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Abhstract

Two-dimensional convolution is one of the basic operations in image processing,
where il is usedi as a filtering tool. A kernel of values corresponding to the spatial-
domain impuls 2 response of the filter is applied to the original image in order to
perform desired operaticns such as low-pass filtering or edge enhancement. A
low pass filter will perform 1image smoothing by removing high-frequency noise,
whereas a high-pass filter will enhance the edges: this can be used to perform
low-level feature extraction in a machine vision application. 1t is also used in most
image resampling and warping algorithms: it thus finds applications in both image

processing and computer graphics

Since cenvolution 1s basically a two-dimensional multiply and accumulate op-
eration, 1t is computationally intensive. When applying an Al by A/ kernel to
an N by \image, A/? x N? multiplications and additions have to be performed.
Furthermore, these basic low-level signal-processing methods are frequently ap-
plied many tinves to large data sets, often in real-time. General-purpose computer
architectures are often ill-suited to perform two-dirensional convolutions, since
they lack the required processing speed or memory bendwidth. This motivated the
project to design and build a specialized device which can compute the convolution

operation efficiently for such applications.

This thesis addresses the design and implementat on of a specialized processor
which can perform two-dimensional convolution using double-precision floating-
point operands. The selected architecture is based ¢n the concept of the systolic
array. These architectures are reviewed particularly for the constraints which im-
pact their logical and physical design, as well as for the numerous applications
for which they have been proposed in the litterature or have been implemented.

Aftern outlining the overall system architecture of the convolution processor, the




thesis focusses on the details of the impiementation of the bus mterface and Di-
rect Memory Access controller. Finally, the performance of the proposed design
is evaluated and compared against alternative software implementations ot the

conv vlution algorithm on representative architectures.
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Résumé

La convolution en deux dimensions est une des opérations de base en traitement
d’images ou elle est utilisée comme outil de filtrage. Un noyau de valeurs corre-
spondant a la réponse impulsionnelle du filtre dans le domaine spatial est appliqué
a I'image originale pour effectuer I'opération désirée. Ainsi, un filtre passe-bas per-
mettra d’adoucir une image en enlevant le bruit a hautes fréquences, alors qu’un fil-
tre passe-haut accentuera les arétes: ceci peut étre 1itilisé pour les premieres étapes
de I'extraction d’éléments dans un systéme de vision informatique. Ces méthodes
sont également utilisées dans la plupart des algorithmes de ré-échantillonage et
de distorsion d’'images: ainsi, elles trouvent des applications en traitement et en

synthese d’images.

Puisquelaconvolution esta la base une opération de multiplication et d’addition
en deux dimensions, elle exige une grande puissance de calcul. Pour convoluer
une image de \ par .V points avec un noyau de A par M coefficients, 1/2 x N2
mutltiplications et additions sont nécéssaires. De plus ces opérations de traitement
de signal de bas niveau doivent souvent étre utilisée a maintes reprises sur des
quantités importantes de données, et ceci souvent en temps réel. Les architec-
tures informatiques d'usage général sont souvent mal adaptées aux contraintes de
la convolution en deux dimensions puisque la puissance de calcul et la rapidité
d’acces a la mémoire leur font défaut. Il est donc utile de concevoir et batir un

systéme speécialisé qui puisse effectuer des convolutions de fagon efficace.

Ce mémoire présente la conception et la réalisation d'un processeur spécialisé
qui peut effectuer des convolutions en deux dimensions a partir de données en
format point-flottant double précision. Le systéme est basé sur le principe de
I'architecture systolique. Nous effectons d’abord un survol de ces architectures

en s'attardant aux contraintes qui affectent leur conception logique et physique,

iii




ainsi qu’aux nombreuses applications proposées dans les publications.  Apres
la présentation de I'architecture générale du systeme suivent les détails de la
réalisation de I'interface au bus et le contrélleur pour 1"acces direct a la mémoire
(DMA). Enfin, les performances du systéme sont évaluées et comparées a des

réalisation. logicielles de I'algorithme de convolution sur des architectures représentatives

v
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Chapter 1 Systolic Arrays

1.1 Introduction

In this chapter, systolic arrays are examined as a solution to computationally in-
tensive problems. First, the characteristics of a systolic architecture are described.
Then, methods are presented for mapping a problem, usually described by a se-
quential algorithm, into a parallel systolic system This is followed by a look at
the issues which face the hardware designer when 1t coines time to design ac-
tual hardware from a systolic algorithm description. Originally proposed as a
solution for matrix computations, systolic arrays have been used to solve a wide
variety of problems in diverse fields. Although they are still considered some-
what of a research-oriented approach, systolic architectures have nonetheless been
implemented in actual hardware in a number of systems, using either custom or

off-the-shelf components.

1.2 Whatis a Systolic Array ?

The term systolic array was first used by H.T. Kung and C.E. Leiserson
in [Kung and Leiserson, 1979] to describe a new kind of parallel architecture. A
systolic array is composed of a grid of interconnected processors which work to-
gether to solve a problem faster than a single processor. But the main characteristic
of these computational structures comes from the “systolic” part, which means that
pipelined computations are performed along all dimensions of the array structure.
Data which is read into the array travels (possibly with intermediary results) from

processor to processor, thus achieving high computation rates without requiring



1. Systolic Arrays

correspondingly high Input/Output bandwidth [Fortes and Wah, 1987].

The adjective systolic was used to describe these structures in analogy o the
human circulatory system, where at each heartbeat (clock cycle), the heart (the
source and destination of data) pumps a small quantity of blood (data) into a
network of arteries and veins (the array of processing elements) Another possible
analogy for the word is that many of the early systems described as “systolic”
alternated between cycles of admission and expulsion of data, which is similar to

the way blood flows into and out of the heart.

Systolic architectures are also characterized by regular structures where all the
processing elements are similar to each other, except perhaps for boundary ele-
ments. Furthermore, the interconnections between the PEs tend to be simple and
straightforward. Systolic array PEs are thus a prime candidate for VL5I imple-
mentation, where intra-chip bandwidth is very high but inter-chip connections
are much more expensive (both in pin count and speed). It is also possible to
build scalable systems, where the array can be made progressively larger (and thus
able to solve large problems in fewer iterations) by adding extra chips/processing

modules

1.3 Algorithm Issues and Software Tools for Systolic Arrays

Asitis always the case with parallel architectures, the main challenge often comes in
the mapping of an algorithm into the desired parallel structure. Some algorithms
are “embarrassingly paralle]” and map readily, others require more work. This
section will look at systematic methods which have been developed to derive
systolic arrays from problem specifications. Some methods are general and can
be applied to a wide class of algorithms, others are more specific. Since there
are different types of systolic architectures, some methods have been proposed

which are oriented towards specific types of systolic arrays. The ultimate goal is
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to develop software tools and/or programming languages which would allow the
designer to specify the problem in a “natural” form (which 1s often a sequential

algorithm) and derive the corresponding systolic array automatically.

1.3.1 General Mapping Methods

As outlined in section 1.2, one of the principal characteristics of systolic arrays is
local communication between the processing elements, often limited to their re-
spective nearest neighbors. In particular, this has the advantages of simphfying,
VLSI implementation and signal routing on a printed circuit board. Unfortu-
nately, many algorithms contain “broadcast” data dependencies where data needs
to be shared between multiple PEs which are not connected to each other. Wong
and Delosme derive in [Wong and Delosme, 1988] and [Wong and Delosme, 1992]
a method where any such broadcast can be transformed mto propagations along

the normal connection paths of the systolic array.

Moreno and Lang have developed a method based on the transfor-
mation of the dependency graph of the algorithm [Moreno and Lang, 1988]
[Moreno and Lang, 1990] called the multi-mesh graph method. The first step 1s
to remove from the graph properties which are incompatible with a systolic im-
plementation such as broadcasts and bi-directional data flows The graph is then
converted into a G-graph by collapsing groups of nodes into new nodes (G-nodes),
which is more suitable to partitioning. Finally, the G-nodes are mapped mto an
array with n: cells by scheduling sets of 71 neighbor G-nodes (a G-set) for concurrent
computation. They show how their method can be applied to the transitive closure

problem.

Others have atteinpted to create a formal framework in which to describe and
understand the mapping process. For instance, Payer uses the theory of finite state

machines to start from a functional description and achieve a systolic array in a for-



1. Systolic Arrays

mal way [Payer, 1988). He demonstrates his method on twc classes of problems: bit
pattern matching and FIR filtering. Bertolazzi, Guerra and $alza propose a methoa
based on the analysis of the data dependencies of the original algorithm and extend
it to include the design of non-regular systolic arrays [Bertolazzi et al., 1988]. They
apply their method to create systolic arrays to perform 2-dim 2nsional convolutions
and solve the shortest path problem on layered graphs. Another formal approach
is suggested by Ko and Wing where they formulate the problem and its implemen-
tation in an n-dimensional space of integers which allows the implementation to

be derived from the algorithm by linear transformation [Ko and Wing, 1988].

Systematic methods for designing systolic arrays lose some of their inter-
est if they result in non-optimal designs (especially if more ad-hoc heuristics
are able to do better!). Kothari, Oh and Gannett propose a method which can
produce optimal designs for systolic architectures with linear scheduling func-
tions [Kothari et al., 1989). Their method is based on a combination of linear algebra
and a heuristic which exploits special properties of convex sets. This allows them
to derive a different method for performing convolutions. Clauss, Mongenet and
Perrin are interested in mapping systolic algorithms onto the smallest possible num-
ber of processors in a general processor array [Clauss et al., 1990]. They derive two
space-optimal mappings for the gaussian eliminination method for solving systems
of linear equations. Finally, Zhong and Rajopadhye show how neighboring proces-
sors inasystolic array obtained via conventional linear transformation methods can

be merged together to obtain fully efficient arrays [Zhong and Rajopadhye, 19911.

1.3.2 Mapping Methods for Specific Algorithm Classes

Numerically-intensive algorithms often spend most of their time in relatively small
nested loops, which are thus a prime candidate for parallelization. Much work
has been done on the analysis of data dependencies within such loops in order

to determine which 1terations of the loop can be performed in parallel without
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violating these dependencies [Banerjee, 19881 [Wolfe, 1989]. The driving force
behind this has been the need for optimi.ing compilers for “traditional” vector
supercomputers, and the success of these methods has generally been judged
on the basis of how a compiler manages to parallehze and/or vectorize nested
loops in FORTRAN programs. Similar wvork has also been done to map nested
loops to systolic architectures. For instance, Lee and Kedem have derived a
method for mapping p-nested for loops onto ¢-dimensional systolic arrays, where
1 < ¢ < p—1[Lee and Kedem, 1989]. Similarly, Bu, Deprettere and Thiele derive a
method for mapping nested loop programs where the loop boundaries are allowed

to be functions of the previous index variables [Bu et al., 1990b).

Many algorithms can be expressed in terms of systems of linear recurrence
equations, which can then be mapped onto systolic arrays. The computations
performed by the algorithm can be represented as integral points in some domain
of the Euclidian space, and are ordered by means of a lincar schedule which
must respect the data dependencies between them. In the case of uniform linear
recurrences, the dependencies are only local: such problems can be readily mapped
onto systolic arrays. Unfortunately, many problems contain global dependencies.
Van Dongen and Quinton present a method to transform these non-uniform linear
recurrence systems into uniform systems, which can then be mapped directly
to systolic arrays [Van Dongen and Quinton, 1988]. Yaacoby and Cappello have
approached a subclass of these problems, namely affine recurrence equations and
have derived necessary and sufficient conditions for the existence of a schedule

which satisfies these problems [Yaacoby and Cappello, 1988].

Steenaart and Zhang take a different approach for the class of recursive al-
gorithms, and derive a methodology for mapping such problems directly onto
systolic arrays [Steenarrt and Zhang, 1991]. They are especially interested in recur-
sive filtering algorithms (such as implementations of IIR filters) where the inputs

are dependent on the previous outputs.
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1.3.3 Mapping to Specific Architectures

Most of the mapping methods seen in the previous sections attempt to solve the
problem of designing a systolic array which accurately executes a given algorithm.
But in many cases, this mapping cannot be the only constraint on the design of
the array, and other factors must be taken into account. For instance, it might be
desired to map an algorithm onto an existing, general-purpose array which cannot
be tailored exactly to our needs. Also, thesize of the array resulting from the optimal
solution of a problem might not be practical: thought must be given to partitioning
the algorithm onto a fixed-size array. Moldovan and Fortes have proposed a
technique which can be used to partition nested loops by dividing the index space
of the problem into bands and to map these bands onto the space of the processor
array [Moldovan and Fortes, 1986]. Unfortunately, their method cannot deal with
nested loops where the iteration bounds are themselves functions of the outer-loop
indices. Bu, Deprettere and Dewilde approach the problem in a different way:
instead of trying to map an algorithm directly into a fixed-sized array, the problem
is first mapped to the “optimal” sized array which is then reduced tc the fixed-
size array by clustering processing elements [Bu et al., 1990al. They propose two
clustering methods, which have the additional advantages of raising the efficiency
of inefficient arrays, balancing local memory and external communications for the
processing elements and reducing array diumensionality (the more restrictive case
of mapping two-dimensional arrays onto uni-dimensional ones was previously

studied by Kumar and Tsai [Kumar and Trai, 1988}).

Other researchers have looked at the problem of mapping systolic algorithms
onto specific architectures. Fer instance, Lin shows how shuffle arrays can be
used to implement systolic algorithms [Lin, 1988]. A shuffle array is an array
of processing elements interconnected by a shuffle bus. An N-node shuffle bus
consists of a master array ./ 1 and a slave array SA. Each element of the master
array contains a single bit, whereas the slave array contains a k-bit data word.

When instructed, any pattern of a 1 followed by a 0 in the master array will cause

7
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the contents of these bits, along with the corresponding registers of the slave array
to be swapped. A shuffle array can be configured as a 1-D or 2-D queue, and can

also be used for sorting.

Hypercubes can be considered to be generalizations of N dimensional arrays.
Ibarra and Sohn show how one-way and two-way linear systolic arrays ¢ ar-
rays where the processors are connected only in one direction with uni-directional
communication paths) can be mapped onto a 64-node NCUBE/7 MIMD hypet-
cube machine [Ibarra and Sohn, 1989]. They used this method to implement 1D
FIR filters, matrix multiphcation and solve transitive closure problems. The main
challenge in this case is to efficiently map the systolic connections onto the structure
of the hypercube. Another example of mapping strategies specific to a hardware
implementation can be found in the work of Valero-Garcia ¢t al , who tackle the is-
sues associated with the use of pipelined functional units as processing elements in
systolic arrays [Valero-Garcia et al., 19901. More specifically, their mapping method
improves the efficiency of the array by inserting delays mnto the data flow between
processing elements to take into account the pipelining delays internal to the array

elements.

1.3.4 Compilers and Tools

In order to make systolic arrays a truly practical concept and not just an academic
curiosity, software tools have to be made available for VLSI designers who want to
use this design methodology. Some work has been done to provide tools for specific
applications. For instance, Hu, McCanny and Yan have developed a system for
designing systolic vector quantization chips for speech and image coding applica-
tions [Hu et al., 1990). Their system consists of a library of cells, silicon assemblers,
simulators, test pattern generators and a graphical user interface. Arother specific
application is the Logic Description Generator which is used to implement systolic

algorithms on the SPLASH reconfigurable logic array [Gokhale et al., 1990]. The

"
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LDG accepts as input a programming language which describes the functionality
of the cells in the systolic array. Its output is a Xilinx Netlist Format (XNF) file
which 15 fed to the Xilinx design tools, which will generate the bit patterns to be
downloaded into the Xilinx FPGA devizes which make up SPLASH. Due to the very
rapid turn-around time possible with this system, most debugging is done directly
on the target hardware. Another example of a system-specific tool is the AL pro-
gramming language for the CMU Warp programmable systolic array [Tseng, 19901

AL is a C-like language where scalar and array objects are duplicated in all the cells
whereas distributed array (DARRAY) cbjects are distributed among cells. The DO
statement tells the compiler to distribute loop iterations over the cells instead of du-
plicating their execution. Using this language to implement matrix computations,
27% of the peak performance of the machine was achieved for matrices of order 300
(which illustrates the psoblems which can be encountered in using programmable

parallel machines efficiently).

More generai tools have also been developed. DECOMPOSER is a high-level
synthesis tool which takes as inputs a hierarchical description of the computation
to be performed and hints as to how i: must be performed [Hou et al., 1988]. This
description takes the form of a directed acyclic graph (DAG). The output of the sys-
tem gives the required structure of each processing element, their interconnections
and the input and output sequences. The SYSTARS system is capable of perform-
ing both analysis and synthesis of systolic arrays [Omtzigt, 1988]. SYSTARS is able
to generate both full-size and partition2d systolic arrays. Italso includes a graphics
display which can animate the structure being designed, which hrips the designer

visualize the flow of data in the systern.

Actual compilers which generate code to implement algorithms have also
been proposed. Omutzigt describes the architecture of such a compiler which
can handle systems of affine recurrence equations based on the domain flow
model [Omtzigt, 1990]. The domain flow graph is an extension of the data flow

graph where nodes represent functions (either scalar functions or control flow) or
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they can be dependence graphs representing concurrent operators. The input to the
compiler 1s a C language program with extensions (called Domamn Q). Lengauer,
Barnett and Hudson have developed a system-independent compiler wluch can
handle both imperative and functional programs, including non-uniform linear
recurrence problems [Lengauer et al, 1991). The output of the compiler is a pro-
gram in the native language of the target system. Examples of mappings of matrin
algorithms to the CMU Warp machine and Occam-based transputer networks are

shown

1.4 Hardware Issues for Systolic Arrays

One of the main justifications for the systolic design methodology is the case with
which such designs can be implemented in VLSI. Nevertheless, the physical im-
plementation of systolic arrays poses certain particular challenges, some of which

are examined in this section.

1.4.1 Synchronization and Clocking

Systolic arrays are typically structured as synchronous SIMD arrays where all
the processing elements execute the same instructions under control of a central
clock. While this simplifies the transfer of data between processors and removes
the need for synchronizing First-In First-Out (FIFO) memories between them, clock
distribution and synchronization can become problematic for large arrays and high
clock rates. For one dimensional arrays, Fisher and Kung demonstrate that it is
possible to use a pipelined clocking scheme where more than one clock event 1s
propagated at a time [Fisher and Kung, 1985]  Although clock skew will occur
between processor elements, an upper bound for this skewing can be derived

between two adjacent processors and thus correct operation can be ensured (a

10
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probabilistic model which can derive an upper bound for the accumulation of clock
skew i synchronous systems is presented in [Kugelmas, 1988]). Unfortunately, this
result does not generalize to two-dimensional arrays, where a mixed scheme using

clocking and asynchronous elements 1s used at the expense of additional hardware

complexity

One possible solution is to go to a purely asynchronous model based on the
concept of the data flow machine [Dennis, 1980]. In a data flow computer, an
execution unit performs its computation as soon as it has received all of its operands
and sends the result on to the unit connected to its output, which in turn “fires”
when 1t has reccived all of its inputs. The machine is thus self-synchronizing
and does not require any global clocking since synchronization occurs implicitly
through the detection of inputs This concept can be applied to systolic arrays,
which are then usually known as wavefront arrays [Kung et al., 19871 (the term
wavefront comes from the analogy of a wave of calculations propagating through
the array). Although attractive from a synchronization standpoint, wavefront
arrays do require more hardware since buffers must be interposed between the
outputs and inputs of processing elements. Furthermore, unless the structure of
the array is completely regular, care must be taken to ensure the efficiency of the
system (i.e. no single processor must become a bottleneck as it waits for one of
its inputs, and thus stalls the output of the processors connected to all of its other
inputs: sufficiently deep FIFO memories must be used to prevent this). Finally,
as in all asynchronous systems, care must be taken not to fall prey to glitches and
parasitic noise which might be generated by surrounding components toggling

asynchronously.

1.4.2 Reliability and Fault Tolerance

The designer of any parallel computer system must worry about reliability and

fault tolerance, since a large number of processing elements are much more likely

11
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to fail than a single one. A fault-tolerant system must include mechamsms for
detecting when errors have occurred, as well as mechanisms for dealing with
these errors and ensuring continued operation of the system even in the presence
of faulty components. Error detection can be achieved ssmply by dupheating
functional modules and comparing the outputs of two or more units performing,
the same computations: any discrepancies will indicate a failure in one of the units
involved. Several other methods specific to systolic arrays have also been proposed
and can be found in [Abraham ¢t al., 1987]. For instance, in a systolic array where
not all of the elements are always active, idle elements can be used to duplicate

computations and thus provide partial redundancy testing

Instead of duplicating hardware to provide space redundancy, time redundancy
can be used where the throughput of the array is kept below 1ts maximum rate and
some of the extra time is used for error detection and correction. Antola ¢t al
show how space and time redundancy can be combmed to yield cost-effective
fault-tolerant structures in the specific case of arrays used to compute Fast Fourier

Transforms [Antola ¢t al., 1988).

Another possibility is to build the fault tolerance into the algorithms imple-
mented by the systolic array [Anfinson, 1988]. Forinstance, special coding schemes
can be used to detect and correct single- or multi-bit errors in computations without
having to completely duplicate the functionality of the processing elements (which
would be prohibitively expensive mn all but the most demanding apphications).
Bandyopadhyay, Jullien and Sengupta used the residue number system (RNS) to
design a systolic array for multi-operand residue addition which can detect and

correct errors [Bandyopadhyay et al., 1988].

Although on-line reliability is important, off-line testability 15 also crucial, and
complex systems must be designed to be efficiently and completely testable. Sci-
uto and Lombardi demonstrate the required conditions to test two-dimensional

bilateral arrays (i.e. where data 1s allowed to flow in both directions between pro-

12
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cessor elements) [Sciuto and Lombardi, 1988]. Kim approaches the more restrictive
problem of one-dimensional linear arrays (uni- and bi- directional), with special
emphasis on the capability of the array to be reconfigured to bypass module fail-
ures without impacting the designed throughput of the system [Kim, 1988]. Array

reconfigurability will be further discussed in the following section.

1.4.3 Reconfigurability

Reconfigurability in an array processor can be used both to allow different func-
tionality i a general-purpose system as well as to work around any faulty com-
ponents which are detected either offline or online. An early reconfigurable array
processor named CHiP (for Configurable, Highly Parallel) is described by Snyder
n [Snyder, 1982]. CHIP is composed of a collection of homogeneous microproces-
sors, a switch lattice and a controller. The PEs are connected at regular intervals
to the switch lattice, which itself can be configured to connect the PEs together in
many different ways. It 1s thus possible to implement different interconnection

schemes, as well as to isolate malfunctioning PEs.

Popli and Bayounu propose a structure similar to that of CHiP for implemen-
tation on a single VLSI device [Poli and Bayoumi, 1988). The ability to reconfigure
on-line the array to work around transient problems with a particular PE increases
the fault-tolerance of the entire system, whereas the off-line reconfiguration of the
array to alleviate a permanent PE failure greatly increases the yield of the VLSI
device (thus decreasing 1ts cost). Youn and Singh propose a design which can
efficiently reconfigure both tree and rectangular structures [Youn and Singh, 1988].
Their main concern is to minimize the extra delay introduced by the e onfigu-
ration path. Their approach is also able to handle clustered defective processing
elements (since faults are often not uniformly distributed across the surface of a

die or wafer).

13
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Sha and Steiglitz formulate the problem of array reconfigurability m terms of
graph theory and derive a lower bound on the time complexaty of any recontig-
uration algorithm [Sha and Steiglitz, 1991]. Codenott1 and Tamassia on the other
hand use a network flow model of the virtual fault-free arrav composed of the
functional cells of the partially defective array [Codenotti and Tamassia, 1991].
A survey of reconfiguration methods for array processors can be found

in [Chean and Fortes, 1990].

1.5 Systolic Array Applications

Although systolic arrays were originally proposed by Kung for matrix computa-
tions [Mead and Conway, 1980], they have since been used to solve problems in a
number of diverse fields. This section looks at a number of such applications, with

an emphasis on numerical and signal processing problems.

1.5.1 Matrix Computations

Matrix computations are a natural fit for parallel inplementations since they usu-
ally make use of fairly simple operations repeated very often. Furthermore, source
operands are often used several times, thus making high demands on memory
bandwidth. Thus it is hardly surprising that systolic architectures have been sug-
gested to solve anumber of matrix algorithms. In[Mead and Conway, 1980], Kung
suggests systolic structures for performing matrix-vector inner products, matrix-
matrix multiplications and linear system solving using LU decomposition Another
approach to matrix-matrix multiplication is presented in [Pengand Jun, 1988],
where a systolic array of 1/? processing elements is used to multiply two s by

m arraysin time 31/ — 1.

The solution of large systems of linear equations is a problem which comes up

14
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frequently in scientific computing, and it has also been approached using systolic
arrays. In [Benaini and Robert, 19901, % + ()(n) processors are used to perform
Gaussian elimination on an 7? problem using time 3n — 1. Using instead LU
decomposition, Wan proposes in [Wan and Evans, 1993] an architecture which can
solve the problem AX = B where A is ann » n matrix, Xisan » x pmatrixand Bis
also 1 ~ pusingan array of np+ ﬁ(ﬁ;—]l processing elements in time 4 + p ~2 for the
first system, 2u for each additional system (thus making this structure ideal for a
pipelined system) The same array can also be used to compute theinverseofa n xn
matrixin time 5» —2. In many scientific applications such as finite element analysis,
linear system are very sparse and thus require special solutions in order to achieve
high performance. Tsengimplemented [Tseng, 1988] a general sparse linear system

solver using the incomplete Choleski pre-conditioned conjugate gradient method

on the Warp systolic computer [Annaratone et al, 19871.

Another computationally intensive matrix operation which can be solved
using systolic arrays is the extraction of eigenvalues/eigenvectors. ~Althouga
the general QR-decomposition method is not very suitable for parallel im-
plementation, it can be useful in the case of symmetric tridiagonal matri-
ces [Phillips and Robertson, 1988]. Here, an m x (n + 1) systolic array is able to
extract the eigenv.:lues and eigenvectors of an n x n symmetric tridiagonal matrix
in time 21 + 21 — 1, with much greater savings if pipelined results are needed.
Another popular method is the Jacobi algorithm: systolic arrays for comput-
ing eigenvalues/eigenvectors using this method are presented in [Delosme, 1990]

and [Lam, 1991].

Linear Least Squares problems are frequently encounted in signal-processing
applications.  These consist in computing the vector xr which minimizes
-V —b]. Systolic methods for the solution of this problem are proposed
in [Chen and Yao, 1988} and [Torralba and Navarro, 1988, whichare both based on
QR decomposition. Moonen [Moonen and Vandewalle, 1993] proposes a method

to solve the Recursive Least Square (RLS) problem, which consists in recomputing
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the least squares solution after appending new data by making use of the results
fromthe previous step. Whenthe effects of finite-precision arithmetic are taken into
consideration, some methods yield better results: for instance, Liu [Liu et al., 19901
presents an architecture which performs the Systolic Block Houscholder Transfor-
mation in order to  ompute the RLS algorithm. A version of this architecture which
can handle complex numbers is presented in [Tar.g et al., 1991]. Liu also proposes

a systolic solution to the same problem using the Givens rotation [Liu et al., 1991]

1.5.2 Transform Methods

Systolic arrays have been used to efficiently implement transformation opera-
tions. This is a natural application which was also first proposed by Kung
in [Mead and Conway, 1980]. He remarks than “an n-point discrete Fourier trans-
form is the matrix-vector multiplication, where the (i. ;) entry of the matrix is
w(=16=1) and w is a primitive nth root of umty”. Thus the same structures pro-
posed for matrix operations (extended to operate on complex numbers) can be
used to compute an n point DFT in O(n) time, as opposed to the O(nlog 1) op-
erations required for the FFT algorithm implemented on a sequential processor.
Kung then proposes how the roots of unity can be generated internally to the
array if each array processing element has at its disposition an extra register:
this method decreases the connectivity requirements for each PE Kar proposes
in [Kar and Bapeswara Rao, 1993] a scheme which can reduce almost by half the
number of multipliers required to compute the DFT algorithm. This 1s a significant
savings since multipliers tend to take up a large amount of silicon real-estate, which
is crucial when considering the implementation of a systolic array as a VLSI de-
vice. By rewriting the DFT in a recursive form, only 2« + 2 multipliers are required
instead of 4, and the cycle time can be reduced from (/,, + 2/,)to (1,, 4 1, ) where

t,, is the time required to perform a multiplication and /, an addition.

The Fast Fourier Transformis an algorithm which is used to shorten the amount
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of time required to compute an n point DFT on a sequential processor from
O(n?) time to O(n log 1) time It can also be implemented using a systolic ar-
ray [Choi and Boriakoff, 1992], where it has the advantage of lowering the required
number of processing elements from n to logn (with the addition of some slight
overhead, namely nlogn simple single-stage shift registers). Furthermore, this
circuit can produce two results at each clock cycle, and does not require ROMs for
storing the roots of unity (this can be a factor when implementing such circuits
as gate arrays: look-up tables and other such storage elements tend to be very
expensive in terms of gate count, and it is usually not practical to go off-chip to
access an external memory, in contrast to older designs based on discrete parts
where a single ROM lookup table could save considerable amounts of circuitry).
In [Johnsson ¢t al., 1988, Johnsson shows how a systolic FFT algorithm can be im-
plemented on a boolean n-cube machine such as the Connection Machine model
CM-2. This method makes use of the high storage bandwidth within a node, and
is optimized for the communication patterns between the nodes. Fora P = 27
point Decimation in Frequency FFT executed on A" = 2" processors, the first p — n
steps are executed locally on each processor and the last log, N steps require inter-
processor communication. For a Decimatiow in Time algorithm, these are reversed.
This is made possible by storing 55 + 2 A" twiddle factors for £ elements stored in

each of the V' processors.

Image-processing applications will often require the computation of two-
dimensional Discrete Fourier Transforms, since a number of image filtering algo-
rithms can be implemented as simple masking operations in the frequency domain.
Sarkar [Sarkar and Majumdar, 1991] presents an architecture which uses two lin-
ear arrays of \/ 'V processing elements to compute the /N x /N 2-D DFT in time
O(N). The first array of /N processors is used to compute the DFT of the rows,
and the second array is used to compute the DFT of the columns. An extra pro-
cessor is required to generate the roots of unity. All of the PEs are used 100% of

the time. The speedup in the computation time over the single processor case is
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52—>‘\L‘T—l = 2/, which means that it achieves an optimal linear speedup of 2y 'V
using 2/ processors. Sarkar also proposes an Instruction Systolic Array to com-
pute the 2D FFT [Sarkar et al,, 1991]  An ISA is a systolic array where instead of
letting the data flow through the array from PE to PE, the data remans stationary
whereas instructions flow rhythmically from PE to PE at each clock cycle. For a
V"N x VN point FFT, this design uses .\ processing elements and can complete the

operation in time O(V/'N).

A different approach to the problem which uses coordinate rotation digital
computer (CORDIC) PEs is proposed by Jones [Jones, 1993]. The conventional DFT
sum is first expressed recursively using Horner’s rule. Note that multiplication
of the input values by the powers of the roots of unity is equivalent to simple
phase rotations which can be implemented using the CORDIC algorithm  The
main advantage of this method is that it does not require muluphers, which are
instead replaced by additions and shifts (these are usually more space-efticient in
VLSI designs). Based on this method, the FFT of a 2D signal with A = .\ .\, points

can be computed in O(.V) time using N'/4 bit-serial PEs.

Systolic arrays have also been used to compute other transform operations. For
instance, Hellwagner proposes in [Hellwagner, 1988} an archutecture to perform
the one-dimensional Generalized Fourier Transform: this means that the array can
be configured to compute a wide class of discrete linear transform mcluding the
Walsh-Hadamard and Discrete Fourier Transforms. Another transform method
which is useful in signal processing applications is the Discrete Hartley Transform
(DHT):its main advantage is that it requires real number arithmetic only as opposed
to the complex number arithmetic required by Fourier methods Using a linear
systolic array of CORDIC processors, the system presented by Meher, Satapathy
and Panda [Meher et al., 1993] can compute the recursive DHT algorithm fora 4 N
sequence in time N using Y processing elements. Chakrabarti and JaJa propose
a bit-serial systolic array which can be used to compute two-dimensional Discrete

Hartley and Discrete Cosine Transforms [Chakrabarti and JaJ4, 1990] (the DCT is
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also a real-only transform which is used among other applications as the basis
for the JPEG image compression algorithm [Wallace, 1991]). This architecture can
compute the DHT or the DCT ofa N = N} = N array of p-bit operands in time

O(p( N1+ N2) ), which optimally corresponds to the rate at which the input operands

can be shifted into the bit-serial PEs.

1.5.3 Convolution Methods

Whereas the transform methods of the previous section operate on a signal in the
frequency domain, it is also possible to operate directly on the signal itself using the
time (or spatial) domain representation of the desired filter. For discrete signals,
convolution is basically a multiply-and-accumulate array operation: thus itis anat-
ural candidate for systolic implementation. In [Kung, 1982], Kung presents a num-
ber of possible alternatives for the design of one-dimensional convolution arrays
(there are many possible alternatives, which relate to whether the source data or
the filter coefficients are stationary, as well as how partial results are communicated
between the processing elements). An implementation of a one-dimensional sys-
tolic convolution device from Harris Corporation is shown in [Chester et al., 19911.
Since convolution arrays are usually used toimplement linear phase Finite Impulse
Response (FIR)filters, the inherent symmetry of the coefficients of these filters can
be exploited to reduce the number of required multiplications: Kwan proposes an

architecture which exploits these properties [Kwan, 1993].

In [Kwan and Okullo-Oballa, 1990], Kwan approaches two-dimensional convo-
lution from three different perspectives. His first method minimizes the required
/0 bandwid th as well as the number of processing cells. The second method com-
pensates for slower processing elements by increased parallelism. Finally, the third
method minimizes the number of /O pinsrequired for a VLSI implementation. For
his part, Ersoy approaches the problem of circular and skew-circular convolutions

using a semi-systolic array whichrequires greater communication between PEs but
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has a smaller startup time, which is beneficial for small convolutions [Ersoy, 1985].

Although most general one-dimensional digital signal processing con-
cepts [Oppenheim and Schafer, 1989] can be applied to two-dimensional problems,
there are nevertheless a number of differences, mostly regarding filter design.
Whereas the ideal one-dimensional low-pass filter is a ~:n(+)/ function, in two
dimensions the ideal circularly-symmetrical filter is a Bessel function of the first kind
of order 1 [Dudgeon and Mersereau, 1984]. Since this function is not separable
(i.e. it cannot be expressed as the products of two functions depending only on .
or y), this is why two separate one-dimensional convolution operations cannot be
used to do low-pass filtering (such attempts yield strongly anisotropic results: in
general, the only separable filter is the Gaussian function, which often cannot be

used as a filter since it does not roll off quickly enough).

Several methods for designing two-dimensional low-pass filters are outlined
in [Lim, 1990] (from a low-pass filter specification, it is simple to generate corre-
sponding band-pass, band-stop or high-pass filters). The most straightforward
method is to take the ideal impulse response (which has infinite extent) and trun-
cate it to a reasonable length (given the performance constraints under which the
convolution will have to be performed). A simple rectangular window can have a
fairly negative impact on the frequency response of the resulting filter (multiplica-
tion of the ideal filter in the spatial domain with a windowing function corresponds
to convolution with the Fourier transform of the window in the frequency domain)
Discussions on the merits of various windows for two-dimensional filters can be

found in [Huang, 1972] and in [Speake and Mersereau, 1981].

There are several other possible filter design methods For instance, in the
frequency sampling method, the frequency response of the desired filter is sampled
and the Inverse Discrete Fourier Transform is applied to these samples to obtain
the coefficients of the corresponding spatial domain filter. Although this method

can be effective, as with the windowing method it does not produce an optimal
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filter (that s, a filter with the minimal region of support / number of coefficients).

Frequency transformation methods seek to design optimal two-dimensional
filters starting from an optimal one-dimensional design. A popular method
for designing such filters is the Parks-McClellan algorithm, which is pre-
sented in [Parksand McClellan, 1972].  From this one-dimensional filter, a
frequency transformation function is used to map the filter into two dimen-
sions.  For circularly symmetrical filter designs, the McClellan transforma-
tion can be used [Merserau et al., 1976] [Mercklenbrauker and Merserau, 1976]
[Psarakis and Moustakides, 1991]. Note that in all of these methods, one of the
most important criteria for the “success” of the filter is the preservation of the zero-
phase characteristic which ensures that only the magnitude of the image signal
is affected and not its phase (those who are skeptical about the need for this are
usually shown a demonstration where an image can be reconstructed with little
alteration from its phase information only, whereas such an attempt using only the

magnitude information fails miserably).

1.5.4 Image Processing and Computer Graphics

Low-level image processing and machine vision algorithms must often perform
repetitive computations on large two-dimensional arrays of image pixels. For
instance, the Carnegie-Mellon Warp systolic computer has been programmed to
efficiently perform convolution, histogramming, Fast Fourier and Hough trans-
forms [Gross et al., 1985]. These algorithms are used as basic building blocks in
most machine vision applications and greatly benefit from a system such as Warp
which is fully programmable while retaining the high performance of an array

Processor.

A more recent system is presented by Choudhary and Patel

in [Choudhary and Patel, 1988]. Their architecture is called NETRA: it is based
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on a large number (100 to 10000) of processing elements which can be organized
into clusters of 16 to 64 PEs each, a tree of control processors, a shared global
memory and an interconnection network. The PE clusters can operate either in
SIMD, systolic or MIMD mode. Implementation overviews are given for data com-
pression, edge detection, feature matching, surface fitting, contour location and
surface interpolation algorithms. One possible application would be a 3D stereo
vision system, an important part of which is the recovery of depth information
from a pair of images. Guerra and Kanade propose a systolic algorithm for this

purpose [Guerra and Kanade, 1984], with an eye towards VLSI implementation.

HERMES is a multiprocessor vision system [Bourbakis and Barlos, 1988] con-
sisting of ‘}—',2, 0 <1 < log, N PEswhere .V x \V is the size of the image to be processed
and ¢ is a resolution parameter (i.e. the size of the sub-regions into which the image
will be decomposed). Contrarily to most systolic array processors, HERMES 15 a
stand-alone system which does not require a front-end host. Image data 15 gathered
directly from a photosensor array and fed to the PEs which process it in hicrarchical

fashion. Some cf the algorithms implemented on HERMES include:

General Coding Algorithm (GCA)

Segmentation Region Analysis Algorithm (SRAA)

Freeman Coding Algorithm (FCA)

Simple Transmission Algorithm (STA)

Order Decoding Algorithm (ODA)

The growth of multimedia applications has created a strong demand for image
compression methods. One such scheme is adaptative vector quantization. The
image is first decomposed into a set of vectors, from which a subset is chosen to
form the basis of a codebook (most codebook generation algorithms attempt to

iteratively generate a locally optimum codebook). Once this is done, the image
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or set of images can be encoded (or quantized) using the codebook: only the
labels of the codewords now need to be stored or transmitted. If many images
need to be encoded, Adaptative Vector Quantization (AVQ) attempts to improve
results by adjusting the codebook for each new image based on local statistics.
Image reconstruction is done using a simple table look-up of the labels on the
codebook, thus yielding a compression method where most of the effort is spent on

compression: these methods are especially appropriate for digital media storage.

Clearly, codebook generation is an expensive procedure in all but the most
trivial cases. Pancharathan and Goldberg propose a systolic array which can
perform adaptative VQ [Panchanathan and Goldberg, 1991]. The systolic array
is composed of L x N systolic cells connected in parallel where L is the vector
dimension and N is the codeword dimension. Each cell can operate in two modes.
In forward mode, it computes the basic distortion operation where the distance
between a vector and a set of vectors is computed and accumulated. In the reverse
mode, it computes the centroid operation which is used to average vectors into the
new codewords. This architecture achieves a speedup of V'L, and has the main

advaniage that the centroids do not need to be transferred into or out of the array.

Systolic architectures have also been used for computer graphics applications.
For instance, a team of IBM scientists built a high-performance graphics system
based on a custom-designed chip known as SAGE, the Systolic Array Graphics
Engine [Gharachorloo et al., 1988]. The objective of this architecture is to fight the
memory bandwidth limitations which plague graphics systems: rendering algo-
rithms such as Z-buffering, texture mapping and multi-sample anti-aliasing require
ever larger video buffer bandwidths, while increasingly dense VRAM packages of-
fer diminishing throughputs. SAGE maps a scan line of the display into a linear
array of systolic processors, one per pixel. Drawing primitives are decomposed
into scan-line fragments which are fed to the array at one end. As the fragment
travels down the array, each processor decides whether to render the fragment

based on the edge equation and depth information of the fragment (all of which is
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computed incrementally). Each PE retains its current color and depth value. Once
all the fragments have been fed to the array (one per clock cycle), a retresh token
is sent, and the array begins to shift out the resulting pixel values which are used
to generate the video signal The array can then be used to scan-convert the next
scanline in the display. Another computer graphics application was suggested by
Megson, who uses a systolic array to generate B-Spline patches used in rendering

curved surfaces [Megson, 19911.

1.5.5 General Algorithmic Computations

This section looks at general algorithmic problems which have been approached
with systolic solutions. One such topic 1s the Algebraic Path Problem, which shows
up under different guises in various fields' transitive closure and shortest path prob-
lems in graph theory, matrix inversion in linear algebra and the generation of reguluy
languages in automata theory. The algebraic path problem 1s detined in terms of a
weighted directed graph (¢ = V. £.«w(c) where | the set of vertices, IY the edges
and w(¢ ) the weight (or cost) of the edges. If the vertices are numbered from 1to N,
then the objective 1s to find for each pair of vertices (., ;) the sum of the weights of
all distinct paths from / to ;. The APPis a O(N*) problem, and is thus expensive to
compute on a serial-execution processor. Benaini and Robert propose a systolic ar-
ray which requires "Tz + O(:V') processors and can solve this problem in linear time,
5N — 2 steps [Benaini and Robert, 1990). A similar solution is presented by Lewis
and Kung which uses N2 processors and also requires 5V — 2 steps to complete (in-
terestingly enough, both designs claim to be “optimal”...) Scheiman and Cappello
perform arigorous analysis of the complexity of the method proposed by Lewis and
Kung and come up with a precise lower bound of [%2] on the number of processors
required for ime-minimal completion [Scheiman and Cappello, 1992] Similarly,
Cappello analyzes the machine-independent maximum parallelism which can be

realized in a systolic implementation of cubical mesh algorithms [Cappello, 1992]
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(cubical meshes are used for a variety of algorithms such as finding the longest
common subsequence among three strings, L-U factorization of matrices, three-

pass transitive closure, matrix triangulation and inversion and two-dimensional

tuple comparison)

Another interesting application is a systolic implementation of a
Move-To-Front (MTF) text compressor suggested by Thomborson and
Wei [Thomborson and Wei, 1991].  MTF compressors work by creating a list of
“words”. Instead of transmitting the symbol itself, the encoder transmits its cur-
rent position in the list, and then moves the symbol to the front of the list. An
adaptative Huffman or arithmetic code can be used to assign shorter codewords
to the positions near the front of the list (which quickly get filled with the symbols
which occur with the greatest frequency in the input stream). In the simplest case,
the “words” can be the 256 8-bit bytes, although longer words yield better results.

This method is suitable for on-the-fly compression and decompression for data

transmission.

Priority queues are partially-ordered data structures which support two opera-
tions: tnsert which adds a new element to the structure and deleternin which deletes
from the structure and returns the “smallest” element in the structure. On a se-
quential processor, both such operations require 3 log(n) steps if there are already
n elements m the queue. Cheng proposes three alternative designs [Cheng, 1988.
The best solution requires O(log (1)) processors and can implement both tnsert and
deletern in (1) (ie. constant) time. Priority queues can be used to sort data
(by first mserting all the data in the structure and then deleteming it in order: on a
sequential processor, this would yield a O(nlog(n)) sort algorithm, whereas here
linear time sorting would be achieved. Another application is discrete event sim-
ulation, where cvents are inserted into the priority queue according to their arrival
time. At any iteration, the deleternin operation is used to retrieve the next event to
occur: processing this even might cause later events to be scheduled and inserted

back into the queue. The simulation terminates when the queue is empty. A similar
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data structure is the hash table, which stores elements into a number of separate
lists indexed by a hash value computed from the data element. Panncerselvam et
al propose a parallel systolic hashing architecture which can be used, among other

applications, to sort values in O(n) time [Panneerselvam ¢t al , 1988).

1.5.6 Pattern Recognition and Neural Networks

Pattern recognition often involves a large amount of calculations which have to
be repeated many times and which reuse the same data over and over. Thus 1t is
hardly surprising that systolic arrays have been proposed to solve these classes of
problems. For instance, Frison and Quinton propose in [Frison and Quunton, 1984]
a systolic machine which can perform continuous speech recognition in real-time
with a vocabulary of 2000 words In this architecture, 89 processing clements are
connected in a 2D array where each PE sends imntermediary results to its right and
bottom neighbors. This array performs the word spotting step of the process,
which consists in detecting the words of the vocabulary m the speech signal The
array receives phonemes as mput from a phoneme analyzer and computes the

probabilities that a word has been recognized given the phoneme string,.

McWhirter proposes in [McWhurter et al, 1990] a systohe array for mult-
dimensional fitting and interpolation using radial ba<is functions (RBF) The ar-
chitecture is composed of two parts: the RBF pre-processor 1s used to determune
the coefficients of the basis functions (radially-symmetrical Giaussian functions),
whereas the second part is a least-squares processor which fits the data to be recog-
nized using the basis functions from the RBF pre-processor The array operates in
two modes: first, it 1s fed with a set of training data vectors from which 1t derives
interpolation coefficients. This “knowledge” 15 then frozen and the array can be
used on a set of test data vectors which must be recognized. The operation of the
array can thus be related to that of a neural network based on the feed-forward

multi-layer perceptron (MLP) model.
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Since neural networks are intrinsically parallel computing structures, itis hardly
surprising that systolic arrays have been used to implement these structures in an
efficient manner. Kung proposes in [Kung, 1988] systolic arrays to implement both
single-layer feedback networks (i.e. Hopfield neural nets) and multi-layer feed-
forward neural nets Hopfield nets are formulated as a consecutive matrix-vector
multiplication interleaved with a non-linear activation function. Each PE is used
to model a neuron, and behaves differently in the search phase (where the neurons
update therr activation values) and in the learning phase (where the neurons are
“trained”’) Chinn et al. [Chinn et al., 1990] implemented these systolic arrays on
the massively parallel MasPar MP-1 SIMD machine and applied them to speech
recognition (the MasPar machine is further discussed in section 4.2). Concerned
with the large number of learning iterations required of traditional MLP neural
nets, Chiang and Fu [Chiang and Fu, 1990] propose a ring systolic array imple-
mentation which requires two orders of magnitude fewer learning iterations than
conventional structures. Ramacher and Raab extracted the common computa-
tions in neural net models and propose a hardware systolic architecture which
can efficiently perform these computations in parallel [Ramacher and Raab, 1990].
Whereas all of the methods proposed above exploit the spatial parallelism and the
training set parallelism in neural networks, Chung etal [Chung et al., 1992] propose
a systolic structure which exploits the fact that forward and backward passes can
be executed i parallel with pipelining of multiple training patterns in backprop-
agation neural nets. They apply this architecture to the NETtalk text-to-speech

neural network which converts English text into phonemes.

1.5.7 Other Scientific Applications

Systolic arrays have also been proposed for other various scientific applications.
For instance, a systolic array has been proposed to perform data encryption and

decryption in Rivest-Shamir-Adleman (RSA) cryptosystems [Zhang et al., 1988].

27



1. Systohc Arrays

The RSA algorithm is a public key encryption method which is based on the
difficulty of factoring large integers [Rivest et al,1978]. A user of this system

would create his keys in the following way:

1. Choose two random large prime integers p and ¢
2. Obtain the public modulus .V = pq

3. Choose a random large integer D) such that the greatest common divider

GOCD(D.(p—1)q-1)) =1
4. Compute £ = D~ "mod(p - 1)(q — 1)

5. Publish the public key ( £. N') and keep the secret key (1), .V)

Thus anyone can use the user’s public key to encrypt a message M into a
cyphertext C using the equation (' = Al*mod V, and the user can decrypt the text
using M = ('"mod N'. Although very secure, this method requires a fair amount
of integer computations, especially if it is to be used for real-time encrypted com-
munications (such as secure phone lines), hence the need for specialized parallel
hardware. Two methods are proposed: one requires 3

log I-| processing elements

arranged in a linear array, the second method is based on a double linear array

with 2n PEs where n is the number of bits in /.

Systolic arrays have also found applications in experimental sciences. For in-
stance, Squier and Steiglitz used a custom processor called LGM-1 to perforin
lattice-gas automata simulations [Squier and Steiglitz, 1990]. This allowed them
to compare the results of simulations run on this architecture with results ob-
tained from other methods and investigate the cause of erroneous results. In
biology, the DNA sequence comparison problem has been approached using
a custom-designed linear systolic array named P-NAC [Lopresti, 1987]. It was
able to run two orders of magnitude faster than then-current minicomputers for

that specific application. A similar solution to this problem is demonstrated by
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Hoang [Hoang, 1992], who implemented his system on the SPLASH programmable
. logic array [Gokhale et al., 1991]. Since DNA sequence comparison is basically a
pattern matching problem, it is hardly surprising that systolic arrays are useful for

that application.




Chapter 2 System Architecture

2.1 Introduction

This chapter, looks at the overall architecture of the convolution processor which
as has been discussed before, is based on an array of specialized devices connected
in a systolic array fashion. Greater emphasis will be put on the description of
the structure and operation of some of the more relevant sections of the system;

implementation details will only be covered in tiie following chapter.

2.2 Overall Architecture

Figure 2.1 presents the overall architecture of the convolution processor.
Since most image processing research these days is being done on general-
purpose UNIX workstations, the system is designed as an attached processor
[Hwang and Briggs, 1984] which can be used to speed up convolution operations
on such a platform. This dictated the choice of a standard and widely-used bus
through which the system could communicate with a host processor. As further
explained in the following section, a VMEDbus interface was chosen for the imple-

mentation.

The interface between the host VMEbus and the system local bus implements
a programmable Direct Memory Access controller. Source and destination images
are stored in the main memory of the host processor. Figure 2.2 illustrates how
the source image data is read from host memory by the DMA engine. The data is

processed by the systolic array and then written back to host memory, completely
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Figure 2.2: Data flow between host memory and systolic array
independently of the host CPU.

The DMA engine is based on a Motorola 68020 CPU and the VTC/Cypress
VIC-068 VMEDbus Interface Controller. This Application Specific Integrated Circut
(ASIC) implements a complete interface between the VMEbus and a 680x0-style lo-
cal bus. The combination of these two devices yields an intelligent DMA controller
which is fast enough to handle the required data rates, yet retains great flexibility.
Since the core of the work performed for this thesis consists in the design and
implementation of this VMEbus interface, the next chapter shall be devoted to its
study. In the meantime, suffice it to say that the DMA engine is responsible for
reading the source data from host memory into the Input First-In First-Out memory

(FIFO), and to write the results from the Output FIFO back to host memory.

In most image processing systems, source images will be composed of integer

data captured from such sources as cameras or laser range finders. Since the
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systolic array operates only on 64-bit IEEE standard floating-point numbers, an
input converter takes care of data type conversion. It currently allows both 8-bit
and 16-bit nput data. In certain cases, itis desired to perform several convolutions
on the same image (perhaps interleaved with other processing steps). To minimize
errors and loss of precision due to repeated conversions between numeric formats,
intermediate results can be kept in floating-point format. Thus the input converter

can also accept floating-point data which it passes along to the next stage without

modification.

Each line of the image must be fed to the systolic array as many times as there
are lines in the convolution kernel. This task is handled by the delay memory
circuit which accepts as input the floating-point data from the input converter. It
has sufficient memory to buffer the required input image lines, and can feed this
data to the lines of the systolic array in the required order. In this way, the lines of
the source image do not have to be fetched multiple times from host memory, thus
greatly decreasing the required bus bandwidth. The delay memory circuit also
implements the image interpolation feature of the system: it does this by inserting
zero values between the pixels of the input image in order to raise its sampling
rate. Convolving this up-sampled image with a low-pass filter of the proper cutoff
frequency and phase will replace the newly introduced zero values by the desired

interpolated values while keeping the original pixel values unchanged.

The systolic array performs the actual convolution operation. The lines of the
image are fed to each line of the array in turn from the left side. These input values
and the partial results which they generate propagate from left to right, and in the
case of the partial results, from the output of the right-most processing element of a
line to the input of the ieft-most processing element of the next line. The final result
comes out of the output of the processing element at the bottom-right of the array.
Note that the kernel coefficients have been pre-stored in each of the processing

elements, one coefficient per such device.

33



2. System Architecture

The output of the systolic array can go to two destinations. A recombi-
nation memory is used to store intermediate values when performing multi-
image operations, such as is needed when performing color-recombination
[Malowany and Malowany, 1989]. The data can also go the output converter which
will converi the resulting floating-point data back into 8-bit or 16-bit integer format.
This is often required since the following steps of the image processing algorithm
might not require the full precision of floating-point results. If the output of the
convolution processor represents the final results of the algorithm, then it might
need to be displayed in a frame-buffer, which can usually accept only small (8-
bit) integers. The conversion from floating-point to integer format is done by a
binary search into a look-up table of interval limits: since this look-up table is
programmable, it is possible to select an arbitrary non-linear mapping. Another
function of the output converter is that it can selectively ignore output results to
implement sampling rate reduction (or down-sampling) when combined with the
proper tilter. As was the case for the input converter, the output converter can
be configured to pass aata through without modification if floating-point output
is desired. The output of the output converter goes into the output FIFO, from
where the data is read by the DMA engine to be written back into the host system

memory.

2.3 Host Bus Selection

Whenever a peripheral device is to be designed, the selection of the host interface
bus is one of the first design decisions which is made. In the commercial world,
this choice has a strong effect on the profitability of the design since althouga it
may be technically and economically viable, no one will want to purchase it if it
cannot be used with popular computing platforms. Fortunately in this case, there

were no such economic pressures. The selection criteria were the following:
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1. The host bus has to have enough bandwidth to keep the systolic array from
“starving”. If floating-point operands are used both for the input and the

output, this translates to a required bandwidth of 16 Mb/s.

2. The form factor of the boards has to be large enough to allow implementation

of a fairly large and power-hungry design.

3. The bus protocol must allow multiple bus masters so that the DMA engine

may take control of the bus while transferring image data.

4. The bus interface has to be simple, or else ASIC solutions must be available

which implement a reliable and complete interface.

5. It has to be compatible with the equipment used in our research group.

A previous project where an integer convolution processor was designed and
built [Boudreault and Malowany, 1986],[Haule, 1990] had used the Multibus or
IEEE-796 standard [Multibus, 1983), but although it is still used in some indus-
trial applications, this platform is now obsolete. A logical successor might have
been Multibus-II, but at design time there were still no single-chip interface solu-
tions, and very few systems actually use this standard (although its designer, Intel,
appears to be trying to resuscitate it as a platform for high-end PC compatible

file-servers: whether this effort will succeed is unknown at this time).

The ubiquitous Industry Standard Architecture (ISA, also known as AT) bus
fails to meet criteria 1 to 3. Its successor, Extended Industry Standard Architecture
(EISA), as well as the IBM MicroChannel satisfy criteria 1 and 3 but do not offer
much board real-estate. Furthermore, at the time of the design there were no

off-the-shelf solutions which implemented a bus-mastering interface.

So-called “Mezzanine” buses such as SBus (from Sun Microsystems) or Tur-
boChannel (from Digital Equipment Corporation) offer a lot of bandwidth, but

suffer from very small board form factors. This is not so much a problem when
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contemplating a high-volume design where surface-mounted components can be
used on both side of the board, but it severely restricts the amount of available
space in a prototype design such as ours. Furthermore, although their promoters
would have us believe otherwise, these are essentially proprietary solutions which

find little use outside of the products offered by these companies.

So the choice was made to implement a VMEbus interface. As will be seen in
the next chapter, VME satisfies all of our criteria. Its peak bandwidth (40 Mb/sec) is
sufficient for our needs and there exists a number of ASIC interface solutions which
implement a bus-mastering interface. VME is used by a number of machines at our
facility, including the larger Sun and Silicon Graphics workstations, as well as the
VME-based Sensory Computing Environment [McRCIM, 1990] being developed

here.

Note that in the future, such a design would probably be imple-
mented on Futurebus+, the next generation in general-purpose computer
busses [Futurebus+, 1990]. Although FutureBus+ interface silicon is just starting
to become available, there is a growing interest in this standard due to the tremen-
dous performance it offers. Recently introduced high-end servers from Digital
Equipment Corporation based on the Alpha micro-processor use Futurebus+ to
give these machines high inter-processor and 1/O bandwidth. The U.S. Navy
has standardized on Futurebus+ for all on-ship computing systems (among other
considerations, the ability to insert and remove boards from a Futurebus+ back-
plane without powering down known as “hot” or “live” insertion is appreciated
in systems which must maintain very high availability). As costs fall and band-
width requirements increase, this bus standard might start appearing in lower-end

products.
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24 InputConverter

As outlined previously, the function of the Input Converter is to transform input
data formats into the IEEE-754 standard floating-point format which is understood
by the convolution array. It then passes this data on to the next stage, the Delay

Memory Circuit.

2.4.1 Data Formats

The input converter understands the following input data formats:

1. 8-bit unsigned integer
2. 16-bit unsigned integer, big-endian

3. 64-bit IEEE-754 double precision floating-point format, big-endian

In the case of the second and third formats, big-endian byte order (i.e. the
highest byte first) was selected somewhat arbitrarily: since data is read directly
from host memory by the DMA Engine, this has to be compatible with the data
format used by the host. Since convolver discussed here is to be used with SPARC
and Motorola-based hosts, big-endian ordering was a natural. It is also assumed
that the host uses IEEE-754 as its floating-point storage format: very few current
machmes (with the notable exceptions of those based on the VAX, IBM 360 and

CRAY architectures) use a different format.

2.4.2 Overall Architecture

Figure 2.3 shows the structure of the Input Converter. Status bits controlled by the

local CPU are used to define the data type to expect. It reads its operands from the
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Figure 2.3: Input Converter Block Diagram

outputs of the Input FIFO. Since it 1s made up of 4 8-bit wide devices, the control
logic must decide which outputs to enable in the proper sequence, based on the
type of data. Floating-point operands do not need to be processed, so they are
passed on directly to the output of the Input Converter. Both 8 bit and 16 bit data

are treated as 16 bit data, the 8 upper bits of the former being set to zero.

Conversion of a 16 bit integer operand into floating-point format is done in the
following way. Theinteger is loaded into a 16 bit shift register, while a 4-bit counter
is initialized with the desired value (8 or 16). The operand is then shifted left until a
1 appears in the most significant bit of the shift register, at which point the content
of the shift register will represent the normalized mantissa of the floating-point
number. For every left shift operation, the counter is incremented and yields, in
the end, the floating-point exponent. The entire procedure takes at most 16 clock
cycles, which corresponds to the cycle of the entire system for an operand (i.e. in

most cases, the convolution array requires one input operand and produces one
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output data item every 16 cycles).

A detailed description of this procedure is outside the scope of this thesis:
interested readers are referred to [IEEE-754, 1985] for details on the floating point
formatand [Drolet et al , 1990],[Drolet, 1992] for operation and implementation de-
tails. Suffice 1t to say for now that a double-precision number uses 52 bits for its
mantissa, 11 buts for its exponent (stored in excess-1023 notation) and 1 bit for its

sign. The low 37 bits of the mantissa are always set to zero by the converter.

Once the desired floating point exponent and mantissa have been obtained, the
Input Converter needs to serialize its output to the next stage, the Delay Memory
Circuit, since it expects floating-point operands only 8 bits at a time, starting with

the low-order byte.

2.4.3 Implementation Considerations

In most designs, space is an important limiting factor. The VMEbus 6U double-
high, double-wide form factor offers 373cm? of board space, which is not very
much when considering the complexity of this design. Thus an implementation
based on Programmable Array Logic (PAL) devices and other random logic would
consume too much space. A better solution is the Field Programmable Gate Array
(FPGA). As with the more conventional gate arrays, the FPGA is composed of an
array of logic blocks which can be connected to generate any desired combinatorial
or sequential logic circuit. The main difference is that whereas the interconnections
in conventional gate arrays are permanently manufactured into the chip (typically
as metalization layers), FPGAs are programmed on power-up by loading a configu-
ration bit pattern into RAM memory locations. Thus FPGAs do not suffer from the
long lead times and high non-recurring expense (NRE) of gate array or standard
cell devices. On the other hand, their unit cost is significantly higher, so they are

typically used for low to mid-volume designs [Mokhoff, 19931.
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The very quick turn-around time of these devices means that theyv are otten
used for prototyping systems, after which they can be mugrated to more con-
ventional devices when production volumes justify the NRF [Egan, 19911 FPGA
devices have also been used to design a completely recontigurable parallel proces-
sor named SPLASH [Gokhale et al , 19911 Note that FPGAs have somewhat lower
performance than gate arrays or standard cell devices. Furthermore, although
high-level software which can accept a design n the form of logic equations o1
standard library parts and map it onto the FPGA logic block architecture exists, it
usually produces non-optimal designs which either fail to use all of the available
real-estate or generates unacceptable reuung delays. For high-performance ap-
plications, the designer is often forced to manually specify the partionning of the
design into the logic blocks of the part, as well as the routing between these blocks,
a tedious task at best Newer Computer Aided Design (CAD) tools as well as better
FPGA architectures hope to lessen the burden on the FPGA designer [Bursky, 1992]
[Clark, 1992]. The ultimate objective 1s to be able to automatically synthesize the
desired FPGA design from a high-level functional and/or behavioral description
in a circuit-description language such as VHDL [VHDL, 19871 [Perry, 1991] or
VeriLog [Sternheim et al., 1990]. A survey of current FPGA architectures and pro-

gramming technologies can be found m [Rose ¢f al., 1993

The FPGA configuration information can be stored in a ROM device. special |
bit serial ROMs exist which interface directly to the FPGA device, or standard byte-
wide EPROMs can be used with a minimum of “glue” logic. The configuration
can also be stored in a disk file and downloaded into the device at power up by a
host: this is the approach chosen here, since it allows maximum flexibility Thus 15
made possible by the fact that the DMA Engine is there to configure the board after

power up, and that none of the bus interface circuitry depends on FPGA-.

Thus the input converter is implemented using a single Xilinx FPGA device,
which connects directly to the outputs of the Input FIFOs and to the inputs of the

Delay Memory Circuit. Note that in order to allow little-endian 16-bit operands, all
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that would be required is to change the order in which the FIFO devices are read to
implement the byte-swap operation (all 16-bit operands are assumed to be word-
aligned i host memory). This would require changing the state machine which
controls the outputs of the FIFOs and the multiplexers at the input of the device:
such design changes only generate a different FPGA configuration file which can
be downloaded into the device at power up. Similarly, little-endian IEEE-754
operands could also be supported by changing the operation of the serialization
circuitry at the output of the device. FPGA devices are used extensively in current
industrial designs. In many cases, their flexibility allows working around other
problems with the non-programmable sections of a design or adding functionality

to an existing design without having to change a single connection.

2.5 Systolic Array

The systolic array used in this design is based on a custom VLSI processor which
implements the basic operation },,, = CX +),, where C is the convolution kernel
coefficient, .\ 1s the pixel intensity, },, is the output of the previous processor and
}...« is the partial sum to be fed tc the next processor. Every operand is in double
precision floating point format. Figure 2.4 represents a 3 by 3 systolic array: a
similar topology is used for a 9 by 9 array. Each line of the source image is fed
pixel by pixel to the left side of the array (in the case of figure 2.4, the first line
of the image would be fed to /.V1, the second to /.2, the third to /N3). The
pixel intensities move from left to right, from processor to processor. When the
first line of the image has been completely fed to the first line of the array, the
indexing of the source image is incremented and the second line is then fed to the
first line of the array. Thus each line of the image must be fed to the array as many
times as there are lines of processors. The delay memory circuit is responsible for
feeding the image lines in the proper order to the array: its operation is explained

in section 2.7.
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Figure 2.4: 3 by 3 systolic array

Figure 2.5 outlines the architecture of the VLSI convolution chip. The design
of this full-custom device is documented in [Larochelle ¢t al., 1989], [CHté, 1990]
and [Larochelle, 1991]. Data is transmitted between the chips 4 bits at a time
so as to limit the number of required 1/0 pins (a limitaton of the packaging
offered atthe time for production of these devices by the Canadian Microelectronics
Corporation [CMC, 1989]). Since operands are 64 bits wide, 16 clock cycles are
required to transfer a complete operand between two processors (note that the
pixel value and the partial result are transfered at the same time). The source
image pixels are fed to the device on the X,, input and stored in a 32 entry deep,
4 bit wide FIFO. The pixels come out unmodified on the X, output which is
connected directly to the X,, input of the next device As the 4-bit components of
the pixel intensity travel down the FIFO, they are also fed to Stage 1 of the device,
where they are multiplied by the kernel coefficient stored in the device (note that

the coefficients do not change throughout a convolution operation, and remain
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Figure 2.5: Systolic Cell Architecture

fixed inside the device). This multiplication unit is capable of multiplying two
4-bit quantities in one clock period, which means that it operates at the same speed

at which the pixels are shifted into the device.

The result of this multiplication is parallel loaded into the stage 2 adder, where
it is added in 16 clock cycles to the partial result generated by the previous device
in the array. Finally, the result of the addition is parallel loaded into the stage 3
normalization unit, where the mantissa is aligned to generate a valid floating point
number, again in 16 clock cycles. A shift register is used to put together the 64
bits of the Y,,, partial result input and offer them in parallel to the stage 2 adder.
Similarly, the output of the stage 3 normalization unit is loaded in parallel into a
shift register which will shift it out4 bits at a time on the Y,,, ou tput. Thusevery 16
clock cycles, a convolved pixel comes out of the convolution array (after a suitable

delay required to fill the pipeline).

Note that in order to be truly compliant with the IEEE-754 standard, an addi-

tional renormalization operation would have to be performed between the multi-
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plication and addition steps. Since this is not the case, the convolution processor
might yieldslightly different results than those that would be obtained when imple-
menting the operation on a machine where renormalization would occur after both
the multiplication and addition. CPUs with a multiply-and-accumulate unit often
forgo the intermediate renormalization for performance reasons: such is the case
with the IBM RS/6000 [Bell, 19901. If precisely reproducible results are required,
RS/6000 compilers can be told not to generate multiply-and-accumulate instruc-
tions, but instead generate separate IEEE-compliant multiply and add instructions:

of course, performance is greatly reduced in that case.

Figure 2.6 illustrates the pixel values as they travel down a line of the con-
volution array. Only a single line is shown to make the diagram clearer, but the
same principle applies to the two dimensional array. Note that the partial results
travel half as fast through the array as the input pixel values. This is due to the
insertion of two extra "pixel” delays (1e. 16 clock cycles, since the 64 bits of a pixel
operand are transmitted 4 bits at a time) in the partial sum path for a total of a 4
pixel delay, as opposed to a two pixel delay in the pixel value path. This ensures
that the proper partial sums get propagated at the right time. In the last lme of
our example, the result for the first pixel of a 3 by 1 convolution is ready to come
out of the last device in the chain Note that it took 10 system cycles of 16 clock
cycles each for the first valid result (Cy Xo + (1 Xy + (5.X2) to come out (all previous
output was undefined and is ignored by the rest of the system). This is typical of
pipelined systems, where there is always a penalty to pay as the pipeline is filled.
After that, a valid result will come out of the last device every 16 clock cycles (i.c.

CoX1+ ChXo+ (2X3, CoX2 4+ 1 X5 + (X4 and so on...).

The current version of the convolution chip is clocked at 16 MHz, which enables
the convolution array to produce a convolved pixel every microsecond. For a
standard 512by 512 image, convolution can thus be performed inroughly a quarter
of asecond (262 msec.). Kernelsize depends on the number of devices used to build

thearray: the currentdesign uses 9 by 9 chips. Since each chip performsa complete
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floating point multiplication and addition every microsecond, this yields a system
performance of 162 MFLOPS, sustainable throughout the convolution operation, as
long as data can be read from and written to host memory fast enough. Although
the maximum bandwidth required to sustain this rate is 16 Mb/sec, which is well
within the 40 Mb/sec maximum bandwidth of the VMEbus, other factors such as
the speed of the host memory and contention from other VMEbus masters might

reduce the bandwidth available to the convolution processor.

2.6 Recombination memory

As the convolved pixels come out of the array, they are routed to the output con-
verter (see figure 2.7) to be optionally transformed back to integer values before
going back to destination memory storage. They can also go to the recombination
memory, which is used to buffer an entire image. The content of this memory can
then be used to drive the partial sum input of the first device in the convolution
array. This allows multi-image operations to be performed, such as image averag-
ing/blending. For instance, a first image could be processec with all of the kernel
values scaled by a value «, and then stored into recombination memory. Thekernel
values would then be reloaded, this time scaled by a value 1 - «, and the new image
sent through the array, using the result of the first convolution as the initial partial
sum input, thus effectively blending between the two resulting images. 4 Mb of
memory is allocated for this purpose, organized in 4 SIMM modules of 1Mb by 8
bits each. Since 4 bits must be read out for each 16 MHz clock cycle, this means
that the memory must have a cycle time of 125 ns (since two operands are read
at once from the 8-bit organized memory). This would require rather fast DRAM
devices: on the other hand, since memory access is always sequential, the access
pattern is trivial to predict. Thus two-way interleaving is used to relax the cycle
time requirements to 250 ns, which is fairly easy to satisfy with inexpensive DRAM

devices.
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2.7 Delay Memory Circuit

One of the greatest obstacles to high performance in convolution implementations
on traditional architectures is the high memory bandwidthrequired by the repeated
use of the same operands. In the case of a 9 by 9 convolution, each input datum
has to be read 81 times from main memory. Cireful design of the algorithm can
minimize the number of cache misses by taking into consideration the cache line
size [Stone, 1987], but such optimizations are often hardware-dependant and can
actually decrease performance on a machine with different architectural charac-
teristics. In order to take full advantage of the systolic architecture of our system
as well as to mimimize the bandwidth on the VMEbus, a Delay Memory Circuit is

implemented.

This circuit takes as its input the unidimensional stream of image pixels in
scan-line order from the input converter. Each line of the image has to be fed to
the systolic array as many times as there are rows in that array. This is done with
8 circular queues implemented using standard static RAM devices. The first row
of the systolic array is fed directly by the pixels coming from the input converter,
whereas the other lines receive delayed copies of the rows previously stored into
the circular queues (note that pipeline delays have to be taken into consideration
by the control logic to determine the exact time at which pixels have to be fed
to the array). Since it has a finite amount of storage, the delay memory circuit
imposes a practical limit on the length of a raster line. Itis currently implemented
using 8 8kx8 static RAM devices. Since at that point the operands are in 64-bit
double precision format, this means that raster lines can have a maximum width
of 1024 pixels. A deeper treatment of the implementation details can be found

in [Drolet et al., 1991} [Drolet, 1992].

The Delay Memory Circuit has two other functions. It is responsible for deter-
mining whether the convolution array is to be used in 1 or 2 dimensional mode.

In 1-D mode, the array implements a single FIR filter with 81 coefficients. The
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data is transmitted directly from the input converter to the tirst line of the array,
and 0 values are fed to all the other lines: in that mode, the circuit is basically
bypassed. In 2-D mode, it operates as previously described. It can also be used to
perform limited interpolations used to increase the sampling rate of an image by a
factor of 2 or 4 by inserting appropriately placed O values into the data stream (i ¢.
inserting 1 or 3 zero values between all input pixels, and 1 or 3 lines of zero values
between lines of input pixels). The coefficients loaded into the convolution array
must then implement a low-pass filter with the appropriate cut-off frequency. Note
that multi-rate filters are usually much more efficient for implementing resampling
operations (in particular, they avoid the numerous multiplications of zero input
values used in our method), but this extra functionality was achieved at the cost of
a small amount of additional complexity in the control logic for the Delay Memory

Circuit.

2.8 Output Converter

The function of the output converter is to transform the floating-point output of
the systolic array back into integer format. This is required for instance when
the output is to be viewed on a display device such as a frame buffer. Typically,
for a gray-scale image this means that the results must be quantized down to 8
bits of resolution, yielding 256 distinct levels of gray. The recently announced
Silicon Graphics RealityEngine graphics subsystem allows up to 12 bits per color
component, which in the case of gray-scale images gives 4096 shades of gray
(although the actual Digital to Analog Converters which drive the display only
have 10 bits of resolution: the extra bits of resolution in the frame buffer are used,
among other things, to avoid loss of precision in the lower intensities due to gamma

correction).
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Index | Content
3 1.9
2 13
1 0.5
0 0.2

Table 2.1: Conversion look-up table content

2.8.1 Principle of Operation

The conversion from floating point results into integer formatis achieved by means
of a look-up table. The principle is that the entries of this table contain the bounds
of successive intervals. By using a binary search into this table, the converter
determines the interval in which the floating point result falls: the index of the
corresponding entry yields the desired integer result. For example, table 2.1 shows

the contents of a table with 4 entries.

Using this example, a number between 0 and 0.2 would be mapped to the integer
0, from 0.2t0 0.5 to 1, from 0.5 to 1.3 to 2 and from 1.3 to 1.9 to the integer 3. The
only restriction on the values of the interval bounds is that they be monotonically
increasing in order for the binary search to be able to find the right interval. This
allows for non-linear mappings of floating-point results to integers. This could be

used for:

¢ Dynamic range compression/expansion: when the application is interested
in a narrow range of values in the output, all values below that range can be
clamped to zero, all those above can be clamped to the maximum index and
the full range of integers can be used for the “interesting” values in between.
Similarly, a range of values which is not interesting can be compressed to a
single interval, again yielding more dynamic range in the output for other

intervals of interest.

¢ Most image processing algorithms assume that the range of possible values
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for each image sample is linear. Unfortunately, most output devices (CRTs in
particular) do not generate a linear intensity as a function of the value to be
displayed. This relationship is usually modelled by a power function and 1s
known as gamma correction [Travis, 1991]. If the display which is to be used
does not have gamma correction hardware (i.e. instead of feeding the values
to be displayed directly to the digital to analog converters, these are used
as the input of a look-up table which implements this correction), then the
output converter can be programmed to perform this correction on the imagy
itself. Note that the image then becomes dependant on the particular display
it was corrected for, and can only be displayed on another system after being
gamma corrected again, at the price of a substantial loss in dynamic range in

the low intensities.

e Even if intervals of constant length are used, the table can still implement a

simple gain and offset mapping.

2.8.2 Output Converter Architecture

Figure 2.7 presents the block diagram of the converter. The 24 most signicant
bits of a floating point output value from the convolution array are stored in a
register. This means that only 12 bits of mantissa are retained for the purposes of
comparison. Clearly, this imposes a limit on the resolution of the intervals which
can be specified. Similarly, the interval bounds are stored as the 24 MSBs of the
desired intervals in the output converter look-up table. Note that this table 1s
programmable, but cannot be changed while an image is being processed. The

table contains 22 entries, and thus requires 12 bits of address.

As the conversion begins, the 12 bit A register is cleared and the 12 bit B register
is set. Their values are added by a carry-lookahead adder and the result is divided

by 2 using a hardwire shift. This yields a 12 bit address which points to the middle
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Figure 2.7: Output Converter Block Diagram
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of the table. The correspoding interval boundary is fetched and compared with the
result to be converted. According to the result of this comparison, either register
A or B is loaded with the address previously computed, thus dividing the search
interval in half. After 12 iterations, the proper interval has been found, and its
address in the look-up table is the desired integer result, which is sent to the output
FIFO. Thus the output converter can generate up to 12 bits of preciston on its
output. Since the convolution array produces a new result every 16 clock cycles,
the same clock can be used to drive the output converter since 1t only requires 12

cycles for a conversion.

As was the case for the input converter, the output converter can be by passed if
floating-point results are desired. In that case, the output of the convolution array
is sent directly to the output FIFO. Also, in order to implement the sample rate
conversion capabilities of the system, the converter can be programmed to decimate
(downsample) the output image by ignoring some of the output samples. In order
for this down-sampling to occur without aliasing, the convolution coefficients must
have been chosen to implement the proper low-pass filter. Again, a XILINX FPGA
device implements the main functionality of the output converter. External static
RAMs are used to store the interval look-up table. Further details regarding the

implementation of the output converter can be found in [Drolet, 1992).
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Chapter 3 DMA Engine Implementation

3.1 Introduction

This chapter covers the design and implementation of the section of the convolution
processor known as the DMA engine. The main task of this subsystem is to
coordinate the transfer of image data from the memory of the host CPU over the
VMEDbus to the convolution array, and the writing of results back into host memory.
Since it is designed around a general-purpose processor, the DMA engine is flexible
and accepts high-level commands from the host CPU. It is also responsible for

general initialization and control tasks for the other sections of the convolution

processor.

3.2 Design Perspective

The DMA engine of the convolution processor is responsible for the following

tasks:

e initialize the system after power-up or reset

load the kernel coefficients into the systolic array

select operating modes and perform other control tasks

interface to the VMEbus

o transfer data over the VMEbus from the memory of the host CPU to the input

converter, and from the output converter back into host memory
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3. DMA Engine Implementation

The initial design approach was to design a special-purpose circuit built around
a commercially available DMA controller. After some amount of work, this was
rejected for a number of reasons. There were very few availlable DMA controllers
which support 32-bit address and data paths (the entire VMEbus address range
must be supported), and those that are available are usually overly comples or
have fairly small bandwidth. Furthermore, it was quickly reahzed that since a
VMEDbus interface with both master and slave capabilities 1s needed, 1t would be
beyond the scope of this project toattempt to synthesize this interface tromstandard
logic components (ignoring for a moment such constraints as board arca) Thus an
off-the-shelf VME interface device had to be used. Unfortunately, all such devices
assume that they are connected to a CPU and act as a bridge between the CP'U local
bus and the VMEbus. A company called PLX makes a set of five devices which can
be used for somewhat lower-level interface, but a design using a Motorola DMA

controller and these devices was rejected as unduly slow and complex.

The conclusion was that the best approach was to have an on-board CPU, and
to use an off-the-shelf ASIC to bridge between its local bus and the VMEbus The
VTC/Cypress VIC-068 ASIC was chonse because it seemed like the most viable
solution: this device is endorsed by a large group of VME board manufacturers
known as VITA, the VMEbus International Trade Association, and 1s used in a
number of commercial products. Since the VIC offers a glue-less interface for a
Motorola 68020/68030-style CPPU local bus, it was natural to chose to use a 68020
CPU since the virtual-memory capabilities of the 68030 were not needed Having a
general-purpose CPU on board means that many of the control tasks can be done in
software, which greatly enhances the flexibility of the board, reduces the amount of
control logic which has to be designed and lessens the risk of a fatal hardware bug
which cannot be fixed in software. Furthermore, since the VIC 1s able to perform
most of the DMA transfer functionality on its ownat high-speed, the 68020 does not
need to have high performance. This greatly relaxes the design constraints on that

section of the circuit, and permits the use of a low-speed part (in this case the 6802()
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will run at 12.5 MHz). This approach was suggested in a Motorola application note

for the 68020 CPU [Motorola, 1987). It was first presented in [Panisset ef al., 1990].

3.3 System Block Diagram

Figure 3.1 shows a high-level block diagram of the DMA engine (note that this
block diagram is very similar to the top-level sheet of the circuit schematic). The
VIC-068 implements a bridge between the VME system bus and the local bus of
the 68020 processor. The only additional logic required are decoders to map the
slave interface offered by the VIC into the VME address space as well as additional
transceivers and latches to isolate the local bus from the VMEbus. The interface
offered by the convolution processor to the host on the VMEbus will be examined
in section 3.5. Details on how the VIC and the 68020 inter1act to perform DMA

transfers will be covered in section 3.8.

On the local bus side, the 68020 processor and a small amount of RAM and ROM
memory used for its operation are found. The 68020 determines the “personality”
of the local bus: its operation will be shown, as well as the bus-control logic which
is required to arbitrate between the 68020 and the VIC for accesses to the local bus.
The interface to the rest of the convolution processor is also found there, namely the
input and output FIFOs and a control register. This register is used by the firmware
running on the 68020 to control the convolution array: implementing this control
in software yields greater flexibility and further decouples the design of the DMA

engine from that of the rest of the system.

3.4 Principle of Operation

The basic principle of operation is that when the host CPU wants to perform a

convolution, it sends a high-level command to the convolution processor. This is
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3. DMA Engine Implementation

done by writing a command into a set of interprocessor communication registers
on the VIC which are visible both from the VMEbus and the 68020 local bus. The
VIC can then interrupt the 68020 to signal it that a command has arrived. The
68020 reads the command and performs all necessary 1nitialization. In particular,
it programs the VIC which will be responsible for performing the DMA transfers
from host memory into the input FIFO and from the output FIFO back to host
memory. The VIC can become bus master on both the VMEbus and the local
bus and can transfer up to 256 bytes of data without external assistance: the 68020
assists it by keeping track of how many such transfers are required and by initiating

these transfers.

The inclusion of a local CPU means that most of the complexity of controlling
the convolution processor can be implemented in software. Furthermore, the
convolution processor is able to respond to high-level commands from the host
CPU. Apart from performing convolutions, there are commands to specify the
mode of operation and to select the kernel coefficients to be used. The semantics of

the software interface presented to the host CPU will be described in section 3.11.

3.5 VMEDbus Interface

The convolution processor must be able to interface to a host CPU over a VMEbus.
Revision “C” of this standard is documented in [VMEbus, 1982]. A complete
description of the operation of this bus is beyond the scope of this thesis: suffice
it to say that using a standard interface ASIC such as the VIC hides a lot of the
details from the hardware designer. In particular, all of the VMEbus control signals
connect directly to pins on the VIC without the need for any kind of buffering
or glue logic: this greatly reduces board area requirements, as well as the risk
of a design error or of a marginally successful interface implementation which
might work with some VMEbus boards and not others. This used to be a common

problem when each VME vendor implemented interface circuitry using custom
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System Control SYSCLK
ACFAIL*
SYSFAIL*
SYSRESET*
Bus Arbitration BR[0-3]*
BGIN|[0-3]*
BGOUT[0-3]*
BBSY*
BCLR*
Interrupts IACK*
TACKIN*
IACKOUT*
IRQI[1-7]*
Read/Write AS*
LWORD*
DS0*

DS1*
WRITE*
DTACK*
BERR*
Address A[00-31]
Address Modifier | AM[0-5]
Data D[00-31]

Table 3.1: VMEDbus signals

logic. Table 3.1 lists the VMEbus signals. The following subsections will cover
these signals in further detail and describe the hardware interface presented to the

VMEDbus by the convolution processor.

3.5.1 Master Interface

VMEbus Arbitration

VMEbus boards can either be bus masters or bus slaves. A bus master initiates
transfers (either reads or writes), whereas a slave can only respond to an externally-

generated transfer. Some buses such as the Industry Standard Architecture (ISA)
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bus used in IBM PC-compatible systems have a fixed bus master (actually, this is
an over-simplification: it is possible for an expansion board to take control an ISA
bus away from the CPU, but this support is primitive at best). The VMEbus allows
any board on the bus to become the bus master. It has 4 Bus Request lines: BR0*,
BR1*, BR2* and BR3*. These are open collector signals which are shared by all of
the potential bus masters. When a bus master wishes to take control of the bus,
it asserts one of the Bus Request lines by pulling it low. One of the boards on the
VMEbus (usually in the first slot) is configured to be the system controller. When
it senses that one of the BR* lines is low and that the VMEbus is no longer busy
(this is signaled by the fact that the Bus Busy signal BBSY* is not being driven), it
acknowledges the bus request at a given level by asserting the corresponding Bus
Grant signal BGOUTx*. These granting signals are daisy chained from one board
to the next, where the signal enters the board via the BGINx* pin and exits it via the
BGOUTx* pin. Empty slots must have jumpers installed to insure the continuity

of the Bus Grant chains.

When a board receives a Bus Grant signal on one of its four BGINx* inputs,
it determines whether it has requested the bus at that priority level. If it has not,
it simply passes the signal along to the next board on its BGOUTx* output. If it
wanted the bus, it does not pass the signal along and instead drives the BBSY*
signal low tosignal its ownership of the bus. This protocol allows multiple potential
masters to request the bus using the same priority level: if two such boards require
assert BRx* at the same time, the one which is physically closest to the system
controller will receive the Bus Grant first and thus take control of the bus first.
When it has finished with it and relinquishes it, the system controller will find that
the BRx* line is still being driven by the second potential bus master and will thus
issue a new Bus Grant signal to it. Note that a bus master is permitted to release
the BBSY* signal before it has completed its last bus cycle, thus allowing the bus
arbitration cycle to overlap the current transfer cycle and thus reduce arbitration

overhead.
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The system controller determines which bus request to service next based on
three different schemes. In the prioritized (PRI) arbitration scheme, the BRx* lines
are prioritized such that the line BR3* has highest prionty and the line BR0* has
lowest priority. If two boards request the bus at the same time, the system controller
will grant the bus to the device asserting Bus Request on the highest priority line.
If a board is currently holding the bus at a given priority level and another board
requests the bus at a higher priority, the system controller will assert the Bus Clear
BCLR* signal to tell the former device to relinquish the bus as soon as possible
(although there is no absolute limit to the amount of time a device has to relinquish

the bus: it could in theory ignore the BCLR* signal).

In the round robin select (RRS) scheme, the system controller assigns the highest
priority to each of the 4 Bus Request lines in turn: when a request has been serviced
on the highest priority line, it assigns the highest priority to the next one in circular
fashion. This ensures a somewhat fairer allocation of bus bandwidth when several
boards are capable of becoming bus master in the system. On the other hand, 1t is
usually desirable to assign absolute priorities: for instance, a board which accepts
input at high speed and has little buffer space should have a higher priority than

one which can afford to wait much longer until it gets access to the bus.

Finally, in the single level (SGL) arbitration scheme, all the boards in the system
use the BR3* line to request the bus: priority is thus based solely on the proxinuty of
the board to the system controller. This scheme is used on the backplane of the Sun
3/160 system [Sun, 1989al. The VIC can be programmed to issue Bus Requests on
any one of the lines. It canalso be configured to act as a system controller supporting
any one of these arbitration schemes by permanently asserting its SCON* input:

this feature is not used on the convolution processor.
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Address Si1ze Operation Type AM[5:0]
32-Bit Addressing | User Data 0x09
User Code 0x0A
Supervisory Data | 0x0D
Supervisory Code | 0xOE
User Block 0x0B
Supervisory Block | 0xOF
24-Bit Addressing | User Data 0x39
User Code 0x3A
Supervisory Data | 0x3D
Supervisory Code | Ox3E
User Block 0x3B
Supervisory Block | 0x3F
16-Bit Addressing | User Access 0x29

Supervisory Access | 0x2D

Table 3.2: Address Modifier Values

VMEDbus Read/Write Cycles

Once a board has become bus master, it can initiate read and write cycles. It first
drives the desired address onto the 32 address lines A[00-31], as well as the 6
address modifier bits onto the AM[0-5} lines. The valid address modifier values
are listed in table 3.2. They are used to indicate in which address space the transfer
is to occur. Note that some of the address spaces do not use all of the 32 address
lines. In particular, VMEbus boards which only have a P1 connector (instead of a P1
and P2 connector) only have access to 24 bits of address and 16 bits of data: these
boards are known as A24D16 boards. It was decided to implement an A32D32
interface for highest performance and generality, but the VIC can still interface to
systems with narrower address and data paths. The LWORD* line is asserted to
indicate a 32 bit transfer: it it is not, a 16-bit transfer is being requested. If a write
is to be performed, the data is put on the D[0-31] lines (or on the D[0-15] lines for
a 16-bit transfer) and the WRITE* signal is asserted.

Once all of these signals have been driven and are stable, the Address Strobe AS*

signal is asserted. Typically, a slave interface address decoder will have already

61



3. DMA Engine Implementation

decoded the address of its module off the address bus lines and will use the AS*
assertion to begin the transfer. Once it has completed the transfer, the slave module
asserts the data acknowledge DTACK* line to signal completion to the master. If
this was a read cycle, the master can then read the data off the DI00-31] data
lines. If for some reason the slave could not complete the transfer (for instance,
the master tried to address an invalid region of the address space of the slave, or
it tried to perform a 32-bit transfer to a device which only has a le-bit interface), it
will instead assert the bus error BERR* signal to notify the master that the transfer
could not be completed successfully. It is then up to the master to decide what to
do (typically, an exception would be raised and signal would be sent to the process

which attempt the transfer).

Convolution Processor Master Cycles

The convolution processor DMA engine becomes bus master during DMA transfers
to and from the memory of the host CPU. Details of how the local 68020 interacts
with the VIC to control these transfers will be presented in section 3.8. For now,
suffice it to say that when the 68020 wants to initiate a DMA transfer between
one of the FIFO memories and the host CPU memory, it attempts a read or write
operation to an address which the on-board address decoding logic maps onto the
VMEbus address space. Once this 1s detected, the VIC attempts to gain control of
the VMEDbus using the Bus Request/Bus Grant protocol outlined in section 3.5.1.
Once it has done that, it then takes control of the local bus away from the 68020 and
begins the transfer directly between the host CPU memory and the input or output
FIFOs. The arbitration scheme for the local bus is explained in section 37.2. The
VIC is able to transfer up to 256 bytes of data on its own (i.e. 64 long word transfers),
after which it rel'nquishes control of the local bus to the 68020 which can schedule
the next transfer. Note that this model assumes that the host CPU implements a
slave interface which allows another processor access to its memory: this is not an

unreasonable assumption since most VME-based disk or network controllers have
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bus-master interfaces and access buffers directly in host CPU memory.

3.5.2 Slave Interface

Although a slave interface to the convolution processor was not strictly required,
it was implemented since most of the required functionality is built into the VIC:
furthermore, this feature can be used in a few cases, and increases the generality
of the design. The slave select decoder is implemented in the traditional way
with PALs and user-setable jumpers which allow the selection of different address
ranges. The VIC presents two distinct slave interfaces to the VMEbus. First, it
responds to slave A32 transfers (i.e. in the full 4 Gb address space) which map
into the local RAM of the convolution processor. A PAL looks at the A16 to A31
address lines, which yields a decoding granularity of 64K: this is more than whatis
needed since there are only 32K bytes of local RAM memory which must be made
visible to the host CPU. A bank of 4 DIP switches allows the selection of 4 possible
base addresses which means that the 64K window can be mapped at 4 different
positions in the 4 Gb A32 VME address space. In order to keep the address decoder
as simple as possible (in effect, allow it to fit in a single 20L8 PAL device), these 4
base addresses are hard-coded in the PAL equations. Table 3.3 lists the DIP switch
settings and the corresponding base addresses: if none of these are usable in the
target VME system, a new address decoding PAL will have to be programmed
with a ditferent set of base addresses. Note that the slave interface only has access
to the first 64K of the 256K local bus memory map: this is desired, since the host
CPU should not try to read/write directly to the board control registers or the
input and output FIFOs, and accesses to the VIC internal registers is not allowed
from the VMEDbus side (section 3.6.2 covers the local bus memory map in greater
details). Also note that the slave access decode signal from the PAL is fed to the
SLSEL1* input of the VIC: there also exists another slave select input, SLSEL0*,

but this input is defective on the revision of the chip used in the system and is thus
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S2-4 | S2-3 | 62-2 | S2-1 | Base Address
0 0 0 1 Ox1FFOxxxx

0 0 1 0 0x5FFOxxxx
0 1 0 0 Ox9FFOxxxx

1 0 0 0 OxDFFOxxxx

Table 3.3: Slave Select Base Address

strapped high.

3.5.3 Inter-Processor Communication Registers

The VIC has eight Interprocessor Communications Registers (ICRs). These are
accessible from the VMEDbus without requiring the VIC to become local bus master,
and are accessible from the local bus without requiring VMEbus arbitration. Five
of these registers are available for general-purpose use. Furthermore, the VIC has
four Interprocessor Communications Global Switches (ICGSs) and four Interpro-
cessor Communications Module Switches (ICMSs). In all cases, these facilities are
accessed when the inter-processor communications facilities select ICFSEL* input
of the VIC is asserted and the address of the register 1s specified using the VME
A[5-1}, LWORD*, DS1* and DS0* addressing inputs: ICFSEL* is decoded in the
Al6 VMEbus address space (i.e. the short address space). A single 20L8 PAL
device decodes this address space: based on the settings of the S1 DIP switches,
it decodes a 64-byte memory region which can be based at one of seven different
base addresses. These base addresses are hard-coded into the PAL equations and
can be changed if none of the pre-defined regions are available in the host system.
Table 3.4 lists the current values for these base addresses. On the local-bus side,
these registers are addressed in the same way as the other VIC internal registers
(see section 3.6). These registers will be used in the following way: when the host
CPU wishes to instruct the convolution processor to perform an action, it will write

a 5-byte message into the IPC registers: this message will take the form of a 1-byte
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1-1 | Base Address
Ox1FFOxxxx
Ox5FFOxxxx
0x9FFOxxxx
OxDFFOxxxx
0x9C00
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Table 3.4: Interprocessor Registers Base Address

opcode and a 4-byte pointer to an optional parameter block somewhere in either
host or local memory. It will then write to one of the interprocessor communication
switches, which is programmed to generate an interrupt to the local 68020. The
local CPU can then read the command to be performed from the registers. When it
has finished its task, it will write the result code back into the registers and generate
a VMEDbus interrupt to signal the host CPU that the operation has been completed
and that a completion status is available. Thus neither the host CPU nor the local
68020 have to wait for each other: they can proceed asynchronously from each

other while awaiting interrupts.

3.5.4 Interrupt Generation

The VMEDbus has seven prioritized Interrupt ReQuest lines labelled IRQ[1-7]* (level
7 has the highest priority). These are open-collector lines which are shared by all
of the boards in the system. Whenever a board wishes to generate an interrupt, it
asserts the corresponding IRQx* line. In a manner very similar to the bus master
arbitration scheme described in section 3.5.1, a board in the first slot acts as system
controller: whenit detects an interruptrequest, it asserts its Interrupt Acknowledge
TACK* output. It also asserts its IACKOUT* output, which is connected to the
JACKIN* input of the its neighbor. Finally, it puts the encoded level of the interrupt

it is responding to on the A3-A1 address lines. When the interrupter sees IACK*
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and YACKIN* asserted, it compares the encoded interrupt level on the address
lines with the level of the interrupt it has generated. If they match, 1t drives a status
ID value onto the low D7-D0 data lines. If they don’t match (or if a board gets
TIACKIN* and 1t has not generated an interrupt), the board propagates the signal
via its IACKOUT* output to the IACKIN* input of the next board in daisy-chamn
fashion. Empty slots must have a jumper installed to insure the continuity of the

chain.

Interrupters can release the IRQx* line either when they get the interrupt ac-
knowledge (this scheme is known as Release On AcKnowledge, ROAK), or they
can wait for the system controller to read a status register (Read On Register Ac-
cess, RORA). When acting as system controller, the VIC can deal with both types
of interrupters: this capability is unused in this system, since the board will not
be the system controller. Rather, the VIC will be used to generate mterrupts. [ts
internal registers are programmed to specify which interrupt line to use to gener-
ate interrupts for the host based on the mterrupt levels used by the other board
in the system. Note that several boards can share an interrupt hne since these are
level-triggered: the board which is geographically closest to the system controller
will have higher priority in that case. Interrupts will be used to signal the host
that the convolution processor has completed the requested action, as explained in

section 3.5.3.

3.6 Local CPU Bus

3.6.1 Local Bus Structure

The local bus 1s simply that of the Motorola 68020 CPU, which minimizes the
amount of glue logic since the VIC is designed to interface directly to such a bus.

The 68020 has 32 address lines and 32 data lines. It supports virtual memory
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through an external 68851 Memory Management Unit which is incorporated into
the 68030. Since a 68020 is used as a control processor, the lack of memory man-
agement actually simplifies the task at hand. Real addresses are used throughout
the board. Host memory is also accessed using real addresses in most cases, which
means that the operating system running on the host needs to be able to lock the
source and destination image buffers into contiguous physical memory. Some
Sun computers implement a scheme called DVMA (Direct Virtual Memory Ac-
cess) [Sun, 1989b] which allows addresses coming from the VMEbus to be mapped
into virtual addresses in host memory: this relaxes the constraint that the image
buffers be mapped into contiguous memory regions, although it is still desirable
to lock these buffers into physical memory to prevent a large performance loss if

pages are not resident when they are accessed and need to be paged in from disk.

The 68020 local bus is addressable in byte (8 bits), word (16 bits) or long word
(32 bit) increments. There are no restrictions on data alignment, or on the size of
memory devices which can be attached to the bus. For instance, an 8 bit wide
memory (such as the EPROM which holds the bootstrap code) can be connected
to the bus. The 68020 encodes the size of the data transfer onto its SIZ1 and SIZ0
outputs, and encodes the operand alignment on the two low-order address lines
(A1-A0). The decoding logic for the addressed module looks at these inputs and,
based on the size of the port, it signals how many bytes of the transfer it was
able to accept/deliver when it acknowledges the completion of the transfer using
the DSACK1* and DSACKO* lines (note that, as for the VMEbus, the 68020 bus
uses an asynchronous bus protocol). In the worst case of an unaligned long-word
transfer to a byte-sized port, a single read or write instruction can generate four
separate bus cycles. Although this yields a lot of flexibility for the programmer,
it adds a lot of complexity to the 68020 bus interface circuitry. Current RISC
architectures such as the MIPS R3000/4000 are much less forgiving: they impose
strict requirements on operand alignment, and compilers for these architectures

will frequently pad C language structures in order to align structure elements
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on word or long-word boundaries [MIPSASM, 1987]. Furthermore, it has been
suggested that portable C code should be debugged on machines which impose
strict alignment constraints, since such code will then work on machines which are
more forgiving. Further details on the operation of the 68020 bus can be found in

section 7 of [MC68020, 1989].

3.6.2 Local Bus Memory Map

Table 3.5 describes the on-board memory map for the 68020 local bus. The total
address space is 256K, replicated throughout the 68020 4Gb physical address space.
The 32K byte EPROM is mapped at address 0 since when the 68020 CI'U first powers
up, it reads its Reset Initial Interrupt Stack Pointer from address 0x00000000 and its
Reset Initial Program Counter from address 0x00000004 The former 1s inittahzed
to the top of the 32K static RAM (mapped next from 32K to 64K) since the 68020
stack grows downwards. The latter 1s initialized to the beginning of the power-up
code sequence in the EPROM. Note that the 68020 attempts to perform 32-bit reads
for these values: since the EPROM only acknowledges an 8-bit transfer, the 68020
must then perform 3 extra reads to get the remainder of the operand Furthermore,
since the EPROM is a relatively slow device with an access time of 150ns, the bus
control logic which generates the DSACKx* signals 1nserts a delay (wait state)
whenever the EPROM 1s accessed. For all of these reasons, after the mitialization
of the board is completed, the remainder of the code (in particular the code which
must execute rapidly during DMA transfers) 1s copied nto the much faster 32 bit

wide static RAM where the 68020 will be able to access it at full speed

The static RAM is composed of 4 8Kx8 devices which are connected to the 32
data lines to form a 32-bit wide path. These memories have an access time of 55ns,
which means that the local bus control logic can acknowledge transfers as soon as
they are decoded, thus allowing the 68020 to operate at full speed when accessing
RAM. Both the EPROM and the RAM are accessible from the VMEbus during VME
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" Function LA17 | LA16 | LA15 | Comment
" Boot EPROM 0 0 0 32K length
"Local RAM 0 0 1 32K length
| VIC registers 0 1 0 256 locations, mirrored 128 times
[ Board Control Register | 0 1 1 1 location, mirrored 32K times
Input FIFO 1 0 0 1 location mirrored 32K times, write cycles
" Output FIFO 1 0 0 1 location mirrored 32K times, read cycles

Table 3.5: Local Bus Address Space

slave cycles. Section 3.7.2 explains of how the local bus is arbitrated between the

68020, the VIC and the VMEbus.

The 58 VIC internal registers are mapped from 64K to 96K. Only the lower 8
bits of the address is significant, so the registers are mapped 128 times within this
32K addressing region To signal a register access, the bus control logic asserts the
VIC Chip Select CS* input. Although the VIC supports other access modes, the
current design always uses longword accesses aligned on longword boundaries
(i.e. address lines A1 and A0 are both zero). The VIC will acknowledge a 32-bit
transfer, even though only the 8 least significant bits of the transfer are relevant
(the regsters are all 8 bits wide). Note that the registers are only accessible from
the local bus. hence the need for a local CPU if only to initialize the VIC after
reset. Section 3.9 will go mto further details with respect to the programming and

operation of the VIC.

A 32-bit wide, write-only control register is mapped from 96K to 128K (the
use of general-purpose PAL devices for address decoding prevented a finer grain
of address decoding). This register is used to control the rest of the convolution
processor: for instance, some of its bits signal the size of the data in the input
FIFO. The register 1s write-only since this was the easiest way to implement it. A
copv of the value of this register is kept in one of the 68020 internal registers at all
times. Thus when a single bit needs to be set or cleared, a masking operation is
performed on that register and the new value is then written to the external control

register. Inthis way, the logic needed to control the rest of the convolution processor

69




3. DMA Engine Implementation

can be implemented entirely in software: this design approach was chosen to
increase modularity and to allow different people to work on the components of
the system with maximum independance. The devices used to implement this

register (74F374s) are fast enough to allow full-speed access by the CTU.

The input and output FIFO memories which are connected to the convolution
array are mapped from 128K to 256K. They can be viewed as a single 32-bit wide
port replicated 128K times in that address space. A write cycle will write into the
input FIFO, a read cycle will read from the output FIFO. Four 2Kx9 devices ate
used to implement each of the two FIFO memories (only 8 bits out of the nine are
used), which means that there is 8K bytes of buffering both at the input and at the
output of the convolution array. The devices have an access time of 65ns, which
means that they can be accessed at the full speed of the local bus In the worst
case of 64-bit floating point input to and output from the array, a transfer rate of
12.5 Mb/sec is required to prevent the convolution array from stalling. This also
means that given an mput FIFO full of data, the array will stall if the convolution
processor is locked out of the bus for more than 655 microseconds, which is quite a
short bus period. On the other hand, it is anticipated that in most cases the system
will be running with 8-bit inputand output, which yields a much more comfortable
buffering interval of 525 msec. Furthermore, the devices were selected a couple
of years ago: since then, the same manufacturer (Cypress) has come out with pin-
compatible devices with up to 32Kx9 capability- it would thus be casy to increao

the capacity of the FIFOs 1f needed.

3.6.3 Local Bus Control Logic

In figure 3.1, the block labelled “Local Bus Address Decode DSACK Generation”
implements most of the local bus control logic. Section 3.6.2 listed the contents
of the local bus memory map: figure 3.2 shows how this 15 implemented  Two

20L8 PAL devices are used to decode local address lines LA15-17, giving the 256K
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Figure 3.2: Local Bus Control Logic

total address space of the on-board bus. The A16-A19 68020 address lines are
also used to indicate which address space the CPU is accessing during interrupt
acknowledge cycles. Note that it would not have been possible to save wiring by
leaving the A20-A31 address lines unconnected since these are used to specify the
VMEDbus base address for DMA transfers, as explained in section 3.8. Since a larger
address space was not needed, it was decided that an address decoding scheme
using a single PAL device (and hence introducing a single device delay) would be

preferable in order to gain more performance.

The local bus static RAM is controlled by the signals RAM_EN*, RAM_OE*
and RAM_WEQ(-3*. The formeris used to select the RAM when the proper address
range 1s present on the local bus address lines. This signal is gated by the PAS*
or Physical Address Strobe signal which is generated either by the 68020 or by
the VIC, depending on which device is currently local bus master. Other terms
are used to restrict access to either 68020 accesses or VMEbus slave accesses. Full

details of the PAL equations are beyond the scope of this document.

The RAM_OE* 1s used to signal to the RAM whether the cycle is a read or a

write: itis simply derived from the local bus R/W*line. Note thatallREAD accesses
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to the RAM are 32 bits wide and will be signalled as such by the transfer acknowl-
edge generation logic. Finally, the RAM_WE(-3* signals are used to individually
select each of the four 8-bit devices which make up the 32-bit wide memory. This

complexity is required by the 68020 bus protocol which allows unaligned writes.

The ROM_EN*" signal is used to decode read cycles for the 32K EPROM which
contains the startup code. Since the EPROM interface is only 8 bits wide, the
EPROM is only used for power-on code: the necessary instructions will then be
copied to RAM from which the 68020 will be able to execute at full speed  The
CTRLREGWE is used to latch the current value of the local bus data lines into the
Array Control Register: this register is write-only (in order to minimize the amount
of logic) and a software image is keptin a 68020 register to perform the necessary

masking operations.

The CS* signal is generated when the 68020 tries to access the portion of the
address space into which the VIC control registers are mapped When the 68020
attemps a transfer in address space 0x03 (as indicated by its Function Code FCO-
2 outputs), this is used to assert the MWB* signal which signals the VIC that
the 68020 wishes to perform a VMEbus master cycle: this is further explamed
section 3.7.2. The FCIACK* signal is generated when the 68020 FC0-2 Function
Code lines indicated a CPU Space access and the 68020 1s performing an Interrupt
Acknowledge cycle. this signal is used as an input to the VIC, which requires it in

order to perform its function as on-board interrupt controller.

The INFIFOWE* and OUTFIFOOE* signal are used to respectively write the
current value of the local bus data lines into the Input FIFO or remove a word from
the output FIFO and put in on the data lines. These two signals can be generated
either during VMEbus DMA transfer cycles or during normal cycles initiated by
the 68020: this allows the local CPU to mutialize the input FIFO with the proper
amount of 0 values required to “fill the pipeline”, as well as ci ‘ar the output FIFO of

the initial invalid results which are generated before the array has been completely
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initialized.

Finally, the DSACKO0* and DSACK1* signals are used to acknowledge the
completetion of all local bus cycles. Most devices on the bus are fast enough not to
required any “wait states” (of course, a wait state is somewhat of a fuzzy concept
in an asynchronous bus architecture): the 68020 allows accesses to fast devices to
be acknowledged in advance, and in this case this is done by simply NANDing
all of the individual device enable signals. This is possible in part since the 68020
is running at a fairly slow speed of 12.5 MHz: a faster CPU clock speed might
have required the insertion of additional delays. The only exception are accesses
to the EPROM, which is a fairly slow device with an access time of 150ns. A JK
latch driven by the CPU clock is used to add an extra clock cycle of delay, which is
sufficient to insure that the outputs of the EPROM have stabilized on the local bus
data lines. Since the DSACKO0* and DSACK1* signals are open-collector, 74538
open-collector NAND gates configured as inverters are used to drive these signals:
thus in the case of VIC register or VME bus accesses, the DSACK* signals are

generated by the VIC and not by this control logic.

3.6.4 Local Bus Arbitration, Deadlock Resolution and Reset Logic

The block labelled “Deadlock Arbitration Bus Control” in figure 3.1 implements the
remaining local bus control functionality not covered in the previous section. Com-
binatorial logic is handled by a 20L8 PAL device whereas sequential logic is housed
in a 16V8 Lattice GAL device (a GAL is basically an electrically reprogrammable

PAL). Figure 3.3 is a block diagram of this circuit.

When the VIC senses a VMEbus BERR* signal in response to an attempted
VMEbus transaction, it will assert the local bus LBERR* signal: note that LBERR*
is also an input for the VIC to allow it to detect a bus error for any local bus

transactions and pass this signal on to the VMEDbus if required. The 20L8 PAL
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Figure 3.3: Local Bus Arbitration, M=adlock Resolution and Reset Logic

passes this signal on to the 68020 as BERR_020%, since for the 68020 this signal
is an input only. Similarly, the VIC HALT* bi-directional signal is passed on as
HALT _020* to the corresponding 68020 input  When the VIC detects a VMEbus
slave access request concurrent with a local CPU request for the VMEbus, 1t asserts
its DEDLK* output: th.e bus control logic asserts both BERR_020* and HALT.020*,
which signals the 68020 that it should back off from the bus cycle itis attempting and
should retry it when these signals are no longer asserted. Note that since VMFbus
slave cycles (where the host CPU is trying to access the on-board memory of the
convolution processor) only occur during the initialization phase, it is unlikely that
such deadlock situalions will ever occur. Nevertheless, since the VIC already offers
this functionality, it was included into the design. The 20L8 also generates . couple
of other signals, OEBA* and BTLABOC* which are used to control the transceivers
and address latches during VIC-controlled VMEbus DMA transfer cycles.

The 16V8 implements a simple state machine which is used for arbitration of the
local bus between the 68020 and the VIC When the VIC requires the local CI’U bus,
it asserts its Local Bus Request LBR* signal. In response, the state machine asserts

the 68020 Bus Request BR* signal. When the 68020 detects this and completes its
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currently executing bus cycle, it asserts its Bus Grant BG* output. This is passed
on to the VIC Local Bus Grant LBG* input. At the same time, the 68020 Bus Grant
ACKnowledge BGACK* signal is asserted and its BR* input is negated. At that
point, the VIC owns the local bus When it no longer requires it, it will negate its
LBR* output. the arbitration logic then negates the 68020 BGACK* input and the

68020 regains ownership of the local bus.

3.7 VMEDbus-Local Bus Interface

3.7.1 Bus Transceivers

Although the VMEDbus is quite similar to the local bus of a Motorola processor,
there is nevertheless a significantamountof interface circuitry which must beadded
between the two. For one thing, the bus drivers of a 68020 are not powerful enough
to drive the VMEDbus lines directly, and thus must be buffered. Also, the 68020 local
bus is more lenient about unaligned transfers than the VMEbus is. Finally, the two
buses must be isolated from each other to allow concurrent operation, but must also
be connected together when required. Forall these reasons, a series of transceivers

are used to connect the two.

First of all, the lower 8 VMEbus data lines (ID0-7) and the lower 7 address lines
(A1-7) go directly through the VIC, which handles all of the necessary buffering
and arbitration. The 24 upper address lines are connected through 74F543 octal
latching transceivers. The latching capability is required to support write posting, a
technique where the local CPU can do a single write to the VMEbus without having
to wait for the completion of the write on the VMEbus (the address and data having
been captured in the latching transceivers). Three octal latches (74F373) with their
inputs connected to the LD8-31 local data lines and their outputs connected to the

LA8-31 address lines are used to implement block transfers. The VMEbus D8-31
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datalines are connected to the local D8-31 datalines also using 74F543 octal latching,
transceivers. Additionally, 74F245 octal transceivers are used on the local side to
implement byte-swapping functionality required to allow un-ahgned transfers. All
in all, 13 latches and transceivers are required to implement the interface between
the VMEbus and the 68020 local bus, which requires a fair amount of board area due
to the use of large DIP (Dual In-line Package) devices. Fortunately, the VIC provides
all of the control signals needed to drive the control inputs of these devices, so this
minimizes the amount of extra logic required. Since this design was completed, a
companion device to the VIC called the VMEbus Address Controller (VAC) was
introduced: the VAC incorporates all of the address bus transceivers and latches,
as well as address decoding circuitry, two serial ports and other useful features.

Had the VAC been available at the time of the design, it would have been used.

3.7.2 Local Bus Arbitration
Slave Accesses from the VMEbus

When a master on the VMEbus accesses the address range decoded by the slave
access decoder, this asserts the SLSEL1* input on the VIC. This signals the VIC that
the external bus master wishes to access resources which are on the local CI'U bus.
The VIC then asserts its Local Bus Request (LBR*) which is connected to the Bus
Request (BR*) input of the 68020. When the 68020 senses its BR* input go low, it
completes the current bus cycle, tri-states all of its outputs which control the local
bus and then asserts its Bus Grant (BG*) output. The arbitration control logic uses
this signal to generate the Local Bus Grant (LBG) signal to the VIC, the Bus Grant
Acknowledge (BGACK?*) signal to the 68020 and to negate (BR*) to the 68020
The VIC interprets the assertion of LBG* as the signal that it now owns the local
bus: it then connects the local bus address and data lines to the VMEbus address

and data lines through the control inputs of the address and data transcervers.
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The local bus decoding logic then decodes the slave access to the proper on-board
module (in this case, only the EPROM and RAM are accessible). When the on-
board acknowledges DSACKO0-1* are generated by the local bus control logic, the
VIC senses these and generates a VMEbus DTACK* to signal the VMEbus master
that the transfer has been completed. The VIC then deasserts LBR*, which causes
the local bus arbitration logic to deassert BGACK* to the 68020, which takes back

contro! of the local bus.

Master Accesses to VMEbus

When the 68020 wants to access a memory location on the VMEbus, it first loads
the function code 0x03 into either the Source Function Code (SFC) register or
the Destination Function Code (DFC) registers using the Move Control Register
(MOVEQC) instruction. It thenissues the Move Address Space (MOVES) instruction
which transfers data between an internal 68020 register and a memory location
in the address space specified by the code previously loaded into SFC or DFC.
Address space 0x03 is reserved by Motorola for user expansion, and in this case the
on-board address decoding logic maps it onto the VMEbus A32 address space. The
VIC Module Wants Bus (MWB) 1s then asserted, and the VIC proceeds to become
bus master on the VMEbus (if 1t does not already ownit) using one of the arbitration
protocols outlined in section 3.5.1. Once it has obtained ownership of the VMEbus,
it connects the local address and data lines to the VMEbus address and data lines.
It can derive the values to be driven onto the VMEbus Address Modifier (AMO0-5)
lines based on the 68020 FCO0-2 outputs, or since in this case FC0-2 wrill always have
value 3 for VMEbus accesses, it can take this value from a previously programmed

internal register.

Once the VIC hasreceived DTACK* from the VMEbus module to acknowledge
the transfer, it asserts DSACKO0* and/or DSACK1* to signal the 68020 that the

transfer has been completed. At that point, it can either relinquish control of
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the VMEbus or keep it in anticipation of a next cycle based on the wav it has
been programmed. Note that the VIC does not need to acknowledge to the 68020
that it has acquired control of the VMEbus. to the 68020, a read or write cyvdle
over the VMEbus is completely transparent (although much longer than an access
to a function local to the board). If the 68020 needs to do a single write to a
VMEDbus module, the VIC can be programmed to implement write posting, where
the values driven onto the 68020 data and address lines are captured by the latching,
transceivers and DSACK0*, DSACK1* are returned right away to the 68020. The
VIC the performs the VMEbus write cycle on its own, while allowing the 68020 to
continue to issue cycles which affect only local-bus modules. If the write-posted
cycle ends in a VMEbus Bus ERRor (BERR*), the VIC will issue an interrupt to the
68020 to signal this occurrence: since this can come several local bus cycles after
the write was posted, the 68020 software must be careful in keeping track of which
posted writes are outstanding and might possibly be signaled as having terminated

with an error.

3.5 VMEbus DMA Transfers

As outlined previously, most of the work required to transfer data from host mem-
ory to the input FIFO and from the output FIFO back to host memory 1s done by
the VIC, with the assistance of the 68020. After a period during which the convo-
lution array has to be filled, results begin to come out of the array into the output
FIFO. The Half Full (HF*) output of the output FIFO 1s connected to the Local
Interrupt ReQuest 7 (LIRQ7*) input of the VIC: when this FIFO becomes half-full,
the VIC will detect a HIGH to LOW transition on that input and will generate an
interrupt to the 68020. The 68020 will acknowledge that interrupt by mitiating a
CPUSPACE cycle (ie. a read cycle where the Function Code (FC2-0) outputs are
all 1). The local bus control logic decodes this to assert the VIC Function Code

Interrupt ACKnowledge (FCIACK*) input. The VIC responds by driving an inter-
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rupt vector onto the 8 ,"wer data lines D0-7 and asserting DSACK1*, DSACKO0*.
The 68020 will then execute an interrupt service routine (it will fetch the address
of this routine from the entry in the interrupt vector table corresponding to the
interrupt vector supplied by the VIC) to start a DMA transfer to empty the output
FIFO by writing the results back into host memory over the VMEbus. Although
the interrupt procedure introduces a bit of delay, this is not a problem since the
output FIFO1s only half full when the interrupt is generated. Since the convolution
array operates synchronously (i.e. every time a result is written to the output FIFO,
a datum is removed from the input FIFO), there is no need to generate interrupts
when the input FIFO becomes empty: all that is required is that as many operands
are written into the input FIFO as are removed from the output FIFO. The 6£020
computes how much data must be transfered based on the operand sizes used for

the source and destination images.

The first action of the 68020 interrupt handler is to initiate a 32-bit write to the
VMEDbus destination address. This will cause the local bus arbitration logic to assert
Module Wants Bus M WB* to the VIC: having been properly configured beforehand,
the VIC will interpret this assertion as an indication that it must perform a VME
block transfer with local DMA. It will simultaneously arbitrate for control of both
the on-board local bus and the VMEbus. The VIC interprets the address of the
triggering write cycle as the source/destination address on the VMEbus and the
data as the address on the local bus: this is made possible by the use of latching
transceivers and extra latches which are used to capture these values. Since the
VIC drives directly the lower 8 bits of the address and data buses on each side,
it can “count” up to 256 (one of its registers is used to determine the number of
cycles in a block transfer, from 1 to 64). With additional counters, it is possible to
get 1t to perform transfers up to 64K in length .without any outside i.-ierveation:
unfortunately, this feature was documented as not working properly ir version
of the device. Again, had the VAC companion chip been available at the time of

device, it would have been selected since it takes care of everything that is needed
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for longer transfers.

Note thatsince alllocal transfers will be performed to the FIFOs, the data portion
of that triggering cycle does not need to change. Furthermore, although the VIC
will be incrementing the lower 8 address bits on the local bus, this does not cause
any problems since, as shown in section 3.6.2, the FIFOs are replicated throughout a
32K section of the local bus address space. Inorder to simplify the control software,
these 256 byte transfers will always start on 256-byte boundaries. Since this might
be an unreasonnable restriction to place on the location of image buffers 1n host
memory (it might be difficult to guarantee such aligment with certam operating
systems), the first and last transfers for an image can be shorter and handled as a

special case.

Once the VIC has obtained ownership of both buses, it connects the two through
the latching transceivers and begins to transfer data using 32-bit wide local bus
cycles and VMEDbus block transfers. The length of these VMEbus bursts can be
programmed to prevent other devices on the bus from being locked out for too
long. Ideally, it would be desirable to be able to lower the arbitration overhead as
much as possible by keeping these bursts fairly long: a certain amount of tuning of
this parameter will be required for every systemin which the convolution processor
will be installed If the VIC is programmed for bursts of less than 64 transfers (i e
256 bytes), it will relinquish the VMebus and re-acquire it between bursts. Since
there is not much else for the 68020 to do during that time, the VIC will not bother

releasing control of the local bus.

While the VIC has control of both the VMEbus and the local bus, the 68020 1s able
to keep on executing since it has a 256 byte internal mstruction cache The DMA
transfer control loop is coded to fit entirely within this cache, where it will remain
after the first iteration of the loop has been executed As long as the CPU does
not need to perform any external bus cycles, it can keep on executing instructions

even though it has relinquished control of the bus. In this case, all 1t needs to do1s
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increment the VMEbus DMA base address by 256, decrement a counter indicating
how many transfers are left in order to empty 4K of data from the output FIFO
(remember that this operation 1s triggered by the Half Full flag on the 8K output
FIFO) and initiate the next triggering 32-bit write to VMEbus address space. At

that point, the 68020 will stall since it does not have access to its bus.

When the VIC has finished 1ts 64 cycles, it relinquishes control of the VMEbus
and the local bus The 68020 can then complete its stalled triggering cycle, thus
starting the process over again. After 16 of these DMA transfers from the output
FIFO to host memory, the control software proceeds to read fill the input FIFO
correspondingly, i.e. read as many operands into the input FIFO as were taken
out of the output FIFO. This might end up corresponding to differing amounts
of memory based on input and output operand size: in the case where input
operand size 1s larger than output operand size, fewer output than input DMA

block transfers might be performed.

3.9 VIC Controls

The Cypress VIC-068 VME Interface Controller is an integrated VMEbus interface
device which greatly simplifies the design of a master/slave VMEDbus interface.
Section 3.5 showed how it is used to implement the interface between the VMEbus

and the 68020 local bus. this section looks deeper into its operation.

The VIC is controlled by 58 byte-wide registers which must be programmed
from the local-bus side' thus although it might be possible to build a state machine
to do thus, the VIC is really meant for applications where a CPU is present on the
board. Since every aspect of its operation can be configured in software, it is very
flexible and can be configured for most applications. Each group of registers will

be looked atand their use with respect to this design will be discussed.
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3.9.1 Interrupt Registers

The VIC can act as an mterrupt generator/controller for both the local CPU bus

and the VMEDbus. It can receive interrupts from the following sources:

1. interprocessor communication registers (see further)
2. ACFAIL* (power fail) on the VMEDbus

3. SYSFAIL* (system failure) on the VMEbus

4. arbitration timeout

5. failure of a posted write cycle

6. handshaking with a VMEDbus interrupter

7. 7local interrupt inputs

8. DMA completion

Since the board will notserve assystem controller, sources 2, 3 and 6 are notused
Posted write cycles will not be used, and the 68020 does not need to be notified of
DMA completion (as explained in section 3.8). Arbitration timeout interrupts will
be handled as an error condition which might lead to the aborting of the current
operation. The interprocessor communication registers will be used by the host
CPU to transmit commands to the system' when the VIC detects that host has
written to these registers, it will interrupt the 68020 to signal 1t that a command 15
waiting for it. One of the 7local interruptinputs will be used to gencrate interrupts
to the 68020 triggered by transitions on the Half Full output of the output FIFO (the
polarity and edge-triggered versus level-triggered nature of these inputs is also
configurable). Finally, the 68020 will be able to generate interrupts to the host CPU
by writing values into the proper interrupt control register of the VIC to signal the

completion of a requested operation
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3.9.2 Inter-processor communication registers

As outlined m section 35.3, the VIC has inter-processor communication registers
which can be used to implement efficient protocols which do not require any of the
processors involved to busy-loop waitmg for the other to complete an operation.
There are 5 usable 8-bit registers plus another register which can ve vsed for
semaphore functions. The host will write a I-byte command and an optional -
byte optional parameter buffer pointer into these five registers. It will then write
to one of the four Interprocessor Communications Module Switches, which can
be configured to generate an interrupt to the 68020: 1ts interrupt handler can
fetch the operation code and optional parameter poimnter from the registers. A
VMEDbus master cycle can then be niced to retrieve the parameter values at the
address contained in the pointer. Note that there are also four Interprocessor
Communications Global 5w -* lies which are read-only from the local bus these

are not used in the system.

3.9.3 Block transfers control registers

These registers include the Block Transfer Definition Register, which 1s used to
enable the VIC to perform block transfers longer than 256 bytes: as explained
earlier, this capability is not used in this design. The Block Transfer Control Register
contains bits which are used to enable VMEbus block transfers with local DMA
when Module Wants Bus MWB?* is asserted to the VIC- thisis the mechanism which
is used by the 68020 to start 256 byte block transfers. Another bit is used o signal
the direction of the transfer, i.e from local memory to the VMEbus or vice-versa.
The Release Control Register is used to set the maximum burst length, wiuch may
be shorter than the 64 cycle block transfer length: this 1s used 1 a system where
other potential bus masters cannot be locked out of the bus for 64 cycles due to

real time constraints (such as limited buffer space on a disk or network controller)

&3



3 DMA Engine Implementation

Finally, the Block Transfer Length Register is used to specify the number of bytes (in
increments of four, since only long-word transfers are supported) to be transfered

during a block move in this case, this will always be 256, except perhaps for the

first and/ or last transfers

3.9.4 Slave select control registers

Two registers are used to configure each of the Slave Selcct inputs: in this case,
only the second one (SLSELT*) 1s used since in the current version of the VIC the
first one does not work properly. These registers are used to set the address and
data size of transfers which are supported by the siave intevfzz, i.e. A32, D32 in
this case. The timing betwecn the assertion of DSACK:* by the bus master and the
acknowledgement of the end of the transfer by the VIC by asserting the DTACK*
signal 15 also configured in software' this delay is a function of the speed of the
on-board devices which are accessible from the VMEbus via the slave interface and

the delay introduced by the transceivers between the VMEbus and the local bus.

3.9.5 Arbitration control registers

The Arbiter /Requester Configuration register determines how the VIC will request
ownership of the VMEbus. In particular, it selects which Bus Request line the VIC
will be using (see section 3.5.1 for more details on VMEbus arbitration) and how
“aggressive” it will be at requesting the bus (a “fairness” timer can be configured
to slow down the pace at which the VIC might request control of the VMEbus).
Since the board will not be used as a VMEbus system controller, none of the bus
arbitration functions are used. Finally, the Release Control Register is used to
determine the release protocol used by the VIC. It can support any of the protocols

outlined in section 3.3.1.
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3.9.6 VMEbus and local bus configuration registers

A number of regsters are used to set such operating parameters as the speed ot
the memories on the local bus (an the Local Bus Timung Register) as well as the
values of the timers used to determine error conditions such as timeouts and bus
errors. Again, the VIC shows great flexibility mn that most of these parameters can
be changed m software, making it fairly pamless to interface to a number of devices

of varying speeds and capabilities.

3.10 68020 operation

3.10.1 Booting
Initialization

When the 68020 powers up, the first thing 1t does is a long-word read at address
0x000000, from which it reads the Initial Interrupt Stack Pointer. It then does a sec-
ond long-word read at address 0x00000004 to get the Reset Inntial Program Counter
this value is placed into the Program Counter and the CPU begins exccuting in-
structions from there. Since the local EPROM is mapped at address 0x00000000 in
local address space, both of these values are pre-programmed at the beginning of
the EPROM. The Initial Interrupt Stack Pointer is initialized to address OxO000FFFF,
which corresponds to the top of the 32K local RAM address space: stacks grow
downwards in 680x0 processors. The Reset Initial Program Counter is mitialized

to the start of the initialization routine stored in the EPROM.

The first task of the initialization routine is to push onto the interrupt stack
initial values for the Status Register, Master Stack Pointer and Program Counter

and execute a ReTurn from Exception RTE instruction to exit the reset exception
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handler and return to supervisor state. The Master Stack Pointer is initialized 2K
below the address of the Interrupt Stack Pointer: this reserves more than enough
stack space for exception processing. Note that all of the code on the 68020 will
run in supervisor or exception mode, none in user mode, since there are no other
users or operating system resources to protect from the program. Finally, the 256
byte instruction cache is enabled: this will important in order to obtain maximum

performance during DMA transfer cycles.

Self-Test

Inorder to insure that the on-board resources are operating properly, built-in self-

test procedures are executed next. These verify the following operations:

o EPROM read cycles: achecksum value stored at the end of the device matches

with the checksum computed by the CPU

RAMread and write cycles: since thereis only 32K of RAM, a fairly extensive

test of the device can be performed

pushing and popping on the stack

exception handling

reading and writing to VIC control registers

writing to the board control register

Note that at the time the board was designed, components with support for
built-in self-test where not as readily available as they are now. If this board were
to be redesigned, it would use components which include JTAG boundary-scan

functionality.

The rest of the board 1s initialized next. In particular, the control registers of the

VIC are set as outlined in section 3.9. The write-only control register is initialized
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to the proper value. If one of the self-tests fails, an error code is deposited mto one
of the VIC inter-processor communication registers: the host CPU can read this

code and present to the user the reason for which the board tatled its sclt-test

Copy to RAM

Since EPROM accesses require extra wait states to compensate for the slow speed
of the device, the next step is to copy the code which is gomng to be used for the
main loop of the control program from EPROM to RAM. Instead of trying to write
relocatable code, since it is never executed from EPROM but only from its new base
address in RAM, this code is assembled using its base address in RAM  Further-
more, since an extra delay in exception processing is not desirable (especially when
handling interrupts generated by the status of the FIFO memories), the exception
vector table 1s also copied to RAM and the Vector Base Register is imntialized to
point to the new base address of this table. Once all this 1s done, the board is ready

to operate and accept commands from the host.

3.11 Host Software Interface

As explained in section 3.5.3, the host CPU instructs the convolution processor Lo
perform actions by writing a 5-byte code (a 1 bytes opcode plus an vptional 4 by tes
operand) into the VIC inter-processor communication registers and setting one of
the inter-processor communication switches. The mainloop of the on-board control
software sits 1dly awaiting interrupts generated by the IPC switch registers. Based
on the opcode requested by the host, the control software executes the desired
function. When it has completed the requested operation, it will instruct the VIC
to generate a VMEDbus interrupt to signal the host. A result code is also placed into
the IPC registers: this can be used to signal abnormal completion of a requested

operation.
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The software recognizes the following commands from the host:

¢ Load New Coefficients: the host will have previously written into a fixed-
address buffer in local RAM (using VMEbus slave cycles) the floating-point
values of the coefficients to be loaded into each of the processors which make

up the convolution array The optional operand is not used.

e Load Output Converter Table: as in the previous command, the host will
have writlen the 4K entries which make up the output converter look-up table
mto local RAM. The local CPU will load these into the look-up table via the

array processor control register. The optional operand is not used.

e Set Image Source Address: the operand contains the source address in host

memory for the image.

o Set Image Destination Address: the operand contains the destination ad-

dress 1n host memory for the results of the convolution.

e Perform Convolution: the operand contains the following fields: 2 bits each
for input and output data format, specifying either 8 bat, 16 bit or 64 bit
operands; 2 bits each for specifying whether the input and output data streams
should be upsampled /downsampled by factors of 1, 2 or 4; 12 bits each for
the x and y size of the input image. Note that the size of the delay memory

circuit memories imposes a practical limit on the size of the image lines.

Note that the Perform Convolution operation requires that a valid set of coef-
ficients must have been previously loaded into the array, that the output converter
look-up table must have been initialized and that a source and destination address
must have been specitied, although it is possible for the host to issue multiple
convolutions without changing these base addresses. When no upsampling is per-
formed, it is also possible to have the source and destination addresses point to the

same region in memory since the convolution processor will read the source image
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before writing the results of the convolution, thus allowing in-place operations (this
1s obviously not possible 1f the input image is bemg upsampled. since the oulput
data stream would quickly begin to overwrite regions of the image which would

not have been processed yet).

The actual operation of the 68020 during the convolution is explined m sec-
tion 3.8. The coding of this loop is quite critical, since some crucial portions must
fitin the 256-byte instruction cache to allow the 68020 to continue processing (1 ¢
computing the base address of the next transfer) during the time 1t has relinquised
its local bus to the VIC and be ready to start the next 256 byte DMA transfers as

soon as the current one has finished

3.12 Host Sofiware

Although the convolution processor does most of the work, a certain amount of
software needs to run on the host processor in order to interface with the device

This software can be separated into three levels:

1. device driver level
2. library level

3. application level

Only the device driver is of concern here: it implements all of the functionality
required to write a C or C++ application which interfaces with the convolver A
library can be used to supply higher-level functionality, such as a single convoloe()
routine. It can also be included into a hibrary of signal processing functions. Fi-
nally, support for the convolver could be included 1n a signal or image processing
application, especially one with a modular design. For instance, the Khoros. sys-

tem [Khoros, 1991] implements different operations as separate programs which
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can be connected using a graphical user interface: the application which performs
convolutions could be replaced by a version which knows how to take advantage

of the convolver device.

3.12.1 Host Device Driver

Writing a device driver for a Unix-like operating system has often been considered
somewhat of a black art only to be mastered by the most seasoned wizards. This is
due in part to the design of tradition..] Unix systems as monolithic kernels where
the device driver is a C routine which is linked to the rest of the system. Thus
the only way to debug a driver is to reboot the machine with the new kernel, try
out the new driver, and most likely crash the machine since the kernel operates
in the privileged mode of the CPU. In most cases, the driver developper is left to
scratch his head with nothing but the output of a few debugging print statements
to figure out what went wrong. Fortunately, this has begun t¢ change. Most new
kernels such as those of Sun’s Solaris 2 or IBM’s AIX 3have support for dynamically

loadable device drivers which are easier to debug.

Another problem traditionaly encountered was the lack of adequate documen-
tation: the one available from the OS vendor was often sketchy on details and
short on examples, if any were provided. This has also changed: there are now
good references on writing device drivers [Egan and Teixeria, 1992], [Pajari, 1992].
Furthermmore, there are now several versions of Unix available with full source code
at prices accessible to others than large corporations, and in some cases at no cost.
Forinstance, the 386BSD / NetBSD / FreeBSD systems are based on 4.3 BSD, which
18 documented in detail in [Leffler et al., 1989]. Another example is Linux, which
is also frec and available with full source. Thus the driver developper is free to
study the source code of all of the other drivers available for the system, as well
as to obtain assistance from the many other developpers who use USENET as a

forum for exchanging information. In this case, since the primary environment is
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SunOS/Solaris, the documentation provided by Sun has to suffice.

Note that in many cases, it is not necessary to write «n actual device driver,
since most of the work can be done in an application. For instance, an apphcation
used here at McRCIM interfaces to a VME-based frame grabber by mapping s
memory into the address space of the process using the mmap() system call and
accessing that memory as a normal C array. Unfortunately, i this case this option
is not possible since the convolver will be generating mterrupts and the only part
of the system which is able to respond to interrupts is the interrupt service routine

which is part of a device driver.

The normal semantics for a Unix device driver is to support the read(), write()
and zocfl() system calls. In this case, it would be impractical to use read() and wr ite()-
although it would be possible for an application to “wrife()” the source image to
/dev/convolverand “read()” back the result from Hie same device, this would result
in unnecessary copying of data which would make the system very inefficient
Instead, the convolver operations outlined in section 3.11 are simply mapped into
corresponding ioct/() operations. Note that the Set Image Source Address and Set
Image Destination Address operations will take care of locking the appropriate
image ranges into physical memory. As for the Perform Convolution operation, it

is provided both in blocking and non-blocking versions.
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Chapter 4 Comparison with General Purpose Systems

4.1 Introduction

In therr study of computer graphics hardware, Myer and Sutherland iden-
tified more than 25 years ago what they called the “Wheel of Reincarna-
tion” [Myer and Sutherland, 1968]. Smply put, this means that as a problem is
identified which requires more computing power than available using general-
purpose systems, the temptation to design and implement special-purpose hard-
ware to solve this problem grows. In most cases, the system will perform as
expected and provide a viable solution. But this has been done at the expense of
flexibility: the specialized system can do one thing only (albeit very well), and
it is generally harder to use (and program) than a general purpose machine. As
the speeds of the latter increase and begin to overtake the speed of the special-
ized hardware, 1t will become tempting to migrate the application back to the
general-purpose machine until the entire cycle can be repeated again. This cycli-
cal migration 1s no less true today, although we seem to be m the “moving to a
general-purpose architecture” phase. UNIX workstations have been doubling in
performance every 18 months for the last few years and their prices have been
falling steadily. In many cases, the cost of the hardware is being dwarfed by the
cost of software development, so it makes sense to move to an environment which

enhances software productivity.

This project has by no means been immune to this phenomenon. When it first
started, most workstations offered floating-point performance in the range of a
few hundred kiloFLOPS, which meant that cur system had almost three orders

of magnitude more performance. Nowadays, many workstations can deliver a
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few dozen MFLOPS without even having to resort to hand-coded assembly lan-
guage (cptimizing compiler technology has greatly improved, and on many RIS¢
architectures there s little additional performance to be gained by programming in
assembler instead of in a high-level language such a FORTRAN or C [Bell, [990])
This chapter will present implementations of the floating-point convolution algo-
rithm on a number of general-purpose machines. This will allow us to compare
the performance which can be obtained from a C program (with a bit of care, but
no extraordinary feats of hand-optimization). We will also be able to compare a

few different architectures:

e an SIMD machine, the MasPar MP-1
® RISC processors arranged in MIMD fashion, the Silicon Graphics 417/240

e single-processor RISC workstations such as the SPARC-based Sun S$10/ 30,
the IBM RS/6000 model 360 and the R4000-based Silicon Graphies Indigo
R4000

4.2 An SIMD machine, the MasPar MP-1

4.2.1 System Hardware

The MasPar system is a Single Instruction Multiple Data computer which is ori-
ented towards high-speed scientific computing involving array operations  Typical
applications are low-leel image processing, computational fluid mechanics and
finite element analysis. It consists of two main parts: a Front End (FE) worksta-
tion which handles all interactions with the user and the Data Parallel Unit (13PU)
which contains the actual SIMD machine. A block diagram of the architecture of
the system is presented in figure 4.1. A thorough treatment of the MasPar system

hardware and I/0 subsystems can be found respectively in [MasP'Op, 1990] and
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Figure 4.1: MasPar MP-1 System Block Diagram

[Mas10, 19901 Note that the architecture of the MP-1 is quite similar to that of the
CM-200 from Thinking Machines Corporation [Ramanathan and Oren, 1993].

Front End Host

The MasPar is controlled by a Front End (FE) host, a VAXstation 3250 from Digital
Equipment Corporation. All user interaction with the MP-1 is done through the
Front End, which also acts as a disk and communications server. The primary task
of the Front End is to handle all sequential code in a application, in particular all
user interface functions. Parallel operations are performed on the Data Parallel
Unil (DPU). This communication is handled by a high-speed interface: a number
of registers and First-In First-Oul queues are inapped into the address space of
the Front End and let it transfer data to and from the DPU. Among other things,

this interface allows the Front End direct access to the internal bus of the DPU (a
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variation on the standard VMEDbus), thus allowing Direct Memory Access (DMA)

transfers.

The Data Parallel Unit

The Data Parallel Unit is composed of two main components: the Array Control
Unit (ACU) and the Processing Element (PE) array The Array Contiol unit s
composed of a 14 MIPS RISC processor with thirty-tv.o 32-bit registers and a
Harvard-style architecture. It has 1IMb of memory for code and 128K of memory
for data, which is sufficient since most data will reside in PE memory (the ACU
can page out to the Front End disk if necessary). The primary purpose of the Array
Control Unit is to act as a sequencer for the Processing Elements of the PE array
As such, it communicates with the PE array over the ACU-PE bus: it uses this bus
to broadcast instructions to be executed by all the currently active PEs as well as
broadcast data values from its own address space to the PEs. The ACU-PIi bus can
also be used to read values back from the PEs to the ACU. the outputs of all the
PEs are then connected together in wired-OR fashion. Thus if more than one PF
responds to a read request from the ACU, the ACU will receive the bitwise-OR of
the data values sent by all the responding PEs. The other function of the ACU 1s to
execute all non-parallel code running in the DPU: thus includes of course all control
statements which dictate which PEs will participate in which mstructions, but also

all operations on variables which are stored in the data memory of the ACU

The PE array can contain from 1K to 16K processing elements. Each P is a
load/store arithmetic processor with dedicated register space and RAM. Each I’;
has a 1.6 MIPS control processor, forty 32-bit registers (32 of which are available
to the programmer and 8 which are reserved for the system micro-code) and 16K
of data memory (recall that no instruction memory is required since mstructions
are broadcast by the ACU). The PEs are physically implemented as a full custom
CMOS VLSI device containing 32 such PEs. Since the PEs on a chip share the data
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RAM area (16K of which is reserved for each PE), access to this RAM is much slower

than access to the private registers. Thus register allocation must be carefully done

to ensure maximum efficiency 1n parallel programs

Each PE has both a sequential 1D (assigned starting from 0, with no gaps), as
well as + and y ID numbers which identify its position in the array. Thus the
PE array can be viewed either as a one-dimensional array or a two- dimensional
array depending on the needs of the parallel algorithm. A number of status bits
on each PE specify whether the PE will participate in the current instruction being
broadcast by the ACU. The set of PEs which are currently enabled to execute the
next instruction 1s known as the active set. Conditional statements broadcast by the
ACU can modify the active set by disabling or enabiing PEs. These tests can either
be performed on data that is local to the PEs or on the PE index variables (in the

case where we want to exclude a geometric portion of the array).

Each PE is connected with its eight nearest neighbors by the “XNET”, and the
2D PE array wraps toroidally at the edges A status bit in each PE determines
its participation in XNET transfers controlled by the ACU, which can cause each
enabled PE to transfer the value stored at a given address to a neighbor in a given
direction: all such transfers occur at once, thus achieving large I/O bandwidth (a
lotal of over 2.2 Gb/sec). A mode called “Pipelined XNET” allows XNET transfers

ata distance of more than 1 PE in a more efficient manner than several 1 PE distance

transfers.

A Global Router allows any PE to communicate with any other PE in the array.
For the purposes of Global Router communication, the PEs are grouped into clusters
of 16 PEs which share a bi-directional serial line to the serial router. Access to these
serial lines 1s arbitrated in microcode: since the bandwidth of the Global Router
is much lower than that of the XNET (around 50 Mb/sec), care must be taken to

avoid contention as much as possible by distributing data cleverly in the PE array.
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4.2.2 System Software

The programming model of the MasPar is that of two tightly coupled programs
running together, one of the Front End and one on the Data Parallel Unit. The pro-
gram running on the Front End 1s a purely sequential program, typically wntten in
atraditional language such as FORTRAN or C using the standard UNIX compilers
for these languages. The parallel part of the program executes on the DI'U, and
is written in a parallel language. When a call 1s made across this boundary, data
values have to be copied over the FE to DPU bus, since the FE and the ACU have
different address spaces. Single values can be passed via FIFO queues, blocks of
data can be transferred using DMA directly to and from the memory of the PEs

These function calls can be either synchronous or asynchronous

Athought the DPU can be programmed in assembly language, most users will
use instead the MasPar Parallel application Language (MPL). MPL is basically
“old style” Kernighan and Ritchie C enriched with a new data type modifier,
plural modifier. In MPL, any variable which 1s declared normally resides in the
data address space of the ACU In the context of this parallel environment, these
variables are known as singular variables. Plural variables, on the other hand, are
allocated at the same memory location on every PE (this is dictated by the SIMD
nature of the PE array). Whenever an operation involves only singular variables,
the ACU performs this operation on its own. As soon as an operation involves a
plural variable, the result of the operation is a plural result and all of the PEs which

are part of the active set take part in this operation. For instance:

int 1;
plural int j,k;
k = 1+73; /* This is a plural operation */

In this case, the ACU will broadcast the content of its : variable to all of the PEs.

The active PEs will then add this value to the content of the ; variable and store the
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result in their /I variable.

C control also accept plural arguments: in this case, they influence the size of

the current active set. For instance, the following code avoids divisions by zero:

plural double 1,3,k;
1£(1!'=0.0)

{
k =197/ 1i; /* Avoid division by zero */

This piece of code will cause every active PE to test the value of its : variable:
those that find it equal to zero are temporarily excluded from the active set for the
duration of the if compound statement. Thus the active set can only be reduced by
MPL control structures. When such a structure exits, the active set1s restored to its

previous state. Note that in the following code:

plural double 1,3, k;
it (1!'=0.0)

{
k =13 /i; /* Avoid division by zero */

i =-1.0; /* Make sure i1 is no longer zero */

some PEs which have 1 originally non-zero will execute the if path of the state-
rent, whereas others which have : set to 0 will execute the then partof the statement.
The original semantics of the if-then-else construct are respected by every PE indi-
vidually, but not when we consider the complete array. Greater detail about MPL

can be found in [MPLref, 1990] and [MPLguide, 1990].

Inter-PE communication is implemented using the xnet and router pseudo vari-

ables. For instance, in the following code
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plural int 1;
. i = xnetW[l].1i;

we can say the every PE “retrieves” the value of the ; variable from its westerly
neighbor, 1 PE away (i.e. its direct neighbor to the west) and copies it into its own
« variable. Remember that XNET communications occur all at once: the net eftect
of this action is thus to shift the values of the : variables by one position to the cast,
keeping in mind the toroidal wrapping property of the PE array Similarly, a PF

can use the Globai Router to get a variable from any other PE

plural int i,3,k;
i = router[j].k;

Here, every active PE would retrieve the value of the & variable stored on the
PE whose number is in 1ts ; variable and store it in its / variable. There are 6

pseudo-variables which help PEs make decisions as to whether to partiapate in an

. operation

e nproc the total number of PEs in the array

nxproc the width of the PE array

nyproc the height of the PE array

tproc the index of the PE (viewing the PE array as linear)

ixproc the column index of the PE in the array

iyproc the row index of the PE in the array

4.2.3 Implementation and Results

Our implementation of the convolution algorithm on the MasPar follows the fol-

' lowing steps: first, the image is read off the disk by the Front End and remapped
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into a format compatible with the layout of the Processing Elements in the PE
array. It s then transfered to PE memory, together with the values of the kernel
coefficients  The convolution is then performed by the DPU under the control of
the ACU. Once the operation is finished, the results are read back into the FE. Since
we are only really interested in the floating-point performance of the MasPar, we
will only benchmark the amount of time required to perform the convolution by
the DPU and exclude the overhead of transfering the image. Since the MasPar
machine which was available had onlv 64 by 32 PEs, most of the work was taken
up by coming up with schemes for mapping the 512x256 test image into the PE

array. Three such schemes are considered here.

Implementation Method 1

This first method has been proposed in [Jacobsen, 1990]. The principle is to split
the image into blocks which are of the size of the PE array. These blocks are then
copied into the PE memories in an array of pixels: for instance, on PE (0,0), this
array contains the top-left-most pixel of every block in the image. Every PE first
multiplies its pixel value with the first kernel coefficient, then transmits the partial
resull to its east neighbor. These partial results are accumulated and transmitted
to the east until a row of coefficients has been used up: the partial results are
then transmitted to the south. After a number of iterations equal to the number of
coefficients in the convolution kernel, the partial result will contain the resulting
convolved pixel (although not for the pixel on the PE on which it resides: it will
have to be moved back to the PE containing the original pixel). This process is

illustrated in figure 4.2 for a 2 by 2 kernel operating on a 3 by 3 image.

XNET communication is a natural candidate to communicate the partial results
between adjacent PEs since in this method, PEs only need to communicate with
their immediate neighbors. Since all the PEs communicate at once and they are all

enabled, very high bandwidth is attained. Note that the operation of this algorithm
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Figure 4.2: Method 1 - 2x2 kernel, 3x3 image

is similar to the systolic array method used to implement our hardware convolution

processor.

This partial convolution is performed on every block in the original image- if
the original image had the same size as the PE array, then this algorithm could rely
only on the toroidal wrap property of the PE array to handle boundary conditions.
Unfortunately, tiis is not the case here, since the image is larger. Although il has
been done for the other two methods, the code required to handle these boundary

conditions has not been implemented in this case.

Implementation Method 2

In the second method, the image partitioning is the same as for the first method.
Each PE computes the convolution result for the pixel stored n its memory by
implementing the convolution equation directly:

M h

z

2z
PircdDpl= 32 30 Purcdi+ £y + ylkfr][y]

——n
’—_2y=—%

(4.1)
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Figure 4.3: Method 2 - 3x3 kernel example

The kernel coefficients, stored on the ACU, are broadcast to all the PEs when
the multiplications are done. The neighboring pixels are read from the neighboring
PEs using XNET communication. Figure 4.3 demonstrates the operation of method

2 for a 3 by 3 convolution kernel.

Implementation Method 3

In this third implementation, the image is broken up into as many contiguous,
rectangular regions as there are PEs. Each of these image blocks is stored on a PE,
and each PE operates on its own region of the image, implementing equation 4.1
directly. With this method, the communication between PEs is minimized, since
apart from the pixels on the edge of the image block, the PEs will be able to compute
the convolution without requiring any data from their neighbors. This method is

especially attractive when the image is much larger than the size of the PE array,
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since in this case there will be very little communication required between the IEs
(the proportion of “edge” pixels to “interior” pixels being small). On the other
hand, if the region stored on each PE is very small (especially 1f 1t is not much
larger than the kernel size), then this method does not have many advantages since
every pixel will be an “edge” pixel and communication with neighboring PEs will

be required.

Implementation Performance

Figure 4.4 represents the performance of the three methods when taking into ac-
count only the time required to execute the convolution algorithm on the DPU.
First note that the results for a 3 by 3 kernel are not very significant: since the
clock() function call used to time this function has a resolution of around 10 msec
and the execution time was around 80 to 90 msec, large errors can have crept in
(although all of the figures plotted in the graphs represent averages over 10 runs
of the program). A top performance of around 37 MFLOPS 1s obtained s all three
cases for a 9 by 9 kernel. Note that as the kernel gets larger, the performance
increases: this is due to the fact that as more floating point computations need to
be performed, the overhead due to address computations and loop index checking
becomes comparatively smaller, thus sielding a higher perceived fluating point
throughput. When comparing this somewhat dissappointing result with the per-
formance of machines in the following sections, one must keep in mind that these
results where obtained early in 1991: since then, the MasPar machine has been
upgraded several times with new microcode and hardware which have reportedly
increased its performance (the author was not able to successfullyrun these tests

again after the upgrades).
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Figure 4.4: MasPar Implementation Performance

4.3 An MIMD Machine, the Silicon Graphics 4D/240

4.3.1 System Hardware

For the last few years, Silicon Graphics has offered a line of “symmetric multi-
processing” systems called the POWER Series based on MIPS (now owned by SGI)
R3000 micro-processors. These processors are configured in Multiple Instruction,
Multiple Data (MIMD) fashion. They all share a common system memory which
is accessed over an inter-processor communication bus (to which is also connected
the graphics subsystem). In order to decrease traffic over this bus and reduce
contention between the processors, each CPU has a private local cache memory
for both instruction and data. Cache coherency hardware ensures that no cache
ever holds a stale copy of data which has been updated by another processor: this

hardware approach to cache coherency means that “traditional”, single-threaded
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applications usually need not be aware that they are running on a multi-CPU
system. On the other hand, this additional hardware adds both complenity and
cost to the maclune  As in most MIMD machmes, the mam bottleneck 1s the
'nterprocessor bus which can quickly become saturated, simce it ofters only o4
MB/sec of throughput. Although POWER Series machines can be contigured with
up to 8 CPUs, in many applications little performance is gamned by going above 4
processors (especially when heavy use is made of the graphucs subsystem, which
can require a significant portion of the bus bandwidth to be fed with enough data
to run at full speed). Recently, Silicon Graphics has announced the new Onyx
and Challenge lines of multi-processing machines. These retain the same basic
architecture, but the bandwidth of the multiprocessor bus has been raised to 12
GB/sec, allowing up to 36 MIPS R4400 processors running at 75MHz externally
(150 MHz internally) to share the bus [SGISMP, 1993]. “True” performance of these

systems is not known at this point

The 4D/240 system on which the convolution algorithm was coded is not as
recent. Itis based on 4 25MHz MIPS R3000 CPUs, each having 2x64Kb of primary
cache memory for instructions and data and 256Kb of secondary cache. There are
128Mb of shared system memory. Although this 1s by no means the fastest of the
POWER Series system, the performance obtained can be scaled quite closely with
clock frequency (the fastest Power Series machines have R3000 Processors running

at 40MHz).

4.3.2 System Software

SGI machines run a version of the UNIX operating system called IRIX It includes
several extensions, notably in the areas of graphics, real-time ca pabilities and “sym-
metric multiprocessing”. Basically, most parallel processing on these systems 15
very coarse grained and occurs at the UNIX process level One of the processors

on the system runs the IRIX kernel, which is responsible for dispatching processes
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to the available CPUs. In this way, programs can be completely unaware that there
are several CPUs in the system: if there are 4 runnable processes at one time, they
each get the benefit of a “full” CPU (assuming that their memory access patterns
don’t conflict too much with each other, and in particular that they don’t “bust”
the local CPU cache too often) All of the CPUs are usually kept fairly busy in a
multi-user environment: four processes could run at full speed with little inter-
ference between each other In visual simulation applications (such as a low-cost
flight simulator), cne of the CPUs could be used to traverse the visual database and
determine the visible polygons, the second one could be used to feed the polygons
to the graphics pipe, the third one could be used to run the actual simulation (i.e.
compute the flight equations) and the fourth one could be used to interface to

external peripherals (such as the cockpit controls).

It is also possible for a single process to take advantage of more than one
CPU. The . fork() system call creates a copy of the process which calls it on each
available CPU, and calls the same function of that process on each CPU. Each
mstance of the function has its own stack and local variables, but contrary to the
standard UNIX call for k(), all the copies of the process share the same addressing
space (i.e. global vanables and dynamically allocated memory). When all of the
instances of the function have completed, the 11 fork() call returns and the process

continues running on a single CPU.

4.3.3 Implementation and Results

The implementation of the convolution algorithm on the SGI 4D /240 works roughly
along these lines: the main process takes care of of reading the image from disk and
converting it to floating-point format. It then stores it in a 2D array in C-style row-
major format In order to avoid border effects, the image is extended by replicating
a band of width equal to half the kernel size around its perimeter. Although this

method requires a few extra floating-point computations, it will save a lot of time
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by greatly simplifying the addressing computations. An early implementation of
this algorithm which used the modulo operation to obtain the proper wrap-around

behavior got disastrous performance on all architectures on which it was compiled.

The main process then uses m_fork() to start four instances of a function which
computes a straight-forward 2D convolution sum. Each of these functions operates
on a horizontal quarter-image to minimize contention for main MEMOry access.
The only time when the CPUs try to access the same regions of memory are [or
the convolution coefficients (which will remain m CPU-local cache memory after
the first time they are read) and for a thin region along the boundary between the
quarter images. It would have been possible to duplicate these regions in order
to eliminate this contention, but a closer study of memory access patterns would
have been required to justify the effort. Unfortunately, SGI does nol provide any

tools for monitoring these patterns.

Test results were generated for 1, 2 and 4 CPUs Also, the inner loop of the
convolution sum was explictly unrolled, since the SGI compiler was not smart
enough to do it on its owi. Loop unrolling is a technique whereby small loops
with fixed boundaries are replaced with as many instances of the loop body as there
would have been iterations in the loop. All array indices are replaced by constants
correponding to the 1teration index. In heavily pipelined processors, unrolling
prevents pipeline stalls due to branch instructions and simphifies the work of the

optimizer which can find the optimal scheduling for the instruction stream.

Table 4.1 lists the number of MFLOPS obtained for varying kernel sizes and
number of CPUs used. First note that due to the lack of an accurate timing function
and to the fact that it was not possible to bring down the system to single-user mode
to run these tests, some of the values can be off by significant amounts. Clearly, the
performance of the convolution algorithm seems to scale linearly with the number
of CPUs installed in the system, which means that the algorithm exhibits strong

locality of reference, allowing the individual CPUs to run at full specd without
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3,3[5,5]7~7|9 ~9 | kernel size
1.69 | 258 2.67| 3.48 | 1CPU (no unrolling)
322 | 496| 5.19| 6.96 | 2 CPUs (no unrolling)
6.41 | 9.77 | 10.35 | 14.02 | 4 CPUs (no unrolling)
654 | 677 | 6.71] 6.66 | 1CPU (unrolling)
12.82 | 13.48 | 13.48 | 13.27 | 2 CPUs (unrolling)
24.32 | 26,53 | 26.54 | 26.44 | 4 CPUs (unrolling)

Table 4.1: MFLOPS Results for the SGI 4D/240

mterfering with each other when accessing main memory. Also, in the case where
the convolution sum loop was not unrolled, performance increases as the kernel
size increases, which reflects the fact that loop overhead becomes less of an issue as
the size of the loop increases. When the loop is unrolled manually, the performance
remains mostly constant across kernel size (it even seems to decrease for the 9 x 9
kernel size, which might suggest that we are starting to have problems with the
cache at that point). Finally, these results also show that 1 most cases, compilers
still need to be given a hint (in this case explicit loop unrolling) to allow them to

generate code which makes full use of the capabilities of the machine.

4.4 Single Processor RISC Machines

4.4.1 Motivation

Single-processor UNIX RISC workstations are still the most widely used systems
for scientific computations. A properly-written C or FORTRAN program can be
recompiled without modification on most such machines. Instead of trying to
take advantage of specialized hardware through hardware-specific code, one can
either run a program on many machines at once (thus supporting the claim by
Sun Microsystems that “The Network is the Computer”), or one can wait for the

performance of workstations to increase to a point where one’s application runs
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in a reasonable amount of time. At the rate at which workstation pertormance 1s
increasing these days, one might not have to wait