
IMAGE-BASED PROCEDURAL
TEXTURE MATCHING

AND TRANSFORMATION

Eric Bourque

Doctor of Philosophy

Computer Science

McGill University

Montréal, Québec

August 31 st 2005

A Thesis submitted to McGill University in partial fulfilment of the requirements
for the degree of Doctor of Philosophy

©Eric Bourque. MMV

1+1 Library and
Archives Canada

Bibliothèque et
Archives Canada

Published Heritage
Branch

Direction du
Patrimoine de l'édition

395 Wellington Street
Ottawa ON K1A ON4
Canada

395, rue Wellington
Ottawa ON K1A ON4
Canada

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell th es es
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

ln compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

• ••
Canada

AVIS:

Your file Votre référence
ISBN: 978-0-494-25106-5
Our file Notre référence
ISBN: 978-0-494-25106-5

L'auteur a accordé une licence non exclusive
permettant à la Bibliothèque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par l'Internet, prêter,
distribuer et vendre des thèses partout dans
le monde, à des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protège cette thèse.
Ni la thèse ni des extraits substantiels de
celle-ci ne doivent être imprimés ou autrement
reproduits sans son autorisation.

Conformément à la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thèse.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

for Lucia

iii

ACKNOWLEDGEMENTS

1 would like to thank my supervisor, Gregory Dudek, for his leadership and

direction of this research. Many of the ideas presented in this thesis evolved from

discussions while walking home together, and were later worked out in the tiny

free spaces on his used-to-be-white board.

1 would also like to express my gratitude to the members of the mobile

robotics laboratory, who all, in one way or another, have contributed to this

research.

Thanks also to Pierre Poulin for inviting me to give a talk on this work during

the "Graphics Lunches" seminar series at l'Université de Montréal, which has led

to a post-doctoral position in his LIGUM labo

Nicholas Roy contributed severallbTEX and Emacs gems which simplified

the preparation of this thesis.

This work was funded through doctoral scholarships from the N atural

Sciences and Engineering Research Council of Canada (NSERC) and "les Fonds

Québécois de la Recherche sur la Nature et les Technologies" (FQRNT) , as well

as through grants to Gregory Dudek from NSERC and the Institute for Robotics

and Intelligent Systems (IRIS) center of excellence.

Finally, 1 wou Id like to thank the members of my committee, Gregory Dudek,

Frank Ferrie, Michael Langer, Michael McCool, Joelle Pineau, and Kaleem

Siddiqi for their feedback on the research presented in this thesis.

IV

v

ABSTRACT

In this thesis, we present an approach to finding a procedural representation

of a texture to replicate a given texture image whieh we call image-based

procedural texture matching. Procedural representations are frequently used

for many aspects of computer generated imagery, however, the ability to use

procedural textures is limited by the difficulty inherent in fin ding a suitable

procedural representation to match a desired texture. More importantly, the

process of determining an appropriate set of parameters necessary to approximate

the sample texture is a difficult task for a graphic artist.

The texturaI characteristics of many real world objects change over time,

so we are therefore interested in how textured objects in a graphical animation

could also be made to change automatically. We would like this automatic texture

transformation to be based on different texture samples in a time-dependant

manner. This notion, whieh is a natural extension of procedural texture matching,

involves the creation of a smoothly varying sequence of texture images, while

allowing the graphie artist to control various characteristics of the texture

sequence.

Given a library of procedural textures, our approach uses a perceptually

motivated texture similarity measure to identify which procedural textures

in the library may produce a suitable match. Our work assumes that at least

one procedural texture in the library is capable of approximating the desired

texture. Because exhaustive search of all of the parame ter combinations for each

procedural texture is not computationally feasible, we perform a two-stage search

on the candidate procedural textures. First, a global search is performed over

pre-computed samples from the given procedural texture to locate promising

vi

parameter settings. Secondly, these parameter settings are optimised using a local

search method to refine the match to the desired texture.

The characteristics of a procedural texture generally do not vary uniformly

for uniform parameter changes. That is, in sorne areas of the parameter domain

of a procedural texture (the set of all valid parameter settings for the given

procedural texture) small changes may produce large variations in the resulting

texture, while in other areas the same changes may produce no variation at all.

In this thesis, we present an adaptive random sampling algorithm which captures

the texture range (the set of all images a procedural texture can produce) of a

procedural texture by maintaining a sampling density which is consistent with the

amount of change occurring in that region of the parame ter domain.

Texture transformations may not always be contained to a single procedural

texture, and we therefore describe an approach to finding transitional points from

one procedural texture to another. We present an algorithm for finding a path

through the texture space formed from combining the texture range of the relevant

procedural textures and their transitional points.

Several examples of image-based texture matching, and texture transfor­

mations are shown. Finally, potentiallimitations of this work as well as future

directions are discussed.

Vll

ABRÉGÉ

Cette thèse présente une approche permettant de trouver la représentation

procédurale d'une texture dans le but de reproduire une texture imagée donnée.

Nous référerons à cette approche sous le nom de image-based procedural

texturing. Les représentations procédurales sont fréquemment utilisées dans

plusieurs aspects de 1'infographie. Toutefois, l'habileté à utiliser les textures

procédurales est limitée par la difficulté inhérente à trouver une représentation

procédurale acceptable s'apparentant à la texture désirée. De plus, l'identification

des paramètres appropriés et nécessaires à l'approximation de l'échantillon de

textures s'avère une tâche difficile pour le graphiste.

Puisque les caractéristiques texturales de plusieurs objets réels changent avec

le temps, nous nous intéresserons à la façon dont les objets texturés peuvent être

modifiés automatiquement à l'intérieur d'une animation graphique. Cette notion

représente le prolongement naturel de l'appariement de textures procédurales et

implique la création d'une séquence fluide d'images texturées tout en permettant

au graphiste de contrôler les diverses caractéristiques de la séquence de textures.

A partir d'une librairie de textures procédurales, notre approche utilise une

mesure de similitude perceptuelle de textures afin d'identifier quelles textures

procédurales pourraient correspondre à la cible. La présente recherche assume

que la texture-cible peut s'apparenter à au moins une texture procédurale de la

librairie. Compte tenu que la recherche exhaustive de toutes les combinaisons

de paramètres pour chaque texture procédurale n'est pas réalisable par calcul

informatique, nous effectuerons une recherche en deux étapes sur les textures

procédurales selectionnées. Dans un premier temps, une recherche globale sera

réalisée auprès des échantillons déjà traités provenant d'une texture procédurale

donnée afin d'identifier un jeu de paramètres potentiellement satisfaisants. Dans

viii

un deuxième temps, ce jeu de paramètres sera optimisé par le biais d'une méthode

de recherche locale afin de raffiner la texture correspondante à celle désirée.

Les caractéristiques d'une texture procédurale ne varient généralement

pas de façon uniforme et ce, même lorsque les changements de paramètres sont

uniformes. Par exemple, dans certaines régions du domaine de paramètres d'une

texture procédurale (soit l'ensemble de toutes les données de paramètres valides

pour une texture procédurale donnée), de petits changements peuvent entraîner

d'importantes variations au niveau de la texture résultante tandis que ces mêmes

changements peuvent ne pas produire de variations dans d'autres régions. Cette

thèse présente un algorithme d'échantillonnage aléatoire adaptable qui extrait

l'expression de l'étendue de la texture (soit l'ensemble de toutes les images

que peut produire une texture procédurale) à partir d'une texture procédurale

en conservant une densité d'échantillons qui est consistante avec la quantité de

changements qui se produisent dans la région du domaine de paramètres.

Les transformations de textures ne se limitent pas toujours à une seule

texture procédurale. Par conséquent, nous décrirons une approche qui trouve les

points transitionnels d'une texture procédurale à l'autre. Nous présenterons un

algorithme permettant de trouver un chemin à travers l'espace de texture formé en

combinant l'étendue de texture des textures procédurales pertinentes et de leurs

points transitionnels.

Plusieurs exemples d'appariement de textures imagées ainsi que de transfor­

mations de textures seront présentés. Finalement, les limitations potentielles et les

directions futures de cette recherche seront discutées.

IX

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .

ABSTRACT.

ABRÉGÉ ..

LIST OF FIGURES .

1

2

3

4

Introduction . .

1.1
1.2

Contribution .
Outline.

Background . .

2.1 Geometrie Models .
2.2 Surface Properties .

2.2.1 Illumination and Shading Models .
2.2.2 Ray Tracing
2.2.3 Texture Mapping ...
2.2.4 Procedural Techniques.

Previous Work.

3.1 Traditional Texture Synthesis
3.1.1 Hypertexture
3.1.2 Reaction-Diffusion Textures.

3.2 Sample-Based Texture Synthesis Techniques.
3.2.1 Steerable Pyramid Statistical Matching .
3.2.2 Markov Texture Synthesis
3.2.3 Bi-directional Texture Function .

3.3 Procedural Texture Matching

Procedural Texture Matching . . .

4.1 Approach.........
4.2 Searching in Texture Space
4.3 Global Search
4.4 Local Search

4.4.1 Downhill Simplex Method
4.4.2 Gradient Ascent Method .

x

IV

VI

viii

Xll

1

7
8

9

10
12
13
17
18
23

31

32
32
33
36
36
39
43
44

47

48
49
50
57
59
62

4.5 Evaluating Texture Similarity .
4.6 Examples..........

5 Procedural Texture Transformation .

5.1 Approach..........
5.2 Transformation Within a Shader
5.3 Transformation Between Different Shaders .
5.4 Examples

6 Conclusion ...

6.1 Future Work .

A Software Architecture.

A.1 System Design .
A.2 Graphical User Interface

B Shading Language Code Example 1

C Shading Language Code Example 2

References.

Xl

62
73

86

87
88
94
97

.106

.108

· 112

· 112
.115

· 120

.124

· 128

LIST OF FIGURES
Figure ~

1-1 An ex ample of a scene with complicated interactions. 2

1-2 An image rendered using procedural shaders for aIl surfaces. 4

1-3 An ex ample of procedural texture matching. 5

1-4 A few frames from an example texture transformation. . 6

2-1 Phong illumination model. 14

2-2 BRDF illumination model. 15

2-3 An ex ample of a ray traced image. 16

2-4 A simplified ray tracing example. . 17

2-5 Mapping from a pixel in screen space to a region of the texture map. 18

2-6 Two-part texture mapping. 19

2-7 A solid texture example. . 21

2-8 A vertical bar shader. .. 24

2-9 Example images rendered using procedural shaders for aIl surfaces.. 25

2-10 Example of the diversity available from one shader. 26

3-1 Hypertexture. 32

3-2 Reaction diffusion textures. 33

3-3 Reaction-diffusion textures grown directly on a surface. 35

3-4 Textures synthesised using De Bonet's technique. . . . 38

3-5 Textures synthesised using Efros and Leung's technique. 39

3-6 Comparison of different texture synthesis techniques. . . 41

3-7 Textures synthesised using Lefebvre and Poulin's technique. 44

4-1 The construction step of the adaptive random sampling method. . 51

4-2 The refinement step of the adaptive random sampling method. . 53

xii

4-3 The pruning step of the adaptive random sampling method. 54

4--4 An example of uniformly sampling an individual shader. 55

4-5 An ex ample of adaptively sampling an individual shader. 56

4-6 Local phase of the search strategy. 57

4-7 Different results after a step in the downhill simplex method. 60

4-8 Steepest ascent along a narrow crest. 62

4-9 An example of texture segregation. . 65

4-10 An ex ample of the texture similarity measure. 68

4-11 Power spectrum example. . . 70

4-12 An ex ample image pyramid. 71

4-13 An example of a Laplacian image pyramid. . 72

4-14 An example of a deterministic and a stochastic texture. 73

4-15 Texture matching based on deterministic synthetic target textures.. 78

4-16 Texture matching based on stochastic synthetic target textures. 79

4-17 Texture matching using deterministic Brodatz textures. 80

4-18 Texture matching using stochastic Brodatz textures. . . 81

4-19 Matching real textures from the sky during the day and at night. . 82

4-20 An example of texture matching from a sketch. . 83

4-21 Examples of failed texture matches.. . . 84

4-22 A degenerate texture for the star shader. 85

5-1 . Shortest path calculated using the graph from the shader catalogue. 89

5-2 An illustration of our path cost function. 91

5-3 An ex ample of the adaptive linear subdivision technique. 93

5--4 Finding jump points between two shaders. 95

5-5 An ex ample of path through a connective shader. . 96

5-6 An ex ample of a texture transformation within a single shader. 99

5-7 Another single shader texture transformation. 100

xm

5-8 Another single shader texture transformation. 101

5-9 A texture transformation between two different shaders. . 102

5-10 Another texture transformation between two different shaders. . 103

5-11 Another texture transformation between two different shaders. . 104

5-12 A transformation which uses a connective shader. . 105

6-1 An ex ample of motion between texture frames. . . 108

A-1 Texture class hierarchy. . 113

A-2 Metric class hierarchy. . . 114

A-3 Screen shots of the texture matching application. . . 117

A--4 More screen shots of the texture matching application. . . 118

XIV

xv

CHAPTER 1

Introduction

W
E are living in a time where computer generated imagery (CGI) is

ubiquitous. We find CGI in all forms of visual media - print, motion

picture and television; and these images are becoming increasingly convincing. In

fact, these images are so realistic that we are often unaware that they are generated

synthetically. This realism has come as a result of numerous advances in the field

of computer graphics, many of which will be outlined below. It is one of these

techniques, namely procedural texturing, which will be the subject of this thesis.

The creation or rende ring of computer generated imagery follows a basic

formula, with certain necessary elements: a scene, one or more light sources, and

a camera. These elements are represented in a mathematical model, with surfaces

in the virtual scene being composed of geometric primitives such as polygons

and spheres, a camera model which determines the type of projection (normally

perspective), and a model for how light interacts with the surfaces in the scene.

These elements can be specified using either implicit or explicit representations

(terms only loosely related to the mathematical notions of explicit and implicit

1

Figure 1-1: An example of a real world scene with complicated interactions
between rigid and non-rigid (deformable) elements.

functional forms). Implicit representations are commonly referred to as procedural

representations or procedural techniques.

A procedural technique is essentially an approach based on an algorithmic,

or implicit description of sorne element of a scene (i.e., shading, lighting, or

geometry). For example, if one wanted to render a scene containing a mountain

range in the background, the individu al faces of the mountains could be specified

explicitly as a mesh of thousands of connected polygons, or could instead be

represented implicitly in the form of a simple algorithm. This algorithm could

produce a similar landscape when given suitable input parameters to control

aspects such as the maximum height of a mountain, minimum height, starting

height for snow caps, age of the mountain range (sharpness of the peaks), etc.

Procedural techniques began to be used in the field of computer graphies

when scenes became too complex to be specified explicitly. Procedural modelling

was an obvious choice for animators who wanted to create scenes with both

stationary and moving objects interacting in accordance with physicallaws.

This type of modelling is even more appropriate when it is necessary to model

the complex interactions of non-rigid, deformable elements present in a scene.

Consider trying to model a scene consisting of a motor boat speeding across a

2

body ofwater (see Fig. 1-1). Increased computing power has allowed animators

to render such scenes without worrying about explicitly modelling all the details

of how the waves propagate, how splashes form, and how the boat bounces along

on the water [36].

The simulated interaction of light and objects in a scene is described by

the illumination mode!. Modem renderers allow this model to be specified on a

per-object basis, in the form of what are called procedural shaders. These are

parameterised functions which calculate the colour and intensity of a given point

queried on a surface. Their parameters control various aspects of the object's

appearance, and vary per shader. Because the functions are queried for each

individuallocation on the surface being shaded1 , it is possible to use them to

create a texture on the surface. This is referred to as procedural texturing.

An alternative method used to apply a texture to an object is called texture

mapping. The main idea behind texture mapping is to paste a two dimensional

picture onto a surface and have it stretch and bend accordingly (see Sec. 2.2.3). In

this way, texture maps can be thought of as decals. This kind of approach can be

used to create appearance-based models as exemplified by our previous work on

environment modelling for off-line virtual navigation. That method used a mobile

robot to automatically select salient locations in an environment and to capture all

relevant scene data explicitly in the form of digital images [17, 13, 15, 14]. These

images were then post-processed into image-based virtual reality (VR) scenes.

The method worked well for environments which were not too large, but larger

1 The sampling of surface locations is generally determined by the projection
of a pixel from the image plane onto the corresponding patch on the object's sur­
face. This is discussed further in Sec. 2.2.3.

3

Figure 1-2: An example of an image rendered using procedural shaders for all
surfaces (Le., the wall tiles, fruit, bowl, and the counter top). Image by Jonathan
Merritt. Used with permission.

environments placed higher demands on the storage of image data, and also added

to the complexity of using image based rendering for the VR scenes.

Procedural texturing, on the other hand, has minimal storage requirements

since it allows an algorithm to describe how a textured surface should appear as a

function of its local environment. There are many advantages to using procedural

textures over texture mapping, the details of which are further elaborated in

Sec. 2.2.4. For the remainder of this thesis, we will use the terms procedural

texture, and shader interchangeably. Figure 1-2 shows an example of an image

rendered using procedural textures for all surfaces.

In this thesis, we will describe a technique we refer to as image-based

procedural texture matching; a technique which combines the simplicity of

traditional texture mapping with the flexibility and strengths of procedural

4

Figure 1-3: An ex ample ofprocedural texture matching. An input texture is
acquired from an architect's drawing, and a suitable procedural shader and param­
eters are found to replicate the appearance of the texture so that the shader can be
applied to an arbitrary mode!.

texturing. When texturing using this method, a graphic artist specifies a digital

input image, and a procedural texture which generates a similar2 texture is found.

This gives the graphic artist much more freedom to be creative, minimising the

arduous time spent tweaking various aspects of the procedural framework. An

example of the procedural texture matching process is shown in Fig. 1-3.

To exemplify why this problem needs to be solved, consider that a large

library of shaders can be available to a sophisticated user. A typical shader can

have half a dozen parameters, and sorne can have substantially more. Further, the

texture that is produced by a shader can vary substantially over the range of these

parameters. Thus, to find a desired texture, a user must search over a complicated

and high-dimensional space. Finding the right combination of parameters to

define a point in this space is c1early problematic.

2 The notion of similarity will be explored further in Sec. 4.5.

5

Figure 1-4: A few frames from an example texture transformation. This transfor­
mation exhibits the desired perceptual smoothness between adjacent frames.

Our work considers the problem of starting with an initial description of a

target texture (in the form of a sample image) and finding a procedural represen-

tation to match the target texture. In this thesis, we do not discuss the creation of

new shaders, but how to optimise the choice of a shader and its parameter settings

to produce the desired appearance. This work assumes the availability of a library

of shaders, and that the desired texture can be approximated by at least one shader

in the library.

Given a solution to the procedural texture matching problem described

above, we can then consider the problem of finding a sequence of procedural

textures that will produce a gradually varying series of textures that accomplish a

transition between two specified textures. We refer to this sequence as a texture

transformation. In general, a texture transformation may involve using more than

one shader and using varying parameter settings for each shader contained in

the transformation. An important criterion for a desirable texture transformation

is that it should take a smooth path from the initial texture to the final one. This

smoothness is not measured with respect to the variations in the parameters, but

with respect to the perceptual variations the texture must traverse. An example

texture transformation is shown in Fig. 1-4.

Note that even with many available shaders, the space of possible target im­

ages is far larger than the set of textures that can be synthesised, so sorne texture

images will be hard to approximate. Likewise, a good texture transformation will

not always be possible, particularly if the repertoire of available shaders is limited.

6

Our texture matching approach is based on four key stages:

1. A global search strategy over a library of shaders to select the ones that

might pro duce interesting results.

2. A global se arch over a single shader to obtain a rough estimate of suitable

input parameter settings.

3. A local search strategy to optimise parameter settings given a rough guess

from the previous stage.

4. A perceptually motivated texture comparison function that allows us to

estimate the quality of our solution.

Likewise, our texture transformation method is based on the following

elements:

1. A strategy for finding an appropriate path through a sparse collection of

samples within an individu al shader.

2. A technique for smoothing the transformation between adjacent samples

from the path determined above.

3. A method for determining the points of maximum similarity between two

different shaders to be used to transition from one shader to another.

4. A method for creating a smooth path through different shaders by combin­

ing the elements above.

1.1 Contribution

In the research presented in this thesis, we have established a new generic so­

lution to image-based procedural texture matching. This solution allows a graphic

artist to specify a texture sample, and to have a procedural representation of the

desired texture found automatically. The primary advantage of this technique

over other image-based techniques is that the final texture can be rendered at an

arbitrary resolution which is necessary for photo-realistic rendering. In addition,

7

a procedural representation affords the artist the ability to make minor changes in

the appearance of the procedural texture if necessary.

We also present an extension of this solution to the time do main in order to

pro duce procedural texture animations. These are smoothly varying sequences

of procedural textures based on a particular set of starting and ending texture

samples. This work has been published in Computer Graphies Forum [16], one of

the top international journals specialising in computer graphics.

FinaIly, we have experimentally evaluated our approach using a software

framework. This framework, while developed as a vehicle for performing this

research, is very generic, and as such can be re-used for other problem do mains as

discussed in chapter 6.

1.2 Outline

The outline of the remainder of this thesis is as follows. In chapter 2 we

present the relevant background material necessary for an understanding of the

work presented in this thesis, and chapter 3 outlines the relevant prior computer

graphics research related to texturing. In chapter 4, we present our technique

for approximating a given image sample proceduraIly. Chapter 5 describes our

method for creating smooth texture transformations based on matches found

using procedural texture matching or from manually specified procedural textures.

Finally, in chapter 6 there is a discussion of the work presented in this thesis as

weIl as future directions which can be explored.

8

CHAPTER2

Background

B
EFORE we can delve into thedetails of procedural shading and texture

synthesis, we must first give a quick overview of how images are actually

created (rendered) using a computer.

Definition 2.0.1 (Image Synthesis)

Image synthesis is the methodology of the creation of images using a

computer. In three-dimensional computer graphies the image is generated by a

computer program from a three dimensional mathematical description or a model

by calculating a two dimensional projection for display [78}.

Because we are only interested in photo-realistic images produced by 2D

projections from 3D scenes, we will not consider issues specific to other domains

such as cartoon generation, or technical illustrations. We will instead focus on

traditional physically motivated rendering methods.

Methods for 3D image rendering fall into two main classes: those that are

rasterisation based, and those which are referred to as ray-tracers. Each rendering

9

method has its advantages l , but for the purposes of our discussion, they can be

considered to be equivalent since each has similar requirements.

There are three distinct components required for rendering a photo-realistic

image:

1. A specification of the scene geometry.

2. A specification of the properties of all the surfaces contained within the

scene geometry.

3. A specification of the lighting in the scene.

The camera position, or viewing parameters are elements which may not

seem to be contained in the aforementioned components, however we can think

of them as being contained within the scene geometry without loss of generality.

Conceptually, we can think of the second two elements ab ove as being linked

since the lighting parameters can be specified in the surface properties of the

lights, which are objects in the scene geometry. In chapter 5 we will discuss a

fourth component necessary for animation, namely the variation of the scene

geometry and surface details over time.

2.1 Geometric Models

A model of the scene can be represented using many different techniques,

depending on the desired geometric accuracy, as well as the permissible overall

size of the model (the c1assic time/space trade-off). The model is used to specify

the surfaces of the objects in the scene, as well as to provide the ability to

calculate the surface normal for arbitrary points on these surfaces. Several

different representations of scene geometry are outlined below. Note that in most

1 For example, scan-line based renderers can make extensive use of hardware
acceleration leading to interactive (high frame rate) graphics while ray-tracers
generally produce more photo-realistic images, but at non-interactive rates.

10

real cases, a mixture of these representations is used depending on their suitability

to the particular objects being modelled.

• Polygonal: Objects are represented by a mesh of polygons, often triangles.

U sing this method, the desired accuracy is controlled by the number

of polygons (the level of subdivision) present in the model. Polygonal

representations are advantageous when interactive frame rates are desired

since modern graphics hardware generally implements the entire rendering

pipeline for polygons and scan-line rendering.

• Parametric Patches : This representation is similar to that above, with the

exception that the elements of the meshes are curved surfaces. Cornrnon

types of parametric patches are the Bézier patch (a specialised form of

the Hermite patch), and NURBS (non-uniform rational B-spline) patches.

Parametric patch representations are advantageous when attributes such as

curvature, surface normal, etc., need to be computed for arbitrary points

on the patch. One disadvantage with parametric patches is that they are

typically difficult to specify and control during the modelling phase.

• Constructive Solid Geometry : In CSG, an object is composed of boolean

set operations on geometric primitives (which can be CSG objects them­

selves). Objects which are difficult to describe using other modelling

techniques often have a very compact representation using CSG. For ex­

ample, the object forrned by subtracting a unit sphere from a unit cube

is represented very compactly in CSG, however, its representation using

parametric patches is much larger.

• Spatial Subdivision Techniques: This representation is somewhat related to

that above - here the 3D space is divided into cells which are either marked

as empty or full. The spatial subdivision can be regular (into cubes called

voxels), or binary space partitioning (BSP) techniques can be used to save

11

space [76]. The latter are generally only useful if the scene is statie since

a minor change in the space can result in the BSP representation changing

drastically.

• Implicit Representations: Objects can also be expressed implicitly, for

example, x2 + y2 + Z2 = r 2 defines a sphere of radius r. Implicit

representations in computer graphics are generally only useful for ray­

tracing, and for calculating bounding objects for mesh representations since

their mathematical form allows for a relatively low computational cost

solution to intersection tests.

Because we are primarily interested in the appearance of surfaces in

synthesised images, we will not dwell any further on methods for specifying

scene geometry. Rather, we will focus on the appearance of the surface itself, and

assume an appropriate geometric specification.

2.2 Surface Properties

Initially, computer graphics researchers focused on the pragmatics of

generating synthetic images containing objects which were geometrically similar

to their real-life counterparts. This presented enormous challenges and lead to

many new techniques for specifying scene geometry. The advance of computer

processing speed was also a key contributor to the increased complexity which

modem renderers were able to handle. Once the objects in a scene were being

represented accurately, researchers began to investigate how the properties of the

surfaces in the geometric models could be specified to permit increased realism.

The study of how light interacts locally with surfaces led to several illumi­

nation and shading models. Many of the original simple models are still used

today, especially in cases where interactive frame rates are a prerequisite, since

their basic shading calculations can often be performed in hardware. The frequent

12

use of these models is what is responsible for the general "plastic" appearance

of many early computer generated images since these models did not allow for

specifications other than one colour per surface. With the introduction of texture

mapping, it became possible to take digital images (either rendered themselves,

or digitised real-world images) and paste them onto the surfaces. This advance

went a long way towards increasing the realism of rendered scenes. Unfortunately,

there are many drawbacks involved with texture mapping as will be shown in

Sec. 2.2.3. In order to alleviate sorne of these problems, as well as to allow more

complex textures to be represented, procedural shading was introduced. We will

explore these three areas below, namely illumination models, texture mapping,

and procedural techniques.

2.2.1 Illumination and Shading Models

An illumination model is a characterisation of how light interacts locally

with a surface. Sorne such models are based on physicallaws, while others are

perceptually motivated, and make only moderate attempts at physical reality while

providing simplified calculations. A shading model determÎnes which illumination

model is used, and how it is applied across a surface. We will give examples

of several illumination and shading models in this section. It is worth noting

that many of the illumination and shading models are approximations of the

underlying rules of optics and thermal radiation, usually to simplify calculations.

The most commonly used illumination model is the Phong illumination

model due to Phong Bui-Tuong [21]. In this model, there are three factors which

contribute to the totallight at a point on a surface: (l) ambient light, (2) diffuse

light and (3) specular light. If N, L, R and V are the (unit length) normal to the

surface, incoming light direction, reflection direction, and viewing direction (see

Fig. 2-1), then we have the following familiar equation for the totallight at a point

13

N

L R

v

Figure 2-1: Phong illumination model: Œ is used to approximate the specular
highlights, and e is used to approximate diffuse light.

on the surface in the direction V:

l = lakaOd + L lpi [kdOd (N . Li) + ksOs(R . vt] (2.1)
l:'Si:'Sm

where la denotes the ambient light source, ka, kd and ks the ambient, diffuse and

specular coefficients, lpi the m point light sources, Od and Os the object's diffuse

and specular components and n is the specular reflection exponent. Note that by

convention aU vectors point away from the surface.

One of the main drawbacks of the previous illumination model is that it

cannot be used to model surfaces withan anisotropic reflectance function. These

are surfaces which exhibit a directionally dependent reflectance. Velvet is an

example of such a material: a swath of velvet changes appearance as it is rotated

under a constant light source (it goes from shiny to matte depending on the

orientation of the fibres). In general, light reflected from a point on the surface

can be specified by a bi-directional reflectance distribution function or BRDF (see

Fig. 2-2) [62, 71]:

(2.2)

14

N

v

Figure 2-2: The BRDF illumination model relates light incident in direction L to
light refiected along V as a function of the angles ()in, 1Jin, Bref, 1Jref.

The bi-directional refiectance function is defined for a single light ray of a

single wavelength and is itself a function of four parameters. This makes the use

of a complete BRDF impractical for most occasions so various approximations

have been used. One popular technique is to sample the actual refiectance values

in a controlled environment for a discrete set of lighting and viewing directions

using a goniorefiectometer, and to then estimate the surface refiectance for

lighting and viewing directions which were not sampled through interpolation [56,

26].

As mentioned above, a shading model determines how a local illumination

model is applied to the underlying geometry of the scene. Three standard

techniques are fiat shading, Gouraud shading, and Phong shading. In fiat shading,

the colour of a surface is determined for only one point on the surface, and the

resulting colour is applied to the entire surface. This model obviously lacks

realism, but is extremely efficient. Gouraud shading ca1culates the colour at

each vertex of the underlying geometry, and linearly interpolates the shading

15

Figure 2-3: An ex ample of a ray traced image. Notice aIl the refiections in the
marbles, the transparency of the glass, and the refractive distortion of the blue
marble in the back when viewed through the glass. @2002 Christoph Hormann.

values across the surface. This shading method is an improvement over fiat

shading, however, artifacts such as specular highlights can be missed entirely.

Phong shading is similar to Gouraud shading except that it is the surface normals

which are calculated at each vertex, and then interpolated across the surface.

The illumination model is then evaluated for each point to be shaded. The main

optimisation of this illumination model is that the surface normal does not need to

be computed for each point on the surface and polygonal models can be rendered

as if they were curved. In photo-realistic rendering, the local illumination model is

usually applied at each shading point, using the actual surface normal for the point

being shaded.

16

R2

Point light source

Viewpoint

Figure 2-4: A simplified ray tracing example. The initial ray is cast from the
viewpoint where it intersects with the first object, producing a refiection ray
RI, and a transmission ray Tl. The surface normals are indicated by N, and the
shadow rays by L. The refiection ray RI then intersects a second object which
itself spawns a refiection ray R2' and a shadow ray L2. The transmission ray Tl
intersects the other side of the first surface, where it spawns another refiection
ray R3 and another transmission ray T2• The pixel value at the viewpoint will be
determined by the bottom-up accumulation of the intensity values ca1culated at
each intersection point in the ray tree.

2.2.2 Ray Tracing

In order to produce photo realistic images with refiections, and transmissive

effects (see Fig. 2-3), it is necessary to compute the complicated paths that light

will travel within a scene [81]. This process is referred to as ray tracing. The

basic idea is to project a ray from each pixel position into the scene, and to refiect

a specular ray based on the local geometry, as well as to cast shadow rays and

transmissive rays dependent on the surface properties (Fig. 2-4).

The collection of these rays produces a ray tree which allows us to trace the

light backwards from the pixel through the scene. For each pixel ray, we must test

17

---------------, , ,

---- ...
'f ... , ,

v
,

'--'---'---'--'--:--'---'---'---'---'---'--'--'--u ____ .. ' .. "''''... 1 1

.. ' "",,'

Texture map

~-------------- ----- -- -- -- -- --- ----:

, , " , ,," 1 1 1

" ,
r " ~

y

, , , , ,

" ,
: 1 ________________ ~----~

/: 1

/ 1 :
1 r _____________________________ ~

Surface of
object

Four corners of
pixel on screen

Figure 2-5: Mapping from a pixel in screen space to a region of the texture map.

the intersection of that ray with an the objects in the scene. These intersections

are then sorted by depth to find the closest intersection. This will determine the

first object the ray will intersect which will be the visible surface for the given

pixel. This intersection ray is then reflected along a specular path, as well as a

refractive path if the surface is transparent. The entire process is repeated for

these secondary rays until either a preset tree depth has been reached, or until

a set of storage constraints has been met. The intensity contributions from each

intersection are then accumulated bottom-up through the tree to determine the

pixel intensity for the initial ray.

2.2.3 Texture Mapping

In order to increase the realism of rendered images, the notion of texture

mapping was introduced [23, 10]. The main idea behind texture mapping is

to paste a two dimensional picture cnte a surface and have it stretch and bend

accordingly. In this way, texture maps can be thought of as decals. Texture

mapping can be used to modulate surface properties other than colour; specular

18

(a) (b) (c)

Figure 2-6: An example of two-part texture mapping of an object using (a) a
plane, (b) a cylinder, and (c) a sphere as intermediate objects. Notice how the
texture on the neck of the vase changes depending on the geometry used for the
intermediate object.

colour, normal vector perturbation, and transparency are all properties which

could be modulated by a texture map. Below we will describe texture mapping in

terms of modulating colour without loss of generality.

During texture mapping, a pixel in screen space is mapped to a corresponding

curvilinear surface patch (consisting of four points from the four corners of the

pixel) in world space. This naturally defines a set of points in the surface's (8, t)

parameter space which can then be mapped to the (u, v) texture map space (see

Fig. 2-5). The resulting area in texture space will hopefuIly span more than one

pixel, and will therefore be filtered to choose a colour for the original pixel in

screen space. The (u, v) parameter space of the texture T is defined within the

unit square so the texture element (texel) lookup is specified by T (8 - l 8 J , t - l t J)

to aIlow the texture to be tiled if necessary.

There are two predominant problems with texture mapping: (l) it is often

difficult to find a suitable surface parameterisation, and (2) aliasing (caused by a

fixed resolution texture). It is also worth noting that finding a suitable image to

use for the texture map can be problematic. We will elaborate on these below.

Unfortunately, we will not always have a weIl defined (8, t) parameter space

for the object being textured. This is the case, in fact, for most non-parametric

representations such as polygonal meshes, or when the object to be textured is

19

composed of several smaller geometric entities as is frequently the case with CSG.

Two-part texture mapping was introduced by Bier and Sloan to handle precisely

this situation [8]. In two-part texture mapping, the texture is first mapped to an

intermediate parametric surface such as a cylinder or a sphere which encloses the

object to be textured using the conventional method described above. The second

stage maps the new three dimensional texture pattern onto the object's surface,

usually using a form of ray-tracing to determine the texture element which is

closest to the object point being shaded. Although this works weIl, it has the

disadvantage that the intermediate shape must be chosen manually. An example

of two-part texture mapping using a plane, cylinder and sphere as intermediate

objects is shown in Fig. 2-6.

As mentioned above, aliasing is a serious problem encountered when texture

mapping. The difficulty stems from the pre-image in texture space of the pixel

being shaded in screen space: because we do not know the exact shape of the

curvilinear pre-image in texture space, and moreover, this shape changes for

adjacent pixels, proper filtering of the texture is very computationally intensive

since for each pixel we need to calculate an average over all the relevant texels.

A largely unsolved problem occurs when the pre-image of a pixel maps to a

sub-texel (a unit smaller than a texel) in texture space, since magnification is

necessary. This can occur, for example, when a textured object in the scene

approaches the viewer and hence the texture itself needs to be magnified in

accordance with the camera motion.

An approximation to the filtered pixel value is often computed using

a technique known as mip-mapping2 [82]. With mip-mapping, the desired

texture is pre-filtered to several smaller versions of the texture (an assumption

2 MIP stands for multum in parvo - many things in a small place.

20

Figure 2-7: An example of a teapot which is textured using a 3D (solid) wood
texture.

is made that the pre-image is very close to a square) forming an image pyramid.

When selecting the texels, the appropriate size texture from the mip-map is

extracted. This saves computation time since each texel at the appropriate scale

is a1ready a filtered version of the originallarger scale texture. Mip-mapping

aids computationally when the texture image must be compressed, but does not

handle the problem of magnification, that is, when the desired (u, v) range of the

texture does not contain many (if any) pixels. In this relatively common scenario,

the same pixel of the texture map is used repeatedly for adjacent pixels in screen

space, leading to aliasing. If we allow the world to be dynamic, these kinds of

problems become quite evident in the form of textures "jumping" around on

surfaces based on the camera position. Procedural textures do not suffer from the

magnification problem, as will be outlined in Sec. 2.2.4.

Another problem with texture mapping is that linear interpolation of the

texels will cause distortion when using a perspective projection camera mode!.

This distortion is most noticeable in the form of features in the texture not being

correctly foreshortened.

21

For sorne types of texture, it makes sense to think in terms of three dimen­

sional textures3 [65,63]. For example, an object made of wood will look more

realistic if the wood texture is truly 3D instead of a 2D texture map (see Fig. 2-7).

In this case, we can think of the texture being addressed by T (x, y, z) of sorne

local coordinate frame scaled accordingly for the object. Three dimensional tex­

tures are prohibitively large if stored explicitly and are therefore usually defined

procedurally. An advantage of 3D textures is that objects of arbitrary complexity

can be textured in a coherent fashion, without seams or singularities, unlike their

2D counterparts.

An alternative use of texture maps is for bump-mapping [9]. For this

technique, instead of modulating the colour of the current pixel, the normal

used in the local illumination ca1culation is perturbed according to a value in an

associated bump map following the same addressing methods outlined above. The

resulting shading changes will give the appearance of surface detail not present

in the object's geometry. Note, however, that silhouette edges will still follow the

underlying geometry of the model.

A major disadvantage of sampled texture maps is that they must be stored.

This can lead to a vast increase in storage requirements, particularly when the

scene is complex and many textures are used. This problem is slightly worsened

by the use of mip-maps described above as they are ~ over-complete. Textures

used in texture mapping also do not easily allow for subtle variations, and

generally do not support temporal variations. These issues will be addressed in the

following section.

3 Three dimensional textures are sometimes referred to as solid textures.

22

2.2.4 Procedural Techniques

Procedural techniques are an active area of research in computer graphics in

domains including shading, texturing, modelling and animation:

Definition 2.2.1 (Procedural Technique)

A Procedural Technique is a code segment or algorithm that specifies some

characteristic of a computer-generated model or effect. D. Ebert [31}.

Abstraction is one of the key advantages of a procedural technique: rather

than explicitly storing the complex details common to an explicit model, these

details are abstracted into a function or algorithm. As mentioned above, modem

renderers allow the illumination model to be specified on a per-object basis, in

the form of what are called procedural shaders. This allows each object to exhibit

arbitrarily complex light interaction. If there are many objects in the scene, one

could use a more simplified illumination modellike the Phong illumination model

for less important or less noticeable elements, and could use a bi-directional

distribution reflection function for objects who se lighting details are more

important. Again, because procedural shaders are queried for each individual

location on the surface being shaded, it is possible to use them to create a texture

on the surface.

An important characteristic of procedural techniques is that of parameterisa­

tion: in a procedural model, we can assign a parameter to a meaningful concept.

For example, a procedural texture for a cloth weave may have a parameter which

specifies the tightness of the weave, or a procedural model for representing a

stucco ceiling may have a "bumpiness" parameter. There are numerous advan­

tages to the various procedural representations, however, in this section, we will

focus exclusively on procedural texturing.

A procedural texture is a function which, given a set of input parameters

x = (Xl, ... , Xn) which control the appearance of the texture, retums the colour of

23

Algorithm 1 A simple shader algorithm which creates a vertical red bar based on
the value of the parameter w.

Require: (u, v) E [0,1]2, W E [0,1]
if 0.5 - ~ :::; u :::; 0.5 + ~ then

return Red
else

return White
end if

(a) w = 0.01 (b) w = 0.05 (c) w = 0.17 (d) w = 0.5 (e) w = 0.9

Figure 2-8: An ex ample of using the red bar shader described in Aig. 1 to texture
a sphere using various values for w.

the surface at the point (u, v) queried:

p(u, v, x) = f(u, v, L, N, Od, Os, .. " x) (2.3)

where p is a procedural texture having a parameter vector x and like a texture map

is indexed by (u, v) E [D,IF. In general p is a function not only of the parameter

vector x of the texture itself, but also of the light direction (L), surface normal

(N), object diffuse and specular colours (Od, Os), etc., as illustrated with the

function f above. We can think of these additional parameters as being functions

of (u, v). For the work in this thesis, we consider procedural textures only in terms

of their coordinates (u, v) and their parameter vector x. That is, we seek only to

recover textures under constant lighting conditions on a plane.

Each procedural texture will be represented by a unique function requiring

a distinct set of parameters relative to that texture. For example, a trivial single

parameter shader which draws a centred red vertical bar on a white background

might be formulated as in Alg. 1. Here the single texture parameter w controls the

width of the red bar. Figure 2-8 shows sorne images rendered using the red bar

24

Ca) Cb)

Cc)

Figure 2-9: Example images rendered using procedural shaders for an surfaces.
(a) @Michel Joron 2004, (b) @Jonathan Merritt 2004, (c) Pixar studios stock
image.

shader. For an example of the power of procedural shaders, consider the images

shown in Fig. 2-9 which were rendered using procedural shaders exc1usively. An

example of the range of one procedural texture is shown in Fig. 2-10.

There are several advantages to using procedural textures as opposed to the

traditional texture mapping methods described in Sec. 2.2.3:

• Compact representation: Because a procedural texture is an implicit

representation of sorne textural phenomenon in the form of an algorithmic

description, the amount of storage required is negligible compared to what

is required to store texture maps.

25

Figure 2-10: Several example textures showing the diversity of an individu al
shader with varying input parameters. Here the parameters were the frequency
of the bars, the thickness of both the vertical and horizontal bars, and the overall
orientation.

• Unlimited resolution: Again, due to the implicit definition, procedural

textures are resolution independent and can therefore be used to generate

textures of arbitrary resolutions.

• Parameterisation: One can assign values to meaningful aspects of the given

texture such as the age of the wood in a parquet tile, or the frequency of

horizontal bars in a weave pattern.

• Support minor changes: Slight changes to the resulting texture are often

generated by slight parameter changes since each procedural texture

generally represents an entire c1ass of similar textures.

26

• Support temporal changes: A procedural framework allows for the texture

of an object to change over time (see chapter 5), which would be very

impractical using traditional textures.

• Expression of object properties: It is relatively simple to generate procedu-

raI shaders which will show curvature, or other object properties (through

false colour) often necessary for visualisation and CAD/CAM applica­

tions. It is also possible to use any desired illumination model since this is

generally part of the procedural shader.

• High-dimensional textures: As rnentioned in Sec. 2.2.3, solid textures are

easily represented using procedural techniques, while they have excessive

space requirernents when represented using tradition al textures. Another

exarnple of a high-dirnensional texture, called hypertexture will be described

below.

Despite the nurnerous advantages of using procedural techniques for

texturing, there are, unfortunately, sorne shortcornings. The rnost notable is that

once one has a procedural shader, it can be quite difficult to obtain the correct

pararneters to synthesise the desired texture. In addition, pararneterised textures

can sometirnes be unstable, that is, a srnall change in a pararneter can lead to a

significant change in the synthesised texture. Even when the pararneterised texture

is largely stable, sorne shaders have a non-trivial nurnber of pararneters which can

sirnply be too unwieldy to specify rnanually4 . These factors can rnake it difficult

for the end user to obtain the desired results.

4 The water surface shader in the film The Perfect Storm had over 200 pararn­
eters. Apparently, there was no single individual at ILM who knew what each
pararneter controlled [34].

27

The specification of procedural shaders is not a task suited to everyone

since it requires an algorithmic formulation in a given shading language of how

the desired texture should appear. This is obviously more difficult than using

a typical paint pro gram to create a single texture to be used as a texture map.

Moreover, the implementers of procedural shaders must worry about problems

such as anti-aliasing. For example, the simple shader presented above in Alg. l,

will alias badly since there is very high frequency content (step edges). In general,

the author of a procedural shader does not know at which points the texture will

be sampled, and must therefore minimise the high frequency content through the

use of smooth edges. This is an example of one of the many issues which must be

resolved during the specification of a procedural shader.

Procedural textures are also not a panacea; there are many textures which

simply cannot be easily formulated procedurally. Complex visual structures

which do not seem to have an underlying pattern (such as a human face) are very

difficult, if not impossible, to represent procedurally.

Image synthesis is usually slower when using procedural textures since

the procedure must be evaluated for every pixel in addition to the illumination

model. There has been recent work which addresses this issue and the results are

promising [57, 64, 58]. Rendering speed is, however, perhaps the smallest concern

when weighed against the advantages of using procedural textures, especially

considering the dizzying pace at which graphics hardware improves. This is

perhaps most interesting for the video game industry where high quality real-time

rendering is always the goal. Until now, these applications have had to make

use of many texture maps for their virtual environments which are less visually

compelling, often produce aliasing effects during motion, and have extremely

high storage demands. Photo-realistic applications such as motion pictures are

28

not rendered in real-time and are therefore able to take advantage of the increased

quality and flexibility of procedural texturing.

Note that by using procedural textures for this work, we obtain severa!

advantages over either image samples as texture maps, or the use of stochastic

image-based texture synthesis as proposed by Efros et al. [33,32], Wei and

Levoy [79] and others (see chapter 3). Namely, as mentioned above, procedural

textures are very compact, extremely flexible, can be evaluated in arbitrary order

(useful for variable level of detail applications) and are resolution independent.

U sing a procedural texture also allows us to generate textures that are akin to a

target in sorne desired way, while still allowing us the freedom to make useful

changes.

29

30

CHAPTER3

Previous Work

T
HE previous work in the field of texture synthesis can largely be divided

into two classes: synthesis which is not based on a texture sample (herein

referred ta as traditional texture synthesis), and synthesis which is based on a

sman texture sample where the desire is ta grow a larger texture field of that

particular texture. For the remainder of this chapter we will refer ta the latter as

sample-based texture synthesis.

In this chapter we will give an overview of the most popular techniques

for bath traditional texture synthesis, as weIl as sample-based texture synthe­

sis. Finally we will describe previous work directly related ta the automated

specification of procedural textures based on a sample texture.

Our work deals with the selection of one or more procedural textures and

associated parameters given a specification in terms of an sample texture. This is

loosely related ta research which seeks ta synthesise a large texture field given

only a sman sample of the desired texture. While texture synthesis methods share

with our work the ability ta generate arbitrary texture fields from a sman sample,

31

Figure 3-1: A fireball made using hypertexture. (Image by Ken Perlin.)

they differ in terms of the compactness of the description, the scientific objectives,

and the manner in which the results can subsequently be re-configured.

There are many specialised techniques for texture synthesis but few of them

are general solutions, that is, most are best suited to a specific type of texture.

3.1 Traditional Texture Synthesis

Traditionally, textures which were synthesised for use in texture mapping

were not necessarily based on real-world phenomena, but rather were designed

with very specific applications in mind. These early synthesis techniques were

sometimes able to pro duce elaborate textures, but it was difficult to effectively

control their appearance.

We will give an overview of two such methods below, namely hypertexture,

and reaction-diffusion textures.

3.1.1 Hypertexture

In 1989, Perlin and Hoffert described a concept, which is an extension

to procedural solid texture synthesis applied to volumetric regions, called

hypertexture [66]. Their motivation was that many objects have surfaces which are

very difficult, if not impossible, to model explicitly. Examples include fur, hair,

32

Figure 3-2: An exarnple of several reaction diffusion textures. (Image by Andrew
Witkin.)

fire, fiuid fiow, and erosion effects (see Fig. 3-1). They modelled such objects as

soft abjects, i.e., objects which had a density function D(x, y, z) E [0,1] which

described the density of a 3D shape for aU points in n3 • The soft region consisted

of all points such that ° < D(x, y, z) < 1, the outside by D = 0, and the inside

by D = 1. In addition to the density function, they defined density modulation

functions (bias, gain, noise, and turbulence) which were used to modulate the

object's density within its soft region. They also defined the boolean operations

(union, difference, complement, and intersection) for these modulation functions

thus forming a toolkit which could be used to model these soft objects. Although

sorne highly successful images were produced, the selection and combinations

of density functions, as weU as parameter tweaking, still needed to be performed

manually.

3.1.2 Reaction-Diffusion Textures

Reaction-diffusion (RD) texture generation is a technique which can be used

to simulate a c1ass of natural textures, or patterns, which arise from local, non-

linear interactions of excitation and inhibition. Examples of such textures inc1ude

33

various kinds of stripes, weaves, lattices, and mazes [83, 77]. Sorne examples of

RD textures are shown in Fig. 3-2.

The principal idea behind reaction-diffusion systems is to simulate the

evolution of a concentration of morphogens1 , C (x, y), through two concurrently

operating processes: diffusion of morpho gens, and reactions that produce

and destroy morpho gens depending on their concentrations. This evolution

is simulated until a stable pattern of concentrations is reached, at which time

these concentrations are interpreted as textures, usually by assigning colours, or

intensities depending on the underlying concentrations, although these patterns

have also been used for bump mapping and for opacity maps.

The reaction-diffusion model proposed by Witkin and Kass incorporates

three processes - diffusion, dissipation, and reaction [83]. Diffusion controls the

transport of morpho gens from higher to lower concentrations, dissipation causes

concentrations of morpho gens to decay exponentially in the absence of other

influences, and reaction controls the rate of morphogen production:

è=~-$+~,
diffusion dissipation reaction

where è is the time derivative of C, ',PC is the Laplacian of C, a is the rate

(3.1)

constant for diffusion, b is the rate constant for dissipation, and R is the reaction

function.

In order to create new patterns, Witkin and Kass extended the RD model in

several ways. First, they allowed the diffusion to be anisotropie. In order for C

to diffuse at different rates, the a2 in Eq. 3.1 can be separated into independent

rate constants in x and y. They also propose a method for arbitrary non-axis

1 Morphogens are hypothetical chemical agents which take part in morphogen­
esis, the formation and differentiation of tissues and organs.

34

(a) (b)

Figure 3-3: An ex ample of reaction-diffusion textures grown directly on a surface.
The zebra stripes were started on the hooves and head as shown in (a). The final
image is shown in (b). Images @Greg Turk.

aligned principal directions, the details of which are beyond the scope of this

overview. Second, they allowed the diffusion rates to change in different areas

of the concentration, a technique they refer to as space-varying diffusion. This

is accomplished through the use of a diffusion map which corresponds to the

diffusion rates and directions for each point in the concentration. In practise, the

diffusion map is only defined for selected points, and values are interpolated for

other areas of the concentration. Witkin and Kass also demonstrated that RD

texture patches could be sewn together seamlessly through the use of shared

boundary conditions, a special case of which allows textures to repeat periodically.

Turk made two important contributions to reaction-diffusion texturing: (1)

the creation of patterns more complex than had previously been attributed to

RD systems, and (2) he described a technique for growing RD textures directly

on polygonal surfaces (see Fig. 3-3) [77]. He achieved more complex patterns

by having one RD system create an initial concentration, and then using this

concentration as the initial condition for a second RD system. Striking patterns

were created when he stopped the initial concentrations prior to reaching stability,

and then allowed the second system to stabilise using the result of the first system.

35

He also allowed several concentrations to be simulated together with reaction

functions defined for each of the different morphogens in relation to the others.

These two ideas can obviously be used to create a wide variety of patterns. Turk's

technique for growing patterns directly on polygonal surfaces allowed RD textures

to be immune to the surface parameterisation problems inherent with traditional

texture mapping.

Unfortunately, reaction-diffusion textures remain complicated to use due

to the necessary specification of the initial conditions (the initial morphogen

concentrations), the rate constants, the diffusion map (if anisotropic and space

varying diffusion are to be used), the reaction functions, not to mention, the point

at which to stop the simulation if various RD textures are being mixed. Despite

various optimisations in the numerical solution of partial differential equations,

RD textures are still computationally expensive.

3.2 Sample-Based Texture Synthesis Techniques

Sample-based texture synthesis techniques can be used to create a synthetic

texture which resembles an input image according to a particular texture model.

There are two classes of texture models, namely deterministic and stochastic.

A deterministic texture is characterised by a set of primitives, and a set of mIes

which governs their placement. Examples include a tile floor, or wallpaper with a

spotted pattern. A stochastic texture, however, does not have any primitives which

can be easily identified (tree bark, sand, stucco). In practise, many real-world

textures have sorne combination of these characteristics.

3.2.1 Steerable Pyramid Statistical Matching

In 1995, Heeger and Bergen proposed a texture analysis and synthesis model

for generating stochastic textures based on an input sample [42]. Their method is

able to synthesise an arbitrary amount of the sample texture by coercing a noise

36

Algorithm 2 Heeger and Bergen's Texture Matching Algorithm
MatchHistogram(noise, texture)
analysis-pyramid = MakePyramid(texture)
for several iterations do

synthesis-pyramid = MakePyramid(noise)
for matching sub-bands in analysis and synthe sis pyramids do

MatchHistogram(synthesis-:-band, analysis-band)
end for
noise = CollapsePyramid(synthesis-pyramid)
MatchHistogram(noise, texture)

end for

image of the desired resulting texture size to have the same intensity histograms

within specific bands of frequency space as the input image. This is accomplished

by using two fundamentaI image operations: (1) decomposition of an image into

an image pyramid (and collapsing an image pyramid back into an image), and (2)

histogram matching.

The histogram matching is in fact a generalisation of histogram equalisation.

It is accomplished by creating two lookup tables: the cumulative distribution

function (cdf) of one image, and the inverse cdf of the other image. These two

functions are then used to match the histogram of one image to the other.

The entire texture anaIysis/synthesis algorithm is shown in Alg. 2. In practise

they used a steerable pyramid which kept four images for each level of the

pyramid, each a response to an oriented fiIter so that anisotropic textures could

be synthesised, the details of which are beyond the scope of this discussion.

Inspection will reveal that there is no fixed number of iterations in the algorithm,

and in fact there is no formai evidence that this algorithm converges. Heeger

and Bergen claim, however, that 5 iterations are usually sufficient to produce

a satisfactory synthesised texture. U sing this algorithm, it is also possible to

synthesise textures which are similar to several input textures by using the freshly

synthesised texture instead of a noise image when synthesising the second texture.

This extension is similar to those mentioned in Sec. 3.1.2.

37

(a) (b) (c)

(d) (e) (t)

Figure 3-4: Textures synthesised using De Bonet's technique. The top row shows
the texture samples, and the bottom row shows the resulting synthesised textures.
Notice that the method performs acceptably for a stochastic texture sample (a), but
fails for textures exhibiting even a slightly deterministic pattern as shown in (b)
and (c).

De Bonet also proposed a texture synthesis technique based on image

pyramids [27]. Instead of trying to match the histograms at each level of the

pyramid, he samples the levels of the analysis pyramid where psychophysically

motivated features have strong responses. These features are simple edge and line

filters as well as Laplacian response, and must be present at each parent level of

the input pyramid to be replicated in the synthesis pyramid. Similar regions of the

levels in the synthesis pyramid are also randomly rearranged to increase visual

difference from the input texture while maintaining minimal perceptual difference

in terms of texture. After the completion of the sampling process for each level

of the synthesis pyramid, it is collapsed to pro duce the synthesised texture. Due

to the randomness, this method seems to work well only for purely stochastic

textures. Another drawback exists in the way that images larger than the input are

generated: the sampling is performed by simply tiling the input image without

regard for whether it may be tile-able. This method also cannot model complex

38

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3-5: Textures synthesised using Efros and Leung's technique. The first
row contains the texture samples, and the second row displays the synthesised tex­
tures. Notice how if incorrect choices are made early, it is impossible to recover as
shown in the bottom left corner of (h).

visual structures since it uses only local constraints during sampling. Examples of

textures synthesised using this method are shown in Fig. 3--4.

3.2.2 Markov Texture Synthesis

Markov texture synthesis techniques are based on the assumption of locality.

That is, that the appearance of a certain texture element (texel) can be determined

by its surrounding neighbourhood of texels. In other words, that the texture being

synthesised can be considered to be a Markov process if time is reinterpreted as

space within the texture and therefore has the following property: given that its

current state (texel) is known, the probability of any future event of the process is

not altered by additional knowledge concerning its past behaviour (more than n

pixels in a local neighbourhood).

The specification of the neighbourhood varies according to the technique

being used. These techniques can be used to grow an unlimited amount of texture

based on a small sample, or can be used to fill in holes in an image as is necessary

for image in-painting [6, 7, 52].

39

A technique due to Efros and Leung grows a texture, pixel by pixel outwards

from an initial seed until the desired size is reached [33]. Their algorithm

essentially finds a set of candidate regions in the sample texture which are

similar to the area centred at the current (unknown) pixel in the synthesised

texture. They compute the similarity using a sum of squared differences (SSD)

of the pixel intensity values from the two neighbourhoods, weighted by a two­

dimensional Gaussian kernel. A histogram of pixel values is computed from the

best neighbourhoods, and the final pixel value is determined by sampling this

histogram either uniformly or weighted according to the neighbourhood similarity

value.

The final pixel value is then used in the synthesised texture, and the algorithm

continues outward (or inward for in-painting) until all pixels have been filled

in. Of course, this only works when a single pixel needs to be determined, since

when there is more than one pixel to be synthesised, the neighbourhood in the

synthesised image will not be complete. To correct for this situation, when

neighbourhoods are compared, only known pixels are used for the similarity

measure, and the error is normalised by the total number of known pixels. In the

case where there are no known pixels yet in the synthesised texture (the starting

condition when not doing hole-filling) a 3 x 3 seed is taken randomly from the

sample texture and is used as a starting point for synthesis.

Due to the bootstrapping nature of this algorithm, if a pixel is filled in

incorrectly, the resulting texture can have a large region which is not similar to

the input texture. Assuming these incorrect pixels could be located, a possible

solution to this problem would be to allow limited backtracking to choose a more

appropriate pixel. Textures synthesised using this technique are shown in Fig. 3-5.

40

(a) (b) (c) (d) (e)

Figure 3-6: Comparison of different texture ~ynthesis techniques. The sample
texture is shown in (a), the result using Heeger and Bergen's technique is shown in
(b), (c) is synthesised using De Bonet's technique, (d) is synthesised using Efros
and Leung's technique, and (e) is synthesised using Wei and Levoy's technique.
There is little difference in appearance between (d) and (e), however Wei and
Levoy's method is an order of magnitude faster than Efros and Leung's method.

Wei and Levoy have shown a method similar to that of Efros and Leung

which pro duces textures which are of equal or higher quality and can be synthe­

sised much faster [79]. The main differences from previous techniques is that the

texture is filled in progressively, from top to bottom, left to right, and they define

their neighbourhood for search in the input sample to have dependence only on

previous pixels which have been added to the synthesised texture (the system is

causal). In addition, in order to capture texture elements whose sca1e is larger

than the search neighbourhood they use a multi-resolution approach: synthesis is

performed from low resolution to high resolution levels in a Gaussian pyramid,

with the neighbourhood definition updated to include the levels below the level

currently being synthesised.

They have also increased the search speed of matching neighbourhoods

between the sample and target textures by considering each neighbourhood to

be a point in a higher dimensional space, and using a nearest point searching

algorithm (tree structured vector quantisation). These algorithms typically involve

preprocessing the point set, but provide much faster se arch times. Results using

their method are shown in Fig. 3-6.

41

Wei and Levoy also propose a method for synthesising temporal textures.

Temporal textures are visual sequences with indeterminate extent both in space

and time. For this type of synthesis, the neighbourhood definition is augmented to

inc1ude the texel values from nearby frames within a texture animation. Searching

in this higher-dimensional space is c1early computationalIy expensive, and hence

results take a long time. It is also worth noting that in order to use this method,

one must already have a sample of a temporal texture.

Schodl et al. have developed a technique for creating temporal textures of ar­

bitrary length based on small video sequences which they calI video textures [70].

Their method analyses a video sequence to extract its structure, and is then able

to synthesise a new, similar looking, non-repeating video. The videos are repre­

sented as Markov processes with each state corresponding to a frame in the video,

and the probabilities correspond to the transition likelihoods from one frame to

another.

The creation of a video texture consists of an analysis phase to extract the

structure from the video, folIowed by a synthesis phase. For the first part of the

analysis phase, the similarity of all pairs of (brightness equalised) frames in the

sample video sequence is computed and stored in a matrix Dij = 1 IIi - Ij 112 for aIl

pairs of video frames Ii and Ij. These distances are then mapped to probabilities,

Pij <X exp(-Di+l,j/a), with each row of P being normalised so that Lj Pij = 1.

When synthesising the new video sequence, a new frame is selected according to

the distribution of Pij , with the value of a determining the smoothness between

adjacent frames. This work was extended so that individual pictures could contain

moving elements [24], and was also applied to panoramic images in the form of

panoramic video textures [2].

If we consider texture synthesis methods based on Markov models of texture

as presented above, then although these techniques pro duce compelling results,

42

they have severallimitations. For instance, the Markov framework does not easily

aIlow for minor changes in the characteristics of the texture being generated

(wider bricks, puffier c1ouds, etc.), although there has been promising work in

this area [84, 19]. Another shortcoming of these techniques is that the output

resolution can never be higher than the resolution of the input image: while

increasing the desired size of the synthesised texture will pro duce more texture,

its resolution (distance between samples) can never be higher than the given

sample texture. This means that these texture synthesis methods aIl suffer from

the magnification drawbacks described in Sec. 2.2.3, and are therefore not very

weIl suited to photo-realistic rendering.

3.2.3 Bi-directional Texture Function

Dana et al. have a somewhat different approach to the texture synthesis prob­

lem, and propose a method which is similar to the techniques for measuring the

BRDF discussed in Sec. 2.2.1 [26]. They define a bi-directional texture function

(BTF) analogously to the BRDF: for each possible viewing and illumination

direction, the BTF of a particular texture returns an image. This model accommo­

dates both isotropic and anisotropic textures very weIl. Actual textured materials

(carpet, velvet, stucco, etc.) are imaged for each possible viewing and lighting

angle, and the resulting texture images are stored for later use. At rendering time,

the correct texture samples are retrieved and blended together. Although this

approach has produced sorne nice demonstration images, the time and machinery

necessary to accurately sample each desired texture for aIl orientations, as weIl as

the space needed to store these samples is quite prohibitive.

Suen and Healey have lowered the storage requirements via a form of

subspace modelling to yield highly realistic reproductions of specific physical

surfaces once the requisite measurements have been acquired [74]. This method

43

Ca) Cb)

Cc) Cd)

Figure 3-7: Textures synthesised using Lefebvre and Poulin's technique. The
input texture for the rectangular tiling method is shown in (a), and (b) is the syn­
thesised texture. The input texture for the wood texture method is shown in (c),
and (d) is the synthesised texture.

continues to be impractical due to the necessity of physical sampling the desired

texture in a very controlled environment.

3.3 Procedural Texture Matching

Lefebvre and Poulin have developed a procedural method for texture analysis

and synthesis for highly structured textures [51]. This method combines sorne

of the features discussed above with the final goal of producing a procedural

texture similar to the input sample. This allows the graphie artist to use a high

resolution texture, as well as to have the ability to tune sorne of the parameters of

the resulting texture should they desire a slightly different appearance.

44

Their work focuses on two types of structured textures: rectangular tilings

(such as can be found in brick walls or ceramic tile floors), and wood. In the

case of rectangular tilings, their method is based on the Fourier analysis of a

(manually tuned) segmented texture. They measure features such as orientation

and the height of rows in the tiling directly from the phase and amplitude images

of the texture transformed to the frequency domain. Given this information, they

can then measure other parameters such as tile width and row offsets by tracing

horizontal scan lines within the original image in the spatial domain. As a final

step, the user must select a region in the sample texture which represents the

centre ofthe tiles (the brick itselfin a brick wall texture), and a region which

is representative of the inter-tile area (mortar in the case of a brick wall). They

then use Heeger and Bergen's method (discussed in Sec. 3.2.l) to synthesise

these regions in the final texture. A similar approach is presented to synthesise

wood textures based on an input sample. There are.1 0 parameters for their wood

procedural texture model which are estimated using various scan-line and Fourier

methods similar to those used for rectangular tilings. Two examples of their

method can be seen in Fig. 3-7.

Although the results for these two specific types of texture are very positive,

it is clear that this method can not be generalised to handle arbitrary textures. In

addition, even in their restricted domain of textures there are sorne limitations:

the rectangular tiling must be regular, and due to the method used to synthesise

the various texture elements, arbitrary resolution is not really possible for reasons

discussed above.

The approach to texture matching presented in this thesis is better able

to han dIe generic texture samples, and the resulting procedural textures can

be used to render true high resolution photo-realistic images. This approach

is demonstrated below for both stochastic and deterministic texture samples.

45

In addition, our method uses procedural textures written in a standard shading

language2 and as such does not need to be part of a special rendering framework

unlike sorne of the methods presented in this chapter. Our method for procedural

texture synthesis based on a given texture sample will be outlined in the following

chapter.

2 We use Pixar's RenderMan® shading language since it is the prevalent shad­
ing language used in the computer graphies industry; however, our system can be
easily extended to use other shading languages. For details, see appendix A.

46

CHAPTER4

Procedural Texture Matching

I
N this chapter we will describe our method for synthesising a texture proce­

durally based on a given sample texture. This method contrasts with those

described in chapter 3 in that rather than modelling the texture statistically or

measuring specific features within the texture, we seek to find a shader from

a given library of shaders which can approximate the sample texture. Given a

potentially similar shader, our method then fine tunes the shader parameters in

order to improve the similarity between the two textures. Computing the similarity

. of textures based on a human psychophysical model is an open problem, however,

our method can easily use any supplied texture comparison metric. Although a

more extensive discussion of texture similarity is beyond the scope of this thesis,

in Sec. 4.5 we present two such similarity measures we have used with success.

Rather than retuming a texture image, our method retums a shader, and a

specific set of parameters for that shader which can then be used in an arbitrary

rendering environment for image synthesis. While there are many advantages to

this approach, the most notable are that the shader can be rendered at arbitrary

resolutions, and that the graphic artist can manually fine tune the parameters to

47

achieve a slightly different appearance should they so desire. This work assumes

the availability of a library of shaders, and that at least one shader in the library is

capable of approximating the appearance of the desired texture. In chapter 6 we

discuss a possible approach to relaxing these assumptions.

4.1 Approach

Recall from Sec. 2.2.4 that a procedural texture is a function which, given

a set of input parameters x = (Xl, •.. , Xn) which control the appearance of the

texture, retums the colour of the surface at the point (u, v) queried:

p(u, v, x) = f(u, v, L, N, Od, Os, ... , x) (4.1)

where p is a procedural texture taking a parameter vector x and like a texture map

is indexed by (u, v) E [0, 1]2. Note that p is a function not only of the parameters

of the texture itself, but also of the light direction (L), surface normal (N), object

diffuse and specular colours (Od, Os), etc., as illustrated with the function f

above. We can think of these additional parameters as being functions of (u, v).

For the work in this thesis, we consider procedural textures only in terms of their

coordinates (u, v) and their parameter vector x. That is, we seek only to recover

textures under constant lighting conditions on a plane.

Given an input target texture T, we wish to approximate its appearance

using a procedural texture p(u, v, ...). The solution to this problem will entail a

multi-stage search strategy over the space of shaders in the shader library, as weIl

as over the parameter domain of the shaders likely to produce desirable matches

to the target texture. The details of this search technique will be given below.

For the remainder of this thesis, we will refer to a procedural texture without

specifying the (u, v) texture coordinates, but rather just the parameter vector, as in

48

p(X). When the particular values of the parameter vector are not relevant, we will

simply refer to the procedural texture as p.

Consider a set P of procedural textures {Pl, ... , Pn}, where each element

Pi is a shader of arbitrary dimension, that is, it takes an arbitrary number of

parameters. Given a texture target T, we wish to find the element Pi E P, and the

associated parameter vector Xi such that Pi (Xi) produces a texture perceptually

similar to T. That is, we want to maximise a similarity measure S 0 between

the procedural candidate and the target texture: S(Pi(Xi), T). The process for

finding Pi and Xi is outlined below, and the similarity measure S () is discussed in

Sec. 4.5.

4.2 Searching in Texture Space

To find an appropriate shader and parameters, we need to search across the

span of each shader's input parameters for a suitable match to the target texture T.

For the remainder of this thesis, we will refer to the set of all valid parameters for

a particular shader as its parameter domain, and to all the texture images a shader

can produce as its texture range.

Unfortunately, it is unlikely that the similarity hyper-surface s(x) = S(Pi(X), T)

resulting from evaluating the target texture against the texture range of a particular

shader will be convex (or even continuous for that matter). Of course, if there is

a particular parameter setting for a shader which provides a good match to the

target texture, theoretically, exhaustive search of the parameter domain would

eventually find it, however, we desire a tractable solution. This suggests a space-

time compromise consisting of a two-stage approach: a preliminary search using

pre-computed data and an on-line refinement stage.

49

4.3 Global Search

As a pre-computation step, for each new shader that is added to the shader

library, we generate a catalogue of samples in the parameter do main of that

particular procedural texture Pi. We refer to the catalogue of samples for a

particular shader as its sample set Vi, and the global set V is composed of all such

sample sets for the shaders in the library.

Note that generating a sarnple for a particular parameter vector x entails

rendering a new image of a plane textured using the shader Pi (x). The texture

samples in the catalogues are stored in an image database using a lossless

compression format. Each sample is rendered at 256 x 256 pixels, with an average

catalogue size of approximately 200 samples, combining for an average storage

cost of 11MB per catalogue. The number of samples required for each catalogue

is dependent on the number of parameters for the given shader. However, this

relation is rarely exponential because most shaders contain a subset of parameters

which are semantically motivated and hence control a wide range of the shader's

output while the remaining parameters account for little variation. This pre­

computation phase typically takes on the order of 4 hours for each new shader

added to the library. While creating the shader catalogue is a computationally

costly step, it must only be performed once for each shader.

Because it is possible that several parame ter vectors will produce similar

textures, we choose to sample the pararneter domain of each procedural shader

using an adaptive random sampling technique. This allows us to retain in our

sample set only the parameter values which give us information about the

interesting areas of the parameter domain - that is, the areas where the resulting

texture range is not predominantly self-similar. A key issue, of course, is to

sample densely enough to capture the expressiveness of the procedural texture

while not over sampling and creating very large shader catalogues. The sampling

50

• •

•
•

•

•

(a) (b)

(c)

Figure 4-1: The construction step of the adaptive random sampling method. For
the sake of illustration, we have limited the dimensionality of the shader to 2, and
assume that the measure S () is inversely proportional to the Euclidean distance
between samples (i.e., samples which appear similar are closer together). In (a),
samples are added randomly within the parameter domain of the shader. The fully
connected graph is then constructed as shown in (b), and since one vertex is ab ove
the closeness threshold (shown in red), it is removed as shown in (c).

density (size of the sample set Vi) is determined by the end-user and can be

adjusted per-shader if necessary.

Our adaptive random sampling is performed as follows. We build a graph Ci

containing the vertices Vi and edges Ei for each shader Pi. Each vertex v! E Vi

corresponds to a sample point (parameter vector Xi) in the parameter do main

of the shader Pi, and we will therefore refer to the texture Pi (Vi) and Pi (Xi)

interchangeably. The edge weights e(v!, vm) E Ei correspond to the similarity

measure between the vertices: e (V!, vm) = S (Pi (v!) , Pi (vm)). The maximum

number of samples for a shader Pi is determined by the per-shader constant Ni.

51

The adaptive random sampling technique involves a three step process:

there is an initial construction step, a refinement step, and a pruning step.

The construction step adds a number of random vertices to the graph, and the

refinement and pruning steps iteratively improve the coverage of the parame ter

domain.

For the construction step, k random samples are added to the vertex set Vi.

For each new vertex, edges are added to each existing vertex so that the graph

is a1ways fully connected. Full connectivity is not strictly necessary, however, it

is desirable for the texture transformations which will be discussed in chapter 5.

During the construction step, as each new vertex and its associated edges are

added to the graph, it is checked to ensure that it is not too similar in appearance

to sorne pre-existing vertex as determined by the similarity measure. That is, for

a new vertex VI ifthere exists a vertex Vm such that e(vI' v m) > w where w is a

constant threshold, VI is removed from the vertex set. The construction step is

illustrated in Fig. 4-1.

Once it has been determined that a vertex VI will be retained, we compute a

measure of the smoothness in its local neighbourhood: given a reference point x

and a set of points D = {dl, ... , dn } distributed in the local neighbourhood of x,

we can compute a heuristic function measuring the local smoothness around the

sample point x as follows:

(4.2)

This measure compares each point from the sample set D to the sample point

x and these similarities are weighted by the L 2 norm between x and each point

di under consideration. New points can be added incrementally as compute time

permits in order to improve the measure. This function is a heuristic because it is

52

..
.. ..

(a) (b)

Figure 4-2: The refinement step of the adaptive random sampling method. Again,
for the sake of illustration, we have limited the dimensionality of the shader to 2,
and assume that the measure S () is inversely proportional to the Euclidean dis­
tance between samples. More samples are added globally as shown in yellow in
(a). In addition, the vertex shown in blue in (b) was identified as being isolated,
and hence random samples were added locally (shown in green). The new edges
are not shown for clarity.

a discrete approximation of the local surface properties based on limited sample

points, and is thus not equivalent to the derivative at the point x.

For the refinement step of the adaptive random sampling method, we evaluate

the CUITent graph, and determine whether new points need to be added to provide

better coverage of the texture range of the given shader. Points which may be too

isolated are also identified during the refinement step.

First, we compute a global measure of coverage of the current sample set:

L (1- e(vz,vm)t (4.3)
l,mEVi l=lm

where higher values of (J penalise graphs with isolated vertices. If /'l,(Ci) is

above sorne threshold, k more random points are added to the graph as in the

construction step described above.

Secondly, we identify the most isolated vertices in the graph as defined by:

(4.4)

53

• • • • •
• •

• • • • • •

• • • • • • •
•

• • • • • •

(a) (b)

Figure 4-3: The pruning step of the adaptive random sampling method. For the
sake of clarity, no edges are shown. (a) shows the vertices before pruning, and (b)
shows the result after removing the vertices which were deemed to be too similar
to provide sufficient novel information. Again, we assume that the measure SOis
inversely proportion al to the Euclidean distance between samples.

that is, the measure 1(Vi) is a mixture of the local smoothness (as determined by

the heuristic HO) around Vi, as well as the distance to the nearest neighbour in the

graph.

The vertices in Vi are then sorted according to 10 and the top q (that is the

q most isolated) points are selected. For these selected vertices, more random

samples are added local/y. This step is shown in Fig. 4-2.

The final step of the adaptive random sampling method is the pruning step.

In this step we want to limit the number of vertices in the graph (II Vi Il) to the user

specified Ni' If Il Vi Il > Ni, this is accomplished by calculating a measure to find

vertices which are most similar to others, and can hence be removed:

À(VI) = L e(vl,vm)

vmEV;-{VI}

The vertices in Vi are sorted according to À () and the top Il Vi Il - Ni are

removed. This step is shown in Fig. 4-3.

We then iterate over the refinement step and the pruning step until the

sampling coverage threshold is satisfied, or a maximum iteration has been

54

(4.5)

Figure 4-4: An example of uniformly sampling an individual shader. Note how
there are many samples which are very similar, and when compared against the
sampling of the same shader shown in Fig. 4-5, we also see that much of the
texture range of the shader has not been captured.

reached. This adaptive random sampling method is similar to that used by Kavraki

et al. for a randomised path planner for use with mobile robots [47]. An example

of the adaptive random sampling of a particular shader as compared to uniform

sampling is shown in Figs. 4-4, and 4-5.

In practise, we actually keep two versions of the graphs for each shader.

One is as described above, the other is a highly pruned (and hence much smaller)

version of the same graph. Because each vertex is stored as an index into the

55

Figure 4-5: An ex ample of the sampling due to our adaptive random sampling
technique. When compared against the uniform sampling of the same shader
shown in Fig. 4--4, we can see that this method captures much more of the texture
range.

image database, the increased storage requirements for keeping more aggressively

pruned versions are negligible.

As the first phase of our global search, we seek to identify the shaders which

may produce textures similar to our target texture T. This can be accompli shed

by evaluating the similarity function over the highly pruned catalogue for each

of the shaders in the library. For each shader, if the best match from the pruned

catalogue is above a given threshold, it is added to the set of candidate shaders

Pc c 'P to be searched globally, otherwise the shader is not searched any further

56

• • •
• • •

• .---,

•
Figure 4-6: The second, local, phase of the search strategy. The points in red were
identified during the global search phase as likely candidates to start a local search
for the ideal match shown in blue. For the sake of illustration, we have limited
the dimensionality of the shader to 2, and again assume that the measure S () is
inversely proportional to the Euc1idean distance between samples.

for this particular target T. Alternatively, the end user can easily specify which

shaders comprise Pc if they have sorne higher level knowledge of which shaders

are likely to produce similar textures.

Once we have a set of candidate shaders Pc which have a potential for

producing textures sirnilar to the target, we perform a more exhaustive search

- the similarity measure is evaluated for each sample in the sample set for each

shader Pi E Pc to find the best overall match:

max (maxs (Pi(VI),T))
V;EPc vzEV;

(4.6)

This match then becomes the starting point for the local search phase of our

texture matching algorithm which is described below. In practise we look not

only at the best match, but at several of the top matches in order to maximise the

likelihood of success during the next phase.

4.4 Local Search

The second phase of our se arch strategy consists of a local search seeded

by the best candidate samples from the global search phase. Starting with each

57

of the top matches from the previous phase, we perform a local optimisation to

refine the shader parameter vector values in order to produce a texture which

best represents the target texture (see Fig. 4-6). The notion here is that the

adaptive random sampling from the global search phase has covered the parameter

domain sufficiently to guide our search so that we can start our optimisation in

the most promising areas of the relevant shader's parameter domain, and avoid

wasting time searching in areas where the shader is unlikely to produce desirable

matches. More specifically, if we assume that each texture region is interpolated

approximately by its bounding vertices (as defined by sorne kind of subdivision

technique), then we can see that searching within an area where none of the

bounding vertices is similar to the target texture should, in general, not pro duce a

goodmatch.

It is during this phase that our heuristic measure of the smoothness of the

local neighbourhood surrounding a vertex, H(v), can be employed to influence

the search order of samples to be used as starting points for the local optimisation.

As mentioned above in Sec. 4.3, it is possible that multiple points in the parameter

domain of a particular shader will generate similar textures, yet the local similarity

hyper-surfaces surrounding these points can have different characteristics (see

Fig. 4-16 for an example). Since searching in smoother spaces is both more

efficient and tends to yield better results, we wou Id like to prioritise our search

based on the heuristic measure of the local smoothness.

When the local search is no longer able to take a maximising step, the

parameter vector which results in the greatest similarity to the target texture

determines the final shader and parameter vector returned by the search algorithm.

During the entire search phase, the user is presented with visual feedback of

the current best match, allowing them to terminate the search at any point if the

58

CUITent match is to their liking, thus avoiding searching other candidate shaders, or

other promising starting points within the same shader.

For the results presented in this thesis, we have used both simplex optimisa­

tion, and a gradient-ascent-based optimisation. Bach is described below.

4.4.1 Downhill Simplex Method

Definition 4.4.1 (Simplex)

A simplex, sometimes called a hyper-tetrahedron [20] is the generalisation

of a tetrahedral region of space to n dimensions. The boundary of a k-simplex

has k + 1 O-faces (polytope vertices), k(ki
1

) I-faces (polytope edges), and (~1;)

i-faces where G) is a binomial coefficient [80].

The downhill simplex method is a minimisation technique which does not

require the computation of derivatives, but rather only function evaluations [60].

For this method, we are only interested in simplices that enclose a finite inner

n-dimensional volume, and are hence non-degenerate. If we fix the origin at one

of the n + 1 vertices, the n-dimensional space is spanned by the vectors defined

from that origin to the remaining n points.

The downhill simplex method must be started with an initial simplex which

can easily be constructed from a given starting point Xo, by adding multiples of

each of the unit vectors ei:

where 0: can either be a constant, or can be tailored to each dimension based

on the search problem characteristics. The method entails the use of several

operations: reflection, reflection and expansion, contraction, and multiple

contraction (shown in Fig. 4-7).

The downhill simplex method first tries to move the point on the simplex

where the value is highest through the point on the simplex where the value is

59

(4.7)

(a)

(b)

(c)

(d)

(e)

Figure 4-7: Different results after a step in the downhill simplex method. The
simplex at the beginning of the step is shown in (a), with the high point on the
bottom left of the (tetrahedral) simplex, and the low point on the bottom right.
At the end of the step, the simplex can be either (b) due to a reflection away from
the high point, (c) due to a reflection and expansion away from the high point,
(d) due to a contraction along one dimension from the high point, or (e) due to a
contraction along an dimensions towards the low point. This figure is based on
Fig. 10.4.1 in [68].

60

lowest. This volume preserving (and therefore non-degenerate) operation is

called a reflection (Fig. 4-7(b)), and is the most common step taken during the

optimisation. The notion behind the reflection is that we are attempting to roll the

simplex down a hill towards the minimum. If possible, the method will attempt

to take an even larger step in the direction of the lowest point, in which case it is

called a reflection and expansion (Fig. 4-7(c)).

When a reflection results in a point with a higher value, the simplex is instead

contracted (Fig. 4-7(d)) so as to facilitate its movement towards the minimum.

The idea behind the contraction is to allow the simplex to squeeze through a

valley on the hyper-surface on its way to the minimum. If this is unsuccessful,

the simplex will contract in all directions around the point of minimum value

(Fig.4-7(e)).

The optimisation is stopped when the decrease in the function value is below

a given threshold or sorne maximum number of iterations has been reached. Like

many optimisation techniques, downhill simplex optimisation is often restarted

from the terminal point in an attempt to narrow in more closely on the function

minimum. Since we should already be close to the minimum, multiple restarts

generally do not iterate for long before terminating. Note that while we have

described downhill simplex optimisation, which finds a minimum, this method can

obviously be trivially altered for the purpose of maximising a function instead.

The evaluation of the similarity function S(Pi(XI), T) with a new parameter

vector x~ entails the rendering of a texture sample since x~ is not contained in the

sample catalogue. Consequently, computing the gradient \7 S (Pi (Xl), T) is some­

thing we would like to avoid, motivating our desire to use the simplex method

when possible as it does not rely on computing derivatives. In particularly unfor­

giving cases, however, the user can select to use a gradient ascent optimisation

method described below.

61

Figure 4-8: Steepest ascent along a narrow crest. Because each change of direc­
tion is perpendicular to the las t, more steps are taken to reach the maximum than
is necessary. This figure is based on Fig. 10.6.1 in [68].

4.4.2 Gradient Ascent Method

The most basic form of gradient ascent is called steepest ascent. For

this method, we start at the point Xo, and then take steps from Xi to Xi+! by

maximising along the line in the direction of the local uphill gradient \7 f (Xi)'

The main problem with this basic approach is that it is not always best to travel

locally in the direction of the gradient. Consider what will happen when trying to

ascend a long narrow peak: we would hope that the first line maximisation would

take us to the local top of the crest, and that the new line maximisation would then

ascend the crest to the true maximum. However, the new gradient at the maximum

point of any line maximisation is perpendicular to the direction just traversed (see

Fig. 4-8). What is required to minimise the number of steps taken (and hence

the number of gradients computed) is to find a direction which is constructed to

be conjugate to the old gradient, as well as the previous directions taken. These

are called conjugate gradient optimisation methods, a full discussion of which is

beyond the scope of this thesis [67].

4.5 Evaluating Texture Similarity

In order to match a synthetic texture to a target, an important requirement is

a distance function to indicate the quality of a candidate match, that is, a texture

similarity function that operates on pairs of images. While a naive solution to this

62

problem might be based on the local pixel intensity differences between images l ,

that would fail to capture the notion of texture fields that look the same even when

the individual pixels are different. For example, two images of snow falling may

have the same apparent textures yet no two pixels may be identical.

Generic image difference metrics are becoming more prevalent with the high

demand for content-based retrieval from large image databases. Unfortunately,

generic image difference metrics, even when perceptually motivated [61,59], do

not generalise well to the texture domain.

Before delving further into the notion of texture similarity, it is worth

considering what we mean by visual texture. Although texture is generally easily

recognisable when we see it, it turns out to be very difficult to define as is shown

by a sampling of the many definitions found in the literature:

• "We may regard texture as what constitutes a macroscopic region. Its

structure is simply attributed to the repetitive patterns in which elements or

primitives are arranged according to a placement rule." [75]

• "A region in an image has a constant texture if a set of local statistics or

other local properties of the picture function are constant, slowly varying, or

approximately periodic." [72]

• "The image texture we consider is non-figurative and cellular ... An image

texture is described by the number and types of of its (tonal) primitives ... A

fundamental characteristic of texture: it cannot be analysed without a frame

of reference of tonal primitive being stated or implied. For any smooth grey-

tone surface, there exists a scale such that when the surface is examined, it

1 Such as the common method of comparing images using the sum of squared
differences (SSD) for the pixel intensity values.

63

has no texture. Then as resolution increases, it takes on a fine texture and

then a coarse texture." [39]

• "Texture is an apparently paradoxical notion. On the one hand, it is

commonly used in the early processing Of visual information, especially for

practical classification purposes. On the other hand, no one has succeeded

in producing a commonly accepted definition of texture. The resolution

of this paradox, we feel, will depend on a richer, more developed model

for early visual information processing, a central aspect of which will be

representational systems at many different levels of abstraction. These

levels will most probably include actual intensities at the bottom and will

progress through edge and orientation descriptors to surface, and perhaps

volumetric descriptors. Given these multi-Ievel structures, it seems clear

that they should be included in the definition of, and in the computation of,

texture descriptors." [85]

• "The notion of texture appears to depend upon three ingredients: Ci) sorne

local 'order' is repeated over a region which is large in comparison to

the order's size, Cii) the order consists in the nonrandom arrangement of

elementary parts, and Ciii) the parts are roughly uniform entities having

approximately the same dimensions everywhere within the textured

region." [41]

• "The character of an object resulting from the arrangement or qualities of its

particles or constituent parts." [3]

From the definitions above, it is clear that there is no real consensus on a

unified definition of texture. In fact, we can see that sorne of the definitions are

pereeptually motivated while others are more application domain specifie. The

application domains involving sorne form of texturaI computation are generally

divided into the following four categories:

64

(a) (b)

Figure 4-9: An example of texture segregation is shown in (a) and two textures
which do not segregate are shown in (b). The segregation between the pattern of
T's and X's is obvious, whereas the pattern of T's and L's must be examined care­
fully before the border of the two textures can be identified. This figure originally
appeared as Fig. 17.1 in [5, p. 254]. Courtesy of Jim Bergen.

• Texture segmentation - the problem of computing a boundary around the

areas consisting of the same texture.

• Texture classification - the problem of identifying the texture classes of the

different regions (as normally found using texture segmentation) in a given

image.

• Texture synthesis - used mostly in computer graphics to create realistic

looking surfaces.

• Shape from texture - one of the general class of vision problems known as

shape Jram X. The goal is to use various perspective texturaI cues to extract

the three-dimensional shape information of the textured surfaces.

65

Psychophysicists are very interested in our ability to separate figure from

ground. Figure-ground separation can be based on many cues, but a classic in-

stance based on texturaI cues is the tiger-foliage problem: detecting atiger among

the foliage in a forest is a task which carries potentially lethal consequences. The

tiger is able to camouflage itself because the observer is unable to discriminate

between the two textures, namely the foliage and the tiger's coat. This forms the

basis of a prominent open question in the psychophysics community: what are the

visual processes which allow a human to separate figure from ground based on

textural cues?

An academic example of human texture discrimination can be seen by

looking at the two textures shown in Fig. 4-9. There is sorne disagreement in

the community as to what causes us to be able to see the two distinct texture

patterns in one of the images, while prohibiting us from seeing that there are two

different texture patterns in the other without close inspection. Julesz claims that

when the second-order statistics2 of two textures are similar, they are difficult

to segregate [46], while Bergen proposes that when two textures producea

similar response to frequency-selective oriented linear filters they are perceptually

similar [4, 3]. Unfortunately, while these theories have merit, counter examples to

each theory have been found [45, 55, 54].

Numerous studies have been performed to determine how simple cells in the

visual cortex of the macaque monkey respond to various sinusoidal gratings of

different frequencies and orientations [69]. These monkeys were chosen because

their visual cortex is assumed to be similar to the human brain in its visual

2 The probability of observing an intensity value at a random location in an
image determines its first-order statistics. Second-order statistics are defined as the
likelihood of observing a pair of intensity values occurring at the endpoints of a
dipole of random length placed in the image at a random location and orientation.

66

processing, and hence may give us sorne insight into how our own visual cortex

processes texture. The studies conduded that the simple cells are tuned to narrow

ranges of frequency and orientation, much along the lines of the daims made by

Bergen as described above.

Gumsey and Fleet applied multidimensional scaling (MDS) to the problem

of determining the texture space of a set of 20 noise-based texture stimuli [38].

The notion of a texture space is to define a space where similar textures would

be near to each other and distinct textures would be far apart. MDS solutions

attempt to find a suitable arrangement of objects in an N dimensional space which

is most consistent with the measured similarity data. For example, consider an

M x M matrix whose entries (i, j) represent the distance between cities i and

j. MDS analysis would yield a most likely arrangement of the objects in a two

dimensional space, much like a traditional map. Their experiment consisted of

showing triplets of textures from the group of 20 noise based textures (1140

triplets in total) and the subjects had to choose the two textures which were most

similar, and the two textures which were least similar. Cumulative similarity

scores were stored in the distance matrix as follows: a score of 2 was added each

time two textures were deemed similar, 0 for textures deemed distinct, and 1 for

the remaining pair in the triplet for a possible distance range of [O ... 36] since

each pair was presented a total of 18 times. This experiment was performed on 3

different subjects and it was determined that the subjects' similarity judgements

and the MDS solution in 3 dimensions were highly correlated. Although the

results from this experiment are promising for this limited set of synthesised

textures, this form of texture comparison cannot be computed for generic textures

since it is based on processing the data from test subjects in order to find the

dimensionality and basis set of the perceptual texture space.

67

1

Target

o

Figure 4-10: An ex ample of the texture similarity measure. The height of the
bars indicates the similarity of each texture to the target texture shown on the left.
Higher bars imply the texture is more similar to the target.

In order to compare the results of our synthesis process with the target

texture, we need a measure of the perceptual similarity of two generic textures, Tl

(4.8)

where a value of 1 indicates that the two textures are indistinguishable, and as

values approach 0 the two textures are considered to be increasingly distinct

(see Fig. 4-10). As described above, the definition of this ideal measure is still

an open problem in the psychophysics community. We therefore need to define

computational texture similarity functions S(), to approximate our ideal measure

S*.

A common tool used for analysing the second-order statistics in texture

images is the co-occurrence matrix [40]. The G x G grey level co-occurrence

68

matrix Pd for a given displacement vector d = (dx, dy), and an image l of size

N x N is defined as follows. The entry (i, j) of Pd is the number of occurrences

of the pair of grey levels i and j which are a distance d apart. More formally:

Pd(i,j) = I{((r,s),(t,v)): I(r,s) =i,I(t,v) =j}1 (4.9)

where (r, s), (t, v) EN x N, (t, v) = (r + dx, s + dy), and 1.1 is the set cardinality

operator.

Given a co-occurrence matrix, one can compute different texture features

such as energy, entropy, contrast, homogeneity, and correlation, however, it can

immediately be seen that computing these matrices is a non-trivial matter. For

example, consider that there is no easy way to select the displacement vector d,

and it is not computationally feasible to construct co-occurrence matrices for aIl

possible values of d.

As previously described, one possible computational model of texture sim­

ilarity is based on statistical methods particularly in the Fourier domain. While

both phase and amplitude play a role in the psychophysics of texture percep­

tion [44,22,3], the power spectrum alone provides a reasonable approximation

to perceptual performance and is computationally expedient. A key observation

is that the windowed power spectrum of a texture can be used for distinguishing

or segregating textures. The power spectrum describes the mixture of spatial

frequencies in an image and it can be obtained readily using a Fourier transform

(see Fig. 4-11). As such, one of our computational approximations to the ideal

texture similarity function S* () is:

(4.10)

where Fps (T) is the power spectrum of the texture T, computed by using a fast

Fourier transform (FFT). Because the power spectrum represents frequency

69

(a) (b)

(c) (d)

Figure 4-11: An ex ample of the power spectrum for two different images. The
images on the left are the originals, and the images on the right are the power
spectrum images. Note how the frequency related elements are localised in the
power spectrum images.

information as a function of the (inverse) distance from the centre of the image, in

practise the differences are weighted radially to favour low frequency (structural)

components.

In addition to the power spectrum of the texture sample, we have also

considered the use of the histogram of the energy distribution in a Laplacian

pyramidal representation of the texture images, as used by several authors for

texture analysis and synthesis [1,42,27].

An image pyramid is an image representation consisting of multiple copies

of the image at various resolutions (see Fig. 4-12). One corumon type of pyramid

is the low-pass pyramid. A Iow-pass pyramid consists of a full resolution image

70

D""" LevelO: Ixl

EB/ " """" Levell:2x2 , , ,

" '. '>"-, "

" "

Figure 4-12: An image pyramid has a single pixel at its top level. Each lower
level consists of an image at twice the resolution of the previous level. The type of
pyramid specifies how the individual pixel values are determined for each level.

at the lowest level, followed by a half resolution image, etc., where each level is

formed by an averaging process. The top of the pyramid consists of a single pixel

image which is the average intensity of the entire image. In this type of pyramid,

each level is independent and can thus be used on its own. Common uses of

low-pass pyramids inc1ude mip-mapping (Sec. 2.2.3), and image communication

where the appropriate level of the pyramid is transmitted according to the

available bandwidth.

A Laplacian pyramid is a band-pass pyramid whose top level is again a single

pixel which is the average of the entire image. However, the other levels of the

pyramid are not independent as in a low-pass pyramid. Each of the other levels

consists of the detai! information necessary to generate an image at the required

resolution for level n from the previous resolution, level n - 1. For example, to

reconstruct an image of resolution 4 x 4, we would first construct an image of

resolution 2 x 2 by assigning the average value from the 1 x 1 resolution image

(top level of the pyramid) to each pixel in a 2 x 2 resolution image, and then

add the detail image from the second level of the pyramid which has a resolution

of 2 x 2. We would then fill a 4 x 4 resolution image with the corresponding

71

(a)

(b) (c)

.11
(d) (e) (f)

Figure 4-13: An example of a Laplacian image pyramid. The original image is
shown in (a), and the de ta il images for the bottom 5levels are shown in (b) - (f).
(The sample image is the "Indian Head" test pattern, which was originated by
RCA in 1939. It was non-uniformly scaled to go from the 4:3 NTSC aspect ratio
to make it a square image for the purpose of generating the image pyramid.)

average values from the 2 x 2 image constructed thus far and then finally add the

detail from the third level of the pyramid (4 x 4) to arrive at the desired 4 x 4

image. In other words, the band-pass pyramid on1y stores the information at each

level required to go from a coarse level n to a finer level n + 1. An example of a

Laplacian image pyramid can be seen in Fig. 4-13.

Pairs of textures can be compared by computing the histogram difference

between the corresponding leve1s in their Lap1acian pyramids:

(4.11)

where hO is the histogram of an image, Li is level i in the Laplacian pyramid of a

texture, Tl and T2 are the textures being compared, and Wi is a weighting factor.

72

(a) (b)

Figure 4-14: An ex ample of a deterministic texture (a), and a stochastic texture
(b).

The motivation behind comparing the intensity histograms at each level of

the Laplacian pyramid stems from the fact that the comparison is computed on

a representation that has intrinsic spatial structure. In other words, a spatially

correlated change in the reconstructed image is effected when a pyramid level is

modified locally. That is, the first order statistics of the pyramid levels do measure

sorne of the spatial statistics of the original image [42].

In practise, we find that both the Laplacian histograms and the Fourier power

spectrum have advantages as the basis for texture similarity functions and allow

the user to select the desired comparison function. Because our method is not tied

to any particular choice for S 0, if better computational approximations to texture

similarity are discovered, they can easily be incorporated into our system. In the

context where the particular choice of texture metric is not significant, we refer to

it simply as S O.

4.6 Examples

Textures are often divided into two classes, namely, stochastic and deter­

ministic. Stochastic textures generally do not contain any easily identifiable

primitives, whereas deterministic textures largely consist of well-defined prim-

itives combined with a set of rules governing their placement (for an example

of each see Fig. 4-14). In practise, many textures exhibit sorne combination of

73

properties from both classes. Prior work in the field of texture synthesis tends

to focus on only one of these texture classes, the predominant methods being

based on Markov random fields which assume that the desired texture targets

are stationary3 , local4
, stochastic textures. The deterministic texture synthe sis

methods attempt to measure domain specific attributes, and therefore can not be

used to synthesise stochastic textures.

In order to demonstrate our method of procedural texture matching, we

have chosen many kinds of texture targets. Sorne of the texture targets are

natural, that is, they are from photographs taken in the real world and sorne

are synthetic (rendered). For both of these classes, we show our results on a

mixture of deterministic and stochastic textures. As a first example, consider the

texture matches shown in Fig. 4-15. These are deterministic synthetic textures

which were themselves generated procedurally, and hence have well known

parameter values which permits us to quantitatively measure our solution. For

both examples, as expected, the exact parameter vector was recovered which was

used to render the original texture.

In order to increase the difficulty of the texture match, we performed texture

matching experiments on synthetic textures which are stochastic. Example texture

matches for a few such textures are shown in Fig. 4-16. These test cases provided

an interesting result: although the texture matches are good, the parameter vectors

recovered were not the same as those used to render the initial targets. This fact

3 A stationary texture is a texture where samples from various regions wi11100k
similar, that is, the local statistics are position invariant.

4 Each pixel in a texture which exhibits locality can be characterised by its
local neighbourhood.

74

is not surprising, especially for stochastic textures, since there are often many

different parameter vectors which can produce similar results.

We have also performed our texture matching on texture targets from the

Brodatz album [18]. These textures are commonly used as a reference point for

texture matching and classification algorithms in the perception community, and

are therefore weIl suited to exemplify our procedural texture matching framework.

The first set of examples are shown in Fig. 4-17. These are deterministic textures

from photographs of real world phenomena. The brick texture match is very

satisfying because the dominant elements present in the target texture such as the

height and width of most of the bricks and mortar thickness have been replicated

very closely. The weave pattern shown in the same figure is not as close a match,

but again the dominant elements (in this case the frequency of the vertical and

horizontallines) have still been replicated quite weIl. It is worth noting that even

though both of the texture samples are quite distinct, the actual shader used to

replicate each was the same, showing that this method allows us to find novel uses

for existing shaders.

We also performed sorne experiments using stochastic textures from the

Brodatz album as the targets. As noted above, these textures are photographs of

real world phenomena. The matching results are shown in Fig. 4-18 with the

target texture on the left, and the matched texture on the right. Both cases exhibit

successful results, which is especially satisfying given the limited shader library

which was used.

The notion of using a shader serendipitously is definitely a positive side­

effect of our system, as a graphie artist may not consider sorne of the shaders

which could actually produce positive matches to the given target texture. An

example of this is shown in the second match which made use of a shader

intended to texture an eyeball. This shader has parameters such as i ris s i z e,

75

veinfreq, bloodshot, etc., which were appropriately specified (removing the

iris completely by setting its size to 0) to match the given texture which was in no

way related to an eyeball.

In Fig. 4-19, we demonstrate our matching results using two real pictures

of the sky - one during the day, and one at night. While, of course, in neither

case is an exact match found, the texturaI characteristics are very similar for both

examples. We were unable to produce closer matches by manually tuning the

parameters.

In another ex ample shown in Fig. 4-20, we have extracted a texture from an

architect's sketch of a house. Again, the match found demonstrates a satisfactory

result. OveraIl, we have shown matches to a large variety of real and synthetic

texture targets. These positive results demonstrate the generality of our matching

framework.

While aIl of the examples above show matches which are perceptually very

similar to their targets, we have provided an example of a few textures (Fig. 4-21)

for which less suitable matches were found. It will not always be the case that we

can find a close match if the target texture is not contained in the texture ranges

of the pro ce duraI textures in the library. In this situation, we can only hope to find

a procedural texture p and a parameter vector x such that p(x) is as similar as

possible to the target texture T. This inability of the shader library's texture range

to express a given target texture is the case with the top example (Fig. 4-21(b)).

It is notable however, that the match which was found is still reasonable given

the limited texture range of the shader library. We can see that similar texturaI

elements are present in the match found, and the frequency of these elements

seems to be appropriate. The bottom example (Fig. 4-21(d)) fails for a more

interesting reason. In this case, the failure to pro duce a good match is due to the

fact that one of the parameters for the shader determines the number of points in

76

the star which is intended to be an integer value. For this shader, the sampling

phase did not produce the desired value of 4 but rather produced floating point

values close to 4. This shader gives degenerate results when given non-integer

parameters which means that the energy space between integer values is highly

non-convex, thus preventing our algorithm from finding the exact result.

Our system is able to detect failed matches when there is a large residual in

the similarity measure between the best match and the texture target. Potential

approaches for handling this situation are discussed in chapter 6.

The shading language programs as well as the actual recovered parameters

for the examples shown in Figs. 4-18(b) and 4-18(d) are presented in appen­

dices Band C respectively. As an illustration of the compactness of the procedural

representation of each, the shaders for these two examples are 1.5 and 2.3 kilo­

bytes in size, whereas an uncompressed 8 bit 256 x 256 texture map occupies 192

kilobytes, giving a size ratio of approximately 105 : 1 for these small texture sam­

pIes. Of course, procedural textures can be rendered at arbitrary resolutions, while

an equivalent high-resolution texture map can easily occupy a few megabytes

leading to size ratios of 2000 : 1 and beyond.

All of the results shown in this chapter were obtained using a small collection

(approx. 100) of publicly available general purpose shaders, none of which were

specifically written to replicate the appearance of any of the given natural target

textures. The average match time was 12 minutes, with under 100 iterations for all

cases.

77

(a) (b)

(c) (d)

Figure 4-15: Examples ofprocedural texture matching using deterministic syn­
thetic textures as targets. The target textures are shown on the left; and the proce­
dural texture matches are shown on the right. The use of procedurally generated
textures as targets should guarantee a good match since we know beforehand that
the desired texture lies within the texture range of the shaders being searched.
An example of the texture range of the shader used in (b) is shown in Fig. 2-10.
In both cases, as expected, the exact parameters used to produce the target were
found for the match.

78

(a) (b)

(c) (d)

Figure 4-16: Examples of procedural texture matching using stochastic synthetic
textures as targets. The target textures are shown on the left, and the procedural
texture matches are shown on the right. The use of procedurally generated tex­
tures as targets should guarantee a good match since we know beforehand that the
desired texture lies within the texture range of the shaders being searched. These
examples show close matches, but with entirely different parameter values show­
ing that different points in the parame ter domain can map to very similar textures,
particular1y with stochastic textures.

79

(a) (b)

(c) (d)

Figure 4-17: Examples ofprocedural texture matching using deterministic Bro­
datz textures as targets. The images on the left are the texture targets, and the
images on the right are procedurally generated using the automatica11y recovered
shader and parameters.

80

(a) (b)

(c) (d)

Figure 4-18: Examples of procedural texture matching using stochastic Brodatz
textures as targets, and a small repertoire of shaders. The images on the left are
the texture targets, and the images on the right are procedurally generated us­
ing the automatically recovered shader and parameters. The texture range of the
shader used for the match to Cc) is illustrated in Fig. 4-5.

81

(a) (b)

(c) (d)

Figure 4-19: Examples ofmatching reai textures from the sky during the day
and at night. Again, the target texture is shown on the Ieft, and the texture match
is shawn on the right. Note that aithough the image matches are not exact, the
texturaI characteristics are very similar.

82

Figure 4-20: An example of texture matching from a sketch. On the left is an
architect's sketch of a house, and a zoomed view of the brick texture is shown on
the top right. The texture found using our texture matching technique is shown on
the bottom right.

83

(a) (b)

(c) (d)

Figure 4-21: Examples of failed matches for both real and synthetic target tex­
tures. In (b), the shader library did not contain a shader capable of producing a
texture with high simi1arity to the target (a). The texture shown in (d) pro duces a
failed match to (c) even though it failed for an interesting reason: this particular
shader takes only integer valued parameters for the number of points on the star.
Non-integer values produced degenerate images (see Fig. 4-22), and hence our
local search phase was not started in a reasonable location since the only inte­
ger valued sample for the relevant parameter was 5. This is discussed further in
Sec. 4.6.

84

Figure 4-22: An ex ample of a degenerate texture for the star shader discussed in
Fig. 4-21.

85

CHAPTER5

Procedural Texture Transformation

U
NTIL now, we have been thinking of textures as static entities, that is, that

textures do not change during the lifetime of an object. For example, a

fixed image can be texture mapped onto an object, or a shader can be used with

fixed parameters to render the surface of an object. In reality, however, many

textures change naturally over time. These changes can occur very slowly, such

as is the case with a soda can fading in the sun, a fruit growing mold, pavement

cracking, etc., or can be observed to occur more quickly, as in the case of an apple

oxidising shortly after one takes a bite.

The field of computer graphics deals not only with the synthesis of static

images, but also with animations. Animations are image sequences in which the

objects, camera, and light sources interact in a certain way in order to convey a

particular story. These animations may have a high frame ratel, as is the case with

motion pictures, or a lower frame rate common to cartoon-like animations.

1 The frame rate of an animation is the number of images which are shown per
second.

86

Since it is possible for the texturaI characteristics of many real world objects

to change over time, we are interested in how textured objects in an animation

could also be made to change automatically. We would like this automatic texture

transfonnation to be based on different texture samples in a time-dependant

manner.

This notion is a natural extension to the procedural texture matching

technique discussed in chapter 4. Because the appearance of eachprocedural

texture is dependant on a set of parameters, it should be possible to vary those

parameters in order to achieve a suitable transformation.

We seek a technique which allows the end user to specify the starting

and ending textures of the transformation just as in the static case described

previously. In addition, the user should be able to specify optional key-textures.

We define key-textures analogously to key-frames: in the field of hand drawn

animation, key-frames were the frames drawn by the senior animator, while the

apprentice would fill in all the frames in between. In our application, key-textures

are specified by the end-user, and our texture transformation technique fills in

the remaining frames. These key-textures should be able to be placed arbitrarily

between the starting and ending textures.

The main goal of our procedural texture transformation technique is to vary

a shader's parameters over time so that the perceived difference between adjacent

texture samples is minimised. A framework for creating these kinds of smooth

transitions in a controlled environment is desirable for graphical animators. An

illustration our user interface for this task can be found in appendix A.

5.1 Approach

The initial step of our texture transformation algorithm consists of identifying

the shaders (and parameters) needed to produce textures which are similar to the

87

texture samples given for the endpoints of the transformation. These are typically

recovered from real or synthetic images using the texture matching approach

described in chapter 4, although they can also be specified manually.

The following temporal framework is desired: given a series of input textures

T = {Tl, ... , Tn}, we wish to find a corresponding set of procedural shaders

and their associated parameter vectors, PT = {Pl (Xl)' ... ,Pn(xn)} where

Pl(Xl) ~ Tl,'" ,Pn(Xn) ~ Tn. Using these shaders Pi(Xi), we want to produce

a continuously changing texture C(t), t E [0,1] such that C(O) = Pl(XI), and

C(l) = Pn(xn). In addition, the remaining texture targets Ti E T - {Tl, Tn}

should be used (in order) as key-textures. Finally, we want the transformation

to be smooth, that is, the adjacent frames should be as similar as possible, so we

therefore want to maximise S (C(t), C(t + !lt)) V tE [0,1).

Transformation between two texture samples can be divided into three

different cases:

1. Transformation between samples within the same shader.

2. Transformation between samples from two different shaders.

3. Transformation between samples from two different shaders via other

connective shaders.

These will each be discussed separately below.

5.2 Transformation Within a Shader

In order to transform the appearance of a texture resulting from two different

parameter vectors within the same shader, we again use a two-stage algorithm

with sorne pre-computed data. Recall from chapter 4 that a fully connected graph

is constructed during the creation of a catalogue of samples when a new shader is

added to the library. In this graph, the vertices correspond to the samples from the

88

• • • • • • • •
• ,.

• • • • • • , .
• • • •
• • •

Figure 5-1: Shortest path calculated using the graph from the shader catalogue.
The blue vertices represent the desired starting and ending parameter vectors.
First the closest points in the graph (shown in red) are identified, and then a single
source shortest paths algorithm finds the shortest path between these two points.
This path is then refined as described below.

catalogue, and the the similarity measure between those samples determines the

edge weights.

In the first stage of the transformation, we find the closest sample from the

catalogue for the end-point parameter vectors as described in Sec. 4.3 above.

We then compute a path between these two selected vertices using Dijkstra's

algorithm as described below. This process is shown in Fig. 5-1.

Dijkstra's algorithm is a single source shortest paths graph algorithm [28].

That is, an algorithm for finding the shortest path from a particular vertex in a

graph to aU other vertices in the graph. This algorithm has the precondition that aU

of the edge weights must be non-negative: e(Vi, Vj) ~ 0 V {Vi, Vj} EV. For the

remainder of this section, we will "invert" our definition of the similarity measure

for the sake of tradition and clarity and instead think of it as a distance: smaUer

values imply that two textures are more similar (closer together), and larger values

indicate that textures are more distinct (further apart).

89

Algorithm 3 Dijkstra's Shortest Path Aigorithm, based on the description in [25].
for each vertex v E V do

d[v] ~ 00

7l"[v] = nil
end for
d[s] ~ 0
S~0
Q~V

while Q =1= 0 do
Vi ~ Extract-Min(Q)
S ~ SU{vd
for each vertex Vj adjacent to Vi do

if db] > d[i] + e(Vi, Vj) then
db] ~ d[i] + e(vi' Vj)

7l"[j] ~ i
end if

end for
end while

Dijkstra's algorithm a~gments the graph structure with two extra values: the

distance from the CUITent vertex to the source (d[]), and the preceding vertex in the

path from the source (7l"[]). The graph constructed by foIlowing the preceding ver­

tices aIl the way back to the source (from aIl vertices) is known as the predecessor

subgraph which at the termination of the algorithm is in fact a spanning tree.

As shown in Aig. 3, the algorithm first initialises aIl of the path distance

values to infinity, the predecessor subgraph values to nil and the distance to the

source s is set to O. Then aIl of the vertices are added to a priority queue Q which

is keyed by their d[] values. The algorithm then iterates over aU of the vertices

by removing the vertex i with the lowest distance to the source, and adding it to

the set S which contains all of the vertices for which the shortest path has already

been determined. The algorithm then proceeds to relax aIl of the edges connected

to i (maintained in an adjacency representation). The relaxation step compares the

CUITent distance estimate d[j] for each vertex Vj adjacent to Vi to see if it can be

90

5

Figure 5-2: An illustration of our path cost function, fier + ... + e~, which en­
courages longer, smoother paths for increasing values of n. For n = 1, the chosen
path is {A, D, L}, n = 2 gives {A, E, C, F, E, L}, and n = 3 gives the ideal
{A, E, C, F, E, H, l, J, M, N, Q, L}. These paths have edge weight averages of 5,
2, and 1.8 respectively.

improved by connecting directly to Vi. If so, the distance value and predecessor

subgraph are updated for Vj to reflect the improved values.

Upon termination, the shortest path from s to any vertex Vi can be determined

by following the path backwards in the predecessor subgraph all the way to the

source s.

The path cost described so far is dependent on the edge weights, which,

as we saw in chapter 4, are simply the similarity measures between the two

textures corresponding to the vertices. However, using this path cost is perhaps

not appropriate for the properties we seek for our transformation, namely that the

transformation should be as smooth as possible. We have chosen to use a path cost

function of fier + ... + e~ where ei is the distance measure of the ith edge of the

path. This cost function provides finer control over the kinds of paths which are

found. Consider the ex ample graph shown in Fig. 5-2. We wish to determine a

91

path between the starting vertex A and the ending vertex L. If we set n = 1, our

cost function is Vei + ... + e}n or I:i ei. This standard path cost returns a path

of {A, D, L}. This path has an average edge weight of 5, as weIl as a maximum

edge weight of 5. A cursory inspection of the graph suggests we could find a

smoother path, i.e. a path whieh does not contain any large steps between vertièes,

even though it will be longer. For n = 2, we get a path of {A, B, C, F, E, L}

whieh is slightly better: the average edge weight has dropped to 2, however, the

largest edge has a weight of 6. For n = 3, the path is ideal for our purposes:

{A, B, C, F, E, H, l, J, M, N, Q, L}. This path has an average edge weight of

1.8, and a maximum edge weight of 3. As we can see, for increasing values of n

our path co st function discourages large steps and thus promotes longer, smoother

paths.

AlI that remains to be shown is that our cost function can be computed

incrementaIly, and can thus be used in Dijkstra's algorithm. Without loss of

generality, we can use the standard cost function of I:i ei and simply raise

the cost of each edge to the power of n. Alternatively, instead of computing

d[j] = d[i] + e(vi' Vj), d[j] can be computed as

(5.1)

Although the path through the graph deterrnined above tries to take a series

of small steps, the seIected path most likely will not exhibit the smoothness we

are trying to achieve. To refine the path, the second stage of our transformation

algorithm employs an adaptive linear subdivision technique2 • We want to locate

the regions in the path where the inter-frame disparity is too high, and insert

2 This is aIso a standard refinement strategy for path planning in the field of
mobile roboties [50].

92

Figure 5-3: An example of the adaptive linear subdivision technique. The se­
quence of subdivisions occurs from top to bottom, with the white vertices repre­
senting the midpoints which were added. This technique ensures that the shader
is sampled more densely where it is changing, and less densely where it is more
static.

more samples in those regions. To accomplish this, we use the following rule:

while the similarity measure between adjacent samples is less than a given

threshold, another sample is inserted at the linear midpoint between the two

samples in the shader's parameter space. This recursive solution has the effect

of sampling more densely where the underlying parame ter changes affect more

change in the appearance of the shader. In general, this method assures that no

two adjacent samples will have a large perceptual disparity. An example of the

linear subdivision is shown in Fig. 5-3.

There is, of course, the possibility that with a particularly uncooperative

shader, repeated bisection of the parameter values will not result in adjacent

samples falling below the perceptual threshold. While this has not been the case

with the shaders we have tested thus far, we describe a possible approach for this

situation in chapter 6.

With the framework developed so far, key-textures are easily specified.

Recall that key-textures are specific frames that the transformation must contain.

If it is desirable to use a particular parameter vector at sorne point for a shader

93

p(Xb) while evolving from p(xa) to p(Xc) (with the transformation being denoted

by the symbol """'), the approach described above can be used to compute the paths

from p(xa) .."... p(Xb), and from P(Xb) .."... p(xc). These paths can then simply be

concatenated. This process can be repeated for as many key-textures as necessary.

5.3 Transformation Between Different Shaders

The technique described in Sec. 5.2 is only well suited to transformations

within a procedural shader since different shaders no longer share a common

parameter domain. If we need to transform between distinct shaders, we must find

sorne way of connecting the texture transformation, either directly between the

two shaders, or possibly by determining a path through sorne other connective

procedural textures.

We will first consider the case of transforming directly between two distinct

shaders. Since we have shown above how to transform within a single shader,

what remains is to find suitable pairs of points (one in each shader) for which the

shaders produce similar texture images. We refer to these transitional points as

jump points since they determine good locations for switching or "jumping" from

one shader to another.

Once suitable jump points between the shaders associated with the starting

and ending textures have been determined, we can use the technique described

above to first transform each texture to its respective jump point. For example,

to transform from the texture Pk(Xa) to a texture due to another shader Pl(Ya),

we would first find the best jump point between Pk and Pz, that is, the point in

each shader's parameter domain (Xj and Yj) which gives a maximum similarity

measure S(Pk(X), pz(y)) V [x, y]. The paths from each shader to their respective

jump point can then be concatenated:

Pk(Xa) .."... Pk(Xj) PI(Yj)""'" PZ(Ya) (5.2)

94

1

; ,
,

~
1

1
1

..... _--,

,
1
1 ,

1
1

' ...

1

, , , 1
1 ,
,-

, ,
1

, ,
1

.,
Figure 5-4: Finding jump points between two shaders. The parameter domains of
two different shaders are illustrated by the two boxes. The jump regions (shown
in yellow) are are identified using a sparse sampling of each shader. The initial
matching samples are shown in blue. The actual jump point is then found by per­
forming local optimisations in altemation to best match each point to the other. A
path is then determined from the initial starting point (shown in green) to each of
the jump points, and these paths are then concatenated.

Since finding these jump points via exhaustive search is prohibitively

costly, an approach similar to that described in Sec 4.2 can be used to reduce

the computational burden. By adaptively sampling each shader sparsely, and

comparing each sample to the (also sparse) samples of the other shader, the best

candidate jump regions can be found. To narrow these regions to the actual jump

points, local optimisations of the similarity between the current candidate and

the candidate in the other shader's jump region are performed. This is repeated

in altemation until the distance travelled during a step for each candidate is

negligible (see Fig. 5-4).

The transformation technique described so far chooses only a single jump

point which maximises the similarity between two shaders. It is possible,

however, that a better overall transformation exists which does not use this

particular transitional point. Consider the case where the top two jump points

have only slightly different similarities, but the lesser one (which would normal1y

not be chosen) produces a smoother transformation within one or both of the

95

.. ,
\ , ,

B

Figure 5-5: An example of a path through a connective shader. The transforma­
tion endpoints are shown in green, but unfortunately there are no suitable jump
points between the shaders A and B. However, shader Chas goodjump points to
both shaders, and is hence used as a connective shader.

shaders, and hence a smoother transformation overall. We can therefore see

that it would be better to consider the jump points as part of the path taken in

the transformation. This can be accomplished by linking the graphs for the two

shaders by adding edges between the vertices in each graph corresponding to the

jump points, with the edge weights set to the similarity measure of the textures

produced by each shader. The transformation path can then be found as outlined

above with one exception: during the path smoothing phase, the adaptive linear

subdivision can not be used on any edges corresponding to jump points since the

parameter vectors for each vertex belong to different shaders.

In the two shader transformation case, we have joined the connected

components from the sample graphs of each shader using the appropriate jump

points. Expanding on this notion, we can connect several different shader graphs

to form a larger connected component, thus allowing the path found during the

transformation to traverse other connective shaders as shown in Fig. 5-5.

96

In the case where the shaders have limited texture ranges, or share little

resemblance, it is possible that the best jump points that connect them may not

appear very similar. Various strategies for dealing with this situation are presented

in chapter 6.

5.4 Examples

In this section we will demonstrate our method of creating texture transfor­

mations. We show examples of the three types of transformations described above

in Sec. 5.l.

Our first examples are from the case of transforming within a single shader.

Figs. 5-6, 5-7 and 5-8 demonstrate how the transformation technique can be used

to create smoothly varying intermediate texture frames. In each of these cases, the

end point textures were manually specified, the paths were found using the graph

search, and then refined using the adaptive linear subdivision methods described

above. Each of these examples exhibits smoothly varying texturaI characteristics,

as is desired for an effective texture transformation.

We next show examples of the second type of texture transformation, namely,

transformation between two different shaders. The first example, shown in Fig. 5-

9, is an illustration of transforming between two different types of brick shaders.

The transitional point between the two shaders can be seen where the adjacent

rows of bricks begin show two distinct colours as is the case with the second brick

shader.

The next two-shader transformation example, shown in Fig. 5-10, has its

endpoints specified by two of the Brodatz texture matching examples shown in

Figs. 4-17(a) and 4-17(c). In this case, the two textures for the transitional point

have inverted intensities, however, their texturaI characteristics are very similar.

97

The last example of transforrning between two different shaders, shown in

Fig. 5-11, uses the real world texture target images in Figs. 4-19(a) and 4-19(c)

as the starting and ending frames. In this particular transformation, the best jump

point between the cloud shader and the star field shader results from parameters

which produce a simple coloured background. This is actually the best match

from a perceptual viewpoint since clouds and stars are distinct textures.

An example of a transformation using a connective shader is shown in

Fig. 5-12. In this case, the desired transformation is between a small rectangle

and a small circle, each produced by a different shader. For this transformation,

there were no satisfactory jump points directly between the two shaders. However,

a suitable path was found through a super-ellipse shader since for that shader

there were good jump points to both the rectangle and circle shaders given that the

super-ellipse shader is capable of producing images similar to both a square and a

circle.

All of the examples presented in this section exhibit the smooth perceptual

transition desired for an effective texture transformation. The transformations

which contained more than one shader also demonstrate very satisfactory

transitional points.

98

Figure 5-6: An example of a texture transformation within a single shader.

99

Figure 5-7: Another single shader texture transformation. The texture has been
applied to a sphere for the sake of illustration.

100

Figure 5-8: Another single shader texture transformation. The texture has been
applied to a sphere for the sake of illustration.

101

Figure 5-9: A texture transformation between two different shaders. The transi­
tionai point is between the third and fourth frames of the fourth row.

102

Figure 5-10: Another texture transformation between two different shaders based
on the Brodatz texture matches from Figs. 4-17(b) and 4-17(d). The transitional
point is between the Iast frame of the second row and the first frame of the third
row. In this case, the two textures for the transitionai point have inverted inten­
sities, however their texturaI characteristics under our similarity metric are very
close.

103

Figure 5-11: A multi-shader transformation from the texture matches corre­
sponding to the real world images shown in Figs. 4-19(a) and 4-19(c). Sorne
reproductions fail to show the detail in the frames containing the star field. Re­
fer to Fig. 6-1 to see an enlarged and intensity inverted version of the last three
frames.

104

Figure 5-12: An example transformation which uses a connective shader. There
were no satisfactory jump points from the rectangle shader to the circle shader,
however, a suitable transformation was obtained by passing through a super­
ellipse shader. The transition from the rectangle to the super-ellipse occurs be­
tween the second and third images in the second row, and the transition from the
super-ellipse to the circle occurs between the first two images in the fourth row.

105

CHAPTER6

Conclusion

I
N this thesis, we have presented a technique which allows one to replicate

a texture sample procedurally by automatically selecting an appropriate

procedural texture from a library. In addition, this technique refines the parameters

for the selected procedural texture in order to best match the texture sample based

on a perceptually motivated similarity measure. Our solution to this problem

involves a two-stage approach, first performing a global search over pre-computed

data, followed by a local search stage to refine the quality of the match.

In order for the parameter estimation technique to succeed, the ensemble

of procedural shaders must be large enough to approximate the specified texture

target. If this is not the case, it will be detected by a large residual error in the

similarity measure. In this thesis, we have shown several examples of texture

matching using a wide variety of texture samples.

Given the ability to find a procedural specification for a given texture, we

then developed a method for creating texture transformations. These transforma-

tions are sequences of texture samples in which each adjacent texture is similar

to its neighbours, yet an overall transformed appearance between the starting and

106

ending texture samples is created. This is accomplished by again making use of

the pre-computed data from the texture matching stage, combined with a method

for finding a path through the texture space of the procedural textures, as weIl as a

technique for smoothing the selected path.

When transformations are created which entail the use of several shaders,

then transitional or jump points are needed in order to connect the paths from

each individual procedural texture. It is possible, however, that even the best

jump points between two shaders will exhibit an unsatisfactory disparity. In these

cases it would be possible to use morphing techniques to smooth the transition

through these non-idealjump points. One such method, due to Liu et al., involves

morphing between two texture samples using a pattern-based approach [53].

Unfortunately, this method requires the end-user to manually specify many

feature correspondence landmarks between the two textures in order to achieve an

acceptable morpho

The path planning process in texture space is based on graph search, and a

perceptually motivated iterative subdivision procedure to refine the transforma­

tion. In sorne cases this adaptive linear subdivision may not succeed in bringing

the similarity of adjacent texture samples above the given threshold, or we may

wish to have more precise control over the sequence of textures. For example, we

might want to avoid sorne types of appearance or shader parameter vectors while

guaranteeing the texture evolves in a specific fashion. We are currently exploring

the use of high-dimensional path planners to enable this type of control [47].

Another issue with the texture transformations is that sorne kinds of textures

can exhibit spatial changes while maintaining perceptual similarity. In an

animation, this can produce adjacent texture frames which appear to exhibit a

fair amount of motion despite their perceptual similarity. Consider the case of

a night sky procedural texture: while two samples of this texture could have

107

"

'. '.
Figure 6-1: An example of adjacent texture frames which show little spatial co­
herence despite their perceptual similarity. This figure is a reproduction of the la st
3 frames of Fig. 5-11, with the intensities inverted for the sake of c1arity.

sirnilar distributions of bright stars, small stars, etc., placing two such textures

next to each other in an animation would not exhibit the smoothness we seek. An

example of this spatial instability can be seen in Fig. 6-1, which is an enlarged

version of the last three frames from Fig. 5-11. Close examination of these three

adjacent frames reveals that the stars are never in the same location. We are

exploring the use of an augmented similarity measure which combines frequency

selective content as well as spatially selective content to combat this problem.

6.1 Future Work

Currently, our system assumes that the target texture can in fact be approxi­

mated by at least one procedural texture in the given library. An extension would

be to augment our system to be able to synthesise new procedural textures when

no suitable matches are found. This could be accompli shed by measuring cer-

tain texturaI features, and reconstructing them by layering 'procedural building

blocks'. These building blocks would be like texturaI 'DNA' which could be COffi­

bined, modified and selected using one of several search methods (ranging from

Bayesian methods to genetic algorithms). This approach to texturing has been

examined non-procedurally, but its application to procedural textures is promis­

ing [73, 83]. Because many different solutions would need to be evaluated, and

108

each solution would be independent, they could be evaluated in parallel thus pro­

viding a large computational gain. Our work in the area of cluster computing [12]

combined with this new research direction could yield positive results.

An alternative approach to synthesising new procedural textures would be

to design meta-shaders based on CUITent pyramidal synthesis techniques. The

parameters for these shaders would control various operations which could be

performed at each level of the synthesis pyramid. We could even make use of the

procedural building blocks described ab ove to specify the contents of each level of

the pyramid independently, before collapsing the pyramid to determine the final

texture.

In this thesis we have presented two different approximations to the ideal

similarity measure S* described in Sec. 4.5. Ongoing research on human texture

perception will exp and our understanding of how we perceive textures, and thus

provide better computational approximations for our framework. It may also be

possible to devise a method for using multiple sirnilarity measures in concert to

manage a combination of texturaI features.

Currently the catalogue samples are all stored at a fixed resolution. In order

to increase the speed of the texture comparisons during the global search, we

could store each sample in an image pyramid which would allow the user to

select lower resolutions for the similarity comparisons if desired. In addition, the

Laplacian pyrarnid and power spectrum could also be stored in the image database

to avoid computing them at run time.

Our approach to texture matching could also potentially be used for texture

classification. Recall from Sec. 4.5 that texture classification is the problem of

identifying the class of which a given texture sample is a member. By creating

procedural representations to model various texture classes specific to the domain

109

of the recognition task, one could then classify texture samples based on which

pro ce duraI texture (model) provides the best match.

This work also has potential applications for sound matching and synthesis.

Many of the techniques already developed for procedural texturing might

extend well to the acoustic domain. Similar to the texture domain, storing large

collections of sound samples for various applications is not feasible given the

amount of space which would be required for decent sampling rates (and hence

audio quality). By applying our texture matching approach to the acoustic domain,

procedural sound generators could be parameterised automatically to match

given real-world sounds. In particular, we anticipate that sound matching based

on spectrogram analysis will be a close fit to our CUITent perceptually motivated

search technique.

Once generic sounds can be replaced by small procedural sound generators,

including the latter in an augmented three-dimensional model becomes a realistic

goal. This would enable the rendering of a sound track for a scene using pro­

cedural sound generation based on the interaction of objects and their material

properties as they are animated either directly (eg., live, under user control as in a

virtual reality environment) or indirectly (eg., pre-planned as in a motion picture).

This line of research would be a natural extension to work done by Dobashi et

al. [30]. In addition, other attributes of the objects in a scene could be modelled,

such as ageing through procedural texture transformation.

The approach described above could also be applied to procedural animation

- a technique which allows one to model complex motion behaviours by speci­

fying a set of constraints (eg., permissible joint angles in the human body), and

generation patterns (eg., walking gaits). The framework for matching real-world

signaIs to procedural approximations could be use fuI for extracting behaviours

110

from motion capture data, thus allowing a graphie artist more control when select­

ing and tuning the behaviours of digital actors. The compact representation gained

by a procedural model is particularly useful in the gaming industry where rapid

scene generation is essential in order to release a competitive product.

The work presented in this thesis may also be loosely applicable to other

domains, an example of which is the field of proteomics. Proteomics is the study

of the structure and function of proteins. One branch of proteomies, namely

protein sequence analysis, seeks to discover evolutionary relationships of proteins

and it is possible that our high-dimensional transformation framework could be

used to find protein sequences, or be used to classify pre-existing sequences.

Overall, the auto matie selection and synthesis of procedural textures,

texture transformations, models, sounds, and animations exhibits vast research

potential in the field of computer graphies. Eventually, it will be possible to

render complete procedurally-specified environments in real time, allowing

unprecedented complexity and realism thus opening new avenues for computer

generated imagery.

111

APPENDIXA

Software Architecture

A.1 System Design

The software architecture design created in order to perform the texture

matching and transformation discussed in this the sis contains many abstract

elements, and as such can be used for a number of different combinations of

computational problems involving search in high dimensional spaces.

Because procedural textures can come in several forms, and can be tied

to specific renderers, we have designed a flexible texture class hierarchy as is

illustrated using the unified modelling language (UML) [11] in Fig. A-l. Each

texture object contains a renderer object, as weIl as a 'parameters' object. The

renderer class is an abstract class from which specifie renderer classes are derived

and is itself derived from the threaded class to allow the rendering to be performed

in paraUe1. The 'parameters' object can be used to describe an arbitrary collection

of parameters as it is composed of individual objects of the parameter template

c1ass. The fact that the parameter class is templated allows our method to search

over any type of parame ter as long as basic ordering operations are defined for the

given type.

112

1 Texture Builder ~ - - - - Texture

~+r:en~de:r:er----~~--~
+parameters

+render (): image

Parameters • - - - - -.
t;~~j<:>1."-"::"'---{ T:doubl': l
~arameters 1 .. * Parameter
+get (name)

+siz€ ()
+get (l

+set ()

+min (l

+max()

Figure A-l: The class hierarchy for the texture class.

For this work we have used renderers which support the RenderMan® shad­

ing language (RSL), with scenes specified using the RenderMan® interface

byte stream (RIB). Therefore each of the concrete rendering classes rnake use

of a rib object for specifying scene files, and a shading object which interacts

directly with the shading language file for the particular shader being used. The

two renderers we have used are Aqsis, and Blue Moon Rendering Tools (BMRT),

each of which is a free irnplernentation of of the RenderMan® specification. This

design will allow for easy expansion in order to use other renderers which rnay

have their own shading language, or to even take advantage of sorne of the newer

hardware shading languages.

Each texture object is cornposed of several parts requiring initialisation, so

we therefore use the builder creational pattern for the texture builder class [35].

As can be se en in the class hierarchy shown in Fig. A-l, the texture class is

derived frorn a searchable abstract class. This design allows us to apply our

pararneter sarnpling and searching algorithrns to other application dornains, an

exarnple of which is discussed in chapter 6.

113

.-----'-1---.,; '-i;:a;e ~
1 Band Pass pyramid -,-

I+operator (lhs: T, rhs :T) 1

I+operator (lhs: T, rhs :T) 1

~T~i~~::
....--_---'-----' T: sound 1

1 Metric ---T
l+operator(lhS:T,rhS:T) 1

.- - - --
1
.---_----'-----....: '...",!a~e~

Fourier 1

l+operator(lhS:T,rhS:T) 1

....--_--'-J----...I-;:-S;U~d~
'- Spectrogram - - -~ ,-
l+operator(lhs:T,rhS:T) 1

Figure A-2: The class hierarchy for the metric class.

For texture matching, the sampling of each shader is accomplished using a

design based on the abstract factory creational pattern, and the global search uses

the visitor behavioural pattern to locate the promising regions for search. An of

the user specified settings are stored in a preferences class based on the singleton

pattern.

The similarity measure classes are derived from the metric abstract class,

which is itself derived from the C++ Standard Template Library's "binary

function" template class (see Fig. A-2). We can therefore easily plug in different

similarity measures which simplifies extensions to other domains as illustrated by

the spectrogram class for sound comparison.

Many of the algorithms presented in this thesis exhibit characteristics

which enable them to be executed concurrently. This presents a problem of

communicating between the various working units. We have implemented a

message class which allows objects to communicate using messages formatted in

the extensible markup language (XML). We use XML for our message passing so

that we can support future changes withoutmodifying the current implementation.

The use of XML also simplifies debugging new features as one can easily

interpret the messages being passed back and forth.

114

The message class can be used both to communicate between threads on the

same processing unit, as well as to communicate between processes running in

a distributed environment. For the distributed case, our message class uses the

MPICH implementation of the Message Passing Interface (MPI) standard [37].

A.2 Graphical User Interface

In order to make the capabilities of this work readily accessible to naïve

users, we have also developed a complete graphical user interface (GUI). This

interface, examples of which are shown in Figs. A-3 and A-4, has a main

view which provides simple access to aIl the pertinent information concerning

the current texture match. The shader view, shown in Fig. A-3(a), contains a

list of an the shaders currently in the library. Double clicking on a particular

shader in the list presents the parameter view dialog to the end-user, allowing

them to manipulate the range of each of the parameters, as weIl as to choose

which parameters will be active during the se arch (see Fig. A-3(b)). Many

shaders contain parameters which do not affect the texturaI characteristics of the

rendered images, such as ambient, diffuse, and specular lighting constants used

in the illumination model. The dimensionality of the search can be therefore be

reduced by disabling these particular parameters. Any parameters which have

been disabled will automatically be set to their default values as specified in the

parameter view dialog.

The search criteria can also be specified using the GUrs search view

illustrated in Fig. A-4(b). In this view, the end-user is able to specify which

similarity measure to use, as weIl as which local optimisation technique should

be employed. This view also allows for the specification of several settings

relevant to the chosen search technique. Each application dialog is pre-filled

with reasonable defaults so that a novice user can simply point and click, yet

115

the inforrned user is afforded the ability to tune the search settings if desired.

Finally, an example of the dialogs for rendering the sample catalogues are shown

in Figs. A-4(c) and A-4(d).

It can be noted that, through the use of sophisticated abstract design tools

as described above, our system is able to exhibit a great degree of flexibility and

reconfigurability. It is this flexibility that allows our architecture to readily support

both the texture matching and transformation presented in this thesis, as well as

our preliminary work on acoustic signal processing.

116

DPBlueMarble

DPSlar

gdoud

JM'edappie

KMCycione

KMFla.,e

lCSt.rtield

lGEyeBall

LGGreenMa,bIe

lGParquelPlank

oak
potato

roughrœ.ss

specuJarcolor

tilecolor

mortarcolor

lileradius

mortarwidth

tilevary

scuffirI!J

stains

slainfrequency

scufffrequency

5cuffcolor

(a)

0.1 0 floal

111 unspecified unspecified Rl calour

05500 unspecified unspecified Rl calour

0.50.50.5 unspecified unspecified Rl .colour

0.2 0 Rl float

0.02 0 0.2 0 floal

0.15 0 03 Rl flcat

0.5 0 Rl fJoa!

0.4 0 Rl floal

2 0 Rl float

4 0 8 Rl Iloa!

0.050.05 0.05 unspecified unspedfied 0 calour

(b)

Figure A-3: Two exarnple screen shots of the texture rnatching application. The
shader list view is shown in (a), and the pararneter view dialog shown in (b) is
displayed when the user double clicks on a shader in the list.

117

(a)

(b)

(c) (d)

Figure A--4: More screen shots of the texture matching application. The search
view, shown in (a), reflects the texture target as well as the CUITent texture sample
being considered. The search parameters dialog is shown in (b) and the dialogs for
rendering new catalogues are shown in (c) and (d).

118

119

APPENDIXB

Shading Language Code Example 1

Below is the shading language code for the match found in Fig. 4-18(b). This

shader was written by F. Kenton Musgrave.

The parameter values for the match were set as follows:

• Ka: 0.5

• Kd: 0.75

• maxJadius: 2.28518

• twist: 0.0928873

• scale: 0.956974

• offset: 0.748854

• omega: 0.968523

• octaves: 6.388

1*

* cyclone.sl - surface for a semi-opaque cloud layer to be put on an

* earth-like planetary model to model clouds and a cyclone.

*
* AUIROR: Ken Musgrave

*

120

#define TWOPI (2*PI)

/* Use signed Perl in noise */

#define snoise (x) «2*noise (x» -1)

#define DNoise (p) (2* (point noise (p» - point (l, l, 1»

#define VLNoise(Pt,scale) (snoise(DNoise(Pt)+(scale*Pt»)

#define VERY_SMALL 0.001

surface

KMCyclone (float Ka 0.5,

float Kd = 0.75;

float max_radius = 2.28518;

float twist

float scale

0.0928873;

0.956974,

float offset = 0.748854;

float omega = 0.968523;

float octaves = 6.388;)

floàt radius, dist, angle, sine,

point pt;

point PN;

point pp;

float l, 0, a, i;

Pt transform ("shader", Pli

PN = normalize (Pt);

cosine, eye_weight, value;

radius = sqrt (xcomp(PN)*xcomp(PN) + ycomp(PN)*ycomp(PN»;

if (radius < max_radius) {

dist = pow (max_radius - radius, 3);

angle = PI + twist * TWOPI * (max_radius-dist) / max_radius;

sine = sin (angle);

cosine = cos (angle);

PP = point (xcomp(Pt)*cosine - ycomp(Pt)*sine,

xcomp(Pt)*sine + ycomp(Pt)*cosine,

zcomp (Pt»;

if (radius < 0.05*max_radius) {

121

eye_weight

eye_weight

(.l*max_radius - radius) * 10;

pow (1 - eye_weight, 4);

else eye_weight 1;

el se pp Pt;

if (eye_weight > 0)

1 ; 1; 0; 1; a; 0;

for (i ; 0; i < octaves && 0 >; VERY_SMALL; i +; 1)

a +; 0 * VLNoise (PP * l, 1);

l *; 2;

o *; omega;

value abs (eye_weight * (offset + scale * a));

el se value 0;

Oi value * Os;

Ci Oi * (Ka * ambient() + Kd * diffuse(faceforward(normalize(N),I)));

122

123

APPENDIXC

Shading Language Code Example 2

Below is the shading language code for the match found in Fig. 4-18(d). This

shader was written by Larry Gritz.

The parameter values for the match were set as follows:

• Ka: 0.75

• Kd: 0.75

• Ks: 0.4

• roughness: 0.1

• specularcolor = 1

• iriscolor: color (0.135289, 0.084323, 0.372417)

• irisoutercolor: color (0.403882, 0.343944, 0.68276)

• irisinnercolor: color (0.065142, 0.040605, 0.179311)

• eyeballcolor: color(1, 1,1)

• bloodcolor: color(O,O,O)

• pupilcolor: 0

• pupilsize: 0.0

• irissize: 0.0

124

• bloodshot: 0.997141

• veinfreq: 3.54332

• veinlevel = 7.549

• index: 0

1*

* eyeball.sl -- RenderMan compatible shader for an eyeball.

*
* AUTHOR: written by Larry Gritz

*

surface

LGEyeBall (float Ka = .75, Kd

color specularcolor = 1;

0.75, Ks 0.4, roughness

color iriscolor = color (.135289, .084323, .372417);

color irisoutercolor color (.403882, .343944, .68276);

color irisinnercolor color (.065142, .040605, .179311);

color eyeballcolor color(l,l,l);

color bloodcolor

color pupilcolor

float pupilsize

float bloodshot

color(O,O,O);

0;

0.0, irissize

0.997141;

0.0;

float veinfreq = 3.54332, veinlevel

float index = 0;

#define snoise(P) (2*noise(P)-1)

#define MINFILTERWIDTH 1.0e-7

color Ct;

point Nf;

point PP, PO;

float i, turb, newturb, freq,

float displayed, newdisp;

color Cba1l, Ciris;

float irisstat, pupilstat;

float bloody, tt;

float ks, rough;

float twidth, cutoff;

f2;

7.549;

125

0.1;

twidth = max (abs(Du(t)*du) + abs(Dv(t)*dv), MINFILTERWIDTH);

PO = transform ("object", P) + index;

tt = l-t;

irisstat = smoothstep (irissize, irissize+twidth, tt);

pupilstat = smoothstep (pupilsize, pupilsize+twidth, tt);

bloody = bloodshot * (smoothstep (-irissize, 2.5*irissize, tt));

if (irisstat * bloody > 0.001) {

turb = bloody; freq = veinfreq;

displayed = 0;

for (i = 1; (i<=veinlevel) && (turb> 0.1); i+=l)

newturb 1 - abs (snoise(PO*freq + point(0,0,20*freq)));

newdisp pow (smoothstep (.85, l, newturb), 10);

displayed += (l-displayed) * newdisp * smoothstep (.1, .85, turb * turb);

turb *= newturb;

freq *= 2;

Cball mix (eyeballcolor, bloodcolor, smoothstep(O, .75,displayed));

else Cball eyeballcolor;

Ciris mix (iriscolor, irisoutercolor, smoothstep (irissize*.8, irissize, tt));

if (irisstat < 0.9999 && pupilstat > 0.0001) {

turb = 0; freq = 1; f2 = 30;

for (i = 1; i <= 4; i += 1) {

turb += snoise (PO*f2 + point(0,0,20*f2)) / freq;

freq *= 2; f2 *= 2· ,

Ciris *= (1-clamp(turb/2,0,1));

Ct mix (Ciris, Cball, irisstat);

Ct mix (pupilcolor, Ct, pupilstat);

ks = Ks * (1+2*(1-irisstat));

rough = roughness * (1-.75* (l-irisstat));

Oi Os;

126

Nf faceforward (normalize(N),I);

Ci Os * (Ct * (Ka*ambient() + Kd*diffuse(Nf)) +

specularcolor * ks*specular(Nf,-normalize(I),rough));

127

References

[1] Edward H. Adelson and Eero Simoncelli. Orthogonal pyramid transforms
for image coding. In SPIE Visual Communications and Image Processing II,
volume 845, pages 50-58, 1987.

[2] Aseem Agarwala, Ke Colin Zheng, Chris Pal, Maneesh Agrawala, Michael
Cohen, Brian Curless, David Salesin, and Richard Szeliski. Panoramic
Video Textures. ACM Transactions on Graphies, 24(3): 1-8, 2005.

[3] James R. Bergen. Spatial Vision, volume 10, chapter 5: Theories of visual
texture perception, pages 114-134. CRC Press, 1991.

[4] James R. Bergen and Edward H. Adelson. Early vision and texture
perception. Nature, 333:363-364, 1988.

[5] James R. Bergen and Michael S. Landy. Computational Models of Vi­
suaI Processing, chapter 17: Computational Modeling of Visual Texture
Segregation, pages 253-271. MIT Press, 1991.

[6] M. Bertalmio, G. Sapiro, V. Caselles, and C. Ba1lester. Image inpainting. In
SIGGRAPH, pages 417-424, July 2000.

[7] M. Bertalmio, L. Vese, G. Sapiro, and S. Osher. Simultaneous structure and
texture image inpainting. In Proceedings of the Conference on Computer
Vision and Pattern Recognition (CVPR), 2003.

[8] Eric A. Bier and Kenneth R. Sloan. Two-part texture mapping. IEEE
Computer Graphies and Applications, 6(9):40-53, 1986.

[9] James F. Blinn. Simulation of wrinkled surfaces. In SIGGRAPH, pages
286-292, 1978.

[10] James F. Blinn and Martin E. Newell. Texture and reflection in computer
generated images. Communications of the ACM, 19(10):542-547, October
1976.

[11] Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified Modeling
Language user guide. Addison Wesley Longman Publishing Co., Inc.,
Redwood City, CA, USA, 1999.

[12] Eric Bourque. Optimizing performance through parallelism. Linux Journal,
1(86):100-106, June 2001.

128

129

[13] Eric Bourque and Gregory Dudek. Viewpoint selection - An autonomous
robotic system for virtual environment creation. In Proceedings of the
IEEE Conference on Intelligent Robotic Systems, volume 1, pages 526-532,
Victoria, Canada, October 1998.

[14] Eric Bourque and Gregory Dudek. On-Hne construction of iconic maps.
In Proceedings of the IEEE International Conference on Robotics and
Automation, volume 3, pages 2310-2315, San Francisco, CA, April 2000.

[15] Eric Bourque and Gregory Dudek. On the automated construction of
image-based maps. Autonomous Robots, 8(2):173-192, Apri12000.

[16] Eric Bourque and Gregory Dudek. Procedural texture matching and
transformation. Computer Graphics Forum, 23(3):461-468,2004.

[17] Eric Bourque, Gregory Dudek, and Philippe Ciaravola. Robotic sightseeing -
A method for automatically creating virtual environments. In Proceedings of
the IEEE International Conference on Robotics and Automation, volume 4,
pages 3186-3191, Leuven, Belgium, May 1998.

[18] Phil Brodatz. Textures -A Photographic Album for Artists and Designers.
Dover, 1966.

[19] Stephen Brooks and Neil A. Dodgson. Self-similarity based texture editing.
ACM Transactions on Graphics, 21(3):653-656, 2002.

[20] F. Buekenhout and M. Parker. The number of nets of the regular convex
polytopes in dimension :S 4. Discrete Mathematics, 186:69-94, 1998.

[21] Phong Bui-Tuong. Illumination for computer generated pictures. Communi­
cations of the ACM, 18(6):311-317, June 1975.

[22] F. W. Campbell and J. G. Robson. Application of fourier analysis to the
visibility of gratings. Journal of Physiology, 197:551-566, 1968.

[23] Edwin Catmull. A Subdivision Algorithm for Computer Display of Curved
Surfaces. PhD thesis, University of Utah, Salt Lake City, UT, December
1974.

[24] Yung-Yu Chuang, Dan B Goldman, Ke Colin Zheng, Brian Curless, David
Salesin, and Richard Szeliski. Animating Pictures with Stochastic Motion
Textures. ACM Transactions on Graphics, 24(3):1-8, 2005.

[25] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduc­
tion to Algorithms. McGraw-Hill, 1990.

[26] Kristin J. Dana, Bram Van Ginneken, Shree K. Nayar, and Jan 1. Koen­
derink. Reflectance and texture of real-world surfaces. ACM Transactions on
Graphics, 18(1):1-34, January 1999.

130

[27] Jeremy S. De Bonet. Multiresolution sampling procedure for analysis and
synthesis of texture images. In SIGGRAPH, pages 361-368,1997.

[28] E. W. Dijkstra. A note on two problems in connexion with graphs. Nu­
merisehe Mathematik, 1:269-271, 1959.

[29] Jean-Michel Dischler, Karl Maritaud, Bruno Lévy, and Djamchid Ghazanfar­
pour. Texture particles. Computer Graphies Forum, 21(3), 2002.

[30] Yoshinori Dobashi, Tsuyoshi Yamamoto, and Tomoyuki Nishita. Synthe­
sizing sound from turbulent field using sound textures for interactive fiuid
simulation. Computer Graphies Forum, 23(3):539-545, 2004.

[31] David S. Ebert, F. Kenton Musgrave, Darwyn Peachey, Ken Perlin, and
Steven Worley. Texturing and Modeling: A Procedural Approaeh. Academie
Press, 2nd edition, 1998.

[32] Alexei A. Efros and William T. Freeman. Image quilting for texture
synthesis and transfer. In SIGGRAPH, pages 341-346, 2001.

[33] Alexei A. Efros and Thomas K. Leung. Texture synthesis by non-parametric
sampling. In Proceedings of the International Conference on Computer
Vision (ICCV), volume 2, pages 1033-1038, September 1999.

[34] Stefen Fangmeier. Industrial Light & Magic: The making of "The Perfect
Storm". Special Session at SIGGRAPH 2000 (Talk), July 2000.

[35] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns. Addison-Wesley, 1995.

[36] Olivier Génevaux, Arash Habibi, and Jean-Michel Dischler. Simulating
fiuid-solid interaction. In Graphies Interface, pages 31-38. A K Peters, June
2003. ISBN 1-56881-207-8, ISSN 0713-5424.

[37] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-performance, portable
implementation of the MPI message passing interface standard. Parallel
Computing, 22(6):789-828, September 1996.

[38] Rick Gurnsey and David J. Fleet. Texture space. Vision Researeh,
41(6):745-757,2001.

[39] R. M. Haralick. Statistical and structural approaches to texture. Proceedings
of the IEEE, 67:786-804, 1979.

[40] R. M. Haralick, K. Shanmugam, and 1. Dinstein. TexturaI features for
image classification. IEEE Transactions on Systems, Man, and Cyberneties,
3:610-621, 1973.

[41] J. K. Hawkins. Picture Processing and Psychopictorics, chapter Texturai
Properties for Pattern Recognition. Academic Press, New York, 1969.

[42] David J. Heeger and James R. Bergen. Pyramid-based texture analy­
sisJsynthesis. In SIGGRAPH, pages 229-238, 1995.

131

[43] Aaron Hertzman, Charles E. Jacobs, Nuria Oliver, Brian Curless, and David
H. Salesin. Image analogies. In SIGGRAPH, pages 327-340, 2001.

[44] B. Julesz. Visual pattern discrimination. IRE Transactions on Information
Theory, IT-8:84-92, 1962.

[45] B. Julesz. Textons, the elements of texture perception, and their interations.
Nature, 290:91-97, 1981.

[46] B. Julesz, E. N. Gilbert, L. A. Shepp, and H. L. Frisch. Inability ofhumans
to discriminate between visual textures that agree in second-order statistics -
revisited. Perception, 2:391-405, 1973.

[47] Lydia E. Kavraki, Petr Svestka, Jean-Claude Latombe, and Mark H.
Overmars. Probabilistic roadmaps for path planning in high-dimensional
configuration spaces. IEEE Transactions on Robotics and Automation,
12(4):566-580, 1996.

[48] Vivek Kwatra, Irfan Essa, Aaron Bobick, and Nipun Kwatra. Texture
Optimization for Example-based Synthesis. ACM Transactions on Graphies,
24(3):1-8,2005.

[49] Vivek K watra, Arno Schodl, Irfan Essa, Greg Turk, and Aaron Bobick.
Graphcut Textures: Image and Video Synthesis Using Graph Cuts. ACM
Transactions on Graphies, 22(3):277-286, 2003.

[50] Jean-Claude Latombe. Robot Motion Planning. Kluwer Academic
Publishers, N orwell, MA, 1991.

[51] Laurent Lefebvre and Pierre Poulin. Analysis and synthesis of structural
textures. In Graphies Interface, pages 77-86, May 2000.

[52] A. Levin, A. Zomet, and Y. Weiss. Learning how to inpaint from global
image statistics. In Proceedings of the International Conference on
Computer Vision (ICCV), pages 305-312,2003.

[53] Ziqiang Liu, Ce Liu, Heung-Yeung Shum, and Yizhou Yu. Pattern-based
texture metamorphosis. In Pacifie Graphies, pages 184-191,2002.

[54] Jitendra Malik, Serge Belongie, Jianbo Shi, and Thomas Leung. Textons,
contours and regions: Cue integration in image segmentation. In Interna­
tional Conference on Computer Vision (ICCV), volume 2, pages 918-925,
September 1999.

[55] Jitendra Malik and Pietro Perona. Pre attentive texture discrimination
with early vision mechanisms. Journal of the Optical Society of America,
7(5):923-932, May 1990.

[56] Stephen R. Marschner, Eric P.F. Lafortune, Stephen H. Westin, Kenneth
E. Torrance, and Donald P. Greenberg. Image-based brdf me as ure ment.
Technical Report PCG-99-1, Comell University Pro gram for Computer
Graphics, January 1999.

[57] Michael D. McCool and Wolfgang Heidrich. Texture shaders. In Euro­
graphics/SIGGRAPH Workshop on Graphies Hardware, pages 117-126,
1999.

132

[58] Michael D. McCool, Zheng Qin, and Tiberiu S. Popa. Shader metaprogram­
ming (revised). In SIGGRAPH/Eurographics Graphies Hardware Workshop,
pages 57-68, 2002.

[59] Ann McNamara, Alan Chalmers, Tom Troscianko, and Iain Gi1christ.
Comparing real & synthetic scenes using human judgements of lightness. In
Proceedings of the Eurographics Workshop on Rendering Techniques 2000,
pages 207-218, 2000.

[60] J. A. Nelder and R. Mead. A simplex method for function minimization.
Computer Journal, 7:308-313, 1965.

[61] L. Neumann, K. Matkovic, and W. PurgathofeL Perception based color
image difference. In Proceedings of Eurographics, volume 17, pages
233-241, 1998.

[62] F. E. Nicodemus. Reflectance nomenclature and direction al reflectance and
emissivity. Applied Optics, 9:1474-1475, 1970.

[63] Darwyn R. Peachey. Solid texturing of complex surfaces. In SIGGRAPH,
pages 279-286, 1985.

[64] Mark S. Peercy, Marc Olano, John Airey, and P. Jeffrey Ungar. Interactive
multi-pass programmable shading. In SIGGRAPH, pages 425-432, 2000.

[65] Ken Perlin. An image synthesizer. In SIGGRAPH, pages 287-296, 1985.

[66] Ken Perlin and Eric M. Hoffert. Hypertexture. In SIGGRAPH, pages
253-262, 1989.

[67] E. Polak. Computational Methods in Optimization. Academic Press, New
York, 1971.

[68] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P.
Flannery. Numerical Recipes in C: The Art of Scientific Computing.
Cambridge University Press, New York, NY, USA, 1992.

133

[69] L. G. Thorell R. L. DeValois, D. G. Albrecht. Spatial-frequency selectivity
of cells in macaque visual cortex. Vision Research, 22:545-559, 1982.

[70] Arno Schodl, Richard Szeliski, David Salesin, and Irfan Essa. Video
textures. In SIGGRAPH, pages 489-498, 2000.

[71] R. Siegal and J. Howell. Thermal Radiation Heat Transfer. Hemisphere
Publishing, Washington, D.C., 3rd edition, 1992.

[72] J. Slansky. Image segmentation and feature extraction. IEEE Transactions
on Systems, Man, and Cybernetics, 8:237-247, 1978.

[73] Wolfgang Stürzlinger. A generic interface to colors, materials, and textures.
In Compugraphics '96, pages 192-200, 1996.

[74] Pei-hsiu Suen and Glenn Healey. The analysis and recognition of real-world
textures in three dimensions. IEEE Transactions on Pattern Analysis and
Machine Intelligence (PAMI), 22(5):491-503, May 2000.

[75] H. S. Tamura, S. Mori, and Y. Yamawaki. TexturaI features corresponding
to visual perception. IEEE Transactions on Systems, Man, and Cybernetics,
8:460-473, 1978.

[76] W.c. Thibault and B.F. Naylor. Set operations on polyhedra using binary
space partitioning trees. In SIGGRAPH, pages 153-162, 1987.

[77] Greg Turk. Generating textures on arbitrary surfaces using reaction­
diffusion. In SIGGRAPH, pages 289-298, 1991.

[78] Alan Watt and Fabio Policarpo. The Computer Image. Addison Wesley
Longman, 1998.

[79] Li-Yi Wei and Marc Levoy. Fast texture synthesis using tree-structured
vector quantization. In SIGGRAPH, pages 479-488,2000.

[80] Eric W. Weisstein. Simplex. From MathWorld-A Wolfram Web Resouonce.
http://mathworld.wolfram.com/Simplex.html.

[81] T. Whitted. An improved illumination model for shaded display. Communi­
cations of the ACM, 23(6):343-349, June 1980.

[82] L. Williams. Pyramidal parametrics. In SIGGRAPH, pages 1-11, 1983.

[83] Andrew Witkin and Michael Kass. Reaction-diffusion textures. In
SIGGRAPH, pages 299-308,1991.

[84] Jingdan Zhang, Kun Zhou, Luiz Velho, Baining Guo, and Heung-Yeung
Shum. Synthesis of progressively-variant textures on arbitrary surfaces.
ACM Transactions on Graphies, 22(3):295-302, 2003.

134

[85] S. W. Zucker and K. Kant. Multiple-Ievel representations for texture discrim­
ination. In Proceedings of the IEEE Conference on Pattern Recognition and
Image Processing, pages 609-614, 1981.

