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We are drowning in information
and starving for knowledge.
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Abstract

Manually transcribing guitar tablature from an audio recording is a difficult and time-
consuming process, even for experienced guitarists. While several algorithms have been
developed to automatically extract the notes occurring in an audio recording, and several
algorithms have been developed to produce guitar tablature arrangements of notes occur-
ring in a music score, no frameworks have been developed to facilitate the combination of
these algorithms. This work presents a web-based guitar tablature transcription framework
capable of generating guitar tablature arrangements directly from an audio recording.
The implemented transcription framework, entitled Robotaba, facilitates the creation
of web applications in which polyphonic transcription and guitar tablature arrangement
algorithms can be embedded. Such a web application is implemented, resulting in a unified
system that is capable of transcribing guitar tablature from a digital audio recording and
displaying the resulting tablature in the web browser. The performance of the implemented
polyphonic transcription and guitar tablature arrangement algorithms are evaluated using

several metrics on a new dataset of manual transcriptions gathered from tablature websites.
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Résumé

Transcrire a la main une tablature pour guitare a partir d'un enregistrement audio est
un processus difficile et long, méme pour les guitaristes chevronnés. Bien que plusieurs
algorithmes aient été créés pour extraire automatiquement les notes d’un enregistrement
audio, et d’autres pour préparer des arrangements de notes de tablature pour guitare tels
qu’on les retrouve dans la création musicale, aucun environnement n’a été mise en place
pour faciliter I'association de ces algorithmes. Le travail qui suit présente un environnement
accessible sur I'Internet, permettant la transcription et la préparation d’arrangements de
tablatures de guitare, directement a partir d’'un enregistrement audio.

Cet environnement de transcription, nommeée Robotaba, facilite la création d’applications
Web, dans lesquelles la transcription polyphonique et les algorithmes d’arrangements de
tablature pour guitare peuvent étre intégrés. Une telle application Web permet d’obtenir un
systeme unifié, capable de transcrire une tablature pour guitare a partir d’un enregistrement
audio numérique, et d’afficher la tablature obtenue dans un navigateur Web. La perfor-
mance de la transcription polyphonique mise en place et des algorithmes d’arrangements de
tablature pour guitare est évaluée a I’aide de plusieurs parametres et d’'un nouvel ensemble
de données, constitué de transcriptions manuelles recueillies dans des sites Web consacrés

aux tablatures.
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Chapter 1
Introduction

ABLATURE, or less formally, “tabs”, have become the primary form of communication
between guitarists on the Internet. Tablature is an unstandardized music notation sys-
tem that defines gestural information and operations to be applied to a specific instrument,
such as “depress the fourth fret on the fifth string from the bottom and pluck”. Symbols
in tablature indicate the instrument fingering required to produce a specific pitch. In this
way, pitch information is represented implicitly rather than explicitly. Rhythmic informa-
tion may be conveyed through the relative spacing of musical symbols, through specialized
glyphs above the staff, or not at all. This differs from common Western music notation
where standardized musical symbols convey both pitch and rhythm information explicitly,
but the details of how to perform the musical score on an instrument is left to the musician.
Tablature notation is a symbolic representation of instrument commands that is frequently
used on the Internet.
The driving force behind the popularity of tablature is that the notation is accessible to
a large body of people. This is true both physically, in the sense that tablature is readily
available online, but also intellectually, in the sense that the notation system is easy to
understand, decipher, and translate into an instrumental performance. The transcription
of music in tablature format has enabled members of the musical community who are not
fluent readers or writers of common Western music notation to perform and share their
interpretations of a musical work. The ease of access of tablature notation has contributed

to its popularity in the musical community.



2 Introduction

On the Internet, guitar pieces are frequently displayed in tablature notation. Guitar
tablature is a music notation system with a six-line staff that represents the strings on a
guitar. A numeric entry on a line represents the fret to depress on a particular string. In
order to share tablature on a website, guitarists must manually input fret numbers into the
computer for each note in the musical work. If the tablature to perform a song is unknown,
the guitarist must first perform the task of manual transcription. This task is accomplished
by estimating the pitches of notes in a guitar recording, either by ear or with the aid of
audio analysis tools such as Transcribefl] The guitarist must then choose from a set of
candidate string and fret combinations for each note to produce a tablature arrangement.
Manual transcription is a difficult and laborious task even for experienced guitarists.

Researchers in the field of music information retrieval (MIR])—a multi-disciplinary field
combining Electrical Engineering, Computing Science, and Music—aim to automate the
task of manual tablature transcription. To this end, several algorithms have been proposed
to accomplish the task of polyphonic transcription, which seeks to estimate the note events
occurring in an audio recording. Although the automatic transcription of monophonic (one
note at a time) musical passages is considered a solved problem (Benetos et al. 2012),
polyphonic (multiple notes at the same time) transcription is still an open problem. As
well, several algorithms have been proposed to accomplish the task of guitar tablature ar-
rangement, which seeks to assign a string and fret combination to each note in a musical
score such that the resulting tablature arrangement is easy for a human to perform. How-
ever, there is a gap in the current body of research for which no bridge has been built:
there does not exist any tools to facilitate the combination of polyphonic transcription and
guitar tablature arrangement algorithms to automatically generate tablature from a guitar
recording. The work presented in this thesis addresses this discontinuity.

This chapter will begin by introducing and describing the history of tablature notation.
Section will provide an overview of the work entailed in this thesis, followed by an
outline of the structure of this thesis in Section [L.3l

1.1 Evolution of Tablature

Many music notation systems have been proposed over the centuries. Early notation sys-

tems have evolved into their modern counterparts through the process of natural selection—

"http://www.seventhstring.com/xscribe
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the systematic variation and combination of desirable properties of existing notation sys-
tems. For example, modern staff notation in Western culture evolved from staffless neume
notation (Figure in the ninth century. In this system of notation, a neume represents
the pitch contour of a vocal melody spanning a single syllable of chant. Four-line staves and
clefs were later introduced in square-note notation (Figure , which became five lines
in the sixteenth century, and eventually evolved into the modern Western music notation
used today (Figure . Tablature notation also has a large evolutionary tree, with

many variations in syntax and intended meaning.

T .'/V/~/,;://7 _“/ s _“J':"‘/.: .'/:’//T-' AT et T _‘“/.,}'
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(a) System of music in staffless neume notation from the Antiphonarium Officii (Carolingian 990))
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(b) System of music in square-note notation from the Liber Usualis (Catholic Church 1963])
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(c) Staves of music in modern staff notation from BWV 1067 (Bach 1885)).

Fig. 1.1: The evolution of common Western music notation.

1.1.1 History of Tablature

The word tablature originates from the Latin word tabula, referring to a writing tablet.
In the modern English language, the word tabulate is a verb describing the act of noting
a record in a table. This relates to the act of transcribing tablature for plucked string

instruments, where a system of tablature resembles numeric entries in a table.

2http://imslp.org/wiki/Orchestral Suite No.2 in B minor, BWV_1067_(Bach,
_Johann_Sebastian)
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4 Introduction

Since tablature notation defines operations to be applied to a specific instrument to
produce sound, it follows that there are different notations for different instruments. Tab-
lature is classified according to the instrument to which it belongs, and further, the nation
of the tablature’s origin (Apel 1953). For example, tablature may be referred to as French
lute tablature, German organ tablature, and so on. Tablature is most common for stringed
instruments such as the bass guitar, electric or acoustic guitar, lute, vihuela, cittern, and
harp. In the case of stringed instruments with frets, the tablature notation consists of
systems of lines that correspond to the courses (groupings) of strings on the instrument, as
well as numerical entries on the lines which denote the fret to depress on a specific string.
An example of vihuela tablature can be seen in Figure . Tablature also exists for wind
instruments such as the ocarina and harmonica, where diagrams or symbols show which
air holes are to be open and closed. Figure displays an example of an ocarina tablature
of the melody “Serenade of Water” from the video game The Legend of Zelda: Ocarina of
TimeE| Theoretically, any instrument where the operations required to play the instrument

can be discretely defined and represented symbolically can have a tablature notation.

TR, o
e R T E

Fig. 1.2: Ocarina tablature of the melody “Serenade of Water” from the video game The
Legend of Zelda: Ocarina of Time.
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Just as common music notation evolved from early music notation systems such as
neume and mensural notation, modern tablature notation for stringed instruments also
evolved from early tablature notation systems dating back to the Middle Ages. In the
Renaissance, there were two main variations of tablature notation: Spanish and Italian
tablature, and French tablature (Turnbull 1991). Spanish and Italian tablature used num-
bers to specify which frets to depress. The top line of the staff represented the lowest
pitched course of strings on the instrument. An example of Spanish tablature can be seen
in Figure . French tablature notation used letters of the alphabet to indicate which

3http://ocarina-tabs.com/2011/11/30/brendoges-collection-zelda-ocarina-of-time
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fret to depress. The letter ‘a’ represents an open string, ‘b’ indicates a depression of the
first fret, and so forth. In contrast to Spanish and Italian tablature, the top line of the
staff represented the highest pitched course of strings on the instrument. In the case of
instruments with courses of unfretted strings, a pluck of an unfretted course is denoted by
a sequence of forward slashesﬁ To demonstrate, ¢/’ denotes a pluck of the first unfretted
course, ‘//’ is the second unfretted course, and so on. A system of French tablature can
be seen in Figure [[.3(b)] In both of these examples of tablature, rhythmic information is
displayed above the system in mensural notation.

Modern tablature notation for guitar, as seen in Figure inherited features of both
Spanish and Italian tablature, and French tablature. From Spanish and Italian tablature,
modern tablature notation uses numbers to denote which frets to depress, but has a similar
orientation to that of French tablature, where the top line of the system represents the
highest pitched string. Symbols may appear before, after, or between numbers to indicate
a range of note ornamentations such as vibrato, pitch bends, and slides. Since these symbols
are unstandardized, tablature websites and books usually provide a legend for the intended
meaning of printed symbols. A list of commonly used guitar tablature symbols can be seen
in Table [[.I] In contrast to its notational predecessors, modern tablature notation does
not typically display rhythmic information above the staff; though, some forms of modern
tablature use the relative spacing between symbols to hint at the strumming or plucking

pattern.

Table 1.1: Commonly used guitar tablature symbols.

INSTRUMENT OPERATION SYMBOL ALTERNATE SYMBOL

slide up

slide down
hammer-on
pull-off

vibrato
mute/dead note
bend /release

DX 8 ) ) ®w o

4The lute is an example of an instrument that may have both fretted and unfretted courses of strings.
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Fig. 1.3: The evolution of tablature notation.

Modern tablature for stringed instruments with frets may also be displayed in the form
of chord diagrams, which can be thought of as a matrix of boolean values. The rows of the
matrix represent the frets of the instrument and the columns of the matrix represent the
strings of the instrument. Entry 4, j in the matrix represents a depression of the ;' string
above the i fret. For the guitar, chord diagrams typically display the first few frets on
the fretboard, as seen in Figure [1.4]

1.1.2 Tablature Versus Common Western Music Notation

Tablature notation, although widely used, is not meant to replace standardized music

notation systems, but rather pose as an alternative representation that is lightweight and
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Fig. 1.4: Chord diagrams of a C-Major, D-Major, E-Major, and G-Major guitar chord
(from left to right).

easily comprehensible. There are many advantages to a notation system of this nature.
Tablature notation provides the sequence of operations required to perform a piece of
music on a specific instrument, whereas common Western music notation requires the
musician to decide how to interact with their instrument to perform a piece of music.
Consequently, tablature notation has a lower barrier to entry than common Western music
notation. Tablature notation is minimal by design, and therefore requires minimal training
to comprehend and minimal time to write. Conversely, common Western music notation
requires years of training to achieve a similar level of expertise. In comparison to common
Western music notation, tablature has a visual representation which is closer to that of the
intended performance instrument. For example, a system of guitar tablature is made to
resemble the fretboard of a guitar. Finally, guitar tablature can be represented in plain
text format for simple display in the web browser. Tablatures in this format are commonly
referred to as ‘{ASCII| tabs” because they consist of a sequence of characters. An
example of an guitar tab can be seen in Figure

There are also drawbacks of representing a music score in tablature notation. Most
significantly, modern tablature notation provides reduced, or no rhythm information to the
musician. Although the explicit description of instrument operations provides more infor-
mation than common Western music notation, it may suppress the style of the musician
who may have different views on how the piece should be performed. Furthermore, the
language and analytical tools of music theory revolve around common Western music nota-
tion, not tablature notation. Despite its weaknesses, tablature notation has many strengths

that have contributed to its popularity in the musical community.

Shttp://tabs.ultimate-guitar.com/j/jimmy_eat_world/23_tab.htm
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Fig. 1.5: A segment of guitar tablature in [ASCII| format from the song “23” by Jimmy
Eat World.

1.1.3 Tablature Websites

As the Internet became accessible to a large body of musicians, many websites emerged
where tablature could be uploaded, displayed, and peer-reviewed. Ultimate Guitar is a
popular website which hosts guitar, bass guitar, and drum tabs.ﬂ The tablature may
be viewed in the web browser as tabs or within Tab Pro—a proprietary Adobe
Flash web application which renders tablature in the web browser and provides multi-track
audio playback of tablature using synthesized instruments. Some tablature uploaded to
Ultimate Guitar is available for download as a Guitar Pro file. Guitar Pro is a proprietary
desktop application which allows multi-track tablature viewing, editing, and synthesis of
a wide variety of stringed and percussive instruments.m Other popular tablature websites
and search engines include Songsterrf, 911tabs’, Chordid™, and Guitare TalfT] Website
analytics for each of these sites over the past year are compared in Figure [1.6| using the
metric of unique visitors from the United States per month. This information was compiled
from the public analytics data from Compete.E

With the large database of transcriptions available on these tablature web sites, evalu-
ating the quality of each tablature is important for ordering query results and moderating

tablature uploads. Ultimate Guitar has a five-star rating system in which different tabla-

Shttp://www.ultimate-guitar.com
Thttp://www.guitar-pro.com
8http://www.songsterr.com
Inttp://www.9lltabs.com
Ohttp://www.chordie.com
Hhttp://www.guitaretab.com
2nttp://www.compete.com/us
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Fig. 1.6: Unique visitors, with a United States IP address, per month to various tablature
websites.

ture arrangements of a piece of music can be rated by users according to its correctness

and formatting.

1.1.4 Tablature Engraving Online

Since the inception of tablature notation, the process of manually transcribing tablature
from an audio recording or live performance has only changed in the method of musical
engraving. In the Renaissance, tablature was handwritten using ink and parchment. Before
the introduction of personal computers, music engraving involved physically etching musical
symbols into metal plates, which were then covered in ink and imprinted onto paper using
a printing press. In the modern digital age, the term music engraving now refers to the
typesetting and display of musical symbols on the computer. In order to differentiate music
engraving on the computer from the archaic method of music engraving using metal plates,

the term digital music engraving will hereinafter refer to music engraving on the computer.
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There are several methods of digitally engraving tablature in the web browser. The most
simplistic method involves displaying tablature as plain text in the web browser, as shown
in Figure[1.5] More sophisticated digital music engraving methods render musical symbols
on a digital drawing surface such as the hypertext markup language (HTMLI) canvas or use
alternate multimedia web technologies such as Adobe Flash to display musical symbols.
Another method of digital music engraving in the web browser involves defining the shape
and position of musical symbols on the page as scalable vector graphics (SVGE), which
describe images as a set of lines, curves, and transformations.

Several tools exist to reduce the amount of time required by users to digitally engrave
tablature in the web browser. The method of digital music engraving governs the user
input required to display the tablature. Displaying the tablature as plain text requires the
author to input an character for each tablature symbol. To counteract this time-
consuming process, some tablature websites such as Ultimate Guitar provide an tab
template file that is filled with empty systems of tablature. With this template, the author
can focus on the symbolic content of the tablature instead of on tablature formatting.
Another tool to facilitate tablature entry is the desktop application Guitar Pro. Guitar
Pro provides a graphical interface where the user can enter tablature symbols and export
the tablature arrangement to various formats, including plain text format, which can then
be displayed in the web browser. To render tablature symbols using the [HI'ML|canvas or as
[SVGE, there exist several digital music engraving libraries such as Vez T abﬁ and AlphaT. ab@,
which perform the low-level drawing commands to produce an aesthetically pleasing digital
tablature engraving. These libraries require the user to input a list of formatted keywords
and numbers that describe the tablature to be displayed. Although tools exist to reduce the
amount of time required for digital tablature engraving, the process of manual tablature

entry is still a tedious and demanding process.

1.2 Project Overview

In response to the time-consuming process of manual transcription, this thesis will focus on
automating the task of guitar tablature transcription to facilitate tablature entry online.

The objective of this thesis is to review state-of-the-art algorithms for polyphonic transcrip-

Bhnttp://www.vexflow.com/vextab
Ynttp://www.alphatab.net
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tion and guitar tablature arrangement and to develop a unifying web-based framework that
facilitates the combination of these algorithms. A state-of-the-art polyphonic transcription
algorithm (Zhou and Reiss 2008) has been implemented along with a new guitar tablature
arrangement algorithm that generates instrument-specific tablature arrangements. The
web-based guitar tablature transcription framework, hereinafter referred to as Robotaba,
is used to create a web application that combines the implemented algorithms to auto-
matically perform tablature transcriptions of guitar recordings and display the resulting
tablature in the web browser. The implemented web application will provide a novel and
accessible tool for guitarists and a centralized repository of guitar tablature transcriptions
for music researchers.

A formal assessment of the implemented guitar tablature transcription web application
is performed by evaluating the implemented polyphonic transcription and guitar tablature
arrangement algorithms independently. A new ground-truth dataset consisting of synthe-
sized guitar recordings that are each aligned with the correct polyphonic transcription of
the recording has been compiled to evaluate the implemented polyphonic transcription al-
gorithm. Additionally, a new ground-truth dataset consisting of human-arranged guitar
tablature has been compiled to evaluate the implemented guitar tablature arrangement

algorithm.

1.3 Thesis Organization

This thesis is organized as follows: the next chapter provides a literature review of poly-
phonic transcription algorithms, guitar tablature arrangement algorithms, and also reviews
commercial guitar tablature transcription systems. Chapter 3 presents the design of the
web-based guitar tablature transcription framework Robotaba and describes the imple-
mented polyphonic transcription and guitar tablature arrangement algorithms. Chapter 4
presents the compiled ground-truth datasets and describes the methodology for evaluating
the output of the implemented polyphonic transcription and guitar tablature arrangement
algorithms. The results of this evaluation are presented and discussed in Chapter 5. The

work is concluded in Chapter 6.
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Chapter 2
Literature Review

HE TASK OF AUTOMATIC GUITAR TABLATURE TRANSCRIPTION can be described as
Ta function f that takes an audio signal x as input and outputs guitar tablature y.
This function can be decomposed into two composite functions: a polyphonic transcription
function g and a guitar tablature arrangement function h, such that h(g(z)) = y (Fig-
ure . The polyphonic transcription function takes an audio signal as input and outputs
a sequence of note events z. Each note event has a pitch, an onset time, and a duration.
The guitar tablature arrangement function takes a sequence of note events as input and

outputs a string and fret combination for each note in the input sequence.

S y
(" N\ e|--——-—- |
f(x) B|---0---
Automatic Guitar Tablature Transcription (; l o }
A|-2-m—mm |
5(2) Si—
E—— z
Audio > &(x) Z Guitar Tablature Tablature
Polyphonic Transcription Notes Arrangement
\_ /

Fig. 2.1: Function decomposition of automatic guitar tablature transcription.

This chapter will provide an overview of algorithms that can be used to automatically

transcribe tablature from a guitar recording. Section [2.1|reviews different approaches to the
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problem of polyphonic transcription, followed by an examination of algorithms for guitar
tablature arrangement in Section [2.2] Section presents guitar-specific transcription
algorithms and Section introduces guitar tablature transcription systems that analyze
data other than audio. Finally, Section reviews commercial products that perform

automatic transcriptions or aid humans in the process of manual transcription.

2.1 Polyphonic Transcription

Automatic music transcription refers to the process of extracting musical information from
an audio signal in order to generate a symbolic musical score. The analysis of the input
audio signal may be realtime or offline. In realtime, where the audio signal is input from
a live performance of a musician, the analysis is causal—the transcription of note events
at time ¢y only depends on the input audio signal xz(t) V 0 <t < t5. Depending on the
transcription algorithm being used, the offline analysis of an audio recording may be causal
or non-causal since the transcription of note events at time ¢y may have access to the entire
input audio signal z(t) V> 0.

Automatic music transcription can be divided into two categories: monophonic tran-
scription and polyphonic transcription. Monophonic transcription algorithms are only ca-
pable of transcribing note events from input audio signals where one instrument plays a
single note at a time. On the other hand, polyphonic transcription algorithms attempt to
transcribe note events from input audio signals where several notes occur simultaneously.
Polyphonic audio signals may result from one instrument playing multiple notes at the same
time, or from multiple instruments (with similar or different timbres) that sound simulta-
neously. Though monophonic transcription can be considered a subproblem of polyphonic
transcription, monophonic transcription algorithms use different analysis techniques, which
exploit the fact that only one note occurs at a time, yielding simpler and more robust al-
gorithms (Plumbley et al. 2002).

Polyphonic transcription algorithms output the pitch, onset time, and duration of notes
occurring in an input audio signal. To estimate the pitch of a note, multiple fundamental
frequency estimation algorithms are used. Fundamental frequency fy is defined as the
lowest frequency of a periodic waveform and is the inverse of the fundamental period T

(Oppenheim et al. 1997, 17-8). Overtones f; occur at integer multiples of the fundamental
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frequency

fr="kfo VEkeN". (2.1)

Fundamental frequency is the physical phenomenon that corresponds to the perceptual
phenomenon of pitch. To estimate the pitch of a note in Western music following an
equal-tempered scale, fundamental frequency estimates are quantized to the frequency of
the nearest pitch. For example, consider a note with a fundamental frequency estimate
of fo = 435.20Hz. The fundamental frequency lies between the pitch G*4, having a funda-
mental frequency of 415.3Hz, and the pitch A4, having a fundamental frequency of 440Hz.
In this case the note is assigned the pitch A4 because |fy — 440| < | fo — 415.3|.

The remaining temporal features of a note event, specifically the note onset time and
duration, are estimated using an onset detection algorithm and an offset detection algo-
rithm. In the literature, offset detection is alternatively referred to as note tracking since
these algorithms track pitch estimates across analysis frames of the audio signal, from the
note onset time until the pitch estimate can no longer be found in the audio signal. The
accuracy of note offset time estimates are less important than onset time estimates because
the former exhibit less perceptual importance than the latter (Costantini et al. 2009).

Although the transcription of monophonic musical passages is considered a solved prob-
lem (Klapuri 2004) as a result of accurate monophonic transcription systems (Slaney and
Lyon 1990; Maher and Beauchamp 1994; |Cheveigné and Kawahara 2002)), the transcrip-
tion of polyphonic music with no limitations on the number of instruments, the type of
instruments, and the degree of polyphonyﬂ is still an open problem (Benetos et al. 2012).
Detecting multiple fundamental frequencies in a polyphonic signal is a difficult task be-
cause it is ambiguous whether a peak in the magnitude spectrum at a particular frequency
bin “is a fundamental or a harmonic, or both” (Fiss and Kwasinski 2011]) due to coincid-
ing harmonics. For example, let f, and f, be fundamental frequencies such that f, # f.

Harmonics of these fundamental frequencies overlap when
mf, =nf, Vm,n¢cNt (2.2)

(Bonnet and Lefebvre 2003).

!The term degree of polyphony will be used to refer to the number of notes occurring simultaneously.
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For a visual comparison of the complexity of fundamental frequency estimation versus
multiple fundamental frequency estimation, consider the magnitude spectrum of a pluck of
the open A string on a guitar in standard tuning displayed in Figure . The first local
maximum is approximately fo = 110Hz and overtones (local or global maxima) are located
at roughly integer multiples of the fundamental frequency. On the other hand, consider the
magnitude spectrum displayed in Figure [2.2(b)|of an A major chord comprised of five notes
sounding simultaneously. The magnitude spectrum has no apparent structure because the

frequency spectra of individual notes are overlapping.
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(a) Frequency spectrum of the pluck of the open (b) Frequency spectrum of the strum of an A major
A string on a guitar in standard tuning. chord on a guitar.

Fig. 2.2: Comparison of the frequency spectrum of a pluck versus a strum on an acoustic
guitar with steel strings.

Many music researchers are searching for a general solution to the problem of polyphonic
transcription. Therefore, the majority of proposed polyphonic transcription systems are
instrument and genre agnostic. These transcription systems aim to transcribe a wide range
of harmonic musical instruments in a variety of playing styles (Benetos et al. 2012)).

In an attempt to constrain the parameters of this difficult problem, more specialized
transcription systems have been introduced that require audio input with specific musical
properties or a priori knowledge of the musical passage being transcribed. The first poly-
phonic transcription system for duets yielded promising results by imposing constraints

on the frequency range and timbre of the input instruments involved and the intervals
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between simultaneously performed notes (Moorer 1975). In contrast to the more mature
field of speech recognition where the majority of practical systems are language, gender,
or speaker dependent (Huang et al. 2001)), instrument and genre-specific polyphonic tran-
scription systems are significantly less represented in the literature in comparison
to their general counterparts (Benetos et al. 2012). In favour of specialized polyphonic
transcription systems, Martin (1996) commented that “the importance of a structured do-
main is that it allows the transcribing agent to exploit the structure, thereby reducing the
difficulty of the task”.

The music information retrieval evaluation exchange (MIREXI])—an annual evaluation
of state-of-the-art algorithms using the same datasets and metrics—started evalu-
ating polyphonic transcription algorithms in 2007.E| Submitted polyphonic transcription
algorithms are evaluated on two datasets. The first dataset consists of 30 audio recordings
with a variety of musical instruments and degrees of polyphony. The second dataset con-
sists of ten piano recordings. Many of the algorithms evaluated on the piano dataset are
not necessarily piano-specific transcription systems (Benetos et al. 2012).

Since the scope of this thesis is on the transcription of polyphonic music arising from
a single instrument, this section will provide an overview of polyphonic transcription algo-
rithms (and surrounding schools of thought) that performed well in the MIREX] evaluations
on the piano dataset from 2007-2012. Table[2.1] presents the MIREX]results of the reviewed
transcription algorithms using the metrics of precision p (the ratio of correctly transcribed
notes to the number of transcribed notes), recall r (the ratio of correctly transcribed notes
to the number of ground-truth notes), and f-measure

2pr

flor) = = (2.3

which combines precision and recall into a single metric. The reported [MIREX] results
consider the accuracy of note pitch and onset time but disregard note duration errors.
Although this section reviews polyphonic transcription algorithms that performed well
on the [MIREXI piano dataset (Table 2.1)), being stringed instruments, the piano and the
guitar have similar properties. One similarity is that both instruments comply with the

inharmonicity phenomenon, which causes harmonics in the upper frequency range to be

2http://www.music—-ir.org/mirex/wiki
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Table 2.1: Polyphonic transcription systems that performed well in the 2007-2012
[MIREX on the piano dataset.

POLYPHONIC TRANSCRIPTION SYSTEM PRECISION RECALL f-MEASURE

Zhou and Reiss (2008)) 0.738 0.777 0.757
Ryynénen and Klapuri (2005) 0.720 0.669 0.694
Poliner and Ellis (2007) 0.672 0.630 0.650
Emiya et al. (2008) 0.649 0.639 0.643
Vincent et al. (2007)) 0.591 0.651 0.620
Yeh and Roebel (2011)) 0.504 0.793 0.616
Benetos and Dixon (2012]) 0.627 0.594 0.610
Yeh and Roebel (2010) 0.497 0.785 0.609
Benetos and Dixon (2011a)) 0.663 0.532 0.590
Nakano et al. (2009) 0.541 0.539 0.540
Dessein et al. (2010) 0.425 0.738 0.539
Lee et al. (2011 0.531 0.525 0.528
Lee et al. (2010) 0.575 0.480 0.523
Chang et al. (2008) 0.345 0.680 0.458
Raczynski and Sagayama (2009) 0.689 0.246 0.363

shifted upwards in frequency according to the formula
fe = kfo/ 1+ B(k?* - 1), (2.4)

where fj is the fundamental frequency, £ is the harmonic index, and 3 is the inharmonicity
factor (Fletcher and Rossing 1998).

Polyphonic transcription is a difficult problem with a large number of variables. There
are various different approaches to the problem, many of which rely on multiple techniques
to perform a transcription (Klapuri 2004). Therefore, it is difficult to categorize polyphonic
transcription systems according to the methodology used. Nevertheless, the following sec-

tions aim to provide an overview of the main approaches to the problem.

2.1.1 Human Audition Modelling

As a motivation for polyphonic transcription algorithms modelled after the human audition

system, Anssi Klapuri, an expert in the field of polyphonic music transcription, states
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that “in music transcription, ... the problem is really not in finding fast computers but
in discovering the mechanisms and principles that humans use when listening to music.
Modelling perception is difficult because the world in which we live is complex and because
the human brain is complex” (Klapuri 2004). A large body of multi-disciplinary research
follows this school of thought, developing polyphonic transcription algorithms that replicate
how it is believed that humans perform this complex task.

It is possible to pose the problem of polyphonic transcription as one of sound source
separation, a complex cognitive function that humans perform with ease. Auditory scene
analysis is the process by which the human auditory system separates a mixture of sounds
that are interwoven in both the time and frequency domain into their constituent sources
(Bregman 1990). This natural phenomenon is commonly referred to as the cocktail party
effect (Cherry 1953), which addresses the ability of humans to focus their attention on one
speaker amongst various other speakers and superfluous noise. In the context of polyphonic
transcription, the deconstruction of a polyphonic signal y into a set of M monophonic

signals x; that represent the audio signal of each note in a chord

y(t) = in(t), (2.5)

significantly reduces the complexity of the problem. The signal of each note can then be
transcribed by established monophonic transcription algorithms and combined to form the
complete polyphonic transcription.

Forming a computational model of the auditory scene analysis process, Kashino and
Tanaka (1993) proposed a system for the polyphonic transcription of multiple instruments.
Using a bottom-up approach, frequency components present in the Fourier decomposition
of a monaural audio signal were clustered into individual note hypotheses according to
human cues for auditory source separation, such as inharmonicity and the proximity of
harmonics in the frequency domain. Additionally, timbre recognition was performed to
attribute a musical instrument to each transcribed note. The system achieved 90% accurate
transcriptions on synthesized musical instrument digital interface (MIDI)) files of piano and
flute limited to two and three degrees of polyphony.

Similarly, Kameoka et al. (2007) proposed an approach to polyphonic transcription

called harmonic temporal structured clustering, which deconstructs a polyphonic audio
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signal into individual source signals by clustering frequency components. This decompo-
sition is represented as a Gaussian mixture model (GMM) p(z) = S0, mN (2|, Si),
where the number of component distributions K must be specified a priori and the un-
known parameters of the distribution (mixing coefficients 7, means py, and covariances
Y) are estimated using the expectation maximization algorithm. [Nakano et al. (2009)
extended this algorithm to automatically estimate the degree of polyphony K present in
the input signal. The results of this algorithm in the 2009 evaluation are presented
in Table 211

Alternatively, the decomposition of a polyphonic signal into source components as in

Equation can be further deconstructed into a summation of sinusoids for each note

M N
=35 ey cos(G ) + By sin(if70)] + n(t). (2.6)

i=1 j=1

where the degree of polyphony M, the number of sinusoidal components N, the fundamen-
tal frequency féi) of each note, and the distribution of the residual noise 7 is unknown.
Statistical signal processing techniques can be used to estimate these unknown parameters
and perform a transcription of the input signal y. |Davy and Godsill (2002) staged the
problem in a Bayesian statistical framework, where prior distributions for the unknown pa-
rameters are used to estimate values of these parameters that best explain the observation
signal . The system is reported to perform well on signals with up to three degrees of
polyphony; however, the authors note that searching the large parameter space is on the
verge of being computationally intractable.

Another stream of research seeks to model the human auditory and periphery systems
that contribute to the perception of pitch, a psychoacoustical attribute that humans try
to assign to almost all incoming acoustical signals (Meddis and Hewitt 1991)). Meddis and
O’Mard (1997)) introduced the unitary model of pitch perception, where the function of
the middle and inner ear is modelled by a set of bandpass filters. The output of each filter
is compressed, half-wave rectified, and low-pass filtered to obtain the amplitude envelope
of the signal. To estimate the perceived pitch, an autocorrelation function then looks
for periodicities in the amplitude envelope and sums the result of each frequency band,

mimicking the function of peripheral audio processing systems in the human brain.
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Klapuri (2005) modified the proposed unitary model of pitch perception to use a tech-
nique called harmonic selection instead of an autocorrelation function in order to extract
more reliable fundamental frequency estimates. This fundamental frequency estimation al-
gorithm was later extended to include a hidden Markov model (HMM]) for note event mod-
elling and a musicological model to govern the transitions between note events (Ryynanen
and Klapuri 2005). This polyphonic transcription system was submitted to [MIREX]in both
2007 and 2008 and received the results displayed in Table 2.1}

2.1.2 Salience Methods

Multiple fundamental frequency estimation algorithms that apply transformations to the
input audio signal in order to emphasize the underlying fundamental frequencies will be
referred to as salience methods. The first example of a salience method is the fundamental
frequency salience function proposed by [Klapuri (2006]). The salience of a f, candidate is

calculated as the weighted sum of the magnitude of its harmonics. In mathematical terms,

M
=Y a(f,m)|X(mf.f)l, (2.7)
m=1

where M is the number of harmonics, « is an empirically determined function that pro-
duces the weight of a harmonic, X (f) is the Fourier transform of the input signal that is
spectrally whitened to suppress timbral information, and f, is the sampling rate. In theory,
there exists peaks in the magnitude spectrum at integer multiples of a fundamental fre-
quency (Equation . Therefore, the maxima of the salience function should correspond
to the fundamental frequencies of notes present in the audio signal. Iterative and joint
estimation algorithms that search for the maxima of this salience function are described in
Section 2.1.3

Instead of using conventional time-frequency signal representations such as the short-
time Fourier transform (STET]) for polyphonic transcription, [Zhou and Mattavelli (2007)
developed a time-frequency analysis tool called the resonator time-frequency image (RTET),
which is implemented by a bank of first-order complex resonator filters. The [RTEIl can sup-
port various frequency resolutions, such as uniform or constant-Q (logarithmic) resolutions.

Using the [RTET |Zhou and Reiss (2008) proposed a polyphonic transcription system that
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not only received the best results to date in the evaluations on the piano dataset
(see Table , but also performs in realtime.

The proposed transcription system first calculates the RTEI of the input audio signal,
which is used for onset detection and multiple fundamental frequency estimation. Before
processing, the average of every analysis frame in the [RTEF] is calculated to produce the
[RTET average energy spectrum. The onset detection algorithm uses a threshold technique
that considers peaks in the difference energy spectrum, which is calculated by smoothing
the energy spectrum and subtracting a time-lagged version of itself to accentuate signal
transients. The input audio signal is then segmented according to the detected note onsets
and the multiple fundamental frequency estimation is performed in each segment.

The multiple fundamental frequency estimation algorithm begins by diverging into two
paths: the extraction of harmonic components by transforming the [RTEIl into a relative
energy spectrum, and the estimation of fundamental frequency candidates by transforming
the [RTE] into a pitch energy spectrum. A detailed explanation of these signal transfor-
mations can be found in |Zhou et al. (2009). Information about the harmonic components
and fundamental frequency candidates are combined using a rule-based approach to filter
the fy candidates into a smaller set. The resulting set of fy candidates is further pruned
by applying the spectral smoothing principle, which attempts to discern if harmonic peaks
with large magnitudes are the result of another underlying fundamental frequency. Fol-
lowing the success of this time-frequency analysis tool, the [RTET has been used in other

polyphonic transcription algorithms (Benetos and Dixon 2011b)).

2.1.3 Iterative and Joint Estimation

For the estimation of multiple fundamental frequencies from the frequency domain of an
input audio signal, two predominant methods exist in the literature: iterative and joint fy
estimation. Iterative f; estimation algorithms first estimate a predominant fundamental
frequency and proceed to estimate the spectrum of the fundamental frequency and over-
tones. The estimated spectrum is subtracted from the original spectrum and the process
reiterates with the estimation of another fundamental frequency from the residual frequency
spectrum. Conversely, joint fy estimation algorithms choose from a set of fundamental fre-
quency candidates that, together, best describe the frequency spectrum of the input audio

signal.
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Klapuri (2006) proposed an iterative and a joint f estimation algorithm that search
for maxima in the salience function described in the previous section (Equation . In
the case of iterative estimation, the fundamental frequency with the maximum salience
is selected. Its spectrum is estimated, subtracted from the original spectrum, and this
process is repeated on the residual spectrum. In the case of joint estimation, fy candidates
are chosen by selecting a set of local maxima from the salience function. A search algorithm
chooses a subset of fundamental frequencies according to a metric that measures the fit
of an individual f, candidate in the context of others in the set. Since no algorithm
for onset detection was presented, the proposed algorithms only provide frame-by-frame
fo estimates. After evaluation, results showed that the algorithm performed equivalently
but more efficiently than the author’s previously presented f, estimation algorithm that
modelled the human auditory system (Klapuri 2005).

Emiya et al. (2007) proposed a joint multiple fundamental frequency estimation algo-
rithm for inharmonic instruments such as the piano and guitar. Maximum likelihood esti-
mation was used to estimate the parameters of a weighted sum of sinusoids plus noise model
similar to Equation [2.6] except that the frequency of overtones was calculated by Equa-
tion instead of calculating multiples of the fundamental frequency as in Equation 2.1}
The output of the estimation algorithm is the set of notes with fundamental frequencies
that jointly maximize the likelihood function. [Emiya et al. (2008) subsequently embedded
this joint multiple fundamental frequency estimation algorithm in a polyphonic transcrip-
tion system that first performs onset detection and subsequently tracks note events using
an [HMM] to determine note duration. The proposed transcription system was evaluated in
[MIREXI 2008 and received the results presented in Table [2.1]

In his doctoral dissertation, [Yeh (2008) proposed a frame-by-frame joint f, estimation
algorithm that uses the weighted sinusoid plus noise model presented in Equation [2.6]
The algorithm first performs a fast Fourier transform (FET]) on each analysis frame of
the input audio signal to obtain the frequency spectrum of the signal. The residual noise
signal 7(t) is first estimated to distinguish harmonics of the fundamental frequencies from
extraneous noise in the frequency domain. A set of f, candidates are jointly estimated from
the frequency spectrum through the use of a scoring function that considers the physical
properties of harmonic sounds (Yeh et al. 2005). To estimate the number of concurrent
notes, the scoring function is applied to combinations of f; candidates at various degrees of

polyphony. A summary of this fy estimation algorithm can be found in (Yeh et al. 2010).
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Chang et al. (2008) embedded the frame-by-frame joint fy estimation algorithm pro-
posed by [Yeh (2008) in a polyphonic transcription system that uses an [HMM] to track
fo candidates across analysis frames. In contrast with conventional [HMM] note track-
ing systems, which include attack, sustain, release, and silence states, the proposed note
tracking system only includes attack and sustain states. The proposed algorithm does not
perform onset detection for the identification of the start of a note event. Rather, note
onsets are identified by a new pitch estimate occurring in the analysis of the audio sig-
nal. The polyphonic transcription system was evaluated in [MIREX] 2009, receiving the
results presented in Table 2.1l The polyphonic transcription system was later improved
by modifying the distribution of the residual noise model in the f; estimation algorithm
(Yeh and Roebel 2010). The resulting system was submitted to 2010, receiving
the results in Table 2.1} Modifications to the f, candidate extraction algorithm showed
further improvements in both precision and accuracy (see Table in the MIREX] 2011
evaluation (Yeh and Roebel 2011)).

2.1.4 Machine Learning Approaches

The transcription of a mixture of note signals present in an audio recording can be framed
as a machine learning problem. Machine learning algorithms use a set of input observations
to train a model that attempts to explain, predict, or classify new observations. In the case
of polyphonic transcription, the input observations are gathered by extracting features from
frames of an audio signal. For model training and validation, supervised machine learning
algorithms for polyphonic transcription require a ground-truth (correctly labelled) dataset,
which consists of a set of audio recordings annotated with the correct note events occurring
in each recording. There are a variety of different machine learning algorithms, many of

which have been applied to the problem of polyphonic transcription.

Non-negative Matrix Factorization

Recently, many polyphonic transcription systems have been proposed that use and expand
upon non-negative matrix factorization (NMF]) algorithms. [NME is a factorization method
that attempts to decompose a matrix X &€ R%XN into the product of two matrices W &
R and H € RLGY such that

X ~WH. (2.8)
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To attain the decomposition, the matrices W and H are alternately updated in an iterative
fashion according to the gradient of an error metric (Wang and Zhang 2012). In the context
of polyphonic transcription, the columns in W contain the spectral templates for each pitch
and H encodes the temporal activity of each pitch over the course of the audio signal.

Since [Smaragdis and Brown (2003) first applied [NMFEk to the problem of polyphonic
transcription, many extensions have been proposed (Vincent et al. 2007; [Raczynski and
Sagayama 2009; Dessein et al. 2010) that explore different constraints and learning meth-
ods. The results of these algorithms in the evaluation on the piano dataset can be
found in Table .11

Sparse representations with a similar structure to an have also been proposed
for polyphonic transcription (Lee et al. 2010 Lee et al. 2011). These algorithms form a
dictionary, similar to W in the [NME], of the magnitude spectra from recordings of notes
played on an instrument. Instead of the matrix H containing the temporal information
of note events, it instead contains weights for each note template. The task of multiple
fundamental frequency estimation is then accomplished by searching for a weighted sum of
note templates to match the frequency spectrum of an input audio signal. Similar to previ-
ously mentioned approaches, an [HMM]is then used for the purpose of note tracking. These
algorithms were evaluated in [MIREX] receiving the results presented in Table 2.1 Al-
though these algorithms formed the note dictionary from piano recordings, any instrument
that generates harmonic waveforms could be used. To incorporate multiple instruments,
Benetos and Dixon (2011aj, 2012) proposed the use of multiple templates for each pitch and
for each musical instrument considered. Using only pitch templates from a piano, these
polyphonic transcription systems were evaluated in on the piano dataset, receiving
the results displayed in Table [2.1]

Support Vector Machines

Pattern recognition algorithms that are trained on spectral features can be used to classify
the frequency components of individual notes within the frequency spectrum of a mixture
of notes. Poliner and Ellis (2005, 2006, [2007) proposed the use of 87 binary classification
support vector machines ([SVMk) to detect the presence of a note in each analysis frame
of the of an input audio signal. Through a supervised training process the

classifier attempts to create separating hyperplanes that maximize the distance between
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training points. These hyperplanes represent the optimal (given the provided training data)
decision boundary between the presence or absence of a specific note. After receiving the
note candidates in each analysis frame, an was used for the purposes of note tracking.
The proposed algorithm (Poliner and Ellis 2007) was evaluated in MIREX 2007, receiving
the results presented in Table [2.1]

Neural Networks

Neural networks have also been applied to the problem of polyphonic transcription, per-
forming both pitch estimation and note tracking (Marolt 2000)). Marolt (2001, 2004)) de-
veloped the SONIC' polyphonic transcription system that utilizes multiple neural networks
to automatically transcribe piano music. First, the input audio signal is transformed into
a time-frequency representation using an auditory model that mimics the functionality of
the human cochlea. Each output channel of the auditory model is input into an array of
88 networks that attempt to determine the presence of the pitches A0-C8 in the input
audio signal. The network for each pitch consists of a set of adaptive oscillators with centre
frequencies at multiples of the fundamental frequency, which attempt to synchronize with
the harmonically related partials of a musical note. For onset detection, a neural network
monitors significant changes in the amplitude envelope of the audio signal. The output
of this neural network is a series of impulses, which represent the presence of note onsets.
The transcription system was evaluated on three synthesized and three real classical piano
recordings, obtaining 92% average accuracy on the former dataset and 81% average accu-
racy on the latter dataset. Although the neural networks were trained on piano recordings,
the transcription system could be adapted for the guitar by training on guitar recordings
and limiting the maximum degree of polyphony of the output music score to six instead of

ten.

Hidden Markov Models

Hidden Markov models are probabilistic models that attempt to explain a finite-state ma-
chine that produces an observation at each state transition. The model defines a matrix
of probabilities that describes the policy of transitioning between states. The model also
defines an emission distribution—a probability mass or density function that describes the

probability of producing a specific observation given the current state. Given a sequence of
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observations, an [HMM] attempts to uncover the underlying state sequence that produced
the observations. [Raphael (2002) used an to transcribe the notes present in a poly-
phonic piano recording. A number of features were extracted from frames of the audio
recording and presented as observations to the [ HMM Each state of the represents
a combination of notes and a label that describes the temporal evolution of the chord i.e.,
the attack, sustain, or rest. With a state space so large, searching for an optimal state
sequence becomes computationally intractable. In response to this issue the maximum
degree of polyphony was limited to four, only the pitches C2-F6 were considered, and
heuristics were used to prune the search space. The algorithm was evaluated on recordings

of movements from Mozart piano sonatas and received 61% transcription accuracy.

2.1.5 Blackboard Systems

The blackboard problem-solving model was conceived in the field of artificial intelligence
as an alternative approach to the static and sequential processing of data (Newell 1962).
The term “blackboard problem solving” refers to a number of experts in different domains
who work together to solve a problem on a physical blackboard. As the solution evolves,
each expert adds or modifies information on the blackboard in turn or when they have
a significant contribution. Realizing this metaphor, the implementation of a blackboard
system requires a set of independent knowledge sources (experts) to interact through a
global database (blackboard) in a manner governed by a scheduler or monitor (Figure
2.3). Blackboard systems aim to flexibly integrate hypotheses about the problem from
different knowledge sources. Although no blackboard polyphonic transcription systems
placed among the top algorithms evaluated on the piano dataset in the [MIREX] it is still
an important school of thought and will be reviewed in this thesis.

Using the blackboard problem-solving model, Martin (1996) proposed a system for
the polyphonic transcription of piano music. Input to the blackboard system was formed
of “tracks”—local maxima in the magnitude of the [STET] of the input audio signal. The
blackboard database was arranged hierarchically: tracks were grouped into partials, partials
into notes, notes into intervals, and intervals into chords. The system consisted of thirteen
knowledge sources with expertise in areas of acoustical physics, music theory, and garbage
collection (handling incorrect or competing hypotheses). A sequential scheduler organized

contributions of the knowledge sources. The proposed transcription system was capable of
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Fig. 2.3: Components and workflow of a blackboard system.

transcribing synthesized piano music where the interval between simultaneous notes was

not an octave and all notes were between the pitches B3 and Ab5.

Martin’s blackboard transcription system was later extended by [Bello and Sandler|
2000) to include a neural network chord recognition component that influenced the se-

lection of note hypotheses on the blackboard. More information on the history of the

blackboard problem-solving model and a detailed review of its application to polyphonic

music transcription can be found in |Bello (2003)).

2.2 Guitar Tablature Arrangement

Unlike the piano which has a one-to-one correspondence between the set of physical keys

and the set of possible pitches, the guitar can produce the same note in several ways, adding

more ambiguity to the transcription process (Fiss and Kwasinski 2011)). In mathematical

terms, the mapping between the set of physical keys X and the set of possible pitches Y

on a piano is a bijective function, meaning that every element of the codomain maps to



2.2 Guitar Tablature Arrangement 29

exactly one element of the domain. This bijective function is displayed in Figure [2.4(a)|
The mapping between the set of string and fret combinations X and the set of possible
pitches Y on a guitar is a surjective function, meaning that every element of the codomain
is mapped to at least one element of the domain. This surjective function is displayed in
Figure [2.4(b)

Given a sequence of note events as input, guitar tablature arrangement algorithms
assign a string and fret combination to each note event according to criterion that min-
imizes the performance difficulty of the tablature. By studying the left-hand movements
of professional classical guitar players, Heijink and Meulenbroek (2002) hypothesized that
guitarists have a disposition toward instrument fingering positions that are biomechani-
cally easy to perform. From this study emerged three complexity factors that contribute
to the performance difficulty of a tablature arrangement: the position of the left hand on
the guitar neck, the need to reposition the left hand within a stream of notes, and finger
span. Experiments indicated that subjects favoured hand positions near the beginning of
the guitar fretboard near the nut. Moreover, the subjects avoided composing arrangements
that required extensive hand repositioning and large finger spans. Apart from biomechan-
ical constraints, the authors speculated other important criteria for tablature arrangement
such as cognitive and musical rules that take into consideration musical context and enforce
auditory properties such as timbral characteristics of the produced sound.

Guitar tablature arrangement can be perceived as a traditional search problem, where
there are many candidate string and fret combinations for each note in a musical work and
the goal is to find an optimal arrangement that maximizes a quantitative metric defining
a “good tab”. A “good tab” refers to tablature that is generally easy to perform or has
a difficulty level that is tailored to the aptness of the performer (Sawayama et al. 20006).
The search space can quickly become computationally intractable since a standard 24-fret
electric guitar is capable of producing the same pitch in up to six different ways (Figure ,
yielding an upper bound of 6™ possible tablature arrangements for a sequence of n notes.
In the polyphonic case, the search space rapidly enlarges as more chords are considered. A
sequence of n chords, each composed of six notes that may be played in up to six different
ways, yields an upper bound of (6°)" possible tablature arrangements.

Guitar tablature arrangement algorithms may also produce extra performance informa-
tion such as note ornamentations (Miura et al. 2004)) or the explicit instrument fingering

for each note. The instrument fingering of a note explicitly states which finger on the left
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(a) Bijective function between the domain of physical piano keys X and
the codomain of possible pitches Y.
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(b) Surjective function between the domain of string and fret combina-
tions on a guitar X and the codomain of possible pitches Y.

Fig. 2.4: Function classifications of the mappings from instrument operation to pitch for
the piano and guitar.

hand is used to depress the fret on a given string. For the purposes of guitar tablature
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Fig. 2.5: Six different string and fret combinations that produce the pitch E4 on a 24-fret
guitar in standard tuning.

arrangement, which only displays the string and fret combination required to perform a
note, the inclusion of fingering information is unnecessary and can therefore be excluded.

Many methods have been proposed to search for an optimal tablature arrangement,
such as traditional graph search algorithms (Section [2.2.1]), constraint satisfaction (Sec-
tion [2.2.2)), neural networks (Section [2.2.3)), and genetic algorithms (Section [2.2.4)).

2.2.1 Graph Algorithms

In mathematics, a graph G = (V, E) is composed of a set of vertices V' that are connected
by a set of edges E. In an undirected graph, each element of the set E is a set of vertices
{u,v} with cardinality two such that u,v € V. In a directed graph, each element of the
set F is an ordered pair of vertices (u,v) such that u,v € V. In a weighted graph, each
element of the set E is a tuple ({u, v}, w) containing a pair of vertices and a weight w € R
associated with the edge. The weight associated with an edge typically represents the
cost of traversing the edge; however, the interpretation of the weight is largely domain
dependent.

In the context of guitar tablature arrangement, each vertex in the graph is associated
with a candidate string and fret combination that produces the pitch of a note present
in the input music score. The weight of an edge represents the “cost” associated with
the transition between two finger positions. Following the study of professional classical
guitarists by Heijink and Meulenbroek (2002), this transition cost should ideally reflect
the biomechanical ease of the transition as well as the conformance with other cognitive
and musical rules. Figure illustrates a weighted graph of candidate string and fret
combinations for a sequence of 3 notes: A4, E4, and C5. In this simple monophonic

example there are already 5 -6 -4 = 120 possible guitar tablature arrangements.
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Fig. 2.6: A directed acyclic weighted graph of candidate string and fret combinations for
a sequence of 3 notes: A4, E4, and C5. Some edge weights have been omitted for space
purposes.

Many algorithms have been proposed to find a path through a weighted graph that
incurs the minimal cost (Cormen et al. 2009)). Sayegh (1989) used the Viterbi algorithm to
search for an optimal path through a weighted graph of candidate string, fret, and finger
combinations for notes in a monophonic musical passage. The Viterbi algorithm operates
on the principle that if a vertex is part of a minimum cost path through the graph, any
subset of this path is also an optimal path. If it is not optimal, then there exists an alternate
intermediate path that has a lower aggregate cost and thus produces a better overall pathE]
The proposed arrangement algorithm uses a simple cost function that assigns a weight to

each edge in the graph by penalizing transitions that require a change in hand position or

3 An established application of the Viterbi algorithm is in [IMME, whereby an optimal state sequence is
decoded from a sequence of observations (Rabiner 1989).
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a change in string. As an extension to this simple cost function, a learning algorithm was
proposed to automatically estimate the edge weights from a set of training examples. No
formal evaluation of the proposed algorithm was performed.

Extending the optimal fingering estimation algorithm proposed by Sayegh (1989), Radi-
cioni et al. (2004) advocated that the segmentation of a piece of music into phrases is
an important cognitive process that affects tablature arrangement. Taking this into con-
sideration, a variety of scores were manually segmented into musical phrases. A graph
search algorithm then identified the optimal fingering positions within and between musi-
cal phrases according to a cost function that considered horizontal and vertical movement
of the hand along the guitar fretboard. Horizontal movement was perceived to increase the
complexity of the arrangement more than vertical movement. The proposed algorithm was
later extended to accept polyphonic musical passages (Radicioni and Lombardo 2005b) by
assessing the difficulty of fingering within a chord. The fingering estimation algorithm was
evaluated by comparing the output of the algorithm on segments of classical guitar sonata
scores to that of a human expert. Results of the experiments showed similar fingering
positions to that of a professional guitarist.

Radisavljevic and Driessen (2004)) proposed the use of a dynamic programming
algorithm to search the graph of candidate string, fret, and finger combinations for notes
in a polyphonic musical passage. [DP] algorithms use recursion to decompose the problem
into smaller sub-problems, the solutions of which are combined to form the solution to the
original problem. In the context of searching a graph, the optimal path through the graph
is found by recursively finding the optimal path within a smaller search space. Static and
transition cost functions were proposed, which measured the biomechanical difficulty of the
hand position required to form a chord and the difficulty of transitioning between fingering
positions, respectively. Many features, such as the average fret location and the number
of frets between fingers, contributed to each cost function. Each feature was weighted to
determine the relative importance of each criterion. Instead of tuning the feature weights by
hand, the authors proposed a technique called “path difference learning”. This technique
uses gradient descent with respect to the feature weights to minimize the difference between
the optimal path output by the algorithm and a set of training examples acquired from
published tablature. The algorithm was trained using seven selected excerpts from classical

guitar scores, receiving 97% accuracy when evaluating on the same dataset.
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2.2.2 Constraint Satisfaction Approach

The constraint satisfaction problem consists of finding a set or range of values that a variable
can assume without violating a set of constraints. Applying this problem-solving framework
to the tablature arrangement of individual guitar chords, Radicioni and Lombardo (2005a))
proposed that a variable represents a note within a chord and the domain of each variable
is a string, fret, and left-hand finger combination. A set of constraints are imposed on
the variables to restrict the possible combinations of fingering positions. These constraints
enforce that a string can only play one note at a time, that fingers further along the
fretboard depress higher fret numbers, and that a maximum finger span is not exceeded.
A depth-first search strategy with backtracking is used to combine fingering positions and
return a set of solutions that satisfy the imposed constraints. In the case that there are
multiple solutions, the solutions are ranked based on the biomechanical ease of performance.
To evaluate the proposed algorithm, human experts wrote three possible chord fingerings
for 34 chords, ranked by preference. The constraint satisfaction algorithm produced chord
fingerings that agreed 67% of the time with the preferred chord fingerings of a human
expert. The algorithm achieved 97% accuracy in comparison to human experts when only
considering string and fret combinations. Although the accuracy is quite high, it should
be emphasized that the proposed algorithm only generates string and fret combinations for
notes in a single chord and does not consider transitions between notes or chords, although

this feature is proposed in the future work.

2.2.3 Neural Network Arrangements

Neural networks have also been used to generate guitar tablature that more closely resem-
bles human arrangements. Tuohy and Potter (2006a)) proposed the use of a three-layer
neural network that sequentially calculates string and fret combinations for each note in
an input music score. A potential problem with processing one note at a time is that im-
portant contextual information is lost, which adversely affects the tablature arrangement.
To remedy this, the authors included contextual information of surrounding notes as input
features to the neural network. A local search algorithm then passes over the tablature
generated by the neural network and for each note determines if the arrangement can be
improved by using a different string and fret combination according to the fitness function

used in the genetic algorithm proposed by [Tuohy and Potter (2006b)). To train the network,
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a dataset was constructed from an online repository of human-arranged guitar tablature.
Evaluating the algorithm on the training dataset, the output tablature was 94% congruent
with the published tablature.

2.2.4 Genetic Algorithms

The search for a guitar tablature arrangement that minimizes performance difficulty may be
accomplished by a genetic algorithm (GAl). As discussed at the beginning of Section the
search space for the guitar tablature arrangement problem rapidly expands as more chords
and notes are added to the input music score. are particularly suited for exploring
large search spaces to find adequate solutions when exhaustive search algorithms become
infeasible due to computational intractability (Tuohy and Potter 2005). This section will
describe the function of in detail and explain how they are employed to generate guitar
tablature arrangements.

A genetic algorithm (GA)) is a stochastic optimization technique that aims to replicate
the process of natural evolution. A iteratively refines a set of possible solutions—
referred to as the population—Dby assessing the strength of each individual (chromosome) in
the population. Each chromosome consists of a string of genes that define the individual.
The assessment of each individual is performed by a fitness function that evaluates an
individual in the population against a set of criteria defining an optimal individual. The
optimization process operates for a predetermined number of iterations (generations) or
until a termination condition is met e.g., an individual has been found that is “fit” enough
for the purposes of the application. At the heart of the optimization (evolutionary) process
is the concept of natural selection.

Natural selection is the process of selecting individuals from the current population that
will contribute to the successor population. The methodology for selection is a critical factor
in determining the fitness of the successor population. In the field of artificial intelligence,
specifically the underlying field of reinforcement learning, an important trade-off exists
between exploitation and exploration (Sutton and Barto 1998)). Exploitation involves the
recurring performance of an action that is known to yield a high reward, whereas exploration
involves the performance of an action that yields a reward with an unknown distribution
that may have a higher mean reward than the current exploitative action. In the context of

[GAL, an exploitative selection process would involve always mating the most fit individuals



36 Literature Review

in a population, whereas a selection process that sporadically chooses other individuals for
reproduction may result in a more fit individual. Taking the balance of exploration versus
exploitation into consideration, typically use a stochastic selection process where the
probability distribution of selecting an individual for reproduction is influenced by the
individual’s fitness. Consequently, fitter individuals are more likely to reproduce but are
not always the ones selected for reproduction. Another function to ensure exploration
is gene mutation, which modifies a random gene of an individual with low probability.

Figure [2.7 provides an overview of the evolutionary process of a [GAl

Population

!
T

Mztcmg no
Mutation
Fittest < yes

Individual

Fig. 2.7: An overview of the evolutionary process af a genetic algorithm.

In a [GAl the transfer of genetic material from parents to offspring is similar to the
natural phenomenon. Natural reproduction follows the principle that 50% of the genetic
makeup of each parent is transferred to the offspring. In other words, the genetic makeup
of the child has equal contributions from each parent. The mating function in a may
enforce this, or allow variable genetic contributions from each parent. This is accomplished
by randomly choosing a crossover point in the chromosome and “twisting” the genes about

this locus. As an example, the mating algorithm for individuals with a gene sequence of
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length five is illustrated in Figure The mating function might also include a variable

number of crossover points.
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Fig. 2.8: Mating of two parents with one crossover point in the middle of the chromosome.

To apply a to the problem of guitar tablature arrangement, each component of the
must first be defined. A gene represents a note or chord on the guitar and contains
the string and fret combinations required to perform the note or chord. A chromosome is
a sequence of genes that represents a candidate tablature arrangement. The population
consists of many candidate tablature arrangements, which undergoes iterative mating and
mutation to produce a more evolved population. An example of two tablatures mating is
presented in Figure [2.9] After a certain number of generations, the tablature arrangement
with the highest fitness is selected. Similar to the algorithms previously mentioned in
this section, the fitness function of the typically evaluates the biomechanical ease of
performing and transitioning between notes or chords.

In the literature, have been applied to monophonic musical passages (Rutherford
2009)), where a gene represents the string and fret combination for a single note, and also to
polyphonic musical passages (Tuohy and Potter 2005} [Tuohy and Potter 2006b), where a
gene represents the fretboard positions required to perform a chord. These polyphonic tab-
lature arrangement algorithms were later extended to include fingering estimation through
the use of a neural network (Tuohy and Potter 2006d]).

There are both advantages and disadvantages of using a for guitar tablature ar-
rangement. The most significant advantage is that produce multiple solutions to a
problem. For example, a with an initial population size of 400 will produce the same
amount of possible tablature arrangements. One can then retrieve the top n tablature

arrangements by ranking the individuals in the final population by fitness and returning
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Fig. 2.9: Two parent guitar tablatures mating with two crossover points and a gene
mutation in the second child.

the first n arrangements. The most significant disadvantage of using a is that there
is no guarantee that the algorithm will converge to a global maximum in the optimization
space. However, solutions found at local maxima in the optimization space may still offer

“oood” tablature arrangements.

2.3 Guitar-specific Transcription Systems

Instead of combining a general-purpose polyphonic transcription algorithm with a guitar
tablature arrangement algorithm, guitar-specific transcription systems directly estimate the
tablature arrangement by taking into consideration features of the instrument such as spec-
tral properties of produced sounds, physical and mechanical properties of the instrument,
or human performance constraints such as maximum polyphony and finger span.

Using a physical model of a plucked guitar string, Traube and Smith (2001) developed

a signal processing technique for estimating the plucking point and fingering locations on
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a guitar string from an audio recording. The technique revolves around the fact that
the spectral envelope of a produced sound differs according to the plucking position on
the string. Plucking a string close to the bridge of the guitar produces a tone that has
relatively more high frequency components than a pluck close to the fretboard. There are
two unknown variables: the plucking position of the string and the position of the fret that
is depressed. To estimate the plucking position relative to the left-hand fingering point,
the magnitude spectrum of a frame of the audio recording is compared to a set of ideal
magnitude spectra calculated using the physical guitar model at different plucking positions
on the string. By assuming that the right-hand fingers pluck the strings around the middle
of the guitar tone hole, the remaining unknown variable (the left-hand fingering point)
can be estimated. To evaluate the algorithm, a dataset of monophonic audio recordings of
single plucks at different distances from the bridge of the guitar on both open and fretted
strings was created. On this dataset the algorithm could accurately identify the plucking
point on an open string, but struggled to identify the plucking point when the string was
fretted.

Barbancho et al. (2009)) presented an algorithm that estimates the pitch, string number,
and, as a byproduct, the fret number, from an audio recording of a guitar. Onset detection
is first performed, followed by monophonic pitch estimation using spectral peak selection
of the power spectrum. Using a variety of time and frequency domain features of the
audio signal, a Fisher linear discriminant is used to estimate the string the note was played
on. Given the estimated pitch and string number, there exists only one candidate fret
number that can produce the estimated pitch. From this information, tablature can be
transcribed. The proposed algorithm received results with high variability (from 26.7%-
100% accuracy) on a number of monophonic recordings of isolated guitar notes that were
played on both electric and acoustic guitars with nylon and steel strings and with different
playing techniques.

In order to transcribe tablature from polyphonic guitar recordings, Barbancho et al.
(2012)) proposed the use of an [HMM]to estimate the fingering of guitar chords. Each state of
the HMM]is a chord with a specific fingering configuration. In total, the is capable of
differentiating between 330 different chord fingerings. The pitch saliency function described
in Section by Klapuri (2006) is calculated on frames of the input guitar recording.
These features are posed as observations to the [HMM] which estimates the underlying

chord state that contains the string and fret combinations used to perform the chord. On
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a training dataset of 22 guitar recordings and a test dataset of 14 guitar recordings, the
algorithm obtained 87% accuracy on average. However, the guitar transcription system is
only capable of estimating a discrete number of chords and can not estimate monophonic
notes.

In summary, guitar-specific tablature transcription algorithms are still in their infancy.
As with instrument and genre-specific polyphonic transcription systems, guitar-specific
tablature transcription algorithms are less prevalent in the literature in comparison to
general-purpose transcription systems even though there is proof that “developing music
transcription systems for more narrowly targeted contexts can lead to significantly improved

performance” (Barbancho et al. 2012)).

2.4 Alternate Transcription Methods

Various techniques for guitar tablature transcription have been proposed which process
information other than an audio recording: computer vision systems (Section analyze
video recordings of a guitar performance; multi-modal systems (Section analyze both
video and audio recordings simultaneously; and augmented guitars (Section rely
on specialized hardware and sensors to acquire additional information about the guitar

performance.

2.4.1 Computer Vision Systems

For the application of guitar tablature transcription, computer vision systems aim to use
inexpensive cameras that are accessible to users (typically web cameras) to perform finger
tracking or hand-shape analysis on a video recording of a guitarist during a performance.
In order to detect the string and fret combinations performed by the guitarist, computer
vision systems attempt to estimate from the video recording the position of frets and strings
on the fretboard as well as the fingertip positions of the guitarist.

For the purposes of music education, Motokawa and Saito (2006)) presented an aug-
mented reality system that assists novice guitar players by superimposing a virtual hand
over the fretboard to show how to play a given chord. The fretboard detection algorithm
requires a square-shaped marker to be attached above the fretboard. The system does

not implement finger position tracking to verify that the student forms the correct hand
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position to play the chord. Although the augmented reality system was not capable of pro-
ducing tablature, it provided a foundation for future computer vision guitar transcription
systems.

Using an inexpensive video camera mounted to the neck of the guitar, Burns and Wan-
derley (2006)) introduced a prototype system for capturing the finger positions of the left
hand of a guitarist. The position of the frets and strings are determined by accentuating
and grouping vertical (frets) and horizontal (strings) lines in the video recording. Finger-
tips, having a rounded shape in comparison to fingers, are tracked by applying an algorithm
that looks for circles of a given radius in the video recording. To infer the fret and string
being played, the detected fingertip positions are matched to the closest detected fret and
string position on the fretboard. Movement segmentation is also performed to disregard
fingering positions when transitioning between notes or chords. The proposed transcrip-
tion system has some limitations: the mounted video camera could only capture the first
five frets of the guitar and the top-down camera perspective hindered the transcription
performance (Burns 2007). Scarr and Green (2010) extended this system by removing
the fretboard-mounted video camera and instead pointed a video camera directly at the
guitarist to detect the frets depressed during the performance.

With only one camera, it is difficult to determine which fingers are pressing down on a
string and which are hovering (Kerdvibulvech and Saito 2008)). To remedy this problem,
Kerdvibulvech and Saito (2008]) pointed two video cameras at the guitar at different angles.
In order for the system to track finger positions, the guitarist was required to wear multi-
coloured markers on each finger. Using an approach similar to Motokawa and Saito (2006)),
an augmented reality marker was used to detect the position of the fretboard. As a result
of the stereo cameras, the system was capable of detecting the z, y, and 2z coordinates
of each finger; however, no tablature output was generated. Since coloured markers were
attached to the guitarist’s fingertips, the accuracy of the finger position tracking algorithm

was influenced by the colour of the background in the video recording.

2.4.2 Multi-modal Systems

Both computer vision and audio analysis guitar transcription algorithms can benefit from
procuring additional information about the problem. Multi-modal systems attempt to

merge computer vision and audio analysis algorithms. The main goal is to develop a
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symbiotic relationship between the audio and video analysis algorithms to increase the
performance of the system as a whole. For instance, analysis of the video recording may
resolve ambiguities in the analysis of the audio recording, and vice versa. In the field of
speech recognition, combining auditory and visual analysis of speech has shown promising
results (Chibelushi et al. 2002).

Quested et al. (2008) presented a prototype polyphonic transcription system which uses
the analysis of video recordings of a guitarist to supplement the analysis of audio recordings.
The computer vision system seeks to locate the position of the performer, guitar neck, and
left hand of the guitarist. The set of possible notes that can be produced at a specific time
in the video recording is generated using the calculated spatial information of the guitarist’s
hand in relation to the fretboard. The resulting set of notes is used to constrain the possible
fundamental frequency candidates during analysis of the audio recording. The algorithm
for audio analysis has yet to be completed. To fuse the audio and video analysis, the
authors plan to detect note onsets in the audio recording and analyze the video recording
at the time of the note attack. Although the proposed system does not necessarily produce
tablature, it provides an example of a multi-modal system that seeks to accomplish the
first subtask of the guitar tablature transcription problem.

In response to the previously mentioned prototype which aims to accomplish the task of
polyphonic transcription, Paleari et al. (2008)) presented a multi-modal prototype system
capable of guitar tablature transcription. The audio analysis component uses a monophonic
pitch detection algorithm to estimate the pitch of a single note at any given time in the
audio recording. A [MIDIlfile is created which contains the pitch, onset, and duration of each
estimated note. The computer vision component detects the position of the guitarist’s hand
in relation to the fretboard. For each note event in the file, the position of the hand
is used to determine the correct fret and string combination that produced the note. Their
results show that 89% of notes in the test data set, consisting of several 30 second videos,
could be assigned a fret and string combination without ambiguity. As a consequence
of using a monophonic pitch estimation algorithm, the described system is incapable of
transcribing guitar chords.

Hrybyk and Kim (2010) proposed a multi-modal system that is capable of automati-
cally identifying the chords in audio and video recordings of a guitar performance. Con-
ventionally, chroma vectors are the audio feature of choice for the task of chord recognition

(Fujishima 1999)); instead, the authors use a technique called Specmurt analysis for poly-
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phonic pitch detection. The result of this analysis is used to determine the chord scale
(e.g., C Major). To resolve the ambiguity of the fingering used to perform the chord, video
of the guitarist is analyzed to determine the chord voicing (open, barred, or first inversion).
Coloured dots were placed on the fretboard to detect the position of the neck of the guitar,
which, in accordance with past research that used coloured markers, places constraints on
the computer vision system (Kerdvibulvech and Saito 2008). The results of an experiment
where three guitarists were asked to perform various chords showed 61% accuracy of both
chord scale and voicing using audio analysis alone, 33% accuracy with video alone, and
93% accuracy using both audio and video analysis.

In summary, computer vision and multi-modal guitar transcription systems are still in
their infancy. Many of the proposed prototype systems impose constraints on the analysis
process, such as requiring coloured markers to be placed on the guitar fretboard or fingers,
or requiring multiple video cameras. Additionally, many of the proposed systems have
severe limitations, only working with specific camera angles and background colours. Most
importantly, only two of the reviewed systems produce tablature (Hrybyk and Kim 2010;
Paleari et al. 2008)). The former system is only capable of transcribing guitar chords, while

the latter is only capable of transcribing single notes.

2.4.3 Augmented Guitars

Augmented musical instruments, also known as hyperinstruments, are acoustic or elec-
tric instruments that are extended by the installation of additional sensors (Miranda and
Wanderley 2006)). This section will review tablature transcription systems proposed in the
literature that require the installation of additional sensors to the guitar.

Standard electric guitars use a “pickup”, a type of sensor called a magnetic transducer,
to convert the vibration of each string into an electrical signal. Single-coil pickups (Figure
have one magnetic pole piece per string that lies directly underneath the string
it is responsible for sensing. Dual-coil pickups, often referred to as “humbuckers” (Figure
2.10(b))), offer two magnetic pole pieces per string to increase the signal to noise ratio. The
signal generated by each transducer is summed together and connected to the output jack
of the guitar to be amplified or recorded.

Analyzing audio from the output jack of the guitar (potentially polyphonic music)

instead of the recordings of individual strings (monophonic music) removes the ability
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(a) Array of single-coil pickups on a (b) Array of EMG-81 active dual-coil
Fender Stratocaster. covered pickups on an LTD F-
400FM.

Fig. 2.10: Example of single-coil and dual-coil guitar pickups.

of interactive systems to process and analyze the signal of individual strings (Reboursiere
et al. 2010) and thus complicates the task of automatic transcription (O’Grady and Rickard|
2009). To circumvent this issue, |[O’Grady and Rickard (2009) installed a Roland GK-J

hexaphonic pickup to an electric guitar to capture and output the signal of each string

separately (Figure [2.11(a)). By analyzing the recording of each guitar string separately,
the polyphonic transcription problem becomes one of monophonic transcription, which
is a solved problem (Klapuri 2004). Moreover, the ambiguity of which string and fret
combination produces a note is resolved by having access to the audio recording of each
string. Once the string is known, only one fret is capable of producing the note. In
order to estimate the pitch of a note event (and as a by-product, the fret number), non-
negative matrix factorization is used to compare the audio recording of a string to a set of
templates representing all notes on the fretboard. Currently the system outputs a [MIDI]
file containing note pitch, onset, and duration information; however, the authors plan to

extend the proposed system to write tablature. The transcription system was evaluated

4http://www.roland.com/products/en/GK-3
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by synthesizing the generated [MIDIl file and qualitatively comparing the resulting audio to
the input guitar recording. Although the system produces accurate transcriptions, there
are several limitations: the user must purchase a hexaphonic guitar pickup and a computer
audio interface with at least six inputs. Additionally, before using the system the guitarist
must provide training data by recording every note on the guitar twice—a time-consuming

process that may discourage musicians from using the system.

(a) Hexaphonic pickup (Roland GK-3) installed on (b) Sensor mount and reflective surface in-
a Fender Deluxe Player Stratocaster (O’Grady stalled on a Cameo acoustic guitar
land Rickard 2009). (Fitzgerald et al. 2011]).

(¢) A Ztar Mark IIT V3 MIDI guitar controller designed by Starr Labs.

Fig. 2.11: Examples of guitars fit with special-purpose hardware for the purposes of
automatic guitar tablature transcription.

As an alternative to a hexaphonic magnetic transducer pickup, Fitzgerald et al. (2011))

proposed a guitar transcription product called Guitar-2-Tab, which requires the installation
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of an infrared transmitter and receiver underneath each string in order to detect the string
oscillations (Figure [2.11(b))). Each infrared sensor sends an audio signal to an Arduino
microprocessor which is responsible for transcribing the tablature. The generated tablature
is then saved as a text file on a memory card for future reference. This product was designed
as part of a university term project and was never manufactured. However, the technical
report provides a detailed description of the hardware and schematics required for manual
assembly of the product.

Although not an augmented instrument by definition, [MIDIl guitars provide an example
of special-purpose hardware that can be used to accomplish the task of automatic guitar
tablature transcription. An example of a [MIDI guitar controller can be seen in Figure
Verner (1995) proposed a method of extracting the fingering information from a
performance on a [MIDIl guitar in realtime by assigning a separate channel to each
guitar string. When a fret is depressed and a string is plucked on a [MIDI guitar, the
output is a [MIDI| note event which encodes the [MIDI| channel (string) associated with
the note. Given a note and the string that the note is played on, the fret number can be
ascertained. Although the resulting tablature is accurate, users of [MIDIl guitars report false
note detections, performance difficulties in comparison to a standard guitar, and problems
synchronizing the output of each string (Verner 1995)).

Although they are accurate, guitar tablature transcription systems that require the
installation of special-purpose hardware are expensive and inconvenient for users. Fur-
thermore, some musicians may lack the technical savvy required to perform the hardware
installation themselves, yielding transcription systems that are inaccessible to a certain

demographic of people.

2.5 Commercial Transcription Systems

Apart from applying a polyphonic transcription algorithm to a guitar recording and man-
ually applying a guitar tablature arrangement algorithm to the output, there are very
few guitar tablature transcription systems available to the public. Kramer Guitardﬂ sold
special-purpose guitar transcription hardware called Pitchrider, developed by IVL Tech-
nologies. Similar to the approach taken by (O’Grady and Rickard (2009)), the Pitchrider

Shttp://www.starrlabs.com/index.php?route=product/category&path=59_75
Shttp://www.kramerguitars.com
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provided a hexaphonic pickup which sent the signal of each string to a hardware interface
that converted notes played on the guitar into [MIDI| note events. The resulting [MIDI| data
could then be converted to tablature in a method similar to that used by Verner (1995)).
The Pitchrider is no longer being manufactured.

Software for guitar tablature transcription is just as scarce. To the author’s knowledge,
the only commercial software that performs guitar tablature transcription is Guitarmastefﬂ,
a desktop application by RoboSens Ltd. that converts a polyphonic guitar recording into
[MIDIl notation and has the option to view a tablature arrangement of the transcription in
plain text format.

As for commercial polyphonic transcription programs, Melodyneﬂ by Celemonyﬂ pro-
vides an editor that allows users to modify the pitch of individual notes in a polyphonic
audio recording using a technology the company calls “direct note access”. Once the audio
recording has been analyzed, a file can be exported which contains the estimated
note events present in the recording. To produce guitar tablature, the output file
can then be input into a guitar tablature arrangement algorithm.

Tmnscm’be.ﬂ by Seventh Stm'ngm is another commercial program that provides audio
analysis tools to help musicians perform manual music transcriptions rather than automat-
ically extracting note events from the input audio signal. The graphical interface provides
a spectrum display that highlights peaks in the frequency domain and allows the user to
control the playback speed without modifying the pitch content of the audio file. A thor-
ough list of polyphonic transcription and transcription aid programs can be found on the
Seventh String websitd™

For guitar tablature arrangement, Guitar Pro is a popular desktop application for edit-
ing guitar tablature which allows users to import a MusicXML or [MIDIlfile and the software

will automatically produce a guitar tablature arrangement for the sequence of input notes.

Thttp://www.guitarmaster.co.uk

8http://www.celemony.com/cms/index.php?id=products_editor

Inttp://www.celemony.com
Whttp://www.seventhstring.com/xscribe
Uhttp://www.seventhstring.com
P2http://www.seventhstring.com/resources/transcription.html
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Chapter 3

Robotaba Guitar Tablature

Transcription Framework

HE PREVIOUS CHAPTER demonstrated that a large number of polyphonic transcrip-
Ttion and guitar tablature arrangement algorithms have been proposed. However, no
frameworks have been developed to facilitate the connection of polyphonic transcription
and guitar tablature arrangement algorithms to produce a start-to-finish automatic guitar
tablature transcription system. Moreover, after a new algorithm is developed, evaluated,
and published in a conference or journal, the code has no immediately available vessel to
be used by the large community of guitarists on the Internet.

To facilitate the creation of guitar tablature transcription web applications in which
polyphonic transcription and guitar tablature arrangement algorithms can be embedded, a
web-based guitar tablature transcription framework has been designed and implemented.
A software framework is a reusable platform that allows developers to easily implement and
extend the standard structure of an application. Using a framework, developers can focus
on algorithmic design instead of focusing on low-level implementation details of the appli-
cation. A good metaphor for a software framework is scaffolding. Suppose a construction
crew shows up to work on a building and the scaffolding is already constructed for them.
They immediately begin work on the building instead of constructing the scaffolding, an
important task that needs to be done before work can begin but detracts from the time

and energy spent on the actual project.
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The implemented web-based guitar tablature transcription framework, entitled Rob-
otaba, is written in the Python programming language. The framework is open source
and version controlled using a git repository[] As a proof of concept, a state-of-the-art
polyphonic transcription algorithm and a guitar tablature arrangement algorithm have
been implemented and embedded in a web application using the Robotaba transcription
framework.

This chapter will describe the design and implementation of Robotaba (Section

and the use of this framework to create a guitar tablature transcription web application

(Section [3.2).

3.1 Framework Design

The preceding chapter formally described the guitar tablature transcription task as a func-
tion that can be decomposed into two independent functions: a polyphonic transcription
function and a guitar tablature arrangement function. Guitar tablature transcription is
then performed by applying the guitar tablature arrangement function to the output of
the polyphonic transcription function. Emulating this structure, Robotaba is composed of
three modules: a polyphonic transcription module, a guitar tablature arrangement mod-
ule, and a guitar tablature engraving module. The architecture of Robotaba is displayed
in Figure [3.1] Given an input audio file, the polyphonic transcription module generates a
symbolic music file containing estimates of the note events occurring in the audio record-
ing. Given an input symbolic music file containing a sequence of note events, the guitar
tablature arrangement module calculates and appends a guitar string and fret combination
to each encoded note event. The guitar tablature engraving module is used to display
tablature encoded in a symbolic music file in the web browser.

From this modular design arises three benefits: first, the polyphonic transcription,
guitar tablature arrangement, and guitar tablature engraving modules can be used inde-
pendently or together. Used independently, an input file is sent directly to a module for
processing, which returns a result instead of passing the output to the next module in the
workflow. Using each module in sequence, guitar tablature can be generated from an input
audio file and displayed in the web browser. Second, the modular design facilitates algo-

rithm interchangeability. Assuming an algorithm produces valid output, it can be plugged

"http://github.com/gburlet/robotaba
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Fig. 3.1: Architecture of the Robotaba framework.

into a module without disturbing the functionality of surrounding modules. As a result,
the transcription framework can accommodate new state-of-the-art polyphonic transcrip-
tion or guitar tablature arrangement algorithms without substantial changes to the web
application. Third, the use of a single symbolic music file format for data interchange be-
tween modules promotes polyphonic transcription and tablature arrangement algorithms
to adhere to a common interface. Robotaba uses the 2012 release of the music encoding
initiative (MEI)—an extensible markup language (XMI) file format that encodes symbolic
music notation in a hierarchical fashion (Hankinson et al. 2011]).

The interaction between Robotaba modules required to generate a tablature arrange-
ment from an audio recording and display the resulting tablature in the web browser is
displayed in Figure as a unified modeling language (UML) sequence diagram (Fowler
2003). The function and proper interpretation of [UMI sequence diagrams are explained in
Appendix In the presented [UML sequence diagram, the PitchDetect object represents
the polyphonic transcription module, the Tabulate object represents the guitar tablature
arrangement module, the Engraver object represents the guitar tablature engraving mod-
ule, and the Transcription object essentially acts as a conductor who enforces the sequence
of operations required to transcribe tablature from a guitar recording. To begin the tran-
scription process, a message is passed to the Transcription object along with an audio
file to be transcribed. The Transcription object forwards this message to the PitchDetect
object, which is responsible for executing the polyphonic transcription algorithm on the
audio recording and returning the resulting symbolic music file to the Transcription ob-
ject. A message is subsequently passed to the Tabulate object, which is responsible for

executing the guitar tablature arrangement algorithm on the provided symbolic music file.
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The Tabulate object then requests the Engraver object to display the generated tablature
arrangement in the web browser, and subsequently returns the resulting symbolic music

file to the Transcription object, ending the sequence of interactions.

: Transcription : PitchDetect : Tabulate : Engraver

transcribe(audio)

I

|

|

|

|
) |
polyphonicTranscription(audio) >

meiPitch
é ______________
L
|
arrange Tablature(meiPitch) -~
. - engrave(meiTab,

| grave( ) >

|

|

|

|

|

|

|
| |
| |
! |
meiTab |
[ -———— - - s mm—— = — I
meiTab | |
<€------------ I
— |
|
|
|

Fig. 3.2: UML sequence diagram displaying the interaction of modules within the Rob-
otaba framework to produce a guitar tablature arrangement from an audio recording.

Alternatively, the Transcription object may be circumvented to perform polyphonic
transcription and guitar tablature arrangement independently. To perform the task of
polyphonic transcription only, the audio file is sent directly to the PitchDetect object for
processing. To perform the task of guitar tablature arrangement only, a symbolic music
file is sent directly to the Tabulate object for processing. To perform the task of guitar
tablature engraving only, a symbolic music file is sent directly to the Engraver object for

processing.
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3.1.1 User Interface

A user interface is provided to allow the user to choose a transcription workflow and enter
processing parameters. Four workflows are available to the user: a polyphonic transcription
workflow, a guitar tablature arrangement workflow, a digital tablature engraving workflow,
and a guitar tablature transcription workflow. Each of these workflows require the user to

upload a file to be processed and to enter additional information, described in this section.

Music Metadata

Robotaba requires the user to input metadata for uploaded files so that they may be
catalogued and searched. The metadata required for a musical work includes the title,
artist, and copyright holder. When uploading an audio file, a web form requests the user
to manually enter the appropriate metadata. When uploading a symbolic music file, which
often provides metadata for the musical work encoded within, the file is parsed to retrieve
the appropriate information. If this information is absent, a web form requests the user to
enter the appropriate metadata, which is then injected into the uploaded symbolic music
file. Furthermore, for each [MEIl file produced at subsequent steps in the selected workflow,

the user-entered metadata is automatically injected into the symbolic music file.

Guitar Model

The polyphonic transcription module and guitar tablature arrangement module, described
in the following sections, make use of specific parameters of the user’s guitar. To gather
this information, Robotaba provides a form for the user to specify the number of frets,
the tuning, and capo position of their guitar. The function of a guitar capo is explained
in Appendix [A] The tuning is specified by entering the pitch name and octave of each
open-string pluckﬂ of the guitar.

3.1.2 Polyphonic Transcription Module

The polyphonic transcription module is responsible for estimating the note events occurring
in an input audio file. The architecture of the polyphonic transcription module is illustrated

in Figure [3.3] Specifically, the polyphonic transcription module accepts an audio file as

2An open-string pluck refers to a pluck of a string without depressing any frets.
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input. This audio file is passed to the polyphonic transcription algorithm embedded in the
module. The polyphonic transcription algorithm is responsible for generating an [MEI file
containing the estimates of note events occurring in the input audio file. Any polyphonic
transcription algorithm that generates an[MEIl file which encodes the estimated note events
may be inserted into the polyphonic transcription module. The resulting symbolic music file
is optionally post-processed to ensure the estimated pitches of the note events are capable
of being performed on the user’s guitar. When the polyphonic transcription module is
used independently, the user is able to toggle post-processing of the symbolic music file.

Otherwise, post-processing is enabled by default.

Polyphonic Transcription Module

% S ¥ Snei
i ﬂ | ey
Polyphonic ! Post-processing | | Symbolic
Symbolic | Algorithm ! | Music File
Music File ' )

Audio

Transcription

Algorithm

Fig. 3.3: Architecture of the polyphonic transcription module.

A significant advantage of optionally post-processing the output symbolic music file is
that polyphonic transcription algorithms that are not guitar-specific may be embedded in
the polyphonic transcription module. Furthermore, guitar-specific polyphonic transcription
algorithms may also benefit from having access to parameters of the specific guitar which

is producing the sound.

Symbolic Music File Post-processing

If post-processing is enabled, the polyphonic transcription module imposes two constraints
on the output symbolic music file. First, the estimated pitches of note events that are
outside of the range of the user’s guitar should be discarded or transposed. The user is able
to select whether notes are to be discarded or transposed. If the erroneous note events are
to be discarded, they are simply removed from the symbolic music file. If the erroneous

note events are to be transposed within range of the guitar, some calculations must be
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performed. To calculate the lower pitch bound of the guitar, the pitch produced by an
open pluck of the thickest gauged string is retrieved from the tuning parameter provided
by the user. This pitch is then raised by ¢ semitones, where ¢ € N describes the capo
position on the guitar. A capo position of zero denotes that no capo is used. To calculate
the upper pitch bound of the guitar, the pitch produced by an open pluck of the thinnest
gauged string is retrieved from the tuning parameter provided by the user. This pitch is
then raised by n semitones, where n € NT describes the number of frets on the guitar. The
note transposition algorithm systematically lowers or raises the octave of the note until it
resides within the pitch range of the user’s guitar.

Second, the degree of polyphony of the remaining note event estimates must be limited
to six—the maximum possible polyphony of a standard guitar. To enforce this, the post-
processing algorithm orders the note event estimates within a chord by ascending pitch.
Starting from the highest pitch, the number of notes necessary to yield a polyphony less

than or equal to six are discarded.

3.1.3 Guitar Tablature Arrangement Module

The guitar tablature arrangement module is responsible for assigning a guitar string and
fret combination to each note occurring in an input symbolic music file. The architecture of
the guitar tablature arrangement module is illustrated in Figure[3.4] Specifically, the guitar
tablature arrangement module accepts an [MEI file as input, which is first pre-processed
to ensure the pitches of the encoded note events are capable of being performed on the
user’s guitar. This pre-processing step is mandatory and follows the same algorithm as the
post-processing step used in the polyphonic transcription module described in the previous
section. The resulting file is passed to the guitar tablature arrangement algorithm
embedded in the module. Any guitar tablature arrangement algorithm that generates an
[MEIl file that encodes the string and fret combinations required to perform the sequence of

input notes may be inserted into the guitar tablature arrangement module.

3.1.4 Guitar Tablature Engraving Module

The guitar tablature engraving module is responsible for parsing an [MEI file containing a
sequence of note events that have each been assigned a guitar string and fret combination

and displaying the encoded tablature in the web browser. The architecture of the guitar
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Fig. 3.4: Architecture of the guitar tablature arrangement module.

tablature engraving module is illustrated in Figure [3.5] The structure of this module
differs from the polyphonic transcription and guitar tablature arrangement modules in
that a tablature rendering algorithm does not have to be implemented and inserted into
the module. In order to display tablature in the web browser, this module uses the digital
guitar tablature engraving library AlphaTab to render tablature symbols on the [HTMI]
canvas element] The most significant advantage of rendering tablature on the [HTMI]
canvas instead of using alternative multimedia display technologies such as Adobe Flash is

that the majority of available web browsers, operating systems, and devices are capable of
viewing the [HTMI] canvas.

( p - |
Guitar Tablature Engraving Module B I ———0-—- I
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Fig. 3.5: Architecture of the guitar tablature engraving module.

AlphaTab parses drawing scripts called AlphaTex, in which structured keywords inform
the rendering engine about the contents of the tablature and how it should be displayed.

3http://www.alphatab.net
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When an [MEIl file is passed to the tablature engraving module, the contents of the file are
converted to an AlphaTex drawing script to be rendered by AlphaTab in the web browser.
Figure [3.6] illustrates an excerpt of an [MEI file that is displayed using AlphaTab.

éEJﬂJdeﬂﬂJde

Fig. 3.6: An excerpt of an MEI encoding of “Enter Sandman” by Metallica, displayed
using the AlphaTab digital guitar tablature engraving library.

3.1.5 Technical Details

Now that the design of the transcription framework and its modules have been presented,
this section will describe the technical details and mechanics of Robotaba. Specifically, the
underlying relational database and details regarding the implementation of the framework

will be discussed.

Database Schema

Robotaba maintains a relational database that is responsible for storing references to up-
loaded audio and symbolic music files as well as the corresponding metadata for these files.
An index is constructed on the title and artist fields in order for the user to rapidly query
files uploaded to or generated by the web application. Although the metadata for a mu-
sical work is often encoded within a symbolic music file, this information is replicated in
the database. At the expense of data redundancy, queries will execute faster because the
metadata encoded in each symbolic music file on the hard disk does not have to be searched
at query time. The database also encodes the relationship between input and output files.
In other words, the database encodes the workflow or path of modules the input file was

sent through to generate the output file. The database is also responsible for recording a
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time stamp when a module begins processing an input file and when the module returns
an output file. With this data, researchers can gather statistics regarding the efficiency of
their algorithms on each input file processed and compare these runtime statistics to other
algorithms.

The database schema for Robotaba is presented in Figure |3.7] as an entity relation-
ship (ER]) diagram (Chen 1976). The purpose and proper interpretation of an [ERI dia-
gram is explained in Appendix [B.2l The [ERI diagram depicts eight interrelated entities.
The Transcription entity models a complete guitar tablature transcription. This in-
volves sending an input audio file to the polyphonic transcription module (modelled by the
PitchDetect entity), and passing the output symbolic music file to the guitar tablature
arrangement module (modelled by the Tabulate entity). An audio file is represented by
the Audio entity; a symbolic music file in the file format that contains note event
estimates is represented by the MeiPitch entity; and a symbolic music file in the [MEI]
file format that encodes notes with assigned string and fret combinations is represented by
the MeiTab entity. Each of these files must be associated with metadata describing the
musical work, represented by the MetaMusic entity. The GuitarModel entity represents
a model of the user’s guitar.

Each entity has attributes which provide information about the entity. Attributes as-
sociated with the GuitarModel entity describe the number of frets, tuning, and capo
position of the user’s guitar. The Audio, MeiPitch, and MeiTab entities have at-
tributes that encode the path to the physical file on the hard disk and the time in which
the file was uploaded. Attributes associated with the MetaMusic entity describe the ti-
tle, artist, and copyright metadata of a musical work. The PitchDetect entity has an
attribute sanitize, which describes whether the symbolic music file post-processing al-
gorithm should discard, transpose, or leave notes outside of the range of the user’s guitar.
Similarly, the Tabulate entity has the same attribute, although it describes whether the
symbolic music file pre-processing algorithm should discard or transpose notes.

To describe the relationship between entities, crow’s foot notation is used. An expla-
nation of crow’s foot notation is provided in Appendix A discussion of the important
entity relationships follows. The Transcription entity must invoke one PitchDetect
entity followed by one Tabulate entity. However, the inverse relationship differs. The
PitchDetect and Tabulate entities do not necessarily have to be invoked by the

Transcription entity, since the polyphonic transcription and guitar tablature arrange-
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ment modules may be used independently. The PitchDetect entity processes exactly
one audio file and generates exactly one [MEI file containing note event estimates repre-
sented by the MeiPitch entity. The Tabulate entity processes exactly one [ME] file
containing a sequence of note events and generates exactly one file that encodes the
produced guitar tablature arrangement.

Relationships may also have attributes. For example, the processes relationship con-
necting the PitchDetect and Audio entities has an attribute that describes the time
that processing of the audio file began. As well, the generates relationship connecting the
PitchDetect and MeiPitch entities has an attribute that describes the time that pro-
cessing finished and the output symbolic music file was generated. By subtracting these
two time stamps, the runtime of the polyphonic transcription module on the input audio
file can be derived. This structure is mirrored for the Tabulate entity. Therefore, a
similar method is employed for calculating the runtime of the guitar tablature arrangement

module on an input symbolic music file.

Framework Implementation

Robotaba is implemented using Django, a web framework written in Pythonﬁ The frame-
work facilitates rapid development of database-driven web applications by providing an
“object-relational mapper” that translates Python classes called models into structured
query language (SQL]) commands that automatically create the proper database tables.
Each entity in Figure is implemented as a Django model. The attributes of an entity
are implemented as member variables of the Django model. Moreover, the relationships
between entities can be enforced by specifying these relationships in the Django model. An
example of a Django model that represents the Audio entity is displayed in Listing |3.1]|
By virtue of using the Django web framework, Robotaba also provides a graphical user
interface for administrators of the web application to view and edit the contents of the
database without requiring knowledge of [SQL]

Another important aspect of the Django web framework are Django views. Django views
are functions that return a response to the client web browser and are called when
a specific uniform resource locator (URLI) is accessed. Within the function, the database

can be queried or a server-side process can be triggered. Robotaba uses Django views to

http://www.djangoproject.com
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Listing 3.1: Django model for the Audio entity

class Audio (models.Model) :
fk_mid = models.ForeignKey (MetaMusic)
upload_ts = models.DateTimeField (auto_now_add=True)

audio_file = models.FileField (upload_to="audio")

send uploaded files through its modules. For example, when accessing the relative [URIT}
“/transcribe/<aid>/" in Robotaba, a function is called that passes the uploaded au-
dio file with the database identifier <aid> to the polyphonic transcription module to begin
the guitar tablature transcription process. Similar functionality exists for the polyphonic

transcription, guitar tablature arrangement, and guitar tablature rendering modules.

Symbolic Music Encoding Transformations

To interface with commercial music applications, such as Guitar Pro, that are not capable of
reading [MEIl files, a program for converting [MEI to MusicXML files and MusicXML to [MEI]
files has been written in the Python programming languageﬂ Although both MusicXML
and [MEI| encode music symbols using [XMI] MusicXML adheres to a different encoding
schema than [MEIl As the structure of these files can be quite complex and there are many
different elements and relationships to account for, only a subset of elements are translated
between the file formats.

Using the implemented file format converter, Robotaba allows symbolic music files to be
uploaded or downloaded in both the [MEI and MusicXML file format. When a MusicXML
file is uploaded, it is immediately converted to an [MEI file before being saved on the hard
disk and passed to a module in Robotaba for processing. Similarly, when a symbolic music
file is requested for download in the MusicXML file format, the [MEIl file on the hard disk
is converted to a MusicXML file and returned to the user. By allowing MusicXML files
to be uploaded, tablature that has been manually entered into the Guitar Pro desktop
application can be exported in MusicXML and uploaded to a web application that uses the
Robotaba framework, where it may be displayed and shared online. Moreover, tablature
arrangements that have been produced by a web application that uses Robotaba can be
downloaded as a MusicXML file, edited in Guitar Pro, and re-uploaded to the website.

Shttp://github.com/gburlet/musicxml-mei-conversion
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3.2 Guitar Tablature Transcription Web Application

Using the Robotaba framework, a web application for guitar tablature transcription has
been developed that incorporates the polyphonic transcription algorithm and the guitar

tablature arrangement algorithm described in this section.

3.2.1 Polyphonic Transcription Algorithm

A state-of-the-art polyphonic transcription algorithm (Zhou and Reiss 2008)) has been im-
plemented. This algorithm was selected for various reasons. First, this algorithm ranked
highest out of the polyphonic transcription algorithms evaluated in the on the pi-
ano dataset from 2007-2012, when considering the accuracy of pitch and note onsets only.
Second, the authors claim to have tuned underlying parameters of this algorithm according
to a dataset composed of both piano and guitar recordings (Zhou and Reiss 2008])). Third,
this algorithm is capable of performing polyphonic transcriptions in realtime. Finally, the
source codd’| of this algorithm is provided under the terms of the GNU General Public Li-
cense, meaning the source code can be used, modified, and redistributed without financial
compensation.

The polyphonic transcription algorithm developed by Zhou and Reiss (2008) is dis-
tributed as a Vamp plugin written in the C++ programming language. A Vamp plugin[’]
is an audio feature extraction module that can be “plugged into” a host application such
as Sonic Visualiserf| Sonic Annotator’] or Audacity{} The host application provides a
graphical user interface or command line tool to allow an audio file to be imported and
parameters of the plugin to be set. The host application is responsible for preprocessing
and partitioning the input audio signal into frames, which is then sent to the plugin for
analysis and feature extraction. The host is also responsible for exporting the features
produced by the plugin to a standard file format.

In order to embed the polyphonic transcription Vamp plugin into Robotaba, the source

code was manipulated in various ways. First, the plugin was divorced from the host to

Shttp://www.vamp-plugins.org/plugin-doc/qm-vamp-plugins.html#
gm-transcription
'http://www.vamp-plugins.org
8http://www.sonicvisualiser.org
dnttp://omras2.org/SonicAnnotator
Ohttp://audacity.sourceforge.net
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produce a standalone application. To access the standalone application from Robotaba,
a Python interface was created using the Boost.Python library.ﬂ The Boost.Python li-
brary allows C++ classes, functions, and data structures to be wrapped and subsequently
accessed from Python. These wrappers are referred to as “Python bindings”. To reintro-
duce the functionality of the host application, an open-source Python module has been
implemented that sets parameters used by the polyphonic transcription algorithm, imports
an audio file, sends the audio data to the Python bindings of the polyphonic transcrip-
tion Vamp plugin, and generates an [MEI document containing the resulting note event

estimates[™]

Symbolic Music Encoding

To generate the [MEI document containing the note event estimates, the Python bindings
of libmei are used. Libmei is an open-source C++ library for reading and writing
ﬁles.ﬁ The resulting document is then presented to Robotaba, which optionally post-
processes the encoded note events.

In regard to the structure of the document, the 2012 release of the [MEI is used
to encode the note event estimates. Being an [XMI] file, the [MEI document inherently
encodes musical events in a hierarchical manner. For example, a note may be a member
of a chord, which is a member of a staff, and so forth. Another important feature of [MEI]
is the ability to relate musical elements in the document to their temporal location in an
external audio file through the specification of timestamps. This relationship is encoded
using the <t imeline> element. An example of a note and a chord referencing timestamps

in an external audio file is presented in Listing 3.2,

3.2.2 Guitar Tablature Arrangement Algorithm

An open-source guitar tablature arrangement algorithm named DarwinTabE has been de-
veloped, written in the Python programming language, and embedded in the Robotaba
guitar tablature arrangement module. DarwinTab uses a to produce tablature ar-

rangements of notes encoded in an [ME]l file. A was selected for various reasons. First,

Hhttp://www.boost .org/libs/python/doc
2Zhttp://github.com/gburlet/zhoutranscription
Bhnttp://ddmal .music.mcgill.ca/libmei
Mhttp://github.com/gburlet/darwin-tab
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Listing 3.2: MEI example of a note and a chord referencing timestamps in an audio file.

<timeline id="timeline" avref="/path/to/audiofile.wav" origin="when_note">

<when id="when_note" absolute="0.00"/>
<when id="when_chord" absolute="0.04"/>

</timeline>

<!-- in the score encoding —-->
<note id="note_1" pname="C" oct="4" when="when_note"/>
<chord id="chord_ 1" when="when_chord">
<note id="note_2" pname="D" oct="4"/>
<note id="note_3" pname="E" oct="4"/>
</chord>

have been shown to consistently yield playable tablature even when departing from the
structure of the published tablature (Tuohy and Potter 2005)). Second, a[GAlis a stochastic

search algorithm and is therefore capable of producing multiple tablature arrangements for

the same input file. Therefore, users of the web application have the option of generating
an alternate tablature arrangement by reprocessing the input symbolic music file. Finally,
the fitness function of the implemented can also be used in the algorithm evaluation
process to compare guitar tablature arrangements, since the fitness function quantitatively
defines metrics that characterize a “good tab”.

To begin, the initial population of the must be formed. The initial population of
the consists of a set of candidate tablature arrangements (chromosomes) that are valid,
but not necessarily possible or easy to perform. The structure of a chromosome for an input
music score with one measure is illustrated in Figure [3.8] The chromosome consists of a

sequence of genes. Each gene represents a pluck or a strum of the guitar.

Based on the work by |Allen and Goudeseune (2011]), which addresses instrument tuning

in the guitar fingering problem, DarwinTab uses a guitar-specific model to produce candi-
date tablature arrangements that take into consideration the number of frets, tuning, and
capo position of the guitar on which the tablature will be performed. The guitar-specific
model is responsible for calculating a set of candidate string and fret combinations for each
note encoded in the input symbolic music file. The candidate string and fret combinations
for a single note are calculated by first discerning the pitch of an open pluck of each string

on the guitar, which is defined by the tuning of the guitar. If a capo is placed on fret
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|
a0 Chromosome 3.2 512 |
|
Y [ ]
|
b e e e e e e e e e e e e e e e e e e e e e e e e = e e = e e = e e = e e = e e = e e = = = = = = = = = = = =
Gene: 1 2 3 4 5 6 7 8 (string, fret)

Fig. 3.8: The structure of a chromosome for a sample music score. The chromosome
contains a sequence of eight genes, each consisting of a set of string and fret combinations.

number ¢ € N, then ¢ semitones are added to the pitch of an open pluck of each string.
Then for each fret f € {N : f < n} on the fretboard, such that n € NT is the number
of frets on the guitar, f semitones are added to the pitch of each open-plucked string. If
any of the resulting pitches match the pitch of the note event being processed, the string
and fret combinations are added to the set of candidate fretboard positions. To produce a
candidate tablature arrangement for the input music score, a string and fret combination
is randomly chosen from the set of candidate string and fret combinations for each note.

Mimicking the process of natural evolution, the evolves the initial population of
candidate tablature arrangements by selecting fit individuals from the population for mat-
ing. There are many possible methods for mate selection: Tuohy and Potter (2005 2006¢)
use binary tournament selection, where two pairs of individuals are randomly selected from
the population and the most fit from each pair are mated; Rutherford (2009) uses roulette-
wheel selection, where the probability of an individual being selected is proportional to its
fitness; and [Tuohy and Potter (2006a)) use rank-based selection, which selects individuals
in the population based on its fitness rank with respect to other individuals. DarwinTab
uses roulette-wheel selection to choose mates from the current population to form the suc-
cessor population. Using conventional genetic crossover techniques, the selected parents
are optionally mated with a certain probability. Otherwise, no crossover occurs and the
children are genetic clones of their parents.

DarwinTab evolves tablature for a given number of generations (iterations) before ter-
minating. In the final generation, there exists n,,, € N tablature arrangements that have
evolved from the initial population consisting of n,,, candidate tablature arrangements.

For the purposes of the transcription web application, which expects a single tablature



66 Robotaba Guitar Tablature Transcription Framework

arrangement to be returned, the candidate tablature arrangement with the highest fitness
value is selected. The formula for calculating the fitness of a tablature arrangement is
outlined in the following section.

DarwinTab has many operating parameters to control the evolutionary process of the
underlying [GAl These parameters include the population size, the maximum number of
generations to run, the probability of mating, the number of genetic crossover points, and
the probability of gene mutation. DarwinTab does not include note ornamentations, such

as guitar bends and slides, in the resulting tablature.

Fitness Function

The fitness function of a is paramount to the performance of the genetic search process
because it quantitatively defines the properties that contribute to a “good tab”. Following
the study of the left-hand movements of professional guitar players (Heijink and Meu-
lenbroek 2002), DarwinTab incorporates into its fitness function the three biomechanical
complexity factors contributing to the performance difficulty of a tablature arrangement:
the position of the left hand on the guitar neck, the distance that the left hand must move
to accommodate note transitions, and the finger span required to perform chords. For
each note or chord in the input symbolic music score being processed, a difficulty score is
produced according to each complexity factor.

For the first complexity factor, Heijink and Meulenbroek (2002)) found that professional
guitarists favour hand positions near the beginning of the fretboard. Therefore, notes with
candidate string and fret combinations where the fret number is greater than seven are
penalized to encourage tablature arrangements near the beginning of the fretboard. This
fret number was chosen subjectively, according to familiarity with the instrument.

The second complexity factor emphasizes that arrangements with large fretwise-distances
between consecutive notes are more difficult to perform. Therefore, for two consecutive
notes with fret numbers fi, fo € {N: f < n} such that n € N* is the number of frets on
the guitar, the difficulty score is calculated by the formula

abs (f1 — fa). (3.1)
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For a note played by depressing fret number f, followed by a chord comprised of multiple

notes with the set of fret numbers g, the difficulty score is calculated by the formula

abs <f B <maX(g) ; min(a))) . (3.2)

The third complexity factor ensures that chords that require excessively large finger

spans are penalized. Therefore, for a chord comprised of multiple notes with the set of fret

numbers ¢, the difficulty score is calculated by the formula
max(g) — min(g). (3.3)

The difficulty scores for each complexity factor are aggregated across all of the notes
in the symbolic music score being processed to produce a vector ¢ € R3? of difficulty scores
for the entire piece. These difficulty scores are weighted and summed to produce a final

difficulty score d € R™ for the tablature arrangement, such that

3
d:w~c:2wici, (3.4)
i=1

where the vector w € R? contains hand-tuned weights for each difficulty score. From the

final difficulty score, the fitness f € R™ of an individual is calculated using the formula

1

I=1ra

(3.5)

The goal of the is to search for a tablature arrangement that minimizes the difficulty
score d, or equivalently, maximizes the fitness f.

The difficulty score associated with performing each note or chord in a given symbolic
music score could be precomputed to reduce the number of computations required to evalu-
ate the fitness function of a candidate tablature arrangement. This could be accomplished
by creating a directed weighted graph, in which each vertex represents a candidate string
and fret combination for a note or chord. Vertices that correspond to adjacent notes or
chords in the symbolic music score are connected by an edge. The weight of an edge between
two vertices denotes the difficulty score associated with the transition to, and performance

of, the latter note or chord on the guitar. The fitness of a candidate tablature arrangement
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can then be computed by tracing a path through the constructed graph that corresponds to
the sequence of string and fret combinations occuring in the candidate tablature arrange-
ment, aggregating the edge weights along this path to attain the final difficulty score d,
and using Equation [3.5]

Symbolic Music Encoding

After the has finished evolving the tablature population, the tablature arrangement
with the highest fitness is exported as an [MEI document. To encode the tablature arrange-
ment, a string and fret combination is appended to each <note> element encoded in the
input [MET file. Each gene in the chromosome saves a reference to the unique identifier
of its corresponding <note> element in the input file. For each gene, the Python
bindings of libmei are used to lookup and attach the calculated string and fret combination
to the <note> element in the [MEI document with the appropriate identifier. A sample
tablature arrangement is displayed in Listing for the notes encoded in the input
file presented in Listing

Listing 3.3: MEI example of notes with appended string and fret information.

<note id="note_1" pname="C" oct="4" tab.string="2" tab.fret="1"/>
<chord id="chord_ 1">
<note id="note_2" pname="D" oct="4" tab.string="2" tab.fret="3"/>
<note id="note_3" pname="E" oct="4" tab.string="1" tab.fret="0"/>

</chord>
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Chapter 4
Transcription Evaluation

The previous chapter presented the guitar tablature transcription framework Robotaba and
its use in the creation of a web application that utilizes a polyphonic transcription algo-
rithm in conjunction with a guitar tablature arrangement algorithm to generate and display
tablature in the web browser. As a framework, Robotaba itself is not capable of performing
guitar tablature transcriptions; thus, the framework itself can not be quantitatively evalu-
ated. However, the implemented web application serves as a testament to the utility of the
framework.

This chapter will focus on the procedure for evaluating the implemented web applica-
tion, specifically the polyphonic transcription and guitar tablature arrangement algorithms
embedded within. Given that the modular design of Robotaba allows the polyphonic
transcription and guitar tablature arrangement algorithms to be used independently, the
algorithms will also be evaluated independently. The polyphonic transcription algorithm
will be evaluated by comparing the output of the algorithm on several synthesized guitar
recordings to a dataset of correct polyphonic transcriptions. The guitar tablature arrange-
ment algorithm will be evaluated by comparing the output of the algorithm on several
symbolic music scores to a dataset of acceptable guitar tablature arrangements. Several
experiments are proposed to evaluate these algorithms, the results of which are presented
and discussed in the following chapter.

The structure of this chapter is as follows: Section will present the datasets used
for evaluating the algorithms. Section [4.2] and Section will describe the experimental



70 Transcription Evaluation

methodology and metrics used in the evaluation of the polyphonic transcription and guitar

tablature arrangement algorithms, respectively.

4.1 Description of Datasets

Datasets that provide correct or acceptable output alongside the input data are impor-
tant for algorithm evaluation and for the training and validation of models formed by
supervised learning algorithms. In the field of machine learning and [MIR] such a dataset
is often referred to as a ground-truth dataset. This section will present the ground-truth
datasets used for evaluating the polyphonic transcription and guitar tablature arrangement

algorithms.

4.1.1 Polyphonic Transcription Dataset

For the purposes of evaluating polyphonic transcription algorithms which output the pitch,
onset time, and duration of each estimated note event in an input guitar recording, a
ground-truth dataset should contain a set of audio recordings that are each paired with a
list of the note events occurring in the recording (Bay et al. 2009)).

Currently there does not exist an ubiquitous ground-truth dataset for polyphonic guitar
transcription as there does for polyphonic piano transcription (Poliner and Ellis 2006). This
is largely due to the fact that a Yamaha Disklavietﬂ can easily create real piano recordings
that are aligned with ground-truth note events (Benetos et al. 2012)). However, several
datasets have been compiled for monophonic and polyphonic guitar transcription. For
monophonic guitar transcription, the RWC Musical Instrument Sound Data Base (Goto
et al. 2003)) provides isolated recordings of individual plucks of various guitars with different
dynamic levels. Although the number of recorded samples is relatively large, the recordings
are strictly monophonic. Another dataset of isolated guitar pluck recordings was compiled
by Abesser (2012)), which was gathered from the larger dataset compiled by |Stein et al.
(2000) consisting of guitar pluck recordings with and without digital audio effects. In this
dataset, the monophonic recordings were also combined to produce polyphonic recordings;
however, these recordings only spanned the first twelve frets of the guitar. Other projects

have used synthesis algorithms to generate polyphonic audio signals that represent single

LA Disklavier is an acoustic piano that is mechanically operated by solenoids, which are typically
controlled by MIDI input.
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guitar chords (Gagnon et al. 2004) or have created small datasets of recordings of isolated
guitar chords (Bonnet and Lefebvre 2003).

The lack of a ground-truth dataset for the polyphonic transcription of full-length guitar
songs motivates the compilation of a new dataset. Toward the creation of a ground-truth
dataset for polyphonic guitar transcription, this section will present a semi-automated
method for harvesting the wealth of community-moderated and publicly available data
present on guitar tablature websites. Using the proposed dataset creation method, a new

ground-truth dataset for polyphonic guitar transcription is compiled and presented.

Dataset Creation Methodology

The semi-automated dataset creation method presented in this section focuses on the pro-
cessing of Guitar Pro symbolic music files. Similar to other symbolic music notation file
formats, the Guitar Pro file format is capable of encoding the metadata, tempo informa-
tion, and symbolic music data of a musical work. The symbolic music data is organized
into instrument tracks, wherein the pitch and fretboard location of notes are encoded. Due
to the proprietary file format, the exact structure of information encoded in the symbolic
music file is unknown. As such, the raw file can not be parsed by third-party applications to
automate processing of these files. Moreover, there is no application programming interface
to manipulate an encoded file and no command line tools available for batch processing
of Guitar Pro files. Consequently, the graphical user interface of the Guitar Pro desktop
application must be used to manipulate the downloaded files and export the encoded data
into other file formats.

The Guitar Pro desktop application has many features that make it suitable for musical
dataset creation. The desktop application allows Guitar Pro files to be synthesized using
different instrument models and exported as an audio file. For instance, one can select
a specific guitar model, an amplifier model, and a series of digital audio effects to mimic
the sound of a variety of guitar configurations. The export function is also capable of
translating the information encoded in the proprietary data format to the MusicXML file
format. Furthermore, Guitar Pro supports a variety of different instruments apart from
the guitar. Without loss of generality, the same ground-truth dataset creation method
proposed in this section could be applied to other stringed instruments such as the bass

guitar.
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To form the ground-truth dataset for polyphonic guitar transcription, a set of Guitar
Pro files is first compiled. A plethora of manual tablature transcriptions in the Guitar
Pro file format are available on guitar tablature websites on the Internet, the most popular
website being www.ultimate—guitar.com (see Figure. Each Guitar Pro file is then
synthesized to create an audio file. Subsequently, a file listing the pitch, onset time, and
duration of notes occurring in the synthesized audio file is created. This file will be referred
to as the ground-truth file. The method of synthesizing and creating the ground-truth file
for a single Guitar Pro file is described in detail below.

Before synthesizing the audio, a Guitar Pro file must undergo several preprocessing
steps. Guitar Pro files often contain multiple instrument tracks, many of which are not
guitar tracks. Extraneous tracks containing instruments such as the bass guitar, drums,
and vocals are removed. Finally, all tempo, volume, and pan automations are removed
from the remaining guitar track. Removing the tempo automations ensures that the entire
song follows a constant tempo—a preprocessing step that is necessary for the calculation
of the onset time and duration of note events in the ground-truth file creation procedure
described at the end of this section.

To synthesize the preprocessed Guitar Pro file using the Guitar Pro desktop application,
a guitar model, amplifier model, and desired audio effects must first be selected. Guitar
Pro has a variety of presets that automatically select the guitar, amplifier, and audio effects
used for synthesis. Two such presets exist for clean guitar and distortion guitar.ﬂ The clean
guitar preset consists of a Stratocaster electric guitar model with single coil pickups, an
amplifier model with default settings, and no digital audio effects. The distortion guitar
preset consists of a Les Paul electric guitar model with humbucker pickups, an amplifier
with default settings, and a “Screamer Overdrive” guitar pedal with default settings for
the application of a distortion audio effect.

To create the ground-truth file, the Guitar Pro desktop application is used to export a
MusicXML file from the Guitar Pro file that was used to synthesize the audio file. From the
MusicXML file the tuning of the guitar, as well as the pitch, string and fret combination,
and temporal information of each note event can be obtained. This MusicXML file is
automatically processed by a program to gather and output the pitch, onset time, and
duration of notes in the symbolic music file. |[Nichols et al. (2009) developed a MusicXML

parser program written in Matlab, which was originally used to gather information from

2The terms clean guitar and distortion guitar are described in Appendix
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symbolic music scores for the purposes of finding patterns in the relationships between
melody, lyrics, and instrumentation.ﬁ The program parses a MusicXML file and returns the
pitch, start beat, and end beat of each note event present in the symbolic music encoding,
among other retrieved information. The pitch of the note event is explicitly encoded in the
MusicXML file; however, the start and end beat of a note event within the entire music
score requires some calculation. The start beat of a note is calculated by considering the
time signature of each measure and the beat duration of all previous notes and rests in the
score. The end beat of a note is calculated by adding the beat duration of the note to the
start beat of the note. Example output of the beat calculation algorithm for two measures

of music is illustrated in Figure [4.1
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Start Beat: 1 2 25 4 5 6 8 8.5
End Beat: 2 25 3 5 5.5 8 85 9

Fig. 4.1: Calculation of the start and end beat of each note event in an example music
score containing two measures.

Several changes were made to this program to generate a ground-truth file with the
desired format. First, the program was adapted to include notes that are part of chords
and to consider measures that repeat multiple times. Secondly, the start and end beat
calculated by the program for each note event were converted to the absolute onset and

offset time, respectively, of the note event in the corresponding audio file. The onset time

3http://www.music.informatics.indiana.edu/code/musicxml
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tonser N seconds is calculated using the formula

tonset = 60%;:5 +0.025, (4.1)
where b,,s: is the start beat of a note event, bpm is the constant tempo of the music
score in beats per minute, and the constant 0.025 is the amount of silence that Guitar Pro
prepends to each synthesized audio file. The offset time ¢, ¢ in seconds is calculated by
substituting the end beat b,y of a note event for bypse; in Equation . Finally, a text
file is generated for each symbolic music file processed by the modified MusicXML parsing
program. The text file contains a list of the onset times, offset times, and pitches of note
events occurring in the corresponding synthesized guitar recording.

Performing the described process on a set of Guitar Pro files results in a set of audio files
and a set of text files. The generated text files along with their corresponding synthesized

guitar recordings form the ground-truth dataset for polyphonic guitar transcription.

Dataset Details

Using the dataset creation process presented in the previous section, a ground-truth dataset
for polyphonic guitar transcription has been created. 75 Guitar Pro files were selected
from the Ultimate Guitar Top 100 listﬁ and from the Ultimate Guitar Fresh Tabs listﬂ.
The Ultimate Guitar Top 100 list sorts every Guitar Pro file uploaded to the website by
its rating—from one to five stars—and displays the top 100 files. The Ultimate Guitar
Fresh Tabs list is a catalogue of Guitar Pro files that have recently been uploaded to the
website and is sorted by number of hits (views). Only uploaded tablature with a five-star
rating agreed upon by at least ten unique users was considered for selection. Tablature was
selected on the basis of its musical genre, average degree of polyphony, and tempo, in order
to accumulate a set of pieces with a variety of different attributes. The majority of Guitar
Pro files were drawn from the Ultimate Guitar Top 100 list. Using the technique described
in the previous section, a ground-truth file was created for each selected Guitar Pro file.
The collected Guitar Pro files were then synthesized using the clean guitar and distortion
guitar presets in Guitar Pro. If the guitar track was originally intended to be performed by

an acoustic guitar, a Martin & Co. acoustic guitar with steel strings was used as the guitar

http://www.ultimate-guitar.com/top/?rating&filter=pro
Shttp://www.ultimate-guitar.com/tabs/index_guitar_pro.htm
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model instead of the guitar model assigned by the preset. It is hoped that providing a set
of distortion guitar recordings in the ground-truth dataset will stimulate the development
of polyphonic guitar transcription algorithms that are tuned to perform well on distortion
guitar recordings, since the distortion guitar effect is popular in many musical genres.

A detailed overview of the compiled ground-truth dataset is presented in Table of
Appendix [C] The dataset consists of 75 isolated guitar tracks; 125,192 note events; 30,914
chords; an average polyphony of 2.16; and an average tempo of 112 beats per minute. The
number of note events was calculated by counting the number of note elements occurring in
the 75 MusicXML representations of the selected Guitar Pro files. Similarly, the number of
chords was calculated by counting the number of chord elements occurring in the MusicXML
files. The average polyphony was calculated by dividing the number of note events by the
number of chords plus the number of note elements that are not part of a chord. The average
tempo was calculated by adding the tempos encoded in the metadata of the MusicXML files
and dividing by the number of pieces in the dataset. There are approximately five and a half
hours of clean guitar recordings and five and a half hours of distortion guitar recordings,
yielding approximately eleven hours of audio in total. The musical genre for each song was
assigned by considering the genre of the artist on www.wikipedia.org. The distribution
of the genre of songs in the ground-truth dataset is illustrated in Figure[4.2] The role of the
isolated guitar track (lead or rhythm) was subjectively chosen after listening to the track

in its entirety.

4.1.2 Guitar Tablature Arrangement Dataset

In the evaluation of guitar tablature arrangement algorithms, a ground-truth dataset should
contain a set of symbolic music scores that encode a sequence of notes or chords along with
an appropriate string and fret combination for each note in the score. Similar to other
problems in the field of [MIR] such as mood classification, genre classification, or structural
segmentation where the ground-truth annotations are open for interpretation, the ground-
truth tablature for a music score is also open for interpretation. There are often several
solutions to the tablature arrangement problem and the adequacy of any given arrangement
is also subject to the stylistic preferences of the performer.

Similar to the problem of polyphonic guitar transcription, there exists no ubiquitous

dataset for training or evaluating guitar tablature arrangement algorithms. Previous guitar
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Fig. 4.2: Distribution of the genre of pieces in the compiled ground-truth dataset for
polyphonic guitar transcription and guitar tablature arrangement.

tablature arrangement algorithms have been evaluated using selected excerpts from music

scores that have been hand-annotated by trained guitarists (Radicioni et al. 2004; Radicioni
land Lombardo 2005a; Radicioni and Lombardo 2005b; [Rutherford 2009) or using selected
excerpts from published tablature (Radisavljevic and Driessen 2004; [Tuohy and Potter|
2005; |Sawayama et al. 2006; Tuohy and Potter 2006¢|). The largest evaluation dataset for
a guitar tablature arrangement algorithm presented in the literature thus far has consisted
of selected excerpts from 75 user-uploaded classical guitar tablatures obtained from
classtab.org (Tuohy and Potter 2006a)—a relatively large dataset, though it is biased

toward a single genre and the tablature is encoded in plain text format.

This section presents a new ground-truth dataset for guitar tablature arrangement. In

comparison to the dataset presented by Tuohy and Potter (2006a)), the dataset compiled
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in this work incorporates a wider variety of musical genres and provides tablature in a

standard symbolic music encoding format.

Dataset Details

The ground-truth dataset for guitar tablature arrangement was compiled using the same
75 Guitar Pro files that were collected and preprocessed for the polyphonic guitar tran-
scription dataset presented in Section [£.1.1] Following previous research, which evaluates
guitar tablature arrangement algorithms on selected excerpts of tablature (Radisavljevic
and Driessen 2004; Tuohy and Potter 2006a)), excerpts were selected from the Guitar Pro
files. Excerpts were selected on the basis of overall length, the number of times the ex-
cerpt occurred throughout the entire piece, and the average polyphony of the excerpt. In
general, musical motifs—salient and recurring guitar riffs—were selected from each piece
because they were relatively short (no one excerpt exceeds eight measures) and they fre-
quently recur throughout the music score. Excerpts were also selected on the basis of their
average polyphony to ensure that the average polyphony of the resulting guitar tablature
arrangement dataset was close to the average polyphony of the polyphonic transcription
dataset. Each excerpt in Guitar Pro was exported as a MusicXML file using the Guitar
Pro desktop application, which was subsequently converted to an [ME] file.

An overview of the compiled dataset is presented in Table of Appendix [C] The
ground-truth dataset for guitar tablature arrangement consists of 75 tablature arrangements
that are encoded in both the and MusicXML symbolic music file formats. There are
4,845 notes; 1,143 chords; and an average polyphony of 1.94. The number of notes, chords,
and the average polyphony of each symbolic music file in the ground-truth dataset was
calculated using the same technique described in Section for the polyphonic guitar

transcription dataset. The distribution of genres for the songs in the dataset is illustrated

in Figure

4.2 Polyphonic Transcription Evaluation

The purpose of the evaluation proposed in this section is to determine the quality of tran-
scriptions produced by the implemented polyphonic transcription algorithm (Zhou and

Reiss 2008) on guitar recordings. The implemented polyphonic transcription algorithm
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was evaluated in the 2008 [MIREX] competition on a piano dataset consisting of ten 30-
second Yamaha Disklavier recordings. The algorithm received favourable results when
considering the fundamental frequency and onset time of transcribed notes (Table :
0.738 precision, 0.777 recall, and an f-measure of 0.757. Although the parameters of the
transcription algorithm have been hand tuned to perform well on a dataset composed of
polyphonic piano and guitar recordings (Zhou and Reiss 2008), which was compiled by
mixing monophonic recordings from the RWC Musical Instrument Sound Data Base (Zhou
et al. 2009), the algorithm has yet to be evaluated on polyphonic guitar recordings.
Using an evaluation procedure similar to [MIREX] the implemented polyphonic tran-
scription algorithm will be evaluated using the compiled ground-truth dataset for poly-
phonic guitar transcription. The [MIREX] evaluation procedure is used because it provides
a standardized method of evaluating polyphonic transcription algorithms, reports standard
statistical metrics regarding the performance of an algorithm, and is established in the [MIR]
community. [MIREX] evaluates polyphonic transcription algorithms by comparing the esti-
mated onset times, offset times, and fundamental frequencies of the note events in an input
audio recording to the ground-truth note events using the metrics of precision, recall, and
f-measure. Before reviewing these metrics, it is important to establish the conditions that
MIREX] imposes on an estimated note event for it to be considered a correctly transcribed
note. An estimated note event is deemed to be correctly transcribed if the fundamental
frequency is within half a semitone of the ground-truth note event, the onset time is within
a 50-millisecond range of the ground-truth note event, and the offset time is within 20%
of the duration of the ground-truth note event. also reports the results of the
polyphonic transcription algorithms when the offset time of estimated note events are dis-
regarded and also when octave errors are disregarded. When octave errors are disregarded,
an estimated note event is deemed to be correctly transcribed if the fundamental frequency
is within half a semitone of integer multiples of the ground-truth fundamental frequency.
To review, precision p € {R : 0 < p < 1} describes the ratio of correctly transcribed
note events to the total number of estimated note events. Formally, precision is calculated

using the formula
|IGNE|
p=—), (4.2)
|E|
such that G is the set of ground-truth note events and E is the set of estimated note events.

The set intersection of G and FE is the set of correctly transcribed note events. Equivalently,
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precision may also be calculated using the formula

tp

Tt fp 49

p
such that tp (true positive) is the number of correctly transcribed notes and fp (false
positive)ﬂ is the number of estimated notes that are not present in the ground truth. An
excessive number of false positives suggests that a more conservative threshold for note
onset estimation should be considered.

Recall r € {R : 0 < r < 1} describes the ratio of correctly transcribed note events
to the total number of ground-truth note events. Formally, recall is calculated using the

formula
. |G N E|

Gl

such that G is the set of ground-truth note events and E is the set of estimated note events.

(4.4)

Equivalently, recall may be calculated using the formula

tp

r=——,
tp+ fn

(4.5)
such that tp is the number of correctly transcribed notes and fn (false negative)ﬂ is the
number of ground-truth note events that have not been correctly transcribed. A false
negative can result from an onset estimation error, an offset estimation error, or an error
in the fundamental frequency estimation of a note event.

Precision and recall are symbiotic statistics that should be conjunctively interpreted
to assess the performance of a polyphonic transcription algorithm. If recall is the only
metric considered, a polyphonic transcription algorithm that outputs every possible pitch
at regular intervals would receive 100% recall even though the generated transcription is
far from the desired transcription. If precision is the only metric considered, a polyphonic
transcription algorithm that outputs a single correct note event would receive 100% pre-
cision, although the generated transcription is again far from the desired transcription.
The f-measure statistic seeks to combine precision and recall into a single metric. The

traditional f-measure (Equation weights precision and recall equally.

6Using terminology from the field of statistics, a false positive is referred to as a type I error.
"Using terminology from the field of statistics, a false negative is referred to as a type II error.
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Using a similar evaluation methodology as [MIREX], two experiments will be conducted.
The first experiment will report the precision, recall, and f-measure of the polyphonic
transcription module on each guitar recording when the offset time of estimated note events
are disregarded. The second experiment will report the precision, recall, and f-measure of
the polyphonic transcription module on each guitar recording when both the offset time
and the octave of each estimated note event are disregarded. Similar to [MIREX] the onset
time of an estimated note event is deemed correct if it is within a 50-millisecond range of the
onset time of the ground-truth note event. As a subtle difference to the MIREX] evaluation
procedure, estimated fundamental frequencies are quantized to the nearest pitch so that
they may be compared to the pitch of note events in the ground-truth file. The pitch of an
estimated note event is correct if both the pitch name and the octave are the same as the
corresponding ground-truth pitch. In the case of the second experiment where the octave
of a note is disregarded, the pitch of an estimated note event is deemed correct if the pitch
name is equal to the pitch name of the ground-truth note event. For both experiments, the
window and hop size of the polyphonic transcription algorithm will be set to the default
value of 441 samples, as it was in the 2008 [MIREX] evaluation (Zhou and Reiss 2008)).

In each evaluation experiment the algorithm will be embedded in the polyphonic tran-
scription module of Robotaba in order to prune estimated note events that exceed the
maximum chord polyphony of six and are outside of the pitch range of the guitar model
(Section . The guitar model is constructed by assuming a 24-fret guitar and the
tuning and capo position are retrieved from the symbolic music file corresponding to the
guitar recording being processed.

The proposed experiments seek to confirm or refute several hypotheses about the perfor-
mance of the polyphonic transcription algorithm on guitar recordings. The first hypothesis
is that the precision and recall of the polyphonic transcription algorithm will be less than
that reported in the 2008 evaluation of the algorithm on the piano dataset. The
reasoning behind this hypothesis is twofold. First, the recordings in the compiled ground-
truth dataset exhibit a variety of ornamentation such as pitch bends, slides, palm muting,
dead notes, hammer-ons, pull-offs, and right-hand tapping (see Appendix |A|for a descrip-
tion of these techniques). Pitch bends are especially problematic for fundamental frequency
estimation algorithms, since the pitch of a note event in the ground truth may be encoded
several semitones lower than its sounding pitch, which gradually rises over time. Notes

performed by hammer-ons, pull-offs, and tapping are especially problematic for onset esti-
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mation algorithms, since the amplitude of the attack of these notes is less than a plucked
note (Ozaslan et al. 2010). Second, the [MIREX] piano dataset contains a total of five
minutes of audio, whereas the compiled ground-truth dataset contains approximately five
and a half hours of audio of various genres, lending more variability to the audio being
transcribed.

The second hypothesis is that the average precision and recall of the polyphonic tran-
scription algorithm on the distortion guitar recordings will be less than the average precision
and recall of the polyphonic transcription algorithm on the clean guitar recordings. The
reasoning behind this hypothesis is based on the properties of the distortion guitar effect,
which was originally obtained by increasing the gain of vacuum tube amplifiers past nor-
mal operating limits. Since its inception, numerous digital signal processing methods have
attempted to mimic this distortion effect (Dailey 2013, 179-205). The application of a
distortion guitar effect to an audio signal results in the modification of the amplitude of
harmonics in the frequency domain (Dailey 2013, 188). In the case of harmonic distortion,
the amplitude of overtones at integer multiples of the input frequency are affected, whereas
inharmonic distortion affects the amplitude of overtones at odd integer multiples of the
input frequency. The modification of the frequency content of the guitar signal as a result
of the application of a distortion audio effect could negatively influence the performance of

the polyphonic transcription algorithm.

4.3 Guitar Tablature Arrangement Evaluation

There is no standardized method for evaluating guitar tablature arrangement algorithms as
there is for polyphonic transcription algorithms, which use the MIREX] evaluation model.
However, two evaluation methods are predominantly used in the literature, which compare
tablature generated by guitar tablature arrangement algorithms to human-arranged tabla-
ture. The most common method of comparison involves subjective evaluation, whereby the
generated tablature arrangements and the ground-truth tablature arrangements are per-
formed or analyzed by a guitarist, who comments on the comparative difficulty and style
of each arrangement (Radicioni and Lombardo 2005b; [Tuohy and Potter 2006b; [Tuohy and
Potter 2006a). Another commonly used method of comparison calculates the percentage of
string and fret combinations in the generated tablature arrangements that are consistent
with published tablature (Radisavljevic and Driessen 2004). As noted by Tuohy and Potter
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(2005)), the latter evaluation method is “inherently flawed” because “a tablature that dif-
fers from the published tablature by only one note could conceivably be unplayable while
a tablature differing at every position could be just as playable”.

In light of this point, tablature arrangements generated by DarwinTab will be assessed
using the fitness function of the implemented described in Section [3.2.2] To review,
the fitness function quantitatively assesses the biomechanical ease of performing a tablature
arrangement according to the three biomechanical complexity factors proposed by |[Heijink
and Meulenbroek (2002): the position of the left hand on the guitar neck, the distance
the left hand must move to transition between notes, and the finger span required to
perform chords. The fitness function (Equation returns the fitness f € R* of a
tablature arrangement, such that for any two tablature arrangements of a symbolic music
score, the superior arrangement is that with the maximum fitness. As a result of assessing
tablature arrangements using the fitness function, a generated tablature arrangement that
diverges from the corresponding human-arranged tablature is not penalized if it is still
biomechanically easy to perform.

In the evaluation of DarwinTab, guitar tablature arrangements will be generated for
each symbolic music score in the ground-truth dataset and the fitness of each arrangement
will be calculated. However, the fitness of a tablature arrangement is a number that is
difficult to interpret without contextualization because it is derived from the biomechanical
difficulty score of performing a tablature arrangement, which has many contributing factors
(Equation [3.4).

Addressing this issue, two methods were considered to contextualize the fitness values
of the generated tablature arrangements. First, the calculated fitness value for each gen-
erated tablature arrangement could be compared to the fitness value of the ground-truth
tablature arrangement as well as a different tablature arrangement of the same piece that
received a lower user-rating on www.ultimate-guitar.com. If the fitness value of the
generated tablature arrangement lies within the fitness range of the low-rated and high-
rated human-arranged tablature, it can be concluded that the guitar tablature arrangement
algorithm generates tablature arrangements that are of equivalent quality as those gener-
ated by humans. This method was attempted, but was discarded due to the variability in
tablature transcriptions of the same song (e.g., inserted or deleted notes), and the lack of
alternate tablature arrangements for particular pieces. Second, the calculated fitness value

for each generated tablature arrangement could be normalized with respect to the fitness
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of the ground-truth tablature arrangement. With this transformation, the normalized fit-
ness f' € RT is interpreted as the biomechanical ease of performing a generated tablature
arrangement relative to the ground-truth tablature arrangement. Specifically, f/ = 1 in-
dicates that the generated tablature arrangement is of equal performance difficulty as the
ground-truth arrangement; f > 1 indicates that the generated tablature arrangement is
relatively easier to perform than the ground-truth arrangement; and f’ < 1 indicates that
the ground-truth tablature arranged by a human is easier to perform than the automatically
generated tablature.

Using the second method described, the normalized fitness value will be calculated for
each tablature arrangement generated by DarwinTab on the symbolic music scores in the
ground-truth dataset. Given that the tablature arrangements in the ground-truth dataset
are created by humanﬂ and have a five-star rating agreed upon by at least ten unique
users on www.ultimate—guitar.com, the fitness values of the ground-truth tablature
arrangements are a sufficient standard to compare to.

DarwinTab has many different parameters that control the underlying [GAl the pop-
ulation size 1,0, the number of generations nge,, the number of crossover points n,, the
probability of individuals mating p,,qt., and the probability of gene mutation p,,utate. Ide-
ally, numerous parameter configurations would be tested and the combination of param-
eters that result in tablature arrangements with an equal performance difficulty as the
human-arranged tablature would be selected. However, certain parameter configurations
drastically increase the computation time required by DarwinTab to generate tablature ar-
rangements for the pieces in the ground-truth dataset. For this reason, three experiments
will be conducted to evaluate DarwinTab with different parameter combinations. Each
experiment consists of producing a single guitar tablature arrangement for each symbolic
music score in the ground-truth dataset and calculating the normalized fitness values of
the resulting tablature arrangements.

Outlined in Table are the parameter combinations used in each experiment. The
parameters were chosen based on preliminary experiments on individual symbolic music
scores sampled from the ground-truth dataset. The preliminary experiments involved gen-
erating tablature arrangements for pieces with a low average polyphony and pieces with

a high average polyphony using a variety of different parameter configurations. These

8 According to the tablature submission requirements on www.ultimate-guitar.com, “[the] tab
must be ear-transcribed (you listen to the song, then tab out how you think it is played)”.
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experiments showed that the selected population size had a significant impact on the re-
sulting normalized fitness values. Therefore, the three experiments cover a wide range of
population sizes. In the preliminary experiments, the fitness value of the most elite chro-
mosome in the population was observed for each generation. The number of generations
parameter was selected based on the average generation that the fitness of the elite chro-
mosome stabilized. Additional generations were added to account for the stochastic nature
of the [GAl which causes fluctuations in the number of generations required for converging
on a solution. The number of crossover points parameter was selected by considering the
average length of symbolic music scores in the ground-truth dataset. The probability of
mating parents was set quite high to promote the rapid evolution of the population. The
probability of mutation was selected to be around 0.03, as proposed by Tuohy and Potter
(2006b).

Table 4.1: DarwinTab parameters for each evalua-
tion experiment.

EXPERIMENT  Npop  Ngen Mo Pmate  Pmutate

1 500 250 4 09 0.03
2 2000 200 4 08 0.04
3 4000 200 4 0.85 0.035

Tablature arrangements generated by DarwinTab will also be compared to those gen-
erated by two commercial algorithms provided by the Guitar Pro and Sibelius desktop
applications. Both arrangement algorithms are closed source; though, after experimenta-
tion with several sample music scores, the algorithms seem to produce tablature arrange-
ments deterministically. Using these commercial algorithms, a tablature arrangement will
be generated for each symbolic music score in the ground-truth dataset. The fitness of
the resulting tablature arrangements will be computed and normalized with respect to the

fitness of the ground-truth tablature arrangements.
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Chapter 5
Results and Discussion

HE PREVIOUS CHAPTER presented the compiled ground-truth datasets for polyphonic
Tguitar transcription (Section and guitar tablature arrangement (Section .
Several experiments were proposed to evaluate the implemented polyphonic transcription
algorithm and the implemented guitar tablature arrangement algorithm on the compiled
ground-truth datasets.

The experiments proposed in the previous chapter have been conducted and the re-
sults will be reported in this chapter, followed by a discussion of the results. Specifically,
Section will present the experimental results of the polyphonic transcription algorithm
on the compiled ground-truth dataset. Several conjectures were made regarding the re-
sults of these experiments, which will be addressed through an analysis of the results.
Section will present the experimental results of the guitar tablature arrangement algo-
rithm and compare the generated tablature arrangements to tablature arranged by humans
and tablature arranged by the commercial reference algorithms provided by Guitar Pro and
Sibelius.

5.1 Polyphonic Transcription Evaluation

To review, four experiments have been performed to evaluate the implemented polyphonic

transcription algorithm on the guitar recordings in the ground-truth dataset:

Experiment 1

Calculate the precision, recall, and f-measure of the polyphonic transcription algo-
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rithm on the clean guitar recordings in the ground-truth dataset, considering the

accuracy of note pitch and onset time only.

Experiment 2
Calculate the precision, recall, and f-measure of the polyphonic transcription algo-
rithm on the clean guitar recordings in the ground-truth dataset, considering the

accuracy of note onset time and pitch name only. Octave errors are ignored.

Experiment 3
Calculate the precision, recall, and f-measure of the polyphonic transcription algo-
rithm on the distortion guitar recordings in the ground-truth dataset, considering the

accuracy of note pitch and onset time only.

Experiment 4
Calculate the precision, recall, and f-measure of the polyphonic transcription algo-
rithm on the distortion guitar recordings in the ground-truth dataset, considering the

accuracy of note onset time and pitch name only. Octave errors are ignored.

Similar to the MIREX] experiments, the onset time of a note event is considered accept-
able if it lies within 50 milliseconds of the onset time of the corresponding ground-truth note
event. For each experiment the two parameters of the polyphonic transcription algorithm—
window size and hop size—are both set to the default value of 441 samples (Zhou and Reiss
2008)).

5.1.1 Results

The results of each experiment are presented in Table of Appendix [C] The precision,
recall, and f-measure of the polyphonic transcription algorithm on each guitar recording
in the ground-truth dataset is reported. The ID field in Table references the ID field
in Table of the appendix, which provides metadata for each piece of music. For each
experiment, the average f-measure is displayed in Figure , the average precision in
Figure and the average recall in Figure .

Another result to report is the performance of the polyphonic transcription algorithm
on pieces with different degrees of polyphony. To produce this result, the ground-truth

dataset was partitioned into five groups: the first partition contained 39 pieces, each with
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Fig. 5.1: Average metrics across the ground-truth dataset of each of the four experiments
conducted to evaluate the implemented polyphonic transcription algorithm. Also displayed
are the results of the algorithm on the piano dataset reported by [MIREX] which considers
the pitch and onset time of note events (similar to Experiment 1).
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Fig. 5.2: Average f-measure of the polyphonic transcription algorithm, considering note
pitch and onset time, across clean guitar recordings in the ground-truth dataset partitioned
by average polyphony. There is no error bar for polyphony range 4-5 because only one
piece is in this range.

an average polyphony € [1,2); the second partition contained 24 pieces, each with an
average polyphony € [2,3); the third partition contained nine pieces, each with an average
polyphony € [3,4); the fourth partition contained one piece having an average polyphony
€ [4,5); and the fifth partition contained two pieces, each with an average polyphony €
[5,6]. Figure displays the average f-measure of the polyphonic transcription algorithm,
considering note pitch and onset time, on the clean guitar recordings in each of the six
partitions of the ground-truth dataset.

Yet another result to report is the performance of the polyphonic transcription algo-
rithm on pieces with different genres. To produce this result, the ground-truth dataset
was partitioned into eleven genre groups: pop punk, emo, rock, heavy metal, hard rock,
progressive rock, alternative rock, pop rock, indie rock, alternative metal, and death metal.
The distribution of the pieces in the dataset with these genres is presented in the previous
chapter (Figure [4.2)). Figure presents the average f-measure of the polyphonic tran-
scription algorithm, considering the accuracy of note pitch and onset time, on the clean

guitar recordings in the compiled ground-truth dataset partitioned by genre.
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Fig. 5.3: Average f-measure of the polyphonic transcription algorithm, considering note
pitch and onset time, across clean guitar recordings in the ground-truth dataset partitioned
by genre.

5.1.2 Discussion

In the previous chapter, two hypotheses were made regarding the performance of the poly-
phonic transcription algorithm on the compiled ground-truth dataset. The first hypothesis
postulates that the polyphonic transcription algorithm will perform worse on the compiled
dataset of clean guitar recordings in comparison to the performance of the algorithm on
the [MIREX] piano dataset. The second hypothesis posits that the polyphonic transcrip-
tion algorithm will perform better on clean guitar recordings than guitar recordings with
a distortion audio effect applied. An analysis of the experimental results presented in this
section will address these hypotheses and comment on additional findings.

To address the first hypothesis, the results of the first experiment are compared to the
results of the algorithm reported by MIREX]on the [MIREX] piano dataset. Both evaluation
experiments consider the accuracy of note pitch and onset time, while disregarding note
duration, on audio recordings with no audio effects applied. Referencing Figure [5.1, which
presents the average precision, recall, and f-measure of Experiment 1 alongside the average

precision, recall, and f-measure reported by MIREX] the algorithm in fact performed worse
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on the clean guitar recordings in the compiled ground-truth dataset in comparison to the
performance of the algorithm on the piano dataset, with respect to all metrics.

One possible explanation for the degraded transcription performance is that the guitar
recordings in the compiled ground-truth dataset contain ornamentation such as slides,
bends, hammer-ons, hammer-offs, palm-muting, and dead notes (see Appendix [A[ for a
description of these guitar techniques). The piano is incapable of replicating many of these
ornaments; for example, when processing piano recordings the polyphonic transcription
algorithm is never presented notes with fluctuating pitch because a pianist can not bend
the piano strings as a guitarist can bend the guitar strings. An ancillary experiment
that evaluates the transcription algorithm on synthesized audio recordings of the symbolic
music scores in the ground-truth dataset with the ornamentation removed could provide a
definitive answer to this question.

Another possible explanation for this result is that the dataset used in this thesis con-
tains different pieces than the MIREX] piano dataset. The compiled dataset is substantially
larger, with approximately five and a half hours of audio versus the five minutes of audio in
the MIREX] piano dataset. Furthermore, the genre of the pieces in the guitar dataset are
primarily rock, metal, and their derivative genres, whereas the genre of the pieces in the
MIREX] piano dataset are classical, containing pieces such as Ludwig van Beethoven’s Pi-
ano Sonata No. 8 in C minor and Wolfgang Mozart’s Piano Sonata No. 13 in B-flat major.
The fact that the dataset used in this thesis consists of different pieces than the
piano dataset prevents drawing the conclusion that the evaluated polyphonic transcription
algorithm performs better on piano recordings than guitar recordings.

To address the second hypothesis, the results of Experiment 1 and Experiment 2, which
process the clean guitar recordings in the ground-truth dataset, are compared to the results
of Experiment 3 and Experiment 4, which process the guitar recordings with a distortion
audio effect applied. Confirming the hypothesis that the application of a distortion audio
effect to guitar recordings will degrade automatic polyphonic transcription performance, the
precision, recall, and f-measure of Experiment 1 is greater than that of Experiment 3 and
the precision, recall, and f-measure of Experiment 2 is greater than that of Experiment 4,
as presented in Figure [5.1l When forming this hypothesis in the previous chapter, it
was speculated that a contributing factor to the reduced transcription performance could
be the modification of the relative amplitudes of harmonics in the frequency domain of

the guitar signal caused by the distortion audio effect. Figure displays the frequency
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domain of a guitar pluck of the note A3 synthesized using Guitar Pro with and without a
distortion audio effect applied. This figure provides evidence that the relative amplitudes
of harmonics are in fact modified when a distortion audio effect is applied—a factor that
may have contributed to the reduced transcription performance on the distortion guitar

recordings.
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(a) Portion of the magnitude spectrum of a guitar (b) Portion of the magnitude spectrum of a guitar
signal without a distortion audio effect applied. signal with a distortion audio effect applied.

Fig. 5.4: Comparison of the magnitude spectrum of a guitar pluck of the note A3 synthe-
sized with and without a distortion audio effect applied.

Several other interesting conclusions can be drawn from the experimental results of the
polyphonic transcription algorithm. Observing Figure [5.1(b)| and Figure , the recall
reported by each experiment is strictly less than the precision, whereas the results
of the algorithm on the piano dataset report the recall (0.777) to be slightly greater than
the precision (0.738). Having high precision and low recall means that many notes were
missed; however, of the notes that were estimated, they were quite accurate. This result
suggests that the evaluated polyphonic transcription algorithm has a note onset detection
algorithm that is too conservative, at least for the pieces evaluated in the compiled dataset.

As one might expect, the precision, recall, and f-measure of the polyphonic transcription
algorithm strictly increases when disregarding note octave errors. Observing Figure[5.1], the
precision, recall, and f-measure of Experiment 1 is strictly less than that of Experiment 2,
and the precision, recall, and f-measure of Experiment 3 is strictly less than that of Ex-

periment 4. An interesting observation is that there are marginally more octave errors in
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transcriptions of distortion guitar recordings than transcriptions of clean guitar recordings.
Figure shows a 3% increase in f-measure between Experiment 1 and Experiment 2,
whereas there is a 7% increase in f-measure between Experiment 3 and Experiment 4.

In regard to the influence of polyphony on transcription performance, previous research
in the area of automatic music transcription has noted decreased accuracy in multiple
fundamental frequency estimation as the polyphony of the audio signal increases (Klapuri
2006)). This inverse relationship between the accuracy of multiple fundamental frequency
estimation and polyphony can be attributed to the increasingly convoluted mixture of signal
information in both the time and frequency domain of the audio signal as the polyphony
increases. In a similar fashion, Figure displays a downward trend in f-measure as
polyphony increases.

Considering the influence of genre on polyphonic transcription performance, Figure [5.3
displays the average f-measure of the polyphonic transcription algorithm across clean gui-
tar recordings in the ground-truth dataset, partitioned by genre. The genre pop punk,
characterized by its fast tempo, rapid guitar strumming, and frequently palm-muted guitar
riffs, received the lowest f-measure of 0.32. On the contrary, the genre death metal, also
characterized by its fast tempo and frequently palm-muted guitar riffs, received the highest
f-measure of 0.72; however, only two pieces of this genre were present in the compiled
dataset. Overall, the performance of the polyphonic transcription algorithm varies greatly
across pieces of different genres, suggesting that genre is a factor influencing the perfor-
mance of the polyphonic transcription algorithm. However, there may exist a spurious
relationship between genre and transcription performance, which prevents the conclusion
that genre directly influences transcription performance. For example, the tempo of a piece
may be a confounding variable that affects the genre and the transcription performance.
Moreover, specifying the genre of a piece is a highly subjective process, making it difficult
to draw any conclusions regarding the influence of genre on transcription performance.

Another important step of the analysis process is investigating the input that an al-
gorithm performs poorly on as well as the input that an algorithm performs well on. To
provide insight into the possible attributes of a guitar recording that contribute to a poor
transcription, the ten pieces in the ground-truth dataset that received an f-measure < 0.3
in Experiment 1 were grouped together and analyzed. These pieces either have an above
average tempo, an above average degree of polyphony, or both. For example, the rhythm
guitar recording of “Johnny B. Goode” by Chuck Berry (ID: 17 in Table and Table|C.1)
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is characterized by its fast strumming pattern and rapid chord changes, receiving the low-
est f-measure of 0.11. On the other hand, the almost monophonic lead guitar recording of
“Mr. Brightside” by The Killers (ID: 43 in Table and Table , received the highest
f-measure in Experiment 1 of 0.95. However, by counterexample it can not be concluded
that guitar recordings with low polyphony will yield a transcription with high precision
and recall. The lead guitar recording of the heavy-metal song “Unholy Confessions” by
Avenged Sevenfold (ID: 6 in Table and Table , characterized by its fast and often
palm-muted guitar riffs, has a low average polyphony (1.24) yet received an f-measure of
only 0.42. From this analysis, one can conclude that there are many factors that influence

transcription performance.

5.2 Guitar Tablature Arrangement Evaluation

To review, three experiments have been conducted to evaluate the implemented guitar

tablature arrangement algorithm DarwinTab:

Experiment 1
Calculate the normalized fitness of the guitar tablature arrangement generated by
DarwinTab for each symbolic music score in the ground-truth dataset using the fol-

lowing parameters: 1, = 500, ngen, = 250, Npz = 4, Prmate = 0.9, Prutate = 0.03.

Experiment 2
Calculate the normalized fitness of the guitar tablature arrangement generated by
DarwinTab for each symbolic music score in the ground-truth dataset using the fol-

lowing parameters: 1,0, = 2000, ng4en, = 200, npy = 4, Pmate = 0.8, Prutate = 0.04.

Experiment 3
Calculate the normalized fitness of the guitar tablature arrangement generated by
DarwinTab for each symbolic music score in the ground-truth dataset using the fol-

lowing parameters: 1,0, = 4000, ngen, = 200, 1y = 4, Dmate = 0.85, Prutate = 0.035.
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5.2.1 Results

The normalized fitness values for each experiment are reported in Table alongside
the normalized fitness values of tablature arrangements produced by the Guitar Pro and
Sibelius reference algorithms for each symbolic music score in the ground-truth dataset.
Table presents the median (denoted by i) and standardized median absolute de-
viation (denoted by &) of the distribution of normalized fitness values for each algorithm.
The median and standardized median absolute deviation are used to describe the central
tendency and dispersion of the distribution, respectively. They are referred to as robust
descriptive statistics because they are less sensitive to outliers present in small datasets
in comparison to the sample mean and sample standard deviation. Robust descriptive
statistics are used to compensate for the handful of outliers present in the experimental
results. For example, the tablature arrangements of the pieces “Carry On Wayward Son”
by Kansas (ID: 42 in Table and “Animal I have Become” by Three Days Grace (ID:
75 in Table generated by each algorithm received a normalized fitness value of 9.00
and 4.54, respectively, which appear to be abnormally high in comparison to the rest of

the results.

Table 5.1: Statistics of the approximately normal distribution of normalized fitness
values for the tablature generated by each tablature arrangement algorithm.

STATISTIC EXPERIMENT 1 EXPERIMENT 2 EXPERIMENT 3 GUITAR PRO SIBELIUS

i 0.78 1.01 1.09 1.03 1.00
o 0.46 0.57 0.49 0.11 0.33

The median normalized fitness ji of each algorithm is calculated by sorting the nor-
malized fitness values calculated for each generated tablature arrangement and selecting
the value in the middle of this list. The standardized median absolute deviation ¢ of each
algorithm is found by first calculating the absolute value of the residual of each normalized
fitness value f/ from the median normalized fitness fi. The median of these residuals is

then calculated and multiplied by a scale factor k. In mathematical terms,

o = k- median; (| f] — ), (5.1)
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such that

t
k=10 A 1.4826 (5.2)

for normally distributed data. By the central limit theorem, which states that a distribution
becomes increasingly more Gaussian as the sample size increases (Wackerly et al. 2007, 370
7), it can be assumed that the distribution of normalized fitness values for each algorithm
approximately follows a normal distribution.

Presenting the experimental results in a different way, Figure displays a box-and-
whisker plot of the normalized fitness values of the tablature arrangements generated by
each algorithm. For each algorithm, a box-and-whisker is formed by partitioning the nor-
malized fitness values into two groups at the median value. The median is then calculated
for each resulting group to form four partitions called quartiles. The last value in each par-
tition is given the value ¢, ¢o, 3, and q4, respectively. The interquartile range ¢, = g3 — q1
forms the box and the whiskers stretch out to the last value in the outer quartiles that
are not outliers. A normalized fitness value is considered an outlier if f/ < ¢ — 1.5¢, or
fI'> g3 + 1.5¢q,, and is displayed as a cross symbol above or below the whiskers. The solid
line between the interquartile range represents the median normalized fitness value.

Another result to report is the performance of the evaluated guitar tablature arrange-
ment algorithms on music scores with different degrees of polyphony. To this end, the
ground-truth dataset was partitioned into four groups: the first partition contained 47
pieces, each with an average polyphony € [1,2); the second partition contained 16 pieces,
each with an average polyphony € [2,3); the third partition contained nine pieces, each
with an average polyphony € [3,4); and the fourth partition contained three pieces, each
with an average polyphony € [5,6]. There were no excerpts in the ground-truth dataset
with an average polyphony € [4,5). Figure presents the median normalized fitness of
the tablature arrangements generated by DarwinTab (using the parameters described in
Experiment 3), Guitar Pro, and Sibelius on the symbolic music scores in the ground-truth
dataset partitioned by average polyphony. Notice that for each symbolic music score in
the polyphony range 5-6, Guitar Pro generated tablature arrangements with a normalized

fitness value of one. Therefore, no error bars are displayed in this case.
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Fig. 5.5: Box-and-whisker plot of the normalized fitness values of the tablature arrange-
ments generated by each evaluated tablature arrangement algorithm.

5.2.2 Discussion

Several conclusions can be drawn from the presented experimental results. Using the pa-
rameter configuration of Experiment 3, DarwinTab generates guitar tablature arrangements
that, on average, are of similar performance difﬁcultyﬂ as the ground-truth tablature ar-
rangements as well as those produced by the reference algorithms. Table reports a
median normalized fitness of 1.09, 1.03, and 1.00 for DarwinTab, Guitar Pro, and Sibelius,
respectively.

However, the variance in the performance difficulty of tablature arrangements gener-
ated by DarwinTab is larger than that of the reference algorithms (see Figure [5.5). In

'The term performance difficulty refers to the biomechanical difficulty of performing a tablature ar-
rangement, as assessed by the fitness function.
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(a) Median normalized fitness of the implemented guitar tablature arrangement
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Fig. 5.6: Median normalized fitness of the guitar tablature arrangement algorithm, along-
side two commercial reference algorithms, across symbolic music scores in the ground-truth
dataset partitioned by average polyphony. No symbolic music scores in the dataset had an
average polyphony in the range 4-5.
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Experiment 3, DarwinTab generated tablature arrangements with a median normalized
fitness of 1.09 and a standardized median absolute deviation of 0.49 (Table|5.1). Therefore,
DarwinTab generates tablature arrangements with normalized fitness values which approx-
imately follow the Gaussian distribution N (g = 1.09,6 = 0.49) displayed in Figure [5.7]
By the empirical rule, 68.2% of tablature arrangements generated by DarwinTab are esti-
mated to have normalized fitness values that lie within one standard deviation of the mean
(0.60-1.58). Comparing this to the reference algorithms, Guitar Pro reported a median
normalized fitness of 1.03 and a relatively small standardized median absolute deviation
of 0.11 (Table . By the empirical rule, 68.2% of tablature arrangements generated by
Guitar Pro are estimated to have normalized fitness values within the range 0.92-1.14.
Sibelius reported a median normalized fitness of 1.00 and a median absolute deviation of
0.33 (Table . By the empirical rule, 68.2% of tablature arrangements generated by

Sibelius are estimated to have normalized fitness values within the range 0.67-1.33.
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Fig. 5.7: Estimated Gaussian distribution N (i = 1.09,6 = 0.49) of the normalized fitness
values generated by DarwinTab in Experiment 3. The solid vertical line at y = 1.09
indicates the mean of the distribution. The dashed vertical lines at y = 1.09 4+ 0.49k
indicate the standard deviations.
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Another interesting result is the rise in the median normalized fitness from Experiment 1
to Experiment 3 (Table and Figure , which signifies that the population size of the
underlying [GAlin DarwinTab is an important factor in tablature arrangement performance.
A population size of 500 in Experiment 1 yields a substandard median normalized fitness
of 0.78. Increasing the population size to 2000 in Experiment 2 yields a very acceptable
median normalized fitness of 1.01. Further increasing the population size to 4000 in Ex-
periment 3 yields a marginal increase in median normalized fitness. However, the marginal
increase in the median normalized fitness between Experiment 2 and Experiment 3 does not
necessarily suggest that there is no benefit in further increasing the population size of the
[GAl Consider Figure |5.6(a)l which shows a steady increase in the performance difficulty of
the tablature arrangements generated by DarwinTab as the average degree of polyphony
increases, whereas the reference algorithms consistently generate tablature arrangements
with performance difficulties similar to the ground-truth arrangements. A potential ex-
planation for this result is that the initial population of the does not provide enough
genetic variability for scores with high degrees of polyphony. The results suggest that
a population size of 4000 is sufficient for producing tablature arrangements for symbolic
music scores with an average degree of polyphony below three, while the algorithm could
benefit from a larger population size for scores with an average degree of polyphony above
three.

Another result worth investigating is the normalized fitness of tablature arrangements
generated by the evaluated algorithms that are considered outliers. Figure 5.5 shows that
all of the outliers lie above the fourth quartile in the box plots. This means that either
the corresponding ground-truth tablature arrangements are in fact biomechanically more
difficult to perform or that, as propositioned by Heijink and Meulenbroek (2002), there
are other factors contributing to a “good tab” apart from biomechanical difficulty. These
factors might include rules that consider the musical context and rules that enforce certain
timbral characteristics of plucked notes. Therefore, it is reasonable to assume that certain
human-arranged tablatures sacrifice biomechanical ease of performance to accommodate
the auditory or stylistic preferences of the arranger. This assumption is supported by the
tablature arrangements generated for the piece “Carry On Wayward Son” by Kansas (ID:
42 in Table . Each evaluated tablature arrangement algorithm converged to the same
solution for this piece, receiving a normalized fitness value of 9.00. Figure [5.8| compares two

measures of the generated tablature to the ground-truth tablature arrangement. In contrast
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with the hand-arranged tablature, the generated tablature inserts open-string plucks wher-
ever possible. When performed on the guitar, both tablatures have a subjectively equal
difficulty level, though the timbre greatly differs. For notes with more than one candidate
string and fret combination, the timbral characteristic of the performed note becomes a
factor in the selection of the fretboard location (Tuohy and Potter 2005).
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(a) Two measures of the ground-truth tablature arrangement of the piece “Carry on Wayward
Son” by Kansas.
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(b) Two measures of the tablature generated by DarwinTab, Guitar Pro, and Sibelius for the
piece “Carry on Wayward Son” by Kansas.

Fig. 5.8: Generated tablature arrangement compared to the hand-arranged tablature. The
tablature is rendered using the AlphaTab digital tablature engraving library.

Another important issue surrounding the implemented guitar tablature arrangement al-
gorithm is the computational runtime of the underlying [GAl The runtime of Experiment 1
was approximately ten hours. The runtime of Experiment 2 was approximately 54 hours.
The runtime of Experiment 3 was approximately 110 hours, meaning that the average time
to produce a tablature arrangement was approximately one and a half hours. The experi-
ments were run on a machine with a 2GHz CPU and 8GB of main memory. In comparison,
the reference algorithms generated each tablature arrangement virtually instantaneously.
The short runtime of these algorithms suggests that a neural network or a graph search

algorithm with heuristics is used.
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In practise, the runtime of DarwinTab could be reduced by specifying a[GA] termination
condition, which would return the elite tablature arrangement in the population when the
fitness value becomes stagnant over a sequence of generations. Figure displays the
fitness values of the elite tablature arrangement for two pieces—the first having a low
average polyphony of 1.63 (Song ID: 24 in Table , and the second having a high
average polyphony of 5.00 (Song ID: 7 in Table —using the parameter configuration
of Experiment 3 (n,,, = 4000, nge, = 200, npy = 4, Pmate = 0.85, Prutate = 0.035). Three
runs of the were performed to account for the stochastic nature of the algorithm. In
Figure , each run of the converged to the fitness of the ground-truth tablature
arrangement around the 50" generation. In Figure , the elite fitness value in two of
the three runs stabilized around the 125" generation. These results suggest that in certain
cases the computational runtime of DarwinTab could be reduced by as much as 75% if the

[GAlis terminated at the point of convergence.
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(a) Fitness values of the elite tablature in the GA popu-
lation over the course of 200 generations for the tab-
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(b) Fitness values of the elite tablature in the GA popu-
lation over the course of 200 generations for the tabla-
ture arrangement of the piece “While My Guitar Gently
Weeps” by The Beatles.

Fig. 5.9: Three runs of DarwinTab on two symbolic music scores using the parameter
configurations of Experiment 3. The dashed line denotes the fitness of the ground-truth
tablature arrangement.
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Chapter 6
Conclusion

FTER INTRODUCING TABLATURE NOTATION in Chapter 1, this thesis presented an
A overview of several approaches to the problem of automatic guitar tablature transcrip-
tion. Specifically, several polyphonic transcription algorithms (and surrounding schools of
thought) that performed well in the [MIREX] evaluation suite were reviewed, followed by a
review of guitar tablature arrangement algorithms. Chapter 3 introduced the implemented
guitar tablature transcription framework, the implemented polyphonic transcription algo-
rithm (Zhou and Reiss 2008), and the implemented guitar tablature arrangement algorithm
entitled DarwinTab. Two new ground-truth datasets, gathered from manual transcriptions
posted by users on www.ultimate—-guitar.com, were compiled to evaluate the imple-
mented algorithms. Chapter 4 described the creation and contents of these datasets and
the design of the experiments for evaluating the implemented polyphonic transcription and
guitar tablature arrangement algorithms.

Chapter 5 presented and discussed the experimental results. It was found that the
implemented polyphonic transcription algorithm exhibited reduced performance on the
compiled dataset of guitar recordings in comparison to the results of the algorithm reported
by MIREX] on a small dataset of piano recordings. It was also found that the application
of a distortion audio effect to the guitar recordings significantly decreased the performance
of the polyphonic transcription algorithm. The implemented guitar tablature arrangement
algorithm was also evaluated. The tablature arrangements generated by DarwinTab were
compared to human-arranged tablature and tablature arranged by two commercial reference

algorithms. It was found that DarwinTab generated tablature with a performance difficulty
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that, on average, coincided with the performance difficulty of tablature arranged by humans
and the reference algorithms. However, it was found that the variance in performance
difficulty of tablature generated by DarwinTab was higher than those of the reference

algorithms.

6.1 Summary of Contributions

The most significant contribution of this thesis is the design and implementation of the
open-source web-based guitar tablature transcription framework, entitled Robotaba. The
framework facilitates the rapid development of guitar tablature transcription web applica-
tions, providing a vessel for music researchers to publicize their polyphonic transcription
and guitar tablature arrangement algorithms, while allowing researchers to focus on algo-
rithm development instead of application development. As part of Robotaba, an open-
source program has been implemented to convert MusicXML files to files and
files to MusicXML files.

As a proof of concept, a guitar tablature transcription web application has been devel-
oped using the Robotaba framework. An open-source polyphonic transcription application
has been implemented which uses the state-of-the-art polyphonic transcription algorithm
proposed by Zhou and Reiss (2008). Furthermore, an open-source guitar tablature arrange-
ment application has been implemented. Although have been applied to the guitar
tablature arrangement problem before (Tuohy and Potter 2005; [Tuohy and Potter 2006b)),
DarwinTab extends these algorithms to produce guitar-specific tablature arrangements by
considering the number of frets, tuning, and capo position of the guitar on which the
tablature is intended to be performed.

Another important contribution to the field of [MIRlis the ground-truth dataset for poly-
phonic guitar transcription and the ground-truth dataset for guitar tablature arrangement,
which can be used for training machine-learning algorithms or for algorithm evaluation.
The polyphonic guitar transcription dataset consists of 150 synthesized guitar recordings,
totalling approximately 11 hours of audio, which have been semi-automatically annotated.
The guitar tablature transcription dataset consists of 75 hand-arranged tablatures encoded
in the [MEI and MusicXML symbolic music notation file formats.
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6.2 Future Work

Now that a framework has been constructed to allow polyphonic transcription and guitar
tablature arrangement algorithms to be combined to generate guitar tablature transcrip-
tions directly from an audio recording, more work can be done to improve the algorithms
themselves. Though the implemented polyphonic transcription algorithm performs in re-
altime, the runtime required for DarwinTab to find an adequate tablature arrangement for
a piece of music is perhaps longer than the average user is willing to wait. For example,
using the largest population size tested, the average time required for DarwinTab to
generate a tablature arrangement for a symbolic music score with an average of 64 notes is
approximately one and a half hours. Future work will explore extensions to alternate tab-
lature arrangement algorithms that are capable of rapidly generating arrangements, such
as neural networks (Tuohy and Potter 2006a)).

Since correctly annotated datasets are an extremely valuable resource in the music
research community, more energy will also be directed towards increasing the size of the
compiled ground-truth datasets using the dataset creation methodology described in Chap-
ter 3. Moreover, the creation of an alternate polyphonic transcription ground-truth dataset
that contains no guitar ornamentation in the synthesized audio recordings could prove use-
ful to the research community. As well, this alternate dataset could be used to provide
a definitive answer to the question of whether or not guitar ornamentation significantly
degrades transcription performance. It is hoped that these datasets will stimulate future

research in the area of automatic guitar tablature transcription.
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Appendix A

Guitar Terminology

The purpose of this appendix is to describe guitar-specific terminology used in this the-
sis. The following terms include physical parts or accessories of the guitar, guitar note

ornamentations, and other commonly used phrases in the guitar community.

Frets
Metal dividers embedded in the fretboard of the guitar that are strategically spaced to
enforce an equal-tempered division of the octave. Depressing a string over a particular

fret changes the length of the string permitted to vibrate, changing the sounding pitch.

Capo
A device that is clipped onto the fretboard and raises the pitches of the open strings
of the guitar. Figure displays an acoustic guitar with a capo placed on the second

fret, which raises the pitches of the open guitar strings by two semitones.

Bend
A type of note ornamentation whereby the guitarist drags a stopped (depressed)
string vertically along the fretboard, stretching the string and consequently raising

the sounding pitch.

Hammer-on
A type of note ornamentation whereby the guitarist sharply depresses a fret occurring
further along the fretboard of a currently depressed fret, without plucking the string
with the right hand.
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Fig. A.1: An acoustic guitar with a capo placed on the second fret.

Pull-off
A type of note ornamentation whereby the guitarist rapidly removes his or her finger
from a fret occuring further along the fretboard of a currently depressed fret, without

plucking the string with the right hand.

Slide
A type of note ornamentation whereby the guitarist gradually moves their finger along

a string between two fret positions, resulting in a gradual change in pitch.

Palm Muting
A type of note ornamentation whereby the palm of the right hand of the guitarist

gently touches the strings, resulting in a dampened sound.

Dead Notes
A muted note with no discernible pitch. A dead note is intended to be more percussive
sounding than melodic and is performed by lightly touching a string with the fretting
hand and plucking the string with the plucking hand.

Right-hand Tapping
A type of note ornamentation whereby the guitarist performs hammer-ons and pull-
offs with fingers on their right hand instead of their left hand.
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Clean Guitar

A guitar signal in which no audio effects are applied.

Distortion Guitar

A guitar signal with a distortion audio effect applied.
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Appendix B

Software Engineering Diagrams

The purpose of this appendix is to introduce standard software engineering diagrams used to
convey relationships between events or objects. Section [B.I]introduces the unified modeling
language (UML) sequence diagram (Fowler 2003), and Section introduces the entity
relationship (ER]) diagram (Chen 1976)).

B.1 UML Sequence Diagram

The purpose of a [UMI] sequence diagram is to illustrate the necessary sequence of inter-
actions between objects to perform a task. Figure provides a simple [UMI sequence
diagram as an example. At the top of the sequence diagram are a series of rectangles with
dashed lines extruding from the bottom. These rectangles represent the objects that are
capable of sending messages and performing operations in response to received messages.
Messages passed between objects are represented by a series of arrows. A solid arrow rep-
resents a message that requests another object to perform an operation. A dashed arrow
represents a message that returns information to another object. The vertical dimension of
the diagram conveys the time sequence of interactions between objects, where messages are
arranged from top to bottom. In other words, if an arrow appears above another arrow, the
former message is passed before the latter. In the provided example, there is one Audio
object that represents a digital audio recording. Starting from the top, the first message
requests the number of samples in the audio file, which the object calculates and returns

as a second message.
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Fig. B.1: Simple example of a UML sequence diagram.

B.2 Entity-Relationship Diagram

An[ERldiagram illustrates the structure and relationships between data in a database. In an
[ERl diagram, rectangles are used to represent entities, ovals are used to represent attributes
of an entity or relationship, and a rhombus with a pair of connecting lines is used to
represent the relationship between entities. An entity represents a physical object, event,
or idea. Typically an entity is represented by a table in a relational database. Attributes
describe properties of an entity. The attributes associated with an entity become the
fields of the database table. Relationships describe how entities are related to each other.
Depending on the complexity of the relationship between entities, a relationship may also
correspond to a table in the database. The cardinality of the relationship between entities,
e.g., one-to-one, one-to-many, or many-to-many is depicted using crow’s foot notation,
which is outlined in Table [B.I] Summarizing this information, a simple [ERl diagram is
displayed in Figure [B.2] There are two entities shown: a Guitar entity and a String
entity. The Guitar entity has two attributes: colour and weight. The relationship between

the two entities is read from left to right—“the guitar has one or more strings”—and from
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right to left—*“a string is part of zero or one guitar”, since a string may exist apart from a

guitar.

Table B.1: Crow’s foot notation to specify the cardinality of
relationships between entities in an entity relationship diagram.

CARDINALITY NOTATION

Zero or one |

one and only one

Z€ero or many o<

l«

one or many ™
Guitar O String

Fig. B.2: Simple example of an Entity Relationship diagram.
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Appendix C

Detailed Description of Datasets and
Results

This appendix will provide a detailed description of the pieces within the compiled ground-
truth dataset for polyphonic guitar transcription (Table and guitar tablature arrange-
ment (Table [C.3). Also found in this appendix are detailed results of the polyphonic
transcription evaluation experiments (Table and the guitar tablature arrangement
evaluation experiments (Table for each song in the ground-truth datasets. The tables
begin on the following page.
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Table C.2 — Polyphonic Guitar Transcription Experiment Results

EXPERIMENT 1

EXPERIMENT 2

EXPERIMENT 3

EXPERIMENT 4

= =& = 2 &5 = 2 5 = = 8 =
1D [a B aat — A~ ~ -~ a® ~ — oW aet -
1 062 033 044 069 037 048 0.56 041 047 0.65 0.47 0.55
2 0.63 045 053 0.67 049 056 058 043 049 0.63 0.47 0.54
3 069 048 056 0.74 051 0.61 0.60 043 050 0.66 0.47 0.55
4 092 070 080 092 0.71 0.80 0.67 057 062 0.70 0.59 0.64
) 0.66 090 07 069 094 079 049 074 059 059 0.89 0.71
6 041 043 042 055 0.58 0.57 042 049 045 051 0.60 0.55
7 097 023 037 099 023 038 062 025 036 0.66 027 0.38
8 0.75 037 050 0.82 041 054 055 039 046 0.71 0.50 0.59
9 0.74 051 060 0.77 052 0.62 065 048 055 0.69 0.51 0.59
10 0.66 054 059 067 054 060 033 041 037 044 055 0.49
11 095 088 091 097 090 093 029 044 035 045 0.68 0.54
12 090 0.18 031 092 0.19 031 082 065 072 084 0.67 0.75
13 0.68 0.14 023 0.74 0.15 0.25 0.51 0.18 0.26 0.77 0.27 0.40
14 0.8 078 082 0.8 0.78 0.82 0.56 065 060 0.61 0.71 0.65
15 0.74 080 077 0.77 0.82 0.79 0.54 059 056 0.63 0.68 0.65
16 0.76 046 057 081 049 0.61 051 037 043 0.73 0.53 0.61
17 0.25 0.07r 0.11 0.26 0.08 0.12 024 0.12 0.16 0.32 0.16 0.21
18 0.62 031 041 065 033 044 037 024 029 048 0.32 0.38
19 087 092 090 087 092 090 08 096 091 0.87 0.98 0.92
20 0.53 057 055 057 0.62 0.60 045 060 051 049 0.66 0.57
21 0.36 045 040 044 054 048 0.23 031 027 039 0.52 045
22 0.81 032 046 083 033 047 062 029 039 077 036 049
23 079 032 046 079 032 046 035 028 031 050 0.40 0.45
24 0.50 0.52 051 053 055 054 030 037 033 040 0.50 0.44
25 0.60 020 029 073 024 036 049 023 031 0.60 0.28 0.39
26 089 014 024 097 0.15 0.26 043 0.07 0.12 056 0.09 0.15
27 089 08 088 0.8 0.8 088 084 08 08 0.8 0.87 0.86
28 0.55 023 033 074 031 044 053 029 038 0.65 0.36 0.46
29 028 0.11 0.16 0.29 0.12 0.17 0.21 0.09 0.13 0.24 0.10 0.14
30 084 069 07 08 069 0.76 065 063 064 0.69 0.67 0.68
31 0.85 040 054 0.8 040 0.55 0.61 038 047 0.66 0.40 0.50

Continued on the next page. ..
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Table C.2 — Continued

EXPERIMENT 1 EXPERIMENT 2 EXPERIMENT 3 EXPERIMENT 4
= =8 = 2 &5 = 2 5 = = 8 =
1D [a B aat — A~ ~ -~ a® ~ — oW aet -
32 082 034 048 082 034 048 055 030 039 0.63 034 0.44
33 051 034 041 051 035 041 035 028 031 037 030 0.33
34 094 048 064 095 049 064 068 043 053 0.73 0.46 0.57
35 0.69 035 047 077 039 052 035 025 029 041 0.30 0.35
36 0.76 051 061 081 055 065 042 038 040 054 0.48 0.51
37 064 039 049 0.66 040 0.50 040 029 034 042 031 0.36
38 095 028 044 097 029 045 064 027 038 0.72 030 0.43
39 064 034 044 067 035 046 042 031 036 053 039 0.45
40 089 026 040 096 0.28 043 055 029 038 0.58 0.30 0.40
41 0.87 050 064 088 050 064 046 027 034 052 031 0.39
42 0.75 067 071 076 0.68 0.72 042 059 049 047 0.66 0.55
43 097 093 095 097 094 095 081 08 083 081 0.86 0.83
44 0.50 020 0.29 058 0.23 033 0.17 0.09 0.12 032 0.17 0.22
45 0.84 061 071 087 062 0.73 044 040 042 0.55 0.50 0.53
46 0.70 040 051 083 048 0.61 0.53 035 042 0.65 0.43 0.52
47 096 024 038 096 024 038 036 015 021 039 0.16 0.23
48 0.60 039 047 061 040 048 0.26 026 026 033 0.32 0.33
49 0.83 055 066 085 056 0.67 046 061 052 047 0.62 0.53
50 027 043 033 029 045 035 026 032 028 037 045 041
51 0.24 0.19 021 027 021 024 020 020 020 021 0.21 0.21
52 0.57 060 058 0.60 0.63 0.61 045 050 047 052 0.59 0.55
53 095 051 066 095 051 066 063 034 044 0.68 0.36 047
54 038 032 035 040 033 036 022 017 019 031 0.24 0.27
55 0.66 058 062 0.67 059 063 031 038 034 045 054 0.49
56 064 020 030 0.78 024 037 043 0.19 027 046 0.21 0.29
57 079 051 062 081 053 064 042 033 037 050 0.39 0.43
58 0.8 045 059 095 049 065 063 036 046 0.74 0.43 0.54
59 094 0.16 027 099 0.16 0.28 0.72 0.10 0.18 091 0.13 0.22
60 049 021 030 053 023 032 024 0.18 0.21 034 0.26 0.29
61 0.84 065 073 094 073 082 046 043 045 0.56 0.52 0.54
62 0.84 056 067 087 059 070 0.25 023 024 033 030 0.31

Continued on the next page. ..
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Table C.2 — Continued

EXPERIMENT 1

EXPERIMENT 2

EXPERIMENT 3

EXPERIMENT 4

=) = = =)
2 2 2 :
z 5 2 z 5 2 z 3 2 z =
O < &) O < &) @) < m O < &)
= 9 = 9 =5 &) = 9
= =) = = =) = = = = = = 2
1D [a B aat — A~ ~ -~ a® ~ — oW aet -
63 094 045 061 097 046 062 0.72 046 0.57 0.74 0.48 0.58
64 0.84 056 068 088 059 071 068 047 0.56 0.78 054 0.64
65 044 039 041 053 047 050 037 0.23 0.28 0.52 0.33 0.40
66 087 023 036 089 024 037 052 019 028 0.61 022 0.33
67 094 021 035 09 021 035 070 0.15 024 0.79 0.17 0.28
68 046 026 033 050 029 037 027 0.17 021 038 024 0.30
69 073 030 043 0.78 032 045 047 0.29 036 058 037 045
70 0.68 0.16 026 0.79 0.18 030 034 0.09 0.14 0.42 0.11 0.18
71 044 027 033 045 028 035 031 023 026 035 025 0.29
72 093 048 063 094 049 064 08 0.63 0.72 0.87 064 0.74
73 075 009 0.15 0.76 0.09 015 032 0.09 0.14 0.41 0.12 0.18
74 0.86 042 0.57 087 042 057 053 045 049 0.55 046 0.50
75 044 047 046 0.53 057 055 022 026 024 034 040 0.37
AVERAGE 0.71 0.42 0.50 0.75 0.45 0.53 0.48 0.36 0.39 0.56 0.42 0.46

Table C.2: Results of the four experiments conducted to evaluate the implemented
polyphonic transcription algorithm.
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Table C.4 — Guitar Tablature Arrangement Experiment Results

1D EXPERIMENT 1 EXPERIMENT 2 EXPERIMENT 3 GUITAR PRO SIBELIUS
1 0.71 1.00 1.00 1.00 1.00
2 0.78 1.02 1.22 0.74 0.54
3 0.68 1.01 1.11 1.08 1.25
4 0.74 0.92 0.99 0.86 0.49
5 0.74 0.78 1.06 1.00 0.41
6 1.49 1.91 1.84 2.14 2.14
7 0.48 0.70 0.94 1.00 1.00
8 0.29 0.60 0.66 1.00 1.00
9 0.58 0.97 1.00 1.00 0.41
10 0.96 1.81 3.76 5.89 9.73
11 0.23 0.35 0.53 0.83 1.02
12 0.85 1.03 1.21 1.03 1.60
13 0.73 1.01 1.09 1.23 1.17
14 0.90 1.03 1.00 0.91 1.06
15 0.56 0.99 1.15 1.68 1.27
16 0.37 0.50 0.68 1.17 1.36
17 1.22 1.41 1.64 1.04 1.89
18 0.54 0.75 0.97 0.94 1.07
19 1.12 1.47 2.05 2.25 1.26
20 1.99 2.60 2.60 1.55 2.80
21 1.39 2.10 2.15 1.62 1.95
22 0.87 1.46 1.51 1.00 0.66
23 0.23 0.39 0.45 0.93 0.83
24 0.90 1.00 1.00 0.89 0.89
25 1.14 1.71 1.66 1.03 1.85
26 1.14 1.55 2.34 1.14 1.11
27 1.24 1.25 1.15 0.71 0.96
28 1.04 1.16 1.18 1.02 1.18
29 0.40 0.62 0.73 1.00 0.90
30 0.63 0.89 0.87 1.07 1.00
31 0.92 0.94 0.94 1.00 1.00
32 0.43 0.74 0.95 0.92 0.79
33 0.51 0.79 1.05 1.10 1.36
34 1.09 1.17 1.14 1.16 0.33
35 0.36 0.61 0.74 1.00 1.00

Continued on the next page. ..
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Table C.4 — Continued

1D EXPERIMENT 1 EXPERIMENT 2 EXPERIMENT 3 GUITAR PRO SIBELIUS
36 1.59 2.18 1.74 1.57 2.09
37 1.51 1.71 2.78 1.92 3.38
38 0.25 0.37 0.47 1.00 0.83
39 0.86 1.15 1.10 1.04 0.62
40 0.77 1.43 1.09 3.21 3.21
41 0.53 0.71 0.75 1.00 1.00
42 9.00 9.00 9.00 9.00 9.00
43 1.72 1.77 1.72 1.67 0.43
44 1.50 1.57 1.64 1.05 0.90
45 1.49 1.88 1.88 2.32 2.32
46 0.37 0.57 0.65 1.00 0.87
47 0.73 2.06 4.36 5.19 5.19
48 0.63 0.88 0.91 1.00 1.00
49 1.32 1.39 1.39 1.00 1.21
50 1.00 1.00 1.00 1.00 1.00
51 1.89 2.23 2.23 2.23 2.23
52 0.43 0.63 0.64 1.00 0.72
53 0.30 0.47 0.57 1.00 1.00
54 0.66 1.08 1.38 1.03 0.93
55 0.48 0.81 0.81 1.03 1.00
56 1.00 1.04 1.14 1.03 1.15
57 1.40 2.11 2.11 1.63 1.63
58 0.30 0.60 0.58 1.00 0.59
59 0.56 0.59 0.58 1.00 1.00
60 0.79 0.99 0.99 1.00 1.00
61 0.75 0.87 0.99 1.00 1.00
62 0.58 0.87 0.76 0.95 0.78
63 0.48 0.80 1.22 1.74 0.82
64 0.32 0.53 0.85 1.00 1.00
65 1.31 1.82 1.89 1.49 1.49
66 0.55 0.96 0.99 0.99 0.99
67 0.91 1.08 1.16 1.10 1.16
68 0.33 0.47 0.65 0.88 0.76
69 0.85 1.22 1.09 1.06 1.23
70 2.45 2.68 2.68 2.01 1.91
71 1.00 1.00 0.99 0.90 0.82

Continued on the next page. ..
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Table C.4 — Continued

ID EXPERIMENT 1 EXPERIMENT 2 EXPERIMENT 3 GUITAR PRO SIBELIUS
72 1.46 1.75 1.75 1.36 0.59
73 0.13 0.21 0.26 1.00 0.96
74 1.09 1.09 1.09 1.09 0.49
75 4.54 4.54 4.54 4.54 4.54
m 0.78 1.01 1.09 1.03 1.00
o 0.46 0.57 0.49 0.11 0.33

Table C.4: Results of the three experiments conducted to evaluate the implemented guitar
tablature arrangement algorithm, alongside the reference algorithms provided by Guitar
Pro and Sibelius. [t denotes the median and ¢ denotes the standardized median absolute
deviation.
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