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ABSTRACT

The nature of the couplings within and between lattice and charge degrees

of freedom is central to condensed matter and materials physics. Despite their

fundamental role, detailed momentum-dependent information on the strength of

electron-phonon and phonon-phonon couplings across all momenta has proved

elusive. Ultrafast electron diffuse scattering provides the answer by measuring

momentum-dependent phonon population dynamics similar to how time and angle

resolved photoemission spectroscopy views the momentum-dependent occupation

dynamics of electronic states. This method proves particularly effective in the

study of 2D materials. A sophisticated analysis applied to ultrafast electron

scattering measurements of graphite, follows the cascade of electron-phonon

and phonon-phonon couplings after pulsed laser excitation in this well studied

benchmark system. In a similar experiment on titanium diselenide, electron-

phonon coupling is measured by observing the effect of photoexcitation on the

renormalized phonon frequencies with the characteristic momentum of titanium

diselenide’s charge density wave transition. Through its sensitivity to transient

phonon occupancies and frequencies, ultrafast electron diffuse scattering is a novel

and powerful method to unravel the physics of complex phases and properties

determined through interplay between the electron and lattice systems.
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ABRÉGÉ

La nature du couplage entre le réseau d’atomes et les porteurs de charges

d’un cristal est centrale au domaine de la physique de la matière condensée.

Malgré leurs rôles fondamentaux, les couplages électron-phonon et phonon-phonon

demeurent mystérieux. La diffraction ultrarapide diffusé par électrons permet de

répondre aux questions concernant l’occupation des populations phononiques dans

l’entièreté de l’espace réciproque. Plus spécifiquement, les excitations optiques

sur un cristal de graphite, initiées par une impulsion laser femtoseconde, génèrent

une population électronique excitée particulière, appelée cônes de Dirac. Ces

excitations creés un plasma d’électrons et de trous de densité variable, contrôlée

par l’intensité de l’impulsion laser. Cette thèse présente une analyse sophistiquée

de données de diffraction ultrarapide diffusé par électrons faisant la lumière sur

la relaxation du système électronique excité par impulsion ultrarapide, passant

par le couplage avec le réseau d’atomes, puis finissant en relaxation des modes

phononiques avec l’environnement. Dans le cas du disélénure de titane (TiSe2),

le couplage électron-phonon est mesuré de façon complètement différente; en

observant l’effet de la photo-excitation sur les fréquences de phonons renormalisées

aux vecteurs d’ondes caractéristiques de la phase d’ondes de charges de TiSe2.

À travers la sensitivité aux occupations phononiques temporaires, la diffraction

ultrarapide diffusé par électrons permet de décortiquer la physique des phases

complexes de la matière, et d’élucider la relation entre le système électronique et le

réseau d’atomes.

v



TABLE OF CONTENTS

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
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Å. The solid black lines represent strong covalent bonds and the
dashed lines represent Van der Walls forces. . . . . . . . . . . . . . 62

4–2 Electron band structure of graphite in the first BZ near εF showing
Dirac cones at the K points. Taken with permission from Refer-
ence [2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4–3 (Top) Experimental (inelastic x-ray scattering) and calculated phonon
dispersion of the optical modes of graphite showing Kohn anoma-
lies at the Γ and K points. (Bottom) Full phonon dispersion of
graphite calculated using density functional theory. Figures taken
with permission from References [3] and [4]. . . . . . . . . . . . . . 65

4–4 Sketch of the in-plane electronic band structure of graphite at the
Fermi energy and close to the K point where the valence and con-
duction bands slightly overlap. Arrows indicate possible direct (DOT)
and indirect (IOT) optical transitions induced by the probe pulse.
(b) Brillouin zone perpendicular to the [001] axis. Nested vectors
of the Fermi surface are located around the K points. Arrows mark
possible scattering events of electrons and correspond to wave vec-
tor changes that are confined to the vicinity of the Γ and K points.
Figure taken with permission from Reference [5]. . . . . . . . . . . 66

x



4–5 Main stages of energy relaxation of photoexcited carriers. First the
high energy (ε = hf/2) carriers lose energy to carrier-carrier and
phonon scattering. These processes lead to fast thermalization,
producing a relatively long-lived hot carrier distribution. In the
second stage, electron-lattice cooling mediated by phonons takes
place over longer time scales relaxing the hot carrier distribution
back to equilibrium, T0. Figure taken with permission from Refer-
ence [6]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4–6 (a) Energy (Ebin) and momentum (k‖) resolved photoemission in-
tensity around the Dirac cone (no pump). (b) Equilibrium high-
resolution spectrum. (Inset) Brillouin zone with measurement di-
rection (dashed red line). (c)-(e) Spectra taken at increasing time
delays. (f)-(h) Change with respect to the spectrum before the
pump pulse (difference spectra). Figure taken with permission from
Reference [7]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4–7 (a-b) Electron energy distribution curves derived from trARPES data
illustrating the deviation from a thermalized electron distribution
shortly after photoexcitation. (c) Nonthermal component of the
energy distribution curves as a function of t. (d) Electron temper-
ature transients derived from Fermi-Dirac fits to the energy distri-
bution curves. Figure taken with permission from Reference [8]. . . 70

4–8 TRR graphite results, showing temporal dynamics of the Γ-E2g phonon
following pump excitation. (a) Experimental anti-Stokes Raman
intensity, which is proportional to the phonon mode population.
(b) Measured shifts of the Γ-E2g mode frequency. (c) Tempera-
ture of the Γ-E2g phonons inferred from the mode population in
(a). Figure taken with permission from Reference [9]. . . . . . . . . 71

xi



4–9 Phonon dispersion of graphite with the strongly coupled optical modes
indicated. The orange bars indicate half the energy of the K-A′1
and Γ-E2g modes. The dominant energy and momentum-conserving
decay pathways are indicated with coloured arrows. For example,
the green arrows labelled A′1:TA-LA on the left represent the de-
cay from the strongly coupled A′1 mode at K to both TA and LA
modes at the midpoint of the Γ-K line. Dotted arrows should be
thought of as going in the opposite momentum direction. Side bar
(red) provides a schematic of the non-equilibrium LA/TA phonon
distribution produced through the decay of Γ-E2g and K-A′1 phonons.
Figure taken with permission from Reference [10]. . . . . . . . . . . 72

4–10 ∆fI(~q, 100ps) at various steps in the image processing procedure. a)
shows the raw diffraction pattern after averaging the experimental
repetitions. Artifacts from the beam block and camera read out
are indicated. b) Diffraction pattern after masking of the artificial
signals. c) Pattern after six-fold averaging. d) Pattern after Gaus-
sian smoothing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

xii



4–11 Evolution of ∆fI(~q, τ) following photo-excitation of graphite. The
dramatic changes reflect the non-equilibrium phonon populations
and their time dependence. a) Raw diffraction pattern of graphite
with select BZs indicated with dashed lines. b) Differential scat-
tering flat-field at a time before optical excitation indicating signal-
to-noise. c) At early times the diffuse intensity provides a map of
the relative strength of the q-dependent EPC coupling through
the increased occupancy of strongly-coupled modes. Peaks in ∆fI(~q, 0.5 ps)
at certain K−points (circled) result from the increase in K-A′1 pop-
ulation. Strong coupling to the entire transverse acoustic (TO)
branch is evident in the vicinity of [200] as ridges of intensity ra-
diating from Γ to K points. (c) By 1.5 ps, a halo of scattered in-
tensity the around the [110] peak appears due to dominant anhar-
monic decay pathways of the strongly coupled modes. (b) Scat-
tered intensity collects along Γ-M lines perpendicular to the scat-
tering vector. By diffuse scattering selection rules 1 and 2 this is
scattering from the TA mode. These dynamics demonstrate inter-
band and intraband pathways from the mid-BZ TA and LA modes.
By 100 ps (c) the intensity has tightened around the Γ-M lines
lines and the diffuse intensity now has the same shape as the TA
structure factor map in Figure 4–12(upper right). This steady state
increase in TA mode occupancy is consistent with the lack of al-
lowed anharmonic decay pathways for transverse acoustic modes [11,
12]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

xiii



4–12 Visualizing momentum dependance of one-phonon structure factors.
(Left) Numerically computed structure factor maps for the acous-
tic modes in graphite. TO mode activity matching the early dif-
fuse scattering features in Figure 4–11(c) is outlined in red. The
shape of the TA mode activity features match the shape of the
diffuse scattering features after 5 ps in Figure 4–11(e-f). (Right)
Phonon dispersion curves weighted by structure factor. The darker
curves have stronger structure factors along the paths indicated in
the structure factor map insets, allowing the mode activity to be
easily determined along high symmetry lines and at high symme-
try points (note that light grey is zero for these curves). Along the
magenta path, for example, the LA mode is active along both Γ-
M and Γ-K lines where the LA mode is only active on the Γ-K
line. In contrast, the TA mode is the only dominant mode along
most of the pink path. The paths with only one dominant mode
indicate where single mode occupancy dynamics can be extracted
directly via Eq. 2.30. . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4–13 Ultrafast electron diffuse scattering at early times. a) Intensity of
the [110] Bragg peak showing non-exponential Debye-Waller dy-
namics [13]. b) ∆fI(~q, τ) at select points in the BZ (inset) and the
E2g occupancy dyanamics measured with TR-Raman[9] shown in
grey. The rate of increase in the the population of the TO K-A′1
phonon from electronic coupling (red, 280 fs) is faster than that
for the Γ-E2g (cyan, 430 fs) and matches the fast Bragg peak dy-
namics. The population K-LO phonons (green, 730 fs) rises much
slower that both TO K-A′1 and Γ-E2g phonons. The rise in dif-
fuse intensity at the M-point (blue, 2.1 ps) is almost an order of
magnitude slower than that associated with the TO K-A′1 phonon.
The slow timescale decay evident in the Bragg peak and reported
in earlier ARPES measurements [14] does not emerge from the
dynamics of any single mode, but is a composite of the decay in
population of the strongly coupled optical modes (e.g. red, 1.7 ps)
and the increase in population of all other modes. . . . . . . . . . . 81

xiv



4–14 Transient differential phonon population spectra. Blue arrows in-
dicate anharmonic decay from optical modes to mid-BZ acoustic
modes. Red arrows indicate inter and intraband decay of acoustic
modes. (a) TA occupation dynamics along the Γ-M line. By 5 ps,
a peak appears around 0.5M . Population then collects near Γ and
M points.(b) (a) TA occupation dynamics along the Γ-K line. In
contrast with (a), the population decreases near the BZ edge. (a)
LA occupation dynamics along the Γ-K line. The rapid increase
near K is due to the TO mode which strongly couples to the pho-
toexcited electron system and has a significant structure factor at
these scattering vectors 4–11(lower right). Subsequently, LA mode
population decreases everywhere along the Γ-K line. . . . . . . . . 85

5–1 The structure of TiSe2. (a) Atomic configuration of two stacked unit
cells. (b) Brillouin zones in the normal phase (thick outline) and
the CDW phase (thin outline). Red arrows indicate the in-plane
wavevectors of the CDW and the gray contours illustrate the topol-
ogy of the equi-energy contours. (c) Electronic structure in the
normal phase. There is an indirect band gap across Γ to M and a
negative indirect band gap across Γ to L. Excitonic behaviour at
these wave vectors provides an alternate mechanism for the CDW
transition. Figures taken with permission from References [15] and
[16] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5–2 Simulated phonon dispersion curves of TiSe2, showing the severity of
the TA mode renormalization as a function of temperature. In or-
der to quantitatively calculate the CDW transition temperature,
the Fermi-Dirac distribution is used to smear the electronic func-
tions, where the smearing factor takes on a physical meaning to
directly increase the electronic temperature and has the effect of
increasing the TA phonon frequency at the M and L points. . . . 90

5–3 Static diffraction patterns of TiSe2. (Left) Diffraction at normal in-
cidence along [001]. Select BZs indicated by reciprocal lattice co-
ordinates. (Right) Diffraction along [101̄], the BZ edge is indicated
with M and L high symmetry points. . . . . . . . . . . . . . . . . . 92

xv



5–4 Evolution of ∆fI(~q, τ) following photo-excitation of TiSe2. By 0.5
ps, negative diffuse scattering features (green) appear at M -points
surrounding the [110] family of peaks forming a gear-shaped pat-
tern. Through 1 and 2 ps, the M -point signals fade into a uniform
diffuse scattering increase at all points away from the Bragg peaks. 93

5–5 Fractional scattered intensity changes. (a) Bragg peak dynamics show-
ing showing Debye-Waller suppression. (b) Diffuse scattering dy-
namics at high symmetry points. All three curves increase dur-
ing the first 2 ps after photoexcitation, corresponding to an over-
all phonon occupancy increase due to coupling with photoexcited
electrons. An extremely fast dip in diffuse intensity that recov-
ers in about 1 ps appears at M points where the TA mode is ac-
tive and dominant as shown in the computed weighted dispersion
curve (c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

xvi
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The author, Mark J. Stern, affirms that the work presented in this thesis con-
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matter physics. The experimental technique which is the subject of this work,

ultrafast electron diffuse scattering, produces time and momentum resolved diffuse

scattering patterns from which the time resolved phonon occupancy spectra for

individual phonon modes in graphite are extracted revealing the details of electron-

phonon and phonon-phonon couplings. No other technique exists which is sensitive

to the transient amplitude and frequency of phonon modes with non-zero momen-

tum, so the measurement alone is a new and impactful contribution. Moreover, the

technique’s sensitivity to the energy of phonon modes at high symmetry points re-

veals a near instantaneous stiffening of phonon modes related to the charge density

wave transition in titanium diselenide and the screening of phonons by electrons.

This is also an unprecedented result due to the location of the characteristic charge

density wave momentum at the edge of the Brillouin zone, the vanishingly small

size of the signal and the extremely short duration of the effect. Both of these

results reveal novel insights into charge-lattice interactions in 2D materials and are

a direct product of the experimental and theoretical work of the author.

The specific contributions of the author and co-workers to the work presented

in this thesis are summarized here. The experiments were performed with a home

1



built ultrafast electron diffractometer configured mainly by Dr. Vance R. Morrison
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discussion of the results were written by the author with support from Dr. Mark

Sutton. Finally, support from the author’s graduate supervisor, Dr. Bradley J.

Siwick, was generously given throughout.
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CHAPTER 1
Phonons and their interactions

A thorough understanding of the properties of condensed matter is built

upon the fundamental concepts of the atomic lattice and electronic structure.

The simplest theoretical models, built to explain basic thermal and electronic

properties of materials, restrict their focus to isolated electrons, spins or phonons,

the building blocks of these systems, assuming no interactions occur. But in

order to describe more complex and subtle phenomena in solid-state physics,

such as electrical and thermal resistance in semiconductors [17] or conventional

superconductivity [18], charge/lattice couplings must not be neglected (Figure 1–

1). An excitation in either system can rapidly provoke other excitations, exchanges

that can occur on time scales faster than a picosecond (10−12 s).

Many methods and techniques have been designed to the study elec-

tronic/lattice structure and dynamics. Elastic x-ray and electron diffraction,

for example, are the primary methods for solving the structure of crystalline ma-

terials where inelastic x-ray scattering provides information on electronic structure

and both electronic and lattice excitations [19, 20]. Similarly, elastic neutron

scattering is used to study the arrangement of electron spins and unpaired electron

density distributions where inelastic electron scattering probes excitations and spin

correlations [21]. Angle resolved photoemission spectroscopy (ARPES) directly

maps the density of single-particle electronic excitations in momentum space [22]
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Figure 1–1: Interplay between microscopic degrees of freedom shared by electron,
lattice and spin systems leads to a complex zoology of ordered phases and diverse
electronic properties.

and Raman/Brillouin spectroscopy is used to observe molecular and crystal vibra-

tions [23]. However, conventional techniques can only provide indirect information

on the strength of interactions and the lack temporal resolution needed to fol-

low these exchanges in real time. Phonon-phonon couplings, in particular, have

typically been the province of theory or molecular dynamics simulations [24, 25]

only due to the lack of techniques capable of probing these interactions in any

substantial detail. During the last few decades, the development of femtosecond

laser technology has delivered the capability to observe non-equilibrium effects

of electron-phonon and phonon-phonon coupling by implementing pump-probe
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techniques which achieve time resolution by manipulating an adjustible delay be-

tween an excitation pulse (pump) pulse and an ultrashort (∼10−14 s) interrogation

(probe) pulse (Figure 1–2).

Elastic scattering

Diffuse scattering

Figure 1–2: A simplified diagram of a pump-probe electron diffraction experiment.
An ultrashort pump (laser) pulse strikes the sample, initiating some physical pro-
cess of interest at t=0, followed by a probe pulse that captures a snapshot at a
particular time delay after excitation, ∆t. A series of ultrafast snapshots consti-
tute an ultra high speed ‘movie’ of the process. In the case of electron diffraction,
the probe pulse diffracts off the sample producing elastic scattering peaks as well
as inelastic or diffuse scattering at all other scattering angles. The position and
intensity of the peaks encode the atomic structure of the sample and the diffuse
scattering features are determined by vibrations.

Several of the conventional techniques mentioned above can be reconfigured

into a pump-probe geometry providing ultrafast temporal resolution. Femtosecond

lasers can be applied to conventional spectroscopies to observe excitations in
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real time [26]. Ultrashort x-ray pulses can be generated for pump-probe x-ray

scattering experiments using x-ray free electron lasers [27, 28] and a femtosecond

laser can be used to photogenerate an ultrashort electron pulse [29] to observe

transient structural changes through ultrafast diffraction. In this way, exchanges

between electronic and lattice excitations can be measured as they occur, but any

one method can only provide a piece of the full dynamically coupled electron-

lattice picture depending on which excitations are observable using that technique.

Electronic excitations can be tracked with time and energy resolution across large

ranges of momentum using time resolved ARPES (trARPES) providing near

complete information on the electronic part of the dynamics [14, 30, 31]. Time

resolved Raman (TRR) spectroscopy [31] is sensitive to lattice excitations, but

can only observe phonons with near zero momentum. Notably, the time resolved

excitations of the remaining phonons have traditionally been inaccessible through

experiment.

This work describes a novel pump-probe technique, ultrafast electron diffuse

scattering (UEDS), which provides the missing piece of the dynamic electron-

lattice picture by unravelling the individual phonon mode contributions to the

time-resolved diffuse scattering of bright ultrafast electron pulses across all

non-zero momenta [10]. This is the first ultrafast technique sensitive to these

excitations and has the potential to provide previously unattainable insights into

condensed matter phenomena related to phonons and their interactions.
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1.1 Introduction

The development of UEDS has grown from its parent pump-probe technique,

ultrafast electron diffraction (UED), which has been typically employed with

the aim of tracking changes to atomic structure through variations in elastic

electron scattering called Bragg peaks. Figure 1–2 shows a simplified picture of

how UED experiments generate a series of time stamped diffraction images that

constitute a ‘movie’ of the photoinduced structural dynamics. UED has been

immensely successful in this regard, providing deep insights in multiple domains

of condensed matter physics [29, 32, 33], including electron-lattice couplings [13].

After photoexcitation, coherent lattice excitations are observed through ultrafast

oscillations in Bragg peak intensity while the incoherent phonons are measured

via the rapid Debye-Waller suppression of the same peaks. UEDS expands on the

ability of UED to view phonon dynamics by shifting the focus from the Bragg

peaks, formed by elastically scattered electrons, to the inelastically scattered

electrons, often called diffuse scattering, which are found at all other points of

a diffraction pattern (Figure 1–2). Where elastic scattering encodes information

on the atomic structure and electronic charge density, diffuse scattering intensity

depends on the frequency, direction and amplitude of lattice vibrations. Both

forms of scattering are simultaneously measured in a UED experiment although

the relative intensity of diffuse scattering is at least 104 times weaker at any

point in a diffraction pattern. Improvements in UED beam brightness, along with

advances in temporal resolution [34–36] have produced detailed measurements

of diffuse scattering, not only enabling UEDS experiments, but achieving an
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extremely high level of signal-to-noise, resolving diffuse intensity changes of < 1%

without sacrificing temporal resolution, matching the time scale of electron-phonon

and phonon-phonon coupling lifetimes [10].

UEDS captures the scattering from all phonons with momenta in the scatter-

ing plane with a single image, producing complex patterns of rapidly modulating

diffuse intensity. Each experiment provides an extremely rich data set, encod-

ing the distribution of all transient in-plane lattice-excitations as a function of

pump-probe delay. Consequently, the interpretation of these patterns is highly

non-trivial. A calculation of momentum dependent vibrational frequencies and

more importantly the phonon polarizations proves to be invaluable to the analysis,

and can be executed (in many cases) using ab initio techniques based in density

functional perturbation theory [37]. With the equilibrium phonon system charac-

terized, the weight of the scattering contribution from each phonon mode at each

scattering angle can be calculated. Even so, the amplitude of individual vibrational

modes can only be solved with an understanding of how their polarizations are

related to the scattering geometry. UEDS analysis techniques, based on the results

of ab initio computations, can decrypt the complexities of time resolved diffuse

scattering data and are derived and demonstrated in this thesis.

With behaviour of lattice excitations revealed through the UEDS technique,

the cascade of phonon excitations and decay can be viewed directly and the

implications on electron-phonon couplings can be understood in relation to

complimentary results from trARPES experiments. All the theoretical and

practical information needed to understand and operate a UEDS experiment and
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navigate between a time series of diffraction snapshots and phonon dynamics with

momentum, time and energy (mode) resolution is presented in this work. Chapter

1 lays out the theoretical foundations for lattice vibrations, electronic structure

and their interactions as well as a method for the calculation of phonon dispersions

and polarizations using density functional theory. Chapter 2 includes a first-

principles derivation of the relationship between diffuse electron scattering from

a crystal and lattice vibrations, as well as practical methods for the extraction

of phonon spectra from UEDS patterns using the theoretical basis established in

the first chapter. Chapter 3 contains the details of the experimental methodology

UEDS including the instrumental configuration and most recent improvements

designed with UEDS in mind. Chapters 4 and 5 each present a demonstration of

the UEDS technique applied to two very different 2D materials. In Chapter 4, the

electron-lattice dynamics in thin film graphite are revealed through the results of a

UEDS analysis as well as an unprecedented view of the anharmonic phonon decay

pathways. Chapter 5 will focus on the role of electron-phonon coupling related

to the charge density wave (CDW) transition in TiSe2, demonstrating the direct

effects of photoexcitation on the vibrational frequencies with the characteristic

CDW momentum.

1.2 Crystals and vibrations

The primary goal of this introductory chapter is to lay out the fundamental

theoretical descriptions of crystalline materials focusing on the necessary back-

ground needed to compute phonon frequencies and polarizations. This calculation

is a necessary step in the analysis of UEDS data, as it will be used to relate the
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geometry of electron scattering with the geometry of lattice vibrations. The final

section will describe electron-phonon and phonon-phonon interactions, in particu-

lar the linear charge density response to a lattice distortion and its role in phonon

frequency renormalization and the CDW phase transition.

The materials of interest for UEDS study are primarily crystalline solids,

which have the property that their constituent atoms are periodically arranged

in a Bravais lattice. That is to say that the neighbourhood around a point in the

lattice will be the same as the neighbourhood of every other point under some

translation [38, 39]. Any point in a crystal lattice can be written as a sum of three

vectors, ~R = n1~a1 + n2~a2 + n3~a3, where ~a1, ~a2 and ~a3 are linearly independent

and called primitive vectors. The crystal’s atoms will be found at fixed locations

relative to any given lattice point, therefore a crystal structure is fully described by

a choice of primitive vectors, {~a3,~a3,~a3}, and the relative positions of the atoms

within the volume defined by these vectors. This volume is called the primitive

unit cell. An example of unit cell for a simple hexagonal lattice is shown in Figure

1–3(left).

‘Hexagonal’ is one category of crystal structures, defined by the relationships

between the length of the lattice vectors and the angles between them. The

materials discussed in this work, graphene, graphite and TiSe2, all have hexagonal

structures which have the following properties: |~a1| = |~a2| 6= |~a3|, 6 ~a1, ~a2 = 120◦

and 6 ~a1, ~a3 = 6 ~a2, ~a3 = 90◦. Since crystals are highly ordered materials, the

study of crystallography employs the language of space groups which categorizes

structures by their translational and point group symmetries. A comprehensive list
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Figure 1–3: Geometry of a hexagonal lattice. (Left) The real space unit cell and
lattice vectors with |~a1| = |~a2| = a and |~a3| = c. (Right) The Brillouin zone and
reciprocal lattice vectors with the high symmetry points labelled. Figure taken
with permission from Reference [1].

of the space groups and their properties can be found in the International Tables

for Crystallography volume A [40].

The geometry of the crystal lattice can also be expressed in momentum space

using a dual Bravais lattice known as the reciprocal lattice. The reciprocal and

real space lattices are related through their lattice vectors by the constraint,

~R · ~H = 2πl, where l is an integer, and ~H is a primitive vector of the reciprocal

lattice [38]. Specifically, the reciprocal lattice primitive vectors are related to the
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crystal lattice vectors by the following identities:

~b1 = 2π
~a2 × ~a3

~a1 · ~a2 × ~a3

~b2 = 2π
~a3 × ~a1

~a1 · ~a2 × ~a3

(1.1)

~b3 = 2π
~a1 × ~a2

~a1 · ~a2 × ~a3

The space of vectors that are closer to ~H than any other reciprocal lattice point is

called the Brillouin zone (BZ), which is also a unit cell for the reciprocal lattice.

The BZ for a hexagonal crystal is shown in Figure 1–3(right), showing the labels

for the high symmetry points found at the center of the BZ (Γ) and at the vertices

and midpoints of the BZ edges (M,K,L,H,A). The reciprocal lattice vectors

predict where elastic scattering from a crystal will occur in scattering space, which

can be derived using the following identity,

M∑
m=1

ei~q·
~Rm = M

M∑
l=1

δ(~q − ~Hl). (1.2)

The proof of this identity can be found in Marder’s solid state physics book in the

appendix [39].

In a real material at non-zero temperature, the positions of the atoms will

not rest at the equilibrium positions defined above but will be constantly in

motion, storing kinetic energy which can be transported by heat diffusion. The

instantaneous deflected atomic position can be written ~r ′m,s = ~Rm + ~rs + ~um,s,

where ~Rm is the lattice vector for unit cell m in a crystal with N unit cells and n

atoms per unit cell. A small displacement, ~um,s, from the equilibrium position, ~rs,

will increase the potential energy of the lattice, which can be written as a function

12



of all atomic displacements, U(~u1,1, ~u1,2, . . . , ~uN,n). Since these displacements are

small by definition, the potential energy change will correspondingly small and the

Taylor expansion of U can be exploited.

U = U0 +
∑ ∂U

∂uαm,s
uαm,s +

1

2

∑
uαm,s

∂2U

∂uαm,s∂u
β
m′,s′

uβm′,s′ + . . . , (1.3)

Here α and β index the three Cartesian dimensions. This expansion can be

simplified significantly by applying several assumptions. First, the zero order term

is unchanging and can be neglected. Second, the first order term must vanish

because the energy of the system will be minimized when the atoms are at their

rest positions. Finally, by declaring the expansion terms above second order

negligible only the second order term remains. This model is called the harmonic

approximation, leaving the equation of motion in a very simple matrix form,

µs~̈um,s = −
∑
m′,s′

Φm,s,m′,s′~um′,s′ (1.4)

where µs is the atomic mass. The so-called Born-von Karman force constants are

the quadratic coefficients defined as, Φα,β
m,s,m′,s′ = − ∂2U

∂uαm,s∂u
β
m′,s′

. The final step to

solving the vibrational motion is to expand the displacements into normal modes.

The solution for equation 1.4 is assumed to be a plane wave of the form,

~um,s = êj,s,~ke
i~k·~r′m−iωj,~k

t (1.5)

For each vector ~k there will be one mode per Cartesian direction per unit cell

atom (3n modes per wave vector) which accounts for all translational degrees of

freedom in the lattice. For the j-th mode with wave vector ~k, êj,s,~k is the direction
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or polarization of the motion of the s-th atom in the unit cell and ωj,~k is the

angular frequency of the vibration. By substituting the solution 1.5 into equation

of motion 1.4, the matrix equation becomes an eigenvalue problem,

D(~k)~̂ej,s,~k = ω2
j,~k
êj,s,~k (1.6)

Dα,β
s,s′(

~k) = − 1
√
µsµs′

N∑
m

Φα,β
0s,ms′e

−i~k·~r′m (1.7)

The dynamical matrix, D(~k) is real and symmetric, constructed from the force

constants and the atomic masses, µs, and is taken to be relative to the 0-th unit

cell (~R0 = 0) [39]. The boundary conditions chosen for this system are periodic.

That is to say where a real crystal would have finite size, it is assumed that the

lattice (including vibrations) repeats indefinitely in all directions which eliminates

the need to worry about edge effects. Importantly for scattering, the phonon

frequencies and polarization vectors will also be periodic. Specifically, ωj,~k = ωj,~k+ ~H

and êj,s,~k+ ~H for all reciprocal lattice vectors which will make the derivation of

diffuse scattering in the next chapter much simpler.

The scalar solutions to the eigenvalue equation 1.6 are the mode frequencies

ω2
j,~k

which form j surfaces in momentum space known as the phonon dispersion.

Although this derivation has been based on classical mechanics, the vibrational

frequencies of a quantum mechanical lattice are the same as its classical coun-

terpart [39]. In this case the energy of the oscillator is quantized to values of

the form h̄ωj,~k(nj,~k + 1/2) where nj,~k is a positive integer quantum number that

counts if a phonon of this mode has been excited. An arbitrary number of phonons

may occupy a given state, so an ensemble of phonons in the lattice will obey
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Bose statistics. Which means the ensemble average of phonon occupancy can be

expressed as a function of the Boltzmann constant, kB, and lattice temperature, T :

〈
nj,~k +

1

2

〉
=

1

eh̄ωj,~k
/kBT − 1

+
1

2
= coth

(
h̄ωj,~k
2kBT

)
(1.8)

1.3 Calculating the phonon dispersion and polarizations

The phonon dispersion reflects the full harmonic behaviour of the lattice, and

can be used to calculate thermal properties of the material (such as the specific

heat). Furthermore it plays a fundamental role in diffuse scattering. The matrix

equation 1.7 can be solved with elementary numerical (or in simple cases analytic)

schemes for solving linear matrix equations as long as accurate values for the Born-

von-Karman force constants are known. Finding reliable force constants is not a

trivial task since they are functions of all relative atomic positions. Fortunately,

the periodicity of the crystal means that the number of atoms for which the forces

must be considered is limited to the unit cell, but each of the unit cell atoms feels

the effect of every other atom in the crystal. To make this problem tractable the

effects from distant atoms must be ignored, applying what is called a nearest-

neighbour approximation. Once the number of forces are reduced to a manageable

figure, the individual forces are modeled as simple spring forces proportional to

atomic displacement weighted by an elastic constant. An analytical example of

the derivation of a third nearest neighbour approach for the force constants of

graphene is found in Falkovsky et. al. [41], in which the accounting of the simple

geometry of the graphene lattice, specifically the angles and distances between

atoms, is described in detail.
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Values for the elastic constants of interatomic forces must come from some

form of external knowledge gained either through measurement or first-principles

calculation. A calculation of the force constants must be based on the electrostatic

potentials of the crystal, and therefore an overview of the system of charges in

a crystal is required before delving into advanced computational methods for

calculating the force constants and subsequently the phonon dispersion. The

following summary is based on chapters 6 and 7 of Marder’s book, Condensed

Matter Physics [39].

In general, the physics of electrostatic charges that make up matter can be

described by a very simple Hamiltonian with a Coulomb potential,

H =
∑ P2

2µ
+

1

2

∑ qq′

|R −R′|
, (1.9)

where P and R are the momentum and position operators and the sums range

over all electrons and nuclei in a solid. This expression is not complex on its

face, but the sheer number of charges in a macroscopic material (1023) make

working with equation 1.9 impossible without a series of approximations. The

simplest useful model is that of a free Fermi gas, which assumes that the electrons

have no interaction with the nuclei nor each other, subject only to the Pauli

exclusion principle. Despite the severity of this assumption, this model explains

some properties of simple materials, such as alkali metals, quite well, but it is

still limited in its applications. The next level of complexity combines all the

nuclei and the core electrons into a single entity (the ionic crystal) that acts

upon the conduction electrons as an external electrostatic field. This is known as
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the Born-Oppenheimer approximation which effectively separates the ionic and

electronic wave functions by making them independent. Once the ionic potential

is established it can be applied while ignoring conduction electrons entirely, which

is what was done in the previous section to describe phonons, or the influence of

the ionic potential on the conduction electrons can be considered. This is the basis

of the single-electron model. As the name implies, the inter-electron interactions

are still ignored (except again for the Pauli principle) but this model serves as a

foundation for the applications relevant to this work.

The single-electron Hamiltonian for a crystalline solid is,

He =
P2

2µe
+ ϕext, (1.10)

where ϕext is an external periodic electrostatic potential dependent on the equilib-

rium ionic positions. The consequences of the periodicity are that the Hamiltonian

shares its eigenfunctions with the translation operator and these eigenfunctions

are associated with a single value for momentum h̄~k, where ~k is called the Bloch

wave vector. For a given ~k there can be many energy eigenvalues, εn,~k, which are

labelled by the band index, n. The dispersion of these band energies as functions

of momentum, also known as the electronic band structure, are extremely fun-

damental for the understanding of the electronic properties of materials. They

contain information on whether a solid is a metal, insulator or semiconductor.

The curvature of the bands represent electron velocities and can predict electrical

transport properties. The shapes of bands can also be used to calculate minimum

energy crystal structures and magnetic properties. In a macroscopic material, the
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occupation probability of an electron in state n is given by the Fermi function

fn,~k =
1

eεn,~k
/kBT + 1

. Due to the Pauli exclusion principle, only two electrons are

allowed at any point of the band structure, one per spin direction. Therefore, at

the ground state energy of the N particle macroscopic system, the particles fill up

all energy levels below a particular energy εF , called the Fermi energy, below which

there are exactly N states. The Fermi surface is the energy surface in momen-

tum space which separates occupied from unoccupied electron states in the zero

temperature limit.

But how can the single-electron model be used to calculate the inter-atomic

forces needed to solve the phonon problem? The Born-Oppenheimer approxima-

tion establishes that the single electron Hamiltonian only determines the physics of

the conduction electrons and can be considered independent of the lattice dynam-

ics. To determine the physics of the ions, the Hamiltonian for the ionic lattice is

needed:

Hi = −
∑
m,s

h̄2

2µm,s

∂2

∂u2
m,s

+ U(~u1,1, ~u1,2, . . . , ~uN,n), (1.11)

where m and s index the unit cell number and the atoms in the unit cell, and

U is the energy of the lattice as a function of ionic position used for the phonon

treatment in the previous section. U can be understood as the ground state energy

of a system of interacting electrons moving in the field of fixed nuclei, called the

Born-Oppenheimer energy surface [42]. The Hamiltonian that gives rise to this
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ground state energy is,

HBO = −
∑
i

h̄2

2µe

∂2

∂r2
i

+
∑
i 6=j

Eee(~ri, ~rj) +
∑
i,m,s

Ene(~ri, ~um.s) +
∑
m,s
m′,s′

Enn(~um,s, ~um′,s′).

(1.12)

Here ~ri is the electron position and ~um,s is the atomic displacement from equi-

librium. The three electrostatic interactions are the electron-electron (Eee),

electron-nucleus (Ene), and nucleus-nucleus (Enn) Coulombic potentials, each

in the familiar form. Note that the inclusion of inter-electron forces in this step

appears to be a departure from the single-electron model. But since the goal

of this derivation is to find the matrix of second derivatives, or Hessian matrix,

of the ground state energy U (i.e. the Born-von-Karman force constants), the

Schrödinger equation will not need be solved for this Hamiltonian. In short, the

inclusion of electron-electron interactions here is a technicality and does not

invalidate previous assumptions made to avoid a many-body problem.

The mathematical tool needed to find the force constants from HBO is the

Hellman-Feynman theorem [42]. Which is applied to the ground state energy

giving,

∂U

∂um,s
= −

〈
Ψ

∣∣∣∣∂HBO

∂um,s

∣∣∣∣Ψ〉 , (1.13)

where Ψ is the ground state wavefunction of the Born-Oppenheimer Hamiltonian.

To get from here to the Hessian matrix elements (force constatnts), simply apply

a second partial derivative. The algebra for this can be found in Baroni et.al. [42]

resulting in the following expression,
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Φα,β
m,s,m′,s′ =

∂2U

∂um,s∂um′,s′

=

∫
∂ρe(~r)

∂um,s

∂Ene
∂um,s

+ ρe(~r)
∂2Ene

∂um,s∂um′,s′
d~r +

∂2Enn
∂um,s∂um′,s′

. (1.14)

Here, ρe(~r) is the ground state electron charge density. Therefore, the inter-

atomic force constants and the dynamical matrix require only a calculation of ρe(~r)

and its linear response to atomic displacements
∂ρe(~r)

∂um,s
. This leads the discussion

towards a computational technique that is built on the characteristics of the charge

density known as density functional theory.

1.4 Density functional theory

A theorem derived by Hohenberg and Kohn reveals the remarkable property

of the electronic charge distribution, ρe(~r), which is the basis of density functional

theory. It states that no two potentials acting on a system of electrons have

the same ground state charge distribution [43]. That is to say that there is a

one-one map or bijection between the set of all potentials and the set of all

ground state electronic charge densities. This idea can be refined using tools

of variational calculus. By applying the Rayleigh-Ritz variational principle of

quantum mechanics, it can be proved that there exists a universal functional, F [ρe]

such that the energy functional [42],

E[ρe] = F [ρe] +

∫
ρe(~r)ϕ(~r)d~r, (1.15)

is minimized by the ground state electron charge density corresponding to the

external potential ϕ(~r). Although this is an enticing result, the application of
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equation 1.15 is not obvious. It was shown by Kohn and Sham [44] that by

choosing the appropriate form for the universal functional, FKS, the many-body

Hamiltonian that includes electron-electron interactions can be reduced to an

equivalent problem analogous to the single-electron Hamiltonian. This is an

extremely powerful feature since it allows for electron-electron coupling to be

accounted for while using the familiar mathematics of single-electron model. The

potential that is found by minimizing the functional E[ρe] while using FKS in

equation 1.15, is called the self-consistent field potential, which has the form,

ϕSCF (~r) = ϕext(~r) + e2

∫
ρe(~r

′)

|~r − ~r ′|
d~r ′ + vxc. (1.16)

Here, ϕext is the familiar ionic electrostatic potential and the last term, vxc, is

called the exchange correlation potential which represents the effect of many

body interactions. The general form of the exchange correlation potential is not

known. Several approximations exist which which can be applied to accurately

calculate certain physical properties, such as the most commonly used local density

approximation or the generalized-gradient approximation. A discussion on the

various applications and nuances regarding the form of the exchange correlation

potential is tangential to this work and can be found elsewhere [37].

If the self-consistent field potential is used in the single-electron Schrödinger’s

equation (1.10), the wave function solutions are known as the Kohn-Sham orbitals,

φn, which are related to the electronic charge density by,

ρe(~r) = 2
∑
|φn(~r)|2 (1.17)
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These two equations, 1.16 and 1.17, represent a mutual dependence between

the electronic charge density and the self consistent field (via the Kohn-Sham

orbitals). An iterative algorithm that repeatedly solves equations 1.16 and 1.17 can

be used to converge on numerical values for ϕSCF and ρe. The calculations per-

formed at each iteration of this algorithm are analogous to solving the eigenvalue

problem for a single-electron Hamiltonian. Standard techniques for accomplishing

this often use so-called pseudopotentials to approximate the external field because

their solutions are in the form of plane waves. An overview of plane waves and

pseudopotentials can be found in reference [39].

The algorithmic technique for finding ρe has been presented, but in order

to calculate the force constants using equation 1.14, its linear response to ionic

displacements,
∂ρe
∂~um,s

, is also needed. For this, a perturbative approach can be

used on the Kohn-Sham Hamiltonian discussed above. The methods of density

functional perturbation theory use a similar iterative algorithm to the one dis-

cussed above but is too complex and nuanced to be shown here. The details of the

formulation be found in reference [42].

The application of these results to the calculation of phonon dispersions

and polarizations is applied by two packages of the open source software suite

Quantum Espresso, PWscf and PHonon [45, 46]. For a given material, the

program input includes the chemical and geometric unit cell structure, pseu-

dopotentials corresponding to the constituent atoms and a compatible exchange

correlation potential. The PWscf program calculates the self consistent potential

and the Kohn-Sham orbitals, effectively solving for ρe. The PHonon program
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applies density functional perturbation theory to the output of the PWscf program

and calculates both the linear response ∂ρe
∂~um,s

and the Born-von Karman force

constants. It also solves the dynamical matrix equation including both phonon

dispersion and polarization vectors at any inputted wavevector. These programs

were used to solve the phonon systems for graphite and TiSe2, and the atomic

positions, pseudopotentials, exchange correlation functionals and other input used

for each case will be given in Chapters 4 and 5, respectively.

1.5 Electron-phonon and phonon-phonon coupling

Moving beyond the single-electron and harmonic approximations in order

to understand the effects of interactions is a complex topic with several possible

approaches. For the purposes of understanding UEDS results in the context of

relevant literature, only simple perturbative methods will be presented here.

In particular the screening of atomic vibrations by electrons, known as Kohn

anomalies are relevant to both graphite and TiSe2 systems [15, 47].

Electron-phonon interactions can be succinctly described using the language

of second quantization. Let a†n,~q and an,~q be the creation and annihilation operators

for electrons with momentum ~q in the n-th energy band and b†j,~q and bj,~q be the

equivalent operators for phonons. The Hamiltonian that includes electron-phonon

interactions is called the Fröhlich Hamiltonian, which includes the term [48],

He−ph =
∑
n,j,~q,~k

gn,n′,j,~k,~q a
†
n′,~k+~q

an,~k(b
†
j,−~q + bj,~q) (1.18)

Here gn,n′,j,~k,~q is the electron-phonon coupling constant which is proportional to

the probability density of an electron in the n-th band with momentum ~k either
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creating a phonon with momentum -~q or absorbing a phonon with momentum ~q to

create an electron in the n′-th band with momentum ~k + ~q.

It can be shown that in a mean field approximation where g is constant

that the effect of the electron-phonon interaction on a phonon mode’s frequency

is proportional to the linear response of an electron gas to a time independent

external field,

ρind(~q) = χ(~q)φext, (~q) (1.19)

where χ(~q) is the so-called Lindhard response function, which for d dimensions is

given by [48],

χ(~q, T ) =

∫
d~k

(2π)d
f~k(T )− f~k+~q(T )

ε~k − ε~k+~q

. (1.20)

Here f~k is the Fermi function as defined in the previous section. From the form

of equation 1.20 it is clear that χ(~q, T ) will diverge at momenta that join two

degenerate points on the energy surface where the expected occupancy of the

connected states are not be the same, i.e. at or near the Fermi surface. These

vectors are called nesting vectors of the Fermi surface.

The renormalized phonon frequency with momentum ~q is reduced by [48],

∆ω2
j,~q =

2g2ωj,~q
h̄

χ(~q, T ). (1.21)

∆ω2
j,~q is proportional to χ(~q, T ) and will therefore diverge at the nesting vectors of

the Fermi surface. This effect on the phonon dispersion is called a Kohn anomaly.
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It is considered anomalous because it is not predicted by the previously discussed

methods for calculating phonon dispersions [49]. Advanced density functional

perturbation theory methods can by applied to calculate the electron-phonon

coupling constant and Lindhard response function from a perturbative potential

and electron density [47].

The temperature dependence of χ(~q, T ) causes the decrease in phonon fre-

quency to be more extreme at low temperatures. Moreover the effect is stronger

still in 2D or 1D materials [48]. If the electron-phonon coupling is strong enough

the phonon frequency can be reduced all the way to zero, defining a phase tran-

sition called a charge density wave transition. In this new phase the phonon is

‘frozen in’, casing a periodic lattice distortion that is accompanied by a periodic

charge density modulation, as the name suggests. Charge density wave transitions

are a popular subject of study in condensed matter physics and will be the focus of

Chapter 5 of this thesis.

Anharmonic phonon behaviour can be expressed in terms of scattering

coefficients which are related to the probability of a corresponding phonon

scattering event. The lowest order three-phonon scattering coefficients are given by

a third degree partial derivative of the same ionic crystal potential U used for the

harmonic approximation [25],

V
(3)

j1,~k1,j2,~k2,j3,~k3
=

1

M

∂3U

∂Xj1,~k1
∂Xj2,~k2

∂Xj3,~k3

(1.22)
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where Xj,~k is an unitless variable related to, uj,s,~k, the Fourier component of the

atomic displacement via,

∂

∂Xj,~k

=
∑
s,α

√
h̄

2µsωj,~k
êα
j,s,~k

∂

∂uα
j,s,~k

. (1.23)

Due to translational symmetry of the crystal, a momentum conservation law

constrains V
(3)

j1,~k1,j2,~k2,j3,~k3
6= 0 only when the sum of the scattering vectors sum to a

reciprocal lattice vector, ~k1 + ~k2 + ~k3 = ~H. Energy conservation of the scattering

process also guarantee that either ωk1 − ωk1 − ωk1 = 0 or ωk1 + ωk1 − ωk1 = 0

for a decay of one into two or two into one phonons respectively. The phonon

lifetime due to the anharmonic phonon-phonon decay is inversely proportional

to V
(3)

j1,~k1,j2,~k2,j3,~k3
and the occupancy of the initial phonon(s) [25]. The inverse of

the phonon lifetime is in units of frequency and is called anharmonic broadening,

therefore the decay rates of phonons can be visualized by a broadening of the

phonon dispersion curve. Knowing the anharmonic scattering coefficients can

determine the lattice thermal conductivity within the framework of the Boltzman

transport equation [25]. So the ability to measure phonon decay via UEDS

analysis, where previously these properties were only accessible via numerical

computation, is invaluable to the understanding of thermal transport in crystalline

materials and thermoelectric phenomena.
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CHAPTER 2
Scattering theory

Armed with a methodology for computing phonon dispersions and polariza-

tions, the effect of atomic vibrations on the scattering of radiation will be derived

in this chapter. First, a theory for electron scattering will be constructed from first

principles. The initial arguments will be based on those given in J.M. Cowley’s

book [50], and the expansion to elastic and diffuse scattering will be based on the

work done by Xu. et. al. [51]. The relationships between scattering and macro-

scopic vibrational states of a sample will dictate the analysis needed to tease apart

the diffuse scattering contributions from each phonon mode.

2.1 Scattered waves

Different sources of radiation, such as x-rays, electrons and neutrons, each

have distinctive properties and behaviours, including their generation, detection

and collisions with other particles. However, the manner in which they propagate

and scatter can all be described by the same type of differential equation, the wave

equation. For a charged particle wave function this is the Schrödinger equation,

h̄2

2m
∇2Ψ + eϕ(~r)Ψ = −ih̄∂Ψ

∂t
, (2.1)

where Ψ is defined as the wave function such that |Ψ|2 is the probability of an

electron being present in unit volume and ϕ is the electrostatic potential. To
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solve Equation 2.1, the form of the wave function is assumed to be Ψ = ψeiωt,

describing a wave of a single frequency ω which is a assumed to be oscillating very

quickly relative to the time dependence of ϕ. Equation 2.1 can then be simplified

by applying ∂Ψ
∂t

= −ω2Ψ, thus eliminating the explicit time dependence in the

equation. A similar argument follows from Maxwell’s equation for electromagnetic

waves so the time independent wave equation is written in a general form that can

be applied to any type of radiation:

[
∇2 + k2

0 + µϕ(~r)
]

Ψ(r) = 0. (2.2)

Here, the wave vector, k, and interaction strength µ depend on the type

of scattering wave and scattered volume. In the crystallographic literature, the

wavenumber, 2πk0, is often used in these equations, but here the solid-state

physics convention will be used. Equation 2.2 is a linear differential equation with

an impulse response or Green’s function, G(~r, ~r ′). So, it can be written in the

integral form,

Ψ(~r) = Ψ0(~r) + µ

∫
G(~r, ~r ′)ϕ(~r ′)Ψ(~r ′)d~r ′ (2.3)

G(~r, ~r ′) =
eik|~r−~r

′|

4π|~r − ~r ′|
(2.4)

Here, Ψ0(~r) is the wave incident on the scattering field and the integral describes

the scattered radiation, Ψs(~r) . The geometry of this equation is shown in Figure

2–1.
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Figure 2–1: Scattering geometry diagram for an incident plane wave Ψ0, showing
the definitions for the distances ~r and ~r ′.

The equation for G(~r, ~r ′) represents the intensity of a spherical wave emitted

from the point ~r ′ and measured at ~r. Therefore the scattered wave consists of a

sum of spherical waves, corresponding with the well known Hyugen’s principle.

2.2 The first Born approximation

The integral equation 2.3 is very difficult to solve because the full scattered

wave, Ψ(~r), appears on both sides of the equation. However, if the amplitude

of the scattered wave is small compared to that of the incident wave, one may

approximate Ψ(~r) to be equal to Ψ0(~r) in the integral. This is known as the

first Born approximation. For a planar incident wave Ψ0 = e−i
~k0·~r, Equation 2.3

becomes,

Ψ(~r) = Ψ0(~r) + Ψs(~r)

= e−i
~k0·~r +

µ

4π

∫
eik|~r−~r

′|

|~r − ~r ′|
ϕ(~r ′)e−i

~k0·~r ′
d~r ′. (2.5)
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Next, a more straightforward approximation can be applied the generalized

scattered wave, Ψs, assuming the point of observation, r = R is much larger than

the dimensions of the scattering field, i.e. r′ � R. Then the scattered wave is

given by,

Ψs(~q) =
e−ik0R

R
f(~q) (2.6)

where ~q = ~k − ~k0 is the scattering vector and f(~q) is known as the scattering

amplitude,

f(~q) =
µ

4π

∫
ϕ(~r)e−i~q·~rd~r (2.7)

The scattering amplitude is defined by the nature of a scattered wave and its

scattering potential. In other words, waves will scatter differently depending on

the type of wave and the type of scatterer. For example, electrons will scatter

off of electrostatic potential via the Lorentz force and x-rays will scatter by

being re-emitted after accelerating a charged particle (Thomson scattering) [52].

Conveniently, Equation 2.7 demonstrates that f(~q) is simply the Fourier transform

of the associated scattering potential, ϕ(~r), which allows for straightforward

computation in many cases.

2.3 Electron scattering

The scattering potential of atoms, used in Schrödinger’s equation (Equation

2.2) for electron scattering, is the electric potential of both the atomic nucleus

and electron orbitals which are related to charge density by Poisson’s equation of
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electrostatics,

∇2ϕ(~r) =
|e|
ε0

[ρn(~r)− ρe(~r)]. (2.8)

Here, ρn and ρe are the charge densities of the nucleus and electrons respectively.

So the atomic scattering amplitude for electrons, fe(~q) is simply the Fourier

transform of the atomic potential. The interaction strength for electrons used

in Equation 2.7 is µ = 2mee
h2

. The scattering amplitude is often assumed to be

isotropic fe(~q) = fe(q) and has been calculated and tabulated for most elements

in the International Tables for Crystallography vol. C [53]. The units of fe(~q) as

it appears in Equation 2.7 are in volts times cubed angstroms(VÅ3), however the

values presented in tables are often in angstroms (Å). This discrepancy is due to

a ‘historical accident’ in the early derivations of the Born approximation. The

conversion factor to go from the tabled scattering amplitudes in angstroms to the

ones used here, is σ/λ = 2πm0eγ/h
2 which may include a relativistic correction

term γ =
√

1 + h2/m2
0c

2λ2. Alternatively, one can use the Mott formula which

relates the electron and x-ray scattering amplitudes,

fe(q) =
|e|(Z − fx(q))

4π2ε0q2
. (2.9)

Here, Z is the atomic number and fx(q) is the x-ray scattering amplitude. X-rays

scatter off of the electron charge density only so fx(q) is easier to calculate than

fe(q). Also, due to the popularity of x-ray scattering in many fields, tables of

fx(q) are more detailed and more easily available. So it is often better to use the

equation 2.9 instead of looking up fe(q) directly.
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Typical electron scattering energies range from 100-400 keV [50]. A convenient

formula for the wavelength of a relativistic electron beam relative as a function of

accelerating voltage, E0 (in volts) is given here:

λ =

[
12.2643√

E0 + (0.97845× 10−6)E2
0

]
Å. (2.10)

2.4 Scattering from a crystal

The previous section describes the scattering of a single electron from a

solitary atom. In order to extend this to an electron beam scattering from a

crystal, a few assumptions must be made. First, the electron beam is assumed

to be monochromatic, and thus described by a single value for k0. Second, the

electrons that comprise the beam do not interact, i.e. the scattered wave functions

of all N electrons in the beam are identical can simply be added together, ΨN(~q) =

NΨ(~q).

The scattering amplitude of the crystal is simply the sum of the potentials

of every atom in the lattice. In order to take into account lattice vibrations,

the position of each atom is written to include atomic displacements, ~ratom =

~Rm + ~rs + ~um,s where Rm is a lattice vector, rs is the equilibrium position of the

atom in the unit cell and ~um,s is the displacement as defined in Section 1.2. Here, s

indexes the n atoms in the unit cell and m indexes the number of unit cells in the

crystal, M . Then the observed scattered intensity I(~q) = N 〈|Ψs(~q)|2〉 at scattering

vector ~q, is given by a time-averaged probability density [51],
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I(~q) = N

〈∣∣∣∣∣∑
m,s

fs(q)e
i~q·(~Rm+~rs+~um,s)

∣∣∣∣∣
2〉

= N
∑

m,m′,s,s′

fs(q)fs′(q)e
i~q·(~Rm,m′+~rs,s′ )

〈
ei~q·(~um,s−~um′,s′ )

〉
(2.11)

Here, ~Rm,m′ = ~Rm − ~Rm′ and ~rs,s′ = ~rs − ~rs′ , for short. To further simplify equation

2.11, the identity 〈eix〉 = e−〈x
2〉
/

2 is used. This identity holds if x is small and

has equal probability of being positive or negative, which is true for the atomic

displacement, ~um,s. The proof of this step can be found in Warren’s book [19].

Continuing on, equation 2.11 becomes,

I(~q) = N
∑

m,m′,s,s′

fs(q)fs′(q)e
i~q·(~Rm,m′+~rs,s′ )e−

1
2〈[~q·(~um,s−~um′,s′ )]

2〉 (2.12)

In order to evaluate the exponent, 1
2
〈[~q · (~um,s − ~um′,s′)]

2〉, we write the atomic

displacements as a superposition of all lattice vibration modes.

~um,s = Re

 1

µs

∑
~k,j

aj,~kêj,s,~ke
i~k·~Rm−iωj,~k

t+iφ
j,~k

 (2.13)

Where aj,~k is the mode amplitude coefficient, ωj,~k and êj,s,~k are the mode frequency

and polarization for unit cell atom s as defined in equation 1.5, µs is the mass of

atom s and φj,~k is a phase offset. When evaluating the square in equation 2.12, the

time averaged cross terms will cancel out leaving,
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1

2

〈
[~q · (~um,s − ~um′,s′)]

2
〉

= Ms +Ms′ −
∑
j,~k

|aj,~k|2

2
√
µsµs′

(~q · êj,s,~k)(~q · êj,s′,~k)e
i~k·~Rm,m′ , (2.14)

where the Debye-Waller factor is defined as,

Ms =
1

4µs

∑
j,~k

|aj,~k|
2|~q · êj,s,~k|

2. (2.15)

The square amplitudes, |aj,~k|2, are related to the ensemble averaged quantum

number for phonon occupancy, nj,~k. To derive this relation, consider the mean

kinetic energy of the system,

〈KE〉 =
1

2

∑
m,s

µs

〈
~̇u2
m,s

〉
=
M

4

∑
j,~k

|aj,~k|
2ω2

j,~k
(2.16)

Equation 2.16 will correspond with the kinetic energy of a quantum harmonic

oscillator,

〈KE〉 =
1

2

∑
j,~k

h̄ωj,~k

(
nj,~k +

1

2

)
, (2.17)

By combining equations 2.16 and 2.17 the squared amplitudes can be written as a

function of phonon occupancy and frequency,
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|aj,~k|
2 =

h̄

Mωj,~k

(
nj,~k +

1

2

)
(2.18)

Finally, the equation for total scattered intensity (2.12) can be further simplified

using 2.13 and 2.18. From here the notation will be changed for ease and clarity.

First, Rm can be set to zero thanks to translational symmetry and the index

m′ will be renamed to m. The full scattered intensity can now be written as a

function of the individual phonon occupancies,

I(~q) = Ie
∑
m,s,s′

fs(q)fs′(q)e
−Ms−Ms′e−i~q·(

~Rm+~rs,s′ )eFm,s,s′ (~q), (2.19)

where Ie = MN and Fm,s,s′(~q) is shorthand for the function,

Fm,s,s′(~q) =
h̄

2M
√
µsµ′s

∑
j,~k

nj,~k + 1
2

ωj,~k
(~q · êj,s,~k)(~q · êj,s′,~k)e

i~k·~Rm (2.20)

This equation is possible to calculate numerically, although it is computationally

costly. To further simplify the calculation, equation 2.19 can be expanded around

Fm,s,s′(~q) via the Taylor series of eFm,s,s′ (~q),

I(~q) = I0(~q) + I1(~q) + I2(~q) + . . .

I0(~q) = MIe
∑
m,s,s′

fs(q)fs′(q)e
−Ms−Ms′e−i~q·(

~Rm+~rs,s′ ) (2.21)

I1(~q) = MIe
∑
m,s,s′

fs(q)fs′(q)e
−Ms−Ms′e−i~q·(

~Rm+~rs,s′ )Fm,s,s′(~q) (2.22)

I2(~q) = MIe
∑
m,s,s′

fs(q)fs′(q)e
−Ms−Ms′e−i~q·(

~Rm+~rs,s′ )Fm,s,s′(~q)
2/2 (2.23)
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This expansion divides the scattering contributions into elastic or Bragg

scattering (I0(~q)) and diffuse scattering (I1(~q) + I2(~q) + . . .).

2.5 Structure factors

The elastic scattering term I0(~q) contains only one factor that depends on

the unit cell index, so it can be evaluated independently using equation 1.2,∑M
m=1 e

−i~q·~Rm = M
∑M

l=1 δ(~q + ~Hl). This factor represents the effect of the crystal

periodicity on the scattering geometry, which localizes the elastic scattering at the

reciprocal lattice points, ~Hl, satisfying what is known as the Laue condition. In

order to evaluate this sum, consider the set of all scattering vectors ~q = ~k − ~k0,

which represent the direction of the scattered beam in reciprocal space. By

applying equation 1.2, reindexing the sum over l such that − ~Hl = ~Hl′ and

regrouping the double sum over s and s’ into the square, Equation 2.21 can be

written in its final form,

I0(~q) = MIe|F0(~q)|2
[∑

l′

δ(~q − ~Hl′)

]
(2.24)

In practice the Bragg peaks that are visible in a diffraction pattern will be only

those that intersect with the so called Ewald sphere, which is a visualization of the

Laue condition shown in figure 2–2. The intensity of each peak is weighted by the

geometric structure factor,

F0(~q) =
∑
s

e−Msfse
−i~q·~rs (2.25)
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which, contains three dynamic multiplicative terms: the Debye-Waller factor, e−Ms ,

the atomic form factor, fs and a geometric phase factor, e−i~q·~rs . As stated previ-

ously, fs is calculated from the scattering potential of a single atom (the atomic

electrostatic potential for electrons or electron density for x-rays) where e−i~q·~rs

depends only on the atomic arrangement of the unit cell. For electron diffraction,

the two latter terms, along with the Bragg peak positions, encode the full atomic

and electronic structure of the lattice. However, the lattice configuration may not

be easily solved because the complex phase of F0 is lost by the modulus in Eq.

2.24. This is the so called ’phase problem’ of crystallography. This problem may

be overcome by one of many modern methodologies depending on the nature of

the diffraction experiment and the sample [54]. Measuring I0(~q) can also reveal

thermal behaviour of the lattice. The Debye-Waller factor, Ms, is proportional

to the mean square amplitude of atomic displacements and thus measurements

of peak intensity dynamics reveal changes in overall lattice excitation [13]. No-

tably, measurements of I0(~q) are only indirect measures of phonon behaviour,

and cannot be used to track phonon dynamics with energy, momentum and time

resolution. However, if a diffractometer has sufficient signal-to-noise to resolve

optically induced changes to the diffuse scattering between Bragg peaks, I1(~q),

such measurements are possible.

The full expression of the diffuse intensity I1(~q) is given by,
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Figure 2–2: Visualization of the Laue condition for elastic scattering. If the Ewald
sphere, shown as the blue circle, intersects with a reciprocal lattice point (black

dots), a Bragg peak may appear at the scattering vector, ~k − ~k0 = ~q = ~H, as long
as the geometric structure factor, F0(~q), is not zero. The Ewald sphere is much
flatter (low curvature) for short wavelength electrons compared to x-rays. There-
fore more Bragg peaks corresponding to a single plane of reciprocal lattice vectors
will be visible in a single diffraction pattern.

I1(~q) =
h̄Ie
2

∑
m,s,s′

∑
j,~k

fs(q)fs′(q)√
µsµ′s

e−Ms−Ms′
nj,~k + 1

2

ωj,~k
(~q ·êj,s,~k)(~q ·êj,s′,~k)e

−i~q·~rs,s′e−i(~q−
~k)·~Rm .

(2.26)

Again, by using identity 1.2,
∑M

m=1 e
−i(~q−~k)·~Rm = M

∑M
l=1 δ(

~k − (~q + ~Hl)), then

reindexing the sum over l such that − ~Hl = ~Hl′ and regrouping the double sum

over s and s’ into the square,
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I1(~q) = Ie
∑
j,l′

(nj,~q− ~Hl′
+ 1

2
)

ωj,~q− ~Hl′

∣∣∣∣∣∑
s

e−Ms
fs(q)√
µs

(~q · êj,s,~q− ~Hl′
)e−i~q·~rs

∣∣∣∣∣
2

. (2.27)

Here the periodicity of the polarization vectors, êj,s′,~q = êj,s′,~q+ ~Hl
, reduces the sum

over l′ to M identical terms dependent on the reduced wavevector of ~q defined as

~k = ~q − ~H. Here, H is the nearest reciprocal lattice vector to ~q (Figure 2–3(a))

therefore ~k is always found in the first BZ of the reciprocal lattice. The expression

for the diffuse scattering intensity at wavevector ~q is written in its final form,

I1(~q) = MIe
∑
j

(nj,~k + 1
2
)

ωj,~k
|F1j(~q)|2 , (2.28)

with the one-phonon structure factor is defined as:

F1j(~q) =
∑
s

e−Ms
fs(q)√
µs

(~q · êj,s,~k)e
−i~q·~rs . (2.29)

2.6 Application and analysis

These diffuse scattering equations, 2.28 and 2.29, have previously been

applied to extract phonon dispersion relations from thermal diffuse scattering

data [3, 51, 55, 56]. Typically, these methods assume a lattice temperature

(nj,~k is known) and calculate or fit for ωj,~k using the measured diffuse intensity.

This is an appropriate approach for systems at equilibrium. For time resolved

experiments, the goal is rather different; to determine the changes in nj,~k and ωj,~k

following optical excitation. This section will describe a method, developed by the

author, for extracting nj,~k as a function of time from ultrafast diffuse scattering
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measurements using predetermined values for the phonon dispersion relations and

polarizations.

For every reduced wavevector, there exists an infinite set of scattering vectors,

~q, that all share the same ~k due to translational and point group symmetries

of the reciprocal lattice. Therefore, one can construct a system of equations

using Eq. 2.28 for multiple equivalent scattering vectors, and each equation will

be a linear combination of the 3n phonon mode occupancies, nj,~k. This system

can be expressed as a matrix equation X~n = ~i, where ~n is an vector of length

3n whose entries are nj,~k, and ~i is a vector containing the diffuse scattering

intensity, I1(~q), at 3n equivalent wavevectors. As long as the matrix X, with

entries xj,~q = F1j(~q)/ωj,~k. are known, the solution can be found. So the critical

component that translates diffuse scattering intensity to phonon occupancies is

the matrix of coefficients, xj,~q, which means the phonon frequencies and the one

phonon structure factors must be known.

The phonon dispersions for a wide variety materials are available in the

literature, including many that use advanced methods to account for anomalous

effects such as Kohn anomalies from electron-phonon interactions [47]. The one

phonon structure factors, however, are more difficult to determine, primarily due

to the lack of quantitative reporting on phonon polarizations. These are required

to calculate the dot product ~q · êj,s,~k and the Debye-Waller factor (Equation 2.15).

So the methods for calculating phonon frequencies and polarizations described in

Section 1.3 are needed more often than not.
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Another barrier to finding a complete solution is acquiring sufficient signal at

enough scattering vectors. The diffuse scattering signal is ∼ 4 orders of magnitude

weaker than the Bragg peak signal. Moreover, measurements must be made at at

least 3n, inequivalent (by symmetry) scattering vectors which may cover a large

area of reciprocal space. For materials with small unit cells the vectors will be far

apart, requiring a large detection area, and for materials with large unit cells, the

number of unit cell atoms will be large, requiring more scattering vectors. Also,

measurements at the edges of the detector may suffer form poor signal-to-noise and

measurements near the center will be compromised by the center beam.

Because of these limitations, the full solution for the time dependent phonon

occupancies is not demonstrated in this thesis. But this is often not necessary

or even desirable. The focus and interest of a study is usually on a much smaller

sub-set of phonons. Fortunately, a partial solution is possible in many systems by

measuring only a single scattering vector. Consider Equation 2.29, each scattering

vector will have 3n terms in the sum. If the one phonon structure factors at that

scattering vector are small for all modes except one, call it j0, the occupancy of

that mode will be directly proportional to the diffuse scattered intensity.

I1(~q)
F1j(~q)=0−−−−−→
j 6=j0

NIe
(nj0,~k(τ) + 1

2
)

ωj0,~k
|F1j0(~q)|

nj0,~k(τ) = I1(~q)
ωj0,~k

NIe|F1j0(~q)|
− 1

2
(2.30)

The identification of these scattering vectors enables single mode population

dynamics to be measured individually without an energy resolved instrument and
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without a full solution to the linear system. In order to find these wave vectors,

results from analytical or numerical determinations of the structure factors can

be presented in the form of reciprocal space maps. An example of these maps,

calculated for the TA mode using the force constants of graphite, are shown in

Figure 2–3(b), with the reciprocal lattice points (Bragg peaks) marked in white.

These maps chart the mode activity as a function of position, similar to the way

selection rules work for Raman and infrared spectroscopy. At locations where the

one phonon structure factor is zero (blue in the figure), the associated mode is

considered inactive. Unlike symmetry-based selection rules for Raman and infrared

spectroscopy, these rules are not binary. This is advantageous because even if the

one phonon structure factor of a mode is not exactly zero, it can be insignificant

if it is much smaller than the structure factors of the other modes. These maps

can be directly compared to diffuse scattering data that cover the same range

of scattering vectors. Pump-probe diffraction patterns are often presented as

intensity differentials so if the pattern ‘lines up’ with the structure factor map

of a particular mode, then that mode’s population has changed according to the

measured differential intensity.

2.7 Diffuse scattering selection rules

Determination of mode activity simplifies considerably in the long wavelength

limit (near zone-center) and can be fully generalized to apply to any ordered

material. The following derivations for generalized diffuse scattering selection rules

were developed and compiled by the author. Due to the inner product in Equation

2.29, |F1j(~q)| is maximized when ~q = ~H + ~k is parallel to the polarization vectors
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Figure 2–3: Diffuse scattering geometry. (a) Vector diagram of the reduced wave

vector, ~k = ~q − ~H, overlaying a diffraction pattern of graphite. Select Bragg peaks
are labelled by Miller indices, using the primitive reciprocal lattice vectors as a
basis. (b) The structure factor map for the TA mode of graphite, the white dots
indicate the locations of Bragg peaks (Γ points) and the hexagons show the BZ
edges. The first diffuse scattering rule is demonstrated by the bowtie shaped fea-
ture parallel to the [110] lattice vector. The phonon polarizations that determine
the third diffuse scattering rule are shown constructively and destructively interfer-
ing at ~q1 near a bright Bragg peak, [110], and at ~q2 near a weak Bragg peak, [200],
respectively.

(~q · ~̂ej,s,~k) = |~q|. Consider a transverse mode in the long wavelength limit, ~̂eT,s,~k ⊥ ~k.

Then (~q·~̂ej,s,~k) is maximized when ~H ‖ ~̂eT,s,~k, which is biconditional on ~H ⊥ ~k. This

can be seen in the transverse acoustic (TA) mode structure factor map shown in

Figure 2–3(b), where the features are oriented perpendicular to ~H. A second rule

is derived using a similar argument applied to longitudinal modes. A third rule

can be derived by considering the geometric phase factor, e−i~q·~rs , a complex phase

found in both structure factors, F0 and F1j. F0 has no other complex factor, so any

phase difference between them can only be due to the other complex contribution
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found in F1j, the phonon polarization vector, ~̂ej,s,~k. If the polarizations for every

atom are in phase (i.e. long wavelength acoustic modes), this contribution factors

out of the sum. Consequently, extinctions, reductions or enhancements of intensity

in a Bragg peak due to e−i~q·~rs also affect the phonon scattering from LA and TA

modes nearby. A schematic of the vectorial contributions to diffuse scattering of

graphite is shown in Figure 2–3(b).

In summary, the three diffuse scattering selection rules for long wavelength

modes are:

1. Transverse modes are active perpendicular to the radial direction.

2. Longitudinal modes are active along the radial direction.

3. Acoustic modes are active near the brightest Bragg peaks of a given order.

These rules can be combined to conclude that acoustic modes will be easiest to

measure since they will always have areas where they are strongly active near

bright Bragg peaks and they will be easily differentiated because they scatter in

orthogonal directions.

Mode activity can also be determined qualitatively through context, which

can be crucial to understand time resolved scattering signals. Take for example, a

material in which a particular phonon mode couples very strongly to the electron

system. If time resolved diffuse scattering is observed immediately after electronic

excitation, the increases in scattering that happen on the shortest time scales at

the corresponding scattering vectors can be attributed to the strongly coupled

mode.
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The proposed methodology is to apply these results in order to extract

differential phonon population spectra from pump-probe ultrafast electron diffuse

scattering measurements. The first step is to determine mode activity by mapping

mode activity through structure factor maps, weighted dispersion curves, diffuse

scattering selection rules and a priori knowledge of the scattering material. Then,

at the scattering vectors with single mode activity, quantitatively determine the

differential phonon population for each pump-probe time delay using Equation

2.30.
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CHAPTER 3
Experimental methods

3.1 Pump probe techniques

When considering the experimental possibilities of studying structural and

excitation dynamics, one must consider the temporal resolution required to

observe any changes in real time. For example, an electron in a superposition

of two stationary states will oscillate with a period of T = 2πh̄
/

∆E. Typical

electronic energy spacings range from 0.1 - 1000 eV which translates to oscillatory

periods 0.001 - 10 fs. This is much faster than the typical vibrational periods

in a crystal lattice, which range from 10 - 1000 fs (1 - 100 meV). To capture a

‘movie’ of how these excitations evolve requires an instrument that can execute

a sequence of snapshots each illuminating the sample for an ultrashort interval.

No mechanical shutter can be quick enough to capture ultrafast events, but the

effect of minimizing the duration of illumination can be achieved by shortening

the radiation pulse itself. Femtosecond laser technology delivers this capability,

producing laser pulses around 30 fs in duration opening the door for time resolved

experiments that can view of structural and excitation dynamics as they occur

on their natural timescales. Moreover, the large energy bandwidth of ultrashort

pulses, guaranteed by the uncertainty principle (30 fs ∼ 10 eV), is large enough to

bridge the separation between electronic energy levels, and therefore femtosecond

laser pulses can drive electronic excitations as well as observe the subsequent
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dynamics. These properties enable a family of techniques called pump-probe

experiments.

A simplified example of a pump-probe geometry is shown in Figure 1–2.

Here the pump pulse arrives at the sample to initiate the process which is the

subject of interest. After a fixed time delay the probe pulse arrives and an aspect

of its character, such as its transverse intensity distribution or spectral content,

is modulated by the average configuration of the sample before travelling to the

detector, either by transmission or reflection. The optical techniques that can

implement a pump-probe scheme include visible/IR/Raman spectroscopy [57–61],

THz spectroscopy [62, 63], ARPES [64, 65], and x-ray/electron diffraction[27–29].

This chapter will cover the detailed configuration of the pump-probe electron

diffractometer built and operated by the Siwick Research Group at McGill

University which has the exceptional electron pulse brightness and time resolution

required to execute UEDS measurements.

3.2 Ultrafast electron diffraction

Ultrafast electron diffraction techniques have been steadily improving since

they were first used in 1984 to study the laser-induced melting of thin-film

aluminum, measuring a transient signature on the 20-100 ps time scale [66].

The ultrashort electron pulses in this initial work were measured to be 100 ps

long, much longer than the 15 ps laser pulses used in their generation via the

photoelectric effect. An elongation of the electron pulse deteriorates the time

resolution directly and is a fundamental problem for ultrafast electron microscopy

techniques. The phenomenon is attributed to space-charge effects; the repulsive
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Coulomb forces that act in the longitudinal direction along which the electrons are

most densely packed. Although the application of femtosecond laser pulses would

improve the time resolution to 1 ps [67], further improvements required methods

that avoid or directly counteract space-charge effects.

The detailed characteristics of the elongation phenomenon was successfully

modelled by Siwick et. al., using mean field theory and N-body simulations to re-

veal the phase space behaviour of ultrashort electron pulses as they propagate [68].

The results show that the pulses become chirped, developing a linear relationship

between electron velocity and longitudinal position (Figure 3–1). This correlation

develops on the nanosecond time scale, and for electrons travelling at half the

speed of light (100 keV electrons) this corresponds to a propagation distance of 15

cm. From this understanding, several solutions to the space-charge problem were

developed. The simplest scheme, which is still commonly used in modern UED

setups, is to ensure that the total electron path length is as short as possible to

minimize the time that space-charge effects can occur [69]. Another solution is

to use electron pulses with electron energies in the MeV range as high electron

velocities near the speed of light will have a reduced effect from longitudinal broad-

ening [70]. Relativistic UED instruments are being developed by several research

groups [71, 72], despite their large scale and high cost compared to non-relativistic

approaches.

Single-electron, compact and relativistic UED setups try to reduce space-

charge broadening by designing instruments that minimize the space-charge effect.

A third approach attacks the problem more directly by actively compressing the
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Sample

Figure 3–1: Reversal of the space charge effect on electron pulses using a radio
frequency cavity operating in a transverse magnetic mode. When synchronized
correctly, the cavity fields (shown with blue arrows) invert the position-momentum
(z-pz) distribution of the electron pulse. After the RF cavity interaction, the elec-
tron pulse ballistically compresses itself during propagation.

electron pulse. If the linear position momentum relationship shown in Figure 3–1

can be reversed, the pulse will ballistically compress as it continues to propagate.

This approach has been applied by using a passive electrostatic mirror, called

a reflectron [73], or by exposing the pulse to an electric field [34]. The latter

technique, which is achieved by using a radio-frequency (RF) compression cavity

(Figure 3–1), is used for the UEDS experiments discussed in the following two

chapters.

The instrumental layout of the ultrafast electron diffractometer is shown in

Figure 3–2. Broadly stated, the technique uses the pulsed output of a femtosecond
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Figure 3–2: Schematic diagram of the UED instrument. The laser system outputs
3 mJ, 35fs infrared pulses which are split into two separate paths. The first path
is followed by the pump pulse and is variably delayed by a retroreflector mounted
on a motorized linear stage before arriving at the specimen. The second path
provides the electron probe pulse by first frequency tripling to a UV wavelength
by non-linear optics before photoexciting the copper cathode to emit electrons.
The electron beam is accelerated by a 95 kV DC field and travels through the RF
compression cavity (which is synchronized to the oscillator output), steered and
focused by magnetic solenoid lenses, towards the specimen. Last, the diffraction
pattern is detected at a CCD camera which can capture the total scattering from
many probe pulses in a single exposure.

laser for both pump and probe pulses, separating them with a beamsplitter. The

pump pulse follows a path with an adjustable length to manipulate the pump-

probe delay, and is steered onto the sample to initiate the phenomenon of interest.

The electron probe pulse is generated using the photoelectric effect, by steering

one of the ultrashort pulses onto a copper cathode suspended in a high-voltage

DC electric field. The electrons are accelerated by the field and they are steered

and focused with magnetic solenoid lenses through the RF compression cavity,

the sample and onto a CCD camera (Gatan UltraScan 1000). The details of this
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configuration and how it was optimized for UEDS will be described in detail in the

following sections.

3.3 Optical Setup and pulse generation

The ultrashort laser pulses are generated by a Newport Spitfire Pro XP

CPA laser amplification system. The pre-amplified pulses are generated by a

Newport Tsunami, a titanium sapphire passively mode-locked laser oscillator

which produces 5 nJ, ∼100 fs pulses with a repetition rate of ∼75 MHz. The

repetition rate of the oscillator can be modulated through the cavity length by

a motorized linear stage. The oscillator pulse train seeds the Spitfire Pro XP

Ti:sapph CPA regenerative amplifier which outputs 3 mJ, 35 fs pulses at a rate

of 1 kHz which and can be periodically blocked with minimal degradation in

pulse quality in order to achieve lower repetition rates. The final output pulse

bandwidth is ∼40 nm centred at 800 nm. The output pulses are split with a 50/50

beamsplitter to form the pump and probe pulses.

The pump line consists of a variable ND (neutral density) filter to control

pump energy, an optical delay stage and a focusing lens mounted to a vernier

micrometer stage. The components of the optical delay setup are a gold coated

retro-reflector mounted on a linear delay stage with a range of 20 cm, providing

a variable pump-probe delay of ∼1.3 ns and a minimum step size of ∼1 µm,

equivalent to a minimum temporal step size of ∼5 fs. The pump pulse is then

attenuated by the ND filter and focused to a point immediately behind the sample

by modulating the lens’ micrometer stage. In this way the radius and energy of the

excitation pulse can be controlled to achieve the desired pump fluence.
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The remaining half of the beam power is used to generate the electron

pulses via the photoelectric effect. Ultraviolet pulses are generated from the 800

nm pulse using a third harmonic generation scheme. First the pulses are sent

through a barium borate (BBO) nonlinear crystal which converts some of the

800 nm light into 400 nm light. The 400 nm pulses are produced through type I

second harmonic generation and are polarized orthogonal to the 800 nm pulses

[74]. The difference in group velocity of the 800 nm and 400 nm light causes the

pulses temporally separate as they travel through the BBO crystal. This relative

delay is removed using a birefringent calcite crystal through which the 800 nm

light has a lower group velocity than the 400 nm light reversing the temporal

separation of the pulses. A second BBO crystal is then used to induce type II sum

frequency generation and 266 nm pulses polarized orthogonal to the 800 nm pulses

are produced. The three overlapping pulses are then separated using a prism

compressor configuration where the 800 nm and 400 nm pulses are blocked while

the UV pulses pass through a focusing lens before entering the electron generation

and acceleration chamber striking the centre of a copper target (photocathode)

from which the probe electrons are ejected and accelerated by a DC (constant)

electric field.

The photocathode is mounted in a cylindrical high vacuum chamber with a

pressure rating of < 10−7 Torr. The vacuum is achieved using a turbo pump/scroll

pump combination. The high voltage power supply is a Heinzinger PNChp

which is connected to the photocathode by a commercially available high voltage

feedthrough, rated for 100 kV. The power supply produces voltages as high as 150
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kV, with a voltage stability of 0.001%, or 1 V, at 100 kV. Because of this high

level of stability, the an arrival time of the electron pulse at the sample does not

fluctuate more than 10 fs. Arrival time jitter directly disturbs the time resolution

of the instrument by making the pump-probe delay inconsistent, so this feature

of the HV supply is imperative. After acceleration by the DC field, the electrons

travel down the high vacuum optical line at ∼ 90 kV. The beam direction and

transverse beam properties are modulated using a current controlled wire solenoid

functioning as a magnetic lens. The current and position of the lens are tuned to

collimate the beam through the RF compression cavity.

3.4 RF cavity and synchronization

As stated previously, the concept of electron pulse compression using a time

dependent electric field results from the observation that electron pulses develop

a linear position-momentum correlation as a result of space-charge expansion,

shown in Figure 3–1. In order to easily conceptualize the function of a compression

cavity, consider a toy model in the shape of a ‘pillbox’, a cylindrical shape with

flat conducting faces normal to the electron beam axis. The electromagnetic fields

that solve Maxwell’s equations in this geometry are oscillating modes with their

electric fields pointed in the longitudinal direction, resulting in the the longitudinal

magnetic field being zero everywhere in the cavity. The lowest of these modes,

TM010, has no azimuthal and longitudinal periodicity and one node in the radial

direction at the cavity wall. Since this mode offers purely longitudinal electric

fields, it is commonly used in RF compression cavities [75].
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Figure 3–1 shows a schematic of the approximate fields needed to reverse the

phase space character of the pulse so that instead of stretching it compresses as

it propagates. In order to achieve this, the cavity is driven by a RF power source

which results in a electric field oscillating at a radio frequency. An electron pulse

passing through the cavity will be compressed if the resonant period is long with

respect to the electron pulse length and the arrival of the pulse in the cavity must

coincide with the zero crossing of the oscillating field so that the pulse experiences

a linear field. Figure 3–1 shows the time line of the phase space behaviour of the

pulse. Initially, the electron pulse is short and the electron velocities uncorrelated.

After acceleration and a sufficient propagation time, the electrons have a linear

position-momentum correlation. The electric field of the cavity accelerates the

leading electrons in the longitudinal direction and as the pulse transits the cavity,

the field switches direction linearly, accelerating the trailing electrons in the

positive z direction. The pulse then compresses ballistically as it propagates

toward the temporal focus, where the sample is positioned. In practice, a more

efficient cavity design is used with a resonant frequency of 2.99 GHz. The cavity

has a lobed design, symmetrical around the electron beam axis [34, 76]. The

field strengths in the cavity reach 10 MV/m at the centre of the cavity. The

temperature dependence of the resonance frequency is linear, approximately 0.5

MHz/◦C, and so a high performance recirculating chiller is used.

As the pulse travels through the cavity the compression field is effectively

linear, thus small errors in the phase of the cavity do not affect the pulse duration

substantially. However, if the pulse does not arrive exactly at the zero crossing,
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a net acceleration/deceleration of the pulses will occur which will change the

pulse arrival time at the sample. Fluctuations in the temporal synchronization

of the cavity with the electron pulse results in a lower effective time resolution

for the measurements which is a critical problem. To achieve a time resolution

of < 100 fs, phase stability of the RF cavity must be less than ∼1 mrad [34].

The synchronization scheme, uses the direct generation of microwaves from the

harmonics of the oscillator repetition rate and active phase stabilization. This

method was implemented by Martin Otto and is detailed in reference [36]. The

RF cavity approach offers probe pulses with very high brightness (106 electrons

per pulse) allowing small changes in diffuse scattering to be measured reliably.

This feature, which does not detract from the excellent time resolution (∼ 100

fs) achieved through RF compression and direct synchronization, makes this

instrument capable of capturing meaningful UEDS data. However, in order to

measure phonon modes at any wavevector, the exact position and angle of the

sample must be precisely controlled so that different planes of scattering space

can be imaged. The following upgrades to the instrument were designed with this

requirement in mind.

3.5 Sample chamber

Originally, the UED sample was mounted in a large cubic vacuum chamber

and was manipulated with automated linear stages. Several optics were also placed

in the chamber to steer the pump beam onto the target. A major problem with

this design was that any angular adjustment of the sample position or pump

beam steering had to be done at atmospheric pressure, requiring frequent long
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pump-down times as well as difficult and unreliable beam and sample alignment.

Moreover, a complete UEDS analysis requires measuring the scattered intensity

from several planes in reciprocal space to observe the phonon contributions for

all wavevectors ~k. Therefore accurate and reliable angular control of the sample

is imperative for a complete UEDS analysis. A new compact chamber, designed

by the author with support from several technicians at the McGill department of

physics, was created to solve these problems.

Tilt control

Vertical control

Rotation control

Tilt pusher

Horizontal control

Turret support

Pump beam out

Turret/Sample

Pump beam in

CCD

Beam stop control

Turbo Pump

Figure 3–3: Image and drawing of the sample chamber with the various control
features and important components labelled. The electron beam direction is shown
in blue.

A schematic of the chamber is shown in Figure 3–3. The sample is held in a

copper frame at the centre of a 2-3/4” spherical cube. The frame is mounted to a
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Figure 3–4: Picture and sectioned drawing of the spring loaded wedge mechanism
for angluar control about the transverse axis (tilt). Linear motion of the wedge
controlled by the screw action stage at the lowest end of the chamber modulates
the angle with up to 35◦ of range.

‘turret’ anchored to a long, 1” diameter supporting tube which can be manipulated

with a rotational feed-through allowing full 360◦ manual control around the

vertical axis. Linear motion is achieved using a 3-way linear micrometer stage

with 0.5” of horizontal range and 2” of vertical range, allowing the sample frame

to be completely removed from the chamber without breaking vacuum in order

to diagnose and optimize the electron beam quality. For angular control about

the transverse axis (tilt), a wedge on a vertical linear rail is used, shown in Figure

3–4. A 1/4” rod anchored to a screw action vertical stage with a 1/4” range is fed

through the rotational feed-through and the 1” diameter supporting tube. At the

uppermost tip of the rod, a ∼45◦ wedge is coupled to the copper frame which is

spring loaded to stay firmly braced to the wedge. Vertical movement of the wedge

corresponds to an angular (tilt) adjustment of the wedge providing around ∼35◦ of

range. The fine control provided by the sample holder turret allows the orientation
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diffraction plane to be precisely set within 0.5◦ effectively boosting elastic and

diffuse scattering signals by minimizing any misalignment of the Ewald sphere.

Figure 3–5: Top down sectioned view of the sample chamber. The electron beam-
line is shown in blue and the laser beamline is shown in red. the electron beam
is steered through the sample with a magnetic solenoid lens. The pump beam is
steered into the chamber using exterior optics and focused onto a point a few mm
left of the sample depending on the desired beam size and fluence. The outgoing
laser beam is measured by a photodiode as an alignment diagnostic tool. The
mirrors shown in the diagram (7mm dia., silver) are fixed and mounted inside the
vacuum chamber.

A top down view of the chamber showing the pump and probe beam lines are

shown in Figure 3–5. The ability to steer the pump pulse out of the chamber after

photoexcitation is imperative for assuring correct alignment of the pump beam

onto the sample. The outgoing beam is measured by a photodiode so that the

intensity of the beam passing through the sample can be optimized as a function

of the linear position of the turret. The turret position at which the signal on
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the photodiode is maximum guarantees a uniform and reliable illumination of the

sample by the pump beam. The alignment process must be done in situ, when

the sample is under vacuum, because there is a non-negligible change in beam

direction due to refraction as the beam transitions from atmosphere to vacuum.

Aligning the beam exactly normal to the sample chamber window also solves this

issue, but in practice it is often impossible to achieve perfect alignment with both

the window and sample. The improvements to the UED instrument provided by

the upgraded sample chamber boosts the reliability of individual experiments

via precise and reproducible pump-probe alignment and increases the quality of

UED data through fine control of the incident angle of the electron beam, enabling

scattering measurements of multiple planes of reciprocal space.
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CHAPTER 4
Phonon couplings in Graphite

Graphene and graphite, the 2D and layered allotropes of carbon, are

quintessential low dimensional materials and their properties form a basis for

our understanding of the rest of carbon’s various structures [77]. Graphene is an

atomic monolayer in the form of a planar honeycomb lattice and is the thinest

material known to material science. Due to its 2D nature it exhibits exotic and

unique electronic and structural properties. During electron transport, charge

carriers move with close-to-zero effective mass and have extremely long mean free

paths (10−6 m), allowing for extremely high electrical and thermal conductivities.

It is also the strongest and most rigid known material, withstanding 20% elastic

strain and extremely high current densities [77–80]. These unique properties are

attractive for many applications including high-speed electronics, single-molecule

chemical sensors, photonics and optoelectronics [78, 81].

When graphene sheets are vertically stacked, as shown in Figure 4–1, they

are held together by relatively weak Van der Walls interaction produced by a

delocalized π-orbital [82], forming graphite. Graphite’s structure is strongly

anisotropic, as are its corresponding properties. The strong thermal and electrical

conductivities of graphene are inherited by graphite but only in the planar

direction. The weak inter-planar bonds allow easy lateral movement of the layers,

making graphite a good lubricant, and allowing thin graphite, or even single layer
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graphene, samples to be made through mechanical or liquid exfoliation [83, 84].

Ultrafast studies of graphite have focused on the electronic and structural response

of the material to pulsed laser illumination. Previous ultrafast electron and

x-ray diffraction studies have focused on a variety of effects, including: lattice

contraction of the interlayer bond and plasmon dynamics [85–87], the graphite-

diamond phase transition [88], strain [89] and unit cell disorder in the basal-

plane [90].

This chapter will focus on graphite’s electronic and vibrational response to

pulsed laser photoexcitation as well as the interplay between the electron and

lattice systems from the novel perspective of the dynamic phonon populations.

Graphite is an excellent material to test the UEDS methodology due to the wealth

of high-quality reliable data from other techniques available for comparison. In

particular, recent results from trARPES and TRR experiments will be compared

with the UEDS findings. The methodology for measuring phonon population

spectra across the entire BZ developed in sections 2.6 and 2.7 will be demonstrated

for the case of graphite, providing novel insights into the charge/lattice couplings

and establishing a standard point of comparison for future UEDS studies.

4.1 Structure of graphite

To facilitate the calculation of the phonon dispersion and polarizations of

graphite, the details of the atomic configuration are presented here. The graphite’s

layered structure is shown in Figure 4–1, with graphene sheets stacked in an AB

sequence. The Bravais lattice is hexagonal with lattice constants a = 2.46 Å , c =

6.71 Å and lattice vectors:
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A

B

Figure 4–1: The structure of graphite with AB stacking. a = 2.46 Å, c/2 = 3.35
Å. The solid black lines represent strong covalent bonds and the dashed lines rep-
resent Van der Walls forces.

~a1 = a [1, 0, 0] ,~a2 = a

[
−1

2
,

√
3

2
, 0

]
,~a3 = c [0, 0, 1] (4.1)

There are four carbon atoms in the unit cell. Their locations in Cartesian and

lattice coordinates are given in Table 4–1. The reciprocal lattice vectors for

graphite are (as calculated using Eq. 1.1).

~b1 =
2π

a

[
1,

1√
3
, 0

]
,~b2 =

2π

a

[
0,

2√
3
, 0

]
,~b3 =

2π

c
[0, 0, 1] (4.2)

The high symmetry points of the hexagonal BZ including Γ,M and K are shown

in Figure 1–3.

The electronic band structure for graphene near the Fermi surface is shown in

Figure 4–2. So called Dirac cones are located at the K points and oriented along
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Basis ~r1 ~r2 ~r3 ~r4

Cartesian [0, 0, 0]

[
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a√
3
, 0

] [
0, 0,
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] [
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,
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√
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]

Lattice [0, 0, 0]

[
1

3
,
2

3
, 0

] [
0, 0,

1

2

] [
1

3
,−1

3
,
1

2

]
Table 4–1: Atomic positions in graphite with Cartesian and lattice coordinates.

the H-K-H line. These cones are perfectly sharp in graphene which gives the near

‘massless’ property to the charge carriers enabling the ultrahigh carrier mobility

and fractional quantum hall effects [91]. For thin film graphite, or multiple layers

of graphene sheets, the Dirac cones become rounded at the tip removing the zero

mass property but the shape of the bands remain qualitatively similar retaining

the semi-metallic character [92].

The phonon dispersion of graphite is shown in Figure 4–3. Graphite has

12 phonon modes where graphene only has 6 but their dispersions look very

similar due to the degeneracy of the graphite vibrational energies. Each mode in

graphite has a nearly degenerate pair due to the weak coupling between planes.

For example, The TA mode is degenerate with the pseudo-acoustic TO’ mode

nearly everywhere except at zone centre. The polarizations of acoustic and pseudo-

acoustic modes, however, are always different. One mode has the A and B sheets

moving in phase and the paired mode has them moving out of phase. In practice,

this degeneracy often results in lumping the degenerate graphite modes together

and labelling them as the graphene modes. This labelling will be cautiously used

here excepting when the differences in plane polarizations are relevant, especially
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Figure 4–2: Electron band structure of graphite in the first BZ near εF showing
Dirac cones at the K points. Taken with permission from Reference [2].

for the acoustic and pseudo-acoustic transverse and longitudinal modes which will

be denoted as TA/TO’ and LA/LO’.

Sharp softening of the optical modes (Kohn anomalies) result from a screening

effect due to strong interactions with the electron system [47, 49] (Figure 4–3) as

discussed in section Section 1.5. This effect only occurs at momentum vectors ~q

when there are two electronic states ~k1 and ~k2 = ~k1 + ~q on the Fermi surface,

i.e. nesting vectors of the Fermi surface. Figure 4–4(b) shows how the Dirac

cones satisfy this condition at the K and Γ points in graphite. These modes are

labelled K-A′1 and Γ-E2g, after their location in the BZ and point group symmetry.

Other than these strongly coupled modes, electron phonon interactions in graphite
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Figure 4–3: (Top) Experimental (inelastic x-ray scattering) and calculated phonon
dispersion of the optical modes of graphite showing Kohn anomalies at the Γ and
K points. (Bottom) Full phonon dispersion of graphite calculated using density
functional theory. Figures taken with permission from References [3] and [4].

are weak on average, resulting in high carrier mobility at low current densities.

At high current densities, however, the strongly coupled modes begin to have a

deleterious effect [93, 94].

4.2 Photoexcitation dynamics

When 800 nm photons are incident on a graphite sample they excite electron-

hole pairs forming an outlying distribution of electrons high above the Fermi level
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Figure 4–4: Sketch of the in-plane electronic band structure of graphite at the
Fermi energy and close to the K point where the valence and conduction bands
slightly overlap. Arrows indicate possible direct (DOT) and indirect (IOT) optical
transitions induced by the probe pulse. (b) Brillouin zone perpendicular to the
[001] axis. Nested vectors of the Fermi surface are located around the K points.
Arrows mark possible scattering events of electrons and correspond to wave vector
changes that are confined to the vicinity of the Γ and K points. Figure taken with
permission from Reference [5].

and a corresponding peak formed by holes in the negative-energy band (Figure

4–4(a)). The photoexcitation cascade proceeds as depicted in Figure 4–5. The

high-energy carriers relax, losing energy to phonons or scattering with ambient

carriers until the distribution has thermalized [6]. This process has been shown

to occur on a time scales from 10-100 fs [5, 95, 96]. After thermalization, the

distribution of high temperature electrons cools down by the emission of phonons

to the lattice [6].
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Figure 4–5: Main stages of energy relaxation of photoexcited carriers. First the
high energy (ε = hf/2) carriers lose energy to carrier-carrier and phonon scatter-
ing. These processes lead to fast thermalization, producing a relatively long-lived
hot carrier distribution. In the second stage, electron-lattice cooling mediated by
phonons takes place over longer time scales relaxing the hot carrier distribution
back to equilibrium, T0. Figure taken with permission from Reference [6].

Time and angle resolved photoemission spectroscopy can measure the pho-

toexcitation cascade in graphene and graphite from the perspective of the non-

equilibrium electronic occupancy on the Dirac cones and the corresponding

statistical distribution of carriers in both momentum and energy space. Figure 4–6

shows trARPES spectra of graphene taken at equilibrium and different delays after

the pump pulse in both raw and differential forms using 800 nm (1.55 eV) 30 fs

femtosecond laser light for the pump [7]. An increase of the spectral intensity in

the conduction band and a corresponding decrease in the valence band are clearly

shown in the raw data (Figure 4–6(c)) and even clearer in the corresponding
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difference (Figure 4–6(f)). Slicing the trARPES images at fixed energies yields

electronic momentum distribution curves. The distributions have Lorentzian peaks

centred at the momentum value of the electron band dispersion. The area under

the this distribution can be viewed as the statistical distribution of carriers at a

particular time delay and are well described by a Fermi-Dirac function [7, 8]. The

evolution of the carrier distribution for graphite is shown in Figure 4–7. Clear

deviations from Fermi-Dirac distributions are found only at times < 100 fs [8],

which indicates the time required to establish a thermalized carrier distribution

through electron-electron interactions is ∼50 fs [8, 97]. Afterwards, the electron

temperature can be extracted from fits of the Fermi-Dirac distribution. The trace

of the electron temperature is shown in figure 4–7. The fast component of the

temperature decay (∼ 250 fs) is associated with coupling to the strongly cou-

pled optical modes at Γ and K [3, 47] and the slowest component (∼ 5ps) is a

composite timescale from optical and acoustic phonon dynamics.[5, 13].

To look at the corresponding phonon occupation dynamics, TRR studies

are able to follow the excitation of some optical phonons near zone-centre. The

time dependance of the anti-Stokes Raman intensity, which is proportional to

the population of the strongly coupled optical phonon at the Γ point, is shown

in Figure 4–8(a) and the corresponding mode temperature is shown in Figure

4–8(c) [9]. The peak shift shown in Figure 4–8(b), indicates an increase in mode

frequency that are very small, < 10 cm−1 (< 1 meV) and is associated with a

dynamic weakening of the electron-phonon coupling and associated Kohn anomaly.

The increase in phonon occupancy is a direct result of electron-phonon coupling
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(a)

(b)

(c) (d) (e)

(g)(f) (h)

Figure 4–6: (a) Energy (Ebin) and momentum (k‖) resolved photoemission inten-
sity around the Dirac cone (no pump). (b) Equilibrium high-resolution spectrum.
(Inset) Brillouin zone with measurement direction (dashed red line). (c)-(e) Spec-
tra taken at increasing time delays. (f)-(h) Change with respect to the spectrum
before the pump pulse (difference spectra). Figure taken with permission from
Reference [7].

and has a time constant of less than 300 fs, comparable to the trArpes result (250

fs) and the following slow decay into acoustic modes has a time constant of 2.2 ps.

After the hot carriers relax through exchange with the strongly coupled

optical modes, phonon-phonon decay will proceed by funnelling the excitations

into the low frequency acoustic branches. The optical phonon anharmonic decay

pathways in graphite were investigated using computational methods by Bonini

et. al. [24]. All the calculations are performed using density-functional theory and
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(a) (b)

(c)

(d)

Figure 4–7: (a-b) Electron energy distribution curves derived from trARPES data
illustrating the deviation from a thermalized electron distribution shortly after
photoexcitation. (c) Nonthermal component of the energy distribution curves as a
function of t. (d) Electron temperature transients derived from Fermi-Dirac fits to
the energy distribution curves. Figure taken with permission from Reference [8].

density-functional perturbation theory as implemented in the Pwscf package of

the Quantum-Espresso distribution. The momenutm and energy conserving

dominant pathways are shown in Figure 4–9. The orange bars indicate half the

energy of the K-A′1 and Γ-E2g modes. The dominant energy and momentum-

conserving decay pathways are indicated with colored arrows. For example, the

green arrows labeled A′1:TA-LA on the left represent the decay from the strongly

coupled A′1 mode at K to both TA and LA modes at the midpoint of the Γ-K
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Figure 4–8: TRR graphite results, showing temporal dynamics of the Γ-E2g

phonon following pump excitation. (a) Experimental anti-Stokes Raman inten-
sity, which is proportional to the phonon mode population. (b) Measured shifts of
the Γ-E2g mode frequency. (c) Temperature of the Γ-E2g phonons inferred from
the mode population in (a). Figure taken with permission from Reference [9].

line. Dotted arrows should be thought of as going in the opposite momentum

direction. The side bar (red) provides a schematic of the non-equilibrium LA/TA

phonon distribution produced through the decay of Γ-E2g and K-A′1 phonons,

predicting that most of the phonon excitations will occur at energies associated

with mid-BZ phonons. A similar calculation was made for the subsequent acoustic

anharmonic decay by Paulatto et. al. [25], using an extension of the D3 code of
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the Quantum Espresso package incorporates the DFPT 2n + 1 approach to

calculate the three-phonon scattering matrix element and therefore the anharmonic

broadening/phonon lifetimes (see Section 1.5). For purely transverse modes,

there are no allowed three phonon anharmonic decay processes due to momentum

and energy conservation laws. Moreover, for modes that are fully transverse or

longitudinal, the only allowed interband transitions are, L ↔ T + T and L ↔ L +

T [11, 12].
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Figure 4–9: Phonon dispersion of graphite with the strongly coupled optical modes
indicated. The orange bars indicate half the energy of the K-A′1 and Γ-E2g modes.
The dominant energy and momentum-conserving decay pathways are indicated
with coloured arrows. For example, the green arrows labelled A′1:TA-LA on the
left represent the decay from the strongly coupled A′1 mode at K to both TA and
LA modes at the midpoint of the Γ-K line. Dotted arrows should be thought of
as going in the opposite momentum direction. Side bar (red) provides a schematic
of the non-equilibrium LA/TA phonon distribution produced through the decay of
Γ-E2g and K-A′1 phonons. Figure taken with permission from Reference [10].
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4.3 UEDS results

Now, a UEDS analysis will be applied to study photocarrier relaxation

dynamics in graphite following changes in phonon occupancy. The techniques

presented in Chapters 1 and 2 will be demonstrated and the results compared

with the literature review in the previous section. First, the specifics of the exper-

imental configuration are presented. The samples for the UEDS experiment were

made using single crystal graphite flakes, provided by Naturally Graphite®. The

starting flake is glued to a 3mm copper G200 square mesh TEM grid on a glass

slide using clear color crystalbond 509. Then, the flake is repeatedly exfoliated

with Scotch tape until they became translucent by eye. The crystalbond is then

carefully removed with acetone, applying one drop at a time via glass pipette until

the TEM grid is freed from the glass slide. Measurements of other specimens made

by the same method have shown a final thickness of approximately 80 nm and

that the constant greyscale intensity observed by eye is a fairly good indicator of

uniform thickness in the sample [75]. The configuration of the UED instrument

is detailed in Chapter 3. Here, 800 nm, 35 fs with a fluence of 12 mJ/cm2 laser

pulses were used to photoexcite the thin film graphite and the scattering intensity

as a function of pump probe delay, I(~q, τ), was captured on a CCD camera.

The results are presented as differential diffuse intensity patterns, the dif-

ference between the unpumped scattered intensity (measured from images with

negative pump-probe delay) and the measured intensity I(~q, τ) is calculated using,

∆I(~q, τ) = I(~q, τ)− 1

n

∑
t<0

I(~q, t) (4.3)
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or as fractional diffuse intensity difference for better imaging contrast,

∆fI(~q, τ) =
I(~q, τ)− 1

n

∑
t<0 I(~q, t)

1
n

∑
t<0 I(~q, t)

(4.4)

where I(~q, τ) is the diffraction measurement at time-delay τ , and n is the number

of measurements for which t < 0 (typically between 10 and 20).

The fractional intensity maps presented in Fig. 4–10 show the raw results

of the experiment and the results after several image processing steps which are

described here. After the averaging of the experimental repetitions (not shown),

several artifacts can be seen to occur in the raw images, two of which are indicated

with red arrows in Fig. 4–10 a). The first artifact is due to the beamstop, which

blocks the electrons in the center beam as well as a rectangular area in the upper

half of the image. The second is a line of artificial intensity, occurring due to

a read-out error in the CCD camera, which is visible in the bottom half of the

image. To minimize the effect of these artifacts, these features are ‘masked’ out of

further processing steps, which just means that the pixel values at those locations

are set to zero. A hexagonal area located at the center of the image is also masked

in order to block residual signals from the beam center. The masked image is

shown in Fig. 4–10 b).

Even after dozens of experimental repetitions (∼100), the diffuse signals in

Fig. 4–10 b) are still barely distinguishable from the random background noise.

To add further statistics to the diffuse signal, the natural six-fold symmetry of

the features is exploited by taking six copies of the image, rotated by 0◦, 60◦,

120◦, 180◦, 240◦ and 300◦ respectively, and adding them together. This process
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boosts the signal-to-noise considerably, decreasing random noise by a factor of
√

6 ∼ 2.5. The result is shown in Fig. 4–10c). After six-fold rotational averaging,

the asymmetric corners are masked out and the images are smoothed using a

Gaussian weighted moving average with a 4 pixel (0.03 Å−1) kernel. Finally, the

data is normalized by the scattering vector squared q2 (as per equations 2.28 and

2.29) so that all features could be clearly seen with a single colormap. The final

result is shown in panel d). Thanks to the processing procedure, the image can be

shown with ten times the contrast compared to the previous two panels without

interference from the background noise. Nonetheless, some artificial signals (the

CCD read out error indicated with a red arrow) are not completely removed,

so careful consideration of the images at all processing steps is imperative to

distinguish different features and artifacts in the final diffuse scattering maps.

In
te

n
si

ty
 C

h
an

g
e 

(a
.u

.)

a) b) d)c)

0

1

Figure 4–10: ∆fI(~q, 100ps) at various steps in the image processing procedure.
a) shows the raw diffraction pattern after averaging the experimental repetitions.
Artifacts from the beam block and camera read out are indicated. b) Diffraction
pattern after masking of the artificial signals. c) Pattern after six-fold averaging.
d) Pattern after Gaussian smoothing.

4.4 Strongly coupled optical modes

The dramatic changes in diffuse scattering shown in figure 4–11 reflect

the non-equilibrium phonon populations and their time dependence according
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Figure 4–11: Evolution of ∆fI(~q, τ) following photo-excitation of graphite. The
dramatic changes reflect the non-equilibrium phonon populations and their time
dependence. a) Raw diffraction pattern of graphite with select BZs indicated with
dashed lines. b) Differential scattering flat-field at a time before optical excitation
indicating signal-to-noise. c) At early times the diffuse intensity provides a map
of the relative strength of the q-dependent EPC coupling through the increased
occupancy of strongly-coupled modes. Peaks in ∆fI(~q, 0.5 ps) at certain K−points
(circled) result from the increase in K-A′1 population. Strong coupling to the en-
tire transverse acoustic (TO) branch is evident in the vicinity of [200] as ridges of
intensity radiating from Γ to K points. (c) By 1.5 ps, a halo of scattered intensity
the around the [110] peak appears due to dominant anharmonic decay pathways
of the strongly coupled modes. (b) Scattered intensity collects along Γ-M lines
perpendicular to the scattering vector. By diffuse scattering selection rules 1 and 2
this is scattering from the TA mode. These dynamics demonstrate interband and
intraband pathways from the mid-BZ TA and LA modes. By 100 ps (c) the in-
tensity has tightened around the Γ-M lines lines and the diffuse intensity now has
the same shape as the TA structure factor map in Figure 4–12(upper right). This
steady state increase in TA mode occupancy is consistent with the lack of allowed
anharmonic decay pathways for transverse acoustic modes [11, 12].

76



to equation 2.28. Using the techniques discussed in Chapter 2, the differential

phonon occupancy, ∆nj,~k(τ) as a function of pump-probe delay may be extracted

from ∆I(~q, τ) by determining the mode activity at each scattering vector. At

the earliest pump-probe delays, mode activity is determined qualitatively by

considering the electron-phonon coupling strengths; only the most strongly coupled

modes have any increased occupancy at the shortest time delays. Therefore, figure

4–11(c) can be understood as a map of the relative strength of the ~q-dependent

electron-phonon coupling through the increased occupancy of strongly-coupled

modes. Peaks in ∆I(~q, 0.5 ps) at the K−points around the [110] Bragg peak

(circled) result from the increase in K-A′1 population and outline the hexagonal

BZ and strong coupling is evident in the vicinity of [200] as ridges of intensity

radiating from Γ (the Bragg peak) to K points. These signals correspond with

the strongly coupled optical modes discussed in Section 4.2 with the additional

conclusion that there is strong coupling along the entire Γ-K line, not only with

Γ-E2g. Furthermore, the a priori assumptions about the activity of the strongly

coupled optical modes at the indicated scattering vectors can be confirmed through

comparison with structure factor maps calculated using the density functional

theory methods described in Chapter 1.

The structure factor maps for the acoustic and optical modes of graphite

are shown in Figure 4–12. They were calculated using the PwSCF and PHonon

packages of Quantum Espresso using a 4 × 4 × 4 k-point grid and ultrasoft

pseudoptoentials for carbon (wavefunction energy cutoff of 30 Ry) in the local

density approximation [45, 46]. The scattering vectors showing TO mode activity
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match the locations of the features outlined in red in Figure 4–11(c) supporting

the conclusion that these signals correspond to the strongly coupled optical

modes and revealing strong electron-phonon coupling strength across the entire

TO branch along the Γ-K line. Although TRR has previously been employed to

follow the occupancy of the zone center Γ − E2g mode showing that it is indeed

strongly-coupled [9, 31]. Evidence for strong coupling to the off-zone-center modes,

however, have previously only been indirect [13]. The peaks in Figure 4–11 c)

represent the first direct observation of this effect.

The complete time-dependence of the diffuse intensity at high symmetry

points is shown in Figure 4–13. ∆fI(~q, τ) shows a qualitatively distinct time-

dependence where the LO mode is active (Figure 4–13 b), green) versus K-points

where the TO mode is active (Figure 4–13 b), red). This includes a much slower

initial rise; 730 fs (K-LO) compared to 280 fs (K−TO). Intensity near {200}

(Figure 4–13 b), cyan) reports on the occupancy of the strongly-coupled Γ-E2g

mode at early times, and exhibits a slower rise (430 fs) than the K-A′1 mode. For

comparison the Γ-E2g phonon population determined using TRR [9] is shown in

grey. The red curve (K-A′1) is nearly identical to the grey curve (Raman: Γ-E2g)

in terms of rise time and recovery. They both indicate a rapid increase in optical

phonon population due to strong electron-phonon coupling and then a subsequent

depopulation of these optical modes via phonon-phonon coupling and relaxation

to lower frequencies. Thus, the measurement of strongly coupled optical mode

population dynamics appears qualitatively consistent for both UEDS and TRR.

The slower rise time observed for the Γ-E2g phonon by UEDS is likely due to the
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Figure 4–12: Visualizing momentum dependance of one-phonon structure fac-
tors. (Left) Numerically computed structure factor maps for the acoustic modes in
graphite. TO mode activity matching the early diffuse scattering features in Fig-
ure 4–11(c) is outlined in red. The shape of the TA mode activity features match
the shape of the diffuse scattering features after 5 ps in Figure 4–11(e-f). (Right)
Phonon dispersion curves weighted by structure factor. The darker curves have
stronger structure factors along the paths indicated in the structure factor map in-
sets, allowing the mode activity to be easily determined along high symmetry lines
and at high symmetry points (note that light grey is zero for these curves). Along
the magenta path, for example, the LA mode is active along both Γ-M and Γ-K
lines where the LA mode is only active on the Γ-K line. In contrast, the TA mode
is the only dominant mode along most of the pink path. The paths with only one
dominant mode indicate where single mode occupancy dynamics can be extracted
directly via Eq. 2.30.

higher excitation conditions used (12 mJ/cm2 compared to 0.2 mJ/cm2) which

is known to weaken the Kohn anomaly and electron-phonon coupling at the Γ

point [9, 98]. Although the Γ-E2g mode is also strongly coupled, the recovery
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evident in the red and grey curves is not seen in cyan. This difference is due to

scattering from the low-frequency LA and TA phonon modes involved in the

dominant decay channel of the K-A′1 phonon (Figure 4–9) and discussed further

below. These LA/TA modes are not seen in the TR-Raman study, nor do they

overlap with the signals measured at the K-point [10].The effective temperature

of the K−point TO mode can be estimated using the measured increase in diffuse

intensity and applying Bose-Einstein statistics to the mode population (Equation

1.8).The effective temperature of the K−point TO mode is ∼ 1150 K by 1 ps, and

by 10 ps it has cooled back down to ∼ 500 K. The strongly-coupled TO modes

reach a pre-equilibrium with the laser-generated carriers in < 1 ps, while all other

phonon modes remain at or near room temperature on this timescale.

4.5 Acoustic modes

The character of the differential diffuse scattering pattern changes dramati-

cally through Figure 4–11 c-f) as the non-equilibrium phonon distribution evolves,

demonstrating profound sensitivity to the details of the phonon occupancies. The

diffuse scattering patterns in Figure 4–11 c-e) reveal the decay channels for the

population of strongly-coupled optical phonons as they relax. The time-scale sepa-

ration between the electron-phonon coupling into K-A′1, Γ-E2g, and the LO branch

(200 − 400 fs) and the subsequent decay out of these modes (1 − 3 ps) means that

the diffuse scattering pattern at 1.5 ps effectively maps their momentum-dependent

decay probability of the strongly-coupled optical phonons in a manner analogous

to the way in which the 0.5 ps pattern indicates the relative electron-phonon

coupling strength. The dominant decay channels determined by density functional
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Figure 4–13: Ultrafast electron diffuse scattering at early times. a) Intensity of
the [110] Bragg peak showing non-exponential Debye-Waller dynamics [13]. b)
∆fI(~q, τ) at select points in the BZ (inset) and the E2g occupancy dyanamics mea-
sured with TR-Raman[9] shown in grey. The rate of increase in the the population
of the TO K-A′1 phonon from electronic coupling (red, 280 fs) is faster than that
for the Γ-E2g (cyan, 430 fs) and matches the fast Bragg peak dynamics. The pop-
ulation K-LO phonons (green, 730 fs) rises much slower that both TO K-A′1 and
Γ-E2g phonons. The rise in diffuse intensity at the M-point (blue, 2.1 ps) is almost
an order of magnitude slower than that associated with the TO K-A′1 phonon. The
slow timescale decay evident in the Bragg peak and reported in earlier ARPES
measurements [14] does not emerge from the dynamics of any single mode, but is
a composite of the decay in population of the strongly coupled optical modes (e.g.
red, 1.7 ps) and the increase in population of all other modes.

theory [24] (Figure 4–9) compare well with ∆I(~q, τ = 1.5 ps) in Figure 4–11 c).

The hexagonal distribution of diffuse intensity approximately halfway between

Γ and the BZ edges is associated with the TA-LA (green) and E2g:LA-LA (red)

decay channels.
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By 5 ps, the strongest scattering has moved from the Γ-K to the Γ-M

lines perpendicular to the scattering vector (Figure 4–11(e)) and the diffuse

intensity features have entered a quasi steady state. Here the generalized diffuse

scattering selection rules (Section 2.7) may be employed to deduce the final

modes of the photoexcitation cascade. By the first selection rule, the diffuse

scattering features perpendicular to the Bragg scattering vector ~H110 must be

scattering from a transverse mode (k ⊥ H) and by the third selection rule this

must be an acoustic mode (near the bright [110] Bragg peak). The corresponding

weighted dispersion curve (Figure 4–11 pink path) confirms the dominant TA

mode and also shows that it also dominates along the entire Γ-M line. There is

also strong scattering along the Γ-M and lines near the [200] peak. By consulting

the weighted dispersion curves, both the TA and TO modes could be scattering

here. These results support the conclusion is that by 5 ps most of the increased

phonon population is in the TA mode. In fact, the shape of the features in the 500

ps differential diffuse scattering pattern Figure 4–11(f) match those present in the

TA mode structure factor map in Figure 4–12. From 5-100 ps, the pattern relaxes

into tighter Γ-M lines, indicating a further increase in TA mode occupancy and

a decrease in other in-plane modes. As stated in section 4.2, there are no three

phonon anharmonic decay processes that start in a purely transverse mode due to

momentum and energy conservation[11, 12]. So a buildup of population in the TA

mode reaching a steady state is to be expected.

More details of the phonon relaxation are shown in transient differential

phonon population spectra along single mode dominant symmetry lines in Figure

82



4–14. These curves are determined from the differential intensity profiles measured

at selected time delays, normalized by the factors given by Equation 2.30 and

represent an unprecedented measure of phonon decay in intricate detail. The

difference spectra here robustly represent the nonequilibrium phonon dynamics in

the LA/TA branches since they are taken along momentum lines where scattering

from other modes is negligible. This is evident in the weighted dispersion curves

shown in Figure 4–12. At times < 1.5 ps, there is a large peak Figure 4–14(c) near

the K point. Here, the TO mode is active as shown in the weighted dispersion

curve in Figure 4–11. This rapid effect is attributed to electron phonon coupling

also seen in Figure 4–11(c). The second fastest peak occurs in the LA phonon

spectrum at around ∼ 0.5K at 2.5 ps followed by other mid-BZ peaks in the

TA spectra at 5 ps. These peaks occur due to relaxation of the strongly coupled

optical modes to mid-BZ phonons, as discussed above, and shown with blue arrows

in Figure 4–14. It is clear from these spectra that the anharmonic coupling to

the LA mode is significantly faster than the TA mode. This is in qualitative

agreement with previously reported density functional theory (DFT) predictions

of the decay probability of the strongly coupled E2g mode to the LA (23%) and

TA (16%) modes [24]. Subsequent decay of the acoustic modes is indicated by

red arrows in Figure 4–14. The LA mode occupancy decays evenly across the

Γ-K line as the TA mode continues to be populated at momenta approaching

the Γ point along both symmetry lines. At late times the behaviours of the TA

spectra diverge. Along the Γ-K line > 0.5K, phonons are funnelling out while

TA population increases on the Γ-M line > 0.5M . As previously noted, purely
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transverse modes, i.e. TA modes in the long wavelength limit, have no allowed

interband decay pathways, which is consistent the buildup and steady state

behaviour of the TA modes near Γ. The different behavior of the modes on the

BZ edge corresponds with DFT computations of anharmonic decay lifetimes that

report steadily increasing lifetimes for TA modes along Γ-M and constant lifetimes

along Γ-K [25]. The lower frequencies of the Γ-M modes compared to those on

Γ-K could also contribute to this behaviour. All spectra reach a steady state by

around 100 ps. Dotted lines indicate approximate equilibrium difference spectra

between a room temperature and an elevated (500 K) temperature graphite lattice,

and are in qualitative agreement with the steady state phonon spectra.

These results constitute a unique and powerful and view of phonon dynamics,

previously inaccessible though experimental means, that compliment other

pump-probe techniques by directly observing electron-phonon and phonon-

phonon coupling through the changes in occupancy of individual phonon modes

across the BZ. The method for measuring differential phonon population spectra

established in Chapters 1 and 2 have been presented and demonstrated for the

case of graphite, showcasing the rich and complex phonon dynamics hidden in

the diffuse scattering data. In the next chapter, the UEDS method will be used

on a very different 2D material, TiSe2, to investigate electron-phonon coupling

in a completely different way; by observing the effect of photoexcitation on the

renormalized phonon frequencies at characteristic CDW momenta.
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Figure 4–14: Transient differential phonon population spectra. Blue arrows indi-
cate anharmonic decay from optical modes to mid-BZ acoustic modes. Red arrows
indicate inter and intraband decay of acoustic modes. (a) TA occupation dynamics
along the Γ-M line. By 5 ps, a peak appears around 0.5M . Population then col-
lects near Γ and M points.(b) (a) TA occupation dynamics along the Γ-K line. In
contrast with (a), the population decreases near the BZ edge. (a) LA occupation
dynamics along the Γ-K line. The rapid increase near K is due to the TO mode
which strongly couples to the photoexcited electron system and has a significant
structure factor at these scattering vectors 4–11(lower right). Subsequently, LA
mode population decreases everywhere along the Γ-K line.
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CHAPTER 5
Phonon renormalization in titanium diselenide

Titanium diselenide is a member of the family of materials known as transi-

tion metal dichalcogenides (TMDs). These materials have a crystal structure in

which a transition metal atom such as molybdenum, tungsten or titanium is sand-

wiched between two layers of group 16 (chalcogen) atoms such as sulphur, selenium

or tellurium. Because bulk crystals are formed of monolayers a few angstroms

thick bound by Van-der-Waals interactions, they are considered 2D materials like

graphite and graphene. The members of the TMD family demonstrate a great vari-

ety of exotic properties, and have been the subject of intense study. Like graphite,

bulk TMDs can be exfoliated into single or few-layered structures by physical or

chemical means [99]. Due to quantum confinement and surface effects, monolayer

and few-layered TMDs exhibit properties not present in their bulk counterparts.

For example, a population of carriers can preferentially lie in one of two or more

minima in the conduction band. This phenomenon is called valley polarization and

has been observed to be dynamically controlled by optical pumping in monolayers

of MoS2, an effect that is crucial for engineering valley-based electronic and opto-

electronic devices [100]. Other applications include photovoltaic devices, energy

storage, hydrogen evolution catalysis, transistors, photodetectors, DNA detection,

and memory devices [101, 102]. This work is concerned with 1T-TiSe2, a well

studied TMD which has a charge density wave transition at ∼ 200 K, forming a
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2a × 2a × 2c superlattice in the bulk. The nature of the transition is the subject

of debate and been attributed variably to excitonic interaction [15, 103, 104] and

a phonon driven Pierels-like phase [16, 105]. Here, the early results from a UEDS

study of 1T-TiSe2 will be presented. Unlike the study of graphite, which focused

on the occupancy dynamics of individual phonon modes, these results demonstrate

an extremely rapid change in renormalized phonon frequency that provides an

unprecedented measure of the Lindhard response at the BZ edge and insight into

the nature of the CDW transition.

5.1 Properties of TiSe2

As in the previous chapter, the details of the atomic structure will be pre-

sented to enable the calculation of the phonon dispersion and polarizations. The

structure of 1T-TiSe2 is shown in Figure 5–1, showing two stacked unit cells with

lattice constants a = 3.536 Å , c = 6.004 Å [15]. The expression for the lattice and

reciprocal lattice vectors in terms of a and c are the same as in graphite (see Equa-

tions 4.1 and 4.2). The locations of the atoms in Cartesian and lattice coordinates

are given in Table 5–1.

Basis ~rTi ~rSe,1 ~rSe,2

Cartesian [0, 0, 0]

[
0,

a√
3
,
c

4

] [
a

2
,
a

2
√

3
,
3c

4

]

Lattice [0, 0, 0]

[
1

3
,
2

3
,
1

4

] [
1

3
,−1

3
,
3

4

]
Table 5–1: Atomic positions in TiSe2 with Cartesian and lattice coordinates.
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(a)

(b)

(c)

Figure 5–1: The structure of TiSe2. (a) Atomic configuration of two stacked unit
cells. (b) Brillouin zones in the normal phase (thick outline) and the CDW phase
(thin outline). Red arrows indicate the in-plane wavevectors of the CDW and the
gray contours illustrate the topology of the equi-energy contours. (c) Electronic
structure in the normal phase. There is an indirect band gap across Γ to M and a
negative indirect band gap across Γ to L. Excitonic behaviour at these wave vec-
tors provides an alternate mechanism for the CDW transition. Figures taken with
permission from References [15] and [16]

.

At temperatures around 200 K, 1T-TiSe2 undergoes a second-order phase

transition to a commensurate 2× 2× 2 CDW phase [15]. There are two competing

explanations for the CDW transition. The first proposed mechanism is consistent

with the concepts presented in Section 1.5, where the transition is enabled by a
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strong electron-phonon coupling constant g and a Kohn anomaly at the M and L

high symmetry points arising from nested vectors at the Fermi surface. Evidence

of the strength of g in TiSe2 includes the large amplitudes of the periodic lattice

distortion in the CDW phase and high electrical resistivity (roughly 50 times larger

than Cu) above the transition temperature [15]. A schematic of degenerate band

surfaces in the BZ, and therefore the CDW wave vectors, are shown in Figure 5–

1(b). These properties all suggest a Peierls-like periodic lattice distortion, however

it has been argued that the nesting of the Fermi surface is not clear [106]. The

calculated electronic band structure is shown in Figure 5–1(c). Here, the nesting

at the Fermi surface is not obvious compared to the Dirac cones of graphite. An

alternate explanation is that the transition is mediated by excitons (electron-

hole quasi-particles) that occur due to the indirect band gaps in the electronic

structure. With sufficient electron-hole coupling, the system is unstable to the

formation of excitons and deforms with a periodicity governed by the wave vector

connecting them; which in the case of TiSe2 leads to a doubling of the lattice

spacing. [103, 106].

Figure 5–2 shows simulated phonon dispersions of TiSe2 demonstrating the

predicted effect of electron temperature on the severity of the Kohn anomaly at

the M and L points. These results were computed using ab initio methods and

also predict the CDW transition temperature when the phonon is renormalized

to zero frequency [107]. In order to simulate the change in electron temperature,

the Fermi-Dirac distribution is used to smear the electronic functions, where

the smearing factor takes on a physical meaning to directly reflect the electronic
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temperature [108]. As the smearing decreases the renormalized TA phonon

frequency tends towards zero, where the CDW transition occurs as described in

Section 1.5. This also indirectly characterizes the temperature dependence of the

the Lindhard response function χ(~q, T ) via Equation 1.21.

Figure 5–2: Simulated phonon dispersion curves of TiSe2, showing the severity of
the TA mode renormalization as a function of temperature. In order to quantita-
tively calculate the CDW transition temperature, the Fermi-Dirac distribution is
used to smear the electronic functions, where the smearing factor takes on a phys-
ical meaning to directly increase the electronic temperature and has the effect of
increasing the TA phonon frequency at the M and L points.

5.2 UEDS results

There are a number of salient differences between UEDS methodology applied

to TiSe2 and graphite due to the very different properties of their phonon systems
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and electron-phonon interactions. As shown in figure 5–2, the TA phonon renor-

malization at the M and L points are very sensitive to electronic temperature,

so photoexcitation has a substantial effect on phonon frequency. The resulting

phonon hardening will appear as a negative differential in the diffuse intensity

signal (Equation 2.28) which appear at the M and L points where the TA mode is

active. Moreover, the L point is not in the normal diffraction plane, so the electron

pulse must be oriented at an angle relative to the sample such that the L points

are visible in the diffraction pattern. The improvements to the sample manipula-

tion shown in Section 3.5 allow this to be done. Therefore, these experiments focus

on measuring transient phonon frequency renormalization by measuring UEDS

signals at two angles; perpendicular to [001] (sample normal) and [101̄] to view

the effect of diffuse scattering at both M and L points. The experiments were

performed by the author with support from Martin Otto and the analysis and

discussion are solely the work of the author.

The TiSe2 thin film samples used for this experiment were made using crystals

purchased from hq Graphene®. The bulk crystals were mechanically sliced into

90 nm thin films by ultramicrotomy [109] performed by technicians at the Facility

for Electron Microscopy Research at McGill University. The configuration for

the UEDS experiment was the same as the experiments on graphite except the

direct synchronization for the RF cavity was implemented [36] improving the

effective temporal resolution as well as the upgraded sample manipulation and

beam geometry described in Section 3.5. The pump pulses were 800 nm and 35 fs

long with a fluence of 4 mJ/cm2.
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M
L

[110]

[200]

[210]

Figure 5–3: Static diffraction patterns of TiSe2. (Left) Diffraction at normal inci-
dence along [001]. Select BZs indicated by reciprocal lattice coordinates. (Right)
Diffraction along [101̄], the BZ edge is indicated with M and L high symmetry
points.

Figure 5–3 shows the raw diffracted intensity when the sample is positioned

normal to the electron beam and at an angle of 30.5◦ in order to look at the

[101̄] plane of reciprocal space which includes the L-point. The time resolved

fractional intensity results at normal incidence are presented in Figure 5–4.

The data has been six-fold rotationally averaged and smoothed with a 4 pixel

(0.03 Å−1) Gaussian kernel. As in the previous chapter, the data is normalized by

the scattering vector squared q2. An important distinction between these maps

and those of the previous chapter is that the colormap has been inverted so green

shows a decrease in diffracted intensity. For graphite, all of the diffuse scattering

differentials are positive, so the negative signal seen at select M -points at 0.5 ps
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and 1 ps represents a completely different physical phenomena then any of those

discussed in the last chapter. These negative diffuse scattering peaks, or dips in

intensity, form a gear-like shape surrounding the bright family of [110] peaks and is

repeated at higher orders. By 2 ps, the intensity dip has completely dissipated and

the remainder of the negative signal is located at the Bragg peaks due to Debye-

Waller suppression. The positive (blue) signals lack the defined structure of the

graphite diffuse scattering patterns and are more or less constant after a 2 ps rise.

Due to the constant and unstructured signals at later time delays the discussion

will focus on the signals in the first few picoseconds after photoexcitation.
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Figure 5–4: Evolution of ∆fI(~q, τ) following photo-excitation of TiSe2. By 0.5 ps,
negative diffuse scattering features (green) appear at M -points surrounding the
[110] family of peaks forming a gear-shaped pattern. Through 1 and 2 ps, the M -
point signals fade into a uniform diffuse scattering increase at all points away from
the Bragg peaks.
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5.3 Impulsive phonon hardening

The details of the early time scale dynamics at various high symmetry points

is shown in Figure 5–5(b). All curves show an increase in diffuse scattering that

occurs in the first 2 ps after photoexcitation; matching the fast component of the

Debye-Waller suppression of the Bragg peaks (Figure 5–5(a)). This is the expected

general behaviour of the phonon occupancy after coupling with the hot carriers

induced by the pump pulse. The distinctive feature of these curves is an extremely

fast dip in diffuse intensity that recovers in about 1 ps at certain M points. A

one-phonon structure factor analysis reveals that this dip only occurs at scattering

vectors where the TA mode is active and dominant (Figure 5–5(c)). The structure

factors were calculated using the methods outlined in section 2.6. Specifically,

the PwSCF and PHonon packages of Quantum Espresso were applied using

a 4 × 4 × 2 k-point grid, ultrasoft pseudoptoentials for titanium and selenium

(wavefunction energy cutoff of 70 Ry) and BLYP exchange correlation poten-

tials [45, 46]. This is the same M point mode that has a renormalized frequency

dependent on electronic temperature in the simulations shown in Figure 5–2. The

time scale of the onset of the TA mode dip appears to be nearly impulsive; at

least as fast as the time resolution of the instrument, matching the time scale of

temperature thermalization and carrier-carrier interactions [6]. The changes in the

electron temperature from photoexcitation will produce the same phonon renor-

malization as the ab initio simulations shown in Figure 5–2. Therefore, through

the inverse dependance of diffuse intensity on phonon frequency shown in Equation

2.24, the dip can be attributed to the renormalization (hardening) of the TA mode
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phonons at the M -point via Equation 1.21. In this way the behaviour of the Lind-

hardt response function χ(~q, T ), and therefore the transient electronic structure is

being measured.

(c)
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(a)

Figure 5–5: Fractional scattered intensity changes. (a) Bragg peak dynamics show-
ing showing Debye-Waller suppression. (b) Diffuse scattering dynamics at high
symmetry points. All three curves increase during the first 2 ps after photoexcita-
tion, corresponding to an overall phonon occupancy increase due to coupling with
photoexcited electrons. An extremely fast dip in diffuse intensity that recovers in
about 1 ps appears at M points where the TA mode is active and dominant as
shown in the computed weighted dispersion curve (c).

The difficulty in obtaining this measurement should not be understated. It

is a testament to the exceptional signal-to-noise and time resolution of the UED

instrument that a < 1% change in diffuse scattering with a nearly instantaneous

onset and a recovery within 1 ps was clearly measured. Unfortunately, the effect

could not also be measured L point as angled UED experiments have additional

challenges. First, the six-fold symmetry of the normal diffraction plane is not
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present normal to [101̄] reducing the signal-to-noise by a factor of
√

6. Addition-

ally, the electron pulse striking the sample at an angle causes the electrons to

probe at different times/moments regions of the sample surface, which are excited

simultaneously by the pump pulse. Thus, a mismatch in group velocities affects

the overall time resolution [110]. Nonetheless, the measurement at the M -point

represents the first experimental study of phonon renormalization with non-zero

momenta. The measured effect on the phonon frequency is qualitatively predicted

by the linear response theory described in Section 1.5 and is consistent with the

nested Fermi surface picture of the CDW transition.

5.4 Conclusions and outlook

UEDS provides a unique and unprecedented vantage point from which

photoexcitation dynamics can be observed. By providing a detailed look at the

ultrafast changes in phonon occupancy, unrestricted by wave vector or symmetry,

the strength of electron-phonon interactions in graphite can be viewed not only

at the high symmetry points but across all of momentum space. The anharmonic

decay of the strongly coupled optical modes the subsequent acoustic mode decay

channels, processes that were previously explored only through simulation, can

be followed in detail at any point of the Brillouin zone. Minuscule and impulsive

phonon frequency renormalization can be detected in the form of scattering

differentials that are 1% of a signal 104 times smaller than elastic scattering.

UEDS is also profoundly complementary to trARPES and TRR which give similar

measurements of electronic occupancy dynamics and Γ-point phonon dynamics,
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providing a complete picture of the events following photoexcitation from the

perspective of both electron and lattice systems.

Even so, the experiments shown here are very limited in scope compared

to the potential of UEDS as a technique. Graphite is the perfect test sample,

not only because it is a well studied material, but it has extremely hard (high

frequency) vibrational modes resulting low occupancy at room temperature. This

causes the occupancy dynamics to be more dramatic and easier to measure. Other

materials, including TiSe2, would greatly benefit from the ability to perform

UEDS on samples at low temperatures. Moreover, one would expect the signal

from the TA mode renormalization in TiSe2 to become much larger near the

charge density wave transition temperature. Future UED studies could measure

the periodic lattice distortion melt in real time via the Bragg peak dynamics,

while simultaneously measuring changes in the phonon frequency and occupancy,

perhaps shedding light on the true nature of the CDW transition.

UED instruments and techniques continue to evolve with higher electron

pulse brightness, shorter electron pulses, larger and faster detectors, and improved

configurations. Eventually, the signal-to-noise and detection area may reach the

level needed to measure the diffuse scattering at dozens of scattering vectors all

with equivalent reduced wave vectors. In this case the matrix solution for all

phonon occupanices derived in Section 2.6, could be found. This would provide

complete knowledge of time-resolved phonon behaviour for all modes and all

momenta, perhaps revealing the mechanisms behind the many ordered phases and
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diverse electronic and thermal properties that arise from interplay between electron

and lattice systems.
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