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ABSTRACT 

The research in this thesis lies in two related areas of applied 

mathematics: approximation and optimization. In the area of approxi­

mation, new classes of iterative methods are introduced to calculate 

best approximate solutions of operator equations in Banach spaces. 

Also, Kantorovich's approximation theory is extended to include, 

possibly inconsistent, operator equations. As a special case, the 

convergence of a Galerkin type method is established. In the second 

part of the thesis, the geometry of optimality conditions for nondif­

ferentiable convex optimization problems is studied. Necessary and 

sufficient conditions, under which the Kuhn-Tucker theory is valid, 

are stated. The results are used to formulate a numerical algorithm 

and to calculate various objects which have recently appeared in the 

theory of optimization. 
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"" ... 
RESUME 

La recherche contenue dans cette these parte sur deux domaines 

voisins des mathematiques appliquees: !'approximation et l'optimisation. 

En theorie de !'approximation, on presente une nouvelle classe des 

methodes iteratives pour calculer les meilleures solutions approxim-

atives d'equations d'operateurs dans des espaces de Banach. On 

generalise aussie, la theorie d'approximation de Kantorovich au cas 

des equations d'operateurs possiblement incoherentes. Dans ce con-

texte la preuve de convergence d'une methode de type Galerkin apparait 

comme un cas particulier. Dans la deuxieme partie, on etudie la 

geometrie des conditions d'optimalite pour des problemes non-

differentiables d'optimisation convexe. On enonce egalement des 

conditions necessaires et suffisantes pour que la theorie de Kuhn-

Tucker soit valide. Ces resultats servent a formuler un algorithme 

numerique pour calculer certaines expressions qui on fait leur 

apparition recemment en theorie de l'optimisation. 
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I. INTRODUCTION 

1. 

A solution of a consistent operator equation 

(1.1) Ax = b, 

where A is a bounded linear operator from a Banach space X 

into itself and b is an element of X, can be calculated in 

two ways. One can use a simple iterative scheme set up in X, 

e.g. Krasnosel'skii et al. (33, Chapter 1], or an extension to 

Banach spaces of various well-known matrix iterative schemes, as 

suggested by e.g. Petryshyn (47], [49], Kammerer and Plemmons [29], 

and Gudder and Neumann [22]. The other way is to approximate the 

original equation (1.1) by a sequence of equations 

(1. 2) Ax = b, 

which are possibly easier to handle, and use appropriate error 

analysis. The latter approach is generally more successful. One 

of the first theories which studies the relationship between (1.1) 

and (1.2) was given by Kantorovich [30] and elaborated in the book 

by Kantorovich and Akilov [31]. Kantorovich's theory has been 

developed only for consistent equations. In particular, it is 

concerned with the following problems: 

(i) Find conditions under which the consistency of (1.1) 

implies the consistency of (1.2). 
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(ii) If both (1.1) and (1.2) are consistent, estimate 

the distance between their solutions. 

(iii) Find conditions under which the solutions of a 

sequence of approximate equations (1.2) converge 

to the solution of the equation (1.1). 

(iv) Estimate the norm of A in terms of the norm of 

A and vice versa. 

2 

Kantorovich's approximation theory is rather general and, 

therefore, it is in principle applicable in many consistent 

situations, including the study and numerical treatment of infinite 

systems of linear equations, integral equations, ordinary differential 

equations and boundary value problems. 

Various approximation theories have been recently developed 

and applied to particular problems by different authors, many of 

whom use the Kantorovich theory as a starting point. For instance, 

Thomas [59] refines some of Kantorovich's ideas and applies them 

to develop an approximation theory for the Nystrom method of 

solving integral equations. Phillips [50] and Prenter [51] formu­

late approximation theories for the collocation method, while 

Ikebe [26] works with the Galerkin method. (For more details on 

these and other approaches for solving integral equations, see 

e.g. Houstis and Papatheodorou [25], Delves and Walsh [19] and 

Atkinson [7].) 
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Anselone [4] and Anselone and Moore [5] use the notion of 

collectively compact operators to formulate a different error 

analysis. Moore and Nashed [40] further developed the ideas of 

Anselone and Moore for possibly inconsistent operator equations 

in Banach spaces. They use the notions of generalized inverses 

of linear operators on Banach spaces and "best approximate" 

solutions of linear operator equations. Furthermore, they get, 

in special cases, some results in the perturbation theory of 

rectangular matrices obtained earlier by Ben-Israel [10] and 

Stewart [57]. 

3 

An approximation theory for general, possibly inconsistent, 

linear equations in Hilbert spaces has been studied using the 

classical approach of Kantorovich (rather than the one of Moore 

and Nashed) by Zlobec [65]. One of the objectives of Part A is 

to continue the latter approach and formulate Kantorovich's theory 

for general, possibly inconsistent, linear equations in Banach 

spaces. The basic idea here is to establish and explore a rela­

tionship between approximate solutions of (1.1) and (1.2) and 

then use this relationship as a source for formulating various 

specific schemes for calculating approximate solutions of (1.1). 

In the iterative computation of approximate solutions, as 

well as in Kantorovich's theory for singular equations, we will 

often use the concept of the generalized inverse of an operator. 

Some basic results on generalized inverses in Banach spaces are 
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summarized in Chapter II. In Chapter III, stationary and non­

stationary iterative schemes are set up in Banach spaces for 

calculating both an approximate solution and the generalized 

inverse. This section extends from Hilbert to Banach spaces 

some results from the book by Ben-Israel and Greville [12, 

Chapter 8]. In Chapter IV, conditions for the consistency of 

Ax = y, for every y in a given subspace, are stated in terms 

of an approximate equation. Various error estimates are obtained 

as special cases. Kantorovich's theory for general linear equations 

is also formulated. The results are formulated in such a way that 

a comparison with the corresponding results for the nonsingular 

case from [31] is easily made. The most important results in 

this chapter are Theorem IV.3.1, which gives an error estimate, 

and Theorem IV.4.1, which gives conditions for convergence of 

approximate schemes. Using Kantorovich's theory, in Chapter V, 

a Galerkin-type method for calculating the best approximate solution 

is stated and its convergence is established for a class of operator 

equations in Banach spaces. 

Situations where inconsistent linear operator equations arise 

are numerous and they include: integral equations in the theory 

of elasticity, potential theory and hydromechanics, e.g. Muskhelishvili 

[42], the integral formulation of the interior Neumann problem for 

the Laplacian, e.g. Kammerer and Nashed [27] and Atkinson [7], the 

eigenvalue problem in the case of a nonhomogeneous integral equation 
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when the associated homogeneous equation has a nontrivial solution, 

e.g. Kammerer and Nashed [27], and boundary value problems, e.g. 

Langford [34], Varga [62], Bramble and Shatz [16-18] and Serbin [54]. 

They also appear in the numerical solution of differential equations,. 

for instance in the collocation method when the number of collocation 

points is bigger than the number of coefficients to be determined, 

e.g. Krasnosel'skii et al. [33] and in the numerical solution of 

nonlinear equations where the Frechet derivative is singular, e.g. 

Boggs [15] and Gay [20]. If the number of collocation points is 

smaller than the number of coefficients, then, if consistent, the 

approximate equation (1.2) has infinitely many solutions and one 

may again be interested in calculating the best approximate solution. 

Under- and over-determined initial value problems have been studied 

by Lovass-Nagy and Powers [38]. In the finite dimensional case, the 

under- and over-determined systems appear frequently in statistics, 

e.g. Rao and Mitra [52], see also Ben-Israel and Greville [12], 

Abdelmalek [1], [2] and Anderson [3]. 
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1. Notation 

X,Y,X,Y 

t(X) and tb(X) 

\ 
IIAII 

A Is 

cr(A) 

p(A) 

R(A) 

N(A) 

A* 

II. PRELIMINARIES 

real or complex Banach spaces 

the set of all linear operators from X into Y 

the set of all bounded linear operators from 

X into Y 

the sets t(X,X) and \(X, X) , respectively 

the Banach space of absolutely convergent sequences 

the operator norm of A 

A restricted to the set S 

the spectrum of A 

the spectral radius of A 

the range space of A 

the null space of A 

the adjoint of A . 

For the above notions and their properties, see e.g. Taylor [58]. 

R{A,B} = {z E tb(X,Y): Z = AUB for some U E t(X,Y)}. e.g. 

Ben-Israel [9] 

M the closure of the set M 

PM the projection onto the set M, II.2 

MeN the direct sum of M and N ' II.2 

MC the topological complement of M, II.2 
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x* the best approximate solution, II.2 

y* an approximate solution, II. 2 

V(A) the domain of the operator A' II. 2 

A+ the generalized inverse of A' II.2 

2. Approximate and Best Approximate Solutions 

In order to formulate iterative methods for calculating 

approximate solutions and develop Kantorovich's theory for general, 

possibly inconsistent, operator equations in Banach spaces, we 

employ the following notions. 

A linear operator P € t(X) , is called a projection (of X) 

if P2 = P . If R(P) = M, then we denote P by PM and call 

it the projection of X onto M. Every projection PM decomposes 

X into two algebraic complements, M = R(PM) and N = R(I- PM) . 

This implies X = M+ N and we write N = Mc . If M and N ·are 

both closed, then we say that M has a topological complement in 

X and write 

(2 .1) X=MeN. 

For an example of decomposition (2.1), the reader is referred to 

Nashed's paper [43, p.327]. Recall that a closed subspace M of 



0 

II.2 8 

X has a topological complement if and only if there exists a 

continuous projection PM (of X), e.g. Taylor [58, p.241]. 

However, not every closed subspace has a topological complement, 

as shown by Murray [41] in 1937. 

Consider A E ib(X,Y) . We shall assume that there exist 

continuous projections, PN(A)E tb(X) and PR(A)E tb(Y) • 

particular, such an A must have a closed range.) PN(A) 

(In 

deter-

mines the complement N(A)c = (I- PN(A))X. Similarly, PR(A) 

determines the complement R(A)c = (I-PR(A))Y. Hence, X= 

N(A) e N(A)c and Y = R(A) e R(A)c. When A E ib(X,Y) and 

projections p N(A) E 1b (X) and PR(A)E ib(Y) are given, then 

the system 

(2. 2) 
+ 

A A = PN(A)c 

(2. 3) AA+ = PR(A) 

(2.4) +· A+ 
A PR(A) = 

always has a unique solution 
+ 

A E tb (Y ,X) , called the generalized 

inverse of A (relative to the projections PN(A) and PR(A)). 

The operator A+ then establishes a one-to-one correspondence 

between R(A) and N(A)c, i.e. A+ IR(A) = CAIN(A)c)-l, e.g. 

Nashed [43], Kammerer and Plemmons [29]. Note that, by the closed 

graph theorem, A+ is bounded when R(A) is closed. 

If z is any vector in + N(A) , then y* = A b + z is called 

an approximate solution of the equation Ax = b (relative to PR(A)), 
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e.g. Gudder and Neumann [22], while + x* = A b is called the 

best approximate solution of the equation Ax = b (relative to 

PN(A) and PR(A))' e.g. Moore and Nashed [40]. We see that 

9 

{A+b + z: z E N(A)} is the set of all solutions of the projectional . 
equation Ax = PR(A)b, while A+b is the unique one which lies 

in N(A)c . 

Remark 2.1. If R(A) is not closed but the complement 

M= R(A)c exists, then A has a unique unbounded generalized 

inverse A+ E i(V(A+),X) relative to the complements M and 

N(A) c , where V(A +) = R(A) + M . Many of the results herein 

can be extended to include this case as well as the converse case 

when A is a densely defined unbounded operator with closed range, 

see e.g. the approach in Nashed [44]. 

Remark 2.2. The term "best approximate" solution is used 

by Newman and Odell [46] under different circumstances. There ~ 

is a "best approximate" solution of Ax = b, where A:X -+ Y, 

b E Y if, for every x E X with x '/: ~, either 

IIA~-bll < IIAx-bll 

or 

U ~ - bll = 11 Ax - bll and U xll < U xU . 

(This corresponds to the notion of best least squares solution in 

the case of Hilbert spaces.) In order to avoid possible ambiguity, 

we shall refer to the above ~ as the "X, Y -best approximate" 
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solution of the equation Ax = b . If the norms on X and Y 

are strictly convex, then an "X, Y-best approximate" solution 

exists. If they are not strictly convex, then an "X, Y -best 

approximate" solution may not exist. In order to find x , we 

need the notion of an X-projection (also called a "metric projection" 

by Blather, Morris and Wu1bert in [14]). Suppose that S is a 

subspace of X . Then the mapping ES is the X-projection onto 

S if, for every x E X , Esx solves the minimization problem 

min 11 x - yll . In general, the mapping ES is not linear. An 
yES 
instance in which ES is linear is when S and Se have a basis 

and the norm in X is a "TK norm" with respect to these bases, 

e.g. Singer [55]. In Hilbert spaces, ES corresponds to the 

orthogonal projection PS . When the "X , Y -best approximate" 

solution x exists, then x = Bb, 

and A+ is any generalized inverse 

PN(A)c and P R(A). (Note that B 

we see that when EN(A) 

and 

and 

PR(A) 

where + 
B = (I - EN(A) )A ER(A) 

of A with respect to some 

need not be linear.) Thus, 

are linear, one may choose 

in which case the "X , y-

best approximate" solution x = Bb coincides with the "best 

approximate" solution x* = A+b • 

Suppose that Y (but not necessarily X') is a Hilbert space, 

A E R-b (X, Y) , A has closed range and X = N(A) ED N(A) c . Then 

one may choose P R(A) = ER(A) , which is now the orthogonal pro­

jection on R(A), i.e. R(A)c = R(A).L, and write Y = R(A) e R(A)c. 
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is the generalized inverse of A with respect to PN(A)c 

and PR(A) , the best approximate solution x* = lb is the 

unique least squares solution of Ax = b in N(A) c, i.e. x* 

solves the problem 

(2.5) min 11 Ax- bit 
xe:X 

and among all solutions of (2.5), it is the only one in N(A)c, 
. 

e.g. Karnrnerer and Plernrnons [29]. The set of all least squares 

solutions corresponds to the set of all approximate solutions of 

Ax = b with respect to R(A)c = R(A).L. If both X and Y 

are Hilbert spaces and A e tb(X,Y) has closed range, we may 

choose p R(A) = ER(A) and 

the orthogonal projections, 

P N(A) c = I - EN(A) • These are now 

i.·e. N(A)c = R(A*), R(A)c = N(A*) 

+ and x = Bb = A b = x* is the best least squares solution of 

the equation Ax = b . This means that x* is the only solution 

in N(A)c of the minimization problem (2.5) and among all solutions 

of (2.5) it is the unique one of smallest norm. For a detailed 

discussion of the generalized inverse and best least squares solution 

in Hilbert spaces, the reader is referred to the book by Ben-Israel 

and Greville [12]. 



c 

III.l 12 

III. ITERATIVE METHODS 

1. Stationary Methods 

In order to calculate an approximate solution y* of the 

operator equation (I.l.l) 

Ax = b, 

where A e: .Q,b(X,Y), PN(A)c e: .Q,b(X) and PR(A)e: .Q,b(Y), one can 

use the following iterative scheme: 

(1.1) k=O,l, •.. , 

where 

This scheme has been suggested for calculating the best least 

squares solution in Hilbert spaces in [65], see also [12, p.356]. 

Theorem 1.1. 

PR(A) E .Q.b(Y) and B e: R{PN(Af, PR(A)} be given. Then the 

sequence {xk} , generated by (1.1), converges, for any x
0 

t::: X, 

to the approximate solution y* = x* + P N(A) x0 of Ax = b , if 

P(PN(A)c -BA) < 1 . Moreover, if x0 e: N(A)c , then y* = x* , i.e. 

we obtain the best approximate solution. 

Proof. We find that 

~+1 -x* = (I-BA)xk+Bb-x*, by (1.1) 
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= (I- BA)~+ BPR(A)b- x*, since BE R{PN(A)c, PR(A)} 

= (I -BA)(~- x*) , since PR(A)b = Ax* 

= (I -BA) k+\x
0

- x*) , by iteration 

= (I - BA) k+ 1 (P N(A) xO + p N(A)c xO - x*) 

(1. 2) = (P N(A)c -BA) k+1 Cxo- x*) + PN(A)xO' since x* is in N(A)c • 

But n 1/n 
P (P N(A) c - BA) = lim supii(P N(A) c - BA) 11 < 1 , by the property 

n-KO 

of p (e.g. Tay1or [58]) and the assumption. Therefore, there 

exists a real number s and a positive integer n0 such that 

II(P - BA) nil 1/n ~ s < 1 , 
N(A)c for all n;::; n

0 
. 

n n 
Hence, O(PN(A)c- BA) i ~ s + 0 as n + oo • This implies 

(P N(A) c - BA) n + 0 as n + oo • Thus 

by (1.2). 

xk converges to x* + P N (A) x0 , 

0 

Remark 1.1. Necessary conditions for convergence of xk to 

x* + P N(A) x0 , for every x
0 

E X , are 

P(PN(A) c- BA) ~ 1 [not p(PN(A)c- BA) < 1 !] 

and 

P N(A) c - BA has no eignevalue A such that I A I = 1 • 
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Proof. When xk + x* + P N(A) x0 for any x
0 

e: X, then 

by (1. 2). Hence, for every x e: X, 

k 
sup 11 (P N (A) c - BA) xH < oo • 
k~l 

Now, by the Banach-Steinhaus theorem, there exists M > 0 such 

that U(PN(A)c-BA)kll !>M, k=1,2, .... But 

k k 
[P(PN(A)c-BA)] = P[(PN(A)c-BA)] by the spectral 

mapping theorem 

k 
:s; II(PN(A)c-BA) H !>M. 

Therefore, p (P N (A) c - BA) !> 1 • In order to prove the second 

necessary condition, we observe that if 0 ~ x E X and IAI = 1, 

such that (PN(A)C- BA)x = Ax, then x E N(A)c and 

k k 
(PN(A)c- BA) x = A x f 0 as k + oo, contradicting xk + x*, 

by (1.2). 

Example 1.1. The above remark is demonstrated by the 

defined on x = (x.) 
1 

by 

(Ax) 
1 

= 0 and -i (Ax) i = ( 1 - 2 ) xi , i = 2, 3, . • . • 

It is clear that 

0 
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N(A) = {x E: !1.1 : xi= 0 , i = 2, 3, ••• } 

and 

R (A) = { x E !1.
1 

: x
1 

= O} • 

If we choose N(A) c = R(A) , R(A) c = N(A) and B = 2A, then 

PN(A)c is defined by 

while BA = 2A2 is defined by 

(BAx) 1 = 0 and 

Therefore 

(BAx). 
l. 

-i 2 = 2(1 - 2 ) x. , 
l. 

p(PN(A)C- BA) = sup{jl- 2(1- 2-i) 2 j} 
i~2 

i = 2, 3,... . 

= sup{ l-1 + 22-i- 21-2i I} 
i~2 

= 1 . 

But, for every x e X, 

{ 

x1 , if i = 1 

( (I - BA) k x) . -
1 - (-1 + 22-i- 21-2i)kx. , . f . 2 l. 1 1.= ,3, .... 

Now, let E > 0 be given. Then, since 

11 d 1-I + 22-i - 21-2i I < 1 f . 2 3 x E: )(.,l an or 1. = , , • • • , 
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there exists integers N ~ 2 and K such that 

00 

i: I x. I < E 
i=N+l 1 

N 

I 2-i l-2ilkl I and i: -1 + 2 - 2 xi < E , 

when k ~ K • Therefore 

k 
D(I- BA) x- PN(A)xll = 

00 k 
i: I ((I - BA) x) i I 

i=2 
< 2£ ' 

when k ~ K • This implies that 

k 
(I- BA) x-+ PN(A)x, for any x e 9. 1 , 

which, in turn, proves convergence of the iterative scheme, by (1.2). 

Remark 1.2. It is a consequence of Remark 1.1 that Theorem 1.1 

gives not only a sufficient but also a necessary condition for 

convergence, if X is finite dimensional. In the case of a Hilbert 

space X and a normal operator T = P N(A) c - BA , one can show 

that ~x -+ 0 , for all x e X, if and only if p(T) ~ 1 and 

the spectrum of T has no mass on the unit circle lzl 1 . For, 

by the spectral theorem, e.g. Rudin (53], 

And since, on a (T) , I A. n I ~ 1 and An -+ 0 almost everywhere, 

the Lebesgue dominated convergence theorem implies that ~x -+ 0 • 
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This proves sufficiency. Now suppose that the spectrum of T 

has mass on the unit circle. By Remark 1.1, to prove necessity 

we need only find x E X such that ~x ~ 0 • By the assumption, 

there exists a Borel subset w of the unit circle such that, if 

the subspace M is the range of the projection EA(w), then 

M :) {O} • But then T is invariant on M and 

a subset of the unit circle. This implies that T is unitary 

on M and thus 

~x "t- 0 , for all 0 :) x E M • 

Specifying 

and B=o.A*, 

one can show, see e.g. Petryshyn [47], that 

P(T) = UP R(A*) - o.A*AII =:;; 1 

if and only if 

2 
O =:;; o. =:;; IIA*AU • 

One now establishes the following characterization of convergence: 

For any x
0 

E X, the sequence {~} converges to the least squares 

solution if and only if 

(i) 2 
O < o. =:;; 11 A* All 

and 
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(ii) IIA*AII is not an eigenvalue of A*A if a = IIA:AII • 

We recall that Petryshyn gives only the sufficient condition 

2 
O < a < 11 A*AU . 

Specifying B in (1.1), one obtains various iterative schemes 

for computing an approximate solution. In particular, if one 

splits A = M + N , chooses M+ with respect to the continuous 

projections PR(M) and PN(M)c such that PR(M) = PR(M)PR(A) 

and PN(M)c = PN(A)cPN(M)C and specifies B = wM+, w 'f: 0, 

then (1.1) becomes 

(1.3) 
+ + 

xk+l = [(1-w)I -wM N]xk + wM b. 

Further, for w = 1, (1.3) becomes 

(1.4) + + x = -M Nx. + M b k+l K • 

If both A and M are invertible, then (1.3) and (1.4) become, 

respectively, 

(1.5) 
-1 -1 

= [ ( 1 - w) I - WM N] xk + wM b 

and 

(1.6) -1 -1 x = -M Nx. + M b k+l K • 

The scheme (1.5) has been studied by Pertryshyn [48], who calls 

it the "Extrapolated Jacobi Method". The scheme (1.6) is the well-

known Jacobi method. Other methods can be obtained by the splitting 
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A = D + S + Q with B = (! D + S} + , 1 w f. 0 where wD + S E R.b(X, Y) 

P ( le = P cP ( le. 
N ~D+SJ N(A) N ~D+SJ 

Then (1.1) becomes 

(1. 7) + + xk+l = (D + wS) [(1- w)D- wQ]xk + w(D + wS) b . 

If both A and D + wS are invertible, the scheme (1. 7) becomes 

(1. 8) 
-1 -1 

xk+l = (D + wS) [(1- w)D- wQ]xk + w(D + wS) b, 

which is known as the "Successive Over-Relaxation Method" (abbre-

viated SOR method). Specifying w = 1 in (1.8) one obtains 

which is known as the Gauss-Seidel method. In the case of an n x n 

invertible matrix A = (a .. ) , one frequently specifies 
~J 

D=M=(a .. ), i=l, ..• ,n 
~~ 

S =(a .. ), i>j, i=l, ... ,n; j=l, .•. ,n-1 
~J 

Q=A-D-S, 

N =A- M 

in (1.5), (1.6), (1.8), and (1.9). Properties of these schemes for 

systems with invertible matrices (and linear operators) have been 

studied extensively, see e.g. Varga [60], [61] and Petryshyn [47], 

[48]. Scheme (1.4) has been studied by Berman and Plemmons [13] 
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for systems with singular matrices and by Gudder and Neumann [22] 

for singular operator equations in Hilbert space. For some other 

schemes using splittings of A, see e.g. Hadjidimos [23] and 

Meijerink and van der Vorst [39]. 

Remark 1. 3. One calls the splitting A = M+ N a proper 

splitting, if R(A) = R(M) ·, R(A) c = R(M) c , N(A) = N(M) and 

N(A) c = N(M) c . Note that to obtain a proper splitting in the 

case of Hilbert spaces and orthogonal complements, one need only 

check that N(A) = N(M) and R(A) = R(M) , e.g. [13] and [22]. 

The proper spli ttings are not only useful in iterative calcula.tion 

of least squares solutions, but they also play an important role 

in the Kantorovich approximation theory (see Chapter V). 

One can slightly modify (1.1) in order to compute A+ , the 

generalized inverse of A relative to given projections, PN(A) 

and PR(A) . 

Theorem 1.2. 

PR(A) E .R.b(Y) • If 

{Xk} , generated by 

Let A E .R.b(X,Y), PN(A) E .R.b(X) 

B E R{P N(A) c , P R(A)} , then the 

and 

sequence 

(1.10) Xk+ 1 = Xk - BAXk + B , k = 0, 1, 2, • • • , 

+ 
converges to A +PN(A)XO for all x0 e .R.b(Y,X), if P(PN(Af -BA)< 1. 

Moreover, if R(X0) C N(A) c , then we obtain the generalized inverse A+ • 
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Proof. Here 

+ + 
Xk+ l - A = ~ - BAXk + B - A 

= (I- BA) (Xk- A+) , by (II.2.3) 

The rest of the proof is analogous to the proof of Theorem 1.1 

Note that, for b E Y , 

is an approximate solution of Ax = b . Moreover, when x0 

satisfies the condition 

21 

0 

+ 
we see that A + PN(A)XO is the generalized inverse of A relative 

( i) h p to t e same R(A) as A+, and, by (II.2.2), (ii) the new 

projection on N (A) , 

If (1.10) is modified as follows: 

(1.11) ~ + l = Xk - B~ + B , k = 0, 1, 2, . . . , 
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and if one chooses 

(1.12) 

such that R(X0) c R(A) , then the sequence generated has the 

property 

22 

k+1 
Xk+1- PR(A) = (PR(A) -B) (XO- PR(A)) ' k = 0,1,2, ••.• 

Hence one concludes that whenever P (PR(A) - B) < 1 , the sequence 

{Xk} , generated by (1.11) and (1.12), converges to the projection 

PR(A) . If X and Y are Hilbert spaces and PR(A) is the 

orthogona1 projection on R(A) , then one can choose 

where z1 E ~b(Y,X) and z2 € ~b(X,X) . In particular, one can 

specify z
1 

= A* and z2 = a.I , where a. is a real parameter with 

the property p(PR(A) - a.AA*) < 1 . 

2. Nonstationary Methods 

We can further modify the scheme (1.1) by varying B at each 

step. Such methods include gradient methods of finding approximate 

solutions. 
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Theorem 2.1. Let A e: ib(X,Y) , PN(A) e: ~(X) and 

PR(A) e: ib(Y) . If Bk E R{PN(A)c , PR(A)} for k = 0,1,2, ... , 

then the sequence xk generated by 

(2 .1) 

converges, for any x0 E X , to the approximate solution 

y* = x* + PN(A)xO of Ax = b, if IIPN(A)c - BkAII ::> 1 - a.k 

for k = 0, 1, 2, . . • , where 0 ::;; a.k ::;; 1 and I ~ = oo • Moreover, 

if x0 e: N(A) c , then y* = x* , i.e. we obtain the best 

approximate solution. 

Proof. As in the proof of Theorem 1.1, we see that 

But 
k k 

i~O (PN(A)c - BiA) ~ ::;; i~O (1- ~) -+ 0 

if and only if the series I a.k diverges, e.g. Knopp [32, p.92]. 

Specifying Bk in (2.1) again leads to various iterative 

schemes for computing the best approximate solution. For example, 

if X and Y are Hilbert spaces and we choose Bk = a.kA * , for 

some scalars ak, k = 0,1,2, ••• , then we can rewrite (2.1) as 

0 
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(2. 2) 

Since 2A * (Ax- b) is the gradient of the function 2 
BAx- bll , 

we see that (2.2) defines a gradient method for minimizing 

IIAx- bU , with step size given by ~/2 • 

If we let rk = A*(Axk- b) 
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(2.2) becomes the method of steepest descent. For a discussion 

on gradient methods, see e.g. Nashed [44, p.380] and Kammerer 

and Nashed [28]. 

3. Examples 

The iterative scheme (1.1) can be used to calculate an approximate 

solution of the equation (I.l.l) in abstract spaces. However, in many 

situations, it is actually used to calculate an approximate solution 

o£ an approximate equation (I.l.2) which is frequently a more manage-

able finite system of linear algebraic equations. The first case will 

now be demonstrated. 

Example 3.1. Let us calculate the best least squares solution 

x* of the inconsistent equation Ax(s} = (I - K) x(s) = b (s} , where 

Kx(s) = ; J: (sin s sin ~ + !cos s cos ~)x(~) d~ 
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and b(s) = s. The operator K is chosen from Stakgold [56]. 

The problem will be solved in X= Y = L2 [0,TI] using the iterative 

scheme (1.1). 

W h B : ~A* h 0 2 2 
e c oose U.l"\ , w e:;e <a. < = UA*AU · This guarantees 

here that p(P R(A) - a.M *) < 1 and that the scheme (1.1) converges 

to x* for every choice of x
0

(s) in N(A)c = R(A*) . For 

x0 (s) = 0 one finds: 

where 

where 

then 

2 
x1 (s) = et.(s- 2sin s + ;rcos s) 

= a. , = z,. and ,,Cl) 
.... ""3 

et (Z) = (1 -et) et (l) +a. 
1 1 , 

2a. =­TI • 

In general, if 
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a (k) 3a (k) 2 
+ [(1--) a --a + -a]cos s 4 3 TI1 TI 

(k+l) (k+1) . (k+1) 
= a 1 s a 2 s1.n s + a 3 cos s • 

Since the iterative schemes 

(k+l) 
Cll = (1 - a)a (k) 

1 
+ Cl 

= (1- a)a(k) + 2a 
2 

2 
+ -a 

TI 

are convergent themselves with the solutions a
1 

= 1 , a 2 = 2 and 

4 
a 3 =- TI , respectively, one concludes that 

x*(s) 4 
= s - 2sin s - 1T cos s 

is the best least squares solution. 

Using (1.10) with B defined by Bx(s) = x(s) -; J; sin s sin~ x(~) d~ , 

one can show that ~ converges to A+, which is here 

A+ x(s) = x(s) - ~ JTI (sin s sin ~ - cos s cos ~)x(~) d~ . 
TI 0 

The best least squares solution of the equation introduced in 

Example 3.1 will be calculated in Example V.2.1 via Kantorovich's 

approximation theory. We conclude this section by demonstrating 

how the iterative scheme (1.1) can be applied to matrices. 
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Example 3.2. We now calculate the best least squares solution, 

using the iterative scheme (1.1), of the inconsistent system 

x1 + 3x = 3 1 

-x + X = 1 1 2 

x1 - x2 = 1 

x2 + x3 = 0 . 

Here 

1 0 3 1 

1 0 1 
A = b = 

1 -1 0 1 

0 1 1 0 

Specifying 

B aAt, where a 2 
= = 

trace AtA 

one obtains 

B = tG -1 1 

D 1 -1 . 
0 0 

It is easy to verify that for the above choice of B and a' 

p(PR(At) -BA)< 1, whenever rank A> 1. One can start iterating 

from x0 = 0 , in which case the following numerical results are 

obtained: 
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k 
k 

xl 

1 0.2500000 

2 0.2500000 

3 0.2656250 

4 0. 2656260 

5 0.2666016 

6 0.2666016 

7 0.2666626 

8 0.2666626 

9 0.2666664 

10 0.2666664 

11 o. 2666667 

The eleventh approximation 11 
X 

k k 
x2 x3 

0.0000000 0.2500000 

0.0625000 0.3125000 

0. 0625000 0.3281230 

0.0664063 0.3320313 

0.0664063 0.3330018 

0.0666504 0.3332520 

0.0666504 0.3333130 

0.0666657 0.3333282 

0.0666657 0.3333321 

0.0666666 0.3333330 

0.0666666 0.3333333 

gives the best least squares 

solution correct to six decimal places: 
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Example 3.3. In this example we apply scheme (1.1) to solve 

the problem 

min IIAx- bH 
XEX 

where X is a two-dimensional Banach space of scalars 

x • (::) , A = C : ) and b = ( :). 
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If we specify the norm 

(which is a TK norm with respect to the basis ( ~ ) , ( ~) ) , then 

ER(A) is linear and equal to 

Thus, in order to solve the problem, we must choose PR(A) = ER(A) • 

Since N(A)c can be arbitrarily chosen, let it be N(A)c = R(A) • 

Hence 

Further we choose 

and x0 = o • 

The sequence X =.!_(1), X =~(1)• 
1 4 0 2 8 0 

converging to 

x* = ~ G) is obtained. 
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IV. KANTOROVICH'S THEORY FOR SINGULAR EQUATIONS 

1. Condition for the Consistency of the Exact Equation 

One of the most useful results in the formulation of the classical 

Kantorovich theory is a lemma which gives a condition for the consis-

tency of the exact equation (I.l.l), e.g. [31, p.543]. This lemma 

will now be extended so that it also applies to singular equations. 

Lemma 1.1. Let V E ~b(X,Y) , E a closed subspace of X and 

F any subspace of Y containing V(E) . If there exists, for every 

y E F , an x · e: E such that 

(1.1) ~Vx-yll ~ qUyll and Y xll ~ a.U yll 

where q < 1 and a. are constants, then the equation 

(1. 2) Vx = y 

has, for every y E F , a solution x E E satisfying 

(1. 3) 0 xll ~ -
1 

a. U yU • 
-q 

Proof. Similarly to the proof in [31], we will construct an 

exact solution of (1.2) by recursion. Take an arbitrary yE F. 

Set y I = y . By hypothesis, an x1 E E exists such that 

(1.4) 
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Denote 

(1. 5) 

Clearly Yz e F, since y
1 

e F and F is a subspace containing· 

V(E) • We now apply the condition (1.1) to y2 • This implies 

the existence of x2 e E such that 

by (1.4). 

Also U x211 :s; a:ft y 20 :s; a:qU y 111 • Continuing this process, sequences 

· {yk} and {xk} are obtained such that 

(1.6) 

and 

(1. 7) 

By iteration, (1.5) and (1.6) give 

(1.8) k = 1,2, ...• 

Using the second inequality in (1.7), and recalling that y1 = y. 

one obtains 
00 00 00 

I k~1 \~ :s; l R\U :s; a: I qk-1g yll . 
k=1 k=l 

00 00 

Since q < 1, the series I xk is convergent. Hence t::. I " x = xk 
k=l k=1 
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belongs to E , since E is a closed subspace. Furthermore 

U xll 
00 

sa I qk-lUyU = 
k=l 

a 
~1 lyll -q 

So taking limits in (1.8) gives 

lim yk 
k-+OO 

= y
1

- Vx, by the continuity of V. 
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Also, since q < 1 , we see from (1. 7) that lim yk = 0 • Thus 
k-+OO 

Vx = y • We have shown that x E E is a solution of (1.2) and 

it satisfies (1.3). 

Lemma 1.1 has been proved in [31] in the special case when 

E = X and F = Y. The above result will be used in the next 

section in the approximation theory. However, Lemma 1.1 is of an 

independent interest and in the remainder of this section we will 

show how, using the lemma, one can establish some new and some 

well-known estimates related to the equation (I.l.l) 

0 

Proposition 1.1. Let M € lb(X,Y) and let N(M) and R(M) 

have topological complements. Denote by M+ the generalized inverse 

of M with respect to these topological complements. Consider 

(1.9) A= M+ N 
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such that A € .R.b(X,Y) and IINM+II < 1. If 

(1.10) R(N) C R(M) , 

then the equation 

(1.11) Ax = y 

has, for every y E R(M) , a so.lution x* e N(M) c • Also 

(1.12) 

and R(A) = R(M) • In addition to the above assumptions, if 

(1.13) N(M)c n N(A) = {0} , 

then 

(1.14) 

where A+ denotes the generalized inverse of A with respect to 

Proof. We will show that the assumptions of Lemma 1.1 are 

satisfied with V= A, E = N(M)c, F = R(M), + 
q = IINM 11 and 

+ d A + a.= IIM B. Choose an arbitrary y € R(M) an let x =My. Then 

11 Ax - yU = U (M + N) x - yB 

= 11 (M+ N) x- MM+ yll , since y e R(M) 

+ 
~ IINM U U yU , 

0 
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and Uxll = IIM+yU :s; IIM+UIIyll. Thus (1.1) holds. Now we apply 

Lemma 1.1 to the equation (1.11) to conclude that for every 

ye R(M) , the equation Ax = y has a solution x* E N(M)c 

satisfying (1.12). This implies that 

(1.15) R(M) C R(A) • 

However, 

(1.16) R(A) c R(M) , by (1.9) and (1.10) • 

Now (1.15) and (1.16) imply 

(1.17) R(A) = R(M) • 
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Since N(M) c is isomorphic to R(M) via M, it is also isomorphic 

via A , by ( 1.1 7) and the assumption ( 1.13) • Thus, one can choose 

N(A)c = N(M)c. This determines 

complements N(M) c and R(M) • 

A+ with respect to the topological 

Now, since x* E: N(A) c = N(M) c , 

+ we have x* = A y , and (1.14) follows from (1.12). 
D 

Corollary 1.1. Let H E: R.b (X) with 11 HU < 1 and P c::: R.b (X) 

such that P2 = P . If R(H) C R(P) , then the equation (P +H) x = y 

has a solution x* E R(P) ·· for each y € R(P) • Also 11 x*o :s; 
1 

_ : H yD , 

R(P +H) = R(P) and U (P + Ht U :s; l _ iHU , where (P +H)+ denotes 

the generalized inverse with respect to PN(P+H)c = P and 

PR(P+H) = p • 
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Proof. We will show that the hypotheses of Proposition 1.1 

are satisfied with M = P and N = H . Clearly, P E .R.b (X) has 

topological complements N(P)c = R(P) and R(P)c = N(P) . So 

P+ (=P) is the generalized inverse of P with respect to these 

complements. Also P + H E .R.b (X) , since H Hll < 1 • Take an 

arbitrary yE R(P) • Then x ~ P+y (see the proof of Proposition 

1.1, where M = P) is equal to y , i.e. x = y , since P = p+ • 

Therefore, the assumption 11 HP+ 11 < 1 , in Proposition 1.1, can be 

replaced by IIHII < 1 . Also, the assumption (1.13), which reads here 

(1.18) N(P)c n N(P +H) = {O} 

is satisfied. If (1.18) were not true, there would exist an x F 0 

such that both 

c 
X € N(P) = R(P) and x E N (P + H) . 

Hence (P + H) x = x + Hx = 0 , which contradicts the assumption 11 Hll < 1 • 

0 

Corollary 1.2. (Ben-Israel [10].) Let H be an nxn real 

matrix, 11 HI < 1 and L be a subspace of Rm such that R(H) C L . 

Then 

s; 1 
1 - 11 HH ' 

Proof. Specify P = PL in Corollary 1.1. 

0 
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The following classical result of Banach, e.g. [31], is also 

obtained. 

Corollary 1.3. Let HE tb(X). If UHH < 1, then (I+H)-l 

exists and 

11 (I+ H) -Ill s ..--.1""i'i"H'" 
1 - n Hll • 

Proof. Specify P = I in Corollary 1.1. 

Corollary 1.4. (Kantorovich and Akilov [31, p.172.]) Let 

M € tb(X) and suppose that M-l € tb(X) exists. If N € tb(X) 

-1 1 and U NM H < 1 , then (M+ N)- exists and 

Proof. Apply Proposition 1.1 to the case when X = Y and 

M-l exists. 

0 

0 
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2. Solvability of the Approximate Equation 

..... ,..., 
Let X and Y be closed subspaces of the Banach spaces X and 

Y , respectively. Further, let X and Y be isomorphic via mappings 

J
0 

and H
0 

to the Banach spaces X and Y, respectively. Suppose 

also that J and H are linear extensions of J
0 

and H
0 

to all 

of X and Y , respectively. Such extensions always exist, for 

we may take J = J 0PX and H = H
0
Py. In many practical situations, 

X and Y are chosen to be finite.dimensional. 

Consider again the equations 

(1.1.1) Ax = b, 

where A: X + Y , b E: Y, and 

(1.1.2) Ai = b' 

where A: X + Y , b E: Y . We shall refer to ( I.l.l) as the "exact 11 

equation and to (1.1.2) as its "approximate" equation. We assume that 

A e R.b (X, Y) , A e R.b (X, Y) and that the following decompositions are 

possible: 

X = N(A) e N(A{, 

Y = R(A) e R(A)c, 

The symbol e is here used to indicate that all eight complements 

are necessarily closed. the generalized 

inverse of A relative to the continuous projections PN(A) and 

PR(A), and by x+ E: \(Y,X) the generalized inverse of A relative 
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to the continuous projections PN(A) and PR(A)' Let us denote 

+ -+-by x* = A b and .X* = A b , the best approximate solutions of 

the equations (I.l.l) and (I.1.2) respectively. 

In the sequel we will state results relating the best approxi-

mate solutions of the exact and approximate equations when some or 

all of the following conditions are satisfied: 

(I) The operator A is represented as A = M+ N , where M is 

bounded and X = N(M) e N(M)c, N(A)c c N(M)c and Y = R(M) e R(Mf • 

(In this situation M+ denotes the generalized inverse of M, 

relative to the continuous projections PN(M)c and PR(M)') 

(II) J 0 maps N(M)c n X into N(A)c n x . 

(III) H has the property A+b = A+HPR(A) b • 

(IV) IIAJ0~- ~11 :S e:llxll for some constant € :::: 0 and all x € N(M)c 

(V) For every c there is a N(M)c n X: such that X € N(A) u € 

U Mu- P R(M) Nxll s n
1

11xll for some constant n1 :::: o . 

(VI) There exists a vector 
c ..... 

v € N(M) n x such that 

Theorem 2 .1 • (Conditions for the so Z.vabi Zi ty of the approximate 

equation.) Let the conditions (I), (IV) and (V) be satisfied. In 

addition, suppose that 

n x. 
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(A) 

(B) 

(C) 

(D) 

If 

then the equation 

(2. 2) 

H~l H R(A) C R(A) , 

J(N(Mf) is closed 

R(A) C HR(A) 

and 

has a solution x* E J(N(M)c) for every b E Y • Furthermore 

(2. 3) 

where 
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Proof. It is sufficient to show that the conditions (1.1) 

of Lemma 1.1 are satisfied for the equation (2.2) with E ~ J(N(M)c) , 

F = HR(A), V~ A, y = HPR(A)b and a and q as in (2.1) 

and (2.4). First, consider the equation Ax = H~1HPR(A)b and 

. + -1 -1 
its solut1on x0 = A H0 HP R(A) b . Denote z = Mx0 - H0 HP R(A) b • 

Since x
0 

E N(A)c and N(A)c c N(M)c, by condition (I), we find that 
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(2.5) 

and also 

(2 .6) 

by definition of x
0 

and condition (B) • Therefore z = Mx
0 

- Ax
0 

= 

-Nx
0 

, since A = M+ N • 

Now, for x = -x
0 

, condition (V) implies that there exists 

u e: N(Mf n X such that 

(2. 7) 

for some n 1 ;:: 0 . 
~ + -1 

Denote x = u +M H0 HPR(A) b • Note that 

x e: N (M) c n X , by conditions (V) and (A) . We wi 11 now show 

that J
0
x is the required element i of E in Lemma 1.1. First, 

Since 

= 11 AJ0x- HAx011 , by condition (B) and 

definition of x
0 

s U AJ 0x - HAXU + U HAX - HAx011 , by the 

triangular inequality 

s el 'XI + I HAll 11 x- x0n , by condition (IV). 

·* -1 + + -1 I x- x0U = U u +M HO HP R(A) b- M z- M HO HP R(A) bU , 

by definition of 'i and x0 
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+ + + 
= llu-M zll = IIM Mu-M PR(M)zU 

(2. 8) 

+ + -1 
~ n111M IIIIA Ho IIIIHPR(A) bll , by definition of x0 

and 

the above inequality gives 

(2.9) = qiiHPR(A)bll , 

where q is the constant defined by (2.1). Also 

where a is defined by (2.4). The inequalities (2.9) and (2.10) 

correspond to the assumptions (1.1) of Lemma 1.1 with V= A, 

x = J 0x and y = HPR(A)b. Conditions (C) and (D) guarantee 

that E = J(N(Mf) be a closed subspace of X and F = H R(A) 

be a subspace of Y containing V(E) = A.(J(N(M)c)) .• All conditions 
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of Lemma 1.1 are now satisfied, and the conclusions of Theorem 2.1 

follow. 
0 

Corollary 2.1. Let A E !b(X,Y) and suppose that the conditions 

(I), (IV), (V), (A), (B), (C) and (D) are satisfied. If q < 1 and 

A satisfies the condition 

(E) 

then 

where q and a are as in Theorem 2.1. 

Proof. We need to show that 

Let x* denote the solution in J(N(M)c) of the equation XX = PR(A)y. 

Such an x* exists, by Theorem 1.1. In fact, by condition (E), 

-* A'~-- . x = y,1..e. x* is a unique best approximate solution in N(A)c 

of the equation Ai = y. But PR(A)y = HPR(A)b for some b € Y, 

by condition (D). So i* is also a solution of the equation 

Ai = HPR(A)b and it satisfies 
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Therefore, 

111\'"yll s l-etqiiHPR(A)bll = l~q~PR(A)yll s l-etqiiPR(A.)IIIIyll. 

0 

If X = Y , X = Y = X = Y , M = I and A -l exists then the 

conditions (A), (B), (C), (D), (I) and (II) are trivially satisfied, 

the requirement on H in (III) becomes A'+ b = A'+Hb while (IV), 

(V) and (VI) reduce to: 

,.... 
(IV') IIAX- HAXII s e:llxll for some constant e: ~ 0 and all x c: X. 

,... 
(V') For every x c: X there is a u c: X such that 11 u- NxU s n

1
11 xll 

for some constant n
1 

~ 0 . 

(VI') There exists a vector v e X such that U v- bU s n
2

11 bll for 

some constant n
2 

~ 0 • 

In the nonsingular case, Theorem 1.1 reduces to the following result 

of Kantorovich and Akilov [31, p.S45]. 

Corollary 2.2. Let A c: ~b(X) have an inverse and let the 

conditions (IV') and (V') be satisfied. If 

then the equation Ax = b has a solution x* c: X for every b e X . 

Also 
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-1 
where a= (1 +n1)11A 11 . 

lli*ll s: ~1 a lbll , 
-q 

An estimate for the norm of the generalized inverse A+ was 

obtained using Theorem 1.1. In the nonsingular case, Corollary 2.1 

gives the following result of Kantorovich and Akilov [31, p.S46]. 

Corollary 2.3. Let the hypotheses and the notation of 

Corollary 2.2 hold and let A satisfy the condition: 

(E ') "The existence of a solution of the equation Ax = b for 

every b E X implies its uniqueness". 

Then 

JIA,...-1 11 s: a 
1 - q • 

Proof. Condition (E') and Corollary 2.2 imply the existence 

of A -l . The result now follows from Corollary 2.1 since the 

1 -1 conditions (D) and (E) are satisfied when A - and A exist. 

0 
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3. Error Estimates 

The following theorem estimates the distance between the 

best approximate solution x* of the approximate equation and 

the best approximate solution x* of the exact equation. 

Theorem 3.1. (Estimate of the distance betuJeen best a:ppro:cimate 

solutions.) Consider the equation Ax = b and its approximate 

equation Ax = o If the conditions (I) to (VI) are satisfied, 

then 

(3 .1) 

where 

(3. 2) 

and 

(3.3) 

llx*-J-1i*ll s pllx*ll, 
0 

Proof. First we show that x* can be approximated by an 

x E:: N(Mf n X to the order of n1 + n2 • We know, by conditions· 

(V) and (VI), that there exist u and v in N(M)c n X such that 

(3.4) 

and 

(3.5) 
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"" Denote + x = M (Mv- Mu) ""' c Clearly x e N(M) n X • We now show 

that x* can be approximated by x to the order of n
1 

+ n2 • 

U x*- xll = IIM+Mx*- 'XII , by condition (I) 

+ + + 
= H -M Nx* + M (M + N) x* - M (Mv - Mu) U by definition of x 

+ + + = 11-M Nx* +M PR(A) b- M (Mv- Mu) 11 , since A = M+ N and 

Ax* = PR(A)b 

since 
+ + 

M = M PR(M) 

s UM+Hn1 11x*~ +n2UPR(A)bll), by (3.4) and (3.5) 

+ 
sUM 11 (n1 +n2BAII)IIx*ll, since IIPR(A)bll = IIAx*ll s IIAIIIIx*U • 

Hence we conclude that there exists an x e N(MOc n X such that 

(3. 6) 11 x* - xu s en x*ll ' 

where c = min{l, Cn
1 

+n
2

UAII)IIM+II}. (Note that c s 1, since we 

can always choose x = 0 in (3.6).) 

Let us now prove ( 3 .1) . Denote x
0 

= A '*"HAx • Then 

-1 * "" ,.., -1- J-1- J-1-(3.7) Ux*-Jo x*U s llx -xll +Ux-Jo xon +11 0 xo- 0 X*ll. 

The first term on the right hand side U x* - xU is estimated by 

(3.6). The two remaining terms will now be estimated. First 

,.., J-1-
x- 0 xo = by definition of x

0 

= J~ 1 
(J 

0
- A'*"HA}x, since x e X 
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-1-:"'+- - ..., -= J 0 A (AJ0 - HA)x, since A'+AJ0x = PN(A)cJ0x 
= J

0
x, by condition (II). 

Hence 

:s; e:UJ~ 1A+IIIIxll , by condition (IV) 

:s; e:UJ~ 1A+II (11 x*U + 11 x*- xH) , by the triangle inequality 

The third term is estimated as follows: 

by definition of x
0 

by condition (III) 

since PR(A)b ~ Ax* 

After substituting the above estimates into (3.7) the conclusion 

follows. D 

Remark 3.1. It may happen that we could approximate x* by 

""' N c ,... some x € (M) n X directly. Then we no longer need the conditions 

(V) and (VI) and we can set c = min{l , 11 x* - xll} in (3.2). 
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Remark 3. 2. If p < 1 , we can write the estimate (3 .1) as 

follows 

This is true, since 

Remark 3.3. If X and Y are Hilbert spaces and N(A)c = R(A*) , 

R(A)c = N(A*), then Theorem 3.1 reduces to a result obtained by 

Zlobec in [65]. However, the Hilbert space version of Theorem 3.1 

is proved there under slightly different assumptions. 

Remark 3.4. It may happen that one cannot satisfy condition 

(III) but that a constant n3 , such that 

is found. In this case the constant p in (3.1) is different. Now 

and hence 

In the nonsingular case, we get the following result from 

[31, p.547]. (Recall that in our setting x* € N(A)c. Also, as 
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in [31], we specify b = Hb • ) 

Corollary 3.1. Let the conditions (IV'), (V') and (VI') be 

-1 --1 satisfied and let A and A exist. Then 

Dx*- x*l s p&x*O , 

where x* is the solution of the exact equation (I.1.1), x* is 

the solution of the approximate equation (I.1.2) and 

--1 --1 p = 2EIA 11 + Cn
1 

+ n211AII) (1 + UA HAU) • 

Proof. Specify M = I , X = Y and X = Y = X = Y in 

Theorem 3.1. 
0 

4. Convergence Criteria 

Our next result gives conditions for convergence of approximation 

schemes. Suppose that the exact equation Ax = b is approximated 

by a sequence of equations Ani = bn, n = 1,2, •.. , rather than by 

a single equation. This determines a sequence of the spaces. xn , 

Yn, ~, Yn, the operators An, (J0)n, (Ho)n, Jn, Hn and the 

constants e:n , Cn1) n , Cn2) n , en , qn , a.n , Pn , n = 1, 2, . . . . 

For the sake of notational simplicity these indices will generally 
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be omitted in the sequel. The following theorem gives conditions 

for the convergence of the sequence X:~, the best approximate 

solution of A x = o , n = 1, 2, ••• , to x* , the best approxi-n n n 

mate solution of the exact equation. 

Theorem 4.1. (Convergence of the best approximate soLutions.) 

Consider the equation Ax = b and a sequence of approximate 

equations Ax = E". Suppose that for each n = 1, 2,... the 

conditions: 

(i) (I) to (VI) and (A), (B), (C), (D) and (E) 

(ii) -1 supiiH
0 

11 < oo and supll PR(A) 11 
n n 

(iii) lim Ell J~ 1 11 = 0 , 
n-+OO 

lim n1 11J~ 1 1111HII = o , 
n-+OO 

< 00 

are satisfied. Then lim n
1 

= 0, 
n-kXl 

lim n2 = 0 and the sequence 
n-+OO 

of best approximate solutions of AX = b converges to the best 

approximate solution x* of Ax = b, i.e. 

-1 lim 11 x* - J 
0 

x* 11 = o . 
n-+OO 

More precisely, 

-1-0 x*- J 0 x*B :;;; 

where c1 to are some constants independent of the index n . 
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n = 1,2, ... 

(4 .1) 

Hence 

inf IIH011 > 0 
n 

using the second assumption in (ii). Similarly, one concludes 

that 

(4 .2) inf IIJ(/11 > 0 
n 

using the first assumption in (ii). Also IIHII 2: IIH011 , since 

H0 = Hly. Therefore, by (4.1), 

( 4 • 3) inf 11 Hll > 0 • 
n 
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From (4.2), (4.3) and condition (iii), we conclude that, in particular, 

(4 .4) lim e: = 0 , 
n~ 

lim n
1 

= O , 
n~ 

lim n2 = 0 and 
n~ 

Recall the constant q introduced in Theorem 2.1: 

lim n111HII = 0 . 
n~ 

For sufficiently large n, using (4 .4), one has q < 1 and for 

such values of n Theorem 2.1 is applicable. But we can also 

apply Corollary 2.1 to obtain 
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Since a= nJ
0
u (I +n111M+II)IIA+H(/11, one concludes, using the 

third assumption in (ii), that IIA+II is bounded independently 

of the index n , i.e. 

(4. 5) sup ~ ~11 = s < oo • 

n 

The desired estimate now follows for sufficiently large n : 

by (3.2) and (3.3) 

+· + + 
where c1 = 2s, c2 = IIM.II, c3 = siiAUIIM 11, c4 = DAIIHM IL, 
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2 + c5 = sUAII UM ~ and s is defined by (4.5). The right-hand side 

in the above inequality tends to zero when n -+ oo , by (iii) and 

(4 .4) 

A corresponding result in the nonsingular case is given in 

[31, p.549] as follows. 

0 

Corollary 4.1. Consider the equation Ax = b and a sequence 

of approximate equations AX = b. Assume that A-l exists and 

that A satisfies condition (E') for each n = 1,2, ..•• Assume 

further that for each n = 1,2, ••• the conditions (IV'), (V'), 

(VI') are satisfied, and that 
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lim e: ::: 0 , 
n~ 

lim n
1

11HII = 0 
n~ 

and lim n
2

11 Hll = 0 • 
n~ 

Then the approximate equations are consistent for sufficiently 
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large n and the sequence of approximate solutions converges to 

the exact sol ut ion x* of Ax = b , i.e. 

More precisely, 

lim U x* - i*ll = 0 • 
n~ 

where c
1 

to c
5 

are some constants indpendent of the index n . 

Proof. Set X = Y , X = Y = X = Y and M = I in Theorem 2 .1. 

Then J 
0 

= H
0 

= I and 11 Hll = 11 J' 11 ;:;: 1 . Furthermore, from 

Corollary 1. 3, we see that R(A) = X . So condition (E) is 

satisfied and UPR(A)U = 1. 

hold and the result follows. 

Conditions (i) to (iii) of Theorem 4.1 

0 

Remark 4.1. Constants and to in 

Theorem 4.1 reduce, in the nonsingular case, to the corresponding 

constants in Corollary 4.1. 

Let us recall that Corollary 2.1 gave us an estimate for UA~U 

in terms of + 
IIA 11 via constants a. and q • Our last result 

gives us the reverse estimate. 
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Theorem 4.2. (Estimate for the norm of the generalized 

inverse.) Let A E .2-b (X, Y) and A E R,b (X, Y) • If the conditions 

(I) to (V) are satisfied and 

then 

Proof. Take x E X, x f. N(A) . Then x* = PN(A)cx is 

clearly the best approximate solution of the equation 

(4 .6) Ax=Ax. 

By condition (V), there exists a u E N(M)c n X such that 

(4. 7) 

Now 

ll x*- uH 
-1- .... ... 

= IIM MPN(A)cx- M Mull by condition (I) 

Apply Remark 3.1 to the exact equation (4.6) and its approximate 

equation AX = HAx, with 
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0 
{ 

+ ( 11 Axil 1 } c = min 1 , 11 M B n 1 + 
11 

P "'
11 

J 
(A) eX 

in (3. 2) . 

Then 

-1- A -1-+ A 

U x*- J 0 x*U = HP N(A)cx- J 0 A HAxll 

{ [ 
+ ( U AXIl )Q -1 + ~ e: l+IIM 11 n1 +liP U IIJ

0 
IIIIA 11 

N(A)cx 

+ ( uAxn ) -I....,.. } · "' 
+ UM 8 n1 + ll p N(A)cxll (1 + 11 J 0 A HAll) 11 P N(Af XII , 

by (3.1) and (3.2) 

Now 

by the triangle inequality 

by ( 4. 8) and the definition of r • 

Hence 

RAX"n > 1 - r 
n - 1 + 1 1 PN(A)C xll 

IIJ~ A'~-HII + WM 11 (1 + c:IJ~ IIIIA+II +DJ~ A+HAII) 
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where t denotes the coefficient of 0 P N (Af xll • Take an ar'bi trary 

0 -:f y € R(A) . Then there exists an x € X, x r/. N(A) such that 

y = AX. Hence Furthermore, by the above inequality 

+ "' 1 "' 1 
DA yll = IPN(A)c xll ::;; tiiAxU = tllyll , 

which gives the desired estimate for A+ • Note that here t > 0 , 

since r < 1 . If y = 0 , the above inequality is trivially satisfied. 

0 

Remark 4 . 2. If A € R.b (X) and in addition X = Y , X = Y = 

"" "" X = Y , then the above result reduces to the bound for a left inverse 

of A given in [31, p.SSO]. 
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V. GALERKIN' S METHOD FOR BEST APPROXIMATE SOLUTIONS 

1. Description of the Method 

In this section we will use Kantorovich's theory to prove that 

a Galerkin type method, when applied to a certain kind of, possibly 

inconsistent, operator equation, produces the best approximate 

solution. This solution is obtained as the limit of a sequence of 

best approximate solutions of, possibly inconsistent, systems of 

linear algebraic equations. In the case of Hilbert space, another 

method is suggested by Nashed [44]. Unlike our approach he finds 

the best least squares solution by applying Galerkin's method, with 

a suitably chosen basis, to the consistent equations A*Ax = A*b 

and Ax = PR(A)b, rather than to Ax =b. 

Consider an equation Ax = b in a separable Banach space X , 

where A E R,b (X) and b E X , not necessarily b E R(A) ' are given. 

We asstDDe that A = I+ N, where N is compact (which implies that 

N(A) is finite dimensional) and R(A) is closed. Further we assume 

that R(A) = N(Af. Denote by {cpi: i = 1, •.. ,m} a basis of 

N(A) , m = dim N(A) , and by {l/Ji: i = 1,2, •.• } a basis of R(A) 

It is assumed that R(A) has a countable basis. Then every x e X 

can be written as 

m oo 

x = l: c. (x)rJ>. + l: ·d. (x)w. , 
i=l 1 1 i=l 1 1 

where ci (x) , i = 1, ••• ,m and d.(x), i = 1,2, .•. 
. 1 

are some 
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coefficients which depend on x. The above situation occurs, 

for instance, in X= C[O,l] with A a Fredholm integral operator 

of the second kind with a continuous and symmetric kernel. The 

best approximate solution of such an equation can be calculated by 

Galerkin's method as follows: For sufficiently large n solve the 

system of n linear algebraic equations in n unknowns 

(1.1) 
n 
L d. (Al/J.) ~. = 

j=l 1 J J 
d. (b) ' 

1 
i = l, ... ,n. 

We will show that, for sufficiently large n , the system (1.1) 

is consistent and that the sequence of solutions x = (~.) 
J 

converges 

to the best approximate solution of Ax = b , with respect to 

PN(A)c = PR(A) and PR(A) , when n + oo • (Note that in this 

situation both 
+ 

A and A leave R(A) invariant . ) In order to 

prove the consistency of (1.1) , for large n , we will use a result 

from Krasnosel'skii et al. [33, p.212] which is stated here as the 

following lemma. 

Lemma 1.1. Let T e ~b(X) be compact and let {Pn: n = 1,2, •.. } 

be a sequence of projections in ~b(X) , where X is a Banach 

space. If P n + I strongly, i.e., for every x E X, 

11 P x - xA + 0 as n + oo , 
n 

then U (I - P ) TU + 0 as n + oo • 
n 
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In our situation we specify 

y = X , Y = X = span { lP 
1 

, . • • • , lP n} 

which is defined by 

p ..... x = Px[ I c. (x)$. + I d. (x)w.) = 
X i=l 1 1 i=l 1 1 

Further, J and H are defined by 

while 

J o = Ho = J I x , b = Hb and 

and p ..... = p ..... ' y X 

n 
I d.(x)w .. 

i=1·1 1 

A - HAJ-l - 0 
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Note that -1 - -PX = H0 H and X = Y is the space of all n-tuples. 

The norm in X and Y is defined by 

(1. 2) nxll = UJx~ = sup 
k=l, ... ,n 

k 
~ t d · (x) lP · ~ •. . 1 l. l. 1= 

We will first show that the system (1.1) is consistent for large n 

and then that all conditions of Theorem IV.4.1 are satisfied. 

Matrix A= (ii .. ), a .. = d.(AllJ.), i~,.j = l, ... ,n has an 
l.J l.J l. J . 

inverse if and only if PxAix has an inverse. By Lemma 1.1, 

where X= R(A), I = IIR(A), Pn = PxiR(A) and T = NIR(A), 
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as n -+oo. Since (AIR(A))-1 is bounded (by the assumptions on 

A) , this further implies that 

for sufficiently large n . Now, by specifying X = Y = R(A) , 

in Proposition IV.l.l we conclude that M+N is invertible, which 

is here 

= PXA I X , when restricted to · X • 

Therefore A is invertible, which implies that the system (1.1) 

is consistent for large n . 

Let us now show that all assumptions of Theorem IV.4.1 are 

satisfied for sufficiently large n . 

Condition I: Since M = I , this condition is obviously satisfied. 

Condition II: We know that A is invertible, so this condition, 

for large n , reduces to J 
0

: X -+ X , which is 

always satisfied. 

Condition III: Since A is invertible, the condition becomes 

b = HP R(A) b , which is satisfied by our construction 
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Condition IV: 

Condition V: 

of H and o. 

One can specify - -1 
e: = 0, because A = HAJ0 • 

For an arbitrary 
c 

x € N (A) , take u = PXNx • 

Then 

U Mu- PR(M) Nx~ = 11 (PX- PR(A)) Nxll , since 

M = I and N(Af = R(A) 

$ 11 (Px- PR(A))NI R(A) 1111 xll . 

So, one can specify 
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Condition VI : Take v = PXP R (A) b • Then 

Condition A: 

Condition B: 

Condition C: 

Condition D: 

Therefore, one can choose 

If PR(A)b = 0, then set n2 = 0. 

Since M = I and ~ = Y, the condition is satisfied. 

By our construction of H and H
0 

, 

Since ~ c R (A) , one concludes that 

J(N(M)c) = X , which is closed. 

-1 
H0 H = PX. 

H~1HR(A) C R(A) • 

Since R(A) = X , this condition is satisfied by the 

construction of H • 
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Condition E: For large n , A is invertible and N(A.f = X, 

so the condition is satisfied. 

In order to prove conditions (ii) of Theorem IV.4.1 we proceed 

as follows: Define a linear mapping T from R(A) into the space 
ro 

of sequences Tx = (d. (x)) , i = 1,2, ... such that i.: d. (x)iiJ. 
~ i=l ~ ~ 

is an element in R(A) • It is shown in [37, p.l35] that T is a 

linear bijection and that T is bounded and has the bounded inverse 

-1 T , 

(1.3) 

if the norm in the sequence space is defined by 

k 
U Txll = sup ~ I d. (x)iiJ.II · 

k i=l ~ ~ 

Since H J 
0

x11 s U Txll for every x e: X c R (A) , where the norms 

are taken as in (1.2) and (1.3), respectively, one concludes that 

U J 
0

11 s H TU < oo , regardless of n . Hence Space 

X is homeomorphic with the subspace of the above sequence space 

consisting of all sequences with zero components from 

-1- -!­Therefore H0 x = T x for all 
-1 s 11 T 11 < oo , regardless of n , 

X € X. Hence 

and one concludes that 

(n + 1) -st on. 

-1 
= liT lxt 

Since A-. is invertible for large n , PR(i\) = I and thus 

s~p I PR(A) U < ro. 

Finally, the conditions (iii) are satisfied, since e: = 0, 

n
1 

-+ o 

and thus 

and n2 -+ o 

sup UJ- 1& = 
n 0 

as n-+ ro, by Lemma 1.1, while J
0 

= H
0

, 

sup U H(j 1 11 < oo , and 11 Hxll s U Txll for every 
n 
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x E R(A) , Hx = 0 for x E R(Af , by the construction of H 

and T , which implies sup 11 HU ~ 11 Tll < oo , regardless of n . 
n 
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All the conditions of Theorem IV.4.1 are satisfied and one 

concludes that lim 11 x* - J~1x*ll = 0 , where x* is the best 
n-+«> 

approximate solution of Ax = b and x* is the exact solution 

(for large n) of the approximate equation (1.1). 

The best approximate solution of Ax = b can also be calculated 

by solving systems of linear algebraic equations (1.3) in the case 

of a proper splitting A = M+ N if, in addition to the proper splitting, 

+ ~ "" M :X -+ X for sufficiently large n . All the conditions of Theorem 

IV.4.1 are still satisfied. The only modification is that u and 

V in Conditions V and VI are taken as follows: u = M+P.._.Nx 
X 

and 

Here X is still span{1jJ
1 

, ••• , 1jJn} in R(A) • 

In fact, this requirement on X can be relaxed. One can choose 

X= span{1:1 , •.• , Tn}, where h
1

, ... , Tn} is an arbitrary set 

of linearly independent vectors in X , provided that PXP R(A) = 

P R(A) PX for sufficiently large n and T 1 , •.. , Tn , Tn+l , . . . is 

a basis of X • However, with this arbitrary construction of X , 

the system (1.1) may be inconsistent for sufficiently large n , in 

which case the best approximate solution x* = A+b is obtained. Now 

one can show, using Lemma 1.1, that 

for sufficiently large n • These relations imply that the only 
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conditions which need verification, i.e. Conditions II and III are 

also satisfied. 

A Galerkin method for calculating the best approximate solution 

of Ax = b can be formulated as follows: 

(i) Find a proper splitting A = M+ N with N compact. 

(ii) Find a basis {T 1 , T 2 , ••• } of X such that 

(1.4) 

for sufficiently large n , where X = spanh1 , ••• , Tn} • 

(iii) Calculate A = HAJ(/ and b = Hb . The elements of 

A= (aij) are determined by aij = ei(ATj), where ei(x) is the 
00 

i-th coefficient of x in the expansion x = E e.(x)T., while 
i=l ~ 1 

the elements of b = (b.) are determined by b. = e.(b). 
~ 1 1 

(iv) Calculate the best approximate solution of AX = b , 

i. e. i.* = A ,..b • 

If A is written as A = I+ N, in which case we may not have 

a proper splitting, then the basis {T1 , -r
2 

, ••• } must be chosen 

as a basis of R(A) . The conditions (1.4) are then redundant and 

A is invertible for sufficiently large n • 
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2. An Example 

Example 2.1. The best least squares solution of the equation 

Ax = b from Example III.3.1 will now be calculated using Galerkin's 

method. 

First, the operator A can be written as A = M + N , where 

Mx(s) = x(s) - (x(s) , {frsin s)~sin s 

Nx(s) = -l ( x(s) , IJrcos s )~cos s . 

Here ( • , • ) denotes the inner product in L
2 

[ 0, 1T] • Since M 

is the orthogonal projection on (span{sins}) 1 and [Nx(s),sins] = 0 

for every x € L2 [0,1T] , one concludes that 

R (M) . Furthermore 

.·l. 
R(N) c (span{sin s}) = 

I NI s u: c i; cos t cos Ei dt d~) ! = l < 1 , 

which implies that A = M+ N is a proper splitting, by Corollary 

IV .1.1. 

Second, we choose the following basis of X : 

(2.1) /frcos s, {frsin s, /frsin 3s, Jfrsin Ss, 

The conditions (1.4) are now satisfied for every n. 

Third, we calculate A and b for n = 1,2, ••. • 
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a11 = [~cos s , A[4cos s J] = L since A( cos s) = ! cos s 

Thus Ai = b for n = 1 is given by i = -2-Jfr , which gives 

:X* = -4/2 V1r • For n = 2, the system (1.1) is 

and its best least squares solution is 

- (4~) x* = • 

0 

For n = 3 , the system (1.1) becomes 

1 0 0 -2"* 2 

0 0 0 = ~ 
0 0 1 M 

with the best least squares solution 

-~ 
i* = 0 

;a 
3 71' 

At the n-th step (n ~ 3) we obtain 
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l 0 

0 

1 

A = 1 .. 
0 1 

and the best least squares solution is 

x* = ..fi: 
'IT 

Hence 

-4 

0 

'IT 
3 

'IT 
5 
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-2 

'IT 

'IT 

b =# 3 , 
'IT 

'IT 

5 

J -l-* -- 2 r_·4 cos s + 'IT s1·n 3s + 'IT s1·n Ss 'IT • (2 3)] 0 x 1ft 3 5 + ' • ' + 2n - 3 sm n - · 

Since the coefficients (x*(s) ,T.), i = 
1 

l, ..• ,n of the function 

x* (s) 2 . 4 . h b . (2 1) = s- SJ.n s - -cos s , 1n t e as1s . , are 
'IT 

-4 12 0 'IT 12 • V7r • • tffr 
11'12 'IT 12 
c.v;;-5 , • • • , ~2 3.:;;-'IT n- 'IT 

for every n, we conclude that -1-
Jo x* + x*(s) , 

i.e. x*(s) is the best least squares solution of Ax = b. The 

same result has been obtained in Example III.3.1 using iteration 
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I. INTRODUCTION 

1. 

Consider the convex program 

(P) s.t. 
k 

f (x) ~ 0, k € P = {l, ••• ,m}, 

where fk : X ~ R, k e {O} U P, are continuous convex functions 

and X is a locally convex linear Hausdorff space. The convexity 

assumption represents the natural framework for the treatment of 

optimization problems. One can now develop an elegant theory that 

allows a wide range of applications. The optimality conditions and 

algorithms developed, using this theory, usually assume that Slater's 

condition or some other constraint qualification is satisfied. 

However, recently Ben-Israel, Ben-Tal and Zlobec [10], [11] have 

used the cones of directions of constancy of the constraints, to 

characterize optimality without assuming a constraint qualification. 

Algorithms for solving (P) were then given in [14]. In this part 

of the thesis we continue this approach and study the role played 

by the cones of directions of constancy when deriving optimality 

conditions and algorithms. In particular, we use the approach of 

Gould and Tolle [30] and study the relationship between the geometry 

of the feasible set and the analytic properties of the constraints. 

We will see that the cones of directions of constancy provide exactly 
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the missing analytic information needed in order to describe the 

feasible set and thus characterize optimality. 

In Chapter II we summarize some basic results in convex analysis 

and optimization. We also introduce the set of 'badly behaved' 

constraints at 
b 

x, P (x), and present a closedness criterion for 

the sum of two, not necessarily convex, cones. In Chapter III we 

first give a lemma which shows the different relationships between 

the cones of directions of constancy, the tangent cone of the feasi-

ble set and the cone of subgradients. Using this lemma, we derive 

some old and some new characterizations of optimality. Chapter IV 

examines the notions of constraint qualifications and regularization. 

The most important results here are the regularization technique in 

Theorem IV.4.2 and the weakest constraint qualifications in Theorem 

IV.3.1. Finally, in Chapter V we present the Method of Reduction, 

which solves program (P) with faithfully convex constraints. The 

method includes an algorithm for finding the cone of directions of 

constancy of a faithfully convex function and also a generalization 

of the algorithm for finding the equality set, p=, given by Abrams 

and Kerzner [3]. We conclude with several applications and examples. 
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II. PRELIMINARIES 

1. Notation 

We will be dealing with real locally convex linear spaces 

X, Y, • • • and various mappings defined on them. We list below 

some of the abbreviations and symbols used and the sections where 

their meanings are explained. 

tvs a topological linear space 

Zcs a locally convex (Hausdorff) space 

R.(X,Y) the set of all linear operators from X into Y 

X' the topological dual of X, with the weak* topology 

w*-closed weak* closed 

Rn the real Euclidean n-space 

R(B) the range space of the operator B 

N(B) the null space of the operator B 

K.l. the annihilator (in X' ) of a set K (in X) 

span K the vector subspace spanned by K 

K topological closure 

bdPy K the topological boundary of K 

int K the topological interior of K 

cone a set closed under nonnegative scalar multiplication 

blunt cone a set closed under positive scalar multiplication 
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a one K the convex cone generated by K 

aonv K the convex hull of K 

~ the empty set 

<P·x the value of <f>(x) or x(<f>) , where x € X and <P € X' 

(P) the convex program, II.2 

(P r) the regularized program, IV.4 

p the indexing set of the constraints, 1!.2 

s the feasible set, 11.2 

P(x) the binding constraints, 1!.2 

p= the equality set, II.2 

P<(x) = P(x)\P- , !1.2 

Pb(x) 

dist (x, K) 

ilf(x;d) 

af(x) 

ilf(x) 

M* 

the 'badly behaved' set, II.S 

the distance from x to the set K , II. 5 

the directions of vanishing directional derivative, 11.5 

the cone of directions of decrease, nonincrease, 

constancy and increase, 11.3 

the directional derivative, 11.4 

the subdifferential, 11.4 

the gradient, 11.4 

the polar of M, II .6 

the set of continuous, convex functions which achi.eve 

their minimum in S at x, !1.7 
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DF 0 (x) = {<j> E 3f0 (x) : f 0 
€ F0 (x)}, I I. 7 

Cp (x} (x) the linearizing cone, I I. 7 

BP(x)(x) the cone of subgradients, II.7 

T(S,x) 

K-T point 

K-T conditions 

the cone of tangents, II.8 

Kuhn-Tucker point, IV.l 

Kuhn-Tucker conditions, IV.l 

regular point IV.2 

CQ 

WCQ 

(PL) 

(_PP) 

(PS) 

constraint qualification, IV.2 

weakest constraint qualification, IV.3 

the lexicographic problem, V. 5 

the Pareto optimal problem, V.S 

the semi-infinite problem, V.S 
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2. The Convex Program 

We consider the convex programming problem 

rcx) + min 

(P) s.t. 

fk(x) ~ 0 , k E P = {1,. .. ,m} , 

where 
k 

f :X + R are continuous convex functions, defined on the 

Zcs X, for all k e {O} U P • (Without loss of generality, we 

assume that none of the functions is constant.) Unless otherwise 

specified, we assume that the feasible set 

S = {x e X: I (x) ~ 0 , for all k E P} 

is not empty. The set of binding constraints, at x E S , is 

P(x) = {k E P:fk(x) = 0} . 

An important subset of P , independent of x , is the equality set 

p= = {k e P: I (x) = 0 , for all x E S} • 

(See e.g. Zoutendij k [53] , Rockafellar [43] and Ab rams and Kerzner 

[ 3 ] • ) This is the set of indices k for which the constraint I 
vanishes on the entire feasible set. We then denote 

< -P (x) = P(x) \P- • 

Note that unlike p= 
' 

p<(x) depends on X • 
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3. Cones of Directions and Faithfully Convex Functions 

Following Ben-Israel, Ben-Tal and Zlobec [11], we define the 

relations 

"relation" is 11-11 - , "<" , or "> 11 , 

by 

"relation" Df (x) = {d € X: there exists a > 0 with 

f(x +ad) 11relation" f(x) , for all 0 < a :::; a} . 

These are the cones of directions of constancy, descent, nonincrease 

and increase respectively. For simplicity of notation, we let 

"relation" 
Dk (x) = 

"relation11 

D k (x) 
f 

and 

"relation" Dn (x) 
,..... "relation" = 1 1 Dk (x) , 

k€n 
for n c p. 

Remark 3.1. For a function f in the class of faithfully 

convex functions, the cone n;(x) is a subspace independent of x. 

Following Rockafellar [44], we say that a convex function f is 

faithful convex if: f is affine on a line segment only if it is =;;;;..;....=..;;:.;;;;;.;;;.L..-;;;..;;.;;..;..;...::.;,;;. 

affine on th.e whole line conta,in~n$ that $.egment. I;f X = Rn, 

then Rockafellar has shown that f is faithfully convex if and only 

if it is of the form 

(3.1) f(x) = h(Ax +b) + a•x + a, 
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mxn· m t n m 
where A e R , b e R ·, a e R , a e R and the function h: R -+ R 

is strictly convex. It is easy to see that o;(x) = N([:J) 
and is a subspace independent of x • 

In the following lemma we collect some properties of the 

directions. We also show directly that the cone of directions 

of constancy of a ·continuous faithfully convex function on X, 

a Zas , is a subspace independent of x e X • 

Lemma 3.1. Suppose that f:X + R is a convex function and 

x e S. Then: 

a) is a convex cone, is a convex blunt cone. 

< < 
o;:(x) c) DP(x) (x) = D- (x) n 

P<(x) 

< 
D~ (x) = D-< (x) n aonv 

p (x) p= 

d) D- (x) < n D < (x) r t' . p= p (x) 

e) If f is both faithfully convex and continuous, then 

D£Cx) = Df is a subspace of X ' independent of X • 
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Proof. For (a)-(d), see e.g .. [11], [12]. 

e) First, let us show that o;(x) is a subspace. Suppose that 

d1 , d2 e: o;(x) and let d = d1 + d2 . If a e: R , then 

f(x + a.d) = f(Hx + 2ad
1

) + Hx + 2a.d2)) 

::;; !f(x + 2ad
1

) + !f(x + 2ad2) , since f is convex 

= f(x) , since dl • d2 E: D£(x) and f is faithfully convex. 

Therefore f is bounded above on the whole line x + ad , a e: R , which 

implies that f is constant on this line (see e.g. Rockafellar [41, 

p.69]. Thus, de: D£Cx). This shows that D£Cx) is closed under 

addition. That D£(x) is closed under scalar multiplication is 

clear, from the definition of a faithfully convex function. 

We have left to show that D£Cx) = D£, i.e. it is independent 

of x • Suppose that x , y e: X and d e: D£(x) • We will show that 

d e: D£Cy) . 

Case (i) : Suppose that f(y) ::;; f(x) . We will first show that 

f(y +ad) ::;; f(x) , for all a. E R • 

Let a e: R and 1 > tk > 0 with tk -+ 0 as k -+ oo. Consider the 

directions k 
z = ad + tk (x - y) and let Yk = 1/tk • Then 

f(y) ::;; f(x) 

= f(x + ykad) , since d E D£Cx) 

k 
= f(y + ykz ) 



II.3 

By convexity of f and since yk > 1, we conclude that 

and thus, by continuity of f, we see that 

f(y + a.d) = lim f(y + zk) ::::; f(x) . 
k-+oo 

84 

This shows that f is bounded on the line y + a.d , a. E R , 

and therefore, f is constant on this line, i.e. d E D~(y) 

Case (ii): Suppose that f(x) < f(y) . By a similar argument 

to case (i), we see that 

f(y + a.d) = lim f(y + a.d + tk(x- y)) ::::; f(y) , 
k-+oo 

for all CX. E R, i.e. d E D;(y) 
0 

Remark 3.2. For faithfully convex functions f, on one 

can calculate D~ explicitly, see [49] and Section V.2 •. The 

class of faithfully convex functions is quite large. It includes 

all analytic convex, as well as strictly convex, functions. The 

algorithms in Chapter V will deal mainly with these functions. 

In general, however, the cone of directions of constancy may not 

be a subspace. In fact it may be neither convex nor closed. (See 

[10] for examples.) 
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4. Subdifferentiability 

We have assumed that our functions are convex, but not 

necessarily differentiable. Nonsmooth, or nondifferentiable, 

functions occur quite oft.en in convex analysis. Applications for 

these functions arise in approximation theory, e.g. Dem'yanov 

and Malozemov [23], duality theory, e.g. Rockafellar [42] and 

semi-infinite programming, e.g. Ben-Tal, Kerzner and Zlobec [13]. 

(See also Clarke [19] and Pshenichnyi [40].) For convex functions, 

it is possible to develop a complete calculus without assuming 

differentiability, e.g. Rockafel1ar [41], Pshenichnyi [40] and 

Holmes [34]. We now recall some concepts dealing with directional 

derivatives and subgradients of a convex function f , defined on 

the 7.-as X • 

The directional derivative of f at x, in the direction 

d , is defined as 

V'f(x;d) = lim f(x + td) - f(x) 
ti-0 t 

Convex functions have the useful property that the directional 

derivatives exist universally, e.g. [41, Theorem 23.1]. 

A vector ~ e X' is said to be a subgradient of a convex 

function f , at the point x , if 

f(z) ~ f(x) + ~· (z- x) , for all z e X . 



II.4 86 

The set of all subgradients of f at x is then called the 

subdifferential of f at x and is denoted by af(x) . 

If the directional derivative of f at x is a continuous 

linear functional, i.e. if Vf (x; •) = cp 10 X' , then 

cjl•d = lim f(x + td) - f(x) 
-t~ t 

and cp is called the gradient of f at x and denoted Vf(x) . 

Note that in this case 

af(x) = {Vf(x)} . 

We collect some useful properties in the following lemma. 

For more details and proofs, see e.g. [34], [41]. 

Lemma 4.1. Suppose that f:X ~ R is convex. Then 

a) Vf(x; •) is a finite, sublinear functional on X, for all x E X. 

If, in addition, f is continuous at x , then: 

b) Vf(x;d) = max{cp•d:cp e af(x)} 

and 

c) of(x) is a non-empty, w*-compact convex subset of X'. 

The next lemma presents some of the relations that exist 

between the subgradients and the directions introduced in Section 3. 

For the proofs see Ben-Tal and Ben-Israel [12]. 

------···----······-------- ----------
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Lemma 4.2. Suppose that f:X ~ R is convex. Then 

a) o;cx) = {d e: X:Vf(x;d) < o} • 

If Vf(x) exists, then: 

b) o;(x) = {de: X:Vf(x)•d < 0} 

and 

c) conv D£Cx) = o;(x) c {d e: X:Vf(x) ·d = O} • 

5. The 'Badly Behaved' Constraints 

For x e: S, let 

where 

and 

k CP(x) (x) = {d e: X:Vf (x;d) ::::; 0 , for all k e: P(x)} . 

87 

(See Section 7 below for further properties of the 'linearizing 

cone', CP(x)(x).) We call Pb(x) the set. of 'badly behaved' 

constraints at x e: S , for program (P) • 
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The set Pb(x) is the set of constraints that creates problems 

in the Kuhn-Tucker theory. We can see that these are the constraints 

in p= • whose analytic properties (given by the directional deri-

vatives) do not fully describe the geometry of the feasible set 

(given by the feasible directions). It will be shown in IV.3 that 

b 
p (x) = ~ 

is an essential condition for the Kuhn-Tucker theory to hold at x, 

independent of f 0. The set Pb(x) will also be used in the 

characterizations of optimality in III.4. 

Abrams and Kerzner [ 3] have given an algorithm that finds 

the set p= . (See V.3·for a modified version of their algorithm.) 

Once p= is found, then, for any given index k0 E: p= , we see 

that k0 E: Pb(x) if and only if the system 

is consistent. 

V~0 (x;d) = 0 

k 
Vf (x;d) ~ 0 , for all k E: P(x) \ko 

d t nk= (x) u n=_(x) 
0 p-

(Note that when D~ (x) is closed, then D-_(x) c 
p-

D~ (x) • This simplifies the above system and thus, the corresponding 
0 

definition for the 'badly behaved' set.) 

The set Pb(x) is not equal to p= in general. In fact, if 

(5.1) Ek (x) = n; (x) , 
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then fk is 'never badly behaved' at x, i.e. k t Pb (x) independent 

of the other constraints. This class of functions which are 'never 

badly behaved' at x includes all continuous linear functionals 

on X. F h 1'f X -- Rn urt ermore, , V'f(x) f. 0 and f is a strictly 

convex function of one variable, considered as a function on Rn 

(i.e. if the restriction of f to R1 is strictly convex), then 

f is a nonlinear function which is 'never badly behaved' at x. 

(See Ben-Israel, Ben-Tal and Zlobec [10] for definitions and 

properties of functions whose restrictions are strictly convex.) 

The class of functions which are 'never badly behaved' at x 

_______ .... a::~,..l~..,;S:u,DL-Jiu..DL.I.C....LlcUU.l.ld&e~s nthe t distance t functions defined below. We will 
·~----------------------------

see, in IV.4, that every program (P) can be 'regularized' by 

the addition of one such 'distance' function. 

Lemma 5 .1. Suppose that X is a Hilbert space, K is 

a nonempty closed convex cone in X ' X E S and k E P. If, 

for y E X, 

fk(y) = dist (y- x, K) 

(5. 2) ~ m in 11 (y - x) - zll 
ZEK 

then fk is a convex function on X , which is 'never badly behaved' 

at X • Furthermore, 

V'l(x;d) { 0 if d E K 
(5.3) = 

positive otherwise. 
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Proof. First, let us show that the function fk is convex. 

Suppose that 1 2 y,y e:X. Since X is a Hilbert space and K 

is a nonempty, closed convex set, there exist unique points 1 
z 

and z2 
, in K , which are closest to y1 

- x 2 and y - x resp. , 

see e.g. Rudin [4~ p.78]. Thus 

k 1 1 1 "k 2 2 2 
f (y ) = 11 y - X - Z 11 , f (y ) = 11 Y - X - Z 11 

Let 0 ~ A. s 1 . Then 

1 2 
AZ + ( 1 - A.) z E: K 

and 

1 1 2 2 
~ A. ll(y - x) - z 11 + (1 - A.) 11 (y - x) - z 11 

k 
Therefore f is a convex function on X • Now let d e: X • Then 

k 
Vf (x; d) = lim ~(x + td) - ~(x) 

t-1-0 t 

1. dist(td,K) 
= 1ID t 

t-1-0 

= dist(d,K) , since K is a cone. 

This yields (5.3) and further implies that (5.1) holds. 

fk is 'never badly behaved' at x . 

Therefore 

0 
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Example 5.1. Consider the program (P) with the single constraint 

in one variable, f 1 (x) ::::; 0 , where 

{ 

2 
1 X 

f (x) = 
0 

if X <:! 0 , 

otherwise. 

Then 

= {
{:} 

pb (x) P 

if X = 0, 

otherwise. 

However, if 

{ 

2 
l X +X 

f (x) = 
0 

if X <:! 0, 

otherwise, 

. !hen Pb (x) = ~ for all x ~ i.e. f 1 is not 'badly behayed' ~t 

x , though 1 €: P- • 

Example 5.2. Now consider the three functions 

f 1 (x) rx: 1}2 if X <:! 1 , 
= 

otherwise, 

icxJ {X: if X <:! 0, 
= 

otherwise, 

and 

{x2: x f 3(x) 
if X <:! 0, 

= 
otherwise. 
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1 

If the program (P) has just the two constraints fl and f2 , then 

Pb(x) {~) if X = 0, 
= 

X f: 0 and X € s. 

If, however, the program (P) has all three constraints, then 

(5.4) pb (x) = ~ for all x e: S • 

As mentioned above, we shall see that, (5.4) is essential for the Kuhn­

Tucker theory to hold, independent of the choice of the objective 

function f 0 • 
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6. Polar Sets and Closedness Criteria 

In this section we collect some useful results on polar sets. 

These results can be found in e.g. Girsanov [28] and Holmes [34]. 

See also Borwein [16]. We also present a closedness criterion for 

the sum of two cones. 

Recall that for M C X and X a Zas , the polar of M is 

M* = {4> E: X' :4>•x ~ 0 for all x E: M} • 

M* is then a w*-closed convex cone in X' • However, if MC X' , 

then we define its polar to be 

M* = {x E: X:q>•x ~ 0 for all 4> E: M} • 

M* is now a w-closed convex cone in X . 

Lemma 6.1. Suppose that K and L are subsets of X and C 

is a subset of X' . Then: 

a) K c L implies L * c K* • 

b) K* = (aonv K) * , c* = (aonv C)* , K** = aone K and ** --c = aone C. 

If, in addition, K and L are closed convex cones, then 

c) (K n L) * = K* + L * • 

The following closedness criteria will be used in deriving the 

optimality conditions in Chapter III. 
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Lemma 6. 2. Suppose that L is a closed cone in X , C is 

a compact subset of X not containing the origin, and K is the 

cone generated by C , i.e. 

If 

(6 .1) 

then 

K = U A.C • 
A,;?:O 

C n ( -L) = ~ , 

K + L is closed. 

Proof. Suppose that the net n n n 
k + t + p , where k E: K and 

tn E: L • We need to show that p € K + L . For 0 f:. <P E: K , let 

11</>11 ~ inf{t > 0: t-l<P E: C}. 

Note that 11 <j>ll < oo , for all 0 f:. <P € K , by the definition of K • 

(In fact, 11 •11 is the Minkowski functional of C and is a seminorm 

on X , when C is a balanced convex absorbing set.) 

Case (i) : Suppose that sup H-knU < oo • Then 

n 
for some c € c, and sup t < oo • 

n 

S. C · t t th t kn + k & K . 1nce 1s a compac se , we can assume a ~ Therefore 
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Let R. ~ p - k . Then R, e L , since L is closed, and 

p=k+R.t:K+L. 

Case (ii) : Suppose that 
n sup 11 k 11 = oo • We can assume that 

11 knl -+ oo , or else we can extract a bounded subnet and use case (i) • 

Let CL = 1/11 knll . Then CL -+ 0 and 11 CL knll = 1 for all n • As 
n n n 

in case (i), we can assume that 

Furthermore, since HCL kng = 1, we see that 
n 

n 
CL k e C , for all n . 

n 

This implies that k E C . Now, since 

n n 
k +t -+p and CL -+ 0 , 

n 

we see that 

n n CLk +CLR. -+limCLp=O, n n n 

i.e. 

and -k e L , since L is closed. Thus 

(6. 2) k t: C () ( -L) , 

contradicting the hypothesis. This implies that 
n 

sup 11 k 11 < oo and 

we can apply case (i). 0 
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Note that since X' with the w* -topology is a Zcs , the 

lemma holds when X is replaced with X' . 

Remark 6.1. The condition 

K n ( -L) = { O} 

alone, does not necessarily imply that 

K + L is closed. 

Halmos [3~ p.28] has given an example of two subspaces, in a Hilbert 

space, with zero intersection and a non-closed sum.t 

Closedness of a sum is related to closedness of the linear image 

of a set. Suppose that U c X and T:X ~ Y is a bounded linear 

operator, where X and Y are Banach spaces. If T has closed 

range, then the linear image TU is closed if and only if U + N (T) 

is closed, see e.g. Atteia [ 5] and Holmes [35, p.l42]. Therefore 

Lemma 6.2 implies that 

TU is closed 

if, T has closed range, U is a cone generated by a compact set C 

which does not contain the origin and 

C n N(T) = ~ • 

ti would like to thank Professor Rockafellar for pointing out this 

example to me. 
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The above criteria is used to prove the existence of solutions in 

optimal control and spline approximation problems, see e.g. [35, 

Section 21], [21] and [27]. 

Remark 6.2. Lemma 6.2 holds if (6.1) is weakened to read 

c n (-L) n ( -bdry L) = ~ • 

Proof. Following the proof of Lemma 6.2, we see that we fail 

to obtain a contradiction if 

k e: C n ( -int L) 

in ( 6. 2) • Therefore, in this case, we need to show that p e: K + L • 

We accomplish this by showing that 

p e: int (K + L) • 

Since k E -int L, we can find a convex neighborhood of the origin, 

n' such that 

-k + n c L. 

(Recall that every Zcs X has a convex local base, see e.g. [45].) 

It is therefore sufficient to show that the open set 

p+n c K+int L. 

Let 

p E p + n and q ~ p - p • 
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Then q E: n n 
and since a. R. -+ -k ~ n 

is convex, 

we can assume that 

n 
a R. +a. q e: -k + n C int L, for all n. n n 

Therefore 

R.n = _!_(a tn +a. q) e: int L, for all +q a. n n n, 
n 

since L is a cone. This implies that 

n n k +t +q-+p+q=tf~ 

n n where k e: K and R. + q E: int L, i.e. p e: K +:int L. 

7. Some Special Cones 

0 

We now present some well-known definitions of cones used in 
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mathematical programming, see e.g. Gould and Tolle [30] and Abadie 

[ 1 ] . However, the definitions are stated here in terms of sub gradients. 

By If (x~ we denote the cone of all continuous convex objective 

f ~ £0 · uncu.ons 

cone 

with the property that x mini~izes over S. Then the 
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For every subset 0 of P(x), the linearizing cone at x E: S, 

with respect to 0, is 

c0(x) = {d ~ X ~·d s 0 for all ~ € o~(x) 

and all k E: O}. 

By Lemma 4.l(b), we see that 

c0(x) = {de X : V~(x;d) ~ 0 for all k E: 0}. 

This formulation corresponds with the definition of the linearizing 

cone given in Section 5. 

The cone of subgradients at x is 

~ = for some A.k <:: 0 and 

k k 
<P E df (x)}. 

This cone is convex. It is also w*-closed, if 0 ~ conv u. afk(x), 
· keO 

by Lemma 6.2. We now set 

B~(x) = {O}. 

The linearizing cone and the cone of subgradients have the 

following dual property. 
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Lemma 7.1. Suppose that x ~ S and 0 c P(x). Then 

s0(x) =- C~(x). 

Proof. Since 

Bk(x) = a~(x)**, by Lemma 6.l(b) 

(7.1) : - c;(x), by definition, 

we conclude that 

- C~(x) = - r c;(x) , by Lemma 6.1(c) 
k~O 

100 

0 

Gould and Tolle [31] used Farkas' Lemma to prove the above 

result, for differentiable functions on Rn. Note that in the differ-

entiable case, B0 (x) is closed. This may fail in the nondifferen­

tiable case. (Consider B
1

(0), where f 1 is the support function 

of the set {x e R
2 

: 11 x - (0, 1)11 ~ 1}. t) The closure of BP(x) (x) 

will play an essential role in the characterization of regularity 

in IV.3. 

t I would like to thank Professor J. Borwein for pointing this out to me. 
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8. The Cone of Tangents 

For x E M, where M is an arbitrary set in X, the cone of 

tangents to M at x is defined by 

T(M,x) = {d E X 
k k 

d = lim Ak(x - x), where x EM, 

k x + x.} 

This cone is closed and it is convex if M is. In fact. when M 

is convex, it is exactly the cone (M- x), the support cone of 

M at x. For further properties, see e.g. Guignard [32] and Holmes 

[34]. For a relationship of the cone of tangents with derivatives 

in mathematical programming, see e.g. Massam [38] and Massam and 

Zlobec [39]. 

The cone of tangents is used in optimization theory to describe 

the geometry of the feasible set. For example, one gets the following 

characterization of optimality. 

Theorem 8.1. [34, p.30] x E S is optimal for (P) if and 

only if 

This result will be the starting point for our characterizations 

of optimality. Note that the characterization is in terms of the 

feasible set, rather than the constraints. 
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III. CHARACTERIZATIONS OF OPTIMALITY 

1. Introduction 

Optimality conditions of the Kuhn-Tucker type usually use the 

analytic properties of the constraints, given by the cone of 

subgradients, BP(x)(x), or the linearizing cone, CP(x)(x). However, 

these cones may not provide all the required information needed to 
. 

characterize optimality. As seen in Theorem !!.8.1, the cone of 

tangents of the feasible set does provide enough information to 

characterize optimality. However, this cone is hard to use 

computationally. In [10], it was shown that the cones of directions 

of constancy can be used to characterize optimality. We will see 

how these cones provide the missing information. Using Theorem II.8.1, 

we first present optimality conditions of the type given by Guignard 

[32] and Gould and Tolle [30]. (See Theorem 3.1.) From this result 

we deduce several new, as well as known, optimality conditions. 
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2. A Basic Lemma 

The following lemma presents several relationships between the 

types of cones mentioned in Section 1. This lemma is of key importance 

in the proofs in the rest of this chapter and in Chapter IV. 

Lemma 2 .1. Suppose that x e: S 
1 

Q satisfies 'Pb (_x) C:: Q c p= 

and either conv D~(_x) is closed or Q = 1'=. 

Then: 

a) T(S,x) 

d) conv 

e) T*(S,x) = (D~(x))* + CP(x)(x) = (D~(x))* BP(x)(x). 

f) T*(S,x) = (D;J:x)}* + CP(x) (x) = (o;=(x))* - BP(x) (x). 

(Recall that X' is given the tJ*-topology and thus is a lcs.) 

Proof. Since the point x e: S is fixed throughout, we will omit 

it in this proof when the intended meaning is clear, e.g. 

denote DP~x)(x), p< will denote P<(x), etc. 

D~ will p 
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a) Suppose that d E: T(S ,.:x) , with associated nets 

;\ <! 0. Let dk k k we see that = X - x. Since X E S, 
< dk E ~ A. dk i.e. Dp· Furthermore, since o- is a cone, p k 

which implies that Thus 

~ 
T(S,x) C Dp· 

< 

104 

{xk} and 

X + d k 
€ s, 

< 
e: o-p. But 

Conversely, suppose that d e: Dp. Then, there exists a > 0 

such that 

x + ad e: S, for all 0 < a ~ a. 

Let 

Then k 
X E S and, since X is a tvs, k 

x ~x as By choosing 

we see that 

k 
A.k(x - x) = d, for all k <! 1. 

Therefore de: T(S,x), i.e. we have shown that 
~ 

Dp C T(S,x). The 

result now follows since T(S,x) is closed. 

b) (i) First, let us show that 

(2 .1) 
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By hypothesis and the fact that aonv n= C C and Cp = 
p= p= 

C _ n C , it is sufficient to show that 
p- p< 

(2.2) conv n=_ n C < c conv o=_ n C <" 
p- p p- p 

But this follows since 

(2 .3) 

by Lemma II.3.1(d). 

Let us define 

(2.4) 
~ A 

dA = Ad + (1 - A)d, 

for scalars A and vectors d. 

(ii) Next, let us show that 

Suppose that 

0 
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We will find a set I c p= and 
::;; 

feasible directions dA E Dp, which 

are directions of decrease for fk, k E I. This will contradict 

the definition of P-. 

By the assumption, we can find a nonempty set I C P \Q 

such that 

- ~ 
d i Dk u Dp=• for each k E I. 

Recall that when k p= th fko E , en is 'badly behaved' at x if 

the system 
0 

vlo (x; d) = 0 

k 
'i/f (x;d) s 0, k E P(x)\k 

-
d i o= u Dp= 

ko 

0 

is consistent. Therefore, since 

we see that 

k 
'i/f (x;d) < 0, for all k E I, 

i.e. 

(2.6) 
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A 

Let d and d:\ be defined as in (2.3) and (2.4) respectively. 

Then, by (2. 3), (2 .4) and (2 .6), 

(2.7) dA € 
< for all O~A<l. DI, 

Furthermore, Lemma II.3.l(b) implies that 

(2.8) for all 0 < A < 1. 

Now, by continuity and (2.3), there exists 0 < S < 1 such that 

(2.9) 

From (2.7), (2.8) and (2.9), we conclude that 

for all B ~ A < 1, 

contradiction. Thus we have shown that 

The inclusion (2.5) follows, since both Cp and Dp= are closed. 

(iii) By a similar argument, in particular employing Lemma 

II.3.l(b) again, we see that 

(2.10) 

The desired result now follows from (2.1), (2.5), (2.10) and 
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c) By (a), (b) and (2.1), it is sufficient to show that 

That 

(2 .11) 

is clear from the definitions and Lemma II.3.l(b). To prove the 

converse, we first show that 

(2 .12) 

Suppose that we are given 

and the neighbourhood of the origin, n . We need to show that 

(2 .13) D~ n (n + d) * ~. p 

Let d and dA be defined as in (2.3) and (2.4) respectively. Then 

A 

dA•$ = Ad•$ + (1 - A)d•$ < 0, 

for all 0 < A s 1 and all $ € u 3fk. 
ke:.P< 

Therefore 

for all 0 < A s 1. 
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Furthermore, dA E n + d for sufficiently small A. This proves 

(2.13) and thus (2.12). 

The desired result now follows since 
~ 
Dp i:s closed. 

d) Let 

(2.14) 

< 
Suppose that the intersection is not empty. Then P * ~ and there 

exists 

k 
where et> = l: < A <P for some Ak <::. 0, 

kE:P R: 
and 

k k 
cp € 3£ . 

By Lemma II.6.l(a) and (b), 

= c {~}* d - c* c - {~}*. n
0 

'I' an '~' 

Therefore 

A 

Let d be as in (2.3). Then 

A 

i.e. d•cf> = 0. But 
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since Contradiction. 

e) The result fellows from (c) anddLemmas; II .6 .1 (c) and I I. 7 .1. 

f) First, note that 

(2 .15) 

since conv o;= c Cp=· Now, let C be as in (2.14). Then C is 

~*-compact, since the subdifferentials afk are ~*-compact and 

P< 
is finite. Furthermore, since 0 t C by (d), we get that Bp< 

is closed by Lemma 11.6.2 and thus 

* - Cp< = Bp< = cone C, by Lemma II. 7 .1. 

The result now follows from (d), (e), (2.15) and Lemma 11.6.2. 
D 
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3. Gould and Tolle Optimality Criteria 

We will be interested in optimality criteria of the following 

type: 

x € S is optimal if and only if the system 

(G - T) 

~o + L Ak~k € G 
kt::P(x) 

~ 
0 

€ af
0 

(x) 

~k e a~(x), Ak ~ o 

is consistent, 

where G is a nonempty cone in X'. Gould and Tolle have considered 

such optimality criteria for differentiable, not necessarily convex, 

functionals on Rn. They have shown that if 

(3.1) T*(S,x) = c;(x) (x) + G, 

then the (G - T) conditions are necessary for x e S to be 

optimal. (Note that the condition (3.1) depends only on the constraints 
0 

and not on the objective function f .) One obvious candidate for 

G is 

T*(S,x)\CP(x)(x) u {O}. 

Moreover, if G = {O} satisfies (3.1), then we get the well-known 

Kuhn-Tucker conditions, e.g. [36], [37]. In our setting 1 i.e. for 

the convex program (P), we can say: 
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Theorem 3.1. Suppose that x e S and GC X'. Then the 

statement: 

"x is optimal for (P) if and only if the system 

0 

l: \<Pk cp + e G 
ke:P(x) 

(3.2) 0 0 

cp € af (x) 

cpk € 
k 

0 af (x), >.k ~ 

is consistent", 

0 

holds, for any fixed objective function f if and only if 

G satisfies (3.1). 

Proof. We need to show that we can choose G in (3.2) if 

and only if 

(3.3) * ( ) T (S,x) = - BP(x) x + G, 

Sufficiency: Suppose that G satisfies (3.3). By Theorem 

11.8.1, we know that x is optimal if and only if af
0

(x) n T*(S,x) 

~ ~. By (3.3), this implies that x is optimal if and only if 

af
0

(x) n (-BP(x) (x) + G) ~ ~. i.e. if and only if (3.2) is consistent. 
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Necessity: We need to show that (3.3) holds. Suppose that 
0 

<1> e: T* (S,x) and f is defined by the linear functional <!>(•) 

on X. Then <1> E a£ 0

(X) n T*(S,x) and we can conclude that x is 

optimal for (P), i.e. 
0 0 

<I>= f e: F (x). Therefore, by the conditions 

(3.2), we see that <1> E -BP(x) +G. Thus 

r*cs,x) c -BP(x) (x) + G. 

Conversely, let <f> e: -BP(x)(x) +G. Then we can find Ak ~ 0 

and <l>k € afk(x) such that 

(3.4) <I> + E Ak<f>k E G. 
ke:P(x) 

0 0 0 

Again we let f be the linear functional <f>. Then <1> = f E F (x), 
0 

by (3.:;;l). Since a£ (x) = {<f>}, Theorem II.S.l implies that 

<1> E T*(S,x). Thus 

-BP(x)(x) +GC T*(S,x). 

0 

The condition (3.1) is frequently referred to as a necessary 

and sufficient constraint qualification, or a weakest constraint 

qualification. 
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4. Some Choices for the Cone G 

By specifying G in (3.3), we get necessary and sufficient 

conditions for optimality which hold without a constraint qualifi-

cation. For example, 

Theorem 4.1. The point x € S is optimal for (P) if and 

only if the system 

is consistent. 

~o + E Ak~k € (DPs(x)(x))* 
k€P(x) 

~ 
0 

€ df
0 

(x) 

~k € alcxJ, 

Proof. By Theorem 3.1, we need only show that G = (n~(x)(x))* 

satisfies (3.3). Now 

* ( s ( )* T (S,x) = DP(x) x) , by Lemmas 2.1(a) and II.6.1(a) 

=-BP(x) (x) + (D~(x) (x) )*, since and 

D 

Other, possibly more useful candidates for G are given in 

the next theorem. 
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Theorem 4.2. Suppose that x £ S, the set n satisfies 

pb (x) c n c P- and both.· aonv D~(-x) and ;,.BP(_x) (:x) + (D~(:x)) * are 

closed. Then, x is optimal for (P) if and only if the system 

(4.1) 0 0 

cp e a£ (x) 

cpk £ a~(x), Ak ~ o 

is consistent. 

Proof. The result follows immediately from Theorem 3.1 and 

Lemma 2.1(e). 
0 

We have assumed that aonv D~ ·and ;,.BP(x) (x) .., (D~(xJ)* are closed. 

(This can be considered as a kind of constraint qualification.) 

The sets are closed, for example, when the constraints are faithfully 

convex and differentiable. For then both cones in the sum are 

polyhedral. The following two.e:xamples: show that the.closure assumptions 

are necessary. 

Example 4.1. Consider the program 

0 

f (x) -+- min 

s.t. 
k 

f (x) ~ Q, k £ p = {1, 2, 3}, 
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3 where x = (x.) € R , 
1 

(see (II.5.2)) and K 

f
1

(x) = x1, f
2

(x) 

is the self-polar, 

= - X ' 1 

'ice-cream' cone 

Note that now 

Vf
3 

(O,d) = lim 
t-l-0 

= 0, 

min 11 td - zll
2 

t 

3 
for all d E: R . 
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Let x = 0. Then x € S, P- = P while Pb(~) = {3}. Furthermore, 

c;(O} (OJ = span {(D} and (n;b(O) (OJ)* = K. 

Let us show that 

* CP(O) (0) + (o;b (O) (O)) * is not closed. 

Choose 

ki (t). K 
R,i G)· * i = = and = CP(O) (0)' 1' 2' . . . • 

Then 
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Example 4.2. Consider the program 

f 0 (X) + min 
s. t. k 

f (x) s 0, k € P = {1,2}, 

where x = (x.) € R
2

, 
~ 

1 
f (x) 

2 2 2 

{

(x + x - 1) 
1 2 

0 

.f 2 2 1 > 0 1 x
1 

+ x2 - -

otherwise, 

f
2

(x) = dist(x- x,K), K = {x € R
2 

x
1 

~ 0, x
2 

~ 0} and 

Then S = {i}, P- = P while Pb(x) = {1}. Let Q = {1}. 

is not closed. Furthermore 

Therefore 

* 2 
+ CP(x) (x) = {x E: R 

* :) T (S,x). 

t 
X = (1,0) • 

Then 

This implies that (3.1) fails and that we cannot choose Q = {I} 

in Theorem 4.2. 
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Remark 4.1. is not closed, 

we can, however, get the following asymptotic conditions: If 

Pb(x) C 0 C p= and aonv D~ ·is closed, then x e S is optimal if 

and only if there exists nets 

such that 

For more details on asymptotic conditions see e.g. Zlobec [50], [51]. 

* Using the fact that the sum -Bp(x)(x) + Dp=(x) is always 

closed (see Lemma 2.1(f)), we get the following theorem. 

Theorem 4.2. Let x e S. Then x is optimal for (P) 

if and only if the system 

0 
1: A 4>k e (o;=(x)) * 4> + 

k 
keP(x) 

0 

(j> E df
0 

(x) 

(j)k E k 
Ak 0 of (x), ~ 

is consistent. 
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Proof. The result follows from Theorem 3.1 and Lemma 2.l(f). 

0 

This result is equivalent to the following characterization 

of optimality given in [12]. (See also [3] and [11] for the differ­

entiable case.) 

Corollary 4.1. Let x E S. Then x is optimal for (P) 

if and only if the system 

is consistent. 

~o + r A ~k E (o=p=(x))* 
kEP<(x) k 

~
0 

€ cf0

(X) 

Proof. The result follows from (2.15) and Lemma II.7.1. 

The above optimality criteria holds without a constraint 

qualification. However, when Theorem 4.2 is applicable, it may 

0 

- * prove useful to choose G = (DPb(x)(x)) , since this is a smaller 

G. One would therefore, have simpler necessary conditions to check. 

This question will be examined in more detail in Section IV.S. 

The case when G = {O} deserves special attention because then, 

the system (3.2) reduces to the Kuhn-Tucker conditions. We will study 

this case in the next chapter. 
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IV. CONSTRAINT QUALIFICATIONS AND 

REGULARIZATION TECHNIQUES 

1. Kuhn-Tucker Points 

A point x e S is called a Kuhn-Tucker (K-T) point for (P) 

if the Kuhn-Tucker (K-T) conditions are satisfied at x, i.e. if 

the system 

0 k 
~ + Z . Ak~ = 0 

kE:P(x) 

(1.1) ~ 
0 

€ df
0 

(x) 

is consistent. It is well-known that if x e S is a K-T point, 

then x solves program (P). However, the converse does not always 

hold. 

2. Regular Points and Slater's Condition 

We call x e S a regular point (Lagrange regular point), if 
0 0 

the K-T conditions (1.1) hold for every f e F (x), i.e. we can 

choose G = {O} in (111.3.2), see e.g. [31]. A constraint qualifi-

cation (CQ) is then a condition on the set of constraints which 
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guarantees that x is a regular point. 

Slater's condition, i.e. the requirement that 

" there exists x E X with lex) < o, for all k E P " 

is a well-known CQ which guarantees that each point x E S is 

a regular point. Slater's condition is equivalent to the fact that 

(2.1) p- = ,, 

see e.g. [11]. (This follows from Lemma II.3.l(d).) Note that 

Slater's condition is not equivalent to 

int S f:. "' 

see e.g. (11]. However, we can say the following. 

Theorem 2.1. Suppose that, when P- f:. ~ there exists 

k E P- such that fk is faithfully convex. Then 

(i) Slater's condition holds 

if and only if 

(ii) int S f:. 0. 

(In particular, the equivalence holds when all the constraints are 

faithfully convex.) 

Proof. That (i) implies (ii) follows by continuity. It is 

now sufficient to show that (ii) implies (2.1). Suppose that (2.1) 

fails, i.e. there exists k E P- and, by hypothesis, ~ is 
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faithfully convex. Then, D~(x) is a proper subspace of X 

independent of x EX, see Lemma II.3.l(e). This implies that 

sex~ o;, which implies that int s = ~. 
D 

For a discussion on constraint qualifications, see e.g. [ 4], 

[7],[8]. 

3. Weakest Constraint Qualifications 

~ A weakest constraint qualification (WCQ) is a constraint 

qualification, that holds if and only if x is a regular point. 

In other words, it is a condition that holds if and only if x is 
0 0 

a K-T point for all f E F (x). Gould and Tolle [30], [31] have 

shown that, in their setting (see e.g. Section III.3) 

* * T (S,x) = CP(x)(x) is a WCQ. 

By Theorem III.3.1, we see that in our more general setting, 

(3.1) * T (S,x) = -BP(x)(x) is a WCQ. 

Note that this requires BP(x)(x) be closed. In this section, we 

present two different WCQ's. 
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Theorem 3.1. Suppose that X e s, Pb(x) c n c p= and either 

conv D~(x) is closed or 0 = P~. Then: 

a) 

b) 

that 

b 
P (x) = ~ and B!(x)(x) is closed is a WCQ. 

CP(x)(x) c conv Dn(x) and BP(x)(x) is closed is a WCQ. 

Proof. Suppose that (a) holds. Then, Lemma III. 2.1 (c) implies 

and BP(x)(x) is closed. 

By (3.1) and Lemma II.6.l(a), the above is a WCQ. This implies that 

x is a regular point. 

Conversely, suppose that Pb(x) # ~. Recall that k e Pb(x) if 

and there exists 

But, this implies that 

= T(S,x), by Lemma 11!.2.1 (b) and (c). 

Therefore, 

which, as above, implies that x is not a regular point. That 

BP(x)(x) is not closed implies that x is not a regular point, 

follows from (3.1). This proves (a). 
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To prove (b) note that, as in the proof of (a), we need only 

show that: CP(x}(x) C aonv D~(x) if and only if T(S,x) = CP(x)(x). 

But this follows directly from Lemma III.2.l(b) and (c). 
0 

Remark 3.1. Suppose that BP(x)(x) is closed and we can find 

~ ~ S and n c P such that fk(~) < o, for all k € P\Q, and fk 

is 'never badly behaved', for all k ~ n, i.e. 

Ek(x) = D~(x), for all x € S and k ~ Q. 

Th · Pb(x) c P=, en, s~nce this implies that 
b 

p (x) = ~~ for all 

x ~ S, i.e. x € S is a regular point. Thus we see that, when 

checking if Slater's condition holds, we need not worry about the 

functions which are 'never badly behaved'. In particular, we can 

ignore all linear functionals. 

Remark 3.2. The condition given in (b) may be easier to check 

computationally than the one in (a). For example, when X = Rn, 

the constraints ~' k € P(x), are differentiable and the constraints 

~, k ~ 0, are faithfully convex, then CP(x)(x) is a polyhedral 

cone while D~(x) = D~ is a subspace, independent of x. Furthermore, 

Dn can be calculated explicitly, see Section V.2. 

Remark 3.3. Suppose that S contains two distinct points. 

Then Slater's condition is a WCQ with respect to the Fritz John 

optimality conditions. 
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Proof. The Fritz John optimality conditions state that: 

x € S is optimal if and only if the system 

is consistent. Necessity always holds. We need to show that, if S 

contains two distinct points (Note that when S = {x}, then x is 
0 

optimal for any f chosen, the Fritz John optimality conditions 

hold, but Slater's condition fails.) then the Fritz John conditions 

are sufficient for optimality, independent of the objective function 
0 

f , if and only if Slater's condition holds. This follows from the 

fact that the system 

is consistent if and only if Slater's condition fails (i.e. if and 

only if P- f ~), which in turn follows from Motzkin's Theorem of the 

alternative, see e.g. [52]. 

0 
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4. Regularization 

Gould and Tolle have posed the question: "Can the program (P) 

be regularized by the addition of a finite number of constraints?" 

Augunwamba [ 6] has considered the nonconvex, differentiable case 

and has shown that one can always regularize with the addition of an 

infinite number of constraints. He has also given necessary and 

sufficient conditions to insure the number of constraints added may 

be finite. In this section, we show that one can always regularize 

(P) at x, by the addition of one (possibly nondifferentiable) 

constraint. Furthermore, in the case of faithfully convex constraints, 

we can regularize (P) by the addition of a finite number of linear 

constraints. (In the following theorem, we assume that BP(x)(x) is 

closed.) 

Theorem 4.1. Suppose that x E s, X is a Hilbert space 

ph (x) c n C P- and either· aonv D~(x) is closed or n = P-. · Consider 

pr.ogram (P) with the additional constraint 

Jll+l ·· A · · - · 
:t (x) = dist ( (x - X), conv D~(x)) • 

Then x is a regular point. 

..m+l Proof. By Lemma II.S.l, r is not 'badly behaved' at 

x and therefore, Pb(x) is not increased by the addition of rm+1 • 

Now, by Theorem 3.1, we need onJy show that 

C (x) c aonv D~(x) • 
P(i)u{m+l} 
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But 

- m+l-
C l (x) = {d E X : Vf (x;d) ·~ O} m+ 

= conv D~(x), by (II.S.3). 
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0 

Note that the feasible set remains unchanged after the addition 

Of Jll+l. r For, let S denote the feasib~e set after the addition. 

Then 

x E S * x E s and x - x E conv Dn(x) 

We have, therefore, regularized the point x, by the addition of a 

'redundant' constraint. 

Theorem 4.2. Let x E S and ~. k E p=, be faithfully 

convex. Suppose that B Y + X is the linear operator satisfying 

where Y is a Zcs. Consider the program, in the variable y E Y, 

0-

f (x + By) + min 
s.t. 

k- -f (x +By) ~ 0, k E P\P-. 

Then Slater's condition is satisfied for (P ), and y = 0 is a 
r 

feasible point of (Pr). Moreover, if y* solves (Pr), then 

- * x +By solves (P). 
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Proof. The result follows from the characterization of optimality 

in [ 3], [11] (see also Corollary III. 5 .1) and the fact that P- = ~ 

if and only if Slater's condition holds. 

In the next chapter we will see how to calculate = 
D 

p= 

D 

and how 

to apply the above theorem to find a feasible point and solve program 

(P) • Note that, after the substitution, (P ) has fewer constraints 
r 

(and as we shall see, fewer variables) than (P). 

·5. Strongest and Weakest Qpti:nia.lity Conditions 

In Chapter I!l, we presented several optimality criteria of 

the type: 

x e: S is optimal if and only if the system 

$0 
+ ~ A $k E G 

ke:P(:x) k 

(5 .1) $1:1 € of0 (:x) 

. A.k ~ 0, $k e: ()fk(x), k E 'P(x), 

is consistent, 

where G j:s a closed convex cone satisfying 
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* (5 .2) T (S,x) = -B P(x) (x) + G. 

We have seen that we can always choose 

(5.3) - * G = (D-_(x)) or 
p-

Furthermore, when 

and the sets 

aonv D~(x) and -BP(x) (-x) + (D~(x)) * 

are closed, we can choose 

(5.4) - * 
G = (D~(x)) . 

Among the choices of G in (5.3) and (5.4), clearly 

is the smallest. 

Gould and To11e [30] have posed the following question: "When 

does there exist a 'smallest' G for (5.1) ?" By a 'smallest' G 

we shall mean a nonempty, closed convex cone that satisfied (5.2) 

but which contains no proper convex subset which also satisfied 

(5.2). It is of interest to use the 'smallest' G, because then 

algorithms which use (5.1) have fewer necessary conditions to check, 

i.e. we have a 'tighter' theory. 
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From Lemma III.2.l(a), we know that 

Therefore G = (D~(x)(x))* will always satisfy (5.2) and this G 

will then be the 'largest' possible. On the other hand, we have seen 

that, when BP(x)(x) is closed, G = {0} satisfies (5.2) if and 

only if pb(x) = ~. In this case, G = {o} is clearly a 'smallest' 

G. However, when pb(x) f ~, the cone 

- * G = (n-b (xJ) 
p (x) 

need not be a 'smallest' G. In fact a 'smallest' G need not exist 

(See Example 5.1 below.). The following theorem gives conditions for 

finding a 'smallest' G. 

Theorem 5.1. Suppose that x € S. If there exists a closed 

convex cone H such that 

CP(x) n H = T(S,x) 

and 

* -BP(x)(x) + H is closed, 

then 

* G = H 

satisfies (5.2). Furthermore, if there exists a largest, by inclusion, 
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* such H, then H is a 'smallest' G for (5.2). 

Proof. Follows from Lemma II.6.l(c). 0 

Corollary 5.1. If Pb(x) c n c P- and 

then 

- * 
= (D~(x)) 

and, furthermore, this cone is the unique and so 'smallest' G 

satisfying (5.2). 

0 
Proof. Follows from Lemma III.2.l(c). 0 

Corollary 5.2. If there exists a halfspace H such that 

and 

* -BP(x) (x) + H is closed, 

then 

otherwise 
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is a 'smallest' G. 

Example 5.1. A smallest G need not exist. Consider the 

program (P) with the two constraints 

Then S = {x = (x.) 
~ 

1 2 2 
f (x) = x1 + x

3 
~ 0 

£2
(x) = x ~ 0. 

1 

E R
3 

: X = X = 0} 1 3 , X = (0,0,0) 

* 
= ~;(x) (x~* = {x E 

3 
= s, T (S ,x) R 

~ - = 
DP(x) (x) = D (i) 

p= 

CP(x) (x) "- {x e: R3 x
1 

~ 0}. We can now set 

t t 
G = aone{(l,O,£) ,(1,0,-£) } 

where £ > 0, since 

* -=T(S,x). 

However, we cannot set E = 0 in G. 

t 
E S, p- = {1, 2}' 

X = 
2 

0} and 

Example 5.2. Consider the program (P) with the single con-

straint 

1 2 2 
0. f (x) = x1 + X ~ 

3 

Then X = t = 
(0,0,0) E S, p = Pb(~) = {1}, CP(~) (x) = 

3 
R and 
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3 = {x E R : x1 = x3 = 0}. By Corollary 5.1, 

is the unique and so the 'smallest' G. 
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V. THE METHOD OF REDUCTION 

1. Introduction 

The purpose of this chapter is to introduce a numerical method 

for solving finite dimensional convex programs (P), regardless of 

whether Slater's condition is satisfied or not. Ben-Tal and Zlobec 

[14] have presented a feasible directions algorithm that solves 

program (P) without assuming a constraint qualification. They 

find feasible directions d, by solving the system 

d • gfk(x) < o, k € {O} u n 

dE D~(x), k e P(x)\n, 

where n is some subset (possibly empty) of P(x) . If no solution 

exists, for any n C P(x), then x is an optimal point for (P). 

Abrams and Kerzner [ 3] have shown that one need only consider the 

single system, They have also presented an algorithm 

that finds P=. (Note that it may be computationally better to use 

other subsets n, rather than just p= 
• since this allows more 

feasible directions to choose from.) Zoutendijk [53] has suggested 

that, in the absence of Slater's condition, one should solve the per-

turbed program 

0 

f (x) + min 
(Pe) s.t. 

fk(x) s e:, k € n 

fk(x) s 0, k € P\n, 

where e: > 0 and n = P or p-. 
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l;f the feasible set is compact, this is a 'stable' perturbation of 

(P), i.e. if x(s) denotes a solution of (PE), then every cluster 

point of the net {x*(s)}s+O is a solution of (P). Moreover, 

f
0

(x*(s)) ~ f
0

(x*) as s ~ 0, where x* is a solution of (P), 

see e.g. G. Wolkowicz [48]. 

In this chapter, we combine the approaches in [3] and [14] 

with the regularization technique in Theorem IV.4.2, to formulate the 

method, which we call the "Method of Reduction". The method first 
0 

finds a feasible point x and, in the process of finding 
0 

X • it 

reduces program (P) to an equivalent program, in fewer variables and 

fewer constraints, for which Slater's condition is satisfied. The 

solution of (P) is now calculated by any method that works when 

Slater's condition is satisfied. 

An integral part of the algorithm is finding the cone 

This is done in Sections 2 and 3. The method of reduction is then 

presented in Section 4. Applications and examples follow in Sections 

5 and 6. 
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2. Calculating the Cone of Directions of Constancyt 

Recall that the cone of directions of constancy o; of a 

faithfully convex function f : Rn ~ R is a subspace of Rn indepen-

dent of the choice of x, see Lemma II.3.l(e). We now formulate 

an algorithm that finds n; n R(A
0
), where f is a faithfully convex 

function, A
0 

is any specified n x p matrix and R(A
0
) denotes 

the range space of A
0

. Calculation of the intersection o; n R(A
0
) 

is useful in the situation when the intersection of two or more cones 

of directions of constancy is needed. If A
0 

= I, the identity matrix, 

then the algorithm calculates the cone of directions of constancy of f. 

The algorithm is based on the fact that Df lies in the ortho­

gonal complement of $, for any $ E af(x). By repeatedly considering 

the restriction of f to this orthogonal complement, we calculate n;. 

First we present the following two lemmas. 

Lemma 2.1. Suppose that 0 # d E~ and io is the smallest 

positive integer such that the i -th 
0 

component of d is nonzero, 

i.e. d. 
10 

f o. Let 

t This algorithm has been published, in the case of differentiable 

faithfully convex functions, in .[49]. 
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1 
(i

0 
-1) x(i

0 
-1) 0 

- l 

A= 0 

,-

Then R(A) = N(d), where N(d) denotes the null space of d. 

Proof. Obvious. 

Lemma 2.2. Let ~ E af(x), where f 

convex function and x E Rn Then 

o; c N(~). 

0 

n 
R + R is a faithfully 

Proof. Let d e o;. Then Vf(x;d) = 0 and Lemma II.4.1(b) 

implies that ~·d s 0. But -d E D~, since o; is a subspace when 

f is faithfully convex. Thus $•d = o. 
0 
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Let Ek = {ei : i = l, ..• ,k} denote the set of unit vectors 

in Rk and A
0 

e Rnxp be given . 

Algorithm A: 

Initialization: Set P
0 

= A
0 

and i = 1. 

i-th step (1 ~ i ~ p) : Find a point x in the set of 

p - i + 2 vectors {O} u E such that 
p-i+l 

(2 .1) $P. 
1 

F 0, for some $ e af(P. 
1
x). 

1- 1-

Case (i): If such an x exists and i < p, then using Lemma 

2.1, determine A. e R(p-i+l)x(p-i) such that 
1 

(2. 2) 

Set P. = P. 
1

A. and proceed to step i + 1. 
1 1- 1 

Case (ii): If such an x exists but i = p, then STOP. 

Conclusion: 

Case (iii): 

Conclusion: 

o= n R(A J = {O}. 
f 0 

If such an x does not exist, then STOP. 

o=f n R(A) = R(P. ). 
0 1-1 

Theorem 2.1. Suppose that f : Rn ~ R is a faithfully convex 

function and A
0 

is some given nxp matrix. Tnen the above algorithm 

finds o; n R(A
0
) in at most p - s + 1 steps, where s = 

dim(o; n R(A
0
)). 
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I START 

P
0 

= A
0

, i = 1 

~--------------~ 
step i: 

X = 0 

for some ~ e af(P. 1x)? 
1-

no 

139 

yes 
i = i + 1 I Is j = p - i + 1? I 

P. = P. A. 
1 1-1 1 

Find A. e R(p-i+1)x(p-i) 
1 

such that 

R(A.) = N(~P. 1). 
1 . 1-

}o 
j = j + 1 

j 
x = e e Ep-i+l 

... 
yes - . j 

1 
Is 1 < p? 

no 

1 1 
STOP I I STOP 

Flowchart to find o; n R(A
0
) 

yes 

R(P. 
1

) . 
1-
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Proof. Let i 
x denote the point x which satisfies (2.1) 

at the i-th step and for i ~ 0 let f. = foP. 
~ ~ 

denote the composite 

function formed by applying first P. and then f. By the linearity 
~ 

of P., 
1 

f. is a faithfully convex function and so 
l. 

subspace of Rp-i. Furthermore, af.(x) = 3f(P.x)P .• 
~ 1 1 

o;_ is a fixed 
~ 

Now suppose that case (i) has occurred, i.e. xi e {o} u E . 
1

, 
p-1+ 

i 
~ e af(Pi-lx ), ~pi-l ~ 0 and i < p. Let us show that 

(2 .3) o; n R(A
0

) = P.o; . 
l. . 

l. 

First, let us show that 

(2.4) n; n RCA
0

) = A o; 
0 0 

Suppose that d e Df . This means that f
0

(ad) = f
0

(0) for all 
0 

a e R. By definition of f
0 

and the linearity of A
0

, this gives 

f(aA0d) = f(O) for all a e R, i.e. A
0

d e o;. Furthermore, since 

A0d e R(A
0
), A

0
d e Df n R(A0). 

Conversely, suppose that 

and 

d € n£ n R(A
0
). 

f(aA
0

d) = f(O) 

Then there exists a 

for all a € R. d e RP such that d = A
0

d 

Again, by definition of f
0 and the linearity of A

0
, we get that 

for all a e R, i.e. de o; where d = A
0

d. 
0 

This proves (2.4). 
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Next, let us show that 

(2. 5) = D- = A.Df for i ~ 1. 
f. 1 1 . 
1- 1 

Suppose that d ~of .. This means that fi(ad) = fi(O) for all 
1 

a~ R. Since f. =f. 
1 

o A., we get that f. 
1

(aA.d) =f. 
1

(0) 
1 1- 1 1- 1 1-

for all a ~ R, i.e. A.d ~ n; 
1 i-1 

Conversely, suppose that d E D-f , i.e. f. 
1

(ad) = f. 
1

(0) 
i-1 1- 1-

for all a ~ R. By Lemma 2.2, o= c af: (xi) c N(~P1._ 1 ) and 
f. 1 1-1 
1-

= R(A.) 
1 

by (2. 2). 
- p-i 

Therefore there exists a d E: R 

such that d = A.d. So f. (a.d) =f. 
1

(aA.d) = f. 
1

Cad) = f. 
1

(0) = f. (0) 
1 1 1- 1 1- 1- 1 

for all a E: R, i.e. d € o;. and d = A.d. 
1 

This proves (2.5). 
1 

By repeated substitution of (2.5) into (2.4), one gets that 

o=f n R(A) =A Df= = A A o=f = ... = P.Df- , which proves (2.3). 
0 0 0 0 1 1 1. i 

Now suppose that case (ii) has occurred, i.e. 
i 

X € {0} U E . 
1

, 
p-1+ 

~Pi_ 1 F 0 but i = p. Since f 1 : R ~ R 
p-

is faithfully convex, we 

get that o; 
p-1 

= {0}. But, by (2.3), the (p-1) -st 

that o; n R(A
0

) = P _
1
o; 

p p-1 
Substituting for n; 

p-1 

desired result that n; n R(A
0
) = {O}. 

step implies 

yields the 

Finally, suppose that case (iii) has occurred, i.e. ofi_
1

(y) = 

{0} for all yE {O} u E . 
1

. Then, by the convexity of f. 1, 
p-1+ 1-

the conplete set E . 
p-1+1 

lies in o; . 
i-1 

But D-
f. 1 1-

is a subspace 
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P-i+l = Rp-i+l. of R and so we conclude that D Substituting 
f. 1 
].-

into (2.3) yields n; n R(A0) = R(Pi_1). 

The algorithm will be illustrated by two examples. 

Example 2.1. Consider the function 

2 ~ 
f(x) = - (4 + (x1 + :l'2) ) 

D 

This function is convex and analytic and so is faithfully convex. 

Let us determine its cone of directions of constancy Df. 

Initialization: PO = AO = 13x3 
and i = 1. 

SteE 1: Since Vf(x) = 

~- (4 

xl + X X + X 

, 2x~ 2 1 - 1 2 
2 ~ ' 

(4 + 
2 ! 

+ (xl + x2) ) (xl + x2) ) 

we see that 0 E {o} u E3 and Vf(P00)P0 = Vf(O) = (1, 1, O) ~ 0. 

Furthermore, since i = 1 < p = 3, we are in case (i). Using 

Lemma 2.1, we find that 

1 0 

-1 0 

0 -1 
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xl 1 ol 
Step 2: For X € R2 Vf(P1x)P1 = 'Vf -1 

_:J 
= (0, 2x2) • • 

0 

2 . 2 
Therefore, Vf(P

1
e )P1 = (0,2) -,;. 0, where e € E2 • Furthermore, 

since i = 2 < p we are in case (i) again and so we find that 

Step 3: The finite point set 

1 

Vf(P
2
0)P

2 = Vf(P 21) P 2 = (1,1, 0) -1 

0 

(iii) and 

o; = RCP 2) 

= (~:) e R3 

{o} u E 
p-i+1 

is {0,1} and 

= o. Therefore, we are in 

d E: + J 

Example 2.2. Now consider the faithfully convex function 

g(x) = -x
1 

- x
2 

+ x~ and suppose that we wish to find Dg n Of = 

case 

D ·n R 
g ' where f is the function in the previous example. 
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Initialization: _: l and i = 1. 

oj 

Step 1: Since p = 1 and Vg(x) = (-1,-1,2x
3
) we see that 

{O} u E
1 

= {0,1} and that Vg(P
0

0)P
0 

= Vg(P
0
l)P

0 
= o. Therefore, 

we are in case (iii) and 

d E R . 

) 

A computer program for the above algorithm appears in the 

appendix. 

3. Calculating the Sets 

In [ 3], an algorithm for calculating p= is given, for the 

program (P). We now present a modified version of this algorithm, 

in the case that the constraints ~, k € P-, are faithfully convex. 

In actual fact, the algorithm finds 

P- and D- n R(A
0
), 

p= 
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in at most t = min{cardP(x), n + 1 - dim[S n (K + R(A
0
))]} steps, 

where 

=p k = {k € P : f (x) = 0 for all x E S n (x + R(A
0
))} 

and A
0 

is any specified nxn
0 

matrix. (Recall that Dk is 

independent of x, when the function ~ is faithfully convex.) 

is specified to be the identity, then p= 

= 

= and D 
p= 

are 

found. (The generalization, to find p- and D , 
p-

will be needed 

in the seque 1 . ) 

The algorithm is a (finite) iterative method. We start with 

p= = ~ and find the sets p= = P~ u J. at each iteration. :(The 
0 i+l ]. ]. 

sets J. are defined below.) The algorithm terminates when 
]. 

= ......... 
P. = P is reached. The difference between this algorithm and the 

1 

one in [ 3], is that, at each iteration, we discard the constraints 

k € J.' 
]. 

and, by a substitution technique, we then consider the 

remaining constraints as being restricted to the subspace o;.. In 
]. 

addition, when finding the set J., 
]. 

we first check if $ = 0 is 

in the subdifferential of any of the (remaining) binding constraints. 

(Recall that, if 0 E af(x) and f is convex, then f achieves 

a global minimum at x.) The algorithm is demonstrated in Example 

3.1 below. 
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Algorithm B: 

Initialization: Let X € s, PO = P(x), p~ = ~' p = A 
0 0 

and i = 0. 

i-th step (0 ~ i ~ t): Find k € P. such that 
1 

k-
0 € af (x) P .• 

. 1 

Case (i): If such a k exists, use Algorithm A to find the 

n. x n. 
1 

matrix A. 
1 

satisfying 
1 1+ 1+ 

(3.1) R(A. 
1
) = 1+ 

where 

(3.2) J. = {k € P. 
1 1 

Then set 

P. 1 = 1+ 

(3. 3) pi+l = 

p~ 1 = 
\. 1+ 

and proceed to step i + 1. 

n 
kE:J. 

1 

k-
0 € ()f (x) P.}. 

1 

P./J. 1 1 

p.A. 1 1 1+ 

p: u J. 
1 1 

Case (ii) : If such a k does not exist but the system 
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I START I 
1 

x € S, P 
0 

= P(x) , P~ = ~, P 
0 

= A
0

, i = 0 

step i (0 ~ i ~ t) : 
------'~ k-, Is 0 € 3f (x)P., for some k € P.? 

1 1 

yes 

Is the system 
k 

r L: J.k4> P. =0 
kESP. 1 

1 

(3.2) J. = {kEP.: oe alcx)P.} 
l. 1 1 

(3.4) < 

l L: >. = 1, >.k ~ 0, 4>k € at (x) 
kESP. k 

1 
'' yes ~ J. = {k e P. : >.k ~ 0 in (3.4)} K-~~-~ 

1 l. 

n xn 
A ER i i+1 
i+1 

Find such that 

l ,.. 
p. 1 = p. \J. 

1+ l. 1 

( 3. 3) ~ P. 
1 

= P . A. 
1 l.+ 1 1+ 

~---11. - 11= i + 1 

Flowchart to find p- and D=- n R(A
0
) 

p-

consistent ? 

no 

"'" 

(3.5){- p = p~ 
D== n R(A0) = R(P.) 

p 1 

I STOP I 
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(3.4) 

k 
L: ~\<P P. = 0 

kEP. ~ 
~ 

L: A. = 
ke:P. k 

1 

k k-
~ 0) <P € af (x) 

is consistent, then find A. 
1

, P. 1, ·p. 1, 
].+ ~+ ].+ 

and 

(3.1) and (3.3), where 

J. = {k € P. A.k f 0 in (3.4)}. 
]. ]. 

Now proceed to step i + 1. 

p= 
i+l 

148 

satisfying 

Case (iii): If such a k does not exist, but the system 

(3.4) is inconsistent, then STOP. 

Conclusion: 

( 

r= = p~ 

{ 
J. 

(3.5) 
o= n R(A ) = R(P.) 
p- 0 J. 

Before proving the convergence of the algorithm, let us 

first prove the following rather technical lemma. 

Lemma 3.1. Denote 

k 11 k-
f.(y) = f (x + P.Y) 

1 J. 

Then 

(3.6) 

n. 
and S. ~· {x E R 1 

]. 

Icy) = 
]. 

~ 1(A.Y). 
1- ]. 

0 for all k E P.}. 
]. 
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(3. 7) 

(3.8) 

(3.9) 

(3.10) 

D~k. = o=k for all k E P-. 
L f 0 P. 
~ ~ 

Proof. Since 

R(P.). 
~ 

S. C R(A. 
1
). 

~ ].+ 

k k-
f.(y) = f (x + P.Y) 

]. ]. 
= ~(~ + P. 1A.Y) = 

].- ~ 

relation (3.6) is proved. 

149 

~· 
. l(A.y), 
~- ]. 

Now, when ~ is faithfully convex, there exists a strictly 

convex function g, a matrix B, vectors a and b and a constant 

c such that fk(x) = g(Ax + b) t 
+ a x + c, . h - N(At)' w1t D! = a 

Remark II.3.1). Therefore 

with 

k 
f. (y) = 

]. 

k-f (x + P.y) 
]. 

= g(A(x + P.y) + b) + at(x + P.y) + c 
~ ~ 

- t t-
= g(AP.y + Ax + b) + a P.y + a x + c 

~ ~ 

(see 
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which equals the cone of directions of constancy of 

t g(AP.y +b) + a P.y + c. 
1 1 

This proves (3.7). 

Let us prove (3.8) by finite induction on i. The result 

holds for i = 0, since P~ = ~ and P0 = A0 . So, let us assume 

that i ~ 1 and that 

(3 .11) o= n R(A
0

) = R(P. 
1
). 

p= 1-

i-1 

(Note that we will consider D~ as a subset of Rn and as a subset 
n. 

of R 1 depending on the context, i.e. depending on whether we are 

considering the function fk or k 
f .. ) 

1 
First, suppose that 

de:R(P.), i.e. 
]. 

n. 
d =A A ••• A.y, for some ye: R 1

• 
0 1 1 

This implies that d e: R(Pi-l) = o= _ n R(A
0
), 

r. 1 

by (3.11). 

1-

Now, 

to show that d ~ o= n R(A
0
), it is sufficient to show that 

p~ 

d e: o= 
P~\P~ 

1 1 J.-

Then 

1 

= o= ' 
J. 1 1-

by (3.3). So, let k E J. 
l.-1 

k -
=f. l(aA.y), by (3.6) 

l.- ]. 

and a e: R. 
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k = fi-1(0), 

by (3.1) and (3.7) 

k 
= f (x) , by c 3. 6) . 

This implies that d € n; . 
i-1 

Thus we have shown that R(P.) CD-
1 p~ 

1 

Conversely suppose that 

n. 1 
y € R 1-

to show that 

d € D- n R(A ). 
p~ 0 

1 

To show that D- n R(A) c R(P.), 
p~ 0 1 

1 

n. 
Y = A.z, for some z E R 1 

1 

k € p=\p= = J Suppose that i i-l i-l and a € R. 

~-l (O) = lex), by (3.6) 

it is now sufficient 

Then 

k- -= f (x +ad), since d € D = 
p~ 

and k € P~ 
1 

1 

k_ c-= f (x + A0 ... Ai_1 ay)) 

= f~_ 1 CaY), by (3.6). 

This implies that yEn= = R(A.), by (3.1). Thus, y = A.Z 
J. 1 1 1 1-
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n. 
for some z € R ~. This completes the proof of (3.8). 

To prove (3.9), we consider two separate cases. 

Case (a): Suppose that 

al<co) = afk(i)P .• ) By 

k 0 e af.(O), for some k e P •• (Note 
~ ~ 

~ 1 

k (3.2), oeaf.(O) forall ke:J .• 
1 ~ 

that 

Therefore, y = 0 is a global minimum for the convex functions 

;<, k e J .• Now, suppose that yes., i.e. 
1 ~ 1 

IcY) ~ o for all 
1 

k e P.. Then l.cY) = o for all k e J., since y = 0 is a 
1 ~ 1 

global minimum for these functions and Ieo) = 0. Since S. is 
1 1 

convex and 0 € s., we conclude that a.y € s. for all 0 ~ a. ~ 1. 
~ 1 

This further implies that k and f. (a.Y) = o, for all k € J. 
1 1 

0 ~ a. ~ 1, i.e. y € D~. = R(A ) . This proves (3.9)' in case (a). 
1 i+l 

Case (b): Suppose that 
k 

ol.af.(O) 
1 

for all k € P .• 
1 

Also, 

assume that the system (3.4) is consistent, i.e. there exist Ak > 0 

such that 

(3 .12) 1: A <l>k = 
k€J. k 

1 

k k 
0, cp € ()f. (0) • 

~ 

(Note that if no such Ak's exist, then the algorithm stops and 

(3.9) does not require proof.) As in case (a), we need only show that 

Suppose not. 
k 

f. (y) ~ 0, 
1 

if y e S. and k e J. , then I (Y) = 0. 
1 1 1 

Then there exists ye S. and k € J. such that 
~ 0 1 

for all k e P., and f~o(y) < 0. This implies that 
~ ~ 
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k 
<P •y s 0, for all k E J., 

1 

153 

d ko an <P •y < 0, 

for all <f>k € af~(O), k E Ji and <f>ko€ af~0 (0). By Motzkin's 

theorem of the alternative [52], this contradicts (3.12). Therefore, 

(3.9) is proved. 

Let us now prove (3.10), by finite induction on i. The 

result holds for i = 0, since P
0 

= A
0

• So, let us assume that 

i ~ 0 and 

Let Then the above implies that X =x+P -. ly 1-

n. 1 1-for some y E R Thus 

Therefore, 

k k 
f. 1 CY) = f (x), by (3.6) 

J.-

y € s. 1' 
J.-

s 0, since x E S. 

Now, by (3.9), y = A.z for some 
1 

Substituting for y in the expression for x, implies that x = 

(Note that the sets x + R(P.) 
1 

are decreasing linear manifolds containing the set S n (x + R(A
0
)). 

The algorithm essentially stops when x + R(P.) is the smallest 
l. 

such linear manifold.) 
D 

We are now ready to prove the convergence of the algorithm. 

Recall that 
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k 
f (x) = o for all x E: s n (x + R(A0))}. 

Theorem 3.1. Suppose that x € s, A
0 

is an arbitrary 

nxn matrix and the constraints ~~ k e: p- are faithfully convex. 
0 

Then the above algorithm finds 

p= and o:_ n R(A
0

) 
p-

in at most t = min{cardP(x), n0 + 1- dim(s n (x + R(A0JJ)l steps. 

Proof. We need to prove that (3.5) holds when case (iii) 

occurs. So, suppose that 0; af~(O), for all kePi' and the 

system (3.4) is inconsistent. This implies that the system 

k k k 
E y = O, y e cone a£ (i)P., 

keP. 1 

1 

is inconsistent. We now conclude, by the Dubovitski-Milyutin 

theorem of the alternative [52] and by Lemma II.7.1, that 

. { n1. k k k-
n y e: R : 4> P. •y < O, for all 4> e: af (x) } f:. ~. 

1 ke:P. 
1 

n. 
This yields y e R 1 such that 

(3.13) 
k A 

4> P. •Y < 0, 
1 

for all k e P. 
1 

k k-
and 4> € af (x). 
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Let 

(3.14) 

Then, (3 .13) and 

(3.15) { 
t 

A 

x(a.) = X+ P.a.y. 
1 

(3.14) imply that 

lcxCa.)) < 0, for all 

k 
f (x(a.)) < 0, for all 
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k € P\P(x), 

k € P.' 
1 

for all 0 s .a. s a., for some a. > 0. Furthermore, if 0 s a. s a., 

then 

(3.16) 
k k-

Pia.y), by (3.14) f (x(a.)) = f (x + 

k- for all k € P:, by (3.8) = f (x), 
1 

= 0, for all k € p:, since P: c P(x). 
1 1 

Therefore, (3.15) and (3.16) imply that x(a.) E 5 n (x + R(A0)) 

and, moreover, 

Pc (P(x)\P.) = P:. 
1 1 

Since R(P.) 
1 

by (3.8), to prove (3.5) we have only 

left to show that 

(3.17) P~ cP-. 

Let us prove this by finite induction on i. Now, (3.17) holds for 

i = 0, since P~ = ~. Therefore, let us assume that i ~ 1 and 
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P~ 
1 

cP-. Since P~ = P~ 
1 

u J. 
1

, by iteration, it is sufficient 
1- 1 1- 1-

to show that J. 1 cP-. Suppose not. Then, there exists x € S n 
1-

( 3 .18) 

and k e J. 1 such that 
0 1-

~(x) s 0 for all k E P and ~0 (x) < 0. 

n. 
But x = i + A0 .•• Aiy for some ye R 

1
, by (3.10), and 

_ko ko -r- (x) = f (x + A0 •.. Aiy) 

= f~ 0 1 (A.y), by (3.6) 
1- 1 

= o, since oJ= = R(A.), by (3.1) and (3.7). 
. 1 1 1-

This contradicts (3.18). 

Example 3.1. Suppose S c R5 is defined by the constraints 

1 xl 2 - 1 :s; 0 f (x) = e + .x2 

f 2(x) 2 x2 
-x 

= xl + + e 3 - 1 s 0 
2 

3 2 2 f (x) = xl + x4 + xs 1 s: 0 

f
4

(x) 
-x 

= e 2 1 s: 0 

f
5

(x) = (x - 1) 2 
1 

+ 2 
x2 1 s: 0 

f
6

(x) = xl 
-x 

+ e 4 1 s: 0 

7 -xs 
- 1 s: o. f (x) = x2 + e 

0 
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Let us find p= = 
and D 

p= 

157 

Initialization: Let x = (0,0,1,!1:2,!1:2) be the chosen 

feasible point. Then P0 = A0 = I5x5' P0 = P(x)= {1,3,4,5} and 

P~ = ~- The corresponding gradients are 

Vf
1

(x) = (1,0,0,0,0) 

Vf3
(i) = (l,0,0,/2,12) 

Vf4(x) = (0,-1,0,0,0) 

Vf
5
(i) = c-z,o,o,o,o) 

Step 0: Since vlcx)Ao = vlcx) f: 0 for all k E PO, we 

solve the system given by (3.4), i.e. 

+ A 
4 

A + A + A + A = 1 
1 3 4 5 

A solution is 

+ A 
5 

J 0 = {1,5}, P1 = {3,4}, p~ = {1,5}, 

0 0 0 
0 0 0 

Al = 1 0 0 with R(A
1
) = n D and 

0 1 0 ke:Jo fkO 
0 0 1 

PO 

0 
0 
0 
0 
0 

Therefore, 

pl = p A 
0 1 

= A . 
1 
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Step 2: Since P
2 

= {3} and vf3(X)P 2 # 0 case (iii) 

occurs. STOP. 

Conclusion: 

p= = p; = {1,4,5} 

and 

= D = R(P
2

) 
p= 

Remark 3.1. Using the substitution technique and checking 

whether k-
= 0, Vf (x)P. 

1 
reduces the number of computations required 

p= = to find and D 
p= 
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4. The Method of Reduction 

We now collect the machinery presented in the previous two 

sections and formulate the method of reduction. This algorithm 

first finds a feasible point and then solves the general convex 

program (P) with faithfully convex constraints. No constraint 

qualification need be assumed. Let us denote by 

S(P), 

a method that solves program (P) under the assumption that Slater's 

condition is satisfied (e.g. Zoutendijk's feasible directions method 

[53], Robinson's method [52] or Powell's method [52]). The method of 

reduction finds the regularized program (P ) 
·r of Theorem IV.4.2, in 

the process of finding a feasible point. It then solves (P ), 
r 

using S(P ). Furthermore, if Slater's condition was not satisfied 
r 

for the original program (P), the regularized program (P ) 
r 

will 

always have fewer constraints and fewer variables than (P). 

Algorithm C: 

P, 
A 

Initialization: Let PO = I nxn' To = Ro = 0, Ro = ~. 
and -1 n 

no = n X € R 

i-th steE (1 s i s cardP): Set 

A 

(4 .1) R. = R. 1 u {k E T. l 
1 1- 1-
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I START I 
l 

Let 1 n 
X E R , 

p ,. I , 
0 nxn 

To = P, 

R .. 
0 R = ~ 0 

and i • 1. 

! 
step i: 

;c -i J Ri = R. l U {k € T. I : (x ) sO} 
l- l- " ;c -i T. = T. 1\ {k e T. l : (x ) s 0} . 

l l- l-

l 
Find R~ and such that R(A.) 

.. 
A. ,. D . 

l l l ~ 
l !1-

! 
R. = R. \R~ - -i 

X • X 
l 1 l. , 

P. • P. 1A. p = pi 
l. l.- 1 

t ! Solve the regularized program I Is T. = f' ? I ' 
1 yesr (R), using S(R) and the 

lno 
initial feasible point y .. o. 

* If y solves (R)' then 
j .. 0 

* =X+ Py * z1 " 0 X 

Q solves (P). 
J, 1 ;c- i 

~ 
Is {x+P.z.) s 0 I STOP I 1 J -'-
for some kt! T. ? yes 

1 

.L,.no 
'" i i I z~+l A i I z • :1:. 

= S(R.)z. J 
1 J J, 

J, 
?+1 -i i 

1 " " X + P.z 
Does z. solve the program (Ri) '! 1 

J 

~ Jno ,!yes 
i .. i + 1 I _, 'j=j+ll Is .. ., I 

, 
" 

1 
I STOP I 

Flowchart for the Method of Reduction 
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and 

(4 .2) T. = T. 
1
/R .. 

]. 1- l 

Now consider the program 

(R.) 
]. 

z: tee? + p i-ly) + min 
keT. 

]. 

s.t. n. 
f k(,x. ) 0 k R R J.-l + P. ly ~ • E .• yE 

]. - ]. 

161 

Using the feasible point 0 and Theorem IV.4.2, regularize this 

program, i.e. find R~ (Note that R~ is the equality set for 
1 ]. 

(R.}.) and the n. 
1 

x n. 
]. 1- 1 

algorithm B). Now set 

(4. 3) 

and 

(4 .4) 

matrix A. satisfying 
]. 

R. = R. \R~ 
J. ]. l 

P = P. A. 
i J.-1 J. 

to get the 'reduced' program 

Z: fk (? + P. y) + min 
kET. 1 

A l 
(R.) 

J. 

= R(A.) (Use 
]. 

(Note that Slater's condition is satisfied and 0 is a feasible 

point, by Theorem IV.4.2.) 
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Case (i) : Suppose that T. 
1 

and solve the 'reduced' program, 

0 -f (x + Py) -+ min 
(R) s.t. 

k-
f (x + Py) ~ 0, k € 

= IX 'P• 

R. 
1 

Set 

and 

-i 
X = X 

n. 
y € R 1 

using the initial feasible point y = 0 and S(R). 

* 

and P = P. 
1 

* Conclusion: If y is a solution of R, then X = X + 

is a solution of the original 

Case (ii): 

i 
z. 1 J+ 

Suppose that 

A i 
= S(R.)z., 

1 J 

program (P). 

T. 
1 

-f ~. Then, set i 
zo = 

j = 0, 1, ... 

i 
i.e. z. 

1 J+ 
is the point obtained after one iteration of 

applied to the point 
i 

z .• 
) 

0 and 

A 

S(R.), 
1 

A 

Py * 

Case (ii) (a): Suppose that after j iterations of S(Ri)• we 

find k € T. such that fk(xi + P.z~) ~ 0. Then set 
1 1 J 

(4.5) { zi = z~ 
Xi+l =Xi+ P.zi 

1 

and proceed to step i + 1. 

Case (ii) (b): Suppose that after j iterations of 

we have not found k € T. such that ~(Xi + P.z~) ~ 0 but 
1 1 J 

A. 

solves the program (R.) • 
. 1 

A 

S(R.), 
1 
i 

z. 
J 
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Conclusion: S = ~. 

Before proving convergence, we prove the following lemma. 

(4 .6) 

(4. 7) 

( 4 .8) 

(4 .9) 

Lemma 4 .1. 

i 
n 

j=l 

= 
D 
R~ 

J 

= R(P.) .· 
1 

for every k E P\T .. 
1 

Proof. Let us prove (4.6) by finite induction on i. The 

result holds for i = 1, by (4.4). So, let us assume that i ~ 2 

and that 

(4.10) 
i-1 
n 

j=l 

= (Recall that we consider D 
R-: 

n 
as a subset of R and as a subset 

J n. 1 J­of R . , depending on the context.) 

i.e. 
n. 

d = P y for some yE R 1
• 

i 

But, if k E R~ 
1 

and a. E R, then 

Suppose that dE R(P.), 
1 

i-1 
n 

j=l 
n= 
R~ 

J 
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le? +ad) = le?+ P. 
1

(<lA.Y)) 
1- 1 

Therefore, = d € D 
R~ 

1 

= le?), since 

This shows that 

i 
R(P.) c n D = 

1 R=. j=l 
J 

= Conversely, suppose that d E: 

i 
n D 

R~ 
J 

j=l 

= 

= R(A.). D = 
R~ 1 

1 

By (4 .10), d = p y . 1 1-

164 

for 

n. 1 1-some y E: R To show 
i 
n D _ C R(P.) it is now sufficient to show 

j=l R: 1 
J 

n. 
that y = A. z for some z € R 1 Suppose that k E: R~ and a. E: R. Then 

1 1 

= This implies that y E: D 
R~ 

1 

n. 

Now, since 

= d € D 
R~ 

1 

= ReA.), 
]. 

Y = A.z for some z E: R 1
• Th" e4 6) 1s proves • . 

1 

we see that 

Let us also prove (4.7) by finite induction on i. The result 

holds for i = 1 by the initialization and the definition of T
1

. 

So, let us assume that i ~ 2 and 

(4 .11) for every k E: P\T. 
1

. 
1-
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Suppose that k € R. . Then 
J. 

~ 0, by (4.1) and the fact that 

"' feasible point of the problem R1_1. 

i..-1 
On the other hand, suppose that k €. U R:;::j - (J'\T

1
)\Ri. Then 

j=l 

This proves (4.7). 

fk(~x·-1 i-1 
+ P. lz ) 

J.-

= fk(;±-1), by (4.6) 

~ 0, by (4.11). 

As above, let us prove (4.8) by finite induction on i. The 

result holds for i = 1, since p = I 
0 nxn 

So, let us assume that 

i ~ 2 and 

(4.12) C -i-1 ) s X + R(P. 2 . 
l.-

n 

Suppose that x € S. Then, ~-1 R i-2 x = x + P. y for some y E , 
J.-2 

by ( 4 .12) • So, 

k _k -i-1 
f (x) = r-(x + P

1
_2Y) 

~ 0, for every k E P, since x E S. 

Therefore, y is a feasible point for the program (R. 1) • 
J.-

Since 
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i-1 
Ai_1z is a feasible point for (Ri-l) and D- = R(A. 

1
), 

R= ~-

i 

i-1 we get that y = A. 
1

z + A. 1z for some 
n. 1 z E R ~- Substituting 

1- ~-

for y gives 

"'""i-1 i-1 x = x + P. 2(A. 1z + A. 1z) 
~- 1- ~-

=? + P. lz, 
~-

i.e. 
-i x e: x + R(P. 1). This proves (4.8). 

~-

Suppose that (4.9) fails to hold. Then, there exists 

= A Rn such that ko € p This implies that there exists an X € such 

that fkCxJ s; 0' for k € P, and fko(£) < 0. But, by (4.8), we 

see that A --i-1 for 
ni-l Therefore, X= X + P. ly some y € R • 

~-
k -i.-1 f (x + P. ly) s; o, for k € P, but 

k . 1 f o(;'-- + p. ly) < o. This 
~- 1-

contradicts the assumption that k E R~. 0 
0 1 

Let us now prove convergence of the algorithm. 

Theorem 4.1. Assume that (P) and 
k 

f , k e: P, are such that 

S(P) is a convergent method when Slater's condition is satisfied. 

Furthermore, suppose that the constraints fk, k E P-, are faith-

fully convex. Then, the method of reduction first finds a feasible 

point x and then solves program (P) by solving the 'reduced' 

program (R) . * * - * (If Y solves (R), then x = x + Py solves (P).) 
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Proof. From (4.7), we get that y = 0 is a feasible point 

for (R.). Therefore, from Theorem IV.4.2, we get that Slater's 
1 

condition is satisfied and y = 0 is a feasible point for the 
A 

regularized program (R.). 
1 

Now, let us treat each of the cases 

separately. 

Case (i): From (4.6), (4.7), (4.9) and the fact that Slater's 

condition is satisfied for (R), we see that program (R) is 

actually the program obtained in Theorem IV.4.2, after regularizing 

our original program (P). We can thus solve (R) using S(R). 

* -i * * That x = x + P.y solves (P), if y solves (R), follows 
1 

from Theorem IV.4.2. 

Case (ii) (a): In this case we just proceed to step i + 1. 

Case (ii) (b): Suppose that S ~ 0 and x e: S. Then, 
-i ni-l 

x = x + P. 1z for some z e: R , by (4.8). Moreover, 
1-

k . 
f (~ + P. 

1
z) ~ 0, k e: P. 

1-

for the program (R.) 
1 

and Therefore., z is a feasible point 

L: t<cxi + P. 
1 

z) ~ o. But then, 
ke:T. 1

-

n· 
z = A.Y for some y e: R 1 

1 

1 

Substituting for z, 

1: le? + P.y) ~ o. 
kET. 1 

1 

point for the program 

i of z .. 
J 

we get that 
k . 

f (~ + P.Y) ~ 0, k E P, 
1 

and 

Since this implies that y is a feasible 

A 

(R.), we have contradicted the optimality 
1 

D 
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Remark 4.1. We have assumed that S(P) solves programs of 

type (P), when Slater's condition is satisfied. However, it may 

happen that the objective function and the feasible set (for one of 

the regularized programs (R.)) may have a common direction of 
l. 

recession. Such programs are called degenerate, see e.g. Abrams 

[ 2]. The infimum for degenerate programs may not be achieved or 

may be achieved on an unbounded set. Abrams [ 2] has shown how to 

reduce such a program to a nondegenerate program in a finite number 

of steps. Another possible way of handling this situation is to 

find a K > 0, large enough, and add the constraint 

m+l 2 
f (x) = 11 xll - K :s; 0. 

* Such a K can be found, if a solution x exists, for our original 

* program (P), and if we can approximate llx 11. Adding the constraint 

~+1 -1 
:t and choosing x such that 11 x1

11 < K, will ensure that the 
A 

programs (R.) 
1 

and the final regularized program (R) are nondegen-

erate. 
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5. Applications 

The method of reduction is in particular applicable to convex 

programming problems for which Slater's condition is not satisfied. 

As mentioned in [14], one class of problems for whi~h Slater's 

condition is never satisfied is the class of multicriteria problems. 

This includes the lexicographic problem and the Pareto optimal 

problem. Following [15], let us first define the lexicographic 

problem as follows: Suppose that f
l m 

, .•. ' f is an ordered set 

of objectives. The corresponding leXicographic problem (PL) con­

sists in choosing decisions successively subject to x € Rn The set 

of all optimal solutions of (PL) can then be obtained by solving 

the following sequence of programming problems: 

Determine 

. { 1 a
1 

= min f (x) n 
X € R 1. 

Determine 

a
2 

= min{f2(x) 1 
f (x) - a

1 
s 0}. 

Solve 
(PL ) m min{fl(x) 

k 
f (x) - ak s 0, k = l, ... ,m- 1}. 

Note that Slater's condition is never satisfied for the programs 

(PL.). Infact, 
J 

{l, ... ,j 1} c PL~, j = 2, ..• ,m, 
J 
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where PL: is the equality set of 
J 

Now suppose that the functions 

(PL.) • 
J 

l 
' 

170 

k = 1, ... , m- 1, are 

faithfully convex. Then, if we use the method of reduction, solving 

(PL) reduces to solving m unconstrained problems. After finding 

j-1 
the matrix A such that R(A) = n = D. we see that, to solve 

~ i=l 

(PL.), we need only find 
J 

min fj(xj-l +Ay), 
y 

. 1 
where xJ- is a solution of (PL. 

1
). The lexicographic problem 

J-
is treated in greater detail by Ben-Tal and Zlobec [15]. They pro-

vide two different methods for finding solutions. 

Let us now define the Pareto optimum problem: 

Find x € Rn such that there is no other point x 

satisfying 

(PP) _k k ..;,_ 
f (x) ~ f (x), k € P, 

with at least one strict inequality. 

The point x is then called Pareto optimal or efficient, see e.g. [9]. 

Note that any lexicographic solution of l, k € P, in any order, is 

a Pareto optimal solution. In fact, one can say even more. 
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Theorem 5.1. Suppose that n
1

, n2, .•. , 

partition of the index set P and 

171 

n is any disjoint r 

k IS. i 
g ( •) = I: f ( •) , for k = 1, •.• , r. 

ie:~ 

* If x is the lexicographic solution with the ordered set of objec-

* tives 
1 r 

g , ... , g' then x is a Pareto optimal solution of (PP). 

* Proof. Suppose not. Then there exists x ~ x , k
0 

and ~ 

k k * k k * 
such that ko € n~, f 0 (X) < f 0 (X ) and f (x) ~ f (x ) for all 

k k * g~(x) < k e: P. But then g (x) ~ g (x) for k =l, •.• ,r and 

~ * * g (x ), which contradicts the fact that x solves the lexicogra-

* phic problem. Thus x is a Pareto optimal point. 0 

Using this theorem, we can find efficient points by solving a 

finite number of unconstrained optimization problems. However, not 

all the efficient points of (PP) can be found in this way. Charnes 

and Cooper [18] have given the following characterization of effi-

ciency. 

Theorem 5.2. x is a Pareto optimum for (PP) if and only if 

x solves the program 

(P-) 
X 

s.t. 

I: I (x) -+- min 
ke:P 

k k-
f (x) - f (x) ~ 0, k e: P. 
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This result leads to the following characterization of effi-

ciency in terms of the equality set of (P x) . 

where 

Theorem 5.3. x is a Pareto optimum for (PP) if and only if 

p = P-x' 

P.- is the equality set of 
X 

(P-). 
X 

Proof. The proof is immediate from the definition of Pareto 

optimum. 0 

The above characterization suggests the following algorithm, 

when the functions ~. k € P, are faithfully convex. 

Algorithm D: 

Initialization: Let P = I and x = y = 0. 
nxn 

i-th step (1 ~ i ~ cardP): Use the feasible point x and 

S(Px) to perform one iteration for (Px). Redefine x to be the 

new point obtained, i.e. x ~ S(P x) (i). Continue until Px 'f t'. 

Now, using Theorem 2.1, find the matrix A such that R(A) = D-_ 
p.-

and let x 

k k-
p = P\P.- f ( •) = f (x + A •) 

x' 

Y = y + Px, P = PA and x = 0. 



v.s 

START I 
l 

p = I 
nxn 

X = y = 0 

i = 1, n
1 

= n 

i-th step: 
~--------------~'~ • Is P = t' ? 

J.,no 

,. 
yes 

Is p- = f' ? 
X ~ 

ye~ ... .-------, 
,..1 x = S(Px)x I 

j,no 

Find the n. x n. 
1 

matrix A 
1 1+ 

such that R (A) = np;. 
X 

P = P\P.-
x 

k k-'-
f ( •) = f (x + A •) 

- - -
y = y + Px 

J, 
p = PA 

-
X = 0 

i=i+1 

Conclusion: 

y is a 

Pareto optimum. 

l 
I STOP I 

Flowchart to find a Pareto optimum 

173 
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Case (i): If P F ~. proceed to step i + 1. 

Case (ii): If P = ~, STOP. 

Conclusion: y is a Pareto optimum. 

Let us now consider the semi-infinite prosramming problem, 

g
0

(X) + min 
(PS) s.t. 

k k n 
g (x,t) s 0, t € T, k € P = {l, ... ,m}, x ER, 

0 k 
where g is convex, g (x; t) 

k 
is convex in x for each t € T 

and continuous in t for each x 
k 

and T is compact in 
~ 

R . 

Ben-Tal, Kerzner and Zlobec [13] have presented a characterization 

of optimality for (PS) which does not require a constraint qua1i-

fication. Another way of treating program (PS) is by considering 

the convex functions 

k ll k 
f (x) sup g (x, t) , k € P. 

tET 
k 

This reduces (PS) to the form (P). We can now apply the results 

in the previous chapters. A third way of treating (PS) is by 

discretization, i.e. let 
k 

i = 1, 2, be T.' ... 
1 

Tk such that 
. k 

hmTi is dense in Tk for each 

the sequence of programs (of type (P)) 

(P.) 
1 

s. t. 

0 

g (x) + min 

k k 
g (x,t) s 0, t € T., k E P. 

1 

finite subsets of 

k E P. Now solve 
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* Let X. denote the set of optimal solutions (P .) and let 
1 1 

* * X. E X .• 
1 1 

Then every cluster point of the sequence * {x.} 
1 

is an 

optimal point of (PS). Conversely, every optimal point of (PS) 

* * * is the limit of a subsequence of {x.} 
1 

for some x. E X .• 
1 1 

Let us 

outline the proof: First, using the fact that a compact set-valued 

map is upper semi-continuous (u.g.c.) if and only if it's graph 

is closed (see e.g. Debreu [22]) we can show that the maps 

k k n k n T ~ {x E R g (x,t) ~ O} are u.s.c. for each k E P. 

This then implies that 

and therefore Si + S where 

k 
n n (t), 

tETk 
k E P, 

s. 
1 

is the feasible set of (P.) 
1 

and 

S is the feasible set of (PS). The result now follows from Fiacco 

[26, Theorem 2.1]. 

6. Examples 

To illustrate the method of reduction we consider the following 

three examples, which were solved using the computer program given in 

the appendix. 
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0 
Example 6.1. Consider the program 

0 

f (x) = XI + x2 + x3 + min 
(P) s.t. 

fi(x) 2 2 - 2 :;;; 0 = XI + x2 

2 2 2 
f (x) = Cx

1
-2) + (x

2
-2) - 2 :;;; 0 

f
3

(x) = -x3 
e - 1 s o. 

For the initial estimate, let us choose 

0 t 
X = (0,0,0) • 

Since 

I 0 3 0 2 0 

f (x ) < 0, f (x ) = 0 while f (x ) > 0, 

the algorithm begins by considering the program 

2 
f (x) + min 

(P 1) s.t. 1 
f (x) :;;; 0 

f 3(x) :;;; o. 

0 

Slater's condition is satisfied and x is a feasible starting point 

for (P
1
). Applying Zoutendijk's method, yields the solution 

- t 
X = (1,1,5.65) . 

2-
Since f (x) = 0, we can eliminate the last constraint from the 

objective function. We now consider the original program (P) with 

the feasible point x. The algorithm now finds that 
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p= = {1 ,2} and = 
0 

p= 

177 

= R(P) = R m 
After substituting P, we get the equivalent reduced program with 

one variable y and one constraint: 

0-

f (x + Py) = x + y -+ min 
s.t. 

3- - (5 .65+y) 
f (x + Py) = e - 1 :::;; 0 

y € R. 

Zoutendijk's method yields the solution 

* y = -5.65 

and thus 

* * t 
X = X + Py = (1,1,0) 

is the solution of our original program (P). The above problem, 

when solved by the computer program in the appendix, gave the solution 

correct to 8 decimal places. 

Example 6.2. Consider the program 
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0 2 
f (x) = x1 - x2 + (x

3
-1) + (x

4 
-2) 

(P) s.t. 

f
1 

(x) 
x1 2 

= e + xz 

f 2
(x) 

2 2 -x3 
= x1 + x2 + e 

f
3

(x) 
2 

= xl + x4 

f4
(x) 

-xz 
= e 

f
5 

(x) 
2 2 

= (x
1
-1) + x2 

f
6

(x) = xl + e 
-X4 

7 
f (x) = x2 

Starting with the initial (not feasible) point 

0 t 
X = (2,2,2,2,2) , 

the algorithm finds the feasible point 

and 

t 
X = (0,0,1.95, ,8095, ,5871) , 

p= = { } D- = R(P) = R 1,4,5 ; 
p= 

0 0 0 

0 0 0 

1 0 0 

0 1 0 

0 0 1 

178 

2 
(x -2) 2 

+ min + 
5 

- 1 :s; 

1 :s; 

2 
+ x5 - 1 :s; 

- 1 :s; 

1 :s; 

1 :s; 

-x5 
+ e - 1 :s; 

Using Zoutendijk's method, applied to the reduced program 

0 

0 

0 

0 

0 

0 

0 • 
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c 
f

0
(X· + Py) = (.95 + y

1
) 2 + (y2 - 1.1905)

2 
+ (y

3 
- 1.4129)

2 
+ min 

s.t. 2- 1 95 
f (x + Py) = e- • +y1 - 1 ::;; 0 

2 
(.8095 + Yz) 

3-
f (x + Py) = 

2 
+ ( .5871 + y3) - 1 ::;; 0 

-(. 8095+yi) 
- 1 ::;; 0 e 

6-
f (x + Py) 

e _,587l+yiJ 
- 1 ::;; 0 

7-
f (x + Py) 

we get that 

* t * x = (0,0,1,.707,.707) ; and f (x) = 3.343146 

is the solution of program (P). The computer program found the 

solution correct to 7 decimal places. (The above problem was also 

solved in [14] using the feasible direction methods MELP1 and 

MELP2 .) 

Example 6.3. Our last example is the program 

f
0 

(x) = 10v'2x
1 

+ (12 - 212) x2 + 10x
3 

- 2x4 - (12 + 212) x5 
2 2 2 2 2 + 2x + 2x + 3x + 3 + 2x + 2/.2x x - 2/:Zx x 
1 2 3 x4 5 1 3 1 4 

- 4x x + 2x x 
. 2 5 3 4 

+ min 

(P) s.t. 

f
1

(x) 2e'(,/2xl-x3+x4) 2 + 2 + 2x2x
5 

- 2 ::;; 0 = + xz xs 

f
2

(x) 2 2 + 2 2 2 2 2,/2x x + 2/2x x = 2x
2 

+ x3 + x4 + 2x -xl 5 1 3 1 4 
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f 3(x) 212x
1 

- 2x3 ~ 2x4 + 
2 2 2 2 2 

= 2x + x + 2x + 2x4 + x5 1 2 3 

+ 2/2x x - 2/Tx x + 2x x + 2x x - 2x
2
x

5 1 3 1 4 2 3 2 4 

- 2x3x
5 

- 2x4x5 - 4 

f
4 

(x) = 
x -! ( /2x2+/2x5) 

- 1 ::;; 0 

f
5

(x) - 412x1 
+ 4x - 4x 

2 2 2 2 2 + 2x + 2x + x3 + x + 2x5 = 3 4 1 2 4 

- 21:2x x + 2/:2x x 
1 3 1 4 

+ 4x x 
2 5 

- 2x x 
3 4 

icx) = /2x
1 

- X 
3 

+ X + 2e~ (12xl +x3 ... X4) 2 ::;; 0 4 

7 
f (x) = X + X + 

2 5 
- /2::;; 0. 

Using the initial (not feasible) starting point 

x o = Co , o ~ 2 , 1 , 1 J t, 

the computer program in the appendix finds the feasible point 

and 

- . t 
X= (-~0547,-1.4604~1.1583,1.2357,1.4605) 1 

p= = {1,4,5}; D- = R(P) = R 
p= 

.707 -.707 0 

0 

1 

0 

0 

0 

0 

1 

0 

-1 

0 

0 

1 

It then finds the solution 

* . t 0 * 
x = C-.s ..... 855,-.206,.50l,.845) ; f (x) = -22.627. 

::;; 0 

::;; 0 
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The output for this program is given in the appendix. 

Remark 6.1. Example 6.3 was constructed from Example 6.2 by 

substituting the unitary matrix 

12 0 -1 1 0 

0 12 0 0 12 
T = ! 0 -1 1 1 1 ' 

-12 0 -1 1 0 

0 -1 -1 -1 1 

d h f · fk(x) i.e. we replace t e unct1ons in Example 6.2 by the functions 
0 

for all k € P. The objective function f (x) was replaced 
0 

by 4f (Tx) - 36. (Multiplying by 4 and subtracting 36 were done 

in order to eliminate fractions and constants.) Example 6.3 is there-

fore the equivalent problem obtained, from Example 6.2, after a rota-

tion of the axis. Since an exact solution of Example 6.2 is (_see[l4]) 

* 0 * 
x = (0,0,1,/2/2,1:2/2); f (x) = 9- 41:2, 

we see that an exact solution of Example 6.3 is 

t* - - ;;:; t 
T X = H-1,-1- -12/2,1- -12,1,1 + 12/2) • 

The exact value of the objective function is 

Furthermore, = 
D 

p= 

4(9 - 4-12) - 36. 

for Example 6.3 is TtP, where P is the matrix 

in Example 6.2. Example 6.3 was constructed to illustrate how the 
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computer program works when the cones of directions of constancy of 

the constraints are difficult to calculate by inspection. 

Remark 6.2. The above three examples illustrate that the com­

puter program in the appendix can be used to solve convex programs, 

with faithfully convex constraints~ independent of Slater's condition. 

We have not as yet compared this algorithm with any other existing 

techniques. Nor have we studied the stability of the algorithm, 

though we have had to account for round-off error in several instances. 

The author hopes to study these questions in the near future. 
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THF NU~mEP CF CDNSTPAINTS - PCNST~ 
INITIAL V~CT~P ~STIM~T~- X3AQ 

l'v•DLICYT PE.t.L;,c;J(.\•H,r-z) 
H! TE GC:: R (: ':t... S , PC'' S T;: 
C0M"10N D(lOolO),t;.( lvolO) ,GQD(1Q),GR~:JS(l0tlO),P0(!0) ,xe~'~R(10) 
("'r . .;~',1T·I F 0, S \ 1 '::::TH • F~IK ( 1 Q ) , RCDU C, EPS 1 ,t:os 2, F :JSA vE 
COM~ON ~DS3,::nsa,~~S5.~DS6tEDS7,EDS~t~PS9tEDS10 
C0~~~~ N,KP,PCNSTR,Jl(lQ),CQLS,ITERS 

f"PS1 
F: 0 52 
FPS3 
EPSA 
FDS5 
::osr:, 
EPS7 
f.:DS8 
EDS9 

- C r:•; IS T R <> H H S .!, T I SF I E. D 
g(NDING (tNTIZTG.) 
G;:: .. :.D I":t~T 11' su:;oq. CCNE 
G~AOI~~T IN su~~. P~qUAL 
Crr S IS1'Ct<C'Y nF- SYSTEM IN Pf:QUAL 
QtSI S f::L:C.I'.~:::::~·ITS It-J SIMPLex 
NGOM DF G~~DIENT CF OBJ. FUNCTION 
SCLUTlOi F,:lJ~m 

ENSUPE DJVOT>O IN SIMPLEX 

£PSl=EPS2~EPS3=EPS5=EPS7=EPS9=l•D-5 
EDS4= 1 .0-4 
F.PSB=l.0-5 
F.:DS6=\ .D-d 
IT =0 
RE ~D, N, PO'IS TR 
KP:tJ 
READ,(XBAP( 1).1=1 ,N) 
Pr.INT 1003 

lv03 FDR'·1AT( 1 l'•':""UTPUT FCR EXAMDLF- 6.3') 
PF INT 100A 

1004 F'I'"'PMAT{'-'•'lt-liTI~L ESTIMATE') 
DF' HIT 100"5o (XI?AR( 1) tl=loN) 

1005 F'lR\HtT( 1 I ,10Fl0e4) 
()I• 10!0 K:t,PCI\ISTP. 

1010 PQ(K):O 
I)'") 1020 1=1 tN 
f)'"' 1020 J=l oN 
t:( loJ)=O 
o ( I ' J) =•) 

10~0 rr <I .::n.J>E< r ... n=r:>e r .J >=1 
OJ 1 •J3•) K=l , C::r\JSTR 
CALL GRDF(¥,XOtP) 
o. lu.Jo I=l. ,J 

1.)'3·.) GPADS (I ,K) =GrD (I) ', 



0 

c 

S'·,1r:: TH= 1 
IT:'>~·.:; =0 
lF~A')::Q 
Ct.LL FNEV",L(X.-3A~.IFEA5) 
FOS\VC =FO+l 
c.~ L'- s f.! T!·if) 1 
CllLL D'C:QUtL 
C4L 1• S~·lHif) 
I r (re': :)1 JC. "-: o. 1 ) GU "~"0 · 1 o a.s 
I~(SV~THo?OeO)GO T~ 10~0 

IT=IT+l 
S'·":TH::O 
['"':' ! )/"7 K=l .~C~!STR 
I F- ( 0 0 ( I( ) • -:::: Q • () • A i'! D • r= ~~ K ( I( ) • G:::: • E D s 1 
I r= ( n ) ( !<. ) • ~ 0 • ) • ~ t 0 • F ~~ K ( I( ) • LT • F oS 1 
lF(IToLT,D(.NST~)GO TC 10~5 
oRp!;.•FF.!.SidLE s:::r rs t::'·l~"~TY' 
ST·"D 

lOf£.5 U'!!'T It•'UI:: 
IF ( S .t"' T H • ~. 11 • 1 ) GC T'.J 11) 51 
PF I "'T 1 04<'1. 

) SM::?:TH;:::l 
) D') ( K) = 1 

1044 F'i='14T( 1 -•,•FF:t.SI~LE PC[>lT FilUND 1 ) 

Oi:[NT 1Q.::.I),(X"1AO([),[=l.N) 
10"+6 F\J:~'~:lT{' 1 ol0Fl0e4) 

Ct..r_• .. nt.:QUtL 
P~INT 10.:;.8, N,KP 

184 

104":'1 Fi·R1AT( 1 -•,Il. 1 X'ollo 1 MAT><IX F~~R THE CONE :JF t:':~tST.\NCY') 
!")01C4Cil=loN 

104Q PRI"t7' l054,(0(J,J)oJ=ltKO) 
1 ,)54 Fe ~·,qr < • •, 10~"12 .4) 

G:J TrJ 1040 
1 )51 Ct-1_1_ o::::oUAL 

GO TO 1040 
1050 orp.JT 105~ 

1 )51 F~•cr-1~T('-', 1 Sf'IUJTION FCUNO') 
Pt;{;·l"~" 1052 dXJ·:,F-(J)tl=lt~!) 

1·)52f"" .. O\I~T( 1 '•'XIS '•l0Fl0o4} 
p::-c HIT. 'V.!LU':: ;F i'3JF.CTIIIE F!J'\JCTIOU IS 1 .FO 
Pi~I'JT 105"'• 

1:)55 f"OP1-1AT( 1 1 1 ) 

ST :a 
F;:~ID 

DrUOLE DP~CISION FUNCTION FNO(X) 

C Tl-tE STi\TE:.'4ENT FUt'CTI·~~J 
C EVALUATES T~F ~HJ~CTIVE FU~CTI~N 
C TH~ USER M.UST ADD THE LINE CONTAINING FNO 
c 

I~PLICIT REAl.*R{A-H,~-z) 
DIM'=:NSinf'·' X(lO) 
PEALr4 SOFT 

c *******************************************•**•** c -~~··*·~··$•*•*********·~~~*****•~~~+~~·~~4~~~'** 
F~JO=lO~ 511RT(2d*X(l) +(12.-2.* SQPT(;::.)):lcX(;!:)+lO.*X(3)-20X(A}-( 

1+?*50F<T( 2.o) )*X(5 )-A-*X( 2)*X(5)+2>;cX( 3hX(4)+2*>(2)*:.:;~+3*X( 3)**2+ 
1 3*X(4)**2+2*X(5)**2 +2*X(ll**2+2*SORT(2.)*X(l)$X(3)-20 
lSORT(2.)*X( l):(:X(4) 

c -~*·~~~**~·~~~*~*~*~~t***•*•*****~··~~·*~**~~**** 
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c *;~~···**•**~~~~·*···~·~************~***~~~-~**** 
pc .. TU"<"' 
EN I) 

SU ~R~UTINE GPOEVJ(X) 
c 
C ~ury~~UTI~E ~VALUAT~S THE GRADIE~T ~F FO 
C TH~"' USC:::I= MIJST <\DD THt:: Vf':TCR OF PARTI~L D'::ql"ATIVf.S 
c 

pt o 1_ I C I T I; EA!_. : R { A- H , r:- Z) 
INT;:;c:;-::-o (0LS,DCN5Tj:; 
CL '.1 '.1·"'' ! r:> ( 1 0 , 1 0 ) , F ( 1 0 , 1 0 ) , Go n ( 1 0 ) , ;J q \ D 3 ( 1 '} , 1 ? ) , c ·) ( ! ') ) , X A A ::> ( 1 'J ) 
CDMM8N FQ,S~~TH,FNK(10)oR:DUC,~DS1o~PS2oFOSA"c 
c ') r\ ', '}' ! E D s 3 • ".: p sA • c. 0 s f.: • ~D s., • :::"' <:; 7 • >:.a se • E p s 9 • ;:: D ~ 1 c 
C . .: rn~ J' l N , ;c P , o C' iS T f;< , J I { 1 0 ) , COLS, I T ":: ~S 
'"liM~i.Sli';!'·' X(10) 
o::r-~1_;4 snc;r 

c ********************************************4**** 
C --4 ... -1 rc;.:J!:I.f :...~ ll ··'~·-' ;:;; :i:.f.:..;.~ Y,i -i ·~~;+.:7;t:,f::;;,;;;i.:f;:f.>j.~ *~:4 i :ili :1" ;f'l.t; 

GO •)( 1 ) = 1 0 ~ S UF T ( ~, ) + 4.>1 X ( 1 ) + 2* S noT ( ?. o ) ~·..<. ( ::3 ) -~ *!: C ~ T ( 2 • ) *X ( 4 ) 
GF D(2)=4.-4·X( 2)-4.:7X(")}+( 12-2*S()i:.T(?.o )) 
Gf: 0 ( 3 ) =f. :< X ( .3 ) +?.*X ( 4 ) + 1 v + 2 >i-S() KT ( 2 • ) *X ( 1 ) 
GrC(4)=6*XC~)+2*X(3)-2-2*S()RT(2,)*X(l) 
Gf; D ( '5 ) :::4.-+ X ( •o; ) -:.~.X C 2 ) -,·· <S c,:;, T ( 2 • ) -12 

c *********************~**********************~**** c *~~·~~-•t•**~·*·~·~-~~~~~~··t~~~*~*~*~·~~~~~~~~·* 

c 

c 
1 

2 

r:;:::- ru:::·• 
E'·' 'J 

SIJG~";UTINf G::.<DF(K,X) 

TH~ ':iU':1t':IUTP··:: FI•WS THE GR.A.DlEI.IT 1F THe ::·~ETf'APH'Se 
TH'=. IJS=.:R MUST Af)G THC: V2:~TOPS OF 0 <\RTI.AL o;;:R IVATIVES 

IMPLICIT PEAL~R(,-H,•-Z) 
INTeG~R COL~,PINST~ 

C.F"1'1 '' D(lO.lv) ,C(!Ut! O),GPO( l'J) ,...;>.<~DS( lJ.tQ),CJ(lO) oX81!.R(lO) 
COM~aN FQ,SM~TH.~NK(lQ),REDUCoEPSlt~PS2oFOSA\~ 
C.-;~' 1.! ;-~' ' r= r.:> :_; ~ t r= 05 l. t ;:;: 0 S 5 • r=;:o S 6 t '.:: 0 3 7 t ~ r:> '5"3 o ': D 59 t CD 5 1 0 
er· ,.,..,,...~l l'i ,~<!=· ,o:~IST~, J I ( 10), COLSo I r=~s 
I) I '·''"':"I 'S li-' ~, X ( 1 0 ) 
or: ·•'-·'',:;.. s nr T 
!""Xr.:>(T)-=DEXP(T) 
G.' T ·: { 1 , 2 •::; • A , "S • e , 7 , 8, q, 1 ') , l 1 , 12 , l .3 t 1 4, 1 5, 1 6 , 1 7 t 18 t 1 9, ?. 0 , 21 , 2 2 , 

1 23o~4o25·2~o27o?At29o30)oK 
·~*~~·-~·~~·-~·~··=·· *•••*****~•****~***~*·~~··· 
~~i~S~~*+*~i~~~~***~·J~******************~••t$4** 
CfJNTlNIIF 
G~ [.: ( 1 } = f: X P { • '-; .;: ( S () R T{ 2 • ) *X { l )-X ( 3 ) +X ( 4 ) ) ) :i< S Cc.( T ( 2 • ) 
~~D(2)=2*X(2)+2 *X(5) 
G::C:D( 1 ):r::xr::q .~* (:-;ORT ( 2. )*X( 1) -X( J) +X( 4))) -t.( -1) 
G;\ D ( 4 ) =E X~ ( • ") * ( S r) -~ T ( 2 • ) *X ( 1 ) -X ( 3 ) +X ( 4 ) ) ) 
GRD('S)=2 •X(~) +2*X('5) 
Rr': TU-1'1 
CONT{V!Jj= 
G~D(l)=4~X(t)-?~SQRT(2.)*X(3)-2*SD~T(1.)~X(4) 
G~0(2)=4*X(~)+A*X(~) +2*~X~(.5*(X(2)-X(3)-X(4) 

1 -X('i))) 



0 
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er; D ( J) =2 *X ( J) -2*5 QR1" ( 2 • ) *X ( 1 ) -2* X ( 4) -2 *=:X I= ( • '5* ( X ( 2 }-X ( 3 )-X ( 4 ) 
1 -)(("5))) . 
G~fl(AJ=2*X(4J+2*SORTC2.J*X(l)-2*X(3) -2*EX1=(.5*(X(2)-X(l}-X(4) 

1 -x c ~ > > > 
e~D(5)=4~X(5)+4*X(2) -2*EX1=(.5$(X(2)-X(3)-X(4) 

1 -X("3))) 
p;:: TUQt·l 

3 (ONT I ~HJF. • 
G~n(tl=?~SQRT(2.)+A*X(l)+2*SORTC2a)*X(3)-2$SC~T(2a}*X(4) 
GRD(2)=2*X(2}+?~X(3l+20X(~l-2*X(5} 
G~'IH 3l=-2+4~XC3)+?.))SCJf:.T( 2. )#X( 1 )+2*XC2)-2-*X( !:) 
G~0(~)=2+~~X(A)-Z~SQ~T(2.).X(ll+2*X(2)-2$X(5) 
GPn(5)=2*X(S)-2*X(2)-2*X(3)-2*X(4) 
P.r:TU R I 

4 C.:•h'T I NUF. 
ePD(!J=O 
GC. D ( 2 ) =-E XP (- • 5*- ( SQ RT ( 2 • ) *X ( 2 ) +S Q RT( 2 • ) *X ( 5) ) ) /SI'lRT ( 2 • ) 
e>=•)(::! J=O 
eqD{A):O 
G;.;'Q(5)=-cXP{-."'3*(SQRT( 2. )*X(2)+SO~T(2. )*X(5) ))/S()PT( 2.) 
R'-. ""'"l) t;,: 

=) C:~ "H ltiUE 
eFD(!):4¥X( ll-2~SQPT(~.l*X{3)+2*SQRT(2.)*X(4)-4*SnRT(2.) 
GRD(2)=4*X(2)+4*X(S) 
GF~(!)=2*X{3)-2*SOFT(2.)*X(l)+A-2*X(4) 
G 1:: f) ( I+ ) = 2 ·;. X ( 4 ) + 2 :: s fJ;:;. T ( ?. • ) :.j. X ( 1 ) - 2 ~ X { 3 ) -4 
GR0(~):4*X(5)+4*X(2} 
pi= TUG ~•I 

6 Ct:"'-IT 1 NUC 
G~ DC 1 l =SOF<T ( 2 •) +S()RT ( 2 •) *EXP ( .5* ( SfJRT{ 2 •) *X( 1) +X( 3 )-X( 4))) 
G~ rt ( 2 ) =0 
G,::Q(3)=·'1 + t:XP(.5*(SQRT(2.)*X{l)+X(3)-X(A))) 
Gt:D(4)= 1 EXP( a5.f.(SQRT(2.HX( l)+X(3)-X(4))) 
er o < c:;) =o 
PC: TU;:<tl 

7 CC ~T I '·IUE 
GP.O( 1 l=O 
GPD(2)= t:XP(.5+{X(2)+X(~)+X{4)-X(5)))/SORT(f.) +1 
GP0(3)= FXP(a5*(X(2)+X(3)+X(4)-X(5)))/SQRT(~.) 
GP0(4): EXP(.'5~'(X(2)+X(3)+-X(4)-X(5)))/SI1RT(2.) 
e~0(5)=1-~XP(.5*(X(2)+X(3)+X{4)-X(5) ))/SQRT(~.) 
RETU!":?N 

1:.:1 C"'~"•T I!'HJE 
FO:::TURN 

9 C:.~NTltJUE 
J:<ETIJRN 

10 cr,~-JT HIUE 
J::;:TIJRN 

11 C(;"!TINUE 
F'J::" TURH 

12 CONT I t,JUE 
J:ETURt-l 

13 CONTINUE 
S:E:TUR~J 

14 C"""lNTI~!IJE 
r =: ,.u f..""! I'' 

15 ClrJT I 'IUE 
J=·r:-T!Jh'N 

16 C ~lNT I~~u~ 
PFTURN 



c 
.~ 

·~ 

17 

1'3 

19 

2 () 

21 

22 

23 

24 

2"5 

26 

2.7 

2'3 

29 

30 

C'~ '·IT I 11,1>­
t=·,-:-rlJr"N 
C: r· t: T I ~HJC:: 
~~ TU"t; 
CONT I'' VC.: 
F:r TIJq'1 
CONT I N1JF 
S::~TU~<··: 

C\J'JT I 'l 1J':: 
rr-TIJ 0 "! 
c· '!TPJUE 
I='FTU'"'N 
Cr'.ITI'l1JF 
;.:;:. TIJON 
c· r:TI;·!U7: 
RC"' TIJI-I~! 
CONT I'·!UF 
l::;)f-'Tl!t:;''·,l 

CfJNT ItW!=:: 
!:'':TU::('! 
C ,·; ~.; T I "!V-:: 
!=":.~ TU~~ l 
Cc. ·JT {l'.IJE 
~~=' TlPN 
CTT I "UF 
~; r= TlJC: N 
C'"tl':T PiiJ': 
f.>': ru;.;'.J 

187 

************~**************************•*•**~**** 
11 >: < i .;.; li :i: >V *' .t ,;. t i<:.: * ;:: i. _.. ~- .. jor ~ .t :l * 11 :t :i· * * ;t: * :.i lj . ..f: ~- ~ * li ·4 " ~ +" li "' >t ~ '!!'· 
f:NI) 

THIS SU8F'UTit!l':: FV.4.LL~TE3 THF. FUNCTirt-JS AT Tt-E D.'J!I'lT X 
THL USEP ·'UST Sl1PPLY THE LNALYTIC RSPRESE'ITA1ICNS :JF THE F='IJ"t:TU.;f\ 

l'lOLI':IT '"?f':\L*E(t-H,r:-z> 
H•Tt:":.;r:.;~ C""I.S,PC··!ST~ 

er M";! , .. , n ( 1 0 • 1 ')) • r ( 1 0 • 1 0) • c; RD ( 1 0 ) • G RA f) s ( 1 0 • 1 0 ) • c 0 { 1 0) ' X 8 a p ( 1 0) 
C~~~~~ FQ,su~rH,~NK(!J},RECUCoEPSltEPS2oF0SA~P 

CU~"" •v ~PS3.~P~4.~PS5,~0S~oEDS7,EPS8,EPS9o~PS10 
(::c. ·PV:~l ~~ ,o<P • PC:~S T ~, J 1 ( 1 ')) • CuLSt I T'::~S 
D I M~ 1\ 5 I n N X ( 1 -l ) 
~:CAL >:t4 5 t')CT 
t=XD(T):DE.XP(T) 
lF(S':(TH.::n.t.rP.lF-.:::ASe•'.IE.O)GC• T'J 3001 
F ij:F=''"') (X) 
prrur.::N 

~001 IF=l 
FO=.:> 
D'J 80 l<::q,P•:,ISTQ 
Ir(DO(k').I.T,J)GC T"' RO 
J r ( 1 r=!. AS • ;:· ') • 0 • At·' E· • P 0 ( k'. ) • "-';; • 0 ) Gl.i T r~ 13 0 
l~(lFrAs.~n.l.A~C.00(K),~~.l.ANO.OO(k'.).~~.2)(C T'J 90 
C.[) TO (31,32, :3,34o3!:,3f),37t3·'3o39t40o4lo42o4;:,44,A.5,46,47,43o49 

1 t <::; r) ) • I( 

~ *********~*******************************~··~···· 
~ **~··~·**~***~*·~·~··*~t~-~~~·*••4*~~-·~,~~~~~4** 
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3 1 r n N T I '.J ur:: 
f- :=- 2 •· r: X r" ( • ·'; • { S () 1-:T ( ::> • ) ·1 X ( 1 ) -X ( 3 ) +X { '~ ) ) ) + 2.;. X ( 2 ) :4 X { '5 ) + 

1 X(~)~~l+X(~l**2-2 
f-"\lK.(K.):F 
G': r:: 70 

32 CrJ"iTI'lUE • 
F:4:.tCXP( o::•'-i (X(l)-X(3)-X(~)-X('5) )}-2:.i·SQRT(?.oHX(l):fX( 3)+2:.iSO~TC2o 

1 ~X( l)~X(4)-2*X(~l*X(4)+4*X(2)*X(5)+2*X(1)**~+2*X(2l**2+X(3l**2+ 
1 X(4)~*2+2*X(5)*~~-4 
F'~K(K.):F 

G: T J 7 0 
T3 C : '·:T I \I U~ . 

F=2*~0RT(~. l*X{lJ-2*X(3)+2*X(4)+2*S~RTC2.)*XCl)*X(3l-2*SC~T(2,)* 
1 X(l )~X(4)+2~X(2)~X(3)+2~X(2)~X(Gl-2*Xl2}~X(eJ-2~X(3)~X(5)-2$X(4 
1 *X(~)+2*X( 1)**2+X(2)**2+20X(3)**2+2*X(4)**2fX(5)**2-4 

FciK PO =F 
Gf T ~ 70 

34 Ci. t''T U'lE 
F: EXP( -.5~lSQRT(2,)*X(2)+SORT(2,J*X(5)))-1 
FNK(K):::F 
Gt T'J '?Q 

'35 C~NT[I'JU!! 
F:~4~5nRT(2o)~X(!)+4~X(3)-4~X(4)-2*SQ~T(2,)*~(l)*X(3)+2*S~RT{2~* 

l X(l)*X{4)-2#X(3)~X(~)+4*X(2)*X(5)+2*X(ll**2+2*X(2)**2+X(3) 
1 **2+X(4)**2+2*X(5)*~2 
rc~n<(KJ=F 

Grt TO 70 
1S C J•"T I IIJE 

F=2*::XP( ,::;>:.(SQF-"T{.2,)*X(l )+ X(3)-X(4) ))+SORTC2.):tX(l} 
1 - X(3)+ X(4)-2 

F!';t< ( K) =F 
G' r· 70 

37 C :'t' T I~iUE 
F=SQRT(2.)*2XD(.5*(X{2)+X(3)+X[4)-X(5)))+X(2)+X(5)-S~RT(2.) 
F'li<(K}:::I-" 
Gf! TO 70 

18 C• ·"IT I ·tU:=: 
FNK(I<)=F 
G. r:; 70 

39 C'.'tlTI'~Vf. 
FNI<(K)=F 
G,: T.: 70 

40 C(.NT[·lU':: 
Ftii<(K):F 
G' TC 70 

41 CDNT tNUf::: 
G., T'l 70 

A2 C~NTINUF.: 
F'~'K(K):F 
G- r: 7J 

43 C0!'4T It V:=. 
F~lK(K}:f' 

GO TO 70 
4A C •:- f'T I' IU'!:: 

r"'K ( K) :::F 
G~ r:.1 70 

4'5 CH;TPJCE 
FNK(K).::F 
G" T~ 70 

li.'S CJNTINUF: 



0 

0 

c 
r 
\... 

c 

43 

49 

50 

70 

75 

80 

f.·: K ( K ) =r 
GO TO 70 
C rJT tr!U:': 
r:1 K ( K ) =F 
G<· Tr' 70 
C :lT 1 'lUC 
FNK(K}:t­
G' T': 7\) 

C ~.T UJU'7: 
Fr'l< ( K) =F 
c.;r T- 70 
CUNTINU'=. 
Fl'iK(K)::F 
GU TO 70 
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·~-*~*~·•~*•¥~**~**•~~*~*****************~******* 
:( ~. ~·:., .f ~ ;.; * :t. ,, >!- ~ ;jd. J.l: :i•lrj. ;t. ~ * :(. ~· * ::~ * *- * * * :',r * * * ::;< * * :t< * * * * * Jjc ~ :t * * * * 
C •J NT Il'lU~ 
l~(lF~AS.EQ.O)GO Tn 7~ 
11- ( F • G E. • f-~"'' S 1 ) I F = 0 
If- C~oLT.t:OSt .w:C •• F.GT.-!':::PS2 )PO{K)=l 
I 1- ( F •! T • -::'"PS 2 ) P 0 ( K ) =2 
IFf[P~AS.rO.l)GC rr eo 
FQ:F J +F 
CfJNTINUS 
IFE.4S=IF 
R:: rur. ~'~ 
H·JI) 

C WE F p:o THF:: R.t-NGE SD.t>CE CF o HITERSECT THf. CC"-E •JF CONSTANCY. 
C THC Q~SULT IS PUT 9ACK INTC P 
c 

c 

JMDLICIT REIL~B(A-H,C-Z) 
HIT'.::GFR CCLS,PCNSTP 
C ( I~ 'l'J !·! P ( 1 0 • 1 0 ) • t. ( 1 0 , 1. ·J ) • G R D { 1 0 ) , u RA 0 5 ( 1 J • 1 0 ) , 1: 0 ( 1 0 ) t X 8 A R ( 1 J ) 
COMMCN FO.SM~TH,FNK(lQ),R~OUCoEPSl.EPS2.FOSA\E 
CL A. M(''IJ eo:;.J. ;::ost... :::os 5. EPSt ,EDS7. EDS3 'EPS9. ED s 10 
C C "'M J t-; N • K P , P :.: t l S T :( , J 1 ( 1 0 } , C 0 L S , I Tf: R S 
P~~L*8 B(l0o10}9Y(10),A(l0olO)oX(lO),TE~C(l0) 

C Ir JI(Kl=O WE SKID THE ~-TH FUNCTION 
c 

or 25? NCNST~=l ,PCNSTR 
lF(JI(I'ICNSTR).EO.O)GC TU 240 

100 J='1 
DO 110 I=l,N 

110 X(I)=O 
GD T:C 14 0 

115 D 120 I=lt~ 
X(l)=O 
DO 120 K=l.~D 

120 X( I):::X(I )+P(loKHi.:(K,J) 
14J GLL Gr~DF(N(NSTPoX) 

0: l "lO I = 1 t l(t> 

Y ( I ) =0 
D' . 1 5 0 K = ! , N 

1 5 ') Y ( 1 ) = Y ( I ) + G R[l ( K ) :r, o ( K tl ) 
DO 1 8 0 I = 1 , KP 



0 

c 

18·) xr·(r)Af-S(Y(l))oGT.O:OS:;t )GC TO lC/0 
Ir(J.CO.K~)GC TO 240 
J=J+ l 
GC Tl. 11 5 

!C)Q C 'fiT I''>IU!': 
lF(~O.F.O.l)Gr. TC ~20 
I(P'~ 1 :K 0-1 
0' 170 Kl:l,KO 
ne 170 K2=t,KPM1 
K2PL=~<2+1 
A(KloK2}=0 
Ir(Kl.~Q.K2.~NO.Kl.LTol)ACK1 ,K2)=-1 
lF(Kl-loE~.K2,ANOoKloGT.I}A(Kl,K2)=-1 

1 7 0 1 F ( K l • C 0 • I • t. ~! [' • K 2 • G::;: • I ) .\ ( K 1 , K 2 ) = Y ( K 2 O L ) / Y ( I ) 
!"') i: 2 ,) •J I 1 = 1 , ~! 
DO 200 I <:.=1 ,KPMl 
:_1(11.12)=0 
[)·~ ~00 K=l, KP 

2 00 0 ( I 1 , I 2) :o ( I 1 , K ) >:.A ( K, I 2) +8 ( I 1 , I 2) 
D~2l:Jll=ltN 
!)(' 210 1 2 ~ 1 t ~ DM 1 

210 P(I1.I2)=d(I!,I2) 
DO 214 K=l.~CNST~ 
IF<no(r<) .~;n.~t>GC· T'1 214 
D .. 2 1 2 I = 1 , K D '11 
T!:. v o { t ) : 0 
DC 2 1 2 J =1 , KC 

212 TL MO( I )::Tt.J'.10( I) +GRt.DS( J, K )*A{ J, I) 
D '' 2 1 :: I :: 1 , K o ~~ 1 

213 GP~CS(IoK)=T~MO(I) 
214 Cl r-·Tit!t.JE 

Kr'l:I(D~1l 

GC T•J 100 
22') CCf!T 1 'IU(. 

DO 230 1=1tN 
230 0(1.1)=0 
240 CC'~!T H!IJF. 
250 cnr-JT INUF 

r.:r::TUCI\' 
EI'JO 

SUPPCUT I t-:E: SMPLEX(A.CoARTIFloROWSo8ASIS,COL!) 

190 

C THF SURRQUTI~E SOLVES D~CGLEMS AX=B ~y THE SI~CL~X METHCD 
c 

IMr'ILICIT PEAL*~(A-H,G-Z) 
P!TEGF.R T~:LS 
INTEGfP PCNSTRoCOLS,APTI~ltCOLSMl,ROWS,PIVCT(2)tOASIS(ll) 
Cr M'...,·::~-! P ( 1 0 • 1 0) • E.. ( 1 0 • 1 0) • GRD ( 1 0) , GRADS ( 1 0 • 1 0 l t c: 0 ( 10} , X A ~R ( 1 0) 
cr•r.~MC:N FO, SM~THoFNI< ( 10), R~DUC ,E:;:PSl ,EPS2,FOSA \E 
C•. •MMOt-.: F.' PS3, r csc., FPS=. EPS6, r::os7, r-osa, ;;:cs~, :::;o ~ 1 c 
crt.<M(~. 1\! ,KD ,t::.:l\lSTRt J 1 ( 10) tTOLSt ITERS 
J:;=-t.L*e t{11.2d,CC21) 
I,Ei S( T) =DAF-S ( T} 
COLS M 1 =COLS -1 
:'1'.:.> I Tf R=O 
oc 406 I=l.qows 
K::=~:::.:TIFl+l 
BASIS ( I ) =K 



c 

I') 1J. O'"' J = 1 • -.:,_ '"'S 
40? .e.(JoK)=O 
4 06 t\ ( I • K ) = 1 
407 ZJMl"'=J 

er 420 J=loCCLSMl 
I~CCCJJ.~n.-&ooo.J~~ re 420 
LJ=O 
Ot 4 l 0 I = 1 , F< (_; w S 

410 LJ =Z.J ·H. (I ,J):~;.(;('JASIS( I)) 
1 F ( L J - C ( J ) • G >:' o Z.J 1-..IJ f\: ) Gf.J T 0 4 2 0 
z J ,, 1 t, = z J - c ( J ) 
PfVllT(2}=J 

420 cr~lTif!'.JF 

I~(ZJMINoEOoO)RcrTU~N 
TH"'T.~O=- 1 
D' 4; 'J I = 1 • Rr· wS 
H'(A(loPIVOT(2)).Lf::.O)Gf) TO 430 

191 

T = J:. ( I • C -:1 L S ) /A ( I , P I V '.' T ( 2 ) ) 
lF(ToLToOoO~.(ToGToTH!T~O.~ND.THETA0oGEo0))GC TO 430 
PIV1T(l}=I . 
THf..:T ~:.) =T 

430 C:Ot\TINUE 
Ir(ThETAOoG~oJ)GC TG 432 
PL INT. 'i:.RF-:0Rl 1 

ST :o 
432 QtSIS(PIV0T(lJ)=~IVOT(2) 

I) · A J5 I =1, ~I \t-15 
IF({,EO.PIV~T(1))G8 T~ 4.35 
A( loCflLS)=A(I,cr·Ls)-THETAU*A( I,PIVfJT(2)) 
IF (A, ( l oC!-LS) oGT oO ,t.;~C. A{ I, C•JLS) oL T .~PS9 ) ~ { 1 oCCLS )=0 

435 COI\TINUF. 
A(P[V~T(lloC~LSl=THETAO 

IF- (!.(!:liVCT( ll tCC:lLS) oGTaOol\1\DoA(DIVOT(l) oCCLSloLToEPS9 ) 
1 tl. (PI V·"'T ( 1 ) t (;.":1_ S) = 0 
n~ 45~ J=l.~CLSMJ 
IF(C(JJ.Ea.-tOOO)GG T~ 455 
1 F ( J • C 0 • PI V '"'T ( 2) ) ~'; T ) 4 55 
DO 450 l=l,CU'.\5 
IF( I a'C:O.PIV'.T( 1} )GD 1"·:1 450 
A. ( I t J ) =A ( I , J) -t, ( r:: I V ;:J T ( 1 ) , J ) * ~ ( I • P l VOT ( 2) ) / iJ,. ( e I V 0 T ( 1 ) • P I VC'l T( 2) ) 
IF(A{ I,J) .GT.O.Af'~1.A( I ,J) ,LT.EPS9 }A( itJ):Q 

45 J CJ ~'iT I!'iUE 
A( 0 IVOT( l),J)=~(PIVGT(l)tJ)/A(PIVQT{l)tOIVOT(2)) 

455 C'JNT I 'l 1JE 
.o; 46.J I=t.oows 

4 o 0 A ( I , o I VC T ( 2 ) ) = 0 
td Plv:::T( 1) ,otvt:,T(2) 1=1 
N(1JTt::f:.:=t-'CITf:t:- -f-1 
lF(NCIT~P.L~.SO)G~ TC 4.ry7 
PR INTo •EF:::>0~2' 
STGO 
f::."ID 

SU8Q~UTINC P~QUAL 

C SUORJUTl~C FINDS THE ~QUALITY SET 
c 

l~PLICIT RE4L*~Ch-H,O-Zl 
H-s T ": G r:; P. o C 1-15 T ~: , H t'.) W S , CO L S , A R T I F 1 , q L\ S I S ( l 1 } , I L 4 M ') ·\ ( 1 0 ) 
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co~:.H)I'J P(lO.tO),f:(lJtlJ) ,(,PD(l0)tG~~DSC10tlO),C::0(10) ,XOAC{10) 
C.-· M :,1·:':\1 > 0 ~ S ;.1 ~ T H t I='·~ 1< ( l 0 ) , "'::. CU C , Eo S 1 , E r> S 2 , F 0 S A_ \ C 
c·- ~·.1:'~ f DS3 ,;:o:::st.~.. Los::;. EPs~,. f::.P 57. E'OSi-\. !::PS9. c;;o!: 10 
C' ~'"Ut tl,KP ,n(l'l5T::.., J I ( 10) ,Cr.:'LS, I T""'RS 
t=<c;,o_,;~ .t.{llt?.2),C(21) 
A 1..~ S ( T ) :I) A iJ S ( T } 

500 I).J '310 K=l, t:(~<;STP. 
510 JI(t<)=O 

0 · 5"':0 K =! , o.:I-,STP. 
H ( ..:> 0 { K) • ~..JE al ) GO T J 55 0 
o: s 12 I = 1 'l(P 

512 JF(OABS(G~AOS(Iok}},GT.~PS4 )GC T0 55J 
Jl (K )::::1 
OQ(K)=-1 
I~(K.~Q.PCNSTR)GO TO 630 
Kt =K + l 
o:.: 52.) I=><l,POlSTR 
IF ( :::.10 ( 1<.) e•'JF. .1 )Gr' TtJ 520 
nr· 51 '). J = 1 • l< P 

515 IF(OA~S(G~~DS(Jol<)) ,GT.EPS4 )G~ TC 520 
J[(K)=l 
Pi)(K)=-1 

52 0 C' l '..JT IN UF: 
G' T :'. ">3 0 

550 o··1·:T HiUF 
A~TI""l=J 
Pf' '.'IS :K.P+ 1 
01 5""'0 K:l,CC~!ST~ 
IF ( P J ( K ) • r..JF. • 1 ) GO T 0 '::7 0 
Ar;TIFl=trHI~'=l+l 
I L <\MC/·_ ( J\ FT 1 F 1 ) =K 
Cl() "360 I=l.KP 

560 A(},.:.=<T!Fl)::G::AOSCitK) 
A(r::OwS.A!':'T!Fl l=l 

570 c:·r,TJr:UE 
IF (A::?TIFloL':.l)~ETUPI\i 
C~LS=ARTIFl+~~W~+l 
D~i 5~') l=l.KC 

580 td I, :rn_s l=O 
A ( j:; l .'f S t C !:t S ) = 1 
OG 5JO I=loAPTIFl 

590 C(I):::o 
lP'-=A~TIFl+l 
IM HHJS=CU.S-1 
D::' .:>·)) I=lPL..IM!NUS 

600 C( I>=-1000 
C~LL S~PL~X(A,C,A~TIFl ,ROwS,BASIS,COLS) 
SUM=O 
tY ::.to I=1.~c·-.s 

610 SU!II=SU'H,l( 1 ,cr·l_S)*C((lASIS( I)) 
If- ( 51J~' .LT .-<::PS"$) r:·>::TU~~l 
0 5 ?. J I = 1 • r.> , ... w S 
It- (AElS(A (I • COLS)) .1 T .:::cs6 )GO TO 620 
PO( ILll~'OA{r.l.\SIS( I)) ):-1 
JI ( ILAMDA(~3~SIS( t)) )=1 

620 C. ~.rT It·Ur::: 
63) C~·~>:Tl'IIJt::: 

CALL CONF 
G• T·""! 500 
END 



c ,. 
"" c 
c 
c 
c 

700 

720 
730 

7301 

7302 

731 

732 

731 
735 
736 
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THIS <:;l)[lq-uTl!'IF. PF.:P.FGP~..-;:; ITEPATI'"'NS ASSU>lli'\!G SL·\.TEP'S CC~:i){TF: 
THt: C "JSTDAPHS APE THCS': FO~ WHICH P'){Kl.GToC 
THe- OBJF.CTIVS: FUNCTICN IS THE SUI·l ClF FQ MJO .6t-l'\' Cl'NSTR.AINTS 
zt UTE'If)lJK' S M2"'~"H10 lS USED 

I \I PL I ,:: I,. ~ r; A 1.. "'l3 ( '\-H , 0- Z ) 
l~T~G~R ~JWS,PC~STRoC~LStARTIF1t3ASIS(l1) 
C !J ~1 viC N P ( l 0 , 1 0) , r.: ( 1 0 , 1 0) , GRD ( l 0 ) t GRA 0 S ( l 0 , 1 0 ) , != 0 ( 1 0) , XB A R ( 1 0) 
c:~~~.f~l' FO,S'A["~"H,F~IK(l)),P!::DUC,::ost,C:.:PS2,FJSA\F. 
CDM~ON EPS3,~PS~.~OS5oEDS6oEPS7.EPS~.~PS9,EP!10 
C• '·'ll'·l N tKO ,cc;·lSTR.J f( 10) ,cnLSt ITC:RS 
DI~~NSION GR·1F0(10) 
n•~~~szn~ n<to),QKP(lO> 
ott~~~srcn XY<lO) .xZ(l:J) 
DIMF~SION TF.~Dl{lO) 
R C f.. L ;;. P A ( 1 l , 2 2 ) , (: { 2 1 ) 
A B S ( T ) =D A 13 S { T ) 
ART!Fl=2*J<P+l 
IT!:->?5:::() 
P~·\I;S=O 
o su•.l=·) 
ITLRS:-:ITE.~SH 
~:::nuc=o 
00 7~u K=l,CCNSTP 
IF(OQ(K).t!E.l)Gr Tf"' 7.:!0 
f; '! \11 s = ~ 'l w 5 + 1 
ne 720 J=l.KP 
J2-=?.:·\J 
J 2 ,., = 2 :i< .J- 1 
A(~~.S.J2M)=G~ADS(J,K) 
~(RJ~S.J2>=-A(RCWStJ2M) 
C' !'! T I •'HJE 
R JwS=R'".iW S+ 1 
DU 7301 J=l•A~TIF1 
A.( ~·'\0<:5.J )=0 
IF(S~~TH.FO.l)GO TO 732 
ruSAV:::=FNO(XI=lto.R) 
Ct.LL Gr~DC:.:\/O(XCAR) 
DO 7.302 l=l,KD 
TE: MPl (I) =0 
OfJ 7302 J=l,N 
TF~•o1 (I) =Tf:',IPl (I )+GPO( J) *O(J • I) 
fY1 731 I=l·KO 
I ZM= 2>t· I-1 
A{~O•Sol2M):TEMP1(1) 
GO TO 73F. 
IFF.AS=O 
C J LL F NC V t, L ( X B t\R • IF r:: AS ) 
f"'OS~VF=FO 
D~ 7J5 K=l,PC~STR 
JF(DQ(K).I'•E.O)GG Tl1 735 
[l(t 7 J 3 I = 1 • KP 
12M=2*I-l 
A ( r: 1 ~.<,!". , 1 2~-i ) =A ( R"lAI S, 1 2 ·~ ) + G ~ AO S ( 1 • K ) 
CONTINUE 
CcJNT U:UE 
Di 737 I=t.KP 
12=2*1 



0 

737 

73;; 

740 

750 

760 

12~'=1~-1 
ocU'l::::flSUt.'+ AF:'S( A ( ;..~'WSo 12,..)) 
t.. < " \I\ s , 1 2 > = t)~< o ( r l =-"' < t< cw s. r 2 M> 
I~(OSUMelT.rPS?)~cTU~N 

I F { r:> ( >11 S • C T • 1 ) ;.j 1 T · ·, 7 3 9 
o~ 7!s I=t.~<o 

f; VD { I ) =0 I< o ( I ) /D 5 \YA 
G.~ T~ 845 ' 
COLS::QOWS+ARTIF1+2 
[';·. 74 J I =1, RC V.S 
A( loCCJLS)=O 
A( lo ,,~,.TI Fl) =1 
r::ws=~·~wS+l 

I2=ACiTIFl-l 
D ; 7"3 J J =1 t I 2 
C(Jl=O 
t>.( >-< '''IS,J l=l 
t(~JwS,A~TIFl)=O 
e ( ~;' '11 s , ,: r· L s ) :::: l 
n_ ?r,J J::::t.f=TIFl,C.::OLS 
C(J}::::O 
C(/J.·:.(T!Fl )=1 
CftLL SMPLEX(AoCoARTIFloPOWSoHASIS,COLS) 
l)t 7';0 I=l 1 R,.WS 
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IF (R4SIS<I) .F-11.M'T1Fl.ANO.t>BS(A{ I oCOLS)) .GT.EPS6)G0 TO 810 
PF.::TUR··~ 

81 ') er : .. T p;uc 
on ~120 I=t.Ko 

820 [)l<' 0 (1)=0 
DC 1140 I=t.onws 
{F(9A~IS(I)eGT.2*KO)G~ TO 840 
IDrV::::F,\l.SIS(l)/2 
IF (:uS IS ( I ) • F 11 • I o I V* 2 ) G0 TO 8 30 
IC· I V= ID 1 V+ 1 
l)kP(IGIV)=DKO(I01V)+A(I,COLS) 
G! yn g4Q 

83J f)I<O(IDIV)::::OK!:'(lDIV)-A{loCOLS) 
840 ('1,'-JT {f·lU~ 
845 0~ R~O l=loN 

D(I)=O 
D'', 8'50 J=t,I(P 

850 C(I)='-'(J.J)*OKP(J)+D(l) 
su ,,1::20 
,A.I._::>H~=20 

01. >3'::0 I=l.tJ 
f\6) XI:: M::.>( 1 )=XiJ,I!,~( I )H,LPHA:t.Q( l )· 

no ~~0 IT~P=l,JO 
SlGrJ=-1 
IFC!\S-=1 
C~LL FNEVAL(X8ARoiF~AS) 
lf(IFFAS.co.!.MlD.ITER.EQ.l)GC TO 835 
IF( IFEC..S .'-0.1 )<;IG~l=l 
L',LOfiA=ALPHt../2 
SUM=SUM+SIGN*ALPHA 
Di -i'30 I=!,!"' 

88) XCAR(I)=X~tQ(l)+~~PH•*D(I)*SIGN 
8fl5 C: i!T I>IUE 

[F>:A.S=l 
C~LL rN~VtL(Xea~.lF~A~) 
lf· (II=tAS.f:'()•l)GC T!i CJOO 



-.-... ~~·~-------------------------

0 

890 

90,) 
c 

ALC:'HA:ALDH6,/2 
SUV:::SUM-AL.PH~ 
O·J :1<;0 1 =1• N 
Xf' t,q ( I)= XH.t. Q ( 1 )-1-LPHA:t- 0( I) 
IFf:t.S=l 
ChLL FNEVAL(XCAPtiFEAS) 
Ol!\:T FI'J~ 
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c i'KJW Fl!ID TJ-tf': MitdMUM tiF FO l~ THE ONE DIR'::CT H. I\ 
r; 
c 
c 
c· 

b.O =0 
TC.:L=!Ot)QIJ 
NN=l 
1lu=1 
~'1 =! 

960 t,f2:hJQ+~ll 
IF U12 • GE. l iJL) GO T ""'\ 9 7 J 
Nl'l="ltH 1 
NO= 11 
Nl=N2 
G'; T•~ 91::0 

971 Y=SUM~·~0/~2 
Z=S!JII-Y 
D ,. 9 ..,. ~. 1 = 1 • N 
XY( I ):::xr::::.r-( 1)-Y*D( I) 

97"5 XZ ( 1 ):::XBt.R( l )-Z:..O( I) 
IF=li,S=O 
CALL FNEV~L(XYoiF~AS) 
FY:::-I"!'t) 
IFF:t.<:i=-0 
CALL. f' ~I!': V.:.. L ( X Z t If EA S ) 
FZ=-F'O 
Q.. 'J90 I =1, NN 
D I S T =SUM -.t. 0 
IF(FY.LT.Fl)XN=Z 
IF (FY .GI:· .• rz )X~J=Y 
Ir(I.r~.NN)GO TO 995 
IF(FY.LT.FZ)~r Tr 980 
SUM:::Z 
l="Y 
FZ=I=Y 
Y=J.Oi-'3UIV-Y 
D~"~ 9 77 J = 1 • ~~ 

977 XY(J)=XHAR(J)-Y*D{J) 
IF E-~ S=O 
CftLL PlfVt.LO<YdF::::AS) 
FY=-FO 
G' 1 T! 9Q 0 

980 AO=Y 
Y'!:::Z 
FY=FZ 
l= l1 0 +501•1-7. 
c: 91'L~ J=l oN 

982 XZ(J)=XRA~(Jl-Z*D(J) 
IFC:AS=O 
CAI_t_ FN!;:VA,L(XZ.IF;;:AS) 
FZ=-FO 



CQi.) CONTINUf:: 
99-5 c.1~.T r·•ut: 

DC T-:,f':, 1=1.~4 

995 XC<1.;:;;( I ):XJJt.•H I }-X~I*D<I) 
IF::.AS=l 
C~LL ~NEVAL(X8AQ.IFEAS) 
Ir~AS=o • 
CtLL FNEV~L(X8Ao,JFEAS) 
IF(SMfTH.~O.O)rU=~~O(XBAR) 
1!: !()•1 K=\, ~C~.STF 
1 F ( o 0 ( K.} • ;;0 •- 1 ) Gl 1"'' 9 'i8 
C ~·LL GQDF ( K oXE.AJ=.') 
DO ) 9'"" I = 1 • KP 
v:: A() S ( I, K) = 0 
o··: 0q7 J=l oN 

997' G•t•0'3{l,K)=G~:~OS(I,K)+G!-<.D(J)*P(J,I) 
99q C.Jr-JTI"'UC 

IF( O~OS(~O-FOSAV~).LT.EPSe)Gn TO 91~ 
IF(ITEQS,GT.5J)RETURN 
IF{SM~TH.E0.Q)GU TO 918 
Ft:Tqy SMTHD1 
Ah T IF l =2l(;.KP+l 

918 PFfJUC=O 
S'·'!::'T!-'=1 
DO 9SO K=ltOCNST~ 
IF ( o.) { K) , LT • 0 ) GiJ T ··1 9'3 0 
IFU"NK(K).L::. -f'.:>S2 )GO TC Q20 
l~(;=>!K(K },GC,[PSl,Ai·li),PO(K),EOeO)G,J T) 940 
I F ( P 0 ( K ) • ~~ 0 • 0 ) RE r.t J C = l 
PO(k.):l 
GC TJ 950 

920 IV{OO(K),~Q,Q)PEDUC=l 
no(K)=2 
GU TC 950 

940 H=.(PQ(K) .r::O.O)SMETH=l 
9 5 J CJ 1'. T I "I UF. • • 
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r::-P.lEOUC.CO.O,.Atd'• Dt.~S(FQ-F"OSAVE).GT.EOS8 )('J T!J 700 
RE' TUOI.j 
END 

$0AT4 



IN I TI AL EST I M 4 TC 
o.oooo 0.00)0 

FEASIBLE POI~T F~U~D 
-o.0547 -t.a6o4 

1 .o 00 0 

1 • 15B J 1 .2357 

5X3t.l.A TRl X F':l'~ 
0.7071 

THE CCi-.E ~·F C..' ~. S TA'-! C Y 
o.uooo 

-o.oooo 
1.0000 
o.oooo 
vo)00) 

S-:JLUT ION i=OU'·lf1 

-0.7071 
o.oooo 
o.ooov 
1 • 000 u 
Jo?O'JO 

-l.i)i):)Q 

0.00)0 
o.vooo 
1.0000 

X IS -Oo49QO -O.A549 -0.2059 
VALUE OF OBJ:::CTIVI,:: FIJNCTl0'·1 IS 
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1.oooo 

0.3549 
-22.627421297€4544 
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