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ABSTRACT

The research in this thesis lies in two related areas of applied
mathematics: approximation and optimization. In the area of approxi-
mation, new classes of iterative methods are introduced to calculate
best approximate solutions of operator equations in Banach spaces.
Also, Kantorovich's approximation theory is extended to include,
possibly inconsistent, operator equations. As a special case, the
convergence of a Galerkin type method is established. In the second
part of the thesis, the geometry of optimality conditions for nondif-
ferentiable convex optimization problems is studied. Necessary and
sufficient conditions, under which the Kuhn-Tucker theory is valid,
are stated. The results are used to formulate a numerical algorithm
and to calculate various objects which have recently appeared in the

theory of optimization.
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RESUME

La recherche contenue dans cette thése porte sur deux domaines
voisins des mathématiques appliquées: 1'approximation et l'optimisation.
En théorie de 1'approximation, on présente une nouvelle classe des
méthodes itératives pour calculer les meilleures solutions approxim-
atives d'équations d'opé€rateurs dans des espaces de Banach. On
généralise aussie, la théorie d'approximation de Kantorovich au cas
des €quations d'opérateurs possiblement incoh&rentes. Dans ce con-
texte la preuve de convergence d'une méthode de type Galerkin apparait
comme un cas particulier. Dans la deuxiéme partie, on &tudie la
géométrie des conditions d'optimalité pour des problé&mes non-
différentiables d'optimisation convexe. On énonce &galément des
conditions nécessaires et suffisantes pour que la théorie de Kuhn-
Tucker soit valide. Ces résultats servent d formuler un algorithme
numérique pour calculer certaines expressions qui on fait leur

apparition récemment en théorie de 1'optimisation.
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PART A

OPERATOR EQUATIONS
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I. INTRODUCTION

[

A solution of a consistent operator equation

(1.1) Ax = b,

where A 1is a bounded linear operator from a.Banach space X

into itself and b is an element of X, can be calculated in

two ways. One can use a simple iterative scheme set up in X,
e.g. Krasnosel'skii et al. [33, Chapter 1], or an extension to
Banach spaces of various well-known matrix iterative schemes, as
suggested by e.g. Petryshyn [47], [49], Kammerer and Plemmons [29],
and Gudder and Neumann [22]. The other way is to approximate the

original equation (1.1) by a sequence of equations

(1.2) Ax = b,

which are possibly easier to handle, and use appropriate error
analysis. The latter approach is generally more successful. One
of the first theories which studies the relationship between (1.1)
and (1.2) was given by Kantorovich [30] and elaborated in the book
by Kantorovich and Akilov [31]. Kantorovich's theory has been
developed only for consistent equations. In particular, it is
concerned with the following problems:

(i) Find conditions under which the consistency of (1.1)

implies the consistency of (1.2).
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(ii) If both (1.1) and (1.2) are consistent, estimate
the distance between their solutions.

(iii) Find conditions under which the solutions of a
sequence of approximate equations (1.2) converge
to the solution of the equation (1.1).

(iv) Estimate the norm of A in terms of the norm of

A and vice versa.

Kantorovich's approximation theory is rather general and,
therefore, it is in principle applicable in many consistent
situations, including the study and numerical treatment of infinite
systems of linear equations, integral equations, ordinary differential
equations and boundary value problems.

Various approximation theories have been recently developed
and applied to particular problems by different authors, many of
whom use the Kantorovich theory as a starting point. For instance,
Thomas [59] refines some of Kantorovich's ideas and applies them
to develop an approximation theory for the Nystrom method of
solving integral equations. Phillips [50] and Prenter [51] formu-
late approximation theories for the collocation method, while
Ikebe [26] works with the Galerkin method. (For more details on
these and other approaches for solving integral equations, see
e.g. Houstis and Papatheodorou [25], Delves and Walsh [19] and

Atkinson [7].)
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Anselone [4] and Anselone and Moore [5] use the notion of
collectively compact operators to formulate a different error
analysis. Moore and Nashed [40] further developed the ideas of
Anselone and Moore for possibly inconsistent operator equations
in Banach spaces. They use the notions of generalized inverses
of linear operators on Banach spaces and 'best approximate"
solutions of linear operator equations. Furthermore, they get,
in special cases, some result; in the perturbation theory of
rectangular matrices obtained earlier by Ben-Israel [10] and
Stewart [57].

An approximation theory for general, possibly inconsistent,
linear equations in Hilbert spaces has been studied using the
classical approach of Kantorovich (rather than the one of Moore
and Nashed) by Zlobec [65]. One of the objectives of Part A is
to continue the latter approach and formulate Kantorovich's theory
for general, possibly inconsistent, linear equations in Banach
spaces. The basic idea here is to establish and explore a rela-
tionship between approximate solutions of (1.1) and (1.2) and
then use this relationship as a source for formulating various
specific schemes for calculating approximate solutions of (1.1).

In the iterative computation of approximate solutions, as
well as in Kantorovich's theory for singular'equations, we will

often use the concept of the generalized inverse of an operator.

Some basic results on generalized inverses in Banach spaces are
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summarized in Chapter II. In Chapter III, stationary and non-
stationary iterative schemes are set up in Banach spaces for
calculating both an approximate solution and the generalized
inverse. This section extends from Hilbert to Banach spaces
some results from the book by‘Ben-Israel and Greville [12,
Chapter 8]. In Chapter IV, conditions for the consistency of
Ax = y, for every y in a given'subépace, are stated in terms
of an approximate equation. Various error estimates are obtained
as special cases. Kantorovich's theory for general linear equations
is also formulated. The results afe formulated in such a way that
a comparison with the corresponding results for the nonsingular
case from [31] is easily made. The most important results in
this chapter are Theorem IV.3.1, which gives an error estimate,
and Theorem IV.4.1, which gives conditions for convergence of
approximate schemes. Using Kantorovich's theory, in Chapter V,
a Galerkin-type method for calculating the best approximate solution
is stated and its convergence is established for a class of operator
equations in Banach spaces.

Situations where inconsistent linear operator equations arise
are numerous and they include: integral equations in the theory
of elasticity, potential theory and hydromechanics, e.g. Muskhelishvili
[42], the integral formulation of the interior Neumann problem for
the Laplacian, e.g. Kammerer and Nashed [27] and Atkinson [7], the

eigenvalue problem in the case of a nonhomogeneous integral equation
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when the associated homogeneous equation has a nontrivial solution,
e.g. Kammerer and Nashed [27], and boundary value problems, e.g.
Langford [34], Varga [62], Bramble and Shatz [16-18] and Serbin [54].
They also appear in the numerical solution of differential equations, .
for instance in the collocation method when the number of collocation
points is bigger than the number of coefficients to be determined,
e.g. Krasnosel'skii et al. [33] and in the numerical solution of
nonlinear equations where the Fréchet derivative is singular, e.g.
Boggs [15] and Gay [20]. 1If the number of collocation points is
smaller than the number of coefficients, then, if consistent, the
approximate equation (1.2) has infinitely many solutions and one

may again be interested in calculating the best approximate solution,
Under- and over-determined initial value problems have been studied
by Lovass-Nagy and Powers [38]. In the finite dimensional case, the
under- and over-determined systems appear frequently in statistics,
e.g. Rao and Mitra [52], see also Ben-Israel and Greville [12],

Abdelmalek [1], [2] and Anderson [3].
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IT. PRELIMINARIES

1. Notation

X,Y,X,Y real or complex Banach spaces
2(X,Y) the set of all linear operators from X into Y
Qb(X,Y) the set of all bounded linear operators from

X into Y

2(X) and Qb(x) the sets 2(X,X) and Qb(X,X), respectively

21 the Banach space of absolutely convergent sequences
1Al the operator norm of A

A|S A restricted to the set S

g(A) the spectrum of A

p(A) the spectral radius of A

R(A) the range space of A

N(A) the null space of A

A* the adjoint of A .

For the above notions and their properties, see e.g. Taylor [58].

R{A,B} = {Z ¢ lb(X,Y): Z = AUB  for some U e 2(X,Y)}, e.g.

Ben-Israel [9]

M the closure of the set M

PM the projection onto the set M, II.2

MeN the direct sumof M and N, 1I.2
c

M the topological complement of M, II.2
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x* the best approximate solution, II.2
y* an approximate solution, II.2

DA the domain of the operator A, II.Z2
A" the generalized inverse of A, TII.2

2. Approximate and Best Approximate Solutions

In order to formulate iterative methods for calculating
approximate solutions and develop Kantorovich's theory for general,
possibly inconsistent, operator equations in Banach spaces, we
employ the following notionms.

A linear operator P ¢ 2(X), is called a projection (of X)
if P2 =P. If R(P) =M, then we denote P by P, and call

it the projection of X onto M. Every projection P decomposes

M
R(PM) and N = R(I-P

X into two algebraic complements, M M)‘

This implies X = M+N and we write N = M, If M and N ‘are

both closed, then we say that M has a topological complement in

X and write

(2.1) X=MeN.

For an example of decomposition (2.1), the reader is referred to

Nashed's paper [43, p.327]. Recall that a closed subspace M of



I1.2 8

X has a topological complement if and only if there exists a

continuous projection P (of X), e.g. Taylor [58, p.241].

M

However, not every closed subspace has a topological complement,
as shown by Murray [41] in 1937,
Consider A € lb(X,Y) .  We shall assume that there exist

continuous projections, € Zb(X) and P € Qb(Y) . {(In

Puca R(A)

particular, such an A must have a closed range.) deter-

Pueay
. c ..

mines the complement N(A) = (I"pN(A))X . Similarly, pR(A)

determines the complement R(A)c = (I"PR(A))Y . Hence, X =

N(A) © N(A) and Y = R(A) ® R(A)S. When A e 2, (X,Y) and

projections PN(A)e Zb(X) and PR(A)e Zb(Y) are given, then

the system

(2.2) KA = Pyca)©
(2.3) AAY = P2 ()
(2.4) A"pR(A) = A

always has a unique solution N lb(Y,X) » called the generalized

inverse of A (relative to the projections and P

PNy R
The operator At then establishes a one-to-one correspondence

c . + _ -1
between R(A) and N(A) , i.e. A lR(A) = (AlN(AJC) , €.g.
Nashed [43], Kammerer and Plemmons [29]. Note that, by the closed
graph theorem, A" is bounded when R(A) 1is closed.

If z is any vector in N(A), then y* = A+b + 2z 1is called

an approximate solution of the equation Ax = b (relative to P

R(A) >
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e.g. Gudder and Neumann [22], while x* = A'b is called the

best approximate solution of the equation Ax = b (relative to

pN(A) and PR(A))’ e.g. Moore and Nashed [40]. We see that
{A'b +z:2 ¢ N(A)} is the set of a%l solutions of the projectional
equation Ax = PR(A)b’ while A'b is the unique one which lies
in N(A)C.

Remark 2.,1. If R(A) 1is not closed but the complement
M = R(A)® exists, then A has a unique unbounded generalized
inverse A" ¢ Z(D(A+),X) relative to the complements M and
N(A)C, where D(A+) = R(A) + M. Many of the results herein
can be extended to include this case as well as the converse case
when A 1is a densely defined unbounded operator with closed range,
see e.g. the approach in Nashed [44].

Remark 2.2. The term "best approximate' solution is used
by Newman and Odell [46] under different circumstances. There X

is a "best approximate' solution of Ax = b, where A:X~>Y,

beY if, for every x ¢ X with x # X, either

IAR - bl < llAx - bl
or

IAR-bl = IAx-bl and IRl < Ixl .

(This corresponds to the notion of best least squares solution in

the case of Hilbert spaces.) In order to avoid possible ambiguity,

we shall refer to the above X as the "X, Y-best approximate"
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solution of the equation Ax = b, If the norms on X and Y
are strictly convex, then an "X, Y-best approximate" solution
exists. If they are not strictly convex, then an "X, Y-best
approximate" solution may not exist. In order to find X, we

need the notion of an X-projection (also called a "metric projection"

by Blather, Morris and Wulbert in [14]). Suppose that S is a

subspace of X. Then the mapping E_. 1s the X-projection onto

S
S 1if, for every x € X, Esx solves the minimization problem
min Ix-yl . In general, the mapping ES is not linear. An
yeS
instance in which ES is linear is when S and S° have a basis

and the norm in X is a "TK norm" with respect to these bases,

e.g. Singer [55]. In Hilbert spaces, ES corresponds to the

orthogonal projection P When the "X, Y-best approximate"

g -

solution & exists, then X = Bb, where B = (I-E AE
(- By ® By

and A" is any generalized inverse of A with respect to some

PN(A)C and PR(A)' (Note that B need not be linear.) Thus,
we see that when E and E are linear, one may choose
N(A) R(A) d
P = I- = i + 1" _
N(A)C EN(A) and pR(A) ER(A) in which case the X,Y

best approximate' solution X = Bb coincides with the 'best
approximate" solution x* = A'b .

Suppose that Y (but not necessarily X7) is a Hilbert space,
A e lb(X,Y), A has closed range and X = N(A) © N(A)c . Then

one may choose P which is now the orthogonal pro-

R = Ereny
jection on R(A), i.e. R(A)C = R(A)l, and write Y = R(A) ® R(A)C .
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If A" is the generalized inverse of A with respect to PN(A)C

. . + .
and P the best approximate solution x* = Ab 1is the

R(A) ?

unique least squares solution of Ax = b in N(A)C, i.e. x*

solves the problem

(2.5) min |Ax - bl
xeX

and among all solutions of (2.5), it is the only one in N(A)c,
e.g. Kammerer and Plemmong [29]. The set of all least squares
solutions corresponds to the set of all approximate solutions of
Ax = b with respect to R(A)C = R(A)l . Ifboth X and Y

are Hilbert spaces and A € Zb(X,Y) has closed range, we may

choose and P =1 These are now

p = -E .
IO N© NA)
the orthogonal projections, i.e. N(A)® = R(A*), R(A)C = N(A)

and R = Bb = A'b = x* is the best least squares solution of

the equation Ax = b. This means that x* is the only solution

in N(A)c of the minimization problem (2.5) and among all solutions
of (2.5) it is the unique one of smallest norm. For a detailed
discussion of the generalized inverse and best least squares solution
in Hilbert spaces, the reader is referred to the book by Ben-Israel

and Greville [12].
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ITI. TITERATIVE METHODS

1. Stationary Methods

In order to calculate an approximate solution y* of the

operator equation (I.1.1)
Ax = b,

where A ¢ Zb(X,Y), yc € Zb(X) and P € Zb(Y) , one can

P
N(A
use the following iterative scheme:

R(A)

(1.1) Xpe1 = xk-BAxk-+Bb s k=0,1,...,

where

B ¢ R{%V }.

e’ Fray

This scheme has been suggested for calculating the best least

squares solution in Hilbert spaces in [65], see also [12, p.356].

Theorem 1.1. Let A € lb(X,YJ , beY, PN(A)C € Qb(X),
} be given. Then the

'3
pR(A) € b(Y) and B € R{PN(AT:’ PR(A)
sequence {xk}, generated by (1.1), converges, for any x

0 e X,

to the approximate solution y* = x*+P of Ax =Db, if

N(a) %o

p(PN(AY:"'BA) < 1. Moreover, if X, € N(A)© , then y* = x*, i,

we obtain the best approximate solution.

Proof. We find that

xk+1-x* = (I-BA)xk+Bb-x*, by (1.1)

€.
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}

x* , since BeR{P

(I-BA)x, + BP

O NA© Frea)

(I-BA) (Xk—x*] , since PR(A)b = Ax*

"

(I -BA) k+l (xo -x*), Dby iteration

(1 -sa)X - x*)

MOR MR

_ k+1 . % o 3 C
(1.2) = (PN(A)C - BA) (xo-x*) + PN(A)XO’ since x* is in N(A)".

But P (P BA) = Lim supl(Py; 4 c - BA)M1/™ < 1, by the property

N>

N(A)C ~
of p (e.g. Taylor [58]) and the assumption. Therefore, there

exists a real number s and a positive integer n, such that

Iy e~ BO™ Un<s<1, forall n2n,.
Hence, “(PN(A)C - BA)nII <s" >0 as n~>®, This implies
- n *
(PN(A)C BA)” 0 as n %, Thus X, ~converges to x*+ PN(A) XO ,
by (1.2). 0

Remark 1.1. Necessary conditions for convergence of X, to

x* for every x_ e X, are

* Py o 0

-BA) <1 [not p(P c-BA) <1 1]

P(Pycayc N(A)
and

PN(A)C- BA has no eignevalue A such that |A| = 1.
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Proof. When x, > x*+P

X N(A)XO € X, then

for any xo

(PN(A)C- BA)k(x0 -x*} >0 as k >,

by (1.2). Hence, for every x ¢ X,

sup I (P -BA) XK < .

k=1 NE

Now, by the Banach-Steinhaus theorem, there exists M > 0 such

that -BA)kH <M, k=1,2,.... But

PPy caye

k
[p(PN(A)C- BA)]k = p[(PN(A)C -BA)"], by the spectral
mapping theorem

ek <M.

IA

"(PN(A)C

Therefore, p(PN(A)c -BA) £ 1. In order to prove the second
necessary condition, we observe that if 0 # x e X and |A| =1,

such that BA)x = Ax, then Xx ¢ N(A)c and

P -
( N(A)C
(PN(A)C - BA)kx = }\kx ﬁ 0 as k»= R contradicting xk -+ X* s

by (1.2).

Example 1.1. The above remark is demonstrated by the

operator A ¢ Q,b(,Q,l) defined on x = (xi) by
= = - -i 1 =
(Ax)l =0 and (Ax)i (1 2 )xl s i=2,3,... .

It is clear that
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N(A)

{x e x;=0, i=2,3,...}

1 :

and

R(A) = {x ¢ L x1=0}.

If we choose N(A)® = R(A), R(A)® = N(A) and B = 2A, then

PN(A)C is defined by

(pN(A)CX)l =0 and (PN(A)CX)i = Xi’ i=2’3,..'

2

while BA = 2A° is defined by

(BAX), =0 and (BAX), = 2(1-2‘1)2xi, i=2,3,...

Therefore
-i. 2
P(Pycaye = BA) = sup{|1 - 2(1 - 2 140}
i22
= Sup{|-1+22—1—21_21|}
i=22
=1,
But, for every x ¢ X,
x,, if i=1
kg 1
((I-BA)x.=[ s Y
1 (-1+2%71 51 21)kxi, if i=2,3,...

Now, let € > 0 be given. Then, since

Xel and |-1+ 2271 21_21| <1

for i=2,3,...,
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there exists integers N 2 2 and K such that

o N . .
Iolx,| <e and I [-1+27Po2VE Mg <,
i=N+1 i=2
when k 2 K., Therefore

k ® .k
I(I -BA) x-P xl = I |((I-BA)YX);:| < 2¢,
N(A) 122 i

when k 2 K. This implies that

(I-BA)kx - P for any x ¢ 21,

Ny

which, in turn, proves convergence of the iterative scheme, by (1.2).

Remark 1.2. It is a consequence of Remark 1.1 that Theorem 1.1
gives not only a sufficient but also a necessary condition for
convergence, if X 1is finite dimensional. In the case of a Hilbert

space X and a normal operator T = BA, one can show

P -
N(A) €
that T'x - 0, for all x e X, if and only if p(T) <1 and

the spectrum of T has no mass on the unit circle |z] = 1. For,

by the spectral theorem, e.g. Rudin [53],

™x = j AR dEAx.
ag(T)

And since, on o(T), |A"| <1 and A" = 0 almost everywhere,

the Lebesgue dominated convergence theorem implies that ™x > 0.
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This proves sufficiency. Now suppose that the spectrum of T

has mass on the unit circle. By Remark 1.1, to prove necessity
we need only find x e€ X such that Tx ¥ 0. By the assumption,
there exists a Borel subset w of the unit circle such that, if

the subspace M is the range of the projection Ek(w), then

M # {0}. But then T is invariant on M and o(T},) = &0 is

|M
a subset of the unit circle. This implies that T is unitary
on M and thus

™x ¥ 0, forall 0# xeM,
Specifying

Pya)e = Ppeary and B = oa*,

one can show, see e.g. Petryshyn [47], that

T) = 1P ~0A*Al <1
PN = 1Ppan)
if and only if
2
0 == TaemT

One now establishes the following characterization of convergence:

For any x_ ¢ X, the sequence {xk} converges to the least squares

0
solution y* = x*-o»PN(A)x0 if and only if
(1) 0 <a=s 2
I A*Al

and
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2

(ii) I A*Al is not an eigenvalue of A*A if o = TAFAT °

We recall that Petryshyn gives only the sufficient condition

0 <o <

I A*Al

Specifying B in (1.1), one obtains various iterative schemes
for computing an approximate solution., In particular, if one
splits A = M+N, chooses M’ with respect to the continuous

projections and P such that P

Prow) N © row = TronTR)
+

= P 1 fi =
and PN(M)C PN(A)C N(M)C and specifies B=uwM , w# 0,

then (1.1) becomes

+ +
(1.3) Xpe1 = [(1-w)I-uM N]xk +wMb.

Further, for w =1, (1.3) becomes

(1.4) X = —M+ka +Mb.

If both A and M are invertible, then (1.3) and {1.4) become,

respectively,
(1.5) X = [(L-@)I-oM'Nx, + b
and
(1.6) x, .= -MInx, + M1p
: - X D

The scheme (1.5) has been studied by Pertryshyn [48], who calls
it the "Extrapolated Jacobi Method". The scheme (1.6) is the well-

known Jacobi method. Other methods can be obtained by the splitting
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+
A=D+S+Q with B = [%ms) , w#0 where %D+S ¢ 2y (X,Y)

and P =P . P , P =P P .
R T A
Then (1.1) becomes

(1.7) X1 = (+wS)' [(1 - w)D - wQ]x, *+ w(D+wS)*b .

k

If both A and D+wS are invertible, the scheme (1.7) becomes
-1 -1

(1.8) Xeel = (D + wS) [(1--w)D-—wQ]xk + w(D+wS) b,

which is known as the "Successive Over-Relaxation Method" (abbre-

viated SOR method). Specifying w = 1 in (1.8) one obtains

(1.9) X, = -(D+S)‘1ka + 0+8) 1,

which is known as the Gauss-Seidel method. In the case of an nxn

invertible matrix A = (aij) , one frequently specifies

D=M-= (aii), i=1,...,n

= > 1 = = -
S (aij), i>j, i=1,...,n; j=1,...,n-1
Q=A-D-58,

N=A-M

in (1.5), (1.6), (1.8), and (1.9). Properties of these schemes for
systems with invertible matrices (and linear operators) have been
studied extensively, see e.g. Varga [60], [61] and Petryshyn [47],

[48]. Scheme (1.4) has been studied by Berman and Plemmons [13]
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for systems with singular matrices and by Gudder and Neumann [22]
for singular operator equations in Hilbert space. For some other
schemes using splittings of A, see e.g. Hadjidimos [23] and

Meijerink and van der Vorst [39].

Remark 1.3. One calls the splitting A = M+N a proper
splitting, if R(A) = RM), R(A)® = RMS, N(A) = N(M) and
N(A)© = NME . Note that to obtain a proper splitting in the
case of Hilbert spaces and orthogonal complements, one need only
check that N(A) = N(M) and R(A) = R(M), e.g. [13] and [22].
The proper splittings are not only useful in iterative calculation
of least squares solutions, but they also play an important role

in the Kantorovich approximation theory (see Chapter V).

One can slightly modify (1.1) in order to compute A+, the

generalized inverse of A relative to given projections, pN(A)

and PR(A)'

Theorem 1.2. Let A ¢ lb(X,Y) s € zb(X) and

0N

e (). If Be R{P }, then the sequence

PR Ny’ Preay

{Xk}, generated by

(1.10) Xio1 = X -BAX, +B, k=0,1,2,... ,

converges to A +P for all X, e &, (Y,X), if (P -BA) < 1.

neayXo 0 N(A)

Moreover, if R(Xo) C N(A)®, then we obtain the generalized inverse At
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Proof. Here

+
el Xk-BAXk+B-A

o<
]
>
+
"

+

R(A) ~ PNeayet

(I-BA)X, +BP

[}

(I - BA) (xk-A") , by (I1.2.3)

k+1

- BA) ST (X -AYy+p

= Pyar NeayXo -

The rest of the proof is analogous to the proof of Theorem 1.1
a

Note that, for b e Y,

+ +
(A +PN(A)XO)b = A b+PN(A)X0b

is an approximate solution of Ax = b. Moreover, when XO

satisfies the condition

Xo = XoPreay
we see that A +PN(A)XO is the generalized inverse of A relative
to (i) the same P, .. as AT, and, by (II.2.2), (ii) the new

projection on N(A) ,

PN(A) + PN(A)XOA .
If (1.10) is modified as follows:

(1.11) Xk+1 = Xk-BXk+B, k=0,1,2,... ,
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and if one chooses

(1.12) B € R{P }oand X e 4,(V),

R(A)’ PR(A) 0

such that R(Xo) C R(A) , then the sequence generated has the
property

k+1

X = (P B) T (x k=0,1,2,...

k+1 ~ FPR(A) R(A) ~ 0~ Preay) »

Hence one concludes that whenever p(PR(A)"B) < 1, the sequence
{Xk}, generated by (1.11) and (1.12), converges to the projection
PR(A) . If X and Y are Hilbert spaces and pR(A) is the

orthogonal projection on R(A) , then one can choose

Xy = AZ and B = AZ A*,

0 1 2
where z1 € Qb(Y,X) and 22 € lb[X,X) . In particular, one can
specify Z1 = A* and 22 = ol , where o is a real parameter with
the property p(P -0AA%) < 1.,

R(A)

2. Nonstationary Methods

We can further modify the scheme (1.1) by varying B at each
step. Such methods include gradient methods of finding approximate

solutions.



III1.2

Theorem 2.1. Let A ¢ Rb(X,Y), PN(A) € lb(x) and

PRy

then the sequence X generated by

(2.1) Xy = X - BAX *Bb, k=0,1,2,...

.converges, for any Xy € X, to the approximate solution

y* = x* o+ of Ax =b, if IP -BAl <1-a

Pyeay®o N(A)C

for k =0,1,2,... , where 0<a <1 and ) @, = «. Moreover,

if Xy € N(A)c , then y* = x*, i.e. we obtain the best

approximate solution,

. Proof. As in the proof of Theorem 1.1, we see that

K
Xpep = X" = [ O(PN(A)C - BiA):|(xo -x*) + Pyay¥o

But
k k
R R

if and only if the series | Oy diverges, e.g. Knopp [32, p.92].

k

e {,(Y). If B « R{PN(A)C,PR(A)} for k=0,1,2,...

23

Specifying Bk in (2.1) again leads to various iterative

schemes for computing the best approximate solution. For example,

if X and Y are Hilbert spaces and we choose Bk = akA*

some scalars ak,

’

for

k=0,1,2,... , then we can rewrite (2.1) as

O
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(2.2) X =

*
K+l xk-akA (Axk-b).

Since 2A*(Ax-b) is the gradient of the function HAx-sz,
we see that (2.2) defines a gradient method for minimizing
lAx - bl , with step size given by ak/2.

If we let T, = A*(Axk-b) and o = ﬂFkHZHAPkH'Z, then

k
(2.2) becomes the method of steepest descent. For a discussion
on gradient methods, see e.g. Nashed [44, p.380] and Kammerer

and Nashed [28].

3. Examples

The iterative scheme (1.1) can be used to calculate an approximate
solution of the equation (I.1.1) in abstract spaces. However, in many
situations, it is actually used to calculate an approkimate solution
of an approximate equation (I.1.2) which is frequently a more manage-
able finite system of linear algebraic equations. The first case will

now be demonstrated.

Example 3.1. Let us calculate the best least squares solution

x* of the inconsistent equation Ai(s) = (I-—K)X(s) = b(s) , where

ﬂ
Kx(s) = J (sin s sin £ + lcos s cos &)x(&) d&

0

Ao
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and b(s) = s. The operator K 1is chosen from Stakgold [56].
The problem will be solved in X =Y = L2[O,w] using the iterative

scheme (1.1).

2

*
= < = —m
We choose B = A", whe;e 0 <a <2 TA%AT -

This guarantees

here that p(P -0AA*) < 1 and that the scheme (1.1) converges

R(A) .
for every choice of xo(s) in N(A)C = R(A*) . For

to x*

xo(s) = 0 one finds:

x,(s) = a(s-2sin s + Zcos s)
coMs-alVsin s + a{Meos s,
where ail) -a, agl) =2 ad ol -2
x,(s) = [(1-wal? +als - [(1-wait +2a]sin s
s 1a-3ral) - el 2oy cos s
(2) (2) (2)

- i +
Otl S (12 sin s 0!.3 cos s,

where a%z) = (1-a)a§1)-ba, a§2) = (1-—&)&%1)-+2a , and

(2) a 1) 30 (1), 2 .
;" = (1-7) Otg ) -?a§ )y =@ . In general, if

(k)

(0.9 I €.9
] S - oy ’sins + o cos s

xk(s) = o

then
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x () = [A-wal +als - [ ol + 20]sin s
+ [(1 -%) agk) -%%oc{k) + %a]cos s
= a§k+1)s ~ a§k+l)5in s + a§k+1)COS S .
Since the iterative schemes
u§k+l) = (l-oc)a%k) + 0
a{*D - 1-wal) + 2
a§k+1) - a-Bald o3 2,

are convergent themselves with the solutions oal =1, a, = 2 and

Oz ==, respectively, one concludes that

x*(s) = s - 2sin s - ,—i—cos s

is the best least squares solution.
Using (1.10) with B defined by Bx(s) = x(s) _% fgsin s sin £x(§) d&,
one can show that Xk converges to A , which is here
T

A+x'(s) = x(s) - %J (sin s sin & - cos s cos &)x(§) d§.
0

The best least squares solution of the equation introduced in
Example 3.1 will be calculated in Example V.2.1 via Kantorovich's
approximation theory. We conclude this section by demonstrating

how the iterative scheme (1.1) can be applied to matrices.
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Example 3.2. We now calculate the best least squares solution,

using the iterative scheme (1.1), of the inconsistent system

Xy + 3x3 =1
-x1+x2 =1
xl - x2 =1

Here
1 0 3 1
-1 1 0 1
A= ) b =
-1 0 1
0 1 1 0
Specifying
B = uAt, where a = —2
trace AtA

one obtains

1 -1 1 0
1
B == -
3 0 1 1 1
3 0 0 1

It is easy to verify that for the above choice of B and o,
p(PR(At)-BA) < 1, whenever rank A > 1. One can start iterating
from x° = 0 , in which case the following numerical results are

obtained:
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k xlk xzk xsk

1 0.2500000 0.0000000 0.2500000
2 0.2500000 0.0625000 0.3125000
3 0.2656250 0.0625000 0.3281230
4 0.2656260 0.0664063 0.3320313
5 0.2666016 0.0664063 0.3330018
6 0.2666016 0.0666504 0.3332520
7 0.2666626 0.0666504 0.3333130
8 0.2666626 0.0666657 | 0.3333282
9 0.2666664 0.0666657 0.3333321
10 | 0.2666664 0.0666666 0.3333330
11 | 0.2666667 0.0666666 0.3333333

The eleventh approximation xll gives the best least squares
solution correct to six decimal places:

* L *

=4 o *o
X i5° %2 15°

Example 3.3. In this example we apply scheme (1.1) to solve

the problem

min [Ax - bl
xeX

where X 1is a two-dimensional Banach space of scalars

£ (2 1) (1
X = 1 , A= and b = ) .
£/ 0 0 1
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If we specify the norm
Ixt = [g;] + [g,] + max{]g |, ]E,],]E; *&,[}

(which is a TK norm with respect to the basis (é) , (g) ), then

ER(A) is linear and equal to

Thus, in order to solve the problem, we must choose PR(A) = ER(A) .

Since N(A)C can be arbitrarily chosen, let it be N(A)€ = R(A) .

1
Pueae 0 o0

10
a
= 1 P = -
B 4P”(!)c R(B) (O 0) and XO 0.

Hence

Further we choose

{]
|
S
(=] [
Sa—
(2]

[}
=
<
0]

H
Q
i
=
0Q
t
o

1
_1f
The sequence X =3 (0) > X,

1 1
x* == "is obtained.
2 0
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IV. KANTOROVICH'S THEORY FOR SINGULAR EQUATIONS

1. Condition for the Consistency of the Exact Equation

One of the most useful results in the formulation of the classical

Kantorovich theory is a lemma which gives a condition for the consis-
tency of the exact equation (I.1.1), e.g. [31, p.543]. This lemma

will now be extended so that it also applies to singular equations.

Lemma 1.1. Let V ¢ zb(X,Y) , E a closed subspace of X and
F any subspace of Y containing V(E) . If there exists, for every

y e F, an X'e E such that

(1.1) Ivk -yl < qgllyl and Xl < alyl
where q <1 and a are constants, then the equation
(1.2) Vx = y

has, for every y € F, a solution x € E satisfying

[0
1.3 Ixl s 2oyl

Proof. Similarly to the proof in [31], we will construct an
exact solution of (1.2) by recursion. Take an arbitrary y € F.

Set Yi = Y- By hypothesis, an il e E exists such that

(1.4) ﬂVxl-ylﬂ < q“ylﬂ, ﬂxlﬂ < dﬂylﬂ.
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Denote
(1.5) Yy = yl-Vxl.

Clearly vy, e F, since Yy € F and F 1is a subspace containing
V(E) . We now apply the condition (1.1) to Yo This implies

the existence of ﬁz € E such that

ﬂsz-yZH < qHyZH = qHyl-Vxlﬂ , by (1.5

q2||y1|| , by (1.4).

IA

Also ﬂ&zﬂ < aﬂyzﬂ < aquylﬂ . Continuing this process, sequences

'{yk} and {ik} are obtained such that

(1.6) . Ykel = yk-ka, "k=1,2,...
and

k-1 N k-1
(1.7) uyku <q uyln, kau < aq uylu.

By iteration, (1.5) and (1.6) give
(1.8) yk+1=y1—V(x1+x2+...+xk), k=1,2,...

Using the second inequality in (1.7), and recalling that Y =Y

one obtains

|2 &

k=1

IA
N o~18

oo}
a k-1
IR0 < o ) q “lyl.
1 X

k k=1

«© [+
Since q < 1, the series ) X, is convergent. Hence x 4 I %
k=1 =
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belongs to E, since E is a closed subspace. Furthermore
T k-1 o]
Ixl < o z q “lyl = T___"y“'
-q
k=1
So taking limits in (1.8) gives

iim Vg = lim [yl-V(xli-x2+ ,_,4.xk)]
>0 koo

yl-Vx, by the continuity of V.

Also, since q < 1, we see from (1.7) that lim Vi = 0. Thus
koo

Vx = y. We have shown that x € E is a solution of (1.2) and

it satisfies (1.3).

Lemma 1.1 has been proved in [31] in the special case when
E=X and F =Y. The above result will be used in the next
section in the approximation theory. However, Lemma 1.1 is of an
independent interest and in the remainder of this section we will
show how, using the lemma, one can establish some new and some

well-known estimates related to the equation (I.1.1)

Proposition 1.1. Let M ¢ ﬁb(X,Y) and let N(M) and R(M)

have topological complements. Denote by M"  the generalized inverse

of M with respect to these topological complements. Consider

(1.9) A=M+N
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such that A e £ (X,Y) and INM'I < 1. 1If

(1.10) R(N) € R(M) ,

then the equation

(1.11) Ax = y

has, for every y € R(M), a solution x* € N(M)c . Also

I M*)

*
(1.12) I<* S T e T

(DY

and R(A) = R(M) . In addition to the above assumptions, if

(1.13) | NS N N(A) = {0},
then

, IM*
(1.14) s

where A’ denotes the generalized inverse of A with respect to

and P

Pueaye = Pnane R = Prowy

Proof. We will show that the assumptions of Lemma 1.1 are

satisfied with V=A, E=NMS, F=RM, q=INMI and

= M+y . Then

Fa2d

o = IM*] . Choose an arbitrary y € R(M) and let

1A% - yl

i}

I(M+N)R -yl

I(M+N)R-MM'yl , since y e R(M)

INM Iyl

IA
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and IR = IM'yl < IM'Ilyl . Thus (1.1) holds. Now we apply
Lemma 1.1 to the equation (1.11) to conclude that for every
y € R(M) , the equation Ax = y has a solution x* ¢ Ny ©

satisfying (1.12). This implies that

(1.15) R(M) € R(A) .
However,
(1.16) R(A) CRM), by (1.9) and (1.10) .

Now (1.15) and (1.16) imply
(1.17) R(A) = R(M) .

Since N(M)c is isomorphic to R(M) via M, it is also isomorphic
via A, by (1.17) and the assumption (1.13). Thus, one can choose
N(A)® = N(M). This determines A’ with respect to the topological
complements N(M)c and R(M) . Now, since x* e N(A)® = NM)€,

we have x* = A+y, and (1.14) follows from (1.12).
‘ O

Corollary 1.1. Let H € R.b(X) with JH} <1 and P € Q,b(X)

such that P® = P. If R(H) C R(P), then the equation (P+H)x =y
has a solution x* ¢ R(P) for each y € R(P) . Also | x* < 1ﬁllyﬂ ,

R(P+H) = R(P) and ll(P+H)+II Sl_-l}ﬁr’ where (P+H)+ denotes

the generalized inverse with respect to P = P and

N(P+H)®

PR(P+H) =P.
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Proof. We will show that the hypotheses of Proposifion 1.1
are satisfied with M =P and N=H. C(Clearly, P ¢ Qb(X) has
topological complements N(P)® = R(P) and R(P)® = N(P). So
P’ (=P) 1is the generalized inverse of P with respect to these
complements, Also P+H ¢ lb(X) , since IHI < 1. Take an
arbitrary y ¢ R(P) . Then X 4 P+y (see the proof of Proposition

1.1, where M = P) is equal to y, i.e. R =1y, since P = P¥

Therefore, the assumption IHP*N < 1, in Proposition 1.1, can be

replaced by IIHI < 1. Also, the assumption (1.13), which reads here
(1.18) N(P)S N NP +H) = {0}

is satisfied. If (1.18) were not true, there would exist an x # O

such that both
x e N(P) = R(P) and x e N(P+H) .

Hence (P+H)x = x+Hx = 0, which contradicts the assumption IHI < 1.

jn

Corollary 1.2. (Ben-Israel [10].) Let H be an nxn real

matrix, IHI <1 and L be a subspace of R™ such that R(H) C L.

Then

1

+
L —
1P+ < 1o

Proof. Specify P = P  in Corollary 1.1.

L
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The following classical result of Banach, e.g. [31], is also

obtained.

Corollary 1.3. Let He 2 (X). If IHI <1, then (1+m)L

exists and

-1
IC+H) ™ s —pr -

Proof. Specify P = I in Corollary 1.1.

Corollary 1.4. (Kantorovich and Akilov [31, p.172.]) Let
1

M e £ (X) and suppose that M
1

€ Rb(X) exists. If N e 2b(x)

and [NM "I <1, then (MJ-N)-I exists and

PNy h <

Proof. Apply Proposition 1.1 to the case when X =Y and

M exists.
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2. Solvability of the Approximate Equation

Let X and Y be closed subspaces of the Banach spaces X and
Y, respectively. Further, let X and Y be isomorphic via mappings

J0 and HO

also that J and H are linear extensions of JO and H0 to all

of X and Y, respectively. Such extensions always exist, for

to the Banach spaces X and Y, respectively. Suppose

we may take J = JOPi and H = HOP? . In many practical situationms,

X and Y are chosen to be finite.dimensional.

Consider again the equations
(I.1.1) Ax = b,

where A: X=+>Y, be Y, and

(I.1.2) _ o Ax

b,

L1}

where A: X+Y, B e Y. We shall refer to (I.1.1) as the "exact"
equation and to (I.1.2) as its "approximate" equation. We assume that
Ae 2 (X,Y), Ke 2 (X,Y) and that the following decompositions are
possible:

X = N(A) @ N(A)®, X =N@E o NAOC
Y = R(A) @ R(A), and Y =R(A) ® R(A)® .
The symbol @ 1is here used to indicate that all eight complements
are necessarily closed. Denote by A" e lb(Y,X) the generalized

inverse of A relative to the continuous projections PN(A) and

rud N V- - - -l -
PR(A)’ and by A ¢ 2b(Y,X) Fhe generalized inverse of A relative
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to the continuous projections PN(ZD and PR(K)' Let us denote
by x* = A+b and X* = A’b, the best approximate solutions of
the equations (I.1.1) and (I.1.2) respectively.

In the sequel we will state results relating the best approxi-
mate solutions of the exact and approximate equations when some or

all of the following conditions are satisfied:

(I) The operator A is represented as A = M+N, where M is

| R(M) @ R(M)C.

bounded and X = N(M) ® N(MS, N(A)C c N(M€ and Y
(In this situation M’ denotes the generalized inverse of M,

relative to the continuous projections PN(M)é and PR(M)')

(I11) J, maps NM® N X into N®® NYX.

0

- ""+"= ~+ b.
(II1) H has the property A™b = A HPR(A)

(V) HAJoi-HAXH s €%l for some constant € 2 0 and all X ¢ N(M)c nx.

(V) For every x € N(A)C there is a u ¢ N(M)C N X such that

Mu-P N < 0.
| Mu R(M) xI nlﬂxﬂ for some constant ”1 0

(VI) There exists a vector Vv € N(M)c N X such that

IMy - P bl < M IPpy bl for some constant n, = 0 .

o TRA)

Theorem 2.1. (Conditions for the solvability of the approximate

equation.) Let the conditions (I), (IV) and (V) be satisfied. In

addition, suppose that
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(A) M ¥-%,
(B) Hy HR(A) € R(A) ,
(C) JINM®)  is closed and
(D) R(A) C HR(A)
If
(2.1) q = [ +n M) + nIHALM IR H Y < 1,

then the equation

(2.2) AR = HPR(A)b

has a solution X* ¢ J(N(M)c) for every b € Y. Furthermore

3k
(2.3) Ix* < 1_ IHPR(A)
where
+ + -1
(2.4) a = |IJOII(1+T11IIM A H0 .

Proof. It is sufficient to show that the conditions (1.1)

of Lemma 1.1 are satisfied for the equation (2.2) with E = JINMD®) ,

F= HR(MA), V=A, y= HPR(A)b and ¢ and q as in (2.1)

and (2.4). First, consider the equation Ax = HBIHPR(A)b and

-1 -1
= H = HP
its solution xO A H PR( ) Denote =z Mxo H R( )

Since x, e N(A)® and N@)© c N(M)c, by condition (I), we find that
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-1
(2.5) Xy = Mz + MH HPR(A)
and also
(2.6) Ax. = H:lup. b
. 0~ "o "r(A)

and condition (B). Therefore z = Mx_-Ax_ =

by definition of x 0 0

0

--Nx0 , since A = M+N,

Now, for x = X s condition (V) implies that there exists

u e N(M)c N X such that

(2.7) HMu-PR(M)N(-xo)H = HMu-PR(M)zﬂ < nlﬂxoﬂ,

for some nl > 0. Denote X = un+M H. HPR(A) Note that
X € N(M)c N X, by conditions (V) and (A). We will now show

that Joi is the required element & of E in Lemma 1.1. First,

IAJGX - HP,, .\ DI = JAJ X - HH, lup

R(A) R(A)

HKjoi-HAXOH , by condition (B) and

definition of XO

IA

IIKJoi—HAJNdI + 1 HAi—HAxOII , by the

triangular inequality

A

el Xl + HHAHH%-—XOH , by condition (IV).

Since

-lyp -1

-Mz-M H HP

IR - xgl = Tu+ M H "HP, )b ra)?!

by definition of X and Xg
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= fu-Mzl = |IM+Mu—M+PR(M)le
(2.8) < nlum"nnxou , by (2.7)

? n, M A" H HHHPR(A)bH , by definition of x
and

A

Xl < “xOH + “x-—xoﬂ

IA

(1+n1IIM+II)|Ix0I| , by (2.8)

TN A“H'lu | HP

A

(1+n

1 R(A)b"

the above inequality gives

-1

0 I

A

13 /X - HP [€(1+n1|IM+II)IIA+H

R(A) -

+ n VHALIM TIATHS ' TH P, I~

(2.9) qlHP_ . . bl ,

R(A)
where q 1is the constant defined by (2.1). Also

(2.10) HJOXH < HJOHHXH < aHHPR(A)bH,

where o 1is defined by (2.4). The inequalities (2.9) and (2.10)

correspond to the assumptions (1.1) of Lemma 1.1 with V = A&,

A

X = J0§ and y = HP Conditions (C) and (D) guarantee

RA)®
that E = J(N(M)c) be a closed subspace of X and F = HR(A)

be a subspace of Y containing V(E) = KTJ(N(M)C)).. All conditions
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of Lemma 1.1 are now satisfied, and the conclusions of Theorem 2.1

follow.

Corollary 2.1. Let A ¢ lb(X,Y) and suppose that the conditions

(ny, (1Iv), (v, (A), (B), (C) and (D) are satisfied. If q < 1 and

A satisfies the condition
(E) JINM©) € N@®&)S
then

1A < ————HPR(A)

where q and o. are as in Theorem 2.1.

Proof. We need to show that

IA*y1 < ————ﬂP Myl , for every ¥ ¢ Y

R(A)

Let X* denote the solution in J[N(Mf:) of the equation AX = PR(KJ? .
Such an X* exists, by Theorem 1.1. In fact, by condition (E),

X* = A*y, i.e. X* is a unique best approximate solution in NB©
of the equation AX =y . But PR(K)Y = HPR(A)b for some b e Y,
by condition (D). So Xx* is also a solution of the equation

Ax = HPR(A)b and it satisfies

1x*] < ———qu by (2.3).

R(A) ?
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Therefore,

Iy < ——-IIHP bll _—up

R(A) ————4IP

L
O

R(A)y"

If X=Y, X=Y=X=Y, M=1 and Al exists then the
conditions (A), (B), (C), (D), (I) and (II) are trivially satisfied,
the requirement on H in (III) becomes A*DH = A*Hb while (IV),

(V) and (VI) reduce to:
(IV') IAX -HAXI < €Il for some constant € > 0 and all X ¢ X.

v" For every x ¢ X there is a u e X such that lu-Nxl < nlﬂxﬂ

for some constant nl > 0.

(VI') There exists a vector v ¢ X such that lv-bl < nZHbH for

some constant n2 >0,

In the nonsingular case, Theorem 1.1 reduces to the following result

of Kantorovich and Akilov [31, p.545].

Corollary 2.2. Let A ¢ Qb(x) have an inverse and let the

conditions (IV') and (V') be satisfied. If

q=[e(1+n) + nlunAu]nA‘ln <1,

then the equation AX = b ‘has a solution X* ¢ X for every b ¢ X.

Also
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1%* < —2 %1,
l-q

-1
where O = (l-fnl)HA .
An estimate for the norm of the gemeralized inverse A" was
obtained using Theorem 1.1. In the nonsingular case, Corollary 2.1

gives the following result of Kantorovich and Akilov [31, p.546].

Corollary 2.3. Let the hypotheses and the notation of

Corollary 2.2 hold and let A satisfy the condition:

(E') '"The existence of a solution of the equation AX = b for

every b e X implies its uniqueness".

Then

ol

+=1
A 1 < 1-q

Proof. Condition (E') and Corollary 2.2 imply the existence

of K-l . The result now follows from Corollary 2.1 since the

1 and Al exist.

O

conditions (D) and (E) are satisfied when A~
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3. Error Estimates

The following theorem estimates the distance between the
best approximate solution X* of the approximate equation and

the best approximate solution x* of the exact equation.

Theorem 3.1. (Estimate of the distance between best approximate

solutions.) Consider the equation Ax = b and its approximate

equation AX = b . If the conditions (I) to (VI) are satisfied,

then

(3.1) 1x* - 3R < plxl
where

(3.2) p=e(l+c) ||J61|| IA* + c(1 + HJ(')lK*HAII)
and

(3.3) ¢ = min{l, (n, +nJALIM I}

Proof. First we show that =x* can be approximated by an

X e N(Mf: N X to the order of ng*n We know, by conditions

5
(V) and (VI), that there exist u and v in NM)® N X such that

(3.4) HMu-PR(M)Nx*H < nlﬂx*H
and
(3.5) My -P bl <

R(M)PR(A) nZHPR(Ajb"'
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©

Denote X = M+(Mv~Mu) . Clearly X € NS N X. We now show

that x* can be approximated by X to the order of ng+n,.
Ix* -%I = IM'Mx*-%I , by condition (I)
= | -M'Nx* +M (M+N)x* -M (Mv-Mu)l , by definition of ¥
+ + + .
= [-M Nx* +M PR(A)b'M (Mv-Mu)|, since A =M+N and
* -
Ax PR(A)b
+ .
- * - 1
< IM § (1Mu PR(M)NX | + My PR(M)PR(A)b") , since .
M =M PR(M)
+
< IMTE(n Ix*] 0P abl) , by (3.4) and (3.5)
+ * 2 = * %*
< M (n1+n2||A||)||x I, since IIPR(A)bII TAX*| < [AINlx*] .

Hence we conclude that there exists an X ¢ N(M)C N X such that
(3.6) Ix*-XI < clx*I ,

where ¢ = min{1, (ny +n2IIAII)IIM+II }. (Note that c < 1, since we
can always choose X = 0 in (3.6).)

Let us now prove (3.1). Denote io = A*HAX . Then

-1, « o o.umw 1-lo -1, -1,
(3.7) Ix* - Jqg x*1 < §x* - X| +I|X-J0 Xl +I|J0 XO-JO x| .

The first term on the right hand side Ix*-Xl is estimated by
(3.6). The two remaining terms will now be estimated. First

_1}_(
00

R-J IT+HAX , by definition of X

x-J, 0

Jal(JO-K*'HA)i, since X e X
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= -1—‘+ e Ao . T+ ~ . ~
J.7A (AJO-HA)x, since A AJOx = PN(AJCJOX
= Joi, by condition (II),

Hence

IA

B [F— ~
AJ -
HJO A*INC JO HA) X

IA

euJ(')lA_*u IXl , by condition (IV)

IA

€"J81§4"(“X*n.ﬁux*..in), by the triangle inequality

IA

(1 + IS R X", by (3.6).

The third term is estimated as follows:

19515, - 97 '%41 = 197 (R'HAR - BRX*)1 , by definition of X,
= uJC')I(K"HAi—K*PR(K)E') I
= ch‘)l(K“HAi-K*HPR(A)b)u , by condition (III)
< nJ(')l?A‘*HAn IX-x*, since Paeayb = AX*

IA

cIIJ(-)lK*'HAII Ix*I , by (3.6).

After substituting the above estimates into (3.7) the conclusion

follows.

Remark 3.1. It may happen that we could approximate x* by
some X e N(M)® n X directly. Then we no longer need the conditions

(V) and (VI) and we can set c = min{1l, lIx*-%XI} in (3.2).
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Remark 3.2, If p <1, we can write the estimate (3.1) as
follows

-1, -1,
* *
Ix* - J97X* < —Lll-pIJO K0

This is true, since

I x* -Jali*ll < plx*l < p(uJ(‘)lx*u +lx* - Jc-)l)'c*ll) .

Remark 3.3. If X and Y are Hilbert spaces and N(A)c = R(A*) ,
R(A)c = N(A*), then Theorem 3.1 reduces to a result obtained by
Zlobec in [65]. However, the Hilbert space version of Theorem 3.1

is proved there under slightly different assumptions.

Remark 3.4. It may happen that one cannot satisfy condition

(III) but that a constant Mg such that

T TF
IA*D - A HPR(A)b" < HSHX*H,

is found. In this case the constant p 1in (3.1) is different. Now

-1_ -1_ -1 -1
HJO xo‘-JO x*l < (cHJo A*HAH=+n3HJO 1) x*

and hence

P = [e(l+c)IA¥ +n3]||J61|I re(l+ ||J(‘)1K+HA||) :

In the nonsingular case, we get the following result from

[31, p.547]. (Recall that in our setting x* ¢ N(A)®. Also, as
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in [31], we specify b =Hb.)

Corollary 3.1. Let the conditions (IV'), (V') and (VI') be
1

satisfied and let A~ and Al exist. Then

* _ F% *
Ix* - X*f < plx*[,

where x* 1is the.solution of the exact equation (I.1.1), X* is

the solution of the approximate equation (I.1.2) and

p= 2Rty + (n1+n2uA||)(1+uZ\"1HAu) .

Proof. Specify M=1, X=Y and X=Y=X=Y in

Theorem 3.1. 0

4. Convergence Criteria

Our next result gives conditions for convergence of approximation

schemes. Suppose that the exact equation Ax = b 1is approximated

by a sequence of equations Khi = bn , n=1,2,,.. , rather than by

~

a single equation. This determines a sequence of the spaces. X,

~

Yo, iﬁ s Y; , the operators K£ , (J (Hy),» J,» H, and the

O)n’ n
constants €y s (nl)n, (nz)n, Ch» Gp» %5 Pps M= 1,2,...

For the sake of notational simplicity these indices will generally
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be omitted in the sequel. The following theorem gives conditions
for the convergence of the sequence i;, the best approximate
solution of Kﬁin = Eh , n=1,2,..., to x*, the best approxi~

mate solution of the exact equation.

Theorem 4.1. (Convergence of the best approximate solutions.)

Consider the equation Ax = b and a sequence of approximate
equations AX = b. Suppose that for each n = 1,2,... the

conditions:
(1) -~ (I) to (VI) and (A), (B), (C), (D) and (E)

. - S
(ii) sszJOH < o SEPHHO I < and sngPR(K)H <

"

. -1 . T . -1
€ = =
(iii) 1lim IlJ0 I 0, lim nlllJ0 I 1=l 0, 1lim nZIIJ0 I I HI 0

n-oe n-oe N>

are satisfied. Then 1lim ”1 =0, lim n, = 0 and the sequence

n-o n->co
of best approximate solutions of AX = b converges to the best

approximate solution x* of Ax = b, i.e.

lim [ x* -J(-)l)‘c*ﬂ =0.

N>
More precisely,

-1- -1 -1 -1 ..
ﬂx*-JO x*l < ECIHJO ﬂ‘*nl(c2-+c3HJo HHHH)-Pnz(c4'+c5"JO FHHI) I x*),

where c¢; to Cg are some constants independent of the index n.
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Proof. Since HOH(')I = 1, it follows that IIH(;lII IH = 1,

n=1,2,... . Hence

(4.1) inf ||H0|| >0
n

using the second assumption in (ii). Similarly, one concludes
that
(4.2) inf 1331 > 0
n
using the first assumption in (ii). Also |HI = HHOH , Since

H, = H|y. Therefore, by (4.1),

(4.3) inf IHI > 0.
n

From (4.2), (4.3) and condition (iii), we conclude that, in particular,

4.4) lime = 0, lim nl =0, lim n2 =0 and 1lim nIHHH =0,

Recall the constant q introduced in Theorem 2.1:

q = [£(1+n IM"1) +n IHAY IlM+II]IlA+H(')1II .

For sufficiently large n, using (4.4), one has q < ! and for

such values of n Theorem 2.1 is applicable. But we can also

apply Corollary 2.1 to obtain

IR s —24p

T Preay)! < 2P



Iv.4 52

-1
0

third assumption in (ii), that IA*l is bounded independently

Since o = 17,0 (1 +n1IIM+I|)IIA+H I , one concludes, using the

of the index n, i.e.

(4.5) sup IA*| = s < =,
n

The desired estimate now follows for sufficiently large n:

-1
0

IA

I x* - Jali*ll [2€I|J61II IA* + (g + N MAD (L + 13 AHADIM 101,

by (3.2) and (3.3)

IA

-1 -1 -1
[eclﬂJO u-+n1(c2 +03HJ0 HHHH)'*nz(c4-+c5HJO FUHE) Jix*),

+ + +
where ¢, = 2s , c, = M, cg = sIAIIM Y, cq = TAIEM I,

Cg = sHAHZHM+H and s 1is defined by (4.5). The right-hand side
in the above inequality tends to zero when n -+ «, by (iii) and

(4.4)

A corresponding result in the nonsingular case is given in

[31, p.549] as follows.

Corollary 4.1. Consider the equation Ax = b and a sequence

of approximate equations AX = b. Assume that A”! exists and
that A satisfies condition (E') for each n = 1,2,... . Assume
further that for each n = 1,2,... the conditions (IV'), (V'),

(VI') are satisfied, and that
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lime = 0, 1lim n1HHH =0 and lim nZHHH =0.

> n—oo >0

Then the approximate equations are consistent for sufficiently
large n and the sequence of approximate solutions converges to

the exact solution x* of Ax =b, 1i.e.

lim Ix* - X*] = 0.
n->°

More precisely,

* _ ¥* |
| x* - x*I < 8c1-+n1(c2-bc3HHH)-knz(c4-+c5HHH),

where < to ¢ are some constants indpendent of the index n.

Proof. Set X=Y, X=Y = X=Y and M =1 in Theorem 2.1.

L]

Then JO = HO = I and |[HI

Corollary 1.3, we see that R(A) = X. So condition (E) is

IJl =2 1. Furthermore, from

satisfied and |P I = 1. Conditions (i) to (iii) of Theorem 4.1

R(A)
hold and the result follows.
O

Remark 4.1. Constants ¢, Nys Ny and ¢, to cg in
Theorem 4.1 reduce, in the nonsingular case, to the corresponding

constants in Corollary 4.1.

Let us recall that Corollary 2.1 gave us an estimate for [A¥|
. + .
in terms of |A [ via constants O and q. Our last result

gives us the reverse estimate.

)
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Theorem 4.2. (Estimate for the norm of the generalized

inverse.) Let A e lb(X,Y) and A ¢ Rb(X;YB . If the conditions

{(I) to (V) are satisfied and

T = [8(1-Fn M H]HJ HHA+H'+H HM+H(1-+HJ A+HAH)] <1

then

1A < (1-1)° [||J 1m0+ en 32 A +|IJ61K+HAII)] :

hi

* = o .
Proof. Take R e X, R ¢ N(A) . Then x PN(A)CX is

clearly the best approximate solution of the equation
(4.6) Ax = AX .
By condition (V), there exists a u ¢ N(M)c N X such that

4.7) Mu - P I < n Ip

R NPucare neae X -

Now

Ix*~ul =P

A + P &+ .« L.
N(A)Cx"u" M MPN(A)CX-M Mull , by condition (I)

< ("MPN(A)C’?‘LNPN(A)CQH +IIP ROM) N(A)csa+Mull)||M [
< . qu I
s (ng+5 1Pycae Z) Puae XHIME, by (47

Apply Remark 3.1 to the exact equation (4.6) and its approximate

equation A% = HAX, with
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c = min{1, IMI (n, + I ARI H—— =)} in (3.2) .
P ayeX
Then
-1, o =lepia
Ix* - J "X = 1|PN(A)cx-J0 ATHARI
< {el:l LM 1 (n) + 15 "AX"X “):IIIJ(_)lll 1A"]
N(A)C
+ I ARy -1 ' 2
+ M1 (n1+ P cﬁll)(“"JO K HAII)}IIPN(A)C I,
N(A)
by (3.1) and (3.2)
< [e(1 +n IIM+II)IIJ_1II IR+, IM (L + ||J'1K+HAII)]IIP byl
= 1 0 1 0 N(A)C
-+ ‘1 -+ -1-—+ A
+ UM (1 + el IR + 13 "R HAL TARI .
Now
N(A)Cx" < IPN(A)CX-J AYHARI +IIJ AHHILAXD
by the triangle inequality
< rIIPN(A]c)’EII + [,IIJ 1Z0m) + 1M II(1+€I|J Lyigs + lIJO A*HAII)]IIA&II ,
by (4.8) and the definition of .
Hence
A 1- r
“AX" 2 N(A)C

IIJ A *HY + M I (1 +enJ IHIA*'II +llJ A+HAII)

| PN(A)C X,
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where t denotes the coefficient of Take an arbitrary

0 #y ¢ RLA) . Then there exists an X ¢ X, X ¢ N(A) such that

y = AX. Hence A+y = Furthermore, by the above inequality

Py X+

+ 1 A 1
I =1 s —lAxl = =
Ay Ip : Axl tIIyII »

N(AF Xl

which gives the desired estimate for A" . Note that here t > 0 s

since r<1., If y =0, the above inequality is trivially satisfied.
O

Remark 4.2. If A ¢ J?,b(X) and in addition X =Y, X=Y =
X=Y , then the above result reduces to the bound for a left inverse

of A given in [31, p.550].



V. GALERKIN'S METHOD FOR BEST APPROXIMATE SOLUTIONS

1. Description of the Method

In this section we will use Kantorovich's theory to prove that
a Galerkin type method, when applied to a certain kind of, possibly
inconsistent, operator equation, produces the best approximate
solution. This solution is obtained as the limit of a sequence of
best approximate solutions of, possibly inconsistent, systems of
linear algebraic equations. In the case of Hilbert space, another
method is suggested by Nashed [44]. Unlike our approach he finds
the best least squares solution by-applying Galerkin's method, with
a suitably chosen basis, to the consistent equations A*Ax = A*b
and Ax = PR(A)b , rather than to Ax =b.

Consider an equation Ax = b in a separable Banach space X,
where A ¢ lb(x) and b ¢ X, not necessarily b ¢ R(A), are given.

We assume that A = I+N, where N 1is compact (which implies that

N(A) 1is finite dimensional) and R(A) is closed. Further we assume

that R(A) = N(Af:. Denote by {¢i: i=1,...,m} a basis of
N(A) , m = dim N(A) , and by {wi: i=1,2,...} a basis of R(A).
It is assumed that R(A) has a countable basis. Then every x € X

can be written as

l'di(X) bs s

iH~18

?
X = c.(x)¢p. +
=1t 0t g

where ci(x), i=1,...,m and di(x) , i=1,2,... are some



coefficients which depend on x. The above situation occurs,

for instance, in X = C[0,1] with A a Fredholm integral operator
of the second kind with a continuous and symmetric kernel. The
best approximate solution of such an equation can be calculated by
Galerkin's method as follows: For sufficiently large n solve the
system of n 1linear algebraic equations in n unknowns

n
(1.1) P

d.(AY)E. =d. (), i=1,...,n.
4 1( wJ)£J 1( )

We will show that, for sufficiently large n, the system (1.1)

is consistent and that the sequence of solutions X = (Ej) converges
to the best approximate solution of Ax = b, with respect to

pN(AJC = PR(A) and PR(A)’ when n -+« . (Note that in this
situation both A and A  leave R(A) invariant.) In order to
prove the consistency of (1.1), for large n, we will use a result
from Krasnosel'skii et al. [33, p.212] which is stated here as the

following lemma.

Lemma 1.1. Let T ¢ Rb(X) be compact and let {Pn: n=12,...
be a sequence of projections in Zb(X) , where X 1is a Banach:

space. If Pn =+ I strongly, i.e., for every x € X,

ﬂan-xH -0 as n -+,

then H(I-—Pn)TH -0 as n >,
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In our situation we specify

o9} and P

Y =X, Y=X-= span{wl,.... h ¥ X

which is defined by

h I I
Pox = Pyl ) c.(x)9. + ) d. (Xy.| = ) d.(x)0, .
X X{3=1 1 i 451 1 j=1.1 i
Further, J and H are defined by

d, (x)

Jx = Hx = .

d (x)

while
— — -1
Jo = Hy = Jli, b=Hb and A =HAJ, .

1

Note that PY =H H and X =Y is the space of all n-tuples.

0

The norm in X and Y is defined by

K
(1.2) 19 = 13 = sup | ¥ 4 00wy -
k=1,...,n 'i=1

We will first show that the system (1.1) is consistent for large n

and then that all conditions of Theorem IV.4.1 are satisfied.

Matrix A = (3a..), a..
ij ij

inverse if and only if PiA|i has an inverse. By Lemma 1.1,

= di(ij), i,.j =1,...,n has an

where X = R(A), P and T =N

n =P R(A)

R FINE R(A) *



NI =1 (Pg-1) I -0

lreay =P[Ry N reay! Prevy N re)

1

as n >, Since (A|R(A))— is bounded (by the assumptions on

A) , this further implies that

1 (Pg - DPpayN|geay!! (A|R(A]]'1u <1

for sufficiently large n. Now, by specifying X =Y = R(A),

M and N = (P«

- D

= Alrea) Prew ™ |reay

in Proposition IV.1.1 we conclude that M+N is invertible, which
is here

(Pi

-1 Hew * PR r

Mrewy ™ Prey MRy

PiAli , when restricted to X.

Therefore A is invertible, which implies that the system (1.1)
is consistent for large n.
Let us now show that all assumptions of Theorem IV.4.1 are

satisfied for sufficiently large n.

Condition I: Since M = I, this condition is obviously satisfied.

Condition II: We know that A is invertible, so this condition,
for large n, reduces to Jo:i -+ X, which is
always satisfied.

Condition III: Since A is invertible, the condition becomes

b= HPR(A)b , which is satisfied by our construction
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of H and b,

Condition IV: One can specify € = 0, because A = I-IAJ(-)1 .
Condition V: For an arbitrary X ¢ N(AJc , take u = PiNx .
Then

I Mu - PR(M) Nxl =1 (Pi - PR(A))NxII , Ssince

M=1 and N(AF = R(A)

s (P';(-PR(A))N R(A)" xi .

So, one can specify

np = g = PreayNireay! -

Condition VI: Take v = PiPR(A)b . Then

IIMv-PR(M)PR(A)bII = | (PT(" PR(A)]PR(A)bu .
Therefore, one can choose

ppm——c O ST SN Y

2 IIPR(A)bII X "R(A)T R

If PR(A)b = 0, then set n, = 0.

Condition A: Since M=1 and X = Y, the condition is satisfied.
Condition B: By our construction of H and H0 s Halﬂ = Pi .

Since X c R(A) , one concludes that HBIHR(A) C R(A) .
Condition C: J(N(M)C) = X, which is closed. |
Condition D: Since R(A) = X, this condition is satisfied by the

construction of H.
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Condition E: For large n, A is invertible and N@&‘= X,

so the condition is satisfied.

In order to prove conditions (ii) of Theorem IV.4.1 we proceed
as follows: Define a linear mapping T from R(A) into the space

of sequences Tx = (di(x)) , i=1,2,... such that I di(x)wi
i=1

is an element in R(A) . It is shown in [37, p.135] that T 1is a
linear bijection and that T is bounded and has the bounded inverse

-1

T ©, if the norm in the sequence space is defined by

] "
1.3 - ,
(1.3) I TxI sEp "izldi(x)wi

Since HJOXH < ITxl for every x ¢ X C R(A) , where the norms
are taken as in (1.2) and (1.3), respectively, one concludes that
HJOH S ITI < », regardless of n. Hence sgp HJOH < o, Space
X is homeomorphic with the subspace of the above sequence space
consisting of all sequences with zero components from (n+1)-st on.
Therefore Hali =113 for all XeX. Hence “Halﬂ = HT_1|XHA
< HT_IH < o regardless of n, and one concludes that SEP HHBIH <,
Since A- is invertible for large n, pR(K) = I and thus
sgp “PR(K)“ < o

Finally, the conditions (iii) are satisfied, since € = 0,
nl > 0 and n2.+ 0 as n->o, by Lemma 1.1, yhile J0 = HO,
and thus sgp HJalﬂ = sgp HHBlH <o, and IHxl < ITxl for every
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x e R(A), Hx =0 for x ¢ R(AJC , by the construction of H
and T, which implies sup IHI < ITI < «, regardless of n.
n
All the conditions of Theorem IV.4.1 are satisfied and one

concludes that 1im Hx*-Jalx*H = 0, where x* is the best

N0
approximate solution of Ax = b and X* is the exact solution
(for large n ) of the approximate equation (1.1).

The best approximate solution of Ax = b can also be calculated
by solving systems of linear algebraic equations (1.3) in the case
of a proper splitting A = M+N if, in addition to the proper splitting,
M:X¥ > %X for sufficiently large n. All the conditions of Theorem
IV.4.1 are still satisfied. The only modification is that u and
v in Conditions V and VI are taken as follows: u = M+PiNx and
v = M+P§PR(A)b :

In fact, this requirement on X can be relaxed. One can choose

Here X is still span{l[)1 y e ,wn} in R(A) .

X = span{'l:1 s e ,Tn} , where {fl e ,Tn} is an arbitrary set
of linearly independent vectors in X, provided that pipﬁ(A) =
PR(A)PX for sufficiently large n and Tl y enn ’Tn ’Tn+l PR K

a basis of X. However, with this arbitrary construction of Y,
the system (1.1) may be inconsistent for sufficiently large n, in
which case the best approximate solution X* = A*b is obtained. Now

one can show, using Lemma 1.1, that
WA X)) =N®° X and HW@W N T = NE® N X

for sufficiently large n. These relations imply that the only
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conditions which need verification, i.e. Conditions II and III are
also satisfied.
A Galerkin method for calculating the best approximate solution

of Ax = b can be formulated as follows:

(1) Find a proper splitting A = M+N with N compact.

(ii) Find a basis {Tl, T, ...} of X such that

+ ~ ~
(1.4) M:X>X and piPR(A) = PR(A)Pi

for sufficiently large n, where X = span{Tl, cee s Tn}.
-1
0

A= (aij) are determined by 85 = ei(ATj) , where e (x) is the

o]
i-th coefficient of x in the expansion x = _Zlei(x)ri, while
1=

(iii) Calculate A = HAJ and b = Hb. The elements of

the elements of b = (b;) are determined by b, = e, (b) .

(iv) Calculate the best approximate solution of AX = b

’

If A 1is written as A = I+N, in which case we may not have

a proper splitting, then the basis {Tl, T., ...} must be chosen

2
as a basis of R(A) . The conditions (1.4) are then redundant and

A is invertible for sufficiently large n.
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2. An Example

Example 2.1. The best least squares solution of the equation

Ax = b from Example III.3.1 will now be calculated using Galerkin's

method.

First, the operator A can be written as A = M+ N, where

x(s) - [x(s) s \[%sin s]\/%_sin s
-3 [x(s) -,\/;zT-—cos s]\/,-lzr-—-cos s.

Here (+, -) denotes the inner product in L2[0,1r] . Since M

Mx(s)

Nx(s)

"

is the orthogonal projection on (span{sin s}):L and [Nx(s),sins] =

for every x ¢ L2[O,1r] , one concludes that R(N) C (span{sin s})ﬁl

R(M) . Furthermore

e

which implies that A = M+N is a proper splitting, by Corollary

v Tl'v-l 2 2
J J(—cost cos g)dtdg| =1<1,
0"

Iv.1.1.

Second, we choose the following basis of X:

~ . 2 2
(2.1) \/,—IZT——coss, \/%sins, ‘/:SiHSS, \/:sinSs,...

™ T

The conditions (1.4) are now satisfied for every n.

Third, we calculate A and b for n = 1,2,...
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(Y
|

2 2 .
1= [‘/F_coss s A[ 7 cos s]] = 1, since A(coss)= jcoss

1 [s,\/,—rzr—--cos s) = —2%

o
"

Thus Ax = b for n

1 is given by Xx = -2\/%_ , which gives

X* = -4\/% . For n =2, the system (1.1). is

22
0 o ﬂ\}z
™

and its best least squares solution is

[ ST
(o]

For n = 3, the system (1.1) becomes

2
o

=
o
o

)
o
=)

]
i
=

with the best least squares solution

At the n-th step (n 2 3) we obtain
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1 0 -2
0 T
1 T
A= 1 , §=\/%— 5
N
. . 5
0 1 .
m
2n - 3

and the best least squares solution is

-4
0
T
3
T
5
T
2n -
Hence
“lo, _ 2¢ - s L m . _
Jox -;T-{—4coss+351n35+-5—s,1n55+...+2n_351n(2n 3Nl

Since the coefficients (x*(s) , Ti) , i=1,...,n of the function

. 4 . X 2 T2
x*(s) = s~-2sins - —coss, in the basis (2.1), are -4\/; , 0,?/-;- s

g\g y eee s ZnL-S*/?—zr: for every n, we conclude that J(-)li* - x*(s) ,

i.e. x*(s) 1is the best least squares solution of Ax =b. The
same result has been obtained in Example III.3.1 using iteration

in L2[0,1T] .
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CONVEX PROGRAMMING
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I. INTRODUCTION

—t
.

Consider the convex program

fo(x) - min
(P) s.t. .
f(x) £0,kepP=1{1,...,m},

where fk : X+R, ke {0} UP, are continuous convex functions

and X 1is a locally convex linear Hausdorff space. The convexity
assumption represents the natural framework for the treatment of
optimization problems. One can now develop an elegant theory that
allows a wide range of applications. The optimality conditions and
algorithms developed, using this theory, usually assume that Slater's
condition or some other constraint qualification is satisfied.
However, recently Ben-Israel, Ben-Tal and Zlobec [10], [11] have
used the cones of directions of constancy of the constraints, to
charagterize optimality without assuming a constraint qualification.
Algorithms for solving (P) were then given in [14]. In this part
of the thesis we continue this approach and study the role played
by the cones of directions of constancy when deriving optimality
conditions and algorithms. In particular, we use the approach of
Gould and Tolle [30] and study the relationship between the geometry
of the feasible set and the analytic properties of the constraints,

We will see that the cones of directions of constancy provide exactly
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the missing analytic information needed in order to describe the
feasible set and thus characterize optimality.

In Chapter II we summarize some basic results in convex analysis
and optimization. We also introduce the set of 'badly behaved'
constraints at Xx, Pb(X), and present a closedness criterion for
the sum of two, not necessarily convex, cones. In Chapter'III we
first give a lemma which shows the different relationships between
the cones of directions of constancy, the tangent cone of the feasi-
ble set and the cone of subgradients. Using this lemma, we derive
some old and some new characterizations of optimality. Chapter IV
examines the notions of constraint qualifications and regularization.
The most important results here are the regularization technique in
Theorem IV.4.2 and the weakest constraint qualifications in Theorem
IVv.3.1. Finally, in Chapter V we present the Method of Reduction,
which solves program (P) with faithfully convex constraints. The
method includes an algorithm for finding the cone of directions of
constancy of a faithfully convex function and also a geﬁeralization
of the algorithm for finding the equality set, P=, given by Abrams

and Kerzner [3]. We conclude with several applications and examples.
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1. Notation

77

II. PRELIMINARIES

We will be dealing with real locally convex linear spaces

X,Y, ...

and various mappings defined on them. We list below

some of the abbreviations and symbols used and the sections where

their meanings are explained.

tvs
les
L(X,Y)
Xt

w*-closed

R(B)
N(B)
Kkt
gpan K
X
bdry K
int K
cone

blunt cone

a topological linear space

a locally convex (Hausdorff) space

the set of all linear operators from X into Y

the topological dual of X, with the weak™ topology

weak® closed

the real Euclidean n-space
the range space of the operator B

the null space of the operator B

the annihilator (in X') of a set K (in X)

the vector subspace spanned by K

topological closure

the topological boundary of K

the topological interior of K»

a set closed under nonnegative scalar multiplication

a set closed under positive scalar multiplication
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cone K the convex cone generated by K

conv K the convex hull of K

2 the empty set

pex the value of ¢(x) or x(¢), where x e X and ¢ ¢ X'
(P) the convex program, II.2

(Pr) the regularized program, 1IV.4

P the indexing set of the constraints, II.2

S the feasible set, 1II.2

P(x) the binding constraints, II.2

pP= the equality set, II.2

PIx) = PCONPT , II.2

PP (x) the 'badly behaved' set, II.S5

dist(x,K) the distance from x to the set K, 1II.5

Ek(x) the directions of vanishing directional derivative, II.5

D;’S’=’> the cone of directions of decrease, nonincrease,
constancy and increase, II.3

VE(x;d) the directional derivative, 1I1I.4

of (x) the subdifferential, II.4

VE(x) the gradient, II.4

M* the polar of M, 1I1I1.6

F°(x) the set of continuous; convex functions which achieve

their minimm in S at x, II.7
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DF°(x) ={¢ € 3f°(x): f° ¢ F°(x)}, II.7

Cp (g

Bp(x)[x)
T(S,x)

K-T point

K-T conditions
regular point
cQ

WCQ

(PL)

(PP)

(PS)

the linearizing cone, II.7
the cone of subgradients, II.7

the cone of tangents, II.8
Kuhn-Tucker point, IV.1
Kuhn-Tucker conditions, IV.1
Iv.2

constraint qualification, 1IV.2
weakest constraint qualification,
the lexicographic problem, V;S
the Pareto optimal problem, V.5

the semi-infinite problem, V.5

Iv.3
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2. The Convex Program

We consider the convex programming problem
f°(x) > min
(P) s.t.

&)y <o, keP={1,...m},

where fk:X + R are continuous convex functions, defined on the
les X, for all k ¢ {0} UP. (Without loss of generality, we
assume that none of the functions is constant.) Unless otherwise

specified, we assume that the feasible set

S ={xe¢ X:fk(x) < 0, for all k ¢ P}

is not empty. The set of binding constraints, at x € S, is

P(x) = {k € P:£5(x) = 0} .

An important subset of P, independent of x, is the equality set

P~ = {k ¢ P:fk(x) = 0, for all x e S}.

(See e.g. Zoutendijk [53], Rockafellar [43] and Abrams and Kerzner
[3].) This is the set of indices k for which the constraint fk

vanishes on the entire feasible set. We then denote
< 3
P (x) = P(x)\P .

Note that unlike P, P (x) depends on x.
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3. Cones of Directions and Faithfully Convex Functions

Following Ben-Israel, Ben-Tal and Zlobec [11], we define the

relations
"relation" is "=", "<, MM or MU,
by
D;relation"(x) = {d ¢ X: there exists o > 0 with

f(x +ad) "relation" f(x) , for all 0<a <al.

These are the cones of directions of constancy, descent, nonincrease

and increase respectively. For simplicity of notation, we let

1t 4 1 1" 3 11
Dkrelatlon (x) = D relation (x)
k
f
and
" 3 " T 1 2 141
DQrelatlon x) = N Dkre ation (x) for QCP.
kefl

Remark 3.1. For a function f in the class of faithfully
convex functions, the cone D;(x) is a subspace independent of x.
Following Rockafellar [44], we say that a convex function f 1is

faithfully convex if: f is affine on a line segment only if it is

n
affine on the whole line containing that segment. If X =R,

then Rockafellar has shown that f is faithfully convex if and only

if it is of the form

(3.1) f(x) = h(Ax+b) + a*x + a,
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where A ¢ Rmxn,'b € Rm, ;:e Rn; @ € R and the function h:R"+R
is strictly convex. It is easy to see that D;(x) = N(L:J)
and is a subspace independent of x.

In the following lemma we collect some properties of the
directions. We also show directly that the cone of directions

of constancy of a continuous faithfully convex function on X,

a les, is a subspace independent of x ¢ X.

Lemma 3.1. Suppose that f:X + R is a convex function and

x ¢ S. Then:
S <
a) Dg(x) is a convex cone, D;(x) is a convex blunt cone.

b) comv D;(x) € D) .

) D; (x) = D (x) N D__(x)
(x) P=

<

P (x)

< ‘ =
D~ (x) N comv D__(x) .
P<(x) p=

d D_(x)ND, (x)#8.
P P (x)

e) If f 1is both faithfully convex and continuous, then

D;(x) = D; is a subspace of X, independent of x.
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Proof. For (a)-(d), see e.g. ,[11]; [12]V.

e) First, let us show that Dz.(x) is a subspace. Suppose that

d1 , d2 € Df(x) and let d = d1+d2". If a e R, then

f(x+od) = f(3(x+ Zadl) + 3(x+ Zadz))

IA

f(x+ 2ud1) + éf(x+2ad2) , since f is convex

f(x) , since dl s d2 € Dz.(x) and f 1is faithfully convex.

Therefore f 1is bounded above on the whole line x+o0d, o € R, which
implies that f 1is constant on this line (see e.g. Rockafellar [41,
p.69]. Thus, d ¢ D;(x) . This shows that D;(x) is closed under
addition. That Dz.(x) is closed under scalar multiplication is

clear, from the definition of a faithfully convex function.
f 3
of x. Suppose that x,y e X and d e D;(x) . We will show that
d e Df(y) .

Case (i): Suppose that f(y) < f(x) . We will first show that

We have left to show that D;(x) =D i.e. it is independent

f(y+ad) < f(x), for all o € R,

Let 0 € R and 1>tk>0 with tk+0 as k - o, Consider the
k

directions 2z = od+t, (x~y) and let Y = 1/1:k . Then

IA

f(y) < £(x)

f£(x+y,ad), since de D;.(x)

k
fy+vez) .
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By convexity of f and since Yk > 1, we conclude that
k
f(y+z) < £f(x)
and thus, by continuity of f, we see that

£(y +ad) = lim £(y +25) < £(x) .
koo

This shows that f 1is bounded on the line y+ad, a e R,
and therefore, f is constant on this line, i.e. d € D;(y).
Case (ii): Suppose that f(x) < f(y) . By a similar argument

to case (i), we see that

f(y+od) = lim f(y+ad+t, (x-y)) < £(y),
ko

for all a e R, i.e. d ¢ D;(y).

Remark 3.2. For faithfully convex functions £, on R® , one
can calculate D; explicitly, see . [49] and Section V;2;~ The
class of faithfully convex functions is quite large. It includes
all analytic convex, as well as strictly convex, functions. The
algorithms in Chapter V will deal mainly with these functions.
In general, however, the cone of directions of constancy may not

be a subspace. In fact it may be neither convex nor closed. (See

[10] for examples.)
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4. Subdifferentiability

We have assumed that our functions are convex, but not
necessarily differentiable. Nonsmooth, or nondifferentiable,
functions occur quite often in convex analysis. Applications for
these functions arise in approximation theory, e.g. Dem'yanov
and Malozemov [23], duality theory, e.g. Rockafellar [42] and
semi-infinite programming, e.g. Ben-Tal, Kerzner and Zlobec [13].
(See also Clarke [19] and Pshenichnyi [40].) For convex functions,
it is possible to develop a complete calculus without assuming
differentiability, e.g. Rockafellar [41], Pshenichnyi [40] and
Holmes [34]. We now recall some concepts dealing with directional
derivatives and subgradients of a convex function £, defined on
the Zes X.

The directional derivative of f at x, in the direction

d, 1is defined as

o fx+td) - £(x)

Vf(x;d) = 1i t

t40

Convex functions have the useful property that the directional
derivatives exist universally, e.g. [41, Theorem 23.1].
A vector ¢ ¢ X' 1is said to be a subgradient of a convex

function f, at the point x, if

f(z) 2 £f(x) + ¢*(z-x), for all z € X.
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The set of all subgradients of f at x 1is then called the

subdifferential of f at x and is denoted by 23f(x) .

If the directional derivative of f at x 1is a continuous

linear functional, i.e. if Vf(x;+) = ¢ ¢ X', then

bed = 1im ECX*td) - £(x)
—— B ) - t ——

and ¢ 1is called the gradient of f at x and denoted Vf(x) .

Note that in this case
IfF(x) = {VE(X)}.

We collect some useful properties in the following lemma.

For more details and proofs, see e.g. [34], [41].

Lemma 4.1. Suppose that f£f:X - R 1is convex. Then

a) Vf(x;e) 1is a finite, sublinear functional on X, for all x e X.
If, in addition, f 1is continuous at x, then:

b) Vf(x;d) = max{¢ed:¢ € 3f(x)}

and

c) 93f(x) is a non-empty, w*-compact convex subset of X'.

The next lemma presents some of the relations that exist
between the subgradients and the directions introduced in Section 3.

For the proofs see Ben-Tal and Ben-Israel [12].
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Lemma 4.2. Suppose that f:X + R 1is convex. Then
a) D;(x) = {d € X:Vf(x;d) < 0} .
If Vf(x) exists, then:

b) n;(x) = {d e X:Vf(x)+d < 0}
and

0} .

c) comv Dg(x) = D;(x) C {d e X:Vf(x)d

@ 5. The 'Badly Behaved' Constraints

For Xe S, let

o e————

b A =. > =
P00 & k¢ PTCB 00 0 D00 0 Gy CONNT_ G 4 g,

where

Ek(x) = {d ¢ X:ka(x;d) = 0}

and

C (x) = {d e X:ka(x;d) £0, forall ke P(x)}.

P(x)

(See Section 7 below for further properties of the 'linearizing

cone', CP(x) (x) .) We call Pb(x) the set. of 'badly behaved'

constraints at x € S, for program (P).
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The set Pb(x) is the set of constraints that creates problems
in the Kuhn-Tucker theory. We can see that these are the constraints
in P=, whose analytic properties (given by the directional deri-
vatives) do not fully describe the geometry of the feasible set

(given by the feasible directions). It will be shown in IV.3 that

Px) = p
is an essential condition for the Kuhn-Tucker theory to hold at x,
independent of fo. The set Pb(x) will also be used in the
characterizations of optimality in III.4.
Abrams and Kerzner [ 3] have given an algorithm that finds
the set P . (See V.3 for a modified version of their algorithm.)
Once P~ is fbund, then, for any given index k, e P~ ,Awe see

that kg € Pb(x) if and only if the system

It
]

veRe (x;d)

ka(x;d) <0, for all k € P(x)\k ,

d¢D (x)V D~_(x)
o

[-]

is consistent. (Note that when Dzo(x) is closed, then D=_(x) c
P

D: (x) . This simplifies the above system and thus, the corresponding
[-]

definition for the 'badly behaved' set.)

The set Pb(x) is not equal to P~ in general. In fact, if

(5.1) Ek(x) = D;:(X) ’
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then fk is 'never badly behaved' at x, i.e. k ¢ Pb(x) independent
of the other constraints. This class of functions which are 'never
badly behaved' at x includes all continuous linear functionals

on X . Furthermore, if X = Rn, VE(x) # 0 and f 1is a strictly
convex function of one variable, considered as a function on R"

(i.e. if the restriction of f to R1 is strictly convex), then

f is a nonlinear function which is 'never badly behaved' at x.

(See Ben-Israel, Ben-Tal and Zlobec [10] for definitions and
properties of functions whose restrictions are strictly convex.)

The class of functions which are 'never badly behaved' at x

also includes the 'distance' functions defined below. We will

see, in IV.4, that every program (P) can be 'regularized' by

the addition of one such 'distance' function.

Lemma 5.1. Suppose that X is a Hilbert space, K is
a nonempty closed convex cone in X, xe S and ke P. If,

for y e X,

£20y) = dist(y - x,K)

Hne>

(5.2) min | (y -x) -zl ,

zeK

then fk is a convex function on X, which is 'never badly behaved'

at x. Furthermore,

: X 0 if de K
(5.3) VE (x;d) =

positive otherwise.
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Proof. First, let us show that the function fk is convex.
2 . . .
Suppose that yl, y € X. Since X 1is a Hilbert space and K
is a nonempty, closed convex set, there exist unique points z

and z2 , in K, which are closest to yl-x and y2-x resp.,

see e.g. Rudin [46, p.78]. Thus

k 1 1 1 "k 2 2 2
£ () =ly -x-2z1, £)=Iy-x-z27.

Let 0 <A <1. Then

and
Koyl + (1-0yD = distOyl+ (1-0y2-x, K
SOyt + (1-0y% - - Ozt + 1=z
< M- -2 @ -MIP-x) - 22
= akoh « a-nfed .
Therefore fk is a convex function on X. Now let d e X. Then

lim fk(x-+td)-—fk(x)

Ve (x; d)
£40 t

- 13 Gst(40)

t¥0

dist(d,K) , since K is a cone.

This yields (5.3) and further implies that (5.1) holds. Therefore

fk is 'never badly behaved! at x. 0
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Example 5.1. Consider the program (P) with the single constraint

in one variable, fl(x) < 0, where

1 x2 if x=20,
£f(x) =
0 otherwise.
Then
b {1} if x=0,
Pr(x) =
[} otherwise.
However, if
2 .
1 x“+x 1if x=z2 0,
f (x) =
0 otherwise,

_then Pb(x] = fp for all x, i.e. fl is not 'badly behaved' at

i, though 1 ¢ P .

Example 5.2. Now consider the three functions

. x-1% if x21,

f (x) =
0 otherwise,
2 vx2 if x20,

f(x) =
0 otherwise,

and 9

3 X" +x if x20,

£7(x) =

0 . otherwise.
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fgﬁff{////l

If the program (P) has just the two constraints f1 and fz, then

b {2} if x=0,
P(x) =
[/ XxX#0 and x € S.

If, however, the program (P) has all three constraints, then

(5.4) PP(x) =p forall xeS.

As mentioned above, we shall see that, (5.4) is essential for the Kuhn-

Tucker theory to hold, independent of the choice of the objective

function fo.
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6. Polar Sets and Closedness Criteria

In this section we collect some useful results on polar sets.
These results can be found in e.g. Girsanov [28] and Holmes [34]:
See also Borwein [16]. We also present a closedness criterion for
the sum of two cones.

Recall that for MC X and X a les, the polar of M is
M* = {¢ € X':9*x 2 0 for all x € M}.

%* . . .
M~ is then a w*-closed convex cone in X' . However, if M C X',

then we define its polar to be
M* = {x € X:¢pox 2 0 for all ¢ e M}.

M* is now a w-closed convex cone in X.

Lemma 6.1. Suppose that K and L are subsets of X and C
is a subset of X' . Then:
a) Kc L implies L* c k*.
b) K = (comw K)*, C' = (comw ), K*=0Cone X and C** = cone C.

If, in addition, K and L are closed convex cones, then

e . 1 r®

) (KNL) =X +L".

The following closedness criteria will be used in deriving the

optimality conditions in Chapter III.
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Lemma 6.2. Suppose that L 1is a closed cone in X, C 1is
a compact subset of X mnot containing the origin, and K 1is the
cone generated by C, 1i.e.

K= U XC
A0

If
(6.1) cn (‘L) = ﬂ,
then

K+L is closed.

Proof. Suppose that the net K"+ 2" > P, Wwhere k" ¢ K and

2" ¢ L. We need to show that pe K+L. For 0 # ¢ € K, let

I¢h 4 inf{t > 0 :t‘1¢ e C}.

by the definition of K.

Note that |li¢l <, for all 0 # ¢ € K,

is the Minkowski functional of C and is a seminorm

(In fact, |-l

on X, when C 1is a balanced convex absorbing set.)

Case (i): Suppose that sup Ik™l < o. Then

n n n
te, for some ¢ € C, t, > 0 and sup tn < o,

k

. . n
Since C 1is a compact set, we can assume that k = k € K. Therefore

lim 2" = lim (p-k™) = p-k.
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Let & & p-k. Then 2 ¢ L, since L 1is closed, and
p=k+2 ¢ K+L.

Case (ii): Suppose that sup IK™ = ©. We can assume that
k™M > o, or else we can extract a bounded subnet and use case (i).
Let an = 1/Hknﬂ . Then an -+ 0 and Hanknﬂ =1 for all n. As

in case (i), we can assume that

o k"~ keX.
n
Furthermore, since uanknu = 1, we see that
n
ank e C, for all n,
This implies that k ¢ C. Now, since
n
kn¥+2 +p and o -0,

we see that

n n . _
ank *+o % > limap =0,

a 2" > lim (-0 X = -k,
n n
and -k ¢ L., since L is closed. Thus

(6.2) keCn (‘L) >

contradicting the hypothesis. This implies that sup 1K™ < © and

we can apply case (i). O
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Note that since X' with the w*-topology is a Zes, the

lemma holds when X is replaced with X'.

Remark 6.1. The condition
Kn (-L) = {0}

alone, does not necessarily imply that

K+L 1is closed.

Halmos [33, p.28] has given an example of two éubspaces, in a Hilbert

. . . T
space, with zero intersection and a non-closed sum.

Closedness of a sum is related to closedness of the linear image
of a set. Suppose that UC X and T:X—=> Y is a bounded linear
operator, where X and Y are Banach spaces. If T has closed
range, then the linear image TU is closed if and only if U+ N(T)
is closed, see e.g. Atteia [ 5] and Holmes [35, p.142]. Therefore

Lemma 6.2 implies that
TU 1is closed

if, T has closed range, U 1is a cone generated by a compact set C

which does not contain the origin and

CNANT) =90.

t1 would like to thank Professor Rockafellar for pointing out this

example to me.
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The above criteria is used to prove the existence of solutions in
optimal control and spline approximation problems, see e.g. [35,

Section 21], [21] and [27].

Remark 6.2. Lemma 6.2 holds if (6.1) is weakened to read

CN (-L) N (-bdry L) = ¢.

Proof. Following the proof of Lemma 6.2, we see that we fail

to obtain a contradiction if
k e CN (-int L)

in (6.2). Therefore, in this case, we need to show that p € K+L.

We accomplish this by showing that
p € int (K+L).

Since k € -int L, we can find a convex neighborhood of the origin,

N, such that
k+n C L.

(Recall that every Iecs X has a convex local base, see e.g. [45].)

It is therefore sufficient to show that the open set
p+N C X+int L.
Let

Pep+*h and qlP-p.
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. n .
Then q €} and since anl -+ -k, a -0 and N is convex,

we can assume that

n .
anl +0.q € -k+N C int L, for all n.

Therefore

n 1 n .
L +q = a—(anl +ocnq) € tnt L, for all n,

n

since L 1is a cone. This implies that
K'+2"+q>p+q =7,

where k™ ¢ K and "+qe int L, i.e. p e K+inz L.

7. Some Special Cones

We now present some well-known definitions of cones used in
mathematical programming, see e.g. Gould and Tolle [30] and Abadie
[1]. However, the definitions are stated here in terms of subgradients.
By F°(x), we denote the cone of all continuous convex objective
‘functions f° with the property that x minimizes £° over S. Then the

cone
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DF°(x) & {¢ e X' : ¢ € 3f°(x), for some £° ¢ F°(x)}.

For every subset 8 of P(x), the linearizing cone at x ¢ S,

with respect to , is

Cox) = {d eX : ¢=d < 0 for all ¢ e ae% (x)

and all k e Q}.

By Lemma 4.1(b), we see that
Cy(x) = {dex: veX(x;d) £ 0 for all k e Q}.

This formulation corresponds with the definition of the linearizing
cone given in Section 5.

. The cone of subgradients at x is

k
Bo(x) = {¢p e X* : ¢= I A9 for some A, 20 and
& keq k

¢k € Bfk(x)}.

This cone is convex. It is also w*-closed, if 0 £ comv U .Bfk(x),
' ke
by Lemma 6.2. We now set

B¢(x) = {0}.

The linearizing cone and the cone of subgradients have the

following dual property.
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Lemma 7.1. Suppose that x ¢ S and £ C P(x). Then

BQ(X) = -.C&(x).

Proof. Since

Bfk(x)**, by Lemma 6.1(b)

Bk(X)

(7.1) - C]*((x), by definition,

we conclude that

- ZC'(x), by Lemma 6.1(c)
k
ke

By(x), by (7.1

- Co(0

0

Gould and Tolle [31] used Farkas' Lemma to prove the above
result, for differentiable functions on Rn. Note that in the differ-
entiable case, Bg(x) is closed. This may fail in the nondifferen-
tiable case. (Consider B1 (0), where £l is the support function
of the set {x € R2 :hx - (0,1 < 1}.+) The closure of BP(X)(x)
will play an essential role in the characterization of regularity

in IV.3.

T I would like to thank Professor J. Borwein for pointing this out to me.



I11.8 101

8. The Cone of Tangents

For x € M, where M 1is an arbitrary set in X, the cone of

tangents to M at x 1is defined by

k k
TM,x) = {d e X:d=1lim Ak(x - X), where x e M,

Ak >0 and xk > X.}

This cone is closed and it is convex if M is. 1In fact. when M

is convex, it is exactly the cone (M - x), the support cone of

M at x. For further properties, see e.g. Guignard [32] and Holmes
[3¢]. For a relationship of the cone of tangents with derivatives
in mathematical programming, see e.g. Massam [38] and Massam and
Zlobec [39].

The cone of tangents is used in optimization theory to describe
the geometry of the feasible set. For example, one gets the following

characterization of optimality.

Theorem 8.1. [34, p.30] x € S is optimal for (P) if and

only if
AF°(x) N T*(S,x) # P.

This result will be the starting point for our characterizations
of optimality. Note that the characterization is in terms of the

feasible set, rather than the constraints.
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ITI. CHARACTERIZATIONS OF OPTIMALITY

1. Introduction

Optimality conditions of the Kuhn-Tucker type usually use the
analytic properties of the constraints, given by the cone of
subgradients, BP(X)(X)’ or the linearizing cone, CP[X)(X)° However,

these cones may not provide all the required information needed to

. characterize optimality. As seen in Theorem II:8.1, the cone of

tangents of the feasible set does provide enough information to
characterize optimality. However, this cone is hard to use
computationally. In [10], it was shown that the cones of directions
of constancy can be used to characterize optimality. We will see

how these cones provide the missing information. Using Theorem II.8.1,
we first present optimality conditions of the type given by Guignard
[32] and Gould and Tolle [30]. (See Theorem 3.1.) From this result

we deduce several new, as well as known, optimality conditions.
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2. A Basic Lemma

The following lemma presents several relationships between the
types of cones mentioned in Section 1. This lemma is of key importance

in the proofs in the rest of this chapter and in Chapter IV.

Lemma 2.1. Suppose that x ¢ S, £ satisfies P°(x) CQC P

and either conv D;(x) is closed or 92 =P,

Then:

a) T(S5,x) = DP?X)(X).

b) comv D;(x) N CP(x)(x) = D;(x) 0 CP(X)(X) = D:=(X) n CP(x)(x)'

¢) T(S,x) = conv D;(x) nc (x).

P(x)

3% (%) =\ *
d) conv [ keP<(x) , n (DQ(X)) = .
&) T(S,x) = (D5(x))* + Cheyy 9 = (D;(x))* = Bprgy -
£) T*(S,x) = [DP;x)} t O g = [D;=OO] - Bpry (-

(Recall that X' is given the w*-topology and thus is a les.)

Proof. Since the point x € S is fixed throughout, we will omit

it in this proof when the intended meaning is clear, e.g. D; will

< < . <
denote DP(x)(x)’ P> will denote P (x), etc.
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a) Suppose that d ¢ T(S,x), with associated nets {xk} and

kk 2 0. Let dk = xk

k

- X. Since xk S, we see that x + dk € S,

i.e. d

€
< . < k <
€ DP' Furthermore, since DP is a cone, Akd € D But

P

- k : . k
d = lim }\k(x - X) = lim )\kd s

<
which implies that d ¢ Dp. Thus

T(S,x) €D

A

Conversely, suppose that d ¢ D;. Then, there exists o >0

such that

x+o0d €8S, forall 0<aqa < a.

Let

Then xk € S and, since X

Ak =

is a tvs, xk*x as ko», By choosing

al|=

, Wwe see that

k
Ak(x - x) =d, for all k =1.

<
Therefore d € T(S,x), i.e. we have shown that DP C T(S,x). The

result now follows since T(S,x) 1is closed.

b) (i) First, let us show that

“nNncg.cC “n
(2.1) conv DQ CP conv DQ CP.
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By hypothesis and the fact that conv D== cc and

P P
c _NC _, itis sufficient to show that
P P
(2.2) cow D _NC < C comw D== nc ..
P P P P

But this follows since
(2.3) dep _0ND' Coom D _nNintC _#9,

P P P P

by Lemma II.3.1(d).
Let us define

(2.4) d 83+ a-na,

for scalars A and vectors d.

(ii) Next, let us show that

~Nnc, €D .
(2.5) PG SN G

Suppose that

d e (Do N CH\(Dp= N C)

105
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= < .
We will find a set I CP and feasible directions d, € Dp, which

k
are directions of decrease for £, k € I. This will contradict
the definition of P .
By the assumption, we can find a nonempty set I C PR

such that

K. * -
deCp= N (-3f de D= _  but
P L s
keP PAI

:U"—E:—
d ¢ Dk DP , for each k ¢ I.

Recall that when k_ « P=, then fk° is 'badly behaved' at x if

the system
r ka°(x;d) =0
k
ﬁ VE (x;d) <0, k € P(x)\ko
\ déDkouDP=

is consistent. Therefore, since

IcPec PP,

we see that

k
VE (x;d) < 0, for all k ¢ I,

< =
N = .
(2.6) d e DI DP \I
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Let d and dk be defined as in (2.3) and (2.4) respectively.

Then, by (2.3), (2.4) and (2.6),

(2.7) d, e D;, for all 0 <) < 1.

Furthermore, Lemma II.3.1(b) implies that

<
= < A<1.
(2.8) dk € DP \1’ for all 0< A< 1

Now, by continuity and (2.3), there exists 0 < B < 1 such that

(2.9) d, € D<

\ P<’ for all B < A <1,

From (2.7), (2.8) and (2.9), we conclude that
< <
- N
d, € DP DI’ for all B < A <1,

contradiction. Thus we have shown that

The inclusion (2.5) follows, since both CP and D;= are closed.

(iii) By a similar argument, in particular employing Lemma

I1I.3.1(b) again, we see that

N “NnCca.
(2.10) cony DQ CP c DQ CP

The desired result now follows from (2.1), (2.5), (2.10) and

D= NC.CD- N 575 D= N
DP‘ CP DQ CP C conv DQ CP'
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¢) By (a), (b) and (2.1), it is sufficient to show that

That

(2.11)

) l/\l

= v == N .
con DP : C.P

= =
- C = N
DP conv DP CP

is clear from the definitions and Lemma II.3.1(b). To prove the

converse, we first show that

(2.12)

&) ml

conv D;= N CP CD

Suppose that we are given

==n
d € conv DP CP

and the neighbourhood of the origin, . We need to show that

(2.13)

Fa
Let d and dk

for all 0 < A <

dk €

< = <
< N eony D_= C D
DP p D

nf,ﬂ(n+d)¢¢.

be defined as in (2.3) and (2.4) respectively.

d, ¢ = Ad+¢ + (1 - A)d¢ < 0,

1 and all ¢ e VY _ 3fk. Therefore
keP

ps for all 0 < A < 1.

Then
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Furthermore, dk e + d for sufficiently small A, This proves

(2.13) and thus (2.12).

The desired result now follows since ; is closed.
d) Let
(2.14) c & comw l U afk]
keP

<
Suppose that the intersection is not empty. Then P # @ and there

exists
b eCNpg)

k k
where ¢ = I _ A_¢k for some XA > 0, IN =1 and ¢ < 9f .
keP K k :

By Lemma II.6.1(a) and (b),
D; c {¢}* and - C* C - {4}*.
Therefore

D; n - ¢t c {¢}.

>

Let d be as in (2.3). Then

A = < = * 1
- N N« n - =
d e D; Dp< C D C {17,

{7

~ k
*p = de E < AK¢ <o,

keP
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A

since d ¢ D<<, Ak 2 0 and IX

p 1. Contradiction,

k=
‘e) The result follows from (c) anddLemmas I1.6.1(c) and II.7.1.

f) First, note that

) = % * = % %*
(2.15) Do="+ Cp = Do=' + Cps,

since conv D;= C CP=' Now, let C be as in (2.14). Then C 1is
w*-compact, since the subdifferentials Bfk are w*-compact and

<

P is finite. Furthermore, since 0 ¢ C by (d), we get that BP<

is closed by Lemma 1I.6.2 and thus
- C;< = BP< = ¢cone C, by Lemma II.7.1.

The result now follows from (d), (e), (2.15) and Lemma II.6.2.
O
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3. Gould and Tolle Optimality Criteria

We will be interested in optimality criteria of the following
type:
X € S is optimal if and only if the system

) Ak¢k €G
keP(x)

G -7 ¢ e o ()

ok ¢ 38%(x), A 20

is consistent,

where G 1is a nonempty cone in X'. Gould and Tolle have considered
such optimality criteria for differentiable, not necessarily convex,

functionals on R, They have shown that if

(3.1) TV (S,x) = c; (x) + G,

(x)

then the (G - T) conditions are necessary for x € S to be

optimal. (Note that the condition (3.1) depends only on the comstraints
and not on the objective function fo.) One obvious candidate for

G is

T*(s,x)\c;(x)(xJ U {o0}.

Moreover, if G = {0} satisfies (3.1), then we get the well-known

Kuhn-Tucker conditions, e.g. [36], [37]. In our setting, i.e. for

the convex program (P), we can say:
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Theorem 3.1. Suppose that x € S and G C X'. Then the

statement:

"x is optimal for (P) if and only if the system

0+ I At eg
keP(x)

(3.2) 0" € 3£° (%)
6" afk(x), A 2 0
is consistent",
holds, for any fixed objective function fo, if and only if

G satisfies (3.1).

Proof. We need to show that we can choose G in (3.2) if

and only if

(3.3) T(S,x) = - Bp (x) +G,

(x)

Sufficiency: Suppose that G satisfies (3.3). By Theorem
I1.8.1, we know that x is optimal if and only if afo(x) N T*(S,x)
# @, By (3.3), this implies that x 1is optimal if and only if

IET(x) N ¢ (x) + G) # @, i.e. if and only if (3.2) is consistent.

Bpx)
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Necessity: We need to show that (3.3) holds. Suppose that
¢ « T°(S,x) and £ 1is defined by the linear functional ¢(*)
on X. Then ¢ € afo(x) N T*(S,x) and we can conclude that x is

optimal for (P), i.e. ¢ = f « F°(x) . Therefore, by the conditions

(3.2), we see that ¢ € _BP(x) + G. Thus
* C - G.
T (S,x) BP(x)(x) +
Conversely, let ¢ € -BP(X)(X) + G. Then we can find Ak 20

and ¢k € Bfk(x) such that

(3.4) ¢ + X Kk¢k e G,
keP(x)

Again we let £’ be the linear functional ¢. Then ¢ = £ € Fo(x),
by (3.2). Since Bfo(x) = {¢}, Theorem 1I.8.1 implies that

d € T*(S,x). Thus

—BP(X)(X) + GCT (5,x).

The condition (3.1) is frequently referred to as a necessary
and sufficient constraint qualification, or a weakest constraint

qualification.
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4. Some Choices for the Cone G

By specifying G in (3.3), we get necessary and sufficient
conditions for optimality which hold without a constraint qualifi-

cation. For example,

Theorem 4.1. The point x € S 1is optimal for (P) if and

only if the system

o Z )\ *
¢ + keP(x) ¢ (Dp(x)(x)]
0° e 3f°(x)

ke 8fk(x), A, 20

is consistent.

Proof. By Theorem 3.1, we need only show that G = (DP( )(x))*
satisfies (3.3). Now
T*(S,x) = [DP( )(x)]*, by Lemmas 2.1(a) and I11.6.1(a)
. <
=-BP(x) (x) + ( P(x )(x)) since DP(x) (x) c CP(x) (x) and

“Bpy (9 © Cp 0 -

Other, possibly more useful candidates for G are given in

the next theorem.

O
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Theorem 4.2. Suppose that x € S, the set  satisfies

b = : = . = \*
P(xX) CQCP and Both comp DQ(_x) -and -BP(X) (x) + [Dg(x)) are

closed. Then, x is optimal for (P) if and only if the system

° k = *
6 + I A¢o e (Do)
keP(x) © f

(4.1) ¢° € Bfo(x)

¢k € Bfk(x), Ak 20

is consistent.

Proof. The result follows immediately from Theorem 3.1 and

Lemma 2.1(e).
O

. . - *
We h d that comv D_ - B x) + D ( 1 .
e have assume a q and P(x)c ) + Q(x)] are clased
(This can be considered as a kind of constraint qualification.)
The sets are closed, for eiample,when the constraints are faithfully
convex and differentiable. For then both cones in the sum are

polyhedral. The following two.eiamplesthow that the. closure assumptions

are necessary.

Example 4.1. Consider the program

fo(x) -+ min
s.t.
fk(x) <0, keP=1{1,2, 3},
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where x = (Xi) € RS, fl(x) = X5 fz(x) = - X

[see (II.S.Z)) and K 1is the self-polar, 'ice-cream' cone

2
k& {x ¢ R3 Px; 20, XX, 2 Xg }.

Note that now

min || td - sz
lim zeK
tv0 t

vES(0,d)

3
0, for all d € R .

— _ = b —
Let x = 0. Then x € §S, P =P while P (x)

1 - "
Pco)(O) = span l(o)] and (DPb(O)(O)) = K.

Let us show that

P(O)(O) + (D ; 0 )(0)) is not closed.

Choose
i .
i 1 i [P o i
k™ = T e K and g = g P(O)( ), i=1, 2,
1

Then

. . 0
1 1 *
') +($) £ Cpioy O + (0p 0) ()",

fs(x) =

{3}.

116

(dist(x,K))2

Furthermore,
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Example 4.2. Consider the program

£°(x) > min
s.t. k
£ (x) <0, keP=1{1,2}

2
where x = (xi) e R,

2 2 2 . 2 2

- -1=0
) (xl*'x2 1) if x1+x2
f(x) =

0 otherwise,

- 2 — t
fz(x) = dist(x-x,K), K={xe R : x, 20, x, 20} and x = (1,0) .

1 2
Then S = {x}, P~ = P while Pb(—f) = {1}. Let £ = {1}. Then

D;(E) = {der®: d, < 0} U {0}
is not closed. Furthermore

T*(S,E) = Rz and c;(;) (x) = K.

Therefore

= —  * * — . 2
(DQ(X)) + Cp (x) = {xeR :x,20}
# T*(S,x).

This implies that (3.1) fails and that we cannot choose { = {1}

in Theorem 4.2.
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Remark 4.1. When the sum C;(x)(x) + D;*(x) is not closed,

we can, however, get the following asymptotic conditions: If

Pb(x) CQCP  and comw D;

and only if there exists nets

“is closed, then x € S is optimal if

"} c -BP(XJ(X) and {d"} c (D;(x))*
such that

lim(b" + d) € 3f (x).

For more details on asymptotic conditions see e.g. Zlobec [50], [51].

Using the fact that the sum -BP(X)(X) + D;=(x) is always

closed (see Lemma 2.1(f)), we get the following theorem.

Theorem 4.2. Let x € S. Then x is optimal for (P)

if and only if the system

o k = *
¢+ I A e (Dp=(x))
keP(x) P

o

9° ¢ 3£ (%)
¢k € Bfk(x), Xk >0

is consistent.
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Proof. The result follows from Theorem 3.1 and Lemma 2.1(f).

O
This result is equivalent to the following characterization

of optimality given in [12]. (See also [3] and [11] for the differ-

entiable case.)

Corollary 4.1. Let x ¢ S. Then x 1is optimal for (P)

if and only if the system

oF ¢ 355, A 20

is consistent.
Proof. The result follows from (2.15) and Lemma I1I1.7.1.

The above optimality criteria holds without a constraint
qualification. However, when Theorem 4.2 is applicable, it may
prove useful to choose G = (D;b(x)(x))*, since this is a smaller
G. One would therefore, have simpler necessary conditions to check.
This question will be examined in more detail in Section IV.5.

The case when G = {0} deserves special attention because then,
the system (3.2) reduces to the Kuhn-Tucker conditions. We will study

this case in the next chapter.
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IV. CONSTRAINT QUALIFICATIONS AND
REGULARIZATION TECHNIQUES

1. Kuhn-Tucker Points

A point x € S 1is called a Kuhn-Tucker (X-T) point for (P)

if the Kuhn-Tucker (X-T) conditions are satisfied at x, i.e. if

the system
¢° + z ‘ >\k¢k =0
keP(x)
(1.1) 0° ¢ (N

k k
¢ e (x), A 20

is consistent. It is well-known that if x ¢ S is a K-T point,
then x solves program (P). However, the converse does not always

hola.

2. Regular Points and Slater's Condition

We call x € S a regular point (Lagrange regular point), if

the K-T conditions (1.1) hold for every £ e Fo(x), i.e. we can

choose G = {0} in (III.3.2), see e.g. [31]. A constraint qualifi-

cation (CQ) is then a condition on the set of constraints which
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guarantees that x 1is a regular point.
Slater's condition, i.e. the requirement that
. a . kK o
" there exists X € X with f () <0, for all ke P n

is a well-known CQ which guarantees that each point x € S 1is

a regular point. Slater's condition is equivalent to the fact that

(2.1) P = ﬂ)

see e.g. [11]. (This follows from Lemma II.3,1(d).) Note that

Slater's condition is not equivalent to
int S # 9,

see e.g. [11]. However, we can say the following.

Theorem 2.1. Suppose that, when P # §  there exists

k ¢ P~ such that fk is faithfully convex. Then
(i) Slater's condition holds
if and only if
(ii) nt S # P.
(In particular, the equivalence holds when all the constraints are

faithfully convex.)

Proof. That (i) implies (ii) follows by continuity. It is
now sufficient to show that (ii) implies (2.1). Suppose that (2.1)

fails, i.e. there exists k ¢ P and, by hypothesis, fk is
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k
independent of x ¢ X, see Lemma II.3.1(e). This implies that

faithfully convex. Then, D;(x) = D is a proper subspace of X

" which implies that <nt S = @.

S'Cx+Dk, q

For a discussion on constraint qualifications, see e.g. [4],

L71, L8]

3. Weakest Constraint Qualifications

A weakest constraint qualification (WCQ) is a constraint

qualification, that holds if and only if x 1is a regular point.
In other words, it is a condition that holds if and only if x is
a K-T point for all £ e Fo(x). Gould and Tolle [30], [31] have

shown that, in their setting (see e.g. Section III.3)
* *
T (S,x) = CP(X) (x) is a WCQ.

By Theorem III.3.1, we see that in our more general setting,

(3.1) T (8,x) = -BP(X)(X) is a WCQ.

Note that this requires B (x) be closed. In this section, we

P(x)
present two different WCQ's.
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b =
Theorem 3.1. Suppose that x € S, P (x) CQ2C P and either

conv D;(x) is closed or Q = P . Then:

b
a) P(x) =@ and B (x) 1is closed is a WCQ.

P(x)

P(x)(x) C conv Dé(x) and BP(x)(x) is closed is a WCQ.

b) C
Proof. Suppose that (a) holds. Then, Lemma III.2.1(c) implies

that

T(S,x) = C (x) and B (x) 1is closed.

P(x) P(x)
By (3.1) and Lemma II.6.1(a), the above is a WCQ. This implies that

X 1is a regular point.

b
Conversely, suppose that Pb(x) # . Recall that k ¢ P (x) if

k € P and there exists

d e [D;(x) N Ek(X) N CP(X)(X)]\D;=(X)-

But, this implies that

d £ Dp=(x) N Cpx)
= T(S,x), by Lemma III1.2.1 (b) and (c).

Therefore,

T(S,x) # C (x),

P(x)

which, as above, implies that x is not a regular point. That

BP( )(x) is not closed implies that x is not a regular point,
(x

follows from (3.1). This proves (a).



Iv.3 124

To prove (b) note that, as in the proof of (a), we need only

show that: (x).

x)(x) C conv DQ(x) if and only if T(S,x) = CP(x)

CP(

But this follows directly from Lemma III.2.1(b) and (c).
O

Remark 3.1. Suppose that BP(X)(X) is closed and we can find
X€S and QCP such that £5(X) < 0, for all k ¢ P\Q, and £X

is 'never badly behaved', for all k‘é Q, 1i.e.

Ek(x) = D:(x), for all x e S and k € Q.

Then, since P°(x) C P~, this implies that P’(x) = §, for all
xe S, i.e. x € S 1is a regular point. Thus we see that, when
checking if Slater's condition holds, we need not worry about the
functions which are 'never badly behaved'. In particular, we can

ignore all linear functionals.

Remark 3.2. The condition given in (b) may be easier to check

computationally than the one in (a). For example, when X = Rn,

the constraints fk, k € P(x), are differentiable and the constraints
fk, k € €, are faithfully convex, then Cp(x) (x) is a polyhedral

cone while D;(x) = D, 1is a subspace, independent of x. Furthermore,

Q

D; can be calculated explicitly, see Section V.2.

Remark 3.3. Suppose that S contains two distinct points.
Then Slater's condition is a WCQ with respect to the Fritz John

optimality conditions.
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Proof. The Fritz John optimality conditions state that:
x € S is optimal if and only if the system
k
L Ak¢ =0
keP(x)u{o}

¢k € Bfk(x), A, 20, pX A =1

k keP(x)U{0} ¥

is consistent. Necessity always holds. We need to show that, if S
contains two distinct points (Note that when S = {x}, then x is
optimal for any £ chosen, the Fritz John optimality conditions

hold, but Slater's condition fails.) then the Fritz John conditions
are sufficient for optimality, independent of the objective function
fo, if and only if Slater's condition holds. This follows from the

fact that the system

k
L Ak¢ =0

keP(x)

o e af), A 20, I A =1

k keP(x) ¥

is consistent if and only if Slater's condition fails (i.e. if and

only if P # ), which in turn follows from Motzkin's Theorem of the

alternative, see e.g. [52].
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4, Regularization

Gould and Tolle have posed the question: '""Can the program (P)
be regularized by the addition of a finite number of constraints?"
Augunwamba [ 6] has considered the nonconvex, differentiable case
and has shown that one can always regularize with the addition of an
infinite number of constraints. He has also given necessary and
sufficient conditions to insure the number of constraints added may
be finite. In this section, we show that one can always regularize
(P) at x, by the addition of one (possibly nondifferentiable)
constraint. Furthermore, in the case of faithfully convex constraints,
we can regularize (P) by the addition of a finite number of linear

constraints. (In the following theorem, we assume that B (x) 1is

P(x)

closed.)

" Theorem 4.1. Suppose that X ¢ S, X is a Hilbert space

b — = . = =
PP(x) CQC P and either comv Do(x) is closed or & = P . Consider

p:ogr&m (P) with the additional constraint
fm+1(£) 2 dist ((x - ;5; conv D;(;ﬁ).
Then x 1s a regular point.

Proof. By Lemma II.5.1, fm+1 is not 'badly behaved' at
— b —
X and therefore, P (x) is not increased by the addition of fm+1.

Now, by Theorem 3.1, we need only show that

C (X Ceomv Dy(x).
PR} R
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But

C (X)) ={deX: me+1(§;d) < 0}

m+1

conv D=Q(§), by (II.5.3).
o

Note that the feasible set remains unchanged after the addition
+1 —
of £ . For, let S denote the feasible set after the addition.

Then

XeS®xeS and x—;emeaE

® X e S, since QC P~ and D;(E) C conv D;(;)-

We have, therefore, regularized the point §; by the addition of a

'redundant' constraint.

Theorem 4.2. Let X € S and fk, k € P=, be faithfully

convex. Suppose that B : Y » X 1is the linear operator satisfying

D= = R(B),

where Y is a Iles. Consider the program, in the variable y e Y,

f°(§'+ By) - min

(Pr) s.t.

(X +By) <0, ke PP

Then Slater's condition is satisfied for (Pr), and y =0 is a
feasible point of (Pr). Moreover, if y* solves (Pr), then

X + By* solves (P).
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Proof. The result follows from the characterization of optimality
in [ 3], [11] (see also Corollary III.5.1) and the fact that P = @

if and only if Slater's condition holds.
O

In the next chapter we will see how to calculate D _ and how

P
to apply the above theorem to find a feasible point and solve program

(P). Note that, after the substitution, (PI) has fewer constraints

(and as we shall see, fewer variables) than (P).

5. Strongest and Weakest Optimality Conditions

In Chapter IIT, we presented several optimality criteria of

the type:
( X € S is optimal if and only if the system
6+ Z Ak¢k € G
keP(x)
(5.1) < $° € " (x)

. }\k 2 0’ ¢k € Bfk(x), k € P(X),

\ is consistent,

where G 1is a closed convex cone satisfying
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*
(5.2) T (s,x)=..BP(x)(x) + G.
We have seen that we can always choose

= * < o *
(5.3) G = [DP=(XJ] or  (Dp(yy @) .

Furthermore, when

PP cacy

and the sets
conv D;(x) and ;BPCX)CXJ + (DS(X))

are closed, we can choose
*

(5.4) 6 = (Dg0)

Among the choices of G in (5.3) and (5.4), clearly

G = [D=b )"
P~ (x)

is the smallest.
Gould and Tolle [30] have posed the following question: 'When
does there exist a 'smallest' G for (5.1) ?" By a 'smallest' G
we shall mean a nonempty, closed convex cone that satisfied (5.2)
but which contains no proper convex subset which also satisfied
(5.2). It is of interest to use the 'smallest' G, because then
algorithms which use (5.1) have fewer necessary conditions to check,

i.e. we have a 'tighter' theory.
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From Lemma II11.2.1(a), we know that

T (8,0 = (05, () .

<
DP(x)

<
P(x)
will then be the 'largest' possible. On the other hand, we have seen

Therefore G = (D (x)]* will always satisfy (5.2) and this G

that, when B is closed, G = {0} satisfies (5.2) if and

P{x)(x) }
only if Pb(‘x) = @. In this case, G = {0} is clearly a 'smallest'
G. However, when Pb(x) # @, the cone

G = [D:b (x)
(x)

need not be a 'smallest' G. In fact a 'smallest' G need not exist
(See Example 5.1 below.). The following theorem gives conditions for

finding a 'smallest' G.

Theorem 5.1. Suppose that x ¢ S. If there exists a closed

convex cone H such that

CP(x) NH=T(S,x)

and

*
-BP(X)(X) + H is closed,

then

satisfies (5.2). Furthermore, if there exists a largest, by inclusion,
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such H, then H* is a 'smallest' G for (5.2).
Proof., Follows from Lemma II1.6.1(c).

Corollary 5.1. If P°(x) CQCP and

CP(X) (x) =X,

then

o) = o) = 0, ),
P= Q Pb(x)

and, furthermore, this cone is the unique and so 'smallest' G

satisfying (5.2).
Proof, Follows from Lemma III1.2.1(c).

Corollary 5.2. If there exists a halfspace H such that

Cp(x](x) NH=T(S,x)

and

*
- B . + H -
P(x)(x) is closed,

tﬁen
0} if PP = ¢

*
H  otherwise
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is a 'smallest' G.

132

Example 5.1. A smallest G need not exist. Consider the

program (P) with the two constraints

£ (x)

£ (x)

Then S = {x = (xi) € R T X

<
Pp ) = D
CP(§3(§)-='{X e R X, < 0}.

G = cone{(1,0

where € > 0, since

3
{x eR

Cr D (x) + G

T (S,%)

However, we cannot set € = 0

Example 5.2. Consider

straint

1
f (x)

- t
Then x = (0,0,0) € S, P

=x_ =0}, X=(0,0,000 ¢s, P ={1,2},

D:(':O =S, T*(S,xj = @f,@ (;))*=' {x € RS : x, = 0} and

We can now set

,e)t,(lsoy'e)t}

in G.

the program (P) with the single con-

PP® = (11, e X =R and
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D (X) = {xe R> X] = Xg = 0}. By Corollary 5.1,

G = (f_(;))*: (D=< _ (;))*= {x e R : x, = 0}
P P (x)

is the unique and so the 'smallest' G.
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V. THE METHOD OF REDUCTION

1. Introduction

The purpose of this chapter is to introduce a numerical method
for solving finite dimensional convex programs (P), regardless of
whether Slater's condition is satisfied or not. Ben-Tal and Zlobec
[14] have presented a feasible directions algorithm that solves
program (P) without assuming a constraint qualification. They

find feasible directions d, by solving the system

d - ka(x) <0, ke {o}VQ

d e D:(x), k € P(X)\Q,

where  1is some subset (possibly empty) of P(x). If no solution
exists, for any Q € P(x), then x 1is an optimal point for (P).
Abrams and Kerzner [ 3] have shown that one need only consider the
single system, Q=7. They have also presented an algorithm
that finds P . (Note that it may be computationally better to use
other subsets {2, rather than just P=, since this allows more
feasible directions to choose from.) Zoutendijk [53] has suggested
that, in the absence of Slater's condition, one should solve the per-
turbed program

fo(x) -~ min
(Pe) s.t. ,

£ (x

IA

€, ke @

()

A

0, k € P\Q,

where ¢ >0 and Q=P or P=.
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If the feasible set is compact, this is a 'stable' perturbation of
(P}, i.e. if x(g) denotes a solution of (Pe)’ then every cluster
point of the net {x*(e)}€¢0 is a solution of (P). Moreover,
fo[x*(e)) + £(x*) as ¢+ 0, where x* is a solution of (P),
see e.g. G. Wolkowicz [48]. |

In this chapter, we combine the approaches in [ 3] and [14]
with the regularization technique in Theorem IV.4.2, to formulate the
method, which we call the '""Method of Reduction'. The method first
finds a feasible point X and, in the process of finding xo, it
reduces program (P) to an equivalent program, in fewer variables and
fewer constraints, for which Slater's condition is satisfied. The
solution of (P) 1is now calculated by any method that works when
Slater's condition is satisfied.

An integral part of the algorithm is finding the cone D==(X].
‘ P

This is done in Sections 2 and 3. The method of reduction is then
presented in Section 4. Applications and examples follow in Sections

5 and 6.
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2. Calculating the Cone of Directions of Constancyt

Recall that the cone of directions of constancy D; of a

faithfully convex function f : R >R is a subspace of R" indepen-
dent of the choice of x, see Lemma II.3.1(e). We now formulate

an algorithm that finds D; N R(AO), where f is a faithfully convex

function, A0 is any specified n x p matrix and R(AO) denotes

the range space of AO. Calculation of the intersection D; N R(Ao)

is useful in the situation when the intersection of two or more cones

of directions of constancy is needed. 1If A0 = I, the identity matrix,

then the algorithm calculates the cone of directions of constancy of f.

The algorithm is based on the fact that Df lies in the ortho-

gonal complement of ¢, for any ¢ ¢ 3f(x). By repeatedly considering

the restriction of f to this orthogonal complement, we calculate Df

First we present the following two lemmas.

Lemma 2.1. Suppose that 0 # d e.Rk and i, is the smallest

positive integer such that the io-th component of d is nonzero,

i.e. d. # 0. Let
Yo

T This algorithm has been published, in the case of differentiable

faithfully convex functions, in [49].
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=l . : _
(10-1)x(10-1) ' 0
. . = w2 Y e oo e o e =
1
vody e 4
A= 0 ' _—
' di di
1 0 o
jm e === = - - -
] -I 3 k_-
' (k 1O)x( 10)

Then R(A) = N(d), where N(d) denotes the null space of d.

Proof. Obvious. O

Lemma 2.2. Let ¢ € 9f(x), where f : Rn + R is a faithfully

. n
convex function and x € R. Then

D CN(¢).

Proof. Let d € D;, Then V£(x;d) = 0 and Lemma II.4.1(b)

implies that ¢+d < 0. But -d € D;, since D; is a subspace when
f 1is faithfully convex. Thus ¢-d = 0.
O
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i
Let Ek ={e :1i=1,...,k} denote the set of unit vectors

. k n
in R and Ay € R™P pe given.

Algorithm A:

Initialization: Set PO = AO and i = 1.

i-th step (1 <1 <p) : Find a point x in the set of

p-1+ 2 vectors {0} VE such that
p-i+l

(2.1) ¢Pi-1 # 0, for some ¢ € Bf(Pi lx).

Case (i): 1If such an x exists and i < p, then using Lemma

2.1, determine Ai ¢ r(P-i+1)x(p-i) such that

(2.2) R(A) = N(6P, ).

Set P_ =P_ _A, and proceed to step i + 1.
i i-1 1

Case (ii): 1If such an x exists but i = p, then STOP.

Conclusion: N R(Aoj = {0},

D=
f
Case (iii): 1If such an x does not exist, then STOP.

~‘Conclusion: D. N R(A) = R(P, ).
onc¢lusion Df ( O) ( i-l)

Theorem 2.1. Suppose that f : R® >R is a faithfully convex

function and A0 is some given nxp matrix. Then the above algorithm
finds D; N R(Ao) in at most p - s + 1 steps, where s =

dim(D; 0 R(A ) s



START

"

‘?
Is ¢Pi_1 # 0, for some ¢ ¢ Bf(Pi_lx).
no
yes
i=1i+1 Is j=p-1+17?
no
P, =P_ A j=jo+1 yes
i i-11 j
T X =€ € Ep-i+1
Find A, e g(P-1+1)x(p-1)
such that Yo 1'ts i < p?
= P .
R(A;) = N($P, )
no
= N = = N = ' .
De N R(Ay = {0}. De M R(A) = R(P; ;)

STOP STOP

Flowchart to find D; n R(AO)
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Proof. Let x* denote the point x which satisfies (2.1)
at the 1i-th step and for i 2 0 let fi = foPi denote the composite
function formed by applying first Pi and then f. By the linearity

of Pi’ fi is a faithfully convex function and so D; is a fixed
. i

subspace of RP™'. Furthermore, Bfi(x) = 3f(PiX)Pi-

Now suppose that case (i) has occurred, i.e. x' e {o} U EP $41°
¢ € af(Pi 1x1), ¢Pi 1 #0 and 1 < p. Let us show that

(2.3) D N R(AO) = PiD K
1

First, let us show that
. "N R(A) = AD. .
(2.4) Df R( 0) o’s,

Suppose that d € Df . This means that fo(ad) = fO(O) for all
0

a € R, By definition of f_  and the linearity of A this gives

0 0’

f(aAod) = f(0) for all o € R, i.e. AOd € D;. Furthermore, since

AOd € R(AO), Aod € Df al R(AO).

Conversely, suppose that d ¢ Df N R(AO). Then there exists a

d e R such that d=Ad and f(eA,d) = £(0) for all a e R,

Again, by definition of fO and the linearity of AO’ we get that

where d = Ad&,

fo(ad) = fo(O) for all o e R, i.e. d e DfO

This proves (2.4).
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Next, let us show that

(2.5) Df. = AiD .
i-1 i

for i =2 1.

H It

Suppose that d € D; . This means that fi(ad) = fi(O) for all

i
0 € R. Since fi = f, o A, we get that fi_l(aAid) = £, _(0)

i-1 i i-1
for all a e R, i.e. A.d e D.
i f.
i-1

Conversely, suppose that d e D. , i.e. f. _(ad) = £f.
f. i-1 i

i-1 .
for all « e R. By Lemma 2.2, D. C dff (x') c N(¢P, .) and

fi-l i-1 i-1

N(¢Pi_1) = R(Ai) by (2.2). Therefore there exists a d e

L@

p-i

such that d = Aid' So fi(ud) = fi_l(aAid) = fi_l(ad) = fi-l(o) = fi(O)

for all o e R, i.e. d ¢ D; and d = Aia: This proves (2.5).
i
By repeated substitution of (2.5) into (2.4), one gets that

DDARMA) =AD. =AAD. =...=PD., which .3).

£ R( 0) oP¢ o™ P ;D¢ » which proves (2.3)
0 1 1 )

Now suppose that case (ii) has occurred, i.e. X e {0} u Ep-i+1’

¢Pi_1 #0 but i = p. Since fp 1 R + R 1is faithfully convex, we

get that D; = {0}. But, by (2.3), the (p-1) -st step implies
p-1
that D.NR(A) =P D . Substituting for D. yields the
f 0 p-1 fp-l fp_1

desired result that D; N R(AO) = {0}.
Finally, suppose that case (iii) has occurred, i.e. Bfi 1(y) =

1’

the lete set E 1i i D . But D i b
conp e p-i+1 ies in fi_l u fi-l s a subspace

{0} for all y e {0} VE ., _. Then, by the convexity of f,
p-i+l i-
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~i+1 -i+l . .
of RP7! and so we conclude that D = RPTHTY Substituting

o

i-1
i i =N =
into (2.3) yields Df R(AO) R(Pi_l).

The algorithm will be illustrated by two examples.

Example 2.1. Consider the function

1

2,2 2
f(x) = -[4 + (xl + xz) ) + X * X, * Xz oo

This function is convex and analytic and so is faithfully convex.

Let us determine its cone of directions of constancy D;.

Initialization: P0 = A0 = st3 and i = 1.

Step 1: Since Vf(x) =

(o8}

[4 + (xl + xz)z)% (4 + (xl + xz)z)

we see that 0 ¢ {0} U E, and Vf(POO)PO = VE(0) = (1, 1, 0) # 0.

3
Furthermore, since i =1 <p =3, we are in case (i). Using

Lemma 2.1, we find that
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2)'

2
Step 2: For x € R, Vf(Plx)P1 = Vf Xy -1 0| = (0,2x
-x2 0 -1
Therefore, Vf(Plez)P1 = (0,2)'# 0, where e2 € E2. Furthermore,
since 1 = 2 < p we are in case (i) again and so we find that
_ ' [1
i
A= and P_ =P A_ = (-1
2 QJ 2 12
0
- - . 0 U g
Step 3: The finite point set {0} EP_i+1 is {0,1} and
1
Vf(P20]P2 = Vf(le)P2 = (1,1,0) |-1 | = 0. Therefore, we are in case
0
(iii) and
Dy = R(P))
d
= -d eRs'deR
L 0

Example 2.2. Now consider the faithfully convex function

g(x) = -x_ - x2 + x§ and suppose that we wish to find Dg N Df =

C

0

1
1
Dg'n Rl |-1 » where f is the function in the previous example.
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Initialization: P_=A_ = [-1 and i = 1.

0_|

Step 1: Since p =1 and Vg(x) = (-1,-1,2x3) we see that

{o} v El = {0,1} and that Vg(POO)PO = Vg(Pol)PO = 0. Therefore,

we are in case (iii) and

A computer program for the above algorithm appears in the

appendix.

3. Calculating the Sets P and D=_
=

In [ 3], an algorithm for calculating P is given, for the
program (P). We now present a modified version of this algorithm,
in the case that the constraints fk, k € P=, are faithfully convex.

In actual fact, the algorithm finds

P and D__ NRAY,

P
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in at most t = min{cardP(x), n + 1 - dim[S N (x + R(AO))]} steps,

where

PP ={keP: fk(x) =0 for all xe SN (x + R(AO))}

0 is any specified nxn, matrix. (Recall that Dk is

independent of x, when the function fk is faithfully convex.)

and A

If A, is specified to be the identity, then P~ and D=_ are
o
found. (The generalization, to find P~ and Dj_, will be needed
5=
in the sequel.)
The algorithm is a (finite) iterative method. We start with
P~ = @ and find the sets P, _ = P. UJ  at each iteration. (The
0 i+l i i
sets Ji are defined below.) The algorithm terminates when

Pi =P is reached. The difference between this algorithm and the
one in [ 3], is that, at each iteration, we discard the constraints
fk, k € Ji’ and, by a substitution technique, we then consider the

remaining constraints as being restricted to the subspace D; . In
i
addition, when finding the set J., we first check if ¢ =0 is
in the subdifferential of any of the (remaining) binding constraints.
(Recall that, if 0 € 3f(x) and f is convek, then f achieves
a global minimum at x.) The algorithm is demonstrated in Ekample

3.1 below.
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Algorithm B:

T4t als s . . = X == P:A
Initialization: Let x ¢ S, PO P(x), PO @, 0 0

and i = 0.

i-th step (0 <i < t): Find k ¢ Pi such that

0 ¢ Bfk(§)Pi.

Case (i): 1If such a k exists, use Algorithm A to find the

n, xm. . matrix Ai+1 satisfying
(3.1) R(A, )= 0 D ,
i+l ked. fk°P.
1 1
where
(3.2) J. ={keP, :0c¢ afkciﬁp .
i i i
Then set
ie1 = P/
(3.3) ¢ Pivr T Pitia
= = v
i+l © Pi J1

and proceed to step i + 1.

Case (ii): If such a k does not exist but the system



step i (0 <1i < t):

)r Is 0 € Bfk(;)Pi, for some k ¢ Pi?

147

yes

T

Is the system

k
(3.2) J, = {keP, :0eafk(§)p_} L App;=0
i i i kEPi
(3.4) kK —
LA =1, XA 20, ¢ e3f (x)
yes kep, X k k
J. = {keP, :A #0 in (3.4)} i
i i k
consistent ?
n_xn, no
Find Ai+ eR1 1+l ouch that
= N D P =P
R(A, ) or Pk P =P
i i (3.5 .
N =
DT’" R(AO) R(Pi)
P. = P\J,
i+l i i
' STOP
. =P A
(3.3) P.+1 1841
P, = P.uUJ,
i+l i 1
Flowchart to find P and D_ N R(AO)
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T Ak¢kp. =0
keP, 1
1
(3.4) —
z Ak =1, xk 20, ¢k € afk(x)
keP,
L 1

is consistent, then find Ai+1’ Pi+1’ Pi+1’ and Pi+1 satisfying

(3.1) and (3.3), where

Ji = {k ¢ Pi : Ak # 0 in (3.4)}.
Now proceed to step i + 1.

Case (iii): If such a k does not exist, but the system

(3.4) is inconsistent, then STOP.

Conclusion:

(3.5)

D NRA) =R(P.) .
0 i

—

P

Before proving the convergence of the algorithm, let us

first prove the following rather technical lemma.

Lemma 3.1. Denote

n

k k — : ik
£ deGepy and s b xerRY £ 50 forall kePl

Then

k
(3.6) £ = £_ (AN,
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(3.7) D, =D , forall ke?P.
£ o,
1 1
(3.8) DP? n R(AO) = R(Pi)-
1
(3.9) 8, c R(Ai+1)-
(3.10) SN (x + R(A)) € X + R(P,)-

Proof, Since
k k — - fk '
= = A =
£,00 = £(x+Py) £x + P, A = £ (A,

relation (3.6) is proved.
Now, when fk is faithfully convex, there exists a strictly

convex function g, a matrix B, vectors a and b and a constant

= N(At), (see

x

¢ such that fk(x) = g(Ax + b) + atx + ¢, with D

Remark II.3.1). Therefore

k —
£ (x+ P.y)

k
£,

gA + Piy) +b) +a’(Xx+ Py) +c

— t —
g(APiy+ Ax + b) + a Piy+ atx +C

with
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which equals the cone of directions of constancy of
£Xop (y) = g(AP,y + b) + atP.y + C.
i i i

This proves (3.7).

Let us prove (3.8) by finite induction on i. The result
holds for i = 0, since PZ =@ and P0 = AO. So, let us assume
that i 21 and that

. B N R = R(P .
(.11 D”_ (A)) = R(P. )
i-1
(Note that we will consider D; as a subset of R" and as a subset
n,
of R? depending on the context, i.e. depending on whether we are
considering the function £k or f?.] First, suppose that

d e R(P.), 1i.e.
i

n

d = AOAl...Ai?, for some y ¢ R i
This implies that d e R(Pi-l) = D;= n R(AO), by (3.11). Now,
i-1
to show that d e D:= N R(AO), it is sufficient to show that
1
deD”_ _ =D_ , by (3.3). So, let keJ, . and a e R.
A S -1
Then
fk(§ + od) = fk(§'+ aAO..;Aiyj

k —
£, 1(GA,Y), by (3.6)
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k .
fi-l(o)’ since k € Ji 4

and R(Ai) CcD x °

£

by (3.1) and (3.7)

£, by (3.6).

This implies that d ¢ D§ . Thus we have shown that R(Pi) cD
P.
i

i-1

Conversely suppose that

= n
deD_ R(AO).

P
Since Pi o Pi-l’ (3.11) implies that d = AOAl"'Ai-ly’ for some
n, =
y € R 1'1, To show that D-_ N R(AO) C R(Pi), it is now sufficient
P.
i

to show that

n
= - - i
y = Aiz, for some z € R ~.

N =J d .
Suppose that k € Pi\Pi-l i-1 and o € R. Then
& () = £®, by (5.6)
i-1
= £5(x + ad), since d e D _ and ke P:
Pi
. A (&
= £ (X + Ay---A,_(@))
= £ (@7, by (3.6).
This implies that ¥y € D; = R(Ai), by (3.1). Thus, ¥y = Aif

i-1
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n

for some z ¢ R i This completes the proof of (3.8).

To prove (3.9), we consider two separate cases.

Case (a): Suppose that 0 ¢ afi(O), for some k € Pi' (Note
that Bfi(o) = Bfk(§)Pi.) By (3.2), 0 € Sft(O) for all k € Ji.
Therefore, y = 0 1is a global minimum for the convex functions

f., ke Ji. Now, suppose that ¥ ¢ Si’ i.e. f?(?) < 0 for all

k € Pi. Then f?(?) = 0 for all k ¢ Ji’ since y =0 is a
global minimum for these functions and fE(OJ = 0. Since Si is
convex and 0 ¢ Si’ we conclude that ay ¢ Si for all 0 <a <1,
This further implies that f?(a?) = 0, for all k € Ji and

0O<ac<l1l, i.e. Yye¢ D; = R(A 1). This proves (3.9), in case (a).
i i+

k
Case (b): Suppose that 0 ¢ Sfi(O) for all k € Pi' Also,
assume that the system (3.4) is consistent, i.e. there exist Ak >0

such that

| K X X
(3.12) z Ak¢ =0, ¢ € 3f.(0).
keJi 1

(Note that if no such Ak's exist, then the algorithm stops and

(3.9) does not require proof.) As in case (a), we need only show that
if yes, and keJ, then f’i‘(yj - 0.

Suppose not. Then there exists y € Si and k° € Ji such that

fi(y) <0, for all k e Pi’ and f?°(y) < 0. This implies that
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ko
¢ °y <0, forall keJ, and ¢°-y<o,

for all ¢k € Bfi(o), k € Js and ¢k°e Bfto(O). By Motzkin's
theorem of the alternative [52], this contradicts (3.12). Therefore,
(3.9) is proved.

Let us now prove (3.10), by finite induction on i. The

result holds for i = 0, since P_ = A . So, let us assume that

0 0

i 20 and

SN (x + R(AO)] CX+ R(P, )~

Let xe SN (x+ R(AO)). Then the above implies that x = X + Pi-ly

- MNa
for some y ¢ R . Thus

k k
£, = £, by (3.6)
£ 0, since x € S.
n,
Therefore, y ¢ Si-l' Now, by (3.9), y = Aiz for some z € R 1.

Substituting for y in the expression for x, implies that x =

X + AO--.AiE; which proves (3.10). (Note that the sets x + R(Pi)
are decreasing linear manifolds containing the set S N (x + R(AO)).
The algorithm essentially stops when X + R(Pi) is the smallest

such linear manifold.)
O

We are now ready to prove the convergence of the algorithm.

Recall that
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P = {kepP: fk(x) =0 forall xe SN (x+ R(Ao))}-

Theorem 3.1. Suppose that X € S, A, is an arbitrary

0
nxn matrix and the constraints fk, k € P are faithfully convex.

Then the above algorithm finds

P and D NRA)
7 0

in at most t = min{cardP(X), n, + 1 - dim(S n (X + R(AO))]} steps.

0
Proof. We need to prove that (3.5) holds when case (iii)
k
occurs. So, suppose that 0 ¢ 3f,(0), for all k € P, and the
system (3.4) is inconsistent. This implies that the system

k k Kk
Ly =0,y € conedf (E).Pi,

keP.
1

is inconsistent. We now conclude, by the Dubovitski-Milyutin

theorem of the alternative [52] and by Lemma II.7.1, that
n
. i k —
N {yeR 1. ) pi-y < 0, for all ¢k € afk(x)} # g
keP,
i
n, '
This yields ¥ € R such that

A k k —
(3.13) ¢kPi°Y < 0, for all k ¢ Pi and ¢ ¢ of (x).
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Let

(3.14) x(®) = X + Pia§r.
Then, (3.13) and (3.14) imply that

fk(x(a)) < 0, for all k € P\P(X),

(3.15) X
L f (x()) <0, for all k € Pi’

for all 0 < a < o, for some & > 0. Furthermore, if 0 <a < &,

then

(3.16) fk(x(a)) fk(i + pia?), by (3.14)

fk(E), for all k € Pz, by (3.8)

0, for all k € Pz, since P: C P(x).

Therefore, (3.15) and (3.16) imply that x(a) € SN (X + R(Ao))

and, moreover,
P C (P(x)\Pi) = Pi'

Since D== n R(AOJ = R(Pi) by (3.8), to prove (3.5) we have only
Pi
left to show that

(3.17) P.CP .

T

Let us prove this by finite induction on i. Now, (3.17) holds for

i =0, since P; = . Therefore, let us assume that i 21 and
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P, ,CP. since P, =P, _UJ. ., by iteration, it is sufficient
i-1 i i-1 i-1
to show that Ji-l cP. Suppose not. Then, there exists x € SN
(x + R(AO)) and k° € Ji 1 such that
(3.18) fk(x) <0 forall ke P and fk°(x) < 0.
_ ny
But x =X + A ---Aiy for some y € R ~, by (3.10), and

fk°(X)

0

0,

since D;

This contradicts (3.18).

Ky —
f (x + AO--.Aiy)

ko
fi_l(Aiy) s by (3.6)

= R(Ai)’ by (3.1) and (3.7).
i-1

O

Example 3.1. Suppose S C R® is defined by the constraints

1
f (x)

()
£00
£
£
£

7
£ (x)

S 2
1
e + .xz
2 2
X
1 + x2
X
=X
e
(x, - 1)° + 2
1 x2
X
X

1

<

0

IA

IA

IA

A

A

I
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Let us find P and D=_ .
o

Initialization: Let X = (0,0,1,3vZ,3v/2) be the chosen

i i = A =1
feasible point. Then P0 0 5x5

P(_) = #. The corresponding gradients are

» Py = PX™= {1,3,4,5} and

ve' (D = (1,0,0,0,0)
V@ = (1,0,0,7Z,77)
ve (® = (0,-1,0,0,0)

VE® = (-2,0,0,0,0)
Step 0: Since ka(E)AO = ka(Sc‘) #0 for all ke Py, we

solve the system given by (3.4), i.e.

0 -1 0
+ )\3 Lé )\4 (8)J + AS l_§—‘ =

A1+)\3+>\4+)\5=1 and Akzo.

>

OO OO -
+

OSSO0 OO
-

1]
>

A solution is A, = %, A = 0 and )\5 = % Therefore,

JO = {1’5}’ Pl = {3’4}, P1= {1,5}’
0 0 0
0 0 0 -
AL=|1 0 0| with RA) = N D and P =P A =A_.
1 01 0 1" 45 £fep 1 01 1
0 0 1 0 0
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. 4 _ . 3 —
Step 1: Since Vf (ijpl = 0 while Vf (x)P1¢() we get that

‘ with R(A) =

i

{1,4,5}, A, =

<
"

{4}, P, = {3}, P;

QO
Q= O
O O

D 4 and Pz = P1A2 A_.

. 3 ‘e
Step 2: Since PZ {3} and vVf (E)P2 # 0 case (iii)

occurs. STOP.

Conclusion:
P = P; = {1,4,5}
and
0
0
p° =RpP) =% V\er .da.,d,d enrl.
= 2 d3 T U377477s
dy
dg

Remark 3.1. Using the substitution technique and checking
whether ka(§jpi = 0, reduces the number of computations required

to find P~ and D=_.
P
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4, The Method of Reduction

We now collect the machinery presented in the previous two
sections and formulate the method of reduction. This algorithm
first finds a feasible point and then solves the general convex
program (P) with faithfully convex constraints. No constraint

qualification need be assumed. Let us denote by
S(P),

a method that solves program (P) wunder the assumption that Slater's
condition is satisfied (e.g. Zoutendijk's feasible directions method
[53], Robinson's method [52] or Powell's method [52]). The method of
reduction finds the regularized program (Pr) of Theorem IV.4.2, in
the process of finding a feasible point. It then solves (Pr),

using S(Pr). Furthermore, if Slater's condition was not satisfied
for the original program (P), the regularized program (Pr) will

always have fewer constraints and fewer variables than (P).

‘Algorithm C:

Initialization: Let PO = Ian’ T =P, R =0,R =460,
1

n0 =n and x

n
€ R .

i-th step (1 < i < cardP): Set

(4.1)

~~
1]
~

SR VikeT fk(Ei) < 0}
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START

and 1 =1,

160

step i:
R,

a
[]

-3
u

i-1
K=
T, MkeT, [ £ <0

U ke L fk(i'i) s 0}

Find R. and A, such that R(A) =D .
1 1 1 R=

i

Does z;.‘ solve the program (ﬁi) ?

R = RAR X=x
i ii >
P, =P, A =Py
i i-11i
JL . Solve the regularized program
= ?
Is T, =87 ves (R), using S(R) and the
Ag[;° initial feasible point y = 0.
" If y* solves (R), then
J'g 0 * — *
A =0 X =Xx+Py
Q solves (P).
- i
<
_;J Is fk(x+PiZj) 0 < TP
[d
for some k¢ Ti 7 |yes
leo -
- - R
1 ~ 1 -
= 3
25, = SRYZ; T
4L =i+l _ i 1

Is

‘es

< j=ji+1

s=0

STOP

Flowchart for the Method of Reduction

Y

i=1+1
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and

(4.2) T, =T, /R..
Now consider the program

I fk(ii + P, 1y) -+ min

keTi 1-
(Ri) s.t. . n
£(x*

+P. y) <0, keR,yeR i'l,
i-1 i

Using the feasible point O and Theorem IV.4.2, regularize this
program, i.e. find R; (Note that Rz is the equality set for

(R.).) and the n. X n, matrix A, satisfying D = R(A.) (Use
i i-1 i i = i

Ry

algorithm B). Now set

(4.3) Ri = Ri\Ri
and

= A
(4.4) Pi Pi-l i

to get the 'reduced' program
k —i .
r £f5(x* + P.y) > min
keT, 1
~ i
(R.) s.t.

1 K —;3 A n,
£ (x + P.y) <0, ke Ri and y e R 1,

(Note that Slater's condition is satisfied and 0 is a feasible

point, by Theorem 1V.4.2.)
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Case (i): Suppose that Ti =@. Set X = x and P = Pi

and solve the 'reduced' program,

f°(§'+ Py) =+ min

(R) s.t. n

fk(§'+ Py) <0, k € ﬁi and y e R 1,
using the initial feasible point y = 0 and S(R).

' * * - *
Conclusion: If y is a solution of R, then x = X + Py

is a solution of the original program (P).

Case (ii): Suppose that T, # #. Then, set zé =0 and

i ~ 1 .
zj+1 = S(Ri)zj, j=0,1, ...

) i
i.e. z
i+l

applied to the pdint z;.

is the point obtained after one iteration of S(ﬁi),

Case (ii) (a): Suppose that after j iterations of S(ﬁi), we

find k € Ti such that fk(:—c'i + Piz;) < 0. Then set

(4.5)

and proceed to step i + 1.
Case (ii) (b): Suppose that after j iterations of S(ﬁi),
we have not found k e Ti such that fk(§i + P,z;) <0 but z}
i

solves the program (ﬁi).
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Conclusion: S = @.

Before proving convergence, we prove the following lemma.

Lemma 4.1.

i -
(4.6) N p_=R(P,).

. = 1

j=1 R.

j

4.7 £ (x1) <0, for every k ¢ P\T, .
(4.8) sCX o+ R(P, )
(4.9) R, CP.

Proof. Let us prove (4.6) by finite induction on 1i. The

result holds for i =1, by (4.4). So, let us assume that i = 2

and that
i-1 _
(4.10) N D _ = R(P, 1).
j=1 R, -
J
(Recall that we consider D=_ as a subset of R" and as a subset
R.
n, J
of R J_}, depending on the context.) Suppose that d € RCPi),
. n, i-1 _
i.e. d =Py for some y e R 1 Then d e RtP. ) = n D .
i S S
j

But, if k € R; and a € R, then
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Ko+ ad) = G + P, (@A)

fk(ii), since D== = R(Ai)-

[

Therefore, d ¢ D . This shows that

l —
R(P,) C N p
1 j=1 R
i =
Conversely, suppose that d ¢ N D _. By (4.10), d = P. Y for
j=1 R’ 1
ng i
some Yy € R 1= Toshow 0N D _ CR{P,) it is now sufficient to show
j=1 R *
J
n

that y= Aiz for some z € R *, Suppose that k € Rz and o ¢ R. Then

k —i k —i =
£(x) = f (x' +ad), since deD _
R.
- G s, ) ’
= E G Ry o
This implies that y € D-=. Now, since D== = R(Ai), we see that
Ri Ri
n,
y = A,z for some z € R, This proves (4.6).

1

Let us also prove (4.7) by finite induction on i. The result

holds for i = 1 by the initialization and the definition of Tl.'

So, let us assume that i 2 2 and

(4.11) fk(Ei-l) < 0, for every k € P\T, ,.
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Suppose that k ¢ Ri. Then

Fady = &t . p, 2t

x7) = i-1
< 0, by (4.1) and the fact that 2271 is a
feasible point of the problem ﬁi—l'
i-1 _ :
On the other hand, suppose that k ¢ U R, = (P\T.)\R.. Then

3=1 j i* 1

k — k —- i-1

£y = £ty P, 12 )

I

F& Y, by 4.6)

IA

0, by (4.11).

This proves (4.7).
As above, let us prove (4.8) by finite induction on 1i. The
result holds for i = 1, since PO = Inxn' So, let us assume that

i22 and

(4.12) scxlire, .

i-2

-« l no 2
Suppose that x € S. Then, x = x'7" + Pi_zy for some y € R '7°,

by (4.12). So,

Foo = @ P. )
< 0, for every k ¢ P, since x € S.

Therefore, y is a feasible point for the program (Ri 1). Since
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i-1

i i i D= R(A
Ai-lz is a feasible point for (Ri_l) and - R( i—l)’
i
i-1 Mj-1 .
we get that y = Ai-lz + Ai-lz for some z € R . Substituting
for y gives
X = ;1_1 + P (A i-1 + A z)
i-27 i-1 i-1
= X'+ Pi-lz’

i.e. x € Ei + R(Pi_l). This proves (4.8).

Suppose that (4.9) fails to hold. Then, there exists k_ € R;

o

= .. . . A n
such that k_ € P . This implies that there exists an X ¢ R such

k
0, for ke P, and f °o(%X) < 0. But, by (4.8), we

R |
+ Pi ly for some y € R .

k —-
pi_ly) £0, for keP, but f °(§1 1 + Pi_ly) < 0., This

that fk(ﬁ)

IA

see that % = x4 1 Therefore,

k —-
£ (§1 ! +
contradicts the assumption that k_ € R;. a

Let us now prove convergence of the algorithm.

Theorem 4.1. Assume that (P) and fk, k € P, are such that

S(P) 1is a convergent method when Slater's condition is satisfied.
Furthermore, suppose that the constraints fk, k € P=, are faith-
fully convex. Then, the method of reduction first finds a feasible
point X and then solves program (P) by solving the 'reduced'

_— *
program (R). (If Y* solves (R}, then X =X+ Py solves (P).)
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Proof. From (4.7), we get that y = 0 is a feasible point
for (Ri). Therefore, from Theorem IV.4.2, we get that Slater's
condition is satisfied and y = 0 1is a feasible point for the
regularized program (ﬁi). Now, let us treat each of the cases

separately.

Case (i): From (4.6), (4.7), (4.9) and the fact that Slater's
condition is'satisfied for (R), we see that program (R) is
actually the program obtained in Theorem IV.4.2, after regularizing
our original program (P). We can thus solve (R) using S(R).
That x = ;i + Piy* solves (P), if y* solves (R), follows

from Theorem IV.4.2.
Case (ii) (a): In this case we just proceed to step i + 1.

Case (ii) (b): Suppose that S # @ and x € S. Then,

— nj-1
x* + P. .,z for some z ¢ R

X =
i-1 ?

by (4.8). Moreover,

k.

£ (x-+P. .2) <0, keP,
i-1

Therefore, z is a feasible point for the program (Ri) and

s ' "

z (x + Pi_lz) < 0. But then, :z = Aiy for some y ¢ R 7

k -
Substituting for 2z, we get that f (;1 + Piy) <0, ke P, and
z fk(J_(1 + P.y) < 0. Since this implies that y is a feasible
keTi 1
point for the program (ﬁi), we have contradicted the optimality

of z%. O
J



V.4 168

Remark 4.1. We have assumed that S(P) solves programs of
type (P), when Slater's condition is satisfied. However, it may
happen that the objective function and the feasible set (for one of
the regularized programs (ﬁi)) may have a common direction of
recession. Such programs are called degenerate, see e.g. Abrams
[ 2]. The infimum for degenerate programs may not be achieved or
may be achieved on an unbounded set. Abrams [ 2] has shown how to
reduce such a program to a nondegenerate program ié a finite number
of steps. Another possible way of handling this situation is to

find a K > 0, 1large enough, and add the constraint

2
Ml = 1d? -k <o,

*
Such a K can be found, if a solution x exists, for our original

*
program (P), and if we can approximate |/ x|l. Adding the constraint
4 - —_
£ and choosing X such that Hxlﬂ < K, will ensure that the

programs (ﬁi) and the final regularized program (R) are nondegen-

erate.
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5. Applications

The method of reduction is in particular applicable to convex
programming problems for which Slater's condition is not satisfied.
As mentioned in [14], one class of problems for which Slater's
condition is never satisfied is the class of multicriteria problems.
This includes the lexicographic problem and the Pareto optimal
problem. Following [15], let us first define the lexicographic
problem as follows: Suppose that fl, vees fm is an ordered set

of objectives. The corresponding lexicographic problem (PL) con-

sists in choosing decisions successively subject to x € Rn. The set
of all optimal solutions of (PL) can then be obtained by solving

the following sequence of programming problems:

Determine
(PL,) ,
1 a, = min{fl(x) : x ¢ R'}.
Determine
(PL,)

a, = nin{£2(x) : £(x) - a, < 0}

Solve
(PL.)

min{f (x) : fk(x) -a <0, k=1,...,m- 1}

Note that Slater's condition is never satisfied for the programs

(PLj). In fact,

{1,...,j -1} ¢C PL;, j=2,...,m,
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where PL; is the equality set of (PLj).

. k
Now suppose that the functions f , k =1,..., m - 1, are

’

faithfully convex. Then, if we use the method of reduction, solving

(PL) reduces to solving m unconstrained problems. After finding
: j-1
the matrix A such that R(A) = N D

i=1

we see that, to solve

[l ||

(PLj), we need only find

min fJ(xJ-l + Ay),
y

where xJ_1 is a solution of (PLj_l)- The lexicographic problem
is treated in greater detail by Ben-Tal and Zlobec [15]. They pro-
vide two different methods for finding solutionms.

Let us now define the Pareto optimum problem:

G ey n . .
Find x € R such that there is no other point x

satisfying

PP —
(PP ﬁ fk(x) < fk(x), k ¢ P,

Lwith at least one strict inequality.

The point X is then called Pareto optimal or efficient, see e.g. [9].
Note that any lexicographic solution of fk, k € P, in any order, is

a Pareto optimal solution. In fact, one can say even more.
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Theorem 5.1. Suppose that Ql, QZ,..., Qr is any disjoint

partition of the index set P and

k -
Ky S oz ), for k=1,..., .
ier
*

If x is the lexicographic solution with the ordered set of objec-

. 1 T * . .
tives g ,..., g, then x 1is a Pareto optimal solution of (PP).

Proof. Suppose not. Then there exists x # x*, k, and 2
k k = k k =
‘such that k, € 92, fo(x) <fe°(x) and f (x) < f (x) for all
k k
k € P. But then g (x) < g (x*) for k =1,...,r and gz(x) <
* *
gz(x ), which contradicts the fact that Xx solves the lexicogra-

*
phic problem. Thus x is a Pareto optimal point. O

Using this theorem, we can find efficient points by solving a
finite number of unconstrained optimization problems. However, not
all the efficient points of (PP) can be found in this way. Charnes
and Cooper [18] have given the following characterization of effi-

ciency.

Theorem 5.2. X is a Pareto optimum for (PP) if and only if

X solves the program

DX fk(x) > min
keP
(P2 s.t.

fk(x) - fk&) <0, k e P.
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This result leads to the following characterization of effi-

ciency in terms of the equality set of (P;a.

Theorem 5.3. X is a Pareto optimum for (PP) if and only if

where P; is the equality set of (P;D.

Proof. The proof is immediate from the definition of Pareto

optimum. a

The above characterization suggests the following algorithm,

when the functions fk, k € P, are faithfully convex.

Algorithm D:

Initialization: Let P =1 and X =y = 0.
nxn

i-th step (1 < i < cardP): Use the feasible point x and

S(Py) to perform one iteration for (P). Redefine X to be the

. . . A =
new point obtained, i.e. X = S(Pp(X). Continue until Pg # .

Now, using Theorem 2.1, find the matrix A such that R(A) = D—_

and let x
= k k —

P = P\PI’ £ () =£ (x+A°)

Y=y +Px,P=PA and x = O.
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Flowchart to find a Pareto optimum

START
P=1
nxn
X=y=0
i = 1, =
i nl
\
i-th step:
) N
Is P = ﬂ ? yes -
Lo
- yes
— = ? Y = WA
Is Px g 7 j X S(Px)x
no
Find the n, xni+1 matrix A
such that R(A) = DP%
P = P\P—=- Con_c_lusmn:
k k _x y is a
£0)=£&+AY Pareto optimum.
-}7 = ; + P;
_Jl___ STOP
< P = PA
;(_ =0
i=i+1

173
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Case (i): If P # §. Proceed to step i + 1.
Case (ii): If P =@, STOP.

Conclusion: y is a Pareto optimum.

Let us now consider the semi-infinite programming problem,

g’ (x) > min
(PS) s.t.

k k : n
g (x,t) <0, teT,keP=1{1,...,m}, xe R,

° k ]
where g is convex, g (x;t) 1is convex in x for each t e T

and continuous in t for each x and Tk is compact in Rz.

Ben-Tal, Kerzner and Zlobec [13] have presented a characterization
of optimality for (PS) which does not require a constraint quali-
fication. Another way of treating program (PS) is by considering

the convex functions

k A k
f(x) = sup g (x,t), keP.
k
teT
This reduces (PS) to the form (P). We can now apply the results
in the previous chapters. A third way of treating (PS) is by
discretization, i.e. let T?, i=1, 2, ... be finite subsets of
k k. ..k
T  such that 1imTi is dense in T for each k € P. Now solve
the sequence of programs (of type (P))

go(x) - min
(Pi) s.t.

k k
g (x,t) <0, teT,, k ¢ P.
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*
Let X, denote the set of optimal solutions (Pi) and let
i

* * *
X, € Xi. Then every cluster point of the sequence {xi} is an

optimal point of (PS). Conversely, every optimal point of (PS)

* * *
is the 1limit of a subsequence of {xi} for some X, € X.,. Let us

i
outline the proof: First, using the fact that a compact set-valued
map is upper semi-continuous (u.s.c.) if and only if it's graph
is closed (see e.g. Debreu [22]) we can show that the maps
Qk : Tk >{x e R : gk(x,t) < 0} are u.s.c. for each k e P.

This then implies that

N 2w = n 2w, keP,

teTs teTK
1

and therefore si + S where Si is the feasible set of (Pi) and
S 1is the feasible set of (PS). The result now follows from Fiacco

[26, Theorem 2.1].

6. Examples

To illustrate the method of reduction we consider the following
three examples, which were solved using the computer program given in

the appendix.
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Example 6.1. Consider the program

fo(x) = X + X X > min
(P) s.t. 5
2
fl(x) = X X, -2<0
2. 2 2
£ = (x-2)" + (x,72) -2<0
-X
£ = e > -1so0,

For the initial estimate, let us choose
° t
x = (0,0,0) .
Since
1 o 3 o . 2 o
f(x)<90, £f(x) =0 while f(x) > 0,

the algorithm begins by considering the program

fz(x) - min
(p.) s.t

1 .fl(X)

IA

0

£ < 0.
Slater's condition is satisfied and x is a feasible starting point
for (Pl). Applying Zoutendijk's method, yields the solution
— t
x = (1,1,5.65) .

2 —
Since f (x) = 0, we can eliminate the last constraint from the
objective function. We now consider the original program (P) with

the feasible point X. The algorithm now finds that
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P ={1,2} and D _=R(P) =R |]O
-

After substituting P, we get the equivalent reduced program with

one variable y and one constraint:

fo(; + Py) X + y -+ min

s.t.
3_
f(x + Py) =

L]

e-(5.65+y) o1

1A
o

y € R.

Zoutendijk's method yields the solution

*

y = -5.65

and thus

* — *

t
X =X + Py = (1,1,0)

is the solution of our original program (P). The above problem,
when solved by the computer program in the appendix, gave the solution

correct to 8 decimal places.

Example 6.2, Consider the program
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° 2 2 2
f (x) = x - x, + (x-1)7 + (x.-2)7 + (x_.-2)
(P) s.t 1 2 3 4 5
1 X1 2
f (X) = e + Xz
2 2 2 -X3
f(x) = Xl + x2 + €
5 = X + x2 + x2
£= % 4 5
-X
f4(x)-= e 2
5 2 2
f(x) = (Xl'l) X,
-X
6 4
f(x) = x + €
1
7 X5
f (x) = X + e

Starting with the initial (not feasible) point
° ' t
x = (2’2’2’2,2) b
the algorithm finds the feasible point
— t
x = (0,0,1.95,.8095,.5871) ",

and

P~ = {1,4,5}; D = R(P)

o O O O

1}
~
'OO)—‘OO‘

O = O O ©

Using Zoutendijk's method, applied to the reduced program

178

< min
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o — 2 2
£ (x + Py) = (.95 + yl)2 + (y, - 1.1905)" + (y, - 1.4129)° > nin
s.t.
. 2 — - .
f(x+Py)= e 1.95+y; -1x
3 - 2 2
f (x + Py) = (.8095 + y2) + (.5871 + y3) -1x
p— - +
f6(x + Py) . (.8095+y,) 1<
7 —_— -'5871+ i
f (x + Py) e ¢ y3) 1<
we get that

* *
x = (0,0,1,.707,.707)%; and £ (x) = 3.343146

is the solution of program (P). The computer program found the
solution correct to 7 decimal places. (The above problem was also
solved in [14] using the feasible direction methods MELP1 and

-

MELP2.)

Example 6.3. Our last example is the program

£°(x)

1o¢§k1 + (12 - 2/2)x, + 10x, - 2x, - (12 + 2/§)x5

3

2 2 2 2 2
*2x) * 2x2 + 3xy + 3x, + 2x + 2»/2_x1x3 - 2/5x1X4

- + 2 > mi
4x2x5 x3x4 min

(P) s.t.

fl(x) = Ze%(/le-x3+x4) + xg + xg + szxs -2=50

£2(x)

2 2 2 2 2 =
2x] + 2x; + Xg + X, + 2x5 - 2/2x1x3 + 2/§k1x4

3(x2-x3-X4-X5)
+ 4x2x5 - 2x3x4 + 4de -4 <0
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Using the initial (not feasible) starting point

o

x = (0,0,2,1,1)F,

180

fs(x) = 2/§k1 - 2x3 + 2x4 + in + xg + 2x§ + 2Xi + xé
+ 2¢§k1x3 -'2/7k1x4 + 2x2x3 + 2x2x4 - 2x2x5
- 2x3x5 - 2x4x5 -4
oo = 2B
fs(x) = - 4/5&1 +4xg - 4x, + 2xf + 2x§ + x§ + xi + 2x§
- 2/§XIXSV+ 2/§k1x4 + 4x2x5 - 2x3x4
f6(x) = /Ekl - Xg b x, ¥ Ze%(/§k1+x3’x4) -2<0
f7(x) =X, * X +v/7é%6x2+x3+x4_x5) - /2 < 0.

the computer program in the appendix finds the feasible point

and

P:

X = (-.0547,-1.4604,1.1583,1,2357,1.4605) °,

(707 -.707 0]

0 0 -1

= {1,4,5}; D _=R(P) =R 1 0 0
P—

0 1 0

Lo 0 1

It then finds the solution

*
X =

o *
(-.5,-.855,-.206,.501,.845)5; £ (x ) = -22.627.

IA
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The output for this program is given in the appendix.

Remark 6.1. Example 6.3 was constructed from Example 6.2 by

substituting the unitary matrix

/2 0 -1 1 07
0 V2 0 0 /2
T = % 0 -1 1 1 >
V2 o -1 1 o
L0 -1 -1 -1 1

i.e. we replaced the functions fk(x) in Example 6.2 by the functions
fk(Tx), for all k € P. The objective function fo(x) was replaced
by 4f°(Tx) - 36. (Multiplying by 4 and subtracting 36 were done

in order to eliminate fractions and constants.) Example 6.3 is there-
fore the equivalent problem obtained, from Example 6.2, after a rota-

tion of the axis. Since an exact solution of Example 6.2 is (see[14])
* o *
x = (0,0,1,/2/2,/2/2); £ (x) = 9 - 4/2,

we see that an exact solution of Example 6.3 is

t —— . —
T'X = 3(-1,-1-v2/2,1-v2,1,1+v2/2) ",
The exact value of the objective function is

409 - 4/2) - 36.

Furthermore, D  for Example 6.3 is TtP, where P is the matrix

p=

in Example 6.2. Example 6.3 was constructed to illustrate how the
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computer program works when the cones of directions of constancy of

the constraints are difficult to calculate by inspection.

Remark 6.2. The above three examples illustrate that the com-
puter program in the appendix can be used to solve convex programs,
with faithfully convex constraints, independent of Slater's condition.
We have not as yet compared this algorithm with any other existing
techniques. Nor have we studied the stability of the algorithm,
though we have had to account for round-off error in several instances.

The author hopes to study these questions in the near future.
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APPENDIX

METHID OF PEDUCT IM}

STLVES CONVEX PROJPRAMS (P).

USCES ZOUTHEMRTIJIKYS METHM wITH

SIMDLEX MITHTD AMD FIATMNACCI SEAXCH.
TLEKES JAMMING INTT ACCIUNT,

TH= USFER NEZDS TO ADD:

183

ANALYTIC REDRESERTATITNS NIF ALL THE FUNCTICNES AMND GRADIZNTS
THIS IS ANDED ALTWEREN THE LIMES *kkxkykkRdd d=dX

THE USER ADNS FIR DATL S
TEZ DIENSICN "F THZ X VARIAZLE = N
THE NUMGER CF CONSTPRAINTS — PCMNSTR
IMITIAL VISTR ZSTIMATT — X3AR

IMDLICIT REAL=3(A-H~7)

IMTEGOR T LS WFCMSTR

COMMON P{104+10)+£(10,10),GRD(10),GR AWb(lOle)g
CTMMIY FOLSMITHWFrMK (10D )sRECUCTIEPS]LEPSZ2,F)SAVE
COMMON EDPSI34SPSL «ITRFSHEPSA EDPS7,EPS3 4EPSI9,EPS10
CHMMTIN MaKP ZBCNSTRWJI(10)COLSH ITERS
APDROGXIMATIOMNS TF 0 DUF TG ROUNMDOEFRS

FRPS1 - CSTRAIMT SATISFIED

FPS2 — BINNDING (ANTIZIG.)

FOS3 - GrADIIKRT I SUZR, COME

ZPS4 - GFADIENT IMN SURR, PZNUAL

FRPSS =~ CEMSISTOMNCY MF SYSTEM IN PEQUAL
EDSAH - DASIS ELEMINTS M SIMPLEX

ERPST — NCAM OF GFADIEMT COF 583Je FUNCTIGN
EPSs - STLUTIOM FauNp

EOS3 — ENSURE BIVAT>0 IN SIMPLEX

CPSl =IPSZ-EPRSI=EPSS=ERPS7=ERSO=]1,.,D-5
EPS4=1,D—-4

ERPSH=1 D-5

FPS6=1.D-3

IT=0

READ 4N ,PCMS TR

KPR =M

READS(XBAR( L) I=1 sN)

PEINT 10032

FORMAT (Y1, 'TUTPUT FCR EXAMDLE 643?)
PFEINT 1004

FOPMAT (8t , 1 IMNITIAL ESTIMATE?)
PEIMNT 1035, (XRPARI( ] ) I=1.M)

FIIRUMAT(Y ¢ »10F10.4)
Dt 1010 K=1,BCINSTR
PO(K)=0

D7 1020 I=1,N
NT 1020 J=14N
F(1,J)=0

D 1030 I=149 ‘
GRADS(1,%)=GFD(I)

1

0(10) +XBAR(10)
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IMPLUICIT REALxR(2=-H,7=2Z)

DIMINSIONM X(10)

RPEALY4 SOFT

e s e vk A A 3 o skl e ksl oy ok A de ok seak ok e e kol dl e sk ok e e ek Ao ook ek ok sk

FEERBREEFE AR FRIRRFRRXEARF I AR SR T A ASRS AR R S R 4. bk

FMO=10% SORT(Z2e¢)%X(1) +(12=2+% SART(Z24))kX(2)+1 0.*X(3)—2*X(&)%
14+2%S5ART (24 ) )4 X(B8)=&%xX(2)%2X(9)+2%x X{ X (4 ) +2%x x(Z2)a=2+ 3% X (3 )42%2+
1 3EX(4)*x#3Z24+20X(S5)%%2 +2F¥X (1) %%2+2%SORT {2+ ) %X (1)*X(3)~2%
1SORT(Z )X (1)X(4)

I EE R SR EEE R PEF AR IR TR PEEY L AT R R IR Y RS 22



21aXeXel

DO

Do

OO

O 0

185

IR RIIRNIT LA T REE LR FENTIREIS 2T LIS EFFI IS ZLIER S B EE S
RETYRM

ENMD

Sty ARCUTIHE GEDEVI(X)

SURRTUTINE TVALUATES THE GRADIENT F FO
THF USSFE MUST ARD THE VECZTCR OF PARTIAL DIRIVATIVES

IMOI_ICIT REALIAR(A~HC=2)

INTES=D FG|\09'N TE '

CLaMmr (1 0’10)9F(10o10)o690(10).GQADS(l).lO)oC)('))oXPAD(IJ)
COMMION FOWSMETHWFNK(10)RIDUCEPS]142P52,4,FO5AVE

CINM P! EDPT TG ERSA,0058, TOEH,ZRS7,E058 ,ZPSG.EBR L1

COMMIY Nk P ZOCHSTR,JI(10)CCLS, IT=ERS

DIMTHRILTN X(10)

3 e ne e R % ol At A deofe ke sk ¥ oo oz ek ke sk e R R A oo e e e e o kA A F ekeokk
i Faddaenia iaas B3 EAS 0 ¥2 43R FA P RESIEE RS RS 3% 47 Ak
GEN(1)=10FSAET (2 )+&3 X (1) +2%SAT(2,) %X (3 ) -2k SCRT(2.) %xX(4)
GF(2)=443X{(2)=&a X(5)+(12=2%SNRT(2,.,))
GFO(3)=é2X(3)+2%X{(4a)+1 0 +2%»SART{(2.)%X(1)
GID(&)=aXxX(&)+42*¥X(3)=2=2xS0RT(2,)*X(1)
GRO(E)=44X(3)=2u X (2)=7315GRT(2,.) -12
R e g o ook Aok e Ae e e o ke ke R e R kR ke oleckk e kA date ko f o fakosk
ST EST R T I REFXISETE ISR FEEER T SN JeF HiES S SN LI R S Y
CcETUYRIN
RS

SUTBRTUTINE GRDF (K ,,X)

THT SUBRCUT IMT FINDS THE GRADIENMT IF THI ZTIHNETRAINTS,
TH= USER MUST ADL THE VEITCRS OF RPARTIAL DIRIVATIVES

IMPUICIT FERALSAR(A-H,=2)
INTEGER CRLS«PINSTF

Coang 0(‘0-10).'(!O.!O)-GPD(ID).QQADS(IJvl))aCO(lo)-XBAQ(13)
COMMIN FOsSN THoFNK (10) s EECULC WEPS] +ZPS2,F0S54VE

Crramt: FDRT ZFDSL ,ADSE,, FPSH,EP57,%253,2D059,22¢€1Q0

CU a1 Tn) N.VF PIMSTReJI(1D) s COLSHIT=ERS

RIMINSION X (10)
eral_g4s SOFT

CXD(T)=DEXP(T)

G.' T {13262 0895363743895 17411,12 013 145315416 +17518+19,20,21+2

1 23,72442S¢234274284238430)K

ﬂ¥¢¥5~ﬁ¥ﬁ***¥ WEN A X KR KRR KR K KA xR RN Kok kF R Rpokk
A RN R R K v Rk kg d ok ook ok okkck ko ek ok F ol ek
CONT INNE

GRL(1)= FXP{(eS{SOART(2 )ix(l)—x(’)+x(4)))4SCQT(
bFD(2)=2*x(’)+? X (5

GED(I)=EXI( S (SORT(z2s )%xX(1) x(3)+x(u))) *(~-1)
GRD(4)=EXr( ‘*(SO‘ T(Z2)%X(1)-X{(3)+X(4)))

GRD(5)=2 X{(2) +2%X(5)

RETU2M

CONT INOF

GED(1)=64X(1)=2%SART(24)¥X(3)=2%SQIT(24) ¥X(4)
IGFD§2)??* x(2) “ X( ) +2FTXE(WSH(X(2)=-X(2)~X{(4)
-X(5)
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10
11
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14
15
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o”
s

&

M
MLy 9

g

(3)—2¢SQRT(20)*X(1)—2*X(4) =2F%ZXF L oDF(X{(2)=X{2)=X(4)

—
x

» “XOTXT
o (O N~

9]
Ul&\MIUHMZUU]PUi\)M'—' DN MN= G R Wt DU WS 5T P R

X
EX{4) +2%SORTL2,) %X (1) =2%X(3) —2HEXE(4SH(X(2)=X(3)=X(4)
X(3)+6%X(2) ) ~2HXEXF (oS5%(X{2)=X(3)=X(4)

(4
T Nttt ot st S

-
— e
s
—

ol ~ I~}
vvavl\

r—

,
z

GF 1

Y &Y
-
—
y)

(4
ha
2
D~ o~

Y e~ 4
VYO E,

£)
)

piv iR

34 N0
X P +XD
~Y PO
X R
— o~
|

o~ WiV
| -~ e
KP4 X~
~ DU~ K
1 D4+ X
O — i~

(138 IR T AT}

) +2 X (
+2%X(2 )-2*X(5
(4)

N o
o~

a0
1Y T
>

ke

3

=
c

I1cot1om
m

XP (=5 (SART (24 )%X(2)+SART(2+)FX(3) ))I/SART(2)

[T T T | I T

EXP(=eBF(SART( 2. )%xX(2)+SART(2:)%X(5)))/SAPT(2,.)

- >
fy

woua N

(2,)%X(3)+2%SART (24 )5 X(4)=4%SART(24)

2¢)%X(1)+4=2%X
)

(4
*X{1)=2%X(3)-

)
4

[SEVE VR S ]
# o XX
XX XX X
Lo X e e e o ¥
G (i0r
- Nt Nt S o
++ 1+
Fop P
LRI I
XWUwin X
~D0~D
namMaAaD
e s |
—

-r
—

[T T -

-_:__
om o

SQRT (24 ) +SART (24 ) X¥EXP (o5% (SAORT( 2. )%X( 1)+X(3)=-X(4)))

rownm
e
-f

EXP{«S5F(SART(2)% X 1) +X(3)=X(4)))
- EXP{ 5+ (SORT(2)4X(1)+X(2)=-X(4)))

Tt N

Rl

)
)
3)
)
)

Il [T}
M.
X
v~10
L
Ji

G= 0(
RETUDPN
CONT IMUE
F=TyUrM
CIUNT INUE
RETUCN
CONT I MUE
FZTHRN
COMT INUE
FETUYRM
CONT INUE
FETURMN
CONT INUZ
FETURN
COINTINUE
FeETURN
CTMNTIMUE
FETHRN
CONT [HUE
PETURN
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DOOD

OO

17
13
19

390

2001

[y

187

CONT e
FETURPN
CrnT INUG
E= TUD,
CONT VU=
FF TR
CONTINUE
FTTUYRY
CaNT Iz
mETU=M
ConT IMUE
FETUMN
CHuT IUE
EETURMN
CrETIMNUE
RE TR
CONT U=
RETUR
CONT INUE
FETURY
CONTINUR
Fio TR
CioniT I e
RFETUIN
CRT IVUF
EFETUSN
ComT INUE
PTTHRN

$ 7 kol Ao ok A 3k ok o ek e o s e ok o ok ok ok ok e el ok e ek ook kok K 4 o o koR Kk
I R S T R T E R A R P IR R S T FE NI T IEEE NP Y
END

SURRCUTIMNI FNREVAL (X IFEAS)

THIS SUBFTUTIMNE FVALLATES THE FUNCTICHS AT THE DBIIMT X
THEL USER YUST SURPOLY THE ANALYTIC REPRESENTATICMS 2ZF THE FUNITTION

I*DLI”IT PEALFE{(L=H,(=2Z)
INTC SR C~|vaC”STF

COMMINM P(10,1D2)sF(10+10)sGRD(10)sGRANS(10,10),50(10) sXBARP(10)
COMATYN, FO-S””TH.F:K(IJ) REDUCIEPS1 +EPS2.FISAVE

COMMN EPG3 ,ER844IPSZ,EPSE:EPS7, cP’R.FDQQ.-DSIO

Lo N.KP.DC4 TRReJLI(12)COLSH,ITZ

DIMINSINN X (10)

FiZAL %4 GSNORT

EXD{TI=DEXP(T)
IF(SYETHW N ol o TR IFTAS ¢NZ0)GY T 3001

Fo=rNg(X)

FOTURN

IF=

F0=0 ’

DG B0 K=1.PTISTR

IF(RPI(K) L TeJIGE T™ RO

IF(IFLAS «F Qe e 2D aPO(K) e NZTL0)GLE T2 80
IF(IFTAS o'IN a1 ¢ ANT e PO(K ) e NT a1 s AND¢RPI(K) «NZ2)CC T 820
GO THO (314324330344 3593R43743803%0400481 4824824444465 ,864947 463443
290 WK

ook ofeo gt oo eof ak e oo sk ok ole ok o ok e ok e A ool ok e e ok o deafele ook koo sk ko o o ok ok ke
**x**kx**&***z*xx*#** IR RIS RS FESRER RSN EREEE S -
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C(JITI’JUF

Fr2uilXP (o34 {(SNKT(2 ) X(1)=-X{(3)+X(3)))+2% X(2)4 X(5)+
X 2)‘“a+x(¢)**2 2

N F

XA

B Rk landt I I PN e N e B R
RN o K o b [T
<

-
F
ll

3
~N
o

0

O

TX ol
AKX b Z

R N

Mmoo mMm

SRR
AX~NZT
~ D)

NI+ XD

# b~
3~ I
—~te
)~
~ 3
P > X
*’\’\
™I e
+ o~
x|
—~ XN
o~
~ X
3¢ s ~
W+ U
N o~
+ ¥+
Ny XN
I~
KN X
P P
w*p
—r X
W+~
# &N
N o~ 4
+ |
N0
% w0
> X -4
P~ A~
PN
~ .
3= e
3 X ¥#
N ~X
de IV~
PET
-} ~
Niv #
~ X
3% 3K -
#*
v s~

S

.

x

Sy o
e
>
C

N BIRME

- 53 (SART (24 )X (2)+SART (2 )%X(5))) =1

0
-~

-
X
10 AX o B~ MO T

Q‘HTI(\O"H

(K)
T
CONT [NUE
FE—=4n30RT(24)%X
X{1)¥x{a&)=2%X%X(
RE2+X {4 ) x¥Z+2%
Frk(x)=F
GO TC 79
CivTIHUE

(24)%
1)%%2

L

(4)-2%SQRT
(¥X(S)+2%X(

Se)EX(1)4+ X{3)=X{4)))+SQRT(2.)%X(1)

T 3
?QT(Z.)*EXO( dSX(X(2IEX(3)+X(4)-X(S)))I+X(2)+X(5)=-SNRT(2.)

NTIJUF
FNK(K)‘ !
G TN T?O
CUNTINUE
FrHX (K ) =F
G TC 79

S CONT INUE

G T 70
CONTINUE
FrMK(K)=F
GT TT 72
COMTIMNUZ
FHK(K)=F
GO TO 70
CTRT MU
FAMK(K) =
Gi T3 70
CInT INUE
FMNK(K)=F
GT T2 70
CONT INUF
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OO0

ann

50

70

100
110
115

152
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Fok{K)=F
GNn TC 70
COaMNTIHUE
Frk (K ) =F
G- T 70
C™ T e

_IrTIFU”

Frx (k) =F

G TT 790

CUNT INUE

FriK (K ) =F

G TG 70

YR R A kN W} 5k Xy kAR Kk kMmoo ek ek ok RN KK KA R kN A Ak
Lg% Ay X bk s koo oeoR ok okt deop ok Ak Ak
CAONT TMUE

IF{IFFAS 20«0 )GD TN 75

IF (FeGEsFEPST DIF=D

IF(FoalTeEPS )l A DaF oGT o—=EPS2 )1PO(K)=1

IF (F el Ta=TPS2 )PO(K)=2
IFIIFEAS ,TQel)GU T &Q
FO=F )+F

CONT I NUZ

IFEFAS=IF

RETURN

END

SUBRTUTINE CUNE

WE FIMD THE RAMGE SOACE 0OF O IMTERSECT THE CONE OF CIINSTANCY.
THE RTZSULT IS PUT 8BACK INTC P

IMPDLICIT REALS
INTEGFR CCLS
COMMDI P(104+1C)oE(

T
10+412)+GRDO110)+6RADS({1J+101,5F0(10)+XBAR(L1I)
CCMMCON FOsSMETHLFNK(
PSe
J

Yo REDUC EPS1,ERS24FOSANVE
EPSEEPSTWERS3,EP5S9,E2810
10)+COLSWITERS
A(10+10)¢X{10),TEMRP(10)

IF JI(K)=0 WE SkIP THE X~-TH FUNCTICN

CLMMEON ED4G3 4, EPS4L, T
COMMIN N GKP «RCHSTR,
FLAL*S u(lO.lO).Y(lo

DT 2870 NCNSTR=1,PCNSTR
IF(JI(MCNSTR) JEQ.0)IGL TUO 240
J=2

DO 110 I=1,N

X(I)=0

GT T2 140

D 120 I=1,N

X(I1)=0

DO 120 K=1,.KP
XCI)=X(I)+FP ([ +K)IE(KeJ)
CLLL GRDF{NCNSTR.X)

DI 150 I=1,K0

Y(1)=9

D, 120 K=14N
Y(I)=Y(I)+GRD(K)}*B(K )
DO 180 I=1.KP



[eXaln]

182

190

170

200

210

229
230
240
2590

I (NATS(Y(T))GT
IF(JeiNekK

J=J+1
TC 115

GG

i

C. T INUE
IF (KD FCL,1)GO TO 220
KPM] =k De |
BT 170 Kl=1,KBP

NC 170 Ka2=1,KPM1]
KZPbL=k2+1
A(K1lsK2)=D

Ir(KloFQ-K?.AND K1.LTeI)AL
=1 e ENe K2 3AMD ¢ K1 o GTa1)
CQal e AT ek 24GZ o1 )A(K

{
- {

-— Ll

vl
N D Y 5~ TN
E —
Do O OV Biurpoju e

=T OO TITO T e
~

~~

GP LT
corT

frarmre mps Ctte partre (D0 GO
"‘AJH[\)’*P;"“PMOUHO""OC)Q

It

2

)¥]

X

)
)

1
1y

KP=KOMY
100
CUMT IuL
I1=14N
O{1s1)=0
CTUMT IMUE
COMT INUFE
FETUSM

G{: T

Do

EMD

230

1
I
)
K.
Z)
1
1
)
K
)
1
J
1
£

Hiuo=cuu

- ny-A;
- Do s bl .

XN AN0O e u It pree )y "R

~ =t T e

SURRTUTINE

THE SUBRTUT INE

13
[

1 KPM1

—

x
°

.
K

"’Db’z

PYGC TO 240

)JGC T9 14990

- X
- s
A Xe
£ e X

TLWKIBPA(KLIZ2)Y+B(I1,12)

SMPLEX(ACSsARTIF1,ROWS,BASIS,.CALES)

IMPLICIT FEAL*B(A=H,(i=2)
IMTEGER TTLS
INTEGER

COMUTIN

CrAME N,

AR S|

1

PCNSTR

P(10+10),
COMMTN FQsSMITH.
CitMMAN FPRES3 ¢ £56
Ny KP ,ENG
E= AL &8 ﬁ(lch&);

m—c- e

ARTIF1 CO

)

+GRD (10
RZOUCE

e ’Uvr‘
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SOLVES PRCOBLEMS AX=8B 3Y THE SIMELSX

METHCD
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D QR‘L WS
495 2
406 A
407 z

C
I
VA

Lo L
-0 o

PONIP e o b

Q
I e

[(I]

» CCLSML
-1000.)062 TZ 420

~ANTXXG

e O
SN
DH
.

-

I~
MO COHws— T

419 ZJ

o
-

TH=TA

)
AQ+ANMD s THETAQ#GE«D))GC TG 430

Meqg~e 3TV

4390 CON

-1C|l"‘—i(")'

STAQWGR )G T3S 432 v

o

s TERKORL Y

>
(al
¥
-
wn
[ ]

vVeT(1))=FIVIT(2)

» RUWS

T(l))r“ T2 4325
A(LCriLS)=THETAURA (] ,PIVAT
) e GT s 0 e £NCe AL T+ COLS) LT E

oy
™

m~m G 7 i~

(z2))
PS9 }A{1 +CCLS)=0

teer T3 H
7 Af =t
<

v >

i

435

S e D)~

y CTLS)=THETADQ

(1) 4COLS) aGT 0 e ANDSA(RPIVAOT (1) +CCLLS ) LT +EPS9 )
)+ C:31.S ) =0

e TCLLSM]
v:

- HAZ - "D U

[Tl -

1000)6GU TO 46€

~~ o~

TT(L)IGT T3 455

s RINSG

VOT(1))GD T4 450

v J)=A(FIVIT(L) 2 I)*A(TWPIVOT{2))/A(FIVOT(1),,PIVOT(2))
GTe0eANNLA(L +J) oLTL,EPSY JA(L,4J)=0

~~OH T~
. Mmkomov-om—{v

459

~—

s JI=A(RPIVET(1)sJ)/Z7A(RIVAT(1),,21IVOT(Z))

CHC» 1D O-

455

HOILDZA-oMNe <y
]
x
4]

-t il 4 <
mmZAQHMAme.n..g4<amnwonm

MDA

AN AUTMANOTM I T~ ST~
Ne

460

~rse P ire mPCOP TP ADe P
DM O rmC~Ce (e ~(NIrem Crmm~Ne WD

e kT
- -
i U- 0

»
2

~nnD
M s
02Z:
I N R ey
'

MR T=2>>T0POmr =D D
Ox

SUERMUTINLG PEQUAL
SUBRIUTIKE FIMNDS THE Z=ZQUALITY SET

lalale]

IMOLICIT D_AL*H(A He C=2)
INTTGER PCHNSTR«RIWSsCOLSWARTIFL1 ,34SIS(11), ILAMDA(10)
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COMAOMN P(10+10)+0(10010)¢eGFD(10)+GRADS(10410)+F0(10) +XBAS(10)
COtMT Y FOsSHURETHFNK (10 )e P2 CUCKWEDSLJEPS2.F05A0NVE
COMATN FPS34iIF3L L PSZLEPSAH EPS7.E2P5R,2PSS,5P<S18
COMMIOE HeKP yOCNST=>sJI(10)s{NLS,ITERS
REALLIR A(11,22),C(21)
ARS(TYI=DAS(T)

500 D3 310 K=1,FCNSTR

510 JI(K)=Q0
D+ 350 K=1,BINSTH .
IF(PI(K)MELL)IGD T3 £50
DI 512 I=1,.,KP

512 TFDAESIGRADS(I X)) o GT «EFS4 )GD T3 S99
Ji(k)=1
PO(K)=-1 ¢
IF(K JEQePINETRIGOD TO 630
Kiz=K+1l
NI 520 =K1 ,PCMSTR
IF(P0(K) M= o1)G TG 520
ne o515 J:;,;(D

515 IF(DARS(GFADS(JeK)) «CT «EP34 IGU T 520
JI(K)=1
PO(K)==1

529 CONT INUFE
G TT R3O0

550 (o TIMUE
ARTIFL =2
ROWS=KP+ 1
0 570 K=1CCMNSTR
IF(PO(K) «NMEL1)GO TO =70
AFTIFlI=RTIFL +1
ILAMCA(AFRTIFL ) =K
DO SED I=1,KRP

560 A(1s2RTIFL)=GRADS(I4K)
A(ROWSAPTIFL) =1

S70 CORT IUE
IF (ARTIF 1.7« 1)RETURN
COLS=ARTIFL +Rk7TWS+1
DN 58389 1 =1 KB

580 A(T»ZDLS)=0
A{REINS ,C71L S )Y =1
DC 530 I=1,ARTIF1

590 C(1)=0
IP_=ARTIF1+1
IMINUS=CCL.$-1
DD A3) I=IRPL,,IMINUS

600 C(1)==-1000
ChlLl SMPLIX{AWWCIAFTIF] +RTIWS+BASISCOLS)
SiJM=Q0
DC 510 1=1,R04S

6190 SUNMSSUMHL(] 4CTLLS)*C (E’ASlS(l))
IE (SUM L T =EPS3)IFETURN
00 520 I=1,774S
I (ABSL{A(T + 20LS) ) ol T-":.DSG YGO TC 620
DU(IL’”'“A(H-\SI (1)))=-
JI(ILAMDA(RASIS(T)) ) =1

620 C.MNTINUR

£37  CONTIMUS
CALL CONF
G- T 500
END
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700

729
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731
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SURLTUTIME SHTHD

THIS SUBRTUTINE PERFGRMS ITERATIMONS ASSUAING SLATER'S COMDITION
THE C ISTOAINTS 2RE THCST FCR WHICH P)(K) «GT «C

THE ORJFECTIVE FUNCTICN IS THE SuM OF FO aArD AMNY CONSTRAINTS
L UTENMDIJKYS MZTHID 15 US3SEDS

IMPLIZIT RECALx3(A-H
INTEGEF R WS L PONS
COMMON PLLO+10)et2(1¢
CIMM FO«SAL THyF MK
COMMAON FEGE P50 ,50
Cr W% MNeKP L0, J)T
DINMENSICN GRIFO(
DIMINSION (10
DIMENSTIOM XY(
DIMENSION TR
REOALSR A
ABRS(T)=0ABS(
ARTIFLI=2xKP +

-2Z)
COLSHARTIF14.3AS8IS
Q) £0(10) +XBAR{10)
)

(11
s GRD(10),GRADS(10,
'prCUC9qDSIvCD‘2yF)
EOSHEPSTEPLSB 2P ST F
10),CNLS, ITERS

1 bt~

0)»
AVE
P10

DSU”—’)

ITERS=ITENS +1 ,
FEDUC=0

DO 730 k=1, ECNSTP

IF(D0(K) HEL1)GT TN 720
FEOWS=RMIWS+1

PR 720 J=1,KP
JZ2=24J
JEM=2ag=-1

A(RTWS 4 J2M) =GRA
A(RIWSsJZ)=—A(RC
C NTIMUE
RIWS=RTWS+1

00 7301 JU=1.,ARTIF1

A(R w3,J)=0

IF(SNETH.EQW1)GO TO 732
FUSAVE=FrO(XBAR)

CALL GRDEVO(XEAR)

D0 7302 I=1,.KP

TEMPLI(1)=0

DO 73202 J=1,N
TEMOL(I)=TEMRI(I)+GPD(JI)I*P(J, 1)

DT 721 1=1eKP

IaM=2%1-1

A(FOAS12M)=TEMPI ()

GO TO 73¢

IFEAS=0

CLLL FNIVAL (XBAR W IFEAS)

FOSAVFE=FQ

DL 735 K=1,RCNSTR

IF(P0(K) MELO)IGS T 735

GO 732 I=1.KP

12M=2%[-1

ACFEIWE L1 2M)=A(RNWS S IZN)+GFADS (1 ,4K)
CONT INUE

CONT INUE

DY 737 I=1.KP

I2=2%1
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I20=12-1

DEUM=DSUNME ARS(A(RI WS, I2M))
737 A(R a5yl 2)=0k2(1)5—-A(RCWS.[2M)

IF (DSLIMe LT W RPS7)YFETUEN

IF(RCwSCT )G Tt 729

07 7328 I=1,K0

723 ko (I)=0KP(I)/DSUM .
GT T7 848

733 COLS=RNWS+ARTIFL1+2

D 749 I=1+ROWS
A(TCONL.S)=0
740 A(ILA%TIFl)=1
FIIWS=+TWS+1
IZ2=AGT]F1-1
D3 759 J=1,12
C(J)=90
7650 A(RIWS,J)=1
E(CINSHSARTIFL)=0
LR WS, I0LS )=
NI 743 J=&FTIFL CTLLS
760 Cc(J)=0
C(ARTIF1)=1
CALL SMPLEX(A+CsARTIF] 4ROWS+8BASIS.COLS)
DU: 7G50 I=1,ROUNS
799 IF(BASIS{I) o OAFTIF1ANDARS{A{I+COLS)).CTLEPSS)GE TO 810

819 Cf nTINUE
B20 DKO(1)=0

DC B340 I=1.20us

IF(RASIS(I) oGT2%KP)GY TO 840
IDIV=3451IS(I)/2

IF(ALSIS(I) FQLINIVEXZ)GT TC 820
IFIV—IDIV+1
DKP{IGIV)=DOKB(INIVI+A(TILCOLS)
Gf T™ 840

830 DB IDIV)=DKE(IDIV)I=A{I,COLS)
840 CiINT I8 UE
845 DI B850 I=1.N
D(I)=0
DT 8BS0 J=1 KR
B850 CLI)=D(] J)#DKR(J)+D(])
sSuUM=290
&1 DHA=20
D. 3320 I=14N
860 XEAR(II=XDBAR(II+ALPHAND(L):
DO 3480 1 TERP=1,30
S1GH=~1
IFCAS=]
CALL FHEVAL (XBARWIFZAS)
IF (IFFAS LNl JANDJITER EQL1)IGL TO 835
IF{IFEAS «T0+1)SIGHN=1
LPHAZALPHALA/Z
UM=SUM+ STIGNZALPHA
N} ‘*’50 I=19=\
AR(I) =X (I)+A PHAXD(I)*SIGN
88 GHTINUE

o

-

Ji

W

FEAS=1
ALL FNEVEL (X2AF, IFELS)
'.

2
S
D
a8l XL
C
I
C
1 FEAS «FNL1)G0 TR 900

o~
—



89

0

SGI

DOAOOHON

96

97

Q7

0

P

=‘>

S77

98

0

Y

Al CHA= ALLPHA/Z
SUM=CUM=- AL PHA
D2 360 I=1N

XEAQ(1)=XBAR(I)=ALPHAXD(T)

IFzag=1

CALL FREVALIXCARIFEAS)

CONT IR

.

NOwW FIND THE MINIMUM OF FO IN THE

FIRTMNACCT SFEARCH

A0 =0

TOL=10000

NN=1

MG =1

M1 =1

M2=*0+M1
IF(MN2.GE.,T3L)IGCO T 97)
NN=NfN+1

MO =011

Nt =N2

G T Q6

Y= SUMS N
Z=SUUN~—Y
DT 297¢ 1
Xy (I)=x~
XZ (1 )=XE
IFEAS=0)
CaLl FMEZVEIL (XY.I
Fy=-r9

[FEAS=D

Call. FriIEVaL(XZ.s1IFFEAS)
FZ=-FQ

DI 230 I=1.NN
DIST=35UM=40

IF(FY LT oiFZ)XMN=2
IF(FY oG 4 F2Z ) XM=Y
IF{I.FQ«eNN)GD TO S$95
IF(FYJLTFZ)IGT Tr 98¢0
SuM=2

Z=Y

FZ=FY

Y=A0+SUM-Y

D™ 377 J=1 oK
XY(J)=X8AR(J)~YHD{(J)
1F=A5=0

CALL FMNEVAL(XYJLWIFZAS)
FY==FQ .

G T 999

A0=Y

Y=2

FY=F2

2=A0+5UM=7

. GR2 JU=1 WM
XZ(J)=XBAZ(J)=Z%xD(J)
IFZAS=

Calll. FNEVAL (XZ+1IFEAS)
Fl=~F0

Qo
NG
£
N

195

ONE DIRZCTICN
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993

920

940
952
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CONT INUE

CornT IVUE

DT 989 A IT=1 4K
XE2r{I)=X3a0 (1 )=XMED(])
[IF=AaS=1

CALL FNEVAL(XBARLIFEAS)
IFZAS=0 ¢

CrLLL FNIVAL (XBARZIFEAS)
IF(SMETH TN L) 0=FMN0(XBAR)
N™ 398 K=1 4,ECMNSTHE
[FAPO(K) 4N e=1)GI- T2 G358
CALL GRDF (K XEAF)

DO 297 [ =1,.K©
GRADS(I+K)=0Q

D Q37 J=1.N

G ADS(IsK)=GRADRS (T +K)I+GRLC{(JIXRP(J,L1)
C.ANT INMUT

IF{ DABS(FO—-FOSAVE) LT .ZPS8)GO TS 313
IF{ITERS o GT B I)IRETURN
IF(SY¥MTTH.ENL0)GU T S183
FHiTRY SMTHD!

ARTIFLI=2%KP+1

FEFOUC=0

SMETHE=)

IF(PJI(K) «LT#3)G3 T 639
IF(FNK(K).L =, -E£252 )GO TC 920
IF(E KK ) s GELTPS] A0 PO(K)eEQLO)GY T2 940

IF(PC(K) =G 0)RENUIC=]
PO(K)=1

G T S50

IF(RPO(K) sEQ.0)PEDUZ=]
PG (K)=2

GO TC 650
IF(PO(K) «amQs0)SHMETH=1
CIONT IMUE .,

IT(REDUC Qo0 AN e DARS(FO=FOSAVE)GTL.EPSE )¢ TD 700

RE TUCH
END
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NVUTPUT F{ R EXAMPLE 2,3

INITIAL ESTIMATE .
0.0000 0.0010 269000 1.,0000 1.0000
FEASIRLE PQINT FTUMD
—0.03547 ~144604 1.1583 1.2357 14605

SX3MATRIX FZR THE CONE OF C2RSTAMCY

0.7071 -0 47071 0.0000
-0.0000 040000 =129930
1.0000 Q00000 00020
0.0000 1,000U 0.0000
J+ 7390 JeJ299 1.0000

SIALUTION FOQuin

X IS -0.499309 ~DeR 546G =0.20056 45011 2 ¢835493
VALUE OF O0OBJEZCTIVE FUNCTION IS —22,627421Z283784544
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