
NOTE TO USERS

This reproduction is the best copy available.

®

UMI

Addressing Fault Tolerance in Software Development:

A Comparative Study

Sadaf Mustafiz

School of Computer Science

McGill University, Montréal

June 2004

A thesis submitted to Mc Gill University in partial fulfillment of the requirements of the

degree of Master of Science.

© Sadaf Mustafiz, 2004

1+1 Library and
Archives Canada

Bibliothèque et
Archives Canada

Published Heritage
Branch

Direction du
Patrimoine de l'édition

395 Wellington Street
Ottawa ON K1A ON4
Canada

395, rue Wellington
Ottawa ON K1A ON4
Canada

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell th es es
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

ln compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

• ••
Canada

AVIS:

Your file Votre référence
ISBN: 0-494-06428-5
Our file Notre référence
ISBN: 0-494-06428-5

L'auteur a accordé une licence non exclusive
permettant à la Bibliothèque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par l'Internet, prêter,
distribuer et vendre des thèses partout dans
le monde, à des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protège cette thèse.
Ni la thèse ni des extraits substantiels de
celle-ci ne doivent être imprimés ou autrement
reproduits sans son autorisation.

Conformément à la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thèse.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

Current mainstream software engineering methods do not consider fault tolerance in the

requirements engineering and analysis stage. If at aIl, they only address it much later in

the development cycle. However, most modem systems can bene fit from sorne form of

fault-tolerance. EspeciaIly, complex, concurrent, distributed, or heterogeneous

applications are likely to contain software design faults that can lead to system failures.

In case of real-time or safety-critical systems, such faults can also result in catastrophes.

This thesis aims to investigate whether software development approaches have integrated

the concem of fault tolerance into the early software development stages to satisfy

dependability requirements. Software development methods, frameworks, middleware,

and other proposed approaches have been studied and are discussed with particular focus

on methodological support. Not surprisingly, most approaches are specialized, targeting

distributed, real-time, and embedded systems. FinaIly, a comparison of the various

approaches, based on several criteria, is presented.

Résumé

Les processus de développement de logiciels courants ne s'occupent pas de la tolérance

aux pannes. Tel est le cas malgré le fait que les logiciels modernes, tels que les systèmes

distribués, concurrents ou hétérogènes, sont compliqués à développer, et il est ainsi

d'autant plus probable qu'ils contiennent des fautes de conception qui pourraient mener à

des défaillances importantes.

Ce travail de maîtrise regroupe des approches spécialisées publiées de nos jours intégrant,

d'une manière ou d'une autre, la tolérance aux pannes dans le processus de

développement d'un logiciel. Les approches étudiées sont des méthodes de

développement, frameworks, middleware, et d'autres techniques qui tentent d'augmenter

la fiabilité d'un logiciel pendant son développement. Tout au long de l'étude, le support

méthodologique offert est mis en valeur. Non sans surprise, la majorité des approches

vise le développement de systèmes embarqués, temps-réels, et distribués. Pour conclure,

une comparaison des différentes approches a été établie.

11

Acknowledgments

1 would sincerely like to thank my supervisor, Prof. Jorg Kienzle, for his guidance,

assistance, and his very valuable feedback during the writing of this thesis. 1 am grateful

to him for the financial support he provided during the course of this work. 1 thank him

for giving me the opportunity to work with him and for teaching me good research

practices.

1 would like to thank Dr. Dondossola Giovanna, Dr. Geert Deconinck, and Dr. Alan

Burns for providing me with to sorne very useful reports, which were not publicly

available.

1 would like to thank my friends for their encouragement and suggestions.

1 wish to express my deepest thanks to my family, for their continuous support,

encouragement, and prayers.

iii

Contents

Abstract

Résumé

.
••• 1

•• 11

Acknowledgments .. iii

List of Figures ... ix

List of Tables .. xi

Chapter 1. Introduction .. 1

1.1 The Needfor Fault Tolerance .. 1

1.2 Software Development Approaches ... 2

1.3 Research Objectives 3

1.4 Organization 4

Chapter 2. Fault Tolerance Background .. 6

2.1 Non-functional Requirements .. 7

2.2 Dependability: The Pur pose of Fault Tolerance ... 8

2.2.1 Reliability ... 9

2.2.2 A vailability .. 9

2.2.3 Safety ... 9

2.2.4 Confidentiality ... 10

2.2.5 Integrity .. 10

2.2.6 Maintainability ... 10

2.3 Dependability Impairments 10

2.3.1 The FEF Chain ... Il

2.3.2 Faults .. Il

IV

2.3.3 Errors .. 13

2.3.4 Failures ... 14

2.4 Dependability Means ... 15

2.4.1 Fault Prevention ... 16

2.4.2 Fault Removal .. 17

2.4.3 Fault Forecasting .. 17

2.4.4 Fault Tolerance .. 18

Chapter 3. Software Development Methods ... 28

3.1 HOOD 28

3.1.1 Software Development Life Cycle ... 28

3.1.2 Real-time Design in HOOD ... 32

3.1.3 Concurrency ... 33

3.1.4 Benefits ofusing HOOD .. 34

3.1.5 Limitations of HOOD .. 34

3.1.6 Developments and Related Projects ... 34

3.2 HRT-HOOD ... 35

3.2.1 Real-time Issues ... 36

3.2.2 Software Development Life Cycle ... 37

3.2.3 Requirements Definition .. 38

3.2.4 Architectural Design .. 38

3.2.5 Case Study: Mine Control System ... 47

3.2.6 Mapping Design to Implementation .. 54

3.2.7 Developments ofHRT-HOOD .. 55

3.3 Summary .. 55

Chapter 4. Fault Tolerance Frameworks and Middleware 57

4.1 TIRAN .. 57

4.1.1 FT Framework Requirements .. 58

4.1.2 TIRAN Framework Elements .. 59

4.1.3 Framework Architecture .. 60

v

4.1.4 User Supports ... 61

4.1.5 Case Study: Primary Substation Automation System 71

4.1.6 Real-time Applications .. 77

4.2 DepAuDE ... 80

4.2.1 Framework Requirements .. 81

4.2.2 User Support .. 82

4.3 TARDIS .. 84

4.3.1 Requirements Specification ... 85

4.3.2 Architectural Design .. 85

4.3.3 TARDIS and Software Design Methods .. 86

4.3.4 Case Study: Mine Control System ... 87

4.4 Middleware Architectures 92

4.4.1 General Middleware ... 92

4.4.2 Middleware Architectures with Fr Support .. 93

4.5 Summary .. 95

Chapter 5. Other Fault-Tolerance Approaches ... 97

5.1 Extensions of UML 97

5.1.1 Modeling Hard Real-time Systems with UML: The OOHARTS Approach97

5.1.2 Developing Safety Critical Systems with UML .. 98

5.2 Other Approaches .. 99

5.2.1 A Framework for Integrating Non-functional Requirements into Conceptual

Models ... 99

5.2.2 Exception Handling in the Development of Dependable Component-Based

Systems ... 100

5.2.3 EFTOS: FT Approach to Embedded Supercomputing 102

5.2.4 DELTA-4 ... 102

5.3 Related Work 103

Chapter 6. Survey Results .. 104

vi

6.1 Nonjunctional Requirements 104

6.2 Fault Tolerance Features 105

6.3 Target Domain ... 107

6.4 Support for NFR Specification 107

6.5 Middleware Comparison 108

6.6 Comparison of Designs of FT Approaches 109

Chapter 7. Future Work ... 111

Chapter 8. Conclusion .. 113

Appendix A .. 115

Appendix B .. 116

References .. 120

Acronyms .. 129

vii

List of Figures

1. Dependability tree .. 9

2. Fault classes ... 12

3. Failure classes .. 14

4. Fault tolerance tree ... 18

5. Idealized fault -tolerant component ... 25

6. Recovery block structure and execution .. 26

7. NVP structure and execution ... 27

8. Scope of HOOD ... 29

9. Basic design step ... 29

10. Scheme of the design phase .. 37

11. The HRT-HOOD software development life cycle ... 38

12. Graphical representation of an HRT-HOOD object .. 41

13. Mine control system .. 48

14. First level hierarchical decomposition of control system .. 50

15. Hierarchical decompositions of the pump object ... 52

16. Decomposition of the high low water sens or ... 53

17. Hierarchical decomposition of the environment monitor .. 54

18. TIRAN framework architecture ... 61

19. TIRAN framework in the development process .. 61

20. A functional view of the scheme ... 62

21. Class diagram of Package Methodology .. 63

22. Class diagram of Package System Model .. 64

23. Class diagram of Package System Composition .. 64

24. Class diagram of Package System Functions ... 65

25. Class diagram of Package Time Requirements .. 65

26. Class diagram of Package System Dependability .. 66

27. Main class diagram of Package PEF .. 66

28. Class diagram of Package Fault Model .. 67

Vlll

29. Class diagram of Package Error Model ... 68

30. Class diagram of Package Failure Model .. 68

31. FEF Chain c1ass diagram of Package PEF Model ... 69

32. Class diagram of Package FT Strategy Model ... 70

33. Class diagram of Package PSAS Methodology ... 73

34. Class diagram of Package PSAS System Model ... 73

35. Class diagram of Package PSAS System Composition ... 74

36. Class diagram of Package System Functions ... 74

37. Class diagram of Package Time Requirements .. 75

38. Class diagram of Package Dependability ... 75

39. Class diagram of Package PSAS Fault .. 76

40. Class diagram of Package PSAS Error .. 76

41. Class diagram of Package PSAS Failure ... 77

42. The main c1ass diagram of the Package PSAS FT Strategy 78

43. The c1ass diagram Fault Model Relationships of the Package PSAS FT Strategy

Model ... 79

44. The c1ass diagram Error Model Relationships of the Package PSAS FT Strategy

Model ... 79

45. The c1ass diagram Failure Model Relationships of the Package PSAS FT Strategy

Model ... 80

46. Target application architecture .. 83

47. DepAuDE methodology scheme .. 84

48. Software development using TARDIS ... 87

49. Stereotypes with associated tags and constraints ... 99

50. Structure of a use case .. 101

51. A software architecture composed by three IFTC ... 101

52. Dependability-explicit development model ... 111

ix

List of Tables

1. Error types and detection mechanisms .. 19

2. HRT-HOOD objects ... 43

3. Attributes of periodic and sporadic processes ... 49

4. Fault tolerance scenarios handled by the TIRAN methodology 59

5. Association of FT mechanisms to FT steps .. 60

6. Comparison based on NFR ... 105

7. FT support ... 106

8. Approaches and their target environment.. ... 107

9. Middleware comparison .. 109

10. Comparison of different orthogonal approaches ... 110

x

Chapter 1.

Introduction

"

Your satellite is finaUy flying. You 've waited 10 years for this. The mission is on

track and aU systems are "go". The REel number cruncher, high above, sifts

through and analyzes the torrent of data streaming into your system, giving you

on-the-spot data reduction for downlink. You sit in your ground station, delighted

as you watch the picture develop.

Out of the blue comes a galactic cosmic raY, hurtling towards you with 500MeV

of silicon-pulverizing energy. It hits processor A5's stack pointer. A bit gets

flipped. The processor is going to crash and take 25% of your data with it. A

second cosmic raY glances off the satellite structure and showers your memory

with upset inducing radiation. Your data is being cooked.

What will you do ... what will you do????

" [REE98].

This is where fault tolerance cornes in - not just for rnission-critical or safety-critical

systems, but for any dependable system.

1.1 The Need for Fault Tolerance
Modern applications must respond to an increasing number of requirements. To satisfy

user expectations, applications offer more and more functionality, and hence grow more

complex. Elaborate user interfaces, multi-media features or interaction with real-time

devices, e.g. sensors, require software to promptly and reliably respond to external

1 NASA Remote Exploration and Experimentation Project

1

stimuli and to be able to perform several operations simultaneously. The popularity of the

Internet and the growing field of e-commerce have led to an explosion of the number of

distributed systems in operation, an increasing number of which are heterogeneous.

Applications like the ones mentioned above must usually provide highly available

services. Unfortunately, complex applications are more likely to contain so-called

software design faults that are not detected during system testing, and that might at sorne

point lead to system failure. In distributed systems, the probability that a node-failure

occurs increases with the number of nodes in the system. Network congestion and

partitions are very common in distributed systems, just as are overloaded resources, e.g.

devices or databases. Dynamic systems, i.e. applications that handle a potentially

unlimited number of clients, have to deal with irregular load. Heterogeneous systems

often register abnormal behavior of individual subsystems or components, etc. In short,

most modern systems must provide or can at least bene fit from sorne form of fault

tolerance. Surprisingly enough, fault tolerance is not addressed by current mainstream

software engineering methods. Software development approaches are discussed in the

next section. In general, fault tolerance is considered a "non-functional" requirement, and

therefore introduced too late during the development of an application. Most of the time,

developers start thinking about fault tolerance only after the main part of the application

has already been implemented. In such a situation it is sometimes very hard or even

impossible to provide acceptable fault tolerance. Ad-hoc solutions result in complex

system structure, hard-to-maintain code and poor performance.

1.2 Software Development Approaches
Software development can be approached in several ways: software development

methods, middleware approach, frameworks and middleware framework approach. At

times, software development concentrates on providing domain-specifie software

architectures.

Software development methods define a step-by-step process that leads application

developers from the elaboration of an initial requirements document through to the final

2

implementation. The software development life cycle, at the top-Ievel, comprises five

phases: requirements, analysis, design, implementation, testing and maintenance. Most

approaches start by analyzing the system requirements based on use cases, which capture

the expectations that the final users of the software may have. During the analysis phase,

a complete specification of the system under development is established. In the

subsequent architecture and design phases, a solution that provides the required services,

i.e. fulfils the specification, is determined. Finally, environment-specific mapping

strategies help developers to implement the design in a straightforward way for a specifie

platform. However, design methods, like HOOD and HRT-HOOD, focus more on the

architectural and detailed design phases and leave the requirements analysis to the

developer.

Software architectures, like DELTA-4, FRIENDS, and AQuA, however, do not offer any

methodological support, but instead provide a structure (usually hardware design) based

on which applications can be built.

Middleware is software that connects other applications to enable data flow between two

possibly heterogeneous systems in a distributed computing environment. DCE, DCOM,

Java RMI, and CORBA are ex amples of middleware. A framework is an environment

composed of software components, which can be tailored according to the needs of the

application being developed. Users deal with interfaces only and hence implementation

details of the components are abstracted. A framework with NFR support, TARDIS, is

presented later. Finally, a middleware framework is a structure that offers users multiple

middleware styles that can be customized for application as well as device constraints.

Sorne middleware frameworks, TIRAN and DepAuDE, are discussed in this thesis.

1.3 Research Objectives
The goal of this master thesis is to investigate if special-purpose development methods,

i.e. processes targeted at a certain type of system (e.g. real-time systems), have addressed

the concern of fault tolerance at the early steps of software development, e.g. at the

requirements engineering and analysis phases. It would be of interest to see if other

3

approaches, like frameworks or middleware, are currently available that provide a

methodological support for integrating fauIt-tolerance. It would also be relevant to study

which of the non-functional concems, such as reliability, timeliness, and safety, were

handled in the approaches.

In order to address these questions, current specialized software development processes

have been investigated and summarized in this thesis. The projects presented here include

specialized software development methods, fault tolerance frameworks, middleware,

software architectures, and proposed approaches that integrate the concem of fauIt

tolerance in standard practices like the Unified Modeling Language (UML) [UML2003]

and the Catalysis process [RL2004]. The thesis shows to what extent dependability

requirements are addressed in each of the approaches, which application environments

and failure domain are covered by each, and what fault tolerance techniques, if any, have

been incorporated into the process. Special emphasis has been put on methodological

schemes offered in the approaches for specification of fault tolerance and other non

functional requirements. Finally, a comparison of the different approaches has been

established.

It should be noted that this thesis co vers major available fault tolerance approaches but

unintentionally some small ones may not be mentioned.

1.4 Organization
This thesis is organized as follows.

Chapter 2 provides an overview of software fauIt tolerance. It defines the fault tolerance

terminology that is used throughout this thesis.

The survey is divided into three chapters.

Chapter 3 discusses two software development methods specialized in the development

of real-time systems: HOOD and HRT-HOOD. HOOD provides limited support for

4

concurrent execution and real-time applications. HRT-HOOD is an extension of HOOD

and aims to produce dependable real-time systems.

Chapter 4 mainly discusses three fauIt tolerance frameworks: TIRAN, DepAuDE, and

TARDIS. These frameworks have integrated the concern of fauIt-tolerance in the

software development process. TARDIS, however, was a proposed project and not

followed up with more concrete work. In addition, general middleware that address fault

tolerance have been reviewed at the end of this chapter.

Chapter 5 presents sorne proposed and developed approaches that consider elements

required to produce dependable systems during the early stages of software development

or during the design phases.

Chapter 6 presents the results of the survey based on a few comparison criteria.

Finally, Chapter 7 discusses sorne possible future work and Chapter 8 conc1udes on this

thesis work.

5

Chapter 2.

Fault Tolerance Background

Systems are developed to satisfy a set of requirements that meet a need. A requirement

that is important in sorne systems is that they be highly dependable. Fault tolerance is a

means of achieving dependability. Fault-tolerant systems aim to continue delivery of

services despite the presence of hardware or software faults in the system.

There are three levels at which fault tolerance can be applied. Traditionally, fault

tolerance has been used to compensate for faults in computing resources (hardware). By

managing extra hardware resources, the computer subsystem increases its ability to

continue operation. Hardware Jault tolerance measures include redundant

communications, replicated processors, additional memory, and redundant power/energy

supplies. Hardware fault tolerance was particularly important in the early days of

computing, when the time between machine failures was measured in minutes [NISA95].

A second level of fault tolerance recognizes that a fault tolerant hardware platform does

not, in itself, guarantee high availability to the system user. It is still important to

structure the computer software to compensate for faults such as changes in pro gram or

data structures due to transients or design errors. This is software Jault tolerance.

Mechanisms such as checkpointlrestart, recovery blocks and multiple-version programs

are often used at this level [NISA95].

At a third level, the computer subsystem may provide functions that compensate for

failures in other system facilities that are not computer-based. This is system Jault

tolerance. For example, software can detect and compensate for failures in sensors.

Measures at this level are usually application-specifie [NISA95].

6

This chapter focuses on software fauit tolerance and discusses evolution of failures from

fauIts and techniques that can be used to tolerate such faults. It is primarily meant to

provide a brief background on fauIt tolerance. It introduces non-functional requirements

in Section 2.1, and in particular discusses dependability. Section 2.2 presents Laprie's

concept of dependability, and discusses sorne important dependability attributes [JL92].

Section 2.3 describes the dependability impairments - faults, errors, and failures. Section

2.4 concentrates on fauIt tolerance techniques and includes error detection and system

recovery.

2.1 Non-functional Requirements

In software systems, requirements can be broadly categorized into two types: functional

and non-functional. Functional requirements define the behavior of the system, that is,

the functions and services expected of the system. Non-functional requirements (NFR)

address the constraints and qualities. NFR introduce quality attributes to a system that

must be satisfied for the system to function and provide service under all circumstances.

This is particularly important for dependable/real-time/safety-critical systems. Attributes

of common concem for such systems include dependability, fauIt tolerance, availability,

reliability, maintainability, safety, and security. But the question remains whether the se

should be treated as non-functional requirements, since as a result of this classification,

important aspects like fault tolerance, are not addressed during the analysis and design

phases [JK2003].

Non-functional requirements are also referred to as desirable attributes, non-behavioral

requirements, design constraints, system inteiface requirements, user interface

requirements, hardware characteristics, software quality, or more colloquially as "-

ilities and --ities" [MB2001]. The classic non-functional requirement knowledge-base

defined by Lawrence Chung in [CN2000] is included in Appendix A.

Three non-functional requirements often mentioned are timeliness, adaptability, quality

of-service, and most of aIl dependability.

7

Timeliness requirements are of concern in systems where correctness is not only based

on the results generated but also on the time when they are made available [FL93].

Timeliness can be related to soft real-time or hard real-time requirements (discussed in

Chapter 3).

Adaptability requirements involve satisfying the need to remain functional even when

medications are carried out in the system or environment. Adaptability is associated to

dynamic change management (making system modifications without halting the system),

and mode changes (shifting the system goals according to changes in the environment)

[FL93].

Dependability requirements are discussed in details in this chapter, starting from the next

section.

2.2 Dependability: The Purpose of Fault Tolerance

IFIP WGIO.4 Definition [JL92]

Dependability is that property of a computer system such that reliance can justifiably be

placed on the service it delivers. Dependability has several attributes, including

• availability - readiness for usage

• reliability - continuity of service

• safety - non-occurrence of catastrophic consequences on the environment

• confidentiality - non-occurrence of unauthorized disclosure of information

• integrity - non-occurrence of improper alterations of information

• maintainability - capability to undergo repairs and evolution

The dependability requirement varies with the target application, since an attribute can be

essential for one environment and not so much for others. The dependability tree is

shown in Figure 1.

8

- Attributes
(co llccrns)

Availability

Reliability

Safety

Confidcntiality

Intcgrity

Maintainability

-E
Faults

Dependabîlity -foo-- ImpaÎrments l.:rrors
engineering (factors)

. Failures

2.2.1 Reliability

~
Fault Prevention

Fault Tolerance
- Mcans

(mcthods) Fault Rer.noval

Fault Forecasting

Figure 1. Dependability tree [JL92]

The reliability of a system measures its aptitude to provide service and remain operating

as long as required. The MTTF (mean time to failure) of a system is a quantitative

measure of its reliability [GM2002].

2.2.2 A vailability

The availability of a system measures its ability to provide the expected service whenever

required. It can be ca1culated as MTTF/(MTTF + MTTR), where MTTF is the mean time

to failure and MTTR is the mean time to repair [GM2002].

2.2.3 Safety

The safety of a system is determined by the lack of catastrophic failures it undergoes. It

can be measured in binary terms, as in, a system can be safe or unsafe [GM2002].

9

2.2.4 Confidentiality

Confidentiality is the non-occurrence of unauthorized disclosure of information. The

resource necessary to keep the information from being leaked out of the system is a

measure of the strength of confidentiality [GM2002]. This is a security concern.

2.2.5 Integrity

Integrity is the non-occurrence of the improper alteration of information. It is related to

the mean time to failure of a system and may be measured by the time and resources

required for accessing a system without authorization. Integrity and confidentiality can be

grouped as the security attribute.

2.2.6 Maintainability

The maintainability of a system is its ability to avoid, detect, localize, and correct faults.

It can be measured as the MTTR (mean time to repair) together with consideration of the

repair philosophy. To achieve maintainability, fault tolerance means can be utilized.

2.3 Dependability Impairments

Dependability impairments include aspects of a system, which cause a deviation from the

normal behavior and entailloss of quality of service to sorne extent.

The IEEE TC FTD/IFIP WGIO.4 definitions for the three impairments are as follows.

• A system failure occurs when the delivered service deviates from fulfilling the

system function, the latter being what the system is aimed at.

• An error is that part of the system state which is liable to lead to subsequent

failure: an error affecting the service is an indication that a failure occurs or has

occurred.

• The adjudged or hypothesized cause of an error is a fault.

When the system delivers services which deviate from the correct behavior of a system

according to its specifications, a failure is said to occur. Such a failure is caused by a

10

system state not adhering to the normal state and is called an error. The detection of an

error implies the presence of a fault, also known as a bug, in the system. This cause-effect

relationship creates a fault->error->failure (FEF) chain, which is an iterative process

[TIRAN D1.1].

It should be noted that errors do not necessarily lead to failures; component failures are

not necessarily fauIts to the surrounding system.

2.3.1 The FEF Chain

The FEF lifecycle includes three stages as in explained in [GM2002].

• The fault is dormant or passive when it is present in the system but has not yet lead

to any errors or abnormal behavior.

• The fault is active when it effects the system functioning and hence produces an

error.

• The error is propagated inside the system and resuIts in a failure leading to a loss of

service in the system.

The process by which a fauIt transforms into an error is known as fault activation. The

spreading of errors that leads to a failure is the error propagation mechanism.

The concepts of latency and inertia can be illustrated in such a situation. Latency is the

meantime between the occurrence of a fault and its activation as an error. Inertia is the

meantime between the occurrence of a failure and the initiation of consequences to the

environment [GM2002].

The following sections review faults, errors, and failures in more detail.

2.3.2 Faults

There are many types of fauIts that affect computerized systems, and they can be

classified in various ways as shown in Figure 2.

11

Causes of Faults

• Physical faults can be caused by physical or environment phenomenon, like

lighting.

• Human-made faults are functional or conceptual faults that are caused by humans

during system development (e.g., bad system design) or improper handIing of the

system.

Faults

Nature of Faults

Physical Cause ____ r
L... Hmnan-Madc

E
Accidcntai

Nature ----~I_- lntentional, Non-Malicious

Intentional, Malicious

-c Developmcnt
Phase of Creation

Opcrational

C
Internai

Boundary---....
Externat

___ .. r Permanent
Pcrsistcl1cC L...

Tcmp()rary

Figure 2. Fault classes [JL98]

• AccidentaI faults are more common and appear by chance because of

environmental or human-made reasons. For example, a developer can misread a

system's specification leading to bad analysis and design.

• Intentional non-malicious faults are due to compromises introduced during

system design (e.g., not considering fault detection means exhaustively during

design).

• Intentional malicious faults are those created deliberately by people. For example,

one may spread viruses to sabotage the system.

12

Creation Phase of FauIts

• Development fauUs are caused during system development. For example, choosing

a bounded area that is too smaIl during implementation might lead to a fauIt later.

• Operational fauUs crop up when the system is in operation. For example,

activating parts of a system in the wrong order might case fauIts in the system later.

Boundary of FauIts

• Internai fauU are due to internaI system states (e.g., a robot arm might malfunction

because of incorrect logic used in the program).

• External fauUs are caused by environmentaI conditions or humans (e.g., excessive

radiation might damage an equipment).

FauIt Persistency

• Permanent fauUs or static fauIts appear and persist leading to a loss of service until

the fauIt is detected and removed (e.g., extreme temperature damages an

equipment).

• Temporary faults or dynamic faults disappear over time. Temporary faults can be

transient or intermittent. Transient Jaults are caused by external events, like a 100 se

power connection might make an equipment unusable for a while. Intermittent

Jaults arise from internaI reasons, like conflicting packets that may lead to

temporary network partitions.

2.3.3 Errors

An error, an abnormal part of system state, does not necessarily cause a failure. This

transformation is based on the level of redundancy in the system, the nature of the error

(it might be temporary), and aIso whether it faIls outside acceptable bounds (e.g., if it

exceeds the acceptable error rate).

An error is said to be latent when it has not been discovered yet and subsequently it is

detected.

13

2.3.4 Failures

According to Laprie, the fai/ures modes of a system can be divided into three categories:

domain, perception by severa! users, and consequences on the environment as shown in

Figure 3.

L
Value Failures

,..--- Domain-------...
Timing Failures

Failures _+ ____ Perception by
Several users

r Consistent Failures

-----IL Inconsistent Failures

Consequences L Benign Failures
.... ----on environment-----I :

Catastrophic Failures

Figure 3. Failure classes [TIRAN Dl.1]

Domain Failure

• Value failure occurs when an invalid value is output with reference to the correct

behavior of the system. Value failure is a type of domain failure.

• Timing failure occurs when a service is provided before or after time. Late timing

failures are also referred to as performance fai/ures. When there is total loss of

service, the failure is said to be a halting failure. Omission failures (failures that occur

when the system does not respond to a request) and crash failures (failures that occur

when the system stops responding completely) are classes of halting failure. A system

that only experiences halting failures is said to be afail-halt system. When a system

fails and stops generating any output, it is said to be afai/-passive system. A system is

said to be faiZ-siZent when clients are not aware of the failure. Systems that have

means to detect failures are known as fail-stop systems.

Perception by Severa! U sers

• Consistent failure, a type of perception failure, is a failure which can be identified by

aH users in the same way.

14

• Inconsistent failure, a type of perception failure, is a failure which crops up in

different ways for different users.

Consequences on Environment

The seriousness of the consequences of the failure can range from benign to catastrophic.

Benign failures do not have catastrophic consequences on the environment. A system that

only fails in a benign manner is said to be a faiZ-safe system. Catastrophic failures have

disastrous consequences on the environment.

The risk and safety evaluation are application-dependent. The civil aeronautics defined a

standard DO-178B to qualitatively evaluate the effects of failures [GM2002].

• Without effects.

• Minor or benign failures - lead to upsetting the passengers thus increasing the crew

workload.

• Major or significant failures - lead to injuries of passengers and crew members thus

reducing the efficiency of the crew.

• Dangerous or serious failures - lead to some casualties and/or serious injuries of

passengers and members of the crew, or prevent the crew from achieving its task in a

precise and complete manner.

• Catastrophic or disastrous failures -lead to loss of human lives.

2.4 Dependability Means
The dependability means are broadly categorized into four areas: fault prevention, fault

tolerance, fauIt removal, and fauIt forecasting. These techniques are aIl related and should

be considered together during development.

Fault prevention and fauIt removal means aim to increase the reliability or the availability

(in case of repairable systems) of systems. FauIt forecasting means are used to predict

reliability of software. But together with these, fault tolerance techniques are required to

15

ensure acceptable levels of safety, reliability, and availability to take care of the residual

faults.

2.4.1 FauU Prevention

Fault prevention involves taking measures to minimize the creation of faults and hence

avoiding them in the first place. There are two tasks that need to be considered to reduce

occurrence of faults.

• Measures need to be taken to act on the faults created by humans during the

system development lifecyc1e.

• Measures need to be taken to account for faults that originate due to degradation

or damage of the technology used.

Techniques used for fault avoidance/prevention inc1ude [LP2001]:

• refinement of the user's requirements iteratively - there should be communication

between the software engineer and the system engineer to avoid faults that are

created due to a bad specification,

• engineering of the software specification process,

• use of structured design and good software programming discipline,

• unambiguous coding,

• formaI methods, and

• software reuse.

Fault prevention techniques aim to produce a system without any faults. But, this ideal

scenario cannot be achieved usually, and it is important to consider the faults that might

still exist in the system. This is where fault tolerance and fault removal means should be

applied.

16

2.4.2 FaoIt Removal

Fault removaI involves detection, diagnosis and removal of faults. This is considered at

the software verification and validation phase.

• Fault detection tests for the presence of faults.

• Fault localization involves fauIt diagnosis and fault isolation and it identifies the

fauIt present in the system.

• Fault correction eliminates fauIts when possible.

Fault removal means inc1ude:

• Software testing, a dynamic analysis technique, is commonly used fauIt removal.

But, presently exhaustive testing is not possible and hence new fauIts are likely to

crop up during the operation phase.

• FormaI inspection is carried out before testing and entails checking the source

code for fauIts. The errors are then corrected and verified.

• Formai design proofs are mathematical means used for removal of fauIts.

2.4.3 FaoIt Forecasting

FauIt forecasting involves estimating the presence of faults in software and analyzing

possible consequences of the fauIts [AL2001].

FauIt forecasting techniques inc1ude:

• Reliability estimation uses inference techniques on the failure statistics generated

during tests and operation to estimate the current reliability of the software

[LP2001].

• Reliability prediction uses software metrics and measures during software

development to estimate the reliability of the software in the future.

FauIt removal and fault forecasting methods determine whether the software behavior is

consistent with the specifications, but they cannot detect flaws in the specifications. Even

17

using the best people, practices, and tools cannot guarantee that the software is free of

errors. Rence, fault tolerance means should be used to tolerate unexpected fauIts.

2.4.4 Faolt Tolerance

Fault tolerance is the means by which a system can provide services in spite of fauIts,

errors, or failures.

According to [AL2001], fault tolerance can be divided into two steps: error detection and

system recovery as shown in Figure 4. Error detection means can be either concurrent or

preemptive. System recovery comprises of error handIing followed by fauIt handling.

Fault
Tolerance

Error Detection-{

Recovery

Concurrent
Error Detection

Preemptive
Error Detection

{

ROllbaCk

Error Handling Compensation

Rollforward

Fault Diagnosis

Fault Handling
Fault Isolation

System Reconfiguration

System Reinitialization

Figure 4. Fault tolerance tree

2.4.4.1 Error Detection Step

This step involves identification of errors in the system and uses forms of active

redundancy for this purpose. There are two types of error detection mechanisms.

Concurrent error detection means are used during service delivery. Preemptive error

detection can only be done when the system is out of service or suspended, and is aimed

at detecting latent errors and dormant faults. Sorne common error detection mechanisms

are discussed in Table 1.

18

Ob.iective
Corrupted messages

Late or lost messages
Messages in disorder
Late or dead processes
Corrupted processes
Corrupted environment
Runtime errors
Memory violation, stack overflows
Bit errors
Periodic tests

Mechanism
Cyclic redundancy code, parity checking, checksums, loopback
testing
Time-out
Checking packet numbers
Watchdogs
Plausibility/rangelhistory/authority checks
Control flow monitoring
Exception processing
Memory access checking
Error detecting codes, parity bits, write/read back cycles
Testing communication status, memory scrubbing, monitoring of
error history

Table 1. Error types and detection mechanisms

Corrupted messages detection:

• Coding checks use redundancy in the representation of objects to help in the detection

of errors associated to software or hardware.

o Cyclic Redundancy Code (CRC) checks are used to detect errors in blocks of data

related to hardware faults.

o Parity code, the most popular and simple st code, involves adding one bit to a set

of bits which is either 0 or 1 based on the XOR function of aIl the bits. For

example, 1011011 has the parity bit 1 added to it. Multiple parity codes are used

also.

o Longitudinal redundancy checks add an extra bit to the end of every word in the

block to be coded. Vertical redundancy checks add redundant words to the block.

Both these checks together constitute the bidimensional code check.

o Unidirectional codes detect all errors that alter the number of l' s in any one

direction. For ex ample for a word 101100, 101111 and 110000 are unidirectional

errors. Multidirectional codes are also used for detecting errors.

• Arithmetic codes are used in calculation systems (addition, subtraction,

multiplication, division) to detect arithmetic errors.

o Checksums are used to detect errors in blocks of data that are caused by software

related faults. A checksum digit is sent with each packet which is a sum of the

sequence of binary integers in the data.

19

• Loopback testing is used to check whether RS-232 communications hardware is in

order. Data is sent from a port to a jumper and then back to the port. If the port,

device, and cables are working, a key pressed appears on the screen.

Late or lost messages detection:

• Time-out helps in detecting communication errors caused by late or 10st messages. A

wait period for a message is set and on exceeding this, an alert is raised or measures

are taken to handle it.

Disordered messages detection:

• Packet sequence numbers is a number added to each packet that helps the receiver

detect errors by checking whether any one is rnissing.

Late or dead processes detection:

• Watchdog mechanisms can be used with data diversity and design diversity

techniques to detect late or dead processes. Watchdog timers set a deadline for

acceptance tests to run on primary algorithm and when the deadline expires a backup

algorithm maybe invoked.

Corrupted processes detection:

• Plausibility checks are used to check whether a value falls in the acceptable range

(limit range, deviation from a default value range, or resuIts from a pattern check)

• Range checks are consistency checks that confirm whether a computed value is in a

valid range, for example, a computed probability must be between 0 and 1.

• Address checking verifies that the address to be accessed exists.

• Other checks to detect corrupted processes include history checks and authority

checks.

Corrupted environments detection:

• Control flow monitoring (or Control Flow checking) entails partitioning the

application pro gram in basic blocks, i.e., branch-free parts of code. For each block a

20

deterministic signature is computed and faults can be detected by comparing the run

time signature with a pre-computed one.

Run-time errors detection:

• Exception processing is an online error detection mechanism which signaIs the

presence of errors during program execution by raising exceptions.

Memory violationlstack overflow detection:

• Memory access checking is required to detect errors caused by reading from

uninitialized memory or writing to freed memory, which can cause a pro gram to

behave abnormally or even crash. Compilers and tools need to be used to find

statically-detected and runtime-detected errors.

Bit errors detection:

• Parity bits are used for parity checking (explained above).

• Write/read back cycles are used to prevent unintentional storage of bad data. A write

operation is followed by a read operation to detect bad recording of data.

Detection via periodic tests:

• Memory scrubbing merely reads out data to a controller, scrubs out any correctable

error(s), and writes the data back into memory before multi-bit errors build up and

become no longer correctable.

• Monitoring of error history involves keeping a trace of all runs and analyzing them to

detect error patterns.

Two terms often associated with error detection are error diagnosis and error isolation.

Error diagnosis involves determining the causes of the error and assessing the damage to

the system. After detection, error isolation or active confinement mechanisms are

necessary to isolate the erroneous component from the other parts of the system to

prevent error propagation. This might involve termination of a faulty communication

channel, termination of a faulty process, or disconnection of a faulty node.

21

2.4.4.2 System Recovery Step

This step involves correcting and/or repairing the errors and faults, so as to regain an

error-free or fauIt-free system. Recovery might involve retransmission of messages, re

initialization or starting of new communication channels, re-initialization or starting of

new processes, re-initialization of a node, or checkpointing and rollbacks.

2.4.4.2.1 Error Handling

This step aims to remove errors from the system state using rollback, rollforward, or

compensation mechanisms.

• Rollback or backward error recovery is used to restore the system to an earlier

error-free state. It is hence necessary to create recovery points (or checkpoints) that

save the current system state at predetermined intervals to stable storage (a storage

who se contents survive assumed failures) such that the error-free state can be used

later for rollbacks. This mechanism helps in recovering from unexpected errors and

damages and is particularly suitable for recovery from transient fauIts. Drawbacks of

this approach inc1ude requirement of significant resources, temporary haIt of the

system, and possible occurrence of the domino effect.

• Compensation involves use of redundancy to mask an error by only selecting an

acceptable resuIt based on sorne algorithm, thus making it possible to transform to an

error-free state. Modular redundancy along with majority voting is a common

technique to achieve compensation.

• Rollforward or forward error recovery involves restoration of the system to a new

state which may be a degraded one. But this requires knowledge of the errors and

hence is application-specifie. This approach is however efficient and suitable in cases

of anticipated fauIts and missed deadIines.

2.4.4.2.2 Fault Handling

Fault handling aims to ensure that fauIts are not activated again.

2.4.4.2.2.1 Fault Diagnosis

Fault diagnosis involves determining the cause and c1ass of an error. This is not the same

as error diagnosis since different faults can lead to the same error.

22

2.4.4.2.2.2 Fault Isolation

Fault isolation or fault passivation is used to prevent re-activation of a fault. This process

involves fault masking and fault containment.

Fault masking is the means by which a fault is corrected and kept hidden from the system

boundary, that is, it is masked transparently. Techniques used inc1ude auto-correcting

code, N-modular redundancy, etc.

Fault containment (or passive confinement) is the process by which fault propagation

can be prevented such that a fault is not allowed to lead to loss of service. The system is

structured in fault confinement regions such that one region communicates with another

by means of carefully monitored messages.

F ault compensation maybe necessary after fault containment to cover for the lack of

output of the faulty component.

If fault isolation leads to a loss of service, fault reconfiguration needs to be considered.

2.4.4.2.2.3 System Reconfiguration

System reconfiguration measures are used when faults appear, to alter the system

configuration such that the non-failed redundant components can takeover execution of

the system with sorne possible degradation [TIRAN DI.I].

2.4.4.2.2.4 System Reinitialization

After reconfiguration, it is necessary to check, update, and record the new configuration

and update the system tables and records [AL2001].

2.4.4.3 Fault-tolerance Mechanisms

Fault tolerance techniques maybe provided for single version software environments or

multiple version software environments. Such techniques have been employed in many

23

fields inc1uding aerospace, healthc are , telecommunications, nuc1ear power, and ground

transportation industries [LP200 1].

Single version software environments

The following are sorne common measures taken to tolerate software faults.

• Monitoring techniques are used for online tests during system operation. The

functioning of the system is observed and signaIs are sent when erroneous or

impending faulty behavior occurs. This makes diagnosis easier during the system

maintenance. For example, a light signal is activated when a car is out of gas

[GM2002]. Watchdog timers (discussed earlier) are a type of monitoring technique.

• Atomicity of actions requires that the actions of one group of components do not

interact with other groups during the time the activity is being executed. This ensures

that the state alterations made by the action are recorded correctly when no failures

occur. In case of a failure, the changes are not committed and the system ro11s back to

the state prior to the execution of the action.

• Exception handling is a way of handling errors that might appear in a component.

This should be considered in the design phase and the system should be implemented

such that abnormal conditions can be handled or an exception is raised as a signal of

an error. Exception handling is often considered along with idealized fault-tolerant

components (IFTC).

• A software system designed using the IFTC approach [LA90] [RX95] is split into a

set of components with well-defined interfaces and boundaries as shown in Figure 5.

A component can be requested to perform a service. During normal processing the

component performs the service, possibly by calling services of other components,

and returns the result. If a request is malformed, an inteiface exception is raised. In

the case when a local exception occurs during processing of a request, the component

can itself try to address the error, if successful, the component returns to normal

processing. But when the exception cannot be handled 10caIly, afailure exception is

raised and propagated to the request of the service.

24

Service ReQuest Replv) [Interface Exception) (Failure Exception

Service Request RePlv) [Interface Exception) [Failure Exception

Figure 5. Idealized fault-tolerant component

Multiple version software environments

Design diversity and data diversity methods are used to tolerate faults in multi-version

environments. The methods can be static or dynamic.

Dynamic software fault tolerance techniques entail selecting the result of one variant as

the acceptable output. This decision is made during program execution based on an

acceptance test (an adjudicator which determines whether system behavior is acceptable)

[LP200l].

In static software fault tolerance techniques, several versions of a program execute

concurrently, in separate processes or separate processors, and following that a result is

accepted or determined using sorne decision mechanism [LP2001].

Design diversity techniques involve redundancy of software or hardware systems.

• Recovery blocks (RB) [HL74][BR75] are a dynamic technique to detect and

tolerate software faults. They use acceptance testing (AT) and backward error

recovery. The functionality is implemented using different algorithms aIl doing

the same work. The most efficient algorithm is taken as the primary and is

executed. If the acceptance test does not pass for this algorithm, the next alternate

25

is executed and this goes on tin the AT passes or an the algorithms have been

executed. On failure, an error is raised. 0 illustrates the RB technique. Variants of

the recovery block include distributed recovery blocks and consensus recovery

blocks.

Establish
Checkpoint

IN=l;
Reset
Watchdog

Alternate Execution

Execute
AltemateN

IN:= N+l

Evaluate
Acceptance Test

[AT failed; N < max]

Discard
Checkpoint

Restore
Checkpoint [AT ailed; N = max]

[Watchdog expires]
Discard

Checkpoint

Figure 6. Recovery block structure and execution [JK2003]

Isignal

• N-version programming (NVP) [WE72][CA78] is a static technique which uses

a decision mechanism (DM) and forward error recovery. At least two versions

providing the same functionality are designed independently and executed

concurrently. The DM accepts the correct or "best" result. The DM is usually

based on a majority voting method (details are not mentioned here). Other

variants of NVP like N-self checking programming are available. Figure 7

illustrates the NVP technique.

26

Distribute
Original

Input

ParaUel Execution

Execute
Version 1

Execute
Version 2

Execute
Version n

[success]

Adjudicate
Results

[failure]

Figure 7. NVP structure and execution [JK2003]

Signal
Failure

Data diversity means involve representation of the input data in different ways so as

to effectively han die faults in environments using multiple data representation.

• Retry blocks [AK87] is a dynamic technique which runs on a sequential

environment and uses an acceptance test, a data re-expression algorithm, a

primary algorithm, a watchdog timer, and a backup algorithm. The primary

algorithm is first run on the original input and if the acceptance test does not pass,

the input is re-expressed using a data re-expression algorithm (DRA) and the

primary algorithm is executed again. This continues until the watchdog expires,

after which the backup algorithm is executed on the original data. On failure, an

exception is raised.

• N-copy programming (Nep) [AK88] is a static technique which uses a decision

mechanism (DM) and forward recovery to achieve fauIt tolerance. The original

input is put through data re-expression algorithms (DRA) and then passed onto

variants of the same process. The DM then examines the results and selects the

best one, if one exists.

27

Chapter 3.

Software Development Methods

This chapter discusses two software development methods: HOOD [HRM4] and HRT

HOOD [BW95]. Section 3.1 focuses on the software design methodology used in HOOD

and also includes suggested requirements analysis techniques. Section 3.2 discusses

HRT-HOOD which is a HOOD based method that uses the abstractions defined in

HOOD along with new additions to cope with hard real-time issues. This section of the

chapter concentrates on the architectural design steps followed in HRT-HOOD (and also

HOOD). At the end of the chapter, a case study of the mine control system is presented.

Other projects related or based on HOOD and HRT-HOOD are briefly mentioned as weIl.

3.1 HOOD
HOOD (Hierarchical Object-Oriented Design) [HRM4] is an architectural design

method developed as an ESA (European Space Agency) project in 1987. The method is

primarily intended to produce source code in Ada. The Ada language was chosen by ESA

since it specifically catered to embedded software and such software were a major part of

ESA's projects.

HOOD is a diagrammatic object-based method. It helps in building hierarchies of objects

that can be formalized into structured text and later refined into code.

3.1.1 Software Development Life Cycle

The HOOD method supports development of systems after requirement analysis activities

to code generation. It provides extensive guidelines for architectural and detailed design,

and also for mapping the design to of code and for testing.

28

Requirement analysis Architectural design Detailed design

Figure 8. Scope of ROOD [JR97]

The ROOD method follows primarily a top-down approach. The guidelines provided take

the form of a Basic Design Step which is used to produce hierarchies of objects and to

transition from one development phase to another.

3.1.1.1 Basic Design Step

The ROOD method uses a basic design step which is aimed at identifying an object and

its child objects, finding the association of the object with other objects, and finally to

map terminal objects to code.

The Basic Design Step comprises four steps: problem definition, development of the

solution strategy, formalization of the strategy, and formalization of the solution, as

shown in Figure 9.

No child objects

ODS: Object Description
Skeleton

Software Requirements

Figure 9. Basic design step

Architectural
Design

Detailed Design

29

3.1.1.1.1 Problem Definition

The problem definition phase includes two steps: stating the problem and analyzing the

requirements.

3.1.1.1.1.1 Statement ofthe Problem

The problem definition involves referring to a requirements document and if no such

document is available then to state the problem in precise sentences.

3.1.1.1.1.2 Analysis and Structuring of Requirement Data

From the problem statement, the relevant information is collected and analyzed. The

requirements can be categorized into the following three types.

• Static functional requirements are used to identify objects and define the tasks to be

carried out by each object which are later reflected in the definitions of the operations

during the formalization of the solution.

• Dynamic functional requirements are used to identify the type of object and describe

the dynamic behavior of the system using Petri nets or state transition diagrams,

which are later integrated in the formalization of the solution.

• Non-functional requirements are used to state constraints on the system. HOOD does

not put much focus on the definition and design of non-functional requirements. They

are included in one section in the formalized text solution but no concrete guidelines

are provided as to how these should be designed and implemented. HRT-HOOD,

discussed in Section 3.2 of this chapter, considers these requirements with respect to

real-time systems to a much greater extent.

3.1.1.1.2 Development of the Solution Strategy

This phase involves outlining a solution for the problem defined by using a natural

language. Initially, the solution provided is a top-Ievel one and de scribes how the design

will work. In later phases, this strategy is to be refined.

30

3.1.1.1.3 Formalization of the Strategy

In this phase, the objects and their associated operations are defined. Following this, the

HOOD diagrams are produced and any design decision is justified.

3.1.1.1.3.1 Object Identification

The initial task in the HOOD method is to identify the objects. The identification process

involves extracting nouns from the solution strategy. These nouns have to be structured

by behavior and level of abstraction [PR92]. Each noun is then classified as a child

object, an attribute of an object, a value of an attribute, or just irrelevant words. The list

of useful nouns is then saved as the results of the object identification phase.

3.1.1.1.3.2 Operation Identification

The operation identification is similar to the object identification process. In this case, the

verbs are identified from the solution strategy and examined to see if they are relevant to

the level of abstraction. The properties associated to the execution, like parallelism,

synchronization, periodic execution, need to be defined in this phase. The list of verbs

and their properties are then saved as the operation identification.

3.1.1.1.3.3 Grouping Objects and Operations

In the third step, each operation is associated with an object. This results in an object

operation table (OOT) which lists objects with their associated operations.

3.1.1.1.3.4 Graphical Description

A diagram is produced based on the HOOD graphical formalism. The object hierarchy

(parent-child objects) is identified. Control flow dependencies which show how each

object uses child objects, are added to the diagram. AIso, major data flows and exception

flows are added to express the relationships between objects. A mapping is added for

each operation of a parent object that is implemented by an operation of a child object.

31

Details about the elements in a ROOD diagram and the steps used to produce the

diagrams are not discussed here. Section 3.2.4.3 of this chapter describes the graphical

formalism and along with extensions that are available in RRT-ROOD.

3.1.1.1.3.5 Justification of Design Decisions

It is suggested that the design decision be documented to aid in maintenance and future

work of the system. It is required that decisions for objects (other than passive objects or

objects representing the environment), constrained operations, and identified exceptions

be justified.

3.1.1.1.4 Formalization of the Solution

This phase elaborates a formaI model of the solution - the Object Description Skeleton

(ODS). The ODS is a structured text format which formalizes the solution strategy by

describing each object. The ODS will be the source of documentation for detailed design

and code generation.

3.1.1.1.4.1 ROOD Tools

The formalization can be automated with the use of ROOD tools. Such tools are seen as

necessary for software development using the ROOD method. They support development

by providing editors, by generating documents in desired standards, by performing

consistency checks of the representations, and by analyzing the design in various ways

[JR97].

Several ROOD tools are available on the market from different vendors. The Standard

Interchange Format defined by ROOD makes it possible for designs to be compatible

across several tools [JR97].

3.1.2 Real-time Design in HOOD

ROOD supports two major models for real-time system design.

• Asynchronous model

32

In this model, the software has components at different priorities. Righ priority software

is dedicated to providing quick response to external events, medium priority software do

the normal processing, and low priority software do less essential tasks such as logging.

ROOD provides active objects for concurrent execution, constrained operations to

synchronize active objects, and the asynchronous execution request (ASER) to support

interrupts.

• Synchronous model

In this model, the software is divided into components with allocated time-slices for each.

During execution, each component is allowed to execute for a fixed period of time.

Exeeeding the time limit indicates serious design problems. In addition to all elements

provided in the asynchronous model, ROOD provides the passive object implementation

specifically for this model.

ROOD looks into sorne coneerns in real-time systems and puts constraints on the design

accordingl y.

• Deadlocks - ROOD looks into the use of active objects and their interfaces from the

initial design phases. Renee, potential deadlocks can be notieed early and actions

taken to prevent them.

• Infinite Recursion - ROOD does not allow cyc1ic use of paSSIve objects and

recommends use of seniority hierarchy. This helps prevent infinite recursions from

occurring.

Rowever, the ROOD approach is not adequate to produee dependable real-time systems.

It lacks "abstractions that directly relate to common hard real-time activities" [BW94].

These issues have been addressed in the RRT-ROOD method which is discussed later in

this chapter.

3.1.3 Concurrency

ROOD supports concurrency by providing active objects which correspond to Ada tasks.

For performance reasons it is, however, recommended that the number of active objects

be kept at a minimum and transformed into passive objects as much as possible.

33

3.1.4 Benefits of using HOOD

The HOOD method has been used widely for design of space real-time systems and also

in other domains including energy, defense, and transport. Sorne projects include the

ESA Columbus Space Station, ESA Hermes Space Plane, European Fighter Aircraft, and

Thorn EMI Electronics (design of a multi-processor real-time system). HOOD offers

clarity of design and ease of extensibility, mapping to manpower, and integration. It is a

public-domain method and produces maintainable and reusable software. HOOD also

provides abstractions to support the concept of distribution in Ada software [HRM4].

Additionally, it is supported by various toolsets. HOOD is also compatible with the

Unified Modeling Language (UML).

3.1.5 Limitations of HOOD

HOOD does not encompass all aspects of object-oriented design (e.g., inheritance,

dynamic binding, etc.). Hence, the 00 in HOOD can be misleading since it is more

object-based than object-oriented.

HOOD does not provide any means to carry out requirements analysis and does not make

any preconditions about the method to be used. It is, however, required that the design is

preceded by object-oriented analysis to find the objects for design. The suggested

technique discussed in Section 3.1.1.1.3 is quite cumbersome and error-prone.

HOOD does not suggest any methods for maintaining traceability of objects, operations,

and other design information back to the source code.

3.1.6 Developments and Related Projects

The original object-based HOOD method has been upgraded with object-oriented

concepts including classes, inheritance, and polymorphism. AIso, initially HOOD

supported code generation in AdaS3 only. But, it has been adapted to support other

languages like C and FORTRAN and even object-oriented languages like C++, Ada95 ,

34

and Eiffel. Moreover, other projects have been inspired by HOOD and have been

developed as extensions of HOOD.

3.1.6.1 1I()()1lll

Hierarchical Object Oriented Analysis (HOORA) [HOORA] is an ESA developed

methodology that came about in March 1995 as a consequence of the HOOD method.

HOORA is a method that supports requirements analysis of software and is truly based

on the object-oriented paradigm. It uses the UML notation and can be used with

languages like Ada and C++ to produce object-oriented based software. It provides

concrete guidelines to transition to HOOD and ultimately to Ada source code. "HOORA

not only offers a diagramming notation, but also a complete framework and process for

describing and analyzing the static and dynamic behavior of software systems" [GG95].

Toolsets are available that support the HOORA method, and which can also

automatically produce an initial HOOD design. Details about the HOORA method can be

found at [HOORA].

3.1.6.2 IIRT -II()()D

Hard Real-Time Hierarchical Object-Oriented Design (HRT-HOOD) [BW95] is an ESA

(European Space Agency) project, which is an extension of HOOD (Hierarchical Object

Oriented Design). HRT-HOOD is presented in the next section.

3.2 HRT-HOOD
Hard Real-Time Hierarchical Object-Oriented Design (HRT-HOOD) is an ESA

(European Space Agency) project developed jointly by British Aerospace Space Systems

Ltd., The University of York, and York Software Engineering Ltd, during 1991-1993.

This is an extension of the standard method used by ESA for architectural design, HOOD

(Hierarchical Object-Oriented Design). HRT-HOOD inc1udes extra features catered

towards design of embedded real-time software. The method aims to support functional

and timing correctness and also considers timing requirements early on during

35

development to avoid the usual trend of making comprises during detailed design and

implementation.

3.2.1 Real-time Issues

3.2.1.1 Real-time Systems

A system which is constrained by non-functional requirements, esp. timing constraints, is

said to be a real-time system.

3.2.1.1.1 SRTand HRT Systems

In hard real-time (HRT) systems, timely services are crucial. Failure to provide the

service may lead to severe damage to the system or environment and loss of life.

Examples of HRT systems include flight control systems, spacecraft control computers,

and nuclear power plant control systems.

In soft real-time (SRT) systems, the response times are important but a few missed

deadlines do not cause the system to behave badly or to stop functioning. Vending

machines and ATMs are exarnples of SRT systems.

3.2.1.1.2 Non-functional requirements

Real-time systems have to meet additional non-functional requirements (NFR), such as

dependability (reliability, availability, safety, security) , timeliness (responsiveness,

orderliness, freshness, temporal predictability, temporal controllability) , and dynarnic

change management (incorporating evolutionary changes into a non-stop system). These

requirements need to be considered during the software development life cycle.

3.2.1.2 Extensions in HRT -HOOD

HRT-HOOD addresses issues of timeliness and dependability in the early stages of the

development process. Extending HOOD, it has explicit support for cornrnon hard real

time abstractions. There are few other methods which provide abstractions which can be

directly associated to hard real-time activities. Although methods like HOOD and

MASCOT [HS86] can be used to design hard real-time systems, they do not provide

36

means to analyze timing properties of systems and their use can lead to erroneous

designs.

3.2.2 Software Development Life Cycle

The HRT-HOOD software development life cycle consists of the following activities.

• Requirements definition is concerned with specifying the functional and non

functional behavior that the system must adhere to.

• Architectural design involves producing a top-Ievel design of the system being

developed.

• Detaited design specifies the complete system design.

• Coding deals with the implementation of the system.

• Testing involves checking the effectiveness and efficiency of the system.

The architectural design comprises two activities: logical design and physical design. The

logical design takes into account the functional requirements of the system. The physical

architecture is a refinement of the logical one and considers these requirements along

with the constraints imposed by the execution environment (the hard and software

components) and aims to satisfy the non-functional requirements. The physical

architecture ensures that the timing and dependability properties of the system are met.

Architectural Design

Logical Architecture Physical Architecture

1

Functional Requirements Constraints Non-functional Requirements

Figure 10. Scheme of the design phase

Following the architectural design, the detailed design is carried out which finally leads

to the co ding stage. The code must be checked to see whether the initial estimated worst

case execution time holds and any inconsistency requires the detailed or the architectural

design to be revisited. On satisfactory results, the testing phase, which includes code

37

timing measurements can commence. The complete HRT-HOOD software development

life cycle is shown in Figure Il.

Requirements Definition

Logical Architecture Design

!
Physical Architecture Design

(Schedlilability Analysis) -

Delailed Design

Coding Înclllding
Code Timing Estimations

Tcsting inclllding
Code Timing Mcasurmenls

-

EXL'"Cution Enviwnlllent
Constfaints

Execution Enviromnent
Constraints

Figure 11. The HRT-HOOD software development life cycle [BW94]

3.2.3 Requirements Definition

HRT-HOOD does not define techniques for requirements specification and analysis. It

relies on the means proposed in the HOOD methodology.

3.2.4 Architectural Design

3.2.4.1 Logical Design

HRT-HOOD provides clear guidelines to produce a structured logical design. The logical

design involves creating abstractions which are specific to hard real-time systems, like

support for periodic and sporadic activities. In addition, this step introduces constraints

on the design that allow it to be analyzed later.

38

3.2.4.1.1 HRT-HOOD Objects

HRT-HOOD extends the two basic object types of HOOD. Along with objects of type

passive and active, it includes protected, cyclic and sporadic objects. The objects are

defined in section 3.2.4.3.

3.2.4.1.2 Design Constraints

There are sorne constraints that HRT-HOOD imposes on the design. Most of these are

constraints on the communication and synchronization between objects. Such constraints

are important for producing analyzable software. In the case of HRT-HOOD, one of the

goals of the method is to pro vide a framework that produces software that can be

analyzed for its timing properties. The design constraints include the following.

• Cyclic and sporadic objects should not call arbitrary blocking operations in other

cyclic or sporadic operations but are allowed to calI operations with an asynchronous

transfer of request.

• Protected objects should not call blocking operations in any object.

• Passive objects do not have to be considered for synchronization.

3.2.4.2 Physical Design

The physical design of the system primarily involves adding annotation to objects defined

in the logical architecture. This is done by the use of object attributes. This phase also

provides support for carrying out schedulability analysis of terminal objects and provides

the abstractions necessary to "express the handling of timing errors" [BW94].

3.2.4.2.1 Object Attributes

Non-functional requirements are addressed in the HRT-HOOD method by assigning

several attributes to each object.

• Cyclic object: {Period of execution, Offset times, Deadlines}

• Sporadic objects: {Minimum arrivaI time, Offset times, Deadlines}

Deadlines can be set directly to cyclic or sporadic activities or to transactions (precedence

constrained activities). The worst-case execution time needs to be monitored for each

39

thread to enable schedulability analysis. Sorne scheduling algorithms require a

precedence level to be set. In addition, processes are set to a criticality level - safety

critical, mission critical, background. This level is considered during validation and

verification.

The physical design can proceed along with the logical design. Objects added at the

logicallevel may need to be assigned timing attributes. It is also possible to add objects at

the physical architecture level. This might be done to support replication or for the

reduction of output jitter2 (a non-functional requirement). The latter can be achieved by

object decomposition enabling objects to execute tasks in parallel and hence reduce the

jitter.

3.2.4.2.2 Tolerating timing Jaults and errors

It is important to monitor the system for timing errors, so that they do not lead to failures.

The designer should make sure that the object does not use more than its share of

computation time and that it does not execute after its specified deadline. In cases of

timing fauIts, an exception should be raised and the object should be able to handle this.

The coding language should have support available to program recovery handling. In

cases of sporadic objects, method invocation should be monitored in order to prevent

early execution or overly high invocation frequency.

3.2.4.3 Hard Real-Time HOOD Objects

The logical architecture phase results in a collection of terminal objects. This section

defines the objects types used in HRT-HOOD (both terminal and non-terminal). Along

with the two object types defined in HOOD (active and passive), HRT-HOOD adds three

objects to the design: protected object, cyclic object, and sporadic object. The objects are

graphically represented as shown in Figure 12.

2 "Jitter is the deviation in or displacernent of sorne aspect of the pulses in a high-frequency digital signal"
[SN].

40

PROVIDED
OPERATIONS

Object
InternaIs

where T = OBJECT TYPE

Figure 12. Graphical representation of an HRT-HOOD object [BW94]

3.2.4.3.1 Passive Objects

Passive objects as the name implies are passive and do not restrict their operations from

being executed. When an operation of a passive object is called, the operation gets

immediate control. The instructions are executed sequentially and the object does not

synchronize with other objects.

3.2.4.3.2 Active Objects

Similar to passive objects, active objects can be unconstrained. But, active objects are

usually used to specify constraints on the execution of its operations.

The constraints can be of two types: functional activation constraints (optional) and types

ofrequest (compulsory).

• Functional Activation Constraints

This type of constraint restricts execution of operations unless the object' s state allows it.

If the execution is allowed, the operation is defined as "open", otherwise it is "closed".

By default, an operation is "open".

• Types of Request

The way an operation is constrained is defined in a label of the trigger arrow in the

HOOD diagram.

41

Asynchronous Execution Request (ASER) - Operations called with this request type do

not require the invoker to be blocked.

Loosely Synchronous Execution Request (LSER) - Operations with LSER request types

require the invoker to be blocked until the invokee is ready to execute the operation.

Highly Synchronous Execution Request (HSER) - In this case, the invoker is not allowed

to execute further until the request is serviced.

Time Operation Execution Request (TOER) - Requests with TOER have a time-out

period specified along with the request. Request types include TOER_LSER and

TOER_HSER.

3.2.4.3.3 Protected Objects

Protected objects are required when resources accessed by hard real-time systems need to

be monitored and their access limited. This is achieved by restricting invocation of

operations. The use of protected objects enables "the run-time blocking for resources to

be bounded" [BW94]. These objects do not necessarily require independent threads of

control.

Protected objects can have two types of constrained operations: PSER (Protected

Synchronous Execution Request) and PAER (Protected Asynchronous Execution

Request). These operations can only execute in mutual exclusion. Protected objects can

also have unconstrained operations that behave similar to passive objects.

3.2.4.3.4 Cyclic Objects

Cyclic objects are required to denote periodic activities. They are active objects but the y

do not suspend execution regardless of "outstanding requests for their objects'

operations" [BW94].

42

Cyclic objects do not include operations usually but at times for efficiency reasons,

operations can be defined in cyclic objects. These operations are aU of asynchronous

transfer of control request type (A TC). The operations can be further defined as

asynchronous ATC (ASATC), loosely synchronous ATC (LSATC), and highly

synchronous ATC (HSA TC).

3.2.4.3.5 Sporadic Objects

Sporadic objects are active. They contain an independent thread of control which is

activated by invoking a "start" operation defined in the object. Objects can be simply of

type ASER (asynchronous execution request) or if invoked by an interrupt,

ASER_BY_IT. ATC (asynchronous transfer of control) request type can also be defined

on sporadic objects, in which case, the sporadic object halts its CUITent operation.

3.2.4.3.6 Environment Objects

An environment object is used to incorporate other software into the design without

disrupting with the HRT-HOOD principles. It is represented with the letter E as the

object type.

3.2.4.3.7 Objects Summary

Unconstrained Constrained Functional Type of Timeout
Operation Operation Activation Request

Constraints
Passive ./ Je Je Je Je

Active ./ ./ Optional ./ ./

ASER Je ./ Optional ./ Je

LSER Je ./ Optional ./ ./

HSER Je ./ Optional ./ ./

Protected ./ ./ Optional ./ ./

PSER Je ./ ./ (if TOER) ./ ./

PAER Je ./ Je ./ Je

Cyclic Je ./ Optional ./ Je

ASATC Je ./ Optional ./ Je

LSATC Je ./ Optional ./ Je

HSATC Je ./ Optional ./ Je

Sporadic Je ./ Je ./ Je

ASER Je ./ Je ./ Je

ASER_BY_IT Je ./ Je ./ Je

ATC Je ./ Je ./ Je

Table 2. HRT-HOOD objects

43

3.2.4.4 HRT -HOOD Abstractions

3.2.4.4.1 HRT-HOOD Object Attributes

HRT -HOOD as opposed to standard HOOD introduces real time attributes of objects

which are used to define real-time constraints.

• Deadline - This attribute specifies the execution deadline of cyc1ic and sporadic

objects, if required.

• Operation_Budget - A budget execution time can be specified for each externally

visible operation. In case this budget is exceeded, an internaI error handling operation

must be available in the object.

• Operation_ WCET - This is required for aIl operations used for interfacing to specify

the worst-case execution time (WCET) of operations. The WCET of an operation is

the sum of the Operation_Budget and the budget time of the internaI error handling

operation.

• Thread_ WCET - A cyclic or sporadic object must specify a worst-case execution

time for its thread. The WCET is the sum of the thread_budget and the internaI error

handling operation budget time.

• Thread_Budget - A cyc1ic or sporadic object can have a budget time specified for its

thread. Similar to the operation-budget, if the thread budget is exceeded, then an

internaI error handling operation should be available.

• Period - This attribute is provided to specify the period of execution of cyclic objects.

• Offset - An offset time can be added to cyc1ic objects which would specify the

waiting time before commencing its operations.

• Minimum_Arrival_Time or Maximum_Arrival_Frequency - These attributes are

added to sporadic objects to specify the minimum arrivai time or the maximum

arrivaI frequency for requests of its execution. At least one of the two must be

specified.

• Precedence Constraints - This is used to specify the precedence order of threads.

• Priority - The scheduling theory used may need a priority to be set for threads of

cyclic and sporadic objects.

44

• Execution_Transformation - It may be required to transform cyc1ic and sporadic

objects during execution to add extra delays.

• Importance - This attribute is used to specify whether a thread is hard real-time or

soft real-time.

Depending on the application, attributes for minimum/average execution times,

utility/benefit functions, replication, integrity levels may be added.

3.2.4.4.2 The Relationships and Rules

3.2.4.4.2.1 Use Relationship

The USE relationship in HRT-HOOD follows the following mIes.

• Passive objects can only use unconstrained operation of other objects. Passive

objects are not allowed to make cyc1ic use of each other.

• Active objects are allowed to use any operation of any object.

• Protected objects are allowed to use constrained operations with ASER type of

request and constrained operations of other protected objects that have no

functional activation constraints.

• CycUc and sporadic objects can only use constrained operations of non-terminal

active objects. They can use constrained operations of protected objects and of

other cyc1ic and sporadic operations.

3.2.4.4.2.2 lnc1ude Relationship

The INCLUDE relationships allowed in HRT-HOOD are as follows.

• Passive objects are only allowed to include other passive objects.

• Active objects are allowed to include any objects.

• Protected objects are allowed to include passive objects and other protected

objects.

• Cyclic objects are allowed to include at least one cyc1ic object with one or more

passive, protected, and sporadic objects.

• Sporadic objects are allowed to include at least one sporadic object with one or

more passive and protected objects.

45

3.2.4.4.2.3 Implemented_By Link

HRT-HOOD provides guidelines for decomposition of operations. Operation

decomposition is represented by the Implemented_By relationship.

• ASER operations can de decomposed to ASER, ASA TC, PSER, or PAER.

• ASER operations with functional activation constraints can be decomposed to

operations with functional activation constraints (ASER, ASATC), PSER, or PAER.

• LSER operations can be decomposed to LSER, PSER (with or without functional

activation constraints), or LSATC. LSER operations with functional activation

constraints can be decomposed to LSER, PSER, or LSA TC operations with

functional activation constraints.

• HSER operations can be decomposed to HSER, PSER (with or without functional

activation constraints), or HSATC operations. HSER operation having functional

activation constraints can be implemented by HSER, PSER, or HSATC child

operations with functional activation constraints.

• PSER (with or without functional activation constraints) and PAER can only be

implemented by operations having the same type of request as the parent.

3.2.4.4.2.4 Data Flow

Data flows are shown in HOOD diagrams with the notation 0-> and a label naming the

data. Data flow can be uni-directional or bi-directional. Only major data flows are

included in the diagrams to represent information exchange between objects.

3.2.4.4.2.5 Exception Flow

An exception is an error condition that is raised when a pro gram terminates or halts

abnormally. An exception flow is shown in HOOD diagrams with the notation -1-> and a

label over it naming the exception. The direction of flow is opposite to the data flow

direction. Exceptions are raised in operations and may be propagated and handled by

sorne other operation which is related to it by a use relationship. The exception has to be

specified in the ODS (section 3.1.1.1.4) of the used object and the using object.

46

3.2.5 Case Stndy: Mine Control System

3.2.5.1 System Specification

The ESA developed HRT-HOOD method has been applied to the development of several

real-time systems including design of a mine control system and an orbital control

system. This paper briefly illustrates the mine control system case study as described in

[BW95].

A system is to be designed for operation of a pump control system used for mining. The

system is illustrated in Figure 13. The basic task of the system is to pump the water that

accumulates at the bottom of the shaft to the surface.

3.2.5.1.1 Functional Requirements

• Pump operation

The pump is used to drain out water when the level reached the high water level and it

continues pumping until the water level reached the low level detector. The water flow in

the pipe can be detected by means of sensors. The pump can also be operated according

to the operator' s commands but at aIl times the operation is possible only if the methane

level in the mine is below a criticallevel.

• Environment monitoring

It is required to monitor the environment for methane levels; the operation of the pump

relies on this level being non-critical. In addition, the air flow and carbon monoxide

levels are also monitored. If any of these levels violate the norms, alarms should be

signaled.

• Operator interaction

An operator controls the system via a terminal and is informed of aIl critical situations.

• System monitoring

The system is monitored at aIl times and all events are logged so that they can be checked

or analyzed whenever necessary.

47

._.-

Operator Control

j~

.... Carbon Monoxide Sensor -PUMP --.. CONTROL
Methane Sensor

PUMP '-1- -.. SYSTEM
.... -r-- .. Airflow Sensor
~ -... --...

141.

Water Flow Sensor

1 1--' 1 l 1

~------------~:~--i:--~----------I ------------ -- -- --------------
------------ -- -- --------------
------------------ --------------
SUMP

High Water Level Detector

Low Water Level Detector

Figure 13. Mine control system

3.2.5.1.2 Non-functional Requirements

Three non-functional requirements are of concern in the mining system - timing,

dependability, and security. The case study discusses timing issues, since HRT-HOOD is

mainly concerned with handling timing requirements during design.

• Monitoring periods

The maximum period for reading the sens ors can be specified. AIso, the sensors for

detecting water level are event driven and are expected to respond within an acceptable

period.

• Shut-down deadline

It is required that the mine be shutdown when the methane level in the mine exceeds the

acceptable level. The deadline (D) is related to the rate at which methane accumulates

(R), the sampling period (P), and the safety margin between the critical level and the

level which causes an explosion (M). The relationship can be specified as R(P+D) < M.

• Operator information deadline

48

Deadlines need to set by which the operator should be informed of events like critical

level of methane or other gases, or when the pump fails to operate.

The attributes and their values related to the timing requirements in this case study are

illustrated in Table 3.

Periodic/Sporadic Arri val Times
Methane sensor P 5.0
Carbon Monoxide sensor P 60.0
Water flow sensor P 60.0
Airflow sensor P 60.0
HighILow water interrupt handler (HL W handler) S 100.00

Table 3. Attributes ofperiodic and sporadic processes [BW94]

3.2.5.2 The Logical Architecture Design of the Mining System

3.2.5.2.1 Top-Level Design

Deadline
1
1
3
2
20

The logical architecture design begins with identifying the top-Ievel components (classes)

of the system. From the functional requirements, it can be derived that the classes include

the pump controller subsystem, the environment monitor subsystem, the operator console

subsystem, and the data logger subsystem. Figure 14 describes the relationship among

the se subsystems and the operations used for interfacing. The purpose of each operation

is defined below.

Pump controller

• not saie is called by the environment monitor to indicate to the pump controller that it

is not safe to operate the pump.

• is saie is called by the environment monitor to indicate to the pump controller that it

is safe to operate the pump.

• request status is called by the operator console to enable viewing of the CUITent

system status.

• set pump is used by the operator to send commands to the pump system.

49

A Mhte Control System

pump not safe

A EnvU:ol'UllO!nt monito

not saf ..
is safe

lelluest
st<lw,s
setpurop

check safe

4
~O

alann

CO log
CH410g

airllowlog

rugh low wate.r 10
wate.r flow log

motorlog

9 staw,s l re<ldings

Figure 14. First level hierarchical decomposition of control system [BW94]

Environment monitor

• check safe is called by the pump controller to check whether the methane level is

below the critical before starting pump operation.

Operator console

• alarm is called by the pump controller or the environment monitor if the gas levels

exceed the normaL

50

Data logger

• Six operations are provided in the data logger class and are called by the pump

controller and the environment monitor to en able storing of data.

The subsequent figures represents objects via the HOOD notation, operations via

rectangles, exceptions by -1-, and data flows by 0->.

3.2.5.2.2 Pump Controller

The pump controller subsystem is illustrated in Figure 15. The Z> is the notation for

constrained operations with the constraint specified above the symbol. The operations of

the pump controller class are internally implemented by the motor subsystem, which is

shown as a protected object. The motor subsystem is also responsible for interfacing with

the other top-Ievel systems, namely the environment monitor, operator console, and data

logger. The operation decomposition adheres to the mIes defined in the HRT-HOOD

design method, which is described in Section 3.2.4.4.2.3.

The water flow sensor subsystem is shown as a cyclic object and continuously monitors

the water flow in the mine and stores the data in the data logger.

The High low water sensor subsystem is used to han dIe interrupts from the related

sens ors and is further decomposed and shown in Figure 16.

3.2.5.2.3 Environment Monitor

The environment monitor subsystem, which is represented as an active object is further

decomposed into three cyclic objects, each of which represent the sensors used to monitor

the gas levels and one protected object which is used to access data regarding the

methane level. The HSER check saie operation of the environment monitor is internally

implemented by a PSER operation of the CH4 status object. AlI the objects in the

environment monitor are terminal objects. The environment monitor subsystem is shown

in Figure 17.

51

A Pump controller

LSER bylT

high sensor

low SeD.sor

lowwater sensor

Pr motor

status 1
C water flow s

Figure 15. Hierarchical decompositions of the pump object [BW94]

3.2.5.2.4 Operator Console and Data Logger

The operator console and the data logger subsystems are not described here since they are

not of much relevance to the HRT-HOOD design objectives. It is however required that

the objects provide asynchronous interfaces.

52

A

"7 LSER by Ir
~ high sensor

LSER by Ir
low sensor

2:. ASER

High low\Wter sensor

Figure 16. Decomposition of the high low water sens or [BW94]

3.2.5.3 The Physical Architecture Design of the Mining System

This level of design takes into consideration the non-functional requirements of the

mining system and assigns timing attributes to objects. The periodicity and deadlines

associated to the periodic and sporadic objects in the system have been defined earlier in

Table 3. The HRT-HOOD method aIso provides a framework that enables schedulability

analysis of the terminal objects.

53

A Envlronment MOnit~
C CH4~en~()r

CH4
status

PSER ~write.I"----I---I----

PSER il:!;"~

H~:~,J c

CH4 ~p
s.ta .. tus o+-_t---I controller

C co sensor

Figure 17. Hierarchical decomposition of the environment monitor [BW94]

3.2.6 Mapping Design to Implementation

HRT-HOOD provides guidelines to map the design to implementation. Details about the

mapping can be found in [BW95]. The general concept behind the mapping is as follows:

Each object is mapped to a module/package, and each of the operations is translated to a

procedure/function. In addition, active objects inc1ude a set of internaI tasks and a

synchronization agent. Protected objects are mapped to a package and a synchronization

54

agent. Besides the package, cyclic and sporadic objects include a synchronization agent

and a periodic task/process.

The guidelines are specifically intended to con vert the design to Ada code. There is an

intermediary step in which the design is mapped to an Object Description Skeleton

(ODS). A ODS is a structured text format which provides more details than the HRT

HOOD diagrams and is closer to the code. An ODS is required for every object identified

in the system. More about the ODS can be found in [BW95].

This thesis is not concerned with implementation details and hence further explanations

are not provided here.

3.2.7 Developments of HRT -HOOD

3.2.7.1 Fault Tolerant HRT-HOOD

HRT-HOOD at present does not consider fauIt-tolerance issues during design. The Real

Time Systems Group at the University of York had initiated a research project Fault

Tolerant HRT-HOOD in 1997. The goal of the project was to develop an extension of

HRT-HOOD which allowed fauIt tolerant designs to be produced and analyzed [FTHH].

But, the project was discontinued and no concrete work has been do ne in this area yet.

3.2.7.2 OOHARTS

The Object-Oriented Hard Real Time System (OOHARTS) approach [KN99] is based on

HRT-HOOD and UML and proposes a process targeted to develop dependable hard real

time systems. OOHARTS is discussed briefly in Chapter 5, Section 5.1.1.

3.3 Summary
HRT-HOOD should be considered as a new method and not an updated HOOD method.

The differences between HOOD and HRT-HOOD are as follows.

• HRT-HOOD has addition al object types: cyclic, sporadic, and periodic. The include

and use relationships have been updated to consider these objects.

55

• Attributes of objects associated to timing requirements have been added to objects in

HRT-HOOD. These include deadline, period, worst-case execution time, etc.

• The HRT-HOOD method provides support for analyzing non-functional

requirements.

HRT-HOOD is one of the first methods to consider real-time issues during the early

software development stages in such detail. The method aims to provide designers with

detailed guidelines to develop a system that satisfies the timing requirements. Among the

many non-functional requirements, the HRT-HOOD method considers the dependability

attributes which are essential to real-time systems: availability, reliability (to sorne

extent) and safety, and also the associated requirement timeliness. The method however

does not provide fault-tolerance support, and hence it is up to the designer to incorporate

means into the system to achieve dependability in terms of maintainability and security.

The method does not suggest ways of identifying the mentioned non-functional

requirements, but focuses on how to integrate them into the design phase. It also aids in

the transition from design to code generation.

The TARDIS framework described in Chapter 4 uses concepts similar to HRT-HOOD,

but also considers ways of satisfying other dependability attributes that are not supported

by HRT-HOOD.

56

Chapter 4.

Fault Tolerance Frameworks and Middleware

4.1 TIRAN
Tallorable fault toleRANce frameworks for embedded applications (TIRAN) is a

European Strategie Programme for Research in Information Technology (ESPRIT)

project completed in October 2000. The primary goal of the project was to develop a

software framework to provide fault tolerant capabilities to automation systems which

would reduce development costs signifieantly. The framework aims to solve problems in

fault-affected applications by considering error detection, isolation and recovery,

reconfiguration and graceful degradation. TIRAN is targeted to system manufacturers,

system integrators, and software system designers. The candidate application fields are

energy and transportation embedded automation systems.

The requirements for such a framework were taken from users and producers of

automation systems and generalized so as to fulfill needs of this industrial environment

and the external market. The partners of the TIRAN Project are ENEL-R&D (ltaly),

SIEMENS (Germany), TXT Informatica (ltaly), EONIC Systems (Belgium), Katholic

University of Leuven (Belgium) and University of Turin (ltaly). The framework was

developed and experimented on a pilot application from the ENEL plant automation

field. ENEL S.p.A. is the main Italian electricity supplier (the third-Iargest in the world).

The pilot application is an ENEL system, called the Primary Substation Automation

System (PSAS), consisting of different modules managing an electric substation. The

application is a good representation of most dependability requirements of the energy

field, which include integrity, security, availability, and EMI (electromagnetic

interference) immunity.

57

TIRAN provides the users of the framework with a methodology for collecting,

specifying, and validating FT requirements, with a characterization of framework

elements, and guidelines for using the frarnework. The specification of fauIt tolerance is

based on the Unified Modeling Language, which is a standard graphical modeling

method, and TRIO (Tempo Reale IrnplicitO) temporal logic, which has been developed

by ENEL specifically for real-time systems.

This part of the chapter is mainl y based on the information reported in [TIRAN D 1.1] and

[TIRAN D3.3]. Section 4.1.1 discusses the requirements of the fault tolerance

frarnework. Section 4.1.2 defines the elements of the framework. Section 4.1.3 presents

the architecture of the framework. The user support provided by the TIRAN framework is

described in Section 4.1.4, which concentrates on the FT specification methodology

support. Most of the fault tolerance terms used in this chapter, e.g. basic definitions of

faults, error, failures and their types, have already been introduced in Chapter 2 of this

thesis.

4.1.1 FT Framework Requirements

4.1.1.1 Requirement List

The requirements for the TIRAN frarnework can be categorized as follows:

• Functional requirements to be considered inc1ude fault handling, monitoring and fauIt

injection, configuration, fault assumptions, and fauIt tolerance scenarios.

• Performance requirements inc1ude hard real-time and soft real-time.

• Architectural requirements concern the framework architecture (backbone, layered

approach, composition of mechanisms, etc.) and communication (communication

model, interaction).

• Portability requirements need to consider constraints on the target platform, the real

time operating system (RTOS), and the developing environment.

• Quality requirements that need to be accounted for inc1ude development process,

flexibility, testability, correctness, and verification & validation.

58

4.1.1.2 Fault Tolerance Scenarios

The TIRAN methodology aims to handle fauIt tolerance scenarios relevant to automation

systems. Table 4 presents the considered fauIts and failures.

Fault Affects Failure Fault Tolerance Means
Permanent, physical Processor Permanent omission HIW redundancy, Dynamic

reconfiguration
Temporary, physical Processor Temporary or Fault Diagnosis, Temporal

permanent omission Redundancy
Permanent/temporary Memory Byzantine Stable memory / spatial
physical subsystem redundancy / exception

handler
Permanentltemporary Communication Permanent omission HIW link redundancy, Fault
physical subsystem masking
Permanent, external - Byzantine Use replicated components

placed in different locations/
Confinement or fault
containment

Temporary, external - Byzantine Temporal redundancy tool
Permanentltemporary - Byzantine Design diversity/Comparison
design

Table 4. FauIt tolerance scenarios handled by the TIRAN methodology

4.1.2 TIRAN Framework Elements

The TIRAN framework is an integrated set of elements providing FT services for real

time and/or distributed systems. It is composed of the following elements.

• A library of basic tools implementing fauIt tolerance mechanisms

• A backbone coordinating the basic tools

• A language expressing configuration and recovery strategies.

Information about the elements has been taken from [TIRAN D3.3].

4.1.2.1 Library

The framework provides a library of basic tools to support fauIt tolerance mechanisms

including error detection, recovery, and fauIt masking. "The tools are adaptable,

parametric, software-based implementations of the following fauIt tolerance mechanisms:

watchdog (WD), distributed memory (DM), local voter (LV), output delay (OD), stable

memory (SM), distributed synchronization (DS) and time-out management system

59

(TOM)" [TIRAN D3.3]. The tools can be used independently or jointly with other tools.

Table 5 shows how these mechanisms relate to the different FT steps.

WD DM LV OD SM DS TOM
Error detection ./ ./ ./ ./

Error recovery ./ ./ ./

Fault masking ./ ./ ./ ./

Fault containment ./ ./ ./ ./ ./

System coordination ./ ./

Table 5. Association of FT mechanisms to FT steps

4.1.2.2 Backbone

A control backbone is a distributed application that extracts information about the

application's topology, its progress and its status; it maintains this information in a

replicated database and it coordinates fault tolerance actions at runtime via the

interpretation of user-defined ARIEL (described in Section 4.1.2.3) recovery strategies.

The backbone functions as a middleware, hierarchically structured to maintain a

consistent system view and containing self-testing and self-healing mechanisms.

4.1.2.3 Recovery Language

The TIRAN framework makes use of a language ARIEL to set the properties and

parameters of the basic tools and to specify the recovery strategies. An ARIEL script is

composed of a declarative part, which is used to configure the tools, and a recovery part,

which describes the recovery actions.

4.1.3 Framework Architecture

"The TIRAN framework acts as a middleware below the application level and on top of

the system level, so as to allow the system to deliver a required service in spite of error

occurrences" [TIRAN D3.3]. Figure 18 illustrates the general architecture structure.

60

Host Control System

------------------ -----------
Target Node RTOS Interface

Figure 18. TIRAN framework architecture [TIRAN D3.3]

4.1.4 User Supports

The TIRAN framework addresses error detection, isolation and recovery, reconfiguration

and graceful degradation of fault-affected applications.

Dependability
Requirement

Analysis

Integration

Application
Assessment

Figure 19. TIRAN framework in the development process [TIRAN D3.3]

61

The methodology by which TIRAN supports the specification and analysis of fault

tolerance requirements is outlined below.

Step 1. Support to FT specification - semi-formal approach provided by UML.

Step 2. Formalization of the FT specification - formaI method TRIO used to express the

FT requirements.

Step 3. Analysis of formaI FT requirements - uses TRIO formaI techniques to perform

V & V activities.

Step 4. Techniques for identifying an appropriate FT solution to fulfill FT requirements

specification.

FEF FEF
classes attributes

Support to FT
System Specification

requirement (UML-based)

~ FTsteps
components/

Associations FT steps FT
~ FT mechanisms mechanisms

1 1 selected/configured
n FTdesig

constrain ts
Support to mechanisms
FT design

- - traces from requirements

dels of-UMLmo
FTrequi rements

Support to formaI
FT Specification

(TRIO-based)

to solutions

Support to
formaI FrY & V

TRIO forms of (TRIO-based)
FT requirements

Figure 20. A functional view of the scheme [TIRAN D 1.1]

4.1.4.1 Support for FT specification

f---
V&V
results

The first stage in the methodology involves semi-formal specification of FT requirements

based on UML. This focuses on

• FaultlErrorlFailure (FEF) class hierarchies and attributes

• Associations of FEF classes to system components/functions

• FT step class hierarchy

62

A meta-model is defined in UML, which is used by applications which follow this

methodology for specifying their fault-tolerant requirements. The methodology depends

on a set of class hierarchies which are structured as Packages3
.

All Packages of the meta-model are described with a generalized class diagram in this

section. Specialized versions of the class diagram with respect to the PSAS system are

shown in Section 4.1.5.

4.1.4.1.1 Package Methodology

The top-Ievel Package Methodology, as shown in Figure 21, includes child packages

System Model, PEF Model, and FT Strategy Model.

• System Model addresses system requirements related to FT specifications.

• FEF Model supports the description of fault, error, and failure classes, and models

the FEF chain.

• FT Strategy Model identifies FT steps.

Figure 21. Class diagram of Package Methodology [TIRAN D 1.1]

4.1.4.1.2 Package System Model

The Package System Model, as shown in Figure 22, consists of the following child

Packages.

• Package Composition identifies the structure of the FT system and defines

the hierarchies of components.

• Package Functions associates the components to its function.

• Package Dependability Attributes associates dependability attributes to

components and/or functions.

• Package Time Requirements associates real-time requirements to

components and/or functions.

3 Package will be capitalized throughout this section to ernphasize it as UML terrninology.

63

Figure 22. Class diagram of Package System Model [TIRAN Dl.l]

4.1.4.1.2.1 Package System Composition

This Package, illustrated in Figure 23, defines the system structure and decomposes

system components to create fault-confinement regions with the intention of avoiding

fault propagation. UML associations in the diagram show interfaces between classes of

components.

Figure 23. Class diagram of Package System Composition [TIRAN D1.l]

64

4.1.4.1.2.2 Package System Functions

This Package, illustrated in Figure 24, specifies how the system functions are associated

to their components and operators. The attributes of the Communication Function class

include transmission, channel, bandwidth, and location. The attribute location is

necessary to know whether a communication is internaI or external to a component.

Automation

Îfr~)

Figure 24. Class diagram of Package System Functions [TIRAN D 1.1]

4.1.4.1.2.3 Package Time Requirements

This Package, shown in Figure 25, considers two attributes essential in real-time systems:

cycle time (Tc), related to the interaction between the system or component and the plant,

and execution time (TE), which refers to the maximum response time required by a

function. The minimum of execution times among aIl functions should be less than the

cycle time [G02000].

Automation System
((rom Composition}·

•• cycielfm&

Automation Fooe1ioo
{trom Fundicmsl

Figure 25. Class diagram of Package Time Requirements [TIRAN D 1.1]

65

4.1.4.1.2.4 Package System Dependability

The scheme entails definition of aIl relevant dependability attributes in this Package, as

shown in Figure 26. The attributes of concem to repairable systems include criticality,

complexity, MTTF (MeanTimeToFailure), MTTR (MeanTimeToRepair), MTBF

(MeanTimeBetweenFailures), and availability. In the case of non-repairable systems,

only the first three attributes need to be considered.

~km5j!tl1!!rn
41"""è"",~)

epstailœ: ~

AutClmllliOO FIIf'ICtioI'I
jllOIllf'u""hOMl

Atitornatton Componi!'l\l
(1".., c.. .in<>n)

epslable :, yllll

Figure 26. Class diagram of Package System Dependability [TIRAN D 1.1]

4.1.4.1.3 Package FEF Model

The FEF Model includes the three participants in the FEF chain, namely, the Fault

Model, Error Model, and Failure Model.

FauitModel ErrarMooe.l Failuce Madel

Figure 27. Main class diagram of Package FEF [TIRAN D 1.1]

4.1.4.1.3.1 Package Fault Model

The class diagram in Figure 28 illustrates the hierarchies of possible faults and associates

a fault to the component where it is located. The Fault Model is derived from the fault

66

classification scheme defined by Laprie [JL98]. The faults related to automation systems

are considered only, and these include physical or design faults. Two types of design

faults are considered: systematic faults and intentional faults. Both permanent and

temporary physical faults are taken into account, and these are further categorized into

development, operational, intermittent, and transient faults. Definitions of these faults can

be found in Chapter 2.

Each fault is described by the attributes fault rate, location, and latency. In case of

physical faults, the duration and source of the faults need to be considered as weIl.

Figure 28. Class diagram of Package Fault Model [TIRAN DI.I]

4.1.4.1.3.2 Package Error Model

The class diagram in Figure 29 illustrates the hierarchy of errors that can occur in the

application system. They arise due to faults affecting system components and are related

to functions of the faulty component by a multiple association location. Latency and

probability of the error are attributes of the root class. Sorne attributes are added locally

to error sub-classes.

67

Emir locttiol't ..J Womali<>n l'ullOllcm 1
~Ia~ • ~ {tom fyn.:tlon!i.i
~PE : CLt o ... • t~.'"

1 n

IOC~t:-l
C<:>mmunleatlil'I'll'um:tlo;n

1 (!rom Furdona)

i'KIœI<Sitlg Erl'<lf ~
MI!'IOOf\'Erf.flf 1

1 D*_t : praœS$, IlMllroOOMl\t CommwnlCOllion ErrOl
~~ffl<!ftt : !iÎ{lnal, __ ge,dIIla

~ Q

1 Ute Ct;omufik:allofi 1
1

J'Wn1furu! ~ 1 1 Ml!!mory~Ià!allon
1 IlfiliielSY

1
1

Dlaordetlld IJlIIIM'ljll!lleali<ln

1
Lelll jl<llQ!lS$il'lg 1 ClImlpted eommunlcatlcl\

IlIIIldelay
1

COOupbl!d F~
~ER.:O .. 1

Figure 29. Class diagram of Package Error Model [TIRAN D 1.1]

4.1.4.1.3.3 Package Failure Model

The class diagram in Figure 30 illustrates the different modes of failures that can occur in

the system. The criticality and probability of the failure are important attributes of the

root class.

Figure 30. Class diagram of Package Failure Model [TIRAN D 1.1]

68

4.1.4.1.3.4 FEF Chain

The class diagram below illustrates the cause-effect relationships in the fault-error-failure

(FEF) chain.

Figure 31. FEF Chain class diagram of Package FEF Model [TIRAN D 1.1]

4.1.4.1.4 FT Strategy Model

The Fault Tolerant Strategy Model, shown in Figure 32, classifies the FT steps in three

categories following the classification defined by Laprie: Fault Processing, Error

Processing, and Fault Treatment.

Fault Processing includes two steps: fault masking helps in providing an error-free

service and fault containment confines the faults in components using spatial or temporal

redundancy.

Error Processing involves error detection, diagnosis, isolation, and recovery and helps

the system regain an error-free state.

Fault Treatment involves failure handling, compensation, repair, diagnosis, and

passivation (system reconfiguration).

69

The FT steps in this package are connected to the fault and error classes by means of

associations (tolerates).

Figure 32. Class diagram of Package FT Strategy Model [TIRAN Dl.l]

4.1.4.2 Support to Formai FT Specification

The second stage in the methodology introduces the formaI method TRIO, an ENEL

product developed for real-time systems. The UML specifications are translated to formaI

specifications based on TRIO Iogic. In this step, sorne parts are added to the

formalization for Verification and Validation (V & V) purposes. "FormaI methods are

typically endowed with automatic analysis capabilities requiring that the formalization be

adequately instrumented for performing that type of analysis" [TIRAN Dl.l]. More

information about the formalization process is available in [TIRAN D 1.1].

70

4.1.4.3 Support to Formai FT V &V

In the third stage, TRIO techniques are applied to the formaI FT specification for V & V in

two steps: static analysis of the FT strategy and dynamic analysis of system behaviors.

The techniques supported by the TRIO method include model generation, history

checking, and test case generation. For the PSAS system, sorne issues that can be

analyzed include "which fault classes are associated to which system components?",

"which are the FT steps addressing permanent faults?", and "find PSAS histories

stabilizing a new state" [TIRAN D 1.1]. [TIRAN D 1.1] discusses in sorne details how the

V&V analysis is supported in TIRAN.

4.1.4.4 Support to FT Design

In this last stage, the following design activities need to be considered.

• choice of FT mechanisms - the FT mechanisms that can be associated with the

specified FT steps need to be selected.

• choice of the target platform

• verification of design constraints - The bounds associated to the mechanisms and

platform need to adhere to the time/space/redundancy constraints.

In the case of the PSAS system, the design decisions are influenced by the PSAS FT

strategy model and the PSAS time requirements model, which also provide information

on FT mechanisms and design constraints.

4.1.5 Case Study: Primary Substation Automation System

The pilot application for the TIRAN project was ENEL's PSAS application. This section

illustrates how the TIRAN methodology can be applied to the PSAS application for

collecting and specifying FT requirements. Details on this process and further

information on validating these requirements can be found at [TIRAN D 1.1]

4.1.5.1 FT Requirements

The fault tolerance, real-time, and dependability requirements of the PSAS pilot

application reported in [TIRAN D 1.1] are listed in

71

The requirements have been collected following the methodology defined in the TIRAN

framework.

4.1.5.1.1 Dependability Attributes

The dependability attributes of concem to the PSAS application include availability,

integrity, and security.

• A vailability - The availability values are associated to each system component and

are assigned based on their criticality level. A vailability is quantified on the basis of

the MTBF or MTTF.

• Data Integrity - Integrity and security values are evaluated based on the coverage

metrics.

4.1.5.1.2 F ault Characterization

The types of faults that need to be considered for this application are permanent,

intermittent, and transient faults that affect the system functions and/or physical

components.

4.1.5.2 FT Specification of PSAS System

Applying the FT specification scheme, described in Section 4.1.4, to a given system

entails the following.

• The sub-parts of the model relevant to the system should be selected.

• The class attributes in the models should be assigned value.

• Sub-parts of models from the scheme should be refined or specialized.

This section demonstrates the results on applying the TIRAN scheme to the PSAS

system. The first model that is produced based on the package Methodology (Figure 21)

is the Package PSAS. The scheme introduces three inner packages: PSAS System Model,

PSAS FEF Model, and PSAS FT Strategy Model. These are further refined in the next

sections.

72

Figure 33. Class diagram of Package PSAS Methodology [TIRAN Dl.I]

4.1.5.2.1 Package PSAS System Model

The System Model (Figure 22) is specialized with system-specifie classes representing

components, functions, time requirements, and dependability attributes. The PSAS

System is shown in Figure 34 .

..... --,
~-_--I_---...
1 CompœlliOn . 1
I(fl'om Syatetlt Moder) 1--
1 1
~-______ I

..... --,
~-oêP;;:fida"iiiit;-l
1 AHtil:liUtéS 1- !II
lorom System Model) 1
~-______ I

Cornposilkm

Figure 34. Class diagram of Package PSAS System Model [TIRAN DI.I]

Each of the sub-parts in the model is further refined to give the system-specifie models.

The PSAS Composition model, shown in Figure 35, is derived from the scheme model in

Figure 23 based on the system requirements, SRI and SR2 defined in Appendix B. SR2

also has specifications for PSAS System Functions model shown in Figure 36, whieh has

been refined from Figure 24. The timing requirement TRI is modeled and shown in

Figure 37 as the PSAS Time Requirements model and is a refinement of Figure 25. The

73

PSAS Dependability Attributes model, shown in Figure 38, is derived from the

dependability requirement DR1, and is based on the model in Figure 25.

,...-_-"-1
SlabOfsll()!l Unit

Figure 35. Class diagram of Package PSAS System Composition [TIRAN D 1.1]

RMfI<JI. to Le'!.

omI'S"S~$lII"

t"""l to PU

Figure 36. Class diagram of Package System Functions [TIRAN D 1.1]

74

AutOJ'l'UlOO Command
(tram PSAS FuncOOns

·ex..time{O.2, S)

«Interface»
Remote LCL Operaior
Ilm,... PRAR

Explidt Command
tram PSAS Functiom;'

-ex-fjme{1, S}

Diagoostk:
i (!rom PSAS Functions
i~et._.time~, s)

«Interface»
LCl Communfcatioo
; l'rom PSAS Fundio.mf

Spare protecüoo
PSAS Fœctions

ex-tlme(20, ms}

Figure 37. Class diagram of Package Time Requirements [TIRAN DI.I]

Communication Unit

Figure 38. Class diagram of Package Dependability [TIRAN DI.I]

4.1.5.2.2 Package FEF Model

The Fault Model in Figure 28 is customized to give the PSAS Fault Model shown in

Figure 39. The customization is based on the FT requirement FR1. FR2 and FR5 concern

PSAS errors, which are modeled and shown in Figure 40. Requirements FR3 and FR4

de scribes the PSAS failures and the respective model is shown in Figure 41.

75

LCL
(TrOO! PSA,S COWlplrldIOIl)
"-------..It

Figure 39. Class diagram of Package PSAS Fault [TIRAN DI.I]

Laie processïng
{!rom EIfel! Medel}

Cotrupted procassing
{trom Error Modèl)

COrl'Upt.ed communication
(trom Error Modèl)

WleËR: 0 .. 1

PSA$ Cotru Communi<:alion
set.BËR(value li< 0.0(01)

Figure 40. Class diagram of Package PSAS Error [TIRAN DI.I]

76

PSAS Communication Failure
.PF(PF)

+effact:

1
+CSUiS8

P$AS Corrupted Communication
Ifrom PSAS 8ror MOdal}

IEset.SER(vaiUè lm OJ1OO1}

focaticn Communication Fundïon (from FunctlOM}

~n$mj$$ion : on-variation, periodÎc, command

Figure 41. Class diagram of Package PSAS Failure [TIRAN DI.I]

4.1.5.2.3 Package FT Strategy

The PSAS FT Strategy is expressed by PSAS requirements FR2-FRI9 and is shown in

Figure 42. Finally, Figure 43, Figure 44, and Figure 45 illustrate the association between

the PSAS FT steps and the fault/error/failure types in the PSAS fault/error models.

4.1.6 Real-time Applications

The TIRAN framework does provide support for real-time properties but the

communication mechanisms are not suited to applications which require "ultra-Iow

response times" [TIRAN D3.3]. The framework was designed with the portability goal in

mind, and hence an overhead is incurred due to the tuning of the communication

mechanisms to the target platform.

77

T61!l1li'fllf, c.ntaln_
{M fT Slf~ Modol)

fauftPa_1lon
(from FT SlflllE!QI LIfldoI}

Figure 42. The main class diagram of the Package PSAS FT Strategy [TIRAN D 1.1]

PSAS FR3fR1ZFRI3

IIfll\t4&~Mlflotln

I~ii

78

tolerales ,
{permf'autt.location .. iltate-MEM}

tokW .. IrI!.

{FaullJocation '" FIElo.COM}
.---=,.,.,..,,.,.,,,,-..... -~

PSAS FR1Da l'R14
el~"ool;ot'l(looatiorl = 110)

{Fauluoeation" (ELAB, MEM, COMll

..J2.,wrstes
TempFault.loc:ation '" outpul-COI.1)

fa/etalas

PSAS F'l'!2e l'Al 1
ocâlloo on= 1 l - U)

1-loaâllon(location = OIaIe-t:U\B)

PSAS FR2b FRIS
t-loealioti(locatlon = ELAS)

Figure 43. The class diagram Fault Model Relationships of the Package PSAS Fr Strategy

Model [TIRAN Dl.1]

PSAS FR2a FR19

lolorates

laie Coomunication
(from Erro< Model)

Corrupted processing
(from Ërrot Model)

PSAS FR2c FR11

PSAS Corrupled Communication
(Iram PSAS Ërror Model)

Figure 44. The class diagram Error Model Relationships of the Package PSAS FT Strategy

Model [TIRAN Dl.1]

79

PSASFailure

PSAS Commun~catlon Fallure
trom PSAS Faillira Model

t-PF(PF} . ____ ..J

+effec!

1
+cause

PSAS Corrupted Communication
Ilfom PSAS Error Mode!!

l~t~BER(va!ue'" O.OOO1}

tolQfatQS --1 PSAS FR4

location Communication Function
"- (fmm

IlItransmission : on-variation, periodlC, command

Figure 45. The class diagram Failure Model Relationships of the Package PSAS FT Strategy

Model [TIRAN D1.1]

4.2 DepAuDE
Dependability for embedded Automation systems in Dynamic Environments with intra

site and inter-site distribution aspects (DepAuDE) is a project partially based on the

ESPRIT project TIRAN discussed in the previous section. It is an IST (Information

Society Technologies) project initiated in 2001 and completed in 2003. The partners were

K.U. Leuven, CESI, Siemens, UniFe, UniTo, and TXT. It has been developed primarily

for two target application areas: monitoring/control of energy transport and distribution,

and distributed embedded systems. The pilot applications for DepAuDE include

automated substations system and airfield lighting control system with sensor feedback.

The DepAuDE framework aims to provide "a methodology and an architecture to ensure

dependability for non-safety critical, distributed, embedded automation systems with both

IP (inter-site) and dedicated (intra-site) connections" [DepAuDE D8.6].

This part of the chapter presents a brief overview of the DepAuDE project. Section 4.2.1

discusses the requirements of the framework and Section 4.2.2 outlines the user support

80

provided by DepAuDE. Detailed information, public deliverables and publications on

DepAuDE are available at [DepAuDE].

4.2.1 Framework Requirements

4.2.1.1 Shortcomings in TIRAN

The TIRAN approach concentrates on the computational aspects of achieving

dependability. It considers intra-site connections only and assumes a reliable

communication. The soft real-time support available in TIRAN is not adequate for aIl

processes and it also lacks support for quality-of-service (QoS) levels.

The DepAuDE project aimed to develop a framework which satisfied the shortcomings in

TIRAN. The pilot applications from the target application fields require that both intra

site and inter-site communications be supported.

4.2.1.2 Real-time Requirements

At the intra-site level, hard real-time requirements need to be considered. But, at the

inter-site level, only soft real-time requirements can be handled because shared lines

imply low predictability. To satisfy the intra-site real-time requirements, a real-time

operating system (RTOS) is needed. For inter-site real-time requirements, DepAuDE

should be able to support predictability and active backup of messages.

4.2.1.3 Quality-of-Service Requirements

With regards to quality-of service requirements, DepAuDE should consider the priority

of the task and available resources, and accordingly offer quality of service. It should

provide support for fault-tolerance techniques and recovery strategies. Remote

maintenance and control should also be achievable. QoS for link failures may be

improved by redundancy means.

4.2.1.4 Fault-tolerance Requirements

DepAuDE aims at tolerating physical fauIts and malicious fauIts. Malicious fauIts can

occur in the context of inter-site communication. Physical fauIts can occur in computing

81

node components or network components. Inter-site connections include communication

via Internet, communication via Intranet, and communication via a dedicated line. The

DepAuDE framework should provide support for tolerating faults in communication and

ensure dynamic reconfiguration and recovery in case of node failures and should adapt

the recovery/reconfiguration strategies based on the resources available. To tolerate faults

at the intra-site level, DepAuDE makes use of group communication. Finally, security

support for inter-site communications should be available to avoid and tolerate malicious

faults.

4.2.2 User Support

DepAuDE provides the user support available in TIRAN and in addition ex tends it to

support inter-site communication in distributed systems.

4.2.2.1 Framework Support

DepAuDE is a fault-tolerance middleware framework that enables customization of fault

tolerance strategies and middleware according to the needs of the target applications. It

supports the design of intra-site (client-to-backbone interface, ARIEL translator -

discussed previously in Section 4.1.2.3) and inter-site mechanisms (gateway, UML

specification). It implements a Basic Services Layer (BSL).

A distributed system developed according to the DepAuDE architecture is composed of a

set of sites. Each site internally has nodes which represent processing units. They are

locally connected by an intra-site communication network (local area network or

dedicated lines). The sites are linked via an inter-site communication network (Internet,

IP-based). A target application architecture is shown in Figure 46.

82

intra-site _
connections

site

inter-site communication network

Figure 46. Target application architecture

4.2.2.2 Methodology Support

---------- node

DepAuDE has a defined methodology which supports specification and validation of

dependability requirements with the use of semi-formal and formaI techniques using

UML (Unified Modeling Language), TRIO (Tempo Reale Implicito), and GSPN

(Generalized Stochastic Petri Nets). It also provides modeling support and predictive

evaluation of the design. The DepAuDE methodology scheme is shown in Figure 47. The

methodology support is similar to that outlined in TIRAN, with the inclusion of inter-site

communication features for specification, validation, and modeling of requirements.

Furthermore, the DepAuDE framework has been applied on the pilot applications to

evaluate and show the feasibility of the framework. The results of this work offer useful

guidelines for target users.

83

Textual
Deplimdabilicy
Re gui relllents

UML

t

l !
..... TRIO ---..

rorslfJ

TRIO
Analysis

Scnellle

Dependability ----. r:Ll
Scheme ma e li

l L ...
' ,--------,

§ Pl,
UML-PN PH --. Analyois
links modele 1 Scheme t '---.-----J

Figure 47. DepAuDE methodology scheme [GD2001]

4.3 TARDIS

TRIO
model ..

1
Inputs ta

Dependability
dasip.

t
PN

aval "a tions

The Timely and Reliable Distributed Information Systems (TARDIS) project was

initiated jointly by Prof. Alan Burns of University of York (York) and A. M. Lister of

University of Queensland (Australia) in 1990. The TARDIS framework was targeted

towards avionics, process control, military, and safety critical applications. It was

developed with the intention of creating a framework which considered non-functional

requirements and implementation constraints from the early stages of software

development.

The following sections de scribe the TARDIS framework starting from the requirements

specification phase in Section 4.3.1 to logical and physical architectural design in Section

4.3.2. Section 4.3.3 briefly mentions the position of TARDIS with regards to software

development methods. Finally, Section 4.3.4 presents a case study demonstrating

application of the framework in the development of a pump control system. The pump

control system has also been discussed in Section 3.2.5.

84

4.3.1 Requirements Specification

In addition to the functional requirements, the TARDIS framework takes into account

three categories of non-functional requirements: dependability, timeliness, and dynamic

change management. Dependability encompasses the requirements availability,

reliability, safety, and security. Timeliness considers the requirements of responsiveness,

orderliness, freshness, temporal predictability, and temporal controIlability. Dynamic

change management entails replacing parts or adding functionality to the system without

halting it.

4.3.2 Architectural Design

The architectural design method foIlowed in TARDIS has two phases: logical

architecture and physical architecture. In this phase, consideration is given to issues of

choices that can occur in the architectural design phase, like, a choice between replication

and dynamic reconfiguration for improving reliability.

4.3.2.1 Logical Architecture

The logical architecture is involved with the design of the functional requirements. In this

step, the object classes, interfaces, and relationships are defined without any

consideration of the execution environment.

4.3.2.2 Physical Architecture

The physical architecture of the design is aimed at satisfying the non-functional

requirements which are considered along with the functional requirements and constraints

imposed on the execution environment. These constraints may include the network

topology, the CPU clock speeds, resource availability, etc [FL92]. The software

ultimately developed should be capable of being analyzed to see whether it satisfies aIl

the non-functional requirements and the constraints.

In this step, instances of classes are considered and they are associated to the execution

environment. The non-functional requirements are mostly incorporated as annotation or

attributes to these classes and their methods.

85

For clarification, the architectural design method followed by TARDIS is demonstrated

via a case study in Section 4.3.4.

4.3.3 TARDIS and Software Design Methods

TARDIS is a generic framework and does not impose any software design methods or

languages on the developer. It maybe applied to any existing design methodology by

following sorne specified rules (defined below) [FL92].

• It is required that the specification language be extended to consider non-functional

requirements.

• A notation for specifying the characteristics of the execution environment must be

available. The notation can be an extension of the specification language or a new

addition.

• It is required that the design be incorporated with non-functional requirements and

constraints introduced by the execution environment. The CUITent design rules can be

upgraded so as to produce a design that accounts for the aforementioned or a separate

technique can be introduced to check validation of the design.

• It may be required to extend the design language, if non-functional obligations are

still unsatisfied following architectural design.

[FL92] describes with an example how TARDIS can be applied together with a software

development method, which uses the specification language Z, to develop a real-time data

acquisition and display system. Z is extended to consider non-functional requirements,

and the real-time logic (RTL) is used as the notation to define the target environment.

TARDIS is based on object-orientation, and hence the structural clash between the early

stages and implementation is minimized. The variations that TARDIS introduces to the

software development process are illustrated in Figure 48.

86

,---,
: Specification : , , , , , , , , , , , ,

Architectural Design
.------------.

Logical Design

Physical Design

Figure 48. Software development using TARDIS

4.3.4 Case Stndy: Mine Control System

This section demonstrates the use of TARDIS with a case study. The application chosen

is a standard in real-time systems literature: the pump (or mine) control system. The basic

operation has been explained before in Chapter 3, Section 3.2.5, and is not repeated here.

4.3.4.1 Requirement Specification

In this section, the functional and non-functional requirements for the pump control

system are presented as reported in [BL91a].

4.3.4.1.1 Functional Requirements

• Pump operation. The pump is switched on when the water level is below the high

water level and the methane level is below critical. In addition to automatic operation,

the operator and the supervisor are allowed to switch the pump on and off based on

sorne conditions. The operator is only allowed to switch on the pump when the water

level is above the low-water level, and the methane level is below critical. The

supervisor however can switch it on only based on the methane level, which has to be

below critical.

87

The pump is switched off automatically when the water level goes below the low

water level or when the methane level reaches the critical level. The supervisor is

allowed to switch it off only when the water level is below the high-water level.

• Pump monitoring. Every operation on the pump and its state alterations are logged.

• Environment monitoring. The environment sensors for methane and carbon

monooxide gas, and airflow need to be constantly monitored and logged. The critical

levels of these sensor values may lead to the pump being shutdown or to alarms being

raised.

• Operator information. The operator should receive information about all critical

readings of sensors.

4.3.4.1.2 Non-functional Requirements

4.3.4.1.2.1 Dependability

For the pump control system, the dependability requirements ensure that the system is

reliable and safe.

Reliability of the pump system is measured by the number of shifts that can be allowed to

be lost if the pump does not operate when it should be. In this case, a system can be said

to be reliable if it loses at most 1 shift in 100. AIso, even on pump failure, a water

accretion period of one hour is allowed before a shift is defined as lost.

Safety of the pump system is related to the probability that an explosion can occur if the

pump is operated when the methane level is above critical. In this case, the probability is

assumed to be less than 10-7 during the lifetime of the system.

To achieve high levels of reliability, the pump system needs to be in operation at all

required times. However, running the pump during unstable methane levels causes the

safety level to faH. On the other hand, it would be safest if the pump was not operated at

88

all in abnormal circumstanees, but this would make the system less reliable. Renee, there

is a trade-off between reliability and safety here. But, it should be noted that safety is

more desirable than reliability for such a system.

4.3.4.1.2.2 Timing

Monitoring periods are used to specify the maximum period environment sens ors can be

monitored or read. In this example, 60 second values have been used for aU sensors.

A shutdown deadline is required according to which the pump is switched off when the

methane level reaches the criticallevel. The relationship of the deadline (D) to the safety

margin (M), the methane accumulation rate (R), and the sampling period (P) can be

expressed by R(P+D) < M.

An operator information deadline should be specified which is the period by which the

operator should be informed of critical gas levels.

4.3.4.1.2.3 Security

The security of the system is associated with the users accessing it. An operator should

not get the rights of a supervisor when operating the pump.

4.3.4.2 Architectural Design

4.3.4.2.1 Logical Architecture

The logical architecture, as mentioned previously, considers the functional requirements

of the system, and in this case also the security requirement. Renee, for this system, the

functional requirements can be mapped to four classes: pump subsystem, data logger

(introduced due to pump monitoring), environment subsystem, and operator. To satisfy

the security requirement, the decision of having single or separate classes for the operator

and supervisor should be considered. Preference is given to the latter sinee that way the

authority of the user can be checked during compile-time.

89

The classes can be further decomposed, resulting in seven classes at the logical

architecture phase: Pump controller, Pump, Water sensors, Environment monitor,

Environment sensors, Operator, and Supervisor.

4.3.4.2.2 Physical Architecture

4.3.4.2.2.1 Dependability

At the subsystems level, safety of the system can be threatened due to the failures

mentioned below.

"

the environment subsystem provides an incorrect (low) value for methane level

when asked by the pump subsystem;

the environment subsystem fails ta generate an alarm signal when the methane

level reaches the danger threshold;

the communication medium fails to convey the alarm signal ta the pump

subsystem;

the pump subsystem fa ils ta switch off the pump when it receives the alarm.

" [BL91a].

From the above, it can be deduced that safety of the system is dependent on the

environment subsystem, the pump subsystem, and the communication medium between

them. Two types of failures can affect safety: fail-silent and fail-noisy. The first step

would be to create fault containment areas. The task of raising an alarm can be avoided, if

the pump subsystem can be assigned an additional operation of checking the methane

level continuously. This way the pump can switch itself off when it receives no response

from the environment subsystem. This does not increase the design complexity. The

system is now only affected by failures in a fail-noisy manner. In addition, time-stamping

can be used when sending methane readings to enable the pump subsystem to realize

when its getting old readings and act accordingly.

In the case of reliability, to prevent loss of shift, the pump should be repaired before the

water accretion period passes.

90

Looking into more details, the component sens or in the pump subsystem needs to be

annotated with attributes like failure probability and MTBF (mean time between failures).

Since, sensors only fail in a fail-noisy way, replication of the sensors is required to

tolerate hardware failure. Three sets of sensors can be used along with N-modular

redundancy (NMR) technique for detecting and tolerating faults.

In a similar manner, the other components in the system can be analyzed and measures

taken to achieve dependability. Due to space constraints, they are not described here but

can be found in [BL9Ia].

4.3.4.2.2.2 Timeliness

• Periodicity - The operations which read the environment sens ors (carbon monoxide

and airflow) are assigned a period of 60 seconds. The pump however needs to get

methane readings every 5 seconds. This period also to account for the methane sensor

being read, the request sent by the pump controller and the delay caused due to

communication. Realistic assumptions would probably estimate 1 second for

communicating and 2 seconds each for the other two tasks.

• Deadlines - Operations that report critical events to the operator, and which switch

off the pump due to unstable conditions, need to be assigned deadlines - 1 second

each in this exarnple.

It can be seen that the communication medium is a factor when determining timeliness of

the system. For this reason, it is desirable to know the target environment beforehand so

that appropriate considerations are made to it.

4.3.4.2.2.3 Distribution

As part of the physical architecture, the location of the objects in the execution

environment needs to be realized also. The pump controller and the environment monitor

need to interact frequently, and hence it is reasonable to locate them in the same

processor to reduce communication delays. In order to tolerate hardware failures, these

91

should in turn be replicated on different processors. Similarly, decisions need to be taken

regarding distribution of the other system components.

4.3.4.2.2.4 Communication

Another necessary design step is to decide on the communication mechanisms to be used,

for example, remote procedure caU (RPC) or asynchronous message passing. For the

pump control system, RPC has been suggested, the reasons for which can be found in

[BL91a].

4.4 Middleware Architectures

Middleware is software that is used to integrate heterogeneous software applications or

products efficiently and reliably in a distributed computing environment. It is the middle

layer between the application pro gram and the platform and provides abstractions

necessary for interfacing.

In [TD2001], Tirtea and Deconinck presented a survey of general middleware and their

support for fault-tolerance. In [DepAuDE D2.1 & D2.2], the survey has been extended to

inc1ude other middleware approaches that support fault-tolerance, but which are not in

general use. This part of the chapter introduces these general (section 4.4.1) and fault

tolerant (section 4.4.2) middleware.

4.4.1 General Middleware

This section discusses the main general middleware available currently and their FT

features: DCE, DCOM, Java RMI, and CORBA. DCOM, Java RMI, and CORBA are

object-oriented, but DCE is procedure-oriented [DepAuDE D2.1 & D2.2].

DCE (Distributed Computing Environment) is an Open Group project developed to

provide a software infrastructure for distributed computing. It has a set of programming

interfaces and run-time services, and inc1udes a comprehensive security model. DCE

92

supports fault-tolerance by replicating the core services provided by server programs

[TD2001].

DCOM (Distributed COM) is a protocol developed by Microsoft Corporation as an

extension of COM (Component Object Model). It enables software components

developed and deployed by COM to communicate directly over a network. Fault

tolerance support is limited, and is available at the protocollevel. Network and client-side

hardware failures can be detected via a pinging mechanism, and connections can be

renewed automaticall y if the network recovers before the timeout period [TD200 1].

Java RMI (Remote Method Invocation) is a communication mechanism which enables

creation of distributed applications based on Java technology. Fault-tolerance support is

available in Java RMI for reference counting in automatic memory management to

protect against network failures. Also, Java has been extended to support real-time

systems application programming [TD200 1].

CORBA (Common Object Request Broker Architecture) is an OMG (Object

Management Group) standard which offers an architecture and infrastructure that allows

application programs to work together over networks irrespective of programming

languages. TAO (The ACE ORB) implementation of CORBA supports fixed-priority

real-time scheduling. Electra, another CORBA implementation, provides fault-tolerance

with object replication. Real-time CORBA 1.0 supports QoS with standard policies and

techniques [TD200 1].

4.4.2 Middleware Architectures with FT Support

This section discusses sorne middleware approaches that support fault-tolerance.

Chameleon is an adaptive infrastructure, which supports multiple fault-tolerance

strategies in a networked environment. Chameleon uses reliable agents that support user

specified levels of fault-tolerance. It considers satisfying dependability in terms of

availability. Chameleon can be used for real-time applications with sorne additional

93

features added [DepAuDE D2.1 & D2.2]. A real-time application of Chameleon, a

railway control system, is in operation.

ROAFTS is a middleware architecture providing real-time object-oriented adaptive fault

tolerance support. ROAFTS off ers fault-tolerance schemes that can be applied to both

process-structured and object-structured distributed real-time (RT) applications. These

schemes are used to tolerate processor faults, communication link faults, interconnection

network faults, and application software faults. ROAFTS is meant for implementation on

COTS (Commercial Off-The-Shelf) and guarantees RT fault-tolerance when required

[DepAuDE D2.1 & D2.2]

FRIENDS (Flexible and Reusable Implementation Environment for your Next

Dependable System) is a software architecture which provides fault-tolerance and limited

security support. It is built on subsystems and libraries of meta-objects. There is a fault

tolerance sub-system which incorporates fault-tolerance mechanisms for error detection,

failure detectors, replication, reconfiguration, and stable storage. It does not provide

specific support for real-time and quality-of-service requirements [DepAuDE D2.1 &

D2.2]

AQuA (Adaptive Quality of Service for A vailability) is an adaptive architecture for

building dependable distributed systems. Fault tolerance is provided by Proteus, a

dependability manager integrated into the architecture. Fault tolerance support is given to

CORBA applications with replication of objects, and different levels of desired

dependability and quality-of-service are provided. AQuA is capable of handling crash

failures, value faults, and time faults. It incorporates means for detecting errors, treating

faults, and reliable communication [DepAuDE D2.1 & D2.2]

TIRAN (Tailorable fault tolerance frameworks for embedded applications) is a software

framework dedicated towards developing dependable systems in the automation systems

domain. The TIRAN framework has been discussed in details at the beginning of this

chapter and hence will not be repeated here.

94

4.5 Summary
The TIRAN framework [TIRAN D7.9], presented in Section 4.1, can be used as a cost

effective solution for developing dependable automation systems. It provides user

support in the form of a methodology, which guides users to consider fault tolerance from

the early software development stages. It ensures satisfaction of performance

requirements from soft to hard real-time. The framework includes re-usable components

as libraries of fault/error/failure mechanisms that can be customized for different

applications. The framework is meant to act as a middleware for applications.

The TIRAN approach only supports embedded applications that are distributed locally

(intra-site). The TIRAN project had left as future work two main things: extensions to

provide support for globally (inter-site) distributed applications and to develop the

TIRAN FT specification, validation, and verification methodology to support a widely

distributed embedded applications.

Both of these issues have been considered in a follow-up project, DepAuDE

(Dependability for embedded automation systems in dynamic environment with intra-site

and inter-site distribution aspects) [DepAuDE] briefly discussed in Section 4.2 of this

chapter. The DepAuDE project has improved the state-of-the-art in the addressed

application fields. The methodology and architecture aims to develop more co st-effective

and dependable systems with respect to other approaches available, particularly in terms

of better QoS, maintainability and reusability.

Another noteworthy project, TARDIS [BL91a], separate from the above two has been

discussed in Section 4.3 of this chapter. The TARDIS project can be considered to be

inspired from HRT-HOOD. But where HRT-HOOD caters to real-time systems and

considers satisfying only the timing non-functional requirement, TARDIS is targeted to a

wider range of dependable systems and aims to satisfy other non-functional requirements

like dependability also. But, the initial proposaI of developing a framework presented in

[BL91a] catered towards dependable systems was not completed. The project was,

95

however, continued in one area. Detailed work was done on the development of real-time

systems using the TARDIS framework. [FL92] discusses the architectural design of non

functional requirements related to real-time issues using the specification language Z and

RTL (real-time logie) in partieular. Detailed design using TARDIS is considered in

[BL91b] [FL92]. According to Fidge and Lister in [FL92], the TARDIS framework can

also be applied to the design of systems where non-functional requirements like

reliability, security, safety, fault tolerance, and system reconfiguration need to be

satisfied.

The last section of this chapter, Section 4.4, presents a middleware survey as reported in

[DepAuDE D2.1 & D2.2]. This survey was carried out as part of the TIRAN and

DepAuDE project to research sorne available fault tolerance approaches and analyze the

extent of fault-tolerance support provided in each. None of the approaches were seen to

be adequate for developing applications in the target area and hence TIRAN and later

DepAuDE were developed. Although, these two projects cater to a specifie domain, to

date they are two signifieant contributions to the development of dependable systems.

96

Chapter 5.

Other Fault-Tolerance Approaches

Although until today not much concrete work have addressed fault-tolerance, quite a few

approaches have been proposed which address dependability requirements from the early

stages of developments for various target domains. These vary from integration of

exception handling features, to consideration of real-time issues in isolation, to providing

support with an architecture, or framework which can be customized according to user

needs. This chapter discusses a range of such approaches. Section 5.1 presents work on

extensions of UML [UML2003] and Section 5.2 discusses sorne diverse ways of

addressing fault-tolerance in the software process.

5.1 Extensions of UML
A few approaches have been proposed that use UML extensions to provide support for

fault-tolerance. The extensions inc1ude mechanisms to incorporate stereotypes, tagged

values, constraints, and profiles in the model. Two such approaches are discussed in this

section.

5.1.1 Modeling Hard Real-time Systems with UML: The OOHARTS

Approach

The Object-Oriented Hard Real Time System (OOHARTS) approach [KN99] aims to

provide an object-oriented method to develop hard real-time systems. The process is

based on UML [UML2003] and extension mechanisms related to timeliness, and hard

real-time constructs of the HRT-HOOD [BW95]method (presented in Chapter 3).

The extensions made to UML are as follows:

97

• HRT class stereotype: Stereotypes are used to define the different kinds of real-time

objects, and OOHARTS uses «cyclic», «aperiodic», «protected»,

«passive», and «environment».

• Modeling of object behavior: A special form of UML statecharts, Object Behavior

Chart (OBC), with means of representing timing constraints like deadline and period

is used to define object behavior.

• Constraining the object synchronization: In addition to the UML communication

stereotypes, OOHARTS adds «aser», «lser», «hser», «tm-hser», and

«tm-lser». They represent the same concepts as the type of request concept in

HRT-HOOD.

• Constraining the objects concurrency: UML provides a concurrency attribute which

can be of type sequential, guarded, or concurrent. OOHARTS extends this list by

adding the stereotypes «mutex» (mutual exclusion), «wer» (write execution

request), and «rer» (read execution request).

The OOHARTS method follows the traditional software development phases:

requirements definition, hard real-time analysis, hard real-time design, and

implementation. The requirements definition phase involves specification of both

functional and non-functional requirements. OOHARTS differs from HRT-HOOD in two

main ways: it is object-oriented, whereas HRT-HOOD is object-based, and OOHARTS

introduces a software process with an additional phase, hard-real time analysis, which

provides a framework for defining the structure and behavior of hard real-time systems

using UML and the new extensions defined [KN99].

5.1.2 Developing Safety Critical Systems with UML

It is crucial when developing safety-critical systems to consider means to achieve the

highest level of dependability. In [112003], a method is presented which uses UML

[UML2003] in the development of co st-effective and dependable safety-critical systems.

The approach is based on using the UML extension mechanisms to incorporate safety

requirements in a UML model. The mechanisms consider crash/performance failures and

value failures which may cause message loss, delay, or corruption. Figure 49 shows the

98

stereotypes with the associated tags and constraints along with an informaI description.

For example, the stereotype «risk» can be used to describe a risk that arises in the

physical level with the tag {failure} and «error handling» provides an object for

handling errors in the subsystem level and is associated with the tag {error object}.

The approach also considers analyzing the UML model with a prototypical XMI-based

tool to check if it satisfies the requirements. The tool is described in details in [JJ2003].

The approach discussed here considers non-functional requirements during the design

phase in terms of safety. Jürgens has also proposed using UML to develop security

critical systems in [JJ2004]. Previously, he has also, in collaboration with others,

described sorne approaches for systems development using UML which consider various

criticality requirements.

Stereotype Ba.~ Class Tags Constraints Dœcription
risk link, Dode failura risks
era«;>h/ link, 11000 cral:lh/performallce
perform.ance faUme semantics
value link, 110de .'alue

failure semantîcs
gmmmtee liuk, noOO g;oaJ guaralltees
roclund.allcy dependeuc}', model rodundancy model

compommt
saie linw. subsystelll dependency safet)' êllforces safe

ll1atchocl by links conmlllllJcatioll linkl;
safe subs)'stem (i cali), l': sf.:nd :') respect structural
dependoncy data safet)' data safety

critical object (l&Vel) critical object
salO behavior !!ubsystem behavior fulfill:s safety safe behavio['
containment subsystem providœ containll1ent containmenL
>2fror ha.ndling Imb:>}'Bt em mT'Or object handlœ errOlb

Figure 49. Stereotypes with associated tags and constraints [JJ2003]

5.2 Other Approaches

5.2.1 A Framework for Integrating Non-functional Requirements into

Conceptual Models

In [CL2001], an interesting approach is presented addressing the need to capture non

functional requirements (NFR) at the early stages of development, by integrating NFR

into conceptual models, specifically into the entity-relationship (ER) and object-oriented

99

(00) models. The proposed method describes the use of the LEL (Language Extended

Lexicon), discussed in [CL2001], and a NFR taxonomy to elicit the requirements. A

comprehensive taxonomy of NFR is shown in Chapter 2. A LEL-NFR tool is required

that captures terminologies relevant to the target field, referred to as the UoD (Uni verse

of Discourse). This tool along with the NFR taxonomy is used to derive the NFR

knowledge-base for a particular domain. These NFR are decomposed and represented in

graphs which a slight variants of Chung's NFR graphs [CN2000]. Finally, the NFR are

integrated into the conceptual models. In ER models, a NFR is shown in a rectangle with

the UoD labeled over it, and connected to the relevant entity or relationship. In the 00

model, NFR are added to class diagram by attaching two rectangles to the right bottom of

the class with the U oD name in one and the NFR name in the other.

In [CL2004], this approach has been applied to UML, starting from use cases to class

diagrams, sequence diagrams, and collaboration diagrams.

5.2.2 Exception Handling in the Development of Dependable

Component-Based Systems

Exception handling is a technique that can be integrated into software systems to

integrate the process of error recovery. In [RL2004], an approach is presented to handle

exceptions in the development of dependable component-based systems. Rubira and

others have proposed a way of incorporating the behavior of exceptions in the Catalysis

process [DW98].

Catalysis is a methodology for developing object-oriented software based on the notion

of components. The Catalysis method does provide a way of representing exceptions, but

does not consider exception al behavior during software development. Catalysis uses a

concept called collaboration, which represents "a set of related actions between objects"

[RL2004]. The proposed approach depends on this feature to identify the interactions

occurring among components, which are structured as idealized fault-tolerant

components (IFTC) (discussed in Chapter 2). It aims to extend Catalysis with provisions

100

for specifying exceptional behavior in the requirements phase, and then mapping them

onto design and implementation.

To begin with, exceptions are added to use-case specifications in a formaI manner as

shown in Figure 50. The system is structured with IFTC and the propagation of

exceptions is clearly modeied as illustrated in Figure 51. In the next phase, collaborations

are defined from use-cases, where the pre- and post conditions are mapped to actions,

which include refinements of the defined exceptions. A template is used to describe the

collaboration, and class hierarchies of normal and exception al behavior are produced.

Following the design, ways to move on to implementation are suggested in [RL2004].

Use Case

Normal Uellavior

Primm-y
SœllllrlO

Alternative
Scenario

Figure 50. Structure of a use case [RL2004]

Subcomponents Service Request Components Service Request Containing

Figure 51. A software architecture composed by three IFTC [RL2004]

Service Request

Nonnal Response

Extemal
Exception

Although this approach makes use-case specification more complex, it provides a way for

achieving dependability to sorne extent in component-based systems with the use of an

error recovery mechanism.

101

5.2.3 EFTOS: FT Approach to Embedded Supercomputing

Embedded Fault-Tolerant Supercomputing (EFTOS) is an ESPRIT project completed in

1998, targeted towards industrial process-control, real-time applications, and embedded

systems. It aims to provide a middleware framework to implement fault-tolerance to

make embedded supercomputing applications more dependable.

The EFTOS approach overlaps with TIRAN (discussed in Chapter 4). Similar to TIRAN,

it also follows a layered approach comprising of basic fault-tolerance tools and

mechanisms, a backbone, and a high-level recovery language for specifying recovery

strategies [DF2002]. The FT tools provided include a watchdog timer, a trap handler for

exception handling, an atomic action tool, assertions, and a distributed voting

mechanism. The framework which acts as a middleware between the application and the

platform, can be customized according to the needs of the target application.

5.2.4 DELTA-4

Delta-4 [PB93] is another ESPRIT project which aims to provide an open architecture for

development of dependable systems. It considers fault-tolerance and real-time issues, and

is targeted at distributed real-time systems. The Delta-4 architecture is made up of

software components located in host computers forming a possibly heterogeneous

computer network. Each host computer together with a Network Attachment Controller

(NAC) forms a node in the system. A NAC is a specialized communication processor

which fails in a fail-silent manner.

Delta-4 tolerates hardware failures with the help of hardware and software redundancy. It

supports active and passive replication of software components residing in homogeneous

computers. Depending on the target application, replication can be used with or without

voting. Voting mechanisms are included to address fail-uncontrolled hosts. In case of

passive replication, systematic and periodic strategies for check-pointing are provided.

The original architecture was not suited for real-time application development. It has

been extended with facilities to provide support for real-time systems. The

102

leader/follower replication strategy, discussed in [PB93], has been incorporated

especially for use in real-time systems. Delta-4 addresses both soft and hard real-time

behavior.

5.3 Related Work
Sorne related work considering fault-tolerance and other dependability attributes worth

mentioning are listed below. Because of space constraints, it was not possible to describe

them in details.

• MAFTIA (Malicious and AccidentaI Fault Tolerance for Internet Applications) is an

European Union project completed in 2003 and is said to be the first project to

address the need to tolerate malicious and accidental faults in large-sc ale distributed

systems [MAFTIA].

• GUARDS (Generic Upgradeable Architectures for Real-Time Dependable Systems)

[P A99] is an ESPRIT project aiming to provide methods, techniques, and tools for

design, implementation, and validation support in safety-critical real-time systems.

• MARS (Maintainable Real-Time System) [RL95] is an architecture specialized for

time-triggered applications, and addresses fault-tolerance with active replication

means and other hardware FT measures to satisfy hard real-time requirements.

• Aurora Management W orkbench provides a software framework for developing

reliable, scalable, and configurable distributed applications [AMW].

• DOORS is a framework developed to provide support for building fault-tolerant

applications in CORBA [GN2000].

• RIDE (Righ-Ievel Integrated Design Environment for Dependability), an ESPRIT

project, addressed the need for early validation of UML-based design [BC2001]. In

[MC2003], Chin proposes an approach, as part of RIDE, to extend UML towards a

useful OO-Language for modeling dependability features. It provides abstractions to

incorporate common dependability requirements in the UML model.

• In [GR2003], a fault-tolerant software architecture for component-based systems is

proposed. It is based on IFTC (idealized fault-tolerant components), which enables it

to handle software faults, providing higher levels of dependability.

103

Chapter 6.

Survey Results

Several approaches with varied dependability and fault-tolerance support have been

discussed in this thesis. The approaches have been evaluated based on several criteria:

non-functional requirements (NFR) that are addressed, fault-tolerance features that are

offered, application environments in which the approaches can be used, and NFR

specification support. The comparisons are presented in Section 6.1, 6.2, 6.3, and 6.4

respectively. In addition, Section 6.5 shows a middleware comparison taken from

[DepAuDE D2.1 & D2.2], and Section 6.6 compares FT design approaches based on the

report in [TIRAN D3.3].

Note: For approaches where adequate information was not available to state

dependability or fault-tolerance support, the symbol " - " has been used. Also, the

approach, a framework for integrating non-functional requirements into conceptual

models, presented in Chapter 5, Section 5.2.1, is too general and hence has not been

considered in the comparisons in this chapter.

6.1 Non-functional Requirements

This section shows a comparison of the approaches discussed in this thesis based on sorne

important non-functional requirements. The requirements considered have been

introduced in Chapter 2, and include dependability, timeliness, adaptability, and qua lit y

of-service (QoS). Dependability, as defined in Chapter 2, refers to availability, reliability,

safety, confidentiality, integrity, and maintainability. Availability and reliability are

related attributes and can be classified as "avoidance or minimization of service outages"

[AL2000]. Also, a specialization of availability and integrity with respect to

authorization, together with confidentiality can be grouped together as the security

requirement [AL200l]. The approaches have been evaluated based on the requirements

104

that are satisfied or taken into consideration (marked with ,(), and a comparison IS

illustrated in Table 6. The lack of support is shown with the le symbol.

<loi
~ ...

p ~

'"' :; P
<loi

~ ..c rr.J
eU '"

... ..:. Comments =.~ '" :=
= <loi ..c

Q

..c:= pS
1

eU..c p ... ~ .s .~ := eU '"' 1j CI. eU ... ~ = 'a El eU -= ~~
~ "C = eU <loi

~ ~ rr.J rr.J -< Ci

HOOD Je Je Je ./ ./ Je Je limited maintainability (only exception
handling); timeliness (only SRT);

HRT-HOOD ./ ./ Je ./ ./ ./ Je limited maintainability (only exception
handling and maybe replication); adaptability
(mode changes);

TIRAN ./ ./ Je ./ ./ ./ Je assumes reliable communication; safety (only
by criticality level)

DepAuDE ./ ./ ./ ./ ./ ./ ./ considers intra- and inter-site communication;
safety (only by criticality level)

TARDIS ./ ./ ./ ./ ./ ./ Je not targeted to specifie NFR - open framework
OOHARTS ./ ./ Je ./ ./ ./ Je limited maintainability (exceptions);

adaptability (mode changes);
EFTOS ./ Je ./ ./ ./ ./ Je security (integrity); timeliness (esp. SRT);
DELTA-4 ./ Je ./ ./ ./ Je Je user-specified level of dependability;

maintainability (only replication);
Chameleon ./ Je Je ./ Je ./ Je supports different levels of availability

requirements; adaptability (mode changes);
ROAFTS ./ ./ Je ./ ./ ./ Je guarantees RT FT; adaptability (mode

changes); survivability;
FRIENDS ./ ./ ./ ./ Je Je Je security (communication);
AQuA ./ Je Je ./ Je ./ ./ user-specified level of availability;
JJ4 Je ./ Je Je Je Je Je tar~ets specifie dependability requirements
RLFF~ Je Je Je ./ Je Je Je targets specifie dependability requirements

Table 6. Comparison based on NFR

6.2 Fault Tolerance Features
Table 7 presents a comparison of the fault-tolerance support in each approach. The

classification is based on the failure domain support, error processing support, and fault

treatment support. In addition, the important techniques for error processing and fault

treatment considered in each approach have also been mentioned.

4 Jan Jürgens: Developing safety-critical systems with UML.
5 C. M. F. Rubira, R. de Lemos, G.R.M. Ferreira, F. Castor Filho: Exception handling in the development
of dependable component-based systems.

105

Failure Domain Error
Processing

Fault Treatment Means
Value Timing

HOOD Je Je detection no support exception processing,
deadlock avoidance
techniques

HRT-HOOD Je ./ detection reconfiguration exception processing,
replication

TIRAN ./ ./ detection, diagnosis, masking exception handling, design
localization, confinement, diversity, stable memory,

computing recovery dynamic watchdog, local voter,
failures only reconfiguration, distributed

graceful degradation synchronization, time-out,
standby sparing, recovery
blocks, NMR

DepAuDE ./ ./ same as above same as above same as above & group
communication

TARDIS ./ ./ detection, diagnosis, isolation, timeout, HW/SW
recovery confinement, repair/replacement, NMR,

reconfiguration failure messages
OOHARTS - ./ detection - exceptions, timeout,

deadlock avoidance
techniques

EFTOS ./ ./ detection, . masking, fault- exception handling,
isolation, tolerance watchdog, atomic actions,
recovery distributed voting,

recovery language
DELTA-4 ./ ./ detection, reconfiguration, acti ve/passi veneader-

recovery fault-tolerance follower replication,
voting, timeout

Chameleon ./ ./ detection, masking, system reliable agents, TMR
recovery reconfiguration, (H/W), checkpoints, voting

failure recovery (distributed & majority)
ROAFTS ./ ./ detection, fault-tolerance watchdog timer,

recovery predictable
communication, process
scheduling, backward
recovery (SRT), forward
recovery (HRT), recovery
blocks; active replication

FRIENDS physical crash detection, reconfiguration, leader-follower-replication,
failures only recovery fault-tolerance stable storage, primary

backup, failure suspectors,
group communication

AQuA ./ ./ detection, fault-tolerance, active/passive replication
recovery system & degree, voting, monitors,

reconfiguration group communication
11 ./ ./ detection, compensation space/time/information

containment, redundancy, voting
handling

RLFF - - detection, no support exception handling, IFTC
recovery

Table 7. FT support

106

6.3 Target Domain
This section categorizes the approach by their type: method, framework, middlew are ,

architecture, or technique that targets specifie dependability requirements. Table 8 shows

this classification along with the target domain and environment the approach was

developed for.

Target Domain Application Environments

Method HOOD embedded real-time systems space, energy, defense, transport
HRT-HOOD avionics
OOHARTS hard real-time systems -

Framework/ TIRAN embedded automation systems automation (energy, transportation)
Middleware DepAuDE non safety-critical systems, automation

distributed embedded systems
TARDIS safety-critical embedded systems avionics, process control, military
EFTOS soft real-time, mission-critical, process control, signal processing

embedded supercomputing
systems

ROAFTS safety-critical, distributed real- broad range
time systems

Architecture DELTA-4 distributed, real-time systems computer -integrated
manufacturing, process control,
office automation

Chameleon real-time, networked systems broad range
FRIENDS distributed systems general
AQuA distributed systems -

Technique JJ safety-critical systems fly-by-wire in avionics, drive-by-
wire in automotive, etc.

RLFF component-based systems -

Table 8. Approaches and their target environment

6.4 Support for NFR Specification
The NFR specification support or lack of it in each of the previously mentioned

approaches is briefly stated below.

HOOD does not provide guidelines for NFR specification. However, it is possible to

define such requirements at an early stage.

HRT-HOOD and OOHARTS provide limited support for NFR specification - only

timing requirements, like periodicity and deadlines, can be defined.

107

TIRAN and DepAuDE provide a methodological support for the collection, specification,

and validation of NFR from the initial stages of development.

TARDIS enables specification of dependability, timeliness, and dynamic change

management requirements but concrete guidelines are only available to specify real-time

issues.

EFTOS supports integration of NFR by providing a library of FT tools, which can be

adapted according to the application needs.

DELTA-4, Chameleon, and AQuA allow the user to specify NFR in terms of the level of

dependability required. For example, in AQuA, it is possible to specify the QoS level.

They provide limited FT techniques, which the user can choose from.

ROAFTS is a middleware architecture, which offers fault-tolerant schemes that can be

adapted but does not provide a methodological support to specify NFR in an application.

Similarly, in the FRIENDS architecture, no guidelines are provided for NFR

specification, and it is the user's responsibility to use the scheme appropriately.

The approach, developing safety-critical systems with UML, considers NFR from an

early stage and provides support to incorporate such requirements in the UML models.

The other approach by RLFF only enables specification of exceptions and exception

handling in the use cases.

6.5 Middleware Comparison
This section presents a comparison of the middleware, discussed in Section 4.4, with

respect to their fault-tolerance (FT), real-time (RT), and quality-of-service (QoS) support.

This comparison, presented in Table 9, is based on a study carried out in the DepAuDE

project [DepAuDE D2.1 & D2.2]. The symbol * is used to denote the level of fault-

108

tolerance, real-time, and quality-of-service support provided by each middleware, with

***** being the highest level.

FT CORBA different implementations provide fault tolerance: e.g. Electra supports fault
*** tolerance using object replication
Java RMI fauIt tolerance in memory management for automatic garbage collection
*
DCE core services replicated

DCOM support fauIt tolerance at protocollevel for detecting network and client-side
* hardware failure
Chameleon user-specified level of fault tolerance; a special component designed for fauIt
***** tolerance (FauIt Tolerance Manager)
ROAFTS design to support adaptive fauIt tolerance; tolerates processor fauIts,
***** communication link fauIts, application software faults
FRIENDS fault-tolerant dedicated subsystems (FTS, GDS)

AQuA fauIt-tolerant dedicated component: Proteus; Proteus tolerates crash, value
***** and time fauIts
TIRAN adaptive, based on linguistic approach; ARIEL-language for error recovery

RT CORBA Real-Time CORBA 1.0 with fixed priority scheduling

Chameleon railway control system - an RT Chameleon application with a special
*** component design for real-time support (Real Time Manager)
ROAFTS design to guarantee real-time fauIt tolerance; uses the Time-triggered
**** Message-triggered Object (TMO) model

QoS CORBA Real-Time CORBA 1.0 facilitates end-to-end predictability

AQuA Quality Objects (QuO), components of AQuA allow to specify quality-of-
**** service requirements at application level
TIRAN supply different strategies for degradation of services
**

Table 9. Middleware comparison [DepAuDE D2.1 & D2.2]

6.6 Comparison of Designs of FT Approaches

This section presents a comparison of sorne approaches to provide fault-tolerance, based

on the description in [TIRAN D3.3]. The approaches include the system approach (used

in DELTA-4 and GUARDS), library approach (used in Project Isis), metaobject protocols

and reflection (used in FRIENDS), and the recovery language approach (used in EFTOS),

and an approach based on the library and recovery language approach (used in TIRAN

and in DepAuDE). Table 10 shows a summary of the comparison based on the

description in [TIRAN D3.3].

109

~
Efficiency Transparency Portability Cost of Flexibility Examples

Approaches
Adoption

System High High Medium Low Low GoodforHRT
Approach Systems; No FT

support within
target
application;
Used in Project
DELTA-4 and
GUARDS

Library Medium Medium High Low-to- Medium Not good for
Approach medium HRT systems;

Used in Project
Isis

Metaobject Medium High Medium- Medium Medium Good for object
protocols to-high redundancy but
and not for
retlection distributed

recovery blocks
and such; U sed
inFRIENDS

Recovery Medium Medium-to- High Low-to- Medium Developed in
Language high medium the EFTOS
A»roach framework
Combination Medium Medium-to- High Low-to- High TIRAN,
oflibrary high medium DepAuDE
and recovery
language
approach

Table 10. Comparison of different orthogonal approaches

110

Chapter 7.

Future Work

In today's complex systems, esp. real-time systems, software availability and reliability

are crucial. However, although fault tolerance techniques have been available for over 30

years now, their presence in the software development process is insignificant. Current

mainstream software engineering methods do not consider fault tolerance in the

requirements engineering stage, and only sometimes much later in the development

cycle. But, most modern systems must provide or can at least bene fit from sorne form of

fault-tolerance. In [JL96], Laprie proposes a model that incorporates the dependability

processes, fault forecasting, fault removal, fault tolerance, and fault prevention, into the

software development lifecycle. The model is illustrated in Figure 52.

Figure 52. Dependability-explicit development model [KL2000]

It is obvious from the literature overview in this thesis that only limited research has been

conducted in this direction. Quite a few projects did start with similar goals, but died

before much progress was made. Hence, there are still many open questions and

possibilities for major contributions. One significant work would be to to integrate the

concern of fault tolerance into the software development cycle. The resulting benefits of

this work are obvious. Having fault tolerance in mind from the beginning allows software

111

developers to "engineer" support for fauIt tolerance. It makes it possible to state the

required level of fauIt tolerance precisely and then choose the appropriate models, design

and infrastructure to achieve it. It helps in reducing the complexity of fauIt tolerance,

resuIts in clearer pro gram code, increased readability, less maintenance overhead, and

delivers adequate performance. The concrete output would be to add fault tolerance

support to a mainstream development method, e.g. the Rational Unified Process. The

work can be based on the Unified Modeling Language and the Object Constraint

Language.

It involves two essential tasks: the requirements engineering and analysis, and the

architecture and design. The requirements engineering and analysis phases of software

development methods concentrate on elaborating a concise and complete specification of

the application under development. The specification is considered to be the definition of

correct program behavior. At this stage, integration of fault tolerance means identifying

the need for fauIt tolerance, finding the places where it is needed, and specifying what

degree of fault tolerance must be achieved.

In the architecture and design phases, a solution that provides aIl the services specified in

the analysis phase must be devised. Object-oriented software development methods assist

the designer in this task by assigning functionality to objects based on responsibility, and

design patterns help to determine elegant interactions arnong objects. At this stage, the

design process must be augmented in such a way that it leads to a solution that

additionally fulfills the fault tolerance requirements. For this purpose, error confinement

techniques provided by well-known fauIt tolerance models, forward and backward error

recovery, and structured exception handling can be used. The resulting design should also

be able to make use of fauIt tolerance infrastructures.

The results of this work would indeed be of great use to software developers for

producing co st-effective dependable systems.

112

Chapter 8.

Conclusion

This thesis work started with the goal of identifying software processes that address fault

toleranee in the early development stages. Fault tolerance has been stated as a means to

satisfy non-functional requirements, mainly availability, reliability, safety, security,

timeliness, adaptability, and quality-of-service. Henee, it was surveyed which approaches

aim to fulfill such requirements.

In this thesis, numerous approaches are presented. The approaches are an assortment of

methods, frameworks, middlew are , architectures, and techniques. The software

development methods discussed, HOOD and HRT-HOOD, consider real-time issues in

isolation. Unfortunately, no methods are publicly available that integrate dependability

concems into the software development life cycle.

However, some middleware frameworks directed towards specific domains are available,

namely TIRAN, DepAuDE, and TARDIS. These approaches consider dependability

requirements like reliability, availability, security, timeliness among others, and provide a

methodological support for customizing the framework to the application needs. TIRAN

and DepAuDE make use of UML elements like packages and class diagrams to build

models and specialized languages to enable user-specified recovery strategies. Other

middleware like EFTOS and ROAFTS provide tools, which the user can adapt

accordingly. Software architectures, like DELTA-4, Chameleon, FRIENDS, and AQuA,

have attempted to satisfy hardware fault toleranee requirements to some extent by

supporting techniques like replication, but they do not pro vide guidelines to the user or

facilitate making design decisions during software development.

113

Other approaches have originated based on methods like HRT-HOOD, and processes like

Catalysis. Several have proposed extension mechanisms for UML to integrate non

functional requirements into the design models.

This survey shows that there is a lot more work to be done in order to make fauIt

tolerance an integral part of software development. In particular, there is close to no

methodological support or guidance available for developers for achieving desired levels

of fault tolerance. The approaches mentioned above are aIl domain-specifie. Sorne

approaches target distributed systems, but most of them are intended especially for

embedded real-time systems. However, a mainstream software development method that

integrates fauIt tolerance into the software development life cycle remains to be

established. FauIt tolerance concerns should be addressed earlier in the software

development life cycle. Clear guidelines helping developers to choose the right software

architecture and models supporting fault tolerance should be established. FinaIly,

mappings of the models to fauIt-tolerant middleware or programming constructs have to

be defined. Further research and concrete work in this field is essential to achieve cost

effective dependable systems.

114

Appendix A

A list of non-functional requirements [CN2000]

accessibility accountability accuracy
adaptability additivity adjustability
affordability agility auditability
availability buffer space performance capability
capacity c1arity code-space performance
cohesiveness commonality communication cost
communication time compatibility completeness
comprehensibility conceptuality conciseness
confidentiality configurability consistency
controllability coordination cost coordination time
correctness co st coupling
customer evaluation time customer loyalty customizability
data-space performance decomposability degradation of service
dependability development cost development time
distributi vit y diversity domain analysis co st
domain analysis time efficiency elasticity
enhanceability evolvability execution cost
extensibility external consistency fault-tolerance
feasibility flexibility formality
generality guidance hardware cost
impact analyzability independence informati veness
inspection cost inspection time integrity
inter-operability internaI consistency intuitiveness
learnability main-memory performance maintainability
maintenance cost maintenance time maturity
mean performance measurability mobility
nomadicity observability off-peak period performance
operability operating cost peak-period performance
perfomability performance planning cost
planning time plasticity portability
precision predictability process management time
productivity project stability project trac king cost
promptness prototyping cost prototyping time
reconfigurability recoverability recovery
reengineering cost reliability repeatability
replaceability replicability response time
risk analysis cost risk analysis time robustness
safety scalability secondary-storage performance
security sensiti vit y similarity
simplicity software co st software production time
space boundedness space performance specificity
stability standardizability subjectivity
supportability suret y survivability
susceptibility sustainability testability
testing time throughput time performance
timeliness tolerance traceability
trainability uniform performance uniformity
usability user -friendliness validity
variability verifiability versatility
visibility wrappability

115

Appendix B

The FT requirements listed below have been taken from [TIRAN D 1.1].

A category identifier followed by a progressive number labels each requirement. Four

category identifiers have been considered: SR (System Requirement), DR (Dependability

Requirement), FR (Fault Tolerance Requirement), and TR ((real) Time Requirement).

SRi: "At the most highest level the automated system is composed by two sub-systems,

namely the Primary Substations Automation System (i.e. the PSAS automation system)

and the Primary Substation of the Energy Distribution Network (i.e. the PS plant).

Primary Substations (PS) consist of Busbars, Switches, Insulators, Transformers and

Capacitors. The PSAS architecture inc1udes a Local Control Level (LCL) and a number

of Periphery Units (PU) distributed on the plant, each PU being associated with a plant

component. LCL in turn consists of a main Elaboration Unit plus a number of

Communication Units."

SR2: "Each PU provides the following functions at the component level: primary and

secondary protection levels, monitoring, command & control, diagnostic, data

measurement, interface with the local operator, communication with the LCL. The LCL

provides the following centralised functions at the PS level: monitoring, command &

control, PU supervision, additional protection ('spare' level) interface to remote control

systems and to local and remote operators."

TRi: "More than a single cyc1e-time for the whole application, specific real-time

requirements can be given for the main PSAS functions, summarised as follows 20:

116

"

DR1: "The ongoing development of new generation PS defines different availability

values associated to system components depending on their criticality level. Reference

values for the (minimal) availability follow:

• LCL-Elaboration Unit: MTBF = 100000-125000 hours

• LCL-Communication Units: given the high criticality of their associated functions,

they require an higher availability than the Elaboration Unit; MTBF = 200 years

• PU: given the high number of PU contained in a PS, MTBF = 66 years."

FR1: "Faults to be taken into account for the PSAS concern permanent, intermittent and

transient faults affecting system physical components. Most of transient faults are caused

by electromagnetic interference."

FR2: "Corruption on input/output, elaboration, memory and internaI communications,

caused by any first fault (transient, intermittent or permanent) must be tolerated

a) allowing to preserve a working state acceptable and coherent with the history of the

system

b) avoiding or handling any loss of control

c) avoiding to transmit wrong output to the plant, the operator, the remote systems."

FR3: "If the erroneous situation can not be recovered according to required mode and

within given time constraints, then the disconnection of the automation system from the

plant (auto -exclusion) must be guaranteed, leaving the plant in an acceptable state,

forcing the output to assume a pre-defined secure configuration, providing appropriate

signaling to the operator and to the remote systems (as automation system failures should

not affect the plant)."

FR4: "Graceful degradation must be possible according to what allowed by system

functions, involving the exclusion of faulty components (waiting for a maintenance

intervention) and allowing the correct operation of remaining components."

117

FR5: "The accepted bound for the Probability of non recovered error (PE) within a

transmission of data from a source to a destination, assuming a Bit Error Rate lower or

equal to 10- 4, are given in the table

Data Type PE
Periodically transmitted <= 10- 6
Transmitted on variation <= 10- 10
Commands <= 10- 14

"

FR6: "Timing and mode of detection and recovery of errors due to the first fauIt must

allow to minimize the probability of the occurrence of a second fault before a complete

handling of the first one (fauIt overlap)."

FR 7: "ResuIts of error processing and fauIt treatment must be made available to the

operator during system operation and recorded for later access - e.g. by signaIs and

chronological event recording."

FR8: "System configuration data and running code must be non corruptible. "

Containment and masking of undesired effects

FR9: "Error propagation through system components must be avoided by applying

appropriate confinement techniques."

FR10: "Communication redundancies:

a) 110 circuits from/to the field should contain redundancies which allow masking fauIts

on any duplicated 110 point; these redundancies shall be diagnosed.

b) futemal communications, i.e. between the LCL and each PU as also among the LCL

components, should rely upon a redundant (double) dedicated LAN, based on FDDI

technology. "

FRll: "Undesired effects on output, due to a fault on any system component must be

confined by applying appropriate delays (e.g. by means of hw filters) whose

dimensioning shall allow the prompt intervention of the auto -exclusion circuit."

FR12: "A mechanism for the auto-exclusion of the system (Watch-Dog) should be

provided which, if not reset before the expiration of a pre-fixed time -out, disconnects the

system from the plant, forcing the output to assume a predefined secure configuration."

FR13: "The auto-exclusion should guarantee a high availability, integrity and security -

e.g. by a redundant and periodically tested auto-exclusion mechanism, with auto

diagnostics (e.g. a test tolerant watch-dog)."

118

FRi4: "The adoption of masking techniques on signaIs to/from the plant, the operator and

the remote systems could be needed for sorne essential or particularly disturbed

communications (e.g. auto-correcting code based on information redundancy, re

transmissions), if not already supported by adopted communication protocols."

Detection of erroneous situations

FRi5: "The system should perform a periodic auto-diagnostic activity on its main

components at an appropriate frequency, organised into diagnostic chains of on-line tests

(e.g. complete CPU test, followed by addresses and data test, followed by RAMIROM

test and finally test of 1/0 circuits):"

FRi6: "In absence of diagnosed errors, the auto -diagnostic activity will be followed by a

reset command to the auto -exclusion mechanism of the system."

FRi7: "A frequent and wide diagnostic (extended to each critical component) is

fundamental at the aim of decreasing the probability of overlapping fauIts as much as

possible (e.g. at each elaboration cycle)."

Recovery of erroneous situations

FRi8: " Temporary confinement of blocking situations should be guaranteed:

a) system evolution must be guaranteed.

b) any loss of control (e.g. livelock, deadlock) must be confined within a single

application cycle - e.g. by cyclic restart, which allows to restart erroneous components

(e.g. tasks).

c) it is necessary to avoid that errors caused by non detectable temporaneous fauIts could

became permanent, e.g. flips of registers or memory cells caused by EMI which has

overcome protecting barriers - e.g. by cyclic restart, which allows to restart hw

components from their own initial state."

FRi9: "Proper evolution according to the system history needs to be guaranteed:

a) The evolution must be guaranteed between acceptable states.

b) Leaving an acceptable state must be allowed only towards another acceptable state -

e.g. by using mechanisms which maintain the current state (judged correct) till a

confirmation of correctness of the next state (e.g. by using a Stable Memory).

119

References

[AK87]

[AK88]

[AL2000]

[AL2001]

[AL81]

[AL92]

[AMW]

[BC2001]

P.E. Ammann, J.c. Knight, "Data Diversity: An Approach to Software

Fault Tolerance". In Proceedings of the 17th International Symposium

on Fault-Tolerant Computing Systems (FTCS-17), Pittsburgh, PA,

1987, pp. 122-126.

P.E. Ammann, J.c. Knight, "Data Diversity: An Approach to Software

Fault Tolerance". In IEEE Transactions on Computers 37(4), 1988, pp.

418-425.

A. Avizienis, J.-C. Laprie, et al., "Dependability of computer systems:

Fundamental concepts, terminology, and examples". In Proc. 3rd IEEE

Information Survivability Workshop (ISW-2000), Boston, Massachusetts,

USA, October 24-26,2000, pp. 7-12.

A. Avizienis, J.-c. Laprie and B. Randell, "Fundamental Concepts of

Dependability" , Technical Report, CS-TR: 739, Department of

Computing Science, University of Newcastle, 2001.

T. Anderson, P.A. Lee, "Fault Tolerance - Principles and Practice",

Prentice Hall, Englewood Cliffs, NJ, 1981.

A. Lister, "Design of dependable real-time systems". In Proc. of the 14th

IntI. Conf on Software Engineering, 1992, pp. 35-36.

R. Buskens, A. Siddiqui, et al., "Aurora Management Workbench", Bell

laboratories, 2003, http://www.bell-Iabs.com/project/aurora.

A. Bondavalli, M.D. Cin, et al., "Dependability Analysis in the Early

Phases of UML Based System Design". In International Journal of

Computer Systems - Science & Engineering, Vol. 16 No. 5, Sep 2001,

pp. 265-275.

120

[BF2000]

[BF99]

[BJ89]

[BL91a]

[BL91b]

[BL95]

[BR75]

o. Botti, V. De Florio, et al., "The TIRAN Approach to Reusing

Software Implemented Fault Tolerance". In Proe. of the 8th Euromiero

Workshop on Parallel and Distributed Processing (PDP2000) (IEEE

Comp. Soc. Press, Los Alamitos, CA), Rhodes, Greece, Jan. 19-21,

2000, pp. 325-332.

O. Botti, V. De Florio, et al., "TIRAN: Flexible and Portable Fault

Tolerance Solutions for Cost Effective Dependable Applications". In

Proe. 5th Int. Euro-Par Conference on Parallel Processing

(EuroPar'99), P. Amestoy, P. Berger, M. Daydé, 1. Duff, V. Frayssé, L.

Giraud, D. Ruiz (Eds.), Lecture Notes in Computer Science Vol. 1685

(Springer-Verlag, Berlin, Germany), Toulouse, France, Aug. 31-Sep. 3,

1999, pp. 1166-1170.

B.W. Johnson, "Design and Analysis of Fault -tolerant Digital Systems",

Addison-Wesley Publishing Company Inc., Reading, M.A., USA,1989.

A. Burns, A. M. Lister, "A framework for building dependable

systems", The Computer Journal, Vol. 34 No. 2, April 1991, pp. 73-

181.

A. Burns, A M Lister, McDermid, "TARDIS: an architectural

framework for timely and reliable distributed information systems". In

Proe. Sixth Australian Software Engineering Conf. Sydney, Au strali a,

July 1991, pp. 1-15.

M. Barbacci, T. H. Longstaff, et al., "Quality Attributes", Technical

report, Software Engineering Institute, Carnegie Mellon University,

Pittsburgh Pennsylvania 15213 USA, December 1995.

B. Randell, "System Structure for Software Fault Tolerance". In IEEE

Transactions on Software Engineering, SE Vol. 1 No 2, 1975, pp. 220-

232.

121

[BW94]

[BW95]

[CA78]

[CL2001]

[CL2004]

[CN2000]

[DB2000]

[DepAuDE

D1.1]

A. Burns, A. J. Wellings, "HRT-HOOD: a structured design method for

hard real-time systems", Real-Time Systems Journal, Vol.6 No.1, Jan.

1994, pp.73-114.

A. Burns, A. Wellings, "HRT-HOOD: a structured design method for

hard real-time Ada systems", Elsevier Science BV, 1995, ISBN 0-444-

82164-3.

L. Chen, A. Avizienis, "N-Version Programming: A Fault Tolerance

Approach to Reliability of Software Operation". In Proceedings of the

8th International Symposium on Fault-Tolerant Computing Systems

(FTCS-8), Toulouse, France, 1978, pp. 3-9.

L.M. Cysneiros, J.C.S.P. Leite, et al., "A Framework for Integrating

Non-Functional Requirements into Conceptual Models", Requirements

Engineering Journal, Vol. 6, Issue 2, Apr. 2001, pp. 97-115.

L.M. Cysneiros, J.C.S.P. Leite, "Non-Functional Requirements: From

Elicitation to Conceptual Model". In IEEE Transactions on Software

Engineering, Vol. 30 No. 5, May 2004, pp.328-350.

L. Chung, B.A. Nixon, et al., "Non-functional Requirements in Software

Engineering", Kluwer Academic Publishers, 2000.

G. Dondossola, O. Botti, "System fault tolerance specification: proposaI

of a method combining semi-formal and formaI approaches". In Proc. of

Int. Conf FASE2000, part of ETAPS2000 - The European Joint

Conferences on Theory and Practice of Software, Berlin, D, March

2000, LNCS, No. 1783, Springer-Verlag, Berlin, Heidelberg, New York,

2000, pp. 82-96.

D 1.1: Collection of dependability requirements for embedded distributed

automation systems in dynamic environments, DepAuDE Deliverable,

July 2001.

122

[DepAuDE

D1.4]

[DepAuDE

D2.1 & D2.2]

[DepAuDE

D8.6]

[DepAuDE]

[DF2001]

[DF2002]

[DSE]

[DW98]

[EC2000]

[FL92]

D 1.4: Dependability requirements in the development of wide-scale

distributed automation systems: a methodological guidance, DepAuDE

Deliverable, 2003.

D2.1 and D2.2: Updated Investigation, evaluation, and selection,

DepAuDE Deliverable, 2002.

D8.6: Final Report, DepAuDE Deliverable, 2003.

DepAuDE project website, April 22, 2004, http://www.depaude.org/

G. Deconinck, V. De Florio, G. Dondossola, et al., "Distributed

embedded automation systems: dynamic environments and

dependability". In Supplement of the Int. Conf. On Dependable Systems

and Networks (DSN2001 - Special Track: European Dependability

Initiative), GOteborg, Sweden, July 1-42001, pp. D16-D19.

G. Deconinck, V. De Florio, et al., "The EFTOS approach to

dependability in embedded supercomputing". In IEEE Transactions on

Reliability, Vol. 51, Mar. 2002, pp. 76-90.

Dedicated Systems Encyc1opedia,

http://www.omimo.be/encyc/techno/terms/defini/def.htm

D. D'Souza, A.c. Wills, "Objects, components, and frameworks with

UML: The Catalysis Approach" , Addison-Wesley: Reading, MA, USA,

1998.

European Dependability Initiative: Inventory of EC Funded Projects in

the area of Dependability, Issue 2.2, Il J anuary 2000.

C. J. Fidge, A. M. Lister, "A disciplined approach to real-time systems

design", Information and Software Technology, Vol. 34 No. 9,

September 1992, pp. 603-610.

123

[FL93]

[FTHH]

[GD2001]

[GG95]

[GM2002]

[GN2000]

[GR2003]

[HL74]

[HOORA]

[HRM4]

[HS86]

C. J. Fidge, A. M. Lister, "The challenges of non-functional computing

requirements". In Seventh Australian Software Engineering

Conference (ASWEC'93), Sydney, September 1993, pp. 77-84.

The University of York, Department of Computer Science, Real-Time

Systems Research Group, http://www.cs.york.ac.uk/rts/node12.html

G. Deconinck, Presentation on overview of DepAuDE at Pan

Dependability Workshop, Laboratory for Analysis and Architecture of

Systems (LAAS), Toulouse, France, December 10-12,2001.

G. Gennaro, "Hierarchical Object Oriented Requirements Analysis",

Preparingfor the Future, Vol. 5 No. 3., September 1995.

J.-c. Geffroy, G. Motet, "Design of Dependable Computing Systems",

Kluwer Academic Publishers, 2002.

A. Gokhale, B. Natarajan, et al., "DOORS: Towards high-performance

fault-tolerant CORBA". In Proc. 2nd Intl. Symp. Distributed Objects and

Applications (DOA '00), Sept. 2000.

P. A. de C. Guerra, C. Rubira, et al., "Fault-Tolerant Software

Architecture for Component-Based Systems". In Lecture Notes in

Computer Science, Vol. 2677, Springer, 2003, pp. 129-149.

J.1. Horning, H.C.Lauer, et al., "A Pro gram Structure for Error Detection

and Recovery". In E. Gelenbe and C. Kaiser (eds.), Lecture Notes in

Computer Science 16, Springer, 1974, pp. 171-187.

HOORA site, 2003, http://www.hoora.org/index.htm.

HOOD Reference Manual, Issue 4, 1995. Available at

ftp://ftp.estec.esa.nl/pub/wmlwme/HOOD/HRM4.tar.gz.

H. R. Simpson, "The Mascot Method", Software Engineering Journal,

Vol. 1 No. 3, May 1986, pp. 103-120.

124

[JC2002]

[JJ2003]

[JJ2004]

[JK2003]

[JL92]

[JL96]

[JL98]

[JR97]

[KL2000]

J. Jürgens, V. Cengarle, et al., "Critical Systems Development with

UML" , No. TUM-I 0208 in TUM technical report, 2002. UML'02

satellite workshop proceedings.

J. Jürgens, "Developing safety-critical systems with UML". In Proc.

UML 2003 Conference, LNCS 2863, Springer-Verlag 2003, pp. 360-

372, San Francisco, California, USA.

J. Jürgens, "Secure Systems Development with UML", Springer-Verlag,

2004 (to be published).

J. Kienzle, "Software Fault Tolerance: An Overview". In Ada-Europe

'2003,2003, Lecture Notes in Computer Science 2655, Springer-Verlag,

pp. 45-67.

J.-c. Laprie (Ed.), "Dependability: Basic Concepts and Terminology in

English, French, German, Italian and Japanese". In Dependable

Computing and Fault Tolerance, Vol. 5, Springer-Verlag, Wien New

York, 1992, 265 pages.

J-C Laprie, "Software-based Critical Systems". In 15th Int. Conf on

Computer Safety, Reliability and Security (SAFECOMP'96), Vien na,

Austria, Springer, (1996), pp. 157-170.

J.-c. Laprie, "Dependability of computer systems: from concepts to

limits". In Proc. of IFIP International Workshop on Dependable

Computing and Its Applications (DCIA98), Johannesburg (South

Africa), Jan. 12-14 1998.

J-P Rosen, "ROOD An Industrial Approach for Software Design", 1997,

ROOD User Group (Ed.), 232 pages, ISBN 2-9600151-0-X.

M. Kaâniche, J.-C. Laprie, et al., "A Dependability-Explicit Model for

the Development of Computing Systems". In 19th International

Conference on Computer Safety, Reliability and Security

125

[KN99]

[KS98]

[LA90]

[LP2001]

[LS2003]

[LT93]

[MA92]

[MAFTIA]

[MB2001]

[MC2003]

(SAFECOMP'2000), Rotterdam (Pays-Bas), 24-27 October 2000,

Springer, ISBN 3-540-41186-0, pp. 107-116.

L. Kabous, W. Nebel, "Modeling Hard Real Time Systems with UML

The OOHARTS Approach". In Proc. UML'99 Conference, LNCS 1723,

pp. 339-355, Springer-Verlag, 1999.

K. Kim, C. Subburaman, "ROAFTS: A Middleware Architecture for

Real-Time Object Oriented Adaptive Fault Tolerance Support". In Proc.

of the IEEE HighAssurance Systems Engineering, Nov 1998, pp. 50-57.

P. A. Lee, T. Anderson, "Fault Tolerance - Principles and Practice". In

Dependable Computing and Fault-Tolerant Systems, Springer Verlag,

2nd ed., 1990.

L.L. Pullum. "Software Fault Tolerance Techniques and

Implementation", Artech House, Inc., 2001.

y. Liu, P. Sinha, "A survey of generic architectures for dependable

systems", IEEE Canadian Review, Spring, 2003.

Loopback Testing, July 2004,

http://www.hosenose.comlradio/support/loopback.htm

M. J. Aslett, "An Overview of the HOOD Method". In IEE Colloquium

on Introduction to Software Design Methodologies, Jun 1992, pp. 511-

5/4.

MAFTIA project website, http://www.newcastle.research.ec.org/maftia/

R. Malan, D. Bredemeyer, "Defining Non-Functional Requirements",

White Paper 2001, Bredmeyer Consulting.

M. Dal Cin, "Extending UML towards a useful OO-language for

modeling dependability features". In the Ninth IEEE Workshop on

Object-Oriented Dependable Real-Time Systems, October 2003.

126

[NISA95]

[PA99]

[PB93]

[PR92]

[REE98]

[RL2004]

[RL95]

[RR99]

[RX95]

[SN]

"A Conceptual Framework for System Fault Tolerance", March 30

1995, Centre for High Integrity Software Systems Assurance, NIST.

D. Powell, J. Arlat, et al., "GUARDS: A generic upgradable architecture

for real-time dependable systems". In IEEE Trans. Parallel and

Distributed Syst., Vol. 10, June 1999, pp. 580-597.

P.A. Barrett, "Delta-4: An open architecture for dependable systems". In

IEE Colloquium on Safety Critieal Distributed Systems, 1993, pp. 2/1-

2/7.

P.J. Robinson, "Hierarchical Object-Oriented Design", Prentice Hall,

1992, ISBN 0-13-390816-X.

NASA REE, Annual Report for FY'98, Jet Propulsion Laboratory,

Califomia Institute of Technology. A vailable at http://www

ree.jpLnasa. gOY /fy98_reports/rsft.html.

C. M. F. Rubira, R. de Lemos, et al., "Exception handling in the

development of dependable component-based systems". In Software -

Praetice and Experience, 2004. To appear.

B. Randell, J.-c. Laprie, et al., ESPRIT Basic Researeh Series:

Predietably Dependable Computing Systems, Springer-Verlag, 1995.

M. Rebaudengo, M. S. Reorda, et al., "Soft-error Detection through

Software Fault-Tolerance techniques". In Proe. of IEEE Int. Symposium

on Defeet and Fault Tolerance in VLSI Systems (DFT'99), Albuquerque,

NM, USA, November 1-3, 1999, pp. 210-218.

B. Randell, J. Xu, "The Evolution of the Recovery Block Concept",

Chapter 1, pp. 1 - 21, in Lyu, M. R. (Ed.): Software Fault Tolerance,

John Wiley & Sons, 1995.

Search Networking, 2004, www.searchnetworking.com.

127

[TD2001] R. Tirtea, G. Deconinck, "A Survey of Middleware and its Support for

Fault Tolerance". In Proc. 6th Int. Conf. Engineering of Modern Electric

Systems (EMES-200l), Felix-Spa, Romania, May 24-26, 2001,6 pages.

[TIRAN D1.1] D1.1 - Requirement specification V2, TIRAN Project Deliverable,

October 1999, confidential.

[TIRAN D3.3] D3.3 - Guidelines for framework users V4, TIRAN Project Deliverable,

October 2000, confidential.

[TIRAN D7.9] D7.9 - Project Final Report, TIRAN Project Deliverable, October 2000,

confidential.

[UML2003]

[VV2001]

[WE72]

UML Revision Task Force. OMG UML Specification v. 1.5. OMG

Document ad/03-03-01. Available at http://www.uml.org, 2003.

E. Verentziotis, T. Varvarigou, et al., "Fault tolerant supercomputing: a

software approach". In International Journal of Computer Research,

Vol. 10, No. 3, Nova Scotia Publishers Inc., 2001, pp. 401-413.

W.R. Elmendorf, "Fault Tolerant Programming". In Proceedings of the

2nd International Symposium on Fault-Tolerant Computing Systems

(FTCS-2), Newton, MA, 1972, pp. 79-83.

128

Acronyms

DepAuDE

EFTOS

ESA

ESPRIT

FT

HOOD

HRT-HOOD

NFR

OMG

00

OOHARTS

QoS

RT

TARDIS

TIRAN

UML

Dependability for embedded Automation systems in Dynamic

Environments

Embedded Fault-Tolerant Supercomputing

European Space Agency

European Strategie Programme for Research in Information Technology

Fault -tolerance

Hierarchical Object-Oriented Design

Hard Real-Time HOOD

Non-functional Requirement(s)

Object Management Group

Object -Oriented

Object-Oriented Hard Real-Time System

Quality-of-Service

Real-Time

Timely and Reliable Distributed Information Systems

Tallorable fault toleRAN ce frameworks for embedded applications

Unified Modeling Language

129

