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ABSTRACT

This thesis focuses on channel modelling and the applications of Mean Field Game

(MFG) theory to cellphone communication systems.

First, it proposes a new continuous time state-space stochastic channel model

which combines the effects of long-term and short-term fading in order to describe

the input and output signal power of the wireless channel.

Then, second, the new channel model and MFG theory are applied to the prob-

lem of decentralized uplink power control in Code Division Multiple Access (CDMA)

cellphone networks. In this problem, the user devices are competing with each other

by dynamically controlling their transmit power, as well as their position in space

in a second problem, in order to maximize individual quality of service (QoS) while

minimizing individual control costs.

The third part of this thesis provides a dynamic system model of Orthogonal

Frequency Division Multiple Access (OFDMA) femtocell systems in continuous time;

it then gives a formulation of a downlink power control problem for competing

femtocell base stations in a dynamic game setting which is solved using MFG theory.

In this work nonlinear MFG theory is used in order to solve for Nash Equilibrium

strategies of the decentralized CDMA and OFDMA control problems, to be specific

it employs numerical methods for the solutions of the Hamilton-Jacobi-Bellman and

McKean-Vlasov-Fokker-Planck-Kolmogorov equations of MFG theory. Illustrative

solutions and simulation examples are then presented.

ii



RÉSUMÉ

Cette thèse porte sur la modélisation des canaux sans fil et les applications de la

théorie des jeux à champ moyen aux systèmes de communication de téléphones

cellulaires.

Premièrement, on propose un nouveau modèle stochastique de canaux sans fil à

espace d’états en temps continu qui combine les effets d’atténuation à long terme et

ceux à court terme pour décrire la puissance d’émission d’entrée et de sortie d’un

signal qui traverse le canal sans fil.

Deuxièmement, le modèle et la théorie des jeux à champ moyen sont appliqués

au problème de contrôle de puissance d’émission décentralisé de liaison montante

dans les réseaux de téléphones cellulaires «Code Division Multiple Access» (CDMA).

Dans ce problème, les utilisateurs sont en concurrence les uns contre les autres et

contrôlent leur puissance d’émission. Dans un deuxième problème, la position dans

l’espace est aussi contrôlée. Ceci a pour but de maximiser leur qualité de service et

de minimiser leurs coûts de contrôle individuels.

La troisième partie de cette thèse fournit un modèle dynamique des systèmes

de femtocellules «Orthogonal Frequency Division Multiple Access» (OFDMA) en

temps continu. On formule ensuite un problème de contrôle de puissance d’émission

de liaison descendante comme jeu dynamique où les joueurs en concurrence sont les

femtocellules.

Une partie importante du travail présenté dans cette thèse est basée sur la théorie

non linéaire des jeux à champ moyen qui est utilisé afin de trouver des stratégies
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d’équilibre de Nash des problèmes de contrôle CDMA et OFDMA décentralisées.

Précisément, on utilise des méthodes numériques pour résoudre les équations Hamilton-

Jacobi-Bellman et McKean-Vlasov-Fokker-Planck-Kolmogorov de la théorie des jeux

à champ moyen. Des solutions illustratives et des exemples de simulation sont fi-

nalement présentés.
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Chapter 1

Introduction and Background

1.1 Introduction

Optimization in cellphone networks has become an important topic in present day

engineering. With the emergence of smart-phones, cellphone devices are moving

towards becoming all purpose computing machines. A great deal of research is

presently pursuing pushing cellphone networks towards more robust and efficient

designs which are self-organized to as great an extent possible [5, 6]. These networks

must be designed in order to provide an acceptable rate of communication between

user devices and network base stations. This is especially important due to the

presently increasing amounts of data being exchanged through various cellphone

media applications. Therefore, because the effective wireless transmission between

devices and the central network is an important design consideration, the discussion

of energy efficiency and quality of service (QoS) remain two important aspects of

these networks when it comes to planning future generation technologies [6].

In Code Division Multiple Access (CDMA) and Orthogonal Frequency Division

Multiple Access (OFDMA) based cellphone communication systems the topics of

power control and (in the latter case) frequency resource allocation are of great

importance. In addition, due to the emergence of low-power base stations called
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femtocells which are increasing in number in office spaces, public places and user

homes, these topics have encountered new complexities. The coordination of these

devices is not a trivial task due to the unpredictable nature of their installation

within the network as well as the difficulty of centrally controlling their operation

[5].

At the level of communication between user devices and base stations in these

CDMA and OFDMA cellphone systems, efficient operation presents many chal-

lenges, two of which are examined in this work: firstly, the accurate mathematical

modelling of the physical phenomena present in the system, especially the wireless

channel carrying the information and secondly, the efficient design of robust and

scalable algorithms for the operation of devices in terms of their transmit power

control. Both of these problems are central in developing power control solutions

which aim to provide adequate QoS while also using as little power as possible for

signal transmission, an important goal for any given user and a central topic in this

work.

1.2 Quality of Service

An important metric for QoS in wireless communication is the signal-to-interference-

plus-noise-ratio (SINR). Consider a shared wireless channel being accessed by N

different devices simultaneously. The SINR of a transmitting pair i (transmitter and

receiver) in the wireless channel can be expressed by γi in the following equation

γi =
hipi

ρ(N)
∑N

j=1,j �=i hjpj + η
(1.1)

where pi is the transmit power of transmitter i, hi is the channel gain coefficient

of transmitter i and ρ(N) is a function of number of transmitting devices N in the

wireless system and depends on the multiple access protocol. For CDMA systems

with non-orthogonal codes, the standard result is that ρ(N) = 1
N

but for the trans-
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mission on a particular frequency band in OFDMA, the function ρ(N) is equal to

one.

The importance of the SINR in communication can best be described through

the Shannon-Hartley Theorem [7] where it is stated that the channel capacity C,

or tightest upper bound on the information rate of the channel, is given by the

following expression.

C = Blog2(1 + γi) (1.2)

where B is the bandwidth of the channel. Therefore, a natural choice of QoS metric is

given by the SINR, especially in contemporary networks where the channel capacity

is being used to its limit and therefore a higher SINR would correspond to a higher

data throughput [6].

1.3 Wireless Channel Modelling

Accurate wireless channel modelling is an important problem when considering wire-

less network optimization problems. In general, the modelling of a wireless channel

considers various physical phenomena which result in mathematical models ranging

from low level specific descriptions to very high level approximations. Correspond-

ingly, as described in [1], wireless channel models come in a variety of forms, the

usefulness and accuracy of which depend greatly on the application of interest. Wire-

less channel models are sometimes deterministic and sometimes described in terms

of statistical behaviour. Some models account for frequency specific behaviour and

other times are assumed to be frequency independent, the latter case being referred

to as flat-fading channels. Again depending on the application, some models include

considerations of Doppler effects while others do not.

Traditional channel models used in the literature to describe the wireless channel

at the high level include models of path loss, long-term fading (also known as shad-

owing or shadow fading) and short-term fading (also known as scattering). Each of
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these processes describe power variations of a transmitted signal as it travels through

a lossy wireless channel while also being influenced by the relative motion between

the transmitting device and the receiving device. For example, a cellphone user

travelling around a city in a vehicle will encounter various obstacles and physical

disturbances influencing the power of the received signal from his cellphone device

to the local macrocell base station. An illustrative graph of the effects of these three

important channel attenuation processes is shown in Fig. 1.1 where the channel

power gain of a given wireless channel is compared over increasing distances on the

log scale.

Fig. 1.1 Path loss, long-term fading and short-term fading versus dis-
tance taken from [1]

As is depicted in Fig. 1.1, path loss describes a deterministic linear drop in signal

power (in dB) as the logarithm of the channel distance increases. This phenomenon

can be explained by the fact that an electromagnetic wave will experience loss in

energy as it travels through a wireless medium (such as air) due to (i) the dissipation

of power radiated by the transmitter (in an inverse square relationship) and (ii) the

effects of the channel medium [1]. On the Watts scale, a simple path loss model

describes the channel power gain using the following equation [1]

Pr = Pt

(
λ

4πd0

)2 (
d0
d

)γ

(1.3)

where Pr, Pt are the channel output and input power respectively, d is the distance

4



between the transmitter and receiver, d0 is a reference distance, λ is the signal

wavelength and γ is the path loss exponent. On the decibel scale, the gain is

expressed as follows

Pr(dBm) = Pt(dBm)− 20log10(4πd0/λ)− 10γlog10(d/d0) (1.4)

which describes the linear drop in channel received power as the log distance in-

creases.

Complementing path loss, long-term fading describes an additional channel at-

tenuation effect due to large scale random phenomena. These large scale phenomena

correspond to the transmitted signal reflecting off of objects as it travels through

the medium, losing power at every bounce. In a static setting, the channel gain of a

long-term fading channel is frequently modeled to be a log-normal random variable.

The probability density function of a log-normal random variable can be found in

Appendix A. Long-term fading typically occurs in the time scale of seconds [8].

Furthermore, the effects of short-term fading on the channel due to signal scat-

tering introduce another smaller scale random fluctuation of power attenuation. As

is indicated by the name, scattering corresponds to the electromagnetic wave split-

ting up into many plane waves which undergo different phase shifts and power losses

and which finally add up at the receiver. The output signal magnitude (envelope)

of a short-term fading channel is frequently modelled to be a Rayleigh random vari-

able [1] in the case where it is assumed that there is an absence of a direct line of

sight (LOS) component of the transmitted signal reaching the receiver. Otherwise,

the output signal envelope is frequently modelled to be a Rician random variable

[1]. The probability density functions of Rayleigh and Rician random variables can

be found in Appendix A. Short-term fading typically occurs in the time scale of

milliseconds, significantly faster than the effects of long-term fading [8].

In a dynamic setting, a very popular discrete time modelling approach in lit-

erature is to model the random attenuation processes, namely those of long-term
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and short-term fading to be i.i.d. by claiming that their time evolution is extremely

chaotic. Effectively, one would therefore model long-term fading to be i.i.d. log-

normal and short-term fading to be i.i.d. Rayleigh or Rician in the non-LOS and

LOS cases respectively. Though this approach simplifies analysis, the clear drawback

is that previous information of the channel becomes irrelevant where in some situa-

tions in real physical systems, this is not entirely accurate. A solution to this issue

is the use of continuous-time state-space generalized models of the three important

attenuation phenomena which will be discussed in Chapter 2.

This work focuses mainly on flat-fading wireless channels at the high level and

specifically uses modelling approaches having the main goal of providing an input

output relationship of the channel describing the power of a signal travelling through

the channel from the transmitter (input) to the receiver (output). Doppler effects

are also ignored. The models described and developed in this work include the

effects of path loss, log-normal long-term fading and Rayleigh short-term fading in

both the traditional case and in terms of generalized continuous-time models which

are to be presented in future chapters of the work.

1.4 Mean Field Game Theory for Nonlinear Stochastic

Dynamical Systems

Mean Field Game (MFG) theory studies large population, dynamical, multi-agent,

competitive systems. In particular, it studies existence of Nash equilibria and the

strategies of individual agents which generate these equilibria by exploiting the

relationship between finite and infinite population problems. The theory originated

in the work of Huang et al. in [9, 10, 11] and also independently in the work of Lasry

and Lions in [12, 13, 14]. An overview basic MFG theory is now introduced, referring

to [15]. It is remarked that the literature contains developments of the more general

definitions and framework of MFG theory including broader application ranges. The
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introduction and overview given in this work corresponds only to the base framework

which is of interest in the particular applications considered in this work.

One of the key results of MFG theory is that, in the infinite population limit, in-

dividual agent feedback strategies exist for which any agent is in a Nash equilibrium

with respect to a mass or Mean Field, for which the behaviour is pre-computable.

This Mean Field is in turn generated by the collective behaviour of all agents in

the system where each agent is asymptotically negligible in the infinite population

limit. Each agent in the system consequently becomes a generic agent following

the same homogeneous dynamics and considering the same cost function where the

dynamics and cost of the generic agent are linked by the Mean Field. In addition,

the optimal controls found in the infinite population approximation of the system

result in an approximate Nash or ε-Nash equilibrium control set if applied in the

finite population system where ε approaches zero as the number of agents in the

system approaches infinity.

In MFG theory a key feature is that the dynamics of the Mean Field density

(assumed to exist), the value function of the generic agent and the best response

controls of the generic agent correspond to the solutions of a MFG Fokker-Planck-

Kolmogorov equation (equivalently a McKean Vlasov SDE), and a MFG Hamilton-

Jacobi-Bellman equation of the generic agent which are linked by the Mean Field.

In nonlinear MFG theory in particular, the work in [16] describes a solution method-

ology to a loop relation of these MFG PDEs using a contraction argument which

lends itself to the use of numerical methods in order to approximately solve these

equations which is of importance in this work.
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1.5 Decentralized Stochastic Control in CDMA Cellphone

Networks Using Mean Field Game Theory

The problem of dynamic CDMA cellphone network optimization in a competitive

setting using MFG theory, where the user devices become intelligent competitive

agents, has been discussed in the literature. In fact, the original motivating problem

for the development of MFG theory was the formulation of a centralized CDMA

stochastic control problem which lead to theoretical developments resulting in one

of the first MFG theory papers [9].

Since then the more recent work [17, 18] has investigated the application of

MFG theory to CDMA network optimization from a different perspective, where

the authors provide an analysis of as well as a computational methodology for the

optimal (in the sense of infinite population Nash equilibria) feedback controls of

each transmitting agent in the system by solving the nonlinear Mean Field equation

loop consisting of a Hamilton-Jacobi-Bellman equation (HJB), a Fokker-Planck-

Kolmogorov (FPK) equation and a best response control for the generic agent.

Building on this work, some of the work in this thesis follows similar computational

methods for the solution of new communications optimization problems as well as an

extended CDMAMFG optimization problem using more elaborate channel modeling

techniques.

1.6 Heterogeneous Networks and OFDMA Communication

Heterogeneous Networks (HetNets) is a term which has recently been used to charac-

terize contemporary Fourth Generation (4G) standard cellphone networks. A main

point of discussion concerning these contemporary cellphone networks is the man-

aging of interference in the presence of multiple heterogeneous tiers (hence the term

HetNet) of base stations called picocells and femtocells which are operated in a de-

centralized manner [5] in the area of the main base station called the macrocell. An
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illustration of a network consisting of multiple small cells within a given macrocell

radius is given in Fig. 1.2.

Fig. 1.2 Illustration of a single macrocell multi-tier network with pic-
ocells and femtocells taken from [2]

In addition to the picocells, which are network operated and essentially act as

lower power macrocells, user operated femtocells connected to the network via wired

backhaul are becoming extremely popular solutions for transmit power reduction of

devices in indoor areas such as office buildings and malls [5]. As these femtocells are

becoming increasingly popular the necessary interference management techniques

become increasingly important [6]. In particular, due to the unplanned and highly

unpredictable installation and operation of these femtocells from the central net-

work’s point of view, decentralized solutions are natural in this setup [5, 6]. To

illustrate the irregularly distributed nature of these networks, Fig. 1.3 shows a two-

dimensional geographical picture of a real femtocell (two tier) network where the red

and blue dots are macrocell and femtocell base stations respectively. It is observed

that within a given macrocell radius, the femtocell placements are highly irregular.
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Fig. 1.3 Example map of a real two tier network taken from [2]

The main realization of the 4G standard is the Long Term Evolution Advanced

(LTE-A) [19, 20, 21] network technology. These heterogeneous networks mainly

use this technology which uses OFDMA (or its variants) as the main protocol for

multiple access within each cell. OFDMA is a multiple access protocol which divides

frequency and time resources into multiple resource blocks which are each allocated

to a user device. The communication bandwidth is divided evenly into orthogonal

slices and time is similarly divided into slots which, together, result in a grid of

blocks in the frequency-time plane as seen in Fig. 1.4. During each time slot, each

given frequency slice is allocated by the base station to at most one of its user

devices for communication. Fig. 1.4 shows an example of allocated resource blocks

to various user devices as time evolves. Given this set-up, the decision makers (the

base stations) in an OFDMA communication system have, at the highest level, a

two fold decision process to solve. First, it must be decided which frequency blocks

are associated to each user during any given time step. Second, the transmit power

over each of the resource blocks has to also be allocated and adjusted (controlled) in

an efficient manner. Each femtocell base station should also have an understanding

of its neighbours’ behaviour as well as the behaviour of the macrocell in order to
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Fig. 1.4 Allocation of resource blocks to various users in the LTE
time-frequency grid taken from [3]

allocate frequency resources and control transmit powers to the benefit of its own

user devices. Hence, competition can be seen as a natural aspect of this network

problem because each small cell is in competition with other small cells in order to

provide a good level of QoS to its users. This competition arises naturally from the

interference within each band, where it is of importance to note that interference

across different bands is not present due to the orthogonality of the sub-bands.

OFDMA femtocell optimization problems have become extremely popular in

the literature due to the increasing use of femtocells. There are many different

approaches used in order to solve the frequency resource and power allocation prob-

lems in both the uplink and downlink. In [22] the authors apply a game theoretic

approach, solving a downlink power allocation problem by modelling the system

as a Stackelberg game and allocating power using what is called the Water Fill-

ing algorithm. The work of [23] considers the joint problem of downlink admission

control and power allocation and provides a Nash Equilibrium solution amongst

the femtocells. In [24] the problem of downlink power control is examined using

Robust Stackelberg Equilibria using a similar approach to [22]. In [25] a new al-

gorithm for decentralized spectrum allocation is presented in a static setting using

randomization.
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One of the main features of the works described above, as well as a large por-

tion of related work, is that they approach the problem of resource allocation and

power allocation at each time step as a static optimization problem with little or no

mention of modelling of system or agent dynamics. They do not fully consider the

dynamics of femtocell systems by including the dynamics of channel behaviour and

the dynamics of other agents in the system. Furthermore, in literature in general,

there is very little work which considers dynamic optimization or stochastic optimal

control of such competitive decentralized networks, for example in the context of a

dynamic game.

1.7 Thesis Scope, Organization and Contributions

This thesis focuses first on wireless channel modelling and then uses the resultant

models in an application of MFG theory to cellphone communication systems. The

thesis is organized as follows.

Chapter 2 presents a novel continuous time state space channel model which

combines the effects of path loss, long-term fading, and short-term fading into a

concatenated nonlinear model which, in its entirety, provides a relationship between

the signal power at the input (transmitter) and output (receiver) of the channel.

The model is then analysed and illustrated through simulations.

Chapter 3 builds upon the work of [17, 18] and presents an application of MFG

theory and the novel channel model derived in Chapter 2 to two related CDMA

cellphone optimization problems where agents are applying decentralized control

of transmit power to minimize their personal costs which correspond to a linear

combination of QoS and transmit power over time. In the first application the

agents are static but in the second they each have a certain specified controllable

mobility in space.

Chapter 4 presents numerical algorithms for the solution of each of the two

CDMA optimization problems and generates illustrative solutions and simulation
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examples.

Chapter 5 proposes the modelling of OFDMA femtocell systems as a continuous

time dynamic stochastic game where the agents, here being the femtocells, are dy-

namically controlling their power in each frequency band in a decentralized manner

while competing with all other femtocells in order to minimize their own costs; as

in the case of the CDMA problems discussed in Chapter 3 these costs correspond to

a linear combination of QoS and transmit power. It then employs MFG theory and

numerical methods are used for (i) the solution of the corresponding MFG PDEs

and (ii) agent state sample paths providing illustrative simulation examples.

Chapter 6 summarizes with a conclusion and discusses potential extensions of

the work.

It is emphasized that in this work all optimal solutions are to be interpreted in

the sense of Nash Equilibria (generated by agent best responses), and that this holds

whether user devices on a CDMA network or femtocell base stations in an OFDMA

system are under consideration.
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Chapter 2

Stochastic Dynamic Wireless

Channel Models

2.1 Overview

This chapter proposes a novel wireless channel model by combining the wireless

channel attenuation phenomena of path loss, long-term and short-term fading. This

is done in order to provide an accurate relationship between the power of a transmit-

ted signal at the channel input and the corresponding output signal power of a signal

reaching the receiver after passing through the wireless channel. To be specific, the

model in this work combines continuous-time state space stochastic differential equa-

tion (SDE) models for (i) log-normal long-term fading and (ii) Rayleigh short-term

fading effects in order to provide a combined concatenated long-term and short-term

fading model; these models were initially considered separately in [4, 26, 27, 28, 29]

and are briefly summarized in Section 2.2.

In this work, the terms “long-term” and “short-term” fading correspond to the

large and small scale variations of signal power due to the movement of transmitting

devices. The words “long-term” and “short-term” imply the distinction of different

time scales but can equivalently be understood to be a distinction of long and short
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distances. This is due to the general understanding that a transmitting device

takes longer to travel further distances (assuming almost constant velocity). The

abstraction of the notion of distance into an analogous (in this case) notion of time

is a standard methodology in wireless channel modelling as described in [1] and is

used in this work.

2.2 SDE Wireless Channel Models

The work in [4, 26, 27, 28, 29] describes continuous-time state-space dynamic gen-

eralizations of traditional channel models, in particular those of log-normal and

Rayleigh fading. The state-space models were all developed to take account of con-

tinuous random dynamics which are not described by the traditional models while

also remaining consistent with these traditional models at the macroscopic level.

In a dynamic setting, instead of assuming the independence in time of the ran-

dom channel attenuation phenomena, these models offer transition densities on the

continuous time scale.

2.2.1 Long-term Fading

Traditional models of long-term fading use the log-normal distribution in order to

model the signal power attenuation due to long-term fading and path loss. A signal

travelling from the transmitter to the local area of receiver will experience multiple

reflections off objects in its path. Each reflection results in some power loss of the

incoming signal as some of the energy is absorbed by the obstacle. This power loss

occurs in a multiplicative manner at each obstacle. Therefore, on the decibel scale,

the power loss will be an additive loss.

Because the power lost at each reflection is best described by a random quantity

due to the potential chaotic behaviour of the channel, and by virtue of the Central

Limit Theorem, the sum of power losses, on the decibel scale, due to every obstacle

on the path from transmitter to receiver is frequently be modelled to be a Gaussian
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distributed random variable. Going back to the Watts scale, this power attenuation

is modelled as being log-normal.

In a dynamic setting, one typically models the channel gain due to long-term

fading at any time t as the exponential eXt where Xt is a sequence of i.i.d. Gaussian

random variables distributed with mean equal to the deterministic path loss given

the distance between transmitter and receiver. Instead, the models developed in

[4, 26, 29] consider the long-term fading channel gain to be given by eβ(t) where now

β(t) is a continuous-time stochastic process following the first order linear SDE

dβ(t) = −a(β(t) + b)dt+ σβdWβ(t), β(0) = β0, t ∈ R+, (2.1)

where a > 0, b > 0, σβ > 0 and Wβ(t) is a standard Wiener process. Here the

parameter −b is the long-term mean towards which β(t) is tracking corresponding

physically to the path-loss exponent; the parameter a is a rate of adjustment to-

wards the long-term mean −b; the parameter σβ tunes the variance of the diffusion

term of β(t) and depends on the intensity of random phenomena causing the long-

term fading effects such as the presence of obstacles and transmitter movement.

If the initial condition β0 is Gaussian distributed, then β(t) will remain Gaussian

distributed [4]. On the macroscopic level, the model remains consistent with the

traditional log-normal model because the effective channel power gain, eβ(t) will be

log-normally distributed at any time t.

2.2.2 Short-term Fading

Traditional Rayleigh short-term fading models use the Rayleigh distribution to

model the output signal envelope of the short-term fading channel. Rayleigh fading

is a result of local area signal scattering whereby a transmitted signal scatters into N

plane waves with different phase shifts and envelopes which add up at the receiver.
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Let the n-th plane wave (after scattering) be given by the equation

En(t) = In(t) cos(ωct)−Qn(t) sin(ωct), t ∈ R+, (2.2)

where ωc is the carrier frequency and In(t) andQn(t) are the in-phase and quadrature

components of the signal given by

In(t) =
N∑

m=1

rn,m cos(ωn,mt+ θn,m), t ∈ R+, (2.3)

Qn(t) =
N∑

m=1

rn,m sin(ωn,mt+ θn,m), t ∈ R+, (2.4)

where ωn,m, θn,m and rn,m are the Doppler shift, phase and envelope of the n,m-th

component wave respectively and subscript n,m denotes the effect of plane wave

m on plane wave n. Exploiting the assumed statistical independence of all these

random quantities, traditional Rayleigh fading models assume that In(t) and Qn(t)

are mutually independent i.i.d. zero mean Gaussian random variables (by virtue

of the Central Limit Theorem and exploiting the sum relation in (2.3) and (2.4)).

Therefore, by a transformation of random variables, the signal envelope at the re-

ceiver, r(t) =
√
In(t)2 +Qn(t)2 is Rayleigh distributed. The received signal power,

r(t)2 is exponentially distributed, again by a transformation of random variables.

The dynamic generalizations of Rayleigh short-term fading effects are now dis-

cussed. Referring back to (2.3) and (2.4), instead of assuming that In(t) and Qn(t)

are given by i.i.d. Gaussian random variables, the continuous-time generalizations

in [4, 27, 28] model them to be stochastic processes given by the solutions of the

following first order linear SDEs

dIn(t) = −1

2
αIn(t)dt+

1

2
σdWIn(t), In(0) = (In)0, t ∈ R+, (2.5)

dQn(t) = −1

2
αQn(t)dt+

1

2
σdWQn(t), Qn(0) = (Qn)0, t ∈ R+, (2.6)
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where α > 0, σ > 0 and WIn(t) and WQn(t) are independent standard Wiener

processes. Here, the processes are randomly drifting around their long-term mean

value of zero. In the long term, the processes described by the above SDEs have

steady state distributions which are independent Gaussian with zero mean and the

same variance.

Applying the transformation χn(t) = In(t)
2+Qn(t)

2 which is the process describ-

ing the square envelope or instantaneous power of the received signal, using Ito’s

rule and using Levy’s characterization theorem [4], the following SDE describes the

dynamics of the process χn(t)

dχn(t) =

(
σ2

2
− αχn(t)

)
dt+ σ

√
χn(t)dWn(t), t ∈ R+, (2.7)

with χn(0) = In(0)
2 + Qn(0)

2. The corresponding signal envelope r(t) =
√

χn(t)

is a stochastic process which is Rayleigh distributed as t goes to infinity. Also,

if it is initially Rayleigh distributed, it will remain Rayleigh distributed, therefore

remaining consistent with the traditional model for Rayleigh short-term fading.

It should be discussed that the χ process describing the signal output power after

short-term fading effects has some guarantees on its positivity in order to assure that

the process is well defined for the particular application. In fact, processes described

by SDEs of the form

dx(t) = a (b− x(t)) dt+ σ
√
x(t)dW (t), x(0) = x0, t ∈ R+, (2.8)

are frequently used in financial applications in order to describe interest rates which,

in their real world application, must remain positive. This model is called the Cox-

Ingersoll-Ross (CIR) model introduced in [30] and is very popular in the literature.

An important result of Feller [31], based on analysis of the associated Fokker-

Planck-Kolmogorov (FPK) equation, is that if 2ab ≥ σ2, then this process will

remain positive a.s. if its initial condition is positive. For the χ process described
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in (2.7), the parameters of the SDE are such that this Feller inequality is met and

therefore, the process will indeed remain positive almost surely.

2.3 The Concatenated Channel Model

The proposed model aims to model the particular situation in wireless communi-

cation systems where the transmitted signal travels reasonably large distances to

the local area of the receiver, meanwhile being affected by path loss and long-term

fading effects due to reflections off of objects, and then scattering in the local area

of the receiver and being reassembled at the receiver, corresponding to local area

short-term fading effects. Fig. 2.1 illustrates the scenario being modelled.

Fig. 2.1 Concatenated channel model physical scenario taken from [4]

The proposed model further restricts attention to the physical situation where

there is no major line of sight (LOS) signal component between transmitter and

receiver and therefore short-term fading effects are considered using continuous time

Rayleigh fading generalized models as described in Section 2.2. Further, the model

does not consider Doppler effects or frequency selective behaviour (it is assumed

that the channel is a flat-fading channel).

Evidently the proposed model aims to characterize a concatenation of long-term

19



and short-term fading effects. Each of these effects will be modelled as stochastic

processes whose dynamics are governed by a corresponding SDE. The block diagram

in Fig. 2.2 compactly depicts the processes governing the short and long-term fading

effects which will be developed in this chapter.

Fig. 2.2 Channel model block diagram

Here, pin(t) and pout(t) are the channel input and output power respectively,

β(t) is a long-term fading attenuation process and χ(t) is the process governing

the output power of the short-term fading portion of the channel. The “LTF” and

“STF” blocks are understood to be the long-term and short-term fading portions

of the channel respectively in the overall concatenated model. The dynamics of the

two processes are now defined.

2.3.1 The Long-term Fading Process

The long-term fading attenuation process β(t) ∈ R is modelled by the following the

first order linear SDE

dβ(t) = −a(β(t) + b)dt+ σβdWβ(t), β(0) = β0, t ∈ R+, (2.9)

as in (2.1) where a > 0, b > 0, σβ > 0 and Wβ(t) is a standard Wiener process.

The signal power output of the long-term fading portion of the channel is given by

eβ(t)pin(t).
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2.3.2 The Short-term Fading Process

For the short-term fading process χ(t) ∈ R+, we begin with the SDE model

dχ(t) =

(
σ2
χ

2
− αχ(t)

)
dt+ σχ

√
χ(t)dWχ(t), χ(0) = χ0, t ∈ R+, (2.10)

as in (2.7) where σχ > 0, α > 0 and Wχ(t) is a standard Wiener process. Using this

SDE model, the long-term average signal power of the short-term fading channel

may be verified to be given by
σ2
χ

2α
as stated in [4] and as shown in Appendix C.

In the proposed model, this long-term average signal power corresponds exactly to

the output signal power (now time varying) of the long-term fading portion of the

channel. Explicitly, we substitute
σ2
χ

2α
= eβ(t)pin(t) into (2.10) with the resulting SDE

(after substitution) given by (2.11) below.

dχ(t) =
σ2
χ

2

(
1− χ(t)

eβ(t)pin(t)

)
dt+ σχ

√
χ(t)dWχ(t), χ(0) = χ0, t ∈ R+, (2.11)

Until this point, the dynamical processes being modelled closely follow the tech-

niques described in Section 2.2 for the modelling of short-term fading and long-term

fading effects in isolation and uses a coupling of two equations of the form of (2.1)

and (2.7) which are linked by the long term average signal envelope (given by
σ2
χ

2α

in (2.10)). In the case of this new model, and in contrast to the individual models

described in Section 2.2, the long term average signal envelope,
σ2
χ

2α
= eβ(t)pin(t), is

time varying and corresponds to the output power of the long-term fading portion of

channel. This follows the traditional modelling principle which states that over suf-

ficient lengths of time, long-term fading effects are the average of short-term fading

effects [1].

A small parameter ν, where 0 < ν << 1, is now introduced in order to remove
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the singularity when pin(t) = 0 resulting in (2.12) below.

dχ(t) =
σ2
χ

2

(
1− χ(t)

eβ(t)pin(t) + ν

)
dt+ σχ

√
χ(t)dWχ(t), χ(0) = χ0, t ∈ R+,

(2.12)

This parameter is introduced for both analysis purposes and also to take account

for the behaviour of the short-term fading portion of the channel when the input

power (of that portion of the channel), eβ(t)pin(t), is equal to zero by assuming that

there is always thermal noise present in the long-term fading effects of the channel.

2.3.3 Slow-fast Dynamics

Following the work described in [32, 33, 34] multiple time scale dynamics are now

applied by using a time scale separation of the two fading processes. We apply

the crucial modelling assumption that the long-term fading and short-term fading

processes behave in slow time and fast time respectively where “slow time” and “fast

time” correspond to the separated time scales after the introduction of a slow-fast

parameter ε which is to be defined. The input power of the channel is assumed to

be evolving in slow time, in contrast to with the quickly evolving (due to short-term

fading effects) output power.

We now provide the relevant equations and then justify the time scale separation

from both a modelling and analysis perspective. A small parameter ε, 0 < ε << 1 is

introduced into the SDEs in order to separate the slow and fast time components.

This is a standard move in modelling deterministic systems with separated time

scales but in the SDE case there is the added feature that the diffusion term is

scaled by 1√
ε
. The resulting equations (for t ∈ R+) are

dβ(t) = −a(β(t) + b)dt+ σβdWβ(t), β(0) = β0, (2.13)

dχ(t) =
1

ε

(σχ)
2

2

(
1− χ(t)

eβ(t)pin(t) + ν

)
dt+

σχ√
ε

√
χ(t)dWχ(t), χ(0) = χ0, (2.14)
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where χ(t) is the fast time process and β(t) is the slow time process.

From the point of view of accurate modelling, the effects of short-term fading

occur in the order of milliseconds which is significantly faster than the effects of

long-term fading which occur in the order of seconds, as discussed in Chapter 1. In

particular, the influence of the long-term fading signal output power eβ(t)pin(t)+ν is

almost constant with respect to the dynamics of the short-term fading phenomena.

The long-term fading signal output power can be thought of as the average to

which the complete channel output power (after short-term fading effects) is tracking

which is an important desired goal of the proposed model. Therefore, a time scale

separation is necessary in order to have an accurate model of the interaction of the

two fading processes.

From the perspective of analysis, a key result in slow-fast dynamical systems is

that as the slow-fast parameter ε goes to zero, the slow-time process is asymptotically

constant in terms of its influence on the fast-time process. This result justifies the

ability to use a substitution of the form
σ2
χ

2α
= eβ(t)pin(t) + ν which corresponds to

the substitution of a constant SDE parameter by a random time varying process.

The application of a time scale separation into slow and fast time processes is such

that the slow-time process eβ(t)pin(t)+ν, which explicitly appears in the SDE of the

fast-time process χ(t), is constant in terms of its influence on χ(t) thus eliminating

any potential complications in the algebraic substitution of a constant by a time-

varying process. Also, the separation of time scales allows for the development of

transition densities for the processes which will be described in Section 2.4.

2.3.4 The Summarized Model

The complete channel model is now summarized by providing the SDEs for the

model which include all relevant modelling assumptions made. The equations (for
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t ∈ R+) are

dβ(t) = −a(β(t) + b)dt+ σβdWβ(t), β(0) = β0, (2.15)

dpout(t) =
1

ε

(σpout)
2

2

(
1− pout(t)

eβ(t)pin(t) + ν

)
dt+

σpout√
ε

√
pout(t)dWpout(t), (2.16)

pout(0) = (pout)0,

noting the substitution of χ(t) = pout(t) and also noting the relabelling of the

σpout and Wpout terms for consistency of notation thus completing the mathematical

model.

2.4 Transition Densities

The transition densities for the processes governing the channel dynamics are now

presented.

2.4.1 The Long-term Fading Process

We begin with the transition density for the long-term fading channel gain S(t) =

eβ(t). From [4], the transition density for the value St of S(t) at time t ∈ R+,

conditional on the value Ss at time s ∈ R+, s < t and the parameter set θ of the

SDE (2.15), is given below.

fθ(St, t;Ss, s) =
1√

2π(t− s)σ2
βSt

e

⎛
⎝−(

log
St
Ss

+b(t−s))
2

2(t−s)σ2
β

⎞
⎠

(2.17)

Following [4], letting t → ∞, the asymptotic transition density is given by

fθ(S∞,∞;Ss, s) =
1√

2π
σ2
β

2a
S∞

e

⎛
⎝−(

log S∞
Ss

+b)
2

2(
σ2
β

2a )

⎞
⎠

(2.18)
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for S∞ > 0, s ∈ R+, which is the density of a log-normal random variable with mean

eb−logSs+
σ2
β

4a and variance (e
σ2
β

2a − 1)e2(b−logSs)+
σ2
β

4a and where the associated normal

random variable has mean b− logSs and variance
σ2
β

2a
. Therefore, as t goes to infinity,

S(t) is log-normally distributed given its current value Ss at time s and the SDE

parameters. Therefore, at the macroscopic level, the modelling of the long-term

fading effects reduces to the traditional log-normal model, as is argued in [4].

2.4.2 The Short-term Fading Process

Similar to the long-term fading process, we present the transition density for the χ(t)

process which represents the output power of the channel after short-term fading

effects. A key consequence of the time separation of slow-fast dynamics of the system

model (2.15) - (2.16) is that from the perspective of the fast-time equation (that of

the χ(t) process), the slow time processes β(t) and pin(t) appear almost constant.

Therefore, following from [4], the transition density for the value χt of χ(t) at time

t ∈ R+, conditional on the value χs at time s ∈ R+, s < t, the values of βs and

(pin)s (which due to the slow-fast dynamical relationship are assumed to remain

almost constant) at time s and the parameter set θ of the SDE (2.16), is given by

fθ(χt, t;χs, βs, (pin)s, s) =
1

2μ
e(−

λ+χt
2μ )I0

(√
χtλ

μ

)
(2.19)

where

μ =
eβs(pin)s + ν

2

(
1− e

(
−σ2

pout
2ε

1

eβs (pin)s+ν
(t−s)

))
(2.20)

λ = χse

(
−σ2

pout
2ε

1

eβs (pin)s+ν
(t−s)

)
(2.21)
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and I0(·) is the modified Bessel function of the first kind of zero-th order. Following

from [4], letting t → ∞, the asymptotic transition density is given by

fθ(χ∞,∞;χs, βs, (pin)s, s) =
1

eβs(pin)s + ν
e
−
(

1

eβs (pin)s+ν
χ∞

)
(2.22)

for χ∞ > 0, s ∈ R+, which is the density of an exponential random variable with

mean eβs(pin)s + ν. Therefore, as t goes to infinity, pout(t) = χ(t) is exponentially

distributed given its current value χs at time s, the values of βs and (pin)s at time s,

and the SDE parameters. In other words, given the current value of the signal power

eβs(pin)s+ν after long-term fading effects have occured at time s, the current output

power of the channel χs at time s, and all SDE parameters, the output power of the

short-term fading portion of the channel χt at time t is exponentially distributed as

t goes to infinity.

A simple transformation of random variables r =
√
χ describes the square root of

the output power of the channel and is effectively the signal magnitude (envelope).

Then the asymptotic transition density for r is a Rayleigh density by the known

fact that the square root of an exponential random variable is a Rayleigh random

variable. Therefore, at the macroscopic level, the modelling of the short-term fading

effects reduce to the traditional Rayleigh fading model, as is argued in [4].

The asymptotic transition densities of both fading processes in the new chan-

nel model show that the model reduces to the traditional models described in the

literature over long periods of time. The model also introduces continuous time

dynamics which in small time scales introduce a new dimension to the statistical

channel information.

2.5 Channel Simulations

Simulations are now presented in order to verify the channel model. In particular,

simulations are first shown for the sample path behaviour of the channel under
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different parameters and inputs. Then, a large number of sample paths of the

channel are computed in order to verify the empirical distribution of channel process

states after long periods of time have elapsed and the empirical histograms of these

samples are compared to the asymptotic transition densities described in Section

2.4.

2.5.1 Sample Path Simulations

Two sample paths of the proposed SDE channel model are now illustrated using

simulation. As presented in Section 2.3.4, the simulated SDEs of interest describing

the dynamics of the channel model are given in (2.23) and (2.24) below

dβ(t) = −a(β(t) + b)dt+ σβdWβ(t), β(0) = β0, (2.23)

dpout(t) =
1

ε

(σpout)
2

2

(
1− pout(t)

eβ(t)pin(t) + ν

)
dt+

σpout√
ε

√
pout(t)dWpout(t),

pout(0) = (pout)0, (2.24)

where t ∈ R+.

Constant Transmit Power

First, the channel is simulated using a constant transmit power pin(t) = 1 for all

t. The SDE parameters are set to be ε = 0.01, ν = 0, a = 10, b = 0, σβ = 0.2,

σpout = 0.8. The process initial conditions are set to be β0 = 0 and (pout)0 = 1. Fig.

2.3 shows the result of the simulation.
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Fig. 2.3 Example channel sample path: constant transmit power

From the plot one can see that the long-term fading output signal power, eβ(t)pin(t),

is oscillating (with stochastic disturbances) around the average long-term fading out-

put power e−bpin(t) = e0 · 1 = 1 and is acting as an average to which the short-term

fading output power pout(t) is tracking. One also can see that the volatility of the

short-term fading effects is more drastic and is occurring at a much faster time scale.

Sinusoidal Transmit Power

Time varying transmit power is now introduced in the form of the sinusoid pin(t) =

0.5 sin(t) + 1 for all t. The SDE parameters are set to be ε = 0.01, ν = 0, a = 10,

b = 0, σβ = 0.2, σpout = 2. The process initial conditions are set as β0 = 0 and

(pout)0 = 1. Fig. 2.4 shows the results of the simulation.
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Fig. 2.4 Example channel sample path: sinusoidal transmit power

Here the long-term fading output power eβ(t)pin(t) is slowly tracking the input

sinusoid while the short-term fading output power pout(t) is rapidly and randomly

oscillating about eβ(t)pin(t) as expected.

2.5.2 Empirical Verification of Transition Densities

Simulations are also developed in order to verify that the empirical distributions

of process values are consistent with the asymptotic transition densities described

in Section 2.4 given a large number of samples and a long enough period of time.

Considering the channel SDEs

dβ(t) = −a(β(t) + b)dt+ σβdWβ(t), β(0) = β0, (2.25)

dpout(t) =
1

ε

(σpout)
2

2

(
1− pout(t)

eβ(t)pin(t) + ν

)
dt+

σpout√
ε

√
pout(t)dWpout(t),

pout(0) = (pout)0, (2.26)
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t ∈ R+, the parameters are set to be b = 0, a = 10, σβ = 1, σpout = 0.8, ε = 0.01 and

ν = 0. We now simulate N = 1000 sample paths of the channel processes denoted

(βi(t), piout(t)), 1 ≤ i ≤ N until final time T > 0 with constant transmit power

piin(t) = 1 for all t ∈ [0, T ] and the initial conditions βi(0) = 0, piout(0) = 1 for all i.

The N sample paths of the channel are simulated until terminal time T = 1 which

corresponds in the case of this simulation to be approximately infinite. We then

compute the normalized (to an area of 1) empirical histogram of the values of eβ
i(T )

and piout(T ) corresponding to the long-term fading power gain and short-term fading

output power of the channel respectively at T = 1. This empirical data is compared

with the expected asymptotic transition densities for the long-term fading gain and

short-term fading output power given by (2.18) and (2.22) respectively, substituting

all SDE parameters and initial conditions. Fig. 2.5 and 2.6 show the results of the

simulations.

Fig. 2.5 Asymptotic transition density (2.18) versus sample histogram
of long-term fading attenuation coefficient S(T )
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Fig. 2.6 Asymptotic transition density (2.22) versus sample histogram
of channel output power pout(T )

Both simulations show that the state values of a large number of paths over

a long period of time are distributed close to the asymptotic transition densities

described in Section 2.4 (in terms of sample histograms) confirming these densities

numerically and also re-iterating that the model reduces to the traditional log-

normal and Rayleigh fading models at the high level.

2.6 Extended Models Using Poisson Jumps

2.6.1 The Channel Model Extension

An extension to the proposed model developed in Section 2.3 is now presented.

This extended model aims to describe a special scenario in the proposed base model

where the long-term fading effects include a significant drop or increase in gain due

to the presence of large obstacles. This new modelling challenge is addressed by

introducing jump processes to the proposed model. In particular, we begin with the

base model described in (2.15) and (2.16) and introduce a jump term dJλ(t) into the
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SDE describing the dynamics of the long-term fading variable β(t). The resulting

system equations (for t ∈ R+) are given below.

dβ(t) = −a(β(t) + b)dt+ σβdWβ(t) + dJλ(t), β(0) = β0, (2.27)

dpout(t) =
1

ε

(σpout)
2

2

(
1− pout(t)

eβ(t)pin(t) + ν

)
dt+

σpout√
ε

√
pout(t)dWpout(t),

pout(0) = (pout)0 (2.28)

Here, all variables and parameters are defined as before and the new addition Jλ(t)

is a Poisson process with parameter λ, independent of all other random phenomena

(including the Brownian motion). The Poisson rate λ is taken to model the average

number of large obstacles encountered by a moving device over a normalized time

period of 1. The Poisson process takes jumps of height 1 and −1 with equal prob-

ability 1/2. The Poisson process effectively models the rapid jumps in long-term

fading channel gain due to a moving transmitting device being immediately blocked

by a large obstacle (corresponding to a negative jump) or immediately leaving the

obstacles shadowing area (corresponding to a positive jump).

2.6.2 Sample Path Simulation

A sample path of the extended model (2.27), (2.28) is now simulated in order to

verify the behaviour of the channel in the presence of jumps. Setting the Poisson

parameter λ to 5, the SDE parameters are chosen to be a = 1, b = 0, σβ = 1,

σpout = 4, ε = 0.01 and ν = 0. The input power is set to be a constant value

pin(t) = 1 for all t. The initial conditions used are β0 = 0, (pout)0 = 1. Fig. 2.7

depicts a sample path of the simulated processes.

As shown in the figure, the long-term fading output power is being affected by

randomly occurring jumps. Furthermore, the simulations show that the short-term

fading output power is still rapidly oscillating around the long-term fading output

power even in the presence of these jumps.
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Fig. 2.7 Example channel sample path with Poisson jumps and con-
stant transmit power
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Chapter 3

Decentralized Stochastic Control

of CDMA Networks

3.1 Introduction

We now consider a decentralized CDMA cellular uplink power control problem where

users are transmitting data to a common base station. The system is modelled as

a large population competitive game with N different agents or decision makers

corresponding to the devices transmitting. The system evolves in continuous time

and has finite horizon 0 < T < ∞. Through the control of their transmit power

and motion, agents are competing with each other in order to optimize their own

running cost specified by a linear combination of their quality of service (QoS) and

transmit power and denoted ci in (3.1)

ci = −γi + pi = − hipi
1
N

∑n
j=1,j �=i hjpj + η

+ pi (3.1)

omitting time indices for brevity where γi, hi and pi are the signal-to-interference-

plus-noise-ratio (SINR), channel gain and transmit power of agent i respectively.

The problem is considered in two forms. First, a game is presented where agent

positions in space are abstracted and we only consider agent states involving trans-
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mit powers and information of channel attenuation dynamics. Second, we introduce

two new state variables corresponding to the agents’ two-dimensional position in

space and introduce the effects of agent positions in their cost or performance func-

tion couplings.

In the case of both problems, namely with and without agent motion and state

variables of position, this chapter is organized as follows. First, all state variables,

dynamics, and agent cost functions are defined. Then, the system is considered

in its infinite population limit resulting in a nonlinear loop of MFG equations of

the generic agent. These equations are presented and an existence and uniqueness

analysis is conducted on the solutions of these equations as well as the solution of

the nonlinear MFG Loop. The work in this chapter closely follows and builds upon

the methodology found in [17, 18], with the notable addition of the novel channel

model developed in detail in Chapter 2.

In this work, the term optimal is to be understood in the sense of Nash Equilib-

rium strategies, namely the optimal control of an agent is the best response control

to the other agents’ controls in the Nash Equilibrium control set and the optimal

performance of an agent is the expected performance of the agent when applying

the Nash Equilibrium control strategies.

3.2 Agent State Variables

At any instant t ∈ R+, the state of agent i, where 1 ≤ i ≤ N , consists of three main

state variables:

βi(t) ∈ R : the long-term fading parameter of the channel from the agent

device to the base station,

piin(t) ∈ R
+ : the transmitted signal power of the agent device,

piout(t) ∈ R
+ : the received signal power at the base station.
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In the case agent motion is considered, the following state variables are added:

xi(t) =

⎛
⎝xi

1(t)

xi
2(t)

⎞
⎠ ∈ R

2 : the agent’s position in two-dimensional space.

The state variables βi(t), piin(t) and piout(t) are linked via the nonlinear channel

model developed in Chapter 2 which is applied in the work of this chapter and

which will be evident in the description of state dynamics in Section 3.3.

3.3 State Dynamics and Stochastic Differential Equations

3.3.1 Rate Based Power Control

Gradient type methods are common in power control algorithms in the cellphone

domain where the transmit power is being adjusted by explicitly updating its rate

of change in the form of power up or power down type adjustments [35, 36, 37].

Following the approach in [17, 18], a rate adjustment model of the following form is

used:

dpiin(t) = ui
pin

(t)dt+ σi
pin

dW i
pin

(t), piin(0) = (piin)0, (3.2)

where |ui
pin

(t)| ≤ upmax = 1, σi
pin

> 0, for all i and W i
pin

(t), 1 ≤ i ≤ N , are N

independent standard Wiener processes and (piin)0 is the known initial transmit

power. Here, ui
pin

(t) corresponds to the power control signal of agent i at the instant

t.

3.3.2 Dynamic Channel State Processes

The channel model used in this work is the basic channel model developed in Chapter

2 which consists of long-term fading from the agent device to the local area of the

base station influenced by the state process βi(t), followed by short-term fading in

the local area of the base station resulting in the output power state process piout(t).

Each agent therefore has one state variable for each of these two processes. The

dynamics are now described in detail as follows.
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Long-term Fading Process

Following the model described in Chapter 2, the long-term fading attenuation pro-

cess βi(t) for each agent i evolves according to the following SDE

dβi(t) = −ai(βi(t) + bi)dt+ σi
βdW

i
β(t), βi(0) = βi

0, (3.3)

where ai > 0, bi > 0 and σi
β > 0, for all i. Also, W i

β(t), 1 ≤ i ≤ N are N independent

standard Wiener processes and βi
0, 1 ≤ i ≤ N are mutually independent Gaussian

random variables which is are also independent of the Wiener processes.

Received Signal Power at the Base Station

Again following the model in Chapter 2, for each agent i, the signal received power,

piout(t), is governed by the following SDE:

dpiout(t) =
(σi

pout)
2

2

(
1− piout(t)

eβi(t)piin(t) + ν

)
dt+ σi

pout

√
piout(t)dW

i
pout(t),

piout(0) = (piout)0, (3.4)

where σi
pout > 0, for all i. Also, W i

pout(t), 1 ≤ i ≤ N are N independent standard

Wiener processes.

3.3.3 Agent Position in Space

Agent motion is modelled as stepwise adjustments using the rate adjustment model

as in [17, 18]; these stepwise adjustments are then described by the following SDEs

dxi
1(t) = ui

x1
(t)dt+ σi

x1
dW i

x1
(t), xi

1(0) = (xi
1)0 (3.5)

dxi
2(t) = ui

x2
(t)dt+ σi

x2
dW i

x2
(t), xi

2(0) = (xi
2)0 (3.6)
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where |ui
x1
(t)|, |ui

x2
(t)| ≤ uxmax = 1 are the position controls of agent i, σi

x1
> 0,

σi
x2

> 0 for all i. Also, W i
x1
(t), 1 ≤ i ≤ N are N independent standard Wiener

processes independent of mutually independent W i
x2
(t), 1 ≤ i ≤ N and (xi

1)0 and

(xi
2)0 is the known initial position.

3.4 Slow-fast Dynamics

Capturing the above state variables into one complete model for each of the two

situations of interest (with and without agent motion), we must first distinguish the

fast and slow components of the agent state where the terms “slow time” and “fast

time” correspond to the separated time scales after the introduction of a slow-fast

parameter ε which is to be defined.

As justified in Chapter 2, βi(t) and piout(t) are categorized into slow and fast

variables respectively. It is further assumed that the power updates occur in slow

time, i.e. the SDE governing the state variable piin(t) evolves at the same rate as

βi(t) which is orders of magnitude slower than the dynamics of the channel output

power piout(t). In the case of the work with agent positions and motion, agents are

assumed to be moving in slow time.

To model the separation of fast and slow components of the state a small pa-

rameter 0 < ε << 1 is introduced. As remarked in Chapter 2, this is a standard

move in modelling deterministic systems with separated time scales, but in the SDE

case there is the added feature that the diffusion term is scaled by 1√
ε
. The modified

main state variable SDEs of agent i are given below.

dβi(t) = −ai(βi(t) + bi)dt+ σi
βdW

i
β(t), βi(0) = βi

0 (3.7)

dpiin(t) = ui
pin

(t)dt+ σi
pin

dW i
pin

(t), piin(0) = (piin)0 (3.8)

dpiout(t) =
1

ε

(σi
pout)

2

2

(
1− piout(t)

eβi(t)piin(t) + ν

)
dt+

1√
ε
σi
pout

√
piout(t)dW

i
pout(t), (3.9)

piout(0) = (piout)0,
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If agent motion is included in the model, the following equations are added.

dxi
1(t) = ui

x1
(t)dt+ σi

x1
dW i

x1
(t), xi

1(0) = (xi
1)0 (3.10)

dxi
2(t) = ui

x2
(t)dt+ σi

x2
dW i

x2
(t), xi

2(0) = (xi
2)0 (3.11)

3.5 Uniform Dynamics and Combined State Variables

We now develop complete models including both agent channel and transmit power

and space configuration states. This work considers only the case of uniform agents,

namely the case where all agents have identical SDE parameters governing their state

dynamics. All indices i associated to SDE parameters in the dynamical equations

are therefore dropped.

3.5.1 Models Without Localized Cost or Agent Motion

In the case where agent motion is not included, an agent i’s state can be given by

the state vector θi(t) =
(
βi(t) piin(t) piout(t)

)T

with corresponding SDE dynamics

dθi(t) =

⎛
⎜⎜⎜⎝

−a(βi(t) + b)

ui
pin

(t)

1
ε

(σpout )
2

2

(
1− piout(t)

eβ
i(t)piin(t)+ν

)
⎞
⎟⎟⎟⎠ dt+

⎛
⎜⎜⎜⎝
σβ 0 0

0 σpin 0

0 0 1√
ε
σpout

√
piout(t)

⎞
⎟⎟⎟⎠ dW i(t)

(3.12)

where all parameters are defined as before andW i(t) =
(
W i

β(t) W i
pin

(t) W i
pout(t)

)T

are mutually independent Wiener processes and θi(0) =
(
βi(0) piin(0) piout(0)

)T

is the initial state value.

3.5.2 Models With Localized Cost and Agent Motion

In the case where agent motion is included, an agent i’s state can be given by the

state vector θi(t) =
(
βi(t) piin(t) piout(t) xi

1(t) xi
2(t)

)T

with corresponding SDE
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dynamics

dθi(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−a(βi(t) + b)

ui
pin

(t)

1
ε

(σpout )
2

2

(
1− piout(t)

eβ
i(t)piin(t)+ν

)
ui
x1
(t)

ui
x2
(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

dt +

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σβ 0 0 0 0

0 σpin 0 0 0

0 0 1√
ε
σpout

√
piout(t) 0 0

0 0 0 σx1 0

0 0 0 0 σx2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

dW i(t) (3.13)

where W i(t) =
(
W i

β(t) W i
pin

(t) W i
pout(t) W i

x1
(t) W i

x2
(t)

)T

are mutually inde-

pendent Wiener processes and θi(0) =
(
βi(0) piin(0) piout(0) xi

1(0) xi
2(0)

)T

is

the initial state value.

3.6 Agent Cost Functions

3.6.1 Models Without Localized Cost or Agent Motion

In order to quantify an agent’s cost, two important metrics are used: QoS and power

consumption. Here, QoS will be defined as the SINR of the transmitted signal over

the wireless channel. The SINR of agent i, 1 ≤ i ≤ N is given by the expression

γi(t) �
piout(t)

1
N

∑N
k=1,k �=i p

k
out(t) + η

(3.14)
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where η is the channel noise power. We then define

κi(t) �
piout(t)

1
N

∑N
k=1 p

k
out(t) + η

(3.15)

Here κi(t) and γi(t) differ by the k 	= i sum restriction in the formulation of γi(t) but

it is proven in Lemma 1 of [17] that subject to the condition that piout(ui) is twice

continuously differentiable in ui and γi(ui) has a unique minimum in U = [−1, 1]

then the unique minimizer of γi(t) will be equal to the unique minimizer of κi(t)

as they are defined here. Hence, in order to simplify analysis for optimization in

the remainder of this work, the QoS Qi of agent i, 1 ≤ i ≤ N , shall be defined as

follows:

Qi(t) � κi(t) =
piout(t)

1
N

∑N
k=1 p

k
out(t) + η

, t ∈ R+ (3.16)

The instantaneous loss of a given agent i in the N agent game is then defined as

LN
i (t, ui, u−i) � −Qi(t) + piin(t) (3.17)

= − piout(t)
1
N

∑N
k=1 p

k
out(t) + η

+ piin(t) (3.18)

The cost-to-go function of agent i is then defined as

JN
i (s, ui, u−i, θ̃i) � E

[∫ T

s

LN
i (t, ui, u−i)dt

∣∣∣∣θi(s) = θ̃i

]
(3.19)

= E

[∫ T

s

(
− piout(t)

1
N

∑N
k=1 p

k
out(t) + η

+ piin(t)

)
dt

∣∣∣∣θi(s) = θ̃i

]
(3.20)

where s > 0 is the current time, T < ∞ is the terminal time, ui denotes the control

of agent i, u−i denotes the controls of all other agents excluding agent i and θ̃i is

the value of θi(s).
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3.6.2 Models With Localized Cost and Agent Motion

Considering the problem with localized cost and agent motion, a combination of QoS

and transmit power is also used in order to define cost functions but in this case,

the agent’s location in space introduces a new influence on its cost. Deterministic

path loss is introduced into the SINR equation as follows

Qi(t) �
e−||xi(t)−xb||2piout(t)

1
N

∑N
k=1 e

−||xk(t)−xb||2pkout(t) + η
(3.21)

where || · || denotes the euclidean norm, xi(t) =

⎛
⎝xi

1(t)

xi
2(t)

⎞
⎠, and xb denotes the

position of the base station and recalling that path loss corresponds to an exponential

drop in received power with respect to the distance travelled by the signal. The

instantaneous loss of a given agent i in the N agent game is then defined as

LN
i (t, ui, u−i) � −Qi(t) + piin(t) (3.22)

= − e−||xi(t)−xb||2piout(t)
1
N

∑N
k=1 e

−||xk(t)−xb||2pkout(t) + η
+ piin(t) (3.23)

The cost-to-go function of agent i is then defined as

JN
i (s, ui, u−i, θ̃i) � E

[∫ T

s

LN
i (t, ui, u−i)dt

∣∣∣∣θi(s) = θ̃i

]
(3.24)

= E

[∫ T

s

(
− e−||xi(t)−xb||2piout(t)

1
N

∑N
k=1 e

−||xk(t)−xb||2pkout(t) + η
+ piin(t)

)
dt

∣∣∣∣θi(s) = θ̃i

]

(3.25)

where s > 0 is the current time and T < ∞ is the terminal time.
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3.7 Mean Field Games Analysis

AMFG analysis is now applied on the system in both the localized and non-localized

cases. Due to the way cost functions are defined, each agent has a negligible influence

on the system as a whole as N → ∞. In the infinite population limit, a Nash

Equilibrium exists (to be proven) where each agent is playing against a mass which

is represented by the Mean Field which is driven by the collection of the individual

asymptotically negligible influences of each agent. In effect, each agent becomes

a generic agent. The dynamics of the Mean Field density (assumed to exist) as

well as the value function and best response controls of such a generic agent can all

be found from the coupled loop of MFG equations consisting of the MFG Fokker-

Planck-Kolmogorov (MFG FPK) and MFG Hamilton-Jacobi-Bellman (MFG HJB)

equations where it is assumed that the initial Mean Field density is known to all

agents. For the MFG PDEs in the following analysis we assume a state domain of

D, i.e. θ ∈ D.

3.7.1 Models Without Localized Cost or Agent Motion

Infinite Population Limit and Generic Agent Dynamics and Costs

In order to develop the MFG equations, one needs to first discuss the dynamics

and costs of the generic agent. The dynamics of the generic agent in the infinite

population case are identical to the finite population dynamics and can be seen in

(3.12). This is due to the fact that the finite population dynamics of each agent

in this problem are local and do not depend on other agent states, controls or the

number of agents in the system. Now developing the cost functions, the cost-to-go
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of the generic agent i in the infinite population limit is given by

J∞
i (s, u, θ̃i) � lim

N→∞
E

[∫ T

s

(
− piout(t)

1
N

∑N
k=1 p

k
out(t) + η

+ piin(t)

)
dt

∣∣∣∣θi(s) = θ̃i

]
(3.26)

= E

[∫ T

s

(
− piout(t)∫

Ωθ
poutfμt(θ)dθ + η

+ piin(t)

)
dt

∣∣∣∣θi(s) = θ̃i

]
(3.27)

where θ =
(
β pin pout

)T

, fμt(θ) is the probability density function of the Mean

Field (assumed to exist) at time t ∈ [0, T ] and Ωθ = Ωβ ×Ωpin ×Ωpout is the support

set of fμt .

Given the agent dynamics in (3.12) and cost functions (3.20) and (3.27) (in

the finite and infinite populations respectively) it may be verified that assump-

tions (A1)-(A7) and (H4) in [16] hold and therefore there exists a unique solution

(θ1(·), ..., θN(·)) to the set of SDEs given by (3.12), 1 ≤ i ≤ N .

The value function of generic agent i is then defined as:

Vi(s, θ̃i) = inf
u∈U

J∞
i (s, u, θ̃i) (3.28)

where here u ∈ [−1, 1] corresponds to the control upin of the transmit power of the

generic agent.

The MFG HJB Equation and Best Response Control

Given the Mean Field density, fμt(θ) and following from the costs developed for the

generic agent in (3.27), the MFG HJB equation of the generic agent is given by

−∂V

∂t
= − pout∫

Ωθ
poutfμt(θ)dθ + η

+ pin +
∂V

∂pout

(
σ2
pout

2ε

)(
1− pout

eβpin + ν

)
(3.29)

+
∂V

∂β
(−a(β + b)) +

∂2V

∂β2

σ2
β

2
+

∂2V

∂p2in

σ2
pin

2
+

∂2V

∂p2out

σ2
pout

2ε
pout

+ inf
upin∈Upin

{H(upin)} , V (T, θ) = 0, (t, θ) ∈ [0, T ]×D

44



where H(upin) = upin
∂V
∂pin

. From the infimized Hamiltonian in (3.29) the best re-

sponse control of the generic agent is given by

u∗
pin

= arg inf
upin∈Upin

{H(upin)} = arg min
upin∈Upin

{
upin

∂V

∂pin

}
(3.30)

assuming the minimum exists. Because Upin = [−1, 1], it follows that

u∗
pin

= −sign

{
∂V

∂pin

}
(3.31)

The MFG HJB equation therefore reduces to

−∂V

∂t
= − pout∫

Ωθ
poutfμt(θ)dθ + η

+ pin +
∂V

∂pout

(
σ2
pout

2ε

)(
1− pout

eβpin + ν

)
(3.32)

+
∂V

∂β
(−a(β + b)) +

∂2V

∂β2

σ2
β

2
+

∂2V

∂p2in

σ2
pin

2
+

∂2V

∂p2out

σ2
pout

2ε
pout

− sign

{
∂V

∂pin

}
, V (T, θ) = 0, (t, θ) ∈ [0, T ]×D

The MFG FPK Equation

Given the best response control u of the generic agent, the Mean Field dynamics

are given by the following MFG FPK equation,

∂fμt

∂t
= − ∂

∂β
[−a(β + b)fμt ]−

∂

∂pin
[ufμt ]−

∂

∂pout

[
σ2
pout

2ε

(
1− pout

eβpin + ν

)
fμt

]
(3.33)

+
∂2

∂β2

[
σ2
β

2
fμt

]
+

∂2

∂p2in

[
σ2
pin

2
fμt

]
+

∂2

∂p2out

[
σ2
pout

2ε
poutfμt

]
, (t, θ) ∈ [0, T ]×D

The MFG Loop

We now define the MFG Loop of the non-localized problem to be the set of coupled

MFG equations, namely the MFG HJB, MFG best response and MFG FPK equa-

tions given by (3.29), (3.31) and (3.33) respectively. The MFG Loop is depicted in
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(3.34) below.

fμt(θ) V (t, θ)

u∗(t, θ)

(3.29)

(3.31)(3.33)
(3.34)

3.7.2 Models With Localized Cost and Agent Motion

Infinite Population Limit and Generic Agent Dynamics and Costs

We now follow the same idea as Section 3.7.1 to develop the analogous infinite

population MFG equations for the optimization problem with localized costs and

agent motion. The dynamics of the generic agent, as in the previous case are identical

to the relevant dynamics of each agent in the finite population system namely driven

by (3.13). The cost-to-go of a given agent i in the infinite population limit is given

by

J∞
i (s, u, θ̃i) � lim

N→∞
E

[∫ T

s

(
− e−||xi(t)−xb||2piout(t)

1
N

∑N
k=1 e

−||xk(t)−xb||2pkout(t) + η
+ piin(t)

)
dt

∣∣∣∣θi(s) = θ̃i

]

(3.35)

= E

[∫ T

s

(
− e−||xi(t)−xb||2piout(t)∫

Ωθ
e−||x−xb||2poutfμt(θ)dθ + η

+ piin(t)

)
dt

∣∣∣∣θi(s) = θ̃i

]

(3.36)

where θ =
(
β pin pout x1 x2

)T

, fμt(θ) is the probability density function of the

Mean Field (assumed to exist) at time t and Ωθ = Ωβ × Ωpin × Ωpout × Ωx1 × Ωx2 is

the support set of fμt .

Given the agent dynamics in (3.13) and cost functions (3.25) and (3.36) (in

the finite and infinite populations respectively) it may be verified that assump-

tions (A1)-(A7) and (H4) in [16] hold and therefore there exists a unique solution

(θ1(·), ..., θN(·)) to the set of SDEs given by (3.13), 1 ≤ i ≤ N .
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The value function of agent i is then defined as

Vi(s, θ̃i) = inf
u∈U

J∞
i (s, u, θ̃i) (3.37)

where here u =
(
upin ux1 ux2

)T

corresponds to the controls upin , ux1 , ux2 ∈ [−1, 1]

of agent transmit power and position in each dimension of two-dimensional space

respectively.

The MFG HJB Equation and Best Response Control

Given the Mean Field density, fμt(θ), and following from the costs of the generic

agent in (3.36), the MFG HJB equation of the generic agent is given by

−∂V

∂t
= − e−||x−xb||2pout∫

Ωθ
e−||x−xb||2poutfμt(θ)dθ + η

+ pin +
∂V

∂pout

(
σ2
pout

2ε

)(
1− pout

eβpin + ν

)

(3.38)

+
∂V

∂β
(−a(β + b)) +

∂2V

∂β2

σ2
β

2
+

∂2V

∂p2in

σ2
pin

2
+

∂2V

∂p2out

σ2
pout

2ε
pout +

∂2V

∂x2
1

σ2
x1

2

+
∂2V

∂x2
2

σ2
x2

2
+ inf

upin ,ux1 ,ux2∈U
{H(upin , ux1 , ux2)} ,

V (T, θ) = 0, (t, θ) ∈ [0, T ]×D

where H(upin , ux1 , ux2) = upin
∂V
∂pin

+ux1

∂V
∂x1

+ux2

∂V
∂x2

. From the infimized Hamiltonian

in (3.38), the best response control of the generic agent is given by

u∗
pin

= −sign

{
∂V

∂pin

}
, u∗

x1
= −sign

{
∂V

∂x1

}
, u∗

x2
= −sign

{
∂V

∂x2

}
(3.39)
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The MFG HJB equation therefore reduces to

−∂V

∂t
= − e−||x−xb||2pout∫

Ωθ
e−||x−xb||2poutfμt(θ)dθ + η

+ pin +
∂V

∂pout

(
σ2
pout

2ε

)(
1− pout

eβpin + ν

)

(3.40)

+
∂V

∂β
(−a(β + b)) +

∂2V

∂β2

σ2
β

2
+

∂2V

∂p2in

σ2
pin

2
+

∂2V

∂p2out

σ2
pout

2ε
pout +

∂2V

∂x2
1

σ2
x1

2

+
∂2V

∂x2
2

σ2
x2

2
− sign

{
∂V

∂pin

}
− sign

{
∂V

∂x1

}
− sign

{
∂V

∂x2

}
,

V (T, θ) = 0, (t, θ) ∈ [0, T ]×D

The MFG FPK Equation

Given the best response control u of the generic agent, as well as the state dynamics

of the generic agent, the Mean Field dynamics follow the MFG FPK equation,

∂fμt

∂t
= − ∂

∂β
[−a(β + b)fμt ]−

∂

∂pin
[upinfμt ]−

∂

∂pout

[
σ2
pout

2ε

(
1− pout

eβpin + ν

)
fμt

]
(3.41)

− ∂

∂x1

[ux1fμt ]−
∂

∂x2

[ux2fμt ] +
∂2

∂β2

[
σ2
β

2
fμt

]
+

∂2

∂p2in

[
σ2
pin

2
fμt

]

+
∂2

∂p2out

[
σ2
pout

2ε
poutfμt

]
+

∂2

∂x2
1

[
σ2
x1

2
fμt

]
+

∂2

∂x2
2

[
σ2
x2

2
fμt

]
, (t, θ) ∈ [0, T ]×D

The MFG Loop

Similarly to the MFG Loop in the non-localized problem we now define the MFG

Loop of the localized problem to be the set of coupled equations given by (3.38),

(3.39) and (3.41). The MFG Loop is depicted in (3.42) below.

fμt(θ) V (t, θ)

u∗(t, θ)

(3.38)

(3.39)(3.41)
(3.42)
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3.7.3 Existence and Uniqueness of Solutions of the MFG PDEs

For each of the non-localized and localized problems we now provide an analysis

of the existence and uniqueness of solutions of the MFG PDEs separately before

discussing the existence and uniqueness of a solution of the nonlinear MFG Loop in

Section 3.7.4.

General Existence and Uniqueness of Solutions of FPK Equations

We begin by presenting the general results on second order parabolic PDEs as

described in Chapter 7 of [38] and as used similarly in [17, 18]. The H1
0 , H

−1, and

H2 spaces described below denote the Sobolev spaces of relevant order. For more

information on their definitions as well as the definition of weak derivatives the

reader is referred to Appendix B. Consider PDEs of the form

∂μ

∂t
+Ψμ = f in DT (3.43)

μ = 0 on ∂D × [0, T ] (3.44)

μ = g on D × {t = 0} (3.45)

where D is an open bounded subset of Rn, DT = D × (0, T ], T > 0, f : DT → R

and g : D → R are given and μ : DT → R is the unknown. Here the operator Ψ is

defined as

Ψμ = −
n∑

i,j=1

((aij(x, t)μxi
)xj

+
n∑

i=1

bi(x, t)μxi
+ c(x, t)μ (3.46)

Note that FPK equations naturally fit this form. Let the “compatibility conditions”

denote those indicated in [38] Chapter 7 Theorem 6. Summarizing Theorems 3, 4,

5, 7 in [38] Chapter 7 the following compendium theorem is obtained.

Theorem 1. Existence and Uniqueness of Solutions of Parabolic PDEs

Assume aij is positive semi-definite, and aij, bi, c ∈ L∞(DT ) for all choices of indices

and f, g ∈ L2(DT ). Then, there exists a unique weak solution μ to the parabolic equa-
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tion (3.43)-(3.45) which satisfies μ ∈ L2(0, T ;H1
0 (D)) and μ′ ∈ L2(0, T ;H−1(D)).

If, in addition, aij, bi, c are smooth on D and do not depend on t and, g ∈ H1
0 (D)

and f ∈ L2(0, T ;L2(D)), then μ ∈ L2(0, T ;H2(D)) ∩ L∞(0, T ;H1
0 (D)) and μ′ ∈

L2(0, T ;L2(D)). If the compatibility conditions hold and, g ∈ C∞(D) and f ∈
C∞(DT ) then μ ∈ C∞(DT ).

General Existence and Uniqueness of Solutions of HJB Equations

The following analysis is developed with reference to Chapter 4 of [39]. Consider a

stochastic controlled system:

dx(t) = b(t, x(t), u(t))dt+ σ(t, x(t), u(t))dW (t), t ∈ [s, T ], (3.47)

x(s) = y (3.48)

with cost functional

J(s, y; u(·)) = E

{∫ T

s

f(t, x(t), u(t))dt+ h(x(T ))

}
(3.49)

and value function

V (s, y) = inf
u(·)∈U [s,T ]

J(s, y; u(·)), ∀(s, y) ∈ [0, T )× R
n (3.50)

Consider further the following Hamilton Jacobi Bellman equation

− vt + sup
u∈U

G(t, x, u,−vx,−vxx) = 0, (t, x) ∈ [0, T )× R
n, (3.51)

v|t=T = h(x), x ∈ R
n (3.52)

where

G(t, x, u, p, P ) � 1

2
tr(Pσ(t, x, u)σ(t, x, u)T ) + 〈p, b(t, x, u)〉 − f(t, x, u) (3.53)
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Two assumptions are now defined:

(S1) The control space U is a compact subset of Rn and T > 0.

(S2) The maps b : [0, T ] × R
n × U → R

n, σ : [0, T ] × R
n × U → R

n×m, f :

[0, T ]×R
n ×U → R and h : Rn → R are uniformly continuous and uniformly

Lipschitz in x.

Theorems 5.2, 6.1 in Chapter 4 [39] taken together yield the following result.

Theorem 2. Existence and Uniqueness of Viscosity Solutions of HJB Equations.

Let (S1) and (S2) hold. Then there exists a unique viscosity solution v to the HJB

equation (3.51), (3.52) and that solution is equal to the value function V of the

stochastic control problem. Furthermore if v ∈ C1,2([0, T ] × R
n) then the viscosity

solution is a classical solution.

The following proposition is now presented which is used in the analysis of the

MFG HJB equations.

Proposition 1. [39] Chapter 4, Proposition 4.1.

Suppose (S1)-(S2) hold for (bξ, σξ, f ξ, hξ) with ξ ∈ [0, 1] and b0 = b, σ0 = σ, f 0 =

f, h0 = h. Suppose further that limξ→0 |φξ(t, x, u) − φ(t, x, u)| = 0, uniformly in

(t, u) ∈ [0, T ] × U and x in compact sets of Rn, where φξ = bξ, σξ, f ξ, hξ. Then,

limξ→0 V
ξ(s, y) = V (s, y).

Existence and Uniqueness of Solutions of the CDMA MFG FPK and

MFG HJB Equations

We now consider the existence and uniqueness of solutions of the MFG PDEs sep-

arately. In particular, we address the existence and uniqueness of a solution of the

MFG HJB equations (in both problems) given the Mean Field dynamics and we

then address the existence and uniqueness of a solution of the MFG FPK equations

(in both problems) given the optimal generic agent controls.
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Models Without Localized Cost or Agent Motion

Let D = (βmin, βmax) × (0, pmax
in ) × (0, pmax

out ) be the bounded open domain over

which we are considering existence and uniqueness of solutions of the MFG PDEs.

We begin with the existence and uniqueness of a solution of the MFG HJB equation.

Considering the dynamics of the generic agent, the following result is obtained.

Proposition 2. There exists a unique viscosity solution v to (3.29) which is equal to

the value function V in (3.28). Furthermore the value function is linearly bounded

and uniformly Lipschitz with respect to state variables.

Proof. Referring to the notation used for Theorem 2 we have for this problem,

b(t, x, u) =

⎛
⎜⎜⎜⎝

−a(β(t) + b)

upin(t)

1
ε

(σpout )
2

2

(
1− pout(t)

eβ(t)pin(t)+ν

)
⎞
⎟⎟⎟⎠ (3.54)

and

σ(t, x, u) =

⎛
⎜⎜⎜⎝
σβ 0 0

0 σpin 0

0 0 1√
ε
σpout

√
pout(t)

⎞
⎟⎟⎟⎠ (3.55)

and the MFG HJB equation (3.29). Consider now the perturbed dynamics of the

generic agent using a small positive quantity ξ, 0 < ξ << 1 and consider σξ defined

below

σξ(t, x, u) =

⎛
⎜⎜⎜⎝
σβ 0 0

0 σpin 0

0 0 1√
ε
σpout

√
pout(t) + ξ

⎞
⎟⎟⎟⎠ (3.56)

Considering the perturbed system which is identical to the original system except

for the replacement of σξ(t, x, u) for σ(t, x, u), it can be shown that (S1) and (S2)

are satisfied on D. Therefore, by Theorem 2, there exists a unique viscosity solution

vξ to the perturbed system MFG HJB equation and that solution is equal to the
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value function V ξ(s, y) of the perturbed stochastic control problem, which is linearly

bounded and uniformly Lipschitz in state variables. Furthermore by Proposition

1, since limξ→0 σ
ξ(t, x, u) = σ(t, x, u) uniformly, it follows that limξ→0 V

ξ(s, y) =

V (s, y) which is the value function of the original unperturbed system, completing

the proof.

So, for the rest of the work it is assumed that a unique smooth classical solution

exists for the MFG HJB equation (3.29) and that solution is equal to the value

function (3.28).

For the existence and uniqueness of a solution of the MFG FPK equation, the

following result is obtained.

Proposition 3. Let fμ0 ∈ C∞(D). Then, there exists a unique weak solution fμt to

(3.33). Further, fμt ∈ C∞(DT ).

Proof. Consider the alternate form of (3.33),

∂fμt

∂t
= − ∂

∂β

(
−σ2

β

2

∂fμt

∂β

)
− ∂

∂pin

(
−σ2

pin

2

∂fμt

∂pin

)
− ∂

∂pout

(
−σ2

pout

2ε
pout

∂fμt

∂pout

)
(3.57)

+ a(β + b)
∂fμt

∂β
+ (−upin)

∂fμt

∂pin
+

(
σ2
pout

2ε

pout
eβpin + ν

)
∂fμt

∂pout

+

(
a+

σ2
pout

2ε

1

eβpin + ν

)
fμt , (t, θ) ∈ [0, T ]×D

On D, it is clear that aij, bi, c ∈ L∞(DT ) for all choices of indices where a
ij, bi, c are

defined in Theorem 1. Furthermore, aij, bi, c are all smooth on D and do not depend

on time. Also f = 0 ⇒ f ∈ L2(DT ) and f ∈ C∞(DT ). Therefore, by Theorem 1,

if g = fμ0 ∈ C∞(D) and compatibility conditions hold, there exists a unique weak

solution to the MFG FPK equation and fμt ∈ C∞(DT ).
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Models With Localized Cost and Agent Motion

We now present theorems for the existence and uniqueness of solutions of the MFG

HJB and MFG FPK equations in the case of localized cost and agent motion. The

proofs are almost identical to those in the previous section and are therefore omitted

for brevity. Let D = (βmin, βmax)×(0, pmax
in )×(0, pmax

out )×(xmin
1 , xmax

1 )×(xmin
2 , xmax

2 )

be the open bounded domain of interest.

Proposition 4. There exists a unique viscosity solution v to (3.38) which is equal to

the value function V in (3.37). Furthermore the value function is linearly bounded

and uniformly Lipschitz with respect to state variables.

For the rest of the work it is assumed that a unique smooth classical solution

exists for the MFG HJB equation (3.38) and that solution is equal to the value

function (3.37). For the MFG FPK equation the following result is obtained.

Proposition 5. Let fμ0 ∈ C∞(D). Then there exists a unique weak solution fμt to

(3.41). Further, fμt ∈ C∞(DT ).

3.7.4 Existence and Uniqueness of Solutions of the MFG Loop

It has been shown that the MFG HJB and MFG FPK equations of both CDMA

problems admit unique solutions separately. We now discuss existence and unique-

ness of solutions of the nonlinear MFG Loops (3.34), (3.42) of the non-localized and

localized problems respectively. The approach taken here is to apply the Contraction

Principle argument from [16] to the MFG PDEs and best response controls.

Conditions are now described under which the loop has a unique solution, assum-

ing that the MFG FPK and MFG HJB equations admit unique solutions separately.

Consider the following assumptions (H1)-(H6),

(H1) The control value space U is a compact subset of Rm and the final time

T satisfies 0 < T < ∞.
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(H2) The dynamics governing the states are smooth and together with their

derivatives are uniformly Lipschitz in state variables and controls.

(H3) For any given smooth Mean Field density fμt , the loss function L(·)
is smooth and together with its derivatives is uniformly Lipschitz in state

variables.

(H4) The value function V (·) lies in C1,2[0, T ].

(H5) The infimization operation in the Hamiltonian yields a unique solution

continuous and uniformly Lipschitz in state variables.

(H6) The loop gain operator in the MFG Loop has Wasserstein norm strictly

less than 1 on the space of solutions lying in L2 ∩ L∞.

We present the following theorem for general nonlinear MFG theory.

Theorem 3. Contraction Theorem ([10]).

Assume (H1) to (H6) are satisfied for appropriately constrained parameter values

and also assume that the MFG HJB and MFG FPK equations have unique solu-

tions separately. Then there exists a contraction constant for which the MFG Loop

converges.

Following from Theorem 3 the following result is obtained

Proposition 6. There exists a unique solution to each MFG Loop (3.34), (3.42) of

the non-localized and localized problems respectively.

The proof follows directly from the fact that assumptions (H1) - (H6) are met.

The MFG Loop therefore yields a unique solution providing the value function V (·),
the Mean Field density fμt(·) and the resulting optimal control strategies of the

generic agent. These optimal controls form a unique Nash Equilibrium strategy

set in the infinite population system. Given the applicability, in this case, of the
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contraction principle, one can approximately solve the problem by applying numer-

ical methods and computation which is an important part of this work and will be

discussed in Chapter 4.

3.7.5 Finite Population Implications of ε-Nash Equilibria

In the above sections, agent controls and Mean Field dynamics are considered for

the limiting infinite population system. In the presented problem, though there are

a large number of agents in the network, there is a distinction between the infinite

population continuum and the actual physical state of the system. A key aspect of

MFG analysis is that if each agent assumes an infinite population with Mean Field

describing the generic agent and if each agent then applies MFG optimal controls

for the infinite population system, the controls chosen will result in an approximate

Nash equilibrium or ε-Nash equilibrium in the original finite population game.

Theorem 4. MFG ε-Nash Theorem ([10, 16])

Assume that all conditions of the MFG Nash Equilibrium Theorem hold and hence

that the best response control laws U∞ = {ui
0 = ui

0(t, x
i|μt), 1 ≤ i < ∞} generating a

Nash equilibrium for an infinite agent population system and associated performance

functions exist. Then UN = {ui
0 = ui

0(t, x
i|μt), 1 ≤ i ≤ N} yields a (strong) ε-Nash

equilibrium for all ε, i.e. ∀ε > 0 ∃N(ε) > 0 s.t. ∀N ≥ N(ε),

J i(ui
0, u

−i
0 )− ε ≤ inf

ui∈U
J i(ui, u−i

0 ) ≤ J i(ui
0, u

−i
0 )

where ui ∈ U , the set of all past dependent controls of the form ui = ui(t, xi|μt).

Applying this theorem to the two CDMA optimization problems, it is therefore

concluded that the infinite population MFG optimal controls result in an ε-Nash

equilibrium in the actual finite population systems.
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Chapter 4

Numerical Investigations of

CDMA Control Problems

In this chapter, numerical algorithms are provided for the solutions to the two

CDMA network optimization problems in Chapter 3. In addition, these algorithms

are verified through simulations in order to provide illustrative examples. The chap-

ter is organized as follows. First, we provide the PDE discretization techniques used

for the MFG HJB and MFG FPK equations as well as all boundary conditions.

Then, following closely [17, 18], two numerical algorithms are provided. The first

computes the solution of the MFG Loop resulting in the Mean Field density dy-

namics as well as the value function and optimal controls of the generic agent. The

second algorithm uses the MFG Loop solution in order to simulate particular sam-

ple paths of system agent states, costs and controls which are applying the MFG

optimal controls as computed in the first algorithm. The final part of this chapter

presents certain chosen simulations for illustration.
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4.1 PDE and State Discretization Techniques

In order to apply numerical investigations of the two MFG CDMA problems and

to compute the convergent solutions of the MFG Loops, one must first discretize

the relevant equations. In this work, a finite difference method is used [40]. We

transform the MFG HJB and MFG FPK equations into relevant difference equations

and apply numerical iterations to approximate their curves in time and their state

domain spaces.

4.1.1 Boundary Conditions and State Discretization

First, the domains of the agent state variables are restricted to a discrete grid in

R
3 or R5 for the case without and with agent motion respectively. The domain of

states β, pin, pout, x1, x2 are bounded to stay within [βmin, βmax], [0, pmax
in ], [0, pmax

out ],

[xmin
1 , xmax

1 ], [xmin
2 , xmax

2 ] respectively where each point in the restricted domain of

state component z is given by {zi = zmin + i ∗ Δz} for all 0 ≤ i ≤ Nz − 1 where

Nz is the number of discrete state values the variable z can take and Δz is the

constant spacing between each point of the discretized domain of state variable z.

Time while already being bounded to the domain of [0, T ] has been discretized to

points tn, 0 ≤ n ≤ Nt, where tn = n ∗ Δt, Δt is the uniform time step, Nt is the

number of discrete time points.

4.1.2 PDE Discretization

We now define the methods used to approximate first and second order partial

derivatives. Let f(x1, x2, ...) be a function of multiple variables and let x1 be the

variable with respect to which we want to approximate the derivative of f . The first

order derivative of f with respect to x1 is approximated as

∂f(x1, x2, ...)

∂x1

=
f(x1 +Δx1, x2, ...)− f(x1, x2, ...)

Δx1

(4.1)

58



The first order partial derivatives with respect to the other variables x2, ... are ap-

proximated similarly. Further, the second order derivative of f with respect to x1

is approximated as

∂2f(x1, x2, ...)

∂x2
1

=
f(x1 +Δx1, x2, ...)− 2f(x1, x2, ...) + f(x1 −Δx1, x2, ...)

(Δx1)2
(4.2)

and the second order partial derivatives with respect to other variables x2, ... are

approximated similarly.

4.2 Numerical Algorithms for the Solution of the MFG

Equations

Given the MFG Loop and following a similar idea to that of the work in [17, 18],

the algorithms for the solution of the MFG equations are described below. A fixed

point algorithm is first used to numerically compute the values of the Mean Field

density, the value function and the best response controls of the generic agent for

all times and discrete state values. The algorithm is shown below where t and θ

are understood to be discrete (after discretization) variables for times and states

respectively. We present only the algorithm in the case without localized cost or

agent motion, the inclusion of which merely involves the addition of two new discrete

dimensions (namely one for each position dimension) as well as the solution of two

additional discretized Hamiltonians corresponding to the latter two in (3.39) which

are solved almost identically as the one presented.
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Data: fμ0(·) the initial Mean Field density

Result: fμt(·), V (·), u∗(·)
V <0>(T, θ) := 0 for all θ;

u∗<0>(T, θ) := −1 for all θ;

f<−1>
μt

(θ) := ∞ for all t and θ;

i := 0;

while |fμt

<i>(θ)− fμt

<i−1>(θ)|∞ > εc do

Plug fμt

<i>(·) into the discretized MFG HJB equation and solve the

equation in the backwards direction to update V <i+1>(t, θ);

Use V <i+1>(·) to find the best response controls u∗<i+1>(t, θ) from the

minimization of the discretized Hamiltonian:

upin
∗<i+1>(t, θ) = −sign

{
V <i+1>(t, β, pin +Δpin, pout)− V <i+1>(t, β, pin, pout)

Δpin

}

Plug the best response controls u∗<i+1>(·) into the discretized MFG FPK

equation and solve the equation in the forwards direction to update

fμt

<i+1>(θ);

i := i+ 1;

end

Algorithm 1: MFG PDE solver

Next, Algorithm 2 solves for a particular generic agent’s state, controls and value

function sample paths given the Mean Field triple fμt(·), V (·), u∗(·) determined from

Algorithm 1.
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Data: fμt(·), V (·), u∗(·), θi(0)
Result: V i(t), θi(t), u∗i(t) for all t

Generate all state Brownian Motions of generic agent i, W i(t);

for each discrete time t do

Find the closest grid point θ to θi(t) in the discretized state domain;

V i(t) := V (t, θ);

Determine the best response control of the agent u∗(t, θ);

ui(t) := u∗(t, θ);

Apply the control ui(t) and compute the next state value θi(t+Δt) by

iterating the discretized agent state SDEs;

end

Algorithm 2: MFG sample path solver

4.3 Simulation Results of the System Without Agent

Motion

Simulations of the CDMA optimization problem without agent motion or position

state variables are now investigated. The SDE parameters are chosen to be a = 0.1,

b = 0.1, σβ = 0.4, σpin = 0.6, σpout = 0.6, ν = 0.1. The noise power is chosen

to be η = 0.25. The slow-fast parameter ε is given by ε = 0.01. For the relevant

discretization parameters, the final time is chosen to be T = 1 with Δt = 0.003. The

domain is bounded by β ∈ (βmin, βmax) = (−1, 1), pin ∈ (pmin
in , pmax

in ) = (0, 3) and

pout ∈ (pmin
out , p

max
out ) = (0, 6). Also, it is set that Δβ = 0.1, Δpin = 0.15, Δpout = 0.3.

The initial Mean Field density fμ0 is chosen to be a discretized approximation of

the Gaussian distribution N

⎛
⎜⎜⎜⎝
⎛
⎜⎜⎜⎝
−0.3

2

2

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎝
0.3 0 0

0 0.4 0

0 0 0.4

⎞
⎟⎟⎟⎠
⎞
⎟⎟⎟⎠.

A simulation of Algorithm 1 is first investigated where the MFG Loop is solved

for the dynamics of the Mean Field density fμt as well as the dynamics of the value

function V of the generic agent. The stopping condition is set to be εc = 0.0001.
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Fig. 4.1 shows the resulting joint marginal Mean Field density of state parameters

β and pout denoted as fβ,pout
μt

(β, pout) at the times t ∈ {0, 0.5, 0.75, 1}.

Fig. 4.1 Dynamics of the marginal Mean Field density of β and pout

The corresponding “marginal” value function of the generic agent of state pa-

rameters β and pout denoted as Vβ,pout(t, β, pout) which is defined to be

Vβ,pout(t, β, pout) =

∫
Ωpin

V (t, β, pin, pout)fμt(β, pin, pout)dpin (4.3)

is given in Fig. 4.2 at the times t ∈ {0, 0.5, 0.75, 1}.
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Fig. 4.2 Dynamics of the value function of β and pout

Next, the dynamics in time of the marginal Mean Field densities fβ
μt
(β), f pin

μt
(pin),

f pout
μt

(pout), are shown in Fig. 4.3 to 4.5.

Fig. 4.3 Dynamics of the marginal Mean Field density of β
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Fig. 4.4 Dynamics of the marginal Mean Field density of pin

Fig. 4.5 Dynamics of the marginal Mean Field density of pout

In addition to the Mean Field PDE numerical investigations illustrated above,

some investigations on particular sample path behaviour of a given agent in the

system are considered, similar to those presented in [17, 18]. Fig. 4.6 shows the
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results of a simulation of Algorithm 2 with the same parameters mentioned at the

beginning of the section as well as the initial conditions β0 = 0, (pin)0 = 1.6,

(pout)0 = 1.8. In particular, random sample path behaviour of each of the given

agent’s state variables, the agent’s best response controls as determined by the

infinite population MFG solution and the agent’s value function are depicted.

Fig. 4.6 Sample path simulation of a generic agent’s state, value func-
tion and controls

4.4 Simulation Results of the System With Agent Motion

As in the case of the CDMA problem without agent motion, we consider simu-

lations of both the MFG PDE solution and particular random sample path be-

haviour of a particular generic agent. The dynamic SDE parameters are set to be

a = 0.1, b = 0.1, σβ = σpin = σpout = 1, ν = 0.1, σx1 = σx2 = 0.1 and the noise

power is chosen to be η = 0.25. The slow-fast parameter ε is given by ε = 0.01.

For the relevant discretization parameters, the final time is chosen to be T = 1

with Δt = 0.005. The domain is bounded by β ∈ (βmin, βmax) = (−1, 1), pin ∈
(pmin

in , pmax
in ) = (0, 3), pr ∈ (pmin

out , p
max
out ) = (0, 6), x1 ∈ (xmin

1 , xmax
1 ) = (−1.8, 1.8),
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and x2 ∈ (xmin
2 , xmax

2 ) = (−1.8, 1.8). Also, it is set that Δβ = 0.2, Δpin = 0.3,

Δpout = 0.6 and Δx1 = Δx2 = 0.18. The system is further modelled as hav-

ing the base station located at the origin xb = 0. The initial Mean Field den-

sity fμ0 is chosen to be a discretized approximation of the Gaussian distribution

N

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

1.5

3

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.4 0 0 0 0

0 0.6 0 0 0

0 0 0.6 0 0

0 0 0 0.4 0

0 0 0 0 0.4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

As in Section 4.3, we first consider the results of applying Algorithm 1 with

stopping condition εc = 0.001 to solve the relevant MFG PDEs. The results are

highlighted by presenting the dynamics of the joint marginal Mean Field density

of the geometric state parameters x1 and x2, f
x1,x2
μt

(x1, x2). The dynamics of this

marginal density are shown in Fig. 4.7 where the density is shown for the particular

times t ∈ {0, 0.5, 0.75, 1}.

Fig. 4.7 Dynamics of the marginal Mean Field density of x

The “marginal” value function of the generic agent with respect to the geometric
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variables Vx1,x2(t, x1, x2) has corresponding dynamics shown in Fig. 4.8 where the

value function is shown for times t ∈ {0, 0.5, 0.75, 1}.

Fig. 4.8 Dynamics of the value function of x

A notable observation is that the generic agent is moving in distribution to be

closer to the base station. One can see that the density is somewhat approaching

a point mass centred at the origin. The value function is consistent with this as

it shows that agents have minimum costs near the origin. Therefore, movement

towards the origin is in fact anticipated.

Fig. 4.9 depicts a sample path of an agent’s geometric state variables as output

from Algorithm 2 where the dynamic parameters are as before and the initial con-

ditions are taken to be (x1)0 = (x2)0 = 1. As can be seen from both agent controls

as well as state variable dynamics, the agents are trying to push their geometric

variables to the origin.
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Fig. 4.9 Individual sample paths of x coordinates and their controls

Fig. 4.10 shows a two dimensional position plot of a particular generic agent’s

sample path in time with initial conditions (x1)0 = (x2)0 = 1 and dynamical param-

eters as before. The plot shows that in two dimensional space the agent is moving

towards the origin with some random disturbances.

Fig. 4.10 Position sample path of a generic agent
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The two-dimensional plot of agent positions depicted by circles shown in Fig.

4.11 describes a system with 100 agents whose initial states are sampled according

to the initial Mean Field density fμ0 . The agents use the infinite population MFG

optimal controls as determined by Algorithm 1 in order to make decisions in time.

The result shown in the simulation is that the agents are all crowding towards the

base station as time varies from t = 0 to t = 1 which is consistent with the other

results.

Fig. 4.11 Two-dimensional plot of agent positions

4.5 Run Time and Memory Usage Comparison of the

Problems

Following the approach in [17, 18] we now present run time and memory usage data

of the execution of the numerical Algorithms for the MFG Loop of each of the non-

localized and localized problem simulations in Section 4.3 and 4.4 respectively. The

simulations were run on a 2.9 GHz Intel(R) Core(TM) i5 processor with 8 GB of

1867 MHz DDR3 RAM on a 64-bit operating system. Table 4.1 shows the resulting
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simulation data.

Table 4.1 Numerical simulation performance data

Problem Dim. Step Sizes εc
Num.
Iterations

Run Time
(sec)

Memory
(KB)

Non-Loc. 4
Δt = 0.003, Δβ = 0.1,
Δpin = 0.15, Δpout = 0.3

10−4 4 20.6 2350

Non-Loc. 4
Δt = 0.003, Δβ = 0.1,
Δpin = 0.15, Δpout = 0.3

10−5 5 25.6 2350

Localized 6
Δt = 0.003, Δβ = 0.1,
Δpin = 0.15, Δpout = 0.3,
Δx1 = Δx2 = 0.18

10−3 3 2525.7 97459

Localized 6
Δt = 0.003, Δβ = 0.1,
Δpin = 0.15, Δpout = 0.3,
Δx1 = Δx2 = 0.18

10−4 5 4315.4 97459

The data shows that the increase in dimension (by 2) of the problem when adding

agent motion increases the run time by an order of magnitude of 2 with the same

stopping condition εc = 10−4.

An especially desirable feature of the Mean Field algorithms used in this work

is that a large part of the solution can be precomputed off line and consequently it

is important to highlight that the run times presented in the above table basically

correspond to run times of an off line solution. This is important in a practical

setting because in contemporary networks it is highly desired and often required

that the on line time complexity of the power control algorithm applied is small.
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Chapter 5

Decentralized Stochastic Control

of OFDMA Femtocell Systems

5.1 Introduction

We consider an OFDMA femtocell downlink power control problem where the fem-

tocell agents are transmitting data to each of their users over the different OFDMA

frequency bands. The agents also take account for the behaviour of macrocell which

in this case is modelled to be known ahead of time. The system is modelled as

a competitive game with N different agents or decision makers corresponding to

the femtocells transmitting. Through the control of their transmit power over each

band, agents are competing with each other in order to minimize their running cost

(in time), specified by a linear combination of their quality of service (QoS) and

transmit power.

5.2 Problem Formulation

We assume a femtocell network of N agents using OFDMA communication. The

system evolves in continuous time t ∈ [0, T ] and has finite horizon T , 0 < T < ∞.

There is a set of femtocell agents Ai, 1 ≤ i ≤ N . There is also a set Rj, 1 ≤ j ≤ M
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of frequency resource blocks.

It is assumed that user association is fixed, i.e. that user devices are associated

to a particular base station. Further it is assumed that resource block association is

fixed, i.e. that the different frequency blocks are already allocated to corresponding

user devices for the time period considered. It is also assumed that the dynamic

state of the macrocell, namely its transmit power and channel attenuation, is known

ahead of time by the femtocell agents. This model considers power control over one

time period [0, T ] of the downlink transmission of each base station in a femtocell

network over each resource block as a decentralized dynamic game.

In addition to the state variables to be discussed in the Section 5.3, it is assumed

that each agent i has a state variable xi ∈ R
2 corresponding to the (static) position

in two dimensional space of the femtocell. This state variable is considered to be

the type of the agent. It is also assumed that the macrocell is located at the origin

and that the femtocells are spread out in space according to the probability density

function fx1,x2(x1, x2) and that this density function is known to all agents and is

the only information each agent has about the other agents’ locations (types).

5.3 Agent State Variables and Dynamics

As in Chapter 3, the problem models agent states as containing the information of

both channel attenuation and transmit power over each of the frequency bands. The

log-normal generalized SDE model is used as a channel model for this problem. The

state of agent Ai, 0 ≤ i ≤ N , is given by the two state (vector) dynamic variables

βi(t) ∈ R
M and pi(t) ∈ R

M
+ corresponding to the vectors of attenuation parameters

over each frequency block and the transmit power over each frequency block of the
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given agent respectively. The attenuation vector variable βi(t) is defined as

βi(t) =

⎛
⎜⎜⎜⎝

β1
i (t)
...

βM
i (t)

⎞
⎟⎟⎟⎠ (5.1)

where each βj
i (t), 1 ≤ j ≤ M corresponds to the attenuation parameter of transmis-

sion over resource block Rj. For each attenuation parameter βj
i (t), the dynamics

follow the following uncontrolled stochastic differential equation

dβj
i (t) = −ai(β

j
i (t) + bi)dt+ σ2

βi
dWβj

i
(t), βj

i (0) = (βj
i )0 (5.2)

where ai > 0, bi > 0, σβi
> 0 for all i, 1 ≤ i ≤ N and Wβj

i
(t) ∈ R is a standard

Wiener process independent of all other mutually independent Wiener processes and

initial conditions (βj
i )0.

The transmit power vector pi(t) is defined by

pi(t) =

⎛
⎜⎜⎜⎝

p1i (t)
...

pMi (t)

⎞
⎟⎟⎟⎠ (5.3)

which correspond to the transmit power over each resource block. For each power

variable, the dynamics follow the following SDE

dpji (t) = uj
i (t)dt+ σ2

pi
dWpji

(t), pji (0) = (pji )0 (5.4)

where σpi > 0, uj
i (t) ∈ [−1, 1] and Wpji

(t) ∈ R is a standard Wiener process indepen-

dent of all other mutually independent Wiener processes and initial conditions (pji )0.

The output power of the particular channel j, 1 ≤ j ≤ M , corresponding to the

transmitted signal of agent i to its corresponding user device is given by eβ
j
i (t)pji (t)

73



for all 1 ≤ i ≤ N .

In this model, the parameters of the dynamical equations of both the power

and attenuation processes are independent of frequency resource, i.e. the SDEs

governing the agent states have identical parameters over each resource block (and

hence do not depend on j). For all i : 1 ≤ i ≤ N , the dynamics are uniform, i.e.

ai = a, bi = b, σβi
= σβ, σpi = σp.

5.4 Agent Cost Functions

Agent costs are modelled as a linear combination of signal-to-interference-plus-noise-

ratio (SINR) and transmit power. Before explicitly providing an expression for

SINR (and corresponding cost functions) it is first noted that the distance between

a femtocell and its corresponding user is assumed to be negligible compared to

the distance between femtocells. Further, since the problem is considered in the

downlink and that interference occurs at the user devices, in order to compute path

loss, one needs to know the distance between each femtocell and each corresponding

user device. It is therefore assumed that the distance between a given user device

and an interfering femtocell base station is approximately equal to the distance

between that interfering base station and the femtocell base station to which the

user device is associated. More explicitly, at time t, user device j (associated to

frequency resource j), 1 ≤ j ≤ M of femtocell agent i, 1 ≤ i ≤ N experiences an

interfering signal from agent k, 1 ≤ k ≤ N , k 	= i with power e−||xi−xk||2eβ
j
k(t)pjk(t)

where || · || denotes the Euclidean norm in R
2. It is remarked that the path loss

exponent−||xi−xk||2 uses the distance between femtocell agent i and femtocell agent

k and does not explicitly use the position of the user device which is abstracted from

the problem.

An expression for the SINR is now formulated. The SINR of agent Ai, 1 ≤ i ≤ N ,
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over frequency resource Rj, 1 ≤ j ≤ M , is given by

γj
i (t) =

eβ
j
i (t)pji (t)∑N

k=1,k �=i e
−||xi−xk||2eβ

j
k(t)pjk(t) + e−||xi||2eβ

j
m(t)pjm(t) + η

(5.5)

where all variables are defined as previously, βj
m(t) ∈ R and pjm(t) ∈ R+ corre-

spond to the known attenuation parameter and transmit power of the macrocell

over frequency resource Rj and η is the thermal noise in the channel. It is remarked

that the SINR expression is considered as a per-frequency-resource quantity. This

is due to the fact that in OFDMA communication, signals transmitted over differ-

ent frequency resources do not interfere due to the orthogonality of the frequency

resources.

Two models are provided for the loss function of each agent i, 1 ≤ i ≤ N . The

first considers the case where each of the agents is aiming to maximize social well

fare (over time) by minimizing the time integrated loss of the sum of costs over each

of its user devices, which in this formulation, corresponds to the sum of costs over

each transmitting resource block. The corresponding instantaneous loss function is

defined as

Li(t, ui, u−i) =
M∑
j=1

(
−γj

i (t) +
1

N
pji (t)

)
(5.6)

where here, the coefficient 1
N

is a normalization coefficient introduced with the

purpose of keeping the two cost metrics (QoS and transmit power) of the same

orders of magnitude of N .

The second case of loss function considered is that of each agent playing an inde-

pendent game with other agents over each of the different frequency slots. Therefore,

for each dynamic game, the per resource consider per resource block costs (thus di-

viding the system into M different games)

Lj
i (t, ui, u−i) = −γj

i (t) +
1

N
pji (t) (5.7)

75



where the coefficient 1
N

is again introduced for reasons identical to those in (5.6).

In this case of this loss function, the original dynamic game is played instead as

M independent games where in each game j (one for each frequency resource j),

1 ≤ j ≤ M , agent i, 1 ≤ i ≤ N has only two dynamic state variables βj
i (t) ∈ R and

pji (t) ∈ R+. For reasons of computational efficiency, the second case of costs will

be considered for the remainder of the work. Due to the independent games being

played over each frequency slot, the subscript j is dropped in the majority of the

analysis for the purpose of brevity. The cost-to-go of a given agent Ai is given by

JN
i (s,ui, u−i, θ̃i; xi) � E

[∫ T

s

LN
i (t, ui, u−i)dt

∣∣∣∣θi(s) = θ̃i

]
(5.8)

= E
[ ∫ T

s

(
− eβi(t)pi(t)∑N

k=1,k �=i e
−||xi−xk||2eβk(t)pk(t) + e−||xi||2eβm(t)pm(t) + η

+
1

N
pi(t)

)
dt

∣∣∣∣θi(s) = θ̃i

]
(5.9)

where θi(t) =

⎛
⎝βi(t)

pi(t)

⎞
⎠ and we explicitly note the parametrization of the cost by

the static position xi of agent i.

5.5 Mean Field Games Analysis

The steps involved in applying Mean Field Game (MFG) theory in this chapter and

the computational methods used very closely follow the general steps in Chapters 3

and 4. We note that for conciseness, certain details are omitted in the discussion in

this chapter when they may be assumed to be followed in a straightforward manner

from the detailed counterparts presented in Chapters 3 and 4.
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5.5.1 Middle Population Argument and Generic Agent State Extension

Unfortunately, one cannot apply a standard MFG analysis to the system (5.2),

(5.4), (5.9) by taking the infinite population limit due to the divergence of the sum

in the denominator of the agent cost function (5.9) as N → ∞. Instead, a middle

population argument is applied which is assumed to be valid for N of moderate

size; for the problem under consideration this is considered to mean that N is on

the order of magnitude of 50 ≤ N ≤ 100 corresponding to a typical real life single

macrocell femtocell network.

In the middle population range, the generic agent cost function is constructed

using (i) an infinite population average interference given by a Mean Field integral

and (ii) an approximation error process which models the difference between the

actual average interference and the Mean Field integral. As a result, the generic

agent cost functions do not assume an infinite population system but rather include

an infinite population limiting average as an approximation while also taking account

of the approximation error involved with respect to the population of middle sized

N . This is in contrast to the standard MFG approach where the generic agent cost

functions use only an infinite population limiting average as an approximation to

the large population behaviour. Each of the middle population approximations and

assumptions are now described in detail.

Generic Agent Dynamics

Because the dynamics of each agent are the same, irrespective of the size of the

population N , we let the dynamics of the generic agent be identical to the dynamics

of each agent prior to the system approximation given by the SDEs in (5.2) and

(5.4). We recall that in the separated game (i.e. that where the frequency blocks

are considered separately) the agent processes βi(t) and pi(t) are one dimensional.
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Generic Agent Costs Using Middle Population Approximation

The cost-to-go of the generic agent in the middle population range is given by (5.10).

Jmid
i (s, ui, u−i, θ̃i; xi) = E

[∫ T

s

Lmid
i (t, ui, u−i)dt

∣∣∣∣θi(s) = θ̃i

]
(5.10)

and correspondingly the middle population loss function of generic agent i is given

by

Lmid
i (t, ui, u−i) = − eβi(t)pi(t)

NI(t) + zi(t) + e−||xi||2eβm(t)pm(t) + η
+

1

N
pi(t) (5.11)

where zi(t) is to be defined, and I(t) is the Mean Field integral term given by

I(t) = lim
N→∞

1

N

N∑
k=1,k �=i

e−||xi−xk||2eβk(t)pk(t) (5.12)

=

∫
Ωθ×Ωx

e−||xi−x||2eβpfμt(θ|x)fx(x)dxdθ (5.13)

Here θ =
(
β p z

)T

, fμt(θ|x) = fμt(β, p, z|x1, x2) is the conditional probability

density function, conditioned on the location (type), of the Mean Field at time

t ∈ [0, T ], Ωθ = Ωβ × Ωp × Ωz is the support set of fμt and fx(x) = fx1,x2(x1, x2),

and z is an argument of fμt corresponding to a new state variable which is to be

defined. Here, we have made the following assumption

(M1) There exists a Mean Field measure μt with corresponding density fμt

such that the limit of the average interference power given by (5.12), as the

number of agents N goes to infinity, converges to the Mean Field integral

(5.13).

The variable zi(t) ∈ R in (5.11) then corresponds to the approximation error

incurred by modelling the actual average interference power by the Mean Field
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integral expression. More explicitly,

zi(t) =
1

N

N∑
k=1,k �=i

e−||xi−xk||2eβk(t)pk(t)−
∫
Ωθ×Ωx

e−||xi−x||2eβpfμt(θ|x)fx(x)dxdθ

(5.14)

We shall make the following second assumption

(M2) The approximation error zi(t) is a random process which is independent

of all other random processes and variables in the loss function (5.11) including

βi(t) and pi(t) as well as the macrocell states βm(t) and pm(t) and the channel

noise η.

Generic Agent State Extension

We now make the third assumption

(M3) The dynamics of approximation error process zi(t) in the generic agent

loss function (5.11) are given by an SDE and the state vector of the generic

agent is extended to include zi(t).

Naturally, given the assumed state extension, the Mean Field measure (and

corresponding density fμt) now carry the joint statistical information of this process

with the other state variables.

In this work in particular, the following linear SDE for a uniformly parametrized

population is used to approximate the dynamics of the approximation error:

dzi(t) = −αzi(t)dt+ σzdWzi(t), zi(0) = (zi)0 (5.15)

where α >> 0 and σz > 0 and Wzi(t) is a standard Wiener process.
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Generic Agent Value Function

The value function of the generic agent i, again parametrized by the position xi of

agent i is then defined as

Vi(s, θ̃i; xi) = inf
u∈U

Jmid
i (s, u, θ̃i; xi) (5.16)

5.5.2 MFG Equations and Nonlinear Loop

In this problem, there is a loop relation between the conditional Mean Field density

fμt(β, p, z|x1, x2), the position parametrized value function V (t, β, p, z; x1, x2) and

the best response controls of the generic agent (also parametrized by its position),

u∗(t, β, p, z; x1, x2). The loop relation exists through the coupling of the MFG equa-

tions which are defined in this section. It is assumed that all conditions are met

for a nonlinear contraction principle on the MFG Loop. For the MFG PDEs in the

following analysis we assume a state domain of D, i.e. θ ∈ D.

The MFG HJB Equation and Best Response Controls

We begin with the MFG HJB equation of the generic agent which given the condi-

tional Mean Field density, fμt(β, p, z|x1, x2) describes the evolution of the parametrized

value function V (t, β, p, z; x1, x2). The equation is given below.

−∂V

∂t
=

σ2
β

2

∂2V

∂β2
+

σ2
p

2

∂2V

∂p2
+

σ2
z

2

∂2V

∂z2
− a(β + b)

∂V

∂β
− αz

∂V

∂z
+

1

N
p (5.17)

− eβp

N
∫
Ωθ×Ωx

e−||x−x||2eβpfμt(θ|x)fx(x)dxdθ + e−||x||2eβm(t)pm(t) + z + η

+ inf
u∈U

{
u
∂V

∂p

}
, V (T, θ) = 0, (t, θ) ∈ [0, T ]×D

The best response is given by the minimization of the Hamiltonian in the MFG HJB

and has solution

u∗(t, β, p, z; x1, x2) = −sign

{
∂V

∂p

}
(5.18)
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The MFG FPK Equation

The MFG FPK equation given the best response control u∗(t, β, p, z; x1, x2) and

describing the dynamics of the conditional Mean Field density fμt(β, p, z|x1, x2) is

given below

∂fμt

∂t
= − ∂

∂β
[−a(β + b)fμt ]−

∂

∂p
[ufμt ]−

∂

∂z
[−αzfμt ] (5.19)

+
1

2

∂2

∂β2
[σ2

βfμt ] +
1

2

∂2

∂p2
[σ2

pfμt ] +
1

2

∂2

∂z2
[σ2

zfμt ], (t, θ) ∈ [0, T ]×D

5.6 Computational Investigations and Simulations

Computation is now used in order to solve numerically for both the solutions of the

MFG PDEs and particular sample paths of a generic agent. We apply numerical

algorithms almost identical to Algorithms 1 and 2 of Chapter 4 with the dynamics

and costs relevant to this problem.

The parameters are chosen to be N = 50, a = 0.5, b = 0.5, σβ = 0.2, σp = 0.4,

α = 1, σz = 1 and η = 0.25. For the relevant discretization parameters, the final

time is set as T = 1 with Δt = 1
200

. The domain is bounded by β ∈ (−1, 1),

p ∈ (0, 3), z ∈ (−1, 1) and x1, x2 ∈ (−1, 1). Also it is set that Δβ = 0.1,

Δp = 0.15, Δz = Δx1 = Δx2 = 0.2. The probability density function fx1,x2(x1, x2)

of agent types is chosen to be given by a discretized approximation of the Gaussian

distribution N
⎛
⎝
⎛
⎝0

0

⎞
⎠ ,

⎛
⎝0.4 0

0 0.4

⎞
⎠
⎞
⎠. The initial conditional Mean Field density

fμt(β, p, z|x1, x2) is chosen to be given by a discretized approximation of the Gaus-

sian distribution N

⎛
⎜⎜⎜⎝
⎛
⎜⎜⎜⎝

0.5

1.25

0

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎝
0.4 0 0

0 0.6 0

0 0 0.4

⎞
⎟⎟⎟⎠
⎞
⎟⎟⎟⎠ independent of agent type. The

macrocell states βm(t) and pm(t) are chosen to be driven by simple standard Wiener

processes with initial conditions βm(0) = 0 and pm(0) = 10.

A simulation of Algorithm 1 is first investigated where the MFG Loop is solved.
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The stopping condition is set to be εc = 0.001. Fig. 5.1 shows the resulting joint

marginal Mean Field density of state parameters β and p defined as

fβ,p
μt

(β, p) =

∫
Ωz×Ωx

fμt(β, p, z|x)fx(x)dzdx (5.20)

at the times t ∈ {0, 0.5, 0.75, 1}.

Fig. 5.1 Dynamics of the marginal Mean Field density of β and p

The dynamics of the corresponding “marginal” value function of the generic

agent of state parameters β and p denoted as Vβ,p(t, β, p) which is defined to be

Vβ,p(t, β, p) =

∫
Ωz×Ωx

V (t, β, p, z; x)fμt(β, p, z|x)fx(x)dzdx (5.21)

are shown in Fig. 5.2.
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Fig. 5.2 Dynamics of the value function of β and p

Finally, we present results of simulations conducted using Algorithm 2 in order

to compute a sample path of a generic agent state. All SDE parameters are set as

before and the initial conditions are chosen to be β0 = −0.5, p0 = 1.25 and z0 = 0

for an agent located at x1 = x2 = 0.5. Fig. 5.3 shows the results of the simulation.

Fig. 5.3 Sample path simulations of a generic agent
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Chapter 6

Conclusion and Future Research

6.1 Conclusion

In this thesis we investigate decentralized power control in cellphone networks using

channel modelling and Mean Field Game theory.

First, a new continuous time state-space nonlinear channel model is developed

which combines the effects of long-term and short-term fading into a compact com-

bined model. Through analysis and illustrative simulations, it is shown that the

model follows traditional wireless channel modelling principles while also offering

additional continuous-time dynamic information.

Second, two CDMA cellphone network optimization problems are formulated

using the new channel model; these problems are then solved through an analysis

of the resulting MFG equations and the utilization of relatively simple numerical

algorithms. Extensive illustrative simulations are then provided.

In the last part of the thesis we investigate the continuous-time state space

modelling of OFDMA femtocell systems and then formulate a decentralized power

control problem where the femtocells are competing against each other in order to

provide acceptable QoS to their user devices while also maintaining transmit power

efficiency. A solution to this OFDMA power control problem is then provided in
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the thesis by an application of MFG theory and what has been termed middle

population approximations, together with straightforward numerical algorithms.

6.2 Future Research

This work has immediate extensions. First, extensions of the CDMA optimization

problems considered can be developed using the extended channel model introduced

in Section 2.6 involving Poisson jumps which more accurately account for rapid

changes in long-term fading gains due to the presence of large obstacles. In order to

do this, some extensions of MFG theory would have to be investigated and applied.

Second, it would be of interest to carry out analytic and numerical comparisons

of the performance of the MFG CDMA decentralized network control algorithms

presented in this thesis with centralized control algorithms formulated, for instance,

in terms of Mean Field Type Control theory [41].

Third, the work has considered an application of MFG theory to OFDMA femto-

cell systems in the particular case of the power control over one time slot of OFDMA

communication. In effect, an extension of this work would be to consider combi-

natorial methods in order to solve for the problem of allocating different frequency

resources to the various cellphone user devices at each time slot at the high level

while applying the used MFG methodology for the power control over each of these

frequency resources during each time slot at the low level.

Fourth, the cellphone game problems in Chapters 3, 4 and 5 are modelled and

analysed in continuous time and the applied Mean Field control algorithms are

implicitly solving a discrete time model via state and PDE discretization. It could

therefore be of interest to extend the models and results of the work to discrete

time.

Finally, Chapter 5 introduces new theoretical considerations for MFG theory;

this work results in ideas for the further exploration of applications of MFG theory

to middle population systems where one cannot directly apply traditional infinite
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population approximations without also considering non-negligible approximation

errors. The simulations completed are encouraging and provide meaningful results

but theoretical extensions of the MFG framework would be required to analytically

discuss these results. In effect, further theoretical explorations might in fact lead

to an extension to the MFG framework which takes account for middle population

systems such as the OFDMA femtocell system considered in this work.

86



Appendix A

Probability Density Functions

Log-normal Random Variables

The probability density function of a log-normal random variable is given by

f(x) =
1

xσ
√
2π

exp

(−(ln x− μ)2

2σ2

)
, x > 0, μ ∈ R, σ ∈ R+ (A.1)

where σ2 and μ are the log variance and log mean.

Rayleigh Random Variables

The probability density function of a Rayleigh random variable is given by

f(r) =
r

σ2
exp

(
− r2

2σ2

)
, r ≥ 0, σ ∈ R+ (A.2)

Rician Random Variables

The probability density function of a Rician random variable is given by

f(r) =
r

σ2
exp

(
−r2 + ν2

2σ2

)
I0(rν/σ

2), r ≥ 0, ν, σ ∈ R+ (A.3)
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where I0(·) is the modified Bessel function of the first kind of order zero given by

I0(x) =
∞∑

m=0

1

(m!)2

(x
2

)2m

(A.4)
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Appendix B

Sobolev Spaces and Weak

Derivatives

The following are definitions of of weak derivatives and Sobolev spaces as defined in

Chapter 5 of [38].

B.1 Weak Derivatives

Notation 1. Let C∞
c (U) denote the space of infinitely differentiable functions

φ : U → R, with compact support in U . A function φ belonging to C∞
c (U) is called

a test function.

Definition 1. Suppose u, v ∈ L1
loc(U), and α is a multiindex. It is said that v is the

α-th weak partial derivative of u, written

Dαu = v, (B.1)

provided ∫
U

uDαφdx = (−1)|α|
∫
U

vφdx (B.2)

for all test functions φ ∈ C∞
c (U).
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B.2 Sobolev Spaces

Let 1 ≤ p ≤ ∞ and let k be a nonnegative integer.

Definition 2. The Sobolev space W k,p(U) consists of all locally summable functions

u : U → R such that for each multiindex α with |α| ≤ k, Dαu exists in the weak

sense and belongs to Lp(U). If p = 2, it is usually written Hk(U) = W k,2(U)

(k = 0, 1, 2, ...).

Definition 3. W k,p
0 (U) denotes the closure of C∞

c (U) in W k,p(U). It is customary

to write Hk
0 (U) = W k,2

0 (U).

Definition 4. H−1(U) denotes the dual space to H1
0 (U). In other words f belongs

to H−1(U) provided f is a bounded linear functional on H1
0 (U).
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Appendix C

Square Root Process Average

Power

The following is a derivation of the long-term average value of a square-root process.

Consider (S) below for xt ∈ R, t ∈ R+

(S) : dxt = α(γ − xt)dt+ σ
√
xtdwt (C.1)

where α, γ, σ > 0 and wt is a standard Wiener process. Integrating (S) gives:

(SI) : (γ − xT )− (γ − x0) = −α

∫ T

0

(γ − xt)dt− σ

∫ T

0

√
xtdwt (C.2)

Taking expectations in (SI) yields:

(SIE) :
E(γ − xT )

T
− E(γ − x0)

T
= αE

[
1

T

∫ T

0

(xt − γ)dt

]
(C.3)

But the convolution solution to (S) is:

(xT − γ) = e−αT (x0 − γ)− σ

∫ T

0

e−α(T−t)√xtdwt (C.4)
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Hence

(E) :
Ex̃T

T
=

E(xT − γ)

T
=

1

T
Ee−αT (x0 − γ) (C.5)

Therefore, ∣∣∣∣Ex̃T

T

∣∣∣∣ ≤ 1

T
E
∣∣e−αT (x0 − γ)

∣∣ → 0 as T → ∞ (C.6)

So from (SIE):

lim
T→∞

1

T
E

∫ T

0

αxtdt = lim
T→∞

α

T
E

∫ T

0

γdt+ lim
T→∞

E(γ − xT )

T
− lim

T→∞
E(γ − x0)

T
(C.7)

= αγ + lim
T→∞

1

T
Ee−αT (x0 − γ) (C.8)

= αγ +
1

T
Ee−αT (x0 − γ) by (E) (C.9)

= αγ (C.10)

Therefore,

γ = lim
T→∞

1

T
E

∫ T

0

xtdt (C.11)

as required.
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