
New Dynamical Monte Carlo 
Renormalization Group Method 

by 

Martin Daniel Lacasse 

Department of Physics, McGill University 

Montréal, Québec 

Canada 

A Thesis submitted to the 

Faculty of Graduate Studies and Research 

in partial fulfillment of the requirements for the degree of 

Master in Science 

© Martin Daniel Lacasse, 1990 



À Isabel, 

Lmda, 

et Germame 



Abstract 

The kinetics of a phase transition has been studied by using a Ilt'W dynamical MOllt (' 

Carlo rellormalization group method. Using a majority rule block-spin trall~rortll"

tion in both space and contiguous tirnes, we numerically rcnormalized tht' ('v()lvill~ 

configurations during the phase separation of a kinetic Ising model with ~pill-Ilip dy

namics. We find that, in the scaling regime, the average domain sizt' U( t) !!;row~ III 

time consistently with the R '" t 1
/

2 Allen-Cahn antiphasc boundary motion th('ory, 

although sorne correcting factors may exist. The same procedure has abo 1>('('11 .lp

plied to the corresponding equilibrium critical system in arder 1,0 fine! tll<' (riti( al 

exponcnt z. Our method yields values that are consistent with the Oll(,~ o"taÎtll'd 

from a finite-size scaling analysis applied on the same data, thll~ showing tllat, III 

principle, this method can be successfully used to determine z in il Illon' pn'( I~(' alld 

consistent way. 

1ll 



Résumé 

La cinétique d'une transition de phase a été étudiée à l'aide d'une nouvelle méthode 

dynamique Monte Carlo du groupe de renormalisatio"11 (MCRG). En utilisant une 

r('glc de majorité afin de réduire à un seul spin des cellu.les de spins formées de spins 

contigus dans le temps et l'espace, nous avons renormaliq~ les configurations succes

siv('s d'évolution d'une séparation de phase simulée par U"ll modèle Ising cinétique à 

excitation locale (spin-filp). Nos résultats indiquent que dé:llls la région dite d'échelle 

de la courbe de croissance, la grandeur moyenne des domaines R( t) croît dans le temps 

('II accord avec la loi de croissance R .-v t 1/ 2 prévue par la théorie du mouvement des 

alltipha~cs de Allen et Cahn, quoique l'existence d'un facteur de correction ne soit 

pa::, exduc. 

Le même procédé a aussi été appliqué au problème correspondant de dynamique 

critique à l'équilibre afin de déterminer la valeur de l'exposant critique z. La méthode 

utilisée donne des résultats qui sont en parfait accord avec une analyse de taille finie 

e{f('duée sur les mêmes données. Ceci nous porte donc à croire que cette méthode 

pourrait, en principe, être utilisée pour déterminer z avec plus de précision. 
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Chapter 1 

Introd uct ion 

lt has been a long way from the origin of the world to t.he way 1 hi!Jg~ look lod.l)' 

Throughout the evolution of matter, transformaliolls lIlvoiving 1(::.::. ,lnd \t-::.::. ('Il!'r~y 

were involved. As a result, most of the transformations th.d, l'an IH' ob~,('rv(·d fi 0111 

our tiny space-time scale point of view are duc to e!('drolllaglwt.ic forC!'~. 1 Thi~ I~ t Ilf' 

casc, for cxample, in chemical readions and, at an evclI lowcr eTwrgy level, III ph oI~" 

transformations. 

Most of these transformations are characterized by WIlW ~ort of di~( 011 1 ÎlIlIÎ 1 Y 

Unfortunately, the idea of conti nuit y is cmhedd('d in the major part of tilt' phY"II" 

developed in the last centuries. The invention and the SIlC(,('S~ of (aklllu" III pltY"!I" 

hétS put this constraint on most representative funct.ions. An ('ven strollgcr (0111 ('Id Il,,1 

problem arises when one considcrs the time-r('ver~il) ~yllllIIel ry of ail dit""I<.d oIlIt! 

quantum theories in opposition to the <;econd l.lW of t.\wr!llody 1Ia.11I 1< ~ '1'111< . ..,llg!',I''''''' 

that these theories are still incomplcte and that Will(' (o:-'lIIolo!!;Î('.t1 !.L( lor IIII!!;hl h.LVI· 

1.0 he considered (Landau and Lifshitz 1981). TllI''ie fI'lIIark.., :,how, !tow('v"r, t Il.d, f!JI 

theory of phase transitions is one of the ITlO~t rhallen)!;inf.!; prOI))I'llI:-' 1I0W.u!.Ly'<, 

The present cent ury has seen the birth of VMioll:-' Ilt'V; l('( hlllqll('" .l!ld 111.1 jlJr dl-, 

IThe effects of gravitatIOn on usual phase trlLnsltloll~ are ~lill II(J[ w' Il ulld, r~[""rI .\1(,~1 (Jf 

the expenments conducted under nllcrograVity yleld 1l11l'XjH'ct"d f('~lIlt, Th" xp);L11IlII(JII (,f Ibl' 

failure may reside in the presence ofresidual efl(~cts frolll tlU' "lIVlfOIlIlH'lIt (Vllï,d~ I!JUIJ) ()IIIY'l f, "" 
treatments (e.g. (Slggia 1979)) take gravIt y lJlto aCCollllt ln tilt' I1I1,dy~l~ of ph'l'" trall~lll"lI~ 1'1.'1" 
transitions resulting from gravitation only (co~lllological) will !Iut tH' C(J/I'ld'·T,·d III tlll~ "" l ,f k 
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wveries, from cryogenies to nuclear reaetions, that permitted the exploration of new 

rcgions of the tempcratllre spectrum. New classes of interesting phenomena were 

discovered and that added more complexity to the existing problern. As a result, 

more attention has becn given to the topie and important progress in understand

ing cquilihrium critical phenomena has been made. Good (but old) reviews can be 

foand in articles by Fisher (1967) for the theoretical side and Heller (1967) for the 

cxpcrirncntal counterpart. 

The main difficulty in the study of static critical phenomena is that the existing 

"lllean field" approximation theories cannot be irnproved without yielding a problem 

more difficult than the original one. A way ta get around this difficulty is ta use a 

symmetry approach. One important step in this direction was made by the renor

malization group2 (RG) theory. This theory tackles the problem by analyzing the 

rcnormalized {ree energy resulting from an interaction scale transformation. Com

bincd with Monte Carlo techniques, this new tool gave valuable results as first shown 

by Ma (1976a). The resulting Monte Carlo Lenormalization Group (MCRG) theory 

has becn applied ta many problems since then. A brief review will be presented. 

Comparatively little is known about the dynamics of phase transformations. Very 

long relaxation times and the divergence of sorne of the macroscopic variables near 

the critîcru point make the subject even more difficult. However, because of the great 

intcrest {rom metallurgy and the material sciences, there have been many encouraging 

attcmpts ta understand the dynamics of SaIlle phase transitions. In addition, the 

succcss of the RG methods in the static case justified their extension to dynamics, 

and their application has yielded interesting results. Nonetheless, the lllathematical 

fOIl/ldations of these techniques is still an open problem. 

2Formally, it is a se mi group. 

• 



CHAPTER 1. INTRODUCTION 

1.1 Description of the problem 

If a system is suddenly cooled down, from a temperature at which il is normally round 

to be in a disordered state, ta a temperature at which it is normally found tu be in an 

ordered state, then arder starts to develop in time. It is weIl kllown that tht' rat t' 01 

cooling, as well as the tempt'rature of the final state, have a determinant cffed ou the 

way order is set up.3 In a binary substanee4 , domains of two difl'erent cOl\\p()~itions 

will start to form and grow in time, thus forming él pattern that can sOl1ldil\\t·~ IH' 

interpreted as the signature of the transition that oecurred. 

Experiments on Cu-Au5 and AI-Zn6 binary alloys for example, as well a~ colllput.er 

simulations, show that at "late" times, i.e. times for which the ordering involve~ lonp; 

range arder rather than ordering in the vicinity of a point, the average domaill si;t,(, 

Il fits a power law with respect to time. The growth exponcnt Tt in Il(t) cv /" i ... 

believed ta be one of the characteristics that can be uscd ta scparate th('~(' phase 

transitions into universality classes. Moreover, when the distances over the ~y~tI'lJl 

are measured in units of R(t), then the time depcndence of certain f\lndions invo\villp; 

space and time disappears. For example, the order parameter correlation fUIlC\.io1l 7 !I 

often "scales" as g(r,t) '" f(rjR(t)). 

The problem of sueh an order-disorder or phase transition is of fundanIClItal illkr-

est in the field of statistical mechanics of non-linear phenomcna far from cCjui\ilmulIl. 

Moreover, this problem is of practical interest in metallurgy and surfa('c &Ciell(,(' 

In this thesis, we shaH be eoncerned with aspects of growth and &caling in orckr

disorder transitions during which the order parameter docs not fol\ow any ('ol1,>('r

vation law. For sueh systems, theoretical models have heen proposed on the ba~i~ 

of various approaches. Considering the movement of the interfaces, Allen and Cahll 

3For example, there exÎ&t millenial J apanese ceremonies that specifically !>how, to the ~IUIIU flU, 
how to harden his sword. 

4 A lot of "hands on" sCience exhibitIOns contam a binary fluid system of anIline and cycl'Jll('x:ul" 
that becomes immiscible in a11 proportions below a certaIn temperatllrc 

5This system tends to order in an .. AB AB A ... fashion below a certain temperatllfl' 
6These two metals become immiscible below a certain temperature and .,taft to S(·pl1mt(· III t W(J 

distinct phases. This pro cess has a signature dlfferent from the pre~cding olle 

7The definition of this function will be found m Chapter 2 

• 
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(1979) proposed an antiphase boundary motion theory, that had partly been de

vcloped earller by Lifshitz (1962), which predicts a value of n = 1/2. SiIllllarly, 

phcnomenological studies (Valls and Mazenko 1986) involving stochastic equations 

for the relaxation of the system lead to the same prediction. 

M uch effort has heen devoted to developing new computer simulation techniques 

and models. The advent of more powerful computers, as weil as the ease with which 

the various microscopic-mesoscopic discrete models can he implemented on any of 

thcsc number-crunching machines, strongly contributed to this state of facto More

over,only a few of the models used have a complete analytical solution, so that the 

results obtained from numerical studies are of prime importance in the development 

of this field. One of these models, the Ising model, has been thoroughly investigated 

since it undergoes a "real" phase transition in two dimensions and above. 

The numerical Monte Carlo techniques, employed in different models, involve the 

gcneration of random numbers which are th en used to perform the integration of a 

function that in':olves a huge number of variables (static model) or to generate succes

sive states in a probabilistic way which can then be mapped to a real time evolution 

of the physical phenomenon (dynamical model). In practice, these two cases are very 

similar and the main difference remains in interpretation. Dynamic investigations 

of the Ising model are more recent than the static ones and have heen carried out 

using different techniques incIuding RG, finite-size scaling, spreading damage algo

rithms, conformational invariance mapping, series expansions, MCRG and mat ching 

algorithms, among others. Sorne of these approaches will be described further on. 

Working from the Ising model, a new dynarnical Monte Carlo renormalization 

group method will be presented. Results obtained from a two-dimensional - square 

la.t tice, periodic boundary conditions - model undergoing phase transitions far from 

its nitical temperature Tc will be given and analyzed. The problem of critical slowing 

clown, as wcll as the concept of scaling in dynamic phenomena, will be presented in 

order to pave the way for the straightforward extension of the method to critical 

dynarnic phenomena. 



CHAPTER 1. INTRODUCTION 

1.2 Outline of the thesis 

The structure of the following chapters is as follows. Chapt.er 2 will glve a briel 

overview of phase transitions as weIl as a short description of crit.ica.l pht'1l0Illt'II.1. 

The standard thermodynamic approaches will be presented, induding SOl\l(' approxi. 

mation methods referred to as wean field theories. Scaling rela.t.ions, both for critical 

phenomena and first-order phase transitions will be described on the basis of t ht' 

scaling hypothesis or self-similarity. 

Chapter 3 will be a thorough presentation of both the t.heorctieal a.ud pract.ic.t1 

aspects of a computer simulation study of the Ising model. Monte Carlo IlIl'( h()<l~ 

will be formal1y described and finite-size effects briefly summarized. Tht' conct'pt 01 

blockmg, in view of the application of RG methods, as weIl as the phenolllt'uologicai 

approaches gi ven by Langevin equations, will be discussed in the fra.mcwork of t Il<' 

kinetic interpretation of the Ising model. 

Real space renormalization group methods will briefly be explained in Chaptcr ·1, 

starting from the standard one- and two-dimensional Ising models, Although very dl'· 

scriptive, this formaI presentation willlead the way to the Monte Carlo HG techniqlll''> 

that will be used in subsequent chapters, 

Chapter 5 will give a short theoretical description of critical dynamin, hy dl'

scribing the conventional theory of critical dynamics as weIl as the dynalllic ~cali III!; 

hypothesis. The remaining part of this chapter will serve to present the lllo~t n'('('lIt 

developments in the evaluation of the critical exponent z. 

The following chapter will deal with the kinetic aspects of fir~t order pha~I' trall

sitions. Chapter 6 will concentrate on the theories of growth for a order-<li~ord('r 

transition where the order parameter is not conserved. The technical aspects of ~Il('h 

computer simulations will also be introduced. 

Original results made in the framework of this research will he prc~ented in Chal'. 

ter 7. A new MCRG method involving blocking both space and timc will he d(':,( rilH'd 

and applied to the two problems presented in Chapter 5 and 6, The mcthod will fir~t 
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he applied to the dynamics involved in a quench and comparisons will be made with 

the predictions of the Allen-Cahn antiphase houndary motion theory. The technical 

aspects of numerical simulations, as weIl as preliminary results for the value of the 

critical exponent z, will he given. 

Lastly, Chapter 8 will evaluate the scope of this method and discuss its validity 

in comparison to other standard techniques. Sorne theoretical questions concerning 

the foundations of this process will also be discussed. New avenues of analysis, con

ccrning the probabilistic aspects of a quench and special symmetries founll at early 

and medium times of a quench, will also he presented. 

For the sake of completeness, a detailed description of the algorithms as well as a 

C version of the code have been included as an Appendix. 1 hope this inclusion, as 

weB as the complete thesis, may be of sorne help or sorne inspiration to new students 

starting nurnerical simulations from scratch. 



Chapter 2 

General Overview of Phase 

Transitions 

The idea of a what a phase transition is evolved during the last ccntury, as IlCW dcvt'l

opments occurred in the field of critical phenomena. This chapter will givt' il ~{,I\t'rill 

overview of phase transitions and critical phenomena. The major ('harad('ri~ti('~ 01 

the convention al approaches will be briefly described in connedion with the ('outellt" 

of subsequent chapters. 

2.1 Thermodynamics of phase transitions 

This section will give a brier outline of the standard equilibriuJll trcatmcnt of il pha,>(' 

transition. We first give the general classification of phase tra.Il~forlllatioJ\l't, 1 

Phase transformations, undertaken at a temperaturc l'and a prc!>~Ilf(' fJ, whi< Il 

can be characterized by a latent heat T flS and a sudden spccifie voluUle2 change art' 

said to be of the first order. Since the volume V and the entropy S' can be ol,tailwd 

from the Gibbs potential G as V = (8G/8P)T and S = (üG/fJ'f')p, Ehfl·Ilf('~t. fir"t 

l A complete description of the specifie nomenclature of phase tramforrnatioH!> bdw(·t'n <lin'('n'nl 
phases is given in (Doremus 1985). 

20r the equivalent parameter. Note that the whole treatmcnt can de!>cribe a IIln~l\cti(' ~y~t. /II by 
the usual change P -+ -h and V -+ M, where h is the magnetic field, and M the lIIa~nl'lll:allfln 

7 
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proposed to classify phase transitions according to the order of the derivative( s) of 

the thermodynamic potential that has a discontinuity (a jump). However, we now 

know that critical transformations involve sorne higher derivatives which are infinite 

ratller than discontinuaus. Moreover, the intrinsic nature of the singularity 1S part 

of tht' central problem of the theory of critical phenomena. These phenomena have, 

nt'vf~rtheless, aIl been incIuded in second-arder phase transitions and this wider clas

~ifi('ation, according to Fisher (1967), now rneans "nat of the first order".3 Sorne 

typical diverging second order derivatives are the cornpressibility or susceptibility, 

thc specifie heat, the expansion coefficient, and so on. 

Consider now an A-B mixture (e.g. liquid-gas) of given chemical potential Jl and 

al pressure P. At a first order phase transition, this system will be characterized by 

the equilibrium condition of the two phases, i.e. 

JLA(P, T) = JLB(P, T). 

This equation implies there exists an equilibrium coexistence curve P = P(T). The 

possible existence of an equilibrium allows us to write 

[rom which one can obtain the Clausius-Clapeyron equation by expanding the differ-

cnLials: 
dP SA - SB 

dT - 1)A - VB 

where S and v are respectively the entropy and the volume per particle and 60H is 

the latent heat of the transformation. More generally, for a system under an intensive 

force X cou pied to a parameter x, one has 

dX 60s 
dT = 6ox' (2.1 ) 

An important application of this equation is the determination of the dependence of 

t he pressure on the transition temperature. 

3Wt> t'xdude, of course, the infinite-order Kosterlitz-Thouless transition. 
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U nlike first-order transitions, second-order transitions have no volume or t'II t rllp~ 

discontinuity. They are therefore reversible. The belicf t.:lat the therlllodYllétlllll' 

functions were continuous throughout, except Cor a jump at the tral\~itioll pOl lit , 

was used by Ehrenfest to derive equations relating the finite di,contil\lliti('~ of tht' 

derivatives among themselves. This is done using l'Ilopital rult> with respt'ct to bot Il 

T and V on the indet.erminate form % of equation (2.1). rhi~ approach is how!'\'!'( 

obsolete in view of the nature of some of the singularities Cound. 

Thermodynamics4 deals with system in cquilibrium. For example, the ~l'(\t'ral COli 

dition for stable equilibrium for a closed system at T, P constant is to be in ib ~tatc 01 

minimum Gibbs potential.5 Therefore, for any small fluctuation in (,' ::::: U - l'L~' f l' \. , 

where U is the internal energy, we must have, 

G' - G := U' - U - T(S' - S) - P(V' - V) > O. 

Now assume we change T and P to T' and P' in order to get a ~tat<· C' for which WI' 

have S' and V'. Since this state must he stable too, wc mu!>t ha.ve, for th .. · ~t.;ttl' (: 

close to C' 

G - G' = U - li' - T'(S - S') - P'(V -- V') > o. 

Adding term by tenu 

t:1T t::.S - t:1P t::. V > o. ('2.'2) 

At fixed T and P, this merely says that the heat absorhed 1l\1l~t <tlway:o. 1)(' J!;f(·(l\.(·f 

t ... 'l.n the work done. This last equation sufficcs to fix the stahility of a ~y~tl·llI. I\t 

constant T and constant P, one gets respectively 

(8P/8V)r < 0, 

(8T/8S)p = T/Cp > O. 
( l.:q 

Since equation (2.2) is of general validity, it can also hc dividcd by t::. V 2 al. (Ollht ;tIIt 

4Despite its name ... Historically, dynamzc.! was justified from the 1II0Vf.'IIlt'nt IIIdul f'c1 l,y ~tl"l1l1 
engint's. 

5The same derivation can be made with any two constant parallll't('r ail'! tlH' corrf'''IHl/ldlIIg 
thermodynamic potential 



ClIAPTER 2. GENERAL OVERVIEW OF PHASE TRANSITIONS 

S and vice-versa yiclding 

(âPjâV)s < 0, 

(âTjâS)v == TjGv > o. 

10 

(2.4 ) 

The thermoclynamic approach to critical phenomena involves considering the limit of 

stability when, for a homogeneous system, the two phases become identical. Formally, 

titis ca.n be taken as the case of equality of the above equations and a set of equations 

charaderizing the critical point can thus be obtained. 

2.2 Further stability considerations 

Gases are among the substances which were thoroughly investigated during the last 

centuries but, even if their behaviour at high T was weil understood6 
, a complete 

theory explaining their behaviour at a phase transition was not developed. The 

van der Waals theory of phase transition had a strong influence on the subsequent 

theories.1 His famous equation 

(P+ ;2) (V -b) = RT, 

whcre a and b are constants, can be related to an elementary cusp catastrophe (Pip

panl 1985), because of the instahility loop it produces. It could he derived rigorously 

in one dimension by assuming a hard-sphere repulsive potential and an attractive 

pot.pnt.ial of the form -a,e--,r. The result comes out in the, -t 0 limit, i.e. for a 

tl Avogadro hypothesis, Boyle-Mariotte, Gay-Lussac, Dalton laws, etc ... 
71n fad, a myriad of other PV state equations appeared in the last century and, among the most 

u~eflll, are: 
(p + V~T)(V - b) = RT 
P (V - b) == RTexp-a/RTV 

(p + V~/') (V -b) = RT 

Berthelot equation, 
first and 
second Dieterici equations, 

to which enumeration one must add the exact phenomenological virial expanSiOn in IIV and in P. 
In addition to the description in the text, the previous success of the van der Waals equation came 
frolll the faet that it can he related ta, say, the Lennard-Jones potential coefficients. Those can 
!att'f be u!.ed ta predict the 1I0n-UI11Versal aitical parameters yielding a unique law of correspondlng 
~tl\h's in tenu!> ofrcduced state variables (e.g PIPe, VIVe, .. . ). This assuIllption is verified by SOIlle 
gn~t'~ ilS Guggl'Ilhellll has shown This was one of the first manifestations of the univeIsahty concept 

• 
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weak interaction of infinite range. Sel' (HemIlH'r and Lt'bowit z I!lïti) and rdeft'IICC" 

therein for more details. 

On this PV curve, Maxwell's construction (e.g. (Kadanofr et al. 1%7)) d,'fillt'" 

two isobaric points, for each isotherm, such that the integral of \' d J' \'.ll1\"lll'~ 101 

this interval. A complete numerical treatment in FORTRAN of titis proCt'dllr,· l.11l 

be found in (Schmid, Spitz and Losch 1988). The locus of ail th('~t' poillt-. lorlll" 

the bmodal. Inside this region is the locus of aH points such that t ht, bot lll'rlll.d 

compressibility KT = -V-l(8Vj8P)T is infinite. Following Gihb!o.' inh·rprl'l.tI 1011 , 

this defines the spmodal curve. It delineates two rcgions difft'ft'Ilt by t 1\1' ~I~II III 

the cornpressibility. The regioll inside the spinodal iî-. ralled ullstabk ~iIlCt', by l~ :1) 

and (2.4), no stable state can have a negative comprcssibility. The ot llt'f ft'J.?;\01l I~ 

called mdastable and represents an extension of the stable hOlllOP;t'IIt'Ol\~ ~ t.d P III t () 

the heterogeneous region. 

As an example, con si der a very poetic phase tramition: the llIorninp; dt'w. TIlt' 

air, containing water vapour, gently cools clown to a tCllIperaturt' ai which It I)I'(()III!'" 

saturated. At this point microscopie droplets start to forrn and î-.lowly fall clOWII 1IJllier 

gravity. As shown by the usual PV diagram, the vapour would c()lIlillll()I1~ly «()lId!'II~" 

by further reducing the partial volume (along the horizontal lillt') or by furt IlI'r «(Joi 

ing (down to another isotherm), both proccsses yielding portiom of difrcf('111 ph"",'., 

according to the phenomenological lever rule. 

This is, however, a particular case. In fact, Jn view of nUc!t'.ttion t/wory, wll('l1 

the condensing constituent is pure8 nothing instantarH'OIlS happt'w, (witltill ,L ('('[LLlIl 

range) but a supersaturated or undercooled state forllls respc('livt'ly.!1 Thil", 1 1 If' Ilf' 

haviour of a phase transition is intimately bound to its dynaIlli('~ and iLlIy al"'llIl'l 

based on finding the right form of the free energy negleds thi~ .L~pect. 111 b l, t III' 

major weakness of these theories is the absence of fluctuation~. '1'h('~{' play illl 1111 l'or-

Lnt rôle in any transforma.tion. If one brings a system to the JII('ta~tahle f('P;1011 Hlf'lI 

BNo wettable walls, IOns, interfaces .. 
9For example, metastable states having a pressure of 5 tl/n('s the (,()lId('II~llti()n pr! ~~IIf( (1111 L, 

obtained experimentally for water vapour at 373K (Abraham Hl71) 
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tlll' rt'laxatioTl process -it is now in a state out of equilibrium- will depend on local 

a.ncl finite fluctuations. Thcse lattcr will help to form droplets that may continue to 

grow if fluctuations could drive them beyond a critical size. The characteristics of 

t hi~ rritical clroplet are related to the dimensionality and topology of the problcm 

considcred. This will be considered in Chapter 6. On the other hand, if one bring~ a 

~y~t(,1Il in the spinodal region, then the whole system will evolve in a continuous series 

of intt'rmecliate states, each of which is thermodynamically more favourecl than the 

preccding onc. Bccause of the very nature of such a mechanism, fluc~uations must 

be lllfinitesimai and spread out over large regions. This difference is seen experimen

tally and gives distinct phenomena known as nucleation and spinodal decomposition 

r('spedivcly. See (Doremus 1985) for a good experimental treatment.10 However, the 

di~t indion is not as sharp as one might expeet and there is expected to be a transi

tion rcgion where both processes ()ccur (Heermann 1984). The sharpness of the eut 

15 relatcd to the range of the interaction. Moreover, the shape of the pattern formed 

15 Ilot sufficient to make the distinction, since a spinoclal pattern can be formed out 

of oVt'rlapping droplets. 

2.3 The mean field approach 

Ol\t' main and important contribution from older theori\~s has been the introduction 

of an order paramcter. This ls used to express the free energy of a system in a 

pht'lIolllcnological form. lI The principal approach consists in minimizing this phe-

la And plduTes too' 
11 We have to stress here that this free energy lS not the true free energy Recal! that in statistical 

111('( hlllIlCS, the latter 15 defined as F( M, T) = -kB T log Z( M, T) where Z is the partition function 
,<nd 1..'/1 is the Boltzmann constant, w hereas it lS defined as E - TSin standard thermodynanl1c~ 
The vnnnble E represents the energy of the system whtle the others have been defined earher Thest' 
ddimt!ons art' comi~tent sinee they can theoretically be related one to the other. 
Wht'n Legendre transformations are used for passmg from, say, Helmholtz free energy F(M,1') 
to Glbh, free energy G(h, T), the number of thermodynamical varIables requued to descnbe the 
tlwTlIlodynamies of the system remains co.lstant. However, the introduction of a phenomenologlcal 
frt,t' euergy lS generally one of the form F(M, h, T) Therefore, although the same symbol has beell 
Il~t'd for both forms of free el\ergy, it must be c1ear that the phenomenological form represents 
"ollwtlllng dltTerent. 
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nomenological free energy with respect to this ord!'r parameter while it\clt\(ll\\~ (hl' 

interactions in a mean field term acting over a non-interacting sy~telll. In vit'w of C0l11 

pleteness and for further reference, we shaH present a form of tilt' (;il\zbl\f~- Land.IlI 

free energy. The treatment given here follows the one given in C,lhn (1!);,H). 

For this, assume a continuous modcl of a scalar field ~,( ~), wllt'fc J' i~ t Il\' :-.pat I.d 

position vector. It may be thought of as the magnetizat ion or COIICt'lIt r.dlol\ 1 t I~ 

further assumed that the free energy density, f, l'an be exprt'~~t'd ilS a ~l\1II of 1 WIl 

contributions which are functions of the local composition and the local C()lI\pt)~i(\()1l 

derivatives respectively. Providing f is also continllolls 12 
, it cali he ('Xp.llldt'd .!IlOlIl 

the value fo representing a homogeneom. sub~tance. If one COII~idt'r~ tilt' i~(ll r"plt 

case, then f is a scalar that must be invariant with respect to roLtt ion. Thll ... IIlIly 

even powers of the gradient can appear. Therefore, the leadillg tt'rlll~ of tilt' ('Xp<lIl~ltJlI 

are 

Wh(,H~ C and d are tensors resulting from the expansion, i.e. 

and 

( 
02f ) 

dt) = o(ô1/J/OXt)ô(a~)/{);;) 0 

that become, under the symmetry requircmcnh., 

{ 
( ai) f -aVl-;j. 0 or l - J 

o ot h('rwi~{' 

and 

for i --= J 

othcrwi~c. 

12The most striking result of Onsager's solution is that the fTt'e eneTgy hlt~ 11 ln IT '/~ 1 II Till wh, Il 

expanded, thus showing that the expansion is not possible about the stn~II/l1r pOllll '/; '/ 1 ... fll,1 
that a nrst order transition point IS also a slllgular pOint can be obt1ltn('(j by rlll·tl1 .. tllb/,· /lurt, IltlfJlI 

arguments. See (Andrecv 1964). Therefole, the a~sumptlon thal tht' ("ol'flÏ<"wllt... <L and Il lU" llll,dytl< 

in T ln equation (2.6) is unjustified 



C/lAJJTER 2. GENERAL OVERVIEW OF PHASE TRANSITIONS 

\\\\\ \ 

\ \\\\\ \ 
\ \\\\~ \ 
\ \\~\ 
\ \ 
\ 

14 

FIgure 2 }. Representation of the free energy in the Landau theory of phase transitions. The second 
curVt' from the inslde is at Tc. 

Whcn one integrates over the whole space, the second term can be intcgrated by 

parts and reduced, with the help of the divergence theorem, to a surface term and a 

(\7 ~1)2 term. The former is not relevant in the thermodynamic limit. This reduces 

the preccding equation to 

(2.5 ) 

whn(' 
de 

c = - d'IjJ + d. 

Nole that the value F[V'] depends on the form of the functions fo('ljJ(~» and 'lj;(œ) 

and is therefore a ftmctLOnal. The function fI) is assumed to be of the form guessed 

by Landa.u (Landau and Lifshitz 1981)j i.e. an even power expansion in the order 

para.meter with a linear coefficient (T - Tc) for the 1jJ2 term , thus changing its sign at 

1~ in order to from a double weIl potential. This is represented in figure 2.1. Formally, 

(2.6) 

w bert' Il and b are positive constants and the numeric factors are there only to simplify 

tht' dt'rivatives. Sec (Pippard 1985) for a nice analogy between equation (2.6) and el-
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ementary catastrophe theory. Note that the symmetrical weIl implies tht' eqll\\.dl·I\\\· 

bet ween the t wo states 1/J and -1/.) coming out of the brokt'n ~y lll111t'l ry, 'l'III" 11\\'.\ 1l~ 

that the theory is expeded to be alwéLys valid near Tc whert' the Iwo dill't'rt'Ilt phd~t'~ 

cease ta be distinct. 

2.4 Critical phenOlllena., universality and scaling 

With the help of the concept of an arder paramder, aIl phase tran~it iOIl~ c.\Il IH' 

described in similar tenns. The arder parameter takes on dilft'rcnt valuc!> ill n)('xi~t III)!. 

phases and therefore jumps discontinuously in course of a phaM' tr.tn~llioll, Tht' 

magnitude of the jump is related to the differencc bctwt'cn the (·oexist.ill)!; pha~t'~, 

being finite for a first order transition and going ta zero at a critical point.. FOrillally, 

the order parameter ?jJ vanishes in the disordered state, and is non-zero in 11 n ordcrt'd 

state, where its different values, say ?jJ = ±l, correspond t.o distinct orden'cl st.al(·!'> 

We shall first concentrate on critical phenomena. 

2.4.1 Critical phenomena 

Near the critical point, the qualitative similarity among the clilf('[('lIt pllil!'>(, 1 rail '>1-

tians is even more apparent when one notes that the experill\<'lItal r('~1I1b ('.UI .t\! 1)1' 

written in tenus of power law singularities and sornc critical cxporwllts, OIl('(' Ut(' ordn 

parameter is used as a descriptive variable. The bimilarit.y ob::,ervec! aJllon~ "X 1)()[lI' III ~, 

obtained from different physical phenomena suggcst.s that all pha~e tran:-,itioll'> (,lIl 1)(' 

divided into a small number of "universality" classes, ùependill~ lJ(lon the dlllH'lI"ioll

ality of the system and the syrrunetries of thc order states. For !'Xillllplf', t11f' nill( al 

exponents for a thl'ee-dimensional Ising model, which will he di"cu~~ed III the /lf'xl 

chapter, are the saIlle no matter what the underlying lattice i~, 

Thc physical ~ollrce of universality can he understood as follow~. COIl'>ld,'r, fOI 

example, a ferromagnetic system. The arder parameter is proportioIlal to tllf' Illitgllf' 

tization M, for which the magnctic susceptibili ty X is related to t Iw fluet lJiLtiou:-, of 1 III' 
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order parameter via the fluctuation-dissipation relation (e.g. (Landau and Lifshitz 

1981 )L 
(2.7) 

By lJ!>ing the magnetic density, 

M = / dœ m(œ), (2.8) 

the susceptibility X ean be redefined as 

X = f3 /! dœ dœ' (~m(œ)..1m(œ')) = f3V ! dœ (..1m(œ)Âm(o)), (2.9) 

w hcre we have used translation al invarianee,13 and the standard definition f3 = 1/ kB T, 

whcrc kB is Boltzmann's constant. It is found experimentally (Helier 1967) that the 

susccptibility diverges at the Curie temperature, i.e. as the system goes from a 

paramagnetic to a ferromagnetic state. The divergence of the susceptibility then 

shows, by (2.9) and the faet that ~rn( œ) is bounded, that correlations must involve 

larger and larger regions while approaching Tc. A way to postulate universality is 

as follows. As the system goes to its critical point, the t.hermodynamic potential 

derivativcs diverge becallse of the diverging correlation length ç. Critical phenomena 

arc thcrefore dominated by fluctuations in M which appear on seales much larger than 

the force range. Consequently, these fluctuations can only see certain gross features 

of the interatomic potential. Th ........ Cre, the determinant features of the proeess will 

be quantities sneh as dimensionality and symmetry. 

This description leads to the idea of scaling. Since most critical phenomena can 

he classified into a small set of classes, the main characteristics of the t.ransition can 

th('n be thought of as being related to common features of the models. For example, 

if OIlC measures the linear dimensions of the system in units of ç, then a "univers al 

function" muId be obtained, since the same diverging length, ç, is responsible for a11 

the divergences. The stndy of the characteristics that the free energy functional, or the 

equation of st<lte, should have in order to produce the correct critical exponents leads 

13Note thn.t for an isotropie system the correlation function forming the Iast integrand wou Id read 
41\"1. 2 (~m( r )L\.m( O;~" 
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to the conclusion that it should asymptotically behave like a. homogeneous fund ion of 

its arguments as it gets near to the critical temperature Tc. Thus, the crit.icalex pOllcHt 

inequalities, both observed and predicted from thermodynamics arguments, would 1)(' 

followed as equalities. 

In order to illustrate this idea, we shall continue the abovc cxalllplc for a magne! il' 

system (Plischke and Bergersen 1989). Given a thermodynamic potential (Il wIllrh 

depends on the field h = H - He, and a reduced tempcrature clcfincd as 

° _ T - Tc 
- Te ' 

we assume that the singular part behaves like 

It follows from standard thermodynamics relations (Pippard Hl57) that 

m(O, h) 

X(O,h) 

Ch(O, h) 

_ (8ef» - ÀY+1m(>.3!O ÀYh) 
8h 8 - " 

= ( ~r;: ) 8 = >. 2y 1-1 X (>. 3! ° , >. y h ), 

= -1' (~~~t = À23!+lCh (>."'O,>'Yh). 

( 2.10) 

(2.11 ) 

If one selects the special scale change h = 0 and>' = IOI-l/3!, then one call writc, 

according to the previous equations and the definition of critical exponcnb (Stanley 

1971), 

m(O,O) _ (-ot(ytll/"'m(-l,O) '" (-B)f3 

X(B,O) = IOI-(2Y+l l!3!X(±1,0) '" IBI--r 

Ch(O, O) IOI-(23!+ll/:Z:Ch (±1,0) rv IOI-a 

and similarly, with the chuice ° = 0 and>' = \h\-l/II get 

m(O, h) = Ihl-(Y+ll/Ym(O, ±1) "" \hl-O sign(h). 

The critical exponents are therefore not aU independent and they can he related by 

the following "scaling laws" 

a: + 2{3 + , = 2 

(3(fJ - 1) = ,. 

(2 12) 

(2.1:~ ) 

i 
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The fact that ç diverges as IBI-II at Tc, combined with the hypothesis thll.t ç is 
the only characteristic length, leads to the conclusion that the system has to be scale 

invariant at this temperature. The application of the scaling hypothesis is facilitated 

by using the ideas of scale transformation and dimensional analysis. 

As a last example, consider a scale change of a factor b. Because the system has 

to he scale invariant at Tc, we assume that the effective field h' and temperature (J' 

after the scale transformation will be given by 

0' b;/l fJ 

h' - bYh 

for which scale invariance (0 = 0) holds at Tc. Since the free energy is an extensive 

function, we must also have 

if! ( fJ, h) == b~ if! (b:l! B, bY h ). 

On the other hand, under the same scale change, the correlation length rescales as 

Now choose a factor b = IfJl-1/:e and h = 0 to obtain 

cJ.)(B,O) IOI-d/:l!cJ.)(±l,O) 

ç(O,O) _ IOI-l/ze(±l,O) "" IBI-v 

from which follows v = I/x. By using the last equation of (2.11) on the free energy 

we get a - 2 == dix. The relation thus obtained is called the hyperscaling relation 

and involves dimension 

dv = 2 - a. (2.14) 

A scaling relation also exists for the so-called correlation function 

and has the functional form 

g(B,h,r) = b2_ld_'1g(b;/lO,bYh,r/b) (2.15) 

Bear Tc. 



CHAPTER 2. GENERAL OVERVIEW OF PHASE TRANSITIONS lH 

2.4.2 Scaling in first order phase transitions 

The idea of scaling proved so useful in the study of critical phenomena 1 h.lI Il ha~ 

been extended to first or der phase transitions. The central idea, t'quivalt'nt to 1 lit' 

notion of scale invariance at Tc in critical phenomena, is the concept of self-~illlilarily. 

That is, we assume tha.t ail the parts of the system grow in the s,une rat Î,) for ail 

times within the scaling regime. Thus, a scale change will automatically illdnce .1 

time rescaling in the case of dynamical growth phenomcna. Figures 2.4.2 and 2..1.2 

illustrate this idea. 

As a measure of correlation, we shail use the time-dependcnt strue! IIrt' factor 

S(k, t) which is simply the Fourier transform of the correlation fundioll!J. II. i~ 

more convenient to use, since the wave regularity of the covariance between tilt· local 

fluctuations over the whole space is thus extraded. The variabl(' k is u~('d it~ t ht' waVt' 

number. In view of what has been said before, we assume that. the ht.ruct.Uf(' fat lor 

can be expressed as a function of the wave number, the mean dOlllain si;',(· U alld t ht' 

dynamic correlation length e(t). By using the same scaling method and dilll('II~jonal 

analysis we used before, wc can write, after a scale change by a factor h, 

S(k, t) f(k,R(t),ç(t)) 

bd f(bk, R(t)jb,f,(t)jb). 

We now choose a scale change such that b = R( t) 50 that 

S(k,t) = R(t)df(kR(t), 1,e(t)jR(t)). 

(2.W) 

(2.17) 

The idea that the mean size of the domains will be the only dominant length f'lilllillal.l'i'> 

the dependency of the last argument since it should he related to the forllll'f by i'>O JIl t' 

function, i.e. 

S(k,t) = R(t)df(kR(t)). ('2 .• H) 

This scaling law is different from the above scaling laws in two asp(·cb. Olll' li'> 

the time dependence of the characteristic length R( t). The otlwr is the im'!l"vancy cJ 

the correlation length ç of the or der parameter fluctuations; cquatjoll (2.1 H) i" only 

1 
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Figure 2.2: The time evolution of a bi-dimensional ferromagnetic Ising mode!. The system of size 
128 x 128 was put in contact with a heat bath at O.6Tc• Note the similarity of a mentally enlarged 
piect' of an ellrly configuration with a 1ater one. The time sc ale goes from 0 to 23 mes. 



l 

CHAPTER 2. GENERAL OVERVIEW OF PHASE TRANSITIONS :21 

-R .... US.It •• R ..... 26 ... 4 
-

R ..... ~hl,.4 

-ReeU923."e. R.eeee29S"'4 

ReeeU32s@84 RueU33s@e. Reeeee34sH4 Re88ee15.~84 

Ruee836sct.4 RU .. 83e .... RU •• tH.II .. 

Renee"."e4 Reeeee41SlPe. Reeeee42SH4 

Reeeee44s@84 ReeeU4ss@e. R8eeee46sH4 

Figure 2.3: The same as the preceding figure. The time evoluhon is from 21 ta 47 mcs. N()t~· III)W 

the discreteness of a cubic lattice favors the creation of diagonal interfac{·~. 

i 
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round to hold in a scaling region for which kç « 1, so that R(t) » e iJ the only 

characteristic length of the problem. 

This scaling law will serve as the main ingredient of the dynamic MCRG method 

u:,ed in the study of a first order transition. This will be presented in a following 

chapter. 
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Chapter 3 

The Ising Model 

The Ising model has been an important model in the study of critical pht'I!OI\Wlld. 

Indeed, it is the first non-trivial model to have been solved completely.' lt.s ('0111-

pIete solution in two dimensions served as a reference result for ail the SUb!>cqllcl1t 

approximation theories. 

Lenz invented this model based on ferromagnetic considerations. Lenz' st.udellt, 

Ising (1925), published the solution of this model in one dimension, and concl\l(kd 

the model was not good enough to show a ferromagnetic behaviour ... Thc compl(·t (' 

history of the Len ... -Ising model as well as its developments can be round in (Brll .... h 

1967).2 

Although the two-dimensional equilibrium Ising model can he a good ttpprOXllllil 

tion to sorne physical systems, the kinetic Ising models should Ilot be f('garded .l~ 

models faithfully describing phenomena occurring on smaU and large length !>eil1(· i Il 

rcal physical systems. Indeed, as sorne authors remarked (e.g. (Kawasaki 1!)7~)), 

the value of those models lies in the fact that these provide us with preciscly defi Iwd 

mathematical models in which no statistical approximation of cooperative elf(·( t" 

enter. However, provided the universality hypothesis holds, the scope of applimhil

ity is large. The rareness of valuable experimental dynamic information frolll t wo 

'Sorne other non-trivial systems to have a solution are the triple-splIl triangular modc'I a/lrl th, 
symmetric 8-vertex model (Baxter) in 2D as well as the spherical mode! i/l 3D 

2It also contains photographs of Ising and Lenz for your collection albulII . 

23 
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dimcnsional systems (e.g. adatoms, surface science) and layers (e.g. films, interfaces) 

~hollld also be noted. 

3.1 Description of the model 

'll bpitc Ol its relative simplicity, the Ising mode! shows phase transformation be

haviour. The basis of this modt-i Îs a d-dimensionallattice having its topology given 

by the rhoiœ of the boundary conditions and the elementary eeU. To eaeh of the 

noùcs is mapped a variable3 that can take discrete values. The discreteness of this 

variable is intimately related to the modes involved in the transition. In particular, 

it is responsible for the fact that a diserete symmetry group (reflection) is broken at 

the transition point.4 

In a general way, the exchange energy between the sites is included in a Hamilto

nia.n of the form 
1 N N 

Ji = - L L: ftJ(O'" O'J) (7"O'J - h 2:= (7't 
2 t J t 

(3.1 ) 

whcre the sum is over the N sites, 0', = ±1, h is proportional to the external field and 

(tJ( 0'1' 0')) is the i- j interaction function. The latter can vary over the lattice thereby 

representing inhomogeneous cases.5 However, we will mainly be concerned with the 

hOIllogeneous case (i.e. Et) = E , Vi, j). This way, the interaction may be thought of as a 

square well potential when, in addition, one only considers nearest neighbours. Thus, 

the model represents a domain of a strongly anisotropie hornogeneous ferromagnetic 

suhstancc.6 This crude view seems nevertheless a good approximation to sorne other 

physical systems. The interaction function ean also be taken as a "U" potentia.l 

minimized when the spin are on the nodes 50 that continuous values for spin position 

30ftt'n called spin 
<1 A broken symmetry involving a continuous symmetry group gives rise to a spectrum of zero 

t'Ilergy collective modes such as spin waves for the Heisenberg model (rotation group), for example 
Tht·se are the so-called Goldstone excitatIOn mode~. See (Brout 1965) for example. 

6 E g spin glasses composed of some ferromagnetIc and sorne antiferromagnetic sites. 
tiN ote that a "real" ferromagnetic transitIOn IS also accompamed with a volume change ealled 

lllugndo~tndlOn ThiS is one more argument ln favour of symmetry breaking in a transition. The 
ny~ta.l l'vell 100ses its eubl, symmetry in Fe, for example 
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can he used, thus allowing the use of an eledronic prohability detll'\ity. St't' (l\la l!17lib) 

for details. 

This model has been studied in many dimensions (up to ï ... ) and over \'éHlOlh 

lattices. These investigations found the lower and upper eriti,al dimensioll!l of t ht' 

mode!. The former, i.e. the dimension below and at whieh no phase tramitioll C<lll 

occur is one. In faet, Landau (1981) showed, some time ago, that 110 pha.sc transitloll 

can ever oecur in one dimension. It turns out however that the lowcr (Titieal dilllt'II!1ioll 

depends on the symmetry of the order parameter. 7 The upper eritieal dillll'Il!liO\l i" 

the dimension heyond and from which the hehaviour of the oceurring plHLht' trall:,it iOIl 

can he exactly deserihed in terms of mean field theories. 

Even if the model can be seen as a nice and challenging mathcmatical prohlt'lIl, 

physicists are coneerned with applicable models. The models in 1,2 and 3 dil\u'fH,IOII" 

can serve as a representation, although sometimes crudely, of some sp('cific phy ... icctl 

systems. We sha11 eoncentrate on the homogeneous two-dimcnsional zero lil'ld lIlodel 

with a Hamiltonian given by 

(:\ ~) 

where the sum is earried out over the 1 nearest neighhours. For the rcst of thi:- Wol k, 

we sha11 assume a two dimensional model unless stated otherwihe.1l 

Due to historical reason, the two cases € < 0 and € > 0 arc calleel ferr<J1lla~lIct \( 

and antiferromagnetic respectively. There is however a slight differencc in the ordn 

parameter for these two cases. In the first place, it is defined as the aV('f(l~(, (fT,! 

over the system whereas it is defined as thc same average ovcr different ~IlJ)I'riatti('t'" 

in the second.9 The latter is sometimes referred to as the staggcrcd mugltf'ltZalloll. 

The sarne models can be used to represent other physical syhtems. For eXiLlllpI(', cl 

crude liquid-gas transition model called lattlee gas can be mapped to the fir!>t Ccl'>" 

or a ABABA ... binary alloys ean he mapped to the second. These hOl!lOIllOrphi;,lll'" 

1The lower critical dimension is 1 for a system involvmg a. dlscrcte order ll/1f11mdf'r /LUc! al l, ,L~t 
2 otherwise. 

8Note that in this case and for f = l, the value of the energy per Spin (1t) / N I~ Nluival"ul l,) th, 
nearest neighbour correlation function esiimated over the system. 

IlE,g. both even or both odd row, column for a 2-d square lattice. 

1 
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arc weIl descrihed in (H lang 1987) and (Gunton and Oroz 1983) respectively. 

Finally, note that the definition of such a Hamiltonian does not define any dy

nar,lical hehaviour. This will he seen more formally in Section 3.4. 

3.2 The equilibrium Ising model 

This section shall he devoted to the investigation of the mode! with different ap

proaches. A good and complete analysis of the Ising model un der mean field theories 

can he found in (Plischke and Bergersen 1989). We will only consider here the cases 

f('levant to the followiTlg chapters. 

3.2.1 The exact solution 

Since the Ising model is special in the sense that it has an exact solution, and also for 

rom pleteness, we shall start by giving the results for the two-dimensional zero field 

cru,c, as ohtained for the first time by Onsager10 (1944). Simpler and more elegant 

met.hods involving a transfcr matrix have been published since and the curious reader 

will find aU the details in the following references (Stanley 1971; Huang 1987; Plischke 

and Bcrgersen 1989). The solution of the 3-D model is still an open challenge. 

The internal energy per spin u(T) is found to he, using {3 = 1/kB T, K = (3€ and 

q( 1\) = 2 sinh(2K)/ cosh2 (2K) 

u(1') = € coth(2K) [1 + ~(2 tanh 2(2K) - 1 )Kl (q)] (3.3) 

where 

is t he complete elliptic integral of the first kind which may be evaluated numerically. 

Nok .. hat u is an even {unction with respect to f. The spontaneous magnetization is 

10 As a counterpart to the coid fusion story, it may be worth noting that Onsager was a chemist. 
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Figure 3.1: Energy per spin for the Ising model at different temperatures. Th!' <;ol1d l1l1t' l' ""talll'-,j 

from a numerical integration of equation (3.3). The data points cow'",polHl to a <;llllulntJolI "" ,\ 
ferromagnetic system of size 64 x 64 

given by 

where 

{ 

[1 - (sinh(K))-4]1/1l 
mo(T) = 

o 
T < r( 

T > 'I~ 

-2ka ka 
Tc = Vi ~ 2.2691-. 

€ln( 2 - 1) € 

The magnetization as well as the energy are shown on figures 3.2 and :L1 ft'!'>j)!'( t i vl·ly 

The solution itself is a mathematical tour de force, and is con!'>idl'rt'd il. lalldillark III 

the study of critical phenomena. This showed explicitly that a singularity III t 1)(' fll'/' 

energy can emerge from a non-singular Hamiltonian. Since t}WIl, a. major (b.LlI(·II)!,(· 

has been to show how the non-analyticity develops in the cours\' of a !'>t'l'OIHI-OI dn 

phase transition. 

1 
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Flgllrt' 3 2. Magnetization of the Ising model. The sotid tine is obtained by plotting equabon (3.4) 
'l'hl' data points are extracted from the simulation mentiont'd in figure 3.1. They represent an 
average on 320 systems. 

3.2.2 A continuum approximation 

Ali materials possess magnetic behaviour due to the orbital and spin magnetic mo

\II{,l\ ta. of the electrons. ll Although theories on ferromagnetism can involve band 

t heory or Hartree-Fock approximation methods, the ebsentials of the cooperative be

haviour can be explained by considering the coupling of only two electrons. In this 

regard, the Ising model, though it is in sorne seme a microscopie description, is al

It'ady a Iough approximation over the various degrees of freedom of the atom. But 

the details cf the microscopie interactions are not the crucial point to cooperative 

phellomena. Therefore, one can go a little bit further by taking an arithmetic mean 

oveI smalt regions of space12 
, thus smoothing the discreteness of the model and "in

tq!;rating out" the short wavelengths of spatial fluctuations. This method can be seen 

<13 a one way seale change operator and will be physically meaningful as long as the 

(' hoicc of the new block size is not larger than the correlation length. It has the ad-

11 Tht' nucleus magnetic momentum can be ignored since it is several order of magnitude smaller, 
thollgh very important in NMR. 

1 "This method is Ilsually called coar.se g1'ammg. 

• 
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vantage that the resulting variable, say ~JJ' will be a smootllt'r, or, a~ is sRid, a ":-.I~,\\·" 

variable. Thus, one would be justified in using a continuous [und ion 1.0 d,'srrill!' 1 hl' 

block variables. 

Formally, the new variable will be defined as 

where d is the dimension, b the scaling fador, and j is the hlock index. W(, lIOW ,,~k 

Knowing the probability distribution (in the canonical cnscmblt,) of t.he con fip;llr.tllllll 

ensemble {O'}, what is the resulting distribution of the new cnselllbie {~tO} '! II ~III~ d 

Kronecker delta, one finds that the new probability must be proportioIlal 1 () 

where sorne of the explicit degrees of frecdom of the (J', 's have been inc\uded in p;r<'lt'I 

freedom in the range of the less numerous -,p; 's. Il' also includeh a degl'I1efitcy IC'IIII 

that can be associated with an entropy. This equation defines a l1ew lIallliltollidll 

that has a coarser spatial resolution over our model. This las!. prohahility will 1)(' 

normalized by the partition functioll 

Z = L e-/3/l'(.pb) 

{.pb} 

where {-,pb} means the set of aIl possible configurations. Frolll it, Oll<' wOllld 1)(' 'Llllc' 

to find the Cree energy of the system. 

U sing arguments similar to those used in Section 2.:3, one ((UI approxilll.t1 c·I'1 1 II!' 

free energy by a spatially homogeneous part and a spatially inholllOW'I1('Oll~ part 

describing the slow spatial variations. That is, the free ctlergy d(,llsity can lH' (h,~( rllwr! 

by 
'Y 

J, = Jo(-,p~) + L C'J(-,p~ - -,p;? 
;=1 

13The reader can find in (\Vegner 1976) a nice short derivatlJn of a C:lIlzbllr~-Lllndl1ll Iyl" fr" 
energy for the Ising model, derived directly From the Hamlltonian 
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Wheff' Jo is taken as in equation (2.6) and where the second term is anaiogous to the 

gradient term of (2.5). In fact, it can be demonstrated (Tartas 1988) that the sum 

ab ove is equivalent to a C'V'1jJ)2 term wh en integrating over the whole space in the 

continu 111Il limit. We are thcn left with an equation similar to the Ginzburg-Landau 

frce energy functional (2.5). By taking equation (3.8) to describe the system, we 

deliberately neglected the short-scale interactions. This approach is justified in view 

of the long-range order observed at the critical point. It is also justified if one wishes 

to isolate long-range effects from the short-range fluctuations of a system. 

Equation (3.8), in relation to equations (3.6) and (3.7), is not directIy evaluated 

by simulation techniques. Sorne estimations can be made by calculating the one- and 

two.point distribution functions. See (Gunton and Droz 1983; Gunton, San Miguel 

and Sahni 1983) and references therein. 

Another technique of coarse graining consists in rewriting the Hamiltonian (3.2) 

in t('fms of Fourier transformed variables. Then, one can integrate an the spatial fluc

tuat.ions on a scale sm aller than a certain eut-off wavelength along a given dimension 

of lincar size L. That is, for a hypercubic system of dimension Ld, we define14 

(3.9) 

a.nd 

1 ~ -.k. ~ 
Ule = Ld/2 ~ uze , 

:r=1 

(3.10) 

where we used ;c and k indices for the real and transformed space respecti"ely. In 

fa et , it. would be possible to express the Hamiltonian 1t in terms of these new vari

ablt,s. Now if we are interested in the probability distribution of long wavelengths, 

irrespectively of the value of short ones, it will be found to be proportional to 

()( L: ... L e- f3HIo (u) == e-{3H~(u). (3.11) 
kd>/t. loi >/t. 

\Vith this new Hamiltouiall 1t1.(u), the short wavelengths (large k) have been 

inh'grated out in the probability distribution so that variations of spins over a scale 

14 As IlSUIÙ, the infinite volume continuun limit implies the replacement L -+ (2 .. ).1/2 J dd x . 
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shorter than rv ~ will not be specified. That is, the spatial rl'soln t ion ~flTf cali hl' 

identified with the scaling factor b and an effect similar to equat.ion (:~.tI) l'ail bl' 

achieved. The new "blocked" configuration can be obtained from 

(:~. 12) 

Lastly, we note that the process of blocking smears out the discretenesh of t hl' 

model and that the replacement of the sums by integrals can he pl'rfl'dly jm t illec! 

This W hole pro cess is sometimes referred to as Kadanoff blocking and will Il(' t ht' 

starting point of Chapter 4. 

3.3 Monte Carlo siD1ulations 

The advent of more pow('rfuP5 computers in the last two decadcs has p('rmittl'd 

the development of new numerical methods. These faster machines rail perforlll 

simulations on systems of reasonable size which involve a hugc Humber of clement ary 

operations. One major task of statistical mechanics is the evaluation of the partitio/l 

function. A possible numerical way to evaluate it is to choose il. point at randolIl in t.h(' 

phase space, calculate the energy and then weight it according to the corrc~pondillJ.!; 

distribution function. But, unlike common high-dimensional lIuIllcrical illtcJ.!;rat 1011, 

the evaluation of the energy over the lattice is still too time consllIlliug. A Ilotlwf 

method is therefore necessary. 

3.3.1 The Metropolis algorithm 

At the dawn of computer age, Metropolis ct al. (1953) invented a mcthod thiLt ~i III ph 

fies this calculation. 16 The main idea is that rather than generating stat(·~, fûlldolllly 

t5For the time being ... 
16In a paper named EquatlOn of .!tate calculatlOns by fast comput mg mach mes ... Tht'Y f(ÎHJrt, d 

a 3 min/mes for a N = 224 rigid sphere mode!. Compared wlth the IIlagnilud .. of lOf! IJpdal,'~/~' c 
that can he ohtained from supercomputers nowadays (see (Wansleben 1987) and refert'IIC'('" thl'f' III) 
eight orders of magnitude has been gained since then. 

1 
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and then weighting them with the distribution factor, one generates new configura

tions according to their distribution and weights them evenly.l1 Consider, for exam

pIe, the N site two-dimensional Ising mode} we have been working with 50 far. The 

algorithl.l is as follows. Given a configuration, select a site i randomly, evaluate the 

cnergy br.E to "fiip" (7', to -(1', and generate the new fiipped state according to the 

probability min(l, e-.aAE ).18 This procedure can be used, for example, to represent 

the process of adsorption of an adatom onto a surface in equilibrium with the vapour. 

As can be seeo, this process does oot conserve the or der parameter. A way to preserve 

it is to select two sites at random, evaluate the energy involved in interchanging these 

two sites and then proceed as above. 19 This last method is more representative of a 

physical phenomena involving a local diffusion process. Note that in both cases, the 

mcthod only invûlves the local calculation of the energy of one or two spins. This is 

what. makes this technique so advantageous.20 

Since each site can be selected and flipped with a non-nuIl probability, we expect 

that the system can (and should) access aIl of its states in time, 50 that the ergodic 

hypothesis holds,21 This latter assumes that an average over time should be equivalent 

t.o an average over an ensemble of systems. This will only be true if the sampling 

p('riod is longer that the relaxation time of the system of interest. This is why time 

correlation has to !Je considered in any Monte Carlo simulation. 

17ThiS process IS sometimes knuwn as tmportance samplmg as opposed to stmple sampltng. See 
the book by Binder and Heermann (1988) for a clear and complete mtroduction to Monte Carlo 
mdhod5 in statistlcal physlcs. 

IkThis way ofproreeding IS named aCter Metropohs The equivalent field dynamic mode! is knowil 
1\:' lIlodel A (Halpenn and Hohenberg 1977) (cf. Section 3.4 2). Note however, that Glauber (who 
~olVt'd the re~ultlllg stocha:,hr dynamical problem III one dimension (Glauber 1963)), is sometimes 
used (Williams 1985a) ta deslgnate the saille algonthm but with the transition probability (3.23). 

1I1Tlus way of proreeding IS referred to a:, K awasak! dynamic<o (Kawasaki 1972). The equivalent 
field dyllanllr model is ral\ed model B 

~llThe .Mctwpolts algonthm IS 8.1so used, for example, to find a soluhon to the tr ;:,velmg salcsman 

prob/t'l1I Tlus I~ an exalllple of combzna/orwl mtnlmzzatwn. A path Joilling citi'!s to be visited 
110 fIlndomly rho~en and the dlstanre traveled IS mllluTIlzed by allowmg some restr ucturlng of the 
p/Lth 1Il a Maxwell-Boltzmann fashion. Tre solution is found by slowly adJushng a "temperature" 
pamlllt'ter and the method IS then caned stmulated annealmg (Press et al. 1988). It is used, fOl 
nllmple, for the arrangement of the circuit elements, lU the deSign of integrated circuits. 

21'1'I1IS 15 not true in Saille spin glasses where the existence of frozen spms can form a bottleneck 
to "lHIlC reglOlls of phase spare. 



CHAPTER 3. THE ISING MODEL 

For this, assume we consider two quantities A and B. The covariann' for t heM' 

two sets of values will be given hy 

covar(A,B) = (Ô.AÔ.B) -= (AB) - (A)(B) 

as well as the correlation 

covar(A, B) 
corr(A,B) = ((Ô.A)2)1/2((~B)2)1/2 

so that for a time-displaced quantity evaluate,l with respect to an arbitrary t.illll' f", 

at which the system is in equilibrium, we can write the time-displaced corn'lat.ioll 

function cp( t) as 

(A(to)A(to + t)) - (A(to))(A(to + i)) 
'PA(t) == ((A(to) _ (A(to)) )2)1/2((A(to + t) - (A(to + i)) )2)ïT:i' 

(:L1:q 

Typically, when the system is far from the critical temperature, the tillle corf('l,ltioll i!-' 

negligihle after a few Monte Carlo steps22 (mes). At Tc, it can he as large as t.hOllhilIlt!!-, 

of mes, being highly dependent on the system size. The decay can he des( rihed hy 

a series of exponentials, one of which is dominant, with the largest relaxat.ioll tillw. 

This suggests a definition for a characteristic relaxation time 

(:U1) 

This definition will yield the usual time constant if the relaxation is purely and !-'i 111 ply 

exponential. This is found to he the case at Tc. See figure 3.3. 

3.3.2 The Markov chain-a deeper look 

Any pro cess for which the probability of a future state is only fUlIctioll of t.he pn'!-'('Ilt 

one is said Markovian. The evolution probability of the present btate is tll<'rdon' 1I0! 

function of its history. Since the Metropolis algorithm satisfies this rriterion, II, iLllow,> 

us to use the theory of Markov processes. 

220ne Monte Carlo step is defined as N elementary proces!>c!>, 1 t' it dl·finl·., Il tUI\!' .,("Illt· tllllt 
allows comparison between systems of differcnt sizes. 

• 
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Figurt" 3.3: The time-displaced correlation function Ir'M(t) obtained from simulations over systems 
of L == 64,32,16, from top to bottom. Note the strong system size dependence which will be further 
exploitt'd in Chapter 5. It also shows, by the slow decay of these correlations, how highly correlatt'd 
III tllne is a system at Tc A system at, say, D.5Te would ideally appear on the ordinate of thls graph 
1I0wt>ver a rea} simulation shows noise that would appear on the lower part of the logarithmic scale. 

Let us first note that the Ising model has a finite number of configurations, 

hil\ct' the number of degrees of freedom is finite and those are discrete and bounded 

(a :..= ± 1). Consider now a statistical ensemble of configurations a represented by a 

probability distribution Q.23 We cau think of the probability of ail the possible states 

in this finite ensemble grouped in a vedor Q( a). 24 An elementary pro cess can thus be 

represented by a matrix W(b +-- a) acting on the vector Q(a) to give a vector Q'(a). 

Thus 

Q'(b) = 2:W(b +-- a)Q(a). 
a 

We would like this process to bring an initial ensemble Q 0 to a desired ensemble 

nif, fOf eXll.mple, one starts a Markov chain from a known configuration a then Q will be zero 
t'vnywhert" and 1 for Q(a). This distribation should spread out and converge to sorne desired 
probllbility distribution. This notation, from (Bhanot 1988), is similar to the ket vector introduced 
hy Kndlll\otf (e g. (Kawasaki 1972)). 

24 A continuons distribution function can be thought of as an infinite vector and the extension 
b.'l'Olllt''' straightforward. 
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p. 25 This means that W must he such that 26 

lim WnQ" = P. 
n->ao 

This would he true if P = WP is the unique fixed point of the aigorithlll. Wc 

must therefore show that P is an eigenvector of W associat.ed wit.h an (·igt·lI\'altlt' 1. 

Moreover W must satisfy the usuaI probability conditions 

L:W(b ~ a) = 1 
b 

W(b ~ a) > 0 

where a stronger restriction (non-null probahility) has been impost'd by (:3.1H). 'l'I\t·~t' 

two conditions ensure that there is a non-vanishing probability 1.0 go from any init i.1l 

configuration to any final one. This is called the strong ergodicit.y condit.ion. In hOlIlt' 

cases, condition (3.18) can be relaxed and one can still have an crgodic pro('('~s. A Iw 

note that 

LQ(a) = 1 (:U!I) 
a 

h01118 at each step of the evolution. These three last equations arc suflici('nt 1,0 d(·lillt' 

a Markov process. 

If one chooses W( b ~ a) such that it satisfics the detail('d balancc cq uat.ioll, 1.('. ~j' 

W(b ~ a)P(a) = W(a +- b)P(b), (:~ ~O) 

then one can show that Pis an eigenvector of }V. Indecd, it follow~ from (:L17) alld 

(3.20) that 

2: W(b +- a)P(a) = P(b) L:W(a ~ b) CO- P(h). 
a a 

25E g , P( Ut, .. ') UN) = e- f3H (CTI, ,<1N) for a canonical di!'.tnbutlOn or h( 1/ (fT), • , fT N ) l,;,,) for 

a microcanonical ensemble. 
26This would also imply that, for an observable A estllnated by (A)p flVt'r tht· c!t·<,)p·d l'Il~I'JIIIJI, 

and by A over the Markov chain, one would have 

lim A = (A)p 
n-.oo 

27This is sometimes referred to as m,cro~coplC reverstbzhty 
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'l'hi!' rnerely says that the probability of being in astate b after one evolution step 

from a.ny possible existing states (including b itself) is equal to the present probability 

of heillg in b. The proof that P is unique is beyond the scope of this description and 

the reader is referred to a very comprehensive paper by Bhanot (1988). It has also 

hC{'1I proven (Kennedy et al. 1986) that unit y is the largest eigenvalue. This means 

that a.s long there exists sorne overlap between Qo and P, the repeated action of W 

will damp out ail eigenvectors except P. 

Using the same notl'ltion we can define the Metropolis algorithm, as described 

ahove, by the following transition matrix 

{ 
~ ifEb<Ea (P(b»P(a» (a-'-b) 

W(b +- a) = T r 
T~ ~i:~ if Eb ~ Ea (P(b)::; P(a» 

(3.21) 

wherc Pis the temperature dependent Boltzmann probability factor (e-.B E ) describing 

the canonical ensemble and r fixes the time scale.28 This latter is gencrally choscn 

to he unity. The factor N cornes from the nature of the algorithm and the clement 

W( a +- a) is determined fl'om condition (3.17). In order to have size independent 

cquations, it is corn mon to work with a size normalized evolution probability matrix 

W' defined as 

W'(b +- a) = WN(b +- a). (3.22) 

'l'hi::. defines a normalized time seale having, as elementary unit, one Monte Carlo 

stc!> per spin (mes) on the average. 

Another common way of defining the algorithm, especially for dynamics problems, 

is (l\Iiillcr-Krumbhaar and Binder 1973; Binder 1974; Binder and Stauffer 1984) 2!J 

1 P(b) 
W(b +- a) = rN P(a) + P(b)' (3.23) 

-

2"The fador r can be seen as T dependel't in order to describe the details of the interaction with 
the lwat bath. However, a chlmge in r would break condition (3.17) and must be seen as a fador 
lIIultiplying the whole matrix W in order to modify the tra.nsition probability per unit time, It 
would be simpler in this case to rescale time 

2\1Note that the forms 

W= - I-tanh-- =-----=-1 [ f3~E] 1 e- f3AE 

2rN 2 TNl+e- f3AE 

11ft' (''1l1lvlllent to (323). 
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Figure 3.4: A comparative plot of the Metropohs and Glauber transüioll prohnhlhtl!'<; Tht' At..t,.t1I't1II~ 
(top) has a transition probability of 1 for any change having the nd l'fred of lowt'f1l1t1; tilt' l'lIt'f~y 
of the system. Glauber algorithm (bottom) is softer with that respect. Note that bolh proCt'.,.,,·., 
yield the same curve for {3 --+ 00, with the ollly dlfferellce thal the trall.,illOlI pcohabdlly T N H" ror 
{3t:..E = 0 is al ways 1 for the first case and always 1/2 for the ",'colIll 

which seems more natural in terrns of transition probahility. This is t.he forlll (:Iallhn 

used for solving the onc-dimensional dynamic problelll (l!){i:q. Thi~ tran.,il iOIl prohil

bility, by being softer, satisfies equation (3.18) evcn when resraled iLccordlll)!; 10 (:L22). 

Indecd, after N elementary steps, thcre is il. non-llull probahility of I)('in~ in <Illy ~I .11,' 

from any initial configuration. Thus, ergodicity follows. Tbi~ i~ Ilot tilt' l'il"'" for OUT 

first dcfinition wherc one has to assume a longer time for ergodicity t.o Ill' pm:-.ihl!' 

On the other hand, one sure test to praye that a transition llIatrix i:-. !\ot crJ,!;odi< 1~ 

to check if the matrix can be put in a block-diagonal forrll. FiJ!,lIn' :l.'1 :-.!tow:-> 1 lit' 

proLability behaviour for these two choices. 

Computer simulations give the same rcsults for eitbcr IIwthod wlwll :-.llIdyillJ!, 

equilibrium properties. l\1ethod (3.21) go es fastpr 10 equilibrilllll tbougl., dlll' t(J 1 1 If' 

fact that no possible flip is rejcctcd once considcred (Binder anc! Stallll'I'r 1 1)~·1). W .. 

shall now comider, as an example of definitioll (:3.21), tbe N :-'111' /1 fJ 111.1.1 fi X. III 

this case, W is a 2N x 2N syIIlllletric matrix of traCt· ~I'fO:l() 'l'Ill' off-diagollal p.lrl 

30The singulanty herc l~ the "yllllllctry of tht' matclX that \\ollld al.,,, IJI' "I,tall\l'd Witt. d, fi 1111 l'HI 
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comihts of zeros and 1/ N elements. The f3 = 00 case has the singularity that one 

of its column is a null vector.31 It would be justified then to suspect sorne sort of 

singularity, such as a strong instability, at Tc, where the convergence of W becomes 

il minimum (critical slowing down). 

1t can be proved that both definitions obey to the detailed balance equation (3.20). 

For (3.21), for example, we have if Ea > Eb, a -1 b, 

W(b +- a)P(a) = P(a)fN 

1 P(a) 
W(a +- b)P(b) = N P(b) P(b) = P{a)fN 

a.nd the detailed balance follows. The same result cornes out when Ea < Eb. The 

conv('rgence of the algorithrn is therefore ensured by these conditions. 

Instead of defining the transition probability W over the configuration spacc, it is 

comInon to use the individual values of the spin variables. The probability distribution 

Q wIll then be a function of N variables taking two discrete values instead of one 

variable of 2N possible values. With this notation, the transition probability (3.21) 

becolllcs 

1 P(lTlo .-0'". ,UN) If E(U1. • -17" .UN) ~ E(U1. ,17" ,UN) 
T N P( 0'1. ,0'" .17 N) 

(3.24) 

This definition has the weakness that the mode of spin selection is not implicitly 

t akt'II into account as will be seen in the next section. Actually, the selection of 

t ht' hi te only has importance when the dynamical characteristics of the model are 

rouhidcred. In view of the static case: most of the choices are equivalent and yield the 

sa.Ille resuIts, although requiring different amounts of computer time. The more usual 

selcdilHl algorithms are sequential, random, or the so-called checker.board algorithm. 

This latter consists in going in a sequential way over one of the l super-Iattices of the 
- ---------------
(32:\) 

31 For a degenerate rase, there should be as many null column vectors as ground states. 
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system at the time. On parallel machines,32 this way of procecding has the ad\'.\I\t:q,!,l' 

that Njl flips can he done in only one parallel step. On the ot.her hand, r<llldoll\ 

selection necessitates a good random numher generator for ot.herwise sOllle site Illi~hl 

never be visited due to pair33 coupling among the numbers geIlcrat.ed. 'l'hi~ woul11 

then break the ergodicity because sorne states will be forhiddt>[l and as il rt'~1l11 1 lit' 

phase space may be split in separated indc.pendent domains.34 

3.4 The kinetic Ising model 

The following will he concerned with the technical aspects of a silllulat.ed <J 1\ ('Il (' Il 

i.e. the action of suddenly changing the heat bath from a hot t('mpemt,\lre to a 111111 h 

colder one - whereas Chapter 6 will present growth in a more l!;erH'ral ('on t t'X 1.. 

Let us first mention that kinetic simulations on the variolls lIlodt'ls allow II~ 10 

calculate tht'! values of different time correlations which are not. acC('s),ihlt, t'X pl'rilill'll 

tally, but which can he of sorne theoretical interest. The lack of illt.riw.ic dYllilllli(" 

of the model has already been discussed. This can he se('11 fOflll1llly hy Il,,ill~ 1 Ill' 

classical mechanics formalism of Poisson brackets or the forlllalil>1Il of (Ollllllll1.tll)r~ 

for a quantum system. U nlike the Ising model, mos!. of the OUIl'f lIloI1l'!l> ( 1\ 1'1!->I'IlI11'1 1.>;, 

tluids, , .. ) do have time evolution in tenns of determinist.ic kirlt'tic t'qualloJl", On 

the other hand, the dynamic evolution, according to stocha.!ltic mcthod!l, 1" llol (Oll-

sistent with the actual physical time evolution of these ~yst(,lm (Bindef alld St,lIIl1n 

1984).35 In the Ising model however, the Monte Carlo proCCl>l> coult! IH' iulnprl'1l'd 

as a simulation of the real kinetics of the system. Moreovcf, SOlIlf' <Iin'ct appli, all/Ill" 

have heen made in the last years. For exarnple, sorne relat.ed [/lod,'h, Wl'fI' Il,>,,t! IJy 

Safran et al. to represent adsorption of oxygen on a t ungsten ~llrffLce (1 ~;H:~). For lltl" 

32Where one processor can be assigned to each lattJce sIte 
330r triplet, depending on the dimension of the lattlce 
34 As mentioned befoIe, the same thing can happen in the ~tudy of "PIIl gll1~,>(,", wh. ft' "')111' 

[rustrated spin may hinder the probability flow from going 11\ cerlam r('gloll (jf pl\l~"(' "!l'l"" 
35 For the Heisenberg model for example, Monte Carlo ~III\UlatlOn~ only .. how IL rdl1xatlollal J" 

haviour, despite the spin wave dyn~mics predlcted by tht' unalY<;I" of tht' Il ail Il !t'J1lHlIl 
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purpose, they used a mode! having three possible values for the (1\'s instead o~ twO.36 

Here are sorne examples showing how a kinetic Ising model can be used to simulate 

various physical systems. 

• A ferromagnetic mode} with spin-flip dynarnics. This is the stand~rd treatment 

of a fcrrornagnet. This is also the kinetic lattice gas representation. The order 

parameter is not conserved. 

• An antiferromagnetic mode! with spin-flip dynamics. This can be used, for 

ex ample, to represent a surface adsorption or a similar process on a lattice that 

permits only two equivalent choices for the forming superlattice. The order 

parameter is not conserved. 

• A ferromagnetic model with spin-exchange dynamics. This is, among other 

applications, the star. dard representation of the spinodal decomposition process. 

The order parameter is conserved. 

• An antiferrornagnetic model with spin-exchange dynamics. This represents the 

llSuai AB binary alloy system simulation. The order parameter is not conserved. 

The concept of universality classes has also been extended to dynamicai models. 

For examplc, aIl the combinations ab ove are thought to invclve only two classes 

~ov('rned by conservation laws. These latter thus play an important rôle. Lastly, it 

shol1ld he noted that the only exact solution existing at the present time, for any 

kint'\ ie model, Îs Glauber's solution for the s pin- flip one- dirnensional Ising mo del 

3.4.1 The master equation 

Le! liS return to the probability distribution Q of the preceding section. If one takes 

an t'volution step, as defined in (3.22), as the evolution time, then one can write the 
-

3'\Those mode!!> are then called Q-state Potis models. 



• 

CHAPTER 3. THE ISING MODEL ·1 1 

master equation valid at any discrete time t 37 

Q(a,t+ 1) - Q(a,t) = L:[W(b ~ a)Q(b,t) - W{(t ~ b)Q{(t,t)]. 
Il 

When Q has converged to P and jf W and P have been chosen ~uch that t llt'y ~at i:-.fy 

the detailed balance equation (3.20) then a stationary state follows. 

Now assume that we have a system at equilibrium at SOlllC high l' and j hal \Vt' 

quench it. This is usually do ne by starting from a random configuration r{'pr{,~l'Ilt i 11~ 

a p = 0 temperature. The stress given to a system at time to can be M't'II ét~ a 

step function 80 that no explicit time dependence COIn es in W. This is valid a~ I()II~ 

as the process involved has a relaxation time scale much longer thall the a~~IIIlH'd 

phonon-type energy diffusion. We are only interested in the t > t" rcp;ioll ~o t.h.1I 

we consider a stationary transition probability matrix. necall~(, of that, alld tilt' 

associative property of matrices, one can define a new time 5('<1.1(' by redl'fillil\~ 11\1' 

matrix W as any power of itself. 38 

We can see, however, that the master equation is crucially relat.('(l to tilt' dIO~(,lI ill

gorithm. For the two transition probahilities presen tcd aboyc for cxitlllpic d. (:1 ~ 1 ), 

and (3.23)-, it has bcen argued that the dynami('al properties ('ould 1)(' fC!'>( .dt·1I 

to match, simply by using a temperature dependent fador (MiiJlt'f-Krulllhlt.lM .. "d 

Binder 1973). This latter is calculated as the ratio of the mean ~1!('('('s:',[111 !'>plll lIip~ 

per Monte Carlo step for each method. 

If one puts the additional condition of updating the spins in il pafticular Wily, t /WII 

the master equation will no longer be valid, as pointed out by Gilwl\ll~ki Il Ill. ( 1 !IX:I) 

Indeed, their result., showed substantial discrepancies bdwct'Il diffcf(,llt lIj('l"()d~ qf 

updating the spins. They argued that the main condition in thil> bituatioll i~ tbat tlll' 

time scale chosen must he such that there is no significant evolutioll <lurill!!; Ollt' 1/)( ~ 

They studied a sequential updating metho'l that chang('s the natufe of tilt' t rrlll~it 1011 

matrix. lndeed, in this case, a discrete time dependence is impo~(·d, ah OJlI' (OIlêlidt'f'> 

37The prime is dropped on W. 
38Note that the property 3.17 still remains valid for /Lily power of W 
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the elementary processes made over the configuration distribution. 39 Suppose, for 

cxamplc, one updates the spins in a "disordered" sequential fashion. Then, the net 

cffect will be the same as if one uses a poor, strongly correlated, short period ('" N) 

random number generator. If N is large, this effect can be seen to vanish as if the 

randomness of the "generator" was improved. Therefore the question this problem 

mises is still the same old one: What is the freedom one has on a real random number 

gencrator before effects start to be seen? Or, equivalently, what is an ideal random 

Humber generator for the problem considered? 

The problem of paraUel processing has also heen investigated by Williams (1985a) 

and by VIIlals et al. (1986). At this point, the studies seem to conclude that the 

dynarnical results obtained from a paraliei (multi-spin-flip) algorithm are consistent 

with the one obtained from a singie-spin-flip updating scheme under certain conditions 

only. In other words, the two algorithms are thought to he in the same dynamicai 

univcrsality class. However, further investigations are still required in order to know 

the degree of equivalence between these different algorithrns. 

3.4.2 A phenomenological approach 

Slip pose onc can find sorne sort of smooth variable( s) that would contain the princi pal 

(macroscopic) information about the system. The forgotten degrees of freedom couid 

t ht>1l he cxpresscd as a random term, selected according to the expeded response 

pf the systcm. One sometimes caUs these variables slow and and fast respectively. 

11\ !!;t'neral, the order parameter 'IjJ and some hydrodynamic variables are choscIl as 

slow variables. The derivation of dynamic equations, expressed in terms of these new 

variables, dcpends on whether or not the order parameter Îs conserved. 

Bdore presenting the phenomenological equations describing the relaxation of the 

I~ill~ mode! described above, let us consider the formalism developed earlier, in the 

frall1t'work of Brownian motion. The latter was one of the first direct applications 

3\\Tht' transition probability for each spin wlll behave like the valves of an engine, being on and 
off rydl(:ly for rarh N flip turn. 
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of the theory of Markov processes in physics. The study of this phcllomcna ill\,l)l\'t,~ 

a .... et of stochastic equations defined over continuous space variables, of which t hl' 

famous example is the random walk probl~ll1. 

Consider the equation of motion of a particle i, of givell mass 111" 111 SllSpt'I\~1011 

in a fluid 

where h Îs the coefficient of friction, f. is an external driving force an,l J; is a r.llldolJl 

force due to the collisions of the molecules with the partidc. If one n('~lerts tht' 

inertial force and takes f. as a conservative force that can be deri ved from il pol ('Il t ia 1 

V, then 
av x. = -r~ + 1]" 
uX, 

where 1]. = t: / h is a random force such that its average over an eIls('mhle of pa ri Il l('~ 

is null and uncorrelated in both space and time, i.e. such tha! 

(1],(t)) 

(1],(t)1]J(t')) 

0, 

B5(t - t')8'J 

( ') ')") d. "1 

where B = 2rkB T is a constant, a consequence of the fluctllation-dibsipation fplatioll. 

This type of equation is called a Langevin equation.40 

Now, con si der the spin-flip Ising mode! rlescribed by eqllations (3.2) and (:L21) or 

(3.23) dynamics. Assume that the discreteness of the lllodel has been :o.lIIoollwr! 011 1 

by using the technique described in Section 3.2.2, for example. l'hen, hy tilkill~ t 1)(' 

free energy functional as the driving force, one can write, in a way silllilitr to tilt' 0111' 

considered above, 
éN~ 8F[1/J~J 
Tt = -r 0 51/J': -1- 1/. 

where any "inertial tenn" 'if; has been neglected, IIcf(~ 1'0 i., the rodli< lent11 t It,d, 

causes '1/.' to relax towards a configuration which rninimizes the fUlI( tional Je' and '/1 1'> 

40For Brownian motion, by using the eC!uipartition theorem and the diffmton l'ljll/ltlOlI (.r 2
) /)/, 

BIs found to be equal to hkBT, from whlch one finds EllI~telll'S eqlll1ttoll for difruwJ/I j) (l:lJ'I'JIt) 

See (Léontovitch 1986) for example. 
41This coefficient is sometnues called Onsager klllctic coefficlt>11t ... ill("(' tht!. l'qUlltloll ha., ;d.,,, 1" 1 Il 

developed in the context of the thermodynamics of irrever~jble PU)Cf'''''C''> 
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il random force term, as in (3.26), such that 

(71,( x, t)} 

(r,,(x, t)71J(X', t')} 

0, 

2rokBT8(x - ;"f")8(t - t')8,3' 

44 

(3.29) 

Because 'I/J: is not restricted by the value of any other ceU, no conservation law 

holds in this mode!. In the case of a spin-exchange dynamics, the coefficient ro of 

the driving force will have to be changed to -ro\72.42 Note that these models only 

deseribe the relaxation of a system towards equilibrium.43 

There exists no real physical derivation, from first principles, of equation (3.28). 

One derivation of the above Langevin equation was made by Langer (Langer 1971) 

who makes plausible assumptions and obtains the non-linear equation (3.28) from the 

master equation. However, the validity of this derivation is sometimes questioned for 

its lack of rigour (Gunton 1984). 

Mueh of the literature has been devoted to thi;:; approach. A summary and clas

sification of the different models, as weil as their applicability, have been made by 

lIalperill and Hohenberg (1977). AlI these models use a Ginzburg-Landau free en

ergy functional F as described in equation (2.5) and, for this reason, are often called 

t illlc-dcpendent Ginzburg-Landau (TDGL) models. The models described ab ove are 

designated as Illodel A (non-conserved) and model B (conserved) respecti vely. 

These non-linear equations may he solved numerically. This is generally done by 

using a lattice on which continuous '!/JI are àefined. This requires the use of a discrete 

form of the Laplacian over the nearest neighhours in order to calculate th/' [ree energy 

fundional. For example, a numerical solution of the Langevin equation l3.28) can he 

round in a paper by Valls and Mazenko (1986). 

4~III analogy with Brownian motion, thlS would correspond ta a system of inter acting particles 
wlth n fixed center of mass at al! hme. 

4
3Consistency with equihbrium is enforced by the fluctuation-dissipation relation for .". 
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3.5 Finite-size effects and scaling 

Although the size oftoday's computers allows us to pcrform work on larger alld I.H)!,t'1 

systems, they still remain finite. However, a sharp phase transition can on1y occur ill 

the thermodynamic limit. This obliges us to understand how t.he size of t hl' sy~tt'Ill 

can affect the results. 

One of the direct consequence of the finiteness of the system is the fad t hat for 

any non-zero temperature there exists a finite probability for the whole Sybtt'Ill to flip 

from near 1'f/1 1 to near -1'f/11. In other words the two identical probabilit.y "pockt'b" 

located near ±1'f/11 in the phase space are connected. This meaus that any illl!lortallc(, 

sampling as taken by equation (3.15) will eventually yield a zero valut' for tilt' ord!,1 

parameter. Formally 

N 

('f/1h,N = (I>',)r,N = 0, V nnit.e N 
.=1 

and the only formai way to get around this di ffi cult y is to define the ord('r parallwtn 

by taking the thermodynamic limit as follows 

'1f;TD = lim lim ('1f;)N,H,T. 
H-+o N-+oo 

The possibility of observing the order parametcr comes mainly from the fad t hat ca( Il 

of the state located around ±1'1f;1 are metastable with a charactcristic tilll/' TI' (all!'d 

the ergodzc tzme (Binder and Heermann 1988). For systcms of f(·a.sonahlt' biz(' (i./·. 

L > 10), this "flipping" period is large enough to allow valuable ohhervatioll ~illlply IJy 

storing the absolute value. The relatively small value of the CIH'rgy rccjI!ircd t (J forrn 

a band crossing the entire system, which is generaJly precllrsive to Cl global dlillll!;!', i" 

aiso respoilsible for the formation of a "slab", obtained when one cool!> ft !>y~t('111 frolIl 

a high temperature to a very low (;:s D.4Te ) one. 13ecause the flllctuatioll~ ilrt· tlwu 

too weak, the system freezes in this metastable statc, which forms il localminlllllllll 41 

A survey of finite-size scaling techniques is found in the following fI·f/·ff·ll! "" 

(Binder 1979; Binder and Stauffer 1984; Binder and Heerlllann l!mH). Tbl'> IIwth(Jd 

44This would Dot be true if the whole (straight) interface were allowed to 1Il0VI' 
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hilll ply consists in doing simulations on systems of various sizes, and see if there is a 

trend that develops in the results. One then tries to find a scaling form, similar to 

those explained in the context of second-order phase transitions, that would contain 

tllt~ size as a sealing factor. Because the scaling form often has an asymptotic be

ha.viour, the result for an infinite system can be obtained by extrapolating the size of 

the system to infinity. This kind of scaling regime is only valid when the correlation 

Icngth is much smaller than the linear size of the system. One direct manifestation of 

finite-size effects is the spread of the transition point. For example, the magnetization 

curvc will not go sharply to zero at Tc as in figure 3.2, but will have a tail near T > Tc. 

The effeds of the houndary conditions used are aiso important. Analysis on 

lIloclt'ls at equilibrium with free surfaces have shown that the critical behaviour can he 

shiftcd to a lower temperature and smeared out. When periodic houndary conditions 

are used to eliminate free surfaces then the shift is smaller but in the other direction 

(i.e. T: > Tc). In this case it has been suggested that finite-size effects on the critical 

tcmperature can be described by an equation of the type 

where L is the linear dimension of the system and a and .x are parameters.45 Sec 

(Binder 1974) and references therein for more details. We used periodic boundary 

conditions. 

Some other types of finite-size effects will be observed when one studies dynamics. 

Beyond a certain size, the growth of a "droplet" will start to perturb itself because it 

can loop across the periodic boundary conditions. Based on Monte Carlo simulations, 

this cffed is usually seen when the typical size of the domains is of the order of 

'"v O.4L (Vinais et al. 1985; Sadiq and Binder 1984). Therefore late time studies 

rt'q IIi re very large systems. 

4& À can be related to sOIlle critical exponents 



Chapter 4 

Renormalization Group Methods 

During the last decades, renormalization group methods (RG) havI' played il Il lIlIl'or 

tant rôle in statistical mechanics. They have beell widely uscd wit.h )!;real hllrn':"h for 

a variety of many-body calculations. Given a system with a large IIllmlH'r of d 1'/..0; 1 1'(' ... 

offreedom whose statistical state is described by a Boltzmallll dlhtriblltion ft'I,Lled tu 

the Hamiltonian in the usuaI way, the basic idea consists in illtq!;fatillg ~Olll(' of 1 II(" 

degrees of freedom, typical1y those associated with a small wavelength, and dl" .. rrilllll)!; 

the probability of the remaining degrces of freedom in tenus of il I1amiltonl,lIl whi( Il 

involves these latter only. At the same time, the systcm is rescalcd in t,1'f11lh of Il,, 

Iinear dimensions sa that it has the same set of dynamical variahlt'h, t.he h,lIl1(' llllllltH'1 

of degrees of freedom, as the original system, though it is now (!l'scrilH'd by d IIf'W 

Hamiltonian. This approach has been developed in the context of htati(' (,f1ti< ,d plw 

nornena but generalization to growth problems and critical dyll<UIIÎCh, fOf ('X:Llllp!", 

have been made in the recent years. 

There exist different operators that can do this tramforlllation on th(' d(')!;f('('h III 

freedom of the system. They can be divided in two groups <!t'!H'llding Oll wlwllwr 

they are performed in real or Fourier spaee. Wc have already h('('n '>Ol\}{' of t IWlIl, ,\lI Il 

as blocking in real space or introducing a eut-off in Fourier ~pac(' (cf. Se( 1111/1 :\ t.t) 

Wilson (1971) has shown that an cquivalent rncthod is to pcrfoflll an Ill( 1)llIpkt ,. 

integration by expanding the dimension of the intcgral (1) abOlit the IIppf'f (fltl( ,.1 

47 
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dirrwnro,ion (4) of a Ginzburg-Landau free energy functional. Despite the success of 

this approach, there still rernain questions about the mathematical foundations of the 

nwthod. See (Griffith 1981) for a comprehensive presentation of these problems. We 

..,hall now consider sorne simple but interesting real space RG examples. 

4.1 Real space RG - sorne exarnples 

'l'11f' following applications are Jifferent from the usual theoretical field RG, but they 

are do~cly related ta the kind of RG that can numericaily be done during a computer 

silllulation. Moreover, although the primary goal of the RG theory is the calculation 

of (ritical exponents, it proved to give much more information than expected in one 

dilllension. For this reason, it rnay be worthwhile to comider that case tao. 

4.1.1 The one-dimensional case 

Consider first the one-dimensional nearest-neighbour Ising model. To simplify the 

notation, it is common to use a coupling constant K = {JE (cf. Section 3.2.1). The 

partition function is then written 

Z(N,K) = L ... L I: eKE: 1 EJ=n" <T,<TJ , (4.1 ) 
<TN=±l <Tl=±l <Tl=±l 

wll<'re nn stands for nearest neighbours according to periodic boundary conditions. 

By t'xpanding the sum in the exponent, 

Z = L ... L L '" eK(<Tl<Tl+<Tl<Tl)eK(<TJO"+<T'<T~) •••• 

"N=±l "1::::±1 "t=±l 

If t h(' SUlU is performed on ail even indices, then the same partition function can be 

ft'writteIl, assuming N is odd, as 

'f __ 
/J - L ... L L .. , [eK (C7 1+ CTl) + e-K (O'l +C7J)][eK (<TJ+<T&) + e-K (CT3+ CT &)j •• •• 

CTN=±l 0'3=±1 "1=±1 

Ont' would like to have an equation of a form similar to (4.1). If, by mat ching tenn 

hy terIu, one tries to have an equality such as 

( 4.2) 
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then it would be possible to rewrite (4.1) as 

z = f(K)N/2 

or, more simply, 

This is possible if 

f(K) 

which are solution of equation (4.2). 

.,. )' 
.-J 

i ln cosh(2K), 

2coshl/\2K), 

I!I 

( 1 :\) 

( ·\.·1 ) 

Equation (4.3) relates a partition function of N sites with coupling CO/l"tanl 1\ lu 

a similar one having N /2 sites and coupling constant K'. 

If the free energy is proportional to N then we Illust have' 

ln Z(N, K) = N«( K), 

where ( does not depend on N. 

Using this last equation along with (4.3), we obtain 

(·1 (i) 

or, by (4.4), 

«(K') = 2«(K) -ln[2cosh1/2(2K)]. (·1 7) 

Equations (4.4) and (4.7) will allow us to know the partition [\llldion itl illly '/' 

(or K) once one ofthese is known. One can see from relation (1.4) t.hat A" i:-- illway~ 

smaller than K. It is possible to rewrite the transformation ~\lch thilt il. will/.';o III 

the opposite direction. That is, by inverting the trallsformation~ abow', on. (.lll /.';"1 

the following set of equations that goe!.> from K' to a larger K, 

K ~ cosh-l(e2K '), 

((K) = i ln 2 + ~K' + ~«(K'). 

'This will hold whenever the interactions are saturated or, equivalf"lltly, whf'lll'vI'r w,' II/LV" IlIl 

extensive variable, in the thermodynamic hmit In thi~ case, the chellllea) pot,'utllL) IL (i)j.! aN) 1 
f(N). This implies that (stùl in the thermodynamlc limit) the partItIon f\llldion IlIlLy 1" 'Xpfl'"'''' d 
as a product of N identical factors. 
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A direct application of this last transformation is to start from a small value K~ 

(hif.!;h To ) and to assume that the partition function is given by 2N (N independent 

spim,), 50 that 

«(K~) ~ ln 2. 

So, by \ISing K~ in transformations (4.8), one can generate the value of the partition 

f\llldion at sm aller T. The transformation has the following properties: 

• The transformation (4.4) has two points for which K = K'. These fixed points 

are: K = 0 and K = 00 . 

• The convergence is such that a small error in the first value of ( leads to smaller 

and smaller errors only when one goes from high T to low T. 

This dcfines a "flow diagram" that goes from K = 0 to K = 00. 

So what has been done above? We tried to express the partition function ah 

the product of a temperature dependent function and a similar partition function 

defincd over a superlattice of the system. This latter can then be rescaled in tenns 

of il s linear dimensions. What matters here is how the coupling constants, in the 

Il itmiltonian, changed in such a transformation. At T = 00, the correlation length is 

zero and we found K = K'. At T = 0, the correlation length is also zero and still 

the transformation did not change the coupling constants. This shows how closely 

rplaft'd are the correlation length and this kind of transformation. 

4.1.2 The two-dimensional case 

'l'ht' t wo-dimensional problem is a bit more complicat.ed because coupling constants 

of ~('('ond, third, ... neighbours stad. to appear in a real space transformation. Wh en 

OHt' ('ollsiders a coupling constant space (K 1, K 2, .•• ) for first, second, ... , and a 

romhination of different neighbours, then one can say that the one-dimensional case 

t r,1I1sformation is a.long an axis in the K space whereas it moves differently in the 

t wo-dimellsional case. In fact, the saIlle transformation can be shown to yield (Maris 
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and Kadanoff 1978) 

Z = f(K)N/2 L e[Kl Lnn <1,<1J+K, Lnnn <1~", ~K3 ~.qu .... '~"~J'~~'TI] , \ UI) 

where 

and where nn, nnn, square stand for nearest-, Ilcxt IlCare~t- (wd sq\lM(,-llt',lrt'~I-

neighbours. The transformation has been done on a square lat t ict' sucit t Il ,li \\'t' 

sUIIlmed on ail i + j even. The resultant lattice is still square hut dlat!;oll,d wil It 

respect to the original. The explicit form of the K's is 

1 
41n cosh( 4K), 

IK 2 1, 

K 2 - ~ ln cosh(2K). 

It is therefore impossible to get a Hamiltonian of the saille forlll. If OHI' lll,d\I'~ t Ill' 

approximation of neglecting both K 2 and K3' then no phase trallhition ()c('lIr., .,illl"" 

pattern similar to the one-dimensional case is obtaincd. 2 A he1t"r approxillJ<l1 1011 I~ lu 

include the alignment tendency from the next-ncarcst ncighho\lr~ in th,' /\1 (Oll:-.t.llil 

That is, each transformation carries K to KI + K2• This way, an umtabll' p()l/iI 

appears in the fiow diagram, located at Kc == 0,506. This is surpflhingly riO.,!' t () t 1\1' 

Onsager value of 0,44069 (cf. equation (3.5)) whcn olle ("on~jdl'rh the r(JlI~h Ill'..,., Il! 

this approximation. 

4.2 Real space RG formalism 

A real space renormalization group (RSRG) transformation ':an Ill' :-'1'1'11 a~ ,l 1 r,llI..,fOI 

mation, characterized by a factor b, that maps a "sitt·" hyht('lll to aB I.,Olllorphl< "( 1·11" 

system. Because the transformation leaves the sy~tclIl i~olllorpbic to It'>f'lf, lit'r,tllllIl 

is possible and we are interested in non-trivial (K f- 0, K !1Xi) fixt'd poillh 

2The action of neglecting interaction comtants generatt'd by till'> H(; IIl1"lh"d .<, f' r'·r,,·.\ li, ," 

ircJncatlOn, 
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The transformation mapping the sites variables to the ceU variables is generally 

lIon-linear. For example, a commonly used mapping transformation is the majority 

rtdt', where even (tie) situations are broken up randomly or by foIlowing a "fair" 

l:>(''!uence.3 Using Niemeijer et al. terminology (1976), we say that the site spin vot

('rs fT, of a eeIl district determine a ceIl delegate 5 J of one of two parties. Another 

CO III Illon procedure is to instaH an internaI hierarehy in the eeU, 50 that one spin is 

iLutomatieally the delegate because of its respective position within the cell. 4 

The RG transformation will generate effective interactions between more distant 

lI('I~hbours, as we1l as many-spin couplings. It is possible to write a very general 

lIilllliltonian in terms of any spin combination a by 

1t(s) = 2: Ka II s, (4.10) 
a 'Ea 

al:> t!te one we obtained in the last section. The vector K will denote the entire set of 

("ol\pling constants Ka. Representing by Sa the various neighbour interdependencies 

(cf. various combinations in eq. (4.9)) we can write 

(4.11 ) 
a 

B('cause the process is iterative, we shaH denote by s, a.nd s~ the cell variable and 

the t ransformed cell variable respectively. If the energy IS adjusted 50 that its fi rst 

moment is null, Le. 

(11(s)):=: 2:1t(s) = 0, ( 4.12) 
{.!I} 

t hCIl olle can retrieve the coupling constants from the Hamiltonian. Inrl~::..!, we have 

for a particular combination of spin a 

(Sa 1t(s)) = 2. Sa1l(S) = L Sa L KbSb 

{.} {.} b 

.IOnly wht'n the bloeking factor b and the lattice are such that the numbeI of spins is even, 
oll\'loll~ly There also exists star-triangle transformation on trIangular lattiees A theoretical solution 
illvolvlI1g such a transformatIon can be found in (Hilhorst, Schick and van Leeuwen 1979). 

4Tl\l~ procedure is called deClmatlOn. In teIlDS of Pas defined by equation (4.13) this process is 
rt'prt'~('llted by 

lE) 

\\ herc fi, l!> the ,th cell delegate's address. 
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If we represent by P(s' +- s) the mapping prohability fador, tht'Il, arler .\ tr.lll'> 

formation, the new Hamiltonian will be given hy 

e'H'(6')+G -= L P(s' +- s )e'H(6} 

{I } 

(.1.1 :q 

where the factor G(K) is introduced only to keep condition (4.12) valid. '1'111:-- i:-- tht' 

renormalization transformation. 

The probahility P must follow the two usual probability conclitiom p.ll) alld 

the "soft" (~) version of (3.18). Moreover, it must be su ch tllat t.h(' trall:--forJlll'd 

Hamiltonian can still be written in a rorm similar to (4.11), i.e. h\lrh t.hat. tilt' f.\rttlf 

Ka for a given spin product Sa is the same constant for ail of thOh('. 'l'hi" (.lIl Il«' 

seen as a symmetry requirement. Any mapping transformation P followill)!; t II<'''c' 

requirements is allowed in view of this theory. The probabihty condition (:L 17), WI1('11 

applied to equation (4.13), leads to an important relat.ion aIll()II~ f w(' (,Il('r~i,':-- Th.11 

is, with F defined as 

one gets 

F'+G= F. 

In the thermodynamic limit, we still assume that the free eIl('rp;y F will })(' rt'!lTl''-,c'lltc'd 

by a fundion of the form (4.5). Iffurthermore wc use G(K) - N!I(K) t!)('1l c'qllalJCJIl 

(4.14) can be written as 

((K) = g(K) + AC(K' ). 

Wc are interested in the N ---t 00 thermodynamic lilIIit. '!'I\I'wfoTl', rel.llwll (,1 1:~), 

via (4.14), can he looked at as a mapping of an infinite diIIII'I1'>lOllal "pact' of / (JlIpltli/f, 

i 
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('on~tants onto itself, i.e. 5 

K'=7:K. (4.16) 

The strategy of RG is to obtain the singularity of the free energy (( K) from the 

o)wrator 7:K and the function g(K) which are assumed regular in the neighhourhood 

of a fixed point K·. This latter is charaderized by 

( 4.17) 

Nt'ar this fixed point, equation (4.16) can he linearized about K', i.e. we define a 

lIlatrix T surh that 
BK' 

Ta {3 = BK: 

and a transformation near the fixed point K· will then he written 

K~ - K~ = 2: Tu{3(K{3 - K;). 
{3 

(4.18) 

( 4.19) 

The linear operator T can he simplified by using an eigenvector coordinate system. 

For this, assume that {4>'} is the set of left eigenvectors of the matrix T associated 

wit h the eigenvalue >.,' that is 

(4.20 ) 

TIH'refore, hy using a new coordinate vector w, descrihing the displacement K - K'" 

from the fixed point in terms of the eigenvector basis, we can write the following 

proj(·ct.ion 

w, = <p'. (K - K') (4.21) 

~() t hat one must have, for each component of the vector w, 

(4.22) 

N olt' t hat the expansion (4.19) can he extended to second order to allow investigation 

furt her [rolll the linear regime located around the fixed point. 

bTht" "et of the operators {T(b)} obeys assoClativlty, has the closure property (T(bdT(b 2 ) 

'T(b,d, wlth 'T(b3 l E {T}), and has the neutral element T(1). TheIl' eXlsts no inverse t'leIllent 
((,ll't'pt for tht' triVIal Identity case) 50 that It fonlls a semi group. 
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Because the eigenvectors are charaderized by the tramform.ttim\ ('(I\\.d\\\t\" (1 ~I) 

and (4.22), this allows us to write 

or, similarly, for a series of transformations 

The whole process of RSRG is thus strongly dependent Oll t.hi~ ('igt'lIvalllc "l(lIallOlI 

and, depending on the value of the eigenvalue, the corre5polldill~ ,'i~"lIv,'( lor will Ill' 

named: 

• relevant: if the eigenvalue is larger than 1. This 1lJ('am t.h.d. it.l'r.dloll 01 t III' 

process makes the renormalized point moving away from K·. (:ll'drly, t III' 

larger the eigenvalue, the more relevant it is. The ahsoci.ü(,d 1\('ld il> obi .I1I\1'd 

by determining the symmetry response (e.g. odd for Iz, ('VCII for T) t.O il gloll.d 

spin change. 

• lrrelevant: if the eigenvalue i8 smaller than 1. In thi:, cas(' itl'ration will IIlOV,' 

towards the fixed point so that the effect of these variabh':, dif>aplH'ar ;dt"r ~()1I11' 

itcrations. 

• margmal: if the corresponding eigenvalue is l. RCI\Orlllalt?.LtlOlI hél~ 110 (.!I('( t 

on these variables and the procedure faib. 

The critical exponents are extracted from the cigenviLlll(,~ of the II1.Ltrix III .ul 

dition, it is possible to determine the critical telllperatun" t 1)(' fn'p ('Ij('r~y, .tlld t Ilf' 

spontaneous magnetization. Because this analy:,is i:, not din'ctly pntllll'Ii t t () 0111 

work, we prefer to skip it and refer the reader to a very good f('VWW Kiv"11 Jtl (:';11'/111'1-

jer and van Leeuwen 1976). 

The main problem with this mdhod i8 that the rnatrix T i" infinit(: ln t II!' t liI'f 

modynamic limit so that one has to arbitrarily trulIcate ail hut a Hlllte 1I1lwlwr of tllf' 
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wupllllg constants. Sometirnes, equivalently plausible selections can lead to diffcr

l'lit valuf's. For example, in Section 4.1.2, an improvement of the method, by taking 

( ,Lf(' of the forgotten third coupling constant, leads to results further frorn the known 

val1l1' of the critical point (Maris and Kadanoff 1978). The most systematic way to 

J/oplt'ment the rcal-space renormalization group is the Monte Carlo renormalization 

group. This numerical method incorporates aU interactions commensurate with the 

'>Yhl('lIl size studied. 

4.3 Monte Carlo RG 

MOlltt· Carlo renormalization group was invented by Ma (1976a) and further devel-

01'1'<1 hy Swendsen (1979; 1984). It consists in generating a renormalized lattice 

WII hout doing any analytical work on the Hamiltonian. For exarnple, a sequence of 

configurations is generated according to one of the Monte Carlo algorithms defined 

III Section 3.3. Then a transformation is made on aIl these configurations in order to 

rl'duce the number of degrees of freedom of the system. The most common mapping 

hel ween the spin sites to the celI variable is the majority rule where "ties" are broken 

randolllly.6 The assumption that the renormalized Hamiltonian will "fit" the smallcr 

laI 1 ict' rcdllces the number of possible coupling constants and, in this regard, trun

catt'h the Hamiltonian. For this truncation to be harmless, the effective range of the 

1 1.1 III iltonian must be smaUer than the smaIlest lincar size of the renormalized system. 

lIowt'ver, if t wo different renormalization series are started from systems differing in 

t I\t'ir linca.r dimensions by a factor b, then these finite-size effects will be eliminated 

(at lt'aht reduced) by comparing systems of equal size but differing only by the nUIll-

ber of tilllCS they have heen renormalized. As a consequence, the two systems may 

ht' rt'lated on the basis of their iteration numbers only. 

The matrix T can then he calculated numerically by solving the set of chain ruie 

Il Il I~ very comlllon to havt' b = 2 on a square lattice. An equivalent method consists in selectlllg 
mlldlllllly thret' voters out of four (Ma 19ï6a). 
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cquations obtained after m and m + l iterations 

(.\ ~ 1) 

where S'Y is a generalized spm as defined in (4.11). After the ~ystt'III h<l~ C\llll(' III 

equilibrium, the simulation provides a sequence of configurat.ions from whid\ l'ofn' 

lat ion functions can be calculated. The ab ove derivatives ca.n t hell he ohl ai IIcd tWill 

the following relations 

and 

8(s~ml) = (s(mls(m l) __ (s(ml}(stmh. 
8Kim) 'Y cr 'Y ,,1 

(·1 ~(i) 

The evaluation of the critical exponent.s, as weil as ail the rritical charadni!>1 \(" 1 ha 1 

can be obtained from the transformation matrix -here truncatcd -- i5 f111.t1ly dOlW 

as described at the end of the preceding section. 

An interesting fact to note is that this transformation tcch niquc lead!> 1 \1 1 wu 

different fluctuation time scales. lndeed, in the majority rull' tramforlll;d jOli, t 1)(' 

value of the celI system can be changed by only one spin. Titi:" [I\<'éUl" t Ital t II<' 

renormalized system WiL still contain sorne of the short-tillH' fluctuai i(JII" «(Jill III)!, 

from the original system. 

Lastly, in vicw of critical analysis, we note that this proccdure r('qllif('~ t1w ku"wl 

edge of the critical temperature in advance. This also applies Lo the rel ('111 .tppll 

cations of this method to dynamics, where the critical eXpoIlellt :: i~ eVillu,Lkd by .1 

similar space rescaling methùd that in volves time "matching". I{<'fort' prf'~('/I1 IIII!; t hl" 

method, we shall give a brief review of scaling in critÎ<'al dynalllie". 

1 



Chapter 5 

Critical Dynarnics and Scaling 

This chapter shall pre5p nt an overview of critical dynamic phenomena. Scaling laws 

as weil as Monte Carlo investigations will be reviewed. In addition, we shaH lastly 

Wllcentrate on the determination of the critical exponent z for the two-dimensional 

I~in).!; lIlode!. 

As !>cen in the Section ~.4, the range of fluctuation correlations at the critieal 

point is very large. Therefore, any response from the system to a smaU external 

p('rt urbat.ion will require the onset of long-range response modes that have a very 

Ion).!; relaxation time, mainly because of the large number of particles involved. This 

IS ,nllral slowmg down. 

The lliudy of time-dependent propertics is generally more difficult than the study 

of ('quilibrium quantities_ This is largely because dynamical properties depend cru

cia.l1y on new effects, such as conservation laws. As a result, the study of critiea} 

dynamÎc phenomena is less developed than its static counterpart. Moreover, as wc 

have S('('11 earlier, lllOSt of the equations attempting to describe the kindic processes 

arc ph{'llOmenological. 

58 
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CHAPTER 5. CRITICAL DYNAl\fICS AND SCALIXC; 

5.1 (~onventional theory 

The oldest theory trying to explain critical slowing clown is ha~ed O\l th,' t ht'f1Il(ltl~ 

namics of irreversible processes1 (Kawasaki 1971). Using af!~\lIll"llb ~illldar 10 1 ho'!' 

used in Section 3.4.2 the rate of change of the order paranwt er ~I, 1 oward~ 1 lit' t'II IId d, 

ri um value '!fo, is related to the thermodynamic difrerenCt' <I>( ~I) f rom 1 ht' t''I 1111 dHIllli1 

value by2 
8~1 8<1> 
-- -= -r--
Dt Dt/' 

where ris the kinetic coefficient. The thermodynamic potential <1> can he ,'xpalld,'d 

about the equilibrium value '!fa 

By using the thermodynamic relation 

where h is the field coupled with the parameter ~I, and hy éll->!>ullIin).!; 1 hall h, 1 Il rvat III" 

of the potential does not change in the vicinity of 1ts minimullI, w,' tlWll ~t't 

which has an exponential solution associated with a tim<> comtilllt T xl/' A., ~''('II 

in Section 2.4, the divergence of X goes as 181-"" lH'ar 7~. If l' fI'm,tlll!> finltc, t IWli 1 III' 

relaxation time T diverges as :\. However, this argument Cilnllot :-ay anyt.hlll).!; ,t1)(JlII 

possible singularities of rat Tc, and indeed SOIlle exp!'rilllf'llb !l,tve round II III dlvl'(~!' 

near the critical temperature (Kawasaki 1!176). 

It may be instructive to dcrive the saille fI'sult frolll tlte pIWIIOIlII'1I01")!;11 ,t! 1''11101 

tions of motion presented in Section 3.4.2. For thi~ purpo:-e, ~lIppO~f' Wf' htl\ f' (tI.lr,,· 

grained our Ising model, as in equatioIls (3.8) or (:U2), and tlt,tf v,f' ,t"'''l)lfll' Ih.t! tlll' 

1 ThiS theory IS also somehmes called van Hove theury 
2;-';Olse is ignored for simplicity, cf. equation (328) 
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ct·1I I1arniltonian can be described bya Ginzburg-Landau frce energy (2.5). That is, 

(5.3 ) 

w I\('fe the continuous variables 1j; are obtained from a transformation of the form 

Wlwr! this last equation is used in (5.3) and the properties of Fourier transforms are 

11~('d, wc obtain (Ma 1976b) 

#1t = L [~O + ck
2

] IUkl 2 + ~d I: 8(kl + k2 - k3 - k4 )Ukl U k2 U k3 U k4 
k<!t. kl , ,kt 

W hidl can be approximated by 

(5.4 ) 

The phenomenological equation of motion for the k th mode is written as (cf. equa-

tioll (:3.28)) 

(,5.,) ) 

wit!t 11k subject to the same restrictions as thoi>e given by (3.29) and where the driving 

foret' !tas been obtained from f3 (::.). This shows that the driving force is parabolic 

w\t h rel>pt>d to each mode k. In the limit k -+ 0 it becomes infinitcly small. This is 

('oml~t('nt with the faet that the long-range ordering modes are expected to be the 

Oll('~ ft'sponsible for critical slowing down. Note that each mode is independent of the 

ot hers, so that thcre is no mode-mode eoupling. Indeed, if one suuposes that the 1\ 

arc t!te same for ail k then the relaxhtion time r will be given by 

1 
r/r=-----

r[aO + 2ck2] 
(5.6 ) 

~() t !t,li, for small h, near 7~, 
(}-l X 

rk"-' - = --r r (.5.7) 

w Iwn' the last e<juation COIlles from the faet that 1 = 1 in the mean field t heory. This 

18 pft'cist'Iy t he saIlle result as the one obtained earlier. 
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5.2 Dynamic scaling hypothesis 

The dynamic scaling hypothesis is expressed as follows 

TI. = C f( ç k ). 

It could be derived by extending the arguments of st,üic scallIl~ 10 dyllillllirs. Thh \\ "" 

done for example by Halperin ct al. (Halperin and lIoh('nht'f~ l!Hi!I). Th,' "\.pUIWII\ 

z is ealled the dynamic critical exponent. Note that the arp;ulIlt'1l1 of tht' fUll, 11011 1" 

a dimensionless quantity. This means that a seale chan!!;(' in Iht' ~.Y~tt'Ill \l'lluld kIlt! 

to rescaling of the characteristic time scale. "vVe will fOClls attt'lltlOlI 011 = for tilt' h'<I 

dimensional spin-flip Ising model. We note t.hat thcr<' is IIIU( h p;t'IIt'ral t'xlH"rtIllt"llf Id 

evidence to support the dynarnic scaling hypot. hesis in llIally sy~ t t'II\ ~ ail d il ft'\\' dl TI', t 

results estimating the value of z have been rt>(,t'Illly oht:ullt"d ,\ Set" for t'''''llIplt', 

(Landau, Tang and Wansleben 1988) and re(ert'nces thefClII. 

Vve shan now take a look at an explicit example of the ~c,dill)!; rOrIll of 1 1 If' «(Ill \'t'II 

tional theory (Ma 1976b). If we use the lII(',lIl field valUt' fOf 1 lit' (orrt,l.d 1011 1"II).!.f Il 

f, = (1-1/2 in equation (5.6) we can get 

1 2 l 
Tk= r(f,-2+2cP) --=ç r(i---t 2d~J,·)2) 

from which we find a critical exponcnt;; = 2. Mon' (orrt,ctly, (OIlVt'IIIICJII,t! tl!l'tln 

gives :; = 2 - 7], where 7] = O. Howcver, the ahove theory clOt,,, Ilul de,,( r11H' ( .. rrt'( 1 h 

Illost realistic problems. The main reasoru, art' 

• The approximation (Gaussian) oftaking the lIamiltolli,lII ,l" III (·qU.tlltlll (:-,1) 

has already proven to be wrong for the dllllf'lIhi()ll~ con"Hlt'f('d "ill(!' if l''dt!,, ft) 

mean field theory . 

• The assumption that rI. is indepcndent of 1.. )~ alw il bad approxilll,d 11111, f<!r 

the different modes can have different driving !IIeChalli"llIh 

3The most striking fad about experunental rf'sults obtl1l1H'r1 for tW(J-.IIIIi. 1I~)(.'lId ~y~11 "," 1" t "hl 

Z < 2 for ail those we are aware of. at the moment. 
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• The Langevin equation (5.5) did not con si der mode-mode coupling . 

• Finally, the inclusion of mean field exponents in the theory is not consistent 

with experimental evidence. 

;\1I1c!J hU'rature has been devoted to this subject, for which other notions including 

Itydrodynarnics and transport theories are orten required. However, a good starting 

pOllit I~ Ma's book (Ma 1976b). 

5.3 Dynamic quantities and finite-size behaviour 

III il fillltt> system, the correlation length will always be bonded by the dimensions of 

t III' lat tire. Instead of the infinite divergence of the correlation length round at Tc for 

;1I1 Infillite hystem, we rathcr lllight expect to have 

wllt'rt· L is the linear dimension of the system considered. This is the only argument 

11I'('d"d to introduce the finite-size scaling of the correlation length in a finite bystem, 

(5.10) 

Thi~ tells us how the relaxation time will scale between systems of different sizes. In 

fad, t his method has been directIy used by us to determine the value of z. However, 

Ilt'rore prt'senting those results, we shaH introduce some of the measured dynamical 

qIlHlItitit's. 

t;~l1al measurements done on a kinetic system encompass the time-displaced spin

:-11I1i correlation C(t) and the time-displaced nearest-neighbour correlation E(t). For

lIIally, hy assuming we have a hypercubic Ld system, we estimated the following 

qlJ.\IItitil'b 

(5.11) 

(5.12) 
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Figure 5.1 Different hme-dlsplaced correlatIOn functlOns for a sy!>tem of tH x fi 1 ~Itt'~ N ott' th .. Illr~1 
difference between i;'E(t) and i;'M(t) showmg that tht' ent'rgy relaxes lUudl Illort' mpldly thlLn thl 

order parame ter . Also note the nOise common to C( t) and E( t) We uwd i;' M (t) III ou r ( .... t 11111111"11' 

whf're the renormalization iteration number nt a~ weil as the H<; b\ockllll!. !,l( lor Il 

\Vere explicitly introduced in view of the matchmg technique involvl'd. 'l'hi" \.1111'1 

will be presented below. These two quantities wl're originally ~t Ildll'd h('(,illl"" of t /t('11 

com pu tational sim plicity. 

Other quantities of interest are the general tillle-displ;t< l'c! correlat ion fll 111'1 1011, 

previollsly defined by equation (3.13), The advantage of this \a .... t <l'IiUltIty ov('r !l1f' 

precl'ding one is that the product of the fluctuatioIl!> is suhtrad('d, thm takllig (<If(' o! 

the specifie rep7esentativity of the sample taken with respect to t1w popll\.d 1011 'J'l1f' 

denominator rell">rmalizes the function 80 as to make it betwl't'n -1 ancl 1. FlgI!rI' .rI 

shows these different tillle-displaced correlation fundiom for a g;IVt'1I '>y!>tt'III 

\Vhell one selects magnetization as the observable, t hen Ill(' t wo q Il ail III Il'' .. ,d If 1\'(' 

(i,e. equations (5.11) and (5.12)) can hi' shown to 1)(' ~Ilb~d~ of Ilw rt'~lllllllg 11111(' 

displaced correlation function. For cxample, t}J(' rorrt'latioll \wtW('('1l tWIl '>('1.., (l! 

IIla.gnetization values measured at different tl!ll(,~ will ill< !tH!1' cqlliltioll (:) Il) ,l, " 

1 



('liA/J'fER 5. CIl/TreAL DYNAMICS AND SCALING 

f('!->lIlt of the expansion of the sumo That IS, by defining 'PM(t) as 

(M(to)M(to + t)) - (M(to))(M(to + t)) 
'f!M(t) = (M(to) _ (M(to))2)1/2(M(to + t) - (M(to + t))2)1/2' 

(.S.U) 

,ml! hn'aking the product of the two surus At in the first term of the denominator 

III il ,>urll over sums of self-, first-, second-, thircl- ... neighbour correlations, then 

th(' rt':>ulting series will contain equation (5.11) as its first tenn. Moreover, this 

~(·If- tenll will be the largest of the sum since a spin is more highly correlated with 

Ih(·lf than with any other one. The second tenu of this expansion is the nearest

!lclghbour correlation. This is precisely equation (5.12). The expansion coetficients 

arc dcpendent on the ,opology of the lattice. 

Wh('11 the energy i~ used as the observable, the resulting correlation fundlOll 

rpd t) has a much shorter lifetime mainly due to the fact that this quantity depcnds 

on pair-pair correlations over the whole lattice. Therefore the observation of the 

tlllle cvolution of the energy as a measure of the equilibriuIlI of a system is Ilot 

appropriate. Among the different observables, the order parameter generally has tht' 

IOllg(,~t Tt'laxation time. 

\V(' hhall now present some error analysis in relation to real computer experiments. 

'l'hl' illdt'p('ndence of the data obtained from a Monte Carlo simulation is a problelll 

of prilll(' importance, especJally at Tc where the correlation time T is relatively large. 

Zwam~ig fi al. (Zwanzig and AUawadi 1969) derived an expression for the error re

~l1lt IlIg from the finiteness of the simulation in time. This is done by assumillg that 

the nbst'rvahle is Gam,sian and by using relations among differt'nt moments, a8 th08C 

roulld in Landau and Lifshitz (Landau and Lifshitz 1981). By defining the difference 

!H't W('t'II the fini te- time average and the ensemble average by 

(5.14) 

Ollt' Illay equiva.lently write 
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Clearly, the first moment (~(t)) goes to zero when the ensemble avt'ra~t> i~ t.lkt'II \lllt 

and the st.atistical error due to finite- time averaging is est imat ('<1 fWIIl tilt' ~t'colld 1\ h \ 

ment of the distribution. The derivation will not be reprodllced Ilt'rt' ~ill('e th" ll,Ir1I~ 

of this very good paper can hardly be improved. If one normalizes (A(t").\(f,, t 1)\ 

by the t = 0 dispersion, then the relative error on the differetlct' from \llllty \\ III IH' 

found to be 

This shows that the error ~(t) becomes more and more importallt. as wc go ,LW,,)' 

from unit y, or equivalently as t gets larger. 

We shaH now briefly quote the recent developments in the eVilllliltioIl of 11H' (rÎIIl.d 

exponent z for the two-dimensional spin-flip Ising model case, dOI\(, wiLh t Ile' 111'1(1 01 

the finite-size scaling hypothesis. Some valu able analyses ha.ve he('11 dOlle hy Lallcl.ul 

et al. (Landau, Tang and Wansleben 1988) as weB as by Wam!ehell fi al. (W,tII~I(·I)(·1l 

and Landau 1987). The former contains a survey of the (·st.illlat(·h for t.he l fil Il.d 

exponent that encompasses the last 10 years and ranges frolll 1 A 10 2.2,1 (L.tlld.lIl, 

Tang and Wansleben 1988; Williams 1985b). By fitting an expollt'IILial 10 tl1l' d,'( ,ty 01 

'f'M(t) over systems of different sizes, they could fit equation (fdO) ({\IIt.(· ~illl"t.l( IIJrdy 

Thus, the finite-size scaling method yielded a z-value of 2.11. 

Because the different rnethods yielded resuIts that werl' Ilot (011"1,,11'11: WII hlll 1IIf'Ir 

respective error rnargins, sorne authürs started tü questioll tllf' ~y~tI'1I1;d le t'rr()r~ 111-

volved in each of the methods considcred. A recent study on ~t at hl ir,d ,1Ild ~y ,,1 "lll,tllt 

errors on tirne-displaced correlations with respect tü differ('nt dl'I!;rl'I' of ~(·lf-,lVl'r,l)..',lllg 

has been presented by Ferrenberg ct al. (Ferrcnherg, Land,LIl alld Bind('r I!J!JO). 1\1"r,· 

over therc is no a pnon evidence that a multi-spin codin~ all!;cmthlll wtll hav" t III' 

saIlle critical behavior. Although bQth systems are heli('v('d to 1H'I()rlJ.~ to 1 Ill' ~,L1IW 

universality class, the only formai c.Huparison tllat wc are aw,trt' of al thi~ tI/lit' I~ t III' 

one done by Williams (Williams 198.5a), which ha& &Ollle r('~trict('d (OllC III"I!)II~ 'Iltl\ 

hypothesis should definitely be further investigatcd. 
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5.4 Dynamic MCRG 

W(, :-.hall now present an extension of the MeRC mt. thods, as described before, to 

th(' :-.tlldy of dynamic behaviour at the critical point. This is done partly becausc 

tlll' method we propose will have direct applications to this problem and also partly 

Iw{ illl:.e the study of growth and scaling done by using MCRG methods is a straight

forward extension of the present procedure. The application of MCRG methods to 

~r()wth will be 8een in Section 6.4. We note, once more, that the theoretical issues 

réll.,ed by the application of MCRG to su ch problems can still not be answered at the 

'f'obochnik, Sarker and Cordery (Tobochnik, Sarker and Cordery 1981) werc the 

fir:-.t Lo cxtend the MCRG methods to the study of dynamical critical behaviour. The 

l't'lit rai idea, proposed by Wilson to Tobochnik et al. , is matchzng. Starting with two 

lat t ic('s differing by a factor b in their linear dimensions, a sequence of configurations 

i:-. ~,'n{'rat.ed for each of them with the standard Monte Carlo techniques discussed 

,'arli,'r. Wc shaH consider a zero field Ising model with its Hamiltonian given by 

1t(T) == K L 0",0") 

<'l) 

(5.16) 

wl\l'rt> wc used (iJ) to denote the sum over an nearest-neighbour pairs. From thesc 

t,wo sequences of configurations, a majority rule MCRG transformation i5 iterated in 

or<ll'T Ln generate other sequences each smaller by a blocking factor b. Again, the 

/1/ 1 1 Iterat.ed lctfgest system will be compared with the m iterated smallcst onc. 

lIow('v('r, the blocking procedure will have reduced the correlation length bya factor 

h. In vlew of equation (5.8), this means that the characteristic time of the system will 

hav!' hel'u changed by a fador bZ
, since the dimensionle5s argument of the f\lnction 

will :-.tay invariant. 

Tht' lllatching condition mentioned dbove can be exprcssed in terms of the two 

llbsCfyahles introduced by equations (5.11) and (5.12) as fo11ows 

G(L,m,t) = C(bL,m + 1,bZ t) (5.17) 

• 
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and similarly for E. This means, given two systems having t he ~,llllt' Ii.nik-~i/(· t'lit" t~. 

we are interested in how the charaderistic tilllt· scale !tas chan~ed If Ollt' of t 11t''>(, h.l'> 

been renormalized once more than the other. The allSWt'r is ~i\t'I\ il)' t ht' .. hO\I' ,,( .tllIl)!, 

relation. 

l\lost of the simulations performcd with the help of thi~ technique h.lvl' 111'('11 

donc on a two-dimensional Ising mode! (Yalabik ancl GUIIton 1!1;-\2; KatI. (;l1l1tl)1I 

and Liu 1982j Williams 1985b). A complete review l'an })(' [ound in a p.lper h.\ 

Williams (Williams 1985b). Simulations implying dift'erent latt 1('(' ~IZt'~ h,m' \'('('11 

donc, although the sizes used were still relatively small cOlllp,trt'cl to tilt' alllitty .. 1 

today's computers. ln relation to this problelll, a nic(· and prollli~ill~ ,lIIalph ul " 

real space time-dependent RG applied ta CL one-dilllt'mionn.l bill/!; 1110<!('! W,l~ 1I1.ld/· 1)\ 

Achiam (Achiam 1978). 

The previous idea could also be exploiteu in an illte[e~till~ way whidl illvolvn t Ilf' 

temperature. We know that the correlation length will chan~(' und/'r il H<: t r,ln"l"r 

mation. That is, for two equdzbrwm sy~teIm, one of which }will!!; itt'[,Lled oll( t' 111"1(' 

than the other, we have 

f.(T1 ) = bf.(12). 

Clearly, this equality will hold with the special condition 1\ 'J'2 at t IH' (rit Il ,d 1'01111 

However, we can use the asymptotic form of the correlation ll'lI~t Il lIt'a.r '1: t h\l" )!,IVIII).', 

from which the value of the critical exponent should he ohtailll'd a" rt v~'rtfi( at 1011 

Lastly, we should mention that apart from MenG, a pl('iad of other lc( 11111<111/'\ 

have been used in order to study critical dynamics. The ~o-callf'd (-('XI><LlI~l()lI~, alld 

other direct theoretica! approaches will Ilot be dC!lcribed here. Wc ~ball !J<J\VI·\t·1 

briefly describe a MC approach which consi~ts in ~tlldyillg dllT/lIlqf ~JiT f udl/1I1 III i\ 

givcn system. This computer experimcnt involve~ the ~tudy of t iulf' d~'Vt'!()Plllt'l" ,,1 

differences between two almost identical systems evolving uurler the ~aJlle ~AC: dyllfilll

ics. The critical exponent is then extracted by fiI1ite-~ize analy.,i~ of tl1l' rf'!'lx,d I<JII 

1 
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('()II~talib. A reccnt contribution to this approach can be found in (Poole and Jan 

J !)!)(J). 



Chapter 6 

Growth-Theories and Review 

Domain growth i~ intimately related to topology, Thi~ wa~ rt·(,()~lllz,·d lly (:d,jl~ 

who first tried to calculate the reversible work required to [orlll il cl\l~t('r (rom Ill<' 

su pcrsat urated vapour by developi ng a thermodYIl<LlIlic t h('ory of (' Il n"d ~ Il 1 LI( l'~ 

Bu t, as mentioned earlier, phase transitions are il dynamlc problclII <llld ,1 h Il,,,1 It 

approach only came much latcr (",-, 1940) with the work of Zelclovl( h, F,trhn, H"I h"I, 

Doring, Frenkel, and others, on steady ~t<Lte nudeatioll th('(Hi,,;, For il n'VII'W, ~t'I', 

for example, (Abraham 1974; Gunton, San Mig\l(·l and Sahlli 1 !)X;!) ,wei n·fnl'flt l'~ 

thcrcin. More recently (1960 to now) an explmioll of activity, lir('d by fllC't.dIIH/',1I 

applications, occurred in this field and the following pa~('~ wIll ollly try lu J.!;IV" III<' 

part relevant to our problem, 

6.1 Sorne different approaches 

Among the thcories proposed at this time, the two 1lI,L11l apprO,l! \"'.., flf ~rowl!J , !J""III, 

were highly influenced by the exi~tillg stable-uw,tahlp rf']"x,dIOll dl! hololllj' ()('" ,,1 

thc~c, the older, consisb in con!>idering the dynétlllirs of clu..,!pr" '1 hl'> 1.., ,lt,prIJ!,r1,tll', 

for example, for the relaxation process involvcd lB the d('("lY of ,l JllI't il'lotI)I" ..,1 d1l

Thi~ forllls the core of homogeneous nucleation theory, 

The major ingredient of this theory is the cOJ\{'Ppt of a crilÎral dropld lllld~lllf', 

G!) 
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for ('xample, an Ising mode! in which the magnetic field h has been momentarily 

rpv(·rM:d. Thcn, sorne "droplets" of sorne size n will start to form in the homogcneous 

bal kground. Bach of these will generate an energy difference fj"E according to 

W.II'W fT j!> a surface tension term1 and dis the dimension. The process thus involves 

a (olllpetition between a more stable bulk ~omponent and an energy costing surface 

terril. This defines a critical droplet size from which the whole process of creating a 

droplct starts to liberate energy. Most of these theories consider a Boltzmann distri

hution of the droplets and involves differential equations on which various physical 

hOllndaries conditions have been imposed. 

'l'his model, however, is limited to low densities and temperatures far from the 

crit iraI point since the droplets are usually taken as non-interacting. This clearly 

breaks down llear the critical point wherc large regions of space become correlatcd. 

A llother approach consists in concentrating on the interfaces. Sorne information 

can be predicted with the help of very simple arguments. Assume, for eXélmple, a 

two-componcnt mixture. It is expected that the driving force of a moving houndary 

will ('0111(" from the excess of its free energy. Although the dis placement of an interface 

IlllplH'~ microscopie analysis and dif.usion properties, we simply assume that the spcccl 

of t he interface responds linearly to the driving force. 2 We expect that the exccss in 

frt'(' l'llergy will be proportional to the surface tension times the mean curvature. The 

lat tl'r, from geometrical arguments, is proportional to the reciprocal of the size R of 

t ht' c101l1ains. We get., aCter integrating, 

(6.1 ) 

Thi~ r('~ult is prccisely the Allen-Cahll law which will be derived more formally in the 

lIt'xl ~t'ct ion. IIowever, contrary to this "intuitive" approach, the following derivation 

1 Noh' that the Ising modell~ misleading with respect to the surface tensIOn terrIl silice It COllle" 

frolll tht' couphng interaction between the background phase and the spins on the surface. For an 
IH'\ lilli \lroplt"t, the e/fect is rather due to the geometrical faet that a molecule on the surface i5 Ie"s 
tl~htly hO\1nù than Il molecule inside. It is a surface e/fect 

~Tht' proportlOn/lhty constant is sometimes referred to as the mobihty 
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does not consider the surface tension directly3 . We also t\lltt' t hat Lifsl\lt/ (l \l(i'2) 

previously derived the same result on the basis of diffusion argullH'llt.s. 

Labtly, we note that the numerical solutions of the rdaxational TOt;L pn'M'lllt'd 

in Section 3.4.2 are consistent with the value of i (Valls alld 1\1 il7.ell ko 1 \)~(i) for the 

growth exponent n in R .-...J tn • 

6.2 Antiphase boundary motion theory 

Theories to explain the motion of gram boundaries, in poly( ry:-.t..dlilit' IlIl'! al:-. fOI 

example, have been proposed in recent years. Among thes(' differt'Ilt. appr()cl('IJ('~, 

Allen and Cahn (1979) proposed a theory based on t.he mot.ion of t.he il III iphtl~t' 

boundary.4 For this, they considered the antiphase boulldary as il ~lIrf,tt'l' h<lvillf.', 1I~ 

own characteristics such as geometrical properties (indudin!!; thickn('hs), fn'(' ('(J('r~v, 

velo city, etc ... It is also recognized that phase bOlllldarics havI' ail ('X('('Sh frl'I' ('llt'rf.',Y 

Note that the energy of this interface should vanish continuouhly Ilear '/;. hlll( t' t IH' 

two phases converge accordingly. 

The starting equation for this theory is the Ginzburg-Landall frct' 1'(H'r!!;y (kmlly 

as defined by equation (2.5). Moreover, it is aShl1Il1ed lhat. t!\(' on\('f P,lf,IIII!'!t'( 1'0 

driven by an equation similar to (3.28) but without the ralldolll lIoi::,(' Inlll." 'l'hw" 

ln tenus of an order parameter 1f defined over a slIIa.ll regioll of hp;t( l', W(' h,LVI' 

( f j :!) 

This last functional derivative can be evaluated as follows. FOf il (h.tllg(' tlll' .Ll J' ! 111'11 

we can write, from equation (2,5) and by using 'lj;' -- 'If->( ~'), 

3Some coefficient can indeed be related to a ~urface tell~\01I 

(l ' '1 l,,,) 

4ln a binary alloy for example, the antiphase IS the IIltt'rfacc nl n D III tlll "'1111 III 1 

A BAB B AB ABA, . Generally speaking, it is the interface betwt'clI two /(1 l'II tll al d"lfI,lIIl~ dJl 
fenllg by a displacement that ShiftS the domaws from one &uperlattlc(' lo Illlolltt'r. 

5The effed of randorn noise has been studled by Kawabllki and Ollta (1 ~)H21l, 1 !)k:2I,) Il ',WI VI r, 

a more accessible description as well as the influt'llce of the telllpemtllfl' I~ IH' ~('lItl'rl 11\ (( :r,url ,111" 

GUllton 1983). 
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= ~:; 81jJ + 2c ! "ÇJ'1// \7'8(:c - :c') 81/;' d:c'. (6.4 ) 

By u ... ing properties of the delta function, finally set6 

8F alo 2 -- = - - 2c "ÇJ 1jJ 
81/; aljJ . 

(6.5 ) 

Note that by the fundamental theorem of integral calculus, the stationary point of 

t}w free energy functional, representing the equilibrium situation, will be given when, 

at ,LIlY point :c, 

8 Jo = 2 r72.1. 
81jJ C v If/' 

By equation (6.5), equation (6.2) can be rewritten as 

81jJ = _raja + M \72 1 

8t 81/; 'lfJ 

(6.6 ) 

(6.7) 

w}Wf(' AI = -2rc has dimensions of a diffusion constant. Allen and Cahn have shown 

that this last equation does not have a spherically symmetrical solution. 

Sinct:' li-'(:c) is analytic everywhere, it is possible to define a curvilinear set of 

('(,ordinates using the family of iso-1/; planes perpendicular to the gradient of 1./J(:c). ln 

a !l,duraI way, the gradient is the derivative with respect ta the normal, say ql, and wc 

havt', according ta Arfken's notation (1985) for a Laplacian defined over coordinates 

(!lb </2, q3) with metrics (hl, h2, h3) , 

Tht' dcment dn along the normal coordinate is given by hl dql 50 that 

III t he saille coordinate system it is possible to express the divergence of a unit vector 

alllllf!; the norlllai as 

t\ ~ ote that c can be seen to be proportional to the surface tension. 
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l\loreover 1 differential geometry ran relate the diveq!;l'IlCt' of (\ tHHI\I al \1 tlll \ t'\ 1 \ Ir 1 U 

the mean of the me an curvature (KI + K 2 ) along tht' iso-~' ~11r1<lCt'S. \\'1' Ihl'lI h.I\" 

a7jJ _ {afo [(j2~1 . , il!"] \ Ft - -r a7jJ - 2c aT~2 -- (ht t 1\2)1/, nt ill! f' (tl K) 

Suppose the system had time to separatt' in two di~tincl rt').!;iom Ih.d ( l)1'\hl 

bet,wecn gently curved interfaces. Indeed, the local ordt'ring of very ~llI.dl \0111t1\<' 

elements in two equivalent coexisting regions, of order para.mekr Bear the v.III1(·" 1 v. 

will be formed aimost instantaneously whell observed froIII il lIIacr()~COpll pUlltI 01 

view. Therefore, if (6.6) is assumed to hold at "Illcdl\lI11" timt' phaM' ~q).trallolt, 1111'11 

equation (6.8) reads 

(~~,) n = -M(KI 1 K 2 ) C~~:) t 
The velocity v of an iso-7jJ plane will be given by 

11 = (Bn) _ (~~I) /(~~,) 
Bi ./ al ()II 

I.f' n t 

( Il 1111 

where we used the relation (Ber) (Qu) ({!.~) --1. II('B«', tIw velu( Ity of Ill!' pldlll'" 
ay z az :r (J:r y -

will be described by 

v= (~:)." M(K j + li,). (1. Il) 

SlIlce the mean curvature of smooth and thin interfact'h l~ <l!r('ctly rt·ln.I,·d 10 1111' -,l/t 

of the domains, we get equation (6.1), 

aR 1 ___ rv 

al - Il 
(1. I:!) 

mcaning that 

6.3 Growth measurement 

From an experimental point of view, the meaSll rPIll('nt of d()1Il ,tlll 'di"', at ('<lfl} 1111 w', 

is donc almost exclusively by scattering methodh. In dl!' fir:-.I 'hm ilpprOXllIldt)IJ)I, 

the scattering cross section is equal to the matrix elcIIJ('lIt 
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wtlf'/ f' IT( oc) UI.Il now be seen as the eledronic probability density. If k is defined as 

di!' 1II0Irlentum transfer Pl - p., then, in view of the Fourier transformations (3.9) 

iLnd (:UO), the cr05S 5ection can be expressed as 

(6.14) 

)!;/ VI/II!; <i dift'ct relation with the order parameter density. 

1\ t. later times, electron microscopy is available but the analysis of the results 

/~ t l!t'lI Hl ueh less obvious (Doremus 1985). In the context of surface sciences (e.g. 

,uborption measurcments), the techniques involved are various and sophisticated. 

FrOlIi tIw viewpoill of nUI/J{'rical simulations, there exist three COIIlII10n methods of 

"/II1',L:,ureITlCnt" for the various models. One of these, involving the first mOulent of 

tIlt' btructure factor, has not been used in the course of this work and will therefore 

lIot !Jp presented here. We shall present the two other ones. 

6.3.1 The inverse perimeter density 

w( lirst want to determine the pcrimder density of a given model. For this purpose, 

.L:,~IJIII(, a N site Ising modcl on which we define BTT, BU and Bu as the Humber of 

!Jolldb in the configuration indicated by their subscripts and NT, Nt the number of 

.... pillt! up or down, respectively. If wc use u as the energy per site, the Hamiltonian 

(:L2) can oc r<"written, in this new notation, as 7 

(6.1.5) 

For il 1 ncighoour modcl we must also have, counting the total numher of bonds, 

,N 
2 = Bn + Bu + BT l' 

Th('~e two last equations can be used to derive the mean perimeter density, i. e. the 

average number of "broken bond" per spin. Note that this terminology implies il 

fcrrolllagnetic lllodel. Thus we have 

'lt I!> givt'I1 hy (3.3) for a two-dimellsional system at eqUilibnuIIl. 
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\Vc then define R(t) as the mean radius of the dO\llaill hy 

Rr(t) = Cd!yT(t) 
B T1 (t) 

~r , ,) 

is the mean radius of the 'l' domains and similarly for the' l' dOlllalllh. TIlt' LI( lor ( ',/ 

is the proportionality constant in dimension d. We aSSUIllt' that (,'./ I~ 1101 a fllll( 11011 01 

H 50 that the distribution of the shape of the doma.ins mu~t. ft'l\l,lIll (,oll~lallt .1'-0 1111''\ 

grow. Clearly, this is true in view of self-similarity discl1~~(·d carlin. Il)' ('011 Il li Il 1 Il)', 

the'-oc last equations, using NT + N1 = N, 

- N Il 
R( t) ex -- = - - - - -. 

BTl(t) , __ ~~tJ 
( (j 1( j ) 

This parameter is the easie5t to use sinec it foIlows dircctly frollJ Ilw v.dll(· 01 tlll' 

energy, which is usually straightforwardly obtained. 

6.3.2 The squared magnetization 

Con~ider now the ensemble average for tht' fiqllarc of th!' magllet Iz.LlIOII (/\1 2 (f ),' SIII'" 

the magnetization is defined as 

therdore 

1 ~~ 
M:::: IV ~a" 

,ccl 

1 N N 

N2 (2: L a,(t)fTJ(t)) 
,=1 )=1 

1 , _____ 
N L (a,(t)fTo(t)). 

, 
The slllllmand in the last equation is jllst the (ldinition of tilt' :-'PIII corn'l,tll/1I1 fil II/ 

tian. This thus says that the mean sqllarcd magndization if> ('qllivaient 1,() tIlt' 1Ill'dli 

of t he correlation of one spin with respect to aIl the otherh If tilt' forlll of t II!' ( orfl' 

lation function remains the same,8 it wou Id pof>sibl(' to n'Ia.te the rlll'it">lIrt' I)f t III' "plll 

8Self-similarity supports this idea 

1 
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«(Jrrt·I,tilOll to the slze of the domains by some parameter of the curve. The parametcr 

'lhov(' il> jm,t a system-normaliz!.'d integral of this function over aIl space. Another 

d('1I10n<,tration, that the average squared magnetization is related to the domain size, 

('Ill 1 lU' fOllfld in (Sadiq and Binder 1984). It is argued in this paper that, for inter

IIIt'(hate time:>, the main contribution to the product ((1,(1;) will average to the value 

of tlw orcier parameter at equilibrium A1;q, if i and J are in the same domain, and 10 

;f,cro if they are in different domains. Therefore, since 

W(' l'an break the sum in a suru over the n( t) domains composed of a number of silet-. 

proportional to Rd(t), and get 

wIU'f(' pmlles have been put on the surus in order to represent summing so that t 

alld } are in th(' same domain. If furthermore one assumes that the interfa('e~ are 

IIcghgiblt' so that n(t)Rd(t),...., N we then get 

[rolll which we define 

(6.17) 

The inverse perimeter density generally gives better results. The square of t!te 

IIIc1glw!ization seems t.o be more \Instable 50 t.hat an average over more systellls i~ 

rt·qllirt·d t.o get valuablc data. 

6.4 MC growth and scaling studies 

\Vit il t ht> tools presented so far \ wc are now able ta givc a general review of l\lonte 

('.Hlo st lldies of growt li. Mon te Carlo simulations on antiferromagnetic (PhanÎ et al. 

1!1~(); Sahni, Del" and Gunton 1981; Kaski et al. 1983) as weil as ferromagneti(' 
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Figure 6 1. The dependence of the quench temperatuft' 011 the tl1l1e t'Vollltlllll o[ tht' dlllllllill 'II. 

The different rurves represent a system of 128 x 128 qUt'ndlt'd at tellIperatllft'~ ~Illlt~, fl"l1l (II\' tOI 

bot tOlll, from 0 OTe to 0 91~ in steps of 0 1'1: TIlt' finlll ~ ta tt' tC'lI1Jlt'rat IIr«' hll~ 1\ II() 11 t Il ",li «Il. , 1 
011 !II(' velocity of the lI\terface~ 

(Gawlinski et al. 1985) two-dilIlf'I1sional biIl~ llI()dl'l~ 1I11,llliJlIOII~I~' ~,lVI' 1 lit' 1/ 

growth exponent. The effect of the tempt'ratllre of tll(' II(',Ll hath i~ Ilot 1I<'J!;II/!,t1.\., 

lndecd, the final state drives the process so that il direct l'Irt,( t i~ to IH' l'XIW( tc'd fr"lll 

the final state temperature. Figures 6.1 and (;,2 repr(,~(,lIt t Il{' ('VOllitloll of tilt' I[I\C'I ~C' 

perimeter density and t.he energy per spin in tllll('. 'l'III' (I()~n t Ill' fill,t! ,t .lfl' Iii J:. 

tll(' slower wiU be the growth. Thib i., due to luge relaxat Ion 1 IJllI'~ r('qlllrc'd 1.)[ t hc 

low k modes near Tc. 

l\loreover, aU the dynamic llIea~lIr(,IIICllb of tll(' ,trlldllrt' f.lctor wc'rc' 1""l1d 1 •• 

srale according to the form 

S(k,t) = (n(t))df(l~(II(I))) 

As shown earlier, RG methods have ht'clI proVPII to 1)(' VC[y Il'ldlll III 1 llf' c flllfcoxl 

of ~econd-order phase transitions. The saIlle t('cll Tl iq 1 If' h il'> ah!) 1)1'1"1 ('x t "II dc'c! 11) t IJI' 

study of growth dyuamics. For cxalllple, ~OIlH~ fI'al ~pace HG allilly'li~ h,l~ lWl'lI dl/Ill' III 

a series of papers by Mazenko et al . . See (Viriat.- f't al. J !JHf)) allrl n+n'fH l', t l!I'rc'lIl 

ComLined with the standard MC simulation technicl'ICs, MCH(; IIwlhod~ havI' I)('c'II 
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Fl~\lrt' 62 Tht' cu~ve<; represent a system of 128 x 128 quenched at temperatures gomg, frolll bottolt1 
t(l top, frolll O.OTc to O.9Tc III steps of 0 1 Tc. Note that the drivmg force goes asymptotlcally slowt'r 
ILlld .,Iow('r as closer to Tc Becliuse of the very weak !>lope, It can be round to fit li power law a~ \\t'II 
IL" 111\ t'xponentIal 

fl1rt her extcIlded to study the non-equilibrium dynamics of the Ising model. 

'l'Il<' lIIethod exploits the self.similarity that the system bears in time. The HG 

trall~forlllation will therefore be used to rescale the linear dimensions of the ~yst('m, 

Iltu., tramforming the coupling constants and also time in a non-trivial way. 1nd('('d, 

1111' Illain idea is that a transformed system, at a t.emperature '1\ and t.imc 1), !Ilay 1)(' 

f()lInd t'quivalt'nt, after renormalizat.ion, to a system at tempcraturc T2 and time '2' 
A <I\I(,l\ch is done from a high temperature system to a finite T < 1~. ln vic\\' of 

H(: formalislIl, the equilibriuIll states corresponding to timcs t :::: 0 and t = 00 WIll 1)(' 

rh,lr.u teril',ed, after 111 iterative transformations, by coupling com,tant vcctOIS K;"'J 

,11111 Kjm) r('spcctively. We kIlOW, however, that such an Ising Illoùel has an Ull~t able 

li xcd l'mut K· at 7~, from which a RG transformation fiows towards eithcr of the 

Iwo ~tahle fixed points K; and K:'. Therefore, as m -4 (Xl, the RG transformations 

appllt'd on a configuration sequence of a given quench would end up by giving t\\'o 

~l'b of sy~tems at two different temperatures K~m) = 0 and K~n) = (Xl. Therefore, 

the application of RG transformations to a given quench, done at a certain T, will 
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yield a phenomenon driven by a lower T. In contra~t to critH'al pllt'l\l\HWII.I, Ihi" 

transformation thus involves stable attractive fixcd poinb. 

The details of the method are as follows. An infinite tt'mperat 11ft' (randolll) 'tlll 

figuration of a N-site Ising model is put in contact with a ("()ld lwat hatll t.1 c'lld 

Hamiltonian) at a temperature T < Tc. Then, a time sequence of roldi~l1rat 1011" 1" 

produced by storing the system configurations at. each, ::.ay, bI llICl> For l>1I( Il a pro, l' 

dure, the overall time range is generally of the order of f(·w hUlldrt'dl> IIln, dt'pClldillf·!' 

on the system size, and of a few unitiei:> for Ed. Wc thcn perfortll i\ ~lCHC 1II.,j"IÎt) 

rule transformation on each of the configurations, thus reducing the lillt'ar dilll('II:,illll'> 

by a factor b. We note here that the master equation for the rt'Ilorlllalized :,('qlll'IIII' 

of configurations will not be Markovian any more. 

Meanwhile, the saille procedure is applied to a similar 5y~tt'l\I of ~IZ(' Nh" \\'1' \\01111 

to match systems of the same linear dimension, but different l!t'rft! 1011 1111111111'1", '>111 It 

tha! the domain size is the saIlle. That is, we wallt to havI', îl~~IlIllIIl~ ,l hypn, III)), 

R(L,m,t) ::= U(Lb,1II t l,t') (Ii IS 1 

which is expeded to hold for different iteratioll nllllllwr:, 111. Th,,> [l1,dt IIIII~ t IIl1dlt""1 

l~ IIseù to obtain the growth eXp01H'nt. la fad, W(' '1ll1ilt hav(' 

InR 1IInt 
Il 

In- 1IInt', 
b 

so that 

Thc succcss of this methoù is that, mùeed, matdl1l1~ tH cur,> for il wlloJt. rdll).','· ,,1 

t after only a few iterations. Moreover, it also rt'main::. com,,,knt for tilt' '>11 "~I'ql\l'lil 

iterations. An effect of the RG proce~s in this ca:,e il:> to ~1II0()t Il oul tlll' lif,·I"Vdlll 

fluctuations in the ùomains. Since thosc are not part of tlll' ~('allll~ r(,~'I1iP of /{, 1 Ill' 

scale change iterates them away so that the remaining part of t/w ~yht('lll 1'> j'X!)('t tf'c1 

to be consistent with further iterations. A<::. a result, a tramlatjoll in tilllt' :ohould 1)1' 

• 
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(·qllivah·nt to a scale change in aU proportions in the scaling regime. We can expect 

1 hat the latter is characterized by long-range ordering modes, Reference (Kumar, 

Vllïa.l~ and Cunton 1986) contains a more complete discussion on the effect of MeRG 

011 hll<'h :>ybtems. More theoretical work is required to establish clearly the nature of 

H(; in these non-equilibrium problems. 

This process was successfully applied to the kinetic Ising model first by Vinab 

l'! al. (1!}R5) and then by others (Kumar, VinaIs and Cunton 1986). It has also bt'cn 

appl«'d to the problem of spinoda.l decomposition (Roland and Grant 1988; Roland 

,1Ilel Grant 1989; Roland 1989) in order to derive the controversial growth exponent 

Il' for the problem where the order parameter is conserved. 



Chapter 7 

Results and Discussion 

This chapter will present the original contribution of tlu:, th(,~l~. The pr()p()~,'d !\\( 'j{<; 

l\Icthod will be given in tenns of the formalislll already prl'~('lltl'd, 'l'hl' IIldl!od \\dl 

he applied to the kinetic Ising mode! with spin-nip dynal\lH~ III ord"r to ,'\,dll,dt, tilt' 

growth exponent and results at various temperaturt's will IH' pr(,"(,llted 1\. l'pit! ,d Il)(1 

to lfitical dynamics will then be described. SOUlt" prelillllllitry I(,~lllb wdl IlC' ~I\ t'Ii 

and eorroborated with resllits obtained fWIlI the diff('f('nt mt't !tod" IItt Weill< t't! III f lit' 

previous chapters, particularly finite-size scahng. 

7.1 The idea 

The original idea of the mcthod we propo:,e i5 to COrI!>idt'T tiIIlf' ,t, IH'III~ d \.III,".!" 

t!t'lt can be treated in the same way ~pa('e i5, Indt'ed, tilt' dYIl.llllir \lC\{(; 1I1t'111"d, 

presented earlier take advantage of self-similarity hy allowIII!!; il 0.,( .d(' (bd!I!!;(' III ,pdt t', 

thm generating a non-trivial rclatioIt with time. Wc rIOW il"k: \-\'ould It IJI' IHN"I,]/' ft, 

design a Monte Carlo method that would do an {'ffe( ti v(' '>( a.lt' (II .1I1).\(· II. t Il /If'" '1 III' 

is wh'Lt this chapter will try to answer. 

ln view of what has been said before, a rcal sparc ne; tfiLllo.,foflllidiofl will (h.LlI~'· 

the Ilamiltonian 1-l(K) by moving the pararncter K to somc ot fWT point in /\' ~p<ll" 

Moreover, the probability independcnce charadcrizing th" ti JI 1(' h tl'P~ of if1/' Orl~JlI.tl 

81 

1 
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f"yolUf ion ~cquence of the system will not hold after a real space RG transformation, 

t h11'> ylelding a non-Markovian process over some renormalized time scale. 

W(' now try to analyze what would be the effect of a "i'11ilar majority rule "block

illj.( proccss applied on one spin in different consecutive time steps. First, we remark 

t hat il transformation of this kind will wipe out the high frequencies of fluctuations 

III tilllc. In this case as well, it is clear that the time evolution of the configuration 

wdl flot be Markovian any more, since the history of the spin is determined by the 

blo( k(·d celI value. 

The advantage of blocking in time is two-fold. First, because the high-frequency 

fluctuations in time a.re wiped out, the resulting curve will be much smoother as we 

f(·llorlllalize. Since a real space MCRG method does not renormalize the fluctuations 

in lillle, the simultaneous application of renormalizing space and time ('an take care 

of f bl~ point. Second, the time blûcking factor can be adjusted so as to balance 

the clf('cts rcsulting from blocking in space. Consider for example the growth relatioJl 

Ii( 1) ~- t 1 /2 found in the scaling regime of a spin-fiip growth phenomenon. A standard 

blo< hlll)!; operation performed on space would reduce the mean domain size by a fador 

Il. 1 f one keeps the same time scale, the process would seem to be mu ch slower ~in('e 

f 11(' rt'duction of domain ~ize can be thought of as a backward movement in time. 

J.'orlllally, titis proccss has becn exploited by the mat ching condition (6.18), nalllcly 

R(L,m,l,T) = R(Lb,m + l,tl,T' ), (ï.l) 

\\ Ilt'rt, i is dearly larger than t' and T is larger than T'. In fact, we found earlier (G.l9) 

t Il,t! 1 - bl/nt ' is a direct consequence of the growth power law, when one assumes 

t h,lI the qut'nching temperature has reached a fixed point. lndeed, the temperature 

Ill' t h(' lilial driving stat.e will end up being the zero temperature if one renormalizcs 

till\l'~ t'lIough. Now suppose one chooses a tzme blockmg factor such that t" = t; i.e., a 

rl'~c,tl('tl timt' t" so that the growth process remains unchanged. This is done wi th the 

t ra m formation t" = b-1/nt', 50 for b = 2 and n = 1/2 this requires a transformatioll 

of t ht' time scaie by compressing it by a factor of 4. The discrepancy between the 

llfl~lIlal system and the transformed system could then be used in order to evaluate 
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the exactness of n. 

Things are not that simple, howcver. In t his allaly~is, \\l' a~~IlIl\t'd t h.1I t lit' ln; 

transformations had already brought the final state dnvilll!; tt'IIlIH'r.tt lift' III 1 lit' /1'11' 

temperature fixed point. Indeed, as HG iteratio!ls gO('~ on, t Ill' wllOle M'I(IIt'II(" lit 

oonfigurations will behave as if it occurred at a lowl'r qUt'llch tt'Illpt'r.tlllr(· If (Ill" 

assumes that the asymptotic rcgime will t'vent lIally bl' reacht'd, dt'~pltt' t Ill' 1 r.III"'I('111 

critical behaviour that would start to be felt as T approache~ '/: (T :: n.n:), 1 1 \t'II tIlt' 

coefficient a of R(t) = a(T)t l
/

2 will converge to n(O) from Oltt' Ilt'ratio!l tll .1110\111'1 

One can still hope that after only a fcw iterat.ioIls, Twill IH' <'1( \I,t! t (1 '/" III 

equation (7.1). This is already true for any proc('~~ al. T ~ o.:n:, a~ (.Ill III' ,>("'11 

from figure 7.2 (page 88), but as T 2: 0.7, the iterations net'd('(l are lar).!;t'r Iltelll Ihm,' 

that can be done on systems ran on standard size C()llIpllter~. A w.ty to Llh(, (01((' .. t 

tItis difficulty has already been described in the lit.erature. It cOII~i~t~ III cltO()'>II:/!, t\\(, 

telllperatures Tl and T2 such that 1~ = Tl' with T2 > '1\. Sille{' He worhh (UI1'-,I"''''lItlj. 

wc must also have TJm+l! = T;m" where m is any reIlorma!Jz.t!lOlt ilt'rat\OtI 1I1111t!lt'r 

This has been verified in some work donc by Gawlinsky d al. (1 !1H!"l). 'J'11f' "',L1I1" 

mat ching procedure can also be extended to spinodal decolllpo~it.ioll of il blllclfy .dlll\. 

hy choosing a time dilation factor of 8. This still relllain~ to \)(' dOf\l'. 

On the other hand, the study of critical dYllamics dlf('ctly iIlVoIV('h il ", :t\1111-\ 101\\ 

illcluding time. The latter assumes that a scale change in hpa< (' will illdlll'(' 01 ';( .d,· 

challge in the specific characteristic times of the sy~telll. Tho:-,p arc ).!;(·lI"r;dly f'ï)f(' 

scnted by the relaxation times. This hypothesis thus a"Slll!l(" th.t1. ail the f('I,1 X.t1IOI1 

times of the system will respond in the same manncr to the appljed ~('id" (h.lIIv,'· III 

space, no matter which observable is considered. This assumpl.Joll 1'> perfl'( t.ly «111';1'; 

tent with the scaling hypothesis that says that the diverging ('orrc!,ttion 11'1I~1 li l, tilt' 

only relevant length. 1t is also consistent with all the rt'"ult" obtaulI'd frolll c1dJc.I<'Ii1 

simulations. 

Critical dynamics is sometimes best undcrstood when Oll'~ (ompan'" It wllii cid 

fusion. As a reference, a standard isotropie diffu"ive proc('",> olwyillg Fi( k'.., 1.tW will 

i 
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It il VI' an "order paramctcr" thcn obeying the following relation 

(7.2 ) 

wlwr(' [) is the diffusion constant and A is related to the initial diffusing quantity 

lot all'd a.t the origin. One can easily show1 that a scale compression by a factor b 

III ~I'a('(' \"ill oc equivalent to a scale compression of b2 in time, thus showing that 

;; '2 for a purely diffusive process. Cardy (1985) showed, by using conformation al 

illV,triaIlcc arguments in order to map a two-dimensional system, represented by the 

11I00lP-mode uncoupled van Hove equation (model A, cf. equation (5.5)), to a onc-

dlllH'(Ihiollal one, that the correlation function in two dimensions is of the form 

2-4-1) 1 SI 
g(r,t)=t ' e- r 

t. (7.3 ) 

It I~ IIIterestlllg to note that the mean field values Tf = 0 and z = 2 give an equatlOIl 

of Ill<' form equation (7.2). 

7.2 Description of the method 

A ~I'quence of configuratIOns produced by a growth phenomenon and a sequence 

t Ollllll~ from the analysis of crit.ical dynamics are equivalent in tenus of how they are 

/!;(·llI'rated. The main difference resides in system preparation. For critical dynamics, 

Il I~ pati('ntly hrought to equilibrium at the critical temperature. On the oOler haml, 

for 1 Ill' hl udy of growt h, the system is prepared in a randoIll fashion and the queucll 

t('llIpcrature ih determined appropriately (T < Tc). The description of the propo~ed 

i\1 (' H (: method will be equally applicable to these two prOfesses although different 

ob~('rv,lbleh will be involved. 

On a. ~t'qllenc{' of configurations, separated by a timc eSt, bloc king lS done on a set 01 

lti ~ pms coming from 4 difl'erent lattices at 4 contiguous times. These numbers come 

frolll ,t choice of ab = 2 space blocking factor. The new cell spin is produced by using 

t ht' lIIajority rule. Because the blocked variable is mapped to the time correspond mg 

1 Note that the quantity A also has to be rescaleà by the saille factor. 
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to the earlier time involved divided by b2m
, suell a pnJ('edure will Îndn{'t· il ~hdt \)1 tht' 

origin in the case of growth pht'nomena. Meanwhile, as lllt'utillllt'd (ln·vlOn!'>I). ,\ ((',d 

spaee RG procedure generates a growth process describing il ~y~tt'III qut'Ildll'd ,II .\ 

luwer temperature, sinet' T = 0 is the unly fixed point of t.he prohlt'lI' for \.11,' t (1I1t'~ 

Our program will consist in determining tht' degrt't' of nHl!'>istency of our rt'!'>lIlt!'> ",li Il 

the Allen-Cahn predictions. 

For critieal dynamies, the method mainly consists in ext r,let illp; the dyua III \( (ni 

irai exponent from the matching relation 

'PM( L, m, t, T) = 'PM( bl D, m t-], ti' T') (7 '1) 

where ] is the difference in MeRG iterat.ioll I1umher. The choic,' b - 2 h,I" 1"'('11 

made for this part of our work. Since the proccss is undergo[\(' ,t! '/;, it. 1" l "'.If t h,1I 

the lemperature will stay invariant, 80 that T _"0: T'. The rel,lxat IOn of t hl' ub"'·f\(·t! 

quantity turns out to fit an exponential dccay so weil tltat lIlilt.1 hi Il).!; at <Lily 1'01111 vwld" 

the same value. Instead, we shall use th(' time (,()I\stan lb ohta.i[(('(l f r()11\ 1\11' ft'!.1 x ,II 11)11 

of tllne-time correlation functions. As secn in the previom. M,ct.ioll, il pllf"ly ddlll"I\(' 

proct'ss would stay invariant under the application of the Pfop()~('d M ( : H (: 1111'1 hod 

The disercpancy b betwecn diffusion and critica.l slowing clOWIl C(lll Iw ohl ai rwd 1 [(JIll 

In(r(L,m))-ln(r(fr'fJ,ll1 -\ ))) 
8 = --- --- -

] ln b 

where the variables still have the same IlIcaiilIIg The crit.ic,d t'xporw[iI ._ 1" t IIf'II 

obtained directly from 8 sinee 

z = 2 -t 8. 

7.3 Sinlulations and results 

Simulations were performed on a two-dimcmional Ising mod('1 Wlt il IH'f1odl( 1)11111)(1<11 Y 

eon(lItions defined on a square lattice, wlth ::,y~teJII ~iz(''i r,lll~ill~ InJ!11 N 
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to N = 128 x 128 2 and with adynamie algorithm a.s the one dt,tined by (:\.21). 'l'hl' 

initial states of ail the quenches were random configurat.ions of spins, thus rt'prt'~('lI11\l!!. 

a system at infinite temperature. The algorithm used bitwise coding in orcier 10 lilllii 

the memory requirement and to improve the speed of nI(' program. Tht' pcriod;c 

boundary conditions were put in a look-up table thus minimi:r,illg l.f ~lalt'lI\t'ltt ~ 

The caIculation of the energy of the selected spin, as weIl as llippillg tht' l>pill, wa~ 

done using Boolean a~gebra so that the algorithm could he mort' easily veel orÎ:r,cd. 

A complet.e de:cription of the computat.ional aspects as w('ll a~ t he list.ill)!;~ 01 tilt' 

programs can be found in the Appendix. 

7.3.1 Domain growth 

There are sorne comments we have to make before starting the int,erpret al iOIl of DII! 

results. First, we have to note that the average (R(t)} is not directly evaluatt'd fOl 

it would diverge. Indeed, for a zero temperature configuration - - éu'C'('sl>!l)I(· ,II • .11 '/' 

with different probabilities - the denominator of (6.16) vanishes. Thi~ IlIt'a\l,> 1 hat 

R( t) has to be redefined as 
- 2 
R(t) = 2 + (u(t))' ( 

h ..,) 
( . ( 

However, because of the broader probability distribution arising from a fillitt, l>yl>tt'III, 

(u(t)) should contain in proportion more configurations at zero tl'lllperaturl' th.lIl <1\1 

infinite system. In addition, one must deal with the finite-size erfed, di~cm~(,d {'a rlicl 

involving the fact that a drople.t of a certain size will htart intemct.inp; witlt it ,>(·If 

through the periodic boundary conditions. Thereforc, finitc-bize' efl't'cil> will t('lIt! II) 

accelerate growth. The last effect can be seen in figure 7.1. 

We also note that relation (6.18), matching growth size between Meil(; JI,('r,t

tions, will hold only if the time o~igin remains fixed. This ih not the ca~(' for I}w 

transformation involved. Indeed, the MCRG will tend to shift HIf' origin III it way 

2This means, for the largest system, 16,384 spins forming a configu ratIOn "parl' rJf __ )01
\'12 

elements! Sorne 32 such systems could be Iun simultancously Ench of the ~ilJllllabon~ r"uld L.· ,J"II' 

on a SUN 3/50 and a DEC 5000 within a reasonable arnount of time 
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Figure 7.1. A comparison of two quenches done at the same temperatures but in systems of different 
siz(''i. The size of the systems are 64 and 128 and the data has been averaged over 3200 and 1600 
rullS rC'ipectively. The temperatures were 0.2, 0.5 and 0.6Te , from top to bottom. The dlscrepancy 
occur .. at Il 2: 0.4L. There is no difference for the 0 6Te curve. 

depcnding on the chai ce of the value of t ' given to the obtained blocked configura-

t.ions. This choice is relatively unimporiant, and an approximate time origin can bl':: 

rccovered by deliberately shifting the data in a way to get the reference point (0,1). 

This way of proceeding, however, gives too much importance to the origin, especially 

when one considers the a3ymptotic behaviour towards the power law growth at higher 

T. Morrover, the scaling regime will be related to the origin in a non-trivial way for 

high tcmperatures. In addition, the inhomogeneity of time, characteristic of a growth 

prOC('bS, is one more reason to allow the time origin to drift. The consecutive time 

stcps 1.0 be blocked do not have the same weight in time, although we consider these 

a.~ buch. 

The temperature plays an important rôle in a quench. Data obtained at very low 

t.empcratures seem to indicate a growth exponent slightly larger than 1/2, and this 

can partly be explained by the reasons above, although sorne correction term I11ight 

l'xist. In order ta distinguish possible transition regimes, the instantaneous derivative 

of t he inverse perimeter density has been taken with respect to time. It allows us t0 
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Figure 7.2: A system of 128 x 128 ha.s been quenched at temperaturcs fangillg frolU 0 to {).!)'f~ ('V"IY 

0.1, from top to bottom. The curves at 0.0, 0.1 and 0.2Tc overlap. 'The dOllllLin Slze, e'illllllLt .. d by 
the inverse perimeter density, has been averaged over 1600 quenehes. 

distinguish a systematic change of regime at very carly timcs, as can be 8('('11 frolll 

fig,Ires 7.4 to 7.16. Compare with the first part of figure 6.1 on pa~c 77. 

On the other hand, quenching a system at a temperaturc dose to 1~ wiIl involv(' 

non-trivial effects implicating sorne different scaling rcgimes and tran&iellL SOIllC' 

aspects of this problem have been described in (Tartas 1988). Thcsc crfecb I!;c\. wor~(' 

as one is closer to Tc. The effect of temperature can be secn frolll figure 7.'2. 

As we pointed out earlier, the effect of RG brings the temperature of the <IIWII( Il 

down to the zero temperature fixed point. Therefore, a zero temperalufc <l11<'1I('h 

should be invariant under MCRG. This is what can be sec Il [rom figure 7.:1 wlllch 

has, as m goes, the same coefficient a(T) within cxperimcntal crror, as cali \)(' ~('('II 

from figure 7.4. 

The situation is not the same for quenches at higher tcmperature. It w()uld 1)(' 

much simpler if one could deterrnine the function a(T) for then, a f10w grapll of 0 

with respect to m and T could be built from the va;ue of the discretc dcriv,ltiv(' III 
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H(1', m) with respect to m, given a temperature. lndeed, self-consistency implies 

ao:(L, T', m) 
8m 

W IWH' 'l'and l" are such that 

8o:(bJ L, T, m + j) 
am 

o:(L, T', m) = a(ll L, T, m + j). 

(7.8) 

(7.9) 

One last remark concerning the system sizes involved in the matching condition. As 

1lIt'II';vncd eartier, systems of the same size but diffei"ent m's should be compared 

in ordcr ta minimize finite-size effeets. However, the correlation length for a growth 

prohl(:m is much smaUer than the system size. Therefore no finite-size effect is ap

parent when comparing growth in systems of different size, as far as il ;::; OAL, like 

figure 7.1 has demonstrated. 

Figure 7.3 to figure 7.16 show the application of the proposed mcthod ta quenehes 

at higher temperatures. For ail quenehes, the system was prepared randomly and then 

analyzed at each few mes. Similar data series have been produeed for sm aller system 

sizcs, but they will '.lot be reprodueed here, sinee they le ad essentiaUy ta the same 

reslIlt.s. 3 As figure 7.2 has already shown, the eurves obtained contain a relatively low 

étmount of noise4 and that our data set can he considered as the best ever ohtaincd 

in MC growth problem related studies. Aceordingly, as a more rigourous and severe 

analysis of our data, t.he derivativcs of most of the quench curves have been taken in 

order to possihly distinguish different scaling regimes. We emphasize that derivatives 

are very sensitive to any kind of noise, and that they usuaUy cannot be applied on poor 

qualit.y data. As can he seen from figure 7.4, the derivatives of the curves ohtained 

from a low tempcrature quench study behave as expectedj i.e., they aU converge to 

tilt' saIllC constant value, within their respective error. Also note the distinct scaling 

regilIIes at very early times. The very first part of the eurves behaves as if it was 

independent of the temperature, although high temperatures saturate this proces!> 

mort' rapidly. Indeed, the growth process has a t = 0 derivative of ,....., 0.5 for aH 

3 A pflft from finite-sÎze etfeds of course. 
4 Note that tht're are 512 data points for each curve of figure 7.2. 

• 
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the cases below '" D.8Te • Above this temperature, this tirst lIlt'chani:-1II M't'III'> III 1)(' 

hindered and, rather, the derivative starts 1.0 decay from that saIlle va.lut'. It i:- ,d-.,) 

interesting to note how MCRG works on the high temperat urt' curw:-. Fig;u ft' 7.'2, 

for example, shows that although the growing mechallism is relatively ~I()w as t i'lll' 

goes on, the faet of renormalizing bring the whole process to a !ower telllpt'r,tf Uft', 

thus making it growing more rapidly. Even for very high temperatures, thi~ (h,III~(' 

of growth activity is obscrved. 
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Flgllre 7.3. MCRG on a 10-6Tc quench. Sirnilar cu Ives are obtained for T ;S O.'nTc. The value of 
tilt' hnl'IU coefficient o(T) is invariant as m goes. Note the drifting origin as expI..med in the text. 
Sy~telll size of 128 X 128, over 1600 quenches. Shorter curve as m = 0,1,2. 

6 

5 

4 

3 

DIP 2 7ft 

1 

0 

-1 

-2 
L-________ -J ___________ ~ __________ L_ ________ ~ _________ ~ 

a 100 200 300 400 500 
t 

Figure 7.4: The derivative of the curves of figure 7.3 has been taken for m = 0,1,2. It shows that 
tht' srahng regime is reached at earlier times in the renormalized system. The value of coefficient Q 

converges to the same final value for all curves. Shorter curves as m = 0, 1,2. 
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Figure 75. Quench for a 128 x 128 systpm. The quencll tempemtun' i~ () 4'1~ !Lnd thl' Illllld"'r ,,1 

averages is the same as in fig. 7.3. Note how the coefficient Q convergt'f to the ~IOpt'~ obllllll' d III th, 
preceding figure. The sarne sc ale has been kept throughout ill order to have IL ,lIft·ct C"IIII)lllh"lI 

Curves as in figure 7.3. 
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Figure 7.6: The derivahve of the curves of the precedmg figure ha!> Iwell tahll for IlL 1), l, :! 
Compare the convergence value of the m = 2 curve wlth the Olle obhllll"d frolll Il low l, III p' r,lIl1 fi 

quench (cf. fig. 7.4). Curves as in figure 7.4. 
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Figure 7 7: Quench for a 128 x 128 system. The quench temperature is D.5Te and the number of 
ILvt'ragt's, as weil as the meaning of the curves, are the same as in fig. 7.3. 
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FlgUCl' 78: The derivative of the CUlves of the preceding figure has been taken for m = D, 1,2. 
Ait hOllgh the number of averages lS the same here, the data is much noiser. Curves as in figure 7.4. 
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Figure 79: Quench for a 128 x 128 system The quench temperaturt" 1'> () tl'I~ Ilnd tht· 11111111"'1 tlt 
averages, as weil as the meaning of the curves, are the saille /I.~ 1Il fig 7 3. 
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Figure 7.10: The derivative of the curves of the preceding figure hlt~ bf'f'll tahn f<lf II! fJ, l, '.! 

Curves as in figure 7 4. 
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Figure 7 Il: Quench for a 128 x 128 system. The quench temperature is 0 7Tc and the nlllllber of 
IlVt·r;L!.;t'~, ilS weil as the meaning of the curves, are the same as in fig 7.3. 
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l'llrVt'~ a~ 11\ figure 7.4. 
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FI~lI ft' 7. If) The derivative of the curves of the preceding figure has been taken for m = 0, 1,2. The 
.,101\' do", n of growth lS remarkable after a few mcs only. Curves as in figure 7.4. 
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7.3.2 Critical dynamics 

The analysis of the data obtained for critical dynamics difft'r~ fWIll p;rowth III ,1 1(,\\ 

aspccts. Pirst of aH, we note that time is h0It10g(,l1t'Oll~ for tht' prt'~t'I\t (.IM', -..0 t !t.lI 

t hc previous possible drifting prohlcm now bt'cOlllt,:-, irrdt'v.ull. 0 Il t hl' Dt !tt'r !t olll d, 

finite-size effeds are much stronger for cri! ical dynalJlic~ bill( t' t ht' corrt'\.d ÎOII \,'p hl '1 

IS of the order of the system size. Matching will tllt'rcfore req\llre :-,y~tt'lIIh of dd!('I"1I1 

sizcs. Lastly, we note that the dynamical critical exponcnt l'an .1.\:-'0 b(' obtalllct! hU11i 

flnite-size scaling analysis and this otIler method will provide liS il dm'ct te,,! lor t III' 

validity of our present technique. 

The characteristics of the simulations were ah fo11ows. 'l'Ill' init.i,d hl al c" \\ l'l" 

random configurations on which an equilibrating simulation of !), 17 and .\.\ 11111"" 

the relaxation time constants for system :"Îze of 04, :32 and 1ti rl':-,pt'dIVt'ly, Il.ld \11'1'11 

previously performed. The numerical implelllentation comihted in buildil1J.!; jlolltln 

rings of size of the order of a few Tin order to &tore the valucs of the llla!!;l1etlz.iI 1011 .ll1d 

its deviation, and then, to calculate the mathcmatical corre},t! ion of tll<' fllIg Vetllll'" 

with themselves displaced by a bme lag t. With t.his SaIllt' algoril hlll, :~2 :-.y"t ('III~ 

were run and averaged in parallel. A more dctailed deSlfiptioll of tlH' (Oll1pll Iclillilletl 

aspects of this work, as weil as the code listings have bt'{'!1 im(·rt.ed III t.h(' ap\J('ndlx 

As shown by figures 7,17 to 7.19, the results fit a simple expollclltial "lIrJHI"II.V,Iy 

weIl, even at early times. For reasons of precision, as it is ulwljllivo(ally ~h(JwlI 

by figure 5.1, the time-displaced correlation fUlIdion 'PM(t) Will 1)(' thc only (1111' 

to be used here. Section 5.3 defines this quantity as weIl ah otlll'r tllfJ('-(IJ:-'I'i.1i ('ri 

correlation functions. The relaxation time constant were extracted frolll t.l\1'''1' J.!;fe'ldlC, 

and matching is summarized in table 7.1. Our re<;ults are con~i~t('lIt Wlt li .:' ~:~ 1 

2.24. 

Each MCRG matching result was compared with a finite-f>ize ~\itlillg allalj"l" clllfi 

both were found to yield the same value within the interval of conf:dcl1c(' of tl1l' d,il a 

The value of z was found to be larger when doing rnatching with hlllaller "y~tf'III", \)\11 

this cffect was a1so observed from flnite-size scaling analYl>I<;, thll" IHOVIIIK t /r,d t ftl', 
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efr(·ct is not particular to our method. The values of T were collected for m = 0 and 

plotted on a log-log scale in arder to find a global exponent from finite-size scaling 

rt!> d(·fincd by equation (5.10) (page 62). This is done in figure 7.20. This yields an 

pxponcnt of z == 2.29 ± 0.05, which is quite consistent with our estimate from the new 

He IlIdhod of z ~ 2.21-2.24. The large value of the error is mainly dae to the low 

numbcr of points. Sorne further investigations are still needed to generate points for 

larKef system size. The previous estimation of Landall et al. (1988) for example, used 

iL collection of two-dimensional systems ranging from L == 12 to L == 96 only. Their 

he~t e~timate is 2.14 ± 0.05, obtained from a multi-spin coding algorithm. While this 

va.lue is clearly not contained in the error wc have, further statistics may be required 

for liS to definitely exclude their estimate. Furthermore, the updating scheme they 

u'>t'd tllight have a non-negligible systematic effect on the value of the critical exponent 

oht<lined. We note that other estimated values of 2.24 (Achiam 1980; Poole and Jan 

U)!)O), and 2.23 (Katz, Gunton and Liu 1982), are consistent with the value we have 

here. 

ln conclusion, the analysis of 'P has demonstrated unambiguously that the decay 

of tilllc-time correlation functions can be very well described by a simple exponent.ial, 

t li us showing that critical relaxation is purely exponential in finite-size systems. Sec

ond, the method we proposed turns out to be efficient as well as self-consistent, and 

offers a promising way for evaluating the critical exponent z with still more precision. 

Finnlly, in the frameworl: of testing this original technique, we generated data of a 

higllt'r quality compared ta any other exist.ing data.5 

5 Chrcher board algorithms clearly have more mcs/site statistics, but the quality of the data 
obtllll\ed from such algorithms still remains questionable. 

1 
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Figure 7.17: Critical dynamics MCRG on a 64 x 64 system. Curves are for Hl ::.= 0, 1,2, :1,4, frol\l top 
to bottom. Averaged over 32 independent systems observed for 8 806 400 mes. Tht' e<juddlflltllll-( 
time of 204 800 mes and !PM ealculated every 16 mes. 

0 

-0.2 

-0.4 

-0.6 

-O.~ 
ln 'P M 

-1 

-1.2 

-1.4 

-1.6 

-1.8 '-___ -'-__ -L-__ -'-__ -'--__ -LI ___ L___ _ j _ _ _ _ j 

0 1000 2000 3000 4000 5000 6000 7000 HOOO !HJOO 
t (mes) 

Figure 7.18: Critieal dynamics MeRG on a 32 x 32 system Curves are for m -=- (J, 1,2, :1, fr'JllI tUI' 
to bottom. Averaged over 32 independent systems eaeh observed for 8 I<J2 noo lJlC~. !·;qudd,flltlflJ.\ 
time of 81 920 mes and 'PM calculated every 16 mes. 
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Figure 7.19: entieal dynamies MCRG on a 16 x 16 system. The observation time, for 32 systems 
wn in paraUel, was 15511 552 mes, and equilibrating time 40 960 mes. Other features are as those 
in figure 7.18. 

T64 1 Z64-32 1 
-

732 1 Z32-16 1 

64 22151(5) (~ = 0) 

32 7329(4) (~ = 1) 2.623( 1) 4759(1) (m = 0) 

16 1833(2) (nl = 2) 2.208(2) 1587(1) (m = 1) 2.725(2) 960(1) (m = 0) 

8 461(1) (nl = 3) 2.21(2) 397.7(4) (m = 2) 2.30(2) 322.0(2) (m = 1) 

4 120(3) (nl = 4) 2.24(5) 101(1) (m = 3) 2.3(1) 80.!:J(3) (m = 3) 
--

Table 7 1: This table is the result of matehing eurves of figures 7.17 to 7.19. The error, as shown 
in pllrenthesis for the last digit, is calculated from the goodness of the fit, 50 it is not useful for the 
(>~tllllntlOn of the real error when m = 0, sinee the RG method has not. yet eonverged. 

-
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Figure 7.20: The value of the exponent z can be extracted from finitt.'-"izc !>('Illing Il'> dl'~("fjlH'd l,y 
equation (5.10). The system sizes were 16,32,48,64 with statistics a~ dc..,rnbt'd earllt'f 'l'hl" valll'· 
of the slope is 2.29(5). 



Chapter 8 

COllclusion 

'l'hi:" Jast chapter will first surnmarize the results obtained in the preceding chapter 

and t.hcn suggest new avenues for both problerns considered in this thesis. 

8.1 Evaluation of the method 

For reasons of clarity, the two problems will be separated and treated accordingly. 

8.1.1 Growth dynamics 

As shown in the last chapter, the proposed rnethod has yielded results in agreement 

wit.h the Allen-Cahn la.w. Instead of extraeting a specifie growth exponent, the ap

proach taken was to test the degree of compatibility of our results with the Allen-Cahn 

~rowth Jaw. However, the results do not exclu de the possibility of the existence of cor

rect iflg factor ... at very high and very low temperatures, mainly because of transient 

r('~i mes and crossover effects. At high ternperatures, for example, eritical slowing 

dOWIl effeds rule out sorne of the basic hypotheses needed for the derivation of tht' 

ant iphase boundary motion. lndeed, as one gets closer to Tc, one must consider the 

t'ad t hat the thickness of the interfaces becornes larger and larger, and the very notion 

of a 1\ interface no longer has a clean definition. 

l\loreover, related to the inhornogeneity of time and to the algorithrn used, SOIlle 

103 
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drifting effects were found during time renormalizatioll. ThoM' etrt'cb \\'('f(' Ilot 1111 

portant with respect to the approach taken here, but th('y prt'\'t'Ilt liS frolll t"..t fMt 11l~ 

a complete description of the problem since the choicc of t he Ile\\' orÎt;1\l h<\~ t 0 1H' 

made in an arbitrary way. 

8.1.2 Critical dynamics 

For the ease of eritiea} dynamics, the success of the llIethod is, however, IIlldt'lIldhlc 

Because of the complete homogeneity of time, due ta the presence of l'qui!. hrÎullI, t ht' 

time scale renormalization has not le ad ta any complicating CfI'l'cth. MOf('OVl'r, tIlt' 

faet that all the matching could perfectIy agree with finite-size scalItlg don<' <1I1 t II(' 

two systems considered is very encouraging. The need to investi~(tte largef ~y~klll .. 1" 

evident from our data. Finite-size effects are much tao strong whell nG hil~ brou/!,ht 

the system size down to L :s 8, and the results shawn hy tahle 7.1 are vefy ('011< III .. Îv(' 

Moreover, larger systems would permit convergt'nce to a hettef valw' fOf .:, ~11l( (' 

our results tend ta indieate a smaller value for the ('ritÎcal expollent a~ 111<' ~y~t<'111 

Slze mcreases. Furthermore, the observation of the data indicat.l'd t.hat. t Ill' t illl<' 

relaxation constants were not yet stable at their present values. A M'rioll~ 1l111tlpi .. 01 

the behaviour of the results in time is stilliacking. Any further devcloJlllll'lIt ~h()lIld 

consider this aspect before judging of the qualit,y of the data. 

The main advantage of our technique over finite-size scaling ll\eth()d~ i~ t.!1<' ('x

traction of more results from the sarne simulations. Moreover, if t.he Sillllll(tl.i()ll~ \\'<'ff' 

done on larger systems, self-eonsistency would aUow the convprg<'I\CC of thl' daLl tu 

better results, out of the same simulations. Therefore, not ollly ha::, the f('il'liIJlhty 

been proven, but the superiority of this t!'t:hnique has becn c1carly derIlon~tr;tf(·d ily 

simulation on systems of slightly larger sizcs. 

On the other hand, the values obtailted frou, finitc-sizc :,caliug are :,olllf'wll<d III 

conclusive, mainly because of the low number of data points. lIow('v('r, li\(' n'bd iV('ly 

large error value encompasses a good range of dynamic critical cxponcub obtillllcd ill 

the literature and the production of more data points would eV('ntllally l('arl 1 () «(1111 



C'IlAP'J'EH 8. CONCLUSION 105 

l'arable results. Again, simulation of larger systems would permit a better estimation 

of the critical exponent. As a check of our technique, it would always be possible ta 

vf'tify our results by direct comparison via a finite-size scaling analysis. As shawn by 

the prcceding chapter, however, the error would be much sm aller from a consistent 

M CH G process than from finite-size scaling. 

8.2 Newapproaches 

This very last section will try to indicate further avenues of investigation related 

to that problem. Fin t , we stress the lack of a sound theoretical background for 

reHorlllalization techniques in general. The inclusion of time as an extra parameter 

in our renormalization scheme is certainly not an improvement to the understanding 

of this problem. Second, the influence of real computer simulation parameters on the 

f'xpectcd behaviour of the system has to be further investigated. lndeed, as previously 

lIlent.ioned, there is no a przort evidence that a multi-spin algorithm should lead to 

the ~amc critical exponent. Moreover, one would be justified in expecting that the 

ob~ervation of a dynamical quantit.y should be much more sensitive to the random 

lIulllber generator and the related updating schemes than an equilibrium one. 

'l'he representation of the system in tenus of Langevin equations should be fur

t.hPr invcstigated. The domain of application, as weIl as more formai derivations from 

basic principles, would surely help the understanding of non-equilibrium statistical 

Illl'chanics. The solution of the strong non-linearities found in these problems is not 

aIl t'asy task, however. Finally, the system can be investigated in terms of estimating 

hOlllop;cneous transition probabilities. This method should yield some novel dynam

ical results for the growth dynamics from a quench, as weIl as the critical problem. 

Tht' solution of these equations for transition probabilities is not expected to be easy, 

but t hey would surely have the advantage of expressing the system in tenus of a 

rdativdy smaller number of variables. 

ln conclusion, the new method, presented in this thesis, has brought new light to 
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two challenging problems, and permitted the generatioll of Illllllt'ricai n'~l\lt~ of ht'( (t'( 

quality than any previous study. The availability of mort' powerful ('ompllkr~ will 

certaillly allow this technique to yield further useful results for relat t'cl prohlt·\I1~. 
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Description of the Code 

'l'h(· following will briefly describe the algorithms used for the problem of critical dy

nalllics. The algorithms used for the previously described problem of domain growth 

art' almost the same apart from the faet that (1) the system is not allowed to equi

li hr,d,(' before we start the measurements, (2) energy, instead of magnetization, is 

lIH'a~,urcd in order to dctermine the mean domain size (note that no time-time cor

relation function is involved in this case) and (3) an average is made over different 

qlll'I\ches done on randomized systems instead of continuing with the same system in 

time as it is the case for critical dynamics. 

'J'he algorithms have been written in both C and FORTRAN but only a C version 

will be prescntcd here. The following version is one of the most complete on es which 

st ill mutains a clear representation of the algorithms in spite of having fancy feat ures 

such as taking care of the history of results and allowing the reading of a previous set 

of configurations already equilibrated at Tc for example. The source code has been 

subdivided into separated files in order to take advantage of static C declarations. 

Il comprises a header file containing declaration of macros and machine dependent 

\'ariahles, a utility file containing various functions userl to aIlocate memory, to copy, 

rt'ad and save matrices, and to initialize lookup tables for a two-dimensional-periodic

bOl\udary-condition Ising model, an analysis file containing an algorithm computing 

t ht' llIagnctization of the different systems ran in parallel and storing these results for 

107 
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subsequent calculations of time-time correlation fundions, a Me He routillt' Iii\' whll h 

renormalizes the systems using a majority rule blocking algorit hm, a \lIain pro~r.111I 

file which will be explained in more details below, and finally, é\. makt'file wl\lch h.l" 

been included in view of completeness. 

The general idea is to run a simulation on a !If x N intl'~('r mat.rix. E.1l il bIt 01 

the integer is used as a spin. The bit size1 of the intl'gt'r .dlow~ to r\lll frol\l IIi to li 1 

syst.ems in parallel, depending on the architecture of the hardware ml'(!. \V\WII ail 

integer is visited, aIl of the systems are visitcd so that the ~y~tell\~ ail shan' t Ill' ~.IIlI'· 

visiting history, although the probabilistic outcome, as weil a~ t ht' illlt.iai cOlllht 1011:--, 

will be different for each of them. Due to the Ilamiltonian of t he two-dill\l'll~ioll.t1 

Ising model, the state of a spin has a degeneracy 10, depencling of wlll't1lt'r it 1 ... "Ill''' 

or "down", and depending on the number (0-4) of parallel nt'i~hhollrs it ha~. III ord"r 

to use Boolean algebra, the state of a spin will be represented by tell illtq..;c'r:-- ha\'l1l~ 

a bit set "on" for each corresponding system having the visited spin sitt, h('ill~ III t Ill' 

state represented by the given integer. For a 32 bit intcger hardware' for ('xalllpk, :~'2 

bits will thus be distributed among ten 32 bit integers, each bit having no ('(l'llv,tlf'ltI 

in any other state integer, since a spin can only be found ill Olle of ib tl'II :--1.11,· .... 

Wc shaH not go into the detailed description of the Boolean algehfit in vol v('d, Inti 

the reader will find the details in the lturn{) function bclow. lt Il~('!> thl' l\1!'\ rOl'oh" 

algorithm on a matrix passed as an argument and runs for a givcII nUlllbt'r (If 1/1/.~ ;.1"'0 

obtained from the argument stack. After selccting a matrix integt'r (il site) al ralldolll, 

the "fiipping" procedure is done systematically on any vi~ited Splll havill~ t wo a "d 

lcss paraUel neighbours, and with a Boltzmann prohability for any vil>ited ~pill "avili/!, 

threc or four paraUel neighbours. The Boltzmann distributed prohabiliti('l> .W' ~l()rt·d 

bitwi~e in two integers that then operate, using Boolcan algehra, :,y~tf'IIIal \( ,dly 0/1 

the two integers rcpresenting the sites in the situation of ha.ving thr('(' and fOllr p.lr.dlt-\ 

ncighbours and this for the, say 32, parallel systems at the saIlle til/l<'. 

Anyone, who has done such simulations bcfore, would know that tilt' ~/rll'r,lf iOIl 

1 Defined as THICK in the header file. 
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of random number is th", procedure forrning the major bottleneck of the algorithm. 

A tt'ntative to use socket 1/0 prograrnming in order to use other slave machines in 

parallcl turned out to be disappointing in terms of the overall speeding up of the 

pro('('ss. There still remains some other tricks to try though ... 

The configurations thus generated, by the Metropolis algorithm, are analyzed and 

tt'llIporarily stored until we accumulate four of them. At this point, the four matrices 

are rcnormalized in both space and time as described in Chapter 7. Still, the resuIting 

M /2 x N /2 matrix is analyzed and temporarily stored until four similar ones have 

het'Il accllnlulated. The same process continues until the size of the original system 

perlllits. 

This whole process generates different levels of results and analyses. Level 0 1.3 the 

original matrix on which the Monte Carlo simulation is performed. Each next HG 

IcVt'1 has the size of its corresponding system matrix divided by two and the number of 

data points in time divided by four. Our goal is to compute the time-time correlation 

functions as determined by equation (3.13) (page 33). This has to be done for aU 

the lcvcls involved. Because the process will be running for a long time, saving the 

complete history of each system is not realistic. This suggests the idea of "rings". For 

cach parallel system, and each level of RG, a ring of a size such that a few T of data 

can be saved will be constructed. Ta fill each ring, every time a new system matrix 

is oht.ained -from the raw Monte Carlo generator or from the MCRG process- the 

values of magnetization are computed for ail systems in p'l.rallel and then saved in 

t.heir respective ring. Each new rnagnetization data set obtail\ed will be saved around 

titis ring and the correlation of the present values with the magnetization values 

ohtaillcd at previous times will be computed. 

This way, the function 'PM(t) can be constructed for each of the, say 32, systems in 

parallt,l, and for each of the RG level. The time t will run from 0 to sorne value2 usually 

takt'Il as a few relaxation times T. Each of the correlation functions forming the time

tin\{' correlation function 'PM(t) (d. equation (3.13) on page 33) is averaged in time 

2!)elined as WINDOWin the header file. Note that this value depends on T which in turn depends 
on t ht' ~ystt'Ill size. 
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Figure A.l: Estimated CPU time for one r cycle as a functlOn of the "Y'ott'Ill "IZt' [, 'l'h,' III. l' ,1'" 

Îs due to (1) the increase of CPU time needed to process largt'r sy..,t('III'1 /lnd ('2) 10 lh,' III. r",l"" 

of T as the system size increases. This makes it eVldent that l/Lrger "y"tt'III" Mt' Ilot t,·, hlll' 111\ v 
accessible for now. This curve has been estlmated frolll Il DECfiOOO work .. tlltl\lll 11111111111-( lIl' ,"01, 
found ln this Appendix. No more than one arder ofmagnitllde illlprOVl'llIt'lIt cuuld IH' ohLlIlI' 01 r'''11i 
Il snpt'rcomputer. 

as the process goes on. At print time, arl other average is made over all Ille' "y..,I('III" 

in parallel. 

The value T is then extraded by fitting an cxponcntiaJ to 'PM(t) 'l'Ill" h dOIlt' 11\ 

using a least square fitting algorithm over a semi-log repre~(,I1tilli()1I of tllf' t11111 11<1I1 

The extraction of the critical exp one nt z is tll('Il dOIlt' a('('ordill~ to tlll' d('''lllpIIIIII 

given in Chapter 7. 

U P to now, the major problem in obtainillg <latd. ha:.. \)t'l'lI rt'I.t1,pc! to (' JI (' 11111f' 

limitations. As figure A.l shows, the estimatcd CPlJ t.iIlW fI'qlllf('d 10 rllli .l "y..,I"111 

of linear size L becomes incredibly large for L ?: 100. 'l'hi .. ("urV(' ha,> 1>('('11 ('..,11111 .. "," 

[rom benchmarks obtained from running the code 1H'low O!l a DECSO(JO w(lrht.d )1111 
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C Listings 

B.l The rnakefile and header files 

FILENAME MAKEFILE 

# !IIa( 1'0 (üjinztlOns 

Il 
# pammt'tt'rs 

# SIlE ((ln be OI'C7'zdden by "make lerm4 SIZE=64" for example 
SIZE -'- 32 
PA H = --DS$(SIZE) 
CI·'LAGS = -0 $(PAR) 
LDFLAGS = -lm 
('C' :" cc 

# ob)t'Cts 

LC'HIN4_0BJ = lutll 0 Iturn.o lana.o lctsrg 0 

dt'fault 
@echo "Use to malte lcr~n4. clean" 

knll·t. $(LCRIN4_0BJ) lcrm4.c 

JAN 10 1991: 14:27 

10 

$(CC) $(CFLAGS) -0 krin4 $(SIZE) lcrin4.c $(LCRIN4_0BJ) $lLDFLAGS) 

$( LC'HIN4_0BJ)' Ipl1ram.h makefile 
20 

c1t'HII 

(~/llln/rlll - f *.0 test core 

- --- ----------------------------------
FIU:N AMr: LPAIlAM Il 

;' ~ l'tll·tlmt'lt'I' filt' */ 
# ift!t-f S:?·l / * the Sl.:e zs 24 by 24 * / 
#dt'onc M 24 
# dt'o lit' N :? 1 
#111'0111- WINDOW 16384 / * observe for 2 $\tau$ Monte Carlo steps */ 
#(lt-onl' !\tCSTEP 16 /* analyse Hery 16 mes */ 

111 

JAN 14 1991: 23:52 
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#dcfine AVG JOOO /* run for a thousand Ul'eragt'S */ 
#endif 
#ifdcfS32 
#define M 32 
#define N 32 
#dcfiue WINDOW 16384 
#dcfine MCSTEP 16 
#define AVG 1000 
#endif 
#ifdefS48 
#define M 48 
#define N 48 
#define WINDOW 32768 
#define MCSTEP 16 
#dcfinc AVG 500 
#{'udif 
#ifdefS64 
#define M 64 
#dcfine N 64 
#dcfine WIN DOW 65536 
#dcfine MCSTEP 32 
#define AVG 500 
#endif 
#ifdefS96 
#define M 96 
#define N 96 
#define WINDOW 9830" 
#dcfille MCSTEP 32 
#define AVG 500 
#endif 

#define SKIP 25 j* the number of averages between hu/ory fune/ton jil<,.~ */ 
#define WARMUP (10 * WIN DOW) j* ft says zi ail */ 
#dcfillC T 1 0 / * temperature zn ierms of Tc */ 
#dcfine LEVEL 5 /* ThtS means 4 RG + 0 */ 

#define MAXRAND 2147483648 0 /,; machme dcpendent */ 
#define Tc 2 269185314213 / * fro1ll Onsager soluiwn */ 
#dcfine MAXNAME 80 
#define DATUM (WINCOW /MCSTEP) / * numbe .. of raw data ln Lw!!' */ 
#define TNS (M*N) /* total numbcr of sztes */ 
#defille THICK (8*sizcof(unsigned» / * number of btt ln an znlcg! l' */ 
#dpfine MFAC ((flont)((float)M/MAXRAND» /* spct!d up far/ors */ 
#define NFAC ((float)((float)N/MAXRAND» 

#defille ERROR (-1) 

B.2 Utility functions 

1 1:2 

.JO 

.111 

41) 
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/ t Iftzhty file * / 
/t Last rnodlficalwn ilme 91/01/14 */ 
#iucludf' "lpararn.h" 

/. Lookup tables lmtzahzalzon for up rlght down left nelghbours. 
'/'lus can be slmpllfied to only two functlOn, but l left four 
for sake of clanty. */ 

void \JUil t( \Jlnt, m) 
Illllligncd *ulnt; 
illt III; 
{ 

} 

int l, 

ulllt[O] -= Ill-l, 
for (i=l,Ï<IlI;I++) { 

ulllt[l] = i-l; 

void rtntt(rlnt, n) 
IIIll-igned *r1llt, 
illt Il; 
{ 

iut j, 

for (j=Oj<n-·l;j++) { 
ri Il t[.il = J+ 1; 

} 
rlllt[n -1]::: 0; 
retl1rll; 

void dllut( Jlllt, 111) 
IlIl:-.igned *dlat; 
illt Ill, 
{ 

int 1; 

for (i -0,1<'111 -1,1++) { 
dlllt[l] -"- 1 t-l, 

,llat[lII -1] ~ 0, 
rt't uru; 

voitl hlllt(llllt, Il) 
IlIl~igllcd *lIat; 
illt n; 
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} 

int jj 

llat[O] == n-1j 
for(j= 1 ;j<nJ++) { 

llat[j] = j-1j 
} 
rcturn; 

#include <stdio.h> 
j * requtred on certam systems * j 
j*********************** 
#mclude <stdl!b.h> 
***********************j 
j* Allocatwn routmes for speedmg up access to the matnr 

as weil as for more fleubtltty on the stzes and mdlCt's >1'1 

unsigned **alloc_uint_mat(lll, n) 
int m, n; 
{ 

} 

unsigned **ptr; 
int i; 

ptr = (unsigned **)calloc«unsigncd)IJl, sizcof(ullsigupd *))j 

if (ptr == (unsigned **)NULL) { 

} 

fprintf(stderr,"Error 1 in unsigned matrlX allocation\n"), 
exit{ 1); 

for (i=O;i<J11ji++) { 

} 

ptt[i) = (unsigned *)calloc«unsigned)n, siz('of(Ullsiglll'd)), 
if (ptr[i) == (unsigned *)NULL) { 

} 

fprintf(stderr,"Error 2 ~n unsigned matrix allocation\n"), 
exit(l), 

rcturn(ph )j 

int **alloc_mt_mat(m, n) 
int Ill, n; 
{ 

int **ptrj 
int i; 

ptr == (int **)calloc«unsigncd)IIl, ~izcof(il1t *)), 

if (ptr == (int **)NULL) { 

} 

fprintf(~tderr,"Error 1 ~n int matrix allocatl0n\n"), 
exit(1)j 

1 1·\ 

70 

hO 

\HI 



A PPENDIX Do C LISTINGS 

for (1 -=O,i<lII;I++) { 
ptr[l] == (int *)calloc((lIllsigncd)lI, sizcof(int»; 
if(ptr[l] === (int *)NULL) { 

} 

fpnlltf( .. tderr,"Error 2 1n 1nt matr1x allocation\n"); 
exit(l); 

rt'tllrll(ptr); 

HOltt **allocJloat_lIlat(rn, Il) 
illt. III, n; 
{ 

} 

Hont **ptr, 
illt i; 

ptr = (fIoat **)calloc((unsigned)m, sizeof(float *»; 

if(ptr == (fIoat **)NULL) { 
fpnntf(stderr,"Error 1 in float matrix allocation\n"); 
exit( 1); 

for (I=O;i<m,i++) { 

} 

ptr[i] == (Hoat *)calloc«unsigncd)n, sizeof(float»; 
if (ptr[i] == (fIoat *)NULL) { 

} 

fprintf(stderr,"Error 2 in float matrix allocation\n"); 
exit( 1); 

rdllrl1(ptr), 

illt *allo<"_wt_vec(n) 
illt Il, 

{ 

} 

illt *ptr; 

ptr == (int *)calloc«unsigncd)n, sizeof(int»j 

if(ptr === (illt *)NULL) { 

} 

fprintf(stderr,"Error in vector allocation\n")i 
nitr l)i 

notllfn(ptr), 

Hont *alloc Jloat_ vec( n) 

115 

110 

120 

130 

140 

150 



APPENDIX B. C LISTINGS 

int n, 
{ 

} 

Roat *ptri 

ptr == (Hont *)calloc((unsigned)n, sizt'of(float)), 

if (ptr == (Hoat *)NULL) { 

} 

fprintf(stderr, "Error in vector allocation \n"); 
exit(l)i 

return(ptr )i 

/. Generate a random configuratton • / 
void ranit(slat) 
unsigned** slat; 
{ 

} 

register int i, J, 
long random(); 

for (i=OikM;i++) { 
for (j==O;j<N;j++) { 

slat[iWl = random() * random(); 
} 

} 
returni 

/. At RG levell, capy matTlZ ald onta matrlx ne1JJ ./ 
void lcp_mat(l, old, new) 
unsigned **old, **uewj /. fram and ta matnecs */ 
int 1; /. RG leve/, requzred to delermzne the sz::e ./ 
{ 

} 

register int i, jj 
extern int *msize) *nsize, 

for (i=O;kmsize[l]ji++) { 
for (j=O;j<nsize[IJ;.i++) { 

new[i][j] = old[i][j]j 
} 

} 

returni 

/. A subroutzne sa vzng the matrzx • / 

savemat(avg, mat) 
int avgi 
unsigned int *'"mat; 

1 Ili 
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{ 

} 

int l, J, 

char fill'llll.lT1e[MAXNAME], 
FILE *fp, 
extl'rll chur *prog; 

spnntf(filename, "%8. mat .. , prog); 
if «fp := fopen(filename, "\l")) == NULL) { 

} 

fprintf(stderr, "Could not open %8 file. \n", filename); 
return (-1); 
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fprintf(fp, "Effective mcs: %d\n", avg * WINDOW); 220 

for (i=O,i<M;i++) { 

} 

retnfu; 

for (j=O;j<N;j++) { 

} 

if(fprintf(fp, "%ud ", mat[i][j]) != 1) { 

} 

fprintf(stderr, "Errar occured when savlng configuratl0n\n"), 
return (-1); 

230 

/ '" tl .mbroulme readmg the saved matrzl "'/ 

rt'IL<llIlat(filennme, mat) 
chllr *fiIename; 
1l1l~igl1cd int Hlllnt, 
{ 

int i, j; 
FILE *fp; 

jf «fp :::: fopell(filename, "r")) == NULL) { 

} 

fprintf(stderr, "Could not open %8 file.\n", filename); 
return (-1); 

for (i=O,i<M;I++) { 
for (j=O;j<N;j++) { 

if(fscallf(fp, "%ud ", &mat[llll]) != 1) { 

240 

fpnntf(stderr, "Error occured when loading configuratl0n\n"); 
return (-1); 250 

} 
} 

} 

rctnrll; 
} 
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B.3 The magnetization analysis file 

FILENAME: LANA.C 

1 * Analysls of the configuratIOns '1 

#include "lparam.h" 

static int *mver; 1* used to salle rt:sults from the 32 conjigllmtltHzs #/ 
static int **prev, **next; 1 * 5 RG levellookup tabl{·~ fol' tht' T'Wg~ '/ 
static int ***mring; 1 * the l'mg liselj lVIlh fi RG lcv..zs '/ 
static int *rn; l' pomter ta currcnt rmg posllzon ln c/1ch Ifl'cl '/ 

1 * Imitaltzes the data rmgs used fOl' savmg the t'llIUt"ç 

of the magnettzatton kept zn order ta calculatt the tlTllC- IIIIte 

correlation junctlOns. There IS no pomt zn keepmg data 
jrom very carly configuratIOns smee these are not corre/ntd 
any more. ThIS lB why a l'mg (a loop) IS used, whlch allows 
overwntmg on results obtamed from carly configilratlOT!.~. 
Thzs thus save computer spaee Th" followmg JunetlOT! 

only allocates thzs structure * / 

void iniUingsO 
{ 

illt Il, i, n; 
extern int *mvec; 
extern int **prev, **next; 
extern int ***mringi 
extern int *allocjnt_ vecO, 
extern int **alloc)nt_mat(), 
extern int *rn, 
extern int *datum; 

fil = alIocjntvec(LEVEL); 
Illvec == aIlocjnt_vec(THICK); 

mring = (int ***)calloc«unsigned)LEVEL, sizeof(illt **)), 

prey = (int **)calloc«unsigncd)LEVEL, sizeof(iut .)), 
next =: (int **)ealloe«llllsigllcd)LEVEL, SlZt'ul(illt *)), 

for (11==0;11< LEVEL;ll++) { 
n = datum[ll]i 
rnring[lI] = allocjnt_Illat(TlIICK, n), 
prev[ll] == allocjnt_ veel n)i 
next[ll] = allocjnt3ec(n), 
for(i=O;i<l1,i++) { 

prev[Il][I] = 1-1i 
next [1IJ[i] = i + l, 

} 
prev[lI][O] = n - 1; 
next[lI][n-l] = 0; 

II~ 

1" 
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r!·tl1rll, 

1 t 'J'lu., funcllOn ca/culates the magnetzzatwn out 
uf lhf' runfiguratwn. Each znteger 15 Ircated as 
7'IIICK (:.12 for a decfjOOO) bds, each of whlch bemg 
!TL an mdepetident system. The on/y th mg these systems 
hll ur zn rommon lS the spm update hzstory *1 

void lanll{lI, ~) 

illt Il, 1 t the RG level *1 
1I11~igI1('d **s, 1 t pumter to the configuratzon ma/ru Il 
{ 

} 

rpgi<;tt'r int tmp, 
rt'gistt!r illt l, J, k, 
('xh'ru illt *mvec, 
('xt(>ru "lIl<;ize, *nsize; Il slze a.~ a funetzon of RG level Il 
t'xtl'rn int *tnsv; I t defincd m mam, total number of sItes *1 
void ~tore_JJ1{); 

tmp = -tnsvlll]; 
for (i=O,i < THICI{; i++) { 

mvrc[l] = tmp; 
} 

for (1=0, i < msize[ll]i i++) { 
for (FO;J < nsize[IIJ;j++) { 

tmp = !>[11Uli 

} 
} 

for (k-=O,k<THICKik++) { 
IlIvec(k] += 2" (tmp&Ol), 
tmp »= l, 

} 

... tOH·_lII(ll, lllVl'C) , 

1 t ThIS fll1!ctzon ~torcs the magnetzzatzon 2n the praper 
Ile: IC!'t'l l'mg ft mC1'cments the pasztlOn pamter to 

tilt' nt'rl post/IOn found f1'Oln the lookup table. Il 

votif <;tofl.'_m(lI, m) 
illt Il, Il the RG le!'el Il 
illt "m; 1 1 Il !'celor conlammg the THICK magnetzzatwn values *1 
{ 

illt k, n; 
l'X ft'ru int ...... III ring; 
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} 

extern int *rn, 

rn[ll] = next[ll][rn[lI]l. 
n = rn[ll]; 

for (k=O,k< TIIICK,k++) { 
mring[ll][k][n] = m[k], 

} 

return; 

/" Calculates the lzme- lune c07Te/alzan funellOl! for 
the Il RG level. Aciually !l finds thl'ce mw!mal SU1/!\ 

of the defin!twn of If'M(t) *j 

void korr_m(lI, sund, sum2, "111\13) 
int Il; 
float **sunll, **sum2, **5um3; 
{ 

} 

extern int ***mring, 
extern int *datum; j * contams the s!ze of the rwg~ * j 
iut l, k, t, n; 
int nn, **p; 

p -= mring[ll]; 
n = rn[ll]; 

for (k=O;k <THICK;k++) { 
nn = n; 

} 

for (t=O;t<datum[ll],t++) { 

} 

suml[k][t] += (fioat) (p[k][ll] * p[k][nn]); 
sum2[k)[t) += (fioat) p[k][nn); 
sum3[k)[t] += (fioat) (p[k][nn] * p[k][nn]); 
nn = prev[ll][nn]; 

r<,tllrn, 

B.4 The M etropolis algorithm 

FILENAME. LTURN.C 

1* ihe /Ii[onie Carlo Meiropolts algonlhm *j 
#include "lparam.h" 

static int *up, *rt, *dn, *lt; / * the ne!ghbour lookup Labln *j 
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/., A IIIJra/es and tnl/zalzze!> the lookup tables ., / 
void IlIlUturn() 
{ 

} 

('xh'rll int *allocjnt_veeO, 
('xtf'rll int *up, *rt, *dn, *It, 
pxterll void utnitO, rinitO, dmitO, linitO, 

I:p -- alloC'jnt_vec(M), 
rt == Il.llocjnt_vec(N), 
dn =-- allocjnt_vec{M), 
It :::: alloc_tnt_vec(N)j 

IIlnit( up, M)j 
rllllt(rt, N)j 
dlllit( dn, M). 
hnit(lt, N)j 

rf't urllj 

/., The one /hat makes lt ail ., / 
voill Itllrll( 'l,mes,pro) 
llllsignt'd "Sj /., the matru: ., / 
illt, IIIC'~, /., the number of mcs ta run for */ 
long pro[2], / * the Boltzmann factors (2 tn 2 D IS enough) */ 
{ 

illt ranvec3, ranvec4j / * vector of bits generated wlth a 
probabllzty equal to the one of 
ftzppzng a spm when :3 or 4 of ItS 
nezghbours are paral/el to lt. * / 

I:\tntic illt tns = TNSj / * total number of sites zn level 0 */ 
st,ntic Hoat mfae = MFACj /* random # generator dependent factors */ 
"tntic 80at nrae = NFACj 
illt i, j, kj / * utzlzty tntegers */ 
illt Il, b, 
r('gistcr 11llsigncd nI, 112, n3, n4j 
rt'gistt'r ullsigut'd c3pu, dpuj /* case n paraUel nelghbours up */ 
rl'gish'r ullsigncd cOpd, clpd, c2pd, c3pd, c4pdj / * case n par. nel, down */ 
rt'gÎl-,tcr ullsigncd nalla, nallo, site, wsitej / * alI_and, altor * / 
rt·gish·r ullsigncd odd, nla2, n3a4, nlo2, n304j /* land/or2, ... */ 
rt'gistl'r ullsigned used3, used4, /,; WhlCh random number used */ 
loug mndom 0, 

ranv"l-:l = 0, 
ranvt'c4 -= 0; 

" .. "tl3 = 0, 
" .... <14 =: Oj 

for(k=(),k<THICK,k++) { / * generate the Boltzmann d!strzbuted bzts */ 
if (ralldom() <= prolO]) { 

121 

10 

20 

30 

40 

50 



APPENDIX 13, C USTI.'\'GS 

} 

ranvec3 1= Ol«k; 
} 
if (random() <== pro[l]) { 

ranvec4 1= 01«kj 
} 

for (a==O;a<mcs;a++) { / '* turn 1 */ 
for (b=O,b<tns;b++) { 

1 = randomO j< mfacj / * choose a t frvm a Iv AI * / 
j == randomO * nfacj / * choose a J from 0 tu N * / 

for(k=O;k<.THICK;k++) { /* refresh the lIwl blf~ ~/ 

if (used3&OI) { 

} 

if (random() <== prolO]) { 
ranvec3 1= 01«kj / * turn or IUll'f Il on ~/ 

} 
cIse { 

ranvec3 &= ~(Ol«k)j /* lu7'1l 01' 1/'0.1'/' JI {lJT t/ 
} 

} 
used3 »= 1; 
if (used4&OI) { 

} 

if (random() <= pro[l]) { 
ranvec4 1= Ol«k; 

} 
cIse { 

ranvec4 &= ~(Ol«k), 
} 

used4 »= 1; 

site .= sri) fJ); / '" the stte '" / 
nI = S[Up[I]][j]; /* the four netghbours '*/ 
n2 = s[i][rtfJll; 
n3 = s[dn[illUl; 
n4 = s[i][l t lill; 
wsite = ~ site; / * ta make tt leglble '* / 
odd = nI ~ n2 ~ n3 ~ n4, / t oddness */ 
nlo2 = nI 1 n2; 
n304 = n3 1 n4; 
nallo = n 102 1 n304, 
nla2 = nI & n2; 
n3a4 = n3 & n4; 
nalla = n la2 &. n3a4j 

/;; the dtfferent cases ;; / 
c3pu = (nla2 ~ n3a4) & odd &. site, 
c4pu = site & nalla; 

l'" 
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} 

} 
} 

rOpd :.. wSlte g, naIla, 
c1pd =: (n1a2 • n3a4) & odd & w!.ite, 
c2pd = -(odd 1 nalla 1 site) & nallo; 
c3pd -= wsite & (n102 • n304) & odd, 
c1pd = -(~ite 1 nallo); 

/ * remember those b1t.5 wc llnll u.~e * / 
ll<;ed3 = c3pJlc3pu; 
1l<;('d4 = c4pdlc4pu; 

/ * random flzp for these cases only * / 
c1pd &= ranvec4; 
r4pll &= -ranvec1; 
c3pd &= ranvec3i 
c:lpu &= -ranvec3; 

/ * t!tl.~ chozce takes cnre of ftzppmg automatzcally the othcl'.; * / 
s[iluJ = cOpdlc1pdlc2pdlc3pdlc4pdlc3pulc4pu; 

rt'turu; 

B.5 The MCRG algorithm 

FII.ENAM~~: LCT<;HG C 

/* mn)o1'11y rule space-tune MeRG */ 
#inrludc "lparam.h" 

/ * '['ake.' 16 spzns from 4 systems at contzguous tzmes and does 
Il IIw)orzty rule blockzng zn order to generate a renormalzzed 
.~y.~tem of half the szze of the orzgznal ones. */ 

void lctsrg(ll, old. new) 
iut Il, / * the current RG leve/ */ 
1lll!<oi~llCd ** *olcl. **new; / * the level li and 1/+ 1 matrzces * / 
{ 

in!. l, j, k. 
rt·~istcr llIlsigll(~d b 1, b2, b3. b4. b5, b6, b7. b8; 
r(·~ister llusigllcd b9, bIO, bll, bI2, bI3 bI4, bI5, bW; 
1lllSigllcd word, result; 
pxlt'rn illt *msize, *nsize; 
t'xh'rn long randomO, 

for (i= 1;1< IIlsize[1l];i+=2) { 
for (J= Ij< llsize[1l];j+=2) { 

word = 0; 
bl = 0Id[O][11fJ]; 
b2 = old[1][11U]; 
b:J -= 0Id[2][ilUl, 
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b4 = old[3][I]lJJ. 
b5 = old[O][I]U-l], 
b6 = old[I][I]U-l]; 
b7 = old[2][I]fJ-l], 
b8 :::: old[3][i]U-1l; 
b9 :::: old[O][I-I]U], 
blO = old[l][l-lllll; 
bll = old[2][1-111lJ. 
b12 = old[3][1-111l1; 
bl3 = old[O][i-lJU-lJ. 
b14 = old[l][i-l111-I], 
bI5 = old[2][i-l]1l-11; 
b16 = old[3][i-1JU-11; 
for (k=O;k< THICK,k++) { 

} 

result = (bl&01)+(b2&Ol)+(b3&OI)+(b4&OI)+(br),c . .'l1l) t (ht;,I.:IlI) t 

(b7&01)+(b8&01)+(b9&OI)+(bl0&OI) t (bll&O 1) t 
(bI2&0 1)+ (b 13&01 )+(b 14&0 1 )-l-(b 15&- 01) + (b W&- () 1 l. 

if (result > 8) { 
result = 1, 

} 
else if( result = = 8) { 

result = 0, 

} 

if (ranelom() > MAXRAND/2 0) { 
result = 1; 

} 

cIse { 
result = 0; 

} 

b1 »=1; 
b2 »=1; 
b3 »=1; 
b4 »=1; 
b5 »=1; 
b6 »=1, 
b7 »=1; 
b8 »=1; 
b9 »=1; 
bIO »=1; 
b11 »=1; 
b12 »=1; 
b14 »=1; 
b13 »=1, 
b14 »=1; 
b15 »=1; 
b16 »=1; 
result «= k; 
word 1= result, 

new[(i-1)/2][(J-l)/2] = word; 
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80 

B.6 The rnain prograrn file 

FIU,N AM~; LCIIIN1 C JAN 15 10nl 01 28 

/. Th" 1IWH! ]J7'Ogrmn • / 
/. Irl'ln4b c versIOn lUzth a hzstory */ 
/ ~ {,/l,si modzficailOn tzme 91/01/14 "'/ 
#Ï!I('llldc <math.h> 
#illcllldt' <stdio h> 
#illcllldt' "lparam.h" 

/ * utzlzty allocatIOn functzons '" / 
illt "'alloc jnt_ vecO; 
llIl!>i~J1t'd * +alloc_uint_matO; 
HUll t ... allocJloat_mat(); 
void l/LnlO(); 

dl ur "'prog, / '" the pr09ram name "'/ 
illt "'lIP, *rt, *dn, +lt, 
illt "'tnw; 

/ * nezghbours lookup vectors '" / 
/* total numbcr of sztes f(RG) */ 

illt "'datulIl, / '" number of tzme data pomts "'/ 
/'" m X n malrzx "'/ illt ""lI"IZ<', "'lIl'>IZt" 

1Illlin(llrgc, argv) 
illt mgr; 
chur ... ·argv, 
{ 

long pro[2], / '" the Boltzmann factor m ter1ns of MAXRAND "'/ 
Îllt avg; / * the CUr1'cnt nllmber of alJerages */ 
Îllt l, t, Ill, Il, / '" utzlzty mtege7's "'/ 
illt nO, nI, 112, n3; /* HG level 0-4 counters */ 
1l11~igIlcd ·"sO, ***sl, ***s2, ***s3, **s4; / * the 5 HG level systems "'/ 
Hunt ***msll1ll1, ***msum2, **+msum3; /* mmzmal sums requzred ta 

illt tilllt'() , srandom(); 
voici lcp_matO, ranit(); 
void lana(), lturnO; 
void initJtnrnO, init_ringsO; 

prog :-: argv[O]; 

if (arg(' >2) { 

compute cp At (i) '" / 

fprmtf(stderr, "Usage: %s [saved_matrlX_file] \n", prog); 
eXlt( 1), 
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} 

/ * alloeatton and !nltzalz::aflOn of ail the l'Iu'wbZt'$ • / 
Insllml = (flont ***)calloc((m:,;igned)LEVEL, siz('of(flollt H)), 
InsIlm2 = (float ***)calloc((unsigncd)LEVEL, sizcof(flo"t **)), 
msum3 = (float ***)calloc((unsigllcd)LEVEL, sizt'of(flol\t H)), 
/* eaeh s? fills up to four matnces and then l'enol'/1IaII::t'~ */ 
sO = (unsiglled * ** )calloc(( unsigIlt'd )-t, sizl'of( unsi~nl'd H)), 
sI = (unsigned ***)calloc((uIlsigned)t, &izt!of(uusigut'd H)), 
s2 = (unsigned ***)calloc((llnsigllcd)1, sizcof(umiglwd **)), 
s3 = (unsigned ***)calloc( (unsiglled )4, siz{'of( UI1~iglll'd **)), 

tnsv = alloc_lllt_ vcc(LEVEL)j 
m'iize == allocjnt_ vec(LEVEL), 
mlze == alloc_lI1t_wc(LEVEL)j 
c1ll.tUIIl == alloc_lI1t_vec(LEVEL)j 

t = DATUMj 
III = Mj 
n = N, 
fi.1r (I=Ojl<LEVEL,I++) { 

datum[l] = tj 

} 

msize[l] = lUj 
nsize[l) = n; 
tnsv[l) = m*nj 
msuml[l) == allocJloat_mat(THICK, t)j 
msum2[1] == allocJloat_mat(THICK, t), 
msum3[1] == allocJloat_lIIat(TIIICK, t), 

t /=4j /* RG dlvldes ilme by 4 */ 
m /=2, /,; and dlvldes spaee by 2 "/ 

Il /=2j 

for (t=Ojt< 4jt++) { 
sOrt] = alloc_uint_lllat(M, N)j 

} 
for (t=Ojt< 4jt++) { 

sl[t) == alloc_uint_lllat(M/2, N/2), 

} 
for (1:=Oj t< 4, t++) { 

52[t) = alloc_uint_mat(M/4, N/4), 

} 
for (t=Ojt< 1,t++) { 

53[t) = alloc_uint_mat(M/8, N/8), 

} 

llut_fmgs()j 
JllltJturn{), 

/,; computes the Boltzmann from the Tempemtun zn Tr und ~ "/ 
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prolO] - (long) (exp( -4.01(T * Tc» * MAXRAND), 
prorl] -- (long) (l.'xp(-8 0/(T * Tc» * MAXRAND), 

~ranÔ()III(tlJlle((long *)NULL», Il seed the genemtor lVlth tzme Il 

if (argc == 2) { Il read the prevzously prepared matTl1!file Il 
if (rt'admat(argv[IJ, sO[3]) == ERROR) { 

127 

fprmtf(stderr, "%8: Error occured while read~ng file %8. \n", prog, argv~l]); 
eXlt(I); 
} 

} 
.. Ise { 

rllnit(bO[3], M, N); Il gencrate a random configuratzon Il 
Itllrn(~O[31, WARMUP, pro)i Il brzng lt ta T *1 

} 

nO =- nI == n~ = n3 :::: Oi 1 * thzs first loop fUis the data rmgs *1 
for (avg= 1 iavg<=4;avg-t +) { 1 * do It 4 tlmes to fill all rmg levels Il 

fur (t=Oit<DATUM;t++) { 
Iturn(sO[3]. MCSTEP, pro); 
l.lI1a(O,sO[3]), 

} 

if(nO < 3) 
Icp_mat(O, l>O[3]. sO[nO]); 

if(+-tnO == 4) { 
Ict~rg(O, 50, sI[1I1]), 
lana(I, sl[nl]); 

} 

nO =- 0, 
if(++nl == 4) { 

lrtsrg(l, 51, .. 2[n2]), 
lana{2,s2[n2]), 

} 

nI = 0; 
if( ++n2 == 4) { 

lctsrg(2, 52, 83[n3)), 
lana(3, s3[n3]), 

} 

n2 = 0, 
if{++n3 == 4) { 

ktsrg(3, s3, s4); 
lana(4, s4); 
n3 = 0; 

} 

/ .. h t'rI' 1.' tlle rflll siuff *1 
for (nvg=-l;avg<=AVG;avg++) { 

for (t=O;t<DATUM,t++) { 
Itllrn(~0[3J, l\ICSTEP, pro), 
Jana(O, sO[3]), 
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} 

lcorr_m(O, msum1[O), msum2[0]. IllSlIIll3[OJ); 
if (nO < 3) 

1cp_mat(O, sO(3]. sO(nO]), 

if(++nO == 4) { 
Ictsrg{O, 50, sl[n1]); 
lana(1,51[nl)); 

} 

lcorr_lll(l, m51l1111[1], m!>um2[1], 111<;1111\3[1]); 
na = 0; 

if( ++nl === 4) { 
Ictsrg{l, sI, 52[n2]), 
lana(2, 52[n2)); 

} 

lcorr_m(2, msuml [2]. msum2[2], ll\!>111113[2]) , 
nI = 0; 
if(++n2 == 4) { 

lctsrg(2, s2, 53[n3)); 
lana(3, s3[n3]); 

} 

lcorr_m(3, msuml[3], mSIlJll2[3], Illsum:I[:l]), 
n2 == 0; 
if( ++n3 == 4) { 

1ctsrg(3, 53, 54); 
lana(4,54); 
1corr_m(4, msuml(4], msumZ(4], m<;um:l[1]), 
n3 = 0; 

/ * saves the correlatIOn functzon at each average "/ 
lanio( avg, msum 1, IUSUlll2, msum3); 

j* saves the matrlz at each average *( 
if (5avemat(avg, 50[3)) == ERROR) { 

fpnntf(stderr, "%s: Error occured whlle savlng matflle\n", J>r,,~), 

} 
} 

rcturn; 
} 

void lanio(avg, g5uml, gsum2, g'Sum3) 
il1t avg, (* the current average number "/ 
fIont ***gsuml, ***gsum2, ***g<;um3; j" th!: nUTLI1l!nl Hml.~ */ 
{ 

FILE "'fp; 
cllflr fname[MAXNAME]; 
fiont tmp2, tmp20; 
fIont num, denoml, denom2; 
fiont "'*sum 1, **sum2, **sum3; 
int Il, t, k, 
flont phi: 
flont n, 

1"1, 
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for (11.:::0,11< LEVELj11++) {/*do ltforeach level */ 
~ 11 1111 = gs u ml [l1li 

} 

'>lIm2 = gsum2[11], 
.,lIm3 = g'ium3[1l]j 
n = avg ... datum[I1J; 

/ * in order to keep a tlme hzstory of the functzon */ 
if (II.vg%SKIP) { / * glve a dtfferent name every SKIP averages */ 

.,printf(fnll.me, "landrn. %d", li), 
} 
l'\W { 

sprintf(fnarne, "landrn%d.%d", avg, 11), 
} 

if((fp = fopen(fnallle, "w")) == (FILE *)NULL) { 

} 

fpflntf('ltderr, "%8: Could not open file %8\n", prog, fname); 
t'Xlt(l); 

fprllltf(fp, "RG level: %d\n", Il); 
fprintf(fp, "avg: %d\n", avg); 
fPfllltf(fp, "original system 81ze: Xd X Xd\n", M, N), 
fpnntf(fp, "T (Tc): %f\n", T); 
fprllltf(fp, "Window S1ze: %d\n", MCSTEP*datum[\l]), 
fprintf(fp, "Analysed every: 'l.d\n\n", MCSTEP); 
fprilltf(fp, "time\tphi(t)\n"); 

for (t=O,t< datum[ll],t++) { 
phi = 00; 
for (k=O,k<THICK;k++) { 

tmp20 = sUlIl2[k)[O]j 
tmp2 = sum2[k][t], 
nUIll = Il * suml[k][t]-- (tmp20 '" tm(2). 
denoml = sqrt(n ... sum3[kl[O] - (tmp20 * tl11(20)), 
d{'II01Il2 = sqrt(n ... sU'lIJ[k][t] - (tmp2 * tm(2)), 
phi + = num / (denoml "'denom2)j 

} 
plll /= (Eoat) THICKj 

fprintf(fp, "'l.d\tXf\n", t*MCSTEP, plll), 

l't'turu, 
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