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ABSTRACT

. The flow mechaniam of concentrated suspensions of rigid
particles undergoing slow Poiseuille flow was studied. It was shown
that the deviations from the parabolic‘ velocity distribution arise
from a wall effect of the type described by Vand. Particle accumulation
behind an advancing meniscus is caused by the radial flow and particle-
particle and particle-wall interactions. In many cases, the motions
of particles were reversible when the direction of flow was reversed.
In dilute suspensions, the statistical properties of the particle
paths were in good agreement with a theory of collision doublets based
on rectilinear paths of approach and recession.

At high Reynolds numbers rigld cylinders exhibited the
tubular p:inch effect previously found for spheres, and attained
limiting rotational orbits corresponding to maximum energy dissipation.
- In concentrated suspensions, radial migration produced a plasmatic
zone at the wall which changed the initial veloecity profile and
decreased the apparent viscosity.

The behaviour of rigid and deformable particles suspended in
viscoelastic fluids differed in several important aspects fram that in
newtonian media.




FOREWORD

The investigation described in this thesis forms part of
a series conducted in this laboratory with the purpose of arriving
at a better understanding of the flow properties of liquid dispersions.
The work deals mainly with the behaviour of particles flowing through
cylindrical tubes over a wide range of particle concentrations from
those in which particle interactions are negligible to those in which
they become predominant.

The structure of the thesis requires some explanation. In
Part ’I é. review of the general background is given and the scope of
the work 1s defined. The principal portions of the study are described
in Parts II to V each of which has been written in a manner suitable
for pubncation; each Part is complete with its own Abstract, Intro-
duction, Experimental Section, Discuseion, Bibliography and List of
Symbols which, with minor exceptions, are used consistently throughout
the thesis.

Certain details of the experimental apparatus, calculations,
and preliminary experiments are presented as Appendices I to' V.
Finally, Part VI consists of a General Discussion and includes
recommendations for further work.
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PART I

GENERAL INTRODUCTION

The rheology and stability of suspensions and emulsions have
been widely studied because of their importance to Colloid Science and
because of their interest in various technical and scientific fields.
Two main approaches have been used: one based on the macroscopic
rheological properties of the dispersions and the other based on
microrheology i.e. the behaviour of the individual particles. Of the
two methods, the second has been more extensively used in this labora-
tory and has dealt with the motion of isolated rigidi™*) and deformable’~S’
particles and two-body collisions9’lo) in newtonian liquid media under-
going slow Couette™™>? 79) and Poiseut1165+1%) f1ows. This thesis
describes an extension of these studies, i) to concentration ranges at
which particle crowding effects become significant ii) to the flow
regime where inertial effects start to become important and iii) to
v:l.scoelastic suspending media in which normal stress effects are
present. |
Particle ¢ effects

In the creeping flow regime, small isolated and neutrally
| buoyant rigid particles in newtonian liquids rotate in accordance
with & theory due to Jeffery™l), and translate in linear paths with
the velocity of the undisturbed flow at their centresé) . Flexible
particles, which are deformed by the shear, migrate away from the walls

bounding the suspending fluid® 8),



At higher concentrations particle crowding effects become
predominant. The composition of a suspension moving into an initiallj
empty tube is not uniform aiong the tube; an accumulation of particles
occurs near an advancinglz’ 13) and a depletion near a recedingu")
meniscus, When the suspension is allowed to flow in a tube until steady
conditions are established it can continue to exhibit anomalous behaviour
with the apparent viscosity coefficient decreasing with decreasing tube
radius, This is known as the sigma effect and was first reported by

Binghamls ) for paints and later observed in cla.yslé’ 17) » bloodls) and
other concentrated suspensionslg) .
' 20)

Dix and Scott-Blair used a sumnation rather an integration

treatment of the Poiseullle equations of flow and derived an equation

to explain the sigma effect. Maude and Whitmore 2*21+22)

postulated an
entrance effect which resulted in a decrease in the concentration of
the suspension in the tube, which in turn produced a decrease in the
apparent viscosity. Finally, Vandza) suggested that the sigma pheno-
menon arises from a hydrodynamic interaction of the particles with the
tube wall.
Inertial effects

At low but not zero Rpjnolds numbers isolated neutrally
buoyant rigid spheres in Poiseuille flow exhibit the tubular pinch
effectzz’) in which the particles accumulate at a stable radial position
about half-way between the tube axis and tube wall. These original
observations on spheresm‘) have been extended to rectangular duc:ts25 ) ’
and to non-neutrally buoyant systems25 ~27) . In the latter case the
direction of migration depended on the relative directions of sedimen-

tation velocity and £low=’ -27) . Furthermore, whereas rigid spheroids




in the creeping flow regime rotate in a periodic manner as predicted

by Jef.f.eryll) and in a constant orbit6’ 28)

s it has been predicted
theoretically by Safman29) that inertial effects can cause a steady
drift in the orbit to values corresponding to minimum energy dissipa-
tion in Couette flowll) .

Although the theoretical .'t.n't.ekrpr'et.ationsz‘;-3 0) of the
lateral migration predict qualitatively some of the observed phenomena,
especially in non-neutrally buoyant systems, thejr have failed, however,
to provide an explanation of the two-way migration in the neutrally
buoyant case, This 1s because these theories take into account only
the inertial effects without considering the presence of the tube wall
which, as has been pointed onte?M’BB ) s 1s of cardinal importance.
Recently Cox and Brenner’ h) have treated the problem of a neutrally
buoyant sphere, which is freely rotating and translating parallel to
the axis of a tube of finite radius. While the calculations are not
yet complete there are reasons to bel:l.eve33 ) that it will provide the
explanation for the tubular pinch effect.

Two-way migration of single rigid particles has been also
observed in oscillatory and pulsatile flowa3 5, 36) ; in concentrated
suspension undergoing oscillatory flow a particle-free layer is formed
near the wall as a result of radial migration3 5 ), a phencmenon which
has also been cbserved in pulp fibre suspension in steady flow).
Viscoelastic media

In a newtonian liquid, under steady state conditions, the
normal components of stress are equal and the tangential stress is
proportional to the rate of shear, the proportionality coefficient

being the viscosity. Viscoelastic flulids behave differently in two



respects: the viscosity is not constant but is a function of shear
rate, and there are additional components of normal and tangential
s‘l’.resses3 7). The excess of normal stress over the classical value
corresponding to a newtonian liquid implies that, besidés a sheariﬁg
force, additional normal forces must be applied to the fluid in order
to maintain flmP 8) . In the case of a liquid contained between
concentric cylinders in relative motion, the existence of the excess
stress produces a ‘'strangulation" of the liquid (analogous to the
pressure exerted by a rope pulled tight round a pole) and the liquid
climbs up the inner cylinder thus demonstrating the Weissenberg
eftect’?),

When the steady flow is abruptly altered by making the
stress zero, the viscoelastic liquid undergoes an elastic recovery
generally. involving a lateral expansion and a longitudinal c:on't.ra.c'c.:i.on3 8).
Thus, when a viscoelastic fluid issues from a tube it swells at the
exit to a diameter greater than that of the tubel’o) .

Scope of the thesis

The three different aspects touched on above, have been
studied anci are reported upon in the succeeding Parts of the f.hesis.
Most of the experiments were performed in Poiseuille flow but obser-
vations on.pa.rticle motions were also made in Couette flow either for
comparison purposes or to obtain additional information and evidence.
The following is an outline of the objectives of the study'a;hd scope
of the thesis. | |

1) To investigate the kinetics of concentrated suspensions of
rigid particles in the creeping flow regime by carrying out a detailed
study of the motion of individual pérticles and velocity distributions
in tubes (Part II).
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11) To study the translationsl,radial, and rotational velocities
of isolated rigid and deformable particles at high Reynolds numbers and
to test Jeffery'sll) and Safman'? 0) theoretical equations. To
investigate the effect of radial migration on the flow of concentrated
suspensions (Part III).

i1i) To study the accumulation of particles behind an advancing
meniscus of a suspension flowing in a tube at low Reyﬁblds nmmbers
(Part IV),

iv) To investigate the motion of particles in viscoelastic media
in which the presence of excess stress would be expected to :i.nfluence
their behaviour, and to compare the results with similar observations
in newtonian liquids (Part V).
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PART II

CONCENTRATED SUSPENSIONS OF RIGID PARTICLES

- ABSTRACT

In the viscous flow regime the velocity profiles of dj.lute
suspensions of rigid spheres in Newtonian ligquids undergoing Couette
or Poiseuille flow were found to be identical with those predicted by
the theory with no particles present. At concentrations low enocugh
so that the formation of triplets and higher order multiplets could
be neglected, a given sphere exhibited fluctuations about a fixed
mean radial position. The measured distribution of lateral displace-
ments agreed with a theory based on rectilinear approach and recession
of colliding pairs, whereas the time average radial displacements were
twice the predicted values. _

On increasing the concentration partial plug flow developed
in the tube with a central core in which the particles travelled with
identical velocities without rotating and at fixed radial positions. _
Outside this central core the particleg_ destribed irregular paths which,
however, were reversible with respect to.translation and rotation when

the direction of flow was reversed. The concentration profiles were
found to be uniform over prolonged periods of flow, and the suspensions
showed Newtonian behaviour. |

The phenomena, many of which were similar in suspensions of
rods and discs, were shown to result from a wall effect predicted by
Vand and were not manifestations of non-Newtonian behaviour.



INTRODUCTION

Earlier publications from this laboratory have dealt with
the translation, rotation and interaction of small particlea 'suspénded
at low concentrations in a Newtonian 1liquid of the same density
undergoing Poiseuille flow at low Reynolds numbers ( < 1073 ) 1"2).
Most of the phenomena Qbserved were in agreement with theories based
on Couette flow. |

This part of the thesis represents an extension of the earlier
studies of rigid spheres, rods and discs from very dilute suspensions
to concentrations at which particle interaction effects would be
expected to play an increasingly important and, ultimately, the dominant
role. Starting with the simple theory of shear-induced collision
doublets, equations describing the statistical nature of the paths of
rigid spheres are derived in the Theoretical Part and these have been
tested in both Poiseuille and Couette flows. Velocity profiles of
spheres, rods and discs in tube flow have been measured and found to
show a pronounced deviation from the parabolic distribution of

velocities as the concentfation is iﬁcrea.sed presumably because of a
wall effect. Corresponding measurements were made in Couette flow.
Finally, a series of experiments on reversibility in Poiseuille flow
was conducted which indicate a surprising degree of order to what at
first sight are exceedingly complicated and disordered phenomena.
The principles described, although not fully understood,

are relevant to a number of problems of suspension rheology.




THEORETICAL PART

1. The path of a sphere in Couette flow
Consider an initially uniformly dispersed dilute suspension

of rigid spheres of volume fraction ¢ in Couette flow. An isolated
sphere translates at the velocity of undisturbed flow of gradient G
defined by

u=Gy; v,w=0, (1)
where u, v.and w are the respective fluid velocitlies along the X-, Y-
and Z- axes, until it encounters another sphere and suffers a momentary
but recoverable lateral displacement from the X- axis. The statistical
properties of the path can be calculated from a consideration of the
approximate thepry of 2-bocfy collisions 3) .

If a "collision sphere" of radius 2b (Fig. la) is described
about a reference sphere of radius b, all the particles whose centers
are carried to the surface of the circumscribed sphere will collide with
the reference sphere. We assume for simplicity 3) that (i) a particle
moves in a rectilinear path parallel to the X- axis until its centre
approaches within 2b of the reference sphere when a collision occurs
at the polar angles Go and Qo , (ii) the doublet rotates as an ellipsoid
of axis ratio r e = 1, (iii) the collisions are symmetrical, with the
angles of separation 90 . -<I>o the mirror images of those of approach and
(iv) the mid-point between the two sphere centers is at the origin of
the field. The path of the center of each sphere is an arc of a circle
of radius b sin@ (Fig. 1b), and the Y- displacement of each particle
from its pre-col]ision path at any time during the collision process is

Ay = Yy sinoo(cos'b - cos@o) s (2)
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the positive sign applying to one sphere and the negative to the other.
Considering only magnitudes of displacement, without regard to sign,

the time average absolute lateral displacement is given by

AR %ﬁAyldt ; 3)
the integral being evaluated over unit time. For a particular collision
8,» @, the contribution to the integral in (3) is readily evaluated by
substituting for the angular velocity of the dou.blet‘3 )

=G .
a%'_ 2 > (A)

which yields over the life of the doublet T after substituting from (2)

T
_ 2
fIA yldt = Zﬁb sinoo(cosa - cosebo) G 4o
o 0

or la §T| T = % 8ing (sin® =~ & cosd ) . (5)

The total number of collisions per sphere in unit time is 3)

f=§'<& 3 (6)

11
and the fraction of collisions occurring in the interva.l de o? d@o at

3)
8, & is p(Go, @o)doodéo where

= 3 .
p(Oo, Qo) = 3gin 6, sind® cosd (7)
and the limits of 6_ and @ are taken between O and /2.

Equation (3) can now be integrated over all possible collisions, giving

12
| Ay, = fh KD oing (sind_ - @ cosd ).f. p(6,, B )d0 o  (8)
0 o A
which after inserting (6) and (7) simplifies to

|A—yt| = 2bc . (9




The distribution of displacements can be calculated in a
similar way. The maximum displacement in a given collision occurs
when & = 0 and from (2) is

Ay, =D 8ind (1 - cosd ).. (10)
Setting g =Ayo/Ayma.x » whereAy, =D is the maximm possible
displacement, corresponding to a collision in which © o &, =1/2,
(10) may be written in the dimensionless form:
£ = stno (1 - cosd) . (11)
The fraction of collisions having displacements less than g is
P@® = [[56, o) @, (12)

where p(oo, ®_) is given by (7) and the integration is carried out

over the two hatched areas marked A and B in Fig. la, namely

G me be,)
r@® - [ f”/ P, e, + [ [ 56, e ),
00 9o |
g /2

=2 3 3 3 '
2 | sin’o a0 +2 | sin’s sin’® do_ . (13)
0 0
The locus of constant & (Fig. la) is found from (11)
cos® =1 - 5., (14)
from which it follows that
2
s =25 - E__ (15)
o] sin20

o

|
with a lower limit 6 (at o, = r/2) given by

R
o, =sin™E. | (16)

12




Inserting (15) and (16) into (13) and integrating we obtain
2
PR =1- @ -8)Y2 @+ + 3@ -zanE)E. an)

The differential distribution function of displacements is therefore

p(§)=§%®

1 .-l A3 2
=3(L -3 8in™F) - (7-8% . (18)
The mean free path E , i.e. the average distance in the X

direction travelled by the reference sphere between collisions, is

¢ -zl (19)
where u(y) is the mean translational velocity of the sphere in the
Couette field given by (1) and y is the distance of the particle

center from the stationary layer. Substituting (1) and (6) into (19)

we obtain

Nt
!
2
!

8c - 3 . (20 )
32mb

The fraction of time spent in collisions is fT, where T is the mean

doublet life given by 3) T = 1/G and, therefore, fT = 8c by making

use of (6). Hence the mean time betweén collisions is

1l ~ 8)
t e . (21)
2. Poiseuille Flow
In Poiseuille flow the fluid translational velocity u(r)
at distance r from the tube axis is ‘ |
2
u(r) =w(0)1 - 5] (22)
R

(o)

u*(0) being the centerline velocity given by

13




&
k1

2
w(0) = =2 , (@)

where k = z.q/nnﬁ » Q is the volumetric flow rate and B_ the tube radius.
Neglecting the effect of the wall,an isolated sphere moves with the
corresponding fluid velocity at its c/:entef 1) as given by (22) s and
rotates with an angular velocity

'@ =%, (24)

since kr is the velocity gradient at r.

To describe the collisions in the tube, a Cartesian coordinate
system is constructed at the sphere center (Fig. lc). Assuming local
Couette flow 2) (i.e. neglecting the curvature in the velocity profile)
the collision frequency is still given by (6), and we can equate Ar
and Ay so that radial fluctuations are also given by Equations (8) to (18).
The mean free path now becomes

- 11'(R2 - r2)
AOR ?.6cr

382 -1
= s
élrnb°
the mean time between collisions, corrected for the average life time

(25)

of the doublets, is

_ 11'231;(1 - 8¢)
t(r) = 32%1. .

(26)

The mean free path for all particles in the tube is obtained by averaging
over all values of r |

Z =~£R°Z(r) 2mrndr
[

where n is the number of particles (singlets) per unit volume. Integration

(27)

of (27) yields
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= m R

o o '
{ -2=—5-. (28)
12¢ 16b3n

Equation (6) and those for v have been confirmed experi-
mentally 2, 3) ; this provides an indirect verification of (20), (21),
(25) and (26). In the experiments described later (9) and (17) were
tested, by measuring the displacements suffered by tracer spheres in
dilute suspensions. ' | |

The theory developed above is limited to very low concentrations
since the formation of triplets and higher order multiplets has been
neglected. As ¢ increases to the region where n-body (n > 2) inter-
actions become appreciable, the average radial distance of the reference
sphere no longer remains constant because of these inherently
unsymmetrical collisions k) 3 as a consequence, the reference sphére
describes an erratic path in the flowing suspemsion. Furthermore, it

-is known 5)

that the paths of approach and recession are curvilinear and
the doublet rotates as an ellipsoid of r e = 2 arid, therefore, the

calculated values of '&}t

’ IA—rtl will tend to be lower than those
actually observed.

EXPERIMENTAL PART

1. Apparatus
The experiments in Poiseuille flow were performed in precision

bore (+ 5 x 1074 cm) glass tubes of radius R = 0.2 to 1.0 cm. vertically
mountéd on a mechanically driven travelling microscope 1) whose optical
axis was normal to the tube axis and which could travel a distance 50 cm.

along the tube., Those in Couette flow were conducted between counter-



rotating concentric cylinders hy 6) vhich permitted observations to be
made through a microscope directed along either the Y- or Z- axes;
different sets of cylinders made from plexiglass and precision-machined
in situ could be attached and the annular gap AR varied.

Apparent viscosities were calculated from flow curves obtained
both in tubes and in a rotational viscometer. In the tube flow measure-
ments, pressure drops over a length = 30 Ro of tube were measured over
a range of accurately known flow rates using a differential pressure
transducer (Model CP 51 DS 0.1 psi Pace Engineering Co.). The visco-
meter was a variable-shear coaxial cylinder Couette-type (Epprecht
Rheomat 15).

2, Suspensions

In the experiments with spheres and discs a polyglycol oil
(Ucon o0il 50-HB-5100, Union Carbide) containing 4% by volume
tetrabromoethane was used as suspending phase (viscosity 1, = 24.6 p.
and density p = 1.139 g. cm'.'3 ). The spheres were screen-fractionated
samples of polyvinyl acetate (PVA) of radius b ranging from 0,0035
+ 0.0015 cm. to 0.0280 + 0.0040 cm. The discs were prepared from the
PVA spheres by compressing them between heated platens of a hydraulic
press as described elsewhere 7 ; their thickness was 2a' = 0.0125 cm.
and their diameter 2b' = 0.0625 + 0.0225 cm. |

Rods were prepared from continuous nylon filament of diameter
2b' = 0,0156 cm., embedded in wax and cut to a length 2a' = 0,124 + 0.0l cm.
in a sliding microtome 8) 3 they were suspended in a mixt.ﬁre of Pale 4 oil
(oxidized castor oil, Baker Castor Oil Co.) and tetrabromoethane to yield

8, =13.6 p. and p = 1.138 g.cu:’
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Both suspending solutions were found to be Newtonian. The
tetrabromoethane was added slowly to the oil until the refractive
index of the mixture was the same as that (1.4672) of the PVA spheres
and discs or that (1.5135) of the nylon rods, thus rendering the
suspensions completely transparent. A small fraction of particles of
identical size but of different refractive index and nearly the same
density was added to serve as visible tracer particles. In suspensions
of spheres these were polystyrene (PS) or polymethylmethacrylate (PMM)
at about ’0.8% by volume; PS discs and aluminum coated nylon rods were
used in the other suspensions.

The sedimentation velocities in the suspensions of spheres,
calculated from Stokes! law were negligibly small, never exceeding
3x 10'1' an.sec'.'l; for all practical purposes they were neutrally buoyant.
3. Procedures

Velocity profiles in both Poiseuille and Couette flows were
- determined by photographing the suspensions as they flowed past the
microscope at rest. A Paillard Bolex 16 mm. reflex ciné camera was used,
and the films analyzed by projecting them onto a drafting table.
Particle velocity .profiles were obtained by measuring the average
velocities of the tracer spheres. In the systems éontainhxg PMM tracer
spheres, it was also possible to measure the average angular velocities
by following op\tica.l imperfections in them. ILiquid velocity profiles
were determined from the measured average translational velocities of
tiny aluminum tracer particles (< 2.5 x 1073 cm) in the suspension.

Concentration profiles across the tube were obtained by
counting the number of tracer spheres N situated in strips of equal




width lying in the median plane. Starting from the wall, all the
spheres whose surface (on the wall side) crossed the line separating

the first from the second strip were counted as belonging to the first
strip, and so on; this was done over a 15.3 cm. length of the tube.

The surfaces of the spheres rather than their centers were used as
reference points because of the presence of the wall; if the sphere
centers had been selected, then a lower concentration of tracer spheres
would have been measured in the strips adjacent to the wall, because

of the finite dimensions of the particles. Only those spheres sharply
in focus were counted; at the magnification used, the depth of the field

~ was approximately one particle diameter.

The path of an individual particle in tube flow was determined

by matching the axial speed of the microscope to that of the particle
and recording the variation with time of its radial position r.
Displacements also occurred in the direction of the microscope axis

but these were not measured. Values of IA—;'tI were obtained by measuring
r at the end of equal time intervals of the total time during which the
average radial position r of the particle remained sensibly constant
(within + 0,002 cm.). A similar procedure was followed in Couette flow
to determine | Aytl 3 in this case the cylinder speeds were contingouely
adjusted so that the feference-sphere was in the stationary layer.

The distribution function P(E) was determined from the plots of r
against t by counting the number of crossings (which are proportional
tol - P(g)) in a given time interval at various values ofg.

18



RESULTS AND DISCUSSION
1. Poiseuille Flow
(a) Velocity profiles in suspensions of spheres

At sufficiently low values of c¢ and b/Ro the velocities of
particles u'(r) and suspending liquid u(r), were identical and parabolic,
~following (22). As c and/or b/Ro increased u'(r) and u(r) continued
to be equal but a pronounced blunting of the velocity profile developed
in the center of the tube, with a core of radius T, in which ut(r) =
constant for r < Toe We shall designate this to be "partial plug flow",
although it must be emphasized at the outset that this is done as a
matter of convenience and does not mean that the profile is mathematically
flat when r <r_ with a discontinuous drop in the velocity gradient G(r)
to zero at r.s rather, it is a region where there is no measurable
gradient. There is some uncertainty in determining r, from plots of
the type shown in Fig. 2 and for this reason there is an inevitable
scatter ‘in the values of r, given vin Table I in which the results are
summarized.

Table 1 contains other measures of the deviation from parabolic
flow. The ratio u'(0)/u*(0) = 1 for parabolic flow and < 1 for blunting,
where u#(0) is the axial velocity for parabolic flow for the same Q.

When the flow is parabolic the velocity ratio

N

u'r - -
ut (0 1

(29)

o™l

and when the profile is blunted the ratio is greater; measured values at
r/R , = 0.2, 0.5 and 0.8 for which the corresponding parabolic flow
ratios are 0.96, 0.75 and 0.36 are included in the table.
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The influence of the pertinent variables on the blunting of
the profile may be summarized as follows:

Concentration, As shown in Fig. 2a and Table I, when c was
increased from 0.1 to 0.22 and higher (at constant b/Ro = 0,028) there
was a transition from parabolic to partial plug flow, with r o increasing
with c. |

Particle sige. Increasing b/‘R° (at ¢ = 0.33) also had a
pronounced effect on the transition with r c increasing and becoming
equal to R_ at b/R = 0,112 which corresponds to camplete plug flow
(Fig. Zb,v Table I). Observation of tracer spheres adjacent to the wall
revealed, however, that the plug flow did not a.lwa.ys extend to the wall
since the spheres could often be seen to rotate. This is illustrated
in Fig. 3 where the angular rotation d of several peripheral spheres
is shown. }On starting flow the spheres began to rotate erratically;
often the rotation stopped after a time (curves 1 and 2) and sometimes
started again (curve 3) suggesting stick-slip behaviour. In all cases
the translational velocity was constant within the precision of
measuring u'(r), independent of (d®/dt).

Flow rate and Viscosity. In contrast (within the experimental
error due mainly to small displacements of the observed tracer spheres
from the median plane of the tube), the relative velocity profiles were
independent of the flow rate over a 10-fold range provided that the
particle Reynolds number was kept below the value at which radial
migratioﬁ of particles due to inertial effects becomes appreciable 9) 5
this is illustrated in Fig. 2c. The velocifgy profile was also independent

of the viscosity as was shown by measurements in a suspension (¢ = 0.27 ,
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1

2 cm3. sec

b/Ro =0.070 , Q= 3.56 x 10~ .5 R =0.4 cm.) at three
temperatures between 22 'and 45°C resulting in a 5-fold change in
viscosity 5 of the suspension.

Figure 2d shows that u(r) = u'(r) except for a scatter due
to experimental error. Further proof of the absence of any appreciable
net slip between particles and suspending fluid is shown by comparing

the volume flow rates Q calculated from
o
Q= 2rrut(r)dr (30)
o

by graphical integration of measured values u'(r), with those obtained
by weighing the amount of suspension expelled from the tube in a given
time; the two sets of values (Table I) are in good agreement. »

When r > r, the particles could be clearly seen to rotate,
although the rotation of a given particle was not always steady because
of frequent interactions evident from the radial displacements which
are consideréd later; it was possible to measure the mean @ *(r) from
the mean period measured while travelling the length of the ﬁube.

When r < r, the particles had neither measurable rotation nor fluctuations
in radial distance. Table II gives directly measured values of & t(r)

for two suspensions which compare favorably with those calcﬁated i'rom

(24) using the values of G'(r) determined from the slopes of the velocity
profiles, indicating that £he field rotation and particle rotétion are

the same and hence that G'(r) = G(r). As expected, near the tube wall

the velocity gradient corresponding to a parabolic distribution kr < G'(r),
and away from it kr > G'(r) (Table II). -
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The fact that the velocity profile varied with ¢ and b/Ro but
was independent of Q and 1, suggested that the development of the
partial plug flow was a -wall effect rather than a manifestation of non-
Newtonlian behavior by the suspensions. This was further confirmed by
measurements in the rotational viscometer which showed the apparent
viscosity to be independent of shear rate (Fig. La).

At a fixed b/R  , a linear relationship was also found between
AP and Q in tube flow (Fig. 4b). As b/R increased the slope of the
lines for the two most concentrated suspensions decreased, indicating
a decrease in the apparent viscosity. This effect has been observed
in a variety of suspensions 10-14) and has been explained in terms of
wall effects 4, 15) and fihite particle size J'6). For spheres
Higginbotham et al 10) found that Vand's wall correction factor 14)
yielded the true sﬁspension viscosity when cb/Ro < 1.5 approximately.
According to the present results partial plug flow develops in the tube
about this value of cb/Ro. It is likely that this may cause an
additional decrease in the apparent viscosity from that predicted by
Vand 14) ,» but more extensive viscosily measurements are required before
more definite conclusions can be drawn.

(b) Rods and Discs

Concentrated suspensions of rods and discs showed similar
behavior, namely, above a certain value of ¢ partial plug flow developed
in the tube and yielded profiles similar to those in Fig. 2. As with
spheres, no dependence on the flow rate was found. Moreover, the
velocity distribution was independent of time, indicating that the
particles quickly attained the equilibrium distribution of orientations.




In the region of plug flow the particles did not rotate; the axes of
revolution of most discs were nearly normal and those of rods nearly
parallel to the direction of flow (Fig. 5a). This might be due to
the effect of the convergent entry from the reservoir into the tube or.
to particle-particle interactions 17) e« At r> r, the particles exhibited
erratic rotations and radial displé.cements.

The results are sumarized in Table III. The velocity profile
of a suspension of discs with b'/Ro = 0,078 and a.'/Ro = 0.0156 and
¢ = 0.30 was nearly identical to that of spheres with b/R° = 0,056 at
the same concentration (Fig. 5b), indicating that the characteristic
dimension of the cylindrical particles (i.e. the one which produces
the same blunting in the velocity profile as a suspension of rigid
spheres at the same ¢) lies between a' and b'. The limited amount of
data, however, do not permit any quantitative correlation between
at, b?! and b.

(c) Concentration profiles _

" The explanation for plug flow which first cames to mind is
that a dilution of the periphera.l suspension occurs from inward migration
of particles near tﬁe wall, alt.hongh.there was no visual evidence of
this and the velocity profiles did not change over prolonged times of
flow. To check this directly, concentration profiles of tracer spheres
in the tube at the beginning of the experiment and after the suspension
had flowed back and forth through the tube over a period of 4 hrs were
measured. The results are summarized in Table IV and show a uniform
concentration profile both at the beginning and at the end of the
experiment. The total number of particles N counted after 4 hrs was

<3
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well within the random statistical error VN of the initial values »
and showed reascnable agreement (better than 6%) with that calculated
from b, the volume fraction of the tracer spheres in the suspenaién,
the depth of the field and the léngth of the tube (15.3 cm.) used in
the measurements. It is concluded from theqe experiments that, except
for the geametrical requirement that particle centers must be displaced
at least b from the wall, the concentration of particle centers is
uniform across the tube.

(d) Radial displacements of gpheres

In dilute suspensions r remained conmstant over relatively
long periods of time as a result of the symmetrical behavior of doublets.
This is shown in Fig. 6a where several paths of PS spheres at ¢ = 0.02
are plotted. Each arrow indicates when an n-body (n > 2) collision
could be seen and which, because such collisions are unsymmetrical,
caused a shift in r; these collisions also caused net displacements
from the median plane so that eventually the tracer sphere went out of
focus in the microscope and then became lost from view.

The measured values of IA_rtl resulting from 2-body collisions
only were independent of r (Table V) but about twice those calculated
from (9). The sign of this discrepancy is as expected since the
theory assumes rectilinear approach of two colliding spheres whereas
it is known to be curvilinear. Analysis of the doublet geometry of
several collisions from previous work 2, 5) shows that |A_y.r| o7 is of
the order of 20% greater than given by (5). In addition, displacements
occur by interaction of two spheres which on the basis of the rectilinear-

approach theory do not collide.




25

This effect is revealed by comparing the calculated number
of 2~body collisions ft of the reference sphere over the period of
obgervation with the number of discernible displacements Ar made over
the same period; the latter is always greater. Thus over the period
of 510 sec at T = 0.366 cm. (Fig. 6a, Table V) the calculated ft = 10
whereas at the scale of resolution used about 23 disturbances in Ar
could be detected. This dis;:repa.ncy points up one of the limitations
of the simple geometrical theory of 2-body collisions which cannot be
overcome until a theory based on the Stokes-Navier equation is solved
in detail. A start on this pi'oblem has been made for interacting

18) and for spheres

. cylinders in 2-dimensional Couette flow by Raasch
at 6 = 1/2 by Wakiya et al 19) but further discussion of this mst
be deferred.
| Surpriéingly, values of 1 - P(§) calculated from the

experimental data showed agreement with the theory (Fig. 6¢). The
scatter is undoubtedly due to the rela.ti#ely small number of total
crossings ( < 40 at § = 0) within the time of observation. This
suggests that the collision theory could be improved by substituting
a "collision radius® bc( > b) in the collision equations.

At concentrations at which plug flow developed, the paths
of the particles shqwed radial displacements wh}ose magnitude and
frequency decreased with decreasing r (Fig. 6b)i » until when r <r_
the fluctuations disappeared and, as stated _eaflier, the spherés moved

uith identical velocities and without any measurable rotation over the
length of the tube.



2. Couette Flow

(a) V_gloc;tz profiles

‘ Further evidence of a wall effect at high c was obtained from
velocity profile measurements in Couette flow. In the annulus between
two countezhrotating.cylindera , the clockwise angular velocityQ (R)
of a homogeneous Newtonian liquid at distance R from the center of '

~ rotation is given by é)

a® +Q R,? 2
S SR P (31)

-(‘21“92-—“22"’".12 R

Ql being the counter~clockwise angular velocity of the imner cylinder,
Q 2 the clockwise angular velocity of the outer cyiinder and Rl and R2

>th'e re-spective‘ radii of the cylinder walls. The translational velocity
and the veloc;ty gradient at R are given by

u(R) = RS2(R) , (32)
and a(r) = p SR (33)

Because of the finite curvature of the cylinders the velocity gradient
is not strirtly constant but decreases with increasing R. However, by
increasing both Rl and R2,G can be made effecti\fely constant across
the annulus.

The measured particle velocity profile plotted in the
dimensionless form in Fig. 7a shows good agreement with (31) for
spheres at ¢ = 0.01 . At ¢ = 0.38 particle and fluid velocity profiles
are identical over a range of values o€, and Qz , but deviate

apprecisbly fram (31); as in tubes, the gradient near the wall is
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greater than given by the theory for a homogeneous liquid. The
theoretical and experimental curves intersect each other near the
center of the annulus indicating a similar deviation at each wall.

The effect of particle size at the same ¢ (= 0.38) is illustrated :Ln(
Fig. 7b and 7c; although the ratio 2b/AR was increased by a factor of
about 3.5 the effect on the velocity profile was not as pronounced as
in Poiseuille flow, since at these values of ¢ and b/Ro complete plug
flow would have occurred in the tubes. Reasons for this pronounced
difference are discussed later.

In contrast, the velocity profiles obtained from measurements
of the translational velocities of aluminum tracers in a viscoelastic
liquid (4% by weight of polyacrylamide in water) and shown in Fig. 7d
were found to deviate markedly from that given by (31), to be
unsymmetrical and dependent on the cylinder velocities, the profile
asymmetry increasing as the average velocity gradient was increased by
keeping Q 5 constant and increasing Ql'

(v) Bormal displacements

As expected, the displacements Ay = (R - R) in dilute
suspensions in Couette flow were similar to those in the tube. This
is illustrated in Fig. 8a where some of the paths of tracer spheres in a
¢ = 0.035 suspension of PVA spheres are shown. As before R remained
constant until a multi-body collision (indicated by an arrow) occurred,
and the observed |A—yt| was twice as large as calculated from (19).
Table V also contains values of ft calculated from (6), whei'e the
asterisk indicates the number of 2-body collisions prior to the shift

of r or R.
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In Poiseuille flow the time interval during which an
individual particle could be observed was limited by the length of
the tube so that it was impossible to establish the extreme limits
of the radial fluctuations. In the Couette apparatus, on the other
ha.hd, a particle could be observed for very long times as illustrated
in Fig. 8(b and c¢) where it is seen that at sufficiently high
concentrations a particle can travel almost from the one wall to
the other. It may be concluded from these observations that in very
long tubes a particle can in time traverse all radii for ﬂch G>0.

3. Reversibility

When appropriate precautions were observed, the rotational
and translational displacements of individual particles (and, indeed,
domains of the suspending liquid)‘ in Poiseuille flow could be made
reversible, i.e. reversing the direction of flow had the effect of
reversing time as when a cine~film is run backwards. This was
demonstrated by the following simple, but very striking, experiments.

When a drop of dye soiution (Victoria blue in the polyglycol
0il) was introduced into the same oil in the tube and flow was started
the drop was progressively deformed into a.n extended ribbon; on
reversing flow the drop recovered its initial shape as could readily
be shown by superposition of photographs. It is important to use a
dye which has a low diffusion coefficient; in the system used the
cycle could be repeated five times before the irreversible effects of
molecular diffusion of the dye became appreciable., The same experiment

was performed in dilute and concentrated suapensions' (¢ < 0.4) of spheres




with similar results, except that the deformation of the dyed regime
was considerably emhanced by convection due to rotation of the particles
when r > r, . Similar results have been obtained in Couette flow k)

and in a fixed particle bed 2,

The interactions of rigid particles are also reversible.

Fig. 9 shows the behavior of an isolated triplet of PS discs located
near the median plane (MM!) of the tube (Fig. lc). The coordinates r,
® and O of the axis of revolution of each disc were perfectly repro-
ducible when the flow was cycled. The limiting configurations of the
triplet are shown pictorially in Fig. 9c.

The reversible behavior of r and & of individual spheres in
concentrated suspensions is shown in Fig. 10, It is remarkable that
the translational and rotational coordinates of a single sphere, and
hence all of the complex configurations of the dynamically interacting
assembly of spheres, were conserved. Similar behavior was shown by a
tracer disc in a concentrated suspension of discs, as illustrated by
the variation of r, © and ® in Fig. 1l.

The requirements in these experiments were stringent; it was
particularly important to have isothermal flow (to avoid irreversible
thermal convection currents), to.match particle and liquid densities
(to avoid irreversible sedimentation) and to have low flow rates (to
avoid irreversible inertial effects). It proved to be much more
difficult to obtain reversibility with discs than with spheres, possibly
because of the additional two degrees of rotational freedom of the discs,
but this point is not certain since nothing is known about the rotation
of single spheres about the X- and Y- axes (Fig. lc) in concentrated

suspensions.,




A formalized theoretical basis for such time—reverged flows
has recently been given by Slattery <L) based on the linearized form

of the Stokes-Navier equation.

CONCLUDING REMARKS

It is evident from the foi:'egoing considerations that deviations

from the parabolic profile in flow through tubes at the low Reynolds
mmbers employed in the experiments are due to interacticns between the
outer layers of particles and the rigid walls. Even limiting conmsidera-
tion to single particles presents a formidable problem and has been

14,18,19,22) . Observations

attempted only for several simple cases
of single isolated spheres touching the wall reveal that there is a
definite slip of the particles in both Couette and Poiseuille flows 2").
The spheres rotate, but their translational velocity u'! > w'b ylelding
a slip velocity equal to O.5u' approx. The u.nsymetridal two-body

2) ghould also

collisions near the wall reported by Goldsmith and Mason
be mentioned as a possibly related phenomenon.

 The significance of these observations on isolated particles
near the wall to the phenomena discussed earlier and which occur aﬁ
high concentrations is not clear. As the concentration increases the
particle-particle interaction effects, which are greatly complicated
by the dynamic nature of the particle aggregates, will play an
increasingly important role and it is conceivable that theorieg based
on single particles will become irrelevant. However, all arise from
the presence of the wall, and knowledge of the behavior of single
particles near the wall may contribute to a better understanding of

the flow mechanism of concentrated dispersions.
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Vand's consideration of the wall effect with rigid spheres led him to
conclude that "in the region of high concentrations considerable slip

at the wall might develop due to layers of low viscosity along the walls
which might completely overshadow the effect of shear inside the
suspenéion". Following Vand's suggestion, the wall effect can be
represented by considering the suspension to be a continuum which has

an effective viscosity varying from 1, (that of the pure medium) at the
wall to g (that of the suspension) at some characteristic distance

away which is only a function of b. Assuming several functional -
relationships for the variation of the effective viscosity with distance
from the wall 23) the velocity profiles of concentrated suspensions in
both Couette and Poiseuille flows and the decrease in apparent viscosity
with increasing b/Ro can be qualitatively explained 23). Moreover, at
a given b/Ro (= 2b/AR) and 5n/q o Vand's model predicts a smaller effect
of the wall in Couette than in tube flow presumably because of the
different geometry of the boundary; this is in accordance with the
experimental results.

1




at

G; G(r); G(R)

Uy, V, W
u(r), u*(0)
u(R) s u(Y)

u'(r), ur(0)

1
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LIST OF SYMBOLS

semi-axis of revolution of cylindrical particles.
radius of sphere; equatorial semi-axis of cylinder
volume fraction of particles in suspension

2=body collision frequency per particle

velocity gradient; at r in tube flow; at R in
Couette flow

A
hQ/nRo

mean free path; at r; average over the tube
number of particles per unit volume of suspension
number of tracer particles (Table IV)

differential and integral distribution functions
of lateral displacements

volumetric flow rate

radial distance from tube axis; time average radial
distance; time average absolute radial displacement
from mean

radius of core of plug flow

axis ratio of spheroid

radius of inner and outer cylinder of Couette apparatus
BB |

radial distance of a fluid element from the axis of
rotation in Couette flow; time average radial distance
tube radius.

velocity components in the X-, Y- and Z- directions
fluid translational velocities at r and tube axis

fluid translational velocities at R and y in
Couette flow

particle translational velocities at r and tube axis
respectively in Poiseuille flow




time; average time between collisions in Couette
flowsand at r in Poiseuille flow

cylindrical polar coordinates

Cartesian coordinates in Couette flow

normal displacemant; maximum normal displacement
during a collision; time average absolute
displacement

viscosity of suspending fluid and suspension
spherical polar coordinates (Z = polar axis) of
axis of revolution of cylinders or line joining
centers of a doublet of spheres

spherical polar coordinates of the doublet at
initial collision

Az,/b
density of suspending medium

life time of doublet; mean value

angular velocity of sphefe about Z-axis

angular velocities of inner and outer cylinders of

the Couette apparatus; angular velocity of a fluid
element at R :
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TABLE 1
Velocity profiles in concentrated suspensions of rigid spheres in tubes

‘a.) ut (r)/u*(0) b) Q x 10° ca’.sec”t.

b Te ut (0 r r r c) d)
c - — E==0,20 ==0,50 ==0.8 Calc. Meas.

R° Ro u*{0 Ro Ro o

40.085 5 00028 O 1 0096 0'75 0036 - 00711
0.14 0.028 | O 1 0.96 0.75 0.36 - ,1.78
0.17 | 0.039 |0 1 0.96 0.75 0.36 - 1.78
0.22 | 0.028 | 0.19 0.87 0.99 0.86 0.46 3.55 3.56
0.25 : 00021’ O 1 0096 0.75 0036 - 3.56
0u27 0.070 0026 0.78 1.0 0-89 0050 - 3‘56
0.32 0.052 | 0.40 0.74 1.0 0.98 0.63 3.53 3.56
0-33 0.039 0.38 Oo 75 1.0 00916 0057 - 3056
0.3, | 0,056 | 0.43 0.73 1.0 0.97 0.62 0.695 0.711
0.34 “ 0.056 | 0.43 0.73 1.0 0.97 0.62 3.54 3.56
0.34, | 0.056 | 0.43 0.73 1.0 0.97 0.62 6.95 7.11
0.34 0.112 | 1.0 0.50 1.0 1.0 1.0 0.18 0.18
0.38 | 0.030 | 0.31 0.78 1.0 0.93 0.49 3.56 3.56
0.41 0.030 | 0,32 0.77 1.0 0.93 0.53 3.54 3.56

Qeale _

Mean Queas 0.99

a) u*(0) is centreline velocity for parabolic flow at same Q calculated from (23).

b) u'(r) and u'(0) are the measured particle translational velocities at radial
distance r and at the tube axis.

c¢) From (30) using measured ut(r) .

d) By weighing the suspension expelled from tube.




TABLE II

‘ Average angular velocities of tracer spheres in concentrated suspensions in tubes

r/R ©*(r) radians sec t a) kr/2 b)
Measured Calculated -1
sec
¢=0.34 B =0.4em Q=3.56.x107 ca’.oec™. b/R, =0.05 r /B =0.43
0‘95h 00& 0.45 0034
0.908 0.37 0.35 0.32
0.854 0.32 0.30 0.31
0.795 0.31 0.27 0.28
0.736 0.28 0.25 0.26
0.628 0.19 0.17 0.22
0.325 0 0 0.12
0.275 0 0 0.10
¢=0.32 R =0.2cm Q=0.35 x 1072 . sec T, b/R_=0.052 r /R =0.40
0.89%0 0.35 0.33 0.25
0.840 0.25 0.25 0.23
0.790 0.26 0.20 0.22
0.775 0.2, 0.19 0.21
0.710 0.16 0.17 0.20
0.650 0.12 0.09 0.18
0.460 0 0 0.13
0.280 0 0 0.08
0.225 0 0 0.06

a) Calculated from (24) using values of G!'(r) obtained from the experimentally
- measured velocity profile. .

b) Calculated from (24) using measured Q.




TABLE III

Velocity profiles in concentrated suspensions of r

d rods and discs in tubes

Q x 102 o’ .sec L.

at bt rc ut (0
System | c i R—o R—o (0
L-o02s E=o05 L =o.75 cale.®)  Meas.P)
0 (o] Q
Discs 0.10 | 0.0312 | 0.156 | © 1 0.94 0.75 0.43 - 3.56
n 0.10 n n 0 1 0.94 0.75 0.43 - 3.56
" 0.17 " " 0.25 | 0.91 1.0 0.90 0.56 1.86 1.78
" 0.25 " " 0.37 | 0.80 1.0 0.95 0.69 1.87 1.78
n 0.25 | 0.0156 | 0.078 | 0.32 | 0.84 1.0 0.93 0.63 3.66 3.56
" 0.25 n n 0.32 | 0.84 1.0 0.93 0.63 0.738 0.711
n 0.30 n " 0.38 | 0.77 1.0 0.95 0.72 3.80 3.56
Rods" 0.08 | 0.310 0.039 | 0.25 | 0.85 1.0 0.88 0.60 1.7 1.78

a,b) Evaluated by same methods as in Table I

Mean Qc_anla: =1.03
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TABLE IV

Concentration profiles of tracer spheres in tube flow

2. -0.039 B=0.4cm Q=3.5x107 ar.sec,
o :

¢ =0.17 c =0.33

~ Range of r No. of tracer particles N Range of r No. of tracer particles N
cm. t=0 t =4 hr. cm. t=0 t =4 hr.

0.267 - 0.333 56 58 0.200 - 0.299 72 69
0.200 = 0,266 56 51 0.100 - 0.199 76 76
0.134 - 0.199 55 65 0.000 - 0.099 80 84
0.000 - 0.066 61 66
Totals 353 361 o 299 298

8¢



TABLE V

Time average radia.l displacements in dilute

suspensions of rigid spheres

Poiseuille Flow

¢=0.02 b=0.016cm R =0 ecm - Q=0.78x 107 cu’.sect,
3 -
r cm, t sec .a) ft b) G(r)sec-} 10 x |Art-| cine
Eq.(9) Meas.
0.366 510 10% 0.326 0.64 1.1
0.357 214 3.5 0.318 0.64 1.3
0.282 4,20 54 0.251 0.64 1.5
001714 226 - 00157 006‘+ 102
Meas _
Mean Calc 2.0
Couette Flow
¢ =0.035 b = 0.0172 cm. AR = 0.638 cnm.
= a) b) 163 x |K;| e,
(Rz- R) cm.| t sec. ft G sec. t

: Eq. (9) . Meas.
0.313 148 3,7 0.277 1.2 2.4
0.304 188 L, 6% 0.277 1.2 2.6
0.265 0 7.2% 0.403 1.2 2.4
0.255 147 5.3 0.403 1.2 2.6
Meas _ :

Mean Cale 2.1

a) The total time interval over which |Ar,| and [4y,| were evaluated.

b) Calculated from (6); the asterisk indicates the number of two body collisions
in time t before the change in Tr or (R2 -~ R) occurred .
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Figure 1
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—.— (0] ).

(a) Spherical pola.r co~ordinate system for the collisions
of spheres in Couette flow,

(b) Assumed path of a sphere center in the XY plane 'before,
during and after collision with the reference sphere. The
origin is at the mid-point of the doublet.

- (c) Co-ordinate system to describe the collisions in Poiseuille

flow. A Cartesian co-ordinate system is constructed at x = 0,
r andy= 90° at the center of the particle; x, r,y are the
cylindrical polar co-ordinates.
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. Figure 2 Dimensionless plots of velocity profiles in suspensions

. of rigid spheres. In each case the sphere diameter
(2v/R ) is inset., : :

(a) Effect of con_gentratiox_’i for Ry= 0.4 cm., b/Re= 0.028
and Q = 3,56 x 10 cm®.sec”. The solid lines are the best
fit through the experimental points. The c = 0.1} (open

circles) curve is parabolic.

(b) Effect of particle size, Curve 1 (r /Ry= 0.31) is the
best fit line through the experimental points for a suspension
¢ = 0,32, .R;= 0.4 cm., b/Rg= 0.026, curve 2 (r;/Ro= 0.43) for
a suspengion ¢ = 0,34, Rg= 0.4 cm., b/Rg= 0.056; and curve 3
(open circles r, /R,= 1) is for a suspension ¢ = 0.34,

Ro= 0.2 cm, and b/Rg= 0,112 . A

a1



a2

Figure 2 (c) Effect of flow rate for ¢ = @.34, Re= 0.4 cm. and
b/Re= 0.056. The solid line is the best fit of the a
experimental points, Closeqd circles: Q=0.771x10 cm’.sec'l.;
open circles: Q = 3.56 x 10 cm®.sec . ; open triangles:
Q = 7011 X 10- m’ns.sec-l. '

(d) Comparison of particle and fluid velocity profiles in
suspensions of rigid spheres (r./R,= 0.38) for ¢ = 0,30 ,
Q= 3.56 x 10" cm’.sec’},, b/Ry= 0.056 and Rg= 0.4 cm.
Experimental points are: open circles (polystyrene spheres);
closed circles (alumimm tracer particles). ,




" Figure 3
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Variation of @ with time of spheres adjacent to the wall in
a suspension ¢ = 0. 38 exhiblting complete plug flow in the
tube; Q = 1,78 x 10~ em®.sec),, Ro= 0.3 cm., b/Re= 0.1 .
The particle velocity profile and the relative size and
location of the spheres are also shown in the lower portion.
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Figure 4
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Flow curves in concentrated suspensions of rigid spheres.

(a) Shear stress vs shear rate in a rotational viscometer;
radius of the cup Rp= 1.00 cm., radius of the bob Ry= 0,680 cm.
and 2b/AR = 0.140 , ‘ :

(b) Plot of shear stress (RoAP/2L) vs nominal shear rate

(4Q/mR®) at the tube wall. Experimental points are: squares
Ro= 0.3 cm., b/Re= 0.075; circles: Ro= 0.4 cm., b/R,= 0.056
and triangles Ry= 1.0 cm., b/R,= 0,022 .
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Figure 5 (a) Steady orientation of cylindsical particles viewed

along tube axis (left) and in median plane (right) in the
region of plug flow in concentrated suspensions of rods
and discs (schematic).

(b) Similarity of velocity profile in a suspension of spheres
and discs. The solid line is for the spheres shown in Fig. 2d.
The experimental points are for a suspension of rigid discs at
the same concentration ¢ = 0.30; Ro= 0.4 cm.,

Q = 3.56 x 10~ em®,sec,, b?'/Ro= 0,078 and a'/R,= 0.0156 .

The relative sizes of spheres and discs in the suspensions
are also shown.
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Figure 6 Parts (a) and (b) Variation of the radial distance r with

time of tracer spheres in dilute and concentrated suspensions'
of rigid spheres undergoing Poiseuille flow.

(a)c-—002,R. O.4 cm., b = 0,0160 cm., . ‘

Q =1.78 x 10°* cm?,sec’t, The arrow indicates a 3-body -
collision which resulted in a shift in r; measurements taken
every 3 secs.

Q=3. 56 x 10* em® .sec -, rc/Ro-— 0.43; measurements taken
every 2 secs.

(¢) Plot of 1 =~ P(®) vs §. The solid line is the theoretically
calculated from Eq.(17) The points are experimental data shown
in Fig. 6a (open circles) and Fig. §a (closed circles).
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Dimensionless plots of  velocity profiles according to Eq.(31).
The dashed lines are the theoretically calculated for a
Newtonian liquid, the solid lines are the best fit of
experimental points. The relative size of the spheres and
the mid-point (R,+ Ry)/2 are also shown. ’

(a) ¢ =0.01, R,i= Lebhl cm.y Ra= 5.795 cm., 1= 0.,00543 sec’t,
Q,= 0,00841 sec?, and 2b/AR = 0,026 .

(b) ¢ =0.38 , Ry=13.942 cm., Ry= 14.625 cm, .and 2b/AR = 0,083;
experimental points are open circles:fl,= 0.00259 sec™,,

f1,= 0,00614 sec’,; closed circles:Q;= 0.00259 sec’,

£1,= 0.0205 sec*..and open tr:i.a.ngles:h1= 0.0149 sect.,

{1,= 0,0061L4 sec’},

(c) ¢ =0.,38 , Ry= 14,427 cm., R,= 14.62) cm. and 2b/AR = 0,287;
open circles: {1,= 0,00422 sec’l, Q= 0.00851 sec.’. and _
closed circles:{l; = 0.00422 sec™ ,ﬁf 0.0139 sec™s,

(d) A viscoelastic liquid (4% by weight of polyacrylamide in
water solution), R;=13.942 cm., R,= 14.625 cm.; curve l:

1= 0,00091 sec™®, ,{l,= 0,00372 sec’d; curve 2:
Q,= 0.012, sect,, 8= 0,00372 sect
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Figure 8 Variation of y co-ordihate of tracer spheres from the outer

cylinder in dilute and concentrated suspensions of rigid
spheres undergoing Couette flow; R,= 13.942 cm. and

Ry= 14,625 cm. The variation in 2 was compensated by
focussing the microscope but was not measured.

(a) ¢ =0.,035 , b = 0.0172 cm.; for the lower particle
G = 0.403 sec?, and for the upper G = 0.277 sec’l. The
arrows indicate the occurrence of 3-body or higher order
collisions causing a change in r,

(b) ¢ =0.07 , b =0,0172 cm., G = 0,05 to 0,42 sec’;
readings at 5 min. intervals.

(¢) ¢ =0.19 , b = 0.0172 cm., G = 0.05 to 0.42 sec’;
readings at 30 sec. intervals.
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Figure 9 Reversibility of collisions in a system of three interacting

PS discs for four consecutive co. ions; Ba== 0.4 cm.,
2a' = 0,0125 cm, and Q = 7,11 x 10° cm®.sec?, Disc 1:

2bt = 0,0375 cm.; disc 2: 2b* = 0,0470 cm, and disc 3:

2bt = 0,0480 cm., Experimental points are; closed circles:
flow upwards, open circles: flow downwards, closed triangles:
flow upwards for second time, and open triangles: flow
downwards for second time. The vertical dashed lines indicate
the region of visible interaction of the discs.

(a) Variation of r with time,
(b) Variation of angle ® with time.
(c) Variation of angle © with time.

(d) Projection of discs in the median plane MM!' (XY plane)
(see Fig. lc) traced from microphotographs, illustrating
their configuration at the time of collision (t = 2.34 secs.)
and separation (t = 10.93 secs.).
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Figure 10 Reversibility of collisions in concentrated g spensions
of rigid spheres; R,= 0.4 cm., Q = 3.56 x 10" cm®.sec,
The open circles are experimental points obtained during
flow in the upward direction, the closed circles when
the flow was reversed.

(a) Variation of r with time; for the lower portion
¢ = 0.17 , b/Re= 0.039 and for the upper ¢ = 0.34 ,
b/Re= O. 056

(b) Variation of @ with time; ¢ = 0,17 and b/Re= 0.039 .
The dashed line is calculated from Eq.(24) for a single
sphere assuming a parabolic velocity distribution (see
Table I) and using the average radial distance of the
sphere center over the two complete rotations.



Figure 11

TIME, sec.

Reversibility of collisions in concentrated suspensions of
rigid discs; Re= 0.2 cm., b'/Re= 0.156 , a!'/Rg= 0,0062 ,
Experimental points are; closed circles: flow upwards, and
open circles: flow downwards.

(a) Reversibility of path of a tracer disc in a ¢ = 0.10
suspension at Q = 0,711 x 10 * em®*.secd, Parts (b) and (f)

are for a suspension ¢ = 0,25 at Q = 1,78 x 10* cm® . sec™,
(b) Variation of angle @ with time.
(c) Variation of angle © with time.



PART III

INERTIAL EFFECTS

ABSTRACT

The behaviour of particles suspended in newtonian liquids
undergoing Couette and Poiseuille flows at Reynolds numbers at which
inertial effects become significant was investigated.

Rigid spheres rotated with an angular velocity equal to
the rotation of the undisturbed field. The rotation and spin of
rigid cylinders was similar to that observed in the Stokes flow regime,
but they attained limiting rotational orbit constants corresponding to
the maximum energy dissipation in Couette flow.

In Poiseuille flow, rigid particles migrated across the
.planes. of shear to an equilibrium radial position which depended on
the density difference of two phases, the directions of sedimentatien
velocity and flow, and the ratio of particle to tube radius. Neutrally
" buoyant particles which were deformed by flow always migrated to the
tube axis,

In concentrated suspensions of spheres a plasmatic layer,
free of particles developed near the tube wall as a consequence of
radial migration. The formation of this layer modified the velocity
profile and caused a reduction in the apparent viscosity coefficient.
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INTRODUGTION (Q{ \() A I X

The behaviour of rigid and deformable particles in dilute and
concentrated suspensions in shear flow in the Stokes (or creeping) flow_

1-6) from this laboratory.

regime has been described in a number of papers
Goldsmith and Hason5 ) found that in Polseuille flow at effectively
zero Reynolds numbers, the radial position of single rigid particles
remained constant over prolonged periods of flow. In contrast, fluid drops
migrated to tube axis, and a theory to account for i;his migration was
proposed5 ) and improved by Chaffey et g"’s).
The rotation and siain of isolated rigid cylinders in both
Couettel’z"’) and Poiseuille5 ) flows were shown to follow Jeffery's equationsg)
for a spheroid in an unbounded Couette flow, provided that the "equivalent

1)

ellipsoidal® axis ratio™’ was used and wall effects were negligible. Moreover,

the cylinders rotated in fixed spherical elliptical orbits which depended
only on the initial conditions of release ’10).
At low Reynolds numbers where inertial effects become important,

Segré and Silberbergll’lz)

working with dilute neutrally buoyant suspensions
of rigid spheres, discovered the "tubular pinch effect" whereby the particles
migrated away both from the tube axis and tube 'wa.ll'rea.ching .equilibrium at
an eccentric radial position; at this position and at very low ‘concentrations
the spheres became regularly spaced in chains extending parallel to the‘.tub‘e
axiglds14) '

The observation of Segré and Silberberg have spawned a number of
theoretical and experimental studies because of the importance of radial
migration phenomena to suspension rheology.

The investigation reported here deals with the behaviour of rigid
and deformable parbicles in dilute and concentrated suspensions at the flow

regime where inertial effects start to become significant, and is an extension
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of a brief preliminary study reported ea.rl:i.erl5 ) (see Appendix I).
In the Theoretical Part which follows, the relevant theories of
the phenomena considered in this Part of the thesis and especially of
radial migration are presented in some detail to provide the background

necessary to discuss the results.

THEORETICAL PART

1. Poiseuil_le and Couette flows

In Couette flow the velocity field is definéd by

| u=0C; v, w=0, (1)

where u, v, w are the respective fluid velocities along the X-,Y-,Z- axes
and G the velocity gradient (Fig. la). When the flow is produced between
counter-rotating cylindém , G is not strictly constant across the gap but
varieé with distance from the axis o.f rotation, being maximum at the inner
cylinder (radius Bl) and minimum at the outer cylinder (radius Rz)l) ;
_ however, when (Rl - R2)/R1 is small, G may be considered constant across the
annular gap.

In Poiseuille flow, G increases linearly with the radial distance
r from the tube axis according to the rela.tion5 )

G(r) = - kr , (2)
where k = 4Q/r*, Q the volumetric flow rate and R the tube radius. In
terms of cylindrical polar coordinates r,Y, x (Fig. 1b) integration of (2)
yields the component of fluid velocity in ﬁhe X~ direction

u(r) = § (82 - ) . (3)

When the particle is small relative to R the local field can be
replaced by an equivalent Couette field translating with velocity u(r) (Fig. 1b).



2. Radial migration in Poiseuille flow

Although Segre and Silberbergu’lz,) were the first to observe the

é) working
using single rigid spheres,

two-way migration of rigid spheres in Poiseuille flow, Hﬁllerl

with suspensions of rubber discs, Ve:]lensl?)

18)

and Starkey using carbon black suspensions had previously observed

migration away from the wall of the tube at Reynolds numbers at which the

tubular pinch effect operates. The principle of least action18’19)

minimum energy dissipation in flowl7)

and of
were used to explain the migration.

However, it has been shown theoretically>’<l)

that no lateral force can
arise from the creeping equations of motion but that the observed migration
is due to inertial effects.

(a) Unbounded flows

The creepihg or Stokes flows may be regarded as the leading
terms in an asymptotic solution of the Navier-Stokes equation for small
Reynolds numbers. To obtain solutions at higher Reynolds numbers various
perturbations schemes have been used; a lengthy discussion of the methods
used is given by Brennerzz) .

Rubinow and Keller23 ) havé studied the flow around a rigid sphere
of radius b spinning with an angular velocity g)i' and moving in an unbounded
stationary viscous fluid with velocity V; using Stokes and Oseen expansions
they showed that the lift force acting on the sphere (to the zero order of
Reynolds number) is

E = e p&iV (4)
where p is the density of the fluid. This force, which arises from a
"slip-spin®, is akin to Magnus force used to explain phenomena such as the

curving of a spinning ball, and is due to inertial effects in the neighbour-
hood of the particle.
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Assuming that the sphere is propelled radially with the Stokes
velocity the migration. velocity is found from (4) to be
U=%~.Vb2.%:£, )
where g o is the viscosity of the suspending fluid.
In applying (5) to neutrally buoyant systems in Poiseuille flow,

it was assumed™) that the relative particle-fluid velocity V is given by »25)

V=-2u(@?+ 0@’ , (6)

where the negative sign indicates that the particle lags the flow, and u(o)
denotes the centerline fluid velocity corresponding to a parabolic distribu-
tion; furthermore, it was assumed that @' = G(r)/2, the value which (as will
be seen later) corresponds to Stokes flow, and thus becomes from (2) and (3)
o = Wl ()
R? ‘
Substitution of (6) and (7) into (5) yields

U=-Sue) r@*E, (&)

where ® = u(o)R p/qo is the tube Reynolds number.

The radial velocity given by (8) is always directed inwards.
Rubinow and Keller23) multiplied the r.h.s. of (8) by the factor (r - r#)/r#,
‘where r* denotes the equilibrium radial position of the sphere, to make (8)

agree, at least qualitatively, with the experimental observationsll’lz) .

Saffman2’

also considered the motion of a small sphere in an
unbounded parabolic velocity profile in presence of inertial effects and, by

iterating the Navier-Stokes equations, calculated the sideways velocity
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U=-0.8u(0) RQ* L, 9)

which, except for the numerical coefficient, is similar to (8).

In a more rigorous treatment using singular perturbation methods,
Safmanzé) analysed the motion of a rigid spherical particle relative to an
unbounded{, uniform, simple shear flow, the translational velocity of the
sphere lying parallel to the streamlines of the undisturbed flow. Three
independent particle Reynolds numbers arise from the equations of motion:

Slip:

Ry = 2—‘,’%9' s (10)
Shear:

B, = :o , (11)
rotation:

%, = Mﬂ:: . (12)

Only the case in which

Ry B %, <<1and R

2
o R o mw>>mp s (13)

was considered, and the 1lift force F_ and the torque M around the sphere

center were calculated to be

F, =8l.2 qobzv(q@;)l/ 24 o(g‘l)'l/ 2, ()
o .
- 3G
and M=-8mb (5 -0) + o(a,) - (15)

The lateral migration velocity, when the Stokes hydrodynamic force
- bm bV is added to (14) and the total lift force is set equal to zero, is

veBedw @VE, 16)

which is an order of magnitude greater than (5).
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Unlike the Rubinow-Keller theory>) which depends critically on
particle rotation, Safifman's’?é) "glip-shear® lifti force is independent of the
angular velocity of the sphere ie. the par’t.ic’le would migrate even if it was
prevented from rotating, in accord with the experimental observationsz’?’zg)‘.
While Saffmants analysis demonstrated the lack of universal applicability of
Rubinow-Keller theory it could be argued that when .'ﬁp >> Ry the 1ift force
due to slip-spin might have dominated or been comparable with that due to
slip-shear. However, Brennerzz) has pointed out that with neutrally buoyant
sphere of small b/R ratio where the axial slip velocity is given by (6) and

where it can be shown that

R
- o @)
P p

ie. as mp-—»o the ratio becomes infinite, Saffman?s conditions (equation (13))
are always met and the Rubinow-Keller theory is iﬁapplicable.
(b) Bounded flows | |

While each one of the above theories is able to preqict qualitatively
certain of the observed features of the radial migration in a tube, especially
in non-neutrally buoyant systems, they are unable to account for the two-way
migration of neutrally buoyant particles. The experimental results indicate
that the presence of the walls are of fundamental 4importance, and as has been
pointed out8’12’ 22) s no theory which does not explicitly consider inertial and
wall effects may be expected to explain the tubular pinch effect.

Repetti and Leona.rdzg) proposed a semi-empirical model basedvon
(5); V was not evaluated from (6) but from an empirical relation based on
velocity data of Goldsmith and Maso 5 )1. Their final equation contains an
adjustable parameter defined as the distancé past the sphere surface within
which the sphere influences the surrounding fluid. By adjusting the value of
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the parameter they obtained a reversal in the sign of F around r#., However,
Brennerzz) has pointed out on theoretical grounds that their equation cannot
be correct; it ignores the fact that for small b/R, V is correctly given by
(6) and assumes that the Rubinow-Keller theory is applicable to Poiseuille
flow.

A full treatment of the problem of a freely rotating and translating
parallel to the tube axis rigid sphere in a tube of finite radius, has been
attempted by Cox and Bremner’°). The first order solution of the Navier-
Stokes equation was obtained and the lateral force required to maintain the
sphere at a fixed r was computed and converted into an equivalent radial
migration velocity by application of Stokets law. The only restriction
imposed is that the sphere is not too close to the wall, i.e. b/(R-r) << 1.
Five cases were considered, ranging from the neutrally buoyant particle to
that of the sphere settling in stagnmt' liquid. For the neutrally buoyant

case

v =%u() s@’t ) , (18) -

where f(r/R) is a function of the radial position of particle center. Equation
(18) has the same form with the empirical equation used by Segre and

Silberberglz) to correlate their data i.e.

& oy =027 uEew@**La-L. (194)

Integrating (19A) yields:

_ r(rg = r#)_ fo  .2/b12,84

where r, is the initial radial position of the sphere.
3. Rotation and spin of rigid particles

Jeffery’) studied theoretically the rotary motion and axial spin
of a single neutrally buoyant rigid spheroid with centre at the origin of an

)
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infinite field of Couette flow defined by (1). In terms of spherica}. polar
coordinates © and @ with the Z axis as polar axis (Fig. la), the angular

velocities of the axis of revolution predicted by the theory, when inertial

effects are absent and there is no slip at the particle-liquid interface, are9)
o =& (%057 + sin’p) (20)
dt (r 2 + 1) e
e
2

G(r © -1) ,
and L.—=o sin2f sin20 , (21)

b(r S~ +1)

where To is the equivalent ellipsoidal axis ratiol) . The spheroid undergoes

spin around its axis of revolution given by

=G :
w! =7 cos e. (22)

Integration of (20) and (2L) yields

C2re200t26 =] + (re2 - 1) cosz¢ R (23)
and tan @ = r, tan (—21?-) , < (24)
where T is the period of rotation of spheroid given by

-~ 20 1.
T=73 (re+ re) s (25)

and C is the orbit constant).
- For the simple case of a sphere (re = 1), the particle rotates at
a constant angular velocity which from (20) is found to be
w! = -g , (26)
and with a period of rotation given by (25) which for r, = 1 reduces to
T=4, (27)

It should be noted that (26) is employed to derive (7).



For prolate spheroids (and rods) r,>1, and (20) indicates that
w! is greatest when the axis of revolution is perpendicular to the direction
of fluid flow (f = 0) and least when it is aligned with the flow (& = n/2);
the converse is true when re <1, i.e. for oblate spheroids (and discs).

It follows from (23) that, at a given C, the ends of axis of
revolution describe a spherical ellipse with major axis 91 and minor axis
0, (Fig. la) where 6, and 6, are defined by (23) setting # =n/2 and § =0
respectively, yielding:

- tan 6y “—*-ACre » and tan 8, = C . (28)
4. Variation of orbit constant of rigid spheroids
Saffmango) studied the effect of inertia of the fluid on the orbit

constant of a spheroid in Couette flow, and calculated the rate of change
of C to be

.dC_ ,Gala-b
& = A . (29)

1

C
where 2a and 2b are the length of axis of revolution and the equatorial
diameter respectively and A = - 0.24, It follows from (29) that the axis of
revolution of an oblate spheroid tends to set itself parallel to the Z-axis
(C = 0), and that of an oblate spheroid in the XY plane (C = o). These are
the orbits in which the particles make the minimum contribution to the
9)

suspension viscosity

In Couette flow, where G is constant, (29) may be integrated to give

log c . A __.9'.(.?'..'.'_._).2_. (30)

C
e
where Co is the initial value.

In Poiseuille flow, where G varies with r, substitution of (2) into

(29) and integration yields

1oge-é——A;‘—(ﬁ———2P-frdt. (31)




EXPERIMENTAL PART

1. Methods
(a) Poiseuille flow

The techniques of observing particles flowing in vertically mounted
glass tubes have been described previously5 ’ 6).

The particle translational velocities were determined by matching
the speed of the viewing microscope to that of the particle and computing the
distance along the tube axis from the readings of a revolution counter. At
high flow rates, the speed of a particle was measured by timing it between the

cross hairs of two telescopes of a cathetometer mounted 37 cm. apart. The

distance of the particle center from the tube wall was measured by means of a
calibrated micrometer eyepiece. For suspending liquids of refractive index
different from that of glass a correction was applied to give the true radial | |
cl:i.sta.nce3 1). |

Liquid velocity profiles were determined by means of a calibrated
Hycam 16 mm. high speed camera (Red Lake Laboratories Inc., Sunnyvale,
California) operating at about 1,000 frames per sec. The films were subse-
quently analysed by projecting them onto a drafting table.

The rotations as well as the variations in the orbit constant of
cylindricai particles were studied by photographing them with the aid of a
Paillard 16 mm. Bolex camera. When the particles are observed along the Z-axis,

the projected length a!(f) of the semi-axis of revolution in the XY plane at #

becomes
A
at(f) =asin 6. (32)
The projection of the equatorial plane is the ellipse of axis ratio
0
s(g) = L)F(ﬂ = cos © , . (33)

where 2bt(f) is projected length of equatorial diameter at #. The orbit




constant was calculated from (28), (32) and (33) by measuring s(#) for discs
and at(g) for rods at g = 0.

Liquid drops were formed by using a stainless-steel hypodermic
needle connected to a 0.1 ml. capacity microburette. The needle tip was placed
under the suspending liquid surface near the upper end of the tube, and the
drops released during flow in the downward direction.

(b) Couette flow |

Direct observations of particles along the Z-axis in Couette flow
were made in the coaxial cylinder device (Rl = 13.354 cm. and R, = 15.234 cm. )
described eltsewhere3 ) + The photographic techniques for measuring the rotations
aﬁd orbit constant were similar to those used in tube flow.
2. Materials

The properties of the suspensions used are listed in Table I. In
all the experiments the densities of particles and medium were closely matched
(ap <H.01 g.cm.-3) except in System 10 (Ap = 0.13 g.cm.-s) where sedimenta-
tion was deliberately sought, and System 11 where the aluminum tracer particles
were 80 small that sedimentation was negligible.

A1l experiments were performed in a thermostated room maintained

at 22 T 0.5°C.

RESULTS AND DISCUSSION

1. Rotation and spin of rigid particles

(a) Spheres
The measured angular velocities of spheres in Couette flow (Table II)

are in good agreement with (26) although in System 1 there is some scatter in
w‘calc/w'heas about the mean value of unity pressumably because of the low 1
and the resulting high values of % . The agreement with (26) and (27) over a



wide range of !Rw is furthér illustrated in Figure 2.

Equation (26) was derived for the Stokes flow regime; when small
inertial effect are considered s> Saffmant's analysis%) indicates that, to the
-terms of lowest order, w'is still given by (26), as may be seen from (15) by
setting M = 0.

(b) Rods and discs

Axial spin: The observed axial spins of discs for the special case
of C = 0 are given in Table III and indicate good agreement with the values
calculated from (22) by setting 6 = O.

Rotation: The variation of ¢ with time for a rigid rod and disc in
Poiseuille flow is illustrated in Figure 3a, and follows (24) provided that
To instead of the actual axis ratio rp = a/b is used. The values of r, calcu-
lated from (25) using the measured 'I‘Gl) , agreed to better than 57 with those
obtained at low !Xpl*). Figiu'e 3a also iqdica.tes that, as predicted by (20),
df/dt is maximum at § = n/2 for the disc (r, <1) and at # =0 for the rod
(re > 1), and is independent of C (and ©).

A more sensitive test of the theory is to plot tan § against tan 2wt/T;
this was done for rigid cylinders both in Poiseuille (Fig. 3b) and Couette
(Fig. La) flows and as may be seen the agreement was excellent.

Variation of ©: The variation of © with @ during a complete rotation
is shown in Fig. 4b where the results have been plotted in linearized form as
suggested by (23) using the experimental values of C and r_; the agreement
with theory is vﬁ good. In a number of cases, expecially with discs, the
variation of 6 with # was not idemntical in two successive half-orbits. This
was also observed at low .'Rp and was attributed to a lack of perfect symmetry
(e.g. variation in a) of the particles5 ); the explanation appears to be the
same ét high R ’ since the deviations failed to show any correlation with % P’
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2. Drift in orbits of rods and discs

When a pérticle was observed over many rotations a steady drift in
the orbit constant was observed, until it attained the limiting value C = ©©
for rods and C = O for discs, after which there was no further change confirming
the preliminary observations'>), Contrary to (29), the particles attained the
asymptotic orbit values for which the energy dissipation in Couette flow is
greatest9). At these orient#tions, a disc possesses a steady spin about its
axis of revolution which is oriented along the Z-axis; on the other hand, a
rod rotates periodically without spin of axis of revolution lying in the XY plane.
This is illustrated schematically in Figure 5a.

(a) Couette flow

As predicted by (30) log (C/C ) varied linearly with time (Fig. 5b)
when c/c:o < 10 for rods and c/co > 0.1 for discs, after which deviations from
linearity became apparent. It should be noted, however, that the extreme orbit
constants near C = O for discs and C = ® for rods are difficult to measure
accurately. The rate of change of C increased with G and particle siée (Eig. 5b)
in accordance with (29); aslmay be seen from Fig. 6a, however, the rate was not
proportional to G2 At low G, C remained constant (Fig. 5b curve 4) in agreement

’10). As G increased there

with earlier results in the creeping flow regime
was an abrupt increase in the rate of orbit drift (Fig. 6a).
(b) Poiseuille flow
vIn Poiseuille flow there was also simltaneous radial migration,

considered later, to the equilibrium position r#* as the long axes of the rods
and the faces of the discs became oriented in planes passing through the axis
of the tube (Fig. 5a). The rate of change of C increased with increasing r,
and was zero for particles near r = 0 as shown for a rod in Table IV. As may

also be seen from Table IV a particle initially located at r# did not migrate
whereas C changed towards its asymptotic value. Thus while the drift in both
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C and r are related effects due to fluid inertia, radial migration is not a
necessary condition for the variation in C; this is to be expected from the
results in Couette flow. | |
(¢) Orbit drift parameter A

Values of A calculated from the experimental data using (30) for
Couette flow and (31) in Poiseuille flow are listed in Table V, Because of
radial migration in tube flow the integral in the r.h.s. of (31) was evaluated
graphically from the experimental data by plotting r> against t and measuring
the area under the curve. | As may be seen from Table V, A was smaller in tube
than in Couette flow possibly because of the closer proximity of the wall;

it also depended on G and TS being smaller with rods than discs (Table V).
It is clear that A is not constant as predicted by (29) which was, however,
derived for spheroids of small rp. Safﬁnanm) has pointed out, that, when the
aspect ratio is large (rp <<1or T, >> 1), it is probable that

1 46, p2? 2p

5 gt = AP (log rp) a, * (BA)
where A, is a constant. A comparison between (29) and (34) shows that for rods
(rp > 1) lAll > | Al, while for discs (rp <1) fAll <lA[. Values of IAll
calculated from (34) for Couette flow are plotted in Fig. 6b as a function of
G. As may be seen, (34) yielded IA1| values of the same order of magnitude
for both rods and discs, &'I.thoughlAll is not constant but increases with G.

3. Radial migration in Poiseuille flow

(a) Neutrally bucyant systems
Rigid spheres. As previously found l*12:14:15:27) 110ty erneres

initially placed near the wall migrated inwards, while spheres situated close
to the tube akié Mdgrited outwards until, independently of the direction of

migration, they reached an equilibrium radial position r* between the tube axis
and tube wall (Fig. 7a). At high values of Q and b/R, the particles sometimes

\



overshot r#*, after which the migration oscillated until the sphere settled
at r* where it remained (Fig. 7b curve 2); there was no tangential movement,
i.e. § remained constant as would be expected from the axi-symmetric flow

22) states that Denson3 4) observed an oscillatory motion of

field. Brenner
the particles across the equilibrium position at !Rp =15 to 120.

The rate of migration increased with increasing Q. At a given Q
and particle size, and when b/R < 0.4, the migration velocity did not increase
monotonically with increasing the radial displacement from the equilibrium
position, but showed a maximum at some intermediate value of r/R; (Fig. 7a
Fig. 7b curves 1,2); when b/R > 0.4 this was not detectable as may be seen
from Fig. 7b. The migration rate also increased with increasing particle
size when b/R < 0.4, but when b/R > 0.4 the rate decreased (Fig. 7b) possibly
because of the influence of the other walli of the tube.

As shown in Fig. 8a thé translational velocities of the spheres
u'(r) were identical for the upward and downward flow but lagged behind the
undisturbed fluid velocity u(r) at all radial positions; u(r) at the flow
rates used was parabolic and thus followed (3).

The equilibrium radial position r#* depended on particle size,

decreasing as b/R increased (Figs. 7b and 8b). The values of r*/R found
312:1h327)

were somewhat lower than those reported in the literatur perhaps
because the present experiments were performed at much lower R (S 1.1).
Serutiny of the data of Segré and Silberberg  ’ ) with spheres and of
Miillerlé) with discs, suggests that r# shifts closer to the wall as the R
increases. This does x;ot contradict (18) which implies that r#/R is indepen-
dent of R and b/R because (18) applies only when both R and b/R are small.
It was not possible to verify (16) because the condition
R,/ !R,,z >> 1 was not fulfilled in these experiments. Saffmant!s analysis

requires high Q and small b/R so that G4 /V%p >> 1, and under the most
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favorable conditions of the preser;t investigation (using the measured V)
mg/mﬁ was of the order of 107 ; hence, the calculated migration rates
were about lO3 greater than those actually observed, Also a direct test
of (5) was not possible because w' was not measured simultaneously with V
and U, and use of (7) is not justified for the range of b/R employed.

The data for b/R = 0.25 to 0.305, in which measurement of U
were most extensive, were correlated with an equation similar to (19B),
i.e.
' r(r

log r—T;——T 0.02 "'Q" 32(")2 .. (35)

R

as illustrated in Fig. 8c., It should be noted that (8), after multipli-
cation of the r.h.s. by (r - r#*)/r* and integration, yilelds an equation
similar to (19B) but with b/R in the fourth power. It seems that the
numerical value of the exponant in b/R depends on particle size. With

no wall effectszo’ZB) i.e. as b/R—0 its value is 4, whereas with finite
but small b/R, both theory>°) and experimental resultsl*2) (for b/R = 0,029
to 0.152) yielded values of approximately 3; in the present work, in which
b/R was still larger (0.25,- 0,305), the exponent was 2.

Rods and Dis¢s. Rigid cylinders (Fig. 9a and 9b), like spheres,
drifted radially either inwards or outwards tb the equilibrium position,.
their orbit constants simultaneously drifting as described earlier,

Deformable particles. In contrast to rigid particles, liquid
drops and elastomer filaments, which were deformed by the shear field,
nigrated to the tube axis (Table VI) as they did at low mp” . The radial
position of the fibres was measured by photographing them. Since they were
deformed and bent while flovﬂ.ng in the tube, an arithmetic average radial
distance was determined from the photographs; the fibres were divided into
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equal segments along the length (about 0.05 cm.) and the distance of each
segment from the tube axis was measured. The inward migration to the tube
axis of an elastomer fibre is illustrated in Fig. 10 by tracings of photo-
graphs taken at various time intervals.

The rate of migration of fluid drops decreased uit.h increasing
the viscosity ratio; at p = 50 liquid drops behaved as rigid spheres i.e.
there was no migration at low Sip, and migration to r#/R = 0.5 appr. at
high m‘p. For a given system the rate of migration increased with increasing
b/R, Q, and radial displacement from the equilibrium position (Table VI) as

5)
t 1 .
a ow!Rp

(b) Systems with density difference
A few experiments were performed with System 10 in which the

spheres were denser than the suspending fluid yielding sedimentation
velocities V, from 0.2 to 0.25 em. sec.”l. The results are tabulated in
Table VII. With the flow upwards spheres migrated towards the tube axis at
all radial positions, in accordance with previcus observations™®27229) | due
to the large value of the slip velocity a.nd the influmce of the wall. When
the flow was in the downward direction, spheres behaved as in the neutrally
buoyant Systems i.e. they possessed a two-way migration depending on their
initial r/R, confirming earlier observations? ’2?). Because of the limited

21) experiments and

length of the tube, r#* could not be measured; Oliverts
Brenner's??) analysis indicate that r* should be closer to the wall than in
a corresponding neutrally buoyant sysf.an.

It is interesting to note that in the case of downwa.rd flow and
when the particles were close to the wall they migrated imwards although
u'(r) > u(r) (Table VII). It is as if the wall has a repulsive effect on

tﬁe spheres, an effect which is also present when a sphere sediments near




the tube wall in a quiescent liquid of low viscosity. The latter arises
from inertial effects which result to a source-~like behaviour of the flow
at distant points from the sphere not lying within the wakezz) + This was
observed by placing a sphere (b/R ~ 0.4) at the wall of a vertical tube
containing a stagnant liquid of low viscosity (0.13p); the sphere quickly
migrated to the tube axis. When the viscosity of the liquid was increased
to about 25p without changing the density the sphere rolled down the wall
without migrating.

It may be concluded, therefore, that when the sedimentation
velocity is in the direction of flow, the particles reach equilibrium at
the radial positions at which the inward directed force arising from the
proximity of the wall balances the outward directed 1lift force.

4. Suspensions of rigid spheres in Poiseuille flow

(a) Particle-free layer near the wall

When a suspension of rigid spheres was allowed to flow in the
tube a particle-free zone developed near the wall. The formation of this
"plasmatic" layer was also observed in suspensions of spheres uﬁdergoing
oscillatory flow3 5) and in pulp fibre su.spensions3 é) although in the latter
case it was probably a deformation rather than an inertial effect.

The thickness & of the particle-free layer was measured by photo-
graphing the flowing suspensions using flash illumination to stop the
motion. Since particle-particle interactions, caused & to vary from point
to point along the tube the arithmetic mean § was calculated from a number
of photographs taken simultaneously along the tube.

Fig. 1la shows the gradual increase in g with time for suspensions
of various volume fractions c. At a given Q the time required for ?: to

reach its equilibrium thickness deecreases with increasing ¢ (Fig. 1la).
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The asymptotic values of ET are shown plotted in dimensionless form against
¢ in Fig. 11b and as may be seen god/R (and g;:b/b) decreases as c increases.
The distribution of particles in the core of the suspension was not measured
but, at least in the lower range of ¢, a peak in the concentration profile
around r* should be expected  *12),

The development of particle~free layer near the wall changed the
velocity distribution of the suspension in the tube and caused a drop in the
apparent viscosity coefficient 1, This is illustrated in Fig. 12 and
Table VIII.

(b) Velocity profile

To study the modification in the velocity profile, transparent
suspensions of polyvinyl acetate spheres (System 5) of various ¢ were used
and the velocity distribution measured as described elsewhereé). The
suspensions were introduced at low Q@ in the tube and the initial> velocitﬁ
profile determined; Q was then increased and the suspensions were recycled
in the tube until §= 5, after which the initial Q was restored and the
velocity profile was again measured. As may be seen from Fig. 12 and Table
VIII, the suspensions initially possessing a parabolic velocity distribution
developed a central core of effectively zero G whose radius r c increased
with increasing c.. At concentrations at which the velocity profile was
initially blunted, r o Was further increased by the formation of the plasmatic
layer. Partial plug flow in the tube was also observed (Fig. 12) when the
suspensions were subjected to an oscillatory flow of high frequenc;ﬁ 5) to
increase the !Xp.

A similar blunting in the velocity profiles in suspensions of
high ¢ undergoing Poiseuille flow was reported at low !Rp and attributed to

6)

a wall effect™’; at high Rp the blunting is due to the radial migration




s

- 7=

which gives rise to a two_-pha.ﬁe flow in the tube with a low viscosity
liquid ( = g_) near the wall and a high viscosity near the axis.
(¢) Pressure drop
Because of lubricating action of the plasmatic layer the pressure
drop AP over a given length L (= 65.1 cm.) of the tube (measured by means
of a differential pressure tra.nsducer6)) decreased with time as the layer
was developed (Fig. 12, insert) until §= 5& wherleafter it remained
constant, Similar observ#tions in dilute suspension of spheres were reported
by Segre and Silberberg3 7). |
If ,S—OJR and ¢ for a suspension are known the apparent viscosity

1, may be defined by

4
_pR'OP
g 8Qq ? - (36)

from which 5, W&y be calculated assuming an annulus of suspending phase
thickness '8—60 surrounding an inner core of suspension of uniform concentration
¢t and viscosity 1103 8“’0). A material balance per unit length of the tube
yields

c = 12c' ’ (37)
where 71=1 - __8;;/& Mooneyts equationl’l), recently confirmed by Brodnyanhz)

for latexes up to ¢ = 0.4, may be used to evaluate 1,:
- 2, 5ct
s = 1, Qq)(l - l.57c') * (38)

Neglecting for the time being the effect of the wall the apparent
viscosity is given byw)

)
V= = » (39)
" 1- 1-“(1 - a./n.) '

Combining (36) and (39) yields the pressure drop

APY _ 8Qn, '
Lowta - 'E-l’(l - 0 /,)]

(40)
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A correction should now be applied to (39) and (40) to account
for the hydrodynamic interaction between particles and the wé.'L'l.. 1f. 8;
denotes the thickness of Vand's>®) equivalent plasma layer it can be readily
shomBS’w) that o (corresponding to (36)) is given by

v TTTa/ay (42)
where 7 =1 - SV/R, and Sv = 0.7b for spheres:)'si"‘!'n’l’3 ). Substitution of
(42) into (37) and (40) yields

Tlo

= ’ (43)
LI () - a/a)
Af 8as,
and = . (k)
ooty - (i - ag/ay)]

Comparison between the measured and calculated apparent viscosities
and pressure drops for the two suspensions of Fig. 12 (insert) is made in
Table IX. As expected 5. and AP'/L (i.e. with no correction for the wall)
were greater than the measured valﬁes. After correcting for the wall,

(Eqs. ‘(l|.3) and (44)) the measured and calculated 1, and AP/L were in
excellent agreement; this may be fortuitous since the hydrodynamic inter-
action effect implicif in Sv may be over-compensated by the existence of the

real plasma layer 800"

CONCLUDING REMARKS

The radial migration at high ap is undoubtedly due to inertial
effects since no radial (1ift) force can arise under comparable conditions
in the Stokes flow reg:l.mezo’zl) + i In sedimenting systems the experimental
data appear to be in qualitative agreement with several th;oretical inter-
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pretations®2:2322) i that the direction of migration depends on the sign
of the slip velocity. However, in neutrally buoyant systems the theoretical

treatments of Rubinow and Keller®’ and Saffman?%%)

cannot be expected to
explain t.hé two-way migration observed in Poiseuille flow because both
neglect the variable G and the presence of boundary walls. On the other

hand, the theory of Cox and Brenner30 ), which takes into account the variation
in G and the finite d:i.mensions of the particle, is incomplete, and quantitative
coamparison with the data cannot be made. Qualitatively, however, the present
work shows that for the narrow range of X investigated, U varies proportionaly
to R as predicted by (18); on the other hand, U is proportional to the second
rather to the third power in b/R, perhaps because of the large ratio of b/R.

Two interesting consequences of the development of goo are the
reduction in AP and the change in the velocity profile in suspensions flowing
through tubes at high X ' These may be of interest in the transport of
suspensions through tubes and pipes, since the power expenditure is reduced,
and particle rotation is inhibited by the development of plug flow; the
latter effect may reduce mechanical attrition and aggregation of the pa.riicles
as they flow, desirable in some systems3 5,3 6).

The change in the orbit distribution of rods and discs may be
important in making viscosity measurements in capillary tubes. The drift
towards orbits of maximum energy diesipation will lead to an increase in
the apparent viscosity of a suspension of cylindrical particles; this
increase may, however, be overshadowed by a decrease resulting from migration

from the wall. The two simltaneocus effects may produce apparent non-
newtonian effect similar to that reported for 5pheres3 7 whose magnitude

depends on the relative rates of radial migration and change in orbit constants.

This possibility deserves experimental study.




a; at(g)

b; b?(F)

; G(r)

i

—

LIST OF SYMBOLS

semiaxis of revolution of spheroid; XY projection at §.
orbit drift parameters

radius of the sphere and undistorted drop, and semiaxis
of equatorial diameter of spheroid; XY projection at #

volume fraction of suspended phase

orbit constant; initial value

1ift force

velocity gradient; at r in Poiseuille flow
LQ/TR b

tube length

torque about the sphere center

viscosity ratio of particle to medium

pressure drop; predicted value uncorrected for Vandt!s
wall effect

volumetric flow rate through tube

radial distance from the tube axis; initial and
equilibrium radial position of particle

radius of the core of zero velocity gradient (Table VIII)

equivalent ellipsoidal axis ratio of rigid cylinders
a/b

tube radius

tube Reynolds number; shear Reynolds number

particle Reynolds numbers based on slip and angular
velocity respectively

radius of inner and outer cylinder walls of Couette
apparatus

bt (¢) /b

g

O




t; T

U, Vv, W
u(r), u(o)
ut(r), ut(o)

U

X, Y, 2

r,¥, x

I
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time; period of rotation through # = 2

components of fluid velocity .along the X, Y, Z axes
fluid translational velocities at r and at r = o
particle translational velocities at r and tube axis

migri.tion velocity of particles ( = dr/dt in Poiseuille
flow

relative particle~-fluid velocity
sedimentation velocity
Cartesian coordinates
cylindrical poral coordinates

1- 3‘°°/R 3 1 - SV-'/R_

thickness of particle-free layer near the wall and its
equilibrium value; arithmetic averages

thickness of Vand's pseudo-layer near the wall

true viscosity and apparent viscosity of the suspension;

-medium viscosity and viscosity of the core

angle of axis of revolution with Z-axis

density of suspending liquid; density difference of
drop and medium

aximuthal angle of axis of revolution
angular velocity @ of rigid particles
axial spin of rigid cylinders
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17.

18,
19.

22,
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TABLE I

Properties of Suspensions. Temp, 22°C

79

b)
c)
d)

Polyglycol oils (Union Carbide).
E. I. du Pont de Nemours.
Dow Corning Silicone oil Series 200.

P 4 a)| Tenge of particle
System medium B { 2. cm.-3 poises |- Particles. |p ’diﬁensions x m30m.
1 aqueous glycerol 1.05 0,018 | polystyrene spheres b =62
2 1.05 polystyrene spheres b=40 to 7L
b) >
Ucon oil “Ta = 6t 6.5
3 50-HB~260 1.05 1,2 polystyrene discs b = 22 to 45 {
I + 1.09 aluminum-coated a =40 to 60 ’
tetrabromoethane nylon rods b= &to l"Sm N
5 1.17 1.1 polyvinyl acetate b =15 to 29
spheres y I
c o~
6 1.06 | 1.2 elastomer filaments ; - g% tg 292
7 b) 1.05 polystyrene spheres b =15 to 61
Ucon oil a= 6 %o 6.5
8 50-HB-55 1.05 polystyrene discs b = 22 to 45 N
9 + 1.08 0.137 | aluminum-coated a = 40 to 60
tetrabromoethane nylon rods b= 4 to4.8
‘10 + 1.05 polyvinyl acetate b = 36
spheres
benzylalcohol
1 1.05 aluminum particles <2
Ucon oil 50-HB
: - 260 + tetra- ; !
12 brimoetha.:er: 1.049 ! 0.864 | polystyrene spheres b = 11 to 191
benzylalcohol '
dibutyl phthalate
13 + Ucon oil LB- 1.026 | 1.26 Cd(N03)2 in water ~0 b =48
1715 '
Ucon oils b)
1 LB-285 + LB- - 1.259 | 1.15 glycerol 10 |b = 37 to 48
1715
15 |Ucon oil ®) 0.975 | 1.0 1licone oil 50 Y |50 |b = 37 to 48
LB-285 + benzene ’ ) Rt p
a) Ratio of the suspended to suspending phase viscosity.




Angular velocities of rigid spheres in Couette flow

TABLE II

System 1 System 2
G % ! rad.sec. ™™ G y R w' rad.sec. T

sec.” L[ © Eq(26)  Meas. sec."1 w Eq(26) Meas.
0.486 0.22 0.243 0.234 3.52 0.033 1.76  1.77
0.680 0.29 0.340 0.322 6.46 0.059 3.23 3.2
1.75 0.82 0.875 0.914 7.70 0.14 3.85 3.83
2.90 1.4 1.45 1.54 8.76 0.16 4.38  4.36

10.52 0.19 5.26 5.32

c - Calc _
Mean Meas — 1.004 Mean Meas 0.999
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TABLE III

Axial spin of discs at C =0

Couette flow, System 3 Poiseuille flow, System 8
G . -1 . -1
oty rad.sec. Q R G m's, rad.sec.
sec. ™ Eq.(22) Meas. cm?sec.'l cm. sec. T Eq.(22) Meas.
2.58 1.29 1.30 0.356 0.4 | 5.04 2,52  2.43
3.00 1.50 1.48




TABLE IV

Drift in orbit constant

R =0.2cm. Q= 0.356 cm. Jsec. ™t

e flow

R =1

discs, System 3

rods, System 4

t sec r/R * c t sec r/R X ¢
0 0.800 o 0o | 0.750 | 0.78
23 0.750 | oo 52 | 0.695 | 1.2
306 0.560 | 26 123 | 0.670 | 3.6
559 | 0,55 | 0.55 | 35 | 0.575 | o
709 0.540% 0 - 0.490% o]
0 0.735 5.0 0 | o.u85% | 0.54
65 0.640 3.3 51 | 0.495 | 0.60
133 0.535 0.91 | 136 | 0.490 | 1.3
308 0.530 0 21 | 0.485 |
505 0.525 0
805 0.525% 0 0 0.0Q5 1.8
67 | o 1.9
182 | 0,125 | 1.8
382 0.230 2.7
- 0.490% | o

~a) The asterisks indicate the value of r*/R.




TABLE V

Orbit Drift Rate

Couette flow o Poiseuille flow
Discs, System 3 0 N —ﬁi-s—;; - |
s(e}cfl rp 103 xé-(%la glOBl—%%? Eq-?BO) System cm:l:ec:l Rﬁpég—o?ylojg_(%:)g i c;{iz‘:fd log.C/ Co qu}(Bl)
SecC. : SecC, sec., SeC. i;_“u._u_ - _ i
4.35 |0.159] - 0,19 ~14 | 0.90 : |
3.79 |0.192| - 0.15 - 081 | 0.86 | 3 282.9 30.7 - 41.9] - 0.19 I 0.68 ' - 0.74 | 0.16 ;
3.70 [0.264| - 0.10 ~0.37 | 0.62 | 1
4.58 |0.264| - 0.10 ~0.66 | o2 | 8 17.68 | 4.9 - 5.9 | -0.62 | 6.23 | -0.88 | 0.16
464 |0.264] - 0.10 - 0.66 | 0.71
7.0 |0.264| - 0.10 - 0.95 | 0.47 ' o o ; ﬁ
Rods, System 4 o Rods o | :
5.34 |10.03 2.4 0 0 ;
8.66 |10.03| 2.4 0.17 ]0.0022 | 4 282.9 27,89 2.1 0.38 |0,0039 |
9.49 |10.03 2.4 6.4 |0.068 4 282.9 138.2 - 42.7) 2.1 1.66 & 0.66 |0.0055
11.6 |10.03{ 2.4 U.6 0104 B
(a) Evaluated from the slopes of log.c/co vs. t plots (Fig. 5b).
(b) At the initial and final radial positions. '
(¢) Evaluated by graphical integration.
(d) Initially located at r¥.
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TABLE VI

Radial migration of deformable particles. in Poiseuille flow.

g

Elastomer filaments (System 6)

Fluid drops, R = 0.4 cm. : Q=0.35 cm.33ec. -1 R=0.2 cm.
102 xQ 102 x b1 r/R ZLO4 x4 cm.sec. 103 xb a | r/R b)
System c:m.3 sec. cm. 103 x mp 1 initial final mg:ial ;  Che cm. ; I'p initial final
5 T - [
13 7.1 4.8 0.5 0.250 0 135 2 2.9 0.5 ; 185 | 0.460 0.050
13 7.1 We | 05  0.083 0 | 13 46 069 | 150 | 0.55%  0.110
1 7.1 b8 | 072 0.250 0 | 22 2.8 10.221 ' 78 | 0.745 0.050
1 7.1 3.7 0.29 ~ 0.290 0 16 2.8 |0.221 78! 0.568 0.060
15 14.2 I 13 0.50 | |
15 14.2 3.7 | 0.54 | 0.53 ' ;
i L I N B R

a) From (6) and (10) using the radius b of the undeformed drop.

b) Average radial position.

8
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TABLE VII

Radial migration of sedimenting rigid spheres
(System 10) in Poiseuille flow

b/R=0.18 Q=1.78 X 10 %am’sec.”™ R=0.2 em. V. =0.20 - 0.25 em.sec.”™
§ . 2)
r/R t ut(r) u(r) .1 | Direction |10 x4 r/ t
1 cm. sec, of . L
initial final| sec |cm.sec. -~ | initial final flow cm. sec.” L
r/R r/R

0.140 0.175| 45.2| 0.395 | 0.277 0.275 | Downwards 1.6

0.465 0.140| 37.7| 0.380 | 0.222 0,278 | v | =17

00250 0-3‘-}0 49 - 00265 00250 " . 397

0.080 0,080 | 120.5 0,102 0.281 0,281 Upwards 0

0.175 0.130]| 125.6 0.0886 0.275 0.278 n - 0.72

0.160 0,010| 123.4 | 0.0952 0.276 0,283 n - 2.4

0.060 00025 10107 0.0877 00282 00283 n - lol

a) Migration towards the tube axis is negative.




TABIE VIII

Effect of radial migration on the velocity profile in suspensions of spheres undergoi Poiseuille flow.

System 5 R=0.2 cm. Q= 0.356 alsec.™d b= 6.015 cm. !Rp = 0.7 x 107

Initial velo;:ity profile Final velocity profile
a) b ~b) a) b) b)
¢ Ir /R |u'(0)/u(o) uf(r)/ut(o) r /R |u'(e)/u(o):. u!(r)/u' (o)
| - r/R = 0.25 r/R=0.50 r/R=0.75 r/R=0.25 r/R=0.50 r/R=0.75
0.05| O 1.0 0.94 0.75  0.43 0.12 0.97 | 0.95 0.79 0.46
0.10! © 1.0 0.94 0.75 0.43 0.2, 0.93 1.0 0.83  0.50
0.15| 0.20 0.94 . 0.98 0.82 0.53 0.35 0.84 1.0 0.93 0.61
0.20| 0.38 0.84 1.0 0.90 0.64 0.40 0.78 1.0 0.95 0.69 J

a) r. is the radius of the core i.e. the region of plug flow in the tube within which the particles move with
identical translational velocities and without rotating.

b) u'(o) = particle translational velocity at r = O.
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TABLE IX

Comparison of measured and calculated values of apparent viscosity

and pressure drop in suspensions of spheres; System 5, b/R - = 0.096.

Q a) b)

o 3t | 8P1L | 1q poises |AP/L dyn.cm:>
3secT! poises dyn.cm."3 Calcd) Meas. Calcd) Mess.
Eq- (39)| Ea.(40) |
0.15 | 0.2 | 0.050 169 | 73 1149 145| 65 63
0.30 | o0.0m | o0.012 4.20 96 3.2 3.5 7 7

Volumetric flow rate at which OP was measured.

From Fig. (11b); for the ¢ = 0.3 suspension an extrapolated value was used.

The true viscosity of the suspension claculated from (38) using c.
- From (42), (43) and (44) with § =0.7 b.

&8
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Figure 1 (a) Spherical polar coordinate system describing the orbits of
- cylindrical particles in Couette flow, A spherical elliptical
orbit of the axis of revolution of a rod (r,>1) and a disc
(r.< 1) are shown by curves 1 and 2 respectively.

éb) Cylindrical polar coordinates r, §, x in Poiseullle flow;
right) Cartesian coordinate gsystem constructed at x = 0 and
‘lf = - 9000 :
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Angular velocity of rigid spheres as a function of %,. The
horizontal line is from (27) and the points are experimental
data .

Circles: present work for System 1 (open circles) and System 2
-{closed circles) in Couette flow; s, 82,30),

triangles: previous data for Couette flaw° 3 and
squares: previous data for Polseuille flowsA)

The vertical lines indicate the atandard deviation for each
set of data.
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Figure 3 Variation of § with time in Poiseuille flow for a rigid disc

r. = 0.245 (System 8, circles) and for a rigid rod r, = 8,2
(System 9, trid.ngleas The 1lines are calculated from (24).
The experimental points are: - .

closed circles: r/R = 0.740, G = 5.2} sec™, ¢ = 11;

open circles: r/R = 0,790, G = 5.58 sec?, C = 2.1;

closed triangles: r/R = 0.702, G = 4.97 sec-!, C = o0;

open triangles: r/R = 0.675, G = 4.76 sec-}, C = 3,5,

(a) Plot of P against t/T. Hote that the angular velocity is
maxinum.at § = O. for the rod and at § = /2 for the disc and
that, as predicted by (20), the variatlon.s of @ with time are

independent of O (or C).
' (b) Va.riation of tan § with tan (2nt/T)
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Figure 4 (a) Variation of angle P with time in Couette flow for a
rigid disc (System 3) and rod (System 4). The lines are
calculated from (24), and the points are experimental data.
Open circles: G = 6,01 sec™!, r, = 7.2, and C = 0.26;
‘closed circles: disc G = 4.4l sec™®, r, = 0.35 and C = 2.8,

(b) Variation of © with @ for the same rod and disc shown
in Figure 3. The lines are calculated from (23) using the
measured C and r, the points are experimental data. -
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Figgx:e 5 (a) Projection of rods and discs in tube flow viewed along the
tube axis (upper) and in the median plane (lower) after they
have attalned the respective limiting value C = @ and C = O,

(b) Variation of log C with time showing the effect of G and
particle size on the rate of change of C in Couette flow.
Lines 1 to 4 inclusive are for rods (System 4, 2a = 0.098 cm,
2b = 0.0095 cm) and lines 5 to 8 for discs (System 3, 2a = 0,012 cm).
Rods: line 1: G = 11,6 sec-{, C, = 0,69; line 2: G = 9.49 sec™?,
. Co = 0.44; line 3: G = 8.66 sec1, C, = 0.32; line 4: G = 5,34 sec™,
Co = 0.23. :
Discs: line 5: 2b = 0.0455 cm, G = 3,70 sec*!, C, = 2.9; line 6:
2b = 0,0455 cmy G = 4.6 sec~1, C, = 1.8; line 7: 2b = 0.0455 cm,
G = 7.0 sec~!, C, = 3.4; line 8: 2b = 0,0755 cum, G = 4,35 sec?,
Co = 203. ' .
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Figure 6 (a) Plot of log [C/CJ /t against G* for rods (open circles)
and discs (closed circles) in Coustte flow which according
to (30) should be linear,

(b) Plot of |A,l calculated from (34) against G in Coustte
flow for the rod (open circles) and discs (closed circles)
in Table V.,
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Figure 7 Radial migration of rigid spheres in Poiseuille flow.
(a) System 2, Q = 7.11 x 10"*em? sec™?, b/R = 0.305, R = 0.2 cm,
and Rp-= 7.4 x 10"*, Curve 1l: inward migration. Curve 2:
outward migration.

(b) System 12, Q = 7.11 x 10"*cm? sec”!, R = 0.1 cm. Curve 1: .
b/R = 0.155, Rp = 2.7 x 107%, Curve 2: b/R = 0,40, Xe = 4.7 x 107°,
Curve 3: b/R = 0,525, %, = 1.1 x 10!, Curve 4: b/R = 0.778,

mr = 00360

Particle Reynolds numbers are based on (6) and (10). The arrows
are points of inflection where dr/dt passes through a maximum,
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(a) Particle and fluid translational velocities in Polseuille
flow in a tube R = 0,2 cm. at Q = 0,071 to 0.356 cmd sec-t,
The line is calculated from (3). The points are experimental
data for System 11 (circles, % = 8.3) and Systems 2 and 7,
(squares, 2b/R = 0.36 to 0.50) during flow in the upward (open
squares) and downward (closed squares) direction at %, (based

“on (6) and (10)) from 1.4 x 10* to 2.1 x 10-%,

(v) Dimensionless plot showing the effect of b on r#,
Open circles: present work % = 1.1;

closed circles: data!® at % < 30;

open triangles: datal® at 10< % < 80;

closed triangles: data?? 145 < R < 510,
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Figure 8 (c) Plot according to (19B) System 2, R = 0.2 cm,
Circles: b/R = 0,305 and % = 0,195 for outward (closed

circles) and inward (open circles) migration,
PTriangles: for outward migration of a sphere b/R = 0,25
and X = 0,390.
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Figure 9 Radial migration of rigid cylinders in Poiseuille flow at R
from 0.4 to 1.

(a) Discs; System 3, R = 0.2 cm. and 2a = 0,012 cm. Curve 1l:
Q = 0.356 cm? sec™1, 2b = 0,0684 cm; curve 2: Q = 0,356 cm? sec?!,
2b = 0.0934 cm. and curve 3: Q = 0.142 omd sec™®, 2b = 0.0897 cm.

(b) Rods; System 4, R = 0.2 c¢m, Q = 0.356 cm? sec-*, Curve l:
2a = 0,0892 cm, 2b = 0,0083 cm, curve 2: 2a = 0,114 cm,
2b = 0,0085 cm, and curve 3: 2a = 0,108 cm, 2b = 0.0084 cm.
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Figure 10 Tracings from photographs of an elastomer fibre (No, 4 in
Table VI) showing its radial migration to the tube axis
and its configuration at various time intervals, System 6,
Q= 0.356 em? sec”?, R = 0.2 cm. and r, = 78.
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Figure 11 The development of particle-free layer in suspensions of rigid
spheres, System 7, R = 0,2 cm, b/R = 0,075, Q = 0.356 cm? sec!,
B = 5 x 1073, '

(a) Variation of S/R with time, The points are; open circles:
¢ = 0,02, closed circles: ¢ = 0,05, open triangles: ¢ = 0,10 and
closed triangles ¢ = 0,15, .

(b) Effect of concentration on &/R and &/b.

(¢) Tracings from photographs of the particle~free zone for two
suspensions.



180

1-0 & f f “ T

initial_flow

I. after steady flow

o8l 2. after oscillatory flow

085

-0 ’IIlIllllllllllIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIllllIIIIIIIIIIIIIIIIIIIIIIII
) 0-50 10
" ]
u'(r)
4
u'(0)

Figure 12 Effect of particle-free zone on the apparent viscosity and
velocity profile of concentrated suspensions of spheres (System 5)
in Poissuille flow. Flot of u'(r)/u'(o) against r/R for two
suspension (u'(o) is the centerline particle translational
velocity). The dashed line is the initial parabolic velocity
profile. _The solid lines are the final velocity distributions
when & = &,,, Curve 1 (open circles): steady flow ¢ = 0.10
Q = 0.356 em3sec-1, R = 0.2 cm, b/R = 0,075 and Rp = 0.7 x 1073,
Curve 2 (closed circles): oscillatory flow, frequency 17.1 sec?,
amplitude 1.1 em?, ¢ = 0.22, R = 0.5 em, b/R = 0,040 and
Rp= 2.2 x 107,

The insert shows the decrease in AP with' time for two suspensions

¢ = 0,15 (closed circles) and ¢ = 0.30 (open circles) in a tube
R = 0,3 em; b/R = 0.096 and Rep = 2 x 1077,

Particle Reynolds numbers are based in (6) and (10); the relative
sizes of the spheres are also shown. :



PART IV " - 10i

MENISCUS EFFECTS

ABSTRACT

This investigationdeals with the accumulation of particles
which occurs behind an advancing air-liquid meniscus in a tube. It
is shown that near the meniscus the radial component of velocity of
the liquid containing the particles plays an important part.

The measured axial and radial velocities of a liquid without
particles are in qualitative agreement with a theory due to Bhattacharji
and Savic for homogeneous fluids.

Isolated spheres suspended in the liquid which reached the
meniscus, suffer an inward displacement as they are transported by the

radial flow near the tube wall which increases with increasing particle
: .size. An inward displacement of spheres also occurs at a tube conver-

gence in positions remote from the meniscus. In both cases, the inward
displacement presﬁma.bly is due to the interaction of spheres with the
wall.
Two-body collisions near the advancing meniscus result in

an inward displacement of the individual spheres of the doublet greater
than _'that of isolatgd spheres.

" The pheriomena account for the gbserved accumulation and also
for a predicted size-rractionat:l_.oh in 's_u'spena:lona of rigid spheres
and emulsions. |




1062
INTRODUCTION

In studying the velocity profiles in concentrated suspensions

1)

of rigid spheres undergoing Poiseullle flow ‘ an increase in concen-

tration behind the advancing menlscus was observed (but not reported)
as the suspensions were pumped into the tube.

Concentration changes in suspensions flowing through tubes

have been observed by many workers in a number of systemsz_s) .

aqueous pulp-fiber suspensions Forgacs et _a._lz)

In
have shown, using a
vertically mounted rotating circular loop of glass tubing device half-
filled with the suspension, that a depletion of pulp fibres at the
receding and an accimnlation at the advancing meniscus occurred; the
phenomenon was attributed to the formation of a particle-free layer
as a result of migration from the tube wall of deformable pulp fibres.
In blood flowing through capillary tubes, a dilution of the red cells
in the tube was observed, the drop in concentration becoming more
pronounced as the tube radius decreased3 ~4) 3 moreover, it was pbserved
that the region behind an advancing meniscus showed a much stronger
red colour than the bulk of the suspension in the tube5 ) . Vejlenss )
has also shown that the first drop of blood from a finger tip puncture
contgiﬁed a relatively greater number of white corpscules than the
subsequent drops.

The reduction in concentration of a suspension in a tube and
the accumulation of particles near an advancing meniscus have been
explained®®) in terms of inward displacement of particles from the -
wall at the tube inlet and the near the meniscus,which causes them tfo
travel faster than the original streamline in which they entered the

tube.
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Recently Bhattacharji and Savicg) made a theoretical study
of the flow of a viscous liquid ahead an inviscid liquid piston in an
attempt to explain the concentration gradients observed in natural
formations of minerals. This theory is relevant to the present work
which was uhdertaken to study the nature and causes of concentration
changes in flowing dispersions. Starting with the flow of pure liquid,
velocity profiles and streamline patterns behind the advancing meniscus
were measured., The paths of single rigid spheres and two-body inter-
actions behind advancing liquid meniéci were studied, Concentration
measurements along the tube in dilute and concentrated suspensions
were made. Entrance effects were investigated, and, finally, some
experiments on particle fractionation in dilute emulsions and suspensions

were performed.

THEORETICAL PART

Consider the axi-symmefric flow of an incompressible viscous
fluild in a tube radius R with cyiindrical polar coordinates x, r having
an origin at the ?enter of the air-liquid meniscus (Fig. la). Far
behind the meniscus (which for simplicity is considered to be flat) the

velocity profile u*(a) is paraboiiclo)

wa) =23 (1 -a?) , 1)

where a = r/R and u the average fluid ﬁélocity given by

= Q :
u=— (2)
o omR

Q being the volumetric flow rate through the tube. The flux at « is
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o) = R2 f 2nou*(a)da 3)

The meniscus advances in the direction of positive x with
velocity u. To render the flows stationary we consider'the tube to
move with a velocity - u yielding a velocity distribution relative to
the mensicus u(a) = w*(a) - u which from (1) and (2) becomes

w(@) =3 (1 - 262) . (4)

Now consider a long fluid cylinder of radius r (Fig.li) whose base
(BB!) is on the meniscus and whose top AA' is remote from the meniscus.
The flux through AA' is given by

a(e) = @31 - o?) ’ (5)

whereas that through BB' is zero. 'Since no accumlation of fluid within
the cylinder is possible the liquid flows radially outwards from its
side as illustrated by the arrows in Fig. la. Thus the transition from
a parabolic to a uniform velocity distribntion must résult in a radial
flow behind the advancing meniscus; as may be seen from (5) the maximum
" q(a) (= Q/4) occurs at a = LNV/Z.

Bhattacharji and Savic9) have solved the Navier-Stokes equatiom
in the Stokes (creeping flow) regime assuming no slip at the fube wall
and that the viscous shear vanishes at the liquid surface x = 0, An
approiimate analytic solution, which is sufficient for our purposes,
is given by the Stokes stream function

¥ =& 0 - A1 - ep(Ved) (6)

where f = - x/R. As Bz»oo s (6) reduces to the stream function for
parabolic flow:
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r=%20-44. (7)

Equation (6), which is exact at high B, predicts that the streamlines
turn backwﬁrds near the advancing meniscus. The radial position o at
which a streamline goes through a maximum Bm is found by differentiating.
(6) partially with respect to o and equating to zero; it can themn be
shown that the loop occurs at constant am(= MN2).

The axial and radial velocities follow from the stream

function:
we) =2 =50 - 231 - ep(VesD], ()
and v(@) =2 2158 %0 - B)exp(-Veg? 9)

When the meniscus is advancing (B <0) the sign in (9) is +, the
radial flow is from the axis to the wall, and the reverse for a.}
receding meniscus (f>0). In both cases as f+o0o,v(a)->0 and .(8) reduces
to (4). Moreover, (8) predicts that u(l/\/i) = 0 for all values of B;
also by differentiating (9) partially with respect to a and equating
to zero, it can be readily shown that at ‘cqnstant B, v(a) 'goes
through a maximm at a = 1A4/3 for all values of .

In the experiments described later v(a) was measured, as a
matter of convenience, at Y = constant rather than at B = constant;

v(a) along a streamline may be calculated by combining (6) and (9)

to yield
2

The radial position of maximum v(a) is found by differentiating (10)
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with respect to a and equating to zero which gives
1/2
ary) - [Lr
' :
Equation (11) shows that, at a given Q, a(vm) is least when ¥=0
(streamline passing through the tube axis) and equal to t 1/\/3~a.nd

increases with increasing Y.

EXPERIMENTAL PART

Direct observations of particle movements flowing through
vertical tubes were made using the travelling microscope system
previously desc’r.d.bedl’lo) « Neutrally buoyant suspensions of screen-
fractionated sami)les of polystyrene: (PS) or polyvinyl acetate (PVA)
spheres of radius b = (35 £ 15) to (650 & 50)u. in a polyglycol oil
(Ucon o0il 50-HB-5100) containing tetrabromoethane of demsity p = 1.05
to 1.14 g.(zm."3 and viscosity 5, = 24.6 poises were employed.

Liquid velocity profiles and streamline patterns behind
the meniscus were measured by cine-photography (using a Paillard
Bolex 16 mm. reflex camera) of tiny 25y aluminum tracer particles
suspenfled in the liql;id. Near the meniscus the axlial and radial
velocities changed contimuously and the average values were measured.
The average axial velocity was determined b& counting the number of
frames between two positions of a tracer particle at a distance
x T ax from the meniscus (6x<0.03 cm.) and r ¥ Ar from the axis
(ar< 0,008 cm,); sindlarly the average radial velocity was evaluated

at r I ar(Ar<0.09 cm.).
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Two-body collisions were studled by locating two spheres
close together near the meniscus and in the median plane of the tube
normal to the viewing axis and photographing their interaction. The
variation of the azimuthal angle § of the line joining the sphere
centers with the Y-axis (Fig. la) as well as the radial positions of
each particle were measured on a projection table.

Convergent entrance effects at positions remote from the
meniscus were investigated in a very dilute suspension of PS spheres
(volume fraction ¢ <0,001) .whiéh flowed in a tube of radius Rl = 0.4 cm.
which converged smoothly over a length of 0.8 cm. to a tube R2 = 0.1 cm.,
thus simulating the conditions existing at the entrance of the tube
from the reservoir. The distance of the particle centers from the
wall was measured by means of a calibrated filar eyepiece.

In dilute suspensions, the increase in concentration near
the meniscus due to radial flow was determined by photographing the
suspension near the advancing meniscus,

Concentration gradients along the tube in concentrated
suspensions of PVA spheres, due both to entrance effects and radial
flow, were determined by flowing the sﬁspensions through an initially
empty tube R = 0.2 cm. and length L = 85 cm. Successive samples of
known volume between 0.2 to 2 cm.” expelled from the other end of the
tube were collected and ¢ for each was determined by weighing both
wet and dry.

All the experimehts were performed in a thermostated roam
maintained at 22 % 0.5°C,
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RESULTS

1. General observations
At the values of Q used in most of the experiments an

advancing (rising) meniscus was almost flat, slightly concave to the
air near the tube wall (Fig, 1b); when it receded at the same u the
shape was quite different (Fig. 1b).

As expected spheres approaching the advancing meniscus
moved radially from the axis tqwa.rds the wall. Upon reversing flow

~the radial movement became directed inwards; however, spheres

situated close to the wall were entrapped by the liquld left behind

the receding meniscus and remained at the tube wall, For this

reason it was easier to make quantitative measurements behind advancing
menisci.

A marked increase in concentration behind an advancing
meniscus occurred, with particles accumulating progressively as the
meniscus travelled along the tube. At higher cy the suspensions
exhibited complete plug flowl) over a distance |pl which gradually
increased with time.

2, Flow near a.n advancing meniscus

(a) Axial velocity
Figure 2 shows the measured axial velocity profiles of the

liguid with no particles present as a function of B; when |B| -t 0.75

the velocity distribution was parabolic. As the meniscus was approached
the profile deviated from (4), and as predicted by (8) u(a) was greater
than given by (4) when 1/V2<a<1 and less when O<a<lA/2., At |B| = 0.5
a central core of effectively zero velocity gradient developed around



the tube axis (Fig. 2) its width increasing towards the meniscus.

At B = O the velocity of the meniscus was constant across the tube up
to the wall, However, since there is no slip at the wall, there
should be a transition layer near the wall in which the velocity goes
from O to - u., In two carefully executed experiments the meniscus
velocity was about 2% higher than u calculated from (2), corresponding
to a calculated layer thickness of 2 x 103em. With the optical
equipment used the resolution was better than 10u and f.he accuracy of
Q was within 2%, It was concluded, therefore, that the thickness of
the layer was small ( <10u) and that for all practical purposes the
entire meniscus front travels at u* = u as illustrated in Fig. 2.

The curves (Fig. 2) intersect each other at a = l/\/E where u(a) = 0
in accord with (8).

The volume flow rates calculated from (3) by graphical
integration using the measured u®(a) and the limits of integration
from O to 1 were in good agreement with those obtained by weighing
the amount of liquid expelled from the tube in a measured time (Table I).

(b) Streamlines

The streamline pattern behind the advancing liquid surface is
illustrated in the upper part of Fig. 3. As expected from the velocity
profiles, circulation at high |B| occurred around o = 14/2, Although
the axial flow is effectively parabolic at g = - 0.75, Fig. 3 shows
that there is still some circulation at || >0.75.

The radial position o of the loop (indicated by the solid
circles in Fig. 3) increased from the value of 142 predicted by (6)

as the meniscus was approached; a more exact solution for Y which is
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valid for smaller |B|9) indicates that a_ increases w;i.th decreasing |B|'
in accord with the present observations. The results were extrapolated
to @ =1, B = O (dashed line, Fig, 3) since the streamline Y= O should
turn on thé'meniscus at the tube wall,
(¢) Radial velocity
Measured values of v(a) for various initial radial positions
a.l(<1/\/£) are shown plotted as a function of a in Fig. 4 and compared
with those calculated from (10). Although the measured and calculated
v(a) are of the same order of magnitude, however, in all cases
v(a) meas. > v(a) calec. The obser;vj;d a(v_ ) as well as the values of a
at which, for a given:"!, v(a) vanishes are in good agreement with the
theory.
3. Single spheres
(a) Menisc;zs effects
When a sphere, initially located at 01(< 1/\/-2_), approached
the advancing meniscus it was transported by the radial flow towards

the tube wall, The f;lnal 0.2(> 1/\/’2-) of the sphere center was smaller
than for the corresponding streamline by an amount which depended on
particle size (Fig. 5a). The displacement & = a.z(O) - a.z('f) s the | |
difference in a, from the corresponding value when 7 = b/R =0, is
shown plotted against ay in Fig. 5b. It increases with increasing 7
and decreasing a,, and is greatest (= 1) when a) = 0, and is zero at
a=1p2.

When o, < T, & = T because the particles cannot penetx;ate the
wall, A 4a>0 occurs at all o)< 1/\/5, although the magnitude diminishes
~ with decreasing %9 which suggest that a hydrodynamic rather than a

mechanical wall effect of the type proposed by Whitmoreé) operates; the
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spheres presumably interact with the free liquid surface and tube wall,
and this interaction results in a deflection o:t: sphere centers from
their original streamline, |
(b) Entrance effects
| A re-arrangement of the sphere centers was also observed in

the converging tube at positions remote from the meniscus (Table II).
" As the particles entered the smaller tube they were displaced inwards,
The magnitude Aot = a,l' - a.z' of this displacement between the large

and small tube increased with increasing a and b, In the case of a
streamline (i.e. T = 0) &' =a,' as may be seen by a.pplying (5) to the
smaller and larger tube respectively, and comparing values a so that

the gontinuity condition is satisfied., Thus, 4a' represents the dis-
placement, of a pa.rt.icle center from :l.té entering streamline. As may be
seen from Table II particles initially located close to the axis of the
large tube passed into the smaller tube almost unhindered; morevver,
their paths were reversible when the direction of flow was reverse&.

On the other ha.nd, the paths of spheres which were initially located
near the wall (a.l > 0.75) were irreversible; the outward displacement
occurring at the exit of the small tube was smaller than the corfesponding
inmvard movement when the particles entered the tube.

4e Drosbody collisions

When two spheres collided in the median plane of the tube near

the advancing meniscus, Gy for each individual sphere after separation
was often (but not always) smaller than the corresponding for non-
interacting particles at the same 7T and e In the first and second
columns of Table IIIthe radial positions of the two spheres before and
after their interactions are listed; in the third, a, for pairs of single
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non-interacting spheres (from Fig. 5a) of the same T and al are

tabulated. The fourth column shows the additional displacement Aaz

i.e. the differente between g, of each sphere of the doublet after

separation and the value for a non-interacting spheres. In most cases
Aaz .
magnitude of Aa2 deépended on the way that the spheres interacted;

was positive indicating an additional inward displacement. The

when the doublet did not rotate as it was transported by the radial
flow of the liquid (i.e. when @ = constant), then ., < 0,02, but when
it rotated the resulting values of ia, (for one or both spheres) were
appreciably greater.

A collision involving a rotation of the doublet near the
advancing meniscus is shown in Fig. 6; in Part (a) the angle @ is
plotted against time, the arrows indicating the angles ¢° and - ¢° at
which the spheres appeared to collide and sepai'ate unsymaetrically with
the angle of approach § o being mumerically less than the angle of
separation - ¢°ain contrast to collisions at high |ﬁ|n) » The variation
in a for each sphere of the doublet is plotted as a function of B in
Fig. 6b with &, and the corresponding Ax also shown.

There are two possible reasons for &, > 0: i) the doublet
has a higher effective 7 than a singlet and hence experiences a higher
& as would be expected from Fig. 5; and ii) because the angle of
approach is numerdically smaller than that of separation, the sphere
centers at the time of separation, are 16cated closer to the tube
axis. The data (Table III) suggest that the second effect may be the
more important since Aaz was greatly reduced when the doublet did not
rotate (i.e. f = constant).
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5. Suspensions of rigid spheres
The paths of sphere centers behind the advancing meniscus in

a dilute (¢ = 0.025) suspension of rigid spheres produced an irregular
pattern often cgffssing one ancther because of the change in i caused
by particle ;lnteractian. This is illustrated in the lower part of
Fig. 3.

The accumulation behind the menlscus may be defined as

e
A-_f.[e(,g) - o] g, (12)
o
where c(B) is the concentration at p and ¢ the concentration in the ‘
bulk of the suspension; (12) represents the net total increase in

volume of particles behind the advancing meniscus. In the experiments

A was determined approximately because ezma»m incthal walogdbyopiotile
as the suspension comes out of the tube makes. exact measurement difficult.
Assuming .plug flow, when c(B) is plotted against B, the area under the
curve lying above ¢ is a measure of the pa.rtiéle accumulation behind

the meniscus.

; The results are shown in Fig. 7 and Table IV, As may be seen _
the accumlation, after traversing a given length of the tube, increased
with increasing ¢ and 7 but remained unaffected by a temfold increase
in Q. The amount of suspension expelled fram the tube before c(a)'
reached the steady value c appeared to be independent of 7 but increased
with increasing c. At high ¢ and Q the leading edge of the suspension
became pointed and did not wet the tube wall and exhibited plﬁé flow.

The dependence on 7 and ¢ suggests that the accummlation at
the meniscus s due to particle-wall and particle-particle interactions.

Because of the camplex behaviour of particle aggregates it is difficult



114

to es_fl:ablish a model to explain the accumlation quantitatively.
However, »the results for singlets and doublets can provide a gqualitative
explanation. It was showm that Ax increases with increasing 7 so that
accumilation is more pronounced with increasing particle size. At high
¢, the effect is enhanced because of particle-particle :lnteractibns
which result in greater inward displacement.

The accumulation can be ca.usg__d by both convergi:ﬁ:—ontrmce
and meniscus effects, and in the eacperﬁents with concentrated suspensions
described above both effects were undoubtedly present. The following
experiments were performed to separate and study each effect independemtly.

(1) The reservoir was filled with a pure liquid (Silicone oil
50p. + Freon 112) immiscible with the suspension but of the same
viscosity (44.5 p.). When the surface of the pure liquid was about
1 cm. above the bottom of the tube (R = 0.2 cm.) a 10 cm. column of a
suspension ¢ = 0,18 was placed on its surface. The suspension, from
which the entrance effect had now been eliminated, was displaced by the
pure liquid and flowed for the same tube length (85 cm.) as in the
experiments of Fig., 7. The first 0.26 cm.” of the suspension expslled
from the tube (0<|B|< 10.4) were collected and ¢ determined and the
resuit compared with that obtained for the ¢ = 0,18 suspension of Fig. 7a
at the same range of |Bl. As may be seen fram Table V, which summarizes
the results, entrance effects account only for a 15% of the total '
accwmlation. _ |

(11) The increase 1n ¢ near the meniscus, in pésfmltions remote
from the entrance t9 the tube, was measured directly for two dilute
suspensions by counting the number of particles accumulated near the
meniscus. Both dynémic and static methods of particle counting were
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nsed. In the dynamic method the microscops moved at u to follow the
meniscus at a fixed distance p = -~ 1.5 where the velocity bmfile was
parabol.j!.c. The total mmber of particles N " which, during the time

of observation, crossed the plane af. B=« 1.5 towards the meniscus

(u'(a)> O) and N_ in the other direction were counted. In the static
method the mmber of particles N, contained in the volume xazl‘xux = . 1.535
at the begimning and at the end (Nz) of the experiment were counted.

Both methods yielded similar results (Table VI) for the accumlation near
the meniscus.

"Both sets of experiment suggest that the observed accummlation
near the advancing suspension-air interface is largely a meniscus effect
and to a minor extent only an entrance effect.

Since the displacement A increases with increasing 7 (Fig. 5b)
a sige separation should occur behind a meniscus, with larger particles
accwmlating faster at the meniscus. This was confimed by experiments
with both rigid spheres and emulsions.

(a) Dilute suspensions of rigid spheres

The results obtained with three binary suspensions of different
b;/b,, where the subscripts 1 and 2 refer to larger and smaller particles
respectively, are tabulated in Table VII, After the suspensions had
flowed in the tube for approximately 40 cm. the ratio n'l/n'2 of the
number of larger to smaller particles per cn? at the meniscus was
always greater than that in the bulk (n1/n2) of the suspension. The
rati? (n'l/n'z)/ (n1/n2) increased with increasing b]_/bz, and at a given

bl/bz' it decreased with decreasing b, and b,.
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(b) Dilute emmlsions
A similar phenomenon was observed in a coarse polydisperse

emmlsion (Fig. 8). The variation in the size distribution behind the
meniscus was determined by photographing the region near the meniscus
at various t:lm'o intervals. The proportion of larger drops behind the
advancing meniscus increased as the amulsion travelled in the tube;
this is illustreted in Fig. 8i where the relative frequence n,/n, n,
bmwemrormiaosumbiimmnmmm
"of particles counted, is plotted against b,. After the emlsion had
travelled sbout 60 cm. in the tube and before the meniscus reached the
_end of the tube, the flow was stopped and the size distribution at
various p was determined by photographing a small volume (= 1.5 x 10 %em.>)
of ihe emulsion. The maximum in the distribution curves shifted to
larger drops as the meniscus was approached; ‘The volume average particle
radius b Zn . 3 1/3

b= [—1-*-} )

n

decreased as |B| increased (Fig. 8b) reaching a constant value at about
B=~ 0,67 x 102. No coalescence of drops was observed during the

experiments,
DISCUSSION
1, Rigid spheres
Although radial flow of the liquid near the meniscus has been

mentioned by Whitmnre6

) as a possible factor to the particle accumlsation
behind it, it was implied that its comtribution is small compared to i

convergent entry effects. The experimental evidence presented above
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suggest that it is caused by the cambined effects of redial flow and
interactions of particles with one another and with the walls, and that
entrance effects, on the other hanﬁ, are negligible, The possible
reascns for this are discussed below.

(a) Entrance effects

The spheres are displaced imvards at the convergent entry of
6)

the tube because of their interaction with the and the radial

flow existing near the entrance as the parabolic velocity profile is
developed in the sghller tube’2), This imward radial displacement, it
has been argued, may be expected to result, on the average, in a greater
axial velocity of the particles requuve to their entering streamlines&e) -
This mechanism, however, neglects completely the relative particle-fluid
velocity resulting fram the wall. The slip velocity and the inward
displacement 4x work in opposite directlions, the former causing a
depletion and the latter an accumulation of particles behind the advancing
meniscus.

To estimate the effect of u'(a) on particle accumilation at
the meniscus, u'(a) must be known as a function of a. Figure 9 was
constructed from the theoretical calculations of Bremmer™’ for the
axial velocity of a sphere in a uniform flow near a single plane wall and
is accurate up to a = 0.997. Using this plot and (1), u*(a) and u'(a)
for the spheres of Table II were calculated. By comparing the éth and
9th columns of Table VIII it may be seen that only in one case (marked
with asterisk) the axial velocity of the sphere in the tube R, = 0.1 cm.
excoeeded the velocity of the streamline in which it entered the tube. This
lag velocity of the particles may be the reason why entrance effects were

found amall in ocur experiments.
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(b) Mean concentration

If entrance effects are small then the average concentration of
a suspension in a tube, under steady state conditions, would be approxi-
mately the same as in an infinitely large feeding reservoir. Experiments
to confirm thls have not yet been performed; to resolve this question
.further experimental study is required especially near T = 1 when the

‘behaviour would probably be very different.
A marked reduction in the tube concentration has been reported-

1

in experiments with blok'idB‘l')r and suspensions of rigid spheres6-7) .

However, red cells are deformed by the shearu’) and may migrate 1mtardsm’15 »16) .

On the other hand, the experinetrt.sn cited by Whitmoreé)

were performed
at particle Reynolds numbers ‘( An*(o)be/quRz) of the order of 10™2 where
the tubular pinch effect operates, and rigid particles migrate towards
an eccentric equilibrium redial positionl?). It was perhaps the radial
migration of particles and not the radial displacement st the comvergemt
entry that produced the observed reduction in the concentration o-f the
suspensions in the tube.
(c) Meniscus effects

The concentration of the suspension at a < 1/V2 reaching the
advancing meniscus may, (at any rate for mmall T's) be assumed to be
equal to the reservoir concentration c. The acoumulation at the meniscus
in a dilute suspension (i.e. neglecting particle-particle interactions)
due to radial flow of the liquid at the meniscus may now be calculated and
campared with the results of Table VI,

For simplicity we assume that the concentration at o> l/\/E is
uniform and equal to c'(>c) up to & = 1 - T when it drops to zero (solid
line, Fig. 9 insert). This is an approximation since it may be seen by
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examining Fig. 5a that, because Ax decreases with increasing @ the
concentration is maximum at a = 1 -~ 7 and decreases to ¢ at a = l/‘/i
(dashed line, Fig. 9 insert).

A material balance with respect to suspended phase per unit
length of the tube yields

o 8 [(n -b)? - %z]- -3“3-2- ) | (14)

" from which it follows that

nlw = ———1 f h‘r ’ (15)

wherenandn'mthembororparticlespercm.Batc<lﬁ/?za.nd

a> 2 respectively.
At |B|> 1.5 the positive flux of the particles is

12 .
;‘1- N, = sz n2mm ! (a)da , (16)
A \
and the négative flux - .
iy =g? - 1(a)da (7)
t - M/.zx\,zm .

Assuming moreover that u'(a) = u(a), (16),and (17) after substitution
from (15) become

¥, - B (18)
: 2
- -l (19)

N_=0whenl-7T=1A2. The net accumulation is
AN=N +N_ = “Q*'(T'-Lll’f) [(2 -1 - 1)2 - 1] . (20)

Values of N_ and N_ calculated fram (18) and (19) are listed
in Table VI. The measured and calculated N, are in good agreement.
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At a> J./S/i, and when c'isnot constant but decreases between a = 1-17)
and 1/\/5, N_ tends to 1ncr§ase numerically; the slip velocity of the
particles tend also to increase N . For these reasons N_ calc./N_meas, < 1
and the resulting values of AN are about twice those measured experimentslly.
(d) Binary systems
Applying (z))toadilutobimrysupemimdtrigidaphores
yields

, Ty 2 _
n, =n1[1+Qt(i—_—E)][(2- RICERMD -1]:1=1s.2 ()

from which it follows

' 3[1 aTy +Qt.‘![(2 Q- 1)2-1]][1 1.1]
n,' nz[l m + QLY [(z 1,)(1 - T,) -1]]1 mlj

Calculsted values of (n';/n';)/(n;/n,) from (22) are listed
in Table VII, and as may be seen :a.re greater than those observed. It

was shown earlier that for a monodisperse suspension AN calc. > Aﬁw.
Because ‘Tl > ‘1'2 the particles of species 1 lag the flow more than those
of 2 and consequently (AN,/&N,) .., < (8/8K) ;.

2. Bmlsions

It has been shownl®?15916) gnat. at positions remote from the
meniscus where the velocity is givem by (1), deformed fluid drops migrate
towards the tube axis due to the influence of the wall, Ths rate of
migration increases with increasing b; in the emulsion used the t.heox-y:"6 )

predicts that a drop by = 10”2, near the tube wall has a radial

velocity ~ dr/dt = 0.03 cn.aoc."l, while for b2 = 0,5 x 10'2cn. the
migretion velocity is only 0.002 ca.sec. L, Thus, n,/n, should vary

along the tube and be higher near the meniscus.
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An exact calculation of the variation of nl/n2 along the tube
in a flowing emulsion is complicated but an estimate of the relative
effects of radial migration of fluid drops at high |B| and of radial
flow at low |B| on particle acoumulation behind an advancing meniscus
may be obtalned as follows.

Consider a binary emulsion of by = 10 “cm. and b, = 0.5 x 10 2an.
under the conditiona defined :Ln Fig. 8; nl/n2 may be ebtained from the
initial d:l.stld.bn:bion curve of Fig. 8a. Since the emulsion is dilute
and particle-particle interactions are neglected, n'lln' o for the binary
system considered here, would be the same as for the polydisperse @&mlsion
of Fig. 8a, and thus may be obtained fram the ﬁ.nal distribution curve.
The values so obtained are listed in Table IX.

Consider next a binary suspension of rigid spheres of the
same radfus (L.e. by = 10 %am. and b, = 0.5 x 10™%am.); (n';/n',)/(n,/n,)
was evaluated from (22) and is given in Table IX. Coamparison between
(n'. /n'z)/ (nllnz) for drops and rigid spheres indicates ‘that the effect
ismydustotheradia.lnigntimofdmps This is in line with
the explanation of Forgacs gt al ) for the accummlation at the memiscus
observed with deformable pulp fibre suspensions.

Corresponding effects (particle depletion and sise separation)
may logically be expected in front of receding meniscl, and warrant
study.

It is concelvable that these interesting meniscus effects may
lead to useful techniques of phase separation and of particle fractiona-

tion.
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LIST OF SYMBOLS
net total increase in volume of suspended phase
behind the meniscus Eq.(12)
radius of rigld sphere and undeformed drop; mean value

volume fraction of the suspended phase;
at 1 -7T)>a> 1/J2 and at B

tube length

number of particles per cm.3 in the bulk of the suspeasion
and at the meniscus; at (1 - T)> a> 1/V2

number of particles contained in the volume uRzl x|
initially and at the end of the experiment

number of particles entering and leaving a cross-section
of the tube remote from the meniscus in time ¢ '

N++N_

flux at a with the tube fixed; with the tube moving
at velocity - u

volumetric flow rate through the tube

radial distance from the tube axis; difference in r
cylindrical polar coordinates

radius of tube

-time

streamline velocity at a with the tube fixed; with
the tube moving at velocity - u

average fluid velocity in the tube

translational velocity of a sphere whose ceater is at o
radial velocity of fluid

axial distance from the meniscus; differencqi.in x

r/R; maximumn a.of a-streamline

initial and final positions of a streamline and particle
center near the meniscus; at the tube inlet




a(v,)

M, Mot
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I
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radial position at which the radial velocity is greatest

difference in radial positioms of sphere center and
the reference streamline at the meniscus and tube inlet

respectively

difference in radial positions of the centers of
interacting and nom-interacting spheres

~ x/R; maximmm value for a streamline

b/R

viscosity medium; density

aximthal angle of the axis of the doublet
angles of colllision and separation of the doublet

Stokes stré_am function
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R=02em Q.  =0.17x 10%cn.3s0c. L
B 3 10° x Quh")
0 0.182
- 0.25 0.174
- 0.50 0.175
< - 0.75 0.178

Q
~cale,

Mean = 0,996
%“ao

a) Calculated from measured u* = u + u by graphical
integration of Equation (3).




TABLE II

Radial digﬁ.gcuﬁ of spheres in a convergence

Q= 0.711 x 10 %cm

03803 o-l

b Eabrame. sttacts () ~ ;) Bxit effects (By—Fy)
cm, R, = O.4 cm. R, = 0.1 cm. a) R, = 0.1 cm. R, = 0.4 cm. a)
(Bl - r)cm, @' (El2 - r)cm. @y bat (R2 - r)cm, a,! (l?._L - r)cm. @' bat
0.016 0.032 0.920 0.016 0.840 |0,080 0,016 0.840 0.040 Y 0,900 | = 0,060
0.016 0,047 | 0.883 | 0.016 | 0.840 |0.043 - - - - -
0.011 0,030 0.925 0.011 0.889 |0.036 0.011 0.889 0.037 0.910 | - 0.021
0.011 0.035 0,913 0.011 0.889 |0.024 - - o - -
0.013 0200 | 0.75 | 0.025 | 0.748 |0.002 0.025 | 0.748 | 0.00 | 0.750 |- 0.002
0,017 0142 0.645 0.036 0.640 o.oos- 0.036 0.640 0.142 0.61.5 - 0.005
0.0L4 0.28, | 0.2%0 | 0.072 | o0.282 |0.008 - | - - - | -

a) The positive and negative signs indicate an inward and outward displacement respectively.

v A
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R = 0.4 cm. 7 = 0.128 < 0,003 Q = 3.56 x 10 %cm sec. ™t
Doublet Singlet Aa2
“ %2 ay
Sphere 1 Sphere 2| Sphere 1 Sphere 2 Spk*ere 1 Sphere 2 | Sphere 1 Sphere 2
0,335  0.284 | 0.845  0.837 0,833  0.845 | - 0,012 - 0,008
0,267 0196 | 0.837  0.852 0,748  0.860 0,011 0,008
0.5 = O.47h | 0.749  0.807 0.780 0,79 0.031 - 0.013
0.028%  0,017* | 0.849  0.849 0,870 0,870 0.021 0.0
0.485%  O.4k3%.| 0715 0,812 0.790 0,803 0.075 - 0.007
0.466  0.398 | 0772  0.823 0,797  0.820 04025 - 0,003
0.517%  0.409% | 0,706 0,755 0.730  0.814 0,024  0.059
0.440% - 0.358% | 0,687  0.817 0.805  0.827 0.118  0.010
0.582%  0.494% | 0.720  0.744 0,757  0.786 0.037  0.042
o.azi_ 0.372 | 0.809  0.812 | 0.810 0.8 0.001 - 0.012
0.404  ©O.4lh | 0.832  0.795 0.815  0.812 0,017  0.017
0.233%  0,188% | 0.809 0.789 | 0.853  _0.860 04044 0.061

The asterisks indicate i'otating doublets.




PVA spheres R = 0.2 cme L =285 cm.
102 xQ l()3 x A *)

° m.%sec.'l ! w3
0,035 | 1.78 0.078 | 0.48
010 | 1.78 0.078 | 1.0
018 | 1.78 0.078 | 3.2
0.32 1.78 0,078 | 7.7
0.32. | 0.356 0.078 | 7.7
0,32 | 3.56 0,078 | 7.7
0.32 | 0.356 0.8 | 2.1

a) By graphical integration of Equation (12)..
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c(B) c(p) - ¢ Remarks
0.52 a) : 0.34 With convergent entrance effects
0.47 0.29 Without convergent entrance effects

a) From Fig. 7a for [B| < 10.4.



TABLE VI

Particle accumulation near the menigcns

Q=0.178 x 102 sec.™> R=0.2m. T=0.075 ¢=0.025
. ueasulT ) ) calculatd x+calc' K calc.
a b ¢ N N AN . —
secs, - ; + - N meas. N meas,
N, | N | Mi=N+K N N | N-8N 18 g @8 Bg.(9) | Eq.(20) | -
131 | 110 | - 94 16 65 | 80 15 66 102 72 30 0.93 0.77
160 |12 | - 99 22 7% | 93 19 66 12, 87 37 1.02 0.88

a) Dynamic measurement .
b) Static measurement.

ec) Fle*-}-cJﬂ

4P

using ¢ = 0.025, and |B| = 1.5.

oct



TABLE VII

Particle fractionation be he meniscus bina _systems of id spheres
R=0. cm. Q=0.U2 cm. sec.™ L=40cm. Q=20 cn.”
10% x ¢ | 10° x b 10° xc 102 xb b,/b /n t/n.' | (n,'/n,')/(n,/n.)
1 1 2 2| P1/P2| M8y | M/, g /0y )i/,
cm. cm, Meas. Eq. (22)
0.18 2.2 0.030 0.7 3.1 0.19 0.21 1.1 l..5
2.7 6.5 0.032 0.7 9.3 0.11 0.24 2.2 2.7
16.7 6.5 1.52 2.2 3.0 0.43 0.65 1.5 1.8




Q=0.71 x 10'2m.39w.-l unz/nal = 16
BIBOQ‘lw. 323001m0
2 a b) 2 a) a b)
o 10° x #(“l) “'(“1) 10° x u'(al) a, 102 x u*(u.l) 10° x n*(u.zg n'(az) 10° x n'(az)
cm.sec. L w{ “25 cm, sec. ™t m.,sec.‘l cm.sec. L n*zazs am.sec. L
0.920 0.423 0.715 0.303 0.840 , 6.78 13.2 0.815 6.50
0.883 0.622 0.772 0.481 0.840 9.96 13.2 0.815 |  6.50
0.925 |  0.396 0.712 0.282 0.889 | 6.34 9.52 0.760 7.2#
0.913 O.466 0.665 0.310 0.889 747 9.52 0.760 7.2
0.750 1.2, 0.877 1.19 0.748 19.8 19.9 0.877 17.5
0.&..5 1065 0.922 1052 00“0 %oh 260-7 00925 2‘07
0.290 2.59 0.99 2.56 0,282 Ll 1.6 0.99 hl.2
q.) From (1).

b) From Fig. 9.

O
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TABLE IX
Effect of radial migration of fluid

drops on fractionation of a dilute emulsion at the meniscus

R=0.075 cm.  Qt = 0.53 cm.’

Fluid Drops -Rigid Spheres
' ! 1 lC)
J.ozm x by mim x by nl/g; n! l/nt'))z x—l—n—ié-:;z 10(2=m x by 1.0":m x b, E"—i;-z_zg
1 0.5 1 2.7 || 27 1 0.5 1.12

a) From the initial distribution curve of Fig. 8a.
b) From the final distribution curve of Fig. 8a.
¢) From (22).
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HITIINIIIIAIIIINIIAIIIIIITINAIIRIIIINRIIIS)

(a) Flow behind an advancing meniscus which is rendered
stationary by moving the tube with a velocity - uU. The
azimuthal angle ¥ of a doublet of spheres is also shown
on the left. '

(b) Tracings from photographs of an advancing and a receding
meniscus in a tube R = 0,2 cm. at Q = 1,78 x 10~*cmd sec-!?.
The path of a sphere center behind the advancing meniscus is
also shown.
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Figure 2 Dimensionless plots of axial velocity profiles of the pure
liquid behind the advancing meniscus; R = 0.2 cm. and
Q= 1.78 x 10~ cm.? sec.”” and various values of B. The
profile becomes parabolic at g = -~ 0.75, -

¢
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JUNEY Y
e ==y esemd T ‘2-

Figure 3 Flow behind the advancing meniscus in a tube R = 0.2 enm.
at Q = 1,78 x 10%cm.? sec™?,

The upper part shows the streamline pattern behind the
advancing meniscus measured with aluminum tracer particles
(T < 0.003); the closed circles indicate the point at which
the streamlines loop backwards.

The lower part shows the loci of sphere centers for ¢ = 0,025
and 7.= 0,075. Because of the difference in o between

interacting and non-interacting particles the paths cross
one another. '
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Figure 4 Comparison of measured (broken lines) and calculated (solid
lines) from (10) radial velocities of the liquid behind the
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advancing meniscus in a tube R = 0.2 cm. and Q = 1.78 x 10°® em? sec.?

at different a,. The values of ¥ and a(v,) caloulated from (7)
80 shown. '

and (11)

are
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-0

0-78
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o
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0 0-28 0:50 0-78
a
025 ~ b
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q
-0
0
Figure 5 Radial displacement of isolated rigid spheres due to radial

flow near the adva.ncing meniscus in a tube R = 0.4 cm. at
Q= 3.56 x 10"%*cm.? sec”!.

(a) Dimensionless plot showing the effect on a, of T and a,.
Curve 1: T < 0.,003; curve 2: T = 0,038; curve 3: T = 0,130
and curve 4: T = 0,213, The relative sizes of the spheres are
shown in the insert. .

(b) Dimensionless plot showing the displacement of spheres
from their entering streamlines near the meniscus as a function
of &,. The curves were drawn from Part (a) employ:mg the
relation & = a, (o) - a, (7).
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Two-body collisions of rigid spheres near the advancing meniscus.
R=0.3 emy, Q=1.78 x 10"*cm3'sec™!, b, = 0,0455 cm. and
b, = 0.0470.

(a) Variation of angle @ with time. The arrows indicate the
angles of collision @, and separation - f,; the configurations
of the doublet at collision and separation are also shown.

(b) Dimensionless plot of the paths of particle centers. The
numbers in the curves correspond to spheres 1 and 2 of Part (a);
the broken lines Join the particle centers at a given time and
because a and  are drawn to the same scale their angle with
the Y-axis is the angle #. The relative size of the spheres,
and the values of 4a, for each sphere of the doublet after
separation as well as w0 are shown. In this doublet the two
centers were not both in the plane of the drawing.
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Figure 2 Particle accumulation behind the advancing meniscus in
suspensions of PVA spheres. R = 0.2 cm. L =85 cm,

(a) Semi-logarithmic plot show.l.ng the effect of concentration;
T=0,078 and Q = 1.78 x 10"*cm.? sec?,

. (b) Effect of particle size; Q = 0,356 x 107* cm,’ sec™?,
(c) Effect of flow rate; T = 0,078.
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Figure 8 Particle fractionation in a ¢ = 0,01 emulsion of 60% Ucon oil
1715 + 40% Carbon tetrachloride (by volume) in 98% glycerol
in water solution flowing in a tube R = 0,075 cm. at
Q=4 x 103 cm,3 sec™? .

(a) Plot of relative frequency against drop radius near the
meniscus initially (open circles) and after the emulsion
travelled 30 cm. in the tube (closed circles).

(b) Volume average particle diameter vs. distance from the
meniscus after the emulsion travelled approx. 60 cm. in the tube.
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Figure 9 Dimensionless plot showing the effect of the wall proximity
on the axial velocity of a sphere!?), In the insert the
assuned distribution of particle centers (solid line) used
to calculate the accumulation behind the meniscus is shown;
the dashed line is probably a better approximation.



PART V

PARTICLE BEHAVIOUR IN VISCOELASTIC FLUIDS

ABSTRACT

The behaviour of rigid and deformable particles suspended in
viscoelastic fluids undergoing slow Couette and Poiseuille flows was
studied experimentally.

In tube flow the particles migrated from the wall to a
limiting radial position at which the velocity gradient was effectively
zero; in Couette flow between concentric rotating cylinders migration
occurred towards the outer cylinder wall.

The rotations of rigid rods and discs were similar to those
in newtonian liquids, except for a steady drift in orbit constant to
asymptotic values which in newtonian liquids correspond to minimum
energy dissipation.

Two-body collisions of rigid uniform spheres were unsymmetrical
and irreversible. | ;-

The deformation and burst of newtonian liquid drops were as in
newtonian suspending liquids of comparable suspending phase viscosity,

except for the alignment angle of the drop at zero deformation.
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. INTRODUCTION

Previous publications from this laboratoryl'7) have dealt with
the tr#nslat.ion, rotation and interactions of small rigid and deformable
particles suspended in newtonian liquids undergoing laminar viscous flow

" in Couette and Poiseuille flows. .

This part of the thesis represents an extension of the earlier
studies to viscoelastic suspending fluids in which normal stress effects
may be expected to influence the behaviour of the suspended particles.

A preliminary experimental investigation is described of the radial
migration of rigid particles across the planes of shear, the rotation of
rigid cylinders, two-body interactions of rigid spheres and the deforma-
tion of newtonian liquid drops. Comparisons are made with the corres-
ponding phenomena in newtonian liquids.

EXPERTMENTAL PART

The experimental methods of producing Couette flow between
counter rotating cflindors and Poiseuille flow in tubes have been
described previouslys). The experimenta were performed in a thermostated
room maintained at 22 : 0.5°C. Polyisobutylene (PIB) in decahydronaphtha-
lene (Decalin) solutions of weight fractions c p from 0.01 to 0.063 were
used in the tube experiments. Such solutions are viscoelastic and have
been well characterized rheologically’); the density p varied from
0.8875 to 0.8908 g.cm. -3 and the refractive index from 1.4775 to 1.4793.

The experiments in Couette flow were carried out using a

. e, = 0.04 polyacrylmid§ (PAA) in water solution (p = 1.002.g.cm.-3 ) as a
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viscoelastic suspending phase. To avoid end effectsl)

a low viscosity
50:50 mixture of carbon tetrachloride and 10p. silicone oil was used as
bottom layer.

Both the PIB and PAA solutions were non-newtonian, the apparent
viscosity 1, when measured in a rotational viscometer (Epprecht Rheomat 15)
decreasing with increasing the rate of shear G (Fig. 1).

In most of the Couette experiments (except those on radial
migration) the particles were rendered sta.tiona.ryl) by adjusting the
angular speeds Ql and Q, of the counter-rotating cylinder walls, and
observed through a microscope directed along the Z-axis of the field (Fig. 2a).
In the tube, observations were made in the median plane MM' normal to the
viewing axis, i.e. along the Z-axis of the field of motion defined in Fig. 2b.

The systems studied and their relevant proper*bies are listed in
Table I. System 1 was used to measure the velocity profiles, and 2 to 4
radial migration in tube flow. The velocity profiles were determined by
timing the particles between two positions of the observation microscope.
The distance along the tube was computed from the readings of a revolution
counter, while the distance from the tube wall was measured by means of a
calibrated micrometer eyepiece. System 7 was used to study radial migration
in Couette flow. The distance of the sphere center from the imner cylinder
wall was measured with the aid of a calibrated dial gauge coupled to the
microscope.

The rotations and drift in the orbit of rigid cylindrical
particles were studied in Systems 4, 5, 6, 8 and 9. The particles were
photographed through the microscope by means of a cine camera (Paillard
Bolex 16 mm. reflex camera) alignd) with the wall of the apparatus, and the
films analysed by projecting them oﬁto a drafting table. The azimuthal

angle @ of the axis of revolution (Fig. 2) was measured directly from the
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films. The colatitudinal angle © was computed with the aid of the
following relations:
rods at(f) =asine; - (1)
discs bt(%) =b cos € , (2)
where 2a, 2b are the length of the axis of revolution and equatorial
diameter respectively and 2at(#), 2b'(#) their projected lengths on the
XY plane at §.

Two body collisions between rigid spheres were studied in
System 7. The paths of approach and recession were determined by measuring
the distances Ax and Ay of a sphere center from the mid-point of the line
joining the centers of the two interacting spheres. The angles of collision
were measured by the method of Allan and Mhs;nB) i.e. assuming rectilinear
approach and recession.

Liquid ;irops (Systems 10 to 14) were formed from a stainless
steel hypodermic needle tip connected to a 2 cm.> syringe. The tip was
immersed under the suspending liquid surface and the drops released by
initiating the flow at the desired moment, s; that their size could be
varied; the radius b of the undeformed drop was determined from photo-~
graphs taken under no flow conditions. The orientation and deformation
of liquid drops were investigated by photographing the deformed drop.

The deformation D defined as'®)
p=yB (3)

and the aligmment angle ¢m were measured; L and B are the length and

breadth of the elliptical equator of the drop (Fig. 2¢).
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1. Poiseuille Flow
(a) General Observations

When cp< 0.04 the polymer solutions showed newtonian behaviour
at the shear rates existing in the tube and no radial migration of rigid
particles was observed over prolonged periods of flow (2 to 3 hrs.); when
°p > 0,04, they migrated away from the wall.

The rotation about the Z-axis of rods and discs in solutions
of cp > 0.04 were found to be in partial agreement with Jeffery! 815 )
equations for the rotation of a sp}_leroid suspended in a newtonian liguid

undergoing plane Couette flow of gradient G:

__ G 2 2, 2
%%_ (re2+l) (r,"cosd + sin’p) , (%)
Gr 2 -1
g_$.=-—-‘:°—2———zsin2¢sm29, (5)
b(r = +1)

where 0, # are the spherical polar coordinates of the axis of revolution
(Fig. 2a) and r_ the equivalent ellipsoidal axis ratio”). It was
observed that rods and discs followed (4), but not (5); instead, as
discussed below, they showed a continuous drift in orbit constant to
limiting values.

(v) Velocity profiles

The velécity distribution of a newtonian liquid flowing in a

straight circular tube is parabolic »8) , the streamline velicity u(r) at

radial distance r from the tube axis being
2

kR 2
W) == -5, )
[+]




148

where R is the tube radius, k = hQ/nRoh and Q the volumetric flow rate;
the rotation of the field at r is
wlr) =-=, (7

When ¢ p < 0,04 it was found that the relative velocity profile determined
by measuring the translational velocity u'(r) and the angular velocity
o' (r) of small Eccospheres at several values of Q followed (6) and (7)
(Fig, 3). This is to be expected since the polymer solutions behave as
newtonian liquids, their apparent viscosity being constant over the range
of G employed (Fig. 1). When °p > 0.05, deviations from the parabolic
distributions became apparent and the profile was blunted near the central
region of the tube (Fig. 4).
(c) Spheres : r migration

At cp about 0.05, rigid spheres migrated inwards to a radial
position at which the velocity profile was flat (Fig. 4a). The rate of
migration increased with increasing particle radius b and radial distance |
from the tube axis; spheres initially located in the flat portion of the
velocity profile neither rotated nor migrated radially (Fig. 4a).

The observed radial migration mey arise from the combined action
of normal stresses and velocity gradiemt. In PIB solutions the normal

,17)

stresses increase with r and consequently the pressure exerted on

the sphere surface rron the wall side may be greater than from the axis

éide, which can concelvably yield a net force pushing the sphere towards

the tube center. The normal stresses depend only on the rate of shearll) s

and when G = 0 the force would be expected to vanish. This is probably

why the sphere stopped migrating inwards where the velocity profile became

12

effectively flat. Brodnyan et al ) on the other hand have shown that at




149

low shear rates, where the viscosity is independent of G, the normal
atresses are not observable. This may be the reason that no measurable
radial migration was found in solutions of low cp; it is conceivable
that it would have been observed by greatly increasing Q.

When the concentration of spheres was increases, a marked
dilution occurred at the wall because of radial migration. In contrast
.to the particle-free zone formed near the wall in suspensions of spheres

18)

in newtonian fluids at high Reynolds numbers™ ’, the peripheral layer in .

viscoelastic liquids did not become particle-free but merely diluted.

This is illustrated by photographs (Fig. 5a) of a suspension of polyvinyl
acetate spheres of weight fraction ¢ = 0,125; as may be seen after a
period of flow the ‘particles formed a central core consisting of aggregates,
while the region near the tube wall contained only isolated particles.
The layer thickness & was defined as the distance from the wall in which
only isolated spheres were present; since it was not constant along the
tube the mean 5 was evaluated from the photographs (inpert in Fig. 5b);
8 increased slowly with time and approximately 2 hrs. of flow were required
before g/Ro (Fig. 5b) reached an equi:iibriwn value goo/Ro and which
decreased with increasing ¢ (Fig. 5¢).
(d) Rods and discs : radial migration |
Like spheres rigid cylinders rotated and migrated towards the
tube axis until they reached the flat portion of the velocity profile'
after which rotation and radial migration ceased (Fig. 4b). At the same
time, they drifted to limiting rotational orbits which in newtonian fluids
in Couette flow correspond to the minimum energy dissipationls) .
Period of r_o_g- ation
' Integration of (4) yields
tan § = r, tan (2_¥b_) ’ (8)
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where T is the period of rotation given by (

T='2"§T(re+i+e)c V (9)

G was evaluated from the experimentally determined velocity profile with
an accuracy of better than = 0.01. As found in newtonian l;i:quidsl"s)
the periods of rotation were less than those predicted by (9) when the
actual axis ratio rp = a/b of the cylinders was used. Following earlier
pra.ctice” » the equivalent axis ratio r  was evaluated from (9) using the
experimental value of TG. For the rod and disc shown in Fig. 6 the values
of r, calculated from (9) were in reasonably good agreement (within &%)
with those obtained for similar particles in newbonisn liquids®’:?),
Variation of

Fig. 6a shows the variation in @ for a rigid rod and disc
plotted according to (8); the solid lines were calculated from (8) using
the measured Ty and as may be seen the agreement is good. Radial
migration over a single rotation was effectively zero.

Drift in the orbit
The integrated form of (2) after rearranging the terms is

cr ezcotzo =1+ (rez2 -1) coaz¢ (10)

where C is the orbit constant which can vary between O and ® depending
on the initial orientation. It has been found experimentally that in
newtonlian liquids rigid cylinders maintain a constant C over more than a
hundred particle ro*t.a.'c.:t.ons5 ’19); moreover, it has been ahownle) that the
variation of cot?® with 0032¢ follows (10). |

In non-Newtonian 1iquids Saffman’®) has shown theoretically
that spheroidal particles should assume preferred orbits which are inde-
pendent of the initial C. Assuming that the liquid deviates slightly from
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e .

newtonian behaviour, and neglecting the fluid inertia, the rate of

change of C with time 1316)
. 2 ;
1 a_%% (11)

cglc7r35 * dt &

where a, is a phenomenological coefficient which measures the non-

newtonian nature of the fluid, and g(C/r.e) a function which depends on

the particle shape and the suspending fluid; (11) does not predict in
which direction C changes. Subsequent experiments by Saffman in Couette
flow indicated that prolate spheroids (and rods) drift towards C = 0

their axes of revolution being parallel to the Z-axis, and oblate spheroids
(and discs) towards C = o the axis rotating in the XY plane (Fig. 7a); in
these orbits rods exhibit a steady spin, whilst discs .rotate with an
angular velocity which (from (4)) is greatest at # = n/2 and least at
g=o0.

Analogous behaviour was found in the present experiments,

i.e. C evaluated from (10) using the measured © and r o» increased with
time for discs and decreased for rods. This is illustrated in Fig. 7b
and 7c¢ by plotting C/(1 + C)} as a function of time; since this fraction
varies from O to 1 as C changes from O to ®, this is a convenient way of
including C = ooin the plot.

The cyii.ndrical particles did not reach their corresponding
limiting orbit values until they were near the tube axis (Fig. 7c).
Initially C changed rapidly over an interval of negligible radial migration
to a value which depended on r/Ro and which was smaller for rods and larger
for discs the farther the particle was initially located from the wa.'.L‘l.
(Fig. 7b). This phenomenon was not observed in Couette flow and was
probably due to the influence of the tube wall.
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As a result of the drift in C the variation of 6 with § did
not follow (10) as may be seen from Fig. 6b where cot?0 has been plotted
against cosz¢ for 1/4 of particle rotation. The solid lines were calculated
from (10) using the experimental r, and C, the latter evaluated at g =0,
aﬁd assuming newtonian behaviour (i.e. C = constant). As expected, the
measured cot26 deviated from those calculated from (10) towards higher
values for rods (limiting C =0, cot € = o0) and smaller for discs
(Limiting C = @, cot 8 = 0),
2. Couette Flow

(a) Radial migration |

In the Couette apparatus rigid spheres migrated towards the
outer cylinder. This is shown in Fig. 8 where the radial distance of the
sphere center from the inner cylinder is plotted in dimensionless form

against time, R1 and R, denoting the radii of the inner and outer cylinders

2
and R the distance of the particle center from the axis of rotation of the
concentric cylinders.

The direction of migration was independent of the sense of
rotation (Fig. 8) and whether the inner or outer cylinder was rotating,
although the rate of migration (for the same angular velocity of the
cylinder wall) was greater when the inner cylinder was moving (Fig. 8
curves 2 and 3). The rate of migration increased with increasing particle
radius b (Fig. 8 curves 1 and 4) and increasing the apparent velocity
gradient (Fig. 8 curves 1 and 2); it also decreased with increasing R.

As in tube flow, the observed migration may arise from the
combined action of normél stress and G which are both greatest at the
inner and lgast at the outer cylinder wall. For the set of cylinders

used G(Rl)/G(Rz) = 1.657) (assuming newtonian behaviour) and consequently
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G is higher on the one side of the sphere (that facing the inner wall)
than on the other; the elastic suspending medium is under t..ension
(strangulation) as a result of straining and this may yield a net force
pushing the particle towards the outer cylinder.
(b) Two-body collisions of d _spheres

Interactions between two rigid uniform spheres in viscoelastic
fluids were found to be unsymmetrical and irreversible (Fig. 9, Table III).
The paths of approach and recession were curvilinear (Fig. 9), and upon
coming into apparent contact the spheres rotated together as was previously
found for spheres in newtonian fluidsl’ 6). The rectilinear amgle3 ) of
approach l¢a‘-| was greater than the angle of recession | ¢r| ; upon reversing
the direction of rotation of the field the path was retraced until re-
collision and | ¢; I=18.! but |#2 (< (]| (Fig. 9 and Table II). Each
time the spheres were brought into contact by reversing the flow the y
distance between their centers gradually increased (| ¢;_ | < ¢a\) until
finally they did not collide.

This doublet behaviour is different from that in newtonian |
liquids. With rigid spheresl’é) the collisions were symmetrical the paths
of recession being mirror images of the paths of approach. With fluid
drc:»ps3 »6) s although the collisions were unsymmetrical, resulting also in
a éaparat.ion of colliding drops after repeated collisions, | ¢a| was always
greater than | ¢r [

| The observed behaviour of cokliding .rigi_d:'.spheres in viscoelastic
fluids is probably due to the anisotropic nature of the suspending phase.
It is likely that the force generated by the suspending fluid along the
doublet a.xiu3 ) s which is compression in the quadrant of approach and tension
in that of recession, is not symmetric around § = O, Moreover, it would
appear that by reversing the field rotation, not only the sign of this
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force is reversed but its magnitude is altered as well; the latter might
have been due to an elastic recovery effect, during the brief period when
the apparatus was stopped before reversing flow.
(c) Drift in orbit of rods and discs
The behaviour of rigid éylindrical particles was similar to
that in Poiseuille flow. The variation of 6 with @ did not follow (10),
and C drifted towards its asymptotic values of C = 0 for rods and C = o
for discs as may be seen from Fig. 10.
(d) Deformation of liquid drops
In the systems studied the modes of drop deformation were
similar to those observed in newtonian ligquids of comparable suspending

2) assumed a spheroidal

phase viscosity. Drops possessing class A deformation
shape, D and ¢m increasing with increasing the speed of rotation (Fig. 1la).
At sufficiently high speeds the ends of the drop became pointed and frag-
ments of liquid were released (Fig. 1la, Part 5). With Pale 4 as suspending
phase (class B-2 deformationz)), even at very low G, the drop extended into
a long cylindrical thread oriented along the X-axis which upon stopping
the apparatus disintegrated in a large number of tiny drops (Fig. 1lla, Part 3)
by growth of Rayleigh capillary waveszo) .

The deformation D increased with increasing the speed of rotation
of the cylinders and drop radius (Fig. 11b). The angle ¢m also increased
with increasing the speed of rotation towards §_ = /2. CertZ) has shown

theoretically that in newtonian liquids the alignment ¢m is given by

g

m

=E+(1+-§-B)D, (12)

where p is the ratio of suspended to suspending phase viscosity; whem D = O,
¢m = n/L. The validity of (12) has been verified experimentallyz) . In
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viscoelastic fluids the major axis of the ellipsoid is oriented closer

to the lines of flow’) and consequently when D = O, g_>n/h. This is
shown in Fig. llc where the results for the Systems having class 4
deformation are plotted according to (12). The data are weil correlated
on a single line because of the high viscosity of the suspending solution
at the low G used in the experiments ( < 0.5 sec. ™t assuming newtonian
behaviour), which resulted in values of p very close to zero for all the
Systems studied. The straight line calculated by the‘least square method
has an intercept 61°.

SUMMARY

The motions of single rigid spheres, rods and discs, and
newtonian liquid drops suspended in viscoelastic fluids undergoing slow
Couette and Poiseuille flows have been studied experimentally. The
results were compared with similar observations in newtonian suspending
medii, and the difference in the behaviour explained on the basis of
normal stress effects.

It was shown that rigid particles migrated across the planes of
shear and in the direction of diminishing G in both Couette and Poiseuille
flows. The variations of angle @ with time of rigid rods and discs were
in good agreement with the theory of Jeffery, provided that the experimental
G and the equivalent ellipsoidal axis ratio r, were used, but the particles
attained limiting rotational orbit constants as predicted by Saffman. Two-
body interactions of rigid uniform spheres were unsymmetrical and irrever-
sible in contrast to the symmétry found in newtonian suspending media. The
deformation and burst of liquid newtonian drops were similar to those
observed previously in newtoniaﬁ suspending fluids of comparable suspending
phase viscosity, except for the alignment angle of the drops at zero deformation.
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LIST OF SYMBOLS

= gemi-axis of revolution of rigid cylinder; projection
on the XY plane at @.

= pradius of rigid sphere, undeformed drop and semi-axis
of the equatorial diameter of rigid cylinder; projection
on the XY plane at @

= minor axis of a deformed liquid drop

= weight fraction of suspension; weight fraction of polymer
in suspending solution

orbit constant

= Taylor's deformation parameter = (L - B)/(L + B)

velocity gradient; at r in Polseuille flow
= 4o/
°
= major axis of a deformed liquid drop
= viscoslity ratio of the suspended to suspending phase
= volumetric flow rate through tube
= radial distance from the tube axis; difference in r
= a/'b
= equivalent ellipsoidal axis ratio
= radial distance of the particle center from the axis of
rotation in Couette flow; radius of inner, -and ocuter
cylinder of Couette apparatus
= {tube radius

= time; period of rotation of particle
= streamline velocity, particle translational velocity at r

cylindrical coordinates -

Cartesian polar coordinates

distances along the X and Y axes of a sphere center
from the mid-point of the doublet axis

= phenomenological coefficient Eq. (11)
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= thickness of the reduced particle concentration la,yer,
and its equilibrium value; mean values

i

apparent viscosity of suspending phase, viscosity of
suspended phase

= angle of axis of revolution with the Z-axis
= density

= azimuthal angle of axis of revolution; orientation of
the major axis of the deformed drop

= rectilinear angles of approach and recession of collision
doublet of rigid spheres

= potation of field and angular velocity of sphere at r

= angular velocities of inner and outer cylinder of Couette
apparatus
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TABLE I

Description of Systems

Temperature 22°C

] R
Suspending : Axis ratio ' Deformation
System phase Suspended phase b cm. (a/b) poises class
1 PIB b) Eccospheresc) < 0.006
;2 Polymethylmetha- [0.008 - 0,011
crylate spheres
3 Polyvinyl acetate 0.042
: , spheres -
| Polyvinyl acetate 0.097 - 0,165
discs
5 metal coated Poly- 0.2 - 0,32
styrene discs
1 6 metal coated nylon 12.2 - 12.4
g rods
L7 PAAd) Polystyrene - }0.0lh - 0.065 |
spheres
8 Polystyrene discs 0.17
9 metal coated 10
nylon rods
10 Silicone oil ®  [0.085 - 0.0965 10 A
L Silicone oil ® |0.062 - 0.177 0.5 A
12 dibutylphthalate 0,0707 0.2 A
13 Ucon o1l 1B-1715%(0.0315 - 0.074 10 A
14 Pale 4 & - 60 B -2
a) Viscosity of the suspended phase
b) Vistahex 1-100 (Enjay Chemical Cos)
¢) Hollow glass spheres (Fmerson and Cuming, -Canton, Mass.)
d) Cyanamer P-250 (American Cyanamid Co., Wayne, N.J.)
. e) Dow Corning Silicone fluid (Series No. 510)
f) Union Carbide polyglycol oil

Oxidized castor oil (Baker Castor Oil Co,, N,Y.)

|
|
!
i
\
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Two- co ons in Coustte flow

0= xn/2
SR ke, ;e
Clockwise ‘Counter Clockwise
Collision |
doublet I¢a| lprl |¢'a| !¢'r|
degrees degrees degrees degrees
1l 59 32 32 39
2 50 33 33 35
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M Suni-logarithmic plot of the apparent viscosity or solutions
of PIB in Decalin (solid lines) and PAA in water (dashed line)
plotted as a function of the shear rate at various concentra-
tions of polymer. The arrow indicates the maximum G at the
tube wall at the flow rates used in most experiments assuming
newtonian behaviour. ,
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Figure 2 (a) Spherical polar coordinate system for Couette flow,

(b) Cylindrical polar coordinate system r, y, x for
Poiseuille flow. A Cartesian coordinate system is
constrgg&ed at the particle center located at x = o, I,
¥ = - 90°,

(c) Deformation parameters of a deformed liquid drop.
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Figure 3 Translational and angular velocities of small spheres in
System 1; cp = 0,02 and R, = 0,3 cm, The solid lines are
calculated from (6) and (7)_1and the points are experimental.
Open circles: Q= 1,78 x 10 cm. sec. and
closed circles: Q = 7 11 x 10 * em? sec,?
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Figure 4 Inward migration of rigid particles from the tube wall in
PIB solutions, R, = 0.3 cm, Q = 7.11 x 10? cm.’ sec™® . The
velocity profiles at the same Q for the PIB (solid lines)
and the paralolic profile for a newtonian liquid (broken
line) are also plotted. Note that there is no migration
where the profile is flat. ’

(a) Spheres: System 2, ¢, = 0,06; open circles: b/R.= 0,027;
closed circles: b/R,= 0.037 and triangles: b/R,= 0.035.

(b) Discs: System 4, ¢, = 0.05, 2a = 0,0L46 cm. and
2b = 0,151 cm. , .
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The development of the reduced particle-concentration layer
near the tube wall in System 3; ¢, = 0.05, R, = 0.3 cm. and
Q= 7.11 x 107* cm2 sec™!.

(a) Photographs of a ¢ = 0,125 suspension initially (left)
and after 5 hrs. of flow (right).

(b) Increase of &/R, with time for the suspension shown in
Fig. 5a. The insert 1s the tracing from the right photograph
of Fig. 5a and shows the variation of © with the tube length
(solid lines) and the mean value & (dashed lines).

(¢) Dependence of E;/@o on particle concentration; the data
were extrapolated to ,/R, = 0.88 (dashed line) at which
the wvelocity profile becomes flat.,
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Figure 6 Rotation of a rigid rod (System 6) and disc (Systan 4) in
Poiseuille flow; R, = 0.5 cm, Q = 0.142 cm. sec?,
op = 0.05. The experimental points are;
open circles: for rod 2a = 0,106 cm, 2b = 0,086 cm.
r. = 9.6, r/R, = 0,476 and G(r) = 0.65 sec™?;
closed circles: for disc 2a = 0,018 cm, 2b = 0 109 cm,
r, = 0.2, r/R, = 0,330 and G(r) = 0.52 sec™!,

(a) Variation of tan @ with time; the solid lines are
calculated from (8) using the measured r,

(b) Variation of O with @ plotted a.ccording to (10). The
solid lines are calculated from (10) assuning newtonian
behaviour (i.e. C = constant) and using the experimental r,
and the value of C at § = O,
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gg_rg 7 Drift in orbit constant of rigid cylinders in Poiseuille
flow in a tube R, = 0.3 cm. at Q = 7.11 x 10" cm.’ sec™?.

(a) Limiting orbit values of rods and discs viewed along
the axis (left) and in the median plane (right); schematic.

(b) Plot of C/(1 + C) against time for rigid discs (System 5,
solid lines) and rods (System 6, broken lines); cp, = 0,063,
rods: 2a = 0,1 cm,, 2b=00082cm.,anddiscs' 2a = 0,015 cm.
and 2b = 0,047 cnm, to 0,075 cm., The numbers in parentheses
indicate the variation in r/R, of the particle center over
the time interval during which C was measured,

gc) Variation of C and r with time for a rigid disc
System 4), ¢, = 0.05, 2a = 0,015 cm. and 2b = 0.151 cm.
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F e 8 Radial migration in Couette flow in System 7; R, = 5.795 cm.
- and R,= 4,644 cn. Curve 1: b = 0,065 om, 2,= ~ 0,092 rad.sec.™

and {3,= 0; curve 2: b = 0,065 cm, (,= 0,0563 rad.sec”!, and
Q,= 0; curve 3: b = 0,065 cm, ()= 0 and Q,= 0.0563 rad.sec.!
and curve 4: b = 0,014 cm, ;= ~ 0.092 rad.sec,”! and (1,= O,
The positive and negative signs of (I indicate counterclockwise
and clockwise rotation of the cylinders; the size of the
spheres relative to the gap width 4R = R,- R, of the Couette
apparatus is also shown.
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Figure 9

Dimensionless plot of paths of particle centers about the
mid-point of the doublets for two equatorial collisions

(6 = n/2) in Couette flow. The open circles (No. 1, Table III)
and open triangles (No, 2, Table III) are experimental points
obtained during the first collision, while the closed circles
and triangles are those obtained when the spheres recollided
on reversing rotation of the Couette cylinders., System 7,

b = 0.0166 cm, (= 0,0167 rad.sec.;’ and (= 0.0112 rad.sec™.
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Figure 10 Variation of orbit with time for a disc écircl_es)
2a = 0,0145 cm, 2b = 0,085, cm, and rod (triangles)
28 = 0,081 cm, 2b = 0,0081 am. in Couette flow
(Systems 8 and 9). Curve 1: (i,= 0.0237 rad.sec™,
Q,= 0,0216 rad.sec.”’ and curve 2: (1,=0,0089 rad.sec™’,
Q,= 0,0079 rad.sec.’ and curve 3: Q= 0,011, rad.sec™!,
and Q= 0,0248 rad.sec,
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Figure 11 Deformation of newtonian liquid drops in Couette flow.
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25) Tracings from photographs showing the ‘class A deformation
Systems 10 to 13) and class B-2 deformation (System 14).

(b) Effect of b and speed of rotation on the deformation

parameter D,
(c) Variation of ¢m with D,

" In parts (b) and (¢) b varied from 0.032 cm. to 0.177 om.,
and O+ G, 0,0223 rad.sec™*. The experimental points are:

open clrcles: System 10; closed circles: System 1l;

open triangles: System 12 and closed triangles: System 13.
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PART VI

CONCLUSION

1. General Summary
The main findings and conclusions described in Parts II to V

of the thesis may be sumarized as follows:

1. In neutrally buoyant concentrated suspensions of rigid particles
suspended in newtonian liquids undergoing creeping flow, the velocity
distribution deviated from that calculated for a homogeneous newtonian
liquid, because of particle-particle and particle-wall interactions.

The velocity profile in Poiseuille flow was blunted in the central portion
of the tube with individual particles moving at fixed radial positions
with identical velocities and without rotating. Outside the region of |
plug flow, the particles exhibited erratic radial fluctuations and
irregular rotations which, however, were reversible with respect to the
direction of flow. In dilute suspensions, the distribution of lateral
displacements agreed well, whereas the time average lateral displacement
was twice than those calculated from a simplified theory based on two-
body collisions (Part II).

2, In the flow regime where.‘.inertialn;ﬂéffécts become important,
isolated neutrally buoyant rigid cylinders exhibited the tubular pinch
effect previously observed for rigid spheres suspended in newtonian
liquids undergoing Poiseuille flow. At the same time, they assumed
limiting rotational orbit constants:which were independent of the initial
conditions of release, and which corresponded to the maximum energy

dissipation in Couette flow, Deformable particles migrated to the tube
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axis, provided that the ratio of particle to suspending fluid viscosity
did not exceed 50. In concentrated suspensions of spheres, because of
radial migration, a particle-free zone was formed near the wall which
modified the initial velocity profile and resulted in a drop in the
apparent viscosity coefficient of the suspension which could be accounted
for theoretically (Part III).

3. Behind an advancing meniscus the axial and radial velocities
of a homogeneous liquid undergoing Poiseuille flow were in gqualitative
agreement with an approximate theory due to Bhattacharji and Savicl).
It was shown experimentally that, when a suspension of rigid particles
was employed, the radial flow near the advancing meniscus and the inter-
actions of particles with the wall and with one a.noth'er resulted in
inward displacements of the particles, which in turn caused an increase
in concentration of the suspension behind the advancing meniscus (Part IV).

4. In viscoelastic suspending media in which there are normal
stress effects, isolated rigid particles migrated across the planes of
shear, in both Couette and Poiseuille flows, towards the region of lower
velocity gradient. In tube flow, this inward migration resulted in a
dilution nf particles near the wall. Rigid cylinders drifted to rotational
orbits which in newtonian liquids correspond to the minimum energy
dissipation in Couette flow, independently of the initial conditions of
release. Two-body interactions between =small uniform spheres were
unsynmetrical and irreversible, and the aligmment angle of liquid
newtonian drops at sero deformation greater than that corresponding to a

newtonian suspending phase (Part V).
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2. Concluding Remarks and Suggestions for Further Work
‘i‘he results have already been discﬁssed in detail in Parts II

to V and it remains only to comment briefly on some of their implications.b
The work with concentrated suspensions of rigid particles shows
that the deviations in the velocity profile are probably due to a wall

effect proposed by Vts.n«d2

) to explain the decrease in the apparent viscosity
with decrquing tube radius. This so-called sigma effect is not necessarily
a manifestation of a deviation in the velocity distribution since it |
‘exists at concentratlions where the velocity profile is still parabolic.

The development of the partial plug flow in the tube would, however, be
expected to produce a further reduction in apparent viscosity not taken
into account in Vand's or any other theory. The viscous energy dissipated
when a particle is introduced in the flow depends both on its translational
and angular veidcity. In the region of plug flow, the particles move

with identical tmn_gl.ati_oml velocities without rotating; for this simple
reason the power required to maintain flow is less than that corresponding
to a parabolic velocity. profile. Ngar the wall, Wer, it is gr;ater -
due to higher translaﬁonal and rotational velocities of the particles,

but the total effect is a net reduction.

' The work also demonstrates the importance of considering the.
tube rad:_Lus in capillary viscametry and gap width in Couette viscometry.
The concentration theo,r? -5) proposed to axpla:l.n the sigm—phenonenon
predicts no viscosity change in a Couette viscometer. Hcm[ver, .the
viscosity ineasuraonts in a Couette viscometer on which the theory was

6)

based were made with =mall particles ’ so that any wall effect was

probably too small to be detected. It has been shown (Part II) that Vand's
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wall effectz), ignored in the concentration theor? s &) » does in fact
operate in both Couette and Polseuille flows.

The existence of concentration gradients along the tube and
the fragtiona.tion of pafb:l.cles behind an advancing and ahead a
receding meniscl demonstrate the importance of properly sampling a
suspension when measuring concentration and size distributicn3 > 7) .
The phenomena suggest some interesting new possibilities for separating
and fractionating particles which warrant further examination. Conceivably
the principles could apply not only to particles but macromolecules in
~ solnt:lon?) .
In view of the considerations listed above and the detailed
discussion given in Parts II to V and Appendices II to IV the following
recommendations are made for future studies.
(1) Newtonian suspending fluids

(a) Single particles
1) Experiments with improved methods on the behaviour of spheres

in close proximity and up to physical contact with a rigid wall to
establish conclusively whether or not there is a true slip at the wall,

ii) Migration of neutrally buoyant rigid spheres in Couette flow
at high Rcynélds 'mmbers and at various distances from the wall.

111) The direction of radial migration in Poiseuille flow at high
Reynolds numbers for non-neutrally buoya_nt fluid drops of various
viécositiee, with the sedimentation velocity in the same and/or opposite
direction to flow.

iv) Radial migration of liquid drops in Poiseullle flow for a
more extensive quantitative test of the theory of Chaffey ot a1’). To
include experiments of the effect of surface active agents which will
inhibit internal circulation on the wall migration.
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v) Examine quantitatively the effects near an advancing meniscus
with liquid drops.

(b) Multiplet systems
1) Two-body collisions of uniform spheres in Couette flow at

~high Reynélds numbers using high-speed cine photography.

11) Distribution of ¢pbit constants of suspensions of rigid cylinders
in dilute suspensions at high Reynolds numbers where the observed drift
in orbits depart from the distribution found at low Reynolds numbers9) .

i:l_.i) Measurements of the pressure drop at various times in dilﬁte
suspensions of rigid cylinders tmdérgoing Poiseuille flow at high Reynolds
numbers to study the effect of radial migration and drift in orbit on the
apparent viscosity.

iv) Cox;centration profiles across the tube (using transparent
suspensions and tracer particles) in concentrated suspensions of rigid
particles at high Reynolds numbers. .

v) Simultaneous measurements of velocity profiles and apparent
viscosities at low Reynolds numbers in suspensions of rigid particles to
correlate viscosity and velocity profile data in a -sani-emp:l.rical model
based on a pseudo-two-phase flow.

vi) Measurements of the mean concentration of a suspension flew:l.ng
in a tube at low Reynolds numbers and under steady state conditions
i.e. when meniscus effects are not present. To compare the results with
the concentration of the suspension in the feeding reservoir and thus
evalnate quantitatively the effects arising from the convergenf entry of
the tube.

vil) Concentration changes in front of a receding meniscus in dilute
(1.e. without particle-particle interaction) and concentrated suspensions;
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to include also experiments with emmlsions. In dilute suspensions,
because the radial flow is directed inwards, wall effects are expected
to be negligible and thus no change in the concentration is anticipated.
At high concentrations, hMer, particle-particle interactions may
result in a depletion of particles ahead of a receding meniscus. In
the case of an emulsion, on the other hand, it is expected that there
would always be a reduction in the concentration near the receding
meniscus because of the radial migration of the defomable pe.rticleslo’u) .

viii) Velocity profiles in concentrated emulsions of various
viscosity ratios. The technique described in Part II may be used for
transparent emulsions to obtain a velocity distribution across the tube;
for non-transparent emulsions an idea of the deviations from the
parabolic distribution may be obtained by measuring the translational
velocities of the outermost drops of the core.
(2) Non-newtonian suspending media

(a) Single Erf;_cles
i) Fluid velocity profiles in viscoelastic fluids in Couette

flow over a wide range of annular gaps, by measuring the angular
velocity of small spheres.

" 11) Defprmation of non-newtonian liquid drops in newtonian and
non-newtonian media. The non-newtonian systems should include some
non-elastic (e.g. Birhghan plastic) fluids.

111) Migration of rigid particles undergoing flow between counter-
rotating discs. Migration towards the center of rotation is anticipated
due to the variable velocity gradient.

(b) Suspensions

1) Pressure drop measurements in concentrated suspensions in

viscoelastic flulds where the radial migration is expected to cause a
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reduction in the apparent viscosity.
11) Concentration changes occurring in Couette flow.
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PART VII
CLAIMS TO ORIGINAL RESEARCH

1. The velocity distribution in concentrated suspensions of rigid
particles was shown to deviate from that calculated for a homogeneous
newtonian liquid due to particle-particle and particle-wall interactions;
qualitative agreement with Vand's®) pseudo-two-phase flow was obtained.

2. The tubular pinch effect for rigid particles other than épheres s
but not for parb;cles deformed by the shear w;s demonstrated.

3. The rotation of small rigid cylinders suspended in newtonian
liquids undergoing Couette and Poiseuille flows with inertial effects
present was shown to follow Jeffery's's) equations provided that the
experimentally determined equivalemt axis ﬁtio was used. Mor’eover, rods
and discs attained limiting rotational orbit constants which, contrary
to Safman'an) prediction, corresponded to maximum energy dissipation
in Couette flow 12).

4. The change in the velocity profile and drop in the apparent
viscosity coefficient in suspensions flowing through tubes at high
Reynolds numbers was demonstrated.,

5. The flow of a homogeneous liquid near a moving meniscus was
shown to be in qualitative agreement with the t!iearyl) . In a suspension,
concentration changes near an advancing meniscus were shown to arise |
from the radial flow occurring behind the meniscus and by particle-particle
and particle-wall imteractions. | |

6. Lateral migration of rigid particles suspended in viscoelastic
liauids undergoing slow Couette and Poiseuille flawsl was demonstrated
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and explained qualitatively on the basis of normal stress effects which
propelled the particles in the direction of diminishing velocity glfadient.

7. The nature of two-body collisions of uniform spheres and of
deformation of newtonlan liquid drops in viscoelastic liquids in Coustte
flow were described. |
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(Reprinted from Nature, Vol. 200, No. 4902, pp. 159-160,
October 12, 1963)

Axial Migration of Particles in Poiseuille
Flow

W have eoxtended rocent observations of the radial
movements of singlo rigid™* and deformable® spheres
suspended in Newtonian liquids flowing through straight
cireular tubes to include other particle shapes and
viseo-elastic uids.

The experimonts in Newtonian liguids were conducted

as before®? using single rigid spheres, rods and disks of

the same donsity as the liguids but flowing at particle
Reynolds ‘numbers (flep) between 3x 101 and 7 x 100
instead of less than 109 The tubular pinch effoct
previously observed with rigid spheres'® at these Re,
was also exhibited by the rods and disks. Particles
placed initially near the tube:wall migrated inwards,
while particles near the tube axis moved outwards until
an equilibrium radial position () close to one-half the
tube radius (R) was reached (Fig. 1).  For a given particle
shape, the rate of radial migration inereased with inereas-
ing flow rate! particle size and radial displacement from

— — =
075 -
o) gise ()
0-50 e
LV 2- sphere
S
a L
S e
o a-rod
025 -
0 S S (S R - S
100 200 300 400 H00 ({H1)
Time (sec) ‘4

Fig. 1. Radial migration inwards (eurve 1) and outwards (curves 2 and
3) Lo the equilibrinm position r/R = 1/2 approximately, exhibited by
spheres, rods and disks at high Rep (> 10-*) when suspended in poly-
glycol oils lowing through a tube £ = 0-2 em. The curves are: (1) poly-
styrene disk of radius 0-034 em having an initial orbit constant O = 5:0,
the numbers in parentheses indicating the decrease in C with radial
distance and time; (2) polystyrene sphere of radius 0-050 em; (3) nylon
rod of length 0-11 em, The steady inward migration to the tube centre
of a glyeerol drop in a polyglycol oil mixture, viscosity ratio suspended
phasefsuspending phase = 10, is shown by curve 4
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Fig. 2. Inward radial migration of ‘Plexiglass’ spheres in viscoelastic

fluids flowing through a tube R = 0-3 em at low Rep (< 10-%). Curve 1

shows the velocity profile, blunted near the tube centre, of a 6 per

cent by weight solution of polyisobutylene in ‘Decalin’. The inward

migration to the central region of no shear of spheres of radii 0016

and 0-021 em suspended in the same solution is shown by curves 2 and 3
respectively ]

tho equilibrium position. Furthermore, rods and disks
assumed limiting rotational orbits which were inde-
pendent of the conditions of inifial release. The long
axis of tho rods and the faces of the disks became oriented
in planes passing through the axis of tho tube, correspond-
ing to spherical elliptical orbit constants C=cw and 0
respectively?; these are the orbits in which the particles
make the maximum eontribution to suspension viscosity?
in Couette flow. At low Rep (< 10-%) the radial positions
and orbit constants of single rigid rods and disks remainod
fixed at their initial values!. The drift.in ¢ and r ab
highor Re, prosumably are related effects due to inertia®,

In striking contrast to rigid particles, liquid drops
and elastomer filaments, which were deformed by the shear
field in the tube, migrated inwards to r=0 just as they
did at low Rey(refs. 3,4). Thishehaviour wasshown by ligaid
drops having a viscosity as high as 10 times that of the
suspending medium (Fig. 1). When tho ratio reached 50,
and tho drop deformation appeared negligible, the
behaviour was as for rigid sphores, that is, no migration
af low Rep and migration to /R =1/2 at high Rep. Thus
the migration due to deformation®! can dominate that
due to inertia, and vieo versa. ;

Tnward migration of rigid particles occurred in the
viscoelastic fluids at low Re, (< 10-%), Solutions of 3-6-3
woight per cent polyisobutylone (‘Vistanex L-100°, Fnjay
Chemical Co.) in decahydronaphthalene (‘Decalin’), which
have been well characterized rheologically?, were used as
the medium. As expected from the deecrease in apparent.



viseosity with increasing rate of shear, the velocity

profile u(r) across the tube, instead of being parabolic as
with the Newtonian liquids, was blunted in the central
regions (Fig. 2). Rigid spheres, rods and disks placed
near the wall rotated and migrated inwards to radial
positions at which the velocity profilo was nearly flat
(Fig. 2). The rate of migration increased with » and
particle size. During migration, rods and disks drifted
into retational orbits corresponding to (=0 and w
respectively; these orbits correspond to minimum energy
dissipation in Couette flow and are in agreement with
Saffman’s theoretical prediction and observations for
rigid spheroids in a non-Newtonian fluid of the type
used®. Particles in the flat portion of the profile, where
the veloeity gradient was zero, neither rotated nor moved
radially. The particle migration observed in these
experiments may arise from the combined action of
normal stresses in the fluid and the variation in velocity
gradient across the particle.

These experiments reveal three distinet mechanisms for
radial migration during the flow of suspensions through
tubes of which only one, that due to deformation at low
Reyp, has been explained with any dogree of completeness?®,
It is possible that there are additional mechanisms,
ospecially at concentrations at which appreciable particle
interaction can occur. These phenomena are of interest
in connexion with the development of particle-free
peripheral zones in the flow of various suspensions such
as pulp fibre suspensions and blood through tubes.

This investigation was supported (in part) by U.S.
Public Health Service research grant H-5911 from the
National Heart Tnstitute of the United States Public
Health Servieo.
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APPENDIX II

WALL MIGRATION OF FLUID DROPS IN COUETTE FLOW

INTRODUCTION

In the creeping flow regime Goldsmith and Masonl)

found that
liquid drops suspended in newtonian liquids undergoing Poiseuille flow
migrated to the tube axis whereas the center of rotation of single rigid
particles remained at fixed radial positions over prolonged periods of
flow. An approximate theory based on drop deformation and the variation
in velocity gradient across the drop was proposedl) to explain the o
inward migration of fluid drops. |

A more rigorous theoretical treatment of the problem of drop
migration was advanced recently by Chaffey et g.;l._z’ 3) fobr Couette i’low..
Two cases were considered: (i) migration of a liquid drop in a variable
shear field in absence of wall effécts , and (ii) migration in a uniform
shear field resulting from interaction of the drop with the rigid Ml
bounding flow. The present brief investigation was undertaken to test

the equation derived for the latter case.

THEORETICAL PART

The behaviour of an isolated, neutrally buoyant, and slightly
deformed drop near the rigid wall bounding the suspending fluid which
undergoes plane Couette flow defined by

u=0y, v=w=o0, (1)

where u, v, w are the respective fluid velocities along the X, Y, Z axes
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and G the veiocity gradient was conaidered‘a ) o Using the method of
reflections it was shown that interaction with the wall should cause
the drop to move away from it. Assuming fully developed circulation
inside the drop the predicted migration velocity 133 )

w3 2
14 b’ 33(79° + TTp + 54)
=G - 2
@ 2 200 +1)° @

where ! is the distance of the drop center from the wall, b the radius
of the undeformed drop, p the viscosity ratio of the suspended to

suspending phase, and D is the Taylor?* sl*) deformation parameter given

by
Gnb (19 p + 16)

=T (Bp+18)° (3).

=B
B

vhere L and B are the length and breadth of the deformed drop, g o the
| viscosity of suspending fluid, and 7 the interfacial tension; Substi-~ .'
tution of D from (3) into (2) and integration yields

3
t? = 103 +—2—°— - Gt , )
Liugo(p + 1)

and !o is the initial distance of the drop center from the wall.

~

EXPERIMENTAL PART

The theory was tested experimentally in a coaxial cylinder

device in which the two cylinders rotated in opposite directions’ ). The

velocity gradient G(R) at a distance R from the center of rotation 196)

o, +8, B%?
2 .2 T 32

2 2
R2 -Rl R

G(R) = 2 (6)
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where Rl and B.2 are the respective radii of the inner and outer cylinder

walls, and 9, 0, their angular velocities; G(R) is greatest at Rl and
least at R2; when Rl’ 32 are large G(R) may be considered constant across
the annular gep. With the larger set of cylinders (Table I), G(R) was

evaluated at the stationary layer at which (6) becomea6)

2 2
2(31 Ql + R2 02)
G= T 5" 2 3 (7)

By =R

the variation in G across the gap was approximately 12%. With the

smaller set (Table I), the curvature of the walls could no longer be
neglected; since with this arrangement the drops were always released

near the outer wall, G was calculated at Rz:

2 |
R zal 2 (8 + Q). (8)

2 B

The systems used (Table I) showed negligible drop sedimentation.

G(R,) =

The distance of a drop froni the wall was measured either photographically,
or visually using a calibrated dial gauge coupled to the viewing mioro-
scope. The interfaclial temsion, under the conditions of the experiment,
was determined by photographing the drop in the stationary layer; the
measured values of L, B and b were then used to calculate T by means

of (3).

RESULTS AND DISCUSSION

Liquid drops migrated av}ay from the walls of the Couette
apparatus reaching equilibrium about half-way between the two cylinders,
where the effects of two walls balanced one another (Fig. 1). The direction
of migfation was independent of apeéd and sense of rotation of the cylinder
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walls. The rate of migration (Fig.' 1) increased with decreasing the
distance from the wall and ‘ixci'easing‘the drop radius; it also increased
with increasing G (Fig. 2a) and the ratio £(p)/T (Fig. 2b).

In Fig.*éa some of the experimental results have been pldt.ted
in accordance with (4); as may be seen the plot of { 3 against szl't.
yielded a family of straight lines as predicted by the theory. With the

set of harrower—gap éylindera deﬂationa from the linear relationship
becane apparent as the drops approached their equ:llibrim positions;
these deviationa, as expected, were towards lower values of {> and were
und~:.adly due to the interaction of drops with the other wall so as to
reduce the i‘ate of migration. |

Values of the observed !> are shown in Fig. 3b and comﬁared
with those calculated from (4). For the systems investigated the rates
were 1/2 to 1/3 those predicted by the tﬁeory. The effect of the other
wall during the initial stage of migration (calculated from (4)) is too
small to account for the discrepency; this may also be seen from Fig. 3b
‘u,hore no difference in the rates was found in the two apparatus with
different gaps. The dependence of the slope of the lines (Fig. 3b) on
the physical properties of the systems suggests that the boundary
‘assmnptiona of ’the theory might not have been satisfied in the experiments.
A key assumption is that there is fully developed internal circulation
inside the drops. It has ‘been shown that minu‘te traces of :lmpnritiea at

thé drop‘ interface can inhibit the c:irculation7)

the migration veﬂ.oéitya) .

and presumably decrease
It is interesting to observe that deviation
from the theory increased at increasing p (Fig. 3b).
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The data of Goldsmith and Masonl

) on the migration of liquid
drops in Poiseuille flow have also been tested using a relation similar
to (4) for flow in tubes 3 ) The results were similar to those in Couette
flow, the measured migration rates being lower than the theoretical]y
calculated. In the system Silicone oil ~ Pale b, for which the agreement
was sati;ractorﬁ) ‘there is a mmerical error in evalusting £(p), the
reported migration rates being about 10 times greater than those actually

observed.

CONCLUDING REMARKS

The e@erinental study ef the wall migration of liguid drops
in Couette flow is in general agreement with the theory of Chaffey et 813 )
the observed migration rates being of the same order of magnitude as
those predicted by (4). The :ract- that they were smaller may be due to the
inhiﬁition of the internal cireula.tion, although this does not explain
completely the mitude of the observed deviations.
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LIST OF SYMBOLS

b - = radius of the undeformed drop
B | = minor axis of the deformed drop
D = (L - B)/(L + B)
£(p) = function of p Eq. (5)
' G; G(R) = velocity gradiemt; G at R
L o= distance of drop center from the wall
L = major axis of the deforned drop |
P = viscosity ratio of suspended to suspending phase |

R, By, R, = -radial distance from the axis of rotation; radius of inner
| and outer walls of the Couette apparatus

t = time

u, v, w = compenents of fluid velocity along the X, Y, Z axes

X, ‘y, z = <Cartesian coordinates
T = interfaéia.l tension
% = suspending phase viscosity
Ap = demi’#y difference '

ﬁ 19 Q angﬁla.r yvkelocitie‘s of inner and outer cylinder walls
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TABIE I

Properties of Systems

Temperature 22°C

System 2 a Suspending phase | Suspended phase P 1 bp 3
- e ! dy.ne Clle 8.01!1._
1l 15,223 | 13.354 | Silicone eoil Ucon oil IB-1715 | Q.16 0.23 0.029
50 ps. : ‘
2a 15.223 | 13.354 | Silicone oil Water 2x 1074 10 0.025
'1 50 ps.
2b 9.557 | &.75 | Silicone oil Water 2x107%| 26 0.025
50 ps.
3 9.557 4.754 | Silicone oil Pale 4 1.4 4 0.026
50 ps. -

a) Calculated from the measured drop deformation using (3).

b) Density difference between the two phases.

26t
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. W‘clvm

—
0 m—
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o2s}- o
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0 [ | | 1
) 2000 4000 6000
TIME, sec.

Figure )} Migration of liquid drops from walls bounding Couette flow,
System 2a; open circles: b = 0,063 cm, (;,= 0,0223 rad.aec.
and (= 0,0239 rad.sec’;
clOEOd 011'01088 b = 00104 cln, l,ﬂ 0.0223 r&d. Bec‘l ]

{,= 0,0239 rad.sec,”! and
open triangles: b = 0,135, ()= 0,089 rad.secs! and (1,= 0.0425
rad.sec-!,
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- Figure 2 Radial 'migr'a.tion of liquid drops undergoing Couette flow.

(a) Effect of velocity gradient on the rate of migration;
b= 0,100 - 0,104 cm,

Open oircles: System 2a, G = 0,355 sec™;

closed circles: System 2b, G = 0,220 sec,’! and
open triangles: System 2a, G = 0,186 sec-!,

(b) Effect of physical properties on the rate of migration.
Open ciroles: System 2b, G'b*= 2,45 x 10°* om.* sec.* and
£(p)/7 = 0.22 om.dyn-t;

alosed circles: System 3, G*b*= 2,49 x 10°* om.* sec.* and
2(p)/% = 1.85 cm.dyn"?,
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Figure 3 Radial migration of liquid drops in Couette flow.

(a) Plot of ¢° vs. G*b*t according to (4).

Open circles: System 2b, b = 0,100 e¢m, G = 0,186 sec™!;
closed circles: System 3, b = 0,098 cm, G = 0,220 sec-!;
open squares: System 1, b = 0,0707 cm, G = 0,140 sec.? and
open triangles: System 2a, b = 0,063 cm, and G = 0,355 sec™!.

(b) Comparison of the observed and calculated (Eq.(4)) values

of {. The dotted line is the 45° line of perfect correlation,
the solid lines are the ones drawn through the experimental points,
Open circles: System 2b, range of b = O, 083 - 0,103 cm, ard

range of G = 0,186 - 0,400 sec;

open triangles: System 24, range of b = 0,063 - 0.135 om.

and range of G = 0.355 - 0.421 sec-!;

open squares: System 1, range of b = 0.,0707 - 0.0822 cm,

range of G = 0,123 -~ O, 220 sec;tand

closed circles: ISt ra.nge of b = 0,057 - 0,098 cm, and
range of G = 0,18 sec™’,
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APPENDIX IIX

THE APPARENT VISCOSITY AND VELOCITY DISTRIBUTION IN

CORCENTRATED SUSPENSIONS’: A SEMI-EMPIRICAL MODEL OF FLOW,

. INTRODUCTION

It was shown in Part II that the veloclity profiles of concen-
trated suspensions of spheres deviate from those predicted by the theory
with no particles present as a result of the interaction of the outer

layers of the suspension with the rigid wall. Following Vand'sl)

suggestion
ws may represent the wall effect by considering the suspension to be a
continuum with & variable viscosity g* varying fram g, (the viscosity of

the mediwm) at the wall to 5 (that of the suspension) at some characteristic
distance & from the wall which is oﬁly & function of particle size. Using
this semi-empirical approach we shall show that the observed velocity
profiles both in Couette and Poiseuille flows as well as the variation of

the apparent viscosity g with particle size may be explained gqualitatively.

THEORETICAL PART

1. General

Consider a uniformly dispersed suspension of rigid spheres of
volume fraction ¢ flowing in a tube radius Ro, or undergoing shear flow
in the annular gap of width AR of a Coustte device, In Poiseuille flow
the origin of the coordinaﬁe system i taken at the axis of the tube
(Pig. la); in Coustte flow the o}igin of y is at one of the walls which,
for simplicity, is considered to be at rest. We assume (i) newtonian
behaviour of the suspension and suspending medium (11) continuity of

3
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velocities and shear stresses and (iii) steady state conditions. With
these assumptions the differential equations of motion are, in Poiseuille
flow,

'
dudrr = %}; ’ (1)

where ut(r) is the translational velocity of the suspension at r,

C =~ AP/2L and AP/L is the pressure drop per unit length of the tube.
In Couette flow |
i) . e (2)
dy p¥* '

where fs is the shear stress at the boundary.

To integrate (1) and (2) the explicit form of g must be known.
By making various assumptions concerning the thickness of the layer and
the functional variation of g* with the distance from the wall, various
velocity distributions can be computed. Three simple flow models are
treated below.
2. Poiseuille flow

" Model-A: It is assumed that

L <_ <. .
S a¥=n at r -r-R_ ; (3a)
k <_<
P = q at o -r - T, s (3b)
d 8
an T <<<1; | (3¢)
o

there is therefore an abrupt increase of the viscbsity from 1, to n at
r=r (Fig. 1b). Since it has been assumed that § < < < R its thickness
may be neglected; the slip velocity u'° i.e. the velocity of the inner
surface of the & layer is given by v

ut = . =—2 ' | (4)
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Setting ©* = g in (1) and integrating with the boundary condition that

at r = Ro ut (Ro) = u'o the velocity distribution in the suspension is

CR 2 '
0 [+]

where B = r/Ro and qx; = /1 , 18 the relative viscosity. The volumetric

found to be

flow rate, neglecting the flow in the layer is

Ry
Q= [arru.'(r)dr , (6)
which upon substitution of ut(r) from (5) and integration yields

onR X |1 F Ay, %’
Q=- 2 ~2 . (7)
' 21, Ay

Inserting (7) into (5) the resulting velocity profile is

. 2 : 1
2Q Lop T %; )
ut(r) = =5 s (8a)
mR UL 1+ A 'ﬁ; )
o [r- g% + 2n_ %—
= (o) —5 Ol » (8b)
| 1tk p

()
where u¥*(o) is the centerline velocity corresponding to the parabolic
distribution at the same Q. At the tube axis (8) becomes

1+2qr-§- .
u'éogr_ ° 9)
u*¥(o b ¢ . 9
l+l|.qrﬁ-—

(o)

Defining the apparent viscosity of the suspension as
ok *

% == IQ - (10)
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. then from (7) and (10) is found that
Y -1 (11)
1 S’
1+ 4, 3

Model B: The same variation of gt with r as in Model A is
assumed (i.e. Equations 3a and 3b) but & no# has a finite thickness
(Fig. 1b). Setting 7% =1g_in (1) and assuming that the liquid adheres

 to the tube wall integration of (1) leads to the velocity distribution
in the & layer.

2

v _ CRo 2
() =- 5= -8 . (12)
(¢

AAr=r (12) gives the velocity of the inner surface of the O layer
CR02 2 '
w (M =-c—(@0Q-7), (13)
. 21,
where T = ro/Rb'
In the core of the suspension integration of (1) yields

2
CR
wt(n) =5 F° + 4, (1)

where A is an integration constant. The condition of continuity of the
velocity at r = r_ permits the evaluation of A from (13) and (14). The
resulting velocity distribution in the core is

| CRZT 2 |
ut(r) = - 2q° [72; .+ a-v . (15)
(o] T

The total volume flow rate Q is equal to the sum of the

volume flows in the layer, Ql, and in the core, Q2

® (16)

Q=9 +Q,,

s 1.e.




Ro
where Q = fzm ut(r)dr , : a7
A .
%
and Q, = f 2rr ut(r)dr . (18)
| .
Using (14) to (18) the total efflux is found to be
kL
nCR ,f, ]
=_—0 |T _ ok
Q by [ 1 t1 " ) (19)

(o] r

Substitution of (19) into (14) and (15) yields

= - for T<p<1l, (20)

and ﬁ{z}= q% for 0<p<7T. (2)
| [ i1 7“]
1
At B = 0 (21) reduces to
ut (o _72+qr(1-72) ’
3&%-_7‘*+ @a-1 (22)
O\ -
The apparent viscosity is found from (10) and (19)
3 1
i = (23
L S W o )

which is the same as Vand! sl) equation but written in a different form.

Model C: Here it is assumed that ¥ varies linearly with the
distance from the wall (Fig. 1lb) reaching the value of 5 at § = Ro -r,
after which it remains const.wtt, i.e.

o =g at 0SrSR (24a)
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r <
)atro<r-R°. (24b)

R
o
3 == -
and n*=1q + (3 - 1)
Then following the same procedure as in Model B it can be shown

(see Addendum) that in the layer the velocity distribution is given by

2 n. -1 n. -1 -1
Q-1 Uy
. o _11)2[‘[ g 'ri(l - 8) *[ 1T 1}1°3e -l-a—w @ “3)|
wirg = L (25)
u*{o b2 A ’
— +HI“+A -F
b,
and in the core
| [ﬁ-_ﬁ . .11] |
ut(r l"qr 2 ‘
u*% %= 'Tb’ 2 (26)
— + M+ A - F]
£
2T -9
where H= fﬁz -(n, -1) + 11{ T 1°8e|1l,l]: (27)
r y .
. 2 3
|1 1=T7|l 3T - 21" -1
@ - "3a, -7 [fa, - 12
amd A [& =T [rogelny - ) -
r '
a, =T (1 - '72) 2 |
11r-l Qa-m- 2 -1 1°8e,(flr-1)]- (29)
At B = 0 (26) reduces to
ut{o 12 + 2nrH (
= = 0
u*(o orl} + lmr(H'rz +A _ F) 3 )
The apparent viscosity is found to be
1
y . (31)

ey z,qr(H;z +A ~-F)




3. Couette Flow

Model A: As in the tube it is assumed (Fig. 1b) that

g% =g at 0SySs, (32a)

ot = q at 3‘,’28 ’ (32b)

and b <<<<Z-gi

L]

Equationsb(Z) and (32) lead to the following velocity distribution

f
' ==8|d 4+ §
w() =32 ["r + 8] (33)
At y =AR/2 the translational velocity u* is
£, OR
n¥* = 21] s (3‘!—)
and (33) becomes 5
' 2
bl RN I (35)

By defining an M"apparent velocity gradient" Ga as the difference in
the velocities of the cylinders divided by the gap, the apparent

viscosity iq

=2, | (36)

where G=1f/q.

Combining (35) and (36) yields

a1 (37)
REERS 4"

Model B: The variation of n* with y is given by (32) but
8 is no longer negligible compared with AR. In thé layer integration

of (2), assuming that the liquid sticks at the wall, yields

£
ut(y) = ;1'5 T (38)
(o]
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which at y = & becomes

[

wr(8) =25, | (39)

o
In the core the integrated form of (2) is found to be with the aid of

(39)
£ :
w@ =2y + 86, - ) - (40)

Combining (34), (38) and (40) the velocity distribution in the layer

and the core are

) >
d t(y) = 2L 2 -1) £ =3 ; 42
an uu* AR AR(nr ) for ¥y (42)

the apparent viscosity is found by combining (36) and (42)

Ja _ 1
L 2 ‘
1+ AR (nr-l)

. (43)

Model C: Equation (24) for Couette flow becomes
< <
p=n +(@-1)§ at 05y=3, (kha)
and % = g at y 25 . (440)

Following the same procedure as in Model B it can readily be shown

(see Addendum) that

B%ﬁ: —--fl-r—]g—s-loge [l+(11r—1) %] for O§y=<'5, (45)

1, - 1]AR
ut(y) _ 2(y - 8) i S 2
u* AR + nr -1 AR lOge qr for y 8 ] (hé)
1
and _a _ 1 :
1 n,log .1 ' _(1’7)

.2_5..‘__1'_.___er+1__2.§.
AR qr-l AR
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4. Comparison with experiment

The true viscosity of the suspension g5 was calculated from

Mooney!? 32) equation

— 2.5¢
1°geqr l~1.57°

which has been confirmed recently by Brodnyan and Kelle}j ) for latexes
up to ¢ = 0.%.

To evaluate & from the measured velocity profiles a trial
and error procedure was used. A value for & was assumed, and the velocity
profiles constructed; then & was adjusted to provide the best fit of the.
experimental results for each run, keeping in mind, however, that for
each Model §/b must be constant. The average values of & found} were
0.7b, b and 2.5b for Models A, B and C respectively. It should be noted
that for Models A and B the average value of & obtained -i‘rom’ the velocity
profile measurements is in good agreement with those reported in the
literature by Higginbotham et al*) (= 0.7b) and Vandl) (= 1.1b) from
viécosity measurements using the Model B.

A comparison between the observed u'(o)/u*(o) and those
calculated using the average & is made in Table I, and in Fig. 2 the
predicted and observed velocity distributions of a suspension in Poliseuille
(Fig. 2a) and Couette (Fig. 2b) flows are compared. The 3 value in Couette
was lower than in tube flow because, at the same ¢ and b/l’f.o or 2bAR,
deviations in Couette flow were less pronounced. Also Model A predicts a
slip at the wall.which was not observed experimentally except possibly in
the case of complete plug flow. Models B and C appear to provide a more
satisfactory agreement with the experimental results.

Each model also predicts a different value for the apparent

viscosity. As may be seen from Fig. 3a, g a increases from Model 4 to C
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and at the same 5 and & the predicted 1, 1s smaller in Coustte than in
Poiseuille flow, because of the different geometry of the container and
flow conditions.

A unique model should satisfy both viscosity and velocity
profile data. In the work described in Part II measurements of g q Were
not extensive and were performed with the sole purpose of demonstrating
the newtonian behaviour of the suspensions. Simultaneous measurement of
velocity distribution and apparent viscosity in both Couette and Poiseuille
flows, coupled with various assumptions concerning 'ohé variation of g
with distance from the wall (for instance an e:épohential relationship) may
provide a unique semi-empirical Model based on Vand's theory which would
£it both viscosity and velocity data.

ADDENDUM

Derivation of flow equations in Model C

1. Poiseuille flow; velocity distribution in the & layer
Substitution of 5* from (24b) into (1) and integration yields

2
u'(r) = CRO ﬁg_@

n 3, -1 q-l‘+A
(o] [l+r - I ﬁ]
1-17_1-17%

(48a)

CR°2(1 - 12

ng(n; - 13°

(q. -1
or u'(r) = - -1 -[-—lr—-_—-,fi(l - B)

q "l 1 -1
+{“ {-7f1°8e|'1- L @-p[+a Gew)

where the integration constant A is to be evaluated from the boundary .
condition of no slip at the wall i.e. at =1 u(r) = 0;
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oR %(1 - 1)? |
A=~ 2 ’ (149)
n,(a, - 1)

and therefore

cR21-1°2[ (5 -1
ut(r) = - —2 5 [_[{_,J(l-ﬁ)
n(n, - 1)

qr-l n_ -1
{1+ Ffiog, |-1- T - . GO

At B =17 (50) yields

-cnoz
u'('!) = - 1 H, (51)
(]

where H is defined by (27).

Velocity distribution in the core
Substitution of (24a) into (1) and integration yields

cr 2

w(r) =3 2+, (52)

where the integration constant A is evaluated by assuming continuity
of the velocities at p = 7. Then using (51) and (52) _

2
CR 2 .
= —o | T
we- 5 lm el (53)
and consequently (52) becomes
| 2

CR 2 2

w(r)=-——°-[1§—'—9—+a]. (54)
flo 1

Volumetric flow rate
Equation (17) after substitution of u!(r) from (50) yields
the efflux in the & layer |

2’1:030"(1-7)2 g -1 ]
7 [Lr 1+ T ). o9

Q2=..

n,(n, - 1)




where L= f[- q{:i(l-ﬁ)]ﬁdﬁ
) |
- _["{ - 11[372 ..6213 =1
1
and 5=‘f[hs|-1-q @ - o] s

Y

(. - 7)
—--%'—-—7<1-s>-—(1-72)

2

q -7
- log |1 - 1| +-%[nr - 1] log,[1 - 1
r .

Substitution from (56b) and (57b) into (55) yields

ncnoh'
=“T—(A'F):

A o

where the functions /A and F are defined by (28) and (29).

P

The volumetric flow rate in the core is found by combining

(18) and (54) L
o= - [ e ],

To

The total volume flow rate Q is given by

Q= u*zgo} nRoz

and by combining (16), (58), (59) and (60) is found that

2
CR, u*(o)/2

Yo 'Tl‘/l‘.q +m2+A-F

(56a)

(56b)

(57a)

(57v)

(58)

(59)

(60)

(61)




Substitutien of CR /g  frem (61) into (50) and (54) ylelds
the velocity distribution in the 5 layer (Eq. 25) and in the core
(Eq. 26). | | ' | |

The expression for the apparent viscosity (Eq. 31) is easily
found by combining (10), (60) and (61).

2. Couette flow; velocity distribution in the 5 layer
Equation (2) after substitution of g* from (44a) and integration

becomes

=_8 8
u'(y) 5, " M- 1

q.-1
r
loge(l M y) + A, (62)
The integration constant A is evaluated by assuming that u'(y) = O at

¥ = O which yields A = O, . Therefore

£s .. . |
] - S - :
w@ =Ry e [1 v o -0 E, @
which at y = & becomes

ut(d) = Ilf(‘%:—ﬂ log g, o | (64)
Substitution of f_ from (34) into (63) yields (45).
Velocity distribution in the core
Combining (2) and (44b) one obtains

f .
w(y)=Fv+a, , o (65)

where the constant A is evaluated with the aid of (64) i.e. assuming
continuity of the velocity at the interface
IBS f88
At LG D " Ta ¢ (66)

o' 'r

from (65) and (66) the velocity profile in the core is found to be




&
&
e

& 4 |
u'(y) = mﬁ:-ﬁ log,a, + ';?'(7 -8, ” (67)»

and coubination of (34) and (67) leads to the velocity distribution
given by (46).

Apparent viscosity
At y = AR/2 (67) becomes

uk = T [ q C- l %- ] (é8)
by definition G, = 2u*/AR and consequently (68) may be written

[28 flrloseilm-'_ L _2§] ’ :

G, =G|A% - q -1 - AR

a

(69)

which, with the aid of (36) and after rearrangement, reduces to (47).
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u'(r), u'(o)
u'(y), u¥*
u*(é)

u!

4, 1,

8y ﬂrs n¥*

LIST OF SYMBOLS

integration constant

sphere radius

volme fraction of the suspension

- AP/2L

shear stress

function of 5 and T Eq. (29)
velocity gradient, apparent velocity gradient
function of 5, and 7 Eq. (27) |

tube length

pressure drop

volumetric flow rate

radial distance from the tube axis

Ro -8

tube radius

width of annulus in Couette apparatus

translational velocity of the suspension of r and
tube axis respectively

translational velocity of the suspension at y and
at the mid-point of the gap in Couette flow

centerline velocity in tube flow for parabolic
velocity distribution

velocity of inner surface of plasma layer
distance from the wall in Couette flow

r/ R,

' r'o/R0

thickness of the pseudo-layer
viscosity of the suspension and auspériding phase

apparent viscosity, relative viscosity and effective
viscosity

function of n_ and T Eq. (28)
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TABLE I

Comparison of the calculated and measured dimensionless centerline
velocity in concentrated suspensions in Poiseuille flow

u? (0)/u*(o)
c b/R, Model A Model B Model C  Measured ¥
5. (9)*  5a.(22)*) 5. (30)°)
0.22 | 0.0 | 0.92 0.93 0.95 0.87
0.27 | 0.070 0.81 o.78 0.85 0.78
0.30 | 0.056 0.81 0.8 0.89 0.79
0.32 | 0.052 0.79 0.79 0.78 0. 7%
0.33 | 0.039 0.81 0.80 0.86 0.75
0.34 | 0.056 0.70 0.7 0.84 .  0.73
0.34 | o.112 0.66 0.69 0.81 0.50
0.38 | 0.030 0.77 0.7 0.80 0.78 .

a) = 0,7, b) =0, ¢) =2.5b, d) See Part II of thesis.
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MODEL A MODEL B

Figure 1 (a) Coordinate system to desoribe the pseudo two-phase
flow in Couette and Poiseuille flows in relation to the

wall.
. (b) Schematic representation showing the assumed variations
of the effective viscosity gt with distance from the wall.
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Comparison of the caloulated (solid lines) and measured
(dotted lines) veloocity profiles,

(a) Poiseuille flow; ¢ = 0.33 and b/R = 0,039. For Model A
o = 0,7b, for Model B & = b and for Model C b = 2,5b,

b) Couette flow; ¢ = 0 38 and 2b/uR = 0.083. Model C with
bo ’

The relative size of the spheres is also shown.




Figure 3 Variation of the apparent viscosity with layer thickness
S in a suspension of 15, = 10 in Couette (dotted lines) and
Polseuille (solid lines) flows for the three assumed Models.




APPENDIX IV

THE BEHAVIOUR OF ISOLATED SPHERES

IN CONTACT WITH A RIGID WALL

INTRODUCTION

A In Part II exper:l.m_ehtal evidence was presented suggesting
ihat. in concentrated susponéiona of spheres the deviations from the
parabolic velocity profile and the decrease in the apparent viscosity
with decreasing the tube radius are due to putiéle—particle and
particle-wall interactions. In Appendix ILIlan explanation of the two
effects was attempted using Vand's pseudo-two-phase flow model.

It was considered to be of interest to measure the transla-
t.ionali and rotational velocities of isolated neutrally buoyant rigid
spheres in contact with a rigid wall, and to this end a few experiments

were performed both in Couette and Poiseuille flows.
EXPERIMENTAL

The methods of producing Couette and Poiseuille flows have
already been describedl) . The Couette Mark II Apparatus (see Appendix. V)
was used with the stainless steel cylinders of R, = 13.354 cm. and
R2 = 15,236 cm. where B‘.\. and R2 are the respective radius of inner and
outer cylinder wall.

The systems studied are listed in Table I. Systems 1 and 2

were used for the tube experiments, 3 and 4 in Couette flow. Except
with System 1 either a magnetic or electric field (5 KV) was applied in’
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order to bring the sphere on the wall. 1In System 2 the sphere contained
a thin iron wire through its center, and with the aid of a magnet, was
placed in the median plane of the tube normal to the viewing axis of the
microgcope and in contact with the wall. The electric field in
Systems 3 and 4 was normal to the direction of flow and was applied at
the outer (insulated) Couette cylinder by a stabilized 60 c.p.s. AC
power supply; the inner cylinder was grounded.

The sphgres were photographed through the microscope directed
along the Z-axis (Fig. la, Part II) by means of a Bolex Paillard 16 mm.
reflex cine camera and the films analysed by projecting them onto a
drafting table. The angular velocity w'!of the sphere was measured by
following small imperfections on its surface, while its translational
velocity u' relative to the wall by measuring the distance travelled by
the sphere in a given time.

RESULTS AND DISCUSSION

In all cases (as summarized in Table II) the sphere did not
execute a pure rolling motion along the wall but instead exhibited a slip
velocity V expressed by

V=u' -owb (1)
b being the sphere radius. The first experiments were carried out using
System 1; although the spheres appeared through the microscope to touch
the wall, because of the limited resolution (approx. 5 x lo-hcm.) obtained
with the optical equipment used, it was thought that they might not have
been in real contact. Subsequent experiments, however, by applying a
magnetic or electric field to break any intervening liquid film between
the sphere and the wall yielded similar results.
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Recently Goldwan, Cox and Brennerz) have obtained an exact
solution for the motion of an isolated, neutrally buoya.nt rigid sphere
near a single plane wall in a fluid undergoing a simple shearing motion.
The results of their calculations are tabulated in Table III. The
numerical solution used, however, did not converge well when the sphere
was extremely close to the wall. The application of a type of lubrication
theory approximation when the sphere nearly touches the wall indicated
that both its angular and translational velocities were proportional to
[-— loge(L - b)/b] -l. Thus in the limit of zero gap distance the sphere
should not move. Although both w' and u' tend to zero as gap distance
tends to zero, the theory also indicates that w'b/u' should tend to a
limiting value. However, this limiting value cannot be obtained fr,om the
lubrication theory approximation since its calculation requires knowing
the fluid veiocity field outside the gap region.

The experimental results appear to agree well with Brenner's
theory in the sense that when the sphere was very close to the wall
w'b'/ut = 0,6 approx. However, this work leaves unanswered the important
question of whether or not the sphere slips on the wall. As mentioned
above the limited resolution of the optical equipment makes it uncertain
if the spheres were actually touching the wall. For instance a sphere
radius b = 0,05 cm. located at b/l = 0.997 yields ({ - b) = 1.5 x 107* cm.
which could not be observed experimentally. It can thus be argued that
a thin film of liquid always existed between the sphere and the wall, even
though a magnetic or electric field was applied, which would produce

pseudo-slip. Improved experiments are required to resolve this question.
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LIST OF SYMBOLS

radius of rigid sphere

velocity gradient of the undisturbed flow
distance of sphere center from the wall
volumetric flow rate through a tube

tube radius

radius of inner and outer cylin_der respectively

streamliine velocity, translational velocity of
the sphere

slip velocity

viscosity of the suspending phase

rotation of the field at the sphere center;
angular velocity of the sphere
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TABLE I

Temperature 22°C

Des tion of Systems
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System | Suspended Phase | b cm. 8) Suspending Phase qo(poises)b) Remarks

1 Polymethylmetha- | 0.014 | polyglycol 0i1®) 25
crylate sphere

2 Nylon sphere 0.163 | corn syrup 90 Magnetic field applied

before starting expe-
riment.

3 0.0432 | silicone o11%) Electric field spplied
aluminum coated before and during
polystyrene to containing 50 experiment.
sphere e)

N 0.0479 | Freon 113 Electric field applied

before experiment.
a) Radius of the sphere.
b) Viscosity of the suspending medium, -
c) Ucon oil 50-HB-5100 (Union Carbide).
d) Dow Corning fluid series 200, .

e)

E.I. du Pont de Nemours.




Slip velocities of jsolated rigid spheres on the wall

TABLE II

Poiseuille Flow
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a) b)
System 10° x Q R, ! x 10° o |V x 10%m.sec.”t w'b/ut
emJsec. ™| cm. |cm.sec.y | sec.d Eq.(1)
1l 0.711 0.2 0.860 0.339 0.385 0.552
1l 1.78 0.2 1.82 0.8,48 0.630 0,654
2 1.78 0.4 2.18 0.0730 1.01 0.546
Mean = 0,58
Couette Flow
System ¢ ® b | uw x20%| o {Vx10%m.sec.”d|wtb/ur
sec. ™t en. |cm.sec.™l | sec.t Eq.(1)
3 0.289 0.0479 0.57, 0.0714 0.231 0.595
3 0.0952 | 0.0432 0.185 0.0233 0.089 0.544
A 0.291 0.0435 0.593 0.0705 0.186 0.514
Mean 0.55

a) Volumetric flow rate through the tube.

b) Radius of the tube.

¢) Velocity gradient of the undisturbed flow at the sphere center.




TABLE III

Calculated translational and rotational velocities of

d spheres as a function of distance from the wall

(After reference 2)

b/t a) | w'/wgb) L u'/u‘ b) w'v"b/u's %
0 1.0 1.0 0 1.000
0.0995 0.99952 | 0.99962 0.049659 | 0.9999
0.266 0.99430 0.99436 0.13289 0.9999
0.42% | 0.97780 | 0.97768 0.21257 | 1.0002
0.648 0.92368 | 0.92181 0.32468 1.0020
0.888 0.77916 | 0.76692 0.45050 1.0160
0.956 0.67462 | 0.65375 0.49360 1.0320
0.995 0.50818 | 0.47861 0.52825 1.0618
0.997 0.48300 | 0.45291 0.53152 1.0664
1.000 ©) - - 1.0000 2.000

a) { = distance of the sphere center fram the wall.

b) w, u = undisturbed angular and translational velocities in
absence of wall effects.

¢) Values obtained from a lubrication theory approximation.

23
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APPENDIX -V

THE TUBE AND COUETTE APPARATUS

1, The Tube Apparatus
A view of the apparatus with the tube vertical as in all the

present experiments is shown in Figure 1. The apparatus rests on two
concrete vibration-free mounts and by rotation about one end the whole
assembly can be inclined to any angle to the horizontal. It is equipped
with a reversible and continuously v&iable 1/4 HP direct;-curreazt motor
drive with magnetic amplifier control. Through a series of pulleys and
belts the motion.is transmitted to the screw shaft driving the microscope;
four gear ratios 16:1 to l:4 are available‘ to give linear speeds from
10~ to 2 cm.sec. ™t , the ranges at each gear ratio overlapping to obtain
better speed control. Limit switches feverse the direction of the
microscope movement at the upper and lower ends of its travel. The
microscope support can be rotated by ‘90? thus enabling observations to
be made in two mutually perpendicular directions i.e. along the Y- and
Z-axes (Fig. lc, Part II). A still or cine camera can be attached to the
microscope to photograph the particles when required.

Precigion glass tubes pass through rubber stoppers into the
square glass cell with flat viewing surfaces which contains a solution
of the same refractive index as the glass ( = 1.474). This provides
distortion-free viewing over a length of about 60 cm. of the tube. The
ends of the cell rest on circular slots in the steel frame of the apparatus,
and the cell can be aligned with the axes of travel by means of levelling

SCIrews,
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Reproducible flow rates are obtained by the use of an infusion-
withdrawal pump (Harvard Apparatus Co. Inc., Dover, Mass.) placed on the
shelf as shown in the lower ieft position of Fig. 1. It is equipped with
a synchronous motor which moves the plunger of a syringe connected to the
lower end of the tube. The pump can provide continuous operation by means
of adjustable limit stops which automatically reverse the motor. Twelve
speeds are available covering a 5,000 to 1 range.

2. The Couette Apparatus

The Couette apparatus consists essentially of two vertical
coaxial cylinders rotating at independently variable speeds in opposite
directions, with the suspension contained in the annulus between them. In
the experiments described in Parts III and i;V the Couette designated as
Mark II was used, while those in Part II were performed in Couette Mark IV.
In the experiments on radial migration of liquid drops both were used. A
brief discussion of the essential features of each one is given below.

Couette Mark II. A photograph of the apparatus is shown in
Fig. 2. The cylinders are made of stainless steel; the outer one has a
sealed bottom made from plate glass so that observa.f:ions along the Z-axis
throughout the annulus are possible. The optical equipment (camera,
microscope, and illuminator) is mounted on a frame which can be pivoted
about the center of rotation of the cylinders and can be also traversed
radially across the apparatus. The motors are 1/4 HP with magnetic
amplifier control. The gear boxés are equipped with three sets of reduction
gears (1:100, 1:50, 1:25) thus providing a wide range of velocity gradients.
Shown at the right of Fig. 2 is the speed control panel with the coarse and
fine control knobs for each cylinder and the tachometers, whereas on the
left is the panel with variable AC and DC outlets to supply the microscope

light, camera motor, and electronic timer.
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Couette Mark IV, Theé apparatus is shown in Figure 3. The
principle is the same as in Mark II, i.e. two accurately machined spindles
rotate in opposite directions, but the device is more versatile. Cylinders
and discs of various dimensions made of transparent material (Lucite or
epoxy resin) can be mounted on the spindles by means of a chuck assembly,
and the surfaces can be machined in situ to a tolerance of 8 x 10~%em,
with a built-in lathe. Lubrication of the spindles is ma:l.htained by means
of an oil circulation system, which is operated by an oil pump motor that
runs whenever the spindles are rotated. Contamination of the suspension by
the circulating oil is prevented by the use of two teflon rings. The
motion is provided to each spindle independently by a set of motors and
gear boxes similar to those of the Mark II.

The frame on which the optical equipment is mounted is designed
to permit observations along the Y- and Z-axes. The radial position can
be accurately determined to 5 x 10"%cn, with a dial gauge. The control
panel shown on the right is similar to thé.t of Mark II i.e. contains the
speed control knobs, tachometers, and variable DC and AC outlets for the

illuminator, camera motor, and electronic timer.
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FIGURE 1

| The tube apparatus in vertical position. The
sion-withdrawal pump is in the lower left-hand side
of the picture., The microscope and camera are arranged
for viewing along Z-axis.
|
|
|
\
|
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FIGURE 2

The Couette Mark II apparatus. The cylinders are
shown in the center of the photograph, the individual motor
drives on either side. The microscope and cine camera are
arranged for viewing along the Z-axis of the field of the

Couette flow.
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FIGURE 3

The Couette Mark IV apparatus. The Lucite cylinders
are shown on the left and the control panel on the right. The
microscope and cine camera are arranged for viewing along the
Y-axis of the field of the Couette flow,







