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ABSTRACT 

In this thesis, we present an approach to finding a procedural representation 

of a texture to replicate a given texture image whieh we call image-based 

procedural texture matching. Procedural representations are frequently used 

for many aspects of computer generated imagery, however, the ability to use 

procedural textures is limited by the difficulty inherent in fin ding a suitable 

procedural representation to match a desired texture. More importantly, the 

process of determining an appropriate set of parameters necessary to approximate 

the sample texture is a difficult task for a graphic artist. 

The texturaI characteristics of many real world objects change over time, 

so we are therefore interested in how textured objects in a graphical animation 

could also be made to change automatically. We would like this automatic texture 

transformation to be based on different texture samples in a time-dependant 

manner. This notion, whieh is a natural extension of procedural texture matching, 

involves the creation of a smoothly varying sequence of texture images, while 

allowing the graphie artist to control various characteristics of the texture 

sequence. 

Given a library of procedural textures, our approach uses a perceptually 

motivated texture similarity measure to identify which procedural textures 

in the library may produce a suitable match. Our work assumes that at least 

one procedural texture in the library is capable of approximating the desired 

texture. Because exhaustive search of all of the parame ter combinations for each 

procedural texture is not computationally feasible, we perform a two-stage search 

on the candidate procedural textures. First, a global search is performed over 

pre-computed samples from the given procedural texture to locate promising 
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parameter settings. Secondly, these parameter settings are optimised using a local 

search method to refine the match to the desired texture. 

The characteristics of a procedural texture generally do not vary uniformly 

for uniform parameter changes. That is, in sorne areas of the parameter domain 

of a procedural texture (the set of all valid parameter settings for the given 

procedural texture) small changes may produce large variations in the resulting 

texture, while in other areas the same changes may produce no variation at all. 

In this thesis, we present an adaptive random sampling algorithm which captures 

the texture range (the set of all images a procedural texture can produce) of a 

procedural texture by maintaining a sampling density which is consistent with the 

amount of change occurring in that region of the parame ter domain. 

Texture transformations may not always be contained to a single procedural 

texture, and we therefore describe an approach to finding transitional points from 

one procedural texture to another. We present an algorithm for finding a path 

through the texture space formed from combining the texture range of the relevant 

procedural textures and their transitional points. 

Several examples of image-based texture matching, and texture transfor­

mations are shown. Finally, potentiallimitations of this work as well as future 

directions are discussed. 
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ABRÉGÉ 

Cette thèse présente une approche permettant de trouver la représentation 

procédurale d'une texture dans le but de reproduire une texture imagée donnée. 

Nous référerons à cette approche sous le nom de image-based procedural 

texturing. Les représentations procédurales sont fréquemment utilisées dans 

plusieurs aspects de 1'infographie. Toutefois, l'habileté à utiliser les textures 

procédurales est limitée par la difficulté inhérente à trouver une représentation 

procédurale acceptable s'apparentant à la texture désirée. De plus, l'identification 

des paramètres appropriés et nécessaires à l'approximation de l'échantillon de 

textures s'avère une tâche difficile pour le graphiste. 

Puisque les caractéristiques texturales de plusieurs objets réels changent avec 

le temps, nous nous intéresserons à la façon dont les objets texturés peuvent être 

modifiés automatiquement à l'intérieur d'une animation graphique. Cette notion 

représente le prolongement naturel de l'appariement de textures procédurales et 

implique la création d'une séquence fluide d'images texturées tout en permettant 

au graphiste de contrôler les diverses caractéristiques de la séquence de textures. 

A partir d'une librairie de textures procédurales, notre approche utilise une 

mesure de similitude perceptuelle de textures afin d'identifier quelles textures 

procédurales pourraient correspondre à la cible. La présente recherche assume 

que la texture-cible peut s'apparenter à au moins une texture procédurale de la 

librairie. Compte tenu que la recherche exhaustive de toutes les combinaisons 

de paramètres pour chaque texture procédurale n'est pas réalisable par calcul 

informatique, nous effectuerons une recherche en deux étapes sur les textures 

procédurales selectionnées. Dans un premier temps, une recherche globale sera 

réalisée auprès des échantillons déjà traités provenant d'une texture procédurale 

donnée afin d'identifier un jeu de paramètres potentiellement satisfaisants. Dans 
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un deuxième temps, ce jeu de paramètres sera optimisé par le biais d'une méthode 

de recherche locale afin de raffiner la texture correspondante à celle désirée. 

Les caractéristiques d'une texture procédurale ne varient généralement 

pas de façon uniforme et ce, même lorsque les changements de paramètres sont 

uniformes. Par exemple, dans certaines régions du domaine de paramètres d'une 

texture procédurale (soit l'ensemble de toutes les données de paramètres valides 

pour une texture procédurale donnée), de petits changements peuvent entraîner 

d'importantes variations au niveau de la texture résultante tandis que ces mêmes 

changements peuvent ne pas produire de variations dans d'autres régions. Cette 

thèse présente un algorithme d'échantillonnage aléatoire adaptable qui extrait 

l'expression de l'étendue de la texture (soit l'ensemble de toutes les images 

que peut produire une texture procédurale) à partir d'une texture procédurale 

en conservant une densité d'échantillons qui est consistante avec la quantité de 

changements qui se produisent dans la région du domaine de paramètres. 

Les transformations de textures ne se limitent pas toujours à une seule 

texture procédurale. Par conséquent, nous décrirons une approche qui trouve les 

points transitionnels d'une texture procédurale à l'autre. Nous présenterons un 

algorithme permettant de trouver un chemin à travers l'espace de texture formé en 

combinant l'étendue de texture des textures procédurales pertinentes et de leurs 

points transitionnels. 

Plusieurs exemples d'appariement de textures imagées ainsi que de transfor­

mations de textures seront présentés. Finalement, les limitations potentielles et les 

directions futures de cette recherche seront discutées. 
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CHAPTER 1 

Introduction 

W
E are living in a time where computer generated imagery (CGI) is 

ubiquitous. We find CGI in all forms of visual media - print, motion 

picture and television; and these images are becoming increasingly convincing. In 

fact, these images are so realistic that we are often unaware that they are generated 

synthetically. This realism has come as a result of numerous advances in the field 

of computer graphics, many of which will be outlined below. It is one of these 

techniques, namely procedural texturing, which will be the subject of this thesis. 

The creation or rende ring of computer generated imagery follows a basic 

formula, with certain necessary elements: a scene, one or more light sources, and 

a camera. These elements are represented in a mathematical model, with surfaces 

in the virtual scene being composed of geometric primitives such as polygons 

and spheres, a camera model which determines the type of projection (normally 

perspective), and a model for how light interacts with the surfaces in the scene. 

These elements can be specified using either implicit or explicit representations 

(terms only loosely related to the mathematical notions of explicit and implicit 
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Figure 1-1: An example of a real world scene with complicated interactions 
between rigid and non-rigid (deformable) elements. 

functional forms). Implicit representations are commonly referred to as procedural 

representations or procedural techniques. 

A procedural technique is essentially an approach based on an algorithmic, 

or implicit description of sorne element of a scene (i.e., shading, lighting, or 

geometry). For example, if one wanted to render a scene containing a mountain 

range in the background, the individu al faces of the mountains could be specified 

explicitly as a mesh of thousands of connected polygons, or could instead be 

represented implicitly in the form of a simple algorithm. This algorithm could 

produce a similar landscape when given suitable input parameters to control 

aspects such as the maximum height of a mountain, minimum height, starting 

height for snow caps, age of the mountain range (sharpness of the peaks), etc. 

Procedural techniques began to be used in the field of computer graphies 

when scenes became too complex to be specified explicitly. Procedural modelling 

was an obvious choice for animators who wanted to create scenes with both 

stationary and moving objects interacting in accordance with physicallaws. 

This type of modelling is even more appropriate when it is necessary to model 

the complex interactions of non-rigid, deformable elements present in a scene. 

Consider trying to model a scene consisting of a motor boat speeding across a 
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body ofwater (see Fig. 1-1). Increased computing power has allowed animators 

to render such scenes without worrying about explicitly modelling all the details 

of how the waves propagate, how splashes form, and how the boat bounces along 

on the water [36]. 

The simulated interaction of light and objects in a scene is described by 

the illumination mode!. Modem renderers allow this model to be specified on a 

per-object basis, in the form of what are called procedural shaders. These are 

parameterised functions which calculate the colour and intensity of a given point 

queried on a surface. Their parameters control various aspects of the object's 

appearance, and vary per shader. Because the functions are queried for each 

individuallocation on the surface being shaded1 , it is possible to use them to 

create a texture on the surface. This is referred to as procedural texturing. 

An alternative method used to apply a texture to an object is called texture 

mapping. The main idea behind texture mapping is to paste a two dimensional 

picture onto a surface and have it stretch and bend accordingly (see Sec. 2.2.3). In 

this way, texture maps can be thought of as decals. This kind of approach can be 

used to create appearance-based models as exemplified by our previous work on 

environment modelling for off-line virtual navigation. That method used a mobile 

robot to automatically select salient locations in an environment and to capture all 

relevant scene data explicitly in the form of digital images [17, 13, 15, 14]. These 

images were then post-processed into image-based virtual reality (VR) scenes. 

The method worked well for environments which were not too large, but larger 

1 The sampling of surface locations is generally determined by the projection 
of a pixel from the image plane onto the corresponding patch on the object's sur­
face. This is discussed further in Sec. 2.2.3. 
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Figure 1-2: An example of an image rendered using procedural shaders for all 
surfaces (Le., the wall tiles, fruit, bowl, and the counter top). Image by Jonathan 
Merritt. Used with permission. 

environments placed higher demands on the storage of image data, and also added 

to the complexity of using image based rendering for the VR scenes. 

Procedural texturing, on the other hand, has minimal storage requirements 

since it allows an algorithm to describe how a textured surface should appear as a 

function of its local environment. There are many advantages to using procedural 

textures over texture mapping, the details of which are further elaborated in 

Sec. 2.2.4. For the remainder of this thesis, we will use the terms procedural 

texture, and shader interchangeably. Figure 1-2 shows an example of an image 

rendered using procedural textures for all surfaces. 

In this thesis, we will describe a technique we refer to as image-based 

procedural texture matching; a technique which combines the simplicity of 

traditional texture mapping with the flexibility and strengths of procedural 
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Figure 1-3: An ex ample ofprocedural texture matching. An input texture is 
acquired from an architect's drawing, and a suitable procedural shader and param­
eters are found to replicate the appearance of the texture so that the shader can be 
applied to an arbitrary mode!. 

texturing. When texturing using this method, a graphic artist specifies a digital 

input image, and a procedural texture which generates a similar2 texture is found. 

This gives the graphic artist much more freedom to be creative, minimising the 

arduous time spent tweaking various aspects of the procedural framework. An 

example of the procedural texture matching process is shown in Fig. 1-3. 

To exemplify why this problem needs to be solved, consider that a large 

library of shaders can be available to a sophisticated user. A typical shader can 

have half a dozen parameters, and sorne can have substantially more. Further, the 

texture that is produced by a shader can vary substantially over the range of these 

parameters. Thus, to find a desired texture, a user must search over a complicated 

and high-dimensional space. Finding the right combination of parameters to 

define a point in this space is c1early problematic. 

2 The notion of similarity will be explored further in Sec. 4.5. 
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Figure 1-4: A few frames from an example texture transformation. This transfor­
mation exhibits the desired perceptual smoothness between adjacent frames. 

Our work considers the problem of starting with an initial description of a 

target texture (in the form of a sample image) and finding a procedural represen-

tation to match the target texture. In this thesis, we do not discuss the creation of 

new shaders, but how to optimise the choice of a shader and its parameter settings 

to produce the desired appearance. This work assumes the availability of a library 

of shaders, and that the desired texture can be approximated by at least one shader 

in the library. 

Given a solution to the procedural texture matching problem described 

above, we can then consider the problem of finding a sequence of procedural 

textures that will produce a gradually varying series of textures that accomplish a 

transition between two specified textures. We refer to this sequence as a texture 

transformation. In general, a texture transformation may involve using more than 

one shader and using varying parameter settings for each shader contained in 

the transformation. An important criterion for a desirable texture transformation 

is that it should take a smooth path from the initial texture to the final one. This 

smoothness is not measured with respect to the variations in the parameters, but 

with respect to the perceptual variations the texture must traverse. An example 

texture transformation is shown in Fig. 1-4. 

Note that even with many available shaders, the space of possible target im­

ages is far larger than the set of textures that can be synthesised, so sorne texture 

images will be hard to approximate. Likewise, a good texture transformation will 

not always be possible, particularly if the repertoire of available shaders is limited. 
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Our texture matching approach is based on four key stages: 

1. A global search strategy over a library of shaders to select the ones that 

might pro duce interesting results. 

2. A global se arch over a single shader to obtain a rough estimate of suitable 

input parameter settings. 

3. A local search strategy to optimise parameter settings given a rough guess 

from the previous stage. 

4. A perceptually motivated texture comparison function that allows us to 

estimate the quality of our solution. 

Likewise, our texture transformation method is based on the following 

elements: 

1. A strategy for finding an appropriate path through a sparse collection of 

samples within an individu al shader. 

2. A technique for smoothing the transformation between adjacent samples 

from the path determined above. 

3. A method for determining the points of maximum similarity between two 

different shaders to be used to transition from one shader to another. 

4. A method for creating a smooth path through different shaders by combin­

ing the elements above. 

1.1 Contribution 

In the research presented in this thesis, we have established a new generic so­

lution to image-based procedural texture matching. This solution allows a graphic 

artist to specify a texture sample, and to have a procedural representation of the 

desired texture found automatically. The primary advantage of this technique 

over other image-based techniques is that the final texture can be rendered at an 

arbitrary resolution which is necessary for photo-realistic rendering. In addition, 
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a procedural representation affords the artist the ability to make minor changes in 

the appearance of the procedural texture if necessary. 

We also present an extension of this solution to the time do main in order to 

pro duce procedural texture animations. These are smoothly varying sequences 

of procedural textures based on a particular set of starting and ending texture 

samples. This work has been published in Computer Graphies Forum [16], one of 

the top international journals specialising in computer graphics. 

FinaIly, we have experimentally evaluated our approach using a software 

framework. This framework, while developed as a vehicle for performing this 

research, is very generic, and as such can be re-used for other problem do mains as 

discussed in chapter 6. 

1.2 Outline 

The outline of the remainder of this thesis is as follows. In chapter 2 we 

present the relevant background material necessary for an understanding of the 

work presented in this thesis, and chapter 3 outlines the relevant prior computer 

graphics research related to texturing. In chapter 4, we present our technique 

for approximating a given image sample proceduraIly. Chapter 5 describes our 

method for creating smooth texture transformations based on matches found 

using procedural texture matching or from manually specified procedural textures. 

Finally, in chapter 6 there is a discussion of the work presented in this thesis as 

weIl as future directions which can be explored. 
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CHAPTER2 

Background 

B 
EFORE we can delve into thedetails of procedural shading and texture 

synthesis, we must first give a quick overview of how images are actually 

created (rendered) using a computer. 

Definition 2.0.1 (Image Synthesis) 

Image synthesis is the methodology of the creation of images using a 

computer. In three-dimensional computer graphies the image is generated by a 

computer program from a three dimensional mathematical description or a model 

by calculating a two dimensional projection for display [78}. 

Because we are only interested in photo-realistic images produced by 2D 

projections from 3D scenes, we will not consider issues specific to other domains 

such as cartoon generation, or technical illustrations. We will instead focus on 

traditional physically motivated rendering methods. 

Methods for 3D image rendering fall into two main classes: those that are 

rasterisation based, and those which are referred to as ray-tracers. Each rendering 
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method has its advantages l , but for the purposes of our discussion, they can be 

considered to be equivalent since each has similar requirements. 

There are three distinct components required for rendering a photo-realistic 

image: 

1. A specification of the scene geometry. 

2. A specification of the properties of all the surfaces contained within the 

scene geometry. 

3. A specification of the lighting in the scene. 

The camera position, or viewing parameters are elements which may not 

seem to be contained in the aforementioned components, however we can think 

of them as being contained within the scene geometry without loss of generality. 

Conceptually, we can think of the second two elements ab ove as being linked 

since the lighting parameters can be specified in the surface properties of the 

lights, which are objects in the scene geometry. In chapter 5 we will discuss a 

fourth component necessary for animation, namely the variation of the scene 

geometry and surface details over time. 

2.1 Geometric Models 

A model of the scene can be represented using many different techniques, 

depending on the desired geometric accuracy, as well as the permissible overall 

size of the model (the c1assic time/space trade-off). The model is used to specify 

the surfaces of the objects in the scene, as well as to provide the ability to 

calculate the surface normal for arbitrary points on these surfaces. Several 

different representations of scene geometry are outlined below. Note that in most 

1 For example, scan-line based renderers can make extensive use of hardware 
acceleration leading to interactive (high frame rate) graphics while ray-tracers 
generally produce more photo-realistic images, but at non-interactive rates. 

10 



real cases, a mixture of these representations is used depending on their suitability 

to the particular objects being modelled. 

• Polygonal: Objects are represented by a mesh of polygons, often triangles. 

U sing this method, the desired accuracy is controlled by the number 

of polygons (the level of subdivision) present in the model. Polygonal 

representations are advantageous when interactive frame rates are desired 

since modern graphics hardware generally implements the entire rendering 

pipeline for polygons and scan-line rendering. 

• Parametric Patches : This representation is similar to that above, with the 

exception that the elements of the meshes are curved surfaces. Cornrnon 

types of parametric patches are the Bézier patch (a specialised form of 

the Hermite patch), and NURBS (non-uniform rational B-spline) patches. 

Parametric patch representations are advantageous when attributes such as 

curvature, surface normal, etc., need to be computed for arbitrary points 

on the patch. One disadvantage with parametric patches is that they are 

typically difficult to specify and control during the modelling phase. 

• Constructive Solid Geometry : In CSG, an object is composed of boolean 

set operations on geometric primitives (which can be CSG objects them­

selves). Objects which are difficult to describe using other modelling 

techniques often have a very compact representation using CSG. For ex­

ample, the object forrned by subtracting a unit sphere from a unit cube 

is represented very compactly in CSG, however, its representation using 

parametric patches is much larger. 

• Spatial Subdivision Techniques: This representation is somewhat related to 

that above - here the 3D space is divided into cells which are either marked 

as empty or full. The spatial subdivision can be regular (into cubes called 

voxels), or binary space partitioning (BSP) techniques can be used to save 
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space [76]. The latter are generally only useful if the scene is statie since 

a minor change in the space can result in the BSP representation changing 

drastically. 

• Implicit Representations: Objects can also be expressed implicitly, for 

example, x2 + y2 + Z2 = r 2 defines a sphere of radius r. Implicit 

representations in computer graphics are generally only useful for ray­

tracing, and for calculating bounding objects for mesh representations since 

their mathematical form allows for a relatively low computational cost 

solution to intersection tests. 

Because we are primarily interested in the appearance of surfaces in 

synthesised images, we will not dwell any further on methods for specifying 

scene geometry. Rather, we will focus on the appearance of the surface itself, and 

assume an appropriate geometric specification. 

2.2 Surface Properties 

Initially, computer graphics researchers focused on the pragmatics of 

generating synthetic images containing objects which were geometrically similar 

to their real-life counterparts. This presented enormous challenges and lead to 

many new techniques for specifying scene geometry. The advance of computer 

processing speed was also a key contributor to the increased complexity which 

modem renderers were able to handle. Once the objects in a scene were being 

represented accurately, researchers began to investigate how the properties of the 

surfaces in the geometric models could be specified to permit increased realism. 

The study of how light interacts locally with surfaces led to several illumi­

nation and shading models. Many of the original simple models are still used 

today, especially in cases where interactive frame rates are a prerequisite, since 

their basic shading calculations can often be performed in hardware. The frequent 
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use of these models is what is responsible for the general "plastic" appearance 

of many early computer generated images since these models did not allow for 

specifications other than one colour per surface. With the introduction of texture 

mapping, it became possible to take digital images (either rendered themselves, 

or digitised real-world images) and paste them onto the surfaces. This advance 

went a long way towards increasing the realism of rendered scenes. Unfortunately, 

there are many drawbacks involved with texture mapping as will be shown in 

Sec. 2.2.3. In order to alleviate sorne of these problems, as well as to allow more 

complex textures to be represented, procedural shading was introduced. We will 

explore these three areas below, namely illumination models, texture mapping, 

and procedural techniques. 

2.2.1 Illumination and Shading Models 

An illumination model is a characterisation of how light interacts locally 

with a surface. Sorne such models are based on physicallaws, while others are 

perceptually motivated, and make only moderate attempts at physical reality while 

providing simplified calculations. A shading model determÎnes which illumination 

model is used, and how it is applied across a surface. We will give examples 

of several illumination and shading models in this section. It is worth noting 

that many of the illumination and shading models are approximations of the 

underlying rules of optics and thermal radiation, usually to simplify calculations. 

The most commonly used illumination model is the Phong illumination 

model due to Phong Bui-Tuong [21]. In this model, there are three factors which 

contribute to the totallight at a point on a surface: (l) ambient light, (2) diffuse 

light and (3) specular light. If N, L, R and V are the (unit length) normal to the 

surface, incoming light direction, reflection direction, and viewing direction (see 

Fig. 2-1), then we have the following familiar equation for the totallight at a point 
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Figure 2-1: Phong illumination model: Œ is used to approximate the specular 
highlights, and e is used to approximate diffuse light. 

on the surface in the direction V: 

l = lakaOd + L lpi [kdOd (N . Li) + ksOs(R . vt] (2.1) 
l:'Si:'Sm 

where la denotes the ambient light source, ka, kd and ks the ambient, diffuse and 

specular coefficients, lpi the m point light sources, Od and Os the object's diffuse 

and specular components and n is the specular reflection exponent. Note that by 

convention aU vectors point away from the surface. 

One of the main drawbacks of the previous illumination model is that it 

cannot be used to model surfaces withan anisotropic reflectance function. These 

are surfaces which exhibit a directionally dependent reflectance. Velvet is an 

example of such a material: a swath of velvet changes appearance as it is rotated 

under a constant light source (it goes from shiny to matte depending on the 

orientation of the fibres). In general, light reflected from a point on the surface 

can be specified by a bi-directional reflectance distribution function or BRDF (see 

Fig. 2-2) [62, 71]: 

(2.2) 
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Figure 2-2: The BRDF illumination model relates light incident in direction L to 
light refiected along V as a function of the angles ()in, 1Jin, Bref, 1Jref. 

The bi-directional refiectance function is defined for a single light ray of a 

single wavelength and is itself a function of four parameters. This makes the use 

of a complete BRDF impractical for most occasions so various approximations 

have been used. One popular technique is to sample the actual refiectance values 

in a controlled environment for a discrete set of lighting and viewing directions 

using a goniorefiectometer, and to then estimate the surface refiectance for 

lighting and viewing directions which were not sampled through interpolation [56, 

26]. 

As mentioned above, a shading model determines how a local illumination 

model is applied to the underlying geometry of the scene. Three standard 

techniques are fiat shading, Gouraud shading, and Phong shading. In fiat shading, 

the colour of a surface is determined for only one point on the surface, and the 

resulting colour is applied to the entire surface. This model obviously lacks 

realism, but is extremely efficient. Gouraud shading ca1culates the colour at 

each vertex of the underlying geometry, and linearly interpolates the shading 
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Figure 2-3: An ex ample of a ray traced image. Notice aIl the refiections in the 
marbles, the transparency of the glass, and the refractive distortion of the blue 
marble in the back when viewed through the glass. @2002 Christoph Hormann. 

values across the surface. This shading method is an improvement over fiat 

shading, however, artifacts such as specular highlights can be missed entirely. 

Phong shading is similar to Gouraud shading except that it is the surface normals 

which are calculated at each vertex, and then interpolated across the surface. 

The illumination model is then evaluated for each point to be shaded. The main 

optimisation of this illumination model is that the surface normal does not need to 

be computed for each point on the surface and polygonal models can be rendered 

as if they were curved. In photo-realistic rendering, the local illumination model is 

usually applied at each shading point, using the actual surface normal for the point 

being shaded. 
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R2 

Point light source 

Viewpoint 

Figure 2-4: A simplified ray tracing example. The initial ray is cast from the 
viewpoint where it intersects with the first object, producing a refiection ray 
RI, and a transmission ray Tl. The surface normals are indicated by N, and the 
shadow rays by L. The refiection ray RI then intersects a second object which 
itself spawns a refiection ray R2' and a shadow ray L2. The transmission ray Tl 
intersects the other side of the first surface, where it spawns another refiection 
ray R3 and another transmission ray T2• The pixel value at the viewpoint will be 
determined by the bottom-up accumulation of the intensity values ca1culated at 
each intersection point in the ray tree. 

2.2.2 Ray Tracing 

In order to produce photo realistic images with refiections, and transmissive 

effects (see Fig. 2-3), it is necessary to compute the complicated paths that light 

will travel within a scene [81]. This process is referred to as ray tracing. The 

basic idea is to project a ray from each pixel position into the scene, and to refiect 

a specular ray based on the local geometry, as well as to cast shadow rays and 

transmissive rays dependent on the surface properties (Fig. 2-4). 

The collection of these rays produces a ray tree which allows us to trace the 

light backwards from the pixel through the scene. For each pixel ray, we must test 
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Figure 2-5: Mapping from a pixel in screen space to a region of the texture map. 

the intersection of that ray with an the objects in the scene. These intersections 

are then sorted by depth to find the closest intersection. This will determine the 

first object the ray will intersect which will be the visible surface for the given 

pixel. This intersection ray is then reflected along a specular path, as well as a 

refractive path if the surface is transparent. The entire process is repeated for 

these secondary rays until either a preset tree depth has been reached, or until 

a set of storage constraints has been met. The intensity contributions from each 

intersection are then accumulated bottom-up through the tree to determine the 

pixel intensity for the initial ray. 

2.2.3 Texture Mapping 

In order to increase the realism of rendered images, the notion of texture 

mapping was introduced [23, 10]. The main idea behind texture mapping is 

to paste a two dimensional picture cnte a surface and have it stretch and bend 

accordingly. In this way, texture maps can be thought of as decals. Texture 

mapping can be used to modulate surface properties other than colour; specular 
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(a) (b) (c) 

Figure 2-6: An example of two-part texture mapping of an object using (a) a 
plane, (b) a cylinder, and (c) a sphere as intermediate objects. Notice how the 
texture on the neck of the vase changes depending on the geometry used for the 
intermediate object. 

colour, normal vector perturbation, and transparency are all properties which 

could be modulated by a texture map. Below we will describe texture mapping in 

terms of modulating colour without loss of generality. 

During texture mapping, a pixel in screen space is mapped to a corresponding 

curvilinear surface patch (consisting of four points from the four corners of the 

pixel) in world space. This naturally defines a set of points in the surface's (8, t) 

parameter space which can then be mapped to the (u, v) texture map space (see 

Fig. 2-5). The resulting area in texture space will hopefuIly span more than one 

pixel, and will therefore be filtered to choose a colour for the original pixel in 

screen space. The (u, v) parameter space of the texture T is defined within the 

unit square so the texture element (texel) lookup is specified by T (8 - l 8 J , t - l t J ) 

to aIlow the texture to be tiled if necessary. 

There are two predominant problems with texture mapping: (l) it is often 

difficult to find a suitable surface parameterisation, and (2) aliasing (caused by a 

fixed resolution texture). It is also worth noting that finding a suitable image to 

use for the texture map can be problematic. We will elaborate on these below. 

Unfortunately, we will not always have a weIl defined (8, t) parameter space 

for the object being textured. This is the case, in fact, for most non-parametric 

representations such as polygonal meshes, or when the object to be textured is 
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composed of several smaller geometric entities as is frequently the case with CSG. 

Two-part texture mapping was introduced by Bier and Sloan to handle precisely 

this situation [8]. In two-part texture mapping, the texture is first mapped to an 

intermediate parametric surface such as a cylinder or a sphere which encloses the 

object to be textured using the conventional method described above. The second 

stage maps the new three dimensional texture pattern onto the object's surface, 

usually using a form of ray-tracing to determine the texture element which is 

closest to the object point being shaded. Although this works weIl, it has the 

disadvantage that the intermediate shape must be chosen manually. An example 

of two-part texture mapping using a plane, cylinder and sphere as intermediate 

objects is shown in Fig. 2-6. 

As mentioned above, aliasing is a serious problem encountered when texture 

mapping. The difficulty stems from the pre-image in texture space of the pixel 

being shaded in screen space: because we do not know the exact shape of the 

curvilinear pre-image in texture space, and moreover, this shape changes for 

adjacent pixels, proper filtering of the texture is very computationally intensive 

since for each pixel we need to calculate an average over all the relevant texels. 

A largely unsolved problem occurs when the pre-image of a pixel maps to a 

sub-texel (a unit smaller than a texel) in texture space, since magnification is 

necessary. This can occur, for example, when a textured object in the scene 

approaches the viewer and hence the texture itself needs to be magnified in 

accordance with the camera motion. 

An approximation to the filtered pixel value is often computed using 

a technique known as mip-mapping2 [82]. With mip-mapping, the desired 

texture is pre-filtered to several smaller versions of the texture (an assumption 

2 MIP stands for multum in parvo - many things in a small place. 
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Figure 2-7: An example of a teapot which is textured using a 3D (solid) wood 
texture. 

is made that the pre-image is very close to a square) forming an image pyramid. 

When selecting the texels, the appropriate size texture from the mip-map is 

extracted. This saves computation time since each texel at the appropriate scale 

is a1ready a filtered version of the originallarger scale texture. Mip-mapping 

aids computationally when the texture image must be compressed, but does not 

handle the problem of magnification, that is, when the desired (u, v) range of the 

texture does not contain many (if any) pixels. In this relatively common scenario, 

the same pixel of the texture map is used repeatedly for adjacent pixels in screen 

space, leading to aliasing. If we allow the world to be dynamic, these kinds of 

problems become quite evident in the form of textures "jumping" around on 

surfaces based on the camera position. Procedural textures do not suffer from the 

magnification problem, as will be outlined in Sec. 2.2.4. 

Another problem with texture mapping is that linear interpolation of the 

texels will cause distortion when using a perspective projection camera mode!. 

This distortion is most noticeable in the form of features in the texture not being 

correctly foreshortened. 
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For sorne types of texture, it makes sense to think in terms of three dimen­

sional textures3 [65,63]. For example, an object made of wood will look more 

realistic if the wood texture is truly 3D instead of a 2D texture map (see Fig. 2-7). 

In this case, we can think of the texture being addressed by T (x, y, z) of sorne 

local coordinate frame scaled accordingly for the object. Three dimensional tex­

tures are prohibitively large if stored explicitly and are therefore usually defined 

procedurally. An advantage of 3D textures is that objects of arbitrary complexity 

can be textured in a coherent fashion, without seams or singularities, unlike their 

2D counterparts. 

An alternative use of texture maps is for bump-mapping [9]. For this 

technique, instead of modulating the colour of the current pixel, the normal 

used in the local illumination ca1culation is perturbed according to a value in an 

associated bump map following the same addressing methods outlined above. The 

resulting shading changes will give the appearance of surface detail not present 

in the object's geometry. Note, however, that silhouette edges will still follow the 

underlying geometry of the model. 

A major disadvantage of sampled texture maps is that they must be stored. 

This can lead to a vast increase in storage requirements, particularly when the 

scene is complex and many textures are used. This problem is slightly worsened 

by the use of mip-maps described above as they are ~ over-complete. Textures 

used in texture mapping also do not easily allow for subtle variations, and 

generally do not support temporal variations. These issues will be addressed in the 

following section. 

3 Three dimensional textures are sometimes referred to as solid textures. 
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2.2.4 Procedural Techniques 

Procedural techniques are an active area of research in computer graphics in 

domains including shading, texturing, modelling and animation: 

Definition 2.2.1 (Procedural Technique) 

A Procedural Technique is a code segment or algorithm that specifies some 

characteristic of a computer-generated model or effect. D. Ebert [31}. 

Abstraction is one of the key advantages of a procedural technique: rather 

than explicitly storing the complex details common to an explicit model, these 

details are abstracted into a function or algorithm. As mentioned above, modem 

renderers allow the illumination model to be specified on a per-object basis, in 

the form of what are called procedural shaders. This allows each object to exhibit 

arbitrarily complex light interaction. If there are many objects in the scene, one 

could use a more simplified illumination modellike the Phong illumination model 

for less important or less noticeable elements, and could use a bi-directional 

distribution reflection function for objects who se lighting details are more 

important. Again, because procedural shaders are queried for each individual 

location on the surface being shaded, it is possible to use them to create a texture 

on the surface. 

An important characteristic of procedural techniques is that of parameterisa­

tion: in a procedural model, we can assign a parameter to a meaningful concept. 

For example, a procedural texture for a cloth weave may have a parameter which 

specifies the tightness of the weave, or a procedural model for representing a 

stucco ceiling may have a "bumpiness" parameter. There are numerous advan­

tages to the various procedural representations, however, in this section, we will 

focus exclusively on procedural texturing. 

A procedural texture is a function which, given a set of input parameters 

x = (Xl, ... , Xn ) which control the appearance of the texture, retums the colour of 
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Algorithm 1 A simple shader algorithm which creates a vertical red bar based on 
the value of the parameter w. 

Require: (u, v) E [0,1]2, W E [0,1] 
if 0.5 - ~ :::; u :::; 0.5 + ~ then 

return Red 
else 

return White 
end if 

(a) w = 0.01 (b) w = 0.05 (c) w = 0.17 (d) w = 0.5 (e) w = 0.9 

Figure 2-8: An ex ample of using the red bar shader described in Aig. 1 to texture 
a sphere using various values for w. 

the surface at the point (u, v) queried: 

p(u, v, x) = f(u, v, L, N, Od, Os, .. " x) (2.3) 

where p is a procedural texture having a parameter vector x and like a texture map 

is indexed by (u, v) E [D,IF. In general p is a function not only of the parameter 

vector x of the texture itself, but also of the light direction (L), surface normal 

(N), object diffuse and specular colours (Od, Os), etc., as illustrated with the 

function f above. We can think of these additional parameters as being functions 

of ( u, v). For the work in this thesis, we consider procedural textures only in terms 

of their coordinates (u, v) and their parameter vector x. That is, we seek only to 

recover textures under constant lighting conditions on a plane. 

Each procedural texture will be represented by a unique function requiring 

a distinct set of parameters relative to that texture. For example, a trivial single 

parameter shader which draws a centred red vertical bar on a white background 

might be formulated as in Alg. 1. Here the single texture parameter w controls the 

width of the red bar. Figure 2-8 shows sorne images rendered using the red bar 
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Figure 2-9: Example images rendered using procedural shaders for an surfaces. 
(a) @Michel Joron 2004, (b) @Jonathan Merritt 2004, (c) Pixar studios stock 
image. 

shader. For an example of the power of procedural shaders, consider the images 

shown in Fig. 2-9 which were rendered using procedural shaders exc1usively. An 

example of the range of one procedural texture is shown in Fig. 2-10. 

There are several advantages to using procedural textures as opposed to the 

traditional texture mapping methods described in Sec. 2.2.3: 

• Compact representation: Because a procedural texture is an implicit 

representation of sorne textural phenomenon in the form of an algorithmic 

description, the amount of storage required is negligible compared to what 

is required to store texture maps. 
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Figure 2-10: Several example textures showing the diversity of an individu al 
shader with varying input parameters. Here the parameters were the frequency 
of the bars, the thickness of both the vertical and horizontal bars, and the overall 
orientation. 

• Unlimited resolution: Again, due to the implicit definition, procedural 

textures are resolution independent and can therefore be used to generate 

textures of arbitrary resolutions. 

• Parameterisation: One can assign values to meaningful aspects of the given 

texture such as the age of the wood in a parquet tile, or the frequency of 

horizontal bars in a weave pattern. 

• Support minor changes: Slight changes to the resulting texture are often 

generated by slight parameter changes since each procedural texture 

generally represents an entire c1ass of similar textures. 
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• Support temporal changes: A procedural framework allows for the texture 

of an object to change over time (see chapter 5), which would be very 

impractical using traditional textures. 

• Expression of object properties: It is relatively simple to generate procedu-

raI shaders which will show curvature, or other object properties (through 

false colour) often necessary for visualisation and CAD/CAM applica­

tions. It is also possible to use any desired illumination model since this is 

generally part of the procedural shader. 

• High-dimensional textures: As rnentioned in Sec. 2.2.3, solid textures are 

easily represented using procedural techniques, while they have excessive 

space requirernents when represented using tradition al textures. Another 

exarnple of a high-dirnensional texture, called hypertexture will be described 

below. 

Despite the nurnerous advantages of using procedural techniques for 

texturing, there are, unfortunately, sorne shortcornings. The rnost notable is that 

once one has a procedural shader, it can be quite difficult to obtain the correct 

pararneters to synthesise the desired texture. In addition, pararneterised textures 

can sometirnes be unstable, that is, a srnall change in a pararneter can lead to a 

significant change in the synthesised texture. Even when the pararneterised texture 

is largely stable, sorne shaders have a non-trivial nurnber of pararneters which can 

sirnply be too unwieldy to specify rnanually4 . These factors can rnake it difficult 

for the end user to obtain the desired results. 

4 The water surface shader in the film The Perfect Storm had over 200 pararn­
eters. Apparently, there was no single individual at ILM who knew what each 
pararneter controlled [34]. 
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The specification of procedural shaders is not a task suited to everyone 

since it requires an algorithmic formulation in a given shading language of how 

the desired texture should appear. This is obviously more difficult than using 

a typical paint pro gram to create a single texture to be used as a texture map. 

Moreover, the implementers of procedural shaders must worry about problems 

such as anti-aliasing. For example, the simple shader presented above in Alg. l, 

will alias badly since there is very high frequency content (step edges). In general, 

the author of a procedural shader does not know at which points the texture will 

be sampled, and must therefore minimise the high frequency content through the 

use of smooth edges. This is an example of one of the many issues which must be 

resolved during the specification of a procedural shader. 

Procedural textures are also not a panacea; there are many textures which 

simply cannot be easily formulated procedurally. Complex visual structures 

which do not seem to have an underlying pattern (such as a human face) are very 

difficult, if not impossible, to represent procedurally. 

Image synthesis is usually slower when using procedural textures since 

the procedure must be evaluated for every pixel in addition to the illumination 

model. There has been recent work which addresses this issue and the results are 

promising [57, 64, 58]. Rendering speed is, however, perhaps the smallest concern 

when weighed against the advantages of using procedural textures, especially 

considering the dizzying pace at which graphics hardware improves. This is 

perhaps most interesting for the video game industry where high quality real-time 

rendering is always the goal. Until now, these applications have had to make 

use of many texture maps for their virtual environments which are less visually 

compelling, often produce aliasing effects during motion, and have extremely 

high storage demands. Photo-realistic applications such as motion pictures are 
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not rendered in real-time and are therefore able to take advantage of the increased 

quality and flexibility of procedural texturing. 

Note that by using procedural textures for this work, we obtain severa! 

advantages over either image samples as texture maps, or the use of stochastic 

image-based texture synthesis as proposed by Efros et al. [33,32], Wei and 

Levoy [79] and others (see chapter 3). Namely, as mentioned above, procedural 

textures are very compact, extremely flexible, can be evaluated in arbitrary order 

(useful for variable level of detail applications) and are resolution independent. 

U sing a procedural texture also allows us to generate textures that are akin to a 

target in sorne desired way, while still allowing us the freedom to make useful 

changes. 
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CHAPTER3 

Previous Work 

T
HE previous work in the field of texture synthesis can largely be divided 

into two classes: synthesis which is not based on a texture sample (herein 

referred ta as traditional texture synthesis), and synthesis which is based on a 

sman texture sample where the desire is ta grow a larger texture field of that 

particular texture. For the remainder of this chapter we will refer ta the latter as 

sample-based texture synthesis. 

In this chapter we will give an overview of the most popular techniques 

for bath traditional texture synthesis, as weIl as sample-based texture synthe­

sis. Finally we will describe previous work directly related ta the automated 

specification of procedural textures based on a sample texture. 

Our work deals with the selection of one or more procedural textures and 

associated parameters given a specification in terms of an sample texture. This is 

loosely related ta research which seeks ta synthesise a large texture field given 

only a sman sample of the desired texture. While texture synthesis methods share 

with our work the ability ta generate arbitrary texture fields from a sman sample, 
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Figure 3-1: A fireball made using hypertexture. (Image by Ken Perlin.) 

they differ in terms of the compactness of the description, the scientific objectives, 

and the manner in which the results can subsequently be re-configured. 

There are many specialised techniques for texture synthesis but few of them 

are general solutions, that is, most are best suited to a specific type of texture. 

3.1 Traditional Texture Synthesis 

Traditionally, textures which were synthesised for use in texture mapping 

were not necessarily based on real-world phenomena, but rather were designed 

with very specific applications in mind. These early synthesis techniques were 

sometimes able to pro duce elaborate textures, but it was difficult to effectively 

control their appearance. 

We will give an overview of two such methods below, namely hypertexture, 

and reaction-diffusion textures. 

3.1.1 Hypertexture 

In 1989, Perlin and Hoffert described a concept, which is an extension 

to procedural solid texture synthesis applied to volumetric regions, called 

hypertexture [66]. Their motivation was that many objects have surfaces which are 

very difficult, if not impossible, to model explicitly. Examples include fur, hair, 
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Figure 3-2: An exarnple of several reaction diffusion textures. (Image by Andrew 
Witkin.) 

fire, fiuid fiow, and erosion effects (see Fig. 3-1). They modelled such objects as 

soft abjects, i.e., objects which had a density function D(x, y, z) E [0,1] which 

described the density of a 3D shape for aU points in n3 • The soft region consisted 

of all points such that ° < D(x, y, z) < 1, the outside by D = 0, and the inside 

by D = 1. In addition to the density function, they defined density modulation 

functions (bias, gain, noise, and turbulence) which were used to modulate the 

object's density within its soft region. They also defined the boolean operations 

(union, difference, complement, and intersection) for these modulation functions 

thus forming a toolkit which could be used to model these soft objects. Although 

sorne highly successful images were produced, the selection and combinations 

of density functions, as weU as parameter tweaking, still needed to be performed 

manually. 

3.1.2 Reaction-Diffusion Textures 

Reaction-diffusion (RD) texture generation is a technique which can be used 

to simulate a c1ass of natural textures, or patterns, which arise from local, non-

linear interactions of excitation and inhibition. Examples of such textures inc1ude 
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various kinds of stripes, weaves, lattices, and mazes [83, 77]. Sorne examples of 

RD textures are shown in Fig. 3-2. 

The principal idea behind reaction-diffusion systems is to simulate the 

evolution of a concentration of morphogens1 , C (x, y), through two concurrently 

operating processes: diffusion of morpho gens, and reactions that produce 

and destroy morpho gens depending on their concentrations. This evolution 

is simulated until a stable pattern of concentrations is reached, at which time 

these concentrations are interpreted as textures, usually by assigning colours, or 

intensities depending on the underlying concentrations, although these patterns 

have also been used for bump mapping and for opacity maps. 

The reaction-diffusion model proposed by Witkin and Kass incorporates 

three processes - diffusion, dissipation, and reaction [83]. Diffusion controls the 

transport of morpho gens from higher to lower concentrations, dissipation causes 

concentrations of morpho gens to decay exponentially in the absence of other 

influences, and reaction controls the rate of morphogen production: 

è=~-$+~, 
diffusion dissipation reaction 

where è is the time derivative of C, ',PC is the Laplacian of C, a is the rate 

(3.1) 

constant for diffusion, b is the rate constant for dissipation, and R is the reaction 

function. 

In order to create new patterns, Witkin and Kass extended the RD model in 

several ways. First, they allowed the diffusion to be anisotropie. In order for C 

to diffuse at different rates, the a2 in Eq. 3.1 can be separated into independent 

rate constants in x and y. They also propose a method for arbitrary non-axis 

1 Morphogens are hypothetical chemical agents which take part in morphogen­
esis, the formation and differentiation of tissues and organs. 
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(a) (b) 

Figure 3-3: An ex ample of reaction-diffusion textures grown directly on a surface. 
The zebra stripes were started on the hooves and head as shown in (a). The final 
image is shown in (b). Images @Greg Turk. 

aligned principal directions, the details of which are beyond the scope of this 

overview. Second, they allowed the diffusion rates to change in different areas 

of the concentration, a technique they refer to as space-varying diffusion. This 

is accomplished through the use of a diffusion map which corresponds to the 

diffusion rates and directions for each point in the concentration. In practise, the 

diffusion map is only defined for selected points, and values are interpolated for 

other areas of the concentration. Witkin and Kass also demonstrated that RD 

texture patches could be sewn together seamlessly through the use of shared 

boundary conditions, a special case of which allows textures to repeat periodically. 

Turk made two important contributions to reaction-diffusion texturing: (1) 

the creation of patterns more complex than had previously been attributed to 

RD systems, and (2) he described a technique for growing RD textures directly 

on polygonal surfaces (see Fig. 3-3) [77]. He achieved more complex patterns 

by having one RD system create an initial concentration, and then using this 

concentration as the initial condition for a second RD system. Striking patterns 

were created when he stopped the initial concentrations prior to reaching stability, 

and then allowed the second system to stabilise using the result of the first system. 
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He also allowed several concentrations to be simulated together with reaction 

functions defined for each of the different morphogens in relation to the others. 

These two ideas can obviously be used to create a wide variety of patterns. Turk's 

technique for growing patterns directly on polygonal surfaces allowed RD textures 

to be immune to the surface parameterisation problems inherent with traditional 

texture mapping. 

Unfortunately, reaction-diffusion textures remain complicated to use due 

to the necessary specification of the initial conditions (the initial morphogen 

concentrations), the rate constants, the diffusion map (if anisotropic and space 

varying diffusion are to be used), the reaction functions, not to mention, the point 

at which to stop the simulation if various RD textures are being mixed. Despite 

various optimisations in the numerical solution of partial differential equations, 

RD textures are still computationally expensive. 

3.2 Sample-Based Texture Synthesis Techniques 

Sample-based texture synthesis techniques can be used to create a synthetic 

texture which resembles an input image according to a particular texture model. 

There are two classes of texture models, namely deterministic and stochastic. 

A deterministic texture is characterised by a set of primitives, and a set of mIes 

which governs their placement. Examples include a tile floor, or wallpaper with a 

spotted pattern. A stochastic texture, however, does not have any primitives which 

can be easily identified (tree bark, sand, stucco). In practise, many real-world 

textures have sorne combination of these characteristics. 

3.2.1 Steerable Pyramid Statistical Matching 

In 1995, Heeger and Bergen proposed a texture analysis and synthesis model 

for generating stochastic textures based on an input sample [42]. Their method is 

able to synthesise an arbitrary amount of the sample texture by coercing a noise 
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Algorithm 2 Heeger and Bergen's Texture Matching Algorithm 
MatchHistogram(noise, texture) 
analysis-pyramid = MakePyramid(texture) 
for several iterations do 

synthesis-pyramid = MakePyramid(noise) 
for matching sub-bands in analysis and synthe sis pyramids do 

MatchHistogram(synthesis-:-band, analysis-band) 
end for 
noise = CollapsePyramid(synthesis-pyramid) 
MatchHistogram(noise, texture) 

end for 

image of the desired resulting texture size to have the same intensity histograms 

within specific bands of frequency space as the input image. This is accomplished 

by using two fundamentaI image operations: (1) decomposition of an image into 

an image pyramid (and collapsing an image pyramid back into an image), and (2) 

histogram matching. 

The histogram matching is in fact a generalisation of histogram equalisation. 

It is accomplished by creating two lookup tables: the cumulative distribution 

function (cdf) of one image, and the inverse cdf of the other image. These two 

functions are then used to match the histogram of one image to the other. 

The entire texture anaIysis/synthesis algorithm is shown in Alg. 2. In practise 

they used a steerable pyramid which kept four images for each level of the 

pyramid, each a response to an oriented fiIter so that anisotropic textures could 

be synthesised, the details of which are beyond the scope of this discussion. 

Inspection will reveal that there is no fixed number of iterations in the algorithm, 

and in fact there is no formai evidence that this algorithm converges. Heeger 

and Bergen claim, however, that 5 iterations are usually sufficient to produce 

a satisfactory synthesised texture. U sing this algorithm, it is also possible to 

synthesise textures which are similar to several input textures by using the freshly 

synthesised texture instead of a noise image when synthesising the second texture. 

This extension is similar to those mentioned in Sec. 3.1.2. 
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(a) (b) (c) 

(d) (e) (t) 

Figure 3-4: Textures synthesised using De Bonet's technique. The top row shows 
the texture samples, and the bottom row shows the resulting synthesised textures. 
Notice that the method performs acceptably for a stochastic texture sample (a), but 
fails for textures exhibiting even a slightly deterministic pattern as shown in (b) 
and (c). 

De Bonet also proposed a texture synthesis technique based on image 

pyramids [27]. Instead of trying to match the histograms at each level of the 

pyramid, he samples the levels of the analysis pyramid where psychophysically 

motivated features have strong responses. These features are simple edge and line 

filters as well as Laplacian response, and must be present at each parent level of 

the input pyramid to be replicated in the synthesis pyramid. Similar regions of the 

levels in the synthesis pyramid are also randomly rearranged to increase visual 

difference from the input texture while maintaining minimal perceptual difference 

in terms of texture. After the completion of the sampling process for each level 

of the synthesis pyramid, it is collapsed to pro duce the synthesised texture. Due 

to the randomness, this method seems to work well only for purely stochastic 

textures. Another drawback exists in the way that images larger than the input are 

generated: the sampling is performed by simply tiling the input image without 

regard for whether it may be tile-able. This method also cannot model complex 
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(a) (b) (c) (d) 

(e) (f) (g) (h) 

Figure 3-5: Textures synthesised using Efros and Leung's technique. The first 
row contains the texture samples, and the second row displays the synthesised tex­
tures. Notice how if incorrect choices are made early, it is impossible to recover as 
shown in the bottom left corner of (h). 

visual structures since it uses only local constraints during sampling. Examples of 

textures synthesised using this method are shown in Fig. 3--4. 

3.2.2 Markov Texture Synthesis 

Markov texture synthesis techniques are based on the assumption of locality. 

That is, that the appearance of a certain texture element (texel) can be determined 

by its surrounding neighbourhood of texels. In other words, that the texture being 

synthesised can be considered to be a Markov process if time is reinterpreted as 

space within the texture and therefore has the following property: given that its 

current state (texel) is known, the probability of any future event of the process is 

not altered by additional knowledge concerning its past behaviour (more than n 

pixels in a local neighbourhood). 

The specification of the neighbourhood varies according to the technique 

being used. These techniques can be used to grow an unlimited amount of texture 

based on a small sample, or can be used to fill in holes in an image as is necessary 

for image in-painting [6, 7, 52]. 
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A technique due to Efros and Leung grows a texture, pixel by pixel outwards 

from an initial seed until the desired size is reached [33]. Their algorithm 

essentially finds a set of candidate regions in the sample texture which are 

similar to the area centred at the current (unknown) pixel in the synthesised 

texture. They compute the similarity using a sum of squared differences (SSD) 

of the pixel intensity values from the two neighbourhoods, weighted by a two­

dimensional Gaussian kernel. A histogram of pixel values is computed from the 

best neighbourhoods, and the final pixel value is determined by sampling this 

histogram either uniformly or weighted according to the neighbourhood similarity 

value. 

The final pixel value is then used in the synthesised texture, and the algorithm 

continues outward (or inward for in-painting) until all pixels have been filled 

in. Of course, this only works when a single pixel needs to be determined, since 

when there is more than one pixel to be synthesised, the neighbourhood in the 

synthesised image will not be complete. To correct for this situation, when 

neighbourhoods are compared, only known pixels are used for the similarity 

measure, and the error is normalised by the total number of known pixels. In the 

case where there are no known pixels yet in the synthesised texture (the starting 

condition when not doing hole-filling) a 3 x 3 seed is taken randomly from the 

sample texture and is used as a starting point for synthesis. 

Due to the bootstrapping nature of this algorithm, if a pixel is filled in 

incorrectly, the resulting texture can have a large region which is not similar to 

the input texture. Assuming these incorrect pixels could be located, a possible 

solution to this problem would be to allow limited backtracking to choose a more 

appropriate pixel. Textures synthesised using this technique are shown in Fig. 3-5. 
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(a) (b) (c) (d) (e) 

Figure 3-6: Comparison of different texture ~ynthesis techniques. The sample 
texture is shown in (a), the result using Heeger and Bergen's technique is shown in 
(b), (c) is synthesised using De Bonet's technique, (d) is synthesised using Efros 
and Leung's technique, and (e) is synthesised using Wei and Levoy's technique. 
There is little difference in appearance between (d) and (e), however Wei and 
Levoy's method is an order of magnitude faster than Efros and Leung's method. 

Wei and Levoy have shown a method similar to that of Efros and Leung 

which pro duces textures which are of equal or higher quality and can be synthe­

sised much faster [79]. The main differences from previous techniques is that the 

texture is filled in progressively, from top to bottom, left to right, and they define 

their neighbourhood for search in the input sample to have dependence only on 

previous pixels which have been added to the synthesised texture (the system is 

causal). In addition, in order to capture texture elements whose sca1e is larger 

than the search neighbourhood they use a multi-resolution approach: synthesis is 

performed from low resolution to high resolution levels in a Gaussian pyramid, 

with the neighbourhood definition updated to include the levels below the level 

currently being synthesised. 

They have also increased the search speed of matching neighbourhoods 

between the sample and target textures by considering each neighbourhood to 

be a point in a higher dimensional space, and using a nearest point searching 

algorithm (tree structured vector quantisation). These algorithms typically involve 

preprocessing the point set, but provide much faster se arch times. Results using 

their method are shown in Fig. 3-6. 
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Wei and Levoy also propose a method for synthesising temporal textures. 

Temporal textures are visual sequences with indeterminate extent both in space 

and time. For this type of synthesis, the neighbourhood definition is augmented to 

inc1ude the texel values from nearby frames within a texture animation. Searching 

in this higher-dimensional space is c1early computationalIy expensive, and hence 

results take a long time. It is also worth noting that in order to use this method, 

one must already have a sample of a temporal texture. 

Schodl et al. have developed a technique for creating temporal textures of ar­

bitrary length based on small video sequences which they calI video textures [70]. 

Their method analyses a video sequence to extract its structure, and is then able 

to synthesise a new, similar looking, non-repeating video. The videos are repre­

sented as Markov processes with each state corresponding to a frame in the video, 

and the probabilities correspond to the transition likelihoods from one frame to 

another. 

The creation of a video texture consists of an analysis phase to extract the 

structure from the video, folIowed by a synthesis phase. For the first part of the 

analysis phase, the similarity of all pairs of (brightness equalised) frames in the 

sample video sequence is computed and stored in a matrix Dij = 1 IIi - Ij 112 for aIl 

pairs of video frames Ii and Ij. These distances are then mapped to probabilities, 

Pij <X exp( -Di+l,j/a), with each row of P being normalised so that Lj Pij = 1. 

When synthesising the new video sequence, a new frame is selected according to 

the distribution of Pij , with the value of a determining the smoothness between 

adjacent frames. This work was extended so that individual pictures could contain 

moving elements [24], and was also applied to panoramic images in the form of 

panoramic video textures [2]. 

If we consider texture synthesis methods based on Markov models of texture 

as presented above, then although these techniques pro duce compelling results, 
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they have severallimitations. For instance, the Markov framework does not easily 

aIlow for minor changes in the characteristics of the texture being generated 

(wider bricks, puffier c1ouds, etc.), although there has been promising work in 

this area [84, 19]. Another shortcoming of these techniques is that the output 

resolution can never be higher than the resolution of the input image: while 

increasing the desired size of the synthesised texture will pro duce more texture, 

its resolution (distance between samples) can never be higher than the given 

sample texture. This means that these texture synthesis methods aIl suffer from 

the magnification drawbacks described in Sec. 2.2.3, and are therefore not very 

weIl suited to photo-realistic rendering. 

3.2.3 Bi-directional Texture Function 

Dana et al. have a somewhat different approach to the texture synthesis prob­

lem, and propose a method which is similar to the techniques for measuring the 

BRDF discussed in Sec. 2.2.1 [26]. They define a bi-directional texture function 

(BTF) analogously to the BRDF: for each possible viewing and illumination 

direction, the BTF of a particular texture returns an image. This model accommo­

dates both isotropic and anisotropic textures very weIl. Actual textured materials 

(carpet, velvet, stucco, etc.) are imaged for each possible viewing and lighting 

angle, and the resulting texture images are stored for later use. At rendering time, 

the correct texture samples are retrieved and blended together. Although this 

approach has produced sorne nice demonstration images, the time and machinery 

necessary to accurately sample each desired texture for aIl orientations, as weIl as 

the space needed to store these samples is quite prohibitive. 

Suen and Healey have lowered the storage requirements via a form of 

subspace modelling to yield highly realistic reproductions of specific physical 

surfaces once the requisite measurements have been acquired [74]. This method 
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Figure 3-7: Textures synthesised using Lefebvre and Poulin's technique. The 
input texture for the rectangular tiling method is shown in (a), and (b) is the syn­
thesised texture. The input texture for the wood texture method is shown in (c), 
and (d) is the synthesised texture. 

continues to be impractical due to the necessity of physical sampling the desired 

texture in a very controlled environment. 

3.3 Procedural Texture Matching 

Lefebvre and Poulin have developed a procedural method for texture analysis 

and synthesis for highly structured textures [51]. This method combines sorne 

of the features discussed above with the final goal of producing a procedural 

texture similar to the input sample. This allows the graphie artist to use a high 

resolution texture, as well as to have the ability to tune sorne of the parameters of 

the resulting texture should they desire a slightly different appearance. 
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Their work focuses on two types of structured textures: rectangular tilings 

(such as can be found in brick walls or ceramic tile floors), and wood. In the 

case of rectangular tilings, their method is based on the Fourier analysis of a 

(manually tuned) segmented texture. They measure features such as orientation 

and the height of rows in the tiling directly from the phase and amplitude images 

of the texture transformed to the frequency domain. Given this information, they 

can then measure other parameters such as tile width and row offsets by tracing 

horizontal scan lines within the original image in the spatial domain. As a final 

step, the user must select a region in the sample texture which represents the 

centre ofthe tiles (the brick itselfin a brick wall texture), and a region which 

is representative of the inter-tile area (mortar in the case of a brick wall). They 

then use Heeger and Bergen's method (discussed in Sec. 3.2.l) to synthesise 

these regions in the final texture. A similar approach is presented to synthesise 

wood textures based on an input sample. There are.1 0 parameters for their wood 

procedural texture model which are estimated using various scan-line and Fourier 

methods similar to those used for rectangular tilings. Two examples of their 

method can be seen in Fig. 3-7. 

Although the results for these two specific types of texture are very positive, 

it is clear that this method can not be generalised to handle arbitrary textures. In 

addition, even in their restricted domain of textures there are sorne limitations: 

the rectangular tiling must be regular, and due to the method used to synthesise 

the various texture elements, arbitrary resolution is not really possible for reasons 

discussed above. 

The approach to texture matching presented in this thesis is better able 

to han dIe generic texture samples, and the resulting procedural textures can 

be used to render true high resolution photo-realistic images. This approach 

is demonstrated below for both stochastic and deterministic texture samples. 
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In addition, our method uses procedural textures written in a standard shading 

language2 and as such does not need to be part of a special rendering framework 

unlike sorne of the methods presented in this chapter. Our method for procedural 

texture synthesis based on a given texture sample will be outlined in the following 

chapter. 

2 We use Pixar's RenderMan® shading language since it is the prevalent shad­
ing language used in the computer graphies industry; however, our system can be 
easily extended to use other shading languages. For details, see appendix A. 
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CHAPTER4 

Procedural Texture Matching 

I
N this chapter we will describe our method for synthesising a texture proce­

durally based on a given sample texture. This method contrasts with those 

described in chapter 3 in that rather than modelling the texture statistically or 

measuring specific features within the texture, we seek to find a shader from 

a given library of shaders which can approximate the sample texture. Given a 

potentially similar shader, our method then fine tunes the shader parameters in 

order to improve the similarity between the two textures. Computing the similarity 

. of textures based on a human psychophysical model is an open problem, however, 

our method can easily use any supplied texture comparison metric. Although a 

more extensive discussion of texture similarity is beyond the scope of this thesis, 

in Sec. 4.5 we present two such similarity measures we have used with success. 

Rather than retuming a texture image, our method retums a shader, and a 

specific set of parameters for that shader which can then be used in an arbitrary 

rendering environment for image synthesis. While there are many advantages to 

this approach, the most notable are that the shader can be rendered at arbitrary 

resolutions, and that the graphic artist can manually fine tune the parameters to 
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achieve a slightly different appearance should they so desire. This work assumes 

the availability of a library of shaders, and that at least one shader in the library is 

capable of approximating the appearance of the desired texture. In chapter 6 we 

discuss a possible approach to relaxing these assumptions. 

4.1 Approach 

Recall from Sec. 2.2.4 that a procedural texture is a function which, given 

a set of input parameters x = (Xl, •.. , Xn ) which control the appearance of the 

texture, retums the colour of the surface at the point (u, v) queried: 

p(u, v, x) = f(u, v, L, N, Od, Os, ... , x) (4.1) 

where p is a procedural texture taking a parameter vector x and like a texture map 

is indexed by (u, v) E [0, 1]2. Note that p is a function not only of the parameters 

of the texture itself, but also of the light direction (L), surface normal (N), object 

diffuse and specular colours (Od, Os), etc., as illustrated with the function f 

above. We can think of these additional parameters as being functions of (u, v). 

For the work in this thesis, we consider procedural textures only in terms of their 

coordinates (u, v) and their parameter vector x. That is, we seek only to recover 

textures under constant lighting conditions on a plane. 

Given an input target texture T, we wish to approximate its appearance 

using a procedural texture p( u, v, ... ). The solution to this problem will entail a 

multi-stage search strategy over the space of shaders in the shader library, as weIl 

as over the parameter domain of the shaders likely to produce desirable matches 

to the target texture. The details of this search technique will be given below. 

For the remainder of this thesis, we will refer to a procedural texture without 

specifying the (u, v) texture coordinates, but rather just the parameter vector, as in 
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p( X). When the particular values of the parameter vector are not relevant, we will 

simply refer to the procedural texture as p. 

Consider a set P of procedural textures {Pl, ... , Pn}, where each element 

Pi is a shader of arbitrary dimension, that is, it takes an arbitrary number of 

parameters. Given a texture target T, we wish to find the element Pi E P, and the 

associated parameter vector Xi such that Pi (Xi) produces a texture perceptually 

similar to T. That is, we want to maximise a similarity measure S 0 between 

the procedural candidate and the target texture: S(Pi(Xi), T). The process for 

finding Pi and Xi is outlined below, and the similarity measure S () is discussed in 

Sec. 4.5. 

4.2 Searching in Texture Space 

To find an appropriate shader and parameters, we need to search across the 

span of each shader's input parameters for a suitable match to the target texture T. 

For the remainder of this thesis, we will refer to the set of all valid parameters for 

a particular shader as its parameter domain, and to all the texture images a shader 

can produce as its texture range. 

Unfortunately, it is unlikely that the similarity hyper-surface s(x) = S(Pi(X), T) 

resulting from evaluating the target texture against the texture range of a particular 

shader will be convex (or even continuous for that matter). Of course, if there is 

a particular parameter setting for a shader which provides a good match to the 

target texture, theoretically, exhaustive search of the parameter domain would 

eventually find it, however, we desire a tractable solution. This suggests a space-

time compromise consisting of a two-stage approach: a preliminary search using 

pre-computed data and an on-line refinement stage. 
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4.3 Global Search 

As a pre-computation step, for each new shader that is added to the shader 

library, we generate a catalogue of samples in the parameter do main of that 

particular procedural texture Pi. We refer to the catalogue of samples for a 

particular shader as its sample set Vi, and the global set V is composed of all such 

sample sets for the shaders in the library. 

Note that generating a sarnple for a particular parameter vector x entails 

rendering a new image of a plane textured using the shader Pi (x). The texture 

samples in the catalogues are stored in an image database using a lossless 

compression format. Each sample is rendered at 256 x 256 pixels, with an average 

catalogue size of approximately 200 samples, combining for an average storage 

cost of 11MB per catalogue. The number of samples required for each catalogue 

is dependent on the number of parameters for the given shader. However, this 

relation is rarely exponential because most shaders contain a subset of parameters 

which are semantically motivated and hence control a wide range of the shader's 

output while the remaining parameters account for little variation. This pre­

computation phase typically takes on the order of 4 hours for each new shader 

added to the library. While creating the shader catalogue is a computationally 

costly step, it must only be performed once for each shader. 

Because it is possible that several parame ter vectors will produce similar 

textures, we choose to sample the pararneter domain of each procedural shader 

using an adaptive random sampling technique. This allows us to retain in our 

sample set only the parameter values which give us information about the 

interesting areas of the parameter domain - that is, the areas where the resulting 

texture range is not predominantly self-similar. A key issue, of course, is to 

sample densely enough to capture the expressiveness of the procedural texture 

while not over sampling and creating very large shader catalogues. The sampling 
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Figure 4-1: The construction step of the adaptive random sampling method. For 
the sake of illustration, we have limited the dimensionality of the shader to 2, and 
assume that the measure S () is inversely proportional to the Euclidean distance 
between samples (i.e., samples which appear similar are closer together). In (a), 
samples are added randomly within the parameter domain of the shader. The fully 
connected graph is then constructed as shown in (b), and since one vertex is ab ove 
the closeness threshold (shown in red), it is removed as shown in (c). 

density (size of the sample set Vi) is determined by the end-user and can be 

adjusted per-shader if necessary. 

Our adaptive random sampling is performed as follows. We build a graph Ci 

containing the vertices Vi and edges Ei for each shader Pi. Each vertex v! E Vi 

corresponds to a sample point (parameter vector Xi) in the parameter do main 

of the shader Pi, and we will therefore refer to the texture Pi ( Vi) and Pi (Xi) 

interchangeably. The edge weights e(v!, vm ) E Ei correspond to the similarity 

measure between the vertices: e ( V!, vm ) = S (Pi ( v!) , Pi ( vm ) ). The maximum 

number of samples for a shader Pi is determined by the per-shader constant Ni. 
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The adaptive random sampling technique involves a three step process: 

there is an initial construction step, a refinement step, and a pruning step. 

The construction step adds a number of random vertices to the graph, and the 

refinement and pruning steps iteratively improve the coverage of the parame ter 

domain. 

For the construction step, k random samples are added to the vertex set Vi. 

For each new vertex, edges are added to each existing vertex so that the graph 

is a1ways fully connected. Full connectivity is not strictly necessary, however, it 

is desirable for the texture transformations which will be discussed in chapter 5. 

During the construction step, as each new vertex and its associated edges are 

added to the graph, it is checked to ensure that it is not too similar in appearance 

to sorne pre-existing vertex as determined by the similarity measure. That is, for 

a new vertex VI ifthere exists a vertex Vm such that e(vI' v m ) > w where w is a 

constant threshold, VI is removed from the vertex set. The construction step is 

illustrated in Fig. 4-1. 

Once it has been determined that a vertex VI will be retained, we compute a 

measure of the smoothness in its local neighbourhood: given a reference point x 

and a set of points D = {dl, ... , dn } distributed in the local neighbourhood of x, 

we can compute a heuristic function measuring the local smoothness around the 

sample point x as follows: 

(4.2) 

This measure compares each point from the sample set D to the sample point 

x and these similarities are weighted by the L 2 norm between x and each point 

di under consideration. New points can be added incrementally as compute time 

permits in order to improve the measure. This function is a heuristic because it is 
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(a) (b) 

Figure 4-2: The refinement step of the adaptive random sampling method. Again, 
for the sake of illustration, we have limited the dimensionality of the shader to 2, 
and assume that the measure S () is inversely proportional to the Euclidean dis­
tance between samples. More samples are added globally as shown in yellow in 
(a). In addition, the vertex shown in blue in (b) was identified as being isolated, 
and hence random samples were added locally (shown in green). The new edges 
are not shown for clarity. 

a discrete approximation of the local surface properties based on limited sample 

points, and is thus not equivalent to the derivative at the point x. 

For the refinement step of the adaptive random sampling method, we evaluate 

the CUITent graph, and determine whether new points need to be added to provide 

better coverage of the texture range of the given shader. Points which may be too 

isolated are also identified during the refinement step. 

First, we compute a global measure of coverage of the current sample set: 

L (1- e(vz,vm)t (4.3) 
l,mEVi l=lm 

where higher values of (J penalise graphs with isolated vertices. If /'l,( Ci) is 

above sorne threshold, k more random points are added to the graph as in the 

construction step described above. 

Secondly, we identify the most isolated vertices in the graph as defined by: 

(4.4) 
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(a) (b) 

Figure 4-3: The pruning step of the adaptive random sampling method. For the 
sake of clarity, no edges are shown. (a) shows the vertices before pruning, and (b) 
shows the result after removing the vertices which were deemed to be too similar 
to provide sufficient novel information. Again, we assume that the measure SOis 
inversely proportion al to the Euclidean distance between samples. 

that is, the measure 1( Vi) is a mixture of the local smoothness (as determined by 

the heuristic HO) around Vi, as well as the distance to the nearest neighbour in the 

graph. 

The vertices in Vi are then sorted according to 10 and the top q (that is the 

q most isolated) points are selected. For these selected vertices, more random 

samples are added local/y. This step is shown in Fig. 4-2. 

The final step of the adaptive random sampling method is the pruning step. 

In this step we want to limit the number of vertices in the graph (II Vi Il) to the user 

specified Ni' If Il Vi Il > Ni, this is accomplished by calculating a measure to find 

vertices which are most similar to others, and can hence be removed: 

À(VI) = L e(vl,vm ) 

vmEV;-{VI} 

The vertices in Vi are sorted according to À () and the top Il Vi Il - Ni are 

removed. This step is shown in Fig. 4-3. 

We then iterate over the refinement step and the pruning step until the 

sampling coverage threshold is satisfied, or a maximum iteration has been 
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Figure 4-4: An example of uniformly sampling an individual shader. Note how 
there are many samples which are very similar, and when compared against the 
sampling of the same shader shown in Fig. 4-5, we also see that much of the 
texture range of the shader has not been captured. 

reached. This adaptive random sampling method is similar to that used by Kavraki 

et al. for a randomised path planner for use with mobile robots [47]. An example 

of the adaptive random sampling of a particular shader as compared to uniform 

sampling is shown in Figs. 4-4, and 4-5. 

In practise, we actually keep two versions of the graphs for each shader. 

One is as described above, the other is a highly pruned (and hence much smaller) 

version of the same graph. Because each vertex is stored as an index into the 
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Figure 4-5: An ex ample of the sampling due to our adaptive random sampling 
technique. When compared against the uniform sampling of the same shader 
shown in Fig. 4--4, we can see that this method captures much more of the texture 
range. 

image database, the increased storage requirements for keeping more aggressively 

pruned versions are negligible. 

As the first phase of our global search, we seek to identify the shaders which 

may produce textures similar to our target texture T. This can be accompli shed 

by evaluating the similarity function over the highly pruned catalogue for each 

of the shaders in the library. For each shader, if the best match from the pruned 

catalogue is above a given threshold, it is added to the set of candidate shaders 

Pc c 'P to be searched globally, otherwise the shader is not searched any further 

56 



• • • 
• • • 

• .---, 

• 
Figure 4-6: The second, local, phase of the search strategy. The points in red were 
identified during the global search phase as likely candidates to start a local search 
for the ideal match shown in blue. For the sake of illustration, we have limited 
the dimensionality of the shader to 2, and again assume that the measure S () is 
inversely proportional to the Euc1idean distance between samples. 

for this particular target T. Alternatively, the end user can easily specify which 

shaders comprise Pc if they have sorne higher level knowledge of which shaders 

are likely to produce similar textures. 

Once we have a set of candidate shaders Pc which have a potential for 

producing textures sirnilar to the target, we perform a more exhaustive search 

- the similarity measure is evaluated for each sample in the sample set for each 

shader Pi E Pc to find the best overall match: 

max (maxs (Pi(VI),T)) 
V;EPc vzEV; 

(4.6) 

This match then becomes the starting point for the local search phase of our 

texture matching algorithm which is described below. In practise we look not 

only at the best match, but at several of the top matches in order to maximise the 

likelihood of success during the next phase. 

4.4 Local Search 

The second phase of our se arch strategy consists of a local search seeded 

by the best candidate samples from the global search phase. Starting with each 
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of the top matches from the previous phase, we perform a local optimisation to 

refine the shader parameter vector values in order to produce a texture which 

best represents the target texture (see Fig. 4-6). The notion here is that the 

adaptive random sampling from the global search phase has covered the parameter 

domain sufficiently to guide our search so that we can start our optimisation in 

the most promising areas of the relevant shader's parameter domain, and avoid 

wasting time searching in areas where the shader is unlikely to produce desirable 

matches. More specifically, if we assume that each texture region is interpolated 

approximately by its bounding vertices (as defined by sorne kind of subdivision 

technique), then we can see that searching within an area where none of the 

bounding vertices is similar to the target texture should, in general, not pro duce a 

goodmatch. 

It is during this phase that our heuristic measure of the smoothness of the 

local neighbourhood surrounding a vertex, H(v), can be employed to influence 

the search order of samples to be used as starting points for the local optimisation. 

As mentioned above in Sec. 4.3, it is possible that multiple points in the parameter 

domain of a particular shader will generate similar textures, yet the local similarity 

hyper-surfaces surrounding these points can have different characteristics (see 

Fig. 4-16 for an example). Since searching in smoother spaces is both more 

efficient and tends to yield better results, we wou Id like to prioritise our search 

based on the heuristic measure of the local smoothness. 

When the local search is no longer able to take a maximising step, the 

parameter vector which results in the greatest similarity to the target texture 

determines the final shader and parameter vector returned by the search algorithm. 

During the entire search phase, the user is presented with visual feedback of 

the current best match, allowing them to terminate the search at any point if the 
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CUITent match is to their liking, thus avoiding searching other candidate shaders, or 

other promising starting points within the same shader. 

For the results presented in this thesis, we have used both simplex optimisa­

tion, and a gradient-ascent-based optimisation. Bach is described below. 

4.4.1 Downhill Simplex Method 

Definition 4.4.1 (Simplex) 

A simplex, sometimes called a hyper-tetrahedron [20] is the generalisation 

of a tetrahedral region of space to n dimensions. The boundary of a k-simplex 

has k + 1 O-faces (polytope vertices), k(ki
1

) I-faces (polytope edges), and (~1;) 

i-faces where G) is a binomial coefficient [80]. 

The downhill simplex method is a minimisation technique which does not 

require the computation of derivatives, but rather only function evaluations [60]. 

For this method, we are only interested in simplices that enclose a finite inner 

n-dimensional volume, and are hence non-degenerate. If we fix the origin at one 

of the n + 1 vertices, the n-dimensional space is spanned by the vectors defined 

from that origin to the remaining n points. 

The downhill simplex method must be started with an initial simplex which 

can easily be constructed from a given starting point Xo, by adding multiples of 

each of the unit vectors ei: 

where 0: can either be a constant, or can be tailored to each dimension based 

on the search problem characteristics. The method entails the use of several 

operations: reflection, reflection and expansion, contraction, and multiple 

contraction (shown in Fig. 4-7). 

The downhill simplex method first tries to move the point on the simplex 

where the value is highest through the point on the simplex where the value is 
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(a) 

(b) 

(c) 

(d) 

(e) 

Figure 4-7: Different results after a step in the downhill simplex method. The 
simplex at the beginning of the step is shown in (a), with the high point on the 
bottom left of the (tetrahedral) simplex, and the low point on the bottom right. 
At the end of the step, the simplex can be either (b) due to a reflection away from 
the high point, (c) due to a reflection and expansion away from the high point, 
(d) due to a contraction along one dimension from the high point, or (e) due to a 
contraction along an dimensions towards the low point. This figure is based on 
Fig. 10.4.1 in [68]. 
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lowest. This volume preserving (and therefore non-degenerate) operation is 

called a reflection (Fig. 4-7(b)), and is the most common step taken during the 

optimisation. The notion behind the reflection is that we are attempting to roll the 

simplex down a hill towards the minimum. If possible, the method will attempt 

to take an even larger step in the direction of the lowest point, in which case it is 

called a reflection and expansion (Fig. 4-7(c)). 

When a reflection results in a point with a higher value, the simplex is instead 

contracted (Fig. 4-7(d)) so as to facilitate its movement towards the minimum. 

The idea behind the contraction is to allow the simplex to squeeze through a 

valley on the hyper-surface on its way to the minimum. If this is unsuccessful, 

the simplex will contract in all directions around the point of minimum value 

(Fig.4-7(e)). 

The optimisation is stopped when the decrease in the function value is below 

a given threshold or sorne maximum number of iterations has been reached. Like 

many optimisation techniques, downhill simplex optimisation is often restarted 

from the terminal point in an attempt to narrow in more closely on the function 

minimum. Since we should already be close to the minimum, multiple restarts 

generally do not iterate for long before terminating. Note that while we have 

described downhill simplex optimisation, which finds a minimum, this method can 

obviously be trivially altered for the purpose of maximising a function instead. 

The evaluation of the similarity function S(Pi(XI), T) with a new parameter 

vector x~ entails the rendering of a texture sample since x~ is not contained in the 

sample catalogue. Consequently, computing the gradient \7 S (Pi (Xl), T) is some­

thing we would like to avoid, motivating our desire to use the simplex method 

when possible as it does not rely on computing derivatives. In particularly unfor­

giving cases, however, the user can select to use a gradient ascent optimisation 

method described below. 
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Figure 4-8: Steepest ascent along a narrow crest. Because each change of direc­
tion is perpendicular to the las t, more steps are taken to reach the maximum than 
is necessary. This figure is based on Fig. 10.6.1 in [68]. 

4.4.2 Gradient Ascent Method 

The most basic form of gradient ascent is called steepest ascent. For 

this method, we start at the point Xo, and then take steps from Xi to Xi+! by 

maximising along the line in the direction of the local uphill gradient \7 f (Xi)' 

The main problem with this basic approach is that it is not always best to travel 

locally in the direction of the gradient. Consider what will happen when trying to 

ascend a long narrow peak: we would hope that the first line maximisation would 

take us to the local top of the crest, and that the new line maximisation would then 

ascend the crest to the true maximum. However, the new gradient at the maximum 

point of any line maximisation is perpendicular to the direction just traversed (see 

Fig. 4-8). What is required to minimise the number of steps taken (and hence 

the number of gradients computed) is to find a direction which is constructed to 

be conjugate to the old gradient, as well as the previous directions taken. These 

are called conjugate gradient optimisation methods, a full discussion of which is 

beyond the scope of this thesis [67]. 

4.5 Evaluating Texture Similarity 

In order to match a synthetic texture to a target, an important requirement is 

a distance function to indicate the quality of a candidate match, that is, a texture 

similarity function that operates on pairs of images. While a naive solution to this 
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problem might be based on the local pixel intensity differences between images l , 

that would fail to capture the notion of texture fields that look the same even when 

the individual pixels are different. For example, two images of snow falling may 

have the same apparent textures yet no two pixels may be identical. 

Generic image difference metrics are becoming more prevalent with the high 

demand for content-based retrieval from large image databases. Unfortunately, 

generic image difference metrics, even when perceptually motivated [61,59], do 

not generalise well to the texture domain. 

Before delving further into the notion of texture similarity, it is worth 

considering what we mean by visual texture. Although texture is generally easily 

recognisable when we see it, it turns out to be very difficult to define as is shown 

by a sampling of the many definitions found in the literature: 

• "We may regard texture as what constitutes a macroscopic region. Its 

structure is simply attributed to the repetitive patterns in which elements or 

primitives are arranged according to a placement rule." [75] 

• "A region in an image has a constant texture if a set of local statistics or 

other local properties of the picture function are constant, slowly varying, or 

approximately periodic." [72] 

• "The image texture we consider is non-figurative and cellular ... An image 

texture is described by the number and types of of its (tonal) primitives ... A 

fundamental characteristic of texture: it cannot be analysed without a frame 

of reference of tonal primitive being stated or implied. For any smooth grey-

tone surface, there exists a scale such that when the surface is examined, it 

1 Such as the common method of comparing images using the sum of squared 
differences (SSD) for the pixel intensity values. 
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has no texture. Then as resolution increases, it takes on a fine texture and 

then a coarse texture." [39] 

• "Texture is an apparently paradoxical notion. On the one hand, it is 

commonly used in the early processing Of visual information, especially for 

practical classification purposes. On the other hand, no one has succeeded 

in producing a commonly accepted definition of texture. The resolution 

of this paradox, we feel, will depend on a richer, more developed model 

for early visual information processing, a central aspect of which will be 

representational systems at many different levels of abstraction. These 

levels will most probably include actual intensities at the bottom and will 

progress through edge and orientation descriptors to surface, and perhaps 

volumetric descriptors. Given these multi-Ievel structures, it seems clear 

that they should be included in the definition of, and in the computation of, 

texture descriptors." [85] 

• "The notion of texture appears to depend upon three ingredients: Ci) sorne 

local 'order' is repeated over a region which is large in comparison to 

the order's size, Cii) the order consists in the nonrandom arrangement of 

elementary parts, and Ciii) the parts are roughly uniform entities having 

approximately the same dimensions everywhere within the textured 

region." [41] 

• "The character of an object resulting from the arrangement or qualities of its 

particles or constituent parts." [3] 

From the definitions above, it is clear that there is no real consensus on a 

unified definition of texture. In fact, we can see that sorne of the definitions are 

pereeptually motivated while others are more application domain specifie. The 

application domains involving sorne form of texturaI computation are generally 

divided into the following four categories: 
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(a) (b) 

Figure 4-9: An example of texture segregation is shown in (a) and two textures 
which do not segregate are shown in (b). The segregation between the pattern of 
T's and X's is obvious, whereas the pattern of T's and L's must be examined care­
fully before the border of the two textures can be identified. This figure originally 
appeared as Fig. 17.1 in [5, p. 254]. Courtesy of Jim Bergen. 

• Texture segmentation - the problem of computing a boundary around the 

areas consisting of the same texture. 

• Texture classification - the problem of identifying the texture classes of the 

different regions (as normally found using texture segmentation) in a given 

image. 

• Texture synthesis - used mostly in computer graphics to create realistic 

looking surfaces. 

• Shape from texture - one of the general class of vision problems known as 

shape Jram X. The goal is to use various perspective texturaI cues to extract 

the three-dimensional shape information of the textured surfaces. 
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Psychophysicists are very interested in our ability to separate figure from 

ground. Figure-ground separation can be based on many cues, but a classic in-

stance based on texturaI cues is the tiger-foliage problem: detecting atiger among 

the foliage in a forest is a task which carries potentially lethal consequences. The 

tiger is able to camouflage itself because the observer is unable to discriminate 

between the two textures, namely the foliage and the tiger's coat. This forms the 

basis of a prominent open question in the psychophysics community: what are the 

visual processes which allow a human to separate figure from ground based on 

textural cues? 

An academic example of human texture discrimination can be seen by 

looking at the two textures shown in Fig. 4-9. There is sorne disagreement in 

the community as to what causes us to be able to see the two distinct texture 

patterns in one of the images, while prohibiting us from seeing that there are two 

different texture patterns in the other without close inspection. Julesz claims that 

when the second-order statistics2 of two textures are similar, they are difficult 

to segregate [46], while Bergen proposes that when two textures producea 

similar response to frequency-selective oriented linear filters they are perceptually 

similar [4, 3]. Unfortunately, while these theories have merit, counter examples to 

each theory have been found [45, 55, 54]. 

Numerous studies have been performed to determine how simple cells in the 

visual cortex of the macaque monkey respond to various sinusoidal gratings of 

different frequencies and orientations [69]. These monkeys were chosen because 

their visual cortex is assumed to be similar to the human brain in its visual 

2 The probability of observing an intensity value at a random location in an 
image determines its first-order statistics. Second-order statistics are defined as the 
likelihood of observing a pair of intensity values occurring at the endpoints of a 
dipole of random length placed in the image at a random location and orientation. 
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processing, and hence may give us sorne insight into how our own visual cortex 

processes texture. The studies conduded that the simple cells are tuned to narrow 

ranges of frequency and orientation, much along the lines of the daims made by 

Bergen as described above. 

Gumsey and Fleet applied multidimensional scaling (MDS) to the problem 

of determining the texture space of a set of 20 noise-based texture stimuli [38]. 

The notion of a texture space is to define a space where similar textures would 

be near to each other and distinct textures would be far apart. MDS solutions 

attempt to find a suitable arrangement of objects in an N dimensional space which 

is most consistent with the measured similarity data. For example, consider an 

M x M matrix whose entries (i, j) represent the distance between cities i and 

j. MDS analysis would yield a most likely arrangement of the objects in a two 

dimensional space, much like a traditional map. Their experiment consisted of 

showing triplets of textures from the group of 20 noise based textures (1140 

triplets in total) and the subjects had to choose the two textures which were most 

similar, and the two textures which were least similar. Cumulative similarity 

scores were stored in the distance matrix as follows: a score of 2 was added each 

time two textures were deemed similar, 0 for textures deemed distinct, and 1 for 

the remaining pair in the triplet for a possible distance range of [O ... 36] since 

each pair was presented a total of 18 times. This experiment was performed on 3 

different subjects and it was determined that the subjects' similarity judgements 

and the MDS solution in 3 dimensions were highly correlated. Although the 

results from this experiment are promising for this limited set of synthesised 

textures, this form of texture comparison cannot be computed for generic textures 

since it is based on processing the data from test subjects in order to find the 

dimensionality and basis set of the perceptual texture space. 
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Figure 4-10: An ex ample of the texture similarity measure. The height of the 
bars indicates the similarity of each texture to the target texture shown on the left. 
Higher bars imply the texture is more similar to the target. 

In order to compare the results of our synthesis process with the target 

texture, we need a measure of the perceptual similarity of two generic textures, Tl 

(4.8) 

where a value of 1 indicates that the two textures are indistinguishable, and as 

values approach 0 the two textures are considered to be increasingly distinct 

(see Fig. 4-10). As described above, the definition of this ideal measure is still 

an open problem in the psychophysics community. We therefore need to define 

computational texture similarity functions S(), to approximate our ideal measure 

S*. 

A common tool used for analysing the second-order statistics in texture 

images is the co-occurrence matrix [40]. The G x G grey level co-occurrence 
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matrix Pd for a given displacement vector d = (dx, dy), and an image l of size 

N x N is defined as follows. The entry (i, j) of Pd is the number of occurrences 

of the pair of grey levels i and j which are a distance d apart. More formally: 

Pd(i,j) = I{((r,s),(t,v)): I(r,s) =i,I(t,v) =j}1 (4.9) 

where (r, s), (t, v) EN x N, (t, v) = (r + dx, s + dy), and 1.1 is the set cardinality 

operator. 

Given a co-occurrence matrix, one can compute different texture features 

such as energy, entropy, contrast, homogeneity, and correlation, however, it can 

immediately be seen that computing these matrices is a non-trivial matter. For 

example, consider that there is no easy way to select the displacement vector d, 

and it is not computationally feasible to construct co-occurrence matrices for aIl 

possible values of d. 

As previously described, one possible computational model of texture sim­

ilarity is based on statistical methods particularly in the Fourier domain. While 

both phase and amplitude play a role in the psychophysics of texture percep­

tion [44,22,3], the power spectrum alone provides a reasonable approximation 

to perceptual performance and is computationally expedient. A key observation 

is that the windowed power spectrum of a texture can be used for distinguishing 

or segregating textures. The power spectrum describes the mixture of spatial 

frequencies in an image and it can be obtained readily using a Fourier transform 

(see Fig. 4-11). As such, one of our computational approximations to the ideal 

texture similarity function S* () is: 

(4.10) 

where Fps (T) is the power spectrum of the texture T, computed by using a fast 

Fourier transform (FFT). Because the power spectrum represents frequency 
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(a) (b) 

(c) (d) 

Figure 4-11: An ex ample of the power spectrum for two different images. The 
images on the left are the originals, and the images on the right are the power 
spectrum images. Note how the frequency related elements are localised in the 
power spectrum images. 

information as a function of the (inverse) distance from the centre of the image, in 

practise the differences are weighted radially to favour low frequency (structural) 

components. 

In addition to the power spectrum of the texture sample, we have also 

considered the use of the histogram of the energy distribution in a Laplacian 

pyramidal representation of the texture images, as used by several authors for 

texture analysis and synthesis [1,42,27]. 

An image pyramid is an image representation consisting of multiple copies 

of the image at various resolutions (see Fig. 4-12). One corumon type of pyramid 

is the low-pass pyramid. A Iow-pass pyramid consists of a full resolution image 
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Figure 4-12: An image pyramid has a single pixel at its top level. Each lower 
level consists of an image at twice the resolution of the previous level. The type of 
pyramid specifies how the individual pixel values are determined for each level. 

at the lowest level, followed by a half resolution image, etc., where each level is 

formed by an averaging process. The top of the pyramid consists of a single pixel 

image which is the average intensity of the entire image. In this type of pyramid, 

each level is independent and can thus be used on its own. Common uses of 

low-pass pyramids inc1ude mip-mapping (Sec. 2.2.3), and image communication 

where the appropriate level of the pyramid is transmitted according to the 

available bandwidth. 

A Laplacian pyramid is a band-pass pyramid whose top level is again a single 

pixel which is the average of the entire image. However, the other levels of the 

pyramid are not independent as in a low-pass pyramid. Each of the other levels 

consists of the detai! information necessary to generate an image at the required 

resolution for level n from the previous resolution, level n - 1. For example, to 

reconstruct an image of resolution 4 x 4, we would first construct an image of 

resolution 2 x 2 by assigning the average value from the 1 x 1 resolution image 

(top level of the pyramid) to each pixel in a 2 x 2 resolution image, and then 

add the detail image from the second level of the pyramid which has a resolution 

of 2 x 2. We would then fill a 4 x 4 resolution image with the corresponding 
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(a) 

(b) (c) 

.11 
(d) (e) (f) 

Figure 4-13: An example of a Laplacian image pyramid. The original image is 
shown in (a), and the de ta il images for the bottom 5levels are shown in (b) - (f). 
(The sample image is the "Indian Head" test pattern, which was originated by 
RCA in 1939. It was non-uniformly scaled to go from the 4:3 NTSC aspect ratio 
to make it a square image for the purpose of generating the image pyramid.) 

average values from the 2 x 2 image constructed thus far and then finally add the 

detail from the third level of the pyramid (4 x 4) to arrive at the desired 4 x 4 

image. In other words, the band-pass pyramid on1y stores the information at each 

level required to go from a coarse level n to a finer level n + 1. An example of a 

Laplacian image pyramid can be seen in Fig. 4-13. 

Pairs of textures can be compared by computing the histogram difference 

between the corresponding leve1s in their Lap1acian pyramids: 

(4.11) 

where hO is the histogram of an image, Li is level i in the Laplacian pyramid of a 

texture, Tl and T2 are the textures being compared, and Wi is a weighting factor. 
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(a) (b) 

Figure 4-14: An ex ample of a deterministic texture (a), and a stochastic texture 
(b). 

The motivation behind comparing the intensity histograms at each level of 

the Laplacian pyramid stems from the fact that the comparison is computed on 

a representation that has intrinsic spatial structure. In other words, a spatially 

correlated change in the reconstructed image is effected when a pyramid level is 

modified locally. That is, the first order statistics of the pyramid levels do measure 

sorne of the spatial statistics of the original image [42]. 

In practise, we find that both the Laplacian histograms and the Fourier power 

spectrum have advantages as the basis for texture similarity functions and allow 

the user to select the desired comparison function. Because our method is not tied 

to any particular choice for S 0, if better computational approximations to texture 

similarity are discovered, they can easily be incorporated into our system. In the 

context where the particular choice of texture metric is not significant, we refer to 

it simply as S O. 

4.6 Examples 

Textures are often divided into two classes, namely, stochastic and deter­

ministic. Stochastic textures generally do not contain any easily identifiable 

primitives, whereas deterministic textures largely consist of well-defined prim-

itives combined with a set of rules governing their placement (for an example 

of each see Fig. 4-14). In practise, many textures exhibit sorne combination of 
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properties from both classes. Prior work in the field of texture synthesis tends 

to focus on only one of these texture classes, the predominant methods being 

based on Markov random fields which assume that the desired texture targets 

are stationary3 , local4 
, stochastic textures. The deterministic texture synthe sis 

methods attempt to measure domain specific attributes, and therefore can not be 

used to synthesise stochastic textures. 

In order to demonstrate our method of procedural texture matching, we 

have chosen many kinds of texture targets. Sorne of the texture targets are 

natural, that is, they are from photographs taken in the real world and sorne 

are synthetic (rendered). For both of these classes, we show our results on a 

mixture of deterministic and stochastic textures. As a first example, consider the 

texture matches shown in Fig. 4-15. These are deterministic synthetic textures 

which were themselves generated procedurally, and hence have well known 

parameter values which permits us to quantitatively measure our solution. For 

both examples, as expected, the exact parameter vector was recovered which was 

used to render the original texture. 

In order to increase the difficulty of the texture match, we performed texture 

matching experiments on synthetic textures which are stochastic. Example texture 

matches for a few such textures are shown in Fig. 4-16. These test cases provided 

an interesting result: although the texture matches are good, the parameter vectors 

recovered were not the same as those used to render the initial targets. This fact 

3 A stationary texture is a texture where samples from various regions wi11100k 
similar, that is, the local statistics are position invariant. 

4 Each pixel in a texture which exhibits locality can be characterised by its 
local neighbourhood. 
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is not surprising, especially for stochastic textures, since there are often many 

different parameter vectors which can produce similar results. 

We have also performed our texture matching on texture targets from the 

Brodatz album [18]. These textures are commonly used as a reference point for 

texture matching and classification algorithms in the perception community, and 

are therefore weIl suited to exemplify our procedural texture matching framework. 

The first set of examples are shown in Fig. 4-17. These are deterministic textures 

from photographs of real world phenomena. The brick texture match is very 

satisfying because the dominant elements present in the target texture such as the 

height and width of most of the bricks and mortar thickness have been replicated 

very closely. The weave pattern shown in the same figure is not as close a match, 

but again the dominant elements (in this case the frequency of the vertical and 

horizontallines) have still been replicated quite weIl. It is worth noting that even 

though both of the texture samples are quite distinct, the actual shader used to 

replicate each was the same, showing that this method allows us to find novel uses 

for existing shaders. 

We also performed sorne experiments using stochastic textures from the 

Brodatz album as the targets. As noted above, these textures are photographs of 

real world phenomena. The matching results are shown in Fig. 4-18 with the 

target texture on the left, and the matched texture on the right. Both cases exhibit 

successful results, which is especially satisfying given the limited shader library 

which was used. 

The notion of using a shader serendipitously is definitely a positive side­

effect of our system, as a graphie artist may not consider sorne of the shaders 

which could actually produce positive matches to the given target texture. An 

example of this is shown in the second match which made use of a shader 

intended to texture an eyeball. This shader has parameters such as i ris s i z e, 
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veinfreq, bloodshot, etc., which were appropriately specified (removing the 

iris completely by setting its size to 0) to match the given texture which was in no 

way related to an eyeball. 

In Fig. 4-19, we demonstrate our matching results using two real pictures 

of the sky - one during the day, and one at night. While, of course, in neither 

case is an exact match found, the texturaI characteristics are very similar for both 

examples. We were unable to produce closer matches by manually tuning the 

parameters. 

In another ex ample shown in Fig. 4-20, we have extracted a texture from an 

architect's sketch of a house. Again, the match found demonstrates a satisfactory 

result. OveraIl, we have shown matches to a large variety of real and synthetic 

texture targets. These positive results demonstrate the generality of our matching 

framework. 

While aIl of the examples above show matches which are perceptually very 

similar to their targets, we have provided an example of a few textures (Fig. 4-21) 

for which less suitable matches were found. It will not always be the case that we 

can find a close match if the target texture is not contained in the texture ranges 

of the pro ce duraI textures in the library. In this situation, we can only hope to find 

a procedural texture p and a parameter vector x such that p(x) is as similar as 

possible to the target texture T. This inability of the shader library's texture range 

to express a given target texture is the case with the top example (Fig. 4-21(b)). 

It is notable however, that the match which was found is still reasonable given 

the limited texture range of the shader library. We can see that similar texturaI 

elements are present in the match found, and the frequency of these elements 

seems to be appropriate. The bottom example (Fig. 4-21(d)) fails for a more 

interesting reason. In this case, the failure to pro duce a good match is due to the 

fact that one of the parameters for the shader determines the number of points in 
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the star which is intended to be an integer value. For this shader, the sampling 

phase did not produce the desired value of 4 but rather produced floating point 

values close to 4. This shader gives degenerate results when given non-integer 

parameters which means that the energy space between integer values is highly 

non-convex, thus preventing our algorithm from finding the exact result. 

Our system is able to detect failed matches when there is a large residual in 

the similarity measure between the best match and the texture target. Potential 

approaches for handling this situation are discussed in chapter 6. 

The shading language programs as well as the actual recovered parameters 

for the examples shown in Figs. 4-18(b) and 4-18( d) are presented in appen­

dices Band C respectively. As an illustration of the compactness of the procedural 

representation of each, the shaders for these two examples are 1.5 and 2.3 kilo­

bytes in size, whereas an uncompressed 8 bit 256 x 256 texture map occupies 192 

kilobytes, giving a size ratio of approximately 105 : 1 for these small texture sam­

pIes. Of course, procedural textures can be rendered at arbitrary resolutions, while 

an equivalent high-resolution texture map can easily occupy a few megabytes 

leading to size ratios of 2000 : 1 and beyond. 

All of the results shown in this chapter were obtained using a small collection 

(approx. 100) of publicly available general purpose shaders, none of which were 

specifically written to replicate the appearance of any of the given natural target 

textures. The average match time was 12 minutes, with under 100 iterations for all 

cases. 
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(a) (b) 

(c) (d) 

Figure 4-15: Examples ofprocedural texture matching using deterministic syn­
thetic textures as targets. The target textures are shown on the left; and the proce­
dural texture matches are shown on the right. The use of procedurally generated 
textures as targets should guarantee a good match since we know beforehand that 
the desired texture lies within the texture range of the shaders being searched. 
An example of the texture range of the shader used in (b) is shown in Fig. 2-10. 
In both cases, as expected, the exact parameters used to produce the target were 
found for the match. 
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(a) (b) 

(c) (d) 

Figure 4-16: Examples of procedural texture matching using stochastic synthetic 
textures as targets. The target textures are shown on the left, and the procedural 
texture matches are shown on the right. The use of procedurally generated tex­
tures as targets should guarantee a good match since we know beforehand that the 
desired texture lies within the texture range of the shaders being searched. These 
examples show close matches, but with entirely different parameter values show­
ing that different points in the parame ter domain can map to very similar textures, 
particular1y with stochastic textures. 
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(a) (b) 

(c) (d) 

Figure 4-17: Examples ofprocedural texture matching using deterministic Bro­
datz textures as targets. The images on the left are the texture targets, and the 
images on the right are procedurally generated using the automatica11y recovered 
shader and parameters. 
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(a) (b) 

(c) (d) 

Figure 4-18: Examples of procedural texture matching using stochastic Brodatz 
textures as targets, and a small repertoire of shaders. The images on the left are 
the texture targets, and the images on the right are procedurally generated us­
ing the automatically recovered shader and parameters. The texture range of the 
shader used for the match to Cc) is illustrated in Fig. 4-5. 
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(a) (b) 

(c) (d) 

Figure 4-19: Examples ofmatching reai textures from the sky during the day 
and at night. Again, the target texture is shown on the Ieft, and the texture match 
is shawn on the right. Note that aithough the image matches are not exact, the 
texturaI characteristics are very similar. 
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Figure 4-20: An example of texture matching from a sketch. On the left is an 
architect's sketch of a house, and a zoomed view of the brick texture is shown on 
the top right. The texture found using our texture matching technique is shown on 
the bottom right. 
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(a) (b) 

(c) (d) 

Figure 4-21: Examples of failed matches for both real and synthetic target tex­
tures. In (b), the shader library did not contain a shader capable of producing a 
texture with high simi1arity to the target (a). The texture shown in (d) pro duces a 
failed match to (c) even though it failed for an interesting reason: this particular 
shader takes only integer valued parameters for the number of points on the star. 
Non-integer values produced degenerate images (see Fig. 4-22), and hence our 
local search phase was not started in a reasonable location since the only inte­
ger valued sample for the relevant parameter was 5. This is discussed further in 
Sec. 4.6. 
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Figure 4-22: An ex ample of a degenerate texture for the star shader discussed in 
Fig. 4-21. 
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CHAPTER5 

Procedural Texture Transformation 

U
NTIL now, we have been thinking of textures as static entities, that is, that 

textures do not change during the lifetime of an object. For example, a 

fixed image can be texture mapped onto an object, or a shader can be used with 

fixed parameters to render the surface of an object. In reality, however, many 

textures change naturally over time. These changes can occur very slowly, such 

as is the case with a soda can fading in the sun, a fruit growing mold, pavement 

cracking, etc., or can be observed to occur more quickly, as in the case of an apple 

oxidising shortly after one takes a bite. 

The field of computer graphics deals not only with the synthesis of static 

images, but also with animations. Animations are image sequences in which the 

objects, camera, and light sources interact in a certain way in order to convey a 

particular story. These animations may have a high frame ratel, as is the case with 

motion pictures, or a lower frame rate common to cartoon-like animations. 

1 The frame rate of an animation is the number of images which are shown per 
second. 
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Since it is possible for the texturaI characteristics of many real world objects 

to change over time, we are interested in how textured objects in an animation 

could also be made to change automatically. We would like this automatic texture 

transfonnation to be based on different texture samples in a time-dependant 

manner. 

This notion is a natural extension to the procedural texture matching 

technique discussed in chapter 4. Because the appearance of eachprocedural 

texture is dependant on a set of parameters, it should be possible to vary those 

parameters in order to achieve a suitable transformation. 

We seek a technique which allows the end user to specify the starting 

and ending textures of the transformation just as in the static case described 

previously. In addition, the user should be able to specify optional key-textures. 

We define key-textures analogously to key-frames: in the field of hand drawn 

animation, key-frames were the frames drawn by the senior animator, while the 

apprentice would fill in all the frames in between. In our application, key-textures 

are specified by the end-user, and our texture transformation technique fills in 

the remaining frames. These key-textures should be able to be placed arbitrarily 

between the starting and ending textures. 

The main goal of our procedural texture transformation technique is to vary 

a shader's parameters over time so that the perceived difference between adjacent 

texture samples is minimised. A framework for creating these kinds of smooth 

transitions in a controlled environment is desirable for graphical animators. An 

illustration our user interface for this task can be found in appendix A. 

5.1 Approach 

The initial step of our texture transformation algorithm consists of identifying 

the shaders (and parameters) needed to produce textures which are similar to the 
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texture samples given for the endpoints of the transformation. These are typically 

recovered from real or synthetic images using the texture matching approach 

described in chapter 4, although they can also be specified manually. 

The following temporal framework is desired: given a series of input textures 

T = {Tl, ... , Tn}, we wish to find a corresponding set of procedural shaders 

and their associated parameter vectors, PT = {Pl (Xl)' ... ,Pn(xn)} where 

Pl(Xl) ~ Tl,'" ,Pn(Xn) ~ Tn. Using these shaders Pi(Xi), we want to produce 

a continuously changing texture C(t), t E [0,1] such that C(O) = Pl(XI), and 

C(l) = Pn(xn). In addition, the remaining texture targets Ti E T - {Tl, Tn} 

should be used (in order) as key-textures. Finally, we want the transformation 

to be smooth, that is, the adjacent frames should be as similar as possible, so we 

therefore want to maximise S (C(t), C(t + !lt)) V tE [0,1). 

Transformation between two texture samples can be divided into three 

different cases: 

1. Transformation between samples within the same shader. 

2. Transformation between samples from two different shaders. 

3. Transformation between samples from two different shaders via other 

connective shaders. 

These will each be discussed separately below. 

5.2 Transformation Within a Shader 

In order to transform the appearance of a texture resulting from two different 

parameter vectors within the same shader, we again use a two-stage algorithm 

with sorne pre-computed data. Recall from chapter 4 that a fully connected graph 

is constructed during the creation of a catalogue of samples when a new shader is 

added to the library. In this graph, the vertices correspond to the samples from the 
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Figure 5-1: Shortest path calculated using the graph from the shader catalogue. 
The blue vertices represent the desired starting and ending parameter vectors. 
First the closest points in the graph (shown in red) are identified, and then a single 
source shortest paths algorithm finds the shortest path between these two points. 
This path is then refined as described below. 

catalogue, and the the similarity measure between those samples determines the 

edge weights. 

In the first stage of the transformation, we find the closest sample from the 

catalogue for the end-point parameter vectors as described in Sec. 4.3 above. 

We then compute a path between these two selected vertices using Dijkstra's 

algorithm as described below. This process is shown in Fig. 5-1. 

Dijkstra's algorithm is a single source shortest paths graph algorithm [28]. 

That is, an algorithm for finding the shortest path from a particular vertex in a 

graph to aU other vertices in the graph. This algorithm has the precondition that aU 

of the edge weights must be non-negative: e( Vi, Vj) ~ 0 V {Vi, Vj} EV. For the 

remainder of this section, we will "invert" our definition of the similarity measure 

for the sake of tradition and clarity and instead think of it as a distance: smaUer 

values imply that two textures are more similar (closer together), and larger values 

indicate that textures are more distinct (further apart). 
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Algorithm 3 Dijkstra's Shortest Path Aigorithm, based on the description in [25]. 
for each vertex v E V do 

d[v] ~ 00 

7l"[v] = nil 
end for 
d[s] ~ 0 
S~0 
Q~V 

while Q =1= 0 do 
Vi ~ Extract-Min(Q) 
S ~ SU{vd 
for each vertex Vj adjacent to Vi do 

if db] > d[i] + e( Vi, Vj) then 
db] ~ d[i] + e(vi' Vj) 

7l"[j] ~ i 
end if 

end for 
end while 

Dijkstra's algorithm a~gments the graph structure with two extra values: the 

distance from the CUITent vertex to the source (d[]), and the preceding vertex in the 

path from the source (7l"[]). The graph constructed by foIlowing the preceding ver­

tices aIl the way back to the source (from aIl vertices) is known as the predecessor 

subgraph which at the termination of the algorithm is in fact a spanning tree. 

As shown in Aig. 3, the algorithm first initialises aIl of the path distance 

values to infinity, the predecessor subgraph values to nil and the distance to the 

source s is set to O. Then aIl of the vertices are added to a priority queue Q which 

is keyed by their d[] values. The algorithm then iterates over aU of the vertices 

by removing the vertex i with the lowest distance to the source, and adding it to 

the set S which contains all of the vertices for which the shortest path has already 

been determined. The algorithm then proceeds to relax aIl of the edges connected 

to i (maintained in an adjacency representation). The relaxation step compares the 

CUITent distance estimate d[j] for each vertex Vj adjacent to Vi to see if it can be 
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Figure 5-2: An illustration of our path cost function, fier + ... + e~, which en­
courages longer, smoother paths for increasing values of n. For n = 1, the chosen 
path is {A, D, L}, n = 2 gives {A, E, C, F, E, L}, and n = 3 gives the ideal 
{A, E, C, F, E, H, l, J, M, N, Q, L}. These paths have edge weight averages of 5, 
2, and 1.8 respectively. 

improved by connecting directly to Vi. If so, the distance value and predecessor 

subgraph are updated for Vj to reflect the improved values. 

Upon termination, the shortest path from s to any vertex Vi can be determined 

by following the path backwards in the predecessor subgraph all the way to the 

source s. 

The path cost described so far is dependent on the edge weights, which, 

as we saw in chapter 4, are simply the similarity measures between the two 

textures corresponding to the vertices. However, using this path cost is perhaps 

not appropriate for the properties we seek for our transformation, namely that the 

transformation should be as smooth as possible. We have chosen to use a path cost 

function of fier + ... + e~ where ei is the distance measure of the ith edge of the 

path. This cost function provides finer control over the kinds of paths which are 

found. Consider the ex ample graph shown in Fig. 5-2. We wish to determine a 
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path between the starting vertex A and the ending vertex L. If we set n = 1, our 

cost function is Vei + ... + e}n or I:i ei. This standard path cost returns a path 

of {A, D, L}. This path has an average edge weight of 5, as weIl as a maximum 

edge weight of 5. A cursory inspection of the graph suggests we could find a 

smoother path, i.e. a path whieh does not contain any large steps between vertièes, 

even though it will be longer. For n = 2, we get a path of {A, B, C, F, E, L} 

whieh is slightly better: the average edge weight has dropped to 2, however, the 

largest edge has a weight of 6. For n = 3, the path is ideal for our purposes: 

{A, B, C, F, E, H, l, J, M, N, Q, L}. This path has an average edge weight of 

1.8, and a maximum edge weight of 3. As we can see, for increasing values of n 

our path co st function discourages large steps and thus promotes longer, smoother 

paths. 

AlI that remains to be shown is that our cost function can be computed 

incrementaIly, and can thus be used in Dijkstra's algorithm. Without loss of 

generality, we can use the standard cost function of I:i ei and simply raise 

the cost of each edge to the power of n. Alternatively, instead of computing 

d[j] = d[i] + e(vi' Vj), d[j] can be computed as 

(5.1) 

Although the path through the graph deterrnined above tries to take a series 

of small steps, the seIected path most likely will not exhibit the smoothness we 

are trying to achieve. To refine the path, the second stage of our transformation 

algorithm employs an adaptive linear subdivision technique2 • We want to locate 

the regions in the path where the inter-frame disparity is too high, and insert 

2 This is aIso a standard refinement strategy for path planning in the field of 
mobile roboties [50]. 
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Figure 5-3: An example of the adaptive linear subdivision technique. The se­
quence of subdivisions occurs from top to bottom, with the white vertices repre­
senting the midpoints which were added. This technique ensures that the shader 
is sampled more densely where it is changing, and less densely where it is more 
static. 

more samples in those regions. To accomplish this, we use the following rule: 

while the similarity measure between adjacent samples is less than a given 

threshold, another sample is inserted at the linear midpoint between the two 

samples in the shader's parameter space. This recursive solution has the effect 

of sampling more densely where the underlying parame ter changes affect more 

change in the appearance of the shader. In general, this method assures that no 

two adjacent samples will have a large perceptual disparity. An example of the 

linear subdivision is shown in Fig. 5-3. 

There is, of course, the possibility that with a particularly uncooperative 

shader, repeated bisection of the parameter values will not result in adjacent 

samples falling below the perceptual threshold. While this has not been the case 

with the shaders we have tested thus far, we describe a possible approach for this 

situation in chapter 6. 

With the framework developed so far, key-textures are easily specified. 

Recall that key-textures are specific frames that the transformation must contain. 

If it is desirable to use a particular parameter vector at sorne point for a shader 
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p(Xb) while evolving from p(xa) to p(Xc) (with the transformation being denoted 

by the symbol """'), the approach described above can be used to compute the paths 

from p(xa) .."... p(Xb), and from P(Xb) .."... p(xc ). These paths can then simply be 

concatenated. This process can be repeated for as many key-textures as necessary. 

5.3 Transformation Between Different Shaders 

The technique described in Sec. 5.2 is only well suited to transformations 

within a procedural shader since different shaders no longer share a common 

parameter domain. If we need to transform between distinct shaders, we must find 

sorne way of connecting the texture transformation, either directly between the 

two shaders, or possibly by determining a path through sorne other connective 

procedural textures. 

We will first consider the case of transforming directly between two distinct 

shaders. Since we have shown above how to transform within a single shader, 

what remains is to find suitable pairs of points (one in each shader) for which the 

shaders produce similar texture images. We refer to these transitional points as 

jump points since they determine good locations for switching or "jumping" from 

one shader to another. 

Once suitable jump points between the shaders associated with the starting 

and ending textures have been determined, we can use the technique described 

above to first transform each texture to its respective jump point. For example, 

to transform from the texture Pk(Xa) to a texture due to another shader Pl(Ya), 

we would first find the best jump point between Pk and Pz, that is, the point in 

each shader's parameter domain (Xj and Yj) which gives a maximum similarity 

measure S(Pk(X), pz(y)) V [x, y]. The paths from each shader to their respective 

jump point can then be concatenated: 

Pk(Xa) .."... Pk(Xj) PI(Yj)""'" PZ(Ya) (5.2) 
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Figure 5-4: Finding jump points between two shaders. The parameter domains of 
two different shaders are illustrated by the two boxes. The jump regions (shown 
in yellow) are are identified using a sparse sampling of each shader. The initial 
matching samples are shown in blue. The actual jump point is then found by per­
forming local optimisations in altemation to best match each point to the other. A 
path is then determined from the initial starting point (shown in green) to each of 
the jump points, and these paths are then concatenated. 

Since finding these jump points via exhaustive search is prohibitively 

costly, an approach similar to that described in Sec 4.2 can be used to reduce 

the computational burden. By adaptively sampling each shader sparsely, and 

comparing each sample to the (also sparse) samples of the other shader, the best 

candidate jump regions can be found. To narrow these regions to the actual jump 

points, local optimisations of the similarity between the current candidate and 

the candidate in the other shader's jump region are performed. This is repeated 

in altemation until the distance travelled during a step for each candidate is 

negligible (see Fig. 5-4). 

The transformation technique described so far chooses only a single jump 

point which maximises the similarity between two shaders. It is possible, 

however, that a better overall transformation exists which does not use this 

particular transitional point. Consider the case where the top two jump points 

have only slightly different similarities, but the lesser one (which would normal1y 

not be chosen) produces a smoother transformation within one or both of the 
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Figure 5-5: An example of a path through a connective shader. The transforma­
tion endpoints are shown in green, but unfortunately there are no suitable jump 
points between the shaders A and B. However, shader Chas goodjump points to 
both shaders, and is hence used as a connective shader. 

shaders, and hence a smoother transformation overall. We can therefore see 

that it would be better to consider the jump points as part of the path taken in 

the transformation. This can be accomplished by linking the graphs for the two 

shaders by adding edges between the vertices in each graph corresponding to the 

jump points, with the edge weights set to the similarity measure of the textures 

produced by each shader. The transformation path can then be found as outlined 

above with one exception: during the path smoothing phase, the adaptive linear 

subdivision can not be used on any edges corresponding to jump points since the 

parameter vectors for each vertex belong to different shaders. 

In the two shader transformation case, we have joined the connected 

components from the sample graphs of each shader using the appropriate jump 

points. Expanding on this notion, we can connect several different shader graphs 

to form a larger connected component, thus allowing the path found during the 

transformation to traverse other connective shaders as shown in Fig. 5-5. 
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In the case where the shaders have limited texture ranges, or share little 

resemblance, it is possible that the best jump points that connect them may not 

appear very similar. Various strategies for dealing with this situation are presented 

in chapter 6. 

5.4 Examples 

In this section we will demonstrate our method of creating texture transfor­

mations. We show examples of the three types of transformations described above 

in Sec. 5.l. 

Our first examples are from the case of transforming within a single shader. 

Figs. 5-6, 5-7 and 5-8 demonstrate how the transformation technique can be used 

to create smoothly varying intermediate texture frames. In each of these cases, the 

end point textures were manually specified, the paths were found using the graph 

search, and then refined using the adaptive linear subdivision methods described 

above. Each of these examples exhibits smoothly varying texturaI characteristics, 

as is desired for an effective texture transformation. 

We next show examples of the second type of texture transformation, namely, 

transformation between two different shaders. The first example, shown in Fig. 5-

9, is an illustration of transforming between two different types of brick shaders. 

The transitional point between the two shaders can be seen where the adjacent 

rows of bricks begin show two distinct colours as is the case with the second brick 

shader. 

The next two-shader transformation example, shown in Fig. 5-10, has its 

endpoints specified by two of the Brodatz texture matching examples shown in 

Figs. 4-17(a) and 4-17(c). In this case, the two textures for the transitional point 

have inverted intensities, however, their texturaI characteristics are very similar. 
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The last example of transforrning between two different shaders, shown in 

Fig. 5-11, uses the real world texture target images in Figs. 4-19( a) and 4-19( c) 

as the starting and ending frames. In this particular transformation, the best jump 

point between the cloud shader and the star field shader results from parameters 

which produce a simple coloured background. This is actually the best match 

from a perceptual viewpoint since clouds and stars are distinct textures. 

An example of a transformation using a connective shader is shown in 

Fig. 5-12. In this case, the desired transformation is between a small rectangle 

and a small circle, each produced by a different shader. For this transformation, 

there were no satisfactory jump points directly between the two shaders. However, 

a suitable path was found through a super-ellipse shader since for that shader 

there were good jump points to both the rectangle and circle shaders given that the 

super-ellipse shader is capable of producing images similar to both a square and a 

circle. 

All of the examples presented in this section exhibit the smooth perceptual 

transition desired for an effective texture transformation. The transformations 

which contained more than one shader also demonstrate very satisfactory 

transitional points. 
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Figure 5-6: An example of a texture transformation within a single shader. 
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Figure 5-7: Another single shader texture transformation. The texture has been 
applied to a sphere for the sake of illustration. 
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Figure 5-8: Another single shader texture transformation. The texture has been 
applied to a sphere for the sake of illustration. 
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Figure 5-9: A texture transformation between two different shaders. The transi­
tionai point is between the third and fourth frames of the fourth row. 
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Figure 5-10: Another texture transformation between two different shaders based 
on the Brodatz texture matches from Figs. 4-17(b) and 4-17(d). The transitional 
point is between the Iast frame of the second row and the first frame of the third 
row. In this case, the two textures for the transitionai point have inverted inten­
sities, however their texturaI characteristics under our similarity metric are very 
close. 
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Figure 5-11: A multi-shader transformation from the texture matches corre­
sponding to the real world images shown in Figs. 4-19(a) and 4-19(c). Sorne 
reproductions fail to show the detail in the frames containing the star field. Re­
fer to Fig. 6-1 to see an enlarged and intensity inverted version of the last three 
frames. 
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Figure 5-12: An example transformation which uses a connective shader. There 
were no satisfactory jump points from the rectangle shader to the circle shader, 
however, a suitable transformation was obtained by passing through a super­
ellipse shader. The transition from the rectangle to the super-ellipse occurs be­
tween the second and third images in the second row, and the transition from the 
super-ellipse to the circle occurs between the first two images in the fourth row. 
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CHAPTER6 

Conclusion 

I
N this thesis, we have presented a technique which allows one to replicate 

a texture sample procedurally by automatically selecting an appropriate 

procedural texture from a library. In addition, this technique refines the parameters 

for the selected procedural texture in order to best match the texture sample based 

on a perceptually motivated similarity measure. Our solution to this problem 

involves a two-stage approach, first performing a global search over pre-computed 

data, followed by a local search stage to refine the quality of the match. 

In order for the parameter estimation technique to succeed, the ensemble 

of procedural shaders must be large enough to approximate the specified texture 

target. If this is not the case, it will be detected by a large residual error in the 

similarity measure. In this thesis, we have shown several examples of texture 

matching using a wide variety of texture samples. 

Given the ability to find a procedural specification for a given texture, we 

then developed a method for creating texture transformations. These transforma-

tions are sequences of texture samples in which each adjacent texture is similar 

to its neighbours, yet an overall transformed appearance between the starting and 
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ending texture samples is created. This is accomplished by again making use of 

the pre-computed data from the texture matching stage, combined with a method 

for finding a path through the texture space of the procedural textures, as weIl as a 

technique for smoothing the selected path. 

When transformations are created which entail the use of several shaders, 

then transitional or jump points are needed in order to connect the paths from 

each individual procedural texture. It is possible, however, that even the best 

jump points between two shaders will exhibit an unsatisfactory disparity. In these 

cases it would be possible to use morphing techniques to smooth the transition 

through these non-idealjump points. One such method, due to Liu et al., involves 

morphing between two texture samples using a pattern-based approach [53]. 

Unfortunately, this method requires the end-user to manually specify many 

feature correspondence landmarks between the two textures in order to achieve an 

acceptable morpho 

The path planning process in texture space is based on graph search, and a 

perceptually motivated iterative subdivision procedure to refine the transforma­

tion. In sorne cases this adaptive linear subdivision may not succeed in bringing 

the similarity of adjacent texture samples above the given threshold, or we may 

wish to have more precise control over the sequence of textures. For example, we 

might want to avoid sorne types of appearance or shader parameter vectors while 

guaranteeing the texture evolves in a specific fashion. We are currently exploring 

the use of high-dimensional path planners to enable this type of control [47]. 

Another issue with the texture transformations is that sorne kinds of textures 

can exhibit spatial changes while maintaining perceptual similarity. In an 

animation, this can produce adjacent texture frames which appear to exhibit a 

fair amount of motion despite their perceptual similarity. Consider the case of 

a night sky procedural texture: while two samples of this texture could have 
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Figure 6-1: An example of adjacent texture frames which show little spatial co­
herence despite their perceptual similarity. This figure is a reproduction of the la st 
3 frames of Fig. 5-11, with the intensities inverted for the sake of c1arity. 

sirnilar distributions of bright stars, small stars, etc., placing two such textures 

next to each other in an animation would not exhibit the smoothness we seek. An 

example of this spatial instability can be seen in Fig. 6-1, which is an enlarged 

version of the last three frames from Fig. 5-11. Close examination of these three 

adjacent frames reveals that the stars are never in the same location. We are 

exploring the use of an augmented similarity measure which combines frequency 

selective content as well as spatially selective content to combat this problem. 

6.1 Future Work 

Currently, our system assumes that the target texture can in fact be approxi­

mated by at least one procedural texture in the given library. An extension would 

be to augment our system to be able to synthesise new procedural textures when 

no suitable matches are found. This could be accompli shed by measuring cer-

tain texturaI features, and reconstructing them by layering 'procedural building 

blocks'. These building blocks would be like texturaI 'DNA' which could be COffi­

bined, modified and selected using one of several search methods (ranging from 

Bayesian methods to genetic algorithms). This approach to texturing has been 

examined non-procedurally, but its application to procedural textures is promis­

ing [73, 83]. Because many different solutions would need to be evaluated, and 
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each solution would be independent, they could be evaluated in parallel thus pro­

viding a large computational gain. Our work in the area of cluster computing [12] 

combined with this new research direction could yield positive results. 

An alternative approach to synthesising new procedural textures would be 

to design meta-shaders based on CUITent pyramidal synthesis techniques. The 

parameters for these shaders would control various operations which could be 

performed at each level of the synthesis pyramid. We could even make use of the 

procedural building blocks described ab ove to specify the contents of each level of 

the pyramid independently, before collapsing the pyramid to determine the final 

texture. 

In this thesis we have presented two different approximations to the ideal 

similarity measure S* described in Sec. 4.5. Ongoing research on human texture 

perception will exp and our understanding of how we perceive textures, and thus 

provide better computational approximations for our framework. It may also be 

possible to devise a method for using multiple sirnilarity measures in concert to 

manage a combination of texturaI features. 

Currently the catalogue samples are all stored at a fixed resolution. In order 

to increase the speed of the texture comparisons during the global search, we 

could store each sample in an image pyramid which would allow the user to 

select lower resolutions for the similarity comparisons if desired. In addition, the 

Laplacian pyrarnid and power spectrum could also be stored in the image database 

to avoid computing them at run time. 

Our approach to texture matching could also potentially be used for texture 

classification. Recall from Sec. 4.5 that texture classification is the problem of 

identifying the class of which a given texture sample is a member. By creating 

procedural representations to model various texture classes specific to the domain 
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of the recognition task, one could then classify texture samples based on which 

pro ce duraI texture (model) provides the best match. 

This work also has potential applications for sound matching and synthesis. 

Many of the techniques already developed for procedural texturing might 

extend well to the acoustic domain. Similar to the texture domain, storing large 

collections of sound samples for various applications is not feasible given the 

amount of space which would be required for decent sampling rates (and hence 

audio quality). By applying our texture matching approach to the acoustic domain, 

procedural sound generators could be parameterised automatically to match 

given real-world sounds. In particular, we anticipate that sound matching based 

on spectrogram analysis will be a close fit to our CUITent perceptually motivated 

search technique. 

Once generic sounds can be replaced by small procedural sound generators, 

including the latter in an augmented three-dimensional model becomes a realistic 

goal. This would enable the rendering of a sound track for a scene using pro­

cedural sound generation based on the interaction of objects and their material 

properties as they are animated either directly (eg., live, under user control as in a 

virtual reality environment) or indirectly (eg., pre-planned as in a motion picture). 

This line of research would be a natural extension to work done by Dobashi et 

al. [30]. In addition, other attributes of the objects in a scene could be modelled, 

such as ageing through procedural texture transformation. 

The approach described above could also be applied to procedural animation 

- a technique which allows one to model complex motion behaviours by speci­

fying a set of constraints (eg., permissible joint angles in the human body), and 

generation patterns (eg., walking gaits). The framework for matching real-world 

signaIs to procedural approximations could be use fuI for extracting behaviours 
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from motion capture data, thus allowing a graphie artist more control when select­

ing and tuning the behaviours of digital actors. The compact representation gained 

by a procedural model is particularly useful in the gaming industry where rapid 

scene generation is essential in order to release a competitive product. 

The work presented in this thesis may also be loosely applicable to other 

domains, an example of which is the field of proteomics. Proteomics is the study 

of the structure and function of proteins. One branch of proteomies, namely 

protein sequence analysis, seeks to discover evolutionary relationships of proteins 

and it is possible that our high-dimensional transformation framework could be 

used to find protein sequences, or be used to classify pre-existing sequences. 

Overall, the auto matie selection and synthesis of procedural textures, 

texture transformations, models, sounds, and animations exhibits vast research 

potential in the field of computer graphies. Eventually, it will be possible to 

render complete procedurally-specified environments in real time, allowing 

unprecedented complexity and realism thus opening new avenues for computer 

generated imagery. 
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APPENDIXA 

Software Architecture 

A.1 System Design 

The software architecture design created in order to perform the texture 

matching and transformation discussed in this the sis contains many abstract 

elements, and as such can be used for a number of different combinations of 

computational problems involving search in high dimensional spaces. 

Because procedural textures can come in several forms, and can be tied 

to specific renderers, we have designed a flexible texture class hierarchy as is 

illustrated using the unified modelling language (UML) [11] in Fig. A-l. Each 

texture object contains a renderer object, as weIl as a 'parameters' object. The 

renderer class is an abstract class from which specifie renderer classes are derived 

and is itself derived from the threaded class to allow the rendering to be performed 

in paraUe1. The 'parameters' object can be used to describe an arbitrary collection 

of parameters as it is composed of individual objects of the parameter template 

c1ass. The fact that the parameter class is templated allows our method to search 

over any type of parame ter as long as basic ordering operations are defined for the 

given type. 
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1 Texture Builder ~ - - - - Texture 

~+r:en~de:r:er----~~--~ 
+parameters 

+render (): image 

Parameters • - - - - -. 
t;~~j<:>1."-"::"'---{ T:doubl': l 
~arameters 1 .. * Parameter 
+get (name) 

+siz€ () 
+get (l 

+set () 

+min (l 

+max() 

Figure A-l: The class hierarchy for the texture class. 

For this work we have used renderers which support the RenderMan® shad­

ing language (RSL), with scenes specified using the RenderMan® interface 

byte stream (RIB). Therefore each of the concrete rendering classes rnake use 

of a rib object for specifying scene files, and a shading object which interacts 

directly with the shading language file for the particular shader being used. The 

two renderers we have used are Aqsis, and Blue Moon Rendering Tools (BMRT), 

each of which is a free irnplernentation of of the RenderMan® specification. This 

design will allow for easy expansion in order to use other renderers which rnay 

have their own shading language, or to even take advantage of sorne of the newer 

hardware shading languages. 

Each texture object is cornposed of several parts requiring initialisation, so 

we therefore use the builder creational pattern for the texture builder class [35]. 

As can be se en in the class hierarchy shown in Fig. A-l, the texture class is 

derived frorn a searchable abstract class. This design allows us to apply our 

pararneter sarnpling and searching algorithrns to other application dornains, an 

exarnple of which is discussed in chapter 6. 
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.-----'-1---.,; '-i;:a;e ~ 
1 Band Pass pyramid -,-

I+operator (lhs: T, rhs :T) 1 

I+operator (lhs: T, rhs :T) 1 

~T~i~~:: 
....--_---'-----' T: sound 1 

1 Metric ---T 
l+operator(lhS:T,rhS:T) 1 

.- - - --
1
.---_----'-----....: '...",!a~e~ 

Fourier 1 

l+operator(lhS:T,rhS:T) 1 

....--_--'-J----...I-;:-S;U~d~ 
'- Spectrogram - - -~ ,-
l+operator(lhs:T,rhS:T) 1 

Figure A-2: The class hierarchy for the metric class. 

For texture matching, the sampling of each shader is accomplished using a 

design based on the abstract factory creational pattern, and the global search uses 

the visitor behavioural pattern to locate the promising regions for search. An of 

the user specified settings are stored in a preferences class based on the singleton 

pattern. 

The similarity measure classes are derived from the metric abstract class, 

which is itself derived from the C++ Standard Template Library's "binary 

function" template class (see Fig. A-2). We can therefore easily plug in different 

similarity measures which simplifies extensions to other domains as illustrated by 

the spectrogram class for sound comparison. 

Many of the algorithms presented in this thesis exhibit characteristics 

which enable them to be executed concurrently. This presents a problem of 

communicating between the various working units. We have implemented a 

message class which allows objects to communicate using messages formatted in 

the extensible markup language (XML). We use XML for our message passing so 

that we can support future changes withoutmodifying the current implementation. 

The use of XML also simplifies debugging new features as one can easily 

interpret the messages being passed back and forth. 
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The message class can be used both to communicate between threads on the 

same processing unit, as well as to communicate between processes running in 

a distributed environment. For the distributed case, our message class uses the 

MPICH implementation of the Message Passing Interface (MPI) standard [37]. 

A.2 Graphical User Interface 

In order to make the capabilities of this work readily accessible to naïve 

users, we have also developed a complete graphical user interface (GUI). This 

interface, examples of which are shown in Figs. A-3 and A-4, has a main 

view which provides simple access to aIl the pertinent information concerning 

the current texture match. The shader view, shown in Fig. A-3(a), contains a 

list of an the shaders currently in the library. Double clicking on a particular 

shader in the list presents the parameter view dialog to the end-user, allowing 

them to manipulate the range of each of the parameters, as weIl as to choose 

which parameters will be active during the se arch (see Fig. A-3(b)). Many 

shaders contain parameters which do not affect the texturaI characteristics of the 

rendered images, such as ambient, diffuse, and specular lighting constants used 

in the illumination model. The dimensionality of the search can be therefore be 

reduced by disabling these particular parameters. Any parameters which have 

been disabled will automatically be set to their default values as specified in the 

parameter view dialog. 

The search criteria can also be specified using the GUrs search view 

illustrated in Fig. A-4(b). In this view, the end-user is able to specify which 

similarity measure to use, as weIl as which local optimisation technique should 

be employed. This view also allows for the specification of several settings 

relevant to the chosen search technique. Each application dialog is pre-filled 

with reasonable defaults so that a novice user can simply point and click, yet 
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the inforrned user is afforded the ability to tune the search settings if desired. 

Finally, an example of the dialogs for rendering the sample catalogues are shown 

in Figs. A-4(c) and A-4(d). 

It can be noted that, through the use of sophisticated abstract design tools 

as described above, our system is able to exhibit a great degree of flexibility and 

reconfigurability. It is this flexibility that allows our architecture to readily support 

both the texture matching and transformation presented in this thesis, as well as 

our preliminary work on acoustic signal processing. 
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Figure A-3: Two exarnple screen shots of the texture rnatching application. The 
shader list view is shown in (a), and the pararneter view dialog shown in (b) is 
displayed when the user double clicks on a shader in the list. 
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(a) 

(b) 

(c) (d) 

Figure A--4: More screen shots of the texture matching application. The search 
view, shown in (a), reflects the texture target as well as the CUITent texture sample 
being considered. The search parameters dialog is shown in (b) and the dialogs for 
rendering new catalogues are shown in (c) and (d). 
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APPENDIXB 

Shading Language Code Example 1 

Below is the shading language code for the match found in Fig. 4-18(b). This 

shader was written by F. Kenton Musgrave. 

The parameter values for the match were set as follows: 

• Ka: 0.5 

• Kd: 0.75 

• maxJadius: 2.28518 

• twist: 0.0928873 

• scale: 0.956974 

• offset: 0.748854 

• omega: 0.968523 

• octaves: 6.388 

1* 

* cyclone.sl - surface for a semi-opaque cloud layer to be put on an 

* earth-like planetary model to model clouds and a cyclone. 

* 
* AUIROR: Ken Musgrave 

* 
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#define TWOPI (2*PI) 

/* Use signed Perl in noise */ 

#define snoise (x) «2*noise (x» -1) 

#define DNoise (p) (2* (point noise (p» - point (l, l, 1» 

#define VLNoise(Pt,scale) (snoise(DNoise(Pt)+(scale*Pt») 

#define VERY_SMALL 0.001 

surface 

KMCyclone (float Ka 0.5, 

float Kd = 0.75; 

float max_radius = 2.28518; 

float twist 

float scale 

0.0928873; 

0.956974, 

float offset = 0.748854; 

float omega = 0.968523; 

float octaves = 6.388;) 

floàt radius, dist, angle, sine, 

point pt; 

point PN; 

point pp; 

float l, 0, a, i; 

Pt transform ("shader", Pli 

PN = normalize (Pt); 

cosine, eye_weight, value; 

radius = sqrt (xcomp(PN)*xcomp(PN) + ycomp(PN)*ycomp(PN»; 

if (radius < max_radius) { 

dist = pow (max_radius - radius, 3); 

angle = PI + twist * TWOPI * (max_radius-dist) / max_radius; 

sine = sin (angle); 

cosine = cos (angle); 

PP = point (xcomp(Pt)*cosine - ycomp(Pt)*sine, 

xcomp(Pt)*sine + ycomp(Pt)*cosine, 

zcomp (Pt»; 

if (radius < 0.05*max_radius) { 
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eye_weight 

eye_weight 

(.l*max_radius - radius) * 10; 

pow (1 - eye_weight, 4); 

else eye_weight 1; 

el se pp Pt; 

if (eye_weight > 0) 

1 ; 1; 0; 1; a; 0; 

for (i ; 0; i < octaves && 0 >; VERY_SMALL; i +; 1) 

a +; 0 * VLNoise (PP * l, 1); 

l *; 2; 

o *; omega; 

value abs (eye_weight * (offset + scale * a)); 

el se value 0; 

Oi value * Os; 

Ci Oi * (Ka * ambient() + Kd * diffuse(faceforward(normalize(N),I))); 
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APPENDIXC 

Shading Language Code Example 2 

Below is the shading language code for the match found in Fig. 4-18(d). This 

shader was written by Larry Gritz. 

The parameter values for the match were set as follows: 

• Ka: 0.75 

• Kd: 0.75 

• Ks: 0.4 

• roughness: 0.1 

• specularcolor = 1 

• iriscolor: color (0.135289, 0.084323, 0.372417) 

• irisoutercolor: color (0.403882, 0.343944, 0.68276) 

• irisinnercolor: color (0.065142, 0.040605, 0.179311) 

• eyeballcolor: color(1, 1,1) 

• bloodcolor: color(O,O,O) 

• pupilcolor: 0 

• pupilsize: 0.0 

• irissize: 0.0 
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• bloodshot: 0.997141 

• veinfreq: 3.54332 

• veinlevel = 7.549 

• index: 0 

1* 

* eyeball.sl -- RenderMan compatible shader for an eyeball. 

* 
* AUTHOR: written by Larry Gritz 

* 

surface 

LGEyeBall (float Ka = .75, Kd 

color specularcolor = 1; 

0.75, Ks 0.4, roughness 

color iriscolor = color (.135289, .084323, .372417); 

color irisoutercolor color (.403882, .343944, .68276); 

color irisinnercolor color (.065142, .040605, .179311); 

color eyeballcolor color(l,l,l); 

color bloodcolor 

color pupilcolor 

float pupilsize 

float bloodshot 

color(O,O,O); 

0; 

0.0, irissize 

0.997141; 

0.0; 

float veinfreq = 3.54332, veinlevel 

float index = 0; 

#define snoise(P) (2*noise(P)-1) 

#define MINFILTERWIDTH 1.0e-7 

color Ct; 

point Nf; 

point PP, PO; 

float i, turb, newturb, freq, 

float displayed, newdisp; 

color Cba1l, Ciris; 

float irisstat, pupilstat; 

float bloody, tt; 

float ks, rough; 

float twidth, cutoff; 

f2; 

7.549; 
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twidth = max (abs(Du(t)*du) + abs(Dv(t)*dv), MINFILTERWIDTH); 

PO = transform ("object", P) + index; 

tt = l-t; 

irisstat = smoothstep (irissize, irissize+twidth, tt); 

pupilstat = smoothstep (pupilsize, pupilsize+twidth, tt); 

bloody = bloodshot * (smoothstep (-irissize, 2.5*irissize, tt)); 

if (irisstat * bloody > 0.001) { 

turb = bloody; freq = veinfreq; 

displayed = 0; 

for (i = 1; (i<=veinlevel) && (turb> 0.1); i+=l) 

newturb 1 - abs (snoise(PO*freq + point(0,0,20*freq))); 

newdisp pow (smoothstep (.85, l, newturb), 10); 

displayed += (l-displayed) * newdisp * smoothstep (.1, .85, turb * turb); 

turb *= newturb; 

freq *= 2; 

Cball mix (eyeballcolor, bloodcolor, smoothstep(O, .75,displayed)); 

else Cball eyeballcolor; 

Ciris mix (iriscolor, irisoutercolor, smoothstep (irissize*.8, irissize, tt)); 

if (irisstat < 0.9999 && pupilstat > 0.0001) { 

turb = 0; freq = 1; f2 = 30; 

for (i = 1; i <= 4; i += 1) { 

turb += snoise (PO*f2 + point(0,0,20*f2)) / freq; 

freq *= 2; f2 *= 2· , 

Ciris *= (1-clamp(turb/2,0,1)); 

Ct mix (Ciris, Cball, irisstat); 

Ct mix (pupilcolor, Ct, pupilstat); 

ks = Ks * (1+2*(1-irisstat)); 

rough = roughness * (1-.75* (l-irisstat)); 

Oi Os; 

126 



Nf faceforward (normalize(N),I); 

Ci Os * ( Ct * (Ka*ambient() + Kd*diffuse(Nf)) + 

specularcolor * ks*specular(Nf,-normalize(I),rough)); 
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