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ABSTRACT

Economic exploitation of mineral resources, especially in
underdeveloped mountainous areas, requires evaluating potential
base-metal deposits over a large area of mineralization. Sophisticated
techniques of potential field data processing are needed for this purpose,
including reliable methods for regional-residual separation, continuation
of potential fields and accurate computation of magnetic field in various
rock materials.

For the regional-residual separation problem, it is shown that the
finite element method can be useful in conjunction with the generalized
linear inverse approach, to produce improved regional and residual
gravity maps compared to traditional methods. Then the generalized
linear inverse method is applied to downward continuation of both
regionals and residuals, giving the best trade-off in terms of noise and
resolution for locating causative bodies. New techniques are also devised
for efficient computation of upward continuation between general
surfaces. Based on linearization of the hysteresis curves for igneous
rocks, a new mathematical representation of the demagnetization
phenomenon is constructed which allows a practical calculation of this
effect. Again, a method using the finite element technique is developed
for accurate computation of effective magnetization and magnetic field
both inside and outside an arbitrary magnetized body.

Both synthetic and practical examples are given showing that
these new methods are reliable and applicable in regional and mining

geophysics with reasonahle computational costs.



RESUME

L'exploitation des ressources minérales, et spécialement dans les régions
montagneuses éloignées, demande l'évaluation du potentiel métallifére e
grandes superficies minéralisées. Une telle évaluation nécessite des techniques
sophistiquées traitant les données de champ potentiel, ainsi que des méthodes
fiables pour la séparation régionale-résiduelle, la continuation de champs
potentiels et le calcul précis de lintensité du champ magnétique dans
différents matériaux rocheux.

On démontre que la méthode des éléments finis, utilisée en conjugaison
avec l'inversion linéaire généralisée, peut servir d séparer la
régionale-résiduelle et produire des cartes de gravité régionale et résiduelle
de qualité supérieure d celles obtenues avec les méthodes conventionnelles.
L'inversion linéaire généralisée est alors appliquée pour la continuation vers
le bas des régionales et résiduelles, donnant ainsi le meilleur rendement en
termes de bruit et de résolution pour la localisation des corps causatifs. De
nouvelles techniques sont introduites pour calculer efficacement la
continuation vers le haut entre différentes surfaces. Basée sur la linéarisation
des courbes d'hystérésis de roches ignées, une nouvelle réprésentation
mathématique du phénoméne de la démagnétisation est construite, laquelle
permet un calcul pratique de cet effet. Une méthode, utilisant aussi la
technique des éléments finis, est dé&veloppée pour le calcul précis de
I'aimantation et de l'intensite du champ magnétique interne et externe d'un
quelconque corps magnétise.

Des exemples pratiques et simulés démontrent que ces nouvelles
méthodes sont fiables et applicables en géophysique miniére et régionale a

des coiits raisonnables.
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1.1

Chapter I. Introduction

As is indicated by the title, this thesis is devoted to a study of new
methods in potential field data processing. From the viewpoint of computer
sciences, potential field data processing is a form of scientific computing which
requires an input of potential field data and which produces information directly
related to certain geological structures. It differs from data manipulation which
requires only very simple arithmetic calculations. We may also distinguish data
processing from quantitative interpretation of potential data. The latter belongs
to a kind of information processing which requires an input of potential field
data plus some geological information, to produce a physical model with definite
parameters, enabling us to explain the data by certain physical laws. Thus,
potential field data analysis may.be divided into three ordered steps: (1) data
manipulation, such as digital data acqusition, reduction and automatic mapping,
(2) data processing, such as converting different field components, continuation
and regional-residual analysis, and (3) data interpretation including the
quantitative interpretation (inversion) and the geological interpretation.

In the computer age, data procgssing plays an increasingly important role
in geophysical data analysis. Regional geological studies require potential field
data processing; to provide useful information for recognizing deep structures.
Mining and oil compariies require data processing to locate causative bodies
which might be related to mineralization. Mpreover, the inversion methods also
need data processing to produce reliable initial assessments. Unfortunately,
some newly developed techniqdes of numerical analysis, such as those for solving
functional equations, have not been fully applied to botential field data
pfocessing (see the next Achapter). In addition, there have been a few intricate
problems left which should be explored both physically and mathematically.

Consequently the theme of this thesis is chosen as reexanﬁining some difficult
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problems and updating potential field data processing techniques in mining and
regional geophysics.

A practical interest in developing new data processing methods is the
evaluation of base metal minerogenetic subprovinces in underdeveloped
mountainous areas. Since modern civilization is built on the development of
industry, a substantial quantity of new base-metal ores must be found to meet
the increasing needs of industry and to replace worked-out deposits. New
deposits will be more difficult to locate because the easily found deposits have
been discovered. As the probability of finding new ores in well-developed areas
decreases rapidly, geologists become increasingly interested in mineral deposits
on the sea floor and in desolate regions. Underdeveloped mountainous areas
seem to offer the potential for locating metallic minerals, as there is an
inherent association of mineralization with orogenesz"s.

Exploration of mineral resources in mountainous areas involves many
difficulties and problems. Besides logistic and communication difficulties,
topograbhic relief reduces the accuracy of data acquisition and causes
interpratational problems. Potential field data measured on irregular terrains
become functions of three spatial variables, consequently the equations involved

in data processing can no longer be represented by convolution or other

- degenerate integrals. Another problem is the serious investment risk in

exploration activities due to the lack of transportation systems and power
supplies. Taking account of these arguments, the cost of exploitation of minerals
can be very high in those areas. It may not be worthwhile to exploit a few
ore deposits in a minerogenetic subprovince even if they are big and mineable.
However, if sufficient mineral resources have been discovered in such
subprovinces, the cost of exploitation can be reduced, with many mines sharing
the same transpotation systems and power supplies. As a result, investors may

find benefit in the exploitation, even if much capital is required. Therefore, it
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is essential for investors to evaluate mineral deposits, such as iron, coal and
copper, in whole subprovinces of mountainous areas.

For regional investigation in such areas, our goal is to obtain sufficient
information, at a reasonable cost, to evaluate the potential mineral resources.
This is an extremly hard task and its succesful achievement requires a skillful
integration of all possible modern techniques as well as sound organization of
exploration activites. In high mountain ranges, the cost of exploration is much
increased due to difficulties of transpotation and communication. Comparison
with the cost in flat or low-relief areas, in mountainous areas the cost of
airborne surveys can be more than doubled and may be increased five times
for ground geophysical surveys ( even more for deep seismic soundings ).
Similarly, drilling is extremely expensive as helicopters are frequently required
for logistics. There is no doubt that the advantages of geophysfcal and
geochemical methods should be fully utilized, whereas drilling must be reduced
as much as posible.

Another fact to beAconsidered is that the exploration cost will increase
steadily as more and more detailed surveys and drills are involved, with no-
assurance that the increasing investment is worthwhile, because the return on
investment depends upon the total resources in the whole area. This problem
is faced by all exploration projects and becomes more serious for projects
carried out in mountainous areas. In order to save exploration investment, it
is commonly accepted that an exploration programme should proceed sequentially
and progressively. Based on this philosophy and experiences obtained mainly in
the Canadian shield, Nicholls (1978) divided a typical base-metal exploration
programme into four stages: area selection, project reconnaissance, project
follow up and drilling. Considering the characteristics of mountainous areas,
a similar strategy comprising thrée sequential stages may be suggested as

follows.
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The first stage may be called the preliminary reconnaissance to locate
target areas for further detailed reconnaissance. As it has been found that
there is a clearcut association of large orebodies with crustal structure, the
recognition of major crustal fracturing is of great importance. Because in
underdeveloped mountainous areas sufficient information on regional geology
and geophysics is usually unavailable, interpretation of photomosaics (
high-altitude satellite photographs, airphotos and sidé-look rader images ),
multiple airborne geophysical surveys and wide traverse integrated ground
investigations are required to produce basic geological, structural, geophysical
maps, as well as geochemical maps of trace element assemblages on a very
broad scale. Compilation and comparison of these maps may enable us to
locate target areas and determine their priority for further exploration.

Of all the techniques, geophysical methods are most useful to provide
cdirect evidence of deep crustal structure. A desirable investigation might include
airborne gravimeter, magnetometer and gamma-ray spectometer, plus a few
seismic refraction and magnetotelluric profiles. As deep seismic sounding is
particularly expensive in mountainous areas, potential field methods are more
attractive for studying deep structure with a large areal coverage.

The second stage, called detailed reconnaissance within the selected areas,
is aimed at progressively locolizing the target areas, possibly locating potential
orebodies and maybe drilling to verifying their existence. It is also possible to
refect a project in time during this stage if some target areas are not so
promising. Techniques with higher cost may be employed, such as infrared
scanning, multiband photography, and airborne EM in some favourable areas.
Potential field methods are usually used, both for direct location of certain
kinds of metallic deposits and for studying lithologic units and 'secondary
mineralizing structures which exxert geological local control of orebodies.

Because airborne surveys may miss some anomalies due to the relatively high
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flighting height over rugged terrain, ground surveys are usually employed to
sort airborne data as well as to track down airborne anomalies. This stage is
comparable to two stages of Nicholls' divisions: the project reconnaissance which
mainly employs airborne surveys and the project follow up which employs ground
surveys. As airborne electromagnetic mrthods are often limited, owing to
problems ‘associated with rugged topography, a flexible combination of
geological, geophysical and geochemical ground surveys may be used instead to
progressively localize the areas of interest. Thus the two stages may be joined.

If the probability of discovering economic orebodies is high in several
target areas and some exposed orebodies have already been found, a small
amount of drilling may be worthwhile and therefore improved transportation
facilities may be necessary. How to locate accurate spots for drilling is
essential for reducing the exploration cost and should be an important task of
data processing.

The last stage, the preliminary exploration, is to verify the existence of
certain orebodies and approximately evaluate their reserves. As mentioned
before, detailed exploration may be unnecessary for our evaluation purpose.
With a few drill holes available, digital data processing and borehole geophysical
surveys become the major tools for fulfilling the tasks. If sufficient reliable
information has been obtained showing that the value of verified orebodies in
a minerogenetic subprovince approaches the minimum cost of the exploitation,
blueprints of mining industry development in the areas may be drawn up.

Let us now examine tha tasks of potential data processing at each stage

" in evaluation of base-metal minerogenetic subprovinces. During the first stage,

the task of gravity and magnetic methods is recognition of deep crustal
structures, especially deep mineralizing faults. It is well known today that the
long aeromagnetic lineaments are very useful indications of deep crustal faults

which may extend all the way down -to‘the Curie point and to the bottom of
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the upper crust. The Bouguer gravity map contains information about the lower
crust and the Moho discontinuity, as the gravity field decays slower than the
magnetic field. In order to locate deep crust structures, techniques for
separation of regionals and residuals are first needed; then we may use field
processing tenchniques to distinguish crustal patterns in some profiles and
downward continuation to locate the horizontal position of deep mineralizing
fauilts.

At the second stage, we need to locate lithologic units and secondary
structures which have strong local control of ore deposition and to estimate
the horizontal range of potential orebodies for drilling. Separation of régionals
(due to broader structures) and residuals (due to orebodies) is again required,
while downward continuation becomes significant for locating horizontal
projection of orebodies and lithologic units because anomalies observed on
irregular terrain often shift away from the position of their causative bodies
due to the effeét of topography.

High topographic relief in crystalline terrane can produce undesirable
aeromagnetic anomalies which obscure anomalies caused by deeper geologic
sources. Upward continuation of the anomalies may reduce the topographic
anomalies but an entire removal of these anomalies may require an accurate
computation of the magnetic anomali'es.

At the third stage precise data analysis should be involved as we try to
evaluate reserves with only a few controlling drill holes. Accurate calculation
of potential fields and inverse techciques are essential u_zhile models of
computation should consider all available geological, geophysical and geochemical
information.

We may summarize our discussion as follows.

(1) A reliable evaluation of mineral resources within mountainous

minerogenetic subprovinces is necessary because in many cases expoitation of



L7

mineral deposits can be beneficial only if transportation and power supply
systems can be shared by a certain number of mines. The evaluation may to
some extent affect the long-term economy of a country or a large district.

(2) As a big research project, the evaluation itself involves certain risks
of ineffectual investment. Based on commonly accepted principles of exploration
and experiences, a strategy comprising three stages - the preliminary
reconnaissance, detaild reconnaissance and preliminary exploration is suggested
for reducing the total exploration cost and protecting investors from serious
risks.

(3) Potential field methods play an important role in locating both deep
crustal structures and local mineralizing faults, in locating horizontal ranges of
potential orebodies for drilling and in evaluating reserves of magnetic of
high-density orebodies.

(4) As field data are acquired at relatively higher cost and each step in
the evaluation requires data processing results of the previous step, the
technology of digital data processing is an important factor for the achievement "
of an evaluation project. Application of more sophisticated and expensive data
processing techniques is worthwhile and can be of great value because the
increasing cost for data processing is usually small in comparison with the
economic benefits.

(5) At different stages, flexible integration of various data processing
techniques is necessary, as each stage has different exploration aims. Techriques
for accurate decomposition of regionals and residuals, continuation of potential
fields from arbitrary surfaces, accurate computation of potential fields and
inversions are the major data processing tools for the evaluation purpose.

In short, the task of evaluating base-metal subprovinces challenges
potential field data processing to face some dificult problems. In order to meet

these challenges, we shall review the current techniques of potential data
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processing and explore what kinds of techniques should be further developed.
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Chapter II

A Brief Review on Current Techniques of Potential Field Data Processing

Since the 1950s, the rapid development of computer sciences has provided
powerful techniques for potential field data processing. The theoretical
foundation for integrating data processing and interpretation has been developed
and new computational methods incorporated into software program packages
have become routinely available. Some of these computational methods are no
longer restricted by assumptions that source models must be homogeneous in
physical properties, or regular in geometry. A unified theory for geophysical
data inversion has been developed which takes into account the limitations of
real data and is characterized by almost complete automation. However, some
intricate problems still remain and more sophisticated techniques are needed.
For instance, most linear transformatiom procedures are based on the
assumption of flat observation planes. They are inapplicable for our purpose as
we want to evaluate mineral resources in mountainous areas. In order to show
how many techniques can be integrated in our software packges for the
evaluation and what kinds of techniques are still lacking and needed, a brief
review of the development of potential data processing and inversions during
tne last three decades is desirable. As we mentioned in the previous chapter,
we shall outline the linear transformation of potential fields, regional-residual
analysis, modelling and inversion, underlining some unsolved problems. The
review will be also restricted to exploration and regional geophysics in order

to avoid becoming involved in the much broader subject of tectonophysics.
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2.1 Potential field linear transformations

The application of linear transformations was one of the important
achievements in potential field data processing during the 1960s. Theoretically
it reveals that the operations of derivatives, continuation, smoothing, and
conversions between different field components, as well as between gravity and
magnetic components due to the same sources, employ as a common tool the
linear transformation, which is directly related to digital deconvolution filtering.
In practice, this technique has yielded several valuable and economical
approaches which are useful not only for the enhancement of specified features
of the fields, but also for direct interpretation. The downward continuation for
magnetization mapping (O'Brien,1970) and for determination of underlayer
undulation (Gerardr and Debéglia, 1975) could be taken as examples.

Although Nettleton (1954) mentioned the filtering effects of operations
and Swartz (1954) made use of the Fourier integral with the spectral
representation of potential data, the first definitive and complete description
of linear filtering may be attributed io Dean's paper (1958). Dean compared
the operations with electrical filters and pointed out that the main advantage
of analysis in the frequency domain is '"the equations describing these
geophysical problems are .often much simpler when expressed in frequency
terms", because, based on tne convolution theorem, "the Fourier transform
technique still reduces the differential and integral equations to algebraic
frequency equations." After Dean, Danes and Oncley (1962), Byerly (1965),
Mesco (1966), Darby and Davies (1967), Fuller (1967) and mdny others continued

in a similar vein. Their efforts focused on analysis of the frequency response

~ of existing grid operators and design of new operators in the frequency domain

to improve their performance. For magnetic data, Baranov (1957,1964) proposed

a new procedure called reduction to pseudo-gravimetric anomalies and to the
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magnetic pole. Bhattacharyya (1965) represented these operations in terms of
two-dimensional harmonic analysis. In 1969, only four years after the fast
Fourier transform (FFT) algorithms appeared, Black and Scollar, as well as some
others, presented practical instances to show that with the help of FFT
algorithms, all linear transformations could be carried out in the frequency
domain easily and economically.

There are still two procedural approaches' adopted by different
individuals today. One is to employ spectral analysis for filter design, then
transform the filter back to the space domain and calculate the matrices which
are used later in convolution calculations. Baranov's monograph (1975) offers a
complete description of this procedure as -well as the theoretical foundations
of potential field transformations. Another approach is to carry out calculations
in the frequency domain, only finally transforming the results to the space
domain. The latter seems more popular these days, especially for multi-function
processing of large amounts of data, because it takes the advantage of the
speed of FFT algorithms. Gunn (1975) presented a unified description of the
theory of many possible transformations of gravity and magnetic fields in a
comprehensive summary of potential field transformations. He showed equations
for botential fields both in the space and frequency domains and summarized
the linear transforms as follows:

"The spectral representation of gravity and magnetic
fields shows that the mathematical expressions
describing these fields are the results of convolution of
factors which depend on geometry of the causative
body, the physical properties of the body and the type
of field being observed. If a field is known, it is
possible to remove or alter these factors to map other
fields or physical property parameters which are linearly
related to the observed field".
The linear transformation techniques in potential data processing are

based on the assumption that the potential fields can be treated as

2-dimensional functions; in other words, the observations are assumed to be
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carried out on a horizontal plane. For surveys in mountainous areas, the theory
becomes inapplicable. A procedure called the reduction to a level has therefore

been proposed which is somewhat similar to the problem of continuation

 between general surfaces. Henderson and Cordell (1971) employed finite

harmonic series for this problem. The measurements observed on an irregular

- surface may be expanded by using a harmonic series with an exponential

modulation factor. The coefficients of the series may be determined by solving
a set of simultaneous algebraic equations. Consequently the approximate fields
on a horizontal plane can be obtained by the inverse process, i.e. summation
of the series through multiplication with constant factors. Unfortunately the
method provides satisfactory solutions only for weak topographic relief. Parker
and Klitgord (1972) made use of the Schwarz-Christffel transformation for
upward continuation of magnetic data taken near the bottom of the ocean. This
approach can be employed only for 2-D fields. Syberg (1972) discussed the
problem and deduced formulae for general continuation, based on which a
procedure making use tf the FFT algorithms was proposed. Unfortunately, the
formulae may be neither mathematically strict nor applicable in terms of Ff'T
algorithms.

In 1977, Bhattacharyya and Chen found another use of general
continuation - that the reduction of aeromagnetic data to a surface parallel
with topographic relief had the advantage of supressing the. interference due
to terrain-derived magnetic effects. They introduced a method named the
‘equivalent source' method, which is not restricted to weak topographic relief.
The equivalent source distribution on an arbitrary surface isv expressed by
solution of a Fredholm integral equation of the second kind, which can be
solved by an iterative procedure with fasi convergence. Thus the potentials
above the surface may be obtained by employing numerical integration. The

problem with this method is the expensive numerical intergration process
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repeatedly involved. We will show , in Chapter 4, that a compact succesive
approximation computational model together with an improved integration
algorithm may be used for efficient continuation.

Essentially downward continuation belongs to inverse problems. Thus the
Backus-Gilbert (BG) method may provide the best procedure because the
non-uniqueness of inverse problems can be treated by the BG method via the
concept of trade-off ( Backus and Gilbert, 1967,1968,1970). The early work
was done by a French group (Courtillot, Ducruix and Le Mouel, 1974-1975) who
coupled the BG theory to a representation of potential functions. The approach
is efficient but, as the authors acknowledged, inapplicable for continuation close
to sources. Huestis and Parker (1979) provided some methods for both upward
and downward continuation based oﬁ the BG theory which allow one to assess
the ambiguity caused by the deficiency of data. The mathematical treatment
is elegant but the criterion chosen for optimization results in a practical
procedure with high computational cost. In Chapter 4 we shall use a subset of
the generalized inverse method or spectral expansion method for downward
continuation of potential data measured on an irregular surface, which improves
the computational speed and enables us to continue potential field data to a

plane close to the causative bodies.

2.2 Decomposition of regionals and residuals

A gravity or a magnetic map is seldom a simple picture of a single,
isolated disturbance, but almost always is a combination of relatively sharp
anomalies, which must be of shallow origin, and of very broad anomalies which
may have their origin at depth or be of considerable size. Therefore

decomposition of a potential field map into regionals and residuals is frequently
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required before interpretation. In order to judge how many components are
present in a map and what kind of features they have, procedures for analysis
of field characteristics are needed. Then the decomposition can be done
according to the particular featurs present. Before the 1960's, the
decomposition method, regardless of whether it was graphic or numerical, served
as an interpretational aid to emphasize or enhance certain components while
suppressing others, but not actually removing them. Several new approaches
have been since proposed; they are (1) trend surface fitting, (2) linear filtering
and (3) computer modelling.

Mathematically, trend surface fitting proceeds under the assumption that
the regional field can be expressed by a mathematical surface which may be
ordinary polynomials (Coons et al,1964), orthogonal polynomials (Grant,1957;
Van Voorfis and Davis,1964), or Fourier series (Bullard et al,1962). A least
squares fit minimizing the sum of residual anomalies is often carried out to
determine the potential field surface which is assumed to be the "optimal"
solution for the regional field. Nevertheless, the closeness of the fit depends
on the degree of the polynomial used and there is no reliable criterion to
determine the best degree.

Some statistical models have been designed for field decomposition by
Ausing linear filters. Under the assumption that the fields consist of useful
component plus white noise, Clarke (1969) suggested the application of Wiener
filter theory to smooth potential field data. The power spectra are simply
separated into signal and noise components so that the latter can be erased in
the frequency domain. The procgdure is combined with second derivative and
continuation filtering to deppress undesirable noise. Strokhov (1964) tried to
devise a linear filter which gave a best (least-squares) fit of a smoothed
spectral estimate to the actual spectrum over all frequencies, while suppressing

the 'noise' by a prescribed amount. Naidu (1966,1967) applied Strakhov's approach
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and extended it to 2-D data processing. In most cases, the
signal-plus-white-noise models may be too simple to represent actual potential
fields, especially a gravity field which usually contains strong non-random
components.

Experience seems to show that any approach for anomaly decomposition
based purely on mathematical assumptions would not succeed without some
physical interpretation. Second derivative and upward-continuation maps are
commonly treated as the residual and regional anomalies respectively, since
they also contain recognizable physical features. During the 1970's, power
spectral analysis methods which attemped to endow decomposition procedures
with some physical meanings showed significant promise. We ought to mention
the contributions of some authors who revealed a causal connection between _
the source depths and the slopes of a logarithmic spectra (Odegard and Berg
,1965; Bhattacharyya and Spector,1966), which was later used as a basis for
anomaly separation. In 1970, Spector and Grant put forwcrd an attractive
statistical model for anomaly-decomposition, based on the postulate that the
expectation value of the power density function is equal to the ensemble
average of the power density functions of individual anomalies. This model also
assumes that the parameters of prism-like sources have a uniform distribution.
Under these restrictions a reasonable criterion was proposed to recognize
regional components from the power spectra. Syberg (1972) suggested a similar
procedure called ‘a 'matched filter' which emphasized the difference between
pole-type regional sources and dipole-type residual sources. Cassano and Rocca
(1975), Cianciara and Marcak (1976), Hahn (1976) and Pedersen (1978) advanced
the discussion of these statistic models.

Although the spectral factorization techniques have been widely accepted
for aeromagnetic data processing, when they were applied to regional gravity

decomposition, Gupta and Ramani (1980) found that they could produce less
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satisfactory maps than traditional graphical methods. Of course, this is not
because the analytic methods are worse than empirical ones, but because the
analytic models involve some inappropriate assumptions. In the residual maps
produced by spectral approaches, the negative anomalies are unreasonably strong
while the positive anomalies are ofter too small in amplidute. In fact this bias
may be inherent in spectral approaches as the spectra of regional and residual
anomalies usually overlap tightly. Another drawback is that the procedures are
not flexible enough to allow some geological information to be considered. In
order to reduce the negative residual anomalies, Rao et al (1975) suggested a
successive approximation procedure in which negative anomalies were artificially
erased. The procedure may improve the residual maps, but the basis of erasing
was not convincing. Anyway, the analytic methods for anomalous decomposifion
need to be improved and will be discussed in Chapter 3, where we apply the
finite element method and other techniques for better separation of the
anomalies. |

-In an area where geology is well-known, computer modelling may provi&e
the best decomposition of anomalies due to different types of sources. Bullard
(1967) and Lange and Farguhar (1969) have given some examples to show the
aspects for consideration. Proper models can be suggested if seismic data in
the studied areas is available. Unfortunately, sufficient seismic data may not
be available in most cases; therefore, it is often difficult to give proper models

for regional field sources.

2.3 Calculation of potential fields

As we mentioned in the previous chapter, potential field calculation is

an important tool for both data processing and interpretation, as well as for



2.9

evaluation of reserves of magnetic or high-density orebodies. With the aid of
digital computers, the calculations of gravitational effects due to arbitrary

shaped but homogeneous density bodies can be perfectly realized. A general

body may be cut into many prisms (Danes,1960) or horizontal laminae which

are approximately represented later by closed polygons (Talwani and Ewing,
1960). The gravity effect of the polygons can be evaluated in terms of analytic
formulae. The problem of calculating the gravity field of a causative body
having arbitrary variation in density was confronted in the 1970s and solutions
were published by some authors. An interesting example was given by Fuller
(1977) who applied Fourier transforms to compute the gravity anomaly due to
a actual ore deposit. The spectrum of density distribution at different levels
was evaluated first, then the spectrum of the gravity anomaly (which equals
an integration of the density spectra along the depth) was transformed back to
the space domain. Based on the property that potential fields due to a general
body may be expressed as a convolution of Green's function with magnetization
or density distribution within the body, Bhattacharyya (1978) introduced formulae
for calculation of potential field anomalies due to an irregular body with
inhomogeneous physical properties. This procedure is efficient because high speed
FFT convolution algorithms can be émployed.

Regardless of demagnetizatidn effect, the calculation of magnetic
anomalies due to finite 3-D bodies is similar to the gravity calculation. Bott
(1963) and Talwani (1965) have given procedures for computation of magnetic
anomalies due to irregular polygonal laminae and proposed fast algorithms. For
inhomogeneous magnetized sources Bhattacharyya's algorithm (1978) may be
employed as mentioned before. Difficuties arise when one considers the effect

of demagnetization, which can vary everywhere inside a strongly magnetized

| body, depends on the geometry. Vogel (1963) suggested a lenghty iterative

procedure for this problem. Sharma (1966) proposed an improved method for
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estimating the demagnetization effect. Filatov (1969) proposed another method
to calculate the magnetic anomalies caused by the magnetic charge density on
the surface of magnetized bodies. The density can be exppresed by a Fredholm's
integral equation of the second kind whose solution may be obtained again by
using an iterative procedure. The assumption of homogeneous magnetization is
implied in order to cancel the magnetic charges within the bodies. There are
few publications on computation of magnetic field within a source region, which
is an interesting topic in magnetic well-logging. Physically all current methods
of magnetic field calculation are based on the theory for paramagnetic
materials but most igneous rocks and ores belong to ferrimagnetic materials.
Thus demagnetizing models considering the permanent magnetization should be
developed for accurate megnetic field computation; which will be discussed in

Chapter 5.

2.4 Inversion techniques

Before the 1950s, the inversion methods were founded on the assumption
that sources were isolated and regularly shaped. Some characteristics of
anomalies, such as horizontal distances between extreme or half-maximum
poiﬁis, projection of straight portion and slope etc, were used to estimate the
top depth of the causative body while vertical and horizontal derivative maps
were commonly employed for evaluation of the horizontal dimensions. Trial and —
error methods could be used to find the source distrfbutions with the aid of
many kinds of characteristic charté or graticules, but only for 2-D models. The
computer revolution after the 1950s made a significant impact on inversion
techniques for potential fields. Since then, a great m_zmber of articles on this

subject have been published advocating automatic or semi-automatic methods.
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As an aid to discussing the development of computer-aided inversions, we may
classify them into classical methods and BG approaches. Thé distinction between
the two involves considerations of the deficiency and inaccuracy of geophysical
data and the non-uniqueness in geophysical inverse problems. The modern
methods take account of these aspects and provide measures to assess the
significance of a particular solution, whereas the classical methods do not. The
geometry used for inversion of causative bodies may also be classified into two
types: an isolated body or a single interface structure (multilayer models are
mainly for studying global anomalies). We start with the classical methods in
the order of Fourier approaches, then discuss matrix methods and automatic
least-squares fitting. |

The Fourier approach for single interface structure such as basement
surface and the Moho--discontinuity was first used in terms of downward
continuation and based on the principle of the equivalent stratum (Grant and
West, 1965), i.e., a small undulation of the interface is approximately
proportional to the anomalies at a level equal to the average depth of the
interface. Spectral analysis based on Statistic source models, for example, given
by Spector and Grant (1970), may be used for determination of the average
depth. Then downward continuation can be employed to produce the field at
the average level. Thié approach was developed for underground interface
mapping by Gerard and Debeglia (1975), Hahn et al. (1976) and others. Gerard
and Debeglia provided a systematic procedure to map basement topography
under the assumption that the variation of basement depth is approximately
represented by a Guassian (or rectangular, trianguldr) probability density
function. Thus the mean depth and its standard deviation can bg evaluated by
the least squares fit to logarithmic power spectrum. An iterative technique
inéluding downward continuation may be used for computing local depths. The

premise that the variation of depth is proportional to the vertical field
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component can be.correct only if the maximum of the variation is much smaller
than the mean depth. In many cases, this assumption may not suit actual
geological structures. In fact in the frequency domain the variation of interface
equals the potential anomaly at the average level plus another term which
includes some high order effects of the variation (Parker,1973). Arranging
Parker's forward algorithm used for the rapid calculation of gravity anomalies
due to a 2-D density interface, Olderburg (1974) deveioped an iterative scheme
which produces improved solutions without the limitation of variation depth.
The convergence of the iteration was empirically assured for well-behaved
surface functions. The method takes advantages of the FFT algorithms, but
computational time is dependent on the speed of convergence.

Spectral inversions for single potential anomalies was first suggested by
Odegard and Berg (1965), and developed by Sﬁarma, Geldart and Gill (1970) ,
Eby (1972), Bhimasankakam (1977) and many others. As the spectral
representations of isolated anomalies are usually much simpler than those in
the space domain, the parameters of sources can be evaluated even without
the help of computers. Bhattachayya and Leu (1975,1977) showed that the
spectra may be expressed by a sum of exponentials multiplied by some constant
fdctors. Each exponential contains in the exponent the location of one edge
of the causative prism-like body. The exponential terms may be expanded,
so the equations can be reduced into a linear system. Thus the solution for
unknown exponents can be determined by employing linear numerical subroutines.
Based on spectral analysis, Teskey (1978) introduced a interpretation system for
3-D magnetic anomaliy inversion. As the inversion for 3-D anomalies is much
more difficult than for .-2-D anomalies, a method for reducing 3-D anomalies
to equivalent 2-D ones was published by Yang (1979). Yang pointed out the
spectral connections between potential anomolies due to general 3-D bodies and

due to corresponding 2-D bodies which may result in simplifying 3-D anomaly
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inversion by proper application of the 2-D inverse techniques.

The spectral approaches enjoy the advantages of efficiency and simplicity,
but they usually assume flat observation planes so that the fast Fourier
transform algorithms may be used. Hence, these methods can be used for our
evaluation purpose only if the observations have been continued onto flat planes.
Once more we meet the problem of continuation of potential field from
arbitrary surfaces.

Among the linear approaches, the matrix method proposed by Bott
(1967) has been applied successfully to magnetic inversion for a particular
problem of estimating the magnetization of under-ocean layers whose boundaries
are known from seismic data. In this approach the linearity of potential fields
with respect to magnetization or density is applied after the geometry of the
sources has been specified. If the goal is to evaluate the geometric parameters

of irreqular sources the inverse problems will belong to the class of non-linear

_problems. Thus the inversion in the space domain can be carried out by at least

three approaches: ( 1).specify the source geometry, thus making linear algorithms
acceptable, (2) iterate linear procedures to get approximate solutioné for
non-linear problems and (3) employ least squares fitting, to get the 'optimal'
solution of non-linear problems.

Representative \work for iterative approximation was published by
Tanner (1967) for 2-D models and Cordell and Henderson (1968) for 3-D models.
The perturbing body is approximated by a set of rectangular prisms of constant
density and its field is calculated. The residuals between the calculated and
observed field values are used to adjust the heights of the prisms. The amounts
of adjustment can be obtained by solving a set of linearized equations. These
procedures are often reliable but suffer the disadvantage of slow convergence

of the iteration when the number of prisms is increased.

Automatic iterative procedures for the estimation of paramters of a
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selected model that yields a best-fit anomaly curve for a set of observed data
have been developed by Bosum (1968), Johnson (1969), Magrath and Hood (1970)
and many others. Regular geometry is usually used for the source model to
limit the number of its parameters. The parameters can be determined in such
a way that the so-called objective function, i.e. the sum of the squares of the
deviation of the observed field from the theoretical field, is to be minimized.
Since the objective function is non-linear, it may bé linearized by assuming the
function to be approximately linear within the vicinity of an initial guess of
the model parameters. Thus a set of approximate parameters may be obtained
by making use of linear algorithms and then adjusted by employing some
iterative procedures, such as Newton-Raphson, Marquart, or Powell algorithms.
These optimization methods maj’ lead to a satisfactory solution; but which is
one of many feasible solutions, in areas where available geological information
allows us to give a close initial guess for the source parameters. The initial
guess and the type of source model determine the success and the rate of
convergence of the method being used, therefore, intuition and prior knowledge
for selecting the initial values have important influence in all these methods.
The unconstrained optimization in which the parameters vary freely can produce
geologically unreasonable solutions if the initial guess is not close to the actual
solution.

Disregarding the facts of finiteness and inaccuracy of experimental
data as well as non-uniqueness, classical methods attempt to find a particular
solution for inverse problems which could be an equivalent representation of
actual sources. The equivalent sources may reflect some of the characteristics
of the actual sources but they are not identical.

As an important breakthrough, the pioneering work.of Backus and
Gilbert (1967,1968,1970) revealed the nature of geophysical data inversion. In

their first paper (1967), Backus and Gilbert showed the high degree of
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non-uniqueness in geophysical inverse problems and offered a practical solution
that satisfies the observed data and minimizes the departure from the initial
guess for non-linear problems. The process of finding the solution, taking into
account the errors in data, was later described by Gilbert (1971). In their
second paper (1968), they focused their attention on the resolution in model
space and introduced the "deltaness” criterion. Finally, in the third.paper (1970),
an extensive investigation was made of the trade-off between the ability to
resolve detail of a model and the reliability of the estimate of model
parameters.

As a powerful tool for inversion, the Backus-Gilbert (BC) theory has
achieved increasing importance for inverting different kinds of geophysical data
and has been applied to every branch of geophysics. For a mining gravity
problem, Green (1975) applied a restricted form of the BG approach in order
to find an acceptable model starting from some initial guess. The Lagrange
multipliers method was employed for finding final solutions. Oldenburg (1976)
applied the BG method to the problem of calculating the Fourier transforms
of digitized data with the objective of assessing the effects of missing portions
of data series and of contamination of signal by noise. The BG method has
also be applied to continuation problems by Huestis and Parker (1979).

The BG form of inverse theory assumes continuous parameterisation. A
discrete formulation, with a factoring of the problem into eigenvectors and
eigenvalues, has been developed for the numerical solutions by many authors
(Gilbert 1971; Jackson 1972; Wiggins 1972; Jupp and Vozoff 1975). The
formulation is based on the mezo§ inverse (1961), resulting in the generalized
inverse approaches. For ill-posed linear problem, Franklin (1970) introduced the
stochastic inverse to mitigate the undesirable effects of instability. If the
unknown functions are not well-behaved, imposing some a priori information

can be very helpful. Jackson (1 979) 'suggested'using a priori data while Sabatier
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(1977a,b) using a priori information of positivity of the unknowns. The
constraints in terms of pairs of inequalities were applied to the inversion of
gravity data (Safon, Vasseur and Cuer,1977; Fisher and Howard,1980). Pedersen
(1977) has applied the generalized inversion to determine a single interface of
density or susceptibility. In Chapter 4, the generalized linear inverse method
will be applied for solving a typical ill-posed problem - downward continuation
of potential fields to top of sources.

The powerful formalism of linear inversion has been applied to non-linear
inverse problems via linearization (Backus and Gilbert, 1967). Linearization can
be successful at discovering an acceptable solution to a nonli‘near inverse
problem, but sometimes even with sufficient and accurate data a solution is
not unique. The iteration of a linearized problem might diverge, or even produqe
incorrect solutions. The research effort may focus at the formulation of a
redlistic function which relates observations and physical models and not to the
subsequent method of iterating to an acceptable model.

Instead of trying to find unique solutions some authors have proposed
rules giving bounds on the depth and density of the causative body ( Bott and
Smith,1958; Smith,1959,1960). Parker (1974,1975) developed a general theory
to prévide rigorous limits on the density and depth. He introduced a concept
of the ideal body that is a homogeneous body with minimum density which gives
rise to anomalies compatible with observed data. Taking account the
non-uniqueness of the inversions, the concept of the ideal body, as a particular
| solution, has been employed by some other investigatorg ( Safon et al.,1977;
Cuer and Bayer,1980).

Although great efforts have been made, new inversion methods are
still needed as the models, such as a single body with homogeneous physical
properties or a single interface , are often too simple to delineate actual

geological formations. More advances are required in the complexity of the
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mathematical models of causative bodies and in the efficiency and sophistication

of inverse algorithms employed.

2.5 Summary

As the current techniques of potential data processing have been
reviewed, we are able to suggest some methods as well as to demand some new
techniques for advanced researches to meet the challenges of evaluating
base~-metal mineragenetic subprovinces as follows.

(1) The spectral factorization techniques (Spector and Grant, 1970;
Syberg,1972) may be used for decomposition of regional aeromagnetic anorhalies;
but new corhputational techniques are needed for decomposition of gravity
regionals and residuals as the current methods often fail to produce satisfactory
separated anomalies.

- (2) Downward continuation fron arbitrary surfaces is an very useful tool
in potential data processing for the evaluation purpose in the senses of
converting observations onto a flat plane, amplifying hidden anomalies due to
high observation levels and localizing the spotting of drill holes for drilling.
The Fourier approaches may be inﬂapplicable due to the assumption of flat
observation planes. The methods proposed by Huestis and Parker (1979) can be
used, but at a high computation cost. Therefore, new techniques for downward
continuation from arbitrary surfaces are required which must be able to
continue potential f?elds to top of sources at a reasonable cost. For upward
continuatioﬁ the equivalent source method (Bhattacharyya and Chen, 1977) may
be used for data observed on irregular surfaces, but further improvement is

also needed.

(3) Many techniques for accurate calculation of gravity anomalies now
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are available; but for accurate computation of magnetic anomalies, the
demagnetization effect in ferrimagnetic materials should be considered. New
tenchniques for calculation of both the internal and external magnetic field due
to arbitrary and inhomogeneous magnetized bodies are needed.

(4) Both the classical and BG approaches of inversions can be applied to
study the source geometry; the generalized inverse approach is the most
favourable. Unfortunately, most inverse approaches assume flat observation
planes which may yield some trouble in direct applications for our purpose.
Anyhow in principle the generalized inverse and least-squares fitting are
applicable for data observed on uneven surfaces.

In short, new methods are required for (1) decomposition of regionals
and residuals, (2) continuation from arbitrary surfaces and (3)_ evaluation of
demagnetization and accurate calculation of magnetic anamolies. In the next
three chapters, we shall develop some new techniques to meet these demands.
Each of the chapters will be devoted to one of the problems, but different
chapters may employ some common techniques and share the same examples.
Finally, we shali summarize the applications of the new techniques and
suggestions in Chapter 6. The departure point for developing new methods
includes the following aspects:

(1) Sdhe problems in potential field data processing may be treated as
inverse problems if integral equations are involved. The spectral expansion
method may then be employed in the data processing stage.

(2) Potential field data processing often deals with forward problems
requiring complicated boundaries. To solve them the finite element method
seems desirable. The finite element method has been applied in other
geophysical methods since the 1970's (e.g. Lysmer and Drake, 1972, Silvester
and Haslam, 1972), but has been seldom used in gravity and magnetic methods.

(3) the physical basis of some older processing procedures might use
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assumptions which inappropriately simplify physical conditions. These need to
be reexamined and if possible corrected.
In this thesis we use the subscripts = and ~ to denote a matrix and a

vector respectively.
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CHAPTER III

THE FINITE ELEMENT METHOD FOR REGIONAL-RESIDUAL DECOMPOSITION

In this chapter, we consider a computer procedure for the
regional-residual decomposition ( abbreviated RRD henceforth ) problem which
simulates the old empirical graphical method. When certain information about
the regional field can be inferred from the data, we can obtain boundary
constraints for the regional field via several techniques, and then the finite
element method (FEM) to estimate the regionals. Both synthetic and practical
examples will be given showing that the FE procedure can improve the

separation results to a considerable extent.

3.1 ANALYSIS OF THE REGIONAL-RESIDUAL DECOMPOSITION PROBLEM

3.1.1 The ambiguity of the RRD problem

In essence the regional and residual components are merely relative
concepts, i.e.'regionqls' represent broader and smoother anomalies having deep
origins and large extensions whereas 'residuals’ means sharp anomalies with
shallow origins. As a matter of fact, regionals or residuals may represent
different geological structures depending on the areas and targets being studied.
It seems impossible to giye the precise definition of a general regional or a
residual component if the parameters of its source is not exactly known. In

some particular cases the 'fuzzy mathematics', as a new branch of modern
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mathematics, might be helpful for quantitatively defining the anomalies, but so
far there are no such research results published in geophysical literature.

Let us look at the mathematical relations which can be used for the
regional-residual decomposition problem. From the viewpoint of potential field
theory, the equations governing the RRD problem are straightforward. Firstly,
if g denotes the Bouguer gravity anomaly which contains regional g', residual

g" and observation error e, we have

g=g' +g" +e (3.1)

where g, g' and g" are function of x and y, the spatial coordinates. Secondly,
we may consider the differential equation which regionals and residuals satisfy.
It can be proved that if a continuous function satisfies Laplace's equation, then
its partial derivatives are also harmonic functions. Hence, we may use the
term "potentials" to represent gravitational or magnetic potential and their
derivatives, such as gravity anomaly and magnetic components. No matter which
one we deal with, both the regional g' and the residual g" must satisty Laplace's

equation

v3g' =0 (3.2)

and
v2g" =0 (3.3)
Finally, we may consider the difference between the regional and the
residual. Because the regional is due to deep sources, it must be much

'smoother’ than any residual. This condition can be described by comparing the

horizontal derivatives as follows
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Eqs. (3.1)-(3.3) and the inequality (3.4) include all we can write for
the RRD problem based on commonly accepted concepts. Obviously a unique
solution for this problem does not exist unless some additional conditions are

imposed.

3.1.2 The difference between gravity RRD and magnetic RRD

The upward continuation method and the spectral analysis method are
commonly used for the RRD problem nowadays. They may produce similar
" estimates if the continuation height is appropriate. The upward continuation
method presumes that residual anomalies decay vertically much faster than
regionals so that they might approximately vanish above a certain height. The
spectral analysis approach (Spector and Grant,1970; Syberg,1972) assumes that
the residuals contain only short wavelength components which could be
abstracted from power spectra of potential anomalies. These assumptions may
qualitatively describe residual characteristics, but may not be precise enough
for quantitative analysis of the gravity RRD problem.

The spectra of gravity and magnetic fields can be expressed by the

multiplication of several factors as
Ag(u,v) = 2nGp (u,v,h) H(u,v,h) (3.5)
AT(u,v) = 27 Dy(u,v) Dy(u,v) I(u,v) ms(u,v,h) H(u,v,h) (3.6)

(Gunn, 1975), where Ag(u,v) and AT(u,v) are spectra of gravity and magnetic

fields respectively; G is the universal gravitational constant ; @ is the Fourier
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transform of density distribution at a level h while ms is the spectrum of

magnetization distribution at the level h. The other factors are

I ( u2+ v2)yz

H

exp (-h( u2+ v2)12)
Di= jLu + jMv + N( u2+ v32

D,= jlu + jmv + n( u2+ v2)/2

where (L,M,N) denotes the direction cosines of magnetization and (l,m,n) denotes
the direction of measurement.’
If both a gravity anomaly and a magnetic anomaly are due to the same

causative body, dividing (3.5) -by (3.6) vields.

( u2+ v2)¥2 G e(u,v,h)

Ag(u,v) = AT(u,v) (3.7)

Dy(u,v) Dy(u,v) . ms(u,v,h)
Equation (3.7) is in fact an expression of the Poisson equation in the frequency
domain (Yang, 1979) and is well-known as an operator for converting magnetic
fields into gravity fields and vice versa. The equation also shows that the
gravity anomalies, including both regional and residual fields, contain a DC.
component even the magnetic anomalies do not. For a vertically magnetized
body and the vertical field component AZ, we have, after normalizing the

constant factors,

Agu,v) = AZ(u,v)/( u?+ v (3.8)

When u=v=0, we have Ag(0,0)#0 even if AZ(0,0)=0. Furthermore, when u and
v are small, Ag(u,v) can be large even if AZ(u,v) is small, implying that

gravity anomalies also have strong long-wavelength components. These facts
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conflict with the assumption bf spectral analysis method, indicating that this
method cannot be as successful for the gravity RRD as for separation of
magnetic anomalies. Because the _DC. component never decays and the
long-wavelength components decay very slowly, the assumption of the downward
continuation method can be incorrect for gravity residuals.

As a gravity field decays slowly from its source, a gravity regional is
often large compared to a residual. Consequently, the appearance of a residual
anomaly in the frequency domain can be less clear than that in the space
domain. The preceding facts can explain why the older graphical method,
although it is subjective and empirical, may produce better solution of the
gravity RRD problem than the newer spectral and upward continuation methods.
In order to achieve a more accurate decomposition we may simulate the

graphical methods by using digital computers.

3.1.3 A computer simulation of the graphical methods

The basis of the graphical methods is the assumption that one can find
some Bouguer measurements in the area of interest which contain mainly
regionals. These measurements may be interpreted according to the trend of
gravity field and available geological information. Since a priori information
about the regionals is used, the graphical method may produce more acceptable
results. This a priori information could be made use of in analytic approaches
as well. In mining gravity survey, we are interested in residual anomalies which
are arranged to be near the centre of a survey area, so one may hope to be
able to find negligible residuals in the marginal zones. In a regional gravity
survey, one can find some part in a contour map with a relatively small field

gradient where some boundary constraints for the regionals can be picked up.
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If such constraints are distributed along a closed curve, a unique solution for
the regional field within the area enclosed by the curve can be obtained. This

is the solution of the Dirichlet problem

v2g' =0 (3.9)

and

g' =g' on boundary (3.10)

where ¢g' denotes the regional constraints on the boundary. We may call g' the
gravity boundary sequence. Thus, a possible procedure for the RRD problem
can be stated as follows. Select some measurements as constraints for the
regional field from a Bouguer gravity map, then evaluate the boundary sequence
g' by some numerical method. The last step is to solve Laplace's equation
using the given boundary sequence to produce a regional estimate. It should
be note that the boundary cannot contain a maximum or minimum field value,
and so these extremes must lie on the boundary. This problem can be solved
if a suitably complicated boundary is selected. If many constraints of the
regional field are avaliable, an arbitrary number of closed curves may be
applied.

This approach could be dangerous or meaningless if calculations of the
internal field amplify the inevitable errors contained in the selected constraints
and a useful procedure must therefore limit the propagation of such errors.
Fortunately, one technique is available with this property, it is the finite
element method (FE method). The FE method is outlined in Appendix I and
we will show its advantages for solving the gravity RRD problem in the coming

section.

3.1.4 ke gdventcoes nt (ke finite oloment procerdrs



3.7

The FE method for approximate solution of Laplace's equation is based

on the well-known principle of minimizing the stored field energy which is given

by

ww = 1/ ff | vu2ds (3.11)

(Silvester and Ferrari, Chapter I, 1983) where u denotes the potentials and the
integration is carried out over a two-dimensional region S. This minimum energy
principle is mathematically equivalent to Laplace’s equation, in the sense that
a potential distribution which satisfies the latter equation will also minimize
the energy, and vice versa. Hence two alternative and practical approaches
exist for solving potential field problems: direct approaches , such as the
finite-difference method, which deals with the potential itself and the indirect
FE method, which minimizes the energy. Since the field energy is generally
more stable and less susceptiblev to influence by noise, approaches dealing with
energy may take some precedence.

Suppose that u(x,y) is the true solution of potential and wW(x,y) is some
differentiable function with zero values at the boundary. If p is a small scalar

parameter, the combination (u+pv) represents an incorrect field with energy

W(u+pv) = W(u) + prvu vv ds + 1/2 pszs |vv|2ds (3.12)

The middle term on the right may be rewritten, using Green's theorem, as

Wlu+pv) = Wlu) + pZW(v) - {J[/W%i ds + p¢ vdu/yn dec (3.13)
S c

where C is the boundary enlosing region S and n denotes its normal. The third
term on the right must vanish, since the exact solution u satisfies Laplace's

equation. The last term will also vanish because v becomes zero on the
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boundary. Hence

W(u+pv) = W(u) + p*W(v) (3.14)

The second term on the right in (3.14) is always positive. Consequently, W(u)
is indeed the minimum value of energy, reached when p=0 for any admissible
function v. As a result, if the incorrect potential does not differ very greatly
from the correct one, in other words, p is small enough , the error in energy
is thus much smaller than the error in potentials. This is an important
advantage of the FE method.

As has been mentioned before, gravity anomalies satisfy Laplace's
equation. Let the regionals g' replace u and the residuals g" replace v, Eq.(3.13)

becomes

W(g'+pg") = W(g') + p*W(g") + p(}S g"3g'/an de (3.15)
C

The last term on the right represents the error due to incorrect boundary
constraints. In practice, no matter how carefully one selects the boundary
constraints, some residuals and noise are inevitably included. In other words,
g" can be small on the boundary, but not exactly zero. However, if the
gradient of regionals should be small, which has been shown in the inequality
(3.4), the last term on the right hand side of (3.15) may be neglected because
of the small values in both g" and 3g'/an. Thus (3.15) is a good approximation
of (3.14). Consequently, employing the FE method for the gravity RRD problem
enables us to limit the effect of errors included in boundary constraints. As
a matter of fact, the effect of errors in the boundary constraints are likely
averaged within the domain enclosed by the boundary during the execution of
the FE procedure. If the error has a normal distribution with zero mean, the

averaging might reduce the effect. We shall later show some examples.
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The application of the FEM to solve a Dirichlet problem can be found
in many texts and is briefly explained in Appendix I. The cost of using the FE
procedure is about 5-10 times greater than that of the upward continuation
method with fast Fourier transform algorithms, depending upon the size of

meshes used.

3.2 SYTHETIC EXAMPLES OF THE FE PROCEDURE FOR RRD

In a mining gravity survey, the conditions required by the FE procedure
can often be satisfied without much difficulty. The regional anomalies are
usually smooth and relatively strong, while the residuals, which located in the
central part of the survey area, may be allowed to vanish on the boundary.
We may consider a set of computational examples designed for testing the
application of the finite element method.

The basic source model consists of three spheres: a large and deeply
buried one is designed to represent a regional source with a contrast mass of
900*10° tons and a depth of 800m and with the centre located below the
lower-left corner(Fig. 3.1). The other two represent sources of residuals with
masses 4* and 2*10° tons, depths 100m and centres at (300m,300m) and
(500m,500m) respectively. The study area covers 900*800 m2 with measurement
interval equal to 100m. The gravity anomalies are shown in Fig. 3.l.a
(regional), 3.1.b (residual) and Fig. 3.2 (superposition). The amplitude of the
regional is about three times larger than that of the residual. Consequently,
features of the residuals do not stand out clearly in Fig. 3.2.

Before using the FE method for the RRD problem, we may see some
results obtained by upward continuation. Fig. 3.3 gives the regional estimate

by upward continuation as 50m and 200m respectively. By comparison with Fig.
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Figure 3.1, Theoretical gravity regionals (a) and residuals (b). The contours are in mgals, coordinates
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Figure 3.2. Synthetic gravity anomafies due to three.

spheres. The cbntours are in mgals and coordinates
in Ax=100m.



3.1.a it is clear that these estimates are rather poor as they contain visible
residual components. Equivalently, the corresponding residual estimates (Fig.
3.4) contain an obvious regional trend. Thus we see that upward continuation
can be inappropriate for gravity RRD problems, especially when survey areas
are small.

We may surmise that the FE method could provide better results as the
three sphere model approaches the required condition, viz. the residuals are
small on the boundary. The gravity data on the boundary of the studied area
may be taken directly as the prescribed boundary constraints for regionals. Thus
the solutions of Laplace's equation can be obtained by employing the FE
method. The regional map resulting from this procedure, as shown in Fig. 3.5.a,
is very close to the theoretical one (Fig. 3.1.a). The maximum error in the
estimate is less than five percent. The corresponding map of residual estimate
(Fig. 3.5.b) is also a good approximation of the theoretical residuals.

As we know, the smaller the observation area, the greater the effect
of residuals on the boundary becomes. Thus the size of survey area may
influence the FE estimates. In order to see how sensitive the FE estimates rely
on the selection of boundaries, we may reduce the survey area to 600*600 m
and keep the gravity values on the new boundary as the boundary constraints
for regionals. Now the boundary is very close to the third sphere, the second
source of residuals, implying that the prescribed constraints contain certain
errors. Correspondihg regional and residual estimates produced by the FE method
are shown in Fig. 3.6. The regional estimate is almost as good as that obtained
by using a larger mesh (Fig. 3.5.a), while the residual estimate changes slightly
in the two outermost contours which decrease in size with the reduction of the
survey area. Herein we see that the FE estimates of regionals and residuals
are not very susceptible to the selection of boundaries.

A fact to consider is that the potential anomalies are usually imbedded
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in random noise. In a gravity survey, the noise comprises observation error and
geological noise. Observation error may be modelled as white noise with zero
mean. Geological noise is of course dependent upon local geological structures
and may have various mathematical representations. For simplicity we may
suppose it to be white noise as well. Thus a white noise with zero mean and
standard deviation of 0.1 mgal is imposed on the three sphere model, giving a
contaminated Bouguer gravity map as shown in Fig. 3.7. In this map it is almost
impossible to recognizg the actual residual anomalies as the amplitude of noise
is comparable with residuals. The contaminated gravity values on the boundary
are directly taken as the boundary constraints of regionals, the FE method then
produces a regional anomaly map shown in Fig. 3.8.a. It can be seen clearly
that the noise level on the boundary decreases with the advancement of the
location of regional estimates to the central area. In the corresponding residual
map (Fig. 3.8.b) one may easily find the two residuals located above the
spherical sources. This result suggests that the residuals in selected boundary
constraints could be reduced due to the average effect of the FEM performance
as mentioned before. If the selected boundary gravity sequence were smoothed

beforehand, additional improvement could be expected.

3.3 TECHNIQUES FOR BOUNDARY SEQUENCE PROCESSING

3.3.1 Selecting new boundaries

So far we did not consider a situation in which some residuals, or
possible adjacent disturbances, exist right on the boundary. Suppose there are

six causative spheres among which three spheres represent regionals and
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residuals as mentioned before (except the third has been shifted leftwards an
interval). The other three spheres, located under the corners of the square area,
generate adjacent disturbances (Fig. 3.9). The fourth sphere located under the
upper-left corner and the fifth under the lower-right corner each have a mass
of 10° tons, while the last one under the upper-right corner has a mass of 2*10°
tons. The depth of all three spheres is 50m. The gravitational anomalies due
to the six spheres are also shown in Fig. 3.9. The residual due to the third
sphere is not clear in that map because it is relatively weak.

A convenient way to separate the regionals by employing the FE method
is to select a new boundary to avoid involving disturbances directly. In Figure
3.9, we may choose a square subarea which cuts off the upper and right
marginal zones, reducing the area from 800*800 to 700*700 m2(dash lines in
Fig. 3.9). On the new boundary, the effects due to the three disturbances still
exist, but are considerably decreased. Taking gravity values on the new boundary-
as the constraints for regionals yields new regional and residual maps as shown
in Fig. 3.10.a and b. Although some noise appears along the boundary, the
difference between the estimates and the theoretical anomalies (see Fig. 3.1)
is trivial. We note that the selected boundary can be irregular in geometry as
to fully utilize available regional constraints. This flexibility is an indication
of the power of the FE method, whose advantages should be made use of as
much as possible, especially for regional gravity interpretation where plenty of
data are available to give many different options for boundary selection. We

shall further show some examples in section 3.4.

3.3.2 The spectral expansion method for circular boundaries

In the case that prescribed regional constraints distribute rather randomly
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Figure. 3.9. Synthetic gravity anomalies due to six spheres.
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Figure 3.10. Regional estimate (a) and residual (b) of the six-sphere anomalies produced by the FEM
with reselected boundary.
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in a large area, it may be difficult to find a closed curve to connect all the
constraints together. In order to obtain a éomplete boundary sequence, we may
use these prescribed data to calculate regional constraints on a specified
boundary. The calculation is called the boundary sequence processing and a
circular boundary may be considered first because of simplicity.

We may choose a polar coordinates (r,g) and a circle of radius a such
that all the prescribed data are located outside or inside the circle (Fig. 3.11.a
or 3.11.b). According to the Poisson's theorem, a harmonic function f(r,9) either

inside or outside the circle (r=a,) with f(a,,6)=g'(6) can be expressed by

|a2- 12| g'(8) dé
.f ........................ (3.16)

| n af- 2a,rcos(6-9) + r?

(Duff and Naylor,1966,p.144-145). Equation (3.16) is a Fredholm's integral
equation of the first kind when f(r,0) is given while g'(a,,8) is the unknown.
Provided that we have a set of independent data f, =f(r;, 6), i=1,...,n, and want

to find the boundary sequence gi=g'(a°, 6;)y j=1,e..,m, we may write

f=Ag (3.17)

where vectors

L=0f e, )T
g'= (glyeen,gT

and

The matrix A is of dimension n by m with elements

a; = |0§ '?‘;ZIAGJ /27rd;,- if r; # ao
(3.18)

= i if r.=a
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Figure 3.17. Geometry of boundary sequence preprocessing.

(a) Circular boundary with external prescribed data, (b)
¢ircular boundary with internal data and (c) 1ohg-strip

region with internal data.



where Ag, are the sampling intervals of 6;, 8;; denotes the Kronecker delta and

d;= r?- 2a,r; cos(6;-¢;) + a? .

3

The constraints on the circular boundary.are the solution of the linear
system (3.17). Because the coordinates (r; ,8;) of the prescribed data are rather
arbitrary, matrix A can be very close to singular. In such cases the direct
inverse of matrix A may produces poor solutions. Hence, we suggest to use the
spectral expansion approach for a kind of optimal solutions of the boundary
constraints. Because we shall use the spectral expansion method to solve such
integral equations for continuation of potential fields in the next chapter, here
we only outline one of the procedures of the spectral expansion method ( the
damped least squares ). In fact, the boundary sequence processing is more or
less identical to the continuation discussed in Chapter 4, in the sense of solving
a Fredholm's integral equation of the first kind. Therefore the techniques
presented in Chapter 4 can be employed directly for the boundary processing
without any difficulty.

A solution for (3.17) can be obtained by minimizing

Q=(Ag-f)T(Ag -f)+a(g'Tg' - ¢c)

where « is a small positive number and c is a constant. Differentiating @ with

respect to g' , and, setting the results equal to zero, we have

g' = (ATA- a1 )7ATS .

where I denotes the identity matrix. By factoring matrix A into a product
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A=UAVT

we get the final solution

g' =V(A+a AUty (3.19)

where U and V are orthogonal matrices and A is a diagonal matrix of n by n

A = diag( Ay, Apseeesdys0yees,0)

with the eigenvalues A; arranged in the decreasing order. The positive number
a can be treated as the trade-off parameter.

For the six-sphere model shown in Fig. 3.9, we may choose 24 gravity
data (marked by black dots in Fig. 3.12) as prescribed regionals and a circle
with radius 4.24264 intervals as a new boundary for processing. Letting A6=15°

and the trade-off parameter «=0.075, we obtain a set of boundary constraints

shown in Table 3.1.
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Table 3.1. Theoretical gravity anamlies and
estimates on a circular boundary produced by
the spectral expansion procedure

- - D D D =D - P D D . D P Y D . D - D P M - S D W G S D D . -

No. Theoretical values Estimates
i (mgals) (mgals)
1 0.9419 0.9278
2 .9155 . 9345
3 .8451 .8138
4 .7502 .7230
5 .6511 .6438
6 .5614 .5671
7 .4882 .4822
8 .4319 .4291
9 .3830 .3683

10 .3488 .3376

11 .3279 .3221

12 .3182 .3206

13 .3182 .3150

14 .3242 .3469

15 .3350 .3688

16 .3538 .3683

17 .3859 .3758

18 .4335 .4285

19 .4892 .4831

20 .5619 .5671

21 .6515 .6438

22 .7504 .7228

23 .8452 .8137

24 .9156 . 9345

The maximum relative error in the estimates is less than 4%, showing that the
generalized inverse can produce satisfactory constraints for further processes.
The FE procedure is then applied to produce regional and residual.estimates
shown in Fig. 4.13. Within the circular boundary, the regional and residual

estimates are very close to the theoretical values, implying the technique is

reliable.

3.3.3 The spectral expansion method for long-strip regions
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Figure 3.13. Regional estimate (a) and residual (b) produced by the finite element method with the
constraints on a circular boundary estimated by the generalized linear inverse.




If a survey is carried out in a belt-like region, thé method with a
circular boundary becomes inapplicable. In order to use the spectral expansion
method for the optimal boundary sequences, let us consider the Diri.chlet
boundary value problem in a long-strip region. The solution of the problem has

been shown by Huestis and Parker (1979) as follows

sin Y: ® g'(x,0)dx oo g'(x,n)dx
flx;,y;) = ====== i[ ---------------- +[ ---------------- )
2% o ch(x-x;)-cos y; +o ch(x-x;)+cos y;

The geometry and the parameters are shown in Fig. 3.11.c. All the distances
must be scaled in this case to make the separation of the two enclosing levels
equal to n.

After a set of prescribed data { f ;} is selected, the spectral expansion
method mentioned in the previous section can be used for estimating the
optimal boundary sequences {g’;} if elements of matrix A in (3.17) are

(3

calculated by

i)
]

; = 8in y;/2x(ch(x;-x; )~ cos y:)AX; for y;= 0

sin y;/2n(ch(x;-x;)+ cos y;)Ax; for y;=n

3.4.4 Arbitrary boundaries

For arbitrary boundaries there are no analytic expressions showing the
direct relationship between a harmonic function and its boundary values.
However, the Dirichlet problems can be represented in terms of integral
equations as well. Assume that S is a continuous surface and P is a point either

inside or outside S. A harmonic function at P may be represented by the
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potential of a double-layer distribution on S:

f(P) = [[ u(Q)d(1/r)/on ds

(Kellog, 1953, p.286), where @ is a point on S and r=QP; n is the external
normal of S and u is the intensity of the equivalent source. On the boundary

S, the harmonic function g'(Q)=f(Q) is related to the equivalent source by

g'(Q) =+ 2nu (Q) + ffs,u(Q'ro(l/r')/an ds

where Q and Q' are different points on S and r=Q'Q, S' is the boundary S

exterior to Q; the plus corresponds to P outside S while the minus for P inside

SQ
In 2-D cases we can write correspondingly
f(p) = j;:,u(Q) - cosg/r dc (3.20)
and
g'(Q) =+ p(Q) + j(::’,u(Q') cos¢’ /r' dc (3.21)

where 9§ is the angle from QP to n and § from Q_;EQ to n. For boundary
processing, we have a :set of values of f(P) and want to find the boundary
sequency of g(Q). We may first use the spectral expansion approach to
determine the equivalent source u by solving (3.20), which is a Fredholm's
integral equation of the first kind. Then the boundary sequence can be
calculated easily via the integration in (3.21). Thus in principle there is no
difficulty to produce a set of constraints on arbitrary boundaries by employing
the spectral expansion method. |

We shall not discuss the problem any further because in most cases it
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might be unnecessary to employ this relatively expensive method to obtain
boundary sequences. For a large area the spectral expansion procedure may cost
more then the execution of the FEM itself. Therefore we may consider other

means for boundary constraints processing, such as the least squares method.

3.4.5 A least squares procedure for boundary preprocessing

The spectral expansion procedure is relatively expensive as the
factorization of a matrix costs much more than ordinary inversion of matrices.
In addition, sometimes one may meet a critical situation in which the boundary
cannot be changed. For instance, in a mining gravity survey, where the
observation areas may be critically small and adjacent disturbances may be
very strong, one may not have much choice on changing boundaries. In these
cases we may consider a modified least squares procedure which i3 fast and
can provide satisfactory estimates in some cases.

Let us consider once more the six-sphere model (Fig. 3.9) and suppose
that the survey area ( 800*800 m2) cannot be reduced. The original gravity
boundary values due to the six spheres plus a white noise - the primary
boundary sequence - are shown in Fig. 3.14.a. It is evident that there are
three large residuals round the points 9, 17 and 25 respectively, corresponding
to the sources under the three corners. Although the sequence contains noise,
the trend of the regionals can be recognized without difficulty. We notice that
the residuals, as local anomalies existing at only a few segments, can be
removed when we search for the trend. Least squares fitting then may be used
to minimize the error. such a procedure may contain the following steps.

The first step is to remove those measurements from the primary

boundary sequence which contain visible residuals or disturbances. The
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remainder, mainly representing the trend , can be denoted by f(x;) with x;,
i=1,2,...,N, giving the locations of the remainder in nonequispaces. It is manifest
that f(x;) still contains little residual components and some noise, which may

be treated as error and denoted by r:

f(x;) =g'(x;) +r; (3.22)

Suppose that the trend sequence g'(x;) can be approximately represented by a
polynomial,
M
g'(x;) = Za;)-cj (3.23)
J=1

Where M is a small integer since the trend is usually smooth, and

a = x7° (3.24)
ij i
The equation (3.23) can be rewritten as

g'=Ac (3.25)
where A is an N by M matrix with elements shown in (3.24), and ¢ is an
unkown vector of coefficients of the polynomial. Minimizing the Euclidean norm
of the error r, that is

el = IIf -Acl (3.26)
with vector f containing the prescribed regionals on the boundary, we get the
so-called normal equation

ATA ¢ = AT (3.27)

After solving linear system (3.27) and obtaining vector ¢, we are able to
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calculate a new boundary sequence by

M
g'(x) = ), ¢ xi (3.28)

i=1,
where x, denotes the locatiop of boundary nodes in the mesh designed for the
FE implementation. The new boundary sequence g'(xc) can be an approximation
of the trend since the residuals have been considerably removed and the error
has been minimized. However, it may be biased, as a polynomial has been
assumed to represent the trend.

Computationally there are several ways to solve the normal equation
(3.27). Conventional procedures, such as the Gauss elimination method, sometime
cannot produce good solutions. For instance, if a-general matrix i is of rank
k, the computational product ATA might have a rank less then k. Hence, the
methods which do not involve the matrix multiplication of iTz_a_ are more
appropriate for solving the normal equation. The QR decomposition method is
one of the methods which avoids executing the multiplication. A general matrix
A can be uniquely decomposed into a product of an orthogonal matrix Q and

an upper triangular matrix R

A= QR (3.29)

(Stewart, 1973), where A is an N by M matrix with rank M=N, R is also of N
by M with all zero elements in its lower part except the upper triangular

elements. Matrix g is of N by N. Thus the normal equation becomes

Re = QTf (3.30)

After QR decomposition, (3.30) can be easily solved by back substitution since

R is triangular. The QR decomposition method being used refers to Givens'
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rotations (Nash,1979).

The primary boundary sequence (Fig. 3.14.a) is processed by this
procedure which produces a 'trend' sequence as shown in Fig. 3.14.b. The degree
of the fitting polynomial used is up to 13. Setting the trend sequence as the
boundary constrains, the FE method yields a regional anomaly map shown in
Fig. 3.15.a. Comparing this estimate with the theoretical one (Fig. 3.1.a)
indicates that the maximum relative error of the estimate is about 12%, still
much better than those produced by upward continuation. But the estimate is
not as good as those yielded by the techniques mentioned in the previous
sections. The corresponding residual map is shown in Fig. 3.15.b in which the
residuals due to the second and the third spheres are not separated.

We note that the proposed procedure is different from the traditional
trend surface fitting where all residuals join in least squares fitting without
considering a priori information about the trend. In addition, we assume that
the estimates are represented by polynomials only on boundaries, inside which
they satisfy the Laplace's equation. Anyhow, the final estimates are produced
via boundary constraints, so the estimates located near boundaries may be
biased due to the biased boundary constraints. It is an disadvantage of the
least squares procedure.

Another problem in the procedure is how to choose the degree of the
polynomials because the polynomial fitting procedure yields the coefficients
which depend upon the degree of the polynomial with which the fit is made.
We suggest using different degrees for the fitting, then choosing one of the
fitting consequences as the trend sequence by interpreter's experience. It would
not cost much since boundary sequence usually involves a relatively small
number of data. Anyway, this procedure seems not preferable when the
boundaries can be reselected or the area of interest is not so large, enable to

employ the spectral expansion procedure with acceptable price.



gl ||

v T A
L] s 10 15

(a)

Figure 3.14. Primary boundary se
procedure. The abscissa shown the sequential number of the sequences while the ordinate is in

mgals.

¥
30

Il

® 10 12 1% 18 10 20 22 24 28 28 % 32

(b)

quence (a) and trend sequence (b) produced by the least squares

9€T




*

.‘q’ .
LR —
x
- e 0.35 —— B.NY —0.58
LEGEND: —uh Tlewm —0on
(a)

¥
X -
V7 N
06 / N2}
.03 .0 N
L7.03
6 .06 -
l/,' ‘\\
/
./ i
. .23 |
" - /' ;
] ;
; N }
2 ,;" - g
{ e ' , -.03
o ‘ . £
) ) 5 [}
x
LEGEND: -0.03 0.06 —_— 0.1y — 0.2
— [ 0.40 J— 0.49
(b)

Figure 3.15. Regional estimate (a) and residual (b) produced by the FEM with boundary constraints
shown in Fig. 2.14.b. The contours are in mgals and coordinates in ax=100m.

12°¢




O

3.38

3.4 REGIONAL GRAVITY ANALYSIS OF THE ABITIBI GREENSTONE BELT

An example area chosen for illustration is the Abitibi belt, Quebec and
Ontario, Canada, latitude from 47° to 50° and longitude from -83° to -73°.
Geologically it belongs to the Superior Province of the Canadian Shield. The
rocks in the area are mainly volcanic and sedimentary of Archean age (Fig.
3.16). As the oldest rocks in Superior Province, they were involved in the
Kenoran Orogeny during which they were folded, faulted, metamorphised, and
intruded by granitic rocks. In the southern portion of the area, the Archean
rocks are divided into four groups (Fig. 3.17). The Malartic Group at the base
consists of basic lavas and pyroclastics with acidic lavas and tuffs near the
top. Numerous gabbroic and ultramafic masses occur in the basic lavas and
felsic intrusions are included with acidic volcanics. The Kewagama Group
comprises greywackes and argillites. The Black River Group comprises basic to
intermediate flows and pyroclastics, and acidic flows and tuffs with related
intrusive gabbros, diorites and felsitic rocks. These rocks are overlain by the
Cadillac Group which consists of greywacke, some comglomerate, and minor
amounts of tuff, iron-formation, and quartzite. All the Archean rocks are folded
along easterly trending axes. These folds appear to be modified in places by
cross-folds of various orientations, and cut by several easterly trending faults.

Regional gravity values have been accumulated by the Earth Physics
Branch, Department of Energy, Mines & Resources, Ottawa. Bouguer gravity
data are available from thousands of stations in the area, providing the gravity
map shown by Fig. 3.18. By comparing the gravity and geology maps one can
find that the strong local negative anomalies are roughly coincident with
granitic rocks while prominent positive anomalies are probably due to exposed
or concealed gabbroic and ultrabasic rocks. Outside local anomalies a regional

trending field increases from east to west. However, in order to separate the
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regionals from the residuals, we have to consider the relationship between the
global anomalies, regionals and residuals.

The global gravity anomalies have been classified as the long-wavelength
anomalies ( A > few 1000 km ) by Phillips and Lambeck (1980). They are
supposed to originate mainly from the upper mantle. Across the Canadian
shield, there is a negative gravity anomaly with amplitude from -40 to -60
mgal ( see Gravity Map of Canada by Department of Energy, Mines and
Resources, 1969 ). This anomaly is one of the outer negative anomalies adjacent
to the positive gravity belt around the Circum-Pacific belt. The positive
anomalies occur in the vicinity of the subducting Pacific lithosphere; they may
be caused by sinking of the cool oceanic lithosphere into the mantle. The
adjacent negative anomalies, including the one in the Canadian Shield, are
probably caused by a complementary upflow of hot materials from the lower
mantle through the transition zone into the upper mantle. It can be noticed
that the underlining anomaly is blurred by a gravity high in the Hudson Bay
Lowland and a gravity low on the George Plateau and the Lake Pleteau,
indicating that the regianal Bouguer anomalies are partly related to isostasy in
the lithosphere, especially in the lower crust. According to Phillips and Lambeck
(1980, p.51), the intermediate wavelength anomalies (' few 100 km < A < few
loookm ) must be consistent to the regionals of our interests which may
originate from the lateral density variations in the lithosphere.

Unfortunately, very little work has been done on separation of the
intermediate wavelength anomalies. Cochran and Talwani (1977) obtained the
residual gravity anomalies of ocean basins by removing the systematical gravity
effect of the cooling lithosphere as a function of age or distance from the
ridge axes. However, the continental lithosphere is much more complicated than
the oceanic, therefore a successful separation of these on-land anomalies

requires careful processing. The density variations in the lithosphere can be
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caused by several factors. For example, they may be a consequence of lateral
temperature variations. The regional variability of the heat .flow through the
Earth's surface from its interior has been recognized for many years. Besides
temperature, the lateral variations of the stress state can also result in lateral
density variations. Of course, the relief of the Moho and historical intrutions
of mantle materials can be the major sources of the regional gravity anomalies
because they represent the sharpest density contrasts in the lower crust. Thus
we may speculate that the regional field in the Abitibi area is due mainly to
the relief of the Moho plus the lateral density anomalies in the lower crust,
caused by chemical inhomogeneity and by lateral variations of the stress or
temperature. Based on this assumption, several criteria may be considered for
locating the zones where the gravity field has a predominantly regional
component.

The gradient of the field may be considered first. Simple calculaton of
regular mass distribution models can determine that the regionals must have
small spatial derivatives say less than 0.5mgal/km in the area of interest. For
instance, we may use the semi-infinite slab model to evaluate the maximum
derivative ( the formula will be shown by (4.38) in the next chapter ). If the
depth of the slab is 35km, the maximum derivative will be less than 0.5mgal/km
unless the thickness of the slab exceeds 10km. On contrary, the maximum
derivative becomes larger than 0.5mgal/km when the top depth is 10km and
the thickness is greater than 2.9km. Hence the zones where horizontal
derivative of the gravity field less than 0.5mgal/km can be used for selecting
the regional constraints ( shown in Fig. 3.18 by slight shadows ).

It can be found that the amplitude is useful for recognizing some places
where prominent residuals exist. Because the trend in Abitibi varies from -45
to -75 mgals, the anomalies with amplitude smaller than -80 mgals and greater

than -40 mgals (in the west) or -50 mgals (in the east) must contain
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considerable residuals. As a results we should not select any regional constraints
near these anomalies ( see Fig. 3.18, striped shadows ).

Because the first order triangles are used for elements, the average
length of the triangular sides determines the smallest wavelength of the regional
estimates. Suppose that the average is about 25 km, all anomalies with
wavelength less than 50km are actually treated as the residuals which cannot
appear in the regional estimates.

The place where the gravity field contains mainly the regional field is
divided into many small cells of size 10'20', we can evaluate the limits of the
amplitude of regionals at each cell via the contour map. Picking up some
represetative gravity data with each cell which falls within the limits, we
obtain a set of boundary constraints of the regionals as listed in Appendix II.
A mesh can be designed for the finite element performance with the nodal
numbers, coordinates and the final regional estimates all listed in this appendix.

The regional anomalies thus produced s» shown in Fig 4.19, from which
some aspects may be noticed.

(1) As the main trend, the regional field increases from -75 mgal at the
east to -45 mgal at the west. Nevertheless, a secondary trend is also visible
showing that the field increases from south to north in the western part ( to
the west of 79°W ). Recent results of the seismic refraction profile (
ValdOr-Matagami ) indicate that the crustal thickness decreases from the east
to the west , and might slightly decreases from the north to the south (Parker,
C. L.,1984). The coincidence between the gravity and the seismic results implies
that the the regional gravity trend to a certain extent reflects the relief of
the Moho. |

(2) Based on the features of the regional field, the Abitibi belt may be
divided into three districts: the East, the North and the South. The East (to

the east of 77°20'W) is characterized by a negative anomalies which may be



Figure %.18. The gravity anomalies of the Abitibi belt. The striped shadows
show the places where gravity field contains visible residuals
while slight shadows show the zones for regional constraints
after occnwartz et al., 1382 .
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caused by thickened crustal structure or by a large granitic batholith in the
crust. Imperfect recovery from postglacial loading might also cause negative
anomalies. In the North (to the north of 48°40'N) the regionals are gradually
increasing from east to west with a relatively large gradient (Fig. 3.20.a).

(3) In the south Abitibi (up to 48°40'N), which is one of the most
important mining areas in Canada, a step-like trend appears with small gradient
within the steps and a few sudden increases between them. The sudden changes
might indicate deep crustal faults. For example, a sudden increase occurs at
abouf 77°25'W (Fig.-3.20.b), which becomes very clear after downward continued
to the level of -37km (the continuation method employs the damped least
squares procedure will be explained in the next chapter). Geographically it
coincides with the Lake Parent and the Lake Tiblemont, together with the lakes
a long diabase dike can be seen on ground. Thus we suggest the possibility of
the existence of a deep fault there.

Further interpretation of the regional map is beyond the scope of the
thesis as we are dealing with new data processing techniques. Now we may
turn to an example of locating local anomalies. Between Val d'Or and Fisher
there is both a negative anomaly and a positive one (marked by "A" in Fig.
3.21). The negative one is due to a large granitic intrusion while the positive
one is due to the ultrabasic intrusion across the Lake Malartic. Upward
continuation is first used for separation of these residuals with continuation
height equal to 10km. The corresponding regional estimate is shown in Fig.
3.22. The remains of the local anomalies in the regional estimate indicate that
the regional estimate contains undesirable residuals.

Quantitative interprétation of the residual anomalies requires separating
them from the regional field. The residual estimate produced by upward
continuation is not precise enough for quantitative analysis. We may try the

FE procedure with the following steps. Select a boundary which goes through
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slowly varying zones of the gravity anomalies. The Bouguer gravity data on the
boundary can be used as the boundary constraints for the Dirichlet problem. A
mesh shown in Fig. 3.23 is designed for the FE procedure. The regional map
thus produced (Fig. 3.24.a) shows that the regional field tends to decrease from
west to east, which is consistant with the results shown in Fig. 3.19. The
corresponding residual map is shown in Fig. 3.24.b. There appears to be no
regional anomalies remaining in the residual map and vice versa, the anomalies

seems to be well separated.

3.5 SUMMARY

As relative concepts, the regional and residual components can represent
quite different structures depending upon the object of the interpretation and
the area being studied. A mathematically unique solution for the
regional-residual decomposition (RRD) problem does not exist due to the
ambiguity of these concepts. Because the spectra of regional and residual
gravity anomalies always overlap tightly in the low-frequency band, upward
continuation and spectral analysis approaches for gravity RRD analysis have
some inevitable problems which have been described by Gupta and Ramani
(1980). A means to improve the analysis is simulating the graphical methods by
using computers. If some approximate values of the regional field on a selected
boundary can be specified based on the trend in gravity maps plus some
available geological information, the RRD problem becomes the Dirichlet
problem with perturbed boundary conditions. The finite element (FE) method,
which minimizes the stored field energy, is an appropriate method for solving
this kind of problem, as it can be used for very complicated boundaries and

can limit the effect of errors contained in prescribed boundary constraints.
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After boundary constraints are selected, the study area can be divided into
many small elements within which regionals are approximately expressed by a
linear equation. Minimizing the energy results in a system of linear algebraic
equations which provides a numerical estimate for the regionals. In order to
obtain good solutions, the boundary should be selected carefully so that boundary
constraints may contain as few residuals as possible.

When the prescribed constraints distribute rather randomly inside or
outside a specified boundary and cannot be connected by a closed curve, some
techniques are needed to produce a set of constraints on the specified boundary.
The spectral expansion method can be applied in such cases for boundary
sequence processing and it produces satisfactory results. A least squares
procedure may also be used for the process which is economical but might
produce biased results.

A series of synthetic examples has been presented to illustrate the
accuracy and flexibility of the FE procedure. This procedure is also used to
produce a regional gravity map of the Abitibi belt within the Canadian shield.
Comparing the estimates produced by upward continuation and the FE procedure
shows that undesirable residuals have disappeared in the FE regional estimates
whereas they evidently remain in the upward continuation estimates. Therefore
we suggest applying the FE procedure for precise analysis of regionals and
residuals. However, the FE procedure can produce more than one solution
depending upon the selection of prescribed boundary constraints of regionals. In
general, the broader the selected constraints distribute, the deeper the
structures represented by the regional estimate. In order to obtain good
solutions for the regional and residuals, interpreters must first determine some
zones for selecting regional constraints based on the trend of potential fields
plus available geological and geophysical information. The FE procedure provides

a flexible way to integrate a priori information about regionals with computer
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processing, therefore, improves gravity RRD results.

A disadvantage of the proposed method is the computation cost required.
For a large region with several thousand of potential field data, the FE
procedure can be much more expensive than upward continuation and spectral
analysis methods when the spectral expansion method is needed for boundary
sequence processing. In many cases the extra expense is worthwhile as the FE
procedure produces much improved separation results. However the requirement
of preselecting the boundary location on.map and obtaining optimum boundary
constraints rules out the FE procedure as entirely automatic. This problem

can be overcome if interactive graphics processing is used.
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Chapter IV

New Techniques for Continuation of Potential Fields from Arbitrary Surfaces

4.1 Introduction

Because continuation provides the possibility of producing a
three-dimensional image of potential fields from observations on a single
surface, . it has received an enormous amount of attentions. Downward
continuation can be used for localizing the source areas and producing initial
estimates of source parameters for further inversion. As a simplified inverse '
method, downward continuation enjoys the advantage of not presuming the
geometry of sources..On the other hand, upward continuation is often used to
suppress near-surface noise or distortion of the field due to uneven terrain and
to join observations obtained at different altitudes.

Fourier transformation methods have been employed for continuation
between horizontal planes since the 1950's (Dean, 1958; Baranov, 1975). For
2-D potential data observed on an arbitrary surface, a straightforward method
of upward continuation is to apply the conformal mapping of complex variables
(Parker and Klitgord, 1972). Also based bn the theory of complex variables, Le
Mouel at el (1974) suggested using simple analytical expressions to derive
continuation filters. However, these methods are restricted to 2-D cases. For
3D botential fields, Chalupka (1980) tried to develop a formulation for analytic
continuation from the ddta observed on a spherical surface which may be

considered as an analogue of the comple_x function methods in the 2-D cases.
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Unfortunately the formulation has not been tested by any computations and the
limitation that data must be taken on a spherical surface makes it difficult to
apply to exploration geophysics.

For continuation of 3-D potential field data from an arbitrary surface,
Hendérson and Cordell (1971) proposed an approach which expands the data into
a harmonic series with an exponential modulator. The procedure can be unstable
for downward continuation due to the effect of the exponential modulator and
the truncation of the series. Syberg (1972) tried to extend the Fourier
transformation methods for potential data taken on a general surface but the
formulation contained some mistakes (Grans::er, 1983). I 1977, Bhatt&charyya
and Chan proposed another. procedure for upward continuation from an arbitrary
surface which uses an iterative method to solve a Fredholm's integral equation
of the second kind. Later on we éhall show that the procedure can be developed
into a compact form.

Because potential field data are usually finite and contaminated, the
procedures for continuation should consider the effects of deficient and noisy
data. There is no doubt that the application of the Backus-Gilbert (BG) theory
can_ provide better procedures for continuation problems, because the
noruniqueness of model parameters can be assessed by the BG method (Backus
and Gilbert, 1967, 1968, 1970). The early work was done by Ducruix et al.
(1974) who treated the problem of continuation from an uneven surface as a
linear inverse problem and found the smallest root mean square solution
compatible with the measured data. The authors supposed that the continued
potential fields are band-limited, i. e. its Fourier transform is zero outside a
finite frequency domain. As pointed out by Huestis and Parker (1979), the
method does not take full advantages of BG theory which provides a means of
exploring the resolution power and describing the degree of non-uniqueness.

Furthermore, the assumption of band-limitedness is incorrect for downward
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continuation. For example, at the level of the top of the sources, the anomalies
ideally have a white noise spectrum which is constant all over the wavelength
domain. Ducruix et al. recognized that their methods cannot be used for
continuation close to the source. For some applications, such as joining
aeromagnetic maps measured at different altitudes, these methods may produce
quite satisfactory results but for downward continuation from irregular
topography with insufficient data, better techniques are needed. In such cases,
as these authors mentioned but did not take into account (LeMouel, 1975,
p.253), the spectral expansion method may be useful.

Based on the BG theory, Huestis and Parker (1979) showed some methods
for both upward and downward continuation which produce a smoothed version
of the true solution. The mathematical treatment is elegent but the criterion
chosen for optimization causes some practical problems which we shall discuss
in the next section.

In this chapter we first deal with a problem of downward contiruation
of poiential fields on an arbitrary surface to a plane at the top of the sources.
The spectral expansion approach will be employed iogether with some
constraints. Some new procedures for modifying the eigenvalues of the mapping
operator will be developed which enable us to find the best trade-off estimate
for downward continuation of finite and noisy potential field data to the top
of sources. Finally a compact formulation for upward continuation will be
demonstrated which improves the 'equivalent source' method proposed by
Bhattacharyya and Chan (1977). As the spectral expansion is well-known today,

our effort will focus on the application techniques.
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- 4.2 The BG method and Spectral Expansion Approach

4.2.1 Downward continuation of 2-D potential field data

Let us suppose #¥(x,z) is a 2-D harmonic function such as the vertical
component of magnetic or gravity -anomalies. The total mdgnetic intensity AT
can be treated as a harmonic function if, but only if AT«T,, where T, is the
magnitude of the total geomagnetic intensity and assumed to be invariant. The
validity of the treatment in the case of upward continuation has been shown
by Henderson (1970). However, for downward continuation to a place close to
sources thé condiiion AT« T, can be invalid. We can examine the validity of
downward continuation estimates‘ of AT by their magnitudes, e. g., by some
criterion such as estimates larger than 0.1T, must be doubtful. However, we
will not discuss this problem further as we shall not use AT data for our
examples.

Assume that the harmonic function ¥(x',z') is known on a topographic
curve 2'=h(x') and the axis z=0 is placed at the lowest point of the terrain (see
Fig. 4.1.c for; -an example). Let another horizontal line under z=0 be z=-H and
suppose there exist no sources between the two lines. If ¢(x,-H) is a harmonic
function on z=-H then $(x',z') can be represented by the upward continuation

integral

1 (% ¢ h(x')+H ) o(x,-H)
B(x!,2') = — : - dx (4.1)
® Lo (x'-x)+ ( h(x')+H )

(Dean, 1958). We may comment on equation (4.1) as follows.
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Figure 4.1. An example for downward continuation. (a) Vertical
magnetic anomaly taken on triangular topography over a vertical dike
model, (b) theoretical anomaly at the top of the dike and (c) geometry
of the topography and the dike. All distances are in arbitrary units.
One gamma is .1 nT.
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(a) According to the theory of integral equations, (4.1) is a Fredholm's

integral equation of the first kind whose kernel

( h(x') +H )/n

(x'-x)*+ ( h(x')+ H )?

can be close to singular because the terrain h(x) is rather arbitrary.

(b) From the viewpoint of functional analysis, (4.1) defines a Fredholm
operator (equivalent to the integral kernel above) which maps a Hilbert space
into itself. If, and only if, h(x) is a constant, the operator is symmetric. The
operator is usually bounded in a Hilbert space but the inverse operator may
not be..

(c) Downward continuation represented by equation (4.1) is a typical
ill-posed linear problem (Franklin, 1970) and the best known example of unstable
problems (Parker, 1976), as an imperceptible change in ¢ may be transformed
into a large variation in ¢ by the inverse operator. Thus, practical approaches
for mitigating the undesirable effects of instability are essential in such
ill-posed problems.

(d) Finally, in engineering terminology the integral kernel represents a
space-adaptive filter with an impulse response function which depends explicitly
on the observation position x. The goal of downward continuation is designing

a stable linear system as close to the inverse operator as possible.

4.2.2 Anapplication of the BG method

If the potential field data are known only at points x', j=1,...,N, then (4.1)-

becomes
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m N
‘/’(x,-',hﬂ =[ Gj(x) o(x,-H) dx (4.2)
[0 o}

where G, (x) is called the mapping kernel of the integral equation for the jth

(h+H) /n
G (x) = . (4.3)
(x-x)+(h+H)

[

In the absence of additional information, the data {¢;} and the N
equations in (4.2) comprise our total knowledge about the solution of the
downward continuation problem, or the model, in terms of the BG theory. From
(4.2) we see that each data ¢; represents a moment of the model with a
moment function G;(x). As Backus & Gilbert (1970) showed, the only reliable
information about ;P(x,-H) obtainable from (4.2) is a moment of the model. For

the value of the model at a point x., the only information supplied by the data

are the averages

~ N
F(xo,-H) = 3 a;(xe) $(x!,h,) = [0(x,~H) Alx,xo)dx (4.4)
=1

where

N
Ax,x0) = > a(x0)G(x) . (4.5)

i=1

In equaton (4.4), A(x,Xo) is called the averaging function and a;(x.) are
set of constants to be determined. The average 9 (xo,-H) and its associated
averaging function summarize our knowledge of ¢(x,~H) in a region around x,.
If constants a;(x.) could be found such that A(x,x,)= 8 (x~Xx,), a Dirac delta
function centred. on x,, ¢(x,-H) might be recovered exactly. As this cannot

happen with deficient data, the a;s are usually chosen to make the averaging
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function "as close as possible" to a delta function or to a delta-like functon.
The BG formalism also introduces several measures of 'deltaness’ and criteria
for optimal solutions. The criterion used by Huestis and Parker (1979) is the

quadratic one which minimizes

Q0 rQO
Q(x,) = 12[ ((x-x,)A(x,%0) P dx +JL([ A(x,x,)dx - 1) . (4.6)
Q0 Q0

The first term on (4.6) {8 known as the second moment norm while the second

term is subjected to the unimodular constraint

[0 o)
LOA(x,xo)dx =1 ‘ (4.7)

with A as the Lagrange multiplier. The minimization leads to (N+1) equations
in the N+1 unkowns { @;} and A. To obtain an average ¢ (xo,-H) at each point.
of xo requires solving an N+1 equation system because x, is involved in the
equations. It is computationally more expedient to find a method that requires
solving the system only once for all values of x,. We may consider the spectral
expansion approach which has been explained in detail by Jackson (1972),

Wiggins (1972), Parker (1976) and many others.

4.2.3 The spectral expansion approach

Suppose we wish to determine a set of unknown parameters ¢, ( which
may represent potentials or field components at the level z=-H ), i=l,...,M,
from a set of data #;, j=1,...,N, the field components on a curve z=h(x). Based
on approximation of the continuous relationship (4.2), each ¢, is related to all

¢; by a set of equations
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B =GPy e yPu)

¢N GN(¢1,'°-’¢M) . (4.8)

We may rewrite (4.8) in the matrix form

$ =Go¢ , (4.9)

where the elements of matrix g are

(h;+H)/ n
gij = 2 2 . (4010)
(x,-x,)2+(h; +) ~

The matrix G consist of N rows and M columns. Based on practical
requirements in mining and regional geophysics, we may assume N>M because
in most cases we are interested in constructing a useful solution. It is possible
to extend the analysis to the underdetermined problem where a large number
of estimates (M>>N) at the lower plane is sought, in which case the BG method
(e. g. Huestis and Parker, 1979) for both construction and appraisal is
appropriate. The singularlity of G depends on the continuation height H as
well as the behaviour of the terrain { h;}. In fact, matrix G can be close to
singular, or computationally singular, but seldom mathematically singular. Thus
we may assume that the rank of matrix G equals M but some of its eigenvalues
can be very small. For flat terrain where h(x')=constant, the system becomes
a deconvolution filter while matrix- G becomes a Toeplitz matrix. In such a
case the singularity of matrix G depends upon only the continuation depth. In
general the deeper the continuation, the closer to singular the matrix G

becomes.

We consider the general case 6f downward continuation from an arbitrary
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surface. If N=M, the direct matrix inverse $=G'¢ may produce very poor
solutions with extremely large variance because G can be very close to singular.
The classical least squares method can be used for both the well-posed and

overconstrained cases (N>M) which minimizes the Euclidean norm of ||G? - ¢ ||

o.
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where T denotes transposition. Differentiating with respect to ¢7, and setting

the result equal to zero, we have

?=(CGr'cT¢ . (4.11)

Equatioﬁ (4.11) is the normal equation and the evaluation of the inverse (QTQJ
requires that the rank of g is equal to M, or rather, (_; must be
computationally non-singular. Thus an appropriate procedure for downward
continuation should explore the singularity of G and properly treat the singular
values. Hence the épectral expansion approach seems very appropriate because

it has these properties.

Following the spectral expansion method (Parker, 1976), matrix _C_: may

be factored into the product

G=UAVT (4.12)

where U is an N by M orthogonal matrix with columns containing the
eigenvectos u;, i=l,..,M; V is an M by M orthogonal matrix with columns

containing the eigenvectors v,, i=1,;..,M, M=N, and
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é =Diag(./l1 "QQ’AM,O'...,O) (4.13)
where A,, i=1,...,M, are the eigenvalues arranged in decreasing size. Inserting
(4.12) into (4.11) yields

$=YA'U$=H. ¥ (4.14)

where

H = vaiyT (4.15)

is called the Lanczos inverse or natural inverse (Lanczos, 1961, p.124).
‘As pointed out by Jackson (1972), the Lanczos inverse has the following
desirable properties: (a) it always exists, (b) the Lanczos inverse is a least

squares inverse, as is clear from the derivation of (4.11), and (c) ¢ is that least

squares solution which minimizes I_ 2, The resolution matrix for the Lanczos

inverse

=H. G=Y V" (4.16)

{3 the optimal resolution matrix and the Lanczos inverse also provides the best

information density matrix

S=GH =y (4.17)

In spite of the advantages mentioned above, the Lanczos inverse approach
has some problems in performance. For instance, when matrix _G_ is close to
singuldr, some eigenvalues in A can be pretty small, resulting in unacceptably
large variances in the model parameters. In fact, equation (4.14) shows that

the components of f are proportional to the inverse eigenvalues 1/A; . If we
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assume the data to be statistically independent and have unit variance, by (4.14)

we can write

Var 9\ = i ( Vig /2i)? (4.18)
i=

(Jackson, 1972). Hence, when some eigenvalues become very small, the variance
can be very large. Several remedies have been proposed to deal with the
difficulty: (a) the stochastic inverse method and its modified versions (Franklin,
1970; Jupp and Vozoff, 1975), (b) a sharp cut-off procedure (Wiggins, 1972), (c)
imposing some inequality constraints on unknown functions (Sabatier, 1977a,b)
and (d) using a priori data (Jackson, 1979). For the downward continuation
problem it is difficult to determine appropriate limits on the unknowns. In
section 4.3, we shall further apply these techniques to the downward
continuation problem and try to improve the estimates. Before we develop

some techniques for downward continuation, we may show a practical method

to treat 3-D potential field data.

4.2.4 Downward continuation of 3-D data

Now we consider the formula for 3-D potential fields. Let o (x',y',2')
be a harmonic function on an arbitrary surface S: z'=h(x',y'), and ¢(x,y,~-H) be
the potential on a horizontal plane 2=-H which is under S but above any '

causative bodies. The potential field data on S is given by

1 [{® (n(x',y')+H) o(x,y,-H)
$(x',y',h) = =— 5, dxdy (4.19)
: 27 )] o ( (x-x')2+ (y-y')2+ (h+H)?)

( Grant and West, p218, 1965). Assuming that a uniform rectangular grid is
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imposed on the region of interest which is large enough such that ¢(i,j)=0 for

any i*I or jdJ, we get after discretization

1 J 1 (h(m,n) + H) Axay
$(mn) = — 3 3 — — —, 9(1,]) (4.20)
2n j=1 =1 (((m-1)Ax)* +((n-])ay)” +(h(m,n)+H)" )

where Ax and Ay are intervals, J &nd I art; the total nodal numbers of the grid
in the x-axis and y-axis respectively.

In order to solve the linear system (4.20), it is convenient to write the
sampled elements of matrices ib_(m,n) and 9 (i,j) into vectors, say ¢ andf
~ respectively. We achieve this by renumbering and rearranging the elements of

the matrices under consideration from the first row to the last row, wherein

each row we count from left to right. Specifically, we get

k=(n1)I+m (4.21)

for vector element ¥, and

) = (j-1)I + i (4.22)

for ¢, . Now equation (4.20) can be replaced by a matrix equation which is
identical to (4.9) except for the sizes of the vectors and matrix, i. e. ¥ is the
observation vector of length K=I*J and'f is the the solution vector, which may
have a length of L¢K. Matrix G is an K by L matrix whose elements are given

by

G, = (h(m,n)+H)Axay/ 22R° ’ ' (4.23)

where



4.14

R = ((m1Pax?+ (n-])2ay2+ (h(m,n)+H)?)"2 (4.24)

Therefore the downward continuation of 3-D data from arbitrary surfaces
is computationally identical to that of 2-D data and can be represented by
linear algebraic operators. The discussion in section 4.2.3 can therefore be
extended to the 3-D problem in a straightforward manner by rearranging the

data and the following discussion will suit both the 2-D and the 3-D cases.

4.3 Thechniques for the Application of the Spectral Expansion Approach

4.3.1 The damped least squares procedure

Considering the first Dirichlet criterion which is the minimization of the

Euclidean norm

lGge- pll=(Ge-4)"(Ge-¢) (4.25)

provides a "optimal" solution vector E’ for ¢ in the least square sense. From
the viewpoint of functional analysis, the harmonic function ¢ (x,~-H) or ¥(x,h).
is an element in a Hilbert space, say space u. As a matter of fact, they
belong to two different subspaces, named wcp and Myc ¢ - respectively. The
elements in n1 consist of all possible functions ¢ (x,-H) for H™0, while u,
consists of all ¢(x,h) for h’_'O. The Fredholm's operator G, as mentioned in
section 2.1, maps elements in u, into those in u2 .

In order to keep operators bounded we may co_nsider the Hilbert space

as a real-valued I?(a,b) space. By the definition, the space L?(a,b) consists of -



4.15

all square (Lebesgue) integrable functions f=f(x), defined in ax*b, with the inner
product being defined by

b -
(f,g) =/ f(x)g(x)dx (4.26)

(Nagy, 1965, p.288), where f anf g are two square integrable functions. At
first we may assume that all potential fields over a finite space domain contain

finite energy, thus we have

b
j 02(x)dx ¢ ¢ and fb $2(x)dx & ¢! (4.27)

where ¢ and c' are positive constants. Immediantly we see that the harmonic
fmcti'ons belong to the space L2(a,b) if we define the inner product by (4.26).
If we consider a large space domain we have to presume that ¢(x) and #(x)
decrease sufficiently fast as a» «» and b*-e0, and vanish at infinity. It now
becomes clear that the upward continuation operator G is the Fredholm operator
which maps the functions ¢ in a subspace u,c L? into the functions ¢ in
another subspace MocL?, | |

Introduction of the space L?results in a bounded inverse operator for the
downward continuation problem. We say that an operator A is bounded in a

Hilbert space if there exists a positive number K such that | Af|l€ K ||f

If the downward continuation operator is G~' and

lerell= el =] "ozt | (4.28)

where ¢ square integrable, we have

619 ¢

where ¢ denotes a finite positive constant. After normalizing the norm ”4:” ’
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it can be seen easily that Glis a bounded operator for mapping functions in
the space LZ. ]

On the other hand, introducing the space L2 for harmonic functions is
equivalent to inserting the energy constraint (4.27). Similar to (4.27), we may
express the constraint as -

b
(9,9) = j 9*(x)dx = c"> ¢ (4.29)

Correspondingly in the N-dimensional Euclidean space, we have

279w c" (4.30)
We now seek to minimize the distance shown in (4.25) subject to the
power constraint (4.30). Using the method of Lagrange multiplies, we minimize
Q=(GP-$)(Gp-$) +a( g7p-c") | (4.31)
where @ is the Lagrange multiplier. To minimize Q, we may compute 9 QA9"
=0 and obtain
G'GP-GT+ap=0 (4.32)

The constrained optimal solution can be then expressed as

3 =(GG+al )y . (4.33)

When @ =0, equation (4.33) becomes (4.11) which is the unconstrained optimal
solution, whereas if a is large we have essentially a steepest descent solution.

Because matrix G can be analytically calculated, we may insert (4.12)

into (4.33) and obtain the solution in terms of eigenvectors:
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$ =(VA2VT+e1 )GTo
=V(A%+al DA UTY
= VAU
where
Ay =A+apl

4.17

(4.34)

(4.35)

is a diagonal matrix containing the modified eigenvalues in its diagonal

elements.

The inverse in (4.33) derived analytically is identical to the stochastic

inverse introduced by Franklin (1970) where the unknown function ¢

was

treated as a stochastic process. The spectral expansion solution in (4.34) is

known as damped least squares (Wiggins, 1972; Jupp and Vozoff, 1975). If the

covariance matrix of the unknown function is the simple form

_ 2
Co=%1

and the convariance matrix of the data errors is

Cn=oul

then the constant @ can be written as

@ =7n2/d‘p2 .

For general covariance matrices, the stochastic inverse provides an

estimate
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-2

=(g'cig+gyrgTc,¢ (4.36)

(Franklin,1970; Jackson,1979). Because the covariance matrices may be difficult
to determine in practice, Employing (4.34) and treating o as the trade-off
parpameter may be appropriate for the downward continuation problem.
Let us now use the example shown in Figure 4.1. Suppose that we have
16 data of vertical magnetic component on a 30° hill whose height eqﬁals 3.75
Ax ( Ax is arbitrary ). A 2-D vertical dike with depth d= 2Ax, width 2b=Ax and
infinite depth extent is buried under the top of the hill. Assuming the effective
magnetization has a magnitude J=100 ampere/meter (0.1 emu) and is in the

vertical direction, we can calculate the data exactly by

iAx~-c+b iax-c-b
AZ = 2J(1+0.05e)(arctan(~————)- arctan(—————))
h; +d h; +d

where hi is the height of the i-th point and c¢=8.5Ax is the central abscissa of
the dike. Random additive noise e may be represented by Gaussian noise with
zero mean and unit standard deviation. The data {AZ} is shown in Figure 4.l.a
while the theoretical anomaly on top of the dike is shown by curve b in the
same figure which looks like an impulse with unit width.

It may be noticed that we assume the noise to be related to the
anomaly in this example. As a matter of fact, some noise is indeed associated
with the signal. For instance, some geological noise is likely related to the
anomaly because there often exist a disseminated 'halos' around the causative
body. The geophysical records or readings observed by finite-digital devices
usually contain a truncation error which is also related to the magnitude of
the signal. For noise uncorrelated with signals we shall give another example

in section 4.4.5.

Using the singular value decomposition algorithm (Nash, 1979, chapter
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4), we factor G into the product as shown in (4.12) and obtain the ordered
eigenvalues contained in the diagonal elements of matrix A as shown by curve
r in Figure 4.2. Because some eigenvalues are very small, for instance,/he‘lo_6
, they must be modified in order to reduce the variance in the estimates.
Employing the damped inverse procedure (4.35) to modify the eigenvalues ( see
curves a-e in Figure 4.2), we obtain the downward continuation estimates at
the level of the top of the dike shown in Fig. 4.3. The curves a-e correspond
to the trade—o_ff parameter @=0.5, .05, .005, .0025, .001 (*10'3), respectively.

The goodness of the estimates may be measured by the root mean
square deviation between the true and the calculated anomalies. Foi' the our
simple examples, measures of the width of the main peak and the amplitude
of the sidelobes, as introduced by Oldenburg (1981) may be used. The width of
the main peak, i. e. the full width at one-half of anomalous maximum value.
As the theoretical anomaly is an impulse of unit width, a good estimate should
have the resolution width close to 2Ax ( unit width plus one sampling interval).
We may also use the ratio | As/Aw| where As is the maximum amplitude of
sidelobes while Ay is the amplitude of the main-lobe. As there is no sidelobe
appearing in the theoretical anomaly, the ratio is indeed an indication of the
maximum variance. Of course, it should be small.

Choosing different trade-off parameters, we obtain several estimates
which enable us to draw the trade-off curves with the main peak width as
abscissa and the sidelobe ratio as the ordinate (see later in Figure 4.8) The
best trade-off estimate should corresponds to the lower-left corner of the
curves. -

From Figures 4.2 and 4.3 it can be seen clearly that as the trade-off
parameter a decreases, the modified eigenvalues become closer to the true
eigenvalues and the resolution width increases. The sidelobe ratio has a

minimum when a =.5x10"* . Table 4.1 shows the width and the ratio versus a.
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_ Figure 4.2. Eigenvalues and modified eigenvalues obtained from the
damped least squares procedure. Curve r shows the true eigenvalues and
curves a-e correspond to parameter a (*107°)=5, .5, .05, .025 and .01,
respectively.
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Figure 4.3. Downward continuation estimates by the damped least
squares procedure. Curves a-e correspond to « (*107°)=5, .5, .05, .025
and .01, respectively. Vertical dashed lines show the source width while
horizontal dashed lines show the main-peak width.
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Table 4. 1. The main-peak width and the
sidelobe ratio of the downward continuation
estimtes obtained by the damped least squares

a( 10 ) WAX) |As/Au | (%)
.1 4.7 19.3
.5 4.2 18.7
.05 3.3 16.3
.01 2.4 21.1
.005 2.1 31.3
.0025 1.9 35.8
.001 1.7 54.0
.0005 1.4 68.5
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The best trade-off occurs when a=0.1#10"%which gives a resolution width W=2.4
Ax and the maximum sidelode ratio 21.1%. The advantages of the damped least
squares procedure comes from the fact that for all points x;, i=1,...,M, and all
values of the trade-off parameter a, matrix G needs only factored once.
Another advantage of the procedure is the stability, which can be seen from

the fact that |As/Awm| is still less than one for very small trade-off parameters.

4.3.2 The image procedure

We have already seen that the modification of eigenvalues is usually
inevitable and that the damped least squares leads to a modification formula
(4.35) where the trade-off parameter « is constant for all eigenvalues. One
possible question is, if the trade-off parameter a is allowed to vary for each
eigenvalue, can the damped least squares approach be further improved? As
the spectral expansion explicitly isolates those parts of the solution that are
well determined by the data and tﬁose that are not, the answer might be
positive.

Let us examine Wiggins' sharp cutoff procedure (Wiggins, 1972). Given
a modest number t as tﬁe threshold for eigenvalues, the Wiggins' procedure
eliminates all the eigenvalues less than t. The modified eigenvalues is thus

expressed by

A= AR if Axt
(4.37.a)
=0 - if A<t
Correspondingly, an integer q<M can be found such that A, corresponds to the

smallest one among all Aj>t. The integer q is called the effective number of
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degrees of freedom in the data, depending upon the uncertainties in the data
as well as on our need for certainty in the estimates (Jackson, 1972). The

veriance becomes, according to equation (4.18),

q
Vard = 3 ( Vix/ax )2

k=1
In other words, the Wiggins' procedure achieves a bounded variance by reducing
the rank of matrix G and the number of eigenvectors in matrices U and z,
resulting in degradation of the resolution and the information density matrices.
For our example as shown in Figure 4.1, the downward continuation
results obtained by the Wiggins' procedure are shown in Figure 4.4 (left curve
set). The best estimate is obtained by léttl‘ng t=0.005 or q=9, in which case
the main-peak width equal to 2.8ax and the ratio |As/Awm|=31.6%. It indicates
, on this basis, that the Wiggins' procedure is not as good as the damped least
squares procedure mentioned in the previous section.

In order to improve the procedure, we may examine various regions for
the sizes of the eigenvalues (Fig. 4.5). Suppose that we have already chosen an
appropriate threshold t, then any eigenvalues in the computation should be
greater than t in order to keep the variance bounded. In other words the
eigenvalues located under the horizontal line A=t (region III in Figure 4.5) are
computationally igriored because the corresponding eigenvectors represent
numerically less reliable parts of the solution. In the region I all eigenvalues
are greater than t, representing those parts of the solution that are well
determined by the data. Therefore, these eigenvalues must remain unchanged.
There exist no eigenvalues in region II, but if there were any, they could be
used for computations dﬁe to their high numerical reliability. As the the
eigenvalues Ax<t are supposed beyond the effective degrees of freedom in the

data and reflect the nonuniqueness of the downward continuation problem, we
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" Figure 4.5. Modified eigenvalues. Curves a-f correspond to formulae
(4.37.a-f) respectively. Curve r shows the true eigenvalues. Region I is

the area where eigenvalues do not need to be modified, region II is a
"free-choice" area for eigenvalues and in region III eigenvalues cause
computational instability.
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may consider a modification of the small eigenvalues to simulate their behaviour
in the damped least squares method (Fig. 4.2), i.e. to convert them from region
II to region II. In practice the small eigenvalues beyond k>q do not impair the
ability of the new field estimates be upward continued to adequately fit the
data. Thus the region II can be called the free-choice region for eigenvalues.
We may now try various options to see if there exists a better one with better
trade-off between the main-peak width and the sidelobe amplitude. Denoting

Aax for k>q as the modified eigenvalues, we may try the following options

Aax = t(t/Ax)? o (4.37.b)
Aax = t%/ A (4.37.c)
Aok = (/A2 (4.37.d)
Agc = t (4.37.e)

The corresponding modified eigenvalues are shown by curves a-e in Fig. 4.5
respectively. It is clear that the curve c is symmetric to the true eigenvalues
(curve r) by the line Ax=t. We may then say that equation (4.37.c) presents
the image procedure for modifying small eigenvalues.

The downward continuation estimates obtained by spectral expansion
method incorporated to the procedure (4.37,a-e¢) are shown in Fig. 4.6 ( Curves
a-e, respectively). From curve (a) to curve (e) the main-peak width decreases,
while the smallest and uniform sidelobes appear in the curve c, corresponding
to the image procedure. Comparing the estimates produced by the Wiggins' and
the image procedures for different threshold values (see Fig. 4.4) ensures that
the image procedure produces preferable estimates.

The main-peak width and the sidelobe ratio |As/Av | in the estimstes

produced by using procedures (4.37,a-e) are shown in Table 4.2.
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Table 4.2.

The Main-peak width and maximum sidelobe

ratio for different eigenvalue modification procedures

- - - - - - D D - - - - - - - .

(4.37.a)
(4.37.b)
(4.37.c)
(4.37.d)
(4.37.e)
(4.37.1)

= .001 .0025 .005 .01 .05

1.80 2.60 2.80 3.70 5.20
1.72 2.40 2.72 3.50 5.20
1.70 2.10 2.60 3.20 4.60
1.48 1.90 2.20 2.80 4.60
1.30 1.50 1.64 1.80 3.00
1.70 2.10 2.80 3.10 4.90

66.4 45.6 36.6 33.7 34.0
61.9 42.1 34.3 25.1 33.4
67.7 36.1 33.1 16.3 29.9
77.3 45.5 28.3 19.0 25.7
124, 101. 66.2 60.0 33.9

51.7 25.8 18.4 13.2 28.5

4.28
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Fromr the table it can be seen that sharp main-peak cannot be achieved with
a large threshold t, whereas it is impossible to obtain small variances if t is
too small. The best main-peak width (W=1.3) is produced by (4.37.e) with
t=0.001 but the corresponding sidelobe is extremely large ( |As/Am| =1.24). The
best trade-off estimates seem to be produced by the image procedure with
t=0.0025 (q=10), correspondingly W=2.1 and |As/Am|=0.36, or the procedure
(4.37.d) with t=0.005. In general, changing the threshold and using the image
procedure can be a fast way to find the best trade-off estimate of downward

continuation.

4.3.3 An improved procedure

Although we have found that the image procedure can be better than
the Wiggins', the estimates are still not as good as that produced by the
damped least squares method. A problem to be considered is the discontinuity
of the modified eigenvalues around k=q. Because the true eigenvalue sequence
is continuous, one might require the modified eigenvalues to show similar
behaviour. In order to eliminate the discontinuity the eigenvalues A, in region
I may also be modified slightly. A continuous version of the image procedure
can be obtained by adding a linearly weighted difference (gg.rAq) to Ax(keq).

This empirical modification can be expressed as
Aak = t¥/ Ak if kvq
Adak = A+ k( t2/Aq.1 ~Ad)/q if keq (4.37.1)

Employing this new modification procedure, which will be called the

improved procedure, we obtain a better estimates as shown in Table 4.2 (last
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Figure 4.7. Downward continuation estimates from the improved
procedure. Curves a-e correspond to t=.05, .01, .005, .0025 and .001
respectively. Curve d shows the best trade-off between the main-peak
width (2.1Ax) and the maximum sidelobe (25%).
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width

Figure 4.8. The trade-off Curves from different spectral expansion
procedures: (a) the Wiggins', (b) the image , (c) the improved procedure
and (d) the damped least squares.



4.32

row) and Fig. 4.7. Comparing the improved procedure with the image procedure,
we find that the maximum sidelobe is reduced from 36% to 25.8% for t=0.0025
while the main-peak width remains the same. We may compare different
procedures via the trade-off curves (Fig. 4.8). The four different procedures,
including the Wiggins', the image, the damped least squares and the improved
procedure, have distinct but almost parallel trade-off curves, showing that the
image is better than the Wiggins'; the damped least shuares precedes the image
and the improved procedure is the best, in the sense of producing an estimate
with both sharp main-peak width and small sidelobes.

We are able to explain why the procedure improves the estimate by
examining the covariance matrices in (4.36). If .(_?;,1 za _{, (4.36) becomes the
solution of the damped least squares as shown in (4.33). We may consider a
more complicated case where both ¢ and 1# are stochastic processes with

containing noise. Then the general expression (4.36) becomes
$ =(GG+Cl)'GY (4.36.a)
With E denoting the expectation value, the covariance matrix is given by

Co= E [(@-9)(9-97]

where @ is the mean vector of ¢. Denote ¥ as the mean vector of ¢, Cpcan

be further expressed by

Cp = Gy (G

where Cy is the covariance matrix of the data. Inserting (4.12) we get
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i
h <)

1]
i<
o
1<,

where

Thus, (4.36.a) becomes

¢ =V(A+D)'U S (4.36.b)

When D-'=diag(AqqyesesAandy (4.36.D) yields estimates from the improved procedure
which corresponds to the covariance matrix having the spectral expansion of
VDV'. An more complicated covariance matrix might be assumed, but the

- an o

resulting procedure will no longer take advantage of the orthogonal
diagonalization.

So far we have shown the results for downward continuation to a level
" of the top of sources. We may expect that better results can be obtained if
the continuation depth is smaller. Fig. 4.9 shows the best trade-off estimates
of continuation to H=0 and H=-Ax for our ex;zmple in Fig. 4.1. As the
continuation depth decreases, the sidelobe amplitude in the estimates decreases.
In order to achieve the best trade-off the threshold t for modifying the
eigenvalues must increase, because matrix G becomes better conditioned and
the eigenvalues become larger for a smaller continuation depth. As the integer
q is the the effective number of degrees of freedom in the data, it is not
affected by the continuaton depth being large or small. When G becomes better
conditioned as H becomes smaller, we must increase the threshold t to keep
the integer q unchanged. For the case shown in Fig. 4.9, the effective number

q equals ten for all three estimates.
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Figure 4.9. Downward continuation estimates (solid
lines) on different Tevels. Curves a-c correspond to
H=0, .4x and 2ax and t=0.05,0.01 and 0.0025, respec-
tively. Dash lines show the theoretical anomaly on
the levels.
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e 4.3.4 The overconstrained case

Because the energy of potential fields is concentrated close to the
sources when downward continuation is performed, the field sufficiently far
away from the sources may be considered negligible. In Figuer 4.1, the vertical
magnetic component becomes zero at the level of H=-2Ax except.on top of the
dike. Hence we may impose some more constraints on the solution, such as

9=0 for i=1,2,3 and 14,15,16 in this example. As a result, the equation (4.9)
becomes an overconstrained system. In section 4.2.3 we have shown the Lanczos
inverse for an overconstrained linear system and application of the previously
discussed procedures for eigenvalue modification is straightforward. We first
consider the uncontaminated data (Fig. 4.10.a) generated by the same source
shown in Fig. 4.1.c. Because now the unknown vector has only ten elements,

Q @iy 1=4,54..,13, correspondingly the matrix G is dimensioned 16 by 10 and has
only ten non-zero eigenvalues. The best trade-off estimate is achieved by
setting t=0.0001, or q=9, as shown in curves b and c¢ in Figure 4.10. The
main-peak width is 2Ax for all the curves (that is the best we can do) while
the maximum sidelobe is 11.9% for the improved procedure (curve c) and 16%
for the image procedure (curve b). Comparing curve b with curve d, which
corresponds to the well-posed case and has a maximum sidelobe 20.6%, we see
that as expected the overconstrained system produces better solutions than the
well-posed for uncoritaminated observations.

A surprising fact is that imposing more constraints on the solution does
not improve the downward cpntinuation estimates for noisy data (curve e in
Fig. 4.10). The maximum sidelobe becomes 38.3%, larger than that in the

‘ well-posed case, probably due to concentration of the power of the noise in
C the shorter profile. For our example, on the hill the noise is originally

distributed in all 16 observatibné, but after downward continuation via the
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Figure 4.10. Downward continuation estimates. (a) Uncontaminated
anomaly on the hill. (b) Overconstrained case and the image procedure.
(c) Overconstrained case and the improved procedure. (d) Well-posed
case and the image procedure. (e) As the same as (b) but continued
from the noisy data shown in Figure 4.l.a.
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overconstrained system the power of the noise is concentrated into only ten
estimates. As a result, we would not suggest using the overconstrained inverse

when the data are seriously contaminated.

4.4.5. Examples of downward continuation

So far we have seen a typical example of magnetic data contaminated by
a signal-associated noise. We may see what will happen for purely independent
noise. Assume that a white noise with zero mean and standard deviation o =15
nT ( about 4% of magnitude of the anomaly) is added to the anomaly due to
the dike (Fig. 4.1.c). Employing the damped least squares and the irﬁproved
procedure, we obtain two sets of estimates whose main-peak width and sidelobe

ratio are shown in Table 4.3.

Table 4.3. Main-peak width and sidelobe ratio
for the data contaminated by independent noise

B R e e L T R e R e e T T T R R P e P P T

Improved procedure Damped least squares
T TWaD A/l (109 Wax) |As/A |06
------- e T s Lt Attt = S S SR

.02 7 4.3 21.8 .1 3.8 19.0
.01 8 3.5 22.5 .05 3.3 26.9
.005 9 2.7 39.8 .025 2.8 36.6
0025 10 2.2 36.1 .01 2.4 44.9

001 11 1.8 49.5 .005 2.1 45.6
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By choosing a =.025-103 for the damped least squares or t=0.0025 for the
improved procedure we get the best trade-off estimate. The improved
procedure once mére produces better results for downward continuation.

It might be desirable to compare the downward continuation results
obtained by the spectral expansion and by Huestis and Parker's procedure (1979),
who gave an example of a gravity anomaly due to a uniform, semi-infinite slab

of density p in the region 0+x, -héz60 with h*0. The gravity field at (x,z) with

220 is
, x?+(z+h)* z+h -1 =x z -1 x
g(x,z) = GAAxh + x Ln———— + — tan (=—) - — tan (——)) (4.38)
x*+ 22 2 z+h 2 z

This field was sampled on a constant level at eight points ((n+1/2)h, 3h),
n=-4,-3,...,2,3 (see Fig.4.11.a). These data were then used to compute estimates
of field at several different levels below z=3h. For x*0, the true field values
(solid lines in Fig. 4.11.b) and the downward continuation estimates obtained by
Huestis and Parker ( dashed lines) are compared with the damped least squares
estimates (dot lines). |
Comparing the résults indicates that the spectral expansion techniques
can produce a downward continuation estimate as good as those by the method
minimizing a functional form of the model subject to some constraints; while
the former takes the advantage of computation convenience. This example also
shows that the field estimates from the spectral expansion might be in serious
error at the edges of the model because the anomaly has infinite energy and
in such a case the trade-off parameter must be chosen very carefully. For
instance, we show on purpose the large variance in the estimate at x=3.5h and
z=0.5h (Fig. 4.11.b, first diagram), which corresponds to the standard least

squares estimate in which the trade-off parameter equals zero. Appropriate
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Figure 4.11. An example given by Huestis & Parker (1979).

(a) Geometry of the model and gravity anomaly. The crosses

mark the observation points above the slab (shown shaded). -
(b) True field values and downward continuation estimates

at levels Z below the observation level. Solid curves show

the true field values, dash lines are estimates by Huestis

and Parker and the circles joined by dot lines show the
estimates by the stochastic inverse procedure with the tra-
deoff parameter 0.15 for Z«1.0h and 2.0h, zero for Z=0.5h.
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choice of the parameter may reduce the edge-effect as shown by the estin;ate
of Z=1.0 (second diagram in that figure). In this example, possibly also for
other anomalies with infinite energy, the damped least squares procedure
produces better results than the improved procedure which is more sensitive to
the edge-effect.

Let us now see examples of 2-D potential field data. Suppose that a
gravity survey is carried out in a small uniform ( 8 by 8 with inteval 200m )
grid on a two-dimensional 30° slope mountain range ( striking in the y-direction
), with maximum of height 350 meters. The source of the gravity anomaly,
shown by a circle in Figure 4.12.a, i3 a vertical mass line with a mass of 0.2
tons/meter, depth of 200m and length of 200m. Due to the topography, it can
be seen that the maximum point os the anomaly is located 200 meters away
from the projection of | the source. It implies that drilling at the maximum point
of the anomaly would miss the target. The damped least squares is employed
to continue the anomaly to a level on top of the mass with gravity estimates
on the plane as shown in Fig. 4.12.b. This anomaly is now well concentrated
at thé top of the mass without aﬁy shift. The overconstrained case is used in
the example and the trade-off parameter of 0.25*107S gives the results.

Another example is a'gravity anomaly due to a square prism on a 2-D
mountain similar to that in the previous example ( Fig. 4.13.a ). The prism
has a density of. 0.5 g/cm3, horizontal sides of 400m, depth of 200m and depth
extent of 200m. The grouhd anomaly is elongated perpendicular to the strike
of the hill, which tends to produce a false impression that the source is a
non-equiaxial body. After downward continuation to tﬁe level at bottom of the
hill, the anomaly appears equiaxial and coincides well with the square prism (
Fig. 4.13.b ). The well-posed case is used in this example.
| In chapter 3 we have already shown a practical example of downward

continuation of a gravity profile in the Abitibi belt (p.3.32). The results shown
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Figure 4.12. The gravity anomaly with topografpy (a) and its downward continuation estimate on
top of the source (b). The values in contours are in mgals and coordinates are inax=ay=200m.
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Figure 4.13. The gravity anomaly with topography (a) and its downward continuation estimste to the
bottom of the hill. The values in contours are in mgals and coordinates are in Ax=ay=200m.
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in Figure 3.20.c were obtdined by employing the damped least squares procedure
with the trade-off parameter equal to 0.003.

To end ihis discussion on downward continuation, we invert a magnetic
profile with topography (Fig. 4.14.b ). A ground magnetic anomaly ( C5 )
appears in a steep mountain area within the Sichuan pro{zince of China ( Fig.
4,14.a ). Although the anomaly is a weak one with a maximum of 470
nT(gamma), it could be due to magnetite depbsits because the only outcrops
that can be seen in the area are marble layers. Five drilling wells, numbered
zk8, zk9, zkl0, zk18 and zk19, were completed, but only well zkl18 touched
upon ore deposits, at a depth of 277 meters. The high topographic relief causes
great difficulty in interpretation. In order to locate the ore bodies, a profile
across the center of the anom&ly is shown in Fig. 4.14.b. Using 14 observations
along the profile, the improved procedure (t=0.01) produces anomalies on the
levels at H=50m and H=100m ( see Fig. 4.15 ), the latter is close to the top
of the ore bodies discovered in well zk18. On the observation surface, the peak
of the anomaly appears around point 9, but it disappears at the level H=100m,
implying that the peak is probably affected by topographic relief. From the
continuation results, it is clear that the ore body is probably located under
points 4 to 9, but not under 7 to 11 as shown by the ground anomaly. That
explains why no ore bo@ was found in well zk19. In general, potential anomaly
pedks in mountainous areas are likely to appear shifted horizontally from their
sources. Application of the downward continuation procedure may successfully
eliminate the shift and provide a more reliable estimate of the source location,
so that the probability of finding ore deposits by drilling can be considerably

enhanced.
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Figure 4.14 . A vertical magnetic anomaly in Sichuan province of
China. (a) contuour map and (b) a profile with topography.
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Figure 4.15. The downward continuation estimates of the profile
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4.4 Upward Continuation between Arbitrary Surfaces

4.4.1 The equivalent source method

From the viewpoint of potential theory, upward continuation is a
Dirichlet problem. Let o(x,y,z) be a harmonic function at a point P(x,y,z) in a
volume V which is enclosed by an arbitrary surface S. If there is no source in
V, @ must satisfy Laplace's equation. With given boundary values on S, the
solution for this problem is unique, and therefore can in principle be obtained
via any numerical methods for solving partial differential equations, such as
the finite difference method. The Dirichlet problem can also be expfessed by
the variational principle, that is, the solution ® of the Dirichlet problem is that

which minimizes the functional

F (0(x,y,2)) =///( 225 (2254 (22 )axdyaz
VvV 29x ey 2z

subject to given boundary values on S. As a matter of fact, the functional
represents stored energy of the potential fields. Thus the finite element method,
which we have disccussed in Chapter 3, is also applicable to upward
continuation. Difficulty in this application arises when the volume V becomes
very large, because an enormous number of nodes, which in turn means the
same number of equations, will be involved. Hence these methods are suggested
for two-dimensional field continuation, but may be too expensive for 3-D data
processing.

In general the specification of the boundary values is equivalent to

sources which are distributed outside the boundary. Solution of Dirichlet
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problems can be represented by the so-called " double layer potential" as

follows:

1

@ (p) =// u(q) 2 ( ) ds (4.39)
S on ri(p,q)

(Kellog, 1953, p.286), where n denotes the external normal of S and u is the
intensity of the equivalent source. If @ also satisfies the given boundary
condition, it should be the solution of the Dirichlet problem because of the
uniqueness of the solution of the boundary-value problem. Let us denote the
boundary value of ®(p) by ¥(q). Restriction of ® to the observation surface S

yields

0 1
w(q) = 2 u(q) +// u(q') — ( ) ds' (4.40)
' dn r(p,q)

where §' is the surface S excluding a small area around point q ( Fig.4.16
). Equation (4.40) is a Fredholm integral equation of the second kind and could
be solved by an iterative scheme. This procedure was suggested by
Bhattacharyya and Chan (1977) and called the equivalent source method.
Following this procedure, the first step for upward continuation from an
arbitrary surface is to determine the equivalent sources by employing an
iterative technique to solve the integral equation (4.40). In the second step,
equivalent sources are substituted into (4.39) for computing the field at any
point above the observation surface S. It will be shown that the two steps can
be joined together to make the method more compact.

There is no doubt that the BG method is applicable for the upward
continuation problem and can take precedence over other methods if the data

is deficient and contaminated (Huestis and Parker, 1979), albeit some



Figure 4.16. The geometry for upward continuation
from an arbitrary surface.
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computational cost. We notice that the application of upward continuation is
mainly in regional data processing but is not ofter used for local anomalies.
When it is employed for regional data processing, plenty of data is usually
available. In such cases the equivalent source method is applicable and

practically useful.

4.5.2 A compact implementation of the equivalent source method

Let us rewrite (4.40) as

1 ? 1
u(q) = — (‘P(q)—]/ u(q') — ( ) ds' ) (4.41)
2 S! on r(q,q')

Inserting this into (4.39) yields

v(q) 9 1
o(p) = —_— [ ——) +
S2n Pn r(p,q)

? 1 (-1)u(q') 2 1
e (— ) —( ) dstbds  (4.42)
. S Bn r(p,Q) S’ 2 an r(QyQ')

Repeated application of (4.41) to replace u (q') in (4.42) yields successive

approximation to the solution expressed by

® ) 1 '
o (p) = (2 I"q))— ( ) ds (4.43)

S ks0 an r(p,q)

where I* is an integral, with k denotes the number of the iteration, given by
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a recursion formula as follows:

. 1
- I°(q) = — w(q) (4.44)
27
k 2 1
I"(q) = (-——- I¥'(q' ) )—(———) ds' (4.45)
S' 2= 9n r(q,q')

Thus the continuation process becomes a forward approximation. After
initializing the integral I° by substituting the boundary values ¥ into (4.44), |
we may calculate the integer I* via-(4.45) until its maximum becomes less than
a given tolerance. The sum of I*may be accumulated simultaneously and used
to obtain a solution via (4.43). The siﬁilarity of the integrals in (4.43) and
(4.45) can be utilized to unify the integration programs and rapid convergence
of successive approximations has been proved ( Bhattacharyya and Chan, 1977
).

Denoting Nx,Ny and Nz as the components of the normal n, we have

d(1/r)fon = ( Nxlx-x'| +Ny|y-y!| + Nz|z-z'| )/r3 (4.46)

Assuming that S is a large hemispherical surface closed by the observation
swrface. Since potential fields vanish at infinity, for a large radius, the integral
in (4.43) vanishes everywhere except on the observation surface. We may
further assume that the observation surface is continuous, differentiable, and
can be expressed by a function z'=h(x',y'). If the z-axis is directed downwards,
the angle betweeﬁ the z-axis and the normal n on S is acute. Then the

components of the normal are given by
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- Hx/(1+ Hy + B )2

- Hy/(1+ HE + HP )2 (4.47)

Nx

Ny
Nz= 1/( 1+ H% + Hy2 )1/2

where Hy, Hy are the first horizontal derivatives of h(x,y). The surface element

in (4.43) may be expressed by

ds = ( 1+ Hi +Hy ) dx'dy’ = dx'dy'/Nz (4.48)

Substituting (4.46)-(4.48) into (4.45), we get

1 (o 2] |Z'-Z"| "HX’I x'-x"I-Hy Iy'*y"|
I%(x' ,y' )= = — Ik"1 (x",y",‘ dx"dy"
o ((x'-x" ) +y'=-y") 2 (z1-2")? )%
It (4.49)

where the primed variables (z'=h(x',y'),x',y') and double primed ones
(z"=h(x",y"),x",y") denote the coordinates of points on the surface, the latter
being the intégrated variable. The integration in (4.49) should exclude the
singular point (x',y')=(x",y"). The potential at an arbitrary point Ef(x;y,z) above
S is given by

® K |2=h [~Hy| x-x'| ~Hy [y-y'|
O (x,y,2) =f| (2 I(x',y')) - —dx'dy’  (4.50)
k=0 ((x-x')?+(y-y' F +(z-h)* J2

where h, Hx and Hy are the elevation and its partial derivatives, respectively.

4.4.3 Computation techniques and examples

There are several methods for speeding the computation. We first notice
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that the integral kernel 1/r3 has to be repeatedly calculated for each step when
equation (4.50) is employed directly. Using a table of possible values of 1/r3
may' eliminate the repetition, and therefore, speed up the computation.

To deal with the infinity in the integral limits, a window of dimensions
( 2s+1, 2t+1 ) is usually employed. Thus after discretization we actually

calculate

8 t K
®mn) = 3 > X I<i,j)*
j=-8 i=-t k=1

|h(m,n)=h(i,j)| ~Hy(i,]) Im-i|Ax-Hy(i,) |n-j|Ay
( (m1)2x*+ (n-jF y*+ (h(m,n)-h(i,j))*)?

Ax4y

The larger the window, the smaller the truncation error but the less
efficient the computation becomes. Thus we now have to introduce a trade-off
between the accuracy and the efficiency. The proper size of the window
depends upon the continuation height and‘ ‘the anomalous characteristics, and
may be determined by trials. How-vever, the truncation error can be somewhat
reduced. A rough correction formula for reducing the truncation error may be

derived from a consideration similar to continuation between horizontal planes

(Xie Qin-Feng, 1966), that is adding a residual

res = WH/1.81 d

where d is the side length of a square window, ¥ is the average value of
potential data on the sides of the window, and H is the average height of the
upward continuation.

. In general, procedures for continuation from aﬁ arbitrary surface. cost
ten times more than a similar procedure for continuation between horizontal

planes by employing the FFT algorithms. For the compact procedure with the
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aid of the measures stated above, the cost can be reduced to about five times
as that of employing the FFT algorithms for" corresponding plane continuation,
which is shown by the following example. Suppose that a sphere is concealed
under a hill which can be described by a 2-D normal-distribution function ( Fig.
4.17 )

h(x,y) = 636.6 exp ( -( x2/4 + y2)/12.5 ) (4.43)

with a height of 636.6 meters. The sphere has a mass of 100 million tons, depth
of 300m from the bottom of the hill (z=0). A uniform grid is used for samplfng,
with an interval equal to 100m. The gravity anomaly due to the sphere is shown
in Fig. 4.18. It is clear from the _figure that the center of the anomaly shifts
away from the sphere due to the effect of topography. Using a 2km*2km
window, the procedure produces a gravity anomaly at the level of z=1km as
shown in Fig. 4.19. The number of ‘iterations for the estimate is only two. The
center of the continued anomaly now moves back to the sphere. Unfortunately,
a visible distortion can be found near the boundaries. Increasing the iterations
would not improve the results, because it is due to the effct of truncation. In
fact, in order to produce the results on a 30*30 grid, a data set on a 50*50

grid has been chosen. It still seems insufficient if high accuracy is required.

4.5 Summary

(1) Because the energy (or power) of potential field anomalies is always
in practice finite, we can introduce the space L? to represent all harmonic
functions for the downward continuation problem. Applying the standard least

squares inversion to minimize the L? norm results in a bounded inverse operator
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TOPOGRAPHIC MODEL : A HILL
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Figure 4.17. A topographic model for upward continuation. The
values on contours are in meters and coordinates are in Ax(100m).
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Figure 4.18. The gravity anomaly on the hill due to a sphere.

The values on contours are in maals.
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The upward continuation estimate of the anomaly
in Fig. 4.18. The values on contours are in mgals.
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for an optimal solution of downward continuation, which is identical to the
stochastic inverse. The procedure is relatively efficient because it requires
factoring the mapping matrix only once.

(2) The estimate of the damped least squares approach can be improve
by assuming that the covariance matrix of the unkown function is diagonal but
more complicated than 021. The resulting improved procedure also takes the
advantages of the spectral expansion and can produce better estimates for
downward continuation of finite-energy anomalies.

(3) The examples show that these generalized inverse procedures enable
us to produce a satisfactory estimate of potential fields on top of sources. In
mountain ranges, local anomalies observed are likely to shift away horizontally
from their sources. Applying the downward continuation procedures can
successfully eliminate the shift and produce a more reliable estimate for
locating sources, such as deep faults, lithologic strata of interest and orebodies
in mountainous areas.

(4) The equivalent source method (Bhattacharyya and Chan, 1977) has
been improved by using a compact formulation which, together with some
technical improvements, speeds the computation of upward continuation. The
procedure can be useful for compilation of aeromagnetic maps as well as for

determining the ccrrect position of orebodies.
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Chapter V

Demagnetization and Accurate Computation of Magnetic field

9.1 Introduction

The objective of this chapter is to develop a computational method for
calculation of the effective magnetization and the magnetic field both inside
and outside any rock materials (including ferro- and ferrimagnetic minerals)
with an arbitrary distribution of magnetic parameters. The results are applicable
in the following aspects.

(1) Study of the demagnetization phenomena. Some troublesome questions
about demagnetization have not been answered which to some extent cause
uncertainty both in the specimen measurements of magnetic parameters and in
interpretation of anomalies. For instance, does the natural remanent
magnetization (NRM) have an effect on demagnetization? If it does, how should
one evaluate the effect? Without considering the effect, how large an error
would occur for various igneous rocks? An answer to these questions would be
useful in both magnetic exploration and in studies of rock magnetism.

(2) Accurate calculation of magnetic anomalies for evaluation of the .
reserves of maghetic ore-deposits or for elimination of aeromagnetic anomalies
due to high topographic relief in crystalline ierranes.

(3) Iﬁterpretation of ground magnetic anomalies. After discovery of an
ore-deposit or even after its exploitation, it is worthwhile to search for blind

ore bodies which may be nearby or probably' deeper. If a magnetic survey has
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been carried out and the magnetic parameters at each location in the bady or
bodies are available via specimen measurements or well-logging, a precise
calculation of the anomaly. due to the known ore-body can determine whether
or not a 'residual' anomaly exists. If so, this is usually a reliable indication of
another hidden depbsit. A precise method is needed which should consider the
effect of demagnetization and the inhomogeneity of magnetic parameters.

(4) Interpretation of magnetic weli—logging anomalies. Because the
magnetic field near and in the sources can become very complicated, a precise
procedure for the calculation of both the internal and the external field can
help to produce reliable models of magnetic bodiés with the aid of magnetic
parameters measured on core specimens.

When the demagnetization effect can be ignored, the computational
methods for the calculation of magﬁetic anomalies have been thoroughly
documented (Bott,1963; Sharma,1966; Bhattacharyya,1978). However, in some
~cases the effect of demagnetization should be considered because the
magnetization in permeable bodies generates a secondary field which partly
counteracts the external magnétizing field. Thus, mathematically it is inexact
to equate the induced magnetization M; to the product of volume susceptibility
K and external magnetizing field intensity ﬁ; .

According to the theory of boundary-value problems, the magnetic field
inside a susceptible body can be uniform only if the body i{s bounded by a
quadric surface and has constant susceptibility. Under the assumption that the
medium is uniformly magnetized, the traditional formula often used for

evaluation of induced magnetization is

M; = KH,/(1+NK) (5.1)

( Grant and West, p.318, 1965 ) where N is a constant called the
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demagnetization factor, which varies from zero to 4n depending upon only the
geometry of magnetized body. For instance, N equals 4n/3'for spheres, 2 for
infinite cylinders magnetized transversely, and 4n for flat plates magnetized
transversely. Since susceptibilities of rock-forming minerals seldom exceed 0.01
emu ( to convert demagnetizaton values in the emu to the SI system multiply
by 4m;the CGS emu system has been traditionally used in magnetic exploration,
see Telford et al., 1976, p.109), the demagnetization effect computed from (5.1)
is usually not noticeble except in magnetite bodies, where K may be as large
as 0.5 emu, might demagnetization become significant. However, (5.1) is valid
only for bodies of dia- and »paramagnetic materials which are bounded by
quadric surfaces and have constant susceptibility. More general models and
more precise formulae may be needed for evaluating the demagnetization effect.

On account of the demagnetization effect, the effective magnetization
usually varies from point to point within an arbitrary body. Because of the
difficulty of rigorous computation, most of the computational methods for
magnetic calculations have first disregarded the demagnetization effect and
calculated a first approximation to the field ; then (5.1) may be used to judge
whether or not demagnetization is important. There are only a few articles
which consider specificaly the demagnetization effect in magnetic calculations.
Vogel (1963) suggested a- lengthy iterative procedure for this problem which
is based on the assumption that the effective magnetization for a volume
element of a magnetized body can be expressed by a series expansion. Each
term of the series, except the first one, is the result of integration of the
preceeding terms for all the volume elements. If K is large, the series may
diverge. Sharma (1966) presented a method for computation of the
demagnetization caused by a bo&y of arbitrary shape. A magnetized body can
be divided into N prismatic cells and the effective magnetization in each cell

can then be represented by the solution of a linear system consisting of 3N



5.4

equations. Uniform susceptibility is involed in the equations and the permanent
magnetization is ignored. Filatov (1969) proposed another method for 2-D
magnetic evaluation. The essence of this method is to calculate the magnetic
anomalies caused externally by the magnetic charge density on surfaces of
magnetized bodies which is defined by ﬁ Fredholm's integral equation of the
second kind. The solution of the integral equation is obtained by using an
iterative procedure which converges slowiy when the susceptibility is greater
thanro.l emu. The assumption of homogeneous magnetization is implied in order
to cancel the magnetic charges within the bodies. The method can be used for
calculating the field only outside the bodies.

In this chapter we suggest a physical model for a general magnetic
material and develop & computational method for the calculation of the
effective magnetization and magnetic field both inside and outside an arbitrary
body. This method considers fully the effect of demagnetization and
inhomogeneity of both the susceptibility and permanent magnetization. Examples
are presented for 2-D bodies and theoreticl formulae are also developed for
3-D bodies. The theoretical problems of demagnetization will be discussed in
section 5.5 while some practical problems will be illustrated in section 5.6.

The notations used are listed below. In order to unify notation for both
mathematical formulae and computational formulae (where a subscript often
denotes the number of vector or matrix elements ) we use F, instead of 1\70
or M » to denote the permanent magnetization.

K - the volume magnetic susceptibility.

M; - the induced magnetization.
P - the permanent magnetization.
M - the effective magnetization.

pu—y

H,- the external magnetizing field.

Hs- the secondary external field due to
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magnetized bodies.
ﬁ,- the total external field, _ﬁln ﬁo+ Hs.
Ha- the secondary internal field due to
magnetization in the bodies.
H.- the total internal field, Ho» H,+ H,.
Ay~ the scalar magnetic potential of —ﬁd .
Because a rough formula M=KH, +P is often used for evaluating the total

magnetization, we may call M the effective magnetization to emphasize that

M includes the demagnetization effect.

5.2 The mathematical model for the magnetic calculations

5.2.1 Linearization of the M(H) characteristics

We may consider a mathematical model for describing the magnetic
field inside a ferromagnetic (or ferrimagnetic) material existing in the Earth's
crust. This model should also suit other materials (e.g. para- and diamagnetic
materials). In ferromagnetic materials the relationship between the
magnetization M and H is nonlinear and usually shown graphically as hysteresis.
Figure 5.1 (a,b) shows examples of the magnetic hysteresis of igneous rocks as
measured by Nagata (1961). It can be seen clearly that the igneous rocks usually
have considerable permanent magnetization which should not be »ignored.
Problems involving materials with such nonlinear M(H) characteristics are very
difficult to solve. These problems become more tractable when the
characteristic can be linearized over a small interval. Thus in the vicinity of

P in Fig. 5.1 (a,b), we c'an- write that
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Figure S.1. Magnetization characteristics of rock specimens: (a) a
magnetic hysteresis curve of igneous rock, (b) a hysteresis curve of
volcanic rock and (c) magnetic susceptibility of volcanic rock in

weak alternating magnetic fields. {after Nagata, 1963)
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M = KHy+ P (5.2)

(Van Bladel, 1964, p.162). Eq. (5.2) is valid for ferromagnetic materials only if
the field is very small. It implies that (a) both the susceptibility and the
permanent magnetization are independent of the magnetic field and (b) the
induced magnetization is proportional to the internal field. According to Nagata
(1961) and Strangwuy (1967), the susceptibility of rock materials does depend
on the applied field strength (Fig.5.1,c). For field strengths in the range from
0.4 to 1.0 oersted ( which includes the Earth's field), the change of K due to
variation of the applied field is very small so that K can be actually treated
as a constant. Thus the magnetization inside most crustal materials in practice
satisfies (5.2) (here crustal materials refer to both minerals and rocks
magnetized by the Earth's field).
Let us now consider the magnetic field produced by magnetized bodies.

The magnetic induction B due to magnetized distribution of a matter can be
expressed as the sum of two terms (e.g. Reitz, p.189, 1967): the gradient of a

scalar field plus a term proportional to the local magnetization

By= Hy+ 4n

(in the SI system, omit the 4r). By inserting (5.2) we get

By=puH,+ 41P (5.3)

where u is the magnetic permeability. When P=0, (5.3) becomes §2=,uﬁ; which
represents the relationship between B and H in paramagnetic and diamagnetic
materials. Thus, (5.3) is a general formula for any crustal materials.

Inside the magnetized bodies, the magnetic field consists of the

external magnetizing field }—I:, and a secondary field f-fd, so that (5.2) becomes
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M=K(H+Hy)+P | (5.4)

The external magnetizing field H, is usually treated as a constant in magnetic
exploration. The secondary field Hy is due to both the induced magnetization
dnd the permanent magnetization of the bodies. As mentioned previously, if a
permeable body is bounded by a quadric surface and has constant magnetic

parameters, Hgs is constant and negative. Comparing (5.1) and (5.4) we obtain

NK = (1-(Ho/Ho)J'- 1

The apparent susceptibility K. which is defined by Ka=K/(1+NK) can then be

expressed by

K.= K(1-(Hs/H,)) (5.5)

It is clear that the secondary field Hy causes a reduction in the apparent
susceptibility, and therefore a reduction in the internal magnetic field ﬁz .
Thus, the secondary field Hy represents the effect of demagnetization. For
spheres, the internal field is 572= ﬁo- 47M, /3 (Grant and West, 1965, p318),
and it can be easily seen that

4K

Hd= - Ho
3 + #xK

For an arbitrarily magnetized body, 'Ha is variable and will be further discussed

in section 5.5.



5.2.2 The integral equations for the effective magnetization

The scalar magnetic potential A; may be used to represent the

secondary magnetic field Hq inside a magnetized body, which is defined by

Hy = -V Aq (5.6)

The scalar potential of the secondary internal field can be expressed by the

integral

- j M(F1)-R
Aq(r) = ———— ) (5.7)
v B

where R=r-7; R=IR|, T represents the point (x,y,z) at which A« is evaluated,
and F‘=(x’,y’,z') denotes a position vector variable of an element of the body
with volume dv and magnetization M (Fig. 5.2). Substituting equation (5.7) into
(5.6) yields |

L M(r')-R
Hg(r) =-V- 3 dv (5.8)
v R

where the gradient operator € is evaluated with respect to the unprimed

coordinates r. With the aid of (5.8) , (5.4) can be written as

e ~ . M(r')R
M(r) = K(r)Ho + P(r) - K(r) Ve —_ dv (5.9)
’ v R

This is the integral equation for calculation of the effective magnetization M
by given parameters ,ﬁo, K and P. In the case of a 2-D source region, the

equation "becomes
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M(F')-R

M(r) = R(F)H, + P(T) - 2K(F) V-] ds (5.10)

] R

where r=(x,z) and ?=(x’,é’), taking the field to be invariant in the y-direction.
Equations (5.9) and (5.10) are Fredholm's integral equations of the second kind
with vector unknowns. The third term on the right of (5.9) or (5.10) represents
the effect of demagnetization. If this term.is omitted, we will have a formula
which ignores the demagnetization effect.

We note that the integrals in the right hand side of (5.9) and (5.10)
have a singular point at r=r'. To deal with the singularity, we may divide the
volume v into two parts which may be denoted by v, and V. The region of
v, is a small sphere of radius d with its center at point o ( Fig. 5.3 ) while

V' denotes v exterior to v,. Thus the integral in (5.9) becomes

M(r')-R M(r')-R M(r')-R
- dv = 3 dv + —_ dv (5.11)
v R v! R Vo R

The first term on the right of (5.11) is non-singular. If the sphere v,

is small enough, the second term of (5.11) becomes

dv € 8naM (2.12)

(Grant and West, 1965, p.214). If € is a small quantity and the radius of the
sphere satisfies the following inequality
d<¢€¢/8xM (5.13)

then the second term on the right of (5.11) will be negligible. In fact, the

inequality (5.12) and (5.13) shows that the singular point r=r is removable.



Figure §.3. Diagram of singular point.
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Hence, we are assured that there is no difficulty caused by the singularity
whenever the integral equation (5.9) or (5.10) is performed.

A common method for solving a Fredholm integral equation of the second
kind employs successive approximations. If one assumes the uniformity of
magnetization, (5.10) can be reduced to a scalar equation which has be used
by Filatov (1969) for the case when P=0. As we are not going to make this
assumption, alternative methods are needed to deal with the vector equations.
A new method can be developed which is based on the division of magnetized
bodies into finite elements. This method was originally proposed for designing
and calculating the field of magnets (Newman el al., 1972; Silvester and
Ferrari, 1983). Because it is a direct method, the resulting procedure possesses

the advantages of high speed, high accuracy and flexibility.

§.3 The computational method for magnetic calculation

5.5.1 The finite element technique

In the case of a 2-D magnetic field, performing the gradient operation in

(5.10) gives

2 4

—— ~ M(r') 2M(r')-R_
M(r)= K(r)Hy+ P(F) - 2K(F) - R)dx'dy’ (5.14)
'R R

Suppose that a cross-section of a magnetized body can be divided.into N
elements (Fig. 5.2). Let an arbitrary point within the Il-th element be ;{',

I=1,...,N, and suppose as an approximation the magnetization is constant within
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each element. Then also as an approximation, which becomes increasingly more
accurate as the number of elements increases, the magnetization at a point 7;;
, kal,z,;..,N, can be written as the sum of contributions from each of the
elements 1=1,2,...,,N, (including one from the k-th element, in which it is

assumed that the field point 7‘,} lies). Using Eq.(5.14), this sum is

— —

Lo MM MR
M= KH, + P.- 2K, L ( 2 - pr dx'dz' (5.15)

=1

Because the magnetization vector H, is assumed to be constant ﬁithin
each element, the integrations in Eq.(5.15) can readily be performed and the
results will be dependent purely upon the element geometry. The integration
over each individual element inust be performed relative to- some reference
point F; . If these points for integration F,’c are chosen to be the same as the
field points 7, , we can write

—

N
My = Ky ( Hy + Be/K, - 2 CaMi ) (5.16)
1=1

where Cx; represents a second order tensor

~ |G Cu
Cia = (5.17)

Cii  Cir )
8o that

CaM, = ( CGM[ + CEM} , CalM( + CiiMi ) (5.18)

where superscripts x and z denote components which corresponds to the x and

.Z directions respectively.

Thus the problém of determining the effective magnetization has been
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discretized. After rearranging terms, (5.16) becomes

. |
D (Ca+q /Ke) My = Hy + Po/Ky (5.19)
1=t

where the Kronecker delta,8,;,=1 for k=l or 8x; =0 for k#l, is introduced. The
solution of (5.19) provides the effective magnetization components for each

element so that the magnetic field ﬁz inside the body can be calculated ,

according to Eq. (5.4), as

Hy = ( M- B /K, (5.20)

5.5.2 The representation of the tensor elements

In order to find analytic expressions for the tensor 5,“ s let us use
components to replace the vectors in (5.19). In two-dimensional Cartesian

coordinates, we substitute

;I.(r')-l_f:M"(x-x') + M*(2-2') (5.21)

into (5.15), where M* and M? represent x and z components of M respectively,

the magnetization components can be expressed by

1 2(x-x')? 2(x-x')(z—z')(
Mi= KHY + PX- 2K,¢§ M"(-—-- ) - M ' dx'dz’
R* rR* )

(5.22)

and
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. 2x~-x')(z-2") 1 2(z-2")?
M= K,CHZ + Pi- 2K, §~Mx + M —- )rdx'dz!
e e Zl ' R* R r*

(5.23)

Comparison of (5.22) and (5.23) with (5.16) shows that the tensor elements can

be expressed as follows:

1 2(x-x')2
XX o - ] 14
Ca = 2]J( —Rz ——R n ) dx'dz

(x-x')(2-2")
C =C¥ = - ~ dx'dz’ (5.24)

o 1 2(z-2')2
= — - ! '
Ca = 2{) ( Rz R4 ) dx'dz

The integrations in (5.24) can be further reduced after specifying the geometry

of elements. For instance, if elements are small rectangulars with sides dx
and dz, in Cartesian coordinates the tensor elements can be "represented as
follows:

Cix= =2(arctan(X1/Z1)-arctan(X1/22)-arctan(X2/Z1)+arctan(X2/22))

C¥ = C&y = Ln((Z1+X1)(22+X2)/((Z1+X2)(Z2+X1))) (5.25)

Cii = =2(arctan(Z1/X1)-arctarn(21/X2)-arctan(Z2/X1)+arctan(Z22/X2))

for k#l ,where

X1

x~-x'~-dx/2

S

x-x'+dx/2

and
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Z1

z-z'-dz/2

22 = z-z'+dz/2

with unprimed coordinates describing the center of k-th element and the primed
for I-th element. When k=1, (5.24) becomes singular. As stated in the previous
section, we can prove that the singular point is removable if the element is

small enough. However, an approximate evaluation of the singular value may

-be necessary for an accurate calculation. In the 2-D case it can be shown that

CYeChl% #nd

where d is the radius of a small circular element. Converting the circular

element into the rectangular element, we have

CX= C £ 2,2568n(dx- dz)"2

For an approximate evaluation of the singular value, we let

2n(dx- dz)"2

XX - ZZ
Cll - Cll

XZ e 2X
Cll - cll

0 .

5.5.3 The 3-D magnetized bodies

There is no difficulty in extending the previous discussion to the 3-D

magnetic problem. According to (5.9), the gradient operator yields
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‘ M(r')-R  M(r') M(r')-R _
. -
. \V/ - = -3———R
R R R

Thus (5.9) becomes

__ M(r ) M(F')'R _
M(r) K(r)Ho + P(r) - K(r --—- -3 s R}dx'dy'dz’
R .

((5.26)
Comparing (5.26) with (5.14) indicates that Eqs. (5.16), (5.19) and (5.20) are also
correct for the 3-D magnetic problem if the second tensor in Eq. (5.17) is

replaced by the tensor

-CXX CxY sz'
C =l c™ ¢V cn (5.27)
c* c¥ c=z |

with

C-M = (C*M+ C¥MY+ CM2, CY"M*+ CYYM*+ CT*M?,

C¥ MY CMY+ CFEYE) (5.28)

where we omit the subscripts for simplicity. The elements of C can be

expressed by

- 1 3(.1:-.1:.")2 :
= (— - —— ) dx'dy'dz’
" R R
(x-x')(y-y')
e CXY= CYX___, - 3/][ . 5 dx'dyldzl
R
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ff[(x-x')(z-z')
C*=C™=-3 dx'dy'dz’
R5
3(y-y')?
cY¥= (— - ————) dx'dy'dz’ (5.29)
R
(y-y')(z-2')
C*=Cc?=-3 dx'dy'dz’
R5
1 3(z-2')2
c¥= ( — - ) dx'dy'dz’
R RS @

5.5.4 The algorithm

We now go back to the 2-D problem where the solution for the
effective magnetization is represented by (5.22) and (5.23). After rearranging

terms, these equations become

E ( (Ciy + 8 /Ki ) My + CEM? ) = HY + PY/Ke (5.30)
l=1\

and
Z( CEXMY + ( Ci+ 8a/Ku ) Mi ) = HE + BE/Kyg (5.31)

This is a bilinear system and can be furthar expressed in matrix form: by using

the following notations

A=Cg + 3/ K
B =



Q=H;( + Py / Kk

E=Ca +%a/Kg
. F=H +P§ /K
X = M¥

Z=M

where A, B and E are N by N matrices, D and F are right-hand-side vectors

of length N. Under these simplifications (5.30) becomes

+
I}
lw)

and (5.32)

k-

[SI

F

Equation (5.32) provides a linear system of 2N equations, a direct solution of
which is inappropriate in the sense of achieving high accuracy and high speed.
We can further decompose them into two independent linear systems each
containing only N equations. After substitution, the bilinear system can be

represented by

(A- BE'B)X=D- BETF (5.33)
and
(E- BA'B)Z =F - BAD (5.34)

Either (5.33) or (5.34) is an independent linear system of N algebraic equations,
therefore any linear algorithm can be used for solution. We here use the QR
decomposition algorithm ( Nash, cﬁapter 4, 1979 ) for the effective
magnetization components because it guarantees high accuracy. After the
magnetization components at each element are obtained, the magnetic field ﬁz

inside a rﬁagnetized body can be calculated directly by (5.20). The éxetmal
secondary field H, is the sum of the contributions from each and every

element. If we also use T, to denote a point outside magnetized bodies, the
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anomalous field can be estimated by

N
Hgg = - CaM,

=1

with the tensor C,, given by (5.24) or (5.29).

5.4 Accuracy of the Method

The accuracy of the method can be tested via some models for which
the effect of demagnetization is known. We may use# flat‘plates as a test
model since they have the most intensive demagnetizing effect. As mentioned
previously, the magnetization factor N is 47 for an infinite plate magnetized
transversely. In such a case the internal field is uniform and can be expressed,

accofding to (5.1), by

M = KH /(1+4nK)

If the plate (K=0.2 emu,P=0) is magnetized by a vertical external field of 0.5
oersted, then M = 0.002846 emu. A horizontal flat-plate model with finite
width is used for the test. The thickness of' the plate equals an interval and
the width is 10, 20, and 30 intervals respectively. All the rectangular elements
~ used to divide the plate have equal size of 1*1 intervals, correspondingly the
total element number n=10, 20, and 30 respectively. Let HX=0, H=0.5 oersted
, and K=0.2 emu, the effective magnetization can be calculated via (5.33) and
(5.34). The estimate of M* at each and every element are zero. The estimates
of the vertical component M* are shown in Table 5.1. The elements are

numbered from the left to the right.
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Table 5.1. Estimates of the effective magnetization
in a flat-plate magnetized transversely ( dx/dzsl )

Element No. n=10 n=20 n=30
1 0.03641 emu 0.03621 emu 0.03615 emu
2 0.03059 0.03039 0.03033
3 0.03006 0.02983 0.02976
4 0.02980 0.02951 0.02944
5 0.02970 0.02934 0.02926
6 ‘ 0.02924 0.02915
7 0.02917 0.02907
8 0.02913 0.02902
9 0.02910 0.02898

10 0.02909 0.02895
11 0.02892
12 0.02891
13 0.02890
14 0.02889
15 0.02888

error 0.00124 0.00063 0.00042
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Table 5.1 gives only half of the estimates, with the others being found
by symmetry. The error is the difference between the theoretical value
(0.02846 emu) and the estimate at the central element. The estimates on edges
should be different from the theoretical value due to the finite width of the
plate. The results show that the accuracy of the method depends upon the total
number n of the elements. For this example, using-20 elements is enough to
produce an good solution for the effective magnetization with a relative error
about 2%. Using 30 elements produces a more accurate estimate with the
relative error only 1.4%, but at the price of about triple the computer time.

The appropriate selection of the element shape plays an important role
in speeding the computation as well as in enhancing the accuracy. For this
flat-plate model, we may choose the element with sizes dz=1 and dx=1, 2, and
3 intervals respectively. Let the total element number n=10 or 20, then the

estimates of the effective magnetization at the centeral element are shown in

Table 5.2.

Table 5.2. The estimates of effective magnetization at
the centre of the plate magnetized transversely (dz=1)

- - — T D - - - T D D WD P WD Y D S R D S A . S D WD D T D W T W G D P WD S W W S m

n=10 n=20
focrmmm e mamm e ——— fomamcmaccceccmscecceaa— +
M (emu) error M (emu) error
- o s s 0 e O s o D e o e e o e e
=] 0.02970 4.3 % 0.02909 2.2%
dx=2 0.02905 2.0% 0.02874 < 1%
dx=3 0.02748 -3.4% 0.02728 -4.1%

. - - - - - D P Y D WD D D T G W D D D T WD D WD N - D D Y D R D L - . . - -

* oprror=(M -0.02846)/0.02846
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From this table it can be seen clearly that using n=20 and dx=2
produces the best results, which is even better than the results of using n=30
and dx=1 ( in colunm 4 of Table 5.1 ). The estimates with‘ dx=3 intervals is
worse then those of dx=2, maybe due to the very large size of the elements.

We should note that the errors in the estimates are not the roundoff
error in solving the bilinear system (5.31) and (5.32). We have substituted the
estimates back into the equations and found that the roundoff errors for all
these computations are less than 10 emu. Thus the error is mainly due to the
use of a finite plate as an approximation to an infinite plate.

Another test model is an infinite horizontal cylinder magnetized by a
transverse field with amplitude of 0.5 oersted and inclination of 45° . As
mentioned in section 5.1, the demagnetization factor is 27 in this case. Let
k=0.2 emu and P=0, the effective magnetization is uniform and equal to 0.04471
emu. In order to test the method we use a square mesh with 52 elements to
approximately replace the cylinder as shown in Fig. 5.4. The estimates of the
effective magnetization are also shown in that figure. Except for a few
estimates at corners of the mesh, the estimates produced by this procedure
vary slightly from 0,0447 to 0.0451 emu, indicating the relative error in the
estimates is less than 2 percent. The visible errors at corner elements are due
to the approximation of using the square mesh and can be reduced by increasing
the element number.

We have comfirm the accuracy and rebiability of this procedure. In
the next sections we may use the method to analyze some problems of the

demagnetization effect. The theoretical problems may be dealt with first.
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5.5 Demagnetization in general crustal materials

3.5.1 Demagnetization due to natural remanent magnetization (NRM)

As discussed-previously, the demagnetization effect has been applied only
in the case of induced magnetization and the problem of demagnetization due
to the NRM has been seldom touched. It is well-known today that for many
rocks the magnitude of the NRM exceeds that of induced magnetization. Hence
studying the demagnetization due to the NRM is significant for both magnetic
exploration and rock magnetism.

This problem somewhat resembles the determination of the magnetic
field inside a magnet when no other magnetic field are present. According to‘
the boundary-value problems, the magnetic fields inside a spherical magnet with

a uniform magnetization M can be 'expressed by

H» =-NM : (5.35)

(Reitz, p.213, 1967), where N=4n/3 is the demagnetization factor of spheres.
The magnetic intensity }_12’ is called the demagnetizing field, and the magnetized
sphere is subjected to its own demagnetizing field. The demagnetization factors
for some simple geometric shapes have been calculated in design of magnets

(Stoner, 1945; Bozorth, 1942).

For general crustal materials, letting H,=0 in (5.9) results in

M(F) = B(r) -K(r)V| ( M(r")-R/R3) dv (5.36)
: \'}

The demagnetizing field caused by the permanent magnetization is
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Ho(r) = Ha(r) = -Vf ( M(r')-R/R3) dv (5.37)
v

Thus (5.36) can be written in the form

M(r) = B(r) + K(r) Hy(r) © (5.38)

It is clear that when the external magnetizing field is absent, the effective
magnetization in an NRM substance is less than the permanent magnetization;
the difference between the two is proportional to the susceptibility because the
demagnetizing field is the secondary field induced by the permanent
magnetization. Hence, the smaller the susceptibility, the weaker the
demagnetizing field becomes; consequently the closer the effective
magnetization is to the true permanent magnetization. This concept is useful
in paleomagnetism where one usually deals with the rocks having very small

susceptibility and relatively large permanent magnetization. It can be inferred

‘that the demagnetization correction may be unnecessary in such a case. Later

on we will show an example in section 5.6.1.

5.5.2 The magnetic field equations in general crustal materials

According to the discussion above, we summarize the demagnetizatiqn
model for general crustAal materials as follows. The demagnetizing field Hy
due to both the induced and permanent magnetization is exg;ressed by the
integral shown in (5.8) while the inteﬁal magnetic field ;1—2= Eﬁ' E The

effective magnetization is the solution of equation (5.26)
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M(r) = K(r)Ho+ P(r) + K(r)Hy (F)

In general, there is no analytic expression for the effective magnetization.
The demagnetization model is based on the linearization gof the M(H)
characteristic for ferro- and ferrimagnetic materials as mentioned in section
2.1.1. This model is correct for diamagnetic and paramagnetic materials and
well approximates for ferromagnetic materials magnetized by the Earth's
magnetic field. The magnetic induction B in general crustal materials can be

represented by (5.3)

B = /¢F+ 4n ’

which yields

div(pH) = -4ndivP .
From the continuity of the normal component B., it is derivable that the
magnetic field must satisfies the boundary condition
/‘eHen'_f‘iHin= 4”( Pin - Pen) (5.39)

(Van Bladel, 1964, p.163) where the subscript e denotes 'external' while i denotes
'internal’', and n denotes normal. In order to compare the field equations with

those for non-ferromagnetic substances, let us define

B' =B - 4P =uH (5.40)

as the apparent induction in general crustal materials. The field equations can

then be expressed by
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divB' = - 4ndivP , Blo- B! = 4n( Py - Pn ),

_— — (5.41)
B' = uH ’ H = -grad A .

Equations (5.41) are the general equations applicable to any magnetic
media existing in the Earth's crust. In regions where no ferromagnetic
materials exist, i.e. P=0, we have ‘B'=B and div—P-:-'O, thus (5.41) becomes the

familiar equations for non-ferromagnetic materials:

divB = 0 ’ Ben= Bin ,

5.5.3 Demagnetization of a uniformly magnetized body.

The assumption of uniform magnetization is correct for the bodies
bounded by quadric surfaces and having constant magnetic parameters.
Practically, the assumption of uniformity is often assumed for specimen
measurements because we are interested only in the average values of the

parameters in such cases. Under this assumption, the effective magnetization

can be written, according to (5.26), as

M = Mm= KH,+ P - KN (5.43)

where ™ is the unit vector of M and

N = vf (m-R/R3) dv (5.44)

is the demagnetizing factor for any uniformly magnetized bodies and is valid

only for such bodies. Rearranging the terms in (4.43) yields
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M(m+KN ) = Kil,+ P . (5.45)
Inserting (5.43) into (5.20) gives the internal field

Hy= H,- \N (5.46)

In" the Cartesian coordinates, (5.45) can be further decomposed into the

components

MX

]

( KHY+ PX)/( 1 + KN%)

MY

)

( KHy+ PY)/( 1 + KNY) (5.47)

MZ

( KHs+ P?)/( 1 + KN?)

Equations in (5.47) are the formulae for evaluating the effective magnitization
in a uniformly magnitized body. We suggest using (5.47) to replace the
traditional formula (5.1) for rough evaluation of magnetization because in the
latter the demagnetization effect of the NRM is ignored. For spheres Nadr

5/3, we can use a scalar demagnetization factor N=4n/3 so that

Ko+ P )/( 1 +NK ) ° (5.48)

1= (
Ho- N( KHo+ P )/(1 + NK) (5.49)

M
and —_
H,

When P=0, (5.48) becomes (5.1); while for f-ﬂ, =0 (5.35) can be derived from
(5.48) and (5.49).

In order to show'how serious the error would be if the effect of the
NRM is ignored, we may look at a dike-like magnetite ore body with uniform

k=0.1 and p=0.1 emu, magnetized by a field of H,=0.5 oersted transversely. If
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" the induced and permanent magnetization intensities are in the same direction,

then the effective magnetization is 0.06647 emu as calculated by (5.47). But
if the demagnetization effect of P is ignored, using (5.1) gives an erroneous
estimate of magnetization of 0.1222 emu that is about twice of the actL_tal
effective magnetization. This example shows if the demagnetization effect of
the NRM is ignored, the estimated reserve of a magnetite body can be only a
half of the actual reserve.

Thus we have described the physical basis of a general model for crustal
materials which contains all the previous models as particular cases. Next we

are going to apply these theoretical expressions to answer sonie practical

questions.

3.6 Some practical demagnetization problems :

5.6.1 Demagnetization in typical igneous rocks

Regardless of the demagnetization effect of permanent magnetization,
(5.1) implies that since the susceptibilities of rock-forming minerals seldom
exceed 0.01 emu, the demagnetization effect is usually not noticeble in igneous
rocks. Hence, the effect is usually ignored except for magnetite bodies.
However, studies have shown that in most igneous rocks the permanent intensity
may completely dominate the intensity induced by the earth's field ( Strangway,
1967; Parasnis, p.8-9, 1972). As demagnetization is also affected by the
permanent magnetization, reevaluation of this éffect is worth corisidering. We
may pose the question: how large is the error in ignoring the demagnetization

effect in various igneous racks?
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For practical purpose, basalt, diabase, gabbro and peridotite are included

in the study. The typical parameters of basalt lava flows are chosen from a

study by Cox and Doell (1962) with samples collected from hole EM 7 of the

Mohole Project off the coast of Baja California. For the other rocks the

- average susceptibility and the ratio @ are abstracted from textbooks by Télford

et al. (1974, p.121), Parasnis (1972, p.9), and an article by Strangway (1967).

These typical parameters are listed in Table 5.3 As the extreme case for

demagnetization, we use the flat-plate model for computation of the effective

magnetization. The model has been described in section 5.4 for Table 5.2 with

n=20 and dx/dz=2 which produces the most accurate results.

Table 5.3. The effective magnetization estimates
for typical igneous rocks (flat-plate model with
elements n=20, dx/dz=2, magnetized transversely)

D T D "B DD D D T D D D T D - D D R D R D R W S W WD AR 4 W Y D W - -

M, (10%emu)
M (103emu)
Error e (%)
M. (10%mu)

S O - L S D - D - G D R D R " D D W AP D WD S D D w

* M= KH,+ P , Ho= 0.5 oersted.

5.125
5.110
0.3

5.1089

4.5
6.5
8.750
8.290
5.5
8.282

13.00
12.10
7.4

12.09

13.0
20.0
26.50
22.82
16.1

22.78
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Regardless of demagnetization, the erroneous magnetization is the sum M.=KH,
+P. The computational estimates of the effective magnetization M for these
typical rocks are close to constants throughout all elements. For instance, the
deviation for basalt is in the order of 107 emu. Both M estimates and the
erroneous M. are shown in Table 5.3 with the reletive errors e =(M.-M)/M.
Because an infinite plate is magnetized uniformly with the demagnetization
factor N =47 in such a case, we can use (5.47) to estimate the magnetization
as well. The results calculated via (5.47) are also shown in Table 5.3 ( see
the row marked by M. ). Both the finite element estimates M and the calculated
Mc are consistent with each other, showing the reliability of (5.47).

In Table 5.3 e is the maximum value of the error in evaluation of the
effectiQe magnetization when the demagnetizing effect is being ignored. As M
is calculated in the extreme case of demagnetization, the computational result
for the basalt confirmes that the effect is negligible for rocks having small
susceptibility.

Following the consequences shown in table 5.3, it can be inferred that

(1) For volcanic rocks with small susceptibility but relatively large NRM,
the demagnetizatation effect is negligible.

(2) For a typical diabase intrusive with both K and P about 5*10"Semu,
the demagnetization effect might be considered in the case where intrusive
body is magnetized transversely because an error greater than 5% could occur
in this case.

(3) For an accurate calculation, the demagnetization effect probably
should be taken into account for typical gabbro intrusives which have a
relatively large NRM intensity.

(4) For most ultrabasic rocks in which K is greater than 0.01 emu, the
demagnetization effect should not be ignored, otherwise a maximum error about

16% could be involved.
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5.6.2 The inhomogeneous magnetization in 2-D ferromagnetic bodies

Although in principle the demagnetization effect should be included in
the interpretation of the anomalies due to magnetite ore bodies, a uniform
magnetization is commonly presumed in such cases. A question then arises: how
serious would the error be if the assumption is incorrect? We may use a set
of models with different geometry and physical parameters for the study. In
order to demonstrate the effect of inhomogeneous magnetization, we assume
that all the models have a uniform susceptibility equal to 0.2 emu and the
geomagnetic field has an amplitude of 0.5 oersted.

We may begin with a simple model, an infinite prism with square
section. When the geomagnetic field is vertical and the permanent magnetization
equals zero, the estimates of effective magnetization are shown in Figure 5.5.
Although the suscepzfibility is uniform, the effective magnetization varies from
0.03955 emu to 0.05207 emu, implying that the demagnetizatibn factor N for
a square prism is far from constant. The inclination varies from -79.4 to -
-108.6 degrees, coinciding with the magnetizing field only at the center. If we
take N=2r for the constant in Eq. (5.1) as a rough estimate of the effective
magnetization, then the maximum error can be as large as 17.5% in magnitudé
and 21% in inclination. Nearer the edges of the prism, the ‘effective
magnetization becomes less uniform. It tends to increase on the sides parallel
to the magnetizing field, while it decreases on sides normal to the field.

When the geomagnetic field is imposed at an angle of 45 degrees to
the sides (Fig. 5.6), the inhomogeneity of magnetization becomes more manifest.
Its magnitude varies from 0.03198 to 0.06235 emu while the inclination varies
from 35° to 55°. If one assume that the magnetization is uniform, the relative
error can be as large as 41% in magnitude and 22% in inclination. The largest

variation occures along the boundary, especially at corners. The smallest
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Figure 5.6. As Figure 5.5 but inclination 45°. )
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effective magnetization appears at the corners on the diagonal line normal to
the magnetizing field.
| The effect of a permanent magnetization on the effective magnetization

is shown in Figures. 5.7 to 5.9. Comparing Figure 5.7 with Figure 5.6 it' is clear
that the inhomogeneity of the effective magnetization is substantially increased
by the permanent magnetization. When ﬁo and P have the same direction (Fig.
5.7), the magnitude of M at the centre is about twice as large as those at the
two corners transverse to the external field. Because M is decreased
considerably near these corners, a uniformly magnetized elliptic cylinder, rather
than a uniformly magnetized prism, can better represent a non-uniformly
magnetized prism in the sense of producing a secondary field outside the source.
Thus the inhomogeniety of M due to demagnetization should be taken into
accounf, otherwise an interpretation may not be able to infer the correct source
geometry. The non-uniformity in direction of the effective magnetization is
also manifest (see Figs. 5.8 and 5.9.).

ﬁ'or a sheet-like body magnetized along its long axis (Fig. 5.10), the
effective magnetiz.ation, also far from homogeneous, has a maximum value at
its center (0.08046 emu) and values graduately decreasing towards both the top
and the bottom (0.05948 emu), with a relative variation of the magnetization
of about 36%. The maximum deviation in inclination is about 11° at the top,
where the direction of magnetization tends to point towards the center, while
at the bottbm it is directed away from the center. This example shows once
more that the assumption of uniform magnetization is too simple to represent
the effective magnetization within an idealized ore deposit which has 'a simple
and regular geometry. Within actual ore bodies, these effects c;re combined
with problems of inhomogeneous composition and irregular geometry.

When the magnetizing field crosses the sheet at an angle of 45 degrees,

the magnetization vector is, as expected, rotated towards the direction of the
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Figure §.8. As Figure 9.6 but with horizontal permanent

magnetization of 0.1 emu.
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long axis of the sheet (see Fig. 5.11). The rotation angles are about 7 degrees
at the top and bottom ,and about 25 degrees at the middle. The magnetization
decreases as the angle between the geomagnetic field and the long axis
increases. If this angle becomes normal, the magnetization magnitude becomes
a minimum as shown in Figure 5.12.

In summary, we suggest that the inhomogeneity of effective
magnetization may in certain circumstances be relevant to the interpretation
of magnetic well-logging anomalies and the ground anomalies due to
near-surface magnetite bodies. For anomalies due to deeply buried sources,
the assumption of uniform magnetization is more tolerable, but the effect of

demagnetization on the NRM should be considered.

5.6.3 The effect of multiple bodies

When more than two magnetized bodies lie:: close together, each of them
must also be magnetized by the fields generated by other bodies. Their mutual
interaction can enhance or weaken their effective magnetizations, depending
upon the geometrical arrangement of these bodies. In the case of two parallel -
sheets (Fig. 5.13), the direction of the effective magnetization is also changed,
the arrows in the thinner sheet point slightly toward the thicker sheet. When
twd sheets are placed normal to each other, such as in the case of two wings
of a fold, the demagnetizing effect plays a more important role. Figure 5.14
shows the effective magnetization in two sheets which have the same
susceptibility and are magnetized by a field parallel to one of them. The
effective magnetization in the parallel sheet is about three times larger as that
in the sheet normal to the field due to the demagnetizing effect. Thus the

existence of the latter could be mistakenly overlooked if the demagnetizing
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effect had not been included. As a matter of fact, from the ground anomaly
(Fig. 5.15), these is no clear indication of the existence of the normal sheet
because the anomaly resembles that due to a single sheet magnetized along the
magnetizing field. In such a case only precise calculation can help us to
distinguish the fold-generating anomaly from those due to a single sheet.

The mutual interaction becomes very complicated if many sources exist
nearby. Figure 5.16 shows an exa}nple of five sheets to simulate a problem in
magnetic well-logging. Because the field around such magnetized bodies varies
considerably, the interpretation can be extremely difficult if ~one has not
considered how the field is distributed in such a complicated situations. As the
inhomogeneous magnetization and internal field must be taken into account in
well-logging interpretation, the method presented in section 5.3 can be used
for the magnetic calcula\tion. The'procedure can be incorporated into a method
of trial and error as follows: (a) design a model of ore bodies based on
geological information obtained by drilling, then (b) use the procedure to
calculate the magnetic field both inside and outside the bodies. Comparing the
computational results with observations we can produce some informatiom for
adjustment of the original models. Then (c) calculate the magnetic field of

the new models until the computational results fit the observations. This

procedure gains advantage over other methods as it deals with all the effects

of demagnetization, inhomogeneity, and intermagnetizing betweem different

bodies, therefore can produce the most reliable source models.

s.7 Conclusion

Previous work on demagnetization has been based on a physical model

for dia- and paramagnetic materials and considered the effect only for induced
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magnetization. Because in many igneous rocks the NRM completely dominates
that induced by the Earth's field, ignoring the demagnetization due to the NRM
may yield erroneous estimates of effective magnetization. Based on linearization
of the M(H) characteristics for ferro- and ferrimagnetic materials, a physical
model for describing magnetic field in general crustal materials was presented
in sections 5.2.1 and 5.5.2, which contains all the previous models as particular
cases. |

A precise method for magnetic field computation should take account
of the inhomogeneity of the magnetic parameters and the demagnetization due
to both the induced and permanent magnetizations within magnetized bodies.
Based on the physical model mentioned above, such a method was developed in
sections 5.2 and 5.3 for calculation of the effective magnetization and the
magnetic field both inside and outside magnetized bodies. The numerical method
employed divides the magnetized bodies into finite elements and results in linear
systems of algebraic equations. The examples showed that this method can be
accurate and fast if the size of the elements are chosen properly.

The physical model and the computational method can be useful in (a)
calculation of magnetic anomalies in order to evaluate reserves of magnetic
ore bodies and to find blind ore-bodies in explored mines; (b) interpretation of
magnetic well-logging anomalies and (c) studies of theoretical and practical
problems in demagnetization which are related to applied geophysics, rz;ck
magnetism and paleomagnetism. The studies presented in sections 5.5 and 5.6
have lead to the following conclussionss.

1. The NRM also causes a demagnetization field which is the secondary
field induced by the permanent magnetization in ferromagnetic materials. The
decrease in the effective magnetization due to this cause is proportional to the
magnetic susceptibility. When the susceptibility of volcanic rocks is less than

a few 1073 emu, the demagnetization effect can be negligible (i.e. the
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maximum error in effective magnetization is less than 5% ) even if the NRM
is relatively large.

2. For typical basic and ultrabasic igneous rocks in which the NRM
intensity exceeds that induced by the Earth's field, ignoring the demagnetization
effect can result in a maximum error greater than 16% ( see Table 5.3 ). Thus,
it may be necessary to consider the demagnetization effect in ultrabasic
intrusives and the basic intrusives if which are magnetized transversely.

3. In many cases the assumption of uniform magnetization can be
incorrect for magnetite deposits even though their magnetic parameters are
uniform. For anomalies due to deeply buried sources this assumption may be
tolerable, but the demagnetization effect of the permanent magnetization needs
to be considered. Nevertheless, in many practical situqtions the effect of
inhomogeneous structure in a magnetite deposit may dominate the
demagnetization and both of them should be considered. In the case of multiple
magnetized bodies, the mutual interaction is present betwegn different bodies
and results in a change of the effective magnetization in both magnitude and
direction. The inhomogeneity in the magnetization and the complexity in the
field near sources become serious in such cases.

The demagnetization model and the computational method are able to
provide a basis for reevaluating some of the current methods of estimating
in-situ susceptibility and sample measurements. In addition, if we treat equations
(5.19) and (5.20) as an inverse problem, it might be possible to estimate NRM

of a formation from its magnetic anomalies. Anyhow, these applications require

further researches.
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Chapter VI. Summary

In the three previous chapters, we have presented several new techniques
for analysis of potential data to meet the challenge of evaluating base-metal
subprovinces in mountainous areas. The finite element method has been
incorborated with the spectral expansion method to form a complete procedure
which provides much improved regional and residual gravity maps when some
regional constraints are appropriately selected. This procedure has been applied
to the regional-residual analysis of gravity data in the Abitibi greenstone belt
in Quebec and Ontario. After the separation,u downward continuation can be
used for the regionaf\}'izld, to study the deep geologic structure or for the
residual field, to localize the horizontal range of potential orebodies. We have
demonstrated that the spectral expansion method is an appropriate method for
downward continuation from an arbitrary surface to the top of sources and have
recommended the damped least squares procedure for continuation of
infinite-energy anomalies together with an improved procedure for finite-energy
anomalies. In order to suppress undesirable aeromagnetic anomalies due to high
topographic relief in crystalline terranes and topographic distortion of gravity
anomalies, the equivalent source method has been improved for upward
continuation of potential fields between arbitrary surfaces. The entire removal
of the topographic anomalies may require accurate computation of the magnetic
field which as shown in Chapter 5, should consider the demagnetization effect
if igneous rocks have intermediate susceptibility and dohinant remanent
magnetization. The study of demagnetization is also essential for evaluation
of reserves of magnetic orebodies and  the interpretation of magnetic
well-logging data. Based on linearization of the hysteresis curves of ferro- and
ferri-magnetic materials, we have constructed both a physical and a

mathematical model resulting in a new technique for calculating the effective
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magnetization and magnetic field both inside and outside an arbitrary
magnetized body. This procedure applies the finite element technique to solve
a Fredholm's integral equation. These new techniques are useful for potential
data processing whenever sophisticated techniques are needed for advanced data
analysis, particularly for our evaluation purpose which requires processing
potential field data measured on high topographic relief.

The major computational methods adopted in the thesis are the finite
element method for forward geophysical problems and the spectral expansion
approach for the inverse problems. As the FEM is mathematically involved in
unconstrained minimization while the generalized inverse method applies
constrained minimization, both of the methods are related to the optimization
of functional equations. As a pow_erful tool in applied mathematics,
optimization methods will continue to be applied in geophysical data analysis
in the future. A successful application of optimization principles requires a
careful exploration of the contact between the applied sciences and
developments in computational methors. That is the reason why the FEM and
the generalized inverse, although they have become well-known today, have
seldom been used in the potential data processing (excluding the inversion which
employs the generalized inverse as mentioned in Chapter 2). A sophisticated
application éften requires systematically integrated techniques, such as our
regional-residual decomposition procedure which integrates the methods for
solving both forward and inverse problems. As we showed in Chapter 3 and 4,
the application of the generalized inverse method is not restricted to solving
the inverse problem; it can also be used in the data processing stage via
carefull mathematical treatments.

As a basis of gravity and magnetic methods, the classical potential theory
was mature even in Gauss's age. Stimulated by the exploration of outer space

and deep underground structures and armed by modern computer sciences, the
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potential data processing techniques have already had a' solid framework since
the 1970s. Further development in this area depends upon society's demand for
new mineral deposits and upon new developments in the fundamental sciences.
A brief perspective on some possible advances and future developments in
potential data processing might be constructive before we end our discussion.

As a result of highlighting regional geophysics since the 1970s,
compilations of gravity and magnetic anomaly maps in major countries are
underway and will be completed in this decade. The interpretation of these
maps will meet a serious problem of separating the contributions from the
crust, lithosphere, asthenosphere, and even the lower mantle. This is more
complicated than merely separating the two kinds of sources: regionals and -
residuals. The high degree of non-uniqueness in potential data inversion implies
the impossibility of the separation by using the potential field data alone.
Integrated modelling and joint inversion with other geophysical data might be
helpful in dealing with this problem.

Because lineations in aeromagnetic maps are reliable indicators of crustal
structures, the use of digital computers to automatically produce a lineament
map would be very attractive to geologists. There is no doubt that this is a
challenge to geophycisists in their attempts to simulate a complicated
interpretation process. Pattern recognition and digital filtering might be the
techniques useful for this problem.

It has been realized for a long time that the single interface model is
too simple to represent actual crustal structures while t—he multi-interface model
);or inversion is more desi;'able for both the regional geophysics and oil
geophysics. Unfortunately, it is a most difficult problem at present time since
this is an extremly underdetermined non-linear inverse problem. More advanced
methods must be needed for tackling this problem.

The coincidence of very weak potential field anomalies and the "bright
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spots" of seismic exploration has been revealed in some oil fields (Roma and
Bradley,1982), so the automatic recognition and location of these anomalies
would be valuable in oil exploration. For a fruitful result sophisticated data
processig techniques are required.

So far, stochastic modelling has not achieved full applications in potential
data processing compared with seismic data processing. This is probably due to
the requirement of strong assumptions on potential data for making progress.
For instance, in order to develop some efficient procedures one may have to
assume the potential data to be a realization of a stationary random process.
This assumption in nature is incorrect for potential field signals which are
usually space-variant. Theoretically employing the Hilbert probability space
(Loeve, 1963, p.91-92) to describe actual potential fields seems promising for

developing new data processing methods.
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Appendix I

The Finite Element Method: for Plane Dirichlet Problems

The finite element method with its applications has been
described in many texts ( e.g. Silvester and Ferrari, 1983 ). For our
application it is sufficient to outline only some practical aspects about
the first order triangular elements for solving plane Dirichlet problems.
A systematic and penetrating discussion can be found in Silvester and
Ferrari's book which also contain some Fortran programs.

To obtain an approximate solution by the FE method, we may
devide the studied region into many triangular elements. The potential
( or other harmonic function) within a triangle may be adequately

represented by the expression

u(x,y) =a + bx + cy (A.1)

Inserting particular coordinates x; and y; and corresponding potentials
u; at the three vertices of the triangle ( Fig. A.1), we obtain three
equations for coefficients a, b and c. Substituting a, b and ¢ back to

(A.1) yields

3
u = Zuiri (x,y) (A.2)

=1
where r, is a linear function of position only. If A denotes the surface

area of the triangle, we have



re= (x93 X3y, JHY, =y, Jx+(Xy-x,)y)/ 2A (A.3)
ry = ((X3y; =X; Y8 )+ (y3-y 1 )x+(X1-X3)y)/2A (A.4)
= (XY, =Xy ) +(Yy=Y, Jx+(Xy-x4)y)/2A (A.5)

The potential gradient within the element can be expressed from

(A.2) as

3
Vu = Z u; vr, (A.8)
i1

According to (A.6), the element energy of the potential will be

(e) 2 T (e)
W =0.5 frul ds = .5 US U (A.7)
triangle

where U is the column vector of u; and the superscript T denotes

transposition. The matrix S has elem'ents as

(e)
s = Vr Ur ds ’ (A.8)
ij triangle i i

which depend on location and geometry of the element. For any given
triangular mesh, the matrix is readily evaluated on substitution of the
general expression (A.3) - (A.5) into (A.8).

In the assemblage of elements, potential values at all nodes may
be described by a column vector of length N, where N is the total
number of the nodes. Following the requirement that potential fields
are continuous across interelement boundaries, a matrix §. of N by N,
named the Dirichlet matrix, can- be defined from'disjoint matrix Sus

which can be expressed by (A.8). Suppose That an existing triangle

(vertices 1,2 and 3) is to be jointed by another triangle (vertices 4,5,
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and 6) to form a quatrilateral region. In the connected assembly the
potentials at corresponding vertices ( say 1 and 3 to 4 and 6

respectively ) must be identical. If we rewrite the potential vector

U = . (U U yeee,yl )T
dis 1 2 6

where the subscript dis indicates the disjoint elements. The total energy

associated with the assemblage of the elements is the sum

(e) T
W= Z w =0.5U S v (A.9)
all e -dis =dis -dis
where
(1)
S 0
S = (2)
=dis 0 S

The equality constraints at vertices may be expressed in matrix
form, as a rectangular matrix C relating potentials of disjoint elements

to the potentials of the conjoint set of elements:

U = CU
~dis = ~-Ccon

where Ucop =col(u,,u,,us,us) for our two-triangle mesh, and

O OO M~
DO OO
DO O~NOO
D ODOOO



A4

Thus, the energy in (A.9) for the connected system becomes

w=o0.5uT suU ' (A.10)
-con = -con

where the Dirichlet matrix

s=cls ¢
= =adis =
After the connected assembly of elements, the total energy (A.10)
has a quadratic form like (A.7) with the Dirichlet matrix S replacing
the disjoint matrix. In practice, the disjoint coefficients may be
calculated continuously while their contributions to the essembly can be
embedded to the conjoint matrix S at the same time.
To obtain an approximate solution of Laplace's equation, we need
to minimize the stored energy in the connected finite element model,

i.e., to set

oW/ou,= 0

where the index k refers to nodal numbers while u, denotes nodal
potentials. Since the energy expression (A.10) is quadratic, a unique
minimum of the energy is guaranteed. The differentiation with respect
to each and every k thus corresponds to an unconstrained minimization,
with the potential allowed to vary at every node except for those
prescribed on the boundarjy. The minimization leads to a matrix equation

( see Silvester and Ferrari, section 1.5, 1983 )



S U =S U (A.11)

«ff -f =fp -p
where the subscripts f and p refer to nodes with free and prescribed
potentials respectively; Up denotes the boundary constrains, while Ug
is the solution for potentials at internal nodes. Matrix §" denotes
coefficients corresponding to internal elements at which potential can
vary freely, while S¢p corresponds to elements which have potentials
at one or more vertices on the boundary. In general, the matrix S
is square, symmetric and non-singular, so the solution (_If" ‘can be
obtained by employing some efficient linear algorithms, such as Cholesky
decomposition.

If the number of elements is large, considerable storage can be
needed because the coefficient matrix involves the square of the total
nodal number. Fortunately, discretization of differential equations by
means of finite elements tends to produce sparse matrices, because any
one nodal variable will be directly connectéd only to nodal vari;xbles
which appear in the same finite element. Therefore, it is customary
to arrange for storage of the matrix in one of several compact forms,
such as band-matrix storage or profile storage. These problen;ts are

discussed in detail in Silvester and Ferrari (1983, chapter 6).

»
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The mesh and the'regional gravity

estimate in the Abitibi belt

~ Appendix II.
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