
•

•

•

A Double Precision Floating
Point Convolution Processor

Jean François Panisset

B. Eng., (McGIlJ University), 1989

D~partment of Electrical Engineering

McGill University

Montréal

May, 1994

A thesis submitted to the Faculty of Graduate Studies and Research

in partial fulfillment of the requirements for the degree of

Master of Engineering

© Jean François Panisset, 1994

Name
Dlssertallon Abs/racts In/erna/lona/ls arranged Dy broad, genE.ral sublect categories Please select the one slJblect whlch mast

neorly descnbes the content of your dissertation Enter the correspond mg four-digit code ln the spaces provlded

l,
1 1 1 1 U·M·I

SUBJEOmM SUBJEO CODE

Subject Categories

THI HUMANITIES AND SOCIAL SCIENCIS
COMMUNICATIONS AND THE ARTS PlycholO<JY 0525 PHILOSOPHY, RELIGION AND Anclent 0579
Archrluctuff' 0129 Rwd,ng 0535 THEOLOGY Medieval 0581
Art HI\tory 0377 Rel,g'ou, 0527 Phrlo,ophy 0422 Modern 0582
(Ir.orno 0900 SCiences. 0714 RellCon

Black 0328
Dance 0378 S9condary 0533 eneral 0318 Afncan 0331

F,m' '"h 0357 Social Scrence, 0534 Blblrcal Stud,es 0321 ASla, Austra!'a and Oceanra 0332
Informulron (")(IPlltP 0723 Soe,olorJyof 0340 Clergy 0319 Canad,an 0334
Journal"", 0391 Specral 0529 Hlltory of 0320 Europeen 0335
Ilbrwy ~(rl!flrf' 0399 Tcochcr Trornrng 0530 Phrlmophyof 0322 La"n Amencan 0336
M(H~ (()mrnUnlrntlr,n~ 0708 TpehnolJl~ 0710 Theology 0469 M,ddle Eastern 0333
Mu ... ,,. 0413 r csts an eosurcments 0288 Unrted Stale, 0337
)~Of}(tl (ormnur\I(nhoJI 0459 Vocotlonal 0747 SOCIAL SCIENCES Hlltory of SCience 0585
T INJtf.!! 0465 Amencan Stud,e, 0323 Low 0398

LANGUAGE, LlIERATURE AND Anlhropolog
k

Pol,"cal SCience
EDUCATION LlNGUISTICS Arehoeoogy 0324 General 0615
G"n"",1 0515

l"ntage Cultural 0326 Internat,onal Law and
AdfTIlfllstr(ltlorl 0514 ene",1 0679 PhySicol 0327 Relolrons 0616
Ad,,1t ,,"d (ont""'1119 0516 Ane,ent 0289 BUSiness AdmlOlStrotlon PublIC AdmlOlstratlon 0617
AUllfUlturol 0517 lrngulSt,e\ 0290 General 0310 Recreation 0814
Art 0273 SOCIal Work 0452
SlllIInunl "nd Mult,culturnl 0282 MOdern 0291 Accounlrng 0272

Soclalogy
lltproture Bankrng 0770

(~U!.II1Ü\\ 0688 General 0401 Management 0454 General 0626
lornrnun,ty (ollpy!, 0775 ClasSicol 0294 Marke"ng 0338 Crrmlnol0i\; and Penology 0627
(urllwlurn (",d Imtructlnn 0727 Comporallve 0295 Canad,an Stud,e, 0385 Demograp~ 0938
r orly Chrldhorxl 0518 Medieval 0297 Econonllcs EthnlC and ocrai Stud,e, 0631
[Ipm,,"tury 0524 Modern 0298 Generol 0501 Ind,v,ducl and Famrly

hncHlU' 0277 Afrrean 0316 Agrlcultural 0503 Stud"1' 0628
G",d,m, .. (Illd Couns"I,",! 0519 Amerlcan 0591 Commerce BUSiness 0505 Indust. rai OIld labor
Houlth 0680 ASlon 0305 Frnance 0508 Relalron' 0629
HlqhN 0745 COllodion !EngllSh) 0352 HlStory 0509 PubliC and Sl<:,al Welfare 0630
Hlltaryof 0520 Socral Struetur~ and
Homo f conOlrlln 0278 Canad,on French) 0355 labor 0510 Development 0700

Englllh 0593 Theary 0511
Indu,tnnl 0521 Germon1C 0311 Folklore 0358 Theory and Methods 0344
lonwunoe (Incl Il!t'lutur P 0279 lotrn Amencon 0312 Geograp'hy 0366 Transporta"on 0709
Mnllpl11nltrs 0780 M,ddle Eastern 0315 Gerontology 0351 Urban and Rj!,onal Plannrng 0999
MuSIC 0522 Romonce 0313 .. Hlltory

Women', Stu le, 0453
Ph,lmophy of 0998 Slnvlc (Jnd EGst Europeon 0314 Gt1nerol 0578
PhY'I<ol 0523

THE SCIENCES AND ENGINEERING
BIOlOGICAL SCIENCES Geodesy 037 0 Speech Pathology 0460 Enyrneerrn~
Auncultull' Geol'<9Y 0372 Toxlcalogy 0383 Genera 0537

Geller,,1 0473 GeophYSIes 0373 Home EconamlCs 0386 AerosRnce 0538
Auronomy 0785 ~drology 0388 A3nculturol 0539
Anlmnl (ultw!' onrl lIleralogy 0411 PHYSICAL SCIENCES Automatlve 0!'40

NUltltlOIl 0475 Palt'obotony 0345 Pure Sciences B,omed,col 0541
AIl"lIIrl P"lhoIO<Jy. 0476 Poleoecology 0426 Chemlslry

Chemlcal 0542
Food SClen,e (lnd Poleontology 0418 Clvrl 0543

I .. chnolo~ 0359 Polcozoology 0985 General 0485 ElectronlC' and Electncal 0544
Fo,,"~ <111< Wrldl"l' 0478 PolynolQ(& ' 0427 Agrlcultural 0749 Heat and Thermodynamlcs 0348
Plont "It",,· 0479 Phy"col eography 0368 AnolytlCal 0486 HydraullC 0545
Plont l'"tllOloqy OM.lO rhySlcol Oceanography 0415 Blodieml\try 0487 Industnal 0546
rlollt Phy"oloUY OB17 Inorr.anlC 0488 Manne 0547
Rungl' MmHlql'lHCnl 0/77 HEALTH AND ENVIRONMENTAL Nue eor 0738 Materlals SCience 0794
Wood l"chll:,lo'lY 0746 SCIENCES

OrganlC 0490 Mechonrcal 0548
Bloloqy

Pha rmoeeu"cal 0491 Metallurgy 0743
tllVl1 onmcnlCl! SCiences 0768 Phr,Slcal 0494

l~I1t"l1l 0306 Health Screncp, P0y.mer 0495 MlOlng 0551
AI\Olollly OlB7 Generol 0566 ROd,a"or 0754 Nucleor 0552
Pllo\toh\lI\ \ 0308 Aud,oloClI 0300 MathematlCs C405 Packaglng 0549
Bot(1n~ 0309 Chell10thernpy 0992 PhySics

Petroleum 0765
(.. II 0.179 Sanrtary and Municipal 0554
t",lo.lY. 0329 DentlStr)' 0567 General 0605 System SCience 0790

EdulOt'OIl 0350 Acou,tlCs 0986
! nlolllol°<JY 0153 Hospllol Manogement 0769 A,tronomy and

Geotechnalogy 0428
Lrl.'nehl\ 0169 Huma 1 De\elopmcnt 0758 Astro~hySlc, 0606 Opera"ons Research 0796
lrflll111llHlrc 07QJ Immunalogy 0982 Atmosp errc SCience 0608 PlastiCS T eehnology 0795
'\\Ilr\}b.~) oqv 0410 Med,c",e and Surgely 0564 AtomlC 0748 Textile Teehnology 0994
MoI ull1l 030 J Menlal Heolth ' OJ..!' ElectronlC' and Electncl~ 0607
Nt'UIll'Ct("lltC 0317 PSYCHOLCGY
0.. ''''1II0<]r ophv 0.\16 NUlsrng 0569 Elementary Parfldes an General 0621
PhY,,,'''Xl) . 0433 Nulrltlon 0570 Hdlh Energy 0798 Behavloral 0384
Rndu.Jhllll 0821 Ob,tetnCl and Gynecaljy 0380 Flu, ond Plo ,ma 0759 CI",'cal 0622

Occupalronal Heolth on Molecular 0609
Vt"tl"lI1nry!X,plllt' 0778 Thcra~y 0354 Nucleor 0610 Developmentol 0620
Zn'Jlal.) 0472 Ophtholl1ology 0381 Oplrcs 0752 [x,ftenmental 0623

Blophy\lc, Pathology 0571 Radiation 0756 ln ustnal 0624
Gtlllt'ft.ll 0786 Pharmaèology 0419 Sol,d State 0611 Personailly 0625
Ml"J",,1 0760 Pharmocf 0572 Stalr,tlcs 0463 PhysrolofllCal 0989

EARTH SCIENCES Phb"col herapy 0382 Psyehablolagy 0349

Pu IIC Heolth 0573 Applied Sciences P,ychometnes 0632
RIl>g<,,<xhpl11l'h> 04:.'5 Rad,ology 0574 Applled MechanlC' 0346 SOCial 0451
ex'\.xht'Fnl\hy 09Q6 Re<:rca"on 0575 Computer SCience 0984

*

•

•

•

A hsf:ract

'l'wo-dimensional convolu~ion is one of the basic operations in image processing,

where il i~ used as a filtering too!. A kernel of value~, corresponding to the spatial

clama in impuls ~ r,esponse of the filter is applied ta Ihe original image in order to

perform dpsired operahèns :,uch a~; low·pass filtering or edge enhancement. A

low pass mt!'r wlll perform ImagE' smoothing by rernoving hlgh-frequency noise,

whereas a high-pass filter will enhance the edges: tlus can be used to perform

low-level fealure t'xtraction in a machine vision appliCédion. It is also used in most

Image n,'sa mphng .md warping algonthms: it thus find~, applic.üions in both image

proce~sing and compu ler graphies

Sinet> convolution 1:, basically a two··dlmensional multiply and accumula te op

t'ration, Il is computational1y intenSIvE'. When applying an lI,f by I\l kernel to

an 1'1,' by '" image, 1\12 x .\'2 multiplications and additions have to be performed.

Furthermon', thesC' basic low-level signal-processing methods are frequently ap

plied many tini'e~, to lar,ge data sets, often in rpal-timE. General-purpose computer

architectures are often ill-suited to perfoflll tv~o-din' ensional convolutions, since

they lack the required processing speed or memory b"ndwidth. This motivated the

project to design and build a specialized device which can compute the convolution

operation efficiently for such applications.

This thesis addresses the design and implementat on of a specialized processor

which can perform two-dimensional convolution using double-precision floating

point operands. The selected architecture is based on the concept of the systolic

array. Thl'~e architectures are reviewed particularly for the constraints which im

pact their logical and physical design, as weIl as for the numerous applications

for which they have been proposed in the littera tun' or have been implemented.

Aftern outlining the overall system architecture of the convolution processor, the

i

•

•

•

thesis focusses on the details of the imrielnenlMion ot Ihe bus m terfacL' .Ulli Di

rect Memory Access controller. Finally, the performance of tIlt' l'ropo~L\d design

is evaluated and compared against alternative software implen'lL'nt.1lion~ l)j IhL'

con" Jlution algorithm on representative archit~'ctures .

ii

•

•

•

Résumé

La convolution en deux dimensions est une des opérations de base en traitement

d'images où elle est utilisée comme outil de filtrage. Un noyau de valeurs corre

:;pondant à la réponse impulsionnelle du filtre dans le domaine spatial est appliqué

il l'image originale pour effectuer l'opération désirée. Ainsi, un filtre passe-bas per

mettra d'adoucIr une image en enlevant le bruit à hautes fréquences, alors qu'un fil

tre passe-haut accentuera le~ arêtes: ceci peut être utIlisé pour les premières étapes

de l'extraction d'éléments dans un systême de vision informatique. Ces méthodes

sont également utilIsées dans la plupart des algorithmes de ré-échantillonage et

de distorsion d'images: ainsI, elles trouvent des applications en traitement et en

synthèse d'images.

Puisque la convolution està la base une opération de multiplication et d'addition

ell deux dimensions, elle exige une grande puiss.lnce de calcul. Pour convoI uer

une Image de .\ par .V points avec un noyau de .H par JI coefficients, ,'12 x /\°2

multiplicatIOns et additions sont nécéssaires. De plus ces opérations de traitement

de signal de bas niveau doivent souvent être utilisée à maintes reprises sur des

quantités importantes de données, et ceci souvent en temps réel. Les architec

tures informatiques d'usage général sont souvent mal adaptées aux contraintes de

la convolution en deux dimensions puisque la puissance de calcul et la rapidité

d' .lCcès à la mémoire leur font défaut. Il est donc utile de concevoir et bâtir un

système spécialisé qui puisse effectuer des convolutions de façon efficace.

Ce mémoire présente la conception et la réalisation d'un processeur spécialisé

qui peut effectuer des convolutions en deux dimensions a partir de données en

format point-flottant double précision. Le systême est basé sur le principe de

l'arclutecture systolique. Nous effectons d'abord un survol de ces architectures

en s'attardant aux contraintes qui affectent leur conception logique et physique,

Hi

•

•

•

ainsi qu'aux nombreuses applications propm,ées dans les publications, Apres

la présentation de l'architecture générale du système suivent le~, dt·tail~ de 1.1

rpalisation de l'interface au bus et le contrôllcur pour l'accès dlrl'ct 41 la mémolrl'

(DMA). El lfin, les performances du système sont évaluées et comparél'~ il dl'S

réalisation. logIcielles de l'algorithme de convolution sur des architectures repré~entall\'l'~

iv

•

•

•

Acknowledgements

J wish to thank my supervisor, Dr. AS. Malowany for his patience and support

throughout the sometime~, lortuous pro cess of this degree. 1 a1so thank CAE

Electronics, rny current employer, for providing an apportunity ta prove that this

knowledge was not acqUll'ed in vain and for furnishing access to several of the

machines on which the con voJutlOn 1: enchmark prograrns were run. This work has

provcd to be very interesting which fàrtly explains why it was not fini~,hed sooner.

Finally, the financial ~upport of NSEI~C 15 acknowlpdged .

v

•

•

•

Chapter 1 Systolic Arrays

1.1 Introduction

Table of Contents

1.2 What is aSystolie Array ?

1.3 Aigonthm Issues and Software Toois for Systolic Arrays

1.3.1 General Mapping Methods

1.3.2 Mapping Methods for Specifie Algorithm Classes

1.3.3 Mapping to Specifie Architectures

1.3.4 Compilers and Tools .

1.4 Hardware Issues for Systolic Arrays

1.4.1 Synchronization and Clocking

1.4.2 Reliability and Fault Tolerance

1.4.3 Reconfigurability

1.5 Systolic Array Applications

1.5.1 Matrix Comp\.ltations

1.5.2 Transform Methods .

1.5.3 Convolution Methods

1.5.4 Image Processing and Computer Graphies

1.5.5 General Aigorithmic Computations

1.5.6 Pattern Recognition and Neural Networks

1.5.7 Other SClentific Applications

Chapter 2 System Architecture

2.1 Introduction

vi

2

3

4

7

H

10

10

Il

13

14

14

16

lLJ

21

24

26

27

30

::30

22 Overall ArchItecture 30

• 2.3 Host Bus SelectIOn 34

2.4 Input COlwerter 37

2.4.1 Data Formats 37

2.4.2 Overall Architecture . 37

2.4.3 Implemen ta tion Considera tions 39

2.5 Systolic Array 41

2.6 Recombination memory . 46

2.7 Delay Memory Circuit . 47

2.R Output Converler 48

2.8.1 Principle of Operation. 49

2 8.2 Output Converter Architecture. 50

Chapter3 DMA Engine Implementation 53 • 3.1 Introduction 53

3.2 Design Perspective 53

3.3 System Block Diagranl . 55

3.4 Principle of Operation 55

3.5 VMEbus Interface .. 57

35.1 Master Interface 58

3.5.2 Slave Interface 63

3.5.3 Inter-Processor Communication Registers . 64

3.5.4 Interrupt Generation 65

3.6 Local CPU Bus 66

3.6.1 Local Bus Structure 66

3.6.2 Local Bus Menlory Map . 68

• 3.6.3 Local Bus Control Logic . 70

vii

•

•

•

3.64 Local Bus ArbitratlOn, Oeadlock ResolutIOn and Re"l't Lnpl'

3.7 VMEbus-Local Bus InterfaCl'

3.7.1 Bus Transcei\'ers

3.7.2 Local Bus Arbitration

3.8 VMEhus DMA Transfers

3.9 VIC ContraIs .

3.9.1 Interrupt Reglsters

3.9.2 Inter-processor COl1111lUllÎcation reglster~

3.9.3 Block transfers control registers

3.9.4 Slave select contraI registers

3.9.5 Arbitration control registers

3.9.6 VMEbus and local bus configuration rl'glster~

3.10 68020 operation

3.10.1 Booting

3.11 Host Software Interface

3.12 Host Software ...

3.12.1 Host Device Driver

Chapter 4 Cornparison with General Purpose Systems

4.1 Introduction

4.2 An SIMD machine, the MasPar MP-1

4.2.1 System Hardware

4.2.2 System Software .

4.2.3 Implementation and Results

4.3 An MIMD Machine, the Silicon Graphies 4D/240

4.3.1 System Hardware

4.3.2 System Software .

73

~r:
1)

~r:
1)

ïtl

7H

Hl

H2

H3

~J

H4

H1

Hf)

HS

Hf)

H7

Hl}

'JO

'J2

92

91

91

97

94

. 104

. 104

lOS

viii

•

•

•

4.3.3 Implementation and Results

4.4 Single Processor ruse Machines

4.4.1 Motivation........

4.4.2 Implementation and Results .

· 106

· 108

· 108

· 109

4.5 Possible Implementation on a Vector Processor . 111

4.6 Discussion of Results and Recommendationds for Future Work . . 112

References ... 116

ix

• List of Figures

2.1 Convolution I-'rocessor System Architecture ~1

2.2 Data flow between host memory and systolic array ~2

2.3 Input Converter Block Diagram 38

2.4 3 by 3 systolic array ... 42

2.5 Systolic Cell Architecture 4.1

2.6 Systolic Array Data Flow 4::;

2.7 Output Converter Block Diagram 51

3.1 Convolution Processor Circuit Block Diagram 56

3.2 Local Bus Control Logic ... 71

3.3 Local Bus Arbitration, Deadlock Resolution and Resct Logic 74

• 4.1 MasPar MP-1 Systenl Block Diagram 94

4.2 Method 1 - 2x2 kernel, 3x3 image · 101

4.3 Method 2 - 3x3 kernel example . . · 102

4.4 MasPar Implementation Performance · 104

•
x

• List of Tables

2.1 Conversion look-up table content 49

3.1 VMEbus signaIs 58

3.2 Address Modifier Values 61

3.3 Slave Select Base Address 64

3.4 Interprocessor Registers Base Address .. 65

3.5 Local Bus Address Spa ce 69

4.1 MFLOPS Results for the SGI 4D /240 . .. 108

4.2 Single Processor MFLOPS Results 111

•

•
1

•

•

•

Chapter 1 Systolic Arrays

1.1 Introduction

ln this chapter, systolic arrays are examined as a solutIOn to computationally in

tensive problems. First, the characteristics of a systolic architectufl' an' dl'scribl'd.

Then, methods are presented for mapping a problem, usually descnbed by d ~l'

quential algorithrn, into a parallel systolic system This is followt'd by a look al

the issues which face the hardware designer when It cowes lime to de~ign dC

tuai hardware from a systolic algorithm descriptIOn. Originally prnposed a~ a

solution for matrix computations, systolic arrays have been lIsed to ~oIVl' .1 wide

variety of problems in diverse fields. Although they are ~tlll colblderl'd ~oml'

what of a research-oriented approach, systolic arclutectures have nonl'lhell'~~ bl'en

implemented in actuai hardware in a number of systems, using l'lther cll~tom nr

off-the-shelf components.

1.2 What is aSystolie Array ?

The terrn systolzc array was first used by H.T. Kung and C.E. Leiserbon

in [Kung and Leiserson, 1979] to describe a new kind of parallel architecture. A

systolic array is composed of a grid of interconnected processors whîch work to

gether to solve a problern faster than a single processor. But the main characteristic

of these computational structures comes f;om the "systolic" part, which ml'an~ that

pipelined computations are performed aiong aIl dimenslclns of the array btructUTl'.

Data which is read into the array traveb (possibly wlth intermediary rCbultb) from

processor to processor, thus achieving high computation rates without rcquiring

2

•

•

•

1. Systolic Arrays

correspondingly high Input/Output bandwidth [Fortes and Wah, 19871.

The adjective systolic was used to describe these structures in analogy co the

human clrculatory system, where at each heartbeat (clock cycle), the heart (the

source and destination of data) pumps a small quantIty of blood (data) into a

network of artenes and veins (the array of processing elements) Another possible

analogy for the ward is that many of the early systems described as "systolic"

alterna ted between cycles of admission and expulsion of da ta, which is similar to

the way blood flows into and out of the heart.

Systohc architectures are also charactenzed by regular structures where aIl the

processing elements are similar to each other, except perhaps for boundary ele

ments. Furthermore, the interconnections between the PEs tend to be simple and

straightforward. Systolic array PEs are thus a prime candidate for VLSI imple~

mentatlon, where intra-chip bandwidth is very high but inter-chip connections

are much more expensive (bClth in pin count and speed). It is also possible to

build scalable systems, where the array can be made progressively larger (and thus

able to solve large problems in fewer iterations) by adJing extra chips/processing

Il\Cldules

1.3 Aigorithm Issues and Software Tools for Systolic Arrays

As it is ahvays the case with parallel architectures, the main challenge often comes in

the mappmg of an algorithm into the desired parallel structure. Sorne algorithms

are "embarrassinglr parallel" and map readily, others require more work. This

section will look at systematic methods which have been developed to derive

systolic arrays from problem specifications. Sorne rnethods are general and can

be applied to a wide class of algorithms, others are more specifie. Since there

are different types of systolic architectures, sorne methods have been proposed

which are oriented towards specifie types of systolic arrays. The ultimate goal is

3

•

•

•

1. Systoltc Arr(lV~

to develop software tools and/ or programming languages which would allow the

designer to specify the problem in a "natural" form (wluch 1~ nftl'n a sequential

algorithm) and derive the corresponding systohc array automatlCallv.

1.3.1 General Mapping Methods

As outlined in section 1.2, one of the principal characteristics of sy~tlllic arrays b

local communication between the processing elements, oftl'n limited ln thclr re

spective nearest neighbors. In particular, this ha& the advantagl's of simphfymg

VLSI implementation and signal routing on a pnnted circuit board. Unfortu

nately, man y algorithms contain "broadcast" data dependencies wlwre data nL'L'd~

to be shared between multiple PEs which are not connected to each other. Wong

and Delosme derive in [Wong and Delosme, 1988] and [Wang and DL'loSI11l', 1992]

a method where any such broadcast can be transformed mto propagations along

the normal connection paths of the systohc array .

Moreno and Lang have developed a method based on the tran~for

mation of the dependency graph of the algorithm [Moreno and Lang, 14HH]

[Moreno and Lang, 1990] called Hle multi-mesh graph method. The fir~t step IS

to remove from the graph properties which are incompatible with a ~y~t(lhc im

plementation sucll. as broadcasts and bi-directional data flows The graph is th en

converted into a G-xraph by collapsing groups of nodes into nc'w nnde~ (C-r/odl's),

which is more suitable to partitioning. Finally, the G-nodes are mapped mtn aIl

array with 111 cells by scheduling s.ets of 1/1 neighbor G-nodes (a G-Sl't) for concurrent

computation. They show how thl?ir method can be applied to the transitive cl()~ure

problem.

Others have attempted to create a formaI frarnewnrk in which tn de~cribe and

understand the mapping process. For instance, Payer uses the theory of finitE' state

machines to start from a functional description and achieve a fo,ystolic array in a for-

4

•

•

•

1. Systolic Arrays

mal way [Payer, 19881. He demonstrates his method on tW(Ic1asses ofproblems: bit

pattern matching and FIR filtering. Bertolazzi, Guerra and ~,alza propose a method

ba~ed on the analysis of the data dependencies of the original algorithm and ex tend

it to include the design of non-regular systoIic arrays [Bertolazzi et al., 19881. They

apply their method to create systolic arrays to perform 2-dim ~nsional convolutions

and solve the shortest path problem on layered graphs. Another formaI approach

is suggested by Ko and Wing where they formulate the problem and its implemen

tation in an II-dimensional spa ce of integers which allows the implementation to

be derived from the algorithm by linear transformation [Ka and Wing, 19881

Systematic methods for designing systolic arrays lose sorne of their inter

est if they result in non-optimal designs (especially if more ad-hoc heuristics

are able to do better!). Kothari, Oh and Gannett propose Il method which can

produce optimal designs for systolic architectures with linear scheduling func

tions [Kothari ct al., 1989]. Their methodis based on a combintltion oflinear algebra

and a heuristic wInch exploits special properties of convex sets. This allows thern

ta derive a different method for performing convolutions. Clauss, Mongenet and

Perrin are interested in mapping systolic algorithms on to the srnallest possible num

ber of processors in a general processor array [Clauss et al., 19901. They derive two

space-optimal mappings for the gaussian eliminination method for solving systems

of Hnear equations. Fmally, Zhong and Rajopadhye show how neighboring proces

sors in a systolic array obtained via conventionallinear trao'.:iformation methods can

be merged together to ob tain fully efficient anays [Zhong and Rajopadhye, 19911.

1.3.2 Mapping Methods for Specifie Algorithm Classes

Nurnerically-intensive algorithms often spend most of I.heilr time in relatively small

nested loops, which are thus a prime candidate for parallelization. M.uch work

has been done on the analysis of data dependencie~. within such loops in order

to determine which Iterations of the loop can be pl~rformed in parallel without

5

•

•

•

1 Systolic Arrays

violating these dependencies [Banerjee,1988] [Wolfe, 1989]. The driving force

behind this has been the need for optimiL.ing \:onlpilers for /llradlhonal" veclor

supercomputers, and the suceess of these methods h.1S generally bel'n)udged

on the basis of how a compiler manages to parallehze and / or vl'ctorize nestl'd

loops in FORTRAN programs. Similar \vork has also been done to map ne~led

loops to systolic architectures. For instance, Lee and Kedem haVl' derived a

method for mapping p-nested for loops onto Irdimensional systohc arrays, where

1 :S Cf :S p - 1 [Lee and Kedem, 19891. Similarly, Bu, Deprettere and Thielp deriVl' a

method for mapping nested loop programs where the loop boundanes are allowed

to be functions of the previous index variables [Bu ct al., 1990bl.

Many algorithms can be expressed in terms of systems of linear recuffence

equations, which can then be mapped onto systohc arrays. The computations

performed by the algorithm can be represented as integral points in some domain

of the Eudidian spa ce, and are ordered by means of a lineùr schedule which

must respect the data dependencles between them. ln the case of uniform linear

recurrences, the dependencies are only local: such problems can be readily mapped

onto systolic arrays. Unfortunately, many problems contain global dependencies.

Van Dongen and Quinton present a method to transform these non-unifonn linear

rf~currence systems into uniform systems, which can then be mapped dlft:,ctly

lo systolic arrays [Van Dongen and Quinton, 19881 Yaacouy and Cappello have

approached a subclass of these problems, namely affine recurrence equations and

have derived necessary and sufficient conditions for the existence of a schedule

which satisfies these problems [Yaacoby and Cappello, 19881.

Steenaart and Zhang take a different approach for the class of recursive al

gorithms, and derive a methodoJogy for mapping such problems directly onto

systolic arrays [Steenarrt and Zhang, 1991]. They are especially interested in recur

sive filtermg algorithms (such as implementations of UR filter~) where the inputs

are dependent on the previous outputs .

6

•

•

•

1. Systohc Arrays

1.3.3 Mapping to Specifie Architectures

Mo~t of the mapping methods seen in the previous sections attempt to solve the

problcm of designing asystolie array which accurately executes a given algorithm.

But III many ca~es, this mapping cannot be the only constraint on the design of

the array, and other factors must be taken into account. For instance, it might be

deslred to map an aIgorithm onto an existing, general-purpose array which cannot

be tailored exactly to our needs. Also, the size of the array resulting from the optimal

solutIOn of a problem might not be practical: thought must be given ta partitlOning

the algorithm onto a fIxed-size array. Moldovan and Fortes have proposed a

technique wluch can be used to partltion nested loops by dividing the index space

of the problem into bands and ta map these bands onto the space of the processor

array lMoldovan and Fortes, 1986]. Unfortunately, their method cannot de al with

nested loops where the iteration bounds are themselves functions of the outer-Ioop

indices. Bu, Deprettere and Dewilde approach the problem in a dlfferent way:

instead of trying to map an algorithm directIy into a fixed-sized array, the problem

is firsl mapped to the "optimal" sized array which is then reduced te the fixed

size clTray by clustering processmg elemenb [Bu et al., 1990a]. They propose two

clustering methods, which have the additional advantages of raising the efficiency

of incfficient arrays, balancing local rnemory and external communications for the

processing elements and reducing array dlmensionality (the more restrictive case

of mapping two-dimensional arrays onto uni-dimensional ones was previously

studied by Kumar and Tsai [Kumar and Trai, 1988]).

Oiher researchers have looked at the problem of mapping systolic algorithms

onto speCIfie architectures. FC'T instance, Lin shows how shuffle arrays can be

used to implement systolic algorithms [Lin,19881 A shuffle array is an array

of processmg elements interconnected by a shuffle bus. An .'\'-node shuffle bus

consists of a master array Jl.-1 and a slave array S'A. Each element of the master

array con tains a single bit, whereas the slave array con tains a k-bit data ward .

When instructed, any pattern of a 1 followed by a 0 in the master array will cause

7

•

•

•

1. Svstohr Arr.1\'';

the contents of these bits, aiong with the corresponding registers of the sl,l\'l' arr,l~r

to be swapped. A shuffle array can be configured as a 1-D or 2-D queue, and (,m

also be used for sorting.

Hypercubes can be considered to be generalization~ of N dimen~i()n,ll arr.ly~.

Ibarra and 50hn show how one-way and two-way linear systolic arr.lV~ (il' ,u

rays where the processors are connected only in one direction with uni-dm:-(tlon,11

communication paths) can be mapped onto a M-node NCIJBE/7 MIMI) hYPl'l

cube machine [Ibarra and 50hn, 1989]. They used tlus method tn 111lpll'nll'nt l J)

FIR filters, matrix multiplIcation and solve transitive dosure problem~. TIll' main

challenge in this case is to efficientIy map the systolic connections onto tlll' strllctllfl'

of the hypercube. Another example of mapping strategies speCifie tn a hardwarl'

implementation can be found in the work of Valero-Garcia ct III , who tdcklt, tlll' i~

sues as~ociated with the use of pipelined functianal units as procl'~~ing elel11l'nb III

systolic arrays [Valera-Garda ct al., 1990]. More specifically, their mapping mL'lhod

improves the efficiency of the array by inserting delays mto the data flow bL'lWl'l'n

processing elernents ta take mta account the pipelining delay~ lllternai tn the array

elements.

1.3.4 Compilers and Tools

In order to make systalic arrays a truly practicai concept and not just an acadcmic

curiosity, software toois have to be made available for VL51 designer~ who want tn

use this design rnethadology. Sorne work has been done ta provide luols for specifie

applications. For instance, Hu, McCanny and Yan have developcd a ~y~tcm for

designing systalic vector quantlzation dups far speech and image coding applica

tions [Hu et al., 1990J. Their system consists of a library af celb, ~llIcon a~~embJcr<"

simula tors, test pattern generatars and a graphical user mterface. Ar.other ~pecific

application is the Logic Description Generator which is used to implement sy~tohc

algorithms on the SPLASH reconfigurable logic array [GokhaJe ct al., 19901. The

8

•

•

•

1. Systolic Arrays

LOG accepts as input a programming language which describes the functionality

of th(' ceIls in the sy~tolic array. Its c,utput is a Xllinx Netlist Format (XNF) file

which l~ fed to the Xilinx design toob which wIll generate the bit patterns to be

downloaded in to the Xlhnx FPGA devI,:es which make up SPLASH. Due to the very

rapid turn-around hme possible with his system, most debugging is done directly

on the target hardware. Another example of a system-specifie tool is the AL pro

gramming language for the CMU Warp programmable systolic array [Tseng, 1990]

AL is a C-like language where scal-1r and array objects are duplicated in all the cell~,

whereas distributed array (DARRAY) cbjects are distributed among cells. The 00'

statcment tells the compIler to dis tribu te loop iteratlOns over the ceUs instead of du ..

plicating their execution. Usmg this language to implement matrix computations,

27% of the peak performance of the ma:hine was aclueved for matrices of order 300

(which illustra tes the p10blems which can be encountered in using programmable

paraIlel machines effIciently).

More general ta ols have also been developed. DECOMPOSER is a high-level

synthesis tool which takes as inputs a hierarchical description of the computatioll

to be performed and hints as ta how i: must be performed [Hou et al., 1988]. This

description takes the form of a directed acyclic graph (DAG). The output of the sys,·

tem give~ the required structure of each processing element, their interconnections

and the input and output sequences. The SYSTARS system is capable of perform

ing both analysls and synthesis of systolic arrays [Omtzigt, 19881. SYSTARS is able

to gcnerate both full-size and partition~d systolic arrays. It also includes a graphic~,

display wInch can ammate the structure being designed, which hrlps the designer

visualize the flow of data in the system.

Actual compilers which generate code ta implement algorithms have also

been proposed. Omtzigt describes the architecture of such a compiler which

can handle systems of affine recurrence equatlOns based on the domain flow

model [Omtzigt, 19901. The domain flow graph is an extension of the data How

graph where nodes represent functiol\s (either scalar functions or control flow) m

9

•

•

•

they can be dependence graphs representing concurrent operJtors. The input tl) thl'

compiler IS a C language program with extensions (calh'd Ol)l1l,1l11 C). Lengaul'l'.

Barnett and Hudson have developed a sy~tem-mdependl'nt compiler wllll'h Gill

handle both impentive and functlOnal progrJm~, indudmg non-uniform hnl\ll'

recurrence problems [Lengaller ct al ,1991], The output of the compiler b d pw

gram in the native language of the target system. Examples of mJpping~ of matn\

algorithms to the CMU Warp machine and Occam-based transputl'r lll'tworJ...s are

shown

1.4 Hardware Issues for Systolic Arrays

One of the main justifications for the systolic design methodnlogy is the L'a~e with

which such designs can be implemented \n VLSI. Nevertheless, the physical im

plementation of systohc arrays poses certain partlcular challenge~, somc of WhlCh

are examined in this section.

1.4.1 Synchronization and Clocking

Systolic arrays are typically structured as synchronous SIMD array~ where aIl

the processing elements execute the sa me instructionb under control of a centr,ll

dock. While this simplifies the transfer of data between proce~sor~ and remove~

the need for synchronizmg Fust-In First-Out (FIFO) memories betwf'(:'n them, dock

distribution and synchronization can become problematic for large array~ and high

dock rates. For one dimensional arrays, Fisher dnd Kung del1lon~lrate lhill it i~

possible to use a pipelined c10ckmg scheme where more than one dock l'vent l~

propagated at a time [FIsher and Kung, 1985] Although dock s~'ew will occur

between processor elements, an upper bound for tlll~ ~kewll1g can be derived

between two adjacent processors and thus correct operation can be ensured (a

10

•

•

•

1. Systolic Arrays

probabilistIc model which can derive an upper bound for the accumulation of clock

skew 111 synchronous systems is presented in U<ugelmas, 1988]). Unfortunately, this

n~sult docs not generalize to two-dimensional arrays, where a mixed scheme using

clockmg and asynchronous elements IS used at the expense of additlOnal hardware

complexity

One possible solutIOn is to go ta a purely asynchronous model based on the

concept of the data flow machine [Üennis, 19801. In a data flow computer, an

executlOn Ulut performs its computation as soon as it has received aIl of its operands

and sends the result on to t'le unit connected to its output, which in turn "fires"

whcn It has reccived aIl of its inputs. The machine is thus self-synchronizing

and does not require any global clocking since synchronization occurs implicitly

through the detection of inputs This concept can be applied ta systolic arrays,

wluch are then usually known as wavefront arrays [Kung et al., 1987] (the term

wavefront cames From the analogy of a wave of calculatIOns propagating through

the array). Although attractive from a synchronization standpoint, wavefront

arrays do require more hardware sin ce buffers must be interposed between the

outputs and inputs of processmg elements. Furthermore, unless the structure of

the array is completely regular, care must be taken to ensure the effinency of the

system (i.e. no singlt~ processor must become a bottleneck as it waits for one of

its mputs, and thus MalIs the output of the pro cess ors connected to aIl of its other

inputs' sufficiently deep FlFO rnemories must be used to prevent this). Finally,

as in aIl asynchronous systems, care must be taken not to fall prey ta glitches and

parasitic nOIse which might be generated by surrounding cornponents toggling

asynchronously.

1.4.2 Reliability and Fault Tolerance

The designer of any parallel computer system must worry about reliability and

fault tolerance, since a large number of processing elements are rnuch more likely

11

•

•

•

1. Sv~tnlil' A ml\'''

to fail than a single one. A fault-tolerant system must indudl' mt:.'chalUsm~ fl.'r

detecting when errors have occurred, as weB as l1wchanisms for dt'<l1ing \\'ith

these errors and ensuring continued operation of the system l'Vl'n in the prt'senn'

of faulty components. Error detection can be adueved sllnply by duphc.ltlllg

functional modules and comparing the outputs of two or more umts perfllrming

the same computations: any diserepancies WIll indieate a failure m one of the unit~

involved. Several other methods specifie ta systolie arrays have al~o bcen propo~l'd

and can be found in [Abraham ct a!., 19871. For instance, in a systolic array \",hl'rl'

not aIl af the elements are always active, idle element~ can be u~t:.'d to duphc.ltl'

camputations and thus provide partial redundancy testing

Instead of duphcating hardware to pravide space redundancy, time redund.lI1cy

can be used where the throughput of the array is kept below lts maximum rate and

some of the extra time is used for error detection and correction. Antola ct III

show how space and time redundancy can be combmed to yICld cost-effl'ctiVl'

fault-tolerant structures in the speCIfie case of array~ u~ed to compute Fa~l POUrier

Transforms [Antola ct (lI., 19881.

Another possibility is to build the fault tolerancc mto the alg()nthm~ impk

mented by the systolic array [Anfinson, 19881. For instance, special codmg ~cheml'~

can be used to detect and correct single- or multi-bit errors in computtltIOn~ wlthoul

having to completely duplicate the functionality of the processmg elemenl~ (WI11Ch

would be prohlbitIvely expensive 111 aIl but the l110st demanding apphcalI()n~).

Bandyopadhyay, Jullien and Sengupta used the residue number ~y~tern (I~NS) to

design a systalic array far multi-aperalld residue addition wluch l'an detect anù

correct errors [Bandyopadhyay et al., 19881.

Although on-line reliability is important, off-line testability l~ abo crucial, anù

complex systems must be designed to be efficiently and completely te~table. Sci

uto and Lombardl demonsLrate the required conditiom to te~t two-dlmen~lOnal

bilateral arrays (i.e. where data IS allowed to flow 111 both directlOn~ between pro-

12

•

•

•

1 Systohc Arrays

ce~sllr elements) lSciuto and Lombardi, 19881. Kim approaches the more restrictive

problem of one-dimensional hnear arrays (uni- and bi- direction aD, with special

empha~i~ on the capabIlity of the array to be reconfigured ta bypass module fail

ure~ wlthout impacting the designed throughput of the system [Kim, 19881. Array

rt!configurabIlIty will be further dlscussed in the following section.

1.4.3 Reconfigurability

Reconfigurablhty in an array processor can be used both to allow different func

tionality 111 a general-purpose system as weIl as to work around any faulty com

ponents wluch are detected either offline or onlme. An early reconfigurable array

prnce~sor named CHiP (for ConfIgurable, Highly Parallel) is described by Snyder

111 lSnyder, 1982]. CHIP is composed of a collection of homogeneous microproces

sors, a sWltch lattIce and a controller. The PEs are connected at regular intervals

to the switch lattice, which itself can be configured to connect the PEs together in

many different ways. It IS thus possible to Implement different interconnection

schemes, as weil as to isolate malfunctioning PEso

Poph and Bayounu propose a structure similar ta that of CHiP for implemen

tation on a smgle VLSI device [Poli and Bayoumi, 19881. The ability to reconfigure

on-Hne the array tn work around tl(l/Isœnt problems with a particular PE increases

the fault-tolerance of the entlre system, whereas the off-line reconfiguration of the

array tn alleviate a l't'mul11cl1t PE failure greatly increases the yield of the VLSI

de\'ice (thus decreasing lts cost). Youn and Singh propose a design which can

effIClently rec-onfigure bath tree and rectangular structures [Youn and Singh, 19881.

Thelr main cancern is ta minimize the extra delay introduced by the .. e ... onfigu

ration pdth. Their appraach is also able to handle clustered defective processing

clements (since faults are often not uniformly distributed across the surface of a

die or wafer) .

13

•

•

•

- --- -------------

1 Systolir Arr.l)'!-

Sha and Steiglitz formula te the problem of ,uray reconfigurability m tl'rms (.lf

graph theory and derive a lower bound on the time compll'XItv 01 an~· rl'col\lig

uration algorithm [Sha and Steiglitz, 1 qqll. CodenLlttl and T.1m.1~~l.1 l)n LIll' l,thL'r

hand use a network flow model of the virtual fault-free drra~' composL'd 01 tlll'

functional celIs of the partIalIy defective array [Codenotti and T.1maS~l.1, 1l/911.

A survey of reconfiguration methods for array processor~ can bl' founli

in [Chean and Fortes, 1990].

1.5 Systolic Array Applications

Although systolic arrays were originalIy proposed by Kung for matrix computa

tions [Mead and Conway, 19801, they have sin ce been llsed to solve probIl'm~ in a

nun1ber of diverse fields. This section looks at a number of wch apphcatJl)n~, with

an emphasis on numerical and signal processing problem~.

1.5.1 Matrix Computations

Matrix computations are a natural fit for parallel implementatiom. slIlce they USlI

ally make use of fairly simple operations repeated very often. Fllrthermore, ~()lIrCl'

operands are often llsed several times, thus making high demand~ on memory

bandwidth. Thus it is hardly surprising that systolic architecturl'~ have been ~ug

gested to solve a number of matrix algorithms. In [Mead and Conway, 19801, Kllng

sllggests systolic structures for perforrning matrix-vector inner product~, matrix

matrix multiplications and !inear system solving using LU decompo~itlOn Another

approach to matrix-matrix multiplication is presented in [Peng and JUil, 198RJ,

\\There a systolic array of Il,2 processmg elements is used to multiply two III by

111 arrays in time ~7/1 - 1.

The solution of large systems of linear equations is a problem which come~ up

14

•

•

•

1. SyI!;tolic Arrays

frequently in scientific computing, and it has also been approached using systolic

array~. In [Benaini and Robert, 19901, f + O(1/) processors are used to perform

Gau~~ian eIiminatlOn on an 1/
2 problem using time 311 - 1. Using instead LU

decomposltion, Wan proposes in [Wan and Evans, 1993] an architecture which can

solve the problem AX == lJ where A is an 11 y 1/ rnatrix, X is an n Jo(p matrix and Bis

abo 1/ / fJ usmg an array of 11 fJ + 11()~+ 1) processing elements in time 41/ + P - 2 for the

firsl system, 2/1 for each additional system (thus ma king this structure ideal for a

pipehned system) The same array can also be used to compute the inverse of a 11 x 11

matnx in bme 5/1- 2. In rnany scientific applicatIOns such as finite element analysis,

Iinear system are very sparse and thus require special solutions in order to achieve

high performance. Tseng implemented [Tseng, 1988] a general sparse linear system

~olver using the incomplete Choleski pre-conditioned conjugate gradient rnethod

on the Warp systohc computer [Annaratone et a[., 19871.

Another computationally intensive matrix operation which can be solved

using systohc arrays is the extraction of eigenvalues/ elgenvectors. Althoug::l

the generai QR-decomposition method is not very suitable for parallel im

plelnentation, it can be useful in the case of symmetric tridiagonal matn

ces [Phillips and Robertson, 19881. Here, an 1/1 x (11 + 1) systolic array is able to

extract the eigenv. !lues and eigenvectors of an 11 x 11 symmetric tridiagonal matri,x

in time 2/1/ + 2/1 - l, with l11uch greater savings If pipelined results are needed.

Another popular nlethod is the Jacobi algorithm: systolic arrays for comput

ing eigenvalues/ eigenvectors using this method are presented in [Delosme, 1990]

and [Lam, 19911.

Linear Least Squares problems are frequently encounted in signal-processing

applications. These consist in computing the vector .r which minimizes

II· \.1' - 1111· Systolic methods for the solution of this problern are proposed

in [Chen and Yao, 1988] and [Torralba and Navarro, 1988], whichare both based on

QR decomposition. Moonen [Moon en and Vandewalle, 1993] proposes a method

ta solve the Recursive Least Square (RLS) problem, which consists in recomputing

15

•

•

•

1. Systnlir A rr.ly~

the least squares solution after appending new data by ma king use of tllL' TL'sult~

from the pre\'ious stl'p. When the effects of fini te-precision arithnll'hc 'Hl' t.lkL'n intll

consideration, some methods yield better results: for in~tance, Liu [Liu t'f 11/., 1990J

presents an archItecture which perfonns the Systohc Block Householder Tran~fllr

mation in order to ompute the RLS algoritlun. A version of this architl'eturL' wlueh

can handle complex numbers is presented in [TaLg ct III., 1991 J. Lm abo proposl'~

a systolic solution to the same problem using the Givens rotation [Liu ct il!., 1 lll) 1 J

1.5.2 Transforrn Methods

Systolic arrays have been used to efficiently implement transformation opera

tions. This is a natural application which was abo first ~",roposl'd by Kung

in [Mead and Conway, 19801 He remarks than "an II-point dbcrete Fourier lran~

form is the matrix-vector multiplication, where the (1. J) entry of tlll' malrix b

I.N,(I-l)(J-l) and "",,' is a primitive 71th fOot of ul1lty". Thu~ the Sa1l1l' structures pro

posed for matrix operations (extended to operatl' on complex nun1l1L'r~) can be

used to compute an 11 point DIT in (J(Il) time, as oppo~ed to thL' U(Il log fi) op

erations required for the FFI algorithm implemented on a sequential proce~sor.

Kung then propŒ,es how the roots of ltnity can be generated intl'rnally 10 tlll'

array if each array processing element has at its disposition an extra regbtl'r:

this method decnases the connectivity requirements for each PE Kar prOp()~l'~

in [Kar and Bapeswara Rao, 1993] a schelne which can reduce alm{)~t by half the

number of multipliers required to compute the DFf algonthm. This l~ a ~ignifIcant

savings since multlpliers tend ta take up a large amount of silicon real-estate, which

is crucial when considering the implementation of a systolic array a~ a VLSI de

vice. By rewriting the DFf in a re-:ursl'lre form, only 2/1 + 2 multipliers are required

instead of 41/, and the cycle time can be reduced From (1,,, + 2/,,) to (1,,, 1 1,,) where

t 1l1 is the time required to perform a multiplicatIOn and "~, an addition .

The Fast Fourier Transform is an algorithm which is used to shorten the amount

16

•

•

•

1. Systolic Arrays

of time required ta compute an 1/ point DFf on a sequential processor from

(J(,,2) time ln 0(" log 1/) time It can also be implemented using a systolic ar

ray IChoi and Boriakoff, 19921, where it has the advantage of lowering the required

number of processing elements from 11 to log 11 (with tJle additIOn of sorne slight

overhead, namely 1/ log 11 simple single-stage shift registers). Furthermore, this

circuit can produce two results at each clock cycle, and does not require ROMs for

storing the roots of unit y (this can be a factor when implementing such circuits

as gate arrays: look-up tables and other such storage elements tend to be very

expensive in terms of gate COUlU, and it is usually not practical to go off-chip ta

access an external memory, in contrast ta older designs based on discrete parts

where a single ROM lookup table could save considerable amounts of circuitry).

In lJohnsson ct al., 1988], Johnsson shows how a systolic FFf algorithm can be im

plemented on a boolean 1/-cube machine such as the Connection Machine model

CM-2. This method makes use of the high storage bandwidth within a node, and

is optiInized for the communicatIOn patterns between the nodes. For a P = 21'

point Decimation in Frequency FFf executed on l\' = 2" pro cess ors, the first JI - 71

steps are executed locally on each processor and the last log2 I\' steps require inter

processor communication. For a OecimatiOïi In Time algorithm, these are reversed.

This is made possible by storing /~ + 1/;Y twiddle factors for ~ elements stored in

each of the.\' processors.

Image-processmg applications will often require the computation of two

dimensional Dlscrete Fourier Transforms, since a number of image filtering algo

rithms can be implemented as simple masking operations in the frequency domain.

Sarkar [Silrkar and MaJumdar, 1991] presents an architecture which uses two !in

ear arrays of v.v processing elements to compute the v:v x ..jN 2-D DFf in time

()(.\). The first array of ~ processors is used ta compute the OFf of the rows,

and the second array is used ta compute the DFf of the columns. An extra pro

cessor is required to generate the roots of unity. AlI of the PEs are used 100% of

the time. The speedup in the computation time over the single processor case is

17

•

•

•

1. Sy!-tolir Arr.l\'s

12 \.~) = 2 y(Y, which means that it achieves an optimal linl'ar spl'l'dup of 2 \ -\

using 2~'7 processors. Sarkar also propo~es an InstructÏl)11 Sy~tolk Arra" tn com

pute the 2.D FFT [Sarkar ct al., 1991] An ISA is a sy~tolic array whl'ft, instl'.ld ot

letting the data flow through the array from PE to PE, the data remams station<H~'

whereas instructions flow rhythmically From PE to PE at edch dock cycle. For'l

JR x Jlt,: point FFT, this design u~es .\ processing elements and can complelL' the

operation in time O(v0V).

A different approach to the problem which uses coordinale rotation digital

computer (COROlC) PEs is proposed by Jones [Jones, 19931. The conventional DFT

sum is first expressed recursively usmg Horner's rule. Note thal multiplication

of the input values by the powers of the roots of unit y is cquivalent to sllnpk'

phase rotations which can be implemented using the COROIC algonthm The

main advantage of this method is that it does nol require multiplIer!'>, whlch .1re

instead replaced by addItIOns and slufts (these are usually 111l)rL' ~pace-l'fhCll'nl in

VLSl designs). Based on this method, the FFT of a 20 signaI wlth.\ -=- ,\ 1.\'2 pOllll!'>

can be computed in O(.\') time using :\,/4 bit-seriai PEso

Systolic arrays have also been used to compute other tran~form opera tion~. For

instance, Hellwagner proposes in [Hellwagner, 1988] an archItecture ln perform

the one-dimensional Generalized Fourier Transform: thb means th"l tlll' array can

be configured to compute a wide class of discrete lincar transform mcludlllg tlll'

Walsh-Hadamard and Oiscrete Fourier Transforms. Another trùmform melhod

which is useful in signal processing applications is the Discrele Harlley Tran~f()rm

(OHT): its main advantage is that it requires real number arithmetic unly a~ ()pp()~l'd

to the complex number arithmetic required by Fourier meth()d~ U~ing a hnear

systolic array of COROIC processors, the system presented by Meher, Satapathy

and Panda [Meher et al., 1993] can compute the recur~ive DHT algorithm for a 4 N

sequence in time .'\' using (J\·t) processing elements. Chakrabartl and J5J5 proP()~l'

a bit-seriaI systolic array which can be used to compute two-dlmenslOnal Dbcrete

Hartleyand Discrete Co sine Transforms [Chakrabarti and JciJél, 1990] (the DCT is

18

•

•

•

1. Systolic Arrays

also a real-only transform which is used among other applications as the basis

for the JPEG image compression algorithm [Wallace, 1991]). This architecture can

compute the DHT or the DCT of a I\, = f'"] ;< N2 array of p-bit operands in time

U(/I(:\') + .\'2)), which optimally corresponds to the rate at which the input operands

can be shifted into the bit-f,erial PEso

1.5.3 Convolution Methods

Whereas the transform methods of the previous section operate on a signal in the

frequency domain, it is also possible to operate directly on the signal itself using the

time (or spatial) domain representation of the desired fiUer. For discrete signaIs,

convolution is basicaHy il multiply-and-accumulate array operation: thus it is a nat

ural candidate for systolic implementation. In [Kung, 19821, Kung presents a num

ber of possible alternatives for the design of one-dimensional convolution arrays

(there are many pos~,iblE' alternatives, which relate to whether the source data or

the fil ter coefficients are stationary, as weIl as how partial results are communicated

between the processing elements). An implementation of a one-dimensional sys

tolic convolution device from Harris Corporation is shown in [Chester et al., 19911.

Since convolutIOn arrays are usually used to implement linear phase Finite Impulse

Response (FIR)filters, the inherent symmetry of the coefficients of these filters can

be exploited to reduce the number of required multiplications: Kwan proposes an

archi tecture which exploits these properties [K wan, 1993J.

ln [Kwan and Okullo-Oballa, 1990], Kwan approaches two-dimensional convo

lution from three different perspectives. His first method minimizes the required

1/0 bandwidth as well as the number of processing cells. The second method com

pensa tes for slower processing elements by increased parallelism. Finally, the third

method minirnizes the number of 1/0 pins required for a VLSI implementation. For

his part, Ersoy approaches the problenl of circular and skew-circular convolutions

using a semi-systolic array which requires greatercommunication betweenPEs but

19

•

•

•

1. Systolic Arrc1ys

has a sm aller startup time, which is beneficial for s111all convolutions IErsny, 19S!'1.

Although most general one-dimensional digital signal pfl)cl's~illg con

cepts lOppenhei111 and Schafer, 1989] l'an be applied tn two-dimensiOnal probll'm~,

there are nevertheless a number of difference~, 1110stly regarding tilter design.

Whereas the ideal one-dimensional low-pas~ filter is a .~ /1/ (.r) j.1' f unction, in two

dimensions the ideal clrclilarllf-Slf1llrtlt'tnml filter is a Bessel function of thl' IÏrsl kind

of order 1 IDudgeon and Mersereau, 1984]. Sin ce titis function is Ilot ~eparabll'

(i.e. it cannat be expressed as the products of two functions depending only on .1'

or y), this is why two separate one-dimensional convolution operation~ cannat be

used to do low-pass filtering (such attempts yield strongly anisotropie result~: in

general, the only separable filter is the Gaussian function, which often cannot hl'

used as a filter since it does not roll off quickly enough).

Sever al methods for designing two-dlmensionallow-pas~ filter~ are outlined

in lLim, 1990] (from a low-pass filtH specification, il is simple tn genl'ratl' corn'

sponding band-pas~, band-stop or hIgh-pass filters). The most straightforward

method is to take the ideal impulse response (which has infinite extent) and trun

cate it to a reasonable length (given the performance constraintb under wluch tlll'

convolution will have to be performed). A simple rectangular wmdow can have a

fairly negative impact on the frequency response of the resulting filter (multIplica

tion of the ideal filter in the spatial domain with a windowing function correspond~

to convolution with the Fourier transform of the window in the frequency domalll)

Discussions on the merits of va rio us windows for two-dimensional filters can be

found in [Huang, 1972] and in lSpeake and Mersereau, 19811.

There are several other possible filter design methods For in~tance, in the

frequency samplin:;: method, the frequency response of the desired filter il-> sampled

and the Inverse Discrete Fourier Transforrn is applied to these samples tü obtain

the coefficients of the corresponding spatial domain fliter. Although this mcthod

can be effective, as with the windowing method it does not produce an optimal

20

•

•
'.

t'

•

~------------------------

1. Systolic Arrays

filter (that IS, a filter with the minimal region of support / number of coefficients) .

Frequency transformation methods seek to design optimal two-dimensional

filter~ starting from an optImal one-dimension al design. A popular method

for designing such fIlter~ is the Parks-McClellan algorithm, which is pre

sented in [Parks and McClellan, 1972]. From this one-dimensional filter, a

frequcncy transformation function is used to map the filter into two dimen

~ions. For circularly symmetrical filter designs, the McClellan transforma

tion can be used [Merserau ct al., 1976] [Mercklenbrauker and Merserau, 1976]

[Psarakis and Moustakides, 19911. Note that in aIl of these methods, one of the

most important criteria for the "success" of the filter is the preservation of the zero

phase characteristic which ensures that only the magnitude of the image signal

is affected and Ilot its phase (those who are skeptical dboùt the need for this are

usually shown a demonstration where an image can be reconstructed with Httle

alteration from its phase information only, whereas such an attempt using only the

magmtudc mformatlOn fails mlserably) .

1.5.4 Image Processing and Computer Graphies

Low-Ievel image processing and machine vision algorithms must often perform

repetitive computations on large two-dimensional arrays of image pixels. For

instance, the Carnegie-Mellon Warp systoHc computer has been programmed to

efficiently perform convolution, histogramming, Fast Fourier and Hough trans

forms [Gross ct al., 1985]. These algorithms are used as basic building blocks in

most machine vision applications and greatly benefit from a system such as Warp

which is fully programmable while retaining the high performance of an array

proCt'ssor.

A more recent system is presented by Choudhary and Patel

in lChoudhary and Patel, 19881. Their architecture is called NETRA: it is based

21

•

•

•

1. Systohl' Arr.lVs

on a large number (100 ta 10000) of processing elements which can be organizl'd

into clusters of 16 to 64 PEs each, a tree of control processors, .l shared glob.ll

memory and an mterconnection network. The PE dusters can opera te eithl'r in

SIMO, systolic or MIMO mode. Implementation overviews arl' gl\'l'n for data com

pression, edge detection, feature matching, surface fittmg, contour location and

surface interpolation algorithms. One possible application would be a 3D stefl'O

vision system, an important part of which is the recover)' of depth information

from a pair of images. Guerra and Kanade propose a systolic <llgorithm for this

purpose [Guerra and Kanade, 19841, with an eye towards VLSI llnpleml'ntation.

HERMES is a multiprocessor vision system [Bourbakis and Barlo~, 19H81 COll

sisting of 1~12 ,0 SIS log2 X PEs where .\' x Sis the size of the Image to be procl'ssl'd

and 1 is a resolution parameter (i.e. the size of the sub-regions into which the imagl:'

will be decomposed). Contrarily to most systolic array processor~, HERMES l~ a

stand-alone system WhlCh does not require a front-end host. hnagl' data I~ gathered

directly from a photosensor array and fed ta the PEs wluch proce~~ il In hierarchical

fashion. Sorne cf the algorithms implemented on HERMES include:

• General Coding Aigorithm (GCA)

• Segmentation Region Analysis Aigorithm (SRAA)

• Freeman Coding Aigorithm (FCA)

• Simple Transmission Algorithm (STA)

• Order Oecoding Algonthm (OOA)

The growth of multimedia applications has created a strong demand for image

compression methods. One such scheme is adaptative vector quantization. The

image is first decomposed into a set of vectors, from which a sub~et i~ cho~en to

form the basis of a codebook (most codebook generation algonthm~ attempt tn

iteratively generate a locally optimum codebook). Once this is done, the Image

22

•

•

•

1. Systolic Arrays

or set of images can be encoded (or quantized) using the codebook: only the

labels of the codewords now need to be stored or transmitted. If many images

need to be encoded, Adaptative Vector Quantization (AVQ) attempts to improve

results by adjusting the codebook for each new image based on local statistics.

Image reconc;truction is done using a simple table look-up of the labels on the

codebook, thus yielding a compression method where most of the effort is spent on

compression: these methods are especially appropria te for digital media storage.

Clearly, codebook generation is an expensive procedure in aIl but the most

trivial cases. Panchanathan and Goldberg propose a systolic array which can

perform adaptative VQ [Panchanathan and Goldberg, 1991]. The systolic array

is composed of L x N systolic celIs connected in parallel where L is the vector

dimension and N is the codeword dimension. Each celI can opera te in two modes.

In forward mode, it computes the basie distortIOn operation where the distance

between a vector and a set of vectors is computed and accumulated. In the reverse

mode, it computes the ccntrOid operation which is used to average vectors into the

new codewords. This architecture achieves a speedup of S L, and has the main

advaJ\l.age that the centroids do not need to be transferred into or out of the array.

Systolic architectures have also been used for computer graphies applications.

For instance, a teanl of IBM scientists built a high-performance graphies system

based on a custùm-designed chip known as SAGE, the Systolic Array Graphies

Engine [Gharachorloo et al., 19881. The objective of this architecture is to fight the

memory bandwidth limitations whieh plague graphies systems: rendering algo

rithms su ch as Z-buffering, texture mapping and multi-sample anti-aliasing require

ever larger video buffer bandwidths, while increasingly dense VRAM packages of

fer diminishing throughputs. SAGE maps a scan tine of the display into a linear

array of systolic pro cess ors, one per pixel. Drawing primitives are decomposed

into scan-Hne fragments which are fed to the array at one end. As the fragment

travels down the array, each processor decides whether to render the fragment

based on the edge equation and depth information of the fragment (aIl of which is

23

•

•

•

1 Svs!olll' Al r(l\'~

computed incrementally). Each PE retains its current color and depth ''.llul'. On Cl'

aU the fragments have been fed to the array (one per clock cycle), a refn'sh tnh'l1

is sent, and the array begins ta shift out the resulting pIxel valuL's ",luch arl' used

to generate the video signal The array can then be used to scan-conVl'rt tllL' nl'\'!

scanline in the display. Another computer graphies applicatIOn was ~uggl'~lL'd by

Megson, who uses asystolie array to generate B-Spline patches u~ed 111 rendering

curved surfaces [Megson, 19911.

1.5.5 General Algorithmic Computations

This section looks at general algorithmic problems which have bl'cn approaclll'd

with systolie solutions. One such topie lS the Aigebraic Path Problem, which ~hnw~

up under different guises in various fields' transitive c/osu rt' and ~h(l/ tt'st JI"tlll'w[,

lems in graph the ory, matrix inVerSlOll in linear algebra and LIll' generallOn of Il'gll/1II

lanRua~es in automata theory. The algebralC path problem I~ defined in tL'rm~ of tl

weighted directed graph {r' = \', E, Id () where \ the set of verticl'~, l,; thl' edgll~

and 11'(() the welght (or cost) of the edges. If the vertlce~ arc numbered from 1 to :\',

then the objective lS to find for each pair of vertices (1,.1) the sum of the welght~ of

aU distinct paths from 1 to J. The APP is a O(Iv''') problem, and is thus expen~lve to

compute on a serial-execution processor. Benaini and Robert propo~e a ~y~tolic ar

ray which requires ~2 + O(;\') processors and can solve lhis problem in Iinl:'ar tiI11L',

Si\' - 2 steps [Benaini and Robert, 19901. A similar solutIOn is presentl'd by Lewis

and Kung which uses .\"2 processors and also requlf(~s 5 N - 2 steps t(l compll'll' (in

terestingly enough, both designs daim to be "optimal" ...) Scheiman and Cappello

perform a rigorous analysis of the complexity of the method propu~ed by l .L'wb (md

Kung and corne up with a precise lower bound of r ,~Î l on the number of proce~~ors

required for bme-minimal completion [Scheiman and Cappello, 1YY21 ~lInilarly,

Cappello analyzes the machine-mdependent maXImum parallelism which can be

realized in a systolic implementation of cubical mesh algorithms lCappello, 19Y2J

24

•

•

•

1. Systobc Arrays

(cubical meshes are used far a variety of algorithms such as fin ding the langest

common ~ub~equencc amang three strings, L-U factarizatian of matrices, three

pa~~ transitIve closure, matrix triangulation and inversIOn and two-dimensional

tuple companson)

Another interesting application is a systalic implementation of a

Move-Ta-Front (MTF) text compressor suggested by Thomborson and

Wei [Thomborson and Wei, 19911. MTF compressors work by creating a list of

"word~". Instead of transmitting the symbol itself, the encoder transmits its cur

rent position ~n the list, and then moves the symbol to the front of the list. An

adaptative Huffman or arithmetic code can be used to assign shorter codewords

to the positions near the front of the list (which quickly get filled with the symbols

which occur with the greatest frequency in the input stream). In the simplest case,

the "words" can be the 256 8-bit bytes, although longer words yield better results.

This method is suitable for on-the-fly compression and decompression for data

transmissIOn .

Priority queues are partially-ordered data structures which support two opera

tions: II1Sl'rt which adds a new element to the structure and dcletemzn which deletes

from the structure and returns the "smallest" element in the structure. On a se

quential processor, both such operations require 310g(n) steps if there are already

11 elements III the queue. Cheng proposes three alternative designs [Cheng,1988].

The best solution requires ()(log(1/)) processors and can implement bath lnsert and

ddctC111111 in O(1) (i e. constant) time. Priority queues can be used ta sort data

(by first 1I1sertmg aU the data 111 the structure and then deletemzng it in order: on a

sequentIal processor, this would yield a O(nlog (11)) sort algorithm, whereas here

hnear time sorting would be achieved. Another application is discrete event sim

ulation, where C7.'Cllts are inserted into the priOTity queue according to their arrivai

t11111'. At any Iteration, the dclctcnl1ll operation is used to retrieve the next event to

occur: processmg this ev en might cause later events ta be scheduled and inserted

back into the queue. The simulation tel mina tes when the queue is empty. A similar

25

•

•

•

1 Sy~tohl' Arr.l\'~

data structure is the hash table, which stores elements mto a number of ~l'p.1r.1h'

lists indexed b)' a Izash valllt' computed from the data elL'ment. 1\1llnl'l'r~l'l\'.lm l't

al propose a parallel systolic haslung architecture which can bt.:' u~L'd, aml)ng L'thet'

applications, to sort values 111 O(n) time [Panneerselvam ct tll , 19HHJ.

1.5.6 Pattern Recognition and Neural Nelworks

Pattern recognition often invol\'es a large amount of calclllatlOlls wl11ch h.1\'l' 10

be repeated many tinles and which reuse the same data over and OVl'r. Thll~ lt is

hardI y surprising that systohc arrays have been proposed to solw lhesl' clas~es of

problems. For instance, Frison and Quinton propose in IFrbon and QU1I11on, 19H41

a systolic machine which can perform continuous speech recognitwl1 III rl'al-llll1l'

with a vocabulary of 2000 words In this architecture, 89 proCL'~~ing l'1l'ml'nl~ Ml'

connected in a 2D array where each PE sends 1l1tennedlilfy re uIt 10 Il. nghl and

bottom nelghbors. This array performs th(:' word spolllllg stl'p of thl' pnlCl' ,

which consists in detecting the words of the vocabulary 111 the J.1L'L'ch ~lg11.11 TIll'

array receives phonemes as mpllt [rom a phonemt: analyzer <I11d computl'" thl'

probabilities that a word has been recognized given the phonl'J11l' lring.

McWlurter proposes in [McWhIrter et al ,19901 a y tohc arrily for multl-

dimensional fitting and interpolation using radial ba~i function (RBF) TIll' ar-

chitecture is composed of two parts: the RBF pre-proce or 1 lN'J 10 dL'terll11l1l'

the coeffiCIents of the baS1S functlOns (radlally-.... ymmetrical C.1tI hUl f unctlolb),

whereas the second part is a least-square procesc,or which fIt the dat<l tu bl' rl'cog

nized using the basis functIOns fmm the RBF pn'-pwcest>or The arrtly opera te III

two modes: first, it IS fed with a set of trainmg data vector from WhlCh It deflve:-,

interpolatIOn coefficients. This "knowledge" 1 then frozen and thl' clrr<ly can be

used on a set of test data vectors WhICh mu~t be recogl1lzed. Thl' operatIOn of the

array can thus be related to that of a neural network ba~ed on the fel'd-forward

multi-Iayer perceptron (MLP) model.

2fJ

•

•

•

1. Systolic Arrays

Since neural networks are intrinsically parallel computing structures, it is hardly

surprising that systolic arrays have been used to implement these structures in an

efficient manner. Kung proposes in [Kung, 1988] systolic arrays to implement both

~mgle-layer feedback networks (Le. Hop6eld neural nets) and multl-Iayer feed

forward neural nets Hopfield nets are formulated as a consecutive matrix-vector

multiplIcation interleaved with a non-linear activation function. Each PE is used

lo mode! a neuron, and behaves differently in the search phase (where the neurons

update thelT activation values) and in the learning phase (where the neurons are

"trained") Chmn et al. [Chinn et al., 1990] implemented these systolic arrays on

the masslvely parallel MasPar MP-1 SIMD machine and applied them to speech

recognition (the MasPar machine is further discussed in section 4.2). Concerned

with the large number of learning iterations required of traditional MLP neural

nets, Chiang and Fu [Chiang and Fu, 19901 propose a ring systolic array imple

mentahon which requires two orders of magnitude fewer learning iterations than

conventlOnal structures. Ramacher and Raab extracted the common computa

tions in neural net models and propose a hardware systolic architecture which

can effiClently perform these computations in parallel [Rama cher and Raab, 1990].

Whereas aIl of the methads proposed above expIait the spatial parallelism and the

training set parallelism in neuralnetworks, Chung et al [Chung et al., 1992] propose

a systolic structure which explOIts the fact that farward and backward passes can

be execu ted III parallel with pipelining of multiple training patterns in backprop

agation neural nets. They apply this architecture to the NETtalk text-to-speech

neural network which canverts English text into phonemes.

1.5.7 Other Scientific Applications

Systolic arrays ha\'e also been proposed far other various scientific applications.

For instance, a systolic array has been praposed ta perform data encryptian and

decryption in Rivest-Shamir-Adleman (RSA) cryptosystems [Zhang et al., 19881.

27

•

•

•

1. Systohr Arr.lyS

The RSA algorithm is a public key encryption method which is based on the

difficulty of factoring large integers [Rivest ct al , 19Î5l. A user of this system

would crea te his keys in the fol!owing way:

1. Choose two random large prime integers JI and (/

2. Obtain the public modulus .\' = pC!

3. Choose a random large integer j) such that the greatest common di vider

(,'CD(D.(p-1)(q-1)) =1

4. Compute E = [)-lmod(JI-1)(q -1)

5. Publish the public key (E. S) and keep the secret key (1) • .\')

Thus anyone can use the user's public key to encrypt a message M into a

cyphertext C using the eq ua tion (' = M /, 111 of! \', and the user can decrypt tlll' tex t

using .\1 = (·[Jll/UdS. Although very secure, this method require~" fall <lIllUlint

of integer computations, especially if it is to be used for real-tlme l'l1cryptl'd com

munications (such as secure phone lines), hence the need for specialized paralll'1

hardware. Two methods are proposed: one requires ~ Ilog fi processing element~
arranged in a linear array, the second method is based on a double hnear array

with 21/ PEs where 11 is the nurnber of bits in ,,,'.

Systolic arrays have also found applications in experimental sciences. For in

stanee, Squier and Steiglitz used a custom processor called LGM-l to perform

lattice-gas automata simulations [Squier and Steiglitz, 19901. This allowed them

to compare the results of simulations run on this architecture with resultfl ob

tained from other methods and investigate the cause of erroneolls result&. In

biology, the DNA sequence comparison problem ha~ been approached u~ing

a custom-designed linear systolic array named P-NAC [Loprestl, 198Î1. It was

able to run two orders of magnitude faster than then-current minicomputer& for

that specifie application. A similar solution to this problem is demonstrated by

28

•

•

•

1. Systolic Arrays

Hoang [Hoang, 1992], who irnplemented his system on the SPLASH programmable

logic array [Gokhâle et al., 19911. Since DNA sequence comparison is basically a

pattern matching problem, it is hardly surprising that systolic arrays are useful for

that application .

29

•

•

•

Chapter 2 System Architecture

2.1 Introduction

This chapter, looks at the overall architecture of the convolution processor which

as has been discussed before, is based on an array of specialized devices connected

in asystolie array fashion. Greater emphasis will be put on the description of

the structure and operation of sorne of the more relevant sections of the system;

implementation details will only be covered in the following chapter.

2.2 Overall Architecture

Figure 2.1 presents the ove raIl architecture of the convolution proces~or.

Since most image processing research these days is being done on general

purpose UNIX workstations, the system is designed as an attac/ml proCl'ssor

[Hwang and Briggs, 1984] which can be used to speed up convolution operations

on such a platform. This dictated the choice of a standard and widely-used bus

through which the system could communicate with a host processor. As further

explained in the following section, a VMEbus interface was chosen for the imple

mentation.

The interface between the host VMEbus and the system local bus implements

a programmable Direct Memory Access controller. Source and destination images

are stored in the main memory of the host processor. Figure 2.2 illustra tes how

the source image data is read from host memory by the DMA engine. The data is

processed by the systolic array and then written back ta host memory, completely

30

." •.
(JQ

E;
~

N
~ ..
n
'.:)
::1
<:
0
ë o·
::
"'tI ...
0
I"l
/'!)
Vl
Vl
0
'"t
Cf)

'<
fil
/'!)

3
;p-
M
2:
/'!)
I"l

E"
(ti

UJ

•
Input

Converter

1

Input

FIFO

VMEbus

Interface

Controller

Row 1

Row2 -Delay Row3
Memory Row4
CIrcUIt Row5

and Row6 -Interpolation 1 Row7

Row8

Row9

•
..-1

.....J

--
-'"

9by 9

Systolic

Convolution

Array

Recombination Memory

Output
Converterand

Decimation

Output

FIFO

Local Bus (68020 protocol)

Local RAM Local ROM

68020

VMEbus

•

f'J
Cf)
'<
lJl
/'t)

3
:>
rl
2:
/'t)
I"l

E"
;"ti

•

•

•

2. Svstt'tn A rrhitt'rtu Tl'

---=-

Systolic Dest.

Array Image

Host

Memory

1 ------
r-- Source

DMA
Image

Interface

1 1----------------------------, 1 1- __ 1 VMEbus

Figure 2.2: Data flow between host memory and systolir é1rrcly

independently of the host CPU.

The DMA engine is based on a l\10torola 68020 CPU and the VTC/CyprL'~~

VIC-068 VMEbus Interface Controller. This Application Specifie Intcgrated CircUlt

(ASIC) implements a complete interface between the VMEbw, and a 680xO-~tyle lo

cal bus. The combination of these two devices yields an intelligent DMA controller

which is fast enough to handle the required data rates, yet retain~ great flexibilily.

Since the core of the work performed for this thesis consists in the de~ign and

implementation of this VMEbus interface, the next chapter sha11 bl' devotcd to it::.

study. In the meantime, suffice it to say that the DMA engine b rc~p()n~ible for

reading the source data from host menlory into the Input Fir::.t-In Flr::.t-Out mernory

(PIFO), and ta write the results from the Output FIFO back to host memory.

In most image processmg systems, source images will be cornpo<,ed of integer

data captured from such sources as cameras or laser range finden,. Since th (.'

32

•

•

•

2. System Architecture

systolic array opera tes only on 64-bit IEEE standard floating-point numbers, an

input converter takes care of data type conversion. It currently allows both 8-bit

and 16-bit mput data. In certain cases, it is desired to perform sever al convolutions

on the same image (perhaps interleaved with other processing steps). To minimize

errors and 1055 of precision due ta repeated conversions between numeric formats,

intermediate results can be kept in floating-point format. Thus the input converter

can also accept floating-point data which it passes along ta the next stage without

modifica tion.

Each line of the image must be fed ta the systolic anay as many times as there

are lines in the convolution kernel. This task is handled by the delay memory

circuit which accepts as input the floating-point data from the input converter. It

has sufficient memory ta buffer the required input image lines, and can feed this

data to the Hnes of the systolic array in the required order. In this way, the lines of

the source image do not have to be fetched multiple tirnes from host memory, thus

greatly decreasing the reqUlred bus bandwidth. The delay memory circuit also

implements the image interpolation feature of the system: it do es this by inserting

zero values between the pixels of the input image in order to rai se its sampling

rate. Convolvmg this up-sampled image with a low-pass filter of the proper cutoff

frequency and phase will replace the newly introduced zero values by the desired

interpolated values while keeping the original pixel values unchanged.

The systolic array performs the actual convolution operation. The lines of the

image are fed to each line of the array in turn from the left side. These input values

and the partial results which they generate propagate from left to right, and in the

case of the partial results, from the output of the right-most processing element of a

line to the input of the ldt-most processing element of the next line. The final result

conles out of the output of the processing elernent at the bottom-right of the array.

Note that the kernel coefficients have been pre-stored in each of the processing

elernents, one coefficient per such device .

33

•

•

•

2. System Architt'chtn'

The output of the systolic array can go to two destinations. A recombi

nation memory is used to store internlediate values when pprforming Illulti

image operations, su ch as is needed wh en performing color-recombination

[Malowany il"d Malowany, 19891. The data can also go the output converter which

will convert the resulting floating-point data back into 8-bit or 16-bit integer format.

This is often required sin ce the following steps of the image procl'ssing algorithm

might not require the full precision of floating-point results. If the output of tlll'

convolution processor represents the final results of the algorithm, then il might

need to be displayed in a frame-buffer, wh1ch can usually accept only small (~

bit) integers. The conversion from floating-point to integer format is done by a

binary search into a look-up table of interval limits: sinee this look-up table b

programmable, it is possible to select an arbitrary non-linear mapping. Anolher

function of the output converter is that it can selectively ignore output fL'sults to

implement sampling rate reduction (or dowll-sampllllS) when combined with the

proper tilter. As was the case for the input converter, the output conVl'rter can

be configured to pass Ctata through without modificatIOn if floating-point output

is desired. The output of the outrut converter goes into the output FIFO, from

where the data is read by the DMA engine to be written back into the ho~t system

memory.

2.3 Host Bus Selection

Whenever a peripheral device is to be designed, the selection of the host interface

bus is one of the first design decisions which is made. In the commercial world,

this choice has a strong effect on the profitability of the design since althoug:' it

may be technically and economically viable, no one will want to purchase il if il

cannot be used with popular computing platforms. Fortunately in this case, there

were no such economic pressures. The selection criteria were the following:

34

•

•

•

2. System Architecture

1. The host bus has to have enough bandwidth to keep the systolic array from

"starving". If floating-point operands are used both for the input and the

output, this translates to a required bandwidth of 16 Mb/s.

2. The form factor of the boards has ta be large enough to allow implementation

of a fairly large and power-hungry design.

3. The bus protocol must allow multiple bus masters so that the DMA engine

may take control of the bus while transferring image data.

4. The bus interface has to be simple, or else ASIC solutions must be available

which implement a reliable and complete interface.

5. It has to be compatible with the equipment used in our research group.

A previous project where an integer convolution processor was designed and

buiIt [Boudreault and Malowany, 19861,[Haule, 1990] had used the Multibus or

IEEE-796 standard lMultibus, 1983], but although it is still used in sorne indus

trial applications, this platform is now obsolete. A logical successor might have

been Multibus-II, but at design time there were still no single-chip interface solu

tions, and very few systems actually use this standard (although its designer, Intel,

appears to be trying to resuscitate it as a platform for high-end PC compatible

file-servers: whether this effort will succeed is unknown at this time).

The ubiquitous Industry Standard Architecture OSA, also known as AT) bus

fails ta meet criteria 1 ta 3. Its successor, Extended Industry Standard Architecture

(EISA), as weIl as the IBM MicroChannel satisfy criteria 1 and 3 but do not offer

mllch board real-esta te. FlIrthermore, at the time of the design there were no

off-the-shelf solutions which implemented a bus-mastering interface.

So-called "Mezzanine" buses such as SBus (from Sun Microsystems) or Tur

boChannel (from Digital Equipment Corporation) offer a lot of bandwidth, but

suffer from very small board form factors. This is Ilot so much a problem wh en

35

•

•

•

2. System Architt"'cluft'

contemplating a high-volume design where surface-mounted components can hl'

used on both si de of the board, but it severely restricts the amount of available

spa ce in a prototype design su ch as ours. Furthermore, although thcir promott:lr~

would have us believe otherwise, these are essentially proprietary solutions which

find little use outside of the products offered by these companics.

50 the choice was made to implement a VMEbus interface. As will be seen in

the next chapter, VME satisfies aU of our criteria. Its peak bandwidth (40 Mb / sec) h.

sufficient for our needs and there exists a number of ASIC interfilce ~olutions which

implement a bus-mastering interface. VME is used by a number of machines at our

facility, including the larger Sun and Silicon Graphies workstations, as well as the

VME-based Sensory Computing Environment [McRCIM,1990] being developed

here.

Note that in the future, such a design would probably be imple

mented on Futurebus+, the next generation in general-purpose computer

busses [Futurebus+, 1990]. Although FutureBus+ interface silIcon Îb just slartmg

to become available, there is a growing interest in this standard due to the tremen

dous performance it offers. Recently introduced hlgh-end server~ from Digita1

Equipment Corporation based on the Alpha micro-processor use Futurebu~+ tn

give these machines high inter-processor and 1/0 bandwidth. The U.S. Navy

has standardized on Futurebus+ for aH on-ship computing system~ (among other

considerations, the ability to insert and remove boards from a Futurebus+ back

plane without powering down known as "hot" or "live" insertion is appreciatcd

in systems whieh must maintain very high availability). As costs faB and band

width requirements increase, this bus standard might start appearing in lower-end

products .

36

•

•

•

2. System Architecture

2.4 Input Converter

As outlined previously, the function of the Input Converter is to transform input

data formats into the IEEE-754 standard floating-point format which is understood

by the convolution array. It then passes this data on to the next stage, the Delay

Memory Circuit.

2.4.1 Data Formats

The input converter understands the following input data formats:

1. 8-bit unsigned integer

2. 16-bit unsigned integer, big-endian

3. 64-bit IEEE-754 doublE. precision floating-point format, big-endian

In the case of the second and third formats, blg-endian byte order (Le. the

highest byte first) was selected somewhat arbitrarily: since data is read directly

from hast memory by the DMA Engine, this has to be compatible with the data

format used by the host. Since convolver discussed here is to be used with SPARC

and Motorola-based hosts, big-endian ordering was a natural. It is also assumed

that the host uses IEEE-754 as its floating-point storage format: very few current

machmes (with the notable exceptions of those based on the VAX, IBM 360 and

CRAY architectures) use a different format.

2.4.2 Overall Architecture

Figure 2.3 shows the structure of the Input Converter. Status bits controlled by the

local CPU are used ta define the data type to expect. It reads its operands from the

37

•

•

•

bit integer 16
from input FIFO

PO

eombinatorial

logie

1

1110

PO
PO

-

shift

load register

OO-Q15 16 /
ho Id /

1

4-bit eounter L-,.

earry
AO-A3
hold
U/D

QO-Q3
load

Figure 2.3: Input Converter Block Diagram

2. System Architecture

QO-Q 14=
mantissa bits 37-51

15/
/

exponen t bits

bit 1 o
logie

bits 4·9

bits 0-3

outputs of the Input FIFO. Since it IS made up of 4 8-bit wide devices, the control

logic must decide which outputs to enable in the proper sequence, ba~ed on the

type of data. Floating-point operands do not need to be processed, ~o they are

passed on directly to the output of the Input Converter. Both 8 bit and ih bit data

are treated as 16 bit data, the 8 upper bits of the former being set to zero.

Conversion of a 16 bit integer operand into floating-point format b done in the

following way. The integer is loaded into a 16 bit shift register, while a 4-bit counter

is initialized with the desired value (8 or 16). The operand is then shifted left until a

1 appears in the most significant bit of the shift register, at which point the content

of the shift register will represent the normalized man tissa of the floating-point

number. For every left shift operation, the counter is incremented and yield~, in

the end, the floating-point exponent. The entire procedure take5 at mot>t 16 clock

cycles, which corresponds to tne cycle of the entire system for an operand (Le. in

most cases, the convolutIOn array requires one input operand and produces one

38

•

•

•

2. System Architecture

output data item every 16 cycles).

A detailed description of this procedure is outside the scope of this thesis:

intere~ted readers are referred to [IEEE-754, 1985] for details on the floating point

format and [Drolet ct al , 19901,[Drolet, 1992] for operation and implementation de

tails. Suffice lt to say for now that a double-precision number uses 52 bits for its

mantIS&a, 11 bIts for its exponent (stored in excess-1023 notation) and 1 bit for its

sign. The low 37 bits of the mantissd are always set to zero by the converter.

Once the desired floating point exponent and mantissa have been obtained, the

Input Converter needs to serialize its output to the next stage, the Delay Memory

Circuit, sinœ it expects tloating-point operands only 8 bits at a time, starting with

the low-order byte .

2.4.3 Implementation Considerations

In most designs, space is an important limiting factor. The VMEbus 6U double

high, double-wide form factor offers 373cm2 of board space, which is not very

much when considering the complexity of this design. Thus an implementation

based on Programmable Array Logic (PAL) devices and other random logic would

consume too much space. A better solution is the Field Programmable Gate Array

(FPGA). As with the more conventional gate arrays, the FPGA is composed of an

array of logic blocks which can be connected to generate any desired combinatorial

or sequenhallogic circuit. The main difference is that whereas the interconnections

in conventional gate arrays are permanently manufactured into the chip (typically

as metalization layers), FPGAs are programmed on power-up by loading a configu

ration bit pattern into RAM memory locations. Thus FPGAs do not suffer from the

long lead times and high non-recurring expense (NRE) of gate array or standard

œIl devices. On the other hand, their unit cost is significantly higher, so theyare

typically used for 10\." to mid-volume designs [Mokhoff, 1993].

39

•

•

•

2. Sv!'tt'Ill Arrhltl'ctun'

The very quick turn-around time of these devices nu. ans that the\' art' olten

used for prototyping systems, after which the~' can be nugr.lll'd tl) IlWrt.' l'l)n

ventional de\'ices when production \'olllme~ jllstlf" tht' NRF [Eg.m, 1 ql) 1 J FPCA

devices have also been llsed to deSign a completely rt.'cnnhgurabll' p.ll"l11l'1 pn lLl'~

sor named SPLASH lGokhale ct al, 1991] Note that FrGA~ h.1\'t' ~llml'\\'h,lt IllWl'J'

performance than gate arrays or standard ceU de\'lCL'~. Furthl'fll1OJ'l', aIthollgh

high-Ievel software which can accept a design 111 tlll' form of 10gIC l'quatitH1!'- III

standard library parts and map it onto the FPGA loglc bloc\... arcllltl'ctllll' l'Xht!'-, It

usually produces non-optimal designs which either fad to USL' .111 of the ,n'.ltl,ll'll'

real-esta te or generates unacceptable rnunng delays. For hlgh-pt.'rformance ap

plications, the designer is often forced to manually speclfy tht.' partlOl1l11ng of tlll'

design into the logic blocks of the part, as well as the rOllting bt.'lwl'l'n tllL'~l' blocb,

a tedious task at best Newer Computer Aided De~ign (CAl)) tnob a~ wl'll a~ lwttl'r

FPGA architectures hope to lessen the burden on the FrGA dL'~lgl1L'r IBlIr~ky, IlN~1

[Clark,19921. The ultimate objective IS to be able to automatlcally ~yntl1l'~i/l' tlll'

desired FPGA deSIgn from a high-Ievel functl0nal and/or bdlaVlor,ll dL'~Cnptllln

in a circuit-description language such as VHDL lVHDL, 14H7] IPerry, ll)lJ 1) or

VeriLog [Sternheim et al., 19901. A survey of current FPGA archItecture and pro

gramming technologies can be found 111 [Rose ct Ill., 14931

The FPGA configuration information can be stored in a ROM dl'VlCl'. ~pl'Cldl 1

bit seriaI ROMs exist which interface directly to the FPGA devlce, or ~tandard byte

wide EPROMs can be used wIth a minimum of "glue" logic. Th l' confIguratiOn

can also be stored in a disk fIle and downloaded into the devlce at power up by il

host: this is the approach chosen here, sin ce it allows maximum flexlbihty Thl~ 1~

made possible by the fact that the DMA Engine is there lo confJgurl' the board after

power up, and that none of the bus interface circuitry depends on FPGA' ..

Thus the input converter is implemented usmg a single Xtlmx FPC;A deviee,

which connects directly to the outputs of the Input FIFO[o, and to tlw input~ of the

Delay Memory Circuit. Note that in order to allow httle-endlan 16-blt operand~, aIl

40

~-

•

•

•

2. System Architecture

that would be required is to change the order in which the FIFO devices are read to

irnplement the byte-swap operation (ail 16-bit operands are assumed to be word

aiigned 111 ho~t memory). This would require changing the state machine which

control.., the outputs of the FIFOs and the multiplexers at the input of the device:

such de!->lgn changes only generate a different FPGA configuration file which can

be downloaded into the devlCe at power up. Slmilarly, little-endian IEEE-754

operand~ could also be supported by changing the operation of the serialization

circuitry at the output of the devlce. FPGA devices are used extensively in current

mdustrial de~igns. In many cases, their flexibility allows working around other

problems with the non-programmable ~,ections of a design or adding functionality

to an existmg design without having to change a single connection.

2.5 Systolic Array

The systolic array used in this design is based on a custom VLS! processor which

implements the basIC operation) ,,,If = ('X +) III where C' is the convolution kernel

coefficient, X IS the pixel intensity,) Il, is the output of the previous processor and

) ,,", is the partial sum ta be fed te the next processor. Every operand is in double

precbion floating point format. Figure 2.4 represents a 3 by 3 systolic array: a

similar topology is used for a 9 by 9 array. Each line of the source image is fed

pixel by pixel ta the left sIde of the array (in the case of figure 2.4, the first line

of the image would be fed ta 1 Xl, the second ta 1.\"2, the third to 1.'\'3). The

pixel inten~Ities maye from left ta right, From processor ta processor. When the

first liIw of the Image has bel'n completely fl'd ta the first line of the array, the

indexing of the source image is incremented and the second line is then fed to the

first line of the array. Thus each line of the image must be fed to the array as many

times as there are lines of processors. The delay memory circuit is responsible for

feeding the Image lines in the proper order to the array: its operation is explained

in section 2.7.

41

•

•

•

2. System A rchitt'du ft'

-- XIII Xout ~1Jl Xout '\1\1 x ... t -
C{I.t l «1.1 ('lI.~

(l --) \Il , oui) III)"ut)1\1 , Ilut -

1:-;1 - r- Xtn Xout ~m XllUt '\U1 XtlUI -
(l,!l (1.1 (1.1

L-e. y III) nUI)111 ,"out 'tu , out -

1~2 '-- Xm Xou ~11\ Xout XIII Xout 1---

r2.0 c'" .. « ~.~

- y III Ynut YII1 Yout '\'111 'ClOt - lIut

'--

Figure 2.4: 3 by 3 systolic array

Figure 2.5 outlines the architecture of the VLSI convolution chip. The design

of this full-custom device is documented in [Larochelle ct al., 198Yl, [Côté,1940]

and [Larochelle,19911 Datd is transrnitted between the chips 4 bits at a tl 111 l'

so as to limit the number of required 1/0 pins (a limitatiOn of the packaging

offered at the time for production of these de'. ices by the Canadian Microelectrolllc~

Corporation [eMe,1989}). Since operands are 64 bib widc,]0 dock CycJl'~ are

required to transfer a complete operand between two processor~ (note that the

pixel value and the partial result are transfered at the sa me time). The ~OltrCl'

image pixels are fed to the device on the Xl" input and stored in a 32 entry deep,

4 bit wide FIFO. The pixels come out unmodified on the X.",/ output which i~

connected directly to the X'l! input of the next device As the 4-bit compon('nt~ of

the pixel intensity travel down the FIFO, they are also fed to Stage 1 of the dl'vice,

where they are multiplied by the kernel coefficient stored in the device (note that

the coefficients do not change throughout a convolution operation, and remain

42

•

•

•

2. System Architecture

XIJ) Xout

1 32 by 4 wide shift register ,
4 4

1 1
1

4

STAGE 1
Multiplication

, 64

ylJ) Yout

-;-. 15 by4 ~ Stage 2 16 by 4
shift register Addition shift register

,

4 4 4
1-'64 .. 64

Stage 3 f--

Nonnahzation

Figure 2.5: Systolic Cell Architecture

fixed inside the device}. This multiplication unit is capable of multiplying two

4-bit quantities in one dock period, which me ans that it opera tes at the same speed

at which the pixels are shifted into the device.

The result of this multiplication is parallelloaded into the stage 2 adder, where

it is added in 16 dock cydes to the partial result generated by the previous device

in the array. FinaUy, the result of the addition is parallelloaded into the stage 3

nornlalization unit, where the mantissa is aligned to generate a valid floating point

nunlber, aga in in 16 dock cydes. A shift register is used to put together the 64

bits of the);u partial result input and offer them in parallel to the stage 2 adder.

Similarly, the output of the stage 3 normalization unit is loaded in parallel into a

shift register which will shift it out 4 bits at a time on the }~t t ou tput. Thus every 16

dock cycles, a convolved pixel cornes out of the convolution array (after a suitable

delay required ta fiU the pipeline),

Note that in arder to be truly compliant with the IEEE-754 standard, an addi

tional renormalization operation would have to be performed between the multi-

43

•

•

•

- ---.---

2. System Ardutt'cturp

plication and addition steps. Sin ce this is not the case, the convolution proCt.'ssor

might yield slightly different results than those tha t would be obtained \ .. 'hl'Il impll'

menting the operation on a machine where renonllalization would occur after both

the multiplication and addition. crus with a multiply-and-accunlul.ltl' unit llfll'Il

forgo the intermediate renormalization for performance reasons: such is thl' caSl'

with the IBM RS/6000 [Bell, 1990]. If precisely reproducible resu1t~ are rL'quin'd,

RS/6000 compilers can be told not to generate l11ultiply-and-accumulatl' instruc

tions, but instead generate separa te IEEE-compliant multiply and add instruction~'

of course, performance is greatly reduced in that case.

Figure 2.6 illustra tes the pixel values as they travel down a line of the con

volution array. Only a single line is shown 10 make the diagral11 clearl'r, but the

same principle appHes to the two dimensional array. Note that the partial results

travel half as fast through the array as the input pIxel values. This b due to the

insertIon of two extra "pixel" delays (I.e. 16 clock cycles, since the 64 bits of d plXl'l

operand are transmitted 4 bits at a time) in the partial sum path for a total of a 4

pixel delay, as opposed to a two pix'?l delay in the pixel value path. This en~ures

that the proper partial sums get propagated at the right time. In the la~1 hne of

our example, the result for the first pixel of a 3 by 1 convolution b ready to come

out of the last device in the chain Note that it took 10 system cycIe~ of 16 dock

cycles each for the first valid result «(,'0 \0 + (;1 XI + ('2 X 2) to come ou t (aIl previou~

output was undefined and is ignored by the rest of the system). Thb b typical of

pipelined systems, where there is always a penalty to payas the pIpeline b filleu.

After that, a valid result will come out of the last device every 16 clock cycles (Le.

CoX1 + Cl X2 + ('2 X:1, eUX2 + (,'1 X1 + ('2X4 and 50 on ...).

The current version of the convolution chip is clocked at 16 MHz, which enables

the convolution array to produce a convolved pixel every microsecond. For a

standard 512 by 512 image, convolution can thus be performed in roughly il quarter

of a second (262 msec.). Kernel size depends on the number of de vices u~ed ta build

the array: the current design uses 9 by 9 chips. Since each chip perform~ a complete

44

2. System Architecture

•

•

IInll' I+~

Il COX3+C1X4 COXO+CIX2+C2X2

•
Figure 2.6: Systolic Array Data Flow 45

•

•

•

2. System Architt'cturt:,

floating point multiplication and addition every microseeünd, this yields a system

performance of 162 MFLOPS, sustainable throughout the convolution oper,ltion, as

long as data can be read from and written ta host memory fast enollgh. Although

the maximum bandwidth required ta sustain this rate is 16 Mb/sec, which is weil

within the 40 Mb/sec maximum bandwidth of the VMEbllS, other factors sllch as

the speed of the host memory and contention from other VMEbllS masters nü~ht

reduce the bandwidth available ta the convolution processor.

2.6 Recombination memory

As the convolved pixels come out of the array, they are rollted ta the output con

verter (see figure 2.7) to be optionally transformed back to integer valuL's before

going back ta destination memory storage. They can also go to the recombination

memory, which is used to buffer an entire image. The content of this memory can

then be used to drive the partial sum input of the first device in the convolution

array. This allows multi-image operatIOns ta be performed, such as image averag

ing/blending. For instance, a first image could be processeG with ail of the keflwl

values sealed bya value (l, and then stored into reeombination memory. The kl'rnd

values would then be reloaded, this time scaled bya value 1 - 0, and the new image

sent through the array, using the result of the first convolution as the iIUtIal partial

sum input, thus effeetively blending between the two resulting images. 4 Mb of

memory is allocated for this purpose, organized in 4 SIMM modules of 1Mb by R

bits each. Since 4 bits must be read out for each 16 MHz dock cycle, this mcans

that the memory must have a cycle time of 125 ns (sin ce two operands are read

at once from the 8-bit organized memory). This would require rather fast DRAM

devices: on the other hand, sin ce memory access is always sequential, the dccess

pattern is trivial to predict. Thus two-way mterleaving i~ used to relax the cycle

time requirements to 250 ns, which is fairly easy to satisfy with inexpensive DRAM

devices.

46

•

•

•

2. System Architecture

2.7 Delay Memory Circuit

One of the greatest obstacles to high performance in convolution implementations

on traditional archi tectures is the high memory bandwidth required by the repea ted

use of the same operands. In the case of a 9 by 9 convolution, each input datum

has to be read 81 times from main memory. C •. reful design of the algorithm can

minimize the number of cache misses by taking into consideration the cache line

size [Stone, 1987], but such optimizations are often hardware-dependant and can

actualJy decrease performance on a machine with different architectural char ac

teristics. In order to take full advantage of the systolic architecture of our system

as welJ as to mmllnize the bandwidth on the VMEbus, a Delay Memory Circuit is

implemented.

This circuit takes as its input the unidinlensional stream of image pixels in

scan-Hne ordl!r from the input converter. Each line of the image has to be fed to

the systolic anay as many times as ther€' are rows in that array. This is done with

8 circular queues implemented using standard static RAM devices. The first row

of the systolic array is fed directly by the pixels coming from the input converter,

whereas the other lin es recelVe delayed copies of the rows previously stored into

the circular queues (note that pipeline delays have to be taken into consideration

by the control logic to de termine the exact time at which pixels have to be fed

to the array). Since it has a finite amount of storage, the delay memory circuit

imposes a practicallimit on the length of a raster line. It is currently implemented

using R 8kx8 static RAM devices. Since at that point the operands are in 64-bit

double precision format, this means that raster lines can have a maximum width

of 1024 pixels. A deeper treatment of the inlplementation details can be found

in [Drolet ct al., 1991],[Drolet, 19921.

The Delay Memory Circuit has two other functions. It is responsible for deter

mining whether the convolution array is to be used in 1 or 2 dimension al mode.

In 1-0 mode, the array implements a single FIR filter with 81 coefficients. The

47

•

•

•

2. System Architectufl'

data is transmitted directly fronl the input converter to the tirst line of the .uray,

and 0 values are fed to aIl the other Hnes: in that mode, the circuit i!- basically

bypassed. In 2-D mode, it opera tes as previClllsly described. It C.ln also be lIsl'd tll

perform limited interpolations used to increase the sampling rate of an image by.1

factor of 2 or 4 by inserting appropriately placed 0 values into the data stream (i l'.

inserting 1 or 3 zero values between aIl input pixels, and 1 or 3 hnes of zero values

between lines of input pixels). The coefficients loaded into the convolution array

must then implement a low-pass filter with the appropriate eut-off frequency. Nok

that multi-rate filters are usually much more effiCient for mlplementing resamplmg

operations (in partieular, they avoid the numerous multiplications of zero input

values used in our method), but this extra functionality was achieved at the cost of

a small amount of additional complexity in the controllugic for the Delay Memory

Circuit.

2.8 Output Converter

The function of the output converter is to transform the floating-point output of

the systolic array back into integer format. This ib required for instance when

the output is to be viewed on a display device such as a frame buffer. Typically,

for a gray-scale image this means that the results must be quantized down to H

bits of resolution, yielding 256 distinct levels of gray. The recently announced

Silicon Graphies RealityEngine graphies subsystenl allows up to 12 bit~ per color

component, which in the case of gray-scale images gives 4096 shadeb of gray

(although the actual Digital to Analog Converters which drive the display only

have 10 bits of resolution: the extra bits of resolution in the frame buffer are used,

among other things, to a void loss of precision in the lower in tenbities due to gamma

correction) .

4R

•

•

•

2. System Architecture

Index Content
3 1.9
2 1.3
1 0.5
0 0.2

Table 2.1: Conversion look-up table content

2.8.1 Princip le of Operation

The con version From floa ting point results into integer format is achieved by means

of a look-up table. The principle is that the entries of this table contain the bounds

of successive in tervals. By using a binary search into this table, the converter

de termines the interval in which the floating point result faIls: the index of the

corresponding entry yields the desired integer result. For example, table 2.1 shows

the contents of a table with 4 entries .

Using this ex ample, a number between 0 and 0.2 would be mapped to the integer

0, from 0.2 to 0.5 to l, from 05 to 1.3 to 2 and from 1.3 to 1.9 to the integer 3. The

only restriction on the values of the interval bounds is that they be monotonically

increasing in order for the binary search to be able to find the right interval. This

allows for non-linear mappings of floating-point results to integers. This could be

used for:

• Dynamic range compression/expansion: when the application is interested

in a narrow range of values in the output, aIl values below that range can be

c1amped to zero, aIl those above can be c1amped to the maximum index and

the full range of integers can be used for the Uinteresting" values in between.

Similarly, a range of values which is not interesting can be compressed to a

single interval, again yielding more dynamic range in the output for other

intervals of interest.

• Most image processing algorithms assume that the range of possible values

49

•

•

•

2. System Architectuft.'

for each image sample is linear. Unfortunatcly, most output devices (CRTs in

partieular) do not generate a linear intensity as a function of the value to bl'

displayed. This relationship is usually modelled bya power function and IS

known as gamma correction [Travis, 19911. If the display which is to be uSt:'d

does not have gamma correction hardware (Le. instead of feeding the value~

to be displayed directly to the digital ta analog converters, these are used

as the input of a look-up table whieh implements this correction), th en the

output converter can be programmed to perform this correction on the image

itself. Note that the image then becomes dependant on the particular display

it was corrected for, and can only be displayed on another ::.ystem after being

gamma corrected again, at the priee of a substantialloss in dynamic range in

the low intensities .

• Even if intervals of constant length are used, the table can still implement a

simple gain and offset mapping .

2.8.2 Output Converter Architecture

Figure 2.7 presents the block diagram of the converter. The 24 most signicant

bits of a floating point output value from the convolution array are stored in a

register. This means that only 12 bits of man tissa are retained for the purposes of

comparison. Clearly, this imposes a limit on the resolution of the intervab which

can be specified. Similarly, the interval bounds are stored as the 24 MSB~ of the

desired intervals in the output converter look-up table. Note that this table IS

programmable, but cannot be changed while an image is being processed. The

table con tains 212 entries, and thus requires 12 bits of address.

As the conversion begins, the 12 bit A register is cleared and the 12 bit B register

is set. Their values are added by a carry-Iookahead adder and the result is divided

by 2 using a hardwire shift. This yields a 12 bit address whieh points to the middle

50

•

•

•

Inlt

Output
from
Array

L~

2. System Architecture

~A 1 B

12·blt reglster Reset Preset 12-blt reglster Load

12·blt

carry lookahead adder

12-blt address hardwlre shlfted (dlvlde by 2)

/
/ 4

24·blt reglster

V
/ 24

24 MSB of FP value

B<A

A

/

RAM

look up table

4K by24blts

24 MSB of FP Interval

B
24-blt comparator A<B I----------.J

Figure 2.7: Output Converter Block Diagram

51

Integer
Result

•

•

•

2. Sy!'tem Arc hitt:'cturt'

of the table. The correspoding interval boundary is fetched and compared wit.h the

result to be converted. According to the resuIt of this cOIl1parison, t,lithl'r regisll'r

A or B is loaded with the address previously computed, thus dividing thl' search

interval in ha If. After 12 iterations, the proper interval has bel'll found, and Ils

address in the look-up table is the desired integer r('sult, which is ~ent 10 Iht' OUlput

PIFO. Tl1us the output converter can generate up to 12 bits of precisiOn on it~

output. Since the convolution arra)' produces a new resuIt l'very 16 cIoek ('\'dl'~,

the same clock can be used to drive the output converter sinel' Il only requirl's 12

cycles for a conversion.

As was the case for the input converter, the output converter can be bypas~l'd if

floating-point results are desired. In that case, the output of the convolution array

is sent directly to the output FIFO. Also, in order to implement the ~ampll' rail'

conversion capabilities of the system, the converter can be progranunl'd 10 decimatl'

(downsarnple) the output image by 19nonng some of the output sampll'~. In order

for this down-sanlpling to occur without alIasmg, the convolution coefficients mll~t

have been chosen to implement the proper low-pass filter. Again, a XILINX FPGA

device implements the main functlOnality of the output convertE:'r. External ~tatic

RAMs are used to store the intervallook-up table. Further detmls fllgarding Ihe

implementation of the output converter can be found in [Orale!, 1 YY2J.

52

•

•

•

Chapter 3 DMA Engine Implementation

3.1 Introduction

This chapter co vers the design and implernentation of the section of the convolution

processor known as the DMA engine. The main task of this subsystem is to

coordinate the transfer of image data from the memory of the host CPU over the

VMEbus to the convolution array, and the writing of results back into host rnemory.

Since it is designed around a general-purpose processor, the DMA engine is flexible

and accepts high-Ievel commands from the host CPU. It is also responsible for

general initialization and control tasks for the other sections of the convolution

processor .

3.2 Design Perspective

The DMA engine of the convolution processor is responsible for the following

tasks:

• initialize the system after power-up or reset

• load the kernel coefficients into the systolic array

• select operating modes and perform other control tasks

• interface to the VMEbus

• transfer data over the VMEbus from the memory of the host CPU to the input

cOl\verter, and fron1 the output converter back into host memory

53

•

•

•

3. DMA En~mt' Impll'menttltlOn

The initial design approach was to design a special-purpo5t' circuit built awund

a commercially available DMA controller. After some .:unount of work, tlut- \Vat

rejected for a number of reasons. There were very fe\ ... ' a\'.ulablt:' DMA controllert

which support 32-bit address and data paths (the entirt' VMEbut- addre~~ rangl'

must be supported), and those that are available are usually o\'l'rlv compll" or

have fairly small bandwir.lth. Furthermore, it was qlllekly reahLl'd th.lt sinet.' .1

VMEbus interface with both nlaster and slave capabilihe5 1S nt:'edl'd, 1t would bl'

beyond the scope of this project to attempt to synthesize th15 interface Ir OI1l ~tandard

logic components (ignoring for :1 moment such constraints as board ,ul'a) Thu~ an

off-the-shelf VME interface device had to be used. Unfortunately, .111 ~uch dl'viCl'~

assume that they are connected to a CPU and aet as a bndge betwl'l'Il the l'PU local

bus and the VMEbus. A company called PLX makes a set of five dl'vÎCl's which can

be used for somewhat lower-Ievel interface, but a design U~l1lg il Mutorola DMJ\

controller and these devices was rejeeted as unduly slow and eompll'x.

The conclusion was that the best approaeh was to have an on-board CPU, and

to use arl off-the-shelf ASIC to bridge between its local bus and the VMEbu~ Thl'

VTC/Cypress VIC-068 ASIC was ehonse because it seemed hke the mll~t viable

solution: this de vice is endorsed by a large group of VME board manufaeturer~

known as VITA, the VMEbus International Trade As~ociation, and 1S u~ed in a

number of commercial produets. Since the VIC offers a glue-le~~ mtl'rfael' for a

Motorola 68020/68030-style CPU local bus, it was natural to chose to lI~e il 6H020

CPU sinee the virtual-memory eapabilities of the 68030 were not nel'ded 1 laving il

general-purpose CPU on board rneans that many of the control ta~k~ can bl' done in

software, which greatly enhanees the flexibility of the board, redllCl'~ the amount of

controllogic which has to be designed and lessens the nsk of a fatal hardware bug

which cannot be fixed in software. Furtherrnore, sincc the VIC IS able to perform

most of the DMA transfer functionality on its own at high-~peed, the (iR020 dm>f-, Ilot

need to have high performance. This greatly relaxes the design constraint~ on that

section of the circuit, and permits the use of a low-speed part (in th1S case the 68020

54

•

•

•

3. DMA Engine Implementation

will run at 12.5 MHz). This approach was suggested in a Motorola application note

for the 6R020 CPU [Motorola, 19871. It was first presented in [Panisset et al., 19901.

3.3 System Block Diagram

Figure 3.1 shows a high-Ievel block diagram of the DMA engine (note that this

block diagram is very similar to the top-lev el sheet of the circuit schema tic). The

VIC-068 implements a bridge between the VME system bus and the local bus of

the 68020 processor. The only additional logic required are decoders to map the

slave mterface offered by the VIC into the VME address space as weIl as additional

transceivers and latches to isola te the local bus from the VMEbus. The interface

offered by the convolution pro cess or to the host on the VMEbus will be examined

in section 3.5. Details on how the VIC and the 68020 intenact to perform DMA

tran~fers will be covered in section 3.8 .

On the local bus side, the 68020 processor and a small amount of RAM and ROM

memory used for its operation are found. The 68020 de termines the "persona lit y"

of the local bus: its operation will be show n, as weIl as the bus-controllogic which

is required to arbitra te between the 68020 and the VIC for accesses ta the local bus.

The interface ta the rest of the convolution processor is also found there, namely the

input and output FIFOs and a control register. This register is used by the firmware

running on the 68020 to control the convolution array: implementing this control

in software yields greater flexibility and further de couples the design of the DMA

engine from that of the rest of the system.

3.4 Principle of Operation

The basic principle of operation is that when the host CPU wants to perform a

convolution, it sends a high-Ievel command to the convolution processor. This is

55

U1
0'.

•
"!1 ...

(JQ

e;
~

~
;...

n
0 ::s
<:
0
ë
:::r.
0 :s
\:1 a
/"')
(1)
tri
tri
0
""'1

n
~.

c:: _
o:l
ë
n
~

9
~

J'Q
""t
~

3

VMEbu, Slot

n

J'
;,

a:l
E
~
>.

cr.
UJ

~
>

'--

•
r------,.E--_____ ~O~u~t~p~ut FlFO Halr Full - Interrupt Rcquest

1 ...

PowerUp ~

Reset

Option

Select ~

Jumpers

64MHz r--Clock

VMEhus
Control SIgnaIs

VMEhus
DataIO-7]

VMEbus
Addres,,[1-7)

~
Slave

Select Il Decode \lC068

125 MHz r-
CPUCIOI.:k

Intcrrupt Rcqucst

Local Bus

Arbaratlon

r-

~

68020 CPU

l
Local Bus Control SIgnaIs

0[0-7) Local Address[0-31]
1

Transcel\ er Controls
Buffers

and

VMEbus AdJress[1·31)

YMEbu, Data[O-31)

T ransçcl\ cr"

1 local l'lu,

. VMEbu<;)

f 1

lL
32K 1

RAM

132 bIll

r-

~'
~

;;
Cl

~
..J

32K

EPROM

18 bIt 1

•
Output

FIFO

----------t
Output 1 1

Input

FlFO

Control

Regl~ler

~

El c
~ = ,.. Ci := El
-,r, Ci := ::i: _ Ci

- LI. ,-..
!l - -li Lt: ~

:::: LI.
r::.. -

Data

Input
Data

Control
Slgnab

oS È.
~

Local Ru~

Addrcss Decode

D'iACK GeneratIon

ROM Control

R .\..\1 Control

1 ConvolutIOn
1 Array
---- ______ 1

~

a
3:
:>
m
:s
'3.
::
ft)

3
"2-

1'0
3
~ ::.; §.
oJ

•

•

•

3. DMA Engine Implementation

done by writing a command into a set of interprocessor communication registers

on the VIC which are visible both from the VMEbus and the 68020 local bus. The

VIC can then interrupt the 68020 to signal it that a command has arrived. The

68020 reads the command and performs aIl necessary mitialization. In particular,

it programs the VIC which will be responsible for performing the DMA transfers

from host memory into the input FIFO and from the output FIFO back to host

memory. The VIC can become bus mas ter on both the VMEbus and the local

bus and can transfer up to 256 bytes of data without external assistance: the 68020

assists it by keeping track of how many such transfers are required and by initiating

these transfers.

The inclusion of a local CPU means that most of the complexity of controlling

the convolution processor can be implemented in software. Furthermore, the

convolution processor is able to respond to high-Ievel commands from the host

CPU. Apart from performing convolutions, there are commands to specify the

mode of operation and to select the kernel coefficients to be used. The semantics of

the software interface presented to the host CPU will be described in section 3.11.

3.5 VMEbus Interface

The convolution processor must be able to interface ta a hast CPU over a VMEbus.

Revision "C" of this standard is documented in [VMEbus, 19821. A complete

descriptioll of the operation of this bus is beyond the scope of this thesis: sufficE'

it to say that using a standard interface ASIC such as the VIC hides a lot of the

details from the hardware designer. In particular, aIl of the VMEbus control signaIs

connect directly to pins on the VIC without the need for any kind of buffering

or glue logie: this greatly reduces board area requirements, as weIl as the risk

of a design error or of a marginaIly successful interface implementation which

might work with some VMEbus boards and not others. This used to be a eornmon

problem wh en each VME vendor implemented interface cireuitry using eus tom

57

•

•

•

3. DMA Engine Implementation

System Control SYSCLK
ACFAIL*
SYSFAIL*
SYSRESET*

Bus Arbitration BR[0-31*
BGIN[O-3r-
BGOUT(0-3]*
BBSY*
BCLR*

Interrupts IACK*
IACKIN*
IACKOUT*
IRQ[1-7]*

Read/Write AS*
LWORD*
OSO*
OS1*
WRITE*
OTACK*
BERR*

Address A[OO-31]
Address Modifier AM[0-5]
Data D[00-31]

Table 3.1: VMEbus sIgnaIs

logic. Table 3.1 lists the VMEbus signaIs. The following subsections will cover

these signaIs in further detail and describe the hardware interface presented to the

VMEbus by the convolution processor.

3.5.1 Master Interface

VMEbus Arbitration

VMEbus boards can either be bus masters or bus slaves. A bus master initia tes

transfers (either reads or writes), whereas a slave can only respond ta an externally

generated transfer. Sorne buses such as the Industry Standard Architecture OSA)

58

•

•

•

3. DMA Engme Implementation

bus used in IBM PC-compatible systems have a fixed bus master (actually, this is

an over-simplification: it is possible for an expansion board to take control an ISA

bus away from the cru, but this support is primitive at best). The VMEbus allows

any board on the bus to become the bus master. It has 4 Bus Request lines: BRO*,

BRI*, BR2* and BR3*. These are open collector signaIs whlCh are shared by aIl of

the potentiai bus masters. When a bus mas ter wishes to take control of the bus,

it asserts one of the Bus Request Hnes by pulling it low. One of the boards on the

VMEbus (usually in the first slot) is configured to be the system controller. Wh en

it senses that one of the BR'" lin es is low and that the VMEbus is no longer busy

(this is signaled by the fact that the Bus Busy signal BBSY" is J.10t being driven), it

acknowledges the bus request at a given level by asserting the corresponding Bus

Grant signal BGOUTx"'. These granting signaIs are daisy chamed from one board

to the next, where the signal enters the board ~ria the BGINx" pin and exits it via the

BGOUTx'" pm. Empty slots must have jumpers installed to insure the continuity

of the Bus Grant chains .

When a board receives a Bus Grant signal on one of its four BGINx" inputs,

it de termines whether it has requested the bus at that priority level. If it has not,

it simply passes the signal along to the next board on its BGOUTx* output. If it

wanted the bus, it does not pass the signal along and instead drives the BBSY*

signallow to signal its ownership of the bus. This protocol allows multiple potential

masters to request the bus USillg the same priority level: if two such boards require

assert BRx'" at the same time, the one which is physically closest to the system

controller will receive the Bus Grant first and thus take control of the bus first.

When it has finished with it and relinquishes it, the system controller will find that

the BRx" line is still being driven by the second potential bus master and will thus

issue a new Bus Grant signal to it. Note that a bus master is permitted to release

the BBSY'" signal before it has completed its last bus cycle, thus allowing the bus

arbitration cycle to overlap the current transfer cycle and thus reduce arbitration

overhead .

59

•

•

•

3. DMA Engine Impleml3 ntclhon

The system controller determines which bus request to service next based on

three different schemes. In the prioritized (PRI) arbitration scheme, the BRx"'lines

are prioritized su ch that the line BR3"" has highest prionty and tht:' line BRO'" h.1S

lowest priority. If two boards request the bus at the same time, the system controller

will grant the bus to the device asserting Bus Request on the highest priority line.

If a board is currently holding the bus at a given priority lev el and another board

requests the bus at a higher priority, the systenl controller Will asserl the Bu~ Clear

BCLR'" signal ta tell the former device to relinquish the bus as soon as possibll'

(although there is no absolu te limit to the amount of time a device has to relinquish

the bus: it could in the ory ignore the BCLR'" signal).

In the round robin select (RRS) scheme, the system controller assigns the highest

priority to each of the 4 Bus Request Hnes in turn: when a request has been servlced

on the highest priority Hne, it assigns the highest priority to the next one in circular

fashion. This ensures a somewhat fairer allocation of bus bandwidth when several

boards are capable of becoming bus master in the system. On the other halld, It b

usually desirable to assign absolu te priorities: for instance, a board which accept~

input at high speed and has little buffer space should have a higher pnority than

one which can afford ta wait much longer until it gets access to the bu~.

Finally, in the single level (SGL) arbitra tian scheme, aIl the boards in the system

use the BR3'" line to request the bus: priority is thus based solely on the proxinuty of

the board to the system controller. This scheme is used on the backplane of the Sun

3/160 system [Sun, 1989a1. The VIC can be programmed to iSfue Bu~ Requef,l~ on

any one of the Hnes. It can also be configured to act as il system controller supporting

any one of these arbitration schemes by permanently asserting irs SCON'" input:

this feature is not used on the convolution processor .

60

•

•

•

3. DMA Engine Implementation

Address Slze Operation Type AM[5:0]
32-Bit Addressing User Data Ox09

User Code OxOA
Supervisory Data OxOD
Supervisory Code OxOE
User Block OxOB
Supervisory Black OxOF

24-Bit Addressîng User Data Ox39
User Code Ox3A
Supervisory Data Ox3D
Supervisory Code Ox3E
User Block Ox3B
Supervisory Black Ox3F

16-Bi t Addressing User Access Ox29
Supervisory Access Ox2D

Table 3.2: Address Modifier Values

VMEbus Read/Write Cycles

Once il board has become bus master, it can initia te read and write cycles. It first

drives the desired address onto the 32 address Hnes A[OO-31], as weIl as the 6

address modifier bits onto the AM[0-5] Hnes. The valid address modifier values

are listed in table 3.2. They are used ta indicate in which address space the transfer

is to occur. Note that sorne of the address spa ces do not use aIl of the 32 address

Hnes. In partIcular, VMEbus boards which only have a Pl connector (instead of a Pl

and P2 connector) only have access ta 24 bits of address and 16 bits of data: thes~

boards are known as A24D16 boards. It was decided ta implement an A32D32

interface for highest performance and generality, but the VIC can still interface ta

systems with narrower address and data paths. The LWORD* line is asserted ta

indicate a 32 bit transfer: it it is not, a 16-bit transfer is being requested. If a write

is to be performed, the data is put on the D[O-31] lines (or on the 0[0-15] lines for

a 16-bit transfer) and the WRITE* signal is asserted.

Once aIl of these signaIs have been driven and are stable, the Address Strobe AS*

signal is asserted. Typically, a slave interface address decoder will have already

61

•

•

•

3. DMA En~int:' Implt'IlWnl.llion

decoded the address of its module off the address bus Hnes .md will use the AS'"

assertion to begin the transfer. Once it has completed the transfer, the ~I.l\'e moduk

asserts the data acknowledge DTACK" line to signal completion to tIlt:' mastl'!'. If

this was a l'l'ad cycle, the master can then l'l'ad the data off the 0100-31] dat.l

Hnes. If for some reason the slave could not complete the tr.lnsfer (for instance,

the master tried ta address an invalid region of the address ~paCl' of the :-.I.1ve, or

it tried ta perform a 32-bit transfer to a device wluch only has.l lb-bIt lllterfaù'), il

will instead assert the bus error BERR'" signal to natif y the ma~tl'r th.lt the transfe!'

could not be completed successfully. It is then up to the ma~ter to decidl' what to

do (typically, an exception would be raised and signal would be sent to th\:' proCl'~~

which attempt the transfer).

Convolution Processor Master Cycles

The convolution processor DMA engine becomes bus master during DMA transfers

ta and from the memory of the hast CPU. Details of how the local 68020 interact~

with the VIC ta control these transfers will be presented in section 3.8. For now,

suffice it to say that when the 68020 wants to initia te a DMA transfer between

one of th'2 FIFO memories and the host CPU memory, it attempts a rl'ad or wrill'

operation to an address which the on-board address decoding logie maps onlo thl'

VMEbw, address space. Once this IS detected, the VIC attempb to gain controlllf

the VMEbus using the Bus Request/Bus Grant protocol outlined 1ll ~l'('tlon]5. J.

Once it has done that, it then takes control of the local bus away from the 68020 and

begins the transfer directly between the hast CPU memory and the input or output

PIFas. The arbitration scheme for the local bus is explained in section 3 7.2. Thl'

VIC is able ta transfer up to 256 bytes of data on its own (Le. 64 long word tran~fer~),

after which it rel;'1quishes control of the local bus ta the 68020 whieh can schedule

the next transfer. Note that this model assumes that the host CPU ill1plement~ a

slave interface which allows another processor access to its memory: thb i~ not an

unreasonable assurnption since most VME-based disk or network controllers have

62

•

•

•

3. DMA Engine Implementation

bus-mas ter interfaces and access buffers directly in host CPU memory .

3.5.2 Slave Interface

Although a slave interface to the convolution processor was not strictly required,

it was implemented sin ce most of the required functionality is built into the VIC:

furthermore, this feature can be used in a few cases, and increases the generality

of the design. The slave select decoder is implemented in the traditional way

with PALs and user-setable jumpers which allow the selection of different address

ranges. The VIC presents two distinct slave interfaces to the VMEbus. First, it

responds to slave A32 transfers (Le. in the full 4 Gb address space) which map

into the local RAM of the convolution processor. A PAL looks at the A16 to A31

address lines, which yields a decoding granularity of 64K: this is more than what is

needed since there are only 32K bytes of local RAM memory which must be made

visible to the host Cpu. A bank of 4 DIP switches allows the selection of 4 possible

base addresses which means that the 64K window can be mapped at 4 different

positions in the 4 Cb A32 VME address space. In order to keep the address decoder

as simple as pos~,ible (in effect, allow it to fit in a single 20L8 PAL device), these 4

base addresses are hard-coded in the PAL equations. Table 3.3lists the DIP switch

settings and the corresponding base addresses: if none of these are usable in the

target VME system, a new address decoding PAL will have to be programmed

with a ditferent set of base addresses. Note that the slave interface only has access

to the first 64K of the 256K local bus memory map: this is desired, since the host

CPU should not try to read/write directly to the board control registers or the

input and output PIFOs, and accesses to the VIC internaI registers is not allowed

from the VMEbus side (section 3.6.2 covers the local bus memory map in greater

details). Aiso note that the slave access decode signal from the PAL is fed to the

SLSELl· input of the VIC: there also exists another slave select input, SLSELO*,

but this input is defective on the revision of the chip used in the system and is thus

63

•

•

•

3. DMA Engine Implt:'mentation

52-4 52-3 52-2 52-1 Base Addref-s
0 0 0 1 Ox1FFOxxxx
0 0 1 0 Ox5FFOxxxx ---
0 1 0 0 Ox9FFOxxxx
1 0 0 0 OxDFFOxxxx

Table 3.3: Slave Select Base Addrt'ss

strapped high.

3.5.3 Inter-Processor Communication Registers

The VIC has eight Interprocessor Communications Registers (ICRs). These art'

accessible from the VMEbus without requiring the VIC to become local bus master,

and are accessible from the local bus without requiring VMEbus arbitration. Pive

of these registers are available for general-purpose use. Furthermore, the VIC has

four Interprocessor Communications Global 5witches (ICGS~) and four Intl'rpro

cessor Communications Module Switches (ICMSs). In aIl cases, these faclhtie~ are

accessed wh en the inter-processor communications facilities select ICFSEL'" input

of the VIC is asserted and the address of the register IS specified using the VME

A[S-1], LWORD"', D51* and D50'" addressing inputs: ICF5EL * is decoded in the

A16 VMEbus address spa ce (i.e. the short address space). A single 20LH PJ\L

device decodes this address space: based on the settmgs of the SI DIP switche~,

it decodes a 64-byte memory region which can be based at one of seven differcnt

base addresses. These base addresses are hard-coded into the PAL equation~ and

can be changed if none of the pre-defined regions are available in the host system.

Table 3.4 lists the current values for these base addresses. On the local-bus side,

these registers are addressed in the same way as the other VIC mternal registers

(see section 3.6). These registers will be used in the following way: when the host

cru wishes to instruct the convolution processor to perform an action, it will write

a 5-byte message into the IrC registers: this message will take the form of aI-byte

64

•

•

•

3. DMA Engine Implementation

51-7 51-6 51-5 51-4 51-3 51-2 51-1 Base Address
0 0 0 0 0 0 1 Ox1FFOxxxx
0 0 0 0 0 1 0 Ox5FFOxxxx
0 0 0 0 1 0 0 Ox9FFOxxxx
0 0 0 1 0 0 0 OxDFFOxxxx
0 0 1 0 0 0 0 Ox9COO
0 1 0 0 0 0 0 OxBCOO
1 0 0 0 0 0 0 OxDCOO

Tab)e 3.4: Interprocessor Registers Base Address

opcode and a 4-byte pointer to an optional parame ter block somewhere in either

host or local memory. It lNill then write to one of the interprocessor communication

switches, which is programmed to generate an interrupt to the local 68020. The

local cru can then read the command to be performed From the registers. When it

has fini shed its task, it will write the result code back into the registers and generate

a VMEbus interrupt to signal the host cru that the operation has been completed

and that a completion status is available. Thus neither the host cru nor the local

68020 have to wait for each other: they can proceed asynchronously from each

other while awaiting interrupts.

3.5.4 Interrupt Generation

The VMEbus has seven prioritized Interrupt ReQuest lines labelled JRQ[1-7]* Oevel

7 has the highest priority). These are open-collector lines which are shared by aIl

of the boards in the system. Whenever a board wishes to generate an interrupt, it

asserts the corresponding JRQx* Une. In a manner very similar to the bus master

arbitration scheme describecl in section 3.5.1, a board in the first slot acts as system

controller: when it detects an interrupt request, it asserts its Interrupt Acknowledge

JACK* output. It also asserts its IACKOUT* output, which is connected to the

IACKJN* input of the its neighbor. FinaIly, it puts the encoded level of the interrupt

it is responding to on the A3-Al address lines. Wh en the interrupter sees JACK*

65

•

•

•

3 DMA Fn~\llt' Implt'Ilwnl.ltinll

and IACKIN* asserted, it compares the encoded interrupt level on the address

Hnes with the level of the interrupt It has generated. If they match, Il dn\'es .1 ~tatu~

ID value onto the low 07-00 data Hnes. If they don't match (nr if .1 b(l.ud gel:-

IACKIN* and lt has not generated an mterrupt), the board prop.1g.1tes tl\l' ~lgnal

via its IACKOUT* output to the IACKIN* input of the next board m daby-cham

fashion. Empty slots must have a jumper installed to insure the contllluitv ot the

chain.

Interrupters can release the IRQx" Hne either whcn they gel the interrupt .1c

knowledge (this scheme is known as Release On AcKnowledge, ROAK), nr they

can wait for the system controller to read a status register (Read On Rcgister Ac

cess, RORA). When acting as system controller, the VIC can lkal with both typl'S

of interrupters: this capability is unused in this system, sinee the board will not

be the system controller. Rather, the VIC will be used to generall~ lI1tL'rrllpt~. It~

internai registers are programmed to speClfy which interrupt line tn l\~L' to gener

ate mterrupts for the host based on the ll1terrupt leveb u~ed by the otl\l'r board

in the system. Note that several boards can share an interrupllll1L' ~ince the~L' are

level-triggered: the board which is geographically close~t ta the system controller

will have higher priority in that case. Interrupts will be used to signal the ho~t

that the convolution pro cess or has completed the requested action, as explailH-.'d in

section 3.5.3.

3.6 Local CPU Bus

3.6.1 Local Bus Structure

The local bus IS simply that of the Motorola 68020 cru, wluch nunimize~ the

amount of glue logie since the VIC is designed to interface directly to ~uch a bUf>.

The 68020 has 32 address lines and 32 data lines. It supports vlrtual memory

66

•

•

•

3. DMA Engine Implementation

through an external 68851 Memory Management Unit which is incorporated into

the 68030. Since a 68020 is used as a contr\.)l processor, the lack of memory man

agement actually simplIfies the task at hand. Real addresses are used throughout

the board. Host memory is also accessed using real addresses in most cases, which

means that the operating system running on the host needs to be able to lock the

source and destination image buffers into contiguous physical memory. Sorne

Sun computers implement a scheme called DVMA (Direct Virtual Memory Ac

cess) [Sun, 1989b] which allows addresses coming from the VMEbus to be mapped

into virtual addresses in host memory: this relaxes the constraint that the image

buffers be mapped into contiguous memory regions, although it is still desirable

ta lock these buffers into physical memory ta prevent a large performance loss if

pages are not resident when they are accessed and need to be paged in from disk.

The 68020 local bus is addressable in byte (8 bits), ward (16 bits) or long word

(32 bit) increments. There are no restrictions on data alignment, or on the size of

rnemory de vices which can be attached to the bus. For instance, an 8 bit wide

rnemory (such as the EPROM which holds the bootstrap code) can be connected

to the bus. The 68020 encodes the size of the data transfer onto its SIZ! and SIZO

outputs, and encodes the operand alignment on the two low-order address Hnes

(AI-AO). The decoding IOglC for the addressed module looks at these inputs and,

based on the size of the port, it signaIs how rnany bytes of the transfer it was

able to accept/ deliver wh en it acknowledges the completion of the transfer using

the DSACKI" and DSACKO" Hnes (note that, as for the VMEbus, the 68020 bus

uses an asynchronous bus protocol). In the worst case of an unaligned long-word

transfer to a byte-sized port, a single read or write instruction can generate four

separa te bus cycles. Although this yields a lot of flexibility for the programmer,

it adds a lot of complexity to the 68020 bus interface circuitry. Current RISC

architectures such as the MIPS R3000/4000 are much less forgiving: they impose

strict requirements on operand alignment, and compilers for these architectures

will frequently pad C language structures in arder ta align structure elements

67

•

•

•

3. DMA Engitlt:' Impltmwnt,lhon

on word or long-ward boundaries [MIPSASM,19871. Furthermore, it h.l~ heel\

suggested that portable C code should be debugged on machint:'~ which IlllpOM'

strict alignment constraints, smŒ such code will th en work on ma('hinl'~ which are

more forgivmg. Further details on the operation of the 68020 hu~ l'an hl' found in

section 7 of [MC68020, 1989].

3.6.2 Local Bus Memory Map

Table 3.5 describes the on-board memory map for the 68020 local bu:;.. The total

address space is 256K, replicated throughout the 68020 4Gb physical addn's~ ~paCL'.

The 32K byte EPROM is rnapped at address 0 since when the 68020 CPU I1r~t power."

up, it reads its Reset Initial Interrupt Stack Pointer from addres~ OxOO()()OOOO and it~

Reset Initial Program Counter from address Ox00000004 Thl' former l~ inillahLl'd

ta the top of the 32K static RAM (mapped next from 32K tn MK) S1I1CL' tllL' hH020

stack grows downwards. The latter 15 imtIalized to the beginning of tllL' power-up

code sequence in the EPROM. Note that the 68020 attempt~ to perform 32-bll reacb

for these values: sinee the EPROM only acknowledges an 8-blt tran~fl'r, tlll' 6H020

must then perform 3 extra reads ta get the remainder of the opcrand Furthermnrl',

since the EPROM is a relatively slow device with an aecess time of 150n~, the bll~

control logic which generates the DSACKx* SignaIs ll1~ert~ a delay (walt ~tate)

whenever the EPROM 15 accessed. For aU of these reasons, after thl' llutlaliLation

of the board is completed, the remainder of the code (in particular thl' code which

must execute rapidly during DMA transfers) 15 copied mtn the much fa~ter 32 bit

wide static RAM where the 68020 will be able to access it at full speeù

The static RAM is composed of 4 8Kx8 devices which are connectl'd tn the 32

data lines to form a 32-bit wide path. These memories have an acce~f, tlllle of 5'lnf"

which means that the local bus controllogic can acknowledge tran~ferf, a~ ~o()n a..,

they are decoded, thus allowing the 68020 ta opera te at full speed when acce~~ing

RAM. Both the EPROM and the RAM are accessible From the VMEbu~ dunng VME

6R

•

•

•

nctIOn
(li EPROM Bo

Lo
,lIC
Bo

cal RAM
-
regl~ter~

ard Control Register

!~~ ut FIFO
Ou tput FIFO

LA17
0
0
0
0
1
1

3. DMA Engme Implementation

LA16 LA15 Comment
0 0 32K length
0 1 32K length
1 0 2561acations, mirrored 128 times
1 1 1 laca tion, mirrored 32K bmes
0 0 1 location mirrored 32K tlmes, write cycles
0 0 11acation mirrored 32K times, read cycles

Table 3.5: Local Bus Address Space

slave cycles. Section 3.7.2 explains of how the local bus is arbitrated between the

68020, the VIC and the VMEbus.

The 58 VIC internaI registers are mapped from 64K to 96K. Only the lower 8

bits of the address is significant, 50 the registers are rnapped 128 times within this

32K addressmg region To signal a reglster access, the bus controllogic asserts the

VIC Clup Select CS* input. Although the VIC supports other access modes, the

current deSIgn always uses longword accesses aligned on longword boundaries

(i.e. address Imes Al and AO are bath zero). The VIC will acknowledge a 32-bit

transfer, even though only the 8 least significant bits of the transfer are relevant

(the reglster~ are all 8 bits wlde). Note that the registers are only accessible from

the local bus. hence the need for a local CPU if only to initIa lize the VIC after

re~et. Section 3.9 will go mto further details with respect ta the programming and

operation of the VIC.

A 32-bit wide, write-only control register is mapped From 96K to 128K (the

use of gl'neral-purpose PAL devices for address decoding prevented a finer grain

of address decoding). This register is used ta control the rest of the convolution

processor: for instance, sorne of its bits signal the size of the data in the input

FIFO. The reglster IS write-only smce this was the eaSlest way to irnplen1ent it. A

cop" of the value of this register is kept in one of the 68020 internaI registers at aIl

times. Thus wh en a single bit needs ta be set or cleared, a rnasking operation is

performed on that register and the new value is then written to the external control

register. In this way, the logic needed to control the rest of the convolution pro cess or

69

•

•

•

3. DMA Engillt' Impll'lllent.ltlOll

can be Implemented entirely in software: this design appro.lch WolS ChOSl'1l 10

increase modularity and to allo\\' different people to work (-'Il the components ni

the system with maximum independance. The dl'Yice~ used 10 implen1l'nt thb

register (74F374s) are fast enough ta allow full-spel~d acces~ by tllL' cpu.

The input and output FIFO menlories which are connected to tlll' Cl)!l\'ollition

array are mapped from 128K to 256K. They can be viewed as a ~inglL' 32-bit wide

port replicated 128K times in that address space. A write cyde will wrile into tlll'

input FIFO, a read cycle will read from the output FIFO. Four 2Kx9 de\'kl'~ aIl'

used to implement each of the two FIFO memories (only 8 bib out of thl' nllll' arl'

used), which rneans that there is 8K bytes of buffering bath at the input and at the

output of the convolution array. The devices have an acccs~ time of 6!in~, which

means that they can be accessed at the full speed of the local bus In the wor~t

case of 64-bit floating point input to and output From the array, li transfer raIL' of

12.5 Mb/sec is required ta prevent the convolution array from ~talhng. TIll~ "bu

me ans that given an mput FIFO full of data, the array will stùll if tlll' convolution

pro cess or is locked out of the bus for more than 655 mlcrosl'cond~, WlliCh b qllitl' ,l

short bus period. On the other hand, it is anticlpated that in mo~t Cù~l'~ tlll' systt'Ill

will be running with 8-bit input and output, which yields a much mon' comfortabll'

buffering interval of 5.25 nlSec. Furthermore, the devices WL're ~e1L'ctl'J il couple

of years aga: since then, the same nlanufacturer (Cypress) has COl1ll' out wlth Plll

compatible devices with up to 32Kx9 capability' it would thu~ bl' ea~y ln incrl'a~,(1

the capacity of the FIFOs If needed.

3.6.3 Local Bus Control Logic

In figure 3.1, the block labelled "Local Bus Address Decode DSACK Genera ti on"

implements most of the local bus control logic. Section 3.6.2 lbted the contenb

of the local bus rnemory map: figure 3.2 shows how this l~ implemenled Two

20L8 PAL devices are used to decode local address lines LA15-17, glving the 256K

70

•

•

•

3. DMA Engine Implementation

RIM_ ..

lusent
PAl ...

r--

-;:::= .USCTL2
PAl ... -

1
'4SlO Qr-

[
'4531

Figure 3.2: Local Bus Control Logic

total address space of the on-board bus. The A16-A19 68020 address lines are

also used to indicate which address spa ce the CPU is accessing during interrupt

acknowledge cycles. Note that it would not have been pOSSIble ta save winng by

leaving the A20-A31 address lines unconnected since these are used to speclfy the

VMEbus base address for DMA transfers, as explained in section 3.8. Since a larger

address space was not needed, it was d!:'clded that an address decodmg scheme

using a single PAL device (and hence introducing a single device delay) would be

preferable in order to gain more performance.

The local bus static RAM is controlled by the signaIs RAM_EN*, RAM_OE*

and RAM_ WEO-3*. The former is used ta select the RAM when the proper address

range 15 present on the local bus address lines. This signal is gated by the PAS*

or Physical Address Strobe signal which is generated either by the 68020 or by

the VIC, depending on which device is currently local bus master. Other terms

are used to restrict access to either 68020 accesses or VMEbus slave accesses. Full

dptails of the PAL equations are beyond the scope of this document.

The RAM_OE* 15 used to signal to the RAM whether the cycle is a read or a

wri te: it is sim ply derived from the local bus R/W* line. Note tha t all READ accesses

71

•

•

•

3. DMA En~int:' Impll'mt'lltation

to the RAM are 32 bits wide and will be signalled as such by tht' tr..1n~ft'r acknowl

edge generation logic. Finally, the RAM_ WEO-3* signaIs art' u~ed tn indi\'idllally

select each of the four 8-bit devices which make up the 32-bit wlde l1ll'nlOrv. This

complexity is required by the 68020 bus protocol which allow~ unahgllL'd wntl'~.

The ROM_EN'" signal is used to decode read cycle~ for the 32K EPROM which

contains the startllp code. Since the EPROM interface is only H blt~ \Vldl', tlll'

EPROM is only uo;;ed for power-on code: the neces~"ry instructions will thl'n Lw

copied to RAM from which the 68020 will be able to execute at full ~peed Thl'

CTRLREGWE is used ta latch the current value of tht' local bus data 11l1L'~ mto thl'

Array Control Register: this register is write-only (in order to minimizl' the amount

of logic) and a software image is kept in a 68020 register to perfarm the necl's~ary

masking operations.

The CS'" signal is generated when the 68020 tnes tn acce~~ the portion of tI1L'

address space into wluch the VIC control registers arc mappcd Whl'n tilt' 6H020

attemps a transfer in address space Ox03 (as indicated by its FunctlOn COdl' FO)·

2 outputs), this is used ta assert the MWB'" signal wluch signab the VIC th.lt

the 68020 wishes to perform a VMEbus lllaster cycle: this is further eXplallll'd III

section 3.7.2. The FCIACK'" signal is generated when the 68020 FCO-2 Function

Code lines indicated a CPU Space access and the 68020 l~ performmg an Interrupt

Acknowledge cycle. this signal is used as an inpu t to the VIC, which reljUlrl'~ il in

order to perfornl its function as on-board interrupt controller.

The INFIFOWE* and OUTFlFOOE'" signal are used to respl'cti vely write thl'

current value of the local bus data Iines into the Input FIFO or removl' a word from

the output FIFO and put in on the data lines. These two signab can bl' generated

either during VMEbus DMA transfer cydes or during nonnal cycles illltiated by

the 68020: this allows the local CPU ta lnltialize the input FIFO with the proper

amount of 0 val ues required to "fiU the pipeline", as weIl a~ c; '~r the output FI FO of

the initial invalid results which are generated before the array i1cl~ been completely

72

•

•

•

3. DMA Engine ImplementatIOn

initialized .

Finally, the DSACKO'" and DSACKl'" signaIs are used to acknowledge the

completetion of ail local bus cycles. Most devices on the bus are fast enough not to

required any "wait states" (of course, a wait state is somewhat of a fuzzy concept

in an asynchronous bus architecture): the 68020 allows accesses to fast de vices to

be acknowledged in advance, and in this case this is done by simply NAN Ding

aU of the individual device enable signaIs. This is possible in part since the 68020

is running at a falrly slow speed of 12.5 MHz: a faster CPU dock speed might

have required the insertion of additional delays. The only exception are accesses

to the EPROM, which is a fairly slow device with an access time of 150ns. A JK
latch driven by the CPU clock is used to add an extra clock cycle of delay, which is

sufficlent to insure that the outputs of the EPROM have stabilized on the local bus

data lines. 5ince the DSACKO'" and DSACK1'" signais are open-collector, 74538

open-collector NAND gates configured as inverters are used to drive these signaIs:

thus in the case of VIC register or VME bus accesses, the DSACK'" signaIs are

generated by the VIC and not by th1S controllogic.

3.6.4 Local Bus Arbitration, Deadlock Resolution and Reset Logic

The block labelled "Deadlock Arbitration Bus Control" in figure 3.1 implements the

remaining local bus control functionality not covered in the previous section. Com

binatoriallogic is handled by a 20L8 PAL device whereas sequentiallogic is housed

in cl 16V8 Lattice GAL device (a GAL is basically an electrically reprogrammable

PAL). Figure 3.3 is a block diagram of this circuit.

When the VIC senses a VMEbus BERR'" signal in response to an attE'mpted

VMEbus transaction, it will assert the local bus LBERR'" signal: note that LBERR'"

is also cUl input for the VIC to allow it to detect a bus error for any local bus

transactions and pass this signal on to the VMEbus if required. The 20L8 PAL

73

•

•

•

lE"" 020'
H"LT 020'

OEI'"
ITL"acC'

~ RESET 020-

< 1'"

'AL20UI

aAL111VB

3. DMA En~int:' Impll'mpntatÎon

RE~ET·.I
CPUCLK 1

LIR'
10'

Figure 3.3: Local Bus Arbitration, f'?adlock Rf'solution and Reset Lo~ic

passes this signal on to the 68020 as BERR_020*, since for the 6R020 thIS signal

is an input only. Similarly, the VIC HALT* bi-directional ~ignal b pd~~L'd on a~

HALT _020* to the correspondmg 68020 input When the VIC detect~ a VMEbu~

slave access request concurrent with a local CPU request for the VMEbll~, Il a~~l'rt~

its DEDLK* output: tl-.c bus control logic asserts both BERR_020* and HALT_020",

which signaIs the 68020 that it should back off from the bu~ cycle It is attempting and

should retry it when these signaIs are no longer asserted. Note that ~inn.' VMEbu~

slave cycles (where the host CPU is trying to accest> the on-board memory of the

convolution processor) only occur dunng the imtializatlOn phase, it b unhkely that

such deadlock situa~lons will ever occur. Nevertheles~, since the VIC already offer~

this functionality, it was inc1uded into the design. The 20LR also generate~ u cnuplt·

of other signaIs, OEBA" and BTLABOC" which are used to control the transceivers

and address latches during VIC-controlled VMEbus DMA transfer cycle~.

The 16V8 implements a simple state machine which is used for arbitration of the

local bus between the 68020 and the VIC When the VIC requlre~ tlll' local CPU bu~,

it asserts its Local Bus Request LBR* !;ignal. In response, the state machine af>~ert~

the 68020 Bus Request BR* signal. Wh en the 68020 detects thls and completef> it~

74

•

•

•

3. DMA Engine Implementation

currently executing bus cycle, it asserts its Bus Grant BG* output. This is passed

on to the VIC Local Bus Grant LBG" input. At the same time, the 68020 Bus Grant

ACKnowledge BGACK* signal is asserted and its BR" input is negated. At that

pomt, the VIC owns the local bus When it no longer requires Ît, it will negate its

LBR" output. the arbitratlOn logic then negates the 68020 BGACK* input and the

68020 regains ownership of the local bus.

3.7 VMEbus-Local Bus Interface

3.7.1 Bus Transceivers

Although the VMEbus is quite similar to the local bus of a Motorola processor,

there is nevertheless a significant amount of interface circuitry which must be added

between the two. For one thing, the bus drivers of a 68020 are not power fuI enough

ta drive the VMEbus lines directly, and thus must be buffered. AIso, the 68020 local

bus is more lement about unahgned transfers than the VMEbus is. FinaIly, the two

buses must be isolated from each other to allow concurrent operation, but must also

be connected together when required. For aIl these reasons, a series of transceivers

are used ta connect the two.

First of aH, the lower 8 VMEbus data Hnes (00-7) and the lower 7 address Hnes

(Al-7) go directly through the VIC, which handles aIl of the necessary buffering

and arbitration. The 24 upper address Hnes are connected through 74F543 octal

latching transceivers. The latching capability is required to support write posting, a

technique where the local CPU can do a single write to the VMEbus without having

to wait for the completion of lhe write on the VMEbus (the address and data having

been captured in the latching transceivers). Three octallatches (74F373) with their

inputs connected to the LDS-31 local data Hnes and their outputs connected to the

LAS-3I address lines are used to implement black transfers. The VMEbus 08-31

75

•

•

•

3. DMA Engine Implt'mentcltiol\

data Hnes are connected to the local D8-31 data Hnes also using 74F543 octallatching

transceivers. Additionally, 74F245 octal transceivers are used on tl1l' local si dl' 10

implement byte-s\vapping functionality required to allow un-ahgned transfers. Ali

in aIl, 13 latches and transceivers are required to implement the interface betWl'l'll

the VMEbus and the 68020 local bus, which requires a fair amount of board clre.1 dUl'

to the use of large DIP (Dual In-line Package) devices. Fortunately, tlu' VIC provldl'S

aU of the control signaIs needed to drive the control inputs of these dl'vicl'~, so thi~

minimizes the affiount of extra logic required. Since this design was complett. .. 'd, .1

companion device to the VIC called the VMEbllS Address Controllt'r (VAC) w.1~

introduced: the VAC incorpora tes aIl of the address bus transceivers and latchl'~,

as weil as address de co ding circuitry, two seriaI ports and other useful feature~.

Had the VAC been available at the time of the design, it wOllld ll.1vl' bel'n uSl:'d.

3.7.2 Local Bus Arbitration

Slave Accesses frorn the VMEbus

Wh en a master on the VMEbus accesses the address range decoded by the slave

access decoder, this asserts the SLSELI * input on the VIC. Thb signaIs tIlt' VIC that

the external bus master wishes to access resources which are on the local CPU bu~.

The VIC then asserts its Local Bus Request (LBR*) which is connected ln the BlI~

Request (BR*) input of the 68020. Wh en the 68020 sen~l'~ its BR* input go low, il

completes the current bus cycle, tri-states aIl of its outputs which control the local

bus and then asserts its Bus Grant (BG*) output. The arbltration controllogic U~l'~)

this signal to generate the Local Bus Grant (LBG) signal to the VIC, tlw Hu~ Grant

Acknowledge (BGACK*) signal to the 68020 and to negate (BR"') to lhe h8020

The VIC interprets the assertion of LBG* as the signal that it now OWll~ lhe local

bus: it then connects the local bus address and data lines to the VMEbu~ addre~~

and data lines through the control inputs of the addres~ and data tran~celver~ .

76

•

•

•

3. DMA Engine Implementation

The local bus decoding logic then decodes the slave access to the proper on-board

module (in this case, only the EPROM and RAM are accessible). When the on

board acknowledges DSACKO-l* are generated by the local bus controllogic, the

VIC senses these and generates a VMEbus DTACK* to signal the VMEbus master

that the transfer has been completed. The VIC then deasserts LBR*, which causes

the local bu~ arbitration logic to deassert BGACK* to the 68020, which takes back

control of the local bus.

Master Accesses to VMEbus

Wh en the 68020 wants to access a memory location on the VMEbus, it first loads

the function code Ox03 into either the Source Function Code (SFC) register or

the Destination Function Code (DFC) registers using the Move Control Register

(MOVEC) instruction. It then issues the Move Address Space (MOVES) instruction

which transfers data between an internaI 68020 register and a memory location

in the address spa ce specifIed by the code previously loaded into SFC or DFC.

Address space Ox03 is reserved by Motorola for user expansion, and in this case the

on-board address decoding logic maps it onto the VMEbus A32 address spa ce. The

VIC Module Wants Bus (MWB) lS then asserted, and the VIC proceeds to become

bll~ mas ter on the VMEbus (if 1t does not already own it) using one of the arbitration

protocols olltlined in section 3.5.1. Once it has obtained ownership of the VMEbus,

it connects the local address and data Hnes to the VMEbus address and data Unes.

It can derive the values to be driven onto the VMEbus Address Modifier (AMO-5)

lin es based on the 68020 FCO-2 outputs, or since in this case FCO-2 will always have

value 3 for VMEbus accesses, it can take this value From a previously programmed

lllternai register.

Once the VIC has received DTACK'" From the VMEbus module to acknowledge

the transfer, it asserts DSACKO* and/or DSACK1'" to signal the 68020 that the

transfer has been completed. At that point, it can either relinquish control of

77

•

•

•

3. DMA En~lI1l' Implt'll1l'nt.lhon

the VMEbus or keep it in anticIpation of a next cycle baR'd on tllL' w.w lt h.1S

been programmed. Note that the VIC does not lwed to i"lcklwwledge Il) the ht'02ll

that it has acquired control of the VMEbus. to the 6H0211, a rl'ad nr wrilt.' ,-,,,dl'

over the VMEbus is completely transparent (although much longer than .ln accl'~~

to a function local to the board). If the 68020 needs to do a single write to a

VMEbus module, the VIC can be progranuned to implement writl' pl)sting, wllL'rl'

the values driven onto the 68020 data and address lines art:' capturl'd bv the latching

transceivers and DSACKO*, DSACKl* are returned right awa)' to tllL' 6H020. TIll'

VIC the perforrns the VMEbus write cycle on its own, wlllle allowmg tlll' 6/'{020 10

continue to issue cycles which affect only local-bus modllle~. If tht' wntl'-postl'd

cycle ends in a VMEbus Bus ERRor (BERR*), the VIC will issue an intl'rrllpt ln Ihl'

68020 to signal this occurrence: since this can come severallocal bll~ cvdl'~ artel'

the write was posted, the 68020 software must be cardul in kl'l'pmg track of which

posted writes are outstanding and 111lght possibly bl' ~ignall'd a~ havll1g Il'rmin.lll'd

with an error .

3.~ VMEbus DMA Transfers

As outlined previously, most of the work required to transfer data from ho~t ll11'm

ory to the input PIFO and from the output PIFO back to host mt:'mory 15 done by

the VIC, with the assistance of the 68020. After a period during which the convo

lution array has to be filled, results begin to come out of the array mtn the output

PIFO. The Half Full (HP) output of the output PIFO 15 connecled tn the I.OCill

Interrupt ReQuest 7 (LIRQ7*) input of the VIC: when this FIFO become~ half-full,

the VIC will detect a HIGH to LOW transition on that input and will generatl' an

interrupt ta the 68020. The 68020 will acknawledge that interrupt by mitiillll\g a

CPUSPACE cycle (Le. a read cycle where the Functian Code (FC2-0) outpul~ are

all 1). The local bus controllogic decodes thls to assert the VIC Function Code

Interrupt ACKnowledge (FCIACK*) input. The VIC responds by driving an mter-

7H

•

•

•

3. DMA Engine Implemen!ation

rupt vector onto the 8 Jr'wer data Hnes 00-7 and asserting OSACKl"', OSACKO

The 68020 will then execute an interrupt service routine (it will fetch the address

of thb routine from the entry in the interrupt vector table corresponding to the

interrupt vector supplied by the VIC) to start a DMA transfer to empty the output

FIFO by writing the results back into host memory over the VMEbus. Although

the interrupt procedure introduces a bit of delay, this is not a problem since the

output FIFO 15 only half full when the interrupt is generated. Sin ce the convolution

array opera tes synchronously (Le. every time a result is written to the output FIFO,

a datum is removed from the input FIFO), there is no need to generate interrupts

wh en the input FIFO becomes empty: aU that is required is that as many operands

are written mto the input FIFO as are removed from the output FIFO. The 68020

computes how much data must be transfered based on the operand sizes used for

the source and destination images.

The first action of the 68020 interrupt handler is to initia te a 32-bit write to the

VMEbus destination address. This will cause the local bus arbitration logic to assert

Module Wants Bus M WB* to the VIC: having been properly configured beforehand,

the VIC will interpret this assertion as an indication that it must perform a VME

block transfer with local DMA. It will simultaneously arbitrate for control of both

the on-board local bus and the VMEbus. The VIC interprets the address of the

triggering write cycle as the source/destination address on the VMEbus and the

data as the address on the local bus: this is made possible by the use of latching

tran~ceivers and extra latches which are used to capture these values. Since the

VIC drives directly the lower 8 bits of the address and data buses on each side,

it can "count" up to 256 (one of its registers is used ta de termine the number of

cydes in a black transfer, from 1 to 64). With additional counters, it is possible to

get It to perform transfers up to 64K in length .without any outside L- i.E'r'lelltion:

unfortunately, this feature was documented as not working properly:r 'lerslOn

of the device. Again, had the VAC companion chip been available at the time of

device, it would have been selected since it takes care of everything that is needed

79

•

•

•

3. DMA EngiIlt:' Implemt:>nt.1lion

for longer transfers .

Nole thatsince a11local transfers will be performed to the FIFOs, thl' data pl)rtinll

of that triggering cycle does not need ta change. Furthernl0rl', althollgh the VIC

will be incrementing the lower 8 address bits on the local bus, this dlW~ not CùllSl'

any problems since, as shown in section 3.6.2, the FIFOs are repllea tl'd throughOllt ,1

32K section of the local bus address space. In arder to simplify the control ~oftwaI'l',

these 256 byte transfers will always start on 256-byte boundarks. Smel' thb l1light

be an unreasonnable restriction to place on the location of image buffl'r~ 11\ host

memory (it might be difficult to guarantee such aligment wlth certam operatmg

systems), the first and last transfers for an image can be shorter and handll'li as a

special case.

Once the VIC has obtained ownership of bath buses, it connect~ thl' two lhrough

the latching transceivers and begins ta transfer data using 32-bit wlde local hu~

cycles and VMEbus black transfers. The length of the~e VMEbu~ bur~t~ can hl'

programmed ta prevent other devices on the bus from being lockl'd nut for too

long. Ideally, it would be desirable to be able ln lower the arbItratlOn oVl'rhead a~

much as possible by keeping these bursts fairly long: a Cl'rtain amount of tuning of

this parameter will be required for every system m which the convolutIOn proce~~llr

will be installed If the VIC is programmed for bursts of less than 64 tram.fer" (i l'

256 bytes), it will relinquish the VMebus and re-acquire il between bur~t~. Sincl'

there is not much else for the 68020 to do during that lime, the VIC will not bother

releasing control of the local bus.

While the VIC has control ofboth the VMEbus and the local bus, the 6H020 1~ able

to keep 011 executing sin ce it has a 256 byte mternal mstructlOI1 cache The DMA

transfer controlloop is coded to fil entirely within this cache, whl're it will rl'main

after the first iteration of the loop has been executed As long as the CPU ÙOl'!-.

not need ta perform any external bus cycles, il can keep on executmg instructiol1!-.

even though lt has relinquished control of the bus. In this case, aIllt neeùs to do IS

80

•

•

•

3. DMA Engme Implementation

increment the VMEbus DMA base address by 256, decrement a counter indicating

how many transfers are left in order to empty 4K of data from the output FIFO

(remember that thb operation IS triggered by the Half Full flag on the BK output

FIFO) and mitiate the next tnggering 32-bit write to VMEbus address space. At

that point, the 68020 will staIl since it does not have access to its bus.

When the VIC has finished lts 64 cycles, it relinquishes control of the VMEbus

and the local bus The 68020 can then complete its stalled triggering cycle, thus

starting the pro cess over again. After 16 of these DMA transfers from the output

FIFO to host memory, the control software proceeds to read fill the input PIFO

correspondingly, Le. read as many operands into the input PIFO as were taken

out of the output PIFO. This might end up corresponding to differing anlounts

of memory based on mput and output operand size: in the case where input

operand size 15 larger than output oper and size, fewer output than input DMA

bJock transfers Inight be performed .

3.9 VIC Conlrols

The Cypress VIC-068 VME Interface Controller is an integrated VMEbus interface

devicc which greatly simplIfies the design of a nlaster /slave VMEbus interface.

Section 3.5 ~howed how i t is used to implement the interface between the VMEbus

and the 68020 local bus. this section looks deeper into its operation.

The VIC is controlled by 58 byte-wide registers which must be programmed

from tht:' local-bus skie' th us although it might be possible to build a state machine

to do thlS, the VIC is really meant for applications where a cru is present on the

board. Sin ce every aspect of its operation can be configured in software, it is very

Hexible and can be configured for most applications. Each group of registers will

be looked at and their use with respect to this design will be discussed .

BI

•

•

•

3. DMA EnguH.' Implt~ml~nt,lllol\

3.9.1 Interrupt Registers

The VIC can act as an mterrupt generator / controller for both the local CPU bll~

and the VMEbus. It can receive interrupts froll1 the followmg ~ourCL'~:

1. interprocessor communication registers (see further)

2. ACFAIL * (power fail) on the VMEbus

3. SYSFAI L * (system failure) on the VMEbus

4. arbitration timeout

5. failure of a posted write cycle

6. handshaking with a VMEbus interrupter

7 . 710cal interrupt inputs

8. OMA completion

Since the board will notserve as system controller, sources 2, 3 and h are ll()tU!->l'J

Posted write cycles will not be used, and the 68020 does not l1eed to be notlfit'd of

DMA completion (as explained in section 3.8). Arbitration timeout interrupt~ will

be handled as an error condition which might lead tn the aborllllg of thl' l'urrl'nt

operation. The interprocessor conununiriltion register!-> will bl' U~l'J by thl' h()~t

CPU to transmit commands to the system· when tlll' VIC dl'll'l't~ tha t ho~t hll~

written to the~e registers, it will interrupt the 68020 to ~lgnallt thM a cOll1lllanJ l~

waiting for il. One of the 7 local interrupt inputs will be used 10 generatc interrupt<.

to the 68020 triggered by transitions on the Half Full output of the output FIFO (llll'

polarity and edge-triggered versus level-triggered nalure of the~l' input~ i~ abo

configurable). Finally, the 68020 will be able to generate ll1terrupts to the h(J~t cru
by writing values into the proper interrupt control regisler of the VIC 10 ~ignal thl'

completion of a requested operation

82

•

•

•

~ D~'lA En~lIH' Impll'nwntîltil1l1

3.9.2 Inter-processor communication registers

As outlined 1I1 section 3.5.3, the VIC has mter-processor coI1UnUnlc,ltil'll rL'glstL'r~

which can be used to implement efficient protocob whlch dl) IwtlL'lJuin' ,ln\, llf tl\l'

processars invalved to busy-Ioop w<litmg for the other to complete <ln llpl'r,ltll)l1.

There are 5 usable 8-bit registers plus another rL'gister WllICh l',m i.ll' tN'd flll

semaphore functions. The host will wnte <lI-byte command ,lnd an llptlllll.ll -l

byte optional parame ter buffer pointer into these fiv!? regl~ter~. Il wIll llll'Il wntL'

to one of the four Interprocessor Communication~ Moduk SWltchl'~, which C<ln

be configured ta generate an interrupt to the 68020: It~ ll1terrupt halldlL']' ('ail

fetch the operation code and optional parameter pmntl'r [rom thL' rq';l~tl'r~. A

VMEbus master cycle can then be 1!,,~d to retncve thl' pilrall1L'Il'1 v.llUl'!'< al tlll'

address contained in the pointer. Nole lhal there are abll four Inte],pll1cl'~:-'or

Communications Global SV' .. _:!es which are read-only f[(lm tIll' local bll~' lhl'~l'

are not used in the system,

3.9.3 Block transfers control registers

These registers include the Block Trans[er Definition Register, which I~ u~l'd tn

en able the VIC to perform block transfers longer than 256 bytl'~: a~ L'xplaineJ

earlier, this capability is not used in this design. The Block Transfer Control Rl')~bter

cantain~ bits which are used to en able VMEbus block tran~fers with local DMA

when Module Wants Bus M WB* is asserted to the VIC this is the ml'chani~ll1 which

is used by the 68020 to start 256 byte black transfers. AnOlher bit b Il~ed to ~ignal

the direction of the transfer, i.e from local memory to the VMEbu~ or vice-vl'r~a.

The Release Control Register is used to set the maximum burst lenglh, WlllCh llhly

be shorter than the 64 cycle block transfer length: thiS iS u~ed 111 a ~y~telJ1 where

other potential bus masters cannot be locked out of the bu,> for h4 cycle" due to

real bme constraints (such as limited buffer space on a dbk or network conlroller)

•

•

•

3 DMA Engme Implementation

Finally, the Block Transfer Length Register is used to specify the number of bytes (in

incremenls of four, since only long-ward transfers are supported) to be transf~red

during a block move in thIS case, this will always be 256, except perhaps for the

first and/ or la~t tramfers

3.9.4 Slave select control registers

Two register~ are used to configure each of the Slave Sele ct inputs: in this case,

only the second one (SLSEL1 *) IS used sin ce in the current version of the VIC the

first one do('~ not work properly. These registers are used to set the address and

data slze of transfers which are supported by the slave intP"f8::-. ,i.e. A32, D32 in

this case. The tim:l\g betwel'll the assertion of DSACKl*by the bus master and the

acknowledgement of the end of the transfer by the VIC by assertmg the DTACK*

signai IS also configured in software' this delay is a function of the speed of the

on-board devices whlch are accessIble from the VMEbus via the slave interface and

the delay mtroduced by the transceivers between the VMEbus and the local bus.

3.9.5 Arbitration control registers

The Arbiter /Requester Configuration register determines how the VIC will request

ownership of the VMEbus. In particular, it selects which Bus Request line the VIC

will Lw using (see section 3.5.1 for more details on VMEbus arbitra tian) and how

"aggrt'ssive" it will be Olt requesting the bus (a "fairness" timer can be configured

to slow down the pace at which the VIC might request control of the VMEbus).

SlIlŒ the bO':Hd WIll not be used as a VMEbus system controller, none of the bus

arbitratinn [unctiOl's are used. Finally, the Release Control Register is used to

determine the release protocol '.lsed by the VIC. It can support any of the proto cols

outlined in M:'ction 3 .. il .

84

•

•

•

3. DI\1A Engllw Implt'l1wnt.ltl\ln

3.9.6 VMEbus and local bus configuration registers

A number of reglsters are used to set such opcratmg p.uan1l'll'rs as thl' SPl'l'd llt

the memories on the local bus (m the Local Bus TUlllllg H.l'gl~lL'r) a~ wL'i1 a~ tlll'

values of the tinlers. used ta determine l'rror conditIOns ~l1ch as tinll'llut~ .md hu~

errürs. Again, the VIC shows great tlexibllJty m that most of thc~(:' p.u.mwtl'I'!'> ('.11\

be changed 111 software, making it fairly pamless to interfaœ tO.l number of dl'\'icl'~

of varying speeds and capabilities.

3.10 68020 operation

3.10.1 Booting

Initialization

When the 68020 powers up, the first thing Jt does is il long-word fl'aU al adure:,!'>

OxOOOOOO, from which it reads the Initial Interrupt Stack Pointer. It then d()l'~ <l ~ec

ond long-word read at address Ox00000004 to get the Reset IllItial PrugraIn Countl'f

this value is placed into the Prograrn Counter and the cru bl'gll1s eXl'cuting in

structions from there. Smce the local EPROM is mapped al Jddfe~~ Ox()()O()()OOO 111

local address space, bath of these values are pre-programmeo at the bl'gmn1l1g of

the EPROM. The Initial Interrupt Stack Pomter is initIalized to address ()xOOOOFPFg

which corresponds to the top of the 32K local RAM aàjres~ ~pace: ~tack~ grow

downwards in 680xO processors. The R",set Inillal Program Counler i~ 1J111IalizeJ

to the start of the initialization routine stored in the EPROM.

The fust task of the initialization routme b to pu~h onto the interrupl ~tack

initial values for the Status Register, Master Stack Pointer and Program Countef

and execute a ReTurn from Exception RTE instruction to exit the reset exception

R5

•

•

•

3. DMA Engme ImplementatIon

handler and return to supervisor state. The Master Stack Pointer is initialized 2K

bl'l(lw the addr!:'"" of the Interrupt Stack Pointer: this reserves more than enough

~tack spacL' for exceptIOn processing. Note that aIl of the code on the 68020 will

run in Sllpl'rVl~Or or exception mode, none in user mode, since there are no other

U~l'r~ or opera ting system resources to proteet from the program. Finally, the 256

byte instructIOn cache is enabled: this will important in order ta obtain maximum

performance dunng DMA transfer cycles.

Self-Test

In order to illsure that the on-board resources are operating properly, built-in self

tl'~t procedures are executed next. These verify the following operations:

• EPROM rl'ad cycles: a checksum value stored at the end of the device matches

with the checksul1l computed by the CPU

• RAM read and wnte cycles: since there is only 32K of RAM, a fairly extelmve

test of the device can be performed

• pushing and popping on the sti1ck

• exceptIOn handlmg

• readlllg and writing to VIC control registers

• writing to the board control register

Notl' that at the time the board was designed, components with support for

built-in self-test where not as readily available as they are now. If this board were

to bl' redesigned, it would use components which include JTAG boundary-scan

f u nctionality.

The rest of the board IS initialized next. In particular, the control registers of the

VIC are set as outlined in section 3.9. The write-only control register is initialized

86

•

•

•

:i DMA En~lIlt' Impll'ml'llt.llll1ll

ta the proper value. If one of the self-tests fiuls, an error codl' is lh.'pnsitl'd mil' nlh'

of the VIC inter-processor cammulUcation regbters: tht:' host CPU l',lll l'l\lli thl~

code and present to the user the reason for WhlCh the lx,ard 1,111ed it~ ~l'll-tl'~t

Copy to RAM

Sin ce EPROM accesses require extra wait sta tes to CDmpl'n~atl) for tl1l' slnw ~pl'l'd

of the device, the next step is ta copy the code WhlCh is gomg to hl' lIsl'd for the

main loop of the control program From EPROM to RAM. In~tL'dd of trying tn wrilL'

relocatable code, since it is never executed from EPROM but only from it~ :ll'W base

address in RAM, this code is assembled lIsmg lts base address 111 RAM FurthL'l

more, since an extra delay in exception pracessing is not d('~irdbll' (l'~pl'cially will'Il

handlmg interrupts generated by the statllS of the FIFO ml\morlL'~), tht:.' l'XCl'ptllln

vector table IS also copied to RAM and the Vedar Base ReglSll'r i!'> 111llÎah/l'd tll

point ta the new base address of tlus table. Once aUtlus IS dOl1l', tlH' hllard b rl'ad)'

to operate and accept commands from the host.

3.11 Host Software Interface

As explained in section 3.5.3, the hast CPU instructs the convolution procef,~or tu

perfarm actions by writing a 5-byte code (a 1 bytes opcade plu!'> an uptional4 byte!'>

operand) into the VIC inter-processor communication registers and ~l'tting (Jill' of

the mter-processor communication sWltches. The main loap of the on-board control

software sits Idly awaiting interrupts generated by the IPC sWltch rl'gl~ter~. Bil~l'd

on the opcode requested by the host, the control software excclltes the dl'~lrl'd

function. Wh en it has completed the reqllested operation, it WIll instrllcl the VIC'

ta generate a VMEbus interrllpt to signal the host. A result code is also placed mto

the IPC registers: this can be used to signal abnormal complellOl1 of il requested

operation.

87

•

•

•

3. DMA Engine Implementation

The software recogIllzes the following commdnds from the !1ost:

• Load New Coefficients: the host will have previously written into a fixed

adùrl'~~ buffer 111 Jocal RAM (using VMEbus slave cydes) the floating-point

values of the coefficien ts to be loaded into each of the processors which make

up the convolution array The optional operand is not used.

• Load Output Converter Table: as in the previous command, the hast will

have \witten the 4K entries wluch make up the output converter look-up table

mto local RAM. The local CPU willload these into the look-up table via the

array processor control register. The optional operand is not used.

• Set Image Source Address: the operand con tains the source address in hast

memory for the image.

• Set Image Destination Address: the operand contains the destination ad

dress 111 host memory for the results of the convolution .

• Perform Convolution: the operand con tains the following fields: 2 bits each

for input and output data format, specifying either 8 bit, 16 bit or 64 bit

operand~; 2 bits each for specifying whether the input and output data strearns

should be upsampled / downsampled by factors of 1, 2 or 4; 12 bits each for

the x and y size of the input image. Note that the size of the delay memory

circuit rnemories imposes a practicallimit on the size of the image lines.

Note that the Perform Convolution operation requires that a valid set of coef

ficient~ must have been previously loaded into the array, that the output converter

look-up table must have been initiahzed and that a source and destination address

must have been specitied, although it is possible for the host to issue multiple

con\'oluhons without changing these base addresses. When no upsampling is per

formed, it is also possible to have the source and destination addresses point to the

sa me region ill memory since the cOlwolution processor will read the source image

88

•

•

•

~ J)~tA r:n~l1lt' Impll'l11l'I1I.1111111

before writing the results of the convolution, thus allowing in-l'!i1C1..' llpl'ri1tll1n~ (tlm ..

IS ob\'iously not possible If the input Image is bemg upsamphi. SllKl' thl' oulpu t

data stream \vould quickly begm to overwrite regiL1n~ llf the imagl' \\'hich w(luld

not have been processed yet).

The actual operation of the 68020 dUTIng tht' C011\'ll!U Iwn i~ L"pbiI1L'd In ~l'Ç

tian 3.8. The co ding of this loop is qllite critical, sinCl' S0111e cruCIal pOl ti{1m ml1~1

fit in tht: 25b-byte instruction cache to allow the 68020 10 continue pr(lCL'~slllg (1 l'

computing the base address of the next transfer) dllnng the lime Il h,,~ rl'lmqubl'd

its local bus to the VIC and be ready to start the next 256 bytl' DM/\ tran!->Il'r~ .l!->

saon as the current one has finished

3.12 Host Software

AIthough the convolution processor does most of the work, " certain <lIlHlunt uf

software needs to run on the host processor in order 10 interfacl' wlth thl' dl'VICl'

This software can be separated into three levels:

1. device driver level

2. library level

3. application level

Only the device driver is of con cern here: !llmplements aIl of the funCl!onality

required to write a Cor C++ applicution wlIich interfaces with the convolver 1\

library can be used to supply higher-Ievel functionality, such a~ a ~ingle (onvo/vd)

routine. It can also be included into a llbrary of signul processing functj(ln~. FI

nally, support for the convolver could be included 111 a sIgnaI or Image proce~~ing

application, especially one with a modular design. For instance, the KhorŒ ~ys

tem [Khoros, 1991] implements different operations as separa te programs which

•

•

•

3. DMA Engine Implementailon

can be conneckd using a graphical user interface: the application which performs

convolutions could be replaced bya versIOn which knows how to take advantage

of the convoI ver devlce.

3.12.1 Host Deviee Driver

Wntll1g a device driver for a Unix-like operating system has often been considered

sOffi'2what of a black art only ta be mastered by the most seasoned wizards. This is

due in part to the design of tradition"l Unix systems as monolithic kern2ls where

the device driver is a C routine which is linked to the rest of the system. Thus

the only way to debug a driver is to reboat the machine with the new kernel, try

out the new driver, and most likely crash the machine sin ce the kernel opera tes

in the privileged mode of the CPU. ln most cases, the driver developper is left to

!>cratch his head with nothing but the output of a few debugging print statements

10 figure out whal went wrong. Fortunately, this has begun to change. Most new

keTnels ~uch as those of Sun's Solaris 2 or IBM's AIX 3 have support for dynamically

loadablt' device drivers whlch are easier to debug.

Another problem traditlOnaly encountered was the lack of adequate documen

tation: tht' one available From the OS vendor was often sketchy on details and

short on examples, if any were provided. This has a150 changed: there are now

good reference~ on writing device drivers [Egan and Teixeria, 1992], [Pajari, 19921.

Furthennore, there are now several versions of Unix avallable with full source code

al pnees accessible ta others than large corporations, and in some cases at no cost.

For instance, the 386B5D / NetBSD / FreeBSD systems are based on 4.3 BSD, which

15 dacumentt'd in detai! in [Lefflerefal., 1989]. Another example is Linux, which

is also frel' and available with full source. Thus the driver developper is free to

study the source code of ail of the other drivers available for the system, as weIl

a~ to ob tain assistance from the many other developpers who use USENET as a

forum for exchanging information. In this case, sin ce the primary environment is

90

•

•

•

::; Dt\tA Enguw Implt'llll'nt.lllllll

SunOS/Solaris, the documentation provided by Sun has to suffic\:'.

Note that in many cases, it is not necessary to ",rilt' .. n actlltll devicl' driwl',

since most of the work can be done in an application. For in~tanCl', an .1pphl',ltlllI1

llsed here at McRCIM interfaces to a VME-based frLlme grabbcr by m,lPPlIlg It!'

memory into the address space of the process usmg the 1ll111il1'() system cali ,1Ild

acces5ing that memory as a normal C array. Unfortunately, 111 thb ca~,: tlw, l)plHlIl

i5 not possible since the convoi ver will be generatmg mtl'rrupts and 11ll' only part

of the system which is able to respond 10 mterrllpts i5 the intt'rnlpt sprvlce roulml'

which is part of a device drIver.

The normal semantics for il Unix device driver i5 to support tllL' l't'II,I(), IUnt/'()

and lOctl() system calls. In this case, it would be impractical to use It'ml() and ll'lltcO'

although it would be possible for an application 10 "wl/lcO" the !-otlllfù' image tu

Idev/convolver and "lendO" back the result From the sa me dcvice, thi~ would rL'sult

in unnecessary copying of data which would make the system very inl'fflclent

Instead, the convolver operations outlmed in section 3.11 arL' simply mapped mlll

corresponding ioctlO operations. Note that the Set Image Source Address and Set

Image Destination Address operatIOns WIll take care of lockll1g the appropnatl'

image ranges into physical memory. As for the Perform Convolution operation, il

is provided both in blocking and non-blockmg versions.

91

•

•

•

Chapter 4 Comparison with General Purpose Systems

4.1 Introduction

In theIr study of computer graphies hardware, Myer and Sutherland iden

tified more than 25 years aga what they called the "Wheel of Reincarna

tion" [Myer and Sutherland, 19681. SImply put, this me ans that as a problem is

identified which requires more computing power than available using general

purpo<;e systems, the temptation ta desIgn and implement special-purpose hard

wnre to solve this problem grows. In most cases, the system will perform as

expected and provide d vIable solution. But this has been done at the expense of

flexibility: the Epecialized system can do one thmg only (albeit very well), and

it is generally harder to use (and program) than a general purpose rnaclune. As

the speeds of the latter increase and begin to overt.lke the speed of the special

ized hardware, It will become tempting to migrate the application back to the

generaJ-purpo~e machine until the en tire cycle can be repeated again. This cycli

cal migration IS no Jess true today, although we seem to be 111 the "moving to a

gcneraJ-purposc architecture" phase. UNIX workstations have been doubling ~n

performance every 18 months for the last few years and their priees have been

falling ~teadiJy. In many cases, the cost of the hardware is being dwarfed by the

cast of software development, 50 it makes sense to move to an environment which

enhances software productivity.

This proJect has by no means been Immune to this phenomenon. Wh en it first

starled, most workstations offered floating-point performance in the range of a

fe\'\!' hundred kIloFLOPS, which meant that our system had almost tluee orders

of magnitude more performance. Nowadays, man y workstations can deliver a

92

•

•

•

few dozen MFLOPS without even having to n'sort to hand-coded ,1SSl'l11blv lan

guage (optimizing compiler technology has greatl)' IInproved, .1Ild nn m.ul\' RI:.,C

architectures there is little addItional performance 10 be gaiI1l'd by pwgrammmg 111

assembler instead of in a high-Ievellanguage su ch a FORTRAN (lr C 1 Bdl, [l)l)[) j)

This chapter will present implementatians of the Hoating-point convolutIOn algl l -

rithm on a number of gmeral-purpose machmes. This will allow liS to comp.ul'

the perfonnance which can be obtained from de program (\'\'Ith a bit of cart', t,ut

no extraordinary feats of hand-optimization). We will also bl' able tl) comp.ll"l' .1

few different architectures:

4.2

• an SIMD machine, the MasPar MP-l

• RISe pro cess ors arranged in MIMD fashion, the Silicon Graphic~ 4 [) /24!l

• single-processor RISe workstations such a~ the SPARC-ba~l'd Sun SSIO/:10,

the IBM RS/6000 model 360 and the R4000-based SilIcon C;raph)("~ lndigu

R4000

An SIMD machine, the MasVar MP-l

4.2.1 System Hardware

The MasPar system is a Single Instruction Multiple Data computer wlllch i~ OrJ

ented towards high-speed scientific computing involving array operations Typical

applications are low-Ie'lellmage processing, computational fluid mechanici-. and

finite element analysis. Il consists of two main parts: a Front End (FE) worbta

tion which handles aIl mteractions with the user and the Data Parallel UnI t (1 WU)

which con tains the actual SIMD machme. A black dIagram of the arcllltecture of

the system is presented in figure 4.1. A thorough treatment of the MasPar ~yi-.tem

hardware and UO subsystems can be founet respectively in [Ma~P()p, 19901 and

93

•

•

•

~ll t fil .. fWVhlJ.lI!J

Tlhk

l'ronll:n.l (rI:1

VAX._I •• II"n :1C,20

UL1HIX :1 1

IlLCwlnc!ow_

4. Companson wlth General Purpose Systems

Andy Cllntlol

Unit (ACUI

14 MlPS H1SC

lMlIe"d" HAM

12HK [)~I,] HAM

Sy"lem Bu'

PC Ar""

lK-lnKI'L~

4·hll prO!,

lhK f<A~ll." h

Ddta l'ar"Uel UnI! IDPUI

Ma-Pdl MP-l

Figure 4.1: MasPar MP-l System Black Diagram

[MasIO,1990] Note that the architecture of the MP-1 is quite similar to that of the

CM-200 from Thinking Maclunes Corporation [Ramanathan and Oren, 19931.

Front End Host

The MasPar is controlled by a Front End (FE) hast, a VAXstation 3250 from Digital

Equipment Corporation. All user interaction with the MP-1 is done through the

Front End, which aIse acts as a disk and communications server. The primdI'y task

of the Front End is to handle a11 sequentiai code in a application, in particular aIl

user interface functions. Parallel opentions are performed on the Data Parallei

Unit (DPU). Tlus communicatIOn is handled by a high-speed interface: a number

of registers and First-In First-Out queues are mapped into the address space of

the Front End and let it transfer data to and from the DPU. Among ather things,

this interface allows the Front End direct access to the internaI bus of the DPU Ca

94

•

•

•

variation on the standard VMEbus), thus allowing Dm'ct Menlllrv Acn'~~ (DMAl

transfers.

The Data Parallel Unit

The Data Parallel Umt is composed of two main components: tlll' Arr.l\' Contwl

Unit (ACU) and the Processing Element (PE) array Tht.' Arrav C"ontllli l1J\lt I~

composed of a 14 MIPS RISe processor with tlurty-t".o 32-blt rq~l~ll'r~ and .1

Harvard-style architecture. Il has 1Mb of memory for code and 12HK of ml'lllOI V

for data, which is sufficient since most data will reside in PE 1l1l'll\ory (the ACU

can page out ta the Front End disk if necessary). The primary purpose ot the Anav

Control Unit is ta act as a sequencer for the Processing Elements of the PE arr.1y

As such, it communicates with the PE array over the ACU-PE bll~: it U~l'~ thl!:> bll~

to broadcast instructions to be executed by aIl the currently active PEs a~ wdl a~

broadcast data values from its own address space to the PEso l'Ill' ACU-PI~ bLl~ ('.111

a150 be used ta read values back from the PEs to the ACU. thl' outputs of aIl tlw

PE5 are then connected together in wired-OR fashion. Thus if more lhan Olle PE

responds ta a read request from the ACU, the ACU wiII receive the bitWl~l'-OR (lf

the data values sent by aIl the responding PEso Tlw other funclion of the ACU l~ l()

execute aIl non-parallel code running in the DPU: thl5 includes of course ail control

statements which dicta te which PEs will participate in which Ill~lructiom, but abo

all operations on variables which are stored in the data ml.'l1lory of thl' ACU

The PE array can contain fmm 1K to 16K proce5sing elemcnt~. Each PE b il

load/store arithmetic processol' with dedicated reglster space and RAM. Ench 1'1\

ha5 a 1.6 MIPS control processor, fort y 32-blt registcrs (32 of which are availabh'

ta the programmer and 8 which are reserved for the system micro-code) and 1 hK

of data memory (recall that no instruction memory is reqUlred slI1ce lI1~tructiom

are broadcast by the ACU). The PEs are physically implemented as a full custom

CMOS VLSI device containing 32 such PEso Since the PE~ on a chip ~han~ Lhe data

•

•

•

4. Companson wlth General Purpose Systems

RAM area (16K of WhlCh is reserved for each PE), access ta this RAM is much slO\ver

than aCce~~ to the private reglsters. Thus register allocatIOn must be carefully done

to l'n~un.' maximum efflClency 111 parallel programs

Each PE ha~ both a sequentIal ID (assigned startmg Erom 0, with no gaps), as

weIl as ./ and .1/ ID numbers WhlCh identify Its position in the array. Thus the

PE array can be viewed either as a one-dimensional array or a hvo- dimensional

array depending on the needs of the parallel algorithm. A number of status bits

on each PE specif y whether the PE will participa te in the current instructIOn being

broadcast by the ACU. The set of PEs which are currently enabled to execute the

next mstruction 1S known as the active sel. Conditional ~tatements broadcast by the

ACU can modify the acUve set by disabling or enar-lmg PEso These tests can either

be performed on data that is local to the PEs or on the PE index variables (in the

case where we want to exclude a geometric portion of the array).

Each PE is connected with its eight nearest neighbors by the "XNET", and the

2D PE arfay ,,,'raps torOldally at the edges A status bIt in each PE de termines

its participation in XNET transEprs controlled by the ACU, which can cause each

enabled PE to transfer the value stored at a given address ta a neighbor in a given

dIrection: aIl such transfers occur at once, thus achieving large IIO bandwidth (a

total of over 2.2 Gb/sec). A mode called "Pipelined XNET" allows XNET transfers

at a distance of more than 1 PE in a more efficient manner than several1 PE distance

transfers.

A Global Router allows any PE to communicate with any other PE in the array.

For the purposes of Global Router communication, the PEs are grouped into clusters

of 16 PEs which share a bi-directionai serialline ta the seriaI router. Access to these

seriaI Imes 15 arbitrated in microcode: sin ce the bandwidth of the Global Router

is much lower than that of the XNET (around 50 Mb/sec), care must be taken to

avoid contention as much as possible by distributing data cleverly in the PE array .

96

•

•

•

4 Comparison \\'Ith Ct'lwrc111'urp0!>l' S)'Sll'll1'"

4.2.2 System Software

The programming model of the MasPar is that of two tlghtly cou pied pwgratm

running together, one of the Front End and one on the Data ParaUd UIlIt. TIll' pw

gram running on the Front End IS a purely sequential program, typicallv wnttel1 III

a traditionallanguage such as FORTRAN or C using the standard UNIX complIL'r~

for these languages. The parallel pdrt of the program execules on Ihl' Dl'U, ilnd

is written III a paraIlellanguage. When a call IS madp acro~s th:s bOllndary, dlll,l

values have to be copied over the FE to DPU bus, since IIll' FE and 11lL' ACU h.lVl'

different address spaces. Single values can be passed via FIFl) l}Ul'Ul'~, blocb of

data can be transferred using DMA directly to and from the memory of 11ll' PF~

These function caIls can be either synchronous or asynchronolls

Athought the DPU can be programmed in assembly languagl', m()~l lI~er~ WIll

use instead the MasPar Parallel applIcation Language (MPL). MPL b baMGllly

"old style" Kernighan and Ritchie C enriched with il new data tnw modifier,

plural modifier. In MPL, any variable which IS Jeclared normally rl'~H_IL'~ III tIlt'

data address space of the ACU In the context of this parallel ellvlronllll'nl, Ihl'~l'

variables are known as slIIsular variables. Plural variables, on thl' olher hand, arl'

allocated at the same memory location on every PE (thls is dlctatcd by the' SIMD

nature of the PE array). Whenever an operation involves only singular vilriilbk'~,

the ACU performs this operation on its own. As soon as an operation involvcs il

plural variable, the result of the operation is a plural resuIt and ail of Ihe PE~ wlllch

are part of the active set take part in this operation. For in~tance:

int li

plural int j, k;
k = i+j; /* ThlS lS a plural operation */

In this case, the ACU will broadcast the content of its l vanable to aIl of the PEso

The active PEs will then add this value ta the content of the 1 variable and store the

97

•

•

•

4. Comparison with General Purpose Systems

result in their 1 .. variable .

C control alsll accept plural arguments: in this case, they influence the size of

the current active set. For instance, the following code avoids divisions by zero:

plural double i,j,ki
if(i!=O.O)
{

k = J / ii /* Avoid dJ,vision by zero */

This piece of code will cause every active PE to test the value of its 1 variable:

those that find it equal to zero are temporarily excluded from the active set for the

duration of the if compound statement. Thus the active set can only be reduced by

MPL control structures. When such a structure exits, the active set 1S restored ta its

previous state. Note that in the following code:

plural double i,j,ki
it(l!=O.Ü)
{

k = j / li /* Avoid division by zero */

else

l -1.0 i /* Make sure i l8 no longer zero */

50me PEs which have 1 originally non-zero will execute the if path of the state

l'lent, whereas others which have 1 set ta a will execute the tllen partof the statement.

The original semantics of the if-then-else construct are respected by every PE indi

vidually, but not when we consider the complete array. Greater detail about MPL

(an be found in [MPLref, 1990] and [MPLguide, 19901.

Inter-PE communication is implemented using the xnet and router pseudo vari

ables. For instance, in the following code

98

•

•

•

4. Compclri~on with Cl'l1l'r.ll Purposl' SySll'Ill'.

plural int l;

i = xnetW[l] .i;

we can say the every PE "retrieves" the value of the 1 variabIL' from il~ wl'sll'rlV

neighbor, 1 PE away (i.e. its direct neighbor to the west) and copies il inlo il~ 0\\'1l

1 variable. Remember that XNET communications occur aIl al once: Ihe nl'! l'fil'cl

of this action is thus to shift the values of the 1 variables by Olll' positIOn 10 the e.l~t,

keeping in mind the toroidal wrapping property of the PE array Similarly,.l PF

can use the Global Router ta get a variable from any other PE

plural int i,j,ki
i = router[j].k;

Here, every active PE would retrieve the value of the k vanable stored on Ihe

PE whose number is in lts .1 variable and store it in ils 1 variable. Tlll're arc (,

pseudo-variables which help PEs make decisions as 10 whethl'r to partiCipait:' in an

operation·

• nproc the total number of PEs in the array

• nxproc the width of the PE array

• nyproc the height of the PE array

• 'proc the index of the PE (viewing the PE array as Iinear)

• ixproc the column index of the PE in the array

• iyproc the row index of the PE in the array

4.2.3 Implementation and Results

Our implementation of the convolution algorithm on the Ma~Par follow~ the fol

lowing steps: first, the image i5 read off the disk by the Front End and remapped

99

•

•

•

4. Companson with General Purpose Systems

into a format compatible with the layout of the Processing Elements in the PE

array. It 15 then transfered ta PE memory, together with thf' values of the kernel

coeffiCJenl~ The convolutIOn is then performed by the DPU under the control of

the ACU. Once the operatIOn is fmlshed, the results are read back into the FE. Since

we are only really interested m the floating-point performance of the MasPar, we

will only benchmark the amount of trme required to perform the convolution by

the DrU and exclude the overhead of transfering the image. Since the MasPar

machine which was available had onlv 64 by 32 PEs, most of the work was taken

up by coming up with schemes for mapping the 512x256 test image into the PE

arrny. Thrf'e such schemes are considered here.

Implementation Method 1

This first method has been proposed in [Jacobsen, 1990]. The principle is ta split

the image into blacks which are of the size of the PE array. These blacks are then

co pIed into the PE memories in an array of pixels: for instance, on PE (0,0), this

array contains the top-Ieft-most pixel of every black in the image. Every PE first

multiplies its pixel value with the first kernel coefficient, th en transmits the partial

result to its east neighbor. These partial results are accumulated and transmitted

ta the east llntil a row of coefficients has been used up: the partial results are

then transmitted to the south. After a number of iterations equal ta the number of

coefficients in the convolution kernel, the partial result will contain the resulting

convolved pixel (althollgh not for the pixel on the PE on which it resides: it will

have ta be moved back ta the PE containing the original pixel). This pro cess is

illustrated in figure 4.2 for a 2 by 2 kernel operating on a 3 by 3 image.

XNET communication is a natural candidate ta communicate the partial results

between adjacent PEs since in this method, PEs only need ta communicate with

their immediate neighbors. Sin ce aIl the PEs communicate at once and they are aIl

enabled, very high bandwidth is attained. Note that the operation of this algorithm

100

•

•

•

4. Comparison with Gt'l1t' r.1 1 1'111 POSt' Svsll'ms

AOll Alli Au..! ktr..'AU.J ktKlAtl 1 kl\)Al12

Alli Ail 1112 ~ kl-..,Alt1 kt1IIAll kl\IA 12

A!tO 1121 Al2 kt-.'Alll kOl.\21 kHl/\22

Or1~tlli11Itml.!t (Cllllllilft' ".lMI.11 (('''1111

Fil," 10 tht' (0 .. \. ... , '" Hh ",."PPIIu.~.l

kOllAl2.kllIA211 : kOUA:.!l .. kuIAl1 k,",A2I.kIlIA2~

.kIClA1I2.kIIAlkl : .klllAOll+kIIAlll .kIllAllI.kIIA""

kOllA02.kOIIlW : kOOAOll+kllIIlOI
:

kooIlUI.kOIIlU2

.klOi' 12+klllllO .kl~}u.kIIAII ~ .kl?AII.kIIAI2

kOOAI2+kOIA2II : kOU1l1o+k011l11 : kooAII.kOIIl12

+k 1 0A22+k 111120 .kI0l\20+kII1l21 •• kllll\2l+kllA22

~

(III1lJlutt l'Iflllln ,"11

1 hl" hl (Ilr ,IIII! 1\\1111 \\IIPI'ItIt.'J

kll(1!\22 ... ktll A'.211 ktHI/\.!II.kllli\ll kntlA21 .. ktllAJ.t

+khlf\liiI +k 11U\{l 1 ... k Illt\lI..'

kOüAtr.!.+ktlIAtJ() kUOl\tl'tklliA Il klltlA\II+kllIAtI~

+k IUII III .k IIl11ll ... k ilIA L'

kllllAI4!+kIIIA211 kllOAltltklllA 11 kllllAl1.klilAI~

.k l0A2t1 +klllA2l +ktllA.!~

('Olllpliit !"Irlt Il "''''Ill,

HIU' 10 llit 1 .. 1 .. 1 (Mlli wrapphl~1

Figure 4.2: Method 1 • 2x2 kernet 3x3 Image

is similar to the systolic array method used to implement our hardware convolution

processor.

This partial convolution is performed on every block in tilt' original Imagl" if

the original image had the same size as the PE array, then thb dlgorithm {'(luld rely

only on the toroidal wrap property of the PE array to handle boundary conditIOns.

Unfortunately, Uiis is not the case here, since the image is larger. Although it has

been done for the other two methods, the code required to handle the~e boundary

conditions has Ilot been implemented in this case.

Implementation Method 2

In the second method, the image partitioning is the same as for the first method.

Each PE computes the convolution result for the pixel stored 1Il it~ memory by

implementing the convolution equation directly:

Il Il
2 .,-

Pi.rcl[lj[)] = L: L Pud[1 + .r][) + v]J.:[·r][y] (4.1)
.r=-1-Y=-~

101

•

•

•

4. Comparison with General Purpose Systems

Plxel[I-1)U-1] Plxel[I-1][j) Plxel[i-1]O+ 1]

'k[-1][-1) 'k[O][-1] 'k[1]H)

Plxel[I]D-1]
*k[-1][O]

Plxel[lJU]
'k[1][2]

Plxel(IJU+1]

'k[O][O]

'k[-1](1] tk[O][1] *k[1J[1]

1

Plxel[l+ 1]0-1] Plxel[l+ 1)[i] Plxel[l+ l)[i+ 1]

Figure 4.3: Method 2 - 3x3 kernel example

The kernel coefficients, stored on the ACU, are broadcast to aIl the PEs wh en

the multiplicatlOns are done_ The neighboring pixels are read from the neighboring

PEs using XNET communication. Figure 4.3 demonstrates the operation ofmethod

2 for a 3 by 3 convolution kernel.

Implementation Method 3

In this third implementatiol1, the image is broken up into as many contiguous,

rectangular regions as there are PEso Each of these image blacks is stored on a PE,

and each PE opera tes on its own region of the image, implementing equation 4.1

directly. With this method, the communication between PEs is minimized, since

apart from the pixels on the edge of the image block, the PEs will be able to compute

the convolution without requiring any data from their neighbors. This method is

especially attractive when the image is much larger than the size of the PE array,

102

•

•

•

4. Comrc1n~on with Cl'l1pr,ll PUrpllSt' Systl'IllS

since in this case there will be very little communicatIOn rt>quircd between the PEs

(the piOportion of "edge" pixels to "interior" pIxels being small). On the otl1l'1'

hand, if the region stored on each PE is very small (t'~pl'clallv Il II is not much

larger than the kernel size), then this method does not have ma1l\' .1dv.lnlagl's sinn'

every pixel will be an "edge" pIxel and commUlllcation with nl:'ighbonng PEs will

be required.

Implementation Performance

Figure 4.4 represents the performance of the three methods when taking into ilC

count only the time required to execute the convolution algorithm on the DPU.

First note that the results for a 3 by 3 kernel are not very sigl11ficant: sincl' the

clock() function calI used to time this function has a resolutlOn of around 10 m~L'C

and the execution time was around 80 to 90 msec, large error~ can haVI:' crepi in

(although a1l of the figures plotted in the graphs represent averagl's over 1 0 run~

of the program). A top performance of around 37 MFLOrS IS nbtallled III al! thrl'l'

cases for a 9 by 9 kernel. Note that as the kernel get~ larger, the performance

increases: this is due to the fact that as more floating pDint computations l1l'ed tn

be performed, the overhead due to address computations and loop indL'X cJ1l'cking

becomes comparatively smaller, thus ;ielding a higher perceived f1ualing point

throughput. When comparing this somewhat dissappointing result with the per

formance of machines in the following sections, one must keep in mind tha t lhc~c

results where obtained early in 1991: since then, the Ma~Par machine has bccn

upgraded several times wtth new microcode and hardware which have reportedly

increased its performance (the authar was not able ta 5uccessfullyrun the~e tc~t~

again after the upgrades) .

103

•

•

•

•

4. Comparison with General Purpose Systems

_ .. -._---- ... '

1
1

1
1

/
~

~

" "
,f) ",,"

~ .-
" " " " ------ ,~ --- " -------,,/"

1
/

/
/

1

./. ,:;t n'."!

1
/

~! rr >:: r-: ~j - - -

1
1

1
1

1
/

/
, /

" Il
1

1
1

1

1 f, L-_______ -L-_______ ---L-_______ ---'

"
:' =-) 7 ... "7 -=,.,,'1

1.-:'flllVlllllr ~ T, } In~.: r::~:1-'

Figure 4.4: MasPar Implementation Performance

4.3 An MIMD Machine, the Silicon Graphies 4D/240

4.3.1 System Hardware

For the last few years, SilIcon Graphies has offered a line of "symmetric rnulti

processing" systems called the POWER Series based on MIPS (now owned by SGI)

R3000 micro-processors. These processors are configured in Multiple Instruction,

Multiple Data (MIMD) fashion. They all share a corn mon system mernory which

is accessed over an inter-processor communication bus (to whieh is a1so connected

the graphies subsystem). In order to decrease traffie over this bus and reduce

contention between the processors, each CPU has a priva te local cache memory

for both instruction and data. Cache coherency hardware ensures that no cache

ever holds il staIl' copy of data which has been updated by another processor: this

hardware approach to cache coherency means that "traditional", single-threaded

104

•

•

•

4. Compélrtson \\'llh Genera) Pu rpll~l' S\'s!t'm..,

applications usuaUy need not be aware that they are running on ,1 multi-CPU

system. On the other hand, this additional hardware add~ blllh ('pmpll"dtr ,1lld

cost to the maclune As in most MIMD ll1.1chmes. the 111.1111 bottll'Ill'ck I~ the

'nterprocessor bus which can quickly become saturated, SlIlCl' It ofJl'T~ onl\, ho!

MB/sec of throughput. Although POWER Senes machines CiUl bl' wntigurl'd \Vith

up to 8 CPUs, in man y applications litHe performance is gamed bv gl)ing abo\'l' of

processors (especially when heavy use is made of the graplucs sLlbsy~tl'm, which

can require a slgnificant portion of the bus bandwidth to bl' (cd with l'nough data

to run at full speed). Recently, Silicon Graphk~ has announced tlll' new ()nvx

and Challenge hnes of multi-processing machines. Thl:'sl' [L'tain thL' ~ame l1d~k

architecture, but the bandwidth of the multiprocessor bus has been raised to 1 2

GB/sec, allowing up to 36 MIPS R4400 processors runnmg at 75MHz l'xternally

(I50 MHz internally) to share the bus [SGISMP, 1993l. "Trul'" perfllrmanCLI of thl'Sl'

systems is not known at this point

The 4D/240 system on which the convolution algorithm wa!> coded i~ not .1!->

recent. It is based on 4 25MHz MIPS R3000 CPUs, each havmg 2x64Kb of pmnary

cache memory for instructions and data and 256Kb of secondary cache. TI1l'rt' ,Hl'

128Mb of shared system memory. Although tlus 15 by no mean~ the fa!->tcst of the

POWER Series system, the performance obtained can be sCilled qUlte c1n~dy WIlh

dock frequency (the fastest Power Series machines have R3000 proCl'~~ors funning

at 40MHz).

4.3.2 System Software

SGI machines run a version of the UNIX operatmg system called IRIX Il includes

several extensions, notably in the areas of graphiC&, real-lime capabililil'~ and lI~ym

metric multiprocessing". Baslcally, most parallel procebsmg on the~l' by~temb J~

very coarse grained and occurs at the UNIX process level One of tl\(' proce~~or~

on the system runs the IRIX kernel, which is responslble for dispatching processc~

105

•

•

•

4. Comparison \Vith General Purpose Systems

to the availab!e CPUs. In this way, programs can be completely unaware that there

are severa! crus in the system: if there are 4 runnable pro cesses at one time, they

each get the benefIt of a "full" CPU (assuming that their memory access patterns

don't conDiet lou much with each other, and in particular that they don't "bust"

the !OCil! cru cache too often) AlI of the CPUs are usually kept fairly busy in a

multi-user envlronment: four processes could run at full speed with little inter

ference between each other In vlsual simulation apphcations (such as a law-cast

flight snTIulator), ('ne of the CPUs could be used to traverse the visuai database and

determine the VIsible po!ygons, the second one could be used ta feed the polygons

to the graphic~ pipe, the third one could be used ta run the actual simulation (i.e.

compute the flight equations) and the fourth one could be used to interface to

external periphera!s (such as the cockpit contraIs).

It is also possible for a single process to take advantage of more than one

cru. The ilL lorA'() system calI crea tes a copy of the pro cess which calls it on each

availabll' CPU, and caIls the same function of that pro cess on each CPU. Each

m~tance of the function has its own stack and local variables, but contrary to the

standard UNIX call {(II I.-(), al! the copie" of the process share the same addressing

space (Le. global vanables and dynamically allocated memory). When aIl of thE'

instanœs (lf the [unctlOn have comp!eted, the 1II-f o7'/,'() cali retums and the process

continues running on a single cpu.

4.3.3 Implementation and Results

The im plemen ta tion of the con vol u tion algori thm on the SGI 4D /240 wor ks roughl y

along these lines: the main process takes care of of reading the image from disk and

convertmg it to floating-point format. It then stores it in a 20 array in C-style row

major formi'!t In nrder to avoid border effects, the image is extended by replicating

a band of wldth l'quaI to half the kernel size around its perimeter. Although this

method requires a few extra floatmg-point computations, it will save a lot of time

106

•

•

•

by greatly simplifying the addressing computatIOns. An ('.1rl" implell1l>nt.1tÏlll1 l)f

this algorithm which used the modulo operation to obtain the prnpl'r wrap-.1Il1und

behavior got disastrous performance on all architectures on wllich il WilS compihi.

The main pro cess th en uses TlLt'O,.q) ta start four instances l)f il function which

computes a straight-forward 2D convolution sumo Each of thesl' fllnellOns 0pl'r.lll'~

on a horizontal quarter-image to minimize contention for main menwry MCl'5S.

The only time when the crus try to access the same rcgions o[menlllry an' lor

the convolutIon coefficients (which will remam 111 CrU-local cache Illemory .1fter

the tirst time they are read) and for a thin region along the boundary bet ween thl'

quarter images. It would ha ve been possible to duplicate tl1l'sl' region:. in l1rder

to eliminate this contention, but a doser study of memory accL'SS pattl'ms would

have been required to justify the effort. Unfortunately, SGI cines not provldl' .1I1y

tools for monitoring these patterns.

Test results were generated for 1. 2 and 4 CPUs Also, the inl1l'r loop of the

convolution sum was explictly unrolled, since the SCI compiler Wdt-. nol snhlft

enough to dl) it on its OWil. Loop unrolling is a technique whereby Sl11illl l(l()p~

with fixed boundarieb are replaced with as many instances of the Inop body as tJ1l'fl'

would have been iterations in the loop. All array indices arC' replilced by clln~lant~

correponding to the Iteration index. In heavily pipehned proCl'f,s()r~, unrolhng

prevents pipeline stalls due to branch instructions and sim ph fies the work of tlw

optimizer which can find the optimal scheduling for the in~tructi()n stream.

Table 4.1 lists the number of MFLOPS obtained [or varying kernel ~ize~ and

number ofCrUs used. First note that due ta the lack of an accuratl' timll1g function

and ta the fact that it was Ih)t possible to bring ùown the ~y~tcm to ~ingll'-lI~er mode

ta run these tests, some of the values can be off by slgl1lficant am()lInt~. Clearly, the

performance of the convolution algorithm seems ta scale linearly wlth the number

of crus installed in the system, which meanf> that the algorithm exhibJt~ strong

locality of reference, allowing the individual crus to run at full ~pecd without

107

•

•

•

4. Comparison with General Purpose Systems

13/3 5/5 7/7 9/9 kernel size
1.69 2.58 2.67 3.48 1 CPU (no unrolling)
3.22 4.96 5.19 6.96 2 CPUs (no unrolling)
6.41 9.77 10.35 14.02 4 CPUs (no unrolling)

-
6.54 677 6.71 6.66 1 CPU (unrolling)

12.82 13.48 13.48 13.27 2 CPUs (unrolling)
24.32 26.53 26.54 26.44 4 CPUs (unrolling)

Table 4.1: MFLOPS Results for the SGI 4D/240

mterfering with each other when accessing main memory. AIso, in the case where

the convolution sum Ioop was not unrolled, performance increases as the kernei

Slze increases, which reflects the fac~ that loop overhead becomes less of an issue as

the size of the Ioop ll1creases. When the Ioop is unrolled manually, the performance

remains mostly constant across kernel size (it even seems to decrease for the 9 x 9

kernel size, which nught suggest that we are starting to have problem5 with the

cache at thal point). Finally, these results also show that m most cases, compilers

still need to be given a hmt (in thlS case explicit loop unrolling) to allow them to

generate code which makes full use of the capabilitles of the machme.

4.4 Single Processor RISC Machines

4.4.1 Motivation

Single-processor UNIX RISe workstations are still the most widely used systems

for scientific computations. A properly-written C or FORTRAN program can be

recompiled without modIfication on most such machines. Instead of trying to

take advantage of specialized hardware through hardware-specifie code, one ean

either fun a program on many machines at once (thus supparting the claim by

Sun Mlcrosystems that "The Network is the Computer"), or one can wait for the

performancL' of workstations to increase ta a point where one's application runs

108

•

•

•

in a reasonable amount of time. At the rate al \\'Iuch wnrkstatlOn perLonnanrl' I~

increasmg these days, one might not have to wait that long! AnothL'r .1d\',mtagl' in

favor of single-pro cess or maclunes is that these architecturL'~ are weil undl'rstood br

compiler writters who are able to write fairl~' effIcient compllers. ,1S.1 gelll'r.11 mIL"

the more specialized the architecture is, the more difficu1t the ~nftwal"l' dl'vl'iopnll'nt

tools are to use. For instance, if one does not like the C compiler prn\'ldl'd \Vith SU')

workstations, there are many other alternatives avail,lble (including the L'xcl'lknt

and free GNU C Compiler).

4.4.2 Implementation and Results

The convolution algorithm implemented as il C program was ll'~led lll\ lhn'l'

widely-used UNIX workstations:

• the Sun SparcStation 10/30, ba~ed on a SPARC processor

• the Silicon Graphies Indigo, based on a MIPS R4000 processor

• the IBM RS/6000 Mode1360, based on a POWER processnr

The vendor-supplied compiler was used in ail three cases with maximum opLi

mization enabled. The program follows basically the same line~ a~, Lhe IInplL'l1\en

tatIOn on the SGI POWER Series: the image is read from disk and stofeù in memory

as a 2D array. The image border is explictly replicaLed to ilvoid co~t1y wré.lp-JfOund

address calculations. The following loop performs the actual convolutIOn:

lOCJ

•

•

•

4. Comparison with General Purpose Systems

kX_DüdrJll'".é =-= k_Wldth / 2 i
kY_ITllddle ::: kjlelght 1 2 j
fr)r (1 :=ky_middle; lrheight; i++)

{

forll:::Kx_ffilddleijrwidthiJ++1

result::: 0.0;
forlk:=O;K<k_helght;k++1

for 1 1=0; 1 ôk_width; 1++ 1
result+=srcimage[i+k-ky_middlel [j+l-kx_middleJ*

kernel [k] [1] j

destiffiage[i] [j]=result;

Once again, none of the compilers were able to unroll the two inner loops,

even though the loop boundaries IUl'ldt" and LII(Ighi were explictly declared as

constants. Thus a second version of the code was also compiled and run were the

two inner loops were explictly unrolled .

Table 4.2 lists the MFLOPS performance obtamed both without and with loop

unrolling. Wh en the inner loops are not unrolled, performance increases with the

kernel size since this minimizes loop overhead. Wh en the loops have been ex

plieUy unrolled, the performance remains fairly constant with kernel size, except

in the case of the SPARCStation 10 where performance decreases markedly: this

is probably due ta the memory access patterns conflicting with the mapping of

memory to the cache (which is fairly large at 1Mb). The IBM RS/6000 Model 360

has clearly supt'rior performance: this is in part due to the fact that its CPU imple

ments a smgle-cycle multiply-and-accumulate instruction which is being used by

the code generated by the C compiler. Note that although the RS/6000 CPU irnple

ments IEEE floating-point semantics, no result renormalization is done between the

multiplication and addition operations in the multiply-and-add unit. This could

lead to results winch are different than those obtained on a machine which lacks

such a functional unit and where the results would be renormahzed after both the

multiply and the add operations. In order to duplicate these results, the IBM XL C

110

•

•

•

4. Comparison with CE'neral PurpOSl' Sy~tl'ms

3 :><.3 5x5 7",7 Q,,9 kernel size
3.21 4.41 5.24 5.83 SUN 5510/30 (no unrolliIlgl--
5.22 7.96 9.15 10.83 SGI Indigo (no unrollingl

19.03 27.08 30.95 33.76 IBM RS / 6000 360 (no unrnlling)
12.31 JO.08 9.54 9.42 SUN 5510/30 (unrolling)
14.04 15.79 17.96 17.67 SGI Indigo (unrolling)
40.68 45.83 45 R8 45.47 IBM R5 / 6000 360._(unrolhng)

Table 4.2: Single Processor MFLOPS Results

compiler offers a switch to disable the genera tlOn of multiply-and-add instructions,

at a significant penalty ln performance.

4.5 Possible Implementation on a Vector Processor

Smce convolution is basically a two-dimensional multiply and accumulatt:' opera

tion, it could be implemented on any plpelined vector proces~or WlllCh suppllrt~

this operation. Since this dot product operatIon IS a malllstay of many ~cil'ntllk

computations, most vector processors implement it in hardwan.'. Thl' kernd coef

ficients would be stored in linear fashion in one of the processor vectof r('gbter~,

and the appropria te pixels would be stored in another vector rE:'glster. Tlll~ sl'conJ

vector is basically the neighboring pixels of the pixel presently under consideration

A single vector instruction would then compute the rc~ultmg pixel. Unfortu

nately, this has two problems. If the kernel size is small, the length of the vectOf~

will be short (9 elements for a 3x3 kernel), and this may not be enough to justify the

overhead of a vector instruction, although most vector maehine5 nllwaday~ have

vector instructions which are faster than their scalar counterparts for anything but

the shortest vectors. The otller problem is that we must still deal with the faet that

each pixel in the source image will have to be rl'ad several time~ from memory

(as many times as there are kernel coefficients). Thu!' the overhead of forming th<:

"neighborhood" vectors to feed to the vector unit might also reduce performance

111

•

•

•

4 Comparison Wlth General Purpose Systems

~ignifîcantly .

4.6 Discussion of Results and Recommendationds for Future Work

With RI VLSI devices forming a 9 by 9 array, the convolution array discussed in

this thesis performs 162 double-precision floating-point operations per clock cycle:

at a design speed of 16 MHz, this corresponds to a sustained rate of 162 MFLOPS.

The actual rate obtamed on a physical computer depends on how fast operands

can be transfered between the array and the memory of the hast over the VMEbus.

Ta operate at its peak design rate, the array must receive a new input operand

every microsecond and produces results at tht: sa me rate. If bath the input and the

output data streams are in floating-point format, this translates to a bus transfer

bandwidth of 16 Mbl s. In a typical system with other boards requiring a portion

of the VMEbus bandwidth, this maXImum convolver rate might not be supported

continuously. On the other hand, when dealing with 8-bit fixed precision operands,

only 2 Mb/s of bus bandwidth is required, which is weIl within the capabilities of

the VME bus. At this point, the DMA engine of the convolution processor has been

built and partially tested. OrCAD design taols were used to draw the schema tics,

produce netlists, generate the PAL fuse maps and simula te critical parts of the

design (most Intportantly the local bus controllogic). A high-quality prototyping

wire-wrap board was used to build the system: this board has a VMEbus 6U

form factor, Pin Grid Array (pGA) areas for the 68020 and the VIC and buHt-in

dt'couphng capaCltors for all the power connections. A utility program has been

written to comb me th~ netlist generated by the OrCAD schematic entry tool and the

layout of the components on the prototype board to generate a detailed wiring list:

the output of this program was very useful in minirnizing wire-wrapping errors.

In order to achieve maximum performance (especially in the case of the tight

DMA-control loop which must fit in the 128 byte instruction cache), the 68020

has been programmed in assembly language. This control program as weIl as the

112

•

•

•

4. Companson with Gt:'lwrcll Purpnsl' Sy~ll'l11~

self-test routines were assembled on a UNIX hast using a 68020 cross assembler .

The output of the assembler (a binary file 111 Motorola S-Record format) is uscd

to program the 32K EPROM By observing the statl' of the lOCilI bll~ with alogie

analyzer, the 68020 has been observed ta initialize itself and the VIC interface ASie

and execllte simple test code sequences such as aCŒsse~ tn tilt' ROM and RAM.

The princIpal work which remams to be done i~ 10 complf'te th .. inlegration ()f tlll'

board with bath the convolution array itself and the VMEbus host. The fabricalion

and performance tests on the eus tom VLSI convolver chip consLillltes il separa le

research project which is being carried out concurrently. Beeallst:.' of Ihis, fully

functional convolver llnits were not available for integratcd testing with the DMJ\

system.

After investing significant efforts in the design, construction and te~ling of our

convolution processor, it is :omewhat disappointing 10 sel' that we werl.' able 10

ob tain almost 30% of its pe:-formance (46 versus 162 MFLOP~,) with a C program

running on a general-purpose UNIX workstahan sllch as the IBM RS/6000 model

360 (sel.' secthn 4.4.2). Nevertheless, several points which serve to justify our

design have ta be kept in mind;

• Whereas IBM has access tü the latest technology wh en implementing it~

workstations, this was not the case for our convolution processor. In pilrtic

ular, the 3 micron CMOS process used to implement the systolic array chip

is completely obsolete. A major recommendation to obtain a much higher

performance would involve re-implementation using a higher density CMOS

process .

• It is much easier to integrate a VMEbus board in a real-time image-processing

system. Workstations usually lack high-speed 1/0 connections and are thu~

difficult to connect to external hardware which requires high bandwldlh,

unless one is ready to deal wlth the often proprietary expansion bus, and thus

go back to designing dedicated hardware. Several VMEbus boardr-, can he

113

•

•

•

4. Comparison wlth General Purpose Systems

connected together (possibly using higher-speed point-to-point connections

for image data) to achieve results which are not possIble otherwise. Of course,

glven enough performance in a UNIX workstation, the en tire system could

bl' implementcd in software at a much lower cost and with less difficulty, but

most image-processmg algorithms are still starved for computationai power

and will remain so for the next few years .

• The RS/6000 Model 360 is by no means a low-cost solution: fully configured,

its priee runs up to weil over $50,000. If it were produced in even modest

quantities, the proposed convolution processor system would cost much less

than that, especially if the systolic array device were re-implernented using a

lower-cost methodology such as agate array instead of a full-custom deviee

(the priee dlfferential coming mostly from the non-recurring expenses).

As indicated above, an obvious strategy for increasing the performance of the

system would be to re-implement the VLSI systoIic array devICes using a higher

density CM OS process ThIS would have the effect of bath raising the operational

frequency and reducing the silicon area required by the device: thus either a

smaller die could be used or several devlces could be cambined on a single chip

(thus reducing the physical size of the array). Another possible approach would be

to re-Implement the systolic ceIl using agate array or standard ceU rnethodology,

which although not as fast or dense as a full-custom device ha~ the advantage

that il allows easler acress to the higher-performance processes available from the

manufacturers (the full-custom process offered by the Canadian Microelectronics

Center is not the latest process available from commercial manufacturers).

Of course, any increase in the computational capacity of the array would mean

an additional burden on the VMEbus DMA interface. In arder ta alleviate this

problem, the on-board recombination memory could be made more general and

mapped mto the on-board local bus address spa ce, as weIl as being made accessible

to the host CPU when the convolution processor responds to slave VMEbus cycles.

114

•

•

•

4. CompilrtSOn \VIth Gt:'IH'ral rl1\'pO~t' Sy~tt:'m~

Thus the host CPU could manipulate an image stored directly on the cOllvolutiDIl

pro cess or ta perform operations which cannot be done b~' the convolution ;lrfl1V

The DMA interface would then be used only to transfer the input d,Ha from ils

source (possibly a frame grabber) and to transfer the final re~ult tl) Ils dl'stinatiDIl

(a frame buffer for instance).

Another possible avenue of work would be ta reuse the DMA engilll' to dnv!:'

other types of dedicated processors which operate on a high-speed data stream

For instance, the growing interest in "video on demand" system~ is fueling the nl'ed

for high-performance video image compression and decompres~ion engines which

can operate on digital video streams. Since the DMA enginl' is already capabll' of

dealing with different bandwidths at the input and output of the convolution

processor (which is required wh en operating with different input and output data

types), it could be adapted for compression/ decompression applications. Digital

video systems are likely to be the next area to demand specialized design!- which

can perform more computations and handle larger amounts of data than il cru b

capable of.

ll!ï

•

•

•

Conclusion

Thi~ thesi~ presents the design of a double-precision floating point convolution

proce~sor which can be used as an attached processor in a VMEbus-based system.

Typical applications could be low-Ievel computer vision and image processing tasks

in a real-time environment. It also reviews the relevant literature and shows how

this design relates to other systolic solutions propo:.ed or implemented in the past.

Il discusses the trade-offs between general-purpose and specialized architectures,

between which system designers seem to be continually oscillating. Performance

rcsults are prescnted and evaluated, and suggestions for future work are also made.

General-purpose architectures seem to be currently favored by many, and this

can be seen m the number of manufacturers of high-end "supercomputers" who

seem to be abandoning dedicated designs 111 favor of large numbers of general

purpose RIse processors connected in parallel. Certamly the capabilities of hard

ware have been growing at a much faster rate than those of software, and it thus

makes sense to design a system which can reuse software developped for "tradi

tional" architectures. In many projects, the cost of software easily outweighs that of

hardware. On the other hand, there are applications where general-purpose hard

ware simply cannot be used: for instance, image generation systems for commercial

and military flight simula tors (the author'b current area of work). Although sorne

workstation manufacturers would have us believe otherwise, there is currently

no VIable' substitute to dedicated image generators unless a severe degradation of

the trallung value of the simulator is accepted. Ihere will always be appJications

wherc performance is the premier criterion, and for those applications, dedicated

hardware systems will continue to be designed and built.

116

•

•

•

References

[Abraham ct al., 1987] J. A. Abraham, P. Banerjet', c.-y. Chen, W. K. Puchs, S.-y
Kuo, and A. L. N. Reddy, "Fault tolerance t(lchmques for syslohc anays," IfU:
Compllter, vol 20, pp 65-75, fuly 1987.

[Anfinson, 1988] C J. Anfmson, liA linear algebraic model of algorithm-based fatllt
tolerance," m Proceedings of fhe Infl'watlOllal C01lfi'/l'l/cl' 0/1 Systo//{ AnI/ys, (S.m
Diego, CA), pp. 483-493, May 1988.

[Annaratone ef al., 1987] M. Annaratone, E. Arnould, 1. Gros~, H. Kung, M. Lam,
O. Menzilcioglu, and J. Webb, "The Warp Computer: Architecture, implell\L'n
tation and performance," IEEE TransactIOns 0/1 COfl/puters, vol. 36, pp. 1523-153H,
Uecem ber 1987.

[Antola et al., 1988] A. Antola, R. Negrini, M. G. Samit and N. Scarabollolo, "Poli
cies for fault-tolerance throgh ll1ixed space- and tin1l'- rpdundancy in ~l\mi

systolic FFT arrays/' in ProC('('dm:;:s of the InternatlOlll/l COII(e/t'IIec on SystollL A/
rays, (San Diego, CA), pp. 565-576, May 1988.

[Bandyopadhyay et al., 1988] S. Bandyopadhyay, G. A. Julhen, and A. Sengupta,
liA systohc array for fauIt tolerant dIgItal sIgnal proce~slIlg usmg a rl\~Jdlll'
number system approach/' in Procccd1l1Ss of thc Inteml/fulI/al COI/{t-fClla (III Sy~t(///(

Armys, (San Diego, CA), pp. 577-586, May 198R.

[Banerjee,1988] U. Banerjee, Depcndcflcc Ana(ljSlS for Supef(ompuf/IIS Norwl'll MA:
Kluwer Academie Publishers, 1988

[Bell,1990] R. Bell, IBM RISC System/6()()(J Performance TllY/mg (or NumcrlCIIlly Inten
sive FORTRAN and C Pm~rams. International Business Machines, Arl11onk, NY,
1990.

[Benaini and Robert, 1990] A. Benaini and Y. Robert, "SpacetlIlw-mmIlllal ~yst()lic
architectures for gaussian eliminatlOn and the algebraic path problem," in l'ro
ceedin~s of the International Conferencc on Appltcations SpcCifle Array l)roCl'~sors,

(Princeton, Np, pp. 746-757, September] 990.

[Bertolazzi et al., 1988] P. Bertolazzi, C. Guerra, and S. Salza, "A sy~tel11atic ap
proach to the design of modular systolic arrays," in J1roCl'edm~s of the Infl'rnatum/ll
Conferencc on Systollc Arrays, (San Diego, CA), pp 453-462, May 19RR

[Boudreault and Malowany, 1986] Y. Boudreault and A S. Ma]owany, liA VLSI
convolver for a robot vision system/' in Procccdlf1~s of thl' Canadùm Conferl'nU' on
Very Lar~c Scale Infc~ration, 1986.

117

•

•

•

References

[BourbaklS and BarI'Js, 1988] N. Bourbakis and F. Barlos, "Performance evaluation
of the Hermes multibit systolic array architecture for low level processing tasks,"
in IJrocel'dm[?,s of the InternatIOnal Conference on SystollC Arrays, (San Diego, CA),
pp. 113-124, May 1988.

[Bu ct al., 1990a] J. Bu, E. F. Deprettere, and P. Dewilde, liA design methodology
for fixed-size systolic arrays," in Proceedll1[?,s of the International Conference on
ApplIcatIOn SpecIfie Array Processors, (Princeton, NJ), pp. 591-602, September 1990.

[Bu et al., 1990b] J. Bu, E. F. Deprettere, and L. Thiele, "Systolic array implemen
tation of nested loop programs," in Proceedings of the International Conference on
ApplIcation SpeCifie Array Processors, (Princeton, NJ), pp. 31-42, September 1990.

[Bursky, 19n] D. Bursky, "FPGA advances cut delays, add flexibility," Electronic
D/'sl[?,n, vol. 40, pp. 35-43, October 1992.

[Cappello, 1992] P. Cappello, /lA processor-time-rninimal systolic array for cubical
mesh algorithms," IEEE TransactIOns on Parallel and Dlstributed Systems, vol. 3,
pp. 4-13, January 1992.

[Chakrabarti and JaJa, 1990] C. Chakrabarti and J. JaJâ, "Systolic architectures for
the computatIOn of the discrete Eartley and the discrete cosine transforms
based on prime factor decomposition," IEEE TransactIOns on Computers, vol. 39,
pp. 1359-1368, November 1990 .

[Chean and Fortes, 1990] M. Chean and J. A B. Fortes, liA taxonomy of reconfig
uration techmques for fault-tolerant processor arrays," IEEE Computer, vol. 23,
pp. 55-69, January 1990.

[Chen and Yao, 1988] M.-J. Chen and K. Yao, "Linear systolic array for least
squares estimation," in Proceedm~s of the International Conference on Systolic Ar
rays, (San Diego, CA), pp. 83-92, May 1988.

[Cheng, 1988] K. H. Cheng, "Efficient designs of priority queues," in Proceedings of
tilt' 1988 InternatIOnal Conference on Parallel Processin[?, - Vol. l, (Penn State Univer
sity, Pa), pp. 363-366, August 1988.

[Chester ct al., 1991] D. B. Chester, W. R. Young, and M. Petrowski, "A fully systolic
adaptive filter implementation," in Proceedings of the International Conference on
AcoustlCS, Speech and Sl,~nal Processing ICASSP, (Toronto, On), pp. 2109-2212,
1991.

fChiang and Fu, 1990] C. C. Chiang and H. C. Fu, Il An improved multilayer neural
mode] alld array processor implementation," in Proceedings of the International
Confm'nCt' 0/1 Application Specifie Array Processors, (princeton, ND, pp. 389-400,
September 1990 .

118

•

•

•

Rett'rl'IH 't'~

[Chinn et al., 1990] G. Chinn, K A Grajski, C. Chen, C. KuszmauL and S. Tombnu
Han, "Systolic array implementations of neural nets on the MùsPar MP-l mas
sively parallel processor," in Procccd illSf. of the III fel/lI/t;O/l /(l11/ t COli (CI 1'1/(l' (/11

Neural Netu'orks, (San Diego, CA), June 1990.

[Choi and Bonakoff, 1992] J. Choi and V. Bonakoff, Il A new linl'ar sy~tohc arrù)'
fOf FFI computation," IEEE TransactIOns 011 wellifs Illld s.lIMetlls - 1/' Al/tlloS a/ld
Dzgltal SIgnal ProCCSSiIlS, voL 39, pp. 236-239, April 1992.

[Choudhary and Patel, 1988] A. N. Choudhary and T. H Patel, liA paralld pw
cessing architecture far an integrated vision system," in l'roCt't'dIIISs of thc 1988
International Conference on Parallcl ProCl'ssillS - Vol. 1, (Pertn Stail' University, l'il),
pp. 383-387, August 198B.

[Chungetal., 1992] J.-H. Chung, H. Yoon, and S. R. Maeng,"A systolic array ex
ploiting the inherent parallelisms of artificial neural networks," Thc EUI,OM1-
CRD Journal, Mzcroprocessing and Microprograml/lIllS, vol. 33, pp. 145-159, May
1992.

[Clark,1992] T. R. Clark, "Tom Clark on' FPGA design," CO/I/I'"tt'I Dl't>/:\/l, vol. 31,
pp. 31-32, December 1992.

[Clauss et al., 1990] P. Clauss, C. Mangenet, and G. R. Perrin, "Calculus of space
optimal mappings of systolic algorithms on processor arrays," in 1)f(/ct't'dIllS~ of
the J ntematlOnal Conference on ApplicatlOlI SpeCIfie Army Proccs1:>ort>, (princeton, NJ),
pp. 4-18, September 1990.

[CMC, 1989] Canadian Microelectronics Corporation, Carruthers Hall, Queen'~
University, Kingston, Canada, Guide to the Integrated CirC/lit Implcrtlt'tltatiotl Sl'r
vices of the Canad/af1 M/Croelectromes CorporatIOn, GICIS version 4:0 l'd., March
1989.

[Codenotti and Tamassia, ~ 991] B. Codenotti and R. Tamassia, "A network flow
approach to reconfiguration in VLSI arrays," IEEE TransactIOns orl COrtlpllt/>rs,
vol. 40, pp. 118-121, January 1991.

[Côté, 1990] J.-F. Côté, ''The design of a testable floating point convolution proccs
SOf," Master's thesis, McGill University, Montréal, Qc, November 1990.

[Delosme,1990] J.-M. Delosme, "Bit-Ievel systolic algonthm for the symmetnc
eigenvalue problem," in Proceedmgs of the InternatIOnal Conference on Application
Speczfie Array Processors, (Pnnceton, NJ), pp. 770-781, September 1990.

[Dennis, 1980] J. B. Dennis, "Data flaw supercomputen,," IEEE Computer, vol. 13,
pp_ 48-56, November 1980.

[Draiet et al., 1990] J. Drolet, J.-F. Panisset, J.-F. Côté, F. Larochelle, and A. Mal
owany, fiA double precision floating point convolution system," in Proccedrngi:> of

119

•

•

•

References

the ASME International Camputers zn Engineering Conference, vol. 2, (Boston, MA),
pp. 1-6, American Society of Mechanical Engineers, August 1990.

[Drolet ct al., 1991] J. Drolet, J.-F. Pamsset, and A. Malowany, "Design of a floating
poin t convolution processor," in Proceedzngs of the Canadwn Conference on Electrical
and Computer Engmecnng, (Quebec City, Canada), pp. 13.5.1-13.5.4, Calladian
Society for Electrical and Computer Engineering, Septem~er 1991.

[Drolet, 1992] J. Drolet, "The design of a floatmg-point convolution system," Mas
ter's thesis, McGill University, Montréal, Qc, November 1992.

[Dudgeon and Mersereau, 1984] D. E. Dudgeon and R. M. Mersereau, Multldimen
sional DIgital SIgnal Proccssmg. Englewood Cliffs NJ: Prentice Hall, 1984.

lEgan and Teixena, 1992] J. Egan and T. Teixeria, Wntl/lg A Umx Deviee Drzver.
N ew-York NY: John Wiley & Sons, 2nd ed., 1992.

[Egan, 19911 B. T. Egan, "Designers search for the secret to ease ASIe migration,"
Computer DeSign, vol. 30, pp. 78-94, December 1991.

[Ersoy, 1985] O. Ersoy, "Semisystolic arrayimplementation of circular, skew circu
lar and linear convolutions," IEEE TransactIOns on Computers, vol. C-34, pp. 190-
196, February 1985.

[Fisher and Kung, 19851 A. L. Fisher and H. T. Kung, "Synchronizing large VLSI
processor arrays," IEEE TransactIOns on Camputers, vol. C-34, pp. 734-740, August
1985.

[Fortes and Wah, 19871 J. A. Fortes and B. W. Wah, "Systolic arrays - from concept
to implementation," IEEE Computer, vol. 20, pp. 12-17, July 1987.

[Frison and Quinton, 1984] P. Frison and P. Quinton, "An integrated systolic ma
chine for speech recognition," in VLSI: Aigorithms & Architecture. Proceedings of the
Intert/ational Works/lOl' 011 Parallel Camputlllg & VLSI., (Amalfi, Italy), pp. 175-186,
May 1984.

[Futurebus+,19901 Institute of Electrical and Electronics Engineers, IEEE Std 896
- 1990, IEEE Standard Backplalle Bus Specification for Multiprocessar Architectures:
Fufu/'cblls+,1990.

[Gharachorloo et al., 1988] N. Gharachorloo, S. Gupta, E. Hokenek, P. Balasubra
manian, B. Bogholtz, C. Mathieu, and C. Zoulas, "Subnanosecond pixel rendH
ing with million transistor chips," in Computer Graphies (SIGGRAPH), (Atlanta,
GA), pp. 41-49, August 1988.

[Gokhale i't al., 19901 M. B. Gokhale, A. Kopser. S. P. Lucas, and R. G. Minnich,
"The logic description generator," in Proceedings of the International Conference
011 Apl'lrcat/Ol1 Specifie Army Processors, (Princeton, NJ), pp. 111-120, September
1990.

120

•

•

•

fGokhale ct al., 1991l M. Gokhale, W. Holmes, A. Kopser, S Lucas, R Minl11ch .
D. Sweely, and D. Lopresti, "Budding and using a highlv paraUd pWgl.UlUll.lbll'
logic array," IEEE Campl/fl'/, vol. 24, pp. SI-89, Tanuar\' 1 lll) 1.

[Gross et al., 19S5] T. Gross, H. T. Kung, M. Lam, and 1 Webb. "Warp.1~ ,1 lll.ll'hitll'
for low-Ievel vision," in Procl'cdllls." of tlrl' 1985 IEEr {/ltt'lIll/tIOllol Ct1llfl'lCIIlI' 0"

Robot/cs & AutomatlO/I, (St-Louis, Missouril, pp. 7YO-8011, M,lfCh IlJH5

[Guerra and Kanade, 1984] C. Guerra and 1. Kanade, liA ~ystLlhc algorithm lor
stereo rnatching," in V LS{: Algonthllls & Arc/Il fcctlw. {J/(Ju'l'dll/S.'" of tJIl' III tl'/'/Il/
tir. ,'1 Works}lOp 011 Pamllcl CO/1/pllt1ll;\ & VLS{ ,(Amalfi, Italv), pp 103-112, M,lY
1 '4.

[Haule, 1990] D. D. Haule, "Deslgn of a VLSI system for Image processing," M.lS
ter's thesis, McGi1l University, Montréal, Qc, March 1990.

[Hellwagner, 1988] H. Hellwagner, "A systolic afray with constant 1/0 bandwidth
for the generalized Fourier transform," in [J1OCL'c1ilnSS of tht' Il/tt'/'IlIltICJ/lill COII!t'/

ence on Systolzc Arrays, (San Diego, CA), pp. 207-216, May 19HH.

[Hoang, 1992] D. T. Hoang, liA systolic array for the sequenCl' ahgnml'Ilt pfllb
lem," Tech. Rep. CS-92-22, Department of Computer Sciencl', Brown UnivL'r~ity,
Providence, RI, April 1992.

[Hou ct al., 1°88] P.-P. Hou, R. M. Owens, and M J. Irwin, liA high lewl syntllt'~b
tool for ~ ystolic designs," ll1 Proccedl/lgs of tite 111 tCI'//(/f 10 1111 1 Con!Î'rI'IlCt' 0/1 Sys/ollc
Arrays, (San Diego, CA), pp. 665-673, May 1988.

[Hu et al., 1990] Y Hu, J. V. McCanny, and M. Yan, "Systolic VLSI compiler (SVC)
for high performance vector quan tization chips," in ProO'CdIIlS!'> of the Il/ternatlOnal
Conference on AppltcatlOn SpeCIfie Army Proœssors, (princeton, NJ), pp. 145-155,
September 1990.

[Huang, 1972] T. Huang, "Two-dimenslOnals wmdows," IEEE TransactIOn lin AI/
dio Ilnd Elec/roaeoustics, pp. 88-89, March 1972.

[Hwang and Briggs, 1984] K. Hwang and F. A. Bnggs, Compu/l'Y An}lItl'cturl' tlnd
Paralld Processzn~. New York NY: McGraw-Hill Book Company, 1 YH4.

[Ibarra and SOhl1, 1989] O. H. Ibarra and S. M. 50hn, "On mapping ~y~tolic algu
rithms onto the hypercube," in Proceedzng.:; of the 1989 {nlerna/JOnal Confi'Yl'nU' on
Paralle! Processmg - Vol. l: Arclllteeturc, (Penn State Univer~ity, Pa), pp. 121-124,
August 1989.

[IEEE-754, 1985] Institute of Electrical and Electromcs Engmeers, 1 LEL Std 754 -
1985, IEEE Standard for Bwary Floatmg-Polllt Anthml'tIC, 19RtJ.

[Jacobsen, 19901 K Jacobsen, Image Convolu t/Ons, ApplIcation Nott'. MasPar Corpo
ration, Sunnyvale, CA, 1990.

]21

•

•

•

Refer~nces

[Johl1sson l't al., 19881 L Johnsson, C-T. Ho, M. Jacquemin, and A. Ruttenberg,
"Systohc rFT algorithm~ on boolean cube networks," in Proceedznf<s of the Inter
I1l1tlOl1al COl1fl'I'l'lIu' on Systollc ArraY5, (San Diego, CA), pp 151-162, May 198B.

U(lne~, 1 YY3] K JOl1e<" "Parallel OFf computation on bit-seriaI systolic processor
arrLly~," /lI PwU'cdll1ssE Cn;nputrrs & DI?:ltal TeclzllIqucs, vol. 140, pp. 10-18,
January 1993.

[Kar and Bapt:'<,wara Rao, 1993] D. C Kar and V. Bapeswara Rao, liA new systolic
reahzatwn for the dlscrete Fourier transform," JEEE Transactions on Szgnal Pro
Cl'ssmg, vol. 41, pp 2008-2010, May 1993.

[Khoros, 1991] The Khoros Group, Department of Electnca' and Computer Engi
neering, Universlty of New Mexico, Albuquerque, NM, Khoros Man/lai Release
1.(), 1991.

[Kim, 19R81 J. H Kun, "On the design of easily testable and reconfigurable systolic
arrays," in Proceedlllgs of fhe InternatIOnal COllference 011 Systollc Arrays, (San Diego,
CA), pp. :105-514, May 1988.

[Ka and Wmg, 1988] C K Ka and O. Wing, "Mappmg strategy for automatic de
sign of systolic arrays," in Procccdings of the International Conference on Systolic
Armlfs, (San DIego, CA), pp. 285-294, May 1988

[Kothan ct Ill., 1989] S. C. Kothari, H. Oh, and E. Gannet, "OptImal deSIgns oflinear
How systohc architectures," 111 Procc('dl1l~s of the 1989 1 ntcrnaflOnal Conference on
Plll'llllcl /)/'O(('::;SIII."; - Vol. J' Architecture, (Penn State University, Pa), pp 247-256,
August 1989.

IKugc1mas, 1988] S. D. Kugelmas, liA probabilistic model for clock skew," in Pto
Cl 'cd III:\S of tlll' 111 tC/l/atlonal Co Il ference Of! SYStollC Arrays, (San Diego, CA), pp. 545-
.'ï54, May 1988.

[Kumar and Trai, 1988] V. K P. Kumar and Y-C Trai, "Mapping two dimensional
syslobc arrays ta one dimensianal arrays and applicatIOns," in ProceedIngs of the
1988 III fl'I'Iw f 10 Il ill Conference 011 Parallel Processjn~ - Vol. J, (Penn State University,
Pa), pp. 39-46, August 1988.

[Kung and Leisersan, 1979] H. Kung and C. Leisersoll, "Systolic Arrays (for
VLSI)," in Sparst' Matnx ProCt'cd111SS 1976, Society for Industnal and Applled Maflz
t'flliltH s, pp. 256-282, 1979.

[Kung l't al., 1987] S. y. Kung, S. C. La, S. N. Jean, and J. N. Hwang, ''Wavefront
array proce~~ors - concept ta implementa tion," J EEE Computer, vol. 20, pp. 18-33,
Iuly 1'.)87.

[Kung, 1982] H. Kung, ''Why systolIc architectures?," IEEE Computer, vol. 15,
pp. 37-46, January 1982.

122

•

•

•

Rl'It'll'IH l'-'

[Kung,1988] S. y. Kung, tJParallel architectures for artificiall1t:'ural nets," 1I\ P"" t't'd

il1gS of the 1/1 tt'nIat 10 I/tl 1 COli tcrCIlet' 01/ SystollL AI my~, (San Dll'gl\ CA), pp. 1<,3-174,
May 1988.

[Kwan and Okullo-Oballa, 1990] H.-K, Kwan and T. S Okullo-()b.llla, "2-1) ~\'~
tolic arrays for reahzatlOn of 2-D convolutions," IEEE liilll~llct/OlI:- Pli Cl1llllf~ III/t!

SyStt'tllS, vol. 37, pp. 267-273, February 1940.

[Kwan,1993] H -K. Kwan, "Systohc realisation of dclaYl'd two-path hnl\1f ph,l"'l'
FIR digital filters," IEE Proccedinss-G: Circ/lits, DcP/(cs {-r Sy~ft'IIIS, YDI. 140, pp 7~-
80, February 1993.

[Lam,1991] S. P. S Lam, fiA systolic ImplementatIon of tlll' Jacobi ,llgorithm," III

ProCl'cdi ngs of tlze 111 tematlOllal Conferel/ce 011 AC01/s(les, SI't't'cll Ill/d SIS lit/li)/()t'I':. . ..,IflS
ICASSP, (Toronto, On), pp. 1021-1024,1991.

[Larochelle et al., 1989] F. Larochelle, J -F. Côté, and A. Malow.lllY, fiA t10ilting point
convolution systolic ceU," in Procccdillgs of tht' VISIOII IlIfCl fi/II' '89 COIIII-' ,'1/, l',

(London, Ont), pp. 77-80, Junl' 1989.

[Larochelle, 1991] E Larochelle, tJVLSI deSIgn of a doubk prl'C!~l(ln l10iltlng p(lint
convolutIOn systolIc ceH," Master's thesl~, MCGIll UniVl'r~llv, M(lllln.·,ll, CIl,
March 1991.

[Lee and Kedem, 1989J P. Lee and Z. M Kedem, "Mappmg nL'~tl'd loop algol'lthlll'"
into multi-dimensional systohc array~," ll1 ProCt'CdIlIS 01 tire 1989 1I/II'nllifiol/iiI

Conferencc 011 Paralld Proccss/llS - Vol III Al."-;OIltll1l1 . .., {of A/II)/IUlflOlI , (l'l'Illl St.ltl'
University, Pa), pp. 206-210, August 1 YRLJ

[Leffler ct al, 1989] S. Leffler, M. K McKu~ICk, M , Karl'b, and 1. S. (juartl'rmall,
The DeSIgn alld ImplementatlOl/ of the 43BSD UNIX O/WlllflIIg Slt"fl'IN l~l·.Hilllg

MA: Addison-Wesley Pubhshing Company, 19H9.

[Lengauer ct al., 1991] C Lengauer, M Barnett, and D. G. Ilud"ol1, "Towt1nl ... "'Y"'
tolizing compilation," DIstnbrltl'd COmpllf/llg, vol :1, pp. 7-24, JUill')99)

[Um, 1990] J. S. Llffi, Two-Dl/lIenslOllal Sist/af and Imllgl' 1)/'(IlI':':'III.'\. Engkw(lod (·hff ...
NJ: PrentlŒ Hall, 1990.

[Lm, 19881 W.-T. Lm, "Mapping systohc algontlum mto ~huffll' array"," III 1)/(/(l'I't!

ings of thc /11 tcrnatlOl1t11 Confercnce on Systo/lc Arrtllj. ... , ('-jan f)ll'go, CM, pp ;\'1 J - '~h(;,

May 1988,

[Liu ct al, 1990] K. R. Liu, S -F HSleh, and K Yao, "Two-ll'vel plpl'Irnl'd IInph-
mentati':>l"l for systolic black Householder tran ... [llrmatlOn wIth applJcatltln 10

RLS algorithm," in Procccdlllgs of the Infl'rnatuJna! Con [amu' (11/ Apfl/H lIf IOn S/w
ciftc Army Processors, (Pnnceton, NJ), pp. 758-769, September]lJlJO

123

•

•

•

References

[Liu et al., 1991J K. R. Liu, S.-F. Hsieh, K. Yao, and c.-T. Chiu, "Dynamic range,
stability, and fault-tolerant capability of finite-precision RLS systolic array based
on Givens rotations," IEEE Transcat/Ons on Circuits and Systems, vol. 38, pp. 625-
636, June]991.

[Lopre~ti, 19R7] D. P. Lopresti, "P-NAC: a systolic array for comfJaring nucleic acid
sequence~," / EEE COn/pU ter, vol. 20, pp. 98-99, July 1987.

[Malowany and Malowany, 1989] M. Malowany and A. Malowany, "Color-edge
detection algorithm for a high-performance convolution processor," in Proceed
lnX~ of the V/sIOn Interface Confcrence, (London Ont.), June 1989.

[MasIO, 1990] MasPar Corporation, Sunnyvale, CA, MasPar System 1/0 Manual,
1990.

[MasPOp, 1990] MasPar Corporation, Sunnyvale, CA, MnsPar MP-l Pnnclples of
Operation, 1990.

lMC68020, 1989] Motorola Inc., Englewood Cliffs, NJ, MC68020 32-B/f Micropro
assaI' Usa's ManI/aI, TIl/rd Editioll, 1989.

[McRCIM, 1990] McRCIM, "Mcgill research center for intelligent machines annual
report," tech. rep., McGill University, Montréal, Qc, 1990.

[McWhirter ct Ill., 1990] J. G. McWhirter, D. S. Brovmhead, and T. J. Shepherd,
/1 A systolic array for nonlinear adaptive filtering and pattern recognition," in
Proet'cdl1ISs of fhe Il/tcYllntlOnal Conference on ApplIcatIOn SpecIfie Array Processors,
(Princeton, NJ), pp. 700-711, September 1990.

[Mead and Conway, 1980] C. Mead and L. Conway, J nfroductlOl1 to V LSI Systems.
Reading MA: Addison-Wesley Publishing Company, 1980.

lMegson, 1991] G. Megson, "Systolic algorithrn for B-spline patch generation,"
10/1,.,1111 of Pilmllc llnd DIstnbutcd Computin~, vol. Il, pp. 231-238, March 1991.

[Meher L'f al.,] 993] P. Meher, J. Satapathy, and G. Panda, "Efficient systolic solution
for a new prime factor discrete HartIey transform algonthm," IEE Proceedzngs-G:
Ci/ClIIts, DClI/CCS & Systems, vol. 140, pp. 135-139, April 1993.

[Mercklenbrauker and Merserau, 1976J W. F. Mercklenbrauker and R. M.
Merserau, "McClellan transformations for two-dimensional digital filtering: 11-
implementation," IEEE Transactions on CIrCUits and Systems, vol. CAS-23, pp. 414-
422, J uly 1976.

[Mcrserau cf ill., 1976] R. M. Merserau, W. F. Mercklenbrauker, and J. Thomas
F Quatieri, "McClellan transformations for two-dimensional digital filtering:
1 - design," IEEE Tral/SactlOlls on Circuits llnd Systems, vol. CAS-23, pp. 405-414,
July 1976

124

•

•

•

[MIPSASM,1987] Silicon Graphies Computer Systems, Mountain View, CA, A:;
scmbly Lan~lla~t' Progmmmt''''s GUllle, 1987 .

[Mokhoff,1993] N. Mokhoff, "Technology trends: PLOs/FPGA!-," EIt'c!wl/l(EIiSi
ne('1'/1l~ Tlffles, pp. Tl-T48, March 221993.

[Moldovan and Fortes, 198(>] O. I. Moldovan and T. A. B. Forte!-, "Partitioning and
mapping algorithms ir.to fixed size systolic arrays," IEEE 7111/1Sllct/(ll/~ 011 CO/II
plders, vol. C-35, pp. 1-12, January 1986.

[Moon en and Vandewalle, 1993] M. Moonen and J. Vandewalle, "A systohc array
for recursive least squares computations," IEEE Tml/SartlOlls 01/ SISIIIII PI"et'SSI1IS,

vol. 41, pp. 906-912, February 1993.

[Moreno and Lang, 1988] J. H. Moreno and T. Lang, "Graph-based partitlOning
of matrix algorithms for systolic arrays. applir.lllOn to transitive closUfe," in
Proceedill~s of tlle 1988/llterl1atlOl1tll Conft'IctlCt' on l'amI/el ProCt'SSIII,,\ - Vol l, (Penn
State University, Pa), pp. 28-31, August 1988.

[Moreno and Lang, 1990] J. H. Moreno and T. Lang, "Matrix computations on
systolic-type meshes - an introduction ta the multimesh graph ml'thod," I[Ef
Computer, vol. 23, pp. 32-51, April 1990.

[Motorola, 1987] Motorola Inc., USlIlS thl' MC6S020 as Il Dedlc{/tcd DMA COlI trolll'I,
1987. Application Note OC003 .

[MPLguide, 1990] MasPar Corporation, Sunnyvale, CA, Mas[Jar 11111'11/11'1 Appllcnf/OII
LanguagdMPLJ User Guide, 1990.

[MPLref,1990] MasPar Corporation, Sunnyvale, CA, MasPa,. IJaralld ItppluutlOlI
Langua~e (MPLJ I<efcrcnœ Mlllzual, 1990.

[Multibus,1983] Intel Corporation, Mu/tlbus Data Book, 1983.

[Myer and Sutherland, 1968] T. Myer and 1. Sutherland, liOn tht:> design of display
processors," Commlwlcations of the AeM, vol. Il, pp. 410-414, June 1968.

[Omtzigt,1988] E. T. L. Omtzigt, "SYSTARS: a CAO tool for the 5ynthesis and
analysis of VLSI systolic/wavefront arrays," in Proœl'dzngs of the International
Conference on Systollc Arrays, (San Diego, CA), pp. 383-391, May 198R

[Omtzigt, 1990] E. T. L. Omtzigt, "Domain flow and strearning architectures," in
Proceed1l1~s of the International Conference 011 ApplIcatIOn Speclfic Arruy [Jrocessors,
(Princeton, NJ), pp. 438-447, September 1990.

[Oppenheim and Schafer, 1989] A. V. Oppenheim and R. W. Schafer, Di!:>crrtl'-Timl'
Si~nal Processmg. Englewood Chffs NJ: Prentice Hall, 1989.

[Pajari,1992] G. Pajari, Wntzn~ Unix DeViee Drivers. Reading MA: Addison-Wesley
Publishing Company, 1992.

125

•

•

•

References

[Panchana than and Goldberg, 1991l S. Panchana than and M. Goldberg, "A sys
tolie array architecture for image coding using adaptive vector quantization,"
IEEE Tran~act/Ons on Circlllts and Systems for Video TecJznolo~y, vol. 1, pp. 229-229,
June 1991.

[Panü,set ct ill., 1990] J .-F. Pamsset, J. Drolet, J .-F. Côté, F. Larochelle, and A. S.
Malowany, liA floating point convolution system," in Proceedln~s of thc 33rd
Mldwcst SymposIum on Circuits and Systems, (Calgary, Alta.), August 1990.

[Panneerselvam tf al., 19881 G. Panneerselvam, G. Jullien, and W. Miller, "New
architectures for systolic hashing," in Proceedmgs of tlze International Conference
011 Systollc Arrays, (San Diego, CA), pp. 73-82, May 1988.

[Parks and McClellan, 1972] T. W. Parks and J. H. McClellan, "Chebyshev approx
imation for nonrecursive digital filters with linear phase," IEEE Transactions on
CircUIt Theory, vol. CT-19, pp. 189-194, March 1972.

[Payer, 1988] M. Payer, "Formai derivation of systolic arrays - a case study," in
Procecdlllgs of the InternatIOnal Conference on SystollC Arrays, (San Diego, CA),
pp 331-340, May 1988.

[Peng and Jun, 1988] S.-T. Peng and M. S. Jun, "A new VLSI 2-D systolic array for
matrix multiplications and its applications," in Proceedings of the 1988 Interna
tional COl/ferc/lCi' 01/ Parallcl PrOCeSSll1g - Vol. III - Algonthms & Applications, (Penn
State University, Pa), pp. 169-172, August 1988.

[Perry,1991] D. L. Perry, VHDL. New-York NY: McGraw-HIlI, 1991.

[Phillips and Robertson, 1988] W phillips and W. Robertson, "A systolic architec
ture for the symmetric tridiagonal eigenvalue problern," in Proceedings of the
Il/tefllatJOllal COl/ference 0/1 Systolzc Arrays, (San Diego, CA), pp. 145-150, May
1988.

[Poli and Bayoumi, 1988] S. P Poli and M. A. Bayoumi, liA reconfigurable VLSI
array for reliability and yield enhancement," in Proceedings of the International
CcmfcYt'lICt' on Systolic Arrays, (San Diego, CA), pp. 631-642, May 1988.

[Psarakis and Moustakides, 1991] E. Z. Psarakis and G. V. Moustakides, "Design
of two-dimensional zero-phase FIR filters via the generalized McClellan trans
form," IEEE TrallsllctlOlls 011 CIrcuits and Systems, vol. 38, pp. 1355-1363, Novem
ber 1991.

[Ramacher and Raab, 1990] U. Ramacher and W. Raab, "Fine-grain system archi
tecture for systolic emulation of neural algorithms," in ProceedinRs of the Interna
tlOlIl'l CO/lfereflce 01/ Application Spccifrc Array Proccssors, (Princeton, NJ), pp. 554-
566, September 1990.

[Ramanathan and Oren, 1993] G. Ramanathan and J. Oren, "Survey of commercial
parallei machines," Computer ArchItecture News, vol. 21, pp. 13-33,June 1993.

126

•

•

•

Rell:'rt'nn's

[Rivest ct ûl., 1978] R. Rivest, A. Shamir, and L. Adleman, liA method for (1btainin~
digital signatures and public key cryptosystem .. ," COI/lI1I1II1ll'iltWIl~ 01 tlIC ACM,

vol. 21, February 1978.

[Rose ct al., 1993] J. Rose, A. El Gammal, and A. Sangiovanni-Vincentelli, "Ar
chitecture of field-programmable gate arrays," Pro(l'cdIl1S~ of thl' /EEE, vol. 8],
pp. 1013-1029, July 1993.

[Sarkar and Majumdar, 1991] S. Sarkar and A. Majumdar, "An instructIOn sy~tolic
array implementation of the two-dimensional fast fourier transform," El/I,UMI
CRG Journal, vol. 33, pp. 101-110, November 1991.

[Sarkar ct al., 1991] S. Sarkar, A. Majumdar, and R. Sen, 1/ A hardware efficient sy~
tolic solution to the two-dimensional discrete fourier transform," Elll\OMIC/~O
Journal, vol. 33, pp. 111-117, November 1991.

lScheiman and Cappello, 1992] C. J. Scheiman and P. R. Cappello, "A procesbor
time-minimal systolic array for transitive closure," IEEE Tmllsllct/(>II~ 01/ fJtl1I1/1d
and Distnbuted Systems, vol. 3, pp. 257-269, March 1992.

[Sciuto and Lombardi, 1988] D. Sciuto and F Lombardi, "New conditions for te~ta
bility in two-dimensional bilateral arrays," in Procct'dll/Xs of thl' Il/fI'rtlutlO/ltll COI/
ference on Systollc Arrays, (San Diego, CA), pp. 495-504, May 198R

[SGISMP,1993] Silicon Graphies Computer Systems, Mountain View, CA, Syfllllll'f

rie MUltlproCCSSln~ Systems Technlcal Rl'port, 1993.

[Sha and Steiglitz, 1991] E. H.-M. Sha and K. Steiglitz, "Reconfigurability and reli
ability of systolic/wavefront arrays," in Proceedmxs of thl' Infernat llJtllll COl/ferl'na
on AcollstlCS, Speech and Slgnal Pl'Ocessin~ lCASSP, (Toronto, On), pp_ 1001-1004,
1991.

[Snyder, 1982J L. Snyder, "Introduction to the configurable, lughly parallel com
puter," IEEE Computer, vol. 15, pp. 47-56, January 1982.

[Speake and Mersereau, 1981] T. C. Speake and R. M. Mersereau, liA noie on the
use of windows for two-dimensional FlI{ filter design," 1 EEE Tmtls(/cf/On~ on
Acousfics, Speech and Signal Process;ng, vol. ASSP-29, pp. 127-127, February] 98J.

[Squier and Steiglitz, 1990] R. Squier and K. Steigli tz, Il A practical runtime test
method for parallel lôttice-gas automata," in Proceedinxs of fil(' International
Conference on Application Speclfic Array Processors, (Princeton, NJ), pp. 783-793,
September 199U.

[Steenarrt and Zhang, 1991] W. Steenarrt and J. Y. Zhang, "Mapping rl'cursive a)

gorithms onto systolic architectures," in Proœedmgs of the 1 ntcrnatlOnal Cunference
on Acoustics, Speech and Signal Processmg ICASSP, (Toronto, On), pp. 1209-1212,
1991.

127

•

•

•

References

[Sternheim et al., 1990] E. Sternheim, R. Singh, and Y. Trivedi, Digztal Design with
VI'n/og HOL. Cupertino CA' Automata Publishing COmpal'.y, 1990.

[Stone, 1987] H. S Stone, Hi:?h-Performancc Computer Architecture. Reading MA:
Addbon-Wesley Publishmg Company, 1987.

[Sun, 1989a] Sun Microsystems Ine., Mountain View, CA, User's Gu Ide ta the 5un-
3/W(J VMEhIlS,]989.

(Sun, 19R9b] Sun Microsystems Inc., Mountain View, CA, Writing Devlce Drivers
for the SUII Workstafwn, 1989.

fTang cf al.,] 991] C. Tang, K Liu, and S. Tretter, "On systolic arrays for recursive
complex Householder transformations with applications to array processing," in
ProCl'l'dmgs of the InternatIOnal Conference on Acoustlcs, Speech and Signal Processing
ICASSP, (Toronto, On), pp. 1033-1036,1991.

[Thomborson and Wei, 1991] C. D. Thomborson and B. W.-Y. Wei, "Systolic im
plementatiDIl of a move-to-front text compressor," Computer ArchItecture NC'los,
vol 19, pp. 53-60, March 1991.

[Torralba and Navarro, 1988] N. Torralba and J. J. Navarro, liA one dimensional
systohe array for solving arbitrarily large least rnean square problems," in Pro
cecd/llgs of thl' 1 fi tematlOllal Conference on SystollC AT mys, (San DIego, CA), pp. 103-
112, May 1988 .

[Travis,1991] D. Travis, EffectlVc CalaI' DIsplays - Theory and Practicc. London UK:
Academie Press, 1991.

lTseng, 1988] P. Tseng, "Iterative sparse linear system solvers on Warp," in Proceed
i//ss of tire 1988 1 /1tall(/t ional Conference 011 Parai ft" Processing - Vol. III - Algonthms
[i AppllcatlOlls, (Penn State University, Pa), pp . .12-38, August 1988.

lTseng, 1990] P. Tseng, "A systolic arrav progr.1l11ming language," in Proceedings
of tllc InfC1'Il(/tiollai Conferet/ce 011 AprlzcatlOn Specifie Array Processors, (Princeton,
NJ), pp. 794-803, September 1990.

rValero-Garcia ct al., 1990] M. Valero-Garda, J. J. Navarro, J. M. LLaberfa, and
M. Valt'ro, "Implementation of systolic algorithms using pipelined funetional
units," in Proœedillgs of tlzc InternatIOnal Conference 011 Applzcation Specifie Array
ProCl'ssOtS, (princeton, NJ), pp. 272-283, September 1990.

[Van Dongen and Quinton, 1988] V. Van Dongen and P. Quinton, "Uniformization
of linear recurrence equations: A step towards the automatic synthesis of systolic
arrays," in PlOcct'dings of tlze InternatIOnal ConferenCt' 011 Systollc Arrays, (San Diego,
CA), pp. 473-482, May 1988.

[VHDL, 1987] Institute of Electrical and Electronies Engineers, IEEE Std 1076 -
1987, J EEE Stal/dard VH DL Language Reference Manual, March 1987.

128

•

•

•

Rctl'rt'IKt'S

[VMEbus, 1982] Motorola Semiconductor Products Inc., V MEIl//~ Spt'C/t1Cllt 101/ Mill/

ual, August 1982.

[Wallace, 1991] G. K Wallace, "The TPEG still picture comprt'ssion standard," COll/

mil 11 icatiolls of the ACM, vol. 34, pp. 30-44, April 1991.

[Wan and Evans, 1993] C. Wan and D. Evans, "A systolic array architecture for
linear and inverse matrix system," Paralld CampI/til/S, vol. 19, pp. 303-321, March
1993.

[Wolfe,1989] M. J. Wolfe, Opti11l1:/I1S SlIpcrcompIlcls fOI SrIJlI'lwllll'"tt'I~. Lundon
England: Pitmal' Publishing, 1989.

[Wong and Delosme, 1988] Y. Wong and J.-M. Delosme, "Broadcast rl'1110\'<11 in sy~
tolie algorithms," in Proceedings of tlze International Confl'lCIlù' 011 f:lysfollC A"l1y~,
(San Diego, CA), pp. 403-412, May 1988.

[Wong and Delosme, 1992] Y. Wong and J.-M. Delosme, "Transformation of broad
casts into propagations in systolic algonthms," IO/lnllll of [lillal/cllll/d [J/~tn/lrlf{'tI
Computins, vol. 14, pp. 121-145, January 1992.

[Yaacoby and Cappello, 1988] y. Yaacoby and P R. Cappella, "Scheduling a ~y~
tem of affine recurrence equations onto a systolic anay," in l'r(/(('{'dIllS~ of tIlt'
InternatIOnal Conference 011 Systohc Arrays, (San Diego, CA), pp 373-3H2, May
1988.

[Youn and Singh, 1988] H. Y. Youn and A. D Singh, liA hlghly eŒcil'nt de~ign for
reconfiguring the proeessor array in VLSI," in Proo'cd mss of tilt' 19H8/lltl'rI/lit/ol/tll
Conferellce on Pamlld Proccsszng - Vol. l, (Penn State UniverSity, Pa), pp 37's-3H2,
August 1988.

[Zhang ct al., 1988] C. N. Zhang, H. L. Martin, and D. Y. Y Yun, "Parallel algu
rithrns and systolic array designs for RSA cryptosystem," in IJroU'l'dll/s,,, uf tlu'
International ConferenCl' on Systolrc Arrays, (San Diego, CA), pp. 34J-350, May
1988.

[Zhong and Rajopadhye, 1991] X. Zhong and S. Rajopadhye, "Synthl'&Îzing fully
efficient systolic arrays," in Proceedings of tlze InternatIOnal Con[m'lIu' Ofl ACOIMÎctl,

Speech and Signal Processing ICASSP, (Toronto, On), pp. 1241-1244,1991.

129

