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A hsf:ract 

'l'wo-dimensional convolu~ion is one of the basic operations in image processing, 

where il i~ used as a filtering too!. A kernel of value~, corresponding to the spatial

clama in impuls ~ r,esponse of the filter is applied ta Ihe original image in order to 

perform dpsired operahèns :,uch a~; low·pass filtering or edge enhancement. A 

low pass mt!'r wlll perform ImagE' smoothing by rernoving hlgh-frequency noise, 

whereas a high-pass filter will enhance the edges: tlus can be used to perform 

low-level fealure t'xtraction in a machine vision appliCédion. It is also used in most 

Image n,'sa mphng .md warping algonthms: it thus find~, applic.üions in both image 

proce~sing and compu ler graphies 

Sinet> convolution 1:, basically a two··dlmensional multiply and accumula te op

t'ration, Il is computational1y intenSIvE'. When applying an lI,f by I\l kernel to 

an 1'1,' by '" image, 1\12 x .\'2 multiplications and additions have to be performed. 

Furthermon', thesC' basic low-level signal-processing methods are frequently ap

plied many tini'e~, to lar,ge data sets, often in rpal-timE. General-purpose computer 

architectures are often ill-suited to perfoflll tv~o-din' ensional convolutions, since 

they lack the required processing speed or memory b"ndwidth. This motivated the 

project to design and build a specialized device which can compute the convolution 

operation efficiently for such applications. 

This thesis addresses the design and implementat on of a specialized processor 

which can perform two-dimensional convolution using double-precision floating

point operands. The selected architecture is based on the concept of the systolic 

array. Thl'~e architectures are reviewed particularly for the constraints which im

pact their logical and physical design, as weIl as for the numerous applications 

for which they have been proposed in the littera tun' or have been implemented. 

Aftern outlining the overall system architecture of the convolution processor, the 
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thesis focusses on the details of the imrielnenlMion ot Ihe bus m terfacL' .Ulli Di

rect Memory Access controller. Finally, the performance of tIlt' l'ropo~L\d design 

is evaluated and compared against alternative software implen'lL'nt.1lion~ l)j IhL' 

con" Jlution algorithm on representative archit~'ctures . 
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Résumé 

La convolution en deux dimensions est une des opérations de base en traitement 

d'images où elle est utilisée comme outil de filtrage. Un noyau de valeurs corre

:;pondant à la réponse impulsionnelle du filtre dans le domaine spatial est appliqué 

il l'image originale pour effectuer l'opération désirée. Ainsi, un filtre passe-bas per

mettra d'adoucIr une image en enlevant le bruit à hautes fréquences, alors qu'un fil

tre passe-haut accentuera le~ arêtes: ceci peut être utIlisé pour les premières étapes 

de l'extraction d'éléments dans un systême de vision informatique. Ces méthodes 

sont également utilIsées dans la plupart des algorithmes de ré-échantillonage et 

de distorsion d'images: ainsI, elles trouvent des applications en traitement et en 

synthèse d'images. 

Puisque la convolution està la base une opération de multiplication et d'addition 

ell deux dimensions, elle exige une grande puiss.lnce de calcul. Pour convoI uer 

une Image de .\ par .V points avec un noyau de .H par JI coefficients, ,'12 x /\°2 

multiplicatIOns et additions sont nécéssaires. De plus ces opérations de traitement 

de signal de bas niveau doivent souvent être utilisée à maintes reprises sur des 

quantités importantes de données, et ceci souvent en temps réel. Les architec

tures informatiques d'usage général sont souvent mal adaptées aux contraintes de 

la convolution en deux dimensions puisque la puissance de calcul et la rapidité 

d' .lCcès à la mémoire leur font défaut. Il est donc utile de concevoir et bâtir un 

système spécialisé qui puisse effectuer des convolutions de façon efficace. 

Ce mémoire présente la conception et la réalisation d'un processeur spécialisé 

qui peut effectuer des convolutions en deux dimensions a partir de données en 

format point-flottant double précision. Le systême est basé sur le principe de 

l'arclutecture systolique. Nous effectons d'abord un survol de ces architectures 

en s'attardant aux contraintes qui affectent leur conception logique et physique, 

Hi 
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ainsi qu'aux nombreuses applications propm,ées dans les publications, Apres 

la présentation de l'architecture générale du système suivent le~, dt·tail~ de 1.1 

rpalisation de l'interface au bus et le contrôllcur pour l'accès dlrl'ct 41 la mémolrl' 

(DMA). El lfin, les performances du système sont évaluées et comparél'~ il dl'S 

réalisation. logIcielles de l'algorithme de convolution sur des architectures repré~entall\'l'~ 
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Chapter 1 Systolic Arrays 

1.1 Introduction 

ln this chapter, systolic arrays are examined as a solutIOn to computationally in

tensive problems. First, the characteristics of a systolic architectufl' an' dl'scribl'd. 

Then, methods are presented for mapping a problem, usually descnbed by d ~l'

quential algorithrn, into a parallel systolic system This is followt'd by a look al 

the issues which face the hardware designer when It cowes lime to de~ign dC

tuai hardware from a systolic algorithm descriptIOn. Originally prnposed a~ a 

solution for matrix computations, systolic arrays have been lIsed to ~oIVl' .1 wide 

variety of problems in diverse fields. Although they are ~tlll colblderl'd ~oml'

what of a research-oriented approach, systolic arclutectures have nonl'lhell'~~ bl'en 

implemented in actuai hardware in a number of systems, using l'lther cll~tom nr 

off-the-shelf components. 

1.2 What is aSystolie Array ? 

The terrn systolzc array was first used by H.T. Kung and C.E. Leiserbon 

in [Kung and Leiserson, 1979] to describe a new kind of parallel architecture. A 

systolic array is composed of a grid of interconnected processors whîch work to

gether to solve a problern faster than a single processor. But the main characteristic 

of these computational structures comes f;om the "systolic" part, which ml'an~ that 

pipelined computations are performed aiong aIl dimenslclns of the array btructUTl'. 

Data which is read into the array traveb (possibly wlth intermediary rCbultb) from 

processor to processor, thus achieving high computation rates without rcquiring 

2 
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1. Systolic Arrays 

correspondingly high Input/Output bandwidth [Fortes and Wah, 19871. 

The adjective systolic was used to describe these structures in analogy co the 

human clrculatory system, where at each heartbeat (clock cycle), the heart (the 

source and destination of data) pumps a small quantIty of blood (data) into a 

network of artenes and veins (the array of processing elements) Another possible 

analogy for the ward is that many of the early systems described as "systolic" 

alterna ted between cycles of admission and expulsion of da ta, which is similar to 

the way blood flows into and out of the heart. 

Systohc architectures are also charactenzed by regular structures where aIl the 

processing elements are similar to each other, except perhaps for boundary ele

ments. Furthermore, the interconnections between the PEs tend to be simple and 

straightforward. Systolic array PEs are thus a prime candidate for VLSI imple~ 

mentatlon, where intra-chip bandwidth is very high but inter-chip connections 

are much more expensive (bClth in pin count and speed). It is also possible to 

build scalable systems, where the array can be made progressively larger (and thus 

able to solve large problems in fewer iterations) by adJing extra chips/processing 

Il\Cldules 

1.3 Aigorithm Issues and Software Tools for Systolic Arrays 

As it is ahvays the case with parallel architectures, the main challenge often comes in 

the mappmg of an algorithm into the desired parallel structure. Sorne algorithms 

are "embarrassinglr parallel" and map readily, others require more work. This 

section will look at systematic methods which have been developed to derive 

systolic arrays from problem specifications. Sorne rnethods are general and can 

be applied to a wide class of algorithms, others are more specifie. Since there 

are different types of systolic architectures, sorne methods have been proposed 

which are oriented towards specifie types of systolic arrays. The ultimate goal is 

3 
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1. Systoltc Arr(lV~ 

to develop software tools and/ or programming languages which would allow the 

designer to specify the problem in a "natural" form (wluch 1~ nftl'n a sequential 

algorithm) and derive the corresponding systohc array automatlCallv. 

1.3.1 General Mapping Methods 

As outlined in section 1.2, one of the principal characteristics of sy~tlllic arrays b 

local communication between the processing elements, oftl'n limited ln thclr re

spective nearest neighbors. In particular, this ha& the advantagl's of simphfymg 

VLSI implementation and signal routing on a pnnted circuit board. Unfortu

nately, man y algorithms contain "broadcast" data dependencies wlwre data nL'L'd~ 

to be shared between multiple PEs which are not connected to each other. Wong 

and Delosme derive in [Wong and Delosme, 1988] and [Wang and DL'loSI11l', 1992] 

a method where any such broadcast can be transformed mto propagations along 

the normal connection paths of the systohc array . 

Moreno and Lang have developed a method based on the tran~for

mation of the dependency graph of the algorithm [Moreno and Lang, 14HH] 

[Moreno and Lang, 1990] called Hle multi-mesh graph method. The fir~t step IS 

to remove from the graph properties which are incompatible with a ~y~t(lhc im

plementation sucll. as broadcasts and bi-directional data flows The graph is th en 

converted into a G-xraph by collapsing groups of nodes into nc'w nnde~ (C-r/odl's), 

which is more suitable to partitioning. Finally, the G-nodes are mapped mtn aIl 

array with 111 cells by scheduling s.ets of 1/1 neighbor G-nodes (a G-Sl't) for concurrent 

computation. They show how thl?ir method can be applied to the transitive cl()~ure 

problem. 

Others have attempted to create a formaI frarnewnrk in which tn de~cribe and 

understand the mapping process. For instance, Payer uses the theory of finitE' state 

machines to start from a functional description and achieve a fo,ystolic array in a for-

4 
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1. Systolic Arrays 

mal way [Payer, 19881. He demonstrates his method on tW(Ic1asses ofproblems: bit 

pattern matching and FIR filtering. Bertolazzi, Guerra and ~,alza propose a method 

ba~ed on the analysis of the data dependencies of the original algorithm and ex tend 

it to include the design of non-regular systoIic arrays [Bertolazzi et al., 19881. They 

apply their method to create systolic arrays to perform 2-dim ~nsional convolutions 

and solve the shortest path problem on layered graphs. Another formaI approach 

is suggested by Ko and Wing where they formulate the problem and its implemen

tation in an II-dimensional spa ce of integers which allows the implementation to 

be derived from the algorithm by linear transformation [Ka and Wing, 19881 

Systematic methods for designing systolic arrays lose sorne of their inter

est if they result in non-optimal designs (especially if more ad-hoc heuristics 

are able to do better!). Kothari, Oh and Gannett propose Il method which can 

produce optimal designs for systolic architectures with linear scheduling func

tions [Kothari ct al., 1989]. Their methodis based on a combintltion oflinear algebra 

and a heuristic wInch exploits special properties of convex sets. This allows thern 

ta derive a different method for performing convolutions. Clauss, Mongenet and 

Perrin are interested in mapping systolic algorithms on to the srnallest possible num

ber of processors in a general processor array [Clauss et al., 19901. They derive two 

space-optimal mappings for the gaussian eliminination method for solving systems 

of Hnear equations. Fmally, Zhong and Rajopadhye show how neighboring proces

sors in a systolic array obtained via conventionallinear trao'.:iformation methods can 

be merged together to ob tain fully efficient anays [Zhong and Rajopadhye, 19911. 

1.3.2 Mapping Methods for Specifie Algorithm Classes 

Nurnerically-intensive algorithms often spend most of I.heilr time in relatively small 

nested loops, which are thus a prime candidate for parallelization. M.uch work 

has been done on the analysis of data dependencie~. within such loops in order 

to determine which Iterations of the loop can be pl~rformed in parallel without 

5 
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1 Systolic Arrays 

violating these dependencies [Banerjee,1988] [Wolfe, 1989]. The driving force 

behind this has been the need for optimiL.ing \:onlpilers for /llradlhonal" veclor 

supercomputers, and the suceess of these methods h.1S generally bel'n )udged 

on the basis of how a compiler manages to parallehze and / or vl'ctorize nestl'd 

loops in FORTRAN programs. Similar \vork has also been done to map ne~led 

loops to systolic architectures. For instance, Lee and Kedem haVl' derived a 

method for mapping p-nested for loops onto Irdimensional systohc arrays, where 

1 :S Cf :S p - 1 [Lee and Kedem, 19891. Similarly, Bu, Deprettere and Thielp deriVl' a 

method for mapping nested loop programs where the loop boundanes are allowed 

to be functions of the previous index variables [Bu ct al., 1990bl. 

Many algorithms can be expressed in terms of systems of linear recuffence 

equations, which can then be mapped onto systohc arrays. The computations 

performed by the algorithm can be represented as integral points in some domain 

of the Eudidian spa ce, and are ordered by means of a lineùr schedule which 

must respect the data dependencles between them. ln the case of uniform linear 

recurrences, the dependencies are only local: such problems can be readily mapped 

onto systolic arrays. Unfortunately, many problems contain global dependencies. 

Van Dongen and Quinton present a method to transform these non-unifonn linear 

rf~currence systems into uniform systems, which can then be mapped dlft:,ctly 

lo systolic arrays [Van Dongen and Quinton, 19881 Yaacouy and Cappello have 

approached a subclass of these problems, namely affine recurrence equations and 

have derived necessary and sufficient conditions for the existence of a schedule 

which satisfies these problems [Yaacoby and Cappello, 19881. 

Steenaart and Zhang take a different approach for the class of recursive al

gorithms, and derive a methodoJogy for mapping such problems directly onto 

systolic arrays [Steenarrt and Zhang, 1991]. They are especially interested in recur

sive filtermg algorithms (such as implementations of UR filter~) where the inputs 

are dependent on the previous outputs . 
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1.3.3 Mapping to Specifie Architectures 

Mo~t of the mapping methods seen in the previous sections attempt to solve the 

problcm of designing asystolie array which accurately executes a given algorithm. 

But III many ca~es, this mapping cannot be the only constraint on the design of 

the array, and other factors must be taken into account. For instance, it might be 

deslred to map an aIgorithm onto an existing, general-purpose array which cannot 

be tailored exactly to our needs. Also, the size of the array resulting from the optimal 

solutIOn of a problem might not be practical: thought must be given ta partitlOning 

the algorithm onto a fIxed-size array. Moldovan and Fortes have proposed a 

technique wluch can be used to partltion nested loops by dividing the index space 

of the problem into bands and ta map these bands onto the space of the processor 

array lMoldovan and Fortes, 1986]. Unfortunately, their method cannot de al with 

nested loops where the iteration bounds are themselves functions of the outer-Ioop 

indices. Bu, Deprettere and Dewilde approach the problem in a dlfferent way: 

instead of trying to map an algorithm directIy into a fixed-sized array, the problem 

is firsl mapped to the "optimal" sized array which is then reduced te the fixed

size clTray by clustering processmg elemenb [Bu et al., 1990a]. They propose two 

clustering methods, which have the additional advantages of raising the efficiency 

of incfficient arrays, balancing local rnemory and external communications for the 

processing elements and reducing array dlmensionality (the more restrictive case 

of mapping two-dimensional arrays onto uni-dimensional ones was previously 

studied by Kumar and Tsai [Kumar and Trai, 1988]). 

Oiher researchers have looked at the problem of mapping systolic algorithms 

onto speCIfie architectures. FC'T instance, Lin shows how shuffle arrays can be 

used to implement systolic algorithms [Lin,19881 A shuffle array is an array 

of processmg elements interconnected by a shuffle bus. An .'\'-node shuffle bus 

consists of a master array Jl.-1 and a slave array S'A. Each element of the master 

array con tains a single bit, whereas the slave array con tains a k-bit data ward . 

When instructed, any pattern of a 1 followed by a 0 in the master array will cause 
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the contents of these bits, aiong with the corresponding registers of the sl,l\'l' arr,l~r 

to be swapped. A shuffle array can be configured as a 1-D or 2-D queue, and (,m 

also be used for sorting. 

Hypercubes can be considered to be generalization~ of N dimen~i()n,ll arr.ly~. 

Ibarra and 50hn show how one-way and two-way linear systolic arr.lV~ (il' ,u

rays where the processors are connected only in one direction with uni-dm:-(tlon,11 

communication paths) can be mapped onto a M-node NCIJBE/7 MIMI) hYPl'l

cube machine [Ibarra and 50hn, 1989]. They used tlus method tn 111lpll'nll'nt l J) 

FIR filters, matrix multiplIcation and solve transitive dosure problem~. TIll' main 

challenge in this case is to efficientIy map the systolic connections onto tlll' strllctllfl' 

of the hypercube. Another example of mapping strategies speCifie tn a hardwarl' 

implementation can be found in the work of Valero-Garcia ct III , who tdcklt, tlll' i~

sues as~ociated with the use of pipelined functianal units as procl'~~ing elel11l'nb III 

systolic arrays [Valera-Garda ct al., 1990]. More specifically, their mapping mL'lhod 

improves the efficiency of the array by inserting delays mto the data flow bL'lWl'l'n 

processing elernents ta take mta account the pipelining delay~ lllternai tn the array 

elements. 

1.3.4 Compilers and Tools 

In order to make systalic arrays a truly practicai concept and not just an acadcmic 

curiosity, software toois have to be made available for VL51 designer~ who want tn 

use this design rnethadology. Sorne work has been done ta provide luols for specifie 

applications. For instance, Hu, McCanny and Yan have developcd a ~y~tcm for 

designing systalic vector quantlzation dups far speech and image coding applica

tions [Hu et al., 1990J. Their system consists of a library af celb, ~llIcon a~~embJcr<" 

simula tors, test pattern generatars and a graphical user mterface. Ar.other ~pecific 

application is the Logic Description Generator which is used to implement sy~tohc 

algorithms on the SPLASH reconfigurable logic array [GokhaJe ct al., 19901. The 
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LOG accepts as input a programming language which describes the functionality 

of th(' ceIls in the sy~tolic array. Its c,utput is a Xllinx Netlist Format (XNF) file 

which l~ fed to the Xilinx design toob which wIll generate the bit patterns to be 

downloaded in to the Xlhnx FPGA devI,:es which make up SPLASH. Due to the very 

rapid turn-around hme possible with his system, most debugging is done directly 

on the target hardware. Another example of a system-specifie tool is the AL pro

gramming language for the CMU Warp programmable systolic array [Tseng, 1990] 

AL is a C-like language where scal-1r and array objects are duplicated in all the cell~, 

whereas distributed array (DARRAY) cbjects are distributed among cells. The 00'

statcment tells the compIler to dis tribu te loop iteratlOns over the ceUs instead of du .. 

plicating their execution. Usmg this language to implement matrix computations, 

27% of the peak performance of the ma:hine was aclueved for matrices of order 300 

(which illustra tes the p10blems which can be encountered in using programmable 

paraIlel machines effIciently). 

More general ta ols have also been developed. DECOMPOSER is a high-level 

synthesis tool which takes as inputs a hierarchical description of the computatioll 

to be performed and hints as ta how i: must be performed [Hou et al., 1988]. This 

description takes the form of a directed acyclic graph (DAG). The output of the sys,· 

tem give~ the required structure of each processing element, their interconnections 

and the input and output sequences. The SYSTARS system is capable of perform

ing both analysls and synthesis of systolic arrays [Omtzigt, 19881. SYSTARS is able 

to gcnerate both full-size and partition~d systolic arrays. It also includes a graphic~, 

display wInch can ammate the structure being designed, which hrlps the designer 

visualize the flow of data in the system. 

Actual compilers which generate code ta implement algorithms have also 

been proposed. Omtzigt describes the architecture of such a compiler which 

can handle systems of affine recurrence equatlOns based on the domain flow 

model [Omtzigt, 19901. The domain flow graph is an extension of the data How 

graph where nodes represent functiol\s (either scalar functions or control flow) m 
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they can be dependence graphs representing concurrent operJtors. The input tl) thl' 

compiler IS a C language program with extensions (calh'd Ol)l1l,1l11 C). Lengaul'l'. 

Barnett and Hudson have developed a sy~tem-mdependl'nt compiler wllll'h Gill 

handle both impentive and functlOnal progrJm~, indudmg non-uniform hnl\ll' 

recurrence problems [Lengaller ct al ,1991], The output of the compiler b d pw

gram in the native language of the target system. Examples of mJpping~ of matn\ 

algorithms to the CMU Warp machine and Occam-based transputl'r lll'tworJ...s are 

shown 

1.4 Hardware Issues for Systolic Arrays 

One of the main justifications for the systolic design methodnlogy is the L'a~e with 

which such designs can be implemented \n VLSI. Nevertheless, the physical im

plementation of systohc arrays poses certain partlcular challenge~, somc of WhlCh 

are examined in this section. 

1.4.1 Synchronization and Clocking 

Systolic arrays are typically structured as synchronous SIMD array~ where aIl 

the processing elements execute the sa me instructionb under control of a centr,ll 

dock. While this simplifies the transfer of data between proce~sor~ and remove~ 

the need for synchronizmg Fust-In First-Out (FIFO) memories betwf'(:'n them, dock 

distribution and synchronization can become problematic for large array~ and high 

dock rates. For one dimensional arrays, Fisher dnd Kung del1lon~lrate lhill it i~ 

possible to use a pipelined c10ckmg scheme where more than one dock l'vent l~ 

propagated at a time [FIsher and Kung, 1985] Although dock s~'ew will occur 

between processor elements, an upper bound for tlll~ ~kewll1g can be derived 

between two adjacent processors and thus correct operation can be ensured (a 

10 



--------------

• 

• 

• 

1. Systolic Arrays 

probabilistIc model which can derive an upper bound for the accumulation of clock 

skew 111 synchronous systems is presented in U<ugelmas, 1988]). Unfortunately, this 

n~sult docs not generalize to two-dimensional arrays, where a mixed scheme using 

clockmg and asynchronous elements IS used at the expense of additlOnal hardware 

complexity 

One possible solutIOn is to go ta a purely asynchronous model based on the 

concept of the data flow machine [Üennis, 19801. In a data flow computer, an 

executlOn Ulut performs its computation as soon as it has received aIl of its operands 

and sends the result on to t'le unit connected to its output, which in turn "fires" 

whcn It has reccived aIl of its inputs. The machine is thus self-synchronizing 

and does not require any global clocking since synchronization occurs implicitly 

through the detection of inputs This concept can be applied ta systolic arrays, 

wluch are then usually known as wavefront arrays [Kung et al., 1987] (the term 

wavefront cames From the analogy of a wave of calculatIOns propagating through 

the array). Although attractive from a synchronization standpoint, wavefront 

arrays do require more hardware sin ce buffers must be interposed between the 

outputs and inputs of processmg elements. Furthermore, unless the structure of 

the array is completely regular, care must be taken to ensure the effinency of the 

system (i.e. no singlt~ processor must become a bottleneck as it waits for one of 

its mputs, and thus MalIs the output of the pro cess ors connected to aIl of its other 

inputs' sufficiently deep FlFO rnemories must be used to prevent this). Finally, 

as in aIl asynchronous systems, care must be taken not to fall prey ta glitches and 

parasitic nOIse which might be generated by surrounding cornponents toggling 

asynchronously. 

1.4.2 Reliability and Fault Tolerance 

The designer of any parallel computer system must worry about reliability and 

fault tolerance, since a large number of processing elements are rnuch more likely 
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to fail than a single one. A fault-tolerant system must indudl' mt:.'chalUsm~ fl.'r 

detecting when errors have occurred, as weB as l1wchanisms for dt'<l1ing \\'ith 

these errors and ensuring continued operation of the system l'Vl'n in the prt'senn' 

of faulty components. Error detection can be adueved sllnply by duphc.ltlllg 

functional modules and comparing the outputs of two or more umts perfllrming 

the same computations: any diserepancies WIll indieate a failure m one of the unit~ 

involved. Several other methods specifie ta systolie arrays have al~o bcen propo~l'd 

and can be found in [Abraham ct a!., 19871. For instance, in a systolic array \",hl'rl' 

not aIl af the elements are always active, idle element~ can be u~t:.'d to duphc.ltl' 

camputations and thus provide partial redundancy testing 

Instead of duphcating hardware to pravide space redundancy, time redund.lI1cy 

can be used where the throughput of the array is kept below lts maximum rate and 

some of the extra time is used for error detection and correction. Antola ct III 

show how space and time redundancy can be combmed to yICld cost-effl'ctiVl' 

fault-tolerant structures in the speCIfie case of array~ u~ed to compute Fa~l POUrier 

Transforms [Antola ct (lI., 19881. 

Another possibility is to build the fault tolerancc mto the alg()nthm~ impk

mented by the systolic array [Anfinson, 19881. For instance, special codmg ~cheml'~ 

can be used to detect and correct single- or multi-bit errors in computtltIOn~ wlthoul 

having to completely duplicate the functionality of the processmg elemenl~ (WI11Ch 

would be prohlbitIvely expensive 111 aIl but the l110st demanding apphcalI()n~). 

Bandyopadhyay, Jullien and Sengupta used the residue number ~y~tern (I~NS) to 

design a systalic array far multi-aperalld residue addition wluch l'an detect anù 

correct errors [Bandyopadhyay et al., 19881. 

Although on-line reliability is important, off-line testability l~ abo crucial, anù 

complex systems must be designed to be efficiently and completely te~table. Sci

uto and Lombardl demonsLrate the required conditiom to te~t two-dlmen~lOnal 

bilateral arrays (i.e. where data IS allowed to flow 111 both directlOn~ between pro-
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ce~sllr elements) lSciuto and Lombardi, 19881. Kim approaches the more restrictive 

problem of one-dimensional hnear arrays (uni- and bi- direction aD, with special 

empha~i~ on the capabIlity of the array to be reconfigured ta bypass module fail

ure~ wlthout impacting the designed throughput of the system [Kim, 19881. Array 

rt!configurabIlIty will be further dlscussed in the following section. 

1.4.3 Reconfigurability 

Reconfigurablhty in an array processor can be used both to allow different func

tionality 111 a general-purpose system as weIl as to work around any faulty com

ponents wluch are detected either offline or onlme. An early reconfigurable array 

prnce~sor named CHiP (for ConfIgurable, Highly Parallel) is described by Snyder 

111 lSnyder, 1982]. CHIP is composed of a collection of homogeneous microproces

sors, a sWltch lattIce and a controller. The PEs are connected at regular intervals 

to the switch lattice, which itself can be configured to connect the PEs together in 

many different ways. It IS thus possible to Implement different interconnection 

schemes, as weil as to isolate malfunctioning PEso 

Poph and Bayounu propose a structure similar ta that of CHiP for implemen

tation on a smgle VLSI device [Poli and Bayoumi, 19881. The ability to reconfigure 

on-Hne the array tn work around tl(l/Isœnt problems with a particular PE increases 

the fault-tolerance of the entlre system, whereas the off-line reconfiguration of the 

array tn alleviate a l't'mul11cl1t PE failure greatly increases the yield of the VLSI 

de\'ice (thus decreasing lts cost). Youn and Singh propose a design which can 

effIClently rec-onfigure bath tree and rectangular structures [Youn and Singh, 19881. 

Thelr main cancern is ta minimize the extra delay introduced by the .. e ... onfigu

ration pdth. Their appraach is also able to handle clustered defective processing 

clements (since faults are often not uniformly distributed across the surface of a 

die or wafer) . 
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Sha and Steiglitz formula te the problem of ,uray reconfigurability m tl'rms (.lf 

graph theory and derive a lower bound on the time compll'XItv 01 an~· rl'col\lig

uration algorithm [Sha and Steiglitz, 1 qqll. CodenLlttl and T.1m.1~~l.1 l)n LIll' l,thL'r 

hand use a network flow model of the virtual fault-free drra~' composL'd 01 tlll' 

functional celIs of the partIalIy defective array [Codenotti and T.1maS~l.1, 1l/911. 

A survey of reconfiguration methods for array processor~ can bl' founli 

in [Chean and Fortes, 1990]. 

1.5 Systolic Array Applications 

Although systolic arrays were originalIy proposed by Kung for matrix computa

tions [Mead and Conway, 19801, they have sin ce been llsed to solve probIl'm~ in a 

nun1ber of diverse fields. This section looks at a number of wch apphcatJl)n~, with 

an emphasis on numerical and signal processing problem~. 

1.5.1 Matrix Computations 

Matrix computations are a natural fit for parallel implementatiom. slIlce they USlI

ally make use of fairly simple operations repeated very often. Fllrthermore, ~()lIrCl' 

operands are often llsed several times, thus making high demand~ on memory 

bandwidth. Thus it is hardly surprising that systolic architecturl'~ have been ~ug

gested to solve a number of matrix algorithms. In [Mead and Conway, 19801, Kllng 

sllggests systolic structures for perforrning matrix-vector inner product~, matrix

matrix multiplications and !inear system solving using LU decompo~itlOn Another 

approach to matrix-matrix multiplication is presented in [Peng and JUil, 198RJ, 

\\There a systolic array of Il,2 processmg elements is used to multiply two III by 

111 arrays in time ~7/1 - 1. 

The solution of large systems of linear equations is a problem which come~ up 
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frequently in scientific computing, and it has also been approached using systolic 

array~. In [Benaini and Robert, 19901, f + O( 1/) processors are used to perform 

Gau~~ian eIiminatlOn on an 1/
2 problem using time 311 - 1. Using instead LU 

decomposltion, Wan proposes in [Wan and Evans, 1993] an architecture which can 

solve the problem AX == lJ where A is an 11 y 1/ rnatrix, X is an n Jo( p matrix and Bis 

abo 1/ / fJ usmg an array of 11 fJ + 11()~+ 1) processing elements in time 41/ + P - 2 for the 

firsl system, 2/1 for each additional system (thus ma king this structure ideal for a 

pipehned system) The same array can also be used to compute the inverse of a 11 x 11 

matnx in bme 5/1- 2. In rnany scientific applicatIOns such as finite element analysis, 

Iinear system are very sparse and thus require special solutions in order to achieve 

high performance. Tseng implemented [Tseng, 1988] a general sparse linear system 

~olver using the incomplete Choleski pre-conditioned conjugate gradient rnethod 

on the Warp systohc computer [Annaratone et a[., 19871. 

Another computationally intensive matrix operation which can be solved 

using systohc arrays is the extraction of eigenvalues/ elgenvectors. Althoug::l 

the generai QR-decomposition method is not very suitable for parallel im

plelnentation, it can be useful in the case of symmetric tridiagonal matn

ces [Phillips and Robertson, 19881. Here, an 1/1 x (11 + 1) systolic array is able to 

extract the eigenv. !lues and eigenvectors of an 11 x 11 symmetric tridiagonal matri,x 

in time 2/1/ + 2/1 - l, with l11uch greater savings If pipelined results are needed. 

Another popular nlethod is the Jacobi algorithm: systolic arrays for comput

ing eigenvalues/ eigenvectors using this method are presented in [Delosme, 1990] 

and [Lam, 19911. 

Linear Least Squares problems are frequently encounted in signal-processing 

applications. These consist in computing the vector .r which minimizes 

II· \.1' - 1111· Systolic methods for the solution of this problern are proposed 

in [Chen and Yao, 1988] and [Torralba and Navarro, 1988], whichare both based on 

QR decomposition. Moonen [Moon en and Vandewalle, 1993] proposes a method 

ta solve the Recursive Least Square (RLS) problem, which consists in recomputing 
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the least squares solution after appending new data by ma king use of tllL' TL'sult~ 

from the pre\'ious stl'p. When the effects of fini te-precision arithnll'hc 'Hl' t.lkL'n intll 

consideration, some methods yield better results: for in~tance, Liu [Liu t'f 11/., 1990J 

presents an archItecture which perfonns the Systohc Block Householder Tran~fllr

mation in order to ompute the RLS algoritlun. A version of this architl'eturL' wlueh 

can handle complex numbers is presented in [TaLg ct III., 1991 J. Lm abo proposl'~ 

a systolic solution to the same problem using the Givens rotation [Liu ct il!., 1 lll) 1 J 

1.5.2 Transforrn Methods 

Systolic arrays have been used to efficiently implement transformation opera

tions. This is a natural application which was abo first ~",roposl'd by Kung 

in [Mead and Conway, 19801 He remarks than "an II-point dbcrete Fourier lran~

form is the matrix-vector multiplication, where the (1. J) entry of tlll' malrix b 

I.N,(I-l)(J-l) and "",,' is a primitive 71th fOot of ul1lty". Thu~ the Sa1l1l' structures pro

posed for matrix operations (extended to operatl' on complex nun1l1L'r~) can be 

used to compute an 11 point DIT in (J( Il) time, as oppo~ed to thL' U( Il log fi) op

erations required for the FFI algorithm implemented on a sequential proce~sor. 

Kung then propŒ,es how the roots of ltnity can be generated intl'rnally 10 tlll' 

array if each array processing element has at its disposition an extra regbtl'r: 

this method decnases the connectivity requirements for each PE Kar prOp()~l'~ 

in [Kar and Bapeswara Rao, 1993] a schelne which can reduce alm{)~t by half the 

number of multipliers required to compute the DFf algonthm. This l~ a ~ignifIcant 

savings since multlpliers tend ta take up a large amount of silicon real-estate, which 

is crucial when considering the implementation of a systolic array a~ a VLSI de

vice. By rewriting the DFf in a re-:ursl'lre form, only 2/1 + 2 multipliers are required 

instead of 41/, and the cycle time can be reduced From (1,,, + 2/,,) to (1,,, 1 1,,) where 

t 1l1 is the time required to perform a multiplicatIOn and "~, an addition . 

The Fast Fourier Transform is an algorithm which is used to shorten the amount 
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of time required ta compute an 1/ point DFf on a sequential processor from 

(J(,,2) time ln 0(" log 1/) time It can also be implemented using a systolic ar

ray IChoi and Boriakoff, 19921, where it has the advantage of lowering the required 

number of processing elements from 11 to log 11 (with tJle additIOn of sorne slight 

overhead, namely 1/ log 11 simple single-stage shift registers). Furthermore, this 

circuit can produce two results at each clock cycle, and does not require ROMs for 

storing the roots of unit y (this can be a factor when implementing such circuits 

as gate arrays: look-up tables and other such storage elements tend to be very 

expensive in terms of gate COUlU, and it is usually not practical to go off-chip ta 

access an external memory, in contrast ta older designs based on discrete parts 

where a single ROM lookup table could save considerable amounts of circuitry). 

In lJohnsson ct al., 1988], Johnsson shows how a systolic FFf algorithm can be im

plemented on a boolean 1/-cube machine such as the Connection Machine model 

CM-2. This method makes use of the high storage bandwidth within a node, and 

is optiInized for the communicatIOn patterns between the nodes. For a P = 21' 

point Decimation in Frequency FFf executed on l\' = 2" pro cess ors, the first JI - 71 

steps are executed locally on each processor and the last log2 I\' steps require inter

processor communication. For a OecimatiOïi In Time algorithm, these are reversed. 

This is made possible by storing /~ + 1/;Y twiddle factors for ~ elements stored in 

each of the.\' processors. 

Image-processmg applications will often require the computation of two

dimensional Dlscrete Fourier Transforms, since a number of image filtering algo

rithms can be implemented as simple masking operations in the frequency domain. 

Sarkar [Silrkar and MaJumdar, 1991] presents an architecture which uses two !in

ear arrays of v.v processing elements to compute the v:v x ..jN 2-D DFf in time 

()(.\). The first array of ~ processors is used ta compute the OFf of the rows, 

and the second array is used ta compute the DFf of the columns. An extra pro

cessor is required to generate the roots of unity. AlI of the PEs are used 100% of 

the time. The speedup in the computation time over the single processor case is 
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12 \.~) = 2 y(Y, which means that it achieves an optimal linl'ar spl'l'dup of 2 \ -\

using 2~'7 processors. Sarkar also propo~es an InstructÏl)11 Sy~tolk Arra" tn com

pute the 2.D FFT [Sarkar ct al., 1991] An ISA is a sy~tolic array whl'ft, instl'.ld ot 

letting the data flow through the array from PE to PE, the data remams station<H~' 

whereas instructions flow rhythmically From PE to PE at edch dock cycle. For'l 

JR x Jlt,: point FFT, this design u~es .\ processing elements and can complelL' the 

operation in time O( v0V). 

A different approach to the problem which uses coordinale rotation digital 

computer (COROlC) PEs is proposed by Jones [Jones, 19931. The conventional DFT 

sum is first expressed recursively usmg Horner's rule. Note thal multiplication 

of the input values by the powers of the roots of unit y is cquivalent to sllnpk' 

phase rotations which can be implemented using the COROIC algonthm The 

main advantage of this method is that it does nol require multiplIer!'>, whlch .1re 

instead replaced by addItIOns and slufts (these are usually 111l)rL' ~pace-l'fhCll'nl in 

VLSl designs). Based on this method, the FFT of a 20 signaI wlth.\ -=- ,\ 1.\'2 pOllll!'> 

can be computed in O(.\') time using :\,/4 bit-seriai PEso 

Systolic arrays have also been used to compute other tran~form opera tion~. For 

instance, Hellwagner proposes in [Hellwagner, 1988] an archItecture ln perform 

the one-dimensional Generalized Fourier Transform: thb means th"l tlll' array can 

be configured to compute a wide class of discrete lincar transform mcludlllg tlll' 

Walsh-Hadamard and Oiscrete Fourier Transforms. Another trùmform melhod 

which is useful in signal processing applications is the Discrele Harlley Tran~f()rm 

(OHT): its main advantage is that it requires real number arithmetic unly a~ ()pp()~l'd 

to the complex number arithmetic required by Fourier meth()d~ U~ing a hnear 

systolic array of COROIC processors, the system presented by Meher, Satapathy 

and Panda [Meher et al., 1993] can compute the recur~ive DHT algorithm for a 4 N 

sequence in time .'\' using (J\·t) processing elements. Chakrabartl and J5J5 proP()~l' 

a bit-seriaI systolic array which can be used to compute two-dlmenslOnal Dbcrete 

Hartleyand Discrete Co sine Transforms [Chakrabarti and JciJél, 1990] (the DCT is 
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also a real-only transform which is used among other applications as the basis 

for the JPEG image compression algorithm [Wallace, 1991]). This architecture can 

compute the DHT or the DCT of a I\, = f'"] ;< N2 array of p-bit operands in time 

U( /I( :\') + .\'2)), which optimally corresponds to the rate at which the input operands 

can be shifted into the bit-f,erial PEso 

1.5.3 Convolution Methods 

Whereas the transform methods of the previous section operate on a signal in the 

frequency domain, it is also possible to operate directly on the signal itself using the 

time (or spatial) domain representation of the desired fiUer. For discrete signaIs, 

convolution is basicaHy il multiply-and-accumulate array operation: thus it is a nat

ural candidate for systolic implementation. In [Kung, 19821, Kung presents a num

ber of possible alternatives for the design of one-dimensional convolution arrays 

(there are many pos~,iblE' alternatives, which relate to whether the source data or 

the fil ter coefficients are stationary, as weIl as how partial results are communicated 

between the processing elements). An implementation of a one-dimensional sys

tolic convolution device from Harris Corporation is shown in [Chester et al., 19911. 

Since convolutIOn arrays are usually used to implement linear phase Finite Impulse 

Response (FIR)filters, the inherent symmetry of the coefficients of these filters can 

be exploited to reduce the number of required multiplications: Kwan proposes an 

archi tecture which exploits these properties [K wan, 1993J. 

ln [Kwan and Okullo-Oballa, 1990], Kwan approaches two-dimensional convo

lution from three different perspectives. His first method minimizes the required 

1/0 bandwidth as well as the number of processing cells. The second method com

pensa tes for slower processing elements by increased parallelism. Finally, the third 

method minirnizes the number of 1/0 pins required for a VLSI implementation. For 

his part, Ersoy approaches the problenl of circular and skew-circular convolutions 

using a semi-systolic array which requires greatercommunication betweenPEs but 
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has a sm aller startup time, which is beneficial for s111all convolutions IErsny, 19S!'1. 

Although most general one-dimensional digital signal pfl)cl's~illg con

cepts lOppenhei111 and Schafer, 1989] l'an be applied tn two-dimensiOnal probll'm~, 

there are nevertheless a number of difference~, 1110stly regarding tilter design. 

Whereas the ideal one-dimensional low-pas~ filter is a .~ /1/ (.r) j.1' f unction, in two 

dimensions the ideal clrclilarllf-Slf1llrtlt'tnml filter is a Bessel function of thl' IÏrsl kind 

of order 1 IDudgeon and Mersereau, 1984]. Sin ce titis function is Ilot ~eparabll' 

(i.e. it cannat be expressed as the products of two functions depending only on .1' 

or y), this is why two separate one-dimensional convolution operation~ cannat be 

used to do low-pass filtering (such attempts yield strongly anisotropie result~: in 

general, the only separable filter is the Gaussian function, which often cannot hl' 

used as a filter since it does not roll off quickly enough). 

Sever al methods for designing two-dlmensionallow-pas~ filter~ are outlined 

in lLim, 1990] (from a low-pass filtH specification, il is simple tn genl'ratl' corn'

sponding band-pas~, band-stop or hIgh-pass filters). The most straightforward 

method is to take the ideal impulse response (which has infinite extent) and trun

cate it to a reasonable length (given the performance constraintb under wluch tlll' 

convolution will have to be performed). A simple rectangular wmdow can have a 

fairly negative impact on the frequency response of the resulting filter (multIplica

tion of the ideal filter in the spatial domain with a windowing function correspond~ 

to convolution with the Fourier transform of the window in the frequency domalll) 

Discussions on the merits of va rio us windows for two-dimensional filters can be 

found in [Huang, 1972] and in lSpeake and Mersereau, 19811. 

There are several other possible filter design methods For in~tance, in the 

frequency samplin:;: method, the frequency response of the desired filter il-> sampled 

and the Inverse Discrete Fourier Transforrn is applied to these samples tü obtain 

the coefficients of the corresponding spatial domain fliter. Although this mcthod 

can be effective, as with the windowing method it does not produce an optimal 
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filter (that IS, a filter with the minimal region of support / number of coefficients) . 

Frequency transformation methods seek to design optimal two-dimensional 

filter~ starting from an optImal one-dimension al design. A popular method 

for designing such fIlter~ is the Parks-McClellan algorithm, which is pre

sented in [Parks and McClellan, 1972]. From this one-dimensional filter, a 

frequcncy transformation function is used to map the filter into two dimen

~ions. For circularly symmetrical filter designs, the McClellan transforma

tion can be used [Merserau ct al., 1976] [Mercklenbrauker and Merserau, 1976] 

[Psarakis and Moustakides, 19911. Note that in aIl of these methods, one of the 

most important criteria for the "success" of the filter is the preservation of the zero

phase characteristic which ensures that only the magnitude of the image signal 

is affected and Ilot its phase (those who are skeptical dboùt the need for this are 

usually shown a demonstration where an image can be reconstructed with Httle 

alteration from its phase information only, whereas such an attempt using only the 

magmtudc mformatlOn fails mlserably) . 

1.5.4 Image Processing and Computer Graphies 

Low-Ievel image processing and machine vision algorithms must often perform 

repetitive computations on large two-dimensional arrays of image pixels. For 

instance, the Carnegie-Mellon Warp systoHc computer has been programmed to 

efficiently perform convolution, histogramming, Fast Fourier and Hough trans

forms [Gross ct al., 1985]. These algorithms are used as basic building blocks in 

most machine vision applications and greatly benefit from a system such as Warp 

which is fully programmable while retaining the high performance of an array 

proCt'ssor. 

A more recent system is presented by Choudhary and Patel 

in lChoudhary and Patel, 19881. Their architecture is called NETRA: it is based 
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on a large number (100 ta 10000) of processing elements which can be organizl'd 

into clusters of 16 to 64 PEs each, a tree of control processors, .l shared glob.ll 

memory and an mterconnection network. The PE dusters can opera te eithl'r in 

SIMO, systolic or MIMO mode. Implementation overviews arl' gl\'l'n for data com

pression, edge detection, feature matching, surface fittmg, contour location and 

surface interpolation algorithms. One possible application would be a 3D stefl'O 

vision system, an important part of which is the recover)' of depth information 

from a pair of images. Guerra and Kanade propose a systolic <llgorithm for this 

purpose [Guerra and Kanade, 19841, with an eye towards VLSI llnpleml'ntation. 

HERMES is a multiprocessor vision system [Bourbakis and Barlo~, 19H81 COll

sisting of 1~12 ,0 SIS log2 X PEs where .\' x Sis the size of the Image to be procl'ssl'd 

and 1 is a resolution parameter (i.e. the size of the sub-regions into which the imagl:' 

will be decomposed). Contrarily to most systolic array processor~, HERMES l~ a 

stand-alone system WhlCh does not require a front-end host. hnagl' data I~ gathered 

directly from a photosensor array and fed ta the PEs wluch proce~~ il In hierarchical 

fashion. Sorne cf the algorithms implemented on HERMES include: 

• General Coding Aigorithm (GCA) 

• Segmentation Region Analysis Aigorithm (SRAA) 

• Freeman Coding Aigorithm (FCA) 

• Simple Transmission Algorithm (STA) 

• Order Oecoding Algonthm (OOA) 

The growth of multimedia applications has created a strong demand for image 

compression methods. One such scheme is adaptative vector quantization. The 

image is first decomposed into a set of vectors, from which a sub~et i~ cho~en to 

form the basis of a codebook (most codebook generation algonthm~ attempt tn 

iteratively generate a locally optimum codebook). Once this is done, the Image 
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or set of images can be encoded (or quantized) using the codebook: only the 

labels of the codewords now need to be stored or transmitted. If many images 

need to be encoded, Adaptative Vector Quantization (AVQ) attempts to improve 

results by adjusting the codebook for each new image based on local statistics. 

Image reconc;truction is done using a simple table look-up of the labels on the 

codebook, thus yielding a compression method where most of the effort is spent on 

compression: these methods are especially appropria te for digital media storage. 

Clearly, codebook generation is an expensive procedure in aIl but the most 

trivial cases. Panchanathan and Goldberg propose a systolic array which can 

perform adaptative VQ [Panchanathan and Goldberg, 1991]. The systolic array 

is composed of L x N systolic celIs connected in parallel where L is the vector 

dimension and N is the codeword dimension. Each celI can opera te in two modes. 

In forward mode, it computes the basie distortIOn operation where the distance 

between a vector and a set of vectors is computed and accumulated. In the reverse 

mode, it computes the ccntrOid operation which is used to average vectors into the 

new codewords. This architecture achieves a speedup of S L, and has the main 

advaJ\l.age that the centroids do not need to be transferred into or out of the array. 

Systolic architectures have also been used for computer graphies applications. 

For instance, a teanl of IBM scientists built a high-performance graphies system 

based on a custùm-designed chip known as SAGE, the Systolic Array Graphies 

Engine [Gharachorloo et al., 19881. The objective of this architecture is to fight the 

memory bandwidth limitations whieh plague graphies systems: rendering algo

rithms su ch as Z-buffering, texture mapping and multi-sample anti-aliasing require 

ever larger video buffer bandwidths, while increasingly dense VRAM packages of

fer diminishing throughputs. SAGE maps a scan tine of the display into a linear 

array of systolic pro cess ors, one per pixel. Drawing primitives are decomposed 

into scan-Hne fragments which are fed to the array at one end. As the fragment 

travels down the array, each processor decides whether to render the fragment 

based on the edge equation and depth information of the fragment (aIl of which is 
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computed incrementally). Each PE retains its current color and depth ''.llul'. On Cl' 

aU the fragments have been fed to the array (one per clock cycle), a refn'sh tnh'l1 

is sent, and the array begins ta shift out the resulting pIxel valuL's ",luch arl' used 

to generate the video signal The array can then be used to scan-conVl'rt tllL' nl'\'! 

scanline in the display. Another computer graphies applicatIOn was ~uggl'~lL'd by 

Megson, who uses asystolie array to generate B-Spline patches u~ed 111 rendering 

curved surfaces [Megson, 19911. 

1.5.5 General Algorithmic Computations 

This section looks at general algorithmic problems which have bl'cn approaclll'd 

with systolie solutions. One such topie lS the Aigebraic Path Problem, which ~hnw~ 

up under different guises in various fields' transitive c/osu rt' and ~h(l/ tt'st JI"tlll'w[,

lems in graph the ory, matrix inVerSlOll in linear algebra and LIll' generallOn of Il'gll/1II 

lanRua~es in automata theory. The algebralC path problem I~ defined in tL'rm~ of tl 

weighted directed graph {r' = \', E, Id ( ) where \ the set of verticl'~, l,; thl' edgll~ 

and 11'( ( ) the welght (or cost) of the edges. If the vertlce~ arc numbered from 1 to :\', 

then the objective lS to find for each pair of vertices (1,.1 ) the sum of the welght~ of 

aU distinct paths from 1 to J. The APP is a O( Iv''') problem, and is thus expen~lve to 

compute on a serial-execution processor. Benaini and Robert propo~e a ~y~tolic ar

ray which requires ~2 + O(;\') processors and can solve lhis problem in Iinl:'ar tiI11L', 

Si\' - 2 steps [Benaini and Robert, 19901. A similar solutIOn is presentl'd by Lewis 

and Kung which uses .\"2 processors and also requlf(~s 5 N - 2 steps t(l compll'll' (in

terestingly enough, both designs daim to be "optimal" ... ) Scheiman and Cappello 

perform a rigorous analysis of the complexity of the method propu~ed by l .L'wb (md 

Kung and corne up with a precise lower bound of r ,~Î l on the number of proce~~ors 

required for bme-minimal completion [Scheiman and Cappello, 1YY21 ~lInilarly, 

Cappello analyzes the machine-mdependent maXImum parallelism which can be 

realized in a systolic implementation of cubical mesh algorithms lCappello, 19Y2J 
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(cubical meshes are used far a variety of algorithms such as fin ding the langest 

common ~ub~equencc amang three strings, L-U factarizatian of matrices, three

pa~~ transitIve closure, matrix triangulation and inversIOn and two-dimensional 

tuple companson) 

Another interesting application is a systalic implementation of a 

Move-Ta-Front (MTF) text compressor suggested by Thomborson and 

Wei [Thomborson and Wei, 19911. MTF compressors work by creating a list of 

"word~". Instead of transmitting the symbol itself, the encoder transmits its cur

rent position ~n the list, and then moves the symbol to the front of the list. An 

adaptative Huffman or arithmetic code can be used to assign shorter codewords 

to the positions near the front of the list (which quickly get filled with the symbols 

which occur with the greatest frequency in the input stream). In the simplest case, 

the "words" can be the 256 8-bit bytes, although longer words yield better results. 

This method is suitable for on-the-fly compression and decompression for data 

transmissIOn . 

Priority queues are partially-ordered data structures which support two opera

tions: II1Sl'rt which adds a new element to the structure and dcletemzn which deletes 

from the structure and returns the "smallest" element in the structure. On a se

quential processor, both such operations require 310g( n) steps if there are already 

11 elements III the queue. Cheng proposes three alternative designs [Cheng,1988]. 

The best solution requires ()(log( 1/ )) processors and can implement bath lnsert and 

ddctC111111 in O( 1) (i e. constant) time. Priority queues can be used ta sort data 

(by first 1I1sertmg aU the data 111 the structure and then deletemzng it in order: on a 

sequentIal processor, this would yield a O( nlog (11 )) sort algorithm, whereas here 

hnear time sorting would be achieved. Another application is discrete event sim

ulation, where C7.'Cllts are inserted into the priOTity queue according to their arrivai 

t11111'. At any Iteration, the dclctcnl1ll operation is used to retrieve the next event to 

occur: processmg this ev en might cause later events ta be scheduled and inserted 

back into the queue. The simulation tel mina tes when the queue is empty. A similar 
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data structure is the hash table, which stores elements mto a number of ~l'p.1r.1h' 

lists indexed b)' a Izash valllt' computed from the data elL'ment. 1\1llnl'l'r~l'l\'.lm l't 

al propose a parallel systolic haslung architecture which can bt.:' u~L'd, aml)ng L'thet' 

applications, to sort values 111 O(n) time [Panneerselvam ct tll , 19HHJ. 

1.5.6 Pattern Recognition and Neural Nelworks 

Pattern recognition often invol\'es a large amount of calclllatlOlls wl11ch h.1\'l' 10 

be repeated many tinles and which reuse the same data over and OVl'r. Thll~ lt is 

hardI y surprising that systohc arrays have been proposed to solw lhesl' clas~es of 

problems. For instance, Frison and Quinton propose in IFrbon and QU1I11on, 19H41 

a systolic machine which can perform continuous speech recognitwl1 III rl'al-llll1l' 

with a vocabulary of 2000 words In this architecture, 89 proCL'~~ing l'1l'ml'nl~ Ml' 

connected in a 2D array where each PE sends 1l1tennedlilfy re .... uIt .... 10 Il. .... nghl and 

bottom nelghbors. This array performs th(:' word spolllllg stl'p of thl' pnlCl' ........ , 

which consists in detecting the words of the vocabulary 111 the .... J.1L'L'ch ~lg11.11 TIll' 

array receives phonemes as mpllt [rom a phonemt: analyzer <I11d computl'" thl' 

probabilities that a word has been recognized given the phonl'J11l' .... lring. 

McWlurter proposes in [McWhIrter et al ,19901 a .... y .... tohc arrily for multl-

dimensional fitting and interpolation using radial ba~i .... function .... (RBF) TIll' ar-

chitecture is composed of two parts: the RBF pre-proce ........ or 1 .... lN'J 10 dL'terll11l1l' 

the coeffiCIents of the baS1S functlOns (radlally-.... ymmetrical C.1tI ....... hUl f unctlolb), 

whereas the second part is a least-square .... procesc,or which fIt .... the dat<l tu bl' rl'cog

nized using the basis functIOns fmm the RBF pn'-pwcest>or The arrtly opera te .... III 

two modes: first, it IS fed with a set of trainmg data vector .... from WhlCh It deflve:-, 

interpolatIOn coefficients. This "knowledge" 1 .... then frozen and thl' clrr<ly can be 

used on a set of test data vectors WhICh mu~t be recogl1lzed. Thl' operatIOn of the 

array can thus be related to that of a neural network ba~ed on the fel'd-forward 

multi-Iayer perceptron (MLP) model. 
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Since neural networks are intrinsically parallel computing structures, it is hardly 

surprising that systolic arrays have been used to implement these structures in an 

efficient manner. Kung proposes in [Kung, 1988] systolic arrays to implement both 

~mgle-layer feedback networks (Le. Hop6eld neural nets) and multl-Iayer feed

forward neural nets Hopfield nets are formulated as a consecutive matrix-vector 

multiplIcation interleaved with a non-linear activation function. Each PE is used 

lo mode! a neuron, and behaves differently in the search phase (where the neurons 

update thelT activation values) and in the learning phase (where the neurons are 

"trained") Chmn et al. [Chinn et al., 1990] implemented these systolic arrays on 

the masslvely parallel MasPar MP-1 SIMD machine and applied them to speech 

recognition (the MasPar machine is further discussed in section 4.2). Concerned 

with the large number of learning iterations required of traditional MLP neural 

nets, Chiang and Fu [Chiang and Fu, 19901 propose a ring systolic array imple

mentahon which requires two orders of magnitude fewer learning iterations than 

conventlOnal structures. Ramacher and Raab extracted the common computa

tions in neural net models and propose a hardware systolic architecture which 

can effiClently perform these computations in parallel [Rama cher and Raab, 1990]. 

Whereas aIl of the methads proposed above expIait the spatial parallelism and the 

training set parallelism in neuralnetworks, Chung et al [Chung et al., 1992] propose 

a systolic structure which explOIts the fact that farward and backward passes can 

be execu ted III parallel with pipelining of multiple training patterns in backprop

agation neural nets. They apply this architecture to the NETtalk text-to-speech 

neural network which canverts English text into phonemes. 

1.5.7 Other Scientific Applications 

Systolic arrays ha\'e also been proposed far other various scientific applications. 

For instance, a systolic array has been praposed ta perform data encryptian and 

decryption in Rivest-Shamir-Adleman (RSA) cryptosystems [Zhang et al., 19881. 
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The RSA algorithm is a public key encryption method which is based on the 

difficulty of factoring large integers [Rivest ct al , 19Î5l. A user of this system 

would crea te his keys in the fol!owing way: 

1. Choose two random large prime integers JI and (/ 

2. Obtain the public modulus .\' = pC! 

3. Choose a random large integer j) such that the greatest common di vider 

(,'CD(D.(p-1)(q-1)) =1 

4. Compute E = [)-lmod(JI-1)(q -1) 

5. Publish the public key (E. S) and keep the secret key (1) • .\') 

Thus anyone can use the user's public key to encrypt a message M into a 

cyphertext C using the eq ua tion (' = M /, 111 of! \', and the user can decrypt tlll' tex t 

using .\1 = (·[Jll/UdS. Although very secure, this method require~" fall <lIllUlint 

of integer computations, especially if it is to be used for real-tlme l'l1cryptl'd com

munications (such as secure phone lines), hence the need for specialized paralll'1 

hardware. Two methods are proposed: one requires ~ Ilog fi processing element~ 
arranged in a linear array, the second method is based on a double hnear array 

with 21/ PEs where 11 is the nurnber of bits in ,,,'. 

Systolic arrays have also found applications in experimental sciences. For in

stanee, Squier and Steiglitz used a custom processor called LGM-l to perform 

lattice-gas automata simulations [Squier and Steiglitz, 19901. This allowed them 

to compare the results of simulations run on this architecture with resultfl ob

tained from other methods and investigate the cause of erroneolls result&. In 

biology, the DNA sequence comparison problem ha~ been approached u~ing 

a custom-designed linear systolic array named P-NAC [Loprestl, 198Î1. It was 

able to run two orders of magnitude faster than then-current minicomputer& for 

that specifie application. A similar solution to this problem is demonstrated by 
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Hoang [Hoang, 1992], who irnplemented his system on the SPLASH programmable 

logic array [Gokhâle et al., 19911. Since DNA sequence comparison is basically a 

pattern matching problem, it is hardly surprising that systolic arrays are useful for 

that application . 
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Chapter 2 System Architecture 

2.1 Introduction 

This chapter, looks at the overall architecture of the convolution processor which 

as has been discussed before, is based on an array of specialized devices connected 

in asystolie array fashion. Greater emphasis will be put on the description of 

the structure and operation of sorne of the more relevant sections of the system; 

implementation details will only be covered in the following chapter. 

2.2 Overall Architecture 

Figure 2.1 presents the ove raIl architecture of the convolution proces~or. 

Since most image processing research these days is being done on general

purpose UNIX workstations, the system is designed as an attac/ml proCl'ssor 

[Hwang and Briggs, 1984] which can be used to speed up convolution operations 

on such a platform. This dictated the choice of a standard and widely-used bus 

through which the system could communicate with a host processor. As further 

explained in the following section, a VMEbus interface was chosen for the imple

mentation. 

The interface between the host VMEbus and the system local bus implements 

a programmable Direct Memory Access controller. Source and destination images 

are stored in the main memory of the host processor. Figure 2.2 illustra tes how 

the source image data is read from host memory by the DMA engine. The data is 

processed by the systolic array and then written back ta host memory, completely 
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2. Svstt'tn A rrhitt'rtu Tl' 

---=-
------

Systolic Dest. 

Array Image 
------

Host 

Memory 

1 ------
r-- Source 

DMA 
Image 

------
Interface 

1 1----------------------------, 1 1- ________________________________________ 1 VMEbus 

Figure 2.2: Data flow between host memory and systolir é1rrcly 

independently of the host CPU. 

The DMA engine is based on a l\10torola 68020 CPU and the VTC/CyprL'~~ 

VIC-068 VMEbus Interface Controller. This Application Specifie Intcgrated CircUlt 

(ASIC) implements a complete interface between the VMEbw, and a 680xO-~tyle lo

cal bus. The combination of these two devices yields an intelligent DMA controller 

which is fast enough to handle the required data rates, yet retain~ great flexibilily. 

Since the core of the work performed for this thesis consists in the de~ign and 

implementation of this VMEbus interface, the next chapter sha11 bl' devotcd to it::. 

study. In the meantime, suffice it to say that the DMA engine b rc~p()n~ible for 

reading the source data from host menlory into the Input Fir::.t-In Flr::.t-Out mernory 

(PIFO), and ta write the results from the Output FIFO back to host memory. 

In most image processmg systems, source images will be cornpo<,ed of integer 

data captured from such sources as cameras or laser range finden,. Since th (.' 
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systolic array opera tes only on 64-bit IEEE standard floating-point numbers, an 

input converter takes care of data type conversion. It currently allows both 8-bit 

and 16-bit mput data. In certain cases, it is desired to perform sever al convolutions 

on the same image (perhaps interleaved with other processing steps). To minimize 

errors and 1055 of precision due ta repeated conversions between numeric formats, 

intermediate results can be kept in floating-point format. Thus the input converter 

can also accept floating-point data which it passes along ta the next stage without 

modifica tion. 

Each line of the image must be fed ta the systolic anay as many times as there 

are lines in the convolution kernel. This task is handled by the delay memory 

circuit which accepts as input the floating-point data from the input converter. It 

has sufficient memory ta buffer the required input image lines, and can feed this 

data to the Hnes of the systolic array in the required order. In this way, the lines of 

the source image do not have to be fetched multiple tirnes from host memory, thus 

greatly decreasing the reqUlred bus bandwidth. The delay memory circuit also 

implements the image interpolation feature of the system: it do es this by inserting 

zero values between the pixels of the input image in order to rai se its sampling 

rate. Convolvmg this up-sampled image with a low-pass filter of the proper cutoff 

frequency and phase will replace the newly introduced zero values by the desired 

interpolated values while keeping the original pixel values unchanged. 

The systolic array performs the actual convolution operation. The lines of the 

image are fed to each line of the array in turn from the left side. These input values 

and the partial results which they generate propagate from left to right, and in the 

case of the partial results, from the output of the right-most processing element of a 

line to the input of the ldt-most processing element of the next line. The final result 

conles out of the output of the processing elernent at the bottom-right of the array. 

Note that the kernel coefficients have been pre-stored in each of the processing 

elernents, one coefficient per such device . 
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The output of the systolic array can go to two destinations. A recombi

nation memory is used to store internlediate values when pprforming Illulti

image operations, su ch as is needed wh en performing color-recombination 

[Malowany il"d Malowany, 19891. The data can also go the output converter which 

will convert the resulting floating-point data back into 8-bit or 16-bit integer format. 

This is often required sin ce the following steps of the image procl'ssing algorithm 

might not require the full precision of floating-point results. If the output of tlll' 

convolution processor represents the final results of the algorithm, then il might 

need to be displayed in a frame-buffer, wh1ch can usually accept only small (~

bit) integers. The conversion from floating-point to integer format is done by a 

binary search into a look-up table of interval limits: sinee this look-up table b 

programmable, it is possible to select an arbitrary non-linear mapping. Anolher 

function of the output converter is that it can selectively ignore output fL'sults to 

implement sampling rate reduction (or dowll-sampllllS) when combined with the 

proper tilter. As was the case for the input converter, the output conVl'rter can 

be configured to pass Ctata through without modificatIOn if floating-point output 

is desired. The output of the outrut converter goes into the output FIFO, from 

where the data is read by the DMA engine to be written back into the ho~t system 

memory. 

2.3 Host Bus Selection 

Whenever a peripheral device is to be designed, the selection of the host interface 

bus is one of the first design decisions which is made. In the commercial world, 

this choice has a strong effect on the profitability of the design since althoug:' it 

may be technically and economically viable, no one will want to purchase il if il 

cannot be used with popular computing platforms. Fortunately in this case, there 

were no such economic pressures. The selection criteria were the following: 
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1. The host bus has to have enough bandwidth to keep the systolic array from 

"starving". If floating-point operands are used both for the input and the 

output, this translates to a required bandwidth of 16 Mb/s. 

2. The form factor of the boards has ta be large enough to allow implementation 

of a fairly large and power-hungry design. 

3. The bus protocol must allow multiple bus masters so that the DMA engine 

may take control of the bus while transferring image data. 

4. The bus interface has to be simple, or else ASIC solutions must be available 

which implement a reliable and complete interface. 

5. It has to be compatible with the equipment used in our research group. 

A previous project where an integer convolution processor was designed and 

buiIt [Boudreault and Malowany, 19861,[Haule, 1990] had used the Multibus or 

IEEE-796 standard lMultibus, 1983], but although it is still used in sorne indus

trial applications, this platform is now obsolete. A logical successor might have 

been Multibus-II, but at design time there were still no single-chip interface solu

tions, and very few systems actually use this standard (although its designer, Intel, 

appears to be trying to resuscitate it as a platform for high-end PC compatible 

file-servers: whether this effort will succeed is unknown at this time). 

The ubiquitous Industry Standard Architecture OSA, also known as AT) bus 

fails ta meet criteria 1 ta 3. Its successor, Extended Industry Standard Architecture 

(EISA), as weIl as the IBM MicroChannel satisfy criteria 1 and 3 but do not offer 

mllch board real-esta te. FlIrthermore, at the time of the design there were no 

off-the-shelf solutions which implemented a bus-mastering interface. 

So-called "Mezzanine" buses such as SBus (from Sun Microsystems) or Tur

boChannel (from Digital Equipment Corporation) offer a lot of bandwidth, but 

suffer from very small board form factors. This is Ilot so much a problem wh en 
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contemplating a high-volume design where surface-mounted components can hl' 

used on both si de of the board, but it severely restricts the amount of available 

spa ce in a prototype design su ch as ours. Furthermore, although thcir promott:lr~ 

would have us believe otherwise, these are essentially proprietary solutions which 

find little use outside of the products offered by these companics. 

50 the choice was made to implement a VMEbus interface. As will be seen in 

the next chapter, VME satisfies aU of our criteria. Its peak bandwidth (40 Mb / sec) h. 

sufficient for our needs and there exists a number of ASIC interfilce ~olutions which 

implement a bus-mastering interface. VME is used by a number of machines at our 

facility, including the larger Sun and Silicon Graphies workstations, as well as the 

VME-based Sensory Computing Environment [McRCIM,1990] being developed 

here. 

Note that in the future, such a design would probably be imple

mented on Futurebus+, the next generation in general-purpose computer 

busses [Futurebus+, 1990]. Although FutureBus+ interface silIcon Îb just slartmg 

to become available, there is a growing interest in this standard due to the tremen

dous performance it offers. Recently introduced hlgh-end server~ from Digita1 

Equipment Corporation based on the Alpha micro-processor use Futurebu~+ tn 

give these machines high inter-processor and 1/0 bandwidth. The U.S. Navy 

has standardized on Futurebus+ for aH on-ship computing system~ (among other 

considerations, the ability to insert and remove boards from a Futurebus+ back

plane without powering down known as "hot" or "live" insertion is appreciatcd 

in systems whieh must maintain very high availability). As costs faB and band

width requirements increase, this bus standard might start appearing in lower-end 

products . 
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2.4 Input Converter 

As outlined previously, the function of the Input Converter is to transform input 

data formats into the IEEE-754 standard floating-point format which is understood 

by the convolution array. It then passes this data on to the next stage, the Delay 

Memory Circuit. 

2.4.1 Data Formats 

The input converter understands the following input data formats: 

1. 8-bit unsigned integer 

2. 16-bit unsigned integer, big-endian 

3. 64-bit IEEE-754 doublE. precision floating-point format, big-endian 

In the case of the second and third formats, blg-endian byte order (Le. the 

highest byte first) was selected somewhat arbitrarily: since data is read directly 

from hast memory by the DMA Engine, this has to be compatible with the data 

format used by the host. Since convolver discussed here is to be used with SPARC 

and Motorola-based hosts, big-endian ordering was a natural. It is also assumed 

that the host uses IEEE-754 as its floating-point storage format: very few current 

machmes (with the notable exceptions of those based on the VAX, IBM 360 and 

CRAY architectures) use a different format. 

2.4.2 Overall Architecture 

Figure 2.3 shows the structure of the Input Converter. Status bits controlled by the 

local CPU are used ta define the data type to expect. It reads its operands from the 
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outputs of the Input FIFO. Since it IS made up of 4 8-bit wide devices, the control 

logic must decide which outputs to enable in the proper sequence, ba~ed on the 

type of data. Floating-point operands do not need to be processed, ~o they are 

passed on directly to the output of the Input Converter. Both 8 bit and ih bit data 

are treated as 16 bit data, the 8 upper bits of the former being set to zero. 

Conversion of a 16 bit integer operand into floating-point format b done in the 

following way. The integer is loaded into a 16 bit shift register, while a 4-bit counter 

is initialized with the desired value (8 or 16). The operand is then shifted left until a 

1 appears in the most significant bit of the shift register, at which point the content 

of the shift register will represent the normalized man tissa of the floating-point 

number. For every left shift operation, the counter is incremented and yield~, in 

the end, the floating-point exponent. The entire procedure take5 at mot>t 16 clock 

cycles, which corresponds to tne cycle of the entire system for an operand (Le. in 

most cases, the convolutIOn array requires one input operand and produces one 
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output data item every 16 cycles). 

A detailed description of this procedure is outside the scope of this thesis: 

intere~ted readers are referred to [IEEE-754, 1985] for details on the floating point 

format and [Drolet ct al , 19901,[Drolet, 1992] for operation and implementation de

tails. Suffice lt to say for now that a double-precision number uses 52 bits for its 

mantIS&a, 11 bIts for its exponent (stored in excess-1023 notation) and 1 bit for its 

sign. The low 37 bits of the mantissd are always set to zero by the converter. 

Once the desired floating point exponent and mantissa have been obtained, the 

Input Converter needs to serialize its output to the next stage, the Delay Memory 

Circuit, sinœ it expects tloating-point operands only 8 bits at a time, starting with 

the low-order byte . 

2.4.3 Implementation Considerations 

In most designs, space is an important limiting factor. The VMEbus 6U double

high, double-wide form factor offers 373cm2 of board space, which is not very 

much when considering the complexity of this design. Thus an implementation 

based on Programmable Array Logic (PAL) devices and other random logic would 

consume too much space. A better solution is the Field Programmable Gate Array 

(FPGA). As with the more conventional gate arrays, the FPGA is composed of an 

array of logic blocks which can be connected to generate any desired combinatorial 

or sequenhallogic circuit. The main difference is that whereas the interconnections 

in conventional gate arrays are permanently manufactured into the chip (typically 

as metalization layers), FPGAs are programmed on power-up by loading a configu

ration bit pattern into RAM memory locations. Thus FPGAs do not suffer from the 

long lead times and high non-recurring expense (NRE) of gate array or standard 

œIl devices. On the other hand, their unit cost is significantly higher, so theyare 

typically used for 10\." to mid-volume designs [Mokhoff, 1993]. 
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The very quick turn-around time of these devices nu. ans that the\' art' olten 

used for prototyping systems, after which the~' can be nugr.lll'd tl) IlWrt.' l'l)n

ventional de\'ices when production \'olllme~ jllstlf" tht' NRF [Eg.m, 1 ql) 1 J FPCA 

devices have also been llsed to deSign a completely rt.'cnnhgurabll' p.ll"l11l'1 pn lLl'~

sor named SPLASH lGokhale ct al, 1991] Note that FrGA~ h.1\'t' ~llml'\\'h,lt IllWl'J' 

performance than gate arrays or standard ceU de\'lCL'~. Furthl'fll1OJ'l', aIthollgh 

high-Ievel software which can accept a design 111 tlll' form of 10gIC l'quatitH1!'- III 

standard library parts and map it onto the FPGA loglc bloc\... arcllltl'ctllll' l'Xht!'-, It 

usually produces non-optimal designs which either fad to USL' .111 of the ,n'.ltl,ll'll' 

real-esta te or generates unacceptable rnunng delays. For hlgh-pt.'rformance ap

plications, the designer is often forced to manually speclfy tht.' partlOl1l11ng of tlll' 

design into the logic blocks of the part, as well as the rOllting bt.'lwl'l'n tllL'~l' blocb, 

a tedious task at best Newer Computer Aided De~ign (CAl)) tnob a~ wl'll a~ lwttl'r 

FPGA architectures hope to lessen the burden on the FrGA dL'~lgl1L'r IBlIr~ky, IlN~1 

[Clark,19921. The ultimate objective IS to be able to automatlcally ~yntl1l'~i/l' tlll' 

desired FPGA deSIgn from a high-Ievel functl0nal and/or bdlaVlor,ll dL'~Cnptllln 

in a circuit-description language such as VHDL lVHDL, 14H7] IPerry, ll)lJ 1) or 

VeriLog [Sternheim et al., 19901. A survey of current FPGA archItecture .... and pro

gramming technologies can be found 111 [Rose ct Ill., 14931 

The FPGA configuration information can be stored in a ROM dl'VlCl'. ~pl'Cldl 1 

bit seriaI ROMs exist which interface directly to the FPGA devlce, or ~tandard byte

wide EPROMs can be used wIth a minimum of "glue" logic. Th l' confIguratiOn 

can also be stored in a disk fIle and downloaded into the devlce at power up by il 

host: this is the approach chosen here, sin ce it allows maximum flexlbihty Thl~ 1~ 

made possible by the fact that the DMA Engine is there lo confJgurl' the board after 

power up, and that none of the bus interface circuitry depends on FPGA' .. 

Thus the input converter is implemented usmg a single Xtlmx FPC;A deviee, 

which connects directly to the outputs of the Input FIFO[o, and to tlw input~ of the 

Delay Memory Circuit. Note that in order to allow httle-endlan 16-blt operand~, aIl 
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that would be required is to change the order in which the FIFO devices are read to 

irnplement the byte-swap operation (ail 16-bit operands are assumed to be word

aiigned 111 ho~t memory). This would require changing the state machine which 

control.., the outputs of the FIFOs and the multiplexers at the input of the device: 

such de!->lgn changes only generate a different FPGA configuration file which can 

be downloaded into the devlCe at power up. Slmilarly, little-endian IEEE-754 

operand~ could also be supported by changing the operation of the serialization 

circuitry at the output of the devlce. FPGA devices are used extensively in current 

mdustrial de~igns. In many cases, their flexibility allows working around other 

problems with the non-programmable ~,ections of a design or adding functionality 

to an existmg design without having to change a single connection. 

2.5 Systolic Array 

The systolic array used in this design is based on a custom VLS! processor which 

implements the basIC operation) ,,,If = ('X + ) III where C' is the convolution kernel 

coefficient, X IS the pixel intensity, ) Il, is the output of the previous processor and 

) ,,", is the partial sum ta be fed te the next processor. Every operand is in double 

precbion floating point format. Figure 2.4 represents a 3 by 3 systolic array: a 

similar topology is used for a 9 by 9 array. Each line of the source image is fed 

pixel by pixel ta the left sIde of the array (in the case of figure 2.4, the first line 

of the image would be fed ta 1 Xl, the second ta 1.\"2, the third to 1.'\'3). The 

pixel inten~Ities maye from left ta right, From processor ta processor. When the 

first liIw of the Image has bel'n completely fl'd ta the first line of the array, the 

indexing of the source image is incremented and the second line is then fed to the 

first line of the array. Thus each line of the image must be fed to the array as many 

times as there are lines of processors. The delay memory circuit is responsible for 

feeding the Image lines in the proper order to the array: its operation is explained 

in section 2.7. 
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Figure 2.4: 3 by 3 systolic array 

Figure 2.5 outlines the architecture of the VLSI convolution chip. The design 

of this full-custom device is documented in [Larochelle ct al., 198Yl, [Côté,1940] 

and [Larochelle,19911 Datd is transrnitted between the chips 4 bits at a tl 111 l' 

so as to limit the number of required 1/0 pins (a limitatiOn of the packaging 

offered at the time for production of these de'. ices by the Canadian Microelectrolllc~ 

Corporation [eMe,1989}). Since operands are 64 bib widc, ]0 dock CycJl'~ are 

required to transfer a complete operand between two processor~ (note that the 

pixel value and the partial result are transfered at the sa me time). The ~OltrCl' 

image pixels are fed to the device on the Xl" input and stored in a 32 entry deep, 

4 bit wide FIFO. The pixels come out unmodified on the X.",/ output which i~ 

connected directly to the X'l! input of the next device As the 4-bit compon('nt~ of 

the pixel intensity travel down the FIFO, they are also fed to Stage 1 of the dl'vice, 

where they are multiplied by the kernel coefficient stored in the device (note that 

the coefficients do not change throughout a convolution operation, and remain 
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Figure 2.5: Systolic Cell Architecture 

fixed inside the device}. This multiplication unit is capable of multiplying two 

4-bit quantities in one dock period, which me ans that it opera tes at the same speed 

at which the pixels are shifted into the device. 

The result of this multiplication is parallelloaded into the stage 2 adder, where 

it is added in 16 dock cydes to the partial result generated by the previous device 

in the array. FinaUy, the result of the addition is parallelloaded into the stage 3 

nornlalization unit, where the mantissa is aligned to generate a valid floating point 

nunlber, aga in in 16 dock cydes. A shift register is used to put together the 64 

bits of the);u partial result input and offer them in parallel to the stage 2 adder. 

Similarly, the output of the stage 3 normalization unit is loaded in parallel into a 

shift register which will shift it out 4 bits at a time on the }~t t ou tput. Thus every 16 

dock cycles, a convolved pixel cornes out of the convolution array (after a suitable 

delay required ta fiU the pipeline), 

Note that in arder to be truly compliant with the IEEE-754 standard, an addi

tional renormalization operation would have to be performed between the multi-
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plication and addition steps. Sin ce this is not the case, the convolution proCt.'ssor 

might yield slightly different results than those tha t would be obtained \ .. 'hl'Il impll'

menting the operation on a machine where renonllalization would occur after both 

the multiplication and addition. crus with a multiply-and-accunlul.ltl' unit llfll'Il 

forgo the intermediate renormalization for performance reasons: such is thl' caSl' 

with the IBM RS/6000 [Bell, 1990]. If precisely reproducible resu1t~ are rL'quin'd, 

RS/6000 compilers can be told not to generate l11ultiply-and-accumulatl' instruc

tions, but instead generate separa te IEEE-compliant multiply and add instruction~' 

of course, performance is greatly reduced in that case. 

Figure 2.6 illustra tes the pixel values as they travel down a line of the con

volution array. Only a single line is shown 10 make the diagral11 clearl'r, but the 

same principle appHes to the two dimensional array. Note that the partial results 

travel half as fast through the array as the input pIxel values. This b due to the 

insertIon of two extra "pixel" delays (I.e. 16 clock cycles, since the 64 bits of d plXl'l 

operand are transmitted 4 bits at a time) in the partial sum path for a total of a 4 

pixel delay, as opposed to a two pix'?l delay in the pixel value path. This en~ures 

that the proper partial sums get propagated at the right time. In the la~1 hne of 

our example, the result for the first pixel of a 3 by 1 convolution b ready to come 

out of the last device in the chain Note that it took 10 system cycIe~ of 16 dock 

cycles each for the first valid result «(,'0 \0 + (;1 XI + ('2 X 2) to come ou t (aIl previou~ 

output was undefined and is ignored by the rest of the system). Thb b typical of 

pipelined systems, where there is always a penalty to payas the pIpeline b filleu. 

After that, a valid result will come out of the last device every 16 clock cycles (Le. 

CoX1 + Cl X2 + ('2 X:1, eUX2 + (,'1 X1 + ('2X4 and 50 on ... ). 

The current version of the convolution chip is clocked at 16 MHz, which enables 

the convolution array to produce a convolved pixel every microsecond. For a 

standard 512 by 512 image, convolution can thus be performed in roughly il quarter 

of a second (262 msec.). Kernel size depends on the number of de vices u~ed ta build 

the array: the current design uses 9 by 9 chips. Since each chip perform~ a complete 
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floating point multiplication and addition every microseeünd, this yields a system 

performance of 162 MFLOPS, sustainable throughout the convolution oper,ltion, as 

long as data can be read from and written ta host memory fast enollgh. Although 

the maximum bandwidth required ta sustain this rate is 16 Mb/sec, which is weil 

within the 40 Mb/sec maximum bandwidth of the VMEbllS, other factors sllch as 

the speed of the host memory and contention from other VMEbllS masters nü~ht 

reduce the bandwidth available ta the convolution processor. 

2.6 Recombination memory 

As the convolved pixels come out of the array, they are rollted ta the output con

verter (see figure 2.7) to be optionally transformed back to integer valuL's before 

going back ta destination memory storage. They can also go to the recombination 

memory, which is used to buffer an entire image. The content of this memory can 

then be used to drive the partial sum input of the first device in the convolution 

array. This allows multi-image operatIOns ta be performed, such as image averag

ing/blending. For instance, a first image could be processeG with ail of the keflwl 

values sealed bya value (l, and then stored into reeombination memory. The kl'rnd 

values would then be reloaded, this time scaled bya value 1 - 0, and the new image 

sent through the array, using the result of the first convolution as the iIUtIal partial 

sum input, thus effeetively blending between the two resulting images. 4 Mb of 

memory is allocated for this purpose, organized in 4 SIMM modules of 1Mb by R 

bits each. Since 4 bits must be read out for each 16 MHz dock cycle, this mcans 

that the memory must have a cycle time of 125 ns (sin ce two operands are read 

at once from the 8-bit organized memory). This would require rather fast DRAM 

devices: on the other hand, sin ce memory access is always sequential, the dccess 

pattern is trivial to predict. Thus two-way mterleaving i~ used to relax the cycle 

time requirements to 250 ns, which is fairly easy to satisfy with inexpensive DRAM 

devices. 
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2.7 Delay Memory Circuit 

One of the greatest obstacles to high performance in convolution implementations 

on traditional archi tectures is the high memory bandwidth required by the repea ted 

use of the same operands. In the case of a 9 by 9 convolution, each input datum 

has to be read 81 times from main memory. C •. reful design of the algorithm can 

minimize the number of cache misses by taking into consideration the cache line 

size [Stone, 1987], but such optimizations are often hardware-dependant and can 

actualJy decrease performance on a machine with different architectural char ac

teristics. In order to take full advantage of the systolic architecture of our system 

as welJ as to mmllnize the bandwidth on the VMEbus, a Delay Memory Circuit is 

implemented. 

This circuit takes as its input the unidinlensional stream of image pixels in 

scan-Hne ordl!r from the input converter. Each line of the image has to be fed to 

the systolic anay as many times as ther€' are rows in that array. This is done with 

8 circular queues implemented using standard static RAM devices. The first row 

of the systolic array is fed directly by the pixels coming from the input converter, 

whereas the other lin es recelVe delayed copies of the rows previously stored into 

the circular queues (note that pipeline delays have to be taken into consideration 

by the control logic to de termine the exact time at which pixels have to be fed 

to the array). Since it has a finite amount of storage, the delay memory circuit 

imposes a practicallimit on the length of a raster line. It is currently implemented 

using R 8kx8 static RAM devices. Since at that point the operands are in 64-bit 

double precision format, this means that raster lines can have a maximum width 

of 1024 pixels. A deeper treatment of the inlplementation details can be found 

in [Drolet ct al., 1991],[Drolet, 19921. 

The Delay Memory Circuit has two other functions. It is responsible for deter

mining whether the convolution array is to be used in 1 or 2 dimension al mode. 

In 1-0 mode, the array implements a single FIR filter with 81 coefficients. The 
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data is transmitted directly fronl the input converter to the tirst line of the .uray, 

and 0 values are fed to aIl the other Hnes: in that mode, the circuit i!- basically 

bypassed. In 2-D mode, it opera tes as previClllsly described. It C.ln also be lIsl'd tll 

perform limited interpolations used to increase the sampling rate of an image by.1 

factor of 2 or 4 by inserting appropriately placed 0 values into the data stream (i l'. 

inserting 1 or 3 zero values between aIl input pixels, and 1 or 3 hnes of zero values 

between lines of input pixels). The coefficients loaded into the convolution array 

must then implement a low-pass filter with the appropriate eut-off frequency. Nok 

that multi-rate filters are usually much more effiCient for mlplementing resamplmg 

operations (in partieular, they avoid the numerous multiplications of zero input 

values used in our method), but this extra functionality was achieved at the cost of 

a small amount of additional complexity in the controllugic for the Delay Memory 

Circuit. 

2.8 Output Converter 

The function of the output converter is to transform the floating-point output of 

the systolic array back into integer format. This ib required for instance when 

the output is to be viewed on a display device such as a frame buffer. Typically, 

for a gray-scale image this means that the results must be quantized down to H 

bits of resolution, yielding 256 distinct levels of gray. The recently announced 

Silicon Graphies RealityEngine graphies subsystenl allows up to 12 bit~ per color 

component, which in the case of gray-scale images gives 4096 shadeb of gray 

(although the actual Digital to Analog Converters which drive the display only 

have 10 bits of resolution: the extra bits of resolution in the frame buffer are used, 

among other things, to a void loss of precision in the lower in tenbities due to gamma 

correction) . 
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Index Content 
3 1.9 
2 1.3 
1 0.5 
0 0.2 

Table 2.1: Conversion look-up table content 

2.8.1 Princip le of Operation 

The con version From floa ting point results into integer format is achieved by means 

of a look-up table. The principle is that the entries of this table contain the bounds 

of successive in tervals. By using a binary search into this table, the converter 

de termines the interval in which the floating point result faIls: the index of the 

corresponding entry yields the desired integer result. For example, table 2.1 shows 

the contents of a table with 4 entries . 

Using this ex ample, a number between 0 and 0.2 would be mapped to the integer 

0, from 0.2 to 0.5 to l, from 05 to 1.3 to 2 and from 1.3 to 1.9 to the integer 3. The 

only restriction on the values of the interval bounds is that they be monotonically 

increasing in order for the binary search to be able to find the right interval. This 

allows for non-linear mappings of floating-point results to integers. This could be 

used for: 

• Dynamic range compression/expansion: when the application is interested 

in a narrow range of values in the output, aIl values below that range can be 

c1amped to zero, aIl those above can be c1amped to the maximum index and 

the full range of integers can be used for the Uinteresting" values in between. 

Similarly, a range of values which is not interesting can be compressed to a 

single interval, again yielding more dynamic range in the output for other 

intervals of interest. 

• Most image processing algorithms assume that the range of possible values 
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for each image sample is linear. Unfortunatcly, most output devices (CRTs in 

partieular) do not generate a linear intensity as a function of the value to bl' 

displayed. This relationship is usually modelled bya power function and IS 

known as gamma correction [Travis, 19911. If the display which is to be uSt:'d 

does not have gamma correction hardware (Le. instead of feeding the value~ 

to be displayed directly to the digital ta analog converters, these are used 

as the input of a look-up table whieh implements this correction), th en the 

output converter can be programmed to perform this correction on the image 

itself. Note that the image then becomes dependant on the particular display 

it was corrected for, and can only be displayed on another ::.ystem after being 

gamma corrected again, at the priee of a substantialloss in dynamic range in 

the low intensities . 

• Even if intervals of constant length are used, the table can still implement a 

simple gain and offset mapping . 

2.8.2 Output Converter Architecture 

Figure 2.7 presents the block diagram of the converter. The 24 most signicant 

bits of a floating point output value from the convolution array are stored in a 

register. This means that only 12 bits of man tissa are retained for the purposes of 

comparison. Clearly, this imposes a limit on the resolution of the intervab which 

can be specified. Similarly, the interval bounds are stored as the 24 MSB~ of the 

desired intervals in the output converter look-up table. Note that this table IS 

programmable, but cannot be changed while an image is being processed. The 

table con tains 212 entries, and thus requires 12 bits of address. 

As the conversion begins, the 12 bit A register is cleared and the 12 bit B register 

is set. Their values are added by a carry-Iookahead adder and the result is divided 

by 2 using a hardwire shift. This yields a 12 bit address whieh points to the middle 
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Figure 2.7: Output Converter Block Diagram 
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of the table. The correspoding interval boundary is fetched and compared wit.h the 

result to be converted. According to the resuIt of this cOIl1parison, t,lithl'r regisll'r 

A or B is loaded with the address previously computed, thus dividing thl' search 

interval in ha If. After 12 iterations, the proper interval has bel'll found, and Ils 

address in the look-up table is the desired integer r('sult, which is ~ent 10 Iht' OUlput 

PIFO. Tl1us the output converter can generate up to 12 bits of precisiOn on it~ 

output. Since the convolution arra)' produces a new resuIt l'very 16 cIoek ('\'dl'~, 

the same clock can be used to drive the output converter sinel' Il only requirl's 12 

cycles for a conversion. 

As was the case for the input converter, the output converter can be bypas~l'd if 

floating-point results are desired. In that case, the output of the convolution array 

is sent directly to the output FIFO. Also, in order to implement the ~ampll' rail' 

conversion capabilities of the system, the converter can be progranunl'd 10 decimatl' 

(downsarnple) the output image by 19nonng some of the output sampll'~. In order 

for this down-sanlpling to occur without alIasmg, the convolution coefficients mll~t 

have been chosen to implement the proper low-pass filter. Again, a XILINX FPGA 

device implements the main functlOnality of the output convertE:'r. External ~tatic 

RAMs are used to store the intervallook-up table. Further detmls fllgarding Ihe 

implementation of the output converter can be found in [Orale!, 1 YY2J. 
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Chapter 3 DMA Engine Implementation 

3.1 Introduction 

This chapter co vers the design and implernentation of the section of the convolution 

processor known as the DMA engine. The main task of this subsystem is to 

coordinate the transfer of image data from the memory of the host CPU over the 

VMEbus to the convolution array, and the writing of results back into host rnemory. 

Since it is designed around a general-purpose processor, the DMA engine is flexible 

and accepts high-Ievel commands from the host CPU. It is also responsible for 

general initialization and control tasks for the other sections of the convolution 

processor . 

3.2 Design Perspective 

The DMA engine of the convolution processor is responsible for the following 

tasks: 

• initialize the system after power-up or reset 

• load the kernel coefficients into the systolic array 

• select operating modes and perform other control tasks 

• interface to the VMEbus 

• transfer data over the VMEbus from the memory of the host CPU to the input 

cOl\verter, and fron1 the output converter back into host memory 
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The initial design approach was to design a special-purpo5t' circuit built awund 

a commercially available DMA controller. After some .:unount of work, tlut- \Vat

rejected for a number of reasons. There were very fe\ ... ' a\'.ulablt:' DMA controllert

which support 32-bit address and data paths (the entirt' VMEbut- addre~~ rangl' 

must be supported), and those that are available are usually o\'l'rlv compll" or 

have fairly small bandwir.lth. Furthermore, it was qlllekly reahLl'd th.lt sinet.' .1 

VMEbus interface with both nlaster and slave capabilihe5 1S nt:'edl'd, 1t would bl' 

beyond the scope of this project to attempt to synthesize th15 interface Ir OI1l ~tandard 

logic components (ignoring for :1 moment such constraints as board ,ul'a) Thu~ an 

off-the-shelf VME interface device had to be used. Unfortunately, .111 ~uch dl'viCl'~ 

assume that they are connected to a CPU and aet as a bndge betwl'l'Il the l'PU local 

bus and the VMEbus. A company called PLX makes a set of five dl'vÎCl's which can 

be used for somewhat lower-Ievel interface, but a design U~l1lg il Mutorola DMJ\ 

controller and these devices was rejeeted as unduly slow and eompll'x. 

The conclusion was that the best approaeh was to have an on-board CPU, and 

to use arl off-the-shelf ASIC to bridge between its local bus and the VMEbu~ Thl' 

VTC/Cypress VIC-068 ASIC was ehonse because it seemed hke the mll~t viable 

solution: this de vice is endorsed by a large group of VME board manufaeturer~ 

known as VITA, the VMEbus International Trade As~ociation, and 1S u~ed in a 

number of commercial produets. Since the VIC offers a glue-le~~ mtl'rfael' for a 

Motorola 68020/68030-style CPU local bus, it was natural to chose to lI~e il 6H020 

CPU sinee the virtual-memory eapabilities of the 68030 were not nel'ded 1 laving il 

general-purpose CPU on board rneans that many of the control ta~k~ can bl' done in 

software, which greatly enhanees the flexibility of the board, redllCl'~ the amount of 

controllogic which has to be designed and lessens the nsk of a fatal hardware bug 

which cannot be fixed in software. Furtherrnore, sincc the VIC IS able to perform 

most of the DMA transfer functionality on its own at high-~peed, the (iR020 dm>f-, Ilot 

need to have high performance. This greatly relaxes the design constraint~ on that 

section of the circuit, and permits the use of a low-speed part (in th1S case the 68020 
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will run at 12.5 MHz). This approach was suggested in a Motorola application note 

for the 6R020 CPU [Motorola, 19871. It was first presented in [Panisset et al., 19901. 

3.3 System Block Diagram 

Figure 3.1 shows a high-Ievel block diagram of the DMA engine (note that this 

block diagram is very similar to the top-lev el sheet of the circuit schema tic). The 

VIC-068 implements a bridge between the VME system bus and the local bus of 

the 68020 processor. The only additional logic required are decoders to map the 

slave mterface offered by the VIC into the VME address space as weIl as additional 

transceivers and latches to isola te the local bus from the VMEbus. The interface 

offered by the convolution pro cess or to the host on the VMEbus will be examined 

in section 3.5. Details on how the VIC and the 68020 intenact to perform DMA 

tran~fers will be covered in section 3.8 . 

On the local bus side, the 68020 processor and a small amount of RAM and ROM 

memory used for its operation are found. The 68020 de termines the "persona lit y" 

of the local bus: its operation will be show n, as weIl as the bus-controllogic which 

is required to arbitra te between the 68020 and the VIC for accesses ta the local bus. 

The interface ta the rest of the convolution processor is also found there, namely the 

input and output FIFOs and a control register. This register is used by the firmware 

running on the 68020 to control the convolution array: implementing this control 

in software yields greater flexibility and further de couples the design of the DMA 

engine from that of the rest of the system. 

3.4 Principle of Operation 

The basic principle of operation is that when the host CPU wants to perform a 

convolution, it sends a high-Ievel command to the convolution processor. This is 

55 



U1 
0'. 

• 
"!1 ... 

(JQ 

e; 
~ 

~ 
;... 

n 
0 ::s 
<: 
0 
ë 
:::r. 
0 :s 
\:1 a 
/"') 
(1) 
tri 
tri 
0 
""'1 

n 
~. 

c:: _ . ... 
o:l 
ë 
n 
~ 

9 
~ 

J'Q 
""t 
~ 

3 

VMEbu, Slot 

n 

J' 
;, 

a:l 
E 
~ 
>. 

cr. 
UJ 

~ 
> 

'--

• 
r------,.E--_____ ~O~u~t~p~ut FlFO Halr Full - Interrupt Rcquest 

1 ... 

PowerUp ~ 

Reset 

Option 

Select ~ 

Jumpers 

64MHz r--Clock 

VMEhus 
Control SIgnaIs 

VMEhus 
DataIO-7] 

VMEbus 
Addres,,[ 1-7) 

~ 
Slave 

Select Il Decode \lC068 

125 MHz r-
CPUCIOI.:k 

Intcrrupt Rcqucst 

Local Bus 

Arbaratlon 

r-

~ 

68020 CPU 

l 
Local Bus Control SIgnaIs 

0[0-7) Local Address[0-31] 
1 

Transcel\ er Controls 
Buffers 

and 

VMEbus AdJress[1·31) 

YMEbu, Data[O-31) 

T ransçcl\ cr" 

1 local l'lu, 

. VMEbu<;) 

f 1 

lL 
32K 1 

RAM 

132 bIll 

r-

~' 
~ 

;; 
Cl 

~ 
..J 

32K 

EPROM 

18 bIt 1 

• 
Output 

FIFO 

----------t 
Output 1 1 

Input 

FlFO 

Control 

Regl~ler 

~ 

El c 
~ = ,.. Ci := El 
-,r, Ci := ::i: _ Ci 

- LI. ,-.. 
!l - -li Lt: ~ 

:::: LI. 
r::.. -

Data 

Input 
Data 

Control 
Slgnab 

oS È. 
~ 

Local Ru~ 

Addrcss Decode 

D'iACK GeneratIon 

ROM Control 

R .\..\1 Control 

1 ConvolutIOn 
1 Array 
---- ______ 1 

~ 

a 
3: 
:> 
m 
:s 
'3. 
:: 
ft) 

3 
"2-

1'0 
3 
~ .... ::.; .... §. 
oJ 



• 

• 

• 

3. DMA Engine Implementation 

done by writing a command into a set of interprocessor communication registers 

on the VIC which are visible both from the VMEbus and the 68020 local bus. The 

VIC can then interrupt the 68020 to signal it that a command has arrived. The 

68020 reads the command and performs aIl necessary mitialization. In particular, 

it programs the VIC which will be responsible for performing the DMA transfers 

from host memory into the input FIFO and from the output FIFO back to host 

memory. The VIC can become bus mas ter on both the VMEbus and the local 

bus and can transfer up to 256 bytes of data without external assistance: the 68020 

assists it by keeping track of how many such transfers are required and by initiating 

these transfers. 

The inclusion of a local CPU means that most of the complexity of controlling 

the convolution processor can be implemented in software. Furthermore, the 

convolution processor is able to respond to high-Ievel commands from the host 

CPU. Apart from performing convolutions, there are commands to specify the 

mode of operation and to select the kernel coefficients to be used. The semantics of 

the software interface presented to the host CPU will be described in section 3.11. 

3.5 VMEbus Interface 

The convolution processor must be able to interface ta a hast CPU over a VMEbus. 

Revision "C" of this standard is documented in [VMEbus, 19821. A complete 

descriptioll of the operation of this bus is beyond the scope of this thesis: sufficE' 

it to say that using a standard interface ASIC such as the VIC hides a lot of the 

details from the hardware designer. In particular, aIl of the VMEbus control signaIs 

connect directly to pins on the VIC without the need for any kind of buffering 

or glue logie: this greatly reduces board area requirements, as weIl as the risk 

of a design error or of a marginaIly successful interface implementation which 

might work with some VMEbus boards and not others. This used to be a eornmon 

problem wh en each VME vendor implemented interface cireuitry using eus tom 
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System Control SYSCLK 
ACFAIL* 
SYSFAIL* 
SYSRESET* 

Bus Arbitration BR[0-31* 
BGIN[O-3r-
BGOUT(0-3]* 
BBSY* 
BCLR* 

Interrupts IACK* 
IACKIN* 
IACKOUT* 
IRQ[1-7]* 

Read/Write AS* 
LWORD* 
OSO* 
OS1* 
WRITE* 
OTACK* 
BERR* 

Address A[OO-31] 
Address Modifier AM[0-5] 
Data D[00-31] 

Table 3.1: VMEbus sIgnaIs 

logic. Table 3.1 lists the VMEbus signaIs. The following subsections will cover 

these signaIs in further detail and describe the hardware interface presented to the 

VMEbus by the convolution processor. 

3.5.1 Master Interface 

VMEbus Arbitration 

VMEbus boards can either be bus masters or bus slaves. A bus master initia tes 

transfers (either reads or writes), whereas a slave can only respond ta an externally

generated transfer. Sorne buses such as the Industry Standard Architecture OSA) 
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bus used in IBM PC-compatible systems have a fixed bus master (actually, this is 

an over-simplification: it is possible for an expansion board to take control an ISA 

bus away from the cru, but this support is primitive at best). The VMEbus allows 

any board on the bus to become the bus master. It has 4 Bus Request lines: BRO*, 

BRI*, BR2* and BR3*. These are open collector signaIs whlCh are shared by aIl of 

the potentiai bus masters. When a bus mas ter wishes to take control of the bus, 

it asserts one of the Bus Request Hnes by pulling it low. One of the boards on the 

VMEbus (usually in the first slot) is configured to be the system controller. Wh en 

it senses that one of the BR'" lin es is low and that the VMEbus is no longer busy 

(this is signaled by the fact that the Bus Busy signal BBSY" is J.10t being driven), it 

acknowledges the bus request at a given level by asserting the corresponding Bus 

Grant signal BGOUTx"'. These granting signaIs are daisy chamed from one board 

to the next, where the signal enters the board ~ria the BGINx" pin and exits it via the 

BGOUTx'" pm. Empty slots must have jumpers installed to insure the continuity 

of the Bus Grant chains . 

When a board receives a Bus Grant signal on one of its four BGINx" inputs, 

it de termines whether it has requested the bus at that priority level. If it has not, 

it simply passes the signal along to the next board on its BGOUTx* output. If it 

wanted the bus, it does not pass the signal along and instead drives the BBSY* 

signallow to signal its ownership of the bus. This protocol allows multiple potential 

masters to request the bus USillg the same priority level: if two such boards require 

assert BRx'" at the same time, the one which is physically closest to the system 

controller will receive the Bus Grant first and thus take control of the bus first. 

When it has finished with it and relinquishes it, the system controller will find that 

the BRx" line is still being driven by the second potential bus master and will thus 

issue a new Bus Grant signal to it. Note that a bus master is permitted to release 

the BBSY'" signal before it has completed its last bus cycle, thus allowing the bus 

arbitration cycle to overlap the current transfer cycle and thus reduce arbitration 

overhead . 

59 



• 

• 

• 

3. DMA Engine Impleml3 ntclhon 

The system controller determines which bus request to service next based on 

three different schemes. In the prioritized (PRI) arbitration scheme, the BRx"'lines 

are prioritized su ch that the line BR3"" has highest prionty and tht:' line BRO'" h.1S 

lowest priority. If two boards request the bus at the same time, the system controller 

will grant the bus to the device asserting Bus Request on the highest priority line. 

If a board is currently holding the bus at a given priority lev el and another board 

requests the bus at a higher priority, the systenl controller Will asserl the Bu~ Clear 

BCLR'" signal ta tell the former device to relinquish the bus as soon as possibll' 

(although there is no absolu te limit to the amount of time a device has to relinquish 

the bus: it could in the ory ignore the BCLR'" signal). 

In the round robin select (RRS) scheme, the system controller assigns the highest 

priority to each of the 4 Bus Request Hnes in turn: when a request has been servlced 

on the highest priority Hne, it assigns the highest priority to the next one in circular 

fashion. This ensures a somewhat fairer allocation of bus bandwidth when several 

boards are capable of becoming bus master in the system. On the other halld, It b 

usually desirable to assign absolu te priorities: for instance, a board which accept~ 

input at high speed and has little buffer space should have a higher pnority than 

one which can afford ta wait much longer until it gets access to the bu~. 

Finally, in the single level (SGL) arbitra tian scheme, aIl the boards in the system 

use the BR3'" line to request the bus: priority is thus based solely on the proxinuty of 

the board to the system controller. This scheme is used on the backplane of the Sun 

3/160 system [Sun, 1989a1. The VIC can be programmed to iSfue Bu~ Requef,l~ on 

any one of the Hnes. It can also be configured to act as il system controller supporting 

any one of these arbitration schemes by permanently asserting irs SCON'" input: 

this feature is not used on the convolution processor . 
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Address Slze Operation Type AM[5:0] 
32-Bit Addressing User Data Ox09 

User Code OxOA 
Supervisory Data OxOD 
Supervisory Code OxOE 
User Block OxOB 
Supervisory Black OxOF 

24-Bit Addressîng User Data Ox39 
User Code Ox3A 
Supervisory Data Ox3D 
Supervisory Code Ox3E 
User Block Ox3B 
Supervisory Black Ox3F 

16-Bi t Addressing User Access Ox29 
Supervisory Access Ox2D 

Table 3.2: Address Modifier Values 

VMEbus Read/Write Cycles 

Once il board has become bus master, it can initia te read and write cycles. It first 

drives the desired address onto the 32 address Hnes A[OO-31], as weIl as the 6 

address modifier bits onto the AM[0-5] Hnes. The valid address modifier values 

are listed in table 3.2. They are used ta indicate in which address space the transfer 

is to occur. Note that sorne of the address spa ces do not use aIl of the 32 address 

Hnes. In partIcular, VMEbus boards which only have a Pl connector (instead of a Pl 

and P2 connector) only have access ta 24 bits of address and 16 bits of data: thes~ 

boards are known as A24D16 boards. It was decided ta implement an A32D32 

interface for highest performance and generality, but the VIC can still interface ta 

systems with narrower address and data paths. The LWORD* line is asserted ta 

indicate a 32 bit transfer: it it is not, a 16-bit transfer is being requested. If a write 

is to be performed, the data is put on the D[O-31] lines (or on the 0[0-15] lines for 

a 16-bit transfer) and the WRITE* signal is asserted. 

Once aIl of these signaIs have been driven and are stable, the Address Strobe AS* 

signal is asserted. Typically, a slave interface address decoder will have already 
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decoded the address of its module off the address bus Hnes .md will use the AS'" 

assertion to begin the transfer. Once it has completed the transfer, the ~I.l\'e moduk 

asserts the data acknowledge DTACK" line to signal completion to tIlt:' mastl'!'. If 

this was a l'l'ad cycle, the master can then l'l'ad the data off the 0100-31] dat.l 

Hnes. If for some reason the slave could not complete the tr.lnsfer (for instance, 

the master tried ta address an invalid region of the address ~paCl' of the :-.I.1ve, or 

it tried ta perform a 32-bit transfer to a device wluch only has.l lb-bIt lllterfaù'), il 

will instead assert the bus error BERR'" signal to natif y the ma~tl'r th.lt the transfe!' 

could not be completed successfully. It is then up to the ma~ter to decidl' what to 

do (typically, an exception would be raised and signal would be sent to th\:' proCl'~~ 

which attempt the transfer). 

Convolution Processor Master Cycles 

The convolution processor DMA engine becomes bus master during DMA transfers 

ta and from the memory of the hast CPU. Details of how the local 68020 interact~ 

with the VIC ta control these transfers will be presented in section 3.8. For now, 

suffice it to say that when the 68020 wants to initia te a DMA transfer between 

one of th'2 FIFO memories and the host CPU memory, it attempts a rl'ad or wrill' 

operation to an address which the on-board address decoding logie maps onlo thl' 

VMEbw, address space. Once this IS detected, the VIC attempb to gain controlllf 

the VMEbus using the Bus Request/Bus Grant protocol outlined 1ll ~l'('tlon ]5. J. 

Once it has done that, it then takes control of the local bus away from the 68020 and 

begins the transfer directly between the hast CPU memory and the input or output 

PIFas. The arbitration scheme for the local bus is explained in section 3 7.2. Thl' 

VIC is able ta transfer up to 256 bytes of data on its own (Le. 64 long word tran~fer~), 

after which it rel;'1quishes control of the local bus ta the 68020 whieh can schedule 

the next transfer. Note that this model assumes that the host CPU ill1plement~ a 

slave interface which allows another processor access to its memory: thb i~ not an 

unreasonable assurnption since most VME-based disk or network controllers have 
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bus-mas ter interfaces and access buffers directly in host CPU memory . 

3.5.2 Slave Interface 

Although a slave interface to the convolution processor was not strictly required, 

it was implemented sin ce most of the required functionality is built into the VIC: 

furthermore, this feature can be used in a few cases, and increases the generality 

of the design. The slave select decoder is implemented in the traditional way 

with PALs and user-setable jumpers which allow the selection of different address 

ranges. The VIC presents two distinct slave interfaces to the VMEbus. First, it 

responds to slave A32 transfers (Le. in the full 4 Gb address space) which map 

into the local RAM of the convolution processor. A PAL looks at the A16 to A31 

address lines, which yields a decoding granularity of 64K: this is more than what is 

needed since there are only 32K bytes of local RAM memory which must be made 

visible to the host Cpu. A bank of 4 DIP switches allows the selection of 4 possible 

base addresses which means that the 64K window can be mapped at 4 different 

positions in the 4 Cb A32 VME address space. In order to keep the address decoder 

as simple as pos~,ible (in effect, allow it to fit in a single 20L8 PAL device), these 4 

base addresses are hard-coded in the PAL equations. Table 3.3lists the DIP switch 

settings and the corresponding base addresses: if none of these are usable in the 

target VME system, a new address decoding PAL will have to be programmed 

with a ditferent set of base addresses. Note that the slave interface only has access 

to the first 64K of the 256K local bus memory map: this is desired, since the host 

CPU should not try to read/write directly to the board control registers or the 

input and output PIFOs, and accesses to the VIC internaI registers is not allowed 

from the VMEbus side (section 3.6.2 covers the local bus memory map in greater 

details). Aiso note that the slave access decode signal from the PAL is fed to the 

SLSELl· input of the VIC: there also exists another slave select input, SLSELO*, 

but this input is defective on the revision of the chip used in the system and is thus 

63 



• 

• 

• 

3. DMA Engine Implt:'mentation 

52-4 52-3 52-2 52-1 Base Addref-s 
0 0 0 1 Ox1FFOxxxx 
0 0 1 0 Ox5FFOxxxx ---
0 1 0 0 Ox9FFOxxxx 
1 0 0 0 OxDFFOxxxx 

Table 3.3: Slave Select Base Addrt'ss 

strapped high. 

3.5.3 Inter-Processor Communication Registers 

The VIC has eight Interprocessor Communications Registers (ICRs). These art' 

accessible from the VMEbus without requiring the VIC to become local bus master, 

and are accessible from the local bus without requiring VMEbus arbitration. Pive 

of these registers are available for general-purpose use. Furthermore, the VIC has 

four Interprocessor Communications Global 5witches (ICGS~) and four Intl'rpro

cessor Communications Module Switches (ICMSs). In aIl cases, these faclhtie~ are 

accessed wh en the inter-processor communications facilities select ICFSEL'" input 

of the VIC is asserted and the address of the register IS specified using the VME 

A[S-1], LWORD"', D51* and D50'" addressing inputs: ICF5EL * is decoded in the 

A16 VMEbus address spa ce (i.e. the short address space). A single 20LH PJ\L 

device decodes this address space: based on the settmgs of the SI DIP switche~, 

it decodes a 64-byte memory region which can be based at one of seven differcnt 

base addresses. These base addresses are hard-coded into the PAL equation~ and 

can be changed if none of the pre-defined regions are available in the host system. 

Table 3.4 lists the current values for these base addresses. On the local-bus side, 

these registers are addressed in the same way as the other VIC mternal registers 

(see section 3.6). These registers will be used in the following way: when the host 

cru wishes to instruct the convolution processor to perform an action, it will write 

a 5-byte message into the IrC registers: this message will take the form of aI-byte 
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51-7 51-6 51-5 51-4 51-3 51-2 51-1 Base Address 
0 0 0 0 0 0 1 Ox1FFOxxxx 
0 0 0 0 0 1 0 Ox5FFOxxxx 
0 0 0 0 1 0 0 Ox9FFOxxxx 
0 0 0 1 0 0 0 OxDFFOxxxx 
0 0 1 0 0 0 0 Ox9COO 
0 1 0 0 0 0 0 OxBCOO 
1 0 0 0 0 0 0 OxDCOO 

Tab)e 3.4: Interprocessor Registers Base Address 

opcode and a 4-byte pointer to an optional parame ter block somewhere in either 

host or local memory. It lNill then write to one of the interprocessor communication 

switches, which is programmed to generate an interrupt to the local 68020. The 

local cru can then read the command to be performed From the registers. When it 

has fini shed its task, it will write the result code back into the registers and generate 

a VMEbus interrupt to signal the host cru that the operation has been completed 

and that a completion status is available. Thus neither the host cru nor the local 

68020 have to wait for each other: they can proceed asynchronously from each 

other while awaiting interrupts. 

3.5.4 Interrupt Generation 

The VMEbus has seven prioritized Interrupt ReQuest lines labelled JRQ[1-7]* Oevel 

7 has the highest priority). These are open-collector lines which are shared by aIl 

of the boards in the system. Whenever a board wishes to generate an interrupt, it 

asserts the corresponding JRQx* Une. In a manner very similar to the bus master 

arbitration scheme describecl in section 3.5.1, a board in the first slot acts as system 

controller: when it detects an interrupt request, it asserts its Interrupt Acknowledge 

JACK* output. It also asserts its IACKOUT* output, which is connected to the 

IACKJN* input of the its neighbor. FinaIly, it puts the encoded level of the interrupt 

it is responding to on the A3-Al address lines. Wh en the interrupter sees JACK* 
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and IACKIN* asserted, it compares the encoded interrupt level on the address 

Hnes with the level of the interrupt It has generated. If they match, Il dn\'es .1 ~tatu~ 

ID value onto the low 07-00 data Hnes. If they don't match (nr if .1 b(l.ud gel:-

IACKIN* and lt has not generated an mterrupt), the board prop.1g.1tes tl\l' ~lgnal 

via its IACKOUT* output to the IACKIN* input of the next board m daby-cham 

fashion. Empty slots must have a jumper installed to insure the contllluitv ot the 

chain. 

Interrupters can release the IRQx" Hne either whcn they gel the interrupt .1c

knowledge (this scheme is known as Release On AcKnowledge, ROAK), nr they 

can wait for the system controller to read a status register (Read On Rcgister Ac

cess, RORA). When acting as system controller, the VIC can lkal with both typl'S 

of interrupters: this capability is unused in this system, sinee the board will not 

be the system controller. Rather, the VIC will be used to generall~ lI1tL'rrllpt~. It~ 

internai registers are programmed to speClfy which interrupt line tn l\~L' to gener

ate mterrupts for the host based on the ll1terrupt leveb u~ed by the otl\l'r board 

in the system. Note that several boards can share an interrupllll1L' ~ince the~L' are 

level-triggered: the board which is geographically close~t ta the system controller 

will have higher priority in that case. Interrupts will be used to signal the ho~t 

that the convolution pro cess or has completed the requested action, as explailH-.'d in 

section 3.5.3. 

3.6 Local CPU Bus 

3.6.1 Local Bus Structure 

The local bus IS simply that of the Motorola 68020 cru, wluch nunimize~ the 

amount of glue logie since the VIC is designed to interface directly to ~uch a bUf>. 

The 68020 has 32 address lines and 32 data lines. It supports vlrtual memory 
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through an external 68851 Memory Management Unit which is incorporated into 

the 68030. Since a 68020 is used as a contr\.)l processor, the lack of memory man

agement actually simplIfies the task at hand. Real addresses are used throughout 

the board. Host memory is also accessed using real addresses in most cases, which 

means that the operating system running on the host needs to be able to lock the 

source and destination image buffers into contiguous physical memory. Sorne 

Sun computers implement a scheme called DVMA (Direct Virtual Memory Ac

cess) [Sun, 1989b] which allows addresses coming from the VMEbus to be mapped 

into virtual addresses in host memory: this relaxes the constraint that the image 

buffers be mapped into contiguous memory regions, although it is still desirable 

ta lock these buffers into physical memory ta prevent a large performance loss if 

pages are not resident when they are accessed and need to be paged in from disk. 

The 68020 local bus is addressable in byte (8 bits), ward (16 bits) or long word 

(32 bit) increments. There are no restrictions on data alignment, or on the size of 

rnemory de vices which can be attached to the bus. For instance, an 8 bit wide 

rnemory (such as the EPROM which holds the bootstrap code) can be connected 

to the bus. The 68020 encodes the size of the data transfer onto its SIZ! and SIZO 

outputs, and encodes the operand alignment on the two low-order address Hnes 

(AI-AO). The decoding IOglC for the addressed module looks at these inputs and, 

based on the size of the port, it signaIs how rnany bytes of the transfer it was 

able to accept/ deliver wh en it acknowledges the completion of the transfer using 

the DSACKI" and DSACKO" Hnes (note that, as for the VMEbus, the 68020 bus 

uses an asynchronous bus protocol). In the worst case of an unaligned long-word 

transfer to a byte-sized port, a single read or write instruction can generate four 

separa te bus cycles. Although this yields a lot of flexibility for the programmer, 

it adds a lot of complexity to the 68020 bus interface circuitry. Current RISC 

architectures such as the MIPS R3000/4000 are much less forgiving: they impose 

strict requirements on operand alignment, and compilers for these architectures 

will frequently pad C language structures in arder ta align structure elements 
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on word or long-ward boundaries [MIPSASM,19871. Furthermore, it h.l~ heel\ 

suggested that portable C code should be debugged on machint:'~ which IlllpOM' 

strict alignment constraints, smŒ such code will th en work on ma('hinl'~ which are 

more forgivmg. Further details on the operation of the 68020 hu~ l'an hl' found in 

section 7 of [MC68020, 1989]. 

3.6.2 Local Bus Memory Map 

Table 3.5 describes the on-board memory map for the 68020 local bu:;.. The total 

address space is 256K, replicated throughout the 68020 4Gb physical addn's~ ~paCL'. 

The 32K byte EPROM is rnapped at address 0 since when the 68020 CPU I1r~t power." 

up, it reads its Reset Initial Interrupt Stack Pointer from addres~ OxOO()()OOOO and it~ 

Reset Initial Program Counter from address Ox00000004 Thl' former l~ inillahLl'd 

ta the top of the 32K static RAM (mapped next from 32K tn MK) S1I1CL' tllL' hH020 

stack grows downwards. The latter 15 imtIalized to the beginning of tllL' power-up 

code sequence in the EPROM. Note that the 68020 attempt~ to perform 32-bll reacb 

for these values: sinee the EPROM only acknowledges an 8-blt tran~fl'r, tlll' 6H020 

must then perform 3 extra reads ta get the remainder of the opcrand Furthermnrl', 

since the EPROM is a relatively slow device with an aecess time of 150n~, the bll~ 

control logic which generates the DSACKx* SignaIs ll1~ert~ a delay (walt ~tate) 

whenever the EPROM 15 accessed. For aU of these reasons, after thl' llutlaliLation 

of the board is completed, the remainder of the code (in particular thl' code which 

must execute rapidly during DMA transfers) 15 copied mtn the much fa~ter 32 bit 

wide static RAM where the 68020 will be able to access it at full speeù 

The static RAM is composed of 4 8Kx8 devices which are connectl'd tn the 32 

data lines to form a 32-bit wide path. These memories have an acce~f, tlllle of 5'lnf" 

which means that the local bus controllogic can acknowledge tran~ferf, a~ ~o()n a.., 

they are decoded, thus allowing the 68020 ta opera te at full speed when acce~~ing 

RAM. Both the EPROM and the RAM are accessible From the VMEbu~ dunng VME 
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LA16 LA15 Comment 
0 0 32K length 
0 1 32K length 
1 0 2561acations, mirrored 128 times 
1 1 1 laca tion, mirrored 32K bmes 
0 0 1 location mirrored 32K tlmes, write cycles 
0 0 11acation mirrored 32K times, read cycles 

Table 3.5: Local Bus Address Space 

slave cycles. Section 3.7.2 explains of how the local bus is arbitrated between the 

68020, the VIC and the VMEbus. 

The 58 VIC internaI registers are mapped from 64K to 96K. Only the lower 8 

bits of the address is significant, 50 the registers are rnapped 128 times within this 

32K addressmg region To signal a reglster access, the bus controllogic asserts the 

VIC Clup Select CS* input. Although the VIC supports other access modes, the 

current deSIgn always uses longword accesses aligned on longword boundaries 

(i.e. address Imes Al and AO are bath zero). The VIC will acknowledge a 32-bit 

transfer, even though only the 8 least significant bits of the transfer are relevant 

(the reglster~ are all 8 bits wlde). Note that the registers are only accessible from 

the local bus. hence the need for a local CPU if only to initIa lize the VIC after 

re~et. Section 3.9 will go mto further details with respect ta the programming and 

operation of the VIC. 

A 32-bit wide, write-only control register is mapped From 96K to 128K (the 

use of gl'neral-purpose PAL devices for address decoding prevented a finer grain 

of address decoding). This register is used ta control the rest of the convolution 

processor: for instance, sorne of its bits signal the size of the data in the input 

FIFO. The reglster IS write-only smce this was the eaSlest way to irnplen1ent it. A 

cop" of the value of this register is kept in one of the 68020 internaI registers at aIl 

times. Thus wh en a single bit needs ta be set or cleared, a rnasking operation is 

performed on that register and the new value is then written to the external control 

register. In this way, the logic needed to control the rest of the convolution pro cess or 
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can be Implemented entirely in software: this design appro.lch WolS ChOSl'1l 10 

increase modularity and to allo\\' different people to work (-'Il the components ni 

the system with maximum independance. The dl'Yice~ used 10 implen1l'nt thb 

register (74F374s) are fast enough ta allow full-spel~d acces~ by tllL' cpu. 

The input and output FIFO menlories which are connected to tlll' Cl)!l\'ollition 

array are mapped from 128K to 256K. They can be viewed as a ~inglL' 32-bit wide 

port replicated 128K times in that address space. A write cyde will wrile into tlll' 

input FIFO, a read cycle will read from the output FIFO. Four 2Kx9 de\'kl'~ aIl' 

used to implement each of the two FIFO memories (only 8 bib out of thl' nllll' arl' 

used), which rneans that there is 8K bytes of buffering bath at the input and at the 

output of the convolution array. The devices have an acccs~ time of 6!in~, which 

means that they can be accessed at the full speed of the local bus In the wor~t 

case of 64-bit floating point input to and output From the array, li transfer raIL' of 

12.5 Mb/sec is required ta prevent the convolution array from ~talhng. TIll~ "bu 

me ans that given an mput FIFO full of data, the array will stùll if tlll' convolution 

pro cess or is locked out of the bus for more than 655 mlcrosl'cond~, WlliCh b qllitl' ,l 

short bus period. On the other hand, it is anticlpated that in mo~t Cù~l'~ tlll' systt'Ill 

will be running with 8-bit input and output, which yields a much mon' comfortabll' 

buffering interval of 5.25 nlSec. Furthermore, the devices WL're ~e1L'ctl'J il couple 

of years aga: since then, the same nlanufacturer (Cypress) has COl1ll' out wlth Plll

compatible devices with up to 32Kx9 capability' it would thu~ bl' ea~y ln incrl'a~,(1 

the capacity of the FIFOs If needed. 

3.6.3 Local Bus Control Logic 

In figure 3.1, the block labelled "Local Bus Address Decode DSACK Genera ti on" 

implements most of the local bus control logic. Section 3.6.2 lbted the contenb 

of the local bus rnemory map: figure 3.2 shows how this l~ implemenled Two 

20L8 PAL devices are used to decode local address lines LA15-17, glving the 256K 
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Figure 3.2: Local Bus Control Logic 

total address space of the on-board bus. The A16-A19 68020 address lines are 

also used to indicate which address spa ce the CPU is accessing during interrupt 

acknowledge cycles. Note that it would not have been pOSSIble ta save winng by 

leaving the A20-A31 address lines unconnected since these are used to speclfy the 

VMEbus base address for DMA transfers, as explained in section 3.8. Since a larger 

address space was not needed, it was d!:'clded that an address decodmg scheme 

using a single PAL device (and hence introducing a single device delay) would be 

preferable in order to gain more performance. 

The local bus static RAM is controlled by the signaIs RAM_EN*, RAM_OE* 

and RAM_ WEO-3*. The former is used ta select the RAM when the proper address 

range 15 present on the local bus address lines. This signal is gated by the PAS* 

or Physical Address Strobe signal which is generated either by the 68020 or by 

the VIC, depending on which device is currently local bus master. Other terms 

are used to restrict access to either 68020 accesses or VMEbus slave accesses. Full 

dptails of the PAL equations are beyond the scope of this document. 

The RAM_OE* 15 used to signal to the RAM whether the cycle is a read or a 

wri te: it is sim ply derived from the local bus R/W* line. Note tha t all READ accesses 
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to the RAM are 32 bits wide and will be signalled as such by tht' tr..1n~ft'r acknowl

edge generation logic. Finally, the RAM_ WEO-3* signaIs art' u~ed tn indi\'idllally 

select each of the four 8-bit devices which make up the 32-bit wlde l1ll'nlOrv. This 

complexity is required by the 68020 bus protocol which allow~ unahgllL'd wntl'~. 

The ROM_EN'" signal is used to decode read cycle~ for the 32K EPROM which 

contains the startllp code. Since the EPROM interface is only H blt~ \Vldl', tlll' 

EPROM is only uo;;ed for power-on code: the neces~"ry instructions will thl'n Lw 

copied to RAM from which the 68020 will be able to execute at full ~peed Thl' 

CTRLREGWE is used ta latch the current value of tht' local bus data 11l1L'~ mto thl' 

Array Control Register: this register is write-only (in order to minimizl' the amount 

of logic) and a software image is kept in a 68020 register to perfarm the necl's~ary 

masking operations. 

The CS'" signal is generated when the 68020 tnes tn acce~~ the portion of tI1L' 

address space into wluch the VIC control registers arc mappcd Whl'n tilt' 6H020 

attemps a transfer in address space Ox03 (as indicated by its FunctlOn COdl' FO)· 

2 outputs), this is used ta assert the MWB'" signal wluch signab the VIC th.lt 

the 68020 wishes to perform a VMEbus lllaster cycle: this is further eXplallll'd III 

section 3.7.2. The FCIACK'" signal is generated when the 68020 FCO-2 Function 

Code lines indicated a CPU Space access and the 68020 l~ performmg an Interrupt 

Acknowledge cycle. this signal is used as an inpu t to the VIC, which reljUlrl'~ il in 

order to perfornl its function as on-board interrupt controller. 

The INFIFOWE* and OUTFlFOOE'" signal are used to respl'cti vely write thl' 

current value of the local bus data Iines into the Input FIFO or removl' a word from 

the output FIFO and put in on the data lines. These two signab can bl' generated 

either during VMEbus DMA transfer cydes or during nonnal cycles illltiated by 

the 68020: this allows the local CPU ta lnltialize the input FIFO with the proper 

amount of 0 val ues required to "fiU the pipeline", as weIl a~ c; '~r the output FI FO of 

the initial invalid results which are generated before the array i1cl~ been completely 
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initialized . 

Finally, the DSACKO'" and DSACKl'" signaIs are used to acknowledge the 

completetion of ail local bus cycles. Most devices on the bus are fast enough not to 

required any "wait states" (of course, a wait state is somewhat of a fuzzy concept 

in an asynchronous bus architecture): the 68020 allows accesses to fast de vices to 

be acknowledged in advance, and in this case this is done by simply NAN Ding 

aU of the individual device enable signaIs. This is possible in part since the 68020 

is running at a falrly slow speed of 12.5 MHz: a faster CPU dock speed might 

have required the insertion of additional delays. The only exception are accesses 

to the EPROM, which is a fairly slow device with an access time of 150ns. A JK 
latch driven by the CPU clock is used to add an extra clock cycle of delay, which is 

sufficlent to insure that the outputs of the EPROM have stabilized on the local bus 

data lines. 5ince the DSACKO'" and DSACK1'" signais are open-collector, 74538 

open-collector NAND gates configured as inverters are used to drive these signaIs: 

thus in the case of VIC register or VME bus accesses, the DSACK'" signaIs are 

generated by the VIC and not by th1S controllogic. 

3.6.4 Local Bus Arbitration, Deadlock Resolution and Reset Logic 

The block labelled "Deadlock Arbitration Bus Control" in figure 3.1 implements the 

remaining local bus control functionality not covered in the previous section. Com

binatoriallogic is handled by a 20L8 PAL device whereas sequentiallogic is housed 

in cl 16V8 Lattice GAL device (a GAL is basically an electrically reprogrammable 

PAL). Figure 3.3 is a block diagram of this circuit. 

When the VIC senses a VMEbus BERR'" signal in response to an attE'mpted 

VMEbus transaction, it will assert the local bus LBERR'" signal: note that LBERR'" 

is also cUl input for the VIC to allow it to detect a bus error for any local bus 

transactions and pass this signal on to the VMEbus if required. The 20L8 PAL 
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Figure 3.3: Local Bus Arbitration, f'?adlock Rf'solution and Reset Lo~ic 

passes this signal on to the 68020 as BERR_020*, since for the 6R020 thIS signal 

is an input only. Similarly, the VIC HALT* bi-directional ~ignal b pd~~L'd on a~ 

HALT _020* to the correspondmg 68020 input When the VIC detect~ a VMEbu~ 

slave access request concurrent with a local CPU request for the VMEbll~, Il a~~l'rt~ 

its DEDLK* output: tl-.c bus control logic asserts both BERR_020* and HALT_020", 

which signaIs the 68020 that it should back off from the bu~ cycle It is attempting and 

should retry it when these signaIs are no longer asserted. Note that ~inn.' VMEbu~ 

slave cycles (where the host CPU is trying to accest> the on-board memory of the 

convolution processor) only occur dunng the imtializatlOn phase, it b unhkely that 

such deadlock situa~lons will ever occur. Nevertheles~, since the VIC already offer~ 

this functionality, it was inc1uded into the design. The 20LR also generate~ u cnuplt· 

of other signaIs, OEBA" and BTLABOC" which are used to control the transceivers 

and address latches during VIC-controlled VMEbus DMA transfer cycle~. 

The 16V8 implements a simple state machine which is used for arbitration of the 

local bus between the 68020 and the VIC When the VIC requlre~ tlll' local CPU bu~, 

it asserts its Local Bus Request LBR* !;ignal. In response, the state machine af>~ert~ 

the 68020 Bus Request BR* signal. Wh en the 68020 detects thls and completef> it~ 
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currently executing bus cycle, it asserts its Bus Grant BG* output. This is passed 

on to the VIC Local Bus Grant LBG" input. At the same time, the 68020 Bus Grant 

ACKnowledge BGACK* signal is asserted and its BR" input is negated. At that 

pomt, the VIC owns the local bus When it no longer requires Ît, it will negate its 

LBR" output. the arbitratlOn logic then negates the 68020 BGACK* input and the 

68020 regains ownership of the local bus. 

3.7 VMEbus-Local Bus Interface 

3.7.1 Bus Transceivers 

Although the VMEbus is quite similar to the local bus of a Motorola processor, 

there is nevertheless a significant amount of interface circuitry which must be added 

between the two. For one thing, the bus drivers of a 68020 are not power fuI enough 

ta drive the VMEbus lines directly, and thus must be buffered. AIso, the 68020 local 

bus is more lement about unahgned transfers than the VMEbus is. FinaIly, the two 

buses must be isolated from each other to allow concurrent operation, but must also 

be connected together when required. For aIl these reasons, a series of transceivers 

are used ta connect the two. 

First of aH, the lower 8 VMEbus data Hnes (00-7) and the lower 7 address Hnes 

(Al-7) go directly through the VIC, which handles aIl of the necessary buffering 

and arbitration. The 24 upper address Hnes are connected through 74F543 octal 

latching transceivers. The latching capability is required to support write posting, a 

technique where the local CPU can do a single write to the VMEbus without having 

to wait for the completion of lhe write on the VMEbus (the address and data having 

been captured in the latching transceivers). Three octallatches (74F373) with their 

inputs connected to the LDS-31 local data Hnes and their outputs connected to the 

LAS-3I address lines are used to implement black transfers. The VMEbus 08-31 
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data Hnes are connected to the local D8-31 data Hnes also using 74F543 octallatching 

transceivers. Additionally, 74F245 octal transceivers are used on tl1l' local si dl' 10 

implement byte-s\vapping functionality required to allow un-ahgned transfers. Ali 

in aIl, 13 latches and transceivers are required to implement the interface betWl'l'll 

the VMEbus and the 68020 local bus, which requires a fair amount of board clre.1 dUl' 

to the use of large DIP (Dual In-line Package) devices. Fortunately, tlu' VIC provldl'S 

aU of the control signaIs needed to drive the control inputs of these dl'vicl'~, so thi~ 

minimizes the affiount of extra logic required. Since this design was complett. .. 'd, .1 

companion device to the VIC called the VMEbllS Address Controllt'r (VAC) w.1~ 

introduced: the VAC incorpora tes aIl of the address bus transceivers and latchl'~, 

as weil as address de co ding circuitry, two seriaI ports and other useful feature~. 

Had the VAC been available at the time of the design, it wOllld ll.1vl' bel'n uSl:'d. 

3.7.2 Local Bus Arbitration 

Slave Accesses frorn the VMEbus 

Wh en a master on the VMEbus accesses the address range decoded by the slave 

access decoder, this asserts the SLSELI * input on the VIC. Thb signaIs tIlt' VIC that 

the external bus master wishes to access resources which are on the local CPU bu~. 

The VIC then asserts its Local Bus Request (LBR*) which is connected ln the BlI~ 

Request (BR*) input of the 68020. Wh en the 68020 sen~l'~ its BR* input go low, il 

completes the current bus cycle, tri-states aIl of its outputs which control the local 

bus and then asserts its Bus Grant (BG*) output. The arbltration controllogic U~l'~) 

this signal to generate the Local Bus Grant (LBG) signal to the VIC, tlw Hu~ Grant 

Acknowledge (BGACK*) signal to the 68020 and to negate (BR"') to lhe h8020 

The VIC interprets the assertion of LBG* as the signal that it now OWll~ lhe local 

bus: it then connects the local bus address and data lines to the VMEbu~ addre~~ 

and data lines through the control inputs of the addres~ and data tran~celver~ . 
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The local bus decoding logic then decodes the slave access to the proper on-board 

module (in this case, only the EPROM and RAM are accessible). When the on

board acknowledges DSACKO-l* are generated by the local bus controllogic, the 

VIC senses these and generates a VMEbus DTACK* to signal the VMEbus master 

that the transfer has been completed. The VIC then deasserts LBR*, which causes 

the local bu~ arbitration logic to deassert BGACK* to the 68020, which takes back 

control of the local bus. 

Master Accesses to VMEbus 

Wh en the 68020 wants to access a memory location on the VMEbus, it first loads 

the function code Ox03 into either the Source Function Code (SFC) register or 

the Destination Function Code (DFC) registers using the Move Control Register 

(MOVEC) instruction. It then issues the Move Address Space (MOVES) instruction 

which transfers data between an internaI 68020 register and a memory location 

in the address spa ce specifIed by the code previously loaded into SFC or DFC. 

Address space Ox03 is reserved by Motorola for user expansion, and in this case the 

on-board address decoding logic maps it onto the VMEbus A32 address spa ce. The 

VIC Module Wants Bus (MWB) lS then asserted, and the VIC proceeds to become 

bll~ mas ter on the VMEbus (if 1t does not already own it) using one of the arbitration 

protocols olltlined in section 3.5.1. Once it has obtained ownership of the VMEbus, 

it connects the local address and data Hnes to the VMEbus address and data Unes. 

It can derive the values to be driven onto the VMEbus Address Modifier (AMO-5) 

lin es based on the 68020 FCO-2 outputs, or since in this case FCO-2 will always have 

value 3 for VMEbus accesses, it can take this value From a previously programmed 

lllternai register. 

Once the VIC has received DTACK'" From the VMEbus module to acknowledge 

the transfer, it asserts DSACKO* and/or DSACK1'" to signal the 68020 that the 

transfer has been completed. At that point, it can either relinquish control of 
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the VMEbus or keep it in anticIpation of a next cycle baR'd on tllL' w.w lt h.1S 

been programmed. Note that the VIC does not lwed to i"lcklwwledge Il) the ht'02ll 

that it has acquired control of the VMEbus. to the 6H0211, a rl'ad nr wrilt.' ,-,,,dl' 

over the VMEbus is completely transparent (although much longer than .ln accl'~~ 

to a function local to the board). If the 68020 needs to do a single write to a 

VMEbus module, the VIC can be progranuned to implement writl' pl)sting, wllL'rl' 

the values driven onto the 68020 data and address lines art:' capturl'd bv the latching 

transceivers and DSACKO*, DSACKl* are returned right awa)' to tllL' 6H020. TIll' 

VIC the perforrns the VMEbus write cycle on its own, wlllle allowmg tlll' 6/'{020 10 

continue to issue cycles which affect only local-bus modllle~. If tht' wntl'-postl'd 

cycle ends in a VMEbus Bus ERRor (BERR*), the VIC will issue an intl'rrllpt ln Ihl' 

68020 to signal this occurrence: since this can come severallocal bll~ cvdl'~ artel' 

the write was posted, the 68020 software must be cardul in kl'l'pmg track of which 

posted writes are outstanding and 111lght possibly bl' ~ignall'd a~ havll1g Il'rmin.lll'd 

with an error . 

3.~ VMEbus DMA Transfers 

As outlined previously, most of the work required to transfer data from ho~t ll11'm

ory to the input PIFO and from the output PIFO back to host mt:'mory 15 done by 

the VIC, with the assistance of the 68020. After a period during which the convo

lution array has to be filled, results begin to come out of the array mtn the output 

PIFO. The Half Full (HP) output of the output PIFO 15 connecled tn the I.OCill 

Interrupt ReQuest 7 (LIRQ7*) input of the VIC: when this FIFO become~ half-full, 

the VIC will detect a HIGH to LOW transition on that input and will generatl' an 

interrupt ta the 68020. The 68020 will acknawledge that interrupt by mitiillll\g a 

CPUSPACE cycle (Le. a read cycle where the Functian Code (FC2-0) outpul~ are 

all 1). The local bus controllogic decodes thls to assert the VIC Function Code 

Interrupt ACKnowledge (FCIACK*) input. The VIC responds by driving an mter-
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rupt vector onto the 8 Jr'wer data Hnes 00-7 and asserting OSACKl"', OSACKO .... 

The 68020 will then execute an interrupt service routine (it will fetch the address 

of thb routine from the entry in the interrupt vector table corresponding to the 

interrupt vector supplied by the VIC) to start a DMA transfer to empty the output 

FIFO by writing the results back into host memory over the VMEbus. Although 

the interrupt procedure introduces a bit of delay, this is not a problem since the 

output FIFO 15 only half full when the interrupt is generated. Sin ce the convolution 

array opera tes synchronously (Le. every time a result is written to the output FIFO, 

a datum is removed from the input FIFO), there is no need to generate interrupts 

wh en the input FIFO becomes empty: aU that is required is that as many operands 

are written mto the input FIFO as are removed from the output FIFO. The 68020 

computes how much data must be transfered based on the operand sizes used for 

the source and destination images. 

The first action of the 68020 interrupt handler is to initia te a 32-bit write to the 

VMEbus destination address. This will cause the local bus arbitration logic to assert 

Module Wants Bus M WB* to the VIC: having been properly configured beforehand, 

the VIC will interpret this assertion as an indication that it must perform a VME 

block transfer with local DMA. It will simultaneously arbitrate for control of both 

the on-board local bus and the VMEbus. The VIC interprets the address of the 

triggering write cycle as the source/destination address on the VMEbus and the 

data as the address on the local bus: this is made possible by the use of latching 

tran~ceivers and extra latches which are used to capture these values. Since the 

VIC drives directly the lower 8 bits of the address and data buses on each side, 

it can "count" up to 256 (one of its registers is used ta de termine the number of 

cydes in a black transfer, from 1 to 64). With additional counters, it is possible to 

get It to perform transfers up to 64K in length .without any outside L- i.E'r'lelltion: 

unfortunately, this feature was documented as not working properly:r 'lerslOn 

of the device. Again, had the VAC companion chip been available at the time of 

device, it would have been selected since it takes care of everything that is needed 

79 



• 

• 

• 

3. DMA EngiIlt:' Implemt:>nt.1lion 

for longer transfers . 

Nole thatsince a11local transfers will be performed to the FIFOs, thl' data pl)rtinll 

of that triggering cycle does not need ta change. Furthernl0rl', althollgh the VIC 

will be incrementing the lower 8 address bits on the local bus, this dlW~ not CùllSl' 

any problems since, as shown in section 3.6.2, the FIFOs are repllea tl'd throughOllt ,1 

32K section of the local bus address space. In arder to simplify the control ~oftwaI'l', 

these 256 byte transfers will always start on 256-byte boundarks. Smel' thb l1light 

be an unreasonnable restriction to place on the location of image buffl'r~ 11\ host 

memory (it might be difficult to guarantee such aligment wlth certam operatmg 

systems), the first and last transfers for an image can be shorter and handll'li as a 

special case. 

Once the VIC has obtained ownership of bath buses, it connect~ thl' two lhrough 

the latching transceivers and begins ta transfer data using 32-bit wlde local hu~ 

cycles and VMEbus black transfers. The length of the~e VMEbu~ bur~t~ can hl' 

programmed ta prevent other devices on the bus from being lockl'd nut for too 

long. Ideally, it would be desirable to be able ln lower the arbItratlOn oVl'rhead a~ 

much as possible by keeping these bursts fairly long: a Cl'rtain amount of tuning of 

this parameter will be required for every system m which the convolutIOn proce~~llr 

will be installed If the VIC is programmed for bursts of less than 64 tram.fer" (i l' 

256 bytes), it will relinquish the VMebus and re-acquire il between bur~t~. Sincl' 

there is not much else for the 68020 to do during that lime, the VIC will not bother 

releasing control of the local bus. 

While the VIC has control ofboth the VMEbus and the local bus, the 6H020 1~ able 

to keep 011 executing sin ce it has a 256 byte mternal mstructlOI1 cache The DMA 

transfer controlloop is coded to fil entirely within this cache, whl're it will rl'main 

after the first iteration of the loop has been executed As long as the CPU ÙOl'!-. 

not need ta perform any external bus cycles, il can keep on executmg instructiol1!-. 

even though lt has relinquished control of the bus. In this case, aIllt neeùs to do IS 
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increment the VMEbus DMA base address by 256, decrement a counter indicating 

how many transfers are left in order to empty 4K of data from the output FIFO 

(remember that thb operation IS triggered by the Half Full flag on the BK output 

FIFO) and mitiate the next tnggering 32-bit write to VMEbus address space. At 

that point, the 68020 will staIl since it does not have access to its bus. 

When the VIC has finished lts 64 cycles, it relinquishes control of the VMEbus 

and the local bus The 68020 can then complete its stalled triggering cycle, thus 

starting the pro cess over again. After 16 of these DMA transfers from the output 

FIFO to host memory, the control software proceeds to read fill the input PIFO 

correspondingly, Le. read as many operands into the input PIFO as were taken 

out of the output PIFO. This might end up corresponding to differing anlounts 

of memory based on mput and output operand size: in the case where input 

operand size 15 larger than output oper and size, fewer output than input DMA 

bJock transfers Inight be performed . 

3.9 VIC Conlrols 

The Cypress VIC-068 VME Interface Controller is an integrated VMEbus interface 

devicc which greatly simplIfies the design of a nlaster /slave VMEbus interface. 

Section 3.5 ~howed how i t is used to implement the interface between the VMEbus 

and the 68020 local bus. this section looks deeper into its operation. 

The VIC is controlled by 58 byte-wide registers which must be programmed 

from tht:' local-bus skie' th us although it might be possible to build a state machine 

to do thlS, the VIC is really meant for applications where a cru is present on the 

board. Sin ce every aspect of its operation can be configured in software, it is very 

Hexible and can be configured for most applications. Each group of registers will 

be looked at and their use with respect to this design will be discussed . 
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3.9.1 Interrupt Registers 

The VIC can act as an mterrupt generator / controller for both the local CPU bll~ 

and the VMEbus. It can receive interrupts froll1 the followmg ~ourCL'~: 

1. interprocessor communication registers (see further) 

2. ACFAIL * (power fail) on the VMEbus 

3. SYSFAI L * (system failure) on the VMEbus 

4. arbitration timeout 

5. failure of a posted write cycle 

6. handshaking with a VMEbus interrupter 

7 . 710cal interrupt inputs 

8. OMA completion 

Since the board will notserve as system controller, sources 2, 3 and h are ll()tU!->l'J 

Posted write cycles will not be used, and the 68020 does not l1eed to be notlfit'd of 

DMA completion (as explained in section 3.8). Arbitration timeout interrupt~ will 

be handled as an error condition which might lead tn the aborllllg of thl' l'urrl'nt 

operation. The interprocessor conununiriltion register!-> will bl' U~l'J by thl' h()~t 

CPU to transmit commands to the system· when tlll' VIC dl'll'l't~ tha t ho~t hll~ 

written to the~e registers, it will interrupt the 68020 to ~lgnallt thM a cOll1lllanJ l~ 

waiting for il. One of the 7 local interrupt inputs will be used 10 generatc interrupt<. 

to the 68020 triggered by transitions on the Half Full output of the output FIFO (llll' 

polarity and edge-triggered versus level-triggered nalure of the~l' input~ i~ abo 

configurable). Finally, the 68020 will be able to generate ll1terrupts to the h(J~t cru 
by writing values into the proper interrupt control regisler of the VIC 10 ~ignal thl' 

completion of a requested operation 
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3.9.2 Inter-processor communication registers 

As outlined 1I1 section 3.5.3, the VIC has mter-processor coI1UnUnlc,ltil'll rL'glstL'r~ 

which can be used to implement efficient protocob whlch dl) IwtlL'lJuin' ,ln\, llf tl\l' 

processars invalved to busy-Ioop w<litmg for the other to complete <ln llpl'r,ltll)l1. 

There are 5 usable 8-bit registers plus another rL'gister WllICh l',m i.ll' tN'd flll 

semaphore functions. The host will wnte <lI-byte command ,lnd an llptlllll.ll -l

byte optional parame ter buffer pointer into these fiv!? regl~ter~. Il wIll llll'Il wntL' 

to one of the four Interprocessor Communication~ Moduk SWltchl'~, which C<ln 

be configured ta generate an interrupt to the 68020: It~ ll1terrupt halldlL']' ('ail 

fetch the operation code and optional parameter pmntl'r [rom thL' rq';l~tl'r~. A 

VMEbus master cycle can then be 1!,,~d to retncve thl' pilrall1L'Il'1 v.llUl'!'< al tlll' 

address contained in the pointer. Nole lhal there are abll four Inte],pll1cl'~:-'or 

Communications Global SV' .. _:!es which are read-only f[(lm tIll' local bll~' lhl'~l' 

are not used in the system, 

3.9.3 Block transfers control registers 

These registers include the Block Trans[er Definition Register, which I~ u~l'd tn 

en able the VIC to perform block transfers longer than 256 bytl'~: a~ L'xplaineJ 

earlier, this capability is not used in this design. The Block Transfer Control Rl')~bter 

cantain~ bits which are used to en able VMEbus block tran~fers with local DMA 

when Module Wants Bus M WB* is asserted to the VIC this is the ml'chani~ll1 which 

is used by the 68020 to start 256 byte black transfers. AnOlher bit b Il~ed to ~ignal 

the direction of the transfer, i.e from local memory to the VMEbu~ or vice-vl'r~a. 

The Release Control Register is used to set the maximum burst lenglh, WlllCh llhly 

be shorter than the 64 cycle block transfer length: thiS iS u~ed 111 a ~y~telJ1 where 

other potential bus masters cannot be locked out of the bu,> for h4 cycle" due to 

real bme constraints (such as limited buffer space on a dbk or network conlroller) 
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Finally, the Block Transfer Length Register is used to specify the number of bytes (in 

incremenls of four, since only long-ward transfers are supported) to be transf~red 

during a block move in thIS case, this will always be 256, except perhaps for the 

first and/ or la~t tramfers 

3.9.4 Slave select control registers 

Two register~ are used to configure each of the Slave Sele ct inputs: in this case, 

only the second one (SLSEL1 *) IS used sin ce in the current version of the VIC the 

first one do('~ not work properly. These registers are used to set the address and 

data slze of transfers which are supported by the slave intP"f8::-. ,i.e. A32, D32 in 

this case. The tim:l\g betwel'll the assertion of DSACKl*by the bus master and the 

acknowledgement of the end of the transfer by the VIC by assertmg the DTACK* 

signai IS also configured in software' this delay is a function of the speed of the 

on-board devices whlch are accessIble from the VMEbus via the slave interface and 

the delay mtroduced by the transceivers between the VMEbus and the local bus. 

3.9.5 Arbitration control registers 

The Arbiter /Requester Configuration register determines how the VIC will request 

ownership of the VMEbus. In particular, it selects which Bus Request line the VIC 

will Lw using (see section 3.5.1 for more details on VMEbus arbitra tian) and how 

"aggrt'ssive" it will be Olt requesting the bus (a "fairness" timer can be configured 

to slow down the pace at which the VIC might request control of the VMEbus). 

SlIlŒ the bO':Hd WIll not be used as a VMEbus system controller, none of the bus 

arbitratinn [unctiOl's are used. Finally, the Release Control Register is used to 

determine the release protocol '.lsed by the VIC. It can support any of the proto cols 

outlined in M:'ction 3 .. il . 

84 



• 

• 

• 

3. DI\1A Engllw Implt'l1wnt.ltl\ln 

3.9.6 VMEbus and local bus configuration registers 

A number of reglsters are used to set such opcratmg p.uan1l'll'rs as thl' SPl'l'd llt 

the memories on the local bus (m the Local Bus TUlllllg H.l'gl~lL'r) a~ wL'i1 a~ tlll' 

values of the tinlers. used ta determine l'rror conditIOns ~l1ch as tinll'llut~ .md hu~ 

errürs. Again, the VIC shows great tlexibllJty m that most of thc~(:' p.u.mwtl'I'!'> ('.11\ 

be changed 111 software, making it fairly pamless to interfaœ tO.l number of dl'\'icl'~ 

of varying speeds and capabilities. 

3.10 68020 operation 

3.10.1 Booting 

Initialization 

When the 68020 powers up, the first thing Jt does is il long-word fl'aU al adure:,!'> 

OxOOOOOO, from which it reads the Initial Interrupt Stack Pointer. It then d()l'~ <l ~ec

ond long-word read at address Ox00000004 to get the Reset IllItial PrugraIn Countl'f 

this value is placed into the Prograrn Counter and the cru bl'gll1s eXl'cuting in

structions from there. Smce the local EPROM is mapped al Jddfe~~ Ox()()O()()OOO 111 

local address space, bath of these values are pre-programmeo at the bl'gmn1l1g of 

the EPROM. The Initial Interrupt Stack Pomter is initIalized to address ()xOOOOFPFg 

which corresponds to the top of the 32K local RAM aàjres~ ~pace: ~tack~ grow 

downwards in 680xO processors. The R",set Inillal Program Counler i~ 1J111IalizeJ 

to the start of the initialization routine stored in the EPROM. 

The fust task of the initialization routme b to pu~h onto the interrupl ~tack 

initial values for the Status Register, Master Stack Pointer and Program Countef 

and execute a ReTurn from Exception RTE instruction to exit the reset exception 
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handler and return to supervisor state. The Master Stack Pointer is initialized 2K 

bl'l(lw the addr!:'"" of the Interrupt Stack Pointer: this reserves more than enough 

~tack spacL' for exceptIOn processing. Note that aIl of the code on the 68020 will 

run in Sllpl'rVl~Or or exception mode, none in user mode, since there are no other 

U~l'r~ or opera ting system resources to proteet from the program. Finally, the 256 

byte instructIOn cache is enabled: this will important in order ta obtain maximum 

performance dunng DMA transfer cycles. 

Self-Test 

In order to illsure that the on-board resources are operating properly, built-in self

tl'~t procedures are executed next. These verify the following operations: 

• EPROM rl'ad cycles: a checksum value stored at the end of the device matches 

with the checksul1l computed by the CPU 

• RAM read and wnte cycles: since there is only 32K of RAM, a fairly extelmve 

test of the device can be performed 

• pushing and popping on the sti1ck 

• exceptIOn handlmg 

• readlllg and writing to VIC control registers 

• writing to the board control register 

Notl' that at the time the board was designed, components with support for 

built-in self-test where not as readily available as they are now. If this board were 

to bl' redesigned, it would use components which include JTAG boundary-scan 

f u nctionality. 

The rest of the board IS initialized next. In particular, the control registers of the 

VIC are set as outlined in section 3.9. The write-only control register is initialized 
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ta the proper value. If one of the self-tests fiuls, an error codl' is lh.'pnsitl'd mil' nlh' 

of the VIC inter-processor cammulUcation regbters: tht:' host CPU l',lll l'l\lli thl~ 

code and present to the user the reason for WhlCh the lx,ard 1,111ed it~ ~l'll-tl'~t 

Copy to RAM 

Sin ce EPROM accesses require extra wait sta tes to CDmpl'n~atl) for tl1l' slnw ~pl'l'd 

of the device, the next step is ta copy the code WhlCh is gomg to hl' lIsl'd for the 

main loop of the control program From EPROM to RAM. In~tL'dd of trying tn wrilL' 

relocatable code, since it is never executed from EPROM but only from it~ :ll'W base 

address in RAM, this code is assembled lIsmg lts base address 111 RAM FurthL'l

more, since an extra delay in exception pracessing is not d('~irdbll' (l'~pl'cially will'Il 

handlmg interrupts generated by the statllS of the FIFO ml\morlL'~), tht:.' l'XCl'ptllln 

vector table IS also copied to RAM and the Vedar Base ReglSll'r i!'> 111llÎah/l'd tll 

point ta the new base address of tlus table. Once aUtlus IS dOl1l', tlH' hllard b rl'ad)' 

to operate and accept commands from the host. 

3.11 Host Software Interface 

As explained in section 3.5.3, the hast CPU instructs the convolution procef,~or tu 

perfarm actions by writing a 5-byte code (a 1 bytes opcade plu!'> an uptional4 byte!'> 

operand) into the VIC inter-processor communication registers and ~l'tting (Jill' of 

the mter-processor communication sWltches. The main loap of the on-board control 

software sits Idly awaiting interrupts generated by the IPC sWltch rl'gl~ter~. Bil~l'd 

on the opcode requested by the host, the control software excclltes the dl'~lrl'd 

function. Wh en it has completed the reqllested operation, it WIll instrllcl the VIC' 

ta generate a VMEbus interrllpt to signal the host. A result code is also placed mto 

the IPC registers: this can be used to signal abnormal complellOl1 of il requested 

operation. 
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The software recogIllzes the following commdnds from the !1ost: 

• Load New Coefficients: the host will have previously written into a fixed

adùrl'~~ buffer 111 Jocal RAM (using VMEbus slave cydes) the floating-point 

values of the coefficien ts to be loaded into each of the processors which make 

up the convolution array The optional operand is not used. 

• Load Output Converter Table: as in the previous command, the hast will 

have \witten the 4K entries wluch make up the output converter look-up table 

mto local RAM. The local CPU willload these into the look-up table via the 

array processor control register. The optional operand is not used. 

• Set Image Source Address: the operand con tains the source address in hast 

memory for the image. 

• Set Image Destination Address: the operand contains the destination ad

dress 111 host memory for the results of the convolution . 

• Perform Convolution: the operand con tains the following fields: 2 bits each 

for input and output data format, specifying either 8 bit, 16 bit or 64 bit 

operand~; 2 bits each for specifying whether the input and output data strearns 

should be upsampled / downsampled by factors of 1, 2 or 4; 12 bits each for 

the x and y size of the input image. Note that the size of the delay memory 

circuit rnemories imposes a practicallimit on the size of the image lines. 

Note that the Perform Convolution operation requires that a valid set of coef

ficient~ must have been previously loaded into the array, that the output converter 

look-up table must have been initiahzed and that a source and destination address 

must have been specitied, although it is possible for the host to issue multiple 

con\'oluhons without changing these base addresses. When no upsampling is per

formed, it is also possible to have the source and destination addresses point to the 

sa me region ill memory since the cOlwolution processor will read the source image 
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before writing the results of the convolution, thus allowing in-l'!i1C1..' llpl'ri1tll1n~ (tlm .. 

IS ob\'iously not possible If the input Image is bemg upsamphi. SllKl' thl' oulpu t 

data stream \vould quickly begm to overwrite regiL1n~ llf the imagl' \\'hich w(luld 

not have been processed yet). 

The actual operation of the 68020 dUTIng tht' C011\'ll!U Iwn i~ L"pbiI1L'd In ~l'Ç

tian 3.8. The co ding of this loop is qllite critical, sinCl' S0111e cruCIal pOl ti{1m ml1~1 

fit in tht: 25b-byte instruction cache to allow the 68020 10 continue pr(lCL'~slllg (1 l' 

computing the base address of the next transfer) dllnng the lime Il h,,~ rl'lmqubl'd 

its local bus to the VIC and be ready to start the next 256 bytl' DM/\ tran!->Il'r~ .l!-> 

saon as the current one has finished 

3.12 Host Software 

AIthough the convolution processor does most of the work, " certain <lIlHlunt uf 

software needs to run on the host processor in order 10 interfacl' wlth thl' dl'VICl' 

This software can be separated into three levels: 

1. device driver level 

2. library level 

3. application level 

Only the device driver is of con cern here: !llmplements aIl of the funCl!onality 

required to write a Cor C++ applicution wlIich interfaces with the convolver 1\ 

library can be used to supply higher-Ievel functionality, such a~ a ~ingle (onvo/vd) 

routine. It can also be included into a llbrary of signul processing functj(ln~. FI

nally, support for the convolver could be included 111 a sIgnaI or Image proce~~ing 

application, especially one with a modular design. For instance, the KhorŒ ~ys

tem [Khoros, 1991] implements different operations as separa te programs which 
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can be conneckd using a graphical user interface: the application which performs 

convolutions could be replaced bya versIOn which knows how to take advantage 

of the convoI ver devlce. 

3.12.1 Host Deviee Driver 

Wntll1g a device driver for a Unix-like operating system has often been considered 

sOffi'2what of a black art only ta be mastered by the most seasoned wizards. This is 

due in part to the design of tradition"l Unix systems as monolithic kern2ls where 

the device driver is a C routine which is linked to the rest of the system. Thus 

the only way to debug a driver is to reboat the machine with the new kernel, try 

out the new driver, and most likely crash the machine sin ce the kernel opera tes 

in the privileged mode of the CPU. ln most cases, the driver developper is left to 

!>cratch his head with nothing but the output of a few debugging print statements 

10 figure out whal went wrong. Fortunately, this has begun to change. Most new 

keTnels ~uch as those of Sun's Solaris 2 or IBM's AIX 3 have support for dynamically 

loadablt' device drivers whlch are easier to debug. 

Another problem traditlOnaly encountered was the lack of adequate documen

tation: tht' one available From the OS vendor was often sketchy on details and 

short on examples, if any were provided. This has a150 changed: there are now 

good reference~ on writing device drivers [Egan and Teixeria, 1992], [Pajari, 19921. 

Furthennore, there are now several versions of Unix avallable with full source code 

al pnees accessible ta others than large corporations, and in some cases at no cost. 

For instance, the 386B5D / NetBSD / FreeBSD systems are based on 4.3 BSD, which 

15 dacumentt'd in detai! in [Lefflerefal., 1989]. Another example is Linux, which 

is also frel' and available with full source. Thus the driver developper is free to 

study the source code of ail of the other drivers available for the system, as weIl 

a~ to ob tain assistance from the many other developpers who use USENET as a 

forum for exchanging information. In this case, sin ce the primary environment is 
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SunOS/Solaris, the documentation provided by Sun has to suffic\:'. 

Note that in many cases, it is not necessary to ",rilt' .. n actlltll devicl' driwl', 

since most of the work can be done in an application. For in~tanCl', an .1pphl',ltlllI1 

llsed here at McRCIM interfaces to a VME-based frLlme grabbcr by m,lPPlIlg It!'

memory into the address space of the process usmg the 1ll111il1'() system cali ,1Ild 

acces5ing that memory as a normal C array. Unfortunately, 111 thb ca~,: tlw, l)plHlIl 

i5 not possible since the convoi ver will be generatmg mtl'rrupts and 11ll' only part 

of the system which is able to respond 10 mterrllpts i5 the intt'rnlpt sprvlce roulml' 

which is part of a device drIver. 

The normal semantics for il Unix device driver i5 to support tllL' l't'II,I(), IUnt/'() 

and lOctl() system calls. In this case, it would be impractical to use It'ml() and ll'lltcO' 

although it would be possible for an application 10 "wl/lcO" the !-otlllfù' image tu 

Idev/convolver and "lendO" back the result From the sa me dcvice, thi~ would rL'sult 

in unnecessary copying of data which would make the system very inl'fflclent 

Instead, the convolver operations outlmed in section 3.11 arL' simply mapped mlll 

corresponding ioctlO operations. Note that the Set Image Source Address and Set 

Image Destination Address operatIOns WIll take care of lockll1g the appropnatl' 

image ranges into physical memory. As for the Perform Convolution operation, il 

is provided both in blocking and non-blockmg versions. 
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4.1 Introduction 

In theIr study of computer graphies hardware, Myer and Sutherland iden

tified more than 25 years aga what they called the "Wheel of Reincarna

tion" [Myer and Sutherland, 19681. SImply put, this me ans that as a problem is 

identified which requires more computing power than available using general

purpo<;e systems, the temptation ta desIgn and implement special-purpose hard

wnre to solve this problem grows. In most cases, the system will perform as 

expected and provide d vIable solution. But this has been done at the expense of 

flexibility: the Epecialized system can do one thmg only (albeit very well), and 

it is generally harder to use (and program) than a general purpose rnaclune. As 

the speeds of the latter increase and begin to overt.lke the speed of the special

ized hardware, It will become tempting to migrate the application back to the 

generaJ-purpo~e machine until the en tire cycle can be repeated again. This cycli

cal migration IS no Jess true today, although we seem to be 111 the "moving to a 

gcneraJ-purposc architecture" phase. UNIX workstations have been doubling ~n 

performance every 18 months for the last few years and their priees have been 

falling ~teadiJy. In many cases, the cost of the hardware is being dwarfed by the 

cast of software development, 50 it makes sense to move to an environment which 

enhances software productivity. 

This proJect has by no means been Immune to this phenomenon. Wh en it first 

starled, most workstations offered floating-point performance in the range of a 

fe\'\!' hundred kIloFLOPS, which meant that our system had almost tluee orders 

of magnitude more performance. Nowadays, man y workstations can deliver a 
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few dozen MFLOPS without even having to n'sort to hand-coded ,1SSl'l11blv lan

guage (optimizing compiler technology has greatl)' IInproved, .1Ild nn m.ul\' RI:.,C 

architectures there is little addItional performance 10 be gaiI1l'd by pwgrammmg 111 

assembler instead of in a high-Ievellanguage su ch a FORTRAN (lr C 1 Bdl, [l)l)[) j) 

This chapter will present implementatians of the Hoating-point convolutIOn algl l -

rithm on a number of gmeral-purpose machmes. This will allow liS to comp.ul' 

the perfonnance which can be obtained from de program (\'\'Ith a bit of cart', t,ut 

no extraordinary feats of hand-optimization). We will also bl' able tl) comp.ll"l' .1 

few different architectures: 

4.2 

• an SIMD machine, the MasPar MP-l 

• RISe pro cess ors arranged in MIMD fashion, the Silicon Graphic~ 4 [) /24!l 

• single-processor RISe workstations such a~ the SPARC-ba~l'd Sun SSIO/:10, 

the IBM RS/6000 model 360 and the R4000-based SilIcon C;raph)("~ lndigu 

R4000 

An SIMD machine, the MasVar MP-l 

4.2.1 System Hardware 

The MasPar system is a Single Instruction Multiple Data computer wlllch i~ OrJ

ented towards high-speed scientific computing involving array operations Typical 

applications are low-Ie'lellmage processing, computational fluid mechanici-. and 

finite element analysis. Il consists of two main parts: a Front End (FE) worbta

tion which handles aIl mteractions with the user and the Data Parallel UnI t (1 WU) 

which con tains the actual SIMD machme. A black dIagram of the arcllltecture of 

the system is presented in figure 4.1. A thorough treatment of the MasPar ~yi-.tem 

hardware and UO subsystems can be founet respectively in [Ma~P()p, 19901 and 
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Figure 4.1: MasPar MP-l System Black Diagram 

[MasIO,1990] Note that the architecture of the MP-1 is quite similar to that of the 

CM-200 from Thinking Maclunes Corporation [Ramanathan and Oren, 19931. 

Front End Host 

The MasPar is controlled by a Front End (FE) hast, a VAXstation 3250 from Digital 

Equipment Corporation. All user interaction with the MP-1 is done through the 

Front End, which aIse acts as a disk and communications server. The primdI'y task 

of the Front End is to handle a11 sequentiai code in a application, in particular aIl 

user interface functions. Parallel opentions are performed on the Data Parallei 

Unit (DPU). Tlus communicatIOn is handled by a high-speed interface: a number 

of registers and First-In First-Out queues are mapped into the address space of 

the Front End and let it transfer data to and from the DPU. Among ather things, 

this interface allows the Front End direct access to the internaI bus of the DPU Ca 
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variation on the standard VMEbus), thus allowing Dm'ct Menlllrv Acn'~~ (DMAl 

transfers. 

The Data Parallel Unit 

The Data Parallel Umt is composed of two main components: tlll' Arr.l\' Contwl 

Unit (ACU) and the Processing Element (PE) array Tht.' Arrav C"ontllli l1J\lt I~ 

composed of a 14 MIPS RISe processor with tlurty-t".o 32-blt rq~l~ll'r~ and .1 

Harvard-style architecture. Il has 1Mb of memory for code and 12HK of ml'lllOI V 

for data, which is sufficient since most data will reside in PE 1l1l'll\ory (the ACU 

can page out ta the Front End disk if necessary). The primary purpose ot the Anav 

Control Unit is ta act as a sequencer for the Processing Elements of the PE arr.1y 

As such, it communicates with the PE array over the ACU-PE bll~: it U~l'~ thl!:> bll~ 

to broadcast instructions to be executed by aIl the currently active PEs a~ wdl a~ 

broadcast data values from its own address space to the PEso l'Ill' ACU-PI~ bLl~ ('.111 

a150 be used ta read values back from the PEs to the ACU. thl' outputs of aIl tlw 

PE5 are then connected together in wired-OR fashion. Thus if more lhan Olle PE 

responds ta a read request from the ACU, the ACU wiII receive the bitWl~l'-OR (lf 

the data values sent by aIl the responding PEso Tlw other funclion of the ACU l~ l() 

execute aIl non-parallel code running in the DPU: thl5 includes of course ail control 

statements which dicta te which PEs will participate in which Ill~lructiom, but abo 

all operations on variables which are stored in the data ml.'l1lory of thl' ACU 

The PE array can contain fmm 1K to 16K proce5sing elemcnt~. Each PE b il 

load/store arithmetic processol' with dedicated reglster space and RAM. Ench 1'1\ 

ha5 a 1.6 MIPS control processor, fort y 32-blt registcrs (32 of which are availabh' 

ta the programmer and 8 which are reserved for the system micro-code) and 1 hK 

of data memory (recall that no instruction memory is reqUlred slI1ce lI1~tructiom 

are broadcast by the ACU). The PEs are physically implemented as a full custom 

CMOS VLSI device containing 32 such PEso Since the PE~ on a chip ~han~ Lhe data 
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RAM area (16K of WhlCh is reserved for each PE), access ta this RAM is much slO\ver 

than aCce~~ to the private reglsters. Thus register allocatIOn must be carefully done 

to l'n~un.' maximum efflClency 111 parallel programs 

Each PE ha~ both a sequentIal ID (assigned startmg Erom 0, with no gaps), as 

weIl as ./ and .1/ ID numbers WhlCh identify Its position in the array. Thus the 

PE array can be viewed either as a one-dimensional array or a hvo- dimensional 

array depending on the needs of the parallel algorithm. A number of status bits 

on each PE specif y whether the PE will participa te in the current instructIOn being 

broadcast by the ACU. The set of PEs which are currently enabled to execute the 

next mstruction 1S known as the active sel. Conditional ~tatements broadcast by the 

ACU can modify the acUve set by disabling or enar-lmg PEso These tests can either 

be performed on data that is local to the PEs or on the PE index variables (in the 

case where we want to exclude a geometric portion of the array). 

Each PE is connected with its eight nearest neighbors by the "XNET", and the 

2D PE arfay ,,,'raps torOldally at the edges A status bIt in each PE de termines 

its participation in XNET transEprs controlled by the ACU, which can cause each 

enabled PE to transfer the value stored at a given address ta a neighbor in a given 

dIrection: aIl such transfers occur at once, thus achieving large IIO bandwidth (a 

total of over 2.2 Gb/sec). A mode called "Pipelined XNET" allows XNET transfers 

at a distance of more than 1 PE in a more efficient manner than several1 PE distance 

transfers. 

A Global Router allows any PE to communicate with any other PE in the array. 

For the purposes of Global Router communication, the PEs are grouped into clusters 

of 16 PEs which share a bi-directionai serialline ta the seriaI router. Access to these 

seriaI Imes 15 arbitrated in microcode: sin ce the bandwidth of the Global Router 

is much lower than that of the XNET (around 50 Mb/sec), care must be taken to 

avoid contention as much as possible by distributing data cleverly in the PE array . 
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4.2.2 System Software 

The programming model of the MasPar is that of two tlghtly cou pied pwgratm 

running together, one of the Front End and one on the Data ParaUd UIlIt. TIll' pw

gram running on the Front End IS a purely sequential program, typicallv wnttel1 III 

a traditionallanguage such as FORTRAN or C using the standard UNIX complIL'r~ 

for these languages. The parallel pdrt of the program execules on Ihl' Dl'U, ilnd 

is written III a paraIlellanguage. When a call IS madp acro~s th:s bOllndary, dlll,l 

values have to be copied over the FE to DPU bus, since IIll' FE and 11lL' ACU h.lVl' 

different address spaces. Single values can be passed via FIFl) l}Ul'Ul'~, blocb of 

data can be transferred using DMA directly to and from the memory of 11ll' PF~ 

These function caIls can be either synchronous or asynchronolls 

Athought the DPU can be programmed in assembly languagl', m()~l lI~er~ WIll 

use instead the MasPar Parallel applIcation Language (MPL). MPL b baMGllly 

"old style" Kernighan and Ritchie C enriched with il new data tnw modifier, 

plural modifier. In MPL, any variable which IS Jeclared normally rl'~H_IL'~ III tIlt' 

data address space of the ACU In the context of this parallel ellvlronllll'nl, Ihl'~l' 

variables are known as slIIsular variables. Plural variables, on thl' olher hand, arl' 

allocated at the same memory location on every PE (thls is dlctatcd by the' SIMD 

nature of the PE array). Whenever an operation involves only singular vilriilbk'~, 

the ACU performs this operation on its own. As soon as an operation involvcs il 

plural variable, the result of the operation is a plural resuIt and ail of Ihe PE~ wlllch 

are part of the active set take part in this operation. For in~tance: 

int li 

plural int j, k; 
k = i+j; /* ThlS lS a plural operation */ 

In this case, the ACU will broadcast the content of its l vanable to aIl of the PEso 

The active PEs will then add this value ta the content of the 1 variable and store the 
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result in their 1 .. variable . 

C control alsll accept plural arguments: in this case, they influence the size of 

the current active set. For instance, the following code avoids divisions by zero: 

plural double i,j,ki 
if(i!=O.O) 
{ 

k = J / ii /* Avoid dJ,vision by zero */ 

This piece of code will cause every active PE to test the value of its 1 variable: 

those that find it equal to zero are temporarily excluded from the active set for the 

duration of the if compound statement. Thus the active set can only be reduced by 

MPL control structures. When such a structure exits, the active set 1S restored ta its 

previous state. Note that in the following code: 

plural double i,j,ki 
it(l!=O.Ü) 
{ 

k = j / li /* Avoid division by zero */ 

else 

l -1.0 i /* Make sure i l8 no longer zero */ 

50me PEs which have 1 originally non-zero will execute the if path of the state

l'lent, whereas others which have 1 set ta a will execute the tllen partof the statement. 

The original semantics of the if-then-else construct are respected by every PE indi

vidually, but not when we consider the complete array. Greater detail about MPL 

(an be found in [MPLref, 1990] and [MPLguide, 19901. 

Inter-PE communication is implemented using the xnet and router pseudo vari

ables. For instance, in the following code 
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plural int l; 

i = xnetW[l] .i; 

we can say the every PE "retrieves" the value of the 1 variabIL' from il~ wl'sll'rlV 

neighbor, 1 PE away (i.e. its direct neighbor to the west) and copies il inlo il~ 0\\'1l 

1 variable. Remember that XNET communications occur aIl al once: Ihe nl'! l'fil'cl 

of this action is thus to shift the values of the 1 variables by Olll' positIOn 10 the e.l~t, 

keeping in mind the toroidal wrapping property of the PE array Similarly,.l PF 

can use the Global Router ta get a variable from any other PE 

plural int i,j,ki 
i = router[j].k; 

Here, every active PE would retrieve the value of the k vanable stored on Ihe 

PE whose number is in lts .1 variable and store it in ils 1 variable. Tlll're arc (, 

pseudo-variables which help PEs make decisions as 10 whethl'r to partiCipait:' in an 

operation· 

• nproc the total number of PEs in the array 

• nxproc the width of the PE array 

• nyproc the height of the PE array 

• 'proc the index of the PE (viewing the PE array as Iinear) 

• ixproc the column index of the PE in the array 

• iyproc the row index of the PE in the array 

4.2.3 Implementation and Results 

Our implementation of the convolution algorithm on the Ma~Par follow~ the fol

lowing steps: first, the image i5 read off the disk by the Front End and remapped 
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into a format compatible with the layout of the Processing Elements in the PE 

array. It 15 then transfered ta PE memory, together with thf' values of the kernel 

coeffiCJenl~ The convolutIOn is then performed by the DPU under the control of 

the ACU. Once the operatIOn is fmlshed, the results are read back into the FE. Since 

we are only really interested m the floating-point performance of the MasPar, we 

will only benchmark the amount of trme required to perform the convolution by 

the DrU and exclude the overhead of transfering the image. Since the MasPar 

machine which was available had onlv 64 by 32 PEs, most of the work was taken 

up by coming up with schemes for mapping the 512x256 test image into the PE 

arrny. Thrf'e such schemes are considered here. 

Implementation Method 1 

This first method has been proposed in [Jacobsen, 1990]. The principle is ta split 

the image into blacks which are of the size of the PE array. These blacks are then 

co pIed into the PE memories in an array of pixels: for instance, on PE (0,0), this 

array contains the top-Ieft-most pixel of every black in the image. Every PE first 

multiplies its pixel value with the first kernel coefficient, th en transmits the partial 

result to its east neighbor. These partial results are accumulated and transmitted 

ta the east llntil a row of coefficients has been used up: the partial results are 

then transmitted to the south. After a number of iterations equal ta the number of 

coefficients in the convolution kernel, the partial result will contain the resulting 

convolved pixel (althollgh not for the pixel on the PE on which it resides: it will 

have ta be moved back ta the PE containing the original pixel). This pro cess is 

illustrated in figure 4.2 for a 2 by 2 kernel operating on a 3 by 3 image. 

XNET communication is a natural candidate ta communicate the partial results 

between adjacent PEs since in this method, PEs only need ta communicate with 

their immediate neighbors. Sin ce aIl the PEs communicate at once and they are aIl 

enabled, very high bandwidth is attained. Note that the operation of this algorithm 
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Figure 4.2: Method 1 • 2x2 kernet 3x3 Image 

is similar to the systolic array method used to implement our hardware convolution 

processor. 

This partial convolution is performed on every block in tilt' original Imagl" if 

the original image had the same size as the PE array, then thb dlgorithm {'(luld rely 

only on the toroidal wrap property of the PE array to handle boundary conditIOns. 

Unfortunately, Uiis is not the case here, since the image is larger. Although it has 

been done for the other two methods, the code required to handle the~e boundary 

conditions has Ilot been implemented in this case. 

Implementation Method 2 

In the second method, the image partitioning is the same as for the first method. 

Each PE computes the convolution result for the pixel stored 1Il it~ memory by 

implementing the convolution equation directly: 

Il Il 
2 .,-

Pi.rcl[lj[)] = L: L Pud[1 + .r][) + v]J.:[·r][y] (4.1 ) 
.r=-1-Y=-~ 
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Plxel[lJU] 
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'k[O][O] 

'k[-1](1] tk[O][1] *k[1J[1] 

1 

Plxel[l+ 1]0-1] Plxel[l+ 1)[i] Plxel[l+ l)[i+ 1] 

Figure 4.3: Method 2 - 3x3 kernel example 

The kernel coefficients, stored on the ACU, are broadcast to aIl the PEs wh en 

the multiplicatlOns are done_ The neighboring pixels are read from the neighboring 

PEs using XNET communication. Figure 4.3 demonstrates the operation ofmethod 

2 for a 3 by 3 convolution kernel. 

Implementation Method 3 

In this third implementatiol1, the image is broken up into as many contiguous, 

rectangular regions as there are PEso Each of these image blacks is stored on a PE, 

and each PE opera tes on its own region of the image, implementing equation 4.1 

directly. With this method, the communication between PEs is minimized, since 

apart from the pixels on the edge of the image block, the PEs will be able to compute 

the convolution without requiring any data from their neighbors. This method is 

especially attractive when the image is much larger than the size of the PE array, 
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since in this case there will be very little communicatIOn rt>quircd between the PEs 

(the piOportion of "edge" pixels to "interior" pIxels being small). On the otl1l'1' 

hand, if the region stored on each PE is very small (t'~pl'clallv Il II is not much 

larger than the kernel size), then this method does not have ma1l\' .1dv.lnlagl's sinn' 

every pixel will be an "edge" pIxel and commUlllcation with nl:'ighbonng PEs will 

be required. 

Implementation Performance 

Figure 4.4 represents the performance of the three methods when taking into ilC

count only the time required to execute the convolution algorithm on the DPU. 

First note that the results for a 3 by 3 kernel are not very sigl11ficant: sincl' the 

clock() function calI used to time this function has a resolutlOn of around 10 m~L'C 

and the execution time was around 80 to 90 msec, large error~ can haVI:' crepi in 

(although a1l of the figures plotted in the graphs represent averagl's over 1 0 run~ 

of the program). A top performance of around 37 MFLOrS IS nbtallled III al! thrl'l' 

cases for a 9 by 9 kernel. Note that as the kernel get~ larger, the performance 

increases: this is due to the fact that as more floating pDint computations l1l'ed tn 

be performed, the overhead due to address computations and loop indL'X cJ1l'cking 

becomes comparatively smaller, thus ;ielding a higher perceived f1ualing point 

throughput. When comparing this somewhat dissappointing result with the per

formance of machines in the following sections, one must keep in mind tha t lhc~c 

results where obtained early in 1991: since then, the Ma~Par machine has bccn 

upgraded several times wtth new microcode and hardware which have reportedly 

increased its performance (the authar was not able ta 5uccessfullyrun the~e tc~t~ 

again after the upgrades) . 
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Figure 4.4: MasPar Implementation Performance 

4.3 An MIMD Machine, the Silicon Graphies 4D/240 

4.3.1 System Hardware 

For the last few years, SilIcon Graphies has offered a line of "symmetric rnulti

processing" systems called the POWER Series based on MIPS (now owned by SGI) 

R3000 micro-processors. These processors are configured in Multiple Instruction, 

Multiple Data (MIMD) fashion. They all share a corn mon system mernory which 

is accessed over an inter-processor communication bus (to whieh is a1so connected 

the graphies subsystem). In order to decrease traffie over this bus and reduce 

contention between the processors, each CPU has a priva te local cache memory 

for both instruction and data. Cache coherency hardware ensures that no cache 

ever holds il staIl' copy of data which has been updated by another processor: this 

hardware approach to cache coherency means that "traditional", single-threaded 
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applications usuaUy need not be aware that they are running on ,1 multi-CPU 

system. On the other hand, this additional hardware add~ blllh ('pmpll"dtr ,1lld 

cost to the maclune As in most MIMD ll1.1chmes. the 111.1111 bottll'Ill'ck I~ the 

'nterprocessor bus which can quickly become saturated, SlIlCl' It ofJl'T~ onl\, ho! 

MB/sec of throughput. Although POWER Senes machines CiUl bl' wntigurl'd \Vith 

up to 8 CPUs, in man y applications litHe performance is gamed bv gl)ing abo\'l' of 

processors (especially when heavy use is made of the graplucs sLlbsy~tl'm, which 

can require a slgnificant portion of the bus bandwidth to bl' (cd with l'nough data 

to run at full speed). Recently, Silicon Graphk~ has announced tlll' new ()nvx 

and Challenge hnes of multi-processing machines. Thl:'sl' [L'tain thL' ~ame l1d~k 

architecture, but the bandwidth of the multiprocessor bus has been raised to 1 2 

GB/sec, allowing up to 36 MIPS R4400 processors runnmg at 75MHz l'xternally 

(I50 MHz internally) to share the bus [SGISMP, 1993l. "Trul'" perfllrmanCLI of thl'Sl' 

systems is not known at this point 

The 4D/240 system on which the convolution algorithm wa!> coded i~ not .1!-> 

recent. It is based on 4 25MHz MIPS R3000 CPUs, each havmg 2x64Kb of pmnary 

cache memory for instructions and data and 256Kb of secondary cache. TI1l'rt' ,Hl' 

128Mb of shared system memory. Although tlus 15 by no mean~ the fa!->tcst of the 

POWER Series system, the performance obtained can be sCilled qUlte c1n~dy WIlh 

dock frequency (the fastest Power Series machines have R3000 proCl'~~ors funning 

at 40MHz). 

4.3.2 System Software 

SGI machines run a version of the UNIX operatmg system called IRIX Il includes 

several extensions, notably in the areas of graphiC&, real-lime capabililil'~ and lI~ym

metric multiprocessing". Baslcally, most parallel procebsmg on the~l' by~temb J~ 

very coarse grained and occurs at the UNIX process level One of tl\(' proce~~or~ 

on the system runs the IRIX kernel, which is responslble for dispatching processc~ 
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to the availab!e CPUs. In this way, programs can be completely unaware that there 

are severa! crus in the system: if there are 4 runnable pro cesses at one time, they 

each get the benefIt of a "full" CPU (assuming that their memory access patterns 

don't conDiet lou much with each other, and in particular that they don't "bust" 

the !OCil! cru cache too often) AlI of the CPUs are usually kept fairly busy in a 

multi-user envlronment: four processes could run at full speed with little inter

ference between each other In vlsual simulation apphcations (such as a law-cast 

flight snTIulator), ('ne of the CPUs could be used to traverse the visuai database and 

determine the VIsible po!ygons, the second one could be used ta feed the polygons 

to the graphic~ pipe, the third one could be used ta run the actual simulation (i.e. 

compute the flight equations) and the fourth one could be used to interface to 

external periphera!s (such as the cockpit contraIs). 

It is also possible for a single process to take advantage of more than one 

cru. The ilL lorA'( ) system calI crea tes a copy of the pro cess which calls it on each 

availabll' CPU, and caIls the same function of that pro cess on each CPU. Each 

m~tance of the function has its own stack and local variables, but contrary to the 

standard UNIX call {(II I.-(), al! the copie" of the process share the same addressing 

space (Le. global vanables and dynamically allocated memory). When aIl of thE' 

instanœs (lf the [ unctlOn have comp!eted, the 1II-f o7'/,'() cali retums and the process 

continues running on a single cpu. 

4.3.3 Implementation and Results 

The im plemen ta tion of the con vol u tion algori thm on the SGI 4D /240 wor ks roughl y 

along these lines: the main process takes care of of reading the image from disk and 

convertmg it to floating-point format. It then stores it in a 20 array in C-style row

major formi'!t In nrder to avoid border effects, the image is extended by replicating 

a band of wldth l'quaI to half the kernel size around its perimeter. Although this 

method requires a few extra floatmg-point computations, it will save a lot of time 
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by greatly simplifying the addressing computatIOns. An ('.1rl" implell1l>nt.1tÏlll1 l)f 

this algorithm which used the modulo operation to obtain the prnpl'r wrap-.1Il1und 

behavior got disastrous performance on all architectures on wllich il WilS compihi. 

The main pro cess th en uses TlLt'O,.q) ta start four instances l)f il function which 

computes a straight-forward 2D convolution sumo Each of thesl' fllnellOns 0pl'r.lll'~ 

on a horizontal quarter-image to minimize contention for main menwry MCl'5S. 

The only time when the crus try to access the same rcgions o[ menlllry an' lor 

the convolutIon coefficients (which will remam 111 CrU-local cache Illemory .1fter 

the tirst time they are read) and for a thin region along the boundary bet ween thl' 

quarter images. It would ha ve been possible to duplicate tl1l'sl' region:. in l1rder 

to eliminate this contention, but a doser study of memory accL'SS pattl'ms would 

have been required to justify the effort. Unfortunately, SGI cines not provldl' .1I1y 

tools for monitoring these patterns. 

Test results were generated for 1. 2 and 4 CPUs Also, the inl1l'r loop of the 

convolution sum was explictly unrolled, since the SCI compiler Wdt-. nol snhlft 

enough to dl) it on its OWil. Loop unrolling is a technique whereby Sl11illl l(l()p~ 

with fixed boundarieb are replaced with as many instances of the Inop body as tJ1l'fl' 

would have been iterations in the loop. All array indices arC' replilced by clln~lant~ 

correponding to the Iteration index. In heavily pipehned proCl'f,s()r~, unrolhng 

prevents pipeline stalls due to branch instructions and sim ph fies the work of tlw 

optimizer which can find the optimal scheduling for the in~tructi()n stream. 

Table 4.1 lists the number of MFLOPS obtained [or varying kernel ~ize~ and 

number ofCrUs used. First note that due ta the lack of an accuratl' timll1g function 

and ta the fact that it was Ih)t possible to bring ùown the ~y~tcm to ~ingll'-lI~er mode 

ta run these tests, some of the values can be off by slgl1lficant am()lInt~. Clearly, the 

performance of the convolution algorithm seems ta scale linearly wlth the number 

of crus installed in the system, which meanf> that the algorithm exhibJt~ strong 

locality of reference, allowing the individual crus to run at full ~pecd without 
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13/3 5/5 7/7 9/9 kernel size 
1.69 2.58 2.67 3.48 1 CPU (no unrolling) 
3.22 4.96 5.19 6.96 2 CPUs (no unrolling) 
6.41 9.77 10.35 14.02 4 CPUs (no unrolling) 

-
6.54 677 6.71 6.66 1 CPU (unrolling) 

12.82 13.48 13.48 13.27 2 CPUs (unrolling) 
24.32 26.53 26.54 26.44 4 CPUs (unrolling) 

Table 4.1: MFLOPS Results for the SGI 4D/240 

mterfering with each other when accessing main memory. AIso, in the case where 

the convolution sum Ioop was not unrolled, performance increases as the kernei 

Slze increases, which reflects the fac~ that loop overhead becomes less of an issue as 

the size of the Ioop ll1creases. When the Ioop is unrolled manually, the performance 

remains mostly constant across kernel size (it even seems to decrease for the 9 x 9 

kernel size, which nught suggest that we are starting to have problem5 with the 

cache at thal point). Finally, these results also show that m most cases, compilers 

still need to be given a hmt (in thlS case explicit loop unrolling) to allow them to 

generate code which makes full use of the capabilitles of the machme. 

4.4 Single Processor RISC Machines 

4.4.1 Motivation 

Single-processor UNIX RISe workstations are still the most widely used systems 

for scientific computations. A properly-written C or FORTRAN program can be 

recompiled without modIfication on most such machines. Instead of trying to 

take advantage of specialized hardware through hardware-specifie code, one ean 

either fun a program on many machines at once (thus supparting the claim by 

Sun Mlcrosystems that "The Network is the Computer"), or one can wait for the 

performancL' of workstations to increase ta a point where one's application runs 
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in a reasonable amount of time. At the rate al \\'Iuch wnrkstatlOn perLonnanrl' I~ 

increasmg these days, one might not have to wait that long! AnothL'r .1d\',mtagl' in 

favor of single-pro cess or maclunes is that these architecturL'~ are weil undl'rstood br 

compiler writters who are able to write fairl~' effIcient compllers. ,1S.1 gelll'r.11 mIL" 

the more specialized the architecture is, the more difficu1t the ~nftwal"l' dl'vl'iopnll'nt 

tools are to use. For instance, if one does not like the C compiler prn\'ldl'd \Vith SU') 

workstations, there are many other alternatives avail,lble (including the L'xcl'lknt 

and free GNU C Compiler). 

4.4.2 Implementation and Results 

The convolution algorithm implemented as il C program was ll'~led lll\ lhn'l' 

widely-used UNIX workstations: 

• the Sun SparcStation 10/30, ba~ed on a SPARC processor 

• the Silicon Graphies Indigo, based on a MIPS R4000 processor 

• the IBM RS/6000 Mode1360, based on a POWER processnr 

The vendor-supplied compiler was used in ail three cases with maximum opLi

mization enabled. The program follows basically the same line~ a~, Lhe IInplL'l1\en

tatIOn on the SGI POWER Series: the image is read from disk and stofeù in memory 

as a 2D array. The image border is explictly replicaLed to ilvoid co~t1y wré.lp-JfOund 

address calculations. The following loop performs the actual convolutIOn: 
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kX_DüdrJll'".é =-= k_Wldth / 2 i 
kY_ITllddle ::: kjlelght 1 2 j 
fr)r (1 :=ky_middle; lrheight; i++) 

{ 

forll:::Kx_ffilddleijrwidthiJ++1 

result::: 0.0; 
forlk:=O;K<k_helght;k++1 

for 1 1=0; 1 ôk_width; 1++ 1 
result+=srcimage[i+k-ky_middlel [j+l-kx_middleJ* 

kernel [k] [1] j 

destiffiage[i] [j]=result; 

Once again, none of the compilers were able to unroll the two inner loops, 

even though the loop boundaries IUl'ldt" and LII( Ighi were explictly declared as 

constants. Thus a second version of the code was also compiled and run were the 

two inner loops were explictly unrolled . 

Table 4.2 lists the MFLOPS performance obtamed both without and with loop 

unrolling. Wh en the inner loops are not unrolled, performance increases with the 

kernel size since this minimizes loop overhead. Wh en the loops have been ex

plieUy unrolled, the performance remains fairly constant with kernel size, except 

in the case of the SPARCStation 10 where performance decreases markedly: this 

is probably due ta the memory access patterns conflicting with the mapping of 

memory to the cache (which is fairly large at 1Mb). The IBM RS/6000 Model 360 

has clearly supt'rior performance: this is in part due to the fact that its CPU imple

ments a smgle-cycle multiply-and-accumulate instruction which is being used by 

the code generated by the C compiler. Note that although the RS/6000 CPU irnple

ments IEEE floating-point semantics, no result renormalization is done between the 

multiplication and addition operations in the multiply-and-add unit. This could 

lead to results winch are different than those obtained on a machine which lacks 

such a functional unit and where the results would be renormahzed after both the 

multiply and the add operations. In order to duplicate these results, the IBM XL C 
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---
3 :><.3 5x5 7",7 Q,,9 kernel size 
3.21 4.41 5.24 5.83 SUN 5510/30 (no unrolliIlgl--
5.22 7.96 9.15 10.83 SGI Indigo (no unrollingl 

19.03 27.08 30.95 33.76 IBM RS / 6000 360 (no unrnlling) 
12.31 JO.08 9.54 9.42 SUN 5510/30 (unrolling) 
14.04 15.79 17.96 17.67 SGI Indigo (unrolling) 
40.68 45.83 45 R8 45.47 IBM R5 / 6000 360._( unrolhng) 

Table 4.2: Single Processor MFLOPS Results 

compiler offers a switch to disable the genera tlOn of multiply-and-add instructions, 

at a significant penalty ln performance. 

4.5 Possible Implementation on a Vector Processor 

Smce convolution is basically a two-dimensional multiply and accumulatt:' opera

tion, it could be implemented on any plpelined vector proces~or WlllCh suppllrt~ 

this operation. Since this dot product operatIon IS a malllstay of many ~cil'ntllk 

computations, most vector processors implement it in hardwan.'. Thl' kernd coef

ficients would be stored in linear fashion in one of the processor vectof r('gbter~, 

and the appropria te pixels would be stored in another vector rE:'glster. Tlll~ sl'conJ 

vector is basically the neighboring pixels of the pixel presently under consideration 

A single vector instruction would then compute the rc~ultmg pixel. Unfortu

nately, this has two problems. If the kernel size is small, the length of the vectOf~ 

will be short (9 elements for a 3x3 kernel), and this may not be enough to justify the 

overhead of a vector instruction, although most vector maehine5 nllwaday~ have 

vector instructions which are faster than their scalar counterparts for anything but 

the shortest vectors. The otller problem is that we must still deal with the faet that 

each pixel in the source image will have to be rl'ad several time~ from memory 

(as many times as there are kernel coefficients). Thu!' the overhead of forming th<: 

"neighborhood" vectors to feed to the vector unit might also reduce performance 
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~ignifîcantly . 

4.6 Discussion of Results and Recommendationds for Future Work 

With RI VLSI devices forming a 9 by 9 array, the convolution array discussed in 

this thesis performs 162 double-precision floating-point operations per clock cycle: 

at a design speed of 16 MHz, this corresponds to a sustained rate of 162 MFLOPS. 

The actual rate obtamed on a physical computer depends on how fast operands 

can be transfered between the array and the memory of the hast over the VMEbus. 

Ta operate at its peak design rate, the array must receive a new input operand 

every microsecond and produces results at tht: sa me rate. If bath the input and the 

output data streams are in floating-point format, this translates to a bus transfer 

bandwidth of 16 Mbl s. In a typical system with other boards requiring a portion 

of the VMEbus bandwidth, this maXImum convolver rate might not be supported 

continuously. On the other hand, when dealing with 8-bit fixed precision operands, 

only 2 Mb/s of bus bandwidth is required, which is weIl within the capabilities of 

the VME bus. At this point, the DMA engine of the convolution processor has been 

built and partially tested. OrCAD design taols were used to draw the schema tics, 

produce netlists, generate the PAL fuse maps and simula te critical parts of the 

design (most Intportantly the local bus controllogic). A high-quality prototyping 

wire-wrap board was used to build the system: this board has a VMEbus 6U 

form factor, Pin Grid Array (pGA) areas for the 68020 and the VIC and buHt-in 

dt'couphng capaCltors for all the power connections. A utility program has been 

written to comb me th~ netlist generated by the OrCAD schematic entry tool and the 

layout of the components on the prototype board to generate a detailed wiring list: 

the output of this program was very useful in minirnizing wire-wrapping errors. 

In order to achieve maximum performance (especially in the case of the tight 

DMA-control loop which must fit in the 128 byte instruction cache), the 68020 

has been programmed in assembly language. This control program as weIl as the 
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self-test routines were assembled on a UNIX hast using a 68020 cross assembler . 

The output of the assembler (a binary file 111 Motorola S-Record format) is uscd 

to program the 32K EPROM By observing the statl' of the lOCilI bll~ with alogie 

analyzer, the 68020 has been observed ta initialize itself and the VIC interface ASie 

and execllte simple test code sequences such as aCŒsse~ tn tilt' ROM and RAM. 

The princIpal work which remams to be done i~ 10 complf'te th .. inlegration ()f tlll' 

board with bath the convolution array itself and the VMEbus host. The fabricalion 

and performance tests on the eus tom VLSI convolver chip consLillltes il separa le 

research project which is being carried out concurrently. Beeallst:.' of Ihis, fully 

functional convolver llnits were not available for integratcd testing with the DMJ\ 

system. 

After investing significant efforts in the design, construction and te~ling of our 

convolution processor, it is :omewhat disappointing 10 sel' that we werl.' able 10 

ob tain almost 30% of its pe:-formance (46 versus 162 MFLOP~,) with a C program 

running on a general-purpose UNIX workstahan sllch as the IBM RS/6000 model 

360 (sel.' secthn 4.4.2). Nevertheless, several points which serve to justify our 

design have ta be kept in mind; 

• Whereas IBM has access tü the latest technology wh en implementing it~ 

workstations, this was not the case for our convolution processor. In pilrtic

ular, the 3 micron CMOS process used to implement the systolic array chip 

is completely obsolete. A major recommendation to obtain a much higher 

performance would involve re-implementation using a higher density CMOS 

process . 

• It is much easier to integrate a VMEbus board in a real-time image-processing 

system. Workstations usually lack high-speed 1/0 connections and are thu~ 

difficult to connect to external hardware which requires high bandwldlh, 

unless one is ready to deal wlth the often proprietary expansion bus, and thus 

go back to designing dedicated hardware. Several VMEbus boardr-, can he 
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connected together (possibly using higher-speed point-to-point connections 

for image data) to achieve results which are not possIble otherwise. Of course, 

glven enough performance in a UNIX workstation, the en tire system could 

bl' implementcd in software at a much lower cost and with less difficulty, but 

most image-processmg algorithms are still starved for computationai power 

and will remain so for the next few years . 

• The RS/6000 Model 360 is by no means a low-cost solution: fully configured, 

its priee runs up to weil over $50,000. If it were produced in even modest 

quantities, the proposed convolution processor system would cost much less 

than that, especially if the systolic array device were re-implernented using a 

lower-cost methodology such as agate array instead of a full-custom deviee 

(the priee dlfferential coming mostly from the non-recurring expenses). 

As indicated above, an obvious strategy for increasing the performance of the 

system would be to re-implement the VLSI systoIic array devICes using a higher 

density CM OS process ThIS would have the effect of bath raising the operational 

frequency and reducing the silicon area required by the device: thus either a 

smaller die could be used or several devlces could be cambined on a single chip 

(thus reducing the physical size of the array). Another possible approach would be 

to re-Implement the systolic ceIl using agate array or standard ceU rnethodology, 

which although not as fast or dense as a full-custom device ha~ the advantage 

that il allows easler acress to the higher-performance processes available from the 

manufacturers (the full-custom process offered by the Canadian Microelectronics 

Center is not the latest process available from commercial manufacturers). 

Of course, any increase in the computational capacity of the array would mean 

an additional burden on the VMEbus DMA interface. In arder ta alleviate this 

problem, the on-board recombination memory could be made more general and 

mapped mto the on-board local bus address spa ce, as weIl as being made accessible 

to the host CPU when the convolution processor responds to slave VMEbus cycles. 

114 



• 

• 

• 

4. CompilrtSOn \VIth Gt:'IH'ral rl1\'pO~t' Sy~tt:'m~ 

Thus the host CPU could manipulate an image stored directly on the cOllvolutiDIl 

pro cess or ta perform operations which cannot be done b~' the convolution ;lrfl1V 

The DMA interface would then be used only to transfer the input d,Ha from ils 

source (possibly a frame grabber) and to transfer the final re~ult tl) Ils dl'stinatiDIl 

(a frame buffer for instance). 

Another possible avenue of work would be ta reuse the DMA engilll' to dnv!:' 

other types of dedicated processors which operate on a high-speed data stream 

For instance, the growing interest in "video on demand" system~ is fueling the nl'ed 

for high-performance video image compression and decompres~ion engines which 

can operate on digital video streams. Since the DMA enginl' is already capabll' of 

dealing with different bandwidths at the input and output of the convolution 

processor (which is required wh en operating with different input and output data 

types), it could be adapted for compression/ decompression applications. Digital 

video systems are likely to be the next area to demand specialized design!- which 

can perform more computations and handle larger amounts of data than il cru b 

capable of. 
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Conclusion 

Thi~ thesi~ presents the design of a double-precision floating point convolution 

proce~sor which can be used as an attached processor in a VMEbus-based system. 

Typical applications could be low-Ievel computer vision and image processing tasks 

in a real-time environment. It also reviews the relevant literature and shows how 

this design relates to other systolic solutions propo:.ed or implemented in the past. 

Il discusses the trade-offs between general-purpose and specialized architectures, 

between which system designers seem to be continually oscillating. Performance 

rcsults are prescnted and evaluated, and suggestions for future work are also made. 

General-purpose architectures seem to be currently favored by many, and this 

can be seen m the number of manufacturers of high-end "supercomputers" who 

seem to be abandoning dedicated designs 111 favor of large numbers of general

purpose RIse processors connected in parallel. Certamly the capabilities of hard

ware have been growing at a much faster rate than those of software, and it thus 

makes sense to design a system which can reuse software developped for "tradi

tional" architectures. In many projects, the cost of software easily outweighs that of 

hardware. On the other hand, there are applications where general-purpose hard

ware simply cannot be used: for instance, image generation systems for commercial 

and military flight simula tors (the author'b current area of work). Although sorne 

workstation manufacturers would have us believe otherwise, there is currently 

no VIable' substitute to dedicated image generators unless a severe degradation of 

the trallung value of the simulator is accepted. Ihere will always be appJications 

wherc performance is the premier criterion, and for those applications, dedicated 

hardware systems will continue to be designed and built. 
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