not calculate this relation in other investigated

materials suggesting that polaronic states in most materials either deviate somewhat

from pure atomic-like states, or they can hybridize with neighbouring p states and lose

their atomic character. In general, increasing J by reducing the metal ion distances
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Figure 5.8: Linear behaviour of the coupling energy J with respect to the inverse Fe-Fe distance to

the fifth power, shown in the inset. When the relevant orbitals are sufficiently atomic-like in nature,

then their overlap can be described by the Slater-Koster tight binding two-center overlap integrals,

which scale as 1/d5Fe−Fe for two overlapping d-orbitals.

through compressive strain could be an additional mechanism to engineer and improve

polaron mobility, on top of the existing effect of strain on phonon modes which has

also been shown to increase polaron mobilities [147].

In contrast, Fig. 5.9 shows the situation in spinel MnO2 which is also extensively

studied in Chapter 3. In this material (formal oxidation Mn4+, t32g), the polaronic state

is in a dx2−y2 configuration and shows strong hybridization with the 2p orbitals of the

four planar O atoms. Already illustrated using its electronic structure in Chapter 3,

here we show it more explicitly using the real space density. The transition state is

also of dx2−y2 character, with the overlap interaction along the two shared O atoms

in a double TM-O-TM 90◦-angled configuration. This overlap is considerable smaller

compared to if the lobes were facing each other directly as in the MgFe2O4 case and

shows up in the PDOS as J = 80 meV.

5.4.4 Perovskites: LaMnO3, LaCrO3, KCuF3, and KNiF3

Perovskites (Fig 5.1c) are a large family of ternary oxides with the general formula

ABX3 where A are typically large cations such as alkali/alkaline earth metals (Ca2+,
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Mn2O4

POL TS

Figure 5.9: The polaron ground state (POL) and transition state (TS) in spinel MgMn2O4, and a

diagram of the orbital configuration of its polaron (t32ge
1
g).

Sr2+, Ba2+, etc.) or rare earth metals (La3+, Gd3+, etc.), B are typically transition

metals, and X are anions such as O or F. The unit cell consists of an FCC lattice

of X atoms forming an octahedron, the B cation in the center of the X octahedron,

and the A cations at the corners. Amongst the many applications [132] of perovskite

structured materials are solar cells [37, 133], fuel cells [134], and ferroelectrics [148].

The stereotypical perovskite unit cell is cubic although in many cases this will

be distorted due to different ratios of the ionic radii [149], GdFeO3 (GFO)-like tilt-

ing [150], and electronic JT-like distortions of the octahedra. All of these effects

together can be found in lanthanum manganite (LaMnO3), which as a result is one of

the most extensively studied perovskites [123, 135, 136, 151, 152, 153] and has seen to

exhibit remarkable properties such as giant magnetoresistance [154]. The magnetic

structure is equally diverse, with orbital ordering [155, 156, 157, 158] and exchange

interactions [79, 81, 123, 124, 135, 136, 137] determining [126, 127, 128] the magnetic

structure of a particular perovskite material. The main antiferromagnetic (AFM)

configurations resulting from these interactions are shown in Fig. 5.10. In order to

calculate polaron transitions in G-type AFM configurations, we have assumed an ap-

proximate magnetic structure where the spins of 2×2 blocks are aligned but opposite

to adjacent 2× 2 blocks (labelled “2× 2”-AFM in Fig. 5.10). This satisfies the Zener
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G–AFM A–AFM

C–AFM “2x2”–AFM

Figure 5.10: Different antiferromagnetic configurations in perovskites. The G-type structure (all six

neighbours are of opposite spin) is the most common one, but certain orbital exchange interactions

can result in the A-type (layered AFM, the four in-plane neighbours have the same spin while the

two out-of-plane neighbours are of opposite spin) or C-type (column-like AFM, two same spin out-of-

plane neighbours and four opposite spin in-plane neighbours) structures. The“2x2”AFM structure is

an approximation used to calculate polaron transitions in G-type structures. As adiabatic transition

requires spin alignment, this approximation aligns the neighbouring spins while trying to preserve a

part of the symmetries of the G-type structure.

requirement [79] for double exchange while maintaining most of the symmetry and

AFM character of the system.

In this study, we focus mainly on the effects of orbital interactions [81, 151, 159]

and the 1L connected octahedra [79, 123] on polaron transitions [43, 137]. From the

perspective of this chapter, the key property of the perovskite structure is that the

octahedra are connected by the corners (1L), leading to cation-anion-cation exchange

being the foremost interaction mechanism and restricting our conditions for adiabatic

transfer. More specifically, this implies that occupancy of the higher energy eg orbital
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LaMnO3

POL

TS

Figure 5.11: The polaron ground state (POL) and transition state (TS) in perovskite LaMnO3, and

a diagram of the orbital configuration of its polaron (t32ge
2
g).

configurations is required for adiabatic transfer as they point towards the shared O

atom. Furthermore, the GFO-like octahedral tilting and other structural symmetry-

reducing factors might also impact on polaronic transfer. We investigate these effects

on polaronic transfer using a select few important perovskites (LaMnO3 [135, 136,

151, 152, 153], LaCrO3 [152, 153], KCuF3 [139, 159, 160, 161], and KNiF3 [162, 163])

and focus on the resulting trends in these materials.

LaMnO3 and LaCrO3

The intrinsic occupancy of the Mn3+ ion in LaMnO3 leads to a HS d4 configuration

(t32ge
1
g) which is JT-active. Together with the collective GFO-tilting of the octahedra,

this leads to a highly distorted structure with rotated octahedra that are elongated

from the d4 electron in the dz2 orbital. A polaron (Fig. 5.11) will occupy the dx2−y2

orbital on one site and increase its occupancy to d5 (t32ge
2
g), effectively reducing the

distortion of the octahedron. Because the octahedra are rotated with respect to each
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LaCrO3

POL TS

Figure 5.12: The polaron ground state (POL) and transition state (TS) in perovskite LaCrO3, and

a diagram of the orbital configuration of its polaron (t32ge
1
g).

other, the eg orbitals of one site do not face those of its neighbouring site (Fig. 5.11),

and this can be seen in the calculated TS where the dx2−y2 orbitals are facing different

directions. The resulting coupling energy is thus relatively low at J = 0.16 eV. The

calculated activation energy Ea is 57 meV.

As with all lanthanum perovskites, LaCrO3 has its Cr cations in the +3 oxida-

tion state resulting in a half-filled t32g shell. It therefore exhibits little JT distortion

although a slight GFO distortion remains. Adding a polaron introduces an electron

to the dx2−y2 orbital as shown in Fig. 5.12. Due to the smaller GFO distortion and

lack of e1g orbital ordering compared to LaMnO3, the TS can assume a configuration

with two dz2 orbitals facing the shared O atom and increasing the coupling strength.

LaCrO3 is intrinsically a G-type AFM, so to calculate a transition state we have as-

sumed the “2x2”-AFM magnetic structure instead. Calculated energies are Ea = 66

meV, J = 0.40 eV. As expected from the TS configuration, the coupling in LaCrO3

is larger compared to the one calculated in LaMnO3.

The chemical difference between KCuF3 (Fig. 5.13) and KNiF3 (Fig. 5.14) and

perovskite oxides is that F− anions replace the O2− anions and the A cation is an

alkali metal. This results in a formal oxidation state of +2 on the TM site as opposed

to the +3 state in lanthanum and other rare earth perovskites and the +4 state in Sr
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KCuF3
POL

TS

Figure 5.13: The polaron ground state (POL) and transition state (TS) in perovskite KCuF3, and

a diagram of the orbital configuration of its polaron (t62ge
4
g).

KNiF3

POL TS

Figure 5.14: The polaron ground state (POL) and transition state (TS) in perovskite KNiF3, and a

diagram of the orbital configuration of its polaron (t62ge
3
g).
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Rutile Spinel Perovskite

TiO2 MgFe2O4 Mn2O4 LaMnO3 LaCrO3 KCuF3 KNiF3

TM ox. state Ti4+ Fe3+ Mn4+ Mn3+ Cr3+ Cu2+ Ni2+

POL conf. t12g t42ge
2
g t32ge

1
g t32ge

2
g t32ge

1
g t62ge

4
g t62ge

3
g

TS conf. t2g t2g dx2−y2 (90◦) dx2−y2 (A.S.) dz2 dz2 (A.S.) dz2

Ea (meV) 225 176 250 57 66 152 212

J (eV) 0.39 0.42 0.08 0.16 0.40 0.12 0.22

Table 5.2: Summary of the polaron orbital configurations in the materials under investigation.

Adding a polaron to a TM site acts as a reduction reaction and lowers its intrinsic oxidation state

by 1. Also listed are the calculated properties of the polaronic TS, the activation energy Ea and the

coupling energy J .

and other alkaline earth perovskites. Analogous to LaMnO3, the single hole in the eg

shell of KCuF3 leads to a JT distortion and an orbitally ordered ground state [159]

with skewed octahedra. The structure of KCuF3 however does not exhibit GFO-like

distortions and is tetragonal. As the electron configuration of KCuF3 is analogous

to that of LaMnO3, the electron configuration of KNiF3 can be compared to that of

LaCrO3 although with a cubic structure in the case of KNiF3.

Adding an electron polaron reduces the oxidation state by one. As shown in

Figs. 5.13 and 5.14, the Cu polaronic site will have a completely filled d shell while

the Ni site will have nine electrons in a t62ge
3
g configuration. Similar to LaMnO3, the

orbital ordering in KCuF3 results in a TS with dz2 orbitals that are not facing each

other. This leads to an activation energy Ea of 0.15 eV and a coupling J of 0.12 eV.

In contrast, the Ea of KNiF3 is 0.21 eV but its J is higher at 0.22 eV, again likely

due to the TS having dz2 orbitals that face each other.

5.5 Summary

In this chapter, we have attempted to develop a set of qualitative guidelines for

predicting adiabatic polaron transport properties based on principles from exchange

interaction, requiring only the TM orbital occupancy and crystal structure as input.
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The framework of exchange interaction discussed here has been developed in the 50’s

and is already widely applied to the materials that we have studied. Adding an

additional TM-localized electron is therefore a simple extension of these ideas applied

to our particular case of TM-centered polarons. Incidentally, the addition of this small

polaron provides a convenient tool to study exchange interaction as all the physics

happens at the Fermi energy and such polarons are inherently localized to specific

sites.

Our calculations were qualitatively in line with these predictions despite deviations

arising from effects such as orbital ordering in LaMnO3 and KCuF3 that affected

the quantitative results but not the general picture. We therefore conclude that

this model can predict qualitatively whether it is possible to calculate an adiabatic,

J > 0, transition state, and what the relative magnitude of J should be. This

exchange parameter J plays an important role as it connects the initially spatially

degenerate polaronic ground states to a single, adiabatic transition state (see Ch. 2).

Without this single state, any perturbation (even numerical inaccuracies) will lift this

degeneracy and lead to the system to favour filling one site over another, in contrast

to the
(
1
2
, 1
2

)
density distribution that one would expect from such a transition state.

This is the main cause for not being able to calculate the adiabatic TS in systems

that have J ≈ 0 in DFT.

However, we must emphasize the limits under which these predictions hold. Most

importantly, we only consider ideal, or close to ideal structures where the M-O-M

bonds are close to either 90◦ or 180◦ and where the exchange happens under close to

ideal circumstances. In practice, there are many other structures that are far from

these ideal 1L/2L connections, and the predicted properties in those cases will likely

fall somewhere in between the two extreme cases that we have considered. An exam-

ple is the olivine structure on which we have performed our (Li)FePO4 calculations.

The octahedra in this structure are 1L connected, but it is possible to calculate an

adiabatic TS for Fe2+ (t42ge
2
g) polarons with a significant calculated J of ∼0.2 eV in
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this material. Looking closer at the olivine structure, we can see that the octahedra

are tilted in such a way that allows both t2g and eg polarons to exhibit overlap. Ad-

ditionally, the only process considered here is polaron transport through TM centers.

There are invariably many other conduction processes, such as hole polaron transport

through O 2p centers [42, 47, 57], that will also exist in these materials. Thus even if

J ≈ 0 for TM-TM polaron hopping it is not straightforward to apply these predictions

to measured conductivities.
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Conclusion

I have performed systematic first principles studies of polaronic behaviour in a selec-

tion of transition metal oxides relevant to applications in renewable energy technolo-

gies. The technologically relevant materials that I have studied include the battery

cathode materials LiFePO4 and LiMn2O4 and the photovoltaic materials TiO2 and

Fe2O3. While I have studied the perovskite materials LaMnO3, LaCrO3, KCuF3,

and KNiF3 more as model materials to investigate specific trends, the materials are

relevant on their own. In particular, MgFe2O4 and LaCrO3 are catalytic materials,

and LaMnO3 and KCuF3 exhibit complex interplay between the various orbital order-

ing, correlation, and magnetoresistive effects and are thus amongst the most widely

studied strongly correlated materials in the field.

My calculations were performed using methods from well established density func-

tional theory, and I have investigated these methods more in-depth when apply-

ing them to calculations of polaronic properties. More specifically, I have shown

that DFT+U projection strongly affects the calculated polaronic properties, in effect

adding a second, mathematical, parameter alongside the single physical U-parameter.

This might have implications on not only polaronic properties in particular, but also

other Mott-Hubbard influenced properties in general. As DFT+U is a widely used

technique to incorporate strong on-site correlation in a computationally efficient man-

ner, it behooves us to maintain a consistent DFT+U projection when comparing cal-

culation results. Furthermore, I have shown the benefits of the NEB method to relax

adiabatic transition states, often resulting in a better approximation to the activation

108
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energy. Using ab initio molecular dynamics, I was able to simulate the dynamics

of polaron hopping in a way that is consistent with the static barrier calculations

from NEB. Therefore, it seems plausible to extend the use of AIMD to study other

polaronic properties such as polaron formation dynamics.

I introduced a two-site hopping model to better connect our DFT results to the

polaron hopping picture, especially with regards to adiabaticity and the importance of

the coupling parameter J . Together with considerations from crystal symmetry and

elements from exchange theory, this has allowed me to understand qualitatively under

what conditions an adiabatic TS is likely to form, and how strong its coupling energy

J should be. The concept of adiabaticity aligns with the principles of DFT, which

is inherently a ground state, adiabatic theory, and combining the ideas has enabled

me to understand situations where we were unable to calculate a transition state

in DFT even though the ionic positions were perfectly interpolated. Lastly, I have

applied these concepts to form a qualitative framework with which we can predict

adiabatic polaron transport properties based on just the orbital configurations and

the crystal structure of the material, and I have used several model materials from

three structural families to verify these predicted trends.

The limits of the theory and its approximations that I have used are as follows.

First of all, there are no explicit electron-phonon terms in the Hamiltonian after the

Born-Oppenheimer approximation while they must be taken into account for a full

description of polaronic behaviour. There are efforts beyond the BO approximation

that can calculate these electron-phonon terms [33], and this is one potential avenue

for future studies. Another limit of DFT that I will reiterate here is that it is a ground

state, adiabatic theory, and any properties calculated from unoccupied energy levels

(the band gap, polaron state, and coupling term) lack a true physical meaning even if

they can be very close to experimental values. One method that can explicitly treat

such excited states is time dependent DFT (TD-DFT) [164], and could be another

opportunity for future extensions.
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The next step after having gained sufficient understanding of the problem would

be to find ways, within the same model, to engineer and improve the properties of the

system. In my case of polaronic hopping, an important goal would be to find ways

to improve the conductivity in polaronic materials. This is beyond the scope of this

thesis, but I will outline some successful avenues that have taken into account the

limitations of polaronic materials. Specifically, the fundamental differences between

band-like semiconductors and polaronic materials limit the benefits of classic semi-

conductor engineering techniques such as charge doping and band gap engineering.

When charge doping a polaronic material, the result is an increase in polarons in

the material which contribute far less to the conductivity, and very high doping is

required to achieve a significant increase in conductivity [154]. Similarly, reducing

the band gap releases a large number of free charge carriers from the Fermi distribu-

tion, however these will also fall into polaronic states. Therefore, we need to look in

different directions if we were to engineer the conductivity in a polaronic material.

One such way is to strain the material, which lowers the energy of the local structural

distortion and therefore lowers the activation energy [147]. Another idea would be to

add dopants that act to lower the activation energy.

My approach is based on a computational materials design framework, in which

we first choose a model (DFT+U , Hybrid DFT) that can accurately and consistently

reproduce the properties that we are investigating (polarons). Then, we can use this

model to investigate and predict the properties of novel materials from a “materials

by design” philosophy. If we have a good predictive model, we can use it to point out

trends and directions for experimental research, and the eventual goal would be to save

considerable experimental effort in the process. I remark here that my calculations

are quantitatively comparable to experimentally measured values, in particular for

the activation energy in Fe2O3 and the gap state eigenenergies in TiO2 and Fe2O3.

This suggests that this model could be suitable for quantitative predictions in other

materials with similar electronic behaviour.



A

Full DFT+U projection results

For additional comparison, we performed polaron hopping barrier (Ea) calculations

with the plane-wave DFT code Abinit [100, 101]. The parameters for total energy

calculations in Abinit were chosen to match VASP settings as closely as possible: the

GGA-PBE functional was used, and the smearing temperature, supercells, k-points,

and Ueff values were identical to those used in our VASP calculations. Additionaly,

the ionic positions for both the transition states and ground states are the same as

those relaxed using VASP. PAW potentials for non-transition metal elements were

taken from Abinit’s JTH-1.0 library [165]. For the transition metals (Fe, Mn, Ti), we

tested multiple PAW potentials, each having different rPAW and different numbers of

electrons in the valence. We tested PAW potentials from the Abinit JTH-1.0 library

as well as PAW potentials from the <2013 library on the Atompaw website [166].

Atompaw [167] is a popular PAW generation code and the pseudopotentials published

with it are expected to be trustworthy. The atompaw potentials were rebuilt using

Atompaw version 4 for compatibility with Abinit. For Fe, we tested one additional

PAW potential from an older version of Abinit’s JTH library (JTH-0.1) that has only

8 electrons in the valence. This PAW potential was also rebuilt with Atompaw version

4.

The implementation of the +U on-site projection in Abinit [71] differs slightly

from the implementation in VASP [50], and the Abinit results appear to show less

potential dependent variation. However, further potential database development is

required to verify such improvements.
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Zval rPAW (a.u.)

Ti 4 2.8

Ti pv 10 2.5

Ti sv 12 2.3

Ti sv GW 12 2.0

Ti h 12 1.9

Abinit JTH-1.0 PAW Ti 12 2.3

Atompaw PAW Ti 12 2.3

Mn 7 2.3

Mn pv 13 2.3

Mn sv GW 15 2.0

Mn sv 15 1.95

Abinit JTH-1.0 PAW Mn 15 2.1

Atompaw PAW Mn 15 1.9

Fe 8 2.3

Fe pv 14 2.2

Fe sv GW 16 2.0

Fe sv 16 1.9

Abinit-2009-v8 PAW Fe 8 2.3

Abinit JTH-1.0 PAW Fe 16 2.1

Atompaw PAW Fe 16 2.1

Table A.1: List of the potentials used in this study with their different valencies and PAW augmen-

tation radii. Additional potentials used in our Abinit calculations are also listed here.
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Figure A.1: Comparison of TiO2 activation energies (Ea) calculated with VASP (red and blue) and

Abinit (magenta). The Abinit potentials and their valences are labeled next to their energies.
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TiO2 DFT+U

Zval rPAW (a.u.) Eg (eV) Ep (eV) Eform (meV) Ea (meV)

Ti 4 2.8 2.31 1.51 460 291

Ti pv 10 2.5 2.41 1.29 389 241

Ti sv 12 2.3 2.43 1.20 359 225

Ti sv GW 12 2.0 2.39 0.94 248 175

Ti h 12 1.9 2.35 0.74 138 128

Abinit JTH-1.0 PAW Ti 12 2.3 189

Atompaw PAW Ti 12 2.3 196

HSE06

Ti 4 2.8 3.46 1.04 207 62

Ti pv 10 2.5 3.66 1.02 215 60

Ti sv 12 2.3 3.72 1.04 222 65

Ti sv GW 12 2.0 3.74 1.07 239 74

Ti h 12 1.9 3.74 1.06 232 71

Experiment 3 [102] 0.7 ± 0.1 [40]

Table A.2: List of calculated energies in TiO2.
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Figure A.2: Comparison of Fe2O3 activation energies (Ea) calculated with VASP (red and blue) and

Abinit (magenta). The Abinit potentials and their valences are labeled next to their energies.
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Figure A.3: Comparison of FePO4 activation energies (Ea) calculated with VASP (red and blue)

and Abinit (magenta). The Abinit potentials and their valences are labeled next to their energies.
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Fe2O3 DFT+U

Zval rPAW (a.u.) Eg (eV) Ep (eV) Eform (meV) Ea (meV)

Fe 8 2.3 2.36 1.07 460 129

Fe pv 14 2.2 2.36 0.93 388 96

Fe sv GW 16 2.0 2.39 0.75 296 54

Fe sv 16 1.9 2.33 0.62 240 30

Abinit-2009-v8 PAW Fe 8 2.3 45

Abinit JTH-1.0 PAW Fe 16 2.1 33

Atompaw PAW Fe 16 2.1 40

HSE06 α = 25%

Fe 8 2.3 3.50 1.30 381 75

Fe pv 14 2.2 3.55 1.33 409 10

Fe sv GW 16 2.0 3.61 1.38 408 20

Fe sv 16 1.9 3.62 1.35 423 14

HSE06 α = 12%

Fe 8 2.3 2.04

Fe pv 14 2.2 2.06

Fe sv GW 16 2.0 2.11

Fe sv 16 1.9 2.11

Experiment 2 [104] 0.7 [48] 120 [48]

Table A.3: List of calculated energies in Fe2O3.

FePO4 DFT+U

Zval rPAW (a.u.) Eg (eV) Ep (eV) Eform (meV) Ea (meV)

Fe 8 2.3 1.85 0.61 506 149

Fe pv 14 2.2 1.86 0.46 481 112

Fe sv GW 16 2.0 1.92 0.30 557 80

Fe sv 16 1.9 1.87 0.25 486 50

Abinit-2009-v8 PAW Fe 8 2.3 50

Abinit JTH-1.0 PAW Fe 16 2.1 54

Atompaw PAW Fe 16 2.1 55

HSE06

Fe 8 2.3 3.32 0.66 262 115

Fe pv 14 2.2 3.38 0.69 268 123

Fe sv GW 16 2.0 3.47 0.76 301 149

Fe sv 16 1.9 3.47 0.73 279 140

Table A.4: List of calculated energies in FePO4.
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Figure A.4: Comparison of LiFePO4 activation energies (Ea) calculated with VASP (red and blue)

and Abinit (magenta). The Abinit potentials and their valences are labeled next to their energies.

LiFePO4 DFT+U

Zval rPAW (a.u.) EC−2+ (eV) EC−V (eV) Ep (eV) Eform (meV) Ea (meV)

Fe 8 2.3 3.74 4.13 2.74 309 201

Fe pv 14 2.2 3.59 4.14 2.76 185 148

Fe sv GW 16 2.0 3.29 4.07 2.64 72 96

Fe sv 16 1.9 3.17 4.04 2.66 19 57

Abinit-2009-v8 PAW Fe 8 2.3 70

Abinit JTH-1.0 PAW Fe 16 2.1 70

HSE06

Fe 8 2.3 4.15 5.41 3.12 219 141

Fe pv 14 2.2 4.13 5.41 3.08 283 154

Fe sv GW 16 2.0 4.18 5.44 3.02 354 184

Fe sv 16 1.9 4.14 5.44 3.02 341 174

Experiment 4 [56]

Table A.5: List of calculated energies in LiFePO4.
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Figure A.5: Comparison of MnO2 activation energies (Ea) calculated with VASP (red and blue) and

Abinit (magenta). The Abinit potentials and their valences are labeled next to their energies.
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MnO2 DFT+U

Zval rPAW (a.u.) Eg (eV) Ep (eV) Eform (meV) Ea (meV)

Mn 7 2.3 2.04 0.80 381 232

Mn pv 13 2.3 2.12 0.81 395 242

Mn sv GW 15 2.0 2.26 0.89 440 270

Mn sv 15 1.95 2.24 0.90 433 272

Abinit JTH-1.0 PAW Mn 15 2.1 293

HSE06

Mn 7 2.3 3.48 1.84 709 445

Mn pv 13 2.3 3.56 1.85 704 462

Mn sv GW 15 2.0 3.67 1.92 729 489

Mn sv 15 1.95 3.64 1.90 712 481

Experiment 3 [108] 1.2 [107], 1.63/2.00 [108]

Table A.6: List of calculated energies in MnO2.
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Figure B.1: Density of states for Fefc vs. Fesc potentials. Projected O 2p (blue) and Fe 3d (red)

density of states around the band gap (1.9 eV) in FePO4 calculated with (a) Fefc and (b) Fesc PAW

potentials. There is a difference of 10 meV between the two band gaps.

−2 0 2 4
−80

−60

−40

−20

0

20

40

60

80

E−E
F
 (eV)

P
D

O
S

 (
/e

V
)

−2 0 2 4
−80

−60

−40

−20

0

20

40

60

80

E−E
F
 (eV)

P
D

O
S

 (
/e

V
)

FescFefc

(a) (b)

Figure B.2: Density of states for Fefc vs. Fesc potentials. Projected O 2p (blue) and Fe 3d (red)

density of states around the band gap (4.1 eV) in LiFePO4 calculated with (a) Fefc and (b) Fesc

PAW potentials. While the polaronic state has moved up within the band gap, the difference of 50

meV between the band gaps is again small.
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B.1 WIEN2k All-electron calculation details

Calculations in WIEN2k were matched as close as possible to the calculations done

in VASP, using polaronic ground state (POL) and transition state (TS) structures

taken from VASP calculations, a PBE+U functional with U = 4.3 eV, and RMT for

Fe set to 2.3 a0 for comparisons with the Fefc PAW potential, and RMT = 1.9 a0 for

comparisons with the Fesc PAW potential. The basis set size was chosen according to

RMT ×Kmax = 6.0.
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Figure B.3: Relaxation of semi-core states in LiFePO4. Projected density of states (PDOS) for the

two Fe atoms taking part in the LiFePO4 hole transfer process for (a) the intrinsic ground state

configuration (“GS”), (b) the polaronic ground state configuration (“POL”), and (c) the transition

state (“TST”).
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Figure B.4: Activation energy for nearest-neighbor hole polaron hopping in LiFePO4 calculated with
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Fe potentials. Barrier for Fefc: 257 meV. Barrier for Fesc: 79 meV.
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