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Abstract

Inverse and Eigenspace Decomposition Algorithms

for Statistical Signal Processing

In this work. a number of advances are described which we feel lead to better un-
derstanding and solution of the eigenvalue and inverse eigenvalue problems for Hermi-
tian Tocpiitz matrices. First, 2 unitary matrix is derived which transforms a Hermitian
Toeplitz matrix into a real Toeplitz plus Hankel matrix. Some properties of this transfor-
mation are also presented. Second, we solve the inverse eigenvalue problem for Hermitian
Toeplitz matrices. Specifically, we present a method for the construction of a Hermitian
Toeplitz matrix from an arbitrary set of real eigenvalues. The procedure utilizes the
discrete Fourier transform to first construct 2 real symmetric negacyclic matrix from the
specified eigenvalues. The algorithm presented is computationally efficient. Finally, we
derive a new order recursive algorithm and modify Trench’s algorithm, both for eigenvalue
decomposition. The former development is of matheinatical interest; whereas, the latter
is clearly of practical interest. The modifications proposed to Trench’s algorithm are to
employ noncontiguous intervals and to include a procedure to detect multiple eigenval-
ues. The goals of the modification are to improve the rate of convergence. The modified
algorithm presented utilizes three root searching techniques: the Pegasus method, the
modified Rayleigh quotient iteration with bisection shifts (MRQI-B)}, and the MRQI with
Pegasus shifts (MRQI-P). Simulation results are provided for large matrices of orders 50,
100, 200, and 500. Application of the algorithms to Pisarenko’s harmonic decomposition,

an important signal processing problem, is presented. Fortran programs of the modified
method are also provided.



Resumé

Algorithmes pour Décomposition de I’Ensemble des Racines Propres

et Racines Inverses dans le traitement des signaux aléatoires

Dans cet ouvrage, quelques avancements scientifiques sont décrits qui, nous croyvons,
menent 2 une meilleure compréhension, et, de meilleures solutions aux problemes des
racines propres et racines inverses pour les matrices Hermitian Toeplit=.

En premier lieu, une matrice unitaire, est dérivée qui a pour but la transformation
d’une matrice Hermitian Toeplitz le résultat de cette transformation re traduit par la
somme d’une matrice Toeplits réelle & une matrice Hankel réelle. En deuxieme lieu, nous
allons résoudre le probléme des racines inverses pour les matrices Hermitian Toeplitz. En
particulier, nous présentons une méthode de réalisation des matrices Hermitian Toeplitz
a partir d'un ensemble quelconque de racines propres et réelles. Cette procédure utilise
une transformation de Fourier de valeurs discrétes pour réaliser, en premier lieu, une
matrice réelle, symétrique et ‘negacyclic’. L’algorithme présenté dans cette ouvrage est
certe efficace au calcul. Enfin, pour la décomposition des racines propres nous allons en
premier, dériver un nouvel algorithme d’ordre récurrent, et, ensuite, modifier I’algorithme
de Trench; le premier cas est d’interét mathématique tandis que le suivant est clairement
d’intérét pratique. Les modifications a 'algorithme de Trench sont proposées peur utiliser
des intervalles non-contigilie et pour inclure un procédé de détection des racines multi-
ples. Les modifications sont appliquées dans le but d’améliorer 1’allure de convergence
de Palgorithme dans I'estimées des racines propres. L’algorithme ainsi modifier, utilise
trois techniques de detection des racines, soit; la méthode de Pegasus, la méthode par
itérations mitigées du quotient de Raleigh suivant un décalage par bisection (IMQR-B),
et par IMQR suivant la méthode de décalage de Pegasus (IMQR-P). Les résultats des
simulations de I'algorithme sont présentés pour des matrices d’ordre 30, 100, 200 et 500.

Nous présentons aussi, une application des algorithmes élaborés dans cette thése au
probléme de décomposition harmonique des fréquences, développé par Pisarenko; ceci
étant un probleme important dans le traitement des signaux. Enfin, les détails du logiciel

décrivant algorithme, codé en langage FORTRAN, sont présentés 2 la fin de cet ouvrage.

it
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Chapter 1

Intreduction

The goal of signal processing is the extraction of information from signals contaminated
with noise. There are various techniques for extracting the information, and the methods
usually depend on the models used to represent the information embedded in a signal.
Statistical models are employed to describe 2 signal since the behaviour of sources and
mechanisms responsible for its generation and propagation are unpredictable. Signal
processing of this sort is related to classical time series analysis, and, therefore, covariance
matrices come to play a major role in many signal processing applications. In many
cases in algorithm development, the main effort reduces to an analysis of the covariance

matrices involved in order to extract and exploit underlying structure.

1.1 Covariance Matrices in Statistical
Signal Processing

In the statistical signal processing area of high resolution spectrum estimation, which
finds applications to array, radar, sonar, seismic, speech, and image processing, eigenvalue

and eigenvector decomposition methods offer under appropriate conditions, an alterna-



tive solution to the classical method based on the Fourier transform. An important signal
processing problem, for example, in array signal processing is that of resolving the di-
rections of arrival of multiple plane waves reaching an array contaminated with additive
background noise. In such a case. a series of snapshots are obtained by sampling the sig-
nal field at the sensors. Assume the signals to be narrowband and let the nth snapshot

of the field received at the &kh sensor (see Figure 1.1} be {1]-[4],

wave front i

Figure 1.1: Linear array of sensors.

si(n) = iz;(n)e"'"“ +2(n) I=1,...,Q (1.1)

=1



where P is the number of plane waves, @ is the number of sensors, z;(n) is the amplitude

of the ith narrowband wave, k; are normalized wavenumbers, t.e, &; = 3’;—d sinf;. d is the
fixed distance between array sensors, A is the spatial frequency, 6; is an angle of incident
of the ith wave impinging on the array, and z;(n) is the background noise.

Assume that the noise, 5;(n), is spatially incoherent

E[z{n)z(n)] = 026 (1.2)
and uncorrelated with the signal amplitudes, z;(n), i.e.,
E[z(n)zin)] =0, (1.3)

where the overbar denotes complex conjugation. Under the above conditions, it is possible

to represent (1.1) in vector form as

P
si(n) =3 zi(n) Vi, + z(n), (1.4)
=1
where
vy = [ IR ek | T (1.5)

is the phasing or stecring vector. Furthermore, assume that the sources are uncorrelated
with each other. The signal field then has an autocorrelation matrix of order (@ x @) of

the following form

R = E[s(n)s¥(n)] = f:thvf_. +0o2], (1.6)

=1

where D = E[%;(n)z;(n)] is a diagonal matrix of order (P x P), and I is the identity

matrix, and H denotes conjugate transpose. Rewriting (1.6) in matrix form, we have
R=VDVE 1 421, (1.7)

where V = [V, Vg, * **, Vip] is the matrix consisting of P direction vectors. Since the
signal and noise are assumed stationary, R is Hermitian and has a Toeplitz structure; ma-
trices having this combined structure are called Hermitian Toeplitz matrices. In general,

a matrix, C, of order n, is called Toeplitz if its elements ¢;; = ¢;—; for all 7,7 = 1,...,n;

3



is called symmetric Toeplitz if its elements ¢;; = ¢j;; for all 1.7 = 1.....n; and is called

Hermitian Toeplitz if its elements &.; = ¢; for all : = 0.1.....n — 1. Symmetric Toeplitz

and Hermitian Toeplitz matrices are completely specified by their first row of elements.

It is well known that eigenmethods offer high resolution capabilities [1]-{4].[24]-[26)

over conventional methods. The problem at hand reduces to the eigendecomposition of

the covariance matrix

Rg=Aq (1.8)

in which the P largest eigenvalues of R correspond to the signal subspace and the re-

maining (@ — P) minimum eigenvalues equal to o7 correspond to the noise subspace.

Note that the eigenvectors in the noise subspace are not unique and any vector in the
noise subspace evaiuvated on the unit circle

Q
C(z)= _Zoq.-:"' (1.9)
will have P zeroes z; = &%, for = 1,2, ..., P at the desired wavenumber frequencies k;

and (Q — P) other spurious zeros. This is easily verified, since if

Rq=o0lq (1.10)
then
(VDVE +52I)q=o3q (1.11)
and, therefore, VEx = 0 since D is positive definite.

The information about the desired wavenumber frequencies &; is obtained from an
eigenvalue analysis of the covariance matrix, and,for this purpose, efficient methods are
required to find the minimum eigenvalue [24]-[26]. In theory, the minimum eigenvalue has
a multiplicity greater than unity; however, in practice, the minimum eigenvalue occurs
as a cluster of eigenvalues having approximately the same value. For this reason, it is

necessary to compute all clustered eigenvalues and take an average to better approximate
the desired frequencies.

Once the eigendecomposition of this matrix is obtained, one might ask the question, is

it possible to construct a Hermitian Toeplitz with these eigenvalues? This is a nonunique

4



problem for Hermitian Toeplitz matrices and finds application in the area of array signal
processing, particularly in the case of optimum beamforming for interference or jammer
nuiling.

In this work, we focus on inverse and eigenspace decomposition algorithms and their
efficiency and accuracy for Hermitian Toeplitz covariance matrices. The subject of
Toeplitz matrices is vast, as such matrices occur in a wide variety of other applications
such as system identification, linear prediction, spectral estimation. and any problem in
which the covariance matrix of 2 weakly stationary stochastic process arises. Readers
further interested in applications are directed to references {1]-[5], while mathematically
inclined readers might find [6] appealing.

Due to the Toeplitz structure, numercus properties have been presented in the liter-
ature [7]-[11]. One new property that we present is that a Hermitian Toeplitz matrix is
unitarily similer to a real Toeplitz plus Hankel matrix. We study the effect of the uni-
tary transform on the eigenvalues and eigenvectors of Hermitian Toeplitz matrices; on
the eigenvalue relation between T, H, and T + H, where T and H denote the Toeplitz
and Hankel factors, respectively; and on existing algorithms which solve a system of
Hermitian Toeplitz equations. There exist algorithms which solve a real Toeplitz plus
Hankel system of equations [12, 13]. We explore these algorithms in terms of their com-
putational complexity. Furthermore, iiie unitary transform proves useful in obtaining a
solution to the inverse eigenvalue problem for real symmetric matrices, once the solution
to the inverse eigenvalue problem for Hermitian Toeplitz matrices is obtained.

Although the theoretical solution to the inverse eigenvalue problem for real symmetric
Toeplitz matrices is unsolved [10, 15, 16], numerical solutions to the inverse eigenvalue
problem for real symmetric Toeplitz matrices have been presented [16, 17]. We present
a solution to the inverse eigenvalue problem in the case of Hermitian Toeplitz matrices.

On the other hand, there are numerous techniques for eigenvalue computation. Meth-
ods for eigenvalue computation of a general matrix require O(n®) operations {18, 19];
however, efficient algorithms exist [20, 21, 22] which exploit the Toeplitz structure to

solve a system of linear equations and require O(n?) operations. A computational com-

-

5



plexity defined as M = O{an?®) implies that (M/n®) — a for large n [21]. Algorithms

based on the Levinsou recursion are presented and may be used to find the eigenvalues of

Toeplitz matrices. We present methods that fall into two categories. order recursive and

iterative. The order recursive methods presented utilize the deflation of polvynomials and.

hence, are sensitive to roundoff errors. On the other hand. Trench’s iterative method and

new methods based on modifications of Trench’s iterative method are presented and are

more viable for high order matrices. A further reduction in computational complexity

may be achieved by using parallel methods [26]. Parallel methods use n processors and

reduce the computing time by a factor of n.

1.2 Major Contributions

o

. Discovery of a unitary matrix which transforms a Hermitian Toeplitz matrix into

a real Toeplitz plus Hankel matrix. The importance of the unitary matrix is that

it preserves structure. Some properties of this transformation are also presented.

Solution to the inverse eigenvalue problem for Hermitian Toeplitz matrices. A
method is presented which shows that a negacyclic matrix of order 2n is equivalent

to a Hermitian Toeplitz matrix of order n.

Derivation of a new order recursive algorithm for eigendecomposition. This algo-

rithm is considered to be primarily of theoretical interest.

. Modifications of Trench’s iterative eigendecomposition algorithm for Hermitian
8 pos

Toeplitz matrices. The modifications include the use of noncontiguous intervals
and the inclusion of the case of multiple eigenvalues. The modifications propoesed

are shown to have important consequences for efficiency when working with high

order matrices.



1.3 Organization of the Thesis

The thesis is organized as follows. In Chapter 2, we present a unitary matrix which
transforms a Hermitian Toeplitz matrix into 2 real Toeplitz plus Hankel matrix. Addi-
tional properties and consequences of this unitary transformation are also presented.

In Chapter 3, we present the inverse eigenvalue problem for Hermitian Toeplitz matri-
ces. We describe a2 method that permits the construction of a Hermitian Toepi 'tz matrix
with an arbitrary set of real eigenvalues. It is snown that a negacyclic real symmetric
Toeplitz matrix of order 2n is equivalent to 2 Hermitian Toeplitz matrix of order n,
thereby providing a simple solution to the inverse eigenproblem for Hermitian Toeplitz
matrices.

In Chapter 4, we present two methods for solution of the eigenvalue problem. The
methods presented fall into two categories, order recursive and iterative, with the latter
being more numerically stable. In the iterative category, we present Trench’s method
and new methods based on meodifications of Trench’s method. The modifications involve
maintaining tighter lower and upper bound noncontiguous intervals for each eigenvalue
during the search mode and the inclusion of the multiple eigenvalue case. The modi-
fications have important consequences for efficiency in terms of convergence and com-
putational complexity when working with high order matrices. The algorithms may be
applied to Pisarenko’s harmonic decomposition and array processing problems of the type
described earlier.

Chapter 5 summarizes the work and offers directions for further research in this

interesting area.

-1



Chapter 2

On a Unitary Transform for

Hermitian Toeplitz Matrices

2.1 Introduction

It has been shown that Hermitian persymmetric [T} and centrchermitian [8] matrices
are similar to a real symmetric matrix. The similarity transform reductior. from the
complex field to the real field results in savings in both computer time and storage in
the calculation of the eigensystem of Hermitian persymmetric matrices (7). A Hermitian
Toeplitz matrix is a special form of 2 Hermitian persymmetric matrix and has a special
structure {namely, Toeplitz) over the complex field. Applying the unitary similarity
transform of [8] to 2 Hermitian Toeplitz matrix reduces it to a real symmetric matrix,
but at the price of losing the special structure (Toeplitz) for which efficient algorithms
exist [20, 21, 22].

In this chapter, we present a unitary matrix which transforms a Hermitian Toeplitz
matrix into a real Toeplitz-plus-Hankel matrix of the same order. As a result of this,
certain properties hold and are discussed. In fact, this unitary transform preserves the
Toeplitz structure of the real part of the Hermitian Toeplitz matrix and transforms the
imaginary part into 2 Hankel structure. It is a well known result that it is possible to



convert a Hermitian Toeplitz system of order n into a block Toeplitz svstem of order 2n
by equating real and imaginary parts, or, as in [12], by converting a Toeplitz-plus-Hankel
structure to a block Toeplitz structure and then using a block-Levinson recursion method.
On the other hand, there exists an algorithm that directly (i.e., without forming a block
Toeplitz structure) solves a system of T + H equations :13], where T and H denote the
Toeplitz and Hankel factors, respectively. We present an efficient alternative to solving a
special class of Toeplitz-plus-Hankel systems of equations for which the Toeplitz matrix
is symmetric and the Hankel matrix is skew-centrosymmetric.

Defiritions:

J is an exchange matrix with ones along the secondary diagonal and zeroes elsewhere.

Note that J = J¥ = J-?, where H stands for complex conjugate transpose.
H is skew-centrosymmetric if JHJ = ~H.
T is centrosymmetric if JTJ =T.
M is persymmetric if JMEJ = M. Note that Toeplitz matrices are persymmetric.
C is centrohermitian if JOJ = C.
I is an identity matrix.

S is a symmetric matrix if ST = §.

2.2 Mathematical Development

2.2.1 Unitary matrix

A Hermitian Toeplitz matrix C of even order n may be partitioned as

A BJ
c:( . ) (2.1)
JB JAJ



and split into real and imaginary parts

WwooYJ X zJ
C= +j . (2.2
JY JWJ -JZ —JXJ

where A = W+;X; BJ =YJ+3;72J; W is Toeplitz and symmetric: Y. Z are symmetric:
and X is Toeplitz and skew-symmetric. The matrices W', X', Y. Z are real and of order

nf2 x n/2. Then, a unitary transformation of the form

BYCEEEERY, 03

2\ (-4 B
M+ (1=4)J

UE = -1=l 2.

’ 2((1-j)1 (1+j)1) 2

will transform C into a real symmetric (but not centrosymmetric) matrix § which is the
sum of real Toeplitz and Hankel matrices of special form, i.e.,

W YJ JZ XJ
S=UCU = +
JY W ~JX =ZJ

where T is Toeplitz, persymmetric symmetric (centrosymmetric) and H is Hankel, per-
symmetric skew-symmetic (skew-centrosymmetric}. It is interesting to note that the
above unitary transform U preserves the real part of C and transforms the imaginary
part of C into a Hankel matrix as illustrated by the following example.

Exarnple: Let

(10 5+372 4+33 2+;

5—32 10 5432 4433

4—-33 5—-372 10 S5+j2

2—-7 4-33 5-32 10

—
Pt
o

5 4 2 0 2 3 1
5 10 5 4 1-2 0o 2 3

= +7
4 5 10 3 -3 -2 0 2
\2 4 5 10 -1 =3 =20

10



Then. applying the above unitary transform U results in

/10 5 4 2 1 3 2 0
5 10 5 4 3 2 0 =2
S = +

4 5 10 5 2 0 -2 -3
\2 4 5 10 0 -2 —3 -1
/11 8 6 2
8§ 12 5 2

T le 3 8 2
2 2 2 9

The trace of H is zero since it is skew-centrosymmetric. The antidiagonal consists of
zeroes. Also note that the unitary transformation preserves the Toeplitz structure of
the real part of C. For the imaginary part, the unitary transform has the effect of
an exchange matrix with removal of the complex number 7, that is, the result may be
thought of as a postmultiplication of the imaginary part of C by J (i.e., ImC-J) or as
a premultiplication of ImC by =J (i.e., =J - ImC).

When the order n of C is odd, an analogous unitary transform exists with slight

modification given as

1= 0 (1+35)J

v=3| o 2 o (2.6)
Q+HJ 0 (-7
and ]
A+ 0 (1-5)J
UH=U4=% 0 2 0 ) (2.7)

(1-7)J 0 (1451
Since the result of a multiplication of two unitary matrices is unitary. The above unitary

matrices are obtained as

1 (1 1 I J
U== _ (2.8)
2\g =J) \—jI jJ
for n of even order and as
I 0 I I 0o J
v=zl0 v2 o || 0 & 0 (2.9)
J 0 =J -3 0 3J
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for n of odd order.
As a result of the previous discussion. if § is symmetric (but not centrosymmetric)
such that S+ JS5J = T.then Smay bewrittenas S=7T+ H. Also, if S+ JSJ =T,

then § — JSJ = H. Hence. S may be transformed into 2 Hermitian Toeplitz matrix.

2.2.2 Affect on eigenvalues and eigenvectors

The eigenvalues of the matrix C are invariant with respect to the unitary transforma-

tiou UCU™1. If A is an eigenvalue of C and v is the associated eigenvector, then

Cv = Av. (2.10)
Premultiplication by U results in
UCv =\Uv (2.11)
which can also be written as
(UCUUv = MUv. (2.12)

The eigenvectors are, therefore, premultiplied by U. Note that v has Hermitian symmetry

(i.e., v=J¥ ). Now, let v be an eigenvector of C written as [7]

X |y .
)

where X, y are real vectors of dimension n/2. Then, Uv, the eigenvector of UCU™?, is

x y
Uv = + . (2.14)
(JX) (—JY)

For v of 0dd order, let v be an eigenvector of C written as,

X Yy
v=|a |+5| 0o |, (2.15)
Jx =Jy

where x, y are again real vectors of dimension /2 and « is a real scalar. Then, Uv, the

eigenvector of UCU 1, is

X Yy
Uv=]|a |+]|] 0O |. (2.16)
Jx -Jy



In other words, we can state by inspection that the real plus the imaginary part of v is

an eigenvector of L'CL 2.

2.3 Eigenvalue relation between I'y, H, and T+ H

Since T, H, and T + H are n X n symmetric matric;s, the eigenvalues of T + H are
bounded by
M(T)+ M(H) € M{T + H) € M(T) + A(H) (2.17)

for k = 1,2,..,n [18, 19]. The kth eigenvalue is denoted by Ax(:) and A;(-) £ Az(-)
< -+- € Aa(+). The eigenvalues of an even and odd order skew-centrosymmetric H are
{=Cns2s iy =01, 01, ..., Fny2} and {—0n_ys2, -0y —01,0,61,... Onyyz} for 7 even and odd,
respectively. Since, for n even, the minimum eigenvalue is A (H) = —on/2(H) and the

maximum eigenvalue is A (H) = 0n2(H), the above relation may be written as
Me(T) = Onp2{ H) £ Me(T + H) £ M(T) + ony2(H). (2.18)
We may also write (2.17) as
M(H)+ M(T) S 2T+ H) € M(H) + 2a(T). (2.19)

The eigenvalues of T, H, and T + H are tabulated in Table 2.1 for the matrix of the
previous example. In Table 2.2, we tabulate the computed bounds (2.17) and ({2.19)
for the same example. The intersection of bounds obtained by (2.17) and (2.19) give
a somewhat tighter bound on the eigenvalues of T + H. A closer look at the bounds
in Table 2.2 reveals that a bound may also contain other eigenvalues. For instance,
a bound on A\(T + H), namely [—1.17,9.92], also contains the eigenvalues A(T + H)
and A3(T + H). The bound on A3(T + H) obtained by (2.17) includes the eigenvalues
M(T + H) and X(T + H), but the bound on A;(T + H) obtained by (2.17) does not,
however, include A\ (T + H) and A2(T + H). As a result, the intersection of the two
bounds does not contain other eigenvalues of T+ H. Unfortunately, this does not always
bold, since the intersection of the bounds (2.17) and (2.19) for A2(T + H) also contains

13



Table 2.1: Eigenvalues of T. H, and T+H

Eigenvalue T H| T+l
A 4.375 1 -5.553 | 2.869
Az 4.697 | -0.402 | 4.643
A3 8.302 | 0.402} 8.290
A 22,624 | 5.553 | 24.196

Table 2.2: Intersection of bounds.

(2.17)

(2.19)

(2.17) N (2.19)

11T M £ 992

-117 S A4 21707

Q1T <M < 9.92

-0.85 € A2 €£10.25

397 < A2 2222

3.97 < A» < 10.25

274 € X33 <13.85

4.77 < A3 £23.02

4.77 € A3 £ 13.85

17.07 € A4 € 2817

9.92 < A £28.17

17.07 < A < 28.1

-~}

M(T + H). We now state and prove a simple proposition regarding the cigenvalues of
T+4H.

Proposition: Consider the matrix sum T + H. If T is positive definite then the eigen-
values of T + H are greater than the corresponding eigenvalues of H.

Proof: Since A\ (T) > 0 for positive definite T, then, from (2.19), Ae(H}+ M(T) <
Me(T + H) : hence, the result obtains.

2.4 Effect on solving system of Hermitian Toeplitz

equations
Efficient algorithms exist [20]-[23] which solve a system of Toeplitz equations given by
Cv=d (2.20)

14



for the vector v. Now. if this equation is premultiplied by U, then v also satisfies
UCv=1Ud. (2.21)
The change of variables v = U/~'q and substitution in (2.21) results in
UCU 'q=Ud. (2.22)

Consequently, the solution vector v of (2.20) can be obtained from the solution vector q
of (2.22) or q can be obtained from v.

Note that if a system of real equations is Toeplitz-plus-Hankel (T + H), where T is
symmetric Toeplitz and H is skew-centrosymmetric Hankel, then the equations may be
transformed into 2 Hermitian Toeplitz system and solved with 1.25n% + O(n) complex
multiplies or 3.75n% + O(n) real multiplies [21]. This is a significant improvement in
complexity over the approach of [12] which requires 12n? + O(n) real multiplies, and
is slightly lower in complexity than the approach found in [13] which uses an entirely

different development and requires 6n® + O(n) real multiples.

2.5 Discussion

In this chapter, we have shown that a constant unitary matrix exists which transforms
a Hermitian Toeplitz matrix into a real Teoplitz-plus-Hankel structure. As a consequence
of this property, some real symmetric matrices may be converted into Hermitian Toeplitz
matrices and vice versa.

It is interesting to note that 2 Hermitian Toeplitz matrix may be thought of as a real
Toeplitz matrix perturbed by a special Hankel (skew-centrosymmetric) matrix. Using
perturbation theory, we showed the eigenvalue relation between T, H, and T 4+ H. We
stated and proved a simple proposition, namely, that the eigenvalues of T+ H are greater
thaa the corresponding eigenvalues of H when T is positive definite. Those readers
interested in this area may use the results of this chapter to further study the relation
between the eigenvalues of the matrices T, H, and T + H.

15



Chapter 3

Inverse Eigenvalue Problem for

Hermitian Toeplitz Matrices

3.1 Introduction

In this chapter, we are concerned with the inverse eigenvalue problem within the con-
text of statistical signal processing and Hermitian Toeplitz covariance matrices associated
with weakly stationary stochastic processes of complex form. Specifically, we present a
method for the construction of a Hermitian Toeplitz matrix with an arbitrary set of
real eigenvalues. The inverse eigenvalue problem treated is significantly simpler than
the inverse eigenvalue problem encountered in the real weakly stationary stochastic pro-
cess case when the covariance is real symmetric Toeplitz. The latter inverse eigenvalue
problem is still unresolved for matrices of order greater than four [10, 15], although nu-
merical procedures do exist [16, 17). The reason for the relative difference in difficulty
for the two inverse eigenvalue problems appears to be related to the fact that there are
twice as many specifiable parameters in 2 Hermitian Toplitz matrix as there are in a real
symmetric Toeplitz matrix.

The approach we take is to first construct an even order negacyclic real symmetric

Toeplitz matrix having the desired eigenspectrum, where each eigenvalue, distinct or not,
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is repeated twice. The negacyclic matrix of order 2n so constructed, is then revealed to
be the real matrix of a Hermitian Toeplitz matrix of order n which has the desired eigen-
spectrum. We provide a brief description of negacyclic matrices, describe the approach,

and present an example.

3.2 Negacyclic matrices

Real negacyclic matrices are defined in Section 3.2.1 of [29] as circulant matrices having
a change in sign for all elements below the main diagonal. A real symmetric negacyclic
matrix, Q, of order m may be specified by the first row of elements, ¥ = [gog1 - - * gm—-1);
where gm-k = —Q, £ = 0,1,...,m — 1, and the index m — k is understood to be module
m. It is seen, therefore, that real symmetric negacylic matrices are a subclass of real
symmetric Toeplitz matrices.
The eigenspectrum, {} : i = 0,1...,m — 1}, of a symmetric negacyclic matrix
has elements which are given by the discrete Fourier transform (DFT) of §T = [goquw

<+~ gmo1w™ 1], where w = 7= [11, 29], i.e.,
m-1 . - KT
hi= Y quemkIwE, (3.1)
k=0
for i = 0,...,m — 1. For a symmetric negacyclic matrix of even order m = 2n, there are

n eigenvalues given by
-1
A= @ +“2[9ke5i(2i+1)k + groxeim I m=R)]
k=1
n=1
= g+ z qk[ejﬁ(ﬁ-ﬂ)k — ejw(:i+1)e-ji(z"+1)k]
k=1
n—-1
go + E qk[ei::-(zi-u)h + e—.i-',;(zi+1)k]
k=1
n-1 -
= 90+22chos—-(2i+1)k (3.2)
k=1 m

for z = 0,...,m — 1, which appear with multiplicity two; specifically, A = Ap—i—1, 1 =

0,1,...,m — 1. Of course, the actual multiplicity may be higher, depending on whether

the eigenvalues of (3.1) are distinct or not.
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We now turn the situation around by observing that the vector of elements q of 2
negacyclic real symmetric Toeplitz matrix of order m may be obtained from a given set

of n eigenvaiues by use of the inverse DFT. viz..

e-;—k n-1

e = Z[A C'—J_‘k + /\m-l—l C_J (m---—l)k]

m =0

—; =k n=1

Z /\' —J..rkcg—-l.keg7'k]

1 n=1

2 2 A,[e"' 2+1)k + e-ji('.‘-’-i-l)k]
1—0
n—l

= Z z\.cos—(2i+ 1)k (3.3)

for £k = 0,...,n. The DFT then becomes a simple vehicle for specifying the elements of

@ given a set of eigenvalues {X;: £ =10,1,...,m —1}.

3.3 Relation to Hermitian Toeplitz matrices

The purpose of this section is to reveal the relationship that exists between symmetric

negacyclic matrices of order m and Hermitian Toeplitz matrices of order n. Let

(0 @ ¢ ¢
G G @ 2 0
q2 Q o N ¢
qs 9 q1 9 o
94 ¢ ¢ @ 9w | @ ¢ ¢ @ 0

| 0 —g —gs =-g2 -91\
|
|
|
|
e=| - - - - -1 - - - = = (3.4)
|
|
|
|
|

@ 0 —q —¢ —q
3 ¢ 0 —q —q
@2 ¢ q@ 0 -—q

0 @ @& ¢ @
-2 0 g @ ¢

go ¢ q2 qs Ja
g1 Qo N q2 gs
-g3 =« 0 g g 2 @ g @ ¢

—g =g —q 0 g4 3 ¢ @ Y @

\—q1 —¢2 —¢s —gx O 4 g G @ G/
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be a negacyclic real symmetric Toeplitz matrix of order m = 10, partitioned into blocks
of size (n x n), where n = 3. Note that the diagonal blocks are identical svmmetric
Toeplitz matrices and the off-diagonal blocks are skew-symmetric trace zero Toeplitz
matrices which are negatives of one another. We denote the upper diagonal block as 4
and the lower ofi-diagonal block as B.

Recall that a Hermitian Toeplitz matrix C of order n is specified by its first row of
elements, ¢ = [coc; +--¢cn1]- To show that a real megacyclic matrix of order m may
be represented as a Hermitian Toeplitz matrix of order n, we write the characteristic

equation of (3.4) in the following form:

(2 %) C)-C)

where ) is an eigenvalue of Q and [xTy%)7 is the corresponding eigenvector. It is clear
that (3.5) is equivalent to the two characteristic equations resulting from the real and
imaginary parts of

[A+7Bl(x+ jy) = Mx + jy). (3.6)

Note that C = A + ;B is Hermitian Toeplitz and has the eigenvalue A with v =x+ jy
as the associated eigenvector.

In summary, to construct a Hermitian Toeplitz matrix C with a given eigenspectrum,
{}::=0,1,...,n—1}, first compute gz, k= 0,1,...,n=1, using (3.3), and then prescribe
the elements of C by defining the elements of ¢ as ¢; = ¢;— jgn—i, for ¢ = 0,...,n—1. Note
that permuting the given n eigenvalues produces many solutions to the inverse eigenvalue
problem. In fact, there are n! negacyclic matrices possible, and as many solutions, if the

elements of the eigenspectrum are distinct.

3.4 Example

In this example, the problem is to construct a Hermitian Toeplitz matrix of order

n = 5 having the eigenvalues Ao = 1.0, A; = 30.9, Az = 50.0, A3 = 100.0, and X; = 700.0.
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. Using (3.3), we obtain the following elements g of the negacyclic matrix @ of order

m = 2n =10:

go=  176.20000000 g¢s = 0.00

g1 = =141.18669451 ¢s= —gs
g2 = 95.38974075 ¢r = —g¢a
gz= —63.85758704 ¢s= —¢a
Q= 3228974075 g9 = —q.

The Hermitian Toeplitz matrix C, with elements written in terms of the g;. is given

by

C=|g+je3 q+jaa 9o

( do a1 — 74 g2—Jjgqz G3—jq
Q1+ 74 qo Q1—Jq 92— Jg

Q- Jq

@3+je: g+J9 q+iq o
\94+j<h gs+Jg2 G+7jq q1+ig

%—Jih
g3 — jgz
92— g
91— 4

do

)

/

; (3.1)

where we have used the Hermitian property, c_; = &, to fill in the elements below the

main diagonal. The eigenvalues of C' can now be found using one of the several numerical

packages which are available, e.g., EISPACK. We chose to employ the modified method

found in the next chapter which exclusively deals with Hermitian Toeplitz matrices. The

eigenvalues found in this manner are

Ao = 0.99999916
Ay = 30.00000508
Az = 30.00000000
Aa = 99.99998731
A= 699.99999319

=384 x 107%
e=17x10"°
e=0.0
e=1.2x10"%
c=9.8 x10"®

]

with the respective relative error, ¢, also shown. The eigenvalues obtained are in excellent

agreement with those found using EISPACK. As mentioned earlier, permutation of the

originally specified 5 eigenvalues produces 5! = 120 negacyclic matrices and Hermitian

Toeplitz matrices. In this, and other examples, we have observed that some of the nega-
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permutation of clements, while others generated will not and will have completely new

element values.

3.5 Application to Array Signal Processing

The inverse eigenvalue problem for Hermitian Toeplitz matrices may find application
to the area of array signal processing. As we have seen, the covariance matrix under the
assumption of weakly staticnary stochastic processes has a Hermitian Toeplitz structure.

Let the elements of the constructed Hermitian Toeplitz matrix be written as

€k = k= JQn-k
n=-1 n-1
= T a3 Abemio (33)
=0 i=0

where a; = 1 — (=1)%, b; = 1 + (=1)}, w; = =(2¢ + 1)/2n, and {X;) is a given set of real
numbers. Each of the two terms in (3.8) has the form given by Carathédory [1 ,p. 60],
i.e.,
P
n=Y we*+70s& [=1,2,---,N, (3.9)
k=1
where the (/V + 1) complex constants, yo, %1, **,¥N, are not 2ll zero and §_; = y;. Under
these conditions, there exists an integer P, 1 € P < N, and certain real constants y > 0
and wy for k=1,2,---, P.
The correlation between the zth and jth sensor elements is,
ri; = Els;(2)5;(2)] = f: Byedldi=dilreosts o 525, (3.10)
k=1
where By, represents the signal power of the kth source, d; represent the distance between
sensors, and @i represents the angle of incidence of the wave to the sensor elements.
Comparing (3.10) and (3.9), Pillai [1], showed that {B:i} « {7} and {wi} « {7 cosbi}
and that the analogy is exact if the Q array elements are located in a way such that the

differences &; = d; = m, j > ¢, for ¢,5 = 1,2,---,Q represent every integer in the set

21



{0,1,2,---, N}, where N < Q(Q —1)/2. Then with @ array elements, there are (N + 1)
autocorrelation lags
P
r(m)=r(j —i) =D Bee®™* + 0%6m, m=1,2.--- . N\. (3.11)
k=1
Constructing an analogy between (3.8) and (3.10), similar to that found in [1]. the two
terms in (3.8) suggest a certain array geometry {unknown) with {B;} « {A;} and all the
waves incident on the sensors have a precise angle such that {uw;} — {#(2f +1)/2n} —
{7 cosb;} for the elements of the autocorrelation matrix be of the form shown in (3.8).
We see that (3.8) may be thought of as two shifted linear arrays with the waves making
unique angles to the sensors. This is a special case of 2 symmetric multipath environment
[2 ,p. 288]. The inverse eigenvalue might be useful in a case in which some of the plane
waves are the desired ones and the rest are interferers or jammers to be nulled. In this
case assuming independence, the covariance matrix may be decomposed into a part due

to the desired signals and a part due to the interference plus noise of the form
R =Ra+Ra, (3.12)

where R4 is due to the desired signals and R,, is due to the interference. In a special
situation in which one knows the powers {B;} « {A:} of the unwanted signals and
assumes the interference is symmetric, it maybe possible to construct a matrix C,, which

has a special structure designed to eliminate R, and obtain the desired information from

R=Ry+ (Ra— Ca) = Ra. (3.13)

3.6 Discussion

A method was presented for solving the inverse eigenvalue problem for Hermitian
Toeplitz matrices. The approach taken uses the fact that a2 Hermitian Toeplitz matrix of
order n having the desired eigenspectrum can be constructed from the elements of a cer-

tain real symmetric negacyclic matrix of order m = 2n. The approach is computationally

22



efficient and only requires an n-point DFT. Also note that using the unitary transform of
the previous chapter on the constructed Hermitian Toeplitz matrix produces a solution
to the inverse eigenvalue problem for real symmetric matrices.

The inverse eigenvalue problem for Hermitian Toeplitz matrices is relatively elemen-
tarv since there are twice as many specifiable parameters in 2 Hermitian Toeplitz matrix
as there are in a real symmetric Toeplitz matrix. An important and much more dif-
ficult problem is the inverse eigenvalue problem for real symmetric Toeplitz matrices.
This problem remains unsolved for matrices of order n greater than 4 and a theoretical
solution to it seems very challenging. However, numerical solutions for real symmetric
Toeplitz matrices of any order n have been presented in [16, 17]. Using the unitary trans-
form decribed on the constructed Hermitian Toeplitz matrix results in a real symmetric

matrix, S = T + H. For example, for n = 5, S has the following form:

(90 @1 ¢ @B U\ (¢ ¢ @& ¢ 0 \
@i o @1 G2 Gs @2 g9 ¢ 0 —q

S=le @ ¢ @ @|+]|{B 0 - -g¢}|- (3.14)
% 92 @ G @ %@ 0 —g =—g —q¢

\es ¢ @ @ @/ \0 —g —gs —¢ —9‘1}
Now, since the eigenvalues of S = T'+ H and the elements ¢; are known, then one would
like to further study the eigenvalue relation between T', H, and T'+ H, and this may help
in obtaining a better understanding of the existence question of whether a real Toeplitz
matrix exists having arbitrary eigenvalues or not.

In array signal processing, the covariance matrix has a Hermitian Toeplitz structure
under certain assumptions. It was shown that an analogy exists between (3.8) and (3.10)
similar to that drawn by Pillai [1]. In comparing (3.8) and (3.10), we see that (3.8) may
be thought of as two shifted linear arrays with the waves making unique angles to the
sensors. It was explained in a special case of a symmetric multipath environment it is

possible to eliminate the effect of the interference if their power are known.

23



Chapter 4

Recursive and Iterative Algorithms

for Hermitian Toeplitz Marices

4.1 Introduction

~

In the previous chapter, the problem considered was the construction of a Hermitian
Toeplitz matrix given an arbitrary set of real eigenvalues. In this chapter, we focus on
the computation of the complete eigenspectrum for Hermitian Toeplitz and real Toeplitz
matrices. In particular, the current trend is the investigation of methods which utilize
not only the centrosymmetric structure, but also the Toeplitz structure in the design
of new algorithms. We review some of the current approaches and algorithms available
in the literature and see that these algorithms fall into two categories, order recursive
and iterative. The order recursive algorithms of Wilkes and Hayes [30] and Morgera and
Noor [31] are of interest since they demonstrate that the eigenvalues of an n-dimensional
real symmetric or Hermitian Toeplitz matrix C, may be obtained from the eigenvalues of
its submatrices. Even though these algorithms suffer from certain numerical problems,
the approaches, nevertheless, contain new results of some theoretical interest. Iterative
methods, however, are more numerically stable than order recursive methods; this is

principally due to the fact that characteristic polynomials are not farmed, a computation
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which is historically known to increase the propagation of roundoff errors.

Work on iterative methods to determine the smallest eigenvalue of Toeplitz matrices
has been reported by Cybenko and Loan {27) and Hu and Kung [26]. Recently, Trench [32]
has proposed a method which represents an extension of [27] to determiring the complete
eigenspectrum of Hermitian Toeplitz matrices. If all the eigenvalues of a Hermitian
Toeplitz matrix are required, then the standard procedures (which do not exploit the
Toeplitz structure) given in [18, 19] are more efficient; however, if only a few are required,
then the methods given in [26, 27, 32] are more efficient.

The chapter is organized as follows. Section 2 presents the mathematical development
of the order recursive algorithms and provides an example of this category of algorithms.
Section 3 presents an example and discussion of the order recursive algorithm. Section 4
is devoted to Trench’s iterative approach and its modified version. The modifications to
Trench’s algorithm involve maintaining tighter lower and upper bound intervals for each
eigenvalue during the search mode, and inclusion of the case of multiple eigenvalues. Sim-
ulation results are reported for Trench’s method using the Pegasus method as 2 major root
searching method, and the Modified method with three choices of root searching tech-
nique, namely, Pegasus, Modified Rayleigh Quotient Iteration with Bisection iterations
(MRQI-B), and Modified Rayleigh Quotient Iteration with Pegasus iterations (MRQI-
P). Extensive computer simulations are performed on constructed Hermitian Toeplitz
matrices of orders 50, 100, 200, and 500. The modifications proposed have important
consequences for efficiency when working with high order matrices. Section 5 provides
some examples of the simulation results. Finally, in Section 6 we present an application

of the algorithms to Pisarenko’s harmonic decomposition.



4.2 Mathematical Development

The problem may be stated as follows: given a Hermitian Toeplitz matrix C, of order

,
o <1 Cn_y
a € ... Cnoz
Cn = . ] ] . . (+1)
Ch-1 Cn-2 Co

where ¢g is real and ¢, ¢, ..., a1 are complex, find the complete eigenspectrum. Since
Cn is Hermitian, ¢_; = ¢;, for : = 0,1,...n — 1. The principal submatrix of C, of order
k is defined as Cp = [6i; : 0 € 4,7 £ k=1], for k = 1,2,...,n. Assuming C; to
be nonsingular, we may apply Levinson’s recursion in order to obtain a set of reflection
coefficients {px} and a set of linear prediction coefficients {$w}. Now, let us consider the

shifted system of normal equations,

(Cu - )\Ifs)én(A) = [ER(A)’ 0* EERRY O]Tr (4-2)

where

()

Pn1(A)

The quantities #,()A) and E,()\) are the predictor vector and the prediction error at
the nth recursive step, recursively. The elements of C, — Al,, are the same as those of
Cn except that the main diagonal of C, is replaced by ¢ — A, where A is treated as a
continuous real variable. Levinson’s recursion can be applied to (Cpey — An1)®Pp-1 =
[61+- - Em1]F and is given by

k-1
Ce + 2007 Pr1,iChei

= , k=1,2,...,n-1, 4.3

Pk Ds/ D ‘ n (4.3)
Pek = Pis (4.4)
Gk = Or—1i+ Prdhe1p—is (4.5)

E. = (1—[p|®)Er, (4.6)
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Eey = DifDi, (4.7)

where the above quantities will all depend on A.
In the sequel ({4.17)), will show that the reflection coefficient in terms of A may be

written as
WA BA T bt s Naa(Y)
Doa(h) Dny(3)

where D,_;()) is the characteristic polynomial of C\,—; and v9,m.* ", Vn-2 are complez

pn-1(A) = (4.8)

coefficients. The values of A for which D._1()) equals zero are the eigenvalues of Cr_y
and, at these values of A, |pn-1{))| becomes infinite. Note as |pn—2( )| approaches unity,
E,_2 approaches zero, which means that |pa._;(A)| becomes infinite [30]. This can be
verified by use of (4.7} and (4.17) and is left to the reader.

Setting [pa-1(A)* = 1 in (4.8) and forming Po—1{A) = Di_,(A) — [Neaa(A)F = 0
implies that there are 2n — 2 values of A for which the resulting polynomial is zero. Qut
of the 2n—2 values of A, n values correspond to the eigenvalues of the matrix C,, because
at these values D,(A) is zero and |pa—1(A)] = 1. The remaining n — 2 values of A at which
|pn-2(A)}® = 1 correspond to the eigenvalues of the principal submatrix Cn-2 and are
denoted by p;, 1 = 1,2,---,n — 2. At these eigenvalues, C,_; — p;J will be singular, but
Ca-1 — p;] and C, — p;J will be nonsingular. This is known as the singular case , for
which the conventional formulation of Levinson’s algorithm does not apply {35).

In the singular case, the reflection coefficients are related by

par(A) = —-Zf%p,(x), (4.9)

where r = n — 1 — 2! and is referred to as a left-singular point. The quantity Bo(A} is
given by
Bo(A) = @dro(A) + G101 (A) + - + E4r Gre(A), (4.10)

where [ is the Iohvidov index at point r [35]. Note that Sy(A) depends on the predictor
vector and has a complex value in the Hermitian case. In the real symmetric case, So())

is real, I = 1, and (4.9) reduces to the expression found in [30}, i.e.,

Pn—i('\) = _'Pn-s(‘\) (4-11)
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with the property that pr = =1 at the eigenvalues of the (k — 1) and (k + 1) order
principal submatrices. The case of real symmetric Toeplitz matrices has been treated
in [30], and we now present the order recursive algorithm for real symmetric Toeplitz
matrices in pseudo-code form.
Order Recursive Algorithm - Real Symmetric Toeplitz matrices [30].
Step 1: (Initialization)

Given eigenvalues of submatrices C,—y and C,-z and values of reflection coefficients
Pa-3(A) at eigenvalues of C,_».
Step 2: (Calculate reflection coefficient values)

Find the values of p,—3(A} at the eigenvalues of C,_s from the relation (4.9).
Step 3: (Solve)

n—3 n—4 1

1 Hy B
pm® prtt o1 Y
a2 #RZ3 oo 1) \ a2

Pa-1(ti1)Dncz(pt1) = crmapi? ™2
Pn-l(.“2)Dn—1(ﬂ2) - Cn—‘.l.[-‘;-z

ne=2

Pn-l(#n-:)Dn-1(#n-z) — Cn-1fip_2

for %, 2 = 1,2,...,n — 2. Note that the above Vandermonde matrix can be efficiently
inverted in O(n?) operations [18, 30]. The quantity D,_;(A) is the characteristic equation
of Cn-1 and may be computed from the eigenvalues of Cp-;-

Step 4: (Form the two polynomials)
Daca(X) E{en2d™? + A2 + ... 4+ 2] = 0.

Note, when the numerator of (4.17) is expanded v = cp-2-
Step 5: (Obtain eigenvalues)
Deflate the polynomials by eigenvalues of C,_»; the remaining eigenvalues will be

those of C,..



In the case of 2 Hermitian Toeplitz matrix, we use Levinson’s algorithm to evaluate

pi(A). From (4.3), the predictor coefficients in terms of A are

Ori(A) = Gucra(A) + pa(A)Ok1 x—il})
Neri(A) | Ne(A) Nic1g—i(A)
Dii(D) 7 Di(X) Dra(N)

(4.12)

where N (with appropriate subscripting) is used to denote the numerator part of each

component. The above equation may be written as

oy Maa(
Ori(A) = Dia (VD) (4.13)
where
Mii(A) = Necpi(A) Da(A) + Ne(A) Nicy ei(A). (4.14)

The proof is given in the appendix. The numerator M ;(A) of (4.13) is divisible by
Dy_1(A); therefore, (4.13) reduces to,

Niei(2) -
. = — 4.
ék.\(k) Dk(A) ( 10)
Substituting (4.15) into (4.3) we obtain
p(A) = _ Dica(N)[ew + T Naca i(0)/ Diema () )i
Di(A)
_ _Dia(Mer + 53 Nier il M) e . (4.16)
Di())
Now, pi(A) may be expressed as
(] C2 e Che
@—A a v Gk
V= (—1Yet Ch=2 T3 € .= 1.2 _ -
pr(A) = (-1) o= o o el k=1,2,...,n-1 (4.17)
&6 c—A - Ck-2
Ce-i1 G-z - C—A




We see that D,_;(}) is the minor of ¢, and Nj_1; 1s the minor of cx—;. In other words,
the numerator of pi(A) is the determinant expanded by the kth column. Note that the
predictor coefficients are evaluated at the kth step of Levinson's algorithm. It turns out
that the numerator of the predictor coefficients are the minors needed te evaluate the
numerator of the reflection coefficient at step & + 1. Once the reflection coefficient has
been evaluated at the kth iteration, its magnitude squared is set equal to unity. The
polynomial obtained is then deflated by the eigenvalues of Di_; and reduces to Disa.
the characteristic equation of the next larger principal submatrix. The eigenvalues are
then determined. We now present the order recursive algorithm for Hermitian Toeplitz
matrices in pseudo-code form.

Order Recursive Algorithm - Hermitian Toeplitz matrices

Step 1: (Initialization)
DQ(A) = 1

Dy(A) co— A

for k=1,2,---,n=1DO
Step 2: {Calculate Numerator of Reflection Coefficient)

Ne(A) = —[Dica(Nex + '=2-:1 Ni1:(A)erni)
Nu = N =
Step 3: (Set the magnitude squared of reflection coefficient to unity)
(M2 = IN&(A)/De(M)? =1
to form
Pu()) = DE(A) = |Nk(N)]F =0

Step 4: (Deflate P,(A))

This is a polynomial of degree 2k. It is deflated by the the eigenvalues of Di_1(A),
the characteristic equation of Ci-;, and reduces to the characteristic equation, Diar(X),
of the next larger principal submatrix.

30



Step 5: (Find the roots of Diy1(A))
Duc to the fact that the eigenvalues found from D,_; and D interlace, or form a
Sturmian chain [34], the bisection method is used here to find the roots of Disy. Other

methods are possible.
Step 6: For:1=1,2,---,k—1 DO
Step 7: (Calculate Numerator of Predictor Coefficient)

Mpi(A) = Nic1 (M) Dx(A) + Ni(A) N1 i)

Step 8: (Deflate M, ;()) by eigenvalues of C,._; to obtain Ni:(A))

Store Ni:(A).

Ifi<k—1GO TO Step 6; Else, if t £ n—-1 GO TO Step 2; OTHERWISE
EXIT.

Note there is a difference between the formulation of the polynomials at Step 4 of the
order recursive algorithm for the real symmetric Toeplitz matrices case and Step 3 for the
Hermitian Toeplitz case. The main difference is at Step 3 for the Hermitian Toeplitz case
the polynomial is formed by setting the magnitude squared of the reflection coefficient

to unity whereas in the real symmetric Toeplitz this is not the case.

4.3 Example and Discussion - Order Recursive
Algorithms
We are given a Hermitian Toeplitz matrix of order n = 8 specified by its first row,
a” =[(10-X), (5+72), (4+3), (2+]), (2+33), (2+42), (1 +72), L+l

The recursion given above for Hermitian Toeplitz matrices is illustrated for k = 2. At

Step 2 of the recursion the numerator of the reflection coefficient is
N2(X) = =[Di(A)ez + Npa(M)ea]
= (4 + 73)A — (19 + 710)
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and the numerator of d22() is

Naa() = Na(A).

Step 3: The magnitude squared of the reflection coefficient is set equal to unity, i.c..

lp2( M IN2(X)/D2(A)F =1
(4 +73)A = (19+310)|° _ 1

A% — 201 + 71

Squaring the denominator and numerator and subtracting, Pz()) is obtained as

P(N) = Dy - MM =0

AV 40X +51TAF — 26280 +4580=0.

Step 4: F»(A) is deflated by the eigenvalue of Cy, which is 10, thereby reducing Pa(A)

to the characteristic equation of Cj, i.e.,
Da(X) = A3 = 30X% + 21TA — 458 .
Step 5: Using the bisection method, the eigenvalues are found to be

Ay = 4.30683,
A2 = 3.18593,
Az = 20.50736 .

Steps 6 through 8 are performed to calculate the numerator of the predictor coefficient

$2.1

Maa(A) = Nia(A)Dz(R) + Na(MNya(2)
= (54 72)A% — (74 + 733)) + (240 + 5130) .

Deflating M>1()) by 10, the eigenvalue of Cj, the quantity N3, is obtained as

Naa = (5+j2)A — (24 + j13).



Table 4.1: Comparison between Eigenvalues.

Order of C | Order recursive algorithm | IMSL subroutine eigch
2 4.61483 4.61483
15.38516 15.38516

3 4.30648 4.30647
5.18395 5.18596

20.50756 20.50756

4 2.86977 2.86975
4.64324 4.64327

8.29042 8.29040

24.19656 24.19656

5 2.13382 2.13379
3.74269 3.74274

6.69760 6.69758

9.65112 9.65111

27.77475 27.77475
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Table 4.1 cont’d: Comparison between Eigenvalues.

Order of C | Order recursive algorithm { IMSL subroutine eigch
6 1.80042 1.80037
2.80100 2.80105

5.86714 5.86717

7.13220 7.13215

11.38192 11.35191

31.01730 31.01730

T 1.44659 1.44651
225721 225731

4.73446 4.73442

6.74697 6.74706

8.18895 8.18887

12.61631 12.61631

34.00949 34.00949

8 1.04472 1.04268
2.14350 2.15049

4.10511 4.08309

5.02928 3.05140

7.69648 7.68807

9.24493 9.24837

14.13424 14.13441

36.60173 36.60173




The above procedure is repeated and results in the eigenvalues tabulated in Table
4.1. The first column of the table indicates the order of the matrix C, and the sec-
ond column shows the eigenvalues obtained by the algorithm of Section 2 for Hermitian
Toeplitz matrices. The stopping tolerance employed in the bisection method is an eigen-
value precision of six digits. The eigenvalues shown in column three of the table are
obtained from the IMSL subroutine EIGCH. The IMSL routine EIGCH, although not
designed specifically for Hermitian Toeplitz matrices, is used as a benchmark for the
comparison. Comparing the second and third columns, it is observed that the accuracy
of the eigenvalues obtained by the order recursive algorithm are accurate to three digits
until the order of C, reaches seven, with the eigenvalues obtained for C,, of order eight
no longer accurate to three digits. The reason for the loss of accuracy is due to the
stopping tolerance of six digits employed in the bisection method and the propagation of
roundoff errors inherent in the order recursive approach. In the next section, we present
Trench’s method and the modified Trench’s method, both of which do not suffer from

such numerical problems.

4.4 Trench’s Method and Its Modified Version

Trench’s method uses the Levinson-Durbin (L-D) algorithm for the shifted matrices
Cr = M, £ =1,2,..,n — 1, within an iterative root finding procedure to find the zeroes
of the rational function (4.7). For details, the reader is referred to [32]; however, Trench’s
method basically relies on two key theorems which are consequences of Sylvester’s law
of inertia and the Cauchy theorem. For completeness, we state the two key theorems

below; proofs may be found in [32).

Theorem 1. IfC—=AI = LDU is the triengular factorization, then Negm(}), the number
of negative elements Ei(A) in D = diag{Em(}), Em-1(A),- -, E1(A)}, equals the number
of eigenvalues A; of C that are less than A, provided )\ is nondefective with respect to C,.

(A real number A is nondefective with respect to C, if it is not an eigenvelue of any of
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the principal submatrices Cp , k=1,2,....,n—-1).

Theorem 2. Assume that the real numbers a and 3 are nondefective with respect to
Cn and that the interval (a,f) contains exactly one eigenvalue (with multiplicity once) of
Cn. Also assume that neither a nor 3 is an eigenvalue of C,.. Then the interval (a.3)
contains no eigenvalues of Coy if and only if E (@) > 0 and E (5) < 0.

From the above theorems, Trench’s algorithm for finding the complete eigenspectrum

of Hermitian Toeplitz matrices may be outlined as follows:

Trench’s Algorithm - Hermitian Toeplitz matrices
Step 1-Select: Find the eigenvalues Aj, Apt1,...,A¢, 1 £ p < ¢ € n . Using trial and
error, select an interval (a,b) by the bisection method such that Nega(a) < p—1 and
Nega(b) 2 g
FORi=pTO¢-1
Step 2-Search: Search for the endpoint § not captured by trial and error such that
the interval (&-1,&: ) will contain A;. This is again done by the bisection method and by
keeping count of the negative signs of {Ey(&), E2(&), ..., Ea(&)}. During this search
process, keep capturing and storing the locations of other desired eigenvalues, while also
retaining the values E,(&)-
Step 3-Refine: Once the interval §_; < A\ < & , is obtained:
() Set @ =&y , Eo = Ep(&-1) and B =& , Eg = Eq(&).
(b) By trial and error, refine the interval (a,8) to {',4’) using bisection such that the
following conditions both hold:

(i) Negn(a') = i — 1 and Negn(8) = i

(i) En(e’) > 0 and E.(8') < 0.
(c) Having refined the interval (&, B) to («', 8') by the bisection method in Step 3(b)
above, switch to the Pegasus method to find A;.
NEXT i
END
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Note that in the above algorithm, the L-D recursion is called for each iteration of
the bisection and Pegasus methods. In Step 3, condition (i) by Theorem 1 assures that
the chosen interval does not contain other eigenvalues of C,. Condition (i1) by Theorem
2 assures that the refined interval (o, 3') does not contain eigenvalues of C,,_;. The
Pegasus method is a modification of the Regule Falsi method and is a more efficient zero
finding method having an improved order of convergence 136, 37).

The first-level modifications we propose to Trench’s method are to form tighter L&;
(lower) and U&; (upper) bound intervals for each A; in the select and search steps and to
extend the method to include the case of multiple eigenvalues. The modified algorithm

is outlined as follows:

Modified Algorithm - Hermitian Toeplitz matrices

Step 1-Select: Find the eigenvalues Ay, Apyq,..., A, 1 £ p < ¢ £ n . Using trial and
error, select an interval (a,b) by the bisection method such that Negn{a) < p—1 and
Nega(b) 2 g

FORi=pTO ¢-1

Step 2-Search: Search for the endpoint U{; not captured by trial and error such that
the interval (L&, U&; ) will contain A;. This is again done by the bisection method and
by keeping count of the negative signs of {Ey(U&:), E2(UE;), ..., Ea(U&)}. During
this search process, keep tightening, capturing and storing the locations of other desired
eigenvalues, while also retaining the values E.(L&), En(U&), and En(L&isa). In the
process, also detect, if any, the multiplicity m of multiple eigenvalues; (IF |L&; —Ué;| <
Tol Then flagmultiple = true ), where the value of Tol is 10-3.

NEXT i

Step 3-Refine: Once all the intervals L§; < A; < Uk, p <t < g, are obtained:

FOR j=pTO g

(a) Set a = L; , E, = EL(LE;) and 8 = U§; , Eg = E.(UE;).

(b) In case of multiple eigenvalues, set the matrix order n to n—m+1 and work with the

submatrix Cp—m+1. By trial and error, refine the interval (a,8) to (¢',3’) using bisection
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such that the following conditions both hold:
(i) Nega(a') = j — 1 and Negn(8') =
(i1) En(a’) > 0 and E,(3") < 0.
(c) Ha\'ing refined the interval (e, 3) to (&', 5) by the bisection methed in Step 3(b)
above, switch to the MRQI-B or MRQI-P root finders to find A;.
NEXT j
END

Note that in the above modified algorithm, the L-D recursion is called for each iter-
ation of the bisection shift and the Levinson recursion is called for each iteration of the
MRQI-B or MRQI-P methods.

We discuss the former modification first. Assume that an interval (a,b) is given
which encloses the eigenvalues A;, Aptq, ..., Ag, and that we wish to find the intermediate
points &, &pt1y--.,6g-1. As in Trench’s procedure, we use the bisection method, v =
(L& + UE,)/2, where r and s are integers such that p € r < s £ ¢. The objective is to
find U§,. In the process of finding U§,, other endpoints may be captured, e.g., 1t, 7. 73,
and 71, as shown in Figure 4.1. In Trench’s search process for finding the intermediate
points &, £p+1, - - -y §g—1, an unnecessarily large number of calls to the L-D algorithm may
result if we just let & = 4, for r — 1 < k < 5. In the modified method, by using L§;
and U¢; for each );, unnecessary calls to the L-D algorithm are reduced by storing the
first selected -y; as L&+ and storing the last  in U&, for v < v; and & = Nega(7;)
= Negn(m1), as depicted in Figure 4.1. Trench’s method forms contigous intervals; as a
result of this modification, noncontiguous intervals are formed for the bisection method.

Now, assume that the endpoints &, &p+1,--.,& have been found and that we wish
to find 41, indicated in Figure 4.1. Trench’s method would use the interval (+,43) in
the bisection method; whereas, the modified method would use the interval {7;,vs). Use
of the tighter interval (+y;,7s) would, in general, reduce the number of calls to the L-D
algorithm. Although this modification may seem minor, it appears to have important

consequences for efficiency when working with very high order matrices and,
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Figure 4.1: Interval (a,b) enclosing the desired eigenvalues A,, ..., A
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particularly so. when eigenvalues are not tightly clustered.

Next, in the multiple eigenvalue case. an eigenvalue A; with multiplicity m will have
m linearly independent (nonunique) eigenvestors. Let the eigenvalues of Ci—y be 45,5 =
1,2,....k - 1, and the eigenvalues of (i be A1 =1.2,.... k. According to the Cauchy
Interlace Theorem, the eigenvalues of Ci-1 interlace those of Cr. te.. Ay <7y < X2 €
T2 £+ - - £ %1 £ Ae. Cauchy’s theorem implies that Ci—; must have an eigenvalue )
with multiplicity m — 1. if Ci has an eigenvalue \; of multiplicity m.

An eigenvalue of C, is obtained by varying A; at the same time, there are n(n = 1)/2
values (multiple values included) of A for which the leading principal submatrices are
singular. These values are the eigenvalues of submatrices for which, during the execution
of the L-D algorithm, [pa())]* = 1 or Ex()) = 0, and for which the L-D algorithm
will not proceed bevond this point. Now, in the multiple eigenvalue case, any interval
(a, B) containing a multiple A; of C, will certainly contain A; of Camms: and condition
(ii) in Step 3 will not necessarily be true. Also, since |pi|* = 1, the L-D algorithm
will not proceed; this, is not, however, an obstacle to finding A; if the multiplicity m
is known, because J); is then easily found by working with the submatrix Cpomey. In
practice, true multiplicities are reflected as an eigenvalue cluster. The closeness of the
eigenvalues in a cluster tends to cause all numerical procedures to lose efficiency, in
the sense that considerable computational effort must be expended performing bisection
shifts in search for eigenvalue interval endpoints. It is more appropriate to consider
eigenvalues to be multiple when the condition, (IF |L§; — U&;| < Tol Then fagmultiple
= true ), inserted in Step 2 after the bisection shift, is satisfied. In our simulation
studies, Tol was chosen to be 1073, Once the multiplicity m of A; is identified, then,
according to Cauchy’s Theorem, A; must also be an eigenvalue (with multiplicity one) of
the principal submatrix Cp_m+2. Denote the eigenvector of Cp_m41 associated with X;
by q;- Kung and Hu [41] have shown that the vector q; sufficss to characterize the m-
dimensional subspace spanned by the eigenvectors v;; of C, associated with A; through
the construction vi; = Z*~[qF00..-0]T, where Z'~! denotes a cyclic shift of j — 1

elements, 7 = 1,2,...,m.
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The second-leve] modification we consider is the use of the modified Rayleigh quotient
iteration (MRQI) in place of the Pegasus method in the refine step. This modification
is expected to improve convergence rate, as the MRQI has a cubic rate of convergence:
whereas, the Pegasus method has a rate of convergence of 1.64 [36, 37]. The MRQI

algorithm requires solution of the linear system of equations
(C = wil)yiy1 = us, (4.18)

where p; is catled the origin shift and u; is a given normalized vector. The vector yi1a
may be solved for using the Levinson algorithm with O(2n?) complexity, or by parallel
methods with a complexity of O(n) with O(n) processors [26, 40]. As u; approaches an
eigenvalue A;, yi+; approximates the associated eigenvector. The next origin shift gy

is computed by the Rayleigh quotient,

yﬁICym - quui
lyisr]? Yl

where the superscript H denotes conjugate transpose.

Bitr = + Hi, (4.19)

In the event that the computed Rayleigh quotient falls outside the inclusion interval
(', B'), then a switch is made to the bisection method (note that we also report results
obtained by replacing the bisection method by the Pegasus method). The Levinson-
Durbin algorithm may also be used in combination with the Rayleigh quotient thereby

leading to a quadratic rate of convergence [32].

4.5 Simulation Results

In this section, the performance of Trench’s method using the Pegasus root finder
and the Modified Trench’s method simulated for three choices of root searching meth-
ods, namely, the Pegasus, the Modified Rayleigh Quotient Iteration with Bisection shifts
(MRQI-B)} and the MRQI-P (with Pegasus shifts) are presented. Moreover, we demon-
strate the efficacy of the overall procedure in dealing with eigenvalue multiplicities.

First, weillustrate the modification of Trench’s method, consider a Hermitian Toeplitz

matrix of order » = 10 with the following first row of elements: [(50,0) (5,3) {1,3) (3,4)
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Table 4.2: Results obtained by Trench’s method.

(&i-1-&) Eyo(&-1) Ero($) (e'.3" No.itl | Noat2 | A
1.25-35.15 + = 31.25-35.15 0 T 33.10
37.10-38.08 + + 37.10-37.59 1 4 37.43
38.08-39.06 + - 38.08-35.06 0 2 38.73
41.01-41.99 + + 41.01-41.50 1 4 41.15
41.99-42.96 + - 41.99-42.96 0 S 42.58

47.85-50.29 - + - 47.85-50.29 0 9 48.16
50.29-52.73 - - 30.90-51.51 2 4 51.27
52.73-62.50 - - + 53.95-35.17 3 6 54.93
6250-18.12 |  + - 62507812 | 0 | 6 | 6299
78.12-93.75 - - 85.93-93.75 1 T 39.60
No.it0=19 | Total no. of iterations : 19 + 8§ + 37T =¥

(1,1) (4,2) (4,9) (1,6) (3,4) (2,3)]. The interval (e =0,b = n-cp) which contains all the
eigenvalues, was chosen. Tables 4.2 and 4.3 show the number of iterations required by
Trench’s method and the modified method using noncontiguous intervals, respectively.
Table 4.2 shows the intervals (§;_,,&) obtained by Trench’s computer program and
Table 4.3 shows the intervals (L&, U¢;) obtained by the modified method. Note the
different intervals indicated by the asterisks obtained by the two methods. The * signs
indicate whether the value of E,9(]) is either positive or negative. No.it0 corresponds to
the total number of iterations required to obtain all the initial endpoints of the intervals.
No.itl corresponds to the number of iterations required to obtain the refined interval
(o', B"). Note that no iterations are required to obtain (o', 8') if conditions (i) and (ii) in
Step 3(b) happen to be already satisfied. No.it2 corresponds to the number of iterations
required to obtain A; by the root finder (Pegasus method). The stopping criteria for X
was Cy : |G — (1] < .5(1.0 + §;)107K as in [32), where initially (¢ = o', (; = A’ and



Table 4.3: Results obtained by the Modified method.

(L&, U&) | Ewo(L&)Ew(UE) (', B') No.itl | No.it2 | X
31.25-35.15 + - 31.25-35.15 0 T 33.10
37.10-38.08 +  + 37.10-37.39 1 4 37.43
38.08-39.06 + - 35.08-39.06 0 2 38.7
41.01-41.98 + + 41.01-41.50 1 4 41.15
41.99-42.96 + - 41.99-42.96 0 8 42.58
46.87-50.78 - + 46.87-48.82 1 3 48.16
50.78-54.68 ~ + + 50.78-52.73 1 4 51.27
54.68-62.50 * + + 54.68-58.59 1 4 54.93
62.50-78.12 + - 62.50-78.12 0 6 62.99
78.12-93.75 - - 85.93-93.75 1 T 89.60
No.it0=15 | Total no. of iterations: 1§ + 6 + 49 =73
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we chose A" = 6 in our experiments. For this particular example, the total number of
iterations required by the modified method was 73 and was 34 for Trench’s method.

It was shown in Chapter 3. that a Hermitian Toeplitz matrix of order n may be con-
structed from a real symmetric negacyclic matrix of order 2n. Using this relationship, we
constructed Hermitian Toeplitz matrices of orders 30, 100. 200. and 500 using eigenvalue
sets generated by Pro-Matlab’s random number generator. We then utilized the above
algorithms to estimate the eigenvalues with results obtained shown in Tables 4.4, 4.5.
and 4.6.

In these tables, Bi.it, Peg.it, and Ray.it denote the number of iterations required by
the bisection, Pegasus, and Rayleigh quotient methods, respectively. Note that two ter-
mination criteria are used with the MRQI-B and MRQI-P root finders. C; as above and
C. : [{C = uD)y|l = 1/]y| < 1000~2. The criterion C; measures the accuracy of the
eigenvalue estimate, while the criterion C, measures the goodness of the eigenpair esti-
mate (i, y) as an approximation to the true eigenpair [42]. The MRQI-B and MRQI-P
root finders terminate eigenvalue approximation if either of these conditions is satisficd.
As a matter of interest, the average number of times, No.cl and No.c2, that approxima-
tion is terminated based on criteria C; and C,, respectively, is tabulated in Tables 4.5
and 4.6. In addition, the the average of the error € = |Aczace — Aapproc.| averaged over
100 trials per matrix order (i.e., for matrices of order 50, 100, 200, and 500) is shown in
Figures 4.2 through 4.5 with the empirical mean (m) and standard deviation (std) of
the average of the error shown for each method.

From Tables 4.5 and 4.6, we observe that use of the MRQI method in conjunction with
Trench’s procedure modified to utilize noncontiguous intervals results in an eigensolver
having an improved convergence rate. From the Figures 4.2 through 4.5, we see that the
MRQI-P procedure in some instances results in a slightly better accuracy for a reduced
number of iterations than the MRQI-B procedure. Furthermore, from Tables 4.5 and 4.6,
C, is more often satisfied than C,, thereby indicating that the MRQI root finder delivers
a good eigenpair estimate, rather than a good eigenvalue estimate. In Table 4.7, we

summarize the performance of the algorithms in terms of the complexity, the convergence,
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Error performance of the methods for matrices of order n=50
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Figure 4.2: Average error averaged over 100 trials for matrices of order 50, Modified-
Pegasus: solid m=2.056 x 10~%, std=5.209 x 10~%; Modified-MRQI-B : dashed
m=6.070 x 10~%, std=1.219 x 10%; Modified-MRQI-P : dotted m=1.358 » 10~%,
std=3.548 x 10~%,
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1 Error performance of the methods for matrices of order n=100
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Figure 4.3: Average error averaged over 100 trials for matrices of order 100, Modified-
Pegasus: solid m=1.308 x 107°, std=8.021 x 10%; Modified-MRQI-B : dashed

m=8.342 x 107, std=2.808 x 10~%; Modified-MRQI-P : dotted m=T7.323 x 10™%,
std=1.767 x 1079,
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Esror performance of the methods for matmices of order n=200

10' : i i + L L] i [ ) ]
i
::
o]
.3 qi’ E
Hy i3
- « '!x‘ 'J:: 3 ﬂ:
L] £l ‘!x iy )
< * g ,.E; R0
& booitly e
& ooy gpaed
=] l-‘_ :t!l. * "U:E
_., ‘.'-L;tl &\R ‘:1_1»":
7! (2R 3 VIS ot
o ) .
»
2
10'7 1 1 1 1 1 ] 1 1 L
0 20 40 60 80 100 120 140 160 180 200

kth eigenvalue

Figure 4.4: Average error averaged over 100 trials for matrices of order 200, Modified-
Pegasus: solid m=1.428 x 10~%, std=1.152 x 10~™; Modified-MRQI-B : dashed
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Table 4.4: Average no. of iterations for matrices with eigenvalues of random distribution.

Matrix Trench’s method using Pegasus Modified method using Pegasus
Order Total of | Total of Total of | Total of
N No.it0 | No.itl | No.it2 | Total | No.it0 | No.itl | No.it2 | Total
50 TT.98 { 66.93 | 251.33 | 396.24 | T8.27 | 64.98 | 251.48 | 394.73
100 | 152.15 | 140.19 | 490.27 | 782.61 | 149.64 | 131.77 | 488.25 | 769.66
200 | 301.46 | 279.36 | 938.24 | 1519.06 | 295.32 j 264.73 | 937.60 | 1497.55
500 | 749.01 | 697.72 | 2221.28 | 3668.01 | 728.74 | 663.44 | 2220.68 | 3612.86

Table 4.5: Average no. of iterations for matrices with eigenvalues of random distribution.

Matrix Modified Method using MRQI-B

Order N | No.it0 | No.itl | Bi.it | Ray.it | No.cl | No.c2
50 78.27 | 64.98 | 7.41 | 112.79 | 30.01 | 49.99
100 149.64 | 131.77 [ 14.36 | 215.92 | 58.13 | 99.94
200 [ 295.32 | 264.73 | 29.53 | 414.59 | 116.48 | 199.88
500 728.74 | 663.44 | 74.76 | 974.30 | 294.68 | 498.83

Table 4.6: Average no. of iterations for matrices with eigenvalues of random distribution.

Matrix Modified Method using MRQI-P

Order N | No.it0 | No.itl | Peg.it | Ray.it { No.cl | No.c2
50 78.27 | 64.98 | 4.33 | 101.34 | 31.78 | 49.97
100 149.64 [ 131.77 | 8.9 [ 206.06 | 64.60 | 99.86
200 | 295.32 ) 264.73 | 17.75 | 394.84 | 129.26 | 199.43
500 728.74 | 663.44 | 4T7.21 | 924.96 | 317.25 { 496.58




Table 4.7: Performance comparison of the algorithms.

Algorithms Complexity | Convergence | Accuracy Criteria

Trench’s/P O(n?) 1.64 Ch

Modified /P~ O(n?) 1.64 | Gy
Modified/MRQI-B* 0(2n?) cubic Ca
Modified/MRQI-P" 0(2n?) cubic Ca

* method modified for multiple eigenvalues

and the accuracy criteria used.

The L-D algorithm is used at all the steps of the Trench’s and the modified algorithm
using the Pegasus root finder. In the case of modified algorithm using the MRQI-B and
MRQI-P root finders the Levinson algorithm is used at step 3¢ of the modified algorithm
while the L-D algorithm is used in steps 1, 2, and 3b of the modified algorithm. Therefore,
under the heading labeled complexity, we have tabulated the complexity of the L-D or the
Levinson algorithm used per each shift of the root finding method, namely, the Pegasus,
the MRQI-B, and the MRQI-P. From Table 4.7, note the tradeoff between complexity
and convergence of the algorithms, the MRQI method has a cubic convergence rate but
requires 2 Levinson recursion with a complexity of O(2n?) per iteration while the Pegasus
method has a convergence rate of 1.64 and requires a L-D recursion with a complexity
of O(n?) per iteration. Since root finding is an iterative procedure, it is not possible to
give an exact operation count. Also, note the accuracy criteria most often satisfied in

case of MRQI is C, indicating a good eigenpair estimate, rather than a good eigenvalue

estimate.
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4.6 Application to Pisarenko’s Harmonic
Decomposition

In this section, we illustrate Trench’s method, the modified method, and the modified
method further modified to include the case of multiple eigenvalues in the problem of
Pisarenko’s harmonic decomposition. In such an application, one usually deals with
Toeplitz matrices with clustered eigenvalues. Consider a Hermitian Toeplitz matrix of
order (n + 1) formed by the autocorrelation (model) given by

L
r(n) = c*6(n) + 2 Alemduan (4.20)
k=1
This sequence is formed from a random process of the form
L
s(t) = 3 ApelmFntta) 4 o(2) (4.21)
k=1
where L complex exponentials with frequencies w; and amplitudes A, are added to
complex white noise w(t) with variance 0. The 0; associated with the exponentials are
random variables uniformly distributed over the interval (—=,=].

In Pisarenko’s problem, the number of signals L, amplitudes A, frequencies wy, and
variance of noise ¢ are unknown and have to be determined from the observed r(n) [24].
Furthermore, the model order p is unknown and needs to be estimated a priori. The
criterion for detei.nining model order is the following[17]: if exact autocorrelations are
known, then the model order is specified as that order for which the minimum eigenvalue
does not change from one order to the next. On the other hand, if estimated autocorre-
lations are used, then the model order is specified as that order for which the minimum
eigenvalue changes “little” from that for a model order of (p — 1). In order to determine
the minimum eigenvalue, the above algorithms may be used; however, it may be more
interesting to see how the algorithms behave in finding all the eigenvalues.

As a numerical example, suppose that the autocorrelation for n = 9 was mea-

sured and a Hermitian Toeplitz matrix of order 10 formed, specified by the first row,
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(31.0000000600000. 0.000000000000)
(—13.170368194530, —11.831966400146)
(7.000461101532,  —3.994677305221)
(—18.831056594849, 6.159973621368)
(20.9999923706053, 0.001805052533)
(—18.824028015137,  —6.190902709960)
(6.998598575592, 4.015967369079)
(—13.179986953733, 11.803650856018)
(28.999967575073, 0.003980370983)
{—13.160694122314, -—11.860273361206).

In fact, the matrix was formed from (4.20) by choosing the power of the noise as
o® = 2.0 and the number of distinct signals L = 3 with their amplitudes as 4; = 2,
Az =3, A3 = 4 and frequencies w, = = /4, w2 = /2, w3 = =, respectively. Since L =3,
n = 9 was chosen for illustrative purposes (any value of n could have been chosen so long
it is large enough to estimate the model order).

In practice only r{n) is known, therefore, using the algorithms, the eigenvalues ob-
tained are tabulated in Tables 4.8 and 4.9. From Tables 4.8 and 4.9, the minimum
eigenvalue is seen to be approximately 2. Note that the number of distinct signals are
L =10~ 7 = 3. Having found the minimum eigenvalue, the corresponding eigenvector
may be determined, and then, from the eigenvector, the frequencies wy and amplitudes
Ai may be determined.

In Table 4.10, we illustrate the Modified method further modified to include the case
of multiple eigenvalues. No.it2 corresponds to the number of iterations required by the
root searching methods, namely, the Pegasus, the MRQI-B, and the MRQI-P. As shown
above, an example of such a case is Pisarenko’s harmonic decomposition. The tabulated
results are for the above model with a matrix of order 14. The minimum eigenvalue
occurred with a multiplicity of 11. It is to be noted that, in practice, the eigenvalues are
seldom exactly equal and more likely to be close to each other. Although Trench’s and
the Modified algorithms are capable of handling the case of close eigenvalues, the amount
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Table 4.8: Pisarenko’s Harmonic Decomposition- Trench’s method.

o' B No.itl | Eigenvalue | No.it2
1.99999347 1.99999403 9 1.99999382 6
2.00000271 2.00000502 0| 2.00000324 6
2.00000617 | 2.00000646 3] 2.00000623 5
2.00000733 2.00000964 1 2.00000735 3
2.00001195 2.00001310 1 2.00001223 5
2.00001426 2.00001657 0 2.00001557 8
2.00002696 200002811 4 2.00002724 3
37.39064361 | 39.75001752 5| 39.60024787 8
87.18750000 | 96.87500000 3| 8§9.92255880 7
155.00000000 | 310.00006000 0 | 166.47712760 10

No.it0=31 | Total no. of iterations : 31 + 26 + 63 = 120

of computation, however, becomes unduly high in the search of the interval endpoints
enclosing the eigenvalues. In such a case, we may assume close eigenvalues to be equai,
if they do not differ by, say, 3 decimal places. Under such an assumption, observe from

Table 4.1C, that a significant reduction in the number of iterations required is possible.

4.7 Discussion

Since the order recursive algorithm presented here involves the formation and deflation
of polynomials, it is liable to suffer roundoff errors and is not recommended for numerical
computation. On the other hand, Trench’s iterative method and the modified Trench’s
method do not appear to suffer from such numerical problems. The first modification
was the placement of tighter upper and lower bounds about each element of the eigen-
spectrum, and when such placement is possible, the results are reduced computational

complexity and improved convergence. The second modification to the algorithm was to
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Table 4.9: Pisarenko’s Harmonic Decomposition- Modified method.

Y 3 No.tl | Eigenvalue | No.it2
1.99998885 1.99999116 7 1.99999094 6
2.00000271 2.00000386 1 2.00000301 5
2.00000502 | 2.00000617 1 2.00000309 5
2.00000733 | 2.00000964 1 2.00000847 10
2.00001195 | 2.00001426 1 2.00001201 4
2.00001657 | 2.00002580 0| 2.00001677 8
2.00002696 | 2.00002811 3| 2.00002716 5

38.75000000 | 77.50000000 0} 39.60024821 T
87.18750000 | 96.87500000 3| 89.92235879 7
155.00000000 | 310.00000000 0 | 166.47712951 10
No.it0=31 | Total no. of iterations : 31 + 17 + 67 = 115

Table 4.10: Muitiple eigenvalues case.

Algorithms No.itQ | No.itl | No.it2
Modified /P 44 22 32
Modified /P* 21 3 24

Modified/MRQI-B* | 21 3 15
Modified/MRQI-P* | 21 3 14
* method modified for multiple eigenvalues
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include a procedure for the case of multiple eigenvalues. The modified method with three
choices of root searching techniques, namely the Pegasus, the MRQI-B, and the MRQI-P,
was programmed and the simulation resulits presented. From the simulation results, since
two termination criteria are required when using the MRQI methods and, since Cz is
more often satisfied than Cj, we conclude that the MRQI methods give a good eigenpair
estimate, rather than a good eigenvalue estimate. We have also displayved in the table
the interplay between accuracy, convergence rate, and computational complexity of the
algorithms. In Trench’s and the modified algorithm using the Pegasus root finder, the
vevinson-Durbin algorithm is used; however, in the case of the modified algorithm using

the MRQI-B and MRQI-P root finder, the Levinson algorithm is used.

cn
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4.8 Appendix: Proof of Eq.(4.13)

In this appendix, it is shown by induction that (4.13) in Section 2 holds. Starting with
(4.12)

OkilA) = Ore14(A) F Ar(A)Gr-1,kmi(A)
Nic1:(A) N Nie(X) Ncq i (D)

: (4.22)
Di_1(A)  De(A) Dica(N)
we need to show that D,_;(A) is a factor of the numerator, viz.,
Niee1i(A) Die(A) + Nie(A) Niemy =i (A) (4.23)
By definition, we have that
éri()) = Nee1a(d)  Dimi(WNer + Toh Neeami M) ieom Ve pe-i(A) (4.24)
" Dia(A) Di—y(A)eo + Z::—}I Necim(Nem  Dra(A)
The above equation, after forming a common denominator, may be written as
Nie1i(A) = eaelNicg ki A)] Dima (A)
0) = Lol .
Pus(A) D1V Di()
+ T emNem1i(A) Nic1m(A) = Chmm Vi1 k=il A ) Nic1,m( X))
Di(A)Drea (X))
(4.25)

The numerator of the first term of (4.25) is easily seen to contain the factor Di_1(A)
found in the denominator. The fact that the numerator of the second term of (4.25) does
as well can be verified by induction.

Fork=2and:i=1

coDy (M) Nya(A) + a[Na(M)Nya(X) = Nia(A)Npa(A)] - c2D1(A)Nya(2)
. D1(X)D2(A)
CoN1.1 (/\) - CzN1.1('\)

D2(A) ?

(4.26)



and for k=3 and i =1

coN21(A) — C:s-’{":.z(}\) " Cz[-’i’:_z(/\)-’\’z.l(k) - -’\'2.2(/\)-?:,2(/\)1

o3 D3(V) ' D:(\D5(3)
coN21(}) — caNa2{A) | aléiq — 6] o=
+ . (4.27)
D3(A) D3(A)

This inductive process can be carried on for different values of & and i. We conclude.

therefore, that (4.13) is correct.
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Chapter 5

Conclusions and Directions for

Further Research

In conclusion, we have presented a unitary matrix which transforms a Hermitian
Toeplitz matrix into a real Toeplitz plus Hankel matrix. The importance of the uni-
tary transform presented is that it preserves structure. As a result, several remarkable
properties were also presented. No extr: memory space (compared to that for the Hermi-
tian Toeplitz matrix) is required to store the elements of the T + H structure. Second, we
presented a solution to the inverse eigenvalue problem for Hermitian Toeplitz matrices.
It was shown that a Hermitian Toeplitz matrix of order n may be obtained from a real
symrmetric negacyclic matrix of order 2n. A solution to an inverse eigenvalue problem in
the case for real symmetric matrices may also be obtained by first constructing a Her-
mitian Toeplitz matrix and then using the unitary transform presented in Chapter 2 to
transform the constructed Hermitian Toeplitz matrix to a real symmetric matrix. The
methods for the inverse eigenvalue problem ior Hermitian Toeplitz matrices and for real
symmetric matrices may be used to test and compare the performance of any eigenvalue
decomposition algorithms specialized for Hermitian Toeplitz matrices or for general real
symmetric matrices.

In statistical signal processing, when the stochastic processes of interest are weakly



stationary, the covariance matrix has a special structure, namely, Hermitian Toeplitz.
One goal of signal processing is to extract information contained in this covariance ma-
trix. The main concern in the analysis of Hermitian Toeplitz matrices many times reduces
to the sclution of the ¢igenvalue problem. We have, therefore.derived new methods based
on the Levinsen and Levinson-Durbin recursions for the solution of the eigenvalue prob-
lem. The methods presented fall into two categories, order recursive and jterative. The
order recursive algorithm was considered to be priniarily of theoretical interest. In the
iterative category, we presented Trench's method and new methods based on modifica-
tions of Trench’s method. The modifications included the use of noncontiguous intervals
and the inclusion of the case of multiple eigenvalues. The modifications were shown to
have important consequences for efficiency in terms of convergence and computational
complexity when working with high order matrices.

Theoretical solution to the inverse eigenvalue problem for real symmetric Toeplitz
matrices remains unsolved. We believe a solution to the inverse eigenvalue problem for
real symmetric Toeplitz matrices will probably lead to an additional number of interesting

and computationally efficient algorithms.

5.1 Directions for further research

There are several paths open for those interested in further research in this area. Some

of the most important ores are the following:

. Further study of the eigenvalue relation between T, H, and T + H. See the discus-

[

sion in Section 3.6.

o

Study the theoretical solution to the inverse eigenvalue problem for real symmetric

Toeplitz matrices.

3. Further study for possible reduction of the computational complexity of the modi-
fied Trench’s iterative eigendecomposition algorithm. One approach is to use paral-

lel methods [26]. Another idea is use the unitary transform in conjunction with the
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Hermitian Levinson algorithm to see whether further reduciion in computational

complexity is possible or not.
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Appendix A: Modified Method -
Multiple Eigenvalue Case with the

Pegasus Root Finder

PROGRAM MODMUL
- C This algorithm is a Modified version of Trench’s algorithm.
C The algorithm is modified to: 1) Use tighter interval endpoints
C enclosing the eigenvalues, 2) Handle multiple eigenvalues,
C if any, in the data matrix. This algorithm uses the Levinson-Durbin
C Algorithm with Modified Trench’s method to determine the eigenvalues
C of a Hermitian Toeplitz matrix. Also uses the PEGASUS method as a root
C searching method. Store data in file called DATAH as below.

c2 Example, first line should have N the order of matrix.
C9.00.0 from line 2 write the elements of matrix.
C8.07.0

C Results will appear in file called RESULTHM.
COMPLEX*16 C(0:1000)
C C is the data matrix
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. DOUBLE PRECISION CNR. CNI
C CNR, CNI :real part, imaginary part
COMMON /L1/ N.C
C N is the order of matrix
COMMON /X1/ TRACE
C TRACE is sum of eigvalues if equals trace
COMMON /C1/ KLEV
C KLEV counts calls to levson-durbin
KLEV =0
OPEN (UNIT=11, FILE="datah’,STATUS="OLD")
OPEN (UNIT=12, FILE="resultm’",STATUS="NEW")
OPEN {UNIT=13, FILE="eigmul.dat’ STATUS="NEW")
OPEN (UNIT=14, FILE="vecmul.dat’ STATUS="NEW")
READ(11,") N
DO 1 INDEX=0, N-1
READ(11,*) CNR, CNI
C(INDEX) = CMPLX(CNR, CNI)

1 CONTINUE
C Step 1. find interval (a,b)
CALL SELECT
C Step 2. search for endpoints
CALL SEARCH
C Step 3. refine interval and estimate eigenvalue
CALL REFINE

WRITE(12, 2) TRACE, KLEV

2  FORMAT (SUM OF EIGS ="F15.7, * TOTAL NO. OF LEV ITER=", I7)
STOP
END
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SUBROUTINE SELECT

C This routine selects the endpoints 2 and b of the (2,b) which

C contains the eigenvalues to be determined.
COMPLEX*16 C(0:1000)
DOUBLE PRECISION AA, BB, STORE, LE(1:1000), UE(1:1000)
DOUBLE PRECISION DELLE(1:1000), DELUE(1:1000), DELTA(2)
INTEGER N, IP, 1Q, NEGAA, NEG, NEGBB
COMMON /L1/ N, C

C STORE stores the element ¢
COMMON /Z1/ STORE
COMMON /S1/ NEG, DELTA, MI

C LE, UE holds lower and upper bound endpoints
COMMON /Z3/ LE, VE

C DELLE, DELUE retains the value E,(L§;) and E.(U&;)
COMMON /EE3/ DELLE, DELUE

C 1P, 1Q choose any a,b to p=a and q=b to selectively find eigs
COMMON /R1/ IP,IQ

C all the eigenvalues of positive definite matrix
AA =00

C are between 0.0 and n X ¢
BB = N*C(0)

C 10P, IOQ indicates eigenvalues between (a,b) are

Cfrom1lto N
IOP =1
I0Q=N

C you can change ip and iq to selectively choose desired eigenvalues.
IP=1
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IQ=N
C two endpoints needed to enclose eigenvalues
ITO=0
STORE = C(0)
C shift matrix C by an amount a
C(0) = STORE - AA
C to determine the eigenvalue count of eigenvalues

CALL LEVSON

C eigenvalue indicator
NEGAA = NEG
C if count is true then retain the value
IF ( NEGAA .LE. (IOP-1)) THEN
LE(IOP) = AA
DELLE(ICP) = DELTA(MI)
ENDIF
C next shift matrix by and amount b
C(0) = STORE - BB
CALL LEVSON
NEGBB = NEG
IF ( NEGBB .GE. I0Q ) THEN
UE(IOQ) = BB
DELUE(IOQ) = DELTA(MI)
ENDIF
C initialize the arrays L§; and U§;
DO 1 MX=IOP, 10Q-1
LE(MX+1)=-1.0
UE(MX) =-1.0
1 CONTINUE
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C set inner endpoints

IR=1IP

IS =10Q
C use L&; as lower point for bisect shift

EL =LE(IOP)
C if endpoint not found then search

2 IF ( UE(IR) .EQ. -1.0) THEN
DO 3 ITH=IR+1, I0Q
IF ( UE(IH) .NE. -1.0 ) THEN

C mark the closest upper point to be used in bisect

MARK =1H
GO TO 4
ENDIF
3 CONTINUE
4 EU = UE(MARK)
C bisection shift
5 GAM=(EL+EU)*™.5

IF (ABS(EL-EU) .LE. 1.0e-6) THEN
PRINT*, "There is 2 multiple eigenvalue’
RETURN
ENDIF
C(0) = STORE - GAM
CALL LEVSON
C keep count of calls to L-D algorithm
IT=1IT +1
K = NEG
C endpoint is found

IF ( K .EQ. IR ) THEN
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C store the found endpoint
UE(K) = GAM
C store corresponding value
DELUE(K) = DELTA(MI)
LE(K+1) = GAM
DELLE(K+1) = DELTA(MI)
C next endpt of eigenvalue to be found
GOTO 6
C capture other endpoints or update endpoints so to tighten
ELSE
IF ({ K .EQ. (IR-1) ) .AND. (GAM .GE. LE(K+1)}) THEN
C tighten upper endpoint
EL = GAM
LE(K+1) = GAM
DELLE(K+1) = DELTA(M]I)
GOTO 5
ENDIF
C capture endpoint or update
IF ( (K .GT. IR) .AND. (K .LT. 1S)) THEN
C endpoint is captured
IF (UE(K) .EQ. -1.0) THEN
UE(K) = GAM
DELUE(K) = DELTA(MI)
LE(K+1) = GAM
DELLE(K+1) = DELTA(MI)
EU = GAM
ELSE
C upper endpt updated



IF ( GAM .LT. UE(K) ) THEN
UE(K) = GAM
DELUE(K) = DELTA(MI)
EU = GAM

ENDIF

C lower endpt updated

IF (GAM .GT. LE(K+1) ) THEN
LE(K+1) = GAM
DELLE(K+1) = DELTA(MI)

ENDIF
ENDIF

GOTO 5

ENDIF

IF ( K .EQ. IS) THEN
UE(K) = GAM

DELUE(K) = DELTA(MI)

EU = GAM
GOTO 5
ENDIF
EL = GAM
GOTO 5
ENDIF
ELSE
C one endpoint found go find the second one
GOTO 6
ENDIF
6 CONTINUE
ITO=1TO +1



C find second endpoint
. IF (ITO .LT. 2) THEN
DO 7 IH=I1Q. IR. -1
C using this endpoint for bisection shift
IF ({ LE(IH) .NE. -1.0 ) THEN
EL = LE(IH)
IR=1Q
GO TO2
ENDIF
CONTINUE
EL = LE(IR)
IR =1Q
GOTG =
ELSE
C both are found exit
GOTO §
ENDIF
8§ CONTINUE
RETURN
END

Cm*xz:xru::zhnxxxnxxxxxnxxx:xnmuu*x:nx:xxnx;xxntxxxa:u*x--;xuxx-xv-x-u:.-‘--
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C search for the inner intervals Lé;, UE,
SUBROUTINE SEARCH
COMPLEX~16 C(0:1000)
DOUBLE PRECISION STORE, EL, EU, GAM, LE(1:1000), UE(1:1000)
DOUBLE PRECISION DELLE(1:1000), DELUE(1:1000), DELTA(2)
INTEGER N, IP, IQ, NEG
COMMON /L1/ N, C



COMMON /Z1/ STORE
COMMONXN /S1/ NU.G. DELTA. MI
COMMON /Z3/ LE. UE
COMMON /EE3/ DELLE. DELUE
COMMON /R1/ IP. 1Q
COMMON /IREPEAT/ MREPEAT
IT=9
IR=1IP
IS=1Q
KEL = IR-1
KUE=18
PRINT™, * Enter tolerance for multiple eigenvalues: °
READ*, TOLMUL
MARK =18
C terminate if all endpoints found
1 IF (IR .GT. (1S-1) ) THEN
GOTO §
C search for the endpoits
ELSE
IF ( UE(IR) .EQ. -1.0) THEN
IF ( LE(IR) .NE. -1.0) THEN
EL = LE(IR)
SS = LE(IR)
SDELLE = DELLE(IR)
STOREL = DELLE(IR)
IXX=1IR
ENDIF
IF { LE(IR) .EQ. -1.0 ) THEN



DO 2 LI=IR-1. 1. -1
IF ( LE(LI) .NE. -1.0 ) THEN
EL = LE(LI)
SS = LE(L])
SDELLE = DELLE(L)
STOREL = DELLE(LI)
GOTO 3
ENDIF
CONTINUE
ENDIF
3 CONTINUE
DO 4 IH=IR+1. 1S
IF ( UE(IH) .NE. -1.0 ) THEN

[ O]

MARK = IH
GO TO 5
ENDIF
4 CONTINUE
5 EU = UE(MARK)
6 GAM = (EL+EU)~ .5

C multiple eigenvalue

IF (ABS(EL-EU) .LE. TOLMUL) THEN
LE(IXX) =SS
DELLE(IXX) = SDELLE
LE(IXX) = EL
DELLE(IXX) = STOREL
IR=1IR+ (KUE-KEL)-1
GOTO 7

ENDIF



C(0) = STORE - GAM
CALL LEVSON
IT=IT +1
K = NEG
IF ( MREPEAT .EQ. 1) THEN
C find next interval endpoint
GOTO 7
ENDIF
C endpoint found
IF (K .EQ. IR ) THEN
UE(K) = GAM
DELUE(K) = DELTA(MI)
LE(K+1) = GAM
DELLE(K+1) = DELTA(MI)
GOTC 7
ENDIF
IF (( K .Z2Q. (IR-1) ) .AND. (GAM .GE. LE(K+1))) THEN
C update lower endpoint of interval
KEL =K
EL = GAM
LE(K+1) = GAM
DELLE(K+1) = DELTA(MI)
STOREL = DELTA(MI)
GOTO 6
ENDIF
C endpoint captured
IF ( (IR .LT. K) .AND. (K .LT. IS)) THEN
IF (UE(K) .EQ. -1.0) THEN

=]
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VE(K) = GAM

DELUE(K) = DELTA(MI)
LE(K+1) = GAM
DELLE(K+1) = DELTA(MI)

EU = GAM
KUE=K
ELSE

C update upper endpoint
IF ( GAM .LT. UE(K) ) THEN
UE(K) = GAM
DELUE(K) = DELTA(M])
EU = GAM
KUE =K
ENDIF
C update lower endpoint
IF (GAM .GT. LE(K+1) ) THEN
LE(K+1) = GAM
DELLE(K+1) = DELTA(MI)-
ENDIF -
ENDIF
GOTO 6
ENDIF
IF ( K .EQ.IS) THEN
UE(K) = GAM
DELUE(K) = DELTA(MI)
EU = GAM
KUE =K
GOTO 6



ENDIF
IF ( K.LT.IR) THEN

EL = GAM
KEL =K
GOTO 6
ENDIF
C exii to search for next endpoint
GOTO 7
ENDIF
ENDIF
7 CONTINUE
IR=IR+1
GOTO 1
8§ CONTINUE
RETURN
END
K A R R R R KRR KRR T 2 2 R
SUBROUTINE LEVSON

DOUBLE PRECISION DELTA(2)

COMPLEX*16 C(0:1000), X(1000,2), SUM, EIGVX(1000)
INTEGER N,M.J,MINEG

COMMON /L1/ N, C

COMMON /S1/ NEG. DELTA, MI

COMMON /EIGV/ X

COMMON /EVX/ EIGVX

COMMON /C1/ KLEV

COMMON /IREPEAT/ MREPEAT

KLEV = KLEV + 1



o

NEG = 0
MREPEAT = 0
X(1,1) = C(1)/C(0)
DELTA(1) = C(0)
IF ( DELTA(1) .LT. 0 ) THEN
NEG = NEG + 1
ENDIF
SUM = (0.0,0.0)
DO 1, M=2. N
DELTA(2) = (1.0 - X(M-1,1}  CONJG(X(M-1.1)) ) = DELTA(1)
IF ( DELTA(2) .LT. 0 ) THEN
NEG = NEG + 1
NDIF
IF (DELTA(2) .EQ. 0.0) THEN
MREPEAT = 1
RETURN
ENDIF
SUM = (0.0,0.0)
DO 2 JM=1, M-1
SUM = C(M-JM) = X(IM, 1) + SUM
CONTINUE
X(M,2) = ( C(M) - SUM ) / DELTA(2)
DO 3 J=1, M-1 o
X(J,2) = X(3,1) - X(M,2} * CONIG( X(M-J,1) )
CONTINUE
DO 4 L=1,M
EIGVX(L)=X(L,1)
X(L,1) = X(L,2
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4 CONTINUE
DELTA({1j = DELTA(2)
1 CONTINUE

MI=2
RETURN
END

Crmmmmmmmmmnm e 2 e S 4
SUBROUTINE REFINE

C After initial interval (a,b) is chosen by routine select subintervals for A; have

C been selected by subroutine select. Subroutine refine searches for interval

C (a', 8') such that it does not contain eigenvalue of the submatrix Cn-;.
COMPLEX™*16 C(0:1000)
DOUBLE _P_RECISION STORE, DELB, DELG, GAM, LE(1:1000), UE(1:1000)
DOUBLE PRECISION DELLE(1:1000), DELUE(1:1000), SLIM1, SLIM2
DOUBLE PRECISION DELTA(2), ALPHA, BETA, DELA
INTEGER NEG, NEGNA, NEGNB, NEGNG
COMMON /L1/ N, C
COMMON /S1/ NEG, DELTA, MI
COMMON /Z1/ STORE
COMMON /Z3/ LE, UE
COMMON /EE3/ DELLE, DELUE
COMMON /T1/ SLIM1, SLIM2
COMMON /T3/ DELB, DELA
COMMON /IT1/ ITRTOT
COMMON /R1/ IP, IQ
COMMON /X1G/ GAM
COMMON /MULC/MC
ITRTOT =0
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ITRATO =0

LIM =1Q

C(0) = STORE

I=1P

MC=0

IF (1.GT. LIM ) TEEN

C all eigenvalues have been estimated. exit.

GOTO 7

ENDIF

IF ( UE(I) .NE. -1.0 ) THEN
MC=1
GOTO 3

C determine the no. of multiplicities

o

ELSE
ALPHA = LE(I)
DELA = DELLE(I)
IF ( UE(I) .EQ. -1.0 ) THEN
I=1+1
MC=MC+1
GOTO 2
ENDIF
MC=MC+1
GOTO 4
ENDIF
ALPHA = LE(I)
DELA = DELLE(I)

‘BETA = UE(])

DELB = DELUE(])
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NEGNA=1-1
NEGNB =1
ITERA =0
C search till 2 conditions are satified and call root to estimate the eigenvalue in this interval.
5 IF ({ (NEGNA .EQ. (I-1} ) .AND. (NEGNB .EQ. I} ) THEN
IF ( (DELA .GT. 0) .AND. (DELB .LT. 0 ) ) THEN
SLIMI = ALPHA
SLIM2 = BETA
CALL ROOT
ITRATO = ITRATO + ITERA
ITERA =0
I=1+1
GOTO 1
ELSE
C use bisection shifts
GOTO 6
ENDIF
ELSE
GOTO 6
ENDIF
6 GAM = ( ALPHA + BETA ) * 0.5
ITERA = ITERA + 1
C(0) = STORE - GAM
CALL LEVSON
NEGNG = NEG
DELG = DELTA(MI)
IF ( NEGNG .LE. (I-1) ) THEN
ALPHA = GAM
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NEGNA = NEGXNG

DELA = DELG
GOTO 5
ELSE
BETA = GAM
NEGNB = NEGNG
DELB = DELG
GOTO 3
ENDIF
I=I+1
C next eigenvalues to be estimated
GOTO 1
7 CONTINUE
LTURN
END
R KK AR K A AR K KK K
SUBROUTINE ROOT

C After subroutine Eigen specifies the interval (o', 8') which does not contain

C an eigenvalue of C,,—;. Root uses Pegasus method to find the eigenvalue in (o', 3').
COMPLEX*16 C(0:1000), X(1000,2), EIGVX(1000)
DOUBLE PRECISION DX, DELX, DELS1, DELB, DELA, EPS, STORE, GAM
DOUBLE PRECISION DELTA(2), DELS2, SLIM2, SLIMI1, TOL, PX, PFX
INTEGER N
COMMON /L1/ N, C
COMMON /S1/ NEG, DELTA, MI
COMMON /T1/ SLIM]1,SLIM2
COMMON /T3/ DELB, DELA
COMMON /Z1/ STORE



COMMON /IT1/ ITRTOT
CGMMONX /X1/ EIG
COMMON /EIGV/ X
COMMON /EVX/ EIGVX
COMMON /X1G/ GAM
COMMOCN /MULC/ MC
C can change this value to accuracy desired
EPS = 1.0E-6
ITR=0
C maximum allowance for eigen estimate
MAXITR = 30
C DX is the next shift
DX = 0.0
C counts no. of retentions on side one.
KX1 =0
C counts no. of retentions on side two.
KX2=0
PX = GAM
DELS] = DELA
DELS2 = DELB
DELX = 1.0
1 DX = (SLIM2*DELS1 - SLIM1*DELS2)/(DELS1 - DELS2) ;next shift
TOL = .5%(1.0+-DABS(DX))*EPS
IF ( DABS(DX-PX) .LT. TOL ) THEN
" TRACE = TRACE + DX
WRITE(12, 2) DX, MC, ITR
FORMAT (12X, F15.8, 2X, "multiplicity of’, I3, 10X, 14)
ITRTOT= ITRTOT + ITR
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WRITE(14. 3) -1.00. 0.00
3 FORMAT (1X. F25.8.6X. F25.8)
DO 4 L=1.N-1
C write elements of the eigenvector

WRITE(14. 5) EIGVX(L)

5 FORMAT (1X. F25.8.6X. F25.8)
4 CONTINUE
RETURN
ENDIF

C store DX shift as previous x
PX = DX
C(0) = STORE- DX
CALL LEVSON
DELX = DELTA(MI)
C count calls to L-D algorithm
ITR=ITR +1
C terminate estimate of eigenva.ue
IF (ITR .EQ. MAXITR ) THEN
WRITE(12,6) DX,ITR
6 FORMAT (15X, F15.8,26X, 14)
TRACE = TRACE + DX
ITRTOT= ITRTOT + ITR
PRINT™, "X= -1.0000 0.000°
DO 7 L=1, N-1
C Print the eigenvectors
PRINT*,Eigvx2= ", EIGVX(L)
PRINT",'X=", X(L,2)
7 CONTINUE



RETURN
ENDIF
IF { (DELX = DELS1) .GT. 0 ) THEN
PFX = DELS!
DELSI = DELX
SLIM!1 = DX
KX2=RKX2+1
KX1=0
C avoid retention of an endpoint by scaling down the function.
IF ( KX2 .GT.1 ) THEN
DELS2 = (DELS2 ™ PFX) / (PFX + DELSI)
ENDIF
GOTO 1
ENDIF
IF ( (DELX * DELS2) .GT. 0 ) THEN
PFX = DELS2
DELS2 = DELX
SLIM2 = DX
KX1=KX1 +1
KX2=0
C avoid retention of an endpoint by scaling down the function.
IF ( KX1 .GT.1 ) THEN
DELS1 = (DELS1 * PFX) / (PFX + DELS2)
ENDIF
GOTO 1
ENDIF
RETURN
END



Appendix B: Modified Method -
Multiple Eigenvalue Case with the
MRQI-B Root Finder

PROGRAM MODMUB
C Note, replace the subroutine root in Appendix A by these 2 subroutines the
C rest being the same. This algorithm is a Modified version of Trench’s algorithm.
C The algorithm is modified to: 1} Use tighter interval endpoints enlosing
C the eigenvalues, 2) Handle the multiple eigenvalues, if any in the data matrix.
C This algorithm uses the Levinson-Durbin Algorithm with Modified Trench’s method
C to determine the eigenvalues of a Hermitian Toeplitz matrix. Also uses the MRQI-B
C method a root searching method with Levinson algorithm. Store your data in file
C called DATAH as below.
Cc2 first line should have N the order of matrix.
C9.00.0 from line 2 write the elements of matrix.
Cs8.07.0
C Results will appear in file called RESMBI.

Ctknmt**tttmm:ﬂnunuuuzx,\u:uu:un::x::xxm*mu*!u!ﬂlm!!IK!ﬂnxx:xn-xxxx:xxnxnxnnmmxm*xnxx
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SUBROUTINE LEV
DOUBLE PRECISION DELTA(?)
COMPLEN~16 C(0:1000). X(1000.2). SUM. B(100C). Y (1000.2), SOM
COMPLEX~16 EIGVX(1000). EIG\'Y(1000)
INTEGER N.MJMILXEG
COMMOX /L1/ NX.C
COMMON /S1/ NEG. DELTA. Mi
COMMON /EIGV/ B, X. Y
COMMONX /EVX/ EIGVX, EIGVY
COMMON /LEV2/ KLEV2
KLEV2 = KLEV2 + 1
NEG = 0
X(1,1) = C(1)/C(0)
Y(1.1) = B(1)/C(0)
DELTA(1) = REAL{ C(0) )
IF ( DELTA(1) .LT. 0 ) THEN

NEG = NEG + 1
ENDIF
SUM = (0.0,0.0)
SOM = (0.0,0.0)
DO 7, M=2, N

DELTA(2) = (1.0 - X(M-1,1) * CONJG( X(M-1,1) ) } * DELTA(1)

IF ( DELTA(2) .LT. 0 ) THEN

NEG = NEG + 1

ENDIF

SOM = (0.0,0.0)

DO 1 JM=1, M-1

SOM = C(M-JM) = Y(JM, 1) + SOM



[ E™]
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CONTINUE
Y(M.2) = ( B(M) - SOM ) / DELTA(2)
DO 2 J=1. M-1
Y(3.2) = Y(J.1) - Y(M.2) = CONIG( X(M-1.1) )
CONTINUE
DO 3 L=1. M
EIGVY(L)=Y(L.1)
Y(L.1} = Y(L2)
CONTINUE
IF ( M .EQ. N ) THEN
GOTO T
ENDIF
SUM = (0.0.0.0)
DO 4 JM=1, M-1
SUM = C(M-JM) * X(JM, 1) + SUM
CONTINUE
X(M,2) = ( C(M) - SUM ) / DELTA(2)
DO 5 J=1, M-1
X(3.2) = X(J,1) - X(M,2) * CONIG( X(M-1,1) )
CONTINUE
DO 6 L=1, M
EIGVX(L)=X(L,1)
X(L.1) = X(L.2
CONTINUE
DELTA(1) = DELTA(2)

CONTINUE

MI=2
RETURN



SUBROUTINE ROOT
C After subroutine refine specifies the interval (a’. 3) which does not contain
C an eigenvalue of C, — 1. Root uses MRQI-B method to find the eigenvalue in (o', ).
COMPLEX™16 C(0:1000). X(1000.2). EIGVX(1000)
COMPLEX*16 Y(1000.2). EIGVY(1000). B{1000)
DOUBLE PRECISION DX. DELX. DELS1. DELB. DELA. EPS. STORE
DOUBLE PRECISION DELTA(2), DELS2. SLIM1, SLIM2, TOL. PX. GAM
DOUBLE PRECISION DX2, SOM, XNORM., YNORM. SUUM, SUMY
INTEGER N
COMMON /L1/ N, C
COMMON /S1/ NEG, DELTA, MI
COMMON /T1/ SLIM1, SLIM2
COMMON /T3/ DELB, DELA
COMMON /Z1/ STORE
COMMON /ITI/ITRTOT, ITOTBI, ITOTIQ
COMMON /X1/ TRACE
COMMON /EIGV/ B, X, Y
COMMON /EVX/ EIGVX, EIGVY
COMMON /X1G/ GAM
COMMON /MULC/ MC
EPS = 1.0E-6
ITR=0
TOL =0
PX = GAM
DELS1 = DELA
DELS2 = DELB



ITQ=0
ITBIS=0
XNORM = 0.0
DO 1 I=1. N-1
C compute the norm
XNORM = XNORM + X(L,1)*CONJG( X(1.1) )
1 CONTINUE
XNORM = XNORM™*.5
B(1) = (-1.0,0.0) / XNORM
C normalize the vector
DO 21=2 N
B(I) = EIGVX(I-1)/ XNORM
2 CONTINUE
C bisection shift
DX = (SLIM1+SLIM2)*.5
C call lev to solve for y
3 C(0) = STORE-DX
CALL LEV
DELX = DELTA(MI)
ITR=ITR +1
C use the bisect shift if true
IF ((DELX*DELS1) .GT. 0) THEN

SLIM! = DX
DELS1 = DELX
ELSE

SLIM2 = DX
DELS2 = DELX
ENDIF
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C calculate numerator of rayleigh quotient
SUUM = 0.0
DO 41I=1. N
SUUM = SUUM + CONJG( Y(I.1) ) * B(D)
4  CONTINUE
C calculate denominator of rayleigh quotient
SUMY = 0.0
DO 5I=1, N
SUMY = SUMY + CONJG( Y(I.1) ) ™ Y(LI)
5 CONTINUE
C rayleigh iteration
DX2 = SUUM / SUMY + DX
C normalize the vector ¥
YNORM = 0.0
DO6I=I,N
YNORM = YNORM + ¥(1.1) * CONJG( Y(1,1) )
6 CONTINUE
YNORM = YNORM**.5
DOTI=1,N
B(l) = Y(I,1) / YNORM
CONTINUE
IF (( SLIM1 .LE. DX2) .AND. (DX2 .LE. SLIM2)) THEN
WRITE(12, 8) DX2, ITQ
8 FORMAT (’ray ’, 15X, F15.8,26X, I4)
TOL = .5"(1.0+DABS(DX))“EF 5
IF (DABS(DX-DX2) .LE. TOL ) THEN
KCOND1 = KCOND1 + 1
ENDIF

-]
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IF {(YNORM! .GT. 1000 ) THEN
KCOND2 = KCOND2 + 1
ENDIF
C Estimate root found
IF ( (DABS(DX-DX2) .LE. TOL ) .OR. (ITQ .EQ. 20)
= -OR. (YNORM .GT. 1000) ) THEN
EIG = EIG + DX
WRITE(12, 9) DX, MC, ITR
S FORMAT (’raylil’, 8X, F18.8,> X by ’, 14, 16X, I4)
ITRTOT= ITRTOT + ITR
GOTO 12
ENDIF
DX = DX2
ELSE
10 ITBIS=1ITIS + 1
DX = (SLIM1 + SLIM2) * .5

ENDIF
IF ( ( ( ABS(SLIM2 - SLIM1) )=.5 ) .LT. 1.0E-06 ) THEN
EIG = EIG + DX

WRITE(12, 11) DX,ITR
11 FORMAT (’bisect’,15X, F15.8,26X, 14)
ITRTOT= ITRTOT + ITR
GOTO 12
ENDIF
GO TO 3
12 WRITE(12, 13) ITBIS, ITQ
13 FORMAT ( ’bisect=", I4 , 26X, 'ray qo=’, I4)

C counter counts rayleigh iterations



ITOTIQ = ITOTIQ=ITQ
C counter counts bisection iterations

ITOTBI=ITOTBI+ITBIS

RETURN

END
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