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Abstract

Inyerse and Eigenspace Decomposition Algorithm,;

for Statistical Signal Processing

In this work. a number of advances are described which we fcel lead to bctter un­

derstanding and solution of the eigenvalue and inverse eigenvalue problems for Hermi·

tian T~l'iitz matrices. First, a unitar)' matrix is derived which transforms a Hermitian

Toeplitz matrix into a real Toeplitz plus Hankel matrix. Sorne properties of this transfor­

mation are also present.ed. Second, ''.'e solve the inverse eigenvalue problem for Hermitian

Toeplitz matrices. Specifically, we present a method for the construction of a Hermitian

Toeplitz matrix from an arbitrary set of real eigenvalues. The procedure utilizes the

dis':rete Fourier transform to first construct a real symmetric negacyclic matrix from the

specified eigenvalues. The algorithm presented is computationally efficient. Finall)", we

derive a new order recursive algorithm and modify Trench's algorithm, both for eigenvalue

decomposition. The fOr.:'ler development is of mathelnatical interest; whereas, the latter

is clearly of practical interest. The modifications proposed to Trench's algorithm are to

employ noncontiguous intervals and to include a procedure to detect multiple eigenval·

ues. The goals of the modification are to improve the rate of convergence. The modified

algorithm presented utilizes three root searching techniques: the Pegasus method, the

modified Rayleigh quotient iteration with bisection shifts (MRQI-B), and the MRQI with

Pegasus shifts (MRQI-P). Simulation results are provided for large matrices of orders 50,

100, 200, and 500. Application of the algorithrns to Pisarenko's harmonie decomposition,

an important signal processing problem, is presented. Fortran programs of the modified

method are also provided.
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Resumé
Algorithmes pour Décomposition de l'Ensemble des Racines Propres

et Racines Inverses dans le traitement des signaux aléatoires

Dans cet ouvrage, quelques avancements scientifiques sont décrits qui, nous croyons,

mènent à. une meilleure compréhension, et, de meilleures solutions aux problèmes des

racines propres et racines inverse; pour les matrices Hermitian Toeplit=.

En premier lieu, une matrice unitaire, P.St dérivée qui a pour but la transformation

d'une matrice Hermitian Toeplit::; le résultat de cette transformation r~ traduit par la

somme d'une matrice Toeplit= réelle à. une matrice Hankel réelle, En deuxième lieu, nous

allons résoudre le problème des racines inverses pour les matrices Hermitian Toeplit::. En

particulier, nous présentons une méthode de réalisation des matrices Hermitian Toeplit=

à. partir d'un ensemble quelconque de racines propres et réelles. Cette procédure utilise

une transformation de Fourier de valeurs discrètes pour réaliser, en premier lieu, une

matrice réelle, symétrique et 'negacyclic'. L'algorithme présenté dans cette ouvrage est

certe efficace au calcul. Enfin, pour la décomposition des racines propres nous allons en

premier, dériver un nouvel algorithme d'ordre récurrent, et, ensuite, modifier l'algorithme

de Trench; le premier cas est d'intérêt mathématique tandis que le suivant est clairement

d'intérêt pratique. Les m<'difications à l'algorithme de Trench sont proposées pour utiliser

des intervalles non-contigüe et pour inclure un procédé de détection des racines multi­

ples. Les modifications sont appliquées dans le but d'améliorer l'allure de convergence

de l'algorithme dans l'estimées des racines propres. L'algorithme ainsi modifier, utilise

trois techniques de detection des racines, soit; la méthode de Pegasus, la méthode par

itérations mitigées du quotient de Raleigh suivant un décalage par bisection (IMQR-B),

et par IMQR suivant la méthode de décalage de Pegasus (IMQR-P). Les résultats des

simulations de l'algorithme sont présentés pour des matrices d'ordre 50, 100, 200 et 500.

Nous présentons aussi, une application des algorithmes élaborés dans cette thèse au

problème de décomposition harmonique des fréquences, développé par Pisarenko; ceci

étant un problème important dans le traitement des signaux. Enfin, les détails du logiciel

décrivant l'algorithme, codé en langage FORTRAN, sont présentés à la fin de cet ouvrage.
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Chapter 1

Introduction

The goal of signal processing is the extraction of information from signals contaminated

with noise. There are various techniques for extracting the information, and the methods

usually depend on the models used to represent the information embedded in a signal.

Statistical models are employed to describe a signal since the behaviour of sources and

mechanisms responsible for its generation and propagation are unpredictable. Signal

processing of this sort is related to classica1 time series analysis, and, therefore, covariance

matrices come to play a major role in many signal processing applications. In many

cases in alv,orithm development, the main effort reduces to an analysis of the covariance

matrices involved in order to extract and exploit underl)'Ïng structure.

1.1 Covariance Matrices in Statistical

Signal Processing

In the statistical signal processing area of high resolution spectrurn estimation, which

finds applications to array, radar, sonar, seismic, speech, and image processing, eigenvaiue

and eigenvector decomposition methods offer under appropriate conditions, an alterna-

1



• tive solution to the classical method based on the Fourier transform. An important signal

processing problt>m. for example. in array signal processing is that of rcsolving th.. di­

rections of arrivai of multiple plane waves reaching an array contanlÎnated with additÏ\'e

background noise. In such a case. a series of snapshots are obtained by sampling the sig­

nai field at the sensors. Assume the signais to be narrowband and let the nth snapshot

of the field received at the /th sensor (sec Figure 1.1) be [1]-[-1].

fi--------------- ----------------------------------------------------------------

s-(t) SJt)

Figure 1.1: Linear array of sensors.

•
p

s/(n) =L:xi(n)e-;II', + z/(n) 1= 1, ..., Q
i=1

2

(1.1)



• whcre P is the number of plane waves, Q is the number of sensors, xi(n) is the amplitude

of the ith narrowband wave, k; are normalized wavenumbers, i.e, ki = 2;" sin Bi. d is the

fixed distance betwccn array sensors, >. is the spatial frequency, Bi is an angle of incident

of the ith wave impinging on the array, and =I( n) is the background noise.

Assume that the noise, =I(n), is spatially incoherent

and uncorrelated with the signal amplitudes, Xi(n), i.e.,

E[zl(n)x;(n)] = 0,

(1.2)

(1.3)

where the overbar denotes complex conjugation. Under the above conditions, it is possible

to represent (1.1) in vector forro as

where

p

sl(n) = LXi(n)vk; + Zl(n) ,
i=l

(1.4)

(1.5)

is the phasing or stecring veetor. Furtherroore, assume that the sources are uncorrelated

with each other. The signal field then has an autocorrelation matrix of order (Q x Q) of

the following forro
p

R = E[s(n)sB(n)] = LVIc;D~ +0';1,
i=1

(1.6)

where D = E[xi(n)Xj(n)] is a diagonal matrix of order (P x Pl, and l is the identity

matrix, and H denotcs conjugate transpose. Rewriting (1.6) in matrix forro, we have

(Li)

•
where V = [vlq, vk,,"', Vk,,] is the matrix consisting of P direction vectors. Since the

signal and noise are assumed stationary, Ris Hermitian and has a Toeplitz structure; ma­

trices having this combined structure are ca.lled Hermitian Toeplit= matrices. ln general,

a matrix, C, of order n, is ca.lled Toeplitz if its elements C;j =C;-j for a.ll i,j =1, ... , n;

3



• is called symmetric Toeplitz if its clements Cij = cI'_jl for ail i.j = 1. .... 71; and is called

Hermitian Toeplitz if its elements L. = Ci for ail i = 0.1. .... 11 - 1. Symmetric TOl'plitz

and Hermitian Toeplitz matrices are completely specified by their first row of elements.

It is weil known that cigc71mcthods olfer high resolution capabilitil's [1]-[4].[2.1]-[2I)J

over conventional methods. The problem at hand reduces to the eigendecomposition of

the covariance matrix

Rq =>'q (1.8)

in which the P largest eigen''a1ues of R correspond to the signal subspacl' and the re­

maining (Q - P) minimum eigem'a1ues equal to CT; correspond to the noise subspacl'.

Note that the eigeU"ectors in the noise subspace are not unique and any vl'ctor in the

noise subspace evaiuated on the unit circle

Q

C(=) =Lqi=-i
s=o

(1.9)

will have P zeroes =i = &k,;, for i =1,2, ..., P at the desired wavenumber frequencies k>

and (Q - P) other spurious zeros. This is easily verified, since if

(1.10)

then

(1.11)

•

and, therefore, VHx = 0 since D is positive definite.

The informat;on about the desired wavenumber frequencies k> is obtained from an

eigenvalue analysis of the covariance matrix, and,for this purpose, efficient methods are

required to find the minimum eigenvalue [24]-[26]. In theory, the minimum eigenvalue has

a multiplicity greater than unity; however, in practice, the minimum eigenvalue occurs

as a cluster of eigenvalues having approximately the same value. For this reason, it is

necessary to compute ail clustered eigenvalues and take an average to better approximate

the desired frequencies.

Once the eigendecomposition of this matrix is obtained, one might ask the question, is

it possible to construct a Hermitian Toeplitz with these eigenvalues? This is a nonunique

4
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problem for Hermitian Toeplitz matrices and finds application in the area of array signal

proccssing, particularly in the case of optimum bearnforming for interferel:re or jammer

nulling.

ln this work, we focus on inverse and eigenspace decomposition algorithms and their

efficiency and accuracy for Hermitian Toeplitz covariance matrices. The subject of

Toeplitz matrices is vast, as such matrices occur in a 'll.ide variety of other apphcations

such as system identification, linear prediction, spectral estimation, and any problem in

which the covariance matrix of a weakly stationary stochastic process arises. Read~rs

further interested in applications are directed to references [1]-[5], while mathematically

inclined readers might find [6] appealing.

Due to the Toeplitz structure, numerous properties have been presented in the liter­

ature [ï]-[ll]. One new property that we present is that a Herrnitian Toeplitz matrix is

unitarily similar to a real Toeplitz plus Hankel matrix. We study the effect of the uni­

tary transforrn on the eigenvalues and eigenvectors of Herrnitian Toeplitz matrices: on

the eigenvalue relation between T, H, and T + H, where T and H denote the Toeplitz

and Hankel factors, respectiveIy: and on existing algorithrns which solve a system of

Herrnitian Toeplitz equations. There exist algorithrns which solve a real Toeplitz plus

Hankel system of equations [12, 13]. We explore these algorithrns in terrns of their com­

putational complel>ity. Furtherrnore,i.ne unitary transforrn proves useful in obtaining a

solution to the inverse eigenva1ue problem for real syrnrnetric matrices, once the solution

to the inverse eigenva1ue problem for Herrnitian Toeplitz matrices is obtained.

Although the theoretical solution to the inverse eigenva1ue problem for real syrnrnetric

Toeplitz matrices is unsolved [10, 15, 16], numerical solutions to the inverse eigenva1ue

problem for real syrnrnetric Toeplitz matrices have been presented [16, li]. We present

a solution to the inverse eigenva1ue problern in the case of Herrnitian Toeplitz matrices.

On the other hand, there are numerous techniques for eigenva1ue computation. Meth­

ods for eigenva1ue computation of a general matrix require O(n3 ) operations [18, 19];

however, efficient algorithms exist [20, 21, 22] which exploit the Toeplitz structure to

solve a system of linear equations and require O(n2 ) operations. A computational com-

5
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plexity defined as .\1 = 0(0":) implies that (JI/,,:) - 0 for large 12 [~l]. Algorithms

based on the Le"insou recu;sion are prescnted and may be used to find the eigcnvalu\'$ of

Toeplitz matrices. \\Ce present mcthods that fall into two categories. order r\'Cursive and

iterative. The order recursive mcthods presenti'd utilizc the deflation of polynomials and.

hence, are sensitive to roundoff errors. On the other hand. Trench's iterative method and

new methods based on modifications of Trench's iterativc method are presented and an'

more viable for high order matrices. A further reduction in computational complexity

may be achieved by using parallel methods [26]. Parallel methods use" proc<'$$ors and

reduce the computing time by a factor of n.

1.2 Major Contributions

L Discovery of a unitaI')' matrix which transforms a Hermitian Toeplitz matrix into

a real Toeplitz plus Hankel matrix. The importance of the unitary matrix is that

it preserves structure. Sorne properties of this transformation are also presented.

2. Solution to the inverse eigenvalue problem for Hermitian Toeplitz matrices. A

method is presented which shows that a negacyclic matrix of order 2" is equivalcnt

to a Hermitian Toeplitz matrix of order n.

3. Derivation of a new order recursive algorithm for eigendecomposition. This algo­

rithm is considered to be primarily of theoretical interest.

4. Modifications of Trench's iterative eigendecomposition algorithm for Hermitian

Toeplitz matrices. The modifications include the use of noncontiguous intervals

and the inclusion of the case of multiple eigenvalues. The modifications proposed

are shown to have important consequences for efficiency when working with high

order matrices.

6



• 1.3 Organization of the Thesis

•

The thesis is organized as follows. In Chapter 2, we present a unitary matrix which

transforms a Hermitian Toeplitz matrix into a real Toeplitz plus Hankel matrix. Addi­

tional properties and consequences of this unitary transformation are also presented.

In Chapter 3, we present the inverse eigenvalue problem for Hermitian Toeplitz matri­

ces. We describe a method that permits the construction of a Hermitian Toepl:tz matrix

with an arbitrary set of real eigenvalues. It is snown that a negacyclic real syrnmetric

Toeplitz matrix of order 2n is equivalent to a Hermitian Toeplitz matrix of order n,

thereby providing a simple solution to the inverse eigenproblem for Hermitian Toeplitz

matrices.

In Chapter 4, we present two methods for solution of the eigenvalue problem. The

methods presented fall into two categories, order recursive and iterative, with the latter

being more numerically stable. In the iterative category, we present Trench's method

and new methods based on modifications of Trench's method. The modifications involve

maintaining tighter lower and upper bound noncontiguous intervals for each eigem-a\ue

during the search mode and the inclusion of the multiple eigenvalue case. The modi­

fications have important consequences for efficiency in terms of convergence and com­

putational complexity when working with high order matrices. The algorithms may be

applied to Pisarenko's harmonic decomposition and array processing problems of the type

described earlier.

Chapter 5 summarizes the work and offers directions for further research in this

interesting area.

j
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Chapter 2

On a Unitary Transform for

Hermitian Toeplitz Matrices

2.1 Introduction

It has been shown that Hermitian persymmetric [il and centrohermitian [S] matrices

are similar to a real symmetric matrix. The similarity transform reductior from the

complex field to the real field results in savings in both computer time and st(lrage in

the ca1culation of the eigensystem of Hermitian persymmetric matrices [il. A Hermitian

Toeplitz matrix is a special form of a Hermitian persymmetric matrix and has a special

structure (namely, Toeplitz) over the complex field. Applying the unitary similarity

transform of [8] to a Hermitian Toeplitz matrix reduces it to a real symmetric matrix,

but at the price of losing the special structure (Toeplitz) for which efficient algorithms

exist [20, 21, 22].

In this chapter, we present a unitary matrix which transforms a Hermitian Toeplitz

matrix into a real Toeplitz-plus-Hankel matrix of the same order. As a result of this,

certain properties hold and are discussed. In fact, this unitary transform preserves the

Toeplitz structure of the rea1 part of the Hermitian Toeplitz matrix and transforms the

imaginary part into a Hankel structure. It is a weil known result that it is possible to

8



• convert a Hermitian Toeplitz system of order n into a block Toeplitz system of order 2n

by equating real and imaginary parts, or, as in [12], by converting a Toeplitz-plus-Hankel

structure to a block Toeplitz structure and then using a block-Levinson recursion method.

On the other hand, there exists an a1gorithm that directly (i.e., without forming a block

Toeplitz structure) solves a system of T + H equations ~13], where T and H denote the

Toeplitz and Hankel factors, respectively. We present an efficient alternative to solving a

special cIass of Toeplitz-plus-Hankel systems of equations for which the Toeplitz matrix

is symmetric and the Hankel matrix is skew-centrosymmetric.

Defir.itions:

J is an exchange matrix with ones a10ng the secondary diagonal and zeroes elsewhere.

Note that J = JE = J-1, where H stands for complex conjugate transpose.

H is skew-centrosymmetric if JHJ = -H.

T is centrosymmetric if JTJ = T.

M is persymmetric if J MEJ =M. Note that Toeplitz matrices are persymmetric.

C is centrohermitian if JeJ =ë.

1 is an identity matrix.

S is a symmetric matrix if ST =S.

2.2 Mathematical Development

2.2.1 Unitary matrix

A Hermitian Toeplitz matrix C of even order n may be partitioned as

•
( A BJ)

C= JE JA)

9

(2.1)



• and split into real and imaginary parts

(W YJ) (X
C = JY JWJ + j -JZ

ZJ )
-JXJ

( '} ")_.-

(2.3)

(2.4 )

whereA = W+jX; EJ = YJ+jZJ; Ir isToeplitz and symmetric: L Z aresymmetric:

and X is Toeplitz and skew-symmetric. The matrices W, x. L Z are real and of order

n/2 x 71./2. Then, a unitary transformation of the form

U = ~ ((1 - j)I (1 + j)J)
2 (1+ j)J (1 - j)I

US =U-1 = ~ ((1 +j)I (l- j )J)
2 (l-j)J (l+j)I

will transform Cinto a real symmetric (but not centrosymmetric) matrix S which is the

sum of real Toeplitz and Hankel matrices of special form, i.e.,

s= UCU-
1

- c: ::) + (~J~~
= T + H,

XJ)
-ZJ

(2.5)

where T is Toeplitz, persymmetric symmetric (centrosymmetric) and H is Hankel, per­

symmetric skew-symmetic (skew-centrosymmetric). It is interesting to note that the

above unitary transform U preserves the real part of C and transforms the imaginary

part of Cinto a Hankel matrix as ilIustrated by the following example.

Example: Let

•

C -

la 5+j2 4+j3 2+j

5-j2 la 5+j2 4 +j3

4 -j3 5-j2 la 5 +j2

2-j 4 -j3 5-j2 la
la 5 4 2 a 2 3 1

5 la 5 4 -2 a 2 3
+j

-3 -2 24 5 la 5 a
2 4 5 la -1 -3 -2 a

la



(2.6)

-3 -1

2 0

o -2

-2 -3

1 ((I- j )I 0

U=- 0 22
(1+j)J 0

The antidiagonal consists of

zeroes. Also note that the unitary transformation preserves the Toeplitz structure of

the real part of C. For the imaginary part, the unitary transform has the effect of

an exchange matrix v.;th removal of the comple.x number j, that is, the result may be

thought of as a JA)stmultiplication of the imaginary part of C by J (i.e., 1mC . J) or as

a premultiplication of ImC by -J (i.e., -J . ImC).

When the order n of C is odd, an analogous unitary transform exists with slight

modification given as

• Then. applying the above unitary transform U results in

10 5 4 2 1 3

5 10 5 4 3 2
S = +

4 5 10 5 2 0

2 4 5 10 0 -2

11 8 6 2

8 12 5 2
=

6 5 8 2

2 2 2 9

The trace of H is zero since it is skew-centrosymmetric.

and

(2.;)
(

(1 + j)I 0 (1 - j)J)

UH =U-1 = ~ 0 2 0 .
2

(1 - j)J 0 (1+ j)I
Since the result of a multiplication of two unitary matrices is unitary. The above unitary

matrices are obtained as

U=~C ~J) (-~I ~)2 J
for n of even order and as

u=~r:
0

~JC:I
0

i:)..j2 ..j2

0 0• 11

(2.8)

(2.9)



• for n of odd order.

As a result of the previous discussion. if S is symmetric (but not centrosymmetric)

such that S + JSJ = T. then S may be written as S = T + H. Also. if S + JSJ = 1'.

then S - JSJ = H. Hence. S may be transformed into a Hermitian Toeplitz matrix.

2.2.2 Affect on eigenvalues and eigenvectors

The eigenvalues of the matrix C are invariant with respect to the unitary transforma·

tior. UCU-1 • If À is an eigenvalue of C and v is the assoeiated eigenvector. then

Premultiplication by U results in

which cau also be written as

Cv = Àv.

UCv= ÀUv

(2.10)

(2.11 )

(2.12)

The eigenvectors are, therefore, premultiplied by U. Note that v has Hermitian symmetry

(i.e., v =Jïr ). Now, let v be an eigenvector of C written as [i]

v = ( x ) + j ( y ), (2.13)
Jx -Jy

where x, y are real vectors of dimension n/2. Then, Uv, the eigenvector of UCU-l, is

(2.14 )

For v of odd order, let v be an eigenvector of C written as,

v = ( : J+j ( ~ J, (2.15)

Jx -Jy
where x, y are again realvectors of dimension n/2 and Q is a real scalar. Then, Uv, the

eigenvector of UCU-l, is

•
Uv = ( : J+ ( ~ J.

Jx -Jy

12
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• In other words. we can state by inspection that the rea! plus the imaginary part of v is

an eigenvectorof CCC- l .

2.3 Eigenvalue relation between T, H, and T + H

Sinee T, H, and T + H are n x n symmetrie matrices, the eigenva!ues of T + H are

bounded by

(2.17)

for k = 1,2, ... ,n [18, 19]. The kth eigenvalue is denoted by Àk (') and À, (,) ~ À2(-)

~ ••• ~ Àn (')' The eigenvalu"" of an even and odd order skew-centrosymmetrie H are

{-(J'n/2, ... , -(J'" (J'" ... , (J'n/2} and {-(J'n-l/2, ... , -(J'" 0, (J'" •.. , (J'n-l/2} for n even and odd,

respectively. Since, for n even, the minimum eigenvalue is À,(H) = -(J'n/2(H) and the

maximum eigenvalue is Àn(H) = (J'n/2(H), the above relation may be written as

(2.18)

We may also write (2.17) as

(2.19)

•

The eigenvalues of T, H, and T + H are tabulated in Table 2.1 for the matrix of the

previous example. In Table 2.2, we tabulate the eomputed bounds (2.17) and (2.19)

for the same example. The intersection of bounds obtained by (2.17) and (2.19) give

a somewhat tighter bound on the eigenvaIues of T + H. A closer look at the bounds

in Table 2.2 reveals that a bound may also eontain other eigenvaIues. For instance,

a bound on À,(T + H), namely [-1.17,9.92], also contains the eigenvaIues À2(T + H)

and À3 (T + H). The bound on À3 (T + H) obtained by (2.17) includes the eigenvaIues

À,(T + H) and À2(T + H), but the bound on À3 (T + H) obtained by (2.lï) does not,

however, include À,(T + H) and À2(T + H). As a result, the intersection of the two

bounds does not contain other eigenvaIues of T +H. Unfortunate1y, this does not always

hold, sinee the intersection of the bounds (2.17) and (2.19) for À2(T +H) also contains

13



• Table 2.1: Eigcnyalues of T. H. and T+H

Eigenyalue T H T+1l

.À1 4.3;5 -5.553 2.869

.À2 4.69; -OA02 4.6·13

.À3 8.302 OA02 8.290

.À. 22.624 5.553 24.196

Table 2.2: Intersection of bounds.

(2.1ï) (2.19) (2.1ï) n (2.19)

-1.1; ::; .À1 ::; 9.92 -1.1i ::; .À1 ::; li.Oi -1.1; ::; .À1 ::; 9.92

-0.85 ::; .À2 ::; 10.25 3.9i ::; .À2 ::; 22.22 3.9i ::; .À2 ::; 10.25

2.i 4 ::; .À3 ::; 13.85 4.ii ::; .À3 ::; 23.02 4.ii ::; .À3 ::; 13.85

1i.O; ::; .À. ::; 28.1; 9.92 ::; .À. ::; 28.li no; ::; >.. ::; 28.1;

.À3(T + H). We now state and prove a simple proposition regarding the cigenvalucs of

T+H.

Proposition: Consider the matrix sum T + H. If T is positive definite then the cigcn­

values of T + H are greater than the corresponding eigenvalues of H.

Proo/: Since .À1 (T) > 0 for positive definite T, then, from (2.19), .Àk(iJ)+ .À1 (T) <

.Àk(T + H) : hence, the result obtains.

2.4 Effect on solving system of Hermitian Toeplitz

equations

Efficient a1gorithms exist [20]-[23] which solve a system of Toeplitz equations given by

• Cv=d

14
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• for the vector v. :\ow. if this equation is premultiplied by U, then v a1so satisfies

UCv = Ud.

The change of variables v =U-'q and substitution in (2.21) results in

UCU-'q= Ud.

(2.21 )

(2.22)

•

Consequently, the solution vector v of (2.20) can be obtained from the solution vector q

of (2.22) or q can be obtained from v.

Note that if a system of real equations is Toeplitz-plus-Hankel (T + H), where T is

symmetric Toeplitz and H is skew-centrosymmetric Hankel, then the equations may be

transformed into a Hermitian Toeplitz system and solved with 1.25n2 + O(n) complex

multiplies or 3.ï5n2 + O(n) real multiplies [21]. This is a significant improvement in

complexity over the approach of [12] which requires 12n2 + O(n) real multiplies, and

is slightly lower in complexity than the approach found in [13] which uses an entirely

different development and requires 6n2 + O(n) real multiples.

2.5 Discussion

In this chapter, we have shown that a constant unitary matrix exists which transforms

a Hermitian Toeplitz matrix into a reaI Teoplitz-plus-Hankel structure. As a consequence

of this propcrty, sorne reaI symmetric matrices may be converted into Hermitian Toeplitz

matrices and vice versa.

It is interesting to note that a Hermitian Toeplitz matrix may he thought of as a real

Toeplitz matrix perturbed by a special Hankel (sl:ew-centrosymmetric) matrix. Using

perturbation theory, we showed the eigenvalue relation hetween T, H, and T + H. We

stated and proved a simple proposition, namely, that the eigenvalues of T +H are greater

thll<l the corresponding eigenvalues of H when T is positive definite. Those readers

interested in this area may use the results of this chapter to further study the relation

hetween the eigenvalues of the matrices T, H, and T + H .

15
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Chapter 3

Inverse Eigenvalue Problem for

Hermitian Toeplitz Matrices

3.1 Introduction

In this chapter, we are concerned with the inverse eigenvalue problem within the con­

te:'Ct of statistical signal processing and Hermitian Toeplitz covariance matrices associatcd

\\;th weakly stationary stochastic processes of complex form. Specifically, we present a

method for the construction of a Hermitian Toeplitz matrix with an arbitrary set of

real eigenvalues. The inverse eigenvalue problem treated is significantly simpler than

the inverse eigem;alue problem encountered in the real weakly stationary stochastic pro­

cess case when the covariance is real symmetric Toeplitz. The latter inverse eigenvalue

problem is still unresolved for matrices of order greater than four (10, 15], although nu­

merical procedures do e>";st (16, Ii]. The reason for the relative difference in difliculty

for the two inverse eigenvalue problems appears to be related to the fact that there arc

twice as many specifiable parameters in a Hermitian Toplitz matrix as there are in a real

symmetric Toeplitz matrix.

The approach we take is to first construct an even order negacyclic real symmetric

Toeplitz matrix having the desired eigenspectrum, where each eigenvalue, distinct or not,

16



• is repeated twice. The negacyclic matrix of arder 2n sa constructed, is then revealed ta

be the rea/ matrix of a Hermitian Toeplitz matrix of arder n which has the desired eigen­

spectrum. We provide a brief description of negacyclic matrices, describe the approach,

and present an example.

3.2 N egacyc1ic matrices

Real negacyclic matrices are defined in Section 3.2.1 of [29] as circulant matrices baving

a change in sign for all elements below tbe main diagonal. A real symmetric negacyclic

matrix, Q, of arder m may be specified by tbe first row of elements, qT = [qOq1 ... qm-1],

wbere qm-k = -qk, k = 0,1, ..., m - l, and tbe index m - k is understood ta be modulo

m. It is seen, therefore, tbat real symmetric negacylic matrices are a subclass of real

symmetric Toeplitz matrices.

The eigenspectrum, P'i : i = 0,1, ..., m - l}, of a symmetric negacyclic matrix

bas elements wbicb are given by tbe discrete Fourier transform (DFT) of qT = [qOq1W

. ··qm_1Wm-1], wbere W =&; [11,29], i.e.,

(3.1)

for i =0, ..., m - 1.

m-1
'" ··k ""ik.hi = L.J qk e';;; e''' ,
k=O

For a symmetric negacyclic matrix of even order m = 2n, tbere are

•

n eigenvalues given by
n-1

.hi = qo + L[qk&;(2i+I)k + qm_k&;(2i+I)(m-k)j
k=1
n-1

- qo + L qk[&;;(2i+1)k - ei..(2i+1)e-;;;(2i+1)k]
k=1
n-1

- qo + L qk[ei;;(2i+I)k + e-;;;(2i+I)kj
k=l

n-1

- qo+2Lqkcos~(2i+l)k (3.2)
k=1 m

for i = 0, ..., m - l, wbich appear witb multiplicity two; specifically, .hi = Àm-i-l> i =

0, l, ..., n - 1. Of COIl.."Se, tbe actual multiplicity may be bigber, depending on wbetber

tbe eigenvalues of (3.1) are distinct or not.

lï



• \Ve now turn the situation around by observing that the vector of dements q of a

negacyclic real symmetric Toeplitz matrix of order m may be obtained from a gi"en set

of n eigenvaiues by use of the inverse DFT. viz..

(3.3)

for k = 0, ..., n. The DFT then becomes a simple vehicle for specifying the elements of

Q given a set of eigenvalues {À; : i = 0,1, ... , m - 1}.

3.3 Relation to Hermitian Toeplitz matrices

The purpose of this section is to reveal the relationship that exists between symmetric

negacyclic matrices of order m and Herrnitian Toeplitz matrices of order n. Let

qo ql q2 q3 q4 1 0 -q4 -q3 -q2 -ql

ql qo ql q2 q3 1 q4 0 -q4 -q3 -q2

q2 ql qo ql q2 1 q3 q4 0 -q4 -q3

q3 q2 ql qo ql 1 q2 q3 q4 0 -q4

q4 q3 q2 ql qo 1 ql q2 q3 q4 0

Q= 1 (3.4)

0 q4 q3 q2 ql 1 qo ql q2 q3 q4

-q4 0 q4 q3 q2 1 ql qo ql q2 q3

-q3 -q4 0 q4 q3 1 q2 ql qo ql q2

-q2 -q3 -q4 0 q4 1 q3 q2 ql qo ql

-ql -q2 -q3 -q4 0 1 q4 q3 q2 ql qo

• 18



• be a negacyclic real symmetric Toeplitz matrix of order m =10, partitioned into blocks

of size (n x n), where n = 5. !\ote that the diagonal blocks are identical symmetric

Toeplitz matrices and the off·diagonal blocks are skew-symmetric trace zero Toeplitz

matrices whicb are negatives of one another. \Ve denote the upper diagonal block as .4

and the lower off-diagonal block as B.

Recall that a Hermitian Toeplitz matrix C of order n is specified by its first row of

clements, cr = [~Cl'" Cn-l]' To show that a real negacyclic matrix of order m may

be represented as a Hermitian Toeplitz matrix of order n, we write the cbaracteristic

equation of (3.4) in the fol1owing form:

(3.5)

where À is an eigenvalue of Q and [xTyT]T is the corresponding eigenvector. It is clear

that (3.5) is equivalent to the two cbaracteristic equations resulting from the real and

imaginary parts of

[A + jB](x + jy) = À(x + jy). (3.6)

•

Note that C = A + j B is Hermitian Toeplitz and has the eigenvalue À with v =x + jy

as the associated eigenvector.

In summary, to construct a Hermitian Toeplitz matrix C with a given eigenspectrum,

{Ài: i = O,l, •..,n-l}, first computeq/n k = O,l, ...,n-l, using (3.3), and then prescribe

the elements of C by defining the elements of c as Ci =qi - jqn-i, for i = 0, ..., n -1. Note

that permuting the given n eigenvalues produces many solutions to the inverse eigenvalue

problem. In fact, there are n! negacyclic matrices possible, and as many solutions, if the

elements of the eigenspectrum are distinct.

3.4 Example

In this example, the problem is to construct a Hermitian Toeplitz matrix of order

n = 5 having the eigenvalues Ào = 1.0, À1 = 30.0, À: = 50.0, À3 = 100.0, and Àc = iOO.O.

19
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•

Using (3.3), we obtain the following elements q. of the negacyclic matrix Q of order

m = 2n = 10:

qo = 176.20000000 qs = 0.00

q, = -141.18669451 q6 = -q.

q: = 95.38974075 q7 = -q3

q3 = -68.85758704 qs = -q:

q. = 32.28974075 q9 = -ql·

The Hermitian Toeplitz matrix C, with elements written in terms of the q•• is gi\"en

by

qo q, - Jq. q2 - jq3 q3 - Jq2 q. - Jql

ql + jq. qo q, - N. q2 - Jq3 q3 - Jq2

C= q2 + jq3 q, + jq. qo ql - jq. q2 - Jq3 (3.7)

q3 + jq2 q2 + jq3 ql + jq. qo q, - Jq.

q. + jql q3 + jq2 q2 + jq3 ql + jq. qo
where we have used the Hermitian property, C_i = G, to fill in the elements below the

main diagonal. The eigenvalues of C can now be found using one of the several numerical

packages which are available, e.g., EIS?ACK. We chose to employ the modified method

found in the next chapter which e.xclusively deals with Hermitian Toeplitz matrices. The

eigenvalues found in this manner are

>.0= 0.99999916 E = 8.4 x 10-5

À1 = 30.00000508 E = 1.7 x 10-5

À2 = 50.00000000 E = 0.0

À3 = 99.99998731 E = 1.2 x 10-5

À<= 699.99999319 E = 9.8 x 10-5
,

with the respective relative error, E, also shown. The eigenvalues obtained are in excellent

agreement with those found using EISPACK. As mentioned earlier, permutation of the

originally specified 5 eigenvalues produces 5! = 120 negacyclic matrices and Hermitian

Toeplitz matrices. In this, and other examples, we have observed that sorne of the nega­

cyclic matrices generated as a result of eigenvalue permutation will be related through a

20



• permutation of clements, while others generated will not and will have completely new

element values,

3.5 Application to Array Signal Processing

The inverse eigenvalue problem for Hermitian Toeplitz matrices may find application

to the area of array signal processing. As we have seen, the covariance matrix under the

assumption of weakly staticnary stochastic processes has a Hermitian Toeplitz structure.

Let the elements of the constructed Hermitian Toeplitz matrix be written as

Ck = qk - ]q,,-k
n-l n-l

- L Àiaiei""" + L Àibie-j
"""=0 i=O

(S.S)

where a; = 1 - (-1)\ bi = 1 + (_l)i, Wi = r.(2i + 1)/2n, and {>.i~ is a given set of real

numbers. Bach of the two terms in (S.S) has the form given by Carathédory [l,p. 60],

I.e.,

p
~ '1

YI = ~ "Ike' '". + "IOS,
10=1

1= 1,2"", N, (S.9)

where the (N +1) complex constants, Yo, Y1,'" ,YN, are not all zero and Y_I = YI_ Under

these conditions, there exists an integer P, 1 $ P $ N, and certain real constants "Ik > 0

and Wk for k =1,2"",P.

The correlation between the ith and jth sensor e1ements is,

p

rij = E[Si(t)Sj(t)] = L Bke-j(d;-dj)=aS. + 0'20ij ,
k=1

(S.10)

•

where Bk represents the signal power of the kth source, di represent the distance between

sensors, and (}k represents the angle of incidence of the wave to the sensor e1ements.

Comparing (S.10) and (S.9), Pillai [1], showed that {Bk} +-+ {-rk} and {Wk} +-+ {r. cos (}k}

and that the analogy is exact if the Qarray e1ements are located in a way such that the

differences di - di = m, j ~ i, for i,j = 1,2"", Q represent every integer in the set

21



• {D,l, 2,··· , .IV}. where N :5 Q(Q -1)/2. Then with Q array elements. there are" (X + 1)

autocorrelation lags

p

r(m) = rU - i) = L B.d~w, + (j'é~, m = 1,2.···. N.
.=1

(3.11 )

Constructing an analogy between (3.S) and (3.10), similar to that found in [1]. the two

terrns in (3.S) suggest a certain array geometry (unknown) with {Bi} .... p.,} and al! the

waves incident on the sensors bave a precise angle sucb that {"',} .... {:r(2i + 1)/2n} ....

{:rcos/h} for tbe elements of the autocorrelation matrix be of the form shown in (3.S).

We sec tbat (3.S) may be tbougbt of as two shifted linear arrays with the waves making

unique angles to tbe sensors. This is a special case of a symmetric multipath environment

[2,p. 2SSj. Tbe inverse eigenvalue migbt be useful in a case in which sorne of the plane"

waves are tbe desired ones and the rest are interferers or jammers to be nul!ed. In this

case assuming independence, tbe covariance matrix may be decomposed into a part due

to tbe desired signals and a part due to the interference plus noise of the form

(3.12)

wbere 'R..I is due to tbe desired signals and 1?", is due to tbe interference. In a special

situation in wbicb one knows the powers {Bi} ..... p.,} of the unwanted signais and

assumes tbe interference is symmetric, it maybe possible to construct a matrix en which

bas a special structure designed to eliminate 1?", and obtain the desired information from

(3.13)

•

3.6 Discussion

A metbod was presented for solving tbe inverse eigenvalue problem for Hermitian

Toeplitz matrices. Tbe approacb taken uses tbe fact that a Herrnitian Toeplitz matrix of

order n baving tbe desired eigenspectrum cao he constructed from the elements of a cer­

tain real symmetric negacyclic matrix of order m = 2n. The approach is computationally
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•

efficient and only requires an n-point DFT. Also note that using the unitary transform of

the previous chapter on the constructed Hermitian Toeplitz matrix produces a ~olution

to the inverse eigenvalue problem for real symmetric matrices.

The inverse eigenvalue problem for Hermitian Toeplitz matrices is relatively elemen­

tary since there are twice as many specifiable parameters in a Hermitian Toeplitz matrix

as there are in a real symmetric Toeplitz matrix. An important and much more dif­

ficult problem is the inverse eigenvalue problem for real symmetric Toeplitz matrices.

This problem remains unsolved for matrices of order n greater than 4 and a theoretical

solution to it seems very challenging. However, numerical solutions for real symmetric

Toeplitz matrices of any order n have been presented in [16, li]. Using the unitary trans­

form decribed on the constructed Hermitian Toeplitz matrix results in a real symmetric

matrix, S =T + H. For example, for n = 5, S has the following form:

qo ql q2 q3 q4 ql q2 q3 q4 0

ql qo ql q2 q3 q2 q3 q4 0 -q4

S= q2 ql qo ql q2 + q3 q4 0 -q4 -q3 (3.14)

q3 q2 ql qo ql q4 0 "'-q4 -q3 -q2

q4 q3 q2 ql qo 0 -q4 -q3 -q2 -ql

Now, since the eigenvalues of S =T +H and the elements qi are known, then one wouId

like to further study the eigenvalue relation between T, H, and T+H, and this may help

in obtaining a better understanding of the existence question of whether a real Toeplitz

matrix exists having arbitrary eigenvalues or not.

In array signal processing, the covariance matrix has a Hermitian Toeplitz structure

under certain assumptions. It was shown that an analogy exists between (3.8) and (3.10)

similar to that drawn by Pillai [1]. In comparing (3.8) and (3.10), we see that (3.8) may

be thought of as two shifted linear arrays with the Waves making unique angles to the

sensors_ It was explained in a special case of a symmetric multipath environment it is

possible to eliminate the efi'ect of the interference if their power are known.
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Chapter 4

Recursive and Iterative Aigorithms

for Hermitian Toeplitz Mariees

4.1 Introduction

In the previous chapter, the problem considered was the construction of a Hermitian

Toeplitz matrix given an arbitrary set of real eigenvalues. In this chapter, we focus on

the computation of the complete eigenspectrum for Hermitian Toeplitz and real Toeplitz

matrices. In particular, the current trend is the investigation of methods which utilize

not only the centrosymmetric structure, but also the Toeplitz structure in the design

of new algorithms. We review sorne of the current approaches and algorithms available

in the literature and see that these algorithms fall into two categories, order recursive

and iterative. The order recursive algorithms of Wilkes and Hayes (30] and Morgera and

Noor (31] are of interest since they demonstrate that the eigenvalues of an n·dimensional

real symmetric or Hermitian Toeplitz matrix en may be obtained from the eigenvaiues of

its submatrices. Even though these algorithms suffer from certain numerical problems,

the approaches, nevertheless, contain new results of sorne theoretical interest. Iterative

methods, however, are more numerical1y stable than order recursive methods; this is

principal1y due to the fact that characteristic polynomials are not r..,rmed, a computation

24
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which is historically known to increase the propagation of roundoff errors.

Work on itcrative methods to deterrnine the smal/est eigenvalue of Toeplitz matrices

has been reported by Cybcnko and Loan [2ïJ and Hu and Kung [26]. Recently, Trench [32J

has proposed a method which represents an extension of [2ïJ to determining the complete

eigenspectrum of Hermitian Toeplitz matrices. If all the eigenvalues of a Hermitian

Toeplitz matrix are required, then the standard procedures (which do not exploit the

Toeplitz structure) given in [18, 19] are more efficient; however, if only a few are required,

then the methods given in [26, 2ï, 32] are more efficient.

The chapter is organized as follows. Section 2 presents the mathematical development

of the order recursive algorithms and provides an example of this category of algorithms.

Section 3 presents an example and discussion of the order recursive algorithm. Section 4

is devoted to Trench's iterative approach and its modified version. The modifications to

Trench's algorithm involve maintaining tighter lower and upper bound intervals for each

eigenvalue during the search mode, and inclusion of the case of multiple eigenvalues. Sim­

ulation results are reported for Trench's method using the Pegasus method as a major root

searching method, and the Modified method with three choices of root searching tech·

nique, namely, Pegasus, Modified Rayleigh Quotient Iteration with Bisection iterations

(MRQI-B), and Modified Rayleigh Quotient Iteration with Pegasus iterations (MRQI­

Pl. Extensive computer simulations are perforrned on constructed Hermitian Toeplitz

matrices of orders 50, 100, 200, and 500. The modifications proposed have important

consequences for efficiency when working with high order matrices. Section 5 provides

sorne examples of the simulation results. Finally, in Section 6 we present an application

of the algorithms to Pisarenko's harmonic decomposition.
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• 4.2 Mathematical Development

The problem may be stated as follo\\"s: given a Hermitian Toeplitz matrix en of order

n,
Co ë, Cn-l

Cl Co Cn-2
Cn = (.1.1 )

Cn-l Cn-2 Co

where Co is real and Ct, C2, ••• , Cn-l are complex, find the complete eigenspectrum. Since

Cn is Hermitian, ë..i = Ci. for i = 0,1, ... n - 1. The principal submatrix of Cn of order

k is defined as Cio = [Ci-j : 0 ~ i,j ~ k - 1], for k = 1,2, ... , n. Assuming Cio to

be nonsingular, we may apply Levinson's recursion in order to obtain a set of reflcction

coefficients {Pk} and a set of linear prediction coefficients {<Pin}. No\\", let us considcr the

shifted system of normal equa.tions,

where

(C" - .,\l,,)~,,(.~) =[E,,(À),O, ... ,OV, (4.2)

The quantities ~,,(À) and E,,(À) are the predictor vector and the prediction error at

the nth recursive step, recursively. The elements of C" - >.I" are the same as those of

C" except that the main diagonal of C" is replaced by Co - À, where À is treated as a

continuous real variable. Levinson's recursion can be applied to (C"-l - >.l''-l)~D_l =

[ël •.. ë.._l]T and is given by

Pk -
Cio + 2:.10;; <Pk-l,iCk-i

Dk/Dk_l '
k=I,2, ... ,n-l, (4.3)

(4.4)
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• (4.;)

wher" the above quantities will ail depend on >..

In the sequel «4.1;)), will show that the reflection coefficient in terms of >. ma:;- be

written as
1 , ..-2 +1, ..-3 , , 1 1V (')

Pn-l (>.) = oA lA -r ... -r ..-2 = . "-1 A • (4.8)
D.._1 (>.) D"-l (>.) .

where D.._l (>') is the characteristic polynomial of C"-l and 10.11.··· .1..-2 are complex

coefficients. The values of >. for which D.._l (>') equals zero are the eigenvalues of C..- l

and. at these values of >'.Ip"-l(>.)j becomes infinite. Note as !P..-2(>')1 approaches unity.

E.._2 approaches zero. which means that Ip"-l(>')1 becomes infinite [30J. This can be

verified by use of (4.i) and (4.1i) and is left to the reader.

Setting jp..-l(>'W = 1 in (4.8) and forming p..- l {>,) = D;_l{>') - jN.._l{>')I2 = 0

implies that there are 2n - 2 values of >. for which the resuiting polynomial is zero. Out

of the 2n - 2 values of >.. n values correspond to the eigenvalues of the matrix C... because

at these values D..(>') is zero and Ip..-1{>')1 = 1. The remaining n-2 values of >. at which

Ip..-l{>'W = 1 correspond to the eigenvalues of the principal submatrix C..- 2 and are

denoted by /li, i =1,2,···, n - 2. At these eigenvalues;C.._2 - /li! wiII be singular. but

C.._1 - Ili! and C.. - Il;! will be nonsingular. This is known as the singular case , for

which the conventional formulation of Levinson's algorithm does not apply [35].

In the singular ca..~e, the reflection coefficients are related by

(4.9)

where r = n - 1 - 21 and is referred to as a left-singuiar point. The quantity 190(>') is

given by

(4.10)

•

where 1 is the Iohvidov inde.'C at point r [35]. Note that .80{>') depends on the predictor

vector and has a comple.'C value in the Hermitian case. In the reai symmetric case. Po{ >.)

is real, 1=1, and (4.9) reduces to the e.'I:pression found in [30], i.e.,

(4.11)



• with the property that Pk = ±l at the eigenyalues of the (k - 1) and (1.' + 1) ord"r

principal submatrices. The case of real symmetric Toeplitz matrices ha,; b",'n treat<'d

in [30]. and we no\\" present the order recursiye algorithm for real symnll'tric TOt'plit.z

matrices in pseudo-code form.

Order Recursive Algorithm - Real Symmetric Toeplitz matrices [30].

Step 1: (Initialization)

Given eigenyalues of submatrices Cn - 1 and Cn -: and yalues of reflection coeffici.'nts

Pn-3P') at eigenvalues of Cn_:.

Step 2: (Calculate refiection coefficient values)

Find the values of pn-l p.) at the eigenvalues of Cn_: from the relation (4.9).

Step 3: (Solve)
",-3 n-4

1'1 1'1

n-3 n-4
Jln-2 Pn-2

1

1

1

Il

1,,-2

•

Pn-l (1'1 )Dn_1(1'1) - Cn-l1'~-:

pn-l (l'2)Dn - 1(1'2) - Cn_l1';-2
=

Pn-l (l'n-: )Dn_1(l'n-2) - Cn-l1'~:i

for li, i = 1,2, ... , n - 2. Note that the above Vandermonde matrix can be efficiently

inverted in O(n2 ) operations [18,30]. The quantity Dn _ 1 p.) is the characteristic equation

of Cn - 1 and may be computed from the eigenvalues of Cn - 1 .

Step 4: (Form the two polynomials)

Note, when the numerator of (4.1;) is expanded 10 = Cn-2'

Step 5: (Obtain eigenvalues)

Deflate the polynomials by eigenvalues of Cn - 2 ; the remaining eigenvalues will be

those of Cn'
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• ln the case of a Hcrmitian Toeplitz matrix, we use Levinson's algorithm to evaluate

P.(>.). From (4..5). the prcdictor coefficients in terms of >. are

0•.•(>') = 0.-1.•(>') + P.(>,)O.-l,k-'(>')
N._1.•(>') . N.(>') 2\'._1.•_.(>')

= D._1 (>')"" D.(>') D.-1 (>.) ,
(4.12)

whcre N (with appropriate subscripting) is usecI to denote the numerator part of each

component. The abave equation may be written as

(4.13)

where

(4.14)

The proof is given in the appendix. The numerator .111.,.(>') of (4.13) is divisible by

D._1(>'); therefore. (4.13) reduces to,

P.(>') =

N.,.(>')
~•.i(>') = D.(>')·

Substituting (4.15) into (4.3) we obtain

D._1(>')[c. +2:f;.1:N._1,i(>')fD._1(>'))c.-il
D.(>')

D._1 (>')c. +:Et.1 N.-1,i(>')C.-i
D.(À)

Now, P.(À) may be expressed as

(4.15)

(4.16)

k = 1,2, ... ,n-1. (4.1ï)

• ë._1 Co-À
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\Ye see that D._l (>.) is the minor of c. and S.-l,. is the minor of Ck_', In other words.

the numerator of P.(>') is the determinant expanded by the kth column. Note that the

predictor coefficients are evaluated at the kth step of Levinson's algorithm. It turns out

that the numerator of the predictor coefficients are the minors needed to e\'aluate the

numerator of the reflection coefficient at step k + 1. Once the reflection coefficient has

been evaluated at t:,e kth iteration, its magnitude squared is set l'quaI to unity. The

polynomial obtained is then deflated by the eigenvalues of Dk _ l and reduccs to D.+l'

the characteristic equation of the next larger principal submatrix. The eigenvalucs are

then determined. \"ie now present the order recursive algorithm for Hermitian Toeplitz

matrices in pseudo-code form.

Order Recursive Algorithm - Hermitian Toeplitz matrices

Step 1: (Initialization)

Do(>') = 1

D, (>') - Co - À

For k =1,2,· .. , n - 1 DO

Step 2: (Calculate Numerator of Refiection Coefficient)

k-1

N.(À) - -[D._1(À)Ck + L N._1,.(À)ck_.]
i=l

N.. - N.

Step 3: (Set the magnitude squared of refiection coefficient to unity)

to form

Step 4: (Defiate p.(À))

This is a polynomial of degree 2k. It is deflated by the the eigenvalues of D._1 (À),

the characteristic equation of C.-1 , and reduces to the characteristic equation, D.+l(À),

of the next larger principal submatrix.
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Step 5: (Find the roots of D.+1 (À))

Due to the fact that the eigenvalues found from D'_ l and D. interJace, or form a

Sturmian chain [34J, the bisection method is used here to find the roots of D.+1 • Other

methods are possible.

Step6: Fori=1,2,···,k-l DO

Step 7: (Calculate Numerator of Predictor Coefficient)

Step 8: (Defiate M.,.(À) by eigenvalues of Cn - 1 to obtain N.,.(À))

Store N.,.(À).

If i :::; k - l GO TO Step 6; Else, if k :::; n - 1 GO TO Step 2; OTHERWISE

EXIT.

Note there is a difference betwccn the formulation of the polynomials at Step 4 of the

order recursive a1gorithm for the real symmetric Toeplitz matrices case and Step 3 for the

Hermitian Toeplitz case. The main difference is at Step 3 for the Hermitian Toeplitz case

the polynomial is formed by setting the magnitude squared of the reflection coefficient

to unity whereas in the real symmetric Toeplitz this is not the case.

4.3 Example and Discussion - Order Recursive

Algorithms

We are given a Hermitian Toeplitz matrix of order n = 8 specified by its first row,

CI
T = [(10 - À), (5 + j2), (4 + j3), (2 + j), (2 + j3), (2 + j2), (1 + j2), (1 + j)).

The recursion given above for Hermitian Toeplitz matrices is iIIustrated for k = 2. At

Step 2 of the recursion the numerator of the reflection coefficient is

N:(À) =-[D1(À)c: + N1,l(À)Cl)

= (4 + j3)>' - (19 + jl0)
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and the numerator of 0:: (À) is

Step 3: The magnitude squared of the reflection coefficient is set l'quai to unity. i.e..

\p2(À)12 = IN2(À)/D2(ÀW = 1

_ 1(4 + j3)À - (19 + j10)\2 = 1 .
À2 - 20À + il

Squaring the denominator and numerator and subtracting, P2(À) is obtained as

P2 (À) - D;(À) -IN2(ÀW = 0

_ À4
_ 40À3 +5lïÀ2 - 2628À +4580 = O.

Step 4: P2 (À) is deflated by the eigenvalue of Cl> which is 10. thereby reducing P2 (,\)

to the characteristic equation of C3 , i.e.,

Step 5: Using the bisection method, the eigenvalues are found to be

À1 - 4.30683,

À2 - 5.18595,

À3 - 20.50i56.

Steps 6 through 8 are performed to calculate the numerator of the predictor coefficient

th.1

M 2•1 (À) - N1•1(À)D2(À) + N2(À)N1•1 (À)

_ (5 + j2)À2 - (ï4 + j33)À + (240 + j130) .

Defl.ating M2•1(À) by 10, the eigenvalue of Cl, the quantity N2•1 is obtained as

N2•1 = (5 + j2)À - (24 + j13).
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E'bT bl 41 Ca e . . omparJson etween ,ll(en' ues.

Order of C Order recursive algorithm IMSL subroutine eigch

2 4.61483 4.61483

15.38516 15.38516

3 4.30648 4.3064ï

5.18595 5.18596

20.50ï56 20.50ï56

4 2.869ïï 2.869ï5

4.64324 4.6432ï

8.29042 8.29040

24.19656 24.19656

5 2.13382 2.133ï9

3.ï4269 3.ï42ï4

6.69ï60 6.69ï58

9.65112 9.65111

2ï.ïï4ï5 2ï.ïï4ï5
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Table 4.1 cont"d: Comoanson between Eil!cnva Ue>'.

1.80042 1.80037

2.80100 2.80105

5.86ïl4 5.86717

7.13220 7.13215

11.38192 11.38191

31.01730 31.01730

1.44659 1.4'1651

2.25721 2.25731

4.73446 4.73442

6.74697 6.74706

8.18895 8.18887

12.61631 12.61631

34.00949 34.00949

1.044ï2 1.04268

2.14350 2.15049

4.10511 4.08309

5.02928 5.0::;140

7.69648 7.68807

9.24493 9.24837

14.13424 14.13441

36.60173 36.60173

7

8

Order of C 1 Order recursive algorithm IM5L subroutine cigch

6

• 34
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The above procedure is repeated and results in the eigenvalues tabulated in Table

4.1. The first column of the table indicates the order of the matrix Cn and the sec­

ond column shows the eigenvalues obtained by the a1gorithm of Section 2 for Hermitian

Toeplitz matrices. The stopping tolerance employed in the bisection method is an eigen­

value precision of six digits. The eigenva!ues shown in column three of the table are

obtained from the IMSL subroutine EIGCH. The IMSL routine EIGCH, a1though not

designed specifically for Hermitian Toeplitz matrices, is used as a benchmark for the

comparison. Comparing the second and third columns, it is observed that the accuracy

of the eigenva!ues obtained by the order recursive a1gorithm are accurate to three digits

until the order of Cn reaches seven, with the eigenvalues obtained for Cn of order eight

no longer accurate to three digits. The reason for the loss of accuracy is due to the

stopping tolerance of six digits employed in the bisection method and the propagation of

roundoff errors inherent in the order recursive approach. In the next section, we present

Trench's method and the modified Trench's method, both of v:hich do U'lt suffer from

such numerical problems.

4.4 Trench's Method and lts Modified Version

Trench's method uses the Levinson-Ourbin (L-O) a1gorithm for the shifted matrices

C. - ÀI., k = 1,2, ..., n - l, within an iterative root finding procedure to find the zeroes

of the rational function (4.i). For details, the reader is referred to [32]; however, Trench's

method basically relies on two key theorems which are consequences of Sylvester's law

of inertia and the Cauchy theorem. For completeness, we state the two key theorems

below; proofs may be found in [32].

Theorem 1. IfC-ÀI = LDU is the triangular factori:ation, then Negm(À), the number

of negative elements Ei(À) in D = diag{Em(À), Em_1(À),···, E1(À)}, equals the number

of eigenvalues >.; of C that are less than À, provided À is nondefective with respect to Cn'

(A real number À is nondefeetive with respect to Cn if it is not an eigenvalue of any of
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the principal submatrices C. , k = 1,2, ... , n - 1).

Theorem 2. Assume that the real numbers 0 and ,B are nondefectit'e with respect to

Cn and that the interval (0,13) contains exactly one eigenvalue (with multiplicity one) of

Cn. Also assume that neither 0 nor 13 i..< an eigenvalue of Cn' Then the interval (0,13)

contains no eigenvalues of Cn_1 if and only if En(o) > 0 and EneB) < O.

From the above theorems, Trench's algorithm for finding the complete eigenspectrum

of Hermitian Toeplitz matrices may be outlined as follows:

Trench'5 Algorithm - Hermitian Toeplitz matrices

Step l-Select: Find the eigenvalues Àp , >'P+l,"" >'q, 1 :s: p < q :s: n . Using trial and

error, select an interval (a,b) by the bisection method such that Negn(a) :s: p - 1 and

Negn(b) ~ q.

FOR i =p TO q - 1

Step 2-Search: Search for the endpoint Ç; not captured by trial and error such that

the interval (Ç,-lo ç, ) will contain À,. This is again done by the bisection method and by

keeping count of the negative signs of {El(ç,), E2 (ç,), ... , En(6)}. During this scarch

process, keep capturing and storing the locations of other desired eigcnvalues, while also

retaining the values E,,(ç;).

Step 3-Refine: Once the interval Çi-l < À; < Çi , is obtained:

(a) Set 0 =Çi-l , E Q =E,,(Ç'_l) and 13 =ç, , E{J = E,,(ç,).

(b) By trial and error, refine the interval (0,13) to (0',13') using bisection such that the

following conditions both hold:

(i) Neg,,(o') = i - 1 and Neg,,(j3') = i

(ii) E,,(0') > 0 and E,,(j3') < O.

(c) Having refined the interva1 (0, 13) to (0', 13') by the bisection method in Step 3(b)

above, switch to the Pegasus method to find À;.

NEXTi

END
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Note that in the above algorithm, the L-D recursion is called for each iteration of

the bisection and Pegasus methods. In Step 3, condition (i) by Theorem 1 assures that

the chosen interval does not contain other eigenvalues of Cn' Condition (ii) by Theorem

2 assures that the refined interval (0/, f3') does not contain eigenvalues of Cn _ 1o The

Pegasus method is a modification of the Regula Falsi method and is a more efficient zero

finding method having an improved order of convergence [36, 3iJ.

The first-level modifications we propose to Trench's method are to form tighter LÇi

(lower) and UÇi (upper) bound intervals for each >'i in the select and search steps and to

extend the method to include the case of multiple eigenvalues. The modified algorithm

is outlined as follows:

Modified Algorithm - Hermitian Toeplitz matrices

Step l-Select: Find the eigenvalues >'p, >'1'+1, ... , >'., 1 :5 p < q :5 n . Using trial and

error, select an interval (a,b) by the bisection method such that Negn{a) :5 p - 1 and

Negn{b) ~ q.

FOR i = p TO q - 1

Step 2-Search: Search for the endpoint UÇi not captured by trial and error such that

the interval (LÇi, UÇi ) will contain >'i. This is again done by the bisection method and

by keeping count of the negative signs of {E1(UÇi), ~(UÇi)' ... , En(UÇi)}. During

this search process, keep tightening, capturing and storing the locations of other desired

eigenvalues, while also retaining the values En(Lçi), En(UÇi), and En(Lçi+1)' In the

process, also detect, if any, the multiplicity m of multiple eigenvalues; (IF ILçi - Uçil <

ToI Then f1agmultiple = true ), where the value of ToI is 10-3 •

NEXTi

Step 3-Refine: Once all the intervals LÇi < >'i < UÇi, p :5 i :5 q, are obtained:

FORj=pTO q

(a) Set a = Lç; , Ea = E..(Lç;) and f3 = Uç; , EfJ = E..(Uç;).

(b) In case of multiple eigenvalues, set the matrix order n to n - m +1 and work with the

submatrix C..-m+t. By trial and error, refine the interva! (a,f3) to (a',f3') using bisection
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such that the following conditions both hold:

(i) Negn(o') =j -1 and Negn(f3') =j

(ii) En(o') > 0 and En U3') < O.

(c) Having refined the interval (0, /3) to (0', /3') by the bisection method in Step 3(b)

above, switch to the MRQI-B or MRQI-P root finders to find >'j.

NEXTj

END

Note that in the above modified a1gorithm, the L-D recursion is called for each iter­

ation of the bisection shift and the Levinson recursion is called for each iteration of the

MRQI-B or MRQI-P methods.

We discuss the former modification first. Assume that an interval (a,b) is given

which encloses the eigenvalues >.", >'P+1"'" >'., and that we wish to find the intermediate

points ~"'~P+1"",~.-1' As in Trench's procedure, we use the bisection method, "/ =

(L~. + U~.)/2, where r and s are integers such that p $ r < s $ q. The objective is to

find U~•. In the process of finding U~., other endpoints may be captured, e.g., "/1, "/j, "/3,

and "/1, as shown in Figure 4.1. In Trench's search process for finding the intermediate

points ~", ~p+1,"" ~.-l' an unnecessarily large number of calls to the L-D a1gorithm may

result if we just let ~k = ,,/, for r - 1 $ k $ s. In the modified method, by using U,;

and U~i for each ;.., unnecessary caUs to the L·D a1gorithm are reduced by storing the

first selected ;j as L~k+1 and storing the last ;1 in U~k, for ;1 < ;j and k = Negn(;j)

= Neg..(;I), as depicted in Figure 4.1. Trench's method forms contigous intervals; as a

result of this modification, noncontiguous intervals are formed for the bisection method.

Now, assume that the endpoints ~", ~P+h' .. , ~k have been found and that we wish

to find ~k+l' indicated in Figure 4.1. Trench's method would use the interval (;1, (3) in

the bisection method; whereas, the modified method would use the interval lij, (3). Use

of the tighter interva! (;j, (3) would, in general, reduce the number of calls to the L-D

a1gorithm. Although this modification may seem minor, it appears to have important

consequences for efficiency when working with very high order matrices and,
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'Àl ...À~_lr
(a

À"
~ '.

Àk+2 'À ~ '. '
ÀP+l •••Àk Àk+l q Àq+l ..•Àn

b)

•

Figure 4.1: Interval (a,b) enclosing the desired eigenvalues >.,., ..., Àq•
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particularly so. when eigenvalues are not tightly clustered.

Next, in the multiple eigenvalue case. an eigenvalue .\; with multiplicity m will han'

m !inearly independent (nonunique) eigenvectors. Let the eigeD\'alu~'Sof Ck - 1 be Ij.j =

1,2, ... , k - 1, and the eigenvalues of Ck be >'i. i = 1. 2..... k. According to the Cauchy

Interlace Theorem, the eigen\-aIues of Ck _ 1 interlace those of Ck • i.e.. >', ::; 11 ::; ,\, ::;

l' ::; ... ::; 1'k-l ::; >'k. Cauchy's theorem imp!ies that Ck_: must ha\'e an eigenvalue '\;

with multiplicity m - 1. if Ck has an eigem-aIue '\; of multiplicity m.

An eigenvd1ue of Cn is obtained by \=ying >.; at the same time. there arc n(n - 1)/2

,-aIues (multiple \-aIues included) of >. for which the leading principal submatrices arc

singular. These ,-aIues are the eigem-aIues of submatrices for which, during the execution

of the L-D algorithm, IPk(>')!' = 1 or Ek(>') = 0, and for which the LoD algorithm

will not proceed beyond this point. Now, in the multiple eigenvalue case. any interval

(0, P) containing a multiple >'i of Cn will certainly contain >'i of Cn - m +1 and condition

(ii) in Step 3 will not necessarily be true. AIso, since IPkl' = 1, the L·D algorithm

will not proceed; this, is not, however, an obstacle to finding >'i if the multiplicity 1ll

is known, because >'i is then easily found by working with the submatrix Cn - m +1. In

practice, true multiplicities are reflected as an eigenvalue elus/er. The c10seness of the

eigenvalues in a c1uster tends to cause ail numerical procedures to lose efliciency, in

the sense that considerable computational effort must be expended performing bisection

shifts in searc1l for eigenvalue interva! endpoints. It is more appropriate to consider

eigenvalues to be multiple when the condition, (IF IL~i - Uçil < ToI Theo f1agmultiple

= true ), inserted in Step 2 after the bisection shift, is satisfied. In our simulation

studies, ToI was c1losen to be 10-3• Once the multip!icity m of >'i is identified, then,

according to Cauc1ly's Theorem, >.; must a1so be an eigenvalue (with multiplicityone) of

the principal submatrix C n- m+1• Denote the eigenvector of Cn-m+t associated with >'i

by qi. Kung and Hu [41] have sho\Vn that the vector qi suflk~ to characterize the m·

dimensional subspace spanned by the eigenvectors Vii of Cn associated \Vith >'i through

the construction Vii = Zi-1[qfOO· .. 0]T, \Vhere Zi-1 denotes a cyclic shift of j - 1

clements, j= 1,2, ... , m.

40



• The second-leveI modification we consider is the use of the modified Rayleigh quotient

iteration (MRQI) in place of the Pegasus method in the refine step. This modification

is expected to improve convergence rate, as the MRQI has a cubic rate of convergence:

whercas, the Pegasus method has a rate of convergence of 1.64 [36, 3iJ. The MRQI

aIgorithm requires solution of the linear system of equations

(C - lliI)Yi+l = Ui, (4.18)

•

where Jli is cailed the origin shift and Ui is a given normalized vector. The vector Yi+1

may be solved for using the Levinson aIgorithm with O(2n2 ) complexity, or by parailei

methods with a complexity of O(n) with O(n) processors [26,40]. As Ili approaches an

eigcnvalue Ài , Yi+1 approximates the associated eigenvector. The next origin shift lli+1

is computed by the Rayleigh quotient,

. _ ~lCYi+l _ ~lUi + . (419)
Jli+1 - IYi+112 - !Yi+112 Il,, .

where the superscript H denotes conjugate transpose.

In the event that the computed Rayleigh quotient faiis outside the inclusion interval

(0',{3'), then a switch is made to the bisection method (note that we aIso report results

obtained by replacing the bisection method by the P~gasus method). The Levinson­

Durbin aIgorithm may aIso be used in combination with the Rayleigh quotient thereby

leading to a quadratic rate of convergence [32].

4.5 Simulation Results

In this section, the performance of Trench's method using the Pegasus root finder

and the Modified Trench's method simulated for three choices of root searching meth­

ods, namely, the Pegasus, the Modified Rayleigh Quotient Iteration with Bisection shifts

(MRQI-B) and the MRQI-P (with Pegasus shifts) are presented. Moreover, we demon­

strate the efficacy of the overall procedure in deaIing with eigenvalue mu1tiplicities.

First, we illustrate the modification of Trench's method, consider a Hermitian Toeplitz

matrix of order n = 10 with the following first row of elements: [(50,0) (5,3) (1,3) (3,4)
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Table 4.2: Results obtained by Trench's method .

(~i-l.~i) E,O(Çi-, )E'O(ç) 1 (0'. ,a') No.it1 No.it2 À,

1.25-35.15 + - 31.25-35.15 0 1 33.10

37.10-38.08
1 + + 37.10-37.59 1 4 37,43

38.08-39.06 + - 38.08-39.06 0 .) 38.73

41.01-41.99 + + 41.01-41.50 1 4 41.15

41.99-42.96
1 + - 41.99-42.96 0 8 42.58

47.85-50.29 • + - 47.85-50.29 0 9 48.16

50.29-52.73 • - - 50.90-51.51 2 4 51.27

52.73-62.50 • - + 53.95-55.17 3 6 54.93

62.50-78.12 + - 62.50-78.12 0 6 62.99

78.12-93.75 - - 85.93-93.75 1 7 89.60

No.itO=19 Total no. of iterations : 19 + 8 + 57 = 84

(1,1) (4,2) (4,9) (1,6) (3.4) (2,3)]. The interval (a = 0, b = n· Co) which contains ail the

eigenvalues, was chosen. Tables 4.2 and 4.3 show the number of iterations required by

Trench's method and the modified method using noneontiguous intervals, respeetively.

Table 4.2 shows the intervals (~i-l,~i) obtained by Treneh's computer program and

Table 4.3 shows the intervals (Lçi, UÇi) obtained by the modified methocl. Note the

different intervals indicated by the asterisks obtained by the two methods. The ± signs

indicate whether the value of E'O(À) is either positive or negative. No.itO corresponds to

the total number of iterations required to obtain all the initial endpoints of the intervals.

No.itl corresponds to the number of iterations required to obtain the refined interval

(o.',{3'). Note that no iterations are required to obtain (e/,{3') if conditions (i) and (ii) in

Step 3(b) happen to be already satisfied. No.it2 corresponds to the number of iterations

required to obtain À; by the root finder (Pegasus method). The stopping criteria for Ài

was C, : 1(; - (HI < .5(1.0 + (;)10-K as in [32], where initially (0 = o.', (, = {3' and
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Table 4.3: Results obtained by the Modified method.

(L~i, U~i) EI0(L~i)E'0(U~i) (0',{3') No.it1 No.it2 .À;

31.25-35.15 + - 31.25-35.1~ 1 0 i 33.10

3i.10-3S.0S + + 3i.10-3i.59 1 4 3i.43

3S.0S-39.06 + - 3S.08-39.06 0 2 3S.i3

41.01-0:1.99 + ~ 41.01-41.50 1 4 41.15

41.99-42.96 + - 41.99-42.96 0 S 42.5S

46.Si-50.iS • + + 46.Si-4S.S2 1 3 4S.16

50.iS-S4.ôS • + + 50.i8-52.i3 1 4 51.2i

54.68-62.50 • + + 54.68-5S.59 1 4 54.93

62.50-iS.12 + - 62.50-iS.12 0 6 62.99

iS.12-93.i5 - - 85.93-93.i5 1 i S9.60

No.itO=lS Total no. of iterations : lS + 6 + 49 = i3
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we chose K = 6 in our experiments. For this particular example. the total number of

iterations required by the modified method was 73 and was 84 for Trench's method.

It was shown in Chapter 3. that a Hermitian Toeplitz matrix of ord"r 71 may be con·

structed from a real symmetric negacyc1ic matrix of order 271. Using this relationship. we

constructed Hermitian Toeplitz matrices of orders 50. 100.200. and 500 using eigem'alue

sets generated by Pro-Matlab's random number generator. "v'e then utilized the abo\'c

algorithms to estimate the eigenvalues with results obtained shown in Tables .1.,1. 4.5.

and 4.6.

In these tables. Bi.it, Peg.it, and Ray.it denote the number of iterations required by

the bisection, Pegasus, and Rayleigh quotient methods, respective1y. Note that lu'o ter­

mination criteria are used with the MRQI·B and MRQI·P root finders. Cl as abo\'e and

C: : II(G - pI)yll = Illyl < 1000-:. The criterion Cl measures the accuracy of the

eigenvalue estimate, while the criterion C: measures the goodness of the eigenpair esti·

mate (p,y) as an approximation to the true eigenpair [42]. The MRQI·B and MRQI-P

root finders terminate eigenvalue approximation if either of these conditions is satisfied.

As a matter of interest, the average number of times, No.cl and No.c2, that approxima·

tion is terminated based on criteria Cl and C 2 , respectively, is tabulated in Tables 4.5

and 4.6. In addition, the the average of the error f = P''''''' - ÀOI'P""".1 averaged over

100 trials per matrix order (i.e., for matrices of order 50, 100, 200, and 500) is shown in

Figures 4.2 through 4.5 with the empirical mean (m) and standard deviation (std) of

the average of the error shown for each method.

From Tables 4.5 and 4.6, we observe that use of the MRQI method in conjunction with

Trench's procedure modified to utilize noncontiguous intervals results in an eigensolver

having an improved convergence rate. From the Figures 4.2 through 4.5, we see that the

MRQI-P procedure in some instances results in a slightly better accuracy for a reduced

number of iterations than the MRQI-B procedure. Furthermore, from Tables 4.5 and 4.6,

C2 is more often satisfied than Ch thereby indicating that the MRQI root finder delivers

a good eigenpair estimate, rather than a good eigenvalue estimate. In Table 4.7, we

summarize the performance of the algorithms in terms of the complexity, the convergence,
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• Errer performance of the methods for matrices of orcier n=50
10-1~---~-~-~-~~-~--,--....,....----,------",

10-2

10-3
.

><
0..c.
C.
al 10-4
0

~

U
al
><

..I!

10-5

10-6

ji.:..... : ,'.;~
;~~ :,'.:: , : 1

:,1:. :, \\.:' \:.: ~
J :, t :, '" t. 1
'/. ~ :, \ :, \ r: l ,
,\ 1 :, 1:, \,:: 1 il

:) : 1 r ,1 :, ,:, ,,' l "
't , ~ " :, ,:, \ 1 1,1

:', : 1 t 1 1 :, \:, " 1 1 1
.", : , r , ',: :, l:, , 1 1 1

;':~ ~ It 1 il ~:J: ,,' ,\
1 1 : r l 1 ':; "' I~I " 1 ",
1 ~ r~ l'. :' 1" Il''

; 1 ~ : : r I~' :' ': li l",' \

\.1 ~.. j,... .,'"', ,'1 l,·_...~•.,Jf~,.,.,:,:~':/ ~ L./{ \_- /.... '
., .rr ..~ ,.:;;\._;:'" /:-'\ 1..-\' ....~../ ... j ;: \ ,

•

5045403530252015105
10-7 L-_.l...-_.l...-_.l...-_.l...-_..L..-_..L..-_..L..-_..I...-_..I...------l

o
kth eigenvalue

•

Figure 4.2: Average error averaged over 100 trials for matrices of order 50, Modified­

Pegasus: solid m=2.056 x 10-06 , std=5.209 x 10-06 ; Modified-MRQI-B : dashed

m=6.0ïO x 10-04
, std=1.219 x 10-03 ; Modified-MRQI-P : dotted m=1.358 x 10-03,

std=3.548 x 10-03•
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Error perfOlll131lCe of the methods for matrices oforder n=100
1001

F""'--,----,.--.---.,----r--...,-----r----,----,.--,

10070'------'10'----1.20--3..1.0--40"'-'--5'-0--'60--'-70--8....0--90"----'100

kth eigenvalue

Figure 4.3: Average error averaged over 100 trial;; for matrices of order 100, Modified­

Pegasus: solid m=1.30S x 10-05 , std=S.021 X 10-05; Modified-MRQI-B : dashed

m=S.342 x 10-04
, std=2.S0S x 10-03

; Modified-MRQI-P : dotted m=ï.323 x 10-04
,

std=l.ï6ï x 10-03 •
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Error performance of the methods for matrices oforder n=200
10"1 ,---.,....---r---,----,-----r----,,...--,..--.,....--...,--,

ëc.
;-IO~,-;:
>C
.!!

10·7 '--_'--_'--_-'--_-'--_...l..-_...l..-_-'-_....L..._--'-_...J
o ~ ~ W ~ ~ œ ~ ~ 1~ ~

kth eigenvalue

Figure 4.4: Average error averaged over 100 trials for matrices of order 200, Modified­

Pegasus: solid m=1.428 x 10-05 , std=1.152 x 10-04 ; Modified-MRQI-B : dasbed

m=5.4i9 x 10-04
, std=1.114 x 10-03 ; Modified-MRQI-P : dotted m=6.055 x 10-04

,

std=l.484 x 10-03•
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• Emrr performance of the methods for matrices oforder n=500
10.2r--,----:----r--~-_r__,-___:_-__r_-~___:

50
10.7 L-_J-._J-._'--_'--_'----''----'_--'_--'_-..l

o

•

Figure 4.5: Average error averaged over 100 trials for matrices of order 500, Modified­

Pegasus: solid m=2.194 x 10-05, std=1.080 x 10-04 ; Modified-MRQI-B : dashed

m=5.660 x 10-04
, std=9.416 x 10-04 ; Modified·MRQI-P : dotted m=4.S.56 x 10-04 ,

std=7.734 x 10-04 _
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• Table 4.4: Average no. of iterations for matrices with eigenvalues of random distribution.

Matrix Trench's method using Pegasus Modified method using Pegasus

Order Total of Total of Total of Total of

1'1 No.itO No.it1 No.it2 Total No.itO No.itl No.it2 Total

50 ïï.98 66.93 251.33 396.24 78.27 64.98 251.48 394.73

100 152.15 140.19 490.27 782.61 149.64 131.77 488.25 769.66

200 301.46 279.36 938.24 1519.06 295.32 264.73 937.60 1497.55

500 749.01 697.72 2221.28 3668.01 728.74 663.44 2220.68 3612.86

Table 4.5: Average no. of iterations for matrices with eigenvalues of random distribution.

Matrix Modified Method using MRQI-B

Order 1'1 No.itO No.itl Bi.it Ray.it No.c1 No.c2

50 78.27 64.98 7.41 112.79 30.01 49.99

100 149.64 131.77 14.36 215.92 58.13 99.94

200 295.32 264.73 29.53 414.59 116.48 199.88

500 728.74 663.44 74.76 974.30 294.68 498.83

Table 4.6: Average no. of iterations for matrices with eigenvalues of random distribution.

•

Matrix Modified Method using MRQI-P

Order 1'1 No.itO No.it1 Peg.it Ray.it No.c1 No.c2

50 78.27 64.98 4.33 101.34 31.78 49.97

100 149.64 131.77 8.90 206.06 64.60 99.86

200 295.32 264.73 17.75 394.84 129.26 199.43

500 728.74 663.44 47.21 924.96 317.25 496.58
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Table 4. ï: Performance comparison of the algorithms.

Aigorithms Complexity Convergence Accuracy Criteria
.

Trench's/P O(n') 1.64 C,

Modified/P' O(n') 1.64 C,

Modified/MRQI-B" O(2n') cubic Co

Modified/MRQI-P" O(2n') cubic Co

• method modified for multiple eigenvalues

and the accuracy criteria used.

The L-D algorithm is used at ail the steps of the Trench's and the modified algorithm

using the Pegasus root finder. In the case of modified algorithm using the MRQI-B and

MRQI-P root finders the Levinson algorithm is used at step 3c of the modified algorithm

while the L-D algorithm is used in steps 1, 2, and 3b of the modified algorithm. Therefore,

under the heading labeled compleldty, we have tabulated the complexity of the L-D or the

Levinson algorithm used per each shift of the root finding method, namely, the Pegasus,

the MRQI-B, and the MRQI-P. From Table 4.7, note the tradeo!f between complexity

and convergence of the algorithms, the MRQI method has a cubic convergence rate but

requires a Levinson recursion with a complexity of O(2n') per iteration while the Pegasus

method has a convergence rate of 1.64 and requires a L-D recursion with a complexity

of Oen') per iteration. Since root finding is an iterative procedure, it is not possible to

give an exact operation COllOt. AIso, note the accuracy criteria most often satisfied in

case of MRQI is C, indicating a good eigenpair estimate, rather than a good eigenvalue

estimate.
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• 4.6 Application to Pisarenko's Harmonie

Decomposition

ln this section, we illustrate Trench's method, the modified method, and the modified

method further modified to include the case of multiple eigenvaJues in the problem of

Pisarenko's harmonie decomposition. In such an application, one usually deals with

Toeplitz matrices with cIustered eigenvalues. Consider a Hermitian Toeplitz matrix of

order (n + 1) formed by the autocorrelation (model) given by

L

r(n) = ".2S(n) + :E A~e-; ...·n
k=l

This sequence is formcd from a random process of the form

L
s(t) = :E Ake(-;...··+8. l + w(t)

cl

(4.20)

(4.21)

•

where L complex exponentials with frequencies Wk and amplitudes Ak are added to

complex white noise w(t) with variance ".2. The Ok associated with the exponentials are

random variables uniformly distributed over the intervaJ (-10, 10].

In Pisarenko's problem, the number of signals L, amplitudes Ak, frequencies Wk, and

variance of noise".2 are unknown and have to be determined from the observed r(n) [24].

Furthermore, the model order p is unknown and needs to be estimated a priori. The

criterion for detel.nining mode! order is the following[lï]: if exact autocorre!ations are

known, then the mode! order is specified as that order for which the minimum eigenvaJue

does not change from one order to the next. On the other hand, if estimated autocorre­

!ations are used, then the mode! order is specified as that order for which the minimum

eigenvaJue changes "litt!e" from that for a mode! order of (p - 1). In order to determine

the minimum eigenvaJue, the ahove algorithms may he used; however, it may he more

interesting to sec how the algorithms hehave in finding a11 the eigenvaJues.

As a numerical examp!e, suppose that the autocorre!ation for n = 9 was mea·

sured and a Hermitian Toeplitz matrix of order 10 formed, specified hy the first row,
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(31.000000000000. 0.000000000000)

(-13.170368194580, -11.831966400146)

(7.000461101532, -3.994677305221)

(-18.831056594849, 6.159973621368)

(20.999992370605, 0.001805052533)

(-18.824028015137, -6.190902709960)

(6.998598575592, 4.015967369079)

(-13.179986953735, 11.803650856018)

(28.999967575073, 0.003980370983)

(-13.160694122314, -11.860273361206).
In fact, the matrix was formed from (4.20) by choosing the power of the noise as

q2 = 2.0 and the number of distinct signais L = 3 with their amplitudes as A, = 2.

A2 =3, ~ =4 and frequencies WI = r. / 4, W2 = r. /2, W3 = r., respectively. Since L =3,

n =9 was chosen for illustrative purposes (any value of n could have been chosen so long

it is large enough to estimate the model order).

In practice only r(n) is known, therefore, using the algorithms, the eigenvalues ob­

tained are tabulated in Tables 4.8 and 4.9. From Tables 4.8 and 4.9, t.he minimum

eigenvalue is seen to be approximate!y 2. Note that the numb('r of distinct signais are

L = 10 - 7 = 3. Having found the minimum eigenvalue, the corresponding eigenvector

may be determined, and then, from the eigenvector, the frequencies w. and amplitudes

A. may be determined.

In Table 4.10, we illustrate the Modified method further modified to include the case

of multiple eigenvalues. No.it2 corresponds to the number of iterations required by the

root searching methods, namely, the Pegasus, the MRQI-B, and the MRQI-P. As shown

above, an example of such a case is Pisarenko's harmonie decomposition. The tabulated

results are for the above mode! with a matrix of order 14. The minimum eigcnvalue

occurred with a multiplicity of 11. It is to be noted that, in practice, the eigenvalues are

seldom exactly equal and more like!y to be close to each other. Although Trench's and

the Modified algorithms are capable of handling the case of close eigenvalues, the amount
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Table 4.8: Pisarenko's Harmonie Decomposition- Trench's method.

0/ f3' No.it1 Eigenvalue No.it2

1.9999934i 1.99999405 9 1.99999382 6

2.000002il 2.00000502 0 2.00000324 6

2.0000061i 2.00000646 3 2.00000623 5

2.00000i33 2.00000964 1 2.00000i35 3

2.00001195 2.00001310 1 2.00001223 5

2.00001426 2.0000165i 0 2.0000155i 8

2.00002696 2.00002811 4 2.00002i24 5

3i.39064361 39.i5001i52 5 39.60024i8i 8

8i.18i50000 96.8iSOOOOO 3 89.92255880 i

155.00000000 310.00000000 0 166.4iil2i60 10

No.itO=31 Total no. of iterations : 31 + 26 + 63 = 120

of computation, however, becomes unduly high in the search of the inten'a! endpoints

enclosing the eigenvalues. In slIch a case, we may assume close eigenvalues to be equal,

if they do not difier by, say, 3 decimal places. Under such an assumption, observe from

Table 4.10, that a significant reduction in the number of iterations required is possible.

4.7 Discussion

Since the order recursive a1gorithm presented here involves the formation and deflation

of polynomîals, it is liable to suffer roundoff CITors and is not recommended for numerical

computation. On the other hand, Trench's iterative method and the modified Trench's

method do not appear to suffer from such numerica.l problems. The first modification

was the placement of tighter upper and lower bounds about cach clement of the eigen­

spectrum, and when such placement is possible, the results are reduced computational

complexity and improved convergence. The second modification to the a1gorithm was to
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Table 4.9: Pisarenko's Harmonie Decomposition- Modified method.

o.' {J' No.it1 Eigenvalue No.it2

1.99998885 1.99999116 i 1.99999094 6

2.000002i1 2.00000386 1 2.00000301 5

2.00000502 2.0000061i 1 2.00000509 5

2.00000i33 2.00000964 1 2.0000084i 10

2.00001195 2.00001426 1 2.00001201 4

2.0000165i 2.00002580 0 2.000016ii 8

2.00002696 2.00002811 3 2.00002i16 5

38.i5000000 ii.50000000 0 39.60024821 i

8i.18i50000 96.8i500000 3 89.922558i9 i

155.00000000 310.00000000 0 166.4iïl2951 10

No.itO=31 Toto.! no. of iterations : 31 + 1i + 6i = 115

Table 4.10: Muitiple eigenvalues case.

Algorithrns No.itO No.itl No.it2

Modified/P 44 22 32

Modified/P" 21 3 24

Modified/MRQI-B" 21 3 15

Modified/MRQI-P" 21 3 14

" method modified for multiple eigenvalues
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include a procedure for the case of multiple eigenvalues. The modified method with three

choices of root searching techniques, namely the Pegasus, the MRQI-B, and the MRQI-P,

was programmed and the simulation results presented. From the simulation results. since

two termination criteria are required when using the MRQI methods and. since Cz is

more often satisfied than Cl. we conclude that the MRQI methods give a good eigenpair

estimate, rather than a good eigenvalue estimate. We have aIso displayed in the table

the interplay between accuracy, convergence rate, and computationaI complexity of the

aIgorithms. In Trench's and the modified aIgorithm using the Pegasus root finder. the

;..evinson-Durbin aIgorithm is used; however, in the case of the modified aIgorithm using

the MRQI-B and MRQI-P root finder, the Levinson aIgorithm is used.
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• 4.8 Appendix: Proof of Eq.(4.13)

In this appendix, it is shown by induction that (4.13) in Section 2 holds. Starting with

(4.12)

9k,.(À) = ç)k_l,.(À) + Pk(À)Ok_l,k_.(À)
= Nk_l,.(À) ... Nk(À) Nk_l,k_.(À)

Dk_l(À) , Dk(À) D;'_l(À) ,

we need to show that Dk_l(À) is a factor of the numerator, viz.,

By definition, we have that

(-1.22)

(U3)

<Pk,.(À) -

The above equation, after forming a common denominator, may be written 'IS

[<:oNk-l,.(À) - CkNk_l,k_.(À)]Dk_l(À)
Dk- l (À )Dk(À)

I:f;i(CmNk_l ,.(À)Nk_1,m(À) - Ck-mNk_l,k_.( À)Nk_l,m( À))
+ Dk(À)Dk_1(À)

(4.25)

The numerator of the first term of (4.25) is easHy seen to contain the factor Dk_l(À)

found in the denominator. The fact that the numerator of the second term of (4,2,5) docs

as well can be verified by induction.

For k := 2 and i =1

<1>2,1 -
<:oDl (À)N1,1(À) + cl[N1,1(À)N1•1(À) - N1•1(À)Nl ,1(À)] - C2 D1(À)Nl ,l(À)

Dl (À)D2(À)

•
<:oN1,l(À) - C2Nl,1(À)

D2 (À)
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and for k = 3 and; = 1

=

• 0:..,
= ""N,., (À) - C3'\".'(>') Cl[S',.l(À).\',.l(>') - ;\',.2(>.)S,.,(>')J.

D3(>') D,(>')D3(>.)

"".'\".1(>') - C3J\·,~(>.) . c,[ë,C' - c,ë,J
D3(>.) ..,. D3(>')

(4.2ï)

•

This inductive process can be carried on for different vaIues of k and i. We conclude.

thereforc. that (4.13) is correct .
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Chapter 5

Conclusions and Directions for

Further Research

In conclusion, we have presented a unitary matrix which transforms a Hermi' :an

Toeplitz matrix into a real Toeplitz plus Hankel matrix. The importance of the uni­

tary transform presented is that it preserves structure. As a result, several remarkablc

properties were also presented. No extr;, memory space (compared to that for the Henni­

tian Toeplitz matrix) is re<:;uired to store the elements of the T +H structure. Second, wc

presented a solution to the inverse eigenvalue problem for Hermitian Toeplitz matrices.

It was shown that a Hermitian Toeplitz matrix of order n may be obta.ined from a real

symmetric negacyclic matrix of order 2n. A solution to an inverse eigenvalue problem in

the case for real symmetric matrices may also be obta.ined by first constructing a lIer­

mitian Toeplitz matrix and then using the unitary transform presented in Chapter 2 to

transform the constructed Hermitian Toeplitz matrix to a real symmetric matrix. The

methods for the inverse eigenvalue problem Ïor Hermitian Toeplitz matriCe!> and for r"al

symmetric matrices may be used to test and compare the performance of any eigenvalue

decomposition algorithms specialized for Hermitian Toeplitz matrices or for general real

symmetric matrices.

In statistica1 signal processing, when the stochastic processes of interest are weakly
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stationary, th" ~0"ariance matrix has a special structure, namely, Hermitian Toeplitz.

One goal of signal processing is to extract information contained in this covariance ma·

trix. The main concern in t:l~ analysis of Herm:tian '!'oeplitz matrices many times reduces

to the scl'ltion of the <::igenvalue problem. We have, therefore,derived new methods based

on the Levinson and Levinson-Durbin recursions for the solution of the eigenvalue proo­

lem. The methods presented fall into two categories, order recursi'·e and iterative. The

order recursive aIgorithm was considered to be prir"arily of theoretical interest. In the

iterative category. we presented Trench's rnethod and new methods based on modifica­

tions of Trenc}}'s method. The modifications included the use of noncontiguous intervals

and the inclusion of the case of multiple eigenvalues. The modifications were shown to

have important consequences for efficiency in terms of convergence and computational

complexity when working with high order matrices.

TheoretieaI solution to the inverse eigelwalue problem for re'Ù syrnrnetric Toeplitz

matrices remains unsolved. We believe a solution to the inverse eigenvalue problem for

real syrnrnetric Toeplitz matrices will probably le"\d to an additional number of interesting

and computationally efficient algorithms.

5.1 Directions for further research

There are several paths open for those interested in further research in this area. Sorne

of the most important OI:es are the fol!owing:

1. Further study of the eigenvaIue relation between T, H, and T +H. Sec the discus­

sion in S-.action 3.6.

2. Study the theoretieaI solution to the inverse eigenvaIue problem for real symmetric

Toeplitz matrices.

3. Further study for possible reduction of the computational complexity of the modi­

fied Trench's iterative eigendecomposition aIgorithm. One approach is to use paral­

leI methods [26]. Another idea is use the unitary transform in conjunction with the

59



•

•

Hermitian L~\·inson aIgorithm to see whether further redllction in computational

complexity is possible or not.
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Appendix A: Modified Method ­

Multiple Eigenvalue Case with the

Pegasus Root Finder

PROGRAM MODMUL

e This algorithm is a Modified version of Trench's algorithm.

e The algorith;n is modified to: 1) Use tighter interval endpoints

e enclosing the eigenvalues, 2) HandJe multiple eigenvalues,

e if any, in the data matrix. This algorithm uses the Levinson-Durbin

e Algorithm with Modified Trench's method to determine the eigenvalues

e of a Hermitian Toeplitz matrix. Also uses the PEGASUS method as a root

e searching method. Store data in file called DATAH as below.

e 2 E....ample, first line should have N the order of matrix.

e 9.0 0.0 from line 2 write the elements of matrix.

e S.O ;.0

e Results will appear in file ;:aIled RESULTHM.

eOMPLEX*16 C(0:1000)

e e is the data matrix
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DOUBLE PRECISIO:'\ CNR. C!\I

C CNR. CNI :real part. imaginar)" part

COMMON /Ll/ N. C

C N is the order of matrix

COMMON /XI/ TRACE

C TRACE is sum of eig\"a1ues if equals trace

COMMON /CI/ KLEV

C KLEV counts cal1s to le\"son-durbin

KLEV = 0

OPEN (UNIT=ll, FILE='datah"STATUS='OLD')

OPEN (UNIT=12, FILE='resultm"STATUS='NE\V')

OPEN (UNIT=13, rILE='eigmul.dat'.STATUS='NE\V·)

OPEN (UNIT=14, FILE='vecmul.dat"STATUS='NEW')

READ(ll,"') N

DO 1 INDEX=O, N-I

READ(ll,") CNR, CNI

C(INDEX) = CMPLX(CNR, CNI)

1 CONTINUE

C Step 1. find interval (a,b)

CALL SELECT

C Step 2. search for endpoints

CALL SEARCH

C Step 3. refine interval and estimate eigenvalue

CALL REFINE

WRITE(12, 2) TRACE, KLEV

FORMAT ('SUM OF EIGS ="F15.ï , , TOTAL NO. OF LEV ITER= " 17)

STOP

END
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c····················································· .
SUBROUTINE SELECT

C This routine selects the endpoints a and b of the (a,b) which

C contains the cigcnvalues to be determined.

COMPLEX-16 C(0:1000)

DOUBLE PRECISION AA, BB, STORE, LE(I:1000), UE(l:1000)

DOUBLE PRECISION DELLE(I:IOOO), DELUE(I:I000), DELTA(2)

INTEGER N, IP, IQ, NEGAA, NEG, NEGBB

COMMON /Ll/ N, C

C STORE stores the element Co

COMMON /ZI/ STORE

COMMON /SI/ NEG, DELTA, MI

C LE, UE holds lower and upper bound endpoints

COMMON /ZS/ LE, UE

C DELLE, DELUE retains the value En(Le,) and En(Ue,)

COMMON /EE3/ DELLE, DELUE

C IP, IQ choose any a,b to p=a and q=b to selectively find eigs

COMMON /RI/ IP,IQ

C all the eigenvalues of positive definite matrix

AA =0.0

C are between 0.0 and n x Co

BB = N*C(O)

C IOP, IOQ indieates eigenvalues between (a,b) are

CfromitoN

IOP = 1

IOQ= N

C you can change ip and iq to selectively choose desired eigenvalues.

IP = 1

6;



• IQ = N

C two endpoints needed to enclose eigenvalues

ITO = 0

STORE = C(O)

C shift matrix C br an amount a

C(O) = STORE - AA

C to detcrmine the eigenvalue count of eigenvalues

CALL LEVSON

C eigenvalue indicator

NEGAA= NEG

C if count is true then retain the value

IF ( NEGAA .LE. (IOP-I)) THEN

LE(IOP) = AA

DELLE(IC'P) = DELTA(MI)

ENDIF

C next shift matrix by and amount b

C(O) = STORE - BB

CALL LEVSON

NEGBB =NEG

IF ( NEGBB .GE. IOQ ) THEN

UE(IOQ) = BB

DELUE(IOQ) = DELTA(MI)

ENDIF

l

•

C initialize the arrays Le. and ue.
DO l MX=IOP, IOQ-I

LE(MX+l)=-l.O

UE(MX) = -1.0

CONTINUE
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C set inner endpoints

IR = IP

IS = IOQ

Cuse Lf,i as Iower point for bisect shift

EL =LE(IOP)

C if endpoint not found then search

2 IF ( UE(IR) .EQ. -1.0) THEN

DO 3 IH=IR+l, IOQ

IF ( UE(IH) .NE. -1.0 ) THEN

C mark the closest upper point to be used in bisect

MARK = IH

GOT04

ENDIF

3 CONTINUE

4 EU = UE(MARK)

C bisection shift

5 GAM = ( EL + EU ) * .5

IF (ABS(EL·EU) .LE. 1.0e-6) THEN

PRINT*, 'There is a multiple eigenvalue'

RETURN

ENDIF

C(O) = STORE - GAM

CALL LEVSON

C keep count of calls to L-D algorithm

IT=IT+l

K=NEG

C endpoint is found

IF ( K .EQ. IR ) THEN
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C store the found endpoint

UE(K) = G:\~l

C store corresponding value

DELvE(K) = DELT:\(W)

LE(K+l) = G:\~l

DELLE(K+l) = DELT:\(MI)

C next end'pt of eigenvalue to he found

GOTO 6

C capture other endpoints or update endpoints so to tighten

EL5E

IF (( K .EQ. (IR-!)) .AND. (GAM .GE. LE(K+l))) THEN

C tighten upper endpoint

EL = GAM

LE(K+l) = GAM

DELLE(K+l) =DELTA(MI)

GOTO 5

ENDIF

C capture endpoint or update

IF ( (K .GT. IR) .AND. (K .LT. 15)) THEN

C endpoint is captured

IF (UE(K) .EQ. -1.0) THEN

UE(K) = GAM

DELUE(K) =DELTA(MI)

LE(K+l) =GAM

DELLE(K+l) = DELTA(MI)

EU = GAM

ELSE

C upper endpt updated

iO



• IF ( CA~I .LT. l:E(K) ) THE:"

CE(K) = CA~I

DELt.:E(K) = DELTA(~!I)

El: = CAM

El'\DIF

C lower endpt updated

IF (CAl\I .CT. LE(K+1) ) THE"

LE(K+1) = CAM

DELLE(K+1) = DELTA(MI)

ENDIF

ENDIF

COT05

ENDIF

IF ( K .EQ. IS) THEN

UE(K) =CAM

DELUE(K) = DELTA(MI)

EU = CAM

COT05

ENDIF

EL= CAM

COT05

ENDIF

ELSE

il

6

C one endpoint round go find the second one

COT06

ENDIF

CONTINUE

ITO = ITO + 1
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C find second endpoint

IF (ITO .LT. 2) THE~

DO 7 IH=IQ. IR. -1

C using this endpoint for bisection shift

IF ( LE(IH) .NE. -1.0 ) THEl'\

EL = LE(IH)

IR = IQ

GO TO 2

El'\DIF

7 CONTINUE

EL = LE(IR)

IR= IQ

GOTO ;!

ELSE

C both are found exit

GOTOS

ENDIF

8 CONTINUE

RETUR:~

END

C search for the inner intervals Lei, uep

SUBROUTINE SEARCH

COMPLEX-16 C(O:lOOO)

DOUBLE PRECISION STORE, EL, EU, GAM, LE(l:lOOO), UE(l:lOOO)

DOUBLE PRECISION DELLE(1:1000), DELUE(l:lOOO), DELTA(2)

INTEGER N, IP, IQ, NEG

COMMON /Ll/ N, C
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CO:-l:-W:\ /ZI/ STORE

cml:-w:" /51/ :"':G. DELTA. :-11

cmow:" /Z3/ LE. l7E

cm.nlo:" /EE3/ DELLE. DELCE

COMMO:" /R!/ IP. IQ

Cm.gIO" /IREPEAT/ MREPEAT

!T = 1)

IR = IP

IS = IQ

KEL = IR-!

KUE = 15

PRINT*, , Enter tolerance for multiple eigenvalues: '

READ*, TOLMUL

MARK = IS

C terminate if all endpoints found

1 IF ( IR .GT. (lS-l) ) THEN

GOTOS

C search for the endpoits

ELSE

IF ( UE(IR) .EQ. -1.0) THEN

IF ( LE(IR) .NE. -1.0) THEN

EL = LE(IR)

SS = LE(IR)

SDELLE = DELLE(IR)

STOREL = DELLE(IR)

IXX = IR

ENDIF

IF ( LE(IR) .EQ. -1.0 ) THEN
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2

3

4

5

6

DO 2 LI=IR-l.l.-l

IF ( LE(LI) .:'\E. -1.0) THE:"

EL = LE(L!)

55 = LE(LI)

5DELLE = DELLE(LI)

5TOREL = DELLE(LI)

GOTO 3

ENDIF

CONTINUE

ENDIF

CO:'\TINUE

DO 4 IH=IR+l. 15

IF ( UE(IH) .NE. -1.0 ) THEN

MARK = IH

GOT05

ENDIF

CONTINUE

EU = UE(MARK)

GAM = ( EL + EU ) •.5

•

C multiple eigenvalue

IF (AB5(EL-EU) .LE. TOLMUL) THEN

LE(IXX) = 55

DELLE(IXX) = 5DELLE

LE(IXX) = EL

DELLE(IXX) = STOREL

IR = IR + (KUE - KEL) - 1

GOTOï

ENDIF
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C(O) = STORE - GA~I

CALL LEVSO:'\

IT = IT + 1

K=l'ŒG

IF ( !\IREPEAT .EQ. 1) THEN

C find next mten-al endpoint

GOTO ï

ENDIF

C endpoint found

IF ( K .EQ. IR ) THEN

UE(K) = GAM

DELUE(K) = DELTA(MI)

LE(K+l) = GAM

DELLE(K+l) = DELTA(MI)

GOTOï

ENDIF

IF (( K .EQ. (IR-l) ) .AND. (GAM .GE. LE(K+I))) THEN

C update lower endpoint of inten-al

KEL= K

EL = GAM

LE(K+l) = GAM

DELLE(K+I) = DELTA(MI)

STOREL = DELTA(MI)

GOT06

ENDIF

C endpoint capturai

IF ( (IR .LT. K) .AND. (K .LT. IS» THEN

IF (UE(K) .EQ. -1.0) THEN
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L7E(K) = CA~I

DELVE(K) = DELTA(~II)

LE(K-H) = CA~I

DELLE(K+l) = DELT:\(~II)

EU = CA~I

KUE=K

ELSE

C update upper p.nèpoint

IF ( CAM .LT. UE(K) ) THEl"

UE(K) = CAM

DELUE(K) = DELTA(~II)

EU = CAM

KUE=K

ENDIF

C updatc lower endpoint

IF (CAM .CT. LE(K+l) ) THEN

LE(K+l) = CAM

DELLE(K+l) = DELTA(MI).

ENDIF

ENDIF

COT06

ENDIF

IF ( K .EQ. 15) THEN

UE(K) = CAM

DELUE(K) = DELTA(MI)

EU = CAM

KUE=K

COT06
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E:'\DIF

IF ( K .LT. IR) THEN

EL = GA~I

KEL = K

GOTO 6

ENDIF

C exil to search for next i:cdpoint

GOTO ï

ENDIF

ENDIF

ï CONlj~!üE

IR = IR + l

GOTO l

8 CONTINUE

RETURN

END

SUBROUTINE LEVSON

DOUBLE PRECISION DELTA(2)

COMPLEX*16 C(O:lOOO), X(lOOO,2), SUM, EIGVX(lOOO)

INTEGER N,M.J,MI,NEG

COMMON /Ll/ N, C

COMMON /Sl/ NEG. DELTA, MI

COMMON /EIGV/ X

COMMON /EVX/ EIGVX

COMMON ICI/ KLEV

COMMON /IREPEAT/ MREPEAT

KLEV = KLEV + l
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2

3

!\EG = a
MREPEAT = a
X(l,l) = C(l)jC(O)

DELTA(l) = C(O)

IF ( DELTA(l) .LT. 0) THE"

NEG = NEG + 1

ENDIF

SUl\! = (0.0,0.0)

DO 1, M=2, N

DELTA(2) = (1.0 - X(M-1,1) x CONJG(X(l\I-IJ)) ) x DELTA(I)

IF ( DELTA(2) .LT. a) THEN

NEG = NEG + 1

ENDIF

IF (DELTA(2) .EQ. 0.0) THEN

MREPEAT = 1

RETUR.1\I

ENDIF

SUM = (0.0,0.0)

DO 2 JM=l, M-1

SUM = C(M-JM) x X(JM, 1) + SUM

CONTINUE

X(M,2) = ( C(M) - SUM ) 1DELTA(2)

DO 3 J=l, M-1

X(J,2) = X(J,l) - X(M,2) * CONJG( X(M-J,l) )

CONTINUE

DO 4 L=l, M

EIGVX(L)=X(L,l)

X(L,l) = X(L,2)
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4 CO:\TI:\CE

DELTA(J) = DELTA(2)

1 CONTI:\l7E

MI = 2

RETUR:\

END

c·····················································..•....................
SUBROUTINE REFINE

CAfter initial intervai (a,b) is chosen by routine select subintervais for À; have

C been selected by subroutine select. Subroutine refine searches for intervai

C (0', (3') such that it does not contain eigenvalue of the submatrix en - l .

COMPLEX-16 C(O:lOOO)

DOUBLE P_RECISION STORE, DELB, DELG, GAM, LE(l:lOOO), UE(l:lOOO)

DOUBLE PRECISiON DELLE(l:lOOO), DELUE(l:lOOO). SLI!\ll. SLIM2

DOUBLE PRECISION DELTA(2), ALPHA, BETA. DELA

INTEGER NEG, NEGNA, NEGNB, NEGNG

COMMON /Ll/ N, C

COMMON /Sl/ NEG, DELTA, MI

COMMON /Zl/ STORE

COMMON /Z3/ LE, UE

COMMON /EE3/ DELLE, DELUE

COMMON /Tl/ SLIMl, SLIM2

COMMON /T3/ DELB, DELA

COMMON /ITI/ ITRTOT

COMMON /Rl/ IP, IQ

COMMON /XlG/ GAM

COMMON /MULC/MC

ITRTOT = 0



• ITRATO = 0

LI~1 = IQ

C(O) = STORE

l = IP

1 MC=O

IF ( l .GT. LIM ) THEl'

C all eigen\"alues ha,oe been estimated. exit.

GOTO i

ENDIF

IF ( UE(I) .NE. -1.0 ) THEN

MC = 1

GOT03

C detennine the no. of multiplicities

ELSE

ALPHA = LE(I)

DELA = DELLE(I)

2 IF ( UE(I) .EQ. -1.0 ) THEN

l = l + 1

MC= MC+ 1

GOT02

ENDIF

MC=MC+ 1

GOT04

ENDIF

3 ALPHA = LE(I)

DELA = DELLE(I)

4 i'F.TA = UE(I)
".

DELB = DELUE(I)

• SO



• i\EGI'A = 1 - 1

NEGNB = 1

ITERA = 0

C scarch till 2 conditions are satificd and cali root to estimatc the eigenvalue in this interval.

.5 IF ( (NEGI'A .EQ. (1-1) ) .AND. (NEGNB .EQ. 1 ) ) THEI'

IF ( (DELA .GT. 0) .AND. (DELB .LT. 0 ) ) THEN

SLIMI = ALPHA

SLIM2 = BETA

CALL ROOT

ITRATO = ITRATO + ITERA

!TERA = 0

1 = 1 + 1

GOTO 1

ELSE

C use :"isection shifts

•

6

GOT06

ENDIF

ELSE

GOT06

ENDIF

GAM = ( ALPHA + BETA ) , 0.5

ITERA = ITERA + 1

C(O) = STORE - GAM

CALL LEVSON

NEGNG = NEG

DELG = DELTA(MI)

IF ( NEGNG .LE. (1-1) ) THEN

ALPHA = GAM
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NEG:\A = ~EG"'G

DELA = DELG

GOTO 5

ELSE

BETA = GAM

NEGNB = NEGNG

DELB = DELG

GOT05

ENDIF

1 = 1 + 1

C ne:<:t eigenvalues to be estimated

GOTO 1

i CONTINUE

RJ.-::TURN

END

SUBROUTINE ROOT

CAfter subroutine Eigen specifies the interva! (0',{3') which does not contain

C an eigenvalue of Cn - l . Root uses Pegasus method to find the eigcnvalue in (0',/3').

COMPLEX*16 C(O:1000), X(1000,2), EIGVX(lOOO)

DOUBLE PRECISION DX, DELX, DELS!, DELB, DELA, EPS, STORE. GAM

DOUBLE PRECISION DELTA(2), DELS2, SLIM2, SLIMl, TOL, PX, PFX

INTEGERN

COMMON /Ll/ N, C

COMMON /51/ NEG, DELTA, MI

COMMON /Tl/ SL!Ml,S1IM2

COMMON /T3/ DELB, DELA

COMMON /ZI/ STORE
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• CO~I:-'l0~ /IT!/ ITRTOT

CO:.1MO:\ /X!/ EIG

COMMON /EIGV/ X

COMMO~ /EVX/ EIGVX

COMMON /XIG/ GAM

COMMûN /MULC/ MC

C can change this value to accuracy clesirecl

EPS = 1.0E-6

ITR = 0

C maximum allowance for eigen estimate

MAXITR = 30

C DX is the next shift

DX = 0.0

C counts no. of retentions on sicle one.

KXl = 0

C counts no. of retentions on sicle two.

•

1

2

KX2 = 0

PX= GAM

DELSI = DELA

DELS2 = DELB

DELX = 1.0

DX = ( SLIM2*DELSI - SLIMI*DELS2)j(DELSI - DELS2) ;next shift

TOL = .5*(1.0+DABS(DX))*EPS

IF ( DABS(DX-PX) .LT. TOL ) THEN

. TRACE = TRACE + DX

WRITE(I2,2) DX, MC, ITR

FORMAT (I2X, FI5.S, 2X, 'muitipIicityof', 13, IOX, 14)

ITRTOT= ITRTOT + ITR

S3



• 3

\VRITE( lol. 3) -1.00. 0.00

FOR~lAT (IX. F25.S.6X. F25.S)

DO ol L=1. l\-l

•

C write elements of the eigenvector

\VRITE(lol. 5) EIGVX(L)

5 FORMAT (IX. F25.S.6X. F25.S)

-1 CONTIN"üE

RETURl\

ENDIF

C store DX shift as previous x

PX=DX

C(O) = STORE- DX

CALL LEVSON

DELX = DELTA(MI)

C count caUs to L-D aIgorithm

ITR = ITR + 1

C terminate estimate of eigenva:ue

IF (ITR .EQ. MAXITR ) THEN

WRITE(12,6) DX,ITR

6 FORl.1AT (15X, F15.8,26X, 14)

TRACE = TRACE + DX

ITRTOT= ITRTOT + ITR

PRINTx, 'X= -1.0000 0.000'

DO 7 L=l, N-l

C Print the eigenvectors

PRINT\'Eigvx2= " EIGVX(L)

PRINTx,'X= " X(L,2)

7 CONTINüE
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RETl:R~

E?\DIF

IF ( (DELX • DELSl) .CT. 0) THg

PFX = DELSl

DELSl = DELX

SLI~I1 = DX

KX2= KX2 + 1

KXl= 0

C avoid retention of an endpoint by scaling down the function.

IF ( KX2 .CT. 1 ) THEN

DELS2 = (DELS2 • PFX) / (PFX + DELSl)

ENDIF

GOTO 1

ENDIF

IF ( (DELX • DELS2) .GT. 0 ) THEN

PFX = DELS2

DELS2 = DELX

SLIM2 = DX

KXI= KXI + 1

KX2= 0

C avoid retention of an endpoint by scaling down the function.

IF ( KXI .GT. 1 ) THEN

DELSl = (DELSl * PFX) / (PFX + DELS2)

ENDIF

GOTO 1

ENDIF

RETURN

END
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Appendix B: Modified Method ­

Multiple Eigenvalue Case with the

MRQI-B Root Finder

PROGRAM MODMUB

e Note, replace the subroutine root in Appendix A by these 2 subroutines the

e rest being the same. This algorithm is a Modified version of Trench's algorithm.

e The algorithm is modified t~: 1) Use tighter interval endpoints enlosing

e the eigenvalues, 2) Handle the multiple eigenvalues, if any in the data matrix.

e This algorithm uses the Levinson-Durbin Algorithm with Modified Trench's method

e to deterrnine the eigenvalues of a Herrnitian Toeplitz matrix. Also uses the MRQI-B

e method a root searching method \Vith Levinson algorithm. Store your data in file

e called DATAH as below.

e 2 first line should have N the order of matrix.

e 9.0 0.0 from \ine 2 write the elements of matrix.

e 8.0 i.O

e Results will appear in file called RESMBI.
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St'BR01.:TI:\E LE\'

DOt'BLE PRECISIO:\ DELTA(2)

Cm.IPLEX"16 C(0:1000). X(1000,2). SC\!. B(100G). '1'(1000.2). SO~I

Cm.IPLEX"16 EIG\·X(1000). EIGYYlI000)

INTEGER :\."-l.J ,~II.:'\EG

Cm.nlO:\ /Ll/ 1'.C

Cm.1:\ION /SI/ NEG. DELTA. "-II

COMMOl' /EIGV/ B, X. y

COMMON /EVX/ EIGVX, EIGVY

COMMON /LEV2/ KLEV2

KLEV2 = KLEV2 + 1

NEG = 0

X(I,l) = C(1)/C(0)

'1'(1,1) = B(l)/C(O)

DELTA(l) = REAL( C(O) )

IF ( DELTA(I) .LT. 0 ) THEN

NEG = NEG + 1

ENDIF

SUM = (0.0,0.0)

SOM = (0.0,0.0)

DO i, M=2, N

OELTA(2) = (1.0 - X(M-1,1) * CONJG( X(M-1,1) ) ) * DELTA(I)

IF ( OELTA(2) .LT. °)THEN

NEG = NEG + 1

ENDIF

SOM = (0.0,0,0)

DO 1 JM=l, M-1

SOM = C(M-JM) * Y(JM, 1) + SOM

Si



• CO:"TI:\TE

Y(~I.~) = ( B(~I) - SO~I ) /DELT:\(2)

DO 2 .1=1. ~I-l

Y(J.2) = '"(J.!) - "'{(~1.2)· CO:"JG( X(~I-J.!) )

2 CO:\TI:"t:E

DO 3 L=1. ~I

EIGVY(L)=Y(L.!)

Y(L.!) = Y(L.2)

3 CO:\TI?\UE

IF ( 1\1 .EQ. l'\ ) THE='

GOTO ..

Ei\DIF

SUM = (0.0.0.0)

DO 4 JM=I, M-l

SUM = C(M-JM) • X(JM, 1) + SUl\!

4 CONTINUE

X(M,2) = ( C(M) - SUM ) / OELTA(2)

DO 5 J=I, M-l

X(J,2) = X(J,I) - X(M,2) • CONJG( X(M-J,I) )

5 CONTINUE

DO 6 L=I, M

EIGVX(L)=X(L,I)

X(L,I) = X(L,2)

6 CONTINUE

OELTA(I) = OELTA(2)

.. CONTINUE

MI = 2

RETURN
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SvBROLTI~E ROOT

CAfter s"broutine refine specifies the inter\"al (0'.3') which do<'s not contain

C atl eigen\"alue of en - 1. Root uses ;"IRQI-B methoà to find the eig<'n\'a!ne in lo'.3').

CQ;..IPLEX"16 C(O:IOOO). X(1000.2). EIGVX(lOOO)

COMPLEX"16 ·Y(1000.2). EIGV·Y(lOOO). B(IOOO)

DOUBLE PRECISION DX. DELX. DELSL DELB. DELA. EPS. STORE

DOUBLE PRECISION DELTA(2), DELS2. SLlMI. SLI;"12. TOL. PX. G:UI

DOUBLE PRECISION DX2. SOM, XNORM. YNORM. SUl);..!. SllMY

INTEGER N

COMMON /LI/ N, C

COMMON /SI/ NEG, DELTA, l'II

COMMON /Tl/ SLIMl, SLIM2

COMMON /T3/ DELB, DELA

COMMON /ZI/ STORE

COMMON /ITI/ITRTOT, ITOTBI, ITOTIQ

COMMON jXlj TRACE

COMMON jEIGV j B, X, Y

COMMON jEVXj EIGVX, EIGVY

COMMON jXIG/ GAM

COMMON jMULCj MC

EPS = 1.0E-6

ITR=O

TOL = 0

PX = GAM

DELS! = DELA

DELS2 =DELB
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ITQ = 0

ITBIS = 0

X:-iOR~1 = 0.0

DO 1 1=1. :"-1

C compute the nOrm

X:"ORM = XNOR~1 + X(I,ItCOi\JG( X(U) )

1 C;ONTI:-iUE

XNORM = XNORl\1--.5

B(I) = (-1.0,0.0) j XNORM

C normalize the vcctor

DO 2 1=2. N

B(I) = EIGVX(I-l)j XNOR.l\1

2 CONTINUE

C bisection shift

DX = (SLIMl+SLIM2t.5

C calI lev to solve for y

3 C(o) =STORE-DX

CALL LEV

DELX =DELTA(MI)

ITR =ITR + 1

C use the bisect shift if true

IF «DELX-DELSl) .GT. 0) THEN

SLIMl =DX

DELSl = DELX

ELSE

SLIM2 =DX

DELS2 =DELX

ENDIF
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• C calculate nuœerator of rayleigh quotient

Sl7l7,,1 = 0.0

DO -1 1=1. ?\

Sl7Dl = Sl7l7,,1 + CO?\JG( Y(I.1) ) • 8(1)

CO?\TE\U"E

C calculate denominator of rayleigh quotient

SmIY = 0.0

DO 5 1=1. ?\

SUMY =SUMY + CONJG( Y(I.1) ) • Y(I.1)

5 CONTINUE

C rayleigh iteration

DX2 =SUUM / SUJ\IY + DX

C normalize the vector y

•

6

ï

8

YNORM =0.0

DO 6 1=1, N

YNORM =YNOlù\1 + Y(I,1) • CONJG( Y(I,1) )

CONTINUE

YNORM =YNOR.M**.5

DO ï 1=1, N

B(I) = Y(I,1) / YNOlù\1

CONTINUE

IF (( SLIM1 .LE. DX2) .AND. (DX2 .LE. SLIM2)) THEN

WR.ITE(12, 8) DX2,ITQ

FORMAT Cray', 15X, F15.8,26X, 14)

TOL = .5*(1.0+DABS(DX))*EF:;

IF (DABS(DX-DX2) .LE. TOL ) THEN

KCONDI = KCOND1 + 1

ENDIF
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• IF (Y:\OR:'l .GT. 1000 ) THE:\

KCO:\D2 = KCO:\D2 -+- 1

E"DIF

C Estimate root round

92
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9

IF ( (DABS(DX-DX2) .LE. TOL ) .OR. (ITQ .EQ. 20)

.OR. (YNORM .CT. 1000) ) THE"

EIG = EIG + DX

WRITE(12, 9) DX, MC, ITR

FO!ùvIAT ('ray!il', SX, FlS.S, , X by " 14, l6X. 14)

ITRTOT= ITRTOT + ITR

GOTO 12

ENDIF

DX = DX2

ELSE

la ITBIS = ITIS + 1

DX = (SLIMI + SLIM2) * .5

ENDIF

IF ( ( ( ABS(SLIM2 - SLIMl) )*.5 ) .LT. 1.0E-06 ) THEN

EIG = EIG + DX

WRITE(12, 11) DX,ITR

11 FORMAT ('bisect',15X, F15.S,26X, 14)

ITRTOT= ITRTOT + ITR

GOTO 12

ENDIF

GOT03

12 WRITE(12, 13) ITBIS,ITQ

13 FORMAT ( 'bisect= " 14 , 26X, 'ray qo=', 14)

C counter counts rayleigh iterations

•
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ITOTIQ = ITOTIQ+ITQ

C counter counts bisection iterations

ïTOTBI=ITOTBI+ITBIS

RETlYR?\

E?\D
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