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Abstract

The kinetics of a phase transition has been studied by using a new dynamical Monte
Carlo reunormalization group method. Using a majority rule block-spin transforma-
tion in both space and contiguous times, we numerically renormalized the evolving
configurations during the phase separation of a kinetic Ising model with spin-flip dy-
namics. We find that, in the scaling regime, the average domain size R({) grows
time consistently with the R ~ t!/2 Allen-Cahn antiphase boundary motion theory,
although some correcting factors may exist. The same procedure has also been ap-
plied to the corresponding equilibrium critical system in order to find the critical
exponent z. Our method yields values that are consistent with the ones obtained
from a finite-size scaling analysis applied on the same data, thus showing that, n
principle, this method can be successfully used to determine z in a more prease and

consistent way.
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Résumé

La cinétique d’une transition de phase a été étudiée & ’aide d’une nouvelle méthode
dynamique Monte Carlo du groupe de renormalisation (MCRG). En utilisant une
regle de majorité afin de réduire a un seul spin des cellules de spins formées de spins
contigus dans le temps et 'espace, nous avons renormali<é les configurations succes-
sives d’évolution d’une séparation de phase simulée par un modele Ising cinétique &
excitation locale (spin-flip). Nos résultats indiquent que dans la région dite d’échelle
de la courbe de croissance, la grandeur moyenne des domaines R(t) croit dans le temps
en accord avec la loi de croissance R ~ t1/2 prévue par la théorie du mouvement des
antiphases de Allen et Cahn, quoique ’existence d’un facteur de correction ne soit
pas exclue.

Le méme procédé a aussi été appliqué au probleme correspondant de dynamique
critique a I’équilibre afin de déterminer la valeur de ’exposant critique 2. La méthode
utilisée donne des résultats qui sont en parfait accord avec une analyse de taille finie
effectuée sur les mémes données. Ceci nous porte donc i croire que cette méthode

pourrait, en principe, étre utilisée pour déterminer z avec plus de précision.
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Chapter 1

Introduction

Iv has been a long way from the origin of the world to the way thinge look today
Throughout the evolution of matter, transformations mvolving less and less energy
were involved. As a result, most of the transformations that can be observed fiom
our tiny space-time scale point of view are due to electromagnetic forces.' This s the
case, for example, in chemical reactions and, at an even lower energy level, i phase
transformations.

Most of these transformations are characterized by some sort of discontinuity
Unfortunately, the idea of continuity is embedded in the major part of the physics
developed in the last centuries. The invention and the success of caleulus 1w physacs
has put this constraint on most representative functions. An even stronger conceptual
problem arises when one considers the time-reversal symmetry of all classical and
quantum theories in opposition to the second law of thermodynanncs Thie sugpests
that these theories are still incomplete and that some cosmological tactor mght have
to be considered (Landau and Lifshitz 1981). These remarks show, however, that the
theory of phase transitions is one of the most challenging problems nowadays.

The present century has seen the birth of various new techmiques and major i

'The effects of gravitation on usual phase transitions are still not well understood  Most of
the experiments conducted under microgravity yield unexpected results  The cxplanation of this
failure may reside in the presence of residual effects from the environment (Viials 1990) Only o fow
treatments (e.g. (Siggia 1979)) take gravity into account in the analysis of phase transitions Phas
transitions resulting from gravitation only (cosmological) will not be considered an this work




CHAPTER 1. INTRODUCTION 2

coveries, from cryogenics to nuclear reactions, that permitted the exploration of new
regions of the temperature spectrum. New classes of interesting phenomena were
discovered and that added more coimnplexity to the existing problem. As a result,
more attention has been given to the topic and important progress in understand-
ing equilibrium critical phenomena has been made. Good (but old) reviews can be
found in articles by Fisher (1967) for the theoretical side and Heller (1967) for the
experimental counterpart.

The main difficulty in the study of static critical phenomena is that the existing
“mean field” approximation theories cannot be improved without yielding a problem
more difficult than the original one. A way to get around this difficulty is to use a
symmetry approach. One important step in this direction was made by the renor-
malization group? (RG) theory. This theory tackles the problem by analyzing the
renormalized free energy resulting from an interaction scale transformation. Com-
bined with Monte Carlo techniques, this new tool gave valuable results as first shown
by Ma (1976a). The resulting Monte Carlo I.enormalization Group (MCRG) theory
has been applied to many problems since then. A brief review will be presented.

Comparatively little is known about the dynamics of phase transformations. Very
long relaxation times and the divergence of some of the macroscopic variables near
the critical point make the subject even more difficult. However, because of the great
interest from metallurgy and the material sciences, there have been many encouraging
attempts to understand the dynamics of some phase transitions. In addition, the
success of the RG methods in the static case justified their extension to dynamics,
and their application has yielded interesting results. Nonetheless, the mathematical

foundations of these techniques is still an open problem.

IFormally, it is a semi group.
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1.1 Description of the problem

If a system is suddenly cooled down, from a temperature at which it is normally found
to bein a disordered state, to a temperature at which it is normally found to be in an
ordered state, then order starts to develop in time. It is well known that the rate of
cooling, as well as the temperature of the final state, have a determinant effect on the
way order is set up.® In a binary substance! , domains of two different compositions
will start to form and grow in time, thus forming a pattern that can sometimes be
interpreted as the signature of the transition that occurred.

Experiments on Cu-Au® and Al-Zn® binary alloys for example, as well as computer
simulations, show that at “late” times, i.e. times for which the ordering involves long
range order rather than ordering in the vicinity of a point, the average domain size
R fits a power law with respect to time. The growth exponent n in R(t) ~ " is
believed to be one of the characteristics that can be used to separate these phase
transitions into universality classes. Moreover, when the distances over the system
are measured in units of R(t), then the time dependence of certain functions involving

space and time disappears. For example, the order parameter correlation function” g

often “scales” as g(r,t) ~ f(r/R(t)).

The problem of such an order-disorder or phase transition is of fundamental inter-
est in the field of statistical mechanics of non-linear phenomena far from equilibrium.
Moreover, this problem is of practical interest in metallurgy and surface science

In this thesis, we shall be concerned with aspects of growth and scaling in order-
disorder transitions during which the order parameter does not follow any conser-
vation law. For such systems, theoretical models have been proposed on the basis

of various approaches. Considering the movement of the interfaces, Allen and Cahn

3For example, there exist millenial Japanese ceremonies that specifically show, to the samura,
how to harden his sword.

1A lot of “hands on” science exhibitions contain a binary fluid system of amline and cyclohexane
that becomes immiscible in all proportions below a certain temperature

5This system tends to order in an .. ABABA... fashion below a certain temperature

8These two metals become immiscible below a certain temperature and start to separate in two
distinct phases. This process has a signature different from the preceding oue

"The definition of this function will be found 1n Chapter 2
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(1979) proposed an antiphase boundary motion theory, that had partly been de-
veloped earlier by Lifshitz (1962), which predicts a value of » = 1/2. Simularly,
phenomenological studies (Valls and Mazenko 1986) involving stochastic equations
for the relaxation of the system lead to the same prediction.

Much effort has been devoted to developing new computer simulation techniques
and models. The advent of more powerful computers, as well as the ease with which
the various microscopic-mesoscopic discrete models can be implemented on any of
these number-crunching machines, strongly contributed to this state of fact. More-
over, only a few of the models used have a complete analytical solution, so that the
results obtained from numerical studies are of prime importance in the development
of this field. One of these models, the Ising model, has been thoroughly investigated
since it undergoes a “real” phase transition in two dimensions and above.

The numerical Monte Carlo techniques, employed in different models, involve the

generation of random numbers which are then used to perform the integration of a
function that involves a huge number of variables (static model) or to generate succes-
sive states in a probabilistic way which can then be mapped to a real time evolution
of the physical phenomenon (dynamical model). In practice, these two cases are very
similar and the main difference remains in interpretation. Dynamic investigations
of the Ising model are more recent than the static ones and have been carried out
using different techniques including RG, finite-size scaling, spreading damage algo-
rithms, conformational invariance mapping, series expansions, MCRG and matching
algorithms, among others. Some of these approaches will be described further on.
Working from the Ising model, a new dynamical Monte Carlo renormalization
group method will be presented. Results obtained from a two-dimensional — square
lattice, periodic boundary conditions — model undergoing phase transitions far from
its critical temperature T, will be given and analyzed. The problem of critical slowing
down, as well as the concept of scaling in dynamic phenomena, will be presented in
order to pave the way for the straightforward extension of the method to critical

dynamic phenomena.
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1.2 Outline of the thesis

The structure of the following chapters is as follows. Chapter 2 will give a briel
overview of phase transitions as well as a short description of critical phenomena.
The standard thermodynamic approaches will be presented, including some approxi-
mation methods referred to as mean field theories. Scaling relations, both for critical
phenomena and first-order phase transitions will be described on the basis of the
scaling hypothesis or self-similarity.

Chapter 3 will be a thorough presentation of both the theoretical and practical
aspects of a computer simulation study of the Ising model. Monte Carlo mechods
will be formally described and finite-size effects briefly summarized. The concept of
blocking, in view of the application of RG methods, as well as the phenomenological
approaches given by Langevin equations, will be discussed in the framework of the
kinetic interpretation of the Ising model.

Real space renormalization group methods will briefly be explained in Chapter 4,
starting from the standard one- and two-dimensional Ising models. Although very de-
scriptive, this formal presentation will lead the way to the Monte Carlo RG techniques
that will be used in subsequent chapters.

Chapter 5 will give a short theoretical description of critical dynamics by de-
scribing the conventional theory of critical dynamics as well as the dynamic scaling
hypothesis. The remaining part of this chapter will serve to present the maost recent
developments in the evaluation of the critical exponent z.

The following chapter will deal with the kinetic aspects of first order phase tran-
sitions. Chapter 6 will concentrate on the theories of growth for a order-disorder
transition where the order parameter is not conserved. The technical aspects of such
computer simulations will also be introduced.

Original results made in the framework of this research will be presented in Chap-
ter 7. A new MCRG method involving blocking both space and time will be described

and applied to the two problems presented in Chapter 5 and 6. The method will first
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be applied to the dynamics involved in a quench and comparisons will be made with
the predictions of the Allen-Cahn antiphase boundary motion theory. The technical
aspects of numerical simulations, as well as preliminary results for the value of the
critical exponent z, will be given.

Lastly, Chapter 8 will evaluate the scope of this method and discuss its validity
in comparison to other standard techniques. Some theoretical questions concerning
the foundations of this process will also be discussed. New avenues of analysis, con-
cerning the probabilistic aspects of a quench and special symmetries found at early
and medium times of a quench, will also be presented.

For the sake of completeness, a detailed description of the algorithms as well as a
(' version of the code have been included as an Appendix. I hope this inclusion, as
well as the complete thesis, may be of some help or some inspiration to new students

starting numerical simulations from scratch.



Chapter 2

(General Overview of Phase

Transitions

The idea of a what a phase transition is evolved during the last century, as new devel-
opments occurred in the field of critical phenomena. This chapter will give a general
overview of phase transitions and critical phenomena. The major characteristics of
the conventional approaches will be briefly described in connection with the contents

of subsequent chapters.

2.1 Thermodynamics of phase transitions

This section will give a brief outline of the standard equilibrium treatment of & phase
transition. We first give the general classification of phase transformations. !

Phase transformations, undertaken at a temperature 7' and a pressure P, which
can be characterized by a latent heat TAS and a sudden specific volume? change are

said to be of the first order. Since the volume V and the entropy S can be obtained

from the Gibbs potential G as V = (8G/0P)r and S = (JG/OT )p, Ehrenfest first

1A complete description of the specific nomenclature of phase transformations between different
phases is given in {Doremus 1985).

20r the equivalent parameter. Note that the whole treatment can describe a magnetic system by
the usual change P — —h and V — M, where h is the magnetic field, and M the magnetization
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proposed to classify phase transitions according to the order of the derivative(s) of
the thermodynamic potential that has a discontinuity (a jump). However, we now
know that critical transformations involve some higher derivatives which are infinite
rather than discontinuous. Moreover, the intrinsic nature of the singularity is part
of the central problem of the theory of critical phenomena. These phenomena have,
nevertheless, all been included in second-order phase transitions and this wider clas-
sification, according to Fisher (1967), now means “not of the first order”.* Some
typical diverging second order derivatives are the compressibility or susceptibility,
the specific heat, the expansion coefficient, and so on.

Consider now an A-B mixture (e.g. liquid-gas) of given chemical potential u and
al pressure P. At a first order phase transition, this system will be characterized by

the equilibrium condition of the two phases, i.e.
pa(P,T) = pp(P, T).

This equation implies there exists an equilibrium coexistence curve P = P(T). The

possible existence of an equilibrium allows us to write
dpa(P,T) = dup(P,T)

from which one can obtain the Clausius-Clapeyron equation by expanding the differ-

entials:

dP s4—sp AH

B—T - V4 — VB - T('UA—-—'UB)

where s and v are respectively the entropy and the volume per particle and AH is

the latent heat of the transformation. More generally, for a system under an intensive

force X coupled to a parameter z, one has

axX As
T = As (2.1)

An important application of this equation is the determination of the dependence of

the pressure on the transition temperature.

3We exclude, of course, the infinite-order Kosterlitz-Thouless transition.
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Unlike first-order transitions, second-order transitions have no volume or eutropy
discontinuity. They are therefore reversible. The belief taat the thermodynamice
functions were continuous throughout, except for a jump at the transition point,
was used by Ehrenfest to derive equations relating the finite discontinuities of the
derivatives among themselves. This is done using I'Hopital rule with respect to both
T and V on the indeterminate form 0/0 of equation (2.1). This approach is however
obsolete in view of the nature of some of the singularities found.

Thermodynamics* deals with system in equilibrium. For example, the general coun
dition for stable equilibrium for a closed system at T', P constant is to be in its state of
minimum Gibbs potential.® Therefore, for any small fluctuationin G = U - T'S I’V

where U is the internal energy, we must have,
G~-G=U-U-T(§8-S5)-PV'~-V)>O.

Now assume we change T and P to T' and P’ in order to get a state G’ for which we
have S’ and V'. Since this state must be stable too, we must have, for the state ¢/

close to G'
G-G=U-U-T(5-5)-P(V-V')>0.
Adding term by term

ATAS — APAV > 0. (2.2)

At fixed T and P, this merely says that the heat absorbed must always be greater
tuan the work done. This last equation suffices to fix the stability of a system. At

constant 7' and constant P, one gets respectively

8PV )7 < 0,

(2.3)
(8T/8S)p = T/Cp > 0.

Since equation (2.2) is of general validity, it can also be divided by AV? at constant

4Despite its name... Historically, dynamics was justified from the movement induced by stenm
engines.

5The same derivation can be made with any two constant parameter and the corresponding
thermodynamic potential
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S and vice-versa yielding

(8P/8V)s < 0,
(6T/8S)V = T/CV > 0.

(2.4)

The thermodynamic approach to critical phenomena involves considering the limit of
stability when, for a homogeneous system, the two phases become identical. Formally,
this can be taken as the case of equality of the above equations and a set of equations

characterizing the critical point can thus be obtained.

2.2 Further stability considerations

Gases are among the substances which were thoroughly investigated during the last
centuries but, even if their behaviour at high T was well understood® , a complete
theory explaining their behaviour at a phase transition was not developed. The
van der Waals theory of phase transition had a strong influence on the subsequent

theories.” His famous equation
a
(P+%) (V-0 = FT,

where a and b are constants, can be related to an elementary cusp catastrophe (Pip-
pard 1985), because of the instability loop it produces. It could be derived rigorously
in one dimension by assuming a hard-sphere repulsive potential and an attractive

potential of the form —avye™". The result comes out in the vy — 0 limit, i.e. for a

®Avogadro hypothesis, Boyle-Mariotte, Gay-Lussac, Dalton laws, etc. ..
“In fact, a myriad of other PV state equations appeared in the last century and, among the most
useful, are:

(P+ 57)(V-b)=RT Berthelot equation,
P(V-b)= RT exp~?/RTY  first and
(P + 725)(V—b) =RT  second Dieterici equations,

to which enumeration one must add the exact phenomenological virial expansion in 1/V and in P.
In addition to the description in the text, the previous success of the van der Waals equation came
from the fact that it can be related to, say, the Lennard-Jones potential coefficients. Those can
later be used to predict the non-universal critical parameters yielding a unique law of corresponding
states in terms of reduced state variables (e.g P/P., V/V,,...). This assumption is verified by some
gases as Guggenheim has shown This was one of the first manifestations of the universality concept
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weak interaction of infinite range. See (Hemmer and Lebowitz 1976) and refecences
therein for more details.

On this PV curve, Maxwell’s construction (e.g. (Kadanofl et al. 1967)) defines
two isobaric points, for each isotherm, such that the integral of V' dFP vamshes tor
this interval. A complete numerical treatment in FORTRAN of this procedure can
be found in (Schmid, Spitz and Losch 1988). The locus of all these points forms
the binodal. Inside this region is the locus of all points such that the isothermal
compressibility Ky = —V~1(8V/8P)r is infinite. Following Gibbs’ interpretation,
this defines the spinodal curve. It delineates two regions different by the sign of
the compressibility. The region inside the spinodal is called unstable since, by (2 3)
and (2.4), no stable state can have a negative compressibility. The other region s
called metlastable and represents an extension of the stable homogencous state mto
the heterogeneous region.

As an example, consider a very poetic phase transition: the morning dew. The
air, containing water vapour, gently cools down to a temperature at which 1t becotnes

saturated. At this point microscopic droplets start to form and slowly fall down under

gravity. As shown by the usual PV diagram, the vapour would continuously condense

by further reducing the partial volume (along the horizontal line) or by further ool
ing (down to another isotherm), both processes yielding portions of different phases
according to the phenomenological lever rule.

This is, however, a particular case. In fact, in view of nucleation theory, when
the condensing constituent is pure® nothing instantaneous happens (within a certain
range) but a supersaturated or undercooled state forms respectively.” Thus, the be
haviour of a phase transition is intimately bound to its dynamics and any attempt
based on finding the right form of the free energy neglects this aspect. In fact, the
major weakness of these theories is the absence of fluctuations. These play an unpor-

{unt réle in any transformation. If one brings a system to the metastable region then

8No wettable walls, 10ns, interfaces
®For example, metastable states having a pressure of 5 times the condensation pressure can be
obtained experimentally for water vapour at 373K (Abraham 1974)
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the relaxation process -—it is now in a state out of equilibrium— will depend on local
and finite fluctuations. These latter will help to form droplets that may continue to
grow if fluctuations could drive them beyond a critical size. The characteristics of
this critical droplet are related to the dimensionality and topology of the problem
considered. This will be considered in Chapter 6. On the other hand, if one bring. a
system in the spinodal region, then the whole system will evolve in a continuous series
of intermediate states, each of which is thermodynamically more favoured than the
preceding one. Because of the very nature of such a mechanism, flucluations must
be infinitesimal and spread out over large regions. This difference is seen experimen-
tally and gives distinct phenomena known as nucleation and spinodal decomposition
respectively. See (Doremus 1985) for a good experimental treatment.!® However, the
distinction is not as sharp as one might expect and there is expected to be a transi-
tion region where both processes accur (Heermann 1984). The sharpness of the cut
is related to the range of the interaction. Moreover, the shape of the pattern formed
is not sufficient to make the distinction, since a spinodal pattern can be formed out

of overlapping droplets.

2.3 The mean field approach

One main and important contribution from older theories has been the introduction

of an order parameter. This is used to express the free energy of a system in a

1

phenomenological form.!! The principal approach consists in minimizing this phe-

19 Aud pictures too!

11We have to stress here that this free energy 1s not the true free energy Recall that in statistical
mechanics, the latter 1s defined as F(M,T) = ~kgT log Z(M, T) where Z is the partition function
and kg is the Boltzmann constant, whereas it 1s defined as E — T'S in standard thermodynamics
The vanable E represents the energy of the system while the others have been defined earlier These
definttions are consistent since they can theoretically be related one to the other.
When Legendre transformations are used for passing from, say, Helmholtz free energy F(M,T)
to Gibbs free energy G(h,T), the number of thermodynamical vanables required to describe the
thermodynamics of the system remains coastant. However, the introduction of a phenomenological
free energy 1s generaily one of the form F(M, h,T) Therefore, although the same symbol has been
used for both forms of free energy, it must be clear that the phenomenological form represents
something different.
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nomenological free energy with respect to this order parameter while including the
interactions in a mean field term acting over a non-interacting system. In view of com
pleteness and for further reference, we shall present a form of the Ginzburg-Landan
free energy. The treatment given here follows the one given in Cahn (1953).

For this, assume a continuous model of a scalar field (&), where ris the spatial
position vector. It may be thought of as the magnetization or concentration It 1
further assumed that the free energy density, f, can be expressed as a sum of two
contributions which are functions of the local composition and the local composition
derivatives respectively. Providing f is also continuous'? | it can be expanded about
the value f, representing a homogeneous substance. If one considers the isotropic
case, then f is a scalar that must be invariant with respect to rotation. Thus only
even powers of the gradient can appear. Therefore, the leading terms of the expansion
are

f(d)ava Vzil’,---) = fO(TI)) + Cvzd’ + d(vvd’)2 L

where ¢ and d are tensors resulting from the expansion, i.e.

- (swsttmam)
“ =\ 9jor o001,

and

(oS
7 \8(0v/0x,)0(0y [ 0r)) ) |

that become, under the symmetry requirements,

(5%{@)0 fori -

¢, =
0 otherwise
and
5 .
[ (), i
l] -
0 otherwise,

'2T'he most striking result of Onsager’s solution is that the free energy hasaln [T T, terin when
expanded, thus showing that the expansion is not possible about the singular point 7, 'Lhe fact
that a first order transition point 1s also a singular point can be obtained by metastable nueleation
arguments. See (Andrecv 1964). Therefore, the assumption that the coeflicients @ and b are analyty
in T in equation (2.6) is unjustified
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Figure 2 1* Representation of the free energy in the Landau theory of phase transitions. The second
curve from the inside is at 7T.

When one integrates over the whole space, the second term can be integrated by
parts and reduced, with the help of the divergence theorem, to a surface term and a
(V¢)? term. The former is not relevant in the thermodynamic limit. This reduces

the preceding equation to

Fly] = /(fo(d)) + (V) + ... )de (2.5)
where
dc

Note that the value F[¢] depends on the form of the functions f,(3(=)) and ¥(z)
and is therefore a functional. The function f, is assumed to be of the form guessed
by Landau (Landau and Lifshitz 1981); i.e. an even power expansion in the order
parameter with a linear coefficient (T'—T.) for the ¥ term , thus changing its sign at

T inorder to from a double well potential. This is represented in figure 2.1. Formally,
b
fo= (T =T+ T (2.6)

where ¢ and b are positive constants and the numeric factors are there only to simplify

the derivatives. See (Pippard 1985) for a nice analogy between equation (2.6) and el-
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ementary catastrophe theory. Note that the symmetrical well implies the equivalence
between the two states ¢ and —3 coming out of the broken symmetry. This means
that the theory is expected to be always valid near T. where the two different phases

cease to be distinct.

2.4 Critical phenomena, universality and scaling

With the help of the concept of an order parameter, all phase transitions can be
described in similar terms. The order parameter takes on different values in coexisting
phases and therefore jumps discontinuously in course of a phase transition. 'T'he
magnitude of the jump is related to the difference between the coexisting phases,
being finite for a first order transition and going to zero at a critical point. Formally,
the order parameter 1 vanishes in the disordered state, and is non-zero in an ordered
state, where its different values, say ¢ = &1, correspond to distinct ordered states

We shall first concentrate on critical phenomena.

2.4.1 Critical phenomena

Near the critical point, the qualitative similarity among the different phase tranw-
tions is even more apparent when one notes that the experimental results can all be
written in terms of power law singularities and some critical exponents, once the order
parameter is used as a descriptive variable. The similarity observed among ~xponents
obtained from different physical phenomena suggests that all phase transitions can he
divided into a small number of “universality” classes, depending upon the dimension-
ality of the system and the symmetries of the order states. For example, the eritical
exponents for a three-dimensional Ising model, which will be discussed in the next
chapter, are the same no matter what the underlying lattice is.

The physical source of universality can be understood as follows. Consider, for
example, a ferromagnetic system. The order parameter is proportional to the magne

tization M, for which the magnetic susceptibility x is related to the fluctuations of the
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order parameter via the fluctuation-dissipation relation (e.g. (Landau and Lifshitz
1981)),
X = B{(AM)?). (2.7)

By using the magnetic density,
M= /dm m(z), (2.8)
the susceptibility x can be redefined as

x =0 / / dz dz' (Am(z)Am(z')) = BV / de (Am(z)Am(o)),  (2.9)

where we have used translational invariance,'® and the standard definition # = 1/kgT,
where kp is Boltzmann’s constant. It is found experimentally (Heller 1967) that the
susceptibility diverges at the Curie temperature, i.e. as the system goes from a
paramagnetic to a ferromagnetic state. The divergence of the susceptibility then
shows, by (2.9) and the fact that Am(a) is bounded, that correlations must involve
larger and larger regions while approaching 7.. A way to postulate universality is
as follows. As the system goes to its critical point, the thermodynamic potential
derivatives diverge because of the diverging correlation length £. Critical phenomena
are therefore dominated by fluctuations in M which appear on scales much larger than
the force range. Consequently, these fluctuations can only see certain gross features
of the interatomic potential. The.<fore, the determinant features of the process will
be quantities such as dimensionality and symmetry.

This description leads to the idea of scaling. Since most critical phenomena can
be classified into a small set of classes, the main characteristics of the transition can
then be thought of as being related to common features of the models. For example,
if one measures the linear dimensions of the system in units of £, then a “universal
function” could be obtained, since the same diverging length, £, is responsible for all
the divergences. The study of the characteristics that the free energy functional, or the

equation of state, should have in order to produce the correct critical exponents leads

13Note that for an isotropic system the correlation function forming the last integrand would read
dxr(Am(r)Am(0}).
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to the conclusion that it should asymptotically behave like a homogeneous function of
its arguments as it gets near to the critical temperature T,.. Thus, the critical exponent
inequalities, both observed and predicted from thermodynamics arguments, would be
followed as equalities.

In order to illustrate this idea, we shall continue the above example for a magnetic
system (Plischke and Bergersen 1989). Given a thermodynamic potential ¢ which
depends on the field h = H — H,, and a reduced temperature defined as

_T-T.
=

we assume that the singular part behaves like

6

(2.10)

&(0,h) = AB(A=9, Ah).

It follows from standard thermodynamics relations (Pippard 1957) that

m(6,k) = — (f’gzi)a_—.xwlm(ve,xvh),
x(6:h) = (Zm), = ¥"x(X6,2vh), (2.11)
Cu(8,k) = =T (Z2), = A=*'Ca(A"6, Wh).

If one selects the special scale change h = 0 and A = |8]~'/%, then one can write,

according to the previous equations and the definition of critical exponents (Stanley

1971),
m(6,0) = (—8)"/=m(-1,0) ~ (-8)
x(6,0) = |67®t/=x(+1,0) ~ |6]7
Cu(8,0) = |8)"F*/=Cy(4£1,0) ~ |6]~°
and similarly, with the chuice § = 0 and ) = |h|~1/¥ get
m(0, k) = |h| VYm0, £1) ~ |h|~° sign(h).

The critical exponents are therefore not all independent and they can he related by

the following “scaling laws”

B(5—1)=1. (2.13)
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The fact that ¢ diverges as |07 at T., combined with the hypothesis that ¢ is
the only characteristic length, leads to the conclusion that the system has to be scale
invariant at this temperature. The application of the scaling hypothesis is facilitated
by using the ideas of scale transformation and dimensional analysis.

As a last example, consider a scale change of a factor b. Because the system has
to be scale invariant at T,, we assume that the effective field A’ and temperature ¢’

after the scale transformation will be given by
¢ = b°
' = bh

for which scale invariance (0 = 0) holds at T.. Since the free energy is an extensive

function, we must also have
3(0,h) = bldcp(bwe, Wh).
On the other hand, under the same scale change, the correlation length rescales as
£(6,h) = bE(b",b%R).
Now choose a factor b = |#]~1/= and h = 0 to obtain
$(6,0) = |6]~¥=&(+1,0)
£(6,0) = |817/=¢(£1,0) ~ (6]

from which follows v = 1/z. By using the last equation of (2.11) on the free energy
we get a — 2 = d/z. The relation thus obtained is called the hyperscaling relation

and involves dimension

dv =2 — a. (2.14)
A scaling relation also exists for the so-called correlation function
9(6,k,7) = (000,) — (00)(0y)
and has the functional form
1 -
9(9, hy,r) = mg(b 6,b*h,r/b) (2.15)

near 7.
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2.4.2 Scaling in first order phase transitions

The idea of scaling proved so useful in the study of critical phenomena that 1t has
been extended to first order phase transitions. The central idea, equivalent to the
notion of scale invariance at T, in critical phenomena, is the concept of self-similarity.

That is, we assume that all the parts of the system grow in the same ratio for all
times within the scaling regime. Thus, a scale change will automatically induce a
time rescaling in the case of dynamical growth phenomena. Figures 2.4.2 and 2.4.2
illustrate this idea.

As a measure of correlation, we shall use the time-dependent structure factor
S(k,t) which is simply the Fourier transform of the correlation function g. It is
more convenient to use, since the wave regularity of the covariance between the local
fluctuations over the whole space is thus exiracted. The variable & is used as the wave
number. In view of what has been said before, we assume that the structure factor
can be expressed as a function of the wave number, the mean domain size It and the
dynamic correlation length £(t). By using the same scaling method and dimensional

analysis we used before, we can write, after a scale change by a factor &,

S(k,t) = f(k, R(2),€(1)) (2.16)
= b f(bk, R(t)/b,€(t)/b). (2.17)

We now choose a scale change such that b = R(t) so that

S(kvt) = R(t)df(kR(t)’ l’f(t)/R(t))

The idea that the mean size of the domains will be the only dominant length eliminates
the dependency of the last argument since it should be related to the former by some
function, i.e.

S(k,t) = R(t)*f(kR(t)). (2..8)

This scaling law is different from the above scaling laws in two aspects. One s
the time dependence of the characteristic length R(t). The other is the irrelevancy of

the correlation length ¢ of the order parameter fluctuations; equation (2.18) is only
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Figure 2.2: The time evolution of a bi-dimensional ferromagnetic Ising model. The system of size
128 x 128 was put in contact with a heat bath at 0.67,. Note the similarity of a mentally enlarged

piece of an early configuration with a later one. The time scale goes from 0 to 23 mcs.
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Figure 2.3: The same as the preceding figure. The time evolution is from 24 to 47 mes. Note how
the discreteness of a cubic lattice favors the creation of diagonal interfaces.
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found to hold in a scaling region for which k€ << 1, so that R(t) >> ¢ is the only
characteristic length of the problem.

This scaling law will serve as the main ingredient of the dynamic MCRG method
used in the study of a first order transition. This will be presented in a following

chapter.



Chapter 3

The Ising Model

The Ising model has been an important model in the study of critical phenomena.
Indeed, it is the first non-trivial model to have been solved completely.! Its com-
plete solution in two dimensions served as a reference result for all the subsequent
approximation theories.

Lenz invented this model based on ferromagnetic considerations. Lenz’ student,
Ising (1925), published the solution of this model in one dimension, and concluded
the model was not good enough to show a ferromagnetic behaviour... The complete
history of the Len.-Ising model as well as its developments can be found in (Brush
1967).2

Although the two-dimensional equilibrium Ising model can bhe a good approxima
tion to some physical systems, the kinetic Ising models should not be regarded as
models faithfully describing phenomena occurring on small and large length scale in
real physical systems. Indeed, as some authors remarked (e.g. (Kawasaki 1972)),
the value of those models lies in the fact that these provide us with precisely defined
mathematical models in which no statistical approximation of cooperative effects
enter. However, provided the universality hypothesis holds, the scope of applicabil-

ity is large. The rareness of valuable experimental dynamic information from two

'Some other non-trivial systems to have a solution are the triple-spin triangular model and th
symmetric 8-vertex model (Baxter) in 2D as well as the spherical model in 3D
21t also contains photographs of Ising and Lenz for your collection album

23
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dimensional systems (e.g. adatoms, surface science) and layers (e.g. films, interfaces)

should also be noted.

3.1 Description of the model

In spite of its relative simplicity, the Ising model shows phase transformation be-
haviour. The basis of this mode! is a d-dimensional lattice having its topology given
by the choice of the boundary conditions and the elementary cell. To each of the
nodes is mapped a variable® that can take discrete values. The discreteness of this
variable is intimately related to the modes involved in the transition. In particular,
it is responsible for the fact that a discrete symmetry group (reflection) is broken at
the transition point.*

In a general way, the exchange energy between the sites is included in a Hamilto-

nian of the form

N N
H=7:33 e,(0n0,) a0, -k o (3.1)
J ]

)

B =

where the sum is over the N sites, o, = +1, h is proportional to the external field and
¢,(0.,0,) is the i-j interaction function. The latter can vary over the lattice thereby
representing inhomogeneous cases.® However, we will mainly be concerned with the
homogeneous case (i.e. €, = € ,Vi, 7). This way, the interaction may be thought of as a
square well potential when, in addition, one only considers nearest neighbours. Thus,
the model represents a domain of a strongly anisotropic homogeneous ferromagnetic
substance.! This crude view seems nevertheless a good approximation to some other
physical systems. The interaction function can also be taken as a “U” potential

minimized when the spin are on the nodes so that continuous values for spin position

30ften called spin

4A broken symmetry involving a continuous symmetry group gives rise to a spectrum of zero
energy collective modes such as spin waves for the Heisenberg model (rotation group), for example
These are the so-called Goldstone excitation modes. See (Brout 1965) for example.

®E g spin glasses composed of some ferromagnetic and some antiferromagnetic sites.

®Note that a “real” ferromagnetic transition 1s also accompanied with a volume change called
magnetostriction This is one more argument 1n favour of symmetry breaking in a transition. The
crystal even looses its cubic symmetry in Fe, for example
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can be used, thus allowing the use of an electronic probability deunsity. See (Ma 1976h)
for details.

This model has been studied in many dimensions (up to 7...) and over various
lattices. These investigations found the lower and upper critical dimensions of the
model. The former, i.e. the dimension below and at which no phase transition can
occur is one. In fact, Landau (1981) showed, some time ago, that no phase transition
can ever occur in one dimension. It turns out however that the lower critical dimension
depends on the symmetry of the order parameter.” The upper critical dimension is
the dimension beyond and from which the behaviour of the occurring phase transition
can be exactly described in terms of mean field theories.

Even if the model can be seen as a nice and challenging mathematical problem,
physicists are concerned with applicable models. The models in 1, 2 and 3 dimensions
can serve as a representation, although sometimes crudely, of some specific physical
systems. We shall concentrate on the homogeneous two-dimensional zero tield model

with a Hamiltonian given by

€ N ~
:52 0.0, (3 2)

=1 3=1
where thfe sum is carried out over the v nearest neighbours. For the rest of this work,
we shall assume a two dimensional model unless stated otherwise.?

Due to historical reason, the two cases ¢ < 0 and € > 0 are called ferromagnetic
and antiferromagnetic respectively. There is however a slight difference in the order
parameter for these two cases. In the first place, it is defined as the average (7,
over the system whereas it is defined as the same average over different superlattices
in the second.? The latter is sometimes referred to as the staggered magnetization.
The same models can be used to represent other physical systems. For example, a
crude liquid-gas transition model called lattice gas can be mapped to the first case

ora ABABA...binary alloys can be mapped to the second. These homomorphisius

"The lower critical dimension is 1 for a system involving a discrete order parameter and at loast
2 otherwise.

8Note that in this case and for € = 1, the value of the energy per spin (H)/N 1s equivalent to the
nearest neighbour correlation function estimated over the system.

PE.g. both even or both odd row, column for a 2-d square lattice.
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are well described in (H 1ang 1987) and (Gunton and Droz 1983) respectively.
Finally, note that the definition of such a Hamiltonian does not define any dy-

narical behaviour. This will be seen more formally in Section 3.4.

3.2 The equilibrium Ising model

This section shall be devoted to the investigation of the model with different ap-
proaches. A good and complete analysis of the Ising model under mean field theories
can be found in (Plischke and Bergersen 1989). We will only consider here the cases

relevant to the following chapters.

3.2.1 The exact solution

Since the Ising model is special in the sense that it has an exact solution, and also for
completeness, we shall start by giving the results for the two-dimensional zero field
case, as obtained for the first time by Onsager!® (1944). Simpler and more elegant
methods involving a transfer matrix have been published since and the curious reader
will find all the details in the following references (Stanley 1971; Huang 1987; Plischke
and Bergersen 1989). The solution of the 3-D model is still an open challenge.

The internal energy per spin u(7T') is found to be, using § = 1/kgT, K = B¢ and
q(K) = 2sinh(2K)/ cosh?(2K)

u(T') = € coth(2K) [1 + %(2 tanh®(2K) — l)Kl(q)] (3.3)

where

/2 d¢
Koy = [t
°  /1-—g?sin?¢
is the complete elliptic integral of the first kind which may be evaluated numerically.

Note that u is an even function with respect to €. The spontaneous magnetization is

10As a counterpart to the cold fusion story, it may be worth noting that Onsager was a chemist.
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Figure 3.1: Energy per spin for the Ising model at different temperatures. The solid hine 15 obtamed
from a numerical integration of equation (3.3). The data points correspond to a sunulation on a
ferromagnetic system of size 64 x 64

given by
(1 — (sinh(K))1"* T <.
mo(T) = (31)
0 T>T.
where
—%%k .
T, = —~2kB 5969178 (3.5)

¢ eln(v2 - 1) €

The magnetization as well as the energy are shown on figures 3.2 and 3.1 respectively
The solution itself is a mathematical tour de force, and is considered a landmark 1n
the study of critical phenomena. This showed explicitly that a singularity i the fice
energy can emerge from a non-singular Hamiltonian. Since then, a major challenge
has been to show how the non-analyticity develops in the course of a second-order

phase transition.
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I'igure 3 2. Magnetization of the Ising model. The solid line is obtained by plotting equation (3.4)
The data points are extracted from the simulation mentioned in figure 3.1. They represent an
average on 320 systems.

3.2.2 A continuum approximation

All materials possess magnetic behaviour due to the orbital and spin magnetic mo-

! Although theories on ferromagnetism can involve band

menta of the electrons.!
theory or Hartree-Fock approximation methods, the essentials of the cooperative be-
haviour can be explained by considering the coupling of only two electrons. In this
regard, the Ising model, though it is in some sense a microscopic description, is al-
ready a rough approximation over the various degrees of freedom of the atom. But
the details of the microscopic interactions are not the crucial point to cooperative
phenomena. Therefore, one can go a little bit further by taking an arithmetic mean
over small regions of space'? , thus smoothing the discreteness of the model and “in-
tegrating out” the short wavelengths of spatial fluctuations. This method can be scen

as a one way scale change operator and will be physically meaningful as long as the

choice of the new block size is not larger than the correlation length. It has the ad-

""T'he nucleus magnetic momentum can be ignored since it is several order of magnitude smaller,
though very important in NMR,
'*This method is usually called coarse graining.
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vantage that the resulting variable, say 9,, will be a smoother, or, as is said, a “slow”
variable. Thus, one would be justified in using a continuous function to describe the
block variables.

Formally, the new variable will be defined as

1 ¥
¢j’=3§ S oo (3.6)

1€2,=1
where d is the dimension, b the scaling factor, and j is the block index. We now ash
Knowing the probability distribution (in the canonical ensemble) of the configuration
ensemble {o}, what is the resulting distribution of the new ensemble {¢*} 7 Using a

Kronecker delta, one finds that the new probability must be proportional to

N/b? pd

b -

o< Yo PO [wh - X o || = e P (4.7)
oNEl oy 1 =1 1€7,0=1

where some of the explicit degrees of frecdom of the o, ’s have been included in greter

freedom in the range of the less numerous 1/);’ 's. H' also includes a degeneracy tenm

that can be associated with an entropy. This equation defines a new Hamiltonian

that has a coarser spatial resolution over our model. This last probability will be

normalized by the partition function

7 - Z e~ BH'(4?)
{¥*}
where {4®} means the set of all possible configurations. From it, one would be able
to find the free energy of the system.

Using arguments similar to those used in Section 2.3, one can approximate!® the
free energy by a spatially homogeneous part and a spatially inhomogencous part
describing the slow spatial variations. That is, the free energy density can be described
by ,

fo= Fol$0) + 22 Copl — 45)° (%)

J=1

13The reader can find in {Wegner 1976) a nice short derivation of a Ginzburg-Landnu type freo
energy for the Ising model, derived directly from the Hamiltonian
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where f, is taken as in equation (2.6) and where the second term is analogous to the
gradient term of (2.5). In fact, it can be demonstrated (Tartas 1988) that the sum
above is equivalent to a (V¢)? term when integrating over the whole space in the
continuuin limit. We are then left with an equation similar to the Ginzburg-Landau
free energy functional (2.5). By taking equation (3.8) to describe the system, we
deliberately neglected the short-scale interactions. This approach is justified in view
of the long-range order observed at the critical point. It is also justified if one wishes
to isolate long-range effects from the short-range fluctuations of a system.

Equation (3.8), in relation to equations (3.6) and (3.7), is not directly evaluated
by simulation techniques. Some estimations can be made by calculating the one- and
two-point distribution functions. See (Gunton and Droz 1983; Gunton, San Miguel
and Sahni 1983) and references therein.

Another technique of coarse graining consists in rewriting the Hamiltonian (3.2)
in terms of Fourier transformed variables. Then, one can integrate all the spatial fluc-
tuations on a scale smaller than a certain cut-off wavelength along a given dimension

of linear size L. That is, for a hypercubic system of dimension L¢, we define'4

1 & k.
k=1
and
ke 3.10
o= Wz«z (3.10)

where we used z and k indices for the real and transformed space respectively. In
fact, it would be possible to express the Hamiltonian H in terms of these new vari-
ables. Now if we are interested in the probability distribution of long wavelengths,
irrespectively of the value of short ones, it will be found to be proportional to
x Y )] e PHME) 5 omBHL), (3.11)
ka>A kDA

With this new Hamiltonian H}(c), the short wavelengths (large k) have been

integrated out in the probability distribution so that variations of spins over a scale

'4As usual, the infinite volume continuur limit implies the replacement > — fd z.




CHAPTER 3. THE ISING MODEL 31

shorter than ~ ZT" will not be specified. That is, the spatial resolution QA" can be
identified with the scaling factor b and an effect similar to equation (3.6) can bhe
achieved. The new “blocked” configuration can be obtained from
¥a = L—:jg Y oetk 2, (3.12)
k<A
Lastly, we note that the process of blocking smears out the discreteness of the
model and that the replacement of the sums by integrals can be perfectly justified

This whole process is sometimes referred to as Kadanoff blocking and will be the

starting point of Chapter 4.

3.3 Monte Carlo simulations

The advent of more powerful'® computers in the last two decades has permitied
the development of new numerical methods. These faster machines can perform
simulations on systems of reasonable size which involve a huge number of elementary
operations. One major task of statistical mechanics is the evaluation of the partition
function. A possible numerical way to evaluate it is to choose a point at random in the
phase space, calculate the energy and then weight it according to the corresponding
distribution function. But, unlike common high-dimensional numerical integration,
the evaluation of the energy over the lattice is still too time consuming. Another

method is therefore necessary.

3.3.1 The Metropolis algorithm

At the dawn of computer age, Metropolis ¢t al. (1953) invented a method that siinph

fies this calculation. ® The main idea is that rather than gencrating states randomly

15For the time being. ..

18In a paper named Equation of state calculations by fast computing machines ... They reported
a 3 min/mes for a N = 224 rigid sphere model. Compared with the magnitude of 10% updates/sce
that can be obtained from supercomputers nowadays (see {Wansleben 1987) and references thereim)
eight orders of magnitude has been gained since then.
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and then weighting them with the distribution factor, one generates new configura-
tions according to their distribution and weights them evenly.'” Consider, for exam-
ple, the N site two-dimensional Ising model we have been working with so far. The
algorithi is as follows. Given a configuration, select a site ¢ randomly, evaluate the
energy AFE to “flip” o, to —o, and generate the new flipped state according to the
probability min(1,e#4£).'® This procedure can be used, for example, to represent
the process of adsorption of an adatom onto a surface in equilibrium with the vapour.
As can be seen, this process does not conserve the order parameter. A way to preserve
it is to select two sites at random, evaluate the energy involved in interchanging these
two sites and then proceed as above.!® This last method is more representative of a
physical phenomena involving a local diffusion process. Note that in both cases, the
method only involves the local calculation of the energy of one or two spins. This is
what makes this technique so advantageous.?

Since each site can be selected and flipped with a non-null probability, we expect
that the system can (and should) access all of its states in time, so that the ergodic
hypothesis holds.?! This latter assumes that an average over time should be equivalent
to an average over an ensemble of systems. This will only be true if the sampling
period is longer that the relaxation time of the system of interest. This is why time

correlation has to be considered in any Monte Carlo simulation.

" 'his process 1s sometimes known as importance sampling as opposed to simple sampling. See
the book by Binder and Heermann (1988) for a clear and complete introduction to Monte Carlo
methods in statistical physics.

'*This way of proceeding 1s named after Metropolis The equivalent field dynamic model is knowa
as model A (Halpenin and Hohenberg 1977) (cf. Section 3.4 2). Note however, that Glauber {who
solved the resulting stochastic dynamical problem 1n one dimension (Glauber 1963}), is sometimes
used (Wilhams 1985a) to designate the same algornithm but with the transition probability (3.23).

"his way of proceeding 1s referred to as Kawasak: dynamics (Kawasaki 1972). The equivalent
field dynamic model is called model B

*"The Metropohs algorithm 1s also used, for example, to find a solution to the 7 zveling salesman
problem  This 1s an example of combinatorial minimizaiion. A path joining citi=s to be visited
15 randomly chosen and the distance traveled 1s minumzed by allowing some restructuring of the
path i a Maxwell-Boltzmann fashion. Tte solution is found by slowly adjusting a “temperature”
parameter and the method 1s then called simulated annealing (Press et al. 1988). It is used, for
exawmple, for the arrangement of the circuit elements, in the design of integrated circuits.

*"This 1s not true in some spin glasses where the existence of frozen spins can form a bottleneck
to some regions of phase space.
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For this, assume we consider two quantities A and B. The covariance for these

two sets of values will be given by
covar(A, B) = (AAAB) = (AB) — (A)(B)

as well as the correlation

covar(A4, B)
(AA4)) 2 ((AB))/?

corr(A4, B) =

so that for a time-displaced quantity evaluated with respect to an arbitrary time ¢,
at which the system is in equilibrium, we can write the time-displaced correlation
function ¢(t) as

) (Al)AGo + 8) — (ALAL 1) .
PA) = T0ATE) = (A()) )ALty £ ) — (ACta + D)) 7 (3.15)

Typically, when the system is far from the critical temperature, the time correlation is
negligible after a few Monte Carlo steps®? (mcs). At T., it can be as large as thousands
of mcs, being highly dependent on the system size. The decay can be described by
a series of exponentials, one of which is dominant, with the largest relaxation time.

This suggests a definition for a characteristic relaxation time

TA Z/Om(pA(t)dt. (3.14)

This definition will yield the usual time constant if the relaxation is purely and simply

exponential. This is found to be the case at T.. See figure 3.3.

3.3.2 The Markov chain—a deeper look

Any process for which the probability of a future state is only function of the present
one is said Markovian. The evolution probability of the present state is therefore not
function of its history. Since the Metropolis algorithmn satisfies this criterion, 1t allows

us to use the theory of Markov processes.

220ne Monte Carlo step is defined as N elementary processes, 1e it defines a time seale that
allows comparison between systems of different sizes.
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Figure 3.3: The time-displaced correlation function @pr(t) obtained from simulations over systems
of L. = 64, 32, 16, from top to bottom. Note the strong system size dependence which will be further
exploited in Chapter 5. It also shows, by the slow decay of these correlations, how highly correlated
in time is a system at T, A system at, say, 0.5T, would ideally appear on the ordinate of this graph
However a real simulation shows noise that would appear on the lower part of the logarithmic scale.

Let us first note that the Ising model has a finite number of configurations,
since the number of degrees of {freedom is finite and those are discrete and bounded
(o = £1). Consider now a statistical ensemble of configurations a represented by a
probability distribution @.%* We can think of the probability of all the possible states
in this finite ensemble grouped in a vector @(a).?* An elementary process can thus be

represented by a matrix W(b « a) acting on the vector Q(a) to give a vector Q'(a).

Thus
Q'(b) = Y_W(b — a)Q(a).

We would like this process to bring an initial ensemble (), to a desired ensemble

31f, for example, one starts a Markov chain from a known configuration a then @ will be zero
everywhere and 1 for Q(a). This distribation should spread out and converge to some desired
probability distribution. This notation, from (Bhanot 1988), is similar to the ket vector introduced
by Kadanofl (e g. (Kawasaki 1972)).

A continuous distribution function can be thought of as an infinite vector and the extension
becomes straightforward.
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P.?» This means that W must be such that?¢

lim W"Q, = P. (3.16)

n—oo

This would be true if P = WP is the unique fixed point of the algorithm. We
must therefore show that P is an eigenvector of W associated with an eigenvalue 1.

Moreover W must satisfy the usual probability conditions
Y W(b—a)=1 (3.17)
b

W(b — a) > 0 (3.18)

where a stronger restriction (non-null probability) has been imposed by (3.18). These
two conditions ensure that there is a non-vanishing probability to go from any initial
configuration to any final one. This is called the strong ergodicity condition. In some

cases, condition (3.18) can be relaxed and one can still have an ergodic process. Also

note that
Y Qa)=1 (3.19)

a

holas at each step of the evolution. These three last equations are suflicient to define

a Markov process.

If one chooses W(b « a) such that it satisfies the detailed balance equation, 1.¢.*”
W(b « a)P(a) = W(a « b)P(b), (3 20)

then one can show that P is an eigenvector of W. Indeed, it follows from (3.17) and

(3.20) that
STW(b — a)P(a) = P(b)Y_W(a « b) = P(b).

BE g, P(oy,...,on) = e-BH(21, \oN) for a canonical distnibution or §(H (o, .,an) k) for
a microcanonical ensemble.
26This would also imply that, for an observable A estumated by (A)p over the desired ensemble
and by A over the Markov chain, one would have
lim A = (A)p (315)

n— oo

2TThis is sometimes referred to as microscopic reversibility
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‘This merely says that the probability of being in a state b after one evolution step
from any possible existing states (including b itself) is equal to the present probability
of being in b. The proof that P is unique is beyond the scope of this description and
the reader is referred to a very comprehensive paper by Bhanot (1988). It has also
heen proven (Kennedy et al. 1986) that unity is the largest eigenvalue. This means
that as long there exists some overlap between @, and P, the repeated action of W
will damp out all eigenvectors except P.

Using the same notation we can define the Metropolis algorithm, as described
above, by the following transition matrix
= i Ey < E, (P(b)> P(a))

Sre i B> E. (P(b) < Pla))

Wb —a)= a #b) (3.21)

where P is the temperature dependent Boltzmann probability factor (e #F) describing
the canonical ensemble and 7 fixes the time scale.?® This latter is generally chosen
to be unity., The factor N comes from the nature of the algorithm and the element
W(a « a) is determined from condition (3.17). In order to have size independent
cquations, it is common to work with a size normalized evolution probability matrix
W' defined as
W!(b — a) = WN(b  a). (3.22)
This defines a normalized time scale having, as elementary unit, one Monte Carlo
step per spin (mcs) on the average.
Another common way of defining the algorithm, especially for dynamics problems,

is (Miiller-Krumbhaar and Binder 1973; Binder 1974; Binder and Stauffer 1984) #*

_ L PR
Wb — ) =~ By By (3.23)

2*The factor 7 can be seen as T dependert in order to describe the details of the interaction with

the heat bath. However, a change in 7 would break condition (3.17) and must be seen as a factor
ntultiplying the whole matrix W in order to modify the transition probability per unit time. It
would be simpler in this case to rescale time

*'Note that the forms
1 BAE 1 e PAE
W=-—11-taph——| = — ————
[ oty ] TN 14 e-BAE

are equivalent to (3 23).
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Figure 3.4: A comparative plot of the Metropolisand Glauber transition probabihities The Metropolts
{top) has a transition probability of 1 for any change having the net effect of lowering the energy
of the system. Glauber algorithm (bottom) is softer with that respect. Note that both processes
yield the same curve for 8 — oo, with the only difference that the transition probabihty TN W for
BAE = 0is always 1 for the first case and always 1/2 for the second
which seems more natural in terms of transition probability. This is the form Glauber
used for solving the one-dimensional dynamic problem (1963). This transition proba-
bility, by being softer, satisfies equation (3.18) even when rescaled according to (3.22).
Indecd, after IV elementary steps, there is a non-null probability of being in any state
from any initial configuration. Thus, ergodicity follows. This is not the case for our
first definition where one has to assume a longer time for ergodicity to be possible
On the other hand, one sure test to prove that a transition matrix is not ergodic 1y
to check if the matrix can be put in a block-diagonal form. Figure 3.4 shows the
probability behaviour for these two choices.
Computer simulations give the same results for either method when studying
equilibrium properties. Method (3.21) goes faster to equilibrinm though, due to the
fact that no possible flip is rejected once considered {Binder and Stauffer 1984). We

shall now consider, as an example of definition (3.21), the N site /3 0 matnx. |u

this case, W is a 2V x 2% symmetric matrix of trace zero.® The off-diagonal part

39T he singularity here 1s the symmetry of the matrix that would also be obtamed with defimtion
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consists of zeros and 1/N elements. The 3 = oo case has the singularity that one
of its column is a null vector.3! It would be justified then to suspect some sort of
singularity, such as a strong instability, at 7,, where the convergence of YW becomes
a minimum (critical slowing down).

It can be proved that both definitions obey to the detailed balance equation (3.20).
For (3.21), for example, we have if E, > E,, a # b,

W(b « a)P(a) = P(a)/N

wwkwmm=%§%mm=mqw

and the detailed balance follows. The same result comes out when E, < E,. The
convergence of the algorithm is therefore ensured by these conditions.

instead of defining the transition probability W over the configuration space, it is
common to use the individual values of the spin variables. The probability distribution
@ will then be a function of N variables taking two discrete values instead of one
variable of 2V possible values. With this notation, the transition probability (3.21)
becomes
( 1 if E{or, ,0., ,onN)< E(01, ,-0y, .on)

(Plo1, =0y, ,oN)}>P(o1, 01, ON))

W(-0, — a,) = {

_I_P(al' 1 =% 'at‘d if E(Ul, 1y 0y, )UN) Z E(Ull 1Oxy laN)
™ P(all 4N laN)

(-P(ah ,—a.,.,aN)SP(Ol, Wy vaN))

(3.24)

This definition has the weakness that the mode of spin selection is not implicitly
taken into account as will be seen in the next section. Actually, the selection of
the site only has importance when the dynamical characteristics of the model are
considered. In view of the static case, most of the choices are equivalent and yield the
same results, although requiring different amounts of computer time. The more usual
sclection algorithms are sequential, random, or the so-called checker-board algorithm.
This latter consists in going in a sequential way over one of the [ super-lattices of the

(3 23)
31For a degenerate case, there should be as many null column vectors as ground states.




CHAPTER 3. THE ISING MODEL 39

system at the time. On parallel machines,3? this way of proceeding has the advantage
that N/! flips can be done in only one parallel step. On the other hand, random
selection necessitates a good random number generator for otherwise some site might
never be visited due to pair®® coupling among the numbers generated. This would
then break the ergodicity because some states will be forbidden and as a result the

phase space may be split in separated indcpendent domains.*

3.4 The kinetic Ising model

The following will be concerned with the technical aspects of a simulated quench
i.e. the action of suddenly changing the heat bath from a hot temperature to a much
colder one — whereas Chapter 6 will present growth in a more general context.

Let us first mention that kinetic simulations on the various models allow us to
calculate the values of different time correlations which are not accessible experimen
tally, but which can be of some theoretical interest. The lack of intrinsic dynamics
of the model has already been discussed. This can be seen formally by using the
classical mechanics formalism of Poisson brackets or the formalisin of commutators
for a quantum system. Unlike the Ising model, most of the other models (Hesenberg,
Huids, ...) do have time evolution in terms of deterministic kinetic equations. Ou
the other hand, the dynamic evolution, according to stochastic methods, 15 not con-
sistent with the actual physical time evolution of these systems (Binder and Staufler
1984).%® In the Ising model however, the Monte Carlo process could be interpreted
as a simulation of the real kinetics of the system. Moreover, some direct applications
have been made in the last years. For example, some related models were used by

Safran et al. to represent adsorption of oxygen on a tungsten surface (1983). For this

32Where one processor can be assigned to each lattice site

330r triplet, depending on the dimension of the lattice

34As mentioned before, the same thing can happen in the study of spin glasses, where some
frustrated spin may hinder the probability flow from going 1 certain region of phase space

35For the Heisenberg model for example, Monte Carlo simulations only show a relaxational be
haviour, despite the spin wave dynumics predicted by the analysis of the Hamltoman
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purpose, they used a model having three possible values for the ,’s instead of two.*®
Here are some examples showing how a kinetic Ising model can be used to simulate

various physical systems.

e A ferromagnetic model with spin-flip dynamics. This is the standard treatment
of a ferromagnet. This is also the kinetic lattice gas representation. The order

parameter is not conserved.

e An antiferromagnetic model with spin-flip dynamics. This can be used, for
example, to represent a surface adsorption or a similar process on a lattice that
permits only two equivalent choices for the forming superlattice. The order

parameter is not conserved.

e A ferromagnetic model with spin-exchange dynamics. This is, among other
applications, the star.dard representation of the spinodal decomposition process.

The order parameter is conserved.

¢ An antiferromagnetic model with spin-exchange dynamics. This represents the

usual AB binary alloy system simulation. The order parameter is not conserved.

The concept of universality classes has also been extended to dynamical models.
For example, all the combinations above are thought to invclve only two classes
governed by conservation laws. These latter thus play an important role. Lastly, it
should be noted that the only exact solution existing at the present time, for any
kinetic model, is Glauber’s solution for the spin-flip one-dimensional Ising model

(Glauber 1963).

3.4.1 The master equation

Let us return to the probability distribution @ of the preceding section. If one takes

an evolution step, as defined in (3.22), as the evolution time, then one can write the

" Those models are then called Q-state Potts models.
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master equation valid at any discrete time ¢ *7
Qa,t+1) = Q(a,t) = T V(b — a)Q(b,t) - W(a — B)Q(0, )] . (3.25)
b

When @ has converged to P and if W and P have been chosen such that they satisfy
the detailed balance equation (3.20) then a stationary state follows.

Now assume that we have a system at equilibrium at some high 7" and that we
quench it. This is usually done by starting from a random configuration representing
a 3 = 0 temperature. The stress given to a system at time ¢, can be scen as a
step function so that no explicit time dependence comes in W. This is valid as long
as the process involved has a relaxation time scale much longer than the assumed
phonon-type energy diffusion. We are only interested in the ¢t > ¢, region »o that
we consider a stationary transition probability matrix. Because of that, and the
associative property of matrices, one can define a new time scale by redefining the
matrix W as any power of itself.%®

We can see, however, that the master equation is crucially related to the chosen al-
gorithm. For the two transition probabilities presented above for example  ¢f. (3 21),
and (3.23)—, it has been argued that the dynamical properties could be rescaled
to match, simply by using a temperature dependent factor (Miiller-Krumbhaar and
Binder 1973). This latter is calculated as the ratio of the mean successful spin flips
per Monte Carlo step for each method.

If one puts the additional condition of updating the spins in a particular way, then
the master equation will no longer be valid, as pointed out by Gawhnski «f al. (1985)
Indeed, their results showed substantial discrepancies between different methods of
updating the spins. They argued that the main condition in this situation is that the
time scale chosen must be such that there is no significant evolution during one mecs
They studied a sequential updating method that changes the nature of the transition

matrix. Indeed, in this case, a discrete time dependence is imposed, as one considers

37The prime is dropped on W,
38Note that the property 3.17 still remains valid for any power of W




CHAPTER 3. THE ISING MODEL 42

the elementary processes made over the configuration distribution.®® Suppose, for
example, one updates the spins in a “disordered” sequential fashion. Then, the net
effect will be the same as if one uses a poor, strongly correlated, short period (~ N)
random number generator. If N is large, this effect can be seen to vanish as if the
randomness of the “generator” was improved. Therefore the question this problem
raises is still the same old one: What is the freedom one has on a real random number
generator before effects start to be seen? Or, equivalently, what is an ideal random
number generator for the problem considered?

The problem of parallel processing has also been investigated by Williams (1985a)
and by Vinals et al. (1986). At this point, the studies seem to conclude that the
dynamical results obtained from a parallel (multi-spin-flip) algorithm are consistent
with the one obtained from a single-spin-flip updating scheme under certain conditions
only. In other words, the two algorithms are thought to be in the same dynamical
universality class. However, further investigations are still required in order to know

the degree of equivalence between these different algorithms.

3.4.2 A phenomenological approach

Suppose one can find some sort of smooth variable(s) that would contain the principal
(macroscopic) information about the system. The forgotten degrees of freedom could
then be expressed as a random term, selected according to the expected response
of the system. One sometimes calls these variables slow and and fast respectively.
In general, the order parameter 3 and some hydrodynamic variables are chosen as
slow variables. The derivation of dynamic equations, expressed in terms of these new
variables, depends on whether or not the order parameter is conserved.

Before presenting the phenomenological equations describing the relaxation of the
[sing model described above, let us consider the formalism developed earlier, in the

framework of Brownian motion. The latter was one of the first direct applications

*"The transition probability for each spin will behave like the valves of an engine, being on and
off eyelicly for each N flip turn.
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of the theory of Markov processes in physics. The study of this phenomena involves
a oet of stochastic equations defined over continuous space variables, of which the
famous example is the random walk problem.

Consider the equation of motion of a particle ¢, of given mass m,, in suspension
in a fluid

~hi:t + fc + f.r = nl’l:.i:t7

where h is the coefficient of friction, f, is an external driving force and f] is a random
force due to the collisions of the molecules with the particle. If one neglects the

inertial force and takes f, as a conservative force that can be derived from a potential

V, then
av
Oz,

where 1, = f7/h is a random force such that its average over an ensemble of particles

&, = —D— +7,, (3.26)

is null and uncorrelated in both space and time, i.e. such that

(m(t)) = 0,
("It(t)TIJ(t,» = Bs(t—t)é,

where B = 2I'kgT is a constant, a consequence of the fluctuation-dissipation relation.

(3.27)

This type of equation is called a Langevin equation.®

Now, consider the spin-flip Ising model described by equations (3.2) and (3.21) or
(3.23) dynamics. Assume that the discreteness of the model has been smoothed out
by using the technique described in Section 3.2.2, for example. Then, by taking the
free energy functional as the driving force, one can write, in a way similar to the one

considered above,

ody _ . SF[Y .
8t ———Fo 51/):) +7/1 (‘;"ZH)

where any “inertial term” ¥ has been neglected. Here I', is the cocflient™ that

causes 9 to relax towards a configuration which minimizes the functional I and i, 15

40For Brownian motion, by using the ecuipartition theorem and the diffusion equation (r*) I,
B 1s found to be equal to hkgT, from which one finds Emnstern’s equation for diffusion D (kg'l'/h)
See (Léontovitch 1986) for example.

41This coefficient is sometimes called Onsager kinetic coefficient since this equation has also been
developed in the context of the thermodynamics of irreversible processes
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a random force term, as in (3.26), such that

(Th(z,t)) = 0,

(3.29)
(m(z, ), (2", t')) = 2TkpTé(z — »')6(t — ¢t')4,,.

Because 9? is not restricted by the value of any other cell, no conservation law
holds in this model. In the case of a spin-exchange dynamics, the coefficient T, of
the driving force will have to be changed to —I',V2.42 Note that these models only
describe the relaxation of a system towards equilibrium.*?

There exists no real physical derivation, from first principles, of equation (3.28).
One derivation of the abeove Langevin equation was made by Langer (Langer 1971)
who makes plausible assumptions and obtains the non-linear equation (3.28) from the
master equation. However, the validity of this derivation is sometimes questioned for
its lack of rigour (Gunton 1984).

Much of the literature has been devoted to this approach. A summary and clas-
sification of the different models, as well as their applicability, have been made by
Halperin and Hohenberg (1977). All these models use a Ginzburg-Landau free en-
ergy functional F as described in equation (2.5) and, for this reason, are often called
time-dependent Ginzburg-Landau (TDGL) models. The models described above are
designated as model A (non-conserved) and model B (conserved) respectively.

These non-linear equations may be solved numerically. This is generally done by
using a lattice on which continuous 1, are defined. This requires the use of a discrete
form of the Laplacian over the nearest neighbours in order to calculate the free energy

functional. For example, a numerical solution of the Langevin equation (3.28) can be

found in a paper by Valls and Mazenko (1986).

**In analogy with Brownian motion, this would correspond to a system of interacting particles
with a fixed center of mass at all time.
#3Consistency with equilibrium is enforced by the fluctuation-dissipation relation for 1.
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3.5 Finite-size effects and scaling

Although the size of today’s computers allows us to perform work on larger and larger
systems, they still remain finite. However, a sharp phase transition can only occur in
the thermodynamic limit. This obliges us to understand how the size of the system
can affect the results.

One of the direct consequence of the finiteness of the system is the fact that for
any non-zero temperature there exists a finite probability for the whole system to flip
from near |¢| to near —|v|. In other words the two identical probability “pockets”
located near %|1| in the phase space are connected. This means that any importance
sampling as taken by equation (3.15) will eventually yield a zero value for the order
parameter. Formally

N
($)rn = Q_o)rn =0, Vfinite N (3.30)

=1
and the only formal way to get around this difficulty is to define the order parameter

by taking the thermodynamic limit as follows

Yrp = lim lim (Y)vnr. (3.31)

The possibility of observing the order parameter comes mainly from the fact that cach
of the state located around %|i| are metastable with a characteristic time 7, called
the ergodic time (Binder and Heermann 1988). For systems of reasonable size (i.c.
L > 10), this “flipping” period is large enough to allow valuable observation simply by
storing the absolute value. The relatively small value of the energy required to form
a band crossing the entire system, which is generally precursive to a global change, is
also respoasible for the formation of a “slab”, obtained when one cools a system from
a high temperature to a very low (< 0.47.) one. Because the fluctuations are then
too weak, the system freezes in this metastable state, which forms a local minimum **

A survey of finite-size scaling techniques is found in the following references

(Binder 1979; Binder and Stauffer 1984; Binder and Heermann 1988). This method

44This would not be true if the whole (straight) interface were allowed to move
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simply consists in doing simulations on systems of various sizes, and see if there is a
trend that develops in the results. One then tries to find a scaling form, similar to
those explained in the context of second-order phase transitions, that would contain
the size as a scaling factor. Because the scaling form often has an asymptotic be-
haviour, the result for an infinite system can be obtained by extrapolating the size of
the system to infinity. This kind of scaling regime is only valid when the correlation
length is much smaller than the linear size of the system. One direct manifestation of
finite-size effects is the spread of the transition point. For example, the magnetization
curve will not go sharply to zero at T, as in figure 3.2, but will have a tail near T > T,.

The effects of the boundary conditions used are also important. Analysis on
models at equilibrium with free surfaces have shown that the critical behaviour can be
shifted to a lower temperature and smeared out. When periodic boundary conditions
are used to eliminate free surfaces then the shift is smaller but in the other direction
(i.e. T > T.). In this case it has been suggested that finite-size effects on the critical

temperature can be described by an equation of the type

renfi- )
where L is the linear dimension of the system and a and ) are parameters.*® See
(Binder 1974) and references therein for more details. We used periodic boundary
conditions.

Some other types of finite-size effects will be observed when one studies dynamics.
Beyond a certain size, the growth of a “droplet” will start to perturb itself because it
can loop across the periodic boundary conditions. Based on Monte Carlo simulations,
this effect is usually seen when the typical size of the domains is of the order of
~ 0.4L (Vinals et al. 1985; Sadiq and Binder 1984). Therefore late time studies

require very large systems.

%X can be related to some critical exponents




Chapter 4

Renormalization Group Methods

During the last decades, renormalization group methods (RG) have played an mmpor
tant role in statistical mechanics. They have been widely used with great success for
a variety of many-body calculations. Given a system with a large number of degrees
of freedom whose statistical state is described by a Boltzmana distribution related to
the Hamiltonian in the usual way, the basic idea consists in integrating some of the
degrees of freedom, typically those associated with a small wavelength, and desceribing
the probability of the remaining degrees of freedom in terms of a Hamiltonian which
involves these latter only. At the same time, the system is rescaled in terms of its
linear dimensions so that it has the same set of dynamical variables, the same numbes
of degrees of freedom, as the original system, though it is now described by a new
Hamiltonian. This approach has been developed in the context of static critical phe
nomena but generalization to growth problems and critical dynamics, for example,
have been made in the recent years.

There exist different operators that can do this transformation on the degrees of
freedom of the system. They can be divided in two groups depending on whether
they are performed in real or Fourier space. We have already seen some of them, such
as blocking in real space or introducing a cut-off in Fourier space (cf. Section 32.2)
Wilson (1971) has shown that an equivalent method is to perforin an incomplete

integration by expanding the dimension of the integral (!} about the upper cnitical

47
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dimension (4) of a Ginzburg-Landau free energy functional. Despite the success of
this approach, there still remain questions about the mathematical foundations of the
method. See (Griffith 1981) for a comprehensive presentation of these problems. We

shall now consider some simple but interesting real space RG examples.

4.1 Real space RG — some examples

The following applications are different from the usual theoretical field RG, but they
are closely related to the kind of RG that can numerically be done during a computer
simulation. Moreover, although the primary goal of the RG theory is the calculation
of critical exponents, it proved to give much more information than expected in one

dimension. For this reason, it may be worthwhile to consider that case too.

4.1.1 The one-dimensional case

Consider first the one-dimensional nearest-neighbour Ising model. To simplify the
notation, it is common to use a coupling constant K = Be (cf. Section 3.2.1). The
partition function is then written

ZINK)= T o 3 KR, (4.1)

on==%1 o3=x1o0;=%1

where nn stands for nearest neighbours according to periodic boundary conditions.

By expanding the sum in the exponent,

Z et Z P Z Z . ..eK(0102+6203)6K(03‘74+0’4‘75) cee,

on=+1 o=+l oy=+1
If the sum is performed on all even indices, then the same partition function can be
rewritten, assuming N is odd, as
Z - Z v E Z . [eK(°1+°3) + e—K("l+"J)][eK(0:+%) + e~K(03+”s)] .
oN=%1  oy=ilo =11
One would like to have an equation of a form similar to (4.1). If, by matching term

by term, one tries to have an equality such as

eflortes) | o~Klortas) _ f( K108 (4.2)
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then it would be possible to rewrite (4.1) as
Z=fK* ¥ .. % % KU, e
onpp=tl  oa=tloy=+1
or, more simply,
Z(N,K) = f(K)"*Z(N/J2,K"). (1)
This is possible if
K' = llncosh(2K), (1)
JK) = 2ecosh/(2K),
which are solution of equation (4.2).
Equation (4.3) relates a partition function of NV sites with coupling constant A to

a similar one having N/2 sites and coupling constant K'.

If the free energy is proportional to N then we must have'
InZ(N,K) = N((H), (15)

where { does not depend on N.

Using this last equation along with (4.3), we obtain

¢(K) = 3 1n f(K) + SO(K) (16)

or, by (4.4),
(K'Y = 2¢(K) — In[2 cosh'/*(2K)]. (17)

Equations (4.4) and (4.7) will allow us to know the partition function at any 7T
(or K') once one of these is known. One can see from relation (4.4) that A’ is always
smaller than K. It is possible to rewrite the transformation such that it will go
the opposite direction. That is, by inverting the transformations above, onc can pget

the following set of equations that goes from K’ to a larger K,

K %cosh“l(e”‘”),
(4 %)
¢(K) 1n2 4 1K' + J{(K').

I

'This will hold whenever the interactions are saturated or, equivalently, whenever we have an
extensive variable, in the thermodynamic hmit In this case, the chemical potental o (3F/ON) /
f(N). This implies that (still in the thermodynamic limit) the partition function may be cxpressed
as a product of N identical factors.
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A direct application of this last transformation is to start from a small value K7}
(high T,) and to assume that the partition function is given by 2¥ (N independent

spins), so that

¢(K') ~1In2.

So, by using K! in transformations (4.8), one can generate the value of the partition

function at smaller T'. The transformation has the following properties:

¢ The transformation (4.4) has two points for which K = K'. These fixed points
are: K =0and K =00 .

o The convergence is such that a small error in the first value of ( leads to smaller

and smaller errors only when one goes from high T to low T.

This defines a “flow diagram” that goes from K = 0 to K = oco.

So what has been done above? We tried to express the partition function as
the product of a temperature dependent function and a similar partition function
defined over a superlattice of the system. This latter can then be rescaled in terms
of its linear dimensions. What matters here is how the coupling constants, in the
Hamiltonian, changed in such a transformation. At T' = oo, the correlation length is
zero and we found K = K’'. At T = 0, the correlation length is also zero and still
the transformation did not change the coupling constants. This shows how closely

related are the correlation length and this kind of transformation.

4.1.2 The two-dimensional case

The two-dimensional problem is a bit more complicated because coupling constants
of second, third, ... neighbours start to appear in a real space transformation. When
one considers a coupling constant space (K1, K»,...) for first, second, ..., and a
combination of different neighbours, then one can say that the one-dimensional case
transformation is along an axis in the K space whereas it moves differently in the

two-dimensional case. In fact, the same transformation can be shown to yield (Maris
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and Kadanoff 1978)

K W, + K v Y. A Ty T T T
Z = f(K)N/zze[ 12""00" 2 Linnn 74 3 Ciagquare JA (“”

A

where

f(K) = 2cosh'* (2K ) cosh'/®(4 K)
and where nn, nnn, square stand for nearest-, next nearest- and square-nearest-
neighbours. The transfermation has been done on a square lattice such that we
summed on all i + j even. The resultant lattice is still square but diagonal with

respect to the original. The explicit form of the A's is
1
K, = Zln cosh(4K),
1.
K2 = 51;11,
K, = K,—- %ln cosh(2K).

It is therefore impossible to get a Hamiltonian of the same form. If one makes the
approximation of neglecting both K, and K3, then no phase transition occurs since a
pattern similar to the one-dimensional case is obtained.? A better approximation is to
include the alignment tendency from the next-nearest neighbours in the K, constant
That is, each transformation carries K to K; + K;. This way, an unstable pomnt
appears in the flow diagram, located at K, = 0,506. This is surpnisingly close to the
Onsager value of 0,44069 (cf. equation (3.5)) when one considers the roughness of

this approximation.

4.2 Real space RG formalism |

A real space renormalization group (RSRG) transformation can be seen as a transfor
mation, characterized by a factor b, that maps a “site” system to an 1somorphic “cell”
system. Because the transformation leaves the system isomorphic to itself, iteration

is possible and we are interested in non-trivial (K # 0, K # o) fixed points

*The action of neglecting interaction constants generated by this RG method is referred to as
truncation.
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‘I'he transformation mapping the sites variables to the cell variables is generally
non-linear. For example, a commonly used mapping transformation is the majority
rule, where even (tie) situations are broken up randomly or by following a “fair”
sequence.® Using Niemeijer et al. terminology (1976), we say that the site spin vot-
ers o, of a cell district determine a cell delegate s, of one of two parties. Another
common procedure is to install an internal hierarchy in the cell, so that one spin is
automatically the delegate because of its respective position within the cell.®

The RG transformation will generate effective interactions between more distant
neighbours, as well as many-spin couplings. It is possible to write a very general
Hamiltonian in terms of any spin combination a by

H(s) =D K.][s (4.10)

1€a

as the one we obtained in the last section. The vector K will denote the entire set of
coupling constants K,. Representing by S, the various neighbour interdependencies

(cf. various combinations in eq. (4.9)) we can write

H(s) = D KaS.. (4.11)

Because the process is iterative, we shall denote by s, and s the cell variable and
the transformed cell variable respectively. If the energy is adjusted so that its first

moment is null, i.e.

(M(s) = () =0, (1.12)

then one can retrieve the coupling constants from the Hamiltonian. Indecd, we have

for a particular combination of spin a

(SaH(s)) = Y. S.H(s)=)Y.S.d KiS,
{s} {s} b

*Only when the blocking factor b and the lattice are such that the number of spins is even,
obviously There also exists star-triangle transformation on tnangular lattices A theoretical solution
involving such a transformation can be found in (Hilhorst, Schick and van Leeuwen 1979).

*T'his procedure is called decimation. In terms of P as defined by equation (4.13) this process is
tepresented by

P(SJ A U‘) = H 6(81 - a"l)é'yn-
1€

where n, 1s the 1*? cell delegate’s address.
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= YK,
b

= 2VK,.

]

SaSp = 2V Y Rydas
s} b

—~—

If we represent by P(s’ — s) the mapping probability factor, then, after a trans

formation, the new Hamiltonian will be given by
eNE = ¥ p(s o 5)e™® (1.13)
{s}

where the factor G(K) is introduced only to keep condition (4.12) valid. This is the
renormalization transformation.

The probability P must follow the two usual probability conditions (3.17) and
the “soft” (>) version of (3.18). Moreover, it must be such that the transformed
Hamiltonian can still be written in a form similar to (4.11), i.e. such that the factor
K, for a given spin product S, is the same constant for all of those. This can he
seen as a symmetry requirement. Any mapping transformation P following these
requirements is allowed in view of this theory. The probability condition {3.17), when

applied to equation (4.13), leads to an important relation among free energies That

is, with F defined as
F=InY "),
{s}

one gets
F'4G=F (14.14)
In the thermodynamic limit, we still assume that the free energy I will be represented

by a function of the form (4.5). If furthermore we use G(K) - Ny(K ) then equation

(4.14) can be written as

((K) = g(K)+(;1Ti (K"). (419)

We are interested in the N — oo thermodynamic limit. Therefore, relation (4 13),

via (4.14), can be looked at as a mapping of an infinite ditnensional space of coupling
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constants onto itself, i.e.’

K =-TK. (4.16)

The strategy of RG is to obtain the singularity of the free energy ((K) from the
operator TK and the function g(K ) which are assumed regular in the neighbourhood

of a fixed point K*. This latter is characterized by
K* =TK". (4.17)

Near this fixed point, equation (4.16) can be linearized about K*, i.e. we define a

matrix 7 such that

oK!
T3 = -2 4.18
= 3R, (4.18)
and a transformation near the fixed point K* will then be written
K. - K, = 3 Ts(Ka — K). (4.19)

B
The linear operator 7 can be simplified by using an eigenvector coordinate system.
For this, assume that {@'} is the set of left eigenvectors of the matrix T associated

with the eigenvalue A,, that is

¢'T = \g'. (4.20)

Therefore, by using a new coordinate vector w, describing the displacement K — K*
from the fixed point in terms of the eigenvector basis, we can write the following
projection

w,=¢" - (K- K*) (4.21)
so that one must have, for each component of the vector w,
wi=¢ (K —K')= ¢ T(K —K*)=\¢' - (K — K*) = hw,.  (4.22)

Note that the expansion (4.19) can be extended to second order to allow investigation

further from the linear regime located around the fixed point.

~ "The set of the operators {T(b)} obeys associativity, has the closure property (7 (by)7 (b2) =
T(ba), with T(bs) € {T}), and has the neutral element 7(1). There exists no inverse element
{except for the trivial 1dentity case) so that 1t forms a semi group.




CHAPTER 4. RENORMALIZATION GROUP METHODS 59

Because the eigenvectors are characterized by the transformation equations (1 21)

and (4.22), this allows us to write
w,(K') = \w,(K)
or, similarly, for a series of transformations
w,(K™) = Alw,(K). (4 23)

The whole process of RSRG is thus strongly dependent on this eigenvalue equation
and, depending on the value of the eigenvalue, the corresponding eigenvector will he

named:

o relevant: if the eigenvalue is larger than 1. This means that iteration of the
process makes the renormalized point moving away from K*. Clearly, the
larger the eigenvalue, the more relevant it is. The associated field is obtamed
by determining the symmetry response (e.g. odd for i, even for T') to a global

spin change.

e irrelevant: if the eigenvalue is smaller than [. In this case iteration will move
towards the fixed point so that the effect of these variables disappear after some

iterations.

e marginal: if the corresponding eigenvalue is 1. Renormahization has uo eftect

on these variables and the procedure fails.

The critical exponents are extracted from the cigenvalues of the matrix  In ad
dition, it is possible to determine the critical temperature, the free energy, and the
spontaneous magnetization. Because this analysis is not directly pertinent to our
work, we prefer to skip it and refer the reader to a very good review given in (Niemer-
jer and van Leeuwen 1976).

The main problem with this method is that the matrix 7 is infinite in the ther

modynamic limit so that one has to arbitrarily truncate all but a fimite number of the
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coupling constants. Sometimes, equivalently plausible selections can lead to differ-
ent values. For example, in Section 4.1.2, an improvement of the method, by taking
care of the forgotten third coupling constant, leads to results further from the known
valie of the critical point (Maris and Kadanoff 1978). The most systematic way to
implement the real-space renormalization group is the Monte Carlo renormalization
group. This numerical method incorporates all interactions commensurate with the

system size studied.

4.3 Monte Carlo RG

Monte Carlo renormalization group was invented by Ma (1976a) and further devel-
oped by Swendsen (1979; 1984). It consists in generating a renormalized lattice
without doing any analytical work on the Hamiltonian. For example, a sequence of
configurations is generated according to one of the Monte Carlo algorithms defined
in Section 3.3. Then a transformation is made on all these configurations in order to
reduce the number of degrees of freedom of the systemn. The most common mapping
between the spin sites to the cell variable is the majority rule where “ties” are broken
randomly.® The assumption that the renormalized Hamiltonian will “fit” the smaller
lattice reduces the number of possible coupling constants and, in this regard, trun-
cates the Hamiltonian. For this truncation to be harmless, the effective range of the
Hamiltonian must be smaller than the smallest linear size of the renormalized system.
However, if two different renormalization series are started from systems differing in
their linear dimensions by a factor b, then these finite-size effects will be eliminated
(at least reduced) by comparing systems of equal size but differing only by the num-
ber of times they have been renormalized. As a consequence, the two systems may
be related on the basis of their iteration numbers only.

The matrix 7 can then be calculated numerically by solving the set of chain rule

“1t 15 very common to have b = 2 on a square lattice. An equivalent method consists in selecting
randowly three voters out of four (Ma 1976a).
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equations obtained after m and m + 1 iterations

B(Sm+1) QK Lm+1) §(SLm i)
oK™ S akyY AR

(421)

where S, is a generalized spin as defined in (4.11). After the system has come to
equilibrium, the simulation provides a sequence of configurations from which corre
lation functions can be calculated. The above derivatives can then be obtained trom

the following relations

B(S(mﬂ)) - .
611{('")_ = (S{r+D G — (Sm Dy (5M) (425)
B8
and -
o(8\™
a( I;(rrx)> = (S§mSEM) — (S SEM). (4 26)

The evaluation of the critical exponents, as well as all the critical characteristics that
can be obtained from the transformation matrix —here truncated — is finally done
as described at the end of the preceding section.

An interesting fact to note is that this transformation technique leads to two
different fluctuation time scales. Indeed, in the majority rule transformation, the
value of the cell system can be changed by only one spin. This means that the
renormalized system will still contain some of the short-time fluctuations connng
from the original system.

Lastly, in view of critical analysis, we note that this procedure requires the knowl
edge of the critical temperature in advance. This also applies to the recent apph
cations of this method to dynamics, where the critical exponent z is evaluated by «
similar space rescaling method that involves time “matching”. Relore presenting this

method, we shall give a brief review of scaling in critical dynamics.,




Chapter 5

Critical Dynamics and Scaling

This chapter shall present an overview of critical dynamic phenomena. Scaling laws
as well as Monte Carlo investigations will be reviewed. In addition, we shall lastly
concentrate on the determination of the critical exponent z for the two-dimensional
Ising model.

As seen in the Section 2.4, the range of fluctuation correlations at the critical
point is very large. Therefore, any response from the system to a small external
perturbation will require the onset of long-range response modes that have a very
long relaxation time, mainly because of the large number of particles involved. This
is critical slounng down.

The study of time-dependent properties is generally more difficult than the study
of equilibrium quantities. This is largely because dynamical properties depend cru-
cially on new effects, such as conservation laws. As a result, the study of critical
dynamic phenomena is less developed than its static counterpart. Moreover, as we
have seen earlier, most of the equations attempting to describe the kinetic processes

are phenomenological.

58



CHAPTER 5. CRITICAL DYNAMICS AND SCALING 5

5.1 Conventional theory

The oldest theory trying to explain critical slowing down is based on the thermody
namics of irreversible processes’ (Kawasaki 1971). Using arguments sinnlar to those
used in Section 3.4.2 the rate of change of the order parameter i, towards the equibb
rium value ,, is related to the thermodynamic difference ®(¢') from the equlibrium
value by?
oy F@‘b
at " Oy

where I is the kinetic coefficient. The thermodynamic potential & can be expanded

(1)

about the equilibrium value 9,

0P (¢ — )
w3,
%) g,

By using the thermodynamic relation

(6_2? _ QE),@_’_
ayr) \ay)

where h is the field coupled with the parameter ¢, and by assuming that the curvature
of the potential does not change in the vicinity of its minimum, we then get

oy r
— Yy — Y -r) 2
6t X(l[ ’(l")’ ( )

which has an exponential solution associated with a time constant 7 y/I' A« seen
in Section 2.4, the divergence of x goes as |67 near T.. If I' remans fimte, then the
relaxation time 7 diverges as x. However, this argument cannot say anything about
possible singularities of I at T,, and indeed some experiments have found it to diverge
near the critical temperature (Kawasaki 1976).

It may be instructive to derive the same result from the phenomenological equa
tions of motion presented in Section 3.4.2. For this purpose, suppose we have coarse

grained our Ising model, as in equations (3.8) or (3.12), and that we assume that the

! This theory 1s also sometimes called van Hove theory
2Noise is ignored for simplicity, cf. equation (3 28)
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cell Hamiltonian can be described by a Ginzburg-Landau free energy (2.5). That is,
b
BH = /d“z [g—owz + Zz/)" + (V) (5.3)
where the continuous variables 7 are obtained from a transformation of the form
1 k-x
’(j} = — Z O')cet .
L? k<A
When this last equation is used in (5.3) and the properties of Fourier transforms are
used, we obtain (Ma 1976b)
a 1
pr = ¥[S0+ o]l + 3 5 8k + ks — ks — ka)omonouson
k<A ks
which can be approximated by
< [a
BH ~ Y [—9 + ckZ] 0w 2. (5.4)
k<A 2

'The phenomenological equation of motion for the k** mode is written as (cf. equa-
tion (3.28))
30,,

‘a—t = ~I, [a9 + 20k2] Ok + Mk (5.5)

with 7, subject to the same restrictions as those given by (3.29) and where the driving
force has been obtained from 8 (%) This shows that the driving force is parabolic
with respect to each mode k. In the limit & — 0 it becomes infinitely small. This is
consistent with the fact that the long-range ordering modes are expected to be the
ones responsible for critical slowing down. Note that each mode is independent of the
others, so that there i1s no mode-mode coupling. Indeed, if one suoposes that the I'y

arc the same for all £ then the relaxation time r will be given by

1

The = U[ab + 2ck?] (56)
so that, for small k, near 7.,
-1 x
i 0

where the last equation comes from the fact that ¥ = 1 in the mean field theory. This

1s precisely the same result as the one obtained earlier.
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5.2 Dynamic scaling hypothesis

The dynamic scaling hypothesis is expressed as follows

m = £ 1(ER). (5 %)

It could be derived by extending the arguments of static scaling to dynanues. This was
done for example by Halperin et al. (Halperin and Hohenberg 1969). The exponent
z is called the dynamic critical exponent. Note that the argument of the function s
a dimensionless quantity. This means that a scale change in the system would lead
to rescaling of the characteristic time scale. We will focus attention on = for the two
dimensional spin-flip Ising model. We note that there is much general experimental
evidence to support the dynamic scaling hypothesis in many systems and a few direct
results estimating the value of z have been recently obtamned * See, for example,
(Landau, Tang and Wansleben 1988) and references therein.

We shall now take a look at an explicit example of the scaling form of the conven
tional theory (Ma 1976b). If we use the mean field value for the correlation Jength
¢ = 6-/% in equation (5.6) we can get

1

l
g2 2 . o
Te-2 k7)) ~ ¢ WA (o

T = ea -
P14 20(E0)?)
from which we find a critical exponent z = 2. More correctly, conventional theory

gives = = 2 — 7, where = 0. However, the above theory does not descnbe correctly

most realistic problems. The main reasons are

e The approximation (Gaussian) of taking the Hamiltonian as i equation (5 1)
has already proven to be wrong for the dimensions considered since it leads to

mean field theory.

e The assumption that [y is independent of k15 also a bad approximation, for

the different modes can have different driving mechanisms

3The most striking fact about experimental results obtamed for two-dimensional systoms s that
z < 2 for all those we are aware of, at the moment.
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o The Langevin equation (5.5) did not consider mode-mode coupling.

o [inally, the inclusion of mean field exponents in the theory is not consistent

with experimental evidence.

Much hterature has been devoted to this subject, for which other notions including
hydrodynamics and transport theories are often required. However, a good starting

pomt 1s Ma’s book (Ma 1976b).

5.3 Dynamic quantities and finite-size behaviour

In a finite system, the correlation length will always be bonded by the dimensions of
the lattice. Instead of the infinite divergence of the correlation length found at T, for

an wfinite system, we rather might expect to have
{~ L

where L is the linear dimension of the system considered. This is the only argument
needed to introduce the finite-size scaling of the correlation length in a finite system,

namely

v~ L% (5.10)

This tells us how the relaxation time will scale between systems of different sizes. In
fact, this method has been directly used by us to determine the value of z. However,
hefore presenting those results, we shall introduce some of the measured dynamical
quantities.

Usual measurements done on a kinetic system encompass the time-displaced spin-
spwn correlation C/(¢) and the time-displaced nearest-neighbour correlation E(t). For-
mally, by assuming we have a hypercubic L? system, we estimated the following

quantities

bvnd " m

C(LYm,t) = 7 Zs ((t,)sU™ (b, + 1), (5.11)
bmd

E(L4m,t) = i S ™)™t + 1), (5.12)

(s3)
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Figure 5.1 Different time-displaced correlation functions for a system of 64 x 61 sites Note the larg
difference between @g(t) and @ar(t) showing that the energy relaxes much more rapidly than the
order parameter. Also note the noise common to C(t) and E(t) We used @ps (£) 10 our estunations
where the renormalization iteration number m as well as the RG blocking factor b
were explicitly introduced in view of the matching techinique involved. This latter
will be presented below. These two quantities were originally studied because of then
computational simplicity.

Other quantities of interest are the general time-displaced correlation functions
previously defined by equation (3.13). The advantage of this last guantity over the
preceding one is that the product of the fluctuations is subtracted, thus taking care of
the specific representativity of the sample taken with respect to the population The
denominator renarmalizes the function so as to make it between -1 and 1. Figure 5 |
shows these different tiine-displaced correlation functions for a given system

When one selects magnetization as the observable, then the two quantities above
(i.e. equations (5.11) and (5.12)) can be shown to be subsets of the resulting time
displaced correlation function. For example, the correlation between two sets of

magnetization values measured at different times will indlude equation (5 11) as a
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result of the expansion of the sum. That 1s, by defining pa(t) as

(M(t)M(t, + ) = (M(to))(M(Lo + 1))
(M(to) — (M(26))*) 13 (M(to + t) = (M(t, + £))")1/2

om(t) = (5.13)

and breaking the product of the two sums M in the first term of the denominator
m a sum over sums of self-, first-, second-, third-... neighbour correlations, then
the resulting series will contain equation (5.11) as its first term. Moreover, this
self- term will be the largest of the sum since a spin is more highly correlated with
itself than with any other one. The second term of this expansion is the nearest-
neizhbour correlation. This is precisely equation (5.12). The expansion coetlicients
are dependent on the .opology of the lattice.

When the energy is used as the observable, the resulting correlation function
@p(t) has a much shorter lifetime mainly due to the fact that this quantity depends
on pair-pair correlations over the whole lattice. Therefore the observation of the
tune evolution of the energy as a measure of the equilibrium of a system is not
appropriate. Among the different observables, the order parameter generally has the
longest relaxation time.

We shall now present some error analysis in relation to real computer experiments.
The independence of the data obtained from a Monte Carlo simulation is a problem
of prime importance, especially at T, where the correlation time 7 is relatively large.
Zwanzig el al. (Zwanzig and Allawadi 1969) derived an expression for the error re-
sulting from the finiteness of the simulation in time. This is done by assuming that
the observable is Gaussian and by using relations among different moments, as those
found in Landau and Lifshitz (Landau and Lifshitz 1981). By defining the difference

between the finite-time average and the ensemble average by
A(t) - (A(tO)A(to + t))[h.h] - <A(t0)A(t0 + t))ooa (5'14)

one may equivalently write

L [t [A() At + ) — (A(to) At + £))eo).

t2 =t Jy
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Clearly, the first moment (A(t)) goes to zero when the ensemble average is taken out
and the statistical error due to finite-time averaging is estimated from the second mo
ment of the distribution. The derivation will not be reproduced here since the canty
of this very good paper can hardly be improved. If one normalizes (A(£,).4(¢, + )

by the ¢ = 0 dispersion, then the relative error on the difference from umty will be

found to be
(A(to)A(to + ) )/((A(to)A(to,;.t))[hM N R
( (Az(to»oo : (Az(to))[tn,h] 1) H ({2 f|) ' (' K )

This shows that the error A(t) becomes more and more important as we go away
from unity, or equivalently as t gets larger.

We shall now briefly quote the recent developments in the evaluation of the critical
exponent z for the two-dimensional spin-flip Ising model case, done with the help ot
the finite-size scaling hypothesis. Some valuable analyses have heen done by Landau
et al. (Landau, Tang and Wansleben 1988) as well as by Wansleben et al. (Wansleben
and Landau 1987). The former contains a survey of the estimates for the cntical
exponent that encompasses the last 10 years and ranges from 1.4 to 2.24 (Laudau,
Tang and Wansleben 1988; Williams 1985b). By fitting an exponential to the decay of
wa(t) over systems of different sizes, they could fit equation (5.10) quite satistactonly
Thus, the finite-size scaling method yielded a z-value of 2.14.

Because the different methods yielded results that were not consistent within their
respective error margins, some authors started to question the systematic errors in-
volved in each of the methods considered. A recent study on statistical and systematie
errors on time-displaced correlations with respect to different degree of self-averaping
has been presented by Ferrenberg et al. (Ferrenberg, Landau and Binder 1990). More
over there is no a prior: evidence that a multi-spin coding algonthm will have the
same critical behavior. Although both systems are helieved to belong to the same
universality class, the only formal comparison that we are aware of at this time s the
one done by Williams (Williams 1985a), which has some restricted condlusions ‘T

hypothesis should definitely be further investigated.
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5.4 Dynamic MCRG

We shall now present an extension of the MCRG methods, as described before, to
the study of dynamic behaviour at the critical point. This is done partly becausc
the method we propose will have direct applications to this problem and also partly
because the study of growth and scaling done by using MCRG methods is a straight-
forward extension of the present procedure. The application of MCRG methods to
growth will be seen in Section 6.4. We note, once more, that the theoretical issues
ratsed by the application of MCRG to such problems can still not be answered at the
present time.

Tobochnik, Sarker and Cordery (Tobochnik, Sarker and Cordery 1981) were the
first to extend the MCRG methods to the study of dynamical critical behaviour. The
central idea, proposed by Wilson to Tobochnik et al. , is matching. Starting with two
lattices differing by a factor b in their linear dimensions, a sequence of configurations
is generated for each of them with the standard Monte Carlo techniques discussed

carlier. We shall consider a zero field Ising model with its Hamiltonian given by

H(T)=K)_ o,0, (5.16)
(1)

where we used (i) to denote the sum over all nearest-neighbour pairs. From these
two sequences of configurations, a majority rule MCRG transformation is iterated in
order to generate other sequences each smaller by a blocking factor b. Again, the
m t 1 1terated largest system will be compared with the m iterated smallest one.
However, the blocking procedure will have reduced the correlation length by a factor
b. In view of equation (5.8), this means that the characteristic time of the system will
have been changed by a factor %, since the dimensionless argument of the function
will stay invariant.

The matching condition mentioned above can be expressed in terms of the two

observables introduced by equations (5.11) and (5.12) as follows

C(L,m,t) = C(bL,m + 1,bt) (5.17)
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and similarly for E. This means, given two systems having the same finite-size effects,
we are interested in how the characteristic time scale has changed 1if one of these has
been renormalized once more than the other. The answer is given by the above scaling
relation.

Most of the simulations performed with the help of this technique have heen
done on a two-dimensional Ising model (Yalabik and Gunton 1932; Kats, Gunton
and Liu 1982; Williams 1985b). A complete review can be found in a paper by
Williams (Williams 1985b). Simulations implying different lattice sizes have been
done, although the sizes used were still relatively small compared to the ability of
today’s computers. In relation to this problem, a nice and promising analysis of
real space time-dependent RG applied to a one-dimensional Ising model was made hy
Achiam (Achiam 1978).

The previous idea could also be exploited in an interesting way which involves the
temperature. We know that the correlation length will change under & RG transfor
mation. That is, for two equilibrium systems, one of which being iterated once more

than the other, we have
§(Th) = bE(T>). (0 18)

Clearly, this equality will hold with the special condition T}, 7T at the critical point

However, we can use the asymptotic form of the correlation length near 7, thus givang

g'i:bl/u (H.19)
1

from which the value of the critical exponent should be obtained as a venfication
Lastly, we should mention that apart from MCRG, a pleiad of other techmqgues
have been used in order to study critical dynamics. The so-called ¢-expansions, and
other direct theoretical approaches will not be described here. We shall however
briefly describe a MC approach which consists in studying damage spreading in a
given system. This computer experiment involves the study of time development of
differences between two almost identical systems evolving under the same MC dynamn-

ics. The critical exponent is then extracted by finite-size analysis of the relaxation
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constants. A recent contribution to this approach can be found in (Poole and Jan

1990).




Chapter 6

Growth—Theories and Review

Domain growth is intimately related to topology. This was recogmzed by Gibhs
who first tried to calculate the reversible work required to form a cluster from the
supersaturated vapour by developing a thermodynamic theory of curved surfaces
But, as mentioned earlier, phase transitions are a dynanuc problem and a ket
approach only came much later (~ 1940) with the work of Zeldovich, Farker, Becker,
Déring, Frenkel, and others, on steady state nucleation theories  For a review, wee,
for example, (Abraham 1974; Gunton, San Miguel and Sahni 1983) and references
therein. More recently (1960 to now) an explosion of activity, fired by metallurgic
applications, occurred in this field and the following pages will only try to give the

part relevant to our problem.

6.1 Some different approaches

Among the theories proposed at this time, the two main approaches of growth theonics
were highly influenced by the existing stable-unstable relaxation dichotomy Oune of
these, the older, consists in considering the dynamics of clusters. This 15 appropriate,
for example, for the relaxation process involved in the decay of a metactable state
This forms the core of homogeneous nucleation theory.

The major ingredient of this theory is the concept of a eritical droplet hinagine,

69
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for example, an Ising model in which the magnetic field A has been momentarily
reversed. Then, some “droplets” of some size n will start to form in the homogeneous

background. Each of these will generate an energy difference AE according to
AE = 2hn + onld-1/d

witere o is a surface tension term? and d is the dimension. The process thus involves
a competition between a more stable bulk component and an energy costing surface
termn. This defines a critical droplet size from which the whole process of creating a
droplet starts to liberate energy. Most of these theories consider a Boltzmann distri-
bution of the droplets and involves differential equations on which various physical
boundaries conditions have been imposed.

This model, however, is limited to low densities and temperatures far from the
critical point since the droplets are usually taken as non-interacting. This clearly
breaks down near the critical point where large regions of space become correlated.

Another approach consists in concentrating on the interfaces. Some information
can be predicted with the help of very simple arguments. Assume, for example, a
two-component mixture. It is expected that the driving force of a moving boundary
will come from the excess of its free energy. Although the displacement of an interface
unplies microscopic analysis and diffusion properties, we simply assume that the speed
of the interface responds linearly to the driving force.? We expect that the excess in
free energy will be proportional to the surface tension times the mean curvature. The
latter, from geometrical arguments, is proportional to the reciprocal of the size R of

the domains. We get, after integrating,
R? « t. (6.1)

This result is precisely the Allen-Cahn law which will be derived more formally in the

next section. However, contrary to this “intuitive” approach, the following derivation

'Note that the Ising model 1s misleading with respect to the surface tension term since 1t comes
from the coupling interaction between the background phase and the spins on the surface. For an
actunl droplet, the effect is rather due to the geometrical fact that a molecule on the surface is less
tightly bound than a molecule inside. It is a surface effect

“The proportionality constant is sometimes referred to as the mobility
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does not consider the surface tension directly® . We also note that Lifshit, (1962)
previously derived the same result on the basis of diffusion arguments.

Lastly, we note that the numerical solutions of the relaxational TDGL presented
in Section 3.4.2 are consistent with the value of ’5 (Valls and Mazenko 1986) for the

growth exponent n in R ~ t".

6.2 Antiphase boundary motion theory

Theories to explain the motion of grain boundaries, in polycrystalline metals for
example, have been proposed in recent years. Among these different approaches,
Allen and Cahn (1979) proposed a theory based on the motion of the antiphase
boundary.? For this, they considered the antiphase boundary as a surface having its
own characteristics such as geometrical properties (including thickness), free energy,
velocity, etc.. .1t is also recognized that phase boundaries have an excess free enerpy
Note that the energy of this interface should vanish continuously near T, since the
two phases converge accordingly.

The starting equation for this theory is the Ginzburg-Landau free energy density
as defined by equation (2.5). Moreover, it is assumed that the order parameter s
driven by an equation similar to (3.28) but without the random noise term.” Thus,

in terms of an order parameter ¢ defined over a small region of space, we have

Y _FéF[zp]
ot Sy

This last functional derivative can be evaluated as follows. For a change 1 at o then

(6 2)

we can write, from equation (2.5) and by using ' - ¥(a'),

oy’

3Some coefficient can indeed be related to a surface tension

“In a binary alloy for example, the antiphase 1s the interface at BB m the soquinc

ABABBABABA. . Generally speaking, it is the interface between two identical domains dif
fering by a displacement that shifts the domains from one superlattice to another.

3The effect of random noise has been studied by Kawasaki and Otha (1982a, 1982h) However,
a more accessible description as well as the influence of the temperature 1s presented i (Grant and
Gunton 1983).

0 0 ) 1o ‘ o / o
§F = /[ f +cé—$(v¢) )2 (5(23 ~-3)l‘w> da (6.9)
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afn
oy

9 + 2c/v'¢' V's(z — 2') 59’ de'. (6.4)

By using properties of the delta function, finally get®
S 0f,
s Oy

Note that by the fundamental theorem of integral calculus, the stationary point of

— 92 V. (6.5)

the free energy functional, representing the equilibrium situation, will be given when,

at any point x,

af, 2
= = . 6.6
5 2¢ V% (6.6)
By equation (6.5), equation (6.2) can be rewritten as
oy af.
— =TI 4+ MV¥ 6.7
Bt 3 T v (6.7)
where M = —2T¢c has dimensions of a diffusion constant. Allen and Cahn have shown

that this last equation does not have a spherically symmetrical solution.

Since (@) is analytic everywhere, it is possible to define a curvilinear set of
coordinates using the family of iso-9 planes perpendicular to the gradient of % (&). In
a natural way, the gradient is the derivative with respect to the normal, say ¢;, and we
have, according to Arfken’s notation (1985) for a Laplacian defined over coordinates
(91592, ga) with metrics (hy, b, ha) ,

1 0 (hahs OY
T __)]
v hihahs [6q1 ( h, Oq

The element dn along the normal coordinate is given by hy dg; so that

1 a(hhazp)_aw oy 1 [a 2h3)]'

v2 ) — A B - —_—
y hohaOn \' 2 °8n/) ~ On? +6nh1h2h3 6q1(h

In the same coordinate system it is possible to express the divergence of a unit vector

1 a
V.oa= —(hah3)] .
n h1h2h3 [aql(h2 3)]

along the normal as

“Note that ¢ can be seen to be proportional to the surface tension.
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-1

-

Moreover, differential geometry can relate the divergence of a normal umt vector to

the mean of the mean curvature (A} + K) along the iso-¢* surtaces. We theu have

oy 0fs i duvl] ‘
Bt —_F{ad) - 2c [___ '*(1\1 i 1\2)\1‘ Cst(.)“ ‘ . (“‘\)

On?

Suppose the system had time to separate in two distinct regions that coexist
between gently curved interfaces. Indeed, the local ordering of very small volume
elements in two equivalent coexisting regions, of order parameter near the values
will be formed almost instantaneously wheu observed from a macroscopic pont of

view. Therefore, if (6.6) is assumed to hold at “medium” time phase separation, then

6¢» . . (')l/'

=) =N BN I 64
] »
The velocity v of an iso-y plane will be given by

_[on B f?-l/v' Ay
v w((’?t)wwm((')t)n/(('hz)f (b1

where we used the relation (‘gﬁ) (gf) (Qi) = —1. Hence, the veloaty of the planes
z Ed y

dx
will be described by

equation (6.8) reads

0 . .
v:(B—TtL>¢:M(AI + Ky). (b 11y

Since the mean curvature of smooth and thin interfaces 15 directly related to the <is

of the domains, we get equation (6.1),

v:?——li:]— (6 129
ot R
meaning that
R~ t'/2 (6 13

6.3 Growth measurement

From an experimental point of view, the measurement of domain size, at early tune-,
is done almost exclusively by scattering methods. In the first Born approximiation,

the scattering cross section is equal to the matrix element

Iy ([ de eﬂpfwa(m)()'plz),
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whete o(@) can now be seen as the electronic probability density. If k is defined as
the momentum transfer p; — p,, then, in view of the Fourier transformations (3.9)

and (3.10), the cross section can be expressed as
Ty = (log*) (6.14)

giving a direct relation with the order parameter density.

At later times, electron microscopy is available but the analysis of the results
is then much less obvious (Doremus 1985). In the context of surface sciences (e.g.
adsorption measurements), the techniques involved are various and sophisticated.
From the viewpoin of numerical simulations, there exist three common methods of
“measurement” for the various models. One of these, involving the first mo..ent of
the structure factor, has not been used in the course of this work and will therefore

not be presented here. We shall present the two other ones.

6.3.1 The inverse perimeter density

Wc first want to determine the perimeter density of a given model. For this purpose,
assume a N site Ising model on which we define By, B); and By as the number of
bouds in the configuration indicated by their subscripts and N;, N; the number of

spind up or down, respectively. If we use u as the energy per site, the Hamiltonian

(3.2) can be rewritten, in this new notation, as ’
€ )
w =+ (Bir + By - Bry). (6.15)
For a 4 neighbour model we must also have, counting the total number of bonds,
vN

-5— = B” +Bu+B“.

These two last equations can be used to derive the mean perimeter density, i. e. the
average number of “broken bond” per spin. Note that this terminology implies a

ferromagnetic model. Thus we have

N 4 2"

“It 1 given by (3.3) for a two-dimensional system at equilibrium.
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We then define R(t) as the mean radius of the domain by

R(1) = 5(Ri() § Ri(0))
where
_o, M)
flt) = Cdbm(i)

is the mean radius of the ‘]’ domains and similarly for the ‘|’ domains. The factor ('
is the proportionality constant in dimension d. We assume that (/; 1s not a function of
R so that the distribution of the shape of the domains must remain constant as they
grow. Clearly, this is true in view of self-similarity discussed earlier. By combig,
thewe last equations, using Ny + N; = N,

. N 4

. . LG
R(t) Bl ~ 5 - gx%t) (G 16)

This parameter is the easiest to use since it follows directly from the value of the

energy, which is usually straightforwardly obtained.

6.3.2 The squared magnetization

Consider now the ensemble average for the square of the magnetization (M?*(();, Since

the magnetization is defined as

1 X
M = ~—L0,,
1= 1
therefore
1 NX 1 MM
(1) = (0 S () = g5 30 (el (h),
=1 3=1 =1 1
| .

The summand in the last equation is just the definition of the spin correlation fine
tion. This thus says that the mean squared magnetization 1s equivalent Lo the mean
of the correlation of one spin with respect to all the others [f the form of the corre

lation function remains the same,® it would possible to relate the measure of the spin

8Self-similarity supports this idea
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correlation to the size of the domains by some parameter of the curve. The parameter
above is just a system-normalized integral of this function over all space. Another
denonstration, that the average squared magnetization is related to the domain size,
can be found in (Sadiq and Binder 1984). It is argued in this paper that, for inter-
mediate times, the main contribution to the product (¢,0,) will average to the value
of the order parameter at equilibrium M2 o if 1 and j are in the same domain, and to

zero if they are in different domains. Therefore, since

(M2(2)) = ———ZZ (on(t

we can break the sum in a sum over the n(t) domains composed of a number of sites

proportional to R4(t), and get
(MA(t)) ~ ——n ZZA -—n (t)RZ(L)MZ,

where primes have been put on the sums in order to represent summing so that @
and ) are in the same domain. If furthermore one assumes that the interfaces are

neghgible so that n(t)R4(t) ~ N we then get

(M2(t)) o %R"(t)qu

from which we define
N (M)
Affq

The inverse perimeter density generally gives better results. The square of the

R(t) o (M3(L)). (6.17)

magnetization seems to be more unstable so that an average over more systems is

required to get valuable data.

6.4 MC growth and scaling studies

With the tools presented so far, we are now able to give a general review of Monte
Carlo studies of growth. Monte Carlo simulations on antiferromagnetic (Phani et al.

1930; Sahni, Dee and Gunton 1981; Kaski et al. 1983) as well as ferromagnetic
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Figute 6 1. The dependence of the quench temperature on the time evolution of the domam sz

The different curves represent a system of 128 x 128 quenched at temperatures gowmg, fiom top o
bottom, from 0 07, to 0 97, in steps of 0 17T, The final state temperature has a non tivial offect
on the velocity of the interfaces

(Gawlinski et al. 1985) two-dimensional Ising models unanimously gave the o !
growth exponent. The effect of the temperature of the heat bath is not neglygihle
Indeed, the final state drives the process so that a direct effect is to be expedcted from
the final state temperature. Figures 6.1 and 6.2 represent the evolution of the mverse
perimeter density and the energy per spin in time. The closer the final state to [
the slower will be the growth. This is due to large relaxation tunes required for the
low & modes near T,.

Moreover, all the dynamic measurements of the structure factor were found 1o

scale according to the form

S(hyt) = (R(£) f(k{R(1)))

As shown earlier, RG methods have beeu proven to be very useful wn the context
of second-order phase transitions. The same technique has also heen extended 1o the
study of growth dyuamics. For example, some teal space RG analysis has been done
a series of papers by Mazenko ef al. . See (Viiials et al. 1985} and references therein

Combined with the standard MC simulation techniques, MCRG methods have Leen
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Figure 6 2 The curves represent a system of 128 x 128 quenched at temperatures going, from bottom
to top, from 0.07. to 0.9, in steps of 0 17.. Note that the driving force goes asymptotically slower
and slower as closer to T, Because of the very weak slope, it can be found to fit a power law as well
as an exponential

further extended to study the non-equilibrium dynamics of the Ising model.

T'he method exploits the self-similarity that the system bears in time. The RG
transformation will therefore be used to rescale the linear dimensions of the system,
thus transforming the coupling constants and also time in a non-trivial way. Indeed,
the main idea is that a transformed system, at a temperatiure T} and time {;, may be
found equivalent, after renormalization, to a system at temperature 75 and time ¢,.

A quench is done from a high temperature system to a finite T < T,. In view of
RG formalism, the equilibrium states corresponding to times ¢ = 0 and ¢ = oo will be
charac terized, after m iterative transformations, by coupling constant vectors K™
and I\'(I'") respectively. We know, however, that such an Ising model has an unstable
fixed pont K* at T,, from which a RG transformation flows towards either of the
two stable fixed points K} and K® . Therefore, as m — oo, the RG transformations
applied on a configuration sequence of a given quench would end up by giving two
sets of systems at two different temperatures Ksm) =0 and K(fm) = oo. Therefore,

the application of RG transformations to a given quench, done at a certain 7', will
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yield a phenomenon driven by a lower T'. In contrast to critical phenomena, this
transformation thus involves stable attractive fixed points.

The details of the method are as follows. An infinite temperature (random) con
figuration of a N-site Ising model is put in contact with a cold heat bath (a cold
Hamiltonian) at a temperature T < T,. Then, a time sequence of configurations 1
produced by storing the system configurations at each, say, 6t mes  For such a proce
dure, the overall time range is generally of the order of few hundreds mes, depending,
on the system size, and of a few unities for §t. We then perform a MCRG majority
rule transformation on each of the configurations, thus reducing the linear dimensions
by a factor b. We note here that the master equation for the renormalized sequence
of configurations will not be Markovian any more.

Meanwhile, the same procedure is applied to a similar system of size N0 We want
to match systems of the same linear dimension, but different iteration numbers, such
that the domain size is the same. That is, we want to have, assuming a hypercabie
system,

R(L,m,t) = R(Lb,m + 1,t) (6 1X)

which is expected to hold for different iteration numbers . This matching condition

15 used to obtain the growth exponent. In fact, we must have

InR ~ nlnt

In— ~ Int',
; nln

so that

L
—t—l = b‘/". ((l “U

The success of this method is that, indeed, matching occurs for a whole range of
t after only a few iterations. Moreover, it also remains consistent for the subsequent
iterations. An effect of the RG process in this case is to smooth out the irrelevant
fluctuations in the domains, Since those are not part of the scahng regime of /) the
scale change iterates them away so that the remaining part of the system 15 expected

to be consistent with further iterations. As a result, a translation in time should bhe
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equivalent to a scale change in all proportions in the scaling regime. We can expect
that the latter is characterized by long-range ordering modes. Reference (Kumar,
Viiials and Gunton 1986) contains a more complete discussion on the effect of MCRG
on such systems. More theoretical work is required to establish clearly the nature of
RG in these non-equilibrium problems.

This process was successfully applied to the kinetic Ising model first by Vinals
et al. (1985) and then by others (Kumar, Vinals and Gunton 1986). It has also been
apphed to the problem of spinodal decomposition (Roland and Grant 1988; Roland
and Grant 1989; Roland 1989) in order to derive the controversial growth exponent

., for the problem where the order parameter is conserved.




Chapter 7

Results and Discussion

‘This chapter will present the original contribution of this thesis. The proposed MCRC
method will be given in terms of the formalism already presented. The method will
be applied to the kinetic Ising model with spin-flip dynamics 1 order to evaluate the
growth exponent and results at various temperatures will be presented  Application
to critical dynamics will then be described. Some prelimmary results will he given
and corroborated with results obtained from the different methods itroduced i the

previous chapters, particularly finite-size scaling.

7.1 The idea

The original idea of the method we propose is to consider time as being o vanable
that can be treated in the same way space is, Indeed, the dynamic MCRG methods
presented earlier take advantage of self-similarity by allowing a scale change i space,
thus generating a non-trivial relation with time. We now ask: Would it be posable 1o
design a Monte Carlo method that would do an effective scale change i tine” 'l hie
is what this chapter will try to answer.

In view of what has been said before, a real space RG transformation will change
the Hamiltonian H(K') by moving the parameter K to some other point in I space

Moreover, the probability independence characterizing the time steps of the ornginal

81
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evolution sequence of the system will not hold after a real space RG transformation,
thus yrelding a non-Markovian process over some renormalized time scale.

We now try to analyze what would be the effect of a .imilar majority rule “block-
ing” process applied on one spin in different consecutive time steps. First, we remark
that a transformation of this kind will wipe out the high frequencies of fluctuations
in time. In this case as well, it is clear that the time evolution of the configuration
will not be Markovian any more, since the history of the spin is determined by the
blocked cell value.

The advantage of blocking in time is two-fold. First, because the high-frequency
fluctuations in time are wiped out, the resulting curve will be much smoother as we
renormalize. Since a real space MCRG method does not renormalize the fluctuations
in time, the simultaneous application of renormalizing space and time can take care
of this point. Second, the time blocking factor can be adjusted so as to balance
the effects resulting from blocking in space. Consider for example the growth relation
I}(t) ~ t'/? found in the scaling regime of a spin-Hlip growth phenomenon. A standard
bloching operation performed on space would reduce the mean domain size by a factor
b. If one keeps the same time scale, the process would seem to be much slower since
the reduction of domain size can be thought of as a backward movement in time.

Formally, this process has been exploited by the matching condition (6.18), namely
R(L,m,t,T) = R(Lb,m + 1,¢',T"), (7.1)

where tis clearly larger than ¢’ and T is larger than T’ In fact, we found earlier (6.19)
that ¢ - b'/"¢" is a direct consequence of the growth power law, when one assumes
that the quenching temperature has reached a fixed point. Indeed, the temperature
of the final driving state will end up being the zero temperature if one renormalizes
times enough. Now suppose one chooses a time blocking factor such that ¢/ = ¢;i.c., a
rescaled time £ so that the growth process remains unchanged. This is done with the
transformation t" = b=!/"¢/_ s0 for b = 2 and n = 1/2 this requires a transformation
of the time scale by compressing it by a factor of 4. The discrepancy between the

oryginal system and the transforined system could then be used in order to evaluate
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the exactness of n.

Things are not that simple, however. In this analysis, we assumed that the KRG
transformations had already brought the final state driving temperature to the sero
temperature fixed point. Indeed, as RG iterations goes on, the whole sequence ol
~onfigurations will behave as if it occurred at a lower quench temperature  If one
assumes that the asymptotic regime will eventually be reached, despite the transient
critical behaviour that would start to be felt as T" approaches 7, (1" = 0.77.), then the
coefficient a of R(t) = a(T')t'/? will converge to a(0) from one teration to anothet

One can still hope that after only a few iterations, 7" will be equal to T
equation (7.1). This is already true for any process at T' = 0.37T,, as can he seen
from figure 7.2 (page 88), but as T = 0.7, the iterations needed are larger than those
that can be done on systems ran on standard size computers. A way to tahe care of
this difficulty has already been described in the literature. It consists i choosing twa
temperatures T} and T, such that 7, = Tj, with T > T|. Since RG works consistently,

m+1 m . .
) = T,( ), where m 1s any renormahzation iteration number

we must also have T}
This has been verified in some work done by Gawlinsky et al. (1985). The same
matching procedure can also be extended to spinodal decomposition of a binary alloy,
by choosing a time dilation factor of 8. This still remains to be done.

On the other hand, the study of critical dynamics directly involves a scalimg law
including time. The latter assumes that a scale change in space will induce a scale
change in the specific characteristic times of the system. Those are generally repre
sented by the relaxation times. This hypothesis thus assumnes that all the relaxation
times of the system will respond in the same manner to the applied scale change m
space, no matter which observable is considered. This assumption 1s perfectly consrs
tent with the scaling hypothesis that says that the diverging correlation length is the
only relevant length. Tt is also consistent with all the results obtaned from different
simulations.

Critical dynamics is sometimes best understood when one compares it with dif

fusion. As a reference, a standard isotropic diffusive process obeying Fick’s law will
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have an “order parameter” then obeying the following relation

b(rt) = —%“’ (

where ) is the diffusion constant and A is related to the initial diffusing quantity

b |
I
~—

located at the origin. One can easily show! that a scale compression by a factor b
in space vill be equivalent to a scale compression of 4% in time, thus showing that
z 2 for a purely diffusive process. Cardy (1985) showed, by using conformational
invariance arguments in order to map a two-dimensional system, represented by the
mode-mode uncoupled van Hove equation (model A, cf. equation (5.5)), to a one-

dimensional one, that the correlation function in two dimensions is of the form

2zdoms) ey

g(rt) =t e (7.3)

[t 1s mteresting to note that the mean field values 7 = 0 and z = 2 give an equation

of the form equation (7.2).

7.2 Description of the method

A sequence of configurations produced by a growth phenomenon and a sequence
comng from the analysis of critical dynamics are equivalent in terms of how they are
generated. The main difference resides in system preparation. For critical dynamics,
it s patiently brought to equilibrium at the critical temperature. On the other hand,
for the study of growth, the system is prepared in a random fashion and the quench
temperature is determined appropriately (77 < T.). The description of the proposed
MCRG method will be equally applicable to these two processes although different
observables will be involved.

On a sequeuce of configurations, separated by a time 8¢, blocking is done on a set of
16 spins coming from 4 different lattices at 4 contiguous times. These numbers come
from a choice of a b = 2 space blocking factor. The new cell spin is produced by using

the majority rule. Because the blocked variable is mapped to the time corresponding

"Note that the quantity A also has to be rescaled by the same factor.
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to the earlier time involved divided by 5™ such a procedure will induce a shitt of the
origin in the case of growth phenomena. Meanwhile, as mentioned previously, a real
space RG procedure generates a growth process describing a system quenched at a
lower temperature, since 7' = 0 is the only fixed point of the problen for late times
Our program will consist in determining the degree of consistency of our results with
the Allen-Cahn predictions.

For critical dynamics, the method mainly consists in extracting the dynamic cnt
ical exponent from the matching relation

!

t
em(Lym,t,T) = opq(¥ L,ym + 3, e

) 7 1)
where 7 is the difference in MCRG iteration number. The choice b . 2 has heen
made for this part of our work. Since the process is undergone at 7., it s clear that
the temperature will stay invariant, so that 7' = 7'. The relaxation of the observed
quantity turns out to fit an exponential decay so well that matching at any pomt vields
the same value. Instead, we shall use the time constants obtained from the relaxation
of time-time correlation functions. As seen in the previous section, a purely diflusive

process would stay invariant under the application of the proposed MCRG methaod

The discrepancy 4 between diffusion and critical slowing down can be obtained from

B In(r(L,m)) - ln(t(lr’__ll_.m i )

5= 7ln b (75)
where the variables still have the same meaning The critical exponent = s then
obtained directly from é since

2=246 (7 h)

7.3 Simulations and results

Simulations were performed on a two-dimensional Ising model with periodic boundary

conditions defined on a square lattice, with system sizes ranging from N 16 16
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to N =128 x 128 2 and with a dynamic algorithm as the one defined by (3.21). The
initial states of all the quenches were random configurations of spins, thus representing
a system at infinite temperature. The algorithm used bitwise coding in order to limit
the memory requirement and to improve the speed of the program. The periodic
boundary conditions were put in a look-up table thus minimizing 1f statements
The calculation of the energy of the selected spin, as well as flipping the spin, was
done using Boolean algebra so that the algorithm could be more easily vectorized.
A complete deccription of the computational aspects as well as the listings of the

programs can be found in the Appendix.

7.3.1 Domain growth

There are some comments we have to make before starting the interpretation of ou
results. First, we have to note that the average (R(t)) is not directly evaluated for
it would diverge. Indeed, for a zero temperature configuration -~ accessible at all '
with different probabilities — the denominator of (6.16) vanishes. This means that

R(t) has to be redefined as

- 2 "
R(t):mm (7.7)

However, because of the broader probability distribution arising from a finite system,
(u(t)) should contain in proportion more configurations at zero temperature than an
infinite system. In addition, one must deal with the finite-size effect discussed ecarlier
involving the fact that a droplet of a certain size will start interacting with itself
through the periodic boundary conditions. Therefore, finite-size effects will tend to
accelerate growth. The last effect can be seen in figure 7.1.

We also note that relation (6.18), matching growth size between MCRG 1tera-
tions, will hold only if the time o~igin remains fixed. This is not the case for the

transformation involved. Indeed, the MCRG will tend to shift the origin i a way

*This means, for the largest system, 16,384 spins forming a configuration space of -. 1043
elements! Some 32 such systems could be run simultaneously Each of the simulations could be done
on a SUN 3/50 and a DEC 5000 within a reasonable amount of time
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Figure 7.1. A comparison of two quenches done at the same temperatures but in systems of different
sizes, The size of the systems are 64 and 128 and the data has been averaged over 3200 and 1600
runs respectively. The temperatures were 0.2, 0.5 and 0.6T, from top to bottom. The discrepancy
occurs at R 2 0.4L. There is no difference for the 0 67, curve.

depending on the choice of the value of ¢' given to the obtained blocked configura-
tions. This choice is relatively unimportant, and an approximate time origin can be
recovered by deliberately shifting the data in a way to get the reference point (0, 1).
This way of proceeding, however, gives too much importance to the origin, especially
when one considers the asymptotic behaviour towards the power law growth at higher
T'. Morcover, the scaling regime will be related to the origin in a non-trivial way for
high temperatures. In addition, the inhomogeneity of time, characteristic of a growth
process, is one more reason to allow the time origin to drift. The consecutive time
steps to be blocked do not have the same weight in time, although we consider these
as such.

The temperature plays an important réle in a quench. Data obtained at very low
temperatures seem to indicate a growth exponent slightly larger than 1/2, and this
can partly be explained by the reasons above, although some correction term might
exist. In order to distinguish possible transition regimes, the instantaneous derivative

of the inverse perimeter density has been taken with respect to time. It allows us to
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Figure 7.2: A system of 128 x 128 has been quenched at temperatures ranging from 0 to 9,97, every
0.1, from top to bottom. The curves at 0.0, 0.1 and 0.27T, overlap. The domain size, estimated by
the inverse perimeter density, has been averaged over 1600 quenches.

distinguish a systematic change of regime at very early times, as can be seen from
figures 7.4 to 7.16. Compare with the first part of figure 6.1 on page 77.

On the other hand, quenching a system at a temperature close to 7. will involve
non-trivial effects implicating some different scaling regimes and transient. Some
aspects of this problem have been described in (Tartas 1988). These effects get worse
as one is closer to T.. The effect of temperature can be seen from figure 7.2,

As we pointed out earlier, the effect of RG brings the temperature of the quench
down to the zero temperature fixed point. Therefore, a zero temperature quench
should be invariant under MCRG. This is what can be seen from figure 7.3 which
has, as m goes, the same coefficient a(7') within experimental error, as can he seen
from figure 7.4.

The situation is not the same for quenches at higher temperature. It would be
much simpler if one could determine the function a(7') for then, a flow graph of «

with respect to m and T' could be built from the vaiue of the discrete derivative of
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a7, m) with respect to m, given a temperature. Indeed, self-consistency implies

Oa(L,T',m) Oa(PL,T,m + ;)
om B om '

(7.8)
where 7 and 7" are such that
a(L,T",m)= (V¥ L, T,m + 7). (7.9)

One last remark concerning the system sizes involved in the matching condition. As
mentioned earlier, systems of the same size but different m’s should be compared
in order to minimize finite-size effects. However, the correlation length for a growth
problem is much smaller than the system size. Therefore no finite-size effect is ap-
parent when comparing growth in systems of different size, as far as R < 0.4L, like
figure 7.1 has demonstrated.

Figure 7.3 to figure 7.16 show the application of the proposed method to quenches
at higher temperatures. For all quenches, the system was prepared randomly and then
analyzed at each few mcs. Similar data series have been produced for smaller system
sizes, but they will uot be reproduced here, since they lead essentially to the same
results.® As figure 7.2 has already shown, the curves obtained contain a relatively low
amount of noise? and that our data set can be considered as the best ever obtained
in MC growth problem related studies. Accordingly, as a more rigourous and severe
analysis of our data, the derivatives of most of the quench curves have been taken in
order to possibly distinguish different scaling regimes. We emphasize that derivatives
are very sensitive to any kind of noise, and that they usually cannot be applied on poor
quality data. As can be seen from figure 7.4, the derivatives of the curves obtained
from a low temperature quench study behave as expected; i.e., they all converge to
the same constant value, within their respective error. Also note the distinct scaling
regimes at very early times. The very first part of the curves behaves as if it was
independent of the temperature, although high temperatures saturate this process

more rapidly. Indeed, the growth process has a ¢t = 0 derivative of ~ 0.5 for all

3Apart from finite-size effects of course.
iNote that there are 512 data points for each curve of figure 7.2.
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the cases below ~ 0.8T.. Above this temperature, this first mechanism seems to be
hindered and, rather, the derivative starts to decay from that same value. It is also
interesting to note how MCRG works on the high temperature curves. Figure 7.2,
for example, shows that although the growing mechanism is relatively slow as time
goes on, the fact of renormalizing bring the whole process to a lower temperature,
thus making it growing more rapidly. Even for very high temperatures, this change

of growth activity is observed.
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Figure 7.3. MCRG on a 1087, quench. Similar curves are obtained for T < 0.%T,.. The value of
the hnear coefficient a(T) is invariant as m goes. Note the drifting origin as expluined in the text.
Systemn size of 128 x 128, over 1600 quenches. Shorter curve as m = 0, 1, 2.
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Iigure 7.4: The derivative of the curves of figure 7.3 has been taken for m = 0,1, 2. It shows that
the scaling regime is reached at earlier times in the renormalized system. The value of coefficient a
converges to the same final value for all curves. Shorter curves as m = 0,1, 2.
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Figure 7 5. Quench for a 128 x 128 systrm. The quench temperature is 0 47% and the number of
averages is the same as in fig. 7.3. Note how the coeflicient a converges to the slopes obtmncd i the
preceding figure. The same scale has been kept throughout in order to have a direct compunson
Curves as in figure 7.3.
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Figure 7.6: The derivative of the curves of the preceding figure has bLeen taken for m 01,2
Compare the convergence value of the m = 2 curve with the one obtained from a low temperature

quench (cf. fig. 7.4). Curves as in figure 7.4.
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Figure 7 7: Quench for a 128 x 128 system. The quench temperature is 0.57. and the number of
averages, as well as the meaning of the curves, are the same as in fig. 7.3.
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Figure 7 8: The derivative of the curves of the preceding figure has been taken for m = 0,1,2
Although the number of averages 1s the same here, the data is much noiser. Curves as in figure 7.4,
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Figure 79: Quench for a 128 x 128 system The quench temperature 15 0 67, and the number of

averages, as well as the meaning of the curves, are the same asin fig 7 3.
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Figure 7.10: The derivative of the curves of the preceding figure has been taken for 0,12
Curves as in figure 7 4.
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averages, as well as the meaning of the curves, are the same as in fig 7.3.
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Curves as i figure 7.4.
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averages, as well as the meaning of the curves, are the same as mn fig 7 3
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Figure 7 14: The derivative of the curves of the preceding figure has been taken for w0, 1,2

Curves as in figure 7.4
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Fagure 7 15 Quench for a 128 x 128 system. The quench temperature is 0 97, and the number of
average, as well as the meaning of the curves, are the same as in fig. 7.3.
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Figure 7.16 The derivative of the curves of the preceding figure has been taken for m = 0,1, 2. The
slow down of growth 1s remarkable after a few mcs only. Curves as in figure 7.4.
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7.3.2 Critical dynamics

The analysis of the data obtained for critical dynamics differs from growth 1 a few
aspects. First of all, we note that time is homogenecous for the present case, so that
the previous possible drifting problem now becomes irrelevant. Ou the other hand,
finite-size eflects are much stronger for critical dynamies since the correlation lev
1s of the order of the system size. Matching will therefore require systems of diflerent
sizes. Lastly, we note that the dynamical critical exponent can also be obtamed from
finite-size scaling analysis and this other method will provide us a direct test for the
validity of our present technique.

The characteristics of the simulations were as follows. The initial states were
random configurations on which an equilibrating simulation of 9, 17 and 11 tunes
the relaxation time constants for system size of 64, 32 and 16 respectively, had been
previously performed. The numerical implementation consisted in building pomnter
rings of size of the order of a few 7 in order to store the values of the magnetization and
its deviation, and then, to calculate the mathematical correlation of the ring values
with themselves displaced by a time lag {. With this same algorithm, 32 systems
were run and averaged in parallel. A more detailed description of the computational
aspects of this work, as well as the code listings have been inserted in the appendin

As shown by figures 7.17 to 7.19, the results fit a simple exponential surprisingly
well, even at early times. For reasons of precision, as it is unequivocally shown
by figure 5.1, the time-displaced correlation function @pr(t) will be the only ane
to be used here. Section 5.3 defines this quantity as well as other tune-displaced
correlation functions. The relaxation time constant were extracted from these graphs
and matching is summarized in table 7.1. Our results are consistent with = -~ 2 21
2.24.

Each MCRG matching result was compared with a finite-size scaling analysis and
both were found to yield the same value within the interval of coniidence of the data

The value of z was found to be larger when doing matching with smaller systems, but

this effect was also observed from finite-size scaling analysis, thus proving that thi
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effect is not particular to our method. The values of T were collected for m = 0 and
plotted on a log-log scale in order to find a global exponent from finite-size scaling
as defined by equation (5.10) (page 62). This is done in figure 7.20. This yields an
exponent of z = 2.29 + 0.05, which is quite consistent with our estimate from the new
RG method of z ~ 2.21-2.24. The large value of the error is mainly due to the low
number of points. Some further investigations are still needed to generate points for
larger system size. The previous estimation of Landar et al. (1988) for example, used
a collection of two-dimensional systems ranging from L = 12 to L = 96 only. Their
best estimate is 2.14 £ 0.05, obtained from a multi-spin coding algorithm. While this
value is clearly not contained in the error we have, further statistics may be required
for us to definitely exclude their estimate. Furthermore, the updating scheme they
used might have a non-negligible systematic effect on the value of the critical exponent
obtained. We note that other estimated values of 2.24 (Achiam 1980; Poole and Jan
1990), and 2.23 (Katz, Gunton and Liu 1982), are consistent with the value we have
here.

In conclusion, the analysis of ¢ has demonstrated unambiguously that the decay
of time-time correlation functions can be very well described by a simple exponential,
thus showing that critical relaxation is purely exponential in finite-size systems. Sec-
ond, the method we proposed turns out to be efficient as well as self-consistent, and
offers a promising way for evaluating the critical exponent z with still more precision.
Finally, in the framework of testing this original technique, we generated data of a

higher quality compared to any other existing data.’

SChecher board algorithms clearly have more mes/site statistics, but the quality of the data
obtained from such algorithms still remains questionable.
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Figure 7.17: Critical dynamics MCRG on a 64 x 64 system. Curves are for m == 0,1,2,3,4, from top
to bottom. Averaged over 32 independent systems observed for 8 806 400 mecs. The equilibrating
time of 204 800 mcs and pas calculated every 16 mes.
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Figure 7.18: Critical dynamics MCRG on a 32 x 32 system Curves are for mn = 0,1,2,3, from top
to bottom. Averaged over 32 independent systems each observed for 8 32 000 mcs. Equilibrating
time of 81 920 mecs and @y calculated every 16 mcs.
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Figure 7.19: Cntical dynamics MCRG on a 16 x 16 system. The observation time, for 32 systems
ian in parallel, was 15 511 552 mcs, and equilibrating time 40 960 mcs. Other features are as those
in figure 7.18.

b-™L To4 Zg4-32 T32 23216 Ti6

64 || 22151(5) (m = 0)

32 || 7329(4) (m =1) | 2.623(1) | 4759(1) (m = 0)

16 || 1833(2) (m =2) | 2.208(2) | 1587(1) (m =1) | 2.725(2) | 960(1) (m = 0)
8 || 461(1) (m=3)| 2.21(2) | 397.7(4) (m =2) | 2.30(2) | 322.0(2) (m = 1)
4| 1203) (m=4) | 2.24(5)| 101(1) (m=3)| 2.3(1)| 80.9(3) (m =3)

Table 7 1: This table is the result of matching curves of figures 7.17 to 7.19. The error, as shown
in parenthesis for the last digit, is calculated from the goodness of the fit, so it is not useful for the
estimation of the real error when m = 0, since the RG method has not yet converged.
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Figure 7.20: The value of the exponeni z can be extracted from finite-size sealing as desenibed by
equation (5.10). The system sizes were 16, 32,48, 64 with statistics as descernibed earhier The value
of the slope is 2.29(5).




Chapter 8

Conclusion

This last chapter will first summarize the results obtained in the preceding chapter

and then suggest new avenues for both problems considered in this thesis.

8.1 Evaluation of the method

For reasons of clarity, the two problems will be separated and treated accordingly.

8.1.1 Growth dynamics

As shown in the last chapter, the proposed method has yielded results in agreement
with the Allen-Cahn law. Instead of extracting a specific growth exponent, the ap-
proach taken was to test the degree of compatibility of our results with the Allen-Cahn
growth law. However, the results do not exclude the possibility of the existence of cor-
recting factors at very high and very low temperatures, mainly because of transient
regimes and crossover effects. At high temperatures, for example, critical slowing
down effects rule out some of the basic hypotheses needed for the derivation of the
antiphase boundary motion. Indeed, as one gets closer to 7., one must consider the
fact that the thickness of the interfaces becomes larger and larger, and the very notion
of an interface no longer has a clean definition.

Moreover, related to the inhomogeneity of time and to the algorithm used, some

103




CHAPTER 8. CONCLUSION 10t

drifting effects were found during time renormalization. Those eflects were not 1
portant with respect to the approach taken here, but they prevent us from extracting
a complete description of the problem since the choice of the new origin has to he

made in an arbitrary way.

8.1.2 Critical dynamics

For the case of critical dynamics, the success of the method is, however, undeniable
Because of the complete homogeneity of time, due to the presence of equit:brium, the
time scale renormalization has not lead to any complicating effects. Morcover, the
fact that all the matching could perfectly agree with finite-size scaling done ou the
two systems considered is very encouraging. The need to investigate larger systems is
evident from our data. Finite-size effects are much too strong when RG has brought
the system size down to L < 8, and the results shown by table 7.1 are very condlusive
Moreover, larger sysiems would permit convergence to a better value for z, since
our results tend to indicate a smaller value for the critical exponent as the system
size increases. Furthermore, the observation of the data indicated that the time
relaxation constants were not yet stable at their present values. A serious analysis of
the behaviour of the results in time is still lacking. Any further development should
consider this aspect before judging of the quality of the data.

The main advantage of our technique over finite-size scaling methods is the ex-
traction of more results from the same simulations. Moreover, if the simulations were
done on larger systems, self-consistency would allow the convergence of the data to
better results, out of the same simulations. Therefore, not only has the feasibibty
been proven, but the superiority of this technique has been clearly demonstrated by
simulation on systems of slightly larger sizes.

On the other hand, the values obtuined fron, finite-size scaling are somewhat
conclusive, mainly because of the low number of data points. However, the relatively
large error value encompasses a good range of dynamic critical exponents obtamed in

the literature and the production of more data points would eventually lead to com
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parible results. Again, simulation of larger systems would permit a better estimation
of the critical exponent. As a check of our technique, it would always be possible to
verify our results by direct comparison via a finite-size scaling analysis. As shown by
the preceding chapter, however, the error would be much smaller from a consistent

MCRG process than from finite-size scaling.

8.2 New approaches

This very last section will try to indicate further avenues of investigation related
to that problem. First, we stress the lack of a sound theoretical background for
renormalization techniques in general. The inclusion of time as an extra parameter
in our renormalization scheme is certainly not an improvement to the understanding
of this problem. Second, the influence of real computer simulation parameters on the
expected behaviour of the system has to be further investigated. Indeed, as previously
mentioned, there is no a prior: evidence that a multi-spin algorithm should lead to
the same critical exponent. Moreover, one would be justified in expecting that the
observation of a dynamical quantity should be much more sensitive to the random
number generator and the related updating schemes than an equilibrium one.

The representation of the system in terms of Langevin equations should be fur-
ther investigated. The domain of application, as well as more formal derivations from
basic principles, would surely help the understanding of non-equilibrium statistical
mechanics. The solution of the strong non-linearities found in these problems is not
an ecasy task, however. Finally, the system can be investigated in terms of estimating
homogeneous transition probabilities. This method should yield some novel dynam-
ical results for the growth dynamics from a quench, as well as the critical problem.
The solution of these equations for transition probabilities is not expected to be easy,
but they would surely have the advantage of expressing the system in terms of a
relatively smaller number of variables.

In conclusion, the new method, presented in this thesis, has brought new light to
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two challenging problems, and permitted the generation of numerical results of better
quality than any previous study. The availability of more powerful computers will

certainly allow this technique to yield further useful results for related problems.



Appendix A

Description of the Code

The following will briefly describe the algorithms used for the problem of critical dy-
namics. The algorithms used for the previously described problem of domain growth
are almost the same apart from the fact that (1) the system is not allowed to equi-
librate before we start the measurements, (2) energy, instead of magnetization, is
measured in order to determine the mean domain size (note that no time-time cor-
relation function is involved in this case) and (3) an average is made over different
quenches done on randomized systems instead of continuing with the same system in
time as 1t is the case for critical dynamics.

The algorithms have been written in both C'and FORTRAN but only a C version
will be presented here. The following version is one of the most complete ones which
still contains a clear representation of the algorithms in spite of having fancy features
such as taking care of the history of results and allowing the reading of a previous set
of configurations already equilibrated at 7. for example. The source code has been
subdivided into separated files in order to take advantage of static C declarations.
It comprises a header file containing declaration of macros and machine dependent
variables, a utility file containing various functions used to allocate memory, to copy,
read and save matrices, and to initialize lookup tables for a two-dimensional-periodic-
boundary-condition Ising model, an analysis file containing an algorithm computing

the magnetization of the different systems ran in parallel and storing these results for
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subsequent caiculations of time-time correlation functions, a MCRG routine tile which
renormalizes the systems using a majority rule blocking algorithm, a main program
file which will be explained in more details below, and finally, a makefile which has
been included in view of completeness.

The general idea is to run a simulation on a M x N integer matrix. Fach bit ol
the integer is used as a spin. The bit size' of the integer allows to run from 16 to 6
systems in parallel, depending on the architecture of the hardware used. When an
integer is visited, all of the systems are visited so that the systems all share the same
visiting history, although the probabilistic outcome, as well as the imtial conditions,
will be different for each of them. Due to the Hamiltonian of the two-dimensional
Ising model, the state of a spin has a degeneracy 10, depending of whether it 15 “up”
or “down”, and depending on the number (0-4) of parallel neighbours it has. In order
to use Boolean algebra, the state of a spin will be represented by ten integers having
a bit set “on” for each corresponding system having the visited spin site being m the
state represented by the given integer. For a 32 bit integer hardware for example, 32
bits will thus be distributed among ten 32 bit integers, each bit having no equivalent
in any other state integer, since a spin can only be found in one of its ten states.
We shall not go into the detailed description of the Boolean algebra involved, but
the reader will find the details in the lturn() function below. It uses the Metropohs
algorithm on a matrix passed as an argument and runs for a given number of mes also
obtained from the argument stack. After selecting a matrix integer (asite) at randon,
the “flipping” procedure is done systematically on any visited spin having two and
less parallel neighbours, and with a Boltzmann probability for any visited spin having,
three or four parallel neighbours. The Boltzmann distributed probabilities are stored
bitwise in two integers that then operate, using Boolean algebra, systematically on
the two integers representing the sites in the situation of having three and four parallel
neighbours and this for the, say 32, parallel systems at the same time.

Anyone, who has done such simulations before, would know that the generation

! Defined as THICK in the header file.
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of random number is the procedure forming the major bottleneck of the algorithm.
A tentative to use socket I/O programming in order to use other slave machines in
parallel turned out to be disappointing in terms of the overall speeding up of the
process. There still remains some other tricks to try though...

The configurations thus generated, by the Metropolis algorithm, are analyzed and
temporarily stored until we accumulate four of them. At this point, the four matrices
are renormalized in both space and time as described in Chapter 7. Still, the resulting
M/2 x N/2 matrix is analyzed and temporarily stored until four similar ones have
been accumulated. The same process continues until the size of the original system
permits.

This whole process generates different levels of results and analyses. Level 0 15 the
original matrix on which the Monte Carlo simulation is performed. Each next RG
level has the size of its corresponding system matrix divided by two and the number of
data points in time divided by four. Our goal is to compute the time-time correlation
functions as determined by equation (3.13) (page 33). This has to be done for all
the levels involved. Because the process will be running for a long time, saving the
complete history of each system is not realistic. This suggests the idea of “rings”. For
cach parallel system, and each level of RG, a ring of a size such that a few 7 of data
can be saved will be constructed. To fill each ring, every time a new system matrix
is obtained —from the raw Monte Carlo generator or from the MCRG process— the
values of magnetization are computed for all systems in parallel and then saved in
their respective ring. Each new magnetization data set obtained will be saved around
this ring and the correlation of the present values with the magnetization values
obtained at previous times will be computed.

This way, the function ¢ (t) can be constructed for each of the, say 32, systems in
parallel, and for each of the RG level. The time ¢ will run from 0 to some value? usually
taken as a few relaxation times . Each of the correlation functions forming the time-
time correlation function par(t) (cf. equation (3.13) on page 33) is averaged in time

*Defined as WINDOW in the header file. Note that this value depends on 7 which in turn depends
on the system size.
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Estimation of CPU time per T cycle (on a DECHI0)
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Figure A.1: Estimated CPU time for one T cycle as a function of the system size L The incicase
is due to (1) the increase of CPU time needed to process larger systems and (2) to the morease
of 7 as the system size increases. This makes it evident that larger systems are not techmcally
accessible for now. This curve has been estimated from a DEC5000 workstation runmng the code
found in this Appendix. No more than one order of magnitude improvement could be obtasncd from
a supercomputer.

as the process goes on. At print time, an other average is made over all the systems
in parallel.

The value 7 is then extracted by fitting an exponential to wa(t) This s done by
using a least square fitting algorithm over a semi-log representation of the function
The extraction of the critical exponent z is then done according to the description
given in Chapter 7.

Up to now, the major problem in obtaining data has been related to CPU tine
limitations. As figure A.1 shows, the estimated CPU time required to run a system

of linear size L becomes incredibly large for L = 100. This curve has been estimated

from benchmarks obtained from running the code below on a DECH000 workstation




Appendix B

C Listings

B.1 The makefile and header files

FILENAME MAKEFILE JAN 10 1991: 14:27

A Macro definitions

#

# parameters

# SIZE can be overidden by "make lerind SIZE=64" for ezample
SIZE = 32

PAR = --DS$(SIZE)

CFLAGS = -0 $(PAR)

LDFLAGS = —Im

CCozec

# objects 10
LCRIN4_OBJ = lutil o lturn.o lana.o letsrg o

default
@echo "Use to make lcrin4, clean"

letind, $(LCRIN4_OBIJ) lerind.c
$(C'C) $(CFLAGS) —o lerind $(SIZE) lerind.c $(LCRIN4_OBJ) $(LDFLAGS)

$(LCRING_ OBJ): Iparam.h makefile
20
clean
@/bin/rm - f *.0 test core

FILENAME LPARAM H JAN 14 1991: 23:52

/* parameter file ¥/

F#ifdef S24 /¥ the size 1s 24 by 24 ¥/

Fdefine M 24

#define N 21

#define WINDOW 16384 /* observe for 2 $\tau$ Monte Carlo steps */
#Fdefine MCSTEP 16 /* analyse every 16 mes */
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#define AVG 1000  /* run for a thousand averages */

#endif

#ifdef S32

#define M 32

#define N 32

#define WINDOW 16384
#define MCSTEP 16
#define AVG 1000
#endif

#ifdef S48

#define M 48

#define N 48

#define WINDOW 32768
F#define MCSTEP 16
#define AVG 500
#endif

#ifdef S64

#define M 64

#define N 64

#define WINDOW 65536
#define MCSTEP 32
#define AVG 500
F#Fendif

F#ifdef S96

#define M 96

#define N 96

F#define WINDOW 98304
#define MCSTEP 32
#define AVG 500
#endif

1

S0

#define SKIP 25  /* the number of averages between history function files */

#define WARMUP (10 ¥ WINDOW) /* It says it all */
#define T 10 /* temperature wn terms of Tc */
#define LEVEL 5 /* This means { RG + 0

##tdefine MAXRAND 2147483648 0 /* machine dependent */
#define Te 2 269185314213 /* from Onsager solution */

#define MAXNAME 80

#define DATUM (WINDOW/MCSTEP) /* number of raw data in lume */
##define TNS (M*N) /* total number of sites */

#define THICK (8*sizeof(unsigned)}) /* number of b1t in an integer ¥/
#define MFAC ((float)((float)M/MAXRAND)) /* speed up factors */
#define NFAC ((float)((float)N/MAXRAND))

#define ERROR (-1)

B.2 Utility functions

FILENAME LUTIL.C

40

JAN 15 1991 0009
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/* Uity file */
/* Last modification tamme 91/01/14 ¥/
#include "1lparam.h"

/* Lookup tables imitialization for up right down left neighbours.
This can be simplified to only two function, but I left four
Jor sake of clarmty. ¥/

void mimit(ulat, m)
unsigned *ulat;
int m;

{

int 1,

ulat[0] = m-1,

for (i=1,i<mp++) {
ulath] = i-1;

}

return;

}

void nmit(rlat, n)
unsigned *rlat,
int n;

{

int j,

for (j=0,j<n-1;j++) {
tlatfj] = y+1;

rlat[n -1} = 0;
return;

}

void dimt(dlat, m)
unsigned *dlat;
int m,

{

int 1

for (i-0p<m -Ii4+) {
dlat]i] = 1+1,

}

dlatfm —1] = 0,

return;

}

void hmt{llat, n)
unsigned *lat;
int u;

{
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int j;

lat[0] = n-1;
for(j=1;j<nij++) {
Natfj] = j-1;

return;

}

#include <stdio.h>
/¥ required on certain systems */
/***t******unvr********

#include <stdhib.h>

t#*******##**###*******/

/* Allocation routines for speeding up access to the matrir
as well as for more flembility on the sizes and indices  */

unsigned **alloc_uint_mat{m, n)
int m, n;

unsigned **ptr;

int 1;

ptr = (unsigned **)calloc({unsigned)m, sizcof(unsigned *));

if (ptr == (unsigned **)NULL) {
fprintf(stderr,"Error 1 in unsigned matrix allocation\n"},
exit(1);

}

for (i=0;i<m;i++) {
pir(i] = (unsigned *)calloc((unsigned)n, sizeof(unsigned)},
if (ptrfi] == (unsigned *)NULL) {
fprintf(stderr,"Error 2 1in unsigned matrix allocation\n"),
exit(1),

}
}

return(pt);

}

int **alloc_nt_mat(m, n)
int m, n;

int **ptr;

int i;

ptr = (int **)calloc((unsigned)m, sizeof{int *}),

if (ptr == (int **)NULL) {
fprintf(stderr,"Error 1 in int matrix allocation\n"),
exit(1);

}

»O

"o
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for (1 =0, i<my++) {
ptrli] = (int *)calloc((unsigned)n, sizeof(int));
if (ptri] == (int *)NULL) {
fprintf(stderr,"Error 2 1n int matrix allocation\n"};
exit(1);
}
}

return{ptr);

}

Hoat **alloc_float_mat(m, n)
int m, n;

{

float **ptr,
int i;

ptr = (float **)calloc({unsigned)m, sizeof(float *));

if (ptr == (float **)NULL) {
fprintf(stderr,"Error 1 in float matrix allocation\n");
exit(1);

}

for (1=0;i<m,i++) {
ptrfi] = (float *)calloc((unsigned)n, sizeof(float));
if (ptr[i] == (float *)NULL) {
fprintf(stderr,"Error 2 in float matrix allocation\n");
exit(1);
}
}

return(ptr),

int *alloc_int_vec(n)
int n,

{

int *ptr;
pir = (int *)calloc((unsigned)n, sizeof(int));
if {ptr == (int *)NULL) {
fprintf(stderr,"Exror in vector allocation\n");

exit(1);

}

return(ptr),

}

float *alloc_float_vec(n)
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. int n,
{
float *ptr;
10

ptr = (float *)calloc({unsigned)n, sizeof(float)),

if (ptr == (float *)NULL) {
fprintf(stderr,"Error in vector allocation\n");
exit(1);

return{ptr);

}

/* Generate a random configuration */
void ranit(slat)
unsigned** slat;
{
register int i, j,
long random();

170

for (i=0;i<M;i++) {
for (j=0;j<N;j++) {
slat[i]j] = random() * random(); {AN

}

return;

}

/¥ At RG level |, copy matriz old onto matriz new */

void lep_mat(], old, new)

unsigned **old, **new; /* from and to mairices */

intl; /* RG level, required to determine the size */

{ 1900
register int i, j;
extern int *msize, *nsize,

for (i=0;i<msizell]ji++) {
for (j=0;j<nsize(l);j++) {
newli][j] = old[i]j];
}
}

return; 200

/* A subroutine saving the matriz */

savemat(avg, mat)
int avg;
unsigned int **mat;
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int 1, J, 210
char filename[MAXNAME],
FILE *fp,

extern char *prog;

sprintf{filename, "%s.mat", prog);
if ((fp = fopen(filename, "w")) == NULL) {
fprintf(stderr, "Could not open %s file.\n", filename};
return (—1);
}
fprint{(fp, "Effective mcs: Y%d\n", avg * WINDOW); 220
for (i=0,i<M;i++) {
for (j=0;j<N;j++) {
if (fprintf(fp, “%ud *, matfi]jj]) = 1) {
fprint{(stderr, "Error occured when saving configuration\n"},
return (—1);

}

return,; 230

}

/¥ a subroutine reading the saved matrz */

readmat(filename, mat)

char *filename;

unsigned int **mat,
int i, j;

FILE *fp; 240

if ((fp = fopen(filename, "xr")) == NULL) {
fprintf(stderr, "Could not open %8s file.\n", filename);
return (—1);

for (i=0,i<M;++) {
for (j=0;j<Nj++) {
if (fscanf(fp, "%ud *, &matf][j]) 1= 1) {
fprintf(stderr, "Error occured when loading configuration\n");
return (—1); 250

}

return;
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B.3 The magnetization analysis file

FILENAME: LANA.C

/* Analysis of the configurations */
#include "1param.h"

static int *mvec; /¥ used to save resulls from the 32 configurations */
static int **prev, **next; /¥ 5 RG level lookup tables for the rings ¥/
staticint ***mring; /* the ring uself with 5 RG levels ¥/

staticint *mn; /* pownter to current ring position in each level ¥/

/ * Inhalizes the data rings used for saving the values
of the magnetization kept 1n order to calculate the time- time
correlation functions. There 1s no point in keeping data
from very early configurations since these are not correlated
any more. This s why a Ting (a loop) 18 used, which allows
overwriting on resulls obtained from early configurations.
This thus save computer space The following funciion
only allocates this structure ¥/

void init_rings()

{
int il, i, n;
extern int *mvec;
extern int **prev, **next;
extern int ***mring;
extern int *alloc_int_vec(),
extern int **alloc_int_mat(),
extern int *rn,
extern int *datum;

rn = alloc_int_vec(LEVEL);
mvec = alloc_int_vec(THICK);

mring = (int ***)calloc((unsigned)LEVEL, sizeof(int **)),

prev = (int **)calloc((unsigned)LEVEL, sizeof{int *)),
next = (int **)calloc((unsigned) LEVEL, sizeof(int *}),

for (1=0;ll< LEVEL;ll4++) {
n = datum(ll];
mring{ll] = alloc_int_mat(THICK, n),
prev[ll] = alloc_int_vec(n);
next[ll] = alloc_int_vec(n),
for(i=0si<n,i++) {
prev(ll]i] = 1—1;
next[ll)[i] = i+1,

prev[ll}{[0] = n — I;
next{ll]{n—1} = 0;

[N
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}

return,

}

/* This function calculates the magnetization out
of the configuration. Each integer 1s ireated as
THICK (32 for a dec5000) bits, each of which being
tn an indepetrident system. The only thing these systems
have 1n common 1s the spin update history */

void lana(ll, s)

int I, /* the RG level */

unsigned **s, /¥ pownter lo the configuration malrir */

{
register int tmp,
register int 1, 3, k,
extern int *mvec,
extern *msize, *nsize; /¥ size as a function of RG level */
extern int *tnsv; /* defined in main, total number of sites */
void store_m();

tmp = —tnsv[ll];

for (i=0,i < THICK; i++) {
mvecl] = tmp;

}

for (1=0, i < msize[ll]; i+4) {
for (j=0;) < nsize[lll;j++) {
tmp = si[j];
for (k=0,k<THICK;k++) {
mvec[k] += 2 * (tmp&01),
tmp >>= 1,
}
}
}

store_m(ll, mvec),

return,

}

/* This function stores the magnetization 1n the proper
RG level rang It increments the position pointer to
the nert position found from the lookup table. */

void store_m(If, m)
intll, /*the RG level ¥/

int *m; /¥ a vector containing the THICK magnetization values */

int k, u;
extern int ***mring;
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extern int *

rnfll] = next[ll][en{l1]],
n = n[ll];

for (k=0,k< THICK,k++) {
mring(llj{k][n] = m[k],

return; 1o

/¥ Calculates the time—tume correlation function for
the Il RG level. Actually it finds three nunimal sums

of the definition of par(t) ¥/

void leorr_m(l}, suml, sum?, sum3)
int ll;
float **suml, **sum?2, **sum3; 120
{
extern int ***mring,
extern int *datum; /* contains the size of the rings ¥/
int1, k, t, n;
int nn, **p;

p = mringfll];

n = m[ll];

for (k=0;k <THICK;k++) { 140
nn = n;

for (t=0;t<datum(lij,t++) {
sum1[k][t] += (float) (p[k][n] * p[k][nn]);
sum2[k][t] += (float) p[k][nn;
sum3[k][t] += (float) (p[k][nn] * p[k][nn]});
nn = prev[li][nn];
}
}

return, 140

B.4 The Metropolis algorithm

FILENAME. LTURN.C JAN 91991 17 19

/* the Monte Carlo Metropolis algorithm */
#include "1param.h"

static int *up, *rt, *dn, *lt; /* the newhbour lookup tables */



{
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/* Allocules and iniliahzes the lookup tables */
void it _Iturn({)

extern int *alloc_int_vec(),
extern int *up, *rt, *dn, *lt, 10
extern void wnit(), rinit(), dmit(), linit(),

np - alloc_int_vec(M),
rt =- alloc_int_vec(N),
dn = alloc_int_vec(M},
It = alloc_int_vec(N);

uinit(up, M);

nmt(rt, N);

dinit(dn, M), 20
linit(1t, N);

return;

/* The one that makes 1t all ¥/

void lturn{s,mes,pro)

unsigned **s; /¥ the matriz ¥/

int mes, /* the number of mes to run for */ 30
long prof2], /* the Boltzmann factors (2 1n 2 D 1s enough) */

{

int ranvec3, ranvecd; /* vector of bits generated with a
probability equal to the one of
flippang a spin when 3 or 4 of its
nerghbours are parallel to «1. */
static int tns = TNS; /¥ total number of sites in level 0 */
static float mfac = MFAC; /* random # generator dependent factors */
static float nfac = NFAC;
int i, j, k; /* utility integers */ 40
int a, b,
register unsigned nl, n2, n3, n4;
register unsigned c3pu, cdpu; /* case n parallel neighbours up */
register unsigned cOpd, clpd, c2pd, c3pd, cdpd; /* case n par. nei. down */
register unsigned nalla, nallo, site, wsite; /* all_and, allor */
register unsigned odd, nla2, n3ad, nlo2, n3o04; /* land/or2, ... */
register unsigned nsed3, usedd, /* which random number used */
long random(),

ranvecd = 0, 50

ranvecd = 0

usedd = 0,
0

usedd =

for(k=0k<THICK,k++) { /* generate the Boltzmann distributed bits */
if (random() <= pro[0]) {
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ranvecd |= 01<<k;

if (random() <= pro[1}) {
ranvecd |= 01<<k;
}

}

for (a=0;a<mes;a++) { /* turn! ¥/
for (b=0,b<tns;b++) {
1 = random() * mfac; /* choose a i from 0 to M ¥/
j = random() * nfac; /* choose a ) from 0 to N */

for(k=0;k< THICK;k++) { /* refresh the used bats ¥/
if (used3&01) {
if (random() <= pro[0}) {
ranvec3 |= 01<<k; /* turn or laave it on *#/

else {
ranvee3 &= ~(01<<k); /* turn or leave 1t off ¥/

}

usedd >>=1;
if (used4&01) {
if (random() <= pro[1]) {
ranvecd |= 01<<k;

else {
ranvecd &= ~(01<<k),
}
}
usedd >>=1;

}

site = s[i][j]; /* the site */

nl = sfup]][j]; /* the four newghbours ¥/
n2 = s{i][rt[3]};

n3 = s{dn{i]](j};

nd = s[ij{1t[j]];

wsite = “site; /* to make it legible */
odd =nl1 "~ n2 " n3 " n4, /* oddness */
nlo2 = nl | n2;

n3o4 = n3 | n4;

nallo = nlo2 | n3o4,

nla2 = nl1 & n2;

n3a4 = n3 & n4;

nalla = nl1a2 & nlad;

/ * the dufferent cases */
c3pu = (nla2 " ndad4) & odd & site,
cdpu = site & nalla;

e
te
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}

return;

}

{

int, j, k,
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cOpd = wsite & nalla,
clpd = (nla2 " n3ad) & odd & wsite, 110
¢2pd = “(odd { nalla | site) & nallo;
c3pd = wsite & (nlo2 " n3o04) & odd,
cdpd = “(site | nallo);
/ * remember those bils we will use */
used3d = ¢3pd|c3puy;
used4 = c4pdicdpu;
/* random flip for these cases only */
c4pd &= ranvecd; 120
c4pu &= Tranvecd;
c3pd &= ranvec3;
c3pu &= "ranvec3;
/ * this chowce takes care of flipping automatically the others */
s(i]p] = cOpd|clpd|c2pd|e3pd|cdpd|c3puledpu;
}
130
B.5 The MCRG algorithm
FILENAME: LCTSRG C JaNn 91991 17-19
/ * majority rule space—time MCRG */
#include "1param.h"
/* Takes 16 spins from § systems at contiguous times and does
a majority rule blocking in order to generate a renormalized
system of half the size of the original ones. */
void Ictsrg(ll, old, new)
int ll, /* the current RG level */
unsigned ***old, **new; /* the level Il and ll+1 matrices */ 10
register unsigned b1, b2, b3, b4, b5, b6, b7, bs;
register unsigned b9, b10, bl1, b12, b13 bi14, b15, b16;
unsigned word, result;
extern int *msize, *nsize;
extern long random(),
for (i=131< msize(ll];i+=2) {
for ()=1,j< nsize[ll];j+=2) { 20

word = 0;

bl = old[0](1][];
b2 old[]][f][_i];
b3 = old[2]{i]j],

il
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b4 = old[3]]
b5 = old[0]{
b6 = old{1]]
b7 = old{2][1]h-1],
b8 = old[3]{
b9 = old[0]]
b10 = old
b1l = old
b12 = old
b13 = old
b14 = old
b15 = old
b16 = old[3]{i—1j[j—1};

1Dl
-],
-1}

ijli-1];
1—1][3},
Jb-1]0k
(=110
1k

O o~ O W D

,__ﬂr_,ﬁ_,,_,,.__.,__

1h-1],

(-
% -1,
[i-1]h—1);

for (k=0;k< THICK k++) {

result = (b1&01)+(b28&01)+(b3&01)+(b4&01)+(b5&01) ¢ (hik01)
(b7&01)+(b8&01)+(b9&01)+(b10&01) + (b11&0 1)
(b12&01)+(b13&01)+(b14&01)+(b15&01) +(b16&01),

if (result > 8) {
result = 1,

else if(result ==
result = 0,

if (random() > MAXRAND/2 0) {

result = 1;

}

}
else {

result = 0;

}

bl >>=1;
b2 >>=1;
b3 >>=1;
b4 >>=1;
b5 >>=1;
b6 >>=1,
b7 >>=1,
b8 >>=1;
b9 >>=1,
b10 >>=1;
bll >>=1I,;
b12 >>=1;
b14 >>=1;
b13 >>=1,
bl4 >>=1;
b1s >>=1;
bi6 >>=1;
result <<= k;
word |= result,

new((i—

1)/2l[0~1)/2] =

word;

Rk

i
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B.6 The main program file

FILLNAME LCRINA C JAN 15 1991 01 28

/* The man program */

/* leringb ¢ version with a history */
/¥ Last modification time 91/01/14 */
#ineclude <math.h>

#include <stdio h>

#include "1param.h"

/ * utalaty allocation functions */
int *alloc_int_vec();
unsigned **alloc_uint_mat(); 10
Hoat **alloc_float_mat();

void lamo();

char *prog, /* the program name */

int *up, *rt, *dn, *It, / * newghbours lookup vectors */

int *tney; / ¥ total number of sites f(RG) */

int *datum, /* number of time data points */

int *maze, *usize, /*m X nomatrz ¥/

main(arge, argv) 20

int arge;
char **argv,
{
long pro{2], /* the Bolizmann factor in terms of MAXRAND ¥/
int avg; /¥ the current number of averages */
int 1, t, m, n, /* utehity integers */
int n0, nl, n2, n3; /* RG level 0—4 counters */
unsigned **¥s0, *¥*¥g] *r¥g) *xxg3 *F¥gq. /¥ the 5 RG level systems */
float ***msuml, ***msum?2, ***msum3; /* minumal sums required to
compule ppr(t) ¥/ 30
int time(), srandom();
void lep_mat(), ranit();
void lana(), lturn();
void init_lturn(), init_rings();

prog == argv|[0];
if {arge >2) {

fprintf(stderr, "Usage: %s [saved_matrix_filel\n", prog);
exit(1}, 40
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}

/ * allocation and inatiahzation of all the variables */

msuml = (float ***}calloc((unsigned)}LEVEL, sizeof{foat **}),

msum?2 = (float ***)calloc{(unsigned)LEVEL, sizeof(float **)),

msum3 = (float ***)calloc{{unsigned)LEVEL, sizeof(float **}),

/* each s? fills up to four matrices and then renormalizes */

s0 = (unsigned ***)calloc{(unsigned)d, sizeof{unsigned **}),

sl = (unsigned ***)calloc({(unsigned}t, sizcof{unsigned **)),

52 = (unsigned ***)calloc((unsigned)4, sizeof(unsigned **)), ful
s3 = (unsigned ***)calloc((unsigned)4, sizeof{unsigned **)),

tnsv = alloc_int_vec(LEVEL);
msize = alloc_int_vec(LEVEL),
nsize = alloc_int_vec(LEVEL);
datum = alloc_int_vec(LEVEL};

t = DATUM;
m = M;
n— N, i

for (1I=0;l<LEVEL I+ +) {
datum[l] = t;
msizell] = m;
nsize{l] = n;
tnsv[l] = m*n;
msum1[l] = alloc_float_mat(THICK, t);
msum2[l] = alloc_float_mat(THICK, t),
msum3{l] = alloc_float_mat(THICK, t),

t /=4; /* RG dindes time by § */ 70
m /=2, [* and divides space by 2 */
n /=2

}
for (1=0;t< 4;t++) {
s0[t] = alloc_uint_mat(M, N);
}
for (t=0;t< 4;t++) {
s1[t] = alloc_uint_mat(M/2, N/2),
}
for (t=0;t< 4,t++) { e
s2[t] = alloc_uint_mat(M/4, N/4),
}
for (t=0;t< 4,t++) {
s3[t) = alloc_uint_mat(M/8, N/8),

}

s4 = alloc_uint_mat{M/17, N/16);

imt_nings();
it _lturn(), a0

/* computes the Boltzmann from the Temperature in Tc unils */
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prof0] - (long) (exp(—4.0/(T * Tc)) * MAXRAND]},
prol1] - (long) {exp{(—8 0/(T * Tc)) * MAXRAND),

standom(time((long *)NULL)), /* seed the generator with time */

if (arge == 2) { /* read the previously prepared matriz file */

}

else {

if (readmat(argv(1}, s0[3]) == ERROR) {
fprintf(stderr, "%s: Error occured while reading file Y%s.\n", prog, argefi]);
exit(1);

}

ranit(s0{3], M, N); /* generate ¢ random configuration ¥/
lturn(s0(3], WARMUP, pro); /*bring it to T */

}

n0 = nl=n2=n3 =10; /*ths first loop fills the data rings */ 110
for (avg=lLavg<=4;avg++) { /* do 1t | tames to fill all ring levels */
for (t=0;t<DATUM;t++) {
lturn(s0[3], MCSTEP, pro);
lana(0, s0[3]),
if (n0 < 3)

lep.mat (0, s0[3], s0[n0});

if (++4n0 == 4) {

letsrg(0, s0, s1[n1}),
lana(1, s1(nl]);
n0 = 0, 120
if(++n1 == 4) {
letsrg(1, s1, s2[n2}),
lana(2, s2[n2]),
nl = 0;
if(++n'2. —= 4) {

letsrg(2, s2, s3[n3)),
lana(3, s3[n3]),

n2 =0,
if(++n3 == 4) {
letstg(3, s3, sd); 130
lana(4, s4);
nd = 0;
}
}
}
}
/* here s the real stuff */ 140

for (avg=liavg<=AVG;avg++) {
for (t=0;t<DATUM,t++) {
lturn(<0[3], MCSTEP, pro),
lana(0, s0[3]).
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leorr_m(0, msum1{0}, msum2[0], msum3[0]);
if (n0 < 3)
lcp_mat(0, s0{3], s0[n0]),
if (+400 == 4) {
letsrg(0, s0, s1[n1]);
lana(1, s1/nl});
leorr_ m(1, msum1{l], msum2{1}, msum3[1}};
n0 = 0;
if{++nl == 4) {
letsrg(1, s1, s2[n2]),
lana(2, s2[n2]);
leorr_m(2, msum1[2], msum?2{2], msum3[2]),
nl = 0;
if(++n2 == 4) {
letsrg(2, s2, s3[n3});
lana(3, s3[n3]);
leorr_m(3, msun1{3}, msum?2{3], msum3[3]),
n2 = 0;
if{++n3 == 4) {
letsrg(3, s3, s4);
lana(4, s4);

leorr_m(4, msum1{4], msum2[4], msum3(4}),

n3 =0

/* saves the correlation function at each average */
lanio{avg, msum1, msum2, msum3);
/* saves the matriz at each average */

if (savemat(avg, s0{3]) == ERROR) {

1o
s

1ho

[ XIS}

fprntf(stderr, "%s: Error occured while saving matfile\n", prog),

}
}

return;

}

void lanio(avg, gsuml, gsum2, gsum3)
int avg, /* the current average number */
float ***gsum1, ***gsum?2, ***gsum3; /* the mnimal suns */
{

FILE *fp;

char fname{MAXNAME];

float tmp2, tmp20;

float num, denom1, denom?2;

float **suml, **sum?2, **sum3;

int 11, t, k,

float phy;

float n,

10
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for (1 z=0,ll< LEVEL;ll++) { /* do 1t for each level */
suml = gsuml[ll];
sum?2 = gsum?2(ll], 200
sum3 = gsum3{ll};
n = avg * datum]ll};

/¥ in order to keep a teme history of the function */
if (avg%SKIP) { /* give e different name every SKIP averages */
sprintf(fname, "landm.%a", 1),
}
else {
sprintf(fname, “landm’%d.%d", avg, 1},
} 210

if ((fp = fopen(fname, "w"}} == (FILE *)NULL) {
fprntf(stderr, "%s: Could not open file %s\n", prog, fname);
exst(1);

}

fprntf(fp, "RG level: %d\n",1l);

fprintf(fp, "avg: ‘%d\n", avg);

fprintf(fp, "original system size: %d X %d\n", M, N), 220
fprintf(fp, "T (Tc): %f\n", T);

fprntf(fp, "Window size: Yd\n", MCSTEP*datum(ll]),

fprintf(fp, "Analysed every: Y%d\n\n", MCSTEP);

fprintf(fp, "time\tphi(t)\n");

for (t=0,t< datum[ll],t++) {

phi = 00

for (k=0,k<THICK;k++) {
tmp20 = sum2[k][0];
tmp2 = sum2[k][t], 230
num = n * sum1[k]{t] -- (tmp20 * tmp2),
denom1 = sqrt(n * sum3[k][0] - (tmp20 * tmp20)),
denom?2 = sqrt(n * suwd|k][t] — (tmp2 * tmp2)),
phi += num /{denomi*denom?2);

}
pla /= (fioat) THICK;

fprintf(fp, "4d\t%f\n", t* MCSTEP, phi),
b

felose(fp),
}

return,

}
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