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Abstract

Many industrial manipulators employed in industry today have serial ro-
tational architectures; i.e. they are open-loop kinematic chains with rotating
joints. As the tasks performed by these manipulators become more involved,
there is a need for enhanced control. Model based control techniques for ma-
nipulators are based on the availability of a dynamic model that relates the
generalised forces at the manipulator joints to the demand trajectory. Given
an accurate dynamic model; model based conirol significantly improves the
positioning and tracking capabilities of the manipulator.

In practice, the inertial parameters of a manipulator are often no¢ known
accuralely and have to be calculated based on experimental data; this presents
several problems due to inaccurate instrumentation as well as unavailability
of a full order model. Since model based control is sensitive to model inac-
curactes, dynamic estimation is an important issue in model based controk.

This thesis considers the development of an accurate dynamic model for
two industrial manipulators. The accuracy of available instrumentation for
recording sensor-motion data required the application of practical methods
for improving the estimation bounds. This thesis presents some methods
for improving the estimation accuracy of the reduced order dynamic model,
particularly with regard to the importance of a correct formulation for the
base parametric set and the dependance of parameter estimation accuracy
on the torque sensitivity. ;

The thesis also experimentally implements an algorithm for trajectory
optimisation for estimation by the LMS adaptive law. Practical methods are
suggested for carrying out the optimisation.

Results are presented based on experimentation conducted on an electric
and a hydraulic manipulator; a brief description is also provided on the soft-
ware that was developed for ths purpose. Identification results in one case
were seen to closely approximate those previously determined by explicit
measurements by Khatib et al. Finally, a comparison between ordinary PD
control and feedforward control using the available model shows the promise
of actual ability to implement model based control. However, a comparison
of the results of the control performance between a direct drive manipulator
and a geared manipulator indicate that unmodelled dynamics play a central
role in increasing the error bounds of the identified parmeters.



Resume

Plusicurs manipulateurs industriels utilisés aujourd hui sont congus sefon des
architectures sérielles rotationelles. ¢'est-d-dire des chaines cindmaliques ou-
vertes utilisant des joints rotationels. Comme les tiches effectudes par ces
robots deviennent de plus en plus complexes. on tend & utiliser des algo-
rithmes de controle plus sophistiqués. Les algorithmes de controle basés sur
un modele du robot dépendent directement de la disponibilité d'un modele
dynamique exprimant les forces généralisées au niveau des joints du robot on
fonction de la trajectoire demandée. Assumant un modele dynamique préeis,
les techniques de contrdle basees sur un modele du robol amcliorent signilica-
tivement les possibilités de positionnement et de poursuite du manipulateur.

En pratique, les parametres inertiels d’un manipulateur ne sont pas con-
nues avec précision et doivent ¢tre calculées a partir de donndes expérimentales,
L’absence d’un modéle complet de méme que I'imprécision des équipements
de mesure causent certains problemes. Puisque les algorithmes de controle
basés sur un modele du robot sont tres sensibles a la précision de ce dernicer,
’estimation dynamique du modele devient un facteur délerminant pour ce
type de controle.

Dans cette thése, nous développerons un modéle dynamique précis de
deux manipulatleurs industriels. La précision des appareils de mesure disponibles
pour enrégistrer les données de mouvement nous a contraint & utiliser des
méthodes expérimentales pour améliorer les bornes de 'estimation. Nous
suggérons quelques méthodes pour augmenter la précision de 'estimé dans
le cas d’un modéle dynamique d’ordre réduit, particulierement Uimportance
d’une formulation correcte de [’ensemble des paramétres de la base (du robot)
et de la dépendance de la précision des paramétres estimés & la sensibilité au
couple.

Aussi, dans cette these, nous implantons un algorithme d’optimisation de
trajectoire, déja existant dans la littérature, pour Pestimation utilisant la loi
adaptative LMS. Nous suggérons diverses méthodes pour 'implantation,

Finalement, suite & une comparaison entre le contréle proportionel-dérivée
ordinaire et le cé;ntréle Jeedforward, nous montrons qu’il est possible grace
au modele développé ici, d'implanter un algorithme de contrdle basé sur
un modele du robot. Cependant, en comparant les résultats, on note une
différence appréciable entre un robot utilisant un entrainement direct et un
robot entrainé par I’entremise d'une boite d’engrenages. On y voit que:les
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paramétres dynamiques non modélisés jouent un réle crucial sur la borne de
. Perreur des parametres identifiés.
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Notation

We pgive below, alist of symbols used in this thesis.

"
M
vV

v
‘

e
)

0
0
"y
mp;

:the vector containing the joint torques

:the manipulator mass matrix with acceleration coefficients

:the velocity matrix with Centrifugal and Coriolis terms coelficients
:the Mriction coefficients

:the gravitational cocllicients

:the joint angle vector

:the joint angular velocity vector

:the joint acceleration vector

:the mass of the i*# link

:the first moment of the i** link

:the second moment of inertia of the ** link

:the vector containing the dynamic parameters of the manipulator
:the inverse dynamic regressor matrix

:the angular velocity of the ¢** link

:the angular acceleration of the i** link

:the acceleration of the origin of the frame attached to the #** link
:the inertial moment due to the ¢** link rotation

sthe inertial force due to the motion of the #** link

:the force exerted by the (i 4+ 1)* link on the #** link

:the moment exerted by the (i + 1)!* link on the i** link

:the regressor matrix containing only the acceleration terms

‘the regressor matrix containing only the velocity terms

:the regressor matrix containing only the gravity terms

:the regressor matrix containing only the friction terms

Uy, Sy, Vithe matrices obtained by svd for the regressor matrix

Cr
C'Pu
Iy

0

:the coveariance of the motion noise

:the covariance of the a priori parameter vector

:the pain matrix in the LMS algorithm

:the parameter vector

:the regressor correlation matrix

:sensor noise correlation

:the cost function for trajectory optimisation for the LMS algorithm
:the incremental gain in the optimisation procedure



Ci

Qr

Iy

:the parametric error covariance matrix at the &% iteration
:the Kalman eain at the A iteration

sthe covariance matrix of the process noise veetor. wy

:the covariance matrix of the measurment noise
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Chapter 1

Introduction

1.1 Problem Description

Industrial robots are generally controlled by simple linear feedback con-
trollers, which are employed for their ease of implementation. A lincar design
based on stability and error analysis for linear feedback control systems is
unable to consider the fluctuating relationship between the applicd forces
and the resultant motion changes; in some cases this relationship changes
rapidly enough so that linear controllers designed for conservative margins
produce large tracking errors for reasonably fast trajectories. Hence o con-
troller design based on a linear manipulator model for even a restricled work
space may be unacceptable for somne industrial applications; the performance
in most cases can be improved by employing more effective controllers.

One approach to achieving a controller with better tracking capabililies

is to incorporate the dynamic model of the mechanical manipulator. The



inodel consists of explicit expressions relating the output trajectory to the
actuator forces. A control algorthim based on the dynamic model can com-
pensate Lhe effects of inertial, centrifugal, Coriolis, gravity and frictional
forces more effectively than a linear controller. The performance of a model
hased controller is related to the accuracy of the identified model and the or-
der of the dynamic model incorporated. Unfortunately, existent model-based
algorithms such as the computed torque method [1] are not robust to signif-
icant parameter bias. Consequently, it is necessary to identify the dynamic
parameters as accuralely as possible.

Given a dynamic model structure, an identification procedure can pro-
cess the manipulator input-output {torque-motion) data to yield parameter
estimates. In most cases, the data contains additive measurement noise; the
system may itself be inherently noisy, in which case, a priori statistics are
required to process the available data.

In the case of mechanical manipulators, the sources of noise are: the mea-
surement (sensor) noise which leads to an error in the trajectory information
and motion (process) noise which represents the error in the measured actu-
ator force/torque. A manipulator cannot be completely modelled on account
of the difficulty in deriving models for the frictional forces and forces due
to the flexible modes. As selected models for dynamic estimation generally
incorporate only the inertial forces, the contribution due to unmodelled dy-
namics of the manipulator leads to an error in identified parameters. The
unmodelled dynamics contribute to the systematic error, so called since they
can be eliminated by using a full-order dynamic model. Generally, system-

atic errors are also modelled as random vectors with known statistics, These

2



unmodelled dynamics present & major obstacle to accurate dvnamic estima-
tion.

Better excitation of the input trajectories for experimental data is the
principal method of increasing the accuracy of the identilication procedure,
The choice of an experimental trajectory is generally based on minimising
an error criterion which is a function of the trajectory. The selection of the
trajectory depends on the employed identification procedure. The applica-
bility of methods for generating suitable excitation trajectories is, however,

limited because:

1. there is an unavoidable bias due to the unmodelled dynamics as
they are correlated with the regressor; the correlations cannol be

minimised as explicit expressions are unavailable,

2. actuator contraints limit the possible excitation.

This thesis studies available techniques in parametric identification ap-
plied to serial, rotational manipulators modelled as an open kinematic chain
of rigid bodies. Experimental results are derived by applying Lwo crileria
for estimation; the batch least squares and the least mean square crror cri-
terion. Since the sensor data only consist of the position sensors and the
force/torque (current/pressure) sensors, the effectiveness of identification
methods is demonstrated for very noisy data. Workspace constraints, ac-
tuator limitations and particularly the unmodelled dynamics make dynamic
estimation a difficult problem. Trajectory optimisation i3 conducted using

appropriate error criteria. Finally, trajectory tracking employing a dynamic



model based on the identified parameters gives an indication of the accuracy

ol the identification experiment.,

1.2 The manipulator model

In this section, we briefly describe the notation used to specify the manipu-
lator architecture in this thesis. The type of manipulator we shall consider
is an open-chain mechanism consisting of n + | rotating rigid links, starting
with the base link. In order to describe the motion of the manipulator, a
kinematic model is required. A Cartesian coordinate frame Fi{(X;, Y, Z;) is
attached to the i link. The modified Denavit-Hartenberg notation is used
lo assign the coordinate frames as this notation is well suited to the dynamic

modelling of manipulators. Frame assignment by this notation is as follows:

1th

e 7Z; is along the i** joint axis

e X; is along the common perpendicular to Z; and Z;4, directed from
Z{ to Zi+|. )
If Z; and Z;4, are parallel, X; is directed from Z; to Z;4, such that O;

coincides with O;_,

The following parameters then constitute the modified HD parameters,
¢ ¢; is the angle between the Z;., and Z; axes, measured about X;_;.

¢ q; is the distance between Z;_, and Z;.



o b; is the Z; coordinate of intersection of X;_y and Z;.

e O is the angle between Xi_; and X;. measured about 7.
For a rotational manipulator,

4

The assignment is illustrated in lig. 1.1.
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Figure 1.1: The modified DH notation

«;,a; and b; are constant. The orientation of coordinates of the &% frune, &,

—Sillf);

with respect to I%_; coordinates is given by the matrix A" where:
0
— 8in o

cos 0;
= | cosq;sinf; cose;cosf;
sina;cosll;  cosg;

i-1
AT =
sin a; sin 0;



The position vector of O with respeet to - is denoted by ; and given

hy:

U
li = b; sin oy

= cos a;
1.3 Dynamic behaviour of the manipulator

I"he manipulator inverse dynainics consist of the expressions for the joint
torques duc to the relative motion of the links. Due to the cross coupling
l[orces; i.c. contributions to the joint torque due to the motion of a distal
link, dynamic estimation based on joint motion data cannot be carried out
for individual links. Also, it a practical manipulator, the friction and other
unmodelled forces may exceed the contribution due to an inertial mode. It
thercfore becomes necessary to employ certain methods to eliminate the less
significant modes and maximise the accuracy of estimating the remaining

inertial parameters.

1.4 Overview of thesis

In chapter 2, we survey previous work in dynamic estimation for manipula-
tors. Chapter 3 briefly states the Newton Euler algorithm for manipulator
inverse dynamics and presents two theorems for obtaining the base paramet-
ric set of rotational manipulators. In chapter 4, the LS algorithms available
for linear parametric estimation are studied; methods for improving the ac-

curacy of the least squares estimation procedure incorporating a significance

6



analysis and column scaling criterion are developed.

Chapter 3 describes the least mean squares algorithm applied to dynawic
estimation by Armstrong; the chapter is primarily concerned with the imple-
mentation of the multistage optimisation algorithm suggested by Armstrong
for generating an exciting trajectory for the Puma 560 manipulator; prac-
tical methods are suggested for implementing the algorithim. The results
of the procedure conducted for the 3 degree of freedom Puma 560 arm are
presented.

In Chapter 6, we describe the two manipulators used for the estimation
experiments and also summarize the software implementations ol the esti-
mation algorithms and algorithms for automatic model generation,

Chapter 7 presents the results ol the analysis using recorded data for the
two manipulators. [Finally, in chapter 8, we conclude with a summary of

inferences and suggestions for future work.



Chapter 2

Literature Survey

2.1 Introduction

The present chapter surveys the literature on the available system identifica-
tion procedures and their application to the dynamic calibration problem. A
high degree of correlated, unmodelled dynamics e.g. dissipative forces, flex-
ible modes etc. and noisy position sensoré lead to difficulties in parameter
estimation when a high accuracy is required for a precise dynamic model.
Least squares estimation is the most popular method for dynamic estimation
and has been widely applied. Therefore the major part of this chapter deals
with the literature in least squares estimation,

Modcl based control is the main objective of dynamic calibration; the
accuracy required of estimated values is related to the tracking accuracy of
a model based controller. The last section considers previous work on the

robustness of model based controllers, namely the feedforward and computed



torque methods. in the presence of model uncertainties.

2.2 The system model

Parameter identification is generally based on the manipulator inverse dy-
namics formulation. The inverse dynamics of a manipulator are constituted
by the expressions for the generalized inertial forces of the manipulator based
on the desired state and the inertial parameter vector.

Employing the Euler-Lagrange equations ,[2], the manipulator inverse

dynamics can be expressed by the matrix equation:
T = M(©)0 + V(0,0) + G(©)

where O, (:), O are the position, velocity and acceleration vectors respectively,
M is the manipulator mass matrix, V denotes the contribution due to the
centrifugal and Coriolis forces and G is the contribution duc to the graviti-
tional torque.

Luh, Walker and Paul [3] derive the recursive Newton-Fuler algorithm for
the manipulator inverse dynamics in terms of the link motion and inertial
moments about its centre of mass. Employing the same recursive algorithn,
Atkeson et al [4] derive linear expressions for the generalized forces in terms
of the link moments about the joint axes. A linear model is preferred for
purposes of estimation as fewer parameters are required for the estimation
procedure, leading to improved problem conditioning. The system governing

motion of a manipulator can therefore be given as:
H(©,0,0)P=T,+T,

9



where M is the coefficient matrix whose clements are nonlinear functions of

the manipulator state, P is the manipulator inertial vector given as:
> = [my, mp;, Ji]

T, is the N-dimensional veclor of generalized forces and Ty represents the

unmodelled dynamics.

2.3 The base parametric set

For accurate calibration, a full rank regressor must be incorporated in the
estimation model. 1t is impossible to estimate all the link inertial parameters
from the motion data due to the restricted degrees of freedom ol each link
on account of its constrained motion. A base parametric set constituted by
a minimal, independant set of inertial paramters that generate the dynamic
equations can be identified, given the kinematic model.

Numerical methods for identification of the base parametric set have been
presented by Izaguirre et al. [5] and Sheu and Walker [6]. In [5], identifica-
tion is based on generating random regressor equations and deriving a full
rank regressor. Sheu and Walker [6] derive the base parametric set from the
Lagrangian by investigating the basis functions generated by the Hamilto-
nian difference equations. The SVD algorithm is used to obtain the base
parametric set. Gautier and Khalil [7] identify the parameters explicitly and
give general regrouping relations for the inertial parameters from the basis
functions.

Mayeda et al. [8] have derived an explicit base parametric set for a gen-

10



eral parallel, perpendicular manipulator. The inverse dynamic expressions
are derived from the Euler Lagrange equations and the basis functions are
evaluated. The cocflicients of the basis functions then form the base para-
metric set as they generate a full rank regressor. The (ollowing theorem by
Mayeda gives the basis coefficients derived for a parallel, perpendicular ma-

nipulator:

Theorem (Mayeda[8]). For a general parallel, perpendicular manipula-
tor with rotational joints, the following constitute the regressor cocllicients
of the base parametric set:

Ciry CRY» CR:’a CJry Car=, €y, Cyvt
VISj<Non<igN

where a is the joint index of the second parallel cluster.

Since the manipulators considered for calibration in this thesis fall in this
category, the theorem provides a convenient method for identifying the base
coeflicients.

In a later chapter, we try to develop the inverse dynamic equalions suil-
able for base parametric evaluation employing the Newton-Euler algorithm;

this develops a better intuitive understanding of the base parameters.

2.4 Estimation methods

Methods of linear system identification presented in the literature include

batch least squares estimation, adaptive LMS procedures and stochastic

i1



methods.  ldeally, the problem of identification in the presence of noise is
stochastic; however, with poor information regarding noise statistics, LS

methods have found applicability in most cases.

2.4.1 Least squares procedures

The classical lincar least squares method for parametric estimation has been
widely applied in the casc of dynamic calibration. The least squares problem
is considered in detail in {9]. The standard linear least squares estimation
procedure involves orthogonal decomposition techniques, the QR and SVD
decomposition that employ the Householder transformations. Lawson and
Hanson, [9], derive the perturbation bounds for the Least Squares problem;
practical methods for improving the robustness of the estimation are also de-
veloped; chiefly among these are ridge regression and the method of weighted
least squares. Atkeson et al. [4] estimate the load and link parameters of the
PUMAG00 and the MIT Serial Link Direct Drive Arm using least squares
and the Newton-Euler equations. The methods of ridge regression and re-
duced parameter identification were observed to give near optimal results
for estimation employing the pseudo-inverse. Sensor errors were found to be
particularly significant when. the position signal was differentiated twice for
the acceleration, However, identification based on explicit integration of the
dynamic equations was found to give worse results than the differentiation
method.

Armstrong et al. [10] experimentally measured the inertial parameters of

the PUMAS60 manipulator after disassembling the links. The experimental



procedures were simplified by several heuristics; the results have been used
for evaluating the accuracy of identification experiments conducted on the
PUMAS60 manipulator in the present thesis.

The adaptive algorithms for linear systems include the Recursive Least
Squares (RLS), the Least Mean Squared Error (LMS) algorithm and opti-
mal filtering algorithms (Kalman filter). In the latter case, implementation
requires a priori noise statistics for the motion noise. Adaptive identification
algorithms are considered in detail in [11] and [12]. Variance and conver-
gence properties of the LMS algorithm are studied in [13]; expressions are
also derived for the rate of parametric convergence.

The LMS algorithm was used for estimating the inertial parameters of
rigid body manipulators by Craig [1] and Armstrong [14]. Sastry [15] de-
rives the persistant excitation condition for the trajectory in order to obtain
parameter convergence using the LMS algorithm. Armstrong [14] derives
expressions for the steady state error expectation in terms of the sensor and
motion noise statistics. A dimensionless quantity, bius susceptibilily is in-
troduced as an indicator of the robustness of the experiment to systemaltic
error. Error minimisation, based on maximising the minimum singular value
of the input correlation matrix was also considered by optimising the input
trajectory based on the multistage optimisation technique b;v Bryson and Ho,
[16). Application of the method for trajectory optimisation of the Adepti
arm and the MIT/Asada Arm was seen to improve the bias susceptibility as
well as to reduce the convergence time.

Gautier and Khalil {17] derive a method for estimating manipulator iner-

tial parameters based on an energy method. The method obviates the need
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for the acceleration data (measurement). A method to minimise the effect
of noise and error modelling on the LS solution is presented and simulated.
The constrained optimisation algorithm is based on a conjugate type method.
The results were seen to improve when the number of equations increased
but no more than twice the number of unknown parameters. The regressor
condition was not sensitive to perturbations. As the demanded position and
velocity are generally accurately tracked by a standard PID controller, the
method is also feasable experimentally since the actual trajectory does not
significantly difler from the demanded trajectory.

The LMS and RLS estimation methods can be derived as special cases
of the discrete time Kalman filter; stability properties and expressions for
error analyses conducted for the discrete time Kalman filter [18] [19] can be
applied for improving the accuracy of the parametric identification given the

availability of known noise statistics.

2.5 Application to model based control

The primary applicability of the identified dynamic model lies in its incor-
poration in model based control. Among the established methods of model
based control are feedforward control and computed torque control. The ex-
perimental results of feedforward compensation have been presented in [20]
and [21]. Tracking was observed to deteriorate significantly with poor knowl-
edge of inertial parameters. The computed torque control law was proposed
by Craig (1] and proved globally stable by Sastry [15]. Egeland {22] evaluated
the robustness of this method by evaluating the stability of the linearised dy-
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namic equations. The lincarised dynamic equations give the evalution of the
state error by the transition equation:

d| ©-6 O -0

E{ . . = (A"lnom + (SA) . .

@ - Oo O - en

where 84 is a function of the model inaccuracies. Egeland derives inclu-
sion regions for the modes of the perturbed system in terms of the model
error using the block Gerschgorin theorem. A simulation shows the system
eigenvalues to be very sensitive to inaccuracies in the inertial parameters
as compared with the unmodelled dynamics. This result shows that model
based control would only be effective in the presence of an accurate inertial
dynamic model. This result shows the importance of accurately estimating

the inertial parameters for model based control.
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Chapter 3

Manipulator dynamics

3.1 Introduction

In this chapter, we first present the well known Newton Euler inverse dy-
namics algorithm. These equations are then employed in formulating rules

for identifying the base parametric set of a general rotational manipulator.

3.2 The Newton Euler algorithm

Using this algorithm, we first calculate the velocities and accelerations of
cach link with reference io the base frame by a forward kinematic iteration
and then derive the joint torques by an inverse iteration {rom the last link.
The effect of gravity is simulated by accelerating the base link by —g. If
the second moment of inertia about the joint axis is employed, the resulting

expressions are linear in the link inertial parameters. The algorithm is stated

16



below:

UJ():O.

fori=1to N,
W

Wi

Vi

[V,'

1t
fori=Ntol,

fi-1

‘."u =—g

A jwicy + &4y (3.1)
d

a

eq; + .-l:-_ll.:.’i—l -+ .~l',:_lw.-_| X 8g; (h.2)

A Vic + Al (@ics X Ling +wicy % {wicy x 12)13.3)

d
7 (Jiwi)

Jiwi + wi x iy (3.1)
(miVv,),
MV +wy X mp; +w;p X (wp X myp;) (3.5)

the force on link 7 by link ¢ + | represented in frame 4.

the torque on linkiby link ¢ + 1 represented in frame /.

AP — myvi — oy xmp; —wi X (wi xmp;))  (3.6)
A::_'l (ni + L x £ —~ mp; x ¥y — Jiw; —wi % Jwy)  (LT7)

Al (=nioy).é (1.8)

3.3 Base parametric identification

As mentioned in chapter 2; the minimal set of inertial paramecters whose

values can determine the dynamic model of the mechanical manipulator
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uniquely, is termed the bese paramelric sef. Since the relative motion of
adjoining links is restricted Lo one degree of freedom, a given link may have
a limited number of degrees of Mreedom with respect to the base link. The
inertial parameters pertaining to these degrees of freedem do not aflect the
generalised lorces and are redundant and non-identifiable from the trajec-
tory datit. Inertial quantities having degrees of freedom with reference to the
base joint axis but not a distal joint axis cannot be individually identified
but can be expressed as lincar combinations of other link parameters. These
are termed the dependant parameters. The base parametric set is only a

property of the manipulator architecture.

3.3.1 An analytic evaluation

Based on the Newton Luler dynamical equations, we give below two theo-
rems for identifying the base parameters of rotational manipulators. As far

as the author is aware, the {ollowing two theorems are original contributions,

Theorem 1
For a rotational manipulator; the mass, m;4) of the (¢ + 1)** link is de-

pendant on J; and mp;; the dependance is given by the following relations:

g

mp; = mp; + migilig

J:-my =J;+ m;+|[l,-.1;[ - l,l"r]
Proof: From the manipulator dynamical equations of section 1, the total
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torque contribution ab joint axis i due to Ji, mp; and iy is given as:
d . .
n; = ") (Jiwi) + Ligr X mga Vi, -+ mpy x v,
= Juaoi +wi X (i) F il X Vi A mp XV
= Jui +wi X (Jiwd) o (I (v ay Nl b O (w YD)
= [Ji + mig (L 1) T = LTy +
wi X [ mipy (1) 1= L1y

+ (mp; + mip i) x v

Q.E.D

Hereafter, the first and second moments shall implicitly mean the angmented
moments; since there is no method to isolate the contribution due to the

masses alone.

Theorem 2
The base parameters of the j** link of a rotational manipulator can be

obtained from the basis function coefficients of the following expressions:

o C;,s=1...N where C, is the cocfficient, of ¢, in the following expres-

sions:

N = . L J .
> RN x [~mpl] + Tleflin + ) &b+
k=1

r=j+1 k=1
N z=1 ¥ . . .
Y XY eAllmp, x [wl x Bl
r=jy=l ==1
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* c. ”__J mp{l % g

where vi2 is the representation of vy, in frame

rth

Proof: By equation (3.8), the generalized torque at the j** joint axis is given

by :

I; Al [-njo) @

= [-—n_,- =1 x f; + mp; x V; +J":¢b_,- + w; % Jiw,-] @ (3.9)

= [—n,-—l-X( Wit xmpj+1) +1 x( Wit X ( Y xmpj:“))

—-1; >-<f+i~i-mpj><vJ,—i—J,wj+¢.;:J x Jjw;].é (3.10)

By Renaud [2], the velocity terms are obtained from the acceleration coeffi-
cients by employing the Christoffel symbols; hence the base paramters can
be evaluated from the coefficients of the joint accelerations. Hence we isolate

the acceleration torques.

N . z
o o= 3 elxliemelx] it

:r"'j-}-l k=1
=1 r=1 r
Ze Allmp, x DD (w) x B)]] + ZeJ S elg  (3.11)
.-".'_'J y=1 y=I1 r=j k=t
> . ;
= z Z &.[[l;x){~mpl x] + J]&fd, + &.J] Zek&k +
r=j+l k=1 k=1
N »-1 ¥ ) ) .
Y. D éfmpl x (& x )4 (3.12)
r=j y=1 =1
Q.E.D
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3.3.2 Numerical procedure

A numerical procedure can be used o identify the basis columns of the re-
gressor. Considering n random values of position, velocity and aceeleration;
the regressor matrix can be calculated numerically using the Newton-Fuler
procedure, cach coefficient being obtained by considering the torque contri-
bution due to a unit paramecter.

The regressor columus {or the redundant parameters have null values; the
dependancies between the remaining columns can be identified by the rank
of the augmented matyix, [y k-1 : H}]. For a rank deficient matrix, the last
column can be obtained as a linear combination of previous columus by an

orthogonal basis By. Let

k=1
hi =) Brje;

=1

B = A"ak oy = (I, gk'
J 7

3.4 Conclusion

In this chapter, we presented the inverse dynamics algorithm and presented
two new theorems for the identification of the base parametric set; the second
theorem delineated two kinematic expressions whose base ;);ﬁ'alt‘lel;czl's con-
stitute the base parameters of the dynamic model. The basis functions arc
only functions of the manipulator architecture and can be evaluated given
the constant DH parameters. The advantage of employing the N-E equations
for base parametric evaluation is that the reason for the dependancies is more

apparent.



Chapter 4

Least Squares Estimation

4.1 Introduction

In this chapter, we present least squares identification procedures for the
identification of the base parameters evaluated in chapter 3. All physical
systems are noisy; in the case of manipulators the noise constribution also
includes the unmodelled dynamics which lead to a systematic error in esti-
mation. Section 2 describes the assumed models for the regressor and motion
(process) noise. In section 3, the least squares procedures are described and
perturbation bounds for the solution are given in terms of available error
norms. The section also describes practical methods for improving the accu-
racy of the identification results.

Finally, in section 4, we state the procedure delineated in [23] for obtaining
the manipulator state by optimal filtering techniques. This procedure was

employed in the analysis as it presented more accurate results.
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4.2 The noise models for the estimation prob-

lem

If position and motion data are available: the least squares estimation pro-

cedure can be biased on account of:

1. Sensor noise: this occurs mainly due to the noisy acceleration data
which is obtained by twice dilferentiating the position vector. Sensor
noise is modelled as a normally distributed random vector, with a zero

mean for a calibrated system.

2. Unbiased Motion noise: this is the additive noise in the sensors con-
nected to the actuators, e.g. the current input to the de-motors con-
trolling the joints. The motion noise is modelled as Gaussian while

noise, uncorrelated with the regressor columns.

3. Unmodelled dynamics: the unmodelled dynamics are correlated with
. the regressor terms and are mainly responsible for bias in the estimation

results.

Armstrong [14] presents models for the noise components as follows:

1. Sensor noise H,. = f[k +8H, SHeN(, Cs)
(Random)
2. Motion noise o= H0"+T  TeN(D,o02)
(Random)
3. Unmodelled m=HO +v vely
23



The uncorrelated motion noise does not bias the estimates; however, the
systematic error and regressor noise due to the sensor noise are mainly re-
sponsible for parameter bias.

For a manipulator with revolute joints, the dynamic model can be repre-

sented as:
7= M(©)O + M(0)§0 + V(0,0) + F(O) + G(O) + Thy + Ty

where

69 = (:)comp - é

represents the error in the calculated acceleration; the regressor noise may be
assumed to consist only of the acceleration error. 7y represents the unmod-
clled dynamics and Ty denotes the motion noise. Augmenting the parameter
vector P by the static and viscous friction terms, the model for estimation

can be represented as:
T = NM(Q,0)P + M(0,80)P 4+ V(0,0)P + IF(O)P + G(O) + Ty + Ty

where M, V, I, G are the regressors for the inertial, centrifugal and Coriolis,

frictional and gravitational terms respectively. Let
§T & ~Ty - Ty
H £ 31(8,0) + V(0,0) + () + G(©)
SH & ¥1(0,60)
The estimation problem can be denoted as,
(H+H)P+6P)=T + 46T
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As mentioned carlicr. Lhe uncorrelated motion noise 7y does not contribute
to estimation bias, however the regressor error and unmodelled dyvnamies

contribute to parameter bias.

4.3 Improving the accuracy of the least squares

problem

The least squares method used to estimate the base parametric set. 1,5, from
the singular value decomposition of the regressor fI 4+ §H is:
. o=1 T o 113
Boin = VirwsnShsuUnrsn (T + 87T
A bound for the resulting parameter bias is given by Lawson, [9]

I Satesn L (FSH (I B 1+ 11 Sion UL T+ 87 = (1 + 81 Bugin ) -+ 1| 7))

§B || '
| éB |i 1=\ H ST s |l

In terms of the matrix condition, x = ZEEL. the inequality can be repre-
Tl

sented as:
UV SH || (I B Il + 1l Sz W T+ 8T = (H + SH) Busin 1) + 1| 57 ]

SBI|< :
165 i< TH 30 (= TSH 5T

{4.1)

From equation (4.1), the error can be reduced by minimising the condition

k. As the condition is a function of the regressor; an exciting trajectory, i.c.

a trajectory that generates a regressor with a reduced condition reduces Lhe
parameter bias,

We shall apply the methods of ridge regression and significance analysis

for improving the accuracy of the estimates.
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I. Ridge regression: the procedure for ridge regression is described in
[9]; it is applicable when the « priori covariance matrix, Cr, of the
uncertainty in the data vector T and the a priort covariance Cpa of the
uncertainty in the e priori expected value of the parametric vector P*
are available. The LS problem is then represented [9] by the following

equation:

Cr ¢ H|_ _{Cr ¢ T
(,b CPa ! é Cpa P

The procedure provides a combination of the weighted least squares

and forced bias towards the expected value, P°.

P¢ and C* are generally estimated based on available data on estima-
tion conducted over previous trajectories; a measure of the covariance

for the LS solution for a given m x n regressor matrix Hy.q; is given as:
o (HTH)!
where

2 _ | HisP = Toras |

m—-—n

In practice, the actual covariance is not available; a variable A is intro-

duced in the procedure as:

cr 6 || H cr 6 || T
roe pal| T ° (4.2)
6 MCp || I ¢ ACpe || P?

and the solution vector is examined for different choices of A. A higher

value of A signifies a higher confidence in previous estimates.
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2,

Column scaling: Column scaling of the regressor is added to the iden-
tification procedure to improve the problem condition. Equation(-t.1)
gives an upper bound to the norm of the solution error: this quantity is
not a useful indicator for evaluating individual parametric errors since
the parameters influence generalised {orces by different orders of mag-
nitude. Schroer [24] suggests column scaling the Jacobian as a means

of improving the condition for kinematic calibration.
We will consider scaling the individual columns of the regressor ma-
trix by the experimental torque sensitivities [% T 1]7' which can be
obtained to a first order of magnitude by the expression
(H+§H)T 1.
VTIT,

This procedure also improves the matrix condition and enables the

error bound in equation (4.1) to be evaluated more eflectively.

Significance analysis: In an experimental sctup; where only a re-
duced order model is available; the effect of some inertial parameters
may be smaller than the unmodelled dynamics; these parameters are
insignificant for most purposes (e.g. for model based control). A sig-
nificance analysis involves the deletion of insignificant parameters; this
is equivalent to deleting the relevant columnns in the regressor.The pos-

sible methods of significance analysis include:

() Sensitivity analysis: Columns with low values of parametric

sensitivities in the unscaled regressor matrix may be deleted; the



(b)

condition of the regressor decreases as a result of column deletion.

Eliminating near dependancies: Considering the orthogonal
decomposition, USV? of the scaled regressor matrix; the regres-
sor columns that are nearly dependant are determined from the
columns of matrix Vy451 corresponding to the small singular val-

ues of the regressor. From [24]:
| (H + §H) vjpyspp |= o'

the lower singular values constitute an almost dependant set of
regressor columns.

Entries with largest absolute value in the vector v; are hence con- ‘
sidered nearly redundant and eliminated as they are most likely

to be in error.

Eliminating the direction of weakest estimation: The col-
umn v; corresponding to the smallest singular value is the direction
in which parameter estimation is most suceptible to an error due
to the unmodelled dynamics. The results obtained by discarding
the components in this direction are found to be closer to the ac-
tual parametric values. This is demonstrated for the Puma560

arm in chapter 7.

28



4.4 Considerations in the experimental pro-
cedure and analysis of the data

On account of sensor noise, (the joint angle data for the Pumad6) was
recorded using optical encoders), the backward difference procedure for ob-
taining the velocitics and acccleration signals results in a large noise contri-
bution, particularly so due to the small sampling interval i.e. 5 ms.

The problem of optimal filtering for estimating the manipulator state
using position data has been considered in [23]. Since, under suitable as-
sumptions, the knowledge that the output lies between two known levels (as
is the case for any manipulator joint data) is equivalent to observing the
output corrupted with Gaussian white noise, the state estimation problem is
approximately equivalent to the Kalman filter.

The discrete signal model is given as:

1T, AT 73
) I .
s+l)=10 1 T, |a(k)+] 112 ((l—tOmmM(k)-}-w(k) (4.3)
00 | T,
y(k)=1{0 0 1]$(k)+e(k) (4.4)

with noise statistics:

1ps  Lepd Lepd
sds §ls o1y

Q=BweT)=q| {10 {77 417
lTa IT‘.’. T,

67 2ts

R= E(ce")

29



-

where w is the acceleration error and the signal %0,,104,g represents the model

acceleration rate. For an improvement with 0,40, the noise intensity |,
E(ww”) must be less than that of the model acceleration. In the case of
data logeged using the available instrumentation, ¢ was found to be of the
order ol 10 whereas the model acecleration rate was in the range 20 — 30 in
MKS units, so we chose to neglect this term.

As indicated in [23], the results are relatively insensitive to the choice of
g. It is reasonable to use the square of the maximum slope of the acceleration
signal.

Optimal filtering [23] for expected values based on the position data out-
put has been shown to be relatively unaffected by inaccurate noise statistics.
The system modelled by a double integrator driven by white noise, w, was
shown to be a valid assumption for small values of the sampling time interval,
T, [23).

The filter equations are as follows:
Blk+1]k)= Aqld - [\'C):?:(I;* | &= 1)+ AeKy(k) (4.5)
where K is the Kalman gain.
K = PCTR™! (4.6)
P can be obtained by solving the discrete Riccati equation:
P =(I+ AP — PCT(CPCT + R)'CP)(I + AuT.)T + qITTT, (4.7)

In the rest of the chapter, the acceleration is calculated using the above filter

since the final results were found to be better than employing any other
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method employed for estimating the acceleration (low-pass filtering cte.).
This is because the differentiated acceleration signal is adequately modelled
as a Gaussian white noise process. The only way to improve the estimate
would be to establish time varying statistics lor the inputl noise based on
actuator capabilities and the instantancous manipulator pose; however, this

was nol considered at present.

4.5 Conclusions

In this chapter, we described noise models for the dynamic estimation prob-
lem that have been characteristically used for error analysis. We also present
two methods of increasing the accuracy of the dynamic estimation probiem.
This is particularly important for an experiment where instrumentation with

a limited accuracy is available.
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Chapter 5

The LMS Method and Input

Optimisation

5.1 Introduction

The convergence properties of the LMS adaptive filter have been studied by
[13],[15],[1]. Based on assumptions regarding the motion and sensor noise
and using the assumption of slow adaptation, Armstrong [14] derived ex-
pressions for the steady state bias in the estimated parameter vector and an
approximate measure for the rate of convergence. The rate of convergence is
an important factor in the stability of model based adaptive control schemes.
Minimising the bias and maximising the rate of convergence were shown to be
based on minimising the norm of the inverse of the input correlation matrix
of the regressor. Accordingly, an optimal trajectory for identification pur-

poses maximises the minimum singular value of the input correlation matrix
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subject to maximum power and joint angle contraints. A multistage opti-
mising algorithm, formulated by Bryson and Ho [16] has been implemented
for trajectory optimisation of the Adeptl and MI'T/Asada Direct Drive Arm
by Armstrong [14].

In this chapter, the multistage optimisation technique [16] is applied to
trajectory optimisation of the identification trajectory of the PUNMABGO arm
using the method employed by Armstrong. A method of choosing the ini-
tial trajectory is also formulated. Section 2 brielly states the results of error
analysis in {14]. Section 3 describes the input optimisation algorithm for
generating an exciting trajectory. Finally, section 4 describes the implemen-
tation for the 3 dof Puma manipulator and suggests methods for choosing

an initial trajectory while obeying the manipulator contraints.

5.2 Convergence properties and input opti-
misation for the LMS algorithm

For the LMS parameter update law, {1],
Piopr = o+ 3 T li(rf = HE P (5.1)

the expectation of the parameter bias due to motion, sensor noise and un-

modelled dynamics is given by the expression [14]:

K
BE@)=(R+Cy)'CiP" = (R+Cp, )" 3 Hune (5.2)
k=0
where

1 K .
R= Y HH

k=0
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and

l

are the regressor correlation matrix and thc sensor noise correlation matrix

respectively.

The acceleration signal obtained by backward differentiation is very noisy;
the high frequency components of the noise must be filtered before using the
data in the calculations. Denoting the filtered acceleration signal by (5; and

the actual acceleration as @,

Cpp. = L W(®@, 6, - 6,)1(0,8. - O)) (5.3)

h 5
[rom expression (5.2), the expected parameter bias can be minimised by

minimising the norm of the correlation matrix,

1

|l —
12+ Cal™= oo

(5.4)
The evolution of the estimation error is given by the transition equation {14):

Pegr = (I = CHHL) By — CHW(FL + 71+ vi) (5.5)

Assuming slow adaptation (G(ATR) < 1), the error can be shown to converge

to zero with a maximum exponential time constant given by [14]

max __ TS
et = 2(TR) (5.6)

Maximising the minimum singular value of the input correlation matrix there-

fore minimises the parameter bias and maximises the rate of convergence.
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A sweep algorithm to optimize the identification trajectory is deseribed by
Bryson and Ho [16] and applied by Armstrong [14] to optimise the identifi-
cation of the inertial parameters of the Adeptl and the MIT/Asada Direct
Drive arm. The optimisation algorithin is described in the next section.
Given an optimizing trajectory OA lk=1...1r+ cquations 5.1 and 5.2 can be used
to estimate the parameter bias, given bounds on the unmodelled dynamies.
The trajectory tracking ervor perturbs the stngular values a7; the resulting
perturbations in the singular values can be caleulated using the following
expression [9]:
L . .
o o7 IS0 = 30 W00~ DY W10 G =B | ()
k=1

Since the trajectory tracking using conventional controllers for generaling the
demand trajectory is not very accurate, cxpression (5.7) provides a measure

of the robustness of the input optimisation experiment to experimental ervors.

5.3 Input Optimization

This section describes a- multistage algorithm for trajectory optimisation for
the LMS identification procedure developed by Bryson and llo [16] and ap-

plied by Armstrong [14].

We define the following quantities:
X = [0, 04]"
-

35



The optimization algorithm involves a gradient scarch for minimising the cost
function 1/a( 1), subject Lo the constraints relating the position and velocity

Lo the acceleration.

L P I o |
S (T Ty W) ¢ T — Te— | |We= 0
¢ 17,
The problem can be stated as:
i e A G = i FEE (59
min 7 .= min (%, % 5.
4 1 ] ke k L} 3
& ol Tax HEIEY) 5 oy

Ef(fk-*-ljik'lﬁk) =0 Yk

The second term in the cost function limits the acceleration to within actu-
alor capabilitics. The telation between the maximum acceleration and the
maximum torque depends on the state of the manipulator; hence Q must
ideally be chosen as a function of & and T; however, in practice, Q is chosen
to be a constant diagonal matrix according to Brysons rules as incorporated

by Armstrong [14]:
Q] tat/a(B) |

2 5.9
max 02 max ﬁ-z ( )
Delining
A p
J= F (I.aj—t) + Z AJé-{-lf(n_:.&-+1 S ﬁk)
k

the local optimum is given by the expressions:
Vz J = Vg F(%,%) + X,f - 'XZ.;,,A =0 (5.10)
Vi J = Vg, F(@,10) + 287Q - X, ,B=10 (5.11)
% = ST T W) =0 Yk (5.12)
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The terms in the partial derivatives Vg J and Vg J can be computed by the

chain rule

aJ a0 OR;;
f);l‘ L Z aR; dat
al O aRy;
Bu Z Z i b
Denoting
o aJd
YR
aJ (‘) l K n!
M:Zﬂui)‘_{‘i(WZIik )U
d "I ) nn’
aJ l () n n ) n
aT&:Za.-j-f\:Z(mnk P — B — 1)
: iJ n 8

The trajectory update equation is given as;
] Y up | 8

21 o
W, =1, — gV

/

T

where j,, is the increment scaling value. The choice of g1, depends on the
magnitude || V. J || and the maximum required resolution for iiy.

For implementation; ji,, was chosen on-line at the end ol cach iteration.
The algorithm converges to a local minimum; hence the choice of the initial
trajectory is important.

Since

Z 11 "”m I=l Z ”L Tp,"

a heuristic principle may be followed Lo obtain an initial trajectory hased on

the argument that the minimum singular value is limited by the above norm.
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Let « 2 ming(/t). This value is based on the magnitude of the unmodelled
dynamics, | # | and on the maximum allowable error in the estimraled pa-
ramnelers.

We choose points F;, ; such that the power and joint angle constraints are
satisfiea and

[ > Himp |[>a Vm
n
The initial trajectory 0 is generated by interpolation between values T, W;
by the system equations

:'-Ek_{._] = .’15& + 13[\’(5, - fl_'k)

and filtering the resulting trajectory.

5.4 Algorithm Implementation

The input optimisation algorithm was implemented for the PUMA 560 ma-
nipulator arm. Implementation was done in Matlab. To avoid instabilities in
the computations, the partial derivatives were evaluated by explicit difleren-
tiation of the regressor terms using Maple. Matlab code for the optimisation

algorithm is included in Appendix C.

5.4.1 Choice of u,,

"The choice of the incremental step for updating the trajectory must be based
on the current magnitude of dJ/du. It is quite likely that a conservative

choice of 1, delays convergence whercas an overestimated value would take
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the trajectory outside the current region of convergence. Sinee the average
magnitude of the gradient decays with an inereasing munber of Herations, u,,
normally increases with cach iteration. The algorithm is likely to converge

rapidly using this approach.

5.4.2 Meeting the constraints

Since a manipulator typically has a constrained workspace, meeting the joint
and the actuator constraint requirements is important for an identilication
experiment to be carried oul. These constraints cannot he introduced a
priori; however, the optimisation procedure may be terminated when these
values are exceeded even before a local optimum is atlained. The trajectory

improvement may be significant even in this case.
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5.4.3 Results

A frame assignment of the 3 dof PUMA 560 arm is shown in Figure 5.1.
For the frame assignment as shown, the manipulator constraints are given in
Table 2.1,

ZoZ1
A

Xo

N
19
IS
1
2
X
$

Figure 5.1: Frame assignment

Several instances of the initial trajectory were selected. In certain cases,
the procedure caused a uniform scaling of the trajectories towards higher
accelerations. Attempting optimization for all inertial parameters did not re-
sult in a significant improvement in J for even high acceleration trajectories;
hence optimisation was conducted for the reduced regressor consisting of pa-
rameters with a high contribution to the torque; viz. P, &5, Py, Pro, Pi1, P, Pty Pis.

The optimised trajectory, shown in Figure 5.2, was obtained in 15 iterations.
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The improvement in the cost J was fromy an initial value of 0.0278 to a (inal

value of 0.0024; an improvement (crror reduction) by a factor of 11.5833.
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PFigure 5.2: The Optimised trajectory for the 3 DOF Puma 560 arm

The final step in identification involves accurate tracking for the input
trajectory; ordinary PID control may not be sufficiently accurate; for most
optimal trajectories, the acceleration bandwidth of the resulting trajeclory
using PID control would be unacceptable for maintaining the required acen-
racy of the identification experiment. Feedforward or the computed torque
procedure provide more accurate tracking; however, these control methods
are based on the availability of the dynamic modecl; P priori values for the

dynamics may be used in this case.
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5.5 Conclusion

From the implementation procedure, we conclude that generating a trajec-
tory that would be sufficiently exciting lor all the modes of a given ma-
nipulator may casily exceed the capabilities of the manipulator; however, a
significant reduction in the theoretical error bounds was obtained by conduct-
ing the optimisation procedure. The complete results of the experimentation

will be shown in Chapier 6.



Joint

Joint angle

Joint angle

Max. Joint Torque

Min(deg) | Max(deg) (Nm)
| -160 160 13144
2 -35 215 228,57
3 -225 45 113.86
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Table 5.1: Joint Constraints for the 3 dol Puma manipulator




Chapter 6

Experimental Procedures

6.1 Introduction

The estimaton procedures outlined in chapters 3 and 4 were carried out on
Lrajectory data for two manipulators; the PUMA 560 arm and the SARCOS
GRLA (General Robotic Large Arm). The present chapter briefly explains
the software developed and the procedures adopted for accurately tracking
the identification trajectories. The manipulators under consideration are also
described. Finally, the experimental results for the tracking experiments are

plotted. Analysis of the data is presented in the next chapter.

6.2 Software implementations

This section describes the code written for meeting the objectives of accurate

identification and its consequent application to mode! based control.



6.2.1 Numerical methods for dependancy evaluation

and LS estimation

Obtaining a full-rank regressor, as shown belore, requires identilication of a
base parametric sel. The base parametric set is numerically evaluated by
generating the rank-deficient regressor and then obtaining the dependaneios
by orthogonal decomposition. Implementation is done using the Matlab pro-
gramming language.

File Estimation.m contains routines for the LS estimation ol the param-
eters. Significance analysis can be conducied based on the experimmental
torque sensitivity or on the singular value decomposition of the column scaled
regressor. [Finally, estimation over a trajectory can be based on a QR de-
composition or previous estimates can be incorporated using the computed
covariance and the ridge regression method. Input optimisation for the LMS
method has been described in the previous chapter. The optlimisation code

in the Matlab language mitstg.m is listed in Appendix C.

6.2.2 Generating the dynamic model

In order to implement a model based controller, efficient code for the inverse
dynamics based on the identified parameters and demand variables viz. joint,
angles, joint rates and accelerations, is required. The efficiency of the cotnpn-
tation is crucial to implementation. Khalil ¢t al. [25] developed an efficient,
algorithm for the full order dynamic model of a serial manipulator based on
the Newton Euler algorithm. The algorithm develops infermediate variables

for saving computations. The method, for a manipulator with N degrees of
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freedom involves a maximum of (105n — 92) multiplications and (94n — 86)
additions; this number is substantially reduced for a reduced basis set.

The algorithm has been implemented in Common Lisp and includes rou-
tines for eliminating all redundant operations. The program generates C
code for full order dynainic compensation or only gravitational compensa-

Lion. Program listings are included in Appendix B.

6.3 Trajectory generation and data acquisi-
tion for the Puma 560 and the Sarcos
GRLA

6.3.1 'The Puma 560 arm

T'he Puima 560 manipulator, is a 6 degree of freedom manipulator with a serial
architecture as shown in Figure 6.1. The joints are actuated by DC motors
with high gear ratios (>50:1). Position measurement is based on incremental
encoders. The torque measurements are based on armature current readings.
The {rame assignment is according to the modified DH notation and is shown
in Figure 6.2. The modified DH parameters for the manipulators are given

in Table 6.1,

Tracking trajectories for identification and the implementation of model

based control was carried out using the robot controller environment KALI,
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Figure 6.1: The Puma 560 arm

[26], implemented on a dual DSP processor board, the Challenger C30v.
KKALI provides velocity form pid control facilities allowing the user to modify
the control gains in real time. Available techniques for selecting the PID gains
are based on minimising a quadratic functional of the error evolution of the
linearised system. The dynamic model for this purpose was generated using
the estimated values over the batch LS estimates. Ordinary PID control gets
unstable very fast beyond a range of trajectories. Morcover, acceleration and
velocity tracking is not sufficiently accurate for identification over an optimal
trajectory. For this reason, it is preferrable to choose optimal gains based
on an approximate dynamic model. Methods for the same are delincated in

[27].
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Figure 6.2: Frame assignment
6.3.2 The Sarcos GRLA

The Sarcos manipulator,shown in Figure 6.3 is a 7 DOF manipulator. The
joints for the Sarcos are actuated by direct-drive hydraulic cylinders. Posi-
tion measurement is based on LVDTs. Strain gauges are used for the torque
measurements. The frame assignment and DH parameters are given in Fig-
ure 6.4 and Table 6.2 respectively. Estimation in this case was conducted
for gravitational forces only, i.e. second moments of inertia were not identi-
fied. Experimental data were provided by the Institut de Recherche d’Hydro-
Québec.
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Figure 6.3: The SARCOS manipulator
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Joint | «a; o; b;
1 90 0 0
2 0 | 0.432 | 0.149
3 |-90| 0.02 0

‘able 6.1: DH parameters of the 3 dof Puma

Joint | o; | d; b;
1t |90 |o| o
2 o |o] o
3 |-901]0|o0.87ss
4 fo o] o
5 |-90|0] 0.762
6 {90 |0]| o
7 [180|0]| o

Table 6.2: DH parameters of the Sarcos GRLA
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Chapter 7

Analysis of experimental data

7.1 Introduction

In this chapter, the least squares and LMS methods are applied to trajectory
data obtained for identification frajectories for the PUMASG0 arm and the
Sarcos GRLA manipulators described in chapter 6. As indicated by Izaguirre
et al,, [5], and Atkeson et al., [4], a critical lfactor in the estimation accuracy
is the acceleration noise which arises due to noisy position sensors. Results of
the dynamic estimation procedure for the Puma 560 arm are given in section
2. Since estimation for the Puma was more involved than estimation for
the Sarcos manipulator, we choose to group the results by the manipulators
rather than the method. Finally, in section 3, we present the results of
the estimation for the Sarcos manipulator and the performance of model
based tracking using a dynamic model generated by the identified parameters.

Since [1] tracking errors with computed torque and feedforward control [20]
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increase with increasing inaccuracy ol the identified parameters, the vesults
of the model based control implementations serve as a good indicator of the

accuracy of the identification experiment.

7.2 Dynamic estimation for the Puma 560

arin

7.2.1 Batch LS methods

Initially, estimation was conducted over ten identification trajectories. The
cutoff frequency for the acceleration signal using a 4'" order Nalman filter
was observed to be & | —2 rad/s* and large phase lags lor higher [requencies;
the frequency response for the velocity signal was much superior. Hence, the
velocity and acceleration signals were obtained by filtering the calculited
velocity by backward differentiation of the position signal. Filtering is there-
fore in two stages, firstly, for the position signal and next for the velocity and
acceleration signals.

Although the dynamic parameters for two identical manipulators may
differ; a standard is required for comparison, moreover, deviations are not
very significant for the inertial parameters. A standard base parametric set
for the present purpose can be obtained from the results in Khatib et al.
[10]. It would be cumbersome to transform the quantities belween the frame
assignment we use and the one employed in [10]. It is preferrable to calculate
the generalized torques for a series of trajectory points using the full order

model in [10] and deriving the base parametric set using the regressors derived
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using the current frame ass’snment (in Appendix A). This only requires a
translation of joint position data for compatibility. This can be equivalently

represented as

‘prstd o~ Tfu”—arrir:r

Table 7.1 lists the parameters obtained using this method. In table 7.2,
we show the effect on the condiiion of significance analysis based on the
torque sensitivities, &y, and climination of near dependancies based on the
singular value decomposition of the scaled regress: r, x2. The conditions are
seen to be significantly reduced compared with the unscaled condition, xg.

Table 7.3 presents in three separate columns, the results of batch LS
estimation over the ten identification trajectories. Columns 1 and 2 respec-
tively show the results of batch LS and after succesive elimination in the two
weakest directions of identification (ref. chapter 4). In the highlighted cases,
when compared with the standard parameters, the influence on improving
the accuracy of some identified parameters is significant. An improvement
in the accuracy may be obtained if a minimum norm solution is sought using
the ridge regression method provided accurate noise statistics are available;
this solution can be located by plotting the norm of the residue against the
solution norm with varying A; [9]. However, regressor noise still causes large
errors in certain parameters; for instance, the mismatch is especially pro-

nounced for .
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7.2.2 The LMS method

As mentioned in chapter 4, input optimisation is practical for only a reduced
set of significant parameters. The LMS identification trajectory generated in
Chapter 4 was tracked by ordinary PD control: figure 7.1 shows the tracked
trajectory; the results of the adaptive scheme are compared with the standard
parameters in Table7.4. Convergence was not very satisfactory; by the error

transition equation for the LMS algorithm given by Armstrong,
Dy = (I = D)0 — Toi(L0™ + i -+ v) (7.1)

the maximal convergence rate is obtained along the eigenvector ol the transi-
tion matrix corresponding to the smallest magnitude cigenvalue of the tran-
sition matrix, {/ — [‘(,bkqﬁﬁi) Accordingly, we increment the parameter al each
iteration only along the direction of the most stable mode. The result of pa-
rameter evolution adopting this method over the identification trajectories
is shown in Figures 7.2 and 7.3; the estimation results are recorded in Table
7.5.

Since the LMS algorithm was run over several trajectories, the disconti-
nuities in the parameter evolution can be observed to be the result of a large
percentage of the unmodelled dynamics due to stiction at the start of cach
trajectory. We could eliminate these points in the iterations; however, they

have been retained as an indication of the parameter convergence.
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Figure 7.2: Parameter evolution
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7.2.3 The model accuracy

In this section, we compare the recorded torques, the torques using Arm-
strongs parameters, the torques using the paramecters obtained by climina-
tion along the weakest directions and the abbreviated LMS model. The plots
were obtained for eight different trajectories and are shown in figures 7.4 to
7.11. The X axis denotes the samples. The measured torque are indicated
by solid lines, the dotted plots indicate the computed torques using LMS
results along the convergent mode. The compuled torques from the para-
metric set obtained using Khatib’s full order model is used for the dashed
plots. Finally, the solid bold plots indicate the LS results after elimination in
the weakest direction of identification. The measured torque is characterized

by a significant ripple not observed in the compuled torques. The highest,
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deviation in the computed torque were observed when LMS results were em-
ployed. The LS results approached the measured values the closest. The bias
using Khatib's pararneters is especially pronounced for the third joint. For a
mean square error criterion, the LS result is a better estimate compared to
the explicit measured parameter set. However, their relative performance in

a computed torque algorithm would depend on the trajectory employed.

7.3 Gravity compensation for the Sarcos ma-
nipulator

The kinematic model for the Sarcos manipulator was given in the last chap-
ter. In this section, we consider estiznation and feedforward control of the
Sarcos manipulator employing gravitational compensation. Being a direct
drive mechanism, the recorded torque for a given pose does not have a sig-
nificant noise contribution. For this reason, dynamic estimation for this
manipulator did not require incorporating practical methods for improving
the accuracy of the estimation; a simple LS solution gives results with a very

high accuracy.

7.3.1 Estimation results

The table of the inertial terms for gravity compensation and their estimated
values from the data are given in Table 7.1. The standard deviations of the
computed joint torque error are recorded in Table 7.2, Figure 7.1 compares

the experimental torque values with the computed values. The results are
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seen to be quite accurate: the calculated error is less than 5 percent of the

recorded torque for each joint.

7.3.2 Results of feedforward control

The dynamic model for gravity compensation was built using the dyvnmodel
software. The C code listing is given in Appendix 1. The accuracy of the
feedforward compensation was tested by observing the step response at joints
1 to 4. A demand step was applied to cach joint; the step responses with and
without gravitational compensation are shown in ligures 2 and 3 respectively.

The results demonstrate the accuracy of the dynamic model,

67



joint 1 : Gcomp vs exptl.

600

500
£
Z
S 400
g
O
= .

300 m

200 -

0 1000 2000 3000
Sample
joint 3 : Geomp vs exptl.

200 -~

150
E
4
2100
o
S

50
0 i i
0 1000 2000 3000
Sample

joint 2 : Geomp vs exptl,

0
-200
E
4
S -400
o
o
|_
-600
-800 :
0 1000 2000 3000
Sample
ioint 4 : Gcomp vs exptl,
250
200}
E
Z 150
0]
3
g 100
|_
50
0 . n
0 1000 2000 3000
Sample

Figure 7.12: The recorded and computed torqt e values for the Sarcos GRLA

68



t
[=3
[+-]
s
w

1
—

U
—
=

jolmt1 angle {degraes)

|

o <
joint2 angle (degrees)

1

]

1
-
(=]

o
1
-
(=23

10 20 a0 "0 10 20 30
lime(s) time(s)

n
n
ra
I’

e

n
n
hy

—
o

Joim3 angle (degrees)
g )

foint4 angle (degrees)
[s>]

—_
(=]

—
-~
(=)
—
[=]

10 20 0 "0 10 20 30
time{s) time{s)

Figure 7.13: Joint step responses of the Sarcos manipulator with gravity

compensation

69



|8 = ¥ 3 =
i ! T T o
(seaibap) ajBue Zyuof

i}
-

[}
(saai16ap) sjbue Liuo]

-1.585

30

20

lime(s)

20
time(s)

10

o
od

hard . N
nmmmhm,mE eibue tuto]

a
-

wmn [=1] [ 2]
a 2 =

Ammml._mmE e|bue m.ﬂc_o_

<

-—

=

[~ ]

[=3

&
—
I
a
E
=

(=3

=

(=3

[=3

>

f=1

N
—
(L)
£
L)
E
=]

o

=

=]

Figure 7.14: Joint step responses without gravity compensation

70



Par | Valuc

A ) 3.9495
P | 3.7920
Py | 0.1040
Py | 5.6320
Ps | -1.3804

Fs | -.0070
P; | -.G889
Py | -.0227
Py | .0254
P | 8632
P | 7491
P2 | .3006
P3| -.0106
Py | -.0038
P | -.1342

Table 7.1: Base parameters using the full order model of Khatil
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Trajectory | Unscaled Significance(a,) Significance(svd)
Ko climinated set Ry eliminated set Ky
1 2499.5 | 1,5,7,12,13,14 | 92.1002 | 3,5,6,9,10 | 44.4784
2 1096.3 1,5,6,7,12 57.8807 | 5,9,10,12,17 | 84.54
3 502.3 7,14 498.5 | 2,3,4,9,10,17 | 127.0

=1
Q]

Table 7.2: Effect of condition on the significance analysis




Parameter | Batch LS | Elimination | Standard(IKhatib)
P, 233 297 3.95
Py 3.65 3.63 379
Py 0.28382 0.1726 0.1040
P, 2.1338 1.9362 5.6320
Py -21.4683 -1.1323 -1.3804
Fs 3.1672 -0.7777 -0.0070
P 9.6260 3.2690 -0.6889
P 2.5412 2.9666 -0.0227
Py -0.4547 -0.4591 0.0254

Py 1.1508 1.1271 0.5632
Pn 0.0706 0.1509 0.7491
Py -0.3341 -5.1987 0.3006
Py3 -0.0859 21842 -0.0106
Py -1.7325 -1.7476 -0.0038
Py -0.4610 -0.2702 -0.1342
P 11.2301 11.2216 ¢
Pz 11.8241 11.8651 ]
Pig 5.0680 5.0491 ¢

Table 7.3: Batch LS and weakest dircction elimination
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Parameter | Computed | Standard(Khatib)
P 4.2884 3.7920
Py 1.5080 0.1040
Py -0.4331 0.0254
Pro 6.0005 0.8632
Py 1.4839 0.7491
Pia -7.2153 -0.0106
Py -.5405 -0.0038
Py 4607 -0.1342
Pig 5.0596 | ¢
Py 16.9753 @
P 2.6616 ¢

Table 7.4: Base parameters using the optimal input for the LMS method
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Par | Value | Standard(Ixhatib)
Py | 4.1138 3.7920
P [ 0.0880 0.1040
Py | -0.2991 0.0254
P | 0.9029 0.8632
Py 0.5202 0.7491
Pz | -0.0121 -0.0106
Py, | -0.0013 -0.0038
Pis | 0.0076 -0.1342
Pe | 11.2252 ¢
Pz | 11.6792 ¢
Ps | 5.0324 ¢

. Table 7.5: LMS results along the convergent mode
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Inertial parameter | Estimated value
mpezy 3.7467
mp;y 3.7196
mpza 5.3212
mpso 78.096
mpea -2.547
mp:a 3.905
MNPy 0.4624
mp=q 23.1605
MpPrs 0.2526
mpss 0.616
mprg - -0.1174
mp.g -0.0052
mpzy -1.7239
mpyr -0.3668

Table 7.6: Estimation results for base gravity parameters of the Sarcos GRLA

manipulator
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Joint o,

l 12.6941
249719
3 9.1544
4 5. 7428

8]

3 1.3930
6 6.8802
7 1.8714

Table 7.7: Standard deviation of the joint torque error for the Sarcos GRLA .



Chapter 8

Conclusions

In this chapter, we conclude the thesis with a summary of main results in

section 1. Section 2 presents the scope for uture work in this area.

8.1 Review of results

This thesis investigated estimation for two particular serial manipulators:
an accurately calibrated direct drive manipulator and a geared manipula-
tor in which sensor readings did not yield very accurate data. Unmodelled
dynamics and motion noise are ubiquitous elements in dynamic calibration.
Fistimation accuracy reduces further due to an erroneous manipulator state.
We review below some suggestions for improving the accuracy of the dynamic

calibration procedure.

e for increasing the accuracy of the least squares estimation procedure,

we-considered the following:
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~ ridge regression: we suggest ridge regression ouly if the unmod-
clled dynamics are not very signilicant and an approximate a pri-

ori estimate of the parameter vector is available,

~ column scaling: scaling the regressor columus by the experimental
torque sensitivity suggested in Chapter 4 was lound to reduce the

regressor condition.

— significance analysis: two methods of significance analysis were
considered; namely, eliminating the parameters with low values
for the experimental terque sensitivities and eliminating the near
dependant parameters in the regressor. ‘These methods allow us to
eliminate successively, the terms most insignificant and therefore
most likely to be in error for the identilication trajeciory. It must
of course be noted that different trajectorics may have dillerent

sets of insignificant parameters.

— we found that the LS procedure conducted using the singular valtue
decomposition gave increasingly accurate results when identifica-

tion in the weakest direction was eliminated.

o LMS estimation: the LMS adaptive method was also found to generate
accurate estimates for the inertial parameters; generation of exciting
trajectories as a means to minimise parameler bias has been dealt, with
by Armstrong and was applied in this thesis. Our experience with the

LMS procedure indicates that;
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- the choice of an initial trajectory is important because it practi-
cally determines how far the optimisation would progress belore
actuator limitations were exceeded. It is also preferrable to start
with the minimum number of parameters since optimisation be-
comes increasingly difficult as the number of parameters increases.
We have suggested a method for selecting an initial trajectory in

Chapter 5.

— it is necessary to choose appropriate values for the incremental

scaling factor when updating the trajectory.

— eliminate estimation points likely to have large unmodelled dy-
namics; this is especially true of the initial part of the trajectory

where static [riction is overcome.

— at every iferation, only retain the incremental contribution of the
eigenvectors corresponding to the stable modes. Applying the
above procedures, we obtained a set of values for the significant
inertial parameters in Table 7.4. The values were seen to closely

approach the standard values.

The results for the PUMA 560 arm were found to closely match the values
previously derived by Khatib for some of the base parameters. On comparing
the results of the LS and the LMS methods with the measured torque signal
and the torque computed using Khatibs parametric set; we found that the
LS values provided the best approximation of the computed to the measured

torque signal.
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8.2 Suggestions for future work

The thesis concludes with some suggestions for {future work:

e Explicit base parametric estimation: In chapter 3, we presented two
theorems for evaluating the base parameters of a general rotational
serial manpulator. In particular, the results of theorem 2 may be tur-
ther analyzed to obtain explicit relations for the base parametric sel
in terms of the constant DH parameters alone. ‘These conld then be
directly applied to the most general type of serial, rotational manipu-

lator.

o Minimum variance estimators: The minimum variance estimation is
a special form of the Kalman Rlter for lincar, time-varying systems.
Kalman filters and their applications are extensively dealt with in [18].
In order to apply Kalman filtering theory to the estimation problem,
we must first model the inverse dynamics as a time varying system

governed by the parameter state vector as shown below:
Peyr = B+ wy
Ty = (Hy + H + Tu, + T,
where ail quantities (which have been previously defined) are indexed
by k. In order to incorporate an optimal filter, the covariance matri-
ces of {Th,] and [wy] are required. We shall denote these as Q¢ and
Ry, respectively. Although the state vector [ should ideally remain
unaltered between iterations, we assume the presence of a low energy

state noise [w] due to stahility considerations [18].
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The minimum error variance estimator is then given by the Hlowing
equations:

Pesr = Py + Iy (Tk - (”:\- + f‘f.a-)’ 1";\-)

Cor = Co = Ky (e + 1)
- . ' N -1

K = Cy (Hi + ) [(HA. + 1) G (4 + ) + 1.;]
The unmodelled dynamices [Ti7,] represent a nonwhite component in the
measurement noise signal. Jazwinski derives the conditions for uniform,
asymptotic stability of optimal filters. For an identification Lrajectory
that generates a uniform, asymptoically stable [ilter, the parameter
convergence is exponential. Jazwinski 28] has derived explicit relations
for these time constants. Generating optimal trajectories that minimize
these constants thus leading to rapid parameter convergence could lorm
the topic of further research. Explicit expressions are also available [28]
for the expected paramter bias due to H, Ty, and &Ry
As ‘optimal filtering theoretically offers the most superior estimation

for low values of the unmodelled dynamics, we suggest this as an alter-

native for future work.



Appendix A

Basis Coeflicients of the 3 dof

Puma 560 arm

In this appendix, we supply the basis coefficients of the Puma 560 arm. The
choice of the basis coefficients is based on the results given by Mayeda et
al. [8]. Coefficients were calculated by the Newton Euler method using the

Maple symbolic computation package.

C(J::l )
¢ = 0"1
Co = 0
Cy = 0
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cp = 0
L = J’:
e = 0
C(mpz)
cy = 0
ca = cos(bh)g
Cy = 0
Clmp?)
ct = 0
g = —sin(la)g
C3 = 0
C(Jm.'2)

e = 0 —cos(02)%0) + 2 sin(0,) cos(02)0, 0,
cg = —cos(ﬂg)ﬂ'lzsin(ﬂz)

83-:0
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= COS({)-_!)()‘;}:!'i'SiII(O-_))HI:_:
€y = sin((lg)o.‘]

Cy = 0

o = 2sin(fy) cos(02)0‘| + 4 C05(02)2d[ dg - Q(jl dg

c = 0}2 -2 cos(()g)gﬂ-f

L';;=0

C(Jy='2)
6 = e:os(Og)ng—sin(Og)().g2
Ca = COS(OQ)()“I
€3 = 0
C(Jzx3)
G = 0
e = Os+0,
s = Oa+0,
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Ci

€3

Ct

Ca

€3

C(mp?)

= —4 cos(0a) cos(8) sin(0a)0y 0y L — 2 cos(02) Lbx cos(By) sin(#a)0, +
2 sin(03)0, 02 L — 4 L sin(03) cos(02)0, Uy + 2 cost@) 1. cos( 8270,
—2 sin(0y) sin{03) L cos(02)8, — 2 Lls sin(0) cos(04)*0,
= 2 cos(0s)0z L + cos(tls) cos(ba)g +
2 cos(03) sin(02)0, cos(82) 1 + 2 sin(0s) cos(02)26," 1, —
sin(fy) sin(02)g — Lsin(0s)0s + L cos(0s)03 —
9 Lsin(02)02 05 — L, sin(04)
= —sin(f3)sin(82)g + cos(83) cos(02)g + sin(0s) cos(02)20, L, +
sin(05)02" L + cos(03)0y L -+ cos(03) sin(02)0," cos(02)
C(mp})
= —2sin(0s)L cos(02)20; + 2 cos(ts)b, b L -
4 L cos(03) cos(82)%0; 0 + 4 cos(fa) sin(fs) sin(0;)0, b [, +
2 cos(og);ds sin(fs) sin(f)0, -
2 sin(f,) cos(¥s) L cos(02)6, — 2 Ly cos(03) cos(02)%0),
= —sin(fs)cos(0z)g — 2 sin(0a)0; L —
2 sin(f3) Sin(02)dl2 cos(fa) L - cos{03) sin(0a)g + 2 cos(l4} cos(t)z)'“'()'lzb -
Lsin(0s)fs — L cos(03)05" — LB;” cos(0s) —
2 L cos(03)0 thetas
= —cos(f;)sin(f2)g — sin(03) cos(0)g + cos(0z) cos(02)20," L +
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(:()S(U:;)O“_J:L - Hil]([)g)o‘g [ -
sin(0s) sin(02)0," cos(t) L,

C'(Jzrs)

e = 2 sin(0a) cos(03) sin(8s) cos(02)0, + cos(0)6; —
2 cos(0y)? cos(82)20) + cos(03)*0 + 4 sin(0;)05 cos(fa)? cos(02)0, +
4 sin(0) cos(03)? cos(02), 02 — 2 sin(0s) cos(02)8, b —
2 sin(0;)05 cos(02)0; — 2 cos(03)0s sin(03)6, +
4 sin(03)0s cos(fs) cos(f2)20; + 4 sin(fs) cos(03) cos(02)20, 0 —
2 cos(ly) sin(U:,)dl 0

e = —2 cos(0s)? cos(02)0,” sin(0s) + cos(02)0," sin(0;) +
sin(03)0," cos(03) — 2 cos(f3) cos(02)20,” sin(0s)

ca = —2cos(fs)* cos(02)0|2si11(02) + cos(Og)dlzsin(Og) +
sin(03)0,° cos(fs) — 2 cos(fs) cos(02)20," sin(0s)

C( J:r:".\)

e = cos(0s)sin(d3)0 + cos(02) cos(03)0 +
cos(02) cos(0)02" — sin(62) sin(0s)0° —
sin(f2) sin(0;,)(f-_»2 + sin(0,) cos(03)05 + sin(6,) cos(f3)02 +
2 cos(0;) cos(f3)02 3 + cos(62) sin(f3)6; —
2 sin(fa) sin(03)0» 0,
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(5]

€3

€1

ca = sin(fsz)cos(f ¥, + cos(03) sin(f, )ﬂ,

ez = sin{fy)cos(0, )()l-f-LOH -;)sin((ﬁ'-_»)()1

C(erB)

= ~4010, cos(0s)* — 40 cos(62)*0, — 2 sin(0a) cos(0)f; — -1 cos{0s)*0, by —
2 cos(fa) sin(03)0, — 8 sin(0) cos() sin(0y) cos(02)0, U —
8 sin(02) cos(¥s)fa sin(fs) cos{fla)0y + 4 sin{fy) cos(s) cos( )20, +
803 cos(03)? cos(02)20, + 8 cos(04)? cos(02)20; Oz +
4 sin(0a) cos(03)? cos(02)0; + 20, Uy —
40, 0s cos(3)? + 20 0,
= 2 cos(f3)20;" — 4 cos(03)? cos(02)26," +
4 cos(f3) sin(8:)0,” sin(0s) cos(0) ~ 0," +
2 cos(6,)%0,"
= 2 cos{03)20;" — 4 cos(03)? cos(0.)20,” +
4 cos(0s) sin{02)0;” sin(6s) cos(fs) — ;" +
2 cos(l)g)z(jlz

C(Jy=a)

= —sin(f,) cos(03)0-32 — sin(0,) sin{03)05 — 2 sin(0,) cos(03)0n Oy ~
cos(02) sin(03)03- — 2 cos(0y) sin(0s)0 O3 — cos(0z) sin(03)0," —
sin(f2) sin(6a)03 + cos(#2) cos(s)0z + cos(f) cos(s)f — sin(0-) cos(03)0.22
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[#¥]

2y

—sin{fy) sin(ﬂ-_,)()“l + cos{03) cos(0.)0,

—sin{fy) :-'.in(G-z)t’}.[ + cos{ly) t:os(Ug)Unl
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Appendix B

The dyn_model lisp code

In this appendix, we list the LISP code written for generating a dynamic
model for the manipulator inverse dynamics as efficiently as possible by the
method of construting local variables per KKhalil et al. [25] and saving re-
dundant computations by identifying zero terms and eliminating them in the
output code. The software has been coded in Common Lisp; however, some
ideas for functions and macros were drawn [rom the Symbolics Lisp code ini-
tially written by lzaguirre et al. [5] for generating their model. Accordingly,
we shall preserve the name of the functions that were used by them although

they may be slightly modified.

The input format for the base parameters is also identical to the above
mentioned paper. The reader is referred to this paper for the required input
format. We give as an example, the input file for the base parameters for the

PUMA 560 arm.

number*link 3
MoooO
SIGMA QOO
AL 90 0 .80
‘THoOO
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.49 0

0 432 u2

XX 00« 10332148

XY 027500585 0

X400 .- 0tu9tTod%

YY 0013048361 ¢ O
YZ0-013701773 01250796
22000

MX 0-.01555448 0

MY 0.03011€57 O

MY 0 0 .01990423

IAGCQO

FS . 115281 -.0686GRE146 ,00904910
FV 14671 -. 214025 0026147
GX 0

GY 0

GZ 2.81

alop

Once the code is loaded, the following steps generate dynamic model.

{load *macros.lisp)
{load ‘sun.lisp)

(load 'newdefuns.liap)
{load ‘load.lisp)
{reader "input'fle.ex}
(load 'defl.lisp)
{fitl-dets)

{tranal}

{0120R)

{ont-recur)

{in-recur)

{load *print.liap)
{printoC ‘output’fle.c)

A dynamic model can be generated only for gravity compensation by the
function call (only —grav) after (fill —defs). The code listing is given below:

MAGRQS.LISP : the macro definitions

{delinacro aset {val attay Loprivnal indexl index2 indexd index4 index5)
Heond  {{null Jindex2 )} (wet! [aref ,array \indexl) ,val))

[{null indexd ) (sexf {arel ,artay indexl index2) ,val))

((null \index4 ) (setf (aref ,array indexl jindex2 ,index3d) ,val))

3 [metl {arel ,array Jindex) ,index2 \indexd ,indecx4) ,val])
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{slefraacro for {index {tom 1t to lin do Loptional argl argd argd argd ATgh argt argT argd argh
. Argl0 argll argl2 argld argld arg!h argl6 arg!? argld

ATRLD ArR2U ArgY1 arg2T argld Argd arglh agldn
ATE2T argl8 argd9 Argd0 argdl argdd argdil argdd argah
ArgdG argdY argdH argdY argAl argdl arg Al argdd aigdd
APRAS Argd6 argd7 argll arg A0 arg50 arghl arghd arghld
ATRESY ATESD ArgS6 argsT Argd8 arghl argt0 ATgGL argel
ATEGI argtd arghh argtitt argbT argbi argtd argv0 argv)
APRTT AFRTI ALRTH APRTS AMATS ArRTT ArgTH A5 argd
Argdl argd2 arg83 argBd Argds argBG ArgAT ATgHY argsd
Arg90 argdl argo)

*{cond ((z .fin ,init) {do ((\index ,init)) ((= ,index (14 fin}))

,argl arg? ,argd ,argd argS atgl argT argd a1g9 ,argl0 argll argld argld argld

VAEELS Larglo ArgLT ArRLE AatgLY ,Arg20 Larg2l ,argl2 \Argdd ATR

,Arg25 ,arg20 ,arg2v ,arg28 ,arg20 ,argd0 ,argdl ,argdd ,argdd argdd argds (ArgdL Arg3T

o738 ,arg30 ,arg10 ,argdl ,arg42 ,arg4d argdl argdd argAé argd? argtd ,arg49 argso

LArgSl ,arg52 A1g53 LargSd ,ArgSS ,argS6 (ArgST ArgS8 arg5% ArRU0 argtl Aargi2 ,atgtd

LATg84 ,arghs arged ,argt7 ,argbl argS9 argT0 ArgTl ArgT2 MIRTI ALETY LArRTS \argTH

JATETT UET8 ,arg7d ,argd0 ,argdl ,arg82 ,arg83 ,arghd ,arg85 ,arghe ,arg87 atgB8 arghd

WAIED0 argdl ,argd2

{inef Jindex)))

(i JAnr init) (do ({,index ,init}) {(= ,index (1. fin)}}

,atgl arg? ,argd ,arg4 ,argh arg6 arg’ .argd arg® arglo argll argl2 argld argld

ArglS argll argl7 ,argld ,argl0 ,arg20 ,arg2l ,arg22 ,arg2d ,arg24

LArg25 arg2t ,arg2? ,arg28 ,arg2d argd0 argd) argld argdd atgdd argdD arg3s argd?

JATE3E Larg3® ,argd0 ,argdl argd2 arg43 argdd ArgA5 Argdt argdT argdd ,argdd args0

ATESD LArg52 ,arg53 arg54 ,arg55 ,arg56 3157 ,arg53 ,arg59 ,argb0 ,argdl ,arg62 ,argtd

,Atg64 ,arg8h ,aTgE6 ,arg6T ,Arg6d ,argGe ,argTd arg?1 arg?2 LargT3 Jargi4 ,arg75 ArgT0

JALETT argT8 ,argT0 ,argd0 ,argl8l ,arg82 ,argh3 ,argh4 ,arg85 argd6 ,arg87 ,argBl argh0

,arg90 ,argf1 ,argd2

{decf ,index}})

)

)

[defmacro my-if (test success Koptional argl arg2 argd argd args argh arg7 argh argd argl0
argll argl2 argld argi1 argls argl6 argl? argld argi0)
*{cond

{,test ,auccess)
(t {progn{) .argl ,arg2 ,arg3 ,argd argh ,argb ,arg7 ,argh ,argd ,argll
yarghl Jargl2 argld ,argld ,argld ,argit ,argl? ,azgld argl9))

FUNCTIONS,LISP : lists the tunctions

(defun explode’'moi (name)
(explode-help {symbol-name namej 0))

{defun explode (name)
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{Land ((numberp name) '(name)) {1 {explode-help (aymboliname name) 0))})

(defun explude-help (st and)
{dectare (fixnuin inad)
{alring wir)}
{cond
((4= i (lenpth stp)) NIL)
{t {cona {imern (string {char atr ind)}}
{explode-help ate {14 ind}}))))

{defun immplode moi (liet)

{do {
{ot7 (make-string {leagth list)))
{lin ler {edr lis)}
{loe 0 {14 loc))
)
{{null lia) {intern str))
{leclare {string atr) {fixnumn loc})
{#etl (char sty loc) (char (aymbol-name (car He)) 0))

sredelining implode’moi for convenience and lack of clegance ...

{defun implode’moi (list)
lwetg 1t (length liae))
{retq wtr (makesstting n)}
{do ((i -1}
{t=1 - n 1))
{inct i)
{cond
[{atringp {car Yan)) [sent (char stz §) [char [car List) 0)})
[(svom  [car liat)} (set! {char wtr i) (char (string (car list)) O)))
)
[aety liat [cadr Nar))
)
{intern atr)

}

; NEWDEFUNS,LISP : attempts to climinate zero parameters terms, this is done by assuming that
; patameters enter the expressions only in ultiplications so the sam routine is modified to
i lookup the gdetine list and check if the symbaols ja there and alvo if it is 2er0, if zero

; the output of ssin is act to zero,

(defun mm (i j x)
{declare {special A}}
{it Qlistp x} (setq x {make-array 4 tinitial-contents (append *(nil} x})))
[4etq ttemp (make-array 4))
[#etf {aref ttemp 1) {asa (samlaret A i j 1 L}{are! x 1))
{s#a (samiaref A ij 1 2){atet x 2))(aam(arelf A §j 1 3)(azel x 3)})))
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(#ett {arel ttemp D) (ea {mamifaref AL 2 (a1l x U}

{a9a (asnnlaved A i 2 23(aret v I (Aamqorel Ao p 2 A(atel v MV
{octd (arel ttemp 3) {aaa (ramilarel AL 33 Diatel v 1N

(raa (aamfarel A i3 3 2){arel x 2N leatnfacet A L] 3 Datet s NN
et

}

{defun saa (x ¥)

{detq defined {mapcar ‘car def-hot}}

{#etq temp nil)

{my-i! (and{wamberp x}(2erop x}{namberp y){zerop ¥}
{ac1q temp 0))

{my-if {and [and {symbolp x){imemberp x detinedH{zerop (value.of x)}}
{and (symbolp y){inemberp y defined)(zerop (valne.of y}}})

(¢etg temp 0)
{my-if {and (symbolp x)(memberp x defined){zerop (value.ot x}))
{sety temp (saa 0 ¥))
(my-il (and (symbolp y){memberp y delined)(zerep (value.of y)))
[aetq temp (492 0 X))}
}

(ny-if {and(numberp x)(numberp y))
(serq temp {+ x ¥))
{aetq temp [with-cutput-to-string (temp)
{mysif (numberp x} (if (zetop x)(format temp "(* A} ¥)
{format temp "({"F)+"A)" x ¥))
(my-if {numberp y) (il (zerop y)(format temp "[“A)" x)
(format temp "({"F}+ A" ¥ x))
{format temp "{"A+ A" x ¥)

)

H|

)

(if (stringp temp}{sctyg temp (make.symbol temp)})
temp

)

{defun Jus [x ¥)

{1etq temp nil)

(my-if {and(numberp x){zerop x}{numberp y}(zetop y})

[vetq temp 0))

{my-if (and (and {symbolp x){memberp x defined){zerop (value.of x)))

{and (symbolp y)(memberp y defined)(zerop (value-of y}}))

{aerq temp 0)
{my-if (and (symbolp x)[memberp x defined)(zerop (value.of x}})
[ectq temp (04s O ¥))
{my-if (and {aymbolp y){memberp y defined){zerop [value-ol y)))
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(aetq tewnp {one x G}

}
)
{rny=el {and{nuinheip x){numberpy)}
[arLig tetngr (- £ ¥))
{aety tetnp (with-output-tu-stnang (Lemnp)
[ay=al {numbetpr x) (1f (zerop x) (lormat termp “{-"A)" y)

{forimat temp “{"F-"A)" x y))
{my-1f {numberp y)(i! {zetop yj{lormat temp " A" x)
[tormat temp “("A(TF))" % )}
[{ormat temp "EA-"A> & y)

)
1
)
(il (wtringp temp) (acrg temp {makessymhol temp)))

L2 TH

}

fdefun sam (x ¥)

[srtq temp nil}

lartq delined {mapcar 'car del-liat})

[my-if [ur {and {(nutnberp xj{zerop X)) fand (numberp y)(zcrop y)) )

{aetg tep @)

sthe added statetnent (0r examining Tero-parameler 1erns
[my«il {or {and {symbelp x){memberp x defined}{zerop (valuc-of x})}}
{and {aymbolp y){memberp y defined)(zerop (value-ol ¥}]))
(vetq temp 0)

{my-il {ansd (numberp x}{uumberp y))
(selq temp {* x ¥))
{aetg temp (with-outpul-lo-atring {Lremp)
{my-if (numberp x}
Lmysil {= x 1){lortnar temp ""A" y)
{rmy-il (= x «1}{format temp "{-"A)" y)
{format temp "({"F)*"A)" x ¥)
H
[my-il (numberp y)
{my.it (= y L){format temp ""A" x}
{my-il (= y -1){format temp "(="A}" x)
(format temp “[({"F}*"A)" ¥ )

1}
{lormat remp "("ATTA)" x y)
)
)
)}
]
}
}
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(s {stnngp temp) (getyg temp (make-symhol templ))
temp

)

; valuesof : to return the value corresponding to the given aymbal
{defun value-of (x}

{retq temp def-list)

{setq n (length def-list))

{tet i from 1 to n do

{if {equal (caar temp) x)

{sctq ans (cadar temp))

}

{setq temp {cdr temp))

(defun vva (x ¥}

fserq vva'temp (make-array 4})

(if (listp x) {vetq x (snake-array 4 :initial-contents [append *(nil) x)}))
(if {liatp ¥) {ectq ¥ (miake-artay 4 tinitialcontents (append *(nil) )1
{a3et {wea (arel x 1){aref ¥ 1)) vva'temp 1)

{aset (#7a {aref x 2){aref ¥y 2}) vva'temp 2]

(avet (soa (aref x 3)(arel y 3)} vva'temp 3}

vva'temp

)

{defun svm (x ¥}

{actq ttemp (make-array 4))

{if (lotp ¥) (scrq ¥ (make.array 4 :initislcontents (append *(nil) ¥)))}
{asct (sam x [atel ¥ 1)) ttemp 1)

{aset {sam x (atel ¥ 2)) ttemp 2)

(aver {sam x {atef ¥ 3)) ttemp 3)

Memp

)

{defun vam (x y)

[setq tttemp (make-array 4})

(if (listp x) (sectq x {make-.array 4 iinitial-contenta (append ‘(nit) x))))
{aset [sam y (aref x 1]] ttemp 1)

{asct (ewmn ¥ {aref x 2)) titemp 2)

{aset (sam y {arel x 3}) titemp 3)

tttemp

)

ildefun wia (x ¥)

i{1etg remp nil)

i(my-if [and{numberp x){zerop x)}{numberp y}{zerop y})
j(vetq temp 0))

1(my-if (and{numberp x)[numbetp y))
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darteg temmp (= x y)))
Jdartegp beinp fwithe-nutput-to-slong {temp)
Ayt {fnumberp xp (format tetap "("F-"A ) % ¥)
{ray-st (nmumherp y) {format temp "(["F)-TA)" ¥ x)
{fatmat teanp " [TATAN n y)

. b

l,

H

fnerg temp (Inake-aymbol temp)}
Jgemp

i}

(«betun cr {x ¥}

[actq ci'temnp (makearray 4))

(if {listp x) (eetq x (make-array 4 :initial-contents (append '{nil) x)}))
(it (listp y) {setq ¥ (makc-array 4 :nitial-contents (append '(nil) y)}))
[adet (sas (s (aref x 2){arel ¥ 3)) {asm {aref y 2)(aret x 3})) cr'temp 1)
[aset (sag (adin [ared x I}{arel y L)) {sam {aref y J)(azel x 1}}) cr'temp 2}
{aset (auu (a3 (ared x t){arel y 2)) {sarn {arel y 1){arel x 2)}) cr'temp 3)
ct’temp

)

{defun dp (x y)

lsetq dp'temp (make-srray 4))

(it (liatp x) [seryq x {make-array 4 Ginital.contents {append *{nil) x])))

{if (lisip ¥) {artq y {make-array 4 Ginitial.contents {append *{nil} y})))

[aaet (wsmn (arel x 1)(azef y 1)) dp'temp 1)

[aset (satn {arct x 2){arel y 2}) dp'remp 2)

(aret {oatn {are! x 3){aref y 3)} dp'temp 3}

{aetq dp'temp {aaa (avel dp'teinp 1) {ssa (are! dp'temp 2){arel dp'temp 2))))
dptemp

)

{defun memberp {x ¥}

{if (equal {member x y) NIL)
(#etq temp NIL)

(vetg remp T)

)

Lemp

)

: teader reads the indicated file and generates the appropriate arrays with indicated values
;1 where not indicated, the values ate assumed zero
[defun reader (file)
{declare {special in number'link sigma 1 al th d m mX m¥ mZ XX XY X2 Y2 YY 22 la Fs4 Fv GX GY GZ))
{actg in (open file :direction :inpat))
{setq temp {read in})
(if (equal temp ‘number’link)} (setq number’link (read in})
{and [error "the first acgument should be numbes’link”}{break)})
[seLq sigma [make-array (14 numbet’link)))
{eetq r {make-array (14+ number’link}})
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{setq al {makc-attay (14 numberhink)))

{setq th (miake-array (14 number’link}))

{setq d (make-array (14 numberlinki))

(setq m {make-array (14 sumbet link)))

(setq mX (make.atray (14 numberlink}})

{setq mY {make-array {1+ numbertink)))

{retg m2 (make-azray (14 numberlink}))

{setq XX (make-artay (14 numberlink}))

[vetq XY (make-srray (14 numberlink)))

{setq X2 (make-array {1+ number’link})}

{setg YZ {make-atray (14 number'link)))

(setq Y'Y [1make-array (14 numberilink}})

{setq L2 [make-array (14 numberlink)))

{sety LA (make-array {1+ numberlink)))

(setq Fa {make-array (1+ numberlink)))

{#etq Fv (make-array (14 number’link}})

{loop
(actq temp (1ead in))

{eond ({equal temp 'sigma)(fll sigma}}
{{equal temp'r  J{Allr 1))
{{equal temp "al J(filk al 1))
({equal temp "th AN th )}
{(equal temp'd  JANd N
(lequal temp'm  J(6llm )
{{equal temp 'mX J{fil mX )}
[{equal temp 'mY¥Y ){fili m¥Y })
((equal temp 'mZ )Rl mZ )
((equal temp 'XX J{All XX )
{{equal temp 'XY J{GI XY })
{{equal temp 'XZ )(fill X2 1))
{{equal temp 'YZ }{fill YZ 1))
((equal temp 'YY  J(OL YY )
((equal temp 'Z2Z  (fill 22 )
{{equal temp 'IA (AL IA )}
{{equal temp 'Fs (il Fs ))
((equal temp 'Fv (il Fv )}
[(equal temp *gx  }(ectq gx {read in}))

((equal temp 'gy
((equal temp ‘g2

Jverg gy (tead in))}
J{setq gz (read in)})

1

{close in)

)

{{equal temp 'stop ) (return nil))
{t {and (error "somcthing amia”)[break)))

{defun 6l (list)
{for § from 1 to number’link do
{actf (arellist i) {read in))
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FRINT. LISP : prints the styn model C code ataternenta an the named output C file

(defun prantoC (str)
{eleclate (special atinnts del-bist Jloat-dec] ntinnts))

{4ty out {open str hirection output))

, firat the gdefine 's ate taken care of firat

{antqg delines def-hist)

{loop
{cond {[null delines) {return nil}}
4]
{it (zerop {value.of (caar defines)}}
0
{pregny)
(prine "#define ° out)
(prine {caar definea} out)
{princ ™ " out)
{princ {cadar defines) out)
{princ #"newline out)
)
]
}
)
{2etq delines {cdr defines})
)

. next the floating point declarations « but before these, the intermediated ayntax ...

{ptine "lleat *dyn’robot(lloat *Q flear *QD,Moat *QDD)" out)
{princ #“newline out)
{princ *=* out)

{princ #"newline out)

{4ctq oare Hoat-dlecl)
(scrq i 0}
{princ "ftoat ” on1)
{loop
(cond ([uull Nloats) (return nil}))
{{= (lengih Hoats} 1)
{iprine {ear floats) omr))
@ (progn{}
{ptine [car floata) out})
{peine ", " our}

{inct i)
{if {= 310} {progn (princ #*newline out) {aetq i 0}))
}
)
)
(smtq tioats {cdr floats))
)
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(prine °;" out)
(prine #*newline out})

(sc1q statements stmnta)

(loop
{eond {(nul] statementa) (return nil))
(t {progn()
(princ {caar statements) out)
{prine " = 7 out)
{princ {cadar statements) out)
{prine *;" cut)
{princ # newline out)
}
}

)

(detq atatements {cdr statementa))

}

{prinec "~ out)
(close out)

)

We give an example output file used to compensate the gravity terms of
the Sarcos GRLA after parametric identification.

#define GY -8.93567

#define GZ 6.93567

ftdefine U1 1

#define mX1 3,7467000000000001
#define mZ1 3.7105559999090908
#define U2 1

#define mX2 5.3212000000000002
#define mZ2 78.006199000000006
#define R1 0.87880000000000003
#define U3 -1

#define mX3 -2.5465

#define mZ3 3.9049

#define 10023 -0.87880000000000003
didefine U4 |

#define mX4 0.4624000000000000%
f#define mZ4 23.100495099509950
#define RS 0.76200000000000001
#define US -1

#define mXS5 0.25250009959999000
#dafine mZs 0.61610000000000000
#define LOO25 -0,76200000000000001
Wdefine U 1

#define mX6 -0.1174
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#deline mZt -0.005200600006C000006

#ddetine L7 -1

fdeline InX7 +1.7232

#deline inY 7 -0 3C6A0000000000001

{luat “dyn robuet(float *Qdloat *QD,float *QID)

Hoat ALY, A1), AL123, ANID, A21L, A221, A223, A213, AL, A32Y,

ADJZI, AJLD, A1), AdZ), A423, AT, ALIL, AS2L, AL23, ALLD,

AGEL, ACZI, AG23, AGID, ATLL, AT2Y, ATI2, AT22, GAM[T), WL,

W21, Wat, PWSH, PWS21, I'WS31, WP, WP, WP3L, DVl Dz,
DVi3L, DV22L, Bv2al, Dvast, UL, UL, Uidl, vz, u2n, U23l,
1Ay, vazl, vas, VeI, ve21, Vea, Fry, F, P, N,

NZI, B3, W12, W22, Waz, PWS12, PW522, PWS32, WPI12, WP22,

wpP3z, DVIL2, DVI22, DVI32, DVI22, DV2L, DV3az, U2, 4122, Uis2,
uz12, U222, U232, U312, U322, U3az, VP12, VP22, VP32, Fi2,

¥22, ¥32, N12, N22, N32, W13, W23, W33, PWS11, PWS23,

PWS33, WP13, WP23, wWpa3, DVI13, DVI23, DVI33, DV223, DV233, DV3as,
113, U123, U1aa, U213, U223, U233, U313, U323, U333, VP13,

VP23, VP33, FI1a, F20, F33, N13, N23, N33, W4, Wy,

WwWa4, PAWS14, PWS24, PWSH4, WP, WP24, WPI4, DVI114, DVI24, DV134,
DV224, DV234, DV334, U4, U24, U134, U2, U224, U234, UdI4,

a4, U334, VEL4, VP21, VP34, FI4, FI, F34, N4, N24,

N34, WIS, W25, W35, PWSIS, PWS25, PWSIS, WPIL, WP25, WP3s,
pVI11s, DVI2s, DVI3S, DV22s, DV235, DV3ass, Ul1s, U12s, U13s, U215,
U2s, U235, U31S, U325, U35, VIS, VP25, VP3s, FIS, F25,

Fas, N15, N25, Nas, WI6, W26, Wad, PWS18, PWS26, PWS3s,

wpP1e, WP20, WPIG, DVI1¢, DV128, DV136, DV226, DV238, DV33g, Ults,
U126, Uias, U21s, U226, U236, U3les, Uazs, U6, VPIG, VP26,

vI3c, Fi6, F26, Fa6, N16, N26, N36, W17, W27, Wa7,

PWS1?, PWS27, PWS3T, WPIT, WP27, WPAT, DV117, DV127, DV137, DV22T,
Dvzaz?, DV337, UL17, Ui27, U137, U217, U227, U237, umT, vaz7, .

Uas7, VP17, VP27, VPIT, FIT, F27, F3T, N1T, N27, NOT,

E17, B27, E37, M7, M27, M7, E16, E26, E36, M6,

M26, Mag, Ets, E25, B35, M15, M25, M3s, EI4, E24,

334, M4, M24, M34, E13, E23, E33, M13, M23, M33,

E12, E22, 532, M2, M22, Ma2, Ell, E21, E31, Mij,

M21, M31;

A1t = cos({Q[1]);

Al = win(QU]);
A3 = [eod{QUD)
A3 = ain(QL)):

A211 = cos(Q[2]);
A221 = in{Q2)):
A220 = {~con(Q[2])):
A213 = #in{Q{2]h
ALl = con(Q[I));
Ad2l = «in{Q[a]);
A2 = con{Q[3]);
AMND = [-inlQ[3))):
A4l = coa(Q4]);

101



Ad21 = nin(Q4]):

A423 = (-con{QN]})
A41D = sin{Q{4])
AS1 = cos(Q[S]);
AS21 = #ini(Q[S]):
AS23 = con(Q[5]);
ABL3 = {-nin(Q[5])):
AGLY = cos{Q[6]);
AB21 = ain{Q[6]);
AG23 = (-cos(Q[6]));
A613 = »in(Q[6]);
AT = cos(Q[7I):
AT21 = ain(QTIE
ATLE2 = 4in(Q[7])s
AT22 = (scoa{QIT]));
Wil = 0;

w2l =9;

Wit =10

PWSil = o:

PWS21 = 0;

PWS31 = 0;

WPl = {{AILI"PWS11)4({A121*PWS21)));
WP21 = ((PWS31));
WP3L = ({AL13"PWS1L)+((A123° PWS21)));

DV111 = -WI11*W1l;
BV121 = WI11"W21;
DV131 = WI11%Wa1;
DvV22t = \W21*W21;

DV231 = W21°W3),
DV33l = -W31*Wi1,;
Uil = BbVaarDvaz,

Ui21 == DVIZ21.\WP3;
U131 = DVIJ+WP21,;
U211 = DVI2t+WP31;
U221 = DVI114DV33L;
U231 = I V231-WPIL;
Uatl = DV131.WP2y;
U321 = DV231+WPLY;

U3a = DVIN4DV2;

VP = ((({A121°GY))):

vear = {(G2)))

VRat = (({{A123°GY))));

Fll = {(({(B111°mX 1)+ 131 mZ21))
F21 = {{{U211*mX 1) +{{B231*mZ21))));
Fa1 = ({{U311*mX1)+((V3d1*mZ1))));

N1l = 0;
N21 = 0;
Nal1 =05

W12 = ({A2L1% (W11 4({A22t S (W21})));
w22 = (W3
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Wiz m ([AZ13T(WIN) + A2 (W21}
PW512 = (WPI1);

PWS22 = (WP2L);

WSz = (WEILY

WRIZ = ((A211°PWSIZp4[(A221"PWS22])):
wWE2 = ((PWSI2))

W2 = ((ARIS"PWSL2)${(A223°PWS22))):
DVII2 = .WI2°WI12;

DV122 = WI2=Wa,

DV132 = WI2°wWa2;

DV222 = W22t W

DV232 = W22 Wi

DV3I2 = -Wa2°Wwaz;

U112 = BVIz24Dhveee;

U122 = DVI22.WP3Z;

U132 = DVI324+WH22;

U2tz = DVI22+WPA;

U2z = DVII24DVIIY

U232 = DV2I2.WPI2;

U312 = DVII2WP22,;

U322 = DVIIZH+WPLZ,

U332 = DV1124+DV222;

VP12 = {{{A211VELD (A2 VR
VP22 = (((VP3L1)));

V32 = (({A213°VP L 4{(A223* VP21
F12 = (({U112°mX2)+((U132%mZ22))));
F22 o (((U212°mX2)+((U232°mZ2)))):
F32 = (({U312*mX2)4{(U332°m2Z2))));
N12 =0

N22 = 1y

N32 = O;

W13 = ((ASIL*(WL2)){{A321* (W22))));
w23 = (({-{Wa))lk

Wa3 = ([A313%[WI2))+((A323*(W22))))
PWS13 = (WP12);

PWS20 = (WP22);

PWS33 = (WP32);

WPI3 = ({A311*PWS13)4([A321°*PWS23}));
WP23 = ({{-PWSI);

WEIS = ({AJ13*PWS13)+({A323*PWS23}));
DV = -W13" Wi,

DVI23 = WI3* W2y,

DVI33 = WI3*Wal,

DV223 = -W23*W23;

DV233 = W23*Wal;

DV333 = -W33*Wa3z;

U113 = DV33a4+bva2y;

U123 = DVI23.WP33;

133 = DVIaL WP,

U213 = DVI23+WPas,;
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U223 = DV11a4+Dvass;

U233 = DVIA.WPLL:

U313 = DV13d.wpaa;

U323 = DV233+WPI3,;

U333 = DV1134DV223;

VPI3 = {({ANE*VPIZ)H{{ASZLV P22 (({U 123 Loo2a) ),
VP23 = ({({{-VP3a2})}+(({V223°L0023})) )

VP33 = (({AJII*VPIZ)4((ASWW* VDI N4 (((U323"LO02IN )
FI13 = ({({(UN3*mX3)+((U133*mZ3))));

F23 = [{{U2123*mX3)+((U233°m23))))

F33 = (((U3t3*mX3)+{{U333*mZ3)));

1}

Ni3d=20;
N2} =0;
B3 =0;

W14 = ((A411 (W) (A2 (W23
w24 = (W3}

W3 = ({A13* (W) R ((A423 (W2 )
PWS14 = (WP13);

PWS24 = (WP23);

PWS34 = (WP33):

WP14 = ([A411°PWS14)H{{A421°PWSE24)));
WP24 = ((PWS34));

WP34 = ((A413°PWS14)4([A123°PWS21)));
DV1l4d = -WH1"WIi4;

DV124 = W14*W24;

DV134 = Wi4*Wi4;

DV224 = -W24*W24;

DV234 = W24 Wa4;

DV3I = -Wa4*W34;

Uit4 = DV3344DV224;

Ut24 = DV124-WP4;

U134 = DVI1344+WP24;

U214 = DV1244WPI4;

U224 = DVII4+DVI4;

U234 = DV234-WP14;

U3i4 = DVI34-WP24;

U324 = DV2344+WP14;

U334 = DVI144DV224;

VP14 = {[(A4I1SVPI3)4{[A421°VP2I)));
VP24 = (({VPa3)));

VP = (((A413"VP13)4+((A423°VP23)))):
Fl4 = (((U114*mX)+((VIM4*mZ)N) )
F24 = {{{U214"mX4)+{{U234*m24))):
Fid o ({{U314"mX4)+{{U334%mZ4)))):
N4 = 0;

N4 =0y

N34 =0;

W15 = ((ASI1*(WI4))+((A521° (W24))));
w2s = {{{-(W34))));

W3S = ((AS13%(W14))+H{(A523*(W24))));

L1}
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PWSIL = (WPL4);

PWS25 = (WP2);

I'WSas = (WP

WPIS = ((ASTITPWSIS)4+({ASTLTPWS25)));
WP2s = (((-PW515)));

WPASL = ((ASIAPWSLEH{{AS23* PWSE25)))
PDVI15 = JWIS"W1S;

DV125 = WIS"W2L,

DVI13s = WIs*\Wan;

DV225 = -W25°W2s,

DV23s = Wa5"Was;

DV33% = -Wa5* W5,

Uiis = DVIISHDV2IL;

12 = DVIZE-WP3S

U135 = DVI3s4WIP2L,;

U215 = DVI254WP3S;

U225 = DVI154DV335;

U335 = DVIIL.WPLS;

U315 = DVI135-WP25;

U326 = DV23SLWRIS;

U335 = DVIIS+DV22S;

VIS & [{{ASUI*VEIA)H((ASRIVP24))) +(({U125°L0025))));
VIFEs = (({{-VP34))}+(((U225*L0025H)):
VPas = [({AS13*VP 14} ((AS23° VP24)))+(({U325°L00251)));
FI5 = ({{U115 mX5) H{{U135°mZ5])));

F25 = (({U215*mX5)+[{U235*mZ5))));

P35 = (({U318°mXS5)+({U335*m25))));

N1S = 0;

N2§ = O;

Nas = 0;

W18 o [[AB11*(WI5))H{{ACZ1*{W25}}));
wao = (((Wash)):

W30 = ((AGI*(W15))+{{AB23*(W25))));
PWS510 = (WP1S);

PWS26 = {WP2s5);

PWSsIgs = (WPas);

WP16 = [{AG11"PWSIE)4((A021°PWS26)));
WP = ((PWSI0));

W36 = ((AGLI*TWS10)4((AG23*PWS20)));
DVIIG = -WIig*WIiE;

DVIE = WI6*W20;

DVI130 = WIig*Wie;

DV2I0 = -WI16*W2g;

DV2I0 = W26*Wag;

DVIE = ~WIE*"WIG;

Uvile = DV3Ie+DV226;

U126 = DVI26.WPIG;

U138 = DVII64+WP2G;

U218 = DVI1264+WP3G;

U226 = BV1164DV33G;
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u2s

"

DV230-WPL6;

U316 = DV136-WP2t;

U326 = DV2364WPIG:

U336 = DV1164+DV226;

VP16 = ({{AGUI*VP LS} H([AB2L=VP25));
VP26 = (VRIS

VP36 = (({AGI3"VPIS)4{{A623°VP25))));
F16 = (({U116*mX6)+{ (U136 mZe))));
F26 = (((U216*mX6)+{(U236°mZ8))));
Fa6 = (({U316~mX6)+{[U3I6 mZL6))));
M16 = 0;

N26 = 0;

N35 = 0;

WIT = ((ATI*(WI6))-£{{AT21°(W26)}1});
W2T = ((ATI2°(WI0)}+({AT22°(W26)})):
war = ({{-(W3e)));

PWSI7 = (WPIG)

PWS27 = (WP26);

PWSaT = (Wpas);

WPIT = ((ATII"PWSIT)I4{{(AT21°PWS2T)));
WP2T = ({AT12°PWSIT)+({AT22* PWS2T)));
WPAT = {({(-PWS3?)));

DVIIT = WITWIT;

1

1}

DVI27 = wWaiymwaT;
DVI1IT = WI7*WaT;
DV227 = -W2T"W2T;

DV237 = W2T*WaT;

DV337T = -W37*Wam;

U117 = DVAIT+DV2IT;

U127 = DVI127-WP37;

U137 = DV1374+WP2T;

U217 = DVI1274+WPRaT;

U227 = DV1174+DV3I3T

U237 = DV23IT-WPIT;

U317 = DVIaT-WP2T;

U327 = DV2IT+WPIT:

U337 = DVIIT4DV22T,

VPI? = (((ATII*VPI6)4{(ATZ1"VP26))));
VP2T = (({AT12"VP1§)+([{AT22°VP26))));
VP37 = ((({(-VP3IOI);

FI7 = (V117 mX7)+((UV127*mY 7))));
F27 = ({(U217*mX T+ {{U22T"m Y T} )
Fa7 = (((US17°mXT)+{{U327T°mYT)})):
Nit = 0;

N2t = 03

N3T = 0;

El1T = F1T;

B27 = Fan

E37 = Fa7;

MLT = {(N17+{{mYT*VPIT)});
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W27 = (H2T4H([-1VPIT mX 7)) )

W37 = (BATH(((mXToVP2n)-(VPL17°mYT))) )

GAM(T] = (({[-M3N))H(0));

1216 = {(({ATUITEIT) 4 {[ATIZTERT)) )4+ F16);

126 = ({{ATZI*EATIH{{AT227ET}) )+ F2c);

136 = {(((-B3T)))+Fa6);

MIG = ([RIGH{{ (VIR mZE) ) UATITMITIH{{ATIZTM2TY}}):

M20 = ((N264({{mAC VI IC)- (VP36 NG )+ ({AT2I*MIT)H ({AT22°MITIN):
M30 = ((NIGH{(nX6"VI2C)))H({(-MITIN)

GAMIB] = (({M26)}-+(0));

B1% = ({{AGII*EL1C)+((AGI3"EIC}])+F15);

2% = (({AB21°E1C)+([AG23*EAG6}}) +F25);

K35 = (((E26))+F15)

MIE = ((N154 ({L0025°E35) +(«(VP25 " mZ5})) - {{AS1I*MIG) +({AS13°MIGY)));
M25 = ((R254({(mZ5* VP15 {VPIS XS} N +{(AG21 *MIGH((AC23°MIG))) )
M3s = ((N354({-(E15°L0025)) + (mXE* VP25 )+ {{M26)));

GAM(S] = ({{-M2IN+(O0)):

El4 = (({ASUI*EIS)H{(AS13°EI5)))+FLa);

E24 = [{({AS21°BI1S}{{AS2I°E351))+F24);

B34 = ({{{-E25)})4F34);

M4 = ((NLAE[{-(VPTA mZ4) )+ ((ASLI*MIB)$[(AS13°MB5))) )

M24 = ((NZAH{[{mZ4"VP14)- (VP mX A H{(AS21 MIS ([A523° M3 ):
M3 = ((NM 4 ({mXA* VP2 )+ {(-M25))));

GAM[4] = ({((M2a))+(0) )

B13 = ({(A11*E1)+{{AS13°E3) )+ F13);

E23 = ({(A421*E14)+{(A423°E34)))+PF25);

B33 = (((E24))+F33);

M13 = ((N134((L0023*E33)+(-(VP23*mZ3))) }+ (AT 1" MU} {{A413* M34)}));
M23 = ((N23+(({m23*VP13)(VPIZ*mXIN ] +{(A920° M I+ ((A123* M3 D)
M3 = ((N334({-(E13°L0023) )+ {mNX3*VP23)) )+ ((M24))};

GAM(3] = ({({(-M23)))+([D)):

E12 = (((ASI*E1I3F({AJLII*EI N+ F12);

B22 = (((A321°E13)4{(AI23°E3N))+F22);

832 = {({{-F23)))4+F32);

M12 = ([(N1Z4({-IVP22°mZ2) ) 4+ (A1 1" M13) 4 ([AILI*MII)))):

M22 = ((N224({{m22*VP12)«{ VPI2*mX2)) )+ ([AI21 M1} ((A323°MI3))});
M32 = ([NI24({mX2°VP22)}) +({(-M20)}));

GAM(2]) = (((M22))+(0));

E1l = ({AZ1"E12) H{{A213"E32) )+ F )3

B21 = ({(A221E12)H{{A220"E32))) +F21 )

B31 = {((E22))+FaL);

MU = ((NUE{ (VP2 mZ ) A ((AZLIMME2)H({AZ13°MI2))) )

M2 e ((N2UH({{mZ1I*VP L) (VPR mX 1))} +{(A221*MI2)F({A223°M32))) )
M31 = [(N3VH((mX 1V +{{M22)));

GAM[I} = {{IM21))41(0));
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Appendix C

Multistage optimization code

The algorithm, initially applied by Armstrong to the dynamic estimation
problem, has been implemented here in Matlab. The partial derivatives were
evaluated explicitly by functions diff{th{_Df cte. The user would have Lo
provide these lunctions in Matlab before running the program.

load lhit'traj % the initial acceleration vector
u=init'traj;

x0=3[00;-pi; 0;0:0];

K=length(inlt'traj);

‘Ts=0.005;

Azleye(d), To"eye(3);20204(3,3),eye(3)];
B={zeros(3,3); Te eye(3)]:

for m=1:M,

N=ltitr{A,D,u'x0);
x=X"

whi=x(1,:)"
th2=x(2,:)";
thdax(3,:)’;
thld=x(4,:)";
th2de=x(5,:)";
thid=x(8,)";
thidd=u(1,)";
th2dd=u(2,)";
thadd=u(d,:)":
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[N .D'J,D.'i]:(.';\ EC DO L th2thd thld th2d th3d th1dd th2dd th3dd),

Hi=DH1'"D1;

Riz 2Dy,
HI=0Ha"ns;

P {1 /05) (Bt 24103,
Szt minleig{ )}

fori=1:11,

fop p=1:11,

wmer=zeros{ll, 1 1});

inee(i,j)=0.1;

alpha{ V113 44) = 10°f (V/min{eig(R4incr})) - 1 );
end

ehd
alpha=reallalphal;
% columb marrices

Jth1'DL = ditfth U DI(ehl,ch2,8h3,thld,th2d, th3d,th1dd, th2dd, thidd);
JhUD2 = it th U D20tk th2,thdth1dth2d th3d, thidd,th2dd, thadd);
Jth1' DA = it th U D3 lth 2,0 hdth i d ah2d,thid th Tad, th2dd, thadd):

dh2’ DL = diFth2’ DLk, th2,0hd b 1d,th2d,ahdd et h 1dd, th2dd,shadd);
d'th2'D2 = ditl th2' D2{thl,th2,th3,th1d,1h2d,thid,thidd, th2dd,thadd);
d'th2'DI = i th2'D3{thl,th2,1hd,th1d,th2d,thdd,ahidd,sth2dd,thadd);

dthd' DL = Jill'th3' Di(thl,th2,th3, thid ah2d th3d.thidd, th2dd, th3dd);
Ahd' D2 = di"thd D2(th),th2,th, thid,th2d,th3d,thldd,th2dd,thadd);
dh3 D3 = i thd DAk, th2,tha, thid,th2d, th3d,thidd, th2dd,thidd);

d'th1d' Dl = diftth1d ' DI{th1,th2,thdthid,th2dthdd,thidd,th2dd, th3dd);
Tth1d’ D2 = Jifh1d D2 thieh2th3thld ch2d,thad, thldd, th2dd,th3dd);
dth1d' D3 = dith 1 D3[(th b 2,0h3 thild,th2d,thid, thidd, th2dd,thadd);

dth2d D1 = ditt"1th2d D1 (i, h2,eh3 thid, th2d thad  thidd,th2dd, thdd);
dth2d' D2 = i1 h2d°D2{th L h2, thidthid, th2d, th3d, chldd, th2dd, thadd):
#1th2d' D3 = diff'thId DI(th1,th2,th3,thid,th2d, hdd thidd,th2dd, th3dd);

d'Lh3d DL = Qi th3d D1{thluh2,eh3,thid,th2d,th3d thidd.th2dd,thadd);
Wth3d D2 = dif'th3d D2tk h2,th3 b ld,th2d,thad, th1dd, th2dd,thadd);
Wthad B3 = dift'th3d D3 {th1,th2,0h3,thld, th2d Ahad, thidd,th2dd,thadd);

dthidd’ DL = dift"thidd'DI(th1,ah2,th3thid,th2d,thad,thidd,th2dd,th3dd);
dithidd' D2 = ditl"thldd'D2{thi,Ah2,th3,thid,th2d,thad,thidd,th2dd,shadd);
A 1dd’ B = difFthidd Dalihi, th2, th3, thid, th2d.ahad, thldd,vh2dd, thadd);

Jth2dd' D1 = diff"th2dd ' DI{th1,th2,0hdthid,th2d,thad,thidd,th2dd,th3dd);
¢'th2dd' D2 = dilMth2dd ' D2(th1,0h2,th3thid,th2d,ahad,thidd,th2dd,thadd):
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d7thadd' DI

Jd'thadd' D1 =
d'thadd'D2 =
d'ih3dd' DA =

faot k=1:K,

del'x1'F{k} =

del’'x2’Flk) =

del'xd'F(k) =

del'x4'Fik) =

del'x5'F(k) =

del'x6'F(k) =

del'ul 'F{k) =

delu2'F(k) =

del’'ud’'Fik] =

end

dufl'th2dd D3 {1h1,th2,thd thid,thad thad,thidd,th2dd, thadd),

ditT th3dd DI(thleh2.thIthtdeh2dahddahidd.ahaddah ddd):
ditlthadd D2(th 1.t 2.thd thid,th2d,shad, ahldd ah dd, thadd),
ditFthadd D3(thlah2ahdehldah2d thadahtdd, th2dd, thadd),

alpha ® (kron{d th D1k, ), DU +hron{D Lk, W th T D1k, ¥+
kron(d thl D2{k.:) D2k 4+ kron (D20 th DG+ .
kron(d'th D3k} D3{k,) ) +kron (D3 (k) d th 1 DAk Y}

alpha * (kron(d th2' DI(L:) Dk ) +kran(D 1k} d th2 Dk, )b+ .
kron(d th2 D2{k,:) . D2(k.: ")+ kran{D2{k,:)" 0 th2' D2(k,:)") + ...
kron{d th2' DAk D3{k,: )+ kron{D3{k.:) ' th2' Da(k,:)") )

alpha * [kroa{d th3'Di{k,:)" .\ D1(k.:)" ) kkron(DL{k,:) ' tha Dk )) 4+ ...
kron(d"th3'D2({k,:)",D2(%.:)' V4 keon(D2{k.:)" .0 th3 D2(k,: )"} ...
kron{d tha ' D3{k,:)" . DI(k.:)" )+ kron{DI{k,:}". L th3 DIk

alpha ® (kron{d'th1d'DI(k,:)", D1 (k) e kronf DUk} Wt I DU+
kron(d thid D2(k,: ), D3k, ) Vb kron (D) th1d D2k )+ .
kron(d thid'D3{k,: )", D3k, J ot heon| DIk 0 thad DIk, )

alpha * (kron(d"th2d'DV1(%.:) D 1{k.:)" )+ kron DIk, ;)" A th2d ' DI{k,:) ')+ ...
kron(d'th2d D2{k,:) , D2(k,:}}+kron{ D2k, )* wl th2 D2(k,) )+ ..
kron(d th2d'D3(k,:)", DAk,:) Y+ kron(DI{k,: )" d th2d D3R,

alpha ® {kron(d"thad'Di(k,:)", Di(ks)" )+ kron(D1{k,:)" 2 th3d DIk} }+ ...
kron(d'th3d'D2(k,:)'\D2(k,:)") +kron(D2(k,:) " th3d" D2{k:) ")+ ...
kron(d'thad'D3(k,:)" . D3 (k:) Y +kron(Dalk,: ) " th3d DAk.)'));

alpha * (kron{d'thidd'D1{k,:)", DY(k,;:)' ) +Xron{Di{k,:) " d thidd' Dk} )+ ...
kron{d th1dd D2{k,:)".D2{k,:)"}+kron{D2(k,:) W thidd D2k ) )+ ...
kron{d thidd ' D3(k,:}",D3(k,:)"}+kron{D3{k,:) " th1dd DIk s

alpha * (kron(dth2dd’DU(k ;)" Dilk:) Y ekeon (D10 Y A b2 DI () b 4 -

kron(d th2dd' D2(k.:)" . D2{k.:}' ) +kron(D2(k,:)" Jd th2dd D2{k,: )"} 4 ...
kron(d th2dd'D3(k,:)", D3k, ) Y+ kron | D3k, )", th2dd ' DAk,:)') );

alpha * [kron{d'th3dd'D1(k,:)", D (ko)) Fkton{DU{K,: ) b ehdd DK, ) 4 s

kton(d thadd ' D2{k,: )", D2{k,:}')+kron(D2(k,:}",d th3dd " D(k,:)" )+ ...
kron{d th3dd D3{k,:)",D3{k,:) )+ kron{B3(k,:)' 4 thadd DI k,:) ) );

del'n'F = {de) x1'Fidel x2'Fidel'x3 Fidel x4 Fidel x5 Fidel x6'F];
del'o'F = [delul’'Fidel’'u2 Fidel'u3'F|;

del'x'F=flipud(del x'F');
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Lambdal=zetos(6,1);
Lambda=luts{A,eye(6),de! x'F,Lambda0};

% Q amsignment according to Hrysona lawe .. norm(Q) = (accn limit) {del w'F)/{Telerable'}) "2

gz A*(nona{del’n F, fra')) (3" K"[.3°2));
Q=g 0 0,0 q 000 ¢q);

del'y’ S = del'v'F ...
+ 2°{u**Q)’ - {Lambda"B}’;

mu'ev = . U/max{{max(sbaidelu I(1,:))), max(aba{del u J{2,:))), ...
max{abs{del’ v J[3;:)))])

u=u-mucvidel'u’t;

fm==1,

wave agcii 1l
elueif m=:22,
ave sascii M7 1
cleeil m==3,
#ave sawcii ud u
clacld m==4,

sAve -aacii ud

=

clieil m==35,
save «ascii ud u
etueil m==4,
save -aocii ub u
elaci! m==T,
wave ~apcii uT u
eleif m==4,
aave «agcii ud u
elacifl m==1,
save =agcii ufu
clieif m==10,
save aucii uliQu

end
LI
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