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Abstract 

The present work focuses on the mixing of passive scalars in a turbulent flow 

(i.e., scalars that do not disturb the velocity field in which they are transported).  To 

this end, small temperature differences are mixed in a turbulent air flow.  Of 

particular interest are (i) the turbulent Prandtl number ( ), and (ii) the mechanical-

to-thermal time-scale ratio (r) – two recurring quantities employed by modellers, 

determined from experiments, and generally assumed to be constant based on the 

type of flow. The objective of the work is to study the sensitivity of these two 

quantities to differences in their injection method within the same flow. To achieve 

this goal, mixed velocity-temperature statistics were measured in the wake of a 

circular cylinder.  The wake was heated by one of two ways: heating the cylinder, or 

heating an array of fine parallel wires (called a mandoline) placed downstream of the 

cylinder.  

TPr

The experimental results demonstrate that the magnitude of  varies 

throughout the wake for both scalar fields and is consistently greater than the typical 

value of 0.7 used in turbulence models. Furthermore,  differs for the two scalar 

injection methods, despite being within the same flow. Likewise, the values of r vary 

across the wake for both scalar fields and significant differences exist between the 

two scalar injection methods. Hence, both  and r not only depend on the type of 

flow, but on the scalar field injection mechanism method as well. This dependence 

should be taken into account in turbulence models.  

TPr

TPr

TPr
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Résumé 

Ce travail est une étude du mélange de scalaires passifs en écoulements 

turbulents. (Un scalaire est dit passif s’il n’exerce pas d’influence sur le champ de 

vitesse qui le transporte). Par exemple, nous considérons de faibles différences de 

température mélangées sont considérées au sein d’un écoulement turbulent d'air 

comme le scalaire passif. Nous sommes particulièrement intéressés par i) le nombre 

de Prandtl turbulent ( ) et ii) le rapport d’échelle des temps dynamique et 

thermique (r) – deux quantités utilisées pour la modélisation de scalaires passifs en 

écoulements turbulents. Ces deux quantités sont généralement considérées comme 

des constantes et déterminées à partir de résultats expérimentaux. L’objectif de cette 

thèse est d’étudier la sensibilité de ces deux quantités aux différentes méthodes 

d’injection dans l’écoulement turbulent. Pour atteindre cet objectif, nous réalisons des 

mesures simultanées de vitesse et de température dans le sillage d’un cylindre. Ce 

sillage peut être chauffé de deux façons différentes: soit le cylindre lui-même est 

chauffé, ou une mandoline placée en aval du cylindre est chauffée. 

TPr

Les résultats expérimentaux démontrent que  varie pour les deux méthodes 

d’injection du scalaire, bien que le champ dynamique demeure identique dans les 

deux cas. D’autre part, les valeurs mesurées sont systématiquement plus grandes que 

la valeur typique de 0.7 utilisée en modélisation. De plus, r varie lui aussi à travers le 

sillage pour les deux types d’injection utilisés. Ainsi, nous observons que  et r 

sont à la fois dépendants du champ dynamique et du type d’injection utilisé. Cette 

dernière dépendance devrait être aussi considérée dans les modèles de turbulence. 

TPr

TPr
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Nomenclature 

Roman 
 
a  Power law constant for the decay of the velocity fluctuations 

A   Hot-wire calibration constant and Gaussian curve constant 

A   Calibration constant for non-isothermal flows 

AD  Symbolic notation to represent the instantaneous advection-diffusion 

equations 

AD  Symbolic notation to represent the Reynolds-averaged advection-

diffusion equations 

b  Power law constant for the decay of the scalar fluctuations 

B   Hot-wire calibration constant and Gaussian curve constant 

B   Calibration constant for non-isothermal flows 

C  Cold-wire calibration constant 

4321 ,,, cccc  Constants of the mean temperature excess curve-fit 

321 ,, CCC  Constants of the cold-wire response equation 

c    Numerical constant in a turbulence model for passive scalars 

D   Cold-wire calibration constant and cylinder or nozzle diameter 

wired   Wire diameter of the mandoline 

ijd    Diffusivity tensor 

E  Output voltage of the CTA or CCA 

1E ,  Output voltage of the CTA for each hot-wire on the X-probe 2E

DAQE   Voltage span at which data is acquired by the DAQ board 

)( fEq   Power spectrum of a variable q 

f  Frequency 

cf    Cut-off frequency of the cold-wire 

'
cf    Low-pass frequency 

mf   Resonance frequency of the mandoline wires 
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vf   Vortex shedding frequency 

ig   Gravitational acceleration  

h  Velocity half-width 

)( fH f  Filter function used for the compensation of the cold-wire signal 

)( fH f  Filter gain used for the compensation of the cold-wire signal 

k   Turbulent kinetic energy and longitudinal cooling constant for a hot-

wire 

k    Scalar variance )2/( 2  

qK   Kurtosis of a variable q 

   Integral length scale of the velocity field 

   Integral length scale of the thermal field 

wl   Length of the cold-wire and the mandoline wire 

L  Length of the cylinder 

n Decay exponent for the velocity fluctuations and hot-wire calibration 

constant 

N   Number of data points 

NS  Symbolic notation to represent the instantaneous Navier-Stokes 

equations  

NS  Symbolic notation to represent the Reynolds-averaged Navier-Stokes 

equations  

m Decay exponent for the temperature fluctuations 

M Grid mesh length 

M    Mandoline wire spacing  

P
~

  Instantaneous pressure 

P   Mean pressure 

TPe   Turbulent Péclet number 

Pr  Prandtl number 

TPr   Turbulent Prandtl number 

RMSq   Root mean square (RMS) of the variable q 
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r   Mechanical-to-thermal time-scale ratio  

avr   Spatially averaged mechanical-to-thermal time-scale ratio  

DRe    Reynolds number based on the cylinder’s or round jet’s diameter 

wiredRe   Reynolds number based on the mandoline’s wire diameter 

ijs   Fluctuating strain-rate 

S   Instantaneous velocity experienced by the two inclined hot-wires 

tS   Strouhal number 

qS   Skewness of the variable q 

t  Time 

T   Mean temperature 

filmT    Film temperature 

awT , ,  X-probe calibration constants bwT ,

wireT   Temperature of the mandoline wire 

T    Free-stream temperature 

T   Mean temperature excess  

1U ,  Velocities corresponding to the output voltages,  and , from 

each hot-wire 

2U 1E 2E

cU   Centerline velocity 

effU   Effective velocity  

iU
~

   Instantaneous velocity 

iU   Mean velocity 

U   Free-stream velocity 

wu ,, v   Velocity fluctuations in the x-, y-, and z- directions, respectively 

W   Mandoline width 

zyx ,,   Cartesian coordinates 

Dyo /   Offset constant used for curve-fitting the mean velocity and 

temperature profiles  
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Greek 

    Scalar or thermal molecular diffusivity in the fluid 

T    Turbulent thermal diffusivity 

   Angle from the mean flow direction cooling the hot-wires  

q

q
  Relative uncertainty of the variable q 

   Dissipation rate of the turbulent kinetic energy 

   Dissipation rate of scalar variance 

   Kolmogorov microscale for the velocity field 

   Kolmogorov microscale for the scalar field 

   Temperature fluctuation 

eff    Effective angle 

1 , 2    Effective angle of each hot-wire 

~    Instantaneous scalar (concentration or temperature) 

    Kinematic viscosity of the fluid 

T   Turbulent viscosity 

    Density of the fluid 

    Standard deviation of a Gaussian profile 

A   Standard uncertainty of the hot-wire calibration constant A 

B   Standard uncertainty of the hot-wire calibration constant B 

   Integral time-scale of turbulence  

E   Time constant of the electronics of the constant current anemometer 

w   Time constant of the cold-wire  

)( f  Phase of the filter function for the compensation of the cold-wire 

signal 
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Chapter 1: Background and Motivation 

1.1 Introduction 

Fluid mechanics plays a fundamental role in many aspects of engineering. It 

encompasses a large variety of engineering applications, such as fluid flow over 

vehicles, piping systems, and energy generation (e.g., windmills, turbines, etc). 

Furthermore, the majority of engineering flows are turbulent: boundary layers on 

airplane wings, many combustion processes, most flows in pipelines, etc. One 

remarkable aspect of turbulence is its ability to mix mass, momentum, and energy 

rapidly, and more effectively than in a process that occurs solely by molecular 

interactions (as is the case in laminar flows). Therefore, having a thorough 

understanding of turbulence is important to accurately predict and efficiently 

implement the variety of flows encountered in engineering — a challenging objective 

given the non-linear and chaotic nature of turbulent flows.  

To demonstrate this challenge, consider the contrast between laminar and 

turbulent flow predictions. In laminar flows, one can obtain analytical or semi-

analytical results for the simplest cases (e.g., Poiseuille flow in a smooth pipe, or 

Blasius’ similarity solution for flow over a flat plate of a Newtonian, constant 

property fluid). More complicated laminar flows can be predicted by discretizing the 

domain of interest and solving the Navier-Stokes equations computationally. 

Turbulence, on the other hand, is so complex that even for the simplest flows (e.g., 

homogenous, isotropic turbulence) there are no analytical solutions to the 
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instantaneous Navier-Stokes equations. Furthermore, a complete numerical solution 

of turbulent flows is beyond the capabilities of modern computers, because, for 

typical engineering flows, simulation of all the inherent length and time scales 

requires vast computational resources. Therefore, engineers usually rely either on 

empirical correlations to predict time-averaged quantities, or must make reasonable 

approximations to simplify the governing equations (i.e., turbulence models). The 

latter approach, herein referred to as modeling, is more versatile, but requires a 

thorough understanding of the fundamentals of turbulence.  

Although it is difficult to provide a complete and precise definition of 

turbulence, its characteristics are well known: turbulent flows are random, possess 

large diffusivities, occur at large Reynolds numbers, contain a wide range of length 

and time scales, exhibit three-dimensional vorticity fluctuations, and are dissipative. 

Since turbulence consists of random fluctuations of quantities (such as fluid velocity) 

and occurs over a range of time and length scales, two types of mathematical tools are 

frequently used for its study: (i) statistical and (ii) spectral tools. The former deals 

with probabilistic techniques relating to fluctuating quantities, and the latter describes 

the distribution of a given quantity over ranges of length and/or time scales. Some 

turbulence models are based on statistical tools and others on spectral tools. 

 Accurately modeling turbulence is difficult, as previously mentioned; certain 

models often work well for only a few types of flows. To validate and guide the 

formulation of these models, turbulence researchers often rely on experimental 

results. Thus, performing rigorous experiments to uncover the underlying 

mechanisms of turbulent flows is a critical component of turbulence research.  

15 



One interesting branch of turbulence is the study of scalar mixing in turbulent 

flows. A scalar can be temperature, pollutant or any other chemical species within a 

turbulent flow. Scalar mixing has applications to heat transfer, combustion, 

meteorology, environmental pollutant dispersion, etc. A particular interest is given to 

the study of passive scalar mixing in turbulent flows, the simplest, yet still unsolved 

case of scalar mixing. A passive scalar is one that does not disturb the velocity field 

in which it is injected. Temperature is, for example, considered to be a passive scalar 

when the range of temperature differences in a flow is small, rendering buoyancy 

effects negligible.  

1.2 Theoretical Background on Modeling of Passive 

Scalars in Turbulent Flows 

Turbulent flows are described by the governing equations of fluid mechanics. 

The assumptions used herein are: a Newtonian, constant property fluid. Hence, the 

instantaneous continuity and Navier-Stokes equations describing turbulent flows in 

Cartesian coordinates are (noting that a tilde is used to denote instantaneous 

variables): 

0
~





i

i

x

U
, and                                                       (1.1) 
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,                                  (1.2) 

respectively. The instantaneous advection-diffusion equation for a passive scalar is: 
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iU
~

 is the instantaneous velocity, P
~

 is the instantaneous pressure, ~  is the 

instantaneous scalar (which could be a small temperature excess or concentration of a 

chemical species),   is the density of the fluid,   is the kinematic viscosity of the 

fluid, and   is the scalar’s molecular diffusivity in the given fluid.  

Many techniques in computational fluid dynamics are used to approximate the 

solution to these coupled, non-linear partial differential equations. (i) Direct 

Numerical Simulation (DNS) solves the instantaneous governing equations and hence 

resolves all the scales of the turbulent flow. However, the computational cost is high 

because the domain requires an extremely high resolution to capture the smallest 

scales of typical turbulent flows. (ii) Large Eddy Simulation (LES) resolves the large-

eddies of the flow. “Filtered” governing equations, which describe the large-eddies 

and contain an extra term that incorporates the effect of the small-eddies, are solved. 

LES is computationally less expensive than DNS; however, in wall-bounded flows, 

the small scales (not captured by LES) play a critical role in describing the dynamics 

of the near-wall regions. Thus, this challenge can limit certain applications. (iii) 

Reynolds-Averaged Navier-Stokes (RANS) methods solve the Reynolds-averaged 

governing equations (described in section 1.2.1). These methods are the least 

computationally intensive and provide practical quantities for engineering 

applications. Thus, RANS models are widely used in industry and are the focus of the 

next sub-sections (1.2.1 and 1.2.2). These sub-sections will describe the different 

approaches used to predict turbulent passive scalars and highlight the parameters to 

be considered in this work.  

17 



1.2.1 Solving for the Mean Scalar Field 

Since turbulent flows are chaotic in nature, understanding their behaviour 

becomes challenging should the instantaneous variables be solely observed. 

Therefore, it is customary to decompose instantaneous variables into the sum of their 

average (mean) component and a fluctuating (turbulent) component. (This is called 

the Reynolds decomposition.) For example, the instantaneous longitudinal velocity, 

, is split into the sum of the mean velocity, U
~

U (denoted by an overbar), and the 

velocity fluctuation, u , giving uUU 
~

. Once all the instantaneous terms in the 

governing equations are replaced by this decomposition, each term is then averaged. 

Noting that, by definition, the average of the fluctuation is zero (e.g., 0u ), the 

Reynolds-averaged continuity and Navier-Stokes equations become: 

0
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
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U
,                                                      (1.4) 
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The new quantities jiuu , called the Reynolds stresses, are generated by the 

non-linear advection term and represent the transport of momentum by the turbulent 

velocity fluctuations. The Reynolds stresses give rise to what is known as the closure 

problem (i.e., more unknowns than equations). Additional relationships are therefore 

necessary to solve for all the unknowns. 

Similarly, this procedure is applied to passive scalars, resulting in the 

Reynolds-averaged advection-diffusion equation: 
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The new quantities iu , called the turbulent scalar fluxes, are generated by 

the advection term and represent the transport of the scalar fluctuations by the 

turbulent velocity fluctuations. Again, the closure problem appears even if the 

velocity field is known, and additional relationships are needed to model iu  and 

close the Reynolds-averaged advection-diffusion equation. There are two main 

approaches to solve for iu  : (i) using the gradient transport hypothesis (sub-section 

1.2.1.1), and (ii) modeling the turbulent flux budget (sub-section 1.2.1.2).  

1.2.1.1 Modeling the Turbulent Flux using the Gradient Transport 

Hypothesis 

Gradient transport models are often used in turbulence modeling to close the 

Reynolds-averaged governing equations. Physically, the gradient transport hypothesis 

assumes that mass, momentum, and energy exchange, resulting from turbulent eddies, 

can be modeled like colliding molecules in laminar flows. In other words, it is 

assumed that there is a linear relationship between the turbulent fluxes and the 

gradient of a mean quantity. Such models are based on analogies with molecular 

transport relationships, such as the stress and strain-rate relationships for Newtonian 

fluids, Fourier’s law for conduction, or Fick’s law for diffusion. For example, the 

gradient transport hypothesis relates the Reynolds stress to the mean velocity as 

follows:  
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where T  is the so-called “turbulent viscosity.” Much like its molecular counterpart, 

the kinematic viscosity ( ), which describes how momentum is exchanged between 

colliding molecules, the turbulent viscosity describes the exchange of momentum by 

turbulent eddies. However, unlike  , which is a property of the fluid, T  is a 

property of the flow (i.e., it depends on the characteristics of the turbulence, and can 

vary across the flow).  

Similarly, for the passive scalar field (where the passive scalar used herein is 

temperature, hence   is replaced by T ), the turbulent heat flux is related to the mean 

temperature as follows: 

i
Ti x

T
u




  ,                                                  (1.8) 

where T  is the “turbulent thermal diffusivity.” Whereas the (molecular) thermal 

diffusivity ( ) relates to the exchange of internal energy between molecules, the 

turbulent thermal diffusivity ( T ) describes the exchange of internal energy due to 

turbulent eddies. 

Continuing to draw inspiration from molecular interactions, a turbulent 

Prandtl number can be defined. The turbulent Prandtl number relates how fast 

turbulence transports momentum compared to internal energy. Therefore, the 

turbulent Prandtl number is defined as follows:  

T

T
T 


Pr .                                                   (1.9) 

The Reynolds-averaged advection-diffusion is then typically closed by 

expressing the turbulent flux as a function of T  and :  TPr
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This relationship is often used because  is usually assumed to be constant 

throughout the flow. Using this assumption simplifies the computational work 

required to predict the scalar field; the only extra unknown is 

TPr

T  which can be 

determined when solving for the velocity field by using algebraic (e.g., Prandtl’s 

mixing length), one-equation (e.g., turbulent kinetic energy equation) or two-equation 

(e.g., k  equations) turbulence models. 

Despite being conceptually simple, gradient transport models have 

disadvantages. The gradient transport hypothesis assumes that the turbulent flux 

vector and the gradient vector of the mean quantity are related to each other by a 

scalar (i.e, T  and T  are scalars). This assumption implies that these two vectors are 

aligned. However, many observations have contradicted this assumption. For 

example, it has been found that (i) counter-gradient transport (where T  or T  are 

negative) (Bunker, 1956), or (ii) cases where the two vectors are misaligned 

(Tavoularis and Corrsin, 1981), can occur.  To overcome this limitation the turbulent 

diffusivity (e.g. T  or T ) is replaced by a more general expression – the diffusivity 

tensor, . However, even with , cases exist where the mean gradient is zero but 

the turbulent flux is not (Warhaft, 1980). Furthermore, this hypothesis is based on the 

idea that the characteristic time scale of the turbulent eddies is on the same order of 

magnitude as the characteristic time scale of the mean flow. Consequently, this means 

that gradient transport models are capable of describing turbulent flows which are 

characterized by only one velocity scale and one length scale. 

ijd ijd
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1.2.1.2 Modeling of the Turbulent Heat Flux Transport Equations 

Instead of using gradient transport relationships to solve for iu , a turbulent 

heat flux transport equation can be derived and individual terms in the equation are 

then modeled. To derive such an equation, the instantaneous Navier-Stokes (denoted 

by NS) and the Reynolds-averaged Navier-Stokes ( NS ) equations are used as well as 

the instantaneous advection-diffusion (AD) and the Reynolds-averaged advection-

diffusion ( AD ). The following equation is calculated (using the symbolic notation 

described above): 

   ADADuNSNS i  ,                                      (1.11) 

where  NSNS   is multiplied by the scalar fluctuation and  ADAD  is multiplied by 

the velocity fluctuation. Then     ADADuNSNS i   is averaged and simplified to 

become the turbulent heat flux budget: 
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           (1.12) 

 

The table below gives an interpretation of each term of the turbulent heat flux 

budget: 
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 Term Interpretation of the terms 

Material derivative (a) time derivative and spatial convective derivative 

(b) transport of iu due to turbulent velocity fluctuations 

(c) transport of iu due to turbulent pressure fluctuations Transport terms 

(d) molecular transport of iu  

(e) production of iu due to mean temperature gradients 

(f) production of iu  due to mean velocity gradients 

(g) redistribution term in the balance of iu  

Source and sink 
terms 

(h) molecular “dissipation” term 
Table 1.1: Interpretation of the terms of the turbulent heat flux budget 

After deriving the turbulent heat flux budget, new unknowns appear:   jiuu , 

p , 
ix

p

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, 
jj

i

xx

u
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, 
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u


 , and 

j
i x

u



, again indicating the persistence of the closure 

problem. The goal is to model terms (b), (c), (d), (g), and (h) as functions of the 

“known” quantities which already appear in terms (a), (e), and (f) to close this system 

of equations. These “known” quantities include iU , p , jiuu , T , iu , and others to 

be discussed. Modeling and Simulation of Turbulent Flows by Schiestel (2008) 

provides a concise explanation of how each term is modeled by various turbulence 

modellers. Thus the remainder of this section will highlight the key points from this 

book on how each term is modeled. Although not presented in Schiestel, note that the 

gradient transport hypothesis could be used to model the terms as well. 

Terms (c), (d), and (h) can be neglected by performing an order of magnitude 

analysis and assuming that the turbulent Reynolds number is high and that the Prandtl 

number remains near unity. Hence, only terms (b) and (g) need to be modeled. For 

term (b), the triple correlation, jiuu , is modeled by looking at its transport equation 

(which is derived in a similar manner as the transport equation for iu : 
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(1.13) 

Having derived the transport equations for jiuu , additional unknowns are 

introduced; these also have to be modeled. For the sake of brevity, the details of 

modeling these terms are not described herein. Once all terms are modeled, jiuu  is 

expressed as a function of the following terms: 







 

 c
k

uuuuu ijiji ,,, .                                     (1.14) 

k  is the turbulent kinetic energy and is defined as:  

2
iiuu

k  .                                                   (1.15) 

It is the average (turbulent) kinetic energy per unit mass of the turbulent fluctuations. 

 is an important quantity in the study of turbulence: (i) it is related to the largest 

velocity scales of turbulence, (ii) it helps describe the dynamics of the velocity 

fluctuations, and (iii) it is widely used in turbulence modeling to predict the mean 

velocity field. 

k

  is the dissipation rate o  k  (i.e., the rate at which k  is converted 

into internal energ

f

y): 

ijij ss 2 ,                                                  (1.16) 

where  is the fluctuating strain-rate, ijs 
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1
.   is also an important 

quantity in the study of turbulence: (i) along with the kinematic viscosity, it can 

quantify the small scales, (ii) along with , it is related to the integral time-scale of k
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turbulence,  ( /k ), and (iii) it is also widely used in turbulence modeling to 

predict the mean velocity field ( k -  models). Finally,  is a constant determined 

from “numerical optimization” (meaning that the numerical data is fitted to 

experimental measurements). 

c

Having modeled term (b), only term (g) remains. Despite the importance of 

term (g), the derivation describing how to model this term is complicated and is not 

critical to this work (for more information, refer to Schiestel, 2008).  This derivation 

involves taking the divergence of the fluctuating velocity equation, which simplifies 

to the Poisson equation, which is then solved using Green’s functions. Multiplying 

the solution by 
ix


and averaging gives an expression for term (g) as a function of 

several new unknowns. Modeling these unknowns allows term (g) to be presented in 

three parts: (i) a non-linear term, (ii) a linear term, and (iii) a near-wall term (this last 

term is neglected when far from a wall). Finally, term (g) takes on the following 

functional form: 
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(1.17) 

Various approximations for each term have been presented in the literature 

and typically consist of an equation with one or two numerical constants. By 

examining simple turbulent flows, the turbulent heat flux budgets are simplified to 

determine these numerical constants, which end up being expressed as functions of 

the turbulent Prandtl number ( ) and other measurable quantities. Using 
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experimental results from the literature, the numerical constants can be determined 

and are assumed to be constant throughout the flow (but may have a different value 

depending on the type of flow). 

Therefore, the modeled form of the turbulent heat flux budget becomes: 
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(1.18) 

Turbulent flux models are a more rigorous way of solving for the turbulent 

heat flux because they involve fewer assumptions about the physical behaviour of 

turbulent eddies than gradient transport models. Consequently, these models can be 

applied to a wider range of velocity and scalar fields. However, the main 

disadvantage of turbulent flux models is the assumption that only one time-scale (the 

velocity field’s time scale) /k , is used to describe the scalar field. Ideally, the 

integral time-scale of the scalar field,  /k , should also be included in these models 

for instance in the form of a combined time scale, such as )/()(  kk . (  and k   

will be formally defined in the next section.) Unfortunately, the main reason for not 

introducing this time-scale is because two more unknowns will be added. Hence 

 /k  is assumed to be “closely proportional” to /k , especially in cases where 
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“the same agency is responsible for generating both the velocity and the temperature 

fluctuations” (Launder, 1975). 

1.2.2 Solving for the Passive Scalar Variance 

In the previous section, the objective was to solve the Reynolds-averaged 

advection-diffusion equation for a passive scalar and thus obtain the mean scalar 

field. However, knowing only the mean scalar field can be insufficient in turbulence 

studies or engineering designs. Since there is no information about the fluctuating 

part of the flow, it is impossible to predict the range of values about the mean. Hence, 

to quantify the order of the scalar fluctuations, the root-mean-square of the passive 

scalar fluctuations, RMS , needs to be determined. This is achieved by solving for the 

passive scalar variance, 2 (= ), or alternatively 2
RMS )2/( 2 k . The passive scalar 

variance budget is derived by multiplying  ADAD   by  , averaging , and 

multiplying all terms by 1/2. The result is: 
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The table below interprets each term of the passive scalar variance budget: 

  Term Interpretation of the terms 
Material derivative (a) time derivative and spatial convective derivative 

(b) molecular diffusion  
Gradient terms 

(c) transport due to the turbulent velocity fluctuations 
(d) production due to mean temperature gradients  Source and sink 

terms (e) dissipation rate of scalar variance (  ) 
Table 1.2: Interpretation of the terms of the passive scalar variance budget 
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The goal is to model terms (b), (c), and (e) as a function of the “known” 

quantities, 2 , jU , T , ju , and others, which already appear in terms (a) and (d). 

Once again, Schiestel (2008) provides a concise explanation of how each term is 

modeled by various turbulence modellers. Thus the remainder of this section will 

highlight the key points from this book.  

An order of magnitude analysis shows that term (b) is negligible at high 

Reynolds and Péclet numbers. Modeling term (c) is similar to modeling the triple 

correlation term,  jiuu  in the previous section. Hence,  ju2  is modeled by looking 

at its transport equation (which is derived in a similar manner to the transport 

equation of iu  shown in sub-section 1.2.1.2): 
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Having derived the transport equations for ju2 , additional unknowns are 

introduced; these also have to be modeled. Once all terms are modeled, ju2  is 

expressed as a function of the following terms: 







 qjiijii c

k
uuuuuTu ,,,,,2


 .                                (1.21) 

As discussed in section 1.2.1.2, only the velocity integral time-scale ( /k ) is 

used in this model instead of both the integral time-scale for the velocity field and the 

integral time-scale of the scalar field (  /k ).  
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To model term (e),  , the mechanical-to-thermal time-scale ratio, r, is 

introduced. r is defined as the integral time-scale of the turbulent velocity field 

divided by the integral time-scale of the turbulent scalar field (i.e. r is the 

proportionality constant between these two time-scales, assuming they are 

proportional): 

 


/

/

k

k
r  .                                                 (1.22) 

Therefore, if r  is specified, the dissipation term is found as follows: 

)/( 
 
 kr

k
 .                                                (1.23) 

r  is usually assumed to be constant throughout the flow and is determined through 

experimental measurements. 

A more general approach is to solve for   by deriving its transport equation 

and modeling each term. Using this approach, no assumption about the 

proportionality is necessary for relating  /k  to /k . Various researchers have 

proposed modeled transport equations for  , but none agree. More experiments with 

simple turbulent flows are necessary to specify the numerical constants as no 

agreement has yet been reached (Schiestel, 2008). 

1.2.3 Discussion 

From the three types of approaches (DNS, LES, and RANS) used to predict 

the passive scalar field in turbulent flows, RANS-based models were the focus of 

section 1.2 since they are the least computationally intensive, provide practical 

quantities for engineering applications, and are widely used in industry. Typically, the 
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two main quantities of interest in engineering applications are: (i) the mean scalar 

field, and (ii) the scalar variance (to quantify the magnitude of the fluctuations).  

To predict the mean scalar field, the turbulent heat flux term must be 

determined to close the Reynolds-averaged advection-diffusion equation. To model 

the turbulent heat flux term, the two common methods are: (i) to use the gradient 

transport hypothesis to model the turbulent heat flux, or (ii) to model each unknown 

term of the turbulent heat flux budget. The most widely used method in practical 

applications is the former due to its simplicity and lower computational cost. With 

this method, the turbulent heat flux is expressed in terms of the turbulent thermal 

diffusivity, T , and the mean scalar gradient. Thus, the unknown becomes T , which 

can quickly be determined by expressing it as T / . This expression can quickly 

evaluate 

TPr

T  because T  is already obtained from the solution to the velocity field and 

 is an experimentally-determined constant.   TPr

The latter method deals with modeling the unknown terms of the turbulent 

heat flux budget. After making certain assumptions and performing an order of 

magnitude analysis, terms are neglected, and the turbulent transport of iu  due to 

velocity fluctuations (referred to as term (b) in sub-section 1.2.1.2) and the 

redistribution term (referred to as term (g) in sub-section 1.2.1.2) are left to model. 

The models for these terms contain numerical constants, some of which are expressed 

as functions of  and other measurable quantities. Once again,  appears when 

attempting to predict the mean scalar field. 

TPr TPr

To predict the scalar variance, each unknown term of its transport equation is 

modeled. After simplifying the scalar variance budget by making appropriate 
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assumptions and performing an order of magnitude analysis, the turbulent transport of 

 due to the velocity fluctuations (referred to as term (c) in sub-section 1.2.2) and 

the dissipation term (

k

 ) are left to model.   is modelled by two common methods: 

(i) introducing the mechanical-to-thermal time-scale ratio, r , and using the 

expression ))/( /(   k



kr , or (ii) modeling each unknown term of the transport 

equation of  . The former method is widely used because it is simpler and requires 

almost no additional calculations. However, it requires values of r  which are 

estimated from experimental data. The latter method, although more rigorous, does 

not have a generally accepted model due to a lack of experimental data.  

As highlighted in this section,  and TPr r  are two experimentally determined 

parameters that are important for modeling the passive scalar field in turbulent flows. 

The relative importance of these quantities is worth investigating to learn how they 

are measured, and what values are used for models. Therefore, a literature review of 

the work done in studying these parameters will be presented in the next section. 

1.3 Literature Review 

Turbulent flows, being a common occurrence in engineering applications, 

make the study of turbulence an important branch of fluid dynamics. There are 

several books and research papers written on turbulence. Two classic examples of 

books pertaining to the study of turbulence are “A First Course in Turbulence” by 

Tennekes and Lumley (1972) and “Turbulent Flows” by Pope (2000). 

An interesting aspect of turbulence is the study of passive scalar mixing. As 

mentioned earlier, it is common to numerous scientific and engineering phenomena. 
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The mixing of a passive scalar in turbulent flows has received great interest for the 

last forty years. Warhaft (2000) presents a review on the work done over these years. 

Other reviews on this subject are done by Sreenivasan (1991), Shraiman and Siggia 

(2000), and Dimotakis (2005). 

 Experimentally, many simple turbulent flows with passive scalars have been 

studied. Theoretically, the simplest flows are homogenous, isotropic (usually grid-

generated) turbulence because there is no mean velocity gradient (i.e., no shear). For 

this situation, the scalar is injected either by heating the grid or by heating an array of 

fine wires (called a mandoline) placed downstream of the grid. The second simplest 

types of flows are homogenous turbulent shear flows. Next there are inhomogeneous 

shear flows for which two main categories exist: (i) bounded shear flows which 

include boundary layers, channel flow, and pipe flow, and (ii) free shear flows which 

include mixing layers, jets, and wakes. 

In the following sub-sections (1.3.1 and 1.3.2), the experimental results for 

 and TPr r  found in the literature for these simple turbulent flows will be 

summarized, respectively. Furthermore, basing their models on these experimental 

results, the values of  and TPr r  used by modellers will also be discussed.  

1.3.1 The Turbulent Prandtl Number 

The turbulent Prandtl number has been determined experimentally for a 

variety of simple turbulent flows. For bounded shear flows, Kays (1994) provides a 

review of about 50 papers ranging from the 1950s to the early 1990s on analytical, 

experimental, and DNS work done on TPr  for two-dimensional turbulent boundary 

layers, and fully- developed flow in a circular tube or a rectangular duct. TPr  results 
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are grouped into three flow regions: (i) the sublayer region, (ii) the “logarithmic” 

region, and (iii) the “wake” region of an external turbulent boundary layer, and the 

centerline region for fully-developed turbulent flow in a pipe. Furthermore, TPr  for 

different types of fluids are considered; from fluids with low Pr (e.g., liquid metals) 

to fluids with very high Pr (e.g., transformer oil). Finally, the effect of pressure 

gradient, transpiration (blowing or suction), and surface roughness on TPr  are 

separately examined for air.  

Kays (1994) concludes that for the “logarithmic” region,  appears to be a 

function of the turbulent Péclet number, 

TPr

)/(Pe  TT  , and tends to 0.85 as  gets 

large (e.g., for gases and oils). When 

TPe

TPe

Pr

 is very small (e.g., for liquid metals),  

grows indefinitely. After summarizing the results in the “logarithmic” region, Kays 

points out that in the sublayer region, , for both air and water, is generally higher. 

As for the “wake” region and the centerline region for fully-developed turbulent flow 

in a pipe, 

TPr

T

TPr is between 0.5 and 0.7. Kays then discusses the pressure gradient effect 

on TPr for air. Experimental data suggest that TPr  decreases with a positive pressure 

gradient and increases with a negative pressure gradient; however, other reports did 

not observe this trend. Thus, the effect of pressure gradient is said to be inconclusive. 

Finally, transpiration and surface roughness are shown to have little effect on TPr . 

For free shear flows, table 1.3 summarizes the experimental results found by 

various authors. This table contains several symbols which are defined as follows: D  

represents the nozzle width for the plane jet and mixing layer at the plane jet exit, the 

diameter of the nozzle for the round jet, and the diameter of the cylinder for its wake. 

In addition,  is the Reynolds number based on this parameter DRe D . As for the 
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coordinates, x  is the downstream distance from either the exit of the nozzle or the 

center of the cylinder; and  is the transverse coordinate in these two-dimensional 

flows. For the first table entry, h is used to non-dimensionalize the lateral coordinate 

and is defined as the velocity half-width (i.e., the value of  where the local mean 

velocity is half the mean centerline velocity). 

y

y

There are two principal conclusions that can be drawn from this table: (i) the 

spatial distribution of TPr  is not constant throughout a given flow, and (ii) the 

distribution of TPr  appears to vary from one flow to the other (although the flow 

parameters in each flow are different, i.e., the measurements are made at different 

downstream positions and Reynolds numbers). Unfortunately, since both flow type 

and parameters are changed simultaneously, it is difficult to assess how each flow 

type or parameter affects TPr . Regardless, experimental evidence demonstrates that 

there is no universal constant value for TPr . 

In contrast, when it comes to the use of  in engineering calculations, a 

constant value of  is often used throughout the flow in modeling of turbulent 

passive scalars for the sake of simplicity. Originally, the “Reynolds analogy” was 

used to justify the assumption that  is equal to unity (Tennekes and Lumley, 

1972). Further investigation (i.e., compiling data from experiments and DNS) has 

lead to using other constant values of  based on the type of turbulent flow. 

Common values used are:  ≈ 0.9 for bounded-flows (Wilcox, 1993; Schiestel, 

2008) and  ≈ 0.5 (Wilcox, 1993) or ≈ 0.7 (Pope, 2000; Schiestel, 2008) for free 

shear flows. In addition to simplicity, modellers justify using an averaged value of 

 because of the scatter in experimental results. 

TPr

TPr

TPr

TPr

TPr

TPr

TPr
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Authors Turbulent Flow Scalar Injection Notes TPr Distribution 

Browne and 
Antonia (1983) 

Plane jet 
Jet heated by 1 

kW electrical coil 
elements 

x/D = 20, 40 

DRe  = 9 939 

• 0.7  for 8.0/0  hy  
• increasing monotonically from 

5.1/8.00.7 to 1.2  for  hy  

Chua and 
Antonia (1990) 

Round jet 
Jet heated by 1 

kW electrical coil 
elements 

x/D = 15 

DRe  = 17 700 

• 0.81 ± 0.05 (0 < y < the jet half-
radius) 
• increasing in the outer region 

 

DRe  = 360 
 
 

• 0.2 < < 0.4 for 0 < y/x < 0.15 TPr
• 0.4 for 0.06 < y/x < 0.14 
• 0.2 near center and outer region 

Chang and 
Cowen (2002) 

Round jet 
Fluorescent dye 

injected   
DRe  = 4 210 

 
 

• 0.7 < < 0.9 for 0 < y/x <0.12 TPr
• decreasing monotonically for 
 y/x > 0.12 
• recommended value of = 0.8 
for high Reynolds number flows 

TPr

Chambers, 
Antonia, and 

Fulachier (1985) 

Mixing layer at 
the edge of the 

plane jet 

Jet heated by 1 
kW electrical coil 

elements 

x/D = 4, 5 

DRe  = 7600 

• not constant distribution (0 to 0.8) 
• 0.4 in the region where the 
Reynolds stresses and heat fluxes 
are large 

Antonia and 
Browne (1987) 

Wake of cylinder 
Cylinder heated 

electrically   
x/D = 270, 420, 600 

DRe  =1 190 
• not constant distribution 
• covers the range of 0 to 1.2 

Antonia, Zhou, 
and Matsumura 

(1993) 
Wake of cylinder 

Cylinder heated 
electrically 

x/D = 10, 20, 40 

DRe  = 5 830 

• not constant distribution 
• varies from 0.8 to 1.2 at x/D = 10 
• varies from 0 to 1 at x/D = 20, 40 

Table 1.3: Values of the turbulent Prandtl number found in literature
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1.3.2 The Mechanical-to-Thermal Time-Scale Ratio 

Like the turbulent Prandtl number, the mechanical-to-thermal time-scale ratio, 

r ,  has also been studied experimentally for a variety of simple turbulent flows. For 

grid-generated turbulence (i.e, homogeneous, isotropic turbulence), the variation in r 

was investigated by Warhaft and Lumley (1978), Sreenivasan, Tavoularis, Henry, and 

Corrsin (1980) and Durbin (1982). In grid-generated turbulence, the decay 

(downstream evolution) of the velocity and temperature fluctuations follows a power 

law: nMxaUu  )/(/
22  and mMxbT  )/(/

22 , where M  is the grid mesh length, 

and , , , and  are constants. For this flow, it can be shown that . 

Warhaft and Lumley (1978) present the results from previous heated grid 

experiments and explain how the decay rate for the velocity fluctuations varied 

between , but the decay rate for the temperature fluctuations varied over 

a much wider range , which was dictated by the electrical power used 

to heat the grid. The conclusion from the heated grid experiments was that when 

injecting the scalar by heating the grid, changes in the heat supplied to the grid 

modified the scalar field. To avoid the dependence of the decay rate on the heat 

applied to the grid, a new scalar injection technique which did not affect the velocity 

field was developed; a “mandoline” (placed downstream of the unheated grid) is an 

array of fine, parallel wires. Using a mandoline, the temperature fluctuations had a 

decay rate which was independent of the applied heating. Furthermore, the mandoline 

allowed the length scale of the scalar field to be altered independently from that of 

the velocity field. Using different mandoline configurations (by varying its 

a b

.1

n

15 

m

4.

.0

nmr /

1n

09.387  m
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downstream position and spacing between the wires), they found that the decay 

exponent m ranged from 1.29 to 3.20, thus concluding that r  is not a constant. 

Sreenivasan et al. (1980) performed similar experiments to Warhaft and 

Lumley in grid-generated turbulence where they used a heated screen (which does not 

alter the velocity field) placed downstream of the unheated grid. For the 

configurations they considered, they found that m was independent of the wire 

spacing, downstream position, and initial intensity of the fluctuations. The difference 

in the conclusions of these two papers was explained by Durbin (1982) who used a 

theoretical approach (Lagrangian dispersion theory). He explained that m depends on 

the ratio of the initial velocity-to-temperature length scales up to a value of 2.5, after 

which m is constant. Durbin pointed out that in Warhaft and Lumley’s experiments 

the ratio of these length scales was in the 0.8 to 2.0 range and for Sreenivasan et al. 

the ratio was higher than 2.5. 

More recently, Beaulac and Mydlarski (2004) studied the downstream 

evolution of m and r  in inhomogeneous turbulence using the wake of a circular 

cylinder. Once again the mandoline was chosen as the scalar injection technique. The 

downstream location of the mandoline, the mandoline width, and the mandoline wire 

spacing were each varied to study the dependence on the initial conditions of scalar 

mixing. The following observations were made: (i) changing the downstream location 

of the mandoline (i.e., varying the velocity integral scale at the scalar injection point) 

with x/D = 2, 4, 10, and 20, resulted in m = 0.25, 0.40, 0.55, and 0.98, respectively. 

Results showed that all these different mandoline configurations did not influence the 

downstream evolution of r , for this reason r was spatially averaged ( ). For the avr
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above values of x/D,   = 1.21, 1.27, 1.39, and 1.80, respectively. (ii) Keeping the 

mandoline at one downstream position, x/D = 20, and using five configurations where 

the wire spacing, , and mandoline width, W,  are varied (i.e., varying the scalar 

injection scale), gave the results shown in table 1.4.  

avr

M

W/D M /D m avr  

1 0.1 0.98 1.80 
2 0.4 0.76 1.69 
1 0.2 0.95 1.75 
2 0.2 0.77 1.83 
3 0.2 0.58 1.68 

Table 1.4: m and r results to different scalar injection scales (adapted from Beaulac and 
Mydlarski, 2004) 

The authors concluded that changes in the velocity integral scale at the scalar 

injection point affects the scalar field in a similar way as observed in grid-generated 

experiments, i.e., as m increased,  increased. However, changes in the scalar 

injection scale caused almost no variations in , but caused variations in m. 

Consequently, the downstream evolution of the scalar field (m) can be modified 

without changing the structure of the flow ( ). These results are different from 

those in grid-generated turbulence where r is directly linked to m with r = m/n (which 

is proven by simplifying the turbulent kinetic energy and scalar variance budgets). 

The authors therefore theorized that the independence of m and r is a result of the 

inhomogeneous nature of the flow.  

avr

avr

avr

Using experimental data available in the literature, Béguier, Dekeyser, and 

Launder (1978) evaluated the distribution of r for various thin shear flows: (i) the 

turbulent boundary layer over a heated flat plate (from three papers), (ii) fully-

developed pipe flow (from two papers), (iii) near the centerline region of the wake of 
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a heated cylinder (from one paper), (iv) asymmetrically heated mixing layer (from 

one paper). The authors concluded that for these various thin shear flows, the 

distribution of r is around 2 (ranging from 1.5 to 2.5).  

In summary, the effect of scalar injection on the downstream evolution of r 

was studied for homogeneous, isotropic turbulence and inhomogeneous turbulence. 

The distribution of r at a given downstream position was also studied for a variety of 

inhomogeneous turbulent flows. These results demonstrate that r is generally not a 

constant and varies from flow to flow. In contrast, modellers use constant values such 

as r = 1 for homogeneous, isotropic turbulence (Launder, 1976), or simply r = 2 for 

all flows (Pope, 2000).   

1.4 Thesis Objective and Overview 

1.4.1 Thesis Objective 

The main objective of the present work is to experimentally study scalar 

mixing in turbulent flows with applications to the modeling of turbulent passive 

scalars. Having presented how the turbulent passive scalar field is modelled (section 

1.2), the parameters TPr  and r  were of interest. Furthermore, doing a literature 

review on the experimental work done on these quantities showed that there is 

significant variation in measured values from one flow to the next. Part of this 

variation may be due to the flows or different parameters for the same flow 

(measurement location, Reynolds number, and so on) used in the experiments. It is of 

practical benefit to quantify the variations in TPr  and r  that can be expected between 

fundamental experiments and “real” complex flows. Therefore, to determine this 
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variation (without any extraneous differences due to variations in flow parameters), 

this work will investigate the sensitivity of TPr  and r  for one type of flow (with 

constant flow parameters) for two different passive scalar injection methods. This 

will be of use since it will provide us with estimates of the variability of TPr  and r  

for a given type of flow because (i) no modelled flow is exactly the same as that for 

which experiments were performed, and (ii) we will be able to determine how much 

of the variability is from sources other than flow parameters. 

The flow under consideration is the turbulent wake of a circular cylinder. The 

passive scalar (temperature) is injected in one of two ways: (i) by heating the 

cylinder, and (ii) by heating an array of fine wires (a mandoline) placed downstream 

of the cylinder. Hot-wire anemometry and cold-wire thermometry are used for 

measuring velocity and temperature, respectively, in this work.  

1.4.2 Thesis Overview 

This thesis is divided into five chapters. Chapter 2 describes the experimental 

set-up, calibration procedures, data acquisition and analysis. In Chapter 3, the 

velocity and scalar fields are presented and validated individually. The results are 

presented and discussed in Chapter 4. Finally, Chapter 5 presents conclusions and 

suggestions for future work.  
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Chapter 2: Experimental Setup 

2.1 The Wind Tunnel  

The experiments were performed in a low-background-turbulence, open-

circuit, suction-design wind tunnel (shown in figure 2.1) located in the Aerodynamics 

Laboratory at McGill University. The flow conditioning section of the wind tunnel 

consists of an aluminum honeycomb, four screens of stainless steel wire mesh, and a 

9-to-1 area ratio contraction that follows a fifth degree polynomial profile.  

 
Figure 2.1: Wind tunnel in which the present experiments were undertaken 

Following the contraction is the test section. It is 0.853 m high, 1.22 m wide, 

and 2.74 m long with bevelled corners that slowly decrease in length in the 

downstream direction (increasing the cross-sectional area) to maintain a constant 

free-stream velocity throughout the test section. The test section is followed by an 

8.84 m-long small-angle diffuser, and an axial fan. The fan is powered by a 125 hp 
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AC motor, with a controller that is accurate to within ±1 rpm (ensuring the stability of 

the mean flow). The experiments were conducted at a nominal mean flow velocity of 

7.34 m/s with the measurements made at 40 diameters downstream of the center of 

the cylinder. 

2.2 The Cylinder 

A cylinder of circular cross-section was used to generate a turbulent wake. It 

was placed vertically, along the tunnel’s midplane, at the entrance of the test section. 

The cylinder is made of a 5.08 cm outer diameter aluminum pipe with 1.984 mm 

(5/64”) wall thickness. Its length spans the entire height of the test section with end 

supports fixed to the walls of the wind tunnel (see figure 2.2). 

 

 
Figure 2.2: The cylinder (seen on the right) placed in the test section of the wind tunnel 
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Two methods were used to heat the wake of the cylinder. The first method 

involved heating the cylinder itself. Inside the cylinder is (i) a 1.5 kW tubular electric 

heating element with an external diameter of 0.635 cm (¼”), and (ii) a series of 

concentric thermal fins (25 mm in length) that fill the gap between the outer surface 

of the element and the inner surface of the aluminum pipe. To guarantee a uniform, 

axisymmetric temperature distribution on the outside surface of the cylinder, high-

thermal-conductivity paste was applied to the thermal fins. The element was heated 

using a variable AC power supply (1.5 kW) and was electrically insulated from the 

aluminum pipe. 

2.3 The Mandoline 

The second method used to create the thermal wake is a “mandoline”. 

Developed by Warhaft and Lumley (1978), the mandoline is an array of fine, parallel, 

heated wires placed downstream of the unheated cylinder and parallel to the axis of 

the cylinder (see figure 2.3). The mandoline configuration used in this work consisted 

of thirteen 0.127 mm diameter nichrome (type A) wires, spaced 5.08 mm apart, 

resulting in a total width of 61.0 mm. The wires were heated using a variable DC 

power supply providing 1.1 kW of power. Small springs were attached at one end of 

each wire to maintain tension since the wires expand when heated. Furthermore, the 

mandoline’s two end mounts were electrically and thermally insulated using small 

ceramic plates. The diameter of the wires, , was chosen such that the Reynolds 

number, 

wired

40/Re  wired dU
wire

 to prevent shedding of vortices  (Lienhard and 

Lienhard, 2008). (  is the kinematic viscosity of air evaluated at the film 
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temperature, , with  being the temperature of the 

mandoline’s wire and  being  the free-stream temperature.)  

)(5.0  TTT wirefilm

T

wireT

 
Figure 2.3: The mandoline (top half seen on the left) placed in front of the cylinder  

Figure 2.4 shows a schematic of the experimental setup in the test section.  

represents the (constant) free-stream velocity that flowed past the cylinder of 

diameter, D. The origin of the coordinate axes, x and y, was located at the center of 

the cylinder. The mandoline was placed at a downstream distance of x/D = 10 (noting 

that when the mandoline was used to heat the wake, the cylinder was not heated, and 

when the cylinder was used to heat the wake, the mandoline was removed from the 

wind tunnel). The sensors were placed at x/D = 40 and were mounted on a traversing 

mechanism which moved in the transverse (y) direction.  

U
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Figure 2.4: Schematic of the experimental setup (top view, not to scale). Note that x represents   
the downstream or longitudinal direction and y represents the transverse direction. 

2.4 The Measurement Instruments 

Cold-wire thermometry (CWT) and hot-wire anemometry (HWA) are 

discussed in “Hot-Wire Anemometry: Principles and Signal Analysis” by Bruun 

(1995). The advantages of using such techniques include: relatively low-cost, high-

frequency response, compact, continuous signals provided, good signal-to-noise-

ratios, and length scales on the order of the smallest (Kolmogorov) scale for many 

flows.  

Cold-wire thermometry measurements were made using a constant current 

anemometer (CCA). A cold-wire sensor is a fine cylindrical wire with a low constant 

current passing through it. The resistance of the wire changes linearly with 

temperature (for small enough temperature changes); consequently the output voltage 

varies linearly with temperature. The CCA, used for the temperature measurements, 

was built at Université Laval. The sensor was a Wollaston wire with a 0.625 µm-

diameter platinum core mounted on a TSI 1210 single-wire probe (shown in figure 
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2.5). The resistance of the cold-wire was around 150 Ω, corresponding to a length-to-

diameter ratio on the order of 800. This ratio is lower than the recommended value 

given by Browne and Antonia (1987) who recommended a ratio of 1500 to guarantee 

reduced conduction between the wire and the prongs. However, for better spatial 

resolution, they also recommended that the length of the wire ( ) be no greater than 

five times the Kolmogorov microscale (i.e., the smallest length scale in the velocity 

field), 

wl

 . In this flow, /wl  ≈ 4; hence, a length-to-diameter ratio on the order of 800 

was a good compromise between these two competing effects (Mydlarski and 

Warhaft, 1998).  

 

 
Figure 2.5: TSI 1210 single-wire probe (image from tsi.com) 

For longitudinal and transverse velocity measurements, hot-wire anemometry 

(HWA) in the constant temperature anemometer (CTA) mode was used. A hot-wire 

sensor is a fine cylindrical wire electrically heated and maintained at a constant 

temperature (i.e., resistance), much higher than the flow’s temperature, by the 

anemometer. As the wire is being convectively cooled by the fluid flow, the 

anemometer supplies additional voltage to maintain the wire at this temperature. This 

applied voltage is the recorded output of the anemometer. To this end, a two-channel 

TSI IFA 300 anemometer was employed. The sensors were made using 3 µm 
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diameter tungsten wires (with a copper coating) separated by a distance of 1 mm, and 

mounted on a TSI 1241 X-probe (shown in figure 2.6). The copper coating was 

etched away with nitric acid, thus revealing the sensing portion of the wire. The 

resistance of each sensor is around 5 Ω which corresponds to a length-to-diameter 

ratio of about 200.  

 
Figure 2.6: TSI 1241 X-probe (image from tsi.com) 

To make simultaneous velocity-temperature measurements, the X-probe was 

mounted beside the cold-wire probe. The cold-wire was located 1 mm from the 

nearest hot-wire and 0.25 mm upstream from the centre of the X-probe to prevent 

contamination of the temperature measurements due to the hot wake of the X-probe 

(see figure 2.7). Beaulac (2003) measured the velocity field with and without the 

cold-wire probe beside the X-probe and found no significant difference in the 

velocity measurements.  
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Cold-wire (temperature) 

Hot-wire (velocity) 

Figure 2.7: Velocity and temperature probe arrangement 

2.5 Calibration Procedures 

The recorded output for both the cold- and hot-wires is voltage; however, 

each type of wire relies on different physical principles to make the measurements. 

Therefore, each wire has a distinct calibration procedure, which is described in sub-

section 2.5.1 for the cold-wire probe, and in sub-section 2.5.2 for the hot-wire probe. 

2.5.1 Cold-Wire Calibration 

Before calibrating a cold-wire sensor, the current of the constant-current 

anemometer is set. The current is selected based on the diameter of the wire; for a 

0.625 µm diameter wire, the recommended current is 0.10 mA (Lemay, private 

communication). This choice is based on a balance between two competing effects: 

(i) if the current is too high, the wire becomes too hot and starts sensing velocity 

fluctuations and (ii) if the current is too low, the signal-to-noise ratio becomes 

unacceptably small. For small temperature differences, and using Ohm’s law, it can 

be shown that the output voltage, E, varies linearly with temperature as follows: 

T = C × E + D,                                                 (2.1) 
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where C and D are calibration constants determined by a least-squares fit to the 

calibration data. 

To calibrate the cold-wire sensor, a heated, circular, laminar jet was used. The 

jet’s velocity was set to a constant value similar to the experiment’s mean velocity. 

The air jet was heated using three 120 W electric heaters which were attached to the 

outside of a 5.08 cm diameter copper pipe connected to the calibration jet’s air 

supply. Once the air is heated to a temperature above that of the ambient temperature 

(about 15 to 20°C above), the electric heaters are turned off allowing the jet to cool 

down. After a certain time, the jet’s temperature decreases monotonically, at which 

time calibration can begin. The output voltage of the CCA and the air temperature at 

the exit of the jet are simultaneously measured. A typical calibration curve is 

presented in figure 2.8. 
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Figure 2.8: Typical temperature calibration curve 
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The time constant of the cold-wire, w , was then measured to determine the 

wire’s cut-off frequency,  wcf 2/1 .  is the natural frequency of the cold-wire, 

representing the response of the wire to a change in temperature (resistance). The 

purpose of finding  was to verify the temporal resolution of the cold-wire: if  is 

significantly smaller than the highest frequency in the flow (i.e., the Kolmogorov 

frequency), the temperature fluctuations will be unresolved in time. 

cf

cf cf

w  was measured using the current injection technique proposed by Lemay 

and Benaïssa (2001). This technique requires passing a square-wave current through 

the cold-wire causing the wire’s temperature to rise by about 20 °C above the ambient 

temperature during the high current periods. As the wire cools by forced convection, 

the time constant can be determined; the response of the wire to a square-wave 

current was recorded (i.e., the CCA output voltage vs. time was recorded). The 

following equation was proposed by Lemay and Benaïssa (2001) to model the output 

of the CCA in response to the current injection:  

321 CeCeCE wE

tt



 .                                       (2.2) 

This equation represents the cooling period of the cold-wire described by an 

exponential decay due to the electronics superimposed with an exponential decay due 

to the wire’s thermal time constant. Equation 2.2 was least-squares fit to the data (see 

figure 2.9) with E  being the time constant of the electronics (herein, E =3µs). 

Hence, the constants wCCC and,,, 321

 w

were determined and  was calculated from 

its definition, 

cf

cf 2/1 .   
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For a given mean flow velocity and cold-wire diameter,  can be predicted 

theoretically. However, the actual value of  may be lower due to dust (and other 

types of contaminating debris) or some coating/fouling of the wire. Therefore,  

was determined after each cold-wire calibration and before each experiment to check 

the state of the cold-wire. If  is too low, the cold-wire was cleaned with 

isopropanol (rubbing alcohol) to improve its frequency response. 

cf
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Figure 2.9: Cold-wire temporal response to the current injection technique 

2.5.2 Hot-Wire Calibration 

Hot-wires operate at a high (constant) temperature, as mentioned earlier. The 

operating temperature (or resistance) for each hot-wire is set by selecting an overheat 

ratio (i.e., the ratio of the resistance of the heated wire to the resistance of the wire at 

ambient temperature) of 1.8, which corresponds to a wire temperature of 
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approximately 240°C (Bruun 1995). Since hot-wires operate significantly above the 

ambient temperature, before performing any calibration, newly made hot-wires must 

be “aged” (or “burned in”). In other words, the wires are operated for at least 24 

hours to allow the material properties to reach a steady-state. (Note that since cold-

wires operate at ambient temperature, aging is not necessary.) 

The calibration procedure for hot-wires is more complex than that of cold-

wires because the anemometer response to flow velocities is non-linear.  The 

relationship between velocity and voltage is predicted by a modified King’s Law:  

nUBAE 2 ,                                                (2.3) 

which can be derived using a forced convection heat transfer analysis of a heated 

cylinder. , A B , and  are the calibration constants determined by a least-squares fit 

to the calibration data.  

n

Relationship 2.3 is applicable to isothermal flows. However, in these 

experiments, the flow is non-isothermal. Therefore, to account for the temperature 

changes, Lienhard (1988) proposed the following corrections to constants  and A B  

(in equation 2.3), based on heat transfer principles and on the empirical effect of 

temperature on fluid properties: 

 TT
TT

AA aw
aw 






 
 ,

84.0
,

2
 ,                                      (2.4) 

 TTBB bw  , ,                                                   (2.5) 

where T  is the varying flow temperature and A , B , , and  are constants 

determined by the calibration.  and  are representative of the operating 

temperature of the hot-wires.  

awT , bwT ,

awT , bwT ,
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To calibrate the hot-wires, the X-probe was placed in the round jet and was 

aligned in the direction of the mean flow (x-direction) resulting in each hot-wire 

being nominally inclined at about 45° to the flow.  The jet velocity was varied while 

maintaining different (constant) jet temperatures by setting the electric heaters to a 

certain power and allowing the system to reach steady-state. The variation of the jet 

temperature for one King’s Law calibration was at most ±1.2 °C. The velocity was 

varied from about 4 m/s to 19 m/s, covering the range of velocities encountered in the 

experiments. Therefore, five calibrations (recording the velocity and the anemometer 

output voltage) were performed at five different temperatures. Figure 2.10 shows an 

example of this calibration for one of the hot-wires. 
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Figure 2.10: Typical calibration curves for a hot-wire of an X-probe, (n = 0.44975) 

To determine the calibration constants A , B , , and , the following 

procedure was applied: (i) King’s Law (equation 2.3) was fitted (in the least-squares 

awT , bwT ,
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sense) to the 2E  vs. U  data set for each temperature to find five different n’s. (ii) 

Taking the average value of the exponent n (which is approximately temperature 

independent), King’s Law, using this average value of n, was fitted to the 2E  vs. U  

data set (as shown in figure 2.10) to find A  and B  for each free-stream temperature, 

T . Finally, (iii) equation 2.4 was fitted to the A  vs. T  data to determine A  and ,  

and equation 2.5 was fitted to the 

aw,T

B  vs. T  data to determine B  and . bwT ,

2U

The two hot-wires mounted on the X-wire probe were cooled by both cross- 

and parallel-flow since they are not perpendicular to the flow. With the output 

voltages from each wire (  and ), the velocities,  and , corresponding to 

the output voltages from each wire, were determined from equation 2.3. To determine 

the longitudinal and transverse velocity components from  and , the effective 

angle method described by Browne et al. (1989) was followed. 

1E 2E

effU

1U 2U

1U

The effective angle method considers a hot-wire recording a CTA output 

voltage, E, to measure an instantaneous velocity, U , at some inclination to this hot-

wire. The effective velocity, , is introduced as the velocity, that, if it were normal 

to the wire, would produce the same voltage E as U . The relationship between U  

and  U  is defined as:  

effU

eff

)eff(fU  ,                                                   (2.6) 

where  and  is used to account for the effect of 

longitudinal cooling. Browne et al. (1989) set  to a standard constant value (and 

independent of the orientation of the wire with respect to the flow) of 0.03. 

1222 )sin)( f 2/(cos k 2k

2k

eff  is the 

effective angle and is approximately equal to the angle between the mean flow and 
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the “normal” of the hot-wire. (The value of eff  also depends on factors such as the 

curvature of the wire, non-conventional heat transfer from the wire, etc.).  

eff  of each hot-wire is obtained by means of a yaw calibration. The X-probe 

is calibrated using 9 different yaw angles ranging from -24° to 24° in increments of 

6° at ambient temperature (because eff  is independent of temperature) and at a fixed 

jet speed. eff  for each yaw angle is determined, then averaged to give the effective 

angle of each hot-wire.  

Once eff  for each hot-wire is known, the longitudinal and transverse velocity 

components can be determined as follows: say the two inclined hot-wires experience 

the same instantaneous velocity, , at an angle S  , from the mean flow direction 

(shown in figure 2.11 with 1  and 2  as the effective angle of each hot-wire).  and 

are the velocities corresponding to the output voltages from each wire,  and 

. Assuming that the effective velocity (i.e., the velocity normal to the hot-wire) 

due to  is the same as the effective velocity due to  for one hot-wire and  for 

the second hot-wire, the following equations are obtained:  

1U

1E

2U

2U

2E

S 1U

))( 11 ( 1   fSfU ,                                            (2.7) 

))( 22 ( 2   fSfU .                                           (2.8) 

The instantaneous longitudinal (U ) and transverse velocity (V ) components can be 

determined by solving for S and

~

 

~

  from these two equations. Hen osce, c
~

SU   

and sin
~

SV  . 
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Figure 2.11: Top view of the X-probe wires, shown separated (figure from Browne et al., 1989) 

Table 2.1 shows the typical calibration constants for the two channels (two 

hot-wires) of the X-probe. 

 Anemometer channel 1 2 
n  0.44677 0.44975 

410A  3.0976 3.4232 
210B  2.9243 3.1155 

awT ,  529.56 510.58 

bwT ,  409.59 401.81 

eff  -44.108 -45.657 
Table 2.1: Typical X-probe calibration constants 

The frequency response of the hot-wires is faster (on the order of 100 kHz) 

than that of cold-wires due to the nature of the CTA system. The anemometer 

specifications state the frequency response to be 260 kHz for a 3.8 µm-diameter wire 

and a flow velocity of 100 m/s. Since the maximum frequency encountered in the 

present flow was on the order of 10 kHz, the temporal resolution of the hot-wires is a 

non-issue. 

2.6 Data Acquisition and Analysis 

For temperature measurements, the output signal from the CWT was 

connected to a Kron-Hite model 3384 where it was low- and high-pass filtered. The 
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mean output voltage was recorded separately to be able to determine the mean 

temperature (needed for A and B, two constants used to determine velocity). For 

velocity measurements, the output signal from the CTA was given a DC offset from 

the anemometer output voltage (that was approximately equal to the anemometer 

mean output voltage). This signal was then low-pass filtered using the same filter as 

the CWT. 

After being filtered, an oscilloscope was used to monitor the signal from each 

channel and to determine the voltage span over which the data should be acquired (to 

make full use of the bits of the data acquisition (DAQ) board). The analogue signals 

were then converted to digital using a National Instrument PCI-6036 16-bit DAQ 

board. This DAQ board was controlled using LabVIEW 7.0.  

The high-pass filter was set to 0.1 Hz for the cold-wire’s channel and the low-

pass filter was set to the maximum frequency of the flow at the centerline. The low-

pass frequency for each wire was estimated with a real-time spectrum analyzer, which 

was created by a Virtual Instrument controlled by LabVIEW. These maximum 

frequencies were slightly larger than the Kolmogorov frequency for the two fields.   

Velocity and temperature measurements were assumed to be taken 

simultaneously even though the DAQ has an inter-channel delay of 5 µs. This 

assumption is valid because the time lag is only 0.04 % of the Kolmogorov (smallest) 

time scale. 

Two types of data sets were acquired: (i) for large-scale statistics, and (ii) for 

spectra. For large-scale statistics the values must be statistically independent from 

one another; hence a sampling frequency on the order of the integral time scale was 

necessary. The sampling frequency was set to 200 Hz with 10 blocks of 4096 samples 
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each (for a total of 40 960 data points). For “spectral” data, the sampling frequency 

was set to twice the low-pass frequency (in accordance with the Nyquist criterion) 

with 400 to 3000 blocks of 16 384 samples. 

The data was then processed using a computer code (written in FORTRAN 

90) that converts the acquired data (voltages) to physical quantities (i.e., velocity or 

temperature) using the calibration constants and then performs various statistical 

analyses of the results.  

To improve the small-scale measurements for the cold-wire thermometer, a 

compensation method was employed. The compensation procedure was applied when 

the cut-off frequency of the cold-wire, , (see section 2.5.1) was lower than two 

times the Kolmogorov frequency (as recommended by Lemay and Benaïssa, 2001). 

The compensation procedure consists of multiplying the Fourier transform of the 

original signal by the filter function, , put forth in Lemay and Benaïssa 

(2001), and defined as follows: 

cf

H f )( f

)()()( fj
ff efHfH  ,                                          (2.9) 

with 

2'

2

)/(1

)/(1
)(

c

c
f

ff

ff
fH




 ,                                        (2.10) 

as the filter gain, where  is the low-pass frequency, and '
cf









 

cf

f
f 1tan)( ,                                            (2.11) 

as the phase. The compensated signal was then obtained by taking the inverse Fourier 

transform of this product:  
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 teduncompensadcompensate )()()( 1 ffHFt f   .                      (2.12) 

Figure 2.12 shows the compensated and uncompensated dissipation spectra at the 

centerline. As explained earlier, the small scales which are represented by the large 

frequencies are the ones that need the correction. 
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Figure 2.12: Uncompensated and compensated cold-wire signal 
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Chapter 3: Flow Characteristics 

In this chapter, the characteristics of the (individual) velocity and temperature 

field will be presented. The overall properties of the flow (i.e., its symmetry and two-

dimensionality) will be discussed. Furthermore, the influence of the mandoline on the 

flow and the passivity of the scalar will be verified. 

3.1 The Velocity Field 

When a uniform stream in the x-direction flows over a circular cylinder 

having its axis aligned with the z axis, a turbulent wake is formed. In this instance, 

the structure of the flow changes in the downstream direction —  the velocity field is 

said to be evolving in the direction of the mean flow. Three main regions characterize 

the evolution of the hydrodynamic wake: (i) the near wake ( ), (ii) the 

intermediate wake, 

5/ Dx

50/5  Dx , and (iii) the self-preserving far wake, 

hundreds of diameters (Matsumura and Antonia, 1993). Precise values of the 

limits between these regions are difficult to obtain because they depend on 

parameters such as the Reynolds number.  

Dx /

In this work, measurements were made in the intermediate region at a 

downstream position of x/D = 40 with a free stream velocity of m/s 

corresponding to a Reynolds number (based on the cylinder’s diameter 

34.7U

/Re DUD  ) of . 26024Re D
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3.1.1 Parameters of the Velocity Field 

To describe the velocity field generated herein, six flow parameters are 

studied (for both the longitudinal and transverse velocity components). (i) The root 

mean square (RMS) of velocity, defined as 2/12 )(uuRMS  , quantifies the order of 

magnitude of the velocity fluctuations. (ii) The skewness, 2/323 )/(uuSu  , quantifies 

the (positive/negative) symmetry of the statistical distribution of the velocity 

fluctuations. (iii) The kurtosis (or flatness), 2/424 )/(uuKu  , quantifies the likelyhood 

of very large velocity fluctuations. (iv) The dissipation rate of turbulent kinetic 

energy, ijij ss 2 (described in sub-section 1.2.1.2), which quantifies the rate at 

which the turbulent kinetic energy is converted to internal energy, is determined by 

assuming small-scale isotropy and using Taylor’s frozen flow hypothesis: 











































2

2

2
15

15
dt

du

Udx

du  .                                    (3.1) 

Taylor’s frozen flow hypothesis implies that changes in the downstream direction can 

be related to time as Uxt /  and can be used when the turbulence intensity, 

UuRMS / , is much smaller than unity. In the present work’s experiments, UuRMS /   is 

on the order of 10%; hence the use of Taylor’s frozen flow hypothesis throughout the 

flow is applicable. (v) The integral length scale, , quantifies the largest length scale 

of the flow and is determined by evaluating the integral of the auto-correlation 

function up to its first zero, as suggested by Comte-Bellot and Corrsin (1971). (vi) 

The Kolmogorov scale, 



 ,  quantifies the smallest length scale of the flow and is 

defined as:  
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4/13 )/(   .                                                 (3.2) 

The flow parameters at the centerline are summarised in table 3.1. These 

velocity measurements are made without the presence of the mandoline placed in the 

flow. 

 

x/D 40 
U (m/s) 6.33 

RMSu  (m/s) 0.590 

RMSv  (m/s) 0.523 

uS  0.099 

vS  -0.006 

uK  2.81 

vK  2.79 

)s/m( 32  2.48 
 (mm) 110 
 (mm) 0.20 

Table 3.1: Flow parameters at the centerline 

In addition to the six flow parameters discussed, it is beneficial to consider the 

distribution of the turbulent kinetic energy from the largest eddies (integral scale), to 

the smallest eddies (Kolmogorov scale), by means of the power spectrum (or power 

spectral density) of the velocity fluctuations. Figure 3.1 plots the power spectrum of 

 and v  at the centerline. As expected, these plots indicate that the majority of the 

contributions to the turbulent kinetic energy come from the smallest frequencies, 

which correspond to the largest eddies. Also, for both figures, a sharp peak in the v 

spectrum occurs at a frequency of about 30 Hz. This frequency corresponds to the 

vortex shedding frequency, , calculated from the Strouhal number, 

 (Kovásznay, 1949). 

u

St

vf

21.0/  UDfv
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Figure 3.1: Power spectrum of u and v  at the centerline  

3.1.2 Structure of the Hydrodynamic Wake 

3.1.2.1 Symmetry of the Hydrodynamic Wake 

The mean longitudinal velocity profile is shown in figure 3.2. (Note that 

angular brackets, e.g., <U>, are sometimes used to identify the mean of a quantity.) 

The profile is symmetric about the y = 0 axis. This profile is predicted theoretically 

(Tennekes and Lumley, 1972) to be Gaussian, assuming self-similarity and a constant 

turbulent viscosity throughout the wake. Hence the following equation can be used to 

describe the mean velocity: 

 
2

2

2

//


DyDy o

BeAU



 ,                                              (3.3) 

where ,  UA B  is a constant,    is the standard deviation, and  is any small 

offset that might exist.  

Dyo /
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Figure 3.2: Mean velocity profile 

To validate the velocity profile, (i) the velocity half-width (i.e., the value of 

y/D where the local mean velocity deficit is half the mean centerline velocity deficit), 

 (h 2ln2 ), and (ii) the centerline velocity to free-stream velocity ratio, , 

are compared to values from the literature. Table 3.2 shows the values of  and  

 found by Matsumura and Antonia (1993), Kang and Meneveau (2001), and 

Beaulac (2003) at different downstream positions (within the intermediate region of 

the wake) and Reynolds numbers, as well as the present results.  The general trend 

that can be observed is that as x/D increases, h  also increases. Likewise, increasing 

 also seems to increase . The value of x/D and  in the present work fall 

within the values presented in table 3.2. Therefore, because the values of  and 

 also fall within the ranges of the previous work, it is reasonable to assume 

that the mean flows are consistent.  

UU c /

h

h

Uc /

D

Uc /

U

Re

U

h DRe

64 



Reference x/D DRe  h  UUc /  
10 0.81 0.91 
20 1.02 0.89 

  
 Matsumura and Antonia (1993) 

  40 
5 830 

1.49 0.91 
 Kang and Meneveau (2001) 25 75 600 1.66 0.76 

 Beaulac (2003) 53 16 200 2.40 0.86 
 Present work 40 24 260 1.80 0.86 
Table 3.2: Values of  and  U  found in literature h Uc /

Figure 3.3 presents the RMS profile of the velocity fluctuations for both 

velocity components (longitudinal and transverse). Symmetry about the y = 0 axis is 

observed. The highest fluctuations occur in the vicinity of the centre of the wake. 

This behaviour (including the small off-axis peaks in ) is consistent with 

previous measurements, including those of Beaulac (2003) and Matsumura and 

Antonia (1993).  
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Figure 3.3: RMS profile for longitudinal and transverse velocity fluctuations 
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3.1.2.2 Two-Dimensionality of the Hydrodynamic Wake 

Given the large aspect ratio of the cylinder (L/D = 16.5), the velocity field is 

expected to be two-dimensional (i.e., independent of the z-direction). This assumption 

was verified by Beaulac (2003), where a series of measurements were taken (in the 

same wind tunnel) at different axial positions and using a smaller cylinder diameter. 

The results from these measurements confirmed that the mean velocity profile and the 

RMS velocity profile, as well as the power spectral density of u  were not affected by 

the axial position over the range 5.3/5.3  Dz . Given that the flow was shown to 

be homogeneous in the z-direction for a range of 7 cylinder diameters, and since the 

cylinder spans 16.5 diameters herein, it can be reasonably assumed that the 

hydrodynamic wake is two-dimensional at the plane of symmetry ( ) where 

all measurements were made. 

0/ Dz

3.1.3 Influence of the mandoline on the flow 

As mentioned in Chapter 2, the mandoline’s wire diameter was chosen to 

avoid the shedding of vortices. Using the free-stream velocity to get an upper bound, 

34/Re   wired dU
wire

, which is less than the critical value of 40, at which 

vortices are shed (Lienhard and Lienhard, 2008). To verify whether the mandoline 

has an influence on the entire range of length scales, the power spectra of u with and 

without the mandoline at the centerline are shown in figure 3.4. Note that the 

mandoline has a negligible effect on the power spectra of the transverse component 

of velocity (not shown). From the power spectra of u with the mandoline, no vortex 

shedding frequency by the mandoline wires is observed. Comparing both spectra, the 

mandoline only appears to slightly affect the largest scales. The effect of this 


wiredRe
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difference can be quantified by comparing the flow parameters ( , , , , 

, ) with and without the presence of the mandoline. The u  and  values 

are slightly greater for the wake with the mandoline. The largest difference (about 3 

% relative difference) is at the centerline where  = 0.609 m/s in the presence of 

the mandoline, and  = 0.590 m/s without it. , ,   and  remain 

unchanged and are thus unaffected by the mandoline’s presence. 
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Figure 3.4: Influence of the mandoline on the power spectrum of u at the centerline 

Furthermore, to ensure that the excitation of the mandoline wires does not 

reach a level that disrupts the flow, the resonance frequency of the mandoline ( ) 

must be much larger than the cylinder’s vortex shedding frequency ( ). Beaulac 

(2003) estimated  to be 1 kHz, which also holds for to the mandoline in the present 

work (because the same wire diameter, length, and material were used), and  can 

be obtained from 

mf

vf

mf

vf

21.0/  UDfvSt . For 32032Re D ,  is 30 Hz. Hence, the vf
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mandoline wires are unlikely to oscillate significantly with a vortex shedding 

frequency of about 30 Hz.  

Based on the verifications presented in this section, the presence of the 

mandoline in the wake of the cylinder causes a slight perturbation to the velocity 

field.  

3.2 The Thermal Field 

3.2.1 Parameters of the Thermal Field 

To describe the thermal field in the present work, the following parameters 

are calculated: (i) the mean temperature excess, TT  ( T ), (ii) RMS , (iii) the 

skewness, S , (iv) the kurtosis, K , (v) the dissipation rate of the scalar variance,  ,  

which is determined by assuming small-scale isotropy and using Taylor’s frozen flow 

hypothesis: 

2

2

3








dt

d

U

 ,                                                (3.4) 

(vi) the integral length scale of the thermal field, , which is determined in the same 

way as  , (i.e., by evaluating the integral of the auto-correlation function up to its 

first zero), and  (vii) the Kolmogorov scale for the scalar field, 



 ,  which is defined 

as:  

4/13 )/(   .                                                (3.5) 

The temperature field parameters at the centerline are shown in table 3.3. 
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 Cylinder Mandoline 
Power input (kW) 1.5 1.1 

)C(TT  0.68 0.50 

)C(RMS  0.225 0.145 

S  0.315 -0.226 

K  3.41 3.06 

)s/C( 2
  0.174 0.0960 

 (mm) 146.32 85.00 

 (mm) 0.25 
Table 3.3: Temperature field parameters at the centerline 

In addition to the parameters discussed above, another important measure is 

the temperature power spectrum. This spectrum describes the distribution of the 

scalar variance per unit frequency from the largest eddies (integral scale), to the 

smallest eddies (Kolmogorov scale). Figure 3.5 shows this power spectrum for the 

case of the heated cylinder and the case of the heated mandoline. As expected it is 

observed that the majority of the contributions to the scalar variance come from the 

large (low-frequency) scales for both cases.  
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Figure 3.5: Power spectrum of θ at the centerline 
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3.2.2 Structure of the Thermal Wake 

3.2.2.1 Symmetry of the Thermal Wake 

Figure 3.6 plots the mean temperature excess,   TTT , profile for the 

wake heated by the cylinder and the mandoline. The mean temperature excess is 

measured (instead of T ) to eliminate the effects of drift in ambient room temperature 

during the experiment. This profile is theoretically predicted to be Gaussian (Pope, 

2000) assuming self-similarity and a constant thermal diffusivity. The half-width of 

the mean temperature excess profile is slightly larger than the half-width of the mean 

velocity profile with a value of 2.62 diameters for the case of the heated cylinder and 

2.52 diameters for the case of the heated mandoline. This is consistent with results 

from Rehab et al. (2001) who took measurements in the wake of a heated cylinder in 

a water tunnel, as well as those of Beaulac (2003).  
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Figure 3.6: Mean temperature excess distribution for both scalar injection methods 
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Figure 3.7 plots the RMS profile of the temperature fluctuations for the two 

injection methods. The profile is distinctly (i) double-peaked, unlike that of the RMS 

velocity profiles, thus indicating the dynamics of the two fields are different, and (ii) 

the RMS differs from one injection mechanism to the other. It is, however, consistent 

with previous measurements, including those of Matsumura and Antonia (1993) and 

Beaulac (2003).  
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Figure 3.7: RMS profile of the temperature fluctuations 

3.2.2.2 Two-Dimensionality of the Thermal Wake 

Just like the hydrodynamic wake, given the large aspect ratio of the cylinder 

(L/D = 16.5), the thermal wake is expected to be two-dimensional (i.e., independent 

of the z-direction). Beaulac (2003) performed a series of temperature measurements 

(in the same wind tunnel) at different axial positions and using a smaller cylinder 

diameter. The results from these measurements confirmed that the temperature 

statistics were not affected by the axial position over the range . 5.3/5.3  Dz
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Given that the thermal wake was shown to be homogeneous in the z-direction for a 

range of 7 cylinder diameters, and since the cylinder spans 16.5 diameters in this 

work, it can be reasonably assumed that the thermal wake created by heating the 

cylinder is two-dimensional at the plane of symmetry, , where all 

measurements were made.  

0/ Dz

3.2.3 Passivity of the Scalar 

The scalar (temperature) was injected in one of two ways: (i) by heating the 

cylinder and (ii) by heating the mandoline placed downstream of the cylinder. The 

effect of the scalar field on the velocity field is quantified by (i) comparing turbulent 

statistics of the velocity field for the isothermal and heated cases, and (ii) comparing 

the ratio of the rate of buoyant production of the turbulent kinetic energy to its 

dissipation rate. 

Table 3.4 presents flow parameters in the isothermal wake and heated wake. 

(The heated wake examined is the one heated by the cylinder because it has a higher 

temperature increase than that heated by the mandoline.) The differences in the flow 

parameters in the isothermal wake and heated wake are within experimental error, 

validating the passivity of the scalar field. 

 x/D =40 
 isothermal wake heated wake 

RMSu  (m/s) 0.599 0.590 

RMSv  (m/s) 0.525 0.523 

uS   0.014 0.099 

vS  -0.011 -0.006 

uK  2.79 2.81 

vK  2.75 2.79 
)s/m( 32  2.37 2.48 

Table 3.4: Flow parameters at the centerline in the isothermal and heated wake 
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To compare all the scales, the power spectrum of v  (because it is the velocity 

fluctuation which is in the direction of the highest temperature gradient) in the 

isothermal wake and heated wake is shown in figure 3.8.  The effect of temperature 

on the power spectrum of v  is negligible. 
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Figure 3.8: Effect of the scalar on the power spectrum of v 

The second measure of the passivity of the scalar is estimating the ratio of the 

buoyant production of turbulent kinetic energy ( Tug ii / ) to the dissipation of 

turbulent kinetic energy ( ). Calculating this ratio is difficult because the cylinder is 

placed vertically in the experiments and the temperature field is statistically 

homogeneous in the direction of the gravitational acceleration vector (which means 

that ii ug  = 0). As a worst-case approximation, this quantity can be estimated if the 

cylinder were rotated 90° so that the direction of the gravitational acceleration is 

assumed to be in the transverse direction. In that case, the ratio would be: 
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energy kinetic  turbulentofn Dissipatio

energy kinetic  turbulentof productionBuoyant  

 Tg /v

                 (3.6) 

 

The highest ratio from the different configurations is 1.88% (x/D = 40, y/D = 

2.5, heated cylinder) which shows that buoyancy has a small effect on the flow and 

the scalar field can be assumed to be passive. 
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Chapter 4: Results and Discussion 

Measurements (and a related discussion) of  and TPr r  are presented in 

sections 4.1 and 4.2, respectively, for the two scalar fields under consideration herein. 

These results include a description of how these two quantities were calculated, 

followed by a comparison of different scalar injection methods. Furthermore, the 

sensitivity of  and TPr r  to the changes in scalar injection methods is discussed. For 

completeness, an error and uncertainty analysis is presented in Appendix A for the 

temperature (A.1.1) and velocity (A.1.2) measurements individually. Lastly, an 

uncertainty analysis for  and TPr r  follows in sub-section A.1.3. 

4.1 The Turbulent Prandtl Number 

To calculate , the following four quantities need to be determined:   TPr

(i) the mean velocity gradient, yU  / ,  

(ii) the mean temperature gradient, yT  / , 

(iii) the turbulent Reynolds stress, vu , and  

(iv) the transverse turbulent heat flux, v .  

Once these four quantities are known,  can be calculated from the following: TPr
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.                                           (4.1) 
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To determine the mean velocity gradient, yU  / , a Gaussian curve is least-

squares fitted to the longitudinal mean velocity profile (shown in figure 4.1) of the 

form presented in Chapter 3: 

 
2

2

2

//


DyDy o

BeAU



 .                                          (4.2) 
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Figure 4.1: Longitudinal mean velocity profile with a Gaussian curve-fit 

To determine yT  / , a 6th order polynomial with only even terms (to 

guarantee even symmetry in the y-direction) is least-squares fitted to the mean 

temperature excess profiles (as shown in figure 4.2): 

6
4

4
3

2
21 )//()//()//( DyDycDyDycDyDyccT ooo  .     (4.3) 
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Figure 4.2: Mean temperature excess profiles with a 6th order polynomial curve-fit 

The third quantity used to calculate  is the turbulent Reynolds stress, TPr vu , 

defined as the mean of the product of the longitudinal and transverse velocity 

fluctuations. vu  quantifies the average x-momentum transfer in the y-direction due to 

the turbulent eddies. Because of the underlying symmetries of the flow, the profile is 

expected to be antisymmetric in the y-direction. However, due to a slight yaw offset 

in either (i) the calibration, or (ii) the installation of the X-probe (in the wind tunnel), 

the measured vu  data did not exactly exhibit this symmetry. Therefore, to account for 

this yaw offset, a correction was made to the effective angles of each hot-wire. A 

value of 1.5° was heuristically determined to account for this offset. Note that this 

correction only affected the vu  results. The uncorrected and corrected vu  

distributions are shown in figure 4.3. In this flow, the peaks roughly occur at the 

location of highest production, i.e. where yU /  is the largest (y/D ≈ ±1.5).  
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Figure 4.3: (a) Uncorrected turbulent Reynolds stress distribution, (b) Corrected turbulent 

Reynolds stress distribution 

The fourth and final quantity necessary to calculate  is the transverse 

turbulent heat flux, 

TPr

v , plotted in figure 4.4 for both passive scalar fields. It 

quantifies how the velocity fluctuations in the transverse direction transport the 

scalar. As with vu , the profile must also be antisymmetric in the y-direction, due to 

the underlying symmetries of the flow.  
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Figure 4.4: Transverse turbulent heat flux distribution for the two scalar fields 
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Having presented all four quantities needed to calculate , figure 4.5 plots 

the resulting distributions of  for each scalar field.  Given the symmetries of the 

quantities used in calculating , it must exhibit even symmetry in the y-direction. 

As with any experiment, the measurement uncertainties rendered the actual 

distribution of  slightly asymmetric. Given that (i)  must exhibit even 

symmetry in y, and (ii) any component that is odd in y must not be physical in origin, 

only the even component of the measured results is presented (by averaging data 

points on either side of the y = 0 line of symmetry). 

TPr
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Figure 4.5: Distribution of the turbulent Prandtl number for both scalar fields 

Looking at figure 4.5,  is found to vary across the wake for both scalar 

field injection methods. For the case of the heated cylinder, the minimum value of 

 is 0.74, and the maximum is 3.5 (near the edge of the wake). The minimum value 

of  for the case of the mandoline is 0.90 and the maximum is 1.5. Note that the 

value at the centerline is indeterminate because all four quantities needed to calculate 

TPr

TPr

TPr
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TPr

TPr

 are zero there; hence  is not plotted at the centerline. A comparison of  

values for the two scalar fields shows that, for the majority of the wake (y/D = 0.5 to 

3),  for the case of the mandoline is greater than  for the case of the heated 

cylinder, with a largest absolute difference of 0.2. On the other hand,  using a 

heated cylinder is higher near the edge of the wake and close to the center with the 

largest difference (of 2.3) at y/D = 4. The large difference near the edge of the wake 

is due to the larger mean temperature gradient for the heated cylinder at that location. 

The resulting discrepancy at the edge of the wake is an artifact of the curve-fit at that 

location, which overestimates the temperature gradient there. This discrepancy occurs 

because it is the last point and therefore does not account for the flattening of the 

profile as it approaches zero for larger values of y. Consequently, the difference in 

 between the two scalar fields at y/D = 4 is overestimated. 

TPr TPr

TPr TPr

TPr

TPr

Pr

As discussed in Chapter 1, the typical  value used in the modeling of 

turbulent passive scalars for free shear flows is 0.7. However, the experimental 

results shown above contradict this generalization because: (i) the value of  is not 

uniformly distributed across the wake, (ii) the average  value is not 0.7 for either 

scalar field case, and most importantly (iii) Pr  depends upon the scalar injection 

method (for the identical turbulent flow). Therefore, modellers who take into account 

changes in the type of flow (e.g., bounded vs. free shear flow) when modeling the 

scalar field, should also factor in the injection method of the scalar. 

TPr

T

T
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4.2 The Mechanical-to-Thermal Time-Scale Ratio 

To calculate the mechanical-to-thermal time-scale ratio, one requires:  

(i) the turbulent kinetic energy, k,  

(ii) the dissipation of turbulent kinetic energy,  ,  

(iii) the scalar variance, k , and  

(iv) the dissipation of the scalar variance,  : 

 


/

/

k

k
r  .                                                    (4.4) 

The turbulent kinetic energy, k, is calculated from the following definition: 

 222
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1
wuuuk ii  v ,                                       (4.5) 

where 2w  was determined from measurements with the X-probe rotated by 90°. The 

dissipation of turbulent kinetic energy,  ,  is:  
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The scalar variance,  , is defined as: k

2

2

1 k ,                                                     (4.7) 

And the dissipation of the scalar variance,   , is determined from: 

2

2

3








dt

d

U

 .                                                (4.8) 

To obtain the time derivatives of u and  , the “spectral” data sets were used because 

their sampling rate respected the Nyquist criterion. Thus, numerical derivatives could 

be computed directly from the acquired data. Also, note that due to the underlying 
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symmetries, r is expected to be symmetric about the centerline. Hence, only one half 

of the wake is plotted in figure 4.6. 
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Figure 4.6: The mechanical-to-thermal time-scale ratio distribution 

As shown in figure 4.6, the values of r vary across the wake for both scalar 

fields. For the case of the flow heated by the cylinder, the highest value is 1.28 and 

the lowest is 1.03. For the case of the flow heated by the mandoline, the highest value 

is 1.62 and the lowest is 1.11. Overall, r for the scalar field created by the mandoline 

is higher than for the case of the heated cylinder. The largest difference in r exists at 

the centerline (0.45) and the smallest (0.08) occurs near the edge of the wake.  

Typically, r is assumed to be constant in turbulence models with a value of 2 

for free shear flows (determined from experimental r results which ranged from 1.5 to 

2.5). However, in this work r is not constant but varies throughout the wake, with an 

average value of 1.21 for the case of the heated cylinder, and 1.43 for the case of the 

mandoline. Even for these two cases, considerable differences exist in r. As discussed 

in section 3.2, these two scalar injection methods do not affect the flow (velocity 
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field). To date, it has been assumed that the mechanical-to-thermal time-scale ratio is 

not affected when changing only the scalar injection method. However, as shown by 

the measured data, changes in scalar injection can lead to significant changes in r (up 

to an absolute difference of 0.45). Hence, like , r not only depends on the type of 

flow, but on the scalar field injection as well. 

TPr
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Chapter 5: Conclusions and Future Work 

5.1 Summary and Conclusions 

The majority of engineering flows are turbulent, and rapidly mix mass, 

momentum and energy. Prediction of these flows is important, but remains difficult 

given the non-linear and chaotic nature of turbulence. To overcome this impediment, 

turbulence models are applied to simplify the governing equations. The present work 

dealt with the mixing of passive scalars (i.e., small temperature differences) in a 

turbulent flow. When modeling turbulent passive scalars, the turbulent Prandtl 

number ( ) and the mechanical-to-thermal time-scale ratio (r) are two important 

and recurring quantities. They are determined from experiments and generally 

assumed to be constant. Furthermore, modellers often change the value of this 

constant based on the type of turbulent flow under consideration. For example, for 

turbulent shear flows, the generally employed values of  and r are constant and 

given as 0.7 and 2, respectively. 

TPr

TPr

The objective of the work was to study the sensitivity of  and r to changes 

in scalar field initial conditions within the same turbulent flow. The turbulent wake of 

a circular cylinder was chosen with the scalar field injected either by heating the 

cylinder or by heating an array of fine parallel wires (called a mandoline) placed 

downstream of the cylinder.  

TPr

The experiments were performed in a wind tunnel where simultaneous 

velocity-temperature measurements, using hot-wire anemometry and cold-wire 
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thermometry, were made. The cylinder (an aluminum tube of circular cross-section 

with a heating element on the inside) was placed at the entrance of the test section 

and used to generate the turbulent wake. When the flow was not heated by the 

cylinder, it was heated by the mandoline, which was made of 13 fine wires and was 

placed 10 cylinder diameters downstream of the cylinder’s center. The sensors were 

placed at 40 diameters downstream of the cylinder’s axis and the measurements were 

made across the wake in the transverse (y) direction. 

Flow characteristics were presented and the symmetry and two-dimensionality 

of both the hydrodynamic wake and the thermal wake were discussed. Furthermore, 

the influence of the mandoline on the flow was shown to be acceptably small and the 

passive nature of the scalar was confirmed. 

By means of simultaneous velocity-temperature measurements,  and r 

were calculated for the two scalar fields under consideration. The results 

demonstrated that the value of  is not constant throughout the wake for either 

scalar field. In fact, the typical value of 0.7 used in turbulence models underestimated 

the values calculated in the present work. Likewise, the values of r varied across the 

wake for both scalar fields. Furthermore, the typical modeling value of 2 

overestimated r for both scalar injection cases. Most importantly, both these 

quantities varied with different scalar injection methods, despite being within the 

same flow. Therefore, not only does the type of flow play a role in determining these 

quantities, but so does the scalar injection method. This dependence should be taken 

into account in turbulence models.  

TPr

TPr
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5.2 Suggestions for Future Work 

Future work would include sensitivity tests of CFD simulations to the 

variations in  and r found in this work. These tests would compare mean 

temperature and scalar variances as obtained with the typical modeling values and 

those from this work. Such tests would identify and quantify how inaccuracies in 

these quantities directly affect the outputs of interest (i.e., the mean scalar field and 

scalar variance). 

TPr

Further experimental investigations could also be performed by varying 

different flow parameters such as the type of flow, the Reynolds number, the 

downstream location, etc. to study the sensitivity of  and r to different scalar 

injection methods for different flow conditions. The overall goal would be to better 

understand and quantify the sensitivity of these two quantities for various parameters. 

These future investigations could help develop improved models to accurately predict 

the distribution of  and r.  

TPr

TPr

A practical extension of this study would be for turbulent jets, a flow widely 

used in engineering applications (e.g., combustion), where the initial conditions can 

vary significantly. It has been shown that the velocity field in jets depends on the 

initial conditions (e.g., a "top-hat" velocity profile at the jet exit vs. a fully-developed 

one) for downstream distances up to x/D = 30 (Antonia and Zhao, 2001).  

Analogously, one might expect that the scalar field statistics would also depend on 

their initial conditions at the jet exit.  Consequently, so should  and r, and the 

effect of the scalar field initial conditions in this flow will play an important role in 

TPr
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the scalar field evolution, at least for intermediate downstream distances, which are 

relevant to many, if not most, engineering applications. 
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Appendix A  

A.1 Sources of Error and Uncertainty Analysis 

In this section, an uncertainty analysis is performed for the temperature 

(A.1.1) and velocity (A.1.2) measurements individually, followed by the uncertainties 

in the results of  and r (A.1.3). A combination of uncertainty analysis models 

from both Taylor (1997) and Jørgensen (2002) is used to calculate the total relative 

expanded uncertainty at a given confidence level. This model involves calculating the 

relative standard uncertainties from each source of error which can affect the 

measurement. Then, the contributions from each error are combined using a 

propagation of uncertainties and a coverage factor of 2 to obtain a confidence level of 

95 %. 

TPr

A.1.1 Uncertainty in the Temperature Measurements 

Constant current anemometer  

The sources of error which can occur in constant current anemometry can be 

due to (i) sensitivity to velocity changes, (ii) electronic noise, and (iii) limitations in 

the frequency response. The current is selected such that the sensor’s sensitivity to 

velocity changes is small and a good signal-to-noise ratio is obtained. Secondly, 

electronic noise is negligible (compared to other sources of error) given the large 

signal-to-noise ratio in this flow. Lastly, the frequency response is an issue only for 

small scale measurements, as explained in Chapter 2. In this work, large-scale 
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quantities are considered; hence the frequency response is a non-issue. Therefore, the 

sources of error for the temperature measurements are deemed negligible. 

Calibration and curve-fit 

When calibrating the cold-wire (as described in 2.5.1), the largest source of 

error is the temperature read-out from the thermocouple, which has a resolution of 

±0.1°C. This error is conservatively assumed to have a uniform distribution, meaning 

that it is equally likely that the measured values lie within the given interval. The 

standard deviation for this uniform distribution is 3/1.0 . Thus, the relative standard 

uncertainty is calculated from: 

uncertainty %100
1.0

3

1








T
,                                     (A.1) 

where T is the nominal value of the temperature read by the thermocouple. Taking the 

smallest value read (to obtain the largest relative uncertainty from the calibration), the 

relative standard uncertainty is 0.24 %. 

Furthermore, the curve-fit to the calibration data (E vs. T) causes an 

uncertainty which is calculated by taking the standard deviation of the curve-fitting 

errors. The curve-fitting errors are calculated by subtracting the measured 

temperature ( ) from the temperature evaluated by the curve-fit at that same 

voltage ( ). This difference is divided by  to obtain a relative 

error. This measure of error assumes that the output voltages ( ) have negligible 

uncertainty, which is reasonable considering the comments mentioned previously for 

the anemometer. To obtain a value of the standard deviation, these errors are squared, 

summed, and divided by the number of data points minus two (N-2). (The minus two 

measurediT ,

)( ifit EcurveT )( ifitcurve ET 

iE
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is a consequence of having used two degrees of freedom to obtain the coefficients of 

the least-squares fit line.) Hence, the following relationship returns the relative 

standard uncertainty caused by the linear least-squares fit: 

uncertainty %100
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1

2

, 








 


 

 


N
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ET

TET

N
.               (A.2) 

In this work, the relative standard uncertainty is found to be 0.22 %.  

DAQ board resolution 

The resolution uncertainty of the data acquisition board is random with a 

uniform distribution. That being said, the relative standard uncertainty is determined 

from the following expression (Jørgensen, 2002): 

uncertainty %100
2

1

3
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



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






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DAQE

E

T

T
,                             (A.3) 

where T is taken as the lowest temperature value recorded, ET  /  is the slope of the 

calibration curve (1.4),  is the voltage span used to acquire the data (10 V) and n 

is the number of bits (16) of the acquisition system. Thus, the relative standard 

uncertainty is 0.0005 %. 

DAQE

Ambient condition variations 

Ambient variations in temperature and pressure cause drifts in the free-stream 

temperature over the course of an experiment. These variations only affect mean 

temperature measurements and not the fluctuating component. Since the fluctuating 

signal is high-pass filtered, errors from drifts in the room temperature (which occur at 

frequencies lower than the high-pass frequency) are eliminated. Therefore, to account 

for the drifts, the free-stream temperature is measured and subtracted from the mean 
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temperature measurements, thus obtaining the mean temperature excess. The 

uncertainties in measurements of the mean temperature excess are discussed in sub-

section A.1.3 as they affect . TPr

Probe positioning  

Since the resistance of the cold-wire changes with temperature and does not 

depend on the direction of the flow, minor misalignments of the probe will not have 

any effect on the uncertainty of the temperature measurements (unlike the velocity 

probe, which will be discussed in A.1.2). Instead, the uncertainty will be in the value 

of its corresponding position (y/D). 

 

Total expanded uncertainty for the temperature measurements 

All the uncertainties mentioned above are summarized in table A.1 in order of 

decreasing importance. 

Sources of error Relative standard uncertainty 
Calibration  0.24 %  

Calibration curve-fit  0.22 % 
DAQ board resolution  0.0005 %  

Anemometer  negligible  
Probe positioning   negligible  
Table A.1: The uncertainties in the temperature measurements 

To calculate the total expanded uncertainty, the following formula is used 

with a coverage factor of 2 to assure a 95 % confidence level in the uncertainty:  

Total uncertainty ...)yuncertaint()yuncertaint()ty(uncertain2 2
3

2
2

2
1  .   (A.4) 

Therefore, substituting the values of table A.1 into equation A.4 results in a 

total expanded uncertainty of 0.65%. 
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A.1.2 Uncertainty in the Velocity Measurements 

Constant temperature anemometer  

The constant temperature anemometer has low drift, low noise, and good 

repeatability. The frequency response, as discussed in Chapter 2, is not an issue since 

the cut-off frequency of the anemometer is much greater than the highest frequencies 

encountered in the flow. Therefore, the uncertainty in velocity measurements caused 

by the anemometer is taken to be negligible comparing to the other sources of error. 

Calibration equipment and curve-fit 

The calibration equipment causes a relative uncertainty of 1%. This is a 

typical value for commercial calibrators and is based on the standard deviation of a 

random normal distribution error (Jørgensen, 2002). 

The curve-fit to the calibration data (E2 vs U) causes an uncertainty which is 

calculated by taking the standard deviation of the curve-fitting errors. Also, since the 

calibration is performed for varying temperature, there is a correction made to the 

calibration constants A and B (equations 2.4 and 2.5, in Chapter 2). This correction 

involves fitting equations 2.4 and 2.5 to the A vs. T and B vs. T data, respectively. 

These curve-fits also cause uncertainties in the velocity measurements and must be 

considered. However, unlike the calibration curve-fit for temperature measurements, 

both the dependent and independent variables are subject to uncertainties.  

To calculate the uncertainty due to the calibration curve-fits to E2 vs U, A vs. 

T, and B vs. T, the following equation is used: 
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where term 1 is similar to the equation A.2. The minus three results from having used 

three degrees of freedom to determine the calibration coefficients A, B and n from 

equation 2.3. Terms 2 and 3 account for the uncertainty in A and B, respectively and 

are added in quadrature following the propagation of uncertainties theory presented 

by Taylor (1997). Because both A (or B) and T have uncertainties, the equivalent 

uncertainty in A (or B) must be obtained (as discussed in Taylor, 1997).  Thus, A  

(from term 2) and B  (from term 3) are: 
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In both these equations, the first term represents the uncertainty from the curve-fit 

and the second term represents the uncertainty due to the maximum variation of the 

jet temperature ( T = 1.2 °C) for one King’s Law calibration. 

Given the above, the relative standard uncertainty is found to be 1.3 %.  

DAQ board resolution 

The resolution uncertainty of the data acquisition board is random and 

assumed to have a uniform distribution. The following expression is used to calculate 

the relative standard uncertainty (Jørgensen, 2002): 
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where  is the slope of the calibration curve (largest value is 31.4),  is the 

voltage span used to acquire the data (10 V) and n is the number of bits (16) of the 

acquisition system. The relative standard uncertainty is 0.015 %. 

EU  / DAQE

Temperature measurements 

Since the velocity measurements depend on the cold-wire measurements (to 

correct A and B), the uncertainties in cold-wire temperature measurements are 

accounted for by incorporating the uncertainties presented in sub-section A.1.1. The 

value used is 0.33% which is half of the total uncertainty calculated in sub-section 

A.1.1 to be able to add all the uncertainties together in quadrature before achieving a 

confidence level of 95 %. 

Ambient pressure and humidity variations 

Changes in ambient pressure and humidity are assumed to add negligible 

uncertainty to the velocity measurements. (The largest observed change in pressure 

was 1.3 kPa (10 mm Hg) and the experiments were performed during winter when 

the relative humidity in the laboratory was less than 35 %.) 

Probe positioning  

Errors due to probe positioning were accounted for (as mentioned in section 

4.1) by correcting the effective angle by 1.5°. Any remaining uncertainty is assumed 

to be negligible on the velocity measurements. 
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Total expanded uncertainty for the velocity measurements 

All the uncertainties are summarized in the table A.2 in order of decreasing 

importance. 

Sources of error Relative standard uncertainty 
Calibration curve-fit  1.3 % 

Calibration equipment  1 % 
 Temperature measurements 0.33 % 

DAQ board resolution   0.015 % 
Anemometer  negligible  

Ambient pressure and humidity variations negligible 
Probe positioning  negligible 
Table A.2: The uncertainties in the velocity measurements 

The overall expanded uncertainty is calculated from equation A.4. Therefore, 

substituting the values of table A.2 into this equation results in a total expanded 

uncertainty of 3.3%. 

A.1.3 Uncertainty in PrT and r 

The uncertainty in  consists of combining the uncertainties in each term 

used to calculate . Before proceeding, note that the uncertainties obtained in 

sections A.1.1 and A.1.2 for the instantaneous measurements of velocity and 

temperature will be used for both the mean and fluctuating components as well. In 

other words: 
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,                                   (A.9) 

and similarly for the temperature values. Hence, for vu  and v , the relative 

uncertainties are directly calculated by the propagation of uncertainties as follows: 
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For yU  / , the relative uncertainty is computed from both the curve-fits to 

the mean velocity profile, and from the uncertainty of the mean velocity 

measurements. The relative uncertainty due to the mean velocity’s curve-fit is 

computed in a similar manner as presented in sections A.1.1 and A.1.2 for other 

curve-fits. Using the curve-fit for the mean velocity profile: 
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Thus, the relative uncertainty for yU  / becomes: 
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Likewise, the same procedure can be repeated to compute the relative 

uncertainty from the curve-fit to the mean temperature excess used to calculate 

yT  / . For the case of the flow heated by the cylinder: 
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and 11.2% for the case of the mandoline. 

 Additionally, to remove the effect of thermal drift which can occur over the 

course of an experiment, the free-stream temperature is recorded using a 

thermocouple to obtain the mean temperature excess. However, the mean temperature 
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excess measurements have a higher uncertainty than the fluctuating part because of 

the inaccuracies in estimating the free-stream temperature. Hence, for each 

experiment the mean temperature excess profile is measured four times. The average 

of these four passes is then computed. Averaging the four passes reduces the overall 

relative standard uncertainty (calculated from a standard deviation of at most 0.05°C 

in the mean temperature excess) from 5.8% to 3%. For a 95% confidence level, the 

relative uncertainty of measuring the mean temperature excess is 6%. 

 Combining all sources of relative uncertainty for yT  /  results in the 

following for the case of the heated cylinder: 
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and 12.7% for the case of the flow heated by the mandoline. 

 Finally, to obtain the total relative uncertainty in , the propagation of 

uncertainties is again applied: 
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However, since the values of  on both sides of the wake were averaged, the 

uncertainty should accordingly be reduced. Strictly, the absolute uncertainty of each 

TPr
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TPr

TPr

 should be computed and the weighted average of the two  values obtained 

(Taylor, 1997). However, taking the arithmetic mean of the two values, and using the 

relative uncertainties should provide a sufficient estimate of the overall error in the 

 measurements. Thus, the relative uncertainty in  is reduced to 9.2% for the 

cylinder and 9.9% for the mandoline (figure A.1). 
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Figure A.1: Turbulent Prandtl number distribution with error bars 

Similarly, the same procedure used to obtain the uncertainties for the  

measurements can be applied to obtain the uncertainties in the r measurements. The 

total relative uncertainty for r is 9.4% (figure A.2).  

TPr

The uncertainties presented here demonstrate that the exact quantitative 

values of  and r may fall within a small region around the reported values. 

However, even in the most extreme cases, the qualitative conclusions remain the 

same: (i) the values of  and r vary across the wake, (ii) their average values are 

TPr

TPr
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not always near the ones chosen by modellers, and most importantly (iii) the two 

scalar field initial conditions resulted in different values of  and r. TPr
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Figure A.2: Mechanical-to-thermal time-scale ratio distribution with error bars 

 

 

 


