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Abstract 

Graph Neural Networks (GNNs) represent a formidable breakthrough in feature 

extraction from non-Euclidean datasets, particularly in medical imaging such as brain 

networks derived from functional magnetic resonance imaging (fMRI). However, 

existing GNN frameworks for analyzing spatio-temporal dynamics within brain networks 

often overlook indirect node connections, leading to suboptimal performance, particularly 

across heterogeneous datasets from different sites. To address these limitations, we 

propose a novel approach called Multi-Hop Spatio-Temporal Graph Convolutional 

Network (MSTGCN) with Reverse Contrastive (RevCon) learning for identifying 

temporal lobe epilepsy (TLE) and predicting surgical outcomes. Our approach leverages 

a graph attention mechanism that incorporates both node and edge features to compute 

edge weights, facilitating information propagation across multiple hops to enhance graph 

representations. Additionally, we employ the Transformer architecture to effectively 

handle temporal information. We bolster the model's generalizability across datasets from 

different sites through RevCon learning. Furthermore, we utilize gradient-based saliency 

maps to interpret the model's classification and to predict surgical outcomes based on 

surgery information. Experimental results on two TLE datasets demonstrate the 

effectiveness of MSTGCN, achieving identification accuracies of up to 85.52% and 78.27% 

respectively, and 82.07% accuracy on Cross-site datasets, outperforming state-of-the-art 

methods. Moreover, our model attains an 82% accuracy in predicting surgical outcomes, 

indicating its potential for future clinical applications. 



 

Abrégé 

Les réseaux neuronaux graphiques (GNN) représentent une percée formidable dans 

l'extraction de caractéristiques à partir de jeux de données non euclidiens, notamment en 

imagerie médicale comme les réseaux cérébraux dérivés de l'imagerie par résonance 

magnétique fonctionnelle. Cependant, les cadres GNN existants pour analyser les 

dynamiques spatio-temporelles au sein des réseaux cérébraux négligent souvent les 

connexions indirectes des nœuds, entraînant des performances sous-optimales, 

notamment sur des ensembles de données hétérogènes provenant de différents sites. Pour 

remédier à ces limitations, nous proposons une approche novatrice appelée Réseau de 

Convolution Graphique Spatio-Temporel Multi-Sauts (MSTGCN) avec apprentissage 

contrastif inverse (RevCon) pour identifier l'épilepsie temporale (TLE) et prédire les 

résultats chirurgicaux. Notre approche exploite un mécanisme d'attention graphique qui 

intègre à la fois les caractéristiques des nœuds et des arêtes pour calculer les poids des 

arêtes, facilitant la propagation des informations à travers plusieurs sauts pour améliorer 

les représentations graphiques. De plus, nous utilisons l'architecture Transformer pour 

gérer efficacement les informations temporelles. Nous renforçons la généralisabilité du 

modèle sur des ensembles de données provenant de différents sites grâce à l'apprentissage 

RevCon. De plus, nous utilisons des cartes de saillance basées sur le gradient pour 

interpréter la classification du modèle et prédire les résultats chirurgicaux basés sur les 

informations chirurgicales. Les résultats expérimentaux sur deux ensembles de données 

TLE démontrent l'efficacité de MSTGCN, atteignant des précisions d'identification allant 

jusqu'à 85,52% et 78,27% respectivement, et une précision de 82,07% sur des ensembles 

de données intersites, surpassant les méthodes de pointe. De plus, notre modèle atteint 

une précision de 82% dans la prédiction des résultats chirurgicaux, indiquant son potentiel 

pour les futures applications cliniques. 
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1. Background and Related Works 

1.1 Statement of Contribution 

We are thankful to the Xiangya Hospital of Central South University and the First 

Affiliated Hospital of Zhengzhou University for providing the non-openly available 

temporal lobe epilepsy (TLE) datasets. My supervisor, Dr. Suresh Krishna, helped me 

with every milestone within my academic journey. I received insightful guidance and 

concrete advice, even if I was working remotely. My supervisor Dr. Huafu Chen and Dr. 

Rong Li frequently encouraged and motivated me with helpful suggestions. Without all 

of you, I could not finish my thesis. 

The author’s contributions are as follows: review of background knowledge in 

Chapter 1 & 2; building MSTGCN model in Chapter 3; data pre-processing and running 

all experiments and analyses discussed in the thesis in Chapter 4 & 5. 

1.2 Epilepsy and Neural Imaging 

Epilepsy is a neurological disorder characterized by recurrent seizures, affecting 

approximately 70 million people globally [1]. In China alone, there are currently at least 

ten million epilepsy patients, making it one of the five major neurological and psychiatric 

disorders targeted for global prevention and treatment by the World Health Organization. 

Epilepsy not only imposes significant physical, psychological, and economic burdens on 

individuals, families, and society but also presents a major challenge and public health 

issue in the current medical landscape. While most epilepsy patients can achieve effective 

control through certain medical interventions, nearly one-third of patients remain 

unresponsive to these treatment modalities. Therefore, exploring the pathophysiological 

mechanisms underlying epilepsy, accurate diagnosis, and effective treatment are of 

paramount importance. 

Firstly, the pathophysiological mechanisms of epilepsy still hold many unresolved 

mysteries that have yet to be fully understood. There is an urgent need to delve into the 

localization and network propagation mechanisms of epileptic activity, seeking and 

developing new neuroimaging methods and technologies. Secondly, epilepsy diagnosis 

faces certain difficulties due to the lack of effective biomarkers and traditional 
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electroencephalogram and magnetic resonance imaging (MRI) techniques still encounter 

issues such as misdiagnosis and subjective interpretation. Additionally, epilepsy 

symptoms exhibit considerable heterogeneity, with different patients experiencing 

varying seizure types, frequencies, and severities, along with cognitive and behavioral 

issues. Therefore, there is a need to find a reliable, non-invasive, and accurate intelligent 

diagnostic method to provide a more reliable reference for early assessment of epilepsy. 

Lastly, effective treatments for epilepsy remain elusive. Current epilepsy treatments 

mainly involve antiepileptic drugs and surgical interventions. However, as mentioned 

earlier, one-third of patients cannot achieve effective control of seizures through 

medication and surgery. Therefore, diagnosing epilepsy not only requires detailed medical 

history inquiries to identify specific clinical manifestations but also necessitates 

comprehensive neuroimaging examinations to obtain quantitative imaging metrics for 

more accurate classification and diagnosis of epilepsy patients. Early intervention may 

help alleviate epilepsy symptoms and frequencies, while precise intelligent treatment 

methods can increase treatment success rates. In summary, research outcomes addressing 

the above issues will provide objective neuroimaging evidence for elucidating the 

pathogenesis of epilepsy, aiding in clinical intelligent diagnosis and personalized 

precision treatment. Furthermore, these outcomes are expected to facilitate the translation 

of epilepsy neuroimaging research into clinical applications, ultimately benefiting 

patients to the greatest extent possible. 

In the clinical and neuroscientific fields, researchers have conducted extensive 

studies on epilepsy. Functional Magnetic Resonance Imaging (fMRI), Structural 

Magnetic Resonance Imaging (sMRI), and Diffusion Tensor Imaging (DTI) are 

neuroimaging technologies that have been applied to explore the neural mechanisms of 

epilepsy. Functional Magnetic Resonance Imaging records changes in the blood oxygen 

level dependent (BOLD) signal in the brain. BOLD reflects changes in the oxygenated 

hemoglobin content in surrounding blood when neurons are active, leading to 

corresponding changes in the fMRI signal recorded. Therefore, the BOLD signal 

indirectly reflects neural activity and is considered a proxy for brain function depiction. 

Research based on fMRI has explored changes in brain activity in epilepsy patients, 

aiding researchers in understanding the mechanisms of the disease. For instance, fMRI-

based studies have found differences in spontaneous activity at specific nodes in epilepsy 
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patients compared to healthy controls. sMRI [2], on the other hand, captures differences 

in brain anatomy and is commonly used for measuring brain tissue volume or cortical 

surface morphology. Hippocampal sclerosis is a common histological abnormality in 

patients with medial temporal lobe epilepsy, observable through sMRI (T2-weighted 

sequences show high signal, while T1-weighted sequences show low signal). DTI 

measures water molecule diffusion, enabling observation of brain white matter structure. 

The basic assumption of DTI imaging is that water molecules near brain white matter are 

hindered in directions perpendicular to the white matter, while they are relatively 

unimpeded parallel to the white matter. Based on this characteristic, researchers believe 

that reduced water diffusion anisotropy Fractional Anisotropy (FA) indicates decreased 

white matter tract integrity. Through certain algorithms, researchers can also represent 

white matter tracts in three-dimensional space using DTI. DTI is also an important 

analysis tool in the field of epilepsy mechanisms, as evidenced by Arfanakis et al.'s 2002 

discovery [3] of reduced FA between the external capsule and corpus callosum in patients 

with temporal lobe epilepsy compared to normal controls. 

While the above-mentioned imaging methods can reflect brain structure or 

functional features from different perspectives, their large and complex data require 

effective algorithms and advancements in computer technology for relevant discoveries. 

Machine learning algorithms provide robust support for exploring mechanisms, diagnosis, 

and prognosis of brain diseases such as Epilepsy. The application of machine learning and 

deep learning in exploring brain diseases has played a crucial role in tasks such as disease 

diagnosis in recent years, demonstrating their potential in addressing related issues. The 

rapid development of artificial intelligence algorithms in recent years is also expected to 

drive research in brain imaging. Therefore, exploring machine learning and deep learning 

algorithms for epilepsy brain imaging is an important research problem and direction. 

1.3 Temporal Lobe Epilepsy 

TLE is the most common form of human focal epilepsy [4]. Temporal lobe epilepsy 

has two main forms: mesial Temporal Lobe Epilepsy (mTLE), which is believed to 

originate from the hippocampus or adjacent to the hippocampus, and Neocortex Temporal 

Lobe Epilepsy (nTLE), where the seizure focus is thought to be in the lateral neocortex 

of the temporal lobe [5]. In the early stages of TLE seizures, patients often experience 
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gastrointestinal symptoms such as rising gastric Qi, as well as emotional abnormalities 

such as fear. During the seizure, a few patients may experience secondary tonic-clonic 

Convulsions. 

Early epilepsy research focused on specific anatomically isolated epileptic foci, 

where focal seizures were believed to originate from specific, anatomically isolated 

epileptic foci. However, with the advancement of brain imaging technology, research 

related to epilepsy has shifted focus from "epileptic foci" to a "network" perspective [6, 

7]. This change in perspective is largely attributed to studies on mTLE. In this form of 

epilepsy, discharges during seizure periods and interictal periods can originate from 

multiple different lesions, not just limited to the hippocampus itself but also in regions 

outside the hippocampus [8, 9]. Subsequent studies involving electrocorticography and 

neuroimaging in humans, as well as experiments conducted on TLE animal models, have 

led to the concept of a large-scale mTLE network. This network includes not only the 

hippocampus but also surrounding structures (such as the amygdala), subcortical regions 

(such as the thalamus), and neocortical areas (such as the frontal lobe, particularly the 

orbitofrontal region, and the temporal lobe's superior, middle, and inferior gyri). It has 

been found through research that each brain structure within this network either serves as 

a source of epileptic discharges or contributes to their propagation [8, 10, 11]. Therefore, 

unlike the traditional focal perspective, TLE actually involves many parts of the brain. 

Consequently, the mechanisms of epilepsy have become more complex, and a more 

comprehensive understanding of network properties is expected to enhance efforts related 

to the diagnosis, treatment, and prognosis of epilepsy. 

Some mTLE patients find it difficult to achieve seizure frequency reduction and a 

seizure-free state through drug therapy alone, leading them to be classified as drug-

resistant epilepsy patients. Surgery is a common and effective treatment option for drug-

resistant epilepsy patients. Common surgical approaches include Anterior Temporal 

Lobotomy and Selective Amygdala Hippocampectomy, with some clinicians and 

researchers also studying methods involving electrode lesioning, which offer more 

precise targeting and fewer surgical side effects compared to traditional surgery but are 

still experimental. However, some post-surgical epilepsy patients still experience relapses. 

Thus, research suggests that the network causing epilepsy may be the culprit behind poor 

efficacy and recurrent seizures [12]. Furthermore, functional network analysis indicates 
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that effective connectivity from the hippocampus to the default mode network serves as 

a predictive biomarker for drug response in potential TLE patients [13]. Therefore, 

network analysis provides valuable insights into research related to Temporal Lobe 

Epilepsy (TLE), which will be elaborated on in the following section. 

1.4 Network Theory of Functional Magnetic Resonance Imaging 

In Section 1.2, the principles of fMRI data acquisition were discussed. This section 

will elaborate on the applications of fMRI in exploring, diagnosing, and predicting the 

prognosis of TLE mechanisms. Due to its non-invasive nature, high spatial resolution, 

and moderate temporal resolution, fMRI has gradually become an important tool for 

screening brain diseases. 

fMRI scans are typically divided into task-state and rest-state scans. Task-state fMRI 

refers to fMRI image data obtained from subjects while they perform specific tasks or 

stimuli during the scan. Task-state fMRI has wide applications in cognitive neuroscience 

[14], disease research [15], and other fields. On the other hand, rest-state fMRI (rs-fMRI) 

has attracted increasing attention and research. rs-fMRI focuses on the low-frequency 

fluctuations in the BOLD signal, and the functional significance of these fluctuations was 

first proposed by Biswal et al. in 1995 [16]. During rs-fMRI scans, subjects are instructed 

not to engage in any cognitive, language, or motor tasks and should not enter a sleep state. 

Therefore, rs-fMRI is considered to record spontaneous brain activity, providing an 

important observational tool for subsequent brain network studies. 

The brain forms a complex and efficient network through information exchange 

between different regions [17]. To quantify brain networks, functional connectivity (FC) 

between regions can be calculated based on the similarity of functional fMRI signals, 

which is an important method in related research. Using rs-fMRI can yield effective and 

stable FC, which has been widely applied in brain network analysis of neurological and 

psychiatric disorders [13, 18, 19]. Besides, structural connectivity (SC) is also an effective 

way to quatify the brain network. DTI uses the map of the white matter fiber bundles to 

construct SC. SC can reflect the abnormal brain structure of epileptic patients [20]. 

When calculating FC, the brain can be divided into several Regions of Interest (ROIs) 

based on specific research questions. Since the minimum unit of fMRI signal acquisition 

is a voxel, the standard fMRI signal within each ROI is often obtained by averaging the 
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signals of all voxels in the ROI. Using Pearson's Correlation to calculate the similarity 

between signals is a common method for computing FC, as defined in Equation (1-1): 

𝜌𝜌(𝑋𝑋,𝑌𝑌)=
∑ (𝑋𝑋𝑡𝑡 − 𝑋𝑋�)(𝑌𝑌𝑡𝑡 − 𝑌𝑌�)𝑇𝑇
𝑡𝑡=1

�∑ (𝑋𝑋𝑡𝑡 − 𝑋𝑋�)2𝑇𝑇
𝑡𝑡=1 ∑ (𝑌𝑌𝑡𝑡 − 𝑌𝑌�)2𝑇𝑇

𝑡𝑡=1
(1-1) 

The BOLD time series signals of two brain regions, denoted as 𝑋𝑋  and 𝑌𝑌 , are 

represented in which T represents the total number of time points in the time series, and 

𝑋𝑋� and 𝑌𝑌� are the means of the two BOLD signals. The Pearson correlation coefficient 

has a range of 𝜌𝜌(𝑋𝑋,𝑌𝑌) ∈ [−1, 1] . Pearson correlation focuses on the linear correlation 

between ROIs, and FC calculated using Pearson correlation has been applied in many 

brain network studies [17]. In addition to Pearson correlation, Spearman's Rank 

Correlation is also a method for calculating signal correlations. SRC is considered to 

reflect non-linear information through non-parametric rank correlation. Both methods 

have their characteristics and reflect the relationships in the network from different 

perspectives. They have both been applied in brain network analysis research [21-23]. 

A significant breakthrough in recent TLE research is the demonstration of its impact 

on a group of brain networks called Resting State Networks (RSNs) [24]. These networks 

are considered discrete brain network structures in fMRI studies of normal subjects, 

exhibiting spontaneous synchronized activities that are particularly evident during rest 

(i.e., resting state) and adjust activity under specific functional tasks. In other words, 

although RSNs are identified in the resting state, they are associated with many normal 

brain functions, and their activities are modulated by external or internal stimuli. For 

example, the activity of the Default Mode Network (DMN) decreases when receiving 

external stimuli, while the activity of other RSNs increases under similar stimuli [25]. 

Therefore, based on the response of RSNs during different behaviors or stimuli, RSNs 

can be broadly divided into two groups. The first group includes networks related to 

sensory and motor processing. The Sensorimotor Network (SMN), Visual Network (VN), 

and Auditory Network (AN) are part of this group [17, 26]. The second group mainly 

comprises networks related to higher-order brain functions. The Default Mode Network 

(DMN), Dorsal Attention Network (DAN), Ventral Attention Network (VAN), Salience 

Network (SAN), Executive Control Network (ECN), and Language Network (LN) are 

part of this group [24, 27, 28]. Networks in subcortical regions (Subcortical, SUB) have 

also been studied in some articles [29]. 
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In summary, by combining fMRI network theory, quantifying and characterizing 

brain networks, establishing the association between brain network abnormalities in 

diseases such as epilepsy and clinical characteristics, researchers can further explore the 

physiological and pathological mechanisms of brain diseases. This provides important 

theoretical support for intelligent diagnosis and important analytical tools for more 

accurate prognosis. 

1.5 Review of Current Machine Learning and Deep Learning Approaches 

for Brain Disease Recognition 

The previous sections reviewed the development of brain imaging and brain 

networks in research related to brain diseases. Although brain imaging and brain network 

theory provide important research methods for exploring the mechanisms of brain 

diseases, understanding brain imaging and brain networks remains complex. Using fMRI 

signals and functional brain networks as examples, their data often have high dimensions, 

lack intuitiveness, and are prone to noise interference. For tasks such as diagnosis and 

prognosis, algorithmic analysis is required to effectively utilize brain imaging. The 

advancement of computer technology has provided powerful tools for understanding 

brain imaging and brain networks, capable of replacing humans in executing complex 

algorithms and lengthy computational processes. Therefore, developing effective 

algorithms and methods can maximize the utilization of brain imaging, helping to 

improve the accuracy of disease diagnosis and treatment outcomes. In recent years, 

machine learning and deep learning methods have made significant contributions in this 

field. For example, Support Vector Machine, Multilayer Perceptron (MLP), 

Convolutional Neural Network (CNN), Autoencoder, and other methods have achieved 

important results in the diagnosis of brain diseases. 

Traditional machine learning methods often rely on feature engineering to achieve 

effective diagnosis. Feature engineering aims to use domain knowledge to construct 

sufficiently effective features from complex brain imaging or brain network data. These 

traditional machine learning methods typically involve two steps. The first step requires 

feature engineering on complex brain imaging or brain network data. The second step 

involves using machine learning classification methods such as SVM to obtain the final 

diagnosis result. Traditional machine learning methods can achieve good results in 
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scenarios with small datasets. For example, Torlay et al. [30] used changes in MRI signal 

intensity from specified ROIs to construct features and employed the XGBoost classifier 

to classify normal controls and TLE patients. 

Deep learning, due to its powerful feature extraction capabilities, does not require 

domain knowledge to construct features. It can automatically extract useful features 

through iteration, making it suitable for scenarios with large datasets. Models used for 

disease diagnosis and prognosis mainly include supervised learning models and 

unsupervised learning models. Supervised learning models require label information, 

such as healthy and diseased, or good and poor treatment outcomes. Through iterative 

training of the model, it can implicitly learn the relationship between labels and data, 

thereby generalizing to judge the corresponding labels of unseen datasets [31]. 

Unsupervised learning does not require labels and can automatically capture preferences 

based on the intrinsic features of data. Due to the rapid development of deep learning 

models and the need to address various types of problems, various architectures of deep 

learning models with distinct features and functionalities have emerged since the 

development of deep learning. Work related to brain imaging based on models such as 

CNNs, recurrent neural networks, generative adversarial networks (GANs), variational 

autoencoder (VAE), etc., has emerged as a burgeoning and active field. For instance, 

Zheng et al. [32] utilized VAE to analyze dynamic brain networks and achieved superior 

results in disease diagnosis across three real brain disease datasets. Dvornek et al. [33] 

directly applied LSTM to rs-fMRI signals for the diagnosis of autism spectrum disorders. 

Pan et al. [34] employed GAN to complement missing PET data in their dataset using 

MRI data and subsequently conducted diagnostic work on patients with mild cognitive 

impairment using both MRI and PET data. 

1.6 Graph Neural Network 

In many fields, graphs are the primary form of data derived from nature. This is 

because most patterns in life can be abstracted into graph structures. Examples include 

molecular structures, brain networks, social networks, and transportation networks, 

among others. This potential has been recognized by researchers and practitioners in the 

scientific and industrial sectors, leading to applications in traffic flow prediction, drug 

discovery, social network analysis, recommendation systems, and more. While CNNs 
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have achieved tremendous success in extracting representations from Euclidean data 

(such as images), the attention has shifted to non-Euclidean data represented by graph 

structures, thus necessitating effective analysis methods, giving rise to GNNs. 

The GNN family includes various variants, among which the Graph Convolutional 

Neural Network (GCN), inspired by CNNs, has shown outstanding performance on 

complex graph data. GCN typically takes node features and edge features (as input, often 

represented as adjacency matrices). Its core idea is to aggregate information from 

neighboring nodes for each node and update node information through learnable weights. 

Similar to CNNs, GCN often adopts a stacking approach to enhance its representation 

power and can be applied to tasks such as node classification, link prediction, and graph 

classification. 

GCNs can be categorized into spectral-based methods and spatial-based methods. 

Spectral-based methods introduce filters from the perspective of a single operation on the 

graph to express graph convolution. Spatial-based methods often directly define 

convolutions on the graph to aggregate neighboring features. The superior performance 

of attention mechanisms in recent years has attracted attention from researchers, leading 

to the development of Graph Attention Networks (GAT), which combine spatial graph 

convolution with attention mechanisms, showcasing robust capabilities in processing 

graph-structured data. GAT calculates a learnable adjacency matrix based on attention 

mechanisms using features of neighboring nodes, achieving state-of-the-art results in 

many GNN-related tasks at that time. Subsequently, many different attention-based GNN 

works have emerged based on this framework [35-37].  

Currently, GNN methods for investigating brain networks can be broadly 

categorized into two groups: (1) GNN-based methods for static brain networks and (2) 

GNN-based methods for dynamic brain networks. In GNN-based methods for static brain 

networks, researchers investigate the topological and spatial properties of static brain 

networks, such as sFC, which is directly derived from the correlation of the entire time 

sequence. Ktena et al. [38] used Siamese-GCN to detect similarities between pairs of 

static FCs and utilized the K-nearest neighbor method to classify healthy controls and 

individuals with autism spectrum disorder (ASD). Chen et al. [39] developed a node-edge 

graph attention mechanism to identify ASD patients based on static FC. In GNN-based 

methods for dynamic brain networks, both temporal and spatial information are typically 
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considered. Xing et al.[40] proposed a method to extract spatial information from each 

segment of dFC and then utilized a long short-term memory layer to process temporal 

information across segments. To simultaneously utilize spatial and temporal information 

Gadgil et al. [41] proposed a spatio-temporal graph convolutional network (ST-GCN). 

The work in ST-GCN aggregates information from spatial and temporal neighbors of each 

ROI. In this case, ST-GCN can aggregate the information from both spatial dimension 

and temporal dimension. Kim et al. [42] proposed Graph-Attention Readout (GARO) and 

Squeeze-Excitation Readout (SERO) to learn spatial representation of each fragment of 

dFC, and utilized Transformer to learn temporal representation over all fragments of 

dynamic dFC. However, static brain network methods ignore the rich potential dynamic 

information of the brain network. Dynamic brain network methods require a more 

complex model to process temporal information, thus limiting the ability to learn spatial 

representation.  

1.7 Multi-hop Graph Neural Network 

Hop is defined as the path length from one node to another. If there is only one 

connection in a path, then the path is one-hop. If there is more than one connection (e.g. 

there are connections from node A to B, and B to C, then a path from A to C includes 2 

connections, which is two hop), the path is multi-hop. Traditional GNNs (including GCNs, 

GATs etc.) are one-hop and only consider direct neighbors. Deeper stacked application of 

one-hop graph neural network layers can suffer from Laplacian smoothing (over-

smoothing), thereby degrading performance and limiting spatial representation. Recently, 

some work has explored graph diffusion convolution [37, 43], which aggregates 

information from multi-hop neighbors rather than just direct one-hop neighbors of nodes, 

thereby improving performance by broadening the receptive field. However, these 

approaches have not incorporated attention mechanisms or edge features. Cucurull et al. 

[44] also explored the extension of attention mechanisms to multi-hop information, their 

approach requires a higher computational parameter overhead to maintain performance 

levels. 
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2.  Introduction 

2.1 Introduction 

Epilepsy is one of the most common serious brain disorders, affecting over 70 

million people worldwide [1]. For patients with drug-resistant focal epilepsy, such as TLE, 

surgical removal of a circumscribed brain area can be beneficial in achieving complete 

seizure control [45, 46]. In clinical practice, accurate diagnosis of epilepsy and assessment 

of surgical prognosis remain challenging. Resting-state fMRI is a non-invasive 

neuroimaging tool that indirectly describes brain activity by measuring blood oxygen 

level dependence, aiding researchers in identifying brain dysfunctions in diseases. 

Epilepsy often exhibits altered spatiotemporal patterns of FC derived from fMRI co-

activation, suggesting abnormality in brain networks [47, 48]. Therefore, exploring 

effective brain network representation models is crucial for the precise diagnosis and 

prognosis of epilepsy. 

Several machine learning studies have emerged to analyze brain functional networks 

in epilepsy [49, 50]. For example, Mazrooyisebdani et al. [49] proposed a support vector 

machine model to diagnose TLE based on FC features derived from graph theory analysis. 

These models are typically designed based on static FC (sFC), which is constructed across 

the entire resting-state fMRI scans to characterize patterns of functional associations 

between brain regions. Recent physiological evidence suggests that brain functional 

networks undergo continual reconfiguration and exhibit temporal changes, which cannot 

not be fully captured by sFC [51]. Dynamic FC (dFC), on the other hand, is constructed 

from short time segments of resting-state fMRI scans, thereby reflecting changes in brain 

networks over time. Previous studies have shown that patients with epilepsy exhibit 

dynamic network reconfiguration , even during interictal periods [4, 7]. Recent advances 

in the field of deep learning models, such as CNNs [51], which can process complex 

dynamic spatiotemporal information, have shown great promise in the diagnosis of 

epilepsy. 

In addition, 33-50% of epilepsy patients who undergo epilepsy surgery experience 

seizure recurrence postoperatively [52]. One important factor contributing to epilepsy 

surgery failures is inaccurate or incomplete lateralization and localization of seizure onset 

zones ahead of treatment [7]. Hence, literalization, localization and prognosis are 
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significant tasks in clinical application. Literalization is helpful for diagnosis and 

prognosis[53]. Yang et al. analyzed features extracted from resting-state functional 

magnetic resonance imaging (rs-fMRI) across various scales: local brain regions, 

interregional connectivity, and the entire brain network. They utilized Random Forest for 

dimensionality reduction of the data, followed by Support Vector Machine for the 

classification task, achieving an accuracy rate of 83% in determining the laterality of TLE 

patients [54]. For localization task, benefitting from development of computer vision, 

various deep learning methods have been proposed to localize epileptogenic lesions. 

Nandakumar et al. proposed a GCN based method for automated epileptogenic zone 

localization from rs-fMRI, allowing clinicians to harness this information from 

noninvasive imaging that can easily be integrated into the existing clinical workflow [55]. 

Prognosis prediction usually refers to the classification task of classifying the 

postoperative state. Gleichgerrcht et al. trained neural network on SC data with 

corresponding outcome label and achieved promising result. 

2.2 Rational, Aims and Hypothesis 

The inherent graph structure of brain networks makes them ideal for learning with 

graph neural networks [56]. GNN-based methods can learn dynamic features of brain 

networks without disrupting the graph structure information. Gadgil et al. [57] 

demonstrated that the ST-GCN, which extracts spatial and temporal features 

simultaneously, achieved promising results in analyzing dynamic brain networks. 

However, a limitation of the current GNN models is their inability to effectively capture 

changes in connections with long-distance indirect connections in dynamic brain 

networks. It is worth noting that the sparsity of a brain network topology determines that 

the information interaction between two nodes may involve long-distance indirect 

connections [58]. An increased average path length of brain functional network has been 

reported in epilepsy patients [59]. Although stacking graph convolutional layers can 

theoretically extend the receptive field and incorporate information from indirect 

connections, deeper structures may exacerbate the over-smoothing problem [37, 60]. Li 

et al. showed that graph convolution operation is a type of Laplacian smoothing, and they 

proved that after repeatedly applying Laplacian smoothing many times, the features of 

nodes will converge to similar value [61]. Over-smoothing will do harm to performance 
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of GNNs [62]. In addition, deeper neural networks may lead to overfitting when applied 

to limited brain imaging data. Thus, integrating indirect connections into the model 

without overly complex structures may improve the representational ability of GNNs for 

epilepsy brain network. It is noted that, SC is also promising for epilepsy diagnosis and 

prognosis, but we focus on a framework that is able to extract both spatial and temporal 

information from brain network. Usally there is no temporal information within SC and 

dynamic of brain network can not be reflected by SC. In this case, this work focus on 

dynamic FC. 

In general, dynamic analysis of brain functional network by GNNs could advance 

the complicated representation of direct or indirect connections to improve diagnostic 

performance. However, deep learning-based medical image models remain prior to 

widespread clinical implementation due to the following challenges. First, data 

heterogeneity due to differences in patient populations, imaging scanners and acquisition 

protocols can lead to poor generalizability for representation learning. A few studies have 

applied the deep learning generalization models to cross-site brain image diagnostic tasks 

[63, 64]. For example, Chen et al. [65] proposed an adversarial learning-based for autism 

spectrum disorder identification based on cross-site MRI data [63]. Domain 

generalization methods, which aim to overcome domain shifts in unseen datasets, also 

have the potential to improve generalization by overcoming data heterogeneity. Second, 

deep learning-based diagnosis and individualized treatment prediction are both essential 

in clinical practice. In the context of epilepsy, 33-50% of patients who undergo epilepsy 

surgery experience seizure recurrence postoperatively [52]. A unified framework that 

integrates clinical classifications, such as diagnosis, into the preoperative prediction of 

epilepsy outcomes would be beneficial for clinical decision making. However, most of 

the existing artificial intelligence models in epilepsy have been proposed for either 

diagnostic or prognostic tasks only. 

To address the concerns mentioned above, we propose a Multi-hop Spatio-temporal 

Graph Convolutional Network (MSTGCN) framework, as shown in Fig.1(b). In contrast 

to the previous GNN models, we not only extract the spatial and temporal features of the 

dFC, but also utilize graph convolutional operations with a multi-hop spatial attention 

mechanism to extract features within the indirect connections of the brain network. 

Specifically, our framework defines the input as a dynamic graph with dFC as the edge 
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feature, and the feature extracted from the fMRI signal and spatial one-hot encoding as 

node features. We introduce a multi-hop spatial attention module to calculate graph 

attention from both node and edge features. Then, we extend the attention matrix to a 

multi-hop attention matrix and employ a Transformer encoder [66] to extract temporal 

information over the time-varying dynamic graph feature series. Moreover, we draw 

inspiration from RevCon loss [67], which originated from the domain generalization 

research field. RevCon learning aims to improve the generalizability of our model in 

cross-site heterogeneous datasets by expanding the representation space of the extracted 

features. The main contributions of this study are summarized as follows: 

1) Proposal of a multi-hop spatial attention block and implementation of a multi-hop 

diffusion process after the attention mechanism to incorporate a wider range of 

interactions between indirectly connected brain regions. 

2) Utilization of Reverse Contrastive Learning to expand the latent space of samples 

within the same class, thereby improving the model's generalizability in the presence of 

individual and site heterogeneity. 

3) Demonstrating the efficacy of MSTGCN not only in identifying epilepsy but also 

in predicting surgical outcomes, showcasing its potential clinical applications in both 

diagnosis and clinical workup and prognosis. 
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3. Methods 

Figure 1: Overview of the framework of our proposed Multi-hop Spatio-temporal 

Graph Convolutional Network (MSTGCN): 

(a) The data preparation process involves several steps. First, ROI-level fMRI signal 

extraction is conducted, followed by the construction of dynamic functional connectivity 

(dFC) for the edge feature E(t). Subsequently, the one-hot encoding is concatenated with 

the output of the Gated Recurrent Unit to generate the node feature X(t). (b) Overall 

structure of MSTGCN. A sequence of dynamic graphs is first input to the Edge Attention, 

followed by Attention Diffusion, which produces a sequence of spatially attended graph 

representation vectors. Temporal attention is computed over and the temporally attended 

graph representations are averaged to produce the final representation. (c) Application of 

the extracted representation ℎ𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑
   for epilepsy patient identification and surgical 

outcome prediction. First, we train the model for TLE identification, then we use the 

saliency maps of patients from the trained model for surgical outcome prediction. 
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3.1 Datasets 

Table I: Demographic and clinical information of the subjects from two sites 

Datasets Subjects Age (Years)a P-value of 
age b Gender (M/F) P-value of 

gender c 
Surgical Outcome 

(SF/NSF ) 

Site 1 TLE 71 29.99 ±11.34 
0.7816 

35/36 
0.3708 

39/24 

 HC 74 31.03 ±9.182 31/43 N/A 

Site 2 TLE 100 24.30 ±7.671 
0.1165 

47/53 
0.8835 

N/A 

 HC 79 22.23 ±9.908 38/41 N/A 

a Data are presented as the mean value ± SD 
b p value obtained by two-tailed Pearson chi-square test 
c p value obtained by two-tailed two-sample t-test  

 
Xiangya Dataset：The proposed model is validated on two datasets, one of which 

is the Xiangya Dataset. This dataset includes 145 subjects recruited from the Xiangya 

Hospital of Central South University (Site 1), comprising 74 patients with TLE and 71 

healthy controls. Notably, 63 patients with TLE underwent surgical resection, and their 

follow-up outcomes were assessed based on the Engel Surgical Outcome Scale as either 

seizure-free (SF; Engel class IA) or not SF (NSF, Engel class IB to IV). The resting-state 

fMRI data were acquired using a 3.0 Tesla Siemens Prisma MRI system with a standard 

32-channel head coil. Scans were performed using an echo-planar imaging sequence with 

the following parameters: repetition time (TR) =720 ms, echo time (TE) =37 ms, flip 

angle=52°, 64 axial slices with 2.5 mm thickness and 2.5 mm spacing, matrix size=90×90, 

field of view (FOV) =225×255 mm2, and voxel size=2.5×2.5×2.5 mm3. Each resting-

state functional sequence lasted 9.456 min, resulting in 788 volumes. 

Zhengzhou Dataset: The second dataset contains 179 subjects, including 100 

patients with TLE and 79 HC. This dataset was collected from the First Affiliated Hospital 

of Zhengzhou University (Site 2). Corresponding resting-state fMRI data were acquired 

on a 3.0 Tesla Siemens Prisma MRI system with a standard 64-channel head coil. Scans 

were performed using an echo-planar imaging sequence with the following parameters: 

TR = 1000 ms, TE = 30ms, flip angle = 70°, 52 axial slices with 2.2 mm thickness and 1 

mm gap, matrix size = 110 × 110, field of view = 220 × 220 mm2, voxel size = 2.0 × 2.0 
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× 2.2 mm3. Each resting-state functional sequence lasted 400 seconds, resulting in 400 

volumes. The demographic characteristics of these two datasets is shown in Table 1. 

3.2 Overview 

Fig.1 illustrates the proposed MSTGCN diagnostic and prognostic framework, 

which consists of Dataset preparation, MSTGCN structure, and Applications. First is Data 

Preparation, as shown in Fig.1(a), where ROI -level fMRI signals are extracted using the 

BN atlas template [36], and dynamic graph nodes and edge features are constructed as 

model inputs. Next is the MSTGCN structure, where the constructed dynamic graph is 

inputed into the model. As shown in Fig.1(b), our model mainly consists 4 modules, 

including Spatial Attention module, Multi-hop Attention and Graph Convolution module, 

Readout module, and Temporal Attention module. The model updates node features based 

on multi-hop information through the Spatial Attention, Multi-hop Attention and Graph 

Convolution. After readout for node information as graph-level representations, a 

temporal attention module extracts dynamic information and aggregates features into to 

a dynamic graph-level representation by averaging. Finally, for the down-stream 

applications in Fig.1(c), the dynamic graph-level representation is used for diagnosis by 

a classification head and a contrastive head, for computing the Cross-entropy loss and 

RevCon Loss. Additionally, saliency maps of the patient data are used as features and 

combined with surgical information to further predict the surgical outcome. 

3.3 Construction of Dynamic Graph 

Fig.1(a) illustrates construction of the input dynamic feature graph. Time-series data 

for 246 ROIs were extracted from whole brain data using the BN Atlas [68] template. The 

values of time-series were standardized across time, and a sliding window approach was 

used to divide them into 𝑇𝑇  windows. For each window, functional connectivity was 

defined as the Pearson correlation coefficient calculated between the time-series of two 

ROIs. Each ROI is considered a node in our graph, with functional connectivity serving 

as the edge between each pair of nodes. The graph for each window creates a dynamic 

graph series of 𝑇𝑇  graphs for each time step, from step 1  to step 𝑇𝑇 , as is shown in 

Fig.1(a). 
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As is shown in Fig.1 (b), 𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑 = (𝐺𝐺(1), … ,𝐺𝐺(𝑇𝑇)) represents a series of dynamic 

graph with 𝑇𝑇 time steps. At each time 𝑡𝑡, the graph 𝐺𝐺(𝑡𝑡) = (𝑋𝑋(𝑡𝑡),𝐸𝐸(𝑡𝑡)) consists of an 

edge set 𝐸𝐸(𝑡𝑡) = {𝐸𝐸1(𝑡𝑡), … ,𝐸𝐸𝑁𝑁(𝑡𝑡)} ∈ ℝ𝑁𝑁∗𝑁𝑁, and vertex set 𝑋𝑋(𝑡𝑡) = {𝑋𝑋1(𝑡𝑡), … ,𝑋𝑋𝑁𝑁(𝑡𝑡)} ∈

ℝ𝑁𝑁∗𝐷𝐷. Here, 𝑁𝑁 denotes the number of nodes in each graph, and 𝐷𝐷 is the dimension of 

node features for each hidden layer (𝑁𝑁 = 246 according to the BN Atlas template). The 

temporal variation of the functional connectivity between the 𝑛𝑛th ROI and all other ROIs, 

denoted as 𝐸𝐸𝑑𝑑(𝑡𝑡) = (n =  1, … , N), undergoes changes over time. The feature vector 

of the 𝑛𝑛th ROI, denoted as 𝑋𝑋𝑑𝑑(𝑡𝑡)(n = 1, …, N). Unlike conventional definitions of node 

feature vectors at node index 𝑛𝑛, such as coordinates [69], mean-activation [70], or other 

handmade features from fMRI [39], the  node feature 𝑋𝑋𝑑𝑑(𝑡𝑡)  is defined with two 

concatenated parts: 

𝑋𝑋𝑑𝑑(𝑡𝑡) = 𝑊𝑊[𝑒𝑒𝑑𝑑||𝑠𝑠𝑑𝑑(𝑡𝑡)] (3-1) 

where 𝑒𝑒𝑑𝑑 represents the spatial one-hot encoding for the 𝑛𝑛th node, while 𝑠𝑠𝑑𝑑(𝑡𝑡) ∈

ℝ𝐷𝐷 is a learnable timestamp encoded feature derived from a Gated Recurrent Unit [71], 

the concatenate operation is denoted by ||, and 𝑊𝑊 ∈ ℝ𝐷𝐷∗(𝑁𝑁+𝐷𝐷)is learnable parameters 

for feature linear mapping.  

 

Figure 2: Details of the input features and the Spatial Attention and Multi-hop 

Attention modules 
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(a) Input includes edge feature E(t) and node feature X(t). The node feature X(t) is the 

concatenation of the one-hot encoding and the output of the Gated Recurrent Unit at time-

point t (input with ROI level fMRI signal time-point by time-point). (b) Computation of 

the weighted adjacent matrix with attention. (c) Illustration of attention diffusion and 

computation. The Left part of (c) is a comparison between one-hop attention and multi-

hop attention. According to the information propagation method, one-hop only aggregates 

information from the one-hop direct edge of the adjacent matrix, while multi-hop 

aggregates information from both the direct and indirect edges. The right part of (c) is the 

multi-hop attention diffusion process and graph convolution operation. 

3.4 Spatial Attention Mechanism 

Fig.2(b) illustrates our spatial attention module, which calculates an attention-

weighted adjacent matrix. The conventional methods define edges as remaining static 

during the graph convolution operation. To determine which node to aggregate in the 

graph convolution operations, functional connectivity is simply processed by 

thresholding [70], top-k [42] or similarity [72] methods for binarization. However, these 

approaches ignored significant precise information of the connections. Velickovic et al. 

[73] proposed GAT to aggregate neighboring nodes with different weights, enabling more 

effective information propagation. However, original GAT only considered connectivity 

relationship and ignored edge features. Our Spatial Attention mechanism can aggregate 

node information with emphasis by computing an attention-weighted adjacent matrix 

𝐴𝐴(𝑡𝑡) that incorporates both node similarity and functional connectivity information of 

edges. Following the inspiration of node-edge attention [39], we define the feature 

representation of nodes, 𝐻𝐻𝑙𝑙(𝑡𝑡)  (where 𝐻𝐻0(𝑡𝑡) =  𝑋𝑋(𝑡𝑡) ) as 𝑄𝑄,𝐾𝐾 (𝑄𝑄 = 𝐾𝐾) , and 𝐸𝐸(𝑡𝑡) 

as 𝑉𝑉 , as set in the self-attention mechanism. The superscript 𝑙𝑙 ∈ [1, 𝐿𝐿]  denotes the 𝑙𝑙 

layer of our model, and 𝐿𝐿 is the total number of layers of MSTGCN. We compute the 

attention-weighted adjacency matrix as follows: 

𝑄𝑄 = 𝐾𝐾 = Conv�𝐻𝐻𝑙𝑙(𝑡𝑡)�,𝑉𝑉 = Conv(𝐸𝐸(𝑡𝑡)) (3-2) 

𝐴𝐴𝑙𝑙(𝑡𝑡) = Softmax�LeakyReLU(𝑄𝑄𝐾𝐾𝑇𝑇)� ⊙ 𝑉𝑉 (3-3) 

The feature of 𝑋𝑋𝑙𝑙(𝑡𝑡) and 𝐸𝐸(𝑡𝑡) in Eq. 3-2 is augmented using 1×1 convolution 

operation. Next, the similarity matrix of nodes is computed using 𝑄𝑄𝐾𝐾𝑇𝑇. The Softmax 
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function is then used to project each line of the similarity matrix into an attention matrix, 

where the summation of each line is 1. The FC matrix undergoes a 1×1 convolution 

operation and is defined as 𝑉𝑉. Finally, the projected FC matrix is then used to obtain the 

attention-weighted adjacent matrix 𝐴𝐴𝑙𝑙(𝑡𝑡) by product. Therefore, 𝐴𝐴𝑙𝑙(𝑡𝑡) considers both 

node and edge features and is effective in learning graph representation. 

3.5 Multi-hop Attention and Graph Convolution 

The Multi-hop Attention method uses attention diffusion to expand the attention-

weighted adjacent matrix 𝐴𝐴𝑙𝑙(𝑡𝑡)  into a multi-hop attention form 𝑃𝑃 . Firstly, a 

sparsification operation is performed on the adjacent matrix 𝐴𝐴𝑙𝑙(𝑡𝑡). Performing TopK and 

Softmax operations on each row of the attention matrix 𝐴𝐴𝑙𝑙(𝑡𝑡) pushes the values of edges 

with smaller attention weights to nearly 0, while ensuring that the sum of each row equals 

1, as shown in Eq. 3-4: 

�̃�𝛢 = Softmax�TopK(𝐴𝐴𝑙𝑙)� (3-4) 

𝑃𝑃  considers attention between nodes that are not directly connected. The graph 

diffusion operation is utilized on the attention matrix to help nodes aggregate neighboring 

nodes beyond one hop. The diffusion process is formulated as follows: 

 

𝑃𝑃 =  ∑ 𝜃𝜃𝑖𝑖��̃�𝛢�
𝑖𝑖
 ,∑ 𝜃𝜃𝑖𝑖∞

𝑖𝑖=0 = 1 𝑎𝑎𝑛𝑛𝑎𝑎 𝜃𝜃𝑖𝑖 > 0𝐾𝐾
𝑖𝑖=0 (3-5) 

𝜃𝜃𝑖𝑖 = 𝛼𝛼(1 − 𝛼𝛼)𝑖𝑖,𝛼𝛼 ∈ (0,1] (3-6) 

The 𝐾𝐾-th power of �̃�𝛢 represents an adjacency matrix that includes the number of 

𝐾𝐾-hop paths, extending the receptive field. The scale factor 𝜃𝜃𝑖𝑖 is used to weight the 𝐾𝐾 

-hop adjacent matrix, with 𝜃𝜃𝑖𝑖  > 𝜃𝜃𝑖𝑖+1 . As described in [74], we utilize the geometric 

distribution 𝜃𝜃𝑖𝑖 to scale the weight of the adjacent matrix with more hops, as shown in 

Eq. 3-6. This selection is based on the inductive bias that nodes that are farther away 

should carry less weight in the message aggregation process. Scale factors are assigned 

independently in a sequential manner to nodes with varying path lengths to the target 

node. The whole updating process of node features uses the graph convolution operation 

as follows: 

𝐻𝐻𝑙𝑙+1  = MLP(𝑃𝑃𝐻𝐻𝑙𝑙;  Θ) (3-7) 
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where 𝐻𝐻𝑙𝑙 ∈ ℝ𝑁𝑁×𝐷𝐷 , the 𝑃𝑃𝐻𝐻𝑙𝑙  is information propagation operation. And updating 

process of node features is different from traditional method, which uses one fully-

connected layer, as is used in [75]. Instead, we use a Multi-layer Perceptron (MLP) with 

batch normalization for aggregation, as in previous work [43, 74]. Θ represents learnable 

parameters of the MLP. However, to compute the 𝑃𝑃 in Eq.3-5 can be costly, as it involves 

computing the power of matrix [76], which can have a complexity of up to 𝑂𝑂(𝑁𝑁3) , 

thereby slowing down the training and inference process. Building on the methodology 

of Approximate Personalized Propagation of Neural Prediction [76], we utilize an 

iteration manner to approximate the information propagation process 𝑃𝑃𝐻𝐻𝑙𝑙 as shown in 

Eq. 3-8. Corresponding updating process is formulized in Eq. 3-9: 

𝐻𝐻(𝑘𝑘+1)
𝑙𝑙 = (1 − 𝛼𝛼)�̃�𝛢𝐻𝐻(𝑘𝑘)

𝑙𝑙 +  𝛼𝛼𝐻𝐻(0)
𝑙𝑙 ,𝑘𝑘 ∈ [1,𝐾𝐾] (3-8)

𝐻𝐻(0)
𝑙𝑙 =  𝐻𝐻𝑙𝑙,𝐻𝐻𝑙𝑙+1 = MLP�𝐻𝐻(𝐾𝐾)

𝑙𝑙 � (3-9)
 

In Eq. 3-8 , the 𝐻𝐻(𝑘𝑘)
𝑙𝑙   is an intermediate variable of 𝐻𝐻𝑙𝑙  with 𝑘𝑘  hop attention 

information and 𝛼𝛼 is the teleport probability, set as shown in Eq. 3-6. As 𝐾𝐾 approach 

to infinity, the 𝐻𝐻(𝐾𝐾)
𝑙𝑙   converges to �̃�𝛢𝐻𝐻𝑙𝑙  [74]. The aggregated node features will be 

updated with MLP in Eq. 3-9. The proof process is shown in Eq. 3-10: 

𝐻𝐻(𝐾𝐾)
𝑙𝑙 = ((1− 𝛼𝛼)𝐾𝐾�̃�𝛢𝐾𝐾 + 𝛼𝛼�(1 − 𝛼𝛼)𝑖𝑖�̃�𝛢𝑖𝑖

𝐾𝐾−1

𝑖𝑖=0

) 𝐻𝐻(0)
𝑙𝑙 (3-10) 

The term (1 − 𝛼𝛼)𝐾𝐾�̃�𝛢𝐾𝐾  converges to 0 when 𝐾𝐾 → ∞ , because 𝛼𝛼 ∈ (0,1)  and 

elements of �̃�𝛢 is also in (0,1). Thus, lim𝐾𝐾→∞𝐻𝐻(𝐾𝐾)
𝑙𝑙 = (∑ 𝛼𝛼(1 − 𝛼𝛼)𝑖𝑖�̃�𝛢𝑖𝑖)𝐻𝐻 

𝑙𝑙∞
𝑖𝑖=0 , which is 

consist with Eq. 3-5 and Eq. 3-6 By this way of approximation, the complexity of multi-

hop attention computation is 𝑂𝑂(𝑁𝑁2). 

3.6 Readout Block 

MSTGCN utilizes a readout block for the representation of all nodes into a graph 

representation feature vector. To derive the representation of the whole graph, we employ 

an average pooling operation combined with a max pooling operations to capture the 

multi-view features of the graph representation. Average pooling averages over all node 

representations to obtain a fixed size graph level representation, and max pooling takes 

the maximum feature over all nodes. Finally we define our readout function as ℎ𝐺𝐺𝑙𝑙 =
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Avg(𝐻𝐻 
𝑙𝑙) + γMax(𝐻𝐻 

𝑙𝑙), ℎ𝐺𝐺𝑙𝑙 ∈ ℝ𝐷𝐷, where γis the weight of max pooling. For each time 

point we have a corresponding graph representation ℎ𝐺𝐺𝑙𝑙 (𝑡𝑡). 

3.7 Temporal Attention Block 

To extract temporal information, we utilize a widely used Transformer encoder [66] 

to create our graph representation sequence 𝑺𝑺𝑙𝑙 = (ℎ𝐺𝐺𝑙𝑙 (1),ℎ𝐺𝐺𝑙𝑙 (2), … , ℎ𝐺𝐺𝑙𝑙 (𝑇𝑇))  with one 

head attention, where 𝑺𝑺 ∈ ℝ𝐷𝐷×𝑇𝑇. For each layer of our model, we compute a dynamic 

graph representation by averaging the output feature of the Transformer encoder across 

time, which we define as ℎ𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑
𝑙𝑙  for layer 𝑙𝑙. The Transformer encoder in our work is 

formulated as follow for each layer  𝑙𝑙: 

(𝑺𝑺𝑙𝑙)′ = SelfAttention(𝑺𝑺𝑙𝑙) + 𝑺𝑺𝑙𝑙 (3-11) 

Where SelfAttention is identical to the Transformer encoder, and (𝑺𝑺𝑙𝑙)′ ∈ ℝ𝐷𝐷×𝑇𝑇. 

The feed-forward network calculation process is as follows: 

(𝑺𝑺𝑙𝑙)′′ = LN(MLP(LN((𝑺𝑺𝑙𝑙)′);  Θ) + (𝑺𝑺𝑙𝑙)′) (3-12) 

Where LN  represents layer-normalization operation, MLP  stands for multi-layer 

perceptron, Θ is its trainable parameter, and (𝑺𝑺𝑙𝑙)′′ ∈ ℝ𝐷𝐷×𝑇𝑇. For the final step with the 

classification and RevCon loss, we define the input as follow: 

ℎ𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑 

𝑙𝑙 = Avg(𝑺𝑺𝑙𝑙)′′ (3-13) 

 

ℎ𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑
 =  𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑎𝑎𝑡𝑡 �ℎ𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑 

1 , ℎ𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑 

2  … ,ℎ𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑 

𝐿𝐿 � (3-14) 

where  Avg  stands for average operation, 𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑎𝑎𝑡𝑡  represents concatenation 

operation, 𝐿𝐿 is the total number of layers in our model. ℎ𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑 

𝑙𝑙 ∈ ℝ𝐷𝐷 is the output of 

layer 𝑙𝑙. ℎ𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑
  represents the concatenation of the output of each layer. The output will 

be processed with a classification head and a contrastive head, respectively. The two 

heads consist of one layer of fully-connected layer with different output dimensions. In 

our work, the output dimension of classification head corresponds to the number of 

categories, which is 2. On the other hand, the output dimension of the contrastive head is 

𝐷𝐷𝑐𝑐. 
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3.8 Reverse Contrastive Learning 

Deep neural networks (DNNs) are effective in capturing correlations between 

patterns and labels. However, when it comes to DNN classification, there is a tendency 

to heavily rely on the simplest and most predictive patterns [77, 78]. It is important to 

note that patterns learned during the training process may turn out to be misleading, 

leading to potential oversight of authentic patterns within the test dataset and 

compromising the network’s generalizability. Furthermore, data collection can introduce 

misleading patterns [79, 80], including subtle and specific cues that are unique to certain 

hospitals [81]. When using these patterns for classification tasks, the focus is on 

maximizing inter-class specificity while neglecting intra-class variability [81]. While 

these patterns may be highly effective for classification, they also run the risk of being 

misleading and inauthentic. Therefore, one promising approach is to encourage neural 

networks to identify patterns with higher intra-class variability using RevCon learning 

[67]. The primary objective of RevCon learning is to expand the intra-class representation 

of neural networks. In this work, we posit that the significant inter-individual and 

collection site differences within fMRI data may contribute to the learning of misleading 

patterns. To address this issue, we introduce the concept of RevCon learning to our 

approach. The output feature vector of the contrastive head is defined as 𝑓𝑓 ∈ ℝ𝐷𝐷𝑐𝑐 . 

RevCon loss function is outlined as follows: 

ℒ𝑅𝑅𝑅𝑅 = −
1
𝑁𝑁𝑝𝑝

�𝑎𝑎(𝑓𝑓𝑎𝑎 ,𝑓𝑓𝑝𝑝)

𝑁𝑁𝑝𝑝

𝑑𝑑=1

,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑝𝑝 ∈ 𝑃𝑃𝑐𝑐𝑠𝑠(𝑎𝑎) (3-15) 

The function involves the use of feature vectors 𝑓𝑓𝑎𝑎 and 𝑓𝑓𝑝𝑝, where 𝑓𝑓𝑎𝑎 ∈ ℝ𝐷𝐷𝑐𝑐 and 

𝑓𝑓𝑝𝑝 ∈ ℝ𝐷𝐷𝑐𝑐  are feature vectors of sample 𝑎𝑎  and its positive sample 𝑝𝑝 , respectively. 

Positive samples are defined as samples within the same class, and a positive sample pair 

is a pair of samples within the same class. 𝑃𝑃𝑐𝑐𝑠𝑠(𝑎𝑎) represents the set of indices of all 

positive samples of sample 𝑎𝑎 in the batch. 𝑁𝑁𝑝𝑝 represents the number of positive sample 

pairs in a mini-batch, and 𝑎𝑎(𝑓𝑓𝑎𝑎, 𝑓𝑓𝑝𝑝) denotes the cosine similarity between 𝑓𝑓𝑎𝑎 and 𝑓𝑓𝑝𝑝. 

The loss function is calculated by multiplying with −1  to maximize the intra-class 

representation. Combined with classification loss, we have our final loss function as Eq. 

3-16: 
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ℒ =  ℒ𝑅𝑅𝐶𝐶 + 𝜆𝜆ℒ𝑅𝑅𝑅𝑅 (3-16) 

Where ℒ𝑅𝑅𝐶𝐶   represents the Cross-entropy loss for classification and ℒ𝑅𝑅𝑅𝑅  is 

RevCon loss defined in Eq. 3-10. 𝜆𝜆  is the weight of ℒ𝑅𝑅𝑅𝑅  and can adjust our loss 

function. 

3.9 Saliency Map 

To enhance the interpretability of our novel model’s performance, we use a gradient-

based saliency map method [82]. This method reveals significant brain regions and 

connections that play a pivotal role in influencing the classification outcome, potentially 

valuable biomarkers. The approach based on gradients enables the creation of saliency 

maps for individuals in each category by calculating the gradients of inference scores that 

correspond to input features. This encapsulates the importance associated with each 

feature [13]. The derivation of node and edge saliency maps is detailed in the following 

formulation. 

 

𝑀𝑀𝑋𝑋 = 𝜕𝜕𝑝𝑝𝑑𝑑
𝜕𝜕𝑋𝑋

,𝑀𝑀𝐶𝐶 = 𝜕𝜕𝑝𝑝𝑑𝑑
𝜕𝜕𝐶𝐶

(3-17) 

where 𝑀𝑀𝑋𝑋 and 𝑀𝑀𝐶𝐶 are the saliency map of node and edge features, respectively. 

𝑝𝑝𝑑𝑑  is the predicted score of category 𝑐𝑐  corresponding to input. The magnitude of 

elements of 𝑀𝑀𝑋𝑋 and 𝑀𝑀𝐶𝐶 reflects the importance of the corresponding input feature of 

𝑋𝑋 and 𝐸𝐸 for classification. 
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4.  Results 

4.1 Preprocessing 

All the resting-state fMRI data preprocessing was conducted using a combination of 

DPARSF software (http://www.rfmri.org/DPARSF) [83] and customized MATLAB 

scripts. To begin, the initial volumes (18 and 10 volumes for two datasets respectively) 

were discarded to ensure signal stability. Volume is defined as the fMRI image of each 

time point. Spatial realignment was performed to correct for motion artifacts. 

Subsequently, the functional images were normalized to the Montreal Neurological 

Institute (MNI) space and smoothed using a Gaussian kernel with a full width at half 

maximum (FWHM) of 6 mm. To address confounding factors, such as linear trends, head 

motion parameters [84], white matter signal, and cerebrospinal fluid signal, multiple 

linear regression was utilized. Temporal filtering was then applied using a bandpass filter 

with a range of 0.01-0.1 Hz. The purpose of filtering is to improve the signal-to-noise 

ratio of the data by filtering out the data in irrelevant frequency bands. Participants 

exhibiting excessive head motion (translation > 3mm or rotation > 3 degrees, or micro 

movement quantified by mean frame-wise displacement exceeding 0.3mm) were 

excluded from subsequent analyses. 

4.2 Experimental Settings 

We set three datasets, including Site 1, Site 2 and the combination of Site 1 and Site 

2, which is named as Cross-site. All three datasets underwent 5-fold cross-validation, with 

data divided into 5 subsets of approximately equal size, maintaining a consistent ratio of 

HC to TLE. Additionally, a stricter Leave-one-site-out validation strategy was employed 

to test the generalizability of the proposed method. In Leave-one-site-out validation 

strategy, the test set uses data from one site while the training set uses data from other 

sites. The classification performance is evaluated using two metrics: accuracy (ACC) and 

the area under the receiver operating characteristic (AURCO). ACC represents the ratio 

of correctly classified samples to the total number of samples, indicating the overall 

classification performance. The receiver operating characteristic (ROC) curve displays 

the True Positive Rate versus the False Positive Rate at various classification thresholds. 

http://www.rfmri.org/DPARSF
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The area under the ROC curve provides a more reliable evaluation performance under 

category distribution. 

The model was implemented using PyTorch. Experiments were accelerated using an 

NVIDIA GeForce RTX 3090 GPU. To extract fMRI time sequence, we utilized BN Atlas 

[68] with 246 ROIs. To compute dFC, we employed windows of 50 TRs, 36 TRs, and 50 

TRs, with corresponding strides set to 3 TRs, 2 TRs, and 3 TRs for Site 1 (TR = 0.72 

seconds), Site 2 (TR = 1 second), and Cross-site, respectively. The number of layers was 

set to 𝐿𝐿 = 2, with an embedding dimension of 𝐷𝐷 = 128,and  𝐷𝐷𝑐𝑐 = 68. The value of 

γ in the Readout module as 0.0001 . One cycle learning rate method is employed, 

gradually increasing the learning rate from 0.0005 to 0.001 during the first 20% of 

training, and then decreasing it to 5.0×10-7. Each training on all datasets consisted of 30 

epoch with a mini-batch size of 16. During the training stage, the time dimension of fMRI 

sequence was randomly clipped to a fixed length of 300, 200, 200 for Site 1, Site 2 and 

Cross-site, respectively. This stochastic augmentation of training data relieves 

computational overload and aligns datasets with different collection lengths, as inspired 

by previous work [41, 42]. Additionaly, ROIs are randomly flipped from left to right (or 

vice versa) to augment the training data, as all TLE patients in our study are unilateral. 

During the testing stage, full-length fMRI sequences are performed, and no flip operation 

is performed. 

4.3 Comptitive Methods 

1）GCNN (Static) [75]. The Graph Convolutional Neural Networks (GCNN) method 

was designed for semi-supervised learning and classification of graph-structured data in 

static graphs. GCNN is motivated by local first-order approximation of spectral graph 

convolutions, which justifies the choice of convolutional architecture. Batch 

normalization was added to the original structure for better training performance. In this 

study, four GNN model for static brain network are included as comparative to 

demonstrate benefits of utilizing the dynamic characteristic.  

 2) GIN (Static) [70] Graph Isomorphic Networks (GIN) is powerful GNN for graph 

classification, and Kim et al. developed a framework for analyzing static brain network 

fMRI data using GIN. They use the saliency map technique for GIN with one-hot 

encoding to visualize important brain regions, which inspired us.  
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 3) ChebNet (Static) [85]. Arslan et al. proposed approach that explores the role of 

GCNs in ROI recognition. They utilize an activation-based approach using ChebNet, a 

high-order GCNN, to identify salient graph nodes after a gender classification task with 

static brain network. We utilize their model for our task of diagnosing TLE. 

 4) GraphSAGE (Static) [86]. Li et al. designed a regularized pool layers that 

highlight ROIs, allowing the model to infer which ROIs are important for identifying 

specific diseases based on node pooling scores. In this work, we focus on the 

classification performance of GraphSAGE with our datasets. 

 5) ST-GCN [57]. The core idea of the ST-GCN method is to develop a framework 

for analyzing rs-fMRI data based on spatio-temporal graph convolution. The model is 

constructed based on dFC, defining neighboring nodes not only in spatial, but also in 

temporal aspects. This allows the model to learn the importance of both spatial and 

temporal features through spatial and temporal convolution operations.  

 6) ST-fMRI [87]. ST-fMRI models the long-range spatio-temporal dynamics of dFC 

by introducing a bone-based motion recognition method named MS-G3D. To account for 

inter-subject cortical heterogeneity, they use double regression ICA maps to explain the 

intersubjective variability in functional organization. For a fair comparison, we utilize the 

same ROI-level parcelation with BN Atlas as our proposed framework. 

 7) STAGIN-SERO and STAGIN-GARO [28]. Spatio-temporal attention graph 

network isomorphism (STAGIN) is proposed based on attention mechanism for dynamic 

brain network representation. STAGIN includes two attention-based readout methods for 

spatial information, namely SERO and GARO, and uses Transformer encoders for 

temporal information of dFC. STAGIN is evaluated on a task of TLE diagnosis, and both 

of the readout methods are tested.  

4.4 Performance on Epilepsy Classification 

The performance of our model was evaluated on three datasets, Site 1, Site 2 and 

Cross-site. We compared it with several brain network analysis methods, including sFC-

based methods such as GCNN [75], GIN [70], ChebNet [85] and GraphSAGE [86], and 

dFC-base methods such as ST-GCN [57], ST-fMRI[87], STAGIN with GARO (STAGIN-

GARO) [42] and STAGIN with SERO (STAGIN-SERO) [42]. Table II summarizes the 

results, indicating that our model achieved the highest classification accuracy of 85.52% 
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and the highest AUROC of 0.913 on Site 1. Similarly, our model outperformed 

alternatives on Site 2, achieving the highest classification accuracy of 78.27% and an 

AUROC of 0.857. The merged Cross-site dataset was also tested, and MSTGCN 

outperformed other compared method with an ACC of 82.09% and an AUROC of 0.869. 

 
Table II: The classification results of different methods on HC vs. TLE 

Method 
Site 1 (n = 145)  Site 2 (n = 179)  Cross-site (n = 324) 

ACC (%) AUROC ACC (%) AUROC ACC (%) AUROC 

GCNN [75] 
(Static) 

66.90 ± 5.770 0.728 ± 0.071  62.56 ± 11.27 0.673 ± 0.093  61.12 ± 6.707 0.683 ± 0.063 

GIN [70] 
(Static) 

66.90 ± 14.343 0.730 ± 0.085  61.43 ± 13.88 0.635 ± 0.162  65.43 ± 3.998 0.712 ± 0.042 

ChebNet [85] 
(Static) 

70.34 ± 9.317 0.788 ± 0.073  64.79 ± 8.959 0.645 ± 0.151  64.20 ± 2.277 0.702 ± 0.035 

GraphSAGE 
[86] (Static) 

71.03 ± 9.317 0.781± 0.114  58.68 ± 9.974 0.606 ± 0.136  60.47 ± 7.561 0.655 ± 0.069 

ST-GCN [57]  71.18 ±6.783 0.805 ± 0.069  69.24 ± 9.176 0.712 ± 0.126  70.83 ± 6.783 0.787± 0.045 

ST-fMRI [87]  77.93 ±16.98 0895 ± 0.051  66.43 ± 6.322 0.775 ± 0.078  75.90 ± 4.915 0.856± 0.044 

STAGIN-SERO 
[42] 

78.62 ±5.115 0.884 ± 0.053  76.00 ± 6.602 0.809 ± 0.089  77.15 ± 4.580 0.860 ± 0.024 

STAGIN-
GARO [42] 

82.76 ±5.452 0.852 ± 0.039  68.14 ± 6.471 0.777 ± 0.074  75.93 ± 5.134 0.850 ± 0.057 

Proposed 85.52 ± 5.115 0.913 ± 0.048  78.27 ± 8.092 0.857 ± 0.077  82.09 ± 3.907 0.869 ± 0.036 

 

4.5 Generalization of Model 

We compared the generalizability performance using Cross-entropy (CE) loss, 

Adversarial (Adv) loss and RevCon loss on the Cross-site dataset, a merged dataset. For 

Adv loss, we used FGSM [88] method, which has been proven effective in enhancing 

generalizability with a novel independent dataset [39] with static FC. The adversarial 

sample and the final adversarial loss function ℒ𝐴𝐴𝑑𝑑𝐴𝐴  follow previous work and are 

described in the following: 

ℒ𝐴𝐴𝐷𝐷𝐴𝐴  =  (1 − 𝜆𝜆)ℒ𝑅𝑅𝐶𝐶(𝑥𝑥,𝑦𝑦,𝜃𝜃) + 𝜆𝜆ℒ𝑅𝑅𝐶𝐶(𝑥𝑥𝐴𝐴𝐷𝐷𝐴𝐴,𝑦𝑦,𝜃𝜃) (4-1) 

𝑥𝑥𝐴𝐴𝐷𝐷𝐴𝐴 =  𝑥𝑥 + 𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝑛𝑛�∇𝑥𝑥𝐿𝐿𝑅𝑅𝐶𝐶(𝑥𝑥, 𝑦𝑦,𝜃𝜃)� (4-2) 

 where 𝑥𝑥,𝑦𝑦  and  𝜃𝜃  represent the input normal sample, label and model 

parameters, respectively. The 𝜆𝜆 is set to 0.5, following Chen et al. [39]. The magnitude 

of the deviation of the adversarial sample from the normal sample is represented by 𝜖𝜖. 

The comparison results are shown in Fig.3. 
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Figure 3: Model generalizability of TLE classification performance on Cross-site 

dataset validation: 

Results are reported for three training methods, using 5-fold and Leave-one-site-out 

cross-validation strategies. 

 
Fig.3 illustrates the comparison of classification performance CE loss, Adv loss and 

RevCon loss. When using only CE loss, the performance of ACC is 79.3% and 73.0% for 

K-fold and Leave-one-site-out validations, respectively. When adding adversarial loss, 

there is a decrease in accuracy for both validation methods (75.6% and 72.4%, 

respectively). The results differ from those reported in [39]. The difference may be caused 

by the discrepancy between inputted dynamic and static FC and model structure. Our 

RevCon loss improved the classification accuracy on both validation strategies (82.1% 

and 74.9%, respectively), indicating its effectiveness in improving generalizability. It 

should be noted that our result of adversarial training resulted in the best performance 

with 𝜖𝜖 ∈ [0.001,0.005,0.01,0.02,0.05,0.1,0.2]. 

4.6 Ablation Study 

Ablation studies were conducted to validate the effectiveness of the proposed model 

structure on classification performance. It should be noted that the ablation study was 

performed based on three datasets to increase its dependability. 

Multi-hop Mechanism: The effectiveness of the multi-hop mechanism in our model 

was evaluated by removing the attention diffusion block and directly performing the 
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graph convolution operation on the calculated spatial attention matrix. The attention 

matrix is calculated by Eq.3-2 and Eq.3-3, which is as one-hop attention. The accuracy in 

Table III decreases when using traditional one-hop attention, which proves that our multi-

hop attention diffusion operation enhances the capacity of spatial representation. 

Spatial Attention: In our proposed model, we utilized spatial attention and 

expanded it to multi-hop attention. To validate the effectiveness of the spatial attention 

module, we replaced the spatial attention adjacency matrix calculated by Eq. 3-2 and Eq. 

3-3with the traditional threshold method. Therefore the adjacent matrix 𝐴𝐴𝑙𝑙 =

𝐷𝐷−(1/2)�̂�𝐴thrd𝑙𝑙 𝐷𝐷−(1/2) , and �̂�𝐴thrd𝑙𝑙 = 𝐴𝐴thrd𝑙𝑙 + 𝐼𝐼 , where 𝐴𝐴thrd𝑙𝑙   is a binarized adjacency 

matrix with threshold, 𝐼𝐼 is identity matrix and 𝐷𝐷 is the degree matrix of �̂�𝐴thrd𝑙𝑙 . The 

result reported in Table III demonstrates that the attention mechanism effectively 

enhances the classification performance. 

Temporal Attention: Temporal processing module is adopted to handle dynamic 

characteristics within the dynamic brain network. In this part we removed Transformer 

block and replaced it with an average operation on the graph representation sequence 

(ℎ𝐺𝐺(1),ℎ𝐺𝐺(2) … ,ℎ𝐺𝐺(𝑇𝑇)), which is calculated by Eq.3-9. Table III indicates a decrease in 

accuracy, indicating the significance of the dynamic feature of the brain network and the 

effectiveness of the temporal attention block for dynamic feature representation. 

Reverse Contrastive Loss: To validate the effectiveness, we removed RevCon loss 

ℒ𝑅𝑅𝑅𝑅 and only used traditional Cross-entropy loss. The results in Table III depict that the 

ℒ𝑅𝑅𝑅𝑅 enhances the classification performance. The effectiveness of ℒ𝑅𝑅𝑅𝑅 was tested on 

Site 1 and Site 2, resulting in an increase in classification performance.  

Readout module: As is stated in section 3.5, the readout module in our proposed 

model includes both max pooling and average pooling. In the ablation study we removed 

the max pooling to evaluate the effect of Avg+Max pooling on our results. Table III shows 

that our Avg+Max pooling improves classification performance. 

Overall, the modules utilized in our proposed framework are effective in extracting 

discriminative patterns from dFC, thereby improving the performance.  
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Table III: Ablation study 

Model 
Structures 

Ablation 
Settings 

Site 1 (n = 145)  Site 2 (n = 179)  Cross-site (n = 324) 

ACC (%) AUROC ACC (%) AUROC ACC (%) AUROC 

Multi-hop 

Spatial 
Attention  

No Multi-
hop 80.00±6.633 0.869±0.055  74.90±6.660 0.843±0.090  79.01±5.068 0.846±0.043 

No 
Attention 83.45±10.74 0.912±0.070  74.33±6.797 0.826±0.094  79.31±5.626 0.875±0.0035 

No Multi-
hop & 

Attention 
82.76±9.753 0.908±0.058 

 
75.44±7.097 0.807±0.091 

 
76.85±3.926 0.839±0.042 

Temporal 
Attention Mean 83.45±8.233 0.884±0.085  76.54±3.546 0.840±0.034  76.54±3.546 0.845±0.051 

Loss Function Only Cross-
entropy 80.69±6.264 0.899±0.075  75.98±3.667 0.829±0.072  80.55±5.621 0.865±0.039 

Readout 
Only 

Average 
Pooling 

84.14±5.230 0.856±0.046 
 

78.83±8.378 0.861±0.079 
 

79.93±6.345 0.856±0.046 

Proposed - 85.52 ± 5.115 0.913 ± 0.048  78.27 ± 8.092 0.857 ± 0.077  82.09 ± 3.907 0.869 ± 0.036 

4.7 Impact of Model Hyperparameters 

This study examines impact of model hyperparameters on classification 

performance. We focus on three main hyperparameters. The first hyperparameter, denoted 

as 𝐾𝐾  in Eq.3-5, represents the number of hops. Our results indicate that the best 

performance for Site 1 and Site 2 is achieve with 4 hops, while Cross-site achieves the 

best classification performance with 5 hops. We found that the optimal multi-hop number 

𝐾𝐾 depend on different datasets, which is consistent with prior research [43, 62]. I note 

that the performance of single hop is in ablation study. The teleport probability 𝛼𝛼 is the 

second parameter in Eq. 3-8, The optimal performance is achieved when 𝛼𝛼 is set to 0.15. 

Beyond this value, there is a slight decrease in performance for Site 1 and Cross-site. 

Prior research has shown that a small value of 𝛼𝛼 increases the low-pass effect, directing 

the model’s focus towards large-scale graphs and eliminating noisy high-frequency 

information [74]. Conversely, an excessively small value of 𝛼𝛼 can cause the model to 

overly focus on large-scale graphs, resulting in performance degradation. The third 

hyperparameter is the weight of  the RevCon loss ℒ𝑅𝑅𝑅𝑅. Performance shows an upward 
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trend as 𝜆𝜆 increases, up until a certain point. An excessively large value of 𝜆𝜆 will lead 

to a collapse in validation accuracy. The results are depicted in Fig.4. 

 

Figure 4: Impact of model hyper parameters: 

(a) Classification accuracy with different values of number of hop. (b) Classification 

accuracy of different teleport probability 𝛼𝛼 . (c) Classification accuracy of different 

weight of Reverse Contrastive Loss, which is represented by 𝜆𝜆. 

 



 

38 

4.8 Discriminative Brain Networks to Epilepsy 

 
Figure 5: Visualization of the group-level features learned by the proposed model 

for TLE diagnosis: 

(a) displays the top 20% influential ROIs (49 nodes). (b) shows the top 0.1% functional 

connectivity (30 edges) in a chord map. The size of the nodes and edges denotes the 

weight of classification. (c) represents the distribution of classification weights in the 

functional network derived from the BN Atlas (246 ROIs) parcellation. Noted that for the 

weight of edge feature, i.e. weight of functional connectivity, is included in the calculation 

of degree to facilitate division into subnetworks. 

 

We implemented the aforementioned saliency map method for model interpretation 

by selecting the brain regions and connections with significant contribution to the 

classification. Note that the best performance model trained on cross-site is adopted, as 

data from two sites indicate better generalizability. We first calculated the node and edge 

saliency map of the patient group and then selected significant features. Specifically, we 
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calculated the saliency map of TLE patients on test samples of all folds, and averaged 

saliency map of 𝑀𝑀𝑋𝑋 and 𝑀𝑀𝐶𝐶 across all time points and normalized the gradients across 

features. A summation operation was then performed for a saliency map at the TLE group 

level. We selected the top 20% (49) nodes with the largest absolute values in the node 

saliency map and visualized these discriminative brain nodes as shown in Fig. 5 (a). The 

most discriminative brain nodes are concentrated in the subcortical structures and 

temporal lobe, including the thalamus, basal ganglia, temporal sulcus, superior and 

middle temporal gyrus, and fusiform gyrus. These identified subcortical and cortical 

regions play a central role in the initiation and propagation of temporal lobe seizures [89]. 

In addition, the cingulate gyrus and frontal lobe (medial superior frontal areas) also 

contribute significantly to the classification. 

Similarly, we selected the top 0.1% (30) edges with the largest absolute values in the 

edge saliency map at the TLE group level. The results are visualized in Fig.5(b). Edge 

features showed that the connections related to the precuneus, which is a ROI in the 

parietal lobe, contributed most to the identification of TLE patients. The precuneus, as a 

core hub of the posterior default mode network (DMN), has been typically been 

implicated in epileptogenic networks [90, 91]. In addition, connections related to the 

temporal lobe, subcortical nuclei, and frontal lobe have also made important contributions 

to TLE identification. 

It has been shown that TLE is related to a group of resting-state networks. In this 

case, we further performed a statistical result of regions and connections, which are 

divided into 7 classical subnetworks, according to the work of Yeo et al. [92]: DMN, 

limbic network (LIB), ventral attention network (VAN), dorsal attention network (DAN), 

frontoparietal network(FPN), visual network (VIS), somatomotor network (SMN). We 

also included the subcortical (SC) network in this statistical analysis. Firstly, to analyze 

the region-level saliency map in subnetworks, we computed the mean value of the region-

level saliency map within each subnetwork for each subject. As depicted in the left panel 

of Fig. 5(c), the distributions of region-level feature importance are mostly concentrated 

in the SC network, followed by the SMN, DAN, and DMN. Second, to assess the 

connection weight in subnetworks, we used the degree of nodes as a representation of 

connection weight. We then calculated the averaged nodal degree within each subnetwork 

for each subject. The result is shown in the right panel of Fig. 5(c). SC, LIM and DMN 
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are the top 3 subnetworks that made significant contributions to the identification of 

epilepsy from the HC in our proposed model. 

4.9 Epilepsy Surgical Prognosis 

The saliency map of the models can be seen as a reflection of the potential of 

biomarker mining. We implemented the aforementioned saliency map result for model 

interpretation to perform the surgical outcome prediction. First, we obtained the surgical 

resection template of each patient by inspecting the difference between the preoperative 

T1 images and the postoperative T1 images. Then, we defined standard resection mask at 

the group level by merging each patient's individual resection template (T1 images of 

right-sided TLE patient were flipped), thus creating 21 brain ROIs. Consequently, the 

features were divided into surgically resected features and spared features, as shown in 

Fig. 6(a). Resected features are within the resected ROIs while spared features are features 

that has no connections with the resected ROIs. We use feature selection (F-score) and 

random forest to classify patients into SF and NSF. As can be seen from Fig. 6(b), the 

models based on spared features achieve better surgical outcome prediction performance 

than the models based on resected features. In particular, the AUROC and ACC are best 

with the spared node saliency map, which are 0.829 and 82.0%, respectively. We also 

present importance of top 10 node features in Fig.5(c). Surgically spared nodes including 

the middle frontal gyrus, parahippocampus and hippocampus are important for the 

surgical outcome prediction.  
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Figure 6: Results of surgical outcome prediction based on the saliency map: 

(a) illustrates the anterior temporal lobectomy. With surgery information, ROIs are 

divided into resected ROIs and spared ROIs. (b) shows the ROC of surgical outcome 

prediction using six different way of input feature construction. (c) displays the top 10 

feature importance of the spared node with the best prediction performance. (d) 

Visualization of the importance of node feature. 
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5.  Discussion 

5.1 Effect of Multi-hop Attention 

In this study, we proposed the MSTGCN framework to provide complex multi-hop 

spatio-temporal representations of dynamic brain functional networks. The multi-hop 

mechanism has the objective alleviating the over-smoothing problem that arises when 

performing traditional one-hop graph attention. Furthermore, the multi-hop mechanism 

does not introduce additional trainable parameters while expanding the receptive field, 

thus enhancing the capacity of graph representation without increasing the model 

complexity. The experimental results of our method and comparative methods on epilepsy 

diagnosis are presented in Table II. Our method achieved the highest ACC values of 85.52% 

(Site 1), 78.27% (Site 2), and 82.09% (Cross-site) in the classification of TLE patients vs. 

HC, which are higher than the other methods. Furthermore, our method also demonstrated 

the highest area under the receiver operating characteristic curve (AUROC) values, 

indicating its superior performance. 

The ablation experiments indicate that the multi-hop diffusion operation improves 

the cross-site classification ACC by more than 2% compared to a model without a multi-

hop attention mechanism. Furthermore, the multi-hop strategy and attention mechanism 

are validated in an ablation study. The result of a model without a multi-hop strategy 

shows that the multi-hop strategy is effective in TLE diagnosis and better than a one-hop 

situation in our framework. The results also indicated the effectiveness of the attention 

mechanism, which is consistent with prior work [62]. We also conducted an ablation study 

on Sites 1 and 2, and obtained an ACC improvement of 5% and 3.37%, respectively. 

These results suggest that the multi-hop spatial attention mechanism is a superior strategy 

to enhance the graph spatial representation ability without the need to stack additional 

layers or parameters. Since the average operation can ignore the temporal information 

within dynamic brain networks, the ablation result of the temporal attention module 

demonstrates the contribution of temporal information for TLE diagnosis. Prior works 

have shown that the dynamics of brain network of epilepsy patients can be abnormal [4, 

7], which supports the performance increase of MSTGCN. The ablation study on the 

proposed readout function is inspired by works in GNN-related research [93]. The results 

demonstrate that the readout function in MSTGCN is capable of enhancing performance. 
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Furthermore, the efficacy of RevCon loss is evident in the improved accuracy of the Site 

1 and Cross-site datasets. Notably, the addition of RevCon loss to the Cross-site dataset 

resulted in an increase of over 2% in accuracy. 

Additionally, an experiment was conducted to assess the impact of hyperparameters 

associated with multi-hop attention in our work. The results demonstrated that employing 

the multi-hop mechanism contributes to enhancing classification performance. Moreover, 

it was found that the optimal multi-hop number 𝐾𝐾 depended on different datasets. This 

finding aligns with previous research [62]. But if the number of hop is too large, the 

performance declined. This phenomennon may be attributed to the presence of spurious 

connections within dFC, as previously investigated by Huang et al. [51]. The 

accumulation of spurios connections during multi-hop diffusion process will is a key 

factor in this regard. The outcome of the impact analysis with teleport probability aligns 

with the findings of previous research [62]. Prior studies have demonstrated that a low 

value of 𝛼𝛼 increases the low-pass effect, directing the model’s focus towards large-scale 

graphs and eliminating noisy high-frequency information [74]. Conversely, an 

excessively small value of 𝛼𝛼 can cause the model to overly focus on large-scale graphs, 

resulting in a decline in performance. Therefore, a reasonable increase of teleport 

probability will enhance the impact of indirect connections in attention diffusion, thereby 

improving performance. With regard to the impact of the weight of RevCon loss, it 

functions as a regularization item in loss function. Furthermore, the impact of the weight 

of RevCon loss is consistent with that of a regularization item in a loss function. That is 

to say, a reasonable value will be beneficial to the performance, but an overly large weight 

will degenerate the performance. 

5.2 Effect of Reverse Contrastive Learning 

One of the objectives of computer-aided diagnosis is to develop models that can 

generalize to data from different sites or other sources. In this study, we utilized the 

RevCon loss method to generalize the model to cross-site fMRI data. To assess the 

efficacy of the RevCon loss method, we compared our results with those obtained using 

adversarial learning and solely CE loss. We employed the K-fold and Leave-one-site-on 

validation strategies in section 4.5 to analyze the performance of these methods. The 

results of the introduction of RevCon loss revealed an improvement in ACC of 2.8% and 
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1.9% on two validation strategies, respectively, indicating better generalizability with 

RevCon loss. Additionally, the effectiveness of RevCon loss is supported by the 

classification performance on Site 1 and Site 2. The promising adversarial learning may 

not be suitable for our framework, according to the results. One potential explanation for 

this discrepancy is that the multi-hop mechanism may result in the accumulate of 

perturbation introduced by adversarial samples. Another possible reason is that multi-

modal features have been considered in previous work. Multi-modal features, including 

features derived from fMRI and MRI, may assist the model in more effectively capturing 

the complexity of the information and providing the model with a multi-perspective 

understanding. In contrast, the RevCon loss can enhance the representation of intra-class 

data and achieve superior classification performance in our MSTGCN framework. The 

results of the ablation study also provide evidence of the effectiveness of the RevCon loss. 

The performance of the model is enhanced by the inclusion of the RevCon loss. In 

addition, we also tested the impact of the weight of RevCon loss. The result have been 

discussed in section 5.1. 

It is noted that the margin and easy-positive and hard-negative sampling strategy 

have been removed. According to the original work of RevCon loss, they tested that 

removal of the margin (setting it to infinity) will lead to better performance. They inferred 

that it is CE loss that keeps the distance between anchor samples and negative samples. 

Without the margin, hard-negative selection does not work. In our own work, we tested 

the performance of setting the margin. Our results indicated that performance was not as 

good as without margin. This result is consistent with the inference made by the original 

authors. We also compared the performance of easy-positive sample selection. This 

strategy resulted in a further deterioration in performance. Therefore, we calculated the 

mean value of the distance between all pairs of positive samples and removed the sample 

selection. In light of the CLIP work [94], we employed the cosine similarity to quantify 

the distance between samples, diverging from the original RevCon approach, which 

utilized the L1-distance. To ascertain the efficacy of the L1-distance in comparison to the 

cosine similarity, we conducted a test. Our findings indicated that the L1-distance did not 

demonstrate superior performance to the cosine similarity in our study.  
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5.3 Model Interpretability and Surgical Outcome Prediction 

We investigated the interpretability of the MSTGCN framework to identify the 

potential biomarkers for epilepsy diagnosis and surgical prognosis. The gradient-based 

saliency map strategy was utilized at the node, and edge, and network levels, respectively, 

to recognize important brain areas and connections contributing to the TLE vs. HC 

classification. The regions and networks with maximal importance for classification 

included the subcortico-cortical structures such as thalamus and basal ganglia, temporal 

lobe structures, cingulate gyrus, frontal and parietal association cortices. Among the 

resting-state network markers, the DMN is of particular importance, as it is intricately 

connected to the mesial temporal regions and is often involved in the propagation and 

clinical expression of seizures. These experimental results are in line with previous 

epilepsy fMRI studies [95, 96] and confirm that the proposed method successfully 

identifies a spatially distributed network associated with TLE.  

Exploring the optimal spatio-temporal representations of brain graphs via MSTGCN 

is not only beneficial for the diagnosis of epilepsy, but also has a potential application in 

predicting the surgical outcome of drug-resistant epilepsy. To further validate the 

interpretability and enhance the potential clinical value of the proposed model, we 

performed a surgical outcome prediction task. By combining the result of the saliency 

map and the clinical prior surgery knowledge, we showed that SF patients and NSF 

patients can be classified effectively using the random forest, with an AUROC of 0.829 

and an ACC of 82.0%. This result further supports that the potential of biomarker mining 

of the trained model, especially in surgical planning and prediction of surgical outcomes. 

5.4 Limitations and Future Research 

Although the proposed MSTGCN framework has achieved outstanding performance 

in epilepsy diagnosis and surgical prognosis, there are still several limitations that need 

to be addressed in future work. First, we use dFC derived from fMRI as input for our 

model. However, short-time segments may introduce spurious fluctuations in the 

observed scans, which increases the spurious connections in dFCs [62]. Innovative 

developments with multi-modal deep learning methods have emerged. Expanding the 

input into multi-modal data may improve the performance of computer-aided diagnosis 

model by alleviating their shortcomings.  
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Second, our approach only learns FC features based on a single brain Atlas, i.e. BN 

Atlas. As for the number of voxels in fMRI signal is large, most of diagnosis works with 

FC will perform the template the on fMRI signal to integrate information with ROIs, 

which is parcellation. The parcellation can be treated as down-sampling method. Different 

template will have different way of designing the ROIs, some are based on the function 

and some are based on the structure. Some of them even use independent component 

analysis to parcelate the ROIs. Hence multi-scale brain ROI segmentation provides more 

information on functional brain activity. The classification performance is expected to be 

further improved by integrating FC features learned from multi-scale brain maps [63]. 

Finally, except for the diagnosis and prognosis, there are vital downstream tasks like 

literalization, localization and so on. For most of the artificital intelligence methods, they 

only consider one of the downstream tasks. Also, each task needs a specialized training 

process, which constrains the scalability of model application. Recently, large language 

models emerge and attracts attention of researchers. The prompt engineering, pre-training 

and fine-tuning are significant components and technologies in large language models. 

Such technologies are promising to design a method with different different downsteam 

tasks. 
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6.  Conclusion 

In this study, we introduce a novel Multi-hop Spatio-temporal Graph Convolutional 

Network model designed for epilepsy diagnosis and surgical outcome prognosis. Our 

approach involves several key innovations. First, we incorporate indirect connections 

between ROIs within the brain network using multi-hop spatial attention, thereby 

enhancing the model's spatial representation capability. Second, we introduce the RevCon 

loss, computed from extracted features, to regularize the CE loss, thus improving the 

model's generalizability across different fMRI datasets. Experimental evaluations on two 

real epilepsy datasets demonstrate that our method surpasses other GNN-based diagnosis 

methods in terms of accuracy and reliability. Furthermore, our proposed model can 

effectively identify discriminative brain regions and connections in Temporal Lobe 

Epilepsy patients. By leveraging saliency maps, our model showcases promising potential 

in discovering biomarkers and facilitating clinical applications in epilepsy prognosis. 
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