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Abstract

Manually transcribing guitar tablature from an audio recording is a difficult and time-

consuming process, even for experienced guitarists. While several algorithms have been

developed to automatically extract the notes occurring in an audio recording, and several

algorithms have been developed to produce guitar tablature arrangements of notes occur-

ring in a music score, no frameworks have been developed to facilitate the combination of

these algorithms. This work presents a web-based guitar tablature transcription framework

capable of generating guitar tablature arrangements directly from an audio recording.

The implemented transcription framework, entitled Robotaba, facilitates the creation

of web applications in which polyphonic transcription and guitar tablature arrangement

algorithms can be embedded. Such a web application is implemented, resulting in a unified

system that is capable of transcribing guitar tablature from a digital audio recording and

displaying the resulting tablature in the web browser. The performance of the implemented

polyphonic transcription and guitar tablature arrangement algorithms are evaluated using

several metrics on a new dataset of manual transcriptions gathered from tablature websites.
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Résumé

Transcrire à la main une tablature pour guitare à partir d’un enregistrement audio est

un processus difficile et long, même pour les guitaristes chevronnés. Bien que plusieurs

algorithmes aient été créés pour extraire automatiquement les notes d’un enregistrement

audio, et d’autres pour préparer des arrangements de notes de tablature pour guitare tels

qu’on les retrouve dans la création musicale, aucun environnement n’a été mise en place

pour faciliter l’association de ces algorithmes. Le travail qui suit présente un environnement

accessible sur l’Internet, permettant la transcription et la préparation d’arrangements de

tablatures de guitare, directement à partir d’un enregistrement audio.

Cet environnement de transcription, nommée Robotaba, facilite la création d’applications

Web, dans lesquelles la transcription polyphonique et les algorithmes d’arrangements de

tablature pour guitare peuvent être intégrés. Une telle application Web permet d’obtenir un

système unifié, capable de transcrire une tablature pour guitare à partir d’un enregistrement

audio numérique, et d’afficher la tablature obtenue dans un navigateur Web. La perfor-

mance de la transcription polyphonique mise en place et des algorithmes d’arrangements de

tablature pour guitare est évaluée à l’aide de plusieurs paramètres et d’un nouvel ensemble

de données, constitué de transcriptions manuelles recueillies dans des sites Web consacrés

aux tablatures.
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Chapter 1

Introduction

T
ablature, or less formally, “tabs”, have become the primary form of communication

between guitarists on the Internet. Tablature is an unstandardized music notation sys-

tem that defines gestural information and operations to be applied to a specific instrument,

such as “depress the fourth fret on the fifth string from the bottom and pluck”. Symbols

in tablature indicate the instrument fingering required to produce a specific pitch. In this

way, pitch information is represented implicitly rather than explicitly. Rhythmic informa-

tion may be conveyed through the relative spacing of musical symbols, through specialized

glyphs above the staff, or not at all. This differs from common Western music notation

where standardized musical symbols convey both pitch and rhythm information explicitly,

but the details of how to perform the musical score on an instrument is left to the musician.

Tablature notation is a symbolic representation of instrument commands that is frequently

used on the Internet.

The driving force behind the popularity of tablature is that the notation is accessible to

a large body of people. This is true both physically, in the sense that tablature is readily

available online, but also intellectually, in the sense that the notation system is easy to

understand, decipher, and translate into an instrumental performance. The transcription

of music in tablature format has enabled members of the musical community who are not

fluent readers or writers of common Western music notation to perform and share their

interpretations of a musical work. The ease of access of tablature notation has contributed

to its popularity in the musical community.



2 Introduction

On the Internet, guitar pieces are frequently displayed in tablature notation. Guitar

tablature is a music notation system with a six-line staff that represents the strings on a

guitar. A numeric entry on a line represents the fret to depress on a particular string. In

order to share tablature on a website, guitarists must manually input fret numbers into the

computer for each note in the musical work. If the tablature to perform a song is unknown,

the guitarist must first perform the task of manual transcription. This task is accomplished

by estimating the pitches of notes in a guitar recording, either by ear or with the aid of

audio analysis tools such as Transcribe! 1. The guitarist must then choose from a set of

candidate string and fret combinations for each note to produce a tablature arrangement.

Manual transcription is a difficult and laborious task even for experienced guitarists.

Researchers in the field of music information retrieval (MIR)—a multi-disciplinary field

combining Electrical Engineering, Computing Science, and Music—aim to automate the

task of manual tablature transcription. To this end, several algorithms have been proposed

to accomplish the task of polyphonic transcription, which seeks to estimate the note events

occurring in an audio recording. Although the automatic transcription of monophonic (one

note at a time) musical passages is considered a solved problem (Benetos et al. 2012),

polyphonic (multiple notes at the same time) transcription is still an open problem. As

well, several algorithms have been proposed to accomplish the task of guitar tablature ar-

rangement, which seeks to assign a string and fret combination to each note in a musical

score such that the resulting tablature arrangement is easy for a human to perform. How-

ever, there is a gap in the current body of research for which no bridge has been built:

there does not exist any tools to facilitate the combination of polyphonic transcription and

guitar tablature arrangement algorithms to automatically generate tablature from a guitar

recording. The work presented in this thesis addresses this discontinuity.

This chapter will begin by introducing and describing the history of tablature notation.

Section 1.2 will provide an overview of the work entailed in this thesis, followed by an

outline of the structure of this thesis in Section 1.3.

1.1 Evolution of Tablature

Many music notation systems have been proposed over the centuries. Early notation sys-

tems have evolved into their modern counterparts through the process of natural selection—

1http://www.seventhstring.com/xscribe

http://www.seventhstring.com/xscribe
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the systematic variation and combination of desirable properties of existing notation sys-

tems. For example, modern staff notation in Western culture evolved from staffless neume

notation (Figure 1.1(a)) in the ninth century. In this system of notation, a neume represents

the pitch contour of a vocal melody spanning a single syllable of chant. Four-line staves and

clefs were later introduced in square-note notation (Figure 1.1(b)), which became five lines

in the sixteenth century, and eventually evolved into the modern Western music notation

used today (Figure 1.1(c)2). Tablature notation also has a large evolutionary tree, with

many variations in syntax and intended meaning.

(a) System of music in staffless neume notation from the Antiphonarium Officii (Carolingian 990)

(b) System of music in square-note notation from the Liber Usualis (Catholic Church 1963)

(c) Staves of music in modern staff notation from BWV 1067 (Bach 1885).

Fig. 1.1: The evolution of common Western music notation.

1.1.1 History of Tablature

The word tablature originates from the Latin word tabula, referring to a writing tablet.

In the modern English language, the word tabulate is a verb describing the act of noting

a record in a table. This relates to the act of transcribing tablature for plucked string

instruments, where a system of tablature resembles numeric entries in a table.

2http://imslp.org/wiki/Orchestral_Suite_No.2_in_B_minor,_BWV_1067_(Bach,
_Johann_Sebastian)

http://imslp.org/wiki/Orchestral_Suite_No.2_in_B_minor,_BWV_1067_(Bach,_Johann_Sebastian)
http://imslp.org/wiki/Orchestral_Suite_No.2_in_B_minor,_BWV_1067_(Bach,_Johann_Sebastian)


4 Introduction

Since tablature notation defines operations to be applied to a specific instrument to

produce sound, it follows that there are different notations for different instruments. Tab-

lature is classified according to the instrument to which it belongs, and further, the nation

of the tablature’s origin (Apel 1953). For example, tablature may be referred to as French

lute tablature, German organ tablature, and so on. Tablature is most common for stringed

instruments such as the bass guitar, electric or acoustic guitar, lute, vihuela, cittern, and

harp. In the case of stringed instruments with frets, the tablature notation consists of

systems of lines that correspond to the courses (groupings) of strings on the instrument, as

well as numerical entries on the lines which denote the fret to depress on a specific string.

An example of vihuela tablature can be seen in Figure 1.3(a). Tablature also exists for wind

instruments such as the ocarina and harmonica, where diagrams or symbols show which

air holes are to be open and closed. Figure 1.2 displays an example of an ocarina tablature

of the melody “Serenade of Water” from the video game The Legend of Zelda: Ocarina of

Time.3 Theoretically, any instrument where the operations required to play the instrument

can be discretely defined and represented symbolically can have a tablature notation.

Fig. 1.2: Ocarina tablature of the melody “Serenade of Water” from the video game The
Legend of Zelda: Ocarina of Time.

Just as common music notation evolved from early music notation systems such as

neume and mensural notation, modern tablature notation for stringed instruments also

evolved from early tablature notation systems dating back to the Middle Ages. In the

Renaissance, there were two main variations of tablature notation: Spanish and Italian

tablature, and French tablature (Turnbull 1991). Spanish and Italian tablature used num-

bers to specify which frets to depress. The top line of the staff represented the lowest

pitched course of strings on the instrument. An example of Spanish tablature can be seen

in Figure 1.3(a). French tablature notation used letters of the alphabet to indicate which

3http://ocarina-tabs.com/2011/11/30/brendoges-collection-zelda-ocarina-of-time

http://ocarina-tabs.com/2011/11/30/brendoges-collection-zelda-ocarina-of-time
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fret to depress. The letter ‘a’ represents an open string, ‘b’ indicates a depression of the

first fret, and so forth. In contrast to Spanish and Italian tablature, the top line of the

staff represented the highest pitched course of strings on the instrument. In the case of

instruments with courses of unfretted strings, a pluck of an unfretted course is denoted by

a sequence of forward slashes.4 To demonstrate, ‘/’ denotes a pluck of the first unfretted

course, ‘//’ is the second unfretted course, and so on. A system of French tablature can

be seen in Figure 1.3(b). In both of these examples of tablature, rhythmic information is

displayed above the system in mensural notation.

Modern tablature notation for guitar, as seen in Figure 1.3(c), inherited features of both

Spanish and Italian tablature, and French tablature. From Spanish and Italian tablature,

modern tablature notation uses numbers to denote which frets to depress, but has a similar

orientation to that of French tablature, where the top line of the system represents the

highest pitched string. Symbols may appear before, after, or between numbers to indicate

a range of note ornamentations such as vibrato, pitch bends, and slides. Since these symbols

are unstandardized, tablature websites and books usually provide a legend for the intended

meaning of printed symbols. A list of commonly used guitar tablature symbols can be seen

in Table 1.1. In contrast to its notational predecessors, modern tablature notation does

not typically display rhythmic information above the staff; though, some forms of modern

tablature use the relative spacing between symbols to hint at the strumming or plucking

pattern.

Table 1.1: Commonly used guitar tablature symbols.

Instrument Operation Symbol Alternate Symbol

slide up / s
slide down \ s
hammer-on h _
pull-off p _
vibrato ∼
mute/dead note x ×
bend/release b

4The lute is an example of an instrument that may have both fretted and unfretted courses of strings.
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(a) System of Spanish vihuela tablature from the Orphenica Lyra (Fuenllana 1978).

(b) System of French cittern tablature (Otley 1600).

(c) System of modern guitar tablature with common music notation above (Weeks 2008).

Fig. 1.3: The evolution of tablature notation.

Modern tablature for stringed instruments with frets may also be displayed in the form

of chord diagrams, which can be thought of as a matrix of boolean values. The rows of the

matrix represent the frets of the instrument and the columns of the matrix represent the

strings of the instrument. Entry i, j in the matrix represents a depression of the jth string

above the ith fret. For the guitar, chord diagrams typically display the first few frets on

the fretboard, as seen in Figure 1.4.

1.1.2 Tablature Versus Common Western Music Notation

Tablature notation, although widely used, is not meant to replace standardized music

notation systems, but rather pose as an alternative representation that is lightweight and
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Fig. 1.4: Chord diagrams of a C-Major, D-Major, E-Major, and G-Major guitar chord
(from left to right).

easily comprehensible. There are many advantages to a notation system of this nature.

Tablature notation provides the sequence of operations required to perform a piece of

music on a specific instrument, whereas common Western music notation requires the

musician to decide how to interact with their instrument to perform a piece of music.

Consequently, tablature notation has a lower barrier to entry than common Western music

notation. Tablature notation is minimal by design, and therefore requires minimal training

to comprehend and minimal time to write. Conversely, common Western music notation

requires years of training to achieve a similar level of expertise. In comparison to common

Western music notation, tablature has a visual representation which is closer to that of the

intended performance instrument. For example, a system of guitar tablature is made to

resemble the fretboard of a guitar. Finally, guitar tablature can be represented in plain

text format for simple display in the web browser. Tablatures in this format are commonly

referred to as “ASCII tabs” because they consist of a sequence of ASCII characters. An

example of an ASCII guitar tab can be seen in Figure 1.5.5

There are also drawbacks of representing a music score in tablature notation. Most

significantly, modern tablature notation provides reduced, or no rhythm information to the

musician. Although the explicit description of instrument operations provides more infor-

mation than common Western music notation, it may suppress the style of the musician

who may have different views on how the piece should be performed. Furthermore, the

language and analytical tools of music theory revolve around common Western music nota-

tion, not tablature notation. Despite its weaknesses, tablature notation has many strengths

that have contributed to its popularity in the musical community.

5http://tabs.ultimate-guitar.com/j/jimmy_eat_world/23_tab.htm

http://tabs.ultimate-guitar.com/j/jimmy_eat_world/23_tab.htm
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Fig. 1.5: A segment of guitar tablature in ASCII format from the song “23” by Jimmy
Eat World.

1.1.3 Tablature Websites

As the Internet became accessible to a large body of musicians, many websites emerged

where tablature could be uploaded, displayed, and peer-reviewed. Ultimate Guitar is a

popular website which hosts guitar, bass guitar, and drum tabs.6 The tablature may

be viewed in the web browser as ASCII tabs or within Tab Pro—a proprietary Adobe

Flash web application which renders tablature in the web browser and provides multi-track

audio playback of tablature using synthesized instruments. Some tablature uploaded to

Ultimate Guitar is available for download as a Guitar Pro file. Guitar Pro is a proprietary

desktop application which allows multi-track tablature viewing, editing, and synthesis of

a wide variety of stringed and percussive instruments.7 Other popular tablature websites

and search engines include Songsterr 8, 911tabs9, Chordie10, and Guitare Tab11. Website

analytics for each of these sites over the past year are compared in Figure 1.6 using the

metric of unique visitors from the United States per month. This information was compiled

from the public analytics data from Compete.12

With the large database of transcriptions available on these tablature web sites, evalu-

ating the quality of each tablature is important for ordering query results and moderating

tablature uploads. Ultimate Guitar has a five-star rating system in which different tabla-

6http://www.ultimate-guitar.com
7http://www.guitar-pro.com
8http://www.songsterr.com
9http://www.911tabs.com

10http://www.chordie.com
11http://www.guitaretab.com
12http://www.compete.com/us

http://www.ultimate-guitar.com
http://www.guitar-pro.com
http://www.songsterr.com
http://www.911tabs.com
http://www.chordie.com
http://www.guitaretab.com
http://www.compete.com/us
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Fig. 1.6: Unique visitors, with a United States IP address, per month to various tablature
websites.

ture arrangements of a piece of music can be rated by users according to its correctness

and formatting.

1.1.4 Tablature Engraving Online

Since the inception of tablature notation, the process of manually transcribing tablature

from an audio recording or live performance has only changed in the method of musical

engraving. In the Renaissance, tablature was handwritten using ink and parchment. Before

the introduction of personal computers, music engraving involved physically etching musical

symbols into metal plates, which were then covered in ink and imprinted onto paper using

a printing press. In the modern digital age, the term music engraving now refers to the

typesetting and display of musical symbols on the computer. In order to differentiate music

engraving on the computer from the archaic method of music engraving using metal plates,

the term digital music engraving will hereinafter refer to music engraving on the computer.
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There are several methods of digitally engraving tablature in the web browser. The most

simplistic method involves displaying tablature as plain text in the web browser, as shown

in Figure 1.5. More sophisticated digital music engraving methods render musical symbols

on a digital drawing surface such as the hypertext markup language (HTML) canvas or use

alternate multimedia web technologies such as Adobe Flash to display musical symbols.

Another method of digital music engraving in the web browser involves defining the shape

and position of musical symbols on the page as scalable vector graphics (SVGs), which

describe images as a set of lines, curves, and transformations.

Several tools exist to reduce the amount of time required by users to digitally engrave

tablature in the web browser. The method of digital music engraving governs the user

input required to display the tablature. Displaying the tablature as plain text requires the

author to input an ASCII character for each tablature symbol. To counteract this time-

consuming process, some tablature websites such as Ultimate Guitar provide an ASCII tab

template file that is filled with empty systems of tablature. With this template, the author

can focus on the symbolic content of the tablature instead of on tablature formatting.

Another tool to facilitate tablature entry is the desktop application Guitar Pro. Guitar

Pro provides a graphical interface where the user can enter tablature symbols and export

the tablature arrangement to various formats, including plain text format, which can then

be displayed in the web browser. To render tablature symbols using the HTML canvas or as

SVGs, there exist several digital music engraving libraries such as VexTab13 and AlphaTab14,

which perform the low-level drawing commands to produce an aesthetically pleasing digital

tablature engraving. These libraries require the user to input a list of formatted keywords

and numbers that describe the tablature to be displayed. Although tools exist to reduce the

amount of time required for digital tablature engraving, the process of manual tablature

entry is still a tedious and demanding process.

1.2 Project Overview

In response to the time-consuming process of manual transcription, this thesis will focus on

automating the task of guitar tablature transcription to facilitate tablature entry online.

The objective of this thesis is to review state-of-the-art algorithms for polyphonic transcrip-

13http://www.vexflow.com/vextab
14http://www.alphatab.net

http://www.vexflow.com/vextab
http://www.alphatab.net
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tion and guitar tablature arrangement and to develop a unifying web-based framework that

facilitates the combination of these algorithms. A state-of-the-art polyphonic transcription

algorithm (Zhou and Reiss 2008) has been implemented along with a new guitar tablature

arrangement algorithm that generates instrument-specific tablature arrangements. The

web-based guitar tablature transcription framework, hereinafter referred to as Robotaba,

is used to create a web application that combines the implemented algorithms to auto-

matically perform tablature transcriptions of guitar recordings and display the resulting

tablature in the web browser. The implemented web application will provide a novel and

accessible tool for guitarists and a centralized repository of guitar tablature transcriptions

for music researchers.

A formal assessment of the implemented guitar tablature transcription web application

is performed by evaluating the implemented polyphonic transcription and guitar tablature

arrangement algorithms independently. A new ground-truth dataset consisting of synthe-

sized guitar recordings that are each aligned with the correct polyphonic transcription of

the recording has been compiled to evaluate the implemented polyphonic transcription al-

gorithm. Additionally, a new ground-truth dataset consisting of human-arranged guitar

tablature has been compiled to evaluate the implemented guitar tablature arrangement

algorithm.

1.3 Thesis Organization

This thesis is organized as follows: the next chapter provides a literature review of poly-

phonic transcription algorithms, guitar tablature arrangement algorithms, and also reviews

commercial guitar tablature transcription systems. Chapter 3 presents the design of the

web-based guitar tablature transcription framework Robotaba and describes the imple-

mented polyphonic transcription and guitar tablature arrangement algorithms. Chapter 4

presents the compiled ground-truth datasets and describes the methodology for evaluating

the output of the implemented polyphonic transcription and guitar tablature arrangement

algorithms. The results of this evaluation are presented and discussed in Chapter 5. The

work is concluded in Chapter 6.
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Chapter 2

Literature Review

T
he task of automatic guitar tablature transcription can be described as

a function f that takes an audio signal x as input and outputs guitar tablature y.

This function can be decomposed into two composite functions: a polyphonic transcription

function g and a guitar tablature arrangement function h, such that h(g(x)) = y (Fig-

ure 2.1). The polyphonic transcription function takes an audio signal as input and outputs

a sequence of note events z. Each note event has a pitch, an onset time, and a duration.

The guitar tablature arrangement function takes a sequence of note events as input and

outputs a string and fret combination for each note in the input sequence.

Fig. 2.1: Function decomposition of automatic guitar tablature transcription.

This chapter will provide an overview of algorithms that can be used to automatically

transcribe tablature from a guitar recording. Section 2.1 reviews different approaches to the



14 Literature Review

problem of polyphonic transcription, followed by an examination of algorithms for guitar

tablature arrangement in Section 2.2. Section 2.3 presents guitar-specific transcription

algorithms and Section 2.4 introduces guitar tablature transcription systems that analyze

data other than audio. Finally, Section 2.5 reviews commercial products that perform

automatic transcriptions or aid humans in the process of manual transcription.

2.1 Polyphonic Transcription

Automatic music transcription refers to the process of extracting musical information from

an audio signal in order to generate a symbolic musical score. The analysis of the input

audio signal may be realtime or offline. In realtime, where the audio signal is input from

a live performance of a musician, the analysis is causal—the transcription of note events

at time t0 only depends on the input audio signal x(t) ∀ 0 ≤ t ≤ t0. Depending on the

transcription algorithm being used, the offline analysis of an audio recording may be causal

or non-causal since the transcription of note events at time t0 may have access to the entire

input audio signal x(t) ∀ t ≥ 0.

Automatic music transcription can be divided into two categories: monophonic tran-

scription and polyphonic transcription. Monophonic transcription algorithms are only ca-

pable of transcribing note events from input audio signals where one instrument plays a

single note at a time. On the other hand, polyphonic transcription algorithms attempt to

transcribe note events from input audio signals where several notes occur simultaneously.

Polyphonic audio signals may result from one instrument playing multiple notes at the same

time, or from multiple instruments (with similar or different timbres) that sound simulta-

neously. Though monophonic transcription can be considered a subproblem of polyphonic

transcription, monophonic transcription algorithms use different analysis techniques, which

exploit the fact that only one note occurs at a time, yielding simpler and more robust al-

gorithms (Plumbley et al. 2002).

Polyphonic transcription algorithms output the pitch, onset time, and duration of notes

occurring in an input audio signal. To estimate the pitch of a note, multiple fundamental

frequency estimation algorithms are used. Fundamental frequency f0 is defined as the

lowest frequency of a periodic waveform and is the inverse of the fundamental period T0

(Oppenheim et al. 1997, 17–8). Overtones fk occur at integer multiples of the fundamental
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frequency

fk = kf0 ∀ k ∈ N+. (2.1)

Fundamental frequency is the physical phenomenon that corresponds to the perceptual

phenomenon of pitch. To estimate the pitch of a note in Western music following an

equal-tempered scale, fundamental frequency estimates are quantized to the frequency of

the nearest pitch. For example, consider a note with a fundamental frequency estimate

of f0 = 435.20Hz. The fundamental frequency lies between the pitch G]4, having a funda-

mental frequency of 415.3Hz, and the pitch A4, having a fundamental frequency of 440Hz.

In this case the note is assigned the pitch A4 because |f0 − 440| < |f0 − 415.3|.
The remaining temporal features of a note event, specifically the note onset time and

duration, are estimated using an onset detection algorithm and an offset detection algo-

rithm. In the literature, offset detection is alternatively referred to as note tracking since

these algorithms track pitch estimates across analysis frames of the audio signal, from the

note onset time until the pitch estimate can no longer be found in the audio signal. The

accuracy of note offset time estimates are less important than onset time estimates because

the former exhibit less perceptual importance than the latter (Costantini et al. 2009).

Although the transcription of monophonic musical passages is considered a solved prob-

lem (Klapuri 2004) as a result of accurate monophonic transcription systems (Slaney and

Lyon 1990; Maher and Beauchamp 1994; Cheveigné and Kawahara 2002), the transcrip-

tion of polyphonic music with no limitations on the number of instruments, the type of

instruments, and the degree of polyphony1 is still an open problem (Benetos et al. 2012).

Detecting multiple fundamental frequencies in a polyphonic signal is a difficult task be-

cause it is ambiguous whether a peak in the magnitude spectrum at a particular frequency

bin “is a fundamental or a harmonic, or both” (Fiss and Kwasinski 2011) due to coincid-

ing harmonics. For example, let fa and fb be fundamental frequencies such that fa 6= fb.

Harmonics of these fundamental frequencies overlap when

mfa = nfb ∀ m,n ∈ N+ (2.2)

(Bonnet and Lefebvre 2003).

1The term degree of polyphony will be used to refer to the number of notes occurring simultaneously.
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For a visual comparison of the complexity of fundamental frequency estimation versus

multiple fundamental frequency estimation, consider the magnitude spectrum of a pluck of

the open A string on a guitar in standard tuning displayed in Figure 2.2(a). The first local

maximum is approximately f0 = 110Hz and overtones (local or global maxima) are located

at roughly integer multiples of the fundamental frequency. On the other hand, consider the

magnitude spectrum displayed in Figure 2.2(b) of an A major chord comprised of five notes

sounding simultaneously. The magnitude spectrum has no apparent structure because the

frequency spectra of individual notes are overlapping.

(a) Frequency spectrum of the pluck of the open
A string on a guitar in standard tuning.

(b) Frequency spectrum of the strum of an A major
chord on a guitar.

Fig. 2.2: Comparison of the frequency spectrum of a pluck versus a strum on an acoustic
guitar with steel strings.

Many music researchers are searching for a general solution to the problem of polyphonic

transcription. Therefore, the majority of proposed polyphonic transcription systems are

instrument and genre agnostic. These transcription systems aim to transcribe a wide range

of harmonic musical instruments in a variety of playing styles (Benetos et al. 2012).

In an attempt to constrain the parameters of this difficult problem, more specialized

transcription systems have been introduced that require audio input with specific musical

properties or a priori knowledge of the musical passage being transcribed. The first poly-

phonic transcription system for duets yielded promising results by imposing constraints

on the frequency range and timbre of the input instruments involved and the intervals
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between simultaneously performed notes (Moorer 1975). In contrast to the more mature

field of speech recognition where the majority of practical systems are language, gender,

or speaker dependent (Huang et al. 2001), instrument and genre-specific polyphonic tran-

scription systems are significantly less represented in the MIR literature in comparison

to their general counterparts (Benetos et al. 2012). In favour of specialized polyphonic

transcription systems, Martin (1996) commented that “the importance of a structured do-

main is that it allows the transcribing agent to exploit the structure, thereby reducing the

difficulty of the task”.

The music information retrieval evaluation exchange (MIREX)—an annual evaluation

of state-of-the-art MIR algorithms using the same datasets and metrics—started evalu-

ating polyphonic transcription algorithms in 2007.2 Submitted polyphonic transcription

algorithms are evaluated on two datasets. The first dataset consists of 30 audio recordings

with a variety of musical instruments and degrees of polyphony. The second dataset con-

sists of ten piano recordings. Many of the algorithms evaluated on the piano dataset are

not necessarily piano-specific transcription systems (Benetos et al. 2012).

Since the scope of this thesis is on the transcription of polyphonic music arising from

a single instrument, this section will provide an overview of polyphonic transcription algo-

rithms (and surrounding schools of thought) that performed well in the MIREX evaluations

on the piano dataset from 2007–2012. Table 2.1 presents the MIREX results of the reviewed

transcription algorithms using the metrics of precision p (the ratio of correctly transcribed

notes to the number of transcribed notes), recall r (the ratio of correctly transcribed notes

to the number of ground-truth notes), and f -measure

f(p, r) =
2pr

p+ r
, (2.3)

which combines precision and recall into a single metric. The reported MIREX results

consider the accuracy of note pitch and onset time but disregard note duration errors.

Although this section reviews polyphonic transcription algorithms that performed well

on the MIREX piano dataset (Table 2.1), being stringed instruments, the piano and the

guitar have similar properties. One similarity is that both instruments comply with the

inharmonicity phenomenon, which causes harmonics in the upper frequency range to be

2http://www.music-ir.org/mirex/wiki

http://www.music-ir.org/mirex/wiki
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Table 2.1: Polyphonic transcription systems that performed well in the 2007–2012
MIREX on the piano dataset.

Polyphonic transcription system Precision Recall f-measure

Zhou and Reiss (2008) 0.738 0.777 0.757
Ryynänen and Klapuri (2005) 0.720 0.669 0.694
Poliner and Ellis (2007) 0.672 0.630 0.650
Emiya et al. (2008) 0.649 0.639 0.643
Vincent et al. (2007) 0.591 0.651 0.620
Yeh and Roebel (2011) 0.504 0.793 0.616
Benetos and Dixon (2012) 0.627 0.594 0.610
Yeh and Roebel (2010) 0.497 0.785 0.609
Benetos and Dixon (2011a) 0.663 0.532 0.590
Nakano et al. (2009) 0.541 0.539 0.540
Dessein et al. (2010) 0.425 0.738 0.539
Lee et al. (2011) 0.531 0.525 0.528
Lee et al. (2010) 0.575 0.480 0.523
Chang et al. (2008) 0.345 0.680 0.458
Raczyński and Sagayama (2009) 0.689 0.246 0.363

shifted upwards in frequency according to the formula

fk = kf0
√

1 + β(k2 − 1), (2.4)

where f0 is the fundamental frequency, k is the harmonic index, and β is the inharmonicity

factor (Fletcher and Rossing 1998).

Polyphonic transcription is a difficult problem with a large number of variables. There

are various different approaches to the problem, many of which rely on multiple techniques

to perform a transcription (Klapuri 2004). Therefore, it is difficult to categorize polyphonic

transcription systems according to the methodology used. Nevertheless, the following sec-

tions aim to provide an overview of the main approaches to the problem.

2.1.1 Human Audition Modelling

As a motivation for polyphonic transcription algorithms modelled after the human audition

system, Anssi Klapuri, an expert in the field of polyphonic music transcription, states
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that “in music transcription, ... the problem is really not in finding fast computers but

in discovering the mechanisms and principles that humans use when listening to music.

Modelling perception is difficult because the world in which we live is complex and because

the human brain is complex” (Klapuri 2004). A large body of multi-disciplinary research

follows this school of thought, developing polyphonic transcription algorithms that replicate

how it is believed that humans perform this complex task.

It is possible to pose the problem of polyphonic transcription as one of sound source

separation, a complex cognitive function that humans perform with ease. Auditory scene

analysis is the process by which the human auditory system separates a mixture of sounds

that are interwoven in both the time and frequency domain into their constituent sources

(Bregman 1990). This natural phenomenon is commonly referred to as the cocktail party

effect (Cherry 1953), which addresses the ability of humans to focus their attention on one

speaker amongst various other speakers and superfluous noise. In the context of polyphonic

transcription, the deconstruction of a polyphonic signal y into a set of M monophonic

signals xi that represent the audio signal of each note in a chord

y(t) =
M∑
i=1

xi(t), (2.5)

significantly reduces the complexity of the problem. The signal of each note can then be

transcribed by established monophonic transcription algorithms and combined to form the

complete polyphonic transcription.

Forming a computational model of the auditory scene analysis process, Kashino and

Tanaka (1993) proposed a system for the polyphonic transcription of multiple instruments.

Using a bottom-up approach, frequency components present in the Fourier decomposition

of a monaural audio signal were clustered into individual note hypotheses according to

human cues for auditory source separation, such as inharmonicity and the proximity of

harmonics in the frequency domain. Additionally, timbre recognition was performed to

attribute a musical instrument to each transcribed note. The system achieved 90% accurate

transcriptions on synthesized musical instrument digital interface (MIDI) files of piano and

flute limited to two and three degrees of polyphony.

Similarly, Kameoka et al. (2007) proposed an approach to polyphonic transcription

called harmonic temporal structured clustering, which deconstructs a polyphonic audio
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signal into individual source signals by clustering frequency components. This decompo-

sition is represented as a Gaussian mixture model (GMM) p(x) =
∑K

k=1 πkN (x|µk,Σk),

where the number of component distributions K must be specified a priori and the un-

known parameters of the distribution (mixing coefficients πk, means µk, and covariances

Σk) are estimated using the expectation maximization algorithm. Nakano et al. (2009)

extended this algorithm to automatically estimate the degree of polyphony K present in

the input signal. The results of this algorithm in the MIREX 2009 evaluation are presented

in Table 2.1.

Alternatively, the decomposition of a polyphonic signal into source components as in

Equation 2.5 can be further deconstructed into a summation of sinusoids for each note

y(t) =
M∑
i=1

N∑
j=1

[αi,j cos(jf
(i)
0 t) + βi,j sin(jf

(i)
0 t)] + η(t), (2.6)

where the degree of polyphony M , the number of sinusoidal components N , the fundamen-

tal frequency f
(i)
0 of each note, and the distribution of the residual noise η is unknown.

Statistical signal processing techniques can be used to estimate these unknown parameters

and perform a transcription of the input signal y. Davy and Godsill (2002) staged the

problem in a Bayesian statistical framework, where prior distributions for the unknown pa-

rameters are used to estimate values of these parameters that best explain the observation

signal y. The system is reported to perform well on signals with up to three degrees of

polyphony; however, the authors note that searching the large parameter space is on the

verge of being computationally intractable.

Another stream of research seeks to model the human auditory and periphery systems

that contribute to the perception of pitch, a psychoacoustical attribute that humans try

to assign to almost all incoming acoustical signals (Meddis and Hewitt 1991). Meddis and

O’Mard (1997) introduced the unitary model of pitch perception, where the function of

the middle and inner ear is modelled by a set of bandpass filters. The output of each filter

is compressed, half-wave rectified, and low-pass filtered to obtain the amplitude envelope

of the signal. To estimate the perceived pitch, an autocorrelation function then looks

for periodicities in the amplitude envelope and sums the result of each frequency band,

mimicking the function of peripheral audio processing systems in the human brain.
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Klapuri (2005) modified the proposed unitary model of pitch perception to use a tech-

nique called harmonic selection instead of an autocorrelation function in order to extract

more reliable fundamental frequency estimates. This fundamental frequency estimation al-

gorithm was later extended to include a hidden Markov model (HMM) for note event mod-

elling and a musicological model to govern the transitions between note events (Ryynänen

and Klapuri 2005). This polyphonic transcription system was submitted to MIREX in both

2007 and 2008 and received the results displayed in Table 2.1.

2.1.2 Salience Methods

Multiple fundamental frequency estimation algorithms that apply transformations to the

input audio signal in order to emphasize the underlying fundamental frequencies will be

referred to as salience methods. The first example of a salience method is the fundamental

frequency salience function proposed by Klapuri (2006). The salience of a f0 candidate is

calculated as the weighted sum of the magnitude of its harmonics. In mathematical terms,

s(f) =
M∑

m=1

α(f,m)|X(mfsf)|, (2.7)

where M is the number of harmonics, α is an empirically determined function that pro-

duces the weight of a harmonic, X(f) is the Fourier transform of the input signal that is

spectrally whitened to suppress timbral information, and fs is the sampling rate. In theory,

there exists peaks in the magnitude spectrum at integer multiples of a fundamental fre-

quency (Equation 2.1). Therefore, the maxima of the salience function should correspond

to the fundamental frequencies of notes present in the audio signal. Iterative and joint

estimation algorithms that search for the maxima of this salience function are described in

Section 2.1.3.

Instead of using conventional time-frequency signal representations such as the short-

time Fourier transform (STFT) for polyphonic transcription, Zhou and Mattavelli (2007)

developed a time-frequency analysis tool called the resonator time-frequency image (RTFI),

which is implemented by a bank of first-order complex resonator filters. The RTFI can sup-

port various frequency resolutions, such as uniform or constant-Q (logarithmic) resolutions.

Using the RTFI, Zhou and Reiss (2008) proposed a polyphonic transcription system that
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not only received the best results to date in the MIREX evaluations on the piano dataset

(see Table 2.1), but also performs in realtime.

The proposed transcription system first calculates the RTFI of the input audio signal,

which is used for onset detection and multiple fundamental frequency estimation. Before

processing, the average of every analysis frame in the RTFI is calculated to produce the

RTFI average energy spectrum. The onset detection algorithm uses a threshold technique

that considers peaks in the difference energy spectrum, which is calculated by smoothing

the energy spectrum and subtracting a time-lagged version of itself to accentuate signal

transients. The input audio signal is then segmented according to the detected note onsets

and the multiple fundamental frequency estimation is performed in each segment.

The multiple fundamental frequency estimation algorithm begins by diverging into two

paths: the extraction of harmonic components by transforming the RTFI into a relative

energy spectrum, and the estimation of fundamental frequency candidates by transforming

the RTFI into a pitch energy spectrum. A detailed explanation of these signal transfor-

mations can be found in Zhou et al. (2009). Information about the harmonic components

and fundamental frequency candidates are combined using a rule-based approach to filter

the f0 candidates into a smaller set. The resulting set of f0 candidates is further pruned

by applying the spectral smoothing principle, which attempts to discern if harmonic peaks

with large magnitudes are the result of another underlying fundamental frequency. Fol-

lowing the success of this time-frequency analysis tool, the RTFI has been used in other

polyphonic transcription algorithms (Benetos and Dixon 2011b).

2.1.3 Iterative and Joint Estimation

For the estimation of multiple fundamental frequencies from the frequency domain of an

input audio signal, two predominant methods exist in the literature: iterative and joint f0

estimation. Iterative f0 estimation algorithms first estimate a predominant fundamental

frequency and proceed to estimate the spectrum of the fundamental frequency and over-

tones. The estimated spectrum is subtracted from the original spectrum and the process

reiterates with the estimation of another fundamental frequency from the residual frequency

spectrum. Conversely, joint f0 estimation algorithms choose from a set of fundamental fre-

quency candidates that, together, best describe the frequency spectrum of the input audio

signal.
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Klapuri (2006) proposed an iterative and a joint f0 estimation algorithm that search

for maxima in the salience function described in the previous section (Equation 2.7). In

the case of iterative estimation, the fundamental frequency with the maximum salience

is selected. Its spectrum is estimated, subtracted from the original spectrum, and this

process is repeated on the residual spectrum. In the case of joint estimation, f0 candidates

are chosen by selecting a set of local maxima from the salience function. A search algorithm

chooses a subset of fundamental frequencies according to a metric that measures the fit

of an individual f0 candidate in the context of others in the set. Since no algorithm

for onset detection was presented, the proposed algorithms only provide frame-by-frame

f0 estimates. After evaluation, results showed that the algorithm performed equivalently

but more efficiently than the author’s previously presented f0 estimation algorithm that

modelled the human auditory system (Klapuri 2005).

Emiya et al. (2007) proposed a joint multiple fundamental frequency estimation algo-

rithm for inharmonic instruments such as the piano and guitar. Maximum likelihood esti-

mation was used to estimate the parameters of a weighted sum of sinusoids plus noise model

similar to Equation 2.6, except that the frequency of overtones was calculated by Equa-

tion 2.4 instead of calculating multiples of the fundamental frequency as in Equation 2.1.

The output of the estimation algorithm is the set of notes with fundamental frequencies

that jointly maximize the likelihood function. Emiya et al. (2008) subsequently embedded

this joint multiple fundamental frequency estimation algorithm in a polyphonic transcrip-

tion system that first performs onset detection and subsequently tracks note events using

an HMM to determine note duration. The proposed transcription system was evaluated in

MIREX 2008 and received the results presented in Table 2.1.

In his doctoral dissertation, Yeh (2008) proposed a frame-by-frame joint f0 estimation

algorithm that uses the weighted sinusoid plus noise model presented in Equation 2.6.

The algorithm first performs a fast Fourier transform (FFT) on each analysis frame of

the input audio signal to obtain the frequency spectrum of the signal. The residual noise

signal η(t) is first estimated to distinguish harmonics of the fundamental frequencies from

extraneous noise in the frequency domain. A set of f0 candidates are jointly estimated from

the frequency spectrum through the use of a scoring function that considers the physical

properties of harmonic sounds (Yeh et al. 2005). To estimate the number of concurrent

notes, the scoring function is applied to combinations of f0 candidates at various degrees of

polyphony. A summary of this f0 estimation algorithm can be found in (Yeh et al. 2010).
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Chang et al. (2008) embedded the frame-by-frame joint f0 estimation algorithm pro-

posed by Yeh (2008) in a polyphonic transcription system that uses an HMM to track

f0 candidates across analysis frames. In contrast with conventional HMM note track-

ing systems, which include attack, sustain, release, and silence states, the proposed note

tracking system only includes attack and sustain states. The proposed algorithm does not

perform onset detection for the identification of the start of a note event. Rather, note

onsets are identified by a new pitch estimate occurring in the analysis of the audio sig-

nal. The polyphonic transcription system was evaluated in MIREX 2009, receiving the

results presented in Table 2.1. The polyphonic transcription system was later improved

by modifying the distribution of the residual noise model in the f0 estimation algorithm

(Yeh and Roebel 2010). The resulting system was submitted to MIREX 2010, receiving

the results in Table 2.1. Modifications to the f0 candidate extraction algorithm showed

further improvements in both precision and accuracy (see Table 2.1) in the MIREX 2011

evaluation (Yeh and Roebel 2011).

2.1.4 Machine Learning Approaches

The transcription of a mixture of note signals present in an audio recording can be framed

as a machine learning problem. Machine learning algorithms use a set of input observations

to train a model that attempts to explain, predict, or classify new observations. In the case

of polyphonic transcription, the input observations are gathered by extracting features from

frames of an audio signal. For model training and validation, supervised machine learning

algorithms for polyphonic transcription require a ground-truth (correctly labelled) dataset,

which consists of a set of audio recordings annotated with the correct note events occurring

in each recording. There are a variety of different machine learning algorithms, many of

which have been applied to the problem of polyphonic transcription.

Non-negative Matrix Factorization

Recently, many polyphonic transcription systems have been proposed that use and expand

upon non-negative matrix factorization (NMF) algorithms. NMF is a factorization method

that attempts to decompose a matrix X ∈ RM×N
≥0 into the product of two matrices W ∈

RM×L
≥0 and H ∈ RL×N

≥0 such that

X ≈ WH. (2.8)
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To attain the decomposition, the matrices W and H are alternately updated in an iterative

fashion according to the gradient of an error metric (Wang and Zhang 2012). In the context

of polyphonic transcription, the columns in W contain the spectral templates for each pitch

and H encodes the temporal activity of each pitch over the course of the audio signal.

Since Smaragdis and Brown (2003) first applied NMFs to the problem of polyphonic

transcription, many extensions have been proposed (Vincent et al. 2007; Raczyński and

Sagayama 2009; Dessein et al. 2010) that explore different constraints and learning meth-

ods. The results of these algorithms in the MIREX evaluation on the piano dataset can be

found in Table 2.1.

Sparse representations with a similar structure to an NMF have also been proposed

for polyphonic transcription (Lee et al. 2010; Lee et al. 2011). These algorithms form a

dictionary, similar to W in the NMF, of the magnitude spectra from recordings of notes

played on an instrument. Instead of the matrix H containing the temporal information

of note events, it instead contains weights for each note template. The task of multiple

fundamental frequency estimation is then accomplished by searching for a weighted sum of

note templates to match the frequency spectrum of an input audio signal. Similar to previ-

ously mentioned approaches, an HMM is then used for the purpose of note tracking. These

algorithms were evaluated in MIREX, receiving the results presented in Table 2.1. Al-

though these algorithms formed the note dictionary from piano recordings, any instrument

that generates harmonic waveforms could be used. To incorporate multiple instruments,

Benetos and Dixon (2011a, 2012) proposed the use of multiple templates for each pitch and

for each musical instrument considered. Using only pitch templates from a piano, these

polyphonic transcription systems were evaluated in MIREX on the piano dataset, receiving

the results displayed in Table 2.1.

Support Vector Machines

Pattern recognition algorithms that are trained on spectral features can be used to classify

the frequency components of individual notes within the frequency spectrum of a mixture

of notes. Poliner and Ellis (2005, 2006, 2007) proposed the use of 87 binary classification

support vector machines (SVMs) to detect the presence of a note in each analysis frame

of the STFT of an input audio signal. Through a supervised training process the SVM

classifier attempts to create separating hyperplanes that maximize the distance between
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training points. These hyperplanes represent the optimal (given the provided training data)

decision boundary between the presence or absence of a specific note. After receiving the

note candidates in each analysis frame, an HMM was used for the purposes of note tracking.

The proposed algorithm (Poliner and Ellis 2007) was evaluated in MIREX 2007, receiving

the results presented in Table 2.1.

Neural Networks

Neural networks have also been applied to the problem of polyphonic transcription, per-

forming both pitch estimation and note tracking (Marolt 2000). Marolt (2001, 2004) de-

veloped the SONIC polyphonic transcription system that utilizes multiple neural networks

to automatically transcribe piano music. First, the input audio signal is transformed into

a time-frequency representation using an auditory model that mimics the functionality of

the human cochlea. Each output channel of the auditory model is input into an array of

88 networks that attempt to determine the presence of the pitches A0–C8 in the input

audio signal. The network for each pitch consists of a set of adaptive oscillators with centre

frequencies at multiples of the fundamental frequency, which attempt to synchronize with

the harmonically related partials of a musical note. For onset detection, a neural network

monitors significant changes in the amplitude envelope of the audio signal. The output

of this neural network is a series of impulses, which represent the presence of note onsets.

The transcription system was evaluated on three synthesized and three real classical piano

recordings, obtaining 92% average accuracy on the former dataset and 81% average accu-

racy on the latter dataset. Although the neural networks were trained on piano recordings,

the transcription system could be adapted for the guitar by training on guitar recordings

and limiting the maximum degree of polyphony of the output music score to six instead of

ten.

Hidden Markov Models

Hidden Markov models are probabilistic models that attempt to explain a finite-state ma-

chine that produces an observation at each state transition. The model defines a matrix

of probabilities that describes the policy of transitioning between states. The model also

defines an emission distribution—a probability mass or density function that describes the

probability of producing a specific observation given the current state. Given a sequence of
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observations, an HMM attempts to uncover the underlying state sequence that produced

the observations. Raphael (2002) used an HMM to transcribe the notes present in a poly-

phonic piano recording. A number of features were extracted from frames of the audio

recording and presented as observations to the HMM. Each state of the HMM represents

a combination of notes and a label that describes the temporal evolution of the chord i.e.,

the attack, sustain, or rest. With a state space so large, searching for an optimal state

sequence becomes computationally intractable. In response to this issue the maximum

degree of polyphony was limited to four, only the pitches C2–F6 were considered, and

heuristics were used to prune the search space. The algorithm was evaluated on recordings

of movements from Mozart piano sonatas and received 61% transcription accuracy.

2.1.5 Blackboard Systems

The blackboard problem-solving model was conceived in the field of artificial intelligence

as an alternative approach to the static and sequential processing of data (Newell 1962).

The term “blackboard problem solving” refers to a number of experts in different domains

who work together to solve a problem on a physical blackboard. As the solution evolves,

each expert adds or modifies information on the blackboard in turn or when they have

a significant contribution. Realizing this metaphor, the implementation of a blackboard

system requires a set of independent knowledge sources (experts) to interact through a

global database (blackboard) in a manner governed by a scheduler or monitor (Figure

2.3). Blackboard systems aim to flexibly integrate hypotheses about the problem from

different knowledge sources. Although no blackboard polyphonic transcription systems

placed among the top algorithms evaluated on the piano dataset in the MIREX, it is still

an important school of thought and will be reviewed in this thesis.

Using the blackboard problem-solving model, Martin (1996) proposed a system for

the polyphonic transcription of piano music. Input to the blackboard system was formed

of “tracks”—local maxima in the magnitude of the STFT of the input audio signal. The

blackboard database was arranged hierarchically: tracks were grouped into partials, partials

into notes, notes into intervals, and intervals into chords. The system consisted of thirteen

knowledge sources with expertise in areas of acoustical physics, music theory, and garbage

collection (handling incorrect or competing hypotheses). A sequential scheduler organized

contributions of the knowledge sources. The proposed transcription system was capable of
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Fig. 2.3: Components and workflow of a blackboard system.

transcribing synthesized piano music where the interval between simultaneous notes was

not an octave and all notes were between the pitches B3 and A5.

Martin’s blackboard transcription system was later extended by Bello and Sandler

(2000) to include a neural network chord recognition component that influenced the se-

lection of note hypotheses on the blackboard. More information on the history of the

blackboard problem-solving model and a detailed review of its application to polyphonic

music transcription can be found in Bello (2003).

2.2 Guitar Tablature Arrangement

Unlike the piano which has a one-to-one correspondence between the set of physical keys

and the set of possible pitches, the guitar can produce the same note in several ways, adding

more ambiguity to the transcription process (Fiss and Kwasinski 2011). In mathematical

terms, the mapping between the set of physical keys X and the set of possible pitches Y

on a piano is a bijective function, meaning that every element of the codomain maps to
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exactly one element of the domain. This bijective function is displayed in Figure 2.4(a).

The mapping between the set of string and fret combinations X and the set of possible

pitches Y on a guitar is a surjective function, meaning that every element of the codomain

is mapped to at least one element of the domain. This surjective function is displayed in

Figure 2.4(b).

Given a sequence of note events as input, guitar tablature arrangement algorithms

assign a string and fret combination to each note event according to criterion that min-

imizes the performance difficulty of the tablature. By studying the left-hand movements

of professional classical guitar players, Heijink and Meulenbroek (2002) hypothesized that

guitarists have a disposition toward instrument fingering positions that are biomechani-

cally easy to perform. From this study emerged three complexity factors that contribute

to the performance difficulty of a tablature arrangement: the position of the left hand on

the guitar neck, the need to reposition the left hand within a stream of notes, and finger

span. Experiments indicated that subjects favoured hand positions near the beginning of

the guitar fretboard near the nut. Moreover, the subjects avoided composing arrangements

that required extensive hand repositioning and large finger spans. Apart from biomechan-

ical constraints, the authors speculated other important criteria for tablature arrangement

such as cognitive and musical rules that take into consideration musical context and enforce

auditory properties such as timbral characteristics of the produced sound.

Guitar tablature arrangement can be perceived as a traditional search problem, where

there are many candidate string and fret combinations for each note in a musical work and

the goal is to find an optimal arrangement that maximizes a quantitative metric defining

a “good tab”. A “good tab” refers to tablature that is generally easy to perform or has

a difficulty level that is tailored to the aptness of the performer (Sawayama et al. 2006).

The search space can quickly become computationally intractable since a standard 24-fret

electric guitar is capable of producing the same pitch in up to six different ways (Figure 2.5),

yielding an upper bound of 6n possible tablature arrangements for a sequence of n notes.

In the polyphonic case, the search space rapidly enlarges as more chords are considered. A

sequence of n chords, each composed of six notes that may be played in up to six different

ways, yields an upper bound of (66)n possible tablature arrangements.

Guitar tablature arrangement algorithms may also produce extra performance informa-

tion such as note ornamentations (Miura et al. 2004) or the explicit instrument fingering

for each note. The instrument fingering of a note explicitly states which finger on the left
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(a) Bijective function between the domain of physical piano keys X and
the codomain of possible pitches Y .

(b) Surjective function between the domain of string and fret combina-
tions on a guitar X and the codomain of possible pitches Y .

Fig. 2.4: Function classifications of the mappings from instrument operation to pitch for
the piano and guitar.

hand is used to depress the fret on a given string. For the purposes of guitar tablature
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Fig. 2.5: Six different string and fret combinations that produce the pitch E4 on a 24-fret
guitar in standard tuning.

arrangement, which only displays the string and fret combination required to perform a

note, the inclusion of fingering information is unnecessary and can therefore be excluded.

Many methods have been proposed to search for an optimal tablature arrangement,

such as traditional graph search algorithms (Section 2.2.1), constraint satisfaction (Sec-

tion 2.2.2), neural networks (Section 2.2.3), and genetic algorithms (Section 2.2.4).

2.2.1 Graph Algorithms

In mathematics, a graph G = (V,E) is composed of a set of vertices V that are connected

by a set of edges E. In an undirected graph, each element of the set E is a set of vertices

{u, v} with cardinality two such that u, v ∈ V . In a directed graph, each element of the

set E is an ordered pair of vertices (u, v) such that u, v ∈ V . In a weighted graph, each

element of the set E is a tuple ({u, v}, w) containing a pair of vertices and a weight w ∈ R
associated with the edge. The weight associated with an edge typically represents the

cost of traversing the edge; however, the interpretation of the weight is largely domain

dependent.

In the context of guitar tablature arrangement, each vertex in the graph is associated

with a candidate string and fret combination that produces the pitch of a note present

in the input music score. The weight of an edge represents the “cost” associated with

the transition between two finger positions. Following the study of professional classical

guitarists by Heijink and Meulenbroek (2002), this transition cost should ideally reflect

the biomechanical ease of the transition as well as the conformance with other cognitive

and musical rules. Figure 2.6 illustrates a weighted graph of candidate string and fret

combinations for a sequence of 3 notes: A4, E4, and C5. In this simple monophonic

example there are already 5 · 6 · 4 = 120 possible guitar tablature arrangements.
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Fig. 2.6: A directed acyclic weighted graph of candidate string and fret combinations for
a sequence of 3 notes: A4, E4, and C5. Some edge weights have been omitted for space
purposes.

Many algorithms have been proposed to find a path through a weighted graph that

incurs the minimal cost (Cormen et al. 2009). Sayegh (1989) used the Viterbi algorithm to

search for an optimal path through a weighted graph of candidate string, fret, and finger

combinations for notes in a monophonic musical passage. The Viterbi algorithm operates

on the principle that if a vertex is part of a minimum cost path through the graph, any

subset of this path is also an optimal path. If it is not optimal, then there exists an alternate

intermediate path that has a lower aggregate cost and thus produces a better overall path.3

The proposed arrangement algorithm uses a simple cost function that assigns a weight to

each edge in the graph by penalizing transitions that require a change in hand position or

3An established application of the Viterbi algorithm is in HMMs, whereby an optimal state sequence is
decoded from a sequence of observations (Rabiner 1989).
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a change in string. As an extension to this simple cost function, a learning algorithm was

proposed to automatically estimate the edge weights from a set of training examples. No

formal evaluation of the proposed algorithm was performed.

Extending the optimal fingering estimation algorithm proposed by Sayegh (1989), Radi-

cioni et al. (2004) advocated that the segmentation of a piece of music into phrases is

an important cognitive process that affects tablature arrangement. Taking this into con-

sideration, a variety of scores were manually segmented into musical phrases. A graph

search algorithm then identified the optimal fingering positions within and between musi-

cal phrases according to a cost function that considered horizontal and vertical movement

of the hand along the guitar fretboard. Horizontal movement was perceived to increase the

complexity of the arrangement more than vertical movement. The proposed algorithm was

later extended to accept polyphonic musical passages (Radicioni and Lombardo 2005b) by

assessing the difficulty of fingering within a chord. The fingering estimation algorithm was

evaluated by comparing the output of the algorithm on segments of classical guitar sonata

scores to that of a human expert. Results of the experiments showed similar fingering

positions to that of a professional guitarist.

Radisavljevic and Driessen (2004) proposed the use of a dynamic programming (DP)

algorithm to search the graph of candidate string, fret, and finger combinations for notes

in a polyphonic musical passage. DP algorithms use recursion to decompose the problem

into smaller sub-problems, the solutions of which are combined to form the solution to the

original problem. In the context of searching a graph, the optimal path through the graph

is found by recursively finding the optimal path within a smaller search space. Static and

transition cost functions were proposed, which measured the biomechanical difficulty of the

hand position required to form a chord and the difficulty of transitioning between fingering

positions, respectively. Many features, such as the average fret location and the number

of frets between fingers, contributed to each cost function. Each feature was weighted to

determine the relative importance of each criterion. Instead of tuning the feature weights by

hand, the authors proposed a technique called “path difference learning”. This technique

uses gradient descent with respect to the feature weights to minimize the difference between

the optimal path output by the DP algorithm and a set of training examples acquired from

published tablature. The algorithm was trained using seven selected excerpts from classical

guitar scores, receiving 97% accuracy when evaluating on the same dataset.
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2.2.2 Constraint Satisfaction Approach

The constraint satisfaction problem consists of finding a set or range of values that a variable

can assume without violating a set of constraints. Applying this problem-solving framework

to the tablature arrangement of individual guitar chords, Radicioni and Lombardo (2005a)

proposed that a variable represents a note within a chord and the domain of each variable

is a string, fret, and left-hand finger combination. A set of constraints are imposed on

the variables to restrict the possible combinations of fingering positions. These constraints

enforce that a string can only play one note at a time, that fingers further along the

fretboard depress higher fret numbers, and that a maximum finger span is not exceeded.

A depth-first search strategy with backtracking is used to combine fingering positions and

return a set of solutions that satisfy the imposed constraints. In the case that there are

multiple solutions, the solutions are ranked based on the biomechanical ease of performance.

To evaluate the proposed algorithm, human experts wrote three possible chord fingerings

for 34 chords, ranked by preference. The constraint satisfaction algorithm produced chord

fingerings that agreed 67% of the time with the preferred chord fingerings of a human

expert. The algorithm achieved 97% accuracy in comparison to human experts when only

considering string and fret combinations. Although the accuracy is quite high, it should

be emphasized that the proposed algorithm only generates string and fret combinations for

notes in a single chord and does not consider transitions between notes or chords, although

this feature is proposed in the future work.

2.2.3 Neural Network Arrangements

Neural networks have also been used to generate guitar tablature that more closely resem-

bles human arrangements. Tuohy and Potter (2006a) proposed the use of a three-layer

neural network that sequentially calculates string and fret combinations for each note in

an input music score. A potential problem with processing one note at a time is that im-

portant contextual information is lost, which adversely affects the tablature arrangement.

To remedy this, the authors included contextual information of surrounding notes as input

features to the neural network. A local search algorithm then passes over the tablature

generated by the neural network and for each note determines if the arrangement can be

improved by using a different string and fret combination according to the fitness function

used in the genetic algorithm proposed by Tuohy and Potter (2006b). To train the network,
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a dataset was constructed from an online repository of human-arranged guitar tablature.

Evaluating the algorithm on the training dataset, the output tablature was 94% congruent

with the published tablature.

2.2.4 Genetic Algorithms

The search for a guitar tablature arrangement that minimizes performance difficulty may be

accomplished by a genetic algorithm (GA). As discussed at the beginning of Section 2.2, the

search space for the guitar tablature arrangement problem rapidly expands as more chords

and notes are added to the input music score. GAs are particularly suited for exploring

large search spaces to find adequate solutions when exhaustive search algorithms become

infeasible due to computational intractability (Tuohy and Potter 2005). This section will

describe the function of GAs in detail and explain how they are employed to generate guitar

tablature arrangements.

A genetic algorithm (GA) is a stochastic optimization technique that aims to replicate

the process of natural evolution. A GA iteratively refines a set of possible solutions—

referred to as the population—by assessing the strength of each individual (chromosome) in

the population. Each chromosome consists of a string of genes that define the individual.

The assessment of each individual is performed by a fitness function that evaluates an

individual in the population against a set of criteria defining an optimal individual. The

optimization process operates for a predetermined number of iterations (generations) or

until a termination condition is met e.g., an individual has been found that is “fit” enough

for the purposes of the application. At the heart of the optimization (evolutionary) process

is the concept of natural selection.

Natural selection is the process of selecting individuals from the current population that

will contribute to the successor population. The methodology for selection is a critical factor

in determining the fitness of the successor population. In the field of artificial intelligence,

specifically the underlying field of reinforcement learning, an important trade-off exists

between exploitation and exploration (Sutton and Barto 1998). Exploitation involves the

recurring performance of an action that is known to yield a high reward, whereas exploration

involves the performance of an action that yields a reward with an unknown distribution

that may have a higher mean reward than the current exploitative action. In the context of

GAs, an exploitative selection process would involve always mating the most fit individuals
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in a population, whereas a selection process that sporadically chooses other individuals for

reproduction may result in a more fit individual. Taking the balance of exploration versus

exploitation into consideration, GAs typically use a stochastic selection process where the

probability distribution of selecting an individual for reproduction is influenced by the

individual’s fitness. Consequently, fitter individuals are more likely to reproduce but are

not always the ones selected for reproduction. Another function to ensure exploration

is gene mutation, which modifies a random gene of an individual with low probability.

Figure 2.7 provides an overview of the evolutionary process of a GA.

Fig. 2.7: An overview of the evolutionary process af a genetic algorithm.

In a GA, the transfer of genetic material from parents to offspring is similar to the

natural phenomenon. Natural reproduction follows the principle that 50% of the genetic

makeup of each parent is transferred to the offspring. In other words, the genetic makeup

of the child has equal contributions from each parent. The mating function in a GA may

enforce this, or allow variable genetic contributions from each parent. This is accomplished

by randomly choosing a crossover point in the chromosome and “twisting” the genes about

this locus. As an example, the mating algorithm for individuals with a gene sequence of
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length five is illustrated in Figure 2.8. The mating function might also include a variable

number of crossover points.

Fig. 2.8: Mating of two parents with one crossover point in the middle of the chromosome.

To apply a GA to the problem of guitar tablature arrangement, each component of the

GA must first be defined. A gene represents a note or chord on the guitar and contains

the string and fret combinations required to perform the note or chord. A chromosome is

a sequence of genes that represents a candidate tablature arrangement. The population

consists of many candidate tablature arrangements, which undergoes iterative mating and

mutation to produce a more evolved population. An example of two tablatures mating is

presented in Figure 2.9. After a certain number of generations, the tablature arrangement

with the highest fitness is selected. Similar to the algorithms previously mentioned in

this section, the fitness function of the GA typically evaluates the biomechanical ease of

performing and transitioning between notes or chords.

In the literature, GAs have been applied to monophonic musical passages (Rutherford

2009), where a gene represents the string and fret combination for a single note, and also to

polyphonic musical passages (Tuohy and Potter 2005; Tuohy and Potter 2006b), where a

gene represents the fretboard positions required to perform a chord. These polyphonic tab-

lature arrangement algorithms were later extended to include fingering estimation through

the use of a neural network (Tuohy and Potter 2006c).

There are both advantages and disadvantages of using a GA for guitar tablature ar-

rangement. The most significant advantage is that GAs produce multiple solutions to a

problem. For example, a GA with an initial population size of 400 will produce the same

amount of possible tablature arrangements. One can then retrieve the top n tablature

arrangements by ranking the individuals in the final population by fitness and returning
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Fig. 2.9: Two parent guitar tablatures mating with two crossover points and a gene
mutation in the second child.

the first n arrangements. The most significant disadvantage of using a GA is that there

is no guarantee that the algorithm will converge to a global maximum in the optimization

space. However, solutions found at local maxima in the optimization space may still offer

“good” tablature arrangements.

2.3 Guitar-specific Transcription Systems

Instead of combining a general-purpose polyphonic transcription algorithm with a guitar

tablature arrangement algorithm, guitar-specific transcription systems directly estimate the

tablature arrangement by taking into consideration features of the instrument such as spec-

tral properties of produced sounds, physical and mechanical properties of the instrument,

or human performance constraints such as maximum polyphony and finger span.

Using a physical model of a plucked guitar string, Traube and Smith (2001) developed

a signal processing technique for estimating the plucking point and fingering locations on
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a guitar string from an audio recording. The technique revolves around the fact that

the spectral envelope of a produced sound differs according to the plucking position on

the string. Plucking a string close to the bridge of the guitar produces a tone that has

relatively more high frequency components than a pluck close to the fretboard. There are

two unknown variables: the plucking position of the string and the position of the fret that

is depressed. To estimate the plucking position relative to the left-hand fingering point,

the magnitude spectrum of a frame of the audio recording is compared to a set of ideal

magnitude spectra calculated using the physical guitar model at different plucking positions

on the string. By assuming that the right-hand fingers pluck the strings around the middle

of the guitar tone hole, the remaining unknown variable (the left-hand fingering point)

can be estimated. To evaluate the algorithm, a dataset of monophonic audio recordings of

single plucks at different distances from the bridge of the guitar on both open and fretted

strings was created. On this dataset the algorithm could accurately identify the plucking

point on an open string, but struggled to identify the plucking point when the string was

fretted.

Barbancho et al. (2009) presented an algorithm that estimates the pitch, string number,

and, as a byproduct, the fret number, from an audio recording of a guitar. Onset detection

is first performed, followed by monophonic pitch estimation using spectral peak selection

of the power spectrum. Using a variety of time and frequency domain features of the

audio signal, a Fisher linear discriminant is used to estimate the string the note was played

on. Given the estimated pitch and string number, there exists only one candidate fret

number that can produce the estimated pitch. From this information, tablature can be

transcribed. The proposed algorithm received results with high variability (from 26.7%–

100% accuracy) on a number of monophonic recordings of isolated guitar notes that were

played on both electric and acoustic guitars with nylon and steel strings and with different

playing techniques.

In order to transcribe tablature from polyphonic guitar recordings, Barbancho et al.

(2012) proposed the use of an HMM to estimate the fingering of guitar chords. Each state of

the HMM is a chord with a specific fingering configuration. In total, the HMM is capable of

differentiating between 330 different chord fingerings. The pitch saliency function described

in Section 2.1.2 by Klapuri (2006) is calculated on frames of the input guitar recording.

These features are posed as observations to the HMM, which estimates the underlying

chord state that contains the string and fret combinations used to perform the chord. On



40 Literature Review

a training dataset of 22 guitar recordings and a test dataset of 14 guitar recordings, the

algorithm obtained 87% accuracy on average. However, the guitar transcription system is

only capable of estimating a discrete number of chords and can not estimate monophonic

notes.

In summary, guitar-specific tablature transcription algorithms are still in their infancy.

As with instrument and genre-specific polyphonic transcription systems, guitar-specific

tablature transcription algorithms are less prevalent in the literature in comparison to

general-purpose transcription systems even though there is proof that “developing music

transcription systems for more narrowly targeted contexts can lead to significantly improved

performance” (Barbancho et al. 2012).

2.4 Alternate Transcription Methods

Various techniques for guitar tablature transcription have been proposed which process

information other than an audio recording: computer vision systems (Section 2.4.1) analyze

video recordings of a guitar performance; multi-modal systems (Section 2.4.2) analyze both

video and audio recordings simultaneously; and augmented guitars (Section 2.4.3) rely

on specialized hardware and sensors to acquire additional information about the guitar

performance.

2.4.1 Computer Vision Systems

For the application of guitar tablature transcription, computer vision systems aim to use

inexpensive cameras that are accessible to users (typically web cameras) to perform finger

tracking or hand-shape analysis on a video recording of a guitarist during a performance.

In order to detect the string and fret combinations performed by the guitarist, computer

vision systems attempt to estimate from the video recording the position of frets and strings

on the fretboard as well as the fingertip positions of the guitarist.

For the purposes of music education, Motokawa and Saito (2006) presented an aug-

mented reality system that assists novice guitar players by superimposing a virtual hand

over the fretboard to show how to play a given chord. The fretboard detection algorithm

requires a square-shaped marker to be attached above the fretboard. The system does

not implement finger position tracking to verify that the student forms the correct hand



2.4 Alternate Transcription Methods 41

position to play the chord. Although the augmented reality system was not capable of pro-

ducing tablature, it provided a foundation for future computer vision guitar transcription

systems.

Using an inexpensive video camera mounted to the neck of the guitar, Burns and Wan-

derley (2006) introduced a prototype system for capturing the finger positions of the left

hand of a guitarist. The position of the frets and strings are determined by accentuating

and grouping vertical (frets) and horizontal (strings) lines in the video recording. Finger-

tips, having a rounded shape in comparison to fingers, are tracked by applying an algorithm

that looks for circles of a given radius in the video recording. To infer the fret and string

being played, the detected fingertip positions are matched to the closest detected fret and

string position on the fretboard. Movement segmentation is also performed to disregard

fingering positions when transitioning between notes or chords. The proposed transcrip-

tion system has some limitations: the mounted video camera could only capture the first

five frets of the guitar and the top-down camera perspective hindered the transcription

performance (Burns 2007). Scarr and Green (2010) extended this system by removing

the fretboard-mounted video camera and instead pointed a video camera directly at the

guitarist to detect the frets depressed during the performance.

With only one camera, it is difficult to determine which fingers are pressing down on a

string and which are hovering (Kerdvibulvech and Saito 2008). To remedy this problem,

Kerdvibulvech and Saito (2008) pointed two video cameras at the guitar at different angles.

In order for the system to track finger positions, the guitarist was required to wear multi-

coloured markers on each finger. Using an approach similar to Motokawa and Saito (2006),

an augmented reality marker was used to detect the position of the fretboard. As a result

of the stereo cameras, the system was capable of detecting the x, y, and z coordinates

of each finger; however, no tablature output was generated. Since coloured markers were

attached to the guitarist’s fingertips, the accuracy of the finger position tracking algorithm

was influenced by the colour of the background in the video recording.

2.4.2 Multi-modal Systems

Both computer vision and audio analysis guitar transcription algorithms can benefit from

procuring additional information about the problem. Multi-modal systems attempt to

merge computer vision and audio analysis algorithms. The main goal is to develop a
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symbiotic relationship between the audio and video analysis algorithms to increase the

performance of the system as a whole. For instance, analysis of the video recording may

resolve ambiguities in the analysis of the audio recording, and vice versa. In the field of

speech recognition, combining auditory and visual analysis of speech has shown promising

results (Chibelushi et al. 2002).

Quested et al. (2008) presented a prototype polyphonic transcription system which uses

the analysis of video recordings of a guitarist to supplement the analysis of audio recordings.

The computer vision system seeks to locate the position of the performer, guitar neck, and

left hand of the guitarist. The set of possible notes that can be produced at a specific time

in the video recording is generated using the calculated spatial information of the guitarist’s

hand in relation to the fretboard. The resulting set of notes is used to constrain the possible

fundamental frequency candidates during analysis of the audio recording. The algorithm

for audio analysis has yet to be completed. To fuse the audio and video analysis, the

authors plan to detect note onsets in the audio recording and analyze the video recording

at the time of the note attack. Although the proposed system does not necessarily produce

tablature, it provides an example of a multi-modal system that seeks to accomplish the

first subtask of the guitar tablature transcription problem.

In response to the previously mentioned prototype which aims to accomplish the task of

polyphonic transcription, Paleari et al. (2008) presented a multi-modal prototype system

capable of guitar tablature transcription. The audio analysis component uses a monophonic

pitch detection algorithm to estimate the pitch of a single note at any given time in the

audio recording. A MIDI file is created which contains the pitch, onset, and duration of each

estimated note. The computer vision component detects the position of the guitarist’s hand

in relation to the fretboard. For each note event in the MIDI file, the position of the hand

is used to determine the correct fret and string combination that produced the note. Their

results show that 89% of notes in the test data set, consisting of several 30 second videos,

could be assigned a fret and string combination without ambiguity. As a consequence

of using a monophonic pitch estimation algorithm, the described system is incapable of

transcribing guitar chords.

Hrybyk and Kim (2010) proposed a multi-modal system that is capable of automati-

cally identifying the chords in audio and video recordings of a guitar performance. Con-

ventionally, chroma vectors are the audio feature of choice for the task of chord recognition

(Fujishima 1999); instead, the authors use a technique called Specmurt analysis for poly-
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phonic pitch detection. The result of this analysis is used to determine the chord scale

(e.g., C Major). To resolve the ambiguity of the fingering used to perform the chord, video

of the guitarist is analyzed to determine the chord voicing (open, barred, or first inversion).

Coloured dots were placed on the fretboard to detect the position of the neck of the guitar,

which, in accordance with past research that used coloured markers, places constraints on

the computer vision system (Kerdvibulvech and Saito 2008). The results of an experiment

where three guitarists were asked to perform various chords showed 61% accuracy of both

chord scale and voicing using audio analysis alone, 33% accuracy with video alone, and

93% accuracy using both audio and video analysis.

In summary, computer vision and multi-modal guitar transcription systems are still in

their infancy. Many of the proposed prototype systems impose constraints on the analysis

process, such as requiring coloured markers to be placed on the guitar fretboard or fingers,

or requiring multiple video cameras. Additionally, many of the proposed systems have

severe limitations, only working with specific camera angles and background colours. Most

importantly, only two of the reviewed systems produce tablature (Hrybyk and Kim 2010;

Paleari et al. 2008). The former system is only capable of transcribing guitar chords, while

the latter is only capable of transcribing single notes.

2.4.3 Augmented Guitars

Augmented musical instruments, also known as hyperinstruments, are acoustic or elec-

tric instruments that are extended by the installation of additional sensors (Miranda and

Wanderley 2006). This section will review tablature transcription systems proposed in the

literature that require the installation of additional sensors to the guitar.

Standard electric guitars use a “pickup”, a type of sensor called a magnetic transducer,

to convert the vibration of each string into an electrical signal. Single-coil pickups (Figure

2.10(a)) have one magnetic pole piece per string that lies directly underneath the string

it is responsible for sensing. Dual-coil pickups, often referred to as “humbuckers” (Figure

2.10(b)), offer two magnetic pole pieces per string to increase the signal to noise ratio. The

signal generated by each transducer is summed together and connected to the output jack

of the guitar to be amplified or recorded.

Analyzing audio from the output jack of the guitar (potentially polyphonic music)

instead of the recordings of individual strings (monophonic music) removes the ability
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(a) Array of single-coil pickups on a
Fender Stratocaster.

(b) Array of EMG-81 active dual-coil
covered pickups on an LTD F-
400FM.

Fig. 2.10: Example of single-coil and dual-coil guitar pickups.

of interactive systems to process and analyze the signal of individual strings (Reboursière

et al. 2010) and thus complicates the task of automatic transcription (O’Grady and Rickard

2009). To circumvent this issue, O’Grady and Rickard (2009) installed a Roland GK-34

hexaphonic pickup to an electric guitar to capture and output the signal of each string

separately (Figure 2.11(a)). By analyzing the recording of each guitar string separately,

the polyphonic transcription problem becomes one of monophonic transcription, which

is a solved problem (Klapuri 2004). Moreover, the ambiguity of which string and fret

combination produces a note is resolved by having access to the audio recording of each

string. Once the string is known, only one fret is capable of producing the note. In

order to estimate the pitch of a note event (and as a by-product, the fret number), non-

negative matrix factorization is used to compare the audio recording of a string to a set of

templates representing all notes on the fretboard. Currently the system outputs a MIDI

file containing note pitch, onset, and duration information; however, the authors plan to

extend the proposed system to write tablature. The transcription system was evaluated

4http://www.roland.com/products/en/GK-3

http://www.roland.com/products/en/GK-3
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by synthesizing the generated MIDI file and qualitatively comparing the resulting audio to

the input guitar recording. Although the system produces accurate transcriptions, there

are several limitations: the user must purchase a hexaphonic guitar pickup and a computer

audio interface with at least six inputs. Additionally, before using the system the guitarist

must provide training data by recording every note on the guitar twice—a time-consuming

process that may discourage musicians from using the system.

(a) Hexaphonic pickup (Roland GK-3) installed on
a Fender Deluxe Player Stratocaster (O’Grady
and Rickard 2009).

(b) Sensor mount and reflective surface in-
stalled on a Cameo acoustic guitar
(Fitzgerald et al. 2011).

(c) A Ztar Mark III V3 MIDI guitar controller designed by Starr Labs.

Fig. 2.11: Examples of guitars fit with special-purpose hardware for the purposes of
automatic guitar tablature transcription.

As an alternative to a hexaphonic magnetic transducer pickup, Fitzgerald et al. (2011)

proposed a guitar transcription product called Guitar-2-Tab, which requires the installation
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of an infrared transmitter and receiver underneath each string in order to detect the string

oscillations (Figure 2.11(b)). Each infrared sensor sends an audio signal to an Arduino

microprocessor which is responsible for transcribing the tablature. The generated tablature

is then saved as a text file on a memory card for future reference. This product was designed

as part of a university term project and was never manufactured. However, the technical

report provides a detailed description of the hardware and schematics required for manual

assembly of the product.

Although not an augmented instrument by definition, MIDI guitars provide an example

of special-purpose hardware that can be used to accomplish the task of automatic guitar

tablature transcription. An example of a MIDI guitar controller can be seen in Figure

2.11(c)5. Verner (1995) proposed a method of extracting the fingering information from a

performance on a MIDI guitar in realtime by assigning a separate MIDI channel to each

guitar string. When a fret is depressed and a string is plucked on a MIDI guitar, the

output is a MIDI note event which encodes the MIDI channel (string) associated with

the note. Given a note and the string that the note is played on, the fret number can be

ascertained. Although the resulting tablature is accurate, users of MIDI guitars report false

note detections, performance difficulties in comparison to a standard guitar, and problems

synchronizing the output of each string (Verner 1995).

Although they are accurate, guitar tablature transcription systems that require the

installation of special-purpose hardware are expensive and inconvenient for users. Fur-

thermore, some musicians may lack the technical savvy required to perform the hardware

installation themselves, yielding transcription systems that are inaccessible to a certain

demographic of people.

2.5 Commercial Transcription Systems

Apart from applying a polyphonic transcription algorithm to a guitar recording and man-

ually applying a guitar tablature arrangement algorithm to the output, there are very

few guitar tablature transcription systems available to the public. Kramer Guitars6 sold

special-purpose guitar transcription hardware called Pitchrider, developed by IVL Tech-

nologies. Similar to the approach taken by O’Grady and Rickard (2009), the Pitchrider

5http://www.starrlabs.com/index.php?route=product/category&path=59_75
6http://www.kramerguitars.com

http://www.starrlabs.com/index.php?route=product/category&path=59_75
http://www.kramerguitars.com
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provided a hexaphonic pickup which sent the signal of each string to a hardware interface

that converted notes played on the guitar into MIDI note events. The resulting MIDI data

could then be converted to tablature in a method similar to that used by Verner (1995).

The Pitchrider is no longer being manufactured.

Software for guitar tablature transcription is just as scarce. To the author’s knowledge,

the only commercial software that performs guitar tablature transcription is Guitarmaster 7,

a desktop application by RoboSens Ltd. that converts a polyphonic guitar recording into

MIDI notation and has the option to view a tablature arrangement of the transcription in

plain text format.

As for commercial polyphonic transcription programs, Melodyne8 by Celemony9 pro-

vides an editor that allows users to modify the pitch of individual notes in a polyphonic

audio recording using a technology the company calls “direct note access”. Once the audio

recording has been analyzed, a MIDI file can be exported which contains the estimated

note events present in the recording. To produce guitar tablature, the output MIDI file

can then be input into a guitar tablature arrangement algorithm.

Transcribe! 10 by Seventh String11 is another commercial program that provides audio

analysis tools to help musicians perform manual music transcriptions rather than automat-

ically extracting note events from the input audio signal. The graphical interface provides

a spectrum display that highlights peaks in the frequency domain and allows the user to

control the playback speed without modifying the pitch content of the audio file. A thor-

ough list of polyphonic transcription and transcription aid programs can be found on the

Seventh String website12.

For guitar tablature arrangement, Guitar Pro is a popular desktop application for edit-

ing guitar tablature which allows users to import a MusicXML or MIDI file and the software

will automatically produce a guitar tablature arrangement for the sequence of input notes.

7http://www.guitarmaster.co.uk
8http://www.celemony.com/cms/index.php?id=products_editor
9http://www.celemony.com

10http://www.seventhstring.com/xscribe
11http://www.seventhstring.com
12http://www.seventhstring.com/resources/transcription.html

http://www.guitarmaster.co.uk
http://www.celemony.com/cms/index.php?id=products_editor
http://www.celemony.com
http://www.seventhstring.com/xscribe
http://www.seventhstring.com
http://www.seventhstring.com/resources/transcription.html
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Chapter 3

Robotaba Guitar Tablature

Transcription Framework

T
he previous chapter demonstrated that a large number of polyphonic transcrip-

tion and guitar tablature arrangement algorithms have been proposed. However, no

frameworks have been developed to facilitate the connection of polyphonic transcription

and guitar tablature arrangement algorithms to produce a start-to-finish automatic guitar

tablature transcription system. Moreover, after a new algorithm is developed, evaluated,

and published in a conference or journal, the code has no immediately available vessel to

be used by the large community of guitarists on the Internet.

To facilitate the creation of guitar tablature transcription web applications in which

polyphonic transcription and guitar tablature arrangement algorithms can be embedded, a

web-based guitar tablature transcription framework has been designed and implemented.

A software framework is a reusable platform that allows developers to easily implement and

extend the standard structure of an application. Using a framework, developers can focus

on algorithmic design instead of focusing on low-level implementation details of the appli-

cation. A good metaphor for a software framework is scaffolding. Suppose a construction

crew shows up to work on a building and the scaffolding is already constructed for them.

They immediately begin work on the building instead of constructing the scaffolding, an

important task that needs to be done before work can begin but detracts from the time

and energy spent on the actual project.
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The implemented web-based guitar tablature transcription framework, entitled Rob-

otaba, is written in the Python programming language. The framework is open source

and version controlled using a git repository.1 As a proof of concept, a state-of-the-art

polyphonic transcription algorithm and a guitar tablature arrangement algorithm have

been implemented and embedded in a web application using the Robotaba transcription

framework.

This chapter will describe the design and implementation of Robotaba (Section 3.1)

and the use of this framework to create a guitar tablature transcription web application

(Section 3.2).

3.1 Framework Design

The preceding chapter formally described the guitar tablature transcription task as a func-

tion that can be decomposed into two independent functions: a polyphonic transcription

function and a guitar tablature arrangement function. Guitar tablature transcription is

then performed by applying the guitar tablature arrangement function to the output of

the polyphonic transcription function. Emulating this structure, Robotaba is composed of

three modules: a polyphonic transcription module, a guitar tablature arrangement mod-

ule, and a guitar tablature engraving module. The architecture of Robotaba is displayed

in Figure 3.1. Given an input audio file, the polyphonic transcription module generates a

symbolic music file containing estimates of the note events occurring in the audio record-

ing. Given an input symbolic music file containing a sequence of note events, the guitar

tablature arrangement module calculates and appends a guitar string and fret combination

to each encoded note event. The guitar tablature engraving module is used to display

tablature encoded in a symbolic music file in the web browser.

From this modular design arises three benefits: first, the polyphonic transcription,

guitar tablature arrangement, and guitar tablature engraving modules can be used inde-

pendently or together. Used independently, an input file is sent directly to a module for

processing, which returns a result instead of passing the output to the next module in the

workflow. Using each module in sequence, guitar tablature can be generated from an input

audio file and displayed in the web browser. Second, the modular design facilitates algo-

rithm interchangeability. Assuming an algorithm produces valid output, it can be plugged

1http://github.com/gburlet/robotaba

http://github.com/gburlet/robotaba
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Fig. 3.1: Architecture of the Robotaba framework.

into a module without disturbing the functionality of surrounding modules. As a result,

the transcription framework can accommodate new state-of-the-art polyphonic transcrip-

tion or guitar tablature arrangement algorithms without substantial changes to the web

application. Third, the use of a single symbolic music file format for data interchange be-

tween modules promotes polyphonic transcription and tablature arrangement algorithms

to adhere to a common interface. Robotaba uses the 2012 release of the music encoding

initiative (MEI)—an extensible markup language (XML) file format that encodes symbolic

music notation in a hierarchical fashion (Hankinson et al. 2011).

The interaction between Robotaba modules required to generate a tablature arrange-

ment from an audio recording and display the resulting tablature in the web browser is

displayed in Figure 3.2 as a unified modeling language (UML) sequence diagram (Fowler

2003). The function and proper interpretation of UML sequence diagrams are explained in

Appendix B.1. In the presented UML sequence diagram, the PitchDetect object represents

the polyphonic transcription module, the Tabulate object represents the guitar tablature

arrangement module, the Engraver object represents the guitar tablature engraving mod-

ule, and the Transcription object essentially acts as a conductor who enforces the sequence

of operations required to transcribe tablature from a guitar recording. To begin the tran-

scription process, a message is passed to the Transcription object along with an audio

file to be transcribed. The Transcription object forwards this message to the PitchDetect

object, which is responsible for executing the polyphonic transcription algorithm on the

audio recording and returning the resulting symbolic music file to the Transcription ob-

ject. A message is subsequently passed to the Tabulate object, which is responsible for

executing the guitar tablature arrangement algorithm on the provided symbolic music file.



52 Robotaba Guitar Tablature Transcription Framework

The Tabulate object then requests the Engraver object to display the generated tablature

arrangement in the web browser, and subsequently returns the resulting symbolic music

file to the Transcription object, ending the sequence of interactions.

Fig. 3.2: UML sequence diagram displaying the interaction of modules within the Rob-
otaba framework to produce a guitar tablature arrangement from an audio recording.

Alternatively, the Transcription object may be circumvented to perform polyphonic

transcription and guitar tablature arrangement independently. To perform the task of

polyphonic transcription only, the audio file is sent directly to the PitchDetect object for

processing. To perform the task of guitar tablature arrangement only, a symbolic music

file is sent directly to the Tabulate object for processing. To perform the task of guitar

tablature engraving only, a symbolic music file is sent directly to the Engraver object for

processing.
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3.1.1 User Interface

A user interface is provided to allow the user to choose a transcription workflow and enter

processing parameters. Four workflows are available to the user: a polyphonic transcription

workflow, a guitar tablature arrangement workflow, a digital tablature engraving workflow,

and a guitar tablature transcription workflow. Each of these workflows require the user to

upload a file to be processed and to enter additional information, described in this section.

Music Metadata

Robotaba requires the user to input metadata for uploaded files so that they may be

catalogued and searched. The metadata required for a musical work includes the title,

artist, and copyright holder. When uploading an audio file, a web form requests the user

to manually enter the appropriate metadata. When uploading a symbolic music file, which

often provides metadata for the musical work encoded within, the file is parsed to retrieve

the appropriate information. If this information is absent, a web form requests the user to

enter the appropriate metadata, which is then injected into the uploaded symbolic music

file. Furthermore, for each MEI file produced at subsequent steps in the selected workflow,

the user-entered metadata is automatically injected into the symbolic music file.

Guitar Model

The polyphonic transcription module and guitar tablature arrangement module, described

in the following sections, make use of specific parameters of the user’s guitar. To gather

this information, Robotaba provides a form for the user to specify the number of frets,

the tuning, and capo position of their guitar. The function of a guitar capo is explained

in Appendix A. The tuning is specified by entering the pitch name and octave of each

open-string pluck2 of the guitar.

3.1.2 Polyphonic Transcription Module

The polyphonic transcription module is responsible for estimating the note events occurring

in an input audio file. The architecture of the polyphonic transcription module is illustrated

in Figure 3.3. Specifically, the polyphonic transcription module accepts an audio file as

2An open-string pluck refers to a pluck of a string without depressing any frets.
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input. This audio file is passed to the polyphonic transcription algorithm embedded in the

module. The polyphonic transcription algorithm is responsible for generating an MEI file

containing the estimates of note events occurring in the input audio file. Any polyphonic

transcription algorithm that generates an MEI file which encodes the estimated note events

may be inserted into the polyphonic transcription module. The resulting symbolic music file

is optionally post-processed to ensure the estimated pitches of the note events are capable

of being performed on the user’s guitar. When the polyphonic transcription module is

used independently, the user is able to toggle post-processing of the symbolic music file.

Otherwise, post-processing is enabled by default.

Fig. 3.3: Architecture of the polyphonic transcription module.

A significant advantage of optionally post-processing the output symbolic music file is

that polyphonic transcription algorithms that are not guitar-specific may be embedded in

the polyphonic transcription module. Furthermore, guitar-specific polyphonic transcription

algorithms may also benefit from having access to parameters of the specific guitar which

is producing the sound.

Symbolic Music File Post-processing

If post-processing is enabled, the polyphonic transcription module imposes two constraints

on the output symbolic music file. First, the estimated pitches of note events that are

outside of the range of the user’s guitar should be discarded or transposed. The user is able

to select whether notes are to be discarded or transposed. If the erroneous note events are

to be discarded, they are simply removed from the symbolic music file. If the erroneous

note events are to be transposed within range of the guitar, some calculations must be
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performed. To calculate the lower pitch bound of the guitar, the pitch produced by an

open pluck of the thickest gauged string is retrieved from the tuning parameter provided

by the user. This pitch is then raised by c semitones, where c ∈ N describes the capo

position on the guitar. A capo position of zero denotes that no capo is used. To calculate

the upper pitch bound of the guitar, the pitch produced by an open pluck of the thinnest

gauged string is retrieved from the tuning parameter provided by the user. This pitch is

then raised by n semitones, where n ∈ N+ describes the number of frets on the guitar. The

note transposition algorithm systematically lowers or raises the octave of the note until it

resides within the pitch range of the user’s guitar.

Second, the degree of polyphony of the remaining note event estimates must be limited

to six—the maximum possible polyphony of a standard guitar. To enforce this, the post-

processing algorithm orders the note event estimates within a chord by ascending pitch.

Starting from the highest pitch, the number of notes necessary to yield a polyphony less

than or equal to six are discarded.

3.1.3 Guitar Tablature Arrangement Module

The guitar tablature arrangement module is responsible for assigning a guitar string and

fret combination to each note occurring in an input symbolic music file. The architecture of

the guitar tablature arrangement module is illustrated in Figure 3.4. Specifically, the guitar

tablature arrangement module accepts an MEI file as input, which is first pre-processed

to ensure the pitches of the encoded note events are capable of being performed on the

user’s guitar. This pre-processing step is mandatory and follows the same algorithm as the

post-processing step used in the polyphonic transcription module described in the previous

section. The resulting MEI file is passed to the guitar tablature arrangement algorithm

embedded in the module. Any guitar tablature arrangement algorithm that generates an

MEI file that encodes the string and fret combinations required to perform the sequence of

input notes may be inserted into the guitar tablature arrangement module.

3.1.4 Guitar Tablature Engraving Module

The guitar tablature engraving module is responsible for parsing an MEI file containing a

sequence of note events that have each been assigned a guitar string and fret combination

and displaying the encoded tablature in the web browser. The architecture of the guitar



56 Robotaba Guitar Tablature Transcription Framework

Fig. 3.4: Architecture of the guitar tablature arrangement module.

tablature engraving module is illustrated in Figure 3.5. The structure of this module

differs from the polyphonic transcription and guitar tablature arrangement modules in

that a tablature rendering algorithm does not have to be implemented and inserted into

the module. In order to display tablature in the web browser, this module uses the digital

guitar tablature engraving library AlphaTab to render tablature symbols on the HTML

canvas element.3 The most significant advantage of rendering tablature on the HTML

canvas instead of using alternative multimedia display technologies such as Adobe Flash is

that the majority of available web browsers, operating systems, and devices are capable of

viewing the HTML canvas.

Fig. 3.5: Architecture of the guitar tablature engraving module.

AlphaTab parses drawing scripts called AlphaTex, in which structured keywords inform

the rendering engine about the contents of the tablature and how it should be displayed.

3http://www.alphatab.net

http://www.alphatab.net
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When an MEI file is passed to the tablature engraving module, the contents of the file are

converted to an AlphaTex drawing script to be rendered by AlphaTab in the web browser.

Figure 3.6 illustrates an excerpt of an MEI file that is displayed using AlphaTab.

Fig. 3.6: An excerpt of an MEI encoding of “Enter Sandman” by Metallica, displayed
using the AlphaTab digital guitar tablature engraving library.

3.1.5 Technical Details

Now that the design of the transcription framework and its modules have been presented,

this section will describe the technical details and mechanics of Robotaba. Specifically, the

underlying relational database and details regarding the implementation of the framework

will be discussed.

Database Schema

Robotaba maintains a relational database that is responsible for storing references to up-

loaded audio and symbolic music files as well as the corresponding metadata for these files.

An index is constructed on the title and artist fields in order for the user to rapidly query

files uploaded to or generated by the web application. Although the metadata for a mu-

sical work is often encoded within a symbolic music file, this information is replicated in

the database. At the expense of data redundancy, queries will execute faster because the

metadata encoded in each symbolic music file on the hard disk does not have to be searched

at query time. The database also encodes the relationship between input and output files.

In other words, the database encodes the workflow or path of modules the input file was

sent through to generate the output file. The database is also responsible for recording a
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time stamp when a module begins processing an input file and when the module returns

an output file. With this data, researchers can gather statistics regarding the efficiency of

their algorithms on each input file processed and compare these runtime statistics to other

algorithms.

The database schema for Robotaba is presented in Figure 3.7 as an entity relation-

ship (ER) diagram (Chen 1976). The purpose and proper interpretation of an ER dia-

gram is explained in Appendix B.2. The ER diagram depicts eight interrelated entities.

The Transcription entity models a complete guitar tablature transcription. This in-

volves sending an input audio file to the polyphonic transcription module (modelled by the

PitchDetect entity), and passing the output symbolic music file to the guitar tablature

arrangement module (modelled by the Tabulate entity). An audio file is represented by

the Audio entity; a symbolic music file in the MEI file format that contains note event

estimates is represented by the MeiPitch entity; and a symbolic music file in the MEI

file format that encodes notes with assigned string and fret combinations is represented by

the MeiTab entity. Each of these files must be associated with metadata describing the

musical work, represented by the MetaMusic entity. The GuitarModel entity represents

a model of the user’s guitar.

Each entity has attributes which provide information about the entity. Attributes as-

sociated with the GuitarModel entity describe the number of frets, tuning, and capo

position of the user’s guitar. The Audio, MeiPitch, and MeiTab entities have at-

tributes that encode the path to the physical file on the hard disk and the time in which

the file was uploaded. Attributes associated with the MetaMusic entity describe the ti-

tle, artist, and copyright metadata of a musical work. The PitchDetect entity has an

attribute sanitize, which describes whether the symbolic music file post-processing al-

gorithm should discard, transpose, or leave notes outside of the range of the user’s guitar.

Similarly, the Tabulate entity has the same attribute, although it describes whether the

symbolic music file pre-processing algorithm should discard or transpose notes.

To describe the relationship between entities, crow’s foot notation is used. An expla-

nation of crow’s foot notation is provided in Appendix B.2. A discussion of the important

entity relationships follows. The Transcription entity must invoke one PitchDetect

entity followed by one Tabulate entity. However, the inverse relationship differs. The

PitchDetect and Tabulate entities do not necessarily have to be invoked by the

Transcription entity, since the polyphonic transcription and guitar tablature arrange-
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ment modules may be used independently. The PitchDetect entity processes exactly

one audio file and generates exactly one MEI file containing note event estimates repre-

sented by the MeiPitch entity. The Tabulate entity processes exactly one MEI file

containing a sequence of note events and generates exactly one MEI file that encodes the

produced guitar tablature arrangement.

Relationships may also have attributes. For example, the processes relationship con-

necting the PitchDetect and Audio entities has an attribute that describes the time

that processing of the audio file began. As well, the generates relationship connecting the

PitchDetect and MeiPitch entities has an attribute that describes the time that pro-

cessing finished and the output symbolic music file was generated. By subtracting these

two time stamps, the runtime of the polyphonic transcription module on the input audio

file can be derived. This structure is mirrored for the Tabulate entity. Therefore, a

similar method is employed for calculating the runtime of the guitar tablature arrangement

module on an input symbolic music file.

Framework Implementation

Robotaba is implemented using Django, a web framework written in Python.4 The frame-

work facilitates rapid development of database-driven web applications by providing an

“object-relational mapper” that translates Python classes called models into structured

query language (SQL) commands that automatically create the proper database tables.

Each entity in Figure 3.7 is implemented as a Django model. The attributes of an entity

are implemented as member variables of the Django model. Moreover, the relationships

between entities can be enforced by specifying these relationships in the Django model. An

example of a Django model that represents the Audio entity is displayed in Listing 3.1.

By virtue of using the Django web framework, Robotaba also provides a graphical user

interface for administrators of the web application to view and edit the contents of the

database without requiring knowledge of SQL.

Another important aspect of the Django web framework are Django views. Django views

are functions that return a HTML response to the client web browser and are called when

a specific uniform resource locator (URL) is accessed. Within the function, the database

can be queried or a server-side process can be triggered. Robotaba uses Django views to

4http://www.djangoproject.com

http://www.djangoproject.com
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Listing 3.1: Django model for the Audio entity

class Audio(models.Model):

fk_mid = models.ForeignKey(MetaMusic)

upload_ts = models.DateTimeField(auto_now_add=True)

audio_file = models.FileField(upload_to="audio")

send uploaded files through its modules. For example, when accessing the relative URL:

“/transcribe/<aid>/” in Robotaba, a function is called that passes the uploaded au-

dio file with the database identifier <aid> to the polyphonic transcription module to begin

the guitar tablature transcription process. Similar functionality exists for the polyphonic

transcription, guitar tablature arrangement, and guitar tablature rendering modules.

Symbolic Music Encoding Transformations

To interface with commercial music applications, such as Guitar Pro, that are not capable of

reading MEI files, a program for converting MEI to MusicXML files and MusicXML to MEI

files has been written in the Python programming language.5 Although both MusicXML

and MEI encode music symbols using XML, MusicXML adheres to a different encoding

schema than MEI. As the structure of these files can be quite complex and there are many

different elements and relationships to account for, only a subset of elements are translated

between the file formats.

Using the implemented file format converter, Robotaba allows symbolic music files to be

uploaded or downloaded in both the MEI and MusicXML file format. When a MusicXML

file is uploaded, it is immediately converted to an MEI file before being saved on the hard

disk and passed to a module in Robotaba for processing. Similarly, when a symbolic music

file is requested for download in the MusicXML file format, the MEI file on the hard disk

is converted to a MusicXML file and returned to the user. By allowing MusicXML files

to be uploaded, tablature that has been manually entered into the Guitar Pro desktop

application can be exported in MusicXML and uploaded to a web application that uses the

Robotaba framework, where it may be displayed and shared online. Moreover, tablature

arrangements that have been produced by a web application that uses Robotaba can be

downloaded as a MusicXML file, edited in Guitar Pro, and re-uploaded to the website.

5http://github.com/gburlet/musicxml-mei-conversion

http://github.com/gburlet/musicxml-mei-conversion
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3.2 Guitar Tablature Transcription Web Application

Using the Robotaba framework, a web application for guitar tablature transcription has

been developed that incorporates the polyphonic transcription algorithm and the guitar

tablature arrangement algorithm described in this section.

3.2.1 Polyphonic Transcription Algorithm

A state-of-the-art polyphonic transcription algorithm (Zhou and Reiss 2008) has been im-

plemented. This algorithm was selected for various reasons. First, this algorithm ranked

highest out of the polyphonic transcription algorithms evaluated in the MIREX on the pi-

ano dataset from 2007–2012, when considering the accuracy of pitch and note onsets only.

Second, the authors claim to have tuned underlying parameters of this algorithm according

to a dataset composed of both piano and guitar recordings (Zhou and Reiss 2008). Third,

this algorithm is capable of performing polyphonic transcriptions in realtime. Finally, the

source code6 of this algorithm is provided under the terms of the GNU General Public Li-

cense, meaning the source code can be used, modified, and redistributed without financial

compensation.

The polyphonic transcription algorithm developed by Zhou and Reiss (2008) is dis-

tributed as a Vamp plugin written in the C++ programming language. A Vamp plugin7

is an audio feature extraction module that can be “plugged into” a host application such

as Sonic Visualiser8, Sonic Annotator9, or Audacity10. The host application provides a

graphical user interface or command line tool to allow an audio file to be imported and

parameters of the plugin to be set. The host application is responsible for preprocessing

and partitioning the input audio signal into frames, which is then sent to the plugin for

analysis and feature extraction. The host is also responsible for exporting the features

produced by the plugin to a standard file format.

In order to embed the polyphonic transcription Vamp plugin into Robotaba, the source

code was manipulated in various ways. First, the plugin was divorced from the host to

6http://www.vamp-plugins.org/plugin-doc/qm-vamp-plugins.html#
qm-transcription

7http://www.vamp-plugins.org
8http://www.sonicvisualiser.org
9http://omras2.org/SonicAnnotator

10http://audacity.sourceforge.net

http://www.vamp-plugins.org/plugin-doc/qm-vamp-plugins.html#qm-transcription
http://www.vamp-plugins.org/plugin-doc/qm-vamp-plugins.html#qm-transcription
http://www.vamp-plugins.org
http://www.sonicvisualiser.org
http://omras2.org/SonicAnnotator
http://audacity.sourceforge.net
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produce a standalone application. To access the standalone application from Robotaba,

a Python interface was created using the Boost.Python library.11 The Boost.Python li-

brary allows C++ classes, functions, and data structures to be wrapped and subsequently

accessed from Python. These wrappers are referred to as “Python bindings”. To reintro-

duce the functionality of the host application, an open-source Python module has been

implemented that sets parameters used by the polyphonic transcription algorithm, imports

an audio file, sends the audio data to the Python bindings of the polyphonic transcrip-

tion Vamp plugin, and generates an MEI document containing the resulting note event

estimates.12.

Symbolic Music Encoding

To generate the MEI document containing the note event estimates, the Python bindings

of libmei are used. Libmei is an open-source C++ library for reading and writing MEI

files.13 The resulting MEI document is then presented to Robotaba, which optionally post-

processes the encoded note events.

In regard to the structure of the MEI document, the 2012 release of the MEI is used

to encode the note event estimates. Being an XML file, the MEI document inherently

encodes musical events in a hierarchical manner. For example, a note may be a member

of a chord, which is a member of a staff, and so forth. Another important feature of MEI

is the ability to relate musical elements in the document to their temporal location in an

external audio file through the specification of timestamps. This relationship is encoded

using the <timeline> element. An example of a note and a chord referencing timestamps

in an external audio file is presented in Listing 3.2.

3.2.2 Guitar Tablature Arrangement Algorithm

An open-source guitar tablature arrangement algorithm named DarwinTab14 has been de-

veloped, written in the Python programming language, and embedded in the Robotaba

guitar tablature arrangement module. DarwinTab uses a GA to produce tablature ar-

rangements of notes encoded in an MEI file. A GA was selected for various reasons. First,

11http://www.boost.org/libs/python/doc
12http://github.com/gburlet/zhoutranscription
13http://ddmal.music.mcgill.ca/libmei
14http://github.com/gburlet/darwin-tab

http://www.boost.org/libs/python/doc
http://github.com/gburlet/zhoutranscription
http://ddmal.music.mcgill.ca/libmei
http://github.com/gburlet/darwin-tab
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Listing 3.2: MEI example of a note and a chord referencing timestamps in an audio file.

<timeline id="timeline" avref="/path/to/audiofile.wav" origin="when_note">

<when id="when_note" absolute="0.00"/>

<when id="when_chord" absolute="0.04"/>

</timeline>

<!-- in the score encoding -->

<note id="note_1" pname="C" oct="4" when="when_note"/>

<chord id="chord_1" when="when_chord">

<note id="note_2" pname="D" oct="4"/>

<note id="note_3" pname="E" oct="4"/>

</chord>

GAs have been shown to consistently yield playable tablature even when departing from the

structure of the published tablature (Tuohy and Potter 2005). Second, a GA is a stochastic

search algorithm and is therefore capable of producing multiple tablature arrangements for

the same input file. Therefore, users of the web application have the option of generating

an alternate tablature arrangement by reprocessing the input symbolic music file. Finally,

the fitness function of the implemented GA can also be used in the algorithm evaluation

process to compare guitar tablature arrangements, since the fitness function quantitatively

defines metrics that characterize a “good tab”.

To begin, the initial population of the GA must be formed. The initial population of

the GA consists of a set of candidate tablature arrangements (chromosomes) that are valid,

but not necessarily possible or easy to perform. The structure of a chromosome for an input

music score with one measure is illustrated in Figure 3.8. The chromosome consists of a

sequence of genes. Each gene represents a pluck or a strum of the guitar.

Based on the work by Allen and Goudeseune (2011), which addresses instrument tuning

in the guitar fingering problem, DarwinTab uses a guitar-specific model to produce candi-

date tablature arrangements that take into consideration the number of frets, tuning, and

capo position of the guitar on which the tablature will be performed. The guitar-specific

model is responsible for calculating a set of candidate string and fret combinations for each

note encoded in the input symbolic music file. The candidate string and fret combinations

for a single note are calculated by first discerning the pitch of an open pluck of each string

on the guitar, which is defined by the tuning of the guitar. If a capo is placed on fret
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Fig. 3.8: The structure of a chromosome for a sample music score. The chromosome
contains a sequence of eight genes, each consisting of a set of string and fret combinations.

number c ∈ N, then c semitones are added to the pitch of an open pluck of each string.

Then for each fret f ∈ {N : f ≤ n} on the fretboard, such that n ∈ N+ is the number

of frets on the guitar, f semitones are added to the pitch of each open-plucked string. If

any of the resulting pitches match the pitch of the note event being processed, the string

and fret combinations are added to the set of candidate fretboard positions. To produce a

candidate tablature arrangement for the input music score, a string and fret combination

is randomly chosen from the set of candidate string and fret combinations for each note.

Mimicking the process of natural evolution, the GA evolves the initial population of

candidate tablature arrangements by selecting fit individuals from the population for mat-

ing. There are many possible methods for mate selection: Tuohy and Potter (2005, 2006c)

use binary tournament selection, where two pairs of individuals are randomly selected from

the population and the most fit from each pair are mated; Rutherford (2009) uses roulette-

wheel selection, where the probability of an individual being selected is proportional to its

fitness; and Tuohy and Potter (2006a) use rank-based selection, which selects individuals

in the population based on its fitness rank with respect to other individuals. DarwinTab

uses roulette-wheel selection to choose mates from the current population to form the suc-

cessor population. Using conventional genetic crossover techniques, the selected parents

are optionally mated with a certain probability. Otherwise, no crossover occurs and the

children are genetic clones of their parents.

DarwinTab evolves tablature for a given number of generations (iterations) before ter-

minating. In the final generation, there exists npop ∈ N+ tablature arrangements that have

evolved from the initial population consisting of npop candidate tablature arrangements.

For the purposes of the transcription web application, which expects a single tablature
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arrangement to be returned, the candidate tablature arrangement with the highest fitness

value is selected. The formula for calculating the fitness of a tablature arrangement is

outlined in the following section.

DarwinTab has many operating parameters to control the evolutionary process of the

underlying GA. These parameters include the population size, the maximum number of

generations to run, the probability of mating, the number of genetic crossover points, and

the probability of gene mutation. DarwinTab does not include note ornamentations, such

as guitar bends and slides, in the resulting tablature.

Fitness Function

The fitness function of a GA is paramount to the performance of the genetic search process

because it quantitatively defines the properties that contribute to a “good tab”. Following

the study of the left-hand movements of professional guitar players (Heijink and Meu-

lenbroek 2002), DarwinTab incorporates into its fitness function the three biomechanical

complexity factors contributing to the performance difficulty of a tablature arrangement:

the position of the left hand on the guitar neck, the distance that the left hand must move

to accommodate note transitions, and the finger span required to perform chords. For

each note or chord in the input symbolic music score being processed, a difficulty score is

produced according to each complexity factor.

For the first complexity factor, Heijink and Meulenbroek (2002) found that professional

guitarists favour hand positions near the beginning of the fretboard. Therefore, notes with

candidate string and fret combinations where the fret number is greater than seven are

penalized to encourage tablature arrangements near the beginning of the fretboard. This

fret number was chosen subjectively, according to familiarity with the instrument.

The second complexity factor emphasizes that arrangements with large fretwise-distances

between consecutive notes are more difficult to perform. Therefore, for two consecutive

notes with fret numbers f1, f2 ∈ {N : f ≤ n} such that n ∈ N+ is the number of frets on

the guitar, the difficulty score is calculated by the formula

abs (f1 − f2) . (3.1)
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For a note played by depressing fret number f , followed by a chord comprised of multiple

notes with the set of fret numbers g, the difficulty score is calculated by the formula

abs

(
f −

(
max(g)−min(g)

2

))
. (3.2)

The third complexity factor ensures that chords that require excessively large finger

spans are penalized. Therefore, for a chord comprised of multiple notes with the set of fret

numbers g, the difficulty score is calculated by the formula

max(g)−min(g). (3.3)

The difficulty scores for each complexity factor are aggregated across all of the notes

in the symbolic music score being processed to produce a vector c ∈ R3 of difficulty scores

for the entire piece. These difficulty scores are weighted and summed to produce a final

difficulty score d ∈ R+ for the tablature arrangement, such that

d = w · c =
3∑

i=1

wici, (3.4)

where the vector w ∈ R3 contains hand-tuned weights for each difficulty score. From the

final difficulty score, the fitness f ∈ R+ of an individual is calculated using the formula

f =
1

1 + d
. (3.5)

The goal of the GA is to search for a tablature arrangement that minimizes the difficulty

score d, or equivalently, maximizes the fitness f .

The difficulty score associated with performing each note or chord in a given symbolic

music score could be precomputed to reduce the number of computations required to evalu-

ate the fitness function of a candidate tablature arrangement. This could be accomplished

by creating a directed weighted graph, in which each vertex represents a candidate string

and fret combination for a note or chord. Vertices that correspond to adjacent notes or

chords in the symbolic music score are connected by an edge. The weight of an edge between

two vertices denotes the difficulty score associated with the transition to, and performance

of, the latter note or chord on the guitar. The fitness of a candidate tablature arrangement
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can then be computed by tracing a path through the constructed graph that corresponds to

the sequence of string and fret combinations occuring in the candidate tablature arrange-

ment, aggregating the edge weights along this path to attain the final difficulty score d,

and using Equation 3.5.

Symbolic Music Encoding

After the GA has finished evolving the tablature population, the tablature arrangement

with the highest fitness is exported as an MEI document. To encode the tablature arrange-

ment, a string and fret combination is appended to each <note> element encoded in the

input MEI file. Each gene in the chromosome saves a reference to the unique identifier

of its corresponding <note> element in the input MEI file. For each gene, the Python

bindings of libmei are used to lookup and attach the calculated string and fret combination

to the <note> element in the MEI document with the appropriate identifier. A sample

tablature arrangement is displayed in Listing 3.3 for the notes encoded in the input MEI

file presented in Listing 3.2.

Listing 3.3: MEI example of notes with appended string and fret information.

<note id="note_1" pname="C" oct="4" tab.string="2" tab.fret="1"/>

<chord id="chord_1">

<note id="note_2" pname="D" oct="4" tab.string="2" tab.fret="3"/>

<note id="note_3" pname="E" oct="4" tab.string="1" tab.fret="0"/>

</chord>
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Chapter 4

Transcription Evaluation

The previous chapter presented the guitar tablature transcription framework Robotaba and

its use in the creation of a web application that utilizes a polyphonic transcription algo-

rithm in conjunction with a guitar tablature arrangement algorithm to generate and display

tablature in the web browser. As a framework, Robotaba itself is not capable of performing

guitar tablature transcriptions; thus, the framework itself can not be quantitatively evalu-

ated. However, the implemented web application serves as a testament to the utility of the

framework.

This chapter will focus on the procedure for evaluating the implemented web applica-

tion, specifically the polyphonic transcription and guitar tablature arrangement algorithms

embedded within. Given that the modular design of Robotaba allows the polyphonic

transcription and guitar tablature arrangement algorithms to be used independently, the

algorithms will also be evaluated independently. The polyphonic transcription algorithm

will be evaluated by comparing the output of the algorithm on several synthesized guitar

recordings to a dataset of correct polyphonic transcriptions. The guitar tablature arrange-

ment algorithm will be evaluated by comparing the output of the algorithm on several

symbolic music scores to a dataset of acceptable guitar tablature arrangements. Several

experiments are proposed to evaluate these algorithms, the results of which are presented

and discussed in the following chapter.

The structure of this chapter is as follows: Section 4.1 will present the datasets used

for evaluating the algorithms. Section 4.2 and Section 4.3 will describe the experimental
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methodology and metrics used in the evaluation of the polyphonic transcription and guitar

tablature arrangement algorithms, respectively.

4.1 Description of Datasets

Datasets that provide correct or acceptable output alongside the input data are impor-

tant for algorithm evaluation and for the training and validation of models formed by

supervised learning algorithms. In the field of machine learning and MIR, such a dataset

is often referred to as a ground-truth dataset. This section will present the ground-truth

datasets used for evaluating the polyphonic transcription and guitar tablature arrangement

algorithms.

4.1.1 Polyphonic Transcription Dataset

For the purposes of evaluating polyphonic transcription algorithms which output the pitch,

onset time, and duration of each estimated note event in an input guitar recording, a

ground-truth dataset should contain a set of audio recordings that are each paired with a

list of the note events occurring in the recording (Bay et al. 2009).

Currently there does not exist an ubiquitous ground-truth dataset for polyphonic guitar

transcription as there does for polyphonic piano transcription (Poliner and Ellis 2006). This

is largely due to the fact that a Yamaha Disklavier1 can easily create real piano recordings

that are aligned with ground-truth note events (Benetos et al. 2012). However, several

datasets have been compiled for monophonic and polyphonic guitar transcription. For

monophonic guitar transcription, the RWC Musical Instrument Sound Data Base (Goto

et al. 2003) provides isolated recordings of individual plucks of various guitars with different

dynamic levels. Although the number of recorded samples is relatively large, the recordings

are strictly monophonic. Another dataset of isolated guitar pluck recordings was compiled

by Abesser (2012), which was gathered from the larger dataset compiled by Stein et al.

(2000) consisting of guitar pluck recordings with and without digital audio effects. In this

dataset, the monophonic recordings were also combined to produce polyphonic recordings;

however, these recordings only spanned the first twelve frets of the guitar. Other projects

have used synthesis algorithms to generate polyphonic audio signals that represent single

1A Disklavier is an acoustic piano that is mechanically operated by solenoids, which are typically
controlled by MIDI input.
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guitar chords (Gagnon et al. 2004) or have created small datasets of recordings of isolated

guitar chords (Bonnet and Lefebvre 2003).

The lack of a ground-truth dataset for the polyphonic transcription of full-length guitar

songs motivates the compilation of a new dataset. Toward the creation of a ground-truth

dataset for polyphonic guitar transcription, this section will present a semi-automated

method for harvesting the wealth of community-moderated and publicly available data

present on guitar tablature websites. Using the proposed dataset creation method, a new

ground-truth dataset for polyphonic guitar transcription is compiled and presented.

Dataset Creation Methodology

The semi-automated dataset creation method presented in this section focuses on the pro-

cessing of Guitar Pro symbolic music files. Similar to other symbolic music notation file

formats, the Guitar Pro file format is capable of encoding the metadata, tempo informa-

tion, and symbolic music data of a musical work. The symbolic music data is organized

into instrument tracks, wherein the pitch and fretboard location of notes are encoded. Due

to the proprietary file format, the exact structure of information encoded in the symbolic

music file is unknown. As such, the raw file can not be parsed by third-party applications to

automate processing of these files. Moreover, there is no application programming interface

to manipulate an encoded file and no command line tools available for batch processing

of Guitar Pro files. Consequently, the graphical user interface of the Guitar Pro desktop

application must be used to manipulate the downloaded files and export the encoded data

into other file formats.

The Guitar Pro desktop application has many features that make it suitable for musical

dataset creation. The desktop application allows Guitar Pro files to be synthesized using

different instrument models and exported as an audio file. For instance, one can select

a specific guitar model, an amplifier model, and a series of digital audio effects to mimic

the sound of a variety of guitar configurations. The export function is also capable of

translating the information encoded in the proprietary data format to the MusicXML file

format. Furthermore, Guitar Pro supports a variety of different instruments apart from

the guitar. Without loss of generality, the same ground-truth dataset creation method

proposed in this section could be applied to other stringed instruments such as the bass

guitar.
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To form the ground-truth dataset for polyphonic guitar transcription, a set of Guitar

Pro files is first compiled. A plethora of manual tablature transcriptions in the Guitar

Pro file format are available on guitar tablature websites on the Internet, the most popular

website being www.ultimate-guitar.com (see Figure 1.6). Each Guitar Pro file is then

synthesized to create an audio file. Subsequently, a file listing the pitch, onset time, and

duration of notes occurring in the synthesized audio file is created. This file will be referred

to as the ground-truth file. The method of synthesizing and creating the ground-truth file

for a single Guitar Pro file is described in detail below.

Before synthesizing the audio, a Guitar Pro file must undergo several preprocessing

steps. Guitar Pro files often contain multiple instrument tracks, many of which are not

guitar tracks. Extraneous tracks containing instruments such as the bass guitar, drums,

and vocals are removed. Finally, all tempo, volume, and pan automations are removed

from the remaining guitar track. Removing the tempo automations ensures that the entire

song follows a constant tempo—a preprocessing step that is necessary for the calculation

of the onset time and duration of note events in the ground-truth file creation procedure

described at the end of this section.

To synthesize the preprocessed Guitar Pro file using the Guitar Pro desktop application,

a guitar model, amplifier model, and desired audio effects must first be selected. Guitar

Pro has a variety of presets that automatically select the guitar, amplifier, and audio effects

used for synthesis. Two such presets exist for clean guitar and distortion guitar.2 The clean

guitar preset consists of a Stratocaster electric guitar model with single coil pickups, an

amplifier model with default settings, and no digital audio effects. The distortion guitar

preset consists of a Les Paul electric guitar model with humbucker pickups, an amplifier

with default settings, and a “Screamer Overdrive” guitar pedal with default settings for

the application of a distortion audio effect.

To create the ground-truth file, the Guitar Pro desktop application is used to export a

MusicXML file from the Guitar Pro file that was used to synthesize the audio file. From the

MusicXML file the tuning of the guitar, as well as the pitch, string and fret combination,

and temporal information of each note event can be obtained. This MusicXML file is

automatically processed by a program to gather and output the pitch, onset time, and

duration of notes in the symbolic music file. Nichols et al. (2009) developed a MusicXML

parser program written in Matlab, which was originally used to gather information from

2The terms clean guitar and distortion guitar are described in Appendix A.

www.ultimate-guitar.com
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symbolic music scores for the purposes of finding patterns in the relationships between

melody, lyrics, and instrumentation.3 The program parses a MusicXML file and returns the

pitch, start beat, and end beat of each note event present in the symbolic music encoding,

among other retrieved information. The pitch of the note event is explicitly encoded in the

MusicXML file; however, the start and end beat of a note event within the entire music

score requires some calculation. The start beat of a note is calculated by considering the

time signature of each measure and the beat duration of all previous notes and rests in the

score. The end beat of a note is calculated by adding the beat duration of the note to the

start beat of the note. Example output of the beat calculation algorithm for two measures

of music is illustrated in Figure 4.1.

Fig. 4.1: Calculation of the start and end beat of each note event in an example music
score containing two measures.

Several changes were made to this program to generate a ground-truth file with the

desired format. First, the program was adapted to include notes that are part of chords

and to consider measures that repeat multiple times. Secondly, the start and end beat

calculated by the program for each note event were converted to the absolute onset and

offset time, respectively, of the note event in the corresponding audio file. The onset time

3http://www.music.informatics.indiana.edu/code/musicxml

http://www.music.informatics.indiana.edu/code/musicxml
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tonset in seconds is calculated using the formula

tonset = 60
bonset
bpm

+ 0.025, (4.1)

where bonset is the start beat of a note event, bpm is the constant tempo of the music

score in beats per minute, and the constant 0.025 is the amount of silence that Guitar Pro

prepends to each synthesized audio file. The offset time toffset in seconds is calculated by

substituting the end beat boffset of a note event for bonset in Equation 4.1. Finally, a text

file is generated for each symbolic music file processed by the modified MusicXML parsing

program. The text file contains a list of the onset times, offset times, and pitches of note

events occurring in the corresponding synthesized guitar recording.

Performing the described process on a set of Guitar Pro files results in a set of audio files

and a set of text files. The generated text files along with their corresponding synthesized

guitar recordings form the ground-truth dataset for polyphonic guitar transcription.

Dataset Details

Using the dataset creation process presented in the previous section, a ground-truth dataset

for polyphonic guitar transcription has been created. 75 Guitar Pro files were selected

from the Ultimate Guitar Top 100 list4 and from the Ultimate Guitar Fresh Tabs list5.

The Ultimate Guitar Top 100 list sorts every Guitar Pro file uploaded to the website by

its rating—from one to five stars—and displays the top 100 files. The Ultimate Guitar

Fresh Tabs list is a catalogue of Guitar Pro files that have recently been uploaded to the

website and is sorted by number of hits (views). Only uploaded tablature with a five-star

rating agreed upon by at least ten unique users was considered for selection. Tablature was

selected on the basis of its musical genre, average degree of polyphony, and tempo, in order

to accumulate a set of pieces with a variety of different attributes. The majority of Guitar

Pro files were drawn from the Ultimate Guitar Top 100 list. Using the technique described

in the previous section, a ground-truth file was created for each selected Guitar Pro file.

The collected Guitar Pro files were then synthesized using the clean guitar and distortion

guitar presets in Guitar Pro. If the guitar track was originally intended to be performed by

an acoustic guitar, a Martin & Co. acoustic guitar with steel strings was used as the guitar

4http://www.ultimate-guitar.com/top/?rating&filter=pro
5http://www.ultimate-guitar.com/tabs/index_guitar_pro.htm

http://www.ultimate-guitar.com/top/?rating&filter=pro
http://www.ultimate-guitar.com/tabs/index_guitar_pro.htm
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model instead of the guitar model assigned by the preset. It is hoped that providing a set

of distortion guitar recordings in the ground-truth dataset will stimulate the development

of polyphonic guitar transcription algorithms that are tuned to perform well on distortion

guitar recordings, since the distortion guitar effect is popular in many musical genres.

A detailed overview of the compiled ground-truth dataset is presented in Table C.1 of

Appendix C. The dataset consists of 75 isolated guitar tracks; 125,192 note events; 30,914

chords; an average polyphony of 2.16; and an average tempo of 112 beats per minute. The

number of note events was calculated by counting the number of note elements occurring in

the 75 MusicXML representations of the selected Guitar Pro files. Similarly, the number of

chords was calculated by counting the number of chord elements occurring in the MusicXML

files. The average polyphony was calculated by dividing the number of note events by the

number of chords plus the number of note elements that are not part of a chord. The average

tempo was calculated by adding the tempos encoded in the metadata of the MusicXML files

and dividing by the number of pieces in the dataset. There are approximately five and a half

hours of clean guitar recordings and five and a half hours of distortion guitar recordings,

yielding approximately eleven hours of audio in total. The musical genre for each song was

assigned by considering the genre of the artist on www.wikipedia.org. The distribution

of the genre of songs in the ground-truth dataset is illustrated in Figure 4.2. The role of the

isolated guitar track (lead or rhythm) was subjectively chosen after listening to the track

in its entirety.

4.1.2 Guitar Tablature Arrangement Dataset

In the evaluation of guitar tablature arrangement algorithms, a ground-truth dataset should

contain a set of symbolic music scores that encode a sequence of notes or chords along with

an appropriate string and fret combination for each note in the score. Similar to other

problems in the field of MIR such as mood classification, genre classification, or structural

segmentation where the ground-truth annotations are open for interpretation, the ground-

truth tablature for a music score is also open for interpretation. There are often several

solutions to the tablature arrangement problem and the adequacy of any given arrangement

is also subject to the stylistic preferences of the performer.

Similar to the problem of polyphonic guitar transcription, there exists no ubiquitous

dataset for training or evaluating guitar tablature arrangement algorithms. Previous guitar

www.wikipedia.org


76 Transcription Evaluation

Fig. 4.2: Distribution of the genre of pieces in the compiled ground-truth dataset for
polyphonic guitar transcription and guitar tablature arrangement.

tablature arrangement algorithms have been evaluated using selected excerpts from music

scores that have been hand-annotated by trained guitarists (Radicioni et al. 2004; Radicioni

and Lombardo 2005a; Radicioni and Lombardo 2005b; Rutherford 2009) or using selected

excerpts from published tablature (Radisavljevic and Driessen 2004; Tuohy and Potter

2005; Sawayama et al. 2006; Tuohy and Potter 2006c). The largest evaluation dataset for

a guitar tablature arrangement algorithm presented in the literature thus far has consisted

of selected excerpts from 75 user-uploaded classical guitar tablatures obtained from www.

classtab.org (Tuohy and Potter 2006a)—a relatively large dataset, though it is biased

toward a single genre and the tablature is encoded in plain text format.

This section presents a new ground-truth dataset for guitar tablature arrangement. In

comparison to the dataset presented by Tuohy and Potter (2006a), the dataset compiled

www.classtab.org
www.classtab.org
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in this work incorporates a wider variety of musical genres and provides tablature in a

standard symbolic music encoding format.

Dataset Details

The ground-truth dataset for guitar tablature arrangement was compiled using the same

75 Guitar Pro files that were collected and preprocessed for the polyphonic guitar tran-

scription dataset presented in Section 4.1.1. Following previous research, which evaluates

guitar tablature arrangement algorithms on selected excerpts of tablature (Radisavljevic

and Driessen 2004; Tuohy and Potter 2006a), excerpts were selected from the Guitar Pro

files. Excerpts were selected on the basis of overall length, the number of times the ex-

cerpt occurred throughout the entire piece, and the average polyphony of the excerpt. In

general, musical motifs—salient and recurring guitar riffs—were selected from each piece

because they were relatively short (no one excerpt exceeds eight measures) and they fre-

quently recur throughout the music score. Excerpts were also selected on the basis of their

average polyphony to ensure that the average polyphony of the resulting guitar tablature

arrangement dataset was close to the average polyphony of the polyphonic transcription

dataset. Each excerpt in Guitar Pro was exported as a MusicXML file using the Guitar

Pro desktop application, which was subsequently converted to an MEI file.

An overview of the compiled dataset is presented in Table C.3 of Appendix C. The

ground-truth dataset for guitar tablature arrangement consists of 75 tablature arrangements

that are encoded in both the MEI and MusicXML symbolic music file formats. There are

4,845 notes; 1,143 chords; and an average polyphony of 1.94. The number of notes, chords,

and the average polyphony of each symbolic music file in the ground-truth dataset was

calculated using the same technique described in Section 4.1.1 for the polyphonic guitar

transcription dataset. The distribution of genres for the songs in the dataset is illustrated

in Figure 4.2.

4.2 Polyphonic Transcription Evaluation

The purpose of the evaluation proposed in this section is to determine the quality of tran-

scriptions produced by the implemented polyphonic transcription algorithm (Zhou and

Reiss 2008) on guitar recordings. The implemented polyphonic transcription algorithm
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was evaluated in the 2008 MIREX competition on a piano dataset consisting of ten 30-

second Yamaha Disklavier recordings. The algorithm received favourable results when

considering the fundamental frequency and onset time of transcribed notes (Table 2.1):

0.738 precision, 0.777 recall, and an f -measure of 0.757. Although the parameters of the

transcription algorithm have been hand tuned to perform well on a dataset composed of

polyphonic piano and guitar recordings (Zhou and Reiss 2008), which was compiled by

mixing monophonic recordings from the RWC Musical Instrument Sound Data Base (Zhou

et al. 2009), the algorithm has yet to be evaluated on polyphonic guitar recordings.

Using an evaluation procedure similar to MIREX, the implemented polyphonic tran-

scription algorithm will be evaluated using the compiled ground-truth dataset for poly-

phonic guitar transcription. The MIREX evaluation procedure is used because it provides

a standardized method of evaluating polyphonic transcription algorithms, reports standard

statistical metrics regarding the performance of an algorithm, and is established in the MIR

community. MIREX evaluates polyphonic transcription algorithms by comparing the esti-

mated onset times, offset times, and fundamental frequencies of the note events in an input

audio recording to the ground-truth note events using the metrics of precision, recall, and

f -measure. Before reviewing these metrics, it is important to establish the conditions that

MIREX imposes on an estimated note event for it to be considered a correctly transcribed

note. An estimated note event is deemed to be correctly transcribed if the fundamental

frequency is within half a semitone of the ground-truth note event, the onset time is within

a 50-millisecond range of the ground-truth note event, and the offset time is within 20%

of the duration of the ground-truth note event. MIREX also reports the results of the

polyphonic transcription algorithms when the offset time of estimated note events are dis-

regarded and also when octave errors are disregarded. When octave errors are disregarded,

an estimated note event is deemed to be correctly transcribed if the fundamental frequency

is within half a semitone of integer multiples of the ground-truth fundamental frequency.

To review, precision p ∈ {R : 0 ≤ p ≤ 1} describes the ratio of correctly transcribed

note events to the total number of estimated note events. Formally, precision is calculated

using the formula

p =
|G ∩ E|
|E|

, (4.2)

such that G is the set of ground-truth note events and E is the set of estimated note events.

The set intersection of G and E is the set of correctly transcribed note events. Equivalently,
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precision may also be calculated using the formula

p =
tp

tp+ fp
, (4.3)

such that tp (true positive) is the number of correctly transcribed notes and fp (false

positive)6 is the number of estimated notes that are not present in the ground truth. An

excessive number of false positives suggests that a more conservative threshold for note

onset estimation should be considered.

Recall r ∈ {R : 0 ≤ r ≤ 1} describes the ratio of correctly transcribed note events

to the total number of ground-truth note events. Formally, recall is calculated using the

formula

r =
|G ∩ E|
|G|

, (4.4)

such that G is the set of ground-truth note events and E is the set of estimated note events.

Equivalently, recall may be calculated using the formula

r =
tp

tp+ fn
, (4.5)

such that tp is the number of correctly transcribed notes and fn (false negative)7 is the

number of ground-truth note events that have not been correctly transcribed. A false

negative can result from an onset estimation error, an offset estimation error, or an error

in the fundamental frequency estimation of a note event.

Precision and recall are symbiotic statistics that should be conjunctively interpreted

to assess the performance of a polyphonic transcription algorithm. If recall is the only

metric considered, a polyphonic transcription algorithm that outputs every possible pitch

at regular intervals would receive 100% recall even though the generated transcription is

far from the desired transcription. If precision is the only metric considered, a polyphonic

transcription algorithm that outputs a single correct note event would receive 100% pre-

cision, although the generated transcription is again far from the desired transcription.

The f -measure statistic seeks to combine precision and recall into a single metric. The

traditional f -measure (Equation 2.3) weights precision and recall equally.

6Using terminology from the field of statistics, a false positive is referred to as a type I error.
7Using terminology from the field of statistics, a false negative is referred to as a type II error.
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Using a similar evaluation methodology as MIREX, two experiments will be conducted.

The first experiment will report the precision, recall, and f -measure of the polyphonic

transcription module on each guitar recording when the offset time of estimated note events

are disregarded. The second experiment will report the precision, recall, and f -measure of

the polyphonic transcription module on each guitar recording when both the offset time

and the octave of each estimated note event are disregarded. Similar to MIREX, the onset

time of an estimated note event is deemed correct if it is within a 50-millisecond range of the

onset time of the ground-truth note event. As a subtle difference to the MIREX evaluation

procedure, estimated fundamental frequencies are quantized to the nearest pitch so that

they may be compared to the pitch of note events in the ground-truth file. The pitch of an

estimated note event is correct if both the pitch name and the octave are the same as the

corresponding ground-truth pitch. In the case of the second experiment where the octave

of a note is disregarded, the pitch of an estimated note event is deemed correct if the pitch

name is equal to the pitch name of the ground-truth note event. For both experiments, the

window and hop size of the polyphonic transcription algorithm will be set to the default

value of 441 samples, as it was in the 2008 MIREX evaluation (Zhou and Reiss 2008).

In each evaluation experiment the algorithm will be embedded in the polyphonic tran-

scription module of Robotaba in order to prune estimated note events that exceed the

maximum chord polyphony of six and are outside of the pitch range of the guitar model

(Section 3.1.2). The guitar model is constructed by assuming a 24-fret guitar and the

tuning and capo position are retrieved from the symbolic music file corresponding to the

guitar recording being processed.

The proposed experiments seek to confirm or refute several hypotheses about the perfor-

mance of the polyphonic transcription algorithm on guitar recordings. The first hypothesis

is that the precision and recall of the polyphonic transcription algorithm will be less than

that reported in the 2008 MIREX evaluation of the algorithm on the piano dataset. The

reasoning behind this hypothesis is twofold. First, the recordings in the compiled ground-

truth dataset exhibit a variety of ornamentation such as pitch bends, slides, palm muting,

dead notes, hammer-ons, pull-offs, and right-hand tapping (see Appendix A for a descrip-

tion of these techniques). Pitch bends are especially problematic for fundamental frequency

estimation algorithms, since the pitch of a note event in the ground truth may be encoded

several semitones lower than its sounding pitch, which gradually rises over time. Notes

performed by hammer-ons, pull-offs, and tapping are especially problematic for onset esti-
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mation algorithms, since the amplitude of the attack of these notes is less than a plucked

note (Ozaslan et al. 2010). Second, the MIREX piano dataset contains a total of five

minutes of audio, whereas the compiled ground-truth dataset contains approximately five

and a half hours of audio of various genres, lending more variability to the audio being

transcribed.

The second hypothesis is that the average precision and recall of the polyphonic tran-

scription algorithm on the distortion guitar recordings will be less than the average precision

and recall of the polyphonic transcription algorithm on the clean guitar recordings. The

reasoning behind this hypothesis is based on the properties of the distortion guitar effect,

which was originally obtained by increasing the gain of vacuum tube amplifiers past nor-

mal operating limits. Since its inception, numerous digital signal processing methods have

attempted to mimic this distortion effect (Dailey 2013, 179–205). The application of a

distortion guitar effect to an audio signal results in the modification of the amplitude of

harmonics in the frequency domain (Dailey 2013, 188). In the case of harmonic distortion,

the amplitude of overtones at integer multiples of the input frequency are affected, whereas

inharmonic distortion affects the amplitude of overtones at odd integer multiples of the

input frequency. The modification of the frequency content of the guitar signal as a result

of the application of a distortion audio effect could negatively influence the performance of

the polyphonic transcription algorithm.

4.3 Guitar Tablature Arrangement Evaluation

There is no standardized method for evaluating guitar tablature arrangement algorithms as

there is for polyphonic transcription algorithms, which use the MIREX evaluation model.

However, two evaluation methods are predominantly used in the literature, which compare

tablature generated by guitar tablature arrangement algorithms to human-arranged tabla-

ture. The most common method of comparison involves subjective evaluation, whereby the

generated tablature arrangements and the ground-truth tablature arrangements are per-

formed or analyzed by a guitarist, who comments on the comparative difficulty and style

of each arrangement (Radicioni and Lombardo 2005b; Tuohy and Potter 2006b; Tuohy and

Potter 2006a). Another commonly used method of comparison calculates the percentage of

string and fret combinations in the generated tablature arrangements that are consistent

with published tablature (Radisavljevic and Driessen 2004). As noted by Tuohy and Potter
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(2005), the latter evaluation method is “inherently flawed” because “a tablature that dif-

fers from the published tablature by only one note could conceivably be unplayable while

a tablature differing at every position could be just as playable”.

In light of this point, tablature arrangements generated by DarwinTab will be assessed

using the fitness function of the implemented GA described in Section 3.2.2. To review,

the fitness function quantitatively assesses the biomechanical ease of performing a tablature

arrangement according to the three biomechanical complexity factors proposed by Heijink

and Meulenbroek (2002): the position of the left hand on the guitar neck, the distance

the left hand must move to transition between notes, and the finger span required to

perform chords. The fitness function (Equation 3.5) returns the fitness f ∈ R+ of a

tablature arrangement, such that for any two tablature arrangements of a symbolic music

score, the superior arrangement is that with the maximum fitness. As a result of assessing

tablature arrangements using the fitness function, a generated tablature arrangement that

diverges from the corresponding human-arranged tablature is not penalized if it is still

biomechanically easy to perform.

In the evaluation of DarwinTab, guitar tablature arrangements will be generated for

each symbolic music score in the ground-truth dataset and the fitness of each arrangement

will be calculated. However, the fitness of a tablature arrangement is a number that is

difficult to interpret without contextualization because it is derived from the biomechanical

difficulty score of performing a tablature arrangement, which has many contributing factors

(Equation 3.4).

Addressing this issue, two methods were considered to contextualize the fitness values

of the generated tablature arrangements. First, the calculated fitness value for each gen-

erated tablature arrangement could be compared to the fitness value of the ground-truth

tablature arrangement as well as a different tablature arrangement of the same piece that

received a lower user-rating on www.ultimate-guitar.com. If the fitness value of the

generated tablature arrangement lies within the fitness range of the low-rated and high-

rated human-arranged tablature, it can be concluded that the guitar tablature arrangement

algorithm generates tablature arrangements that are of equivalent quality as those gener-

ated by humans. This method was attempted, but was discarded due to the variability in

tablature transcriptions of the same song (e.g., inserted or deleted notes), and the lack of

alternate tablature arrangements for particular pieces. Second, the calculated fitness value

for each generated tablature arrangement could be normalized with respect to the fitness

www.ultimate-guitar.com
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of the ground-truth tablature arrangement. With this transformation, the normalized fit-

ness f ′ ∈ R+ is interpreted as the biomechanical ease of performing a generated tablature

arrangement relative to the ground-truth tablature arrangement. Specifically, f ′ = 1 in-

dicates that the generated tablature arrangement is of equal performance difficulty as the

ground-truth arrangement; f ′ > 1 indicates that the generated tablature arrangement is

relatively easier to perform than the ground-truth arrangement; and f ′ < 1 indicates that

the ground-truth tablature arranged by a human is easier to perform than the automatically

generated tablature.

Using the second method described, the normalized fitness value will be calculated for

each tablature arrangement generated by DarwinTab on the symbolic music scores in the

ground-truth dataset. Given that the tablature arrangements in the ground-truth dataset

are created by humans8 and have a five-star rating agreed upon by at least ten unique

users on www.ultimate-guitar.com, the fitness values of the ground-truth tablature

arrangements are a sufficient standard to compare to.

DarwinTab has many different parameters that control the underlying GA: the pop-

ulation size npop, the number of generations ngen, the number of crossover points nx, the

probability of individuals mating pmate, and the probability of gene mutation pmutate. Ide-

ally, numerous parameter configurations would be tested and the combination of param-

eters that result in tablature arrangements with an equal performance difficulty as the

human-arranged tablature would be selected. However, certain parameter configurations

drastically increase the computation time required by DarwinTab to generate tablature ar-

rangements for the pieces in the ground-truth dataset. For this reason, three experiments

will be conducted to evaluate DarwinTab with different parameter combinations. Each

experiment consists of producing a single guitar tablature arrangement for each symbolic

music score in the ground-truth dataset and calculating the normalized fitness values of

the resulting tablature arrangements.

Outlined in Table 4.1 are the parameter combinations used in each experiment. The

parameters were chosen based on preliminary experiments on individual symbolic music

scores sampled from the ground-truth dataset. The preliminary experiments involved gen-

erating tablature arrangements for pieces with a low average polyphony and pieces with

a high average polyphony using a variety of different parameter configurations. These

8According to the tablature submission requirements on www.ultimate-guitar.com, “[the] tab
must be ear-transcribed (you listen to the song, then tab out how you think it is played)”.

www.ultimate-guitar.com
www.ultimate-guitar.com
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experiments showed that the selected population size had a significant impact on the re-

sulting normalized fitness values. Therefore, the three experiments cover a wide range of

population sizes. In the preliminary experiments, the fitness value of the most elite chro-

mosome in the population was observed for each generation. The number of generations

parameter was selected based on the average generation that the fitness of the elite chro-

mosome stabilized. Additional generations were added to account for the stochastic nature

of the GA, which causes fluctuations in the number of generations required for converging

on a solution. The number of crossover points parameter was selected by considering the

average length of symbolic music scores in the ground-truth dataset. The probability of

mating parents was set quite high to promote the rapid evolution of the population. The

probability of mutation was selected to be around 0.03, as proposed by Tuohy and Potter

(2006b).

Table 4.1: DarwinTab parameters for each evalua-
tion experiment.

Experiment npop ngen nx pmate pmutate

1 500 250 4 0.9 0.03
2 2000 200 4 0.8 0.04
3 4000 200 4 0.85 0.035

Tablature arrangements generated by DarwinTab will also be compared to those gen-

erated by two commercial algorithms provided by the Guitar Pro and Sibelius desktop

applications. Both arrangement algorithms are closed source; though, after experimenta-

tion with several sample music scores, the algorithms seem to produce tablature arrange-

ments deterministically. Using these commercial algorithms, a tablature arrangement will

be generated for each symbolic music score in the ground-truth dataset. The fitness of

the resulting tablature arrangements will be computed and normalized with respect to the

fitness of the ground-truth tablature arrangements.
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Chapter 5

Results and Discussion

T
he previous chapter presented the compiled ground-truth datasets for polyphonic

guitar transcription (Section 4.1.1) and guitar tablature arrangement (Section 4.1.2).

Several experiments were proposed to evaluate the implemented polyphonic transcription

algorithm and the implemented guitar tablature arrangement algorithm on the compiled

ground-truth datasets.

The experiments proposed in the previous chapter have been conducted and the re-

sults will be reported in this chapter, followed by a discussion of the results. Specifically,

Section 5.1 will present the experimental results of the polyphonic transcription algorithm

on the compiled ground-truth dataset. Several conjectures were made regarding the re-

sults of these experiments, which will be addressed through an analysis of the results.

Section 5.2 will present the experimental results of the guitar tablature arrangement algo-

rithm and compare the generated tablature arrangements to tablature arranged by humans

and tablature arranged by the commercial reference algorithms provided by Guitar Pro and

Sibelius.

5.1 Polyphonic Transcription Evaluation

To review, four experiments have been performed to evaluate the implemented polyphonic

transcription algorithm on the guitar recordings in the ground-truth dataset:

Experiment 1

Calculate the precision, recall, and f -measure of the polyphonic transcription algo-
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rithm on the clean guitar recordings in the ground-truth dataset, considering the

accuracy of note pitch and onset time only.

Experiment 2

Calculate the precision, recall, and f -measure of the polyphonic transcription algo-

rithm on the clean guitar recordings in the ground-truth dataset, considering the

accuracy of note onset time and pitch name only. Octave errors are ignored.

Experiment 3

Calculate the precision, recall, and f -measure of the polyphonic transcription algo-

rithm on the distortion guitar recordings in the ground-truth dataset, considering the

accuracy of note pitch and onset time only.

Experiment 4

Calculate the precision, recall, and f -measure of the polyphonic transcription algo-

rithm on the distortion guitar recordings in the ground-truth dataset, considering the

accuracy of note onset time and pitch name only. Octave errors are ignored.

Similar to the MIREX experiments, the onset time of a note event is considered accept-

able if it lies within 50 milliseconds of the onset time of the corresponding ground-truth note

event. For each experiment the two parameters of the polyphonic transcription algorithm—

window size and hop size—are both set to the default value of 441 samples (Zhou and Reiss

2008).

5.1.1 Results

The results of each experiment are presented in Table C.2 of Appendix C. The precision,

recall, and f -measure of the polyphonic transcription algorithm on each guitar recording

in the ground-truth dataset is reported. The ID field in Table C.2 references the ID field

in Table C.1 of the appendix, which provides metadata for each piece of music. For each

experiment, the average f -measure is displayed in Figure 5.1(a), the average precision in

Figure 5.1(b), and the average recall in Figure 5.1(c).

Another result to report is the performance of the polyphonic transcription algorithm

on pieces with different degrees of polyphony. To produce this result, the ground-truth

dataset was partitioned into five groups: the first partition contained 39 pieces, each with
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(a) Average f -measure of the polyphonic transcription algorithm.

(b) Average precision of the polyphonic transcrip-
tion algorithm.

(c) Average recall of the polyphonic transcription al-
gorithm.

Fig. 5.1: Average metrics across the ground-truth dataset of each of the four experiments
conducted to evaluate the implemented polyphonic transcription algorithm. Also displayed
are the results of the algorithm on the piano dataset reported by MIREX, which considers
the pitch and onset time of note events (similar to Experiment 1).
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Fig. 5.2: Average f -measure of the polyphonic transcription algorithm, considering note
pitch and onset time, across clean guitar recordings in the ground-truth dataset partitioned
by average polyphony. There is no error bar for polyphony range 4–5 because only one
piece is in this range.

an average polyphony ∈ [1, 2); the second partition contained 24 pieces, each with an

average polyphony ∈ [2, 3); the third partition contained nine pieces, each with an average

polyphony ∈ [3, 4); the fourth partition contained one piece having an average polyphony

∈ [4, 5); and the fifth partition contained two pieces, each with an average polyphony ∈
[5, 6]. Figure 5.2 displays the average f -measure of the polyphonic transcription algorithm,

considering note pitch and onset time, on the clean guitar recordings in each of the six

partitions of the ground-truth dataset.

Yet another result to report is the performance of the polyphonic transcription algo-

rithm on pieces with different genres. To produce this result, the ground-truth dataset

was partitioned into eleven genre groups: pop punk, emo, rock, heavy metal, hard rock,

progressive rock, alternative rock, pop rock, indie rock, alternative metal, and death metal.

The distribution of the pieces in the dataset with these genres is presented in the previous

chapter (Figure 4.2). Figure 5.3 presents the average f -measure of the polyphonic tran-

scription algorithm, considering the accuracy of note pitch and onset time, on the clean

guitar recordings in the compiled ground-truth dataset partitioned by genre.
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Fig. 5.3: Average f -measure of the polyphonic transcription algorithm, considering note
pitch and onset time, across clean guitar recordings in the ground-truth dataset partitioned
by genre.

5.1.2 Discussion

In the previous chapter, two hypotheses were made regarding the performance of the poly-

phonic transcription algorithm on the compiled ground-truth dataset. The first hypothesis

postulates that the polyphonic transcription algorithm will perform worse on the compiled

dataset of clean guitar recordings in comparison to the performance of the algorithm on

the MIREX piano dataset. The second hypothesis posits that the polyphonic transcrip-

tion algorithm will perform better on clean guitar recordings than guitar recordings with

a distortion audio effect applied. An analysis of the experimental results presented in this

section will address these hypotheses and comment on additional findings.

To address the first hypothesis, the results of the first experiment are compared to the

results of the algorithm reported by MIREX on the MIREX piano dataset. Both evaluation

experiments consider the accuracy of note pitch and onset time, while disregarding note

duration, on audio recordings with no audio effects applied. Referencing Figure 5.1, which

presents the average precision, recall, and f -measure of Experiment 1 alongside the average

precision, recall, and f -measure reported by MIREX, the algorithm in fact performed worse
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on the clean guitar recordings in the compiled ground-truth dataset in comparison to the

performance of the algorithm on the MIREX piano dataset, with respect to all metrics.

One possible explanation for the degraded transcription performance is that the guitar

recordings in the compiled ground-truth dataset contain ornamentation such as slides,

bends, hammer-ons, hammer-offs, palm-muting, and dead notes (see Appendix A for a

description of these guitar techniques). The piano is incapable of replicating many of these

ornaments; for example, when processing piano recordings the polyphonic transcription

algorithm is never presented notes with fluctuating pitch because a pianist can not bend

the piano strings as a guitarist can bend the guitar strings. An ancillary experiment

that evaluates the transcription algorithm on synthesized audio recordings of the symbolic

music scores in the ground-truth dataset with the ornamentation removed could provide a

definitive answer to this question.

Another possible explanation for this result is that the dataset used in this thesis con-

tains different pieces than the MIREX piano dataset. The compiled dataset is substantially

larger, with approximately five and a half hours of audio versus the five minutes of audio in

the MIREX piano dataset. Furthermore, the genre of the pieces in the guitar dataset are

primarily rock, metal, and their derivative genres, whereas the genre of the pieces in the

MIREX piano dataset are classical, containing pieces such as Ludwig van Beethoven’s Pi-

ano Sonata No. 8 in C minor and Wolfgang Mozart’s Piano Sonata No. 13 in B-flat major.

The fact that the dataset used in this thesis consists of different pieces than the MIREX

piano dataset prevents drawing the conclusion that the evaluated polyphonic transcription

algorithm performs better on piano recordings than guitar recordings.

To address the second hypothesis, the results of Experiment 1 and Experiment 2, which

process the clean guitar recordings in the ground-truth dataset, are compared to the results

of Experiment 3 and Experiment 4, which process the guitar recordings with a distortion

audio effect applied. Confirming the hypothesis that the application of a distortion audio

effect to guitar recordings will degrade automatic polyphonic transcription performance, the

precision, recall, and f -measure of Experiment 1 is greater than that of Experiment 3 and

the precision, recall, and f -measure of Experiment 2 is greater than that of Experiment 4,

as presented in Figure 5.1. When forming this hypothesis in the previous chapter, it

was speculated that a contributing factor to the reduced transcription performance could

be the modification of the relative amplitudes of harmonics in the frequency domain of

the guitar signal caused by the distortion audio effect. Figure 5.4 displays the frequency
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domain of a guitar pluck of the note A3 synthesized using Guitar Pro with and without a

distortion audio effect applied. This figure provides evidence that the relative amplitudes

of harmonics are in fact modified when a distortion audio effect is applied—a factor that

may have contributed to the reduced transcription performance on the distortion guitar

recordings.

(a) Portion of the magnitude spectrum of a guitar
signal without a distortion audio effect applied.

(b) Portion of the magnitude spectrum of a guitar
signal with a distortion audio effect applied.

Fig. 5.4: Comparison of the magnitude spectrum of a guitar pluck of the note A3 synthe-
sized with and without a distortion audio effect applied.

Several other interesting conclusions can be drawn from the experimental results of the

polyphonic transcription algorithm. Observing Figure 5.1(b) and Figure 5.1(c), the recall

reported by each experiment is strictly less than the precision, whereas the MIREX results

of the algorithm on the piano dataset report the recall (0.777) to be slightly greater than

the precision (0.738). Having high precision and low recall means that many notes were

missed; however, of the notes that were estimated, they were quite accurate. This result

suggests that the evaluated polyphonic transcription algorithm has a note onset detection

algorithm that is too conservative, at least for the pieces evaluated in the compiled dataset.

As one might expect, the precision, recall, and f -measure of the polyphonic transcription

algorithm strictly increases when disregarding note octave errors. Observing Figure 5.1, the

precision, recall, and f -measure of Experiment 1 is strictly less than that of Experiment 2,

and the precision, recall, and f -measure of Experiment 3 is strictly less than that of Ex-

periment 4. An interesting observation is that there are marginally more octave errors in
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transcriptions of distortion guitar recordings than transcriptions of clean guitar recordings.

Figure 5.1(a) shows a 3% increase in f -measure between Experiment 1 and Experiment 2,

whereas there is a 7% increase in f -measure between Experiment 3 and Experiment 4.

In regard to the influence of polyphony on transcription performance, previous research

in the area of automatic music transcription has noted decreased accuracy in multiple

fundamental frequency estimation as the polyphony of the audio signal increases (Klapuri

2006). This inverse relationship between the accuracy of multiple fundamental frequency

estimation and polyphony can be attributed to the increasingly convoluted mixture of signal

information in both the time and frequency domain of the audio signal as the polyphony

increases. In a similar fashion, Figure 5.2 displays a downward trend in f -measure as

polyphony increases.

Considering the influence of genre on polyphonic transcription performance, Figure 5.3

displays the average f -measure of the polyphonic transcription algorithm across clean gui-

tar recordings in the ground-truth dataset, partitioned by genre. The genre pop punk,

characterized by its fast tempo, rapid guitar strumming, and frequently palm-muted guitar

riffs, received the lowest f -measure of 0.32. On the contrary, the genre death metal, also

characterized by its fast tempo and frequently palm-muted guitar riffs, received the highest

f -measure of 0.72; however, only two pieces of this genre were present in the compiled

dataset. Overall, the performance of the polyphonic transcription algorithm varies greatly

across pieces of different genres, suggesting that genre is a factor influencing the perfor-

mance of the polyphonic transcription algorithm. However, there may exist a spurious

relationship between genre and transcription performance, which prevents the conclusion

that genre directly influences transcription performance. For example, the tempo of a piece

may be a confounding variable that affects the genre and the transcription performance.

Moreover, specifying the genre of a piece is a highly subjective process, making it difficult

to draw any conclusions regarding the influence of genre on transcription performance.

Another important step of the analysis process is investigating the input that an al-

gorithm performs poorly on as well as the input that an algorithm performs well on. To

provide insight into the possible attributes of a guitar recording that contribute to a poor

transcription, the ten pieces in the ground-truth dataset that received an f -measure < 0.3

in Experiment 1 were grouped together and analyzed. These pieces either have an above

average tempo, an above average degree of polyphony, or both. For example, the rhythm

guitar recording of “Johnny B. Goode” by Chuck Berry (ID: 17 in Table C.2 and Table C.1)
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is characterized by its fast strumming pattern and rapid chord changes, receiving the low-

est f -measure of 0.11. On the other hand, the almost monophonic lead guitar recording of

“Mr. Brightside” by The Killers (ID: 43 in Table C.2 and Table C.1), received the highest

f -measure in Experiment 1 of 0.95. However, by counterexample it can not be concluded

that guitar recordings with low polyphony will yield a transcription with high precision

and recall. The lead guitar recording of the heavy-metal song “Unholy Confessions” by

Avenged Sevenfold (ID: 6 in Table C.2 and Table C.1), characterized by its fast and often

palm-muted guitar riffs, has a low average polyphony (1.24) yet received an f -measure of

only 0.42. From this analysis, one can conclude that there are many factors that influence

transcription performance.

5.2 Guitar Tablature Arrangement Evaluation

To review, three experiments have been conducted to evaluate the implemented guitar

tablature arrangement algorithm DarwinTab:

Experiment 1

Calculate the normalized fitness of the guitar tablature arrangement generated by

DarwinTab for each symbolic music score in the ground-truth dataset using the fol-

lowing parameters: npop = 500, ngen = 250, nnx = 4, pmate = 0.9, pmutate = 0.03.

Experiment 2

Calculate the normalized fitness of the guitar tablature arrangement generated by

DarwinTab for each symbolic music score in the ground-truth dataset using the fol-

lowing parameters: npop = 2000, ngen = 200, nnx = 4, pmate = 0.8, pmutate = 0.04.

Experiment 3

Calculate the normalized fitness of the guitar tablature arrangement generated by

DarwinTab for each symbolic music score in the ground-truth dataset using the fol-

lowing parameters: npop = 4000, ngen = 200, nnx = 4, pmate = 0.85, pmutate = 0.035.
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5.2.1 Results

The normalized fitness values for each experiment are reported in Table C.4 alongside

the normalized fitness values of tablature arrangements produced by the Guitar Pro and

Sibelius reference algorithms for each symbolic music score in the ground-truth dataset.

Table 5.1 presents the median (denoted by µ̂) and standardized median absolute de-

viation (denoted by σ̂) of the distribution of normalized fitness values for each algorithm.

The median and standardized median absolute deviation are used to describe the central

tendency and dispersion of the distribution, respectively. They are referred to as robust

descriptive statistics because they are less sensitive to outliers present in small datasets

in comparison to the sample mean and sample standard deviation. Robust descriptive

statistics are used to compensate for the handful of outliers present in the experimental

results. For example, the tablature arrangements of the pieces “Carry On Wayward Son”

by Kansas (ID: 42 in Table C.4) and “Animal I have Become” by Three Days Grace (ID:

75 in Table C.4) generated by each algorithm received a normalized fitness value of 9.00

and 4.54, respectively, which appear to be abnormally high in comparison to the rest of

the results.

Table 5.1: Statistics of the approximately normal distribution of normalized fitness
values for the tablature generated by each tablature arrangement algorithm.

Statistic Experiment 1 Experiment 2 Experiment 3 Guitar Pro Sibelius

µ̂ 0.78 1.01 1.09 1.03 1.00
σ̂ 0.46 0.57 0.49 0.11 0.33

The median normalized fitness µ̂ of each algorithm is calculated by sorting the nor-

malized fitness values calculated for each generated tablature arrangement and selecting

the value in the middle of this list. The standardized median absolute deviation σ̂ of each

algorithm is found by first calculating the absolute value of the residual of each normalized

fitness value f ′i from the median normalized fitness µ̂. The median of these residuals is

then calculated and multiplied by a scale factor κ. In mathematical terms,

σ̂ = κ ·mediani(|f ′i − µ̂|), (5.1)
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such that

κ =

∫ 3
4

−∞ e
− t2

2 dt
√

2π
≈ 1.4826 (5.2)

for normally distributed data. By the central limit theorem, which states that a distribution

becomes increasingly more Gaussian as the sample size increases (Wackerly et al. 2007, 370–

7), it can be assumed that the distribution of normalized fitness values for each algorithm

approximately follows a normal distribution.

Presenting the experimental results in a different way, Figure 5.5 displays a box-and-

whisker plot of the normalized fitness values of the tablature arrangements generated by

each algorithm. For each algorithm, a box-and-whisker is formed by partitioning the nor-

malized fitness values into two groups at the median value. The median is then calculated

for each resulting group to form four partitions called quartiles. The last value in each par-

tition is given the value q1, q2, q3, and q4, respectively. The interquartile range qr = q3 − q1
forms the box and the whiskers stretch out to the last value in the outer quartiles that

are not outliers. A normalized fitness value is considered an outlier if f ′i < q1 − 1.5qr or

f ′i > q3 + 1.5qr, and is displayed as a cross symbol above or below the whiskers. The solid

line between the interquartile range represents the median normalized fitness value.

Another result to report is the performance of the evaluated guitar tablature arrange-

ment algorithms on music scores with different degrees of polyphony. To this end, the

ground-truth dataset was partitioned into four groups: the first partition contained 47

pieces, each with an average polyphony ∈ [1, 2); the second partition contained 16 pieces,

each with an average polyphony ∈ [2, 3); the third partition contained nine pieces, each

with an average polyphony ∈ [3, 4); and the fourth partition contained three pieces, each

with an average polyphony ∈ [5, 6]. There were no excerpts in the ground-truth dataset

with an average polyphony ∈ [4, 5). Figure 5.6 presents the median normalized fitness of

the tablature arrangements generated by DarwinTab (using the parameters described in

Experiment 3), Guitar Pro, and Sibelius on the symbolic music scores in the ground-truth

dataset partitioned by average polyphony. Notice that for each symbolic music score in

the polyphony range 5–6, Guitar Pro generated tablature arrangements with a normalized

fitness value of one. Therefore, no error bars are displayed in this case.
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Fig. 5.5: Box-and-whisker plot of the normalized fitness values of the tablature arrange-
ments generated by each evaluated tablature arrangement algorithm.

5.2.2 Discussion

Several conclusions can be drawn from the presented experimental results. Using the pa-

rameter configuration of Experiment 3, DarwinTab generates guitar tablature arrangements

that, on average, are of similar performance difficulty1 as the ground-truth tablature ar-

rangements as well as those produced by the reference algorithms. Table 5.1 reports a

median normalized fitness of 1.09, 1.03, and 1.00 for DarwinTab, Guitar Pro, and Sibelius,

respectively.

However, the variance in the performance difficulty of tablature arrangements gener-

ated by DarwinTab is larger than that of the reference algorithms (see Figure 5.5). In

1The term performance difficulty refers to the biomechanical difficulty of performing a tablature ar-
rangement, as assessed by the fitness function.
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(a) Median normalized fitness of the implemented guitar tablature arrangement
algorithm with the parameters described in Experiment 3.

(b) Median normalized fitness of the Guitar Pro tab-
lature arrangement algorithm.

(c) Median normalized fitness of the Sibelius tabla-
ture arrangement algorithm.

Fig. 5.6: Median normalized fitness of the guitar tablature arrangement algorithm, along-
side two commercial reference algorithms, across symbolic music scores in the ground-truth
dataset partitioned by average polyphony. No symbolic music scores in the dataset had an
average polyphony in the range 4–5.
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Experiment 3, DarwinTab generated tablature arrangements with a median normalized

fitness of 1.09 and a standardized median absolute deviation of 0.49 (Table 5.1). Therefore,

DarwinTab generates tablature arrangements with normalized fitness values which approx-

imately follow the Gaussian distribution N(µ̂ = 1.09, σ̂ = 0.49) displayed in Figure 5.7.

By the empirical rule, 68.2% of tablature arrangements generated by DarwinTab are esti-

mated to have normalized fitness values that lie within one standard deviation of the mean

(0.60–1.58). Comparing this to the reference algorithms, Guitar Pro reported a median

normalized fitness of 1.03 and a relatively small standardized median absolute deviation

of 0.11 (Table 5.1). By the empirical rule, 68.2% of tablature arrangements generated by

Guitar Pro are estimated to have normalized fitness values within the range 0.92–1.14.

Sibelius reported a median normalized fitness of 1.00 and a median absolute deviation of

0.33 (Table 5.1). By the empirical rule, 68.2% of tablature arrangements generated by

Sibelius are estimated to have normalized fitness values within the range 0.67–1.33.

Fig. 5.7: Estimated Gaussian distribution N(µ̂ = 1.09, σ̂ = 0.49) of the normalized fitness
values generated by DarwinTab in Experiment 3. The solid vertical line at y = 1.09
indicates the mean of the distribution. The dashed vertical lines at y = 1.09 ± 0.49k
indicate the standard deviations.
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Another interesting result is the rise in the median normalized fitness from Experiment 1

to Experiment 3 (Table 5.1 and Figure 5.5), which signifies that the population size of the

underlying GA in DarwinTab is an important factor in tablature arrangement performance.

A population size of 500 in Experiment 1 yields a substandard median normalized fitness

of 0.78. Increasing the population size to 2000 in Experiment 2 yields a very acceptable

median normalized fitness of 1.01. Further increasing the population size to 4000 in Ex-

periment 3 yields a marginal increase in median normalized fitness. However, the marginal

increase in the median normalized fitness between Experiment 2 and Experiment 3 does not

necessarily suggest that there is no benefit in further increasing the population size of the

GA. Consider Figure 5.6(a), which shows a steady increase in the performance difficulty of

the tablature arrangements generated by DarwinTab as the average degree of polyphony

increases, whereas the reference algorithms consistently generate tablature arrangements

with performance difficulties similar to the ground-truth arrangements. A potential ex-

planation for this result is that the initial population of the GA does not provide enough

genetic variability for scores with high degrees of polyphony. The results suggest that

a population size of 4000 is sufficient for producing tablature arrangements for symbolic

music scores with an average degree of polyphony below three, while the algorithm could

benefit from a larger population size for scores with an average degree of polyphony above

three.

Another result worth investigating is the normalized fitness of tablature arrangements

generated by the evaluated algorithms that are considered outliers. Figure 5.5 shows that

all of the outliers lie above the fourth quartile in the box plots. This means that either

the corresponding ground-truth tablature arrangements are in fact biomechanically more

difficult to perform or that, as propositioned by Heijink and Meulenbroek (2002), there

are other factors contributing to a “good tab” apart from biomechanical difficulty. These

factors might include rules that consider the musical context and rules that enforce certain

timbral characteristics of plucked notes. Therefore, it is reasonable to assume that certain

human-arranged tablatures sacrifice biomechanical ease of performance to accommodate

the auditory or stylistic preferences of the arranger. This assumption is supported by the

tablature arrangements generated for the piece “Carry On Wayward Son” by Kansas (ID:

42 in Table C.4). Each evaluated tablature arrangement algorithm converged to the same

solution for this piece, receiving a normalized fitness value of 9.00. Figure 5.8 compares two

measures of the generated tablature to the ground-truth tablature arrangement. In contrast
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with the hand-arranged tablature, the generated tablature inserts open-string plucks wher-

ever possible. When performed on the guitar, both tablatures have a subjectively equal

difficulty level, though the timbre greatly differs. For notes with more than one candidate

string and fret combination, the timbral characteristic of the performed note becomes a

factor in the selection of the fretboard location (Tuohy and Potter 2005).

(a) Two measures of the ground-truth tablature arrangement of the piece “Carry on Wayward
Son” by Kansas.

(b) Two measures of the tablature generated by DarwinTab, Guitar Pro, and Sibelius for the
piece “Carry on Wayward Son” by Kansas.

Fig. 5.8: Generated tablature arrangement compared to the hand-arranged tablature. The
tablature is rendered using the AlphaTab digital tablature engraving library.

Another important issue surrounding the implemented guitar tablature arrangement al-

gorithm is the computational runtime of the underlying GA. The runtime of Experiment 1

was approximately ten hours. The runtime of Experiment 2 was approximately 54 hours.

The runtime of Experiment 3 was approximately 110 hours, meaning that the average time

to produce a tablature arrangement was approximately one and a half hours. The experi-

ments were run on a machine with a 2GHz CPU and 8GB of main memory. In comparison,

the reference algorithms generated each tablature arrangement virtually instantaneously.

The short runtime of these algorithms suggests that a neural network or a graph search

algorithm with heuristics is used.
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In practise, the runtime of DarwinTab could be reduced by specifying a GA termination

condition, which would return the elite tablature arrangement in the population when the

fitness value becomes stagnant over a sequence of generations. Figure 5.9 displays the

fitness values of the elite tablature arrangement for two pieces—the first having a low

average polyphony of 1.63 (Song ID: 24 in Table C.3), and the second having a high

average polyphony of 5.00 (Song ID: 7 in Table C.3)—using the parameter configuration

of Experiment 3 (npop = 4000, ngen = 200, nnx = 4, pmate = 0.85, pmutate = 0.035). Three

runs of the GA were performed to account for the stochastic nature of the algorithm. In

Figure 5.9(a), each run of the GA converged to the fitness of the ground-truth tablature

arrangement around the 50th generation. In Figure 5.9(b), the elite fitness value in two of

the three runs stabilized around the 125th generation. These results suggest that in certain

cases the computational runtime of DarwinTab could be reduced by as much as 75% if the

GA is terminated at the point of convergence.
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(a) Fitness values of the elite tablature in the GA popu-
lation over the course of 200 generations for the tab-
lature arrangement of the piece “Tears in Heaven” by
Eric Clapton.

(b) Fitness values of the elite tablature in the GA popu-
lation over the course of 200 generations for the tabla-
ture arrangement of the piece “While My Guitar Gently
Weeps” by The Beatles.

Fig. 5.9: Three runs of DarwinTab on two symbolic music scores using the parameter
configurations of Experiment 3. The dashed line denotes the fitness of the ground-truth
tablature arrangement.
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Chapter 6

Conclusion

A
fter introducing tablature notation in Chapter 1, this thesis presented an

overview of several approaches to the problem of automatic guitar tablature transcrip-

tion. Specifically, several polyphonic transcription algorithms (and surrounding schools of

thought) that performed well in the MIREX evaluation suite were reviewed, followed by a

review of guitar tablature arrangement algorithms. Chapter 3 introduced the implemented

guitar tablature transcription framework, the implemented polyphonic transcription algo-

rithm (Zhou and Reiss 2008), and the implemented guitar tablature arrangement algorithm

entitled DarwinTab. Two new ground-truth datasets, gathered from manual transcriptions

posted by users on www.ultimate-guitar.com, were compiled to evaluate the imple-

mented algorithms. Chapter 4 described the creation and contents of these datasets and

the design of the experiments for evaluating the implemented polyphonic transcription and

guitar tablature arrangement algorithms.

Chapter 5 presented and discussed the experimental results. It was found that the

implemented polyphonic transcription algorithm exhibited reduced performance on the

compiled dataset of guitar recordings in comparison to the results of the algorithm reported

by MIREX on a small dataset of piano recordings. It was also found that the application

of a distortion audio effect to the guitar recordings significantly decreased the performance

of the polyphonic transcription algorithm. The implemented guitar tablature arrangement

algorithm was also evaluated. The tablature arrangements generated by DarwinTab were

compared to human-arranged tablature and tablature arranged by two commercial reference

algorithms. It was found that DarwinTab generated tablature with a performance difficulty

www.ultimate-guitar.com


104 Conclusion

that, on average, coincided with the performance difficulty of tablature arranged by humans

and the reference algorithms. However, it was found that the variance in performance

difficulty of tablature generated by DarwinTab was higher than those of the reference

algorithms.

6.1 Summary of Contributions

The most significant contribution of this thesis is the design and implementation of the

open-source web-based guitar tablature transcription framework, entitled Robotaba. The

framework facilitates the rapid development of guitar tablature transcription web applica-

tions, providing a vessel for music researchers to publicize their polyphonic transcription

and guitar tablature arrangement algorithms, while allowing researchers to focus on algo-

rithm development instead of application development. As part of Robotaba, an open-

source program has been implemented to convert MusicXML files to MEI files and MEI

files to MusicXML files.

As a proof of concept, a guitar tablature transcription web application has been devel-

oped using the Robotaba framework. An open-source polyphonic transcription application

has been implemented which uses the state-of-the-art polyphonic transcription algorithm

proposed by Zhou and Reiss (2008). Furthermore, an open-source guitar tablature arrange-

ment application has been implemented. Although GAs have been applied to the guitar

tablature arrangement problem before (Tuohy and Potter 2005; Tuohy and Potter 2006b),

DarwinTab extends these algorithms to produce guitar-specific tablature arrangements by

considering the number of frets, tuning, and capo position of the guitar on which the

tablature is intended to be performed.

Another important contribution to the field of MIR is the ground-truth dataset for poly-

phonic guitar transcription and the ground-truth dataset for guitar tablature arrangement,

which can be used for training machine-learning algorithms or for algorithm evaluation.

The polyphonic guitar transcription dataset consists of 150 synthesized guitar recordings,

totalling approximately 11 hours of audio, which have been semi-automatically annotated.

The guitar tablature transcription dataset consists of 75 hand-arranged tablatures encoded

in the MEI and MusicXML symbolic music notation file formats.
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6.2 Future Work

Now that a framework has been constructed to allow polyphonic transcription and guitar

tablature arrangement algorithms to be combined to generate guitar tablature transcrip-

tions directly from an audio recording, more work can be done to improve the algorithms

themselves. Though the implemented polyphonic transcription algorithm performs in re-

altime, the runtime required for DarwinTab to find an adequate tablature arrangement for

a piece of music is perhaps longer than the average user is willing to wait. For example,

using the largest GA population size tested, the average time required for DarwinTab to

generate a tablature arrangement for a symbolic music score with an average of 64 notes is

approximately one and a half hours. Future work will explore extensions to alternate tab-

lature arrangement algorithms that are capable of rapidly generating arrangements, such

as neural networks (Tuohy and Potter 2006a).

Since correctly annotated datasets are an extremely valuable resource in the music

research community, more energy will also be directed towards increasing the size of the

compiled ground-truth datasets using the dataset creation methodology described in Chap-

ter 3. Moreover, the creation of an alternate polyphonic transcription ground-truth dataset

that contains no guitar ornamentation in the synthesized audio recordings could prove use-

ful to the research community. As well, this alternate dataset could be used to provide

a definitive answer to the question of whether or not guitar ornamentation significantly

degrades transcription performance. It is hoped that these datasets will stimulate future

research in the area of automatic guitar tablature transcription.



106



107

Appendix A

Guitar Terminology

The purpose of this appendix is to describe guitar-specific terminology used in this the-

sis. The following terms include physical parts or accessories of the guitar, guitar note

ornamentations, and other commonly used phrases in the guitar community.

Frets

Metal dividers embedded in the fretboard of the guitar that are strategically spaced to

enforce an equal-tempered division of the octave. Depressing a string over a particular

fret changes the length of the string permitted to vibrate, changing the sounding pitch.

Capo

A device that is clipped onto the fretboard and raises the pitches of the open strings

of the guitar. Figure A.1 displays an acoustic guitar with a capo placed on the second

fret, which raises the pitches of the open guitar strings by two semitones.

Bend

A type of note ornamentation whereby the guitarist drags a stopped (depressed)

string vertically along the fretboard, stretching the string and consequently raising

the sounding pitch.

Hammer-on

A type of note ornamentation whereby the guitarist sharply depresses a fret occurring

further along the fretboard of a currently depressed fret, without plucking the string

with the right hand.
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Fig. A.1: An acoustic guitar with a capo placed on the second fret.

Pull-off

A type of note ornamentation whereby the guitarist rapidly removes his or her finger

from a fret occuring further along the fretboard of a currently depressed fret, without

plucking the string with the right hand.

Slide

A type of note ornamentation whereby the guitarist gradually moves their finger along

a string between two fret positions, resulting in a gradual change in pitch.

Palm Muting

A type of note ornamentation whereby the palm of the right hand of the guitarist

gently touches the strings, resulting in a dampened sound.

Dead Notes

A muted note with no discernible pitch. A dead note is intended to be more percussive

sounding than melodic and is performed by lightly touching a string with the fretting

hand and plucking the string with the plucking hand.

Right-hand Tapping

A type of note ornamentation whereby the guitarist performs hammer-ons and pull-

offs with fingers on their right hand instead of their left hand.
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Clean Guitar

A guitar signal in which no audio effects are applied.

Distortion Guitar

A guitar signal with a distortion audio effect applied.
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Appendix B

Software Engineering Diagrams

The purpose of this appendix is to introduce standard software engineering diagrams used to

convey relationships between events or objects. Section B.1 introduces the unified modeling

language (UML) sequence diagram (Fowler 2003), and Section B.2 introduces the entity

relationship (ER) diagram (Chen 1976).

B.1 UML Sequence Diagram

The purpose of a UML sequence diagram is to illustrate the necessary sequence of inter-

actions between objects to perform a task. Figure B.1 provides a simple UML sequence

diagram as an example. At the top of the sequence diagram are a series of rectangles with

dashed lines extruding from the bottom. These rectangles represent the objects that are

capable of sending messages and performing operations in response to received messages.

Messages passed between objects are represented by a series of arrows. A solid arrow rep-

resents a message that requests another object to perform an operation. A dashed arrow

represents a message that returns information to another object. The vertical dimension of

the diagram conveys the time sequence of interactions between objects, where messages are

arranged from top to bottom. In other words, if an arrow appears above another arrow, the

former message is passed before the latter. In the provided example, there is one Audio

object that represents a digital audio recording. Starting from the top, the first message

requests the number of samples in the audio file, which the object calculates and returns

as a second message.
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Fig. B.1: Simple example of a UML sequence diagram.

B.2 Entity-Relationship Diagram

An ER diagram illustrates the structure and relationships between data in a database. In an

ER diagram, rectangles are used to represent entities, ovals are used to represent attributes

of an entity or relationship, and a rhombus with a pair of connecting lines is used to

represent the relationship between entities. An entity represents a physical object, event,

or idea. Typically an entity is represented by a table in a relational database. Attributes

describe properties of an entity. The attributes associated with an entity become the

fields of the database table. Relationships describe how entities are related to each other.

Depending on the complexity of the relationship between entities, a relationship may also

correspond to a table in the database. The cardinality of the relationship between entities,

e.g., one-to-one, one-to-many, or many-to-many is depicted using crow’s foot notation,

which is outlined in Table B.1. Summarizing this information, a simple ER diagram is

displayed in Figure B.2. There are two entities shown: a Guitar entity and a String

entity. The Guitar entity has two attributes: colour and weight. The relationship between

the two entities is read from left to right—“the guitar has one or more strings”—and from
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right to left—“a string is part of zero or one guitar”, since a string may exist apart from a

guitar.

Table B.1: Crow’s foot notation to specify the cardinality of
relationships between entities in an entity relationship diagram.

Cardinality Notation

zero or one

one and only one

zero or many

one or many

Fig. B.2: Simple example of an Entity Relationship diagram.
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Appendix C

Detailed Description of Datasets and

Results

This appendix will provide a detailed description of the pieces within the compiled ground-

truth dataset for polyphonic guitar transcription (Table C.1) and guitar tablature arrange-

ment (Table C.3). Also found in this appendix are detailed results of the polyphonic

transcription evaluation experiments (Table C.2) and the guitar tablature arrangement

evaluation experiments (Table C.4) for each song in the ground-truth datasets. The tables

begin on the following page.
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Table C.2 – Polyphonic Guitar Transcription Experiment Results

Experiment 1 Experiment 2 Experiment 3 Experiment 4

ID P
r
e
c
is
io
n

R
e
c
a
l
l

f
-m

e
a
su

r
e

P
r
e
c
is
io
n

R
e
c
a
l
l

f
-m

e
a
su

r
e

P
r
e
c
is
io
n

R
e
c
a
l
l

f
-m

e
a
su

r
e

P
r
e
c
is
io
n

R
e
c
a
l
l

f
-m

e
a
su

r
e

1 0.62 0.33 0.44 0.69 0.37 0.48 0.56 0.41 0.47 0.65 0.47 0.55

2 0.63 0.45 0.53 0.67 0.49 0.56 0.58 0.43 0.49 0.63 0.47 0.54

3 0.69 0.48 0.56 0.74 0.51 0.61 0.60 0.43 0.50 0.66 0.47 0.55

4 0.92 0.70 0.80 0.92 0.71 0.80 0.67 0.57 0.62 0.70 0.59 0.64

5 0.66 0.90 0.76 0.69 0.94 0.79 0.49 0.74 0.59 0.59 0.89 0.71

6 0.41 0.43 0.42 0.55 0.58 0.57 0.42 0.49 0.45 0.51 0.60 0.55

7 0.97 0.23 0.37 0.99 0.23 0.38 0.62 0.25 0.36 0.66 0.27 0.38

8 0.75 0.37 0.50 0.82 0.41 0.54 0.55 0.39 0.46 0.71 0.50 0.59

9 0.74 0.51 0.60 0.77 0.52 0.62 0.65 0.48 0.55 0.69 0.51 0.59

10 0.66 0.54 0.59 0.67 0.54 0.60 0.33 0.41 0.37 0.44 0.55 0.49

11 0.95 0.88 0.91 0.97 0.90 0.93 0.29 0.44 0.35 0.45 0.68 0.54

12 0.90 0.18 0.31 0.92 0.19 0.31 0.82 0.65 0.72 0.84 0.67 0.75

13 0.68 0.14 0.23 0.74 0.15 0.25 0.51 0.18 0.26 0.77 0.27 0.40

14 0.86 0.78 0.82 0.86 0.78 0.82 0.56 0.65 0.60 0.61 0.71 0.65

15 0.74 0.80 0.77 0.77 0.82 0.79 0.54 0.59 0.56 0.63 0.68 0.65

16 0.76 0.46 0.57 0.81 0.49 0.61 0.51 0.37 0.43 0.73 0.53 0.61

17 0.25 0.07 0.11 0.26 0.08 0.12 0.24 0.12 0.16 0.32 0.16 0.21

18 0.62 0.31 0.41 0.65 0.33 0.44 0.37 0.24 0.29 0.48 0.32 0.38

19 0.87 0.92 0.90 0.87 0.92 0.90 0.86 0.96 0.91 0.87 0.98 0.92

20 0.53 0.57 0.55 0.57 0.62 0.60 0.45 0.60 0.51 0.49 0.66 0.57

21 0.36 0.45 0.40 0.44 0.54 0.48 0.23 0.31 0.27 0.39 0.52 0.45

22 0.81 0.32 0.46 0.83 0.33 0.47 0.62 0.29 0.39 0.77 0.36 0.49

23 0.79 0.32 0.46 0.79 0.32 0.46 0.35 0.28 0.31 0.50 0.40 0.45

24 0.50 0.52 0.51 0.53 0.55 0.54 0.30 0.37 0.33 0.40 0.50 0.44

25 0.60 0.20 0.29 0.73 0.24 0.36 0.49 0.23 0.31 0.60 0.28 0.39

26 0.89 0.14 0.24 0.97 0.15 0.26 0.43 0.07 0.12 0.56 0.09 0.15

27 0.89 0.86 0.88 0.89 0.86 0.88 0.84 0.86 0.85 0.85 0.87 0.86

28 0.55 0.23 0.33 0.74 0.31 0.44 0.53 0.29 0.38 0.65 0.36 0.46

29 0.28 0.11 0.16 0.29 0.12 0.17 0.21 0.09 0.13 0.24 0.10 0.14

30 0.84 0.69 0.76 0.85 0.69 0.76 0.65 0.63 0.64 0.69 0.67 0.68

31 0.85 0.40 0.54 0.86 0.40 0.55 0.61 0.38 0.47 0.66 0.40 0.50

Continued on the next page. . .
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Table C.2 – Continued

Experiment 1 Experiment 2 Experiment 3 Experiment 4

ID P
r
e
c
is
io
n

R
e
c
a
l
l

f
-m

e
a
su

r
e

P
r
e
c
is
io
n

R
e
c
a
l
l

f
-m

e
a
su

r
e

P
r
e
c
is
io
n

R
e
c
a
l
l

f
-m

e
a
su

r
e

P
r
e
c
is
io
n

R
e
c
a
l
l

f
-m

e
a
su

r
e

32 0.82 0.34 0.48 0.82 0.34 0.48 0.55 0.30 0.39 0.63 0.34 0.44

33 0.51 0.34 0.41 0.51 0.35 0.41 0.35 0.28 0.31 0.37 0.30 0.33

34 0.94 0.48 0.64 0.95 0.49 0.64 0.68 0.43 0.53 0.73 0.46 0.57

35 0.69 0.35 0.47 0.77 0.39 0.52 0.35 0.25 0.29 0.41 0.30 0.35

36 0.76 0.51 0.61 0.81 0.55 0.65 0.42 0.38 0.40 0.54 0.48 0.51

37 0.64 0.39 0.49 0.66 0.40 0.50 0.40 0.29 0.34 0.42 0.31 0.36

38 0.95 0.28 0.44 0.97 0.29 0.45 0.64 0.27 0.38 0.72 0.30 0.43

39 0.64 0.34 0.44 0.67 0.35 0.46 0.42 0.31 0.36 0.53 0.39 0.45

40 0.89 0.26 0.40 0.96 0.28 0.43 0.55 0.29 0.38 0.58 0.30 0.40

41 0.87 0.50 0.64 0.88 0.50 0.64 0.46 0.27 0.34 0.52 0.31 0.39

42 0.75 0.67 0.71 0.76 0.68 0.72 0.42 0.59 0.49 0.47 0.66 0.55

43 0.97 0.93 0.95 0.97 0.94 0.95 0.81 0.85 0.83 0.81 0.86 0.83

44 0.50 0.20 0.29 0.58 0.23 0.33 0.17 0.09 0.12 0.32 0.17 0.22

45 0.84 0.61 0.71 0.87 0.62 0.73 0.44 0.40 0.42 0.55 0.50 0.53

46 0.70 0.40 0.51 0.83 0.48 0.61 0.53 0.35 0.42 0.65 0.43 0.52

47 0.96 0.24 0.38 0.96 0.24 0.38 0.36 0.15 0.21 0.39 0.16 0.23

48 0.60 0.39 0.47 0.61 0.40 0.48 0.26 0.26 0.26 0.33 0.32 0.33

49 0.83 0.55 0.66 0.85 0.56 0.67 0.46 0.61 0.52 0.47 0.62 0.53

50 0.27 0.43 0.33 0.29 0.45 0.35 0.26 0.32 0.28 0.37 0.45 0.41

51 0.24 0.19 0.21 0.27 0.21 0.24 0.20 0.20 0.20 0.21 0.21 0.21

52 0.57 0.60 0.58 0.60 0.63 0.61 0.45 0.50 0.47 0.52 0.59 0.55

53 0.95 0.51 0.66 0.95 0.51 0.66 0.63 0.34 0.44 0.68 0.36 0.47

54 0.38 0.32 0.35 0.40 0.33 0.36 0.22 0.17 0.19 0.31 0.24 0.27

55 0.66 0.58 0.62 0.67 0.59 0.63 0.31 0.38 0.34 0.45 0.54 0.49

56 0.64 0.20 0.30 0.78 0.24 0.37 0.43 0.19 0.27 0.46 0.21 0.29

57 0.79 0.51 0.62 0.81 0.53 0.64 0.42 0.33 0.37 0.50 0.39 0.43

58 0.86 0.45 0.59 0.95 0.49 0.65 0.63 0.36 0.46 0.74 0.43 0.54

59 0.94 0.16 0.27 0.99 0.16 0.28 0.72 0.10 0.18 0.91 0.13 0.22

60 0.49 0.21 0.30 0.53 0.23 0.32 0.24 0.18 0.21 0.34 0.26 0.29

61 0.84 0.65 0.73 0.94 0.73 0.82 0.46 0.43 0.45 0.56 0.52 0.54

62 0.84 0.56 0.67 0.87 0.59 0.70 0.25 0.23 0.24 0.33 0.30 0.31

Continued on the next page. . .
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Table C.2 – Continued

Experiment 1 Experiment 2 Experiment 3 Experiment 4

ID P
r
e
c
is
io
n

R
e
c
a
l
l

f
-m

e
a
su

r
e

P
r
e
c
is
io
n

R
e
c
a
l
l

f
-m

e
a
su

r
e

P
r
e
c
is
io
n

R
e
c
a
l
l

f
-m

e
a
su

r
e

P
r
e
c
is
io
n

R
e
c
a
l
l

f
-m

e
a
su

r
e

63 0.94 0.45 0.61 0.97 0.46 0.62 0.72 0.46 0.57 0.74 0.48 0.58

64 0.84 0.56 0.68 0.88 0.59 0.71 0.68 0.47 0.56 0.78 0.54 0.64

65 0.44 0.39 0.41 0.53 0.47 0.50 0.37 0.23 0.28 0.52 0.33 0.40

66 0.87 0.23 0.36 0.89 0.24 0.37 0.52 0.19 0.28 0.61 0.22 0.33

67 0.94 0.21 0.35 0.95 0.21 0.35 0.70 0.15 0.24 0.79 0.17 0.28

68 0.46 0.26 0.33 0.50 0.29 0.37 0.27 0.17 0.21 0.38 0.24 0.30

69 0.73 0.30 0.43 0.78 0.32 0.45 0.47 0.29 0.36 0.58 0.37 0.45

70 0.68 0.16 0.26 0.79 0.18 0.30 0.34 0.09 0.14 0.42 0.11 0.18

71 0.44 0.27 0.33 0.45 0.28 0.35 0.31 0.23 0.26 0.35 0.25 0.29

72 0.93 0.48 0.63 0.94 0.49 0.64 0.86 0.63 0.72 0.87 0.64 0.74

73 0.75 0.09 0.15 0.76 0.09 0.15 0.32 0.09 0.14 0.41 0.12 0.18

74 0.86 0.42 0.57 0.87 0.42 0.57 0.53 0.45 0.49 0.55 0.46 0.50

75 0.44 0.47 0.46 0.53 0.57 0.55 0.22 0.26 0.24 0.34 0.40 0.37

Average 0.71 0.42 0.50 0.75 0.45 0.53 0.48 0.36 0.39 0.56 0.42 0.46

Table C.2: Results of the four experiments conducted to evaluate the implemented
polyphonic transcription algorithm.
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Table C.4 – Guitar Tablature Arrangement Experiment Results

ID Experiment 1 Experiment 2 Experiment 3 Guitar Pro Sibelius

1 0.71 1.00 1.00 1.00 1.00

2 0.78 1.02 1.22 0.74 0.54

3 0.68 1.01 1.11 1.08 1.25

4 0.74 0.92 0.99 0.86 0.49

5 0.74 0.78 1.06 1.00 0.41

6 1.49 1.91 1.84 2.14 2.14

7 0.48 0.70 0.94 1.00 1.00

8 0.29 0.60 0.66 1.00 1.00

9 0.58 0.97 1.00 1.00 0.41

10 0.96 1.81 3.76 5.89 9.73

11 0.23 0.35 0.53 0.83 1.02

12 0.85 1.03 1.21 1.03 1.60

13 0.73 1.01 1.09 1.23 1.17

14 0.90 1.03 1.00 0.91 1.06

15 0.56 0.99 1.15 1.68 1.27

16 0.37 0.50 0.68 1.17 1.36

17 1.22 1.41 1.64 1.04 1.89

18 0.54 0.75 0.97 0.94 1.07

19 1.12 1.47 2.05 2.25 1.26

20 1.99 2.60 2.60 1.55 2.80

21 1.39 2.10 2.15 1.62 1.95

22 0.87 1.46 1.51 1.00 0.66

23 0.23 0.39 0.45 0.93 0.83

24 0.90 1.00 1.00 0.89 0.89

25 1.14 1.71 1.66 1.03 1.85

26 1.14 1.55 2.34 1.14 1.11

27 1.24 1.25 1.15 0.71 0.96

28 1.04 1.16 1.18 1.02 1.18

29 0.40 0.62 0.73 1.00 0.90

30 0.63 0.89 0.87 1.07 1.00

31 0.92 0.94 0.94 1.00 1.00

32 0.43 0.74 0.95 0.92 0.79

33 0.51 0.79 1.05 1.10 1.36

34 1.09 1.17 1.14 1.16 0.33

35 0.36 0.61 0.74 1.00 1.00

Continued on the next page. . .
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Table C.4 – Continued

ID Experiment 1 Experiment 2 Experiment 3 Guitar Pro Sibelius

36 1.59 2.18 1.74 1.57 2.09

37 1.51 1.71 2.78 1.92 3.38

38 0.25 0.37 0.47 1.00 0.83

39 0.86 1.15 1.10 1.04 0.62

40 0.77 1.43 1.09 3.21 3.21

41 0.53 0.71 0.75 1.00 1.00

42 9.00 9.00 9.00 9.00 9.00

43 1.72 1.77 1.72 1.67 0.43

44 1.50 1.57 1.64 1.05 0.90

45 1.49 1.88 1.88 2.32 2.32

46 0.37 0.57 0.65 1.00 0.87

47 0.73 2.06 4.36 5.19 5.19

48 0.63 0.88 0.91 1.00 1.00

49 1.32 1.39 1.39 1.00 1.21

50 1.00 1.00 1.00 1.00 1.00

51 1.89 2.23 2.23 2.23 2.23

52 0.43 0.63 0.64 1.00 0.72

53 0.30 0.47 0.57 1.00 1.00

54 0.66 1.08 1.38 1.03 0.93

55 0.48 0.81 0.81 1.03 1.00

56 1.00 1.04 1.14 1.03 1.15

57 1.40 2.11 2.11 1.63 1.63

58 0.30 0.60 0.58 1.00 0.59

59 0.56 0.59 0.58 1.00 1.00

60 0.79 0.99 0.99 1.00 1.00

61 0.75 0.87 0.99 1.00 1.00

62 0.58 0.87 0.76 0.95 0.78

63 0.48 0.80 1.22 1.74 0.82

64 0.32 0.53 0.85 1.00 1.00

65 1.31 1.82 1.89 1.49 1.49

66 0.55 0.96 0.99 0.99 0.99

67 0.91 1.08 1.16 1.10 1.16

68 0.33 0.47 0.65 0.88 0.76

69 0.85 1.22 1.09 1.06 1.23

70 2.45 2.68 2.68 2.01 1.91

71 1.00 1.00 0.99 0.90 0.82

Continued on the next page. . .
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Table C.4 – Continued

ID Experiment 1 Experiment 2 Experiment 3 Guitar Pro Sibelius

72 1.46 1.75 1.75 1.36 0.59

73 0.13 0.21 0.26 1.00 0.96

74 1.09 1.09 1.09 1.09 0.49

75 4.54 4.54 4.54 4.54 4.54

µ̂ 0.78 1.01 1.09 1.03 1.00

σ̂ 0.46 0.57 0.49 0.11 0.33

Table C.4: Results of the three experiments conducted to evaluate the implemented guitar
tablature arrangement algorithm, alongside the reference algorithms provided by Guitar
Pro and Sibelius. µ̂ denotes the median and σ̂ denotes the standardized median absolute
deviation.
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